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Introduction

The Standard Model of particle physics is very successful in describing the properties of elementary
particles and the electro-magnetism, weak and strong fundamental interactions. Its success is due to
the successful description of many observables that are measured precisely, but also to its predictions
of particles and properties that were verified later by experiments. Nevertheless, the Standard Model
cannot be the final theory of nature. For example, it still does not include the gravitational interaction,
explain the dark matter ... Many theories beyond the Standard Model exist, but their validity is still
to be verified. Hence, the need to keep pushing further in particle physics experiments, whether
collecting more data to be sensitive to small signals or reaching higher energies to explore new
territories.

The ATLAS experiment, to which I contribute, is one of the biggest physics collaborations that
comprises about 3000 scientific authors from 183 institutions around the world, representing 38
countries from all the world’s populated continents. Its detector is the largest volume detector ever
constructed for a particle collider; it was built and is upgraded using the latest technological advances
in detector systems. The detector is built around an interaction point of the large hadron collider
(LHC). The Run I data taking period happened between the years 2010 and 2012 with collision
energies up to 8 TeV. The Run II data taking period happened between the years 2015 and 2018 with
collision energies up to 13 TeV, the highest energies reached by a collider to date. In my thesis, I use
the proton-proton collisions data collected during Run II at 13 TeV energies.

This manuscript aims to summarize the most important parts of my contributions within the ATLAS
collaboration. It is organized as follows. First, chapter 1 introduces the Standard Model, some
Beyond Standard Model theories and the different approaches and techniques used to calculate the
predictions of those models. The LHC and the ATLAS detector are introduced in chapter 2. Jet
objects reconstruction and calibration are presented in details, since they are the main objects used
in this thesis. The next three chapters summarize my contributions in performance and physics
analyses. My first contribution, which is also my qualification task to become an ATLAS author,
is detailed in chapter 3 and corresponds to the study of one method of jet calibration, namely the
eta-intercalibration. Chapter 4 details the direct search for new physics using the invariant mass of
two jets with an emphasis on the folding technique that I implemented. Chapter 5 details a new jet
cross-section measurement that is done for the first time, the leading jet double differential cross-
section, with details on both the experimental measurement and the theoretical predictions aspects,
where I contributed in both. Finally, the conclusion is presented.
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1 Standard Model and Beyond, with a focus on
QCD and its predictions

In this chapter1, I describe the Standard Model of particle physics (SM) in the first section, then,
I detail more the Quantum Chromo-Dynamics (QCD) theory related directly to my thesis. Next, I
present different methods used to calculate theoretical predictions. Finally, I introduce some Beyond
Standard Model (BSM) theories used in the search for new physics.

1.1 The Standard Model (SM)

The Standard Model of particle physics (SM) describes the properties of elementary particles and
three of their four fundamental interactions, electro-magnetism, the weak and the strong interactions
in a consistent relativistic quantum field theory. By elementary particle, we mean a quantum particle
with no evidence of internal structure. We distinguish two groups of elementary particles: fermions,
the building blocks of the visible matter2, and bosons, the force carrying particles. Anti-matter is also
described by the SMwhich has the same properties as matter but with opposite quantum numbers (see
section 1.1.1). Figure 1.1 shows an info-graphic of the SM particles, fermions and bosons, with their
masses, spins, electric and color quantum numbers. The contents in this info-graphic are developed
in the belows sections.

The Standard Model is one of the most successful physical models. In fact, it provides calculations
with high precision of many independent observables, the most precise one being the electromagnetic
fine structure constant known to more than 10 orders of precision. The model made also a lot
of predictions which have been verified experimentally. Moreover, the model is minimal: it is
constructed using only fields, interactions, and parameters which are necessary for consistency
and/or observed experimentally.

The SM is formulated in the Lagrangian formalism, in terms of a Lorentz-invariant local function
L, the Lagrangian density. The fermions obey the Pauli exclusion principle, follow Fermi-Dirac
statistics and can be characterized by a real positive quantity m and a half-integer number s which
can be identified with the mass and spin of the associated particles, respectively. The corresponding

1 The materials in this chapter are based on my “NPAC Masters 2” lecture notes (namely the “QFT” course by Matteo
Cacciari and Sebastien Descotes Genon, the “particles physics” course by Mélissa Ridel and Patrick Robbe), my CERN
2016 summer school lecture notes (namely the “QFT and SM” course by Andrej Arbuzov, the “QCD” course by Kirill
Melnikov), the lecture notes of the “QCD” course by Gavin Salam at the CERN 2009 summer school, Alexander Huss
thesis dissertation, the “Review of Particle Physics” 2018 book by the PDG collaboration [1], the “An introduction to
quantum field theory” book by Peskin and Schroeder [2], and the various references cited later.

2 Visible matter constitute less than 5% of the total energy of our universe.
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1 Standard Model and Beyond, with a focus on QCD and its predictions

Figure 1.1: Info-graphic of the SM particles, fermions and bosons, showing their masses, spins, electric and
color quantum numbers. Figure from CERN website.

force fields obey Bose-Einstein statistics and the equations of motion given by the Euler-Lagrange
equations, which determine the dynamics of the theory. The SM is formulated as a spontaneously
broken non-Abelian gauge3 theory with the underlying gauge group

SU(3)C × SU(2)W × U(1)Y. (1.1)

The electroweak (EW) sector is described by the Glashow–Salam–Weinberg [3–5] model of elec-
troweak interactions with the associated SU(2)W × U(1)Y gauge group. The strong interaction is
described by quantum chromodynamics [6–9] (QCD) with the associated gauge group SU(3)C .

1.1.1 Lagrangian formulation

The SM Lagrangian can be divided into the following parts:

LSM = LYang−Mills + LFermion + LHiggs + LYukawa. (1.2)

Let us examine successively each of these parts.

Gauge theories and the Yang-Mills Lagrangian
TheSM is constructed on the principle of gauge (local) symmetries. Let us considering theLagrangian

3 The terms "spontaneously broken" and "gauge" are explained in section 1.1.1.
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1.1 The Standard Model (SM)

of a field Φ which is invariant under the global symmetry of the SM group:

Φ(x) → Φ′(x) = U(θC, θW, θY)Φ(x), (1.3)
U(θC, θW, θY) = exp[−igsθ

a
CtaC + igθi

WtiW − ig′θYtY], (1.4)

where the different t denote the generators of the Lie algebra of the different SM groups θ, and the
different g parameters denote the corresponding coupling constants.

For a local transformation where the group parameters depend on the space-time coordinate x,
θ → θ(x), the covariant transformation property of the derivation of the filed, ∂µΦ, is destroyed. The
gauge-covariant derivative Dµ is a generalization of the ordinary derivative ∂µΦ which replaces the
latter in the Lagrangian to preserve its invariance under gauge transformations. It is defined as:

Dµ = ∂µ + igsGa
µtaC + igWi

µtiW + ig′BµtY, (1.5)

where the added massless gauge fields, Ga
µ (×8), Wi

µ (×3) and Bµ (×1) ensure the covariant transfor-
mation of Dµ. This replacement is called the method of minimal substitution.

The requirement of gauge invariance automatically induces interaction terms, where the gauge fields
act as the mediators.

The dynamics for the gauge fields are incorporate into the theory by adding a gauge-invariant kinetic
term, given by the Yang–Mills Lagrangian:

LYang−Mills = −1
4

Ga
µνGa,µν − 1

4
Wi
µνWi,µν − 1

4
BµνBµν, (1.6)

where the field strength tensors are defined as

Ga
µν = ∂µGa

ν − ∂νGa
µ − gsfabcGb

µGc
ν

Wi
µν = ∂µWi

ν − ∂νWi
µ − gε ijkWj

µWk
ν

Bµν = ∂µBν − ∂νBµ,

where fabc and ε ijk are the structure constants of the SU(3) and SU(2) algebras, respectively. The
bilinear terms in the Lagrangian LYang−Mills describe the free motion of the fields, the cubic and
quartic terms in the gauge fields describes their interaction among themselves. Furthermore, any
explicit mass term for the gauge fields is forbidden, as it would break gauge invariance.

For QCD, the number of colors Nc = 3. N2
c − 1 = 8 gauge fields exist, corresponding to the 8 kinds

of gluons. tab
A tbc

A = CFδac with CF = 4/3 is the color-factor associated with gluons emission from a
quark. facdfbcd = CAδab where CA = Nc = 3 is the color-factor associated with gluon emission from
a gluon. tab

A tab
B = TRδAB where TR = 1/2 is the color-factor for a gluon to split to a qq̄ pair.

Fermion Lagrangian
The fermions, spin 1/2 matter content of the SM, can be classified into the leptons (l,νl), which
are only subject to the electromagnetic and weak interactions, and the quarks (qu , qd ), which also
interact strongly (they come in 3 color flavors). The fermions come in three generations, which have

9



1 Standard Model and Beyond, with a focus on QCD and its predictions

Table 1.1: The fermionic matter content of the SM with the 3 generations shown. The third component of the
weak isospin, I3

W, and the hypercharge, Y, quantum numbers are shown. For the quarks, three color quantum
numbers also exist which are not shown here. Subscript letters R and L denotes right and left chiralities.
Superscript letters L and Q denotes the lepton and quark doublets.

1st 2nd 3rd I3
W Y

leptons
ΦL′

L

(
ν′e
e′
)

L

(
ν′µ
µ′
)

L

(
ν′τ
τ′
)

L

( 1/2
−1/2

)
-1

Φl′
R e′R µ′R τ′R 0 -2

quarks
ΦQ′

L

(u′
d′
)

L

(c′
s′
)

L

( t′
b′
)

L

( 1/2
−1/2

)
1/3

Φu′
R u′R c′R t′R 0 4/3

Φd′
R d′R s′R b′R 0 -2/3

identical properties under the gauge interactions, but differ in their mass and flavor. Fermions are
also assigned left-handed and right-handed chirality, a representation that comes from the nature
of the weak interaction. For massless particles, chirality is equivalent to the helicity, given by the
projection of its spin in the direction of its momentum. Leptons come in left-handed doublets and
charged right-handed singlets. Quarks come in left-handed doublets, down right-handed singlets and
up right-handed singlets. As a consequence, any explicit mass terms for the fermions are forbidden,
as they mix the two chiralities and, as such, would break gauge invariance. Table 1.1 lists the singlets
and doublets fermions for the three generations along their field notation. The prime notation denotes
that the fields are eigenstates with respect to the gauge interaction. Subscript letters R and L denotes
right and left chiralities. Superscript letters L and Q denotes the lepton and quark doublets.

The Lagrangian for the fermionic fields is obtained by applying the method of minimal substitution
to the free Dirac theory of massless fermions, leading to:

LFermion =

3∑
i=1

(
Φ̄L′i

L γ
µiDµΦL′i

L + Φ̄l′i
Rγ

µiDµΦl′i
R + Φ̄Q′i

L γ
µiDµΦQ′i

L + Φ̄u′i
Rγ

µiDµΦu′i
R + Φ̄d′i

Rγ
µiDµΦd′i

R

)
(1.7)

The gauge-covariant derivative Dµ, which includes gauge fields terms, gives rise to the interaction
terms between fermionic and gauge fields. The fields indicated here are eigenstates with respect to
the gauge interactions (as opposed to mass eigenstates).

Quarks transform under SU(3) where the generators are given by taC =
λa

2 (λa denotes the Gell-Mann
matrices). Left-handed fermion doublets transform under SU(2) where the generators are given by
tiW = Ii

W =
σi

2 (σi denotes the Pauli matrices), where Ii
W denotes the isospin. Charged fermions

transform under U(1) where the generator is given by tY = Y
2 , where Y denotes the hypercharge. The

electric charge Q of the particle is given by:

Q = I3
W +

Y
2
. (1.8)

Higgs mechanism
Any explicit mass terms for the gauge bosons are forbidden, as they would break gauge invariance.
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1.1 The Standard Model (SM)

However, they can be accommodated in a gauge theory by the mechanism of spontaneous symmetry
breaking (SSB) [10–12]. This is accomplished by allowing a field to develop a non-vanishing vacuum
expectation value (vev), which has to be a scalar in order to preserve Lorentz invariance. A scalar
weak isospin doublet is introduced with a hypercharge Yφ and parametrized as follows:

φ(x) = *.
,

ϕ+(x)

ϕ0(x)
+/
-
. (1.9)

The most general Lagrangian of φ which satisfies the restrictions imposed by gauge invariance and
the stability of the vacuum is:

LHiggs = (Dµφ)†(Dµφ) − V(φ),

V(φ) ≡ Higgs potential = −µ2(φ†φ) +
λ

4
(φ†φ)2, λ > 0.

(1.10)

For µ2 > 0, the field acquires a non-vanishing vev φ0 with:

|φ0 |2 = 2µ2

λ
≡ v2

2
. (1.11)

The potential V have a Mexican hat shape which is illustrated in figure 1.2. In order to preserve the
electromagnetic gauge symmetry, only the neutral component of ϕ0 can develop the vev. The new
parametrization is:

φ(x) = *.
,

ϕ+(x)
1√
2

(v + H(x))
+/
-
. (1.12)

The real field H(x) corresponds to the massive mode associated with the physical Higgs boson,
discovered in 2012 [13, 14], a neutral spin-0 particle with mass

MH =
√

2µ. (1.13)

Figure 1.2: An illustration of the Higgs potential with µ2 > 0, in which case the minimum (vev) is at |φ0 |2 =
2µ2/λ. The shift of the minimum from the center is the origin of the SSB.
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1 Standard Model and Beyond, with a focus on QCD and its predictions

Mass terms for the EW gauge fields are generated through the SSB and originates from the vev part
of the Higgs potential. This mechanism is known as the Higgs mechanism. The Higgs mechanism
induces mixing terms among the EW gauge fields. We will redefine the fields to make appear the
physical ones. The mass matrix of the EW gauge bosons is diagonalized as follows:

*.
,

Aµ

Zµ
+/
-
=

*.
,

cos θW − sin θW
sin θW cos θW

+/
-

*.
,

Bµ
W3
µ

+/
-

(1.14)

with the weak mixing angle θW given by:

cos θW ≡ cW =
g√

g2 + g′2
. (1.15)

The massless gauge field Aµ corresponds to the photon and the massive field Zµ corresponds to the
electrically neutral Z boson. The elementary charged is:

e =
gg′√

g2 + g′2
, (1.16)

and the EW coupling (fine-structure) constant is:

α =
e2

4π
. (1.17)

The two massive charged bosons W+ and W− are described by the fields:

W±
µ =

1√
2

(W1
µ ∓W2

µ). (1.18)

The masses of the bosons are:

MW =
vg
2

MZ =
v
√

g2 + g′2
2

(1.19)

giving
cos θW =

MW
MZ

.

The strong gauge field is not affected by the Higgs mechanism. The strong boson, gluon, stays
therefore massless. The strong coupling constant is:

αS =
g2

S
4π
.
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1.1 The Standard Model (SM)

Yukawa couplings
Explicit fermion mass term is forbidden in the SM due to the distinct transformation properties of
the two fermion chiralities. The solution to fermion mass terms is also provided by the Higgs field.
Defining the charge conjugate as

φc = iσ2φ∗ = ((ϕ0)∗,−ϕ−)T,

we construct the general gauge-invariant interaction between the fermions and the Higgs filed:

LYukawa = −
3∑

i,j=1

(
Φ̄L′i

L Λl
ijΦ

l′j
Rφ + Φ̄Q′i

L Λu
ijΦ

u′j
Rφ

c + Φ̄Q′i
L Λd

ijΦ
d′j
Rφ + h.c.

)
, (1.20)

where “i” and “j” represent the three fermion generations and “h.c.” stands for hermitian conjugate
of the terms preceding it. The Yukawa couplings Λf

ij are complex 3× 3 matrices in generation space.
The vev part of the Higgs field generates mass terms of the fermions that can be diagonalized by a
bi-unitary transformation:

mf,i =
v√
2

3∑
k,l=1

Uf
L,ikΛf

klU
f†
R,li , where f = l, u, d. (1.21)

The transition of the eigenstates of the gauge interactions, Φf′, to the mass eigenstates, Φf , is given
by:

Φf,i
L =

3∑
j=1

Uf
L,ijΦ

f′,i
L and Φf,i

R =

3∑
j=1

Uf
R,ijΦ

f′,i
R . (1.22)

In the quark sector, charged-current interaction terms like Φ̄u′i
L γ

µWµΦd′i
L in gauge basis become

Φ̄ui
L γ

µWµ (Uu†
L Ud

L)Φdj
L in mass basis, giving interactions between mass eigenstates from different

families. The quark mixing matrix, parameterizing the transition between different generations of
the mass eigenstates, is given by the Cabibbo-Kobayashi-Maskawa [15, 16] (CKM) matrix defined
as follows:

VCKM = Uu†
L Ud

L = Uu
LUd†

L =

*....
,

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

+////
-

. (1.23)

It appears only in the charged-current interactions and can be parametrized in terms of three angles
and a complex phase, where the latter is the only source of CP 4 violation in the SM. The CP violation
phenomenon could explain why the universe is dominate by matter over anti-matter.

In the original formulation of the SM, all neutrinos are assumed to be massless. This is not true
anymore after the observation of neutrino oscillations. Neutrino masses can be added in a way similar
to the other fermions or through other models like seesaw mechanism.

4 In a CP transformation, particles are switched with their anti-particles (charge conjugate) and the physical system is
mirrored, i.e. sign flip of the space coordinates (parity).
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1 Standard Model and Beyond, with a focus on QCD and its predictions

Independent parameters
The SMLagrangian depends on a set of 18 independent parameters (if consideringmassless neutrinos)
which can be chosen as:

• 2 couplings: gS and e,

• 3 boson masses: MW, MZ and MH,

• 9 fermion masses: 3 ml and 6 mq,

• 4 parameters of the CKM matrix.

1.1.2 Perturbative approach

If the interactions are not too strong, the SM prediction can be evaluated perturbatively about the free
field theory. The free theory is described by the bilinear terms of the Lagrangian and the solutions
of the corresponding field equations are given by the one-particle wave functions of the respective
field. In the so-called weak asymptotic limit the interactions are assumed to be negligible long
before and after the scattering reaction (t→ ±∞), where the particles are considered to be far apart.
As a consequence, the particles entering and exiting the reaction can be described by the free one-
particle states. The S-matrix, calculated from the Lagrangian, transforms the incoming configuration
for t → −∞ into the outgoing configuration for t → +∞ and encapsulates the information of the
scattering reaction. The cross section is then calculated by:

σp = 〈f |S|i〉2,

where i and f denotes the initial and final states respectively.

The interaction is pictorially represented in terms of so-called Feynman diagrams, which are assem-
bled from two types of building blocks: the propagators and the vertices. The former are represented
by lines and are derived from the free, bilinear part of the Lagrangian, and the latter emerge from the
remaining interaction terms and are represented by vertices that join multiple lines. The associated
analytic expressions can be directly derived from the Lagrangian 1.2 and gives rise to the Feynman
rules. Lastly, the external legs translate into the one-particle wave functions. Examples of Feynman
diagrams describing the interaction between an electron and a positron by the intermediate of a
photon are shown in the figure 1.3. On the left is shown a diagram with the lowest order possible for
the interaction with no loops, called the tree level. On the right is shown a one loop diagram. When
performing calculations, all the possible diagrams should be calculated, and interferences should be
taken into account when the same initial and final states exist for multiple diagrams.

14



1.1 The Standard Model (SM)
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Figure 1.3: Examples of Feynman diagrams for the interaction between an electron and a positron by the
intermediate of a photon. On the left is shown a diagram with the lowest order possible for the interaction with
no loops, called the tree level. On the right is shown a 1 loop diagram.

1.1.3 Renormalization and running coupling

As we have seen, the SM Lagrangian depends on a set of independent parameters which are identified
with the couplings and the masses of the particles. In order to make theoretical predictions, it is nec-
essary to relate these parameters to independent measurable quantities. The step of re-parameterizing
the theory in terms of physically measured quantities is known as renormalization. In fact, in the cal-
culation of higher-order corrections, divergences arise which forbid any direct physical interpretation
of the (bare) parameters appearing the Lagrangian. In a renormalizable theory, all divergences drop
out in relations that express physical observables in terms of measurable (renormalized) quantities.
The renormalization moves the divergences into the bare parameters and introduces an (unphysical)
renormalization scale µR at which the regularization is performed and the physical observable is
calculated. When summing over all perturbative orders, the renormalization requires the prediction
to be independent on the choice of the scale µR. The renormalizability of a theory is therefore a
crucial property in order to obtain predictions using perturbation theory. Exceptions are made for
non-renormalizable theories in their phase-space region where the predictions are still reliable.

The self-interacting nature of the fields influences the free part of the theory by a shift of the
bare parameters to the renormalized ones. Predictions for observables are expressed in terms of
renormalized couplings α(µ2

R), as a function of a renormalization scale µR. When one takes µR
close to the scale of the momentum transfer Q in a given process, then the renormalized coupling is
indicative of the effective strength of the interaction in that process.

The change in the value of α as a function of the renormalization scale is measured using higher
order corrections to the interaction propagator (resummation of self-energy). The resulting equation
is called the renormalization group equation (RGE). For the strong interaction, the RGE satisfies:

µ2
R

dαS

dµ2
R
= β(αS) = −(b0α

2
S + b1α

3
S + · · · ) < 0, (1.24)
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where “b” coefficients are calculated with a corresponding number of loops for the higher order
corrections, and b0 = (11CA − 4nfTR)/12π. Since we have 3 colors and the number of light quark
flavors (mq << µR), nf , is at most equal to 6, b0 is positive which implies that β is negative [1].

The fact that the right-hand side of the RGE is negative for αS, meaning the coupling value decreases
with the renormalization scale (higher scale ≡ smaller distances), has an important consequences on
the strong interaction. It is the origin of quarks and gluons confinement and asymptotic freedom
described in the next section. Figure 1.4 shows the running ofαS asmeasured bymultiple experiments.
The value of αS is also shown at a scale µR = MZ.
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are based on (at least) full NNLO QCD predictions, and are published
in peer-reviewed journals at the time of completing this Review.
These pre-averages are then combined to the final world average value
of αs(M

2
Z), using the χ2 averaging method and error treatment as

described above. From these, we determine the new world average
value of

αs(M
2
Z) = 0.1181± 0.0011 , (9.23)

with an uncertainty of 0.9 %.∗∗∗ This world average value is in
reasonable agreement with that from the 2013 version of this Review,
which was αs(M

2
Z) = 0.1185 ± 0.0006, however at a somewhat

decreased central value and with an overall uncertainty that has
almost doubled. These changes are mainly due to the following
developments:

- the uncertainty of the combined lattice result, now using the
same averaging procedure as applied to the other sub-fields, is
more conservative than that used in our previous Review, leading
to a larger final uncertainty of the new world average, and to a
reduced fixing power towards the central average value;

- the relatively low value of αs from hadron collider results, which
currently consists of only one measurement of the tt cross section
at

√
s = 7 TeV [370] that is likely to be a fluctuation to the low

side.

For convenience, we also provide the values for ΛMS which
correspond to the new world average:

Λ
(6)

MS
= (89± 6) MeV, (9.24a)

Λ
(5)

MS
= (210± 14) MeV, (9.24b)

Λ
(4)

MS
= (292± 16) MeV, (9.24c)

Λ
(3)

MS
= (332± 17) MeV, (9.24d)

for nf = 6, 5, 4 and 3 quark flavors, which are determined using the
4-loop expression for the running of αs according to Eq. (9.5) and
3-loop matching at the charm-, bottom- and top-quark pole masses
of 1.3, 4.2 and 173 GeV/c2, respectively. Note that for scales below a
few GeV, Eq. (9.5) starts to differ significantly from the exact solution
of the renormalization group equation Eq. (9.3) and the latter is then
to be preferred.

In order to further test and verify the sensitivity of the new
average value of αs(M

2
Z) to the different pre-averages and fields of αs

determinations, we give each of the averages obtained when leaving
out one of the six input values, as well as the respective, initial value
of χ2 :

αs(M
2
Z) = 0.1179± 0.0011 (w/o τ results;

χ2
0/d.o.f. = 3.3/4), (9.25a)

αs(M
2
Z) = 0.1174± 0.0016 (w/o lattice results;

χ2
0/d.o.f. = 2.9/4), (9.25b)

αs(M
2
Z) = 0.1185± 0.0013 (w/o DIS results;

χ2
0/d.o.f. = 2.0/4), (9.25c)

αs(M
2
Z) = 0.1182± 0.0010 (w/o e+e− results;

χ2
0/d.o.f. = 3.5/4), (9.25d)

αs(M
2
Z) = 0.1184± 0.0012 (w/o hadron collider;

χ2
0/d.o.f. = 2.4/4) and (9.25e)

αs(M
2
Z) = 0.1180± 0.0010 (w/o e.w. precision fit;

χ2
0/d.o.f. = 3.4/4). (9.25f)

They are well within the uncertainty of the overall world average
quoted above. Note, however, that the average excluding the lattice
result is no longer as close to the value obtained from lattice alone as

∗∗∗ The weighted average, treating all inputs as uncorrelated mea-
surements with Gaussian uncertainties, results in αs(M

2
Z) = 0.11810±

0.00078 with χ2/d.o.f. = 3.7/5. Requiring χ2/d.o.f. to reach unity
calls for an overall correlation factor of 0.28, which increases the over-
all uncertainty to ±0.00114.

was the case in the 2013 Review, but is now smaller by almost one
standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each
of the sub-fields summarised in this Review, the wealth of available
results provides a rather precise and reasonably stable world average
value of αs(M

2
Z), as well as a clear signature and proof of the energy

dependence of αs, in full agreement with the QCD prediction of
Asymptotic Freedom. This is demonstrated in Fig. 9.3, where results
of αs(Q

2) obtained at discrete energy scales Q, now also including
those based just on NLO QCD, are summarized. Thanks to the results
from the Tevatron and from the LHC, the energy scales at which αs is
determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt(NNLO)

)(–)

Figure 9.3: Summary of measurements of αs as a function of
the energy scale Q. The respective degree of QCD perturbation
theory used in the extraction of αs is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to leading order; res.
NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO).
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Kousouris, M. Lüscher, Y. Ma, M. d’Onofrio, A. Ramos, S. Sharpe,
R. Sommer, G. Sterman, D. Treille, N. Varelas, M. Wobisch, W.M.
Yao, C.P. Yuan, and G. Zanderighi for discussions, suggestions and
comments on this and earlier versions of this Review.

References:
1. R.K. Ellis, W.J. Stirling, and B.R. Webber, “QCD and collider

physics,” Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 81
(1996).

2. C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006).
3. H.-Y. Cheng, Phys. Reports 158, 1 (1988).
4. G. Dissertori, I.G. Knowles, and M. Schmelling, “High energy

experiments and theory,” Oxford, UK: Clarendon (2003).
5. R. Brock et al., [CTEQ Collab.], Rev. Mod. Phys. 67, 157

(1995), see also http://www.phys.psu.edu/~cteq/handbook/

v1.1/handbook.pdf.
6. A.S. Kronfeld and C. Quigg, Am. J. Phys. 78, 1081 (2010).
7. T. Plehn, Lect. Notes Phys. 844, 1 (2012).
8. J. Campbell, J. Huston, F. Krauss “The Black Book of

Quantum Chromodynamics, a Primer for the QCD Era,” Oxford
University Press, UK (2017).

♦ We note, however, that in many such studies, like those based on
exclusive states of jet multiplicities, the relevant energy scale of the
measurement is not uniquely defined. For instance, in studies of the
ratio of 3- to 2-jet cross sections at the LHC, the relevant scale was
taken to be the average of the transverse momenta of the two leading
jets [434], but could alternatively have been chosen to be the transverse
momentum of the 3rd jet.

Figure 1.4: Summary of measurements of αS as a function of the energy scale Q. The respective degree of
QCD perturbation theory used in the extraction of αS is indicated for each experiment where some reach a
precision of N3LO. Figure from PDG book [1].

In figure 1.5, the value of αS(M2
Z) is shown for multiple experiments and the world average measured

is:
αS(M2

Z) = 0.1181 ± 0.0011. (1.25)

At last, it is worth noting that for the weak and electro-magnetic couplings, the β term is positive and
the couplings increase with the renormalization scale.
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systematics have not yet been fully verified. In particular, quoting
rather small overall experimental, hadronization and theoretical
uncertainties of only 2, 5 and 9 per-mille, respectively [425,427],
seems unrealistic and has neither been met nor supported by other
authors or groups.

In view of these open questions, the determination of the unweighted
average and uncertainties is supposed to provide the most appropriate
and unbiased estimate of the average value of αs(M

2
Z) for this

sub-field, which results in αs(M
2
Z) = 0.1169± 0.0034.
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Figure 9.2: Summary of determinations of αs(M
2
Z) from the

six sub-fields discussed in the text. The yellow (light shaded)
bands and dashed lines indicate the pre-average values of each
sub-field. The dotted line and grey (dark shaded) band represent
the final world average value of αs(M

2
Z).

9.4.6. Hadron collider results :
Significant determinations of αs from data at hadron colliders, i.e. the
Tevatron and the LHC, are obtained, however mostly still limited to
QCD at NLO. At

√
s = 1.96 TeV,

αs(M
2
Z) = 0.1161+0.0041

−0.0048 and

αs(M
2
Z) = 0.1191+0.0048

−0.0071

result from studies of inclusive jet cross sections [430] and from jet
angular correlations [431], respectively. ATLAS data on inclusive jet

production at
√
s = 7 TeV [432] lead to [433]

αs(M
2
Z) = 0.1151+0.0093

−0.0087 .

Here, experimental systematics, the choice of jet scale and the
use of different PDFs dominate the large overall uncertainties.
Determinations of αs from CMS data on the ratio of inclusive 3-jet to
2-jet cross sections [434], from inclusive jet production [435] and from
the 3-jet differential cross section [436] quoted values of

αs(M
2
Z) = 0.1148± 0.0014(exp.)+0.0053

−0.0023(theo.) ,

αs(M
2
Z) = 0.1185± 0.0019(exp.)+0.0060

−0.0037(theo.) and

αs(M
2
Z) = 0.1171± 0.0013(exp.)+0.0073

−0.0047(theo.) ,

respectively. Most recently, the ATLAS collaboration reported

αs(M
2
Z) = 0.1173± 0.0010(exp.)+0.0065

−0.0026(theo.) and

αs(M
2
Z) = 0.1195± 0.0018(exp.)+0.0062

−0.0022(theo.)

using the transverse energy-energy correlation function (TEEC) and
its associated azimuthal asymmetry (ATEEC), respectively [271]. All
these results are at NLO only, however they provide valuable new
values of αs at energy scales now extending up to 1.4 TeV. Although
not contributing to the overall world average of αs which we determine
below, it may be worth mentioning that the collider results listed
above average to a value of αs(M

2
Z) = 0.1172± 0.0059.

So far, only one analysis is available which involves the deter-
mination of αs from hadron collider data in NNLO of QCD: from
a measurement of the tt cross section at

√
s = 7 TeV, CMS [370]

determined
αs(M

2
Z) = 0.1151+0.0028

−0.0027 ,

whereby the dominating contributions to the overall error are
experimental (+0.0017

−0.0018), from parton density functions (+0.0013
−0.0011) and

the value of the top quark pole mass (±0.0013).

This latter result will enter our determination of the new
world average of αs, and will thereby open a new sub-field of αs

determinations in this Review. We note, however, that so far there
is only this one result in this sub-field. While there are more recent
measurements of tt cross sections from ATLAS and from CMS, at√
s = 7, 8 and at 13 TeV, none quotes further extractions of αs. A

more reliable result will thus be left to the next Review, however we
note that the most recent measurements of tt cross sections imply
larger values of αs(M

2
Z) than the one which we use, at this time, as

result for this sub-field.

9.4.7. Electroweak precision fit :
The N3LO calculation of the hadronic Z decay width [35] was used in
the latest update of the global fit to electroweak precision data [437],
resulting in

αs(M
2
Z) = 0.1196± 0.0030 ,

claiming a negligible theoretical uncertainty. We note that results
from electroweak precision data, however, strongly depend on the
strict validity of Standard Model predictions and the existence of
the minimal Higgs mechanism to implement electroweak symmetry
breaking. Any - even small - deviation of nature from this model
could strongly influence this extraction of αs.

9.4.8. Determination of the world average value of αs(M
2
Z) :

Obtaining a world average value for αs(M
2
Z) is a non-trivial exercise.

A certain arbitrariness and subjective component is inevitable because
of the choice of measurements to be included in the average, the
treatment of (non-Gaussian) systematic uncertainties of mostly
theoretical nature, as well as the treatment of correlations among the
various inputs, of theoretical as well as experimental origin.

We have chosen to determine pre-averages for sub-fields of
measurements which are considered to exhibit a maximum of
independence between each other, considering experimental as well as
theoretical issues. The six pre-averages are summarized in Fig. 9.2.
We recall that these are exclusively obtained from extractions which

Figure 1.5: Summary of determinations of αS(M2
Z) from six sub-fields. The dotted line and grey (dark shaded)

band represent the world average value. Figure from PDG book [1].

1.2 Deeper into Quantum Chromo-Dynamics (QCD)

1.2.1 Asymptotic freedom

As we have seen in the previous section, the strong coupling constant αS becomes smaller at high
energy scales. If we let the coupling run until infinite energy using the RGE, αS become zero. This
phenomenon is referred to as "asymptotic freedom" and implies that at high energies, quarks and
gluons behave as if they were free.

For energies higher than few GeV, the strong coupling constant αS becomes significantly smaller
than 1. The strong interaction can then be describes in a perturbative way. Figure 1.6 shows
the interaction vertices for QCD, while figure 1.7 shows some of the Feynman diagrams for QCD
interaction at tree level when the perturbative approach is applicable.
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Figure 1.6: Interaction vertices for QCD.
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Figure 1.7: Feynman diagrams of some of the QCD interaction at tree order (LO).

1.2.2 Showering, hadronization and confinement

At high distances (≡ low energies), the strong coupling constant αS have higher values. As a first
consequence, after quarks and gluons are produced and begin to separate, they radiate/shower lots of
gluons and exhibit g→ qq̄ splittings. This process is named showering (also Bremsstrahlung).

A second important consequence, high αS values at high distance leads to what is called the con-
finement of quark and gluons, collectively called partons. As an example showed in figure 1.8, if
a pair of quark-antiquark are pulling away from each another, the strong interaction between them
becomes stronger and stronger which either keeps them bound together or, if the two quarks were too
energetic, the energy of the color field connecting the two quarks becomes high enough and creates
an additional quark-antiquark pair. The confinement means that we do not find/detect partons in
isolation. They are always confined in bound systems, called hadrons, which are color neutral, e.g.
protons and neutrons.

Although in the perturbative approach we treat partons as free at small distances, we do in a second
step consider the transit of outgoing particles from partons to color neutral hadrons, a process known
as hadronization.
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Figure 1.8: Illustration of pair of quark-antiquark creation (using the string model). Figure from PDG book
[1].

Figure 1.9 shows an example of a hard perturbative QCD interaction followed by showering then
hadronization processes.

Figure 1.9: An example of a hard perturbative QCD interaction followed by showering then hadronization
processes. The figure on the right shows a zoom on hadronization.

For small energies where the perturbative approach fails, lattice QCD method is sometimes used
specially for describing the properties of hadrons which are used to extract the strong coupling
constant and quark masses. In this method, space-time is discretized on a lattice/grid with a spacing
“a”. The lattice spacing plays the role of the ultraviolet regulator at the order of 1/a [17]. Quark
fields are placed on the nodes and gauge fields on the links between nodes. Numerical solution
methods including Monte Carlo sampling are used to solve the theory and compute the probabilities
of field configurations. The precision of lattice calculations depends on its spacing, and the higher
the energies, the smaller the spacing is needed. Hence due to computational resources, lattice QCD
is limited to low energy region.
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1.2.3 Jet definition

Following the showering and hadronization of a hard parton, we end up with a spray of particles
around the direction of the original parton. Those particles can be stable particles in simulations or
tracks and energy deposits in detectors. One would like to regroup those particles into one object,
called a “jet”, that characterizes the initial parton that seeded them. Jets are therefore a tool to look
at the first instants after a collision and are proof of the asymptotic freedom property of QCD: jets
are seeded by partons that are free at high energies.

Jet algorithms, also called jet finders, are a set of rules with some parameters, for grouping the
particles produced in the final state of a high energy collision into jets. The algorithm runs over all
the particles in an event and returns the jets. Two main classes of jet algorithms are the cone-type
and the clustering-type classes.
For cone-type algorithms, the position and number of jets, which are expected to be cone-like
agglomerations of particles, are found iteratively by measuring the flow of energy within a cone over
all possible placements of the cones until reaching a stable one [18]. They are a kind of top-down
algorithms: they begin with a predefined structure and search where it fits in the event.
On the other hand, clustering-type algorithms are of bottom-up kind: they start with the constituents
and assemble them sequentially two particles on each step. Clusters are formed until reaching a set
of stopping rules and form the jets.

An important property to check in jet algorithms is if their output is infrared and collinear (IRC) safe.
As we will see in more details in section 1.3.1, QCD develops divergences when emitting an infinitely
soft (infrared) or collinear particles. Luckily, the divergence is canceled by higher order contributions
(additional loops). For the cancellation to work, the algorithm output should not be sensible to IRC
emissions such that the contributions from the different perturbative orders are correctly summed.

Pre-LHC era, cone-type algorithms were used mainly in hadronic collisions since such collisions
producesmany particles and one needs an algorithm that remains reasonably fast at largemultiplicities.
An inconvenience is that cone-type algorithms available at that time were IRC unsafe. In e+e−
collisions, clustering-type algorithms were used because they were IRC safe and provided more
accurate predictions [19].

In the following, I will only detail the latest development in the clustering-type class. Those algorithms
use particle-particle and particle-beam distances defined respectively as:

dij = min(p2p
Ti , p

2p
Tj )

(yi − yj)2 + (φi − φj)2

R2 ,

diB = p2p
Ti ,

(1.26)

where the jet radius R and the exponent p are parameters of the algorithm. The two distances are
calculated for all constituents. If the smallest is an inter-particle one, the two particles are combined by
summing their four-momenta and replaced by the resulting particle. On the other hand, if the smallest
is a beam-distance, the considered particle is labeled a jet and excluded from further iterations.

Setting p to 1 corresponds to the kt algorithm [20] where the clustering distance is proportional to the
inverse of the emission probability. Setting p to 0 corresponds to the Cambridge/Aachen algorithm
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[21] where the clustering is based exclusively on the angular distance between the particles. The
distance measures of these two algorithms are modeled on the physical behavior of the QCD emission
probability. They are expected to walk backward the parton-hadrons processes beginning by the
combination of soft and collinear fragments up to reconstruct the original hard parton.

A new approach abandons the connection between clustering and emission hierarchy. The algorithm
is named “anti-kt” [22] and sets p=-1. The algorithm begins to cluster soft particles around the
hardest one. Soft particles do not modify the shape of the jet, giving the algorithm resilience to soft
radiation. This algorithm turned out having many advantages and is adopted as the default algorithm
by LHC experiments. In addition to being IRC safe as the others, it produces jets with very regular
borders (circular if isolated with an area of πR2) and that do not usually extend beyond a distance
R from the hard particle(s) that seeds them. Also, the fluctuation of the jet area caused by soft
particles is almost zero. These properties reduce the sensitivity to the background noise and facilitate
experimental corrections for these and detector-related effects. The jet momenta smearing is thus
reduced.

Figure 1.10 shows an example of jet clustering using two algorithms: kt (left) and anti-kt (right).
The regular jet shapes of the later are visible.

Figure 1.10: An example of jet clustering using two algorithms: kt and anti-kt . Figure from [22].

1.2.4 The contents of the proton: Parton Distribution Functions (PDF)

Due to confinement, scattering experiments containing quarks and gluons in their initial states can
only be performed using colorless bound states hadrons, like protons. Hadrons cannot be described
using perturbation theory and their structure cannot be determined by the first principles of QCD5. As
a consequence, the determination of their properties relies on experimental input. The parton model

5 Still, lattice QCD allows the hadron structure description from the first principles, but the approach applicability is
limited to low energies.
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describes the hadron as a composite object made up of quarks and gluons. In fact, in addition to the
valance quarks that constitute the hadron (e.g. uud for a proton), the hadron also contains gluons and
pairs of qq̄ (sea quarks) that are part of the strong interaction binding the hadron. The distribution of
the momentum of the hadron among its constituents is described by the parton distribution functions
(PDF) f (0)

a/H(xa), the probability density to find a parton “a” carrying the longitudinal momentum
fraction xi of the parent hadron H.

The PDFs are mainly measured using the data from deep inelastic scattering experiments (DIS) of
e± and hadrons [1]. The scattering involves EW processes by the exchange of photons and Z for
neutral-current interactions and W± for charged-current interactions. PDFs of q and q̄ can be directly
extracted. For the gluon which does not interact electroweakly, we use the momentum sum rule:∑

a

∫
xa fa(xa) dx = 1. (1.27)

For the valence distributions and taking the proton as an example, the following equations apply:∫
(fu(x) − fū(x)) dx = 2 ,

∫ (
fd(x) − fd̄(x)

)
dx = 1.

In addition to DIS data, PDFs measurements also use p-p and p-p̄ data to further improve their
precision. For example [23], jet production (inclusive jets, dijet ...) allows to better constrain quarks
and gluons at medium and large x, a region where the constraints from DIS data are only indirect,
while inclusive production of W and Z bosons provides constrains on quark flavors separately. PDFs
depend on the energy scale at which they are probed. Figure 1.11 shows the momentum probability
distribution xafa(xa) for the different constituents “a” of the protons for two energy scales. At high x
values, valence quarks dominates while at low x values the gluons do. Also, it is worth noting that
some PDFs now do include photons distribution [24].

