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Abstract

Face biometric systems are now a reality in numerous mainstream applications including
access control, banking and forensics. Notably, face recognition systems have recently
advanced and achieved striking performances due to the uprise of deep learning and the
the abundant, almost endless, amount of available training data. However, these systems,
that are mainly deployed in visible spectrum, are subject to fail when employed in
unconstrained scenarios. Among the main challenges in visible spectrum based systems,
variable or low illumination conditions have been proved to be some of their major
weaknesses. A promising approach to acquire crisp images in total darkness is using
thermal imagery. Thermal imaging technology has significantly evolved during the last
couple of decades, mostly thanks to thermal cameras having become more affordable and
user friendly. However, and given that the exploration of thermal imagery is reasonably
new, only a few public databases are available to the research community. This limitation
consequently prevents the impact of deep learning technologies from generating improved
and reliable face recognition systems that operate in the thermal spectrum. A possible
solution relates to the development of technologies that bridge the gap between visible
and thermal spectra. In attempting to respond to this necessity, the research presented
in this dissertation aims to explore interspectral synthesis as a direction for efficient and

prompt integration of thermal technology in already deployed face biometric systems.

As a first contribution, a new database, containing paired visible and thermal face
images, which was acquired with a dual camera that allowed for the simultaneous capture
of face images in both spectra, was collected and made publicly available to foster research
in thermal face image processing. Motivated by the need for fast and straightforward
integration into existing face recognition systems, a following contribution consisted in
proposing a cross-spectrum face recognition framework based on a novel approach of
thermal-to-visible face synthesis in order to estimate the visible face from the thermal
input, when the visible image cannot be provided, e.g. in poorly lit environments. The
proposed approach is based on deep generative models and was trained on a set of
paired visible and thermal data to learn a mapping from the thermal face to its visible
equivalent. After this initial work, another contribution presents the development of

an illumination invariant face recognition system that incorporates a novel, dynamic
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quality-weighted, fusion of visible and thermal spectrum at the score level. Thanks to
the proposed mechanism, an uninterrupted and efficient functioning of a face recognition
setup during day and night time may be ensured.

Motivated by the favorable results achieved in the first part of our research work,
additional contributions presented in this thesis explore the process of interspectral
synthesis in the reverse direction, i.e. from visible to thermal spectrum. Visible-to-
thermal image synthesis was employed to address the shortage of annotated public
face databases in thermal spectrum, which limits the development of fundamental task
in thermal face image processing. With the scope of this study being focused on the
facial landmark detection task, fully annotated synthesized thermal face databases were
obtained by transforming public annotated visible face databases into thermal spectrum.
Facial landmark detectors trained on the synthesized thermal face databases led to
significant improvements in landmark detection accuracy. A final contribution explored
visible-to-thermal synthesis to study the impact of spoofing attacks on thermal face
biometric systems. The robustness of thermal based systems lies in the acquisition process
itself as it provides proof of liveness by detecting the heat emitted by the face. A new
thermal attack, at the post-sensor level, is then proposed. Thermal face images, that are
obtained by visible-to-thermal face synthesis, are directly injected in the communication
channel after the sensor. In order to increase the difficulty of the proposed setup, a
scenario where the attacker has a priori knowledge about the spoofing countermeasure
employed by the system is also considered. Such a priori knowledge is exploited in
order to synthesize more threatening attacks for a given countermeasure technique. The
evaluation of spoofing detection systems when facing the proposed attack highlights the

vulnerability of thermal face recognition systems to the proposed indirect attack.
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Chapter 1

Introduction

1.1 Context and motivation

Biometric recognition is rapidly emerging as a reliable and a fast tool of identity man-
agement by analyzing physical and behavioral characteristics specific to each individual
that are distinctive, permanent and universal. While until very recently fingerprint was
known to be the most prevalent form of biometrics in commercial biometric systems [1],
face is now taking over to establish itself as a more convenient and accessible alternative.
Face represents the most natural and intuitive mean of recognition by humans, and the
information conveyed in face is especially rich and diverse. Unlike iris, hand geometry
and hand veins biometric systems, face recognition does not require costly and high
accuracy acquisition sensors. Furthermore, face recognition does not involve physical
interaction with the end user, thereby facilitating the identification of target subjects
from relatively great distances without the target’s cooperation, a significant asset for

law enforcement and security applications.

Over three decades of extensive research has led to a massive deployment of face
recognition systems along with substantial gains and improvements in performance. This
is due to a variety of factors that include the steady hardware developments and the
outbreak of abundant face data at the disposal of researchers. Face recognition systems
spans nowadays a wide range of vertical industries including banking, border control,
healthcare and security applications. Following the explotion in the ubiquity of smart
devices equipped with camera sensors, face recognition is now powering through Internet

of Things market.

In spite of its world-wide deployment and its growing popularity, face recognition

systems are still prone to fail when employed in unconstrained conditions. Face recognition
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systems are exclusively deployed using 2D and/or 3D acquisition sensors operating solely
in visible spectrum that suffers from various limitations. Among the main challenges
confronted by visible face recognition systems, variable or low illumination conditions
have been proved to be some of the major weaknesses of such systems [2,3,4], due to the
reflective nature of visible spectrum. Furthermore, head pose [5], facial expression [6],
makeup [7] are only some of other challenges that decreases the reliability of visible face
recognition systems. Moreover, visible face recognition systems are also threatened by
presentation attacks that endeavor to spoof the system and gain unauthorized access [8,
9,10,11]. Some prompt actions have been taken such as requiring an eye blink, smile
or other visual reaction to prove the liveness of the user, yet this can be easily tricked
using video replay attacks. Presentation attack detection [12,13,14] is still a very active
research area, although visible face recognition systems are extensively implemented
for border and access control and surveillance systems. Thereby, it is necessary to seek
solutions that are cost effective and easy to integrate with existing face recognition

systems.

Thermal face recognition has emerged as a promising complement to visible face
recognition, as it provides efficient solutions to tackle the challenges encountered by
systems based on visible spectrum. Thermal face images are invariant to light changes
due to the fact that the radiation detected by the thermal sensor is directly emitted by
the human face [15], and not reflected as it is the case for visible spectrum. Therefore, it
is possible to acquire a crisp thermal image without any external source of illumination,
based on subtle differences in temperature. Moreover, the sensitivity of visible face
recognition systems to head pose, facial expression and makeup variations is partly
due to the change of the reflectance of visible light, this is however not an issue in
thermal spectrum. Thereby, thermal face recognition systems are less affected by these
variations [16]. Additionally, thermal technology can be used as a presentation attack

detection tool, as it provides an evidence of the user’s liveness by simple acquisition.

Thermal imagery was initially limited to military use. The first thermal line scanner
was developed in 1947 by the US military and took one hour to produce one single
image [17]. In 1966, the first real-time commercial thermal imager was launched. By the
end of the 1990s, uncooled focal plane arrays with higher resolution were introduced at a
reduced prices, which motivated their use in civil applications. These applications include
building and roof inspection, environment control, medical testing and diagnosis and
art analysis [18]. However, the cost of thermal sensors remained exorbitantly high and
the quality of thermal data was insufficient for thermal spectrum to be explored in face
recognition applications. During the last decade, driven by the progress in microelectronics
and the dramatic lowering of manufacturing prices, uncooled microbolometers focal

plane arrays are providing high thermal sensitivity and high spatial resolution at very
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competitive prices. This even pertains to some models of smart phones that are starting
to be equipped with thermal imagers [19,20]. Consequently, research interest in thermal
face recognition has significantly grown. However, the data in thermal spectrum available
for the research community has not increased at a comparable pace to that of visible
spectrum face databases. This is a limitation for thermal spectrum investigation as a
biometric, particularly in the context of the current deep learning based trends, which
tend to be particularly data hungry. While visible face databases are abundant and can
lead to the training of highly complex deep neural models, the same cannot be done, as

of the time of writing of this dissertation, for thermal imagery.

While it is obvious that the dropping manufacturing costs in thermal sensors will
eventually make those capturing devices as mainstream as those in visible spectrum,
security related scenarios in which thermal sensors are already a reality cannot wait for
the available resources in thermal spectrum to balance with that of the visible spectrum.
For thermal spectrum databases to leverage the potential of those deep learning based
algorithms, characterisable by their data needy functioning, methods that allow to exploit
the complementary of the information that lies in both thermal and visible spectra need

to be developed, motivating the research presented in this dissertation.

The principal contributions of the presented work are focused on the development
of new advances that lay the ground for an efficient and prompt integration of thermal
technology in already commercially deployed face biometric systems. Such contributions
are needed to lead a step up in directing the development of state-of-the-art in thermal
facial image processing and sustain the growing usage of thermal spectrum. Promoting
the integration of thermal technology in existing face biometric systems is based on the
use of interspectral synthesis in both directions. Thermal face images can be transformed
in visible spectrum, bridging the impact of the aforementioned factors on visible faces,
and can then benefit from the wide range of available facial image processing tools.
Alternatively, it is possible to generate synthetic thermal face images required for the
design and the development of a specific task, by transforming available visible face
databases to thermal spectrum. The array of the proposed solutions throughout this
thesis prevents the adaptation and re-optimization of available resources to operate on
thermal spectrum, as well as the extensive collection of thermal face databases, that can

be costly and inefficiently time consuming.

1.2 Contributions and thesis outline

The need for the availability of multi spectral resources while massive thermal data is not

at the disposal for the research community has motivated the lines of research that are



Chapter 1. Introduction

presented in this dissertation and outlined in the following paragraphs. The contributions

made by the research included in this thesis are then as follows.

Chapter 3

A first contribution is that of Chapter 3, which presents the efforts developed by the
author of this dissertation in collecting a dual visible-thermal, paired-by-design face
database that include numerous variations in terms of facial expression, head pose,
occlusion and illumination conditions to replicate real-life, challenging scenarios for the
face recognition state-of-the-art systems. The careful design of this database aims to
foster the research in the field in as much as it also provides with the foundations on
which the remainder of the works presented in this thesis are built. Besides the design
and discussion of the collection protocol for the database, results of initial experiments

for its validation in face recognition research were reported.

Part of the work presented in this chapter was published in:

« K. Mallat, J.-LL Dugelay, “A benchmark database of visible and thermal
paired face images across multiple variations” in Proc. 17th International
Conference of the Biometrics Special Interest Group BIOSIG, Darmstadt, Germany,
September 2018.

which was awarded with the best poster award. The VIS-TH database has since then
been available to the research community and has been downloaded by over 25 teams

worldwide.

Chapter 4

The work presented in Chapter 4 relates to the first application of state-of-the-art deep
generative models to the problem of thermal-to-visible data synthesis. Recent advance-
ments in deep learning have led to the development of deep neural network topologies
capable of generating high-quality transformation between images of a significantly
different domains, with our interested being focused on cascaded refinement networks
(CRNs) [21]. In particular, our work puts the focus on the application of CRNs to
the problem of cross-spectrum face recognition in highly challenging scenarios, i.e. the
absolute darkness scenario, by allowing for thermal data to be immediately usable by
visible spectrum based systems by means of a CRN-based transformation. This contri-
bution prevents the extensive recollection of enrollment data in thermal spectrum and

the development of reliable algorithms for thermal face recognition. Results validated
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the proposed methodology and opened the door to the exploration of the better use
of a CRN-based transformation to further face image processing related tasks in the

remainder of this thesis.

Part of the work presented in this chapter was published in:

o K. Mallat, N. Damer, F. Boutros, A. Kuijper, J.-LL Dugelay, “Cross-spectrum
thermal to visible face recognition based on cascaded image synthesis” in
Proc. best conference, in Proc. 12th IARP International Conference on Biometrics
ICB,Crete, Greece, June 2019.

Chapter 5

Motivated by the positive results in Chapter 4, Chapter 5 reports the investigation of
mechanisms that intelligently incorporate the best attributes of face recognition systems
that work simultaneously on (i) visible images, and (ii)on synthesized thermal-to-visible
images. Whilst the quality achieved by thermal-to-visible face synthesis via the method
reported in Chapter 4 achieves a high quality and realism, of particular benefit in
scenarios in which the visible spectrum cannot cope, i.e. in poorly lit environments, the
resulting images are evidently a few steps behind that of standard, visible spectrum,
face images. The main contribution of this chapter then relates to the development
of a novel method based on dynamic fusion of matching scores of visible probes and
synthesized thermal-to-visible probes against visible gallery, via the usage of various
quality metrics widely used in image processing. The proposed method allows for a
face recognition system to smoothly transition between using visible or synthesized
thermal-to-visible images depending the relevance of each sample determined by a quality
score. The presented contribution enabled the design of illumination invariant face
recognition system, by exploiting the invariance of thermal spectrum to illumination

changes, without the requirement of thermal specific face recognition algorithms.

Part of the work presented in this chapter was published in:

e K. Mallat, N. Damer, F. Boutros, J.-LL Dugelay, “Robust face authentication
based on dynamic quality-weighted comparison of visible and thermal-
to-visible images to visible enrollments” in Proc. 22nd International Confer-
ence on Information Fusion FUSION,Ottawa, Canada, July 2019.
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Chapter 6

Following, Chapter 6 explores the potential benefit of CRN-based interspectral synthesis
for a task related to, but different than face recognition, that is of facial landmark
detection. The contribution of this work consists in introducing an innovative concept,
that to the our knowledge, hasn’t been previously explored in the literature. This novel
concept aims to tackle the shortage of annotated data in thermal spectrum. Given the
positive results achieved in the experiments included in the other chapters of this thesis,
we propose the leveraging of CRN-based image synthesis in the reverse spectral direction,
i.e. from visible to thermal spectrum, in order to synthesize thermal face databases and
exploit the annotation information provided in the visible spectrum for facial landmark
detection. The presumably higher information domain of visible spectrum compared
to that of thermal domain allows for the resulting transformation to be of extremely
high quality. Relating to our new application of interest of facial landmark detection,
the resulting high-quality, synthesized, thermal face databases allow for the training of
facial landmark detectors directly on the thermal spectrum. Facial landmark detection
in thermal spectrum still remains a challenge, mainly due to the limited resources of
databases with annotated landmarks in the thermal spectrum. Our proposed approach
achieves remarkable results with high facial landmark detection accuracy evaluated on

thermal data of different quality.

Part of the work presented in this chapter was submitted to:

o K. Mallat, J.-L Dugelay “Facial landmark detection on thermal data via
fully annotated visible-to-thermal data synthesis” in Submitted to Interna-
tional Joint Conference on Biometrics IJCB, Houston, USA, September 2020.

Chapter 7

The last contribution, presented in Chapter 7 of this dissertation, relates to a consequence
of the great success that face image processing techniques are acquiring in the recent years.
Face recognition systems are now widely used by both public authorities and domestic
users. Consequently, and whilst these methods normally provide with an enhanced level of
security in the authentication process for the average user, spoofing attacks have become
increasingly common, attracting wide research interest for face recognition among many
other biometric traits. Thermal imagery is generally considered as a natural spoofing
countermeasure. However, its robustness to spoofing threats lies in the acquisition process
itself. In the work presented in Chapter 7, we take the role of an attacker that intends
to break a thermal face biometric system by short-circuiting the thermal sensor and

injecting a thermal face image in the communication channel between the sensor and
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the subsequent processing module. The proposed attack, performed at post-sensor level,
is obtained by visible-to-thermal face synthesis. Two spoofing scenarios are studied: (i)
the attacker blindly injects a synthesized thermal image, or (ii) the attacker possesses
a prior knowledge about the spoofing countermeasure of the target system. For the
second scenario, a customized interspectral synthesis model, that incorporates the prior
information in the development of visible-to-thermal face synthesis, is introduced in
order to leverage more robust attacks against the targeted spoofing countermeasures.
While initial results in the literature report for thermal imagery to be a very robust
countermeasure to presentation attacks, the work presented in this dissertation highlights
the vulnerability of spoofing countermeasures when confronting attacks at post-sensor
level. This contribution aims to study the vulnerability of thermal face biometric systems

and the threats it may potentially confront once it is deployed.

Part of the work presented in this chapter was submitted to:

o K. Mallat, J.-L Dugelay, “Indirect synthetic attack on thermal face biomet-
ric systems via visible-to-thermal spectrum conversion” in Submitted to
25th International Conference on Pattern Recognition ICPR, Milan, Italy, January
2021.

The overall outline of this thesis is appended by means of a literature review relating
to facial image processing and thermal imagery in Chapter 2, and conclusions and

future work, which are presented in Chapter 8.
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Chapter 2

Thermal spectrum in facial image

processing: literature overview

This chapter reveals the motivation behind the usage of thermal spectrum in facial image
spectrum. An overview of the literature of relevance to facial image processing in thermal
spectrum is provided. This includes a review of research works that study thermal facial
image processing under unconstrained scenarios. Further detailed read can be found in

widely cited survey articles for thermal spectrum in face biometric systems [16,22].

2.1 Spectral imaging

Spectral imaging refers to imaging methods which operate in different bands of the
electromagnetic spectrum. In this section, some background fundamentals related to the
electromagnetic spectrum and infrared band are presented. The motivation behind the
usage of infrared spectrum, in particular thermal spectrum, in facial image processing is
then defended.

2.1.1 Electromagnetic spectrum

Electromagnetic radiation is a form of energy that propagates through space as elec-
tromagnetic waves carrying packets of energy called photons or light quanta [23]. The

electromagnetic energy spans a broad range of wavelengths and frequencies, known as
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the electromagnetic spectrum. The EM spectrum is usually divided into separate bands,
illustrated in Figure 2.1, based on different characteristics of emission, transmission and

absorption of each band.
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Figure 2.1: Electromagnetic spectrum: bands and their corresponding wavelengths.
Spotlight on the infrared band and the corresponding atmospheric transmittance window.
Figure adapted from [24].

The visible spectrum is the band of the EM spectrum that is visible for the human eye.
The visible band corresponds to a narrow range of wavelengths spanning from 380nm to
740nm. Each wavelength of the visible light band matches a particular color. Objects
do not in fact have colors, yet they have properties that indicate which wavelengths are
absorbed and which are reflected. The human vision system, much like visible sensors,
are sensitive to the reflected light wavelengths of the scene to construct an image. While
most mammals are also sensitive to visible light, many other species have the ability to
see outside the visible spectrum. Some insects can see in ultraviolet spectrum, which
enables them to detect nectar in flowers. Also, birds can see in the ultraviolet spectrum.
In fact, they have gender-dependent patterns marked on their feathers that are only
perceptible in ultraviolet light. Other species such as mosquitoes, bats, and some snakes,

however, can use sub-bands of the infrared spectrum for vision.

2.1.2 Infrared spectrum

Infrared imagery has been widely used mainly due to the advantages it offers over visible
imagery, notably for facial image processing. Face images in infrared spectrum can
be acquired in any illumination condition. In addition, subcutaneous information of
faces can be extracted using infrared spectrum. Infrared spectrum is also less sensitive

to scattering and absorption by smoke, dust or fog compared to reflected visible light.
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According to the International Commission on Illumination [25], it is recommended to

divide the infrared spectrum into four sub-bands as shown in table 2.1:

IR sub-bands | Acronym | Wavelength
near IR NIR 0.75-1.4
short wave IR SWIR 14-3
medium wave IR MWIR 3-5
long wave IR LWIR 8-15

Table 2.1: Spectral decomposition of infrared spectrum according to International

Commission on Illumination [25].

Each sub-band corresponds to continuous frequency block of the solar spectrum

which are divided by absorption lines of different atmospheric gazes [26], as depicted in

figure 2.1. Most of the infrared spectrum is not usable as it is blocked by the atmosphere.

Also, a window of the infrared spectrum between MWIR and LWIR from 5pm to 8pm

has no atmospheric transmission.
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Figure 2.2: Heat emission by the human body predicted by Planck’s law at 305 K [16].
The highlighted part represents the dead zone with no atmospheric infrared transmission.

According to the Planck’s law, each body being in the thermal equilibrium emits

radiation in a broad spectral range. In the context of face processing, the difference

between different infrared sub-bands originates as a consequence of the human body’s

heat emission, as represented in Figure 2.2. The most of the heat energy is emitted in
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the LWIR range, therefore it is referred to as the thermal sub-band. To a lesser degree,
significant amount of heat is also emitted in MWIR sub-band, for this reason the term
‘thermal spectrum’ can sometimes be extended to include MWIR, sub-band. LWIR and
MWIR sub-bands can be used to passively detect thermal emissions of the face without
requiring an external source of illumination. Whereas NIR and SWIR require appropriate
illumination as the facial heat emission is nearly inexistent in these sub-bands. Figure 2.3
displays face images in visible spectrum and in different sub-bands of infrared spectrum.
NIR and SWIR face images seem more similar to the visible spectrum image than MWIR
and LWIR images. This is due to the fact that visible, NIR and SWIR spectra acquire
reflected radiation, whereas MWIR and LWIR acquire emitted radiations of the face.

