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Résumé

Cette thèse s’intéresse au calcul de plus court chemin multicritère. Afin de mieux
comprendre le travail effectué, nous commençons par présenter le contexte dans
lequel on se place.

Plus courts chemins unicritères

Le calcul de plus court chemin dans un graphe pondéré est un problème fondamental
en algorithmique des graphes. Lors d’un déplacement dans un réseau de transport,
on peut vouloir minimiser le temps, la distance parcourue, ou encore le coût financier.
Mais cette problématique ne se limite pas à ce type de réseau. Par exemple, on peut
s’intéresser à la latence ou au coût dans des réseaux de communications.

Ce problème a été longuement étudié dans le cadre unicritère. Étant donné un
graphe dont les arcs sont pondérés par des réels, le poids d’un chemin est la somme
des poids des arcs qui le constituent. Parmi les chemins de poids minimaux, nous
n’en conservons qu’un seul, peu importe lequel. Les deux solutions les plus connues
sont les algorithmes de Dijkstra et de Bellman-Ford. Ces algorithmes ne sont hélas
pas assez performants pour de très gros graphes.

Afin d’accélérer le calcul de plus court chemin, nombre de méthodes de pré-calcul
ont été développées. Ces méthodes résument au préalable des informations sur un
graphe donné. Puis, en utilisant ces informations, un algorithme permet de trouver
rapidement un plus court chemin dans ce graphe entre n’importe quel couple de
sommets. Pour se faire une idée des performances, certaines méthodes permettent
actuellement de trouver en quelques micro-secondes un plus court chemin entre un
couple de sommets donné dans un graphe ayant des millions de sommets. Le pré-
calcul effectué en amont demande moins d’une heure, ce qui est raisonnable si l’on
souhaite ensuite pouvoir répondre à de nombreuses requêtes de plus court chemin.

Plusieurs généralisations sont pertinentes. D’une part, il est intéressant de pren-
dre en compte le dynamisme du graphe. En pratique, on remarque que l’utilisation
des transports publics dans un trajet impose des restrictions temporelles. Des
modèles permettent de prendre en compte cette composante temporelle et de nom-
breux algorithmes offrent des performances raisonnables. Cependant, l’association
de moyens de transports ayant des contraintes (train, bus) et n’en ayant pas (à
pied par exemple) n’est pas triviale et est encore actuellement sujette à beaucoup
d’améliorations.

Une autre généralisation concerne la multiplicité des critères. Dans les réseaux
de transport, le critère que l’on cherche habituellement à minimiser est le temps
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de parcours. Comme on l’a dit précédemment, ce n’est pas le seul qui peut nous
intéresser. De plus, le cadre multimodal introduit beaucoup de critères supplémen-
taires. On peut penser à l’effort physique dans le cadre d’un déplacement à vélo ou
à pied, au rejet de CO2 en voiture, ou encore au nombre de correspondances dans
les transports en commun. Bien que cette thèse se restreigne aux graphes statiques,
les graphes multimodaux sont d’une part une motivation pour la multiplicité des
critères, mais aussi un cadre plus général dans lequel intégrer nos algorithmes.

Plus courts chemins multicritères

Il est naturel de chercher à prendre en compte ces différents critères simultanément.
Étant donné d critères, les poids sont maintenant des vecteurs d-dimensionnels,
chaque dimension correspondant à un critère. De même qu’en unicritère, si plusieurs
chemins ayant les mêmes extrémités ont le même vecteur de poids, un seul nous
intéresse. Un chemin est optimal si aucun autre chemin ayant les mêmes extrémités
n’est meilleur sur tous les critères à la fois.

Une différence majeure avec le cas unicritère est que l’unicité de la longueur du
chemin optimal n’est plus garantie. En effet, l’ordre sur les chemins n’est pas total
puisqu’ils peuvent être incomparables. Prendre un hélicoptère pour se déplacer est
beaucoup plus rapide que de marcher, mais c’est aussi beaucoup plus cher. D’autres
moyens de transport, tels que le bus ou le taxi, constituent des chemins de coûts
intermédiaires. Ils sont tous incomparables pour les deux critères temps et prix. Un
ensemble de chemins représentant tous les chemins optimaux est appelé un ensemble
de Pareto.

Le problème du plus court chemin devient donc, dans le cadre multicritère, la
recherche d’ensembles de Pareto d’une source à une destination données. Le calcul
d’un ensemble de Pareto dans ce contexte a été initié par Hansen [Han80] avec deux
critères et généralisé à un nombre arbitraire de critères par Martins [Mar84] avec
une variante de l’algorithme de Dijkstra.

Tout comme le cas unicritère, bien d’autres méthodes ont par la suite été dévelop-
pées afin d’accélérer ce calcul. Cependant, la taille des ensembles de Pareto peut
rendre le calcul de ces ensembles infructueux. En effet, de simples petits graphes
artificiels permettent des construire des ensembles de Pareto de taille exponentielle
en le nombre de sommets. Bien que dans certains cas, notamment en 2D quand les
critères sont corrélés, ces ensembles restent de taille raisonnable, l’augmentation du
nombre de critères démultiplie le nombre de chemins optimaux.

Approximation

Afin de pallier à ce problème, l’approche générale est de tenter de résumer ces
ensembles de Pareto. Pour cela, on calcule ce que l’on appelle des ensembles de
Pareto approchés. Ce type d’ensemble est tel que pour tout chemin optimal, il
existe un chemin dans l’ensemble de Pareto approché, qui, sur chaque critère, n’est
pas pire que le poids du chemin optimal à une certaine constante multiplicative près.
Par exemple, si cette constante est 2, un ensemble de Pareto approché est tel que
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tout chemin optimal est au pire deux fois meilleur sur chacun des critères qu’un des
chemins de l’ensemble approché. On dit que l’ensemble approché couvre l’ensemble
de Pareto.

L’intérêt majeur de cette notion est que tout ensemble de Pareto est couvert
par un sous ensemble de chemins de taille polynomiale. Ce dernier est facilement
calculable si l’ensemble de Pareto est initialement connu. On peut donc extraire d’un
ensemble de Pareto un ensemble de chemins représentatif et de taille raisonnable.
Cependant, le problème principal est d’éviter de calculer l’ensemble de Pareto en
entier. Il est donc nécessaire que n’importe quel algorithme de calcul d’ensembles de
Pareto approchés élague des chemins optimaux durant son exécution. La difficulté
majeure est de savoir lesquels.

Il existe deux grandes familles de solutions à ce problème. L’une, théorique,
garantit que la sortie de l’algorithme couvre l’ensemble de Pareto et propose des
complexités intéressantes. En terme de complexité, la meilleure connue est celle de
Tsaggouris et Zaroliagis [TZ09]. Cependant, les différentes méthodes de cette école,
et en particulier celle de Tsaggouris et Zaroliagis, sont inutilisables en pratique
puisqu’elles élaguent trop peu de chemins optimaux.

A l’inverse, d’autres méthodes proposent un élagage brutal afin d’obtenir des
performances en pratique bien plus raisonnables [BBS13; Hrn+17]. Le problème est
que ce gain s’accompagne d’une perte importante : la sortie n’est pas nécessairement
une couverture de l’ensemble de Pareto. De plus, les complexités sont rarement
étudiées dans ce cadre.

Enfin, des compromis récents proposent de reprendre les méthodes théoriques
en les modifiant légèrement pour obtenir des performances raisonnables [BDH17].
Néanmoins, les complexités peuvent même devenir moins intéressantes que celles
correspondant à un calcul exact. Et afin d’être utilisable sur des graphes de tailles
importantes, il faut tout de même supprimer la garantie de couverture.

Une dernière difficulté est que les méthodes existantes ne garantissent pas que
la sortie n’est constituée que de chemins optimaux. Il est donc difficile de comparer
pertinemment les complexités des différents algorithmes en fonction de la taille de
leur sortie.

Contributions. Nous proposons des compromis afin d’obtenir à la fois une cou-
verture de l’ensemble de Pareto, mais aussi une complexité et des performances
raisonnables. Plus précisément, nous proposons un méta-algorithme Meta Rank
qui peut être dérivé de différentes façons pour un calcul d’ensembles de Pareto exacts
ou approchés. Ce méta algorithme est une variante de l’algorithme de Martins, et
donc de celui de Dijkstra. Une première version, Bucket, calcule des ensembles
de Pareto exacts en remplaçant la méthode naïve d’élagage utilisée par Martins par
celles de [KLP75], afin d’améliorer la complexité. Ensuite, nous proposons plusieurs
versions approchées Sector, SSector, QSSector, valables en toute dimension.

Pour le cas d = 2, nous proposons un algorithme d’approximation qui ne conserve
que des chemins optimaux. Sa complexité est, dans le pire cas, du même ordre de
grandeur que celle de l’algorithme exact de Hansen. Des expériences permettent
d’observer un gain non négligeable, ce dernier devenant vraiment intéressant lorsque
les ensembles de Pareto sont très gros, cas naturellement atteint lorsque le nombre
d de dimensions augmente.
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Theta-graphes
Dans le cas tricritère approché, notre algorithme Meta Rank peut naturellement
s’appuyer sur une structure que l’on appelle un Theta-graphe afin de déterminer
efficacement si des chemins peuvent être élagués.

Étant donné un ensemble de points dans le plan, un Theta-graphe consiste en un
graphe dont les sommets sont ces points et qui résume bien les distances entre ces
points. Pour un point donné, on découpe l’espace autour de lui en cônes d’angles
tous égaux. Ce point est relié au point le plus proche dans chaque cône. Le cas
qui nous intéresse correspond à ne prendre que six cônes. De plus, seul un cône sur
deux (en alternant) nous intéresse : on appelle ce graphe un demi-Theta-6.

Beaucoup de structures similaires existent. Pour certaines d’entre elles, notam-
ment les triangulations de Delaunay ou encore les diagrammes de Voronoï, il existe
des algorithmes de maintenance dynamique. Il est possible de rajouter ou de sup-
primer un point en mettant à jour la structure efficacement. Il n’existe cependant
pas de telle méthode pour les Theta-graphes, ni même pour les demi-Theta-6.

Contributions. Nous proposons un algorithme efficace permettant l’insertion et
la suppression d’un point dans un demi-Theta-6, et donc dans un Theta-6 aussi,
tout en préservant sa structure. Ces deux algorithmes nous permettent de proposer
TSector, une variante de Meta Rank tricritère. Ensuite, nous proposons un
algorithme, qui à partir d’un demi-Theta-6, calcule les points les plus proches dans
un cône donnée. Enfin, nous fournissons une étude détaillée d’un algorithme clas-
sique de calcul de dominant approché. Assemblé avec l’algorithme précédent, il nous
permet de proposer DSector, une autre variante de Meta Rank tricritère.
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Abstract

This thesis focuses on the computation of approximate multicriteria shortest paths.
In a multicriteria context, computing the Pareto sets, i.e. all the optimal solutions,
is often prohibitive. Many approaches consist in computing only a subset. Some
offer reasonable computation times but no guarantee about the representability, i.e.
the distribution of the subset output among the whole Pareto set. Others methods
guarantee a certain representability and interesting complexities but these are gen-
erally unpractical. Another issue is that, strictly speaking, both these approaches
usually do not guarantee that the output is really a subset of the Pareto set, i.e.
they might output non optimal paths.

First, we propose two optimizations of classical exact methods: MC Dijkstra
2D for the bicriteria case and Bucket for higher dimension cases. Then, we propose
approximation algorithms with interesting theoretical guarantees. Several of those,
Sector, SSector and QSSector, work in any dimension and their output sensi-
tive complexity is interesting. The latter being incomparable to the Pareto set size,
we propose a 2D optimization, Frame, which guarantees that the output is only
constituted by optimal paths. We deduce that Frame’s complexity is lower than
or equal to the best known exact computation algorithm. In order to evaluate the
pruning capability of Frame, we conduct an experimental study. This study shows
that our algorithm is interesting when the Pareto set sizes are large.

In order to accelerate our approximation algorithms in 3D, we study Theta-
graphs. We propose efficient algorithms for the dynamic maintenance of these
graphs. Then, we study an oriented proximity query, using a Theta-graph to find
nearest neighbors in a given direction. Finally, we detail how to apply our Theta-
graph algorithms for tricriteria shortest path computation and provide two variants
of Meta Rank called TSector and DSector.
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Chapter 1

Introduction

Moving is a fundamental action. We naturally think of a person’s journey, to get
food, to see friends, or to go to work. The same dynamic can be seen for objects, to
carry mail for example. Not only material, a displacement can operate on virtual
data, it is the case of communications via Internet.

In a generic way, we have a network, i.e. a set of vertices, connected to each other
by arcs. When walking in a city, the vertices would be the street intersections, and
an arc would be the part of a street connecting two intersections. For the Internet,
the vertices would correspond to the routers.

Organizing journeys in a network raises many problems, the most fundamental
being to find a path through the network. More specifically, one can look for the
existence of a path from one vertex to another (reachability). If we know that there
is at least one, we may want the best one in a certain sense (Shortest Path Problem).

Other problems are strongly related to these. For example, one can consider that
the network is dynamic [Cas18], or even that the variations are unknown. One must
then take into account the uncertainty of the known data on the network [Dib+13].
A related problem is that of congestion: in a transportation network, the uncertain-
ties about travel time are partly related to the fact that it depends on the number
of users on the road. Thus, one may want to avoid that everyone uses the same
road. One can then use a flow model [ZT87]. Finally, if we take the example of
mail, its distribution leads to search for the fastest mailman’s round. This problem,
known as the Traveling Salesman Problem (TSP), consists in searching for a best
Hamiltonian cycle, i.e. a best path that passes through all vertices exactly once,
starting and ending at the same given vertex. This problem is particularly difficult
since it is NP-hard [Boo75].

In this thesis, we focus on the Shortest Path Problem. The best path in a network
can be the one that traverses the least number of arcs, the one that takes the least
time, the one that costs the least, etc... How to find it?

1.1 Overview

Unicriterion setting. This problem has been studied extensively in the unicri-
terion setting. We give ourselves a graph whose arcs are weighted by real numbers.
The weight of a path is the sum of the weights of its arcs. Among the paths having
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minimal weights, we keep only one, no matter which one. The two best known
solutions to compute shortest paths are the Dijkstra and Bellman-Ford algorithms.
Unfortunately, these algorithms are not efficient enough for very large graphs.

In order to speed-up the computation of shortest paths, many precomputation
methods have been developed. These methods first summarize information about a
given graph. Then, using this information, an algorithm can quickly find a shortest
path in this graph between any pair of vertices. To get an idea of the efficiency,
some methods can find, in a few micro seconds, a shortest path between a couple
of vertices in a graph with millions of vertices. The precomputation performed
beforehand requires less than an hour, which is reasonable if one wishes to answer
many shortest path queries afterwards.

Several generalizations are relevant. First, it is interesting to take into account
the dynamism of the graph. In practice, we notice that the use of public transporta-
tion in a journey is restricted by the time. Models take into account this temporal
dimension and many algorithms offer reasonable performances. However, the as-
sociation of means of transport with constraints (train, bus) and means without
constraint (i.e. walking) is not trivial and is still subject to many improvements.

Another generalization concerns the criteria multiplicity. In transportation net-
works, the criterion that one usually wishes to minimize is travel time. However,
this is not the only criterion of interest, especially in the multimodal setting, which
introduces many more criteria. One can think of the physical effort for cycling or
walking, the CO2 rejection for driving, or the number of connections in public trans-
portation. Although this thesis is restricted to static graphs, multimodal graphs are
on the one hand a motivation for the criteria multiplicity, but also a more general
setting in which our algorithms can be integrated.

Multicriteria setting. We are interested in taking into account simultaneously
these different criteria. Given d criteria, the weights are now d-dimensional vectors,
each dimension corresponding to a criterion. Similarly to the unicriterion setting,
if several paths share the same endpoints and the same weight vector, only one is
kept. A path is optimal if no other path with the same endpoints is better on all
criteria at the same time.

A fundamental difference with the unicriteria case is that optimal paths are no
longer unique. Indeed, the order on the paths is not total since they can be incom-
parable. Taking a helicopter is much faster than walking, but it is also much more
expensive. Other means of transportation, such as bus or taxi, provide intermediate
tradeoffs. They are all incomparable for both time and financial cost. A set of
paths representing all optimal paths is called a Pareto set. In Figure 1.1, there are
two optimal paths. One has a smaller time travel while the other covers a shorter
distance.

In the multicriteria setting, the Shortest Path Problem consists in finding the
Pareto set from a given source to a destination. The computation of Pareto sets in
this context was initiated by Hansen [Han80] with two criteria and generalized to
any number of criteria by Martins [Mar84], both based on Dijkstra algorithm.

Similarly to the unicriterion case, many other methods were developed to speed
up Pareto sets computation. However, the size of the Pareto sets can make this
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Figure 1.1 – Two bicriteria shortest paths (Google Maps).

computation unpractical. Indeed, simple small artificial graphs generate exponential
size Pareto sets. In some cases, especially in 2D when the criteria are correlated,
these sets remain of reasonable size. However, the increase of the number of criteria
multiplies the number of optimal paths.

Approximation of Pareto sets. To overcome this issue, the general approach is
to try to summarize these Pareto sets. To do this, a so-called approximated Pareto
set is computed. This set is defined such that, for any optimal path, there exists
a path in the approximated Pareto set which is, on each criterion, not worse than
the weight of the optimal path multiplied by some constant. For example, if this
constant is 2, an approximated Pareto set is such that any optimal path is at worst
twice as good on each criteria as one of the paths in our approximated set. We say
that the approximated set covers the Pareto set.

A significant advantage of this notion is that any Pareto set can be covered by
a polynomial subset of paths. The latter is easily computable if the Pareto set is
initially given. We can therefore extract from a Pareto set a representative set of
paths of reasonable size. However, the main problem is to avoid computing the whole
Pareto set. It is therefore necessary that any approximated Pareto set computation
algorithm prunes optimal paths during its execution. The difficulty is to know which
ones.

There are two main groups of solutions to this problem. One, more theoretical,
guarantees that the output of the algorithm covers Pareto sets and has interesting
complexities. About the complexity, the best known is that of Tsaggouris and
Zaroliagis [TZ09]. However, the different methods of this group, and in particular the
one of Tsaggouris and Zaroliagis, are unpractical since they prune too few optimal
paths.

On the other hand, some methods propose a drastic pruning in order to obtain
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much more reasonable performances in practice. The problem is that this gain is
followed by an important loss: the output is not necessarily a coverage of Pareto
sets. Moreover, complexities are rarely studied in these approaches.

The problem we address is to find a good tradeoff in order to obtain a coverage
of the Pareto set, a reasonable complexity and good performance.

Theta-graphs. In the approximated tricriteria case, it is possible to use structures
called Theta-graphs to efficiently determine whether paths can be pruned.

Given a set of points in the plane, a Theta-graph consists in connecting these
points in a certain way. For a given point, the space around is partitioned into cones
of equal angles. This point is connected to the nearest point in each cone. The case
we are interested in corresponds to taking only six cones. Moreover, only one cone
out of two (alternating) interests us: this graph is called a half-Theta-6.

Many similar structures exist. For some of them, such as Delaunay triangulations
or Voronoi diagrams, there are dynamic maintenance algorithms. It is possible to
add or remove a point by updating the structure efficiently. However, there is no
such method for Theta-graphs, nor even for half-Theta-6. Given a solution, it would
be possible to efficiently prune tricriteria shortest paths.

In the following, we present an extension of this overview.

1.2 Unicriterion shortest paths

1.2.1 Model

A graph consists of a set of entities, called vertices, and a set of relations between
them, called arcs. For example, in a virtual social network, an account is a vertex
and when two accounts are connected, then there is an arc between them. This
relationship may be symmetrical: we are (a priori) friends of our friends. This is
the case for networks such as Facebook. We talk about undirected graphs. But
this is not always the case. Some relationships may correspond to information links,
allowing to see the content shared by a followed account. We can think of Twitter
or Instagram. We then say that the network is directed, that it is a digraph. The
undirected case can be seen as a special case of the directed one where, for each arc,
the reverse arc exists. This distinction is important, especially in the study of graph
properties [Tro+21]. Of course, this distinction is not limited to social networks. In
a transportation network, a road may be one-way or a bus trip may not take the
same route in one direction as in the other. We will therefore consider, in this thesis,
the general case of digraphs, that we will simply call graphs.

First, one may consider that the distance between two vertices is the minimum
number of arcs used to go from one to the other. We will refer to it as the u-distance.
However, this u-distance is often irrelevant. For example, let us consider that an
arc corresponds to a mean of transportation. In Lyon, to go from the University
of Lyon 1, in the north, to the Gerland neighborhood, in the south, you can take
tramway line 1 without any connection, thus with a single arc. But it takes half
the time to use this streetcar line only at the beginning, then the subway line B as
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soon as possible, which consists in two arcs. The problem is that the arcs are not
equivalent.

So we associate a weight to each arc. These weights can correspond to the time
it takes to traverse the arc, to the physical distance, or to the price. Nevertheless,
we consider for the moment only one of these criteria. The classical criteria take
only positive values. However, negative weights can be found in some cases, such as
the difference in altitude, or the battery charge of an electric car [Bau+20].

Formal definitions. More formally, a unicriterion weighted directed graph is a
triplet G = (V,A,w), with V a set of n vertices and A ⊆ V 2 a set of m arcs1. The
weight function w : A → R+ associates to each arc a a non-negative weight w(a)
in R+. For an arc a = (u, v), its starting vertex is u and its endvertex is v. A
path is a sequence (a1, a2, . . . , ak) of arcs such that the endvertex of each arc is the
starting vertex of the following arc, i.e. for each i in J1, k − 1K, if ai = (vi, vi+1)
and ai+1 = (v′i+1, v

′
i+2), then vi+1 = v′i+1. Its starting vertex is the one of a1 and its

endvertex is the one of ak. A path composed of k arcs is a k-hop path. A cycle is
a path such that its starting vertex is also its endvertex. The cost c(P ) of a k-hop
path P = (a1, . . . , ak) is the sum

∑
1≤i≤k

w(ai).

Let s and t be two vertices. A shortest path from the source s to the destination t
is a path such that no other path from s to t has a strictly smaller cost. The distance
from s to t is the cost of a shortest path from s to t. If no such path exists, we say that
the distance is infinite. Notice that the distance is unique but there might be several
shortest paths, all of them having the same cost. In general, we are interested in
finding a minimum distance path, no matter which one since we cannot differentiate
their costs. It is sometimes interesting to distinguish paths by the arcs that compose
them. However, this will not be done here.

If we allow negative weights, we must make sure that the graph does not contain
any cycle of negative cost. Otherwise we might obtain paths whose cost is as small
as we want, by taking a negative cycle enough times. If the graph does not contain
any negative cycle, we notice that a shortest path is a simple path, i.e. it passes
at most once through each vertex. Thus, between any pair of vertices, there exists
a k-hop optimal path, with k ≤ n− 1.

Problem 1. For s, t two vertices, the Unicriterion Shortest Path Problems are:

one-to-one: to find a path P such that:

c(P ) = min{c(Q)|Q path from s to t},

one-to-all: to find, for every v in V a path Pv such that:

c(Pv) = min{c(Qv)|Qv path from s to v},

all-to-all: to find, for every u, v in V , a path Pu,v such that:

c(Pu,v) = min{c(Qu,v)|Qu,v path from u to v}.
1We restrict ourselves to simple graphs for legibility reasons. The generalization for multiarcs

is straightforward.
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1.2.2 Algorithms

Computing a unicriterion shortest path has been widely studied. We present the
classical algorithms which solve the Problem 1.

Those presentations are often restricted to the distance computation, i.e. the
costs of the shortest paths. It is usually easy to complete an algorithm to compute
a corresponding shortest path. The general idea is that each distance is associated
to the penultimate vertex of a shortest path, this vertex being used to find the
antepenultimate one, etc...

All-to-all. Here, we want to compute a shortest path between any pair of vertices,
implying a quadratic space use. Graphs are therefore generally represented by weight
matrices.

The most classical solution is the Floyd-Warshall algorithm [Roy59]. It uses dy-
namic programming. If we have a list of n vertices u0, u1, . . . , un−1 and a weight
matrix (w(ui, uj))0≤i<n

0≤j<n
containing the weights of the arcs between each pair of

vertices, +∞ if such an arc does not exist. Then from this matrix, we compute
iteratively, for k ∈ J0, n− 1K, the distances between each pair of vertices passing
only through intermediate vertices of indexes less than or equal to k. Its complexity
is in O(n3).

Another method consists in using exponentiation by repeatedly squaring the
weight matrix with min-sum matrix products (we replace the sums by minima and
the products by sums). This allows to compute the distances between each pair of
vertices at an at most 2k u-distance after k iterations. Its complexity is O(n3 log n).

One-to-all. If we restrict ourselves to a single source s, classical algorithms start
from s and explore the graph with BFS variants. A BFS (Breadth-First-Search)
starting from a vertex s consists in iteratively exploring the vertices at a u-distance k,
for k from 1 to n.

The most popular algorithm is that of Dijkstra [Dij59]. The latter explores the
vertices in the order of their distance from s, and considers them as processed once it
knows their distance from s. At any time, there is a current distance d such that all
vertices at distance less than d have been processed and all unprocessed vertices are
further away. The next processed vertex is a neighbor of a processed vertex whose
distance is minimal and which is not processed yet. Depending on the data structure
used to choose the next vertex to process, we can obtain a complexity in O(nm) with
a naive search, in O(m log n) using a priority queue (Section A.3) implemented with
a binary heap, or in O(m+n log n) if the priority queue is a Fibonacci heap. In order
to guarantee the correctness of the algorithm, it is necessary to have non-negative
weights.

Another classical solution is the Bellman-Ford algorithm [Bel58]. The latter
consists in exploring the vertices in the same order as a BFS. However, once a
vertex has been processed, the known distance can be improved: the algorithm
can subsequently discover a path of lower cost but with a higher u-distance. Thus,
to go from exploring u-distance k paths to k + 1, Bellman-Ford algorithm must
(re)consider all vertices with u-distance less than or equal to k + 1. In the classical
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description of the algorithm, it even considers all, setting the other vertices to an
infinite distance. The rule for updating distances is based on dynamic programming.
It computes shortest paths using at most k + 1 arcs from those using at most k,
extending those already known with any arc at the end. This algorithm is in O(mn).
A first advantage of this method is that it allows negative weights, without negative
cycle. Another advantage is its simplicity, which can sometimes prove to be efficient
in practice.

One-to-one. The shortest path computation is often used to go from one point
to another. We want only one path, starting from a source vertex, and going to a
destination vertex. Using Dijkstra’s algorithm, we can limit the exploration of the
graph to vertices with a distance less than or equal to the destination’s one since
the vertices are processed by increasing distance. However, without prior knowledge
on the graph, we cannot avoid exploring all these vertices, being all potentially on
a wanted shortest path.

An improvement consists in providing a heuristic function on the distance from
any vertex to the destination. The A* algorithm [HNR68] is based on it. This
algorithm can be seen as a generalization of Dijkstra. In this version, the next
vertex to be processed is the one whose distance from the source, added to the
heuristic of its distance to the destination, is minimal. If the heuristic is accurate,
the exploration of the vertices is directed towards the destination.

The choice of the heuristic function is important. The latter must satisfy certain
properties in order to ensure the algorithm’s termination (positive) and correctness
(smaller than the distance in the graph). The closer it is to the distance in the
graph, the more targeted the exploration will be. This function depends on the
context. For example, in the case of a geometric graph, i.e. when the vertices have
coordinates, we can use the Euclidean distance. The latter is relevant in the case of
a road network but can be problematic in the case of a labyrinth.

k-shortest path computation. A more general problem consists in computing
a set of k paths between a same pair of vertices, such that no other path is shorter
than one of them. A desirable complication of this problem is to prohibit cycles
in the given paths. Yen proposes the algorithm with the best currently known
time complexity, in O(kn(m+n log n)) [Yen71]. Many heuristic improvements have
been proposed afterwards. For instance, Al Zoobi et al. propose several interesting
tradeoffs between the computation time and the memory used [AZCN21].

1.2.3 Speed-up

In order to accelerate the computation of a shortest path in the one-to-one case,
a widely used method is to summarize information on the graph beforehand, to
factorize exploration processing to obtain faster queries afterwards. The algorithm
is therefore split into two steps.

1. A precomputation: we build a data structure containing information about
the graph.
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2. One-to-one queries, between different pairs of vertices, using the precomputa-
tion data structure to get hints.

Once the precomputation is done, it is possible to perform as many queries as
wanted, using the same precomputation data structure. However, beware of the
dynamism of the graph. If it changes, we may have to repeat the precomputation
step. There are three main measures of performance:

• the precomputation time,

• the memory used by the data structure,

• the query time.

A very simple example consists in computing a shortest path between all pairs of
vertices, then to store their costs in a matrix of size n×n. Then, each query consists
in reading the corresponding coefficient in the matrix, in constant time. Even using
the Floyd-Warshall algorithm, both the precomputation time and the memory used
by the matrix are very high, but the query time is optimal. This method can be
interesting for small static graphs. On the other hand, as soon as the number of
vertices is large, the precomputation becomes prohibitive.

On the opposite side, Dijkstra’s algorithm has a null cost precomputation step
(there is none) but its query time is prohibitive for large graphs, about a few seconds
for a graph with tens of millions of vertices and arcs. Many methods have been
developed to offer different tradeoffs. We present here briefly the different ideas on
which they are based, referring mainly to the survey [Bas+16]. A more detailed
presentation can be found in the latter.

Goal-directed methods. Some of them, similarly to A*, are based on an explo-
ration from the source and directed towards the destination. A* itself can be seen
as a precomputation method if the heuristic requires one.

For example, the ALT algorithm [GH05] uses landmark vertices. For each of
these vertices, we precompute its distance to all the other vertices of the graph. We
can deduce a heuristic function by triangular inequality on the distance. One needs
to balance the number of landmark vertices and to choose them well to guarantee
both a reasonable precomputation step and an accurate heuristic function to obtain
efficient queries.

Another method, called Arc Flags [DGJ09], consists in partitioning the graph.
Each arc is associated to a boolean which represents whether it is on a shortest path
from its starting vertex to a vertex in each part. During the exploration of a query,
we avoid extending paths with the arcs that are not on a shortest path going to any
vertex in the part containing the destination.

Separators. Other methods are based on the use of separators. To start with a
simple example, consider that we have two islands connected by a single bridge. We
want to find a route from a source on the first island to a destination on the second
one. It is sufficient to compute a path from the source to the bridge, then from the
bridge to the destination.
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More generally, we consider a set of vertices (vertex separators [SP02]) or arcs
(arc separators [VV78]) partitioning the graph. We add shortcuts in the graph, by
connecting each pair of separator vertices (or extremities of separator arcs) by an
arc, with the distance in the initial graph as a weight. The precomputation difficulty
consists in finding a relevant separator set, not too large but partitioning the graph
in equal parts. To answer a query, we can explore the graph from the source to the
separators bounding its part, perform the same with the destination, and then use
the shortcuts to conclude.

Hierarchical methods. The use of shortcuts is also used in a hierarchical context
(Contraction Hierarchies for road networks [Gei+12]). The basic idea is that during a
journey in a road network, one tends to join roads that are more and more important
while moving away from the source. And then one goes back on smaller and smaller
roads while approaching the destination.

More formally, we sort the vertices in a chosen order, their position in this order
defining a hierarchy on the vertices. The precomputation processes the vertices in
increasing order, performing a contraction operation: for the current vertex v and
each u,w neighbors of v, if v is on a unique shortest path from u to w, then the
shortcut (u,w) is added to the graph and v is removed from the graph. The queries
are bidirectional explorations (from the source and the destination), in increasing
order positions. It only stops when the explorations are complete. Then, the algo-
rithm concatenates paths from both explorations and outputs the shortest one. It
is proven that such a path is a shortest path.

An improvement (Customizable Contraction Hierarchies [DSW14]) consists in
performing two precomputations: one without weights, long and not to be repeated,
and a second one with weights, faster. Thus, no need to start again the entire
precomputation when the weights change.

Two-hop computation. A more extreme case consists in adding shortcuts so
that only two of them are used in a given distance computation. This is the case
for the PLL algorithm (Pruned Landmark Labeling [Aki+14]). A so-called Hub
Labeling method consists in precomputing, for each vertex u, a set L(u) containing
some vertices along with there distances to u. Those sets a computed so that, for
each pair (s, t) of vertices, there exists u ∈ L(s)∩L(t) with u a vertex in a shortest
path from s to t. A query consists in computing such a u minimizing d(s, u)+d(u, t).
Then this method is applied recursively to join the pairs (s, u) and (u, t).

Practice and theory. We presented review the general ideas used to speed-up
one-to-one queries. Precomputation methods allow to speed up queries and offer
interesting tradeoffs. For example, Akiba et al. tested their PLL algorithm on dif-
ferent unweighted graphs (computing the u-distance, which is the same as putting
a weight of 1 on each arc). In this case, Dijkstra’s algorithm reduces to performing
a BFS. On an Internet subgraph of 1.7 million vertices and 11 million arcs, the
algorithm requires six minutes of precomputation time and 2.7 GB of precompu-
tation memory. The queries run in 2.3 µs while a BFS without precomputation
takes 190ms.
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Figure 1.2 – Tradeoffs between the preprocessing time and the query time for
different speed-up techniques [Bas+16].

A detailed experimental comparison has been conducted in [Bas+16]. The input
graph represents the Western Europe road network, with 18.106 vertices and 42.106

arcs. The results are depicted in Figure 1.2. Some algorithms, such as the hub
labeling ones, are not outperformed on both criteria by other algorithms. We say
that they are Pareto optimal (defined latter in Section 1.3).

The performance of precomputation methods is often context dependent and
these are heuristics. However, there are some theoretical results. Methods whose
efficiency is guaranteed are proposed if the graphs verify certain properties. For
instance, a metric on graphs called the skeleton dimension, can be defined as follow:
“the skeleton dimension is the maximum, taken over all nodes u of the graph and
all radii r > 0, of the number of distinct nodes at distance r from u in the set
of all shortest paths originating at u and having length at least 3r/2.” [KV17]. In
this thesis, Kosowski et al. present an almost-linear time algorithm to compute
each label for a hub labeling algorithm. If k is the skeleton dimension and D the
diameter of the graph, then the size of each label is in O(k log log k logD) time with
high probability.

Another classical example concerns the hierarchical contraction method. If the
tree-width of the graph with n vertices is k, then a query explores only O(k. log n)
vertices [Bau+16].
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1.2.4 Multimodal networks

Previously, the presentation was limited to static graphs. However, for some means
of transportation, the duration of a journey depends on the departure time. One
can think of the traffic flow of a road network, but it is critical while using public
transports such as bus, trains or planes. The waiting time at a bus stop depends on
the arrival time at that stop.

Temporal graphs. Several models exists. Two main ones consist either to con-
sider that the travel time of an arc is a time-dependent function (time-dependent
model), or that each departure time of a means of transport is a specific arc (time-
expanded model). In the latter case, we have a finite number of arcs (u, v, t, λ),
with u, v the two endpoints of the arc, t the departure time and λ its duration. The
set of arcs is usually called the timetable.

In this context, the notion of minimum path is no longer unique. We list four
classic kinds of temporal minimum paths:

• The earliest-arrival path, which arrives the earliest with a given departure
time. This kind of path is relevant when you end a workday at a given time
and you want to go home as soon as possible.

• The latest-departure path, which leaves the latest with a given arrival time.
This case is interesting if you have an appointment at a given time.

• The fastest path, being the path having a minimum time duration within a
given time interval. Here, imagine you have the whole day to travel, and you
just want the trip to be as quick as possible.

• The shortest path, being the path having a minimum time duration in trans-
portation (connection waiting time does not count). If during connection time,
you might find things to do, and that you only want to spend as little time as
possible in transports, then this one is for you.

Solutions. Some methods developed for static graphs can be adapted. For ex-
ample, a shortest path is computable with Dijkstra algorithm [Wu+16]. In this
article, Wu et al. presents that in order to compute earliest-arrival paths, one can
use the particular structure of temporal graphs to simplify the Dijkstra algorithm by
getting rid of the priority queue. In Dijkstra algorithm, the arcs exploration order
corresponds to the chronological order of their departure. It is therefore interesting
to have sorted the timetable beforehand. We can find a multicriteria adaptation
(whose general case will be presented later) for the computation of the fastest path,
the criteria being both the departure time and the arrival time. The last two al-
gorithms have been developed at the same time by Dibbelt et al. [Dib+13] with a
quite different formulation, under the name of CSA and pCSA.

A quite different algorithm, named RAPTOR, is based on dynamic program-
ming [DPW14]. It computes the travel times from a source to any vertex of the
graph using at most k means of transport, from the travel times using at most k−1
means of transport. It stops when no improvement is done. The solution for the
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highest found k is the earliest-arrival time. This is in practice one of the most ef-
ficient algorithm without precomputation. An adaptation, called rRaptor, enable
fastest paths computation instead of earliest-arrival ones.

Multimodal. So far, algorithms have been presented either for static graphs or
for temporal graphs. A multimodal network combine both, time-constrained means
of transport and unconstrained ones. A first difficulty is to model the union of these
two types of networks in order to adapt the existing algorithms to this case [Paj09].
This kind of network is sometimes referred to as intermodal, the term multimodal
simply referring to the combination of different means of transport, even if they are
of the same type.

Algorithms for static graphs can be used as intermediate steps. During the
exploration of a temporal graph, connections between vertices can be found in an
underlying static graph. For instance, a 2-hop precomputation technique has been
developed to be used with CSA and RAPTOR in a multimodal context [PV19].

Restrictions. When computing routes, and this is even more frequent in the mul-
timodal setting, it is common to accelerate queries by introducing some restrictions.
For instance, in a multimodal trip, walking parts are often limited to very short
times, in order to go from a train station to a bus stop across the street. But
walking for an hour may seem unreasonable.

However, Wagner et al. [WZ17] observe that, depending on whether or not long
walks are allowed, shortest paths vary significantly. This variation is striking during
off-peak hours, when public transports are scarce, but it is still significant during
rush hour.

1.3 Multicriteria shortest paths

Although travel time is the most common criterion, it is not the only one that
is interesting to minimize. In a transportation network for instance, one is often
interested in finding a path minimizing several other criteria like the distance, the
financial cost, or the physical effort.

The multiplicity of criteria is particularly important to take into account with
the development of public transportation systems, in a multimodal context. For
instance, the number of connections matters especially when time tables are uncer-
tain. Even considering only time, the notion of minimum paths is not unique as
presented in Section 1.2.4.