PDFs are universal, they do not depend on the actual scattering reaction that probes them. They
can be extracted from one type of experiment, e.g. e-p scattering, and used in another one, e.g.
hadron-hadron collisions.
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322 18. Structure functions

Recent determinations and releases of the unpolarized PDFs up
to NNLO have been made by six groups: MMHT [55], NNPDF [56],
CT(EQ) [57], HERAPDF [14], ABMP [58] and JR [59]. JR generate
‘dynamical’ PDFs from a valence-like input at a very low starting
scale, Q2

0 = 0.5 GeV2, whereas other groups start evolution at
Q2
0 = 1− 4 GeV2. Most groups use input PDFs of the form

xf = xa(...)(1 − x)b with 14-28 free parameters in total. In these
cases the PDF uncertainties are made available using the “Hessian”
formulation. The free parameters are expanded around their best
fit values, and orthogonal eigenvector sets of PDFs depending on
linear combinations of the parameter variations are obtained. The
uncertainty is then the quadratic sum of the uncertainties arising
from each eigenvector. The NNPDF group combines a Monte Carlo
representation of the probability measure in the space of PDFs
with the use of neural networks. Fits are performed to a number of
“replica” data sets obtained by allowing individual data points to
fluctuate randomly by amounts determined by the size of the data
uncertainties. This results in a set of replicas of unbiased PDF sets.
In this case the best prediction is the average obtained using all PDF
replicas and the uncertainty is the standard deviation over all replicas.
It is now possible to convert the eigenvectors of Hessian-based PDFs
to Monte Carlo replicas [60] and vice versa [61]. The PDFs are made
available in a common format at LHAPDF [62].

In these analyses, the u, d and s quarks are taken to be massless,
but the treatment of the heavy c and b quark masses, mQ, differs,
and has a long history, which may be traced from Refs. [63–74]. The
MSTW, CT, NNPDF and HERAPDF analyses use different variants
of the General-Mass Variable-Flavour-Number Scheme (GM-VFNS).
This combines fixed-order contributions to the coefficient functions
(or partonic cross sections) calculated with the full mQ dependence,
with the all-order resummation of contributions via DGLAP evolution
in which the heavy quarks are treated as massless after starting
evolution at some transition point. Transition matrix elements are
computed, following [66], which provide the boundary conditions
between nf and nf + 1 PDFs. The ABMP and JR analyses use a
FFNS where only the three light (massless) quarks enter the evolution,
while the heavy quarks enter the partonic cross sections with their
full mQ dependence. The GM-VFNS and FFNS approaches yield

different results: in particular αs(M
2
Z) and the large-x gluon PDF

at large Q2 are both significantly smaller in the FFNS. It has been
argued [46,47,73] that the difference is due to the slow convergence of
the lnn(Q2/m2

Q) terms in certain regions in a FFNS.

The most recent determinations of the groups fitting a variety
of data and using a GM-VFNS (MMHT, NNPDF and CT) have
converged, so that now a good agreement has been achieved
between the resulting PDFs. Indeed, the CT [57], MMHT [55], and
NNPDF [56] PDF sets have been combined [75] using the Monte Carlo
approach [60] mentioned above. The single combined set of PDFs is
discussed in detail in Ref. [75].

For illustration, we show in Fig. 18.5 the PDFs obtained in the
NNLO NNPDF analysis [56] at scales µ2 = 10 and 104 GeV2. The
values of αs found by MMHT [76] may be taken as representative of
those resulting from the GM-VFNS analyses

NLO : αs(M
2
Z) = 0.1201± 0.0015,

NNLO : αs(M
2
Z) = 0.1172± 0.0012,

where the error (at 68% C.L.) corresponds to the uncertainties
resulting from the data fitted (the uncertainty that might be expected
from the neglect of higher orders is at least as large), see also
Ref. [77]. The ABMP analysis [58], which uses a FFNS, finds
αs(M

2
Z) = 0.1147± 0.0011 at NNLO.

A recent development has been a vastly increased understanding
of the photon content of the proton. Sets of PDFs with a photon
contribution were first considered in Ref. [80] and then in subsequent
PDF sets [81,82]. However, due to weak data constraints, the
uncertainty was extremely large. Susequently, there has been a much
improved understanding of the separation into elastic and inelastic
contributions [83–85]. This gives much more theoretical precision,
since the elastic contribution, arising from coherent emission of a

photon from the proton, can be directly related to the well-known
proton electric and magnetic form factors; the model dependence of
the inelastic (incoherent) contribution, related to the quark PDFs, is
at the level of tens of percent. A final development directly relating
the entire photon contribution to the proton structure function [86]
resulted in a determination of the photon content of the proton as
precise as that of the light quarks.

Spin-dependent (or polarized) PDFs have been obtained through
NLO global analyses which include measurements of the g1 structure
function in inclusive polarized DIS, ‘flavour-tagged’ semi-inclusive DIS
data, open–charm production in DIS and results from polarized pp
scattering at RHIC. There are recent results on DIS from JLAB [78]
(for gn1 /F

n
1 ) and COMPASS [88,89]. NLO analyses are given in

Refs. [16–18] and [80,91]. Improved parton-to-hadron fragmentation
functions, needed to describe the semi-inclusive DIS data, can
be found in Refs. [82–84]. A recent determination [85], using the
NNPDF methodology, concentrates just on the inclusive polarized
DIS data, and finds the errors on the polarized gluon PDF have been
underestimated in the earlier analyses. An update to this [15], where
jet and W± data from pp collisions and open–charm DIS data have
been included via reweighting, reduces the uncertainty a little and
suggests a positive polarized gluon PDF. The PDFs obtained in the
NLO NNPDF analysis [15] at scales of µ2 = 10 and 104 GeV2 are
shown in Fig. 18.5.
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Figure 18.5: The bands are x times the unpolarized (a,b) parton
distributions f(x) (where f = uv, dv, u, d, s ≃ s̄, c = c̄, b = b̄, g)
obtained in NNLO NNPDF3.0 global analysis [56] at scales
µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with
αs(M

2
Z) = 0.118. The analogous results obtained in the NNLO

MMHT analysis can be found in Fig. 1 of Ref [55]. The
corresponding polarized parton distributions are shown (c,d),
obtained in NLO with NNPDFpol1.1 [15].

Comprehensive sets of PDFs are available as program-callable
functions from the HepData website [86], which includes comparison

Figure 1.11: Momentum probability distribution xafa for the different constituents “a” of the protons are shown
for two energy scales. Figure from PDG book [1].

1.2.5 p-p collisions

In p-p (same for any hadron-hadron) collisions, the total cross section for a scattering process is
factorized into a hard perturbative partonic sub-processes σ̂ab convoluted with proton PDFs:

σpp→X =
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb fa/p(xa)fb/p(xb)σ̂ab→X(pa, pb, µ

2
R), (1.28)

with pa,b = xa,b p(proton). This approach works for leading order calculations. When considering
collinear initial-state splitting of partons, divergences arise. The cancellation of divergences requires
the inclusive treatment of degenerate states by summing with the virtual contributions. In the
case of initial-state splitting, the cancellation does not work because collinear splitting modifies
the momentum that enters the hard scattering process, whereas for virtual loops the momentum is
unchanged, as is shown in figure 1.12.

The initial-state collinear singularities correspond to non-perturbative effects. Therefore, theworkaround
to the singularities is to attribute them to the description of the proton and thus to the PDFs. This is
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1 Standard Model and Beyond, with a focus on QCD and its predictions

p p p zp

(1-z)p

σ(p) σ(zp)^ ^

Figure 1.12: Feynman diagrams for initial-state parton splitting at the right and virtual contribution at the left,
where the shaded circle represents the hard partonic scattering with its corresponding cross-section which
depends on the entering parton momentum.

done, using similar procedures to renormalization, by substituting the PDFs by:

fa/p(x) → fa/p(x, µ2
F) − constant ∗

∑
b

∫ 1

x

dz
z

fb/p(
x
z
, µ2

F)Pab(z), (1.29)

where Pab are Altarelli-Parisi splitting functions 6 [25], describing the probability density of the
splitting process a → b + c. This procedure introduces a new scale µF, called the factorization
scale, which separates the long-distance from the short-distance interactions effectively moving the
collinear singularities from the hard process to the PDFs. The new total cross section is now:

σpp→X =
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb fa/p(xa, µ

2
F)fb/p(xb, µ

2
F)σ̂ab→X(pa, pb, µ

2
R, µ

2
F), (1.30)

The additional dependence of the PDFs on the factorization scale µF must vanish if all orders in
perturbation theory are taken into account. This condition leads to the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi [25–27] (DGLAP) evolution equations for the PDFs:

∂

∂(lnµ2
F)

fa/p(x, µ2
F) =

αS
2π

∑
b

∫ 1

x

dz
z

fb/p(
x
z
, µ2

F)Pab(z). (1.31)

Using the DGLAP evolution equations, on can be extrapolate PDFs from the scales where they are
measured at to the desired one in order to make theoretical predictions.

In the event of a hard scattering, the proton disintegrates and its constituents are sprayed in all
directions after forming colorless states. In addition, secondary soft scatterings can happen between
the partons from the two protons. Color connections can also exist between the hard outgoing partons
and the protons remnant. Those effects are labeled under the underlying event (UE).

Figure 1.13 sketch the different effects, hard and soft, in a hadron-hadron scattering event.

6 Considering quarks and gluons, we have 4 splitting functions: Pqq, Pqg, Pgq and Pgg.
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1.3 Precision predictions

Figure 1.13: Sketch of a hadron-hadron collision. The red blob in the center represents the hard collision,
surrounded by a tree-like structure representing Bremsstrahlung as simulated by parton showers. Parton-to-
hadron transitions are represented by light green blobs, dark green blobs indicate hadron decays, while yellow
lines signal soft photon radiation. The purple blob indicates a secondary softer scattering event. Blue blobs
represent the hadronization of the rest of the protons partons. Purple and blue blobs represent the underlying
event. Figure from [28].

1.3 Precision predictions

Now that the SM is introduced with a focus on QCD, we have the necessary building blocks to make
theoretical predictions. I show next some of the different approaches that are relevant to this thesis.
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1 Standard Model and Beyond, with a focus on QCD and its predictions

1.3.1 Partonic predictions

The first type of theoretical predictions uses partons in the final state to calculate desired observables.
Jets can then be formed using the partons as inputs. Event are generated by:

• randomly choosing a phase-space configurations (e.g. 2 partons for dijet events at LO),

• calculate the event weight from the amplitude of S-matrix elements convoluted with the PDFs.

When trying to include higher order corrections, one would have to deal with divergences in the
calculation. Taking for example a q-q̄ event and trying to calculate the NLO corrections (NLO
diagrams shown in figure 1.14), the cross section of the scattering with a soft gluon emissions is:

dσqq̄g = dσqq̄ × αS
π

dθ
θ

dφ
2π

2CF
dE
E︸   ︷︷   ︸

≡Pqq

, (1.32)

where E is the energy of the gluon and θ the angle between the gluon and the quark emitting it.
The cross section with soft gluon emission factorizes into a product of the cross section of the hard
scattering times the probability density to emit a gluon. Two divergences arises from the latter,
corresponding to the integration of the real-emission corrections over the unresolved regions:

• infrared (soft) divergence when E→ 0,

• collinear divergence when θ → 0 or π.

These singularities are also present in the virtual correction with an opposite sign. The inclusive
treatment of such degenerate states leads to the exact cancellation of all IR singularities between the
virtual and the real contributions in physical observables. This was proven in the Kinoshita-Lee-
Nauenberg (KLN) theorem [29, 30].

q

q

g
g

q

q

Figure 1.14: NLO Feynman diagrams for a qq̄ event with real emission on the left and virtual contribution on
the right.

For higher order perturbative calculations, proper summation of virtual and real contributions that
have the same power in αS is crucial. These are called fixed-order predictions. Needless to say, the
observable should also be IRC safe. A sketch summarizing the different diagrams that need to be
included in each calculation order for QCD events is shown in figure 1.15. Positive and negative
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Page 1

LO NLO NNLO

x x x

x x 1 loop

x 2 loops

0 loops
(tree level)

2
partons

3
partons

4
partons

Figure 1.15: A sketch summarizing the different diagram types (number of partons and loops) that need to be
included in each calculation order for QCD events.

event weights for NLO and higher orders will be generated, but with the total sum being positive for
cross sections.

In addition, when the observable is measured close to the boundary of its phase-space described by
a distance y << 1, the perturbative power expansion in αS involves terms of the type αn

SLk (k ≤ 2n),
where L = − ln y. The most dominant terms are the leading logarithm (LL) for k = 2n, next comes
the next-to-leading logarithm (NLL) for k = 2n − 1 and so on. These double logarithmic terms are
for example in our case due to final-state radiation of soft and collinear partons. For y << 1, the
logarithm L becomes much larger than 1 which spoils the convergence of the series. Those terms are
summed to all orders in αS (n→ ∞) to recover the convergence of the prediction. This procedure is
called resummation [31].

The renormalization and factorization scales, µR and µF, should be chosen for the predictions
calculation. Several choices can be done, for example pT of the leading jet, pT of each jet, invariant
dijet mass mjj, mean of the two leading jets HT2/2, mean of the two leading partons ĤT2/2, etc. Each
scale choice has its own motivations. Usually µR is taken equal to µF, to have more stable predictions
since terms like ln(µ2

R/µ
2
F) are found in the calculations which can lead to large variations if the

functional forms of the two scales differ by a non multiplicative factor.

As we have seen before, since we are not including all perturbative orders in our calculations, a
residual dependence on the scale exists for αs and for the PDFs. To try to evaluate the effect of this
dependence, each of µR and µF scales is conventionally varied by factors of 0.5 and 2. The change
on the observable is taken as an uncertainty. Usually, this method covers well the effect of missing
orders except when new production channels are introduced in higher orders.

A widely used algorithms with NLO accuracy is the NLOJET++ [32, 33] package which uses Catani-
Seymour dipole subtraction method [34] to account for the singularities in real emission and virtual

27
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contributions. Algorithms with NNLO accuracy have become available recently, like the NNLOJET
[35, 36] package.

1.3.2 Non-perturbative MC simulation

Partonic predictions, although very powerful tools, lack the non-perturbative (NP) treatment of the
final state particles. Monte Carlo (MC) event generators implement multiple techniques to take into
account the NP effects. The main steps for generating an event are:

1. perturbative processes:

• hard partonic scattering,

• resonance decays,

• parton showering.

2. non-perturbative effects:

• underlying event: multiple particles soft interaction, protons remnant,

• hadronization,

• hadron decays,

• Bose-Einstein and color reconnection.

Let us detail some of these steps.

Showering
As a first step, hard partonic scattering is generated from matrix-elements (ME) calculated using
the Feynman rules. Let us first consider generators that uses only LO ME (2→2 partons processes).
The two most used are PYTHIA [37, 38] and HERWIG [39, 40]. In soft-collinear limits, it is
hard/impossible to calculate parton splitting/radiating effects using ME. For that, parton showering
algorithms are used.

First let us express the probability of a parton not radiating above a scale kT:

∆(kT,Q) ≡ P(no emission above kT) = 1 − αS
π

∫ ∫
dθ
θ

∑
a,b=q,g

Pab Θ(Eθ − kT),

≈ exp *.
,
−αS
π

∫ ∫
dθ
θ

∑
a,b=q,g

Pab Θ(Eθ − kT)+/
-
,

(1.33)

where “Q” is the energy of the initial parton, “E” and “θ” are the energy and angle of the emitted
parton with respect to the initial one, and the Θ function ensure to have an emission above the scale
kT. ∆(kT,Q) is a Sudakov form factor [41]. The relation between the Sudakov form factor and the
probability of a radiation PR is:

dPR
dkT
=

d∆(kT,Q)
dkT

. (1.34)
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1.3 Precision predictions

Using MC methods, this distribution can be generated and we get the first emission. The procedure
is repeated with smaller and smaller scales until reaching a cutoff. This showering method is based
on pT ordering and is used by PYTHIA. On the other hand, HERWIG uses this procedure but with
an angle ordering.

Parton showering allows to pass from two- tomulti-partons final state. This recovers to a certain degree
the missing higher orders for the soft-collinear limits but it fails to describe well the hard large-angle
radiation. NLO-ME generators try to improve the description of those emissions, like POWHEG
[42–44] generator which is used along with PYTHIA or HERWIG for parton showering, or SHERPA
[45]. Additional partons can now be produces either from the ME or from the showering. Matching
between the two production mechanism is used to avoid double counting. The improvement of those
generators are mostly important when events with widely separated jets need to be well described.
For example, it is important for the description of dijet systems where the third jet plays an important
role.

Hadronization
Hadronization denotes the non-perturbative transition process of colored partons to colorless hadrons.
This step follows the parton showering where also the color assignment of the partons has been done.
The two most common models used are the string model, used by PYTHIA, and the cluster model,
used by HERWIG.

The string model was briefly introduced in section 1.2.2 A pair of q-q̄ are connected through a color
potential which increases linearly at high distances, proportional to a factor k. The potential can
be thought of as a string with a tension k. As the string grows, the non-perturbative creation of
q-q̄ pairs can break the string as illustrated in figure 1.8. Gluons are also treated in a similar way
except that, since they have two colors, they connect to two string pieces. They create a transverse
structure in the originally one-dimensional object. Also for gluons, the rate of hadron production is
twice larger than the one of quarks. The model steps are as follows. At first, it maps color-connected
pairs of partons to string pieces. Next, strings evolve and break independently forming new q-q̄ pair.
Selecting randomly between the left and right sides of the broken string, one hadron is generated
and the other leftover string enters the next iteration of the process. Baryon production can also be
incorporated. The process is finished by decaying the low energy string to two hadrons directly.

The cluster hadronization model is based on pre-confinement, assuming that color-singlet subsystems
of partons, labeled clusters, are suppressed at large masses. Gluons are forced to split to light q-q̄
pairs before the hadronization process begins. Therefore, clusters are only formed by q-q̄ pairs. If
a cluster has an invariant mass above some cutoff value, it is broken into two. Low mass clusters
decay directly to a single hadron, while the more massive ones decays into two hadrons with relative
probabilities proportional to the available phase space for each possible two-hadron combination.

1.3.3 Non-perturbative corrections to partonic predictions

As we saw above, partonic predictions are precise and flexible, while MC generators include NP
effects. In order to benefit the most from the two, partonic predictions times NP correction factors
KNP are used. The factors KNP are calculated from the MC simulation events as follows:
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1 Standard Model and Beyond, with a focus on QCD and its predictions

• calculate the desired observable using only hard processes (partonic level): O(ME+showering),

• recalculate the same observable now adding the NP effects (hadronic level):
O(ME+showering+hadronization+UE),

• the correction factor in each observable bin i is:

K i
NP =

Oi(ME + showering + hadronization + UE)
Oi(ME + showering)

. (1.35)

The factors are then multiplied by the partonic predictions in each bin:

Oi(partonic + NP effects) = Oi(partonic) × K i
NP. (1.36)

Multiplication factors are one way to include the NP effects into the theoretical predictions. The
other would be to build a 2D migration matrix,M (partons → hadrons), between the partonic and
hadronic levels, and then convolute the partonic predictions with this matrix:

Oi(partonic + NP effects) =
∑

j
Oj(partonic) ×Mji(partons→ hadrons) (1.37)

Figure 1.16 shows an example of the correction factors for the case on inclusive jet cross-section using
multiple MC generators and tunes. A tune consists of a PDF set choice and an optimization of the
MC generator parameters (affecting the showering, the hadronization, the UE ...) using information
hadron collision data. The first thing to notice is that the factors calculated using PYTHIA and
HERWIG generators are systematically different. This is expected since both use different models for
NP effects (different hadronization models, ...). The difference is taken as a systematic uncertainty.
The second thing is that the factors are only a few percent away from unity. In fact the hadronization
and UE effects work in opposite directions and compensate to some degree: the hadronization tends
to lower the energy of the jet due to the hadron creation outside the jet area, while the UE adds energy
in all of the phase space and thus also inside the jet.

An improved method to add the NP effects is to use instead a transfer matrix relating the two
calculation levels (partonic and hadronic) described above. For the same event, the observable is
calculated at both levels. Next, a (geometrical) matching is used to match jets between both levels, the
observables associated to which are then used to fill a 2D histogram. Figure 1.17 shows an example
of a work-in-progress transfer matrix for a jet pT observable. The advantage of this method is its
lower dependence on the underlying perturbative calculation and observable spectrum shape of the
MC generator used to calculate the NP effects (LO for Pythia and Herwig). The method also takes
into account the unmatched observable and the total matrix used is called the folding matrix. An
existing use-case of the folding method is describe in chapter 4, section 4.3, where more details are
given for the construction and usage of the matrix.
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1.3 Precision predictionsm j j bins due to lack of statistical precision at large m j j.
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(b) inclusive jet
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(c) dijet
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Figure 3: Non-perturbative correction factors for the (inclusive jet, dijet) NLO pQCD prediction as a function of
(jet pT, m j j) for ((a),(c)) the first (rapidity, y∗) bin and for ((b),(d)) the last (rapidity, y∗) bin. The corrections are
derived using Pythia 8 with the A14 tune with the NNPDF2.3 LO PDF set. The envelope of all MC configuration
variations is shown as a band.

9.3 Electroweak corrections

The NLO pQCD predictions are corrected for the effects of γ and W±/Z interactions at tree and one-loop
level. They are derived using an NLO calculation of electroweak (EW) contributions to the LO pQCD
process. The correction is defined as the ratio of a 2 → 2 calculation including tree-level effects of order

15

Figure 1.16: An example of NP correction factors for inclusive jet cross section using multiple MC generators
and tunes.
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Figure 1.17: An example of a transfer matrix used to correct the NP effects for a jet pT observable.

1.3.4 EW corrections to QCD prediction

The total jet cross-section is dominated by QCD contributions due to the much larger coupling
constant of the strong force. Nevertheless, given the accuracy of the current perturbative QCD
calculations, EW contributions at NLO precision are added. The EW corrections can exceed 10% at
high pT due to an increasing logarithmic terms of Sudakov origin [46]. The EW contributions include
Born contributions, virtual and photon radiative corrections. Figure 1.18 shows the inclusive jets
differential cross-section at NLO precision including both QCD and EW contributions as a function
of pT. In addition to the total one, all the individual contribution terms in the perturbative series
that factorize the coupling constant combinations αn

Sα
m are shown (where “n” and “m” are integers),
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with n +m = 2 for LO and n +m = 3 for NLO contributions. The EW correction factors are hence
defined as the ratio of the full QCD+EW contributions to only QCD ones by:

KEW =
O(αn

Sα
m)

O(αk
S)

, (1.38)

where for our case of NLO precision corrections k = n +m = 2 & 3.

J
H
E
P
0
4
(
2
0
1
7
)
0
7
6

d
σ

/d
p

Tin
c
l  [

p
b
/G

e
V

]

all orders

LO1 (αs
2
)

LO2 (αsαem)

LO3 (αem
2
   )

NLO1 (αs
3
)

NLO2 (αs
2
αem)

NLO3 (αsαem
2
   )

NLO4 (αem
3
   )

all orders

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

M
a
d
G
r
a
p
h
5
_
a
M
C
@
N
L
O

R
a
ti
o
 o

v
e
r 

a
ll 

o
rd

e
rs

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e
 u

n
c
.

pT
incl

 [GeV]

 0.8

 1

 1.2

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Figure 2. Single-inclusive transverse momentum.

case of the single-inclusive jet transverse momentum pinclT (figures 2 and 3) in order to

be definite.

There are three panels in figure 2. The upper one presents the absolute values of the

three LO and the four NLO contributions to the cross section, as well as their sum; as

was previously mentioned, a solid (dashed) pattern indicates that the corresponding result

is positive (negative). The three LO results are displayed as histograms overlaid with

symbols: red with full diamonds for ΣLO1 , green with open boxes for ΣLO2 , and brown

with open circles for ΣLO3 . The four NLO results are associated with plain histograms:

blue for ΣNLO1 , purple for ΣNLO2 , yellow for ΣNLO3 , and cyan for ΣNLO4 ; the sum of all

contributions is represented by the black histogram. The middle inset presents the ratios

of the results shown in the upper inset, over the all-orders prediction; in other words, these

are the fractional contributions of the ΣLOi and ΣNLOi terms to the most accurate result

– 12 –

Figure 1.18: Inclusive jets differential cross-section at NLO precision including both QCD and EW contribu-
tions as a function of pT. In addition to the total one, all the individual contribution terms in the perturbative
series that factorize the coupling constant combinations αn

Sα
m are shown, with n+m = 2 for LO and n+m = 3

for NLO contributions. Figure from [46].
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1.4 Beyond Standard Model (BSM)

During my PhD, I participated to search analyses of new BSM particles (see chapter 4). In this
section, I present an initial context of the motivation of such searches and some of the BSM models
available.

In spite of the nice theoretical features and successful experimental verification of the SM for many
years, we have many reasons to think that the SM is not the final theory of Nature. First, there are
some phenomenological issues, many coming from cosmology:

• the SM does not include the gravitational force: in fact, we don’t know how to quantize the
General Relativity,

• the SM does not explain the origin of the baryon asymmetry of the universe,

• the SM does not explain the dark matter [47],

• the SM does not explain the dark energy [48],

• no unification between EW and strong sectors,

• etc.

On the other hand, many questions are still open like:

• the origin of the symmetries,

• the origin of the three fermion generations,

• the origin of the neutrino masses,

• the mass hierarchy problem,

• the naturalness problem,

• etc.

For those reasons, we think that the SM is not the “theory of everything” and that there should be
some new physics (at higher energies), the SM being a sub-section of a bigger theory. The SM can
also be regarded as an effective low-energy approximation of a more general theory (Grand Unified
Theory (GUT) [49], . . . ).

When searching for new physics beyond the SM, two possibilities exist. The first is that the new
physics scale is reachable by the experiment energies and therefore the new physics gives a resonance
when probed at that scale. Specific model describes the interaction of these new physics. On the
other hand if the scale is higher than what the experiment can reach, the new physics can still affect
the number and topology of events. For those cases, the description of the new physics is usually
done using effective field theories. I will give examples for both of those approaches, focusing more
on the decay modes that contains quarks and gluons and hence producing events with jets, the final
states of the search analyses described in chapter 4.
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1.4.1 Resonant models

The models introduced below add new particles to the ones of the SM to cover some of the problems
or questions listed in the previous paragraph. The details can be found in the references given for
each model.

Excited quark q∗
The idea of particle substructure is known as compositeness. According to composite models, SM
quarks and leptons are predicted as composite particles, therefore excited states of those particles do
exist. The q∗ model [50] assumes an excited state of spin 1/2 and quark-like SM coupling constants.
It couples to SM quarks and gluons via the strong gauge interactions, with a production and decay of
the form: q∗ → qg. The compositeness scale, Λ, is set to the q∗ mass.

Quantum black hole (QBH)
The LHC should be able to produce QBH under the condition that the universe contains sufficiently
large extra dimensions [51]. The quantum-gravity energy scale MD at which micro black holes are
produced decreases as the number, n, of these large extra dimensions increases. Through gravitational
interactions, resonance-like production of predominantly two-body final states, mainly jets, MD is
predicted.

W′

A heavy charged boson, W′, is assumed in this model [52]. It can decay to qq̄ producing dijet events.
In this thesis, W′ is assumed to have the SM couplings. The only difference with respect to SM weak
bosons is in their masses.

Z′
Models describing possible interactions between dark matter (DM) and the SM are also considered.
In the Z′ model [53], the new spin-1 particle arises from a simple extension of the Standard Model
(SM) with an additional U(1) gauge symmetry. DM particles are assumed to be Dirac fermions that
have charges only under this new group. Assuming that some SM particles are also charged under
this group, the Z′ can mediate interactions between the SM and DM. In this thesis, the Z′ is assumed
to be lepto-phobic7 which increases the sensitivity in dijet searches.

W∗
The compositeness of the W boson is considered here, with W∗ being the excitation state [54]. The
W∗ couples to qq̄ decaying into dijet events. The angular distribution of the decays is more focused
toward the forward region for this model. The W∗ is also assumed to be lepto-phobic here.

7 Lepto-phobic means no interaction with the lepton sector
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Figure 1.19 shows some distributions of the dijet invariant mass produced by the described BSM
models. The same mass is used for the BSM particles to show the different shapes that the models
produce.

Mass [TeV]

2 3 4 5

E
v
e
n
ts

0

0.05

0.1

0.15

0.2

0.25

0.3
q*, 4.0 TeV
BlackMax, 4.0 TeV
W’, 4.0 TeV

Figure 1.19: Invariant mass of the two leading jets, mjj, distributions for some BSM models. The same BSM
particle mass is used in all the models.

1.4.2 Effective field model

Even if I don’t describe the search analyses that use effective field models in this manuscript, I briefly
present one model for completeness and since it is used in one occasion in chapter 4 to compare with
the SM.

Contact interaction
Not all new physics phenomena need to appear as a localized excess. When the energy is not high
enough to resolve the details of the interaction, non-resonant signals, described using effective field
theories, are used as a probe. Here, an effective Fermi operator, a four-point interaction term or
contact interaction (CI), describes an effective interaction between four quarks [55]. The Lagrangian
of the interaction is:

Lqqqq = η
g2

2Λ2 Φ̄Qi
L γ

µΦQi
L Φ̄Qj

L γµΦQj
L , (1.39)

where “i” and “j” are quark flavor indices. η = ±1 represents the type of the interference between
CI and QCD production modes: + for destructive and - for constructive interferences. Figure 1.20
shows the feynman diagram of the CI interaction. An analogy can be done with Fermi’s theory
(LFermi = GFΦ̄pγµΦnΦ̄eγµΦν) describing the β-decay (n → pe− ν̄e) where the weak interaction is
described by a 4-point contact term. In the SM, the interaction is rather described by the exchange
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of a W− boson, but still Fermi’s theory is enough to describe the weak interaction at energies much
lower than the W boson mass. The same principle is used here.

qi

qj

qi

qj

Figure 1.20: Feynman diagram for the CI model described in equation 1.39. “i” and “j” are quark flavor indices.

Figure 1.21 shows the dijet invariant mass distribution produced via QCD interactions with and
without CI terms.
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Figure 1.21: mjj distributions for dijet events produced via QCD interactions with and without CI terms, using
Pythia8 generator (with showering and hadronization). The CI scale is Λ = 7 TeV.
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2 The Large Hadron Collider (LHC) and the
ATLAS experiment

In this chapter, I describe the ATLAS experiment. After a brief introduction of the LHC, I detail the
ATLAS detector with an emphasis on the detector parts relevant to the jet reconstruction since they
are the main objects used in all the analyses described in the following chapters. Last, I detail the jet
reconstruction and calibration.

2.1 LHC

The Large Hadron Collider (LHC) is a superconducting hadron accelerator and collider installed in a
26.7 km tunnel1 underground between 45 and 170 m below the surface. The “machine” is described
in [56]. The LHC contains two rings with counter-rotating hadrons beams, accelerated with a center
of mass energy up to 13 TeV and planned to go up to 14 TeV in the coming years. The delivered
beams have 50 and 25 ns bunch spacing, where the latter is the nominal configuration for the Run
II period during the years 2015 until 2018. The LHC benefits from the CERN accelerator complex
that acts as injector. Four interaction points exist where the following detectors are found: two high-
luminosity general detectors ATLAS and CMS, two lower-luminosity detectors, LHCb dedicated for
B-physics and ALICE dedicated for ion collisions for the identification of the quark-gluon plasma
[57]. Figure 2.1 shows the CERN accelerator complex which includes the different beam acceleration
and injection stages from LINAC to PS to SPS to LHC.

1 The tunnel previously hosted the Large Electron Positron (LEP) collider.
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Figure 2.1: The LHC is the largest ring of the CERN chain of particle accelerator complex. The smaller
machines are used in a chain to help boost the particles to their final energies. Figure from CERN website.

2.2 ATLAS: A Toroidal LHCApparatuS

The ATLAS detector is one of the two general purpose detectors (along with CMS) that uses the
LHC beam to collide Hadrons at the highest energy reached by any accelerator. The detector is
described in [58]. The dimensions of the detector are 25 m in height and 44 m in length. The overall
weight of the detector is approximately 7000 tonnes. It is used to probe p-p, p-Pb, Pb-Pb and other
hadrons collisions. In this thesis, I will only focus on p-p collisions for both performance and physics
studies.

One of the main goals of the ATLAS experiment is to prove the existence of a particle compatible
with the predictions of the spontaneous symmetry breaking, the Higgs boson (introduced in chapter
1.1.1). This was achieved in 2012 and detailed in this paper [13]. Another goal is to search for new
physics signals and test the many BSM models that exist.

The detector is composed of multiple sub-systems to achieve the highest detecting capabilities for
various ranges of particle types and physics signals. The three main (and biggest) parts are the inner
tracking detector, the electromagnetic and hadronic calorimeter and the muon spectrometer. They
are built one on top of the other in a cylindrical onion arrangement. Each system is divided into
a central barrel and two end-caps for the two forward regions. The calorimeters have also more
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forward components. Figure 2.2 shows a cut-away view of the ATLAS detector with a labeling of the
different components. Figure 2.3 shows how the detector reconstructs and identifies the different type
of particles, like electrons, muons, photons, hadrons . . . Details for each of the main sub-systems of
the detector are given in the next sections.

Figure 2.2: Cut-away view of the ATLAS detector with a labeling of the different components. Figure from
[58].

The nominal interaction point is defined as the origin of the coordinate system, while the beam
direction defines the z-axis and the x-y plane is transverse to the beam direction. The positive x-axis
is defined as pointing from the interaction point to the center of the LHC ring and the positive y-axis
is defined as pointing upwards. The azimuthal angle φ is the angle around the beam axis, and the
polar angle θ is the angle from the beam axis. Instead of θ, the pseudo-rapidity η is used to express
the polar position and is defined as:

η = −ln tan(θ/2).

The pseudo-rapidity is used in performance studies since it is directly related to a geometrical
direction. In p-p collision, the two interacting partons have their momenta along the z-axis and which
are different. The scattering system is thus boosted in the z-direction. The difference ∆η (∆θ) is
not Lorentz invariant. A new variable is defined, the rapidity y, which is Lorentz invariant under a
z-direction boost:

y =
1
2

ln
E + pz
E − pz

,

where E is the jet energy and pz is its momentum along the z-axis. As such, the rapidity is used in
physics analysis. For a massless particle, y and η are identical.
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Figure 2.3: A transverse section of the ATLAS detector showing the tree main sub-systems: the tracker, the
calorimeter and the muon spectrometer. The paths and interactions of different particles with the detector are
shown. Figure from [59].

2.2.1 Inner Detector

The inner detector (ID) is used to reconstruct paths of charged particles (tracks). It is immersed in a
2 T magnetic field generated by the central solenoid, bending the charged particles while they pass
through. The ID is able to give, among others, the following informations:

• the path of charged particles,

• the sign of the charge,

• the momentum of the particle,

• primary and secondary vertices related to the p-p collisions and the outgoing particle decays
respectively,

• electron and photon identification (with the combined input of the electromagnetic calorimeter).

To meet those demands, the ID is built with high resolution capabilities and installed as close as
possible to the beam pipe. The ID consists of three independent but complementary sub-detectors:
silicon pixel, semi-conductor tracker (SCT) and transition radiation tracker (TRT).

The layout of the ID is illustrated in figure 2.4.

The precision tracking detectors (pixels and SCT)with high-resolution pattern recognition capabilities
cover the region |η | < 2.5. They rely on the fact that a charged particle when passing through a
semi-conductor produces electron-hole pairs which are read out and provide a “hit” information. In

40



2.2 ATLAS: A Toroidal LHCApparatuS

Figure 2.4: Cut-away view of the ATLAS Inner Detector. Figure from [58].

the barrel region, they are arranged on concentric cylinders around the beam axis, while in the end-cap
regions they are located on disks perpendicular to the beam axis. To contain the semiconductors
annealing and to reduce the leakage current, the sensors are operated in the temperature range -10° to
-5°. The highest granularity is achieved around the vertex region using silicon pixel detectors. In
addition to the three layers, a fourth layer, the IBL, was added before the beginning of Run II in an
innermost position, improving tracking performance. Pixel sensors involve a double-sided processing
and operate under voltages up to 600 V. Each track typically crosses three pixel layers. The nominal
pixel size is 50 × 400 µm2 with 250 µm thickness. For the IBL, the pixel size is 50 × 250 µm2. The
intrinsic accuracies in the barrel are 10 × 115 µm in φ-z and in the disks are 10 × 115 µm in φ-R.

For reasons of cost and reliability, SCT uses silicon micro-strip with classic single-sided p-in-n
technology. Their operating voltages are between 250 and 350 V. For the SCT, typically eight strip
layers are crossed by each track, equivalent to four space points. The sensor thickness is 285 µm. In
the barrel region, this detector uses small-angle stereo strips to measure both coordinates, with one
set of strips in each layer parallel to the beam direction, measuring φ. They consist of two 6.4 cm
long daisy-chained sensors with a strip pitch of 80 µm. In the end-cap region, the detectors have a
set of strips running radially and a set of stereo strips at an angle of 40 mrad. The mean pitch of the
strips is also approximately 80 µm. The intrinsic accuracies per module in the barrel are 17×580 µm
in φ-z and in the disks are 17 × 580 µm in φ-R.

The TRT is composed of layers of gaseous drift tubes (straw) interleaved with transition radiation
material and covers the region |η | < 2. The gas mixture, Xe/CO2/O2, is ionized by the passage
of charged particles and the charges are read out by tungsten anodes. The TRT only provides φ
information, for which it has an intrinsic accuracy of 130 µm per straw. The tubes have 4 mm
diameter. In the barrel region, the straws are parallel to the beam axis and are 144 cm long. In
the end-cap region, the 37 cm long straws are arranged radially in wheels. Under normal operating
conditions, the maximum electron collection time is ≈ 48 ns.

Figure 2.5 shows the sensors and structural elements traversed by a charged particle in the barrel and
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(a) (b)

Figure 2.5: Drawing showing the sensors and structural elements traversed by a charged particle in the barrel
ID in a) and in the end-cap ID in b). Figure from [58].

in the end-cap. The combination of precision trackers at small radii with the TRT at a larger radius
gives very robust pattern recognition and high precision in both φ and z coordinates. The straw hits
at the outer radius contribute significantly to the momentum measurement, since the lower precision
per point compared to the silicon is compensated by the large number of measurements and longer
measured track length.

2.2.2 Calorimeter

A calorimeter measures the energy a particle loses as it passes through. It is designed to stop/absorb
most of the particles coming from a collision (all SM particles except muons and neutrinos), forcing
them to deposit most of the time all of their energy within the detector. In dense material and at high
energies, electrons and positrons predominantly lose energy by radiating photons (bremsstrahlung),
while high energy photons exhibit e+e− pair conversions. The successive radiation and pair production
is called electromagnetic shower. The characteristic amount of matter traversed is given in units of
radiation length, X0, which is the mean distance over which the electron energy becomes 1/e of its
initial value and equal to 7/9 of the mean free path for pair production by a high energy photon.
On the other hand, hadronic showers begin by interaction through the strong force between incident
hadrons2 and nuclei of the detector producing new hadrons, mainly pions, and exciting the nuclei
(which can lose nucleons). The new hadrons, along with the initial ones, exhibit further interactions
and thus building the shower. About 1/3 of the produced pions are π0 which decay into 2γ and induce
electromagnetic showers. The characteristic amount of matter traversed by hadrons is given in units of
interaction length, λ, which is the mean distance traveled by a hadronic particle before undergoing an
inelastic nuclear interaction. A detector usually does not have the same response to electromagnetic
and hadronic showers. This is due to the existence of an invisible energy in the hadronic shower: the
energy used to release protons and neutrons from calorimeter nuclei, and the kinetic energy carried
by recoil nuclei do not lead to a calorimeter signal. Some detectors use compensation techniques to
obtain a similar response for the two showers. The ATLAS calorimeter is a non-compensating one.

2 It is useful to note that charged hadrons also induce ionizations in the detector material, but the fraction of energy lost
in this process is much smaller than in the hadronic interactions.
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The ATLAS calorimeters consist of a number of sampling detectors with full φ-symmetry and
coverage. These calorimeters cover the range |η | < 4.9 and have enough thickness to contain
electromagnetic and hadronic showers. This is needed to satisfy the physics requirements for electron,
photon and jet reconstructions and Emiss

T 3 measurements. They also reduce punch-through4 into the
muon system well below the level of prompt or decay muons.

The ATLAS calorimeters are designed into sub-systems providing maximum absorption of electro-
magnetic or hadronic interactions. Also, they are split into 3 regions: the first consisting of a central
electromagnetic and a hadronic tile barrels, the second of an electromagnetic end-cap calorimeter
(EMEC) and a hadronic end-cap calorimeter (HEC), and the last of the forward detectors (FCal). All
these calorimeters, except the tile, use liquid argon (LAr) as the active detector medium: charged
particles ionize the LAr and the produced electrons-ions propagate to the electrodes and cathodes re-
spectively due to the high electric field. Liquid argon has been chosen for its intrinsic linear behavior,
its stability of response over time and its intrinsic radiation-hardness. A view of the calorimeters is
presented in figure 2.6.

Figure 2.6: Cut-away view of the ATLAS calorimeter system. Figure from [58].

Electromagnetic barrel and end-cap calorimeters
The barrel part covers the range |η | < 1.475 while the two end-cap components cover the range
1.375 < |η | < 3.2. Each end-cap calorimeter is mechanically divided into two coaxial wheels: outer
and inner wheels split at |η | = 2.5. The EM calorimeter is a lead-LAr detector with accordion-shaped
electrodes and lead absorber plates over its full coverage. The accordion geometry provides complete
phi symmetry and coverage without azimuthal cracks and a fast extraction of the signal at the end of
the electrodes.