Visible NIR SWIR MWIR LWIR

Figure 2.3: Face images acquired in different spectra. Figure reproduced from [27].

2.2 Thermal spectrum for facial image processing

Thermal image of the human face presents a unique thermal signature which can be
used for facial recognition [28], as the facial temperature distribution exhibits individual
patterns. Thermal imagery received a lot of attention in face recognition mainly due to
the fact that it relies on passive heat radiation and does not need illumination source.
The acquisition of a scene depends on the specifications of the thermal sensor, the
emissivity of the different objects present in the scene and the temperature difference
between them. Noise equivalent temperature difference (NETD) identifies the minimum
temperature difference that is required for an object to be separated from the noise, it
means that objects with temperature difference below the NETD value will disappear in
the noise [29]. NETD is considered as the most common measure to characterize the
performance of thermal sensors. Lower values of NETD imply higher sensor performance.
Figure 2.4 displays face images acquired with sensors of different NETD values. One can
observe that the lower the NETD value is, the higher the quality of the image. However,
NETD can be measured using different techniques and under different conditions, which
makes it difficult to compare the performance of thermal sensors directly based on the

NETD values. Thermal sensor equipped with uncooled micro-bolometer focal plane
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arrays are generally characterized by NETD values between 30 and 130 mK (millikelvin),
whilst sensors equipped with a cooler may have an NETD value below 20 mK. Although,

cooling devices are extremely expensive.

o
70mK 50mK 30mK

Figure 2.4: Face images acquired with sensors of different values of NETD.

The usage of thermal spectrum in facial image processing grants some advantages
over the visible spectrum that can overcome some of the main constraints encountered
by visible face recognition systems. However, thermal spectrum suffers from various
challenges that originate from the fact that the heat emitted by the human face is affected
by a number of factors. The advantages and the limitations of the usage of thermal face
images under real-world challenges are discussed in this section. A literature overview of

the research studies associated with each challenge is presented.

2.2.1 Illumination variation

As previously stated, thermal sensors acquire face images in a passive manner through
sensing the facial thermal emission without the need for external source of illumination.
This property of thermal spectrum is the main reason why it has been receiving a lot of
attention in facial image processing. The immunity of thermal spectrum to illumination
variations tackles the major constrain confronted in visible face recognition. Figure 2.5
shows the impact of illumination variation on visible and thermal spectra. We can see

that thermal faces can still be acquired even in total darkness.

Several studies [28,30,31,32,33,34,35,36,37] have proposed the use thermal spectrum
to overcome the illumination challenge. Socolinsky et al. [30] introduced a decision
based fusion using a weighted combination of visible and thermal matching scores. The
introduced approach was evaluated in indoors and outdoors scenarios and proved efficiency
in most of the use cases but it failed under extreme illumination conditions. Bhowmik et
al. [31] proposed an optimum level of pixel fusion from visible and thermal face images
by fusing images as a weighted sum and then projected into eigenspace. The fused

eigenfaces are classified using train Multilayer Perceptron. Arandjelovic et al [32,33, 34]
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Figure 2.5: Impact of illumination variation on visible and on thermal spectrum.

debated that the optimal weights in decision level fusion are illumination related. The
authors proposed to fuse matching scores of raw appearance and filtered appearance of
the visible and the thermal spectra. The proposed approach is based on the observation
that if the best matching is achieved in visible spectrum it is because the illumination
change between the gallery and the probe sample is minor and more weight should be
associated to the visible spectrum and vice versa. A similar approach was introduced by
Moon et al [35] where the fusion of visible and thermal spectra is performed through
representing face images by the coefficients obtained from a wavelet decomposition. Other

studies [36,37] using wavelet based fusion schemes were also proposed.

2.2.2 Expression variation

While facial expression still remains a significant challenge for face recognition in visible
spectrum, thermal spectrum seems to be less affected by facial expression changes. Due
to the reflective nature of visible spectrum, facial expression change yield to a change in
light distribution across the face resulting from varying surface normals. This does not
impact the thermal spectrum as it detects the heat emitted by the face. Socolinsky et
al. [4] have carried out a comparative study of different face recognition approaches in
visible and thermal spectra. Experiments performed under facial expression variation
showed that face recognition performance on the visible spectrum is always inferior to
the performance on thermal spectrum. Kong et al. [38] conducted an extensive study of
multi-scale fusion of visible and thermal spectra which showed that that thermal face
recognition performed better than visible face recognition under various facial expression
conditions. Hariharan et al. [39] introduced a data level fusion scheme that generates an
image that contains information from both visible and thermal spectra. The approach
is based on empirical mode decomposition. Face recognition experiments proved that

thermal spectrum is not affected by facial expression variation as much as the visible
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spectrum. The invariance of thermal spectrum to facial expression changes is the reason

why emotion recognition is not being widely investigated in thermal spectrum.

2.2.3 Head pose variation

Changes in head pose yield to a change of light distribution across the face and the
appearance of shadows that occlude facial features in visible spectrum. Being invariant
to light changes, thermal spectrum is less affected by head pose variation compared to
visible spectrum. Friedrich et al. [28] proved this by comparing image space differences of
thermal and visible spectrum. Abidi et al. [40] studied the fusion of visible and thermal
spectrum at data level and at decision level as a solution for a robust face recognition
against pose variation by exploiting the thermal information. Pop et al. [41] proposed a
score based fusion of visible and thermal spectrum using PCA feature extraction and
nearest neighbor classification. The proposed approach improves the face recognition

performance reported on visible spectrum.

Being less affected by head pose changes than visible spectrum, several studies [42,43,
44, 45] have focused solely on thermal spectrum to develop solutions of pose invariant face
recognition. Zaeri et al. [42] introduced a new approach for thermal face recognition based
on affine moment invariants technique. Face images are divided into 16 non-overlapped
components. Similarity measures of the feature vectors corresponding to the different
components are fused to obtain a final score. Experimental results have showed that
this technique has delivered robustness against head pose variation. Buddharaju et
al. [45] proposed using the physiological properties of the human face captured in thermal
spectrum. The proposed approach is based on extracting of the vascular network of the
face. To generalize the approach to different head pose variation, the vascular network
was extracted from images of faces in 5 different poses. The branching points of the

skeletonized vascular network are then matched to report face matching scores.

2.2.4 Eyeglasses challenge

Eyeglasses are opaque to the infrared spectrum in the SWIR, MWIR and LWIR sub-bands
[16], as the eyeglasses block the emitted radiation. Contrarily, the impact of eyeglasses
on the appearance in the visible spectrum is way less significant. Figure 2.6 illustrates

the impact of eyeglasses on visible and thermal spectrum.

A lot of efforts were devoted to tackle the eyeglasses challenge in thermal face
recognition. Studies conducted by Gyaourova et al [46] and Singh et al. [47] proposed

a data level fusion technique based on feature selection in visible and thermal thermal
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Figure 2.6: Impact of eyeglasses on visible and on thermal spectrum.

spectrum using a genetic algorithm. Using Haar wavelet and eigen component based
features, the proposed fusion technique yielded to a higher performance compared to pure
visible or pure thermal face matching, specifically when subjects are wearing eyeglasses.
Heo et al. [48] studied fusion techniques at data level and at decision level, while proposing
to replace the detected eyeglasses by a generic eye template. The eyeglasses replacement
resulted in significant improvement in face recognition performance A similar solution
was proposed by Kong et al. [38] where the eyeglasses are detected and replaced by the
average eye appearance. Wong et al. [49] used the face reconstruction information from

the visible image to replace the eyeglasses patches in thermal spectrum.

2.2.5 Presentation attacks

One of the main advantages of thermal spectrum over visible spectrum in facial bio-
metric systems is its robustness to presentation attacks. Presentation attack consists
in presenting a fake human biometric sample in attempt to gain unauthorized access or
evade biometric recognition [50]. Thermal imagery is considered as a natural presentation
attack countermeasure, as it provides evidence of the user’s liveness through simple
acquisition. Generally, the fake artefact is characterized by thermal properties that
are entirely different from those of a human face. Figure 2.7 reveals some examples
of presentation attack in visible and thermal spectrum. It can be noted that simple
presentation attacks, from (a) to (d), deliver thermal prints that are practically uniform.
Although, when a silicone mask is worn by a person it can get heated and present a
similar thermal print to a human face, as shown in Figure 2.7e, yet it delivers an average

temperature much lower than of an average human face.
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(@) (b) ©

Figure 2.7: Presentation attack on visible and on thermal spectrum.(a) plain printed
paper (b) wrapped printed paper (c) tablet (d) laptop (e) silicone mask (a sample from
CSMAD database [51]).

Several multispectral databases [51,52,53] were proposed to study the robustness
of different spectra against presentation attacks. Bhattacharjee et al. [51,54] proposed
to simply use mean brightness intensity of the thermal face region as presentation
attack detection score. Despite of its simplicity, the proposed approach is proved to
be efficient yielding to high detection accuracies. Agarwal et al. [53] introduced a new
multispectral database of presentation attack and studied the robustness of visible, NIR
and thermal spectra against these attacks. By evaluating several presentation attack
detection approaches, thermal spectrum yielded to the highest performance proving
to be the most robust compared to the other spectra. George et al. [52] proposed a
multichannel convolutional neural network using a joint representation from multiple
channels: depth maps, visible, NIR and thermal spectrum, which improved highly the
classification accuracy of attacks from bona fides on account of the robustness of thermal

spectrum to presentation attacks.

2.2.6 Disguise and cosmetic makeup

While images in visible spectrum can be easily altered by disguise and/or cosmetic
makeup, thermal spectrum is less affected by these alterations due to the acquisition of

thermal properties.

Disguise is generally acted using various artificial accessories that are marked by a
different thermal signature than of a human face which can be easily detected on thermal
images [55]. Dhamecha et al. [56] proposed a new database of face disguise in visible

and thermal spectrum. Samples from the database are presented in Figure 2.8. The
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authors also introduced a patch-based classifier for disguise detection. The proposed
approach uses intensity and texture encoders to classify face patches in visible and thermal

spectrum as biometric or non-biometric. The non-biometric patches are discarded and

local binary pattern (LBP) based face recognition is performed on the biometric patches.

Figure 2.8: Samples of face disguise extracted from I?BVSD database [56] in visible and
on thermal spectrum.

Unlike disguise that can be easily perceived in thermal spectrum, cosmetic makeup
hardly affects the thermal signature of a face, as can be seen in Figure 2.9. Therefore,
face recognition can still be performed in thermal spectrum even in the presence of facial
makeup changes. Short et al. [57] studied the impact of cosmetic makeup of different
material on visible and on thermal spectrum. The authors conducted face recognition
experiments in both spectra and proved that thermal spectrum has yielded to higher

recognition performances than visible spectrum.

Foundation
——Eyeliner
Eye shadow
Lipstick

White makeup
paint

Black makeup
paint
Red crayon
paint

Figure 2.9: Impact of cosmetic makeup on visible and thermal spectrum. Figure extracted
from [57].

(1|

2.2.7 Facial plastic surgery

It is acknowledged that facial plastic surgeries can alter the performance of face biometric
systems operating in visible spectrum. Plastic surgery is generally used for correcting

facial feature irregularities or improving facial appearance. This includes adding or
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subtracting skin tissues, adding silicone, redistribute fat, etc. All these procedures
require surgical incisions that cause alteration of blood vessel flow. These alterations are
detectable in thermal spectrum as cold spots [55]. Figure 2.10 shows a thermal image of

a leg where a cold spot appears indicating a surgical incision.

30,0

Figure 2.10: Thermal image showing pathological veins due to surgical incision. Figure
extracted from [58].

2.2.8 Additional remarks

In addition to all the aforementioned advantages that the thermal spectrum grants over
visible spectrum, thermal spectrum can differentiate monozygotic twins, while their
appearance in visible spectrum is nearly identical. Prokoski et al. [59] carried out a
qualitative assessment of similarity in visible and thermal spectrum using a limited number
of samples acquired from monozygotic twins. The difference between the twins detected
in thermal spectrum is traced back to the complexity of the network of blood vessels
which provides a vascular pattern that is unique to each person including monozygotic

twins.

While its listed advantages are numerous, thermal spectrum still suffers from various
drawbacks, other than the eyeglasses problem. Thermal face images depend strongly on
the heat pattern emitted by the face, however this emitted heat can be affected by a
number of factors, such as ambient temperature, physical exercise, postprandial, illness,
etc; as highlighted in [16]. Consumption of food, alcohol and caffeine may also alter the
thermal characteristics. Some of these variables produce global changes to the face. But
other variables affect the thermal appearance in a local manner, like blushing, or having
a local infected area. This high sensitivity of the thermal images to several factors makes

extracting discriminative features a difficult task.

Until very recently, thermal technology used to provide extremely expensive sensors
with very low resolution. However these recent years, thermal technology is evolving

rapidly offering competitive prices and higher quality sensors.
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2.3 Summary

This chapter defines some background fundamentals of thermal imagery and the mo-
tivation behind its usage in facial image processing. In addition, a literature overview
of facial image processing in thermal spectrum is presented for various unconstrained

scenarios.

22



Chapter 3

Visible and thermal paired face
database

Although thermal face recognition has recently grown as an active area of research,
it still suffers from shortage of available thermal databases designed for training and
evaluation of facial image processing that limits its exploration. In attempt to exploit
the information complementarity provided by visible and thermal spectrum, a novel
dual face database, that is acquired simultaneously in visible and thermal spectra, is
introduced. The proposed database includes numerous facial variation such as expression,
head pose, occlusion and illumination variations as to replicate the challenging scenarios
encountered by face biometric systems. The remainder of the work presented in this

dissertation are based on the database introduced in this chapter.

In this chapter, we introduce the first contribution of the work presented in this
dissertation. Section 3.1 presents an overview of the existing public databases providing
visible and thermal face images. Then, the proposed database that addresses the
lack of variability in the existing ones, is introduced in Section 3.2 aiming to develop
face recognition systems robust against real-world challenges. Section 3.3 presents a
preliminary study conducted to assess the performance of the visible and the thermal
spectrum under each variations. Following, a comparative study of different levels of
fusion of visible and thermal spectra is conducted to conclude the saliency of each
spectrum under different variations. Finally, a summary of the chapter is presented in
Section 3.4
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3.1 Overview of the existing visible and thermal face

databases

Currently, there are numerous public face databases acquired in visible spectrum covering
all variations possible [60]. However, interest in utilizing thermal face images has grown
only recently and thus only a few databases have been provided, particularly databases
that involve simultaneously acquired images in visible and thermal spectra. We present
in the following the few public databases containing visible face images and their thermal

counterpart. Table 3.1 summarizes the key descriptors of the presented databases.

3.1.1 EQUINOX

The "human identification at a distance" [61], collected by Equinoz Corp., is the most used
database for evaluating face recognition algorithms based on thermal spectrum. The data
was collected under 3 different lighting conditions (frontal, lateral right and lateral left),
using a system composed of a visible CCD array and a LWIR microbolometer, capable
of capturing simultaneous co-registered videos. During the acquisition, the subjects were
asked to pronounce some vowels, and then to act out some expressions (smile, frowning,

and surprised).

3.1.2 UND-X1

"UND collection X1" [62,63,64] is a thermal and visible facial database collected by the
University of Notre Dame, using a Merlin uncooled LWIR sensor and a high resolution
visible color camera. The data was acquired, in multiple sessions, under only two lighting

conditions. For each illumination, two images were taken (neutral face and smiling).

3.1.3 USTC-NVIE

"The natural visible and infrared facial expression database" [65] was collected by the
University of Science and Technology of China, using a DZ-GX25M visible camera and a
SAT-HY6850 thermal camera. Each subject was asked to act out 6 different expressions,
and then was exposed to situations provoking these expressions naturally and capture

additional 6 different samples.
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3.1.4 IRIS

IRIS thermal visible face database [66] is a public database collected by Imaging, Robotics
& Intelligent Systems Lab. The data was acquired using a Panasonic WV-CP234 visible
camera and a Raytheon Palm-IR-Pro thermal camera of 7-14um spectral range. The
database contains face images from 32 subjects asked to perform three different expressions.
Five illumination conditions were considered. The two cameras are placed on a mechanized
setup in a way that 11 images are captured from different viewing angles for each

illumination and expression variation.

3.1.5 CARL

Carl Dataset [67,68] is a public database collected by the Polytechnical University of
Catalonia. The database contains face images from 41 different subjects in near-infrared,
thermal, and visible spectrum. The data is acquired using a CMOS image sensor for
visible spectrum and TESTO 880-3 thermal camera with spectral range of 8-14um. Carl

Dataset contains images from 41 subjects using 3 different illumination setups.

Table 3.1 sums up the key descriptors of the aforementioned databases.

# facial variations
Database Thermal resolution | #subjects/#images
Illumination | Expression | Head pose | Occlusion

Equinox [61] 320%240 90/5000 pairs 3 3 1 1
UND-X1 [62,63,64] 312x239 32/2292 pairs 2 2 1 0
USTC-NVIE [65] 320%240 103/3230 pairs 1 2x6 1 0
IRIS [66] 320%240 30/2816 pairs 5 3 11 0
Carl [67,68] 160%120 41/2460 pairs 3 1 1 0

Table 3.1: Existing face databases acquired in both visible and thermal spectra.

We should point out the fact that these databases were focused on different aspects
of studies. The EQUINOX database [61] was collected in a single session, taking into
account 3 expression variations and 3 light conditions. UND-X1 database [62, 63, 64]
focused on studying time-lapse impact on thermal face recognition performance, the data
was acquired in multiple sessions under two lighting conditions only, with neutral and
smiling expressions. Whereas NVIE database [65] was acquired mainly to investigate the
impact of thermal spectrum on expression recognition, thus the only variation considered
was facial expression. The IRIS database [66] was designed to cover all the head pose
variations. The CARL database [67,68] was focused on studying multispectral face
recognition under 3 different illumination conditions. UND-X1, USTC-NVIE, IRIS and

CARL databases were collected using different devices to acquire face images in visible
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and thermal spectra separately which does not guarantee the simultaneous acquisition
resulting in not having the same face image in the two spectra. However, EQUINOX
database [61] was collected using a sensor capable of capturing simultaneous videos in
both domains. Among all the reviewed databases, the IRIS database seems to cover
the widest range of facial variations. However, the visible and the thermal images are
taken from different viewing angles. Lastly, although occlusion variations are still a
challenging factor for face recognition algorithms, none of the databases have considered

these variations.

3.2 Visible and thermal paired face database

The collection of a new database of visible face images and their thermal counterpart is
motivated by the limited number of the public face databases providing paired images
acquired simultaneously, and the lack of facial variations considered. In this section, we
present the sensor used in the database collection, the acquisition setup, and a description

of the collection protocol.

3.2.1 Dual Visible and thermal camera - FLIR Duo R

FLIR systems [69], acronym for forward-looking infrared, is the world’s largest company
specializing in thermal cameras and sensors production. A thermal imaging camera is
a non-invasive instrument which scans and visualizes the temperature distribution of

surfaces of an object rapidly and accurately.

The sensor used in collecting the database, presented in this section, is a newly (at
the time of collection of the database) developed dual sensor thermal camera FLIR Duo
R by FLIR Systems, featured in Figure 3.1. This camera is designed for unmanned
aerial systems (UAS), but it is well suited for simultaneously capturing images and
videos in both visible and thermal spectrum. The camera can be easily configured and
operated using the FLIR UAS mobile application which allows to set color palettes,
image optimization features and many other parameters shown in Figure 3.1. The visible
sensor is a CCD sensor with a pixel resolution of 1920x1080. The thermal sensor of
this camera is an uncooled Vanadium Oxide (VoX) microbolometer and has a spectral
response range of 7.5 - 13.5um with a pixel resolution of 160x120 and a noise equivalent
temperature difference NETD<100mK. We acknowledge that the thermal resolution of
the camera is considerably low. However, Mostafa et al. [70] has proven that high face
recognition rates can be achieved with low resolution 64x64 pixels thermal face images,
making of the camara’s resolution a minor drawback. Moreover, an updated version of

the camera with 640x512 resolution has been released later on, and a high resolution
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Figure 3.1: Flir Duo R camera and FLIR UAS mobile app

version of the database is being collected by this author of this dissertation, which will

be shortly made available to the public.