1.3.1 Optimal Paths

Although the multimodal context increases the number of criteria, we will restrict
ourselves to static graphs, which already offer enough challenges. As mentioned in
Section 1.2.4, our algorithms for static graph can be used as an intermediate step in
a multimodal setting.
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Formal definitions. The input of our problem is a multicriteria weighted directed
graph G = (V,A,w) of n vertices and m arcs defined on d criteria, and a source
vertex s. The graph may contain multiple arcs and loops. The weight w(a) of an
arc a is a d-dimensional vector in Rd

+. The cost c(P ) = (P1, . . . , Pd) of a k-hop
path P = (a1, . . . , ak) is the vector sum

∑
1≤i≤k

w(ai). The question is now to define

what is a shortest path.
The main approaches to tackle multicriteria shortest path computation are the

following.

Linear combination. For a given path of cost (c1, c2, . . . , cd), the first natural
approach consists in computing a linear combination of the costs, that is

∑
1≤i≤d

αici,

for some coefficients αi. The advantage of this method is that, afterwards, any
algorithm dedicated to unicriterion shortest path computation can be used. This
approach has several drawbacks: how to set up the αi’s? Does such a formula have
a semantic meaning?

Domination. We therefore prefer to keep all relevant paths. By relevant, we mean
any path such that no other path is better on all criteria at the same time. More
formally, we say that a path P dominates a path P ′ if Pi ≤ P ′i for every i ∈ J1, dK.
This dominance relation defines a partial order. If a path is dominated by another,
it is useless to consider it since we try to minimize all the criteria at once. Thus,
we define a shortest path as a path that is not dominated by any other path with a
different cost and having the same extremities.

In this manuscript, we will only consider this dominance approach.

Constrained shortest paths. A related problem consists in optimizing a single
criterion, while bounding the others. It is called the Constrained Shortest Path
Problem (CSP). A generalization allows to optimize several criteria at the same
time, keeping all the optimal paths according to the dominance relation on these
criteria, while bounding the other criteria [Shi+17].

Optimal paths. The dominance enable to define what is an optimal path: it is a
path which is not dominated by any other path having the same destination but a
different weight. Our goal is to compute these optimal paths.

1.3.2 Pareto set

We define the notion of Pareto set, representing a set of optimal paths in a multi-
criteria setting.

A Pareto set of a set T of paths is a set of incomparable2 paths from T , that
are not dominated by any other path from T with a different cost, and which is

2w.r.t. dominance
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maximal by inclusion. In particular, if several paths of T have the same cost, then
at most one is kept in a Pareto set of T . Notice that if S is a Pareto set of some
set T , then the Pareto set of S is S itself.

Problem 2. The Exact Multicriteria Shortest Path Problem consists in finding,
for each vertex v ∈ V , a Pareto set Sv of the set of all paths from s to v.

We use the notations Sv = |Sv| and S =
∑
v∈V

Sv. The values Sv and S do not

depend on the actual choices of the sets Sv, since these values derive from the size
of the unique Pareto set of the path costs.

1.4 Exact multicriteria shortest path computation

In order to solve Problem 2, the algorithms developed for dimension 1 are generalized
to the multicriteria case. The main difficulty here is that several paths having the
same destination may be of interest. We present the various existing approaches.

1.4.1 Classic algorithms

Most algorithms for multicriteria shortest path computations are based on Dijkstra
and Bellman-Ford algorithms. An attempt to unify algorithms based on those two
is addressed by Bökler et al. in [BC19]. This approach can also be found in [PS13].
The general idea is to maintain two sets of seen paths: those to be extended in T
and those already extended in S. Whenever the framework algorithm discover a
path, it might be inserted into T . In this case, it later removes the path from T
and tries to insert it into S. If successful, the algorithm tries to insert the path
extensions into T . Two classes of algorithms derive from this.

Multicriteria Label Setting (MLS). Here, setting refers to the fact that once
a path is inserted into S, it cannot be removed from it. It is guaranteed that
such a path is optimal. Therefore, S is incremental. One can for instance use a
lexicographically sorted priority queue to implement T , guaranteeing that outgoing
paths are necessarily better or incomparable to the following ones.

A version of MLS, called in this thesis MC Dijkstra, computes exact Pareto
sets for two [Han80] or more dimensions [Mar84]. When there are no multiple arcs,
it is proved in [BDH17] that MC Dijkstra in dimension d has a time complexity
in O(nS2) and uses O(nS) space, with S the size of the output. Although S can
reach Θ(n(nC)d−1) when the weights are integers bounded by a constant C, it is
very unlikely in practice to get such a size. In this context, the bicriteria algorithm
proposed by Hansen operates in O(mnC log(nC)) time. This is due to the fact that
in this framework, it is much easier, with only two criteria, to check if a path is
dominated by previously seen path.

Sometimes, MLS simply refers to Hansen’s algorithm and the letters M and S
may also stand for “Multiobjective” and “Scheme” respectively.
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Multicriteria Label Correcting (MLC). The term correcting indicates that
this time, a path inserted in S can potentially be improved later. We may therefore
have to replace it. A classical implementation of T consists in using a queue, which
causes to lose the guarantee provided by the priority queue example given for MLS.
We may therefore have to process more paths. On the other hand, the simplicity
of the queue induces a speed-up for the processing of T . Different variants are
proposed in [GM01].

The multicriteria generalization of the Bellman Ford unicriterion algorithm can
be seen as a particular case of this category. We iterate n times the same step. After
the k-th step, S contains a Pareto set of the k-hop paths. Some paths in S might
be dominated by paths containing more arcs than k. The (k + 1)-th step consists
in extending all the paths from S, inserting them in it and then keeping only the
non-dominated paths. This gives us a Pareto set of the (k+ 1)-hop paths. Here, no
need for a T structure to store some unprocessed extensions of S paths: all paths
of S are extended.

Comparisons. To compare these two categories, Paixão et al. [PS13] propose
an extensive experimental study with 27 MLS and MLC variants. They applied
the algorithms on synthetic graphs of different topologies, ranging from less than a
hundred vertices to 20000 and having 2 to 20 criteria. The authors observe that the
MLC variant with a queue is often slightly better than the other methods.

Another experimental comparison restricted to the two-dimensional case is pre-
sented in [RE09] on grids and road networks up to 300K nodes. Here again, the
MLC variant is usually more efficient and the gain can even be relatively important.
But the latter is very variable and the MLS variant is sometimes more efficient.

1.4.2 Speed-up techniques

To speed up the one-to-one queries, it is not obvious that all the unicriterion speed-
up techniques are adaptable to the multicriteria setting, and even then, they might
not be efficient for multicriteria queries.

If we allow a light preprocessing, NAMOA* [MM12; MDLC10] is a generalization
of the well-known A* search algorithm to multicriteria queries. For a given vertex,
the heuristic function does not necessarily give a unique cost since real costs are not
unique either in a multicriteria setting.

A classic preprocessing of the heuristic function consists in computing a reversed
shortest path from the destination for each criterion to build h(v) as a vector of d
dimensions. This preprocessing requires Θ(md) steps and Θ(nd) memory space.
Whenever the criteria are correlated, h(v) can be quite close to an actual minimum
cost.

NAMOA* also includes another interesting aspect of path computation, the mul-
tiobjective concept. We may want to find the nearest bakery around our home for
example. In the multicriteria setting, this question becomes all the more interesting
as several bakeries may interest us for different reasons. One may be more quickly
accessible than the others. Another one, further away, may require less effort to
walk to because there is no difference in altitude on the way. Given a set of targets,
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NAMOA* computes a Pareto set on the union of the paths going to these targets.
The word multiobjective is also sometimes used to refer to the multicriteria set-

ting, which is confusing. This term refers to the fact that a path cost is defined by
applying objective functions on the weight of its arcs. In our case, the cost of a path
is the sum of the weights of the arcs and the objective function is said to be linear.

Other unicriterion solutions have been generalized to the multicriteria case,
such as a generalization of the SHARC algorithm, based on the arc flags tech-
nique [DW09]. Finally, for temporal graphs, RAPTOR algorithm is intrinsically
multicriteria, with both the travel time and the number of connections as criteria.
This algorithm has also been generalized (MCR) to enable the addition of any other
criteria.

1.4.3 Limitations

In theory, a Pareto set can be prohibitively large. In [Han80], Hansen introduces a
bicriteria example with constant degree for which a Pareto set is exponential in the
number of vertices. As a consequence, the computation may take a lot of time and
require a significant amount of space.

Even in practice, these algorithms are often not scalable: without any prepro-
cessing, it takes a few seconds to answer a unicriterion query in a network of 18
millions vertices modeling western Europe [Bas+16]. Informally, even for a city like
Prague with 65K nodes, for a given pair of source and destination, an exact Pareto
set often contains thousands of paths for three criteria [Hrn+17] and its computation
may take around 10 minutes. Since a query can require to store all the incomparable
paths for one source, the amount of memory can be a thousand times larger than
the storage of the graph itself.

It is interesting to observe that exact Pareto sets are not always large in prac-
tice, especially if the criteria are correlated. In [MHW06], Pareto sets sizes are often
smaller than 100 for real graphs and synthetic graphs with a random weight assign-
ment. However, when the number of criteria grows and some are negatively corre-
lated, Pareto set sizes can be unpractical. Some examples can be found in [BFS19].

Conclusion. The existing solutions to Problem 2 are not practical. In order to
speed-up these computations, there are two approaches: to use precomputation
methods or to summarize Pareto sets. The latter is often used when the former is.
We will focus on the second one.

1.5 Approximation

In order to obtain reasonable computation times when Pareto sets are large, only a
sample of them may be kept. Another motivation is that in practice, a user does not
want to be given a very large number of proposals. Some would even say that giving
too many choices could decrease the relevance of the choice made. But the given
Pareto set sample must be representative of the whole set. If our criteria are time
and financial cost, we don’t want to obtain only the few fastest (and therefore most
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Figure 1.3 – {B,D} is a 2-Pareto set

expensive) paths. Instead, we would like to have an idea of the different possible
tradeoffs.

In this Section, we present different approaches to summarize Pareto sets.

1.5.1 Approximated Pareto set

To guarantee a certain representability, the notion of (1 + ε)-Pareto set has been
proposed. The idea is that for any path in a Pareto set, there exists a path in a
(1 + ε)-Pareto set which is, at worst, larger by a factor (1 + ε) on each criterion.
For example, if ε = 1 and the criteria are time and financial cost, we want that for
any optimal path, the algorithm returns a path at worst twice as slow and twice as
expensive.

More formally, a path P (1 + ε)-covers a path P ′ if Pi ≤ (1 + ε)P ′i for every
i ∈ J1, dK. A (1 + ε)-Pareto set of a set T is a set Sε of incomparable paths from T ,
such that any path of T is (1 + ε)-covered by a path in Sε. In particular, a 1-Pareto
set is a Pareto set and vice versa.

In Fig. 1.3, S = {A,B,C,D,E, F} is a Pareto set of all the paths, whereas
{B,D} is a 2-Pareto set. The two quadrants bounded by the dashed lines represent
the areas 2-covered by B and D. Note that there may be various (1+ε)-Pareto sets.
For example the set {G,D} is also a 2-Pareto set even though G /∈ S.

In this manuscript, we will summarize Pareto sets with this
approximation approach.

Problem 3. The (1+ε)-approximated Multicriteria Shortest Path Problem consists
in finding, for each vertex v ∈ V , a (1 + ε)-Pareto set Sv,ε of the set of all paths
from s to v.
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Figure 1.4 – Regions containing the incomparable paths 2-covering B

It was proved to always exist even with the constraint of having a polynomial
size in n [PY00]. More precisely, in their paper, Papadimitriou and Yannakakis show
that for any multiobjective optimization problem, there exists a (1 + ε)-Pareto set
(Sv,ε)v∈V of polynomial size in n, even if the aspect ratio is exponential in n. In our
context, they show that if the paths costs are between 1 and a constant C on each

dimension, Sv,ε can be in O

((
log(nC)

ε

)d−1
)
. It means that the output can be

quite small. But the existence of such a set does not guarantee its computability in
a reasonable time.

1.5.2 Approximation algorithms

A simple subsequent algorithm can be used to get a constant approximation of S∗ε ,
the minimum cardinality of a (1 + ε)-Pareto set. But this does not prevent the
prohibitive cost of computing exact Pareto sets. Therefore, we need to prune opti-
mal paths during the computation. We present the classical algorithms that solve
Problem 3.

Dijkstra-like algorithms (d=2). For d = 2, Hansen [Han80] proposes a solution
applying m times MC Dijkstra on the initial graph. At each iteration, an arc
weight w is chosen and the algorithm rounds the weights of the arcs according to w.

The time complexity is in O
(
m2n2

ε
log

(
n2

ε

))
.

Wang et al. develop in [Wan+16] a new algorithm called α-Dijkstra to compute
approximated constrained shortest path for d = 2. If weights are integers bounded
by C, then α-Dijkstra time complexity is in O(mnC log(nC)). This algorithm can
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be adapted in order to compute (1 + ε)-approximated Pareto sets. It prunes paths
with a variable severity, depending on the number of best paths kept at a certain
stage of the algorithm. It is designed to be used in COLA algorithm, which itself
computes approximated constrained shortest paths.

Bellman-Ford-like algorithms. In the following, weights are between 1 and a
constant C on each criterion. Warburton [War87] proposes an algorithm for any d,
calling a Bellman-Ford-like algorithm several times. Each call prunes less severely

than the previous one. Its complexity for d = 2 is in O

(
n3 log n log(nC)

ε

)
and

for d ≥ 3, it is in O

(
n3

(
n2 log(nC)

ε2

)d−1
)
. This algorithm could require less MC

Dijkstra iterations than Hansen’s, but this number is still claimed in [BC19] to
be too huge in order to be competitive in practice.

The best known complexity is obtained by Tsaggouris and Zaroliagis [TZ09], with

another Bellman-Ford-based algorithm TZ operating in O

(
nm

(
n log(nC)

ε

)d−1
)

time. The cost space is partitioned so that two costs in the same part (1 + ε)1/n-
covers each other. Only one path per part is kept. This choice of coverage is done
so that n successive prunings keep a (1 + ε)-coverage at the end.

Although interesting in theory, this solution has two major flaws in practice.
The first one is that it does not prune all dominated paths, which would increase
the complexity. The second one is that the very restrictive used coverage results in
keeping all paths, the notion of part becoming superfluous.

Hybrid solutions. Inspired from TZ, Breugem et al. [BDH17] proposed a Dijkstra-
based algorithm with TZ pruning technique. This algorithm is called Hydrid. It

runs in O

(
n3

(
n log(nC)

ε

)2d−2
)

time. The authors have made an experimental

comparison with Hydrid and TZ modified in order to prune dominated paths. For
large graphs, they use a (1 + ε)r coverage with a custom r in order to be practical.
However, with this modification, the output is no longer guaranteed to be a (1 + ε)-
approximation. A comparison is made between these two approximated Pareto sets
computations and the standard MC Dijkstra. The new Hydrid algorithm is
efficient and sometimes outperforms MC Dijkstra whenever Pareto sets are very
large. It is also interesting to notice that TZ does not prune a lot of explored paths.
It means that it can be much worse than MC Dijkstra for small Pareto sets.

Bökler et al. conduct an experimental study, with TZ, Hydrid and some vari-
ants, in order to compare these different solutions [BC19].

1.5.3 Alternative Pareto set Summaries

For large and real graphs, the computation time of guaranteed approximated Pareto
set can be too long.
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Some heuristics have been proposed and speed up drastically the computation
time, but without any guarantee [Hrn+17]. The main idea is to combine several
filtering and rounding techniques in order to prune explored paths. Unfortunately,
there is no guarantee that the outputs of these algorithms are (1 + ε)-Pareto set for
a given ε. On the city of Prague with three criteria, the time of the fastest heuristics
can divide the MC Dijkstra time by a factor of a few thousands. NAMOA* is
in-between but provides a guarantee since it computes exact Pareto sets. Using two
measures of quality on the output paths, the authors show in their experiments that
solution sets of the heuristics are quite close to Pareto sets.

Bast et al. propose the TNT filtering method, combining several heuristic meth-
ods in order to prune some optimal paths in a multimodal setting [BBS13]. These in-
clude both rounding and thresholding of weights. Moreover, combinations of means
of transport that seem absurd are pruned: the use of a private car between two
means of public transport is unlikely.

Other attempts have been done to summarize Pareto sets [BFS19; SJS15]. A
linear path skyline, defined as a subset of conventional Pareto sets, is a set of paths
optimal under a linear combination of their cost values. Multicriteria being espe-
cially relevant in a multimodal setting, a different approximation definition has been
proposed in [DDP19]. In this paper, a Pareto set is summarized by the paths such
that their projections on two specific criteria (arrival time and number of trips) are
additively not far from an optimal one. On the Munich Open StreetMap with 221K
nodes, the average number of paths is divided by 5 with respect to exact Pareto
sets.

Conclusion. To summarize, some existing solutions have nice complexities. But
in order to make them practical, the known modifications no longer guarantee to
outputs (1 + ε)-Pareto sets. Other approaches directly developed with the intention
of being practical have the same drawback. Our work aims at providing a tradeoff
between the complexity and the practicability, while guaranteeing to output (1+ε)-
Pareto sets.

1.6 Geometric graphs

In the tricriteria case, our solutions consider sets of paths of the same rank3, thus
in a same plane. In order to summarize these sets of paths efficiently, the use of
geometric planar graphs, and more specifically those called Theta-graphs, is natural.

In this Section, we present these graphs and the related notions. An important
parameter is the notion of distance considered. Depending on the distance definition,
results, algorithms and proofs can differ significantly.

1.6.1 Definitions

Let us consider a set of points V in the plane. Many structures can be defined on V .
We present the most classical ones.

3The rank of a path is the sum of its cost criteria
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Voronoi diagrams and Delaunay triangulations. One of the most interesting
structure is the Voronoi diagram of V . The plane is partitioned into cells, each one
containing a single point u ∈ V and the set of points in the plane to which u is the
nearest point in V . Its dual structure is called the Delaunay triangulation of V . The
pairs of points from V , whose Voronoi cells have one side in common, are connected
by an arc. Except for the degenerate cases, it is a triangulation of V as its name
implies. Formal definitions and study of fundamental properties of these structures
can be found in [TOG17].

Depending on the distance considered in the definition of a Voronoi diagram, we
obtain different properties on the associated Delaunay triangulation. In the case of
the Euclidean distance, the Delaunay triangulation (noted L2 Delaunay triangula-
tion) is the triangulation of the plane such that the interior of the circumscribed
circle of any triangle contains no points of V . The notion of Voronoi diagram is gen-
eralized to any convex distance. We can find a study of some properties in [AP14].

Theta graphs. Another structure consists in building a graph over V . Each point
of V is connected to its nearest neighbors around it, one by cone of angle θ. More
precisely, for u ∈ V , we partition the plane in k cones of same angle θ = 2π/k
around u, for k ≥ 2. Then, for each cone of u, we add the arc (u, v) with v a
nearest point from u in the cone of u containing v. The obtained graph depends
on the distance considered. If we use the Euclidean distance, the graph is called a
Yao-graph.

Another interesting distance is the triangular distance4. For any point v ∈ V , the
triangular distance from u to v is the Euclidean distance from u to the orthogonal
projection of v on the bisector of the cone of u containing v. The associated graph
is called a Theta-graph5 [Cla87] and is denoted Θk(V ) or Theta-k-graph of V . If V
contains n points, Θk(V ) is computable in time O(n log n) [TOG17].

On Figure 1.5, we have represented a partition in 6 cones around u. We can
see the orthogonal projection of the points around u on their associated bisector.
The point u is connected to the points a, b, c, d, e and f , each one being the point
such that the orthogonal projection is the nearest from u in its cone. We have thus
represented exactly the arcs coming out of u in the Θ6 of the represented set of
points. Notice that b is not the nearest from u in Euclidean distance in its cone.
Therefore, the Yao-graph is different from the Theta-graph for this set of points.

Half-Theta-graphs. If the number of cones is even, we say that one cone out of
two is positive, the other is negative, the disposition around the considered point
being alternated. A half-Theta-graph, noted Θ+

6 , is a Theta-graph in which only
the outgoing arcs in the positive cones are kept. On the Figure 1.5, we consider
that the positive cones are those with an arrow at the end of their bisector. The
corresponding arcs are depicted with a continuous green line. A surprising result
is that the half-Theta-6 corresponds exactly to the Delaunay triangulation for the
triangular distance (noted TD Delaunay triangulation) [Bon+10].

4Strictly speaking, this is not a distance since it is not symmetrical.
5Sometimes, it is referred to as a triangular distance Yao-graph.
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Figure 1.5 – Representation of the cones of u and the arc in each of them for k = 6.

Higher dimensions. These notions can be generalized to any number of dimen-
sion with a certain definition of the cones. If we give ourselves a set V of n points
in Rd, we can compute the Θk(V ) in time O(n log(n)d−1). For dimension 2, and
then for higher dimensions, one can find a detailed presentation of the definitions
and the construction algorithms in [NS07].

1.6.2 Spanners

In order to illustrate the relevance of these structures but also the variety of prop-
erties obtained depending on the structure considered, we present a quick overview
about spanners.

Let V ⊂ R2 be a set of n points. The geometric complete graph of V is the
graph G = (V,A) such that A consists of the edges connecting all pairs of vertices.
These edges are weighted by the distance between its ends. Depending on the chosen
distance, different results are obtained. Each edge is represented by a segment
between its extremities.

Spanners. A t-spanner of G is a subgraph G ′ of G such that any pair of vertices
from V is connected by a path in G ′ whose cost is at most t times the distance
between the two vertices in G. The factor t is usually called either the stretch factor
or the spanning ratio. This definition can be extended to any graph but is mainly
studied for geometric complete graphs.

When designing a spanner, minimizing t is not the only objective, one can also
aim at minimizing the number of edges or the fault tolerance. Some of the results
mentioned below are presented in a more complete way in [BS13].
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Planar spanners. Many works focus on the case of planar spanners, i.e. when
no edge crosses another. The results differ depending on the distance considered:

• L1 and L∞ Delaunay triangulations are
√

4 + 2
√

2-spanners [Bon+12]. This
is the best possible stretch factor in that case.

• L2 Delaunay triangulations are 1.998-spanners [Xia11].

• TD Delaunay triangulations are 2-spanners [PC89]. Since these triangulations
corresponds exactly to half-Theta-6 graphs, the latter are also 2-spanners.
Here again, the stretch factor is the best possible.

Theta-graphs and spanners. Although Theta-graphs are not planar in general,
they enable to improve the stretch factor and to bound the outgoing degree: it is
the number of cones considered [NS07].

If k ≥ 9, then Θk(V ) is a t-spanner of V with t = 1/(cos θ− sin θ) and θ = 2π/k.
From another perspective, if t > 1 is fixed, there exists a Theta-graph with a linear
number of arc and a logarithmic diameter, both in the given number of points.

In some cases, it is easy to find a path that approximate by a factor at most t
the Euclidean distance. For Theta-graphs with at least 9 cones, a simple greedy
algorithm enable to find such paths. For all points s, t ∈ V , if we start from s and
recursively go to the neighbor of the current vertex in the cone containing t, then,
not only do we arrive eventually at t, but taking a path whose cost is at most t
times the Euclidean distance between s and t.

Other spanners. The distance notion can be generalized to convex and compact
shapes containing the origin in its interior. Delaunay triangulation based on these
“distances” are spanners whose stretch factors depend only on the convex shape.
Precise stretch factors are given in [Bos+08].

1.6.3 Dynamic Euclidean Delaunay Triangulation

We have seen that the results can change depending on the distance considered.
A particularly interesting example for multicriteria shortest path computation is
the dynamic maintenance of Delaunay triangulation. Given a Delaunay triangula-
tion, how to manage the insertion or the removal of a point without recomputing
everything? We present the existing works on L2 Delaunay triangulations.

Insertion of a point. In the case of L2 Delaunay triangulations, an algorithm for
inserting a point is introduced by Guibas et al. [GS83]. A more detailed version can
be found in [GKS92]. Using this algorithm, the computation of the Delaunay trian-
gulation of a set of n points can be done incrementally, i.e. by inserting the points
one by one. Guibas et al. proved that such an incremental algorithm is in O(n log n)
expected time if, for a given set of points, the latter are taken in a random order.
This algorithm is also presented in [KMS91] with a different formalism.
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Deletion of a point. Kao et al. propose also a deletion algorithm in a L2 De-
launay triangulation. When a point is deleted, its neighbors form an empty con-
vex polygon. If this polygon is made of k points, we can triangulate it in linear
time [Agg+89]. But this method being too expensive in practice, the authors pro-
pose an algorithm whose average time complexity is in O(k log k). The average
degree being constant, they show that their algorithm is on average in O(log n).
The steps of their algorithm are essentially those of the insertion in reverse order.

They also propose a solution whose mean complexity amortized over a long
series of insertions and deletions is in O(log n). Meanwhile, Devilliers et al. propose
a structure enabling a deletion in O(log log n) on average, while an insertion is
in O(log n) [DMT92].

Kinetic. Another form of dynamism consists in the motion of the points, accord-
ing to any trajectory. For example, an algorithm is proposed to maintain, in the
plane, the Voronoi diagram structure [Alb+98]. At each change, the complexity is
in O(log n), which is optimal. Rahmati et al [Rah+15; Rah+19] defined structures
for both Yao and half-Yao graphs to allow efficient updates. Finally, there are mod-
els combining both types of dynamism, insertion/deletion and motion for the 3D
case [SMH04]. The proposed solutions are efficient in practice, according to the
experimental studies conducted by their authors.

Triangular distance. To the best of our knowledge, no efficient algorithm has
been proposed yet for the triangular distance. The adaptation of algorithms for
Euclidean distance is not trivial. One of our contribution in Chapter 6 is to propose
algorithms for TD Delaunay triangulations.

1.6.4 Proximity problems

The previously presented structures are strongly related to proximity queries. We
give ourselves a set V of n points in Rd. For a given point u ∈ V , we try to find the
nearest point v ∈ V \{u} in a certain sense.

Usually, a precomputation on V is done, outputting a structure S. Then, prox-
imity queries on V can be efficiently answered using S. For instance, we can be
interested in finding the nearest point in a cone. In triangular distance, a precom-
putation giving the Theta-graph of V allows queries in constant time. The same is
true for the Euclidean distance with Yao-graphs.

The definition of nearest can be relaxed by a factor (1 + ε): one might want to
find a point at a distance at most (1 + ε) further than the nearest point, both in a
specific cone. For the Euclidean distance, Funke et al. propose to precompute an
approximate Voronoi diagram [Fun+15]. With α = 1/ε, the precomputation step is
in O

(
nαd log(nα) logα

)
time. The output diagram is in O

(
nαd logα

)
space, and a

request is in O (log(nα)) time.

Nearest Neighbors. The same question arises without cones. The Nearest Neigh-
bor Problem consists in finding, for a point in V , its nearest neighbor in V \{u},
according to a certain distance.
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Again, with a Theta-graph, one can consider all cones at once. Delaunay tri-
angulations and Voronoi diagrams may also be used. For instance, if this time the
query is made on a point which is not in V , the Voronoi cell which contains it can
be found in O(log n) [Kir83], giving the nearest neighbor. Other classical algorithms
are presented in [Cla06].

One can also relax the definition of a nearest neighbor to a factor (1 + ε) : the
problem is to find a point at a distance at most (1 + ε) further than the nearest
point. In the Euclidean distance case, one method consists in covering the space of
points into balls and guarantees, for n large enough, a time complexity in O(dnσ)
with σ = 1/(1 + ε)2 [AI06]. An overview on generalizations to other distances can
be found in [Ind04].

If the set V is dynamic, i.e. if points can be inserted into V or deleted from
it, then dynamic Voronoi diagrams can be used to perform the queries [Kap+20].
The update of the structure, as well as the query time, is a polylog, while the space
usage is in O(n(log n)3).

k-Nearest Neighbors. Not being limited to a single nearest neighbor, one might
want to find the k nearest neighbors. The structures presented by Rahmati et al.
also deal with this query.

Some algorithms answering this query have an efficiency depending on the dis-
tribution of the points in the space. For example, Clarkson proposes an algorithm
in O(n logAR) with AR the aspect ratio on the distance between pairs of points
in V [Cla83].

For any metric on Rd, another algorithm using Delaunay triangulations runs
in O(k(n+ log n)) time [DE96]. Related problems addressed in this paper are those
of finding the k closest pairs of points or all pairs at a distance less than a given
threshold.

Conclusion. The geometric graphs defined in this Section are therefore objects
that have been extensively studied. However, we have seen on the one hand that
the results can vary according to the considered distance. On the other hand, some
problems on TD Delaunay triangulation, such as the dynamic maintenance, remain
open. In Part II, we propose algorithms on this subject and use some of them for
multicriteria shortest path computation. We detail the precise contributions in the
following Section.

1.7 Contributions

1.7.1 Multicriteria shortest path computation

Chapters 3 and 4 are dedicated to multicriteria shortest path computation. We
first provide a framework: Meta Rank algorithm (Section 3.2). It uses a Sample
function. Depending on this Sample function, Meta Rank can compute exact or
approximated Pareto sets.
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Exact computation. We propose several Sample functions to apply in Meta
Rank in order to compute exact Pareto sets S =

⋃
v∈V

Sv. The provided algorithms

are:

• MC Dijkstra 2D (Section 4.1), an optimized version of MC Dijkstra. We
detail the data structures used in order to refine the complexity.

• Bucket (Section 3.3), an optimized version of MC Dijkstra in general
dimension. This algorithm is based on the use of efficient methods to remove
dominated paths from a set (see Section 2.2). As the name suggests, paths are
processed in buckets.

• Dijkstra Post (Section 3.3), a variant of MC Dijkstra introduced for
experimental analysis. It corresponds to the adaptation of MC Dijkstra in
Meta Rank’s framework.

Approximated Pareto set. Then we propose several Sample functions for Meta
Rank in order to compute guaranteed (1+ε)-Pareto sets Sε =

⋃
v∈V

Sv,ε. The provided

algorithms are:

• Sector (Section 3.5.2), a first (1 + ε)-approximation algorithm, based on the
framing of paths for pruning,

• SSector (Section 3.5.3), a faster version of Sector, using range queries (see
Section 2.2.4),

• QSSector (Section 3.5.4), a heuristic improvement of SSector for cases
where many paths have common values on some criteria6,

• TSector (Section 6.4), a variant of Sector based on Theta-graphs,

• DSector (Section 7.3), a variant of Sector based on Theta-graphs and
dominating sets,

• Frame (Section 4.2.3), a variant of Sector, optimized in dimension 2, with
a stronger framing of the pruned paths.

Complexities. In Table 1.1, we present the computation times for one-to-all
queries. Those are expressed in the output sensitive complexity, i.e. depending
on the output size. ∆ is the maximum degree and Λ is the number of non-empty
ranks, defined in Section 2.1. Whenever the weights are integers bounded by a
constant C, Λ ≤ dnC.

For an exact computation, S is the output size, and thus the Pareto set size. For
approximation algorithms, Sε denotes the size of the output, which is a (1+ε)-Pareto
set. It might be much larger than S∗ε , the minimum cardinality of a (1+ε)-Pareto set.
However, starting from Sε, a linear time algorithm (Algorithm 3) can output S ′ε ⊆ Sε
such that S ′ε = O(S∗ε ).

6For example, consider trips by car and on foot with three criteria: time, physical effort and
price. All car journeys will have zero physical effort, while walking will be free of charge.
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Output sensitive complexity O(·)
Pareto

compatible
Ref.

MC Dijkstra ∆S2 X [Han80; BDH17]

Bucket (d > 2)
S ·min

{
(∆ + Λ) · logd−2(S),∆S

}
+Λ log(Λ)

X Theorem 19

SSector ∆Sε logd−1(∆Sε) Theorem 32

TSector (∆Sε)
2 log(∆Sε) log log(∆Sε) Theorem 80

DSector (∆Sε)
4 Theorem 90

TZ n∆Sε [TZ09]

Hydrid ? [BDH17]

MC Dijkstra (d = 2, 3) ∆S log(∆S) X Proposition 13

Frame (d = 2) ∆Sε log(∆Sε) X Theorem 45

Hydrid (d = 2) nS2
ε ≤ n2S3 [BDH17]

Table 1.1 – Output-sensitive complexities for shortest path computation.

Pareto compatibility. We introduce the notion of Pareto compatibility in Sec-
tion 4.2.2. An algorithm is said to be Pareto compatible if and only if its solu-
tion (Sv,ε)v∈V to the (1 + ε)-approximated Multicriteria Shortest Path Problem is
always a subset of a Pareto set Sv, for every vertex v. This property is useful since
it guarantees that the size Sε of the output of an approximation algorithm is always
at most S, the size of a Pareto set.

We prove that Frame is Pareto compatible. Thus, we have Sε ≤ S for that
algorithm and we can hope that its computation time is in practice significantly
smaller than the one of MC Dijkstra algorithm in 2D. In Section 4.3, we conduct
an extensive experimental study on different kind of graphs that shows an interesting
gain whenever S is large.

Comparisons. Hybrid [BDH17] and TZ [TZ09] are not Pareto compatible. How-
ever, for d = 2, Sε(Hydrid) ≤ nS. More generally, for d ≥ 3, it is a priori impossible
to claim which one is the smallest output among these different algorithm output
sizes: Sε(SSector), Sε(Hydrid), Sε(TZ) or S(MC Dijkstra).

If the arc weights are integers, then we prove that the output size Sε of SSector
is in O

(
(nC)d−1 log1+ε(nC)

)
. We can observe for certain parameters (C moder-

ate, ∆ constant and ε small), SSector provides smaller upper bounds on the time
complexity than TZ.

1.7.2 Half-Theta-6-graphs

Our contributions on geometric graphs concern half-Theta-6 graphs and are pre-
sented in Part II. We start by defining a projection of the 2D points in 3D, in order
to greatly simplify the study of these objects (Section 5.1.2).
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Dynamic Θ+
6 . In Chapter 6, we propose the first efficient algorithms enabling the

insertion and the removal of a point in a Θ+
6 , in order to provide dynamism to this

object. The insertion algorithm surprisingly does not use any triangular distance
test, as the Guibas algorithm does with the Euclidean distance. It is sufficient to
ensure that the graph remains planar and that each vertex has exactly one outgoing
vertex in each cone.

Nearest Neighbors. We also propose an algorithm computing nearest neigh-
bors in a cone (Section 7.1). More precisely, we give ourselves a set V of points
and Θ+

6 (V ). For a point u ∈ V and a cone C of u in Θ+
6 (V ), we compute the at

most k nearest neighbors at a distance at most (1 + ε) from u in C. This algorithm
explores the points of C in increasing triangular distance. The particular structure
of Θ+

6 (V ) allows to go from points to points by limiting to the points in C.
In Section 7.2, we present a classical algorithm computing approximated dom-

inating set for undirected graphs. We provide detailed data structures in order to
study the complexity.

Applications to Sample Sector. We adapt the Θ+
6 dynamic maintenance

algorithms to the approximated shortest path computation in Section 6.4. One step
of Sample Sector, the Sample function of Sector, consists in determining if
a path is (1 + ε)-covered in a given cone. The use of a Θ+

6 allows to answer this
question in constant time, which divides the overall complexity of Sample Sector
by a n factor (without taking into account the construction of the half-Theta-6).
Meta Rank using this method as a Sample function is called TSector.

Finally, we propose a Sample function combining our algorithm computing the
nearest neighbors in a cone and the one computing approximated dominating set
(Section 7.3). The obtained subset of points is potentially much smaller than the
one obtained with the method from Section 6.4. We can thus hope to prune much
more in Meta Rank.

Complexities. We summarize the complexities of our algorithms in Table 1.2. In-
put graphs contains n vertices. For the insertion or the deletion of a point u, ∆u is the
degree of u in the Θ+

6 of the set of points containing u. The complexity given for the
insertion does not take into account the point location request in O(log n(log log n)2),
nor that of the update of the associated structure in O(∆u log n log log n).

For the approximated dominating set computation, ∆+ (resp. ∆−) is the maxi-
mum outgoing (resp. ingoing) degree.
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Complexity O(·) Ref.

Insertion ∆u Theorem 74

Deletion ∆u log ∆u Theorem 77

k-Nearest Neighbors k log n Theorem 82

Approximated dominating set n∆+∆− Theorem 86

Table 1.2 – Complexities for geometric graph algorithms.
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Part I

Multicriteria shortest paths
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Chapter 2

Preliminaries for shortest path
computation

In this chapter, we formally present the notions necessary for a good understanding
of both Chapters 3 and 4. First, we introduce the general notations for graph
manipulation in Section 2.1. A summary of the notations useful in the Chapters 2, 3
and 4 is given (Table 2.1). Then, we detail the notion of vector Pareto sets and how
to compute them (Section 2.2). These notions are adapted to the Pareto sets of paths
in Section 2.3. Finally, a description of Dijkstra’s algorithm is given in Section 2.4
to better understand its multicriteria generalization.

2.1 Notations
Let G = (V,A,w) be a weighted directed graph defined on d ∈ N criteria :

• V is the set of n vertices,

• an arc a is a pair of vertices (u, v) ∈ V 2, u being the source vertex of a and v
its destination vertex,

• A is the set of m arcs,

• w : A→ ({0} ∪ [1, C])d a weight function, with C > 1 a constant.

Remark. It is possible that a graph contains multi-arcs and loops. In a multicriteria
setting, it is relevant to allow the existence of several arcs having the same source
and the same destination, but whose weights are not better than each other. The
meaning of better will be defined in the Section 2.2. However, for legibility reason,
we consider in this manuscript that the graph is simple. Generalizing the following
algorithms to non-simple graphs is straightforward.

A path is a sequence (ai)1≤i≤k for k ∈ N, such that for all i ∈ J0, k − 1K, the
destination vertex of ai is the source vertex of ai+1. The cost c(P ) = (P1, . . . , Pd)

of a k-hop path P = a1, . . . , ak is the vector sum
∑

1≤i≤k

w(ai). The source of a path

P = a1, . . . , ak is the source of a1 and its destination is that of ak.
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If P = a1, . . . , ak is a path and ak+1 is an arc whose source is the destination
of ak, notation P ·ak+1 stands for the path a1, . . . , ak, ak+1, defined by the extension
of P by ak+1.

