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The survival of humanity is closely linked to the maintenance of biodiversity. 

Biodiversity is " the sum total of all plants, animals, fungi, and microorganisms on Earth, their 

genetic and phenotypic variation, and the communities and ecosystems of which they are a part” 

(Dirzo and Raven 2003). Climate regulation, support to agriculture (soil fertilization, pest 

regulation), production of food and material resources, and transformation of waste and 

pollutants are among the multitude of ecosystems services provided to humans (Bolund and 

Hunhammar 1999; Baudry et al. 2000; Krieger 2001). Anthropogenic pressures have led (and 

still lead) to habitat loss and degradation causing massive extinction of biodiversity (Pimm et 

al. 1995). Habitat loss can decrease connectivity by isolating habitat patches from other 

patches at the landscape scale. However, movement is essential for the sustainability of 

species because they need to move throughout their life cycle, particularly to feed, find 

refuge and reproduce. Furthermore, the movement supports genetic mixing, a key element 

for the maintenance of fauna and flora species.  

 

Ecological corridors are one of the main tools used to increase the landscape connectivity 

by facilitating the movement of species. Ecological corridors connect the patches of habitats 

to form a whole called "ecological continuities" (Bennett 2004). The ecological functions of 

continuities are complex due to the diversity of structure and composition of landscape 

elements and their different contexts from local to landscape scale. In addition, there is a 

diversity of species that react differently to the landscape elements (Dennis et al. 2013). 

Therefore, maintaining and creating ecological continuities require a good understanding of 

the interactions between landscape elements and species to achieve relevant conservation 

strategies. In wooded landscapes, the main threat on biodiversity is deforestation and forest 

degradation. In these landscapes, primary forests and large patches of habitats are 

considered to be the most effective landscape elements for biodiversity conservation. 

However, secondary forests and small habitat patches play an important role for species 

persistence by potentially increasing landscape connectivity (Lindenmayer et al. 2006; Vidal 

et al. 2016). In crop-dominated landscapes, many studies have focused on semi-natural 

elements such as permanent grasslands and wooded elements (woodlands and hedgerows), 

that are key elements of ecological continuities (Burel et al. 2013). Originally, crop-dominated 

landscapes were described as a set of semi-natural elements within a neutral agricultural 

matrix by landscape ecologists (Burel et al. 2013). However, heterogeneous crop-dominated 

landscapes with semi-natural elements have a high potential for biodiversity (Tscharntke et 

al. 2005; Billeter et al. 2008; Fahrig et al. 2011). Crops induce spatial heterogeneity due to their 

diversity and the complexity of their configuration beneficial for biodiversity. In addition, 

temporal heterogeneity induced by crop rotation, management and phenology affects the 

movement of species across the landscape. Therefore, corridors may temporarily appear 

within crop-dominated landscapes (Burel et al. 2013). 

 

Now, the notion of ecological continuity is a key concept in public policies dealing with 

environmental protection laws, protected areas, land use planning tools, etc from the 

international level to local level. The identification and characterization of ecological 

continuities are at the basis of biodiversity conservation strategies and represent a major 

scientific challenge due to the structural and functional complexity of ecological systems. 

However, in wooded landscapes, small habitat patches and secondary forests are being 

neglected in favour of primary forests and large habitat patches. In landscapes dominated by 

crops, the mosaic of crops is rarely integrated into maps of ecological continuities that 
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include only semi-natural elements such as permanent grasslands and wooded elements. 

Moreover, the temporal dynamics of these landscapes are not taken into account while it 

impacts the functionality of ecological continuities. 

 

In this context, time series of satellite images are a relevant tool for mapping and 

monitoring the elements constituting ecological continuities in crop-dominated and wooded 

landscapes over large areas. Images acquired by optical satellites have already shown high 

potential for identifying and characterizing landscape elements. The optical sensors 

Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution 

Radiometer (AVHRR) and Landsat have been widely used to map land use and land cover 

(Congalton et al. 2014; Gómez et al. 2016) and to detect deforestation and forest degradation 

(Bourgoin 2019) at large scales due to their high temporal resolution and large swathes. 

However, the low spatial resolution of these data (30m to 1.1km) does not allow the fine 

identification of landscape features or their characterization. Very high spatial resolution 

images such as SPOT (Satellite Pour l'Observation de la Terre), Formosat-2 optical, 

Quickbird, WorldView and IKONOS (<5m) have shown high potential to identify fine 

hedgerows (Vannier and Hubert-Moy 2014), estimate yield, leaf area index (LAI), biomass 

and crop phenological stages (Quarmby et al. 1993; Doraiswamy et al. 2004; Mulla 2013; 

Bontemps et al. 2015; Pan et al. 2015; Betbeder et al. 2016b) or mapping the above-ground 

biomass of tropical forests (Singh et al. 2014; Pargal et al. 2017). The temporal resolution is 

also an essential element in characterizing the temporal dynamics of landscape features. 

Since the 2000s, studies have demonstrated the value of high spatial resolution SAR 

(Synthetic Aperture RaDAR) satellite data for crop mapping and characterization (Steele-

Dunne et al. 2017). Polarimetric indicators derived from RADARSAT-2 or TerraSAR-X are 

relevant for estimating the phenological stages, height and biomass of various crops (Jiao et 

al. 2009; Wiseman et al. 2014; Mascolo et al. 2015; Jin et al. 2015; Betbeder et al. 2016b; 

Pacheco et al. 2016; Canisius et al. 2018; McNairn et al. 2018; Homayouni et al. 2019). In 

wooded landscapes, the ALOS-SAR sensor has shown high performance in producing a 

global forest/non-forest map (Shimada et al. 2014; Zhou et al. 2018). However, the low 

temporal resolution of these sensors, their necessary programming and the cost of the images 

constitute strong constraints for the monitoring of crop-dominated and wooded landscapes. 

 

The free high spatial and temporal resolution data acquired by the Sentinel-1 (S-1) SAR 

satellite since 2014 and the Sentinel-2 (S-2) optical satellite since 2016 offer new possibilities 

for mapping and monitoring ecological continuities. Recent studies have demonstrated the 

potential of S-2 time series for mapping land use in wooded (Jönsson et al. 2018) and crop-

dominated landscapes (Csillik and Belgiu 2017a; Denize et al. 2019a). For crop-dominated 

landscapes, spectral bands, vegetation indices and biophysical variables derived from S-2 

data accurately estimate LAI (Delegido et al. 2011b; Frampton et al. 2013; Clevers et al. 2017; 

Pan et al. 2018; Wang et al. 2019), biomass (Veloso et al. 2017; Ghosh et al. 2018; Ganeva et al. 

2019) and phenological stages (Veloso et al. 2017; Ghosh et al. 2018; Stendardi et al. 2019) of 

various crops. However, the exploitation of optical data is limited by cloud cover presence. 

In addition, they provide information only on the top layer of vegetation and the signal 

saturates with high biomass and LAI levels (Wang et al. 2016a). Despite the fact that S-1 data 

are sensitive to soil conditions (roughness, moisture), they are an alternative to S-2 data as 

they are insensitive to atmospheric conditions and the SAR signal penetrates the canopy (Lee 

and Pottier 2009). Recent studies have shown the interest of backscatter coefficients and 
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VH:VV ratio derived from S-1 data for mapping five global land cover types (water, forest, 

urban, bare soil and agricultural area) in Turkey (Abdikan et al. 2016) and detecting 

coniferous forests, deciduous forests and non-irrigated arable land in Germany (Balzter et al. 

2015). In crop-dominated landscapes, the potential of these same S-1 variables has been 

demonstrated for detecting changes in the structure of rapeseed, maize and winter cereals 

(Vreugdenhil et al. 2018), identifying the phenological stages of wheat (Song and Wang 2019) 

and estimating biomass, water content (WC) and LAI of wheat (Kumar et al. 2018). However, 

to our knowledge, no studies have been conducted with polarimetric indicators derived from 

S-1 to characterize crops (Jin et al. 2015; Stendardi et al. 2019).  

 

Consequently, the combined use of optical and SAR data should improve the mapping 

of ecological continuities. Indeed, the fusion of optical and SAR data improves the 

identification of land use/land cover (Kussul et al. 2017; Zhou et al. 2017; Laurin et al. 2018; 

Reiche et al. 2018) and crop types (Orynbaikyzy et al. 2019). The optical domain is sensitive 

to the vegetation physiology, while microwaves are influenced by geometry (roughness, 

texture, geometrical structure) and surface moisture. This complementarity between the 

optical and SAR domains is little exploited to characterize ecological continuities. A few 

studies have used both optical and SAR data to characterize crops (Betbeder et al. 2016a; 

Veloso et al. 2017; El Hajj et al. 2019). However, these studies use the Normalized Difference 

Vegetation Index (NDVI), derived from optical data as a reference for evaluating SAR data. 

Although the actual combination of optical and SAR data improves the results of land use 

and crop type classification, it remains little used to predict crop parameters (Jin et al. 2015; 

Stendardi et al. 2019). 

 

The objective of the thesis is twofold : 1) comparatively evaluate the S-2 optical and S-1 

SAR time series to identify and characterize the constituent elements of ecological 

continuities using land cover and land use classifications and crop characterization in 

wooded and crop-dominated landscapes, 2) assess the influence of the spatio-temporal 

structuring these landscape mosaics on biodiversity using metrics derived from S-1 and S-2 

time series. 

 

The first part of the thesis explains the basis of ecological continuities and remote 

sensing with a focus in wooded landscapes and crop-dominated landscapes, and highlights 

the associated challenges. Then, study areas and field, species and remote sensing data used 

in this thesis are detailed. 

 

The second part of the thesis aims at answering the following question : What are the 

most efficient Sentinel sensor and variables to identify the potential constitutive elements of 

ecological continuities in wooded landscapes?  

For that purpose, we evaluated the potential of S-1 data alone, S-2 data alone and the 

combined S-1 and S-2 data to identify and characterize land cover in forest-agricultural 

mosaic landscapes. The study focused on two wooded landscapes with contrasting 

vegetation gradients: a temperate mountainous landscape in the Cantabrian Range (Spain) 

and a tropical humid forest landscape in Paragominas (Brazil). The satellite images were 

classified using an incremental procedure based on the ranks of importance of the input 

variables derived from S-1 and S-2 time series. The developed algorithm automatically 
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selects the relevant variables and time periods to be used to best classify land cover and land 

use in each landscape. 

 

The third part of the thesis focused on the following the question: What are the most 

efficient Sentinel sensor and variables to identify and characterize the potential constitutive 

elements of ecological continuities in agricultural landscapes?  

To answer this question, we focused on wheat and rapeseed, which are two of the most 

important crops in the world in terms of area harvested (FAO, 2017). We evaluated the 

potential of S-1 data alone, S-2 data alone and the combined of S-1 and S-2 data to identify 

the principal and secondary phenological stages of wheat and rapeseed in Picardy (France). 

More specifically, the aim of this study was to evaluate the interest of polarimetric indicators 

derived from S-1 data and to determine the number and type of S-1 and S-2 variables 

necessary to discriminate the phenological stages of wheat and rapeseed. We estimated the 

performance of spectral bands and vegetation indices derived from S-2 and backscatter 

coefficients and polarimetric indicators derived from S-1. Satellite images were classified 

using the incremental method developed in the previous study (Mercier et al. 2019b). 

We continued our research on crop characterization by evaluating the potential of S-1 

and S-2 data to estimate the LAI, wet biomass (WB), Dry Biomass (DB) and WC of wheat and 

rapeseed in Brittany (France). We compared the predictive power of spectral bands and 

vegetation indices derived from S-2 and backscatter coefficients and polarimetric indicators 

derived from S-1 using Gaussian process regressions (GPR). 

 

The fourth part of the thesis focused on the following question: What is the impact of 

landscape structure on crop phenology and biodiversity in crop-dominated landscapes? 

Based on the results obtained in the previous part of the thesis, we assessed the impact 

of the spatio-temporal structuring of the crop mosaic on biodiversity. For that purpose, we 

analyzed the influence of biophysical heterogeneity on wheat phenology and associated 

biodiversity in Brittany, Picardy and Wallonia study areas. The vegetation index named 

Weighted Difference Vegetation Index (WDVI) calculated from S-2 data was used as a metric 

of biophysical heterogeneity and as an indicator of wheat phenology. First, we analyzed the 

relationships between crop mosaic, landscape grain and biophysical heterogeneity. Then, we 

studied the effect of biophysical heterogeneity on wheat phenology. Finally, the distribution 

of two carabid beetle species was estimated using the biophysical heterogeneity metric.  

 

This thesis contributes to the WOODNET project (Connectivity patterns and processes along a 

gradient of European landscapes with woody vegetation and spatial heterogeneity), which is part of the 

European BIODIVERSA program. This is an interdisciplinary project that combines ecology, 

geography, hydrology, agronomy and law and involves researchers from Belgium, France and Spain. 

The researches that are presented in this thesis focus on one of the main activities of the WOODNET 

project, that is the evaluation of new satellite images for landscape mapping 

(https://woodnetweb.wordpress.com/project/). 
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Introduction 

The first part of this manuscript presents the thematic basics necessary for a clear 

understanding of the thesis and details the study areas and data used. 

The objective of this part is to present the challenges posed by landscape ecology and 

remote sensing applied to ecological continuities based on the scientific literature. 

 

In the first chapter, the basic terms and concepts related to ecological continuities are 

defined. We explain the global issues related to ecological continuities and those specific to 

wooded and crop-dominated landscapes. Finally, the integration of ecological continuities in 

public policies is described from the international to the national and regional scales, 

focusing on policies in the sites studied in this thesis. 

In the second chapter, we first define the basics terms and concepts related to optical and 

SAR remote sensing data. Then, we provide an overview of research using these data for the 

identification and characterization of constitutive elements of ecological continuities from 

wooded to crop-dominated landscapes, with particular emphasis on Sentinel-1 and 2 images. 

Finally, we explain how ecological continuities functions are evaluated using remote sensing 

data. 

Finally, in the third chapter, we present the eight sites studied in this thesis: first, the 

wooded landscapes located in Spain and Brazil and second, the crop-dominated landscapes 

located in France and Belgium. Then, the remote sensing data used and associated 

preprocessing are described. Finally, field data, species data and the field protocols 

developed for their collection are presented. 
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CHAPTER 1  

Ecological continuities from wooded to crop-
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1.1. Introduction 

This chapter first defines the basic terms related to ecological continuities and their 

functions. Then, the second and third sections focus on ecological continuities in wooded 

and crop-dominated landscapes, respectively. The implications of ecological continuities in 

public policies are described and reviewed in a final section. 

1.2. Habitat fragmentation and ecological continuities 

Habitat loss is the main driver of the current mass extinction of biodiversity (Pimm et al. 

1995). Biodiversity is “the sum total of all plants, animals, fungi, and microorganisms on 

Earth, their genetic and phenotypic variation, and the communities and ecosystems of which 

they are a part” (Dirzo and Raven 2003). An operational habitat is defined as an unit that is 

lived in, occupied by, or consumed by one or more species (Vandermeer 1972). A habitat is 

therefore directly linked to the notion of species and is not relevant without it. More recently, 

Hall et al. (1997) defined habitat as “the resources and conditions present in an area that 

produce occupancy-including survival and reproduction-by a given organism”. Then, 

Mitchell et al. (2012) introduced a fitness-based definition of habitat by considering that 

individuals have an ideal knowledge about the distribution of resources and move between 

patches to maximize fitness. The main causes of habitat loss are human pressures, i.e. 

intensification of agriculture, natural resource extraction (mining, fishing and logging) and 

urbanization (cities, roads, dams and power lines) (Dirzo and Raven 2003).  

 

Over the last 3 years, the effects of habitat fragmentation have been debated in the 

ecology community (Fahrig 2017; Fletcher et al. 2018; Fahrig et al. 2019). “Fragmentation 

occurs when a large expanse of habitat is transformed into a number of smaller patches of 

smaller total area, isolated from each other by a matrix of habitats unlike the original” 

(Wilcove et al. 1986). Habitat fragmentation is frequently associated with habitat loss and 

perceived as negative for biodiversity. While the effects of habitat loss have been widely 

demonstrated to be detrimental to biodiversity, habitat fragmentation independent of habitat 

loss has mostly rare and positive effects (Fahrig 2017). Indeed, for the same total area, small 

separated habitats have an ecological value equivalent or higher than a single large habitat 

(Figure 1-1). Fahrig (2017) reviewed 161 author’s explanations for positive responses (water 

quality, plants, inverterbrates, mammals etc.) to habitat fragmentation and identified 7 

possible causes: an increase of functional connectivity (higher patch encounter rate and 

higher edge density), a higher diversity of habitat, positive edge effects, a stabilization or 

increase of persistence of predator-prey and host-parasitoid systems, a reduction of 

intraspecific and interspecific competition, a spread of the extinction risk and an increase of 

landscape complementation.  

 

Either way, connectivity plays a crucial role for biodiversity. The connectivity is defined 

as the degree of isolation of a patch from the other patches at landscape scale (Hanski 1999) 

or the degree of permeability of the landscape to the movement of species (Taylor et al. 1993). 

Connectivity is considered at a species-specific scale; the defined study landscape should be 

a function of the dispersal capacity and preferred habitats of the studied species. Movement 

is essential for the sustainability of species as it allows them to feed, reproduce, avoid 

predators and colonize new habitats (Wiens et al. 1993). Thus, patch isolation has negative 
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effects on biodiversity (Virgós 2001; Heller and Zavaleta 2009; Bailey et al. 2010) impeding 

mechanisms such as genetic rescue, inbreeding avoidance, colonization of unoccupied 

habitat and adaptation to climate change (Clobert et al. 2012). The corridor is a widely used 

tool to reduce patch isolation by connecting habitats together to increase and maintain 

landscape connectivity (Beier and Noss 1998).  

 

 

Figure 1-1. Illustration of habitat loss and habitat fragmentation concepts in Fahrig (2017). 

Higher fragmentation results in higher number of smaller patches with less distance 

between them. Land-sharing will usually result in a higher ecological value than land-

sparing. Habitat fragmentation per se = habitat fragmentation independent of habitat 

amount. 

Originally, corridors were designated as linear elements that facilitate the movement of 

species (Spellerberg and Gaywood 1993). On the contrary, barriers impede movement. More 

recently, Dennis et al. (2013) define a corridor "as any structure, distinct from neighboring 

ones, that facilitates relatively more transfers per unit area and unit time between 

contributing habitat units than predicted from the surrounding matrix". The landscape 

consists of features that promote or discourage species movements within it. For example, 

hedgerows are considered corridors for diverse forest herb communities (Roy and de Blois 

2008) and forest carabid beetles (Petit 1994) while transports infrastructure and urban areas 

are barriers for brown bears (Gastón et al. 2017). However, corridors and barriers vary 

considerably in terms of structure (vegetation, management, topography), composition, 

energy flow (moisture, heat, light, wind), resources and landscape context, resulting in very 

heterogeneous functions for one population, species or individual (Dennis et al. 2013). 

Indeed, a corridor more or less facilitates movement depending on the resistance of 

surrounding landscape matrix. A landscape feature may be a corridor or a barrier, 

depending on the direction of dispersal flow of a species. For example, roads are barriers if 

considered perpendicular flows, whereas roads verges can be corridors considered 

longitudinally (Villemey et al. 2018). Also, the orientation of a landscape feature and its 

landscape context modify energy flows affecting certain species. For example, flying insect 

species benefit from the microclimate provided by the hedgerows by accumulating near 

hedgerows in windy weather (Lewis 1969). Finally, the functions of corridors vary over time 

with mowing of grassland for butterfly (Aviron et al. 2007) or tree canopy closure in 

hedgerows for European badger (Dondina et al. 2016). The diversity of organisms also 
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contributes to the complexity of corridor functions (Dennis et al. 2013). A landscape feature 

can be a corridor for one species and a barrier for another. For example, hedgerows are 

barriers for the butterflies Lysandra bellargus (Thomas 1983) and corridors for forest carabid 

beetles (Petit 1994). Corridors can be at the kilometer scale for mammals (Kautz et al. 2006) or 

at the meter scale for butterflies (Delattre et al. 2010). Also, individuals within the same 

species may react differently to the same landscape feature because they are all different (i.e. 

speed of movement, physical capacity and life span) (Dennis et al. 2013). All these reasons 

make it irrelevant to establish a standard list of barriers and corridors. 

 

Ecological continuities are composed of habitats (core area), corridors varying in 

structure and function (landscape corridor, linear corridor, stepping zone corridor), and a 

buffer zone that protect the continuities and are mainly transition zones between the 

continuities and the surrounding matrix (Bennett 2004). 

. 

 

Figure 1-2. Elements composing an ecological continuity. Source: Bennett 2004. 

Although most studies demonstrate the effectiveness of corridors for the movement of 

species and the conservation of biodiversity (Resasco 2019), some studies highlight their 

potential adverse effects (Simberloff et al. 1992; Haddad et al. 2014). Simberldorff and Cox 

(1987) and Sinberloff et al. (1992) first noted that corridors could have five negative effects: 

(1) increase dispersal of species antagonistic to conservation targets, (2) create edge, (3) 

increase dispersal of exotic species, (4) facilitate spread of disturbances and (5) synchronize 

population dynamics (Figure 1-3). However, Hadad et al. (2014), who reviewed 46 studies on 

these five corridor effects, found no evidence that corridors are systematically detrimental in 

a way that overcomes their established benefits and advised further research to clarify their 

potential negative effects. No evidence was found implicating corridors in the spread of 

invasive species or the facilitation of disasters such as fire spread (Haddad et al. 2014). 

However, corridors may introduce predatory species that threaten the species to be 
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conserved, such as seed predators, plant parasites and protozoa in microcosms. Therefore, 

consideration of food webs in corridor design is necessary (Haddad et al. 2014). Edges can 

increase predation by migratory birds (nestlings) and fish and be traps for species that prefer 

edges. This problem could be addressed by creating wider corridors or less contrast between 

corridors and the surrounding matrix. The synchronization of population dynamics can lead 

to an increase in likelihood of simultaneous extinction, but this effect is unlikely for slow-

growing, poorly dispersed species that are often conservation targets. 

 

Figure 1-3. The five potential negative effects of corridors reported by Simberloff et al. (1992) 

illustrated by Neil McCoy in Haddad et al., 2014. 

Ecological continuities, as ecosystems, provide benefits to human populations, i.e. 

ecosystem services. In all environments, they provide habitats for many species and have 

recreational and cultural values (Bolund and Hunhammar 1999; Baudry et al. 2000; Krieger 

2001; Duru et al. 2015). In crop-dominated landscapes, services can be delivered through 

landscape structure and the biodiversity resulting from ecological continuities (Baudry et al. 

2000; Duru et al. 2015). Semi-natural habitats such as hedgerows and grasslands are habitats 

for arthropods that provide pollination and natural pest control services. Hedgerows 

provide a large set of services: protection against soil erosion, water drainage, windbreak, 

carbon storage, wood production (Baudry et al. 2000). In wooded landscapes, natural forests 

contribute significantly to human well-being and health. These ecosystems regulate the 

climate, improve air quality by trapping carbon and airborne particular matter, product food 

and raw materials (timber, fodder, medicines products etc.) and purify water with soil 

filtration (Krieger 2001). In cities, vegetation zones (parks, urban forests, street trees, 

wetlands) and water surfaces (lakes and rivers) contribute to improve air quality, regulate 

the microclimate, reduce noise, improve water flows and purify waste water (Bolund and 

Hunhammar 1999).  
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1.3. Ecological continuities in wooded landscapes 

Forests are essential for biodiversity conservation as they support 65% of terrestrial taxa 

(World Commission on Forests and Sustainable Development, 1999) and have the highest 

diversity for many species such as birds and invertebrates (Lindenmayer et al. 2006). In 

wooded landscapes, the main threats to biodiversity are deforestation and forest 

degradation. Deforestation is mainly caused by logging and the expansion of crops and 

pastures (Angelsen and Kaimowitz 1999; Kaplan et al. 2009) leading to habitat loss. Forest 

degradation is a vaguer process than deforestation, which is simply the removal of a forested 

area. Degradation is a loss or reduction of functions or services (e.g. carbon storage, water 

quality, wood resources, biodiversity conservation) that can take multiple paths in time and 

space (Putz and Redford 2010; Ghazoul et al. 2015). Ghazoul et al. (2015) emphasized the fact 

that forests are resilient, therefore, a forest is not degraded if the dynamics allowing it to 

return to its former state are conserved. The main causes of tropical forest degradation are 

unsustainable logging, intensive hunting and low-intensity slow-moving undergrowth fires 

(Putz and Redford 2010). Primary forests are defined as mature forests that have been little 

or not exploited (Margono et al. 2014), while secondary forests are forests that were 

developed as a result of deforestation, e.g. through abandonment of crops or pastures (Vidal 

et al. 2016). Primary forests are reservoirs of biodiversity, e.g. in the Brazilian Amazon, which 

have many more native species (25%) compared to secondary forests (8%) or plantations 

(11%) (Barlow et al. 2007). However, secondary forests and plantations have an important 

role to play in biodiversity conservation as they provide habitat for forest species, ensure the 

persistence of some primary forest species (Barlow et al. 2007) and can increase landscape 

connectivity (Lindenmayer et al. 2006). 

 

While large forest patches are considered one of the most effective elements for 

biodiversity conservation in wooded landscapes (Lindenmayer et al. 2006; Vidal et al. 2016), 

studies showed that species respond differently to the size patches. Hoover et al. (1995) 

showed that wood thrushes in Pennsylvania are more abundant in large habitat patches 

(72%) than small ones (43%) due to a lower predation rate. In Finland, Suorsa et al. (2004) 

found that fat and protein storage by treecreeper chicks was higher in larger habitats. In 

contrast, Jokimäki et al. (1998) found lower numbers of flying arthropods, small arthropods, 

and seven different arthropod taxa in large patches compared to small ones in a pine forest 

in Finland due to the presence of saplings, deciduous shrubs, and spruces, and a well-

developed and diverse understory in small forest patches. Forest structure maters, sometime 

more that size. Foaublomme et al. (2008) found that forest carabid beetles were more 

abundant in large forest patches along an urbanization gradient in Belgium. Finally, Norris 

et al. (2010) found that armadillos were in large patches at night and small patches when 

searching for food during the day. Regarding large ecological reserves, Lindenmayer et al. 

(2006) noted that they are relatively free from human disturbance and provide a reference for 

comparing human impacts in managed forests. Furthermore, they mentioned that many 

species require large habitats to live, and interactions with humans that are undesirable for 

some species are limited in large habitats. However, small isolated forest fragments have also 

an important role to play in biodiversity conservation (Lindenmayer et al. 2006; Vidal et al. 

2016). They provide habitats for some species with little or no presence in large forest 

patches (Lindenmayer et al. 2006) and may contain high levels of biodiversity (Vidal et al. 

2016). They also act as "stepping stones" and thus increase the connectivity of wooded 
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landscapes. Small isolated forest fragments may have a role in supporting biodiversity in 

highly modified wooded landscapes such as intensive agricultural matrices (Vidal et al. 

2016). Given that small fragments constitute a significant part of forest habitats, e.g. 80% of 

the forest cover in the Brazilian Atlantic Forest (Ribeiro et al. 2009), their consideration is 

essential for biodiversity conservation. Tree planting, seed collection for nurseries and the 

creation of corridors between forest fragments are examples of tools to improve the habitat 

quality of small fragments and landscape connectivity in wooded landscapes (Lindenmayer 

et al. 2006; Vidal et al. 2016). 

1.4. Ecological continuities in crop-dominated landscapes 

In crop-dominated landscapes, semi-natural elements such as grasslands and woodlands 

(hedgerows and forests) are key elements of ecological continuities. Burel et al. (2013) 

showed that the abundance of diptera decrease with the decrease of semi-natural elements. 

Avignon et al. (2005) showed that large forest carabid beetles are found in landscapes with a 

high proportion of semi-natural elements whereas small winged species prefer a high 

proportion of cultivated land. Originally, crop-dominated landscapes were described as a set 

of semi-natural elements within a neutral agricultural matrix by landscape ecologists (Burel 

et al. 2013). However, many species perceive the landscape in a more complex way than a set 

of habitats containing all the necessary resources within a hostile matrix (Fahrig et al. 2011). 

While farming practices (e.g. pesticides, fertilizers, herbicides, intensive grazing, etc) 

resulting from intensive systems have shown negative effects on biodiversity (de Snoo and 

van der Poll 1999; Desneux et al. 2007), heterogeneous crop-dominated landscapes with 

semi-natural elements have a high potential for biodiversity (Tscharntke et al. 2005; Billeter 

et al. 2008; Fahrig et al. 2011). Some arthropod (Vasseur et al. 2013) , bird (Freemark and Kirk 

2001), mammal (Delattre et al. 1999) and weed (Petit et al. 2011) species use crops (including 

grasslands) during their life cycle. At the same time, biodiversity provides benefits to 

farmers, for example, pollination by insects or crop pest control by birds.  

 

The value of crop-dominated landscapes lies in particular in their high potential 

heterogeneity, a key element for biodiversity (Burel and Baudry 2003). While functional 

landscape connectivity is important for species movement, heterogeneity is equally 

important for the dynamics of resource patches (Schooley and Branch 2011). In crop-

dominated landscapes, the diversity of crop types induces spatial heterogeneity. Spatial 

heterogeneity increases with the increase of different cover types and the complexity of their 

configuration (Figure 1-4). It is beneficial for species because it brings different types of 

resources and is essential for species that use different types of habitats during their life.  
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Figure 1-4.Illustration of spatial heterogeneity and its two components: compositional 

heterogeneity and configurational heterogeneity. Source: (Fahrig et al. 2011) 

Farming practices, crop rotation and crop phenology induce additional temporal 

heterogeneity to which species respond (Vasseur et al. 2013). Several studies have 

demonstrated the influence of past landscape structure on current ecological processes and a 

lag in the response of organisms to landscape change (Burel et al. 1998; Ernoult et al. 2006; 

Krauss et al. 2010). Fahrig (1992) has shown that in dynamic landscapes, habitat turnover 

and associated landscape structure change can be more important than the spatial 

organization of resource patches for species survival. For example, intensive mowing of 

grasslands decreases butterfly movement between habitats because it reduces the quality of 

resources (vegetation height, available nectar), and early mowing (before the butterflies 

activate their wings) prevents their full development (Aviron et al. 2007). Conversely, late 

mowing is beneficial for butterflies as it ensures continuous nectar resources and grasslands 

provide shelter and food for larvae to develop (Feber and Smith 1995). The phenology of 

maize and peas affects the movements of the agricultural carabid beetle Pterostichus 

melanarius due to its preference for crops with dense canopy cover (Vasseur 2012). Indeed, in 

early summer in Brittany, maize crops have bare soil and pea crops have dense vegetation, 

thus Pterostichus melanarius move from maize to peas. At the end of July, the opposite 

movement occurs because the maize has grown and the peas have been harvested. Also, 

Fitzgibbon et al. (1997) and Ouin et al. (2000) found that landscape connectivity increases for 

small forest mammals when crops are grown high and dense. Corridors may therefore 

temporarily appear within crop-dominated landscapes.  

 

In a context of increasing demand for food coupled with the extinction of biodiversity, 

understanding the role of crops as ecological continuities and their consideration for 

biodiversity conservation is essential. 
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Figure 1-5. Carabid movements between maize and pea fields, and crop vegetation height 

from May to September. Source: Burel et al. 2013 

1.5. Ecological continuities and public policies 

Since 1972, the United Nations (UN) has been organizing Earth Summits inviting 

member states (132 members in 1972, 193 in 2020) in order to establish the main thrusts of an 

international environmental policy. The integration of biodiversity conservation into public 

policies first appeared at the first Earth Summit (1972) with the creation of the United 

Nations Environment Program (UNEP). This organization aims to coordinate the 

environmental actions of member states and to assist countries in implementing 

environmental policies. It introduced the notion of sustainable development with the 

Brundltand Report in 1987 and created, in association with the World Meteorological 

Organization (a United Nations institution), the Intergovernmental Panel on Climate Change 

(IPCC) in 1988. This expert group is an organization including the member states and aims to 

analyze and synthesize international research on human impacts on climate. In 1992, the 3rd 

Earth Summit in Rio de Janeiro led to the creation of the Convention on Biological Diversity, 

which aims at the conservation of biodiversity, the sustainable use of biological diversity and 

the fair and equitable sharing of the benefits arising from the use of genetic resources. 

Finally, the importance of ecological networks was recognized in 2002 at the 4th Summit in 

Johannesburg. The UN therefore encourages initiatives in favour of areas of biological 

richness and other areas essential for biodiversity and the realization of ecological networks 

at national and regional level. 

 

Heavy pressure has been exerted on Brazil since the Earth Summit in Rio to conserve 

forests. The State has implemented numerous environmental measures such as the Satellite 

Project to Monitor Deforestation in Legal Amazonia (PRODES) in 1988, the creation of the 

Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) in 1989, the 

Action Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm) 

in 2004, the "Black list" published by the Brazilian Ministry of Environment in 2007 (subject 

municipalities with the highest deforestation to restrictions such as access to agricultural 

credits) and the National Policy for the Restoration for Native Vegetation Recovery 
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(PROVEG) in 2017. For example, the municipality of Paragominas (Pará) was included in the 

black list in 2007. From 1980, wood production, beef exploitation, then charcoal production 

and finally the expansion of crops (rice, corn, soybeans) in the early 2000s led to massive 

deforestation. In order to comply with the legislation, the "município verde" (green 

municipality) was created in 2008. The aim of this action plan was to fight against 

deforestation by stopping deforestation, monthly monitoring of forest cover, training of 

personnel for environmental control and management, environmental education, 

establishment of a land registry of farms, encouraging the reforestation of degraded soils and 

the adoption of good agricultural, livestock and forestry practices. The municipal authorities 

of Paragominas and large private producers signed a territorial pact that includes these 

objectives and are supported by environmental NGOs and funds from companies operating 

in the region. Deforestation has thus been reduced by 80% between 2007 and 2010 and the 

municipality was taken off the blacklist in 2010. At present, the priorities are the fight against 

fires, the fostering of family farming, carbon storage, education in rural areas and the 

reconstruction of forest continuity and efficient landscapes (Piketty et al. 2015, 2017; Laurent 

et al. 2017). 

 

In Europe, environmental issues have initially been linked to the simple economic 

framework since the creation of the European Economic Community in 1957. Then in the 

1970s, several environmental disasters (pollution of the Rhine in 1969, accidental release of 

dioxins at Seveso in 1976, oil spill following the sinking of the Amoco Cadiz in 1978) and the 

gradual rise of environmental issues on the international scene (first Earth Summit in 1972) 

led the member countries to launch a European environmental policy in Paris in 1972 

(Bertrand and Fournier 2009). From 1973 onwards, Environment Action Programmes have 

been regularly adopted. More specifically about ecological continuities, these programmes 

led to the creation of the Natura 2000 network. In 1995, the Pan-European Biological and 

Landscape Diversity Strategy launched by the European Environment Ministers aims to 

establish ecological continuities at the regional and national scales and a pan-European 

ecological network. In 2011, the European Union aimed to halt the loss of biodiversity by 

2020 by adopting a biodiversity strategy. This aim has not been reached, and the dead line 

was postponed to 2030. One of the objectives is the preservation of ecosystems and their 

services with the establishment of a green infrastructure and the restoration of at least 15% of 

degraded ecosystems. The European commission defined green infrastructure as “a 

strategically planned network of natural and semi-natural areas with other environmental 

features designed and managed to deliver a wide range of ecosystem services such as water 

purification, air quality, space for recreation and climate mitigation and adaptation” 

(https://ec.europa.eu/environment/). More specifically, the green infrastructure strategy is 

based on four elements: (1) promoting green infrastructure in key European policy areas, (2) 

supporting green infrastructure projects at the European level, (3) improving access to 

finance for green infrastructure projects, and (4) improving information and promoting 

innovation (https://ec.europa.eu). The Review of progress on implementation of the EU 

green infrastructure strategy published in May 2019 indicates that 179.6 million euros have 

been invested to support green infrastructure projects; it also highlights the difficulty of 

deploying infrastructures at transnational scale (https://eur-lex.europa.eu/homepage.html, 

COM(2019) 236 final). 

 

https://ec.europa.eu/environment/
https://ec.europa.eu/
https://eur-lex.europa.eu/homepage.html
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In France, ecological continuities were integrated into public policies under the impetus 

of the Ministry of Ecology with the Grenelle I and II laws adopted in 2009 and 2010, 

respectively. The policy called "Trame Verte et Bleue" (green and blue network) came from 

these laws. French administrative regions have to identify ecological continuities in order to 

improve and maintain them. Ecological continuities are implemented at the local level by 

integrating them into urban planning documents (local urban planning plans and territorial 

coherence schemes) and at the regional level with the Regional Ecological Coherence 

Schemes (SRCE). The SRCEs are elaborated by each region and include documents aimed at 

identifying and preserving ecological continuities, such as a diagnosis of the territory related 

to biodiversity, an action plan, maps of ecological continuities and a summary for public 

actors. At the national level, the State has elaborated a framework document named 

"National Guidelines for the Preservation and Restoration of Ecological Continuities". In 

2017, a national map was produced for illustrative purpose by merging the SRCEs maps 

(Figure 1-6). 

 

Figure 1-6. National synthesis of regional “trames vertes”. This map shows the ecological 

continuities identified within the framework of regional ecological coherence schemes 

(SRCE) in metropolitan France.. “Réservoirs de biodiversité” = Biodiversity reservoirs. 

“Corridors écologiques” = Ecological corridors. Source: https://inpn.mnhn.fr/ 

In Belgium, protection of biodiversity began in 1973 with the law on nature 

conservation. This law provides several tools to protect natural areas such as protected areas, 

species and biotope protection. In 1993, the Wallon region launched a program of Inventory 

of Sites of Great Biological Interest (SGIB) to identify remarkable natural terrestrial or aquatic 

areas. Six years later, the regional development plan (SDER) was defined in the Walloon 

code of territorial development, urban planning and heritage. This document consists of an 

https://inpn.mnhn.fr/
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analysis of the territory and a strategy for future planning. Among the objectives of this 

document is the protection and development of the natural heritage with the implementation 

of an ecological network. It indicates the reinforcement of protection of Natura 2000 sites. In 

addition, it is planned that Sites of Great Biological Interest (SGIB) will be identified on 

public land with the help of scientific inventories coordinated by the Department of Natural 

and Agricultural Environment Studies in order to be integrated into the Natura 2000 

network. The areas classified as "green spaces" and "parks" are intended to be integrated into 

the ecological network. Finally, the use of linear infrastructures (bicycle and pedestrian paths 

and roads) is encouraged for the constitution of ecological continuities. The set of ecological 

continuities is called Main Ecological Structure (SEP) and is composed of central areas where 

nature protection is a priority and development areas where protection is less and human 

activities are in accordance with biodiversity conservation. These areas can be habitats, 

corridors or buffer zones protecting the continuities. In 2014, Wallonia abandoned the 

protection of the SGIBs not yet protected with the project of a new regional development 

plan (SDER) called Territorial Development Code (CoDT). In the same year, several 

researchers called on the Walloon government to reiterate this objective. The Territorial 

Development Code (CoDT), that became effective in 2017, stipulates that only sites 

recognized by the law on nature conservation (1973) must be taken into account in land use 

planning. The text provides for the identification of a "trame verte et bleue" (green and blue 

network) at the communal level with an indicative value (Born et al. 2014). A map of 

ecological continuities (Figure 1-7) was adopted by the Walloon government in 2019 and 

included in the territorial development plan (SDT) (tool defined by the CoDT). This map lists 

five types of continuities: deciduous forest massifs, limestone grasslands and associated 

environments, Ardennes ridges, high Ardennes valleys and alluvial plains 

(http://lampspw.wallonie.be/dgo4/site_amenagement). 

 

Figure 1-7. Ecological continuities adopted by the Walloon government. Massifs forestiers 

feuillus = deciduous forest massifs. Pelouses calcaires et milieux associés = limestone 

grasslands and associated environments. Crêtes ardennaises = Ardennes ridges. Hautes 

vallées ardennaises = high Ardennes valleys. Plaines alluviales = alluvial plains. Source: 

http://environnement.wallonie.be/legis/consnat/cons070.htm 

http://environnement.wallonie.be/legis/consnat/cons070.htm
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In Spain, the Natural Heritage and Biodiversity Act of 2007 defines three types of 

protected areas: (1) protected natural areas, (2) protected areas Red Natura 2000 and (3) areas 

protected by international instruments. The Ministry of Agriculture, Food and Environment 

is responsible for protected areas in marine areas under national sovereignty or jurisdiction. 

The Autonomous Communities are responsible for protected areas in the terrestrial and 

marine space within their territories. The first type of protected areas named "natural 

protected areas" includes land or sea areas that meet one of the two following constraints: (1) 

contain natural systems or elements that are representative, unique, fragile, threatened or of 

special ecological, scientific, landscape, geological or educational interest or (2) be specially 

dedicated to the protection and maintenance of biological diversity, geodiversity and 

associated natural and cultural resources. At the state level, these areas are classified into five 

categories (Parks, Nature Reserves, Protected Marine Areas, Natural Monuments and 

Protected Landscapes), while autonomous communities use more than forty different 

designations. Examples of areas protected by international instruments in Spain are 

Wetlands of International Importance under the Ramsar Convention, Protected Areas under 

the Convention for the Protection of the Marine Environment of the North-East Atlantic 

(OSPAR), Biosphere Reserves declared by UNESCO, and Biogenetic Reserves of the Council 

of Europe. A national register listing the various protected areas is being prepared as a result 

of the 2007 law (https://www.miteco.gob.es/). Ecological corridors between Natura 2000 

areas were identified by a team of researchers from the ETSI of Forestry and Environment of 

the Polytechnic University of Madrid (UPM) in collaboration with the WWF (De la Fuente et 

al. 2018). Figure 1-8 shows the map of the ecological continuities to be conserved and 

restored (De la Fuente et al. 2018). 

 

Figure 1-8. Priority connectors for conservation and restoration for the network of Natura 

2000 woodland sites in mainland Spain. Source: De la fuente et al. (2018) 
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2.1. Introduction 

This chapter aims to present the use of remote sensing data to identify and characterize 

ecological continuities. First, the basics of optical and SAR remote sensing are explained for a 

good understanding of this these. The following section provides an overview of research 

using optical and SAR remote sensing data for the identification and characterization of 

ecological characteristics from wooded to crop-dominated landscapes, with particular 

emphasis on Sentinel-1 and 2 images. Finally, examples of applications are described to 

illustrate how ecological continuities functions are evaluated using remote sensing data. 

2.2. Basics of remote sensing 

Remote sensing refers to the set of techniques allowing the acquisition of information on the Earth's 

surface without physical contact with it. The information measured by the sensors is derived from the 

electromagnetic radiation reflected by the objects. The visible domain, from 380 to 780 nm, is only a 

small part of the spectrum exploited in remote sensing; radiations in the infrared (near-infrared (NIR), 

short-wavelength infrared (SWIR), thermal infrared) and microwaves are also commonly used ( 

Figure 2-). Passive sensors record radiations emitted by an external source, either solar 

or thermal radiations emitted from the Earth. On the contrary, active sensors emit radiations 

and record their returns. These types of sensors emit microwaves in the case of SAR sensor 

and optical laser pulses in the case of Light Detection And Ranging (LiDAR) sensor. 

Radiations are absorbed, transmitted and reflected differently depending on the materials 

encountered and the part reflected to the atmosphere is registered by airborne, UAV or 

spaceborne sensors.  

 

Figure 2-1. Electromagnetic spectrum and related fields, By Philip Ronan, file licensed under 

the Creative Commons Attribution-Share Alike 3.0 Unported license. 

In the case of optical or SAR imagery, the signals received by the sensors are synthetized 

into raster images where each pixel corresponds to a digital count of reflectance. The swath 

corresponds to the area scanned by the antenna beam. Spatial resolution is defined by the 

size of the smallest element that can be detected (Figure 2-2). Spectral resolution is the ability 
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of a sensor to distinguish different electromagnetic wavelengths in the spectrum. The higher 

the spectral resolution, the more parts of the spectrum the sensor records and the more 

detailed the spectral signature of an object is. Parts of the electromagnetic spectrum are 

called spectral bands and their widths vary from sensor to sensor. Temporal resolution 

corresponds to the revisit time of the sensor to monitor the same area. The selection of the 

sensor depends on the objectives of the study, the size of the study area, the available 

funding, the available land data etc. Note that generally the higher the spatial resolution (fine 

pixel), the lower the temporal resolution (long revisit time) and vice versa (Wegmann et al. 

2016). 

 

Figure 2-2. Different spatial resolutions (10cm - 8m) for the same landscape. Source: 

Wegmann et al. 2016. 

2.2.1. Passive optical remote sensing 

2.2.1.1. Basics 

Optical images are widely used to map land cover types and monitor vegetation. Optical 

sensors cover the visible and infrared spectrum, including NIR, SWIR and thermal infrared, 

with varying spectral resolutions. Panchromatic sensors have the lowest spectral resolution, 

consisting of a single wide band ranging from blue to red wavelengths. Multispectral sensors 

(eg. SPOT, QuickBird, ASTER and S-2) have from three to twenty large bands while 

hyperspectral sensors (eg. CASI, AVIRIS and HySpex) can record several tens to hundreds of 

fine bands. Concerning the interactions of visible spectrum wavelengths with vegetation, 

chlorophyll absorbs blue and red wavelengths and reflects a higher proportion of green. 

Green vegetation strongly reflects NIR wavelengths due to its cellular structure and water in 

the leaves absorbs SWIR wavelengths near 1450 and 1900 nm (Figure 2-3). The interactions 

between vegetation and optical wavelengths are determined by vegetation chlorophyll 

content, cellular structure and WC. Hence, optical remote sensing images allow identifying 
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plant species, phenological stages or estimate water stress. However, optical wavelengths are 

reflected from the first layer of the canopy and signal saturation is observed when the leaf 

surface is high. Moreover, the acquisition of optical images is dependent on cloud cover and 

their exploitation requires atmospheric corrections due to the sensibility of short 

wavelengths to water vapor and clouds. These corrections are necessary when different 

dates or images are compared.  

 

Figure 2-3. Spectral signatures of dry and green vegetation. Source: Clark 1999. 

2.2.1.2. Vegetation indices and biophysical variables 

Many indices have been developed by combining the spectral bands of optical sensors. 

The best known is the NDVI (Rouse et al. 1973). This index exploits the red and NIR bands to 

determine the chlorophyll content of the vegetation. The Normalized Difference Water Index 

(NDWI) including NIR bands and SWIR (Gao 1996) or green (McFeeters 1996) bands is 

commonly used to detect hydric stress. Other vegetation indices take into account effect of 

soil such as the Soil-adjusted Vegetation Index (SAVI) (Huete 1988) and the Modified SAVI 

(MSAVI) (Qi et al. 1994, p. 199) or the combined effects of soil and atmosphere such as the 

Enhanced Vegetation Index (EVI) (Huete et al. 1999). Some of them indices were specifically 

developed from a sensor such as the EVI from MODIS or the S-2 Red-Edge Position (S2REP) 

index from S-2. 

 

Biophysical variables are commonly used to study the structure and functioning of 

vegetation and estimate the water and carbon balances of surfaces. The LAI, the Fraction of 

Absorbed Photosynthetically Active Radiation (FAPAR) by green vegetation and the fraction 

of green vegetation cover (fCover) are the most commonly used to study vegetation. The LAI 

is defined as the total area developed by green leaves per m² on the ground. The FAPAR is 

the fraction of solar radiation absorbed by plants for photosynthetic activity. Finally, the 

fCover is the fraction of the soil surface covered by vegetation observed at nadir. These 

biophysical variables can be measured in the field, directly with samples or indirectly using 

digital hemispherical photography, LAI sensors such as the LAI-2000 PCA or TRAC 

(Claverie 2012), terrestrial scanning LIDARs. Optical satellite images are widely used to 

estimate biophysical variables, using radiative transfer models that simulate the processes of 

radiative transfer in the soil-vegetation system. The PROSPECT-PROSAIL model is one of 

the best known and is notably integrated in the S-2 data processing chains in order to map 
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biophysical variables (Jacquemoud et al. 2009). Relationships between biophysical variables 

and spectral bands or indices such as NDVI can then also be explored in time over large 

areas.  

2.2.2. Active SAR remote sensing 

2.2.2.1. Basics 

SAR sensors operate in the microwave region of the electromagnetic spectrum, from 0.75 

to 100 cm, between Ka-band and P-band (Table 2-1). The signal penetration capacity 

increases with the wavelength, the signal being sensitive to objects of at least the same size 

(Figure 2-4). Concerning the satellite sensors, the bands used are X-band (e.g., TerraSAR-X), 

C-band (e.g., S-1 and RADARSAT) and L-band (e.g., ALOS-PALSAR (Phased Array L-band 

Synthetic Aperture RaDAR and JERS (Japan Earth Resources Satellite)). The other parts of 

the spectrum are exploited with airborne sensors such as RAMSES and SETHI for the Ka, K, 

Ku and S bands, and AIRSAR and OrbiSAR for the P band.  

Table 2-1. SAR bands and their associated frequencies and wavelengths. 

Band Frequency (GHz) Wavelength (cm) 

P 0.03-3 100-30 

L 0.3-1 30-15 

S 2-4 15-7.5 

C 4-8 7.5-3.75 

X 8-12.5 3.75-2.4 

Ku 12.5-18 2.4-1.67 

K 18-26.5 1.67-1.13 

Ka 26.5-40 1.13-0.75 

 

Figure 2-4. Main diffusers of vegetation according to SAR bands. Souce: Le Toan 2007 

In contrast to optical sensors, SAR sensors are active, and therefore independent of solar 

illumination, allowing the acquisition of images day and night. Moreover, SAR signal pass 

through clouds, fog and rain, which is particularly interesting in areas with heavy cloud 

cover such as tropical areas (Lee and Pottier 2009).  
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The SAR imaging system is a side-looking Radio Detection and Ranging (RaDAR) 

sensor with an antenna that illuminates the scene perpendicular to the flight line direction. 

The SAR imaging geometry can be briefly described with the following technical terms 

(Figure 2-5): 

 The height and velocity of the SAR imaging system.  

 The angle of incidence between the antenna beam direction and the nadir. 

 The “slant-range” defined as the RaDAR-line-of-sight, i.e., the antenna beam 

direction. 

 The “ground range” that is perpendicular to the flight line direction. 

 The “azimuth range” that is parallel to the flight line direction. 

 

Figure 2-5. SAR imaging geometry in strip-map mode.    and   =physical dimensions of the 

antenna,     =Velocity, H=Height,   =incidence angle, r=“slant-range”, x=”ground range”, 

y=”azimuth range”,   =distance between the sensor and the antenna footprint center, 

  =range swath,   =azimuth swath. Source: Lee and Pottier 2009  

SAR images are subject to geometrical distortions due to their cross-track dimension. 

The main distortion sources are the “foreshortening” and “layover”. In mountainous areas, 

foreshortening is dominant especially with high angles of incidence. It occurs when the beam 

reaches the top of a relief before its base, so the relief appears folded on the image and the 

length of the slope is smaller than in reality. The layover is the opposite phenomenon, when 

the beam reaches the base of the top before the base of the slope. On the images, the slope 

appears inverted; the top is in front of the base of the slope. Finally, if the angle of the slope 

on the reverse of the relief is steeper than the angle of incidence, a RaDAR shadow appears 

on the image because no signal is returned (Figure 2-6Figure 2-7).  
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Figure 2-6. Illustration of distortion effects. Source: Lillesand et al. 2015. 

 

Figure 2-7. Geometric distortions observed in SAR images. Adapted from Toth et al. 2014. 

“Each pixel of SAR images provides a complex number, including amplitude and phase 

information, associated to the reflectivity of all scatterers contained in the SAR resolution 

cell” (Lee and Pottier 2009). The amplitude is a measure of the signal strength (i.e., the height 

of the wavelength), the higher the quantity of radiation returning to the sensor, the higher 

the amplitude. The amplitude depends of surface properties that induces different scattering 

mechanisms. The phase indicates the instantaneous situation in the cycle of a microwave. Its 

measurement refers to its starting point or its progression from an arbitrary origin and is 

expressed in radian or degree. The phase depends on the surface properties and the distance 

between the sensor and the earth’s surface. The resulting images look like noise and cannot 

be used directly. The surface reflectivity is sensitive to the SAR sensor parameters such as 

frequency, incidence angle and polarization, and of the surface properties such as 

topography, roughness, moisture, dielectric properties and incidence angle (Lee and Pottier 

2009).  
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Random variations in gray levels called speckle appear on SAR images. These variations 

are caused by waves reflected from many scatterers within the same resolution cell. Since 

these scatterers are at random distances from the sensor, the waves received are not coherent 

in phase. The received signal is strong if the waves of each disperser add relatively 

constructively (constructive interference); the signal is weak if the waves are out of phase 

(destructive interference). This effect complicates the interpretation of SAR images, as well as 

their segmentation and classification. The SAR image multi-look processing and filtering 

methods are commonly used to reduce speckle noise. The multi-look processing consists in 

treating separately "looks", i.e. sub-apertures, then averaging the values of the same target to 

smooth the speckle. The filtering methods consist in applying sliding windows that compute 

an algorithm, for example, median, boxcar, lee refined or lee sigma. The spatial resolution of 

the processed image decreases as the window size increases. Larger windows provide more 

speckle smoothing, while smaller windows provide better texture preservation (Lee and 

Pottier 2009). 

 

RaDAR remote sensing yield different types of information such as the SAR signal 

intensity, the SAR polarimetry or the SAR interferometry (phase difference analysis to 

measure extremely fine altitudes and small displacements). In this thesis, the intensity and 

polarimetry were used because of their suitable applications to identify and characterize 

ecological variables. 

2.2.2.1. Intensity 

The backscatter coefficient, also called “sigma nought” or   , is a measure of the SAR 

signal intensity that is proportional to the ratio between the received power and the emitted 

power. The values of the backscatter coefficients vary according to a set of parameters 

related to the sensor characteristics (frequency, polarization, incidence angle, etc.) and the 

target characteristics (geometric structure, surface roughness, dielectric constant, physical 

properties, etc.). The intensity is measured in natural values (m²/m²) with the following 

equation (Eq. 2.1): 

 

    
    

  
 
         

       
 (2.1) 

 

Where    is the illuminate area,      is the power that the target intercepts from the 

incident wave electric field called scattered field and      is the power reradiated by the same 

target in the form of the scattered wave called scattered field. 