3.2.2 Acquisition setup

The acquisition setup, illustrated in Figure 3.2, included a white background behind
a chair at a fixed distance of 1m to the camera. The scene was illuminated with a
three-point lighting kit, including a rim light, key light and fill light, placed to limit
shadows. The ambient temperature of the room was set to 25°C. The room windows were
covered with cardboard to achieve very low illumination conditions when illumination

variations are acquired.

3.2.3 The database collection protocol

50 subjects of different age, sex and ethnicity volunteered for the collection of the database.

The demographic characteristics of our proposed database are presented in Figure 3.3.

Before the acquisition process, volunteers were asked to fill and sign consent and
metadata forms approved by the CNIL "Commission nationale de l’informatique et des
libertés" [71]. During the data collection, the camera was set to capture a shot every

second to limit acquisition errors. Each subject was asked to perform several facial
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Fluorescent light

Acquisition
sensor

Figure 3.2: The database acquisition setup.

expressions, to change the head pose, to wear some items like sunglasses and cap, and

finally the light was varied while the subject stayed in a natural state.

The database includes 21 face images per subject with different facial variations,
resulting a total of 4200 images. The considered variations are shown in Figure 3.4 and

described as follow:

e Expression: 7 pairs captured with standard illumination, frontal pose with different

face expression: neutral, happy, angry, sad, surprised, blinking, yawning.

e Head pose: 4 pairs captured with standard illumination, neutral expression with
different head poses: up, down, right at 30°, left at 30°.

e Occlusion: 5 pairs captured with standard illumination, frontal pose, neutral
expression and varying occlusions: eyeglasses, sunglasses, cap, mouth occluded by

hand, eye occluded by hand.

e Illumination: 5 pairs captured with frontal pose, neutral expression and different
illuminations: ambient light, rim light, key light, fill light, all lights on, all lights
off.
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Figure 3.3: Demographics of VIS-TH database: (a) gender, (b) age, and (c¢) ethnicity.
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Figure 3.4: Illustration of visible and thermal images for various facial variations.

3.2.4 Access and usage conditions

The VIS-TH database proposed in this chapter is freely distributed upon request for
standardization and academic research purposes, according to the European General
Data Protection Regulation GDPR*. The database information and license request can
be accessed at http://vis-th.eurecom.fr/.

*General Data Protection Regulation https://gdpr-info.eu/

29



Chapter 3. Visible and thermal paired face database

3.3 Preliminary evaluation

The aim of this section is to present a preliminary evaluation to assess the applicability of
the proposed database. A comparison of thermal and visible spectra against various facial
variations introduced in our database is performed. This study will provide an efficient
comparison of the performance of visible and thermal spectrum in the face recognition
application, thanks to the simultaneous acquisition of the data that allowed to eliminate
all other factors that may bias the comparison. Finally, a comparative study of different

levels of fusion of visible and thermal spectra is carried out.

3.3.1 Evaluation protocol

Visible images were subsampled into 160x120 pixels. Faces in both visible and thermal
spectra were detected and cropped. Face images were then normalized. Two benchmark

approaches for face recognition were selected for our preliminary evaluation:

Eigenfaces [72] is a holistic approach based on principal component analysis (PCA).
The idea of using principal components to represent human faces was developed by
Sirovich and Kirby [73]. Eigenfaces approach is still considered as a baseline comparison

method to demonstrate the minimum expected performance of a system.

Fisherfaces [74] is based on both principal component analysis (PCA) and linear
discriminant analysis (LDA). Fisherfaces algorithm has achieved high performances on
visible face images. Moreover, Socolinsky et al. [4] have compared holistic face recognition
algorithms and proved that Fisherfaces achieved the highest recognition rate on thermal

face images.

Performing a cross-fold validation, the data has to be split randomly in two subsets,
one will be selected as a training set and the other as a testing set. Reiterating this
process and returning the average performance reports significant results. However, since
our aim is to study the impact of different variations on face recognition performance for
visible and thermal face images, the database was split in 4 subsets, with each subset
associated with a variation: illumination, expression, pose and occlusion. In order to test
the face recognition performance for each variation, we have repeated the experiment
considering, at each iteration, a different variation subset as training. For instance,
to assess the face recognition performance on visible and on thermla spectrum under
expression variation, the testing set, in this case, is the set containing images representing

all the expression variations and the experiment will be repeated considering a different
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training set at each iteration (illumination, pose and occlusion).

3.3.2 Face recognition in thermal and in visible spectrum

Table 3.2 and Table 3.3 illustrate the Rank-1 recognition rates of Eigenfaces (PCA)
and Fisherfaces (LDA) algorithms on each spectrum. In addition, cumulative match
characteristic (CMC) curves [75] are presented for visible and thermal spectra under
different variations. A CMC curve shows various probabilities of recognizing a person
depending on how similar their biometric features are to that of other people’s. Figure 3.5
shows the overall CMC curves for Eigenfaces and Fisherfaces, representing results
aggregated over visible and thermal spectrum. Each plot of Figure 3.5 represent CMC

curves under different facial variation.

TEST
Illumination Expression
VIS TH VIS TH
PCA | LDA | PCA | LDA | PCA | LDA | PCA | LDA
T | Illumination | N/A N/A N/A N/A | 0.703 | 0.814 | 0.606 | 0.96
R | Expression 0.857 | 0.733 | 0.765 | 0.973 | N/JA | N/A | N/JA | N/A
A | Pose 0.854 0.66 0.708 | 0.893 | 0.617 | 0.914 | 0.446 | 0.891
I | Occlusion 0.891 | 0.793 | 0.725 | 0.973 | 0.69 | 0.957 | 0.63 | 0.962
N | Average 0.867 | 0.728 | 0.733 | 0.946 | 0.67 | 0.895 | 0.56 | 0.937
Table 3.2: Rank-1 recognition under expression and illumination variations.
TEST
Pose Occlusion
VIS TH VIS TH
PCA | LDA | PCA | LDA | PCA | LDA | PCA | LDA
T | Ilumination | 0.352 | 0.312 | 0.284 | 0.365 | 0.706 0.69 0.45 0.59
R | Expression 0.296 | 0.476 | 0.268 | 0.417 | 0.667 0.83 0.503 0.53
A | Pose N/A N/A N/A N/A | 0.627 | 0.633 0.36 0.42
I | Occlusion 0.28 0.38 | 0.268 | 0.428 | N/A | N/JA | N/A | N/A
N | Average 0.309 | 0.389 | 0.273 | 0.382 | 0.667 | 0.719 | 0.436 | 0.513

Table 3.3: Rank-1 recognition under pose and occlusion variations.

As can be seen, thermal spectrum outperforms the visible spectrum when tested on
the illumination variation. This confirms the statement that thermal spectrum does not
need an external source of illumination to acquire images while visible spectrum is highly
sensitive to light changes. Similarly when tested on expression variation, we note that
face recognition performance is particularly higher for the thermal spectrum compared to
visible spectrum. We believe that this outcome is due to the reflective nature of visible

spectrum that makes it highly sensitive to light changes unlike the thermal spectrum,
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Figure 3.5: Cumulative Match Characteristic curves for various collection scenarios.

since changes in facial expressions imply changes in the distribution of the light across
the face surface. Although, when it comes to head pose variations, we notice that both
visible and thermal spectrum perform almost equally at Rank-1 recognition. Furthermore,
performance obtained by visible spectrum is significantly higher than the performance of
thermal spectrum for occlusion variation. This is due to some limitations of the thermal
spectrum. For example, the eye glasses are opaque to the thermal wavelengths since they
block the heat emitted by the face region covered by the glasses’ frame and lenses, while
on visible spectrum we can see the eye details thanks to visible light transmittance in
glass. Comparing the face recognition performance obtained using the two benchmark
face recognition algorithms, we observe that the performance of the Fisherfaces approach
on thermal spectrum is significantly higher than the performance of the Eigenfaces
method, exclusively for illumination variation (Figure 3.5a) and to a lower degree for
expression variations (Figure 3.5b). However, this increase in performance is not observed

for visible spectrum. This is justified by the fact that intra-class variability in thermal
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spectrum is considerably smaller than intra-class variability in visible spectrum. Light
distribution across the face changes according to the illumination conditions and to some
extent to the expression conditions, leading to a high variability in visible images but

not in thermal images as the thermal spectrum is immune to light changes.

3.3.3 Comparative study of different levels of fusion

In this section, we present early experiments in sensor-level, feature-level and score-level
fusion to study the impact of different levels of fusion on face recognition rate on the

proposed database and to infer the saliency of each spectrum against each variation.

Preprocessing

One of the main challenges of sensor-level fusion is that it requires high precision in image
registration. The data acquired with the new sensor FLIR Duo R presents a slight shift.
Visible and thermal face images were co-registered using edge-based image registration

approach inspired from [76].

Schemes of different levels of fusion

In the sensor-level fusion approach, pixels values of visible and thermal images are
weighted and summed to generate fused images. Face recognition experiments are then
performed on the fused face images. Figure 3.6 illustrates a fused image 3.6¢ resulting
from the average summation of Figure 3.6a and Figure 3.6b. We can observe that the

fused image presents the properties of both visible and thermal spectra.

(a) Visible image (b) Thermal image (c) Fused image

Figure 3.6: Sensor-level fusion of visible and thermal spectra.

For feature-level fusion, we compute separately the face subspace from the training
set for each of the spectra. For testing set, the projection of gallery and probe faces are

done onto the corresponding face subspace. Visible features and thermal features are
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then fused through weighted summation.

Whereas for score-level fusion, face subspaces are computed separately for the visible
images and its thermal counterpart. Scores, for the visible and the thermal spectra,
are then computed between the gallery and the probe faces. Then, these scores are
normalized, using min-max normalization. Finally, the scores are fused using a weighted

summation.

For the three proposed schemes of fusion, we have varied the weight associated with
the visible spectrum as well as the thermal spectrum, as illustrated in Equation 3.1 where
fused, visible and thermal refer to either the image, the face feature or the matching
score and computed rank-1 recognition for Eigenfaces and Fisherfaces algorithms for

each weight.

fused = Wyisipie X visible + (1 — Winermar) X thermal (3.1)

Experimental results

To study the impact of different levels of fusion on face recognition performance for each
spectrum, we present, in Figure 3.7, the variation of recognition rate according to the
weight associated to the visible and the thermal spectrum when tested under different

facial variations.

For illumination variation, it is already proved that face recognition systems based on
thermal spectrum perform better than the system based on visible spectrum. However,
in particular for sensor-level fusion, we have perceived when we have added the visible
information the recognition rate has relatively increased and that is due to the textural
information that the visible spectrum provides. Although after a certain threshold, the
more visible information we consider, the more the performance decreases. This observa-
tion can be justified by the fact that visible spectrum is highly sensitive to illumination
changes. Figure 3.7b illustrates the impact of fusion levels on recognition rate under
expression variation. We observe that score-level fusion provides the highest performance
rates. However, the performance has hardly increased compared to the performance
of thermal based face recognition. Considering now the recognition performance when
tested under head pose variation featured in Figure 3.7c, it is noted that the performance
has drastically increased when the two spectra were uniformly fused. Particularly, the
highest performance rates were registered when sensor fusion was applied. We believe
this improvement is due to the combination in image level of the textural information of

the visible spectrum and the invariance of thermal spectrum to light distribution across
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Figure 3.7: Impact of different fusion levels on the rank-1 recognition rate varying the
weight associated to each spectrum.

the face. Whereas for occlusion variation, a reverse behaviour is observed when compared
to illumination variation. The poor performance of thermal spectrum when tested under
occlusion variation is due to the fact that certain objects, i.e occlusions, block the heat

emission.

Overall, when a spectrum performs considerably higher than the other, we did not
obtain significant improvement in performance of face recognition when applying fusion.
Also, it is perceptible that score-level fusion provides better results than sensor-level
fusion. This observation can be justified by the fact that fusing images from different
spectra can result in altering the information provided by each, in particular when one
spectrum fails under specific conditions, as it is the case of low illumination for visible

spectrum and eyeglasses for thermal spectrum.

35



Chapter 3. Visible and thermal paired face database

3.4 Summary

A new database of face images acquired simultaneously in thermal and visible spectra,
aiming to cover a wider range of facial variations compliant with hands-on scenarios, is
introduced in this chapter. The proposed database is publicly available* upon request.
Preliminary evaluation is presented to assess the applicability of the proposed database to
the face recognition task and to determine the performance of state-of-the-art benchmark
face recognition approaches for both visible and thermal spectrum. In addition, a
comparative study of different fusion levels was conducted to gauge the saliency of each

spectrum in improving face recognition performance.

*VIS-TH database: http://vis-th.eurecom.fr/
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Cross-spectrum face recognition
based on thermal-to-visible image

synthesis

Face synthesis from thermal to visible spectrum is fundamental to perform cross-spectrum
face recognition as it simplifies the integration of thermal technology in already deployed
face recognition systems and enables manual face verification. In this chapter, a new
solution based on cascaded refinement networks is proposed. This method generates
synthesized visible images of high visual quality without requiring large amounts of
training data. By employing a contextual loss function during training, the proposed
network is inherently scale and rotation invariant. We discuss the visual perception,
followed by a qualitative evaluation of the synthesized visible faces in comparison with
recent works. We also provide an evaluation in terms of cross-spectrum face recognition,
where the synthesized faces are compared against a gallery in visible spectrum using two
state-of-the-art deep learning based face recognition algorithms. The evaluation results
show the efficiency of the proposed approach and pave the way to its exploration for

further facial image processing tasks.

The remainder of this chapter is organized as follow. Motivation that drove to this
work are presented in Section 4.1. The proposed approach for thermal-to-visible image
synthesis is introduced in Section 4.2. Section 4.4 details the adopted experimental
setup. A qualitative and quantitative assessment of the synthesized visible images is
presented in Section 4.5. Following, an evaluation of the proposed approach in terms of
cross-spectrum face recognition is reported in Section 4.6. The chapter is summarized in
Section 4.7.
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4.1 Context and motivation

While thermal face processing [15,45,77,78,79] has evolved during the last two decades,
the deployment of thermal technology remains a step behind compared to technologies
deployed in visible light spectrum. The motivation behind the work presented in this
chapter relates to the need of a prompt and straightforward integration of thermal sensors
in already deployed face recognition systems. However, enrollment data of these existing
systems are commonly acquired exclusively in visible light spectrum. Recollection of
enrollment samples in thermal spectrum would be costly in terms of time, efforts, and
financial and storage resources, and is thus an un-realistic alternative to thermal face
recognition deployment. Many studies [27,80,81,82,83,84,85] have attempted to match
thermal face images against visible face enrollment samples. Considering the large
difference between the visible and the thermal spectra, several efforts have been made to
try to overcome this gap. These can be categorized into three aspects: latent subspace,

domain invariant features and image synthesis.

Latent subspace approaches aim to project faces acquired in both spectra into one
common underlying subspace, in which the relevance of thermal-to-visible data can
be directly measured. Choi et al. [82] [27] used Partial Least Squares Discriminant
Analysis (PLS-DA) to learn the mapping between thermal and visible face images. Safraz
et al. [80] used a multilayer fully-connected feed-forward neural network to learn the
non-linear mapping between the two modalities over the training set while preserving the
identity information. The second approach to perform cross-spectrum face recognition
seeks to extract domain invariant features, that are only related to face identity. Chen
et al. [83] introduced a thermal-to-visible matching framework based on hidden factor
analysis used to extract the identity features of a person across different spectra. Image
synthesis approaches aim to convert a face image from one spectrum to another, so that
face matching can be carried out in the same domain. In this work, we focus on an
image synthesis strategy for cross-spectrum face recognition, consisting in generating
visible images from thermal captures that will be matched against a gallery of visible
faces. This approach bridges the spectrum gap at the image preprocessing, as illustrated
in Figure 4.1, without requiring modification on inner modules of the face recognition
system. Opting for this strategy is essential to enabling the integration of thermal face
data in existing face recognition systems, as well as manual face verification by human

examiners.
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Figure 4.1: Ilustration of image synthesis based cross-spectrum thermal-to-visible face
recognition. In this case the integration of thermal technology in already deployed face
recognition systems only requires the addition of a thermal-to-visible image synthesis
module.
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4.2 Literature overview

First attempts to investigate face synthesis from thermal to visible spectrum were
conducted by Li et al. [81]. Their work presented a learning-based framework that takes
advantage of the local linearity in the spatial domain of the image as well as in the image
manifolds. Then, they apply Markov random fields to organize the image patches and
improve the estimated visible face images. Dou et al. [86] used Canonical Correlation
Analysis (CCA) to extract the features in order to find one-to-one mapping between
thermal and visible faces. The relationship between the two feature spaces in which the
visible features are inferred from the corresponding thermal features is then learnt using
locally linear regression. Finally, locally linear embedding is utilized to reconstruct the

visible face from the converted thermal features.

In the wake of the recent advances in deep learning, several works were based on
Generative Adversarial Neural networks (GAN) to synthesize visible images not only
from thermal inputs [87,88], but also from near-infrared [89, 90|, and polarimetric
data [84,91]. GANSs, first introduced by I. Goodefellow in [92], can learn to generate
from any distribution of data through a contest of two neural networks: a generator
and a discriminator. The generator aims to maximize the probability of making the
discriminator classify its output as real. While the discriminator pushes the generator to

generate more realistic data.
Different models can also be used for similar conversion. For examples, deep con-
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volutional Generative Adversarial network (DCGAN) [93] and Boundary Equilibrium
Generative Adversarial Networks (BEGAN) [94]. DCGAN introduced the Convolution
Neural Network (CNN) into the discriminator and the generator. BEGAN introduced
an equilibrium factor that controls the model training by balancing the discriminator
and generator. These GAN models significantly improved the training stability, but they
did not improve the generated images quality. However, and notwithstanding the more
complex resulting topologies, some GAN-based approaches such as Cycle-Consistent
Adversarial Networks (CycleGAN) [95] and Image-to-Image Translation with Condi-
tional Adversarial Nets (Pix2Pix) [96] succeeded at generating higher resolution images.
CycleGAN consists of four neural networks (two generators and two discriminators).
Training such a big model is computationally costly and requires large databases, that
are unavailable for an application like the one dealt with in this chapter, to achieve

satisfactory results.

Zhang et al. [84] considered synthesizing colored faces from thermal images with
various head poses and occlusion with eyeglasses. This work used Conditional GANs
inspired from the Pix2Pix system [96], but coupled with a closed-set face recognition
loss that led to preserve the face identity information. A cross-spectrum face recognition
evaluation is performed, using the pre-trained MatConvNet VGG-based model [97],
and reported a performance improvement of 14.88% compared to the Pix2Pix [96]
system’s reported performance. A recent work by Wang et al. [88] derived from the
CycleGAN model [95] incorporated a facial landmark detector loss that depicts face
identity preserving features. This system was evaluated using a FaceNet model [98]
pre-trained on publicly available visible datasets, and improved cross-spectrum face
recognition performance by 3% compared to the original CycleGAN system. However,
this work is different from our framework in that its aim is to generate visible face images
in gray scale, and it also discarded face generation under challenging conditions such as

head pose and occlusion.

4.3 Thermal-to-visible image synthesis

To generate images from thermal to visible spectrum, we propose to base our approach on
cascaded refinement networks (CRNs) [21]. We chose the CRN as the basic block for our
image synthesis as it considers multi-scale information and is based on training a limited
number of parameters. This allows for a higher resolution generation and less data size
dependency in comparison to solutions based on GANs. Chen at al. [21] have adopted
pixel-to-pixel loss, perceptual loss [99], to train the CRN model. We, on the other hand,
used contextual loss [100], that compare regions of images based on semantic meaning.

In this section, we first present the CRN network architecture. Then, we introduce the
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contextual loss function.

4.3.1 Cascaded refinement network

Cascaded refinement network was first presented in [21] to synthesize photographic images
from semantic layouts. The presented architecture scales seamlessly to high-resolution
images, obtaining 2-mega pixels photo-realistic images from 2D semantic label maps.
The challenge addressed in [21] lies in the attempt to generate detailed photographic
images from simple semantic label maps. Thermal-to-visible image synthesis can be
seen as a similar problem to the one dealt with in [21], as our objective is to generate
highly informative images in visible spectrum from a less informative domain as thermal

spectrum, since it lacks texture and color information.