For a path P of cost c(P ) = (P1, P2, . . . , Pd), its rank is defined as rank(P ) =∑
1≤i≤d

Pi. We define Λ as the number of rank values of the explored paths. It depends

on the algorithm used. For legibility reasons, each arc rank is strictly positive
in our algorithms description.

Most of the paths considered in the following will have a same source s. It will
be specified otherwise. The algorithms presented will aim at computing shortest
paths from s to all other vertices. This kind of query is called one-to-all.

The Table 2.1 gathers the notations used in this manuscript for multicriteria
shortest path computation.

2.2 Pareto set of vectors

We first define how to compare path costs and what is an optimal cost. Then, we
review existing algorithms which compute the so-called optimal costs among any set
of costs.

2.2.1 Definitions

In dimension 1, we can compare two paths with the natural order on R. In order
to compare vectors in dimension d > 1, we consider the following partial order: a
vector is smaller than another if it is smaller on all dimensions.

Definition 4 (Domination). Let d ∈ N\{0} and D = (Ei,≤i)1≤i≤d be a Cartesian
product of fully ordered sets (Ei,≤i), called a set of dimensions. It is provided with
the following order of domination:

∀x = (xi)i, y = (yi)i ∈ D, x ≤Dom y ⇔ ∀i ∈ J1; dK , xi ≤i yi

For x, y ∈ D, if x ≤Dom y, we say that x dominates y. If x does not dominate y,
nor y dominates x, then we say that x and y are incomparable.

For example, in Figure 2.1, the cost W dominates every green costs, such as A,
while it is dominated by all red costs, like B. The blue costs are incomparable
with W since they are larger on one coordinate and smaller on the other. Thus, C
and D are incomparable with W .

Depending on the context, maximum or minimum vectors, Pareto sets (mathe-
matics) or Skylines (data-mining) are different names of the same notion: the subset
of vectors that are not dominated by the others.

Definition 5 (Pareto set). Let T be a set of n vectors of D. The Pareto set of T
is:

PS(T ) = {x ∈ T ,∀y ∈ T , not(y ≤Dom x)}
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n number of vertices
m number of arcs
d number of dimensions
∆ maximum outgoing degree
s source vertex
ε (1 + ε) is the approximation factor

x ≤Dom y x dominates y (∀i, xi ≤ yi)
PS(X) Pareto set of the set X
rank(P )

∑
1≤i≤d

Pi ranking function

Λ number of ranks seen by the algorithm
P · a the extension of the path P by the arc a
Ps u the set of paths from s to u
Pvs u the set of paths from s to u passing through v

Su
solution set for an exact algorithm,

containing paths from s to u
Su |Su|
S solution set for an exact algorithm (thus, a Pareto set)
S |S|

Sε
solution set for an approximation algorithm,

not necessarily a (1 + ε)-Pareto set
Sε |Sε|
T set of temporary paths
Tu set of temporary paths of destination u
R set of paths of same rank,
R |R|

Table 2.1 – Notations for shortest path computation.
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Figure 2.1 – Domination with two dimensions

In order to illustrate this notion, let us take the case of dimension 2, with D = R2,
through the example depicted in Figure 2.2. We represent a set of green points,
noted P . There is also a set of gray points, noted R. The whole set is T = P ∪R.
We can observe:

• in green (above right), the areas dominated by points in P . Any point of R is
in a green zone so they are dominated by those in P , which implies that they
are not in the Pareto set. So PS(T ) ⊆ P .

• in red (below left), the zones dominating the points of P . We notice that no
point is in the red zone of another one, which ensures that P ⊆ PS(T ).

Thus, P is exactly the Pareto set of T .

2.2.2 Exact algorithms

The input is a finite set of vectors T ⊂ Rd, of size T = |T |. Let S = |PS(T )| be the
size of the output. We describe how to compute its Pareto set.

Naive algorithm

To compute PS(T ), a naive algorithm consists in comparing each pair of vectors.
A decremental version is described in Algorithm 1, in which a vector is removed as
soon as we notice that it is dominated. Its complexity is Θ(T 2), since each pair is
compared if the input is already a Pareto set.
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Figure 2.2 – Pareto set with two dimensions

Input: T ⊂ Rd set of vectors
Output: S ⊆ T

1 S ← T
2 foreach w ∈ T do
3 foreach w′ ∈ S\{w} do
4 if w′ ≤Dom w then
5 S ← S\{w}
6 break ; // no need to continue processing w

Algorithm 1: RemoveDominated naive algorithm
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Algorithm by sorting

A well-known improvement consists in sorting the vectors beforehand. The pro-
cedure is incremental contrary to the presentation of the previous algorithm. S
represents the Pareto set of the paths already considered, so it is empty at the be-
ginning. Then, we go through the vectors in order. Each vector is inserted into S if
and only if it is not dominated by any other vector of S. In order to avoid the risk
of having to delete vectors from S, there are two usual orders:

• the lexicographic order,

• the rank order.

With each of these orders, a vector cannot be dominated by one of its successors.
So if a vector is added in S, it stays there definitively. It is thus an incremental
algorithm.

Input: T ⊂ Rd set of vectors
Output: S ⊆ T

1 T ′ = (wi)1≤i≤n ← Sort(T )
2 S ← ∅
3 foreach i ∈ J1, nK do
4 isDominated← false
5 foreach w ∈ S do
6 if w ≤Dom wi then
7 isDominated← true
8 break ; // no need to continue processing wi

9 if isDominated is false then
10 S ← S ∪ {wi}

Algorithm 2: Algorithm for computing the Pareto set by sorting

It is interesting to express the output-sensitive complexity since the output size
can be much smaller than the input one. Recall that S = |PS(T )| denotes the output
size. Beware that S is the size of S at the end of the algorithm, but not during the
execution. Since any insertion into S is permanent, the complexity can be expressed
as a function of S: O(T · (S + log T )). Indeed, the sorting is in O(T log T ). Then
each of the T vectors of T is compared to the elements of the current S. At any
time, S cannot contain more than S elements since no element is deleted from this
set.

Offline algorithms

In the offline setting, the whole set of the T points on which we want to compute a
Pareto set is given at the beginning.

Fast algorithms were proposed by Kung et al. [KLP75]. Those are preceded
by a preliminary lexicographic sorting, followed by an algorithm in O(T logd−2(T )).
There are three algorithms:
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• For dimension 2, a simple linear algorithm is used, very similar to Algorithm 2,
but more subtle. When the algorithm processes a vector w = (w1, w2), it
only compares it with the last kept vector. To convince ourselves that this
is sufficient, we note P the set of kept vectors and w′ the last one that was
kept. When processing w, the paths in P are necessarily inferior or equal on
the first dimension, and w′ is the greater of those. Since P is a Pareto set of
itself, ∀w′′ ∈ P\{w′}, w′′1 ≤ w′1 and then w′′2 ≥ w′2. Thus, if w is not dominated
by w′, it is not either by any path in P .

• For dimension 3, a balanced binary tree (Section A.2) is used to store a subset
of the vectors already seen, or more precisely the projections of the vectors
on the two last dimensions. For each processed vector, the domination test is
logarithmic and the update of the tree has a logarithmic amortized complexity.

• The paradigm divide and conquer is used for any dimension d > 3, decreasing
by 1 the dimension d and splitting the set of vectors in two equal parts at each
recursive call. Then at dimension 3, it uses an algorithm very similar to the
second algorithm.

Sort Remove Dominated
Complexity O(T · log(T )) O

(
T · logd−2(T )

)
Furthermore, in the same paper, Kung et al. show that it is impossible to do

better than S log(S). The proof is based on the same idea as the lower bound for
sorting by comparison algorithms.

For d > 3, it has been improved in [GBT84] to O(T logd−3 T log log T ).
In order to obtain output-sensitive complexities, Kirkpatrick et al. [KS85] pro-

posed two algorithms running in O(T logS) time for d = 2 and O(T logd−2 S) time
for d > 2.

Online algorithms

The online setting corresponds to the situation when the vectors are processed one
by one, without knowing those which will come after. Although designed for offline
purposes, the algorithms in [KLP75] for d = 2 and d = 3 can be simplified for
the online setting when the vectors are processed in the lexicographic order. The
sorting step becomes irrelevant and the computation time drops to O(1) per insertion
for d = 2. Thus, in an online setting, Kung et al. algorithms have the following
complexities:

• O(T ) for d = 2,

• O(T log T ) for d = 3.

Online algorithms are very useful for multicriteria shortest path computation as
it will be detailed in Section 3.1.2. The processed vectors are not known in advance
but are discovered little by little in the lexicographic order.
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Figure 2.3 – (1 + ε)-coverage with ε = 0.5

2.2.3 Approximation

In some cases, Pareto sets can be unreasonably large. An example will be given
in Section 2.3.3. To summarize them, the method chosen in this manuscript is the
coverage-based approximation. We restrict ourselves to strictly positive vectors.

Definition 6 ((1 + ε)-coverage). Let w,w′ ∈ Rd
+. We say that w (1 + ε)-covers w′

if ∀i ∈ J1, dK , wi ≤ (1 + ε)w′i. A set of vectors W ⊂ Rd
+ is (1 + ε)-covered by a set

of vector S if ∀w ∈ W ,∃w′ ∈ S, w′ (1 + ε)-covers w. Whenever W is a Pareto set
of itself, we also say that W is (1 + ε)-approximated by S.

Let C ≥ 1 be a constant and P ⊂ [1, C]d be a Pareto set of itself. Notice that
the vectors are positive and that the aspect ratio, the quotient of the maximum
coordinate and the minimum coordinate, is bounded by C. In [PY00], Papadim-
itriou and Yannakakis showed that, whatever the size of P , there always exists a
(1 + ε)-approximation of P whose size is polynomial in 1/ε and C. More precisely
stated in [TZ09], we have the existence of a (1 + ε)-approximation of P of size at
most logd−1

1+ε(C).
This result is based on the fact that a space covering T can be partitioned

into logd1+ε(C) parts, as we will see in section 3.4.1. Each part is composed of the
set of vectors w = (wi)1≤i≤d sharing the same vector

(
blog1+ε(wi)c

)
i
. It is then

sufficient to keep only one per part in order to cover every path from P . Better, for
each value x ∈

q
0, blog1+ε(C)c

y
, we consider only the non-empty part having x as

first coordinate. This allows to decrease the exponent by one.
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In order to compute this (1+ε)-approximation, we can easily deduce Algorithm 3,
which is in O

(
logd1+ε(C)

)
.

Input: P ⊂ (R∗+)d a Pareto set of itself
Output: S ⊆ P

1 S ← empty d-dimensional array
2 foreach P ∈ P do
3 pos←

(
blog1+ε(Pi)c

)
2≤i≤d

4 if S[pos] is empty or P1 < S[pos]1 then
5 S[pos]← P

Algorithm 3: Algorithm for computing (1 + ε)-approximation of a Pareto set

2.2.4 Range queries.

In this section, the problem is to find out if a point P is (1 + ε)-covered by a point
set S, not necessarily being a Pareto set. For example, this can be used to compute
a (1 + ε)-approximation of S, by removing iteratively (1 + ε)-covered points. This
problem can be solved using range queries in dimension d.

Given a Cartesian product of intervals I = [x1, x
′
1]× [x2, x

′
2]× . . .× [xd, x

′
d] and

a point set S, RangeQuery(I,S) reports every point Q in S ∩ I.
We use such queries to test (1 + ε)-coverage or finer properties. A point P is

(1 + ε)-covered by a point set S if and only if RangeQuery

(∏
i

[0, (1 + ε)Pi],S

)
is

not empty.
In our case, we will not require to report every point in the subspace specified

by the intervals but just to learn if there is at least one point. Thus, we have:

Lemma 7 ([Mor06]). Given a point P ∈ Rd and a set S ⊂ Rd of n points, a
data structure D(S) using O(n logd−1 n) memory space can be preprocessed, such
that any orthogonal range query and thus any (1 + ε)-coverage checking can be done

in O

((
log n

log log n

)d−1
)

time. Moreover, adding or deleting a point in the data

structure D(S) takes O(logd−1 n) time.

2.3 Pareto set of paths
Here, the concepts of optimality and Pareto set are extended to paths and a study
about the links between the optimal paths and the optimal prefixes is conducted.
The paths considered in this section are in the same weighted directed graph G =
(V,A,w). Let s ∈ V be a source vertex and t ∈ V be a target vertex.

2.3.1 Definitions

Let us note:
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• Ps t, the set of paths from s to t,

• Cs t = {c(P )|P ∈ Ps t} the set of their costs.

Definition 8 (Shortest path). Let s be a source vertex and t ∈ a target vertex. A
path P is a shortest path from s to t if c(P ) ∈ PS(Cs t). In other words, it is a path
whose cost is not dominated by the cost of another path having the same source and
destination.

In general, it is possible to have several paths sharing source, destination and
cost but being different because not containing the same edges. In this manuscript,
we only want to differentiate the paths by their cost and not the arcs that compose
them. This is why we quotient the set of paths by the following relation: P ∼ Q
if and only if P and Q have the same source, destination and cost. Informally,
we consider only one path among those which share these same characteristics, no
matter which one.

Remark. It can be interesting to distinguish these paths in other contexts, for ex-
ample when one wants to find several paths with the least common vertices. This
can be useful in case of unexpected deletion of an arc, because of a car accident or a
router failure.

Definition 9 (Pareto set of paths). Let P be a set of paths having the same source
and the same destination. Let C = {c(P )|P ∈ P} be the set of costs of these paths.
The Pareto set of P is PS(P) = {P ∈ P|c(P ) ∈ PS(C)}. Thus, the set of shortest
paths from s to t is exactly PS(Ps t).

For instance, consider the graph of the Figure 2.4. Many paths allow to go from s
to t. The set Ps t is composed of the following paths:

• P (1) : s→ u1 → u4 → t. Its cost is (23, 6),

• P (2) : s→ u1 → u4 → u5 → t. Its cost is (24, 11),

• P (3) : s→ u2 → u4 → t. Its cost is (21, 12),

• P (4) : s→ u2 → u4 → u5 → t. Its cost is (22, 17),

• P (5) : s→ u2 → u5 → t. Its cost is (16, 15),

• P (6) : s→ u2 → u6 → t. Its cost is (14, 12),

• P (7) : s→ u3 → u2 → u4 → t. Its cost is (15, 24),

• P (8) : s→ u3 → u2 → u4 → u5 → t. Its cost is (16, 29),

• P (9) : s→ u3 → u2 → u5 → t. Its cost is (10, 27),

• P (10) : s→ u3 → u2 → u6 → t. Its cost is (8, 24),

• P (11) : s→ u3 → u6 → t. Its cost is (10, 17).

We have PS(Ps t) = {P (1), P (6), P (10), P (11)}. On Figure 2.5, the Pareto set is
composed of the green points, while the gray points are dominated.
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Figure 2.5 – Pareto set with two dimensions
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2.3.2 Impact of the deletion of optimal paths

Let u ∈ V be a vertex. We introduce two notations:

• Pus t the set of paths from s to t passing through u,

• A · B = {P = Q ·R|Q ∈ A, R ∈ B} the Cartesian product of two path sets A
and B, i.e. the set of all concatenations between a path from A and one from
B.

In dimension 1, PS(Pus t) = PS(Ps u) · PS(Pu t) = PS(PS(Ps u) · PS(Pu t)).
Some algorithms for shortest path computation are based on this fact, such as the
PLL algorithm (see Section 1.2.3). This is no longer true in dimension superior to 1.
The more general issue that interests us in this section is the following: if we have
only some paths from s to u and some from u to t, which optimal paths from s to t
passing through u can be found. More formally:

Question 10. Let A ⊆ Ps u and B ⊆ Pu t. Depending on A and B, what is the
relationship between PS(Pus t) and PS(A · B) ?

First of all, if we give ourselves Ps u and Pu t, it is easy to deduce PS(Pus t),
since Pus t = Ps u · Pu t. Thus, PS(Pus t) = PS(Ps u · Pu t).

Non optimal prefixes and suffixes are useless. We then notice that we can
restrict ourselves to optimal paths in A and B.

Lemma 11. Assume that:

• PS(Ps u) ⊆ A ⊆ Ps u,

• PS(Pu t) ⊆ B ⊆ Pu t.

Then PS(A · B) = PS(Pus t).

Proof. For the direct inclusion, let P ∈ PS(A ·B). Let Q ∈ A, R ∈ B such that P =
Q ·R. Reasoning by the absurd, if P /∈ PS(Pus t), then ∃P ′ ∈ PS(Pus t) such that P ′

dominates P . We can decompose P ′ = Q′ · R′ with Q′ ∈ Ps u and R′ ∈ Pu t.
ThenQ′ ∈ PS(Ps u), otherwise it would be dominated by a pathQ′′ andQ′′·R′ would
dominate P ′. For the same reason, R′ ∈ PS(Pu t). This gives us that P ′ ∈ A · B,
which is absurd by definition of P .

For the reverse inclusion, let P ∈ PS(Pus t). Similarly to the direct inclusion, we
can decompose P = Q ·R. By the same arguments, Q and R are optimal. Therefore,
using the hypothesis of the lemma, Q ∈ A and R ∈ B. It means that P ∈ A·B. If P
is dominated by a path P ′ ∈ PS(A · B), then by the direct inclusion, P ′ ∈ PS(Pus t).
This is absurd since this set is a Pareto set and P ′ dominates P , while being both
in it.
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Figure 2.6 – Example when removing an optimal prefix has no impact

An optimal solution may be lost if an optimal prefix or suffix is not given.
We suppose now that there exists P ∈ PS(Ps u)\A. Then, it is possible to no longer
be able to compute all the optimal paths from s to t passing through u fromA and B,
or more formally that there exists Q ∈ PS(Pus t)\PS(A · B).

For instance, consider a graph with only three vertices: s, u and t. From s to u,
there are two incomparable arcs a and a′ and there is a single arc b from u to t.
Then, a ·b and a′ ·b are incomparable. Thus the deletion of a makes lose the path a ·b
which is however part of PS(Pus t).

However, this is not always the case. An example is given such that PS(Pus t) =
PS(A · B) in Figure 2.6. The arc from s to u of weight (3, 3) is in PS(Ps u) but is
not a prefix of a path in PS(Pus t). Thus, not having it in A is not a problem.

Can we lose them all? Since we do not systematically lose an optimal solution
by removing an optimal prefix, then we risk losing them all. Indeed, this would
mean that some prefixes are useless and if only useless prefixes are kept, no optimal
solution can be found. For instance, in the example of Figure 2.6, if A contains only
the arc of weight (3, 3), then PS(A · B) ∩ PS(Pus t) = ∅. So we have to be careful
which paths are removed.

Keeping the minima on each criteria guarantees to output some optimal paths
but a user might be more interested by intermediate paths, since those represent
compromises.

In general, to compute PS(Pus t), it is necessary to have all the prefixes
from PS(Ps u) and all the suffixes from PS(Pu t).

2.3.3 Approximation

The definition of coverage is the same for paths as for weights.

Definition 12 ((1 + ε)-coverage). Let P, P ′ be two paths. We say that P (1 + ε)-
covers P ′ if c(P ) (1 + ε)-covers c(P ′). A set of paths P is (1 + ε)-covered by a set
of paths S if ∀P ∈ P , ∃P ′ ∈ S, P ′ (1 + ε)-covers P . Whenever P is a Pareto set of
itself, we also say that P is (1 + ε)-approximated by S.

Remark. Let P = a0, . . . , ak and P ′ = a′0, . . . a
′
k′ be two paths sharing the same

source and destination: a0 = a′0 = s and ak = ak′. If rank(P ) > rank(P ′) then P
cannot dominate P ′. Depending on ε > 0, P could however (1 + ε)-cover P ′. In
Figure 1.3, rank(G) = 21 and rank(B) = 18 but G 2-covers B.
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Figure 2.7 – Pathological example

Huge Pareto set of paths. In Section 2.2, we studied the (1+ε)-approximation of
a Pareto set, the motivation being that a Pareto set can be too large. One naturally
wonders how large a Pareto set of paths can be. In [Han80], a simple example of
a Pareto set having exponential size can be found. This example is represented on
Figure 2.7. There is a sequence of n+1 vertices u0, . . . , un, such that, ∀i ∈ J0, n− 1K,
there are two arcs from ui to ui+1 whose weights are respectively (2i, 0) and (0, 2i).

We can show that any path from u0 to un is non-dominated by the others. So
there are 2n optimal paths. The size of the Pareto set is therefore exponential in the
number of vertices. Notice however that the weights are themselves exponential.
Hansen specifies in [Han80] that the size of the Pareto set is polynomial in the
weights.

This example is not a simple graph since it contains multiple arcs, i.e. several
arcs having the same source and destination. But it is easy to adapt it by adding
intermediate vertices in the middle of each arc. Breugem et al. propose in [BDH17]
an adaptation with fewer arcs. This time, the graph is a tournament, i.e. a complete
directed graph. For any 0 ≤ i < j ≤ n, (ui, uj) has weight (2j−1 − 2i, 2j−1). All the
paths in this graph from u0 to un are optimal and there are 2n−1 since choosing a
path means taking a subset of intermediate vertices through which the path passes.
In the following, we will use this graph to conduct experiments on large Pareto sets.

Normalization of weights. To approximate Pareto set of weights, we had re-
stricted ourselves to weights in [1, C]d with C ≥ 1 a constant. In a more general case,
if the weights are in (R∗+)d, then we can normalize them by multiplying them by
the aspect ratio C. It may be tempting to use a function f : (R∗+)d → (R∗+)d whose
application to the weights of the arcs would make the computation of shorter paths
easier, by reducing the aspect ratio for example. However, if we want to preserve
the order on the paths, only very specific f are suitable.

Let us look at the dimension 1. Let x, y ∈ R∗+. We notice that f must be
increasing: if two arcs have weights x and y, then x < y ⇒ f(x) < f(y). Moreover,
let us take a graph with three vertices: s, u and t, with an arc from s to u of weight x,
one from u to t of weight y and one from s to t of weight x + y. In order for both
paths to keep the same weight, we need f(x) + f(y) = f(x+ y).

Then, it is a classical exercise to show that f = f(1) · IdR∗+ . For this, we can
show by induction that ∀x ∈ R∗+,∀k ∈ N, f(k · x) = k · f(x). We deduce that,

for all p, q ∈ N and q 6= 0, f(1) = qf

(
1

q

)
and thus that f

(
p

q

)
=
p

q
f(1). Thus,

∀r ∈ Q, f(r) = r · f(1). Since f is increasing, by density of Q in R, we have that f
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is linear of coefficient f(1).

2.4 Computing shortest paths in dimension 1: Di-
jkstra

In this section, we restrict ourselves to the case d = 1. We thus have that the weight
function has its image in R+.

2.4.1 Algorithm

The single-criterion Dijkstra’s algorithm can be summarized as follows. Given a
weighted directed graph G and a source vertex s, the algorithm maintains a set T
of vertices to process, initially containing only s and, for each vertex u, a candidate
distance d(u) from s to u, initially set to 0 for s and to infinity for the other vertices.
At each step of the algorithm, the vertex u ∈ T with minimum distance value d(u)
is considered, and removed from the set T . For each arc (u, v), a corresponding
length lv = d(u) + c(u, v) is computed and compared with d(v). If lv < d(v),
then d(v) is set to lv, otherwise nothing happens. The algorithm terminates when T
becomes empty. At the end of the algorithm, the distance value d(u) maintained by
the algorithm is the exact distance from s to u.

In order to efficiently find the vertex v of minimum distance, T is a priority queue
(Section A.3). It contains pairs (u, lu), with u a vertex and lu = d(u) its tentative
distance. The order of the priority queue is induced by the second coordinate, i.e.
the distance, which allows to determine the vertex of minimum distance. We specify
here that we use a priority queue allowing to decrease a key, that is to say that it
allows to replace a pair (u, lu) into (u, l′u), with l′u < lu. We note this operation
decreaseKey, which takes three parameters: a priority queue T , a vertex u such
that T contains a pair (u, lu), and a new distance l′u < lu. This way, when d(v)
is modified for a given vertex v, the pair (v, lv) in T can also be modified. The
distances are thus kept up to date in the priority queue. The corresponding pseudo
code is the Algorithm 4.

Correctness. The correctness of this algorithm can be verified by induction show-
ing that at any time, for any vertex u, d(u) is the minimum distance between s and u
passing only through vertices already processed, i.e. having already exited the pri-
ority queue T .

Complexities. The time complexity of Dijkstra algorithm depends on the data
structure chosen for T :

• O(m log n) with a binary heap. This is based on the fact that each edge is
processed at most once, that each update of T due to the exploration of a
new edge is logarithmic, and finally that T contains at most one pair for each
vertex. An advantage of the binary heap is its simplicity in practice.
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Input: Graph G = (V,A,w) with V the vertices, A the arcs, w the weight
function, s ∈ V the source vertex

Output: Distance function d : V → R+

1 begin Initialization
2 foreach u ∈ V do
3 d(u)← +∞
4 d(s)← 0
5 T ← {(s, 0)}
6 while T 6= ∅ do
7 let (u, lu) min of T
8 T ← T \ {(u, lu)}
9 foreach (u, v) ∈ A do

10 if lu + w(u, v) < d(v) then // v is not processed yet
11 d(v)← lv
12 if d(v) = +∞ then // v has not been seen yet
13 T ← T ∪ {(v, lu + w(u, v))}
14 else // v is a key in T
15 T ← decreaseKey(T , v, lu + w(u, v))

Algorithm 4: Dijkstra algorithm

• O(m+ n log n) with a strict Fibonacci heap. Insertions and decreaseKey are
in constant time but deletions remain in logarithmic time. However, there are
only n deletions since each vertex passes only once through T . However, this
data structure is complex and less efficient in practice [Fre+86].

Distances to paths. This algorithm does not compute shortest paths but only
distances, i.e. their costs. It can easily be adapted to retrieve a path corresponding
to each distance. For any vertex v, d(v) = (lv, u) is now a pair made of a distance and
a vertex. The associated vertex u is the penultimate vertex of the path taken that
has given the distance lv. More precisely, the line 11 is replaced by d(v) ← (lv, u).
To unfold the path, just determine the predecessor recursively starting from v, until
arriving at s. The correction of this method can also be shown by induction, based
on the fact that when we modify d(v) = (lv, u), then d(u) cannot be modified
afterwards and thus allows to find a shorter path from s to u.

Remark. For each vertex u, Dijkstra’s algorithm computes a shortest path from s
to u. There might exists several paths having the same weight, but only one is kept.

In a context of road or foot transportation, the graphs are:

• almost planar ("almost" because of bridges/tunnels),

• connected: there is no point in exploring connected components other than
the starting vertex one,
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• simple: if there are two edges between the same vertices, you might as well
keep only the best one. This remark becomes false in the multicriteria case.

Thanks to Euler’s formula, we know that, for a connected simple planar graph, the
number of arcs is linear in the number of vertices. More precisely, we have the
following inequality: m ≤ 3n− 6.

Remark. However, transport networks are not always planar, especially airline or
maritime networks.

Negative weights, Bellman-Ford algorithm. An important limitation of the
Dijkstra algorithm is the positivity of the weights. If there are negative weights, the
guarantee that the outgoing distances of the priority queue are increasing is lost. It
then becomes possible to insert a pair (u, lu) into T while a pair (u, l′u), with lu < l′u,
has already been extracted from T . With the pseudo-code of Algorithm 4, the
announced complexities are no longer true. One might also argue that the correction
is no longer true either. This is due to the fact that we can consider that each
vertex is extracted from T only once. We have not imposed this restriction here to
anticipate with the multicriteria generalization.

Bellman-Ford algorithm allows to deal with negative weights. Its time complexity
is in O(mn). Its is based on dynamic programming paradigm, computing iteratively
the distance from the source to each vertex using at most 1 arc, then 2, etc... More
formally, for any vertex u and any positive integer k, we compute d(u, k) the distance
from s to u through at most k arcs using:

• d(u, 0) = +∞ for all u 6= s and d(s, 0) = 0.

• d(u, k) = min

{
d(u, k − 1), min

(v,u)∈A
{d(v, k − 1) + w(v, u)}

}

2.4.2 Example

In order to illustrate the execution of the Algorithm 4, consider the graph depicted
in Figure 2.8. The table 2.2 represents the content of the priority queue T , as well
as the tentative distances d(u) for each vertex u 6= s of the graph. These values are
initialized to +∞. The boxes of d(u) are grayed out from the step where u leaves
the priority queue: thereafter, d(u) becomes constant.

In the case of one-to-one request, i.e when we want to go from one vertex to
another, a halt criterion can be added. If we only want to know the distance from s
to t, the last step of the algorithm is not necessary. Indeed, t becomes grayed out
at step 8, which means that its distance will not be improved afterwards. The
algorithm can therefore stop.
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Figure 2.8 – Graph on which the Dijkstra algorithm is executed

Step T d(u1) d(u2) d(u3) d(u4) d(u5) d(u6) d(t)

1 (s, 0) +∞ +∞ +∞ +∞ +∞ +∞ +∞

2 (u3, 2) | (u1, 6) | (u2, 9) 6 9 2 +∞ +∞ +∞ +∞

3 (u2, 3) | (u1, 6) | (u6, 7) 6 3 2 +∞ +∞ 7 +∞

4 (u6, 5) | (u1, 6) | (u5, 6) | (u4, 8) 6 3 2 8 6 5 +∞

5 (u1, 6) | (u5, 6) | (t, 8) | (u4, 8) 6 3 2 8 6 5 8

6 (u5, 6) | (t, 8) | (u4, 8) 6 3 2 8 6 5 8

7 (t, 8) | (u4, 8) 6 3 2 8 6 5 8

8 (u4, 8) 6 3 2 8 6 5 8

9 ∅ 6 3 2 8 6 5 8

Table 2.2 – Content of data structures during the execution of Dijkstra algorithm.

66



Chapter 3

Multicriteria shortest path
computation

In this chapter, the number of dimension d is no longer equal to 1. We first describe
MC Dijkstra (Section 3.1) in order to better understand our algorithms presented
afterwards. Then, we propose Meta Rank, a variant of MC Dijkstra in the form
of a framework (Section 3.2).

We propose in Section 3.3 two instantiations of this framework, Bucket and
Dijkstra Post for the exact Pareto set computation. Then we study the approxi-
mated computation. In the Section 3.4, we first study the first natural ideas and their
limits. Finally, in the Section 3.5, we propose three instantiations of Meta Rank:
Sector, SSector and QSSector. These algorithms allow the computation of
(1 + ε)-approximated Pareto sets with reasonable output sensitive complexities.

3.1 MC Dijkstra

The MC Dijkstra algorithm follows the same general idea as Dijkstra (see
Section 2.4), adapted to the case of multiple criteria. In this case, the goal is to
obtain the Pareto set from s to v for each vertex v: this is a one-to-all query in
a multicriteria context. For this reason, the algorithm maintains a set T of paths
rather than vertices. This set is initialized with the empty path from s to s. Also,
for each vertex v, the algorithm maintains a candidate Pareto set Sv, initialized to
the empty set.

Similarly as in the single-criterion case, MC Dijkstra selects at each step the
minimum of T . More precisely, MC Dijkstra selects the path P in T which has
the lexicographically minimum cost. If v is the destination of P , then P is added to
the set Sv. Again similarly, each path P ′ which consists of P plus one arc from the
destination of P is considered. Let w be the destination of P ′. If P ′ is dominated
by a path in Sw or by a path in T with the same destination, P ′ is discarded.
Otherwise, P ′ is added to T , and any path P ′′ ∈ T with the same destination as P ′

which is dominated by it is removed from T .
The algorithm terminates when T is empty at the end of a step. At that time,

the sets Sv contain Pareto sets from s to every vertex v.
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3.1.1 Pseudo code

A more formal description of MC Dijkstra is given in Algorithm 5. In this algo-
rithm, we use the following two functions:

• IsNotDominated(P,S) takes a path P and a Pareto set S as input. It returns
True if the path P is not dominated by any path in S, and False other-
wise. This operation corresponds to the test Line 10 in Algorithm 4 in the
multicriteria setting.

• InsertAndClean(P,S) takes a path P and a Pareto set S as input and returns
a Pareto set of S ∪ {P}. This operation generalizes Lines from 11 to 15 in
Algorithm 4.

We also denote lexmin of a set P of paths a path of minimum cost in lexicographic
order, i.e. a path in arg min{c(P )|P ∈ P}.

Input: Graph G = (V,A,w) with V the vertices, A the arcs, w the weight
function, s ∈ V the source vertex

Output: Sets Su for every vertex u
1 begin Initialization
2 foreach u ∈ V do
3 Su ← ∅
4 Tu ← ∅
5 Ts ← {empty path from s to s}

6 while
⋃
u∈V

Tu 6= ∅ do

7 let P of destination v be the lexmin of
⋃
u∈V

Tu

8 Tv ← Tv \ {P}
9 Sv ← Sv ∪ {P}

10 foreach (v, w) ∈ A do
11 if IsNotDominated(P · (v, w),Sw) then
12 Tw ← InsertAndClean(P · (v, w), Tw)

Algorithm 5: MC Dijkstra overview

3.1.2 Existing results

MC Dijkstra algorithm computes the exact Pareto sets from a source vertex to
any other vertex (see [Mar84] and [Ehr05]). Its complexity heavily depends on
the parts removing dominated paths, i.e. on the functions IsNotDominated and
InsertAndClean. Nevertheless, existing papers simply use a naive algorithm for
these functions, except for dimension 2, for which [Han80] claims a logarithmic
complexity. In order to lower the complexity of MC Dijkstra, we may use the
algorithms described in Section 2.2 to remove paths that are dominated. For d = 2
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and d = 3, we can use online algorithms since MC Dijkstra processes elements in
lexicographic order. The following proposition is more or less an agglomeration of
existing results, with small adjustments in order to obtain a consistent statement.

Proposition 13 (partially from [Han80] and [BDH17]). Let µ be the maximum
number of arcs between a pair of vertices, and S be the size of the Pareto et. The
output-sensitive time complexity of MC Dijkstra is:

• O(∆S log(∆S)) for d ≤ 3

• O(µ∆S2) for d > 3

Proof. In all cases, the size of a set Tu (the subset of paths from T having the same
destination u) is upper-bounded by µS, since any path is an extension of an optimal
one (a path in some Sv), and there exist at most µ extensions of a path having the
same destination. The same reasoning leads to the fact that the union of all the
sets Tu has cardinality at most ∆S.

Besides, the repeated application of Line 7 requires to efficiently store the sets Tu.
The used data structure keeps the elements in

⋃
u∈V

Tu sorted (see Section 4.1). This

hidden sorting in Lines 8 and 12 leads to a complexity in O(log(∆S)) when inserting
or removing a vertex.

Therefore, in each of the at most ∆S iterations of the while loop, the time
complexity is upper-bounded by O(log(∆S)) (the sorting time) plus the time needed
to execute the functions IsNotDominated and InsertAndClean.

For d = 2, the proof is essentially the same as in [Han80]. Since in MC Di-
jkstra the path P is lexicographically larger than any element in S, the func-
tion IsNotDominated(P,S) can be computed in constant time with the algorithm
in [KLP75], instead of time O(log(µS)) by using a tree as proposed in [Han80]. How-
ever, the function InsertAndClean(P, T ) has an amortized complexity of O(log |T |)
to keep the structure sorted, amortized since it may remove a lot of paths during
one call but a path can be removed only once. Anyway, the complexity in this case
is dominated by the sorting time, leading to the overall complexity O(∆S log(∆S)).

For d = 3, using the algorithm proposed in [KLP75] and the same reasoning
as in the d = 2 case, the functions IsNotDominated and InsertAndClean can be
computed in logarithmic time, leading to the same overall complexity as in the
case d = 2.

For d > 3, we extend the proof for µ = 1 (simple graph) given in [BDH17]: the
dominance relation of the current path is iteratively tested with each element of the
sets Su and Tu for some u. The latter being upper-bounded by µS, we obtain the
overall time complexity in O(µ∆S2).

3.1.3 Example

Consider the graph of Figure 3.1 and execute MC Dijkstra on this graph with
the vertex A as source. The content of the data structures T and S is described in
Table 3.1. For T , the costs are prepend by the name of the destination of the path.
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Thus, B(1, 3) represents a path from A to B and of cost (1, 3). The first steps are
as follows:

1. The initialization inserts the path of cost (0, 0) in the priority queue T .

2. This path is extracted from T since it is the only one inside. Then, it is
extended by the arcs going from A to B and C. These two extensions are
placed in T .

3. Then the path represented as B(1, 3) is extracted from T since it is the min-
imum in the lexicographic order. It is then extended by the only arc leaving
B, which gives the path represented as D(2, 5). This path is placed in T .

The same process is iterated for the following steps. Notice that at step 4, a path
E(6, 5) is added to T but it is removed at step 8 when a path that dominates it is
inserted into T .

3.1.4 Termination criterion

MC Dijkstra is designed to answer one-to-all requests. However, for a one-to-one
query (i.e. for computing the Pareto set between a pair of vertices), this algorithm
can waste time on useless computations, especially whenever the destination vertex
is not far from the source.

To tackle this issue, a test to remove paths going too far from the destination
can be added as in [MDLC10]: when checking if a path ending at any vertex is
dominated, it can also be compared with paths going to the destination. If its
cost is dominated, then it is useless to extend it. Indeed, any extension of this
path ending at the destination is dominated since an extension cannot decrease any
coordinate of its cost. Taking C as the unique destination of interest in the previous
example, the computation would stop in 4 steps.

3.2 Meta Rank

In MC Dijkstra, a critical operation is to determine whether a path is dominated
by other known paths. We present a review of known methods in Section 2.2 that
can be useful in this context. Given a set of costs, these methods remove dominated
ones from it. Thus, if the whole set of paths to process is known at the beginning,
these algorithms can be used. Unfortunately, MC Dijkstra process path one by
one. Therefore, the function IsNotDominated() consider only one path at the time.

If d ≤ 3, it is possible to adapt the methods from Section 2.2, which gives
a O(∆S log(∆S)) time complexity for MC Dijkstra (Proposition 13). However,
these efficient methods are not suitable in dimensions larger than 3. Indeed, if d > 3,
they are offline, i.e they require to have all the paths in advance. Then, a naive
algorithm is used, which implies a quadratic time complexity for MC Dijkstra.
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Figure 3.1 – Example graph for MC Dijkstra execution.