3 Emiss
T represents the unbalance in the sum of the measured transverse momenta of all detected particles in an event.

4 Punch-through is the shower energy that is not fully contained in the calorimeters and reaches the muon spectrometer.
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Over the η region matched to the inner detector, |η | < 2.5, the fine granularity of the EM barrel and
the end-cap outer wheel is ideally suited for precision measurements of electrons and photons. They
are segmented in three active layers in depth (two layers for the EMEC between 1.375 < |η | < 1.5).
An accurate position measurement is obtained by finely segmenting the first layer in η direction
(∆η = 0.0031). The second layer collects the largest fraction of the energy of the electromagnetic
shower with cell dimensions of ∆η × ∆φ = 0.025 × 0.025. The third layer collects only the tail
of the electromagnetic shower and is therefore less segmented in η. Figure 2.7 shows the three
layers and their granularities in the barrel, with the accordion geometry also visible. For the end-
cap inner wheel, the calorimeter is segmented in two layers in depth and has a coarser lateral
granularity. Furthermore in the region |η | < 1.8, the electromagnetic calorimeters are complemented
by presamplers, an instrumented argon layer, which provides a measurement of the energy lost in
front of the electromagnetic calorimeters.
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Figure 2.7: Sketch of a barrel module where the different layers and the accordion shape are visible. The
granularity in η and φ of the cells of each of the three layers and of the trigger towers is also shown. Figure
from [58].

The total active thickness of the barrel ranges between 22-33 X0, whereas the thickness of the EMEC
ranges between 24-38 X0. Figure 2.8 shows the radiation length X0 of the different layers in function
of η separately for the barrel and the end-cap. In the barrel, the size of the drift gap on each side of the
electrode is 2.1 mm, which corresponds to a total drift time of about 450 ns for its nominal operating
voltage of 2000 V. The drift gap on each side of the electrodes is not constant for the EMEC. To obtain
a uniform η-independent detector response, the high voltage varies in steps with η. Figure 2.9 shows
an example of signal shapes produced in the detector and on the output of the barrel electromagnetic
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module.
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Figure 2.8: Cumulative amounts of material, in units of radiation length X0 as a function of |η |, in front of and
in the electromagnetic calorimeters. The figures show separately the barrel (left) and end-cap (right) regions.
Figures from [58].

Figure 2.9: Amplitude versus time for triangular pulse of the current in a LAr barrel electromagnetic cell and
of the output signal after bi-polar shaping. Also indicated are the sampling points every 25ns (which also
correspond to the successive bunch crossing). Figure from [58].

Tile and HEC hadronic calorimeters
The tile calorimeter is a sampling calorimeter using steel as the absorber and plastic scintillator as
the active medium. The choice of this technology provides maximum radial depth for the least cost
for ATLAS. Ionizing particles crossing the tiles induce the production of ultraviolet scintillation
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light in the base material (polystyrene) and this light is subsequently converted to visible light by
wavelength-shifting fluors. The tiles are inserted into a plastic sleeve, which both protects the tile
and improves the scintillation light yield due to its high reflectivity of 95%. Wavelength-shifting
fibers placed in contact with the tile edges collect the scintillation light produced in the scintillators,
convert it to a longer wavelength and transmit it to the photomultiplier (PMT). Fiber grouping is used
to define a three-dimensional cell structure in such a way as to form three radial sampling layers.
The fibers are read out by two different PMT’s to provide redundancy and sufficient information
to partially equalize signals produced by particles entering the scintillating tiles at different impact
positions. Figure 2.10 shows a schematic of a tile module where the absorbers, the scintillators and
the optical readout components are shown.

Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 2.10: Schematic of a tile module where the steel absorbers, the plastic scintillators and the optical
readout components (the fibers and the photomultipliers) are shown. Figure from [58].

The tile is subdivided into a barrel which covers the region |η | < 1, and two extended barrels in the
range 0.8 < |η | < 1.7. The radial depth of the tile calorimeter is approximately 7.4 λ. The assembled
module forms an almost-periodic steel-scintillator structure with a ratio by volume of approximately
4.7:1. The orientation of the scintillator tiles radially and normal to the beam line allows for almost
seamless azimuthal calorimeter coverage. Finally, the calorimeter is equipped with three calibration
systems: charge injection, laser and a 137Cs radioactive γ-source. These systems test the optical and
digitized signals at various stages and are used to set the PMT gains to a uniformity of ±3%.
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The HEC is a copper-LAr sampling calorimeter with a flat-plate design covering the range 1.5 <

|η | < 3.2. It is subdivided into two wheels per end-cap. It extends out to |η | = 1.5 to overlap with
the tile calorimeter and to |η | = 3.2 to overlap with the forward calorimeter. For the nominal high
voltage of 1800 V, the typical drift time for electrons in the drift zone is 430 ns.

Forward calorimeter
The Fcal is also a sampling calorimeter using LAr as the active medium. It is split into three 45 cm
deep modules: one electromagnetic module (FCal1) and two hadronic modules (FCal2 and FCal3).
As the FCal modules are located at high η, they are exposed to high particle fluxes. This has resulted
in a design with very small LAr gaps, which have been obtained by using an electrode structure of
small-diameter rods, centered in tubes which are oriented parallel to the beam direction. The liquid-
argon gaps are smaller than the usual 2 mm gap of the electromagnetic barrel calorimeter to avoid ion
build-up problems and to provide at the same time the highest possible density needed due to their
smaller length. These smaller gaps also lead to a faster signal with roughly the same instantaneous
current but smaller integrated current. In the electromagnetic layer (FCal1), the triangular current
pulse at the electrode has a full drift time of 60 ns. For FCal2 and FCal3, the full drift time scales
with the gap size. To optimise the resolution and the heat removal, copper was chosen as the absorber
for FCal1, while mainly tungsten was used in FCal2 and FCal3, to provide high absorption length
to increase containment and minimize the lateral spread of hadronic showers. Figure 2.11 shows a
schematic diagram of the three FCal modules on the left and the electrode structure of FCal1 on the
right.
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Figure 2.11: a) Schematic diagram showing the three FCal modules. b) Electrode structure of FCal1 with the
matrix of copper plates and the copper tubes and rods with the LAr gap for the electrodes. Figures from [58].

Figure 2.12 shows the interaction length λ in the different regions of the electromagnetic and hadronic
calorimeters. The figure shows that hadrons deposit a fraction of their energies in the EM calorimeter
but are not fully contained by them (except for π0 which decays predominantly to 2γ).

In addition to reconstructing the deposited energies, the calorimeter is able, alongwith the information
from the ID, to identify electrons, photons, charged and neutral hadrons.
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Figure 2.12: Cumulative amount of material, in units of interaction length λ, as a function of |η |, in front of the
electromagnetic calorimeters, in the electromagnetic calorimeters themselves, in each hadronic sub-detector,
and the total amount at the end of the active calorimetry. Also shown for completeness is the total amount of
material in front of the first active layer of the muon spectrometer (up to |η | < 3.0). Figure from [58].

Pile-up sensitivity
Pile-up is the energy contribution from additional p-p collisions to the one we are studying. The
additional collisions come predominantly fromQCD interactions at low energies. Two type of pile-up
can be identified. The first is the in-time pile-up which is due to multiple p-p collisions in the same
bunch-crossing. The second is the out-of-time pile-up due to the long charge collection time in the
LAr calorimeter (400-500 of ns) compared to the 25 ns bunch-crossing interval. The LAr calorimeter
is more sensitive to the pile-up compared to the tile calorimeter mainly because it absorbs most of the
low energy particles coming from the additional low energy collisions. A bipolar shaped signal with
net zero integral over time is used to read the calorimeters which reduces the sensitivity to pile-up.
The jet calibration, discussed in section 2.3.3, corrects for the remaining sensitivity.

2.2.3 Muon spectrometer

The muon spectrometer (MS) forms the outer part of the ATLAS detector and is designed to recon-
struct tracks of charged particles exiting the barrel and end-cap calorimeters, to identify muons and
to measure their momentum in the range |η | < 2.7. Is is also used to detect punch-through signals:
showers inside calorimeters are sometimes not fully contained in the calorimeter and the charged
particles that escape it induce hits in the MS. In this case, the energy detected by the MS is used to
complement the ones from the calorimeter. TheMS is also designed to trigger on muons in the region
|η | < 2.4. It uses separate instrumentation for the high-precision tracking and trigger chambers. The
barrel toroid provides magnetic bending over the range |η | < 1.6, whereas end-cap magnets provide it
over the range 1.4 < |η | < 2.7 where the overlap region is 1.4 < |η | < 1.6. The driving performance
goal is a stand-alone transverse momentum resolution of approximately 10% for 1 TeV tracks. The
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barrel region is divided into eight octants symmetric in φ. Each octant is subdivided in the azimuthal
direction in two sectors, a large and a small one overlap in φ. This overlap of the chamber boundaries
minimizes gaps in detector coverage and also allows for the relative alignment of adjacent sectors
using tracks recorded by both a large and a small chambers. The chambers in the barrel are arranged in
three concentric cylindrical shells around the beam axis. In the two end-cap regions, muon chambers
form large wheels, installed in planes perpendicular to the beam to the z-axis and also arranged in
three layers. A view of the muon spectrometer is presented in figure 2.13.

Figure 2.13: Cut-away view of the muon spectrometer. Figure from [58].

The precision momentum measurement is performed by the monitored drift tube (MDT) chambers.
They cover the range |η | < 2.7, except in the innermost end-cap layer where their coverage is limited
to |η | < 2.0. The MDTs are pressurized drift tubes operating with Ar/CO2 gas mixture (93/7) at
3 bar. The electrons resulting from ionization are collected at the central tungsten-rhenium wire at
a potential of 3080 V. One advantage of the cylindrical geometry is that the measurement accuracy
depends only weakly on the angle of incidence of the track onto the chamber plane. A disadvantage
is the long pulse train. The maximum drift time from the wall to the wire is about 700 ns. These
chambers consist of three to eight layers of MDTs, which achieve an average resolution of 80 µm
per tube, or about 35 µm per chamber. The particle fluxes and muon-track density are highest in the
forward direction. Therefor, in the region 2 < |η | < 2.7, cathode-strip chambers (CSC) are used in
the inner-most tracking layer due to their higher rate capability and time resolution. The CSCs are
multi-wire proportional chambers with cathode planes segmented into strips in orthogonal directions.
This allows both coordinates to be measured from the induced-charge distribution on neighboring
cathode strips. The resolution of a chamber is 40 µm in the bending (η) plane and about 5 mm in the
transverse (φ) plane. The locations of MDT wires and CSC strips along a muon trajectory must be
known to better than 30 µm. A high-precision optical alignment system monitors the positions and
internal deformations of the MDT chambers, complemented by track-based alignment algorithms
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using high-momentum muons. Figure 2.14 shows a transverse and a longitudinal sections, where the
three layers arrangement in the barrel and the end-cap can be seen.

(a) (b)

Figure 2.14: a) Section of the barrel muon system perpendicular to the beam axis (non-bending φplane),
showing the three concentric cylindrical layers composed of eight large and eight small chambers symmetric
in φ. b) Section of the muon system in a plane containing the beam axis (bending η plane) showing the layers
in the barrel and end-cap regions. MDTs are shown in green in the barrel and cyan in the end-cap, while CSC
are shown in yellow. Figures from [58].

Another essential property of the MS is the capability to trigger on muon tracks. The precision-
tracking chambers have therefore been complemented by a system of fast trigger chambers capable
of delivering track information within a few tens of nanoseconds after the passage of the particle. In
addition to muons multiplicity and approximate energies, the trigger also provides bunch-crossing
identification and a second φ coordinate measurement to complement the MDT one. In the barrel
region (|η | < 1.05), resistive plate chambers (RPC) are used due to good spatial and time resolution
as well as adequate rate capability. The RPC is a gaseous parallel electrode-plate (no wire) detector.
The two resistive plates are kept parallel to each other at a distance of 2mm. The electric field between
the plates of about 4.9 kV/mm allows avalanches to form along the ionizing tracks towards the anode.
At the nominal operating voltage of 9.8 kV, a signal with a width of about 5 ns is generated by the
track. In the end-cap region (1.05 < |η | < 2.4), thin gap chambers (TGC) are chosen providing good
time resolution, high rate capability and robustness. TGCs are multi-wire proportional chambers
with the characteristic that the wire-to-cathode distance of 1.4 mm is smaller than the wire-to-wire
distance of 1.8 mm. With a highly quenching gas mixture of CO2 and n-pentane, this cell geometry
allows for operation in a quasi-saturated mode. The high electric field around the TGC wires and
the small wire-to-wire distance lead to very good time resolution for the large majority of the tracks,
with signals arriving inside a time window of 25 ns more than 99% of the time.

Figure 2.15 shows schematics of the different technologies used in the different MS chambers
described above: MDT, CSC, RPC and TGC.
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Figure 2.15: Schematics of the different technologies used in the different MS chambers. Figures from [58].

2.2.4 Forward detectors

The ATLAS detector contains, in addition to the three main detectors described in the previous
sections, multiple detectors in the very forward region. I focus here on some of these detectors that
are used to measure the luminosity. A precise measurement of the integrated luminosity is a key
component of physics analyses, whether for cross-section measurements or searches of new physics.
To convert between the instantaneous luminosity and the instantaneous mean number of interactions
per bunch crossing µinst, a reference inelastic cross-section of σinel = 80 mb is used. The average
quantity, µ =< µinst >, over lumi-blocks (usually 1 minute duration) is generally used to characterize
the pile-up condition.

LUCID detector
LUCID stands for LUminosity measurement using Cerenkov Integrating Detector. It is located at
about 17 m from the ATLAS interaction point. Its main purpose is to detect inelastic p-p scattering
in the forward direction, in order to both measure the integrated luminosity and to provide online
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monitoring of the instantaneous luminosity and beam conditions. LUCID is based on the principle
that the number of interactions in a bunch-crossing is proportional to the number of particles detected
in this detector. Cerenkov light is emitted by a charged particle traversing the detector and is then
detected by a PMT. During Run I, aluminum tubes filled with C4F10 gas were used to induce the
Cerenkov light. For Run II, the quartz windows of the PMTs induce the Cerenkov light. The signal
amplitude from these PMTs can be used to distinguish the number of particles per tube, and the fast
timing response provides measurements of individual bunch crossings.

ALFA detector
ALFA stands for Absolute Luminosity For ATLAS. It is located at about 240 m from the ATLAS
interaction point. For luminosity measurements, the detector uses the optical theoremwhich connects
the total cross-section to the elastic-scattering amplitude at small angles. Special runs with high β∗5
are used to get extremely small scattering angles (3 µrad) needed for these measurements. ALFA
uses a scintillating-fiber trackers connected to PMTs. It is useful to note that the detector is also used
for other physics measurements.

Other methods are also used to further minimize the luminosity uncertainties, for example from
offline track counting measurements. After typical data-quality selections, the full Run II p-p
collisions corresponds to an integrated luminosity of 139 fb−1, with an uncertainty of 1.7%. Figure
2.16 shows the total integrated luminosity during Run II. It also shows the luminosity delivered by
LHC, which shows that the ATLAS experiment is very efficient at exploiting the stable beam time.
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Figure 2.16: Cumulative luminosity versus time delivered to ATLAS (green), recorded by ATLAS (yellow),
and certified to be good quality data (blue) during stable beams for pp collisions at 13 TeV center-of-mass
energy in LHC Run II. Figures from the ATLAS public plots page [60].

5 β∗ is a parameter which describes how much the beams are squeezed: larger values mean less squeezed.
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Figure 2.17 shows the luminosity-weighted distribution of the mean number of interactions per bunch
crossing µ for the different data taking years and for the total Run II.
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Figure 2.17: Luminosity-weighted distribution of the mean number of interactions per bunch crossing µ for
the different data taking years and for the total Run II. The average µ for each data taking year is also given.
Figures from the ATLAS public plots page [60].

2.2.5 Trigger

Bunch crosses the ATLAS detector at a rate of 40 MHz yielding about 1 billion collision per second
(for < µ >= 25). If for each crossing the event will be saved and since each event stores more
than 1.5 MB of raw data, the data recording rate is more than 60TB/s which is not possible for
the available processing, networking and data storing systems. In addition, most events come from
QCD interactions and give low pT jets. The high pT range or the other scattering processes, which
have much lower cross-sections, are more of interest for us. For example at 13 TeV, Higgs boson
production happens less than 1 per ten billion events, particles from new physics are expected to
be produced at an even smaller rate. Therefore, a trigger system is an essential component of the
detector selecting interesting events and prescaling6 others. The ATLAS trigger system has two
levels: a hardware-based level 1 (L1) and a software-based high level trigger (HLT) which reduces
the rate from 40 MHz to about 100 kHz and then to about 1 kHz respectively. Figure 2.18 shows a
schematic of the ATLAS trigger.

The L1 trigger performs the initial event selection using a limited amount of the total detector
information to make a decision in ≈ 2.5 µs. It searches for high transverse-momentum electrons,
muons, taus (decaying hadronically), photons and jets, as well as large missing transverse energy

6 Select only a defined percentage of events with same criteria.
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Figure 2.18: The ATLAS trigger system in Run II (also shown part of the data acquisition system). Figure
from [61].

(Emiss
T ) and large total transverse momentum. An essential function of the L1 trigger is a precise

identification of the bunch-crossing of interest, overcoming the challenges coming from the physical
size of the muon spectrometer (which implies times-of-flight exceeding the bunch-crossing interval)
and from the fact that the width of the LAr calorimeter signal extends over many (typically four)
bunch-crossings. From the muon spectrometer, the L1 trigger uses only the information from the
trigger chambers. In addition, informations from all the calorimeters are used but with a reduced
granularity. A trigger menu made up of combinations of trigger selections is used to select interesting
processes with particular particle multiplicities, minimum transverse momentum, etc. The L1 trigger
defines one or more regions-of-interest (RoI) (η and φ coordinates) where interesting features have
been identified. This information is then passed and used by the HLT trigger. For jets, trigger towers
are used which have coarser granularity than the calorimeter (0.1× 0.1 in ∆η ×∆φ mostly, but wider
at high |η |) (see figure 2.7). Jet trigger elements are defined using 2×2 trigger towers. The jet sliding
window algorithm identifies ET sums within overlapping windows consisting of 2× 2, 3× 3, or 4× 4
jet elements. These sums are then compared to predefined jet energy thresholds and the location of
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a 2 × 2 local maximum defines the coordinates of the jet RoI.

The HLT trigger uses most of the information from the detector with finer granularities than L1
level. It also uses information from the tracker using the fast tracker algorithm (FTK). It minimize
the differences with the offline analysis which improves the selection efficiency. Depending on the
trigger selection, the HLT trigger can check for the required objects only within regions selected by
the RoI or in all the detector regions. The latency of the HLT trigger is in the order of 200 ms. For
jets, the reconstruction used is the same as the offline one (see next section). The calibration also
includes most of the steps used offline. It is useful to note that the HLT calo trigger integrates detector
information from multiple bunch-crossing same as offline objects (since the detector response is
slower than the time separating two bunch-crossing).

Figure 2.19 shows L1 and HLT trigger rates grouped by trigger signature during an LHC fill. In this
thesis, single jet triggers are used which, using few examples, have the following nomenclatures and
requirements:

• HLT_j15 (HLT_j25,HLT_j35): trigger which is random at L1 level (only needs to pass the
prescaling) and has at least one HLT jet with pT > 15 (25, 35) GeV and η < 3.2,

• HLT_j45: trigger passing the L1 requirement of at least one jet RoI with ET > 15GeV and
η < 3.1, and passing the HLT requirement of at least one jet with pT > 45GeV and η < 3.2,

• HLT_j45_320eta490: same as HLT_j45 but with the region requirement 3.1 < η < 4.9 for L1
level and 3.2 < η < 4.9 for HLT level.

(a) L1 trigger (b) HLT trigger

Figure 2.19: L1 and HLT trigger rates grouped by trigger signature during an LHC fill in October 2015 with
a peak luminosity of 4.5 × 1033cm−2s−1. Due to overlaps, the sum of the individual groups is higher than the
total rates which are shown as black lines. Figures from [61].

2.2.6 Object reconstruction

Figure 2.20 shows an example of an event produced in ATLAS, where tracks in the ID are shown
in red and orange, EM and hadronic calorimeter energy deposits are shown in green and yellow
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respectively, with the magnitude of the deposits reflected in the size of the colored shapes. Although
the event is very busy, two high-energy back-to-back objects can be identified.

Figure 2.20: An example of an event produced in ATLAS, where tracks in the ID are shown in red and orange,
EM and hadronic calorimeter energy deposits are shown in green and yellow respectively, with the magnitude
of the deposits reflected in the size of the colored shapes.

The ATLAS sub-systems, ID, calorimeter and MS, are used individually or together to define several
interesting objects to be used in physics analysis. Let me detail some of those objects.

Primary vertices
A primary vertex (PV) is the point of the collision of two protons. As already mentioned, multiple
p-p collisions are produced in the same bunch-crossing. Our goal is to identify the hardest scattering,
to be used in analyses, from the rest of the soft collisions which form the in-time pile-up. For
jets analyses, tracks with pT>0.5 GeV and passing quality criteria are associated to different primary
vertices for which the positions are determined by tracks fitting. The vertex with the highest

∑
tracks p2

T
is considered the hard-scatter primary vertex (PV0) and the others as primary vertices due to in-time
pileup.

Electrons and photons
Electron and photon reconstruction starts by building clusters out of the energy deposits in the EM
calorimeter. The EM calorimeter, using all three layers in depth, is divided into towers (summing the
energies in all layers) of ∆η × ∆φ = 0.025 × 0.025. A sliding-window algorithm with windows of
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size 3 in η − φ space is used to search for EM clusters the shower shapes of which are consistent with
an EM shower.

For an electron, a matching between at least one track in the ID and the EM cluster is required. Tracks
are also tested for pattern recognition to distinguish pion and electron tracks. Electrons and positrons
are distinguished by the curvature direction of their tracks.

Photons can interact with detector material before reaching the calorimeter and dominantly decay into
a pair of e+e−. A converted photon is identified from an EM cluster matched to double tracks coming
from a conversion vertex consistent with a massless particle, or matched to a single conversion track
not having hits in the innermost sensitive layers. EM clusters with no matched track are identified as
unconverted photons.

Muons
Although muons escape the detector, they do leave traces of their passage in the different sub-
detectors. In addition to tracks is the ID and MS, high-energy muons deposit energies of few GeV in
the calorimeter. Hence, to identify a muon, a track in the MS can be used alone or combined with
a track in the ID and also with energy deposits in the calorimeter. MS tracks are also extrapolated
inward and tested on compatibility with originating from the interaction point.

In this thesis, jets are the main objects used for performance studies and physics analysis. Their
reconstruction and calibration are presented into detail in the next section.
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2.3 Jet reconstruction and calibration

2.3.1 Jet constituents and reconstructions

As already mentioned in section 1.2.3, the most widely algorithm used in high energy physics, and
hence ATLAS, is the anti-kt algorithm. The algorithm can form jets using various type of inputs,
where the only needed constituent variables are the four-vector momenta. Let us detail some of the
inputs used in ATLAS.

Topological clusters
The lateral and longitudinal segmentation of the calorimeters allows for a three-dimensional recon-
struction of particle showers. To take advantage of this segmentation, topo-clusters are built from
topologically connected calorimeter cells. Topo-clusters are seeded by cells whose signals exceed the
expected noise by four times its standard deviation, S > 4σnoise. Neighboring cells with S > 2σnoise
are then added iteratively. Finally, all cells neighboring the formed topo-cluster are added. Hence,
the topo-cluster algorithm separates continuous energy showers rather than energy deposits from dif-
ferent particles. It efficiently suppresses the calorimeter noise which originates from both electronic
and pile-up sources.

The cells used are initially calibrated to the electromagnetic scale (EM scale) which correctly measure
the response of electromagnetic shower. The EM scale is derived from test beams measurements
and from MC simulations. The jets built from topo-clusters at EM scale are called EMTopo jets.
Hadronic showers produce responses that are lower than the EM scale due to the non-compensating
nature of the ATLAS detector. A second topo-cluster collection tries to correct for the hadronic
response by classifying clusters as either electromagnetic or hadronic (primarily based on the energy
density and the longitudinal shower depth), and applying local cluster weights accordingly. The LCW
clusters are not detailed further more since they are not used in this thesis.

Particle flow objects
This algorithm tries to improve on top of the EM topo-cluster algorithm by including the information
from tracks [62]. A cell-based energy subtraction algorithm is employed to substitute the energy
measured in the detector by the momentum of the overlapping track. The different steps of the
subtraction algorithm, showed in figure 2.21, are as follows:

• first, well-measured tracks are selected following a quality criteria (minimum number of hits,
0.5 < pT < 40 GeV, track not matched as electron or muon),

• the algorithm then attempts tomatch each track to a single topo-cluster in the calorimeter: a geo-
metrical distanceweighted by the inverse of cluster dimensions, ∆R′ =

√
(∆φ/σφ)2 + (∆η/ση )2

where σφ and ση represent the angular topo-cluster widths, is used to search for the closest
cluster to each track (ordered in a descending ptrack

T order) with a requirement on the cluster to
have Ecluster/ptrack > 0.1; if no matching is found with ∆R′ < 1.64, no subtraction is performed,
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• the expected energy to be deposited in the calorimeter, 〈Edep〉, by the particle that created the
track is computed based on the topo-cluster position and the track momentum,

• the algorithm also evaluates the probability that the particle energy was deposited in more than
one cluster and decides if more topo-clusters are to be added to the matched one,

• then the energy subtraction is performed on the set of matched clusters: if 〈Edep〉 exceeds the
total energy of the set, the whole clusters are removed, otherwise the subtraction is performed
cell by cell,

• finally, if the remaining energy in the system is consistent with the expected shower fluctuations
of a single particle’s signal, the topo-cluster remnants are removed.

Together, the set of selected tracks and the remaining topo-clusters in the calorimeter are fed to the
jet finding algorithm to construct what is called PFlow jets.
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Figure 2.21: A flow chart of the energy subtraction algorithm. Figure from [62].

Figure 2.22 illustrates how the subtraction procedure is designed to deal with different cases, for
example when the energy deposited by one particle can be splited into two clusters or when two
particles deposited energies are constructed in the same clusters.

Truth jets
Truth jets are reconstructed from stable simulated particles: stable hadrons, electrons, photons, muons
and neutrinos. When truth jets are used in physics analyses, muons and neutrinos are also considered
among the jet constituents since they are products of particle decays and our aim is to recover the
particles level. On the other hand, when doing calorimeter performance studies, muons and neutrinos
are excluded since they don’t (or very weakly) interact with the calorimeter.

With the exception of truth jets, the different jet collections need further calibration to correct their
energies and momenta from multiple effects that are detailed later. The results are shown only for
EMTopo and EMPFlow jets reconstructed using the anti-kt algorithm with the radius parameter
R=0.4 (those two collections are the only collections used in this thesis). But first, let us look at some
jet quality selection criteria.
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Figure 2.22: Examples of how the particle flow algorithm is designed to deal with several different clusters/track
cases. Figure from [62].

2.3.2 Quality selection

Energy contributions from pile-up, in-time and out-of-time, are subtracted on average from hard-
scatter jets as is detailed in section 2.3.3.1. However, local fluctuations in the pile-up activity can
produce pile-up jets. The jet-vertex-tagger [63] (JVT) is used to discriminate if a jet originates from
the hard-scattering (signal) or from pile-up. The JVT is a 2-dimensional likelihood constructed from
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the variables corrJVF and RpT , giving the relative probability for a jet to be of signal type, where:

corrJVF =
∑
ptrk
T (PV0)∑

ptrk
T (PV0) +

∑
(n≥1)

∑
ptrk
T (PVn)

k×nPU
trk

RpT =

∑
ptrk
T (PV0)

pjet
T

(2.1)

where
∑
ptrk
T is the scalar pT sum of the tracks that are associated with the jet, nPU

trk is the number
of pile-up tracks in an event and the scaling factor “k” taken roughly as the slope of 〈pPU

T 〉 with
nPU

trk (k=0.01). The corrJVF only includes informations from the tracker, while the RpT also includes
informations from the calorimeter. A value corrJVF = -1 is assigned to jets with no associated tracks.
In simulation, the two jet samples, hard-scatter (HS) and pile-up (PU), are selected respectively by
whether the jet is or is not matched (geometrically using ∆R = 0.4) to a hard-scatter truth jet. Figure
2.23 shows the discrimination power of corrJVF, RpT and JVT. The efficiency versus fake rate is also
shown for the three variable, where the gain using JVT is visible.

Jets from non-collision origins (bad/fake jets) need to be identified and excluded (procedure also
known as cleaning) [64]. These fake jets can come from one of these sources:

• beam induced background: protons deviating from proton bunches upstream of the interaction
point and scatteringwith the accelerator materials givingmuons that reach the ATLAS detector,

• muons from cosmic-ray showers produced in the atmosphere overlapping with collision events,

• noisy LAr calorimeter cells, not detected by data quality inspection.

Quality discriminating variables used are:

• using the quadratic difference between the actual and expected pulse shapes in a cell, QLAr
cell , as

a measure of a pulse quality, we define the following variables:

– 〈Q〉: the energy-squared weighted average of QLAr
cell of the cells in a jet,

– fLAr
Q (fHEC

Q ): fraction of the energy in the LAr (HEC) calorimeter cells with poor pulse
quality (QLAr

cell >4000).

• Eneg: sum of the energies of all cells with negative energy,

• fEM (fHEC): the ratio of the energy deposited in the electromagnetic (HEC) calorimeter to the
total energy of the jet,

• fmax: the ratio of the maximum energy deposited in a single layer to the total energy of the jet,

• fch: the scalar sum of the pT of the tracks coming from the primary vertex associated to the jet
divided by the jet pT.
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Figure 2.23: Distributions of corrJVF(a), RpT (b) and JVT (c) for pileup and hard-scatter jets. d) Efficiency
versus fake rate for the different variables. Figures from [63].

Fake jets tend to be more localized longitudinally and characterized by very high or very low values
for fEM and fHEC, high values of fmax and low values of fch. Fake jets from noisy cells are also
discriminated using pulse shape quality and are characterized by high values of 〈Q〉 and fLAr

Q or
fHEC
Q . Also, they tend to produce high absolute values of Eneg. Two sets of criteria, BadLoose and
BadTight cleaning, are defined where the former is optimized for high good jets selection efficiency
and the latter for high fake jet discrimination (≡ high purity). Using two samples one enriched with
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fake and the other with good jets, the fake jets discriminating power and the good jets selection
efficiency can be measured respectively as shown in figure 2.24. The good jets sample selects
dijet events where the two leading jets are required to be back-to-back (∆φjj > 3 rad) and to be
balanced ((p1

T − p2
T)/(p1

T + p
2
T) < 0.3). The fake jets sample select jets in events characterized by an

unbalanced total transverse momentum satisfying |−→Hmiss
T ≡ −∑−→pT | > 70 GeV (the sum uses all jets

with pT > 20 GeV) and where the fake jet is required to have a direction opposite to the one of −→Hmiss
T

(∆φ−→
Hmiss

T ,jet > 3 rad). In addition, the fake jet is required to have a time (see next paragraph for time
definition) higher than 6 ns to reject contribution from good physics signals like Z→ νν+jet. The
loose cleaning has an efficiency above 99.5% (99.9%) for pT > 20 (100) GeV. The tight cleaning has
an efficiency above 95% (99.5%) for pT > 20 (100) GeV.
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Figure 2.24: a) Fake jet transverse momentum distribution before and after applying cleaning loose and tight
criteria. b) Jet cleaning efficiency in function of pT for 1.2 < |η | < 2. Figures from [64].

Jet time [65] is also used to identify jets coming from energy deposited from collisions of neighboring
bunch-crossings, due to the large charge collection time of the calorimeter (hundreds of ns) compared
to the bunch-crossing interval of 25 ns. Those jets are called out-of-time pile-up jets. In addition,
jet time helps rejecting part of the non-collision background. A LAr calorimeter cell time, defined
with respect to the event time recorded by the trigger which is synchronized with the bunch-crossing
time, is determined from the signal shape of the LAr calorimeter response. The jet time is computed
as the energy-square-weighted time average of the LAr cells reconstructed within the jet.

2.3.3 Jet energy scale (JES) calibration

JES calibration consists of multiple correction steps aimed at correcting the energy scale of the jets
reconstructed at detector level (reco jets) to that of truth jets at particle-level [66, 67]. Figure 2.25
shows the different steps of the calibration. Regardless of the type of calibration of the jet inputs
(EM-scale, PFlow-scale or any other), the calibration steps are the same but are implemented for each
different jet reconstruction.
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Figure 2.25: Jet energy scale various correction steps. Figure from [67].

First, the origin correction corrects the jet direction from pointing from the geometrical center of the
detector to the hard-scatter primary vertex PV0, but without changing the jet energy. As a result,
the jet η resolution is improved. Recently, the step of correcting the origin was moved to the jet
reconstruction step. Jet constituents entering the jet finding algorithm are now corrected to point to
the PV0.
Next, the pile-up contribution to the jet energy and momentum is corrected using two components:
an area based subtraction and an additional residual correction derived from MC simulation. Then
the absolute calibration, based also on MC simulation, is applied which corrects both energy and
η direction of jets to the ones from truth jets. The global sequential calibration further improves
the calibration and minimizes the differences between jet flavors using additional information from
the ID, the MS and the calorimeter. At last, to catch any mis-modeling of the detector simulation
which makes the correction not perfect for the data, a calibration using in-situ/real events is derived
by comparing jets to a well measured reference object. For these corrections, ηdet, the jet η pointing
from the geometrical center of the detector, is used to remove any ambiguity as to which region of
the detector is probed by the jet. Let me detail each of the mentioned steps.

2.3.3.1 Pile-up corrections

In-time and out-of-time pile-up contribute to the jet energy measured by the calorimeter. The first
correction uses the pile-up energy density to subtract its contribution in jets according to the jet
area. Each jet has a defined area, A, measured by the jet finding algorithm using ghost association.
Infinitesimal momentum ghost particles are added uniformly in solid angle to the event before jet
reconstruction. The ghost particles are then clustered with the real particles into a jet, with their
infinitesimal momentum not affecting the clustering output. The jet area is then the number of ghost
particles associated with it divided by their area density. Next, we still need, for the first correction, to
measure the pile-up pT density, ρ, and subtract it from the jet pT. To measure ρ, new jets are clustered
using kt algorithm with a radius of 0.4 reconstructed only from positive-energy topo-clusters with
|η | < 2 and with no minimum pT threshold. The kt algorithm is used due to its sensitivity to soft
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radiation. Only the central region is used due to the higher occupancy of the forward detectors. The
pT density of each jet is thus pT/A. ρ is taken as the median of the pT density distribution (the median
is used to reduce the bias from hard-scatter jets populating the high tails of the distribution). Figure
2.26 shows the ρ distribution for a given NPV and µ.
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Figure 2.26: Per-event median pT density, ρ, at NPV = 10 (solid) and NPV = 20 (dotted) for 24 < µ < 25 as
found in MC simulation. Figure from [67].

The ρ calculation does not fully describe the pile-up contribution in the forward calorimeter region.
A residual calibration is applied in addition. To characterize the in-time pile-up activity, the number
of primary vertices (NPV) in an event provides a good indication of the number of p-p collision in the
same event. The average number of interactions µ, which is calculated from several bunch-crossings,
provides a good estimation of the out-of-time pile activity. MC simulation is used to measure the
difference between the reconstructed jet pT and truth jet pT matched geometrically within a distance
∆R = 0.3. The difference is measured as a function of each of NPV and µ variables, and in bins of
ηdet. The dependence is found to be linear, and the slopes of the differences define the correction
coefficients:

α(ηdet) =
∂pT
∂NPV

(ηdet),

β(ηdet) =
∂pT
∂µ

(ηdet).
(2.2)

No significant evidence is found for cross-terms in the sensitivity of the jet pT to in-time and out-of-
time pile-up. This was tested by measuring the α (β) slopes of the jet pT dependence on NPV (µ) for
different bins of µ (NPV) and finding them to be fairly similar.
The total pile-up corrected pT is therefore:

pcorr
T = preco

T − ρ × A − α × (NPV − 1) − β × µ. (2.3)

The ratio of the pcorr
T to the uncorrected preco

T is taken as a correction factor and applied to the jet
four-momentum, without affecting the jet η direction. Figure 2.27 shows the dependence of the jet
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pT on in-time and out-of-time pile-up contribution before and after the two correction steps. The
central values of the purple band, derived from linear fits in 4 |η | regions (|η | < 1.2, 1.2 < |η | <
2.2, 2.2 < |η | < 2.8, 2.8 < |η | < 4.5), gives the residual correction coefficients α and β. After the
total correction, the dependence is compatible with zero.
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Figure 2.27: Dependence of the jet pT on in-time (a) and out-of-time (b) pile-up contribution before and after
the two correction steps. The full markers are the results for each |ηdet | bin. The bands are the 68% confidence
intervals of the linear fits in 4 |ηdet | regions (|η | < 1.2, 1.2 < |η | < 2.2, 2.2 < |η | < 2.8, 2.8 < |η | < 4.5).
The central values of the purple band gives the residual correction coefficients α and β. Figures from [67].

Four systematic uncertainties are introduced with the calibration. They account for the mis-modeling
of NPV and µ in MC simulation, for the ρ calculation which contains contribution from the underlying
event (UE), and for the pT-dependence of the corrections coefficients α and β (they have a logarithmic
dependence on ptruth

T ).

2.3.3.2 Absolute MC calibration (MC-JES)

After the pile-up calibration is applied, absolute JES and η corrections correct the reconstructed jet
four-momentum to the particle-level energy scale. First, the JES is derived. Reconstructed jets in
the MC simulation are geometrically matched to truth jets within ∆R = 0.3. An isolation criteria is
also applied to both reco and truth jets. The average energy response, R, is calculated as the mean
of a Gaussian fit to the distribution Ereco/Etruth. R is calculated in bins of Etruth and ηdet. Through
numerical inversion, the average response is parametrized from Etruth as a function of Ereco, and the
calibration factor is taken as the inverse of this response.

Secondly, the jet η needs to be corrected. In fact, a bias to the jet η direction is caused by an
artificial increase of the energy in one side of the jet with respect to the other. The biases are largest
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in the transition between different calorimeter sub-detectors or when the granularity changes. The
difference between the reconstructed, ηreco, and the truth, ηtruth, directions is calculated for matched
and isolated jets. The difference, calculated in bins of Etruth and ηdet, is numerically inversed and
parametrized as function of Ereco. Unlike the other calibration stages, the η calibration corrects only
the jet pT and η, not the full four-momentum.

Figure 2.28 shows the average energy response R in the left and the η difference between reco and
truth jets on the right as a function of ηdet and for the different Etruth bins. Notable sharp changes
in the energy response and hence giving the highest η differences can be seen in the barrel-endcap
(|η |det ≈ 1.4) and endcap-forward (|η |det ≈ 3.1) transition regions.
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Figure 2.28: Average energy response R (a) and (signed) η difference between reco and truth jets (b) as a
function of ηdet and for the different Etruth bins. Figures from [67].

2.3.3.3 Global sequential calibration

Even after applying the previous described calibrations, the calorimeter is still sensitive to the jet
particle composition and the distribution of energy within the jet. The average particle composition
and shower shape of a jet varies depending on the partons initiating the jet, most notably between
quark- and gluon-initiated jets. A quark-initiated jet will often include hadrons with a higher fraction
of the jet pT, penetrates further into the calorimeter and its energy is more concentrated in its center.
On the other hand, a gluon-initiated jet will typically contain a highermultiplicity of hadrons (≈ double
the quark-initiatedmultiplicity), more particles of softer pT and larger angle from the center, leading to
a lower calorimeter response and a wider transverse profile. Hence, a residual dependence of the JES
on longitudinal and transverse features of the jet exists. Using multiple observables describing these
features, the global sequential calibration (GSC) applies independent jet four-momentum corrections
independently for each observable in successive order. As a consequence of removing the response
sensitivity to the longitudinal and transverse features, the jet resolution is improved by the GSC and
the difference between the different jet flavor responses is reduced. An important note is that the GSC
does not change the average energy response in the dijet sample used to derive it, but only reduces its
fluctuation. The five observables used for the correction are (in the order of their application):
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• fTile0: the fraction of jet energy in the first layer of the hadronic tile calorimeter (|η |det | < 1.7),

• fLAr3: the fraction of jet energy in the third layer of the electromagnetic LAr calorimeter
(|η |det | < 3.5),

• ntrk: the number of tracks with pT > 1GeV associated to the jet (|η |det | < 2.5),

• Wtrk: the average pT-weighted transverse distance from the jet center of tracks with pT > 1GeV
associated to the jet (|η |det | < 2.5),

• nsegments: the number of muon track segments associated to the jet (|η |det | < 2.7).

The first two observables give information on the penetration of the jet, while the second two give
information on the particle multiplicity of the jet and their transverse profile. The last one is aimed
at correcting the response of high-pT jets that are not fully contained in the calorimeter by using the
punch-through signal in the muon spectrometer. The corrections are derived as a function of ηdet ,
and ptruth

T for the first four observables and Etruth for the last one since it is more correlated with the
energy escaping the calorimeter. The same methods for geometrical matching between reconstructed
and truth jets and for numerical inversion are used. In addition, an overall constant is multiplied to
each numerical inversion to ensure the average energy is unchanged at each of the five corrections.
Figure 2.29 shows the average jet response as a function of the five GSC variables.

For PFlow jets, which are reconstructed from tracks in addition to energy deposits in the calorimeter,
an additional observable is used for the GSC correction and is first to be applied: fcharged, the fraction
of the jet pT measured from associated tracks with pT > 0.5GeV (|η |det | < 2.5).

Flavor systematic uncertainty
Even after the GSC calibration, a residual flavor dependence of the response exists. Hence, a
systematic uncertainty should be evaluated to account for that. First, using a nominal MC simulation,
the fraction of gluon-induced jets, fg is obtained as a function of pT and η for the specific analysis
under-study. In addition, from multiple simulation generators, the uncertainty on this fraction, ∆fg,
can also be computed 7. The total flavor uncertainty is thus:

∆Rflavor = ∆fg × (Rq − Rg) ⊕ fg × ∆Rg, (2.4)

where Rq and Rg are the quark- and gluon-initiated jet responses respectively. The first term, called
the flavor composition uncertainty, gives the uncertainty from the difference in the responses of
quark- and gluon-initiated jets. The second term, called the flavor response uncertainty, accounts
for the differences between the gluon-initiated jet responses obtained from the two showering and
hadronization models implemented in Pythia and Herwig 1.3.2.