CRN is a feed-forward convolutional neural network that consists of inter-connected
refinement modules. The first module considers the lowest resolution space (4x4 in our
case) and takes as input the thermal image downsampled to 4x4. A feature map is
generated by the first module and then upscaled using a simple bilinear upsampling. The
next module receives as input the upscaled feature map concatenated with the thermal
image downsampled to the corresponding resolution. Image resolution is duplicated in
the successive modules until the last module (128x128 in our case), matching the target
image resolution. An illustration of the image synthesis approach using CRN is shown in
Figure 4.2. The input thermal images are processed at different scales and fed into the
next level in the cascade along with the thermal image at the next scale. Finally, the
targeted image (visible in this case) is synthesized. Figure 4.3 portrays a single refinement
module. Each refinement module consists of only three layers, input, intermediate, and
output layer, and handles a given resolution. Global structure of visible face is generated

at low resolutions while local details are progressively refined.

- w*h e w,*h e
e Fo Fo Fi-l > Fi Ff-l
w'he 1 Refinement “'.‘*h.‘*‘ Bilinear | whc wrhid, > Refinement w‘*h‘*L Bilinear withd,, Refinement
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M M. M

0 f

*h*
whFe

Figure 4.2: The CRN-based multi-scale approach to transform the thermal image into a
visible image.
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Figure 4.3: Illustration of the refinement module. As an input, the refinement module
gets the feature map generated by the previous module concatenated with the thermal
image downscaled at the corresponding resolution w; x h; X c.

4.3.2 Contextual loss

To control the training of our CRN network, we used the contextual loss function [100].
This choice is based on our need for: a) a loss function that is robust to not well aligned
(as in our use-case where input face images are not uniformly aligned), and b) neglect
outliers on the pixel level (in comparison to pixel-level loss [96,101]). Gramm loss [102]
can satisfy the two aforementioned conditions, however, unlike in the contextual loss, it

does not constrain the content of the generated image as it describes the image globally.

The contextual loss function aims to compare regions with similar semantic details
while preserving the context of the entire image. Contextual loss is based on contextual
similarity measure. Two images are considered contextually similar if their corresponding
sets of features are similar. Figure 4.4 presents a simplified illustration of the idea behind
measuring contextual similarity. The feature y; is contextually similar to feature z;
if the distance between the two features is particularly small compared to the rest of
features in image X. This problem can be posed as nearest neighbor search in image X
for each feature y;. Put differently, contextual similarity is high when there is one-to-one
matching of feature sets, while it is low when for a feature y; it exists a set of features z;
that are almost equally similar to y;. Accordingly, features z; and y; are contextually
similar if d;; < djj, while Vk # ¢ and d;; denotes the Cosine distance between features
x; and y;. To highlight the similarity of features x; and y; in comparison to the other
features x;, distances are normalized as follow:

_ dij

di; = (4.1)

mingdy; + €

where ¢ = le — 5. Distances are converted into similarity as:
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= e(%) (4.2)

where h > 0 denotes the bandwidth parameter. A normalization of the contextual

similarity is then applied so that it becomes robust to scale variation:

w,-j

CX;i = —>—
“ Zk W

(4.3)

Finally, the contextual similarity between images X and Y, given N feature points, is

formulated as:

1
CX(X,Y) =+ Z max CXyj (4.4)

Reference image X Processed image Y Feature space

Xi ’yl

Figure 4.4: Illustration of contextual similarity. The patches of image Y are compared
against all patches of image X at high dimensional space. The feature patch x; in image
X that corresponds to the feature patch y; in image Y is presented at a closer distance in
feature space compared to the other features from image X. This means the contextual
similarity between the two features, linked with the green arrow, is higher that the
contextual similarity between the rest of the sets of features, linked with the blue arrows.

The loss function of thermal-to-visible image synthesis should be able to transform
the image from thermal to visible spectrum while preserving the facial attributes. Our
loss function can then be modeled as a combination of two losses: style loss and content
loss, as defined by Gatys et. al [102]. The style loss is computed between the synthesized
visible image and the ground truth visible image. Minimizing the style loss manages
to generate artificial images with the same properties as the target visible image. The
content loss is computed between the input thermal image and the synthesized visible

image. The content loss aims at preserving details of facial attributes. Using contextual
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loss allows to tolerate some local deformations that are required to perform the thermal-
to-visible style transferring. Both losses were calculated between image embeddings
extracted by a pre-trained VGG19 [103] network trained on the ImageNet database [104].

The total loss is calculated as given in [100] and formulated as:

Lex (It Ivis, G) =A1(—log(CX (P (G(Irm)), ®" (Ivr1s))))+

(4.5)
Ao (= log(CX (@ (G(Irn)), ®"(Irn)))),

where I7p, Iyvis, and G are the input thermal image, reference visible image, and
the generator (i.e. thermal-to-visible image synthesis module) respectively. C'X is the
rotation and scale invariant contextual similarity [100]. ® is a perceptual network, VGG19
in our work. ®c(r), ®s(z) are the embeddings vectors extracted from the image z
at layer [, and [ of the perceptual network respectively. Here . is the conv4_2 layer
representing the content layer and I is the conv3_2 and conv4_2 layers representing the
style layers, as motivated in [102]. Feature sets are considered as 5x5 patches extracted

with stride of 2 from the content and style layers.

4.4 Experimental setup

In this section, we present the preprocessing steps we applied on the database used for
the development and the evaluation of our proposed solution. Then, we introduce our
implementation details set to perform thermal-to-visible image synthesis. Finally, we

present the baselines models of image synthesis to which our approach is compared.

4.4.1 Database preprocessing

We used the VIS-TH face database [105], presented in chapter 3, for the development
and the evaluation of our solution. As stated, pixel resolution of face images in visible
spectrum is 1920x 1080 pixels and in thermal spectrum is 160x 120 pixels. Images, from
both visible and thermal spectrum, were normalized and sampled to 128 x 128. Enabling
an evaluation of our solution in hands-on scenarios, and considering that face alignment
in thermal spectrum still remains a challenge itself, the face images were not aligned,

thus they contained slight variable shifts.

4.4.2 Implementation details

In our implementation, the training was run for 40 epochs, batch size of one, and le-4
learning rate. The weights assigned to each term of the loss function are set to A; = 0.01

and A = 0.99 by checking the resulting synthesized image visually. Moreover, the pairs of
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input thermal image and reference visible images are of identical faces that are acquired
simultaneously, and thus the loss weighted by A9 maintains the structural details of the

source image.

Face images from 45 subjects, except for the ones acquired in total darkness, were
used for training the face synthesis network. The thermal face images from the remaining
5 subjects were fed to the trained model to synthesize the visible images. This experiment
was performed 10 times in order to cover all the images contained in the database without

overlapping the test and train images or identities.

4.4.3 Image synthesis baselines

In order to assess the efficiency of our proposed approach to perform thermal-to-visible
image synthesis, we have selected two baseline models. The two selected baselines are
based on GANS, as it is the most used generative model since it was introduced in 2014
by Goodfellow et al [92]. The first baseline is the renowned Pix2Pix model, proposed by
Isola et al. [96] to perform image to image translation. The second baseline is TV-GAN
model presented by Zhang et al. [84]. This baseline is more adapted to our framework

where the proposed model aims to synthesize visible face images from thermal inputs.

Isola et al. [96] | referred to as Pix2Pix, learns the mapping from one domain to
another, by training a conditional GAN using a least absolute deviations (L1) loss
function. The generator is based on the U-Net [106] architecture, an encoder-decoder
with skipped connections between mirrored layers in the encoder and decoder stacks.
At the same time, the discriminator aims to classify real images from generated ones.
Pix2Pix model has been extensively used for a variety of tasks and applications. The

training was run for 85 epochs, batch size of one, and 2e-4 learning rate.

Zhang et al. [84] |, have designed a network, called TV-GAN, notably to generate
visible face images from thermal captures. This work is inspired from Pix2Pix [96], as
it uses the same exact network for the generator. However, the authors proposed a
multi-task discriminator, that does not only classify real from generated images, but also
performs a closed-set face recognition with which they can compute an identity loss. This
aims to generate visible images while preserving identity information from the thermal
inputs. The introduction of identity loss in the GAN training was inspired by Tran et

al. [107]. The training was run for 65 epochs, batch size of one, and 2e-4 learning rate.
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4.5 Quality assessment of synthesized visible images

The human visual cortex is exclusively trained on scenes which spans visible light
wavelength detected by the human eye, much similarly to existing face recognition
systems. Consequently, humans present very limited ability to interpret thermal images.
The motivation behind thermal-to-visible image synthesis is not only limited to perform
cross-spectrum face recognition, it is also driven by the need to convert images from
thermal to visible spectrum so that it can be interpreted by humans. Visual quality
assessment is then necessary. In this section, we present firstly a qualitative assessment
of synthesized visible images. Then, a quantitative evaluation is reported by comparing

the synthesized images to the reference visible images.

4.5.1 Qualitative assessment

The images in Figure 5.1 illustrate, in each row, a sample from different facial variations
of synthesized visible face images from thermal inputs. The column (a) shows the input
thermal faces. In columns (b) to (d), we present visible faces synthesized using the
Pix2Pix model by Isola et al. [96], the TV-GAN model by Zhang et al. [84] and finally our
model based on cascaded refinement network, respectively. The last column (e) shows

the ground truth visible faces.

The different face images with frontal face pose were synthesized with satisfying visual
quality. Although we note that our proposed model has succeeded in generating more
informative details (e.g. eyes, mouth) compared to the Pix2Pix and TV-GAN results,
it does not always generate the correct attributes such as skin color and gender. We
can observe that all synthesized visible faces differ in skin color from the ground-truth
images, and this applies to all synthesis models. This is due to the fact that thermal
images do not contain texture and color information, thus, it is difficult to infer the skin
color tone from the thermal signatures. Another visual distortion can be noted on the
visible samples synthesized by our proposed model in the second and the fourth row
of Figure 5.1. These samples show some added facial hair around the mouth and the
jaw area. This observation can be reasoned by the unbalanced distribution of gender
representation within the training data. Third and sixth rows display samples from
different head poses, where we can observe major artefacts in the synthesized visible
faces when compared to the frontal head pose. As for images acquired with occlusion,
illustrated in the fourth and seventh rows, they were synthesized in relative good quality.
However, we perceive some confusion in generating faces with eyeglasses. This is justified
by the fact that the training data contains samples with eyeglasses and others with

sunglasses that both have similar thermal pattern, both blocking the heat emitted by the
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(d) (e)

Figure 4.5: Selected samples of synthesized face images under challenging scenarios. (a)
Thermal (b) Isola et al. [96] (c) Zhang et al. [84] (d) Ours (e) Ground truth
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eyes area. Synthesizing visible images with occlusion by hand was successful, however,
with high level of blur in the hand region. Overall, it is noteworthy that our proposed
model provides visible faces that are the most visually pleasing compared to Pix2Pix
and TV-GAN models.

To highlight the main motivation of this work, we display, in Figure 4.6, samples
that were acquired in operative scenarios of thermal sensors usage, where face images
were captured in total darkness. As expected, the poor or absent illumination does not
impact the synthesized visible images. In fact, we succeeded in synthesizing images with

informative facial attributes that are absent in the visible spectrum.
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8 0§
LIAA AN

Figure 4.6: Samples of generated images acquired in total darkness. (a) Thermal (b)
Isola et al. [96] (c) Zhang et al. [84] (d) Ours (e) Ground truth

4.5.2 Quantitative assessment

Two quality indices, peak signal-to-noise ratio (PSNR) and structural similarity index

measure (SSIM), are selected to assess the visual quality of the synthesized visible images.

Peak signal-to-noise ratio (PSNR) measures the level of degradation of a recon-

structed signal in comparison to the original signal. A higher PSNR value indicates
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higher image quality.

2
B maXI
(4.6)
m— ln—l
MSE(Ilyrs,G(Irm)) G(Irm)( —Iyvrs(i, ]))
=0 jZO

where MSFE is mean square error, and max; is the maximum pixel value of the
image (255 for 8 bits images). Iyrs, ITH, G indicate the reference visible image, the
input thermal image and the image synthesis model, respectively. G(Irp) represent the

synthesized visible face image.

Structure similarity index measure (SSIM) was introduced by Wang et al. [108].
This quality metric is considered more adapted to the human visual system. SSIM
measures the image degradation as the perceived alteration of the structural information.
Let us suppose that x and y are two windows extracted from the reference visible
face image Iy g and the synthesized visible image G(Irp), respectively. SSIM is then
formulated as:

. (QNxﬂy)@ny + c2)
SIM(Y) = (a2t a)o2 +of T o) .7

where i, and g, are the average of x and y, o2 and 05 are the variance of x and vy,

respectively. ¢; and co are positive constant to prevent a null denominator.

Table 7.1 reports the PSNR and SSIM values obtained when comparing the synthesized
visible face images, generated using different image synthesis models, to the ground truth
visible images. The obtained results, ~17dB for PSNR and ~0.65 for SSIM, do not reflect
high fidelity of the synthesized visible images to the ground truth. The synthesized visible
faces are generated from facial thermal signatures, that represent different information.
Thermal-to-visible image synthesis models aim to reproduce an estimation of visible light
spectrum properties but it cannot predict them accurately, such as texture, color and

more detailed geometrical information.

Comparing the results obtained for the two baselines, the identity loss term that was
introduced by Zhang et al. [84], to the model proposed by Isola et al. [96] has led to a
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slight increase of quality indices. However, a more relatively important improvement is
noted for our proposed model, which aligns with our qualitative assessment of the image

synthesis quality.

PSNR (dB) SSIM
Isola et al. [96] | 17.247 (£ 2.855) | 0.6485 (+0.123)

Zhang et al. [84] | 17.257 (+2.897) | 0.6509 (+0.125)
Ours 17.8144 (£3.635) | 0.6725 (+£0.131)

Table 4.1: PSNR and SSIM reported on synthesized visible images obtained using our
proposed approach as well as the image synthesis baselines.

4.6 Cross-spectrum face recognition evaluation

The main motivation of the work presented in this chapter is to provide an efficient and
prompt solution to integrate thermal technology in already deployed face recognition
systems. In this section, we evaluate the efficiency of our proposed approach of thermal-
to-visible image synthesis in context of cross-spectrum face recognition. Firstly, we
introduce the algorithms selected to carry out face recognition experiments. Then, we
define the experimental scenarios that we have considered. Finally, results and discussion

are presented.

4.6.1 Face recognition algorithms

For evaluating the synthesized faces when used in cross-spectrum face recognition task,
we measured the recognition performance of two selected widely-used face recognition

algorithms:

OpenFace [109] is an implementation of face recognition system using deep neural
networks based on Google’s FaceNet [110] architecture. The OpenFace network is trained
using the combination of the two largest public face databases CASIA-WebFace [111]
and FaceScrub [112]. The training of the OpenFace model was based on triplet loss
minimization. The evaluation of OpenFace model provided competitive performances
compared to previous state-of-the-art systems. We use the OpenFace pretrained model
to map faces into 128-dimension embeddings. Then, nearest neighbours algorithm is

applied using the Euclidean distance to discriminate matching samples.
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Light CNN [113] is a new implementation of CNN for face recognition designed to have
fewer trainable parameters and to handle noisy labels. This network introduces a new
concept of max-out activation in each convolutional layer, called Max-Feature-Map, for
feature filter selection. This network has achieved better performance than CNNs while
reducing computational costs and storage space. When evaluated on the LFW database,
Light CNN achieved face recognition accuracy of 99.33%, outperforming OpenFace that
obtained a 92.92% of accuracy. We used the trained network with 29-layers to obtain
embeddings of 256-dimension from face images. Embeddings extracted from gallery and

probe templates are compared using cosine similarity.

4.6.2 Experimental scenarios

The performance of our image synthesis solution in cross-spectrum face recognition is

compared to face recognition experiments performed in the following scenarios:

Visible: We perform face recognition in the visible spectrum, by considering the neutral
face image as gallery and the rest of the facial variations as probe images. This will report
the performance of the selected face recognition algorithms, that will be considered as
an upper bound for the evaluation of the synthesized images. Besides, this baseline will
depict the utility of thermal-to-visible face synthesis in hands-on scenarios, in particular

when the face is acquired in poorly lit environments.

Thermal: Here, we conduct cross-spectrum face recognition without any modifications
applied to the thermal data. Simply put, we consider as gallery set the neutral face
image acquired in visible spectrum and as probe set all the other face variations acquired

in thermal spectrum. This baseline will quantify the gap between the two spectra.

Isola et al. [96] (Pix2Pix) We perform cross-spectrum face recognition by matching
the synthesized visible faces obtained by the model proposed by Isola et al. [96] against
the visible face enrollments. It is interesting to compare our approach to this baseline, as

it is considered a benchmark for image synthesis.

Zhang et al. [84] (TV-GAN) Synthesized face images obtained by the model pro-
posed by Zhang et al. [84] are matched against visible face enrollments. The performance
reported by the face recognition algorithms when using the synthesized face images
obtained by TV-GAN will quantify the improvement brought by appending the identity

loss term in the training of the Pix2Pix model. In addition, evaluating the model proposed
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by Zhang et al. [84] will lead to a fair comparison of our approach, as both models are

introduced in the same framework, i.e. that of thermal-to-visible image synthesis.

4.6.3 Experimental setup

The database contains in total 21 different facial variations. Cross-spectrum face recogni-
tion evaluation is performed for the different variation set separately. Therefore, we have

split the database into 5 subsets of as follow:

Neutral 1 sample/subject
Expression 6 samples/subject

Head pose 4 samples/subject

Occlusion 5 samples/subject

INlumination | 5 samples/subject

Table 4.2: Distribution of the database across the defined subsets.

The neutral face image acquired in visible spectrum is considered as an enrollment

sample for all the subjects.

4.6.4 Results

In order to evaluate the synthesized visible face images, we have performed cross-spectrum
face recognition using two different systems. The evaluation experiment consists in
comparing, in the first place, the synthesized neutral face against the ground truth, and
then matching the synthesized faces from each of the facial variation subsets against
the visible neutral face. We report, in Table 4.3 and Table 4.4, the recognition accuracy
of the OpenFace and Light CNN, respectively. To get a deeper understanding of the
performance of the two face recongition systems used to evaluate the results obtained,
we plot the receiver operating characteristic (ROC) curves, in Figure 4.7 and Figure 4.8,
corresponding to some selected samples from different face variations. It is worth noting

that the Light CNN face recognition system results outperform by far that of OpenFace.

We note from the reported results that all synthesis models outperformed the system
defined in the thermal scenario, which proves the efficiency of synthesizing visible face
images in reducing the spectral gap between visible and thermal data. TV-GAN reports
better performances than Pix2Pix confirming the efficacy of the identity loss in preserving
the subject identity when synthesizing visible images. Foremost, our proposed solution,

based on CRNs, outperforms all the models by a large margin, particularly observed
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Visible | Thermal | Isola et al. [96] | Zhang et al. [84] | Ours
Neutral - 4 8 20 20
Expression 97.66 3.33 7.66 11 17.33
Head Pose 75.5 2.5 4 8 9.5
Occlusion 80 2 7.2 8.4 10
INlumination 80.8 3.2 10.4 11.6 20
Average 86.79 3.01 8.49 10.76 15.37

Table 4.3: Cross-spectrum face recognition accuracy across multiple facial variations
using OpenFace system

Visible | Thermal | Isola et al. [96] | Zhang et al. [84] | Ours
Neutral - 32 48 54 82
Expression 99.66 23 37.33 38.33 67.66
Head Pose 80.5 12.5 14.5 15.5 30
Occlusion 98.8 14.4 16.4 25 44.8
INlumination 87.2 15.6 29.6 35.2 63.6
Average 95.232 19.5 29.166 33.606 57.612

Table 4.4: Cross-spectrum face recognition accuracy across multiple facial variations
using Light CNN system

on LightCNN results, and that applies to all facial variations. This is mainly due to
the limitations of GANs that are known for being data hungry. However, our system
succeeded in generating relatively high quality visible images despite the limited size of
the training data. Furthermore, both Pix2Pix and TV-GAN models are trained using
a L1 loss function, making them very sensitive to image misalignment. Alternatively,
our proposed system uses contextual loss which makes it inherently scale and rotation

invariant.

The improvements in performance reported by our proposed approach, is relatively
higher for neutral, expression and illumination variations when compared to the improve-
ments in performance reported on occlusion and head pose variations. This is due to
the fact that our proposed model of thermal-to-visible face synthesis, as well as the two
baseline models, are more likely to fail in generating correct facial traits when the face is

presented in a challenging head pose and/or occlusion variations.
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Figure 4.7: ROC curves of cross-spectrum face recognition based on OpenFace system
for selected samples from: (a) expression variation, (b) head pose variation, (c) occlusion

variation.
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Figure 4.8: ROC curves of cross-spectrum face recognition based on Light CNN system
for selected samples from: (a) expression variation, (b) head pose variation, (c) occlusion

variation.
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4.7. Summary

Table 4.5 reports the rank-1 recpgnition of OpenFace and Light CNN face recognition
systems when employed in total darkness. We plot also, in Figure 4.9, the ROC curves of
the two evaluation systems in the absolute dark condition. We can clearly observe that
our proposed model not only outperforms other face synthesis models but also it provides
significantly higher performance compared to the visible spectrum. This affirms the
efficacy of face synthesis from thermal to visible in one of the most challenging scenarios

such as poorly lit environments.