Step T SB SC SD SE

1 A(0, 0)

2 B(1, 3) | C(2, 1)

3 C(2, 1) | D(2, 5) (1, 3)

4 D(2, 5) | B(3, 2) | D(6, 2) | E(6, 5) (1, 3) (2, 1)

5 B(3, 2) | E(3, 6) | D(6, 2) | E(6, 5) (1, 3) (2, 1) (2, 5)

6 E(3, 6) | D(4, 4) | D(6, 2) | E(6, 5) (1, 3) | (3, 2) (2, 1) (2, 5)

7 D(4, 4) | D(6, 2) | E(6, 5) (1, 3) | (3, 2) (2, 1) (2, 5) (3, 6)

8 E(5, 5) | D(6, 2) (1, 3) | (3, 2) (2, 1) (2, 5) | (4, 4) (3, 6)

9 D(6, 2) (1, 3) | (3, 2) (2, 1) (2, 5) | (4, 4) (3, 6) | (5, 5)

10 E(7, 3) (1, 3) | (3, 2) (2, 1) (2, 5) | (4, 4) | (6, 2) (3, 6) | (5, 5)

11 (1, 3) | (3, 2) (2, 1) (2, 5) | (4, 4) | (6, 2) (3, 6) | (5, 5) | (7, 3)

Table 3.1 – Content of data structures during the execution of MC Dijkstra.
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Rank order. Yet, if the paths are processed in subsets, an offline method can be
applied to each subset. For this purpose, we choose to process the paths leaving T by
increasing rank order, instead of lexicographic order. We consider all paths from T
having the same rank all together. This allows to process several paths with the
same destination at the same time. The increasing rank order enable to keep the nice
property that the “smallest” elements of T incorporated in S cannot be dominated
by paths that are discovered later. This idea to process paths in increasing rank
order is already used in [TTLC92] to compute exact Pareto sets.

The paths are leaving T in increasing rank order, while this is not the case for
their entering. Thus, we test dominance when paths are leaving T rather than when
they enter it, contrary to MC Dijkstra. Furthermore, we may take advantage of
this dominance pruning step by group to also remove some optimal paths in order
to output a smaller approximated Pareto set.

3.2.1 Algorithm

In order to implement this versatility, we propose a meta-algorithm Meta Rank
(see Algorithm 6) which uses a blackbox function called Sample.

Definition 14 (Sample function). On input (R,Sv, ε), Sample must output a sub-
set of R. If this function simply removes paths dominated by permanent solutions
from Sv, Meta Rank solves the Exact Multicriteria Shortest Path Problem. In the
following, additional properties on Sample are defined in order to ensure that Meta
Rank solves the (1 + ε)-approximated Multicriteria Shortest Path Problem. Later
on, instantiations of Sample are provided.

We note CSample(n, Sε,∆,Λ) the complexity of the repeated usage of Sample dur-
ing Meta Rank.

At each step, for each vertex v, Meta Rank selects from T the set of paths R
of minimum rank. Some paths from R are extracted using Sample function, and
inserted in Sv. Those paths are also extended by any arc starting from v and the
extensions are inserted in T .

3.2.2 Data structures

We provide details about the chosen data structures. For a better legibility, we
introduce the notations T (r) (resp. T (r)

u ) as the subset of T (resp. Tu) of paths
having a rank r.

• The set T is a priority queue (Section A.3) and its elements are the sets T (r).
The priority is given by r (the smaller r, the higher priority). We use a strict
Fibonacci heap, guaranteeing:

– a constant time complexity for an insertion and to find the minimum,
– a O(log Λ) complexity to remove the highest priority element.

• For a given rank r, T (r) is an array. A unique identifier in J0, n− 1K is given to
each vertex. If the identifier of u is iu, T (r)[iu] = T (r)

u , guaranteeing a constant
worst-case time complexity for accessing or removing a T (r)

u set.
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Input: Graph G = (V,A,w) with V the vertices, A the arcs, w the weight
function, s ∈ V the source vertex

Output: Sets Sv for every vertex v
1 begin Initialization
2 foreach u ∈ V do
3 Su ← ∅
4 Tu ← ∅
5 Ts ← {empty path from s to s}

6 while
⋃
u∈V

Tu 6= ∅ do

7 let r be the minimum rank in
⋃
u∈V

Tu

8 foreach v ∈ V do
9 let R be the paths of rank r in Tv

10 R′ ← Sample(R,Sv, ε)
11 Sv ← Sv ∪R′
12 Tv ← Tv \ R
13 foreach P ∈ R′ do
14 foreach (v, w) ∈ A do
15 Tw ← Tw ∪ {P · (v, w)}

Algorithm 6: Meta Rank overview

• The sets T (r)
u are represented as linked lists in order to obtain a constant time

insertion.

• S is also an array and the sets Sv are linked lists.

Remark. Although the implementation of the sets T (r) is interesting from a the-
oretical point of view, a hash table would be more relevant in practice for memory
purposes, since T may contain only a small part of V at the same time. This choice
would only guarantee a constant mean time complexity. A key would be a vertex and
the associated value to a key u would be T (r)

u .

Later, variants for the representation of the sets Su will be used:

Arrays: the set of costs that the optimal paths can have is partitioned in a finite
number of parts. Each Su is an array, and each cell corresponds to a part.
Any path whose cost is in a given part, is stored in the corresponding cell. A
cell can contain a bounded number of paths, meaning that some paths may
not be stored. This variant will be presented more precisely in Section 3.4.

Trees : it may be useful to allow an efficient search in S (Chapter 4). The linked
lists representing the Su will be replaced by balanced binary trees (Section A.2)
in order to guarantee insertions and searches in logarithmic time. This wors-
ens the complexity of the line 11. The second complexity announced by the
Theorem 15 is then no longer correct. The first one is still true, so Meta
Rank time complexity is CSample(n, Sε,∆,Λ) +O(∆Sε log(∆Sε)) in this case.
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3.2.3 Complexities

Given the previously described data structures, the following theorem gives the
complexity of Meta Rank, depending on Sample’s one.
Theorem 15. Let Sε be the size of Meta Rank’s output. Then Meta Rank time
complexity is:

• CSample(n, Sε,∆,Λ)+O(∆Sε log(∆Sε)), or more precisely: CSample(n, Sε,∆,Λ)+
O(∆Sε + Λ log(Λ)).

• CSample(n, Sε,∆,Λ) +O(∆n(nC)d−1 log(∆nC)) if the weights are in J1, CK.
Proof. With the given data structures,

•
⋃
u∈V

Sv is only concerned by insertions and its size at the end is Sε. Thus,

there is exactly Sε insertions and the repetition of line 11 has an overall O(Sε)
complexity.

• As stated, the data structure used for T allows to factorize the deletion of
line 12 for each vertex, i.e. for each loop of the line 8. Since Λ is the number
of rank values of the explored paths, this deletion is in O(log Λ). Thus, the
repetition of Line 12 is in O(Λ log Λ). For legibility reason, the following
inequality is used : Λ ≤ ∆Sε. Then, we obtain that the repetition of this line
is in O(∆Sε log(∆Sε)).

• Line 9 consists in finding the path of minimum rank and is therefore in O(1).
Thus its repetition is in O(Λ).

• The repetition of the loop from line 13 to line 15 has an overall complexity of
O(∆Sε) since the number of added path in some Tw is upper-bounded by ∆Sε.

We list in the Table 3.2 the main CSample(n, Sε,∆,Λ) complexities presented later.

3.3 Sample functions for exact computations

3.3.1 Bucket

First of all, we instantiate Meta Rank (Alg. 6) to compute exact Pareto sets, that
is to solve the Exact Multicriteria Shortest Path Problem. For this purpose, we
define the so-called Exact property that the Sample function should satisfy. In this
section, the complexities will be given for d > 2. For d = 2, the complexities are the
same as those given for d = 3.
Definition 16 (Exact property). A function Sample outputting R′ ⊆ R on in-
put (R,S, ε) satisfies the Exact property if S ∪R′ is a Pareto set of S ∪R.
Remark. The fact that Meta Rank with any Sample function satisfying the Exact
property does solve the Exact Multicriteria Shortest Path Problem will be proved in
Section 3.5.1 (this is an immediate consequence of Proposition 23 and Theorem 24).

We propose an algorithm for Sample verifying the Exact property.
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Sample function used CSample(n, Sε,∆,Λ) in O(·) Ref.

Sample Bucket (d > 2) S ·min
{

(∆ + Λ) logd−2(Sε),∆Sε
}

Section 3.3

Naive Sample Part ∆Sε Section 3.4.1

Naive Sample Set ∆S2
ε Section 3.4.2

Sample Sector (∆Sε)
2 Section 3.5.2

Small Sample Sector ∆Sε logd−1 ∆Sε Section 3.5.3

Sample Frame ∆Sε log(∆Sε) Section 4.2.3

Theta Sample Sector (∆Sε)
2 log(∆Sε) log log(∆Sε) Section 6.4

Dominating Sample Sector (∆Sε)
4 Section 7.3

Table 3.2 – Overall sample complexities.

Sample Bucket. For a given destination u, the first argumentR of Sample will
be called a bucket, being the set of paths of minimum rank and same destination u
in T =

⋃
v∈V

Tv. Sample has to remove the paths from R that are dominated by the

final set of paths Su (which is the second argument of Sample). It outputs R′, so
that Meta Rank adds the set of remaining paths R′ in Su. We run in parallel two
alternatives to remove dominated paths and stop as soon as one of the two algorithm
ends:

1. the naive algorithm, comparing each path from R with each one of Su;

2. a Pareto set computation parametrized by d using divide-and-conquer tech-
niques [KS85].

Proposition 17. Sample Bucket satisfies the Exact property when R and S are
both Pareto sets such that any path of R has a larger rank than any path of S.

Proof. Let P and Q be two paths. If rank(P ) < rank(Q), then it is impossible
that Q dominates P . Therefore, no path from R could dominate a path from S.
Therefore, Sample Bucket does compute R′ such that S ∪ R′ is a Pareto set
of S ∪R.

Definition 18 (Bucket algorithm). The Bucket algorithm is the Meta Rank
algorithm with Sample Bucket as the Sample function.

Theorem 19. Bucket has a O
(
S ·min

{
(∆ + Λ) logd−2(S),∆S

}
+ Λ log Λ

)
time

complexity.

Proof. We want to choose the best algorithm to run Sample for each bucket, but |R′|
is a priori unknown. A way to circumvent this problem is to start both algorithms in
parallel. When one of them stops, we stop also the other and ignore it. The obtained
complexity is the double of the best algorithm’s complexity. The second algorithm
used is the one from [KS85] with complexity O

(
(|R|+ |Su|) logd−2(|R′|+ |Su|)

)
.
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Recall that a bucket contains only paths having the same destination and the
same rank. For each pair of rank and destination, at most one bucket is considered
by Sample during Bucket execution since the ranks are considered in increasing
order and that an extension of a path has a higher rank than it.

The number of paths being in T at some point is at most ∆S since any path
in T is necessarily an extension of a path inserted in S. In Bucket, if Sample is
processing the bucket of rank r and destination u, we note:

• T ru the size of the bucket, which is the size of the first parameter of Sample,

• Sru the size of the output of Sample,

• S<ru the number of optimal solutions known at this stage of the algorithm,
which are the Pareto paths of ranks inferior to r and of destination u. It is
the size of the second parameter of Sample.

First, we have Sru ≤ S. Then we compute CSample(n, S,∆,Λ), the cumulative com-
plexity of Sample Bucket functions during Meta Rank:

1. (Naive algorithm): for a rank r and a destination u, the naive algorithm
costs T ru · S<ru . Notice that it is not necessary to compare paths from R with
each other since they have the same rank, and thus are incomparable. Thus,
if we sum over each destination vertex u and each rank r, we obtain an overall
complexity which is a big O of:∑

r,u

T ru · S<ru ≤
∑
r,u

T ru · S ≤ ∆ · S2

2. ([KS85] methods) for a rank r and a destination u, the complexity is a big O
of (T ru + S<ru ) · logd−2(Sru + S<ru ). Then, Bucket complexity is a big O of:∑

r,u

(T ru + S<ru ) logd−2(Sru + S<ru ) ≤
∑
r,u

(T ru + Su) logd−2(S)

≤ (∆S + Λ · S) logd−2(S)

≤ (∆ + Λ)S logd−2(S)

Then, CSample(n, S,∆,Λ) = O
(
S ·min

{
(∆ + Λ) logd−2(S),∆S

})
. Using Theorem 15

gives the claimed complexity.

3.3.2 Dijkstra Post

In order to get a better comparison between MC Dijkstra algorithm (Alg. 5)
and Frame algorithm (Def. 42), we introduce an in-between algorithm that we
call Dijkstra Post algorithm. It consists in using the Meta Rank algorithm
(Alg. 6) with a Sample function satisfying the Exact property with the following
modification: instead of choosing in the sets Tu the paths of minimum rank, the
lexicographically minimum path is chosen, like in MC Dijkstra.

An advantage of this Dijkstra Post algorithm is its simplicity, as it will be
explained in Section 4.1, while a major flaw is that more paths may be added to the
sets Tu, since the pruning is only done when the paths leave these sets.
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3.4 Naive approximated solutions
We start by studying simple natural ideas: when we discover "too many" "close"
paths, we keep only a subset of them. We will clarify what "too many" and "close"
mean. Two similar methods are presented in Sections 3.4.1 and 3.4.2. These are
very efficient but, as it will be explained in Section 3.4.3, they do not guarantee that
the output is a (1 + ε)-approximated Pareto set.

Recall that Sample considers only paths having same source and destination.
The following presentation is therefore written for paths having the same source
and destination. As explained in Section 2.3, if two paths have the same cost, then
only one of them is kept. Thus, we will make no difference between a path and its
cost.

3.4.1 Naive Sample Part

The first idea is to partition Rd
+ so that two paths are in the same part are (1 + ε)-

covering each other. In MC Dijkstra, for a given vertex, the solution set contains
only a limited number of paths within a part. Jacob et al. [Hrn+17] propose to only
keep one, the first one. This kind of partition can also be found in [TZ09], used this
time with a Bellman-Ford type algorithm.

For the sake of clarity, we restrict to costs superior or equal to 1 on each dimen-
sion. More formally, we introduce the following notations:

• for a path P = (P1, . . . , Pd), its position is Position(P ) = (blog1+ε(Pi)c)1≤i≤d,

• for each dimension i, Ci is the highest weight an arc can have on the i-th
dimension,

• C = max
i
Ci.

A part is the set of path sharing the same position.
This partition is depicted in Figure 3.2, with ε = 1 and the cost superior or equal

to 1. The set of blue dots represents a Pareto set P . The crosses are a (1+ε)-Pareto
set of P , since there is one per zone. Notice that the green one is optional. The
parts positions are indicated in blue.

As announced at the end of Section 3.2, each Su is here a d-dimensional array,
of size blog1+ε(nC1)c × . . .× blog1+ε(nCd)c. In the cell of index (xi)1≤i≤d, the array
contains the paths P such that Position(P ) = (xi)i.

Then, at each call of Sample, for each cell, the paths of the current rank are
either inserted in this array, or pruned. Several criteria are possible:

• The k first paths seen in a given cell are kept, with k fixed. When k > 1, for
each new path, it is possible to test if it is dominated by those already in place
in the same cell. On the other hand, the opposite test is not mandatory: the
paths being processed by increasing ranks, the k first seen cannot be dominated
by the following ones.

• Another method is to keep only one path per coordinate, the one that mini-
mizes it in that cell.
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Figure 3.2 – Partition of the plan with ε = 1.
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Algorithm 7 is the first method with k = 1. Line 2 insures that the considered
path is a simple path. In order to adapt to other methods, you just have to adapt
the test line 4 and the following insertion line.

Input: R,S set of paths, ε > 0
1 for P ∈ R do
2 if P ≤Dom (nCi)1≤i≤d then // the i-th coordinate is bounded by

nCi
3 pos← Position(P )
4 if S[pos] = ∅ then
5 S[pos]← P

Algorithm 7: Naive Sample Part

Theorem 20. The complexity of Meta Rank using Naive Sample Part as
Sample is in O

(
∆n logd1+ε(nC) log(∆n log1+ε(nC))

)
. The output-sensitive complex-

ity is in O(∆Sε log(∆Sε)).

Proof. Algorithm 7 is linear in the size of R. Thus, by using this algorithm as
Sample in Meta Rank, CSample(n, Sε,∆,Λ) = O(∆Sε). The announced output-
sensitive complexity is found according to Theorem 15. Then, for each vertex u,
Su is an array of size logd1+ε(nC) and there is at most one path per cell. Thus,
Sε ≤ n logd1+ε(nC).

Remark. We can also be interested in an additive split. Indeed, a user may find
the absolute difference between two paths much more relevant. However, we end up

with
(
nCmax

1 + ε

)d
parts, a quantity potentially prohibitive.

Domination on the first dimension. In TZ, the Algorithm of Tsaggouris et
al. [TZ09], the exponent is d − 1 instead of d since the arrays have one dimension
less. Indeed, there are log1+ε(nC) cells which have the same d− 1 last coordinates:
if we fix these coordinates, the first one can still take log1+ε(nC) different values.
However, we are interested in only one of these cells, the one whose first coordinate
is the smallest and which is not empty. Indeed, the path of this cell covers all the
other cells sharing the same d− 1 last dimensions.

In TZ, the algorithm is of MLC type, i.e. a path already in Su can be improved,
i.e. replaced by a better path discovered later. However, our complexity analysis
requires that the algorithm be of the MLS type, i.e. once a path is placed in Su, it
cannot be removed. Adding this method to Meta Rank is therefore not possible
since we discover the paths by ranks: for two paths P and Q, we can have:

P1 > Q1

∀i ∈ J1, dK , blog1+ε(Pi)c = blog1+ε(Pi)c
rank(P ) < rank(Q)

Using the method of TZ, Meta Rank first processes P but replaces it by Q.
A solution would be to replace the order by rank of Meta Rank by the one of
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MC Dijkstra, i.e. the lexicographic order. Then, the time complexity becomes
in O

(
∆n logd−1

1+ε(nC) log(∆n log1+ε(nC))
)
.

Domination in general. These changes allow to avoid filling two cells that share
the same d−1 last coordinates and that dominate each other. But one must beware
of the fact that our algorithm may well fill cells that are dominated by others already
filled. We have suggested a small test of domination within a cell if we want to keep k
paths per cell, with k > 1. But no domination test is performed between cells. And
these tests are costly since they square the complexity if we use a naive method
of domination testing, comparing any new path with those already known. More
precisely, the complexity of dealing with domination test is in O

(
∆n log2d

1+ε(nC)
)
,

multiplying the number of seen paths with the number of kept paths for a given
vertex. This complexity is also the overall complexity, dominating the complexity
stated in Theorem 20.

In [BC19], the authors propose to use the offline methods of Kung et al. [KLP75]
but it seems that they are used for each added path, which worsens the complexity by
adding a logarithmic factor to the complexity obtained with the naive test method.
The authors then point out that in practice, these offline methods are only profitable
for a very large number of paths (at least 105) and therefore decide to fall back on
the naive method for their experiments.

3.4.2 Naive Sample Set

With the previous algorithm, two paths very close but in different parts will be kept.
We remove a path when another one (1 + ε)-covers it and is in the same part. We
wonder what happens if we decide to remove the constraint of being in the same
part. Now, as soon as we discover a (1 + ε)-covered path, we remove it.

The solution sets Su are represented as linked lists, in order to efficiently iterate
over it. The condition to remove a path is more complex to check here. We are no
longer restricted to comparing it with a bounded number of paths, or even one, that
are in the same part. We may have to compare it with all the kept paths, as the
pseudo-code of the Algorithm 8 suggests.

Theorem 21. Naive Sample Set (Algorithm 8) has a O(|R| · |S|) time complex-
ity. Then, the time complexity of Meta Rank using this algorithm as Sample is
in O

(
∆ log2d

1+ε(nC)
)
.

Proof. Naive Sample Set potentially compares each path of R with each path
of S, with a constant time test. As for its use in Meta Rank, the number of paths
kept is bounded by logd1+ε(nC) since we keep at most one path per cell. The paths
transiting in R are extensions of kept paths, so it is at most the number of kept
paths, multiplied by ∆.

In order to improve the complexity, one can place the solutions in an array as in
Naive Sample Part, and then compare any new path with those in its part and
in the neighboring parts, which bounds the number of cells in the array to be tested
by 2d − 1.
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Input: R,S sets of paths, ε > 0
Output: R′ set of paths

1 R′ ← ∅
2 for P ∈ R do
3 if P ≤Dom (nCi)1≤i≤d then // the i-th coordinate is bounded by

nCi
4 Covered(P )← False
5 for Q ∈ S do
6 if Q ≤Dom (1 + ε)P then
7 Covered(P )← True
8 break ; // P is (1 + ε)-covered

9 if Covered(P ) = False then // P is (1 + ε)-covered
10 R′ ← R′ ∪ {P}
11 return R′

Algorithm 8: Naive Sample Set

s u0 u1 un−1 t

(·, x0)

(·, y0)

(·, x1)

(·, y1)

(·, xn)

(·, yn)

Figure 3.3 – Study of the gap between two paths.

3.4.3 Fast heuristics.

These algorithms have nice complexities. However, they do not guarantee to output
a (1+ε)-approximation. To convince ourselves of this fact, we start by studying what
gap can appear between two paths, when the prefix of the first one is responsible for
the pruning of the second one. More precisely, we consider a sequence of n+ 1 pairs
of arcs represented by the graph of Figure 3.3. The weights are here in dimension 2
and we represent only the second dimension. We use here the set version, taking
the vertex s as source.

We suppose the following processing: when discovering the paths that arrive
at ui, we keep only those that go above, of weight (·, xi). We notice that such
an unfolding implies that from s to any vertex ui, the algorithm discovers only two
paths. Both arrive at ui−1 by using only the above arcs of weight (·, xj), then branch
to go from ui−1 to ui either by going above or below. Only one of the two being
then kept (the above one), this reasoning is recursive.

The condition of keeping the above path gives that after k steps:

k−1∑
i=0

xi + xk ≤ (1 + ε)

(
k−1∑
i=0

xi + yk

)
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u0 u1 u2 un−1 un

(1, 1 + ε)

(1 + ε, 1)

(1, (1 + ε)2)

((1 + ε)2, 1)

(1, (1 + ε)k)

((1 + ε)k, 1)

(1, (1 + ε)n)

((1 + ε)n, 1)

Figure 3.4 – Counter-example of the (1 + ε)-approximation guarantee.

i.e.:

xk ≤ ε

k−1∑
i=0

xi + (1 + ε)yk

By induction:

xk ≤
k−1∑
i=0

ε(1 + ε)k−iyi + (1 + ε)yk

and:
n∑
k=0

xk ≤
n∑
k=0

(1 + ε)n−k+1yk

We notice that it is the beginning of the path that is most likely to make lose
the (1 + ε)-coverage. In other words, the loss in precision can cascade: if a path P1

is pruned in favor of a path P2, and later the extension of P2 is pruned in favor of a
path P3, the extension of P1 could no longer be (1 + ε)-covered by P3.

Counter-example to (1+ε)-approximation guarantee. We thus consider the
counter-example described by the Figure 3.4.

We assume that the first coordinate is privileged, meaning that when considering
two paths of same rank, the processing order is the lexicographic order. Without
this assumption, it is sufficient to shift the weights very slightly to force the order
but respect the inequalities we are going to use. This last remark is useful to adapt
our counter-example to Algorithm 7. We therefore end up keeping only the path
passing through the above arc and ignoring the bottom one. Indeed, let assume that
from s to uk, only the path going through above arcs has been kept. Therefore, this

path has a cost of:

(
k,
∑

1≤i≤k

(1 + ε)i

)
.

Its extensions to uk+1 are the following (seen in lexicographic order since they
have same rank):

• P (k) of cost

(
k + 1,

∑
1≤i≤k+1

(1 + ε)i

)
,

• Q(k) of cost

(
k + (1 + ε)k+1,

∑
0≤i≤k

(1 + ε)i

)
.
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On the first coordinate, Q(k) is larger than P (k). On the second one, since
(1 + ε) ·

∑
0≤i≤k

(1 + ε)i =
∑

1≤i≤k+1

(1 + ε)i, then Q(k) is at a factor 1 + ε from P (k).

Hence, Q(k) is (1 + ε) covered by P (k). Thus, Q(k) is pruned. Recursively, we obtain
that the only path going from u0 to un that is be kept is the one using only the
above arcs, noted P (n). We note R(n) the path using only the arcs from below. We
have:

R
(n)
2 = n

P
(n)
2 =

∑
1≤i≤n

(1 + ε)i =
1 + ε

ε
[(1 + ε)n − 1]

=
1 + ε

nε
[(1 + ε)n − 1] ·R(n)

2

However:
(1 + ε)n − 1

n
−−−→
n→∞

+∞

Thus, for n large enough, R(n) is not (1 + ε)-covered by P (n).

A simple modification. The same kind of study was conducted in [BC19] which
leads the authors to the same solution as in TZ. They use much smaller parts, with
a factor: (1 + ε)

1
n . This way, the error can be set to the power n without exceed-

ing (1 + ε). However, the number of parts and their hop numbers are prohibitive.
In practice, all paths will be in separate parts. Combined with the absence of dom-
ination test, TZ is completely unpractical despite its nice complexity. In [BDH17],
the authors tackle this issue by replacing the exponent by a reasonable value, cho-
sen by hand. But this value is arbitrary and does not guarantee that we obtain a
(1 + ε)-approximation.

Conclusion. We have therefore presented here two relatively natural implemen-
tations of Meta Rank. These algorithms have very interesting complexities. The
first one, using Naive Sample Part as a Sample function is however unpractical:
it does not remove all dominated paths. Thus, it is necessary to add this operation
which increases the complexity of the algorithm. Another problem is that this al-
gorithm, as well as its variant using Naive Sample Set as a Sample function, do
not guarantee to output a (1 + ε)-approximated Pareto set.

3.5 Solutions with sectors

3.5.1 Elimination criterion

It turns out that the framework provided by Algorithm Meta Rank (Alg. 6) can
compute (1 + ε)-Pareto paths, by defining an appropriate Sample function. To
guarantee Algorithm Meta Rank to output a (1 + ε)-approximated Pareto set, we
require the following ε-weak framing property.

Definition 22 (ε-weak framing property). A function Sample outputting R′ ⊆ R
on input (R,S, ε) satisfies the ε-weak framing property if, for every path P ∈ R\R′,
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there exist d representative paths Q(1), . . . , Q(d) in S ∪R′ such that, for every i,{
Q

(i)
i ≤ (1 + ε)Pi
∀j 6= i, Q

(i)
j ≤ Pj

Furthermore, S ∪R′ is a set of incomparable paths.

Proposition 23. The 0-weak framing property is equivalent to the Exact property.

Proof. When ε = 0, the first part of the definition of the ε-weak framing property is
equivalent to the property that every path inR\R′ is dominated by a path in S∪R′.
Combined with the second part of the definition, we obtain the equivalence.

Notice that if P ∈ R is dominated by Q ∈ S, it is sufficient to set Q(i) = Q for
all i. Overall, this ε-weak property guarantees that the output of Meta Rank is a
(1 + ε)-Pareto set.

Theorem 24. With a function Sample satisfying the ε-weak framing property,
Meta Rank algorithm (Alg. 6) solves the (1+ε)-approximate Multicriteria Shortest
Path Problem.

Proof. Let S be a Pareto set and Sa be the output of the algorithm. It is sufficient
to show that for any path P ∈ S, there exists a path Q ∈ Sa such that P is (1 + ε)-
covered by Q and rank(Q) ≤ rank(P ). By contradiction, let P ′ ∈ S be a minimum
rank path not (1 + ε)-covered by any Q ∈ Sa such that rank(Q) ≤ rank(P ′). P ′

cannot be an empty path since the only one the algorithm can process is the one
from the source to itself, and being the first one to leave T , it is inserted in S.
Thus, we can write P ′ = P · e, with P a path and e the last arc of P ′. P having an
inferior rank than P · e, there exists a path Q ∈ Sa (1 + ε)-covering P . If P is kept
in Sa, then P ·e is inserted in T and is either kept in Sa or removed because of some
representatives. In either cases, it is (1 + ε)-covered, which is absurd. Otherwise, P
is not kept in Sa and in particular, P 6= Q. Since rank(Q) ≤ rank(P ), there exists a
dimension i such that Qi ≤ Pi. Furthermore, Q ∈ Sa implies that it is extended and
that Q ·e is inserted in T . However, Q (1+ε)-covers P , thus Q ·e (1+ε)-covers P ·e
and: {

Qi + ei ≤ Pi + ei
∀j 6= i, Qj + ej ≤ (1 + ε)(Pj + ej)

That is why Q ·e cannot be in Sa. This means that Q ·e is removed because of some
representative paths, among which a path R ∈ Sa, with rank(R) ≤ rank(Q ·e), that
satisfies: {

Ri ≤ (1 + ε)(Qi + ei)
∀j 6= i, Rj ≤ Qj + ej

Then: {
Ri ≤ (1 + ε)(Qi + ei) ≤ (1 + ε)(Pi + ei)
∀j, Rj ≤ Qj + ej ≤ (1 + ε)(Pj + ej)

Which means that P · e is (1 + ε)-covered by R. Since R is in Sa, we obtain a
contradiction.
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Figure 3.5 – Representation of the three sectors of a path P in 3D.

Two characteristics of Sample are of particular interest:

• the time complexity,

• the number of paths the function removes.

Naive greedy algorithms are not efficient for either of these metrics. Thus, we
propose a sample algorithm guaranteeing the ε-weak framing property, achieving a
good tradeoff for the two characteristics. Given a d-dimensional space, we define d
sectors for every path P .

Definition 25. The i-th sector of P contains every point Q with Qj ≤ Pj for j 6= i.
Given ε, the boolean function coverSector(P,Q, i, ε) is True if Q belongs to the i-th
sector and (1 + ε)-covers P , that is

coverSector(P,Q, i, ε) = (Qi ≤ (1 + ε)Pi) ∧
∧
j 6=i

(Qj ≤ Pj)

In Figure 1.4, the two rectangles represent the incomparable part of the two
sectors 2-covering the point B, i.e., the points Q not dominating B such that
coverSector(B,Q, 1, 1) is true (for instance C,D and E), and coverSector(B,Q, 2, 1)
is true respectively (such as A). For three criteria, Figure 3.5 depicts the three sec-
tors covering a point P , restricted to the plane of paths of rank equal to rank(P ).
The green zone is the sector for the x dimension, the red one for y and the blue one
for z. Notice that their sizes is not the same, since it depends on the coordinate
of P in that dimension.
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3.5.2 A first version : Sample Sector

We propose a greedy algorithm Sample Sector (Alg. 9), considering each path
only once to determine if it is removed. Informally, the criterion is the following:
whenever a path P is processed, if it is represented by d paths seen so far, it is
removed. A weakness of this method is that we do not have any guarantee on the
number of paths kept over the minimum number we could have kept.

Input: R,S sets of paths, ε > 0
Output: R′ set of paths

1 R′ = ∅
2 foreach P ∈ R do
3 foreach i ∈ J1; dK do
4 covered← False
5 foreach Q ∈ S ∪R′ do
6 if coverSector(P,Q, i, ε) then // a representative Q is

found
7 covered← True
8 break ; // no need to search in this sector anymore

9 if covered = False then // P is not covered in at least one
sector

10 R′ ← R′ ∪ {P} ; // then it is kept
11 break ; // no need to search for other sectors anymore

Algorithm 9: Sample Sector

Definition 26. The algorithm Sector is the Meta Rank algorithm (Alg. 6) using
Sample Sector (Alg. 9).

Theorem 27. Sample Sector satisfies the ε-weak property when R and S are
both Pareto sets such that any path of R has a larger rank than any path of S.

Proof. If a path P ∈ R is not added in R′, then during the processing of P , there
exists d paths in R′ ∪ S (1 + ε)-covering P respectively in each sector. Since no
path is removed from R′, those representatives are still in R′ ∪ S at the end of
Sample Sector. Moreover, paths from R cannot dominate those from S because
their ranks are greater, and dominated paths from R are not in R′ since those are
covered in each sector by a dominating path.

Theorem 28. The complexity of Sector algorithm (Def. 26) is O
(
(∆Sε)

2
)
.

Proof. The algorithm considers ∆Sε paths at most. Since every path must be com-
pared to every other one, CSample Sector(n,Sε,∆,Λ) = O((∆Sε)

2). Thus, using
Theorem 15, the overall time complexity is in O

(
(∆Sε)

2 + ∆Sε log(∆Sε)
)
, which is

in O
(
(∆Sε)

2
)
.
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Limitations. Let r be a rank, H the hyperplane of rank r and S the set of paths
in H that the algorithm outputs from the priority queue. We notice that for any
path P ∈ S, if we split H in two half-hyperplanes H1, H2 such that P is on the
frontier of both, then our elimination criterion requires P to have a representative
in both H1 and H2.

In Sample Sector (Alg. 9), if R is ordered in lexicographic order, only dom-
inated paths are removed: indeed, at any step, already seen paths in R are con-
tained in a semi-hyperplane. Thus, if S is empty, the algorithm would keep every
non-dominated path. A simple improvement would be to use a uniformly random
order.

Another consequence is that paths that are in the convex hull of S cannot be
deleted. Then we can precompute the convex hull Conv(S) of S, consider Conv(S)
as kept and apply our algorithm to the remaining paths of S\Conv(S).

If one wants to use this method, we recall the following complexities:

Lemma 29 ([Cha93; Cha96]). Let d ≥ 1 be a dimension, S a set of points in Rd

and h = |Conv(S)| the output size. The convex hull Conv(S) of S can be computed
in:

• O(n log(h)) in 2D [Cha96]

• O(n log(n) + nbd/2c) in the general case [Cha93]

For more details on this subject, a review can be found in [Ind04].

3.5.3 With RangeQueries : Small Sample Sector

We propose another algorithm implementing the Sample function, Small Sample
Sector, in order to have a better output sensitive complexity for Meta Rank. It
considers each dimension i independently to compute a set of paths R′i ⊆ R and

the output of the algorithm is R′ =
d⋃
i=1

R′i.

Let r be the rank of the paths in R, and let i be a dimension. We partition R
into strips R(l)

i , for l ∈
q
0, dlog1+ε re+ 1

y
. R(0)

i (resp. R(1)
i ) contains the paths such

that Pi = 0 (resp. Pi = 1). For l ≥ 2, P ∈ R belongs to R(l)
i if its i-th coordinate Pi

is in
(
(1 + ε)l−2, (1 + ε)l−1

]
.

Our algorithm Small Sample Sector proceeds as follows:

1. R∪ S is first preprocessed to answer quickly range queries.

2. Then, for every path P ∈ R(l)
i , P is inserted into R′i if P is not (1 + ε)-covered

in its i-th sector by a path of R∪ S in the same strip R(l)
i .

The second step can be done using the following range query (Section 2.2.4):
RangeQuery([0, P1]× · · ·× [0, Pi−1]× [Pi, (1 + ε)l−1]× [0, Pi+1]× · · ·× [0, Pd],R∪S).
For legibility reason, this request will be noted RangeQuerySector(P, i,R∪ S).

In Figure 3.6, the gray z-strip contains only 6 points, the other one in the sector
cannot be used to represent P since it is outside the gray zone.
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Input: R,S sets of paths, ε > 0
Output: R′ set of paths

1 R′ = ∅
2 r ← rank(R)
3 foreach i ∈ J1; dK do
4 Set up R(0), . . . ,R(dlog1+ε re+1) to empty sets
5 foreach P ∈ R do
6 if Pi = 0 then
7 Add P to R(0)

8 else
9 Add P to R(dlog1+ε Pie+1)

10 foreach l ∈
q
0; dlog1+ε re+ 1

y
do

11 R′(l) ← ∅
12 foreach P ∈ R(l) do
13 if RangeQuerySector(P, i,R∪ S) = ∅ then
14 R′(l) ← R′(l) ∪ {P}

15 R′i ← R′i ∪R′(l)

16 R′ ← R′ ∪R′i
Algorithm 10: Small Sample Sector

Figure 3.6 – In 3D, the three sectors covering P at distance at most (1 + ε) are
depicted in green, red and blue. Only 6 points are within the gray z-strip of P .
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Definition 30. Algorithm SSector is the Meta Rank algorithm (Alg. 6) using
Small Sample Sector.

As mentioned in the introduction, SSector solves the (1 + ε)-Multicriteria
Shortest Path Problem. Combined with Theorem 24, the following theorem confirms
that.

Theorem 31. Small Sample Sector satisfies the ε-weak property when R and S
are both Pareto sets such that any path of R has a larger rank than any path of S.

Proof. In both Sample functions, we have to prove that if a path P of rank r has
been removed, S ∪ R′ contains d paths guaranteeing the ε-weak framing property.
Let us focus on one dimension i.

If the range query returns a non empty set Q for the P ’s i-th sector of its strip,
we have two cases: (1) the corresponding subspace contains at least a permanent
path in S or (2) only contains paths of same rank. In the first case, we are sure that
path P will have a representative path in its i-th sector whereas in the second case,
these paths might be not kept in R′i. This case is not possible since the path in Q
with the highest value for its i-th coordinate is added in R′i. In both cases, if a path
does not belong to R′i, then there is at least one path in R′i∪S that (1+ε)-covers P
in its i-th sector.

By construction, any path P kept in Small Sample Sector has no represen-
tative path in at least one of its sector in the same strip.

The following theorem states the output-sensitive time complexity of SSector
given in Table 1.1, along with the space complexity and the time complexity in
the special case where weights are integers. In order to conclude, it is sufficient
to compute the sum of the complexities of the Small Sample Sector calls in
SSector, and then to use Theorem 15.

Theorem 32. The time complexity of SSector is O(∆Sε logd−1(∆Sε)) and the
space complexity is Θ(∆Sε logd−1(∆Sε)). If the arc weights are integers, the out-
put Sε of SSector is of size Sε = O

(
(nC)d−1 log1+ε(nC)

)
.

Proof. Assume first that the weights are integers. Given a current rank r and a
strip R(l)

i , Small Sample Sector stores at most one path for every x ∈ Zd−2.
Thus for every i, |R′(l)i | = O(rd−2). Since we have at most d2 + log1+ε re strips
and d dimensions, |R′| is smaller than or equal to d(r+ 1)d−2(d2 + log1+ε re). Since
we have dnC ranks, Sε = O(d(dnC)d−1 log1+ε(dnC)). Since d is constant, Sε is
in O((nC)d−1 log1+ε(nC)).