The backscatter coefficients are converted into decibels (dB m²/m²) on a logarithmic basis 

using the following equation (Eq. 2.2): 

 

   
               (2.2) 
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2.2.2.2. Polarimetry 

SAR polarimetry is the study of the polarization state of an electromagnetic wave. 

Microwaves are polarized, i.e. there is an orientation of the electric field in a plane 

perpendicular to the wave direction of propagation. SAR systems emit microwaves with 

horizontal (H) or vertical (V) polarization, and receive the backscattered waves with 

horizontal or vertical polarization. Thus, four combinations are possible: HH, VV, HV and 

VH, with the first letter corresponding to transmission and the second to reception. The HH 

and VV polarizations are so-called parallel or co-polarized, while HV and VH are crossed 

polarizations. Multi-polarization SAR systems enable the transmission of H or V 

polarizations and can receive parallel or cross polarizations. Polarimetric SAR systems can 

transmit and receive in both V and H polarizations and, therefore, provide the four possible 

combinations. The single, dual and quad polarizations correspond to SAR systems including 

one, two and four combinations, respectively. More specifically, polarimetry is the study of 

the modification of the wave polarization during its interaction with a target. The 

modification of the wave polarization is related to the target properties such as its structure, 

shape, orientation and physical properties. The depolarization of the backscattered wave 

(superposition of many waves) can be revealed by several decompositions of the sccattering 

matrix (Cloude and Pottier, 1996, Freeman and Durden, 1998).  

 

In the case of quad-polarized data, the complex 2 x 2 matrix called coherent scattering 

matrix,    , also called Sinclair matrix, transcribes the change in polarization. The     matrix 

consists of four complex numbers calculated from the amplitude and phase of the polarized 

channels. The diagonal corresponds to the co-polarized channels and the other elements to 

the cross-polarized channels. 

 
      

      
  (2.3) 

 

The span of the matrix     is the total power scattered by a target and is calculated with 

the following equation (Eq. 2.4): 

 

                                 (2.4) 

 

When the transmitter and receiver are located at the same location, which is the case for 

most SAR systems,     and     are equal, based on the reciprocity assumption. Thus, it is 

possible to represent the information scattered with the 3-D lexicographic feature vector 

from the     matrix as (Eq. 2.5): 

    

   

     

   

  (2.5) 

 

Pauli decomposition is used to derive the 3-D Pauli feature vector from the     matrix 

(Eq 2.6). 
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These two target vectors are consistent representations of the     matrix and their norm 

is equal to the span (Eq. 2.4). The 3-D lexicographic feature vector is directly related to the 

measurable elements of the system. The 3-D Pauli feature vector is closely related to the 

physical properties of the scatterers and can be interpreted in terms of elementary scattering 

mechanisms with the single bounce (or surface scattering) corresponding to        , the 

double bounce to         and the volume scattering to      (Figure 2-8). 

 

 

Figure 2-8. The main scattering mechanisms. 

From the target vectors    and   , complex polarimetric coherence matrices,     , and 

covariance,     , can be constructed. This is an incoherent representation of the signal 

derived from the variance of the signals in the different polarization channels and their 

mutual correlation. The covariance matrix      is the product between the target vector    

and its conjugate transpose   
  (Eq. 2.7): 

 

        
     

                 
         

  

         
                    

  

       
           

          

  (2.7) 

 

The coherence matrix      is the product between the target vector    and its conjugate 

transpose   
  (Eq. 2.8): 

 
        

   

 
 

 
 

                               
                

  

                   
                            

  

              
                

           

  
(2.8) 

 

These matrices aim to characterize "non-coherent" targets, also known as non-pure 

targets. In reality, a target has a complex scattering response due to its complex geometry 

and reflectivity properties. Interpretation of a target response is difficult because the target 

response is the sum of several mechanisms within the resolution cell. Therefore, canonical 

targets are used because their polarimetric signature and     matrices associated are known 

(Table 2.2). Geometric representation of canonical targets and associated Sinclair matrix 

adapted from Lee and Pottier (2009) (Table 2.2). For example, the     matrix of the trihedron 

corresponds to single bounce, that of a dihedral oriented at 0° to double bounce and that of a 

dihedral oriented at 45° to volume scattering. 
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Table 2-2. Geometric representation of canonical targets and associated Sinclair matrix 

adapted from (Lee and Pottier 2009). 

Geometric representation Canonical target Sinclair     matrix 

 

Sphere   
 

  
 
  
  

  

 

Trihedron   
 

  
 
  
  

  

 

Vertical dipole    
  
  

  

 

Horizontal dipole    
  
  

  

 

Dihedral oriented at a   

angle 
  

 

  
 
           
            

  

 

Polarimetric decomposition models are used to extract the different scattering 

mechanisms of targets to better discriminate objects. Canonical targets are used to partially 

analyze the results of polarimetric decompositions. The aim is to analyze an incoherent 

matrix, such as      or     , and to translate it into a sum of matrices associated with 

canonical targets. The best known decompositions are the Freeman-Durden (Freeman and 

Durden 1998) based on the     matrix and the Cloude and Pottier (Cloude and Pottier 1996) 

based on the      matrix. The first decomposition aims to separate the scattering 

mechanisms. As the penetration capacity increases with the wavelength, the induced 

mechanisms differ according to the SAR sensors (Figure 2-9). Figure 2-10 gives an example of 

a classification processed by Cloude and Pottier based on the Freeman-Durden 

decomposition (Lee and Pottier 2009). Specular returns occur on smooth surfaces such as still 

water. Surface scattering occurs on more or less rough surfaces such as water or bare soil. 

Double bounce is produced by two locally orthogonal surfaces. Finally, the volume 

scattering is observed on objects with complex structures such as trees. Figure 2-10 shows 

that surface scattering corresponds to the ocean and the specular returns are due to the small 

incidence angles on the ocean surfaces and are scattered in city blocks. Volume scattering 

correspond to trees and vegetation. Finally, double bounce show street patterns associated 

with the city blocks and are scattered in park areas (Lee and Pottier 2009). 
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Figure 2-9. Example of scattering mechanisms on a wetland landscape with different 

wavelengths. Short wavelength = X-band and C-band, Long wavelenght = L-band. Source: 

Wohlfart et al. 2018. 

 

Figure 2-10. Classification map using the Freeman and Durden decomposition and dominant 

scattering properties. San Francisco image taken by the airborne system AIRSAR (Lee and 

Pottier 2009). 
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The Cloude and Pottier decomposition results in three polarimetric parameters derived 

from the      coherence matrix: 

 The alpha angle ( ) measures the dominant backscattering mechanism. A   value of 

0°, 45° and 90° corresponds to a surface scattering, a volume scattering, and a 

double bounce, respectively. 

 The entropy (H) is related to the randomness of the diffusion. If H = 0, there is a 

single scattering mechanism that dominates (case of water surfaces); If H = 1, several 

scattering mechanisms are present, thus, the signal is depolarized. 

 The anisotropy (A) characterizes the importance of secondary scattering 

mechanisms compared to the primary scattering mechanism. This parameter is used 

in addition to the entropy parameter. It becomes interesting for high entropy values. 

If A = 0, the two secondary mechanisms are mixed in equal proportions. If A = 1, the 

secondary mechanism dominates.  

 

Other polarimetric parameters can be used to characterize the targets from the      

covariance matrix. In this thesis, we use Shannon entropy (SE) because of its high potential to 

characterize the vegetation (Betbeder et al. 2014a, 2016b). The SE measures the randomness 

of the scattering of a pixel that may be due to the variation of power or backscatter 

polarization. For example, a complex structure induces an increase in SE. It is calculated 

from the following equation (Eq. 2.9): 
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And     is the determinat of the matrix and       is the trace of the matrix. 

 

Polarimetric decompositions are suitable for processing quad-polarized SAR data. 

However, for dual-polarized data, one of the polarization channel is missing. The      is 

therefore adapted in     . For example, the covariance matrix of S-1 is (Eq. 2.10): 
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2.3. Identification and characterization of the elements 

constituting ecological continuities using remote sensing 

data 

The identification and characterization of the elements potentially constituting ecological 

continuities is one of the major challenges facing humanity in a context of rapid decline in 

biodiversity. Today, the notion of ecological continuity is a key concept in public policies 

dealing with environmental protection laws, protected areas, land use planning tools, etc 

from the international level to local level. The identification and characterization of 

ecological continuities are at the basis of biodiversity conservation strategies and represent a 

major scientific challenge due to the structural and functional complexity of ecological 

systems. In this context, remote sensing data are an important tool for the identification and 

characterization of the ecological elements constituting continuities. Optical remote sensing 

data have been more widely used than SAR for this purpose, in part due to their older 

operational history. Indeed, the first optical satellite, Landsat-1, was launched in 1972, while 

SAR satellite systems are available since the 1990s, first with JERS-1 and ERS-1. Optical data 

are sensitive to physiology of vegetation (chlorophyll content, pigments) while SAR data are 

sensitive to canopy structure and soil surface characteristics (roughness, moisture). Optical 

remote sensing data have already shown a high potential to identify and characterize 

ecological characteristics of landscape elements. However, they have some limitations such 

as their sensitivity to cloud cover and atmospheric effects. More specifically concerning 

vegetation, the optical waves do not penetrate the canopy and the signal saturates at high 

biomass levels. SAR sensors overcome these limitations since microwaves are insensitive to 

clouds and able to penetrate vegetation. SAR images also have limitations such as the 

presence of speckle noise and geometric distortions; in addition, the sensitivity of the signal 

to soil moisture is problematic in rainy conditions. This section provides an overview of 

research using optical and SAR remote sensing data for the identification and 

characterization of ecological characteristics from wooded to crop-dominated landscapes. 

While this thesis evaluates the Sentinel-1 and 2 data, special attention is given to them. 

2.3.1. Identification and characterization of land cover types using remote sensing data 

Satellite images are an ideal tool for mapping land cover types patterns since they cover 

large areas with a high frequency revisit time. Since several decades, MODIS, AVHRR and 

Landsat optical time series have been used extensively for global land cover classification 

due to their high temporal resolution and large spatial coverage (Congalton et al. 2014; 

Gómez et al. 2016). The S-2 sensor launched in 2014 improved the characteristics of available 

images to map land cover with a higher resolution (10m, 20m and 60m), a 5-day revisit time 

and 13 spectral bands. The associated SAR S-1 data offer a good complement to optical data, 

especially for cloudy areas. In addition, Sentinel data are freely available unlike most SAR 

data (e.g., TerraSAR-X, ALOS2, RADARSAT-2, COSMO-Sky Med) and high resolution 

optical data (e.g., SPOT, Quickbird, WorldView, Geo-Eye, Ikonos). Recent studies have 

demonstrated the potential of S-2 data for mapping land cover types from a single-date 

image (Immitzer et al. 2016; Clark 2017; Colkesen and Kavzoglu 2017; Haas and Ban 2018; 

Mongus and Žalik 2018) and time series (Inglada et al. 2017; Phiri et al. 2020). Some studies 

have demonstrated the potential of the S-1 signal intensity to map 5 global land cover types 

(Abdikan et al. 2016) and some CORINE land cover classes such as broadleaf and coniferous 
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forests, inland waters and non-irrigated arable land (Balzter et al. 2015). Use of S-1 data 

combined with S-2 or Landsat data increases the classification accuracy (Kussul et al. 2017; 

Zhou et al. 2017; Laurin et al. 2018; Reiche et al. 2018). Liu et al. (2019) demonstrated that the 

efficiency of optical and SAR data fusion is modulated by the algorithmic method selected. 

Although convolutional neural network approach remains ultimately more efficient, fusion 

has brought more to classical methods (random forest (RF), support vector machine (SVM)). 

2.3.2. Identification and characterization of ecological entities in wooded landscapes using 

remote sensing data 

As described in Chapter 1, deforestation and forest degradation are key points for 

studying ecological characteristics of wooded landscapes. Very high spatial resolution data 

are required to detect forest degradation (Zhu 2017; Bourgoin 2019). Spectral unmixing 

analysis has proven to be a relevant method to distinguish degraded vegetation, non-

degraded vegetation and bare soil using remote sensing optical images (Tritsch et al. 2016). 

Time series are required to analyze the dynamics of degradation and the resilience of 

disturbed environments (Mitchell et al. 2017). While Landsat data are widely used for the 

detection of deforestation and forest degradation (Bourgoin 2019), more recently, high 

performance was found using S-2 optical data (Nuthammachot et al. 2018; Sedano et al. 

2020). Although LiDAR data are particularly relevant for estimating aboveground biomass 

(Asner et al. 2012; Meyer et al. 2013), these data are unsuitable for monitoring large areas 

with a high revisit time. In tropical zones, high cloud cover is a major constraint to detect 

forest degradation using optical data. In this context, SAR data offer very interesting 

possibilities. They can be an alternative to LiDAR data since they are also sensitive to the 

geometrical structure of vegetation. Bourgoin et al. (2018) have demonstrated the 

performance of S-1 and ALOS-1 PALSAR data to estimate above ground biomass in a 

degraded Amazonian forest. Finally, the combined use of optical and SAR data allows to 

obtain denser data series essential for monitoring degradation dynamics. S-2 data are also 

promising to classify forest types and tree species (Immitzer et al. 2016; Persson et al. 2018; 

Hościło and Lewandowska 2019). The red-edge and SWIR bands are important for 

differentiating spectral signatures of species and the multitemporal nature of the data is a 

key point for capturing the different phenology of species at key periods. 

2.3.3. Indentification and characterization of ecological entities in crop-dominated 

landscapes using remote sensing data 

2.3.3.1. Semi-natural elements 

Wooded elements and grasslands, which are commonly considered « semi-natural 

elements » by the scientific community, are essential for biodiversity in crop-dominated 

landscapes (Burel et al. 2013). Many remote sensing studies have addressed the identification 

of hedgerows (Betbeder 2015). The definition of hedgerows varies according to studies and 

this confusion is a problem for the extraction of hedgerows from satellite images because the 

maps obtained are not based on the same characteristics, making them incomparable 

(Baudry and Jouin 2003). Baudry and Jouin (2003) defined a hedgerow as "a linear element of 

the landscape composed of trees or shrubs and managed by man". Manual discrimination 

from aerial photographs was first used to identify hedgerows network. However, maps 

represented hedgerows as lines and manual discrimination was time consuming and 
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difficult to transfer on large areas. Automatic methods were therefore developed using 

optical satellite images such as QuickBird, SPOT-5 and WorldView-2 images (Thornton et al. 

2006; Vannier and Hubert-Moy 2008; Aksoy et al. 2009; Fauvel et al. 2012). Spatial resolution 

is a key point for hedgerow mapping because fine hedges can only be detected with very 

high spatial resolutions (Vannier and Hubert-Moy 2014). LiDAR data and its derived raster 

products are particularly efficient for this purpose (Vannier and Hubert-Moy 2014; Lucas et 

al. 2019) and are increasingly used due to their growing availability (Lucas et al. 2019). Very 

few studies use SAR sensors to identify and characterize hedgerows despite some promising 

results (Bargiel 2013; Betbeder et al. 2014a). The hedgerows characterization remains little 

studied, either with optical or SAR satellite data. For example, Wiseman et al. (2009) 

developed a method to discriminate tree species in shelterbelts based on the spectral 

characteristics of SPOT 5 images. Czerepowicz et al. (2012) explained 70% of the variance in 

shelterbelt biomass using spatial and spectral characteristics of QuickBird images. Finally, 

only one study demonstrated the potential of SAR data to characterize hedgerows by 

estimating the canopy aperture using SE derived from TerraSAR-X images (Betbeder et al. 

2014a).  

 

Concerning grasslands, optical satellite data such as MODIS or AVHRR with coarse 

spatial resolution (>205m) and wide coverage are sufficient for global scale applications. On 

the other hand, sensors such as SPOT, S-2, GeoEye, RapidEye and Quickbird with higher 

spatial resolution (>10m) are required to retrieve grassland characteristics such as 

biophysical parameters, quality, growth, degradation and grazing capacity (Ali et al. 2016). 

Spectral resolution is a key factor to discriminate species, while temporal resolution is 

beneficial to estimate yields or monitor phenological stages and grassland management. SAR 

data have been less used than optical data but they remain promising (Ali et al. 2016). Wang 

et al. (Wang et al. 2019) found that the combination of S-1, S-2 and Landsat-8 data improved 

estimates of LAI and above ground biomass of grasslands compared to S-1 alone with low 

vegetation cover and compared to S-2 with high vegetation cover. Fauvel et al. (2020) 

predicted grasslands plant diversity by combining Sentinel-1 and 2 data. They showed thatS-

1 did not improve results obtained using only S-2 data but only the signal intensity was 

used. Dusseux et al. (2014) found that the discrimination between grasslands and crops is 

more accurate using a full polarimetric RADARSAT-2 time series than an optical time series 

(SPOT and Landsat). Polarimetry also showed a high potential for monitoring grassland 

cutting practices (Voormansik et al. 2016). El Hajj et al. (2019) demonstrated that L-band was 

more relevant to characterize grasslands than C-band because of its higher penetration 

capacity. 

2.3.3.2. Crops 

Until the late 1990s, the optical Landsat and SPOT images were the most relevant to 

discriminate crop types with a spatial resolution of 30m and 20m, respectively (Bauer et al. 

1979; Büttner and Csillag 1989). In 1990s, the launch of very high spatial resolution optical 

satellites such as Quickbird and IKONOS offered new opportunities to accurately identify 

crop types (Yang et al. 2007; Turker and Ozdarici 2011). The misclassifications of crop types 

are mainly due to spectral similarities between crops and spatial and spectral variability 

within fields. A high spectral resolution of optical sensors is essential to discriminate crops, 

especially spectrally similar crops. A high temporal resolution is also highly useful to 
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discriminate crops by enabling to monitor crop rotation and phenological cycles. The S-2 

sensors, launched in 2015 and 2017, are a very good tool for crop identification and 

characterization since they combine high spatial, temporal and spectral resolutions 

(Immitzer et al. 2016; Inglada et al. 2016; Veloso et al. 2017; Belgiu and Csillik 2018; Vuolo et 

al. 2018; Ghosh et al. 2018). The use of SAR images alone have a good potential in identifying 

crop types, as shown with with TerraSAR-X (McNairn and Brisco 2004; Kenduiywo et al. 

2016), RADARSAT-2 (Jiao et al. 2014) and S-1 (Denize et al. 2019b; Mandal et al. 2020) data. 

The temporal resolution of SAR data appears more important than the polarimetric 

information (McNairn and Brisco 2004; Kenduiywo et al. 2016, 2017; Denize et al. 2019b) and 

quad polarization outperforms dual polarization (McNairn and Brisco 2004; Denize et al. 

2019b). Since 2014, the use of optical and SAR data fusion for crop type discrimination is 

increasing (Blaes et al. 2005; Inglada et al. 2016; Denize et al. 2019a; Orynbaikyzy et al. 2019). 

Landsat and RADARSAT sensors are the most widely used sensors while the fusion 

methods are mostly layer-stacking of optical and SAR bands. The optical and SAR data 

fusion improves the accuracy of classifications (Orynbaikyzy et al. 2019). Orynbaikyzy et al. 

(2019) noted that studies using optical and SAR data fusion used small study areas and the 

reproducibility of the methods is lacking. 

 

Optical data (AVHRR, SPOT, Landsat, MODIS, IRS, IKONOS, QuickBird, Formosat-2, S-

2) have been widely used for crop characterization (Quarmby et al. 1993; Doraiswamy et al. 

2004; Mulla 2013; Bontemps et al. 2015; Pan et al. 2015; Betbeder et al. 2016b; Bégué et al. 

2018). The spectral bands, vegetation indices and biophysical variables derived from these 

data have a high potential for estimating crop parameters such as yield, biomass, LAI and 

phenological stages of various crops. More specifically, S-2 data perform well in estimating 

LAI (Delegido et al. 2011b; Frampton et al. 2013; Clevers et al. 2017; Pan et al. 2018; Wang et 

al. 2019), biomass (Veloso et al. 2017; Ghosh et al. 2018; Ganeva et al. 2019) and phenological 

stages (Veloso et al. 2017; Ghosh et al. 2018; Stendardi et al. 2019) of grasslands and crops. 

Red-edge and SWIR bands of S-2 are relevant for estimating LAI of various crop types (Pan 

et al. 2018). Many studies demonstrate the value of satellite (RADARSAT, TerraSAR-X, 

ALOS, S-1) and airborne SAR data for identifying crop parameters (Steele-Dunne et al. 2017). 

Polarimetric parameters derived from RADARSAT-2 or TerraSAR-X are relevant for 

estimating phenological stages, height and LAI of various crops (Jiao et al. 2009; Wiseman et 

al. 2014; Mascolo et al. 2015; Jin et al. 2015; Betbeder et al. 2016b; Pacheco et al. 2016; Canisius 

et al. 2018; McNairn et al. 2018; Homayouni et al. 2019). We do not know any study using 

polarimetric indicators derived from S-1 to characterize crops. More specifically about S-1, 

recent studies show the interest of backscatter coefficients and VH:VV ratio for crop 

classification (Bargiel 2017), changes detection in the structure of rapeseed, maize and winter 

cereals (Vreugdenhil et al. 2018), identification of wheat phenological stages (Song and Wang 

2019) and estimation of biomass, moisture content and LAI of wheat (Kumar et al. 2018). 

Some studies have used both optical and SAR data for crop characterization (Betbeder et al. 

2016a; Veloso et al. 2017; El Hajj et al. 2019). However, most of them use optical data as a 

reference for evaluating SAR data. Although the combination of optical and SAR data 

improves classification results, it remains little used to predict crop parameters (Jin et al. 

2015; Stendardi et al. 2019). 



Part I  -  Ecological continuities and remote sensing  

42 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

2.4. Functional assessment of ecological continuities identified 

by remote sensing data 

While remote sensing is commonly used to map the elements constitutive of ecological 

continuities, be they semi-natural features, permanent grasslands, or cultivated plots, it is 

also is commonly used in landscape ecology to study landscape structure, change and 

function (Crowley and Cardille 2020). Landscape function can be assessed by combining 

these indicators with information from landscape ecology models (e.g., spatial distribution of 

a species, meteorological measurements). Ecological continuities are identified using 

modeling of the interactions between map data and species observations. Indicators used for 

this purpose can be images with continuous values such as vegetation indices (Moreno et al. 

2020) or polarimetric indicators (Betbeder et al. 2015) or discrete land cover and land use 

classes (De la Fuente et al. 2018).  

 

At the national level, in Spain, Fuente et al. (2018) have produced a map of ecological 

corridors relevant for forest mammal movements. They used a least-cost path modeling, 

based on resistance surfaces to link Natura 2000 sites with corridors. In the case of woodland 

species, movement was restricted outside woodlands, i.e. in crops, urban areas or through 

transport infrastructures. Therefore, high movement resistance values were assigned to these 

land cover/land use classes. The resistance surface was derived from the forest map of Spain, 

and the Corine land cover and OpenStreetMap databases.  

 

In France, the mapping of the green and blue network is carried out in most regions in 

three stages. First, sub-networks such as wooded areas, hedgerows, wet grasslands or 

coastlines are identified. Aerial photographs and field inventories are the main sources of 

information. Second, biodiversity reservoirs are identified from existing protected areas (e.g. 

Natura 2000 and Natural Areas of Ecological, Faunistic and Floristic Interest), scientific 

databases (tree species, habitat), and modeling of species movement capacity according to 

the environment encountered. Third, corridors are identified using photo-interpretation of 

land cover/use. Two methods are used: 1) the identification of corridors using the least-cost 

method 2) the use of methods based on permeability of environments generally integrated 

into GIS (Betbeder 2015). 

 

At the regional level, Hubert-Moy et al. (2012) mapped corridors in Brittany, France. 

They used high and medium spatial resolution optical data to identify agro-natural elements 

(woodlands, heathlands, thickets and permanent grasslands). Then, an aggregation index 

was applied to the different elements identified in order to detect structural continuities in 

this agricultural landscape.  

 

Croley and Cardille (Crowley and Cardille 2020) identified future contributions of 

remote sensing to landscape ecology by examining studies of the last five years, including 

intra-annual monitoring for landscape analysis, comparison between different landscapes 

and the use of continuous rather than discrete classes of data. They outlined that ecological 

continuities maps do not consider the crop mosaic despite beneficial effects of heterogeneous 

landscape including semi-natural elements on biodiversity. They also highlighted that the 

temporal dynamics of ecological continuities such as hedgerow trimming or crop rotation 
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are never integrated despite their effects on landscape functions. These issues could be taken 

into consideration using remote sensing time series data, given their high potential to 

identify and characterize crop-dominated landscapes.  
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3.1. Introduction 

The identification and characterization of ecological continuities were conducted over 

eight study areas in four countries: one in Brazil, one in Spain, three in France and three in 

Belgium. Firstly, this chapter presents the study areas: (i) the forest agriculture mosaics 

(Cantabrian range and Paragominas) used to map land cover types and (ii) the crop-

dominated landscapes (Brittany, Picardy, Wallonia) used for crop characterization and 

ecological assessment of agricultural networks. Secondly, the data used are described, i.e. 

remote sensing data, field measurements and species data. 

3.2. Study areas 

3.2.1.  Forest-agriculture mosaics 

3.2.1.1. Cantabrian range (Spain) 

The study area named “Cantabrian range” is a forest-agriculture mosaic that covers  

35 700 km² and four regions of Spain, i.e. Lugo in the East, Cantabria in the West, Principality 

of Asturias in the North and Castilla y Leon in the South (Figure 3-). The region includes the 

entire Cantabrian Range with an elevation of 0-2468m (mean = 800m). The climate is Atlantic 

with mild temperatures and short cool summers (Mateo-Sánchez et al. 2016; García-León et 

al. 2019). The landscape is dominated by forested areas, shrublands and croplands 

dominated by vines, wheat, barley, rye, sunflower and oat (Mateo-Sánchez et al. 2016). The 

crops are located in the south of the study area (Castilla y Leon), most of them being 

irrigated. 

  

Figure 3-1. Location of the Cantabrian range study area. Satellite imagery accessed through 

Bing Aerial (Microsoft® Bing™ Maps). 
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Three thousand years ago, large patches of natural forests were converted to 

pasturelands (traditional cattle ranging and selective logging), leading to major decrease in 

forest area. Thus, the current landscape contains remnant forest fragments that are distinct 

from a non-forest matrix composed mainly of pastures, heathlands in abandoned meadows 

(García et al. 2005). Some parts of the region include small scattered villages while others are 

composed of extensive urban and agricultural lands connected by roads, highways, and 

railways (Sánchez et al. 2014). More recent forest decrease is due to anthropogenic pressures 

such as surface mining, road construction, creation of forest plantations and anthropogenic 

fires. Mature beech forests of Cantabrian range provide habitat for threatened species 

(capercaillie and brown bear). In the past 40 years, regional and national reserves were 

established to preserve forested habitats. Legal restrictions on new land uses are imposed in 

reserves such as road construction, mining and timber deforestation (García et al. 2005).  

3.2.1.2. Paragominas (Brazil) 

Paragominas is a municipality located in the eastern Brazilian Amazonia, in Pará State, 

217 km south of Belem. The municipality covers 19342 km² with an elevation of 0-190 m 

(Figure 3-2). The climate is tropical with a wet season from December to May and a dry 

season from June to November, an average annual temperature of 26.3°C and an annual 

rainfall of 1693m (Andrade 2011).  

 

Figure 3-2. Location of Paragominas. Image Landsat Copernicus (© 2020 Google). 

From the 1960s to 2010, there has been a period of deforestation mainly caused by 

soybean and maize cultivation, creation of forest plantations and cattle ranching. The 

remnant forest areas were degraded due to overlogging and fires (Tritsch et al. 2016). In 
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1990, Paragominas was the main producer of wood in Brazil. Landscape and forest 

disturbances in the municipality have caused biodiversity loss, with significant negative 

effects on species of high conservation and functional value (Barlow et al. 2016). In 2005, in 

the context of the new federal policy to fight deforestation, a new model of local governance, 

called "Municipio Verde", was adopted by the municipality (Viana et al. 2012). Its aims were 

to combat deforestation and strengthen the capacity of local institutions to develop specific 

environmental policies based on the Brazilian forestry code. Since then, Paragominas 

represents a spectacular case of deforestation that became a national reference for municipal-

level anti-deforestation policies with annual deforestation rates decreasing by up to 80%.  

3.2.2. Crop-dominated landscapes 

3.2.2.1. Picardy (France) 

The two study areas of Picardy are 5 km squares located in northern France (Figure 3-3). 

The climate is oceanic with an average annual temperature of 10°C and mean average 

precipitation of 702 mm (Météo France).  

 

 

Figure 3-3. Location of the study areas of Picardy. Aerial photographs accessed through Bing 

Aerial (Microsoft® Bing™ Maps). 

The site named “Picardy-West” is an open field landscape with intensive cultivation of 

cereals and sugar beet. The site named “Picardy-East” is a “bocage” landscape dominated by 

grasslands and less intensive farming activities (mainly dairy cattle), the fields being smaller 

and tending to be surrounded by hedgerows. In both landscapes, managed forest fragments 

are used for hunting and production of wood (Jamoneau 2010). These study areas are quite 



Chapter 3  -  Study areas and data  

49 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

flat with an elevation of 125-224 m (mean = 180 m) and 72-158 m (mean = 114 m), for the 

“bocage” and open field landscapes, respectively. 

3.2.2.2. Brittany (France) 

The study area of Brittany named “Zone Atelier Armorique” (ZAA) is located in the 

southern part of the Bay of Mont-Saint-Michel, France and covers 130km² (Figure 3-4). It is a 

Long-Term Ecological Research (LTER) accredited by the National Center for Scientific 

Research (CNRS) which is part of European LTER and International LTER networks 

(https://osur.univ-rennes1.fr/za-armorique). The ZAA was created in 1993 to perform long-

term research around three main themes: planning, public policy and landscape dynamics; 

the relationship between spatio-temporal landscape dynamics and biodiversity; and 

influence of spatial-temporal landscape dynamics on ecosystem processes. The climate is 

temperate with an average annual temperature of 12 °C and an average annual precipitation 

of 650 mm. Cropland includes mainly maize, wheat, grassland and barley. Grasslands which 

represent 30% of the utile agricultural area are located in the northwestern and southern part 

of the study area. The crops are more or less surrounded by hedges, the density of the hedge 

network increasing from north to south.  

 

  

Figure 3-4. Location of the study area of Britanny. Satellite images accessed through Bing 

Aerial (Microsoft® Bing™ Maps). 
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3.2.2.3. Wallonia (Belgium) 

The three Belgian study areas are located in Wallonia (Figure 3-5). The climate is 

temperate with annual mean temperature of 9.4-10.5°C and average annual precipitation of 

822-912 mm (en.climate-data.org). The site named “Wallonia-Northeast” is an openfield 

landscape dominated by intensive cultivation of wheat and beet, and high proportions of 

potato and maize. The site named “Wallonia-Northwest” has an intermediate landscape 

grain with mainly grasslands and to a lesser extent wheat, maize, potato, barley and beet. 

The site named “Wallonia-South” ranges from an intermediate to coarse landscape grain 

with wheat, beet, barley, grassland and in smaller proportions potato and rapeseed 

depending on the year.  

 

 

Figure 3-5. Location of the study areas of Wallonia. Aerial photographs accessed through 

Bing Aerial (Microsoft® Bing™ Maps). 
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3.3. Remote sensing data 

The remote sensing data used in this thesis were exclusively SAR S-1 and optical S-2 

images. In this section, the characteristics of optical and SAR images are first described, then 

the image pre-processing is presented. 

3.3.1. Optical Sentinel-2 images 

S-2 MSI products are organized in 110 X 110 km tiles with a 10 km overlap and 13 

spectral bands in UTM/WGS84 projection. A total of 96 S-2 tiles were downloaded from the 

Copernicus Open Access Hub (https://scihub.copernicus.eu/). The images were acquired 

with spatial resolutions of 10 and 20 m (i.e. 10 spectral bands) were downloaded (Table 3-3). 

Table 3-1. Main characteristics of S-2 MSI L1C / L2A images used. 

Spatial and spectral 

resolutions 

10 × 10 m 

B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) 

20 × 20 m 

B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), 

B12 (2190nm) 

Temporal resolution 5 days 

Swath 290km 

3.3.1.1. Forest-agriculture mosaics 

The number of tiles required to cover the Spanish and Brazilian study areas were 8 and 

9, respectively. For the Cantabrian range, six mosaics were acquired from December to 

August 2017 (The tiles were downloaded in level 2A for Cantabrian range and level 1C for 

Paragominas (level 2A was not yet available during processing). Level-1C and 2A products 

are orthorectified and provide top-of-atmosphere and top-of-canopy reflectances, 

respectively. 

Table 3-2). Tiles were acquired on July 20 and 27, 2017 on Paragominas due to the 

frequent heavy cloud cover. The tiles were downloaded in level 2A for Cantabrian range and 

level 1C for Paragominas (level 2A was not yet available during processing). Level-1C and 

2A products are orthorectified and provide top-of-atmosphere and top-of-canopy 

reflectances, respectively. 

Table 3-2. Details of Sentinel-2 dates downloaded on the Spanish study area. 

Mosaic 

Tiles 
Dec./Jan. Feb./March April/May June July August 

T29TPJ 2017-01-25 2017-03-16 2017-04-05 2017-06-14 2017-07-04 2017-08-13 

T29TQJ 2017-01-25 2017-03-16 2017-05-25 2017-05-25 2017-07-04 2017-08-13 

T29TPH 2017-01-25 2017-03-16 2017-04-05 2017-06-14 2017-07-04 2017-08-13 

T29TQH 2017-01-25 2017-03-16 2017-04-05 2017-06-14 2017-07-04 2017-08-13 

T30TUP 2016-12-13 2017-02-21 2017-04-22 2017-06-21 2017-07-11 2017-08-20 

T30TVP 2016-12-13 2017-03-23 2017-04-22 2017-06-21 2017-07-11 2017-08-20 

T30TUN 2016-12-13 2017-02-21 2017-04-22 2017-06-21 2017-07-11 2017-08-20 

T30TVN 2016-12-13 2017-02-21 2017-04-22 2017-06-21 2017-07-11 2017-08-20 

3.3.1.2. Crop-dominated landscapes 

S-2 images were downloaded from January to July 2017 for Brittany and Picardy study areas, 

corresponding to the entire wheat and rapeseed crop cycles ( 

https://scihub.copernicus.eu/
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Table 3-3). In all crop-dominated landscapes, S-2 images were acquired from April to July 2017 and 

2018 for the ecological assessment of the agricultural networks ( 

Table 3-3). These images were cloud-free and in level 2A providing top-of-canopy reflectance.  

Table 3-3. S-2 dates downloaded on Brittany, Picardy and Wallonia study areas. 

Brittany  Picardy Wallonia- 

South 

Wallonia- 

Northwest 

Wallonia- 

Northeast 

2017-01-19 

2017-04-09 

2017-05-09 

2017-06-21 

2018-04-22 

2018-05-17 

2018-06-26 

2017-01-26 

2017-02-15 

2017-03-27 

2017-05-26 

2017-07-05 

2018-04-21 

2018-05-06 

2018-06-30 

2017-05-06 

2017-05-26 

2017-07-05 

2018-04-21 

2018-05-18 

2018-06-27 

2017-05-06 

2017-05-26 

2017-07-05 

2018-04-21 

2018-05-26 

2018-06-30 

2017-05-06 

2017-05-26 

2017-07-05 

2018-04-21 

2018-05-26 

2018-06-27 

3.3.2. SAR Sentinel-1 images 

3.3.2.1. Forest-agriculture mosaics 

For the forest-agriculture mosaics (Spain and Brazil), Sentinel-1A images were 

downloaded in dual-polarization (VV and VH), Interferometric Wide (IW) swath mode and 

in Ground Range Detected (GRD) level-1 (Table 3-4). The IW swath mode acquires data with 

a 250km swath using Terrain Observation with Progressive Scans SAR (TOPSAR). Level-1 

GRD products consist of focused SAR data that have been detected, multi-looked and 

projected to ground range using an Earth ellipsoid model (sentinel.esa.int). Phase 

information is lost, which enables to extract only the backscattering coefficients. The 

resulting product has approximately square spatial resolution and square pixel spacing with 

reduced speckle due to the multi-look processing. The range and azimuth spatial resolutions 

were 20 and 22 m, respectively, and the pixel spacing was 10 x 10 m (Table 3-4). 

Table 3-4. Main characteristics of S-1 L1C images 

Band C (center frequency of 5 405 GHz) 
Mode Interferometric Wide Swath 

Product type Ground Range Detected 

Pixel resolution 20 × 22 m (range × azimuth) 

Pixel spacing 10 × 10 m (range × azimuth) 

Temporal resolution 6 days (Spain) and 12 days (Brazil) 

Orbit Ascending 

Polarization VV & VH 

Swath 250 km 

Incidence angle (°) 29.1-46.0 

 

For Cantabrian range, 22 mosaics of 3 images (66 images in total) were produced from 

December 2016 to September 2017. For Paragominas, 14 mosaics of 3 images (42 images in 

total) were produced from November 2016 to December 2017. 

3.3.2.2. Crop-dominated landscapes 

For crop-dominated landscapes, S-1 images were used in Brittany and Picardy to 

characterize crop parameters from January to July 2017 (Erreur ! Source du renvoi 
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ntrouvable.). S-1 images were acquired in dual polarization (VV and VH), Interferometric 

Wide (IW) swath mode and in Single Look Complex (SLC) format (Erreur ! Source du renvoi 

ntrouvable.). SLC products contain both amplitude and phase information, which enables to 

derive polarimetric indicators. The incidence angle of images ranged from 30.6-51.3° and the 

spatial resolution was 2.3 × 13.9 m.  

Table 3-5. Main characteristics of S-1 SLC images. 

Band C (center frequency of 5 405 GHz) 

Interferometric Wide Swath 

Single Look Complex 

2.3 m 

13.9 m 

6 days 

Ascending 

Dual (VV & VH) 

250 km 

29.1-46.0° 

Mode 

Product type 

Ground Resolution 

Azimuth resolution 

Temporal resolution 

Orbit 

Polarization 

Swath 

Incidence angle 

Dates(Y-M-D) 

Brittany 

 

Picardy 

2017-01-28 

2017-03-17 

2017-04-22 

2017-05-16 

2017-06-21 

2017-01-21 

2017-02-14 

2017-03-10 

2017-04-08 

2017-05-02 

2017-06-02 

2017-06-14 

2017-07-01 

3.3.3. Time-series pre-processing 

3.3.3.1. Pre-processing of optical Sentinel-2 time series 

S-2 images were downloaded from the Copernicus Open Access Hub providing level-1C 

and level-2A products. ESA used the Sen2Cor processor algorithm to perform atmospheric 

corrections on Level-2A products, thus we transformed Level-1C products to level-2A using 

the Sen2Cor application (Sen2Cor, ESA, http://step.esa.int/main/third-party-plugins-

2/sen2cor/). The Sen2Cor processor algorithm performs atmospheric corrections adapted to 

S-2 data (Main-Knorn et al. 2017). It uses a scene classification algorithm (Louis et al. 2010) 

resulting in three different classes for clouds, and six classes for shadows, cloud shadows, 

vegetation, not vegetated, water and snow. The algorithm is based on a series of threshold 

tests that are derived from band ratios and indices (.e.g. NDVI). Cloud screening allows 

retrieving accurate atmospheric and surface parameters. The aerosol type and optical 

thickness of the atmosphere are calculated using the DDV (Dense Dark Vegetation) 

algorithm (Kaufman and Sendra 1988). These parameters are preferably determined from 

dense dark vegetation and water bodies whose reflectance behavior is well known. The 

Atmospheric Pre-Corrected Differential Absorption (APDA) algorithm uses the bands 8a and 

9 (NIR-narrow and Cirrus) to perform water vapour retrieval over land (Schläpfer et al. 

1998). Finally, the atmospheric correction is performed using a set of look-up tables 

generated via libRadtran (Emde et al. 2016) 
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The images were projected onto the appropriate coordinate system for each study area : 

ETRS89-TM3/ETRS0 system (EPSG 3042) for Cantabrian range, WGS84/UTM 22S system 

(EPSG 32722) for Paragominas, RGF93/Lambert-93 system (EPSG 2154) for Brittany and 

Picardy, and ETRS89/Belgian Lambert 2008 (EPGS 3812) for Wallonia. 

In total, fourteen vegetation indices were calculated (Table 3-6): the NDVI, the Green 

Normalized Difference Vegetation Index (GNDVI), the NDWI, the EVI, the Red-Edge 

Inflation Point (REIP) index, the Inverted Red-Edge Chlorophyll Index (IRECI), the S2REP 

index, the Modified Chlorophyll Absorption in Reflectance Index (MCARI), the MERIS 

Terrestrial Chlorophyll Index (MTCI), the SAVI, the MSAVI, the WDVI, the Pigment Specific 

Simple Ratio (PSSRa) and the Normalized Difference Index (NDI).  

 

LAI was also derived from S-2 images in Picardy using the PROSAIL radiative transfer 

model implemented in SNAP (Sentinel Application Platform) v6.0 software. This biophysical 

variable describes the state of vegetation cover and provides information on the density of 

green vegetation (Bréda 2003).  

Table 3-6. Vegetation indices calculated from S-2 images. G = Green, R = Red, RE = Red-Edge. 

Index Equation Sentinel-2 bands used Original author 

EVI 2.5×(NIR-R)/(NIR+6×R-7.5×B)+1) 2.5×(B8-B4)/(B8+6×R-7.5×B2)+1) (Huete et al. 2002) 

GNDVI (RE3 - G) / (RE3 + G) (B7 - B3) / (B7 + B3) (Gitelson et al. 1996) 

IRECI (RE3 - R) / (RE1 / RE2) 
(B7 - B4) / (B5 / B6) 

 

(Guyot and Baret 

1988) 

MCARI [(RE1 - R) 0.2(RE1 - G)] * (RE1 - R) [(B5 - B4) - 0.2(B5 - B3)] * (B5 - B4) (Daughtry et al. 2000) 

MSAVI (1 + L) * (NIR- R) / (NIR + R + 0.5) (1 + L) * (B8- B4) / (B8 + B4 + 0.5) (Qi et al. 1994) 

 L = 1 – 2 * 0.5 * (RE3 – R) / (RE3 + R) L = 1 – 2 * 0.5 * (B7 – B4) / (B7+B4)  

 * (NIR – 0.5 * R) * (B8 – 0.5 * B4)  

MTCI (RE2 - RE1)/(RE1 - R) (B6 - B5)/(B5 - B4) 
(Dash and Curran 

2004) 

NDI (RE1 - R) / (RE1 + R) (B5 - B4) / (B5 + B4) 
(Delegido et al. 

2011a) 

NDVI (RE3-R)/(RE3+R) (B7-B4)/(B7+B4) (Rouse et al. 1973) 

NDWI (NIR-G)/(NIR+G) (B8-B3)/(B8+B3) (Gao 1996) 

PSSRa RE3/R B7/B4 (Blackburn 1998) 

REIP 
700 + 40 * ((R + RE3)/2 - RE1) / (RE2 - 

RE1) 

700 + 40 * ((B4 + B7)/2 - B5) / (B6 - 

B5) 

(Guyot and Baret 

1988) 

S2REP 
705 + 35 * ((((RE3 + R)/2) - RE1)/(RE2 -

RE1)) 

705 + 35 * ((((B7 + B4)/2) B5)/(B6 - 

B5)) 

(Guyot and Baret 

1988) 

SAVI (1 + 0.5) * (NIR- R) / (NIR + R + 0.5) (1 + 0.5) * (B8- B4) / (B8 + B4 + 0.5) (Huete 1988) 

WDVI (NIR – 1.5 * R) (B8 – 1.5 * B4) (Clevers 1988) 

3.3.3.2. Pre-processing of SAR Sentinel-1 images 

3.3.3.2.1. Backscattering coefficients 

The backscattering coefficient extraction process was performed using the S-1 Toolbox 

(ESA, http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). 

 

http://step.esa.int/main/toolboxes/sentinel-1-toolbox/
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First, the images were radiometrically calibrated to transform the digital number of each 

pixel into a basckscattering coefficient (σ◦VV, σ◦VH) on a linear scale using the following 

equation (Miranda and Meadows 2015): 

 

         
     

  
    (1) 

 

where DN is the digital number of each pixel     (amplitude of the backscattering signal) 

and A is the information necessary to convert SAR reflectivity into physical units and 

provided in the Calibration Annotation Data Set in the image metadata.  

 

Second, a Lee refined 7 x 7 filter was applied to reduce speckle noise (Lee et al. 1994).  

 

Third, the images were geo-coded using Shuttle RaDAR Topography Mission (SRTM) 

data (Farr et al. 2007) to correct topographic deformations and were projected onto the 

appropriate coordinate system for each study area : ETRS89-TM3/ETRS0 system (EPSG 3042) 

for Cantabrian range, WGS84/UTM 22S system (EPSG 32722) for Paragominas, 

RGF93/Lambert-93 system (EPSG 2154) for Brittany and Picardy, and ETRS89/Belgian 

Lambert 2008 (EPGS 3812) for Wallonia. 

 

Fourth, the σ◦VH:σ◦VV ratio was calculated from the backscattering coefficients. 

 

Finally, the backscattering coefficients and the ratio were converted from linear to 

decibel (dB) scale using the following equation: 

 

                 
    (2) 

3.3.3.2.2. Polarimetric indicators 

The polarimetric indicators extraction process was performed using PolSARpro version 

5.1.3 software (Pottier and Ferro-Famil 2012). 

 

First, a 2 × 2 covariance matrix (  ) was extracted from the scattering matrix S of each S-1 

SLC image.  

 

Second, a Lee refined 7 x 7 filter was applied to reduce speckle noise (Lee et al. 1994).  

 

Third, four polarimetric indicators were extracted: the span, the SE, the intensity (   ) 

and the degree of polarization (   ). The SE was calculated from the covariance matrix (  ) 

using the following equation: 

 
                           (3) 

 

where     is related to the intensity and     to the degree of polarization. 

 

Finally,   ,     and     were normalized as        ,          and         . 
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3.4. Field surveys 

3.4.1. Land cover surveys in forest-agriculture-mosaics 

In order to identify and characterize the land cover types in forest-agriculture mosaics 

(Cantabrian range and Paragominas) using Sentinel-1 and 2 time series, samples were 

produced with a field campaign and aerial photographs in Paragominas and Forest Map of 

Spain and aerial photographs in Cantabrian range. 

For Paragominas, a set of 328 GPS points were collected in September 2017 during a 3-

week field mission. Then, polygons were manually discriminated around the GPS points 

using aerial photographs. The 7 land cover classes discriminated were bare soils, artificial 

surfaces, water bodies, forested areas, croplands, pastures, and "young secondary forests" 

(fallow land with dense but low vegetation representing early regeneration stages of forests 

after abandonment of agriculture or pasture). 

For Cantabrian range, a set of 828 polygons was manually discriminated using the 

Forest Map of Spain (MAPAMA-Ministerio de Agricultura y Pesca, Alimentación y Medio 

Ambiente 1997) and aerial photographs. The Forest Map of Spain is the official national 

forest inventory consisting of polygons associated to land cover and land use attributes. The 

version used was developed from 1997–2006 and based on interpretation of aerial 

photographs and field inventory data. The 8 land cover classes discriminated were 

permanent bare soils, artificial surfaces, water bodies, forested areas, shrublands, permanent 

herbaceous vegetation (herbaceous vegetation containing chlorophyll throughout the year), 

summer herbaceous vegetation, and winter herbaceous vegetation. 

3.4.2. Crop parameters measurements in crop-dominated landscapes of France 

The following data were published as a data paper by Mercier et al (2021). 

Phenological stages were identified in Picardy and Brittany to classify them using 

Sentinel-1 and 2 time series. In Picardy, field surveys were conducted on 36 wheat fields and 

19 rapeseed fields (Figure 3-6) on 8 dates from January to July 2017 (Table 3-7). The wheat 

and rapeseed fields ranged from 0.77-35.09 ha (mean=7.31 ha), median=4.63) and 1.35-23.91 

ha (mean=4.82 ha, median=2.84 ha) in size, respectively. 

In Brittany, field surveys were conducted on 3 wheat fields and 3 rapeseed fields (Figure 

3-7) on 5 dates from January to July 2017 (Table 3-7). Wheat field sizes were 4.26, 10.33 and 

12.81 ha, and rapeseed field sizes were 6.02, 10.11 and 11.35 ha.  
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Figure 3-6. Location of crop parameters field surveys in Picardy. Satellite images and aerial 

photographs accessed through Bing Aerial (Microsoft® Bing™ Maps). 

 

Figure 3-7. Location of crop parameters field surveys in Brittany. Satellite images and aerial 

photographs accessed through Bing Aerial (Microsoft® Bing™ Maps). 
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Table 3-7. Dates of crop parameters field surveys s in Brittany and Picardy. 

Brittany  Picardy 

Wheat Rapeseed Wheat and rapeseed 

2017-03-16 

2017-04-25 

2017-05-17 

2017-07-05 

2017-01-25 

2017-03-16 

2017-0425 

2017-05-17 

2017-07-05 

2017-01-18 

2017-02-14 

2017-03-13 

2017-04-10 

2017-05-04 

2017-06-01 

2017-06-12 

2017-07-04 

3.4.2.1. Phenological stages in Picardy and Brittany 

The Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBCH) scale 

(Bleiholder, et al. 2001) was used to identify phenological stages.  

In Picardy, for both crops, 5 principal phenological stages were identified. More 

specifically, 29 and 15 secondary phenological stages were observed for wheat and rapeseed, 

respectively. The samples of secondary phenological stages available for wheat and rapeseed 

were grouped into sub-classes to obtain a sufficient number of samples per class to train and 

validate the classifications.  

In Brittany, four and five principal phenological stages were observed for wheat and 

rapeseed, respectively.  

3.4.2.2. Leaf area index in Brittany 

Approximately 10 hemispherical photographs were taken on the sampled plots for each 

field survey date. The digital hemispherical photographs were then processed using CAN-

EYE software to estimate LAI (https://www6.paca.inra.fr/can-eye). Finally, LAI values were 

averaged per date and field sample. 

3.4.2.3. Biomass and water content in Brittany 

Biomass measurements were performed in homogeneous areas of 20 × 20 m (Betbeder et 

al. 2016b). For wheat and rapeseed, five samples of 50 cm on the ground and five plants were 

collected per field sample, respectively. The WB of each sample was directly weighed in situ, 

and the DB was measured after drying the crop (oven, 65°C, 48 h). WC in the plant equals 

WB minus DB.  

3.4.2.4. Meteorological data 

Meteorological data was used to ensure that SAR signal was not affected by rainfall or 

freezing on acquisition dates. Temperatures and rainfall were recorded at the Meteo-France 

weather stations in Saint Quentin (49°49′06”N, 3°12′22”E, located 24 km from the open field 

site and 52 km from the “bocage” site) for Picardy and in Vieux-Viel (48°30′47” N, 1°33′31”W 

located in the middle of the ZAA) for Brittany.  
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3.5. Species data 

3.5.1. Carabid beetles sampling in crop-dominated landscapes 

We used carabid beetle samples to study the influence of wheat phenology derived from 

S-2 images on biodiversity. Carabid beetles were collected in 40 and 39 wheat fields from 

April to July in 2017 and 2018, respectively (Table 3-8). Pitfall traps filled with 200 mL of 

water saturated with salt and a few drops of soap were used to catch adult carabid beetles. 

There were two sampling station per wheat field, one located 40m from the hedgerow edge 

and the other 40 m from the grassed strip edge. One sampling station consisted of two pitfall 

traps set 1m apart. Traps were left open for two weeks prior to field collection. Finally, 

carabid beetles were identified to the species level (Jeannel 1941, 1942; Roger et al. 2013). In 

this thesis, we analyzed the two most abundant agricultural carabid beetles species named 

Pterostichus Melanarius and Poecilus Cupreus, to assess the ecological function of the 

agricultural network. 

Table 3-8. Dates of carabid beetles sampling in crop-dominated landscapes. 

Brittany  Picardy Wallonia- 

South 

Wallonia- 

Northwest 

Wallonia- 

Northeast 

2017-04-18/21 

2017-05-23 

2017-06-20 

2018-04-24 

2018-05-29 

2018-06-26 

2017-05-02 

2017-05-30 

2017-06-27 

2018-04-23 

2018-05-29 

2018-06-26 

2017-05-11 

2017-06-01 

2017-07-12 

2018-04-23 

2018-05-28 

2018-07-02 

2017-05-10 

2017-05-31 

2017-07-11 

2018-04-25 

2018-05-30 

2018-07-04 

2017-05-12 

2017-06-02 

2017-07-14 

2018-04-27 

2018-05-31 

2018-07-06 
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Introduction 

The second part of this manuscript consists of a comparative evaluation of the potential 

of variables derived from S-1 and S-2 data to identify and characterize the elements 

constituting ecological continuities in wooded landscapes. Land cover was identified and 

characterized in wooded landscapes in Brazil and Spain to answer the following research 

question: What are the most efficient Sentinel sensor and variables to identify the potential 

constitutive elements of ecological continuities in wooded landscapes? 

 

In chapter 4, we evaluate the potential of S-1 data alone, S-2 data alone and the 

combined S-1 and S-2 data to identify and characterize land cover in forest-agricultural 

mosaic landscapes. The study focuses on two wooded landscapes with contrasting 

vegetation gradients: a temperate mountainous landscape in the Cantabrian Range (Spain) 

and a tropical humid forest landscape in Paragominas (Brazil). The satellite images were 

classified using an incremental procedure based on the ranks of importance of the input 

variables derived from S-1 and S-2 time series. The developed algorithm automatically 

selects the relevant variables and time periods to be used to best classify land cover and land 

use in each landscape. 
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4.1. Introduction 

Mapping forest-agriculture mosaics is essential for understanding effects of land cover 

changes on economic (e.g. agricultural and silvicultural production, timber extraction, 

ecotourism) and non-market ecosystem services (e.g. carbon sequestration, water quality, 

stream flow, species conservation) (Gardner et al. 2013). Cropland and pastures are the 

largest use of Earth's ice-free land (Foley et al. 2011) and have particularly high biodiversity 

potential (Altieri 1999). However, this capacity refers to landscapes with heterogeneous 

semi-intensive agricultural systems and semi-natural elements (hedgerows, wetlands, 

forests) (Krebs et al. 1999; Billeter et al. 2008; Fahrig et al. 2011). In many parts of the world, 

land cover changes affect landscapes, causing habitat loss and fragmentation (Fahrig 2003). 