7 For inclusive jets, ∆fg is in the order of few percent and not exceeding 10% for the majority of the phase space.
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Figure 2.29: The average jet response in MC simulation as a function of the five GSC variables for three
ranges of pTtruth. The calorimeter distributions (a) and (b) are shown with no GSC corrections applied, the
track-based distributions (c) and (d) are shown with both preceding calorimeter corrections applied, and the
punch-through distribution (e) is shown with the four calorimeter and track-based corrections applied. The
distributions of the underlying observables in MC simulation are shown in the lower panels for each pTtruth
region, normalized to unity. Figures from [67].

2.3.3.4 In-situ calibration

As we have seen for all the previous calibration methods, the jet response measurement relies on
the simulation of ATLAS active detectors and dead materials, as well as on the simulation of the
hard scatter, underlying event, pile-up, particle showers in the detectors, jet particles multiplicity and
transverse shape. The last calibration methods capture the residual differences between simulation
and data, and measure correction factors to be applied only on data. For in-situ methods, the jet
response is calculated by balancing the pT of a probe jet against that of a well-calibrated reference
object or system, where the probe and reference objects are fairly back-to-back in the transverse plane.
The response is defined as the mean (or mean of a fit) of the ratio of the two pT:

R = 〈 pprobe
T

preference
T

〉. (2.5)
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The ratio of R between data and MC simulation is a good estimate of the additional JES correction
factor that needs to be applied on data:

Cin−situ =
RMC

in−situ

Rdata
in−situ

. (2.6)

The balance and hence the response R are sensitive to additional jets in the system and on energy flow
into or out of the jet cone. On the other hand, the double ratio C is more robust to those secondary
effects as long as they are well modeled in simulation. In addition, event selections are designed to
reduce the impact of such secondary effects. The following in-situ methods are used:

• eta-intercalibration: using dijet events, it corrects the energy scale of forward jets using well-
measured central jets (|η | < 0.8),

• Z(γ)+jet: corrects the energy scale of central jets using the well-measured Z(γ) objects,

• multi-jets balance (MJB): corrects the energy scale of a central high pT jet using a system of
well-calibrated low pT multi-jets.

Figure 2.30 shows the systems used to exploit their balance for the different calibrations. The
corrections aremeasured in bins on pref

T (paverage
T and ηdet in the case of eta-intercalibration). Numerical

inversions are used to transform the corrections into a function of probe jet pT.

Z+jet, γ+jet and MJB corrections, mostly relevant in low, mid and high pT ranges respectively, are
statistically combined into one calibration covering the full pT range. Although this calibration is
computed using only central jets, it is also applied to forward jets since the eta-intercalibration, the
first in-situ calibration to be applied, has already equalized the central and forward energy scales.
Since in-situ calibrations are performed sequentially, systematic uncertainties are propagated from
each to the next one. The event selection cuts are a source of systematic uncertainties and are
evaluated by varying the cut to looser or tighter values in both data and MC. The uncertainty from the
measurement of the reference object is also propagated. The last systematic uncertainty is related to
theMC physics modeling (affecting the balance) and is calculated by measuring the correction factors
C using two MC generators and taking the difference as the systematic. Smoothing or rebinning
is applied to systematic uncertainties to ensure that the values of the uncertainties are statistically
significant and not a result of fluctuations. The statistical correlation is taken into account during
those steps.

Common quality criteria are applied to all three in situ analyses. Each event must have a reconstructed
vertex with at least two associated tracks of pT > 0.5 GeV. All jets must satisfy cleaning quality criteria
as described in 2.3.2. Furthermore, the JVT tool is used to reject pile-up jets.

The eta-intercalibration, one of the main studies I performed thoroughly, is described in the next
chapter with all my contributions also detailed. Let me here describe the other in-situ methods and
the in-situ combination.
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Figure 2.30: Reference and probe objects used in the different in-situ calibrations.

Z/γ+jet
The balance between a central jet (|η | < 0.8) and a well-measured Z or photon is used to measure
the jet response and compare it between MC simulation and data. The Z boson is reconstructed
through the decay channels Z → e+e− and Z → µ+µ−. The correction is evaluated separately for
each channel. Photons, electrons and muons are precisely measured in the ATLAS detector, which
explains why they are used as reference objects for JES measurements.

Two techniques to derive the response are used. The first is the direct balance (DB) which uses the
pT of the fully reconstructed jet and compares it to the reference pT. The correction is sensitive to
additional jets in the event affecting the balance between the leading jet and the reference. Tominimize
that, a pT cut on additional radiation is used and a minimum azimuthal separation ∆φ between the
jet and the reference is imposed. Furthermore, an improvement is achieved by only considering the
boson pT parallel to the jet axis, and hence we define the reference pT and the response as:

pref
T (DB) = pZ/γ

T × cos(∆φ),

RDB =

〈 pjet
T

pref
T (DB)

〉
.

(2.7)

Jet energies are affected by out-of-cone radiation (OOC, the energy radiated at an angle larger than
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the jet cone) and underlying event. This is true also for truth jets in simulation, which means that
the balance with the Z boson (which is not affected by OOC and underlying event (UE) effects) is
not perfect even at truth level. Correction factors k for the effects of OOC and UE are estimated by
measuring the pT profile of tracks around the jet. Those factors are calculated for data and simulation
and are applied to the Z pT, and the variated response measurement is performed. The comparison
of the final double ratio of responses between data and MC simulation for the variated measurement
and the nominal one (without k factors) gives the systematic uncertainty of the effects of OOC and
UE.

A second technique, the missing-ET projection fraction (MPF), uses the full hadronic recoil in an
event as a probe instead of just the leading jet pT. It measures the response of the calorimeter to
hadronic showers. From transverse momentum conservation, we have:

−→pTref + −→pTrecoil =
−→
0 . (2.8)

The missing transverse momentum in the event, ET
miss, is calculated directly from calorimeter topo-

clusters in the case the EMTopo jet calibration and from particle flow objects in the case of the PFlow
jet calibration, ensuring that the energy scale is consistent. Assuming that any missing transverse
momentum is due only to the response of the hadronic recoil (i.e. the response of the reference object
is considered equal to 1), we have:

−→pTref + RMPF × −→pTrecoil = −−→ET
miss. (2.9)

Combining the two equations and projecting in the direction of the reference object n̂ref , we get:

RMPF =

〈
1 +

n̂ref .
−→
ET

miss

pref
T

〉
. (2.10)

The average response in both DB andMPF techniques is computed from a fit using a modified Poisson
distribution. The MPF technique is less sensitive to additional particle activity that is symmetric in
the transverse plane, like pile-up and underlying event. Sensitivity on additional radiation still exists
and a cut is used to put a threshold on additional jets pT. The out-of-cone and jet reconstruction
effects are reduced compared to DB technique, since MPF technique only uses jets for the event
selection. The systematic uncertainty of the effects of OOC and UE are taken from the DB technique.
Numerical inversion is derived using the average jet pT, before the current calibration, within each
reference pT bin.

Both techniques are used to measure the final correction as a cross-check. Recently, the correction
from MPF technique is the one used in the final combination. Figure 2.31 shows the response
measurement, using data and 2 MC simulations, in Z+jet in the left using the MPF technique, and
for γ+jet on the right using the DB technique. In the bottom plot, the ratios between simulations
and data are shown, which correspond to the in-situ correction factors, where one is for the nominal
values and the other is for measuring the modeling systematic uncertainty.

Figure 2.32 shows the difference systematic uncertainties of the calibration. They come from sim-
ulation modeling, event selection, OOC and UE effects, and the effect of the uncertainties on the
reference object measurement (γ, e and µ energy/momentum scale and resolution).
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Figure 2.31: Average pT response for a) Z+jet events using the MPF technique and b) γ+jet events using the
DB technique as a function of jet pT. The jets used to measure the response are calibrated up to the eta-
intercalibration stage. The response is given for data and two distinct MC samples, and the MC-to-data ratio
plots in the bottom panels reflect the derived in situ corrections. Figures from [67].

 [GeV]jet

T
p

20 30 40 50 60 210 210×2 210×3

R
el

at
iv

e 
JE

S
 u

nc
er

ta
in

ty
 [%

]

0

1

2

3

4

5

6

7

8

9
Total uncertainty
MC generator
Out-of-cone
Second-jet veto

φ∆
JVT
Electron scale
Electron res.
Muon scale
Muon res. (ID)
Muon res. (MS)
Statistical unc.

ATLAS
-1 = 13 TeV, 3.2 fbs

MPF with Z+jet
 = 0.4, EM+JESR tkanti-

| < 0.8jetη|

(a) Z+jet

 [GeV]jet

T
p

40 50 60 210 210×2 210×3

R
el

at
iv

e 
JE

S
 u

nc
er

ta
in

ty
 [%

]

0

1

2

3

4

5

6

7

8

9
Total uncertainty
MC generator
Out-of-cone
Photon purity
Second-jet veto

φ∆
JVT
Photon scale
Photon res.
Statistical unc.

ATLAS
-1 = 13 TeV, 3.2 fbs

+jetγDirect Balance with 
 = 0.4, EM+JESR tkanti-

| < 0.8jetη|

(b) γ+jet

Figure 2.32: Systematic uncertainties for a) Z+jet events using the MPF technique and b) γ+jet events using
the DB technique as a function of jet pT. The uncertainties account for event selection, OOC and UE effects,
modeling differences and effects of the reference object energy/momentum scale and resolution. Figures from
[67].

MJB
The last stage of in situ calibration extends the reach of the correction to high-pT jets above the
range of the Z/γ+jet calibration using the multi-jet balance (MJB) technique. The balance of a single
high-pT jet against a recoil system of two or more lower-pT jets is used to define the MJB response
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as:

RMJB =

〈 plead
T

precoil
T

〉
, (2.11)

where precoil
T is the four-momentum sum of the recoil jets. The leading jet is calibrated only up to the

eta-intercalibration stage, while the recoil system uses in addition the Z/γ+jet calibration. The jets
of the recoil system are selected to ensure they are well calibrated. They are limited to the region
|η | < 2.8, their pT is limited to the range of the Z/γ+jet calibration, and the recoil system is not
allowed to have one jet with more than 80% of its pT to suppress events with dijet topology from the
selection. Isolation of the leading jet from contamination by the recoil system is ensured by requiring
that the azimuthal separation ∆φ between the leading jet and the direction of the recoil system is at
least 0.3 rad, and that the ∆φ between the leading jet and any individual jet in the recoil system with
a pT > 0.25plead

T is at least 1.0 rad. The leading jets are limited to the region |η | < 1.2 for the 2015
calibration but is later reduced to |η | < 0.8 for the full Run II calibration when more statistics were
collected.

The constrains of the MJB analysis on the recoil system to be well calibrated lead to the exclusion of
events with very high plead

T as their second leading jet has a momentum outside the range of calibration
by the Z/γ+jet analyses. To address this, MJB proceeds via multiple iterations (two are found to
be enough). After the first iteration, the recoil system is also calibrated by MJB results from the
previous iteration extending the pT range of the well-calibrated jets. For the full Run II calibration,
the iteration procedure extended the MJB calibration to plead

T = 2.5TeV.

The response RMJB is shown for data and MC simulation in figure 2.33. As expected, an offset is
seen between data and MC simulation, reflecting that the recoil system in data is fully calibrated to
Z/γ+jet stage while the leading jet is only partially calibrated. The response is below unity even in
MC simulation, particularly at low pT, reflecting the effect of the selection and isolation requirements
of the leading jet and the recoil system on RMJB. The MC-to-data ratio is shown in the bottom panel
and a fairly constant correction of 2% is derived.

Systematic uncertainties are shown in figure 2.34. They account for the event selection, the MC
modeling and recoil jets calibration. For the event selection, the uncertainties are measured by
varying separately each cut to looser or tighter values. The uncertainty due toMCmodeling is taken as
usual from the difference in the MJB correction between different generators. The JES uncertainties,
including the in-situ ones, on the recoil jets are also propagated by varying the calibration by ±1σ for
each component individually. The jet flavor uncertainty dominates at low pT while γ+jet calibration
uncertainty dominates at high pT.

Combination of in-situ results
From each of the previously described in-situ methods which compares the response (using a
probe and reference objects) between data and simulation Rin−situ = Rdata/RMC, a correction factor
Cin−situ = 1/Rin−situ (equation 2.6) is measured and is to be applied to data. The first correction
applied is the eta-intercalibration to remove the ηdet dependence of the jet response. Next, the four
absolute corrections, Z→ ee+jet, Z→ µµ+jet, γ+jet andMJB, must be combined to produce a single
calibration covering the full range of jet pT, from 17 GeV to 2.5 TeV for the full Run II calibration.
The combination takes into consideration the overlapping of the four corrections by accounting for
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Figure 2.33: Average pT response of the MJB analysis in multi-jet events as a function of leading jet pT. The
leading jets used to measure the response are calibrated up to the eta-intercalibration stage while for the recoil
system they are fully calibrated. Figures from [67].
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their relative statistical power as well as any tension between different response ratio measurements
in the same pT range.

First, for each of the four absolute corrections, the ratio Rin−situ, initially evaluated at the barycenter
〈pjet

T 〉 of each pjet
T bin, is determined in a fine 1 GeV binning using interpolating second-order

polynomial splines. Next, a χ2 minimization is performed in each 1 GeV bin for the available
absolute measurement in that pT range, and taking into account their statistical and systematic
uncertainties to determine a weight for each measurement in each bin. The smaller the uncertainties
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for a measurement, the higher its weight and its effect on the combination. The local χ2 is used to
quantify the agreement between the in-situ methods. If a tension is found in a bin, expressed by the
factor

√
χ2/Ndof being larger than 1 where Ndof is the number of degree of freedom, the uncertainties

of the measurement inside this bin are multiplied by this factor. The final calibration is obtained by
smoothing the combined inputs from the fine binning using a Gaussian kernel.

Each uncertainty source of the in-situ methods is treated as fully correlated across pT and η ranges,
while it is treated as independent of other sources within and between calibration methods. Therefore,
for each uncertainty source, the corresponding in-situ correction is shifted by ±1σ of the uncertainty,
then the finer binning interpolation, the combination (≡ averaging) and the smoothing procedures are
repeated, while keeping the relative weights of the different in-situ methods the same as the nominal
one. The difference between the combined calibration curve with the systematically shifted input
and the nominal calibration curve is taken as the 1σ variation for each uncertainty source. For the
uncertainty sources of the Z/γ+jet calibrations that are propagated to the MJB calibration, one-to-one
correlations are considered and each of those uncertainties shifts coherently the corrections of the
two methods, Z+ or γ+jet and MJB.

Figure 2.35 shows the response ratioRdata/RMC for EMPFlow and EMTopo jets from the four absolute
in-situ calibration methods individually, Z → ee+jet, Z → µµ+jet, γ+jet and MJB, and the final
smoothed combination with the statistical and systematic uncertainties shown. Smaller uncertainties
for EMPFlow calibration are visible at low pT (due to the smaller jet energy resolution as is shown
in the next section). On the other hand, at high pT, the central values and their uncertainties become
similar between EMPFlow and EMTopo calibrations which is expected. The residual correction to
be applied only to data is the inverse of this ratio.
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Figure 2.35: Data-to-simulation ratio of the average jet pT response as a function of jet pT. The combined
result is based on four in-situ measurement using Z → ee+jet, Z → µµ+jet, γ+jet and MJB techniques. The
errors represent the statistical (inner error bars and small inner band) and the total uncertainty (statistical and
systematic uncertainties added in quadrature, outer error bars and outer band). These results are for anti-kt jets
with R=0.4 reconstructed from particle flow objects in a) and from topo-clusters in b). The residual correction
to be applied only to data is the inverse of this ratio. Figures from the ATLAS public plots page [68].

At the end of this JES calibration section, let me show 1D slices of the full 2D (pT, η) uncertainties of
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the full chain of the calibration. Figure 2.36 shows the full uncertainties for EMPFlow and EMTopo
calibrations for η = 0 as a function of pT, and for pT = 60 GeV as a function of η.
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Figure 2.36: Fractional jet energy scale systematic uncertainty components for η = 0 as a function of pT in
a) and b), and for pT = 60GeVas a function of η in c) and d). These results are for anti-kt jets with R=0.4
reconstructed from particle flow objects in a) and c), and from topo-clusters in b) and d). The total uncertainty
(all components summed in quadrature) is shown as a filled region topped by a solid black line. Topology-
dependent components are shown under the assumption of a dijet flavor composition. Figures from the ATLAS
public plots page [68].

2.3.4 Jet energy resolution (JER)

Knowing the resolution of our detector is a crucial step in any physics analysis. The resolution in data
is used to validate the simulation of the detector and to correct it where it is possible. The resolution
is used also to connect the particle/truth and reconstructed levels; passing from the first to the second
through folding and from the second to the first through unfolding of the detector effects. Hence,
knowing precisely the jet energy resolution (JER) in data is very important to validate the detector
simulation which is used in folding and unfolding techniques. In addition, systematic uncertainties
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impacting the JER determination are evaluated and propagated to the physics measurements. The
JER determination is done after applying all the calibration steps that impact the resolution, as well
as (a preliminary version of) the in-situ calibration (which only impacts the average response).

For JES determination using in-situ methods, average responses from several event topologies are
used defined as R = 〈pjet

T /p
ref
T 〉 (equation 2.5). On the other hand, the width of this distribution,

σ(pjet
T /p

ref
T ), is used to probe the detector jet energy resolution (JER). σ(pjet

T /p
ref
T ) is not equal to the

JER since even at particle/truth level, the balance of the jet and the reference object is not perfect due
to physics effects: the balance is affected by additional radiation which is not clustered in the same jet,
by the hadronization which dissipate particles out of the jet cone, and by the UE effects which adds
particles to the jet. The balance is only perfect at parton level for exclusively 2→ 2 scattering.

The contribution of physics effects to the width of pjet
T /p

ref
T distribution is estimated using MC

simulation, by measuring the width of the balance distribution between a truth jet, which have a
matching with jets at reconstructed level, and the reference object. By subtracting the physics effect,
only the detector effects remain; the in-situ JER estimation, is then:

JERin−situ ≡
(
σ(pT)
pT

)
in−situ

= σ(preco jet
T /pref

T ) 	 σ(ptruth jet
T /pref

T ). (2.12)

The in-situ JER estimation can be performed for data and for simulation. Dijet and Z/γ+jet methods
can be used and combined for this matter.

Another method of estimating the JER in simulation is by directly comparing the pT of matched truth
jets and reco jets. In this method, the MC JER is estimated in bins of ptruth

T by:

JERMC ≡
(
σ(pT)
pT

)MC
= σ(preco jet

T /ptruth jet
T ). (2.13)

The twomethods of JER determination in simulation are cross-checked and give compatible results.

The JER is parametrized as the standard functional form expected for calorimeter-based resolutions
[69], with three independent contributions, as:

JER ≡ σ(pT)
pT

=
N
pT
⊕ S√pT

⊕ C. (2.14)

The term “N” parametrizes the effect of electronic and pile-up noise and is mostly relevant at low
pT. The term “S” parametrizes stochastic effects, such as the sampling nature of the detector, and
is mostly relevant at mid pT. The term “C” parametrizes constant effects, such as losses in dead
material, and is mostly relevant at high pT. The goal is then to measure these terms.

The term “N” is split into its two contributing effects: N = Npile−up ⊕ Nelectronic, µ=0. The term
Nelectronic, µ=0 is measured using MC simulation where no pile-up is added. For the term Npile−up, it
should be determined using the nominal pile-up profile from data. It is found that the term Npile−up
is difficult to be determined from in-situ measurements since it is relevant at low pT where the
uncertainties are high. Instead, the random cones method is used. Two random cones of a radius 0.4
are projected at a random value of η1, η2, φ1 and φ2 = φ1 + π. The difference, ∆pT = p1

T − p2
T, is

centered around zero since the pile-up noise in these cones is expected to balance. 68% confidence
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interval is used to define the width, σRC, of the distribution since it cannot be well fitted by a Gaussian
function. The term Npile−up is equal to σRC/

√
2. Lately, it was found that an additional term N2/p1.5

T ,
a pT dependent pile-up term, improved the description of the pile-up effect on the JER; more studies
are currently being performed.

Fixing the term “N” found in previous methods, the two other terms, “S” and “C”, are found by fitting
the equation 2.14 to the in-situ distribution JERin−situ. Figure 2.37 shows, for 8 TeV data, the JER
as measured using the three in-situ methods displaying the compatibility between the measurements.
The final fit using the function in Equation 2.14 is also included. The JER in data and simulation
are then compared. If the JER in MC simulation is smaller than the JER in data, the resolution in
simulation is deteriorated to match the one in data using Gaussian random fluctuation. If the JER in
MC simulation is larger than the JER in data, no action is taken for the nominal MC samples, instead
the difference is taken into account by the systematic uncertainties.
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Figure 2.37: The jet resolution as a function of pT for the 8 TeV data. The three in-situ inputs to themeasurement
are shown displaying the compatibility between the measurements. The final fit using the function in Equation
2.14 is included with its associated statistical and total uncertainty. Figure from [70].

Figure 2.38 shows, for 13 TeV data, the jet energy resolution σ(pT)/pT as parametrized in equation
2.14, using random cones to evaluate the pile-up noise term and fitted to dijet in-situ results. Figure
2.39 compares the JER functions of EMPFlow and EMTopo when the former is smaller at low pT
and then becomes similar to the latter at mid and high pT as expected.

Individual and total (summed in quadrature) systematic uncertainties on the evaluation of the JER
are shown in figure 2.40 for η = 0.2.
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Figure 2.38: Jet energy resolution, for 13 TeV Run II data, as a function of jet pT parametrized as σ(pT)/pT =
N/pT ⊕ S/√pT ⊕ C. The pile-up noise term is evaluate using random cones. The dijet in-situ measurements,
used to fit the JER function, are also shown. These results are for anti-kt jets with R=0.4 reconstructed from
particle flow objects in a) and from topo-clusters in b). Figures from the ATLAS public plots page [71].
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Figure 2.39: Jet energy resolution comparison between EMPFlow and EMTopo jets as a function of jet pT.
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Figure 2.40: Systematic uncertainties on the jet energy resolution σ(pT)/pT as a function of jet pT for η = 0.2.
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The very first step in term of in-situ jet calibration, using a comparison between the transverse
momenta of two objects which are supposed to be balanced, is the calibration of the jets as a function
of where they are in the detector, in the central part or in the forward regions. This calibration as a
function of η and pT of the jet is described in detail in this chapter.
In the first section, I present in general the eta-intercalibration correction and the different steps for
measuring it.
In the following sections, I present the results of the different improvements, checks and tests I
developed and implemented.
In the last section, I present the eta-intercalibration correction results I measured and that are used in
the official ATLAS calibration for Run II.

3.1 Introduction

The first calibration to be applied among the in-situ methods is the eta-intercalibration [66, 67]. The
aim, as said, is to calibrate jets in the forward region of the detector relative to jets in the central
regions (reference objects). This is done by exploiting the transverse momentum balance of the two
leading (highest pT) jets (referred to as dijet system below) in multi-jets events. By comparing data
to MC simulation, a 2D correction function is derived as a function of pT and ηdet of jets. ηdet is the
pseudo-rapidity measured from the detector center and not from the hard primary vertex (PV0), i.e.
before applying the origin correction (refer to section 2.3.3). Figure 3.1 shows the 2D binning.

Jets in the central region, defined as |ηdet | < 0.8, receive an average correction of 1 at this step of the
calibration because they are the reference objects. Events are selected to contain hard back-to-back
dijet topologies by requiring a minimum azimuthal separation between the two leading jets (∆φ12>2.5
rad) and by suppressing additional jets (pjet 3

T /pavgT < 0.25).

The η-binning of the correction is chosen to follow the detector structure. Two strategies exists to
derive this correction function. The simpler method, called the central reference method, uses dijet
systems where one of the jets is required to be in the central region and the other is in the forward
region. The central region is taken as one η bin and only the forward region is divided into multiple
η bins. The second method, called the matrix method, uses all region combinations of dijet systems,
central-central, central-forward or forward-forward dijet systems. Both central and forward regions
are divided into multiple η bins. Both methods are briefly described in the following even if the
central reference method is only used as a cross check of the matrix method.
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Figure 3.1: Eta-intercalibration 2D binning in pT and ηdet of jets. Bin edges are shown in grey lines. Black
dots represent pT and η averages in each bin.

3.1.1 Central reference method

In this method, we study the transverse momentum balance of dijet systems where one of the two
leading jets is in the central region (with pref

T ) and the other is in the forward region (with pprobe
T ). The

pT balance can be expressed in terms of the asymmetry A,

A = pprobe
T − pref

T

pavg
T

, (3.1)

where pavg
T = (pprobe

T + pref
T )/2. (3.2)

The intercalibration factor c of the probe jet is then:

pprobe
T

pref
T
=

2 +A
2 − A =

1
c
≡ relative jet response. (3.3)

Dividing the measurements in bins of jet ηdet and pavgT , with one η bin in the central region, the
asymmetry distribution Aik is evaluated for each probe jet ηdet bin i and pavg

T bin k. An asymmetry
distribution example is shown in figure 3.2. The intercalibration factor is calculated using the
formula:

cik =
2+ < Aik >

2− < Aik >
,

where < Aik > is the mean value of the asymmetry distribution in each bin.

Due to the constraints imposed on dijet systems, this method suffers from reduced statistics. It is only
used as a cross check for the matrix method described in the following section.
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Figure 3.2: AsymmetryA distribution shown in black points for one bin of pavgT , ηref and ηprobe. The Gaussian
fit in magenta line is used to extract the asymmetry mean < Aik >.

3.1.2 Matrix method

The matrix method uses all dijet systems regardless of the η regions of its 2 jets. To do so, each dijet
event is assigned a "left" and "right" jets, defined by ηleft

det < η
right
det . The new equations are:

A = pleft
T − p

right
T

pavg
T

(3.4)

R = cright

cleft =
pleft
T

pright
T

=
2 +A
2 − A . (3.5)

where R is the ratio of responses. Using the binning system as before but with several bins inside
the reference region, Rijk is obtained for each ηleft

det bin i, ηright
det bin j, and pavg

T bin k. An example of η
bins combination is shown in figure 3.3. For each fixed pavg

T bin k with N η bins, the corresponding
intercalibration factors cik, with i = 1...N, are obtained simultaneously by minimizing the following
function [66]:

S(c1k, ..., cNk) =
N∑

j=1

j−1∑
i=1

(
1

∆ < Rijk >
(cik < Rijk > −cjk)

)2
+ X(c1k, ..., cNk), (3.6)

where ∆ < R > is the statistical uncertainty of < R >. The X function defined by,

X(c1k, ..., cNk) = λ *
,

1
N

N∑
i=1

cik − 1+
-

2

, (3.7)
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3 Eta-intercalibration

is used to fix the value of the average of cik, since the normalization of cik factors is not constrained
by the minimization of the first term of the function S. In fact, multiplying all cik by the same factor
is also a solution to the minimization of this first term. Also, the X function prevents the minimizing
algorithm to choose the trivial solution, which is all cik = 0. The λ factor is a Lagrange multiplier,
an arbitrary chosen constant that does not affect the solution (as long as it is sufficiently large for
numerical stability, e.g. λ ≈ N). The resulting factors cik are scaled afterward such that the simple
average of the factors in the central region is equal to 1.
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Figure 3.3: Response ratios Rijk as a function of ηleft
det and η

right
det showing the η bins combination used in the

matrix method.

The minimization of the function S gives the central values of the factors ci. In order to evaluate
the uncertainties on these values, 1000 random fluctuations ("toys") of R are used to propagate their
uncertainties to the factors ci in the following way:

• for each toy, replace:
R → R + ∆R × G(0, 1),

where G(0, 1) is a random Gaussian number with mean = 0 and sigma = 1,

• minimize the function S using the modified values of R,
• denoting c(t)

i the result from each toy t, the uncertainty of each ci factor is:

∆ci = RMS(c(t)
i ).

Figure 3.4 shows in black points the factors ci as a function of η for one bin of pavgT . For each ci, the
results from the fluctuations of R are shown in colored lines.
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Figure 3.4: Eta-intercalibration factors ci as a function of η for one bin of pavgT . The results of each ci from the
fluctuations of R, which are used to measure the statistical uncertainty ∆ci, are shown in colored lines.

Previously, the MINUIT algorithm [72], a numerical minimizer, was used to minimize the function
S. Two draw backs of numerical methods are:

• the minimization becomes very slow with large number of variables (η bins),

• the minimization does not always converge.

For those reasons, I developed and implemented a better analytic solution. The details are discussed
in section 3.2.

3.1.3 Residual correction

For each (pavg
T , ηdet)-bin denoted by the index i, the residual correction is derived from the data/MC

simulation ratio:

Ci =
cData

i

cMC
i

. (3.8)

In order to smooth statistical fluctuations and to have a continuous calibration, the correction function
Frel is defined as a two-dimensional Gaussian kernel by:

Frel(pT, ηdet) =
∑Nbins

i=1 Ciwi∑Nbins
i=1 wi

, (3.9)

with wi =
1

∆C2
i
× Gaus *

,

logpT − log < pprobe
T >i

σlogpT
⊕ ηdet− < ηdet >i

σηdet

+
-
, (3.10)
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where ∆Ci is the statistical uncertainty of Ci, < pprobe
T >i and < ηdet >i are the averages of pT and η

in the bin i. The Gaussian has a zero mean value. Its width is controlled by σlogpT and σηdet , where
these parameters are chosen to capture the shape of the ratio data to MC simulation, and to provide
stability against statistical fluctuations (more details in the results section 3.6.3). Those parameters
are tuned using the closure of the calibration (defined in section 3.1.5). The weights wi of the kernel
are inversely proportional to the variance of the Ci ratios, such that more precise ratio bins have more
power in the function Frel.

Although residual correction points are calculated in bins of pavgT , the calibration is applied to jets
in bins of pprobe

T . To take this difference into account, a numerical inversion method is used. Using
equations 3.2 and 3.3, we get:

< pprobe
T >= 2 < pavgT > ∗R/(R + 1), (3.11)

where R is the relative jet response.

An example of the calibration is shown in figure 3.5.
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Figure 3.5: The eta-intercalibration correction function Frel as a function of η is shown in magenta line with
its statistical uncertainty shown in blue shade. The individual correction points Ci are shown as black open
circles.

3.1.4 Systematic uncertainties

The difference in the relative jet response between data and MC simulation comes from:

• mis-modeling in detector simulation,

• mis-modeling of physics,
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• event selection criteria.

Except for the first effect, which is what we want to measure and correct for, we need to evaluate
systematic uncertainties of all the other effects on the calibration results.

Different MC generators have different event topologies and jet sub-structure. They differ especially
on the parton production mechanism (like production order) and on the showering model which
mostly impact the additional jet kinematics. Since there is a priori no reason to trust one generator
more than the other, we use two generators, one for nominal calibration and one for systematic
uncertainty evaluation. The calibration is derived using each of the two generators and the difference
between the two calibrations is taken as a systematic uncertainty.

To select hard back-to-back dijet systems, event selection cuts are applied on ∆φ12, pjet 3
T /pavgT and

JVT. To evaluate the calibration dependence on those variables, we do the following for each of the
selection cuts:

• vary the nominal cut value up and down (loose and tight) simultaneously for data and MC
simulation,

• derive the variated residual calibrations,

• compare the up and down variations results to the nominal one, and take the maximum
difference as a systematic uncertainty.

An important thing we want to avoid is that our systematic uncertainty evaluation is significantly
affected by statistical fluctuations. That is why we verify that the systematic uncertainty values are
significantly larger than their statistical uncertainties.
The nominal and variated selection have a high proportion of common events and their calibration
results are thus highly correlated. To correctly calculate the statistical uncertainties of the systematic
uncertainties we use the bootstrap method described below.

Bootstrap method
The bootstrapmethod [73] is used to correctly propagate uncertainties where the existence of complex
correlations make it difficult/impossible to do it analytically. Correlations exist when the same
events are used in multiple places (in systematic uncertainty evaluation for example), when doing a
smoothing, when folding or unfolding, etc.
The method works as follows:

• generate N sample toys: for each event and for each toy, generate a random integer Poisson
fluctuation with the mean parameter equal to one, n = Poisson(1), and fill the event “n” times,

• for each sample toy t: calculate the variable in question x(t),
for example for the systematic evaluation case, calculate for each sample toy the nominal and
variated calibrations and take the difference,

• the uncertainty of the variable is the RMS of the toys results or the sigma of the Gaussian fit:

∆x = RMS(x(t)) or σ(Gaussian fit(x(t))),
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3 Eta-intercalibration

• the number of toys N should be big enough to reduce the uncertainty on the value of ∆x which
is proportional to 1/

√
N, N=1000 is a reasonable choice.

An important step is the choice of the seed of the random number generator. The seed should be
different for the different events but should be the same when the same event is used in different
places or analyses. For that, the event number and run number (and MC channel number in case of a
simulation) are used to correctly define the seed.

Figure 3.6 shows an example of uncertainties measurement using the bootstrap method. The results
from 1000 sample toys are filled in a histogram. The RMS and the sigma of the Gaussian fit are
shown.
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Figure 3.6: Example of measuring uncertainties using bootstrap method.

3.1.5 Closure test

To check whether the calibration have successfully detected and corrected all the differences in the
jet responses, the calibration closure is tested. For that, we:

• derive the residual calibration,

• apply it to data only,

• re-derive a second residual calibration using the corrected data,

• a good closure is obtained when this second calibration is compatible with unity,

• any deviation is taken as an additional non-closure systematic uncertainty.
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Figure 3.7 shows an example of this closure as a function of η for one pavgT bin. Only small deviations
from unity are seen. More details and results are discussed in results section 3.6.
The closure test is also used to choose the parameters of the smoothing kernel, σlogpT and σηdet (see
3.1.3). Multiple choices for these parameters are tested and the combination that gives the smallest
non-closure, σlogpT = 0.18 and σηdet

= (η bin width)/6, is chosen (more details in section 3.6.3).
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Figure 3.7: Calibration closure as a function of η for one pavgT bin.
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3.2 Analytic solution

Previous calibrations are found to not have sufficiently fine η binning to be able to detect narrow
peaks in the jet response. This is visible in figure 3.8 where the ratio between jet η distributions
from data and MC simulation shows a narrow and significant peak at 2.4 < |η | < 2.5. This localized
disagreement cannot be explained by physics causes and is due to a calibration with wide binning
where jet responses are averaged. Finer η binning is to be used. As previously mentioned, the
numerical method for minimizing the equation S (3.6) has the inconvenience of being very slow with
large number of variables (η bins) and not converging for some cases.
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Figure 3.8: Comparison of jet η distributions between data and simulation for old calibration.

To address those inconveniences, I developed and implemented a better analytic solution as follows.
The equation S, which was introduced in the matrix method paragraph, depends on N variables ci.
The minimum of S satisfies the conditions:

∂S
∂ci
= 0 , for i = 1 ,.., N . (3.12)

Expending the derivative with respect to cα, the following is found (the pavgT index “k” in Rijk is
omitted hereafter for clarity):

α−1∑
i=1

(( −Riα

∆2Riα
+

λ

N2

)
ci

)
+ *

,

α−1∑
i=1

1
∆2Riα

+

N∑
i=α+1

R2
αi

∆2Rαi
+

λ

N2
+
-

cα +
N∑

i=α+1

(( −Rαi

∆2Rαi
+

λ

N2

)
ci

)
− λ

N
= 0 .

(3.13)
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Taking α = 1 ,.., N and writing the system of equations in matrix form, we get:

*................
,

N∑
i=2

R2
1i

∆2R1i
+ λ

N2 . . . −R1α
∆2R1α

+ λ
N2 . . . −R1N

∆2R1N
+ λ

N2

. . . . . . . . . . . . . . .

−R1α
∆2R1α

+ λ
N2 . . .

α−1∑
i=1

1
∆2Riα

+
N∑

i=α+1

R2
αi

∆2Rαi
+ λ

N2 . . . −RαN
∆2RαN

+ λ
N2

. . . . . . . . . . . . . . .

−R1N
∆2R1N

+ λ
N2 . . . −RαN

∆2RαN
+ λ

N2 . . .
N−1∑
i=1

1
∆2RiN

+ λ
N2

+////////////////
-︸                                                                                              ︷︷                                                                                              ︸

U

×

*...................
,

c1
...

cα

...

cN

+///////////////////
-︸︷︷︸

C

=

*...................
,

λ
N
...

λ
N

...

λ
N

+///////////////////
-︸︷︷︸

A

(3.14)

The solution to the vector C of the correction factors ci is obtained through a matrix inversion:

U × C = A → C = U−1 × A (3.15)

This analytic method gives similar results for ci factors as the minimization method. Figure 3.9 shows
the level of compatibility between the two results which for most of the bins are not distinguishable.
Still, it has the advantage of always converging and most importantly that it is much faster than the
numerical minimization-based method. In fact for the number of ci variables that we will typically
have (30-50 variables), the analytic method is more than one thousand times faster (see figure 3.10).
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Figure 3.9: Comparison of ci results from the two methods of minimization: numerical and analytic.

An additional check I did is a closure test on the calculation of intercalibration factors. ci values
are pre-defined and Rij factors are calculated accordingly. The equation S defined using those Rij as
inputs is then minimized and ci factors are computed. The difference between ccomputed

i and cinjected
i

is shown in figure 3.11. The two methods are compatible with each other and give a non-closure
smaller than 1 per 10 thousand. The non-closure is much smaller than the statistical uncertainties.

It is worth noting that I tried other methods to define the equation S. In particular, I tested a new
approach to get rid of the need of the functionX (which is used to impose a normalization) by changing
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the equation variables to ratios between intercalibration factors ci with respect to a reference cref:

S′(
c1
cref

, ...,
cN
cref

) =
N∑

j=1

j−1∑
i=1

(
1

∆ < Rij >
(

ci
cref

< Rij > −
cj

cref
)
)2
. (3.16)

The S′ function minimization is found to be dependent on the choice of the cref . Looping over all N
factors ci, taking each one as a cref and minimizing S′, the average of the N results for each ci is found
to be compatible with the result of Sminimization. The drawback is having to repeat the minimization
N times which degrades the speed of the process which is the main issue I was trying to reach.
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3.3 Choice of Monte-Carlo generator

The choice of MC generators (one for the nominal calibration, and one for the evaluation of a
systematic uncertainty) is based on two criteria:

• the modeling of the two leading jets which are used to define the asymmetry of the pT balance,

• the modeling of the third jet that is used in the event selection and thus has an impact on the
event topologies.

For the modeling of the two leading jets, NLO generators (Powheg-Pythia, Powheg-Herwig, Sherpa)
are superior to the LO generators (Pythia, Herwig). To backup this claim, one case study is shown in
section 3.3.2. The choice using this criteria is straightforward.

For LO generators, the third jet comes from the showering of the two leading partons.
For NLO generators, in addition we have third jets coming directly from the matrix elements.
Therefore, a pT cut is defined to split between the two production mechanisms to avoid double
counting. Onewould assume thatNLOgeneratorswould be better atmodeling the third jet production,
but as we will see a good tuning for the mentioned cut is needed otherwise the modeling will give
worse predictions.

The following MC generators (refer to chapter 1.3.2) are used to compare to data:

• Pythia8 (LO)

• Herwig++ (LO)

• PowhegPythia8 (NLO)

• Sherpa (NLO)

• PowhegHerwig (NLO)

3.3.1 pavg
T

distributions

First, the pavgT distributions should be checked to make sure that they are smooth and that the MC
simulation ones have a similar shape as the data one. A global shift has no effect on eta-intercalibration
results. On the other hand, if the shapes are different, meaning the distribution of pavgT inside each bin
is different, and since the calibration is pT dependent, the final results will include a bias from this
difference.

Figure 3.12 shows, for data/MC simulation, the following pavgT distributions ratio:

• Pythia, PowhegPythia and Sherpa: the ratio is stable within fluctuations,

• Herwig: the ratio is stable except for pT < 80GeV,

• PowhegHerwig: the ratio is stable except a drop for 350 < pT < 400GeV.

The two drops in the ratios are due to a slice normalization problems, but overall the shapes are
compatible with the one from the data.
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Figure 3.12: pavgT distributions for various MC generators and comparison to data. Single jet triggers are used,
one firing at 110 GeV and the other at 260 GeV.

3.3.2 Truth level relative jet balance

Even if the truth information is not available for data, it is useful to compare the truth-level relative
jet balance for the different generators. This is shown in figure 3.13 as function of jet η.
Without specific studies, we cannot say that a flat relative balance at truth level is the correct one.
In fact, physics effects could induce a deviation from unity (for example color connection between
outgoing partons).
Nonetheless, we see that LO generators, Pythia and Herwig, deviate significantly from unity and in
opposing direction. The differences between the two generators are more than 10% in forward bins.
Contrarily, NLO generators have a closer behavior.

In the past when LO generators were used to derive eta-intercalibration corrections, high uncertainties
were observed in the forward region because of this differences of balances at truth level.

From figure 3.13, we can also naively guess that forward jets radiate harder third jets in Pythia,
whereas in Herwig central jets radiate harder third jets.
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Figure 3.13: Truth jets Relative balances, for 40 ≤ pavgT < 60 GeV.
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3.3.3 pj 3
T

distributions

pj 3T distributions give us a first global evaluation of how well the third jet is modeled.
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Figure 3.14: pj 3T distributions for various MC generators and comparison to data. Single jet triggers are used,
one firing at 110 GeV and the other at 260 GeV.

Figure 3.14 shows, for data/MC simulation, the following pj 3T distributions ratio:

• Sherpa: the ratio is stable within fluctuations,

• Pythia and Herwig: the ratio slowly decreasing toward high pT,

• PowhegPythia: the ratio varies more significantly, decreasing toward low pT,

• PowhegHerwig: same behaviour as PowhegPythia but with larger variations.

Already here we can see that the Powheg generator has a mis-modeling for the third jet, giving more
soft jets compared to data (third jet distributions are higher at low pT for this generator).

3.3.4 The dependence of the asymmetry on pj 3
T
/pavg

T

The calibration takes as input the asymmetry of the balance between the two leading jets. Hence,
the more direct question of what is the effect of any mis-modeling of the third jet on the calibration
result should be asked. For that, I plot the asymmetry mean (using the matrix method definition) as
a function of pj 3T /p

avg
T and compare the MC simulation and the data.