To get bounds on CSmall Sample Sector, we have to build data structures ded-
icated to range queries. The number of insertions to do before the queries is
bounded by O(∆Sε). Each of these insertions is in O(logd−1 ∆Sε) and a range

query is in O

((
logSε

log logSε

)d−1
)

[Mor06]. Then the number of range queries is at

most d∆Sε. Thus CSmall Sample Sector = O(∆Sε logd−1 ∆Sε).
From Theorem 15, we have to add O(∆Sε log(∆Sε)) time steps to get the com-

plexity of both algorithms assuming d is constant. Whenever the arc weights are
integers we also have ∆Sε ≤ dnC.
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Comparison with TZ. We can observe that whenever C is moderate, SSector
provides smaller upper bounds on the time complexity than TZ. Both complexities
are in O of:

• ∆(nC)d−1 log1+ε(nC) logd−1
(
∆(nC)d−1 log1+ε(nC)

)
for SSector,

• ∆nd+1
(
log1+ε(nC)

)d−1 for TZ.

To make a simple comparison, let us consider ∆ = Θ(1) and ε << 1. Removing
negligible terms and multiplicative constants, while using the assumption with ε, we
obtain :

• (nC)d−1 log(nC)

ε
logd−1

(
(nC)d−1

ε

)
for SSector,

• nd+1

(
log(nC)

ε

)d−1

for TZ.

We use the following inequality for x ≥ 2 and y ≥ 2:

log(xy) = log(x) + log(y) ≤ x+ log(y) ≤ x log(y)

It is more than reasonable to consider that log((nC)d−1) ≥ 2, and since ε << 1, we
obtain that:

logd−1

(
(nC)d−1

ε

)
≤ 1

εd−1
logd−1

(
(nC)d−1

)
.

And then:

• (nC)d−1

(
log(nC)

ε

)d
for SSector,

• nd+1

(
log(nC)

ε

)d−1

for TZ.

and if Cd−1 log(nC) ≤ εn2 then SSector has a smaller worst-case time com-
plexity than TZ. For instance, if d = 3, it is the case if C ≤

√
εn1−α for any α > 0.

3.5.4 Heuristic speed-up : Quick Sample Sector

In order to speed-up SSector, we propose Quick Sample Sector, a preprocess-
ing algorithm for Small Sample Sector. It does not use S and just performs
a quick (but light) pruning of the paths in R. Similarly as Small Sample Sec-
tor, this algorithm considers each dimension independently to compute sets of

paths R′i ⊆ R and the output of both algorithms is R′ =
d⋃
i=1

R′i.

We use the same strip partitioning as for Small Sample Sector. Our sample
algorithm Quick Sample Sector (see Alg. 11) proceeds as follows. For each
path P of a given strip, P is kept in R′i if and only if there is no other point Q
belonging simultaneously to the same strip and the i-th sector of P , sharing the d−2
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Figure 3.7 – In 3D, the 3 covering sectors of P are depicted in green, red and blue.
Only 7 points are within the gray z-strip of P . Blacks points are kept by Quick

Sample Sector and only Q is kept by Small Sample Sector.

coordinates i+1 mod d, i+2 mod d, · · · , i+d−2 mod d and such thatQi > Pi. To
do that, we store in a data structure the largest i-th coordinate for each encountered
tuple formed by the previously described d− 2 coordinates.

More precisely, let I = {i+ 1 mod d, i+ 2 mod d, . . . , i+ d− 2 mod d}. Let x
be in Zd−2. QI(x) = {P ∈ R(l)

i |Pi+j mod d = xj for j ∈ [1, d − 2]} is a set of paths
sharing d− 2 same coordinates in the same strip. Add Q = arg max{Pi|P ∈ QI(x)}
to R′i.

We will show that the selection process can be done efficiently starting with the
following property:

Lemma 33. Let P and Q be two paths of the same strip. If P and Q differs on
exactly two coordinates with Qi > Pi, then Q belongs to the i-th sector of P and
(1 + ε)-covers P .

Proof. For the sake of simplicity, let us take i = 1 and assume that Pj = Qj

for j ∈ [2, d − 1]. If Q1 > P1, since P and Q have same rank, we have Qd < Pd.
Thus, Q belongs to the i-th sector of P . Moreover, P and Q are in the same strip
implying that Q1 ≤ (1 + ε)P1.

Instead of using an array at line 11, one can use a balanced binary tree (Sec-
tion A.2) to guarantee a time complexity in O(R logR), or a hash table to get linear
time complexity on average.

This algorithm cannot be used on itself as a Sample function. Indeed, it does
not take S into account and therefore does not remove any dominated path. Meta
Rank would then have an infinite loop since the paths would be extended indefi-
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Input: R,S sets of paths, ε > 0
Output: R′ set of paths

1 R′ = ∅
2 r ← rank(R)
3 foreach i ∈ J1; dK do
4 Set up R(0), . . . ,R(dlog1+ε re+1) to empty sets
5 foreach P ∈ R do
6 if Pi = 0 then
7 Add P to R(0)

8 else
9 Add P to R(dlog1+ε Pie+1)

10 foreach l ∈
q
0; dlog1+ε re+ 1

y
do

11 Set up R′(l) as an array indexed by J0, rKd−2 with empty entries
12 I ← (i+ 1 mod d, i+ 2 mod d, . . . , i+ d− 2 mod d)

13 foreach P ∈ R(l) do
14 Q← R′(l)[PI1 , PI2 , . . . , PId−2

]
15 if Q = ∅ or Pi > Qi then
16 Substitute Q by P

17 R′i ← R′i ∪R′(l)

18 R′ ← R′ ∪R′i
Algorithm 11: Quick Sample Sector
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nitely. We therefore limit ourselves to using it in a precomputation step for Small
Sample Sector.

Definition 34. Algorithm QSSector is the Meta Rank algorithm (Alg. 6) using
Quick Sample Sector then Small Sample Sector.

This way, Sample starts pruning as many paths as possible with an average con-
stant time complexity per path, depending only on the size of R. Then, it samples
with Small Sample Sector algorithm whose complexity per path is logarithmic,
and depends on the size of S. If R′ is the output of Quick Sample Sector(R,S),
then adding Quick Sample Sector as a preprocessing step gives the following
time complexity O(|R| + |R′| log(|R′ ∪ S|)) instead of O(|R| log(|R ∪ S|)). The
overall complexity is also in O(∆Sε log(∆Sε)).

Note that, given the sameR and S, the output Sru(QSSector) ⊆ Sru(SSector).
However, is not clear whether Sε(QSSector) is smaller than Sε(SSector). Intu-
itively, in practice, QSSector should be quicker than SSector.
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Chapter 4

Shortest paths in 2D

The dimension 2 case allows an important speed-up for MC Dijkstra. We investi-
gate a practical version of it, and provide a detailed description in Section 4.1. The
associated data structure guarantees the complexity announced in the section 3.1.2.
Then we propose a simple variant, Dijkstra Post, in order to reduce the compu-
tation time in practice in some cases. These algorithms are for an exact Pareto set
computation.

After that, we propose Frame algorithm in order to optimize Sector in 2D
(Section 4.2). For that, we introduce a new elimination criterion: the ε-strong
framing property, stronger than the one introduced in Section 3.5.1 as the name
suggests. Frame is based on this criterion, which guarantees that any output path
is optimal. Finally, an extensive experimental study is presented in Section 4.3. We
compare the performance of MC Dijkstra 2D, Dijkstra Post and Frame in
different contexts.

4.1 MC Dijkstra in 2D

The algorithm described by [Han80] is relatively high level as for the choice of data
structures to be used. However, it seems necessary to use a non trivial well known
method in order to obtain the announced complexity O(∆S log(∆S)). We detail it
to give the reader a better understanding of the experimental results following this
part.

4.1.1 Data structures

The interesting part happens during the extension of a path P . In order to insert it
into the set T of temporary paths, we need to determine if it is dominated or not,
whether by permanent or temporary solutions.

Permanent solutions. For each vertex u, the set Su of permanent paths of des-
tination u can be stored within a list using a lexicographic order. Since paths are
processed in lexicographic order, inserting paths in Su at the end of the list pre-
serves the order. Whether the list is implemented with a linked list or a dynamic
array, an insertion takes O(1) amortized time (for the line 9 in Algorithm 5). The
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dynamic array data structure refers to an array which size is doubled when required,
guaranteeing a O(1) amortized time per insertion. Furthermore, these arrays allow
a logarithmic time search.

The function IsNotDominated() (line 11) can be done in constant time, com-
paring the extended path P · (v, w) with the first path in Sw, which is sufficient
since P · (v, w) is necessarily greater in lexicographic order that any path in Sw.

Temporary solutions. For each vertex u, the set Tu is a self-balancing binary
search tree (Section A.2) using the lexicographic order, allowing logarithmic search,
insertion and deletion. Another tree Tglobal, of the same type, is added. It contains
the smallest path, in lexicographic order, of Tu, for each vertex u ∈ V . In Tglobal,
paths with the same cost are kept and can be ordered by some vertex identifiers
in order to guarantee a logarithmic time search. The two following operations are
necessary:

• Removal of a global minimum path in T in order to extend it (lines 7 and 8).
Let P be such a path. It is a minimum in Tglobal. Let u be the destination of
P . P is removed from Tu and replaced in Tglobal by the new minimum path of
Tu, in order to keep the minimum path of each non empty Tu in Tglobal. This
last operation can be done in O(min{logS, log n}).

• InsertAndClean operation (line 12). Let P be the path inserted, and u its
destination. Informally, if Tu is a sequence of path organized in lexicographic
order, the paths that are not in a Pareto set of Tu ∪ {P} form a subsequence
of consecutive paths ending at P (the latter being included or not depending
whether it is dominated by Tu or not).

1. First, P is inserted in Tu.
2. Then, let Q ∈ Tu be the path following P in lexicographic order.
3. If Q dominates the path P ′ preceding Q in Tu, then P ′ is removed.
4. This step is repeated until P ′ is not dominated by Q.

Notice that the first instantiation of P ′ is P guaranteeing that P is not kept if it
is dominated by Tu. The amortized time complexity per path is in O(log |Tu|).

This data structure has several drawbacks. First, it is much more technical than
the classical implementations, based on a heap for example. The complexity is of
the same order of magnitude, but one can notice that the multiplicative constants
hidden in theO are larger. Secondly, in order to implement MC Dijkstra, this data
structure is, to our knowledge, not implemented in standard libraries, contrary to
heaps which are generally optimized there. The previous points imply a potentially
time-consuming implementation in order to obtain reasonable performances. For
these reasons, we propose to use Dijkstra Post as an alternative.

4.1.2 Dijkstra Post

If dominated paths are pruned while leaving T only by comparing them to paths
in S, the latter set could simply be a priority list ordered in lexicographic order, a
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Figure 4.1 – MC Dijkstra 2D temporary solutions data structures.

data structure efficiently implemented in most common programming languages. On
the other hand, we recall that testing dominance when paths are leaving T rather
than entering it has the drawback to consider more paths. Indeed, contrary to MC
Dijkstra, the priority list T is not a Pareto set. It is only when leaving this set
that a path can be detected as useless. This implies a potentially bigger set T , i.e.,
a higher number of seen paths.

4.2 Frame
Let us focus now on approximated Pareto set computation in dimension 2.

4.2.1 Elimination criterion

Sector could potentially return non optimal solutions. As it will be proven in
Section 4.2.2, we prevent this from happening by introducing a stronger property,
based on the idea that the representatives of a path have to cover themselves too.
However, we will restrict the definition for d = 2 because it is not giving satisfying
theoretical results in higher dimensions.

We start by giving the formal definition of what we call being framed between
two paths. This definition is commented and illustrated afterwards.

Definition 35 (Frame). For any paths A,P,B such that rank(A) ≤ rank(P ) and
rank(B) ≤ rank(P ), we say that A and B frame P , or that P is framed between A
and B if:

(i) A1 ≤ P1

(ii) B2 ≤ P2

(iii) A2 ≤ (rank(P )−B1)(1 + ε)
(iv) B1 ≤ (rank(P )− A2)(1 + ε)

We will note this property frame(A,P,B, ε).
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Figure 4.2 – A and B frame P for ε = 1, but not for ε = 0.5.

In the particular case where the two paths A and B have the same rank as the
path P , if frame(A,P,B, ε), then A and B match the Q(1) and Q(2) representatives
of P in the ε-weak framing property, with the additional constraint that A and B
(1 + ε)-cover each other. This definition is extended for A and B having lower ranks
than rank(P ), projecting those into the line of paths having the same rank as P . A
is projected on the second dimension, B on the first one.

These projections of A and B are depicted in Figure 4.2 as A′ and B′. The
blue (resp. green) zone corresponds to the paths 2-covered by A′ (resp. B′).
Notice that the frame property requires the projections A′ and B′ to cover each
other, but not necessarily A and B. Thus, in this example, frame(A,P,B, 1) since
frame(A′, P, B′, 1).

We define the ε-strong framing property as a particular case of the ε-weak fram-
ing property for which the representatives of a path are framing it according to
Definition 35.

Definition 36 (ε-strong framing property). A function Sample outputting R′ on
input (R,S, ε) satisfies the ε-strong framing property if:

• ∀P ∈ R \ R′, ∃A,B ∈ S ∪R′, frame(A,P,B, ε),

• R′ is minimal by inclusion,

• S ∪R′ is a Pareto set.

As the name suggests, the strong property is stronger than the weak one since it
requires some conditions between the representatives, as well as the minimality of
the output.

Proposition 37. The ε-strong framing property implies the ε-weak framing prop-
erty.
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Proof. Let Sample verifying the ε-strong framing property on inputs (R,S, ε). Let
P ∈ R\R′. There exists A,B ∈ S ∪R′ such that frame(A,P,B, ε). Since S ∪R′ is
a Pareto set, we only need to show that there exists two representatives Q(1), Q(2) ∈
S ∪R′, such that: {

Q
(1)
1 ≤ (1 + ε)P1

Q
(1)
2 ≤ P2

{
Q

(2)
2 ≤ (1 + ε)P2

Q
(2)
1 ≤ P1

Unfortunately, setting Q(1) = B and Q(2) = A is not always sufficient. We consider
three cases:

• if A2 ≤ P2, then Q(1) = Q(2) = A is correct,

• if B1 ≤ P1, then Q(1) = Q(2) = B is correct,

• otherwise, we take Q(1) = B and Q(2) = A. Indeed:

– Q
(2)
1 = A1 ≤ P1 and Q(1)

2 = B2 ≤ P2 by (i) and (ii) (cf Def. 35),

– Q
(1)
1 = B1 ≤ (1+ε) · (rank(P )−A2) = (1+ε) · (P1 +P2−A2) ≤ (1+ε)P1

by (iv)

– Q
(2)
2 ≤ (1 + ε)P2 using symmetric arguments.

The following theorem is a direct corollary of Theorem 24 and the previous
proposition.

Theorem 38. With a function Sample satisfying the ε-strong framing property,
Meta Rank algorithm (Alg. 6) solves the (1+ε)-approximate Multicriteria Shortest
Path Problem.

Proof. Corollary of Theorem 24 and Proposition 37.

4.2.2 Pareto compatible property

In this section, we check that, by using a Sample function which satisfy the ε-strong
property, Meta Rank returns only optimal solutions. We first recall the definition
given in Section 1.7.

Definition 39 (Pareto compatible). An algorithm is said to be Pareto compatible
if and only if its solution (Sv,ε)v∈V to the (1+ε)-approximated Multicriteria Shortest
Path Problem is always a subset of a Pareto set Sv, for every vertex v.

During a Meta Rank execution, a path P could be framed, then removed.
Furthermore, the extensions of the representatives could be themselves framed and
removed, and so on. We show that the extensions of P are nevertheless still framed
by kept paths in the ε-strong setting.

Lemma 40. Let Sε be the output of Meta Rank (Alg. 6) using a Sample function
satisfying the ε-strong property. Any path P is framed by some paths A,B ∈ Sε.

99



The idea is, by contradiction, to consider, among the paths not framed, one with
minimum rank. This path cannot be empty, thus it can be written P · e, with P
a path and e an arc. By definition of P · e, P is framed. Using paths A and B
framing P , we can show that their extensions A ·e and B ·e are framing P ·e. These
extensions are either kept in Sε or in turn framed by some paths of Sε framing P · e
too.

Proof. For paths A,B and P , if P is framed by A and B, we note: α(P ) = A, β(P ) =
B (beware that α and β are not functions, A and B not being necessarily unique).
By contradiction, let us assume that there exist paths in the Pareto set that are not
framed by the output. Let P ′ be such a path of minimum rank. If P ′ is an empty
path, then it is the first path seen by the algorithm, and it is kept, giving directly
a contradiction. Otherwise, we can write P ′ = P · e, with e being the last arc of P ′.
We have rank(P )<rank(P · e), thus P is framed by two paths α(P ), β(P ) ∈ Sε
framing P . Notice that if P is kept, we can say that P is framed by (P, P ). We will
note: A = α(P ) · e and B = β(P ) · e. Since α(P ) and β(P ) are kept, A and B will
be considered by the algorithm but not necessarily kept.

We consider three cases:

1. If the algorithm keeps both A and B, then they frame P · e, since they have
inferior ranks and:
(i) A1 = α(P )1 + e1 ≤ P1 + e1

(ii) B2 = β(P )2 + e2 ≤ P2 + e2

(iii) A2 = α(P )2 + e2

≤ (1 + ε)(rank(P )− β(P )1) + e2

≤ (1 + ε)(rank(P )− β(P )1) + (1 + ε)e2

≤ (1 + ε)(rank(P )− β(P )1) + (1 + ε)(rank(e)− e1)
≤ (1 + ε)(rank(P ) + rank(e)− β(P )1 − e1)
≤ (1 + ε)(rank(P · e)−B1)

(iv) B1 ≤ (rank(P · e)− A2)(1 + ε) by a reasoning similar to (iii)

2. The algorithm keeps only one. W.l.o.g., we can consider that A is kept. B
being removed, it is framed by α(B) and β(B).

• Either α(B)1 ≤ P1 + e1, in which case, P ′ is framed by α(B) and β(B)
too. Indeed, we have β(B)2 ≤ B2 ≤ P2 + e2 = P ′2 giving (ii). And
(iii), (iv) are given by the fact that rank(B) ≤ rank(P ′).

• Otherwise A and α(B) frame P ′. Indeed,

(i) A1 = α(P )1 + e1 ≤ P1 + e1 = P ′1
(ii) α(B)2 = rank(α(B))−α(B)1 ≤ rank(P ·e)−(P1+e1) ≤ P2+e2 = P ′2
(iii) A2 ≤ (1 + ε)(rank(P ) − β(P )1) + e2 ≤ (1 + ε)(rank(P · e) − B1) ≤

(1 + ε)(rank(P · e)− α(B)1)

(iv) α(B)1 ≤ B1 ≤ (1+ε)(rank(P )−α(P )2)+e1 ≤ (1+ε)(rank(P ·e)−A2)

3. The last case corresponds to removing both A and B. As in the previous case,
if α(B)1 ≤ P1 + e1, P is framed by α(B) and β(B). Otherwise, A and α(B)
frame P ′ and we can use the same reasoning than before, replacing B by α(B).
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We have proved that P ′ is framed, leading to a contradiction.

It can be deduced from this lemma that the ε-strong property implies the Pareto
compatibility.

Theorem 41. Meta Rank (Alg. 6) using a Sample function satisfying the ε-strong
property is Pareto compatible.

Proof. By contradiction, we assume that a path P ∈ Sε is dominated by some
path Q. If Q ∈ Sε, then P cannot be kept since it is processed after Q and is
dominated. Therefore, Q /∈ Sε. According to Lemma 40, there exists A,B ∈ Sε
framing Q. Thus, A,B frame P , which would mean that P is not kept since Sε is
minimal.

Remark. This results guarantees that Meta Rank using a Sample function satis-
fying the ε-strong property output’s size is smaller or equal than the Pareto set size.
However, it does not enable any comparison with the minimum size of a (1 + ε)-
approximated Pareto set.

4.2.3 Frame algorithm

We provide an efficient algorithm for Sample: Sample Frame and we prove that
it verifies the ε-strong property (Definition 36). It guarantees that by using it in
Meta Rank, the latter is Pareto compatible (Theorem 41).

Restriction to same rank paths. The algorithm is first presented in a simplified
version, which is generalized afterwards. LetR = {P (1), · · · , P (k)} be a set of paths
of rank r. We assume the paths P (i) to be sorted in lexicographic order.

The simplified algorithm consists in finding the maximum index j such that P (1)

and P (j) cover each other. Then, ∀ 1 < i < j, frame(P (1), P (i), P (j), ε) holds, and
those paths in-between are removed. Next, the algorithm is repeated recursively
on R′ = {P (j), · · · , P (k)} until R′ contains at most two paths. The output of the
simplified algorithm consists of the set of paths from R that were not removed. See
Algorithm 12 for a more formal description of the simplified algorithm.

Input: k paths (P (1), · · · , P (k)) of same rank sorted in lexicographic order,
ε > 0

1 imin ← 1
2 for i = 2 to k − 1 do
3 if frame(P (imin), P (i), P (i+1), ε) then
4 Remove P (i)

5 else
6 imin ← i

Algorithm 12: Sample Frame Same Rank
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Figure 4.3 – Sample Frame. The paths P (3), P (4), P (5) and P (6) are framed by A
and B for ε = 1, but not for ε = 0.5. In this latter case, the algorithm keeps the

middle point P (5).

Framing with lower rank paths. In order to improve the pruning capability,
paths from lower ranks are actually used to frame current rank paths. Assume that
A and B are two paths of rank lower than r such that ∀P ∈ R, A1 ≤ P1 ≤ B1 and
B2 ≤ P2 ≤ A2. Then Sample Frame performs the following three steps:

1. Paths from R dominated by A are removed.

2. Let A′ = (r−A2, A2) and B′ = (B1, r−B1) be projections of A and B on the
current rank r. If P (i), · · · , P (j) are the paths from R non dominated by A or
B, and sorted in lexicographic order, then the simplified algorithm is applied
on {A′, P (i), · · · , P (j), B′}.

3. Paths from R dominated by B are removed.

An example of this case is depicted in Figure 4.3 for ε = 0.5. The first step re-
moves P (1) and P (2) since they are dominated by A. Then the second step computes
the fact that A′ and P (5) cover each other but not A′ and P (6). Thus, P (3) and P (4)

are removed too. Since P (5) and B′ cover each other, P (6) is removed. Finally,
during the third step, P (7) is removed because B dominates it. Sample Frame’s
output is {P (5)}.

Remark. If the input of Sample Frame Same Rank is a set of paths of rank r,
then the output size is smaller than or equal to 2

⌈
log1+ε r

⌉
. Indeed, on the first

coordinate there is at most two path in any range of size 1 + ε.

Sample Frame Algorithm. In a general setting, the inputs of Sample Frame
are an unordered set R = {P (1), · · · , P (k)} of paths of rank r, and a Pareto set S
of paths of rank lower than r. Algorithm Sample Frame proceeds as follows:
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1. First, R is sorted in lexicographic order.

2. Then, let A = arg max
Q∈S

{Q1|Q1 ≤ P
(1)
1 } and B = arg min

Q∈S
{Q1|Q1 > P

(1)
1 }. Note

that B is the path following A in S in lexicographic order.

3. If A is not defined, then set A′ = P (1) and apply the algorithm to the subset
of paths R = {P (2), · · · , P (k)}. Symmetrically, if B is not defined, then set
B′ = P (k) and apply the algorithm to R = {P (1), · · · , P (k−1)}.

4. Let j be the maximum index such that P (j)
1 < B1. Intuitively, the paths

P (1), · · · , P (j) are the paths between A and B as in the previously described
situation.

5. Sample Frame applies the corresponding three steps to these paths.

6. Then, this algorithm is recursively applied on {P (j+1), · · · , P (k)}.

To search A and B among S efficiently, S is a balanced search tree allowing a
logarithmic time search. Similarly to Sector using Sample Sector, we can now
define our algorithm Frame using Sample Frame.

Definition 42 (Frame Algorithm). Algorithm Frame is the Meta Rank algo-
rithm (Alg. 6) using Sample Frame as the Sample function.

In order to prove that Frame is Pareto compatible, it is sufficient to verify that
Sample Frame satisfies the ε-strong property thanks to Theorem 41. Intuitively,
one can see on the example depicted in Figure 4.2 that any removed path is either
between two consecutive (in lexicographic order) kept paths, or dominated, thus
framed by the dominating path.

Theorem 43. Sample Frame algorithm satisfies the ε-strong framing property.

Proof. Deleted paths are always framed by kept paths. Furthermore, the output is
minimal since the algorithm is framing the largest interval possible. Finally, for A
and B fixed, steps 1 and 3 remove dominated paths, guaranteeing to have a Pareto
set as output.

4.2.4 Complexities

Sample Frame(S,R, ε) is efficient since it processes sequentially the paths fromR,
and potentially for each one of those, performs a logarithmic search through S.

Proposition 44. Let R (resp. S) be the number of paths of rank r (resp. inferior
to r). The complexity of the Sample Frame algorithm is O(R(logR + logS)}).

Proof. Paths of rank r are sorted in O(R logR) time. Then these paths are con-
sidered only once and each one may require to search for A and B in O(logS)
time.
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Figure 4.4 – Worst-case for Frame: the whole Pareto set is kept.

Remark. If S/ log(S) is small compared to R, it would be more efficient to browse
in parallel through the paths of inferior ranks in order to use those as representatives.
This browsing consists in O(R + S) operations. With the initial sorting of R, the
overall complexity would be O(R log(R) + S). Since we know the values of R and S
before applying Sample Frame, we may choose the more appropriate method.

With the previous proposition and Theorem 15, the time complexity of Frame,
claimed in Table 1.1, is computable by summing the complexities of each call to
Sample Frame.

Theorem 45. Let Sε be the size of the output of Frame. The output-sensitive
time complexity of Frame is in O (∆Sε log(∆Sε)).

Proof. For each vertex u and rank r, let T ru be the size of the first parameter
of Sample, and S<ru be the size of the second parameter of Sample. Then the
complexity of Sample using Sample Frame is O(T ru(logS<ru + log T ru)) which is
in O(T ru(log(∆Sε))) since T ru ≤ ∆Sε. Repeating this operation over each vertex and
rank gives CSample(n, Sε,∆,Λ) = O(∆Sε log(∆Sε)). Furthermore, recall that adding
an optimal path to the set of permanent paths costs O(logSε), therefore the over-
all complexity for the line 13 of Meta Rank (Alg. 6) is O(Sε logSε). Applying
Theorem 15 allows us to conclude.

Remark. Although Frame is Pareto compatible, it is possible that it computes the
whole Pareto set. For instance, if the Pareto set has the shape depicted in Figure 4.4,
no path is pruned. Indeed, the first path processed will be the one in the center, then
as the rank increases, the paths on both sides are processed. And none of them can
be framed on both sides: on one side, all the other paths have a higher rank.
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4.3 Experiments : is the Pareto compatible prop-
erty practically relevant?

Although Frame is Pareto compatible, it is interesting to check whether Sε given
by Frame is really smaller than S in practice. The potential for path pruning
using Pareto-compatible approximation algorithms allows us to hope for better per-
formance in practice.

4.3.1 Protocol

Algorithms

In the following, we mainly focus on the only Pareto compatible algorithm known
so far: Frame. Remind that TZ and Hydrid are not Pareto-compatible. Fur-
thermore, these two algorithms are unpractical, and the modified versions do not
guarantee that the output is a (1 + ε)-approximated Pareto set (see Sections 1.5.2
and 3.4.3 for more details). The main question is the following : in which cases is
Frame better than MC Dijkstra?

We will then analyze the reasons that lead to the observed gains. We also
compare the performance of MC Dijkstra and Dijkstra Post: MC Dijkstra
stores less paths since it prunes the paths before Dijkstra Post but Dijkstra
Post data structures are simpler and quicker.

We focus only on the one-to-one query, by incorporating into our algorithms the
termination criterion described in Section 3.1.4. Our hypothesis is that the efficiency
of Frame is highly linked to the Pareto set size S. Informally, we can say that S is
small if it is smaller than 10, intermediate for a few dozens to hundreds and large
for thousands.

Parameters

First, we identify the main parameters that are likely to impact the efficiency of the
Frame.

• The main one is the exact Pareto set size S. Whenever it is small, there is
little to gain, whereas significant pruning can be made with large Pareto sets.
This remark leads us to wonder how to increase it and how these different
techniques impact on the gain.

• A second parameter, more obvious fact, is the choice of ε: if this one is too
small, Frame cannot prune, similarly as TZ. By default, in our experiments,
we take ε = 1.

Evaluation criteria

Then, we must choose the criteria that are relevant to evaluate.

• The time is the most natural to evaluate during an algorithm execution. How-
ever, it is biased by the implementation choices. We also consider other criteria
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to get a deeper understanding of the differences in time efficiency of the algo-
rithms.

• The approximated Pareto set size Sε, that is the size of the output, gives a
direct idea of the pruning rate.

• We also study the number of paths built within the algorithms as a measure
of the memory space consumption.

• A measure of ε a posteriori, noted εpost, evaluates the similarity between Sε
and S. This parameter is defined as the minimum ε such that the output Sε
of Frame is a (1 + ε)-approximation of the Pareto set S. More formally:

εpost = max
P=(P1,P2)∈S

(
min

Q=(Q1,Q2)∈Sε
max

{
Q1

P1

,
Q2

P2

})
In the d-dimensional case, we compute the a posteriori epsilon εpost with the

Algorithm 13.

Input: S exact solution, Sε approximated solution
Output: εpost

1 εpost ← 0
2 foreach P ∈ S\Sε do
3 δ ← 1
4 foreach Q ∈ Sε do
5 δQ ← 1
6 for i ∈ J1, dK do

7 δQ ← max

{
Qi

Pi
, δQ

}
8 δ ← min{δQ, δ}
9 εpost ← max{δ, εpost}

Algorithm 13: Computing epsilon a posteriori

Graphs

Our experimental study is done on synthetic graphs and a dataset of real graphs.
All arc weights are pairs of positive integers.

Complete oriented graphs
−→
Kn . We borrow the graph construction proposed

by Breugem [BDH17] since it allows to generate and tune graphs from large to small
Pareto sets only by modifying arc costs and the density of the graph. As mentioned
in Section 2.3.3, Breugem et al. shows how to build a large Pareto set of size 2n−2

based on the complete oriented graph
−→
Kn with n vertices. Vertex identifiers are

{u0, u1, . . . , un−1} and arcs are such that (ui, uj) exists if and only if i < j, with
weight w(ui, uj) = (2j−1 − 2i, 2j−1).

106



We focus on paths from u0 to un−1. Each path P = (P1, P2) is optimal with P1 ∈q
0, 2n−2 − 1

y
and P2 = 2n−1− 1−P1 ∈

q
2n−2, 2n−1 − 1

y
. In order to avoid having a

null weight, we slightly modify the first dimension: w(ui, uj) = (2j−1−2i+j−i, 2j−1),
which adds n− 1 to the first coordinate of all paths.

Thus, we can bound the optimal (1 + ε)-Pareto set size S∗ε for n large enough:

b(n− 2) log1+ε(2)c − 1 ≤ S∗ε ≤ 2
(
d(n− 2) log1+ε(2)e+ 1

)
The lower bound is obtained by bounding the aspect ratio of the first dimension and
the upper bound by counting the number of parts covering the Pareto set, with the
partition defined in Section 3.4.1.

Here we take
−→
Kn with n ∈ J9, 19K. Then we follow the same protocol as in

[BDH17], using two variation models:

• First of all, in the weight variation model, wi,j is a pair of random variables
following a Normal law of mean the two initial weights 2j−1− 2i and 2i and of
variable standard deviation σ. We take σ an even number in J0, 50K.

• The second model is the arc variation model : those are intermediate graphs
between

−→
Kn and the standard Erdös-Renyi random graphs. Parameter p de-

fines the closeness to these two extreme graphs: every arc of
−→
Kn is changed

(removed or redirected) with probability p. Whenever p = 0, we get
−→
Kn, and

for p = 1, we have a pure random graph. More formally, for vertices i and j,
with i < j, with probability p, the arc (ui, uj) is removed. In that case, with
probability 0.8, we replace it with a new arc of weights chosen uniformly at
random in

q
1, 2n−1

y
.

For these two models, increasing either σ or p leads to graphs with smaller Pareto
sets.

Grid-based graphs: Rn and
−→
Un. Grids are good abstractions for road networks

and can be good candidates to get Pareto sets of different sizes. Again, two models
are proposed:

• The first graph model deals with the bidirected rectangular grids Rn [BDH17;
RE09] showing the impact of the topology. We take a rectangular grid of
size n = n1 × n2, with n1 the width and n2 the height. The source vertex is
connected to the n2 vertices on the left-hand side using unidirected arcs and
the target has the n2 vertices of the right-hand side as in-neighbors. In our
experiments, we take n = 8192 = 213 and the width n1 is a power of 2 to
get a variation of the aspect ratio from 1/n to n. As in [RE09], weights are
uniformly drawn at random within the set {1, 2, . . . , 10}.

• The unidirected square grids
−→
Un, with n the number of vertices, aims at eval-

uating the impact of the size of the graph and the correlations of the weights.
We consider

−→
Un for n ∈ {100, 1024, 10000} vertices. We choose uniformly at

random 100 pairs of reachable sources and targets. The arcs can only go to
the right or upwards. The weight of the first coordinates are uniformly drawn
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at random in J1, CK, with C ∈ {5, 10, 15, 20, 50, 100}. To set the second coor-
dinate, we use three methods: uniform, correlated (as time and distance) and
anticorrelated (as time and financial cost).

– For the correlated weight generation, the second coordinate follows a Nor-
mal law of expectation the value of the first coordinate and of standard
deviation σ = 0.25 · (C − 1).

– For the anticorrelated weight generation, two randoms variables are drawn
uniformly at random: an integer rank R within J2, 2CK and the first
coordinate X ∈ J1,min(C,R− 1)K. The correspondent arc weight is
(X,R−X).

In both grid models, the experiments are averaged on 20 random weights
assignments.

DIMACS. The 9th DIMACS challenge [DGJ] contains a set of real bicriteria (dis-
tance and edge traversal time) datasets representing road networks for every state
of the US. We have selected 49 graphs of different sizes up to 2 millions of arcs.
Two states, Texas and Illinois, are not presented: the experiments required more
than 16Go of RAM. A hundred pairs of reachable source and destination are chosen
randomly.

Weight correlation. The criteria correlation can be measured in different ways,
the most standard being the quotient of the covariance by the product of the vari-
ances. This measure has a value in [−1, 1]. A value of 1 means that one criterion
is a linear function of the other, with a positive slope, while a value of −1 indicates
a negative slope. On the Dimacs graphs, we observe a correlation ranging from 0.4
to 0.7. The anticorrelation grids have negative correlations around −0.2.

Implementation

Algorithms have been implemented in C++, using data structures which guarantee
the desired complexities for dimension 2. Temporary and permanent solution sets
(Tu and Su) are implemented using std::set class template. For MC Dijkstra,
a global temporary solution is used to store the minimum path of each Tu. It is
also a set, and the priority list of Meta Rank is implemented using std::map class
template. Domination tests for MC Dijkstra are in constant time, according to
the method presented in Section 4.1.1. The program is compiled with g++-8 and
the option -o2. It is executed on a computer running Ubuntu 18.04.3, having 16GB
RAM and an Intel Core i7-6700 processor.

4.3.2 Pareto set size

Our experiments show that the efficiency of Frame is highly correlated to the
Pareto set size S. Whenever it is small, Frame has an overhead with respect to
MC Dijkstra and Dijkstra Post since it runs a sample function but keeps
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Figure 4.5 – Execution time for
−→
K9 up to

−−→
K19.
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Figure 4.6 – Solution size for
−→
K9 up to

−−→
K19.

almost all paths. The goal of this section is to measure the impact of the different
parameters and graph models on the gain of Frame.

Large Pareto sets
−→
Kn Pareto set size is 2n−2. In Figures 4.5 and 4.6, we observe an exponential time
gain. For n = 19, Frame is more than 105 faster than MC Dijkstra for d = 2.
For this extreme case, Sε is much smaller than S. The number Sε of solutions output
by Frame is of the same order of magnitude as the minimum (1 + ε)-Pareto set
size S∗ε .

Surprisingly, MC Dijkstra is much less efficient than Dijkstra Post. This
difference could be explained by the MC Dijkstra data structures being more
complex than these of Dijkstra Post. It is important to notice than all the paths
are incomparable and thus are kept by both algorithms. A deeper analysis could be
required to completely explain the bad behavior of MC Dijkstra.
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Variations

These graphs being quite particular, we now take the variations of
−→
Kn with 19

vertices:

• Weight variation model. For every even value σ in J0, 50K, we generate 100 ran-
dom graphs and we represent the average measures. As observed in [BDH17],
the weight variation leads to smaller Pareto sets (Figure 4.7). Thus MC Dijk-
stra and Dijkstra Post take less time whereas the running time of Frame
is more or less unchanged. It is quite natural since the output does not change
drastically for Frame. For a wide range of value of σ ∈ [10, 50], Frame is at
least 10 times faster than MC Dijkstra.

• Arc variation model. This model gives a random graph being an intermediate
of the standard Erdös-Rényi graph and

−−→
K19. Whenever p = 1, it corresponds to

a random graph with an average degree 0.8n with a random assignment of the
arc weight. We observe a time gain of several order of magnitude whenever p <
0.5 (Figure 4.8). However, MC Dijkstra performance improves whenever p
increases and that of Frame remains stable. This is explained by S being
small for p close to 1 (Figure 4.9).

Besides the correlation between the time gain and the size of the Pareto set,
Frame performs better whenever Λ, the number of rank values processed by
Frame, is small. For p = 0, it is typically Λ = n = 19 and for i > 0, every
paths from s to ui has the same rank : 2i − 1.

We measure the loss of efficiency of Frame by computing εpost. We observe in
Figure 4.10 that even if ε = 1, εpost is much smaller as p converges to 1. In this
situation, Λ becomes larger.

Worst-case

In order to challenge Frame, we multiply artificially the number of processed
ranks Λ while keeping the same number of paths. In

−−→
K19, the first coordinate

of each arc is multiplied by 2. This transformation is depicted in Figure 4.11. S is
unchanged but we get Λ = 2n−2, meaning that each path has a distinct rank. For
the output of Frame, the situation is a worst-case: for every path P from s to t,
there is a sector with no path of smaller rank. Thus P cannot be framed and there
is no interest in using Frame in this situation with respect to Dijkstra Post.
The performance of Frame drops and aligns with that of Dijkstra Post, as can
be seen in Figure 4.12.