Visible | Thermal | Isola et al. [96] | Zhang et al. [84] | Ours
OpenFace 16 2 10 14 22
Light CNN 42 16 28 36 56

Table 4.5: Cross-spectrum face recognition accuracy in operative scenario where samples
were acquired in total darkness.
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Figure 4.9: ROC curves of cross-spectrum face recognition in dark environment: (a)
OpenFace system (b) Light CNN system.

4.7 Summary

Although several efforts have been devoted in recent years for face synthesis from thermal
to visible spectrum, the task remains challenging considering the shortage of the available
data designed for this task. We present, in this chapter, a novel solution based on cascaded
refinement networks, that succeeded in generating color visible image of satisfying quality,
trained on a limited size database. The proposed network is based on the use of a
contextual loss function, enabling it to be inherently scale and rotation invariant. Despite
the existence of challenging facial variations such as occlusions, expression, head pose

and illumination, our solution has produced the most visually pleasing synthesized face
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images when compared to existing work. We also performed an evaluation of our solution
in cross-spectrum face recognition task. The reported results have shown that our system
outperforms recent face synthesis systems. Underlining the motivation of face synthesis
from thermal to visible spectrum, we have proved that face recognition performance
reported on the synthesized images is significantly higher than the one reported on visible
spectrum when operated in poorly lit environments, as it was improved by 37.5% (i.e.
from 16% to 22%) and 33.33% (i.e. from 42% to 56%) evaluated by OpenFace and
Light CNN, respectively.
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Chapter 5

Illumination invariant face
recognition based on dynamic
quality-weighted fusion of visible

and thermal spectrum

A new scheme of score level fusion is introduced in this chapter for illumination invariant
face recognition from visible and thermal spectrum. The work presented in this chapter
explores a direction leading to a fast and smooth integration into existing face recognition
systems and does not require recollection of enrollment data in thermal spectrum. This
chapter investigates the potential role of thermal spectrum in improving face recognition
performances when employed under adversarial acquisition conditions. We consider a
context where individuals have been enrolled solely in visible spectrum, and their identity
will be verified using two sets of probes: visible images and thermal-to-visible images.
The thermal-to-visible face synthesis [114] is performed using the approach presented
in Chapter 4, and face features are extracted and matched using Light CNN [113] and
Local Binary Patterns [115]. The contribution of this work lies in performing the fusion
procedure through several quality measures computed on both visible and thermal-to-
visible synthesized probes and compared to the quality of visible gallery images, in a way
that it determines the relevance of each of the probes in improving the face recognition

performance

The remainder of this chapter is organized as follows. Motivations leading to this work
are given in section 5.1. A literature overview on visible and thermal spectrum fusion,

followed by a brief review on quality based fusion for multimodal biometric, is presented in
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Section 5.2. Section 5.3 introduces the proposed dynamic quality-based fusion scheme for
illumination invariant face recognition. Experimental results are presented in Section 5.4.

A summary of the work and findings reported in this chapter ares given in Section 5.5.

5.1 Motivation

Our first attempt to synthesize visible face images from thermal inputs [114] took the
first steps towards enabling a prompt and easy integration of thermal sensors in already
deployed face biometric systems. While this work showed improvement in performance
in terms of visual quality [116] and cross-spectrum face recognition compared to some
selected baseline models [84, 96], face recognition based solely on visible spectrum
significantly outperforms systems based on synthesized visible face images when operated

under controlled illumination conditions.

It is undeniable that face recognition performance reported on the synthesized images
is significantly higher than the one reported on visible spectrum when engaged in poorly
lit environments, as face recognition accuracy was improved by 37.5% [114] for Light CNN
system. However, synthesized visible face images are stillfew steps behind compared to
visible images when confronting other sorts of variations. Thermal-to-visible face synthesis
inadvertently generates few artctifacts and occasionally some wrong facial attributes
that may alter the face matching process. In an attempt to achieve an illumination
invariant face recognition system operating continuously day and night, we propose to
fuse scores obtained while matching visible face probes with visible face gallery and
the scores obtained by matching thermal-to-visible generated images from thermal face
against the same visible face gallery. Based on the intuition that image quality can be
indicative of the utility of a face sample, we propose to fuse the score of matching visible
face images and synthesized visible face images against visible gallery images, based on

the image quality score of each component.

5.2 Related work

Since the emergence of thermal imagery in biometrics, a lot of efforts have been devoted to
performing visible and thermal fusion in order to achieve improvements in unconstrained
face recognition research. Several studies [46,47] explored the usage of genetic algorithms
(GAs) to select features extracted separately from visible and thermal spectra and perform
fusion at score level. Desa et al. [117] used GAs to find the optimal strategy of feature
fusion at non linear transformed domain, exploring two non linear face subspaces: Kernel

Principle Component Analysis and Kernel Fisher’s Linear Discriminant Analysis. Chen et
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al. [118] used a decision based fuzzy integral fusion of visible and thermal face recognition
results. Buyssens et al. [119] introduced a special type of CNN based on diabolo network
model [120] to extract features from both visible and thermal images and then fused the
matching scores. Hariharan et al. [39] proposed a new data-level fusion scheme using

empirical mode decomposition.

In an attempt to exploit the thermal spectrum for illumination invariant face recogni-
tion, several fusion studies have been proposed. Heo et al. [48] proved the complementarity
of visible and thermal spectrum for illumination invariance by investigation data and
decision level fusion. Arandjelovic et al. [33,34,121] presented a multistep fusion scheme,
carried out at the decision level and holistic and local feature level of visible and thermal
faces. Socolinsky et al. [30,122,123] proposed a simple decision based fusion using a
weighted combination of visible and thermal matching scores. The proposed fusion scheme
was evaluated indoors and outdoors, resulting in better face recognition performance in

varying illumination conditions but failing in extreme illumination conditions.

The research objective of this work is to provide a continuous face recognition system
that is invariant to illumination changes. This can be achieved by setting up a visible
and thermal fusion scheme where the weight of each component is assigned by the

corresponding image quality.

Several fusion and modality selection solutions were proposed, in setting multimodal
biometric systems, based on quality assessment of the biometric sample. Good quality im-
age usually yields a robust matching performance. Fierrez-Aguilar et al. [124] introduced
one of the earliest works of biometric quality fusion at the score level, integrating quality
information into a Bayesian statistical model for multimodal biometric classification.
Using a unimodal biometric system, Vatsa et al. [125] proposed fusing the RGB channels
based on quality scores to improve the performance of iris recognition. Zhou et al. [126]
presented quality based eye recognition by segmenting the eye into iris ans scelra and

performing classification on the selected region as reported by its quality.

5.3 Quality-weighted score fusion

In this section, we describe in detail the proposed fusion solution. First, we depict
the continuous day and night face recognition scenario. Then, we define the two face
recognition systems used to compare face samples and obtain their matching scores.
Subsequently, we list the quality assessment metrics considered in this study. Finally, we

describe the proposed quality-weighted fusion scheme.

61



Chapter 5. Illumination invariant face recognition based on dynamic
quality-weighted fusion of visible and thermal spectrum

5.3.1 Scenario description

The main motivation of this work is to assure a continuous day and night face recognition
while granting an easy integration of thermal sensors in face recognition systems. The
thermal sensor integration is provided by synthesizing visible face images from thermal
inputs and matching the synthesized image against the visible gallery samples [114], as
presented in Chapter 4. As for the continuity of face recognition, it is controlled by the
quality weighted fusion of matching visible faces and synthesized visible faces against
visible face gallery. Thereby, the participation of each component is indicated by the

corresponding quality score.

Figure 5.1 depicts different gallery samples as well as probe samples in three different
illumination conditions. Probe VIS corresponds to face images acquired in visible light
spectrum, whereas Probe Gy g represents synthesized visible faces from thermal inputs.
Thermal-to-visible face synthesis model [114] is presented in Chapter 4. Training the
thermal-to-visible face synthesis model was carried out using numerous facial variations
taken in controlled illumination conditions. This model provides a faithful estimation of
the visible information based on the thermal input when it is initially missing in the visible
spectrum. In other words, this step is essential to provide the missing visible information
due to lack of illumination. In case of Condition 1, when the illumination conditions
are controlled, the quality of visible images is undoubtedly superior to the quality of
synthesized visible images. Consequently, it is expected that the proposed quality based
fusion scheme will leverage the visible spectrum to obtain accurate face recognition results.
While in Condition 2, some information in visible face images are missing due to low
illumination. In this case, our proposed solution is supposed to exploit the information
provided by the visible images and the synthesized visible images complementary. In
case of Condition 3 however, the visible information is almost completely absent, which
may encourage our proposed fusion system to consider for the most part the information

obtained from the synthesized visible faces.

5.3.2 Face feature extraction and matching

We present here the face comparison systems used to obtain the matching scores on
which the fusion will be applied. We selected a state-of-the-art system based on deep

learning embeddings and a second system based on handcrafted features.

Light CNN [113] is a pretrained model of a light CNN of 29 layers. Light CNN was
used in Chapter 4 and led to better face recognition performances compared to a similar

baseline based on OpenFace [109], and thus it was retained for the work presented in
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Figure 5.1: Illustration of continuous day and night face recognition scenario under
3 different illumination conditions. Condition 1: controlled illumination environment,
condition 2: low illumination environment, condition 3: extremely poor illumination
environment.
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this chapter as well. 256-dimension embeddings are extracted, using Light CNN, from

gallery and probe samples and then matched using cosine similarity.

Local Binary Pattern (LBP) was originally introduced by Ojala et al. [115] for
texture analysis, but later on it was thoroughly explored in numerous applications.
Particularly, it has shown its efficiency for face analysis not only in visible but also in
thermal spectrum. LBP represent a binary pattern that describes the local neighborhood
of each pixel of the face image. The obtained LBP features are then concatenated to
create a single histogram feature vector of 256-dimensions. Histograms extracted from
gallery and probe image samples are compared using the y? distance as dissimilarity

measure.

5.3.3 Quality assessment metrics

Most often, quality of face samples reflects their relevance in providing a correct and
accurate recognition with a high matching score. High quality samples often deliver
highly informative features, yet low quality samples suffer heavily from noisy data and
missing information. Therefore, selecting quality assessment metrics is very critical in

boosting or lowering recognition performance.

We present, here, a number of selected quality metrics in order to study the impact

of each on face recognition performance.

o Lightening symmetry [127]: it quantifies the symmetry between sub-regions of
an image and can be measured as the difference between the histogram of intensity

in each half sub-region.
o Brightness [128]: is given by the average value of the image intensity histogram.

o Contrast [128,129]: can be defined as the scale difference between maximum

and minimum intensity values in an image.

o Global Contrast Factor (GCF) [130]: is the weighted sum of local contrast

for various resolutions of the image.

o Exposure [131]: indicates the amount of light in the image and can be measured

using image statistical measures.

o Blur [132]: is based on the fact that sharp images have thin edges and blurry

images have wider edges, blur is expressed as the edge width.

o Sharpness [129]: is defined as the sum of gradients at every pixel intensity.
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5.3.4 Proposed fusion scheme

Figure 5.2 illustrates the proposed asymmetric approach of quality weighted fusion at
score level. Let Qvrs, Qay,s and Qgaliery denote the quality measures of the visible image
probe, the quality of the thermal-to-visible generated image probe, and the quality of
visible gallery image, respectively, obtained using one of the quality assessment metrics
just presented in Section 5.3.3. During recognition, we calculate the quality similarity
scores of the original visible image and the thermal-to-visible synthesized image by

determining their similarity to Qgaiiery, as follow:

QGallery —Q;

QS; = e CGalery  wherei € {VIS,Gyrg}. (5.1)

Once the quality scores are obtained, they are normalized using min-max normaliza-

tion. Then, we compute the weight to be assigned to each entity, as

B QS;
QSvis + QSay ;s

w; , 1€ {VIS, ijs}. (5.2)

The closer Q; is to Qgaliery, the higher the weight will be assigned to ¢. Next, the
face matching scores, denoted by S;, are computed. Sy g are obtained by comparing
the visible image probe to the visible gallery set. Sg,,,s are calculated by performing a
face comparison between the synthesized visible image and the visible gallery set. The
obtained matching scores are then normalized. The overall fused score is computed using

the weighted exponential sum rule, as follow:

Stusea = »_ wie, wherei € {VIS,Gyrs}. (5.3)

Simply put, the quality weight will play a role in determining whether the visible
sample is reliable enough to provide an accurate recognition. The quality of visible
samples deteriorates mostly due to lack of illumination. Thereupon, the proposed fusion
scheme will favor the synthesized visible sample as it is estimated from thermal inputs
that are immune to illumination variations. The proposed method is summarized in
Algorithm 1.
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Figure 5.2: Framework of the proposed quality-based score fusion scheme, where VIS,
TH and Gyjg denote the visible image, the thermal image and the synthesized visible
image from the thermal capture, respectively.
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Algorithm 1: Quality-weighted score fusion

Input Probe Samples: set of samples acquired simultaneously in visible and
thermal spectrum under various facial variations.
Gallery Samples: set of neutral face samples acquired solely in visible
spectrum.

for p € Probe Samples do
VIS + Read Visible Image (p)

TH < Read Thermal Image (p)

Gy s < Thermal-to-Visible face synthesis (T'H) asper chapter 4.
Qvrs < Quality Estimation( V'I.5)

Qcy,s < Quality Estimation (Gyrg)

for g € Gallery Samples do
Gallery < Read Visible Image (g)

Qcallery < Quality Estimation(Gallery)
QSvis(p, g) < Quality Similarity Score (Qv s, QGaliery) asper Eq.5.1

QSGy.s(p, 9) < Quality Similarity Score (Qay s, QGailery) as per Eq.5.1
Svrs(p, g) + Matching Score (VIS, Gallery) as per Sec.5.3.2

Scv,s(p, g) < Matching Score(Gy s, Gallery) as per Sec.5.3.2

end

end

Min-Max normalization of QSy s, QSa,,;s, Svis and Sgy ¢

Compute weights wyrs and wg,,, 4 as per Eq.5.2

Spused < Quality-weighted score fusion (wvrs, Svis , Way s Savis) as per Eq.5.3

return the overall fused score S¢ysea
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5.4 Experiments and results

In this section, we present the data used to perform face recognition based on quality
weighted fusion. Then, we detail the evaluation protocol used to assess the proposed
fusion approach. Finally, we present the obtained results followed by an analysis of the

impact of different quality assessment metrics on face recognition performance.

5.4.1 Database

We used the VIS-TH face database [105], presented in Chapter 3, for the evaluation of

our proposed fusion solution. Three different sets are considered:

e Gallery set: face samples acquired in visible spectrum under controlled illumina-

tion conditions, with neutral expression and frontal head pose.

e Probe VIS: probe face samples acquired in visible spectrum under different facial

variations including varying illumination conditions.

e Probe Gyg: probe face samples initially acquired in thermal spectrum under dif-
ferent facial variations including varying illumination conditions, and then converted
into visible spectrum. Thermal-to-visible face synthesis is detailed in section 4.3 of

chapter 4.

5.4.2 Experimental protocol and results

Feature extraction is performed using either LBP or Light CNN. Feature vectors from
gallery and probe sets are compared to obtain the matching scores of the two components.
In parallel, quality measures are computed using 7 different quality assessment metrics
and quality similarity scores are then deduced. Dynamic quality weighted fusion at score
level is carried out as described in Section 5.3.4. The performance of our proposed fusion
approach is compared to the performance of fusing scores obtained from matching visible

probes and thermal probes against a common visible gallery set.

To highlight the main motivation of thermal spectrum usage in face recognition, we
display, in Figure 5.3, the receiver operating characteristic (ROC) curve of the three
setups aforementioned for face images that were acquired in total darkness. We can
clearly observe that the setup based on thermal-to-visible synthesized images provides
significantly higher performance compared to the setup based on visible images. This
affirms the efficacy of thermal imagery in most of the challenging scenarios, i.e. poorly lit

environments. Also, we note that the setup based on thermal-to-visible synthesized images
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outperforms the thermal based setup, which proves the efficiency of thermal-to-visible

face synthesis in reducing spectral gap between visible and thermal spectrum.
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Figure 5.3: ROC curves in extremely poor illumination environment using Light CNN

System

Table 5.1 presents the rank-1 recognition of Light CNN and LBP systems reported
over all the facial variations contained in VIS-TH database. In this table, we report
firstly the recognition performance of each of the following setups: matching visible
probe, original thermal probe and thermal-to-visible synthesized faces against visible
gallery. We observe that face recognition using the synthesized visible images leads
to better performance than when using thermal images, which proves the efficiency of
thermal-to-visible face synthesis in reducing the gap between visible and thermal spectra.

Although, the synthesized visible images are still few steps behind standard visible face
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images and that is perceivable mostly for the performance across all the facial variations.

Furthermore, we can evidently perceive that face recognition using deep learning
embeddings (Light CNN) outperforms hand-crafted features (LBP) which confirms the

assertions presented in [133].

To assess the impact of each quality metric used in this Chapter, we report rank-1
recognition of quality weighted fusion of visible images and synthesized visible images
(denoted as (VIS, Gygs) in Table 5.1) for each quality metric, where Q', Q?, Q3, Q*,
Q%, Q% and Q7 denote lightning symmetry, brightness, contrast, GCF, exposure, blur
and sharpness, respectively. Q?'® refers to using the average quality score of the 7 quality
assessment metrics. Furthermore, quality weighted score fusion of visible face images and
original thermal images (denoted as (VIS,TH) in Table 5.1) is considered as a baseline.
We note that the described fusion scheme using the thermal-to-visible face synthesis unit
outperforms significantly the fusion of visible and thermal images plainly. This divergence
in performance certifies the proficiency of thermal-to-visible face synthesis in bringing the
two spectra closer together. The rank-1 recognition results of Light CNN system showed
that the proposed fusion approach has led to the best performance, particularly for global
contrast factor quality metric. However, we can determine that the proposed quality
weighted score fusion shows nearly similar performance for all the quality assessment

metrics.

To get a deeper understanding of the performance of our proposed fusion scheme,
we plot the ROC curves, in Figures 5.4 and 5.5. The ROC curve is computed over all
the facial variations contained in the database, so as to demonstrate the efficacy of our
proposed approach in a wide range of operative scenarios. The plot confirms our previous
observations, as we can see that all the considered quality assessment metrics impact the
performance of the fused system similarly. Conclusively, we observe that the proposed
fusion based approach in this chapter outperforms face recognition operating solely on
visible data. It is fair to admit that the difference of performance is not significantly
large, that is due to the distribution of the variations within the database, as it contains
more samples acquired under controlled illumination conditions compared to only few
samples acquired under low illumination conditions that highlights the thermal imagery

usage.
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Light CNN LBP
VIS | TH | Gyis | (VIS, TH) | (VIS, Gyis) | VIS | TH | Gyis | (VIS, TH) | (VIS, Gvyis)

Q' 0.643 0.880 0.211 0.638

Q2 0.805 0.921 0.284 0.698

Q3 0.775 0.923 0.440 0.729

Q 0.916 | 0.180 | 0.542 0508 0925 0.821 | 0.042 | 0.457 0-563 069

Q° 0.542 0.918 0.337 0.718

QS 0.805 0.92 0.28 0.702

Q7 0.735 0.908 0.428 0.680
Qave 0.746 0.923 0.429 0.735

Table 5.1: Rank-1 recognition across multiple facial variations using Light CNN and LBP face recognition algorithm.
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Figure 5.4: ROC curve deduced over all the facial variations in VIS-TH database [105]
using Light CNN
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5.5 Summary

Integrating thermal imagery in face recognition systems tackles, particularly, the poor
illumination challenge for visible spectrum. Therefore, a new scheme of score level
fusion for robust face recognition from visible and thermal face data that enables
straightforward integration in the existing face recognition systems is proposed in this
chapter. The proposed system operates according to the following protocol in face
recognition: individuals have been enrolled solely in visible spectrum (i.e. gallery)
but can be afterwards controlled by dual visible and thermal acquisition (i.e. probe).
Considering that the gap between the visible and thermal spectra is important, it was
necessary to include a step where synthesized visible images are generated from thermal
inputs. This solution benefits from the quality measures of the visible gallery and probe
faces to assign weights for visible and thermal samples in order to provide an illumination
invariant face recognition solution. The results report an interesting improvement in
face recognition performance compared to when using solely visible samples. In addition,
results have proved the efficiency of thermal-to-visible face synthesis in providing more

accurate performance for face recognition system.
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Facial landmark detection on
thermal data through fully

annotated thermal data synthesis

Facial landmark detection is a crucial prerequisite for facial image processing. Given
the upswing of deep learning based approaches, the performance of facial landmark
detection has been significantly improved. However, this uprise is mostly limited to
visible spectrum based face analysis tasks, as there are only few research works on facial
landmark detection in thermal spectrum. This limitation is mainly due to the lack of
available thermal face databases that include full facial landmark annotations. In this
chapter, we propose to tackle this data shortage by converting existing face databases,
designed for the facial landmark detection task, from visible to thermal spectrum. By
doing so, facial landmark annotations available in databases collected in the visible
spectrum can be leveraged in their artificially generated, thermal, counterpart. Using the
synthesized thermal databases along with the facial landmark annotations, two different
facial landmark detection models are trained using active appearance models [134] and
deep alignment networks [135]. The evaluation of these models shows accurate facial
landmark detection on real thermal data of different quality. With the need to provide
prompt solutions for thermal face analysis, our proposed framework provides a vehicle to
fuel future research in thermal imagery, not only limited to facial landmark detection

but also extendable to other tasks that require extensive annotation.