Taking one range of pj 3T /p
avg
T and plotting the asymmetry distribution, figure 3.15 shows the first

complication with a distribution with a double peak. This is expected since we request a hard third
jet which impacts the balance of the two leading jets through the global momentum conservation
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and since most third jets originate from a parton radiated by one of the two leading jets, thus the
asymmetry value is shifted to negative values in one case and to positive values in the other.
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Figure 3.15: Asymmetry distribution of the two leading jets with a requirement of 0.45 ≤ pj 3T /p
avg
T < 0.5.

This is why it is important to distinguish those two cases. This is done by comparing the azimuthal
separation ∆φ between the third jet and each of the two leading jets. The third jet is considered
coming from the closest leading jet. Recalling that the two leading jets are assigned to be left or right
based on their pseudo-rapidities (ηL < ηR), we split the events into two groups:

• L tag for the third jet: ∆φ(third jet, Left leading jet) < ∆φ(third jet, Right leading jet),

• R tag for the third jet: ∆φ(third jet, Left leading jet) > ∆φ(third jet, Right leading jet).

Figure 3.16 shows that this splitting works very well into separating the two peaks which are well
fitted by two Gaussian functions. As a result, the asymmetry mean can now be extracted for each of
the tagged groups.

The plot of the asymmetry mean as a function of pj 3T /p
avg
T for one of the tags is shown in figure 3.17(a).

Note that the negative pj 3T /p
avg
T bins correspond to the case where we have no third jet information

in our event. This happens for events where the third jet does not exist or most likely that its pT is
smaller than the minimum requirement to save the jet (10 GeV). The asymmetry differences between
data and MC simulations seen across all the bins come from two sources:

• mis-modeling of the detector simulation affecting the balance between the two leading jets,
which is what I want to correct in eta-intercalibration,

• mis-modeling of the third jet production, which is what I want to evaluate in this test.

To isolate the mis-modeling of the third jet, I do the following for each MC simulation:

• select events with a very tight cut on third jet: no third jet in the case of PowhegPythia, Pythia
and PowhegHerwig, pj 3T /p

avg
T < 0.1 for Sherpa and Herwig (since they have low statistics),

• compare to data and derive eta-intercalibration correction,
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Figure 3.16: Asymmetry distributions of the two leading jets with a requirement of 0.45 ≤ pj 3T /p
avg
T < 0.5,

same as the distribution in figure 3.15 but, split into 2 groups depending whether the third jet is closer in φ to
left or right leading jet.

• calibrate the MC simulation and re-derive the asymmetry distributions.
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Figure 3.17: Asymmetry mean as a function of pj 3T /p
avg
T . In 3.17(b), the MC simulation is calibrated to isolate

the mis-modeling of the third jet production from the mis-modeling of the detector simulation. Negative
pj 3T /p

avg
T bins correspond to the case with no third jets (pj 3T smaller than the threshold).

Figure 3.17(b) shows the result after applying this correction. As expected, the MC simulation
asymmetry values in the case of no third jet (negative pj 3T /p

avg
T ) become similar to the one of data.

Figures 3.18 and 3.19 show plots of the asymmetry as a function of pj 3T /p
avg
T , after calibrating the MC
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simulation to match the data in the case of no third jet. The results shown are for three pavgT regions,
for both R and L tags. It is important to note that in those plots η left, ηL, region is central and η
right, ηR, is forward.

The plots show the following for the different generators:

1. Pythia:

• figures 3.18(b), 3.18(d) and 3.18(f): a good agreement with data for L tag third jet,

• figures 3.18(a), 3.18(c) and 3.18(e): higher asymmetries for R tag,

2. Herwig:

• figures 3.19(a), 3.19(c) and 3.19(e): a good agreement with data for R tag third jet,

• figures 3.19(b) and 3.19(d): higher absolute asymmetries for L tag,

3. Sherpa:

• figures 3.18(c) to 3.18(f): good agreement with data for medium and high pavgT ,

• figures 3.18(a) and 3.18(b): smaller absolute asymmetries for low pavgT ,

4. PowhegPythia: figures 3.18(a) to 3.18(f): smaller absolute asymmetries compared to data,

5. PowhegHerwig: figures 3.19(a) to 3.19(f): smaller absolute asymmetries compared to data,

Comparing the different generators to data, Pythia and Herwig generators show moderate perfor-
mance with a trend to give a harder third jet when it originates from a jet in the forward region in the
case of Pythia and from a jet in the central region in the case of Herwig.
Sherpa generator shows a good performance except at low pavgT with softer third jets.
Powheg generators have the worse mis-modeling of the third jet production, giving softer third jets.
Nonetheless, they have the same trend for R and L tags which reduces the final effect on the eta-
intercalibration result since we use the two groups together to derive the calibration.
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(c) 220 ≤ pavgT < 270, R tag
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Figure 3.18: Asymmetry mean distribution as a function of pj 3T /p
avg
T . MC simulation is calibrated to data using

events with no third jet.
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Figure 3.19: Asymmetry mean distribution as a function of pj 3T /p
avg
T . Same plots as in figure 3.18 but using

Herwig and PowhegHerwig MC generators.
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3.3.5 Conclusion

Relying on the previous results from the various sections, I arrived to the following conclusions.
First, it is confirmed that the study will use the following MC generators for eta-intercalibration:

• PowhegPythia (nominal),

• Sherpa.

Second, a tighter cut on the third jet pT will be used to constrain the eta-intercalibration to the region
where the agreement between data and MC simulations is good:

• old cut [67]: pj 3T /p
avg
T < 0.4,

• new cut: pj 3T /p
avg
T < 0.25.

On the other hand, a new version of PowhegPythia generator is addressing the mis-modeling of the
third jet. A preliminary result is shown in figure 3.20. The plot of the new version, shown in cyan
color, is closer to the results from the other generators like Pythia, in contrast with the plot of the
current version, shown in orange color, which is far away from all the others and giving softer third
jets.

Figure 3.20: Average pj 3T distribution as a function of pj 1T for different MC generators. The current version of
PowhegPythia generator is shown in orange color. The new version of PowhegPythia generator is shown in
cyan color.
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3.4 Dependence of the calibration results on the pile-up profile

The event sample used to derive the eta-intercalibration may have a different pile-up profile (refer
to chapter 2.2.4) than the samples used for the different physics analyses. In fact, one of the
techniques used to increase the sample size available for the eta-intercalibration is to increase its
dedicated trigger rate at the end-of-fill where the pile-up is lower. The same is not done for the other
triggers which are used for physics analyses. Before the eta-intercalibration step, jet energies have
already been corrected for pile-up contributions as described in chapter 2.3.3.1. In principle, any
remaining residual dependence should be covered by the systematic uncertainties on this correction.
Nevertheless, it is important to check whether the variation of the calibration results for different
pile-up profiles is well covered by these uncertainties.

Pile-up profiles (µ) for different analysis are mostly overlapping. However, I perform an extreme test
where I split each of our samples for data and MC simulation into two sets of non-overlapping µ

profiles:

• cut 1: 0 < µ < 20,

• cut 2: 20 < µ < 50.

The average µ in each set is 16.8 and 25.4 respectively. Then for each set, I derive the corresponding
eta-intercalibration using the same µ selection for both data and MC simulation. The resulting
calibrations are referred to as Rcut 1 and Rcut 2. The difference between the two calibrations is given
by:

∆R = Rcut 1 − Rcut 2.

The next step is to measure the uncertainties on this difference. I begin, first, with the systematic ones.
All the calibration factors are the same for the two sets except the µ- and NPV-dependent components
of the pile-up calibration as defined in equation 2.3 (where NPV is the number of reconstructed
primary vertices). In fact, changing the µ profile also changes the NPV one. At the same time, the µ-
and NPV-dependent components of the pile-up calibration are fairly independent. This is understood
by the fact that µ (which is an average over one lumi-block of 1 minute usually) characterizes the
out-of-time pile-up activity whereas NPV characterizes the in-time pile-up activity which are fairly
independent. Accordingly, the following procedure is applied:

• measure for each set the means µ and NPV,

• measure the corresponding uncertainties σµ and σNPV in each (pT, η) bin,

• since the uncertainties for each component are fully correlated between the 2 samples, the
uncertainty propagation yields:

σ∆R
µ = σR

cut 1
µ − σRcut 2

µ ,

σ∆R
NPV = σ

Rcut 1

NPV − σR
cut 2

NPV .
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• since the uncertainties from different components are not correlated, the full systematic uncer-
tainty on ∆R is then:

σ∆R
syst. =

√
(σ∆R

µ )2 + (σ∆R
NPV)2.

For the statistical uncertainties, since the 2 sets have no common events, I simply have:

σ∆R
stat. =

√
(σRcut 1

stat. )2 + (σRcut 2
stat. )2.

The total uncertainties on the calibration difference is then:

σ∆R
total =

√
(σ∆R

stat.)2 + (σ∆R
syst.)2.

In the case of a non-dependence of the calibration results on the pile-up profile, ∆R should be
compatible with 0 (the full uncertainties should cover the 0 value).

Figure 3.21 shows the calibration results for the two sets of µ ranges for different η regions. The
plots in the bottom pads show the calibrations difference ∆R. The inner error bars correspond to the
statistical uncertainties, while the outer bars correspond to the full uncertainties. As it can be noticed,
∆R is compatible with zero in most of the phase-space. For intermediate pT and 2.1 < η < 2.5, ∆R
uncertainties barely fails to cover the zero value for some points, but also we notice that ∆R fluctuates
around zero which suggests that the tension we are seeing is just a statistical fluctuation. On the other
hand, for high pT and 3.6 < η < 4.5, the constant and systematic deviation of ∆R from zero is just
an artifact of the extrapolation of the calibration to this region where, due to kinematic limits, no jets
can be found.

In conclusion, no strong dependence of the calibration results on the pile-up profile is found for this
extreme test. Consequently, using the calibration derived with one pile-up profile and applying it to
an analysis using a slightly different profile are compatible. The residual dependence is covered by
the uncertainties.
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Figure 3.21: Residual calibration factors as a function of jets pT for different η regions. The black, red
and blue dots correspond respectively to the nominal events selection, additional cuts of 0 < µ < 20 and
20 < µ < 50. The continuous lines show the smoothed calibration functions. The plots in the bottom pads
show the calibrations difference between the two regions with different µ cuts (red - blue) and which, in case
of non-dependence of the calibration results on the pile-up profile, should be compatible with 0. The inner
error bars correspond to the statistical uncertainties, while the outer bars correspond to the full uncertainties.
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3.5 Forward and central triggers efficiencies and combination strategy

When selecting events using triggers, one would want to check that the triggers are used in the
fiducial region where they are fully efficient. Moreover, the single jet triggers in ATLAS are divided
between a central region (|η | < 3.2) and a forward one (3.2 < |η | < 4.9). When combining central
and forward triggers for a given pT bin, only the combination is required to be fully efficient. The
fulfillment of the latter condition does not imply that each individual trigger is fully efficient.

This is illustrated in figure 3.22, where the asymmetry distributions of the same fiducial region but
using only central or forward triggers are plotted. It is clear that the fits from the two distributions are
not compatible with each other. This is not a problem of fitting since the ratio of χ2/Ndf is close to
one for both fits. In fact, this can be understood by the inefficiencies of the individual triggers. Here
I am using the standard method defined in section 3.1. Recalling the definition of the asymmetry
Astandard m. = (pprobe

T − pref
T )/pavg

T , in our case the probe jet belongs to the forward trigger region. The
reference jet always belongs to the central trigger region in the standardmethod. I get the following:

• central trigger: the inefficiency leads to a bias toward higher reference jet pT resulting in a bias
toward lower A values,

• forward trigger: the inefficiency leads to a bias toward higher probe jet pT resulting in a bias
toward higher A values.

This is exactly what is seen in the plots. In addition, I can note an asymmetry in the distributions,
specially in the one using the forward trigger which, as we will see later, is less efficient than the
central. This is a direct effect of the inefficiency, which changes the shape of the distributions, since
it increasingly affects one side of A. In our case for the forward trigger distribution, the lower the
values of A are, the more they are affected by the inefficiency and the lower the distribution will be
for the corresponding bins. This means the bins to the left side are suppressed in comparison to the
right side, which is what we see. The same differences between the relative response results of central
and forward triggers can also be seen in figure 3.23 with the same conclusion on the inefficiencies of
individual triggers.

One way to calculate the efficiency of a trigger, called hereafter probe trigger, is through an emulation
which tells, for a reconstructed event, if it would have passed the emulated trigger [74]. In this
method, a reference trigger is used with the condition that it should be fully efficient in the region
where we want to study the efficiency of the probe trigger. Using the events that actually fired the
reference trigger (also called the actual trigger information), I emulate if each event would have fired
the probe trigger or not: I test if the event passes the kinematic threshold of the probe trigger (also
called the raw trigger information). The efficiency is then just the ratio between the number of events
that passed the emulation and the total number of events:

Eff =
Nevents(fire reference trigger & pass probe emulation)

Nevents(fire reference trigger)
. (3.17)

Efficiency studies are done in kinematic variables that the analysis depends on. For eta-intercalibration,
the main variable is pavgT . Additional binning in η can also be used. A trigger is considered as fully
efficient in the region where its efficiency is higher than 99%. The pT of the transition between the
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Figure 3.22: Standard method asymmetry distributions and fits of the same fiducial region using only central
or forward triggers.

Figure 3.23: Relative jet responses from matrix method using only central (red), forward (blue) or combined
(black) triggers.

two regimes is called the turn-on pT. Usually, we use the trigger 5-10 GeV higher than it’s turn-on
pT to take into account the uncertainties on our efficiency calculations.

Figure 3.24 shows the efficiencies for trigger HLT_j25 (a jet above 25 GeV at the high level trigger
reconstruction) using HLT_j15 (a jet above 15 GeV at the high level trigger reconstruction) as a
reference as a function of pavgT and also pleaging jet

T for comparison. The efficiencies are calculated for
central, forward and combined triggers (when the efficiency is calculated for an individual trigger,
events for which the 2 leading jets are not in the studied region are excluded). The HLT_j25 trigger is
used in our analysis for pavgT ≥ 40 GeV. It is clear that the individual triggers have worse efficiencies
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compared to their combination but also they are not fully efficient in the pavgT interval used in the
analysis, in contrast with the combination which is fully efficient. It is also worth noting that the
forward trigger performs worse than central one.

The emulation method, which uses the raw trigger information, does not include the effect of the
triggers prescales. That is why a proper combination that correctly takes into account prescales is
needed, or otherwise this leads to a new source of inefficiencies for the trigger combinations. I tested
two methods: the simple and the inclusion combination methods.

The simple method works as follows. Using only the information of the actual (fired) triggers, events
are split into two groups:

1. F events:

• where the actual forward trigger is passed, including when the actual central trigger is
also passed,

• and with the weight of the event which is given by the prescale of the forward trigger.

2. C events:

• where only the actual central trigger is passed,

• here, the weight of the event is given by the prescale of the central trigger.

We can already see the problem with this method. For low pT, the prescales for both central and
forward triggers are very high. This means that the two groups of events, one passing the central
prescale selection and the other passing the forward one, almost do not intersect. Since in the current
method only the information of actual trigger is used (which requires passing the prescale), the two
groups are filled almost independently. This leads an inefficiency of one trigger that cannot be
compensated by the other trigger.

In contrast, the inclusion method [75] tries to overcome this problem by also taking into account the
information of raw triggers. Events that fire the actual central or forward trigger are split into three
groups:

1. F events:

• where only the raw forward trigger is passed,

• and where the weight is given by the prescale of the forward trigger (dF).

2. C events:

• where only the raw central trigger is passed,

• and where the weight is given by the prescale of the central trigger (dC).

3. C&F events:

• where both the raw central and forward triggers are passed,
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(e) Central and forward triggers combination
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Figure 3.24: Efficiencies for trigger HLT_j25 using HLT_j15 as a reference as a function of pavgT in left plots
and pleading jet

T in right plots. From top to bottom, the plots are for central, forward and combined triggers. The
HLT_j25 trigger is used for pavgT ≥ 40 GeV and the turn-on pT is required to be at least 5 GeV lower.
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• and where the weight is 1/P, where P is the probability that an event passes at least one
trigger prescaling selection:

P =
1

dC
+

1
dF
− 1

dC ∗ dF
.

I simulated events and triggers decisions to test those two methods. Different distributions are filled
in the following procedure:

1. The reference distribution:

• uses all events without prescaling,

• if the event fires the trigger (here actual and raw decision are the same since there is no
prescaling), a weight of 1 is used when filling the distribution.

2. The tested distributions:

• apply first a prescaling,

• for each of the combination methods described before, each passing event is then used to
fill the distribution with the proper weight.

The reference distribution is an unbiased distribution given that the emulation verifies the full effi-
ciency of the triggers combination.
The tested distributions are compared to the reference one by two means:

• median of the distribution,

• mean of a Gaussian fit.

For the Gaussian fits, different ranges are used:

• fixed range:
±1σ and ±2σ from mean: this helps to see how the bias changes with the interval, also the
range ±2σ is the one used in the eta-intercalibration fitting procedures,

• variable range:
the largest symmetric range around the mean with a criteria to have the p-value of the fit ≥ 0.05:
this range is used to check that there is no bias due to bad fits.

Taking as an example one fiducial region where one of the two leading jets is central and the other is
forward, the resulting histograms are shown in figure 3.25 with the colors black, red and blue corre-
sponding to the reference, simple method and inclusion method distributions. Several observations
can be drawn comparing the individual plots before comparing the medians and means:

• the total number of entries of the inclusion method is very close to the reference one, whereas
for the simple method it is much different (noting that for this analysis, the normalization has
no effect on the final result),

• the effective number of entries of the inclusion method is significantly higher than that of the
simple method (≈ 1.75 times): this means that the inclusion method has more statistical power
and yields smaller uncertainties,
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• figure 3.25(d) shows a good overlap between the inclusion method and the reference distribu-
tions, whereas the simple method has a systematic shift to the left side of the distribution.

It is important also to note that the inclusion method has asymmetric uncertainties (between the left
and right parts of the distribution), which is due to the way its three groups of events are split and
weighted. The reason can be explained as follows:

• first, the central trigger in our simulation has a prescale 10 times the one of forward trigger
(this is close to the real experimental settings),

• thismeans theweight for the "C" only events group is 10 times bigger and so do the uncertainties,

• the forward trigger is less efficient than the central and the inefficiency is for negative asymmetry
values,

• the "C" only distribution will recover this inefficiency by including more events (which have
less statistical power),

• this gives bigger uncertainties to the left side of the final distribution (all groups added).

What interests me is measuring the deviations of the medians and the means from fits of the tested
distributions (of the different trigger combination methods) from the reference distribution ones and
if they are significant. But since the same events are used, the values of medians and means are
correlated between the reference and the tested distributions. To be able to properly measure the
uncertainties on the differences, I use the bootstrap method (see 3.1.4).

Table 3.1 shows the deviations for three different kinematic space regions. The red values correspond
to the deviations of the simple method, while the blue ones of the inclusion method. The results can
be described as follow:

• median:

– simple method: the deviations are statistically significant and are up to 1% which is the
order of the effects we are trying to measure and to correct in eta-intercalibration; this
shows that one side of the distribution is attenuated by the inefficiencies (at least more than
the other side) which shifts significantly the median to the opposite side: positively when
the forward region is left and negatively when the forward region is right as expected,

– inclusion method: the deviations are small and within uncertainties; they are compatible
with 0.

• fits:

– simple method: the deviations increase from a per-mille level for ±1σ range to a per-cent
level for ±2σ range; this shows that the more I fit the tails of the distributions where the
inefficiencies are the highest, the more the fit mean deviates from the reference value,

– inclusion method: a residual significant deviation exists for some fits specially for ±2σ
range, but the deviations are small (< 0.3%): this is due to the fact that inclusion method
distributions have non-symmetric uncertainties which constrains the fit more in one side
and gives this residual shift in the fit mean.
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Figure 3.25: Matrix method asymmetry distributions where the colors black, red and blue correspond to the
reference, simple method and inclusion method distributions. Normalization, shape but specifically median
and fit mean are used to compare the two trigger combination methods to the reference and test for biases due
to inefficiencies.

From the comparison of total numbers of events and medians, the inclusion method is verified to
measure well the number of entries in different bins of the asymmetry and thus correcting well for the
inefficiencies of individual triggers. The residual deviations of the means are due to non-symmetric
uncertainties.

For the simple method, biases are found in the total number of events, median and fit mean. The
method is not able to correct these inefficiencies.

Finally, I compare the results using these twomethods for real data. Figure 3.26 shows the comparison
of relative jet responses for two pavgT intervals using the central reference method. The bottom pads
show the absolute difference between the two combination methods. Significant differences are seen
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3.5 Forward and central triggers efficiencies and combination strategy

Table 3.1: Deviations of medians and means from fits between tested combination methods and reference
distributions. The red values correspond to comparison of the simple method, while the blue ones to the
inclusion method. Results from three different kinematic regions are shown for 40 < pT < 60 GeV and triggers
HLT_j25. The uncertainties are calculated using bootstrap method to take into account correlations.

Differences to the reference distribution (in %)

−0.8 < ηR < 0.8

−4.5 < ηL < −3.2

−3 < ηR < 3

−4.5 < ηL < −3.2

−0.8 < ηL < 0.8

3.2 < ηR < 4.5

0.788 ± 0.092 0.795 ± 0.046 - 1.020 ± 0.088
∆Median

- 0.038 ± 0.069 - 0.046 ± 0.036 - 0.047 ± 0.076

0.231 ± 0.088 0.166 ± 0.053 - 0.608 ± 0.089∆ Fit mean

(variable range) - 0.284 ± 0.069 - 0.137 ± 0.038 0.034 ± 0.070

- 0.175 ± 0.161 0.098 ± 0.086 - 0.112 ± 0.140∆ Fit mean

(±1 σ range) - 0.202 ± 0.070 - 0.048 ± 0.053 - 0.019 ± 0.096

0.738 ± 0.083 0.670 ± 0.046 - 0.942 ± 0.087∆ Fit mean

(±2 σ range) 0.163 ± 0.067 0.130 ± 0.033 - 0.241 ± 0.066

in the forward region (|η | > 3.2). The differences can go as high as 4% with an average between
1 − 2%.
For the bins with |η | < 3, the difference is 0 as expected since for the central reference method, both
probe and reference jets are in the central region. For the bin with 3.0 ≤ |η | < 3.2, in principle there
should be no difference since it is also central. But, a significant difference exists and this is caused
by the fact that since this bin is close to the transition between central-forward regions, several entries
for this bin come from events firing the forward trigger: a jet which is forward at trigger level with
η close to 3.2 can be reconstructed as a central jet after off-line calibration. This is verified in the
figure 3.27 where we see that for both combination methods, the bin 3.0 ≤ |ηprobe | < 3.2 has entries
from the forward trigger.

For the matrix method, the results are shown in figure 3.28. As can be seen, the bias spreads
from forward to central bins, due to the correlation between all the relative jet responses (or the
intercalibration factors ci) inside equation 3.6. The differences between relative response are smaller
than the central reference method, but spread to more bins.

As a result of the studies and tests shown before, I changed the triggers combination method used for
eta-intercalibration from the old simple method to the new inclusion method.
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Figure 3.26: Using the central reference method, comparison of relative jet responses for two triggers combi-
nation methods, the inclusion in black and the simple in red. The bottom pads show the absolute difference
between the two.
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(b) Inclusion combination method

Figure 3.27: Asymmetry distributions where the two jets are in the central region, but where one of the jets
is close to the central-forward transition at |η | = 3.2. The distributions have entries from events firing the
forward trigger (blue histogram for simple method, blue and green histograms for inclusion method). This is
caused by a jet which is forward at trigger level with η close to 3.2 that is reconstructed as a central jet after
off-line calibration.
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(a) 40 ≤ pavgT < 60, matrix method
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(b) 85 ≤ pavgT < 115, matrix method

Figure 3.28: Using the matrix method, comparison of relative jet responses for two triggers combination
methods, the inclusion in black and the simple in red. The bottom pads show the absolute difference between
the two.
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3.6 Calibration results

3.6.1 Data selection

36.85 fb−1 of data collected in years 2015 and 2016 are used to measure the eta-intercalibration for
the first data taking period. For the second period, 43.8 fb−1 of data collected in year 2017 are used.
The calibration is measured separately for the two data taking periods since the detector conditions
(aging, dead modules ...) change between years and as a cross-ckeck of the evolution of the detector
response with time.
MC simulation for each period is generated with a pileup profile matched to the corresponding one
of data.

The calibration is measured for the two jet reconstruction collections: EMTopo and EMPFlow (see
2.3.1).

Nominal selection cuts and their variations for systematic uncertainty evaluation are shown in table
3.2.

Trigger efficiencies
I studied the trigger efficiencies using the emulation method as defined in equation 3.17. The trigger
is considered fully efficient if its efficiency is higher than 99%. This condition is verified in bins of η.
Figure 3.29 shows, on the left plot, the efficiency curves inclusive in η for three triggers and, on the
right plots, the efficiency for one trigger binned in η and pavgT . The efficiency threshold is defined as
the pavgT beyond which the trigger is fully efficient for each of the different bins of η. A summary of
the efficiency thresholds is shown in table 3.3.

pavg
T

binning and trigger selection
Concerning the pT binning, the change I did compared to the past version of the eta-intercalibration,
is to extend the calibration to higher values from 1200 to 2000 GeV. The binning at lower pavgT is
kept the same.
pavgT bins = [25, 40, 60, 85, 115, 145, 175, 220, 270, 330, 400, 525, 760, 1100, 1500, 2000] GeV.
The trigger combination selection for each pavgT bin taking into account efficiency thresholds are
shown in table 3.4.

Table 3.2: Nominal selection cuts and their variations for systematic uncertainty evaluation. The indices 1, 2
and 3 refer respectively to the leading, sub-leading, and sub-sub-leading jet.

Cut Loose Nominal Tight

∆φ12 2.3 2.5 2.8

pjet 3
T /pavg

T 0.35 0.25 0.15

JVT: EMTopo 0.11 0.59 0.91

JVT: PFlow 0 0.2 0.5
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Table 3.3: 99% efficiency pavgT thresholds for combination of central and forward triggers.

central and forward triggers combination 99% efficiency thresholds [ GeV]

HLT_j15 OR HLT_j15_320eta490 25

HLT_j25 OR HLT_j25_320eta490 34

HLT_j35 OR HLT_j35_320eta490 45

HLT_j45 OR HLT_j45_320eta490 55

HLT_j60 OR HLT_j60_320eta490 80

HLT_j110 OR HLT_j110_320eta490 127

HLT_j175 OR HLT_j175_320eta490 197

HLT_j260 OR HLT_j26_320eta490 189

HLT_j360 OR HLT_j36_320eta490 396

Table 3.4: Trigger combination selection for each pavgT bin.

pavgT bins [ GeV] Triggers combination selected

25 - 40 HLT_j15 OR HLT_j15_320eta490

40 - 60 HLT_j25 OR HLT_j25_320eta490

60 - 85 HLT_j35 OR HLT_j35_320eta490

85 - 115
HLT_j60 OR HLT_j60_320eta490

115 - 145

145 - 175
HLT_j110 OR HLT_j110_320eta490

175 - 220

220 - 270
HLT_j175 OR HLT_j175_320eta490

270 - 330

330 - 400 HLT_j260 OR HLT_j260_320eta490

400 - 525 HLT_j360 OR HLT_j360_320eta490

525 - 760 2015+16 data:

HLT_j360 OR HLT_j360_320eta490

2017 data:

HLT_j400 OR HLT_j400_320eta490

760 - 1100

1100 - 1500

1500 - 2000
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Figure 3.29: Trigger efficiencies using emulation method, inclusive in η in a) and binned in η in (b).

3.6.2 η binning optimization

With the new minimization methods (section 3.2), the number of η bins can be increased as needed.
It was the aim of this development. The only limitation is the statistics that exist. In our analysis, the
statistics limitation comes mostly from MC simulation at low pT. The optimization procedure I used
is the following:

• plot the jet response in data using very fine bins,

• optimization for peaks: combine bins only where there is no sharp variations in response
variation (no peaks),

• optimization for statistics: combine additional bins where there is not enough statistics (spe-
cially due to MC simulation).

Using this procedure, I get the following optimized η binning with 46 bins (vs 31 bins for the binning
of the old eta intercalibration results [67]):
|η | bins = [0.0, 0.4, 0.8, 1.0, 1.2, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.45, 2.5, 2.55, 2.6, 2.8, 3.0, 3.2, 3.3,
3.4, 3.6, 3.9, 4.5].

For the first two pavgT bins, due to low statistics, the following two changes on |η | bins are applied:
• [2.4, 2.45, 2.5, 2.55, 2.6] is changed to [2.4, 2.5, 2.6],

• [3.2, 3.3, 3.4] is changed to [3.2, 3.4].

The improvement using this optimized binning can be seen in figure 3.30 where jet response mea-
surement results using a very fine binning (in black), the new optimized binning (in red) and the old
binning (in blue) are shown. Taking for example the region of −3.4 < η < −3 where the old binning
uses only one bin whereas the new optimized binning uses 3, it is clear that the old binning does not
describe well the existing peak. The difference is of the order of several percent which is significant
for the level of precision we aim to have. The improvement is also visible in many other η regions,
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including the region of 2.4 < |η | < 2.5 where the problem in jet distributions was first seen (figure
3.8).
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Figure 3.30: Comparison of jet response measurement results between a very fine binning (in black), the new
optimized binning (in red) and the old binning (in blue).

Another change I did is to extend the binning to more forward regions (higher |η | values) when there
is enough statistics.

3.6.3 Calibration central values

Figure 3.31 shows different steps of the calibration calculation I performed. In the upper pad, relative
jet responses as a function of η for one bin of pavgT are shown for data as black points and for MC
simulation as red points. Those values are measured using the matrix method (section 3.1.2). Spikes
in data that are not well described by MC simulation are visible. In the bottom pad, the response
ratios of MC simulation to data are shown as red points. Those points are the calibration points
used as inputs to the smoothing kernel. The magenta line in the bottom pad represents the smoothed
calibration in one slice of pjet

T .

The standard minimization method, which suffers from low statistics specially at low pT, is used as a
cross check on the results of the matrix method. This is shown in figure 3.32 where the calibration
points and smoothed calibration are shown as a function of η with their statistical uncertainties
for the two methods. As can be seen for 40 < pT < 60 GeV, the statistical uncertainties for the
standard method are much larger than the ones for the matrix method but the two calibrations show
the same shape within fluctuations. For 85 < pT < 115 GeV, the uncertainties are smaller and the
compatibility between the two methods is visible more clearly.
Also in this figure, a comparison between the calibrations of EMTopo and EMPFlow jets is shown.
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Figure 3.31: The upper pad shows the relative jet responses as a function of η for one bin of pavgT for data as
black points and for MC simulation as red points. The bottom pad shows the ration between the responses as
red points and the smoothed calibration as magneta line.

The shapes are close but a significant difference also exists, for example for 3 < |η | < 3.6. The
difference is expected and the two jet reconstructions need separate calibrations.

In the previous plots, only 1D sections of the calibration are shown and only for 2015+16 data.
In figures 3.33 and 3.34, I show respectively 2D plots (pT, η) of calibration central values and
statistical uncertainties for 2015+16 and 2017 data, EMTopo and EMPFlow jets. A kinematic region
corresponding to an energy of 4.5 TeV is shown in red lines. This is roughly the reach of the bins I
use and where beyond that very few jets are found.
It is worth noting that at low pT, 2017 data statistical uncertainties are significantly higher than the
ones of 2015+16 data. I checked and found two main sources:

• the prescales of the low triggers, HLT_j15, HLT_j25 and HLT_j35, were increased by a factor
of about two,

• due to higher pile-up conditions, the fraction of the rejection of events due to the selection
criteria also increased by about a double at low pT, with the pjet 3

T /pavg
T cut being the cut that

had the most impact on this increase.

Figure 3.35 shows the calibration difference significance between 2015+16 and 2017 data. A signifi-
cance of more than 4 and up to about 8 can be seen in some of the phase space. This proves the need
of separate calibration for the two run periods.

For the smoothing kernel parameters, σlogpT and σηdet (eq. 3.10), I tested combinations of the
following values:

• σlogpT = 0.12, 0.15, 0.18 or 0.2,

• σηdet = (η bin width)/f with f = 1,2, 3, 4 or 6.
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(b) EMTopo jets, Standard method, 85 < pT < 115 GeV
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(c) EMTopo jets, Matrix method, 40 < pT < 60 GeV
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(d) EMTopo jets, Matrix method, 85 < pT < 115 GeV
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Figure 3.32: Comparison of smoothed calibration as a function of η for EMTopo using standard method,
EMTopo and EMPFlow using matrix method. Statistical uncertainties are shown.

By comparing the closure of the calibrations, I found the best combination to be σlogpT = 0.18 and
σηdet

= (η bin width)/6.
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(a) 2015+16 data, EMTopo jets
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(b) 2015+16 data, EMPFlow jets
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(c) 2017 data, EMTopo jets
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Figure 3.33: Calibration central values 2D plots (pT, η) for 2015+16 and 2017 data, EMTopo and EMPFlow
jets.

Noting that the bigger the parameter is the more smoothing is done in the corresponding direction,
we notice that the smoothing is higher in the pT direction where we expect the calibration to change
slowly and in the opposite the smoothing is smaller in the η direction where detector effects (cracks,
changes in the detector technology ...) can induce fast changes in the response.

2D plots of the χ2 values between each calibration point and the smoothed calibration value are used
to verify that the smoothing is following well the input points. One of those check plots is shown in
figure 3.36. The majority of bins have χ2 values smaller than 1, some have values higher than 2 and
few higher than 4. Also, the total sum of χ2 values is smaller than the number of input points. The
smoothing is following well the calibration points.
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(a) 2015+16 data, EMTopo jets
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(b) 2015+16 data, EMPFlow jets
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(c) 2017 data, EMTopo jets
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Figure 3.34: Calibration statistical uncertainties 2D plots (pT, η) for 2015+16 and 2017 data, EMTopo and
EMPFlow jets.
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Figure 3.35: Calibration difference significance 2D plots (pT, η) between 2015+16 and 2017 data for EMTopo
and EMPFlow jets.
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Figure 3.36: χ2 values between calibration points and the smoothed calibration.
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3.6.4 Closure test

The closure test, presented in section 3.1.5, is used to check if the calibration is able to detect
and correct the differences in responses between data and MC simulation, and to eventually add a
systematic uncertainty in the phase space region where the closure is not good enough.
Figure 3.37 shows the calibration closure uncertainties 2D plots (pT, η) for 2015+16 and 2017 data,
EMTopo and EMPFlow jets. For the majority of points, the non-closure is smaller than 1%. For
2015+16 data, the maximum closure uncertainty (in absolute values) is about 2.5%, whereas it is
about 5% for 2017 data.
I checked that for some of the points at low pT, the high closure uncertainties come from the fact that
their statistical uncertainties is higher than their neighboring points in the pT direction, which means
that the smoothing will be more constrained by those neighboring points since more smoothing is
done in the pT direction (as explained in the previous section).

Although the closure uncertainty by itself is useful as a cross check, the significance of the closure
uncertainty is also important to check since we do not want to double count the uncertainties from
statistical fluctuations (the same events are used for the calibration and the closure test measurements).
As expected, the significance of the closure uncertainty is small for the points with maximum closure
uncertainty at low pT. The regions where the significance was systematically higher than 2 are for
2.4 < |η | < 2.6 or E > 4.5 TeV (where E is the jet energy). Only for those regions, the closure
uncertainties are propagated to other analysis.
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(a) 2015+16 data, EMTopo jets
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(b) 2015+16 data, EMPFlow jets
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(c) 2017 data, EMTopo jets
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(d) 2017 data, EMPFlow jets

Figure 3.37: Calibration closure uncertainties 2D plots (pT, η) for 2015+16 and 2017 data, EMTopo and
EMPFlow jets.

3.6.5 Systematic uncertainties

As described in section 3.1.4, systematic uncertainties related to MC simulation modeling and to
event selection need to be measured. Those physics effects are not dependent on the data taking
period. That is why I will only measure them using 2015+16 data and apply them to all data from
various years. The choice of 2015+16 data is due to the higher statistics available at low pT as
mentioned before.
In addition, physics effects are expected to change smoothly with pT and η. That is why I will use
wider bins and increase the smoothing. This is needed to obtain enough statistical significance of the
systematic uncertainties: statistical uncertainty of the systematic uncertainty should be smaller than
the systematic uncertainty itself.

The new η binning and smoothing parameters that I found to give enough statistical significance
are:
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3.6 Calibration results

• |η | bins = [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.5],

• σlogpT = 0.4 for modeling uncertainty and 0.25 for selection uncertainties,

• σηdet = η bin width.

For the modeling systematic uncertainty, two MC generators, PowhegPythia (nominal) and Sherpa
(variation), are used to measure the relative jet responses. The relative difference of the responses is
taken as the uncertainty. The modeling uncertainty is symmetrized since there is no reason for it to
be different at ±η. In addition, the uncertainty is constrained to always be increasing since this is the
expected behavior from the modeling differences.

Figure 3.38 shows in a) the relative jet responses of the two MC generators in addition to the ones
of data as a function of η. In b), the relative response difference between the two MC generators is
shown in green points and the symmetrized smoothing is shown in blue-gray shading.
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Figure 3.38: Modeling systematic uncertainty, defined as the relative difference between the responses of two
MC generators PowhegPythia and Sherpa, as a function of η for one bin of pavgT .

For the selection systematic uncertainties, the nominal and variated calibration uses the same input
events and thus are highly correlated. I use the bootstrap method (3.1.4) to correctly calculate the
statistical uncertainties.
For the comparison between the nominal and variated calibration, the relative difference can be
calculated using the individual calibration points and then the smoothing is applied, or for each
calibration points (nominal and variated) the smoothing is applied and then the relative difference is
computed. I tested both methods and found that they give similar results modulo some minor effects.
The latter method is used for the final uncertainties measurement.

Figure 3.39 shows the uncertainty corresponding to the up variation of the cut on pjet 3
T /pavg

T as a
function of η for one bin of pavgT . The relative difference of the calibration points is shown as green
points and the two methods of uncertainty measurement and smoothing are shown in blue and red
lines.
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Figure 3.39: Selection systematic uncertainty corresponding to the up variation of the cut on pjet 3
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function of η for one bin of pavgT . The two methods of uncertainty measurement and smoothing are shown in
red and blue lines.

Figure 3.40 shows the individual and total systematic uncertainties for pT = 80 GeV in one plot and
η = 3 in the other 1. For both, the dominating systematic uncertainty is the one coming from the
modeling. The total uncertainty increases in the direction of low pT or high |η | as expected.
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Figure 3.40: Individual and total systematic uncertainties for pT = 80 GeV in a) and η = 3 in b).

Figure 3.41 shows the total systematic uncertainties 2D plots for EMTopo and EMPFlow. The
uncertainties are close for both jet reconstructions. We can also see that the uncertainty increases in
1 The statistical uncertainty shown here is not the one of the nominal calibration since the η binning is different; it is
shown only for comparison reasons
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the direction of low pT or high |η |. For some regions with E > 4.5 TeV, the high uncertainties are
just an artifact of the extrapolation of the calibration but no extra care is made since there are no jets
in those regions. The maximum uncertainty for the region with E < 4.5 TeV is about 3.75% for both
EMTopo and EMPFlow jets.
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(a) EMTopo jets
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Figure 3.41: Total systematic uncertainties 2D plots (pT, η) for EMTopo and EMPFlow jets using 2015+16
data.

The eta-intercalibration results (central values, statistical and systematic uncertainties) shown before
are now used in the official ATLAS calibration for the Run II period.
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4 Direct search for new phenomena in dijet
events

Switching topics to physics analyses, I present in this chapter a direct search for Beyond Standard
Model signals in dijet events. After a brief introduction, I describe the analysis from the observable
definition and the background estimation, to the search and limits setting techniques. Next, I detail
the new folding technique I developed and implemented, and used when setting limits on model-
independent signals. Last, I present the results of the analysis using 37.0 fb−1 of combined 2016 and
2015 data, published in the paper [76].

4.1 Introduction

As already mentioned in chapter 1, the StandardModel (SM) cannot fully explain our universe. Many
questions have no answers within the SM. That is why searching new physics beyond the Standard
Model (BSM) is a primary goal of research at the LHC and ATLAS.

The ATLAS experiment is used to directly search for a BSM signal. If BSM particles can interact
with the proton partons (quarks, gluons), they can be produced directly in proton-proton collision
and consequently produce partons when they decay. Examples are shown in figure 4.1. The decay
product partons shower, hadronize and are reconstructed as jets. The production rates for BSM
signals decaying to two jets can be large (as can be seen later in the results section where BSM signals
can be of the same order as the data background in some phase-space regions), allowing us to directly
search for a deviation from the SM predictions.

q

g

q∗

g

q

(a) q*

q

W ′

q

q

′ q ′

(b) W’

Figure 4.1: Scattering examples via particles from beyond the Standard Model.

The dominant background is the production of hadronic jet pairs from 2→ 2 parton scattering process
via strong interactions described by QCD. Two important properties of this background are:

133



4 Direct search for new phenomena in dijet events

• at high masses, the QCD dijet invariant mass mjj distribution is smooth and monotonically
decreasing,

• most high mass dijets production occurs in the forward direction due to the dominant t-channel
poles scattering processes.

These two properties are exploited when searching for new signals. More details are given in the
following section.

The most important thing in these searches is to estimate the background that comes from SM
interactions. Two techniques exist:

• background estimated directly from data,

• background estimated from MC simulation.