Typical topologies

For the different variations of
−→
Kn, the graphs are small, quite dense and with a huge

maximum weight C = 2n−1. These cases are quite extreme. Let us focus on more
standard topologies to see if there is still a relationship between the Pareto set size
and the efficiency of Frame.
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Figure 4.7 – Execution time for
−−→
K19 using the weight variation.
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Figure 4.8 – Execution time for
−−→
K19 using the arc variation.
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Figure 4.9 – Solution size for
−−→
K19 using the arc variation.
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Figure 4.10 – Loss of efficiency for
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K19 using arc variation.
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Figure 4.11 – Transformation of the Pareto set of
−→
Kn to challenge Frame.
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Figure 4.12 – Worst-case execution time comparison.
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Vertices MC Dijkstra time Frame time Su Su,1(Frame)
100 0.684 0.631 3.2215 2.7140
1024 42.803 31.316 18.7455 11.5770
10000 2827.055 1714.527 116.8230 64.2525

Table 4.1 – Unidirected grids
−→
Un: impact of the size variation.

Impact of the size of the graph. Increasing S can be done by increasing the
size of the graph. For grids

−→
Un up to 100 × 100 = 10000 vertices (Table 4.1)

with C = 100, S increases with n but remains intermediate. We observe that
Frame has an output almost twice smaller than MC Dijkstra’s one. As for the
time, the gain is 40% for n = 10000.

This trend can be also be seen for DIMACS real graphs in Figures 4.13 and 4.14
for intermediate S (VA or NC for instance). When S is small, Frame and MC
Dijkstra performs similarly. Although S seems to be correlated to n, we have
some exceptions: for instance, the California (CA) anf Florida (FL) graphs have
quite small Pareto sets in comparison to their number of nodes. It can explained by
their thin geometric shape. The values corresponding to each state can be found in
the appendix, in the Table B.1.

Impact of the correlation of arc weights and the maximum weight. In
this experiment, we first show the impact of the maximum weight C for each weight
distribution. Informally, increasing the range of arc weights can increase the number
of incomparable paths and thus S. We investigate the impact of the maximum weight
in the three scenarios: uniform, correlated and anticorrelated. For every scenario,
when C = 100, Frame is from 1.4 up to 2 times faster than MC Dijkstra and
Dijkstra Post (see Figures 4.15, 4.16 and 4.17). This gain can be explained
by Sε being almost twice smaller than S (see Figures 4.18, 4.19 and 4.20). This
observation has already been done [MHW06] for other graph families.

By comparing the different kinds of weight distributions, we can confirm the
intuition that, in the correlated case, the Pareto sets are smaller than those in the
uniform case, which are themselves smaller than those in the anticorrelated case.

Impact of the topology shape.

The experimental results on California state suggest an influence of the grid shapes
on the size of the Pareto set. This has already been established in [BDH17; RE09]
for bidirected grids Rn. With n = 8192, whenever we increase the width of the grids,
and therefore decrease the height, S increases (see Figure 4.21). For each algorithm,
the total number of paths seen is depicted in Figure 4.22. For this graph family, we
notice that MC Dijkstra prunes more paths than Dijkstra Post and Frame.
Surprisingly, although Frame builds 50% more paths than MC Dijkstra, it has
a similar running time (see Figure 4.23), which exhibits the advantage of Frame
data structure. However, Dijkstra Post is slower due to the larger number of
seen paths.

113



 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1  10  100

t D
ijk

st
ra

/t
Fr

a
m

e

S

Figure 4.13 – Execution time gain of Frame over MC Dijkstra on Dimacs
graphs.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1  10  100

S
/S

ε

S

Figure 4.14 – Solution size gain of Frame over MC Dijkstra on Dimacs graphs.

114



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e
 (

m
s)

Maximum weight

Frame Dijkstra Dijkstra Post

Figure 4.15 – Execution time for correlated distribution in
−→
Un.
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Figure 4.16 – Execution time for uniform distribution in
−→
Un.
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Figure 4.17 – Execution time for anticorrelated distribution in
−→
Un.
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Figure 4.18 – Su for correlated distribution in
−→
Un.
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Figure 4.19 – Su for uniform distribution in
−→
Un.
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Figure 4.20 – Su for anticorrelated distribution in
−→
Un.
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Figure 4.21 – Pareto set size in function of the width of Rn.
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Figure 4.22 – Pruning early is efficient with Rn.

Since Sε becomes quite large as the width increases (more than 1000 for a width
greater than 2000), εpost decreases drastically as shown in Figure 4.24.

4.3.3 Impact of ε

Up to now, we set up ε to 1. We now range ε = 10k with k ∈ J−3, 1K for grids
of 10000 vertices. The arcs weights are drawn uniformly at random between 1
and 100. Sources and destinations are also randomly chosen.

Figure 4.25 shows that whenever ε goes to 0, Frame’s output converges to S.
This implies a performance loss for Frame, which is well reflected in the Figure 4.26.
In particular, if ε is very close to 0, Frame is slower than MC Dijkstra and is
comparable to Dijkstra Post because S∗ε reaches S. Finally, we notice logically
that εpost increases at the same time as ε, while remaining an order of magnitude
below. We can see this correspondence in Figure 4.27.

Whenever ε is above 1, there is no drastic change. On one hand, any pair (P,Q)
of Pareto paths in this experiment is a 2-coverage of S and on the other hand,
the output of Frame is at least 60. It means that for large ε, due to the nu-
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Figure 4.23 – Impact of pruning on the execution time with Rn.
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Figure 4.24 – A posteriori epsilon with Rn.
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Figure 4.25 – Solution size depending on ε in
−→
Un
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Figure 4.26 – Execution time depending on ε in
−→
Un
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Figure 4.27 – The influence of ε on εpost
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merous number of processed ranks, Frame is unable to summarize the Pareto set
although S∗ε ≤ 2. This loss of efficiency is confirmed by εpost being much smaller
than ε for ε > 1. It shows the limitation of the Pareto compatibility property of
Frame.

4.3.4 Conclusion

We observe in practice that the gain of Frame can be exponential for a particular
class of graphs. Two concordant reasons: all paths have the same rank and both the
Pareto sets are huge. When this number of ranks decreases, the gain also decreases,
as does the size of the Pareto sets. Then, we increase the size of the Pareto sets by
other methods (size of the graphs, variations of the weights, topology of the graphs).
We still observe an interesting gain but between 40% and 100%. This time, however,
the Pareto sets are of moderate size. The comparisons on real datasets yield the
same results. Finally, we observe that the gain of Frame is interesting for ε ≥ 0.01.
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Part II

Geometric graphs

121





Chapter 5

Preliminaries for geometric graphs

The ε-weak framing property defined Section 3.5.1 leads to the study of oriented
proximity queries. In order to know if a path can be pruned, Sector computes
if there exist other paths covering it in some sectors around it. Theta-graphs are
particularly suitable graphs to answer this query. Given such a graph whose vertices
are the weights of the paths, to determine if a path is covered in a given sector is
in constant time. More precisely, we are interested in the specific tricriteria case,
where the same rank path costs are in a plane. The graphs we are interested in are
half-Theta-6, noted Θ+

6 .
First, we define these graphs in Section 5.1. Then, in Section 5.2, we prove some

properties on the positioning of vertices neighbors. In order to take advantage of Θ+
6

for the tricriteria shortest path computation, we propose two algorithms enabling
the dynamic maintenance of a Θ+

6 , one for the insertion of a point, the other for the
deletion (Chapter 6). Then, we present how to use these algorithms (Section 6.4).

In order to minimize the number of kept points, we propose an algorithm to
enhance the Θ+

6 structure (Section 7.1). Finally, in Section 7.2, we detail an existing
algorithm for computing guaranteed small dominating sets. Combined, these last
two algorithms allow to keep only a number of paths close to the minimum with
respect to the ε-weak property (Section 7.3).

5.1 Definitions

In this part, we consider geometric graphs in the plane. We give ourselves a finite
set of points in R2, which are connected according to certain rules to form graphs.
We study the structural properties of these graphs and their manipulation.

5.1.1 Theta-graphs

Let u ∈ R2 and k ≥ 2. We partition the plane into k cones around u, all with angles
equal to 2π/k.

Definition 46 (Cones). Let u ∈ R2. Let D be the ray (half-line) with initial point u,
of direction the vector (1, 0) and deprived of u. For any i ∈ J1, kK, the i-th cone of u
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π
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Figure 5.1 – Frontier convention.

is the set of points Ci(u) =
⋃

2π
k

(i−1)≤α< 2π
k
i

rα,u(D), with ∀α ∈ [0, 2π[, rα,u being the

rotation of angle α and of center u.
If k is even, odd-numbered cones are said to be positive and the others are neg-

ative.

The "Theta" of Theta-graph refers to the angle Θ = 2π/k of a cone. The cones
of a Theta-graph are open on one of the two sides: if a cone goes from a ray D to
the ray rΘ,u(D), the latter is not in the cone (dotted line on Figure 5.1 for Θ = π/3).
The cones around u and {u} thus form a partition of the plane.

We use the Euclidean distance, noted d2 as well as the triangular distance d∆

which is defined as follows.

Definition 47 (Triangular distance dC in a cone). Let u ∈ R2 and C be a cone of u.
Let v ∈ C and B be the bisector of C. The triangular distance in a cone dC(u, v)
from u to v is the Euclidean distance between u and the orthogonal projection of v
onto B.

If v, w ∈ C such that dC(u, v) = dC(u,w), we say that v is nearer from u than w
if the angle ŵ, u, v is in [0, π[. Informally, among equidistant points, the nearest is
the first in clockwise order. This gives us the uniqueness of the nearest in a cone.

Notice that dC(u, v) is well defined for any pair of points u 6= v since v is neces-
sarily in a cone of u.

Remark. The triangular distance dC is, strictly speaking, not a distance but can be
qualified as a quasidistance. Indeed, this function is not symmetric, i.e. dC(u, v) 6=
dC(v, u) does not hold in general. On the other hand, dC(u, v)+dC(v, u) is a distance.

In order to visualize the previous definitions, consider the Figure 5.2. For k = 8,
we observe the location of the eight cones around the point u. The positive cones
are blue and the negative cones are red. In C3(u), we have v′ the orthogonal project
of v on the bisector of the cone. So dC(u, v) = d2(u, v′). Similarly, in C1(u), we
have dC(u,w) = d2(u,w′). Notice that the point x is nearer from u than w in
Euclidean distance but it is the opposite in triangular distance dC .

Definition 48 (Theta-graph). Let V be a set of points in the plane. Let k ≥ 2
and θ = 2π/k. The Theta-k-graph of V is the graph Θk(V ) = (V,A) such that for
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Figure 5.2 – Triangular distance dC with k = 8 cones around u.

each u, v in V , (u, v) ∈ A ⇔ v is the nearest point from u in a cone of u using the
triangular distance dC.

If k is even, the half-Theta-k-graph, denoted Θ+
k (V ), is the graph containing only

the arcs outgoing in the positive cones.

Informally, u is connected to its nearest point in each cone. Recall that if two
points are equidistant in a same cone, the nearest is the first in clockwise order.

Construction of a Theta-graph. Given a set of n points in the plane, we can
compute a Theta-graph in time O(n log n) [TOG17]. The idea is to treat each cone
direction separately. For a given cone direction, we sort the vertices according to
a certain direction (orthogonal to an edge of the cone). Then we use a sweep line
algorithm, i.e. a simple linear process of the points in this order. We provide
ourselves with a balanced binary tree (Section A.2) containing some points already
seen. When we process a given point, we are able to find the neighbor to be connected
to in the considered cone by performing a search in the tree in logarithmic time.
The update of the tree, in order to take into account the current point, is also in
logarithmic time.

5.1.2 Half-Theta-6

For the tricriteria shortest path computation, we are interested in the particular
case of half-Theta-6, noted Θ+

6 . Figure 5.3 illustrates a Θ+
6 with 40 points.

The path costs are in 3D but we restrict ourselves to same rank paths. Thus, the
graph associated to these costs is in a plane. We explain the link between the 2D
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Figure 5.3 – Example of a Θ+
6 . Arcs have different colors depending on which cone

they belong. Representation from an application1 developed by Nicolas Bonichon.

coordinates of the graph vertices and the path costs 3D coordinates. In the following
sections, the latter will often enable to express the proofs easier.

We embed the R2 plane in R3. For a point u, we note (uX , uY ), resp. (ux, uy, uz),
its coordinates in 2D, resp. in 3D. The embedding is not a canonical embedding,
but from the following transformations:

ux = uX

uy = −uX
2

+

√
3

2
uY

uz = −uX
2
−
√

3

2
uY

∣∣∣∣∣∣∣∣∣∣∣∣∣
uX = ux

uY =
uy − uz√

3

The corresponding plane in R3 is the one of null rank, i.e. of equation ux + uy +
uz = 0, depicted in Figure 5.4. We note this plane P . This can be generalized to
any fixed rank r.

Remark. For legibility reason, we made a rotation of angle π/6 with respect to
Definition 48.

Notation. The six cones of a point u can be easily characterized in 3D as follows:

C+
x (u) = C1(u) = {v ∈ P(V )|vx > ux, vy < uy, vz ≤ uz}
C+
y (u) = C3(u) = {v ∈ P(V )|vy > uy, vz < uz, vx ≤ ux}
C+
z (u) = C5(u) = {v ∈ P(V )|vz > uz, vx < ux, vy ≤ uy}
C−x (u) = C2(u) = {v ∈ P(V )|vx < ux, vy > uy, vz ≥ uz}
C−y (u) = C4(u) = {v ∈ P(V )|vy < uy, vz > uz, vx ≥ ux}
C−z (u) = C6(u) = {v ∈ P(V )|vz < uz, vx > ux, vy ≥ uy}

1http://www.labri.fr/perso/bonichon/bounded/bounded.jar
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Figure 5.4 – Embedding in R3 (dashed axes) vs R2 (plain axes)

This will allow us to characterize more simply the belonging of a point to a cone
in the following.

Remark. When implementing Θ+
6 , one must be aware that coordinate conversions

may induce computational approximations that can change the structure of Θ+
6 , es-

pecially when points have a common 3D coordinate which places them on cone edges.

We have defined the triangular distance dC in a cone (Definition 47). However,
for half-Theta-graphs, only half the cones are considered. We thus generalize the
notion of triangular distance in a cone for negative cones and provide a simple
expression in 3D.

Definition 49 (Triangular distance d∆ for Θ+
6 ). Let u, v ∈ R2, v 6= u.

• If v is in a positive cone C of u, then the triangular distance is d∆(u, v) =
dC(u, v).

• Otherwise, v is in a negative cone Ci of u. Considering indices modulo 6, Ci−1

and Ci+1 are the two cones around Ci. Let v′, resp. v′′, the projection over the
bisector of Ci−1, resp. Ci+1. The triangular distance d∆(u, v) from u to v is
the maximum between d2(u, v′) and d2(u, v′′).

For v in any cone (positive or negative), this distance can be expressed as follows:

d∆(u, v) = max{vx − ux, vy − uy, vz − uz} (5.1)

In the following, whenever we use a triangular distance without
specifying dC or d∆, we refer to the latter.
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Remark. In the max, one or two of the terms are non-negative, the others being
non-positive since rank(u) = rank(v).

In a Θ+
6 , a point has at most three outgoing neighbors but can have many

incoming neighbors. In order to refer to them, we introduce the following notations:

Notation. Let u ∈ R2. We note Ex(u), resp. Ey(u), resp. Ez(u), the ingoing
neighbors of u in Θ+

6 (V ) in C−x (u), resp. C−y (u), resp. C−z (u).

For a set of points V , Θ+
6 (V ) was proven to be a triangulation of V in [Bon+10].

For even the external face to be triangular and to simplify the analysis of Θ+
6 (V ),

we add three virtual points ∞x,∞y,∞z placed far enough away in each direction
from the points in V to ensure that each point has at least one point in each positive
cone.

In practice, one can take any point O as a reference, consider the three bisecting
half-lines of the positive cones of O and place one virtual point per half-line at the
infinity. With these three points in V , Θ+

6 (V ) is the graph such that each point of V
not to infinity has exactly 3 outgoing neighbors, the nearest in each positive cone.

In the following, V will be a set of points in the plane, with
∞x,∞y,∞z ∈ V .

The notations used in this chapter are summarized in Table 5.1.

5.2 First properties

We start by presenting some properties on Theta graphs, mainly on Θ+
6 , in order to

better understand their behavior.

5.2.1 Order in half-Theta-6 cones

We study, for a given point in V , the relationship between different orders in the
sets of ingoing neighbors in Θ+

6 (V ).

Definition 50. Let u ∈ V . We provide the sets of ingoing neighbors of u with the
following orders:

• (Ex(u),≺x) such that ∀v, w ∈ Ex(u), vz < wz ⇒ v ≺x w. The set is ordered
according to the z coordinate.

• (Ey(u),≺y) such that ∀v, w ∈ Ey(u), vx < wx ⇒ v ≺y w. The set is ordered
according to the x coordinate.

• (Ez(u),≺z) such that ∀v, w ∈ Ez(u), vy < wy ⇒ v ≺z w. The set is ordered
according to the y coordinate.

Lemma 51. Let u ∈ V . The sets (Ex(u),≺x), (Ey(u),≺y) and (Ez(u),≺z) are
totally ordered.
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V set of points in the plane, containing ∞x, ∞y and ∞z

d2 Euclidean distance

dC
triangular distance

projection on the bisector of the concerned cone

d∆

triangular distance
dC in positive cones

projection in neighboring positive cones otherwise
Θ+

6 (V ) half-Theta-6 of V
P plane in R3 of equation x+ y + z = 0

C+
x (u) {v ∈ P|vx > ux, vy < uy, vz ≤ uz}
C+
y (u) {v ∈ P|vy > uy, vz < uz, vx ≤ ux}
C+
z (u) {v ∈ P|vz > uz, vx < ux, vy ≤ uy}
C−x (u) {v ∈ P|vx < ux, vy > uy, vz ≥ uz}
C−y (u) {v ∈ P|vy < uy, vz > uz, vx ≥ ux}
C−z (u) {v ∈ P|vz < uz, vx > ux, vy ≥ uy}

(Ei(u),≺i)
set of ingoing neighbors of u in C−i (u)

ordered by counterclockwise order and for i ∈ {x, y, z}
previous(u, v) neighbor of u preceding v in counterclockwise order

next(u, v) neighbor of u following v in counterclockwise order
firsti(u) first neighbor of u in Ei(u) in counterclockwise order for i ∈ {x, y, z}
lasti(u) last neighbor of u in Ei(u) in counterclockwise order for i ∈ {x, y, z}

∆u degree of u

Ski,ε(u)

the at most k nearest points from u

at triangular distance at most (1 + ε) · ui from u

in C+
i (u) and for i ∈ {x, y, z}

Table 5.1 – Notations for Theta-graphs.
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Proof. We prove the Lemma for (Ex(u),≺x). The proof is the same for (Ey(u),≺y)
and (Ez(u),≺z).

Let v, w ∈ Ex(u), v 6= w. By contradiction, assume that vz = wz. Since rank(v)
= rank(w), then vy 6= wy. Without loss of generality, we assume that vy < wy.
Thus vx > wx and v ∈ C+

x (w). Since ux > vx > wx, (w, u) /∈ Θ+
6 (V ) and w /∈ Ex(u),

which is absurd. Thus vz 6= wz.

These total orders implies partial orders according to another coordinate.

Lemma 52. Let u ∈ V .

• (Ex(u),≺x) is sorted by non-increasing order according to the y coordinates,
i.e. ∀v, w ∈ Ex(u), v ≺x w ⇒ vy ≥ wy.

• (Ey(u),≺y) is sorted by non-increasing order according to the z coordinates,
i.e. ∀v, w ∈ Ey(u), v ≺y w ⇒ vz ≥ wz.

• (Ez(u),≺z) is sorted by non-increasing order according to the x coordinates,
i.e. ∀v, w ∈ Ez(u), v ≺z w ⇒ vx ≥ wx.

Proof. We prove the Lemma for (Ex(u),≺x). The proof is the same for (Ey(u),≺y)
and (Ez(u),≺z).

Let v, w ∈ Ex(u). Without loss of generality, vz ≤ wz. By Lemma 51, vz < wz.
For the purpose of contradiction, assume that vy < wy. Since rank(v) = rank(w),
then vx > wx. Thus v ∈ C+

x (w). Again, since ux > vx > wx, (w, u) /∈ Θ+
6 (V )

and w /∈ Ex(u), which is absurd. Thus, vy ≥ wy.

Then, we notice that these orders correspond to the counterclockwise order.

Lemma 53. Let u ∈ V . The sets (Ex(u),≺x), (Ey(u),≺y) and (Ez(u),≺z) are
sorted in strict counterclockwise order with respect to u. In particular, two neighbors
of u cannot be aligned with u.

Proof. We prove the Lemma for (Ex(u),≺x). Let v, w ∈ Ex(u) such that v ≺x w.
Thus vz < wz and vy ≥ wy (Lemma 52). By definition of the determinant and the
argument, we have:

det(v − u,w − u) > 0⇐⇒ arg(v − u,w − u) ∈]0; π[

det(v − u,w − u) < 0⇐⇒ arg(v − u,w − u) ∈]π; 2π[

The vertices v and w being in the same cone of u, the sign of the determinant gives
us the counterclockwise order with respect to u. We use the conversions formula
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from 2D to 3D, and the fact that each point has a null rank:

det(v − u,w − u) = (vX − uX)(wY − uY )− (vY − uY )(wX − uX)

=
1√
3

[(vx − ux)(wy − wz − uy + uz)

−(vy − vz − uy + uz)(wx − ux)]

=
1√
3

[−(vy + vz − uy − uz)(wy − wz − uy + uz)

+(vy − vz − uy + uz)(wy + wz − uy − uz)]

=
1√
3

[(vy − uy + vz − uz)(wz − uz − wy + uy)

−(vz − uz − vy + uy)(wy − uy + wz − uz)]

=
2√
3

[(vy − uy)(wz − uz)− (wy − uy)(vz − uz)]

However:

uy < wy ≤ vy

uz ≤ vz < wz

Thus, by replacing the first vy by wy and the second vz by wz, we obtain that:

det(v − u,w − u) >
2√
3

[(wy − uy)(wz − uz)− (wy − uy)(wz − uz)] = 0

The inequality is strict since vz < wz and wy − uy > 0. Therefore, we have shown
that no pair of points had the same argument.

The proof is the same for (Ey(u),≺y) and (Ez(u),≺z), by applying the permu-
tation (x, y, z) for Ey and (x, z, y) for Ez.

Now that we know better how the incoming neighbors of a point are distributed,
we defined how to process them.

Definition 54. Let u ∈ V \{∞x,∞y,∞z} and v1, . . . , vk its neighbors (ingoing and
outgoing) in counterclockwise order in Θ+

6 (V ). The indices of the vertices are ex-
pressed modulo k. We define:

• previous(u, vi) = vi−1, the neighbor of u preceding vi in counterclockwise
order.

• next(u, vi) = vi+1, the neighbor of u following vi in counterclockwise order.

• firstx(u) = arg min
w∈Ex(v)

wz the first vertex of Ex(u) in counterclockwise order.

If Ex(u) is empty, then it is the outgoing vertex of u in C+
y (u), i.e. the neighbor

preceding the cone C−x (u). Same for firsty(u) and firstz(u).
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• lastx(u) = arg max
w∈Ex(v)

wz the last vertex of Ex(u) in counterclockwise order.

If Ex(u) is empty, then it is the outgoing vertex of u in C+
z (u), i.e. the neighbor

following the cone C−x (u). Same for lasty(u) and lastz(u).

By Lemma 53, these functions are well defined. Notice that the definitions of
previous and next are not restricted to a particular cone: next(u, v) can be in a
different cone of u than v.

Lemma 55. With a slightly improved version of a combinatorial map (Section A.4)
to represent Θ+

6 (V ), previous, next, first and last are in constant time.

Proof. Let (D, σ, α) a combinatorial map representing Θ+
6 (V ). For both previous

and next, the information is local, it is sufficient to apply σ to rotate around a
vertex. For first and last, we add, for each incoming cone of each vertex of V ,
two pointers, one to each corresponding neighbor. If an arc is deleted or added,
their update is done in constant time.

Lemma 56. Let u ∈ V \{∞x,∞y,∞z}. Let v ∈ V be a neighbor of u and w =
next(u, v). The angle v̂uw is smaller than π and w is connected to v.

Proof. Two given outgoing cones of u are strictly included in a half plane. Let w′ be
the outgoing vertex of u following v in counterclockwise order, and v′ being either
the precedent if v is an ingoing vertex of u, or v itself. The angle v̂uw is smaller
than or equal to v̂′uw′ which is smaller than π.

Furthermore, v and w are connected since Θ+
6 (V ) is a triangulation of the plane.

5.2.2 Nearest point

In this section, we study the connectivity of a point with its nearest point in the
Theta-graph, depending on the distance considered.

With Euclidean distance

In a Theta-k with k ≥ 6, any point is connected with the nearest point(s) in Eu-
clidean distance.

Lemma 57. Let u ∈ V . Let v ∈ V \{u} be a nearest point in Euclidean distance.
Then for k ≥ 6, (v, u) ∈ Θk(V ).

Proof. The proof is illustrated in Figure 5.5, for k = 7. Consider the open disk D
according to the Euclidean distance, of center u and radius d2(u, v). By definition
of v, the only point of V in D is u. Let C be the cone of v containing u and let
T be the triangle defined as the part of C of triangular distance less than or equal
to d4(v, u). In the figure, T is the union of the blue zone and the red zone. We
show that T is included in D. It is sufficient to conclude since D ∩ V = {u}. Be
careful that T is open on one side, i.e. it does not contain this side (the dashed one
in the figure), by definition of C.

Let v′ ∈ T . We define the three following points in C at triangular distance d∆(v, u):
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• B the point on the bisector of C,

• w the point on the edge of C that belongs to C,

• w′ the point of the ray of origin v containing v′.

We prove that the triangle (v, w, w′)\{v} ⊂ D. This triangle is depicted in blue.
Let α be the measure of the angle ŵvB and β the measure of ûvB (absolute values).
By definition of the points, since k ≥ 6, we have:

α =
π

k
=⇒ 0 < α ≤ π

6

0 ≤ β ≤ α =⇒ 0 ≤ β ≤ π

6

(5.2)

Furthermore:

tan(α) =
d2(B,w)

d2(B, v)
, cos(β) =

d2(B, v)

d2(u, v)
and sin(β) =

d2(B, u)

d2(u, v)

We can deduce that:

d2(B, u) = sin(β)d2(u, v) and d2(B,w) = tan(α) cos(β)d2(u, v)

Let fα : β 7→ sin(β) + tan(α) cos(β). The derivative f ′α of fα is given by the
formula:

f ′α(β) = cos(β)− tan(α) sin(β)

With the Inequalities 5.2, we have that, for any 0 ≤ β ≤ α:

f ′α(β) ≥
√

3

2
− 1

2
· 1√

3
> 0

proving that the function fα is increasing in the interval [0, α]. By definition of fα,
we also notice that: fα(α) = 2 sin(α) ≤ 1.

The edge opposite to the one containing w is not in C. There are two cases :

• If u lies on the other side of B than w (B included), we have β < α. Thus:
d2(u,w′) ≤ d2(u,w) = d2(B, u) + d2(B,w)

d2(B, u) + d2(B,w) = fα(β) · d2(u, v) < fα(α) · d2(u, v) ≤ d2(u, v)

Therefore: d2(u,w′) ≤ d2(u,w) < d2(u, v).

• Otherwise:

d2(u,w) < d2(B, u) + d2(B,w)

d2(u,w′) < d2(B, u) + d2(B,w)

d2(B, u) + d2(B,w) = fα(β) · d2(u, v) ≤ fα(α) · d2(u, v) ≤ d2(u, v)

Therefore: d2(u,w) < d2(u, v) and d2(u,w′) < d2(u, v).

133



Figure 5.5 – A nearest point in Euclidean distance is connected.

In both cases, w and w′ belong toD. SinceD is convex, the triangle (v, w, w′)\{v}
is included in D. We have shown that, for any v′ ∈ T , v′ ∈ D. Thus T ⊆ D.

Remark. In Θ+
6 (V ), if the nearest point v in Euclidean distance is in an outgoing

cone of u, the two points are not necessarily connected. They might even be at an
arbitrary hop distance.

With triangular distance

In a Θ+
6 , any point u is connected to the nearest point in each positive cone. We

notice that it may be also true in negative cones. Since we do not restrict to one
cone, there is no uniqueness of a nearest point. Relying on Lemma 58, we show that
any point in connected to a nearest point according to dC (Lemma 59). Afterwards,
we show the same property according to d∆ (Lemma 60).

Lemma 58. Let u ∈ V . There exists v ∈ V \{u} such that (u, v) and (v, u) are
in Θ6(V ).

Proof. Let v = arg min{dC(u,w)|w ∈ V \{u}} be a nearest point from u in V \{u}.
Let d = dC(u, v).

• If v is in a negative cone of u, we consider without loss of generality that v is
in C−z (u). By definition of v, (u, v) ∈ Θ6(V ). We show that (v, u) is in Θ+

6 (V ),
and thus in Θ6(V ). Let w ∈ C+

z (v) such that (v, w) ∈ Θ+
6 (V ). By definition of
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v and w, we have: 
vx > ux

vy ≥ uy

vz < uz

and


wx < vx

wy ≤ vy

wz > vz

(5.3)

Thus u ∈ C+
z (v). We show that w = u. By contradiction, since wz ≤ uz,

then: w ∈ C+
x (u) ∩ C+

y (u) ∩ C−z (u).

– If w ∈ C+
x (w), then dC(u,w) = wx − ux. From Equation 5.3, we can

deduce that:

dC(u,w) = wx − ux < vx − ux = uy + uz − vy − vz ≤ uz − vz = dC(u, v).

– If w ∈ C+
y (w), then dC(u,w) = wy − uy. From Equation 5.3, we can

deduce that:

dC(u,w) = wy − uy ≤ vy − uy = ux + uz − vx − vz < uz − vz = dC(u, v).

– If w ∈ C−z (w), then dC(u,w) = uz − wz. From Equation 5.3, we can
deduce that:

dC(u,w) = uz − wz ≤ uz − vz = dC(u, v).

In all cases, dC(u,w) < dC(u, v). Thus, (v, u) ∈ Θ+
6 (V ).

• If v is in a positive cone of u, then (u, v) ∈ Θ+
6 (V ) by definition of v. Similarly

to the previous case, we have that (v, u) ∈ Θ−6 (V ), the subgraph of Θ6(V )
containing only the arcs outgoing in negative cones. Thus, (v, u) ∈ Θ6(V ),

Lemma 59. Let u ∈ V . There exists v ∈ V \{u} a nearest point from u according
to dC, such that u and v are connected in Θ+

6 (V ).

Proof. From Lemma 58, (u, v) and (v, u) are in Θ6(V ). Thus, by definition of half-
Theta-graphs, either (u, v) or (v, u) is in Θ+

6 (V ).

This results is still true according to d∆. It is obvious in positive cones. However,
notice that dC and d∆ are not the same in negative cones.

Lemma 60. Let u ∈ V . There exists v ∈ V \{u} a nearest point from u according
to d∆, such that u and v are connected in Θ+

6 (V ).

Proof. Let d = min{d∆(u, v)|v ∈ V \{u}} be the triangular distance from u to its
nearest point in V . LetM = {v ∈ V |d∆(u, v) = d} be the set of points of minimum
triangular distance from u. We need to prove that there exists v ∈ M, such that u
is connected to v in Θ+

6 (V ).
If there exists v ∈M and in an outgoing sector of u, then by definition of Θ+

6 (V ),
the point u is connected to a point in M. Otherwise, without loss of generality,
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assume thatM∩ C−z (u) 6= ∅. Let v = arg min{wx|w ∈ M∩ C−z (u)}, i.e. the point
with minimal x coordinate. We show that (v, u) ∈ Θ+

6 (V ). By definition of v, we
have: 

vz < uz

vx > ux

vy ≥ uy

Thus u ∈ C+
z (v). Let us assume that there exists w ∈ C+

z (v) such that w 6= u
and (v, w) ∈ Θ+

6 (V ). Then d∆(v, w) ≤ d∆(v, u). We show that d∆(u,w) ≤ d∆(u, v).
According to Equation 5.1:

d∆(u, v) = max{vx − ux, vy − uy}
d∆(v, w) = wz − vz
d∆(v, u) = uz − vz

Thus wz ≤ uz, giving wz − uz ≤ 0. We can conclude that d∆(u,w) = max{wx −
ux, wy − uy}. Since w ∈ C+

z (v), {
wx < vx

wy ≤ vy

Thus : {
wx − ux < vx − ux
wy − uy ≤ vy − uy

(5.4)

Therefore, d∆(u,w) ≤ d∆(u, v). By definition of v, d∆(u,w) = d∆(u, v), i.e.

max{wx − ux, wy − uy} = max{vx − ux, vy − uy}

With the Equation 5.4, d∆(u,w) = wy − uy and thus d∆(u, v) = vy − uy. We can
deduce that wy = vy. The point w cannot lie:

• in C−z (u) by minimality if vx,

• in C+
y (u) since it is an outgoing cone of u.

Therefore, w lie on the edge of the cone C−x (u) and we have wz = uz. Since w is the
outgoing neighbor of v in C+

z (v), we have wy ≤ uy, and thus wy = uy. Combined
with wz = uz and the equality of ranks, we obtain w = u, a contradiction.
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Chapter 6

Dynamic Theta graphs

We recall that the construction of Θk(V ) is in O(kn log n) [NS07]. Thus, the con-
struction of Θ+

6 (V ) is in O(n log n). But this construction requires to know V from
the beginning. We would like to be able to perform insertions and deletions in V on
the fly, while preserving the structure of Θ+

6 .
We first present related work for insertions in a L2 Delaunay triangulation in

Section 6.1. Secondly, we propose a similar insertion algorithm for Theta-graphs in
Section 6.2 and a deletion one in Section 6.3.

We can easily adapt these algorithms to handle Θ−6 (Theta-graphs with only
the arcs outgoing in negative cones). Therefore, these algorithms also enable the
dynamic maintenance of Θ6 since the latter are the union of a Θ+

6 and a Θ−6 . We
recall a fundamental property of Θ+

6 used in the following: they are planar [Bon+10].

6.1 Related work
In order to better understand how our insertion algorithm works for Theta-graphs,
we give the main ideas of the Guibas algorithm [GS83] for Delaunay Triangulation
in Euclidean distance.

Guibas algorithm. This algorithm adds a new point u in a Delaunay triangula-
tion with the Euclidean distance. It starts by finding the enclosing triangle of u: this
is the request point location. Note that this triangle is not necessarily well defined
in general.

• The authors consider that u is within the convex hull of the triangulation.

• u can be at the intersection of two or even three triangles. If it is at the
intersection of three of them, then u is already in the triangulation, no need
to add it. If it is at the intersection of two triangles, the following reasoning is
applied to the quadrilateral formed by the two triangles instead of one triangle.

Then, the points of the triangle (or quadrilateral) are connected to u. These edge
creations potentially challenge the correctness of existing edges of the triangle. This
questioning is tested with a constant time procedure called InCircle (computation
of a determinant of dimension 4), potentially resulting in the deletion of the edge. If
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in a quadrilateral uvww′, the edge {v, w′} is deleted, then the edge {u,w} replaces
it. This operation is called a swap: it challenges the correctness of other edges of the
quadrilateral on which the same principle is applied recursively. The order does not
matter. To store the edges to be tested, a stack may be used to simulate a recursive
algorithm. The algorithm is linear in the number of connections added.

Point Location. Independently of the insertion problem, the Point Location Prob-
lem is also well studied. In the general case, given a polygonal partition P of the
plane and any point u, the point location query returns the polygon(s) containing
the point u. In the book [TOG17] are presented various methods for the dimen-
sions 1 and 2, with dynamic or static point sets. We provide an overview of some
relevant methods.

For a single point location without precomputation in a Delaunay triangulation,
in dimension d = 2 or d = 3, Mücke et al. present a randomized algorithm whose
complexity is said to be close to O(n1/(d+1)) [MSZ99]. For example, with d = 3 and

some fixed parameters, the mean time complexity is in O

(
n1/4

(
log n

log log n

)3/4
)
.

In order to perform several point locations in a row with a set of static points,
[Kir83] presents a method including precomputation with the following complexities:
the precomputation is in O(n log n) time and in a linear space, while a query is
in O(log n). However, and this is the context in which this query is needed, the set
of points can be dynamic.

For a polygonal partition P of the plane, we therefore want a structure S(P) on
which we can perform two operations:

• the point location query, giving the polygon containing a given point,

• the update of the structure, computing S(P ′) with P ′ being P to which a
segment has been inserted or removed.

To the best of our knowledge, there is no method that performs these two op-
erations in O(log n). Different tradeoffs are possible and the one that seems the
most relevant guarantees queries in O(log n(log log n)2) time and structure updates
in O(log n log log n) [CN18] time. In the same paper are also presented other meth-
ods that guarantee incomparable tradeoffs. For instance, one of them allows to
obtain a complexity in O(log(n)1+ε) (resp. O(log n)) for queries (resp. updates) this
for any ε > 0. These two complexities are interchangeable. The latter method has
a linear space complexity.

Point Location for insertion. Back to the case we are interested in, i.e. the
insertion of a point in a L2 Delaunay triangulation. In the Guibas algorithm, a
point insertion implies the modification of O(∆u) arcs and as many updates of the
structure associated to the point location.

Guibas et al. propose a new structure for the point location query. For the
insertion of n points in a uniform random order, the mean time complexity is
in O(n log n), the factor ∆u having disappeared because the average degree is con-
stant in a triangulation. As for the space complexity, it is also in O(n) on average but
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the worst case is in O(n2). This method has the advantage of preserving the history
of previous insertions. Kao [KMS91] presents another method which guarantees the
same complexities except the worst case in space which becomes linear. Neverthe-
less, this latter method has the disadvantage of not allowing to easily recover the
modification history.

These algorithms have been adapted to a distributed context, guaranteeing a
linear complexity in the number of changes to operate [SSB05].

