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RESUME EN FRANCAIS

La parole est la capacité d’un étre a exprimer ses pensées et émotions par le biais
de sons. En tant que telle, elle est souvent considérée comme un propre de 'homme.
De nombreux travaux ont été conduits afin de comprendre comment ’étre humain est
capable de s’exprimer au travers de la parole, mais aussi afin de reproduire cette capacité
artificiellement. Ces travaux ont donné naissance a la technologie qu’est la synthese de

parole.

Cette these se concentre sur la syntheése de parole a partir de texte. Il s’agit d'un
processus qui permet de générer un signal de parole correspondant a la lecture d’un texte.
Ainsi, ce procédé implique deux modalités du langage : texte et audio. Il est souvent
décrit comme étant deux problemes indépendants. Le premier est la prédiction de la
prononciation d'un texte, ce qui nécessite une expertise linguistique. Le second est la
génération d’'un signal de parole correspondant a cette prononciation, ce qui nécessite une
expertise en traitement du signal.

Cette technologie a de nombreux usages. Dans le domaine médical, elle peut étre
utilisée afin de permettre aux personnes atteintes d’aphasie de communiquer a l’oral.
Elle peut aussi étre utilisée pour guider la navigation de personnes malvoyantes sur
le web, en décrivant oralement les contenus visuels et textuels. Dans le domaine du
divertissement, la synthese de parole pourrait étre utilisée en tant que doubleur artificiel
pour le doublage de films ou l’enregistrement de livres audios. L’interaction homme-
machine est une application qui gagnera probablement en popularité dans les années a
venir. En particulier, les utilisateurs d’assistants virtuels adressent leurs requétes oralement.
Celles-ci sont reconnues grace a la reconnaissance de parole automatique. Une fois la
requéte traitée par l’assistant, il fournit sa réponse a 1'utilisateur sous la forme d’un signal
de parole synthétisé. La synthese de parole a le potentiel d’étre utilisée universellement,
une fois que ses limitations auront été adressées.

En effet, les systemes de synthese vocaux actuels ne peuvent étre décrits comme
"universel". Selon la définition, une chose est universelle si elle est "applicable partout,
dans tous les cas" et si elle est "utilisée ou comprise par tous'. Les applications des

systemes actuels sont limitées par le manque de personnalisation possible. La majorité



des systemes est limitée a produire de la parole correspondant a une unique voix. Afin de
synthétiser de la parole avec d’autres voix, la partie d’un systéme qui génere le signal audio
doit étre reconstruite. De maniere similaire, afin de synthétiser des textes écrits dans une
autre langue, la partie qui prédit la prononciation d’un texte doit étre reconstruite. Afin
de reconstruire ces deux parties, I'utilisateur doit étre un expert en synthese de parole, ce
qui va a I'encontre du deuxieme sens du mot "universel'. Pour qu'un systéme de synthese
vocal soit réellement universel, il doit étre capable de synthétiser de nombreuses formes
de parole (plusieurs locuteurs, langues, émotions, etc.). De plus, ces formes doivent étre
contrélable par des utilisateurs non experts.

Ce manuscrit ne prétend pas construire le systeme de synthese universel décrit précé-
demment. Cependant, il explore une méthode permettant d’éliminer I'expertise linguistique
nécessaire a la construction d’un systeme de synthese vocal. Il explore aussi différentes
manieres de controler les formes de parole synthétisable par un systeme. Plus précisément,
ce manuscrit étudie comment la propriété de plongement (embbedding en anglais, terme
que nous utiliserons dans ce résumé) des réseaux de neurones permet de diminuer la
quantité d’expertise linguistique, et permet de modéliser explicitement différentes formes

de paroles, nous rapprochant ainsi d’un systéme de synthese de parole universel.

Chapitre 1 : Etat de ’art

La synthese vocale transforme un texte en un signal de parole correspondant a la
lecture de ce texte. Elle est souvent décomposée en deux sous-problemes indépendants.
Le premier est l'analyse linguistique, qui prédit entre autre la prononciation du texte.
Le second est la génération d’un signal de parole a partir de descripteurs linguistiques
résultant de ’analyse linguistique.

La prédiction de la prononciation est effectuée a 1’aide d’un module appelé phonétiseur.
La prononciation d'un mot est prédite grace a un dictionnaire de prononciation et, si le
mot n’est pas inclus dans le dictionnaire, des regles de prononciation. Cette étape nécessite
une forte expertise linguistique. La génération du signal peut-étre effectuée de différentes
manieres, notamment par sélection d’'unités.

Les méthodes de syntheése par sélection d’unités reposent sur la présence d'une base
de données contenant des échantillons de paroles préenregistrés a 1’échelle du phonéme.
Le signal de parole est généré en concaténant des unités sélectionnées au sein de la base

de parole. La séquence d’unités a concaténer est choisie afin de minimiser la somme de
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deux cotits. Le cotlit de sélection représente a quel point une unité dans la base de parole
correspond a une unité du texte a synthétiser. Ce cotlit est défini sur des descripteurs
linguistiques et nécessite donc une expertise linguistique. Le colit de concaténation estime
la qualité de la concaténation entre deux unités de la base de parole. Ce cotit est défini
sur les caractéristiques acoustiques des unités.

Un nouveau paradigme de synthese de parole a récemment été introduit : les systemes
bout-en-bout. Leur but est de remplacer la totalité de la chaine de traitement en synthese
de parole par un unique réseau de neurones. En réalité, la solution adoptée correspond
a utiliser deux réseaux de neurones. Le premier effectue la prédiction de caractéristiques
acoustiques a partir d’un texte ou de la séquence de phonémes correspondante. Le second
convertit les caractéristiques acoustiques en un signal audio. Ces systemes permettent
actuellement d’obtenir la meilleure qualité audio possible. Cependant, 1'utilisation de

réseaux de neurones conduit a un manque d’interprétabilité.

Chapitre 2 : Utilisation d’embeddings de phones pour
réduire ’expertise linguistique

Nous proposons d’utiliser des embeddings de phones afin de diminuer I'expertise lingui-
stique nécessaire pour la synthese de parole par sélection d'unités. Le cotit de sélection est
définit entre les descriptions linguistiques d’un phone présent dans la base de données, et
un phoneme dans la séquence a synthétiser. Ce cotit agit en tant que mesure de similarité
entre deux phones. Deux phones peuvent étre similaires car prononcés dans des contextes
linguistiques proches, ou car leur réalisation acoustique est similaire. Le cotit de sélection
traditionnel ne couvre que le premier type de similarité. Nous proposons d’apprendre
un réseau de neurones en tant que modele acoustique afin d’extraire des embeddings de
phones. Ainsi, les embeddings extraits a partir de ce réseau encodent la description lingui-
stique du phone, et ces embeddings peuvent aussi capturer des caractéristiques acoustique
puisque le modele est entrainé en tant que modele acoustique. Alors, le coflit de sélection
peut étre définit comme la distance euclidienne dans I'espace d’embeddings de phone. Ce
colit n’est plus définit manuellement sur la description linguistique d’un phone, ce qui
diminue I'expertise linguistique.

Nous comparons un systeme de synthese par sélection d’unités ou le cotit de sélection
est défini de maniere experte, avec un systeme ou il est défini selon la méthode proposée.

Nous réalisons un test d’écoute comparant les échantillons synthétisés par chacun des



systémes. A la suite de ce test, nous pouvons conclure que le systéme proposé est de qualité
équivalent ou meilleure a celle du systeme expert. De plus, cette observation reste vraie
quand le modele est utilisé pour synthétiser des textes d’'un domaine différent de celui des
données utilisées pour entrainer les embeddings de phones. Ainsi, I'expertise linguistique
d’une méthode par sélection d’unités peut étre diminuée grace aux embeddings de phones,
sans diminuer la qualité de la synthese.

Nous proposons aussi d’explorer visuellement 'espace d’embeddings de phones. La
visualisation est effectuée par une Analyse en Composantes Principales (ACP), et suggere
que la distribution des embeddings de phones est effectuée par phoneme, et que ces
groupes par phonemes sont distribués selon une similarité acoustique. Nous mesurons
objectivement la qualité de I'espace d’embeddings de phones par deux mesures. La premiere
correspond a la précision d’'un modele acoustique linéaire appris sur les embeddings de
phones. La seconde mesure la précision d’une classification par plus proches voisins dans
I'espace d’embeddings. Ces mesures objectives confirment que I’espace d’embeddings encode
les caractéristiques phonétiques d’un phone, et capture certaines caractéristiques acousti-
ques.

Malgré I'utilisation d’embeddings de phone, une forme d’expertise linguistique reste
nécessaire pour la prédiction de la séquence de phonemes correspondant au texte, et pour
la définition de la description linguistique d’un phone utilisée pour entrainer le modele

acoustique neuronal.