The remainder of this chapter is organised as follows. Section 6.1 introduces the
motivation behind this work. Section 6.2 presents the previous work in facial landmark

detection mainly focused on thermal spectrum. Section 6.3 describes the selected
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databases to synthesize a thermal face database and the employed landmark annotation
standard, followed by a presentation of the proposed approach to perform visible-to-
thermal face synthesis. Section 6.4 introduces two selected approaches used for facial
landmark detection in this work. Section 6.5 reports the experimental setup and the
evaluation protocol followed by results and discussion. A summary is presented in
Section 6.6.

6.1 Context and motivation

Facial landmark detection (FLD) consists in locating predefined landmarks, such as
eye contours, eye brows, nose, lips in a human face. These detectors provide a shape
representation of the face that captures transformations due to facial expressions and/or
head movement. FLD has drawn a lot of attention during recent times, as it became an
essential requirement to perform a wide range of task related to facial image processing,
e.g. face alignment and frontalization [136,137], 3D face reconstruction [136,138], emotion
recognition [139] and lip reading [140]. However, FLD on thermal data has not been
extensively explored yet, and to our knowledge there are no public facial landmark
detectors available designed for thermal spectrum. Thermal imagery provides data with
lower spatial resolution and contrast when compared with visible imagery, and it also
lacks textural and geometrical information. Therefore, applying the advances of FLD
designed for visible data to thermal spectrum may be challenging. Also, the lack of public
thermal face databases available with facial landmark annotations prevents thermal
spectrum from benefiting from the recent advances in deep learning that have led to

remarkable improvements in FLD performance, including when tested in-the-wild.

In this work, we present a novel concept that aims to tackle the lack of annotated data
in spectra that are less studied than visible spectrum through interspectral conversion,
with a focus in the thermal spectrum for FLD task. This proposed concept will enable
broader exploration of thermal image processing. Thereby, we provide thermal face
databases with full facial landmark annotation through artificial visible-to-thermal data
synthesis using existing visible face database designed for FLD, notably LFPW [141] and
Helen [142] databases. We explore the possibility of training different FLD models on
the synthesized thermal face data to be robust when tested on real thermal data. In
particular, we used active appearance models [134] and deep alignment networks [135] to

train our facial landmark detectors.
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6.2 Related work

FLD in visible spectrum has been extensively studied during the few last decades and it
has witnessed great progress. Early works, based on classic parameterized approaches,
include active appearance models [134] and constrained local models [143]. Later on,
FLD approaches based on cascaded shape regression [144,145] were introduced. Recently,
approaches based on deep learning have achieved impressive results, notably Deep
Alignment Network [135] and Style Aggregated Network [146]. A thorough survey of

existing techniques of FLD on visible images and videos can be found in [147].

Very few works have focused on FLD on thermal data despite the attention that
is being drawn to the usage of thermal imagery in face analysis tasks. First attempts
aimed to perform single landmark detection. Tzeng et al. [148] used video frames to
detect nostrils through tracking the temperature variation due to respiration. Wang et
al. [149] trained a support vector machine (SVM) to perform binary classification of
the eye region based on Haar-like features. Alkali et al. [150] located the temperature

maxima as it is commonly situated in the inner corner of the eyes.

More recent works focused on the face region as a whole and aimed to detect multiple
facial landmark points. Kopaczka et al. [151] trained an active appearance model
using histogram of oriented gradients HOG and Scale-invariant feature transform SIFT
to perform face tracking in thermal videos. This work has been extended [152] by
incorporating the active appearance model into a deep convolutional network to provide
it with a prior shape information. These two approaches were trained on a fully annotated
thermal face database [153] collected by the University of Aachen. This database provides
high spatial resolution data at 1024 x768 pixels, with high contrast and noise equivalent
temperature difference (NETD) lower than 30mK, meaning that the sensor with which
the data is acquired is able to identify very small differences of temperature as little as
30mK or lower. These data specifications result in extremely high quality thermal data
much higher than the data provided by the currently available thermal databases and the
affordable thermal sensors available on the market. The high quality of the training data
of the FLD model mentioned above results in a drastic decrease of landmark detection
accuracy when tested on low or medium quality thermal data, which is usually used

nowadays for research and commercial purposes.

6.3 Thermal face database synthesis

Several face databases were used in the work presented in this chapter. As a matter of
convenience, we gathered all the relevant information about these databases, in Table 6.1,

as well as its usage throughout this work.
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Database

Spectrum

Thermal spatial
resolution

NETD

Facial landmark
annotation

Usage

LFPW [141]

Visible

Provided

Section 6.3.1: Used as input
to synthesize thermal data
+ the provided facial
landmark annotation.

Helen [142]

Visible

Provided

Section 6.3.1: Used as input
to synthesize thermal data
+ the provided facial
landmark annotation.

VIS-TH [105]

Visible and thermal

160x120

<100mK

Not provided

Section 6.3.2: Training
visible-to-thermal data
synthesis.

Aachen database [151]

Thermal

1024 x 768

<30mK

Provided

Section 6.5.1: Training
baseline models.

CSMAD

Visible and thermal

320x240

<70mK

Not provided,
but possible

Section 6.5.4: Quantitative
evaluation on low quality
thermal data.

Aachen expression
subset [153]

Thermal

1024x768

<30mK

Provided

Section 6.5.5: Quantitative
evaluation on high quality
thermal data.

UND-X1 [62]

Visible and thermal

320x240

<100mK

Not provided

Section 6.5.6: Qualitative
evaluation.

UTW database [154]

Thermal

640x480

<30mK

Not provided

Section 6.5.6: Qualitative
evaluation.

Table 6.1: Properties of face databases used in this chapter.
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6.3. Thermal face database synthesis

In this section, we describe the selected visible face databases provided with landmark
annotation that are used in this work. Then, we describe the approach to perform
visible-to-thermal data synthesis in order to obtain a synthesized thermal face database
with full facial landmark annotations. Finally, we present some samples of the generated

thermal faces.

6.3.1 Face databases with full facial landmark annotation

Numerous visible face databases provided with facial landmark annotation are avail-
able [141,142,155,156,157]. We present, here, the selected databases and the landmark

annotation used in this chapter.

Helen [142]: Helen database contains 2330 face images collected from Flickr. The
database includes a large set of variations including pose, lighting, expression, occlusion,
and individual differences. The facial landmarks were annotated manually using Amazon

Mechanical Turk after an initialisation performed using STASM [?] algorithm.

LFPW [141]: The Labeled Face Parts in-the-wild database contains 1035 images
collected from the web (Flickr, Google, Yahoo...). LFPW database covers the same vari-
ations as Helen database. The Labeling and facial landmark annotation were performed

by three Amazon Mechanical Turk members.

Facial landmark annotations, used in this work for these databases, were obtained
from those released in the context of the 300 Faces in-the- Wild Challenge: the first facial
landmark localization Challenge [158]. Organized by ¢{BUG™, the provided annotations
attempted to mitigate the mismatched original annotation criterions present in Helen and
LFPW databases, with 194 and 29 selected landmark points, respectively. This mismatch
in dimensionality motivated the application of a shared semi-supervised approach to
FLD followed by manual correction, resulting in a common, consistent, 68 facial points
annotation illustrated in Figure 6.1. These annotations, which have been widely used as
the de facto benchmark for landmark detection, were thus used as reference in the work

presented here.

*Intelligent Behaviour Understanding Group (iBUG), Department of Computing, Imperial College
London
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Figure 6.1: 68 facial landmark annotation defined in the context of 300 Faces in-the- Wild
Challenge: the first facial landmark localization Challenge [158].

6.3.2 Visible-to-thermal data synthesis

Data synthesis from visible to thermal spectrum was carried out using the approach
presented in Chapter 4. This approach aimed to synthesize visible face images from
thermal inputs to perform synthesis based cross-spectrum face recognition. However, in
our case, we needed to re-train the model presented in [114] to perform face synthesis in

the opposite direction, i.e. from visible to thermal spectrum.

The used approach is based on cascaded refinement networks (CRN) trained using
contextual loss, enabling it to be inherently scale and rotation invariant. During the train-
ing phase of the visible-to-thermal data synthesis model, we used VIS-Th datatabse [105]
introduced in Chapter 3. This database provides thermal images of 160x 120 spatial
resolution and NETD<100mK acquired with different facial variations. For training,
one variation acquired in total darkness was discarded, leaving 1000 pairs of face images.
The loss function designed for visible-to-thermal data synthesis is modeled invertedly
compared to the loss function defined in Equation 4.5 of Chapter 3. The style loss is
computed between the generated thermal image and the ground truth thermal image.
Whereas the content loss is computed between the input visible image and the generated

thermal image. The training was run for 40 epochs with a learning rate of le-4.

To obtain the synthesized databases from visible to thermal spectrum, the images of
HELEN and LFPW databases are fed to our trained model, that returns the thermal
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version of the input image. Figure 6.2 illustrates some samples of the synthesized thermal
face images and their original counterpart. It is worth noting that the synthesized
thermal images present realistic pattern of thermal signature. Some details, such as hair,
eye brows and teeth, are converted into high pixel values reflecting regions with lower
temperature compared to the face region. In addition, the nose region is generated slightly
darker, as the nose is usually colder than the rest of the face because it is composed
mainly of cartilaginous tissue. Also, eyes contours are generated lighter than the rest of
the face, which reflects realistic thermal signature as the high temperatures are usually
situated around the eye region. The synthesized images also present some artefacts as

we can observe, in few samples, dark patterns located at arbitrary regions of the face.

Figure 6.2: Samples of synthesized thermal images from HELEN and LFPW databases.

6.4 Facial landmark detection

In this section, we describe the two selected methods of FLD that will be trained on the

synthesized thermal face databases.

6.4.1 Active appearance model

The first approach used in this work is based on Active Appearance Model [134], con-
sidered as the baseline approach for landmark detection. Active appearance models

(AAM) were introduced by Cootes et al. [134] for facial image processing. AAM is a
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statistical appearance method aiming to model the shape of the face and its appearance
as probabilistic distributions that can be generalized nearly to any face. To train the
FLD model, AAM requires a set of face images with annotation points defining the facial
landmarks. In the training phase, Procrustes analysis [159] is applied to align the set
of landmarks, and the statistical shape and appearance model variations are extracted
using principal component analysis (PCA). Unseen faces can be represented by a linear
combination of the mean shape and the appearance from the training data with weighted

shape and appearance vector.

As to faithfully replicate the AAM approach used to train the FLD model provided
by Aachen University [151], we have trained a dense histogram of gradients HOG
feature-based AAM model fitted using the Inverse-Compositional algorithm [160].

6.4.2 Deep alignment network

The second selected approach is Deep Alignment Network (DAN) [135] as it is the
state-of-the-art in facial landmark detection for visible images. DANs are based on
multi-stage neural networks that perform an iterative process of refinement of landmark
positions. Each stage of a DAN network is a feed-forward neural network that provides a
prediction of the refined facial landmark location. Each stage of a DAN network takes
3 inputs: the original image aligned to an initial estimation of the landmark location,
assumed to be the average face shape, the landmark heatmap, and the feature image
provided by the previous stage. The first stage only takes the input image. The stages of
DAN networks are trained consecutively. Each stage is trained until the validation error
stabilises. We have used a two-stage DAN: between the two stages a similarity transform
is applied to re-align the image to the average face shape. A learning rate of le-3 is used

with Adam optimizer on mini batches of sizes 64.

6.5 Experimental setup and results

In this section, we present firstly our two baseline FLD models. Then, we detail
our experimental setup. Finally, we introduce our evaluation protocol followed by a

quantitative and qualitative evaluation on real thermal data of different quality.

6.5.1 Baseline models

We consider as baseline models the facial landmark detectors, described in Section 6.4,
trained on high quality database provided by Kopaczka et al. [151] from University of

Aachen. We will refer, in the remainder of this chapter, to the active appearance model
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and deep alignment networks, both trained on Aachen database, as ‘AAM-Aachen’ and
‘DAN-Aachen’, respectively. The Aachen database includes high resolution thermal face
images that are manually annotated [153]. Video sequences were acquired using a thermal
camera with a NETD<30mK and spatial resolution of 1024 x 768 pixels. 695 frames were
extracted and manually annotated with 68 point landmarks. To train the AAM model
described in section 6.4.1, the face images were mirrored and 1272 images were selected

for the training phase, as described in [151].

6.5.2 Experimental setup

The two selected approaches for FLD, described in section 6.4, are trained on the
synthesized thermal face databases Helen and LEFPW separately. We refer to AAM
models trained on the synthesized thermal data from Helen and LEPW as ‘’AAM-Helen’
and ‘AAM-LFPW’ and to DAN models as ‘DAN-Helen’ and ‘DAN-LFPW’, respectively.

Following the protocol defined in the context of 300 Faces in-the-Wild Challenge: the
first facial landmark localization Challenge [158], we have used 2000 face images from
the Helen database and their corresponding facial landmark annotation files for training.

Whereas for LFPW database, we have used 811 face images for training our models.

6.5.3 Evaluation protocol

The evaluation of FLD performance is assessed by comparing the estimated landmark
coordinates to the ground truth. The normalized root mean square error (NRMSE), is
computed, point-to-point, to assess the average localization error. NRMSE is considered
as a standard metric to evaluate FLD performance [161] and it consists of the Euclidean
distance between the predicted landmarks and the ground truth landmarks normalized
by a predefined distance. Several normalization distances were defined for facial land-
mark detection evaluation [161,162,163,164,165]. To maintain consistency with the
setup defined for the 300W competition [158], we performed the normalization with
regards to inter-ocular distance (IOD) which is the distance between the two eye outer
corners as defined in [158]. The normalization process is essential to obtain performance

measurement independent of the face size or the image resolution.

The NRMSE, referred to as F, is obtained as follows:

E. = \/((xay)k — (:Evg)k)Q (61)

dnorm
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where (x,y); denote the ground truth coordinates and (Z, %) the estimated coordi-

nates of the k' landmark point. d, . indicate the normalization distance.

The FLD performances can also be expressed in terms of detection rate. Facial
landmark detection rate is the percentage of landmarks that are correctly detected within
a given error radius. The accepted error radius is determined as a proportion of the IOD.

The detection rate is calculated as follows:

(6.2)

N x K

D= SR SN L[8: B} < threshold) where § = 1 if E}, < threshold
0 otherwise

where K denotes the total number of the facial landmarks, and N the number of
test images. The threshold indicates the NRMSE value under which a landmark point is
considered correctly localized. The IOD along with detection circles, representing the

allowed error radius, are illustrated in Figure 6.3.

Figure 6.3: Inter-ocular distance (IOD) marked in red and circles denoting different
detection error thresholds, green: 0.05, yellow: 0.1, blue: 0.15 times IOD.
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6.5.4 Evaluation on low quality thermal face data

To evaluate the FLD model on low quality thermal data, the CSMAD database [51]
is chosen, since it provides aligned images in visible and thermal spectrum acquired
simultaneously. The CSMAD database provides thermal images of spatial resolution
of 320x240 and NETD<70mK. This database is designed for face presentation attack,
however, it is possible to select, for our evaluation, only the bona fide samples resulting in
423 images. The choice of this database is motivated by the fact that this database can
simplify the annotation of the thermal images. The annotation process was performed
automatically using DLIB [166] facial landmark detector on the visible set of the database
and then corrected manually. Given that visible and thermal sets are aligned, the
landmarks detected on the visible set are considered as the ground truth landmark points

for the thermal set, as illustrated in Figure 6.4.

Figure 6.4: Ground truth facial landmark annotation of CSMAD data: facial landmarks
are first detected on the visible images using DLIB [166] followed by manual verification
and correction. The detected landmarks are simply used as ground truth for thermal
images.

Given that this database also provides samples in visible spectrum, we trained the FLD
approaches on the original visible face databases Helen and LFPW. FLD performance on
the original visible database will be considered as a reference. The comparison of the
performance obtained using a thermal based model with the visible based model will

quantify the discrepancy of the two spectra in terms of FLD.

AAM DAN
Aachen (TH) | 0.14349 (+0.105) | 0.14595 (+0.052)
LFPW (SynTH) | 0.11779 (£0.062) | 0.08265 (+0.026)
Helen (SynTH) | 0.13200 (£0.057) | 0.07309 (+0.022)
LEPW (VIS) | 0.04020 (£0.015) | 0.04299 (+0.012)
Helen (VIS) | 0.045683 (+0.031) | 0.03146 (+0.011)

Table 6.2: Average NRMSE (+ standard deviation) reported on CSMAD database.
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Figure 6.5: Detection rate variation of facial landmark detection models evaluated on
CSMAD database: (a) Active Appearance Model (b) Deep Alignment Network.
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Results, in Table 6.2, show the average and the standard deviation of the localization
error in terms of NRMSE obtained by evaluating the different FL.D models on the CSMAD
database. The first column of the table corresponds to the AAM approach trained on
different databases: where ‘TH’, ‘SynTH’ and ‘ VIS’ refer to thermal data, synthesized
thermal data and visible data, respectively. The second column reports the same results
for a DAN-based approach. The localization errors reported by the FLD models trained
and tested on thermal face data is relatively higher than the errors reported by the model
trained and tested on the original visible images. This is mainly due to the conversion of
the face images from highly informative domain, the visible spectrum, to a comparatively
lower informative domain as the thermal spectrum, resulting in a loss of information
relevant for accurate FLD. We also observe the detection models trained on synthesized
thermal data exhibit considerably lower errors than the models trained on the Aachen
database, which demonstrates the efficiency of our proposed solution. The reported
results prove that a FLD model trained on synthesized thermal face data is more robust
than a model trained on high quality thermal face data, and that is due to the large gap
in data quality between the Aachen database [153] and the current existing thermal face

databases.

The plots, presented in Figure 6.5, illustrate the detection rate that corresponds to a
defined threshold value for FLD models trained on different databases. We swept the
detection threshold from 0.0 to 1.0 with a step of 0.05. We observe that the two facial
landmark detectors trained on the Aachen database, represented by the blue curve, led to
significantly lower detection rates compared to the detectors trained on the synthesized
thermal data. This can be justified by the fact that Aachen models have been trained on
very high resolution, i.e. high contrast images captured with very high thermal sensitivity.
These images are very different from the images provided by the publicly available
thermal face databases, as it is the case for CSMAD database. In addition, the detection
rates obtained using DANs are considerably higher than the detection rates obtained

using AAM. This confirms the efficacy of deep learning solutions in the FLD task.

Additional qualitative results, presented in Figure 6.6, depict the performance of each
model of FLD on thermal face images with some facial variations. We note that the
facial landmark detectors trained on Aachen database [151], shown in column (c) and
(f), fail to accurately localize most of the facial traits even under the least challenging
variation. However, all the four models trained on the synthesized thermal data provide
more accurate landmark localization. Furthermore, we observe that deep learning based
detectors (columns (f), (g) and (h)) led to a more meticulous facial landmark localization
compared to the statistical modelling based detector. Besides, deep learning models
seem to be very robust against challenging facial variation such as occlusion by glasses

(rows 2 and 4). These methods managed to predict the facial landmark coordinates that

87



Chapter 6. Facial landmark detection on thermal data through fully
annotated thermal data synthesis

Figure 6.6: Qualitative results of the different facial landmark detection models on samples
of CSMAD database.(a): thermal reference, (b): ground truth, (c):AAM-Aachen, (d):
AAM-LFPW, (e): AAM-Helen, (f): DAN-Aachen, (g) DAN-LFPW, (h): DAN-Helen.

are closer to the ground truth, whereas the AAM based detectors tend to fail once it is

tested on challenging face variations.