6.2 Insertion algorithm

We propose an efficient algorithm to insert a vertex in Θ+
6 . We recall that a Θ+

6

is also a Delaunay triangulation, but with the triangular distance instead of the
Euclidean distance, and whose edges are directed. We propose an algorithm that
performs a sequence of arc swaps similar to the Guibas algorithm. However, no test
is based on distance, the properties of triangulation and keeping a unique outgoing
neighbor in each cone being sufficient.

Outline. Initially, we give ourselves the Θ+
6 of the set of points V and a point u

to insert. We start by performing a PointLocation to find the enclosing triangle(s)
of u, of which we connect each point to u. The orientation of the arcs depends on
the relative position of the pairs of points concerned. The general idea is then to
successively redirect the arcs which are not in Θ+

6 (V ∪{u}). Each of them is replaced
by an arc for which one end is u.

We use a structure G = (V,E, F ) with (V,E ∪ F ) being a graph that is a
triangulation of the plane, and F containing the arcs being processed. The latter
are new arcs being in Θ+

6 (V ∪ {u}) but not in Θ+
6 (V ).

• At the beginning, the arcs connecting u to its enclosing triangle are placed
in F . Any point of V has exactly one arc in each outgoing cone and these arcs
are in E.

• Then, an arc from F is moved to E. The insertion of this arc may involve the
deletion of another arc in E. Indeed, if the source of the added arc already
has an outgoing arc in the same cone, the latter arc is deleted. If an arc is
deleted, then (V,E ∪ F ) is no longer a triangulation. If in the quadrilateral
uvww′, the arc (v, w′) has been deleted, then (u,w) or (w, u) is added in F ,
depending on the relative position of u and w.

• The algorithm ends when F is empty.

For the PointLocation query, we only consider the complexity of adding a single
point and not the average over the incremental insertion of all points. The method
from [CN18] allows a query in O(log n(log log n)2) and an update in O(log n log log n)
while guaranteeing a linear memory complexity. We will thus use this method to
minimize the worst-case complexity. The associated data structure for the point
location query is noted PL in the algorithm description.
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Almost TD graphs. We consider bicolored simple graphs G = (V,E, F ) defined
by the set V of points in the plane and two disjoint arc sets E and F . We note E ′ =
E ∪F . The following definition corresponds to the state in which a bicolor graph is
during the algorithm.

Definition 61 (almost TD). We say that a bicolored graph G = (V,E, F ) is almost
TD with respect to some point u ∈ V , noted almostTDu, when:

1. the graph (V,E ′) is a triangulation,

2. each point v 6= u not being at infinity has exactly one neighbor in E in each
outgoing cone,

3. any arc of F has u as one of its extremities.

Recall that we add points at infinity in the directions of the outgoing cones in
order to guarantee that every point has an outgoing neighbor in each cone and that
a Θ+

6 is a triangulation of the plane.

Initialization of an almost TD graph. We note Θ̃+
6 (V ) the bicolored graph

corresponding to the half-Theta-6 graph on V , with all arcs in E (and thus none
in F ).

Lemma 62. The bicolored graph Θ̃+
6 (V ) is almostTDu for any node u ∈ V .

Proof. This follows from the fact that F is empty and that a half-Theta-6 graph
with three points at infinity framing the other points is a triangulation.

Operations on almost TD graphs. In order to present the pseudo code of our
algorithm and to analyze it, we introduce the following operations:

Definition 63. We define the following five operations on a bicolored graph G =
(V,E, F ):

• G.insertE(v, w), resp. G.insertF (v, w), inserts the arc (v, w) to the set E,
resp. F . It requires that (v, w) is not in E ′ = E ∪ F .

• G.remove(v, w) removes the arc (v, w) from its set. It requires that (v, w) ∈ E ′.

• G.move(v, w), where (v, w) ∈ F , moves the arc (v, w) from F to E. It is used
only when v = u.

• G.replace(v, u′) requires that u′ = u with u in the outgoing cone C of v and
that (v, u) ∈ F . Furthermore, the operation is valid only if G is almostTDu.
Let w be the outgoing neighbor in E of v in the cone C. G being a triangula-
tion, the arc (v, w) belongs to two triangles, whose third vertices are v′ and u
(because u and w are the only neighbors of v in the cone C in E ′). By trian-
gulation of G, v′ and u are not neighbors in E ′ (proven in Lemma 65). The
operation does:

– delete (v, w) from E,
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– move e = (v, u) from F to E,
– insert (u, v′), resp. (v′, u), to F if v′ is in an outgoing cone of u, resp.

if u is in an outgoing cone of v′.

Given these operations, we present our algorithm for inserting a point into a
half-Theta-6 in Algorithm 14.

Input: Θ+
6 (V ) for a given set of points V and u /∈ V

Output: Θ̃+
6 (V ∪ {u})

1 G ← Θ̃+
6 (V ) with u added to the set of nodes

2 S ← PointLocation(PL, u)
3 if |S| = 4 then
4 Let (v, v′) be the arc on which u lies
5 G.insertE(v, u)
6 G.insertE(u, v′)
7 G.remove(v, v′)
8 S ← S\{v, v′}
9 foreach v ∈ S do

10 G.insertF (u, v) // or G.insertF (v, u) depending on the relative
positions of u and v

11 while F 6= ∅ do
12 Let a = (v, w) be an element of F // v = u or w = u when G is

almostTDu
13 if w = u then
14 G.replace(v, u)

15 else
16 G.move(u,w)

17 return G
Algorithm 14: Insertion of a vertex in a Θ+

6 .

In Lemmas 64 and 65, we analyze how the almost TD property behaves with
respect to the operations that are used in the iteration. The relation between
the almost TD property and the initialization of the algorithm will be studied in
Lemma 67.

Lemma 64. Assume G = (V,E, F ) is a bicolored graph almostTDu with u ∈ V . Let
v ∈ V be in an outgoing cone of u such that (u, v) ∈ F . Then, after G.move(u, v), G
is still almostTDu.

Proof. (V,E ′) is still a triangulation as it was not changed by the operation. More-
over, the neighbors in E in outgoing cones did not change except for u, which is not
concerned by the second property of almostTDu. Finally, the third property remains
true since no arc has been inserted in F .

Lemma 65. Assume G = (V,E, F ) is a bicolored graph almostTDu with u ∈ V .
Let v ∈ V be in an ingoing cone of u such that (v, u) ∈ F . Then the operation
G.replace(v, u) is well defined and the resulting bicolored graph is still almostTDu.
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Figure 6.1 – The arc between u and v′ must cross (v, w).

Proof. Since u is in an outgoing cone C of v, we have that v cannot be a point
at infinity and that there exists initially a unique neighbor w of v in E and in C.
Since the only neighbor of v in F is u, the arcs (v, u) and (v, w) delimit the tri-
angular face ∆uvw. Let ∆v′vw be the other triangular face incident to (v, w) in the
triangulation (V,E ′).

We will now prove that v′ and u are not connected in E ′ otherwise (v, w) would
cross (u, v′). Figure 6.1 helps to visualize this. Without loss of generality, u is on
the left side of the arc (v, w) and, because v is not a point at infinity, v′ is on the
right side (red and blue areas). We notice that:

• v has an outgoing neighbor in the bottom right cone. Since v′ is the previous
neighbor of v before w, the point v′ cannot be in the below red zone.

• If w is not a point at infinity, it has outgoing neighbors in the bottom left
and bottom right cones. Since u and v′ are respectively the previous and next
neighbors of w with respect to v, the points u and v′ cannot be above the
horizontal line passing through w. It means that u, resp. v′, is the green zone,
resp. the blue zone.

• If w is a point at infinity, it must be the point at infinity in the direction of
cone C because v (which is not a point at infinity) has w in its outgoing cone C.
Therefore, w is linked to the other two points at infinity, one on the left of v,
one of the right of v, and both below the horizontal line passing through w.
Since u and v′ are respectively the previous and next neighbors of w with
respect to v, the points u and v′ cannot be above that horizontal line either.

Then, we verify the almostTD properties:

1. The only modification of the operation G.replace(a) in E ′ consists of the
replacement of the arc (v, w) by the arc (u, v′) or (v′, u) in the quadrilat-
eral uvv′w. Thus (V,E ′) is still a triangulation.
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2. The only modification of the operation G.replace(a) in E consists of the
replacement of the arc (v, w) by the arc (v, u). Since u and w are in the same
outgoing cone C of v , the second property of almostTDu still holds.

3. Finally, the only new arc in F is (u, v′) or (v′, u), which both have u as one of
their extremities.

A property to certify that arcs removals are correct: propDelete.

Definition 66. Given two bicolored graphs G and G ′ on the same set V of vertices,
and u ∈ V , we say that the property propDelete(G,G ′, u) holds if, for every v and v′

in V with v′ in some outgoing cone C of v, the statement:

• the arc (v, v′) belongs to G but not to G ′

is equivalent to the conjunction of the following four statements:

1. v and v′ are both different from u,

2. u is in the (outgoing) cone C of v

3. the arc (v, v′) belongs to G,

4. the arc (v, u) belongs to the first arc set E of G ′ but does not belong to G.

Intuitively, the arc (v, v′) is deleted from G to G ′ if and only if the arc (v, u) is added
from G to G ′.

We now analyze the algorithm for the set V of points and the point u /∈ V .
Let Ginit be the bicolored graph G after its initialization in Line 1. Let Gi be the
value of G when evaluating the while condition at Line 11 after i ≥ 0 executions of
the while loop body.

Lemma 67. The algorithm is well defined and, for every i ≥ 0 such that the algo-
rithm executes at least i times the while loop, we have that:

• Gi is almostTDu,

• any arc in Gi and not in Ginit has u as one of its extremities,

• propDelete(Ginit,Gi, u) is satisfied.

Moreover the algorithm always terminates, after at most |V | executions of the while
loop.

Proof. The only definition problem of the algorithm is Line 12 where the arc from F
is claimed to have u as one of its extremities. Therefore, to prove that the algorithm
is well defined, it is sufficient to prove that the claimed properties of Gi (in particular
the first one) are satisfied.

We prove them by induction on i. For the case i = 0, we distinguish whether |S|
is equal to 4 or not.
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• If |S| 6= 4, then |S| = 3 and u lies inside a triangle which is not the external
one defined by the points at the infinity. The only difference between Ginit
and G0 is that arcs between u and the vertices of the enclosing triangle are
added to the second arc set F of G. By Lemma 62, G0 satisfies all the required
properties in this case.

• If |S| = 4, the arc (v, v′) on which u lies is not an arc of the external triangle
defined by the points at the infinity. Let w and w′ be the two other points
of S. The initialization consists of replacing (v, v′) by (v, u) and (u, v′) in E,
and adding arcs between u and w,w′ into F . Again using Lemma 62, G0 thus
satisfies all the required properties in this case as well.

Assume now that the algorithm executes at least i + 1 times the while loop,
for i ≥ 0, and that Gi satisfies the required properties by induction hypothesis. In
particular, Gi is almostTDu, and by Lemmas 64 and 65, so is Gi+1. Similarly, the
second item is inductively satisfied by Gi, and since the only arc added to Gi to
obtain Gi+1 has u as one of its extremities, Gi+1 also satisfies the property of the
second item. The induction hypothesis, the test Line 13, and the definitions of
move(·) and replace(·) imply that Gi+1 satisfies the property of the third item as
well.

Finally, it remains to prove that the algorithm terminates after at most |V |
iterations of the while loop. We first note that each iteration can be characterized
by an arc between u and some v ∈ V . This arc is added to E. By the property
propDelete(Ginit,Gi, u) for i ≥ 0, those arcs are never removed. Therefore each
iteration of the while loop is characterized by an arc between u and a point v ∈ V
specific to this iteration, which proves the desired property and concludes the proof
of the lemma.

Correctness. Thanks to Lemma 67, we can now define Gend as the bicolored graph
output of the algorithm. Let us summarize the properties satisfied by Gend (the proof
will follow).

Definition 68 (P property). A bicolored graph G = (V ∪ {u}, E, F ) satisfies the
property P(Ginit,G, u) when:

1. G is almostTDu,

2. any arc in G but not in Ginit has u as one of its extremities,

3. propDelete(Ginit,G, u) is satisfied,

4. any two neighbors of u in G that are consecutive in the trigonometric cyclic
order form an angle smaller than π,

5. the second arc set F of G is empty.

Lemma 69. The bicolored graph Gend satisfies P(Ginit,G, u).
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Proof. The first three properties follow directly from Lemma 67 because Gend corre-
sponds to the last Gi. For the fourth property, it is sufficient to prove it for G0 because
no arc incident to u is ever removed from G (property propDelete(Ginit,Gi, u) for
all i ≥ 0). When |S| = 3, u is linked in G0 to the vertices of the internal triangular
face it initially lies in. When |S| = 4, u is linked in G0 to the four vertices of the
quadrilateral formed by the two internal triangles it initially lies in. In both cases,
the property holds. Finally, the fact that F is empty in Gend directly follows from the
condition of the while loop line 11 and the fact that the algorithm terminates.

The fact that Gend is equal to Θ̃+
6 (V ∪ {u}) as desired will follow from the facts

that Θ̃+
6 (V ∪ {u}) also satisfies P(Ginit, ·, u) and that at most one bicolored graph

can satisfy it.

Lemma 70. P
(
Ginit, Θ̃+

6 (V ∪ {u}), u
)
holds.

Proof. The first property follows from Lemma 62.
Now consider two points v and v′, with v′ in an outgoing cone C of v. The

arc (v, v′) belongs to Θ̃+
6 (V ∪ {u}) if and only if v′ is the nearest point to v in C in

a certain way (see Definition 47). If both v and v′ are different from u, then that
property also holds without u. Thus the arc is also in Θ̃+

6 (V ) and in Ginit in this
case. This proves the second property.

Still considering these points v and v′, the arc (v, v′) is in Ginit (and thus
in Θ̃+

6 (V )) but not in Θ̃+
6 (V ∪ {u}) if and only if v′, resp. u, is the nearest point to

v in C in Θ̃+
6 (V ), resp. Θ̃+

6 (V ∪ {u}). This proves the third property.
Point u has points in each of its outgoing cones (at least one of the points at

infinity) and thus has a neighbor in each of its outgoing cones. By the definition of
these cones, the fourth property follows.

Finally, the fifth and last property follows from the definition of Θ̃+
6 (V ∪{u}).

The fact that only one bicolored graph G satisfies P(Ginit,G, u) is proved in two
steps, the first one focusing on u’s neighbors.

Lemma 71. Given a point u /∈ V , and a bicolored graph G on V ∪ {u}, two bicol-
ored graphs GA and GB also defined on V ∪ {u} satisfying respectively P(G,GA, u)
and P(G,GB, u) have the same arcs incident to u.

Proof. Without loss of generality, let v be a neighbor of u in GA but not in GB
(note that we don’t need to specify which kind of neighbor because the second arc
sets of GA and GB are empty). We first prove that u does not have a neighbor
in GB on the same ray from u than v is. Indeed, assume that v′ would be such a
neighbor. If v′ is nearer to u than v, then v′ would be on the arc between u and v
in GA, contradicting the fact that GA is a triangulation. Similarly, if v is nearer to u
than v′, then v would be on the arc between u and v′ in GB, contradicting the fact
that GB is a triangulation.

Since such a v′ does not exist, and since u has at least three neighbors in GB be-
cause of the fourth property of P(G,GB, u), there exist two consecutive neighbors w
and w′ of u in GB such that the ray from u through v lies strictly inside the ŵuw′
angle (on the non-reflex side). Without loss of generality, assume that w′ lies in an
outgoing cone C of w.
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In the triangulation GB, the points u, w, and w′ form an empty triangle, thus
with v on the outside. In GA, the arc (w,w′) does not exist, otherwise it would cross
the arc (u, v). However, the arc (w,w′) is in G, since it is not incident to u and
because of the second property of P(G,GB, u). Since the arc (w,w′) is in G but not
in GA, and by propDelete(G,GA, u), we have that u also lies in the outgoing cone C
of w.

To summarize, u and w′ are both in the outgoing cone C of w , and are both
neighbors of w in GB. This contradicts the fact that B is almostTDu, and concludes
the proof by contradiction of the lemma.

Lemma 72. Given a point u /∈ V , and a bicolored graph G on V ∪ {u}, two bicol-
ored graphs GA and GB also defined on V ∪ {u} satisfying respectively P(G,GA, u)
and P(G,GB, u) are necessarily equal.

Proof. Thanks to Lemma 71, we already know that u has the same neighbors in GA
and in GB. From the second property of P(G,GA, u) and P(G,GB, u), there are no
arcs in GA or in GB which are not incident to u and not in G. So the only differences
that may exist between GA and GB concern the arcs that are in G but not in GA
or GB. However, by the properties propDelete(G,GA, u) and propDelete(G,GB, u),
those arcs that were removed from G are exactly determined by the arcs added to G.
The latter being the same in GA and GB, the former are also the same in GA and GB.
Therefore GA and GB are equal.

The correctness of our algorithm now directly follows from Lemmas 69, 70 and 72.

Theorem 73. Given a point u /∈ V , Algorithm 14 outputs Θ̃+
6 (V ∪ {u}).

6.2.1 Complexity.

Theorem 74. The time complexity of Algorithm 14 is in O(∆u), where ∆u is the
final degree of the added vertex u, plus the time complexity to query (and update)
the PL data structure.

Proof. With a combinatorial map (D, σ, α) (Section A.4), the initialization and each
iteration of the while loop can be executed in constant time (not taking into account
the PointLocation request). One would need to attach a bit consistent with α to
the darts to specify whether the edge belongs to the first or second edge set. All
operations performed by the algorithm are local and only concern a constant number
of faces. Moreover, the points coordinates can be used to retrieve the necessary
information about cones.

Furthermore, an arc incident to u is added in the first arc set E at each iteration
of the while loop and such arcs are never removed. Therefore, there are at most ∆u

iterations of the while loop before the algorithm terminates, and each iteration takes
constant time (as far as PL is not concerned).

6.3 Deletion algorithm
We are now interested in the dynamic maintenance of a half-Theta-6 when deleting
a vertex, i.e. keeping the structure of half-Theta-6. If we delete a vertex u ∈ V , we
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need to redirect the incoming arcs (v, u) for all v. Since v loses its outgoing neighbor
in the corresponding cone, we have to find the new outgoing neighbor. That is, we
replace (v, u) by an arc (v, w), with w ∈ V in the same outgoing cone of v that u.

6.3.1 Algorithm

We propose an algorithm allowing an efficient deletion, whose idea is the follow-
ing: without loss of generality, we first study the sectors with increasing z. We
process Ez(u), the set of incoming neighbors of u in the direction of z, in counter-
clockwise order. These are the points for which we need to find a new outgoing
neighbor.

For each of these points v, the candidates are neighbors of u, in one of the three
following sectors: C+

z (u), C−y (u) and C−x (u) as we will verify it with the Lemma 75.
For the first one, it is easy: there is only one (outgoing) neighbor of u in C+

z (u). For
the other two, we go through them in the order of increasing z. In each of these three
cones, we find the nearest point from v also in C+

z (v). Among these three points,
we take again the nearest one: it is the new outgoing neighbor of v according to
the direction z. In particular, if among these three points, several have the same z
coordinate, we take the one whose coordinate y is minimal.

Then we move to the next point of Ez(u). But instead of restarting the process
of Ex(u) and Ey(u) from the beginning, we resume the process where it was at the
end of the previous step. The pseudo-code is detailed with the algorithm 15

6.3.2 Correctness

Lemma 75. Let u, v ∈ V such that (v, u) ∈ Θ+
6 (V ) with u in the ingoing cone C

of v. Let w ∈ V such that (v, w) ∈ Θ+
6 (V \{u}) with w in the same cone C. Then w

is either in C+
z (u), C−y (u) or C−x (u). Furthermore, w is a neighbor of u in Θ+

6 (V ).

Proof. Without loss of generality, we consider that v is in the incoming cone C−z (u).
Therefore, v ∈ Ez(u). If w /∈ C+

z (u)∪C−y (u)∪C−x (u), then w ∈ C−z (u)∪C+
y (u)∪C+

x (u)
since these six cones partition the plane.

• By definition of the cones C−z (u) and C+
y (u), if w is in one of those, then we

have wz < uz.

• If w ∈ C+
x (u), then wz ≤ uz and wx > ux.

But v has only one outgoing neighbor in C so (v, w) /∈ Θ+
6 (V ). Thus, w should be

its outgoing neighbor instead of u. So w must be C+
z (u) ∪ C−y (u) ∪ C−x (u).

Then, we check for each of the three cones, that if w is in one of them, then it is
connected to u.

• If w ∈ C+
z (u), then the nearest point to u in C+

z (u) is the nearest from v in the
same cone.

• If w ∈ C−x (u), then we assume by the absurd that (w, u) /∈ Θ+
6 (V ). Visually,

this can be seen with the Figure 6.2. We show that the neighbor of w in C+
x (w)

can be neither in the red, nor in the blue zone.
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Input: Θ+
6 (V ) for a given set of points V and u ∈ V

Output: Θ+
6 (V \{u})

// We handle the z direction, same for the others
1 v ← firstz(u) // process in the counterclockwise order
2 wx ← lastx(u) // process in the clockwise order
3 wy ← lasty(u) // process in the clockwise order
4 while v ∈ C−z (u) do // going through Ez(u) vertices to redirect

them
// While there are still neighbors in Ex(u) to consider and

they are in the cone of the current vertex
5 while previous(u,wx) ∈ C−x (u) and previous(u,wx)y ≤ vy do
6 wx ← previous(u,wx)

// While there are still neighbors in Ey(u) to consider and
they are in the cone of the current vertex

7 while previous(u,wy) ∈ C−y (u) and (wy)x ≥ vx do
8 wy ← previous(u,wy)

9 Let w′ be the outgoing neighbor of u in its z direction
10 if wx ∈ C−x (u) ∩ C+

z (v) and wxz < w′z then
11 w′ ← wx

12 if wy ∈ C−y (u) ∩ C+
z (v) and wyz ≤ w′z then

13 w′ ← wy

14 G.insert(v, w′)
15 v ← next(u, v)

16 G.remove(u)

Algorithm 15: Deletion of a vertex in a Θ+
6 .
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Figure 6.2 – If w is the neighbor replacing u when it is removed, then w is
connected to u.

Formally, w has an outgoing neighbor other than u in its cone C+
x (w), we note

it w′. We show that w′ ∈ C+
z (v):

1. w′x ≤ ux < vx since w is not connected to u and v ∈ C−z (u).

2. w′y < wy ≤ vy since w′ ∈ C+
x (w) and w ∈ C+

z (v).

3. w′z > vz since v and w′ have same rank.

Thus, w′ cannot be in the blue zone. Furthermore, by definition of w′, we
have: w′z ≤ wz and w′y < wy. Therefore, w′ is nearest than w in C+

z (v), which
contradicts the definition of w.

• If w ∈ C−y (u), then we assume by the absurd that (w, u) /∈ Θ+
6 (V ). Thus, w

has an outgoing neighbor other than u in its cone C+
y (w), we note it w′. We

show that w′ ∈ C+
z (v):

1. w′x ≤ wx < vx since w′ ∈ C+
y (w) and w ∈ C+

z (v).

2. w′y ≤ uy ≤ vy since w is not connected to u and v ∈ C−z (u).

3. w′z > vz since v and w′ have same rank.

Furthermore, by definition of w′, we have: w′z < wz and w′y < wy. Therefore, w′

is nearest than w in C+
z (v), which contradicts the definition of w.

Theorem 76. Algorithm 15 taking as input Θ+
6 (V ) and u ∈ V , outputs Θ+

6 (V \{u}).

Proof. Note that the sets Ex(u) and Ey(u) may be empty. Thus, last returns a
point in another cone and the tests Lines 10 and 12 guarantee that such irrelevant
points will not be considered. Furthermore, if Ex(u) is not empty, then the test
Line 5 insures that wx will never leave C−x (u). Same for Ey.
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We show the correction by induction on the ingoing neighbors of u. For v the first
of them, our algorithm correctly computes the nearest points from v in C+

z (u), C−y (u)
and C−x (u) restricted to C+

z (v). Using the Lemma 75, we have therefore redirected v
correctly by taking the nearest point among those three points.

For the iteration, we assume that we have just processed v. We have to prove
that it is not necessary to reset wx and wy to process the point v′ = next(u, v). We
are processing the points v in the order of strictly increasing y since we use next,
and Ex(u) in the order of increasing y since we use previous. So at the beginning
of the iteration of the while loop Line 4 for v′, only wx and the points of Ex(u)
processed afterwards using previous are potentially to be connected to v′. Same
argument for Ey.

6.3.3 Complexity

As for the insertion, we use combinatorial maps (Section A.4). Keep in mind that
a local modification of an arc is in constant time.

Theorem 77. Let u ∈ V . Let ∆u be the degree of u in Θ+
6 (V ). The Algorithm 15

given Θ+
6 (V ) as input is in O(∆u log ∆u).

Proof. We analyze the cost of each iteration of the main while loop (Line 4), that
is to say for each point v ∈ Ez(u).

• The operations previous and next are in constant time.

• If we add the arc (v, w), then we have to add two half arcs, each corresponding
to one of the two points, so that it stores the position of the other among its
neighbors in clockwise order. On the side of v, since it is connected to only one
point in C+

z (v), the insertion of w consists in replacing u and thus is in O(1).

• On the other hand, from the point of view of w, we do not know where to
place v. Even if the points v are considered in counterclockwise order with
respect to u, this is not necessarily true with respect to w.

To be efficient, we put all these insertions on hold during the while loop. Once
we have finished processing Ez(u), for each neighbor of u, we sort the pending
insertions and perform them. Since at most ∆u insertions can be put on hold,
the sorting step implies a O(∆u log ∆u) time complexity.

• The cumulation of the internal while loops only covers Ex(u) and Ey(u) once
at worst. Thus, the cumulative complexity is linear.

The loop performs at most ∆u iterations so the constant time operations in the loop
give a linear accumulation and are therefore negligible.

Moreover, the operations first and last are also constant. Finally, the deletion
of u is in O(∆u) since the deletions of each half-arch are local. Thus, we obtain the
announced complexity.
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Figure 6.3 – Worst Case for add and deletion

Worst-case. One might think that successively deleting each point from V might
give an "interesting" amortized complexity. We show that it is at least linear in the
worst-case.

Lemma 78. Let n = |V |. There exists a sequence of n point deletions from V such
that Θ(n2) redirections are required.

Proof. Such a sequence is represented in Figure 6.3, with n even. In this exam-
ple, we assume that the points ui are deleted in the increasing indices order. The
points un/2+1, . . . , un all have u1 as their outgoing neighbor. When u1 is deleted, we
have to redirect them all to u2, etc... Thus, each deletion requires Θ(n) redirection,
and there is a Θ(n) points deleted.

Remark. This lemma also stands for a sequence of insertions.

6.4 Application to tricriteria shortest path compu-
tation

In Section 3.5, an improvement of Algorithm 9 consists in using Theta graphs. We
restrict ourselves to the case d = 3. The sectors we are interested in correspond to
the outgoing cones of a Θ+

6 , bounded by a factor (1+ε) on the increasing coordinate.
In order to prune a path P , we want to know if its cost c(P ) is (1 + ε)-covered in its
three sectors. Given a Θ+

6 on path costs, we can find out whether c(P ) is (1 + ε)-
covered in the cone C+

z (c(P )) by looking at its outgoing neighbor v in that cone. v
(1 + ε)-covers c(P ) if and only if vz ≤ (1 + ε)c(P )z. The same is true for the other
two cones.

We therefore propose Theta Sample Sector (Algorithm 16). This algorithm
consists in processing a set of paths and keeping some of them. If the current
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path P is not (1 + ε)-covered in each sector by the paths previously seen and kept,
P is kept. Otherwise, it is not kept. In order to know if a path is (1 + ε)-covered
in each sector, its cost is inserted in an initially empty Θ-graph. If the path is not
kept, its cost is deleted from the Θ-graph so that it is not used to cover the paths
seen a posteriori. We use for that the Algorithms 14 and 15, along with a Point
Location data structure and its maintenance. A last step at Line 11 removes paths
dominated by inferior rank paths in S from remaining paths.

Input: R,S set of paths, ε > 0
Output: R′ set of paths

1 GΘ ← Θ+
6 ({∞x,∞y,∞z})

2 R′ ← ∅
3 foreach P ∈ R do
4 insert(GΘ, c(P ))
5 foreach i ∈ {x, y, z} do
6 Let Q s.t. c(Q) ∈ C+

i (c(P )) and (c(P ), c(Q)) ∈ GΘ

// Q is null if c(Q) =∞i

7 if Q = null or Qi ≥ (1 + ε)Pi then
8 R′ ← R′ ∪ {P} ; // then it is kept
9 break ; // no need to search for other sectors anymore

10 remove(GΘ, c(P )) // it not kept since it is covered

11 RemoveDominated(R′,S) // removes from R′ path dominated by S
Algorithm 16: Theta Sample Sector: Sample Sector using Theta
graphs.

Definition 79 (TSector Algorithm). Algorithm TSector is the Meta Rank
algorithm (Alg. 6) using Theta Sample Sector as the Sample function.

Theorem 80. Let Sε be the size of the output of TSector. The output-sensitive
time complexity of TSector is in O

(
(∆Sε)

2 log(∆Sε) log log(∆Sε)
)
.

Proof. Given a set R of paths of size R = |R|, Theta Sample Sector processes
each path P ∈ R with the following operations:

• It inserts P in the current Theta-graph. The point location query is in
time O(logR(log logR)2) and the modifications are in O(R logR log logR).

• It may delete P from the current Theta-graph. The complexity is inO(R logR).

Thus, the main loop is in O(R2 logR log logR).
The removal of dominated paths in TSector is in O((∆Sε)

2) since each pair of
processed paths is compared at most once. Therefore, repeating Theta Sample
Sector as a Sample function over each vertex and rank gives CSample(n, Sε,∆,Λ) =
O((∆Sε)

2 log(∆Sε) log log(∆Sε)). Applying Theorem 15 allows us to conclude.

The removal of dominated paths at Line 11 could be replaced by adding to the Θ+
6

the projections of the paths S in each cones (each projection consists in increasing
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only one coordinate). The insertions, followed by a potential deletions, worsen the
complexity of Theta Sample Sector if the values of ∆c(P ), the degree of c(P ) in
the current Θ+

6 , are in Ω(n). However, we know that ∆c(P ) is on average constant
since the Θ+

6 are planar graphs. So we can expect a gain in practice.
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Chapter 7

Proximity queries and dominating
set.

7.1 k-Nearest Neighbors in a sector

The method proposed in Section 6.4 does not give any interesting bound over the
number of kept path. In order to do so, we enhance the Θ+

6 structure in this section
in order to use it the following ones to bound the number of kept path by a log factor
multiplied by the minimum possible with respect to the ε-weak framing property.

For each u ∈ V , Θ+
6 (V ) gives us the nearest point to u in each of its outgoing

cones in triangular distance. In this part, we want to generalize to several points.
More precisely, we want to compute the at most k nearest points from u, at triangular
distance at most (1 + ε) from u. We note these sets of point Skx,ε(u) ⊆ C+

x (u),
Sky,ε(u) ⊆ C+

y (u) and Skz,ε(u) ⊆ C+
z (u). The related set V is implicit for legibility

reason.
In this section, we propose an algorithm for the computation of Skz,ε(u), the

others being similar. We recall that for a point u ∈ V , if v, w ∈ V , with v 6= w, v
and w being in the same cone of u and d∆(u, v) = d∆(u,w) (here vz = wz), then,
among v and w, the nearest point from u is the first in clockwise order (here v is
nearer if and only if vy < wy).

7.1.1 Algorithm

We describe our algorithm computing Skz,ε(u) for a vertex u. The algorithm is the
same for Skx,ε(u) and Sky,ε(u). It processes iteratively vertices from C+

z (u). Each
vertex is given one of the following three colors:

white : the vertex has not been seen yet,

gray : it has been seen but not yet processed,

black : it has been seen and processed.

Each vertex is first white, then can become gray and finally black. At each time,
any black vertex v is associated to at most three gray vertices: Repx(v), Repy(v)
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and Repz(v), each contained in one of the following sets: Ex(v), Ey(v) and {sz(v)}.
That is to say that these are neighbors in each cone with coordinate z greater than vz.

The algorithm starts by coloring u in gray. Then, it iterates the following steps:

1. Let v be the gray vertex nearest to u (with minimal z coordinate and in
case of non-unicity, with minimal y coordinate among those with minimal z
coordinate). It colors v in black.

2. For any black vertex w such that Repx(w) = v, Repx(w) takes as value the
neighbor of w following v in counterclockwise order (i.e. next(w, v), corre-
sponding to the order of increasing z in Ex(w)). If v is the last vertex of Ex(w),
i.e. lastx(w) = v, then Repx(w) is set to null. Otherwise, Repx(w) is colored
in gray.

3. The same for Repy in clockwise order, with previous(w, v). Repy(w) is set
to null if firsty(w) = v.

4. For each black vertex w such that Repz(w) = v, Repz(w) is set to null.

5. Then we define the represented points of v by taking:

• Repx(v) the nearest vertex from u in Ex(v) ∩ C+
z (u),

• Repy(v) the nearest vertex from u in Ey(v) ∩ C+
z (u),

• Repz(v) the outgoing neighbor of v in C+
z (v).

The algorithm stops when there are k black vertices or when the vertex v being
processed is at a triangular distance superior to (1 + ε) from u, i.e. such that
vz > (1 + ε)uz since here, considered vertices are in C+

z (u). The corresponding
pseudo code is the Algorithm 17.

The definition of:

• v at Line 6 can be written as arg min{v′y|v′ ∈ arg min{vz|v gray vertex }}.
Indeed, the nearest is the minimum along z coordinate. If there are several
of them, the nearest is, among those, the one whose y coordinate is minimal.
This case is handled by a second arg min with y coordinate.

• Repx(v) at Line 23 can be written as arg min{wz|w ∈ Ex(v) and wy ≤ uy} since
the nearest is the minimal along z coordinate. Such a vertex is unique since
the order ≺x on Ex(v) is total. The test for belonging to C+

z (u) is reduced to
a comparison over y coordinates.

• Repy(v) at Line 24 can be written as arg min{w′y|w′ ∈ arg min{wz|w ∈ Ey(v)
and wx ≤ ux}}, for the same reasons as for the definition of v.

Remark. One can simply wish to obtain the k nearest points, resp. all points at a
multiplicative distance (1 + ε). For this, set ε = +∞, resp. k = n.

On Figure 7.1, we compute the k nearest points from u in the blue triangle.
If v is the nearest point from u, then we observe that the other points of interest
are necessarily in its right half-plane (otherwise v would not be the nearest). We
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Input: Θ+
6 (V ) for a given set of points V , u ∈ V , k ∈ N, ε > O

Output: Skz,ε(u)

1 S ← ∅
2 Let v ∈ V be the outgoing neighbor of u in C+

z (u)
3 if vz ≤ (1 + ε)uz then
4 Color(v)← gray

5 while at least one vertex is gray and |S| < k do
6 v ← nearest gray point from u
7 Color(v)← black
8 foreach wx ∈ Repx−1(v) do // i.e. wx such that Repx(wx) = v
9 if next(wx, v) ∈ C−x (wx) then

10 Repx(wx)← next(wx, v)
11 Color(Repx(wx))← gray

12 else
13 Repx(wx)← null

14 foreach wy ∈ Repy−1(v) do // i.e. wy such that Repy(wy) = v
15 if previous(wy, v) ∈ C−y (wy) then
16 Repy(wy)← previous(wy, v)
17 Color(Repx(wy))← gray

18 else
19 Repy(wy)← null

20 foreach wz ∈ Repz−1(v) do // optional
21 Repz(wz)← null

22 S ← S ∪ {v}
23 Repx(v)← nearest point from u in Ex(v) ∩ C+

z (u)
24 Repy(v)← nearest point from u in Ey(v) ∩ C+

z (u)
25 Repz(v)← the outgoing neighbor of v in C+

z (v)
26 Color(Repx(v))← gray
27 Color(Repy(v))← gray
28 Color(Repz(v))← gray

29 return S
Algorithm 17: k-Nearest Neighbors in a sector
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Figure 7.1 – Construction of Skz,ε(u).

must therefore look at the corresponding three cones: C−x (v), C−y (v) and C+
z (v). This

remains true for the points that will follow v since the gray vertices are processed
by increasing z coordinates.

Among the three cones, the outgoing cone is easy to process (only one neighbor).
For the others, the algorithm processes them according to the order of the red arrows.
Note that the red arrows are not included in the blue triangle: one must therefore
restrict the process of these cones to C+

z (u) and to the points at distance (1 + ε)
from u according to z. After v is processed, it becomes black and the first vertex
of each of its cones becomes gray. When one of those first vertices is processed, it
becomes also black and the algorithm colors the second in gray, etc...

7.1.2 Correctness

Theorem 81. Given u ∈ V , Θ+
6 (V ), k ∈ N and ε > 0, Algorithm 17 outputs Skz,ε(u).

Proof. Let (v(1), v(2), . . . , v(k)) be the elements from Skz,ε(u) sorted by increasing tri-
angular distance (and by increasing y coordinate among those with the same dis-
tance). We show by induction on i ≥ 1 that after i iterations of the while loop, the
vertices v(1), . . . , v(i) are black.

By definition of Θ+
6 (V ), the vertex v defined at line 2 is v(1). It is the only gray

vertex at the beginning of the first iteration of the while loop, so it is the only black
vertex at the end of this iteration.

Then, we suppose that for i ∈ J1, k − 1K, after i iterations of the while loop, the
vertices v(1), . . . , v(i) are black. We show that v(i+1) is the vertex which becomes
black during the (i + 1)-th iteration, that is to say that it is gray and that among
the gray vertices, it is the nearest from u. By definition of the order on the (vj)j
points, there are only three cases:
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• v(i) ∈ C+
x (v(i+1)). Let w be the outgoing vertex of v(i+1) in Θ+

6 (V ) in the same
cone. We show that w is a black vertex.

– wx ≤ v(i)
x < ux, the first inequality since (v(i+1), w) ∈ Θ+

6 (V ), the second
since v(i) ∈ C+

z (u).

– wy < v(i+1)
y ≤ uy, the first inequality since w ∈ C+

x (v(i+1)), the second
since v(i+1) ∈ C+

z (u).

– u and w have same rank, thus : wz = uz + (ux − wx) + (uy − wy) > uz
using the previous inequalities,

– wz ≤ v(i+1)
z ≤ (1 + ε)uz since w ∈ C+

x (v(i+1)) and v(i+1) ∈ Skz,ε(u).