Chapitre 3 : Utilisation d’embeddings de caracteres
pour supprimer ’expertise linguistique

Afin de diminuer plus encore I'expertise linguistique nécessaire a la construction d’un
systeme de synthese vocale, nous nous intéressons aux méthodes bout-en-bout. Les modeéles
neuronaux suivant l'architecture Tacotron permettent de générer un mel-spectrogramme
a partir d’une séquence de phonemes correspondant a un texte. Cette méthode diminue
la quantité d’expertise linguistique car elle ne nécessite pas la définition et 1’extraction
d’une description linguistique pour chaque phone. L’expertise linguistique peut méme
étre supprimée totalement en entrainant le modele Tacotron sur les caracteres du texte
directement. A laide d’un test d’écoute, nous montrons qu'un modeéle Tacotron entrainé
sur des caracteres offre des performances similaires en termes de qualité a un modele

entrainé sur des phonemes. A l'aide d'un test d’écoute et de mesures objectives, nous



montrons aussi que le modele entrainé sur des caracteres ne commet pas plus d’erreurs
de prononciation que le modele entrainé sur des phonemes.

Nous proposons ensuite d’analyser I’espace d’embedding de caracteres. Une visualisation
de I'espace suggere que les embeddings de caracteres sont regroupés en fonction du phoneme
qu’ils participent a former. Nous comparons ensuite un phonétiseur appris sur des cara-
cteres ou sur des embeddings de caracteres. Il en résulte que le modele appris sur les
embeddings de caracteres est plus précis. Cela suggere qu'un modele Tacotron capture

automatiquement des caractéristiques phonétiques sans aucune information explicite.

Chapitre 4 : Utilisation d’embeddings de locuteurs pour

la synthése multi-locuteurs

Un systeme de synthese universel doit étre capable de produire différents styles de
parole : plusieurs locuteurs, émotions, etc. Nous nous concentrons dans un premier temps
sur I'implantation d’un unique style de parole : la voix d'un locuteur. Nous proposons
de conditionner un modele Tacotron sur des embeddings de locuteurs. Cette modélisation
explicite du locuteur doit permettre au systeme de capturer des caractéristiques qui lui
sont propres, comme sa voix, afin de les reproduire artificiellement. Nous étudions plusieurs
méthodes d’augmentation de données dans le but de stabiliser le module d’alignement d’un
modele Tacotron multi-locuteurs. Nous montrons que toute donnée textuelle, y compris
celle ayant peu d’intérét pour la synthese de parole, peut aider a stabiliser I’alignement.
Nous évaluons ensuite objectivement la capacité du systeme a reproduire la voix de
locuteurs n’appartenant pas au jeu d’apprentissage. Simplement fournir 1’embedding d’un
nouveau locuteur ne suffit pas a capturer fidelement sa voix, le modele doit étre corrigé par
fine-tuning. Cependant, une petite quantité de données suffit a effectuer cette correction
et permet de rivaliser avec un modele entrainé pour synthétiser spécifiquement la voix du

locuteur.

Chapitre 5 : Utilisation d’embeddings d’accents pour

la synthese multi-locuteurs multi-accents

Nous proposons ensuite d’étudier le cas d’un systeme de synthese capable de controler

deux types de parole. En particulier, nous tentons d’implanter un systeme de synthese
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multi-locuteur multi-accent. De maniere similaire au systeme multi-locuteur simple, nous
proposons de conditionner un modele Tacotron sur des embeddings de locuteurs et des
embeddings d’accents. Afin de contrdler ces deux aspects de la parole indépendamment,
nous proposons d’apprendre les encodeurs de locuteurs et d’accents de maniere adversa-
rielle. Cependant, les mesures objectives effectuées ne permettent pas d’affirmer que
nous ayons réussis a modéliser ces composantes indépendamment. Nous évaluons ensuite
objectivement la capacité du modele a reproduire la voix et 'accent d'un locuteur. Pour
cela, nous mesurons la similarité cosinus entre des embeddings extraits de parole naturelle
avec ceux extraits de parole synthétisé. Nous montrons qu’objectivement, le modele est
capable de reproduire fidelement la voix d’un locuteur et son accent. Nous tentons ensuite
se synthétiser de la parole avec la voix d'un locuteur et un accent différent de son accent
d’origine. Des mesures objectives a l'aide de la similarité cosinus suggerent que ’accent

synthétisé est différent de celui censé étre reproduit.

Au cours de cette these nous montrons que 'expertise linguistique d’un systeme de
synthese de parole peut étre limitée, voir éliminée, grace a 'utilisation d’embeddings de
phones ou de caractéres. De plus, cette propriété des réseaux de neurones peut aussi
étre utilisée pour modéliser explicitement différents styles de parole. Par exemple, un
modele Tacotron conditionné sur ces embeddings permet de synthétiser des échantillons
reproduisant la voix et I'accent d’un locuteur choisi. Cependant, la question de la modélisa-

tion de ces styles de parole pour les controler indépendamment reste ouverte.
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INTRODUCTION

Speech is the ability to express one’s thoughts and emotions by way of sounds. As
such, it is often thought to be a trait peculiar to humankind. Many works have been
made to understand how humans are able to express themselves through speech, but also
how to replicate this ability artificially, giving birth to the technology of speech synthesis.

In this thesis, the focus is on Text-To-Speech (TTS) synthesis which is the process
of generating a speech audio signal corresponding to a given text. Thus, this problem
involves two modalities of language: text and audio. As such, the problem is often seen
as two independent problems. The first one would be how to infer the reading of a text,
which requires linguistic expertise. The second would be how to generate a speech signal

corresponding to that reading, which requires audio processing expertise.

This technology can have many uses. Medically, it can be used to allow speech-
impaired persons to communicate orally; for vision impaired persons, it can be used to
orally describe visual and textual content found on the web. For entertainment purposes,
speech synthesis could potentially be used as an artificial voice actor for movie dubbing
or automatically generating audiobooks. A current use that will potentially become more
prominent in the years to come is machine interaction. With the rise of virtual assistants,
users address themselves to the assistant orally. The commands are recognized through
the use of automatic speech recognition. Then, after the command is processed by the
assistant, it provides an oral answer to the user’s request orally thanks to speech synthesis.
This technology has the potential to be universally used, once its issues are addressed.

Indeed, current speech systems can hardly be described as universal. According to the
definition, for something to be universal, it needs to be "applicable everywhere or in all
cases' and "used or understood by all'. Current speech synthesis is limited in its range
of application because of its lack of customization. Most systems are limited to output
speech for a given voice. In order to synthesize speech for a different voice, the half of the
system that generates the audio signal needs to be rebuilt. Similarly, to synthesize speech
in another language, the other half of the system that deals with how to read the text must
also be rebuilt. In order to rebuild those two parts, the user would need to be an expert in

speech synthesis which goes against the second aspect of the definition of universality. For
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Introduction

a speech synthesis system to be truly universal, it needs to be able to synthesize a wide
variety of speech (multiple speaker, language, emotions, etc.). Furthermore, the variety of

speech must be easily controllable by non-expert users.

Aim of the Thesis

This thesis does not claim to build the universal system sketched previously. However,
we first aim to lower the barrier of entry in building a TTS system by removing linguistic
expertise. We also aim to explicitly model multiple components of speech in order to allow
more variety in synthesized speech. For both goals, we investigate the use of embeddings,
the representations extracted by the hidden layer of a Deep Neural Network (DNN).

The works presented in this manuscript began during the transition period where the
standard for T'T'S went from either unit selection or acoustic modeling using DNNs to end-
to-end approaches where the entire T'TS pipeline is replaced by DNNs. As such, we begin
by investigating how an hybrid approach mixing unit selection and acoustic modeling
allows to lower linguistic expertise. We then study end-to-end systems for linguistic
expertise removal. Finally, we attempt to extend the end-to-end paradigm to allow a

single system to synthesize the voices of multiple speakers with different regional accents.

Outline

This manuscript is organized as follows:

— Chapter 1 begins by presenting the general concepts related to text-to-speech
synthesis, as well as the different models available.

— Chapter 2 introduces concepts related to deep neural networks and how they are
used in the context of speech synthesis.

— Chapter 3 investigates the use of embeddings in unit-selection text-to-speech synthe-
sis. Many commercial systems follow this paradigm of synthesis where pre-recorded
units of speech are concatenated to match the text to synthesize. The sequence of
pre-recorded units are selected by a process involving two costs. The target cost
measures the similarity between a pre-recorded unit and units in the text being
synthesized. The join costs estimates the quality of the concatenation between two
units. The definition of the target cost is usually done with linguistic expertise.

In this work, we show that training a neural network as an acoustic model to
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Introduction

predict an acoustic description of the pre-recorded units can lead to extracting
phone embeddings. Those embeddings can then be used to define the target cost
automatically. Our experiences show that such a definition does not lower the
quality of synthesized speech, while lowering the amount of linguistic expertise
needed to build a speech synthesis system. However, linguistic expertise is still
needed in order to deduce the pronunciation of the text and to describe the units.

— To further reduce the need for linguistic expertise, Chapter 4 investigates the end-
to-end paradigm for speech synthesis. End-to-end models aim to use a single neural
network to perform a mapping from text to audio. In reality, the problem is still
cut in two: the prediction a mel-spectrogram from a text, then a conversion of
the mel-spectrogram into audio. Different approaches advocate to train the mel-
spectrogram prediction on the phonetization of the text rather the text itself, in
order to avoid pronunciation errors. We show that for French, in the case of a
well-curated dataset, both approaches perform equally well. Furthermore, a study
of the embeddings derived from characters hints that the neural network learns
an internal representation of text akin to phones. Thus, those networks can be
trained directly on the raw text, removing the need for linguistic expertise to build
a speech synthesis system.