After estimating the background, we search for a significant excess which is a direct indication of the
existence of a signal beyond the standard model. If no significant signal is found, we set limits on
benchmark BSM models or on generic signals.
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4.2 Analysis overview

4.2 Analysis overview

4.2.1 Observable

Resonance peak search in the dijet invariant mass, mjj, distribution is a first method of searches. If the
new particle has a mass within the range we are searching, its decay to two jets introduces an excess
in mjj distribution, localized near the mass of this resonance. Since the QCD dijet mjj distribution
at high mass is smooth, background is estimated directly from data through a fit. A localized excess
doesn’t bias the fit in a significant way.

The other property of this QCD background is that it peaks in the forward direction. Many BSM
theories predict a more isotropic additional dijet production. If the new particle mass is higher than
our search range to be able to see a peak but still has a smooth effect on mjj distribution, the dijet
angular production property is exploited for searches. This method uses the dijet angular separation
defined as: χ = exp |y1−y2 | where y1 and y2 are the rapidity of each jet. Since no resonance is supposed
in the probed mass range, angular search uses MC simulation to estimate the background.

Hereafter, I will only detail the resonance search method which is the one I contributed to, published
in the paper [76].

Binning
The choice of binning of the dijet mass distribution is defined here. The line-shape of a resonant
signal is the convolution of its intrinsic width with the parton distribution functions and the detector
mass resolution. In the limit of an intrinsically narrow signal, the binning should be narrow enough
to sample the line-shape over several bins while also providing numerous bins to serve as inputs
for the background fit. However, the binning should not be too narrow to limit the effects of event
migration from bin-to-bin due to detector resolution and avoid the signal being swamped by statistical
fluctuations.

For that, the bin boundaries are chosen such that the width is equal to the resolution at the given mass
(and the boundaries are forced to integer values). The dijet mass resolution is calculated as the width
of a Gaussian fit to the ratio of the reconstructed dijet mass over the truth dijet mass, mReco

jj /mTruth
jj .

Figure 4.2 shows the dijet mass resolution.

The efficiency (purity) is calculated as the fraction of events in a truth (reconstructed) mjj bin that
falls in the same corresponding reconstructed (truth) mjj bin. The two observables are used as an
indicator that the properties of the events are changing smoothly over the mass range. Figure 4.3
shows both the smooth efficiency and purity evolutions.

The mjj binning used for the background fit, the resonance search and the limits setting contains 91
bins, ranging between 1.1 and 8.2 TeVwith a relative bin width decreasing from 30% to 19%.
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Figure 4.3: Efficiency(a) and purity(b) for the chosen bin boundaries. Efficiency is defined as the fraction of
events in a given truth mjj bin where the reconstructed mjj falls in the same range. Purity is defined as the
fraction of events in given reconstructed mjj bin where the truth mjj falls in the same range.

Event selection
The event selection uses the following cuts. First all jets are required to have pT > 60 GeV. This
requirement allows removal most of pile-up jets. Since we use only one non-prescaled trigger,
HLT_j380, an additional cut on the leading jet is set to pj 1T > 440 GeV. This requirement ensures
that we use the trigger with an efficiency higher than 99.5%, since the trigger selection asks for a high
level trigger jet above 380 GeV.

Additional cuts are used to exploit the angular distribution difference between background and signal.
As already mentioned, the QCD dijet background is dominated at high mass by t-channel processes
where the production is proportional to (1 − cosθ)−2 where θ is the angle between the 2 jets. In
contrast, most BSM models productions follow a polynomial in cos θ (for example q∗ model, defined
in chapter 1.4, is expected to be flat in cos θ). Cuts on dijet angular variables are studied to optimize
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the sensitivity. These variables are:

angular separation: y* =
y1 − y2

2
, (4.1)

angular boost: yB =
y1 + y2

2
. (4.2)

Figure 4.4 shows the binned significance (sum of S/
√

B in quadrature for each bin, where S and B
are respectively the number of signal and background events) for the mjj distribution as a function
of the upper cut value of y* and yB for various q∗ signals. The cuts are chosen to maximize this
significance. A cut of |y* | < 0.6 is optimal. For yB, no cut is chosen.
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Figure 4.4: Optimization of resonance search cuts for q∗ signals with different masses: 1 TeV (black), 2 TeV
(light green), 2.5 TeV (cyan), 3 TeV (blue), 4 TeV (red), 5 TeV (dark green), 5.5 TeV (turquoise). The following
variables are shown here: (a) y*, (b) yB.

The significance was also studied as a function of other variables but no additional cut was found to
be beneficial.

4.2.2 Background estimation

In the search for resonances in themjj spectrum, a data-driven estimate is used for the SM contribution.
The mjj spectrum is fit by a smooth functional form,

f(x) = p1(1 − x)p2xp3+p4 ln x+p5 (ln x)2
, (4.3)

where the pi are fit parameters (p4 and p5 are forced initially to zero), and x ≡ mjj/
√

s. Previous
studies [77] have found this ansatz to provide a satisfactory fit to the dijet mass distribution predicted
by leading and next-to-leading-order QCD MC simulation. It is also able to describe the dijet mass
distributions observed in the data from all prior hadron collider experiments. As the mjj distribution
predicted by QCD is a complicated convolution of t- and s-channel contributions, quark and gluon
PDFs, detector resolution, and kinematic selections, it is a remarkable empirical observation that
it can be approximated by a single analytic function with only a handful of parameters. The xp

137



4 Direct search for new phenomena in dijet events

term is motivated by the LO QCD matrix element while (1 − x)p is a common parametrization for
the behavior of parton distributions with the nice property of vanishing as x approaches unity. As
searches have applied the technique to larger and larger data-sets, spanning wider and wider ranges
in dijet mass, factors of the form xln(x)n where added to the fit function to be able to properly describe
the full mjj spectrum.

A feature of the functional form used in the fitting is that it allows for expected background variations
but does not accommodate localized excesses that could indicate the presence of new physics signals.
However, the effects of smooth deviations from QCD, such as contact interactions, could be absorbed
by the background fitting function, and therefore this background estimation technique is used only
to search for resonant effects.

Previously, the full mass range was fitted with this functional form. At a first step, only three-
parameters are used. Using likelihood ratio with Wilk’s approximation as a test statistics, if the
current function is judged to not fit the data well, it is dropped in favor of the next higher order
function and re-tested.

In an effort to prevent the possible breakdown of our fit function at high integrated luminosity, the
global function fit has been replaced by the Sliding Window Fit method (SWiFt), replacing a fit on
the full spectrum with a sliding localized fit on smaller mjj ranges where we expect the function
in Equation 4.3 to properly model the QCD background contribution even with very high statistics.
SWiFt produces a non-parametric global background model.

In smaller mass windows, the function is fitted to the data and the evaluation of the function at the
window’s central bin is taken to be the background estimation for the bin. By sliding over the entire
mass range, the background is estimated this way bin-by-bin. The window is not able to be centered
at every point in the spectrum, and so in those edge cases the bins below (or above) are filled using
the result from the lowest (highest) window fit.

Figure 4.5 shows the SWiFt background made using the three-parameter version of the analytical
function in Eq. 4.3. It also shows the background prediction obtained from a fit to the whole spectrum
with a four-parameter version. The bottom panel shows the difference in the background prediction
of the two fitting methods. The differences we see are much smaller than the statistical uncertainties
on the data σdata.

The window size, defined in terms of number of mass bins to the left and right of a window
center, is chosen by examining several statistical tests. The largest window size for which these
tests are reasonable is taken to be the nominal window size. The statistical tests are the χ2/ndf test
(measures in general the agreement between two distributions), the Kolmogorov–Smirnov (KS) test
(more sensitive to differences on the edges - picks out lopsided distributions, etc) and the Wilks test
(measures nominal vs alternative fit’s agreement with data). Specifically, we require the χ2/ndf to
be below 2, the KS p-value and the Wilks p-value to be above 0.05 (for detailed discussions about the
statistical tests, refer to [73, 78, 79]). The difference between the nominal SWiFt background (using
the three-parameter function) and the alternate SWiFt background (using four-parameter function)
are assessed as a systematic uncertainty (see next section).

Multiple window combinations of left and right sizes were tested. The statistical measures of a subset
of window sizes are shown in figure 4.6. The window size with 30 bins to left and 20 bins to the right
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Figure 4.5: Data driven SWiFt background, made using the three-parameter dijet function, shown with the
resonance selection dijet data for 37.0 fb−1 of Run II data. Also shown is the four-parameter function fit to
the data using the old global fitting method. The second panel shows the residuals of data with respect to the
SWiFt and the global fitting method derived background. The third panel shows the difference in the predicted
events in each mjj bin from the SWiFt and the global fitting method.

of the center is chosen. Figure 4.6(d) also shows the difference between the background made with
the chosen window size and the background made with the other window sizes. The differences are
small with respect to the number of events in each bin, smaller than the statistical uncertainties of the
background.

Two sets of backgrounds are created under different assumptions:

• No signal subtraction: this is used as the nominal background in plots and is used as an input
to search algorithm BumpHunter (see later for more details), which identifies if there is a
significant excess in the data. The background is estimated by smoothing the data with the
analytic function (equation 4.3).

• Subtraction of the signal at a specific mass point: this is used as the background for the
Bayesian limit-setting machinery. Backgrounds are made by smoothing the data after signals
are subtracted at the mass for which the limits are being set. This produces a separate global
background estimate for each mass point and each benchmark signal considered.
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Figure 4.6: Statistical tests examined window-by-window to pick background window size for the 37.0 fb−1 of
dijet data. a) KS p-value comparing fit to data in each window, b) χ2/ndf comparing fit to data in each
window, c) Wilks p-value comparing the SWiFt three-parameter nominal and SWiFt four-parameter alternate
backgrounds. Figure d) shows the difference between the background made with the chosen window and the
backgrounds made with the other window sizes.

4.2.3 Systematic uncertainties

Systematic uncertainties are evaluated for the background and for the signal.

Systematic uncertainties on background
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The systematic uncertainties affecting the data-driven background estimation are:

• the uncertainty on the choice of the fit function, since the forms selected for testing are somewhat
arbitrary and other parameterizations could also have been suitable;

• the statistical uncertainty on the fit result which depends on the statistical precision of the data,
affecting the precision of the determination of the parameters of the fitted function.

The following paragraphs explain how they are estimated.

Uncertainties on the choice of fit function:
As a nominal fit function we consider the three-parameter version of Eq. 4.3 while as the alternative
we consider the four-parameter version. The nominal and alternative background are compared and
the difference between the two is used to derive an uncertainty. A collection of pseudo-data are
thrown from the nominal background result, and from each pseudo-experiment both a nominal and
alternative backgrounds are derived. The mean of the difference between the nominal and alternative
background is recorded in each bin and is used to define the size of the uncertainty on the function
choice.

The uncertainty is not symmetrized, but rather a direction for the uncertainty is chosen in each
bin using the direction from the nominal to the alternative fit in data. The maintenance of this
directionality allows for realistic variation of the parameterization in the limit setting phase. A single
nuisance parameter is defined to correspond to the function choice; its variation is used to scale
linearly between the nominal choice and an alternative representing the average distance to a second
valid parameterization. This is done under the assumption that a variation in the opposite direction
would be unreasonable as it would fall outside the envelope of trustworthy descriptions parameterized
by the two functions.

Uncertainties on the parameters of the fitting function:
The second uncertainty is the one associatedwith the quality of the fit itself. Under ideal circumstances
this would be derived as a confidence band on the function determined by the covariance matrix of
the fitted parameters. However, in cases where the parameters of the function are strongly correlated,
or whenever the likelihood function has a badly-behaved maximum, it is not possible for numerical
algorithms to accurately compute this covariance matrix.

Since the confidence interval on a function is meant to represent the 1σ region within which the
fit would fall in the large-number limit of repeated trials, it can also be found by throwing pseudo-
experiments and fitting each. This method does not need accurate estimation of the parameter
uncertainties; instead, the pseudo-experiments are generated using Poisson statistics based on the
nominal background model after a fit to data. Each pseudo-data is fitted using the same starting
conditions as the observed data, and the uncertainty on the fit in each bin is defined to be the RMS of
the function value in that bin for all the pseudo-experiments.

Figure 4.7 shows both of these uncertainties for 37.0 fb−1 of Run II data.
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Figure 4.7: The nominal fit function (SWiFt three-parameter), its statistical uncertainty and the alternative fit
function (SWiFt four-parameter) are shown. In the bottom pad, the cyan line shows the one-sided uncertainty
on the choice of the fit function, while the blue line shows the statistical uncertainty on the fit.

Systematic uncertainties on signal

The following uncertainties are considered on the signal when setting limits:

• luminosity uncertainty,

• jet energy scale, JES, uncertainty,

• PDF and scale uncertainties.

As previously, a description of the estimation of each uncertainty is given below.

Luminosity uncertainty:
A luminosity uncertainty is applied as a scale factor to the normalization of the signal samples. The
uncertainty in the combined 2015+2016 37.0 fb−1 integrated luminosity is 3.2% (for the luminosity
and its uncertainty determination, refer to [80]).

JES uncertainty:
The jet energy scale uncertainty is applied to the signal, using a reduced set of nuisance parameters,
by shifting the four-vectors of all jets by 1σ of the uncertainty and fitting the result to determine the
shift in peak location as a percentage of signal mass. The uncertainty ranges from 1.5% at the lowest
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masses to 3% for masses above 4.5 TeV.
For the generic signals, in our case the Gaussian signal, the estimate of the uncertainty is derived
using the q∗ signal template that is closest in mass.

The jet energy resolution and angular resolution uncertainties has been found to be negligible. As
such, they are ignored.

PDF and scale uncertainties:
They mostly affect the normalization of the signal. A 1% flat systematic is applied, evaluated in
previous search analyses and found to be conservative.

4.2.4 Search and Limits setting techniques

Search technique

The main statistical test employed in the dijet resonance search is based on the BumpHunter al-
gorithm [81, 82] and is used to establish the presence or absence of a resonance in the dijet mass
spectrum. The algorithm operates on the binned invariant mass distribution, m j j , obtaind from the
data. The bins are treated as independent and the data are assumed to be Poisson-distributed around
a theoretical value given by the hypothesis coming from the background fit. The algorithm compares
the background estimate with the data in mass intervals of varying widths formed by combining
neighboring bins. Starting with a two-bin signal window, the algorithm scans across the entire dis-
tribution, then steps through successively larger signal windows up to half of the whole fit range. For
each point in the scan, it computes the p-value of the difference between the data and the background.
The p-value is defined as the probability of finding a difference at least as large as the difference
observed between the data and the hypothesis. The most significant part away from the smooth
spectrum, the so-called “bump”, is defined by the set of bins that have the smallest probability of
arising from a Poisson background fluctuation. During this procedure, the background model is not
changed or refit to the data outside of the excluded region.

The BumpHunter algorithm accounts for the so-called “look-elsewhere effect” [83, 84], by perform-
ing a series of pseudo-experiments drawn from the background estimate to determine the probability
that random fluctuations in the background-only hypothesis would create an excess anywhere in the
spectrum at least as significant as the one observed.

Onemust also ensure the background estimate is not biased by a potential signal. If themost significant
local excess from the background fit has a p-value larger than 0.01, no statistically significant excess
has been observed and the analysis proceeds to the limit-setting stage. If it has a p-value smaller
than 0.01, this region is excluded and a new background fit is performed. Then the result of this fit is
used for a second run stage of the BumpHunter algorithm where an unbiased estimate of the global
significance of any excess is obtained. This exclusion was not needed for the current analysis as will
be seen later on.
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Limits setting technique

For each mass point, mR, of a studied (benchmark or generic) signal (see chapter 1.4), a Bayesian
method is applied to data at the same mass to calculate a posterior likelihood and set an observed
95% CL (credibility level) upper limit on the cross section times acceptance times branching ratio,
σ ×A ×BR, for the new physics resonant signal as a function of mR. The limit on σ ×A ×BR from
data is interpolated logarithmically between mass points to create a continuous curve in mjj.

This form of analysis is applicable to all resonant phenomena where the new physics resonance
couplings are strong compared to the scale of perturbative QCD at the signal mass, so that interference
with QCD terms can be neglected. The acceptance calculation includes all reconstruction steps and
analysis cuts.

In the Bayesian marginalization, the parameter of interest corresponds to the normalization of the
signal template which is given a constant prior. One nuisance parameter with a Gaussian prior
is introduced for each of the systematic uncertainties on the data-driven background and on the
signal described in section 4.2.3. These uncertainties are incorporated into the marginalization
by convolving them with the posterior probability distribution. Credibility intervals are calculated
numerically from the resulting convolutions. The posterior probability is then integrated to determine
the 95% CL interval.

Expected 95% upper limits are also calculated using a profile likelihood method, where the nuisance
parameters are allowed to float while the signal yield is scanned upwards. The 95% upper limit is
defined as the number of events N such that LLH(N) = LLH(base) + 1.92, approximately 2σ worse
than the base case. For positive signals, LLH(Base) is the likelihood of the best-fit signal. Otherwise,
it is the likelihood corresponding to zero signal events. At each mass point, a large number of pseudo-
experiments are thrown based on a nominal template defined from the best fit values of all nuisance
parameters with signal fixed to zero. For each pseudo-experiment, the limit is calculated. The central
value of the expected limit is taken to be the median of the pseudo-experiment distribution. The 1
and 2 sigma bands are taken to be median ± 34% and median ± 47.5% respectively.

In previous iterations, limits on generic signal shapes were provided on the reconstructed level which
includes the detector effects. In the following section, I present a new technique I developed and
implemented which improves the way we put limits on generic signal shapes by calculating them on
the particle (hadron) level, allowing for easier re-interpretation after their publication.
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4.3 Folding technique

In this section, I present the description, tests and results of a new technique I developed and
implemented which was added to the dijet search analysis as one of the two main improvements of
the analysis (the second improvement being the SWiFt technique described in section 4.2.2).

4.3.1 Motivation

In past studies [85–87], limits were set on signal models that can contribute to the reconstructed mjj
distribution 1. Often, these studies considered signals with some given shape (for example Gaussian)
and amplitude at detector level. Doing so, the description of the corresponding distribution folds
the actual physical signal and detector effects (acceptance and resolution). Here I describe a method
for folding a truth-level model with the detector response, allowing factorization of physics and
detector effects. One goal is to enable the publication of limits on a given signal model, which can be
interpreted from the phenomenological point of view at particle (hadron) level, without further need
of information on the detector response. This method should also allow for a better understanding of
various features in the distributions, yield potentially more stable fits, facilitate the study of constraints
on the binning due to the jet energy resolution (JER) and facilitate the interpolation between various
parameter points (for example mass, width) for which full simulation samples of a given signal model
were generated.

4.3.2 Method description

The method described here consists in defining a model for the "truth" distribution at particle level,
within a set of fiducial cuts. This model is then folded with the detector effects. One can compare
the result of this convolution with the data distribution, for example when performing fits or when
setting limits.

The detector effects are described through a Monte Carlo-based transfer matrix, relating the truth
and reconstructed observables. Events passing both the fiducial selection at truth level and the same
selection as data at reconstructed level, called "matched" events in the following, are used to fill a
2D distribution: a matrix Nij, where i is the bin number corresponding to the truth quantity and j the
bin number corresponding to the reconstructed one. I then derive a folding matrix for the "matched"
events, giving the probability for an event generated in a bin i at truth level to be reconstructed in a
bin j:

Amatched
ij =

Nmatched
ij∑

k Nmatched
ik

. (4.4)

1 Here I study the folding method in the context of the mjj distribution, but the same procedure can be applied to other
observables.
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I also define, in a given truth (reconstructed) bin, the fraction of events that pass both the truth and
reconstructed level selections, among the total number of events at truth (reconstructed) level:

εT
i =

∑
k Nmatched

ik∑
k Nmatched

ik + NT only
i

, (4.5)

εR
j =

∑
k Nmatched

kj∑
k Nmatched

kj + NR only
j

. (4.6)

These fractions of events are also called "matching efficiencies".

The folding of a truth model f(mT
jj ) with the detector effects is done as follows:

fi 7−→ Fj =
∑

i
fi ∗ εT

i ∗ Aij/ε
R
j ≡

∑
i

fi ∗ Ãij, (4.7)

in order to obtain the reconstructed level model F(mR
jj ), where A and ε’s are the folding matrix and

the efficiencies defined previously. The global folding matrix

Ãij ≡ εT
i ∗ Aij/ε

R
j (4.8)

accounts for the event migrations and matching (in)efficiencies caused by detector effects.

In order to avoid large simulation-based (model dependent) extrapolations, it is preferable to use truth
level fiducial cuts that are close to the ones applied at reconstructed level. I use here the same cuts
for both levels.

The statistical uncertainties affecting the result of the folding are also calculated. These uncertainties
are caused by the statistical fluctuations affecting the global folding matrix ( Ã ) and by the ones
impacting the original truth distribution (when the latter is not obtained from a smooth function,
but rather from a sample of events). When evaluating these statistical uncertainties, the correlations
among the various inputs (correlations among the bins of the Aij, εT

i and εR
j ) must be accounted

for. This is achieved using the Bootstrap method [88], where pseudo-experiments are generated
fluctuating the weight of each event based on a Poisson distribution with the mean parameter equal
to 1. The seed of the random number generator is defined independently for each event, based on the
event number. This approach guarantees that the pseudo-experiments are generated coherently when
the same events play a role at several levels in the analysis (for example for efficiencies and for the
folding matrix), allowing hence to take into account the corresponding correlations.

A geometrical matching criteria can optionally be applied when building the transfer matrix. This can
be done by requiring for a given event that the truth and reconstructed leading and sub-leading jets
are geometrically matched within ∆R(jetreco, jettruth) < 0.3 2. The matching criteria is considered as
being satisfied if either the (leading-leading; subleading-subleading) or (subleading-leading; leading-
subleading) pairs of jets satisfy the ∆R condition. Such events are included in the category of
"matched events" of the transfer matrix. The entries from the other events are added both to the
unmatched truth and reconstructed categories. The effect of the geometrical matching criteria is
evaluated in the following section and this requirement is applied only when explicitly stated.

2 ∆R =
√

∆φ2 + ∆y2
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4.3.3 Folding matrices from different MC samples

The characteristics of the events at hadron level (event topology, quark/gluon composition impacting
the hadron content of the jets, etc...) impact the average detector response and resolution, hence the
folding matrix. It is therefore interesting to compare the inputs of the folding procedure (matching
efficiencies, the folding matrix for matched events, as well as the global folding matrix) for various
signal and background MC samples.

Figure 4.8 shows the transfer matrices, including both matched events and events passing only the
truth and respectively reconstructed level selections, obtained from two MC samples. Each event
contributes with the corresponding weight to this matrix. These transfer matrices are used to derive
the efficiencies and folding matrices discussed below.
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Figure 4.8: Transfer matrix between the truth and the reconstructed level mjj based on two MC samples: one
from QCD and one from q∗(3 TeV). The horizontal line (vertical column) at 0 GeV correspond to events that
pass the selection only at truth (reconstructed) level.

Figure 4.9 shows the matching efficiencies at truth and reconstructed level. While these efficiencies
can be as low as ≈ 40% at low mass, they are ≈ 100% for mjj > 1 TeV.

In figure 4.10, I show the folding matrix for matched events, while in figure 4.11, I show the
global folding matrix, obtained by combining the folding matrices of the various samples with the
corresponding matching efficiencies, following the procedure indicated in equation 4.8.

Figure 4.12 shows the transfer and global folding matrices obtained from the QCD Pythia8 samples,
with the geometrical matching criteria applied. The matrices with and without this criteria are very
similar, except a small difference for mtruth

jj < 400 GeV.

Those Ã matrices are used in the next sections to assess their effect on the folded signal distributions
and on the limits setting levels.

Figure 4.13 shows the mjj detector response distribution in three MC samples, QCD, q∗(3 TeV)
and W′(3 TeV). Comparing the Gaussian fit σ, the core of the resolution are very similar between
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Figure 4.9: Matching efficiencies at truth and reconstructed level for two MC samples: one from QCD and one
from q∗(3 TeV).

QCD and q∗, whereas a small difference is visible between QCD and W′(3 TeV). The different BSM
scenarios used here are explained in details in chapter 1.4. Let me note that this comparison does not
provide any information about the tails of the resolution.
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Figure 4.10: Folding matrix for the "matched" events (Amatched) for two MC samples: one from QCD and one
from q∗(3 TeV).
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Figure 4.11: Global folding matrix (Ã) for two MC samples: one from QCD and one from q∗(3 TeV).
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Figure 4.12: Transfer and global foldingmatrix (Ã) for the QCDPythia8 sample, with the geometrical matching
criteria applied.
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Figure 4.13: mjj detector response distribution in three MC samples, QCD, q∗(3 TeV) and W′(3 TeV), for the
truth mjj range [2.485; 3.167] TeV. The result of a Gaussian fit of this distribution is also shown.
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4.3.4 Tests on the folding procedure

In this section, I show the tests done to check the compatibility of the folding technique with the full
simulation of events (detector level).

A first test of the procedure I did consists in folding (following the procedure in equation 4.7) the
truth distribution of a given MC sample with the detector effects described by a global folding matrix
derived from the same MC sample. Figure 4.14(a) shows the truth mjj distribution, the reconstructed
distribution obtained from the sample of fully simulated events and the distribution resulting from
the folding procedure. As expected, in this case, a perfect agreement is achieved between the two
reconstructed distributions.

Next, I test the folding of the truth distribution of a given signal MC sample using a global folding
matrix derived from a QCD sample. The truth mjj distribution of the signal, the reconstructed
distribution obtained from the sample of fully simulated events and the distribution resulting from
the folding procedure are shown in figure 4.14(b) and figure 4.15. In this case, some differences are
observed between the two reconstructed distributions, mainly in the peak region. Such differences
could be due to the change in the average detector response and resolution (see figure 4.13) for
various event topologies and various parton contents, although the statistical significance of the
effects observed here is rather limited.

For the contact interaction (CI 1.4) signal (with Λ = 7 TeV) (figure 4.15(e) and figure 4.15(f)), which
changes the ratio between quark and gluon jets, we see a systematic shift of the ratio between the
fully simulated and folded distribution of about 2% for mjj > 4 TeV (where the CI signal becomes
non negligible). I use in the following sections Ã matrices from CI samples to probe the effect of
the choice of the signal samples for building the Ã matrices, when setting limits using the folding
method.

Figure 4.16(a) shows the relative uncertainties of the mjj distributions obtained from the simulation
and from the folding procedure respectively for a q∗(3 TeV) signal folded with Ã matrices from
QCD. For the truth and the fully simulated reconstructed distributions, the relative uncertainties are
very similar, as expected. The difference due to the effect of the detector resolution on the fully
simulated reconstructed distribution is clearly visible between 3 and 3.2 TeV. On the other hand, the
reconstructed distribution from the folding procedure has smaller relative uncertainties. This is not
due to a gain in statistics, but rather to the correlation between bins induced by the folding procedure.
These correlations are evaluated using pseudo-experiments (pe) where all the inputs (mtruth

jj and Ã)
used to derive the folding result are fluctuated, applying the following formulas:

correlation(Mi,Mj) = cov(Mi,Mj)/
√

cov(Mi,Mi) × cov(Mj,Mj),

covariance ≡ cov(Mi,Mj) =
Npe∑

pe=1

[(
Ype(Mi) − Y0(Mi)

) (
Ype(Mj) − Y0(Mj)

)]
/Npe,

(4.9)

where Mi is the bin index, Npe is the number of pseudo-experiments, Ype is the bin entries in the
corresponding pseudo-experiment and Y0 is the bin entries in the nominal distribution. The full
correlations are shown in figure 4.16(b). To distinguish the different sources of uncertainties and
correlations, the correlation results of pseudo-experiments performed for each input alone are also
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shown. The fluctuations of the folding matrix induce negative correlations between adjacent bins (see
figure 4.16(c)), due to the constraints that the total probability in each column of the normalized Aij
is equal to one. This matrix accounts for migrations of events between the bins, preserving the total
number of events. The fluctuations of the truth mjj distribution induce positive correlations between
adjacent bins, since each truth mjj bin contributes through the folding to several reconstructed bins
(see figure 4.16(d)).
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(b) q∗(3 TeV) folded with Ã(QCD Pythia 8)

Figure 4.14: q∗(3 TeV) signal model folded with Ã matrices from various samples (red points). The truth
distribution (blue points) and the one obtained through the full simulation (black points) are also indicated.
The ratio between the distribution obtained through the full simulation and the folding result is also shown.
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(b) W′(3TeV) folded with Ã(QCD)
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(c) Z′(3TeV, gq=0.1) folded with Ã(QCD)
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(d) Z′(3TeV, gq=0.1) folded with Ã(QCD)
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(e) CI (Λ = 7 TeV, η=-1) folded with Ã(QCD)
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(f) CI (Λ = 7 TeV, η=+1) folded with Ã(QCD)

Figure 4.15: Various signal models (1.4) folded with Ã matrices from QCD sample are shown in red points.
The full simulation distribution is shown in black points. The ratio between the distribution obtained through
the full simulation and the folding result is also shown.
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Figure 4.16: (a) Relative uncertainties of the truth distribution, fully simulated reconstructed distribution and
reconstructed distribution obtained through the folding procedure. (b, c, d) Correlations of the statistical
uncertainties affecting the result of the folding procedure, when fluctuating the various inputs.
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4.3.5 Interpolation tests

When deriving limit bands, a scan using different parameter points is used. In the current method,
the full simulation is needed for each parameter point, which limits the number of point that can be
scanned since these simulations require lots of computing resources. With the folding procedure,
a method to overcome this problem becomes available, using an interpolation procedure. If for
example two fully simulated samples for resonance masses M1 and M2 are available, only the truth
distribution at an intermediate mass M′ is needed in order to derive the reconstructed mjj distribution
at M′. The truth and reconstructed quantities of each of the two full simulation samples are scaled
(event by event) from their corresponding mass to M′, effectively preserving the relative resolution.
Two folding matrices at the intermediate mass M′ are produced and then averaged to form the final
folding matrix, used to fold the truth distribution of the parameter point M′. Using this technique,
smoother limit bands can be derived.

In figure 4.17, I show the result of the folding of a q∗ signal of mass 2.5 TeV using an interpolation of
two q∗ signals at 2 and 3 TeV respectively. This distribution is compared with the result of the folding
using the Ã matrix derived from QCD sample, as well as with the result from the full simulation. The
various distributions are compatible within the uncertainties, proving the reliability of the folding
procedure for performing interpolations.
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Figure 4.17: Folding of a q∗ signal of mass 2.5 TeV using an interpolation of two q∗ signals at 2 and 3 TeV
respectively is shown in blue points. The result is compared with the folding using the Ã derived from QCD
sample in red points, as well as with the result from the full simulation in black points.
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4.3 Folding technique

4.3.6 Gaussian limits

The main goal of the folding technique is to be used for setting limits at particle level. Here, I present
the tests and comparisons done for that matter.

Figure 4.18 shows the comparison between the limits on Gaussian signals at truth level folded with
the detector effects and at reconstructed level respectively. Results are shown for several different
ratios between the Gaussian width and mean (σ/M) and are represented as a function of the mass
(≡ Gaussian mean) to facilitate and make more precise the use of these limits by theoreticians when
comparing their signal models to the Gaussian ones.

In the case of a narrow signal, which corresponds to σ/M=detector resolution at reconstructed
level and σ/M=0 at truth level, a small difference between the two methods is observed. This is
due to non-Gaussian tails of the resolution which are taken into account by the folding matrix and
to an effect related to the binning of the folding matrix. In the case of σ/M=constant, a direct
quantitative comparison between the two methods is not possible, since the folded signal includes the
resolution effect that is mass dependent. However, for resonance widths comparable to the resolution
(σ/M ≈ 0.03), the difference observed between the results of the two approaches emphasizes the
relevance of the folding method. Due to the dependence of the resolution on mass, the folded signal
at reconstructed level is also not symmetric and this has an impact on the limits. For large widths,
the effect of the detector resolution on the global width is smaller, and the difference between the two
methods is reduced.
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Figure 4.18: Comparison between the limits on Gaussian signals at truth level folded with the detector effects
(red points in a), red and green points in b)) and at reconstructed level respectively. Results are shown for
several different ratios between the Gaussian width and mean.

Figure 4.19 shows the ratio of the limits on Gaussian signals at truth level folded with the detector
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effects using Ã matrices from QCD Pythia8 samples with and without the matching criteria applied.
For the two signal widths shown, the ratio is close to unity, within small fluctuations. Based on this
result, I do not add a systematic uncertainty to account for the impact of the geometrical matching
criteria.
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Figure 4.19: Ratio of the limits on Gaussian signals at truth level folded with the detector effects using Ã
matrices from QCD Pythia8 samples with the matching criteria applied divided by the one without matching.
Results are shown for two different resonance widths. The green dotted lines correspond to a 2% deviation
from 1, and the red ones to 5%.

To further study the effects of the non-Gaussian tails of the resolution and of the binning of the truth
axis of the folding matrix on the limit calculations, I compare in figure 4.20 the limits on various
signals with σ/M = 0 at truth level folded with the detector effects, and a signal with σ/M =detector
resolution at reconstructed level. For the folding method, three folding matrices are considered:
one matrix evaluated from a QCD Pythia8 simulation and two matrices using an approximation of
a Gaussian resolution effect using "standard" and finer binning respectively for the truth axis. In
figure 4.20(b), one can see a systematic shift (more than 5% in average) between the limits obtained
for a signal at reconstructed level and one at truth level folded using the QCD Pythia8 sample. In
figure 4.20(c), where the folding matrix is an approximation of a Gaussian resolution with "standard"
binning (i.e. the same binning for the truth and reconstructed axis), the ratio of the limit to the one
obtained for signal at reconstructed level is close to unity, but with a small systematic deviation. This
shows that the non-Gaussian resolution tails, which are taken into account by the folding method,
have a significant effect on limit calculations.

The motivation to use finer binning for the truth axis in the folding matrix is to have a better
description of the mass dependent resolution and of the migrations from the truth signal to the
various reconstructed bin (which depend on the position of the signal within the large bins). For
a folding matrix with Gaussian resolution and 5 times finer binning for the truth axis (see figure
4.20(d)), the ratio of the limits has smaller fluctuations and is closer to unity compared to the one
obtained using a folding matrix with standard binning (see figure 4.20(c)). The fine binning (5 times
finer than the "standard" one) is chosen as the default binning for the truth axis of the folding matrix,
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in the evaluation of the main results of this study.
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(b) Ratio between the limit obtained with "σG/mG = Res."
divided by the ones for "T.(QCD) : σG/mG = 0"
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(c) Ratio between the limit obtained with "σG/mG = Res."
divided by the ones for "T.(gaus) : σG/mG = 0"
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Figure 4.20: Comparison between the limits on signals with a width at reconstructed level equal to the
resolution (σG/mG = Res.) and on narrow signals at truth level folded with the detector effects respectively.
Three folding matrices are used, one evaluated from a QCD Pythia8 simulation (T.(QCD) : σG/mG = 0,
blue points) and the other two using an approximation of a Gaussian resolution effect using standard binning
(T.(gaus) : σG/mG = 0, green points) and finer binning (T.(gaus_finer) : σG/mG = 0, red points) for the truth
axis. The green dotted lines correspond to a 2% deviation from 1, and the red ones to 5%.

Figure 4.21(a) shows the limits for various widths of Gaussian signals at truth level folded with an
Ã matrix from QCD Pythia8 samples, having 5 times finer binning for the truth axis compared to
the reconstructed one. Figure 4.21(b) shows that the effect of the non-Gaussian resolution tails for
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the result obtained using the folding method is of about 3 − 4%, compared to the limits on Gaussian
signals at reconstructed level. This constitute an additional point in favor of the folding procedure.
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Figure 4.21: (a) Limits of various widths Gaussian signals at truth level folded with Ã matrix form QCD
Pythia8 samples, using 5 times finer binning for the truth axis compared to the reconstructed one. (b) Ratio
of the limit for a signal with a width equal to the resolution at reconstructed level, divided by the limit with
a narrow signal at truth level folded using a matrix with fine bins on the truth axis. The green dotted lines
correspond to a 2% deviation from 1, and the red ones to 5%.

To evaluate the effect of the sample choice for calculating the folding matrix, limits were calculated
using an Ã matrix from CI signal samples (with Λ = 7 TeV). In figure 4.22, a small change, in the
limit of about 1% with respect to the result obtained using the QCD Pythia8 transfer matrix, can be
seen for mjj > 4 TeV where the CI signal becomes non negligible. Based on this small value of the
change, no additional uncertainty is added from the choice of the signal sample for building the Ã
matrix.

I have also tested that the statistical uncertainties induced by the folding procedure (caused by the
available MC statistics used to build the Ã matrix) discussed into some detail in Section 4.3.4, have
very little impact on these Gaussian limits studies. Figure 4.23 shows a comparison between the
absolute statistical uncertainties of data and of several folded Gaussian signals. The normalization of
each Gaussian signal used for this plot corresponds to the value of the limit on the number of signal
events. This comparison indicates that the statistical uncertainties induced by the folding method on
the signal is negligible and can hence be safely neglected in the limits setting procedure.
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Figure 4.22: Ratios of limits for signals folded with Ã matrices from CI samples divided by the ones obtained
with Ã matrices from QCD Pythia8 samples. Results are shown for two different resonance widths. The green
dotted lines correspond to a 2% deviation from 1, and the red ones to 5%.
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Figure 4.23: Statistical uncertainties of data (smoothly falling red graph), and for signals foldedwith Ãmatrices
from QCD Pythia8 sample, with finer binning for the truth axis. The signals at truth level are Gaussians having
three different means (2, 4 or 6 TeV) and two different widths (σ/M = 0 or 0.1) respectively. The normalization
of each Gaussian signal corresponds to the limit on the number of signal events.

4.4 Results

The results of this analysis, shown hereafter, have been published in the paper [76].
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4.4.1 Search results

The search phase result for the resonance analysis using the BumpHunter algorithm (see 4.2.4 for
its definition) and 37.0 fb−1 of combined 2016 and 2015 data is presented in figure 4.24. The
BumpHunter p-value of the most discrepant region is 0.63. As this discrepancy is not significant,
no region is excluded in the background fit.

Figure 4.25 shows the p-value of the most significant bump for each of the pseudo-experiments of the
background model as a function of its mjj region. The observed BumpHunter test statistic is then
compared to the results from pseudo-experiments and a global p-value of the most discrepant region
is calculated by integration over the test statistic distribution.
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Figure 4.24: The reconstructed dijet mass distribution mjj (filled points) is shown in black points. The solid
red line depicts the background prediction from the sliding-window fit. Predictions for benchmark q∗ signals
are normalized to a cross-section large enough to make the shapes distinguishable above the data. The vertical
lines indicate the most discrepant interval identified by the BumpHunter algorithm, having a p-value of 0.63.
The middle panel shows the bin-by-bin significances of the data–fit differences, considering only statistical
uncertainties. The lower panel shows the relative differences between the data and the prediction of Pythia 8
simulation of QCD processes, corrected for NLO and electroweak effects, and is shown purely for comparison.
The shaded band denotes the experimental uncertainty in the jet energy scale calibration. Figure from [76].
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Figure 4.25: a) p-value of the most significant bump for each of the pseudo-experiments as a function of its
mjj region. b) Comparison of the observed BumpHunter test statistic to the results from pseudo-experiments.

4.4.2 Limits setting results

Figure 4.26 shows the 95% CL upper limits on σ ×A ×BR for the models q∗ and W′, with observed
limits of 6 and 3.6 TeV and expected limits of 5.8 and 3.7 TeV respectively.
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Figure 4.26: The 95% CL upper limits obtained from the dijet invariant mass (mjj) distribution on cross-section
times acceptance times branching ratio to two jets, σ × A × BR, for the models q∗ and W′. Figures from [76].
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Figure 4.27 shows the 95% CL upper limits on σ × A × BR for a generic Gaussian signal with a
mean mG and width σG at particle level. Observed limits are shown for five different widths, from a
narrow width (0%) to 15% of mG. The expected limits and the corresponding ±1σ and ±2σ bands
are also indicated for a narrow-width resonance as described in section 4.2.4.
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Figure 4.27: The 95% CL upper limits obtained from the dijet invariant mass mjj distribution on cross-section
times acceptance times branching ratio to two jets, σ × A × BR, for a hypothetical signal with a cross-section
σ that produces a Gaussian contribution to the particle-level mjj distribution, as a function of the mean of
the Gaussian mass distribution mG. Observed limits are obtained for five different widths, from a narrow
width to 15% of mG. The expected limits and the corresponding ±1σ and ±2σ bands are also indicated for a
narrow-width resonance. Figure from [76].
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5 Precision measurement: leading jet
cross-section

In this chapter, I describe a new jet cross-section measurement that is done for the first time, the
leading jet double differential cross-section, with details on both the experimental measurement and
the theoretical predictions aspects, where I contributed in both.
I first present the motivation of this new analysis. Then, I describe the data selection, followed
by the transfer matrix and the unfolding methods used to factorize the detector effects from the
measurement. Next, the systematic uncertainties evaluation is presented. The theoretical predictions
calculation, challenges and improvements are detailed, in addition to the evaluation of the statistical
and systematic uncertainties. Last, the comparison between the data measurement and the theoretical
predictions is shown.

5.1 Motivation

In the previous chapter, I presented a direct search approach for new physics, where we look for an
additional bump on top of a smooth spectrum produced by the new resonance near its mass. On
the other hand, an indirect search approach is also used to search for new physics. In this approach,
an observable is measured in data and compared to a “precise” SM prediction where we search for
smooth deviations between the two. Many observables are used to capture the various kinematics
of the event, for example the differential cross-sections of inclusive jets (as a function of pT and |y|
in ATLAS [89–91] and CMS [92–94] analyses) and dijets (as a function of dijet invariant mass mjj
and y* in ATLAS analyses [91, 95], mjj and |y|max or pavgT , yB and y* in CMS analyses [96, 97]).
Other observables include for example the azimuthal separation angle to catch correlations in this
variable. Focusing on the inclusive jets observable, tensions are observed when comparing data with
theoretical prediction using the full bin range. This is the case for ATLAS analyses using 8 TeV [90]
and 13 TeV [91] data where the χ2/dof for the latter are shown in table 5.1. When the comparison
is done in individual rapidity bins, the agreement between data and prediction is generally good.
This points to a possible source of the tension originating from the correlation of the uncertainties
between the different rapidity bins. Moreover, the effect of changing the correlations is found to be
significant. For example, using uncorrelated statistical uncertainties of the eta-intercalibration for
each of its calibration component (each (pT,η) bin) reduces the χ2 by more than 200 units. For CMS
analyses, the tensions are also seen for the initial measurement using 7 TeV [98] data, which led the
collaboration to modify the correlation model to improve the agreement.