Therefore, w ∈ C+
z (u) is black. Repx processes vertices from Ex(w) ∩ C+

z (u)
in increasing triangular distance from u and each vertex w′ ∈ Ex(w) ∩ C+

z (u)
nearer from u than v(i+1) is black by induction hypothesis. Thus Repx(w) =
v(i+1) at the (i+ 1)-th iteration and v(i+1) is gray.

• v(i) ∈ C+
y (v(i+1)). Let w be the outgoing vertex of v(i+1) in Θ+

6 (V ) in the same
cone. We show that w is a black vertex.

– wx ≤ v(i+1)
x < ux, the first inequality since w ∈ C+

y (v(i+1)), the second
since v(i+1) ∈ C+

z (u).

– wy ≤ v(i)
y ≤ uy, the first inequality since (v(i+1), w) ∈ Θ+

6 (V ), the second
since v(i) ∈ C+

z (u).

– u and w have same rank, thus : wz = uz + (ux − wx) + (uy − wy) > uz
using the previous inequalities,

– wz < v(i+1)
z ≤ (1 + ε)uz since w ∈ C+

y (v(i+1)) and v(i+1) ∈ Skz,ε(u).

Therefore, w ∈ C+
z (u) is black. Repy processes vertices from Ey(w) ∩ C+

z (u)
in increasing triangular distance from u and each vertex w′ ∈ Ey(w) ∩ C+

z (u)
nearer from u than v(i+1) is black by induction hypothesis. Thus Repy(w) =

v(i+1) at the (i+ 1)-th iteration and v(i+1) is gray.

• v(i) ∈ C−z (v(i+1)). By definition of the order on the (vj)j points, v(i+1) is the
outgoing vertex of v(i) in its cone C+

z (v(i)) in Θ+
6 (V ). Thus, v(i+1) is gray.

In all cases, v(i+1) gray, and it is the nearest one from u by induction hypothesis and
by definition of the order on the (vj)j points.

7.1.3 Complexity

The following data structures are used:

• The black vertices are stored in a linked list, each cell containing a vertex v
and pointers to the three vertices it represents Repx(v), Repy(v) et Repz(v).
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• The gray vertices are in a balanced binary tree (Section A.2) T ordered over
the z coordinate. The removal of the minimum in T is in O(log |T |). We
consider that T is a set to avoid duplicate gray vertices. Thus, an insertion
requires a prior find request to know if the element to insert is already in T .
Both insertion and find requests are in O(log |T |).

• Each gray vertex v has, for each direction, a linked list of pointers to the
black vertices of which they are the representatives, i.e. three lists containing
pointers to the w such that Repx(w) = v, Repy(w) = v or Repz(w) = v. A
pointer from v to each of these pointers is stored with v in order to modify
each list in constant time.

• The sets Ex and Ey are balanced binary trees in order to have Lines 23 and 24
in O(log n).

Theorem 82. Given k ∈ N, the time complexity of Algorithm 17 is in O(k log n)
with n the number of points in V .

Proof. The algorithm does not color more than k vertices in black. Thus there are
no more than k iterations of the while loop. Moreover, each black vertex represents
at most three gray vertices. So there are no more than 3k gray vertices and |T | ≤ 3k.
We analyze the operations in the while loop to express their cumulative complexity,
i.e. their sum over all the iterations of the while loop:

• The extraction of the minimum from T is in O(log k), giving an overall com-
plexity in O(k log k).

• Each insertion in T is in O(log k) and there are at most 3k of those. Thus the
overall insertion complexity is in O(k log k).

• The inner while loops go through each arc of C+
z (u) outgoing from a black

vertex only once. There is a O(k) arcs concerned since they lie in a zone
containing at most 3k vertices and Θ+

6 (V ) is planar. Therefore, there are O(k)
iterations of these loops during the whole algorithm. Their internal operations
are in logarithmic time if we use balanced binary trees for next and previous
but in constant time if we also have a combinatorial map to represent the graph
(Lemma 55). The total complexity is therefore O(k log n) or O(k) depending
on the structure used.

• If the current vertex is v, finding its first represented vertex Repx(v) is per-
formed with a logarithmic query on the tree containing Ex(v) which size is
in O(n). So the complexity is in O(log n). The same is true for Repy(u). Re-
peating these operations for each iteration of the while loop gives an overall
complexity in O(k log n).

The initialization of Repx and Repy dominates the others steps and the time com-
plexity of the algorithm is therefore in O(k log n).
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7.2 Dominating set
In this section, our goal is to cover in one direction the set V by a subset, as small
as possible. The natural object corresponding to the wanted subset is a minimal
dominating set. First, we introduce formally the definitions in Section 7.2.1. Then
we describe a classical algorithm to compute a reasonable size dominating set in
Section 7.2.2. The correctness is proven in Section 7.2.3 and we provide a detailed
data structure in order to establish the complexity (Section 7.2.4). Finally, we
recall the classical result maximizing the size of the dominating set computed in
Section 7.2.5.

7.2.1 Definitions and related work

We first introduce the coverage definition for a given direction.

Definition 83. Let V ′ ⊆ V et ε > 0. We say that V ′ (1 + ε)-covers V with respect
to z if:

∀v ∈ V, ∃v′ ∈ V ′ ∩ C+
z (v), such that v′ (1 + ε)-covers v.

The definition is similar for the other two directions.

We note Nz,ε(V ) = (V,A) the graph such that A =
{

(u, v)|v ∈ V, u ∈ Snx,ε(v)
}
,

with Snx,ε(u) defined in Section 7.1. Computing a (1 + ε)-cover of V w.r.t z is
equivalent to computing a dominating set in Nz,ε(V ). We recall the definition of a
dominating set in a directed graph.

Definition 84 (Directed out-dominating set). Let G = (V,E) be a simple directed
graph and S ⊆ V . We say that S is a directed out-dominating set of G if:

∀u ∈ V \S,∃s ∈ S, (s, u) ∈ E

The definition of a directed in-dominating set is symmetrical. Note that the
directed out-dominating set of a given directed graph corresponds to the directed
in-dominating set of the same graph but with in the reverse orientation. In the
following, directed dominating set stands for the directed out-dominating set.

The orientation can make a real difference. In 1963, Erdös [Erd63] showed that
it exists an orientation of the complete graph requiring a directed dominating set of
size at least log n− 2 log log n but less than log(n+ 1) whereas any single vertex is a
dominating set of the complete graph. More generally, there is a huge litterature for
the classic dominating set but the directed dominating set has received less attention.
In [CH12], the authors exhibits the differences and relationships between dominating
sets and directed dominating sets for different graph families and parameters.

As for the undirected case, the directed dominating set computation can be done
with a log n-approximation (see Theorem 11 of [CC08]) using the classic greedy
approximation algorithm:

1. sort the vertices with respect to the out-degree,

2. add the vertex of highest out-degree to the directed dominating set and remove
it from the graph,
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3. repeat step 2 until every vertex is dominated.

Even for bounded degree directed graphs, such an algorithm can take Θ(n2) com-
putation steps. Can we propose an efficient algorithm with a better computational
time complexity ?

In the following, we present an algorithm running in O(∆−∆+n) time. The main
contribution is to provide a detailed data structure achieving the best worst-case
time complexity to our knowledge.

7.2.2 Algorithm

We first provide a high level presentation of the existing greedy algorithm computing
directed dominating sets.

Outline. Each vertex is associated with a color: white (non-dominated), black
(dominating) and gray (dominated non-dominating). For any vertex u, let pdegree(u)
be its pseudo outgoing degree, i.e. its current outgoing degree, plus one if the vertex
is white. This pseudo degree depends on the moment of the algorithm’s execution
at which it is considered.

The initialization colors all vertices in white. Then the following method is
iterated:

1. a vertex of maximum pdegree is selected,

2. it is colored in black (it becomes a dominant),

3. its outgoing neighbors are colored in gray (which are necessarily white because
of the following step),

4. all the incoming edges of the newly colored vertices (in gray or black) are
deleted.

The algorithm stops when there is no more white vertex. The corresponding
pseudo-code is presented in Algorithm 18. The operation removeInArc deletes the
ingoing arcs of the given vertex.

Remark. Before selecting the vertices of maximum pdegree, we can apply the steps 2
to 4 of the algorithm outline to the source vertices, i.e. those which do not have
incoming arcs. Indeed, these last ones are necessarily in any dominating set.

7.2.3 Correctness

Theorem 85. Given a graph G = (V,A), Algorithm 18 terminates and outputs a
dominating set of G.

Proof. The algorithm terminates since the number of white vertices decreases at
each iteration of the while loop. Furthermore, it is correct because at the end:

• the black vertices are in S,
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Input: G = (V,A) a graph
Output: S ⊆ V

1 S ← ∅
2 foreach u ∈ V do
3 Color(u)← white

// Delete nodes with highest pdegree
4 while white nodes exist do
5 Let u be the highest pseudo-degree vertex
6 S ← S ∪ {u}
7 Color(u)← black
8 foreach v s.t. (u, v) ∈ A do
9 Color(v)← gray

10 G.removeInArc(v)

11 G.removeInArc(u)

12 return S
Algorithm 18: High-level algorithm to compute a directed dominating set

• there is no more white vertices, which implies that any non black vertex is
gray,

• if a vertex if gray, then, when it was colored, one of its ingoing neighbors was
being colored in black. This black vertex dominates it.

Thus, any vertex is dominated, by itself or by another one.

7.2.4 Complexity

In order to precisely analyze the complexity, we provide ourselves with simple data
structures. Then a detailed version of Algorithm 18 is presented in Algorithm 22.

Data structures

We put the set of vertices {u1 . . . , un} in a data structure D. This structure is
a linked list where each cell contains the set of vertices having the same pseudo-
degree. Each cell stores also its corresponding pseudo-degree. The cells are sorted
in pseudo-degree decreasing order. The set of vertices of the same pseudo-degree is
itself a linked list.

To each vertex u is associated a quadruplet (adj+(u), adj−(u), ptrD(u), ptrDpos(u))
with:

• adj+(u) the list of u’s outgoing vertices, represented as a linked list. To each
vertex v ∈ adj+(u) is associated ptru→v pointing to the position of u in adj−(v).

• adj−(u) the list of u’s ingoing vertices, represented as a linked list. To each ver-
tex w ∈ adj−(u) is associated ptru←w pointing to the position of u in adj+(w).

• ptrD(u) pointing to the cell of D corresponding to the pseudo-degree of u. The
values of ptrD are stored in an array.
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• ptrDpos(u) pointing to the cell containing u in the linked list in D pointed by
ptrD(u). The values of ptrDpos are stored in an array.

The color are implicit: D contains exactly the white and gray vertices, and
the difference between those two is inferred from the pdegree value of the D’s cell
containing the vertex. This difference can as well be represented by a booleen. Notice
also that combinatorial maps might also be used as an alternative to represent graphs
instead of adj+ and adj− (Section A.4). Furthermore, each vertex is associated with
its initial outgoing degree, that is the size of adj+ (not necessary but simpler for
Algorithm 19, computing it at start does not change the overall complexity).

Subroutines

We describe the subroutines used in the Algorithm 22:

• createD (Algorithm 19) creates the initial structure D,

• popMaxElement (Algorithm 20) removes from D a vertex of maximum pdegree
and returns it,

• updateElement (Algorithm 21) updates the position of a vertex in D when its
pseudo-degree has changed.

Those subroutines use classic linked lists primitives detailed in Section A.1. It is easy
to provide a linked list implementation with those primitives working in constant
time.

Subroutine createD. The initialization of D consists in sorting all vertices by
pseudo-degree and then to insert them in D. At the same time, we initialize the
pointers ptrD and ptrDpos , as described in Algorithm 19. If we want Algorithm 22 to
process the source vertices before the others, we place them at the beginning of D
(therefore at the end in Algorithm 19) in an additional cell.

Subroutine popMaxElement. In order to get the maximum pseudo degree vertex,
it is sufficient to take the first vertex of the first list of D. But we also add the
update of D in order to remove u and to keep the first cell not empty.

Subroutine updateElement. The subroutine updateElement updates the posi-
tion in D of a vertex that has changed its degree. The test Line 10 guarantees that
whenever the input vertex has a null pseudo-degree, it is removed from D.

Algorithm revisited

From Algorithm 18, the operations removeInArc and removeOutArc translate into
deletions from the lists adj− and adj+ in Algorithm 22, using the pointers pu→v
and pu←v. Processing the lists adj+ and adj− can be written with primitives too
but we avoid to unnecessarily complexify the pseudo-code, the goal being to make
explicit the handling of D.
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Input: G = (V,A) a graph
Output: D

1 (u0, · · · , un−1)← IncreasingPseudoDegreeOrderSort(V )
2 D = createList()
3 i← 0
4 while i < n do
5 Dpos ← createList()
6 p← pdegree(ui) // size of adj+(ui)
7 while i < n and pdegree(ui) = p do
8 Dpos ← insertBegin(Dpos, ui)
9 ptrDpos(ui)← Dpos

10 i← i+ 1

11 D ← insertBegin(D,Dpos)
12 while not isEmpty(Dpos) do
13 ptrD(value(Dpos))← D
14 Dpos ← next(Dpos)
15 i← i+ 1

16 return D
Algorithm 19: createD

Input: D a linked list of linked lists
1 u← value(value(D))
2 D ← replaceBegin(D, deleteBegin(value(D))
3 if isEmpty(value(D)) then
4 D ← deleteBegin(D)

5 return u
Algorithm 20: popMaxElement
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Input: D a linked list of linked lists, u vertex
1 Dcurr ← ptrD(u) // cell of D containing the list containing u
2 Dnext ← next(Dcurr)
3 p← pdegree(Dcurr)
4 Dpos = value(Dcurr) // list in D containing u
5 Dpos ← deleteAfter(Dpos, ptrDpos(u)) // delete u from it
6 if isEmpty(Dpos) then
7 D ← deleteAfter(D,Dcurr)
8 else
9 D ← replaceAfter(D,Dcurr,Dpos)

10 if p > 1 then
11 if isEmpty(Dnext) or pdegree(Dnext) 6= p− 1 then
12 Dpos ← createList()
13 D ← insertAfter(D,Dcurr,Dpos)
14 Dnext ← next(Dcurr)
15 Dcurr ← Dnext
16 Dpos ← insertBegin(value(Dnext), u)
17 D ← replaceAfter(D,Dcurr,Dpos)
18 ptrDpos ← value(Dnext)

Algorithm 21: updateElement

Input: G = (V,A) a graph
Output: S ⊆ V

1 S ← ∅
2 D ← createD(G)
// Delete nodes with highest pdegree

3 while not isEmpty(D) do
4 u← popMaxElement(D)
5 S ← S ∪ {u}
6 foreach x ∈ adj−(u) do
7 Remove(u, adj+(x))
8 updateElement(D, x)

9 adj−(u)← ∅
10 foreach v ∈ adj+(u) do
11 Remove(u, adj−(v))
12 foreach x ∈ adj−(v) do
13 Remove(v, adj+(x))
14 updateElement(D, x)

15 adj−(v)← ∅
16 adj+(u)← ∅
17 return S
Algorithm 22: Low-level algorithm to compute a directed dominating set
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Theorem 86. Given a graph with n vertices and m arcs, Algorithm 22 has a time
complexity in O(n∆+∆−) and uses a O(n+m) memory space.

Proof. First, we give the complexity of each subroutine:

• createD is in O(n), by using a counting sort. Each vertex requires a constant
number of primitive calls.

• popMaxElement and updateElement are in O(1) since it is a constant number
of primitive calls.

For each vertex u, the algorithm processes the list of outgoing neighbors of u. For
each one of them, it processes their list of ingoing neighbors. For any arc (u, v), the
operation Remove(u, v) is in constant time : the positions of v in adj+(u) and of u
in adj−(v) are deduced from each other in constant time thanks to the associated
pointers ptru→v and ptrv←u. It is then sufficient to use the primitive deleteAfter.

So each iteration of the while loop is in O(∆+∆−). The accumulation of the
iterations is then in O(n∆+∆−) since D contains initially n elements and at least
one is removed at each iteration. The initialization of the algorithm being linear,
we have the announced time complexity.

Each array is of size n and D contains at most one subcell per vertex, thus is of
size n too. The linked lists adj+ and adj− contains one cell per arc and thus are of
size m altogether.

7.2.5 Size of the output

The resulting dominating set cannot be much larger than a minimum set as the
following Theorem states.

Theorem 87. Let S be the output of the algorithm and S∗ an optimal dominat-
ing set. Let ∆out be the maximum outgoing degree over the set of vertices at the
beginning. We have:

|S| ≤ ln(∆out)|S∗|

Remark. At any moment of the algorithm, each vertex has only white vertices as
outgoing neighbors since any change of color implies the suppression of the incoming
edges.

Proof. This proof strongly relies on lecture notes written by Fabian Kuhn, University
of Freiburg, for undirected graphs.

Stars. We partition the graph into stars. We consider a subgraph G ′ = (V,E ′)
such that each vertex of V \S∗ has in-degree 1 and all arcs go from vertices in S∗ to
vertices in V \S∗. We thus obtain a subgraph of G.

Each connected component of it is a star centered on a vertex of s ∈ S∗ and
the arcs are outgoing from s to vertices of V \S∗. The set of stars vertices is a
partition of V into different connected components: it is a cover because each vertex
is dominated, and the stars are disjoint because we take only one incoming edge per
vertex in V \S∗.
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Weight. During the algorithm, when a vertex is selected in order to insert it in S,
a weight of 1 is given to it, and redistributed. If s is inside S, let N (s) be the
set of outgoing neighbors of s (white vertices) at the time of its insertion in S, in
addition to s if the latter is white when the algorithm selects it. The weight of s is
redistributed equally to all the vertices of N (s). Thus, each one obtains a weight

of
1

|N (s)|
.

Let the weight of an arc be the sum of the weights of its vertices, and similarly
for the total weight of the graph, which is thus equal to |S| since each vertex of S
is given a weight of 1 before it is redistributed.

With this process, a vertex increases its weight only when it loses its white color.
This gain happens only once during the whole execution. For any vertex u, let wu
be this final weight.

Bound on the weight of a star. It is now sufficient to show that each star has
at most a weight of ln(∆out). Indeed, there are at most |S∗| stars so the total weight
of the graph would be at most |S∗| ln(∆out).

Let s ∈ S∗ and we be the weight of the star associated to s. Note first that the
number of vertices in a star is at most ∆out + 1, since the center has at most ∆out

neighbors.
Let (ui)1≤i≤k be the set of vertices of the star of s sorted by order of loss of their

white color in the process of the algorithm (for those which change at the same time,
the order does not matter). Let (pi)1≤i≤k be the values of pdegree(s) just before ui
changes from white to another color. At this moment, the vertices (uj)i<j≤k are still
white by definition of the order on uj. So pi ≥ k − i+ 1. Thus:

k∑
i=1

1

pi
≤

k∑
i=1

1

k − i+ 1
=

k∑
i=1

1

i

≤ ln(k + 1) + 1 ≤ ln(∆out + 1) + 1

≤ ln(∆out) + 2

Furthermore, wui ≤ 1/pi. Indeed, once s has been processed, no ui can be white.
Thus, when ui gets its weight of wui , the vertex that redistributes it has a pseudo
degree greater than or equal to pi. Therefore:

we =
k∑
i=1

wui ≤ ln(∆out) + 2

7.3 Minimizing representatives in tricriteria short-
est path computation

In order to minimize the number of paths kept by Sample for tricriteria shortest path
computation, we propose an alternative solution to the one given in Section 6.4. It
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consists in combining Algorithm 17 and Algorithm 18.

Definition 88 (Dominating Sample Sector Algorithm). Let S and R the in-
puts of Sample function. We note VR all the costs of R. We compute a dominating
set Dx, resp. Dy, resp. Dz, of Nx,ε(VR), resp. Ny,ε(VR), resp. Nz,ε(VR). Then we
output the paths whose costs are in Dx ∪ Dy ∪ Dz, minus those dominated by S.

We call this algorithm Dominating Sample Sector.

Definition 89 (DSector Algorithm). Algorithm DSector is the Meta Rank
algorithm (Alg. 6) using Dominating Sample Sector as the Sample function.

Theorem 90. Let Sε be the size of the output of DSector. The output-sensitive
time complexity of DSector is in O

(
(∆Sε)

4
)
.

Proof. If the input of Dominating Sample Sector is of size R, then the applica-
tions of Algorithm 17 are in O(R logR) and the ones of Algorithm 18 are in O(R3).
The removal of dominated paths is in O(R2).

Therefore, repeating Dominating Sample Sector as a Sample function over
each vertex and rank gives CSample(n, Sε,∆,Λ) = O((∆Sε)

4). Applying Theorem 15
allows us to conclude.

Even though the time complexity is huge, this algorithm guarantees that at each
rank, if there is R current rank paths, then it keeps at most 3 log(R)R∗ paths,
with R∗ the optimal number of paths to kept with respect to the ε-weak framing
property.

The complexity can be improved by computing only the k nearest points in
Algorithm 17, i.e. the Ski,ε, with k << n. However, the guarantee on the number of
kept points is no longer true.

Remark. One could simply compute a dominating set on the subgraph of Θ+
6 (V )

by keeping only the arcs outgoing in the cones C+
z . But a point may be connected to

many others in the same cone in Nz,ε(V ), so we hope to get a smaller dominating
set using this augmented graph.

This method was not conclusive in preliminary experiments. We think that
this is due to the too small number of paths having the same rank, which makes
the overhead of this method the main part of the execution time. Complementary
experiences on tricriteria graphs, with more path sharing the same rank, must be
done.
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Conclusion

In this thesis, we first propose solutions for multicriteria shortest path computation
in Part I. Then, we focus on Theta-graphs in Part II, for which we develop dynamic
maintenance and related algorithms.

Shortest path computation

A framework. Based on the algorithm MC Dijkstra, we propose a variant
Meta Rank, in the form of a framework (Section 3.2). It has the advantage to
process the paths by buckets since it processes paths in increasing rank order. The
variable component of this framework is contained in a function Sample. This func-
tion processes the buckets of paths one by one. The data structures used are detailed
and the complexity of Meta Rank is expressed as a function of Sample’s one. De-
pending on the choice of Sample, Meta Rank computes exact or approximate
Pareto sets.

Exact computation. First, we introduce Dijkstra Post, the algorithm cor-
responding to MC Dijkstra in Meta Rank’s framework (Section 3.3.2). Then,
we notice that processing paths by buckets allows us to efficiently prune dominated
paths using known methods. These methods are offline in general and are there-
fore not suitable for MC Dijkstra, which treats the paths one by one. We name
Bucket the algorithm Meta Rank using a function Sample based on these meth-
ods (Section 3.3.1). The efficiency of Bucket depends on the size of the buckets.

Therefore, it would be interesting to implement Bucket and to compare it ex-
perimentally with both Dijkstra Post and MC Dijkstra. However, the methods
used in Bucket are known to be efficient only for large Pareto sets. It is therefore
necessary to generate graphs with such Pareto set sizes, in addition to the tourna-
ment presented in Section 4.3.1.

For the MC Dijkstra algorithm in both 2D and 3D, dominated paths can be
pruned efficiently with online methods. For the 2D case, we detail the data structures
used in what we call MC Dijkstra 2D (Section 4.1.1). This algorithm has the
advantage of processing less paths than Dijkstra Post but it uses more complex
data structures. Therefore, we compare them experimentally (Section 4.3), and
depending on the input, each can outperform the other. However, the performance
difference can sometimes be surprising and it deserves a more detailed investigation.

In MC Dijkstra 2D, removing dominated paths as detailed in Section 4.1.1
rather than with a naive algorithm allows a significant theoretical gain, but also a
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practical one. Such a theoretical gain is also feasible in 3D since it is also possible
to prune the dominated paths online. It would therefore be interesting to propose
detailed data structures for the 3D setting, as well as an experimental study.

Finally, it is particularly frustrating to know so little about online methods
for pruning dominated paths. To the best of our knowledge, no method allows a
theoretical gain in dimension greater than 3. Furthermore, the 2D and 3D efficient
methods are both online under the assumption that the paths are considered in
lexicographic order. However, Meta Rank considers paths in increasing rank order.
We can easily find an alternative version for the 2D, based on a binary search
algorithm. But to find an efficient online algorithm for the 3D case in increasing
rank order (and higher dimensions whatever the order) remains open.

Approximated computation. In order to compare the output sensitive com-
plexities of approximation algorithms with exact algorithm ones, we introduce the
Pareto compatible concept in Section 4.2.2. An algorithm is Pareto compatible if it
outputs a subset of the Pareto set.

Then, we propose an approximation algorithm for the bicriteria case: Frame
(Section 4.2.3). This algorithm is Pareto compatible and its complexity cannot be
worse than those of MC Dijkstra and Dijkstra Post in order of magnitude.
Despite the overhead that Frame induces, compared to these two exact algorithms,
it can prune optimal paths. We check that, in practice, this pruning is substantial.
We conduct a detailed experimental study which shows that if the Pareto set sizes
are large, the pruning and the gain are significant.

First, it would be interesting to deepen the experimental study with even larger
Pareto sets, especially on real graphs with anticorrelated criteria. We do not have
such graphs for now. Thus, a graph generation work is yet to be done. A more
detailed study about the impact of the value of ε also remains to be performed, to
identify the relationship that this parameter has with the others.

In order to generalize to higher dimensions, we propose the approximation al-
gorithms Sector, SSector and QSSector (Section 3.5). Those are designed
for any number of dimensions. The first one has the advantage of being simple to
implement and has a quadratic complexity as well as MC Dijkstra in the general
case. However, we lack sufficient data in order to perform a relevant experimental
study, especially in the tricriteria when many paths share the same rank.

Our two other algorithms improve the complexity of Sector by relying on
range queries. But for our three approximation algorithms, the stated complexities
depend on the size of the output. They are not Pareto compatible, which makes
them incomparable with exact algorithms. A highly interesting further work is then
to implement them in order to make an experimental comparison with Dijkstra
Post and MC Dijkstra.

Another main challenge is to adapt these algorithms to be Pareto compatible.
This property is obtained for Frame since it uses a strong framing criterion to
prune paths. However, the results related to this criterion do not generalize to higher
dimensions.
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Half-Theta-graphs

Frame’s generalization to higher dimensions starts with the tricriteria case. In this
context, the notion of framing is naturally linked to specific geometric graphs: Θ+

6

(half-Theta-6-graphs). Some properties are already known on these graphs but the
development of several algorithms is necessary in order to use those for shortest path
computation.

Dynamic Θ+
6 . First, we propose an efficient algorithm allowing the maintenance

of a Θ+
6 when a point is inserted (Section 6.2). This algorithm requires handling a

point location structure. This operation is the bottleneck of the algorithm in terms
of complexity. Thus, we should try to improve the point location complexity. In
particular, the known point location data structures are designed in a more general
context than ours. The latter may be easier to handle.

Another way to improve the complexity is to avoid point location requests. An
idea consists in finding the nearest point from the inserted one, and then iterating
an algorithm from this point. However, we have not yet succeeded in proposing an
efficient algorithm starting from this point.

The opposite problem consists in deleting a point while preserving the Θ+
6 struc-

ture. We propose an algorithm solving this issue in Section 6.3. A first improvement
consists in decreasing the complexity to a linear one. This possibility seems intu-
itive if we reverse the steps of the insertion algorithm. But the formalization is not
obvious and is yet to be done.

We propose to use these dynamic Θ+
6 in order to speed up our algorithm Sector

(Section 6.4). It would be interesting to implement our dynamic maintenance algo-
rithms to evaluate the performance of the modified Sector. Here again, datasets
that involve many paths having the same rank need to be generated.

Proximity queries and dominating set. In order to maximize the pruning
of optimal paths in an approximated multicriteria shortest path computation, we
propose to augment the Θ+

6 structure. In the latter, each point is connected to its
nearest point in each positive cone. The augmentation consists in also connecting
it to all other points in the same cone at a bounded distance. In order to obtain
this structure, we propose an algorithm which, given a Θ+

6 , a point and one of its
positive cone, computes the set of points at a bounded distance (Section 7.1).

It may seem feasible to reduce our complexity to a linear one but such an improve-
ment remains open and requires a better understanding of the structural properties.

Afterwards, we detail a well known algorithm computing a dominating set of
reasonable size on this graph (Section 7.2). The data structures description given
allows a straightforward implementation and a detailed proof of the complexity.
Applied on an augmented Θ+

6 , this algorithm allows to prune optimal paths in
Meta Rank, by keeping only the dominating set computed (Section 7.3).

The complexity is potentially cubic in the number of vertices. Thus, this method
might be slower than the one based only on dynamic Θ+

6 . Nevertheless, it allows to
prune more drastically the optimal paths and we can hope for a practical gain since
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Meta Rank applies this method several times and its performance depends on the
number of paths considered at each step.

It is therefore particularly interesting to conduct an experimental study to com-
pare Sector and both these variants based on Θ+

6 . To do this, we need to generate
tricriteria graphs with many paths having the same rank.

Broader perspectives. We only studied Θ+
6 and Θ6. A first generalization

would be to change the number of cones. The Θ+
6 structure is particularly rigid since

it is a triangulation. The correctness of the insertion algorithm relies heavily on it.
Therefore, our approach does not seem relevant for a general Θk. We would have to
develop other techniques.

The distance notion can also be generalized. It sounds reasonable to adapt out
k-nearest neighbor algorithm to any convex distance, with a complexity inversely
proportional to the aspect ratio of a ball. Technical difficulties remain in the proof.

As for the shortest path computation, another broader issue concerns the di-
mension. In Meta Rank, the function Sample processes the same rank paths all
together. In the tricriteria setting, those paths are in the same plane. Thus, if we
consider multicriteria paths in dimension d + 1, can we naturally adapt this study
to geometric graphs in dimension d?

Our algorithms do not limit to be used by themselves. They can be integrated in
precomputation methods. For example, in a hub labeling method, the shortest paths
are concatenations of two precomputed shortest paths, the intermediate vertex being
called a hub. If we set correctly the approximation factor for the precomputation,
we can obtain approximated Pareto sets, concatenating precomputed paths. A pre-
liminary work proposing a multicriteria hub labeling algorithm has been developed by
Yoan Picchi during his internship at LaBRI. In this work, the hubs are separators.
In order to speed up the precomputation step, a multi-level separator generalization
is proposed but it requires more caution with the approximation factors.

Another promising idea is the integration of our algorithms into more general
settings. Precomputation methods for static graphs can be used as a step in multi-
modal algorithms. Similarly, our algorithms can be used to speed up the computation
by summarizing intermediate Pareto sets for approximate multimodal computation.

Finally, other definitions of approximation can be investigated. It may be rele-
vant to consider an additive coverage rather than a multiplicative one. For example,
we can consider that a trip covers another if it only takes at most ten minutes longer,
for any travel time.
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Appendix A

Data structures

In this section, we give some insight on classic data structures used in the document.

A.1 Linked lists

Let L be a list. In fact, we handle a cursor on the first cell of L, which represents
the list. We will not make the difference between a list and the associated cursor.
We enumerate the primitives used in Section 7.2:

• value(L): returns the content of the first cell of L,

• next(L): returns the cursor on the cell following the first one of L, null if
there is none,

• isEmpty(L): returns if L is empty or not,

• createList(): return an empty list,

• insertBegin(L, x): returns L with x inserted at its beginning,

• deleteBegin(L): returns L with x deleted at its beginning,

• replaceBegin(L, x): returns L after replacing the element at the beginning
by x,

• insertAfter(L,L′, x): returns L with x inserted after the cursor L′,

• deleteAfter(L,L′): returns L after having deleted the element after the cur-
sor L′,

• replaceAfter(L,L′, x): returns L with x replacing the element after the cur-
sor L′.
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A.2 Balanced binary trees

A binary search tree is a tree such that each node has at most two children. To
each node is associated a key in a totally ordered set and all the keys of its left
(resp. right) subtree are smaller (resp. greater). These trees support the three fol-
lowing operations: insertion, deletion and search. We use these trees by performing
sequences of these operations.

If a binary tree contains n nodes, then its height is in Ω(log n). Whenever it is
close to log n, we say that the tree is balanced, but it is not always the case. Given
a balanced binary tree, inserting or deleting elements can unbalance it: the height
can reach n− 1. Some structures allow for efficient rebalancing when this happens:
self-balanced binary trees. We recall two structures that allow this:

Self-balanced binary trees. We recall the definitions of two classic self-balanced
binary trees.

• A red-black tree is a binary search tree such that a color a given to each node:
red or black. The leaves are black, and any child of a red node is black.
Furthermore, all paths from the root to the leaves have the same number of
black nodes.

• An AVL tree is a binary search tree such that, for any node, the heights of its
two subtrees differ at most by 1.

For both these trees, a rotation system guarantees that insertions, deletions and
searches are in O(log n) time.

A.3 Priority queue

A priority queue is a data structure containing pairs (k, e). k is called a key and e
an element. The elements are in a totally ordered set. Let P be a priority queue.
We list the primitives used in this manuscript:

• min(P ): returns the pair from P having a minimum element,

• pop(P ): returns the priority queue P without the pair having a minimum
element,

• insert(P, k, v): inserts in P the pair (k, v),

• decreaseKey(P, k, v): if P contains a pair (k, v′) with v < v′, then it replaces
it by the pair (k, v).

Notice that the definition of decreaseKey is implicitly based on the unicity of
each key in a priority queue. This primitive is used only in this context.

There are two types of priority queues in which we are interested in.
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(a) Graph represented. (b) Permutation σ. (c) Involution α.

Figure A.1 – Combinatorial map (D, σ, α) [Wik21] cba.

Binary Heap. A binary heap is a binary tree such that a node key is greater than
any of those in its subtree. Simple implementations can use references, but also with
arrays. For the latter, if u has an index pu, and lu, ru its left and right children, then
plu = 2 · pu and pru = 2 · pu + 1. Deletion can unbalance the heap, but on insertion,
one can choose on which side to insert, rebalancing it.

Strict Fibonacci Heap. This data structure is similar to a binary heap. The
elements are partitioned in several heaps instead of one. Mergers are done in a lazy
manner, which gives constant time for insertions.

Differences. For a priority queue containing n elements, the primitives have the
following complexities:

Heap type min pop insert decrease_key

Binary O(1) O(log n) O(log n) O(log n)

Strict Fibonacci O(1) O(log n) O(1) O(1)

Thus, a strict Fibonacci heap is better in theory than a binary heap, thanks to its
constant time insert and decrease_key primitives. However, in practice, strict
Fibonacci heaps are heavy to implement and less efficient than binary heaps.

A.4 Combinatorial map
The planar graphs from Part II, and especially the bicolored graph in Section 6.2,
can be implemented using combinatorial map in order to easily access geometric
information without having to rely (too much) on the points’ coordinates.

A combinatorial map is a triplet (D, σ, α) where D is a finite set of darts (half-
edges), σ is a permutation on D providing the cyclic order around the points, and
α is an involution on D with no fixed point merging the half-edges into edges. This
structure is illustrated in Figure A.1.

The permutations σ and α can be implemented with linked list. Given an arc,
the neighbouring arcs can be found in constant time. Furthermore, the insertion of
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an arc is in constant time if an arc of the face containing the arc to insert is given.
Deletions are also in O(1).
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Appendix B

Data
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Graph Vertices Arcs MC Dijkstra Time Frame Time Su Su,1(Frame)
DC 9559 14909 79.34 76.02 4.84 4.22
DE 49109 60512 305.83 293.21 7.27 6.02
RI 53658 69213 154.78 148.49 5.24 4.37
HI 64892 76809 32.49 35.93 2.99 2.82
AK 69082 78100 14.17 14.26 1.37 1.31
VT 97975 107558 1599.46 1321.96 39.61 29.06
NH 116920 133415 201.93 180.75 11.55 8.82
CT 153011 187318 471.70 458.65 7.28 5.99
ME 194505 214921 760.20 615.78 17.18 12.53
ND 210801 260902 675.34 500.23 18.59 12.02
SD 212313 259622 2611.50 2579.06 40.07 33.05
UT 248730 295763 93.54 98.04 4.21 3.86
WY 253077 304014 309.18 253.28 7.73 5.31
NV 261155 311043 289.63 295.83 7.95 6.84
MD 265912 317624 340.41 320.45 7.15 5.62
ID 271450 318761 390.80 346.06 13.31 9.42
WV 300146 328858 201.60 200.04 7.78 6.86
NE 308157 392008 3378.26 2723.28 36.19 27.57
MA 308401 385164 706.77 536.26 8.80 6.11
MT 317905 360936 84.38 88.15 4.78 4.23
NJ 330386 436036 282.78 281.44 4.72 3.90
IA 390002 502269 34731.65 25906.71 127.25 94.56
MS 413250 483306 100483.23 67887.91 176.43 136.16
LA 413574 499254 3864.74 2274.64 47.19 28.51
CO 448253 539295 489.56 493.39 12.39 11.05
SC 463652 553599 20692.42 14529.97 72.83 53.36
NM 467529 567084 1333.50 1209.93 22.09 14.92
KY 467967 525995 478.43 417.53 12.85 10.61
KS 474015 474015 6554.61 6156.66 47.44 36.90
AR 483175 563036 5916.52 4243.27 48.80 37.61
IN 497458 629750 113260.17 71255.94 204.85 143.67
WI 519157 635436 11995.69 8778.60 88.20 62.48
OR 536236 628167 549.63 461.76 12.53 8.67
OK 540981 664215 1412.45 1368.92 37.43 30.73
AZ 545111 665827 300.96 308.97 3.27 2.90
MN 547028 670443 21121.55 13962.90 66.25 47.00
AL 566843 661487 9187.04 7703.13 101.26 84.04
WA 575860 675049 158.23 160.11 3.81 3.43
TN 583484 676080 894.40 767.86 15.26 12.33
VA 630639 714809 10943.98 7475.28 62.87 48.84
MI 673534 845087 13129.40 10230.36 82.53 63.56
MO 675407 807892 2927.27 2276.36 29.98 21.94
OH 676058 842872 27250.71 19097.33 122.39 86.71
NY 716215 897451 5074.74 3973.49 49.79 36.90
GA 738879 869890 111154.91 74385.28 231.85 171.93
PA 874843 1088296 9745.94 6892.3 78.16 55.42
NC 887630 1009846 25206.34 17637.98 66.78 49.93
FL 1048506 1330551 5011.51 3962.47 36.52 26.15
CA 1613325 1989149 3630.50 2995.51 23.65 18.52

Table B.1 – MC Dijkstra vs Frame on USA states from DIMACS
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