— Chapter 5 investigates the property of embeddings to allow more variety in speech
synthesized by end-to-end models. Neural networks can be trained to derive speaker
embeddings from audio. Then, end-to-end models can be conditioned on those
speaker embeddings to allow multi-speaker speech synthesis. Furthermore, those
models can also copy the voice of speakers unseen during training with mixed
success. The variety of speech is controlled simply, by giving audio of the desired
voice as a reference to the model. We then investigate an extension of this method
for multi-speaker and multi accent synthesis. In a manner similar to speaker embe-
ddings, regional accent embeddings can be trained. Then, we investigate the possibi-
lity of transferring accents between speakers

— Finally, Chapter 6 concludes this manuscript by reviewing the solutions proposed

and opening discussions on the remaining issues.
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CHAPTER 1

OVERVIEW OF SPEECH SYNTHESIS

TTS synthesis is the process of generating a sound signal corresponding to the reading
of a written text. Thus, an understanding of both the textual and audio components of
speech are needed to build a TTS system. Section 1.1 presents how speech is produced
and how both of its components can be represented. Section 1.2 introduces the general
pipeline followed by most TTS systems. Finally, Section 1.3 presents an overview of the

different methods available for speech synthesis.

1.1 Speech Description

Speech and text are essentially two very different phenomenon since they are tied to
two different senses. While speech is tied to auditory perception, text is mainly tied to
vision. However, speech can be transcribed as a text, and a text can be transcribed as
speech. This is because speech and text are tied by linguistics. The rest of this section

describes how speech is produced, how to transcribe it textually, and how to represent it.

1.1.1 Speech Production

Natural speech, the result of a human being speaking, is a sound signal produced by
the interaction of many organs in the human body. The main organs responsible for the
generation of speech are the "lungs, larynx, pharynx, nose and various parts of the mouth"
(Holmes 2001) as shown on Figure ?7. Natural speech is the sound resulting from the air
flow created by air expelled from the lungs and interacting with the various vocal organs.
Different configurations of the vocal organs allow for various sounds to be generated, and
thus to pronounce different phonemes, the smallest differential unit in the sound system
of a language. In the larynx, vocal folds are two folds of tissue that can be moved by
muscles. In particular, they can be brought together, almost touching and closing the

larynx. When air forces its way out of the larynx with this configuration, the vocal folds
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Figure 1.1 — Schema of the organs involved in speech production.

vibrate, modulating the air flow, rendering the wave quasi-periodical with a fundamental
frequency Fy. This allows voiced sounds to be produced. Then, when passing through
the vocal tract (cavity extending from the larynx to the pharynx, mouth and lips), a
phenomenon of resonance takes place. The resulting resonant modes are called formants,
and are usually noted as F, ..., F};, where ¢ is the order of the mode. Formants can be used
to distinguish between phonemes. For unvoiced sounds, the vocal folds do not vibrate and
thus do not possess a fundamental frequency. They are usually the consequence of the air

flow being blocked then suddenly released by one or multiple vocal organs.

1.1.2 Written Speech

In linguistics, a phoneme is defined as the smallest differential unit in the sound system
of a language. By combining these phonemes, a speaker can pronounce words that are
combined in sentences. In comparison, the smallest differential unit in the writing system
of a language is the grapheme. In the case of languages such as English or French,
graphemes are letters of the alphabet. For languages like Chinese, graphemes are the
ideograms. Similarly to phonemes in speech, the graphemes can be combined in words and
then in sentences to record the same meaning. Thus by mapping graphemes to phonemes,

one can deduce the pronunciation of a written text. However, this mapping is usually not
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one-to-one. Often, two graphemes or more must be combined to form a single phoneme.
A single grapheme can appear in widely different sounding phonemes. For example, in
the French words "entre" and "mine" the letter "n" is part of the phoneme /d/ and /n/
respectively.

The action of converting a sequence of graphemes into a sequence of phonemes is called
Grapheme-to-Phoneme (G2P) conversion. In the remainder of this thesis, the conversion
process will also be called phonetization while the G2P converter will also be called
phonetizer. Different types of algorithms can perform this operation. For example, rule-
based methods (Ainsworth 1973) rely on rules written by linguistic experts to predict
the pronunciation of a word according to the graphemes it is composed of. The resulting
sequence of phonemes can be written down again without any confusion using a phonetic
alphabet such as the International Phonetic Alphabet (IPA).

1.1.3 Representation of Speech

As a particular type of sound, speech is a displacement of air. This physical process
can be recorded by a microphone as a variation of amplitude over time called a waveform.
An example of waveform is presented in Figure 1.2. In that case, the amplitude measured
is the displacement of the diaphragm of the microphone.

As every signal, a speech signal can also be described in the frequency domain.
According to the Fourier theory, every signal can be decomposed as the sum of sinusoidal
signals. Each of them is described by three components : amplitude, frequency and phase.
Inversely, the signal can be reconstructed from those three components by applying inverse
Fourier transform. Since the human ear is not sensitive to phase variations (Taylor 2009),
the phase is often discarded from speech representations. The distribution of the amplitude
over frequencies is called power spectrum, the variation of amplitude over frequencies is
called spectral envelope. An example of spectrum is presented in Figure 1.2.

The evolution of the spectrum over time can be observed using a spectrogram. The
full signal is first cut into frames of speech by multiplying it with window functions. Then,
the spectrum can be computed over each frame to obtain the distribution of amplitude
over frequencies for each timestep. Graphically (see the second row of Figure 1.2), for each
frequency in the Y axis, over time in the X axis, the color represents the amplitude : the
darker the color, the higher the amplitude in a particular frequency at a certain point in
time. On the picture, the lower frequencies are tight.

The frequency scale of a spectrogram does not relate well to the human perception of
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Figure 1.2 — Four different ways to represent speech.

speech. The human ear is able to distinguish between smaller difference of low-frequencies
than for higher-frequencies. To take into account this aspect of speech perception, the
frequency scale of spectrograms is often changed to the mel-scale. This is done by applying
a non-linear transformation to the frequency scale. The result can be seen on the third
row of Figure 1.2. As seen on the picture, the lower frequencies are much less packed than
on the linear spectrogram.

Mel-spectrograms are often used as representations in speech synthesis. However,
mel-spectrograms are not enough to reconstruct the original signal using inverse Fourier
transform, since the phase information is missing. Then, the phase must be approximated
using algorithms such as Griffin-Lim (Perraudin, Balazs, and Sgndergaard 2013).

Finally, speech can be described by analyzing the spectral envelope of the signal
through the use of Mel-Frequency Cepstral Coefficient (MFCC) or Mel-Cepstral Coefficient
(MCC). MFCCs are computed after a Filter Bank Analysis (Davis and Mermelstein 1980).
MCCs are computed from the cepstrum (Morise, Yokomori, and Ozawa 2016), which is

defined as the Inverse Fourier Transform of the log-spectrum.

1.2 Text-to-Speech Framework

Historically, the text-to-speech framework can be divided as two sub-problems :
— How to predict the pronunciation of the text to synthesize?
— How to generate an audio signal corresponding to this reading?

Thus, text-to-speech synthesis can be done by following a two-level pipeline composed of
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Figure 1.3 — Pipeline of the T'TS process.

a front-end and a back-end, as drawn on Figure 1.3.

1.2.1 Front-end

The front-end of a T'T'S system takes a text as input and outputs a sequence of symbols
representing the reading of that text. Usually, this sequence of symbols is a sequence of
phonemes, the smallest unit in which speech can be segmented, represented using some

phonetic alphabet.

This process is done using a phonetizer. One can infer the reading of a text by looking
the entry of every word of that text in a pronunciation dictionary. A different approach
would be to use pronunciation rules to infer the reading of the words. Actually, most
phonetizers combine the two approaches by relying on pronunciation dictionaries and
falling back on pronunciation rules for unknown words. Those pronunciation rules are also
needed for languages where the pronunciation of words might depend on their context. It
is the case of French were the ending of words might carry a 'liaison"!. In any case, the
pronunciation dictionary and rules need to be written by a linguistic expert, making the
front-end language-dependent.

While the phonetization is the bare minimum output for a front-end, such systems
usually extract further linguistic information from the text according to the needs of the
back-end. Those information may include syllabication or statistics on different levels:
position of a phone relative to the beginning of the sentence, inside the syllable, etc.
The front-end might also extract prosodic information such as the potential position of
pauses in the sentence, appropriate duration of words and phones, etc (Larreur, Emerard,
and Marty 1989). One may also want to extract information related to speech styles. For
example, whether the text corresponds to narration or dialogue, if the text should be read

with a particular emotion, etc.

1. In "les enfants" the "s" in "les" is pronounced /z/, while it is muted in "les marchands".
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1.2.2 Back-end

The back-end of a TTS system takes the linguistic information extracted by the
front-end and generates an audio signal whose speech corresponds to the reading of a
given text. This process can be done according to one of three paradigms : rule-based,
concatenative, statistical parametric. For rule-based systems, the excitation parameters
of a synthesizer are generated by hand-crafted rules. For concatenative systems, audio
samples of prerecorded speech are arranged in a certain order and concatenated to produce
speech corresponding to the text given. For Statistical Parametric Speech Synthesis (SPSS),
a sequence of acoustic parameters are predicted by a statistical model. Then, those
parameters can be transformed into a waveform thanks to a wvocoder. Those paradigms

will be presented in more details in Section 1.3.