6.5.5 Evaluation on high quality thermal face data

For fair comparison, the FLLD models are also evaluated on high quality thermal data.
The Aachen database [153] was extended to include thermal face images depicting facial
expression variations providing 68 points landmark annotation as well. The expression
variation subset of the Aachen database is used for our evaluation. Let us remind here
that the data provided by the Aachen database is characterized by spatial resolution of
1024 x 768 pixels and NETD<30mK.

Table 6.3 presents the average and the standard deviation of the localization error of
different FLD models when tested on the expression subset of the Aachen database. The
detection models trained on Aachen database report lower, but with slight difference,
localization errors than the detection models trained on synthesized thermal data. These
results are somehow expected as the detection models trained on Aachen database are

evaluated on data of the same thermal quality acquired with the same thermal sensor.
Detection rates of the different FLD models are illustrated in Figure 6.7. For the AAM
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Figure 6.7: Detection rate variation of facial landmark detection models evaluated on
the expression subset of the Aachen database: (a) active appearance model (AAM), (b)
deep alignment network (DAN).
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AAM DAN
Aachen (TH) | 0.07267 (£0.031) | 0.06061 (£0.020)

LFPW (SynTH) | 0.09534 (£0.034) | 0.07827 (£0.015)

Helen (SynTH) | 0.10700 (+0.039) | 0.06409 (40.014)

Table 6.3: Average NRMSE (+ standard deviation) reported on the expression subset of
Aachen database.

approach, the detection rate reported by the model trained on Aachen data is significantly
higher compared to the models trained on synthesized thermal data. However, for DAN,
we notice that the curve corresponding to the model trained on the Aachen database
overlaps with the curve obtained using the model trained on synthesized thermal data

from Helen, attesting that the two models perform similarly.

Figure 6.8 presents some samples of the expression subset of Aachen database
portraying the performance of each FLD model. Overall, FLD was less challenging
when applied on high quality than on low quality thermal data, as revealed when we
compare Figure 6.6 and Figure 6.8. For the AAM approach, facial landmark detectors
trained on synthesized data perform slightly poorer than the detectors trained on the
Aachen database. Nevertheless, when using DAN, the three different facial landmark
detectors achieve similar performances as they all succeeded to meticulously locate the
facial landmarks. For some face variations, we can observe that the model trained on the
synthesized thermal Helen database (column (h)) detected adequately some challenging
landmarks, as the bottom lip (row 1) and closed eyes (row 2), whereas the facial landmark
detector trained on Aachen did not manage to correctly predict the localization of these

landmarks (column (f)).

6.5.6 Qualitative evaluation on thermal samples of different quality

Given that there are no public thermal face databases, other than Aachen’s [153], provided
with full facial landmark annotation, further quantitative performance assessment cannot
be performed on more data. Therefore, some qualitative results are illustrated in Figure 6.9
to demonstrate that the facial landmark detector trained on synthesized thermal data can
operate accurately on thermal data of different quality. Results obtained using the DAN
approach trained on Aachen database ‘DAN-Aachen’ are shown in row 1 of Figure 6.9.
We have presented, in row 3, results obtained using the DAN model trained on the
synthesized thermal data from Helen database ‘DAN-Helen’, as it is the best performing

model.
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Figure 6.8: Qualitative results of the different facial landmark detection models on
samples of the expression subset of Aachen database. (a): thermal reference, (b): ground
truth , (c):AAM-Aachen, (d): AAM-LFPW, (e): AAM-Helen, (f): DAN-Aachen, (g)
DAN-LFPW, (h): DAN-Helen.

The presented samples are randomly selected from 3 different databases: (1) UND-X1
database [62, 63, 64] of spatial resolution of 312x239 pixels and NETD<100mK, (2)
thermal face database provided by the Military University of Technology in Warsaw
(UTW) [154] of spatial resolution of 640x480 and NETD<50mK, and (3) some samples
from the high resolution version of VIS-TH database [105] acquired in our laboratory
using a thermal sensor of spatial resolution of 620x512 and NETD<50mK. We can
observe that for all the samples presented, the model trained on the synthesized thermal
data ‘DAN-Helen’ has succeeded to correctly localize the facial landmarks, outperforming
the model trained on Aachen database ‘DAN-Aachen’.

Given all the results and observations presented above, one may conclude that our
proposed concept has managed to obtain a facial landmark detector that can be suitable

to a wide range of thermal image quality.
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Figure 6.9: Qualitative results of facial landmark detection on samples of different thermal
face databases, using DAN-Aachen in row 2 and DAN-Helen in row 3. (a): UND-X1
database [62,63,64], (b): thermal database of Military University of Technology in
Warsaw (UTW) [154] (c): samples from the High resolution version of VIS-TH database.

6.6 Summary

In this chapter, we addressed the lack of public thermal face databases provided with full
annotation for face analysis applications. We introduced an unexplored concept consisting
of converting data from one domain to another to tackle this shortage of annotated data.
Particularly, we proposed to synthesize artificially a thermal face database with full
landmark annotation by converting a existing face database in visible spectrum that have
been designed for facial landmark detection task to thermal spectrum. Two different facial
landmark approaches were trained on the synthesized thermal face data and tested on
low quality and then on high quality thermal data, proving the robustness of the trained
models. Our approach was evaluated and compared with two facial landmark detection
baseline models provided by Kopazcka et al [151]. These baseline models were trained on
high quality thermal data that led to a considerable decrease in performance when tested
on thermal face databases that are publicly available. Conclusively, the facial landmark
detection models trained on synthesized thermal data significantly outperformed the
baseline models trained on Aachen database when evaluated on lower quality thermal
data. Whereas, when tested on high quality thermal data, our proposed models perform

similarly to the baseline models that is more adapted for thermal images of such quality.
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The best performing model that we have trained on the synthesized thermal face
data has achieved an average localization error of 0.07 and 94.59% of detection rate at
threshold value of 0.15 when evaluated on low quality thermal data. This facial landmark
detection model will be shortly made publicly available, as facial landmark detection is
an essential step for many face analysis tasks and as of today there are no public facial
landmark detection tools for thermal spectrum that are available. Interspectral data
synthesis is also reproducible to tackle any lack of available data for tasks that requires

extensive annotation.
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Chapter 7

Indirect spoofing attack on

thermal face biometric system

The robustness of thermal spectrum against spoofing attacks lies in the acquisition
process of thermal properties by the thermal sensor. In this chapter, we propose a new
type of attack on thermal face recognition systems, performed at post-sensor level. In
visible spectrum, this attack would be carried out by simply injecting a face image of the
claimed identity into the communication channel right after the sensor. However, thermal
face images are not easy to obtain, unlike visible face images that are abundantly available
on the web. Therefore, we propose to generate synthetic thermal attacks by converting
visible face images into thermal spectrum. To perform visible-to-thermal attack synthesis,
we use the approach presented in Chapter 6 based on cascaded refinement networks (CRN)
trained using contextual loss as described in Chapter 4. In a scenario where the imposter
has prior knowledge about the spoofing countermeasure of the system, we introduce a
new loss computed at local binary pattern (LBP) maps level to fool a LBP-based spoofing
attack detection algorithm. The threat caused by the proposed attacks is then evaluated
using two existing baselines of spoofing attack detection. The experimental results show
that the new proposed attacks alter the performance of spoofing attack detection and
lead to a higher error compared to the challenging presentation attack using silicone

masks.

The remainder of this chapter is organized as follows. The context and motivation of
this work are presented in Section 7.1. Section 7.2 presents the studies carried out for
spoofing attacks on thermal spectrum. Section 7.3 recalls our approach to generate the
proposed thermal attack, and the modifications we applied to obtain a more challenging

attack for a given spoofing attack detection approach. Section 7.4 details the process
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to generate the proposed synthetic attacks and presents a quality assessment of the
synthesized thermal images. Section 7.5 reports the experimental setup defined for the
evaluation of two existing baselines of spoofing attack detection when confronted to
the proposed attacks, followed by results and discussion. A summary is presented in
Section 7.6.

7.1 Context and motivation

With the growing usage of face biometric systems, it is commonly acknowledged that
this technology is exposed to multiple threats [167,168,169]. Eight different levels of
attacks have been defined in [167,170]. Considering exclusively the attacks that occur at
biometric sample level, face biometric systems might be the most vulnerable among all
other biometric systems, as faces are accessible on social networks or through capturing a
photograph at a distance without the victim’s consent. These attacks can be categorized,
as illustrated in Figure 7.1, into: direct or physical access attacks, and indirect or logical

access attacks.

Direct or Indirect or O
Physical access Logical access _
attack attack 8

W W
' e

Data
storage

Feature
matching
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Decision
Yes/No

Spoofing
countermeasure

Figure 7.1: Attacks on biometric sample in a face biometric system.

Direct or physical access attacks occurs at pre-sensor level and are referred to as
presentation attack. According to ISO/IEC30107 standards [50], presentation attack
is defined as "the presentation of an artifact or of human characteristics to a biometric
capture subsystem in a fashion intended to interfere with system policy". This attack can
be carried out either to impersonate/spoof a genuine user to gain unauthorized access, or
to evade the biometric system by concealing the attacker’s identity. The presented artifact
can consist of a fake biometric sample of the claimed identity, e.g. photographs, masks, etc.,

in spoofing scenarios, or some alteration or falsification [56,171] applied to the imposter’s
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own biometric sample in evasion scenarios. Recent research studies [51,52,53,55,56] have
proved that using thermal imagery might be the most effective solution to presentation
attack detection. The thermal signature of the human face provides evidence of the user’s
liveness. Artifacts presented by the imposter exhibit different thermal characteristics of

those of a face, leading to a straightforward presentation attack detection solution.

Indirect or logical access attack, on the other hand, occurs at the post-sensor level.
For this scenario, it is assumed that the impostor has access to the communication
channel between the sensor and the feature extraction module, as shown in Figure 7.1.
This kind of attack intercepts the face sample acquired by the sensor and substitutes it
with a fake sample of the claimed identity. This attack can be as simple as inserting a
photograph or replaying a video of the victim. Face samples are easy to obtain so as
to spoof conventional visible spectrum based face biometric systems. However, this is
not the case for thermal face biometric systems, as thermal images are not abundantly
available.

While until very recently the deployment of thermal technologies would have been
very expensive to deploy, and thus an un-realistic alternative to presentation attack
detection, the use of thermal imagery is now a reality. It is perhaps for this reason that
thermal imagery is gaining a lot of attention, and starting to be deployed across many
applications requiring high levels of security. Therefore, it is essential to study all the

vulnerabilities of thermal face biometric systems and the threats it may encounter.

7.2 Literature overview: spoofing attacks and thermal spec-

trum

First attempts of spoofing attacks included techniques as simple as the presentation
of a photograph from the claimed identity on a printed paper or on a mobile device
screen, which can alter the performance of algorithms operating exclusively on 2D images.
Some prompt solutions have been proposed such as requiring an eye blink, smile or
other visual reactions to prove the liveness of the user, yet this can be easily tricked
using video replay attacks. New sensor based presentation attack countermeasures have
also been considered, as these sensors deliver complementary visual information. 3D
sensors [172,173] merely unravel the lack of depth information when a printed photograph
or a video played on a device is presented. A much more robust sensor against these
attacks is that present in thermal cameras, as it provides a proof of the user’s liveness
simply through acquisition [54]. When presenting these aforementioned attacks, the
acquired thermal sample will present some properties that are different from those of

a human face thermal signature. More elaborate and high-cost methods of spoofing
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have later appeared to manufacture 3D masks, which are robust to 3D sensors based
presentation attack detection. Thermal sensors remain highly robust against rigid 3D
mask attacks, as the rigid mask presents a uniform pattern with much lower temperature
than average human face. However, this robustness can be affected when a flexible
silicone or latex mask based attack is presented, as it can get heated when worn by
the attacker’s face. Recent studies [51,52,53] do however show that even though the
robustness of thermal sensor based presentation attack detection drops, thermal modality
remains the most robust among other studied modalities such as visible spectrum, depth
maps and near-infrared spectrum. Figure 7.2 depicts different types of spoofing attack.
As for evasion, the attack can consist of face disguise and it can go as far as getting
plastic surgery. While this can practically interfere with visible spectrum based face
biometric systems, thermal technology has been proved substantially robust to these
attacks as well [55,56]. Face disguise can easily be detected since the used accessories
present different thermal properties from those of a human face [56]. Thermal imagery
can also identify plastic surgeries, as the resulted alteration of blood vessels appear as

cold areas in the face [55].

Print on A4 Replay on iPad Paper mask Fake head Rigid mask Custozf:f rigid  Silicone mask

Figure 7.2: Presentation attacks in visible and thermal spectrum.

A preliminary study was carried out, by Bhattacharjee et al. [54], to explore the usage
of multi-channel information for presentation attack detection. The study considered,
along with the visible spectrum, data from thermal, near-infrared and depth channels.
The authors demonstrated that 3D masks and 2D attacks can be easily be detected
in thermal spectrum by using the mean facial brightness of the face region. In [51],
authors prove the vulnerability of commercial face recognition systems to custom silicone
masks. They also propose, as a solution for presentation attack detection, to use the
mean facial brightness, as proposed in [54]. Agarwal et al. [53] introduced a multispectral
database of latex mask attacks including visible, near-infrared and thermal spectra. The

authors performed different experiments for face verification and presentation attack
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detection independently for each spectrum. For presentation attack detection, they
proved that thermal spectrum is the most robust spectrum in comparison to visible and
near-infrared spectra. The best performing system was based on redundant discrete
wavelet transform (RDWT), Haralick features and support vector machines (SVM).
However, the results reported on thermal spectrum are questionable since the thermal
data is clearly acquired using FLIR MSX* technology which adds visible light details to
the thermal images. George et al. [52] present a new multi-channel database containing
different 2D and 3D attacks. Multi-channel convolutional neural network (CNN) was
proposed in this work for presentation attack detection. In addition, a score level fusion
was performed combining the scores of each channel’s presentation attack detection
algorithm. For thermal spectrum, a presentation attack detection algorithm, based on
local binary pattern (LBP) feature extraction followed by logistic regression classification,
had outperformed the RDWT-Haralick-SVM baseline proposed by [53]. In [56], a disguise
database in visible and thermal spectrum was proposed. The authors proposed to combine

patches from visible and thermal images for presentation attack detection.

7.3 Visible-to-thermal attack synthesis

A new attack on thermal face biometric systems is proposed in this work. This attack
occurs at the post-sensor level and is obtained by converting available visible face images
to thermal spectrum. In this section, we reintroduce the used approach to convert visible
images to thermal spectrum. A customization of the used approach is later presented
to generate more challenging attacks to a given approach of thermal spectrum based
presentation attack detection. Finally, implementation details of the proposed approaches

are given.

7.3.1 Generalized approach for attack synthesis

Visible-to-thermal attack synthesis was carried out using the approach presented in
Section 4.5 of Chapter 4. This approach is based on cascaded refinement networks
(CRN) [21] trained using contextual loss [100]. In this case, the data synthesis is
performed from visible to thermal spectrum as it is the case of Chapter 6 of this thesis.
The synthesized attack to be generated is generalized to all spoofing attack detection
algorithms. We reformulate the loss, defined in equation 4.5 in Chapter 4, to adapt it to

visible-to-thermal image synthesis:

*FLIR MSX: https://www.flir.com/discover/professional-tools/what-is-msx/
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Lern(Ivis, Irm, G) =M1 (—1og(CX (2% (G(Ivrs)), ®" (Irm))))+

(7.1)
Ao (—log(CX (D(G(Ivis)), D (Iv1s)))),

Where Iy g, IT and G denote the input visible image, the ground truth thermal
image and the generator (i.e. visible to thermal synthesis model), respectively. @,
and ®;, refer to the VGG-19 embeddings extracted at content layers level and style
layers level, respectively. CX denote the contextual similarity defined in Equation 4.4
in Chapter 4. A1 and Ay represent two emperically optimized weights associated to the

style and content losses, respectively.

7.3.2 Customized approach for attack synthesis

Here, we explore the scenario in which an imposter has obtained prior information about
the spoofing attack detection approach used in the targeted thermal face biometric
system. Therefore, the generalized approach for attack synthesis will be customized

according to this prior information.

The study, carried out by George et al. in [52], has proven that the spoofing attack
detection algorithm based on LBP feature extraction is outperforming the solution
provided by [53]. Therefore, we consider the LBP based spoofing attack detection as
our target spoofing countermeasure on which the impostor has some prior information.
Consequently, we customized our generalized visible-to-thermal attack synthesis model in
a way that it intends to generate thermal images of which the LBP map is more similar
to the LBP map of thermal ground truth images, or, simply put, more similar to the

LBP map of thermal bona fide samples.

100



7.3. Visible-to-thermal attack synthesis

o A,
LBP map of the
round truth
thermal image

CXcon tent

Ground truth
thermal image

¥1.BP

T e, e
C . LBP map of
h .
Visible image Visible to thermal tse};rgaf sﬁig%e the synthesized
conversion thermal image

Figure 7.3: Diagram of the proposed approach to perform visible-to-thermal attack
synthesis. The highlighted blocks of the diagram illustrate the introduced loss for the
customized approach.

In Figure 7.3 the diagram of the different used approaches to perform visible-to-
thermal attack synthesis is illustrated. Our LBP based customization of the CRN model
is highlighted with an underlying light red area. The part of the diagram that is not
highlighted, represents the generalized visible-to-thermal attack synthesis model, where
we observe the loss at content level computed between the input visible image and the
synthetic thermal image, and the loss at style level between the synthetic thermal image
and the thermal ground truth (bona fide) image. In addition to the loss defined for the
generalized visible-to-thermal attack synthesis model, we introduced a new loss that is
computed at LBP map level. The LBP map is generated using a uniform pattern: 8
sample points in the neighborhood on the circle of radius 1. We propose to compute
this loss function, denoted as ¥ in figure 7.3, in two different ways, as described in the

following;:

U=x?(LBP) The first option is to consider as loss function the LBP histograms
comparison using y? distance. The histogram of LBP labels is calculated over the whole
LBP map, resulting in a feature vector of dimension 59. Training the visible-to-thermal
attack synthesis network aims thus to minimize the x? distance computed between the
LBP histogram of the synthetic thermal image and the thermal ground truth image. The

total loss of the customized attack synthesis model is formulated as follow:

Lrotal(Ivis, Ith, G) =1 Lorn (Lvis, ITn, G)+

(7.2)
2Ly 2 (LB Ppist(G(Ivis)), LB Phist(ITn))
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U=CX(LBP) The second option is to use a contextual loss computed on LBP maps,
but solely at style level, as our objective is to generate thermal attacks of which the
LBP maps is closer to the LBP map of thermal bona fide images. We extracted the
VGG-19 embedding vectors from LBP maps of the synthetic thermal image and the
thermal ground truth, at style layers. Consequently, the total loss of the customized

attack synthesis model, in this case, is defined as follow:

Lrotat(Ivis, Ih, G) =1 Lorn (Ivis, ITh, G)+

7.3
ag(—1log(CX (@ (LBP(G(Ivis))), @i, (LBP(I14)))) 73

In addition to the annotation defined in the equation 7.1, LBP and LBP;s denote
the LBP map and the histogram of the LBP map, respectively.

For the remainder of the paper, we refer to the visible-to-thermal attack synthesis
models as CRN, CRN+x?(LBP), and CRN+CX(LBP) to denote the generalized model,
the customized model combined with LBP histogram comparison using x? distance, and
the customized model combined with the contextual loss at style level computed on LBP

maps, respectively.

7.3.3 Implementation details

The different visible-to-thermal attack synthesis models are trained using the VIS-TH
database presented in Chapter 3. One variation was discarded from the database, as it
was acquired in total darkness. Visible and thermal images are re-sampled to 128 x128

pixels.

The training of the three proposed models of visible-to-thermal attack synthesis
was performed with a learning rate of le-4. The CRN model was run for 40 epochs,
CRN+x?(LBP) model for 60 epochs and CRN+CX(LBP) model for 90 epochs. The

weights assigned to the different losses a1, as, A1 and A9 were adjusted using grid search.

7.4 Indirect attack synthesis

In this section the dataset, from which the synthetic thermal attacks are generated, is

first introduced. A quality assessment of the synthetic thermal images is then performed.