Habitat fragmentation decreases the size of habitats and populations and increases distances 

between patches of habitat, which may result in species loss (Hanski 2011). 

 

Each species uses different kinds of habitats and requires different amounts of them 

(Fahrig 2003). Many species perceive landscapes in ways more complex than as a “habitat-

matrix” dichotomy (i.e. dividing the landscape into “habitat”, which contains all necessary 

resources, and “matrix”, which is hostile) and use resources from different cover types 

(Fahrig et al. 2011). Thus, landscape management can be considered a complex process that 

requires characterizing the landscape composition and structure suitable for the target 

species. Habitat selection and resistance models are widely used as a decision support tool, 

since they can apply to multiple groups of species (e.g. insects, birds, herpetofauna, 

mammals, plants). Landscape maps are essential for developing these models, and most 

environmental features used in the models are derived from remote sensing imagery (Zeller 

et al. 2012). 

 

Remotely sensed imagery is a common tool for straightforward land cover classification. 

The main difficulty is that the land cover classes in forest-agriculture mosaics are distributed 

along a landscape gradient, which results in misclassification. Images with high and very 

high spatial resolutions provide greater spatial detail and precise information (Aplin 2004; 

Wulder et al. 2004; Chen et al. 2017; Estes et al. 2018). However, the low temporal resolution 

of such data does not enable monitoring vegetation dynamics to better discriminate land 

cover classes that are spectrally similar. In contrast, satellite time series provide great 

opportunities for this purpose.  

 

MODIS and Landsat optical time series have been used extensively for land cover 

classification since the 1970s. Despite a 1-2 days revisit time, however, land cover derived 

from MODIS has low local accuracy due to the maximum spatial resolution of 250m. The 

Landsat constellation has an 8-day revisit time but has a higher spatial resolution (30m) than 

MODIS. The S-2 satellite has even higher capacities, with a 5-day revisit time and a 10m 

spatial resolution (Gómez et al. 2016). Despite these high capacities, optical images 

sometimes cannot be used (e.g. lack of cloud-free periods) or are at the limit of their utility 

(e.g. optical reflectance provides information only about the top layer of vegetation). In this 

context, SAR images provide a reliable alternative to optical images because they are not 

greatly influenced by atmospheric conditions and can be acquired during the day or night. 

Several scattering mechanisms, including single bounce, double bounce, and volume 
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scattering can contribute to SAR backscatter over distributed targets such as agricultural 

fields (Lee and Pottier 2009), depending on crop properties (e.g. biomass, architecture, 

height) (Baghdadi et al. 2009; Fieuzal et al. 2013; Wiseman et al. 2014) and soil conditions 

(e.g. roughness, moisture) (McNairn and Brisco 2004; Baup et al. 2007; Álvarez-Mozos et al. 

2009). Unlike optical data, however, SAR data are rarely used to map land cover. Some 

studies have focused on the complementarity of SAR and optical data, concluding that using 

them together provided better results than using them separately (Joshi et al. 2016). The SAR 

signal is sensitive to the geometry (e.g. roughness, texture, internal structure) and wetness of 

the observed targets, while optical reflectance is influenced by their physiology. Thus, these 

two spectral domains provide complementary information.  

 

The recent SAR S-1 and optical S-2 time series provide a great opportunity to monitor 

forest-agriculture mosaics due to their high spatial and temporal resolutions, with a 5-day 

revisit time and decametric resolution. They are freely available under an open license, 

unlike most SAR data (e.g. TerraSAR-X, ALOS2, RADARSAT-2, COSMO-Sky Med) and 

optical data (e.g. SPOT, Quickbird, WorldView, Geo-Eye, Ikonos). Recent studies have 

demonstrated the potential of S-2 data for mapping 6-12 land cover classes from a single-date 

image (Immitzer et al. 2016; Clark 2017; Colkesen and Kavzoglu 2017; Haas and Ban 2018; 

Mongus and Žalik 2018). Studies that use S-2 time series focus on one or a few specific land 

cover classes, usually on homogeneous agricultural or forested landscapes located in the 

same climatic region . Use of S-1 data has been limited to combining them with S-2 or 

Landsat data, which increases classification accuracy (Inglada et al. 2016; Kussul et al. 2017; 

Zhou et al. 2017; Laurin et al. 2018; Reiche et al. 2018). Hence, the use of S-1 time series alone 

for mapping land cover classes has not yet been evaluated.  

 

The objective of this study was to assess the potential of S-1 data alone, S-2 data alone, 

and combined S-1 & 2 data for mapping land cover in forest-agriculture mosaics. We focused 

on two landscapes with contrasting vegetation gradients: a temperate mountainous 

landscape in the Cantabrian Range (Spain) and a humid tropical forested landscape in 

Paragominas (Brazil). Although these forest-agriculture mosaics differ greatly, they perform 

similar ecological functions, such as conserving high levels of biodiversity and storing 

carbon.  

 

Satellite images were classified using an incremental procedure based on the rank of 

importance of input features derived from S-1 and S-2 time series. The method automatically 

selects the relevant features (spectral bands and/or vegetation indices) and time periods to 

use to best classify land cover types in the forest-agriculture mosaics. 
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4.2. Study Area and Data 

4.2.1. Study area 

The Spanish study area is located in northwestern Spain, extending from eastern Lugo to 

western Cantabria. Covering the entire Cantabrian Range, it has an area of 35 700 km² 

(Figure 4-a). The region has an elevation of 0-2 468 m, an Atlantic climate, and remnant forest 

fragments that are distinct from a non-forest matrix composed mainly of pastures and 

heathlands in abandoned meadows (García et al. 2005; Gastón et al. 2017). Croplands 

constitute 22% of the study area and are composed of vines and cereals crops including 

wheat, barley, rye, sunflower and oats (Mateo-Sánchez et al. 2016). These crops are located in 

the south of the study area(Castile-Leon), most of them are irrigated (fao.org). In northern 

slopes of the Cantabrian range, oaks (Quercus robur and Q. petraea), beeches (Fagus sylvatica) 

and chestnuts (Castanea sativa) are the main species found in forested areas, while southern 

slopes are dominated by semi-deciduous oaks (Q. pyrenaica and Q. faginea) and evergreen 

oaks (Q. ilex), Pinus sp. and Eucalyptus globulus being relatively abundant . The major 

decrease in the forest area dates back to 3 000 years BP, with the transformation of large 

patches of natural forests into pasturelands (traditional cattle grazing and selective timber 

extraction). More recently, additional forests were lost due to road construction, surface 

mining, increased frequency of anthropogenic fires, and creation of forest plantations. In the 

past 20 years, reserves were established that impose legal restrictions on new land uses 

(García et al. 2005). Many studies focused on habitat quality for brown bear and wood 

grouse, two native species of the Cantabrian Range, indicating that the forest cover is 

essential to their presence (Quevedo et al. 2006; Gastón et al. 2017). Brown bear home ranges 

include forests, shrublands, rocky areas, and grasslands (Gastón et al. 2017). 

 

The second study area is the municipality of Paragominas, Pará State, in the eastern 

Brazilian Amazonia, 217 km south of Belem (Figure 4-b). The municipality extends for 19 342 

km², has an elevation up to 190 m, and has a tropical climate. It experienced a continuous 

period of deforestation from the 1960s to 2010, due mainly to cattle ranching, soybean and 

corn cultivation, and creation of forest plantations. Overlogging and fires degraded the 

remaining forests greatly (Tritsch et al. 2016; Bourgoin et al. 2018). The municipality was the 

main timber-producing region in Brazil in 1990. A biodiversity survey performed in the 

municipality showed that both landscape and within-forest disturbances contributed to 

biodiversity loss, with the greatest negative effects on species of high conservation and 

functional value (Barlow et al. 2016). In 2005, in the context of the new federal policy to fight 

deforestation, Paragominas was asked to establish measures against deforestation. The 

municipality established a new local governance model, called “Municipio Verde” (Viana et 

al. 2012), which aimed to fight deforestation and strengthen the ability of local institutions to 

develop specific environmental policies based on the Brazilian forest code. Since then, annual 

deforestation rates have decreased by up to 80%. Paragominas represents a case of 

remarkable deforestation that became a national reference for municipal-level anti-

deforestation policies. 
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(a) (b) 

Figure 4-1.Location of (a) the Spanish study area (© EuroGeographics for the country 

boundaries) and (b) the Brazilian study area (© 2018 GADM for the state boundaries). 

4.2.2. Data 

4.2.2.1. Reference data 

A set of 828 polygons was manually discriminated on the Spanish study area using 

aerial photographs and the Forest Map of Spain (mapama.go.es), which was developed from 

1997-2006 and is the official forest inventory of the country. Its minimum mapping unit is 

2.25 ha. The map is composed of polygons containing land cover and land use attributes 

derived from interpretation of aerial photographs and field inventory data. The 8 land cover 

classes discriminated in the sample data were permanent bare soils, artificial surfaces, water 

bodies, forested areas, shrublands, permanent herbaceous vegetation (herbaceous vegetation 

containing chlorophyll throughout the year), summer herbaceous vegetation, and winter 

herbaceous vegetation. The total area of samples per class ranged from 260-290 ha.  

 

A set of 328 GPS points was recorded during a 3-week field mission in Paragominas in 

September 2017. The samples were produced by calculating polygons around the GPS points 

and using aerial photographs for photo-interpretation. The 7 land cover classes 

discriminated were bare soils, artificial surfaces, water bodies, forested areas, croplands, 

pastures, and "young secondary forests" (fallow land with dense but low vegetation 

representing early regeneration stages of forests after abandonment of agriculture or 

pasture). The total area of samples per class ranged from 14 ha (bare soil) to 530 ha (forested 

area). 

4.2.2.2. Sentinel-1 time series 

S-1 GRD products were acquired in Interferometric Wide Swath mode and delivered 

with VV and VH polarizations and an incidence angle ranging from 30.6-46.0° (Table 4-). 

GRD products provide multilook intensity (5 and 1 looks according to slant range and 
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azimuthal direction, respectively) and are projected to a ground range based on an Earth 

ellipsoid model (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar). The range 

and azimuth spatial resolutions were 20 and 22 m, respectively, and the pixel spacing was 10 

x 10m (Table 4-). 

Table 4-1. Main characteristics of S-1A L1C images 

(https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar). 

Band C (center frequency of 5.405 GHz) 
Mode Interferometric Wide Swath 

Product type Ground Range Detected 

Pixel resolution 20 × 22 m (range × azimuth) 

Pixel spacing 10 × 10 m (range × azimuth) 

Temporal resolution 5 days (Spain) and 12 days (Brazil) 

Orbit Ascending 

Polarization VV & VH 

Swath 250 × 350 km 

Incidence angle (°) 30.6-46.0 

 

Sets of 66 and 42 S-1A images were downloaded for the Spanish and Brazilian study 

areas, respectively. S-1A images were acquired on two orbits (5-day and 12-day revisit time 

for Spain and Brazil, respectively), and 3 images were required to cover each study area. In 

total, 22 mosaics were produced from December 2016 to September 2017 for the Spanish 

study area, while 14 mosaics were produced from November 2016 to December 2017 for the 

Brazilian study area. 

4.2.2.3. Sentinel-2 time series 

The S-2 sensor acquired optical images during the same periods, with spatial resolutions 

of 10 and 20 m, and a spectral resolution of 10 bands (Table 4-12).  For the Spanish study 

area, a series of 6 S-2 mosaics was acquired from December 2016 to August 2017. The tiles 

were downloaded in level 2A, which provides Top Of Canopy (TOC) reflectances and a 

cloud and shadow mask (sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi). Eight S-2 

tiles were necessary to cover the entire study area (7-43 days between 2 tiles). Tiles with 

minimum cloud cover were selected. The mosaics were projected onto the ETRS89/ETRS-

TM30 system (EPSG 3042). 

 

For the Brazilian study area, only one mosaic was produced due to the frequent heavy 

cloud cover (July 2017). The tiles were downloaded in level 1C, which provides Top Of 

Atmosphere reflectances and orthorectified images mask (sentinel.esa.int/web/sentinel/user-

guides/sentinel-2-msi). Nine S-2 tiles were necessary to cover the entire study area (no more 

than 12 days between 2 tiles). The mosaic was projected onto the WGS84/UTM 22S system. 
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Table 4-2. Main characteristics of S-2 L1C/ L2A images (sentinel.esa.int/web/sentinel/user-

guides/sentinel-2-msi). 

Spatial and spectral 

resolutions 

10 × 10 m 

B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) 

20 × 20 m 

B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), 

B12 (2190nm) 

Temporal resolution 5 days 

Swath 290km 

Tile size 100 x 100 km 

4.3. Methodology 

The method was developed to assess the potential of S-1 data alone, S-2 data alone, and 

combined S-1 & 2 data for mapping land cover of forest-agriculture mosaics (Figure 4-2).We 

focused on automatically selecting the relevant features (spectral bands and/or vegetation 

indices) and time periods to classify land cover types. The method used to select and classify 

features into land cover types was based on the incremental classification developed by 

Inglada et al. (Inglada et al. 2016). 

 

Figure 4-2. Flowchart of the image processing procedure. 

4.3.1. Samples selection 

A set of 30 pairs of training and validation polygons were randomly selected from the 

reference polygons with a 50/50 ratio. The 30 random pairs were performed in order to 

perform 30 trainings and 30 corresponding validations, allowing to compute average 

performances with confidence intervals (Inglada et al. 2016). The 50/50 ratio allows a more 

reliable comparison between training and validation samples than a ratio with a lower 

proportion of validation samples.} For each set of selected training polygons, 300 and 1000 

pixels per class were randomly selected for the Brazilian and Spanish study areas, 

respectively. The same random selection of pixels was applied to each set of associated 

validation polygons. This selection was performed to avoid over-representing large polygons 
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at the expense of small polygons in the training and validation samples and to have the same 

number of samples for each class. 

4.3.2. Preprocessing 

The S-1 images were preprocessed using the ESA Toolbox, 

(http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). The images were first radiometrically 

calibrated to extract the backscattering coefficients (    ,      ) (Figure 4-2).  

A speckle filter was then applied (Lee refined, with a 7 x 7 window, (Lee et al. 1994). The 

images were geo-coded using SRTM data to correct topographic deformations (geometric 

correction accuracy < 1 pixel) and were projected onto the ETRS89-TM3/ETRS0 system (EPSG 

3042) and the WGS84/UTM 22S system (EPSG 32722) for the Spanish and the Brazilian study 

areas, respectively. A ratio channel was produced (VV/VH) from the backscattering 

coefficient images. All images were then converted from linear to decibel (dB). 

 

Spectral bands and indices were derived from S-2 images. For the Brazilian study area, 

the Sen2Cor application (Sen2Cor, ESA, http://step.esa.int/main/third-party-plugins-

2/sen2cor/) was used to transform L1C tiles to level L2A (TOC). Four vegetation indices 

commonly used in remote sensing were calculated for each S-2 mosaic for both study areas: 

EVI, NDVI, NDWI, and SAVI (Table 4-3). Each mosaic was composed of 10 spectral bands 

and 4 vegetation indices. 

Table 4-3. Vegetation indices calculated from S-2 images for the Spanish study area. B= Blue 

band, G = Green band, R = Red band. 

Vegetation index Formula S-2 band used Original author 

NDVI (NIR-R)/(NIR+R) (B8-B4)/(B8+B4) (Rouse et al. 1973) 

NDWI (NIR-G)/(NIR+G) (B8-B3)/(B8+B3) (Gao 1996) 

EVI 2.5×(NIR-R)/(NIR+6×R-7.5×B)+1) 2.5×(B8-B4)/(B8+6×R-7.5×B2)+1) (Huete et al. 2002) 

SAVI (NIR-R)×1.5/(NIR+R+0.5) (B8-B4) ×1.5/(B8+B4+0.5) (Huete 1988) 

4.3.3. Feature selection and classification 

Incremental classification was performed using a RF classifier. Two output analyses – 

mean rank of importance of each input feature and mean kappa index as a function of the 

number of features – were used to select the relevant features to use in the final classification. 

Incremental classification analyzes mapping quality as the type and number of features used 

are added, thus determining at what combination and number of features the classification 

reaches an acceptable quality (Inglada et al. 2016). For each training and validation set (30 

pairs), a RF algorithm was first applied to all of the features (dates and bands) to rank them 

in order of importance based on the mean decrease in the Gini index. Calle and Urea (2011) 

demonstrated more robust results for exploring ranking stability using the mean decrease in 

the Gini index instead of the mean decrease in accuracy. The mean rank of importance of 

each feature was derived from the 30 ranks obtained from the 30 pairs of training and 

validation samples. We then ran as many RF algorithms as number of features, starting with 

the two most important features and then adding the less important features until all of the 

features were processed. The kappa index was calculated for each classification to estimate 

the accuracy of the land cover classifications (Cohen 1960). Rosenfield and Fitzpatrick-Lins 

(1986) advised using the kappa index to measure classification accuracy. 
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We chose the RF algorithm (Breiman 2001) due to its advantages of having low 

sensitivity to feature selection, simple parameterization, and short calculation time (Belgiu 

and Drăguţ 2016; Pelletier et al. 2017). We used it to select and classify features. In both cases, 

the number of trees was set to 100 to reduce calculation time since Pelletier et al. (2016) 

demonstrated that it can be set to 100 without a major loss in accuracy. The experiments 

were performed using the randomForest package of R software (randomForest package 

version 4.6-14, Andy Liaw, https://cran.r-project.org). We used the OrfeoToolbox to calculate 

the final RF prediction (OrfeoToolbox version 6.6.1., CNES, https://www.orfeo-toolbox.org}). 

4.3.4.  Percentage of pixels confused 

For both study areas, the features selected from analyses of S-1 data alone and S-2 data 

alone were used to calculate 30 RF classifiers. For each pair of classes, we calculated the 

percentage of confused pixels in relation to the total number of misclassified pixels. The 

following equation (Eq. 4.1):  

 

                        
                             

                                
 (4.1) 

  

 where i and j are the classes in the pair, was applied to the 30 confusion matrices 

derived from the 30 RF classifications using the 30 pairs of training and validation samples. 

The mean of the percentages was calculated for each pair of classes. We then calculated the 

mean percentage of confused pixels per pair of classes in relation to the total number of 

misclassified pixels using the most important S-1 features and most important S-2 features. 

4.3.5. Comparison of classifications 

We used McNemar’s X² test to analyze the significance of the difference or resemblance 

between the classifications derived from S-1 data alone vs. S-2 data alone, S-1 data alone vs. 

the combined S-1 & 2 data, and S-2 data alone vs. the combined S-1 & 2 data. This test, based 

on a binary 2 x 2 contingency matrix, shows the proportion of pixels correctly and incorrectly 

classified in two classification runs and allows the use of non-independent samples. A X² 

value lower than 3.14 means that the two classifications compared are non significantly 

different (Foody 2004). 

4.4. Results 

4.4.1. Contribution of Sentinel 1 & 2 time series to map land cover 

To estimate the contribution of the optical and SAR Sentinel time series, we analyzed the 

mean kappa index as a function of the number of input features. The combined use of S-1 & 2 

data provided the best results for both study areas (Figure 4-3). However, for the standard 

deviation of the kappa index, results of the combined use of S-1 & 2 data were similar to 

those of S-2 data alone. The improvement in classification due to combining S-1 & 2 data 

rather than using S-2 data alone was perceptible up to 30 input features for the Spanish study 

area. For the Spanish study area, using the top 10 S-2 features out of the 84 total S-2 features 

increased the mean kappa index by ca. 0.25 (i.e. from 0.58 to 0.83 ); the mean kappa index 

continued to increase slightly up to 40 input features and then stabilized. For the Brazilian 

study area, using the top 7 S-2 features out of the 14 total S-2 features increased the mean 
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kappa index by ca. 0.15 (i.e. from 0.70 to 0.85); the mean kappa index continued to increase 

slightly up to 9 input features and then stabilized. 

 

  
(a) (b) 

Figure 4-3. Mean kappa index of the incremental classifications for S-1 data alone (green), S-2 

data alone (red), and combined Sentinel-1 & 2 data (blue) as a function of the number of 

input features for (a) the Spanish study area and (b) the Brazilian study area. 

Using S-1 data alone yielded the lowest accuracy for both study areas. The mean kappa 

index was higher for the Spanish area than for the Brazilian area, as was the maximum 

kappa index (ca. 0.73 and 0.60, respectively). Compared to the mean kappa indices of S-2 

data alone, those of S-1 data alone were lower by 0.08-0.20 for the Spanish study area and by 

0.28-0.40 for the Brazilian study area. 

4.4.2. Importance of input features 

When using S-2 data alone, bands 11 and 12 (the SWIR domain) were the most 

important features for both study areas (mean rank of importance of 1.77 (B11) and 4.07 

(B12), and of 1.43 (B12) and 1.63 (B11) for the Spanish and Brazilian study areas respectively) 

(Figure 4-4). For the Spanish area, the vegetation indices were relevant, with 11 of them 

among the top 20: 4 SAVI and 4 NDVI (1 each in January, March, June, and July), 2 NDWI (in 

January and March) and, although less relevant for classifying forest-agriculture mosaics, 

EVI. For the Brazilian study area, NDWI was the most relevant index (ranked 3rd,), while 

other spectral bands were more relevant than EVI, NDVI, or SAVI. 

 

When assessing the relevance of time periods using S-2 data alone (Figure 4-4a), January 

was the most important month for discriminating the 8 land cover classes, since it was the 

month of the top 6 features (mean rank of importance=1.77-11). In addition, March and July 

appeared among the top 10 features. The least important months were August and April. 
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(a) (b) 

Figure 4-4. Mean rank of importance of the most important features for S-2 data alone for (a) 

the Spanish study area and (b) the Brazilian study area. 

When using S-1 data alone, the VV/VH ratio was not useful for mapping land cover in 

these two forest-agriculture mosaics. For both study areas, VV polarization was the most 

important feature. For the Spanish and Brazilian study areas, the VV mean ranks of 

importance were of 2.03 and 2.13, respectively (Figure 4-5). The top 20 features, however, 

had a nearly equal number of VV and VH features (10 VV and 9 VH polarization dates for 

the Spanish study area, 11 VV and 9 VH polarization dates for the Brazilian study area). 

When assessing the relevance of time periods using S-1 data alone, the months from 

December to May were relevant for the Spanish study area. In contrast, months from both 

dry and wet seasons were among the top 10 features (January, March, April, July, September, 

November, December) for the Brazilian study area. 

When combining S-1 & 2 data, the top 20 important features were all S-2 features for the 

Spanish study area and mostly S-2 features (the top 14) for the Brazilian study area (Figure 4-

6).  
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(a) (b) 

Figure 4-5. Mean rank of importance of the most important features for S-1 data alone for (a) 

the Spanish study area and (b) the Brazilian study area. 

  
(a) (b) 

Figure 4-6. Mean rank of importance of the most important features for the combined use of 

Sentinel-1 & 2 data for (a) the Spanish study area and (b) the Brazilian study area. 
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As a trade-off between accuracy and processing time, we decided to maintain a 

minimum but sufficient number of features for classification (Table 4-4). In the following 

experiments, we choose to keep the 20 most important S-1 features and 10 S-2 features, and 

the 10 most important S-1 features and 7 S-2 features on the Spanish and Brazilian study 

areas, respectively (Table 4-4). Due to the large majority of S-2 features in the top 20 

important features of combined S-1 & 2 data (Figure 4-7), we decided to combine the 

previously selected features of S-1 data alone and S-2 data alone to predict the land cover 

classes combining S-1 & 2 data (Table 4-4). 

Table 4-4. Number of top important features selected for predictions for the Spanish and 

Brazilian case studies. 

Type of Data Spain Brazil 

S-1 alone 20 10 

S-2 alone 10 7 

4.4.3. Confusion between classes 

Using the S-1 features for the Spanish study area, forested areas vs. shrublands, 

shrublands vs. permanent herbaceous vegetation, and bare soils vs. winter vegetation were 

the pairs of classes most often confused (Figure Figure 4-7a). Using the S-2 features, bare 

soils vs. artificial surfaces, bare soils vs. winter vegetation, and forested areas vs. shrublands 

were the most confused pairs of classes (Figure 4-7b). Forested areas and shrublands were 

not well discriminated using S-1 or S2 features. Shrublands vs. permanent vegetation were 

better discriminated using S-2 data than S-1 data. 

  
(a) (b) 

Figure 4-7. Mean percentage of pixels confused per pair of classes in relation to the total 

number of misclassified pixels using (a) the top 20 S-1 features and (b) the top 10 S-2 features 

of the Spanish study. 

Using the S-1 features for the Brazilian study area, most forested areas and young 

secondary forests pair of classes was confused, unlike the other pairs of classes, including 

forested areas vs. pastures (Figure 4-8a). Using the S-2 features, cropland vs. bare soils, 

pastures vs. young secondary forests, and forested areas vs. young secondary forests were 
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the most confused pairs of classes (Figure 4-8b). Forested areas vs. young secondary forests 

were better discriminated by S-2 than S-1 features. However, pastures and young secondary 

forests were better discriminated by S-1 than S-2 features. On both study areas, bare soils vs. 

artificial surfaces were discriminated better by S-1 data than S-2 data features. 

 

  
(a) (b) 

Figure 4-8. Mean percentage of pixels confused per pair of classes in relation to the total 

number of misclassified pixels using (a) the top 10 S-1 features area and (b) the top 7 S-2 

features of the Brazilian study area. 

4.4.4. Prediction of selected features 

Misclassification errors in the land cover map of forest-agriculture mosaics of the 

Spanish study area – due to cloud confusions using S-2 data alone and slopes using S-1 data 

alone – were partly corrected using combined S-1 (Figure 4-9). 

 

 

Figure 4-9.Classification of the Spanish study area using combined Sentinel-1 & 2 data. 
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The combined S-1 & 2 classification of the Brazilian study area (Figure 4-10) was more 

accurate than classification by S-2 data alone. Misclassification of cropland, which was 

confused with artificial surfaces using S-2 data alone, was partly corrected with combined S-

1 & 2 data. 

 

Figure 4-10. Classification of the Brazilian study area using combined Sentinel-1 & 2 data. 

4.4.5. McNemar X² test results. 

According to McNemar's X² test, all land cover class predictions differed significantly 

(X² > 3.14), and S-2 data alone vs. combined S-1 & 2 data for the Brazilian study area is not 

significant (p-value=NS) (Table 4-5). Thus, we concluded that all classifications differed. 

Table 4-5. McNemar’s X² test results for the Spanish and Brazilian case studies. The X² value 

less than 3.14 indicates that the two classifications were not significantly different. 

Classifications compared 

Spain Brazil 

X² p-value X² p-value 

S-1 data alone vs. S-2 data 

alone 

113.23 <0.0001  
 

368.47 <0.0001  
 S-1 data alone vs. S-1 & 2 379.82 <0.0001  

 

439.00 <0.0001  
 S-2 data alone vs. S-1 & 2 105.39 <0.0001  

 

 NS 

4.5.  Discussion 

4.5.1.  Relative contributions of S-1 and S-2 data to map land cover of forest-agriculture 

mosaics 

The land cover classes that comprise forest-agriculture mosaics are distributed along a 

landscape gradient, with transition classes such as shrublands to forest or pasture to young 

secondary forests, which result in misclassifications. S-1 data alone were least accurate for 

mapping land cover of forest-agriculture mosaics, with a best mean kappa index of 0.73, vs. 

0.87 and 0.89 for S-2 data alone and combined S-1 & 2 data, respectively (Figure 4-3). For 

example, S-2 data discriminated forested areas from young secondary forests better than S-1 

data for the Brazilian study area (Figure 4-8). This may be because SAR sensors are sensitive 
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to vegetation structure, while optical sensors are sensitive to chlorophyll content. Thus, when 

observed at a 10m resolution, broad vegetation classes were discriminated more easily by 

their physiology than their physical structure. Also, VV and VH polarizations were the most 

important S-1 features for discriminating land cover classes, while the VV/VH ratio was not 

useful (Figure 4-5). While it is known that VH polarization is more sensitive to vegetation 

than VV polarization (Patel et al. 2006), results show that both polarizations had an 

equivalent low contribution to classify forest-agriculture mosaics, as well as the ratio VV/VH. 

We can conclude that in this case the C-band of S-1 was not relevant to classify vegetation 

classes. In general, the C-band SAR is less suitable than L-Band for forest change monitoring 

due to a lower penetration depth and a rapid saturation of the signal (Woodhouse 2017). For 

example, Patel et al. (2006) demonstrated that L-band is more sensitive to plant density than 

C-band, and that C-band interacts mostly with the primary branches of the canopy while L-

band within the vegetation canopy. We used S-1 GRD products that record backscattering 

coefficients (VV and VH) because they require less processing time than SLC products, 

which preserve the phase information. However, using texture, coherence, and polarimetric 

indices derived from full-polar RaDAR data, such as RADARSAT-2 data, could improve 

classification based on S-1 data alone (Ranson et al. 2001; Sonobe et al. 2015; Du et al. 2018; 

Roychowdhury). Thus, although Bagdhadi et al. (2016) concluded that using polarimetric 

indices (SE and span) derived from polSAR RADARSAT-2 images did not improve estimates 

of soil moisture and vegetation parameters, Betbeder et al. (2014) demonstrated the greater 

utility of the SE index than backscattering coefficients for mapping wetland vegetation using 

dual-pol TerraSAR-X time series. The best mean kappa index achieved with S-1 data was 

higher for the Spanish study area than for the Brazilian study area (0.73 vs 0.60, respectively) 

(Figure 4-3). This could be due to differences in the classification methods (different numbers 

of classes and land cover types) and to the number of S-1 images used to classify land cover 

types (22 dates for the Spanish study area vs. 14 dates for the Brazilian study area). %More 

misclassification errors were observed in high-relief areas, which is consistent with the 

literature (Lee and Pottier 2009). 

 

For the Spanish study area, the classification results achieved using S-1 data alone show 

that misclassification errors are most often located on mountain slopes. These errors are due 

to the acquisition of SAR images in slant range geometry that causes layover and 

foreshortening effects (Lee and Pottier 2009). Moreover, it is known that soil moisture and 

roughness influence the RaDAR backscatter depending on frequency, polarization and the 

incidence angle of the incoming microwave. Holah et al. (2005) found that the sensitivity to 

surface roughness is more important using HH and HV polarizations than VV polarization. 

However, Baghdadi et al. (2008) demonstrated that the soil moisture was not very dependent 

on polarization. The effects of soil moisture on forest-agriculture classification are rather 

limited using C-band due to a low penetration depth of the microwaves compared to L-band 

(Ulaby et al. 1996), however C-band is more sensitive to roughness (Mattia et al. 1997). 

Lastly, the higher the incidence angle, the more important the sensitivity of the SAR to 

surface roughness(Fung and Chen 1992). 

 

However, S-1 data sometimes discriminated better than S-2 data – for bare soils and 

artificial surfaces – (Figure 4-7Figure 4-8) because the SAR signal reacts differently to these 

two land cover classes, with double-bounce on buildings and single-bounce on flat bare soils 

(Lee and Pottier 2009), while their spectral signatures in the optical domain are similar (high 
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reflectance values in green, blue and red bands). When using S-2 data alone, SWIR bands 

were the most important features for discriminating land cover classes (Figure 4-2Figure 4-4). 

The importance of S-2 SWIR bands has been demonstrated for mapping vegetation and 

forest (Immitzer et al. 2016; Chrysafis et al. 2017). Vegetation indices derived from S-2 data 

(e.g. SAVI, NDVI, NDWI) discriminated better than spectral bands for the Spanish study 

area, while NDWI was the most important vegetation index for the Brazilian study area. The 

sensitivity of the blue band to water contained in vegetation could explain why NDWI is 

well suited to tropical vegetation, while NDVI saturates at high biomass values (Huete et al. 

2002; Jackson et al. 2004). The EVI, which was developed for MODIS, was a less important 

feature than other vegetation indices for both study areas. It could be interesting to calculate 

other vegetation indices that are used for crop discrimination such as S2REP, IRECI, MTCI or 

SRI (Simple Ratio Index) (Jordan 1969; Frampton et al. 2013). 

 

The best mean kappa index using combined S-1 & 2 data (0.88) did not differ greatly 

from that using S-2 data alone (0.86) (Figure 4-3). Thus, the use of S-2 data alone was 

sufficient to discriminate the land cover classes with high accuracy. However, the 

backscattering intensity from S-1 data alone provided additional relevant information, since 

predictions of land cover classes using S-1 data alone, S-2 data alone, and combined S-1 & 2 

data differed according to McNemar’s X² test (Table 4-5). For example, the misclassification 

between cropland and artificial surfaces for the Brazilian study area when using S-2 data 

alone was partly corrected using combined S-1 & 2 data (Figure 4-10). 

4.5.2.  Using S-1 and S-2 data to identify the key time periods for classifying land cover 

Based on the classification results using S-1 data alone, S-2 data alone, and combined S-1 

& 2 data, classification accuracy was strongly related to the number of dates. Classification 

accuracy increased when dates were added to the RF classifier (Figures Figure 4-3Figure 4-

4aFigure 4-5Figure 4-6). The relevance of high temporal resolution underlines the importance 

of describing and taking into account the phenology of vegetation to map forest-agriculture 

mosaics. For the Spanish study area, January, March, June, and July features are among the 

top 20 important S-2 features (Figure 4-4a). This may have been because the S-2 sensor is 

sensitive to chlorophyll content in vegetation, and these months are key periods of 

chlorophyll activity. The features of the months from December to May were among the top 

20 S-1 features for this study area, while the summer period was not relevant (Figure 4-5a). 

This is probably because SAR sensors, which are sensitive to the internal structure of 

elements, penetrate vegetation better during the leaf-off period. Only one S-2 date was used 

for the Brazilian study area, which precluded studying the importance of time period. In 

addition, no clear time periods emerged from the importance ranks of the S-1 time series 

(Figure 4-5b). Thus, no intra-annual time period seems more important than others for S-1 

time series for discriminating land cover types in Paragominas. Unlike the Cantabrian 

Range, where the seasons differ, temperatures and precipitation are relatively constant in 

Pará, with a drier season from July to October (https://www. worldweatheronline.com/para-

weather/para/br.aspx). In addition, the dynamics of human practices in pastures, forested 

areas, and plantations are inter-annual rather than intra-annual (Piketty et al. 2015).  

  

https://www/
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4.5.3. The robustness of the method for different landscapes 

The results show that the method can be applied to forest-agriculture mosaics in two 

landscapes with contrasting climates (i.e. tropical, temperate) and vegetation types (e.g. 

tropical forests, shrublands, coniferous and deciduous forests). S-1 and S-2 features were 

selected according to their respective importance in each study area, which highlighted 

relevant features and time periods for the two areas. Land cover maps of the two study areas 

were produced with a high degree of accuracy and a short processing time. Time series are 

used to map the land cover of forest-agriculture mosaics, but processing them requires high 

computational capacity. The method enabled focusing on specific time periods and features 

to reduce the time required for image processing. 

4.6.  Conclusion 

 An incremental procedure based on ranking the importance of the input features 

derived from S-1 and S-2 time series was used to discriminate land cover classes in forest-

agriculture mosaics. The method automatically selected relevant features (spectral bands 

and/or vegetation indices) and time periods to classify land cover types in such landscapes. 

S-2 data alone were more relevant than S-1 data alone for mapping the land cover of forest-

agriculture mosaics, and combining S-1 & 2 data slightly improved results compared to those 

of S-2 data alone. Using polarimetric indices, such as the SE index, which has already shown 

potential for characterizing vegetation, can improve predictions of S-1 data alone. Indeed, 

SAR data are useful in cloudy regions; the high cloud cover in the S-2 time series was the 

main source of misclassification errors. 
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Introduction 

This part of the manuscript aims at answering the following question: What are the most 

efficient Sentinel sensor and variables to identify and characterize the potential constitutive 

elements of ecological continuities in crop-dominated landscapes? Our assumption is that 

crop phenonologies play a major role in the structure of these continuities. For that purpose, 

we comparatively evaluated the potential of variables derived from S-1 and S-2 data to 

estimate phenological stages and biophysical variables in wheat and rapeseed crops. 

 

In chapter 5, we evaluate the potential of S-1 data alone, S-2 data alone and the 

combined of S-1 and S-2 data to identify the principal and secondary phenological stages of 

wheat and rapeseed in Picardy (France). More specifically, the aim of this study was to 

evaluate the interest of polarimetric indicators derived from S-1 data and to determine the 

number and type of S-1 and S-2 variables necessary to discriminate the phenological stages 

of wheat and rapeseed. We estimated the performance of spectral bands and vegetation 

indices derived from S-2 and backscatter coefficients and polarimetric indicators derived 

from S-1. Satellite images were classified using the incremental method developed in the 

previous study (Mercier et al. 2019b). 

In chapter 6, we continue our research on crop characterization by evaluating the 

potential of S-1 and S-2 data to estimate the LAI, WB, DB and WC of wheat and rapeseed in 

Brittany (France). We compared the predictive power of spectral bands and vegetation 

indices derived from S-2 and backscatter coefficients and polarimetric indicators derived 

from S-1 using GPR. 
  



Part III  -  Characterization of crops using Sentinel-1 and 2 time series  

88 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

  



 

89 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

CHAPTER 5  

Evaluation of Sentinel-1 and 2 time series for 

predicting wheat and rapeseed phenological 

stages   

Contents 

5.1. Introduction 90 

5.2. Materials 92 

5.3. Methods 96 

5.4. Results 100 

5.5. Discussion 110 

5.6. Conclusion 115 

 

Reproduced from the article:  

Mercier A, Betbeder J, Baudry J, et al. (2020a) Evaluation of Sentinel-1 & 2 time series for 

predicting wheat and rapeseed phenological stages. ISPRS Journal of Photogrammetry and 

Remote Sensing 163:231–256. https://doi.org/10.1016/j.isprsjprs.2020.03.009  

  

https://doi.org/10.1016/j.isprsjprs.2020.03.009


Part III  -  Characterization of crops using Sentinel-1 and 2 time series  

90 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

5.1. Introduction 

Monitoring crops is important for many agricultural and ecological applications, such as 

estimating crop yields (Maas 1988; Jin et al. 2018), preventing disease and insect infestation 

(Hatfield and Pinter 1993), applying fertilizer (Diacono et al. 2013; Bouchet et al. 2016) and 

managing water resources (Duchemin et al. 2015). Identifying and predicting phenological 

stages provide essential information for precision agriculture. Considering specific 

phenological stages can optimize irrigation and fertilizer application schedules (Sakamoto et 

al. 2005; Bouchet et al. 2016). Some phenological stages are more sensitive to pests and 

diseases, thus identifying and predicting these stages can prevent pest outbreaks and 

diseases and reduce the use of pesticides (Vreugdenhil et al. 2018). Finally, phenological 

stages can be used as indicators of global warming on terrestrial ecosystems (Menzel et al. 

2006). One of the main current challenges is to identify principal and secondary phenological 

stages of wheat and rapeseed that are two of the most important crops in the world in terms 

of harvested area (Food and Agriculture Organization of the United Nations 2017). Principal 

phenological stages are defined as long-duration developmental phases of plants, while 

secondary stages are short developmental steps within them (Bleiholder, et al. 2001).  

 

The recent SAR S-1 and optical S-2 sensors, which acquire image time-series at a high 

temporal frequency (every 5-12 days, depending on the acquisition mode and location in the 

world) and high spatial resolution (2.3 m and 13.9 m in range and azimuth directions, 

respectively, for S-1 bands; 10, 20 and 60 m spatial resolutions for S-2 bands), provide a 

unique opportunity to monitor crops regularly at fine grain scale. Moreover, S-1 & 2 data are 

freely available under an open license. 

Several features (i.e. spectral bands, vegetation indices and biophysical variables) 

derived from optical remotely sensed data have demonstrated their great potential to predict 

crop parameters such as yield, biomass and phenological stages (Quarmby et al. 1993; 

Doraiswamy et al. 2004; Mulla 2013; Bontemps et al. 2015; Pan et al. 2015; Betbeder et al. 

2016b). For S-2 time series, significant relationships have been found between S-2 and 

vegetation indices: LAI, leaf chlorophyll concentration and canopy chlorophyll content for 

potato crops in the Netherlands (Clevers et al. 2017) and for maize, garlic, oat, onion, potato, 

sunflower, alfalfa and grape crops in Spain and Italy (Frampton et al. 2013). The potential of 

S-2 red-edge bands for estimating LAI was demonstrated for maize, wheat, rapeseed, barley, 

sugar beet, sunflower, onion and other vegetable crops in Spain and Germany and for winter 

wheat in northern China (Pan et al. 2018). Veloso et al. (2017) found that S-2 NDVI was 

highly sensitive to the phenological stages of winter and summer crops in southern France. 

Despite these abilities, a continuous time-series of optical images is difficult – if not 

impossible – to acquire due to the cloud-free dependence of optical acquisitions and the 

signal provides information only about the top layer of vegetation. In this context, Synthetic-

Aperture RaDAR (SAR) images are a reliable alternative to the limitations of optical images 

since microwaves are not sensitive to atmospheric or light conditions. Unlike optical 

reflectance, backscattering coefficients depend on soil conditions (roughness and moisture) 

during early plant phenological stages (McNairn and Brisco 2004; Baup et al. 2007; Álvarez-

Mozos et al. 2009) and later on crop properties (biomass, architecture, height) (Baghdadi et 

al. 2009; Fieuzal et al. 2013; Wiseman et al. 2014). 
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Many studies have demonstrated the relevance of airborne and spatial SAR data for 

identifying phenological stages (Steele-Dunne et al. 2017). In recent years, several studies 

have shown the value of S-1 data for monitoring crop phenology. Bargiel (2017) improved 

crop classification in northern Germany using phenological stages based on S-1 time series. 

Vreugdenhil et al. (2018) demonstrated the high sensitivity of S-1 backscattering coefficients 

and the ratio of VH:VV polarizations in detecting changes in vegetation structure for 

rapeseed, maize and winter cereals. S-1 VV and VH polarizations have shown great potential 

for identifying phenological stages of wheat (Song and Wang 2019) and rice (Mandal et al. 

2018b) based on analyzing temporal behavior of backscattering coefficients, but phenological 

stages were not classified in these studies. Studies using polarimetric features derived from 

RADARSAT-2 or TerraSAR-X satellite images to identify crop parameters showed that 

polarimetric indicators were highly sensitive to phenological stages (Pacheco et al. 2016; 

McNairn et al. 2018), crop height (Jin et al. 2015; Betbeder et al. 2016b; Canisius et al. 2018), 

crop biomass (Wiseman et al. 2014; Betbeder et al. 2016b; Homayouni et al. 2019; Jin et al. 

2015) and LAI (Jiao et al. 2009; Betbeder et al. 2016b; Canisius et al. 2018). To our knowledge, 

polarimetric indicators derived from S-1 data have not been used to study crop parameters.  

A few studies used both optical and RaDAR data to monitor crop phenology. Most used 

optical data as a reference and predicted biophysical parameters from SAR data. Betbeder et 

al. (2016) revealed the high potential of RADARSAT-2 polarimetry using NDVI derived from 

Formosat-2, SPOT-4 and SPOT-5 as references. El Hajj et al. (2019) described the ability of the 

S-1 C-band to penetrate crops when biomass is high (NDVI > 0.7) for maize, and the lack of 

this ability for wheat and grassland. Veloso et al. (2017) showed the value of S-1 data for 

monitoring crop growth through analysis of temporal profiles of VV and VH polarizations 

and the VH:VV ratio for winter and summer crops in southern France. Although these 

studies highlighted the value of SAR data, they did not evaluate the potential of combining 

SAR and optical data to predict crop parameters. Stendardi et al. (2019) concluded that 

combining SAR S-1 and optical S-2 data shows promise for detecting the phenology of 

mountain meadows in northern Italy. Jin et al. (2015) studied the potential of vegetation 

indices derived from the Huanjing-1A/B optical satellite and polarimetric indicators derived 

from RADARSAT-2 to estimate the LAI and biomass of winter wheat. They found the 

highest correlations when optical and RaDAR data were combined. While these studies 

evaluated SAR and optical time-series and their combined use to estimate LAI and biomass, 

to our knowledge, no study has explored the value of SAR S-1 and optical S-2 data for 

predicting phenological stages. 

 

The objective of this study was to assess the potential of S-1 data alone, S-2 data alone, 

and their combined use to identify principal and secondary phenological stages of wheat and 

rapeseed. More specifically, this study aimed to evaluate the value of polarimetric indicators 

to discriminate wheat and rapeseed phenological stages and determine the number of 

relevant S-1 & 2 features that are needed to discriminate principal and secondary 

phenological stages of these crops. We evaluated the performance of spectral bands and 

vegetation indices derived from S-2 time-series and backscattering coefficients and 

polarimetric indicators derived from S-1 time-series. We first analyzed temporal profiles of 

features derived from S-1 and S-2 time-series for wheat and rapeseed crops. Satellite images 

were then classified using an incremental procedure based on the importance rank of these 

input features (Mercier et al. 2019b). This method automatically selects important features to 

classify the phenological stages of wheat and rapeseed. 
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The novelties of this work are threefold: (i) The use of S-1 polarimetric indicators to 

identify principal and secondary phenological stages of wheat and rapeseed; (ii) The 

statistical analysis of optical data, SAR data and their combined use to discriminate 

phenological stages of wheat and rapeseed; (iii) Mapping of wheat and rapeseed secondary 

phenological stages using remotely sensed data.  

5.2. Materials 

5.2.1. Study area 

The study area consisted of two 5 × 5 km sub-sites in northern France (Figure 5-1). Their 

climate is oceanic with a mean annual temperature of 10°C and mean annual precipitation of 

702 mm (Météo France). The western site is located in an open field landscape with intensive 

cultivation of cereals and sugar beet. The eastern site is located in a “bocage” landscape 

dominated by grasslands and is characterized by less intensive farming activities (mainly 

dairy cattle) and smaller fields that tend to be enclosed by hedgerows. Both landscapes 

contain managed forest fragments that are used mainly for hunting and production of wood 

(Jamoneau 2010)). The topography of the study area is quite flat, elevation of the “bocage” 

and open field landscapes ranging from 125 to 224 m (mean = 180 m) and 72 to 158 m (mean 

= 114 m), respectively. The geological substrate is composed of chalk in the open field 

landscape and silt in the “bocage” landscape (Jamoneau 2010). 

 

Figure 5-1. Location of the two sub-sites of the study area (bocage at the top, open field at the 

bottom) and the sampled fields. Satellite imagery and aerial photographs accessed through 

Bing Aerial using OpenLayers QGIS plugin 1.4.8 (Microsoft®Bing™Maps). 
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5.2.2. Satellite imagery 

A series of five optical S-2 and eight SAR S-1 images were downloaded from January to 

July 2017 to cover crop cycles of wheat and rapeseed (Figure 5-2). The S-1 images were 

acquired in Interferometric Wide (IW) swath mode and delivered with VV and VH 

polarizations. We used the SLC product, which consists of focused SAR data that use the full 

C-signal bandwidth and preserve the phase information, to derive polarimetric indicators. 

The incidence angle of images ranged from 30.6-46.0° (Table 1). The ground spatial 

resolution was 2.5 m and the azimuth spatial resolution was 13.9 m (Table 5-1).  

 

According to data recorded at the Météo-France weather station in Saint Quentin 

(49°49’06”N, 3°12’22”E, located 24 km from the open field site and 52 km from the “bocage” 

site), two S-1 images (DOY 69 and 182) were acquired after a rainfall event. The weather 

station recorded a rainfall of 2.6 mm and 10.1 mm on days 68 and 182, respectively. 

However, the RaDAR signal was not affected by rainfall or freezing on acquisition dates, no 

peak being observed in the temporal profiles of VH and VV polarizations (Figure 5-2). 

Table 5-1. Main characteristics of S-1 SLC images. 

Band C (center frequency of 5 405 GHz) 
Mode Interferometric Wide Swath 

Product type Single Look Complex 

Ground Resolution 2.3 m 

Azimuth resolution 13.9 m 

Temporal resolution 6 days 

Orbit Ascending 

Polarization Dual (VV & VH) 

Swath 250 km 

Incidence angle 30.6-46.0° 

 

The S-2 images were acquired with spatial resolutions of 10 and 20 m, and a spectral 

resolution of 10 bands (Table 5-2). The tiles were downloaded in level 2A, which provides 

Top of Canopy reflectance and a cloud and shadow mask (ESA, 2019b). Only two S-2 images 

were acquired between DOY 72 and 163 due to heavy cloud cover during the spring. 

Table 5-2. Main characteristics of S-2 MSI L2A images. 

Spatial and spectral 

resolutions 

10 × 10 m 
B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) 

20 × 20 m 

B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), B12 (2190 

nm) 

 

znd and 

Temporal resolution 5 days 

Swath 290 km 

5.2.3. Field data collection 

Field surveys were conducted on 36 and 19 fields of wheat (Triticum aestivum L.) and 

rapeseed (Brassica napus L.), respectively (Figure 5-1). Sizes of wheat and rapeseed fields 

ranged from 0.77-35.09 ha (mean=7.31 ha), median=4.63) and 1.35-23.91 ha (mean=4.82 ha, 

median=2.84 ha), respectively. Phenological stages were identified on 8 dates from January to 

July 2017 (Figure 5-2) based on the Biologische Bundesanstalt, Bundessortenamt and 

CHemical industry (BBCH) scale (Bleiholder, et al. 2001). Five principal phenological stages 
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were observed for both crops, and 29 and 15 secondary phenological stages were identified 

for wheat (Table 5-3) and rapeseed (Table 5-4), respectively. The samples of secondary 

phenological stages available for wheat and rapeseed were grouped into sub-classes to 

obtain a sufficient number of samples per class to train and validate the classifications. 

 

 

Figure 5-2. Days of year of satellite images (triangular shape), field surveys (circular shape) 

and main crop phenological stages for wheat and rapeseed (drawings) (Bleiholder, et al. 

2001). The ombrothermal diagram (Météo France) shows climatic conditions on the image 

acquisition dates and temporal profiles show the mean and standard deviation of the S-1 

backscattering coefficients for wheat and rapeseed. The RaDAR signal was not affected by 

rainfall (blue columns) or freezing (red lines) on acquisition dates. 
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Table 5-3. Phenological stages of wheat considered in this study and number of field 

observations for each secondary stage 

Principal 

stage 
Sub-class 

2° 

stage 
Description 

Number of 

observations 

Tillering 

1 

20 No tillers 1 

21 Beginning of tillering: first tiller detectable 14 

22 2 tillers detectable 16 

23 3 tillers detectable 18 

2 

24 4 tillers detectable 22 

25 5 tillers detectable 6 

26 6 tillers detectable 8 

29 9 tillers detectable 20 

Stem 

elongation 
3 

30 Beginning of stem elongation 4 

31 First node at least 1 cm above tillering node 25 

32 Node 2 at least 2 cm above node 1 6 

33 Node 3 at least 2 cm above node 2 24 

34 Node 4 at least 2 cm above node 3 9 

35 Node 5 at least 2 cm above node 4 3 

Flowering, 

anthesis 
4 

65 Full flowering: 50% of anthers mature 3 

66 Full flowering: 60% of anthers mature 2 

67 Full flowering: 70% of anthers mature 3 

68 Full flowering: 80% of anthers mature 4 

69 End of flowering 9 

Development 

of fruit 
5 

71 Watery ripe: first grains have reached half their final size 14 

72 Watery ripe / Early milk 2 

73 Early milk (the content of the kernel is milky) 13 

75 
Medium milk: grain content milky, grains reached final size, still 

green 
19 

77 Late milk 4 

Ripening 

6 

83 Early dough (the content of the kernel is doughy)  10 

84 Early dough/ Soft dough ((the content of the kernel is doughy) 5 

85 Soft dough: grain content soft but dry. Fingernail impression not held 3 

7 
87 Hard dough: grain content solid. Fingernail impression held 9 

89 Fully ripe: grain hard, difficult to divide with thumbnail 8 

 

Table 5-4. Phenological stages of rapeseed considered in this study and number of field 

observations for each secondary stage 

Principal stage Sub-class 2° stage Description 
Number of 

observations 

Leaf development 1 

17 7 leaves unfolded 4 

18 Beginning of tillering: first tiller detectable 7 

19 2 tillers detectable 7 

Inflorescence 

emergence 
2 

50 Flower buds present, still enclosed by leaves 10 

51 Flower buds visible from above (“green bud”) 26 

Flowering 

3 

60 First flowers open 1 

62 20% of flowers on main raceme open 1 

63 30% of flowers on main raceme open 5 

64 40% of flowers on main raceme open 5 

4 

65 Full flowering 7 

67 Flowering declining: majority of petals fallen 7 

69 End of flowering 12 

Development of 

fruit 
5 

77 70% of pods have reached their final size 1 

79 Nearly all pods have reached final size 12 

Ripening 
6 80 Beginning of ripening 25 

7 89 Fully ripe 19 
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5.3. Methods 

We developed a method to analyze temporal behaviors of S-1 and S-2 features and 

predict phenological stages of wheat and rapeseed (Figure 5-3). First, the SAR S-1 and optical 

S-2 signals were preprocessed and the median was computed at the field scale with a 

negative buffer of 15m. Second, temporal profiles were plotted based on the mean and 

standard deviation derived from the median for all sampled wheat and rapeseed fields. Field 

surveys were used to analyze the temporal profiles of the spectral bands and vegetation 

indices derived from S-2 and RaDAR backscattering coefficients and polarimetric indicators 

derived from S-1. Finally, we assessed the potential of S-1 data alone, S-2 data alone, and 

combined S-1 & 2 data to predict principal and secondary phenological stages of wheat and 

rapeseed using an incremental method developed by Mercier et al. (2019b)and field data 

were used as reference data to train the classifier. 