1.3 Overview of Speech Synthesis Methods

1.3.1 Rule-based Systems

For rule-based systems, a synthesizer is used to produce speech from relevant para-
meters that vary from one type of synthesizer to another. One needs to be able to map
from linguistic features to synthesizer parameters. In this approach, the mapping is done
thanks to hand-crafted rules.

Formant-based synthesizers follow the Source/Filter idea : a source signal goes through
a sequence of audio filters to generate a signal akin to speech. Thus, the synthesizer
parameters are the fundamental frequency Fy of the source signal and subsequent formants
F} to F3. Then, the problem becomes one of predicting the contour of those values from
the linguistic description of a text. In this rule-based approach, each phoneme of the
language is assigned a fundamental frequency and formant values. These values can be
found by examining the spectrograms of recorded phonemes. The continuous contour used
as synthesizer parameters are then generated by interpolating those values for following
phones in the synthesizing sequence (Rabiner 1969).

Articulatory synthesizers aim to reproduce with fidelity how the human articulatory
system actually works. To this end, the oldest articulatory synthesizer of von Kempelen
was a mechanical machine mimicking the voice organs. Nowadays, articulatory synthesizers
aim to physically model the behavior of the vocal tracts. The position of each vocal organs

are measured for each phoneme thanks to Magnetic Resonance Imaging (MRI) scans of
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the target speaker (Iskarous et al. 2003).

1.3.2 Concatenative and Unit Selection Systems

Concatenative speech synthesis methods were born from a simple idea to increase
the naturalness of synthetic speech. By splitting pre-recorded audio samples into units
of speech, storing them in a dictionary, then re-arranging and concatenating them in a
different order, a new speech sample can be synthesized. The splitting of units usually
occurs at the diphone level (Olive 1977) which are pairs of consecutive phones. But it can
also be done at a higher level such as the word or syllable level. In any case, the dictionary
contains a single recorded unit of every available type. For the diphone level, the synthesis
occurs by simply picking the relevant diphones in the dictionary and concatenating them.
In the case of words, rules must be written to fall back on diphones in cases where words
to synthesize cannot be found in the units dictionary.

Increasing the dictionary size so that each target unit in the text can be matched to
multiple recorded units with different prosody and acoustic realization helps to further
improve the naturalness of concatenative synthetic speech. This actually ends up creating
a speech database, rather than a dictionary, where units of different size can be mixed. In
that case, the previous approach must be replaced with a way to select which recorded
unit corresponds best to a given text unit.

For the unit selection methods (drawn on Figure 1.4), a database contains a large
amount of pre-recorded speech segmented into units, usually diphones. The synthesis
process is done by concatenating the sequence of database units that minimizes the sum
of two costs (Hunt and A. W. Black 1996):

— The target cost T is computed for a given target unit u; from the text and a given
candidate unit s; in the database. It represents whether a candidate unit is suitable
to be a substitute for the target unit. This cost is usually computed as the weighted
sum of sub-costs defined on the linguistic features of the units. For example, if the
search for candidate units is limited to diphones with the same label as a the target
unit, the target cost can be defined as the Manhattan distance between linguistic
vectors containing only categorical attributes (stress, phrasing, etc.) (Taylor 2009)

— The join cost J is computed between two following units w; and wus;yq in the
selected sequence. It represents how well those units would concatenate. Usually,
two diphones that follow each other in a word have a join cost of zero since their

concatenation would be natural. It is usually defined a weighted sum of sub-costs
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Figure 1.4 — Process to synthesize the sequence of phonemes /sugi/ using unit selection.

defined on the acoustic characteristics of two units. For exemple, in (Hunt and
A. W. Black 1996), three sub-costs are used : a "cepstral distance at the point of
concatenation and the absolute differences in log power and pitch".

Then, the total cost C between a sequence of candidate units U and the sequence of target

units S of length N is defined as (Taylor 2009) :

Cc(U,S) = ;T(ut,st) + E_:l J(ug, ) (1.1)

The optimal sequence of units to select can then be found by placing all units in a lattice
and exploring it by minimizing the total cost C. The resulting synthesized speech is the

concatenation of those units.

1.3.3 Statistical Parametric Modeling

Similarly to formant-based synthesis, statistical parametric approaches use a vocoder
to generate speech from a sequence of parameters. However, in the former approach,
vocoder parameters are generated by hand-crafted rules, while in the latter approach,
vocoder parameters are inferred from statistical models learned on pre-recorded speech.

The first statistical parametric systems made use of Gaussian Mixture Hidden Markov
Models (HMM) (Yoshimura et al. 1999). In that case, speech is considered as acoustic
observations corresponding to pronounced phonemes which can be modeled by Hidden
Markov Models. At training time, the model is trained to predict the sequence of phonemes
from the acoustic description of the signal. At synthesis time, the HMM is built by
modeling each phoneme as a sequence of three states chosen among the pre-trained ones.

Then, the acoustic description of the speech to synthesize is predicted by going over the
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built HMM while maximizing the state sequence seen.

With the rise of DNN models in other fields, the HMMs started to be replaced by
DNNs for acoustic modeling. In this case, a neural network is trained to predict vocoder
parameters from a linguistic description of the text. The vocoder parameters are usually
MCCs. They are predicted frame by frame from the linguistic features of the current
phoneme and a timing information encoding the position of the frame under prediction.
This means that these methods need a duration model to predict the length of each phone.
The duration model may also be a neural network. The first models used to be simple
feed-forward networks that achieved better-sounding synthesized speech than their HMM
counter-parts (Ze, Senior, and Schuster 2013). Since speech is a temporal phenomenon,
modeling time dependencies helps to further improve the performance of those models.
These dependencies can be modeled by using Recurrent Neural Network (RNN)s layers
such as the Long Short Term Memory (LSTM) layers. The concept of neural networks

applied to acoustic modeling will be presented in further detail in Chapter 2.

1.3.4 End-to-end Systems

End-to-end systems aim to simplify the T'T'S pipeline by using a single neural network
to directly map from the textual to the audio modality. First attempts toward end-to-end
systems mimicked the traditional pipeline by replacing each part of it by a dedicated
neural network (Arik et al. 2017). Current approaches simplify the pipeline further by
having a single network predict vocoder parameters directly from text or its phonetization.
Then, a (possibly neural) vocoder generates the speech audio from relevant predicted
parameters. More precisely, the acoustic description of speech is predicted from text as
a two-step process, following an encoder/decoder neural architecture. The text sentence
is first encoded character per character. The process involves neural network layers such
as LSTM in order to take the context of a character into account when encoding it.
This allows the model to infer pronunciation. Then, vocoder parameters are predicted
from the sequence of encoded characters. This involves a mechanism called attention that
learns to align the encoded character sequence with the vocoder parameter sequence. The
Char2Wav model (Sotelo et al. 2017) predicts vocoder parameters from characters, then
use a SampleRNN (Mehri et al. 2016) neural vocoder to convert them into an speech
signal. The Tacotron (Wang, Skerry-Ryan, et al. 2017) model predicts mel-spectrograms
from characters and use Griffin-Lim to convert them into a speech signal. Both models

also vary due to the architecture of their encoder and decoder.
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End-to-end systems require a vocoder to convert the acoustic description predicted into
a speech signal. Neural vocoders are a popular solution due to their ability to produce high
quality speech. For example, WaveNet (Oord et al. 2016) is a probabilistic neural network
able to generate audio. It can be conditioned on vocoder parameters to generate speech.
It models waveforms as sequences of 16-bit integer values, quantized into 256 values for
lower output dimensionality. The predictions are done frame by frame, conditioned on all
the frames previously predicted. WaveRNN (Kalchbrenner et al. 2018) was proposed as a

faster alternative.

The architecture of end-to-end systems and neural vocoders will be further presented in
Chapter 2. End-to-end systems are used in Chapter 4 to remove most linguistic expertise
from the TTS pipeline. They are then extended in Chapter 5 to perform multi-speaker

multi-accent synthesis.

1.3.5 Hybrid systems

Hybrid systems refer to T'TS systems that mix multiple paradigms of speech synthesis.
In this section we focus on approaches that mix unit selection and statistical parametric
modeling. More precisely, we review approaches where the target cost of a unit selection

system is defined thanks to a statistical parametric model.