Theorists raised a concern about the inclusive jet observable that it does not conserve the physics
correlations between the jets of the event. Events with different number of jets are filled in the same
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5 Precision measurement: leading jet cross-section

Table 5.1: Summary of χ2/dof values obtained from a global fit using all pT and rapidity bins, comparing
the inclusive jet cross-section and the NLO pQCD prediction corrected for non-perturbative and electroweak
effects for several PDF sets and for the two scale choices. All the corresponding p-values are � 10−3. Table
from [91].

spectrum; the information on the number of jets in an event is lost. In addition, jets in a same bin can
come from leading jets, sub-leading jets and so on. During the “ATLAS Standard Model” workshop
in 2017 (Thesaloniki), Alexander Huss, a theorist, proposed studying the leading jet cross-section
arguing that this observable is more robust from the theoretical point of view. No physics correlations
are missed using the leading jet observable, in addition to being the highest pT in the event and hence
reaching the highest energies where we hope to detect new physics. Moreover, as I will discuss
later, there is less ambiguity in the theoretical prediction when defining the renormalization and
factorization scales for the event.

In this chapter, I present the development of this newanalysis forwhich I did both the datameasurement
and prepared the theoretical predictions. The observable is defined double-differentially as:

d2σ(Leading jet)
dpTdy

=
Nparticle level

Leading jets

L∆pT∆y
, (5.1)

where L denotes the luminosity, ∆pT and ∆y the bins widths in transverse momentum and in
rapidity. As I detail later, both the data measurement and the theoretical predictions contain additional
challenges compared to the inclusive jets case. I first introduce the data measurement steps, then the
theoretical prediction ones and at the end the comparison between the two results.
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5.2 Data selection and quality

5.2 Data selection and quality

The full Run II data, passing the data quality selection, is used with a total integrated luminosity of
139 fb−1. The nominal MC generator used is Pythia with two statistically independent productions,
to match the pile-up profile changes for different data taking periods.

The nominal jet reconstruction collection used is EMPFlow, which has a better resolution at low
pT, and cross checked with EMTopo. Jets are required to be in the region |y| < 3, and the final
measurement is given for pT values above 100 GeV.

The measurement is binned in pT and rapidity. For the rapidity, the following binning is used:
|y| = [ 0, 0.5, 1, 1.5, 2, 2.5, 3 ].

Pile-up jets rejection using the JVT tool (refer to chapter 2.3.2) is not used here since the measurement
is well above the pT range where the pile-up activity is significant (pT < 60GeV). On the other hand
for the MC simulation, high-pT pile-up jets, of few hundreds of GeV, are observed which do not
match what is observed in data. A cleaning procedure is added for MC simulation events to reject
such jets. Comparing the truth and reco jets, an MC event is considered to include badly simulated
high-pT pile-up jets and thus rejected if, before applying any measurement fiducial cuts:

1. the number of truth jets is zero,

2. the average pT of the two leading jets at reco level is more than 1.4 times higher than the leading
truth jet pT:

pavgT (reco) ≡ 0.5 ×
(
pj 1T (reco) + pj 2T (reco)

)
> 1.4 × pj 1T (truth).

Let me recall that the jet resolution, at pT = 100 GeV and above, is about 10% and goes down
with increasing pT. This means that for a good jet to fail the latter requirement, the pT of the first
two leading jets should fluctuate upward by more than 4 × σ each, which have an extremely small
probability.

Jet cleaning and time cuts are used to veto background jets, and the optimization of those cuts are
detailed in next sections.

5.2.1 Triggers

For data, we have to select the triggers to be used for each pT interval. The minimum trigger efficiency
requirement for this analysis is 99.5%, tighter than the 99% value for eta-intercalibration since the
measurement here depends on the luminosity. In fact, the triggers are used here with an efficiency
even higher than 99.5% for most bins. Using the emulation method described in chapter 3.5, the
trigger efficiencies are calculated as a function of the leading jet pT. Since for this measurement
only jets with |y| < 3 are considered, only central single jet triggers are used. Let me recall that the
triggers have two levels: a L1 level which is only sensitive to one bunch-crossing, and a HLT level
which integrates on multiple bunch-crossings (refer to chapter 2.2.5). The emulation technique uses
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5 Precision measurement: leading jet cross-section

a reference trigger which fires at lower pT compared to the probe trigger. In addition to the difference
between HLT levels, the reference and probe triggers don’t have the same L1 level in general. What I
want to measure here is the efficiency of the HLT level, the L1 level efficiency being already checked
by the “JETM” performance group. Hence, the equation 3.17 is changed to the more appropriate
form:

Eff(pleading
T ) =

Nevents(fire reference trigger & pass L1&HLT probe emulation)
Nevents(fire reference trigger & pass L1 probe emulation)

. (5.2)

Using this equation, I get the efficiency distributions shown in figure 5.1 for 2017 data and EMPFlow
jets where the 99%, 99.5% and 99.9% efficiency tun-on thresholds are indicated.
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Figure 5.1: Trigger efficiency curves for the different central single jet triggers for the 2017 data and EMPFlow
jets. 99%, 99.5% and 99.9% efficiency tun-on thresholds are shown as dotted, dashed and full lines respectively.
The efficiency is calculated using equation 5.2.

The 99.5% efficiency turn-on pT are summarized in table 5.2 for EMTopo and EMPFlow, 2015+2016
and 2017+2018 data periods. The difference between 2015+2016 and 2017+2018 efficiency turn-on
values is mostly due to the improvement of the HLT jet calibration beginning 2017+2018 data taking
period making it closer to the offline calibration and leading to lower turn-on pT. On the other hand,
EMTopo jets have lower turn-on pT compared to EMPFlow; this is due to the fact that HLT jets are
reconstructed from topo-clusters and hence the deviations between the HLT- and EMTopo jets are
smaller compared to the differences between HLT- and EMPFlow jets.

An additional verification of the good efficiency is to plot the pT distribution in narrow bins using
the selected triggers for each pT range, fit the spectrum by a smooth function, and check that at the
low edge of each pT range (triggers transition region) no systematic decrease in the number of entries
exists when comparing the fine bin entries with the smooth fit. Figure 5.2 shows the result of this
test, where zoomed plots are shown for parts of the ratio between the entries in bins and the smooth
function; no systematic drops are visible.

In previous inclusive jet cross-section measurements, the jets in an event were treated independently.
For each jet, the trigger, corresponding to the pT range that contains the jet pT, is checked if it is fired,
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5.2 Data selection and quality

Table 5.2: 99.5% efficiency tun-on pT thresholds of central single jet triggers separately for the data taking
period 2015+2016 and 2017+2018, for EMTopo and EMPFlow jets.

2015+2016 period 2015+2016 period 2017+2018 period 2017+2018 period

Trigger EMTopo jets EMPFlow jets EMTopo jets EMPFlow jets

HLT_j45 56 68 56 60

HLT_j60 76 88 72 83

HLT_j85 104 112 100 108

HLT_j110 132 140 124 136

HLT_j175 208 220 196 208

HLT_j260 300 320 284 300

HLT_j360 416 432 396 412

HLT_j380 440 452 - -

HLT_j420 - - 460 476

and if so the jet is used to fill histograms. At low and mid pT, where the triggers are heavily prescaled,
a multi-jet event can have only one of its jets used to fill the distribution. For this measurement
where the orders of jets is important, as is explained later, the event physics correlations should not
be removed. Therefore, the triggering is done on an event level. The trigger corresponding to the
leading jet pT is checked if it is fired, and if so all the jets in the event are used (here I only use the first
three as I explain later). In addition to preserving the physics correlations, this approach increases
the statistics of the second jet and above, since the trigger corresponding to the leading jet pT is
less prescaled compared to the triggers corresponding to the other jets pT. I did check that the two
approaches are compatible within the statistical fluctuations, and that for the third jet, the increase in
statistic can reach a factor of four in some bins.

Entries are corrected for trigger prescales by applying a weight factor. Since the prescale for each
trigger changes through the data taking period, within a year and between years, the total luminosity
recorded by the trigger for the full Run II data is used to define an equivalent factor to be applied to
all events passing this trigger. This method, compared to applying different weight factors, increases
the effective statistics as was demonstrated in [75].
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Figure 5.2: pT distribution in narrow bins using the selected triggers for each pT range. The distribution is
fitted with a smooth function. Ratio plots between the distribution and the fit are shown.

5.2.2 Cleaning criteria and jet time cut

To further check the compatibility between triggers, the leading jet pT distributions, obtained with
the various triggers, are compared. Although the low pT triggers are not used in this analysis, I also
include them in the comparison since they make it more complete, and since they will be used in
other jet cross-section measurements. First, a loose cleaning (refer to chapter 2.3.2) is applied to jets.
Figure 5.3 shows in the top plots the pleading

T distributions from the different triggers, for EMTopo and
EMPFlow jets. The distributions show a significant disagreement between two groups of triggers:
the low pT triggers, HLT_j35 and below, and the other triggers, HLT_j45 and above. Within each
group, triggers have compatible distributions, noting that the disagreement for HLT_j85 at low pT is
due to the trigger being below its turn-on pT threshold and no attention is needed for this part. The
only difference between the two groups of trigger, other than the pT fire thresholds, is that the low pT
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5.2 Data selection and quality

triggers are random at L1 level. A better quantification of the disagreement is shown in the bottom
plots of figure 5.3, where the ratio of the distributions from HLT_j35 and HLT_j45 are shown. The
difference decreases with pT, and is about 30% (15%) for EMTopo (EMPFlow) jets at 70 GeV. At
higher pT, the difference reaches a plateau significantly higher than unity: 11% for EMTopo and 4%
for EMPFlow jets. It is noticeable that EMPFlow jets, which include tracks information in addition
to topo-clusters (refer to chapter 2.3.1), perform better than EMTopo.
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Figure 5.3: Top plots: pleading
T distributions from six different single jet triggers, for EMTopo (a) and EMPFlow

(b) jets. Bottom plots: ratio of the distributions from HLT_j35 and HLT_j45 triggers. The jet cleaning criteria
used is BadLoose. The HLT_j35 trigger is random at L1 level, whereas the HLT_j45 trigger is L1 calo-based.

If now I use tight cleaning on jets, which includes an additional cut using tracks (tracks pT fraction
over one layer maximum energy fractions, fch/fmax), a huge improvement is obtained as is visible in
figure 5.4. The disagreement at pT = 70 GeV drops to 6-7%, and at high pT the plateau is just about
2%.

To better understand the source of the disagreement, let me show some leading jet time distributions.
Figure 5.5 shows the leading jet time distributions from the two triggers HLT_j35 and HLT_j45, for
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Figure 5.4: Ratio of the pleading
T distributions from HLT_j35 and HLT_j45 single jet triggers, for EMTopo (a)

and EMPFlow (b) jets. The jet cleaning criteria used is BadTight. The HLT_j35 trigger is random at L1 level,
whereas the HLT_j45 trigger is L1 calo-based.

loose (tight) cleaning in top (bottom) plots and for EMTopo (EMPFlow) jets in left (right) plots.
The first thing to notice is the additional peaks at ±20-25 ns, comparable with the time interval
between bunch-crossings. The jets forming the additional peaks are out-of-time pile-up jets, which
are generated from collisions at adjacent bunch-crossings but are also reconstructed in the current
event due to the large response time of the LAr calorimeter.
In addition, we notice a reduction of those additional peaks when using EMPFlow instead of EMTopo
jets, or when using tight instead of loose cleaning. This is expected since both EMPFlow jets and
tight cleaning use information form tracks which have a better time resolution, much smaller than 25
ns, and a tracker with very fine angular widths, and thus no out-of-time tracks are reconstructed in
the event.

The other interesting thing to notice in figure 5.5 is that, for all the plots with the different jet
reconstructions and cleaning criteria, the leading jet time distributions from HLT_j35 and HLT_j45
triggers agree well in the central peak region (0 ± 10ns) and disagree significantly outside that
region specially at the location of the additional peaks. HLT_j35 trigger has more (out-of-time) jets,
compatible with what is seen in figures 5.3 and 5.4 where the ratio is higher than unity. As already
mentioned, the low pT triggers are random at L1 level. Although the HLT pT thresholds are different
between triggers, they don’t have an effect if the two triggers being compared are fully efficient in the
pT range considered, as is the case here. An important difference between L1 and HLT jets is that for
the former only integrates over the current bunch-crossing, whereas the latter integrates over multiple
bunches. Hence, the L1 jets are much less sensitive to out-of-time activity, in contrast with HLT jets.
When a trigger includes a L1 calo-based level decision, the latter provides an important amount of
filtering of out-of-time effects. The low pT triggers, random at L1 level, lack this filtering. If, for
example, an event with no high-pT in-time jets is neighbored by an event with high-pT activity, the
HLT jets are affected by this neighboring activity and sometimes pass the HLT pT threshold. Hence,
a trigger random at L1 level is fired in this case. On the other hand, for the same example, if the
trigger requires a L1 level decision, the L1 jets most of the time don’t pass the required threshold
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and therefore prevent the trigger from firing due to neighboring energetic activity. The tight cleaning
helps rejecting some of the out-of-time activity since the out-of-time tracks are not present in the
event. The rejection is not perfect since out-of-time deposits in the calorimeter and in-time tracks
can be reconstructed in a same jet, and the requirements on track activity is passed.
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Figure 5.5: Leading jet time distributions from the two triggers HLT_j35 and HLT_j45, for loose (tight)
cleaning in top (bottom) plots and for EMTopo (EMPFlow) jets in left (right) plots. The distributions are for
jets with 75 < pT < 100 GeV where both triggers are fully efficient. The HLT_j35 trigger is random at L1
level, whereas the HLT_j45 trigger is L1 calo-based.

Applying now a time cut of± 10 ns in addition to the tight cleaning, the ratio of the pleading
T distributions

from HLT_j35 and HLT_j45 triggers is shown in figure 5.6. The disagreement at pT = 70 GeV drops
to 2-3%, and converges to unity at high pT. The time cut improves significantly the agreement
between the two triggers, although a residual difference is still present due to the wide jet time
resolution, which means out-of-time pile-up jets can sometimes have an absolute time smaller than
10 ns and are not hence removed by the time cut.

Another way to check the disagreement and the improvement is by using the ratio of pleading
T distri-

butions for loose over tight cleaning criteria from the same trigger. For in-time jets, this ratio is only
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Figure 5.6: Ratio of the pleading
T distributions from HLT_j35 and HLT_j45 single jet triggers, for EMTopo (a)

and EMPFlow (b) jets. The jet cleaning criteria used is BadTight. An additional jet time cut of ± 10 ns is
applied. The HLT_j35 trigger is random at L1 level, whereas the HLT_j45 trigger is L1 calo-based.

affected by the purity and efficiency of the two cleaning criteria, which are not dependent on the
trigger. The only difference between the ratios from the different triggers comes from the level of
sensitivity of the triggers to out-of-time activity. Figure 5.7 shows loose over tight cleaning pleading

T
distributions for four triggers, where on the bottom plots an additional time cut of ± 10 ns cut is
applied. For both EMTopo and EMPFlow jets, without a time cut, the difference between the ratios
is of the order of several percent, whereas when a time cut is applied, the agreement between the
ratios is better than a percent level. Again, from these plots, the better performance of EMPFlow jets
is visible.

As a consequence of the studies shown in this section, I use a time cut of ± 10 ns for the current
measurement. The inefficiency from such a cut is discussed in the systematic uncertainties section
5.5.4. The tight cleaning on the leading jet, which is mainly chosen to get a good purity of jets
(rejecting the majority of fake jets), is found also to help rejecting out-of-time jets. The same is true
for EMPFlow jets which are mainly chosen for their better resolution at low pT.
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Figure 5.7: Ratio of pleading
T distributions for loose over tight cleaning criteria from the same trigger. Ratios

from four different triggers are shown. The HLT_j25 and HLT_j35 triggers are random at L1 level, whereas
the HLT_j45 and HLT_j60 triggers are L1 calo-based.

5.3 Transfer matrix and binning optimization

As with every measurement, one would want to deconvolute the detector effects, resolution and
acceptance, from the observable under study. In addition to other reasons, this facilitates the com-
parison to theoretical model and the combination with other experiments. Using MC simulation of
the detector, one is able to relate the truth and reconstructed observables, jet pT for the current mea-
surement. Events at particles level are generated using Pythia MC generator and then the response of
the detector is simulated. Using the same fiducial selection to minimize the reliance on simulation
extrapolation, truth and reco jets in each event, passing the selection, are then matched together using
a geometrical matching, with a maximum distance criteria between the matched truth-reco jets of
∆R = 0.31. In addition, the matching should be bijective: if a reco jet “i” have the truth jet “j” as the

1 ∆R =
√

∆φ2 + ∆y2
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5 Precision measurement: leading jet cross-section

closest jet to it, the truth jet “j” should also have the reco jet “i” as its closets jet. Otherwise, the reco
jet “i” is considered as having no matching. Using the matched jets, I build the Monte Carlo-based
transfer matrix that is used later to deconvolute the detector effects. The unmatched jets, due to
geometrical or selection criteria, are accounted for by the matching efficiency corrections defined,
for each of the reco and truth levels, as:

ε reco =
∑

matched reco jets /
∑

(matched reco jets + unmatched reco jets),

ε truth =
∑

matched truth jets /
∑

(matched truth jets + unmatched truth jets).
(5.3)

My goal is to measure the leading jet at truth level which, due to the detector resolution, can become
a second2 jet, a third jet and so on at the reconstructed level. The flip of jet orders between truth
and reco jets is an non-negligible effect specially between the first two leading jets. For events with
very close pT for the two leading jets, the flip probability is close to 50%. The flip effect is visible in
figure 5.8 where is plotted, for each pT bin of the leading truth jets on the Y-axis, the probability of
the order of the reco jet which is matched to it on the X-axis. The probability that the leading truth jet
flips its order at reco level increases from about 9% to 40% between 100 GeV and 4 TeV. The truth
leading jet flips are dominated to the second reco jets, much less to third reco jets and even less to
fourth reco jets. Hence for the following studies, I only use the first three jet orders
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Figure 5.8: The y-axis shows pT of the leading truth jet. the x-axis shows the order of the reco jet matched to
it. The z-axis shows the probability of the order at reco level of the leading truth jet. Results using Pythia MC
simulation.

Therefore, jet orders and flipping need to be taken into account. Hence, I separate between jet orders
when the truth and reco jets are filled in the transfer matrix, which now in addition to including pT bin
migrations also includes jet order migration between the truth and reco levels due to the resolution.
2 Leading (first), sub-leading (second), sub-sub-leading (third) jets correspond to the descending pT order of jets.
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5.3 Transfer matrix and binning optimization

Considering one rapidity bin where both the matched truth and reco jets fall inside, the transfer matrix
is shown in figure 5.9. The reco level is shown in the x-axis and the truth level on the y-axis. The
matrix is split into green boxes corresponding to each combination of one reco jet order and one truth
jet order. R1 (T1), R2 (T2) and so on correspond to leading reco (truth) jets and sub-leading reco
(truth) jets respectively. Taking for example the boxes in the bottom which correspond to matched
leading truth jets (T1), entries from the different reco jet orders (R1, R2 and R3) can be seen. The
same is true for all the other truth jet orders. Needless to say, the diagonal boxes, corresponding to
no order flip, have higher entries than the non-diagonal ones.
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Figure 5.9: Transfer matrix where both jet pT bin and order migrations between truth and reco levels for
matched jets are considered. Reco level is shown in x-axis and truth level on y-axis. Jets are split between
green boxes corresponding to one reco jet order and one truth jet order. R1 (T1), R2 (T2) and so on correspond
to leading reco (truth) jets and sub-leading reco (truth) jets respectively. Inside each box, pT bin numbers are
shown. Results using Pythia MC simulation.

The probability (≡ folding) matrix “P” is derived from the transfer matrix “T” by normalizing to
unity in each truth bin:

Pij =
Tij∑
k Tkj

, (5.4)

where “i” and “j” are the indices of reco and truth bins respectively. Figure 5.10 shows the probability
matrix derived from the transfer matrix of figure 5.9.

The geometrical matching requirement of ∆R < 0.3 is comparable to the width of rapidity binning,
∆y = 0.5. Matched truth and reco jets can hence fall in different rapidity bins. For that, in addition to
jet pT and order, I also include in the transfer matrix the migration between the different rapidity bins.
Figure 5.11 shows the total transfer matrix that I use, where the new red boxes correspond to each
of the truth and reco jet rapidity bins combination (green boxes represent jet order combinations as
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Figure 5.10: Probability matrix normalized to unity in each truth bin. Results using Pythia MC simulation.

before). Migration between only adjacent rapidity bins are visible, reflecting the fact that ∆R < ∆y.

One would like to optimize the fraction of bin migration taking into consideration the three types
of migration included in the transfer matrix: pT, order and rapidity variables. The transfer matrix
migration efficiency and purity describe the fraction of events not undergoing migrations normalized
in each truth and reco bin respectively:

Efficiency(ptruth, j
T ) =

Tjj∑
i Tij

,

Purity(preco, i
T ) =

Tii∑
j Tij

,

(5.5)

where Tii ≡ Tjj are the diagonal bins corresponding to no migration situation in any of the three
variables considered. To optimize the binning, I require a minimum efficiency and purity of about
0.4 in each bin for the leading and sub-leading jets (going down to about 0.3 for few bins). If the
efficiency and purity are smaller, the bin is enlarged. In addition, for the last bins describing the limits
of the phase-space, different pT bins merging is done for the different rapidity bins giving asymmetric
bins toward the limits of the phase-space. This is needed to ensure that the efficiency and purity is
acceptable and that there are sufficient entries in those bins, without constraining the pT bins to be
identical in different rapidity bins which have different phase-space limits. Figure 5.12 shows the
efficiency and purity for each of the jet order and rapidity bins considered, as a function of pT.

In addition to the efficiency and purity requirements, some of the bin edges were shifted between
5 GeV and a maximum of 20 GeV to match the trigger turn-on thresholds and thus optimize to the
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Figure 5.11: Transfer matrix where jet pT bin, order and rapidity bin migrations between truth and reco levels
for matched jets are considered. Reco level is shown in x-axis and truth level on y-axis. Red boxes correspond
to truth and reco jet rapidity bins combination. Smaller green boxes correspond to truth and reco jet orders
combination. Results using Pythia MC simulation.

maximum statistics possible. Although the final measurement begins at 100 GeV, an additional lower
bin should be used to take into account the low pT migration from and to the additional bin, reducing
the reliance on the matching efficiency corrections and thus on simulation. The final asymmetric pT
binning that I obtained is:

(same for all y bins): [ 75, 100, 125, 154, 186, 222, 269, 323, 380, 445, 515,
0.0 ≤ |y| < 0.5: 595, 690, 800, 930, 1090, 1280, 1520, 1840, 2340, 4100 ] GeV
0.5 ≤ |y| < 1.0: 595, 690, 800, 930, 1090, 1280, 1520, 1840, 2340, 4100 ] GeV
1.0 ≤ |y| < 1.5: 595, 690, 800, 930, 1090, 1280, 1520, 1840, 4100 ] GeV
1.5 ≤ |y| < 2.0: 595, 690, 800, 930, 1090, 1280, 2340 ] GeV
2.0 ≤ |y| < 2.5: 595, 690, 800, 930, 1090, 1520 ] GeV
2.5 ≤ |y| < 3.0: 595, 690, 800, 1520 ] GeV
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310 reco
T

p

0

0.2

0.4

0.6

0.8

1

T
M

 M
ig

ra
tio

n 
P

ur
ity ATLAS Internal

Pythia MC16d
Sub-Leading jet

 |y| < 0.5≤0.0 
 |y| < 1.0≤0.5 
 |y| < 1.5≤1.0 

 |y| < 2.0≤1.5 
 |y| < 2.5≤2.0 
 |y| < 3.0≤2.5 

(d) Purity - Sub-leading jet
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Figure 5.12: Transfer matrix migration efficiency and purity for each of the jet order and rapidity bins, as a
function of pT. Results using Pythia MC simulation.
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5.4 Unfolding

5.4 Unfolding

The transfer matrix obtained in the previous section depends on the particle level MC simulation
(here Pythia is used) and the detector response simulation. For the latter, after the application of the
full chain of calibration as described in chapter 2.3.3 including the in-situ calibration for data, the jet
energy scales and resolutions of both data and simulation at reconstructed level agree with each other,
and any difference is covered by dedicated uncertainties. The improvement of the latter is already done
in the calibration phase. For the particle level simulation spectrum, we know that it is not perfect, due
for example to the missing orders in the simulation. In addition, we are also looking for new physics
signal which is not considered in the simulation. Therefore, when unfolding the data, we do not want
to be biased by the particle spectrum of the simulation. A naive method consists of first normalizing
the transfer matrix in each truth bin yielding what is called the global folding matrix, the matrix
containing the reconstruction probability density of a truth/particle level observable as described in
the direct search chapter 4.3. Next, the matrix is inverted to get the global unfolding matrix (that is
used afterward in the multiplication with the data spectrum); this method does not work since the
fluctuations from low entry bins are propagated to the high entry ones destroying the precision of the
result. Several unfolding methods exist that regularize the unfolding and improve the particle level
input spectrum in the transfer matrix. A very powerful method, called IDS (iterative, dynamically
stabilized) method [99, 100], is used extensively in the different jet cross-section measurements and
is found to achieve small biases on the unfolded data spectrum. I focus, next, only on this method
which is used for the leading jet measurement.

5.4.1 The IDS unfolding method

The unfolding consists of three steps, where the first (last) step is just a matching efficiency factor
multiplication (division) to correct for the unmatched reconstructed (truth) jets due to acceptance or
matching criteria (the factors are defined in equation 5.3). The second step, the most complex one,
uses the transfer matrix already discussed before and hence only the matched truth-reconstructed jet
pairs. Let me detail this second step here. The idea of the IDSmethod is to improve the transfer matrix
used for the unfolding (only the particle level spectrum part) through iterations while providing a
dynamic stabilization of several relevant variables, for example, those related to statistical fluctuation
of data, large narrow new signals, background subtraction ... Many of the stabilization procedures
are not necessary in this analysis and are omitted from the next formulas. The folding and unfolding
probabilities are defined as:

Pij =
Tij∑
k Tkj

and P̃ij =
Tij∑
k Tik

, (5.6)

where the folding (unfolding) probability corresponds to the probability of an entry in a reconstructed
bin “i” (truth bin “j”) to come from an entry in a truth bin “j” (reconstructed bin “i”). Defining the
global normalization to be applied to simulation as Ndata/NMC, the unfolding is given by:

uj = tj
Ndata
NMC

+
∑

k
F ∆dkP̃kj + (1 − F )∆dkδkj, (5.7)
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5 Precision measurement: leading jet cross-section

where uj is the unfolded data in a bin “j”, tj is the simulation entries in the same bin, F is a
regularization function, and the difference between data and simulation at reconstructed level is given
by ∆dk = dk − rk ×Ndata/NMC (dk and rk are the data and reconstructed simulation entries in bin “k”).
The first contribution in equation 5.7 is just the truth entries in the same bin as the unfolded data
multiplied by the global normalization factor. The second and third contributions account for the
propagation of differences between data and reconstructed simulation, where the former propagates
a fraction F using the unfolding probabilities, whereas the latter puts all the remaining entries in the
same unfolding bin. The regularization function defines the fraction to be propagated and the fraction
to be kept in the same bin, stabilizing the unfolding against statistical fluctuations of the data. The
function F needs to be a monotone equation bounded between 0 and 1; the one used here is defined
as:

F = 1 − exp

−

(
∆dk
λσ

)2
, (5.8)

where σ is the data statistical uncertainties and λ is a regularization parameter. The regularization
method is local, in the sense that it does not impose global constrains on the shape of the unfolded
distribution and corrects the transfer matrix locally in each truth bin for the differences with respect
to the unfolded data.

The next step is to improve the transfer matrix which improves the unfolding probability. The folding
probability is not changed since it is only related to the detector response simulation which is not
changed in the unfolding methods. Defining the difference between data and simulation at truth
level as ∆uj = uj/(Ndata/NMC) − tj, the difference in each truth bin “j” is propagated to each of the
reconstructed bins “i” through the folding probabilities by:

T′ij = Tij + ∆ujPij. (5.9)

After each iteration of the unfolding and the matrix improvement, the differences between data and
simulation are reduced as I show later. In some cases, the second term of the equation can also be
regularized by a function F to reduce spurious effects; this is not needed here. One would want to
build a test to decide on the number of iterations needed. A simple one can be to evaluate the amount
of the change of the unfolded data between successive iterations and stop when the improvement is
less than some factor. In my case, I am using a data-driven closure test to estimate the bias induced by
the non-perfect simulation spectra and to choose based on the bias the number of iterations needed.

To properly propagate the statistical uncertainties on the final unfolded results and calculate their
correlations, the Bootstrap method (refer to chapter 3.1.4) is used where pseudo-experiments are
generated fluctuating both the data events used to fill the detector level spectra and the MC simulation
events used to fill the transfermatrix. In addition, pseudo-experiments on either data orMC simulation
events are also used to compare the individual data or simulation contributions to the statistical
uncertainties and their correlations.

5.4.2 Data-driven closure test and bias estimation

The bias comes from the remaining differences, after the iterative transfer matrix improvement,
between the unfolded data and the truth spectra which also leads to difference between data and
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reconstructed spectra. The bias is estimated using a data-driven closure test. The aim is to use a
reconstructedMC spectrum, which is very close to the data and for which the truth spectrum is known,
as a pseudo-data and unfold it using the nominal procedure used to unfold the data. For that, the truth
MC spectrum is reweighted by a smooth function in such a way that the agreement between the data
and the reconstructedMC spectrum (obtained from the reweighted truth spectrum convoluted with the
detector response) is improved. As for all the steps of the unfolding, the detector response (≡ folding)
matrix is not changed. To make the reweighted reco spectrum more representative of the available
data, its relative statistical uncertainties are matched to the ones from data. The reweighted reco
spectrum is now used as pseudo-data and unfolded using the same unfolding procedure for the data.
The difference between the unfolded reweighted reco spectrum and the reweighted truth spectrum is
the bias of the unfolding method, since the reweighted truth spectrum is the true/expected spectrum.
The unfolding is iterated until the bias becomes of the same order of the statistical uncertainties, or,
as I use next, until the sum of the statistical and bias uncertainties is minimized. The IDS method has
shown that it can reduce significantly the bias without deteriorating the statistical precision, which
is why it is chosen here as the unfolding method to be used, especially since I use a transfer matrix
with jet orders for which the individual spectra are not expected to be well modeled by the simulation
(they can not describe the data better than the inclusive spectrum).

5.4.3 Tuning and results

As a first step, let me show how, through iterations, the MC simulation spectra at truth and recon-
structed levels are improved. In figure 5.13(a), I show the ratio between the data and the modifiedMC
reco leading jet spectra for multiple numbers of unfolding iterations as a function of the leading jet
bin number, where all the rapidity bins are shown consecutively and separated by the dashed vertical
lines (from the most central at the left to the most forward at the right). Although not shown here,
the unfolding and the improvement of the transfer matrix is done simultaneously for all the three
jet orders. 0 iteration means that the transfer matrix is not changed; only the global normalization
between data and MC simulation is applied. It is clear that for 0 iteration, the spectra difference at
detector level is significantly high, higher than 5% for the majority of bins and up to 20% in some
bins. The difference in the shapes of the two spectra also shows some rapidity dependent structure.
After 1 iteration (≡ 1 round of improvement), the difference is considerably reduced and becomes
lower than 5% except for few bins with large statistical fluctuations. The improvement is not yet
perfect, so I tested more iterations. For 5 iterations and more, the difference becomes smaller than
1%.

The same is true for the ratio between the unfolded data and the modified truth MC spectra, where
the difference is significantly high for 0 iteration and is reduced to less than 1% fro 5 iterations and
more. This can be seen in figure 5.13(b). Let me note that here, both the unfolded data and the truth
spectra are affected by the improvement of the transfer matrix and hence the unfolding. In previous
analyses like inclusive jet cross-section where no jet orders are considered, only one iteration is found
to be enough. In this measurement, the jet orders are taken into consideration in the transfer matrix,
resulting in significant entries far from the matrix diagonal (as can be seen in figure 5.11) and also in
additional correlations. Therefore, more iterations are needed to improve the transfer matrix. Also
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in this measurement, the jet rapidity migrations are taken into account increasing the bin migrations,
but their effect on the matrix improvement is found to be small.

The last figure showed the importance and the effect of iterations on correcting the transfer matrix.
The real metric to choose the optimum number of iterations is through the data driven closure test.
In figure 5.14, I show separately the statistical uncertainties in a) and the unfolding bias in b) of the
unfolded leading jet distribution for multiple numbers of unfolding iterations on the top pads, and the
ratio to 0 iteration on the bottom pads. As expected, the statistical uncertainties increase the more
we iterate due to the anti-correlations that are created by the iterations as I show later. For the bias,
the iterations drastically reduce it from few percent to less than 0.5% in the majority of bins after 5
iterations. The more we iterate, the more the bias is reduced; it is less than 0.05% in the majority
of bins after 10 iterations. For 0 iteration, the bias is the largest in most of the bins. Since the
two uncertainties behave oppositely with respect to the iterations, the optimization of the number of
iterations is therefore to minimize the (quadratic) sum of the two.

The total statistical and bias uncertainties of the unfolded leading jet are shown in figure 5.14(c).
The improvement between 0 or 1 iteration and 5 and more iterations is clear in the majority of bins,
except for some fluctuations. Between 5, 8 and 10 iterations, the improvement fluctuates from bin to
bin. In some bins, the unfolding with 10 iterations has smaller total uncertainty, while in other bins,
it is the unfolding with 5 iterations. Having more than 5 iterations does not show a decisive benefit
while increasing the (anti-) correlations and being more prone to irregular spurious fluctuations. For
those reasons, I choose to use the unfolding with 5 interactions as the nominal one. Using the same
procedure, I also optimize the regularization parameter λ introduced in the IDS section, and I found
the optimal value to be equal to 1.

Figure 5.15 shows, in the most central rapidity bin, the leading jet pT distributions for data and for the
unfolded data on the top pad, and their ratio on the bottom one. The unfolded data is shifted toward
lower pT values, which is an expected effect of the resolution on an increasingly falling spectrum.

The effect of the iterative unfolding on the correlations between the unfolded data bins can be
seen by comparing correlation matrices for 0 and 5 iterations. In figure 5.16, I show, only for the
most central rapidity bin for better visibility, the full correlation matrices (including both data and
simulation effects calculated using the Bootstrap method) of the unfolded results for the three jets
orders considered in this analysis for 0 and 5 iterations. For 0 iteration, positive correlations are
visible between the leading and sub-leading jets, notably when the two are in the same pT bin. For 5
iterations, those correlations do not exist anymore. In addition, anti-correlations in the bins adjacent
to the diagonal now appear.
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Figure 5.13: Ratio between data and the modified MC reco leading jet spectra in a) and between unfolded data
and the modified MC truth leading jet spectra in b) for multiple numbers of unfolding iterations as a function
of the leading jet bin number, where all the rapidity bins are shown consecutively and separated by the dashed
vertical lines (from the most central at the left to the most forward at the right).
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(b) Unfolded leading jet - Unfolding bias
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Figure 5.14: Statistical uncertainties in a), unfolding bias in b) and their quadratic sum in c) of the unfolded
leading jet distribution for multiple numbers of unfolding iterations on the top pads and the ratio to 0 iteration on
the bottom pads, as a function of the leading jet bin number, where all the rapidity bins are shown consecutively
and separated by the dashed vertical lines (from the most central at the left to the most forward at the right).
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Figure 5.15: Leading jet pT distributions for data and for the unfolded data on the top pad, and their ratio on
the bottom one in the most central rapidity bin.
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(b) 5 unfolding iterations

Figure 5.16: Full correlation matrices (including both data and simulation effects) of the unfolded results for
three jets orders for 0 and 5 iterations.
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5.4 Unfolding

5.4.4 The effect of jet order flips

It is important to check the effect of the jet order flips on the final unfolded data results. More
specifically, I test here the effect of including only one or two leading jets in the definition of the data
spectra and the transfer matrix used in the unfolding procedure. Taking the case of using only leading
jets as an example, the leading jets at truth or reco levels that have their order flipped for their matched
jets are not included in the transfer matrix; instead, they are accounted for by the matching efficiency
terms of the unfolding, defined in equation 5.3. The test checks if the higher reliance on efficiency
corrections induces a bias on the unfolded results. In figure 5.17, I show the ratio of the unfolded
leading jet spectra between an unfolding using only one (in black) or two (in red) leading jet orders
over the one using three leading jet orders (the nominal unfolding). The statistical uncertainty on
the ratio is shown and computed using the Bootstrap method to properly account for the correlations
between the unfolding results of the different cases. For both rapidity bins shown, the unfolding using
only leading jets shows a systematic deviation from unity with a difference up to 5%. In this case, a
non negligible bias is introduced due to the missing jet order flips not included in the transfer matrix.
On the other hand, for the case where the unfolding uses the two leading jet orders, the ratio deviation
from unity is less than a permille level. This is expected since the probability of a leading jet at reco
or truth level to become a third jet at the other level is very small. In addition, this is assuring that no
additional bias exists from not including four or more leading jet orders in the unfolding.
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Figure 5.17: The ratio of the unfolded leading jet spectra between an unfolding using only one (in black) or
two (in red) leading jet orders over the one using three leading jet orders (the nominal unfolding), in the most
central and most forward rapidity bins as a function of pT. The error bars represent the statistical uncertainty
computed using the Bootstrap method.

Event by event unfolding
It is worth noting that I tried a different unfolding method which is done event by event, as opposed
to the current method which uses the full observable spectrum. The procedure is first to assign an
unfolding probability, the probability distribution of the jet pT at particle level, for each jet of the
event based on its pT and rapidity. Next, all the probabilities are convoluted to obtain the probability
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5 Precision measurement: leading jet cross-section

distribution of the leading jet at particle level and is used to fill the observable spectrum. A second
method is to calculate, by integrating the probability distribution obtained from the convolution, the
total probability of each jet to be the leading one at particle level, and then each jet is filled with a
weight equal to the latter probability. For both methods, a non-closure is observed when performing
what is called a technical closure test. This test consists of using the same MC events to build the
transfer matrix and hence the unfolding probabilities, and to build the reco spectrum to be unfolded.
In this case, the unfolded reco spectrum and the truth spectrum should match perfectly; using this
new unfolding method, a few percent non-closure is observed. More development is needed to check
the source of this non-closure and whether it can be eliminated or if this method has a non-reducible
bias. For the rest of the analysis, the nominal IDS unfolding is used.
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5.5 Systematic uncertainties

5.5 Systematic uncertainties

5.5.1 JES

The various jet energy scale uncertainties from the jet calibration (related to both simulation and
in-situ methods) described in chapter 2.3.3 are propagated to the unfolded cross-section results. Using
each JES uncertainty, the pT of all jets in (pseudo-)data are fluctuated coherently by the uncertainty
value upward or downward (≡ ±1σ). This way, each systematic uncertainty is treated as fully
correlated across the phase space (pT, y ...) but independent of the other systematic uncertainties. For
each JES uncertainty, two new systematically variated, up and down, spectra are obtained which are
then unfolded using the nominal transfer matrix. The deviation of the unfolded variated (pseudo-)data
with respect to the unfolded nominal (pseudo-)data is the systematic uncertainty on the cross-section
coming from the JES uncertainty. Although JES uncertainties are symmetric, their effect on the
cross-section is asymmetric due essentially to the non-linearly falling spectra; that is why both up
and down variations need to be evaluated. Both data or reco-level simulation used as pseudo-data
can be used to propagate the uncertainties. The preference to use pseudo-data is its higher statistics
specially at hight pT as can be seen in figure 5.18. Hence, I use pseudo-data for the JES and also the
JER (see next section) uncertainties propagation in this analysis.
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Figure 5.18: Relative statistical uncertainties of the leading jet distribution in data and in simulation as a
function of pT.

5.5.1.1 Flavor uncertainties

For the propagation of the flavor response and composition uncertainties as introduced in chap-
ter 2.3.3.3, the gluon fraction and its uncertainty should be provided. Truth partons from the
simulation are matched to reco jets, and each jet is considered initiated by the highest pT parton
matched with it. The nominal gluon fraction is determined using all jets of the nominal Pythia MC
simulation. For the fraction uncertainty, I compare the nominal fraction with the result from different
generators, here I used Powheg-Pythia and Sherpa. In addition, since jet orders are used for the
measurement and the unfolding, I also compare the nominal fraction with the ones measured using
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5 Precision measurement: leading jet cross-section

only the leading or the sub-leading jets. The maximum deviation in each (pT,y) bin between the
nominal and all the variated fractions is taken as the uncertainty. Figure 5.19 shows in text the gluon
fraction from inclusive jets samples using Pythia, Powheg-Pythia and Sherpa MC’s as a function of
pT and y. The gray-scale represent the nominal fraction from Pythia MC. An average difference of
about 7-10% can be seen in the majority of bins.
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Figure 5.19: Gluon fractions shown in text from inclusive jets samples using Pythia, Powheg-Pythia and Sherpa
MC’s as a function of pT and y. The gray-scale represent the nominal fraction from Pythia MC.

5.5.2 JER

The uncertainties on the jet resolution are propagate by smearing the jet pT using a Gaussian function
with a variance σ2

smear = (σnominal + ∆σuncertainty)2 − σ2
nominal. When the resolution needs to be

increased, the simulation reco jets used to build the transfer matrix (TM) are smeared. A new TM
is obtained. On the other hand, when the resolution needs to be decreased, it is not straightforward
how to decrease the resolution of jets in the TM. Instead, the jets in the (pseudo-)data are smeared
giving the same effect. Hence, for the JER uncertainty propagation, jets in both (pseudo-)data and
transfer matrices are smeared depending on each region, and the unfolding is done coherently using
the variated spectrum and the variated TM for each uncertainty.