 

 

Figure 5-3. Flowchart of the image processing procedure applied to S-1 and S-2 time series to 

identify wheat and rapeseed secondary phenological stages. 
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5.3.1. SAR Sentinel-1 image preprocessing 

5.3.1.1. Backscattering coefficients 

Backscattering coefficients from S-1 images were extracted using the Sentinel-1 Toolbox 

(ESA, http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). The images were first 

radiometrically calibrated to transform the digital number (DN, amplitude of the 

backscattering signal) of each pixel into backscattering coefficients (σ◦VV, σ◦VH) on a linear 

scale using the following equation (Eq. 5.1) (Miranda and Meadows 2015): 

 

         
     

   
 (5.1) 

 

where A is the information necessary to convert SAR reflectivity into physical units 

provided in the Calibration Annotation Data Set in the image metadata. 

 

A refined Lee filter was then applied in a window of 7 × 7 pixels to reduce speckle noise 

(Lee et al. 1994). The images were geocoded using SRTM data to correct topographic 

deformations (geometric correction accuracy < 1 pixel). A backscattering ratio was calculated 

by dividing σ◦VH by σ◦VV. All images were then converted from linear to decibel (dB) scale 

using the following equation (Eq. 5.2): 

 

                 
   (5.2) 

  

5.3.1.2. Polarimetric indicators 

A 2 × 2 covariance matrix (  ) was first extracted from the scattering matrix S of each 

SLR image using PolSARpro version 5.1.3 software (Pottier and Ferro-Famil 2012). A refined 

Lee filter was then applied in a window of 7 × 7 pixels to reduce speckle noise (Lee et al. 

1994). Then, we calculated the total scattered power called span in the case of a polarimetric 

RaDAR system (Ferro-Famil and Pottier 2014). SE, which measures the randomness of 

scattering of a pixel (e.g. due to variation in backscattering power or polarization), was 

calculated from the covariance matrix (  ) using the following equation (Eq. 5.3): 

 

                          (5.3) 

 

where     is related to the intensity and     to the degree of polarization. 

 

Finally   ,     and     were normalized as        ,          and          using 

PolSARpro version 5.1.3 software. 

5.3.2. Optical Sentinel-2 image preprocessing 

Twelve vegetation indices were calculated since their potential to monitor crop 

parameters (LAI, chlorophyll content and phenological stages) using S-2 data has been 

demonstrated (Daughtry et al. 2000; Frampton et al. 2013; Herrmann et al. 2011; Clevers and 

Gitelson 2013; Clevers et al. 2017). We calculated NDVI, the GNDVI, the REIP index, the 

http://step.esa.int/main/toolboxes/sentinel-1-toolbox/
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IRECI, the S2REP index, the MCARI, the MTCI, the SAVI, the MSAVI, the WDVI, the PSSRa 

and the NDI. Based on analysis of their temporal profiles and on correlation matrices 

(Appendix B), we ultimately selected four of these indices: NDVI, S2REP, MCARI and WDVI 

(Table 5-5). First, we selected NDVI because it is a very commonly used vegetation index 

sensitive to chlorophyll content, calculated from bands 4 and 7 of S-2 (Hermann et al., 2011; 

Frampton et al., 2013). Second, we chose the S2REP because this index is a version of the REP 

estimate for S-2 derived from a linear interpolation that incorporates bands 5 and 6 

positioned on the red-edge slope (Guyot and Baret 1988; Clevers et al. 2002). MCARI and 

WDVI were also selected, because they had the lowest correlations with the other features 

derived from S-2 for both crop types. The MCARI, which was developed to study variations 

in chlorophyll and minimize effects of non-photosynthetic materials, was derived from 

bands 3, 4 and 5 of S-2 (Daughtry et al. 2000). The WDVI, which is related to the chlorophyll 

content of the canopy was used to estimate LAI to avoid destructive measurements. It is a 

two-dimensional greenness index derived from bands 4 and 8 of S-2 (Bouman et al. 1992). 

Table 5-5. Vegetation indices calculated from S-2 images. G = Green, R = Red, RE = Red-Edge. 

Index Equation S-2 bands used Original author 

NDVI (NIR-R)/(NIR+R) (B7-B4)/(B7+B4) (Rouse et al. 1973) 

S2REP 
705 + 35 - ((((NIR + R)/2) - RE1)/(RE2 

-RE1)) 

705 + 35 * ((((B7 + B4)/2) 

B5)/(B6 B5)) 

(Guyot and Baret 

1988) 

MCARI [(RE - R) 0.2(RE - G)] * (RE - R) 
[(B5 - B4) - 0.2(B5 - B3)] * (B5 - 

B4) 

(Daughtry et al. 

2000) 

WDVI (NIR – 0,5 * R) (B8 – 0,5 * B4) (Clevers 1988) 

 

LAI, a biophysical variable that describes the state of vegetation cover and provides 

information on the density of green vegetation, was also derived from S-2 images using the 

PROSAIL radiative transfer model implemented in SNAP v6.0 software. The spectral bands, 

vegetation indices and LAI were interpolated daily using a spline method to match the dates 

of SAR S-1 acquisition using the stats package of R software. All S-1 and S-2 images were 

projected onto the RGF93/Lambert-93 system (EPSG 2154) and resampled to the resolution of 

10 m. In total, we preprocessed 120 S-2 features (10 spectral bands, 4 vegetation indices and 1 

biophysical variable × 8 dates) and 56 S-1 features (2 backscattering coefficients, 1 backscatter 

ratio and 4 polarimetric indicators × 8 dates). Due to strong correlations between the S-2 

spectral bands, we subsequently selected a sub-set of bands for the incremental classification 

based on their temporal behaviors. 

5.3.3. Incremental classification 

From an operational point of view, it is necessary to minimize the time between data 

acquisition and delivery of results to decision-makers (Hatfield et al. 2019). The time-

consuming processing of multi-temporal remote sensing data is a limitation for this purpose. 

Therefore, we used an incremental procedure based on the importance rank of the input 

features to find a trade-off between accuracy and processing time (Mercier et al. 2019b). This 

method automatically selects important features to maintain a minimum but sufficient 

number of features to classify the phenological stages of wheat and rapeseed. This method 

was applied to predict the principal and sub-classes of secondary phenological stages of 

wheat (Table 5-3) and rapeseed (Table 5-4) (Figure 5-4).  
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Figure 5-4. Detailed flowchart of the incremental classification procedure applied to S-1 data 

alone, S-2 data alone and combined S-1 & 2 data. 

  

Incremental classification was performed using a Random Forest (RF) classifier applied 

to S-1 data alone, S-2 data alone, and combined S-1 & 2 data. A total set of 50 pairs of training 

and validation fields in a 70:30 ratio were randomly selected to classify all wheat and 

rapeseed phenological stages. For each of the pairs, the selected fields were the same for S-1 

data alone, S-2 data alone, and combined S-1 & 2 data. A maximum number of randomly 

selected samples per class was set to rebalance the classes, since the RF classifier 

underperforms with unbalanced classes (Khoshgoftaar et al. 2007). The number of samples 

per pair ranged from 21 (5 principal phenological stages) or 18 (7 sub-classes of secondary 

phenological stages) to 52 for wheat, and from 13 to 35 for rapeseed (both types of 

phenological stages) (Table 5-6).  
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Table 5-6. Number of samples per pair (training + validation samples) used to classify 

phenological stages of wheat and rapeseed. OS = observed samples in the field, SS = selected 

samples for classification 

 Wheat fields Rapeseed fields 

Class code Principal stages Sub-classes Principal stages Sub-classes 

OS SS OS SS OS SS OS SS 

1 105 52 49 49 18 18 18 18 

2 72 52 56 52 36 35 36 35 

3 21 21 72 52 38 35 12 12 

4 52 52 21 21 13 13 26 26 

5 35 35 52 52 44 35 13 13 

6   18 18   25 25 

7   17 17   19 19 

 

Two output analysis – mean rank of importance of each input feature and mean kappa 

index (Cohen 1960; Rosenfield and Fitzpatrick-Lins 1986) as a function of the number of 

features - were used to select the most important features to include in the final classification. 

Incremental classification is used to assess mapping quality as the types and numbers of 

features increase. Thus, it determines the combination and number of features in the 

classification necessary to obtain acceptable quality (Inglada et al. 2016). For each training 

and validation set (50 pairs), an RF algorithm was first applied to all of the features to rank 

them in order of importance based on the mean decrease in the Gini index which assessed 

the reliably of the incremental classification (Calle and Urrea 2011). The mean rank of 

importance of each feature was derived from the 50 ranks obtained from the 50 pairs of 

training and validation samples. We then ran as many RF algorithms as the number of 

features, starting with the two most important features and then adding the less important 

features until all features were processed. The number of features selected for the final 

predictions was determined automatically: when kappa increased by less than 0.02 for three 

consecutive feature additions, the first of the three features marked the end of the selection 

for prediction. To visualize differences in performance between classes, we calculated user’s 

accuracy (UA) and producer’s accuracy (PA) (Congalton 1991) as a function of the number of 

features. We used the RF algorithm to select and classify features and to calculate the final 

prediction. In both cases, the number of trees was set to 100 (Pelletier et al. 2016). The 

analyses were performed using the randomForest package of R software. 

5.4.  Results 

5.4.1. Analysis of time-series of Sentinel-2 features 

For wheat and rapeseed, the highest signal variations in temporal profiles for S-2 

reflectance were observed for bands 6 and 7 (red-edge) and bands 8 and 8A (NIR) (Figure 5-

5).  
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Figure 5-5. Mean temporal profiles of S-2 reflectance and main phenological stages for (a) 

wheat and (b) rapeseed (Bleiholder, et al. 2001) (B02 = blue, B03 = green, B04 = red, B05 = 

Red-edge 1, B06 = Red-edge 2, B07 = Red-edge 3, B08 = NIR wide, B8A = NIR narrow, B11= 

SWIR1, B12= SWIR2). 

 

For wheat, all S-2 bands saturated before and during the maximum peak corresponding 

to stem elongation (DoY 100-124), inflorescence and flowering (DoY 152) (Figure 5-5a). For 

rapeseed, all S-2 bands saturated during flowering and development of fruit (DoY 100, 

BBCH stages ~ 60-65, DoY 124, BBCH stages ~67-69, and DoY 152 and 163, BBCH stage ~80) 

(Figure 5-5b). Based on these observations, we selected S-2 bands 3, 5, 6, 7, 8 and 8A as input 

for the incremental classification. 

In the temporal profiles of S-2-based vegetation indices and LAI for wheat and rapeseed, 

the standard deviation peaked on DoY 146, which corresponded to the end of inflorescence 

for wheat (DoY 124, BBCH stage ~55) and the end of development of fruit for rapeseed (DoY 

124, BBCH stages ~67-69) (Figure 5-6).  

For wheat, LAI, NDVI and MCARI began to increase at the beginning of tillering, and 

S2REP and WDVI at the end of tillering. They all decreased during ripening. 

For rapeseed, decreases are observed during ripening. NDVI increased until the 

development of fruit. However, it is not possible to observe its saturation due to the poor 

number of S-2 dates. LAI and WDVI were similar: they began to increase at the beginning of 

inflorescence (DoY 46) until the beginning of flowering (DoY 86). WDVI was the only 

vegetation index sensitive to leaf development (DoY 18-45). 

For both crop types, MCARI had a high standard deviation. Thus, MCARI can produce 

inaccurate predictions of phenological stages.  
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Figure 5-6. Mean temporal profiles of S-2 vegetation indices and LAI and main crop 

phenological stages for wheat and rapeseed (Bleiholder, et al. 2001). Error bars indicate 1 

standard deviation. 

5.4.2. Analysis of time series of Sentinel-1 features 

For wheat, while trends in the temporal profiles for      and      were similar,      

was influenced more by wheat growth than      (Figure 5-7). Both polarizations increased 

during tillering (DoY 18-72). Both      and      decreased throughout stem elongation 

(DoY 72-124) but increased from inflorescence to ripening. The           ratio has varied 

little during tillering stages. The ratio increased strongly during stem elongation and slightly 

from the beginning of inflorescence to ripening. The polarimetric indices were also sensitive 

to wheat phenological stages, according to their temporal behaviors (Figure 5-7). The 

temporal behaviors of     ,      and      were similar. The normalized SE index and its 

intensity (        ) were similar. The influence of polarization (       ) on SE was weak, 

with values ranging from -0.9 to 0.8 dB, while          ranged from -5 to -1 dB.         

and          initially increased at tillering but then decreased during stem elongation and 

inflorescence.          initially varied little but then significantly increased during stem 

elongation.          decreased linearly from the end of flowering to ripening. 

 

For rapeseed, the trends for      and      were similar, showing that they were 

sensitive to phenological stages, while the           ratio was affected only slightly 

(Figure 5-7). VH and VV polarizations increased slightly during leaf development, varied 

little during inflorescence and decreased during flowering. Both polarizations increased 
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from development of fruit to the beginning of ripening. They decreased until the end of 

ripening. Like for wheat, the temporal profiles of span,      and      for rapeseed were 

similar.          varied little throughout the rapeseed cycle. Temporal changes in         

and          were similar to those of wheat,          increased during flowering and 

decreased during ripening. 

 

SAR S-1 features were more sensitive to the development of fruit stage for rapeseed 

(Figure 5-7) than optical S-2 features, which saturated from development of fruit (DoY 86) to 

beginning of ripening (DoY 163) (Figure 5-5 and 6). 

 

 

Figure 5-7. Mean and standard deviation of the S-1 backscattering coefficients and 

polarimetric indicators and main crop phenological stages for wheat and rapeseed 

(Bleiholder, et al. 2001) (VH =     , VV =     , VH:VV =          ,      = total 

scattered power,         = normalized SE,          = normalized SE Intensity,          = 

normalized SE Polarization). Error bars indicate 1 standard deviation. 
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5.4.3.  Contribution of Sentinel 1 & 2 time series to monitoring wheat and rapeseed 

phenology 

5.4.3.1. Contribution of Sentinel 1 & 2 time series to identifying principal phenological 

stages of wheat and rapeseed 

The combined use of S-1 & 2 data outperformed use of S-1 or S-2 data alone in detecting 

the principal crop stages of wheat and rapeseed (maximum mean kappa index of 0.82 and 

0.91, respectively) (Figure 5-8). However, considering the standard deviation of the mean 

kappa index, results of the combined use of S-1 & 2 data were similar to those of S-2 data 

alone. The number of features automatically selected to predict the principal phenological 

stages were 4, 6 and 6 for wheat and 4, 5 and 5 for rapeseed for S-1 data alone, S-2 data alone 

and their combined use, respectively. For wheat, the mean kappa indices of S-1 and S-2 data 

alone were equal up to 3 input features, after which the S-1 mean kappa index changed little 

(0.60 ± 0.07), while that for S-2 continued to increase up to 5 input features (0.74 ± 0.07) 

(Figure 5-8a). Using the top 6 S-1 & 2 features out of all 18 features increased the mean kappa 

index by ca. 0.24 (i.e. from 0.53 ± 0.11 for 2 features to 0.77 ± 0.07 for 6 features). For rapeseed, 

S-1 data alone underperformed S-2 data alone based on the standard deviation of the mean 

kappa index (Figure 5-8b). Using the top 5 S-1 & 2 features out of all 18 features increased the 

mean kappa index by ca. 0.16 (i.e. from 0.74 ± 0.12 for 2 features to 0.90 ± 0.07). 

 

 

Figure 5-8. Mean kappa index of incremental classifications of principal phenological stages 

for S-1 data alone, S-2 data alone, and combined Sentinel-1 & 2 data as a function of the 

number of input features for (a) wheat and (b) rapeseed. The dashed lines indicate the 

number of features automatically selected for the predictions. The combined use of S-1 & 2 

data outperformed use of S-1 or S-2 data alone in detecting the principal crop stages of 

wheat and rapeseed. 

When using S-2 data alone for wheat (Figure 5-9b), LAI was the most important feature, 

followed by S2REP, red-edge2 (B06) and WDVI, NDVI and red edge1 (B05). For rapeseed 

(Figure 5-9e), the top 3 features were NDVI, S2REP and band 3 (green) (mean ranks of 1.4, 2.1 
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and 4 respectively). They were followed by LAI and WDVI (mean ranks of 4.3 and 5.3 

respectively).  

 

When using S-1 data alone, the           ratio ranked first for both crops, while      

ranked third for wheat (Figures 5-9a and 9d). Polarimetric indicators were important for 

wheat and rapeseed: several of them were among the 4 input features selected for 

predictions for both crops. For wheat, the polarization of the SE (       ) ranked second 

(Figures 5-9a), for rapeseed, the intensity of the SE (        ) ranked fourth (Figure 5-9d).  

 

When using combined S-1 & S2 data, an S-1 feature was the most important for both 

crops:           for wheat (Figure 5-9c) and      for rapeseed (Figure 5-9f). Among the 

top 10 important features, 6 were S-1 features for both crop types. For S-2 features, LAI was 

the most important for wheat and the NDVI and S2REP for rapeseed, since they were the 

only features out of the 6 and 5 features selected for prediction using the combined use of S-1 

& 2 data. MCARI was the least important S-2 index for both crops. 

 

 

Figure 5-9. Mean rank of importance of the most important features to identify the 5 

principal phenological stages of (a, b, c) wheat and (d, e, f) rapeseed for (a, d) S-1 data alone, 

(b, e) S-2 data alone and (c, f) combined Sentinel-1 & 2 data. The           ratio was a 

relevant feature using S-1 data alone for both crops, while LAI and NDVI were the most 

important features using S-2 data alone for wheat and rapeseed, respectively. 

Concerning classification results for wheat, tillering was the phenological stage most 

accurately classified using S-1 data alone, S-2 data alone and their combined use (Figures 5-
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10a-c and 11a-c). Based on the UA and PA results, similar results were obtained using S-1 or 

S-2 data alone for the stem elongation stage. The tillering stage was identified better using S-

1 than S-2 data, while the flowering, development of fruit and ripening stages were 

identified better using S-2 than S-1 (Figures 5-10a and 10b). Combined use of S-1 & 2 data 

improved the UA of tillering, stem elongation and ripening; only the PA of the stem 

elongation and flowering stages underperformed that of S-2.  

 

For rapeseed, development of fruit was the most difficult phenological stage to identify 

using S-1 data alone and the combined use of S-1 & 2 data, due to confusion with ripening 

(Appendix C, Table C-4 and C-6 and Figures 5-10d and 10f, 11d and 11f). S-2 data alone 

provided better results than S-1 data alone for all classes (Figures 5-10d-e, 11d-e), while their 

combined use improved the PA of the leaf development stage from 0.8 (S-2) to 1 (S-1 & 2) 

(Figures 5-10e-f, 11e-f). 

 

 

Figure 5-10. Mean UA of incremental classifications as a function of the number of input 

features to identify the 5 principal phenological stages of wheat and rapeseed. The colored 

lines refer to the crop phenological stages. 
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Figure 5-11. PA of incremental classifications as a function of the number of input features to 

identify the 5 principal phenological stages of wheat and rapeseed. The colored lines refer to 

the crop phenological stages.  

5.4.3.2. Contribution of Sentinel 1 & 2 time series to identifying secondary phenological 

stages of wheat and rapeseed 

The number of features automatically selected to predict secondary phenological stages 

were 4, 4 and 7 for wheat (Figure 12a) and 4, 4 and 5 for rapeseed (Figure 5-12b) for S-1 data 

alone, S-2 data alone and their combined use, respectively. For S-2 data alone, the mean 

kappa indices of wheat were similar to those for the principal phenological stages using the 

number of features automatically selected (0.72 ± 0.05 and 0.74 ± 0.06), whereas the secondary 

phenological stages of rapeseed were identified weaker than principal phenological stages 

(0.77 ± 0.07 and 0.86 ± 0.07, respectively). S-1 data alone did not discriminate secondary 

phenological stages well, since their mean kappa indices were significantly lower than those 

for the principal phenological stages (0.53 ± 0.06 and 0.60 ± 0.07, respectively, for wheat and 

0.55 ± 0.07 and 0.63 ± 0.06, respectively, for rapeseed). For combined S-1 & 2 data, mean 

kappa indices for secondary phenological stages were also lower than those of principal 

phenological stages (0.72 ± 0.07 and 0.77 ± 0.06, respectively, for wheat and 0.79 ± 0.06 and 0.9 

± 0.07, respectively, for rapeseed). The use of S-1 & 2 data combined was similar to those of S-

2 data alone for both crops (Figures 5-12a and 12b). Several S-1 features were present in the 

top ranks of importance for the combined S-1 & 2 data (Figures 5-13c and 13f). Considering 

standard deviation of the mean kappa index, the classification accuracy using S-2 data alone 

or combined S-1 & 2 was not significantly different. For rapeseed, the mean kappa index was 

very similar regardless of the number of input features. For wheat, S-2 data alone results 

were superior to combined S-1 & 2 results until 5 inputs features. 



Part III  -  Characterization of crops using Sentinel-1 and 2 time series  

108 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

 

Figure 5-12. Mean kappa index of incremental classifications of secondary phenological 

stages for S-1 data alone (green), S-2 data alone (red), and combined Sentinel-1 & 2 data 

(blue) as a function of the number of input features for (a) wheat and (b) rapeseed. The 

classification accuracy using S-2 data alone or combined S-1 & 2 was not significantly 

different. 

 

Figure 5-13. Mean rank of importance of the most important features to identify the 7 

secondary phenological stages of wheat and rapeseed. The           ratio was the most 

important feature using S-1 data alone for both crops, while LAI, NDVI and S2REP were the 

most important features using S-2 data alone. 
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When using S-2 features alone, LAI, NDVI and S2REP for both crop types remained, like 

those for the principal phenological stages, the most important features (Figures 5-11e and 

13e). For rapeseed, band 3 (green), which had been ranked third for identifying the principal 

phenological stages (Figure 5-10e) decreased to the sixth rank for identifying the secondary 

phenological stages (Figure 5-13e). 

 

The           ratio was the most important feature using S-1 data alone for both crops 

(Figures 5-13a and 13d), and the first and seventh feature using S-1 & 2 data combined 

(Figures 5-13c and 13f) for wheat and rapeseed, respectively.  

 

When using S-1 features alone,      and          for wheat (Figure 5-13a) and      

and         for rapeseed (Figure 5-13d) were also highly important for identifying 

secondary phenological stages.         appeared more important for discriminating 

secondary phenological stages than principal phenological stages, increasing by 3 ranks for 

both crops, while the rank of span decreased from third and first for wheat and rapeseed, 

respectively.  

 

 

 

Figure 5-14. Mean UA of incremental classifications as a function of the number of input 

features to identify the 7 secondary phenological stages of wheat and rapeseed. The colored 

lines refer to thesecondary phenological stages. 
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Figure 5-15. Mean PA of incremental classifications as a function of the number of input 

features to identify the 7 secondary phenological stages of wheat and rapeseed. The colored 

line refer to the secondary phenological stages. 

 

For classification results for wheat, S-1 data alone (Figures 5-14a and 15a) 

underperformed S-2 data alone (Figures 5-14b and 15b) and combined S-1 & 2 data (Figures 

5-14c and 15c) in classifying flowering, development of fruit and the beginning and end of 

ripening. However, by combining S-1 & 2 features (Figures 5-14c and 15c), the accuracy of 

the secondary phenological stages was either similar to those of S-2 data alone (Figures 5-14b 

and 15b) or higher, except for the flowering and the end of ripening stages based on the PA.  

 

For classification results for rapeseed, the leaf development, the beginning/middle of 

flowering and the end of development of fruit were the stages least well predicted using S-1 

data alone (Figures 5-14d and 15d) or S-2 data alone (Figures 5-14e and 15e). Combined use 

of S-1 & 2 data increased the accuracy of identifying the leaf development stage (Figures 5-

14f and 15f).  

5.5. Discussion 

5.5.1. The relationship between Sentinel-2 features and phenological stages of wheat and 

rapeseed 

For both crop types, the temporal profiles of S-2 bands were consistent with those 

observed by Ashourloo et al. (2019). Saturation was observed from stem elongation to 

flowering for wheat and from flowering to development of fruit for rapeseed (Figure 5). 

However, it should be noted that the analysis of the temporal profiles was done from only 5 

dates due to the heavy cloud cover over the study area between DOY 72 and 152, i.e. during 
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the stem elongation, booting and early flowering stages for wheat and the flowering and 

development of fruit stages for rapeseed. Wilson et al. (2014) mentioned signal saturation for 

wheat and rapeseed when using hyperspectral data within a 400-900 nm range and 

identified optimal bands for identifying crops in green, red-edge and NIR wavelengths. 

Based on this study and our observations, we selected S-2 bands 3, 5, 6, 7, 8 and 8A as input 

for the incremental classification  

 

In the temporal profiles of S-2-based vegetation indices and LAI, the standard deviation 

peaked at the end of inflorescence for wheat and the end of development of fruit for 

rapeseed (Figures 5-6). Thus, the heterogeneity in crop phenology among fields during the 

field surveys peaked earlier during the middle of stem elongation for wheat and the 

beginning of development of fruit for rapeseed. All vegetation indices saturated when the 

LAI was high (1-2 for wheat and 3-4 for rapeseed, depending on the vegetation index), which 

confirms observations of Haboudane et al. (2004) for wheat. 

For wheat, the vegetation indices and LAI began to increase when the chlorophyll 

content increased at the tillering stage. They all decreased during ripening, as plants dried.  

For rapeseed, decreases are observed during ripening due to the decrease in chlorophyll 

content as plants dried. LAI and WDVI began to increase at the beginning of inflorescence 

until the beginning of flowering as plant area expanded. WDVI decreased during the leaf 

development as leaves unfolded. 

5.5.2. The relationship between Sentinel-1 backscatter coefficients and phenological stages 

of wheat and rapeseed 

For wheat, while trends in the temporal profiles for      and      were similar,      

was higher than      especially during the first phenological stages (i.e. tillering and stem 

elongation), since      is influenced more by wheat growth than      (Figures 5-7). This is 

consistent with observations of Cookmartin et al. (2000) who showed that      is 

particularly sensitive to vegetation wetness and of Fieuzal et al. (2013) who observed 

maximum WC at the stem elongation stage. Both polarizations increased during tillering 

(DoY 18-72). The increase in the number of stems per plant and the length of stems results in 

an increase in VH polarization, which is dominated by double-bounce and volume-scattering 

mechanisms (Lopez-Sanchez et al. 2013; Wiseman et al. 2014; Veloso et al. 2017) and a strong 

increase in VV polarization, which is dominated by the influence of soil and canopy. Both 

     and      decreased throughout stem elongation but increased from inflorescence to 

ripening, as observed by Fieuzal et al. (2013), due to an increase in crop absorption when 

vegetation was wet, and decreased as vegetation dried. VV polarization is attenuated by 

vertical transformation of the structure of wheat during stem elongation (Brown et al. 2003). 

The           ratio has varied little during tillering stages, which does not help identify 

secondary phenological stages. This ratio correlates more to fresh biomass than to 

photosynthetic activity (Veloso et al. 2017). For rapeseed, VH and VV polarizations increased 

slightly during leaf development as biomass increased. They varied little during 

inflorescence and decreased during flowering. Indeed, rapeseed’s vertical transformation 

from a thick rosette of leaves to a flowering stalk attenuated VV polarization, while its low 

density attenuated VH polarization. Both polarizations increased from development of fruit 

to the beginning of ripening, which was also observed in other studies (Fieuzal et al., 2013;  

Lopez-Sanchez et al., 2013; Wiseman et al., 2014; Veloso et al., 2017). The progressive 
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development of structure without preferred orientations results in a more complex 

geometry, inducing a strong increase in the volume-scattering mechanism (Betbeder et al. 

2016b). VH and VV polarizations decreased until the end of ripening due to the decrease in 

WC in the top layer of rapeseed. VV polarization is particularly sensitive to the WC of 

vegetation (Cookmartin et al. 2000), and VH is attenuated by the increase in wave 

penetration into the soil. 

5.5.3. The relationship between Sentinel-1 polarimetric indicators and phenological stages 

of wheat and rapeseed 

For both crop types, the temporal behaviors of     ,      and      were similar since 

span is the total scattered power. For wheat,         and          initially increased at 

tillering but then decreased during stem elongation and inflorescence. The increase in 

         was related to stem development during tillering. This complexity of plant 

structure increased the disorder encountered in the RaDAR signal. The opposite was 

observed during stem elongation, due to the less complex structure of wheat, which resulted 

in a decrease in backscatter power. Betbeder et al. (2016) demonstrated a strong positive 

correlation (r²=0.7) between topsoil moisture and     during leaf development and tillering 

due to a low wave penetration into the soil.          initially varied little but then 

significantly increased during stem elongation, indicating that polarization varied greatly 

due to heterogeneity in plant structures in wheat fields.          decreased linearly from 

the end of flowering to ripening, as wheat was becoming homogeneous at the field scale. 

        and          could identify the development of fruit stage, unlike the other S-1 

features, since they decreased slightly during this stage. For rapeseed, the temporal changes 

in         and          were similar to those of wheat. As mentioned by Betbeder et al. 

(2016), the intensity of SE was sensitive to different phenological stages. The slight increase 

in          during flowering was associated with changes in rapeseed structure from a 

thick rosette of leaves to a flowering stalk, resulting in a strong variation in backscattering 

polarization (Betbeder et al. 2016b).          increased as rapeseed biomass increase; thus, it 

increased during flowering and decreased during ripening (Betbeder et al. 2016b). 

5.5.4. Relative contributions of S-1 and S-2 data to mapping of wheat and rapeseed 

phenological stages 

Concerning the prediction of principal phenological stages of wheat using S-2 data alone 

(Figures 5-9b), LAI was the most important feature, followed by S2REP, red-edge2 (B06) 

WDVI, NDVI and red edge1 (B05). For rapeseed (Figures 5-9e), the most important 5 features 

were NDVI, S2REP, band 3 (green), LAI and WDVI. Principal and secondary phenological 

stages of wheat and rapeseed were well identified by LAI derived from S-2 data, since this 

index is related to the density of green vegetation. The incremental classification results 

demonstrated the relevance of the S2REP index for both crop types, which is consistent with 

results of Frampton et al. (2013). S2REP, which is highly sensitive to chlorophyll content, is 

calculated from red-edge bands of S-2 that respond to high large changes in leaf reflectance 

(Hatfield et al. 2008). The importance of the S-2 red-edge bands has been demonstrated for 

predicting green LAI in crop fields, including wheat in Spain and Germany (Delegido et al. 

2011b). We noted the potential of WDVI for predicting rapeseed phenology based on our 

analysis of temporal profiles; it was the only index sensitive to the leaf development stage. 
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Wilson et al. (2014) explained that rapeseed had higher reflectance in the green and red 

portions of the spectrum than other crops because of its yellow flowers.  
 

Concerning principal and secondary phenological stages classification of wheat using S-

1 data alone, the           ratio ranked first for both crops, while      ranked third 

(Figures 5-9a and 9d). Previous studies demonstrated the suitability of backscattering 

coefficients (    ,     ) and the polarization ratio (         ) for estimating biomass 

and LAI of wheat (Dente et al. 2008; Betbeder et al. 2016b) and maize (Gao et al. 2013). Veloso 

et al. (2017) concluded that the influence of the ground was similarly reduced for wheat 

using           compared to      and     , and was generally more consistent for 

wheat and rapeseed. For rapeseed, the           ratio was the most important feature 

using S-1 data alone for classify principal and secondary phenological stages. The 

          ratio had shown high performance in identifying principal phenological stages 

of both crops, confirming its high reliability for identifying principal and secondary 

phenological stages. 

 

Consistent with results of Betbeder et al. (2016), polarimetric indicators were important 

for wheat and rapeseed: several of them were among the 4 input features selected based on 

the threshold automatically defined for predictions of principal and secondary phenological 

stages for both crops. SEp and span were selected to predict principal phenological stages of 

wheat and SEi was selected for rapeseed, while for secondary phenological stages, the 

selection included SEp and SE for wheat and SEi and SE for rapeseed. 

 

This study aimed to evaluate the potential of S-1 data alone, S-2 data alone, and their 

combined use to predict wheat and rapeseed phenological stages. For wheat, the combined 

use of S-1 & 2 data outperformed use of S-1 or S-2 data alone in detecting the principal 

phenological stages of wheat and rapeseed. The secondary phenological stages of wheat 

were identified better using S-2 than S-1 data. Based on the standard deviation of the mean 

kappa index, similar results were obtained using S-2 data alone or combined S-1 & 2 data for 

the secondary phenological stages of wheat. The tillering was the principal and secondary 

phenological stage most accurately classified using S-1 data alone, S-2 data alone and their 

combined use (Figures 5-10a-c and 11a-c). From DOY 18 to 72, wheat was at tillering stage 

and a specific temporal behavior of S-1 and S-2 features was observed in comparison to all 

other phenological stages. However, the tillering stage was identified better using S-1 than S-

2 data, while the flowering, development of fruit and ripening stages were identified better 

using S-2 than S-1 (Figures 10a and 10b). The SAR signal is sensitive to the geometry (e.g. 

roughness, texture, internal structure) and wetness of the observed targets, while optical 

reflectance is influenced by their physiology. Thus, we can conclude that the tillering stage of 

wheat was better discriminated by the structure of the wheat field rather than its physiology. 

From the stem elongation stage, the geometry of the wheat became vertical and varied little 

until ripening, while chlorophyll content increased and then decreased. Thus, S-2 features 

were more efficient than S-1 features to discriminate these phenological stages of wheat. For 

principal phenological stages of wheat, combined use of S-1 & 2 data improved the UA of 

tillering, stem elongation and ripening; only the PA of the stem elongation and flowering 

stages underperformed that of S-2. This is consistent with previous studies that have shown 
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saturation of the C-band (El Hajj et al. 2019) and optical bands (Haboudane et al. 2004) at 

high levels of wheat biomass. 

 

For rapeseed principal phenological stages, the mean kappa index using combined S-1 & 

2 data was higher and strongly higher than those obtained with S-2 data alone and S-1 data 

alone respectively. For secondary phenological stages, results of the combined use of S-1 & 2 

data were similar to those obtained with S-2 data alone. However, combined use of S-1 & 2 

data increased the accuracy of identifying the leaf development stage of rapeseed thanks to 

the capture of additional information about physiology from S-2 and geometry from S-1. 

Development of fruit was the most difficult principal phenological stage to identify using S-1 

data alone and the combined use of S-1 & 2 data, due to confusion with ripening (Appendix 

C and E, Table C-4, C-6, E-1 and E-2 and Figures 5-10d and 10f, 11d and 11f). The most 

important features using S-1 data alone were     ,           and     . The temporal 

profiles showed that the           ratio was stable between development of fruit and 

ripening, while      and      slightly increased. The structure of rapeseed stages is very 

similar during development of fruit and ripening, with randomly oriented canopy 

components. This high similarity can be explained by the fact that field observations were 

conducted during successive phenological stages (i.e. the end of development of fruit (BBCH 

= 77 and 79) and the beginning and end of ripening (BBCH = 80 and 89)). However, while, 

the development of fruit was considerably better classified using combined S-1 & 2 data (UA 

max = 0.87, PA max = 0.75) than using S-1 data alone (UA max = 0.32, PA max = 0.21), this 

phenological stage was the least well predicted. The most important features using combined 

S-1 & 2 data were      derived from S-1 followed by NDVI and S2REP derived from S-2 

and then        , span,         ,           and      derived from S-1. Thus, SAR S-1 

features increased confusion between development of fruit and ripening stages. The 

development of fruit was the most difficult secondary phenological stage to identify using S-

1 data alone while the beginning and middle of flowering was the least well predited using 

S-2 data alone and combined S-1 & 2 data (Figures 5-14e and 14f, 15e and 15f). Prediction 

errors occurred between the two secondary phenological stages of flowering (Appendix D 

and E, Tables D-5, D-6, E-7 and E-8), the first corresponding to first flowers open until 40% of 

flowers on main raceme open and the second to the the full flowering until the end of 

flowering while the petals are fallen. It should be noted that this period coincided to the lack 

of S-2 data due to cloud cover, while S-1 temporal profiles showed little variation. 

 

Classification results for combined use of S-1 & 2 data pointed out the large contribution 

of S-1 features for rapeseed. Combined used of S-1 & 2 data identified better principal 

phenological stages of rapeseed than S-2 data alone; moreover, the identification of the leaf 

development stage was improved adding S-1 features (Figures 5-11c, 11f). Results were more 

balanced for secondary phenological stages of wheat since S-2 data alone results were similar 

to those of combined S-1 & 2 data, except for the tillering stage.  
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5.6. Conclusion 

This study evaluated the potential of SAR S-1, optical S-2 time-series and the combined 

use of S-1 & 2 data to identify principal and secondary phenological stages of wheat and 

rapeseed. More specifically, we have shown that:  

 Combined use of S-1 & 2 data (mean kappa = 0.53-0.82 and 0.74-0.92 for wheat 

and rapeseed, respectively) was more accurate than using S-1 data alone (mean 

kappa = 0.48-0.61 and 0.61-0.64 for wheat and rapeseed, respectively) or S-2 data 

alone (mean kappa = 0.54-0.75 and 0.67-0.86 for wheat and rapeseed, 

respectively), in identifying principal and secondary phenological stages for both 

crops. 

 S-2 data alone provided better results than S-1 data alone for both crop types. 

 Concerning S-1 features, the           ratio and polarimetric indicators were 

important for obtaining accurate classifications of phenological stages for both 

crops. These features were the most important for discriminating both crop types 

using S-1 data alone and combined S-1 & 2 data.  

 Concerning S-2 features, LAI, NDVI and S2REP were the most important 

features for both crop types while the MCARI was less important. 

 The number of Sentinel features automatically selected to predict phenological 

stages of wheat and rapeseed ranged from 4 to 7. 

Overall, this study highlighted the value of using polarimetric indicators (SE and span) 

and combining Sentinel-1 and 2 data to monitor wheat and rapeseed phenology. 

To confirm these results, this method should be based on a larger sample size, especially 

for identifying secondary phenological stages. Also, to test the robustness of combining S-1 & 

2 data to predict principal and secondary phenological stages, the final predictive models 

should be applied to other study areas. 
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6.2. Introduction 

Crop monitoring is essential for managing agricultural resources to decrease 

environmental impacts. Indeed, natural resources (soil, forest, water) gradually decrease in 

the context of agricultural intensification, while food insecurity increases (Pinstrup-Andersen 

and Pandya-Lorch 1998). The challenge is to develop practices that are both economically 

and environmentally sustainable (Pinstrup-Andersen and Pandya-Lorch 1998) to meet the 

needs for food and feed, ecosystem services and human health. Land managers need timely 

and accurate information to help them manage agricultural resources efficiently.  

Crop biophysical parameters, which are key variables that address this challenge, are 

required for several reasons: to estimate crop yield as model inputs (Maas 1988; Jin et al. 

2018); to prevent disease and pest outbreaks (Hatfield and Pinter 1993; Vreugdenhil et al. 

2018) since the plants are more sensitive during specific phenological stages; to optimize 

water resource management by accurately calculating crop needs and synchronizing 

irrigation schedules with vegetation stages during which water needs are minimal 

(Duchemin et al. 2015) and to decrease fertilizer application (Diacono et al. 2013; Bouchet et 

al. 2016). Crop biophysical parameters can also be used as indicators to study impacts of 

global warming (Menzel et al. 2006). 

 

Most crop biophysical parameters commonly used for these purposes (e.g. LAI, DB, WB, 

WC) are obtained using time-consuming ground surveys and thus cannot be collected at the 

landscape scale. Remote sensing data can provide a solution to this issue because they can be 

used to map large areas at a fine scale. The free availability of SAR S-1 and optical S-2 time 

series offers a unique opportunity to monitor crops at a high temporal frequency (5-days) 

and high spatial resolution (10 m).  

Many studies have focused on the use of satellite optical data (AVHRR, SPOT, Landsat, 

MODIS, IRS, IKONOS, QuickBird, Formosat-2, S-2 images) to estimate crop biophysical 

parameters, demonstrating the high performance of some spectral bands, vegetation indices, 

and biophysical variables (Quarmby et al. 1993; Doraiswamy et al. 2004; Mulla 2013; Bontemps et 

al. 2015; Betbeder et al. 2016b). More specifically, S-2 time series showed great potential for 

estimating grassland and crop LAI (Delegido et al. 2011b; Frampton et al. 2013; Clevers et al. 

2017; Pan et al. 2018; Wang et al. 2019), biomass (Veloso et al. 2017; Ghosh et al. 2018; Ganeva et 

al. 2019) and phenological stages (Veloso et al. 2017; Ghosh et al. 2018; Stendardi et al. 2019). The 

importance of the S-2 red-edge bands has been demonstrated for predicting green LAI in 

crop fields, including wheat in Spain and Germany (Delegido et al. 2011b); however, Gosh et 

al. (2018) concluded that S-2 red-edge bands did not improve estimation of potato LAI 

compared to NIR bands. Ganeva et al. (2019) highlighted the importance of SWIR bands for 

estimating vegetation height and the vegetation fraction of rapeseed and wheat. The 

vegetation indices that emerged from the S-2 studies conducted in Europe were NDVI, 

IRECI, MCARI and NDI for several crops (wheat, rapeseed, barley, oat, onion, potato, 

sunflower, alfalfa, and grapevine). GNDVI and WDVI also performed well when estimating 

the parameters for potato. However, optical data have limitations because they are sensitive 

to weather conditions, capture only top-of-canopy information, and saturate at high levels of 

biomass and LAI. For example, for wheat, Wang et al. (2016a) estimated the saturation of 

visible and red-edge bands from 2.5 m².m-² for LAI and 1        for aboveground biomass. 

In contrast, although soil conditions (roughness and moisture) affect the SAR signal (McNairn 
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and Brisco 2004; Chaube et al. 2019), SAR data can be collected regardless of weather or light 

conditions, and microwaves are sensitive to the internal structure of vegetation (Fieuzal et al. 

2013; Wiseman et al. 2014).  

 

Several studies have evaluated the potential of satellite SAR data (RADARSAT, 

TerraSAR-X, ALOS, S-1) for estimating crop biophysical parameters (Steele-Dunne et al. 

2017), and S-1 time series have demonstrated their high value for this purpose (Mandal et al. 

2018b, a; Vreugdenhil et al. 2018; Kumar et al. 2018; Song and Wang 2019; Nasrallah et al. 

2019). The high potential of backscattering coefficients and the VH:VV polarization ratio was 

observed when detecting changes in vegetation structure for rapeseed, maize and winter 

cereals (Vreugdenhil et al. 2018). Mandal et al. (2018a) found good correlations between S-1 

polarization combination (VH+VV) and WB and plant area index (half the surfaces of all 

green organs) of rapeseed. The S-1 VV polarization has shown high correlations with the 

WC, WB, DB and LAI of wheat (Kumar et al. 2018), while the VH and VV polarizations were 

important for identifying the phenological stages of wheat (Song and Wang 2019; Nasrallah 

et al. 2019) and rice (Mandal et al. 2018b).  

In addition, polarimetric indicators derived from RADARSAT-2 and TerraSAR-X have 

shown high sensitivity to crop biomass (Betbeder et al. 2016b; Wiseman et al. 2014; 

Homayouni et al. 2019; Yang et al. 2019), LAI (Betbeder et al. 2016b; Jin et al. 2015; Jiao et al. 

2009; Canisius et al. 2018) and phenological stages (Mascolo et al. 2015; McNairn et al. 2018; 

Pacheco et al. 2016). Betbeder et al. (2016b) showed that the VV polarization was more 

effective than the NDVI at estimating wheat parameters from RADARSAT-2 images, and 

that while polarimetric indicators did not outperform VV, they were effective at estimating 

rapeseed crop height and DB. Wiseman et al. (2014) demonstrated that entropy had the 

highest accuracy among 21 SAR parameters derived from RADARSAT-2 images (linear and 

circular backscatter coefficients, linear copolarization and cross-polarization ratios, and 

polarimetric indicators) when estimating the DB of rapeseed. Entropy also emerged as 

important for estimating phenological stages of onion (Mascolo et al. 2015) using 

RADARSAT-2 and of rapeseed using RADARSAT-2 or TerraSAR-X (Pacheco et al. 2016). 

Despite these encouraging results, to our knowledge, polarimetric indicators derived from S-

1 data have not been used to study crop biophysical parameters.  

Yang et al. (2019) demonstrated a higher saturation point and better accuracy when 

estimating rapeseed biomass using quad-polarization SAR data derived from RADARSAT-2 

rather than dual polarimetric data. However, even though quad-polarization data express 

several backscattering mechanisms better than dual-polarization data, quad-polarization 

mode always yields a smaller swath width and lower spatial resolution than dual-

polarization mode, which is not yet suitable for application over large areas. In addition, no 

quad-polarization data are freely available, unlike dual-polarization data (S-1).  

Several modeling approaches were investigated for estimating crop biophysical 

parameters using optical and SAR satellite images. It is well known that many remote 

sensing-based indicators show a non-linear relationship with crop biophysical parameters, 

which can be explained by the Beer-Lambert extinction law for radiation penetration in plant 

canopies (Tan et al. 2020). Several studies have shown the value of non-linear machine 

learning methods to estimate the crop biomass (Wang et al. 2016b; Ahmadian et al. 2019), as 

well as LAI, WC WB, DB and plant height (Kumar et al. 2018). Among machine learning 

methods, Gaussian processes regression (GPR), which is a non-parametric kernel-based 

model (Williams and Barber 1998), is one of the most robust regression algorithm for 
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monitoring crop biophysical parameters (Ganeva et al. 2019; Verrelst et al. 2012; Upreti et al. 

2019; Pipia et al. 2019). For example, Upreti et al. (2019) demonstrated the superiority of GPR 

over eight machine-learning methods including RFs, neural networks and regression trees 

for estimating wheat biophysical parameters using S-2 images.  

 

The objective of this study was to evaluate the potential of S-1 and S-2 images to 

estimate LAI, WB, DB and WC. We focused on wheat and rapeseed, which are two of the 

most important crops in the world in terms of harvested area (FAO, 2017). We evaluated the 

predictive power of 22 optical S-2 features (10 spectral bands and 12 vegetation indices) and 

7 SAR S1-features (2 backscattering coefficients, 1 ratio and 4 polarimetric indicators). We 

estimated crop biophysical parameters of wheat (from tillering to ripening stages) and 

rapeseed (from leaf development to ripening stages) using a GPR approach.  

6.3. Materials and Methods 

6.3.1.  Study area 

The study area is a LTER site named ZAA located in the southern part of the Bay of 

Mont-Saint-Michel, France (Figure 6-1).  

 

Figure 6-1. Location of the study area. Satellite imagery and aerial photographs accessed 

through Bing Aerial using OpenLayers QGIS plugin 1.4.8 (Microsoft®Bing™Maps). 

It is part of European LTER and international ILTER networks (https://osur.univ-

rennes1.fr/za-armorique). The ZAA was created in 1993 to perform long-term research 

around three main themes: planning, public policy and landscape dynamics; the relationship 

between spatio-temporal landscape dynamics and biodiversity; and influence of spatial-

https://osur.univ-rennes1.fr/za-armorique
https://osur.univ-rennes1.fr/za-armorique
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temporal landscape dynamics on ecosystem processes. This 130 km² area has a temperate 

climate with an annual mean temperature of 12 °C and annual mean precipitation of 650 

mm. Maize, wheat, rapeseed and barley are the main crops grown in this agricultural area. 

The crops are surrounded by hedges to differing degrees, with density of the hedge network 

increasing from north to south. 

6.3.2. Satellite imagery 

Four optical S-2 and five SAR S-1 images were collected from January to July 2017 

throughout the entire crop cycles of wheat and rapeseed (Figure 6-2).  

 

Figure 6-2. Days of year of satellite images, field surveys and main crop phenological stages 

for wheat and rapeseed (Bleiholder, et al. 2001). The ombrothermal diagram (Météo France) 

shows the climate conditions during image acquisition. 

The S-1 images were acquired in Interferometric Wide (IW) swath mode and delivered 

with VV and VH polarizations. We used the SLC product, which consists of focused SAR 

data that use the full C-signal bandwidth and preserve the phase information, to derive 

polarimetric indicators. The incidence angle of images ranged from 36.9-51.3° (Table 6-1). 

The spatial resolution was 2.3 × 13.9 m (Figure 6-2 and Table 6-1). 
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Table 6-1. Main characteristics of S-1 SLC images used in this study. 

Frequency C-band (center frequency of 5 405 GHz) 
Mode Interferometric Wide Swath 

Product type Single Look Complex 

Ground resolution 2.3 m 

Azimuth resolution 13.9 m 

Temporal resolution 6 days 

Orbit Descending 

Polarization Dual (VV & VH) 

Swath 250 km 

Incidence angle 36.9-51.3° 

 

For the S-2 images, 10 bands with spatial resolutions of 10 and 20 m were selected (Table 

6-2). The tiles were downloaded from the Europe Copernicus web site in level 2A, which 

provides top-of-canopy reflectance. 

Table 6-2. Main characteristics of S-2 MSI L2A images used in this study. 

Spatial and 

spectral 

resolutions 

10 × 10 m 

B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) 

20 × 20 m 

B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), B12 (2190 nm) 

 

znd  and 

Temporal 

resolution 

5 days 

Swath 290 km 

6.3.3. Field data collection 

Ground surveys were conducted on 3 wheat fields and 3 rapeseed fields (Figure 6-3). 

The wheat fields were 4.26, 10.33 and 12.81 ha in size, while the rapeseed fields were 6.02, 

10.11 and 11.35 ha. Phenological stages were identified from January to July 2017 (Figure 6-2) 

based on the Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBCH) 

scale (Bleiholder, et al. 2001). Four and five principal phenological stages were observed in 

Brittany for wheat and rapeseed, respectively (Tables 3 and 4). Approximately 10 

hemispherical photos were taken of each sampled plot on each date. LAI was estimated from 

digital hemispherical photographs using CAN-EYE software (https://www6.paca.inra.fr/can-

eye) and averaged per date and field sample. At the same time, biomass measurements were 

performed (Betbeder et al. 2016b). In homogeneous areas (20 × 20 m), 5 samples of wheat 50 

cm on the ground and 5 rapeseed plants were collected. The WB of each sample was directly 

weighed in situ, and the DB was measured after drying the crop (oven, 65°C, 48 h). WC in 

the plant equals WB minus DB. Figure 3 shows the temporal profiles of the wheat and 

rapeseed parameters and Table 6-5 summarizes the crop biophysical parameters for all 

wheat and rapeseed fields sampled. 

Table 6-3. Phenological stages of wheat considered in the study area. 

Principal stage BBCH Description 

Tillering 23 3 tillers detectable 

Stem elongation 31 First node at least 1 cm above tillering node 

Inflorescence 55 Middle of heading: half of inflorescences emerged 

Ripening 89 Fully ripe: grain hard, difficult to divide with thumbnail 
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Table 6-4. Phenological stages of rapeseed considered in the study area. 

Principal stage BBCH Description 

Leaf development 18 Beginning of tillering: first tiller detectable 

Inflorescence emergence 53 Flower buds raised above the youngest leaves 

Flowering 67 Flowering declining: most petals fallen 

Development of fruit 71 10% of pods have reached their final size 

Ripening 89 Fully ripe 

 

 

Figure 6-3. Temporal profiles of crop biophysical parameters for the wheat and rapeseed 

fields sampled. 

Table 6-5. Crop biophysical parameters for wheat and rapeseed fields. 

 Wheat Rapeseed 

Parameter LAI WB DB WC LAI WB DB WC 

Minimum 0.00 18.70 7.78 10.92 0.01 61.30 13.38 47.48 

Maximum 2.87 424.74 141.20 329.56 5.31 713.80 178.42 604.80 

Mean 1.43 187.71 66.15 121.56 2.29 317.40 84.82 232.93 

Standard deviation 1.19 136.02 43.62 114.44 1.67 190.26 60.40 151.22 
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6.3.4. Data processing 

 First, we preprocessed the SAR S-1 and optical S-2 signals. Second, we used GPR to 

estimate LAI, WB, DB, WC of the wheat and rapeseed crops using the field samples and the 

S-1 and S-2 features, before quantifying the predictive power of the best models using cross-

validation and the "k-folds " method.  

6.3.4.1. SAR Sentinel-1 image preprocessing 

We used the S-1 Toolbox (ESA, SNAP) to extract backscattering coefficients from the S-1 

images.  

Calibration was performed to convert digital pixel values into radiometrically calibrated 

backscatter (  VV,   VH) using the following equation (Eq. 6.1) (Miranda and Meadows 

2015): 

 

         
     

   
 (6.1) 

 

where DN is the digital number and A is the information necessary to convert SAR 

reflectivity into physical units provided in the Calibration Annotation Data Set in the image 

metadata. 

 

The presence of speckle in SAR images was reduced using a refined Lee filter in a 7 × 7 

pixel sliding window (Lee et al. 1994). The Range Doppler orthorectification method was 

applied to correct topographical distortions; the operator used orbit state vector information, 

RaDAR timing annotations, slant-to-ground-range conversion parameters and a reference 

DEM (SRTM). We calculated a ratio by dividing   VH by   VV. Then, the resulting images 

were transformed from a linear into a decibel (dB) scale using the following equation (Eq. 

6.2): 
  

                 
   (6.2) 

 

We used PolSARpro version 5.1.3 software to derive polarimetric indicators from the S-1 

images (Pottier and Ferro-Famil 2012).  

First, we extracted the 2 × 2 covariance matrix (  ) from the scattering matrix S. Second, 

the presence of speckle in SAR images was reduced using a refined Lee filter in a 7 × 7 pixel 

sliding window (Lee et al. 1994). Third, we calculated the scattered power called span in the 

case of a polarimetric RaDAR system (Ferro-Famil and Pottier 2014), and the SE (randomness 

of scattering of a pixel) was calculated using the following equation (Eq. 6.3): 

 
                          (6.3) 

 

where     is the intensity and     is the degree of polarization. 