In (Merritt et al. 2016), a DNN is trained as an acoustic model to predict a frame of
MCCs from the linguistic description l,,, of a phone p; and the timing information of a
frame j inside p;, just as in DNN-based SPSS. This work makes use of the embedding
property of neural networks. Embeddings are latent representations defined by the output
of one of a DNN’s hidden layers. Let us note f the transformation function resulting from
the application of every hidden layers up to and including the embedding extraction

hidden layer. Then, in the case of an acoustic model, an embedding e,, ; is defined as:

€pij = f(lpw tj)' (1'2>

Since it is derived from ¢;, this embedding is a representation of frame j of p; rather than
a representation of the phone as a whole. These embeddings are computed for every frame
of a phone then pooled statistically on each fourth k of its length N by computing the

mean p; and standard deviation oj. Then, the embeddings of each fourth are modeled
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as a Gaussian mixture model g, . following a normal distribution N (py, o7) :
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Finally, the target cost between two units p; and p, is defined thanks to the Kullback-

Leibler divergence Dk (Hershey and Olsen 2007) between the random variables :
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(1.4)

In (Wan et al. 2017), a DNN (drawn on Figure 1.5) is trained to predict MCC features
from either linguistic features or the MCC features themselves. The linguistic and MCC
features inputs are dealt with by separate encoders, before being projected into a same
phone embedding space. While the linguistic features are already at the phone level, an
LSTM layer has to be used to compress the MCC features sequence in a single vector
representing a phone. From the embedding space, a decoder is used to predict MCC
features. At training time, the phone embeddings are obtained from either linguistic or
acoustic features, while at synthesis time the phone embeddings are always computed from
linguistic features. Then, the Euclidean distance in the embedding space is used to define
the target cost of a unit selection system. This paper works under the assumption that
a good phone embedding for unit selection must reflect both the linguistic and acoustic
feature spaces, which explain the use of a complex network where the phone embeddings

are trained on both linguistic and acoustic features.

In Chapter 3, we build an hybrid unit selection system similar to (Wan et al. 2017)
and challenge the claim that only good acoustic models lead to good phone embeddings

for unit selection.
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Figure 1.5 — Model of the architecture used in (Wan et al. 2017)

1.4 Evaluation for Speech Synthesis

Before presenting an overview of the different ways to evaluate synthesized speech,
we need to consider what the quality of speech is. Usually, two aspects are considered.
The intelligibility criterion is interested in whether the text can be understood from the
synthesized samples. Naturalness represents how close to human speech the synthesized
sample is. Both naturalness and intelligibility can be affected by a wide range of phenomena
such as prosody and signal quality. Other criteria of evaluation include voice quality,
pleasantness, etc. All of those criteria are often evaluated at once using the term "overall
quality".

Since speech is perceptual in nature, the most reliable way to evaluate speech synthesis
is to directly ask humans to listen to and rate synthesized samples. Such listening tests
can be sorted among three categories according to the number of samples presented at
once and the way to rate them. In order to score each system independently of each other,
Mean Opinion Score (MOS) tests present a single sample from a non-specified system that
must be rated between 1 and 5. To score each system relatively to each other, the Multi-
Stimuli with Hidden Reference and Anchor points (MUSHRA) test presents a sample from

each system in a random order on the same page. The samples must be rated between 0
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and 100, relatively to each other. In MUSHRA tests, two additional systems are required:
the natural samples and a low anchor system. Listeners are then instructed to rate at
least one of the samples with a note of 100. While MUSHRA tests are interesting since
they allow to compare systems directly, they are not practical when a lot of systems need
to be compared. If one does not need a mean opinion score but only wants to rank the
systems, one can use A /B tests. In that case, a sample from two systems is presented. The
listeners must then choose the sample they prefer or vote for "no preference'. Lastly, in
the specific case of evaluating intelligibility, listeners can be asked to write a transcript of
the spoken text. By comparing the transcripts to real text, one can compute Word Error
Rate (WER).

However, listening tests are time-consuming to run and can be expensive if the listeners
are not volunteers. In order to speed up development time and quality assessment, one
can use objective measures as proxy of the quality of synthesized speech. Most often,
objective measures for speech quality are extrinsic evaluation. Under the assumption
that the synthesized speech quality is correlated to the underlying models quality, the
evaluation of those models are used as an indication of the T'TS quality.

In the case of SPSS, the prediction quality of the acoustic models can be measured
thanks to the Mel-Cepstral Distortion (MCD) (Kominek, Schultz, and A. W. Black 2008).
The MCD between two D-dimensional MCC sequences  and y is computed as an

extension of the Euclidean norm by :

e - B

t=1

MCD(xz,y) =

ﬂ\Q

where T is the length of the shorter sequence if they are of different size, z4(t) and yq(t)
are the d-th dimension at timestep ¢ of vector & and y respectively. While the correlation
between MCD and the overall quality of a TTS system is far from being perfect, large

MCD improvement are usually perceptually audible.

1.5 Conclusion

Text-to-speech synthesis is a complex task that involves both textual and audio aspects
of speech. Over the years, many methods resulting in varying quality of speech have been
proposed by the community. In particular, the unit selection method and its hybrid variant

using phone embeddings extracted from neural networks are of interest for Chapter 3. End-
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to-end models, especially the Tacotron architecture, are of interests for Chapter 4 and
Chapter 5. Chapter 4 will use them to attempt to remove all linguistic expertise from the
T'TS pipeline thanks to character embeddings. Then, in Chapter 5, they are conditioned on
speaker and accent embeddings to model those two speech factors explicitly. Since neural
networks are of importance in this thesis, the next chapter introduces concepts related to

neural networks architecture as well as develops the architecture of the Tacotron model.
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CHAPTER 2

NEURAL NETWORKS FOR SPEECH
SYNTHESIS

While neural networks were introduced in the 1950s, they only picked up steam in
the 2000s with the rise of computation power and of large datasets. Neural networks
have re-emerged as a tool for machine learning with success in fields such as Computer
Vision (Krizhevsky, Sutskever, and G. E. Hinton 2012). Thus, it is no surprise that neural
networks have been used with success in the field of Text-to-Speech Synthesis. This chapter
introduces the concepts and architectures used in this thesis. Section 2.1 presents the feed-
forward architecture used by acoustic models, as well as extensions using more complex
layers. The sequence-to-sequence paradigm is introduced in Section 2.2, before presenting
the Tacotron architecture following this paradigm in Section 2.3. An example of neural
vocoder, WaveRNN; is introduced in Section 2.4. Finally, Section 2.5 is an overview of

the methods used to model different components of speech using neural networks.

2.1 Acoustic Models and Neural Networks

Neural networks are based on the perceptron model (Rosenblatt 1958). For a vector

x = (11,...,oy) € RV a single value y € R is computed as :

y:f(w-m+b):f(2wixi+b) (2.1)

where w = (wy,...,wy) € RY and b € R are respectively the weights and bias of the
neuron, f is the activation function and - is the dot product. The appropriate values for
weights and bias can be learned by minimizing the error between prediction and reference
values using optimizer algorithms such as the Stochastic Gradient Descent (SGD).

In order to predict y, a M-dimensional vector rather than a single value, the model
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Figure 2.1 — Architecture of a feed-forward acoustic model.

can be extended with W € RV*M and b € RY:
y=f(Wx+b) (2.2)

This process is deemed "layer" in a neural network. Indeed, since the activation function f
is usually chosen to be non-linear, the process can be repeated with a new set of weights,
bias and activation function and combined with the previous result. The process of
combining these processes is similar to that of stacking layers. Such a network is called
"feed-forward".

Feed-forward neural networks have been shown to give good results in statistic parame-
tric speech synthesis. A sentence is cut into phonemes described using linguistic description
vectors l. The signal is cut into phones described using acoustic description feature vectors
a. Then, the neural networks predicts a frame by frame, from [ and ¢; the timing of the
frame being predicted. The most common architecture stacks 4 or 5 feed-forward layers of
size 1024 with tanh activation functions (Ze, Senior, and Schuster 2013) and is represented
in Figure 2.1.

An interesting property of neural networks is their ability to learn latent representa-
tions. The output of each hidden layer can be seen as an alternative representation of
the input data. Those alternative representations, called embedding, transforms a given

vector into one of lower dimension containing only numerical features. Embeddings are
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particularly useful when the input data is categorical. In that case, they first allow to
considerably lower the dimensionality of the input. For example, in Natural Language
Processing (NLP) words are usually one-hot encoded, resulting in each word being descri-
bed with a vector the dimension of the vocabulary size. With embeddings, each word
can be described with a smaller vector. Second, embeddings project any type of data
into numerical feature spaces. This allows to compare data with intuitive measures such
as the euclidean distance or the cosine similarity. Furthermore, those embeddings spaces
have been shown to have interesting properties according to the training task, and may
be used for secondary tasks. For example, in NLP, word embeddings spaces have been
shown to keep semantic properties of the language (Mikolov et al. 2013). For example,
the link between a capital and its corresponding country is captured by the embedding
space. Indeed, the sum of the embedding of the words "Germany" and "capital" is close
to the embedding of "Berlin". For speech, embeddings have been used to capture speaker
characteristics (Snyder et al. 2018). Embeddings have also been successfully used for
information retrieval (Gu et al. 2018). Overall, embeddings are compact representations
useful for a wide variety of task such as comparing two elements. In Chapter 3, we will
use this embedding property to define the target cost of a unit selection speech synthesis
system. This is motivated by the fact that the target cost can be seen as a distance between
textual units. As such, it can instead be defined as a distance between the embeddings of

those units.