5.5.3 Luminosity

The total uncertainty on the 139 fb−1 full Run II data luminosity is 1.7%. This uncertainty is added
to the uncertainties of the unfolded leading jet distribution.
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5.5 Systematic uncertainties

5.5.4 Jet time cut

As already mentioned in section 5.2.2, I apply a jet time cut of ±10 ns to reject out-of-time jets.
Since the jet time resolution is not much smaller than the bunch-crossing interval, in-time jets can
have their time outside the ±10 ns range. Hence, an inefficiency of this cut needs to be measured
and a systematic uncertainty needs to be evaluated. This cut is, as usual, applied both to data and
to simulation. Let us first compare the jet time distributions between data and simulation to check
if the out-of-time effect is present in simulation. In figure 5.20, I show the data and simulation time
distributions in the most central and the most forward rapidity bins, and in the first pT bin in the
upper plots and their ratio in the bottom plots. Each distribution has an arbitrary y-axis where its
maximum is equal to unity to facilitate the comparison. As can be seen, the simulation has additional
bumps at ±20 − 25 ns coming from out-of-time jets. I checked also that the general shape of the
two distributions are close for all rapidity bins, except in the most forward one where the data time
distribution is much larger and more asymmetric than the simulation one. The two distributions have
differences in their jet time resolution which is reflected by the ratio being different than unity.
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Figure 5.20: Data and simulation time distributions in the upper plots and their ratio in the bottom plots in the
most central and the most forward rapidity bins, for the 100 < pT < 125 GeV range. Each distribution has an
arbitrary y-axis where its maximum is equal to unity to facilitate the comparison.

To measure the inefficiency of the cut, I first fit the core of the distribution between ±10 ns to obtain
a function F describing only the in-time jet time, and then use the relation:

inefficiency = 1 −
∫ +10
−10 F dt∫ +∞
−∞ F dt

. (5.10)

Concerning the choice of the function F , I use a double-sided crystal-ball which is flexible enough
to describe the asymmetric sides of the distribution and its large tails. The function is a Gaussian in
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5 Precision measurement: leading jet cross-section

the core and a power law in the tails with the two sides asymmetric and defined as follows:

F = N ×

���������������

AL(BL − x−x̄
σL

)−nL, for x−x̄
σL
≤ −αL,

exp
(
− (x−x̄)2

2σ2
L

)
, for − αL <

x−x̄
σL
≤ 0,

exp
(
− (x−x̄)2

2σ2
R

)
, for 0 < x−x̄

σR
≤ αR,

AR(BR − x−x̄
σR

)−nR, for αR ≤ x−x̄
σL
.

(5.11)

The function depends on 8 parameters, x̄, σL, σR, nL, nR, αL, αR and N (A and B parameters are
functions of n and α). Figure 5.21 shows two data jet time distributions in the most central and the
most forward bins, their fits with the function F and the inefficiencies of a±10 ns cut. The fit function
inside the fit range is drawn in a solid line, whereas the dashed line represents its extrapolation. A
noticeable behavior in both data and simulation is that the forward bins have less out-of-time jets and
hence higher efficiency. In addition, the higher the pT regions is, the less out-of-time jets exist. The
asymmetric distributions and fits are also visible in the figure.
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Figure 5.21: Data jet time distributions and their fits in the most central and the most forward bins, for the
100 < pT < 125 GeV range. The inefficiencies of a ±10 ns cut are also shown.

Table 5.3 summarize the inefficiencies of a time cut on the leading jets in the lowest two pT bins and
the different rapidity bin in data and simulation. Let me recall that the bin 75 < pT < 100 GeV is
only used for the unfolding step and dropped for the final result. The dependence of the inefficiency
described before with respect to pT and rapidity can be clearly seen in the table. The simulation
not only shows the same dependence, but also has inefficiency values comparable to the data ones;
the differences being at most about 1‰. Therefore, the unfolding will correct the majority of this
inefficiency. In addition, for the first bin to be used for the final measurement (100 < pT < 125 GeV),
the maximum inefficiency is just 2.2‰. For the next pT bin (not shown here), the inefficiencies drop
to negligible values. I also checked the inefficiencies on the sub-leading jets time cut. The general
behavior is the same as for the leading jet with slightly smaller values.

As the inefficiencies are small and comparable between data and simulation, there is no need to
propagate the inefficiency using the unfolding from the detector level to the particle level. I consider
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5.5 Systematic uncertainties

Table 5.3: Inefficiencies of a ±10 ns time cut on the leading jets in the lowest two pT bins and the different
rapidity bins in data and simulation.

Data Simulation Data Simulation

y 75 < pT < 100 75 < pT < 100 100 < pT < 125 100 < pT < 125 GeV

0.0 < |y| < 0.5 4.0 ‰ 5.5 ‰ 0.7 ‰ 0.7 ‰

0.5 < |y| < 1.0 9.4 ‰ 9.4 ‰ 1.6 ‰ 1.3 ‰

1.0 < |y| < 1.5 14.4 ‰ 13.8 ‰ 2.2 ‰ 1.6 ‰

1.5 < |y| < 2.0 4.5 ‰ 4.5 ‰ 0.6 ‰ 0.3 ‰

2.0 < |y| < 2.5 0.7 ‰ 2.0 ‰ 0.1 ‰ 0.2 ‰

2.5 < |y| < 3.0 0.4 ‰ 0.2 ‰ 0.0 ‰ 0.0 ‰

directly the full data inefficiencies shown in the table 5.3 for the 100 < pT < 125 GeV range as a time
cut systematic uncertainty on the unfolded leading jet result. The choice of the full data inefficiencies
and not the difference between data and simulation is a more conservative choice, but it is not an
issue due to the small values of the uncertainties.

5.5.5 Jet cleaning

As we already saw in section 5.2.2, a tight cleaning on the leading jet is used to highly reject
fake jets but also helps with the rejection of out-of-time pile up. For the additional jets used in
the measurement, the second and third jets, only a loose cleaning is applied to reduce the total
inefficiency of the selection but on the same time to keep a good rejection efficiency of fake jets. Two
veto strategies for cleaning exist. The first, called event veto and used previously, rejects all the event
if any jet does not pass the required cleaning level. Its motivation is to reduce measurement biases
due to fake jets. The inconvenient is that the total inefficiency, in addition to being increased, is itself
dependent on the event kinematic, since the jet cleaning efficiency depends on the jet pT and rapidity.
The new proposal is to use a jet veto strategy, where the jet not passing the cleaning is excluded from
the accepted event jets, but the event is kept. After a jet is excluded, the jet orders are rearranged to
replace the order of the excluded jet; if for example the highest pT jet does not pass the tight cleaning
to be considered as a leading jet, it is excluded and now I test if the second highest pT jet passes
also the tight cleaning and if so it is considered as the leading jet. The motivation of this veto is to
reduce the inefficiencies, to avoid a veto which is dependent on the event kinematic and to rely on the
unfolding to correct the inefficiencies.

One would first think that a simple multiplicative factor, equal to the inverse of the inefficiency, on
the data or simulation reco spectra corrects the inefficiency effects, but this is not the case due to
the kinematic dependences and jet order migrations. In addition, I want to measure a systematic
uncertainty to cover the cleaning differences between data and simulation. In fact, the cleaning
efficiency is different between data and simulation as can be seen in figure 5.22 where the tight
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5 Precision measurement: leading jet cross-section

cleaning efficiency is shown as a function of pT and y. At low and mid pT, the efficiency in simulation
is higher, then, after 2 TeV, it becomes smaller compared to the one for the data.
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Figure 5.22: Jet tight cleaning efficiencies in data in a) and in simulation in b) as a function of pT and y.

To compare the two veto strategies and evaluate a cleaning systematic, I use the following closure
test:

• the transfer matrix (TM) used for the unfolding is constructed using the nominal procedure,
applying the simulation cleaning only on the reco jets; two TM are obtained, one for each
cleaning veto procedure,

• a pseudo-data spectrum is obtained using simulation reco jets but where the cleaning efficiency
is simulated using the data cleaning efficiency histogram of figure 5.22; same here, two TM
are obtained, one for each cleaning veto procedure,

• for each veto strategy, the corresponding pseudo-data spectrum is unfolded with the corre-
sponding TM,

• the unfolded pseudo-data spectrum is compared with the simulation truth jets one, and any
deviation is due to the difference between data and simulation cleaning.

Let me note that in MC simulation, fake jets are not simulated and thus jets not passing the cleaning
are just due to the inefficiency of the cleaning.

In figure 5.23, I show the ratio between the unfolded pseudo-data and the simulation truth spectra
for the most central and the most forward rapidity bins. As expected, the closure is not perfect and
significant deviation from unity are visible. The ratio is smaller than unity for low and mid pT and
then becomes higher than unity at high pT, as is expected from the difference of the efficiencies shown
in figure 5.22. What is interesting is the non-closure difference between the two veto strategies. The
event veto method has roughly double the non-closure compared to the jet veto method. In the central
rapidity bin and mid pT, the non-closure is on average 1.2% for the event veto method compared to
just 0.5% for the jet veto method. One additional point in favor of using the jet veto method is that
for the event veto cleaning, additional inefficiencies, not accounted for in this closure test, come from
events rejected due to the existence of real fake jets, whereas for the jet veto method only the fake jet
is removed. The evaluation of those additional inefficiencies is more tricky, but we can fairly say that
the inefficiency of event veto cleaning can be even worse.
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Figure 5.23: Ratio between unfolded pseudo-data and simulation truth spectra for the most central and the most
forward rapidity bins as a function of pT. The pseudo-data spectrum is obtained using simulation reco events
but where the cleaning efficiency is simulated using the data cleaning efficiency. The results from two cleaning
strategies are shown: the event veto in black and the jet veto in red.

From the results in figure 5.23 and the above mentioned reasons, it is clear that the jet veto method has
smaller total inefficiencies and a better simulated effect; hence I use this method as the default one. I
also use the non-closure values obtained from this closure test as the cleaning systematic uncertainty
to cover the difference between data and simulation cleaning.

5.5.6 Total systematic uncertainties

The total systematic uncertainties (black line envelope) are shown in figure 5.24 and in addition
separately the JES, the JER and all the other systematic uncertainties. The statistical uncertainties
are also shown as black error bars centered at unity. As expected, the JES uncertainties dominates in
almost all bins, the total uncertainties are smallest at mid pT ranges (≈ 4% (8%) in the most central
(forward) rapidity bin) and are largest at high pT. Asymmetric systematic uncertainties are also
visible, due to the non-linearly falling spectra as a function of pT. The statistical uncertainties are
much smaller than the systematic ones (<1%) except at the phase-space limits.
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Figure 5.24: JES (red band), JER (green band), others (blue band) and total (black line envelope) systematic
uncertainties shown for the most central and most forward rapidity bins as a function of pT. The “others”
uncertainty group includes the jet cleaning, the jet time cut, the luminosity and the unfolding bias uncertainties.
The statistical uncertainties are also shown as black error bars centered at unity.

5.6 Theoretical prediction

5.6.1 Fixed order calculations

For the theoretical prediction, the first step is to perform fixed order calculations. Recalling equation
1.30 (and changing the total cross-section to a differential one),

dσpp→X =
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb fa/p(xa, µ

2
F)fb/p(xb, µ

2
F)dσ̂ab(pa, pb, µ

2
F, µ

2
R),

the differential cross-section for a scattering process is factorized into a hard perturbative partonic
sub-processes dσ̂ab convoluted with proton PDFs. The calculation of dσ hence depends on many
parameters such as the PDF inputs, the scales µF and µR, the reference value of strong coupling
constant αS and so on. If one wants to use many PDF sets from different experiments or to propagate
the uncertainties from the different inputs, the calculations become very cpu intensive. To facilitate
the predictions, the APPLGRID project [101] was developed. It consists of including a-posteriori the
convolution with the PDFs and the dependence on the scales and αS. For that, 3-dimensional grids
are used for each observable bin to store the perturbative coefficients (≡ the amplitude of the Feynman
diagrams as a function of αS) as a function of a scale and the two Bjorken-x of the two scattering
partons (a mapping is used to change the axes to optimize the 3D space). For each perturbative order
and for each type of partonic sub-processes, a 3D grid is generated. For the case of QCD interaction,
the grids are split into seven partonic sub-processes:

gg, qg, gq, qq, qq̄, qq′ and qq̄′,

where g, q and q′ denotes respectively a gluon, a quark and a different flavor quark. The perturbative
coefficients are calculated using fixed order generators 1.3.1 (with MC sampling of the phase-space);
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5.6 Theoretical prediction

for this analysis, I use the program NLOJET++. Then, one can a-posteriori convolute with the PDF
inputs, choose the reference value of αS and vary the scales by a multiplicative factor. For the
convolution with PDFs, the LHAPDF package [102] is used along HOPPET package [103] for the
evolution of the PDF to the required scale.

Using the above described method, I produced theoretical predictions for both inclusive jets and
leading jet observables. In figure 5.25, I show, for the central rapidity bin, the differential cross-
sections and the relative statistical uncertainties for each of the two observables. Both predictions
are calculated using 109 events. For the statistical uncertainties determination, the prediction in split
into N samples of equal number of events and the following relation is used: ∆stat = RMS/

√
N. The

first striking thing to notice is that, even though the same number of events are used, the leading jet
observable has much higher uncertainties, sometimes bigger than the cross-section value itself, and
that the magnitude of the uncertainty changes a lot between adjacent bins. In addition, its cross-
section fluctuates a lot and sometimes becomes even negative. This is a sign that large positive and
negative perturbative coefficients are produced in the calculation and are not well canceled.
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(b) Inclusive jets - relative statistical uncertainties
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(c) Leading jet - differential cross-section

 [GeV]
T

p
310

T
he

or
et

ic
al

 X
S

 -
 R

el
. S

ta
t. 

E
rr

or
s 

[%
]

400−

200−

0

200

400
ATLAS Internal
Lead Jet ; 0.0 < |y| < 0.5

 events910

(d) Leading jet - relative statistical uncertainties

Figure 5.25: Differential cross-sections and relative statistical uncertainties for inclusive jets (a, b) and leading
jet (c, d) observables in the central rapidity bin. The number of simulated events for each distribution is 109.
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5 Precision measurement: leading jet cross-section

Increasing the number of events by 100 fold to 1011, the leading jet cross-section becomes more
stable, no more negative values exists and the statistical uncertainties behave more regularly as shown
in figure 5.26. Still, the uncertainties are 100 times larger than the ones from inclusive jet observable
for the same number of events. This is due to the large positive and negative coefficients that widen
the distribution of the samples predictions in each bin leading to a large value of the RMS. In addition,
a 10% uncertainty is larger than what we aim, and producing much more events is not feasible. In
any case, we should dig deeper into what is the source of this behavior.
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(a) Leading jet - differential cross-section
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Figure 5.26: Differential cross-section and relative statistical uncertainty for leading jet observable in the central
rapidity bin. The number of simulated events is 1011.

As it turns out, the leading jet observable is infra-red (IR) sensitive. Let me detail the behavior of
the leading jet observable using the example diagrams of the figure 5.27. For both LO and NLO
with one virtual loop diagrams, the leading jet observable is degenerate: the event has two same pT
partons which are reconstructed as two same pT jets. In this case, I treat both of the jets as leading
and fill both of them with a 1/2 weight. For NLO with real emission diagrams, if the emission is
within the jet reconstruction cone, the same degenerate case as before is produced. On the other
hand, in the case of a real emission at a large angle, the degeneracy is broken and only one leading
jet is obtained. Considering now the IR cases of very soft real or virtual contributions, as I already
detailed in chapter 1.3.1, the diagram amplitudes are large but opposite; let me denote them M
and −M respectively. Considering multiple rapidity bins and that the two jets “a” and “b” are in
different rapidity bins ya and yb, the sum of the contributions from real and virtual diagrams are
Mreal − 0.5Mvirtual in ya bin, and −0.5Mvirtual in yb bins. As can be seen, the cancellation of large
contributions is unsatisfied. Of course, the additional case of the parton “a” being the one who emits
the radiation should be considered, which after being added the cancellation is satisfied. Hence, if
when simulating the phase-space only one emission from one side is simulated, the cancellation is
not perfect leading to large positive or negative contributions and thus large fluctuations between the
results of the different samples. This is what I meant by IR sensitivity. Let me note that, for the sake
of clarity, I did not mention here the counter terms that are used to subtract the divergences in each
type of NLO diagrams, and since when adding all the contributions their effect cancels.

To verify my conclusion on the behavior of the leading jet observable and its IR sensitivity, I produced

200



5.6 Theoretical prediction

q

q

g
g

q

q

q

q Jet "a": leading

Jet "b": leading

Jet "a": leading

Jet "b": leading

Jet "a": leading

Jet "b": leading

Jet "a": leading

Jet "b": sub-leading

Jet "c": third jet from
large angle radiation

LO NLO with virtual loop NLO with real emission

Figure 5.27: Examples of Feynman diagrams for the different fixed order contributions, LO, NLO with virtual
loop or real emission. The reconstructed jets in each diagram are shown along their pT orders.

theoretical predictions using an inclusive rapidity bin 0 < |y| < 3. Figure 5.28 shows the results
using 109 events. As can be seen, no negative or large fluctuations are observed, and the statistical
uncertainties are at a permille level even with moderate number of simulated events. This test agrees
with what is expected from the IR sensitivity explanation given before.
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(a) Leading jet - differential cross-section
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Figure 5.28: Differential cross-section and relative statistical uncertainty for leading jet observable using one
inclusive rapidity bin. The number of simulated events is 109.

Back to the multiple rapidity bins case, to try to stabilize the prediction, I test an approach forcing the
large diagram amplitudes from real emissions to cancel out with the virtual ones. For that, I define
a cut-off value Λ when comparing the first two leading jets in an event, below which I consider the
leading jet is degenerate and consider both jets as leading, same as in the LO case. The regularization
cut-off can be defined in absolute or relative values and the leading jet is considered degenerate if the
following condition is met:

absolute case : pj 1T − p
j 2
T < Λ,

relative case : (pj 1T − p
j 2
T )/pj 1T < Λ.

(5.12)
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5 Precision measurement: leading jet cross-section

It is useful to note that for such cases, when the second leading jet is used to fill histograms, its
actual pT, p

j 2
T , is used (although is is slightly smalled than pj 1T ). This cut-off forces diagrams with

large contributions from very soft emissions, and hence passing the regularization condition, to be
considered degenerate, same as the opposite large contributions from the virtual loop diagrams; thus,
both the first two jets are considered as leading jets and each is assigned a weight equal 1/2 when
filling histograms. The final result should not depend on the chosen value of Λ. To test that, I vary
the value of Λ and try to find the smallest value that does not bias the final result but also reduces
the fluctuation of the original un-regularized prediction. In figure 5.29, I show cross-section results
from some of the tested Λ values using the absolute cut-off case, divided by a reference distribution
to facilitate the comparison. I use as a reference the distribution with the largest value of Λ since it
has the lowest statistical uncertainties; a compatibility with unity is hence not what is to be looked for
but rather the closeness of the result to the unregularized case within the fluctuations. Comparing the
cross-section results using Λ = 1 GeV with Λ = 0.001 GeV (black dots), the bias introduced is up to
10% at the central rapidity bin and up to 20% at the forward rapidity bin. In addition, the orientation
of the bias flips from central to forward bins, preserving the total number of entries as expected. It is
intriguing the high dependence of the result on the value ofΛ, but nevertheless we see the convergence
of the result toward the unregularized one the smaller we take Λ, which is a good sign. The effect of
the spectrum shift to lower pT, due to the fact that for a degenerate leading jet from regularization,
the second leading jet has a smaller pT than the first leading, does not explain the differences between
the results of the different Λs. Λ = 0.001 GeV result looks very close to the unregularized one (black
dots compared to green squares), have the least biases and still providing some acceptable amount
of regularization. Below this value, the regularization is not enough, and above it the biases are
significant. Therefore, for the final results, the regularization cut-off Λ = 0.001 GeV is used.
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Figure 5.29: Differential cross-section results for the leading jet observable using various cut-off Λ values for
regularization, divided by a reference (Λ = 1 GeV) to facilitate the comparison. In addition, the results using
no regularization are also shown. The number of simulated events is 1011, except for the case of Λ = 0.001 GeV
where it is 1012.

I also checked the relative cut-off casewhich did not providemore stable results and ismore aggressive
at higher pT, so it is dropped for the time being. The observable high IR sensitivity and high
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5.6 Theoretical prediction

dependence on the cut-off Λ are currently being investigated deeper by theorists, namely Alexander
Huss and his team-mates, checking for example that the logarithmic resummation is behaving well
for this observable and that the regularization is not affecting the resummation. Another approach
is currently being developed, also by Alexander Huss, where, instead of a cut-off, one matches
jets between the virtual loop (or more precisely the counter term) and the real emission diagram
and removes the degeneracy from the former by using the pT order of the latter. Taking the same
examples in figure 5.27, when a diagram with a degenerate leading jet is matched to the diagram
with a real emission, we consider the leading jet in the former to be the jet “a”, same as the latter.
The first results of this method are compared to the results using regularization and shown in figure
5.30. The compatibility between the two methods gets worse when using smaller cut-off Λ values,
hinting that the matching is introducing fake correlations between jets in different rapidity bins. More
investigations are being done. The two methods provide a good strategy for results cross-checking,
although the cut-off regularization have an advantage of being more simple to implement specially
since we want to eventually generate NNLO predictions where more diagrams with divergences exists
and the diagram matching should be done at three different levels (which is not trivial).
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Figure 5.30: Ratios of the differential cross-section results for the leading jet observable between various cut-off
Λ values and the matching regularization techniques.

Until now, I do not mention the scales that are used. First, the two, factorization and renormalization,
scales are generally taken equal to a multiplicative factor to avoid large fluctuation from logarithmic
factors of their ratio. In general for inclusive jets, the two widely used scales are pT of each jet or
pT of the leading jet in the event. In the case of the leading jet observable, the two scales are equal,
reducing the ambiguity in making a choice which naturally is pleading

T for this observable. One can
also think of including scales related to the whole event, like the simple pT sum of all jets, HT, or of
all partons, ĤT, but those are not considered for the time being.

The differential cross-sections and the relative statistical uncertainties for the different rapidity bins
using Λ = 0.001 GeV are shown in figure 5.31.
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(a) Leading jet - differential cross-section
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Figure 5.31: Differential cross-sections and relative statistical uncertainties for leading jet observable for the
different rapidity bins, using a cut-off regularization Λ = 0.001 GeV and pT leading scales. The number of
simulated events is 1012.

5.6.2 Fixed order vs truth MC simulation

It is useful also to compare the fixed order predictions with the results using truth levelMC simulation.
In figure 5.32, I show the comparison with three generators, Pythia (LO), PowhegPythia (NLO) and
Sherpa (NLO), for two rapidity regions. Differences in the normalization and also in the spectrum
shapes are visible and vary between the different rapidity bins. The compatibility of the predictions
with LO generator results is not expected. On the other hand, the differences between the predictions
and the NLO generator results are larger than one would expect. Part of the difference could be
because of still a residual IR sensitivity of the predictions. At the same time, the non-compatibility
between the two NLO generators is significant and the theoretical predictions in central rapidity
bins lie in between the two NLO simulation results, indicating that the total difference between the
predictions and the simulations are not just a bias in the predictions side.
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Figure 5.32: Ratios of the leading jet cross-section using truth level MC simulations to the theoretical predic-
tions one for two rapidity bins as a function of pT. Pythia (LO), PowhegPythia (NLO) and Sherpa (NLO)
generators are shown in black, red and blue respectively.

5.6.3 Theoretical systematic uncertainties

The three systematic uncertainties considered here on the partonic predictions are coming from
missing orders (≡ scales uncertainties) and from the propagation of the reference αS and PDF uncer-
tainties. To evaluate the uncertainties from missing perturbative orders, no exact procedure exists. A
convention is widely used to variate the renormalization and factorization scales (independently or
together) by factors of two, upward and downward. The envelope of all the variations is taken as the
scales uncertainty. This procedure in principle covers the variation of the predictions when including
an additional higher perturbative order, except when new production channels are introduced in the
added order. In figure 5.33, I show, for all the different scales variation, the ratio of the differential
cross-section to the nominal one in the most central and the most forward rapidity bins. The PDF
set used is CT14nnlo. For forward rapidity and high pT bins, corresponding to the phase-space limit
region, the scales uncertainties decreases. I checked that this behavior is not present in the case of
the inclusive jets observable. The last two pT bins of figure 5.33(b), from 800 GeVto 1090 GeV, are
combined when comparing afterward with data to have the same binning as data.

The PDF sets provides, in addition to the nominal one, several variated fit functions corresponding
to their different uncertainty sources. The variated functions are given in uncorrelated eigenvectors,
hence they are considered independently when propagating the uncertainties. The variated cross-
sections are calculated using each of the variated PDF, and the uncertainties are added in quadrature.
Although usually the variated PDF are given symmetric for upward and downward variations, they
are propagated and summed separately since when convoluted with the partonic sub-processes, dσ̂,
the uncertainties become non-symmetric. One more detail is that for many PDF sets, the variations
are given for a C.L. = 90%. In this case, the uncertainties are divided by a factor of 1.645 to shift
them back to C.L. = 68% (≡ 1σ variation).

The reference value of αS, usually given at the Z boson mass, is fluctuated by ±1σ of its full
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Figure 5.33: Ratio of the differential cross-sections from the scales variation to the nominal one in the most
central and the most forward rapidity bins as a function of pT. The PDF set used is CT14nnlo.

uncertainty. In this thesis, I use the world average from the PDG book [1]: αS(M2
Z) = 0.118± 0.001.

Needless to say, the value of αS is taken the same in the calculation of the partonic sub-processes, dσ̂,
and in the PDF fits (PDF fits are given for several αS values). In figure 5.34, I show the systematic
deviations of the cross-section for each of the three systematic sources, alongwith their quadratic sum,
for the most central and the most forward bins. It is noticeable that the uncertainties are dominated
by the scales one for both rapidity bins.

 [GeV]
T

p
310

0σ
 / 

d
σ

S
ys

te
m

at
ic

 v
ar

ia
tio

ns
: d

0.8

0.9

1

1.1

1.2

1.3

Total
Scales

PDF
Sα

ATLAS Internal
0.0 < |y| < 0.5
PDF: CT14nnlo

leading
T

 = p
F

µ = 
R

µ

(a) 0.0 < |y| < 0.5

 [GeV]
T

p
310

0σ
 / 

d
σ

S
ys

te
m

at
ic

 v
ar

ia
tio

ns
: d

0.6

0.8

1

1.2

1.4

1.6

Total
Scales

PDF
Sα

ATLAS Internal
2.5 < |y| < 3.0
PDF: CT14nnlo

leading

T
 = p

F
µ = 

R
µ

(b) 2.5 < |y| < 3.0

Figure 5.34: Systematic deviations of the double-differential cross-section of the leading jet observable for
each of the three systematic sources, scales, PDF and αS, along with their quadratic sum, for the most central
and the most forward bins. The PDF set used is CT14nnlo.

For the purpose of comparing with the uncertainties of the leading jet observable, I also show in
figure 5.35 the systematic deviations for the leading jet observable inclusive in rapidity, which as
said before is not affected by IR effects, and the inclusive jets observable in the central rapidity
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5.6 Theoretical prediction

bin. It is interesting to see that the high systematic uncertainties, dominated by the scales one, are
also present for the leading jet observable inclusive in rapidity, in contrast with the inclusive jets
observable. The dominating scales uncertainties are most likely not related to IR effects but related
to the observable itself. It is interesting to see if this behavior comes from the fact that the leading jet
observable is much more sensitive to the higher perturbative orders, or if the inclusive jets observable
is under-estimating the scales uncertainty due to the non-conservation of physics correlation. Figure
5.36 shows the ratios of the cross-section predictions at LO precision over NLO precision for the
leading jet observable and for the inclusive jets observable. For both rapidity bins I show, the ratio
for inclusive jets observable is close to unity at low pT, then increases (deceases) at high pT for the
central (forward) bin. The behavior of the leading jet observable is very different; for all (pT,y)
bins, the ratio is significantly lower than unity, ranging roughly between 0.4 and 0.7. The NLO
diagram contributions are at the same order of the LO contributions. One would then expect that
the missing higher orders still contain important corrections to the predictions, and hence the high
scales systematic uncertainties at low pT for the leading jet observable compared to the inclusive jets
observable are expected.
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Figure 5.35: Systematic deviations of the cross-section of the leading jet observable inclusive in rapidity in a)
and of the inclusive jets observable in b) for each of the three systematic sources, scales, PDF and αS, along
with their quadratic sum, for the most central and most forward bins. The PDF set used is CT14nnlo.
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jet observable in black and for the inclusive jets observable in red, for the most central and the most forward
rapidity bins as a function of pT.

5.6.4 Non-perturbative correction factors

As mentioned in chapter 1.3.3, the effects of the two non-perturbative processes, the hadronization
and the underlying event, are added to the QCD partonic predictions. As explained, the two methods
of including them are through correction factors or through a transfer matrix. Although the latter
method has more advantages, for it to be applied for this measurement, the theoretical predictions
and the transfer matrix should include the calculations for the first two or three jet orders to take
into account the jet order flips between the parton and hadron levels, same as is done for the transfer
matrix describing the detector effects. When I tried to calculate the predictions for the sub-leading
jet cross-section, it turned out that this observable is much more IR sensitive than the leading jet one.
In fact, even with the regularization applied, the cross-section in forward bins is negative. Negative
cross-sections for the sub-leading jet observable was also observed and described in the paper [104].
Hence, the use of this observable in the current version of the predictions is not possible. When/if
a better regularization of the predictions of the leading jet cross-section is developed, it would then
be interesting to calculate again the sub-leading jet cross-section. As for the third jet cross-section,
the prediction is stable and not IR sensitive. It is at first counter-intuitive, but the reason for that is
straightforward. The only diagrams contributing to the third jet cross-section are the ones with real
additional emissions. In addition, since the observable begins at 100 GeV, a natural cut-off exists for
the very soft contributions, and hence for the divergent diagrams.

Using the first method, I show in figure 5.37 the NP correction factors in the different rapidity bins
as a function of pT. First, the ratios of the leading jet observable from MC simulation at the levels
partons+showering+hadronization+UE over partons+showering are calculated. Next, the NP factors
are calculated from the fit results on the ratios to reduce the statistical fluctuations using the following
fit function:

KNP(pT) = 1 + a/pb
T, (5.13)
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5.6 Theoretical prediction

where a and b are two parameters to be fitted. For the nominal results I show, the MC generator is
Pythia with “A14NNPDF” tune. For the systematic uncertainty of this correction, the nominal results
are compared with the ones using Pythia with different tunes and the ones using a different generator
(Herwig, Sherpa ...) with the various tunes. Since at the time of writing this thesis those additional
simulations for the leading jet observable were not ready, the systematic uncertainty evaluation is
thus not included.
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Figure 5.37: The NP correction factors for the leading jet cross-section in the different rapidity bins as a
function of pT, calculated using Pythia generator with “A14NNPDF” tune.

EW correction factors
The EW correction factors (refer to chapter 1.3.4) for the leading jet cross-section are still not
available. The same IR sensitivity problem exists in the calculation of these factors, and hence their
derivation is postponed to after fully converging on the regularization of the QCD predictions, since
the same regularization techniques are to be used. Same as the case for inclusive jets, the corrections
are expected to be significant only at high pT.
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5 Precision measurement: leading jet cross-section

5.7 Results

The complete predictions using theQCDpartonic cross-sections convolutedwith various PDF sets and
multiplied by the NP correction factors are compared with the unfolded data in the different rapidity
bins as a function of pT as shown in figure 5.38. The full statistical and systematic uncertainties are
shown for the predictions as error bars on the ratios, and the ones of the measurement as a band
around unity. In the most central rapidity bin, the ratio is significantly higher than unity at low pT, but
then becomes compatible with unity for the three shown predictions at approximately 400 GeV and
stays compatible up to high pT. The more we go in the forward region, the ratio at the lowest pT does
not change much, but now the ratios in the mid and high pT becomes less and less compatible with
unity. When comparing all (pT,y) bins, the tension between the predictions and the measurement is
clear, specially at low pT or forward rapidity.

Figure 5.39 shows the comparison between the predictions and the unfolded data for the inclusive in
rapidity case, |y| < 3. Here also a tension is visible at low pT. Above about 700 GeV, the predictions
using the different PDF sets and the data are compatible. Let me note that for a pT > 650 GeV,
all jets have |y| < 3 due to kinematic limits (and considering a massless jet). It would be useful
to test if expanding the rapidity selection would improve the agreement at low pT. For that, the
forward triggers should also be used and combined with the central ones using the inclusion method
introduced in chapter 3.5.

The comparison between the LO precision predictions and the unfolded data is shown in figure 5.40
for the different rapidity bins as a function of pT. The compatibility in this case is much better, where
the deviation of the prediction/data ratio from unity is covered by the total uncertainties in most bins.
It is also noticeable that for the majority of bins the ratio is smaller than unity, whereas for the NLO
precision prediction case it is higher. It would be very interesting to see if the comparison with the
NNLO precision predictions, once they are available, would push the ratio even more upward or if it
would flip back closer to unity.

It is important to note that the current prescription to evaluate the scale uncertainties does not seem
to cover the missing higher orders for the leading jet observable predictions. Figure 5.41 shows the
LO cross-section ratios for the different scales variations to the nominal case. In the most central
rapidity bin, the maximum factors range from 1.25 to 1.35 for the different pT bins, whereas for the
most forward rapidity bin they range from 1.25 to 1.5. On the other hand, from figure 5.36, the LO
scale uncertainty factors needed to cover the difference between LO and NLO precision predictions
are about 1.54 (1/0.6) in the most central rapidity bin, and about 2 (1/0.5) to 2.5 (1/0.4) in the most
forward one. This means that in some bins, specially at low pT, the LO scale uncertainties should
be more than double to cover this difference. Usually, an under-coverage of the scale uncertainties
is observed when new production channels are introduced in the higher order, which is not the case
here. It is interesting to check if this may come from the fact that for LO diagrams, the leading jet
observable is degenerate, whereas for NLO diagrams with real emission outside the jet cone, it is not
anymore. For that, we can derive the theoretical predictions using a wider jet radius and then check
if the coverage of the scale uncertainties is improved. In addition, it would be again also important to
derive the NNLO precision predictions and check if the NLO scale uncertainties cover the difference
between the NLO and NNLO precision predictions.
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5.7 Results

Another check I did is to compare the leading jet observable predictions to the inclusive jets ones,
which is shown in figure 5.42. At LO precision (the plot on the left), the ratio is 0.5 at hight pT
and slightly higher at low pT as one would expect. The factor 0.5 comes from the fact that for LO
diagrams, the two same-pT parton are reconstructed as two same-pT jets, and hence we have in general
two entries per event in the same pT bin for the inclusive jet observable, versus one entry per event for
the leading jet observable. The only exception is if one of the two jets is outside the rapidity selection
cuts, then we get only one entry per event also for the inclusive jet observable. At NLO precision,
we expect the ratio to be larger, since for NLO diagrams with real emission outside the jet cone, the
second and third jets enter lower bins where the total entries are dominated by the leading jet due
to the steeply falling pT spectra. What we observe from the right plot of figure 5.42 is that the ratio
increase significantly, becoming higher than unity at the forward region which is unrealistic. In fact,
the higher-than-unity ratios come from the fact that the sub-leading observable has negative weights
at the forward region as described in section 5.6.4. Also, this is consistent with what is observed in
figure 5.38 where the prediction at NLO precision is significantly larger than the unfolded data for
the leading jet observable. Again, it would be useful to do this comparison once we have also the
NNLO precision predictions, since, as already found in the paper [104], negative cross-sections for
the sub-leading jet is absent at NNLO precision predictions.

Last, I show the comparison between MC truth distributions and unfolded data in figure 5.43. For
the MC distributions, only the statistical uncertainties are considered. Pythia and Powheg+Pythia
generators give distributions significantly larger than the unfolded data in all (pT,y) bins, ranging from
20% to 60%. For Pythia generator, a good agreement is not expected in the first place since it uses a
LO matrix element generator. For Powheg+Pythia generator, the level of disagreement is somehow
surprising, but this is the older version of the generator which was also found not to describe well the
third jet distribution as already detailed in chapter 3.3. On the other hand, Sherpa generator gives
distributions with a good compatibility in the central regions or at low pT; tensions exists only for
forward and mid to high pT bins.

In summary, despite the important progress on the theoretical predictions calculationwith an extensive
collaboration with theorists, tensions between the NLO predictions and the measurement are visible
as observed in figure 5.38. Nevertheless, several points for improving the predictions still exist which
can reduce those tensions. The following list is a proposal for improvement:

1. compute theNNLOprecision predictions using the same regularizationmethod; all the previous
test should be re-done to better understand the source of the tensions if still existing,

2. identify if there still exists a residual IR sensitivity of the prediction (counter terms, resumma-
tion ...) and better regularize it,

3. with better regularization and NNLO predictions, the sub-leading jet cross-section can also be
computed and the non-perturbative corrections can be applied using a transfer matrix; a check
with the KNP factors method is to be done to verify if the latter introduced a bias,

4. the EW corrections can now be computed applying the same regularization, since the IR
sensitivity is also present here,

5. possibly extend the rapidity selection to more forward regions,

6. test the prediction behavior using a wider jet radius.
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5 Precision measurement: leading jet cross-section
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Figure 5.38: Ratios of the complete theoretical predictions, using the NLO QCD partonic cross-sections
convoluted with various PDF sets and multiplied by the NP correction factors, over the unfolded data for
the leading jet observable in the different rapidity bins as a function of pT. Three PDF sets are used: CT14
(black), MMHT (red) and HERA2.0 (blue). The full statistical and systematic uncertainties are shown for the
predictions as error bars on the ratios, and the ones of the measurement as a gray band around unity.
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convoluted with various PDF sets and multiplied by the NP correction factors, over the unfolded data for the
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(red) and HERA2.0 (blue). The full statistical and systematic uncertainties are shown for the predictions as
error bars on the ratios, and the ones of the measurement as a gray band around unity.
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Figure 5.40: Ratios of the complete theoretical predictions, using the LO QCD partonic cross-sections convo-
luted with various PDF sets and multiplied by the NP correction factors, over the unfolded data for the leading
jet observable in the different rapidity bins as a function of pT. Three PDF sets are used: CT14 (black), MMHT
(red) and HERA2.0 (blue). The full statistical and systematic uncertainties are shown for the predictions as
error bars on the ratios, and the ones of the measurement as a gray band around unity.
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Figure 5.41: Ratio of the LO partonic cross-sections from the scales variation to the nominal one in the most
central and the most forward rapidity bins as a function of pT. The PDF set used is CT14nnlo.
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Figure 5.42: Ratio between the QCD partonic cross-sections of the leading jet observable over the inclusive
jets observable in the different rapidity bins as a function of pT, at LO prediction precision on the left and NLO
one on the right.
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Figure 5.43: Ratios of the truthMC over the unfolded data for the leading jet observable in the different rapidity
bins as a function of pT. Three MC generators are used: Pythia (black), Powheg+Pythia (red) and Sherpa
(blue). The full statistical and systematic uncertainties of the measurement are shown as a gray band around
unity. For the MC distributions, only the statistical uncertainties are shown as error bars.
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Conclusion

This manuscript summarizes my most important work during the three years of PhD.
I developed and implemented an important improvement for the eta-intercalibration, a jet in-situ
calibration method aiming at calibrating jets in the forward regions of the detector relative to the jets
in the central region, making it much faster using an analytic solution. This allows to use finer η
binning and hence improving the description of the peaks in the jet response as well as the closure of
the method. MC generators are compared with data to check their level of compatibility and to verify
the choice of the generators used in the calibration. In addition, the robustness of the calibration
with respect to the pile-up conditions is verified. A better trigger combination method is tested and
implemented, replacing the biased older one. After the implementation of all those improvement,
I derived the nominal values of the eta-intercalibration correction and the full uncertainties that are
used as part of the final Run II jet calibration. Currently, a paper describing all the jet calibration
methods used in Run II is being circulated within the collaboration.

On the physics analyses side, direct searches for new phenomena are very important analyses that look
for Beyond StandardModel signals. When no significant signal is observed, as it is currently the case,
exclusion limits are put on benchmark Beyond Standard Model signals or on generic shape signals.
The aim of the latter is to extend the re-interpretation of the results where new theoretical models are
compared with the generic signals and limits are evaluated on those models. Previously, the limits
on the generic signals were set at detector level, which includes the detector resolution, and hence
complicated the usability of those limits. I developed and implemented a folding technique to be used
when calculating those limits which are now evaluated at particle level, facilitating the comparison
with theoretical models and also the combination of limits obtained in different studies. The method
has also additional potential applications, like for example the interpolation between various parameter
points for which the full simulation samples were generated. The analysis, including the new folding
technique, is already published in the paper [76].

Jet cross-section measurements are the other very important analyses used to test the Standard Model
and for indirect searches of Beyond Standard Model contributions. Various observables were and are
still used to perform those analyses. A new observable was proposed to be used for the first time: the
leading jet cross-section. I had the chance to work on all the aspects of this new analysis, on both data
measurement and theoretical predictions development and implementation. From the data selection
and quality checks, to the definition of the transfer matrix, the methods previously used had to be
re-checked and some new ones to be developed. The observable, although simple in its definition,
is much more complex to be measured, compared to inclusive jets or dijet measurements, due to the
flips of jet orders between parton, hadron and detector reconstruction levels.
The theoretical predictions are very challenging to be calculated. The IR sensitivity of the observable
makes the implementation of regularizations necessary. Multiple checks are done, in addition to
comparisonswith the predictions of other observables. The full statistical and systematic uncertainties
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are calculated for both the measurement and the predictions. The final comparison between the
theoretical predictions and the measurement shows some tension in various regions. The tensions
are a challenge to improve the study, mainly on the theoretical predictions side.
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