 

Finally,   ,     and     were normalized into        ,          and         . 
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6.3.4.2. Optical Sentinel-2 image preprocessing 

We calculated 12 vegetation indices (Table 6-6) that are frequently used to monitor crop 

biophysical parameters (LAI, biomass, chlorophyll content and phenological stages) in 

studies using S-2 data (Frampton et al. 2013; Clevers et al. 2017; Daughtry et al. 2000; 

Herrmann et al. 2011; Clevers and Gitelson 2013). The indices included the GNDVI, IRECI, 

MCARI, MSAVI, MTCI, NDI, NDVI, PSSRa, REIP index, S2REP index, SAVI and WDVI. 

 

Finally, we applied a spline method to interpolate daily the 10 spectral bands, and 12 

vegetation indices derived from the S-2 images to match the dates of SAR S-1 acquisition 

using the “stats” package of R software (TEAM, R. Core et al. 2018). Then, S-1 and S-2 

features were projected onto the RGF93/Lambert-93 system (EPSG 2154).  

 

In total, we preprocessed 110 S-2 features (10 spectral bands and 12 vegetation indices × 

5 dates) and 35 S-1 features (2 backscattering coefficients, 1 backscatter ratio and 4 

polarimetric indicators × 5 dates).  

 

Table 6-6. Vegetation indices calculated from S-2 images. G = Green, R = Red, RE = Red-Edge. 

Index Equation S-2 bands used Original author 

GNDVI (RE3 - G) / (RE3 + G) (B7 - B3) / (B7 + B3) (Gitelson et al. 1996) 

IRECI (RE3 - R) / (RE1 / RE2) (B7 - B4) / (B5 / B6) 
(Guyot and Baret 

1988) 

MCARI [(RE1 - R) 0.2(RE1 - G)] * (RE1 - R) [(B5 - B4) - 0.2(B5 - B3)] * (B5 - B4) (Daughtry et al. 2000) 

MSAVI (1 + L) * (NIR- R) / (NIR + R + 0.5) (1 + L) * (B8- B4) / (B8 + B4 + 0.5) (Qi et al. 1994) 

 L = 1 – 2 * 0.5 * (RE3 – R) / (RE3 + R) L = 1 – 2 * 0.5 * (B7 – B4) / (B7+B4)  

 * (NIR – 0.5 * R) * (B8 – 0.5 * B4)  

MTCI (RE2 - RE1)/(RE1 - R) (B6 - B5)/(B5 - B4) 
(Dash and Curran 

2004) 

NDI (RE1 - R) / (RE1 + R) (B5 - B4) / (B5 + B4) (Delegido et al. 2011a) 

NDVI (RE3-R)/(RE3+R) (B7-B4)/(B7+B4) (Rouse et al. 1973) 

PSSRa RE3/R B7/B4 (Blackburn 1998) 

REIP 
700 + 40 * ((R + RE3)/2 - RE1) / (RE2 - 

RE1) 

700 + 40 * ((B4 + B7)/2 - B5) / (B6 - 

B5) 

(Guyot and Baret 

1988) 

S2REP 
705 + 35 * ((((RE3 + R)/2) - RE1)/(RE2 -

RE1)) 

705 + 35 * ((((B7 + B4)/2) B5)/(B6 - 

B5)) 

(Guyot and Baret 

1988) 

SAVI (1 + 0.5) * (NIR- R) / (NIR + R + 0.5) (1 + 0.5) * (B8- B4) / (B8 + B4 + 0.5) (Huete 1988) 

WDVI (NIR – 1.5 * R) (B8 – 1.5 * B4)  

6.3.4.3. Estimating crop biophysical parameters  

GPRs were performed using crop biophysical parameters of the wheat and rapeseed 

fields sampled and S-1 & S-2 features. GPR is a probabilistic non-parametric approach to 

regression (Williams and Barber 1998). A Gaussian process is a stochastic process which can 

be specified by its mean function      and its covariance function        ; any finite set of 

points will have a joint multivariate Gaussian distribution. Gaussian process model assumes 

that the noise model is gaussian with zero-mean and variance    , then the predicted mean 

(Eq. 6.4) and variance (Eq. 6.5) at    are given by: 

 

                         (6.4) 
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                                     (6.5) 

 

where                 and                            
 .  

 

A radial basis function kernel (Eq. 6.6) was used, defined as: 

 

     ′             ′   ) (6.6) 

 

where   is a parameter that sets the « spread » of the kernel. 

 

GPR models were calibrated and validated using 10 repeated 3-fold cross-validation. 

More folds were not possible due to the sparse calibration dataset (n = 12 for wheat and n = 

15 for rapeseed). The   parameter of the radial basis function kernel was optimized with a 

tuning parameter grid value ranging from 0 to 4 (with a 0.05 step) to limit overfitting. For 

each relation, we calculated the adjusted R², related to the proportion of variance explained 

by the model, and the relative root mean square error (rRMSE), calculated by dividing the 

RMSE by the mean of observed data. We also calculated the means and standard deviations 

of adjusted R² and rRMSE among the 10 repeats. 

GPR was performed with software "R" version 3.6.3 (R. Core Team, 2020) using packages 

"caret" version 6.0 (Kuhn et al. 2020). 

6.4.  Results and discussion  

To estimate the crop biophysical parameters of the wheat and rapeseed, we compared 

the respective value of S-1 and S-2 features to model crop LAI, WB, DB and WC using GPR. 

6.4.1. Estimating crop biophysical parameters using S-2 images 

Concerning estimation of wheat crop biophysical parameters using S-2 features, 

correlations were high using green and NIR bands and all indices except MCARI and NDI45 

to estimate LAI and WC (adj. R² > 0.85 and 0.70 respectively) (Figure 6-4). More specifically, 

figure 5 shows the best relationships obtained between wheat crop biophysical parameters 

and S-2 features. There was a linear and positive relation between LAI and NIR-band 8, the 

NIR reflectance increasing with the chlorophyll content. The lowest LAI values were 

observed during the ripening (BBCH = 89) and the highest ones during the stem elongation 

(BBCH = 33) and inflorescence (BBCH = 51). The WC decreased with the green band 

reflectances from inflorescence (BBCH = 55) to tillering (BBCH = 23). These results are 

consistent with previous studies that have shown greater sensitivity of green or NIR spectral 

domains (Fu et al. 2014; Wilson et al. 2014) and of some indices such as MSAVI (Haboudane 

et al. 2004), IRECI and NDVI (Frampton et al. 2013) to wheat biomass. Clevers et al. (2017) 

also demonstrated good performance of WDVI to estimate LAI of potato (R² = 0.809).  

 

In contrast, the predictive power of models for DB (adj. R² max = 0.72) and WB (adj. R² 

max = 0.71) was low (Figure 4). More specifically, DB and WB values were high at ripening 

(BBCH = 89) when wheat is fully ripe, while MTCI and WDVI values were low when wheat 

is brown in color (Figure 6-5). Then, MTCI and WDVI values increased from tillering (BBCH 

= 23) to inflorescence (BBCH =55).  
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Figure 6-4. Adjusted R² and rRMSE (red dots) of empirical relationships between S-2 features 

and crop biophysical parameters (LAI, DB, WB and WC) of wheat fields. The highest 

adjusted R² values are highlighted in green. 
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Figure 6-5. Best relationships obtained between wheat LAI, DB, WB and WC and S-2 

features. 

 

For rapeseed, the best results for DB and WB were obtained from bands 11 and 12, 

which correspond to the SWIR domain (adj. R² max = 0.85 and 0.77 respectively), while 

vegetation indices were not useful (adj. R² max < 0.55) (Figure 6-6). In contrast, the predictive 

power of models for WC and LAI (adj. R² max = 0.60 and 0.64 respectively) was low. More 

specifically, figure 7 shows the best relationships obtained between rapeseed LAI, DB, WB 

and WC and S-2 features. The more WB, DB and WC increased, the more the SWIR 

reflectance decreased. The results of estimating WC were poor, no relation being found 

between WC and SWIR-band 11 from 200 to 300      . When LAI was high (2.5-3), MTCI 

saturated at the inflorescence (BBCH = 53), flowering (BBCH = 67) and development of fruit 

(BBCH =71) stages.  

 

These results are consistent with other studies that have demonstrated the high 

performance of the SWIR bands for mapping vegetation (Schultz et al. 2015; Immitzer et al. 

2016) and estimating the nitrogen concentration in biomass, height and vegetation fraction of 

wheat and rapeseed (Ganeva et al. 2019). Wang et al. (2008) also demonstrated that WC 

increases with the decreasing of SWIR reflectances, with a saturation from LAI of 3. Besides, 

we showed that MTCI saturated when the LAI was high, which confirms observations of 

Mercier et al. (2020) over rapeseed fields in northern France. 
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Figure 6-6. Adjusted R² and rRMSE (red dots) of empirical relationships between S-2 features and 

crop biophysical parameters (LAI, DB, WB and WC) of rapeseed fields. The highest adjusted R² 

values are highlighted in green.   
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Figure 6-7 .Best relationships obtained between rapeseed LAI, DB, WB and WC and S-2 

features. 

6.4.2. Estimating crop biophysical parameters using S-1 images 

Concerning estimation of wheat crop biophysical parameters using S-1 features, the 

          ratio was the most strongly correlated feature with LAI (adj. R² max = 0.91) 

(Figure 6-8). More specifically, figure 9 shows the best relationships obtained between wheat 

crop biophysical parameters and S-1 features. The LAI increased with the           ratio 

and saturated when LAI was high (2.5-3). Previous studies demonstrated the suitability of 

polarization ratios for estimating LAI of wheat (Dente et al. 2008; Jin et al. 2015). Veloso et al. 

(2017) concluded that the influence of the ground was similarly reduced for wheat using 

          compared to      and     .  

         performed best for estimating WB (adj. R² = 0.66) (Figure 6-8). More 

specifically, there was a linear and negative relation between WB and          (Figure 6-9). 

The tillering (BBCH = 18) and ripening (BBCH = 89) stages had low WB values, while the 

stem elongation (BBCH = 31) and inflorescence (BBCH = 55) stages had higher WB values, 

Because tillering and ripening stages have a more fragmented and less vertical structure than 

the other two stages; they cause more disorder in the signal. The SE is influenced more by 

complex geometry during growth stages (Betbeder et al. 2016a).  

         performed best for estimating WC (adj. R² max = 0.78) (Figure 6-8). There was 

a sigmoidal and positive relation between WC and         , (Figure 6-9), because the 

increase of the WC of the wheat crop induced lower wave penetration into the soil (Betbeder 

et al. 2016b). This is consistent with observations of Betbeder et al. (2016b) who showed a 
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decrease of          during the first phenological stages of wheat, an increase from the 

beginning of the leaf development stage and a saturation at the end of this stage.

 

Figure 6-8. Adjusted R² and rRMSE (red dots) of empirical relationships between S-1 features 

and crop biophysical parameters (LAI, DB, WB and WC) of wheat fields. The highest 

adjusted R² values are highlighted in green.  

 

Figure 6-9. Best relationships obtained between wheat LAI, DB, WB and WC and S-1 

features. 
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Correlations between DB and S-1 features did not exceed an adj. R² of 0.55 (Figure 6-8). 

However, Kumar et al. (2018) found an R² of 0.68 between S-1 VV-polarization and the DB of 

wheat in northern India based on 112 samples; thus, either our results underestimated the 

performance of S-1 data, or the weak relationship was due to external conditions related to 

the study area, such as the moisture content in the top few cm of the soil, the roughness of 

the soil surface, or the absorption and scattering characteristics of the vegetation canopy.  

 

For rapeseed, the           ratio and          performed best for estimating DB and 

WB (Figure 6-10) and increased as the rapeseed crop biophysical parameters increased 

(Figure 6-11). Rapeseed has a complex structure, with stems that develop without a preferred 

orientation, which results in an increase in the volume-scattering mechanism (VH) (Betbeder 

et al. 2016a), while the VV polarization is particularly sensitive to the WC of vegetation 

(Cookmartin et al. 2000). However, Veloso et al. (2017) concluded that           compared 

to      and      was generally more consistent for rapeseed. Betbeder et al. (2016b) found 

that the volume scattering (=       decreased due to a strong decline of the WC of the top 

vegetation layer inducing higher wave penetration into the soil and thus a decrease of the 

volume scattering. The adj. R² of the VV and VH polarization was higher for wheat than for 

rapeseed biomass (Figures 6-8 and 10), as Ahmadian et al. (2019) found with TerraSAR-X 

and Betbeder et al. (2016b) with RADARSAT-2. 

 

The results of estimating LAI and WC of rapeseed were poor with a maximum adj. R² of 

0.60 and 0.35, respectively (Figure 6-10). More specifically, no relation was found between 

LAI and      at leaf development (BBCH = 18), inflorescence (BBCH = 53) and development 

of fruit (BBCH = 71) stages (Figure 6-11). The WC values in the “RAPE15” field were similar 

for all field samples (Figure 6-11) reducing the variance of the dataset. Thus, the model 

showed a low predictive power.  

 

Figure 6-10. Adjusted R² and rRMSE (red dots) of empirical relationships between S-1 

features and crop biophysical parameters (LAI, DB, WB and WC) of rapeseed fields. The 

highest adjusted R² values are highlighted in green. 
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Figure 6-11. Best relationships obtained between rapeseed LAI, DB, WB and WC and S-1 features. 

6.4.3. Relative contributions of S-1 and S-2 images for estimating crop biophysical 

parameters 

The GPR results obtained with S-2 features were similar or better to those obtained with 

S-1 features to estimate crop biophysical parameters of wheat and rapeseed crops (Table 6-7). 

For example, the goodness of fit using S-1 features was similar to the one obtained using S-2 

for wheat LAI (adj. R² = 0.91) and rapeseed WC (adj. R² = 0.60). We can note that the results 

for estimating rapeseed DB and WB using S-1 features were good, with a maximum adj. R² of 

0.80 and 0.75, respectively. While C-band polarizations have shown good results for 

estimating crop biophysical parameters (Betbeder et al. 2016b; Mandal et al. 2018b; 

Vreugdenhil et al. 2018; Kumar et al. 2018; Song and Wang 2019; Nasrallah et al. 2019), this 

study highlighted the importance of the VH:VV ratio and the polarization of SE for 

estimating wheat LAI and WC (adj. R² > 0.75) and rapeseed WB and WC (Figure 6-8 and 10 

and Table 6-7). These results are very promising since a continuous time-series of optical 

images is difficult – if not impossible – to acquire due to the cloud-free dependence of optical 

acquisitions. 
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Table 6-7. Adjusted coefficient of determination (Adj. R2) and rRMSE of the best 

relationships between the crop biophysical parameters of wheat and rapeseed and S-1 and S-

2 features. CP, crop parameters. The bold characters highlight the best results obtained for 

the crop biophysical parameters. 

 S-2 S-1 

CP Feature Mean Adj. R² Mean rRMSE Feature Mean Adj. R² Mean rRMSE 

Wheat       

LAI Band 8 0.91 0.124 VH:VV 0.91 0.122 

DB WDVI 0.72 0.138          0.55 0.229 

WB MTCI 0.71 0.142          0.66 0.163 

WC Band 3 0.82 0.148          0.78 0.157 

Rape       

LAI MTCI 0.68 0.122 VV 0.36 0.167 

DB Band 11 0.85 0.094 VH:VV 0.80 0.095 

WB Band 11 0.77 0.100 VH:VV 0.75 0.105 

WC Band 11 0.60 0.126 VH 0.60 0.114 

 

The small number of field surveys was a limiting factor when testing statistical models, 

most of studies using at least thirty field samples to perform GPR for monitoring crop 

biophysical parameters (Verrelst et al. 2012; Upreti et al. 2019; Ganeva et al. 2019; Pipia et al. 

2019). The lower the sample size, the lower the power of the statistical test, that is the 

probability of rejecting the null hypothesis when it is false (the absence of statistical 

relationship in this study). Small sample size can lead to over-fitting, although cross-

validation can address this issue. In this study, we used a cross-validation procedure to 

avoid over-fitting and reduce the bias in the classification performance estimate. We applied 

a repeated cross-validation since Chen et al. (2012). and Rodriguez et al. (2010). have shown 

that this method stabilizes the prediction error estimation, and thus reduces the variance of 

the K-fold cross-validation estimator, especially for small samples. Some resampling 

methods such as leave-one-out or bootstrap are also well suited to small sample sizes. 

However, the leave-one-out method is an unbiased estimator but suffers from a high 

variance (Devroye et al. 2013), while the bootstrap method has a smaller variance and a 

shorter confidence interval but suffers from a bias problem (Jain et al. 1987). Other methods 

could be tested with a larger set of samples (e.g. random forest algorithm), given the good 

performance they demonstrated for estimating wheat and rapeseed crop biophysical 

parameters using optical and SAR data. Wang et al. (2016b) estimated the DB of wheat using 

vegetation indices derived from HJ-CCD and had better results using RF compared to 

support vector regression and an artificial neural network. Kumar et al. (2018) also 

demonstrated that RF provided better results than support vector regression, linear 

regression, and artificial neural network regression for estimating the crop parameters of 

wheat (LAI, WC WB, DB and plant height) using S-1 VV polarization. Ahmadian et al. (2019) 

estimated the DB and WB of wheat, barley and rapeseed using a combination of 

polarizations derived from TerraSAR-X. They concluded that the RF approach provided 

better results than a stepwise regression approach and the approach they used (i.e. the 

“Water Cloud Model”). 

 

Future studies could focus on comparing the use of C- and L-bands for wheat and 

rapeseed, since the L-band signal has a longer wavelength and thus penetrates vegetation 

more deeply than the C-band (Woodhouse 2017). Inoue et al. (2002) showed that the C-band 
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was more effective for estimating the LAI of rice, while the L-band was better for estimating 

fresh biomass. Hosseini and McNairn (2017) demonstrated that the C-band outperformed the 

L-band in estimating biomass and soil moisture of wheat. However, they indicated that it 

was difficult to compare the two frequencies directly due to variance in the temporal 

sequence of data collection and the acquisition of the C-band by satellite and of the L-band 

by airborne remote sensing.  

6.5. Conclusion 

This study demonstrated the potential of SAR S-1 and optical S-2 time series to estimate 

crop biophysical parameters (LAI, WB, DB and WC) of wheat and rapeseed. The results 

show that best S-2 based models were achieved using the green band, NIR bands and 

vegetation indices for the wheat WC, LAI and biomass respectively, and the SWIR bands for 

rapeseed biomass. Concerning S-1 based models, the           ratio was the most relevant 

feature for wheat LAI and rapeseed biomass, and the SE polarization contribution best 

performed for wheat WC. Results obtained using S-2 features were similar or higher to those 

obtained using of S-1 features for estimating crop biophysical parameters of wheat and 

rapeseed crops. For wheat, the highest correlations using S-1 features were the           

polarization ratio with LAI (adj. R² = 0.91) and the SE polarization contribution with WC (adj. 

R² = 0.78), while best S-2 based models were achieved using the green band for WC (adj. R² = 

0.82), NIR-band 8 for LAI (adj. R² = 0.91), WDVI for DB (adj. R² = 0.72) and MTCI for WB (adj. 

R² = 0.71). For rapeseed, the highest correlations were the           ratio and the SE 

polarization contribution with WB and DB (adj. R² > 0.75), while the SWIR bands of S-2 

appeared promising for estimating DB (adj. R² = 0.85) and WB (adj. R² = 0.77). The results also 

highlighted, for the first time, the importance of polarimetric indicators (SE and span) 

derived from S-1 time series for estimating biophysical crop biophysical parameters of wheat 

and rapeseed. 
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Introduction 

The last and fourth part of this manuscript is devoted to the analysis of the relationships 

between maps of landscape metrics derived from Sentinel images and species surveys. We 

propose to use the WDVI derived from S-2 images to evaluate landscape biophysical 

heterogeneity, i.e. the spatial diversity of the phenological stages in the crop mosaic in 

Brittany, Picardy and Wallonia study areas. 

 

In chapter 7, we analyze the influence of biophysical heterogeneity on wheat phenology 

and associated biodiversity First; we analyzed the relationships between crop mosaic, 

landscape grain and biophysical heterogeneity. Then, we studied the effect of biophysical 

heterogeneity on wheat phenology. Finally, the distribution of two carabid beetle species 

was estimated using the biophysical heterogeneity metric. 
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7.1. Introduction 

In crop-dominated landscapes, spatial and temporal heterogeneities are key elements for 

biodiversity (Baudry et al. 2003). The more diverse the land use types and the more complex 

their configuration, the higher the spatial heterogeneity is (Fahrig et al. 2011). Furthermore, 

temporal heterogeneities result from the crop rotation, crop phenology and farming practices 

(Vasseur et al. 2013). These heterogeneities influence the movement and distribution of 

species across the landscape (Baudry et al. 2003; Fahrig et al. 2011; Vasseur et al. 2013). Many 

studies describe the influence of the landscape on protecting crops against pests (With et al. 

2002; Gagic et al. 2011; Gurr et al. 2018; Chaplin-Kramer et al. 2019). They show the 

importance of wooded elements (woods, hedgerows) as refuge for predators. Before these 

studies in landscape ecology, the role of wooded elements as windbreaks to protect crops 

had been demonstrated in many regions (Kawatani and Meroney 1970; Kort 1988). Their 

effects have been studied mainly at the field scale (Cleugh 2002; Kanzler et al. 2019; Kučera et 

al. 2020). Results of these studies indicate that microclimatic heterogeneity is a major factor 

that influences crop development (Cleugh 2002; Kanzler et al. 2019; Kučera et al. 2020). The 

diverse plant cover (crops and non-crops) produces heterogeneity in surface temperatures 

that causes energy fluxes (Ryszkowski and Kędziora 1987). Heterogeneity in crop phenology 

results in differences in albedo and evapotranspiration between crops, which generates 

lateral fluxes. For example, when a tractor lifts dust, some of the dust floats away, but some 

of it returns to fields surrounded by hedgerows, which may be warmer (Figure 7-1). Few 

scientific literature focuses on this type of heterogeneity caused by energy fluxes 

(Ryszkowski and Kędziora 1987). The direct relationship between the landscape mosaic and 

crop phenology at the field scale has not been investigated. This hinders understanding of 

crop dynamics and associated biodiversity. The heterogeneity of phenological stages of 

crop/vegetation cover induces differences in solar energy capture and evaporation at the 

field scale (Ryszkowski and Kędziora 1987). Since thermodynamics states that this kind of 

heterogeneity generates heat fluxes, we hypothesized that the overall landscape mosaic has 

an effect on the dynamics of crop phenology and associated biodiversity. Veste et al. (2020) 

quantified effects of a tree hedgerow planted in a vineyard on wind speed and 

evapotranspiration, which decreased by up to 20% to about five times the hedgerow height. 

These effects can improve growing conditions of crops in the local climate and increase the 

soil water content. Crop phenology also influences energy fluxes. Wind speed is related in 

part to the surface roughness of the field (Kawatani and Meroney 1970), which differs 

between maturity and senescence. As the wheat grows, its canopy attenuates the net 

radiation, which influences the soil heat flux (Choudhury et al. 1987) or albedo (Clothier et 

al. 1986). Evaporative processes dominate in vegetative-stage vegetation, while radiative 

processes dominate in senescent vegetation (Jacob et al. 2002).  

 

Remote sensing images are commonly used in landscape ecology (Crowley and Cardille 

2020). Optical and radar images from unmanned aerial vehicles (UAVs) and airborne and 

spaceborne systems have been used to study the structure, change and function of the 

landscape (Crowley and Cardille 2020). Satellite images and field samples are used to classify 

land-cover types (e.g. forest, hedgerow, grassland, wetland) to analyze landscape structure. 

Remote sensing images collected on different dates are used to detect changes in landscape 

structure over space and time. Landscape function can be assessed by combining 
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information from remote sensing data (e.g. topography derived from radar data, vegetation 

indices derived from optical data) and from landscape ecology datasets (e.g. spatial 

distribution of species, meteorological measurements). Energy flux models commonly 

incorporate remote sensing data (Schmugge et al. 1998; Olioso et al. 1999; Bindlish et al. 2001; 

Bastiaanssen et al. 2005). Soil-vegetation-atmosphere transfer models (SVAT) simulate 

energy and mass transfers between soil, vegetation and the atmosphere based on radiative, 

turbulent, heat and water transfers. Remote sensing data provide input data to SVAT models 

such as canopy structure, surface temperature and surface soil moisture (Olioso et al. 1999). 

For example, thermal images provide a picture of surface temperature heterogeneity 

(Zellweger et al, 2019). Bastiaanssen et al. (2005) developed the surface energy balance 

algorithm for land (SEBAL), which estimates wind speed and air temperature based on the 

spatial variability in convective fluxes. They demonstrated that remote sensing is a direct 

method to estimate evapotranspiration without prior knowledge about soil, crop and 

management conditions. Schmugge et al. (1998) predicted surface heat fluxes in an arid 

watershed in Arizona, USA, using surface temperatures derived from an airborne thermal 

infrared sensor and land cover from a Landsat Thematic Mapper image. Bindlish et al. (2001) 

used soil moisture derived from a passive microwave sensor (ASTER) to estimate heat 

fluxes. These measures are complex and time consuming. In the present study, we used a 

landscape heterogeneity metric as a proxy of energy fluxes and its relationships with crop 

phenology and biodiversity. 

Satellite images can be used to identify landscape heterogeneities. Mercier et al. (2020b, 

a) showed that features of radar Sentinel-1 and optical Sentinel-2 satellite images can 

accurately predict phenological stages and crop biophysical parameters of wheat. For 

example, the most accurate Sentinel-2 based models used the green band, near-infrared 

(NIR) bands and vegetation indices to determine wheat’s water content, leaf area index and 

biomass, respectively (Mercier et al. 2020b). In the present study, we explored the potential 

of remote sensing to derive spatio-temporal ecological metrics that may be related to energy 

flows. We used the weighted difference vegetation index (WDVI) derived from Sentinel-2 

satellite images as an index of wheat plant growth due to its demonstrated ability to monitor 

phenological stages and crop biophysical parameters of wheat (Mercier et al. 2020b, a). 

 

We analyzed the ecological function of biophysical heterogeneity using carabid beetle 

samples. Ground beetles (Coleoptera, Carabidae) are relevant indicators of environmental 

quality or change (Pearson and Hawksworth 1994). The objectives of this article are to (i) 

evaluate optical remote sensing data to measure the biophysical heterogeneity generated by 

landscape mosaic heterogeneity at the field scale, and (ii) assess the influence of the 

biophysical heterogeneity on the distribution of carabid beetles at the landscape scale. 
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Figure 7-1. Evidence of dust fluxes moving in different directions in an agricultural 

landscape (Source: Air Papillon) 

7.2. Study area 

We analyzed three study sites in France (Brittany and Picardy) and three in Belgium 

(Wallonia) (Figure 7-2). These six landscapes are distributed along gradients of landscape 

grain and spatial heterogeneity (Appendix F, G and C and 

https://woodnetweb.wordpress.com). The landscape grain is related to the spatial 

organization of hedgerows and woods (Le Féon et al. 2013). Landscape grain chaHacterizes 

structures from fine to coarse grain. This metric, which incorporates hedgerow density and 

mesh shape (elongated meshes interact more with surrounding hedgerows than compact, 

square, ones) is useful to measure the effect of the hedgerow network on the surrounding 

landscape. In this study, landscape grain varies from fine grain, (i.e. closed landscapes), to 

coarse, (i.e. open landscape with few hedgerows and little interface with fields). The value of 

landscape grain ranges from 0 (fine grain) to 1 (coarse grain) (see section 3.1.3). 

 

The study site in Brittany, located to the south of the Bay of Mont Saint Michel, France, 

covers 130 km² (Figure 7-2). It is a Long-Term Ecological Research (LTER) site called “Zone 

Atelier Armorique” that is part of the European LTER and international ILTER networks 

(https://osur.univ-rennes1.fr/za-armorique/). Its climate is temperate, with a mean annual 

temperature of 12°C and mean annual precipitation of 650 mm (Source: Meteo France 

weather station of Trans-la-Forêt). The study site is dominated by maize, wheat, grassland 

and barley. Its landscape grain is the finest of the six study landscapes (Appendix F), and the 

density of its hedgerow network increases from north to south (Appendix G). 

 

The two study sites in Picardy (West and East) are two 5 km × 5 km areas (Figure 7-2). 

Their climate is oceanic, with a mean annual temperature of 10°C and mean annual 

precipitation of 702 mm (Source: Meteo France weather station of  Saint Quentin). The West 

site is the most open of the six study landscapes, with intensively cultivated wheat and sugar 

beet. The East site is located in a “bocage” landscape (fields enclosed by a network of 

hedgerows) (Forman and Baudry 1984). dominated mainly by grassland, with some maize 

and wheat fields. Both landscapes contain fragments of managed forests used mainly for 

hunting and timber production (Jamoneau 2010). 

https://woodnetweb.wordpress.com/
https://osur.univ-rennes1.fr/za-armorique/
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The three study sites in Belgium (Northeast, Northwest and South) are located in 

western Wallonia (Figure 7-2). Their climate is temperate, with a mean annual temperature 

of 9.4-10.5°C and mean annual precipitation of 822-912 mm (http://en.climate-data.org). The 

Northeast site is an open (i.e. coarse-grain) landscape dominated mainly by wheat, but also 

has a high proportion of beet, potato and maize. Grassland is the main land cover of the 

Northwest site, followed by wheat, maize, potato, barley and beet. This landscape has an 

intermediate grain (landscape grain metric = 0.3 - 0.6). The South site is dominated by wheat, 

beet, barley, grassland and, to a lesser extent, potato and rapeseed, depending on the year. 

These crops vary in their distance to hedgerows depending on the coarseness of the 

landscape grain. 

 

Figure 7-2. Location of study sites in France and Belgium © EuroGeographics for the 

administrative boundaries  

http://en.climate-data.org/
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7.3. Materials and methods 

 

The WDVI (Clevers, 1988) derived from Sentinel-2 images was used as an indicator of 

wheat phenology named Diff WDVI and metric of biophysical heterogeneity (WDVI SD) 

(detailed in section 3.1.2, Figure 7-3). First, we computed the crop mosaic heterogeneity 

reflecting the diversity of crops and their spatial distribution (detailed in section 3.1.1) and 

landscape grain (detailed in section 3.1.3, Figure 7-3). Then, we analyzed the relationships 

between landscape grain, crop mosaic heterogeneity and biophysical heterogeneity (WDVI 

SD) (detailed in section 3.3.1, Figure 7-3). Second, we studied the effects of biophysical 

heterogeneity (WDVI SD) on wheat phenology (detailed in section 3.3.2, Figure 7-3). Last, we 

used WDVI SD to estimate the distribution of carabid beetles (detailed in section 3.3.3, Figure 

7-3). 
 

 

Figure 7-3. Flowchart describing the relationships hypothesized among carabid beetles, crop 

phenology and the crop mosaic. 

7.3.1. Maps and landscape heterogeneities 

We analyzed heterogeneity in 1) the crop mosaic, 2) its phenological stages and 3) the 

associated hedgerow network. This required three types of maps, which had a 2 km buffer 

around each study site to avoid edge effects when calculating the metrics. The metrics (crop 

mosaic heterogeneity, landscape grain and biophysical heterogeneity) were calculated using 

the “Chloé - métriques paysagères” software, developed by INRAE (Boussard and Baudry 

2017), which is a mapping analysis tool based on landscape ecology concepts. For all of the 

analyses, we calculated all metrics in circular windows of five different radii (255, 505, 1005, 

1505 and 2005 m). Circular windows used for computing the metrics were defined along a 

gradient of spatial scales from field scale (255m radius) to landscape scale (2005m radius). 

7.3.1.1. Land-cover/ maps  

The crop mosaic was the first type of heterogeneity. We used the agricultural Land 

Parcel Information System (LPIS), a European Union (EU) system to monitor agriculture  

(Inan et al. 2010), to determine the land cover of the study sites in 2017 and 2018 . In it, 

polygons that correspond to fields are mapped at 1:15 000 scale, and farmers declare the 

main land cover types per polygon each year. The French LPIS, called the “Registre 

Parcellaire Graphique”, is produced annually by the National Institute of Geographic and 

Forestry Information (https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-

https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/
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rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/). The 

Walloon LPIS, called the “Parcelle agricole anonyme”, is produced by the Public Service of 

Wallonia (http://geoportail.wallonie.be/catalogue/44b10a46-4025-4020-a943-

e8ffd5ccbd21.html). 

 

We used two national land-cover maps to supplement the non-agricultural areas of 

these maps. For France, we used the OSO Land Cover product developed by the Land Cover 

Scientific Expertise Centre of the French Theia Land Data and Services Centre (http://osr-

cesbio.ups-tlse.fr/~oso/). The land-cover maps were produced using a fully automated 

method for processing Sentinel-2 and Landsat-8 time series and contained 17 classes at 20 m 

spatial resolution and 23 classes at 10 m for 2017 and 2018, respectively (Inglada et al. 2017). 

For Wallonia, we used a 2 m land-cover map with 10 land cover classes (Radoux et al. 2019) . 

 

For hedgerow networks at the French study sites, maps of woods and hedgerows were 

produced by the French company KERMAP (https://kermap.com/). Hedgerows were 

extracted automatically with a 0.20 m spatial resolution from aerial photographs from 2013 

in Picardy and 2015 in Brittany and were corrected manually. For Wallonia, we extracted 

woods and hedgerows from a 2 m land-cover map developed in the Lifewatch-WB project, 

funded by the Fédération Wallonie-Bruxelles (Radoux et al. 2019). This map is composed of 

ecotopes, i.e. small ecologically homogeneous landscape units, which resulted in 10 land 

cover classes. This map is based on a majority classification system computed from analysis 

of aerial, LiDAR and Sentinel-2 images. To optimize the calculation time, we scaled the 

hedgerow maps to 10 m spatial resolution. We grouped land-use classes to compare Belgium 

and France and merged maps of hedgerows, crop types and land cover at 10 m spatial 

resolution. The final land-use maps had 30 land-use classes for France and 45 for Wallonia 

(Appendix H). There are differences in the number of classes in the final output maps 

because the crop type classes in Wallonia were more detailed than those in France. 

The classes of Wallonia with a high level of detail (i.e. cereals, cereals and vegetables 

and greenhouse vegetables) occupy little area and do not influence the crop mosaic 

heterogeneity since this metric is derived from the main crop types in terms of area. 
 

To measure the crop mosaic heterogeneity, we used the number of pairs of adjacent 

pixels of land-use classes of the main crop types: wheat, grassland, maize, rapeseed, beet, 

barley and potato. We performed correspondence factor analysis (CFA) of the interface 

metrics (number of pairs (i, j), with i and j as the land-use classes) using the “FactoMineR” v. 

2.3 package (Lê et al. 2008) of R software v. 3.6.3 (TEAM, R. Core et al. 2018). CFA is a 

multivariate technique that detects associations and oppositions among data and measures 

their contribution to the total inertia for each factor (Teil 1975). We used factor 1 of the CFA 

as a measure of crop mosaic heterogeneity. 

7.3.1.2. Heterogeneity in phenological stages in the crop mosaic  

We downloaded Sentinel-2 images from the EU’s Copernicus website 

(https://scihub.copernicus.eu) in level 2A, which provides top-of-canopy reflectance, for 

dates as close as possible to the sampling dates of the carabid beetles (Table 7-1). The WDVI, 

which is related to the chlorophyll content of the canopy, is a two-dimensional greenness 

index derived from bands 4 (red) and 8 (NIR) of Sentinel-2 images (Bouman et al. 1992). 

http://osr-cesbio.ups-tlse.fr/~oso/
http://osr-cesbio.ups-tlse.fr/~oso/
https://scihub.copernicus.eu/
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Mercier et al. (2020b) found a positive correlation between WDVI and leaf area index or 

water content of wheat (Appendix I). They also observed that biomass is high at ripening, 

while WDVI is low when wheat turns brown. Consequently, WDVI increases from tillering 

to flowering (Appendix I). Wheat, the target crop, was present in each landscape. The other 

crops were diverse: maize, beets, grassland and rapeseed. They have different phenologies, 

cover the soil differently and mature at different dates. Therefore, their chlorophyll activity 

generates the heterogeneity in WDVI across the landscapes. We used the standard deviation 

(SD) of the WDVI as a proxy of the heterogeneity in crop development. We developed this 

method following articles showing the potential of WDVI for wheat monitoring (Mercier et 

al 2020a, b). The two landscape metrics were the 1) hedgerow network grain and 2) SD of the 

WDVI in the given buffer. The objective was to detect effects of both metrics. WDVI indices 

were calculated using the Sentinel-2 NIR and red bands at 10 m spatial resolution as follows 

(Clevers 1988): 

 

WDVI = NIR - 1.5 × RED      (1) 

 

We calculated the SD from all pixels with vegetated landscape elements except for 

hedgerows and woods. WDVI SDs were calculated around the carabid beetle sampling 

points in circular windows of five different radii (255, 505, 1005, 1505 and 2005 m) (Figure 7-

4). Changes in the WDVI (Diff WDVI) of wheat fields were calculated around the carabid 

beetle sampling points using a buffer of 15 m radius. We measured the median WDVI from 

Sentinel-2 images at 3 dates delimiting two periods: (1) wheat’s stem-extension period, from 

date 1 to 2 and (2) ripening period, from dates 2 to 3. The phenological stages of wheat were 

based on the field surveys of the Brittany and Picardy study sites used by Mercier et al. 

(2020b, a). Diff WDVI was calculated as follows: 

 

                                  (2) 

 

where t corresponds to an acquisition date of Sentinel-2 images. 

The WDVI SD in windows around the carabid beetle sampling point was calculated at 

each scale as follows: 

 

               
 

 
                       (3) 

 

where n is the number of pixels in the circular window around the carabid beetle 

sampling point. 

  



Chapter 7  -  Sentinel-2 images bring out functional biophysical heterogeneities in crop mosaics  

149 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

 

Figure 7-4. Flowchart describing the derivation of Diff WDVI and then WDVI SD from 

Sentinel-2 images during the ripening period of wheat in Brittany. 

7.3.1.3. Landscape grain 

Hedgerow density does not assess the influence of hedgerow networks on landscapes 

well since it has no spatial dimension. We previously showed that landscape grain, which 

has a spatial dimension, performs better (Le Féon et al. 2013). The landscape grain metric 

incorporates both hedgerow density and mesh shape (elongated meshes interact more with 

surrounding hedgerows than compact, square ones). We used the metric “MD”, which 

corresponds to a distance weighted by the landscape-grain distance. It equals the mean 

distance to a hedgerow, with distances truncated at 100 m because hedgerows have no 

windbreak effect beyond this distance. MD was calculated in sliding windows using the 

following equation: 

 

                  (4) 

 

   
         

   
      (5) 

 

where d is the distances to the wooded elements. 

7.3.2. Carabid beetle data 

Carabid beetles were sampled at the six sites from April-July in 2017 and 2018 in 40 and 

39 wheat fields, respectively, which yielded 157 sampling points (Table 7-1, Appendix G and 

H). Adult beetles were caught in pitfall traps filled with 200 ml of water saturated with salt 

and a few drops of soap. Two sampling stations were located in each wheat field (except in 

one field in Picardy-East in 2018): one 40 m from a hedgerow edge and one 40 m from a 

grassed strip edge. Each sampling station consisted of two pitfall traps set 1 m apart. Traps 

were left open for two weeks before they were collected from the field. The number of 

carabid beetles trapped is their activity-density, a combination of the overall density and 

their movement causing their trapping. In this study, we analyzed only two carabid beetle 

species for the sake of clarity. Since it focuses on the phenology of wheat fields, we selected 

the two most abundant species in agricultural areas: Poecilus cupreus and Pterostichus 

melanarius. Both species are common in fields, move more by walking than by flying, are 
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predators and contribute to biological control (Holland et al. 2005). P. cupreus and P. 

melanarius reproduce in spring-summer and autumn, respectively. 
 

Table 7-1. Dates of field sampling of carabid beetles and corresponding Sentinel-2 images 

Study site Field sampling Sentinel-2 images 

Brittany 

2017-04-21 

2017-05-23 

2017-06-20 

2018-04-24 

2018-05-29 

2018-06-26 

2017-04-09 

2017-05-09 

2017-06-21 

2018-04-22 

2018-05-17 

2018-06-26 

Picardy 

2017-05-02 

2017-05-30 

2017-06-27 

2018-04-23 

2018-05-29 

2018-06-26 

2017-03-27 

2017-05-26 

2017-07-05 

2018-04-21 

2018-05-06 

2018-06-30 

Wallonia-South 

2017-05-11 

2017-06-01 

2017-07-12 

2018-04-23 

2018-05-28 

2018-07-02 

2017-05-06 

2017-05-26 

2017-07-05 

2018-04-21 

2018-05-18 

2018-06-27 

Wallonia-Northwest 

2017-05-10 

2017-05-31 

2017-07-11 

2018-04-25 

2018-05-30 

2018-07-04 

2017-05-06 

2017-05-26 

2017-07-05 

2018-04-21 

2018-05-26 

2018-06-30 

Wallonia-Northeast 

2017-05-12 

2017-06-02 

2017-07-14 

2018-04-27 

2018-05-31 

2018-07-06 

2017-05-06 

2017-05-26 

2017-07-05 

2018-04-21 

2018-05-26 

2018-06-27 

 

7.3.3. Data analysis 

7.3.3.1. Relationship between crop mosaic heterogeneity and biophysical heterogeneity  

We performed linear regressions between WDVI SD and CFA factor 1 to understand the 

influence of crop mosaic heterogeneity (CFA factor 1) on  biophysical heterogeneity (WDVI 

SD). The relationships were calculated during the stem-extension and ripening periods of 

wheat, with 2017 and 2018 data pooled, using the “stats” v. 3.6.3 package of R. For each 

relationship, we calculated the adjusted R² (i.e. a modified version of R-squared useful for 

comparing models as it is adjusted for the number of predictors in the model) and the 

relative root mean square error (rRMSE) (i.e. RMSE divided by the mean of the observed 

data). 
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7.3.3.2. Relationship between biophysical heterogeneity and wheat phenology at field scale 

We used generalized additive models (GAMs), a modeling technique commonly used by 

ecologists, to understand effects of biophysical heterogeneity (WDVI SD) on wheat 

phenology (Diff WDVI) during the stem-extension and ripening periods of wheat. GAMs 

with regression splines were created using the “caret” v. 6.0 package of R (Kuhn et al. 2020). 

A GAM is a non-parametric model that is an extended version of a generalized linear model 

(Hastie and Tibshirani 1990). The smoothing operator, here a regression spline, was used to 

estimate the unknown function that described the relationship between the dependent and 

independent variables. The degree of freedom, which indicates the degree of smoothing, was 

optimized with a tuning parameter that ranged from 1-4 (with a step of 0.5) to avoid 

overfitting. The relationships between WDVI SD and Diff WDVI was investigated at the 

carabid beetle sampling points and for each landscape scale (5 in total). The Diff WDVI value 

correspond to the median value  in the analysis window (landscape scale) around the 

carabid beetle sampling point. In total, we created 20 GAMs (2 periods × 2 years × 5 

landscape scales). For each relationship, we calculated adj. R² and RMSE. 

7.3.3.3. Species response to biophysical heterogeneity 

To describe dynamics of the activity-density of P. cupreus and P. melanarius, we 

computed a CFA per year (Figure 7-5). CFAs were computed using a matrix of P. cupreus and 

P. melanarius activity-density from all samples at the end of the stem-extension (date 2) and 

ripening (date 3) periods. Then, we created GAMs between WDVI SD and CFA factor 1 

(Figure 7-5) to understand effects of biophysical heterogeneity during the stem-extension 

and ripening periods of wheat on the activity-density of carabid beetles at the end of these 

periods.  

 

Figure 7-5. Flowchart describing the carabid beetle species response to biophysical 

heterogeneity in Brittany. 
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7.4. Results 

7.4.1. Structural and functional evaluation of the crop mosaic 

In the biplot resulting from CFA of 2005 m circular windows, factor 1 explained 58.8% of 

the variance, while factor 2 explained 20.7% (Figure 7-6). Interfaces with maize were most 

common in the Brittany landscape, while interfaces with grassland were most common in 

Picardy-East. In Picardy-West, interfaces with beet and wheat dominated. The landscapes in 

Wallonia varied more, with interfaces mainly between potato, wheat, beet and barley in 

Wallonia-South; barley, wheat and beet in Wallonia-Northeast; and grassland, potato and 

rapeseed in Wallonia-Northwest. A gradient was observed for factor 1 from Picardy-East to 

Picardy-West that described extensive (dominated by permanent and multi-annual 

grassland) to intensive (dominated by annual crops) landscapes (Appendix E). Relationships 

between WDVI SD and factor 1 varied (the 2005 m scale in Figure 7-7; see Appendix G for 

the other scales). During the stem-extension period (Dates 2-1), WDVI SD decreased as the 

landscape intensified, while the opposite was observed during the ripening period (Dates 3-

2). The crop mosaic gradient expressed by factor 1 explained 37% of the variance of WDVI 

SD during stem extension (adj. R²=0.37) and 53% during ripening (adj. R²=0.53). Linear 

regressions showed strong positive relationships between landscape grain and factor 1 that 

increased as the scale increased (Appendix F); the strongest relationship (adj. R² = 0.81) was 

at the 2005 m scale (Figure 7-7).  

 

WDVI SD changed completely from the stem-extension period to the ripening period 

along the same crop mosaic gradient (Figure 7-7). During the former, landscapes dominated 

by grassland or maize were highly heterogeneous, while those dominated by wheat and 

other annual crops were homogeneous. The crop types that increase WDVI SD were maize 

and grassland (Figure 7-8). In spring, maize fields were first bare, and then maize developed 

a little until June, which explains the high WDVI SD. Grassland may have been 

heterogeneous as well (in term of biomass and photosynthesis activity). Some of it was 

grazed (low biomass), some mown for silage (yellowish), and some used to make hay (green 

and high biomass). At the other end of the crop mosaic gradient, wheat dominated. During 

the ripening period, the WDVI SD of wheat and beet, and to a lesser extent, rapeseed, barley 

and potato, increased. Thus, WDVI SD inverted between the stem-extension and ripening 

periods: it increased and then decreased in landscapes with maize and grassland, while it 

decreased and then increased in landscapes with wheat, beet, barley, potato and rapeseed. 
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Figure 7-6. Correspondence factor analysis biplot of the number of interfaces (triangles) in 

the six landscapes. Circles represent carabid beetle sampling points. The closer the symbols 

(of each type), the more similar are their profiles. The colored ellipsoids correspond to the 6 

study sites. 

   
(a) (b) (c) 

 

Figure 7-7. Best linear regressions between WDVI SD and factor 1 of the correspondence 

factor analysis (CFA) at the 2005 m scale for the six study landscapes during (a) stem 

extension (Date2_Date1) and (b) ripening (Date3_Date2) of wheat, and (c) between 

landscape grain and factor 1. Grey zone = the 95% confidence interval. 
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(a) (b) 

  
(c) (d) 

 

Figure 7-8. Relationships between WDVI SD and surface area of crop types at the 2005 m 

scale during the (a, c) stem-extension (Dates 2-1) and (b, d) ripening (Dates 3-2) periods of 

wheat in (a, b) 2017 and (c, d) 2018. Grey zone = the 95% confidence interval. 

7.4.2. Effects of biophysical heterogeneity on wheat phenology  

During the stem-extension period, the increase in WDVI is explained by the higher 

chlorophyll content of wheat (Mercier et al. 2020a) and biophysical parameters increase (e.g. 

biomass, leaf area index, water content) as WDVI increases (Mercier et al. 2020b) (Appendix 

I). Thus, the higher the WDVI, the greater is the wheat growth. Conversely, during the 

ripening period, WDVI decreases as the chlorophyll content decreases, as the wheat dries 

(Mercier et al. 2020a), while the water content and leaf area index decrease as the biomass 

continues to increase (Mercier et al. 2020b) (Appendix I).  

Based on the best results (highest adj. R2) of the GAMs between Diff WDVI and WDVI 

SD, for the stem-extension period in 2017, Diff WDVI increased as WDVI SD increased, while 

in 2018, the relationship was negative and then positive (Figure 7-9). In 2017, only the 255 m 
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scale was significant, with an adj. R² of 0.11. In 2018, all scales were significant, and the adj. 

R² ranged from 0.19 (505 m) to 0.32 (1505 m) (Table 7-2). During the ripening period, the 

relationship was negative and slightly positive in 2017 but negative in 2018 (Figure 7-9). The 

scales of analysis were significant from 1005 m upwards, and the larger the scale, the 

stronger was the correlation (Table 7-2). 

 

The landscapes exhibited different patterns, some of them significant (Figure 7-10, Table 

7-3). The landscapes with the finest grain, Brittany and Picardy-East, had positive 

relationships between Diff WDVI and WDVI SD during the stem-extension period in both 

years but negative relationships during the ripening period in 2017. Picardy-East, Wallonia-

South and Picardy-West, which have the most intensive and open landscapes, had negative 

relationships during the stem-extension period in 2018, while Picardy-West and Wallonia-

Northwest had a positive relationship during the ripening period in 2017. Conversely, in the 

open field landscape of Wallonia-Northeast, the relationship was positive during the stem-

extension period of 2017 but negative during the ripening period of 2018. 
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(a) (b) 

  
(c) (d) 

 

Figure 7-9. The best relationships (i.e. highest adj. R2) between Diff WDVI and WDVI SD for 

the six study landscapes during the (a, c) stem-extension (Date2_Date1) and (b, d) ripening 

(Date3_Date2) periods of wheat in (a, b) 2017 and (c, d) 2018. 
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Table 7-2. Adjusted R2 and root mean square error (RMSE) associated with significant 

relationships between Diff WDVI and WDVI SD. Scale refers to the length of radii of circular 

windows. 

Year 2017 2017 2018 2018 

Period 
Dates2-

1 
Dates3-2 Dates2-1 Dates3-2 

Scale 

(m) 
255 1505 2005 255 505 1005 1505 2005 1005 1505 2005 

Adj. R² 0.11 0.25 0.29 0.23 0.19 0.31 0.32 0.26 0.23 0.36 0.39 

RMSE 0.07 0.08 0.08 0.04 0.04 0.04 0.04 0.04 0.09 0.08 0.08 

 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 7-10. Significant relationships between Diff WDVI and WDVI SD per study site 

during the (a, c) stem-extension (Date2_Date1) and (b, d) ripening (Date3_2) periods in (a, b) 

2017 and (c, d) 2018. 
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Table 7-3. Adjusted R2 and root mean square error (RMSE) associated with significant 

relationships between Diff WDVI and WDVI SD during stem-extension and ripening 

periods per study site. “+” = Positive trend, “-” = Negative trend. Scale refers to the length of 

radii of circular windows. 

Year Period Study site Scale Trend Adj. R² RMSE 

2017 Stem 

extension 

Brittany 255 m + 0.30 0.03 

505 m + 0.36 0.03 

Picardy-East 255 m + 0.42 0.03 

Wallonia-Northeast 505 m + 0.39 0.02 

1005 m + 0.33 0.03 

1505 m + 0.46 0.02 

2005 m + 0.36 0.03 

2017 Ripening Picardy-East 255 m - 0.47 0.04 

Wallonia-Northwest 255 m + 0.70 0.04 

Picardy-West 505 m + 0.69 0.02 

2018 Stem 

extension 

Brittany 505 m + 0.26 0.03 

1005 m + 0.35 0.03 

1505 m + 0.63 0.02 

Wallonia-South 1005 m - 0.58 0.02 

1505 m - 0.59 0.02 

2005 m - 0.65 0.02 

Picardy-West 505 m - 0.58 0.01 

2018 Ripening Wallonia-Northeast 505 m - 0.32 0.03 

1005 m - 0.34 0.03 

 

7.4.3. Species response to biophysical heterogeneity at the landscape scale 

The dynamics of the number of the two species captured varied among the landscapes 

in 2017 and 2018 (Figure 7-11). The CFA results (Figure 7-12) highlight the characteristics of 

study sites regarding activity-density of carabid beetles per year. We analyzed the effect of 

WDVI SD during the stem-extension and ripening periods of wheat on the activity-density of 

carabid beetles at the end of these periods. Brittany and Picardy-East, the landscapes with 

the finest grain, had the most P. cupreus and fewest P. melanarius, while the opposite was 

observed in Wallonia-South, Picardy-West and Wallonia-Northeast, the most open 

landscapes. Wallonia-Northwest was intermediate, with few carabid beetles in both years, 

without either species dominating. CFA factor 1 explained 61.0% and 60.2% of the variance 

in activity-density in 2017 and 2018, respectively (Figure 7-12). It described a gradient from 

P. cupreus to P. melanarius and also from fine (Brittany) to coarse grain (Wallonia-South).  
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Figure 7-11. Dynamics of the number of carabid beetles Poecilus cupreus and Pterostichus 

melanarius captured in 2017 and 2018. 

 

  
(a) (b) 

 

Figure 7-12. Correspondence analysis biplot of the activity-density of Poecilus cupreus and 

Pterostichus melanarius in the six study landscapes at the end of the stem-extension (Date 2) 

and ripening (Date 3) period in (a) 2017 and (b) 2018. 

 

Highly significant correlations were found between factor 1 and WDVI SD at the 2005 m 

scale (Figure 7-13). The relationships were negative during the stem-extension period, with 

an adj. R² of 0.62 in 2017 and 0.24 in 2018. During the ripening period, the relationship was 

positive in 2017, with an adj. R² of 0.47, but in 2018, factor 1 increased with WDVI SD and 

then decreased (adj. R2 = 0.62). A high activity-density of P. cupreus corresponded to negative 

values of factor 1, while a high activity-density of P. melanarius corresponded to positive 

values from 1-2. As mentioned, in fine-grain landscapes, the biophysical heterogeneity 

(WDVI SD) increased during the stem-extension period and decreased during the ripening 
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period, while the opposite was observed for coarse-grain landscapes. Thus, during the stem-

extension period, biophysical heterogeneity, fine landscape grain and/or extensive crop 

mosaics were favorable to P. cupreus but unfavorable to P. melanarius. During the ripening 

period, biophysical heterogeneity, coarse landscape grain and/or intensive crop mosaics 

were favorable to P. melanarius but unfavorable to P. cupreus. 
 