Since speech is a temporal phenomenon, modeling time dependencies can improve the
accuracy of an acoustic model. Recurrent Neural Networks (RNN) attempt to address such
a modeling. Recurrent layers work on sequence of vectors rather than a single one. The
particularity of RNN is that computation for timestep ¢ is done according to computations
done at timestep ¢ — 1. This recurrence allows to model time-dependencies and to simulate
memory by allowing information from previous timestep to be used for the computation of
later timesteps. Example of RNN layers include the Long-Short Term Memory (LSTM)
layer (Hochreiter and Schmidhuber 1997) and the Gated Recurrent Unit (GRU) layer
(Cho et al. 2014). Pairs of RNN layers can also be combined to model time-dependencies
both forward and backward in time. The first layer computes on the input sequence
forward, the second computes backward and the result of both layers is combined by
addition or concatenation. This process is called bi-directional RNN. Overall, the use of
RNN to model the time-dependencies of speech has been shown to improve the precision

of acoustic models for speech synthesis (Z. Wu, Watts, and King 2016).
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Convolutional layers have originally been created to capture the spatial dependencies in
images and have been applied successfully for image classification (Krizhevsky, Sutskever,
and G. E. Hinton 2012). However, these layers can be adapted to work on sequential data
such as time-series or text. In that case, a window slides over a given sequence of vectors
to extract features. The size of the sliding window is called kernel width. The amount of
timesteps the window slides over is its stride. The dimensionality of the representation
computed is called the number of filters. The resulting features is computed by calculating
the mathematical convolution of each filters with the windowed inputs. For a sequence x
with IV timesteps, a convolution layer with M filters f; € R of width S , with a stride

of 1, results in :
t+S

yi(t) = (fixx)(t) = > fi(j)2(j), Vi € [1, M] (2.3)

j=t
where ¢ is the index for the current filter, ¢ is the timestep of the sliding window.
1-dimensional convolutional layers have been successfully used in a variety of task in NLP,
such as sentiment analysis (Dos Santos and Gatti 2014). In speech synthesis, they are
often used in end-to-end systems such as (Wang, Skerry-Ryan, et al. 2017). Convolutional
layers allow to learn a contextualized representation, and by stacking those layers the
receptive field of each layer grows with its depth, allowing to capture longer context. As
such, convolutional layers can be used as an alternative to recurrent layers to work on

sequential data.

2.2 Sequence-to-sequence Acoustic Modeling

The acoustic models presented in the previous section need to be trained with aligned
linguistic and acoustic features. The alignment process can be a long and costly process
if done manually. In this section, we present the architecture of neural networks able to
predict sequences from unaligned data.

(Sutskever, Vinyals, and Le 2014) introduced the sequence-to-sequence architecture
for neural translation. The aim is to translate a sentence from a source language to a
target language. More generally, the model predicts a sequence y = (yi,..,yy) from a
sequence z = (a1, .., xy). The model can be described as two sub-modules. First, the input
sequence is encoded as a single summary vector : e = encode(x). Secondly, the decoder
predicts the output sequence one timestep at a time. The prediction at timestep j, is done

using the previous output y;_; and a latent variable h;_; : y; = decode(y;_1, hj_1).
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Y1 Y) Y, Y4
The cat eats <STOP>
e —> o o BRNS
<START> The cat eats
— -
T ? ? Yo Y1 Y Y3
Le chat mange
X0 X1 X

Figure 2.2 — Representation of the sequence-to-sequence architecture.

In the original architecture (drawn on Figure 2.2), the encoder is composed of a single
LSTM layer. The outputs e; of the encoder LSTM are discarded for each words but the
last one. LSTM layers model time-dependencies so the output ey for the last word can
be seen as a summary of the whole sentence. Thus, e = ey. The decoder is also made of
a single LSTM layer. Its hidden state is initialized with the summary vector e allowing
the decoder to be aware of the sentence to translate. Thus, hg = e. Then the prediction
of the target sentence is done word by word. The first input to the decoder LSTM is a
special token indicating the start of a new translation : yo = <START>. Then, for each
following timestep, the input of the LSTM layer is the word predicted during the previous
timestep. Words are predicted until the decoder predicts a special token indicating the
end of a translation : y); = <STOP>.

For speech synthesis, the sequence-to-sequence architecture is extended with an attention
model to perform the summary. Attention is a mechanism where vectors of an input
sequence * = (xy,...,xy) are aggregated relative to a timestep i of a sequence y =
(Y1, ..., yar). This mechanism allows to determine the importance of each timestep of x

relative to y,;. More precisely, a summary vector of x is computed as a weighted sum :
N
C; = Zaija:j (24)
j=1
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The cat eats
Yy A(
r Attention
X 0.1 X 0.8
1 X,X 0.1 3
— —
Le chat mange

Figure 2.3 — Representation of the attention mechanism. Currently attending over the
sequence (Le, chat, mange), relative to (The, cat). According to the attention, the most
useful word to predict "eats" is "mange".

where ¢; is the summary of x relative to y;, and «;; is the attention weight for the vector
x; relative to y;. The computation of those weights depends on the choice of attention.
For example, in the additive attention mechanism (Bahdanau, Cho, and Y. Bengio 2015),

they are computed as :

exp(e;;)
iy = =G 2.5
T eaxplen) (25)
eij = v tanh(Wy,_, + Vx;+b) (2.6)

where W and V' are matrices and v and b are vectors to be learned during the training at
the same time as the others parameters of the network. A representation of the attention

mechanism is drawn on Figure 2.3.
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Figure 2.4 — Heatmap of the transposed alignment matrix computed between a sentence
and the mel-spectrogram of a speaker reading that sentence.

Once every attention weights have been computed, they can be gathered in a matrix:

o9 Ce a1 N

A%y = Q5 (27)

V81 ce QNN

It can be represented graphically as a heatmap where darker colors are associated to
higher weights. This allows to interpret what the attention model learned. For example,
Figure 2.4 represents the result of the attention between a text and the spectrogram
corresponding to the reading of that text. In that case, the result of the attention model
can be interpreted as an alignment between the text and mel-spectrogram. It matches
the characters used to predict a given frame of the mel-spectrogram. As seen on the
picture, the most salient weights follow a monotonous distribution function. Thus, the
model learned that reading a text is done by looking at characters sequentially from left
to right.

Since attention models are learned automatically, the derived alignments are prone to
failure. The alignment can fail globally if no salient weights can be found for any timestep.
This type of failure can also happen locally. For speech synthesis, additional alignment
errors may arise:

— Repetition happens when the attention model focuses on characters already read

which leads the synthesis system to repeat itself.

— Skip happens when the attention models focus on characters while skipping unread

ones, leading the synthesis system to skip sounds or entire words.
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Figure 2.5 — Architecture of the Char2Wav TTS system.

Those errors are usually exacerbated when aligning long sequences (Battenberg et al.

2020).

Sequence-to-sequence models extended with attention have been successfully applied
to speech synthesis. For example, Char2Wav (Sotelo et al. 2017) predicts vocoder parame-
ters from text using this architecture, which is drawn on Figure 2.5. The encoder is a bi-
directional RNN producing a sequence of character embeddings encoding each character
contextually. The decoder is a single RNN predicting a frame of vocoder parameter
from the previous frame predicted, and the output of an alignment model. Between the
encoder and the decoder, location-based attention allows to align the sequence of character
embeddings with the sequence of vocoder parameters. Finally, a neural vocoder converts
the vocoder parameters into an audio waveform. Other models such as Tacotron (Wang,
Skerry-Ryan, et al. 2017) or Deep Voice 3 (Ping et al. 2018) also adapt the sequence-to-

sequence model with attention for speech synthesis.
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Figure 2.6 — The architecture of the first Tacotron model, introduced by (Wang, Skerry-
Ryan, et al. 2017)

2.3 End-to-end Architecture: Tacotron

The family of architectures associated to Tacotron (Wang, Skerry-Ryan, et al. 2017)
follows the sequence-to-sequence paradigm. As it is the basis of models used in Chapters
4 and 5, it is fully described here. As seen on Figure 2.6, textual data is encoded at
the character level before being fed to an encoder to obtain a representation of each
character in its context. Since Tacotron is an auto-regressive model, the prediction of
the mel-spectrogram is done frame-by-frame, using previous predictions. The role of the
attention model is to weight the character embeddings by importance relative to the
frame being predicted. The decoder performs the prediction of the current frame of the
mel-spectrogram from the result of the attention module and the previous frame being

predicted. The following paragraphs describe each of those modules in further details.

Encoder

The encoder of the Tacotron model takes a sequence of characters as input, and outputs
a sequence of contextual character embeddings. This high-level feature sequence encodes
the identity of the character as well as the context in which it was written. The aim is

that those high-level features are related to the pronunciation of the text.

38



2.3. End-to-end Architecture: Tacotron

Output

Bi-RNN

A

Highway layers

Convolution layers

A

Max-pooling
over time

*

Convolution banks
and stacking

i

Input

Figure 2.7 — The architecture of the CBHG module, reproduced from (Wang, Skerry-Ryan,
et al. 2017)

To do so, the characters are usually encoded as one-hot vectors before being projected
into a continuous space to obtain character embeddings (in orange on Figure 2.6). Then,
the character embeddings are independently projected by a stack of non-linear projections
dubbed "Prenet". This allows to obtain a new sequence of character embeddings with high-
level features. Finally, to take into account the context in which each of the character were
written, a Convolution Bank Highway Gated (CBHG) module is applied to them to obtain

contextual character embeddings.

The CBHG module is the sequential application of a 1-dimensional convolution bank,
a highway network and a bi-directional Gated Recurrent Unit (GRU) as seen on Figure
2.7.