102



7.4. Indirect attack synthesis

7.4.1 CSMAD dataset for indirect attack synthesis

Choosing the Custom Silicone Mask Attack Dataset (CSMAD) [51] is motivated by the
fact that this dataset contains the most challenging attack on thermal face biometric
systems, and therefore it will be considered as a baseline attack. In other words, the
damage caused of the new attack, which we are proposing in this chapter, on spoofing
attack detection will be quantified and compared to the damage brought by the silicone

masks attack.

The CSMAD contains presentation attacks made of six custom-made silicone masks.
Face images are collected from 14 subjects. Bona fide samples were collected from all
subjects. Extra bona fide samples were acquired for few subjects, for which they wore
eye glasses. Attack samples were acquired for all 6 masks but worn by different attackers.
Additional attack samples were recorded with the masks attached to their provided stands.
The CSMAD provides bona fide and attack acquisitions, consisting of videos of 5 to 10
seconds, in visible, near-infrared and thermal spectrum, and also depth maps collected
simultaneously. The dataset was collected under 4 different illumination conditions. In
our study, we have only considered data from visible and thermal spectrum. Figure 7.4
present some attack samples. We can observe, in column (a), when the mask is worn
by the attacker it gets warm, leading to a thermal face sample that looks more like a
real face in terms of temperature. Whereas for the attacks where the mask is attached
to a stand, we can barely differentiate the mask from the background in the thermal

spectrum, as they probably have similar temperatures.

7.4.2 Quality assessment of the synthetic attacks

Bona fide samples from the CSMAD dataset, that are acquired in visible spectrum, are
simply fed to the visible-to-thermal attack synthesis models presented, in Section 7.3, to
generate the synthetic attack. Two of the illumination conditions were discarded as they
altered the quality of the synthetic images resulting in black areas in the face caused by

missing information due to low illumination.

Figure 7.5 illustrates the synthetic attacks in column (c), (d) and (e). We note that
the synthetic thermal images present realistic patterns of thermal signature. Some details,
such as hair and eye brows, are converted into low pixel values reflecting regions with lower
temperature compared to the face region. However, we can observe that the synthetic
thermal images, when compared to thermal ground truth in column (b), present more
details in some facial traits such as eyes and mouth. This is expected as the synthetic
thermal images are generated from data with different source of information. Comparing

the synthetic thermal images generated using the three proposed visible-to-thermal attack
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(b)

Figure 7.4: Samples of presentation attack of CSMAD database in visible and thermal
spectrum. (a) worn masks (b) standing masks.

104



7.4. Indirect attack synthesis

Figure 7.5: Samples of synthetic attacks. (a) visible bona fide (b) thermal bona fide (c)
synthetic attacks using CRN (d) synthetic attacks using CRN+x?(LBP) (e) synthetic
attacks using CRN+CX(LBP).
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synthesis models, we note that the three sets of synthetic images are remarkably similar,

even though we can note few minor differences that are almost not visually perceptible.

PSNR (dB) SSIM
CRN 15.576 (+ 4.246) | 0.610 (£ 0.103)

CRN+y%(LBP) | 15.223 (& 4.594) | 0.613 (+ 0.123)
CRN+CX(LBP) | 15.616 (+ 4.208) | 0.618 (& 0.107)

Table 7.1: Quality assessment of the synthetic attacks in terms of PSNR and SSIM.

A quality assessment of the synthetic thermal attacks obtained by the different
proposed approaches is performed in terms of peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM). PSNR and SSIM are computed between the
synthetic thermal images and the thermal bona fide samples (ground truth). Table 7.1
reports the PSNR and SSIM results obtained for each visible-to-thermal attack synthesis
model. We acknowledge that the obtained results do not reflect high fidelity of the
synthetic thermal images to the ground truth. As pointed out for Figure 7.5, the synthetic
attacks are generated from visible face images which provides a different information
compared to thermal spectrum. The visible-to-thermal attack synthesis models aim to
generate thermal-like images but it cannot predict accurately the thermal signature.
The quality assessment provides similar results for the different attack synthesis models
(~15dB for PSNR and ~0.6 for SSIM), with the CRN+CX(LBP) model delivering the
highest values of PSNR and SSIM.

7.5 [Evaluation of face spoofing attack detection for indi-

rect synthetic attack

In this section, we carry out a performance evaluation of spoofing attack detection when
confronting the new proposed synthetic attack in order to quantify the threat it causes.
First, we present the spoofing attack detection algorithms used for the evaluation. Then,

we introduce our experimental setup followed by the reported results and discussion.

7.5.1 Spoofing attack detection baselines

The selected baselines of spoofing attack detection were introduced in studies of thermal

spectrum robustness against spoofing attacks [51,52,53, 54].
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Mean facial brightness (MFB) As defended in [51, 54], mean facial brightness is
a simple but a very efficient solution to prove the user’s liveness. This argument can
be endorsed by the fact that face regions are rather bright in thermal spectrum, while
presentation attacks are quite dark since they are at a significantly lower temperature
than faces. This is also valid for silicone mask attacks, since it is expected that the attack
region will be relatively darker than face region even when worn by the attacker. Mean

facial brightness can be used simply as spoofing attack detection score.

Local Binary Patterns and Logistic Regression (LBP+LR) Local binary pat-
terns (LBP) are used to represent the texture variation between bona fide samples and
attack samples. Subsequently, logistic regression (LR) is used to build a classifier to
label samples as bona fide or attack. LBP features are normalized before training the LR
model. We have applied normalization to zero mean and unit standard deviation using
parameters extracted only from the bona fide feature set. Given a LR trained model, the

output of this spoofing attack detection is the probability of a sample being a bona fide.

7.5.2 Experiments and results

The performance evaluation of the presented spoofing attack detection baselines is
assessed using the CSMAD dataset along with the synthetic attacks obtained using the
different visible-to-thermal attack synthesis models. The CSMAD dataset provides video
samples that are split into frames. Spoofing attack detection scores are computed at

frame level.

Face regions are cropped by extracting the face coordinates on visible spectrum and
projecting them on thermal face images. MFB is computed across the face region. Fig-
ure 7.6 illustrates the score distribution of MFB for bona fide samples and attack samples.
The score distribution of bona fide samples is the same for all the Figures 7.6a, 7.6b, 7.6¢c
and 7.6d, as we have considered the same bona fide set for the 4 sets of attacks. For
the silicone mask attacks illustrated in Figure 7.6a, we observe that the two score dis-
tribution are clearly separated, resulting in a 2.3% of equal error rate (EER). However,
the score distribution for the synthetic attack generated by the three different models of
visible-to-thermal attack synthesis significantly overlaps with the score distribution of
bona fide samples. The synthetic attack generated using CRN+x?(LBP) model gives
the highest equal error rate of 67.7%. The EER reported on all of the three different
synthetic attacks surpasses 50%. Accordingly, we can deduct that the proposed synthetic
attack have led to a terrible failure of the spoofing attack detection solution based on
MFB.
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Figure 7.6: Score distribution of the MFB baseline for bona fide and attack samples. (a)
silicone mask attack (b) synthetic attack CRN (b) synthetic attack CRN+x?(LBP), (c)
synthetic attack CRN4+CX(LBP)

For LBP+LR baseline, we split the CSMAD dataset into 14 partitions, each corre-
sponding to a specific subject. For each cross-validation fold, 13 partitions are selected to
train the spoofing attack detection model and the remaining partition is used for testing.
The splitting of the dataset is defined in way to ensure a disjoint set of subjects, so that
the spoofing attack detection model does not learn subject-specific information. Figure 7.7
presents the detection error tradeoff (DET) curves corresponding to each of the studied
attacks. For silicone mask attack, we observe that the LBP+LR based spoofing attack
detection report a considerably low error, reflecting this solution’s robustness against
silicone mask attacks. The performance of LBP+LR baseline drastically decreases when
dealing with the proposed synthetic attacks. In a scenario of extremely secure spoofing
attack detection system where almost no impostor will be able to breach the system,
if we permit a false acceptation rate of 0.1% for instance, we will obtain a false alarm
rate of 30-33%. Comparing the performance of the spoofing attack detection solution for
the synthetic attack obtained by the three different models, we note that combining the
CRN model with the loss computed at LBP map level led to more challenging attacks.
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Figure 7.7: Detection error tradeoff (DET) curves of LBP+LR spoofing attack detection
baseline for different attacks.

The EERs of the two reported spoofing attack baselines for the different attacks are
gathered in Table 7.2. It is observable that the proposed synthetic attack represents a
considerable higher threat, in comparison to silicone mask attack that is considered so far
a challenging attack for thermal spectrum. The EER has increased from 2.3% to 67.7%
and from 0.21% to 11.6% for MFB and LBP+LR spoofing attack detection, respectively.

109



Chapter 7. Indirect spoofing attack on thermal face biometric system

MFB | LBP + LR
Silicone mask attack 2.3 0.21
Synthetic attack CRN 58.5 7.43
Synthetic attack CRN + x?(LBP) | 67.7 9.44
Synthetic attack CRN + CX(LBP) | 50.7 11.6

Table 7.2: Equal error rate (%) of face spoofing attack detection evaluated on the
proposed attacks.

When the impostor does not have any a priori knowledge about the spoofing counter-
measure implemented in the system, the performance of the spoofing attack detection
significantly drops when it faces the synthetic attack obtained by the generalized CRN
model. Consequently the EER increased from 0.21% to 7.43%. Although when the
impostor does indeed have a priori information about the spoofing countermeasure that
is being employed, he can use this information in a way to customize his attack to have
higher chances to breach the system. This scenario is executed for visible-to-thermal
attack synthesis models, CRN + x?(LBP) and CRN + CX(LBP), where we have used
the LBP map information to better attack the LBP+LR based spoofing attack detection
system. In addition, it is important to highlight that when using a contextual loss at
style level to compute the loss between the LBP maps of the synthetic thermal attack
and the bona fide thermal sample, we have obtained a higher EER (11.6%) compared to
using a LBP histogram comparison using x? distance (9.44%).

7.6 Summary

Deploying thermal technology in face biometric systems requires an extensive study of its
implications and the risk it may confront. In this chapter, we proposed a new attack on
thermal face biometric systems, that takes place at the post-sensor level. This thermal
attack is generated through visible-to-thermal attack synthesis of visible face images that
could be available on the social networks or acquired sneakily from a distance. A quality
assessment of the synthetic attacks have been performed by comparing the synthesized
thermal images to thermal bona fide samples. Subsequently, the threat of the proposed
synthetic attack was measured through an evaluation of two existing spoofing attack
detection solutions designed for thermal spectrum. This evaluation reported a significant

drop of performance of the two used baselines when they face the proposed synthetic
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attack compared to when they confront silicone mask attacks, the most challenging
attack for thermal spectrum studied so far. A scenario representing an impostor that
has a priori knowledge of the spoofing attack detection solution is also explored. For
local binary pattern (LBP) based spoofing attack detection system, we have adjusted the
visible-to-thermal attack synthesis model in a way that it aims to generate thermal images
of which the LBP map is closer to the LBP map of thermal bona fide samples. The
obtained synthetic attacks using the customised attack synthesis models have increased

the error rate reported by the targeted spoofing attack detection approach.

We have proven through this work that, even though it is true that thermal spectrum
is extremely robust against presentation attacks, this does not deny the fact that new
attacks customized for thermal imagery might act as a serious threat. Spoofing attack
detection approaches based on the detection of human vitals signs, such as respiratory
rate or heart rate, might be an efficient, parallel, solution to counter-defend against the

attacks proposed in this chapter.
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Chapter 8

Conclusion

This chapter provides a summary of the contributions and findings from the work reported
in this dissertation. This material is reported in Section 8.1. Different directions for

future research are presented in Section 8.2.

8.1 Summary

Conventional visible face recognition systems have greatly evolved during the three last
decades to achieve human-level performances. However, human performance does not
always define an upper bound of what is achievable. Human vision system is limited by
the potential of visible spectrum that detects reflected radiation in visible wavelengths.
Thereby, visible face recognition systems are heavily affected by the illumination variation.
Thermal imagery provides efficient solutions to the challenges encountered by visible face
recognition systems. The foremost advantage of thermal imagery lies in its invariance to
illumination changes. This is inherent in the nature of thermal imagery as it detects the
radiation emitted by the face. Thermal face recognition has attracted a lot of attention
these last years, however its progress is still far behind that of visible face recognition.
This is mainly due to the shortage in thermal face databases and in public resources

required for its exploration.

The research work reported in this thesis is centered on the development of novel
methodologies that enable an efficient and prompt integration of thermal technology in
face biometric systems. The set of developed methodologies, presented in this disserta-
tion, was established based on interspectral synthesis that confers the exploitation of
complementary information provided by face images in visible and thermal spectra. The

proclivity for such direction is motivated by the explotion in usage of thermal technology
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as the need and the investments for security applications grow steadily. The contributions
presented throughout this thesis have promoted an integration of thermal technology

without requiring:

« recollection of face enrollment databases in thermal spectrum as the legacy enroll-

ment databases are restrained to visible spectrum.
o adapted and re-optimized algorithms specifically designed for thermal spectrum.

e extensive manual annotation and labeling of thermal data that is costly and

time-consuming.

The shortage of public face databases that provide face images in visible and in
thermal spectrum has motivated the first contribution of our work. A new face database,
introduced in Chapter 2, includes face images acquired simultaneously in visible and
in thermal spectrum using a dual sensor. The proposed database has been acquired
with several facial variations in attempt to reproduce real-life challenging scenarios.
Because of its variation, this database can be used to conduct a wide range of studies
related to facial image processing including occlusion removal, expression and/or pose
invariant face recognition and soft biometrics. A benchmark evaluation of the database
has been conducted to study the impact of facial variations on visible and on thermal
face recognition performance validating the advantages and the limitations of each. The
database has been available upon request for the research community. The remainder of
the contributions reported in this dissertation are built upon the representations provided

by the proposed database.

The contribution, introduced in Chapter 4, relates to our fist application of interspec-
tral synthesis and that is to perform cross-spectrum face recognition. Thermal-to-visible
image synthesis is based on cascaded neural network (CRN) [21]. The training of CRN
was performed using contextual loss [100] that enabled a scale and rotation invariant
transformation. The proposed approach was, qualitatively and quantitatively, evaluated
and compared to the state-of-the-art approach in image translation, Pix2Pix [96] and
to a thermal-to-visible synthesis approach based on generative adversarial networks,
TV-GAN [84], designed for cross-spectrum face recognition. The experimental results
revealed the efficiency of our approach in bridging the gap between thermal and visible
spectrum compared to the TV-GAN baselines by reporting an average of 56% of relative
improvement in terms of face recognition accuracy. The presented contribution enables
the straightforward integration of thermal technology in deployed face recognition systems
without the need of recollection of face enrollment data in thermal spectrum, neither the

re-configuration of inner processing modules designed for visible spectrum.
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The work, presented in Chapter 4, was then extended to develop an illumination-
invariant face recognition system using visible and thermal-to-visible face images. Chap-
ter 5 introduced a new scheme of score level fusion that leverages the more informative
spectrum in given illumination conditions, yielding to a continuous day and night face
recognition. While the reported results in Chapter 4 proved the efficacy of the thermal-
to-visible image synthesis, the quality of the synthesized visible images are still few steps
behind standard visible images. Based on the intuition that the quality of a sample can
be an indicator of its relevance in providing an accurate recognition, the matching scores
of visible images and thermal-to-visible images against visible gallery are associated with
a quality matching score that compares the quality of the probe sample to the gallery
sample. The proposed fusion scheme was employed in two face recognition systems, the
first based on handcrafted features, i.e. local binary patterns [115], and the second based
on deep neural embeddings extracted using Light CNN model [113]. The experimental
results validate our approach as slight improvements in face recognition accuracy were

reported .

The contribution of the work presented in Chapter 6 consists in introducing a novel
concept, that to our knowledge has not been previously explored, aiming to tackle the
lack of annotated data in domains, other than visible spectrum, that are less studied in
the field of image processing. The proposed solution consists of transferring the data from
one domain, generally visible spectrum, to a target domain and using the converted data
along with the original annotation to train a model designed to perform a determined
task. Particularly in this dissertation, we have considered thermal spectrum as our target
domain and facial landmark detection as the task to be performed. The data synthesis
method has been adapted to perform visible-to-thermal data transformation. Two facial
landmark detection methods, the first based on active appearance models [134] and the
second based on deep learning technique [135], were trained on the synthesized thermal
databases using the corresponding annotation. The evaluation results have reported a

44% of relative improvement in terms of accuracy detection over the baseline system.

Chapter 7 presents a new attack on biometric samples at the post-sensor level for
thermal face biometric systems. These systems were proved to be very robust against
spoofing attacks, however this robustness lies in the process of acquisition characterizing
thermal sensors by detecting the thermal signature of the face. Therefore, the indirect
access attacks, that occur at the post-sensor level, are an irrefutable threat that jeopardize
the security granted by thermal face biometric systems. It is presumed that the attacker
injects, into the thermal face biometric system, a fake thermal face sample representing
the thermal signature of the claimed identity. This type of attack, to the best of our
knowledge, has not yet been explored in literature. Since thermal face images are

nearly impossible to obtain, the proposed new attack consists of generating synthetic
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thermal face images by transforming images acquired in visible spectrum to thermal
spectrum. The scenario, where the impostor has a priori knowledge about the spoofing
countermeasure used in the system and uses this information to adapt his synthetic
attack to better spoof the system, is also considered. The threat of the proposed synthetic
attacks is quantified using existing countermeasure approaches designed for thermal
spectrum. The experimental results of spoofing attack detection show a relative increase
in terms of equal error rate from 0.21% for silicone mask attack to 11.6% for the proposed

synthetic attack demonstrating the risk it generates.

8.2 Directions for future research

Directions for future research relate to both the extension of the presented work for other
facial image processing tasks as well as the generalization of the proposed methods for

further computer vision applications. Further works include:

o« High resolution face paired database in visible and thermal spectrum
As stated in Chapter 3, a high resolution version of the database introduced
in this thesis is being collected. This version of the database is being acquired
with FLIR DUO PRO R sensor, that provides visible images of spatial resolution
of 4000x3000 and thermal images of spatial resolution of 640x512 and thermal
sensitivity lower than 50mK. In addition to the variations considered for the first
version of the database, a variety of metadata is also being collected that includes
weight, height and wrist size that will lay the ground to explore the possibility of
body measurements estimation from face images. The database will also provide
a 1 minute long face videos along with the measurement of heart rate. This will
enable monitoring cardiorespiratory signals using thermal faces. The collection of
this high resolution database is essential for the research community to keep up

with the rapid advancements of thermal imaging technology.

e Sppofing countermeasure for indirect spoofing attack on thermal bio-
metric systems Following the last contribution of this thesis presented in Chapter
7, a spoofing detection solution can be proposed in thermal spectrum based on the
extraction of subcutaneous information that the thermal face images provide. One
possible direction is the extraction of cardiac signals to prove the user’s liveness.
The new database collection will provide the data required for the development
of such countermeasure technique. Another solution can be based on the usage of
subcutaneous information provided by the thermal images. Thermal face recogni-
tion relying on the extraction of subcutaneous features such as vascular network

matching [174] or blood perfusion data [175] can be directly employed.
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8.2. Directions for future research

e Improvement of interspectral face synthesis While the interspectral face syn-
thesis used for cross-spectrum face recognition yielded to a significant improvement
compared to the baseline systems, the synthesized visible face images still present
few artefacts when the face is presented under challenging face variations such
as head pose and occlusions. Other artefacts are related to incorrect estimation
of some facial attributes such as gender and skin color. Improvements will be
explored with the aim of addressing the aforementioned artefacts to provide higher

cross-spectrum face recognition accuracy and enhanced quality face images.

e Application of interspectral synthesis for crowd density estimation The
research work reported in this dissertation has been already proved to be a low-
hanging fruit. New projects have started to be proposed basing their research scope
on interspectral image synthesis for applications other than that of facial image
processing. An ongoing project entitled "OKLOS: Continuous anomaly detection in

Ik

moving crowds"* is drawing its focus on applying thermal-to-visible image synthesis
for video surveillance tasks. This project has been selected by the French research
agency (ANR) in the context of ANR Flash Call for Project: "Security of the 2024
Olympic & Paralympic Games". Thermal-to-visible image synthesis will lay the
foundation for continuous day and night monitoring and surveillance, by means
of the wide range of available resources in the visible spectrum. These resources

include crowd motion analysis, density detection, and group behavior analysis.

*OKLOS website: http://oklos.eurecom.fr/
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