  
(a) (b) 

  
(c) (d) 

 

Figure 7-13. Relationships between factor 1 of the correspondence factor analysis and WDVI 

SD at the 2005 m scale for the six study landscapes during the (a, c) stem-extension (Dates 2-

1) and (b, d) ripening (Dates 3-2) periods of wheat in (a, b) 2017 and (c, d) 2018. 
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7.5. Discussion 

7.5.1. Effects of landscape structure on biophysical heterogeneity 

The landscape grain correlated strongly with the crop mosaic gradient; indeed, land-use 

organization depends on the hedgerow density (Thenail 2002). From 1940-1990 in France, 

much of the hedgerow network was removed due to land consolidation programs to support 

agricultural intensification (Baudry and Burel 1984). Fine-grain landscapes are related mostly 

to extensive livestock and grassland systems (fodder, cattle), while coarse-grain landscapes 

are dominated more by crop rotations. For example, at the Brittany study site, the proportion 

of maize increases and grassland decreases from fine- to coarse-grain landscapes (Thenail 

and Baudry 2004). This explains why this study site often extended over larger sections of 

gradients in this study. The sampling points in Brittany extend more widely on the x-axis or 

y-axis of the established relationships compared to the other sites (Figures 7-7 and 9). The 

fragmentation of farming territories in fine-grain landscapes has simplified crop successions 

and circulating cattle lots. Conversely, large fields in coarse-grain landscapes are likely to 

have similar physical conditions; therefore, many land islets formed into a single field are 

used for cash crops. The finest-grain landscapes were found in Brittany, Picardy-West and 

Wallonia-Northwest, which contained mainly grassland and variable proportions of wheat 

and maize. The coarsest-grain landscapes were found in Wallonia-South, Wallonia-Northeast 

and Picardy-West, which contained mainly beet and wheat. The landscape grain of the six 

study sites appears along the crop mosaic gradient since it represents a gradient from 

grassland and maize to wheat and beet (Figure 7-6). The two factors, landscape grain and 

crop mosaic, are confounded, however, so their effects on wheat phenology may be either 

confounded or complementary. Either the effect of landscape grain has an effect on crop 

mosaic (or inversely), thus one of them influences wheat phenology, or their effects are 

merged (by addition for example) and affect wheat phenology together. 

7.5.2. Effects of biophysical heterogeneity on wheat phenology 

Based on the combined analysis of all sites, biophysical heterogeneity (WDVI SD) had a 

positive effect on wheat growth (Diff WDVI) during the ripening period, since Diff WDVI 

decreased as WDVI SD increased. Biophysical heterogeneity causes lateral energy flows that 

benefit wheat growth. However, analysis of individual sites showed that biophysical 

heterogeneity (WDVI SD) appears to benefit wheat growth in fine-grain landscapes but is a 

disadvantage in coarse-grain landscapes. Thus, fluxes are beneficial exchanges in fine-grain 

landscapes but are disturbances in coarse-grain landscapes. This phenomenon is likely 

explained by the nature of fluxes in each landscape. Alford et al. (2018) found that open  

landscapes are warmer than complex landscapes, which have more extreme and variable 

temperatures. Local temperatures increase because the coarse-grain landscape is exposed to 

more shortwave radiation during the daytime (Chen et al. 1999). In fine-grain landscapes, 

hedgerows function as windbreaks that reduce local wind speed and increase the relative 

humidity by condensing fresh dense air (Kort 1988). Alford et al. (2018) observed that the 

passage from winter to spring increased vegetation growth and buffered temperatures. 

Differences between landscapes decrease, but fine-grain landscapes remain colder than 

coarse-grain landscapes. Temperature differences between day and night are largest on 

sunny days, and woods intercept solar radiation, which reduces the amplitude of the 

daytime temperature (Zellweger et al. 2019). Thus, biophysical heterogeneity in coarse-grain 
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landscapes would cause temperature fluxes and extreme temperatures that reduce wheat 

growth.  

7.5.3. Importance of the landscape scale 

Relationships between the crop mosaic gradient and biophysical heterogeneity (WDVI 

SD) had higher adj. R² at larger scales. As the scale of analysis increased, the variability 

within each study site decreased, but the variability among study sites increased. Thus, if a 

relationship exists between two metrics analyzed in windows, it will be stronger at larger 

scales. 

Landscape structure influenced changes in wheat within the field. For all sites analysis, 

the scales that explained the most variance between biophysical heterogeneity (WDVI SD) 

and wheat phenology (Diff WDVI) had a radius larger than 1505 m, except for the stem-

extension period in 2017 (Table 7-2).  

For some sites, the 255 and 505 m scales showed significant relationships between 

biophysical heterogeneity (WDVI SD) and wheat phenology (Diff WDVI) during wheat 

ripening in 2017 and 2018 (Table 7-3, Figure 7-14). However, these scales were no longer 

present when all sampling points from the six study sites were considered (Table 7-2, Figure 

7-14). As the extent of the WDVI SD maps increased, WDVI SDs became more homogeneous. 

At the European scale, the diversity of local practices contributes increasingly less to the 

explanation of differences among sites as the scale increases. However, the 255 m scale was 

significant during the stem-extension period in both years, which indicates that local 

practices influence wheat growth more during this period. 

Figure 7-14. Scematic explanation of relationships between WDVI SD and Diff WDVI with 

255 and 505m radii sliding windows. 
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7.5.4. Distribution of P. melanarius and P. cupreus at the landscape scale 

 

P. melanarius and P. cupreus were found in different landscapes and locations. Thomas et 

al. (2001) observed spatial separation between these species in different fields. These two 

carabid beetle species have different ecological requirements. P. cupreus was more abundant 

in the fine-grain landscapes of Brittany and Picardy-East, while P. melanarius was more 

abundant in the coarse-grain landscapes of Picardy-West and Wallonia-South. P. cupreus 

remains near hedgerows, while P. melanarius remains further from them (Winder et al. 2001; 

Rouabah et al. 2015), although neither species crosses hedgerows (Holland et al. 2004). P. 

melanarius is adapted to temperature variations (Holland et al. 2005), and open landscapes 

have more extreme and variable temperatures than complex landscapes (Alford et al. 2018). 

Thus, this biological feature of P. melanarius makes it suitable for coarse-grain landscapes. 

Some habitat preferences of P. melanarius and P. cupreus remain unclear due to opposite 

results. For example, Thomas et al. (2001) found P. cupreus in fields, while Rouabah et al. 

(2015) found them near hedgerows. Hassan et al. (2013) found lower abundance of P. cupreus 

in fine-grain landscapes, which is opposite to our results. These contrasting results may be 

due to other factors that influence carabid beetle distribution, such as crop types, hedgerow 

age, soil moisture, prey density, competitive exclusion, mutual predation and the 

management system (Winder et al. 2001; Holland et al. 2004; Rouabah et al. 2015). 
 

7.5.5. Using remote sensing to characterize landscapes 

Free remote sensing images, such as Sentinel data, can address data collection 

limitations and the financial cost of images. Crowley and Cardille (2020) reviewed landscape 

ecology research from the past five years and identified future contributions of remote 

sensing to landscape ecology. Based on this review, innovations in our study are the use of 

intra-annual monitoring to analyze landscapes, comparison of different landscapes and use 

of continuous values (WDVI) rather than discrete classes. Sentinel-2 time series provide the 

opportunity to monitor landscape dynamics regularly at the field scale. Using a variety of 

study sites generated a continuous landscape gradient, which allowed us to identify patterns 

that developed along gradients, while each landscape maintained its own identity. This is in 

contrast with many studies pooling data from different landscapes without making them 

distinct in the analysis (e.g. Alignier et al. 2020). In our study, patterns emerged due to the 

diversity of landscapes. It is difficult to map the crop mosaic accurately and consistently 

using satellite images of different study areas or over a large scale. The accuracy of a map 

can be measured using quality estimators (e.g. kappa statistic, overall accuracy, F-score). 

Nevertheless, assessing accuracy depends greatly on the validation data, and uncertainty is 

unavoidable due to classification errors that occur at different stages of map production 

(Friedl et al. 2001; Congalton et al. 2014). Continuous values such as WDVI overcome this 

problem because WDVI uses two variables (red and NIR bands) that were measured 

consistently in all images. Crowley and Cardille (2020) recommended shifting from 

categorical indices to continuous values for habitat assessments to better evaluate impacts of 

landscape change on biodiversity and quantify error in landscape ecology models. Several 

authors (e.g. McGarigal et al. 2009; Lausch et al. 2015) recommend shifting the representation 

of landscapes from a mosaic to a gradient. Moreover, continuous values are the most suitable 

for capturing gradients in a landscape. Optical remote sensing reflects the phenological 
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dynamics of crops (Diff WDVI) independent of neighboring crops. Mercier et al. (2020b) 

found that variables (backscattering coefficients and polarimetric indicators) derived from 

the radar sensor Sentinel-1 were suitable for monitoring phenological stages and crop 

biophysical parameters of wheat. The microwave domain (radar) captures the geometry of 

wheat, while the optical domain is sensitive to the chlorophyll content. Moreover, the 

roughness of wheat, related to its geometry, influences wind speed directly (Kawatani and 

Meroney 1970). Therefore, it would be interesting to compare the results of Sentinel-1 and 

Sentinel-2 to study biophysical heterogeneity. No fluxes were measured or modeled in this 

study, so further research is needed to confirm the ability of WDVI SD to represent the 

physical energy of landscapes. However, this study provides a framework for sampling 

fluxes in landscapes. WDVI SD could be used at relevant scales as an indicator for targeted 

areas. Previous studies developed methods to produce microclimate maps that incorporate 

remote sensing data, such as those from LiDAR, (George et al. 2015), unmanned aerial 

vehicles (Maes et al. 2017) and the MODIS satellite (Metz et al. 2014; Fick and Hijmans 2017). 

Future studies could analyze correlations between WDVI SD and microclimate maps or field 

sampling. 

7.5.6. Using remote sensing to understand biodiversity 

We showed that the distributions of P. melanarius and P. cupreus were related to 

biophysical heterogeneity (WDVI SD). However, biophysical heterogeneity (WDVI SD) 

correlated strongly with the crop mosaic gradient and landscape grain. Therefore, we could 

not quantify the effect of each variable on P. melanarius and P. cupreus; however, the 

landscape effect (landscape grain and crop mosaic gradient) can be assessed using WDVI SD. 

Remote sensing enables carabid beetle distribution to be studied without the need for a land-

use or hedgerow map. In this study, we use continuous values independent of any 

classification system. In addition, it is consistent across crop types and locations, which makes 

it possible to address ecological issues using free images that are available for any area on 

Earth (Sentinel data available at https://scihub.copernicus.eu). Conversely, for fixed variables 

such as crop mosaics, WDVI SD varies over time. The relationship between WDVI SD and 

CFA factor 1 explains a state (i.e. the distribution of two carabid beetle species) but not its 

dynamics. Since WDVI SD is a spatio-temporal index, future studies could use it to focus on 

the dynamics of species. 

7.5.7.  Synthesis of the discussion 

The strong correlation between landscape grain and crop mosaic gradient is explained 

by the dependence of land-use organization to hedgerow density. As a result, the effects of 

landscape grain and crop mosaic on wheat phenology may be either confounded or 

complementary. 

The analysis per site showed that biophysical heterogeneity (WDVI SD) appears to 

benefit wheat growth (Diff WDVI) in fine-grain landscapes but is a disadvantage in coarse-

grain landscapes. Thus, while fluxes are beneficial exchanges in fine-grain landscapes 

(higher relative humidity, lower amplitude of the daytime temperature), they are 

disturbances in coarse-grain landscapes (more extreme and variable temperature). 

The combined analysis of all sites shows that the relationships between biophysical 

heterogeneity (WDVI SD) and wheat phenology (Diff WDVI) were significant at local scale 

https://scihub.copernicus.eu/
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(255m and 505m) during the stem extension period but not during the ripening period. Thus, 

local agricultural practices influence wheat growth more during the stem-extension period. 

We showed that the distributions of P. melanarius and P. cupreus were related to 

biophysical heterogeneity (WDVI SD). Remote sensing images enable carabid beetle 

distribution to be studied without the need for a land- cover or hedgerow map. Only optical 

bands are required to compute WDVI SD. They are continuous values independent of any 

classification system, they vary over time and overcome the problem of map accuracy 

assessment. 

No fluxes were measured or modeled in this study, so further research is needed to 

confirm the ability of WDVI SD to represent landscape energy . Future studies could analyze 

correlations between WDVI SD and microclimate maps or field sampling. 

P. cupreus and P. melanarius species have different ecological requirements. Our results 

showed that P. cupreus was more abundant in fine-grain landscapes while P. melanarius was 

more abundant in coarse-grain landscapes. This is consistent with other studies founding 

that P. cupreus is present near hedgerows, while P. melanarius moves further from them 

(Winder et al. 2001; Rouabah et al. 2015). P. melanarius is adapted to temperature variations 

(Holland et al. 2005) higher in open landscapes than in complex landscapes (Alford et al. 

2018). 

7.6. Conclusion 

This study aimed to understand the influence of biophysical heterogeneity on wheat 

phenology and biodiversity using optical satellite images. More specifically, we showed that: 

 In all cases, the larger the scale, the stronger was the correlation. 

 Landscape grain and the crop mosaic gradient were strongly correlated 

(maximum adj. R²=0.81 at the 2005 m scale). 

 WDVI SD inverted between the stem-extension and ripening periods: it 

increased and then decreased in landscapes with maize and grassland, while it 

decreased and then increased in landscapes with wheat, beet, barley, potato and 

rapeseed.  

 For the combined analysis of all sites, biophysical heterogeneity (WDVI SD) 

appeared beneficial for wheat phenology (Diff WDVI) during the ripening 

period, since Diff WDVI decreased as WDVI SD increased. 

 Analysis of each site showed that biophysical heterogeneity (WDVI SD) 

appeared to benefit wheat growth in fine-grain landscapes but disadvantage it in 

coarse-grain landscapes during the stem-extension and ripening periods. 

 Biophysical heterogeneity (WDVI SD) estimated the distribution of carabid beetle 

species accurately (max adj. R² = 0.62) at the 2005 m scale. During the stem-

extension period, biophysical heterogeneity, fine landscape grain and/or 

extensive crop mosaics were beneficial to P. cupreus but unfavorable to P. 

melanarius, while the opposite was observed during the ripening period. 

 We can consider the crop mosaic as a green infrastructure to manage landscape 

scale biodiversity. Local farming organization could design these infrastructures 

as they do to combat erosion (Joannon et al. 2004). 

Overall, the study highlighted the benefit of using optical remote sensing data to 

understand wheat dynamics and their associated biodiversity. To understand the ecological 

function of biophysical heterogeneity further, the WDVI SD developed should be compared 



Part IV  -  Functional assessment of the ecological continuities identified and characterized by 

Sentinel-1 and 2  

166 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

to energy flux measurements. It also would be interesting to evaluate the contribution of 

radar images, since the microwave domain is sensitive to plant structure.  
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The objective of the thesis was twofold : 1) comparatively evaluate the S-2 optical and S-

1 SAR time series to identify and characterize the constituent elements of ecological 

continuities using land cover and land use classifications and crop characterization in 

wooded and crop-dominated landscapes, 2) assess the influence of the spatio-temporal 

structuring these landscape mosaics on biodiversity using metrics derived from S-1 and S-2 

time series.  

 

We exposed in the first part of the thesis the challenges posed by landscape ecology and 

remote sensing applied to ecological continuities.  

The second part consisted of a comparative evaluation of the potential of variables 

derived from S-1 and S-2 data to identify and characterize the elements constituting 

ecological continuities in wooded landscapes. Land cover was identified and characterized in 

forest-agriculture mosaics in Brazil and Spain.  

In a third part, we comparatively evaluated the potential of variables derived from S-1 

and S-2 data to identify and characterize the elements constituting ecological continuities in 

crop-dominated landscapes. S-1 and S-2 sensors were also evaluated to estimate 

phenological stages and biophysical variables in wheat and rapeseed crops.  

A fourth section was dedicated to the analysis of the relationships between maps of 

landscape metrics derived from Sentinel images and species surveys. We analyzed the 

influence of biophysical heterogeneity derived from S-2 on wheat phenology and the 

distribution of two agricultural carabid beetle species in six crop-dominated landscapes.  

 

More specifically, the second part of the thesis aimed at answering the question: What 

are the most efficient Sentinel sensor and variables to identify the potential constitutive 

elements of ecological continuities in wooded landscapes?  

 

To answer this question, we evaluated the potential of S-1 data alone, S-2 data alone and 

combined S-1 and S-2 data to identify and characterize land cover types in forest-agricultural 

mosaic landscapes. The study focused on two wooded landscapes with contrasting 

vegetation gradients: a temperate mountainous landscape in the Cantabrian Range (Spain) 

and a tropical humid forest landscape in Paragominas (Brazil). Although these landscape 

mosaics differ greatly, they have similar ecological functions (biodiversity conservation and 

carbon storage). The satellite images were classified using an incremental procedure based 

on the ranks of importance of the input variables derived from S-1 and S-2 time series. The S-

2 data alone produced better results (mean kappa index=0.59-0.83) than the S-1 data alone 

(mean kappa index=0.28-0.72), while the combination of the two types of data slightly 

improved the results (mean kappa index=0.55-0.85). The method used allows defining the 

number and type of variables that optimally discriminate the land use classes according to 

the type of landscape considered. The best configuration for the Spanish and Brazilian study 

areas includes respectively 5 and 10 variables for the S-2 data and 10 and 20 variables for the 

S-1 data. The NIR and the VV and VH polarizations are the most discriminating variables for 

the S-2 and S-1 data, respectively. In addition, the method allowed the definition of key 

periods for the discrimination of land cover and land use classes according to the type of 

images used. For example, in the Cantabrian Mountains, winter and summer are key periods 

for the S-2 time series, while spring and winter are key periods for the S-1 time series. 
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The third part of the thesis aimed at answering the question: What are the most efficient 

Sentinel sensor and variables to identify and characterize the potential constitutive elements 

of ecological continuities in crop-dominated landscapes? This part focuses on crop 

characterization with the study of wheat and rapeseed, which are two of the most important 

crops in the world in terms of harvested area.  

 

We evaluated the potential of S-1 data alone, S-2 data alone and of combined S-1 and S-2 

data to identify the main and secondary phenological stages of wheat and rapeseed in 

Picardy (France). More specifically, the aim of this study was to evaluate the interest of 

polarimetric indicators derived from S-1 data and to determine the number and type of S-1 

and S-2 variables necessary to discriminate the phenological stages of wheat and rapeseed. 

We estimated the performance of spectral bands and vegetation indices derived from S-2 and 

backscatter coefficients and polarimetric indicators derived from S-1. Satellite images were 

classified using the incremental method developed in the previous study (Mercier et al. 

2019b). Results showed that the combined use of S-1 and S-2 data (mean kappa = 0.53-0.82 

and 0.74-0.92 for wheat and rapeseed, respectively) provided higher accuracy than the use of 

S-1 data alone (mean kappa = 0. 48-0.61 and 0.61-0.64 for wheat and rapeseed, respectively) 

or S-2 alone (mean kappa = 0.54-0.75 and 0.67-0.86 for wheat and rapeseed, respectively) for 

the identification of principal and secondary phenological stages. The most important 

variables were the VH:VV ratio and polarimetric indicators for S-1 and NDVI and S2REP 

indices and the biophysical variable, LAI, for S-2. Overall, this study highlighted the interest 

of polarimetric indicators and the combined use of S-1 and S-2 data to monitor the 

phenology of wheat and rapeseed. 

 

We continued our research on crop characterization by evaluating the potential of S-1 

and S-2 images to estimate the LAI, WB, DB and moisture content of wheat and rapeseed. 

We compared the predictive power of 22 S-2 optical variables (10 spectral bands and 12 

vegetation indices) and 7 S-1 SAR variables (2 backscatter coefficients, 1 ratio and 4 

polarimetric indicators) using GPR. This study, applied to the study area of Brittany, showed 

the potential of S-1 and S-2 data to estimate these 4 crop parameters for wheat and rapeseed. 

The performance of the S-2 variables is equivalent or superior to that of S-1 variables. The 

best models obtained with S-1 use the green, NIR bands and vegetation indices respectively 

for LAI (adjusted R² = 0.91), biomass (adjusted R² > 0.70) and WC (adjusted R² = 0.82) of 

wheat, and SWIR bands for DB (adjusted R² = 0.85) and WB (adjusted R² = 0.77) of rapeseed. 

For the S-1 variables, the VH:VV ratio was most relevant for wheat LAI (adjusted R² = 0.91) 

and rapeseed biomass (adjusted R² >0.75), versus SE for wheat WC (adjusted R² = 0.78). 

While confirming the interest of S-2 data, the results highlighted, in an unprecedented way, 

the importance of polarimetric indicators derived from S-1 for the estimation of biophysical 

parameters of wheat and rapeseed. 

 

Finally, the fourth and last part of the thesis aimed at answering the question: What is 

the impact of landscape structure on crop phenology and biodiversity in crop-dominated 

landscapes?  

 

Based on the results obtained in the previous part, we assessed the impact of the spatio-

temporal structuring of the crop mosaic on biodiversity. For that purpose, we analyzed the 

influence of biophysical heterogeneity on wheat phenology and associated biodiversity in 
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Brittany, Picardy and Wallonia study areas. The vegetation index named WDVI calculated 

from S-2 data was used as a metric of biophysical heterogeneity and as an indicator of wheat 

phenology. First, we analyzed the relationships between crop mosaic, landscape grain and 

biophysical heterogeneity. Then, we studied the effect of biophysical heterogeneity on wheat 

phenology. Finally, the distribution of two carabid beetle species was estimated using the 

biophysical heterogeneity metric. The results showed that landscape grain and crop mosaic 

gradient were highly correlated (maximum adjusted R² = 0.81). For the joint analysis of all 

sites, biophysical heterogeneity was beneficial for wheat phenology during the ripening 

period. The analysis by site showed that biophysical heterogeneity was beneficial for wheat 

growth in the fine grain but disadvantaged it in the open field landscapes both during stem 

extension and ripening periods. The biophysical heterogeneity metric was used to accurately 

estimate the distribution of two carabid beetle species (maximum adjusted R² = 0.62). This 

study highlighted the value of using S-2 data to understand wheat dynamics and associated 

biodiversity. 

 

In general, this thesis assessed the potential of S-2 optical and S-1 SAR time series to 

identify and characterize ecological continuities in wooded and crop-dominated landscapes. 

More specifically, we showed that although S-2 data are more suitable than S-1 data for 

discriminating land cover/land use types as well as phenological stages and biophysical 

variables of wheat and rapeseed, the combined use of S-2 and S-1 data improves the accuracy 

of the classifications, with S-1 data also showing high interest in cloudy areas. Our research 

also showed the interest of polarimetric indicators derived from S-1 data to characterize 

wheat and rapeseed crops inserted in crop-dominated landscapes. Finally, this thesis 

highlighted the interest of the biophysical heterogeneity metric derived from S-2 data that 

allowed estimating precisely the distribution of two carabid beetle species. The crop mosaic 

can be considered as a green infrastructure to manage biodiversity at the landscape scale. 

The biophysical heterogeneity metric derived from S-2 images is continuous, consistent 

across locations and crop types and able to address ecological issues using free satellite 

images available for any area on Earth. 

 

Based on these findings, we also highlight several issues that need to be addressed in 

ongoing and future work. 

 

Concerning the combination of S-1 and S-2 data to identify constituent elements of 

ecological continuities, the fusion methods used in this thesis are called low-level or pre-

classification fusions because they consist in combining optical and SAR « raw » variables. 

High-level fusions (or post-classification fusions) consist in combining information extracted 

from independent data sets. For example, in the case of land cover maps, the classes best 

identified by the S-2 data alone and S-1 data alone could be combined to form a final map. 

However, this method requires an initial analysis of the classifications derived from each 

independent data set and decision making appropriate to the study objective to obtain a 

relevant final map. Therefore, it would be interesting to comparatively evaluate fusion 

methods with different semantic levels in order to optimize the fusion of SAR and optical 

data to identify and characterize the potential elements constituting ecological continuities.  

 

Regarding the phenological stage prediction model that we developed in the second part 

of this thesis on the study area located in Picardy, we evaluated the robustness of the model 
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by applying it on the study area of Brittany. The results show that principal phenological 

stages of rapeseed have been very well predicted (kappa = 0.75, OA = 80%) while numerous 

misclassifications have been observed for secondary phenological stages. For wheat, the 

interpretation of results was more difficult due to different typologies between the training 

(Picardy) and validation samples (Brittany). However, results showed a correct prediction of 

the stem elongation stage and a coherent succession of principal and secondary phenological 

stages. These results confirmed that the method used was robust in predicting the principal 

phenological stages of rapeseed and promising for the principal and secondary phenological 

stages of wheat. These results have been valued in the SPIE Remote Sensing International 

Symposium (Mercier et al. 2019a). Besides, the use of samples collected in several study areas 

could also contribute to test the robustness of the model applied to the estimate crop 

biophysical variables (Part 2), especially since the sampling used was small. Small number of 

crops surveys for the estimation of crop biophysical variables derived from S-1 and S-2 data 

was a limiting factor when testing statistical models. Indeed, the lower the sample size, the 

lower the predictive power of the statistical test. A larger sample size would allow testing 

more powerful modeling methods such as RF or SVM. 

 

The biophysical heterogeneity (WDVI SD) measured from S-2 data is a continuous 

metric that reflects a biophysical state rather than discretized classes of crops. This 

continuous value is relevant for generalist species. Indeed, these species are not specialized 

in one type of land cover/land use or plant species, since they use several types of land 

cover/land use during their life cycle. Moreover, in crop-dominated landscapes, the 

landscape heterogeneity is generally beneficial for generalist species. Habitat suitability 

maps could be derived from the WDVI SD to highlight the connectivity or fragmentation of 

potential habitats. Finally, WDVI variations around an element beneficial for a specialist 

species could be studied to better understand the resistance of landscape elements to the 

movement of this species. Finally, the influence of hedgerow network on biophysical 

heterogeneity could be studied with the use of a very high spatial resolution satellite data 

such as SPOT-6 images. 

 

During this thesis, a study has started in close collaboration with the Spanish team of the 

WOODNET project. We used a brown bear habitat suitability model developed by the 

Spanish team and detailed in an article published by Gastón et al. (2017). Landscape metrics 

that we calculated from land cover maps derived from the combined use of S-1 and S-2 data 

were incorporated into the brown bear habitat suitability model. This study aimed to 

evaluate the value of the Spanish land cover maps produced in Mercier et al. (2019b) for the 

identification and characterization of ecological continuities for brown bears. Landscape 

metrics were derived from the most accurate land cover map, i.e., the map derived from the 

combined use of Sentinel-1 and 2 data. These landscape metrics correspond to landscape 

heterogeneity (Appendix M, Figure M-1), landscape grain (Appendix M, Figure M-2) and 

interfaces between land cover types (Appendices M, Figures M-3 and M-4). First results 

showed that the proportion of brown bear increases with fine grain and decreases with 

landscape heterogeneity. Overall, interfaces containing "bare soil" class have a negative effect 

on the proportion brown bears while interfaces including forested surfaces have a positive 

effect. Perspectives emerged from these first results and further work will be done in close 

collaboration with the Spanish team of the WOODNET project. We plan to further analyze 

the choice of input parameters of the model by removing the interface metrics including 
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misclassified land cover types (water and artificial surfaces) and create new landscape 

parameters by combining other land cover types (scrubland/bare soil) at different spatial 

scales. 

 

Finally, the database we developed in the second part of this thesis to characterize wheat 

and rapeseed will soon be available in a data paper to share the data further with the 

scientific community. 
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a b s t r a c t 

Crop monitoring is essential for ensuring food security in 

a global context of population growth and climate change. 

Satellite images are commonly used to estimate crop pa- 

rameters over large areas, and the freely available Synthetic 

Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel- 

2 (S-2) images are relevant for that purpose combining high 

temporal resolution and high spatial resolution. For this data 

article, field surveys were conducted from January to July 

2017 in France to sample wheat and rapeseed crop pa- 

rameters during the entire crops cycle. Phenological stages 

were identified in 83 wheat fields and 32 rapeseed fields 

in Brittany and Picardy regions. Moreover, Leaf Area Index 

(LAI), wet biomass, dry biomass and water content were 

sampled in three wheat fields and three rapeseed fields 

in Brittany. We assigned to each field sample 10 spectral 

bands and 12 vegetation indices from S-2 images and two 

backscattering coefficients, one backscattering ratio and four 
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polarimetric indicators from S-1 images. This dataset can be 

used for crop monitoring in other regions, as well as for 

modelling development. 

© 2021 Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

Specifications Table 

Subject Agronomy and Crop Science 

Specific subject area Applied remote sensing; crop biophysical parameters 

Type of data Table 

Spatial data 

How data were acquired Spectral values and vegetation indices derived from S-2 images; backscattering 

coefficients and polarimetric indicators derived from S-1 images; LAI derived 

from hemispherical photographs using CAN-EYE software [5] ; wet biomass, dry 

biomass and water content collected on the field. 

Data format Raw 

Analyzed 

Parameters for data collection S-1 and S-2 pixels completely included within wheat and rapeseed fields and 

associated crop parameters collected during the field surveys (phenological 

stages, LAI, wet biomass, dry biomass and water content) from January to July 

2017. 

Description of data collection Field surveys were conducted from January to July 2017 to collect wheat and 

rapeseed crop parameters in 115 fields. Phenological stages were identified in 

83 wheat fields and 32 rapeseed fields in Brittany and Picardy regions 

(France). LAI, wet biomass, dry biomass and water content were sampled in 

three wheat fields and three rapeseed fields in Brittany. As close as possible to 

the dates of field surveys, spectral values and vegetation indices were derived 

from S-2 images and backscattering coefficients and polarimetric indicators 

from S-1 images. 

Data source location Region: Brittany and Picardy 

Country: France 

Data accessibility With the article 

Related research article A. Mercier, J. Betbeder, J. Baudry, V. Le Roux, F. Spicher, J. Lacoux, D. Roger, L. 

Hubert-Moy, Evaluation of Sentinel-1 & 2 time series for predicting wheat and 

rapeseed phenological stages. ISPRS Journal of Photogrammetry and Remote 

Sensing. 163 (2020) 231-256. https://doi.org/10.1016/j.isprsjprs.2020.03.009 

Value of the Data 

• The datasets provide crop biophysical parameters (LAI, biomass and phenological stages) dur- 

ing the crop cycles of wheat and rapeseed and associated S-1 and S-2 features for crop mon- 

itoring. 

• The datasets can be used in many fields of research (Agronomy, Climatology, Ecology...) to 

analyze the relationships between crop growth and agricultural practices, climatic variables, 

landscape structure or species distribution. 

• These datasets can be used for crop monitoring in other regions, as well as for modelling 

development. 

1. Data Description 

The datasets include a vector GIS shapefile (RGF93/Lambert-93 system, ESPG 2154) containing 

55 polygons located in Picardy [ 2 , 3 ] and 60 in Brittany regions [ 3 , 4 ] (France). The 115 polygons 

correspond to 32 rapeseed fields and 83 wheat fields sampled in 2017 during one crop cycle. Five 
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Table 1 

List of acronyms and abbreviations. 

Acronyms and abbreviations Description Unit 

ID Field identifier Dimensionless 

DOY Day of year 2017 Day number 

LAI Leaf Area Index Dimensionless 

entropy_shannon_norm Normalized shannon entropy Dimensionless 

entropy_shannon_I_norm Normalized intensity of shannon entropy Dimensionless 

entropy_shannon_P_norm Normalized polarization of shannon entropy Dimensionless 

span Total scattered power Decibel (dB) 

VV Sigma VV Decibel (dB) 

VH Sigma VH Decibel (dB) 

VHVV Sigma VH:Sigma VV Decibel (dB) 

Band 2 Blue band Per ten thousand 

Band 3 Green band Per ten thousand 

Band 4 Red band Per ten thousand 

Band 5 Red-edge band Per ten thousand 

Band 6 Red-edge band Per ten thousand 

Band 7 Red-edge band Per ten thousand 

Band 8 Near-infrared band Per ten thousand 

Band 8A Near-infrared band Per ten thousand 

Band 11 Shortwave-infrared band Per ten thousand 

Band 12 Shortwave-infrared band Per ten thousand 

GNDVI Green Normalized Vegetation Index Dimensionless 

IRECI Inverted Red-Edge Chlorophyll Index Dimensionless 

MCARI Modified Chlorophyll Absorption in Reflectance Index Dimensionless 

MSAVI Modified Soil-Adjusted Vegetation Index Dimensionless 

MTCI MERIS Terrestrial Chlorophyll Index Dimensionless 

NDI Normalized Difference Index Dimensionless 

NDVI Normalized Difference Vegetation Index Dimensionless 

PSSRa Pigment Specific Simple Ratio Dimensionless 

REIP Red-Edge Inflection Point Dimensionless 

SAVI Soil-Adjusted Vegetation Index Dimensionless 

S2REP Sentinel-2 Red Edge Position Dimensionless 

WDVI Weighted Difference Vegetation Index Dimensionless 

attribute tables were assigned to each sampled field, which are crop types (wheat/rapeseed), LAI 

and biomass ( i.e ., LAI, wet biomass, dry biomass, water content), phenological stages, S-1 fea- 

tures (i.e., backscattering coefficients and polarimetric indicators) and S-2 features ( i.e ., spectral 

values and vegetation indices). The three last table columns that are labeled “DOY”, “Region”

and “ID” correspond to the acquisition dates of satellite images or crop parameters in Day Of 

Year (DOY) 2017, region of France (Brittany or Picardy) and field identifier, respectively. Table 1 

provides a full description of the acronyms and abbreviations used in this article. 

2. Experimental Design, Materials and Methods 

Concerning crop parameters, phenological stages were identified over the 115 field samples 

based on the Biologische Bundesanstalt, Bundessortenamt and Chemical industry (BBCH) scale 

[5] . These data were used in Mercier et al [ 2 , 3 ]. LAI, wet biomass, dry biomass and water con- 

tent surveys were conducted on three wheat fields and three rapeseed fields in Brittany region. 

For this purpose, 10 digital hemispherical photographs were taken at each sampled field on each 

date. These data were used in Mercier et al [4] . LAI was estimated from the hemispherical pho- 

tographs using CAN-EYE software [1] and averaged per date and field sample. Biomass measure- 

ments were performed in homogeneous areas (20 × 20 m) where five samples of wheat 50 cm 

and five rapeseed plants were collected during the field surveys. The wet biomass was directly 

weighed in situ , and the dry biomass was measured after drying the crop (oven, 65 °C, 48 h). 

Water content in the plant equals wet biomass minus dry biomass. 
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Concerning remote sensing features, S-1 and S-2 images were downloaded from the Coper- 

nicus Open Access Hub ( https://scihub.copernicus.eu/ ). Cloud-free S-2 images used correspond 

to Level-2A products providing top of canopy reflectances. Twelve vegetation indices were cal- 

culated from S-2 spectral bands ( Table 1 ). S-1 images used were acquired in Interferometric 

Wide (IW) swath mode and correspond to Single Look Complex (SLC) products. The backscat- 

tering coefficients (sigma VH and sigma VV) extraction process was performed using the S-1 

Toolbox ( http://step.esa.int/main/toolboxes/sentinel- 1- toolbox/ ). This process includes (1) radio- 

metric calibration, (2) speckle filtering using a Lee Refined 7 × 7 filter [6] , (3) geometric correc- 

tions using Shuttle Radar Topography Mission data [7] , (4) calculation of the sigma VH: sigma 

VV ratio and (5) conversion from linear to decibel values. The polarimetric indicators extraction 

process was performed using PolSARpro version 5.1.3 software [8] . This process includes (1) the 

extraction of a 2 × 2 covariance matrix, (2) a speckle filtering using a Lee Refined 7 × 7 filter, (3) 

the extraction of four polarimetric indicators (the Shannon entropy, the intensity, the degree of 

polarization and the span), (4) the normalization of the Shannon entropy, the intensity and the 

degree of polarization. Finally, all S-1 and S-2 images were projected onto the RGF93/Lambert- 

93 system (EPSG 2154) and resampled with bilinear interpolation to the resolution of 10 m. 

The median value was computed at the field scale with a negative buffer of 15 m and 10 m in 

Picardy and Brittany, respectively, to select only pixels fully contained within each field. 
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Appendix B: Correlation matrices of features derived from S-2 images 

Appendix B-1. Correlation matrix of features devived from S-2 images for wheat. 

 

Appendix B-2. Correlation matrix of features devived from S-2 images for wheat 

  



Appendices 

213 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

Appendix C: Confusion matrices of the classifications of wheat and rapeseed principal 

phenological stages. 

Appendix C-1. Confusion matrix of the principal phenological stages of wheat classification 

derived from the 4 most important features of S-1 data alone (lines) and the validation 

(columns). The classification was performed using the first pair of randomly generated 

Classification 
Code Validation Total 

 1 2 3 4 5  

Tillering 1 13    1 14 

Stem elongation 2  9 1 2  12 

Flowering 3  2 1 2 1 6 

Development of fruit 4  1 5 8 2 18 

Ripening 5     7  

Total  14 13 8 14 11  

Kappa index 0.54       

Overall Accuracy 63%       

 

Appendix C-2. Confusion matrix of the principal phenological stages of wheat classification 

derived from the 8 most important features of S-2 data alone (lines) and the validation 

(columns). The classification was performed using the first pair of randomly generated 

Classification 
Code Validation Total 

 1 2 3 4 5  

Tillering 1 13     13 

Stem elongation 2  11  1  12 

Flowering 3   6 1  7 

Development of fruit 4  2 2 12 4 20 

Ripening 5 1    7 8 

Total  14 13 8 14 11  

Kappa index 0.77       

Overall Accuracy 82%       

 

Appendix C-3. Confusion matrix of the principal phenological stages of wheat classification 

derived from the 9 most important features of combined S-1 & 2 data (lines) and the 

validation (columns). The classification was performed using the first pair of randomly 

generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Tillering 1 13    1 14 

Stem elongation 2  8  2  10 

Flowering 3   6   6 

Development of fruit 4  4 2 12 1 19 

Ripening 5 1 1   9 11 

Total  14 13 8 14 11  

Kappa index 0.75       

Overall Accuracy 80%       
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Appendix C-4. Confusion matrix of the principal phenological stages of rapeseed 

classification derived from the 4 most important features of S-1 data alone (lines) and the 

validation (columns). The classification was performed using the first pair of randomly 

generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Leaf development 1 4  2   6 

Inflorescence emergence 2  11 1  1 13 

Flowering 3 2  9   11 

Development of fruit 4    1 1 2 

Ripening 5  1  4 8 12 

Total  6 12 12 5 10  

Kappa index 0.65       

Overall Accuracy 73%       

 

Appendix C-5. Confusion matrix of the principal phenological stages of rapeseed 

classification derived from the 6 most important features of S-2 data alone (lines) and the 

validation (columns). The classification was performed using the first pair of randomly 

generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Leaf development 1 5     5 

Inflorescence emergence 2  11 1  2 13 

Flowering 3   11   11 

Development of fruit 4    4  4 

Ripening 5 1 1  1 8 11 

Total  6 12 12 5 10  

Kappa index 0.83       

Overall Accuracy 87%       

 

Appendix C-6. Confusion matrix of the principal phenological stages of rapeseed 

classification derived from the 10 most important features of combined S-1 & 2 data (lines) 

and the validation (columns). The classification was performed using the first pair of 

randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Leaf development 1 6  1   7 

Inflorescence emergence 2  12    12 

Flowering 3   11   11 

Development of fruit 4    4  4 

Ripening 5    1 10 11 

Total  6 12 12 5 10  

Kappa index 96%       

Overall Accuracy 0.94       
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Appendix D: Confusion matrices of the classifications of wheat and rapeseed secondary 

phenological stages. 
Appendix D-1. Confusion matrix of the secondary phenological stages of wheat classification 

derived from the 4 most important features of S-1 data alone (lines) and the validation 

(columns). The classification was performed using the first pair of randomly generated 

training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Beginning of tillering 1 11 2    1  14 

Middle/end of tillering 2 2 16      18 

Stem elongation 3   9  2   11 

Flowering, anthesis 4   2 1 2 2  7 

Development of fruit 5   2 6 9 2 1 20 

Middle of ripening 6     1 1  2 

End of ripening 7    1  3 1 5 

Total  13 18 13 8 14 9 2  

Kappa index 0.55         

Overall Accuracy 62%         

Appendix D-2. Confusion matrix of the secondary phenological stages of wheat classification 

derived from the 5 most important features of S-2 data alone (lines) and the validation 

(columns). The classification was performed using the first pair of randomly generated 

training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Beginning of tillering 1 11 2      13 

Middle/end of tillering 2 1 16    1  17 

Stem elongation 3   12     12 

Flowering, anthesis 4    6 1   7 

Development of fruit 5   1 2 12 4  19 

Middle of ripening 6     1 2  3 

End of ripening 7 1     2 2 5 

Total  13 18 13 8 14 9 2  

Kappa index 0.75         

Overall Accuracy 79%         

Appendix D-3. Confusion matrix of the secondary phenological stages of wheat classification 

derived from the 9 most important features of combined S-1 & 2 data (lines) and the 

validation (columns). The classification was performed using the first pair of randomly 

generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Beginning of tillering 1 12 1      13 

Middle/end of tillering 2 1 17    1  18 

Stem elongation 3   9 1 2   12 

Flowering, anthesis 4    5    5 

Development of fruit 5   3 2 12 1  18 

Middle of ripening 6   1   4  5 

End of ripening 7      3 2 5 

Total  13 18 13 8 14 9 2  

Kappa index 0.75         

Overall Accuracy 79%         
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Appendix D-4. Confusion matrix of the secondary phenological stages of rapeseed 

classification derived from the 4 most important features of S-1 data alone (lines) and the 

validation (columns). The classification was performed using the first pair of randomly 

generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Leaf development 1 3  2 1    6 

Inflorescence emergence 2  11 1     12 

Beginning/Middle of flowering 3 1   2    3 

End of flowering 4 2   6    8 

Development of fruit 5      1  1 

Beginning of ripening 6     5 6 1 12 

End of ripening 7       5 5 

Total  6 11 3 9 5 7 6  

Kappa index 0.59         

Overall Accuracy 66%         

Appendix D-5. Confusion matrix of the secondary phenological stages of rapeseed 

classification derived from the 5 most important features of S-2 data alone (lines) and the 

validation (columns). The classification was performed using the first pair of randomly 

generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Leaf development 1 2     1  7 

Inflorescence emergence 2 4 10      11 

Beginning/Middle of flowering 3   3 2     

End of flowering 4  1  7    8 

Development of fruit 5     3   3 

Beginning of ripening 6  1   2 6  9 

End of ripening 7       6 6 

Total  6 11 3 9 5 7 6  

Kappa index 0.74         

Overall Accuracy 79%         

Appendix D-6. Confusion matrix of the secondary phenological stages of rapeseed 

classification derived from the 10 most important features of combined S-1 & 2 data (lines) 

and the validation (columns). The classification was performed using the first pair of 

randomly generated training and validation samples. 

Classification 
Code Validation Total 

 1 2 3 4 5 6 7  

Leaf development 1 6       6 

Inflorescence emergence 2  11      11 

Beginning/Middle of flowering 3   2 1    3 

End of flowering 4   1 8    9 

Development of fruit 5     3   3 

Beginning of ripening 6     2 7  9 

End of ripening 7       6 6 

Total  6 11 3 9 5 7 6  

Kappa index 0.90         

Overall Accuracy 91%         



Appendices 

217 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

Appendix E: Classifications of the principal and secondary phenological stages of wheat 

and rapeseed 

Appendix E-1. Classification of the 5 principal phenological stages of wheat in the open field 

study site using combined Sentinel-1 & 2 data. 

 

 

Appendix E-2. Classification of the 5 principal phenological stages of wheat in the bocage 

study site using combined Sentinel-1 & 2 data. 
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Appendix E-3. Classification of the 7 secondary phenological stages of wheat in the open 

field study site using combined Sentinel-1 & 2 data. 

 

 
 

 

Appendix E-4. Classification of the 7 secondary phenological stages of wheat in the bocage 

study site using combined Sentinel-1 & 2 data. 
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Appendix E-5. Classification of the 5 principal phenological stages of rapeseed in the open 

field study site using combined Sentinel-1 & 2 data. 

 

 
 

Appendix E-6. Classification of the 5 principal phenological stages of rapeseed in the bocage study 

site using combined Sentinel-1 & 2 data. 
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Appendix E-7. Classification of the 7 secondary phenological stages of rapeseed in the open 

field study site using combined Sentinel-1 & 2 data. 

 

 
 

Appendix E-8. Classification of the 7 secondary phenological stages of rapeseed in the bocage study 

site using combined Sentinel-1 & 2 data. 
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Appendix F: Landscape grain of crop-dominated landscapes 505 m circular window. 

Appendix F-1. Landscape grain of study sites in 505 m circular window. 
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Appendix G: Landscape grain of crop-dominated landscapes and location of pitfall 

traps. 

Appendix G-1. Landscape grain of Brittany and location of pitfall traps. 

 

Appendix G-2. Landscape grain of Picardy-East and location of pitfall traps. 
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Appendix G-3. Landscape grain of Picardy-West and location of pitfall traps. 

 

Appendix G-4. Landscape grain of Wallonia-South and location of pitfall traps. 
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Appendix G-5. Landscape grain of Wallonia-Northwest and location of pitfall traps. 

 

Appendix G-6. Landscape grain of Wallonia-Northeast and location of pitfall traps. 
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Appendix H: Final land use maps of the six crop-dominated landscapes and location of 

pitfall traps. 

Appendix H-1. Final land use maps of the six landscapes and location of pitfall traps. 
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Appendix I: Relationships between wheat leaf area index, dry biomass, wet biomass, and 

water content and WDVI derived from S-2. 

Appendix I-1. Relationships between wheat leaf area index, dry biomass, wet biomass, and 

water content and WDVI derived from S-2. .
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Appendix J: Correspondence factor analysis biplot of the number of interfaces in the 

crop-dominated landscapes. 

Appendix J-1. Correspondence factor analysis biplot of the number of interfaces (triangles) at 

the 255 m (a),  505 m (b) 1005 m (c), 1505 m (d)  and 2005 m (e) in the six landscapes. Circles 

represent carabid beetle sampling points.The closer the symbols (of each type), the more 

similar are their profiles. 

  
(a) 

  
(b) 

  
(c) 
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(d) 

  
(e) 
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Appendix K: Linear regressions between biophysical heterogeneity (WDVI SD) and 

factor 1 of the correspondence factor analysis (CFA). 

Appendix K-1. Linear regressions between WDVI SD and factor 1 of the correspondence 

factor analysis (CFA) at the 255 m (a, b and c),  505 m (d, e and f), 1005 m (g, h and i), 1505 m 

(j, k and l)  and 2005 m (m, n and o) scales for the six study landscapes during (a, d, g, j and 

m) stem extension (Date2_Date1) and (b, e, h, k and n) ripening (Date3_Date2) of wheat, and 

(c, f, i, l and o) between landscape grain and factor 1. Grey zone = the 95% confidence 

interval. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 
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(j) 

 
(k) 

 
(l) 

 
(m) 

 
(n) 

 
(o) 
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ABSTRACT 

Crop monitoring at a fine scale is critical from an environmental perspective since it provide crucial information 

to combine increased food production and sustainable management of agricultural landscapes. The recent 

Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series offer a great 

opportunity to monitor cropland (structure, biomass and phenology) due to their high spatial and temporal 

resolutions. In this study, we assessed the potential of Sentinel data to derive Wet Biomass (WB), Dry biomass 

(DB), water content and crop Phenological Stages (PS). This study focuses on wheat and rapeseed, which 

represent two of the most important seasonal crops of the world in terms of occupied area. Satellites and ground 

data were collected over two French temperate agricultural landscapes, in northern France and Brittany. Spectral 

bands and vegetation indices were derived from the S-2 images and backscattering coefficients and polarimetric 

indicators from the S-1 images. We used linear models to estimate the Crop Parameters (CP) of wheat and 

rapeseed crops. Satellite images were then classified using a random forest incremental procedure based on the 

importance rank of the input features to discriminate PS. Results showed that S-1 features were more efficient 

than S-2 features to estimate CP of rapeseed while S-2 features were better for wheat. We demonstrated the high 

potential of S-1 & 2 to predict principal PS (kappa=0.75) while secondary PS were misclassified. For wheat, the 

succession of PS predicted was consistent, further research is required to confirm the potential of S-1 & 2. 

Keywords: Remote sensing, agriculture, optical and SAR satellite images, linear regression, random forest 

 

1. INTRODUCTION  

Crop monitoring is crucial for many agricultural and ecological applications such as crop yield estimation 
1,2

, 

prevention of diseases and pest outbreaks 
3,4

, water resources management 
5
 and fertilizer application 

6,7
.  Leaf 

area index (LAI), DB, WB, water content and PS are commonly used for these purposes. Most of these data are 

acquired using time-consuming ground surveys and therefore cannot be collected at a landscape scale 
8
. Remote 

sensing data can be used to map large spatial areas while maintaining a fine spatial resolution. The free 

availability of Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series offers a 

unique opportunity to monitor crops at a high temporal frequency (5-days) and high spatial resolution (10m).  

Many studies have focused on the use of optical data (AVHRR, SPOT, Landsat, MODIS, IRS, IKONOS, 

QuickBird, Formoat-2, Sentinel-2) to estimate crop parameters demonstrating the high performance of 

vegetation indices and biophysical variables 
9–13

. More specifically about Sentinel-2 time series, they showed 

great potential on pasture and various crops in the estimation of LAI 
14–18

, biomass 
19,20

 and phenological stages 
19,21

. However, optical data have limitations because they are sensitive to weather conditions and capture top of 

canopy information rather than vegetation structure. Radar data can be collected regardless of the weather or 

light conditions. Microwaves are sensitive to the internal structure of vegetation 
22,23

, but the signal is affected by 

soil conditions (roughness and moisture) 
24

. Polarimetric indicators derived from RADARSAT-2 and TerraSAR-

X have showed high sensitivity to biomass 
23,25,13,26

, LAI 
27,25,13,28

 and  phenological stages 
29,30

 of various crops. 

Several studies have highlighted the potential of S-1 time series to estimate crop parameters. A high potential of 

backscattering coefficients and the ratio of VH:VV polarizations was found in detecting changes in vegetation 



 

 
 

 

structure for rapeseed, maize and winter cereals 
31

. The S-1 VV polarization have showed high correlations with 

water content, wet biomass, dry biomass and LAI of wheat 
32

, while the VH and VV polarizations were relevant 

for identifying phenological stages of wheat and rice 
33,34

. Despite these encouraging results, to our knowledge, 

polarimetric indicators derived from S-1 data have not been used to study crop parameters.  

The objective of this study was to assess the potential of S-1 data alone, S-2 data alone and their joint use to 

derive WB, DB, water content and crop PS. We evaluated the performance of spectral bands and vegetation 

indices derived from S-2 time-series and backscattering coefficients and polarimetric indicators derived from S-1 

time-series. We focused on two of the most important crops in the world in terms of harvested area: wheat and 

rapeseed (Food and Agriculture Organization of the United Nations, 2017). We first assessed the potential of 

Sentinel data to estimate CP of wheat and rapeseed computing linear regressions between CP including WB, DB 

and water content and S-1 and S-2 features. Then, we classified principal and secondary PS of wheat and 

rapeseed. Principal PS are defined as long-duration developmental phases of plants, while secondary PS are short 

developmental steps within them 
35

. In a precedent study 
36

, we demonstrated the high capacity of S-2 data alone 

and the combined S-1 & 2 data to predict principal and secondary PS of wheat and rapeseed over northern 

France. Combined use of S-1 & 2 data and S-2 data alone was significantly more accurate than using S-1 data 

alone with similar performances in identifying principal and secondary PS for both crops. The           ratio 

and polarimetric indicators were important for obtaining accurate classifications for both crops. LAI, NDVI and 

S2REP were the most important features for both crop types while the MCARI was not important. In order to 

validate these results, we applied the best models developed on the northern France to the study area of Brittany. 

 

2. MATERIALS 

2.1 Study areas 

Satellites and ground data were collected over two French temperate agricultural landscapes, in northern France 

and Brittany. 

The study area of northern France consisted of two 5 × 5 km sub-sites (Fig. 1). The climate is oceanic with a 

mean annual temperature of 10°C and mean annual precipitation of 700 mm (Météo France). The western site is 

located in an open field landscape with intensive cultivation of cereals and sugar beet. The eastern site is located 

in a “bocage” landscape dominated by grasslands and is characterized by less intensive farming activities 

(mainly dairy cattle) and smaller fields that tend to be enclosed by hedgerows. Both landscapes contain managed 

forest fragments that are used mainly for hunting and production of wood 
37

. 

The study area of Brittany is a Long Term Ecological Research site named ‘Zone Atelier Armorique (130km²), 

located in the southern part of the Bay of the Mont-Saint-Michel, France (Fig. 2). The area has a temperate 

climate with an annual mean temperature of 12 °C and mean annual precipitation of 650 mm. The site contains 

ca. 7000 agricultural fields surrounded by a hedgerow network. The main annual crops are maize, wheat, 

rapeseed and barley. 

 



 

 
 

 

 

Figure 1. Location of the two sub-sites of the study area of northern France (Sources: © EuroGeographics 

for the administrative boundaries; Bing © 2019, Microsoft Corporation © 2019, and DigitalGlobe © CNES 

2019 Distribution Airbus DS for aerial photographs). 

 

Figure 2. Location of the sub-site of the study area of Brittany (Sources: © EuroGeographics for the administrative 

boundaries; Bing © 2019, Microsoft Corporation © 2019, and DigitalGlobe © CNES 2019 Distribution Airbus DS 

for aerial photographs). 