The convolution bank is a set of N filters of varying width between 1 and N. The
results of the convolution of those filters with the character embeddings are stacked. This
gives a sequence of vectors akin to n-grams with n € [1, N]. The convolution bank allows

to take into account the context in which each character was written at different levels.
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The sequence of n-gram-like vectors is then cut into windows of fixed width and the
features over each window are max-pooled over time to summarize the n-grams of the
windows. In order to keep a sequence of same length than the input sequence, the window
slides with a stride of 1, and the sequence of n-grams is padded.

The summarized n-grams are then fed to multiple 1-dimensional convolutional layers
and added to the original character embeddings via a residual connection before being fed
to a highway network. Highway networks (Srivastava, Greff, and Schmidhuber 2015) are
deep residual networks where both the residual connection and the layer outputs are gated
by a learned function. This allows to learn networks with hundreds of layers. In the case
of the CBHG, the highway layers are used to extract high-level features of character-level
embeddings.

Finally, the outputs of the highway networks are fed to a bi-directional network, in this
case a GRU. The use of a bi-directional layer allows to model the temporal dependencies
both forward and backward in time. The output of this bi-RNN also constitutes the output
of the encoder. This ouput sequence has the same length as the input character sequence.
However, it is more than a character embedding since it encompasses information about
the context in which it was written. As such, we will refer to those embeddings as

contextual character embeddings.

Attention

The link between the encoder and decoder of the Tacotron model is done by an
attention mechanism. The model uses the additive attention presented in section 2.2.
The attention model attends over the contextual character embedding sequence. The

attention is relative to the ouput of an RNN layer in the decoder.

Decoder

The decoder of the Tacotron model is recurrent. As such, the prediction at timestep
t — 1 is used during the computation at timestep . Since the prediction of the decoder
is high dimensional, a Prenet is used to lower its dimension. The output of the Prenet is
then fed to the first RNN layer of the decoder. Since its output is used for the attention
mechanism, it is dubbed "Attention RNN". This also means, that the attention mechanism
attends over contextual character embeddings relative to an alternate representation of
the mel-spectrogram predicted up to that point. The output of the attention mechanism

and of the Attention RNN are concatenated. This concatenated vector represents both
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the characters important for the prediction of the current frame of the mel-spectrogram
as well as previously predicted frames. This concatenated vector is then fed to the second
RNN of the decoder. Its output is the predicted mel-spectrogram frame. As such, it is
dubbed "Decoder RNN".

Audio generation

After the decoder has run its course, the mel-spectrogram is completely predicted. In
the original Tacotron system, the audio generation is done in two steps. First, the mel-
spectrogram is converted back into a linear scale by using a trained CBHG module. Then,
the audio signal can be reconstructed by using the Griffin-Lim algorithm on the linear

spectrogram.

2.4 Neural Vocoder : WaveRNN

In order for T'TS systems to use neural network solutions at every step of the pipeline,
vocoders can also be modeled using neural networks. WaveRNN (Kalchbrenner et al.
2018) is a neural network generating audio designed has an alternative to WaveNet for
faster generation, without any quality loss. The network predicts frames of a waveform
auto-regressively: each prediction uses the previous one as an input. The neural network
can be further conditioned on vocoder parameter or on spectrograms to be used as a
vocoder.

The model introduces a new RNN layer designed as an extension of the GRU. The
computation of a new hidden state h; is made using previous hidden state h; 1 and input
x; using three separate gates. The computation of the layer (drawn on Figure 2.8 (a)) is

as follows :

up = o(Ryhi—1 + I,xy)
Tt = O'(Rrhtfl + [rxt) (2 8)
ey = T(Tt X (Reht71> + Ie.fll't) .

ht:utxht—l—i—(l—ut)xet

where X is the point-wise product, o and 7 are the sigmoid and tanh functions, and R,
R,., R, I, I, I. are matrices learned during training.
The WaveRNN model (drawn on Figure 2.8 (b)) uses this RNN layer followed by
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Figure 2.8 — (a) RNN cell used by WaveRNN. (b) Architecture of the WaveRNN vocoder.

a classifier to predict a waveform frame by frame auto-regressively. The waveform is
considered as a sequence of 16 bit integers for each frame. Those bits are separated into 8
coarse bits ¢; and 8 fine bits f;. Thus, the input of the RNN cell is z; = [¢;1, fi—1] and the
output of the network is y; = [c4, f;]. The hidden state h; of the RNN is separated into two
halves h;; and h, 2, each responsible for the prediction of either ¢; or f;. The prediction is
done using a classifier made of two stacks of two feed-foward layers first with a Rectified
Linear Unit (ReLU), then a softmax activation function. The first stack predicts ¢; from

hi 1, the second predicts f; from fy o.

2.5 Modeling Components of Speech for Speech Synthesis

Usually, a TTS system is only able to generate speech with a single speaker voice
and style. In order for the system to synthesize speech with different voices, two main
approaches can be used: voice conversion and voice adaptation.

Conversion methods alter a speech sample so that is seems to have been spoken by a
different speaker. This is usually done by transforming the acoustic representation of a
speech signal. For example, in (Desai et al. 2009) (see (a) on Figure 2.9), a neural network
is trained to perform a mapping between sequences of mel-cesptral coefficients extracted

from utterances spoken by two different speakers. This method relies on a parallel corpus
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Figure 2.9 — (a) Neural network performing voice conversion by mapping each frame of
acoustic features a; from a source to a target speaker (b) Neural network acoustic model
trained on a multi-speaker dataset with a stack of shared hidden layers then a speaker-
specific layer per speaker. The acoustic features are predicted frame by frame from a
linguistic description of the text [ and the timing ¢; of the frame being predicted. (c)
Neural network acoustic model conditioned on speaker ID s, gender g and age o.

where sentences were read by pairs of speakers.

For voice adaptation, an average voice model is trained on a multi-speaker corpus.
Then, the voice-independent model is altered or fine-tuned to match a target speaker’s
voice. This method has been successfully applied to both HMM (Yamagishi and Kobayashi
2007) and DNN based SPSS (Fan et al. 2015). In the second work, a feed-forward neural
network (see (b) on Figure 2.9) is built to have shared layers followed by parallel speaker-
specific layers, one for each of the training speakers, like in multi-task learning (Caruana
1997). This allows to train the model on multiple speakers, obtaining shared layers
extracting features which are independent of each speaker’s voice. Finally, the model
can be adapted to new speakers by adding a new speaker-specific layer being trained on

data from the relevant speaker while the weights of the shared layers are frozen.

Another method of voice adaptation consists in conditioning the statistical model on
a one-hot vector of the speaker identity. In (Luong et al. 2017), a feed-forward acoustic
neural network (see (¢) on Figure 2.9) predicts frame of acoustic features a; from linguistic

features [ describing the text, timing of the frame ¢;, as well as information on each speaker
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in the training set. The ID of the speaker in the database is encoded as s using one-hot
encoding, the gender g and age o of each speaker is also fed to the neural network.
Then, the adaptation to new speakers can be done by learning the best identity-vector
s corresponding to that speaker. The weights of the neural network are frozen, it can
be considered as a transformation function f. Then s is found by solving the following

optimization problem:
§ = argmin(MSE(f(s,g,0,1),a)). (2.9)

s is initialized randomly and updated through back-propagation in order to minimize the

Mean Square Error (MSE) between the predicted and reference acoustic features.

The conditioning of an acoustic model for multi-speaker speech synthesis can be done
with other types of speaker representations. For example, i-vectors (Dehak et al. 2010)
have been successfully used to condition a DNN acoustic model for speech synthesis
(Z. Wu, Swietojanski, et al. 2015). [-vectors are compact representations of a speaker’s
characteristics derived from a GMM model. Other types of speaker vectors could be
used for speech synthesis, such as x-vectors (Snyder et al. 2018) or Learnable Dictionary
Encoding (LDE) embeddings (Cai, Jinkun Chen, and M. Li 2018). Both are neural speaker
identification vectors. They will be presented in further details in section 5.1.1. Such
vectors can also be used to condition end-to-end systems such as Tacotron. For example,
(Cooper, Lai, Yasuda, Fang, et al. 2020) concludes that using LDE embeddings instead

of x-vectors with Tacotron leads to improved speaker similarity.

Conditioning a model on specialized vectors allows to tackle other types of speech
components than speaker voice. For example, (Wang, Stanton, et al. 2018) introduces
the notion of style token, representation of style components learned automatically in
an unsupervised manner. The mechanism is drawn on the top part of Figure 2.10. A
Tacotron model is conditioned on style embeddings extracted from reference samples. A
sample is first encoded in order to get a single vector summarizing the whole utterance.
Then, weights are computed using an attention mechanism to represent the contribution
of each style token to the overall style expressed in the reference sample. Finally, the style
embedding is computed as the weighted sum of the style tokens. The attention mechanism
and the value of the style tokens are learned at the same time as the Tacotron model. Those
tokens may capture speech styles such as gender, speaker identity or diverse prosody. While

this method allows to model different speech components without supervision, a single
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Figure 2.10 — Top : Mechanism behind style token embeddings. Bottom : Mechanism
behind disentangling voice from noise.

style token might encode multiple speech components. Thus, it is not possible to control
each speech component independently.