  



 

 
 

 

2.2 Satellite imagery 

A series of five and four optical S-2 and eight and five SAR S-1 images were downloaded over the northern 

France and Brittany respectively. The entire crop cycles of wheat and rapeseed were recorded downloading 

images from January to July 2017 (Fig. 3). The S-1 images were acquired in Interferometric Wide (IW) swath 

mode and delivered with VV and VH polarizations ). We used the Single Look Complex (SLC) product, which 

consists of focused SAR data that use the full C-signal bandwidth and preserve the phase information, to derive 

polarimetric indicators. The incidence angle of images ranged from 30.6-46.0° (Table 1). The spatial resolution 

ranged from 2.7-3.5 m, the azimuth spatial resolution was 22 m, and the pixel spacing was 2.3 × 14.1 m (Table 

1). According to data recorded at the Météo-France weather station in Saint Quentin (49°49′N, 3°12′E) for 

northern France and Vieux-Viel for Brittany (48°51′N, 1°55′W), the radar signal was not affected by rainfall or 

freezing on acquisition dates (Fig. 3). 

Figure 3. Days of year of satellite images, field surveys and main crop phenological stages over the study area of northern 

France for wheat and rapeseed 35. The ombrothermal diagram (Météo France) shows climatic conditions on the image 

acquisition dates. 



 

 
 

 

Table 1. Main characteristics of Sentinel-1 SLC images. 

Band C (center frequency of 5 405 GHz) 

Mode Interferometric Wide Swath 

Product type Single Look Complex 

Ground Resolution 2.3 m 

Azimuth resolution 13.9 m 

Temporal resolution 6 days 

Orbit Ascending 

Polarization Dual (VV & VH) 

Swath 250 km 

Incidence angle 30.6-46.0° 

 

The S-2 images were acquired with spatial resolutions of 10 and 20 m, and a spectral resolution of 10 bands 

(Table 2). The tiles were downloaded in level 2A, which provides Top of Canopy reflectance and a cloud and 

shadow mask (ESA, 2019b). 

Table 2. Main characteristics of Sentinel-2 MSI L2A images. 

Spatial and spectral 

resolutions 

10 × 10 m 

B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) 

20 × 20 m 

B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), B12 (2190 nm) 

 

znd  and 

Temporal resolution 5 days 

Swath 290 km 

 

2.3 Field data collection 

Ground surveys were conducted on 36 and 19 fields of wheat and rapeseed, respectively over the northern 

France study areas (Fig. 1) while 47 and 12 fields were sampled over the study area of Brittany (Fig.3). Sizes of 

wheat and rapeseed fields ranged from 0.27-31.65 ha (mean=5.69 ha) and 0.45-20.92 ha (mean=3.50 ha, 

median=1.83 ha), respectively. PS were identified on 8 and 5 dates from January to July 2017 over northern of 

France and Brittany respectively (Fig. 3) based on the Biologische Bundesanstalt, Bundessortenamt and 

CHemical industry (BBCH) scale 
35

. Five principal PS were observed for both crops in the northern of France 

(Table 3 and 4) and 4 and 5 principal PS were observed in Brittany for wheat and rapeseed, respectively (Table 5 

and 6). In addition, for the northern of France study areas, 29 and 15 secondary PS were identified for wheat 

(Table 3) and rapeseed (Table 4), respectively. The samples of secondary PS available for wheat and rapeseed 

were grouped into sub-classes to obtain a sufficient number of samples per class to train and validate the 

classifications. 

Biomass measurements were performed in 3 fields of wheat and rapeseed (Fig. 3). In homogeneous areas (20 x 

20m), 5 samples with a length of 50 cm were collected for wheat and 5 feet for rapeseed. The WB of each 

sample was directly weighed in situ, and the DB was measured after crop drying (oven, 65◦C, 48 h). The 

difference between total biomass and DB correspond to the water content in the plant. 

 

 

 

 

  



 

 
 

 

Table 3. Phenological stages of wheat considered in the study area of northern France. 

Principal stage 
Sub-

class 

2° 

stage 
Description 

Number of 

observations 

Tillering 

1 

20 No tillers 1 

21 Beginning of tillering: first tiller detectable 14 

22 2 tillers detectable 16 

23 3 tillers detectable 18 

2 

24 4 tillers detectable 22 

25 5 tillers detectable 6 

26 6 tillers detectable 8 

29 9 tillers detectable 20 

Stem elongation 3 

30 Beginning of stem elongation 4 

31 First node at least 1 cm above tillering node 25 

32 Node 2 at least 2 cm above node 1 6 

33 Node 3 at least 2 cm above node 24 

34 Node 4 at least 2 cm above node 3 9 

35 Node 5 at least 2 cm above node 4 3 

Flowering, anthesis 4 

65 Full flowering: 50% of anthers mature 3 

66 Full flowering: 60% of anthers mature 2 

67 Full flowering: 70% of anthers mature 3 

68 Full flowering: 80% of anthers mature 4 

69 End of flowering 9 

Development of 

fruit 
5 

71 Watery ripe: first grains have reached half their final size 14 

72 Early milk 2 

73 Early milk 13 

75 
Medium milk: grain content milky, grains reached final size, still 

green 
19 

77 Late milk 4 

Ripening 

6 

83 Early dough 10 

84 Early dough 5 

85 
Soft dough: grain content soft but dry. Fingernail impression not 

held 
3 

7 
87 Hard dough: grain content solid. Fingernail impression held 9 

89 Fully ripe: grain hard, difficult to divide with thumbnail 8 

 

Table 4. Phenological stages of rapeseed considered in the study area of northern France. 

Principal stage Sub-class 2° stage Description Number of observations 

Leaf development 1 

17 7 leaves unfolded 4 

18 Beginning of tillering: first tiller detectable 7 

19 2 tillers detectable 7 

Inflorescence emergence 2 
50 Flower buds present, still enclosed by leaves 10 

51 Flower buds visible from above (“green bud”) 26 

Flowering 

3 

60 First flowers open 1 

62 20% of flowers on main raceme open 1 

63 30% of flowers on main raceme open 5 

64 40% of flowers on main raceme open 5 

4 

65 Full flowering 7 

67 Flowering declining: majority of petals fallen 7 

69 End of flowering 12 

Development of fruit 5 
77 70% of pods have reached their final size 1 

79 Nearly all pods have reached final size 12 

Ripening 
6 80 Beginning of ripening 25 

7 89 Fully ripe 19 

 

Table 5. Phenological stages of wheat considered in the study area of Brittany. 

Principal stage 2° stage Description Number of observations 

Tillering 23 3 tillers detectable 47 

Stem elongation 31 First node at least 1 cm above tillering node 47 

Inflorescence 55 Middle of heading: half of inflorescence emerged 47 

Ripening 89 Fully ripe: grain hard, difficult to divide with thumbnail 47 

 

  



 

 
 

 

Table 6. Phenological stages of rapeseed considered in the study area of Brittany. 

Principal stage 2° stage Description Number of observations 

Leaf development 18 Beginning of tillering: first tiller detectable 12 

Inflorescence emergence 53 Flower buds raised above the youngest leaves 12 

Flowering 67 Flowering declining: majority of petals fallen 12 

Development of fruit 71 10% of pods have reached their final size 12 

Ripening 89 Fully ripe 12 

 

3. METHODS 

First, the SAR S-1 and optical S-2 signals were preprocessed and the median was computed at the field scale. 

Second, we used linear models to estimate the crop parameters (WB, DB, water content) of wheat and rapeseed 

crops. Finally, we classify principal and secondary PS of wheat and rapeseed using the model developed by 
39

, 

we applied the model trained with the northern of France data to the Brittany study area. 

3.1 SAR Sentinel-1 image preprocessing 

Backscattering coefficients from S-1 images were extracted using the Sentinel-1 Toolbox (ESA, 

http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). The images were first radiometrically calibrated to 

transform the digital number (DN, amplitude of the backscattering signal) of each pixel into backscattering 

coefficients (σ◦VV, σ◦VH) on a linear scale using the following equation 
40

: 

         
     

   
 (1) 

where A is the information necessary to convert SAR reflectivity into physical units provided in the Calibration 

Annotation Data Set in the image metadata. 

A refined Lee filter was then applied in a window of 7 × 7 pixels to reduce speckle noise 
41

. The images were 

geocoded using Shuttle Radar Topography Mission data to correct topographic deformations (geometric 

correction accuracy < 1 pixel). A backscattering ratio was calculated by dividing σ◦VH by σ◦VV. All images 

were then converted from linear to decibel (dB) scale using the following equation: 

                 
   (2)  

A 2 × 2 covariance matrix (  ) was first extracted from the scattering matrix S of each SLR image using 

PolSARpro version 5.1.3 software 
42

. A refined Lee filter was then applied in a window of 7 × 7 pixels to reduce 

speckle noise 
41

. Then, we calculated the SPAN, which corresponds to the total scattered power (sum of volume-

scattering, double-bounce scattering, and surface or single-bounce scattering mechanisms). Shannon Entropy 

(SE), which measures the randomness of scattering of a pixel (e.g. due to variation in backscattering power or 

polarization), was calculated from the covariance matrix (  ) using the following equation: 

                              

where     is related to the intensity and     to the degree of polarization. 

Finally,   ,     and     were normalized as        ,          and          using PolSARpro version 

5.1.3 software. 

 

3.2 Optical Sentinel-2 image preprocessing 

Twelve vegetation indices were calculated since their potential to monitor crop parameters (LAI, chlorophyll 

content and PS) using S-2 data has been demonstrated 
43,15,44,45,16

. We calculated NDVI, the Green Normalized 

Vegetation Index (GNDVI), the Red-Edge Inflation Point (REIP) index, the Inverted Red-Edge Chlorophyll 

Index (IRECI), the Sentinel-2 Red-Edge Position (S2REP) index, the Modified Chlorophyll Absorption in 

Reflectance Index (MCARI), the MERIS Terrestrial Chlorophyll Index (MTCI), the Soil-Adjusted Vegetation 

Index (SAVI), the Modified Soil-Adjusted Vegetation Index (MSAVI), the Weighted Difference Vegetation 

Index (WDVI), the Pigment Specific Simple Ratio (PSSRa) and the Normalized Difference Index (NDI).  

http://step.esa.int/main/toolboxes/sentinel-1-toolbox/


 

 
 

 

Table 7. Vegetation indices calculated from Sentinel-2 images. G = Green, R = Red, RE = Red-Edge, NIR = 

Near-infrared. 

Index Equation S-2 bands used Original author 

GNDVI (RE3 -  G) / ( RE3 + G) (B7 -  B3) / ( B7 + B3) 46 

IRECI ( RE3 -  R) / ( RE1 /  RE2) ( B7 -  B4) / ( B5 /  B6) 47 

MCARI [(RE1 - R) 0.2(RE1 - G)] * (RE1 - R) [(B5 - B4) - 0.2(B5 - B3)] * (B5 - B4) 43 

MSAVI (1 + L) * ( NIR-  R) / ( NIR + R + 0,5) (1 + L) * ( B8-  B4) / ( B8 + B4 + 0,5) 48 

 L = 1 – 2 * 0,5 * (RE3 – R) / (RE3 + R) L = 1 – 2 * 0,5 * (B7 – B4) / (B7+B4)   

      * (NIR – 0,5 * R)       * (B8 – 0,5 * B4)  

MTCI (RE2 - RE1)/(RE1 - R) (B6 - B5)/(B5 - B4) 49 

NDI (RE1 - R) / (RE1 + R) (B5 - B4) / (B5 + B4) 50 

NDVI (RE3-R)/(RE3+R) (B7-B4)/(B7+B4) 51 

PSSRa RE3/R B7/B4 52 

REIP 700 + 40 * ((R + RE3)/2 - RE1) / (RE2 - RE1) 700 + 40 * ((B4 + B7)/2 - B5) / (B6 - B5) 47 

S2REP 705 + 35 - ((((RE3 + R)/2) - RE1)/(RE2 -RE1)) 705 + 35 * ((((B7 + B4)/2) B5)/(B6 - B5)) 47 

SAVI (1 + 0,5) * (NIR- R) / (NIR + R + 0,5) (1 + 0,5) * (B8- B4) / (B8 + B4 + 0,5) 53 

WDVI (NIR – 0,5 * R) (B8 – 0,5 * B4) 54 

 

LAI, fapar and fcover, three biophysical variables that describe the state of vegetation cover and provide 

information on the density of green vegetation, were also derived from S-2 images using the PROSAIL radiative 

transfer model implemented in SNAP v6.0 software. The spectral bands, vegetation indices and the biophysical 

variables were interpolated daily using a spline method to match the dates of SAR S-1 acquisition using the stats 

package of R software. All S-1 and S-2 images were projected onto the RGF93/Lambert-93 system (EPSG 

2154).  

In total, we preprocessed 325 S-2 features (10 spectral bands, 12 vegetation indices and 3 biophysical variable × 

8 dates for northern France and 5 for Brittany) and 91 S-1 features (2 backscattering coefficients, 1 backscatter 

ratio and 4 polarimetric indicators × 8 dates for northern France and 5 for Brittany). 

3.3 Crop parameters estimation 

WB, DB, water content were transformed computing the binary logarithm (log2) to assess normal distribution. 

Then, linear regressions were established between S-1 & 2 features and the crop parameters using the following 

equation: 

 

                 

where CP is related to the crop parameter (WB, DB, water content) and RSI to the remote sensing indicator (S-1 

or S-2 features). For each relation, we computed the adjusted R² related to the fraction of variance explained by 

the model and the relative root mean square error (rRMSE) calculated by dividing the RMSE by the mean 

observed data. 

  



 

 
 

 

3.4 Phenological stages predictions 

In order to validate the results obtained on the northern France in a precedent study 
36

, we applied the best model 

developed to the study area of Brittany using a random forest classifier. Based on the results of Mercier et al 
36

, 

for the prediction of the principal and secondary PS of wheat, the number of input S-1 & 2 features were 6 

(VH:VV, LAI, SEp norm, S2REP, VV, and SE norm) and 7 (VH:VV, LAI, NDVI, S2REP, SE norm, SEi norm, 

SEp norm), respectively. For rapeseed, we selected VH, NDVI, S2REP, SE norm and span for the principal PS 

prediction and NDVI, SE norm, LAI, VH and VH:VV for the secondary PS. The kappa index and the overall 

accuracy were calculated to estimate the accuracy of the classifications of rapeseed principal PS 
55

,  while visual 

analysis was conducted for principal PS classification of wheat due to different PS available between the 

northern France and Brittany study areas. 

 

4. RESULTS AND DISCUSSION 

4.1 Crop parameters estimation 

Concerning the estimation of wheat CP using S-2 features, the correlations were highest with fcover, LAI, REIP 

and S2REP to estimate the water content (Fig. 4). The band 2 (blue) demonstrated the best performance for 

estimating DB and WB while other S-2 features demonstrated poor capacity (Fig. 4). The results of the blue 

band are to be confirmed because previous studies have showed better sensitivities of wheat biomass in the green 

or NIR spectral domains 
56,57

. The relationships between wheat CP and the blue band (Fig. 6a) was very 

influenced by 3 points with a low biomass, the distribution of points along the regression line was not 

homogeneous, thus a larger sample size would confirm the performance of the blue band. For rapeseed, the best 

results for all CP were from the bands 11 and 12 corresponding to the SWIR domain, while vegetation indices 

appeared not useful (Fig. 5). Some studies have already demonstrated the high performance of the SWIR bands 

for vegetation mapping 
58,59

 but to our knowledge, none of them have studied its interest in rapeseed mapping, 

thus further research is warranted. 

 

 

Figure 4. Adjusted R² and rRMSE of empirical relationships established between the S-2 features and the crop 

parameters on wheat fields. 



 

 
 

 

 

Figure 5. Adjusted R² and rRMSE of empirical relationships established between the S-2 features and the crop 

parameters on rapeseed fields.  
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Figure 6. Best relationships obtained between wheat (a) and rapeseed (b) DB, WB and water content and S-2 

features. 

 

Table 8. Parameter values (a and b) of the best linear relationships established between the crop parameters of wheat and 

rapeseed and S-2 features. Their corresponding statistics for determination coefficient and relative root mean square error are 

also given.  
Crop parameter RSI a b Adj. R² rRMSE 



 

 
 

 

Wheat      

DB band 2 -0.047 17.399 0.87 0.03 

WB band 2 -0.048 19.068 0.81 0.03 

Water content fcover 12.188 -1.571 0.73 0.04 

Rapeseed      

DB band 11 -0.006 14.911 0.65 0.03 

WB Band 11  -0.005 14.980 0.57 0.02 

Water content band 11 -0.004 13.776 0.55 0.02 

 

For both crop types, water content was better estimated using S-1 features than S-2 features (Fig. 7 and 8). For 

wheat, correlations between DB and S-1 features did not exceed 0.4 of adj. R² (Fig.7). This may be explained by 

the sensitivity of SAR signal to the wetness of the vegetation 
22,60

. The ratio VH:VV polarizations and the 

polarization of the Shannon entropy showed the best performances for rapeseed (Fig.8) and the lowest for wheat 

(Fig.7). The Shannon entropy decreased with wheat biomass (Fig. 9a and table 9) and the ratio VH:VV increased 

with rapeseed biomass (Fig. 9b and table 9). Compared to wheat, rapeseed have a more complex structure with a 

development of the stems without preferred orientations, this induces an increase of the disorder encountered in 

the radar signal (Shannon entropy) and the volume-scattering mechanism (VH) 
61

.  

 

 

 

Figure 7. Adjusted R² and rRMSE of empirical relationships established between the S-1 features and the crop 

parameters on wheat fields. 

 

Figure 8. Adjusted R² and rRMSE of empirical relationships established between the S-1 features and the crop 

parameters on rapeseed fields. 
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Figure 9. Best relationships obtained between wheat (a) and rapeseed (b) DB, WB and water content and S-1 

features. 

Table 9. Parameter values (a and b) of the best linear relationships established between the crop parameters of wheat and 

rapeseed and S-1 features. Their corresponding statistics for determination coefficient and relative root mean square error are 

also given.  
Crop parameter RSI a b Adj. R² rRMSE 

Wheat      

DB ES norm -4.59 5.70 0.35 0.06 

WB ES norm -6.42 8.62 0.71 0.03 

Water content ES norm -7.64 8.04 0.79 0.04 

Rapeseed      

DB VH:VV 0.56 9.27 0.81 0.02 

WB VH:VV 0.43 10.58 0.79 0.01 

Water content VH:VV 0.39 9.85 0.67 0.02 

 
4.2 Phenological stages predictions 

The figures 10 and 11 present the predictions of principal and secondary PS of wheat respectively, on the 

Brittany study area. Based on the ground surveys (Table 10), on January 24, 2017, the wheat was at the leaf 

development stage, this stage was not observed on the training data, in the northern France, thus the predictions 

of the first class “tillering” as the principal PS (Fig. 10) and “beginning of tillering” as the secondary PS (Fig. 

11) were coherent. On March 3, 2017, there was much confusion between the observed stage “stem elongation” 

and the tillering and flowering stages for both PS typologies. On April 22, 2017, the map was correct by 

predicting the stem elongation stage. The inflorescence stage was observed on May 16, 2017, however, this stage 

was not present in the training data, the prediction of principal PS result was a prediction of stem elongation and 

flowering which is consistent since these are the two adjacent stages of the observed stage. Finally, on June 21, 

2017, the classifier predicted development of fruit for principal and secondary PS while we supposed the wheat 

was at the beginning of ripening since we observed the end of ripening on July, 5 2017. 

 

  



 

 
 

 

Table 10. Ground surveys dates for wheat 

Principal stage 2° stage Date of sample 

Tillering 23 17 march 2017 

Stem elongation 31 22 april 2017 

Inflorescence 55 16 may 2017 

Ripening 89 5 july 2017 

 

 

 

 

 

Figure 10. Classification of the principal phenological stages of wheat in the Brittany study area. 

  



 

 
 

 

 

 

Figure 11. Classification of the secondary phenological stages of wheat in the Brittany study area. 

The figures 12 and13 present the predictions of principal and secondary PS of rapeseed respectively, on the 

Brittany study area. The principal PS were very well predicted with a kappa of 0.75  and an overall accuracy of 

80% (Table 12), only one confusion between fruit development and ripening occurred on May 16, 2017 (Table 

11 and 12, Fig. 12). The secondary PS were misclassified except for the ripening on June 21, 2017 (Table 11, 

Fig. 13).  

Table 11. Ground surveys dates for rapeseed 

Principal stage 2° stage Date of sample 

Leaf development 18 24 january 2017 

Inflorescence emergence 53 17 march 2017 

Flowering 67 22 april 2017 

Development of fruit 71 16 may 2017 

Ripening 89 5 july 2017 

 

Table 12. Confusion matrix of the principal phenological stages of rapeseed classification. 

Classification 
Code Validation Total 

 1 2 3 4 5  

Leaf development 1 13 1    14 

Inflorescence emergence 2  12    12 

Flowering 3   13 1  14 

Development of fruit 4    2  2 

Ripening 5    10 12 22 

Total  13 13 13 13 12  

Kappa index 0.75       

Overall Accuracy 80%       

 

 

 



 

 
 

 

 

 

Figure 12. Classification of the principal phenological stages of rapeseed in the Brittany study area. 

 

Figure 13. Classification of the secondary phenological stages of rapeseed in the Brittany study area. 

The principal PS of rapeseed have been very well predicted with training using data from the northern France 

and validation from Brittany. However, numerous misclassifications have been observed to predict the secondary 

PS because they are more sensitive to phenomena occurring at landscape and local scales. For wheat, results of 

principal and secondary PS were moderate. Due to the typology of the validation samples, it was difficult to 

confirm each predicted class but we can note a correct prediction of the stem elongation stage and a consistent 



 

 
 

 

succession of PS. These results confirmed that the method used was robust in predicting the principal PS of 

rapeseed and promising for the principal and secondary PS of wheat. 

5. CONCLUSION 

This study evaluated the potential of SAR S-1 and optical S-2 time series to estimate CP (WB, DB and water 

content), principal and secondary PS of wheat and rapeseed. For wheat CP estimation results, highest 

correlations were found using the blue band of S-2 and the Shannon entropy of S-1. Based on the distribution of 

points along the regression lines, the results obtained with S-1 features are more reliable than those obtained with 

S-2 features. For rapeseed, S-1 features showed better performance than S-2 features to estimate CP, the best 

performances were obtained using he ratio VH:VV polarizations (adj. R² > 0.79 for DB and WB). For PS 

predictions, the results confirmed that the incremental method used was robust by training the model on one site 

and validating on another. Combined used of S-1 & 2 was accurate to identify the principal PS of rapeseed while 

the results of wheat PS are promising.  
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Appendix M: Landscape metrics derived in the Spanish study area from the land cover 

classification derived from S-1 & 2 (Mercier et al. 2019b) 

Land cover classification derived from S-1 & 2 (Mercier et al. 2019b). 

 
 

Appendix M-1. Landscape heterogeneity derived using a circular slidding window of 8km 

radii and derived from the land cover classification of Mercier et al (2019b). The higher 

theindex, the higher the heterogeneity. 

 

 

Appendix M-2. Landscape grain derived using a circular slidding window of 8km radii and 

derived from the land cover classification of Mercier et al (2019b). The finer the landscape 

grain, the higher the index. 

 

 



Appendices 

253 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

Appendix M-3.Number of interfaces between bare soil and permanent vegetation classes (in 

number of pixels)  derived using a circular slidding window of 8km radii and derived from 

the land cover classification of Mercier et al (2019b). The more interfaces there are, the more 

the number of pixels increases. 

 

 

Appendix M-4. Number of interfaces between forested areas and shrublands classes (in 

number of pixels)  derived using a circular slidding window of 8km radii and derived from 

the land cover classification of Mercier et al (2019b). The more interfaces there are, the more 

the number of pixels increases. 
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La Terre est menacée d’une crise d'extinction massive, avec un taux de disparition des 

espèces de 10 à 100 fois supérieur au taux naturel d'extinction (Pimm et al. 1995). Les 

pressions anthropiques telles que l’urbanisation et l’intensification agricole mènent à une 

dégradation et une perte des habitats, et la réduction de la taille des habitats et leur isolation 

conduisent à une perte de biodiversité (Hanski 2011). Or, le déplacement des espèces au 

cours de leur vie pour se nourrir, trouver refuge et se reproduire est indispensable à leur 

pérennité (Wiens et al. 1993). En outre, le brassage génétique améliore la résistance des 

individus aux maladies et diminue les risques de malformations (Clobert et al. 2012). 

 

Les corridors écologiques permettent aux espèces de se déplacer entre les habitats, les 

habitats et les corridors formant les continuités écologiques (Bennett 2004). En plus de la 

conservation de la diversité biologique, les continuités écologiques assurent des services 

écosystémiques tels que la régulation du climat, le soutien à l’agriculture (fertilisation des 

sols, régulation des ravageurs), la production de ressources alimentaires et matérielles, ou la 

transformation des déchets et polluants (Bolund and Hunhammar 1999; Baudry et al. 2000; 

Krieger 2001) En milieu agricole, le réseau des continuités écologiques peut être constitué 

d’éléments semi-naturels et prairies permanentes, ou de parcelles cultivées entre des 

éléments semi-naturels, ou encore uniquement de parcelles cultivées (Burel et al. 2013). 

 

L’inventaire et l’évaluation fonctionnelle des continuités écologiques, qui sont mis en 

œuvre dans le cadre de programmes d’aménagement du territoire tels que celui des trames 

vertes et bleues en France, s’appuient sur des cartes (http://www.trameverteetbleue.fr/). Dans 

les paysages boisés, la menace principale pour la biodiversité et la déforestation et la 

dégradation des forêts. Les forêts primaires et les grands patches d’habitats sont considérées 

comme les éléments paysagers les plus efficaces pour la conservation de la biodiversité dans 

les paysages boisés. Cependant, les forêts secondaires et les petits patches d’habitats jouent 

un rôle important pour la persistance des espèces en augmentant potentiellement la 

connectivité du paysage (Lindenmayer et al. 2006; Vidal et al. 2016). Dans les paysages 

agricoles, la cartographie des continuités écologiques s’effectue le plus souvent en prenant en 

compte exclusivement des éléments naturels ou semi-naturels et en excluant les cultures 

(Burel et al. 2013) alors qu’elles constituent le mode d’utilisation des terres le plus répandu 

sur notre planète (FAO, 2017), et qu’elles ont un fort potentiel de biodiversité dans des 

paysages hétérogènes caractéristiques des systèmes agricoles semi-intensifs, constitués 

d’éléments semi-naturels et de cultures (Billeter et al. 2008). En effet, si les cultures sont 

régulièrement inventoriées dans le cadre de programmes de suivi de politiques agricoles, 

elles ne sont pas intégrées aux cartographies officielles des continuités écologiques qui 

privilégient les boisements et les prairies permanentes. De plus, les cartes réalisées sur les 

continuités écologiques sont figées dans le temps alors que les éléments qui les constituent 

ont des dynamiques intra et inter-annuelles spécifiques. Ceci s’explique par le fait que le 

suivi des continuités écologiques sur le terrain et l’interprétation de photographies aériennes 

constitue un coût non négligeable en termes de temps et de main d’œuvre.  

 

Dans ce contexte, les séries temporelles d’images satellite offrent une alternative pour 

cartographier et effectuer le suivi des éléments constituant les continuités écologiques dans 

les paysages agricoles et boisés sur de vastes étendues. Les images acquises par les satellites 

optiques ont déjà montré un fort potentiel pour identifier et caractériser les caractéristiques 

écologiques des éléments du paysage. Les capteurs optiques MODIS, AVHRR et Landsat ont 

http://www.trameverteetbleue.fr/
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été largement utilisés pour cartographier l’occupation et l’usage des sols (Congalton et al. 

2014; Gómez et al. 2016), la déforestation et la dégradation des forêts (Bourgoin 2019) à large 

échelle du fait de leur haute résolution temporelle et leur grande fauchée. Cependant la 

faible résolution spatiale des données acquises par ces capteurs (30m à 1,1km) ne permet pas 

d’identifier finement les éléments paysagers ou d’aller jusqu’à leur caractérisation. En 

revanche, les données à haute résolution spatiale comme les images SPOT et Formosat-2 (< 

5m) et à très haute résolution spatiales telles que images Quickbird, WorldView et IKONOS 

(<1m) ont montré un bon potentiel pour identifier des haies fines (Vannier and Hubert-Moy 

2014), estimer le rendement, l’indice de surface foliaire (ISF), la biomasse et le stade 

phénologique des cultures (Quarmby et al. 1993; Doraiswamy et al. 2004; Mulla 2013; 

Bontemps et al. 2015; Pan et al. 2015; Betbeder et al. 2016b) ou encore cartographier la 

biomasse de surface des forêts tropicales (Singh et al. 2014; Pargal et al. 2017). La résolution 

temporelle des capteurs est également un élément essentiel pour caractériser la dynamique 

temporelle des éléments paysagers. Par ailleurs, depuis les années 2000, des études ont 

montré l’intérêt des données satellitaires RSO à haute résolution spatiale pour cartographier 

les cultures et les caractériser (Steele-Dunne et al. 2017). Ainsi, les indicateurs 

polarimétriques dérivés de RADARSAT-2 ou TerraSAR-X se sont montré pertinents pour 

estimer les stades phénologiques, la hauteur et la biomasse de diverses cultures (Jiao et al. 

2009; Wiseman et al. 2014; Mascolo et al. 2015; Jin et al. 2015; Betbeder et al. 2016b; Pacheco et 

al. 2016; Canisius et al. 2018; McNairn et al. 2018; Homayouni et al. 2019). Dans les paysages 

boisés, le capteur ALOS-SAR a permis de produire une carte globale forêt/non forêt 

(Shimada et al. 2014; Zhou et al. 2018). Toutefois, la faible répétitivité de ces capteurs, leur 

nécessaire programmation ainsi que le coût des images constituent des contraintes fortes 

pour le suivi des paysages agricoles et boisés. 

 

Les données gratuites à hautes résolutions spatiale et temporelle acquises par les 

satellites RaDAR à Synthèse d’Ouverture (RSO) Sentinel-1 (S-1) depuis 2014 et optiques 

Sentinel-2 (S-2) depuis 2016 offrent de nouvelles possibilités pour la cartographie et le suivi 

des continuités écologiques. Des études récentes ont démontré le potentiel des séries 

temporelles S-2 pour cartographier l’occupation du sol dans des paysages boisés (Jönsson et 

al. 2018) et des paysages agricoles (Denize et al. 2019a). Concernant les cultures, les bandes 

spectrales, les indices de végétation et les variables biophysiques dérivés des données S-2 ont 

permis d’estimer avec une bonne précision l’ISF (Delegido et al. 2011b; Frampton et al. 2013; 

Clevers et al. 2017; Pan et al. 2018; Wang et al. 2019), la biomasse (Veloso et al. 2017; Ghosh et 

al. 2018; Ganeva et al. 2019) et les stades phénologiques (Veloso et al. 2017; Ghosh et al. 2018; 

Stendardi et al. 2019) des cultures. Cependant, l’exploitation de ces données optiques est 

limitée par la présence d’une couverture nuageuse. De plus, elles ne fournissent de 

l’information que sur la couche haute de la végétation et le signal sature avec un niveau 

élevé de biomasse et d’ISF (Wang et al. 2016a). En dépit du fait que les données S-1 sont 

sensibles aux conditions du sol (rugosité, humidité), elles constituent une alternative aux 

données S-2 car elles ne sont pas influencées par les conditions atmosphériques, et le signal 

RaDAR pénètre la canopée (Lee and Pottier 2009). Des études récentes ont montré l’intérêt 

des coefficients de rétrodiffusion et du ratio           dérivés des données S-1 pour la 

cartographie de cinq types d’occupation du sol globales (eau, forêt, urbain, sol nu et surface 

agricole) en Turquie (Abdikan et al. 2016) et la détection des forêts de conifères, des forêts de 

feuillus et des terres arables non irriguées en Allemagne (Balzter et al. 2015). Dans les 

paysages agricoles, le potentiel de ces mêmes variables S-1 a été démontré pour la détection 



Résumé étendu 

264 

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological 

continuities, from wooded to crop-dominated landscapes, 2020. 

des changements dans la structure du colza, du maïs et des céréales d’hiver (Vreugdenhil et 

al. 2018), l’identification des stades phénologiques du blé (Song and Wang 2019) et 

l’estimation de la biomasse, la teneur en eau (WC) et l’ISF du blé (Kumar et al. 2018). 

Toutefois, à notre connaissance, aucune étude n’a été menée avec des indicateurs 

polarimétriques dérivés de S-1 pour caractériser les cultures.  

 

En conséquence, l’utilisation combinée des capteurs optiques et RSO devrait permettre 

d’améliorer la cartographie des continuités écologiques. En effet, la fusion des données 

optiques et RSO améliore l’identification des occupations/usages des sols (Kussul et al. 2017; 

Zhou et al. 2017; Laurin et al. 2018; Reiche et al. 2018) et des types de cultures (Orynbaikyzy 

et al. 2019). Le domaine optique est sensible à la physiologie de la végétation, tandis que les 

micro-ondes sont influencées par la géométrie (rugosité, texture, structure interne) et 

l’humidité des surfaces. Cette complémentarité entre les domaines optique et RSO est peu 

exploitée pour caractériser les continuités écologiques. Quelques études ont utilisé à la fois 

les données optiques et RSO pour caractériser des cultures (Betbeder et al. 2016a; Veloso et 

al. 2017; El Hajj et al. 2019). Cependant, ces études utilisent l’indice de végétation, NDVI, 

dérivé des données optiques comme référence pour évaluer les données RSO. Bien que la 

réelle combinaison des données optiques et RSO améliore les résultats de classification de 

l’occupation du sol et des types de cultures, elle reste peu exploitée pour prédire les 

paramètres de cultures (Stendardi et al 2019, Jin et al 2015).  

 

Si la télédétection est couramment utilisée pour cartographier les éléments constitutifs 

des continuités écologiques, qu’il s’agissent d’éléments semi-naturels, de prairies 

permanentes ou de parcelles cultivées, elle l’est aussi en écologie du paysage, notamment 

pour étudier la structure, le changement et la fonction du paysage (Crowley and Cardille 

2020). La structure du paysage peut être analysée à partir d’indicateurs dérivés de données 

de télédétection (hétérogénéité du paysage, topographie,…). Les séries temporelles d’images 

satellite permettent d’identifier les changements intervenus dans le paysage à travers l’étude 

de l’évolution de ces indicateurs. La fonction du paysage peut être évaluée en combinant ces 

indicateurs et des informations issues de modèles d’écologie du paysage (distribution 

spatiale d’une espèce, mesures météorologiques,…).  

 

C’est dans ce contexte que s’inscrivent ces travaux de thèse dont l’objectif est double : 

Evaluer comparativement les séries temporelles optiques S-2 et RSO S-1 pour identifier et 

caractériser les éléments constitutifs des continuités écologiques à travers des classifications 

de l’occupation et de l’utilisation des sols et la caractérisation de cultures dans les paysages 

de mosaïques boisées et agricoles ; Evaluer l’impact de la structuration spatio-temporelle de 

ces mosaïques paysagères sur la biodiversité en utilisant des métriques dérivées des séries 

temporelles Sentinel.  

 

Plus précisément, les recherches ont été principalement concentrées sur quatre sites et 

deux espèces animales: les carabes en Bretagne, Picardie (France) et Wallonie (Belgique) et 

les ours bruns en Cantabrie (Espagne). D’une part, les travaux ont focalisé sur l’exploitation 

de séries temporelles S-1 et S-2 afin (1) d’effectuer un suivi intra-annuel de l’occupation et de 

l’utilisation des sols permettant d’identifier les éléments constitutifs des continuités 

écologiques et d’élaborer des métriques paysagères spatio-temporelles sur les sites d’étude et 

(2) de caractériser les cultures de blé et de colza qui sont des éléments clés de connectivité 
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dans les mosaïques agricoles étudiées. D’autre part, les travaux ont porté sur la mise en 

relation des cartes des métriques paysagères précédemment élaborées à partir des données 

Sentinel avec les relevés d’espèces afin d’évaluer l’impact de la structure des mosaïques 

paysagères sur la biodiversité.  

 

Cette thèse contribue au projet WOODNET (Connectivity patterns and processes along a 

gradient of European landscapes with woody vegetation and spatial heterogeneity), qui fait 

partie du Programme européen BIODIVERSA. Il s'agit d'un projet interdisciplinaire qui 

combine l'écologie, la géographie, l’hydrologie, l’agronomie et le droit et implique des 

chercheurs de Belgique, de France et d'Espagne. Les recherches qui sont présentées dans 

cette thèse se concentrent sur l'une des principales activités du projet WOODNET, c'est-à-

dire l'évaluation de nouvelles images satellites pour la cartographie des paysages 

(https://woodnetweb.wordpress.com/project/). 
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Nous avons tout d’abord évalué le potentiel des données S-1 seules, S-2 seules et des 

données S-1 et S-2 combinées pour identifier et caractériser l’occupation et l’utilisation du sol 

dans des paysages de mosaïques forêt-agriculture, le suivi de ces paysages étant crucial pour 

comprendre l'hétérogénéité des paysages et gérer la biodiversité. La cartographie de ces 

mosaïques à partir d'images de télédétection est un défi, car les gradients écologiques entre 

les zones forestières et agricoles rendent la caractérisation de la végétation plus difficile. 

L’étude a porté sur deux paysages aux gradients de végétation contrastés : un paysage 

montagneux tempéré dans les Monts Cantabriques (Espagne) et un paysage forestier tropical 

humide au Paragominas (Brésil). Bien que ces mosaïques paysagères diffèrent fortement, 

elles ont des fonctions écologiques similaires (conservation de la biodiversité et stockage du 

carbone).  

 

Les images satellites ont été classées en utilisant une procédure incrémentale basée sur 

les rangs d’importance des variables d’entrée dérivées des séries temporelles S-1 et S-2. 

L’algorithme sélectionne automatiquement les variables et périodes de temps pertinentes à 

utiliser pour classifier au mieux l’occupation et l’utilisation du sol dans chaque paysage. Les 

données S-2 seules ont permis de produire de meilleurs résultats (indice de kappa 

moyen=0.59-0.83) que les données S-1 seules (indice de kappa moyen=0.28-0.72), la 

combinaison des deux types de données ayant légèrement amélioré les résultats (indice de 

kappa moyen=0.55-0.85). La méthode utilisée a permis de définir le nombre et le type de 

variables qui discriminent de manière optimale les classes d'occupation des sols en fonction 

du type de paysage considéré. La meilleure configuration pour les sites d'étude espagnol et 

brésilien comprend respectivement 5 et 10 variables pour les données S-2 et 10 et 20 variables 

pour les données S-1. Le proche infrarouge et les polarisations VV et VH sont les variables 

les plus discriminantes pour les données S-2 et S-1, respectivement. De plus, la méthode a 

permis de définir les périodes clés pour la discrimination des classes d’occupation et 

d’utilisation des sols en fonction du type d'images utilisées. Par exemple, dans les Monts 

Cantabriques, l'hiver et l'été sont des périodes clés pour les séries temporelles S-2, tandis que 

le printemps et l'hiver sont des périodes clés pour les séries temporelles S-1. L’identification 

des types d’occupation du sol dans ces deux paysages boisés est une première étape 

essentielle avant la cartographie des continuités écologiques. En effet, ces dernières peuvent 

être révélées par la mise en relation des cartes d’occupation du sol produites avec des 

données d’espèces. La caractérisation des éléments paysagers en termes de structure, 

composition, dynamiques spatio-temporelles permet une compréhension plus fine des 

diversités de fonctions écologiques existantes pour les espèces.  

 

Plus précisément, ces recherches ont permis de mettre en exergue les trois points 

suivants : 

 

1- Les contributions relatives des données S-1 et S-2 à la cartographie de l’occupation des 

sols des mosaïques forêt-agriculture : 

Les classes d’occupation des sols qui composent les mosaïques forêt-agriculture sont 

réparties le long d'un gradient de paysage, avec des classes de transition telles que les 

arbustes vers la forêt ou les pâturages vers les jeunes forêts secondaires, ce qui entraîne des 

erreurs de classification. Les données S-1 seules sont les moins précises pour la cartographie 

de l’occupation des sols dans les mosaïques forêt-agriculture, avec un meilleur indice kappa 
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moyen de 0,73, contre 0,87 et 0,89 pour les données S-2 seules et les données S-1 et S-2 

combinées, respectivement.  

Par exemple, sur la zone d'étude brésilienne, les données S-2 ont permis de mieux 

distinguer les zones boisées des jeunes forêts secondaires que les données S-1. Cela peut 

s'expliquer par le fait que les capteurs RSO sont sensibles à la structure de la végétation, 

tandis que les capteurs optiques sont sensibles à la teneur en chlorophylle. Ainsi, lorsqu'elles 

ont été observées à une résolution de 10 m, les grandes classes de végétation ont été plus 

facilement discriminées par leur physiologie que par leur structure physique. De plus, les 

polarisations VV et VH sont les variables S-1 les plus importantes pour discriminer les 

classes d’occupation des sols, alors que le rapport           n’apparaît pas utile. Bien que 

l'on sache que la polarisation VH est plus sensible à la végétation que la polarisation VV 

(Patel et al. 2006), les résultats montrent que les deux polarisations contribuent peu à la 

classification des mosaïques forêt-agriculture, tout comme le ratio          . Nous 

pouvons conclure que dans ce cas, la bande C de S-1 n’est pas pertinente pour classer les 

classes de végétation. En général, le RSO en bande C est moins adapté que la bande L pour la 

surveillance des changements forestiers en raison d'une profondeur de pénétration plus 

faible et d'une saturation rapide du signal (Woodhouse 2017). Par exemple, Patel et al. (2006) 

ont démontré que la bande L est plus sensible à la densité de la végétation que la bande C, et 

que la bande C interagit principalement avec les premières branches de la canopée, tandis 

que la bande L pénètre l'intérieur de la canopée. Nous avons utilisé des produits GRD S-1 

qui enregistrent les coefficients de rétrodiffusion (VV et VH) car ils nécessitent moins de 

temps de traitement que les produits SLC, qui préservent l'information de phase. Cependant, 

l'utilisation de la texture, de la cohérence et des indices polarimétriques dérivés des données 

RaDAR polarimétriques complètes, telles que les données RADARSAT-2, pourrait améliorer 

la classification basée ici sur les seules données S-1 (Roychowdhury ; Ranson et al. 2001 ; 

Sonobe et al. 2015 ; Du et al. 2018). Ainsi, bien que Bagdhadi et al. (2016) aient conclu que 

l'utilisation d'indices polarimétriques, tels que l’entropie de Shannon (SE) et le span, dérivés 

d'images polSAR RADARSAT-2 n'améliorait pas les estimations de l'humidité du sol et des 

paramètres de la végétation, Betbeder et al. (2014) ont démontré que SE était plus utile que 

les coefficients de rétrodiffusion pour cartographier la végétation des zones humides à l'aide 

de séries chronologiques TerraSAR-X à deux polarisations.  

Le meilleur indice kappa moyen obtenu avec les données S-1 est plus élevé pour la zone 

d'étude espagnole que pour la zone d'étude brésilienne (0,73 contre 0,60, respectivement). 

Cela pourrait être dû à des différences dans les méthodes de classification (nombre différent 

de classes et de types d’occupation des sols) et au nombre d'images S-1 utilisées pour 

classifier les types d’occupation des sols (22 dates pour la zone d'étude espagnole contre 14 

dates pour la zone d'étude brésilienne). Un nombre plus important d'erreurs de classification 

ont été observées dans les zones à fort relief, ce qui est conforme à la littérature (Lee et Pottier 

2009). Pour la zone d'étude espagnole, les résultats de classification obtenus en utilisant 

uniquement les données S-1 montrent que les erreurs de classification sont le plus souvent 

localisées sur les pentes des montagnes. Ces erreurs sont dues à l'acquisition d'images RSO 

en géométrie oblique qui provoque des effets de repliement et de raccourcissement (Lee et 

Pottier 2009). De plus, on sait que l'humidité et la rugosité du sol influencent la rétrodiffusion 

RaDAR en fonction de la fréquence, de la polarisation et de l'angle d'incidence de la micro-

onde. Holah et al. (2005) ont constaté que la sensibilité à la rugosité de surface est plus 

importante en utilisant les polarisations HH et HV que la polarisation VV. Cependant, 

Baghdadi et al. (2008) ont démontré que la sensibilité du capteur à l’humidité du sol 
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dépendait peu de la polarisation. Les effets de l'humidité du sol sur la classification forêt-

agriculture sont plutôt limités en utilisant la bande C en raison d'une faible profondeur de 

pénétration des micro-ondes par rapport à la bande L (Ulaby et al. 1996), alors que la bande 

C est plus sensible à la rugosité (Mattia et al. 1997). Enfin, plus l'angle d'incidence est élevé, 

plus la sensibilité du RSO à la rugosité de surface est importante (Fung et Chen 1992).  

Cependant, les données S-1 discriminent parfois mieux que les données S-2 les sols nus 

et les surfaces artificielles car le signal RSO réagit différemment à ces deux classes 

d’occupation des sols, avec un double rebond sur les bâtiments et un simple rebond sur les 

sols nus plats (Lee et Pottier 2009), alors que leurs signatures spectrales dans le domaine 

optique sont similaires (valeurs de réflectance élevées dans les bandes verte, bleue et rouge).  

En utilisant uniquement les données S-2, les bandes SWIR sont les variables les plus 

importantes pour discriminer les classes d’occupation des sols. L'importance des bandes 

SWIR de S-2 a été démontrée pour la cartographie de la végétation et des forêts (Immitzer et 

al. 2016 ; Chrysafis et al. 2017). Les indices de végétation dérivés des données S-2 (par 

exemple SAVI, NDVI, NDWI) ont été plus pertinentes que les bandes spectrales pour la zone 

d'étude espagnole, tandis que le NDWI était l'indice de végétation le plus important pour la 

zone d'étude brésilienne. La sensibilité de la bande bleue à l'eau contenue dans la végétation 

pourrait expliquer pourquoi le NDWI est bien adapté à la végétation tropicale, alors que le 

NDVI sature à des valeurs de biomasse élevées (Huete et al. 2002 ; Jackson et al. 2004). 

L'indice EVI, qui a été développé pour MODIS, est une variable moins importante que les 

autres indices de végétation pour les deux zones d'étude. Il pourrait être intéressant de 

calculer d'autres indices de végétation qui sont utilisés pour la discrimination des cultures 

comme le S2REP, l'IRECI, le MTCI ou le SRI (Jordan 1969 ; Frampton et al. 2013).  

L’indice de kappa moyen utilisant les données combinées S-1 et S-2 (0,88) diffère peu de 

celui qui utilise les données S-2 seules (0,86). Ainsi, l'utilisation des données S-2 seules est 

suffisante pour discriminer les classes d’occupation des sols avec une grande précision. 

Cependant, l'intensité de rétrodiffusion des données S-1 seules a fourni des informations 

supplémentaires pertinentes, puisque les prédictions des classes d’occupation des sols 

utilisant les données S-1 seules, les données S-2 seules et les données S-1 et S-2 combinées 

diffèrent selon le test X² de McNemar. Par exemple, l'erreur de classification entre les terres 

cultivées et les surfaces artificielles pour la zone d'étude brésilienne, lorsqu'on utilise les 

données S-2 seules, a été partiellement corrigée en utilisant les données S-1 et S-2 combinées. 

 

2- L’utilisation des données S-1 et S-2 pour identifier les périodes clés pour la 

classification de l’occupation des sols :  

Sur la base des résultats de la classification utilisant les données S-1 seules, les données 

S-2 seules et les données S-1 et S-2 combinées, la précision de la classification est fortement 

liée au nombre de dates. La précision de la classification augmente lorsque des dates sont 

ajoutées au classificateur random forest. La pertinence d'une haute résolution temporelle 

souligne l'importance de la description et de la prise en compte de la phénologie de la 

végétation pour cartographier les mosaïques forêt-agriculture.  

Pour la zone d'étude espagnole, les variables de janvier, mars, juin et juillet figurent 

parmi les 20 variables S-2 les plus importantes. Cela peut s'expliquer par le fait que le 

capteur S-2 est sensible à la teneur en chlorophylle de la végétation, et que ces mois sont des 

périodes clés de l'activité chlorophyllienne. Les variables des mois de décembre à mai 

figurent parmi les 20 variables S-1 les plus importantes pour cette zone d'étude, alors que la 

période estivale n'est pas pertinente. Cela est probablement dû au fait que les capteurs RSO, 
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qui sont sensibles à la structure interne des éléments, pénètrent mieux dans la végétation 

pendant la période de feuillaison.  

Une seule date S-2 a été utilisée pour la zone d'étude brésilienne, ce qui a empêché 

d'étudier l'importance de la période de temps. En outre, aucune période de temps précise 

n'est ressortie des rangs d'importance de la série temporelle S-1. Ainsi, aucune période intra-

annuelle ne semble plus importante que les autres pour les séries temporelles S-1 pour 

discriminer les types d’occupation des sols à Paragominas. Contrairement à la chaîne 

cantabrique, où les saisons diffèrent, les températures et les précipitations sont relativement 

constantes au Pará, avec une saison plus sèche de juillet à octobre (https://www. 

worldweatheronline.com/para-weather/para/br.aspx). En outre, la dynamique des pratiques 

humaines dans les pâturages, les zones forestières et les plantations est interannuelle plutôt 

qu'intra-annuelle (Piketty et al. 2015). 

 

3- La robustesse de la méthode pour différents paysages :  

Les résultats montrent que la méthode peut être appliquée aux mosaïques forêt-

agriculture dans des paysages au climat (tropical, tempéré) et au type de végétation 

contrastés (par exemple, forêts tropicales, arbustes, forêts de conifères et de feuillus). Les 

variables S-1 et S-2 ont été sélectionnées en fonction de leur importance respective dans 

chaque zone d'étude, ce qui a permis de mettre en évidence les variables et les périodes 

pertinentes pour les deux zones. Les cartes de l'occupation des sols des deux zones d'étude 

ont été produites avec un degré élevé de précision et un temps de traitement court. Les séries 

temporelles sont utilisées pour cartographier l’occupation des sols des mosaïques forêt-

agriculture, mais leur traitement nécessite une grande capacité de calcul. La méthode a 

permis de se concentrer sur des périodes et des variables spécifiques afin de réduire le temps 

nécessaire au traitement des images. 

 

En conclusion, une procédure incrémentale basée sur le classement de l'importance des 

variables d'entrée dérivées des séries temporelles S-1 et S-2 a été utilisée pour distinguer les 

classes d’occupation des sols dans les mosaïques forêt-agriculture. La méthode a 

automatiquement sélectionné les variables pertinentes (bandes spectrales et/ou indices de 

végétation) et les périodes de temps pour classer les types d’occupation des sols dans ces 

paysages. Les résultats montrent que les données S-2 seules sont plus pertinentes que les 

données S-1 seules pour cartographier l’occupation des sols des mosaïques forêt-agriculture, 

et que la combinaison des données S-1 et S-2 améliore légèrement les résultats par rapport à 

ceux des données S-2 seules. L'utilisation d'indices polarimétriques, tels que l'indice SE, qui a 

déjà montré son potentiel pour la caractérisation de la végétation, peut améliorer les 

prédictions des données S-1 seules. En effet, les données RSO sont utiles dans les régions 

nuageuses : la forte couverture nuageuse dans la série temporelle S-2 a été la principale 

source d'erreurs de classification.  
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Ensuite, nous nous sommes focalisés sur la caractérisation des cultures avec l’étude du 

blé et du colza, qui sont deux des cultures les plus importantes au monde en termes de 

surface récoltée (FAO, 2017). Nous avons évalué le potentiel des données S-1 seules, des 

données S-2 seules et de la combinaison des données S-1 et S-2 pour identifier les stades 

phénologiques principaux et secondaires du blé et du colza en Picardie (France).  

 

Plus spécifiquement, cette étude avait pour but d’évaluer l’intérêt des indicateurs 

polarimétriques dérivés des données S-1 et de déterminer le nombre et le type de variables S-

1 et S-2 nécessaires pour discriminer les stades phénologiques du blé et du colza.  

 

Nous avons estimé la performance des bandes spectrales et des indices de végétations 

dérivés de S-2 et des coefficients de rétrodiffusion et indicateurs polarimétriques dérivés de 

S-1. Les images satellites ont été classées en utilisant la méthode incrémentale développée 

dans l’étude précédente (Mercier et al. 2019b). Globalement, les résultats ont montré que 

l’utilisation combinée des données S-1 et S-2 (kappa moyen = 0.53-0.82 et 0.74-0.92 pour le blé 

et le colza, respectivement) apporte une précision supérieure à l’utilisation des données S-1 

seules (kappa moyen = 0.48-0.61 et 0.61-0.64 pour le blé et le colza, respectivement) ou S-2 

seules (kappa moyen = 0.54-0.75 et 0.67-0.86 pour le blé et le colza, respectivement) pour 

l’identification des stades phénologiques principaux et secondaires. Les variables les plus 

importantes sont le ratio           et les indicateurs polarimétriques pour S-1 et les indices 

NDVI et S2REP et la variable biophysiques ISF pour S-2.  

 

Plus précisément, ces recherches ont permis de mettre en exergue les quatre points 

suivants : 

 

1- La relation entre les variables S-2 et les stades phénologiques du blé et du colza : 

Pour les deux types de cultures, les profils temporels des bandes S-2 sont conformes à 

ceux observés par Ashourloo et al. (2019). Une saturation a été observée de l'allongement de 

la tige à la floraison pour le blé et de la floraison au développement des fruits pour le colza. 

Cependant, il convient de noter que l'analyse des profils temporels a été effectuée à partir de 

5 dates seulement en raison de la forte couverture nuageuse sur la zone d'étude entre les 

jours de l’année (DoY) 72 et 152, c'est-à-dire pendant l'élongation de la tige, la montaison et 

les premiers stades de floraison pour le blé et la floraison et le développement du fruit pour 

le colza. Wilson et al. (2014) ont mentionné la saturation du signal pour le blé et le colza avec 

l'utilisation de données hyperspectrales dans une plage de 400-900 nm et ont identifié des 

bandes optimales pour l'identification des cultures dans les longueurs d'onde du vert, du 

bord rouge et du proche infrarouge. Sur la base de cette étude et de nos observations, nous 

avons sélectionné les bandes S-2 3, 5, 6, 7, 8 et 8A comme entrée pour la classification 

incrémentale. Sur les profils temporels des indices de végétation et de l'ISF dérivés de S-2, 

l'écart-type atteint son maximum à la fin de l'inflorescence pour le blé et à la fin du 

développement du fruit pour le colza. Ainsi, l'hétérogénéité de la phénologie des cultures 

entre les champs au cours des enquêtes sur le terrain atteint un pic lors de l'élongation de la 

tige pour le blé et au début du développement du fruit pour le colza. Tous les indices de 

végétation saturent lorsque l'ISF est élevé (1-2 pour le blé et 3-4 pour le colza, selon l'indice 

de végétation), ce qui confirme les observations de Haboudane et al. (2004) pour le blé. 
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Pour le blé, les indices de végétation et l'ISF commencent à augmenter lorsque la teneur 

en chlorophylle augmente au stade du tallage. Ils diminuent tous pendant la maturation, au 

fur et à mesure que les plantes sèchent.  

Pour le colza, des diminutions sont observées pendant la maturation en raison de la 

diminution de la teneur en chlorophylle au fur et à mesure que les plantes sèchent. L'ISF et le 

« Weighted Difference Vegetation Index » (WDVI) commencent à augmenter au début de 

l'inflorescence jusqu'au début de la floraison, au fur et à mesure de l'expansion de la surface 

des plantes. Le WDVI  diminue pendant le développement des feuilles au fur et à mesure 

que celles-ci se déploient. 

 

2- La relation entre les coefficients de rétrodiffusion de S-1 et les stades phénologiques 

du blé et du colza :  

Pour le blé, alors que les tendances des profils temporels de      et      sont 

similaires,      est plus élevé que      surtout pendant les premiers stades phénologiques 

(c'est-à-dire le tallage et l'élongation de la tige), puisque      est plus influencé par la 

croissance du blé que     . Cela correspond aux observations de Cookmartin et al. (2000) 

qui ont montré que      est particulièrement sensible à l'humidité de la végétation et de 

Fieuzal et al. (2013) qui ont observé une WC maximum au stade de l'élongation de la tige. 

Les deux polarisations augmentent pendant le tallage (DoY 18-72). L'augmentation du 

nombre de tiges par plante et de la longueur des tiges entraîne une augmentation de la 

polarisation VH, qui est dominée par des mécanismes de double rebond et de diffusion 

volumique (Lopez-Sanchez et al. 2013 ; Wiseman et al. 2014 ; Veloso et al. 2017) et une forte 

augmentation de la polarisation VV, qui est dominée par l'influence du sol et du couvert 

végétal. Tant      que      diminuent tout au long de l'élongation de la tige mais 

augmentent de l'inflorescence à la maturation, comme l'ont observé Fieuzal et al. (2013), en 

raison d'une augmentation de l'absorption des cultures lorsque la végétation est humide, et 

diminue lorsque la végétation s’assèche. La polarisation VV est atténuée par la 

transformation verticale de la structure du blé pendant l'élongation de la tige (Brown et al. 

2003). Le rapport       
 
   varie peu pendant les stades de tallage, ce qui ne permet pas 

d'identifier les stades phénologiques secondaires. Ce rapport est davantage corrélé à la 

biomasse fraîche qu'à l'activité photosynthétique (Veloso et al. 2017). Pour le colza, les 

polarisations VH et VV augmentent légèrement au cours du développement des feuilles à 

mesure que la biomasse augmente. Elles varient peu pendant l'inflorescence et diminuent 

pendant la floraison. En effet, la transformation verticale du colza atténue la polarisation VV, 

tandis que sa faible densité atténue la polarisation VH. Les deux polarisations augmentent 

du développement du fruit au début de la maturation, ce qui a également été observé dans 

d'autres études (Fieuzal et al., 2013 ; Lopez-Sanchez et al., 2013 ; Wiseman et al., 2014 ; Veloso 

et al., 2017). Le développement progressif de la structure sans orientations privilégiées 

entraîne une géométrie plus complexe, induisant une forte augmentation du mécanisme de 

diffusion volumique (Betbeder et al. 2016b). Les polarisations VH et VV diminuent jusqu'à la 

fin de la maturation en raison de la diminution de la WC dans la couche supérieure du colza. 

La polarisation VV est particulièrement sensible à la WC de la végétation (Cookmartin et al. 

2000), et la polarisation VH est atténuée par l'augmentation de la pénétration des ondes dans 

le sol. 
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3- La relation entre les indicateurs polarimétriques S-1 et les stades phénologiques du blé 

et du colza :  

Pour les deux types de cultures, les comportements temporels du span,  de      et de 

     sont similaires puisque le span correspond à la puissance totale difusée.  

Pour le blé, SE normalisée et l’intensité de l’entropie de Shannon (   ) normalisée 

augmentent d'abord lors du tallage mais diminuent ensuite pendant l'élongation de la tige et 

l'inflorescence. L'augmentation du     normalisée est liée au développement de la tige 

pendant le tallage. Cette complexité de la structure de la plante augmente le désordre 

rencontré dans le signal RaDAR. Le contraire a été observé pendant l'élongation de la tige, en 

raison de la structure moins complexe du blé, ce qui entraîne une diminution de la puissance 

de rétrodiffusion. Betbeder et al. (2016) ont démontré une forte corrélation positive (r²=0,7) 

entre l'humidité de la surface et     pendant le développement des feuilles et le tallage en 

raison d'une faible pénétration des ondes dans le sol. La polarisation de l’entropie de 

Shannon (   ) normalisée varie peu dans un premier temps, mais augmente ensuite de 

manière significative pendant l'élongation de la tige, ce qui indique que la polarisation varie 

beaucoup en raison de l'hétérogénéité des structures végétales dans les champs de blé.     

normalisée diminue de façon linéaire de la fin de la floraison à la maturation, le blé devenant 

homogène à l'échelle du champ. SE normalisée et     normalisée ont permis d'identifier le 

stade de développement des fruits, contrairement aux autres variables S-1, puisqu'elles 

diminuent légèrement au cours de ce stade.  

Pour le colza, les changements temporels de SE normalisée et     normalisée sont 

similaires à ceux observés sur le blé. Comme le mentionnent Betbeder et al. (2016), l'intensité 

de SE est sensible aux différents stades phénologiques. La légère augmentation de     

normalisée pendant la floraison est associée à des changements dans la structure du colza, ce 

qui entraîne une forte variation de la polarisation de rétrodiffusion (Betbeder et al. 2016b). L’ 

    normalisée augmente avec l'augmentation de la biomasse du colza ; ainsi, il augmente 

pendant la floraison et  diminue pendant la maturation (Betbeder et al. 2016b). 

 

4- Les contributions relatives des données S-1 et S-2 à la cartographie des stades 

phénologiques du blé et du colza :  

En ce qui concerne la prédiction des principaux stades phénologiques du blé à l'aide des 

données S-2 seules, l'ISF est la variable la plus importante, suivie par le S2REP, le red-edge2 

(B06), le WDVI, le NDVI et le red-edge1 (B05). Pour le colza, les variables les plus 

importantes sont le NDVI, le S2REP, la bande 3 (vert), l’ISF et le WDVI. Les stades 

phénologiques principaux et secondaires du blé et du colza ont été bien identifiés par l'indice 

ISF dérivé des données S-2, puisque cet indice est lié à la surface recouverte par la végétation 

verte. Les résultats de la classification incrémentale ont démontré la pertinence de l'indice 

S2REP pour les deux types de culture, ce qui est conforme aux résultats de Frampton et al. 

(2013). Le S2REP, qui est très sensible à la teneur en chlorophylle, est calculé à partir des 

bandes S-2 du red-edge qui réagissent à des changements importants de la réflectance des 

feuilles (Hatfield et al. 2008). L'importance des bandes rouges de S-2 a été démontrée pour 

l’estimation de l’IFS dans des parcelles cultivées, y compris le blé en Espagne et en 

Allemagne (Delegido et al. 2011b). Nous avions noté le potentiel du WDVI pour la prédiction 

des stades phénologiques du colza sur la base de notre analyse des profils temporels; il s’agit 

du seul indice sensible au stade de développement des feuilles. Wilson et al. (2014) ont 
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expliqué que le colza avait une réflectance plus élevée dans les parties verte et rouge du 

spectre que les autres cultures en raison de ses fleurs jaunes.  

Concernant la classification des stades phénologiques principaux et secondaires du blé 

en utilisant uniquement les données S-1 seules, le rapport           s'est classé premier 

pour les deux cultures, tandis que      s'est classé troisième. Des études antérieures ont 

démontré la pertinence des coefficients de rétrodiffusion (    ,     ) et du rapport de 

polarisation (         ) pour l'estimation de la biomasse et de l’ISF du blé (Dente et al. 

2008 ; Jin et al. 2015b ; Betbeder et al. 2016b) et du maïs (Gao et al. 2013). Veloso et al. (2017) 

ont conclu que l'influence du sol était réduite pour le blé en utilisant           par rapport 

à      et     .  

Pour le colza, le rapport           est la variable la plus importante en utilisant 

uniquement les données S-1 pour classer les stades phénologiques principaux et secondaires.  

Le rapport           s'est révélé très performant pour l'identification des principaux 

stades phénologiques des deux cultures, confirmant sa grande fiabilité pour l'identification 

des stades phénologiques principaux et secondaires.  

Conformément aux résultats de Betbeder et al. (2016), les indicateurs polarimétriques 

sont importants pour le blé et le colza : plusieurs d'entre eux figurent parmi les 4 variables 

d'entrée sélectionnées sur la base du seuil défini automatiquement pour les prédictions des 

stades phénologiques principaux et secondaires des deux cultures.     et le span ont été 

sélectionnés pour prédire les stades phénologiques principaux du blé et     a été sélectionné 

pour le colza, tandis que pour les stades phénologiques secondaires, la sélection comprenait 

    et SE pour le blé et     et SE pour le colza. 

 

De façon générale, cette étude visait à évaluer le potentiel des données S-1 seules, des 

données S-2 seules, et leur utilisation combinée pour prédire les stades phénologiques du blé 

et du colza. Pour le blé, l'utilisation combinée des données S-1 et S-2 a été plus performante 

que l'utilisation des données S-1 ou S-2 seules pour détecter les principaux stades 

phénologiques du blé et du colza.  

Les stades phénologiques secondaires du blé ont été mieux identifiés en utilisant les 

données S-2 qu'en utilisant les données S-1. Sur la base de l'écart-type de l'indice kappa 

moyen, des résultats similaires ont été obtenus en utilisant les données S-2 seules ou les 

données S-1 et S-2 combinées pour les stades phénologiques secondaires du blé. Le tallage 

est le stade phénologique principal et secondaire le plus précisément classé en utilisant les 

données S-1 seules, les données S-2 seules et leur utilisation combinée. Du DoY 18 à 72, le blé 

est au stade du tallage et un comportement temporel spécifique des variables S-1 et S-2 a été 

observé par rapport à tous les autres stades phénologiques. Cependant, le stade de tallage a 

été mieux identifié en utilisant les données de S-1 que celles de S-2, tandis que les stades de 

floraison, de développement du fruit et de maturation ont été mieux identifiés en utilisant S-

2 que S-1. Le signal RSO est sensible à la géométrie (par exemple la rugosité, la texture, la 

structure interne) et à l'humidité des cibles observées, tandis que la réflectance optique est 

influencée par leur physiologie. Ainsi, nous pouvons conclure que le stade de tallage du blé a 

été mieux discriminé par la structure du champ de blé plutôt que par sa physiologie. À partir 

du stade de l'élongation de la tige, la géométrie du blé est verticale et varie peu jusqu'à la 

maturation, tandis que la teneur en chlorophylle augmente puis diminue. Ainsi, les variables 

S-2 sont plus efficaces que les variables S-1 pour discriminer ces stades phénologiques du 

blé. Pour les principaux stades phénologiques du blé, l'utilisation combinée des données S-1 

et S-2 a permis d'améliorer la précision utilisateur (UA) du tallage, de l'élongation de la tige 
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et de la maturation ; seule l’UA des stades d'élongation de la tige et de floraison a été 

inférieure à celle de S-2. Ceci est cohérent avec les études précédentes qui ont montré la 

saturation de la bande C (El Hajj et al. 2019) et des bandes optiques (Haboudane et al. 2004) à 

des niveaux élevés de biomasse de blé.  

Pour les principaux stades phénologiques du colza, l'indice de kappa moyen en utilisant 

les données combinées S-1 et S-2 est plus élevé et fortement supérieur à ceux obtenus avec les 

données S-2 seules et les données S-1 seules respectivement. Pour les stades phénologiques 

secondaires, les résultats de l'utilisation combinée des données S-1 et S-2 sont similaires à 

ceux obtenus avec les données S-2 seules. Cependant, l'utilisation combinée des données S-1 

et S-2 a permis d'augmenter la précision de l'identification du stade de développement des 

feuilles du colza grâce à des informations complémentaires sur la physiologie à partir de S-2 

et la géométrie à partir de S-1. Le développement du fruit est le principal stade phénologique 

le plus difficile à identifier en utilisant les données S-1 seules et l'utilisation combinée des 

données S-1 et S-2, en raison de la confusion avec le stade de maturation. Les variables les 

plus importantes en utilisant les données S-1 seules sont     , le           et     . 

L’analyse des profils temporels a montré que le rapport           est stable entre le 

développement du fruit et la maturation, tandis que      et      augmentent légèrement. 

La structure des stades du colza est très similaire pendant le développement du fruit et la 

maturation, les éléments de la canopée étant orientées de manière aléatoire. Cette grande 

similitude peut s'expliquer par le fait que les observations sur le terrain ont été effectuées au 

cours de stades phénologiques successifs (c'est-à-dire la fin du développement du fruit 

(BBCH = 77 et 79) et le début et la fin de la maturation (BBCH = 80 et 89)). Cependant, bien 

que le développement du fruit ait été beaucoup mieux classé en utilisant les données S-1 et S-

2 combinées (UA max = 0,87, précision producteur (PA) max = 0,75) qu'en utilisant les 

données S-1 seules (UA max = 0,32, PA max = 0,21), ce stade phénologique est le moins bien 

prédit. Les variables les plus importantes en utilisant des données combinées S-1 et S-2 sont 

     dérivé de S-1 suivi du NDVI et du S2REP dérivés de S-2 et ensuite SE, le span,     

normalisée, et le           et le      dérivés de S-1. Ainsi, l’utilisation des données RSO S-

1 entraîne une confusion accrue entre le développement du fruit et les stades de maturation. 

Le développement du fruit est le stade phénologique secondaire le plus difficile à identifier 

en utilisant uniquement les données S-1, tandis que le début et le milieu de la floraison sont 

les moins bien prédits en utilisant uniquement les données S-2 et les données combinées S-1 

et S-2. Des erreurs de prédiction se sont produites entre les deux stades phénologiques 

secondaires de la floraison, le premier correspondant aux premières fleurs ouvertes et le 

second à la pleine floraison jusqu'à la fin de la floraison. Il convient de noter que cette 

période coïncide avec l'absence de données S-2 en raison de la couverture nuageuse, tandis 

que les profils temporels S-1 montrent peu de variation.  

 

Les résultats de la classification obtenue avec l'utilisation combinée des données S-1 et S-

2 ont mis en évidence la grande contribution des variables S-1 pour le colza. L'utilisation 

combinée des données S-1 et S-2 a permis de mieux identifier les principaux stades 

phénologiques du colza que les données S-2 seules ; en outre, l'identification du stade de 

développement des feuilles a été améliorée par l'ajout des variables S-1. Les résultats sont 

plus équilibrés pour les stades phénologiques secondaires du blé, car les résultats des 

données S-2 seules sont similaires à ceux obtenus avec des données S-1 et S-2 combinées, sauf 

pour le stade de tallage. 
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Globalement, cette étude a permis de souligner l’intérêt des indicateurs polarimétriques 

et de la combinaison des données S-1 et S-2 pour suivre la phénologie du blé et du colza. 

Nous avons appliqué les modèles finaux développés en Picardie sur le site breton et avons 

obtenu des résultats similaires, ce qui confirme l’intérêt des données Sentinel et la robustesse 

de la méthode utilisée pour l’identification des stades phénologiques des cultures. 
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Nous avons ensuite poursuivi nos recherches sur la caractérisation des cultures en 

cherchant à évaluer le potentiel des images S-1 et S-2 pour estimer l’ISF, la biomasse humide 

(WB), la biomasse sèche (DB) et la WC du blé et du colza.  

 

Nous avons comparé le pouvoir prédictif de 22 variables optiques S-2 (10 bandes 

spectrales et 12 indices de végétation) et 7 variables RSO S-1 (2 coefficients de rétrodiffusion, 

1 ratio et 4 indicateurs polarimétriques) en utilisant des régressions par processus gaussien.  

 

Cette étude, appliquée au site breton, a montré le potentiel des données S-1 et S-2 pour 

estimer ces 4 paramètres de cultures pour le blé et le colza.  

 

Cette étude a démontré le potentiel des séries chronologiques RSO S-1 et optiques S-2 

pour estimer les paramètres biophysiques des cultures (ISF, WB, DB et WC) du blé et du 

colza. Les résultats montrent que les performances des variables S-2 sont équivalentes ou 

supérieures à celles des variables S-1. 

 

Les meilleurs modèles obtenus avec S-2 utilisent les bandes vertes, proche-infrarouge et 

les indices de végétation respectivement pour l’ISF (R² ajusté = 0.91), la biomasse (R² ajusté > 

0.70) et la WC (R² ajusté = 0.82) du blé, et les bandes infrarouge-courtes pour la DB (R² ajusté 

= 0.85) et la biomasse humide (R² ajusté = 0.77) du colza. 

En ce qui concerne les modèles basés sur S-1, le rapport           s’avère être la 

variable la plus pertinente pour l'ISF du blé et la biomasse du colza, et la contribution de la 

polarisation SE la plus performante pour la WC du blé. Les résultats obtenus en utilisant les 

variables S-2 étaient similaires ou supérieurs à ceux obtenus en utilisant les caractéristiques 

S-1 pour l'estimation des paramètres biophysiques des cultures de blé et de colza.  

Pour le blé, les corrélations les plus élevées en utilisant les variables S-1 étaient le ratio 

          avec l'ISF (R² = 0,91) et la contribution de la polarisation de SE avec la WC (R² = 

0,78), tandis que les meilleurs modèles basés sur S-2 ont été obtenus en utilisant la bande 

verte pour la WC (R² = 0,82), la bande proche infrarouge 8 pour l'ISF (R² = 0,91), l'indice 

WDVI pour la DB (R² = 0,72) et l'indice MTCI pour la WC (R² = 0,71).  Pour le colza, les 

corrélations les plus élevées étaient le rapport           et la contribution de la polarisation 

de SE avec la WB et la DB (R² ajusté > 0,75), tandis que les bandes SWIR de S-2 semblaient 

prometteuses pour l'estimation de la DB (R² ajusté = 0,85) et de la WB (R² ajusté = 0,77). Les 

résultats ont également mis en évidence, pour la première fois, l'importance des indicateurs 

polarimétriques (SE et portée) dérivés des séries temporelles de S-1 pour l'estimation des 

paramètres biophysiques des cultures de blé et de colza.  
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Sur la base des résultats obtenus dans les deux études précédentes, nous avons cherché à 

évaluer l’impact de la structuration spatio-temporelle des mosaïques paysagères forêt-

agriculture sur la biodiversité.  

 

Pour cela, nous avons analysé l’influence de l’hétérogénéité biophysique sur la 

phénologie du blé et la biodiversité qui y est associée sur les sites en Bretagne, en Picardie et 

en Wallonie. L’indice de végétation WDVI a été utilisé comme métrique de l’hétérogénéité 

biophysique et indicateur de la phénologie du blé. D’abord, nous avons analysé les relations 

entre la mosaïque des cultures, le grain du paysage et l’hétérogénéité biophysique. Puis, 

nous avons étudié l’effet de l’hétérogénéité biophysique sur la phénologie du blé. Enfin, la 

distribution des espèces de carabes a été estimée en utilisant la métrique d’hétérogénéité 

biophysique.  

 

Les résultats ont montré que le grain du paysage et le gradient de mosaïque des cultures 

était fortement corrélés (R² ajusté maximum = 0.81). En ce qui concerne l'analyse conjointe de 

tous les sites, l'hétérogénéité biophysique était bénéfique pour la phénologie du blé pendant 

la période de maturation. L'analyse par site a montré que l'hétérogénéité biophysique était 

bénéfique pour la croissance du blé dans le grain fin mais la désavantageait dans les 

paysages de plein champ tant pendant la période d'extension de la tige que la maturation. La 

métrique d'hétérogénéité biophysique a permis d’estimer avec précision la distribution des 

espèces de carabes (R² ajusté maximum = 0,62). Cette étude a souligné l'intérêt d'utiliser les 

données S-2 pour comprendre la dynamique du blé et la biodiversité qui lui est associée.  

 

Plus précisément, ces recherches ont permis de mettre en exergue les six points suivants: 

 

1- L’intérêt de l’utilisation de la télédétection pour caractériser les paysages : 

Les images de télédétection gratuites, telles que les données Sentinel, permettent de 

remédier aux limites de la collecte de données et au coût financier des images. Crowley et 

Cardille (2020) ont passé en revue les recherches sur l'écologie du paysage des cinq dernières 

années et ont identifié les contributions futures de la télédétection à l'écologie du paysage. 

Sur la base de cette revue, les innovations de notre étude sont l'utilisation d'un suivi intra-

annuel pour analyser les paysages, la comparaison de différents paysages et l'utilisation de 

valeurs continues (WDVI) plutôt que de classes discrètes.  

Les séries temporelles S-2 permettent de suivre régulièrement la dynamique des 

paysages à une échelle fine. L'utilisation d'une variété de zones d'étude a généré un gradient 

continu du paysage, ce qui nous a permis d'identifier des modèles de paysage qui se 

développent le long des gradients, alors que chaque paysage conservait sa propre identité. 

Cela contraste avec de nombreuses études qui mettent en commun des données provenant 

de différents paysages sans les rendre distinctes dans l'analyse (par exemple, Alignier et al. 

2020).  

Dans notre étude, les modèles de paysage sont apparus en raison de la diversité des 

paysages. Il est difficile de cartographier la mosaïque des cultures de manière précise et 

cohérente en utilisant des images satellites de différentes zones d'étude ou à grande échelle. 

La précision d'une carte peut être mesurée en utilisant des estimateurs de qualité (par 

exemple, l’indice de kappa, la précision globale, le F-score). Néanmoins, l'évaluation de la 

précision dépend en grande partie des données de validation, et l'incertitude est inévitable 

en raison des erreurs de classification qui se produisent à différents stades de la production 
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de la carte (Friedl et al. 2001 ; Congalton et al. 2014). Les valeurs continues telles que le WDVI 

permettent de surmonter ce problème car le WDVI utilise deux variables (bandes rouge et 

proche-infrarouge) qui ont été mesurées de manière cohérente sur toutes les images. 

Crowley et Cardille (2020) ont recommandé de passer d'indices catégoriels à des valeurs 

continues pour les évaluations d'habitats afin de mieux évaluer les impacts des changements 

de paysages sur la biodiversité et de quantifier les erreurs dans les modèles d'écologie des 

paysages. Plusieurs auteurs (par exemple McGarigal et al. 2009 ; Lausch et al. 2015) 

recommandent de passer d'une représentation des paysages en mosaïque à une 

représentation en gradient. En outre, les valeurs continues sont les plus adaptées pour saisir 

les gradients d'un paysage.  

La télédétection optique reflète la dynamique phénologique des cultures avec la 

différenced de WDVI (Diff WDVI) indépendamment des cultures voisines. Mercier et al. 

(2020b) ont constaté que les variables (coefficients de rétrodiffusion et indicateurs 

polarimétriques) dérivées du capteur RSO S-1 étaient adaptées à la surveillance des stades 

phénologiques et des paramètres biophysiques des cultures de blé. Le domaine des micro-

ondes (RaDAR) capture la géométrie du blé, tandis que le domaine optique est sensible à la 

teneur en chlorophylle. De plus, la rugosité du blé, liée à sa géométrie, influence directement 

la vitesse du vent (Kawatani et Meroney 1970). Il serait donc intéressant de comparer les 

résultats de S-1 et S-2 pour étudier l'hétérogénéité biophysique.  

Aucun flux n'a été mesuré ou modélisé dans cette étude, de sorte que des recherches 

supplémentaires sont nécessaires pour confirmer la capacité de la métrique d’hétérogénéité 

biophysique (WDVI SD) à représenter l'énergie physique des paysages. Cependant, cette 

étude fournit un cadre pour l'échantillonnage des flux dans les paysages. Le WDVI SD 

pourrait être utilisé à des échelles pertinentes comme indicateur pour les zones ciblées. Des 

études antérieures ont permis de développer des méthodes pour produire des cartes de 

microclimat qui intègrent des données de télédétection, comme celles du LiDAR, (George et 

al. 2015), des drônes (Maes et al. 2017) et des données satellite MODIS (Metz et al. 2014 ; Fick 

et Hijmans 2017). De futures études pourraient analyser les corrélations entre le WDVI SD et 

les cartes de microclimat ou l'échantillonnage sur le terrain. 

 

 2-  Les effets de la structure du paysage sur l'hétérogénéité biophysique : 

Le grain du paysage est fortement corrélé avec le gradient de la mosaïque des cultures ; 

en effet, l'organisation de l'utilisation des terres dépend de la densité des haies (Thenail 

2002). De 1940 à 1990 en France, une grande partie du réseau de haies a été supprimée en 

raison des programmes de remembrement des terres visant à soutenir l'intensification 

agricole (Baudry et Burel 1984). Les paysages à grains fins sont principalement liés à des 

systèmes d'élevage extensif et de prairies (fourrage, bétail), tandis que les paysages à grains 

grossiers sont davantage dominés par la rotation des cultures. Par exemple, dans la zone 

d'étude bretonne, la proportion de maïs augmente et les prairies diminuent, passant de 

paysages à grains fins à des paysages à grains grossiers (Thenail et Baudry 2004). Cela 

explique pourquoi, dans cette étude, la zone d'étude s'étendait souvent sur de plus grandes 

sections de gradients. La fragmentation des territoires agricoles dans les paysages à grains 

fins a simplifié les successions de cultures et la diversité du bétail en circulation. À l'inverse, 

les grands champs dans les paysages à grains grossiers sont susceptibles d'avoir des 

conditions physiques similaires ; c'est pourquoi de nombreux îlots de terre formés en un seul 

champ sont utilisés pour des cultures de rente. Dans notre étude, les paysages à grains fins se 

trouvaient en Bretagne, en Picardie-Ouest et en Wallonie-Nord-Ouest, qui contenaient 
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principalement des prairies et des proportions variables de blé et de maïs. Les paysages à 

grains grossiers se trouvaient en Wallonie-Sud, en Wallonie-Nord-Est et en Picardie-Ouest, 

qui contenaient principalement de la betterave et du blé. Le grain des paysages des six zones 

d'étude apparaît le long du gradient de la mosaïque de cultures puisqu'il représente un 

gradient allant des prairies et du maïs, au blé et à la betterave (figure 7-5). Les deux facteurs, 

grain paysager et mosaïque de cultures, sont toutefois confondus, de sorte que leurs effets 

sur la phénologie du blé peuvent être soit confondus, soit complémentaires. 

 

3-  Les effets de l'hétérogénéité biophysique sur la phénologie du blé : 

Sur la base de l'analyse combinée de tous les sites, l'hétérogénéité biophysique (WDVI 

SD) a eu un effet positif sur la croissance du blé (Diff WDVI) pendant la période de 

maturation, puisque la Diff WDVI a diminué alors que la WDVI SD a augmenté. 

L'hétérogénéité biophysique provoque des flux d'énergie latéraux qui favorisent la 

croissance du blé. Cependant, l'analyse des sites individuels a montré que l'hétérogénéité 

biophysique (WDVI SD) semble être bénéfique à la croissance du blé dans les paysages à 

grains fins, mais qu'elle est un inconvénient dans les paysages à grains grossiers. Ainsi, les 

flux sont des échanges bénéfiques dans les paysages à grains fins mais sont des perturbations 

dans les paysages à grains grossiers. Ce phénomène s'explique probablement par la nature 

des flux dans chaque paysage. Alford et al. (2018) ont constaté que les paysages ouverts sont 

plus chauds que les paysages complexes, qui ont des températures plus extrêmes et plus 

variables. Les températures locales augmentent parce que le paysage à grains grossiers est 

exposé à plus de rayonnement à ondes courtes pendant la journée (Chen et al. 1999). Dans les 

paysages à grains fins, les haies fonctionnent comme des brise-vent qui réduisent la vitesse 

du vent local et augmentent l'humidité relative en condensant l'air frais et dense (Kort 1988). 

Alford et al. (2018) ont observé que le passage de l'hiver au printemps augmentait la 

croissance de la végétation et amortissait les températures. Les différences entre les paysages 

diminuent, mais les paysages à grains fins restent plus froids que les paysages à grains 

grossiers. Les différences de température entre le jour et la nuit sont plus importantes les 

jours ensoleillés, et les bois interceptent le rayonnement solaire, ce qui réduit l'amplitude de 

la température diurne (Zellweger et al. 2019). Ainsi, l'hétérogénéité biophysique dans les 

paysages à grain grossier provoquerait des flux de température et des températures extrêmes 

qui réduisent la croissance du blé. 

 

4-  L’importance de l'échelle du paysage : 

Les relations entre le gradient de la mosaïque des cultures et l'hétérogénéité biophysique 

(WDVI SD) avaient un R² ajusté plus élevé à des échelles plus grandes. À mesure que 

l'échelle d'analyse augmentait, la variabilité au sein de chaque zone d'étude diminuait, mais 

la variabilité entre les zones d'étude augmentait. Ainsi, si une relation existe entre deux 

mesures analysées dans des fenêtres, elle sera plus forte à des échelles plus grandes. La 

structure du paysage a influencé les changements dans le blé au sein du champ. Pour tous 

les sites, les échelles qui expliquaient le plus de variance avaient un rayon supérieur à 1505 

m, sauf pour la période d'extension des tiges en 2017. Pour certains sites, les échelles de 255 

et 505 m ont montré des relations significatives entre l'hétérogénéité biophysique (WDVI SD) 

et la phénologie du blé (Diff WDVI) pendant la maturation du blé en 2017 et 2018. Toutefois, 

ces échelles n'étaient plus présentes lorsque tous les points d'échantillonnage des six zones 

d'étude ont été pris en compte. À mesure que l'étendue des cartes WDVI SD augmentait, les 

valeurs de WDVI SD devenaient plus homogènes. À l'échelle européenne, la diversité des 
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pratiques locales contribue de moins en moins à l'explication des différences entre les sites à 

mesure que l'échelle augmente. Cependant, l'échelle de 255 m était significative pendant la 

période d'extension des tiges les deux années, ce qui indique que les pratiques locales 

influencent davantage la croissance du blé pendant cette période. 

 

5-  La répartition de Pterostichus melanarius (P. melanarius) et Poecilus cupreus (P. cupreus) 

à l'échelle du paysage : 

P. melanarius et P. cupreus ont été trouvés dans des paysages et des lieux différents. 

Thomas et al. (2001) ont observé une séparation spatiale entre ces espèces dans différents 

domaines. Ces deux espèces de carabes ont des exigences écologiques différentes. P. cupreus 

était plus abondant dans les paysages à grains fins de Bretagne et de Picardie-Est, tandis que 

P. melanarius était plus abondant dans les paysages à grains grossiers de Picardie-Ouest et de 

Wallonie-Sud. P. cupreus reste près des haies, tandis que P. melanarius en est plus éloigné 

(Winder et al. 2001 ; Rouabah et al. 2015), bien qu'aucune des deux espèces ne traverse les 

haies (Holland et al. 2004). P. melanarius est adapté aux variations de température (Holland et 

al. 2005), et les paysages ouverts ont des températures plus extrêmes et variables que les 

paysages complexes (Alford et al. 2018). Ainsi, cette caractéristique biologique de P. 

melanarius le rend adapté aux paysages à grains grossiers. Certaines préférences d'habitat de 

P. melanarius et P. cupreus restent floues en raison de résultats opposés. Par exemple, Thomas 

et al. (2001) ont trouvé P. cupreus à l’intérieur des champs, tandis que Rouabah et al. (2015) 

les ont trouvés près de haies. Hassan et al. (2013) ont trouvé une abondance plus faible de P. 

cupreus dans des paysages à grains fins, ce qui est contraire à nos résultats. Ces résultats 

contrastés peuvent être dus à d'autres facteurs qui influencent la distribution des carabes, 

tels que les types de cultures, l'âge des haies, l'humidité du sol, la densité des proies, 

l'exclusion compétitive, la prédation mutuelle et le système de gestion (Winder et al. 2001; 

Holland et al. 2004; Rouabah et al. 2015). 

 

6-  L’utilisation de la télédétection pour comprendre la biodiversité : 

Nous avons montré que les distributions de P. melanirus et P. cupreus étaient liées à 

l'hétérogénéité biophysique (WDVI SD). Cependant, l'hétérogénéité biophysique (WDVI SD) 

était fortement corrélée avec le gradient de la mosaïque des cultures et le grain du paysage. 

Par conséquent, nous n'avons pas pu quantifier l'effet de chaque variable sur P. melanirus et 

P. cupreus ; cependant, l'effet du paysage (grain du paysage et gradient de la mosaïque des 

cultures) peut être évalué à l'aide du WDVI SD. La télédétection permet d'étudier la 

distribution des carabes sans avoir besoin d'une carte de l'utilisation des terres ou des haies. 

En outre, elle est cohérente entre les types de cultures et les lieux, ce qui permet d'aborder les 

questions écologiques en utilisant des images gratuites qui sont disponibles pour n'importe 

quelle zone de la Terre (données Sentinel disponibles sur https://scihub.copernicus.eu). 

Inversement, pour des variables fixes telles que les mosaïques de cultures, le WDVI SD varie 

dans le temps. La relation entre le WDVI SD et le facteur 1 de l’analyse factorielle par 

correspondances explique un état (c'est-à-dire la répartition de deux espèces de carabes) mais 

pas sa dynamique. Comme le WDVI SD est un indice spatio-temporel, les futures études 

pourraient l'utiliser pour se concentrer sur la dynamique des carabes. 

 

Dans l'ensemble, l'étude a mis en évidence l'intérêt d'utiliser les données de télédétection 

optique pour comprendre la dynamique du blé et la biodiversité qui lui est associée. Pour 

mieux comprendre la fonction écologique de l'hétérogénéité biophysique, il convient de 
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comparer le SD WDVI développé aux mesures de flux d'énergie. Il serait également 

intéressant d'évaluer la contribution des images RSO, car le domaine des micro-ondes est 

sensible à la structure des plantes. 
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L'objectif de la thèse était double : 1) évaluer comparativement les séries temporelles 

optiques S-2 et RSO S-1 pour identifier et caractériser les éléments constitutifs des continuités 

écologiques en utilisant les classifications d’occupation des sols et d’utilisation des sols et la 

caractérisation des cultures dans les paysages boisés et dominés par les cultures, 2) évaluer 

l'influence de la structuration spatio-temporelle de ces mosaïques de paysages sur la 

biodiversité en utilisant les mesures dérivées des séries temporelles S-2.  

Nous avons exposé dans la première partie de la thèse les défis posés par l'écologie 

paysagère et la télédétection appliquées aux continuités écologiques.  

La deuxième partie a consisté en une évaluation comparative du potentiel des variables 

dérivées des données S-1 et S-2 pour identifier et caractériser les éléments constituant les 

continuités écologiques dans les paysages boisés. L’occupation et l’utilisation des sols ont été 

identifiées et caractérisées dans des mosaïques forêt-agriculture au Brésil et en Espagne.  

Dans une troisième partie, nous avons évalué de manière comparative le potentiel des 

variables dérivées des données S-1 et S-2 pour identifier et caractériser les éléments 

constituant les continuités écologiques dans des paysages dominés par les cultures. Les 

capteurs S-1 et S-2 ont également été évalués pour estimer les stades phénologiques et des 

variables biophysiques dans les cultures de blé et de colza.  

Une quatrième partie a été consacrée à l'analyse des relations entre les cartes des 

mesures du paysage dérivées des images Sentinel et les données relevées sur les espèces. 

Nous avons analysé l'influence de l'hétérogénéité biophysique dérivée de S-2 sur la 

phénologie du blé et la distribution de deux espèces de carabes agricoles dans six paysages 

dominés par des cultures.  

Plus précisément, la deuxième partie de la thèse visait à répondre à la question : Quels 

sont les capteurs et les variables Sentinel les plus efficaces pour identifier les éléments 

potentiellement constitutifs des continuités écologiques dans les paysages boisés ?  

Pour répondre à cette question, nous avons évalué le potentiel des données S-1 seules, 

des données S-2 seules et des données S-1 et S-2 combinées pour identifier et caractériser les 

types d’occupation des sols dans des paysages de mosaïque forêt-agriculture. L'étude s'est 

concentrée sur deux paysages boisés présentant des gradients de végétation contrastés : un 

paysage montagneux tempéré dans la monts cantabriques (Espagne) et un paysage forestier 

tropical humide à Paragominas (Brésil). Bien que ces mosaïques de paysages soient très 

différentes, elles ont des fonctions écologiques similaires (conservation de la biodiversité et 

stockage du carbone). Les images satellites ont été classées selon une procédure 

incrémentielle basée sur le rang d'importance des variables d'entrée dérivées des séries 

temporelles S-1 et S-2. Les données S-2 seules ont donné de meilleurs résultats (indice kappa 

moyen = 0,59-0,83) que les données S-1 seules (indice kappa moyen = 0,28-0,72), tandis que la 

combinaison des deux types de données a légèrement amélioré les résultats (indice kappa 

moyen = 0,55-0,85). La méthode utilisée permet de définir le nombre et le type de variables 

qui discriminent de manière optimale les classes d'utilisation des terres en fonction du type 

de paysage considéré. La meilleure configuration pour les zones d'étude espagnole et 

brésilienne comprend respectivement 5 et 10 variables pour les données S-2 et 10 et 20 

variables pour les données S-1. Le PIR et les polarisations VV et VH sont les variables les 

plus discriminantes pour les données S-2 et S-1, respectivement. En outre, la méthode a 

permis de définir des périodes clés pour la discrimination des classes d'occupation et 

d'utilisation des sols selon le type d'images utilisées. Par exemple, dans les montagnes 

cantabriques, l'hiver et l'été sont des périodes clés pour la série temporelle S-2, tandis que le 

printemps et l'hiver sont des périodes clés pour la série temporelle S-1. 
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La troisième partie de la thèse visait à répondre à la question : Quels sont le capteur et 

les variables Sentinel les plus efficaces pour identifier et caractériser les éléments constitutifs 

potentiels des continuités écologiques dans les paysages dominés par les cultures ? Cette 

partie se concentre sur la caractérisation des cultures avec l'étude du blé et du colza, qui sont 

deux des cultures les plus importantes au monde en termes de surface récoltée.  

Nous avons évalué le potentiel des données S-1 seules, des données S-2 seules et des 

données S-1 et S-2 combinées pour identifier les stades phénologiques principaux et 

secondaires du blé et du colza en Picardie (France). Plus spécifiquement, le but de cette étude 

était d'évaluer l'intérêt des indicateurs polarimétriques dérivés des données S-1 et de 

déterminer le nombre et le type de variables S-1 et S-2 nécessaires pour discriminer les stades 

phénologiques du blé et du colza. Nous avons estimé la performance des bandes spectrales 

et des indices de végétation dérivés de S-2 et des coefficients de rétrodiffusion et des 

indicateurs polarimétriques dérivés de S-1. Les images satellites ont été classées en utilisant 

la méthode incrémentale développée dans l'étude précédente (Mercier et al. 2019b). Les 

résultats ont montré que l'utilisation combinée des données S-1 et S-2 (kappa moyen = 0,53-

0,82 et 0,74-0,92 pour le blé et le colza, respectivement) offrait une plus grande précision que 

l'utilisation des données S-1 seules (kappa moyen = 0. 48-0,61 et 0,61-0,64 pour le blé et le 

colza, respectivement) ou S-2 seules (kappa moyen = 0,54-0,75 et 0,67-0,86 pour le blé et le 

colza, respectivement) pour l'identification des stades phénologiques principaux et 

secondaires. Les variables les plus importantes étaient le ratio           et les indicateurs 

polarimétriques pour S-1 et les indices NDVI et S2REP et la variable biophysique, ISF, pour 

S-2. Dans l'ensemble, cette étude a souligné l'intérêt des indicateurs polarimétriques et de 

l'utilisation combinée des données S-1 et S-2 pour suivre la phénologie du blé et du colza. 

Nous avons ensuite poursuivi nos recherches sur la caractérisation des cultures en 

évaluant le potentiel des images S-1 et S-2 pour estimer l'ISF, la WB, la DB et la WC du blé et 

du colza. Nous avons comparé le pouvoir prédictif de 22 variables optiques S-2 (10 bandes 

spectrales et 12 indices de végétation) et de 7 variables RSO S-1 (2 coefficients de 

rétrodiffusion, 1 rapport et 4 indicateurs polarimétriques) en utilisant la régression par 

processus gaussien (GPR). Cette étude, appliquée à la zone d'étude de la Bretagne, a montré 

le potentiel des données S-1 et S-2 pour estimer ces 4 paramètres de culture pour le blé et le 

colza. La performance des variables S-2 est équivalente ou supérieure à celle des variables S-

1. Les meilleurs modèles obtenus avec S-1 utilisent les bandes verte, PIR et les indices de 

végétation respectivement pour l'ISF (R² ajusté = 0,91), la biomasse (R² ajusté > 0,70) et la WC 

(R² ajusté = 0,82) du blé, et les bandes infraouge-courtes pour la DB (R² ajusté = 0,85) et la WB 

(R² ajusté = 0,77) du colza. Pour les variables S-1, le ratio           était le plus pertinent 

pour l'ISF du blé (R² ajusté = 0,91) et la biomasse du colza (R² ajusté > 0,75), par rapport à SE 

pour la WC du blé (R² ajusté = 0,78). Tout en confirmant l'intérêt des données S-2, les 

résultats ont mis en évidence, de manière inédite, l'importance des indicateurs 

polarimétriques dérivés de S-1 pour l'estimation des paramètres biophysiques du blé et du 

colza. 

Enfin, la quatrième et dernière partie de la thèse visait à répondre à la question : Quel est 

l'impact de la structuration spatio-temporelle du paysage sur la phénologie des cultures et la 

biodiversité dans les paysages dominés par les cultures ?  

Sur la base des résultats obtenus dans la partie précédente, nous avons évalué l'impact 

de la structuration spatio-temporelle de la mosaïque de cultures sur la biodiversité. Pour 

cela, nous avons analysé l'influence de l'hétérogénéité biophysique sur la phénologie du blé 

et la biodiversité associée dans les zones d'étude de Bretagne, de Picardie et de Wallonie. 
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L'indice de végétation nommé WDVI calculé à partir des données S-2 a été utilisé comme 

mesure de l'hétérogénéité biophysique et comme indicateur de la phénologie du blé. Nous 

avons d'abord analysé les relations entre la mosaïque des cultures, le grain du paysage et 

l'hétérogénéité biophysique. Ensuite, nous avons étudié l'effet de l'hétérogénéité biophysique 

sur la phénologie du blé. Enfin, la distribution de deux espèces de carabes a été estimée en 

utilisant la métrique de l'hétérogénéité biophysique. Les résultats ont montré que les 

gradients de la mosaïque des céréales et des cultures étaient fortement corrélés (R² maximum 

ajusté = 0,81). Pour l'analyse conjointe de tous les sites, l'hétérogénéité biophysique a été 

bénéfique pour la phénologie du blé pendant la période de maturation. L'analyse par site a 

montré que l'hétérogénéité biophysique était bénéfique pour la croissance du blé à grain fin 

mais la défavorisait dans les paysages de plein champ tant pendant la période d'extension 

des tiges que pendant la période de maturation. La mesure de l'hétérogénéité biophysique a 

été utilisée pour estimer avec précision la distribution de deux espèces de carabes (R² 

maximum ajusté = 0,62). Cette étude a souligné l'intérêt d'utiliser les données S-2 pour 

comprendre la dynamique du blé et la biodiversité associée. 

D’une façon générale, cette thèse a permis d’évaluer le potentiel des séries temporelles 

optiques S-2 et RSO S-1 pour identifier et caractériser les continuités écologiques dans des 

paysages boisés et dominés par les cultures. Plus spécifiquement, nous avons montré que 

bien que les données S-2 soient plus appropriées que les données S-1 pour discriminer les 

types d’occupation et d'utilisation des terres ainsi que les stades phénologiques et les 

variables biophysiques du blé et du colza, l'utilisation combinée des données S-1 et S-2 

améliore la précision des classifications, les données S-1 montrant également un grand 

intérêt pour les zones nuageuses. Nos recherches ont également montré l'intérêt des 

indicateurs polarimétriques dérivés des données S-1 pour caractériser les cultures de blé et 

de colza insérées dans des paysages dominés par les cultures. Enfin, cette thèse a mis en 

évidence l'intérêt de la métrique d'hétérogénéité biophysique dérivée des données S-2 qui a 

permis d'estimer précisément la distribution de deux espèces de carabes. La mosaïque de 

cultures peut être considérée comme une infrastructure verte pour gérer la biodiversité à 

l'échelle du paysage. La mesure de l'hétérogénéité biophysique dérivée des images S-2 est 

continue, cohérente entre les lieux et les types de cultures et capable de traiter des questions 

écologiques en utilisant des images satellites gratuites disponibles partout sur la Terre. 

Sur la base de ces résultats, nous mettons également en évidence plusieurs questions qui 

doivent être abordées dans le cadre des travaux en cours et futurs. 

Concernant la combinaison des données S-1 et S-2 pour identifier les éléments 

constitutifs des continuités écologiques, les méthodes de fusion utilisées dans cette thèse sont 

appelées fusion de bas niveau ou de pré-classification car elles consistent à combiner des 

variables "brutes" optiques et RSO. Les fusions de haut niveau (ou fusions de post-

classification) consistent à combiner des informations extraites de jeux de données 

indépendants. Par exemple, dans le cas des cartes d'occupation des sols, les classes les mieux 

identifiées par les données S-2 seules et les données S-1 seules pourraient être combinées 

pour former une carte finale. Cependant, cette méthode nécessite une analyse initiale des 

classifications dérivées de chaque ensemble de données indépendant et une prise de décision 

adaptée à l'objectif de l'étude pour obtenir une carte finale pertinente. Par conséquent, il 

serait intéressant d'évaluer comparativement les méthodes de fusion avec différents niveaux 

sémantiques afin d'optimiser la fusion des données RSO et optiques pour identifier et 

caractériser les éléments constitutifs des continuités écologiques.  
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Concernant le modèle de prédiction des stades phénologiques que nous avons 

développé dans la deuxième partie de cette thèse sur la zone d'étude située en Picardie, nous 

avons évalué la robustesse du modèle en l'appliquant sur la zone d'étude de la Bretagne.  

Les résultats montrent que les principaux stades phénologiques du colza ont été très 

bien prédits (kappa = 0,75, OA = 80%) alors que de nombreuses erreurs de classification ont 

été observées pour les stades phénologiques secondaires.  

Pour le blé, l'interprétation des résultats a été plus difficile en raison des différentes 

typologies entre les échantillons de formation (Picardie) et de validation (Bretagne). 

Cependant, les résultats ont montré une prédiction correcte du stade d'élongation de la tige 

et une succession cohérente des stades phénologiques principaux et secondaires.  

Ces résultats ont confirmé que la méthode utilisée était robuste pour la prédiction des 

principaux stades phénologiques du colza et prometteuse pour les stades phénologiques 

principaux et secondaires du blé. Ces résultats ont été valorisés lors du Symposium 

international de télédétection de SPIE (Mercier et al. 2019a).  

Par ailleurs, l'utilisation d'échantillons collectés dans plusieurs zones d'étude pourrait 

également contribuer à tester la robustesse du modèle appliqué à l'estimation des variables 

biophysiques des cultures (partie 2), d'autant plus que l'échantillonnage utilisé était de petite 

taille. Le petit nombre d'enquêtes sur les cultures pour l'estimation des variables 

biophysiques des cultures dérivées des données S-1 et S-2 a constitué un facteur limitant lors 

de l'essai des modèles statistiques. En effet, plus la taille de l'échantillon est faible, plus le 

pouvoir prédictif du test statistique est faible. Une taille d'échantillon plus importante 

permettrait de tester des méthodes de modélisation plus puissantes telles que le random 

forest ou le support vector machine.  

 

L'hétérogénéité biophysique (WDVI SD) mesurée à partir des données S-2 est une 

mesure continue qui reflète un état biophysique plutôt que des classes de cultures discrètes.  

Cette valeur continue est pertinente pour les espèces généralistes. En effet, ces espèces ne 

sont pas spécialisées dans un type d’occupation/utilisation des terres ou d'espèces végétales, 

car elles utilisent plusieurs types d’occupation/utilisation des terres au cours de leur cycle de 

vie. En outre, dans les paysages dominés par les cultures, l'hétérogénéité du paysage est 

généralement bénéfique pour les espèces généralistes. Des cartes d'adéquation des habitats 

pourraient être dérivées du WDVI SD pour mettre en évidence la connectivité ou la 

fragmentation des habitats potentiels. Enfin, les variations du WDVI autour d'un élément 

bénéfique pour une espèce spécialisée pourraient être étudiées pour mieux comprendre la 

résistance des éléments du paysage au déplacement de cette espèce. Enfin, l'influence du 

réseau de haies sur l'hétérogénéité biophysique pourrait être étudiée grâce à l'utilisation de 

données satellitaires à très haute résolution spatiale telles que les images SPOT-6. 

 

Au cours de cette thèse, une étude a été lancée en étroite collaboration avec l'équipe 

espagnole du projet WOODNET. Nous avons utilisé un modèle de capacité d'habitat de 

l'ours brun développé par l'équipe espagnole et détaillé dans un article publié par Gastón et 

al. (2017).  Les  métriques paysagères que nous avons calculées à partir des cartes 

d’occupation des sols dérivées de l'utilisation combinée des données S-1 et S-2 ont été 

incorporées dans le modèle de capacité d’habitat de l'ours brun. Cette étude visait à évaluer 

la valeur des cartes espagnoles d’occupation des sols produites dans Mercier et al. (2019b) 

pour l'identification et la caractérisation des continuités écologiques pour les ours bruns. Les 

mesures du paysage ont été dérivées de la carte d’occupation des sols la plus précise, c'est-à-
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dire la carte dérivée de l'utilisation combinée des données S-1 et S-2. Ces mesures du paysage 

correspondent à l'hétérogénéité du paysage, au grain du paysage et aux interfaces entre les 

types d’occupation des sols. Les premiers résultats ont montré que la proportion d'ours 

bruns augmente avec le grain fin et diminue avec l'hétérogénéité du paysage.  

Dans l'ensemble, les interfaces contenant la classe "sol nu" ont un effet négatif sur la 

proportion d'ours bruns, tandis que les interfaces comprenant des surfaces boisées ont un 

effet positif.  

Des perspectives se sont dégagées de ces premiers résultats et des travaux 

complémentaires seront effectués en étroite collaboration avec l'équipe espagnole du projet 

WOODNET. Nous prévoyons d'analyser plus profondémment le choix des paramètres 

d'entrée du modèle en supprimant les métriques d'interface incluant des types d’occupation 

des sols mal classés (eau et surfaces artificielles), et de créer de nouvelles métriques 

paysagères en combinant d'autres d’occupation des sols (formations arbustives/sol nu) à 

différentes échelles spatiales. 

Enfin, la base de données que nous avons développée dans la deuxième partie de cette 

thèse pour caractériser le blé et le colza sera bientôt disponible dans un document de 

données afin de partager plus largement les données avec la communauté scientifique
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Résumé : La perte des habitats est aujourd’hui 
considérée comme l’une des plus sérieuses 
menaces sur la biodiversité. Si de nombreuses 
études se sont concentrées sur le rôle de « 
conduit » des éléments boisés, très peu d’entre 
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continuités écologiques au sein des mosaïques 
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Sentinel.  Les résultats ont mis en évidence que 
bien que les données S-2 soient plus adaptées 
que les données S-1 

pour la discrimination des types d’occupation 
du sol dans les paysages boisés et des stades 
phénologiques du blé et du colza dans les 
paysages agricoles, l’usage combiné des 
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classifications les données S-1 présentant de 
surcroît un fort intérêt dans les zones 
nuageuses. Ils ont aussi montré l’intérêt des 
indicateurs polarimétriques dérivés des 
données S-1 pour caractériser les cultures du 
blé et de colza. Enfin, ils ont permis de 
souligner l’intérêt de la métrique 
d’hétérogénéité biophysique dérivée des 
données S-2 pour estimer précisément la 
distribution des espèces de carabes. L’usage 
de cette métrique, calculée avec des images 
gratuites et disponibles partout sur la Terre, 
continue et cohérente d’un site à l’autre et d’un 
type de culture à l’autre, devrait contribuer à 
l’étude de l’impact des continuités écologiques 
sur la biodiversité. 
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Abstract : Habitat loss is now considered one 
of the most serious threats to biodiversity. While 
many studies have focused on the circulation 
role of woodland features, very few have 
focused on the role of ecological continuities 
within agricultural mosaics. The objectives of 
this thesis were (1) to assess the combined use 
of Sentinel 1 and 2 time series to identify and 
characterize the elements of ecological 
continuities through land cover classifications 
and crop characterization in wooded and crop-
dominated landscapes and (2) to estimate the 
impact of the spatio-temporal structuring of 
these landscape on biodiversity using metrics 
derived from Sentinel time series. The results 
showed that  although S-2 data are more 
adapted than S-1 data to discriminate between 
land cover/land use types in 
 

wooded landscapes and phenological stages 
of wheat and rapeseed in crop-dominated 
landscapes, the combined use of S-2 and S-1 
data improves their accuracy of the 
classifications, with S-1 data also showing a 
strong interest in cloudy areas. They also 
showed the interest of polarimetric indicators 
derived from S-1 data to characterize wheat 
and rapeseed crops. Finally, they highlighted 
the interest of the biophysical heterogeneity 
metrics derived from S-2 data to accurately 
estimate the distribution of carabid beetle 
species. The use of this metric, calculated with 
free images available everywhere on Earth, 
continuous and consistent from one site to 
another and from one type of crop to another, 
should contribute to the study of the impact of 
ecological continuities on biodiversity.   

 