If labels exist, then the different speech components can be modeled in a supervised
way. In (Hsu et al. 2019), the authors tackle two components at once : speaker identity and
signal noise. The architecture is drawn on the bottom of the Figure 2.10. The Tacotron
model is conditioned on a reference sample that is encoded by a speaker encoder. To
disentangle speaker and noise information from the reference signal, two classifiers are
added to the speaker encoder output. The first predicts speaker identity from the speaker
embedding. The second predicts whether the reference sample contains noise. The loss
associated to noise prediction is added in such a way as to penalize the speaker encoder
if the presence of noise can be predicted from the speaker embeddings. This allows
the speaker encoder to focus on encoding speaker characteristics and disregard noise

characteristics.

2.6 Conclusion

Neural networks allow to design varied and complex solutions to a wide range of
problems. For example, in speech synthesis, they can be used to design acoustic models

for SPSS, to design end-to-end models, or to model different factor of speech variety. In
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this manuscript, feed-forward neural networks will be used in Chapter 3 to train acoustic
models. The sequence-to-sequence Tacotron and WaveRNN architecture will be used in
Chapter 4 and 5. Finally, the embedding property of neural networks will be studied
in every chapter of this manuscript. In particular, Chapter 3 and Chapter 4 study the
properties of phone and character embedding respectively, while Chapter 5 applies this

property to speech factors modeling.

46



PaArT 11

Contributions
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Part 11,

The works of this thesis began during the transition period where the standard for
TTS went from approaches using either unit selection or statistical parametric acoustic
modeling to fully neural end-to-end approaches. As such, the first work of this thesis
studies an hybrid approach based on unit selection with elements borrowed from SPSS. It
aims to reduce the amount of linguistic expertise in unit selection system by using phone
embeddings. It also studies the notion of quality for phone embeddings.

The second work of this thesis applies end-to-end synthesis to the French language.
To further the goal of linguistic expertise removal, we compare end-to-end models trained
on characters to models trained on phonemes. Furthermore, we study the character
embedding space defined by the end-to-end model and show that it discovers the phoneme
structure of language and French phonetic information without any linguistic expertise
supervision.

The third and final work of this thesis attempts to add more variety to end-to-end
systems. By explicitly modeling speaker characteristics, we show that end-to-end systems
can synthesize speech with the voice of different French speakers. We then attempt to

model a second factor of speech variety, accent, independently of speaker characteristics.
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CHAPTER 3

LOWERING THE NEED FOR LINGUISTIC
EXPERTISE BY USING PHONE
EMBEDDINGS FOR UNIT SELECTION

As presented in Section 1.3.2, unit-selection-based TTS concatenates prerecorded units
of speech in order to generate a sample corresponding to the text to synthesize. In this
work, we focus on the case where units are phones, i.e. the realization of a phoneme. As
explained in Chapter 1, the unit selection process relies on a target cost which measures
the similarity between an expected phone to be synthesized based on the input text
and the candidate ones from a database of units. This target cost is usually defined as a
distance between linguistic descriptions of these units. This definition raises two problems.
First, linguistic expertise is needed to define the target cost. However, such an expertise
can be expensive and might not be available for some languages. Second, such a target
cost would only evaluate the similarity between units based on the linguistic context in
which they were written. Since speech is an auditory phenomenon, a target cost should
also measure how much two units might sound if they were read aloud. The aim of this

chapter is to define a target cost with two properties.

1. It must be defined between linguistic descriptions of phones without linguistic

expertise.
2. It should compare linguistic and acoustic characteristics of the two phones.

A potential solution to this problem is the use of embeddings from neural networks.
Embeddings are the outputs of a hidden layer in a DNN. As such, they encode input data
with respect to the task for which the network was trained. In particular, embeddings
extracted from the neural acoustic models used in SPSS encode the linguistic description
of phones with respect to their acoustic realization. Furthermore, embeddings encode

categorical data in a numerical feature space where similar data are encoded in similar
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locations. Thus, distances in the embedding space reflects similarity between data.
Because of those two properties, the proposed solution is to build a neural acoustic
model to extract phone embeddings and to define the target cost of a unit selection system
as the Euclidean distance between two phone embeddings. The closest work to ours is
(Wan et al. 2017), which was presented in Section 1.3.5. In comparison, we use a simpler
neural architecture, compare this hybrid approach to the usual expertly defined target
cost, and investigate how the quality of the neural acoustic model impacts the quality of
the speech synthesized by unit selection. With the hope to design a better architecture
and training process, we also attempt to define the quality of a phone embedding space.
In this chapter, Section 3.1 introduces expert unit selection and how to extend it into a
hybrid approach guided by neural networks. Section 3.2 presents different neural acoustic
models, and how they can be adapted to extract phone embeddings. Section 3.3 studies
the use of some of these models to performn hybrid unit selection, and compares this
to the traditional expert approach. Finally, Section 3.4 explores the notion of quality for

phone embeddings.

3.1 Expert and Hybrid Unit Selection T'TS

In expert unit selection T'TS systems such as the one drawn on the top part of Figure
3.1, the synthesis begins by analyzing the target sentence with the front-end. This allows
to predict the pronunciation of words and other relevant information. More precisely,
a sentence s is cut into a sequence of phones p;. Each phone is represented using a
linguistic description vector l,,, containing the phoneme label of p;, the phoneme labels
of neighboring phones, the position of p; in the sentence s, etc. More information about
the content of l,, and how it is extracted can be found in Section 3.2.2. In the rest of this
thesis, the linguistic description vector l,, will also be referred to as linguistic features
vector or linguistic descriptor.

For unit selection, a speech database contains prerecorded units of speech at the phone
level. The speech database is obtained using a speech corpus containing text and their
readings. Each sentence in the corpus is aligned at the phone level with the audio before
being analyzed by the front-end. As a result, each phone ppp; in the corpus is described
with a linguistic description lpp, and a waveform wpp;. Additionally, a sequence of
acoustic features ap B; can be derived from the waveform wp B;- Then, the speech database

is composed of a tuple (Ip B;» WDB;, AD Bj) for each phone in the corpus.
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Figure 3.1 — Representation of expert (top of the figure) and hybrid (bottom of the
figure) unit selection. I,,; and Ipp,; refers to the linguistic feature vector of the i-th unit
of a sentence or in the speech database. e,; and lpp; refers to the corresponding phone
embeddings. T, pers is the expert target cost, Thyiq is the hybrid target cost, and J is the
join cost.

Then, speech is synthesized by concatenating phones in the speech database. The
sequence of prerecorded phones is selected in a way to minimize the sum of two costs. The
target cost Tezpers measures whether phones in the speech database are good candidates
for the phones in the text to synthesize. For an expert system, the target cost is defined

with expertise on linguistic descriptions:

Te:cpert(piapDBj) = expert(lp“ lDBj)- (31)

This cost is usually defined as a the sum of P sub-costs T}, between each of the linguistic
description features (Taylor 2009), or on a subset of those features (Alain, Chevelu, et al.

2016):
P

expert(ly,, lpg,) = > T,(1,,,1ps,) (3.2)

p=1
In this work, each sub-cost is the comparison of boolean linguistic attributes between p;
and DB;. We consider four types of attributes: textual, syllabic, positional, and phonolo-

gical. Textual features describe the context the phoneme was written in, whether it was a
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dialog or narration. Syllabic attributes describe the syllable the phoneme belongs: whether
it has an onset or a conda. Positional features describe the position of the phone in the
text in which it was written: is the phoneme the first of a word, the last of a sentence,
etc. Phonological features describe the phone in articulatory terms (whether the phone
is palattal, glottal, etc.), if is is nasal, etc. The list of all attributes used can be found in
Table 3.1.

The join cost J is defined between two consequent speech units in a selected sequence.
It estimates the quality of the concatenation between two phones. It is usually defined as
the sum of ) sub-costs J, between different acoustic characteristics of the phones. In this

work,

Q
J(PDB,-,PDBHI) = Z Jq(aDB,-, aDBHl)
q=1

= Jurcc(aps;,aps,,,) + Jr(aps;, aps,.,) + Jamp(ans,, aps,.,)
(3.3)

where Jyrrec, Jr, and Jgm, are sub-costs comparing MFCC vectors, fundamental frequency
and amplitude of phones ppp;, and ppp,,,. Each of those sub-costs is defined as the
Euclidean distance on the respective acoustic characteristics.

To synthesize speech, units of the speech database are put in a lattice. Then, the
sequence S of phones selected to be concatenated is the one minimizing the sum of the
target and join costs. To speed up the synthesis process, the amount of units put in the
lattice can be limited to only a subset of the phones in the speech database using pre-
selection filters (Alain, Chevelu, et al. 2016). In this work, we apply a single filter that
selects only phones corresponding to the same phoneme as the one to synthesize. Then,
the number of candidates put in the lattice is limited to best 25 candidate units for each
phone to synthesize, according to the target cost.

The synthesis process is similar for hybrid unit selection, as drawn on the bottom part
of Figure 3.1. The sentence to synthesize is linguistically analyzed to obtain a sequence
of phones p; and their respective linguistic features l,,. Then, a DNN is used to extract
embeddings e,, for each of those phone from linguistic features l,,. Each phone in the
database is described similarly using embeddings epp, derived from the same DNN,
instead of linguistic features. Since the size of the embeddings will have an impact on the
storage size of the database, the embeddings are usually trained to be low-dimensional.

Then, the target cost Thypriq is computed as a measure d between the embeddings of
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’ Textual features ‘

IS TEXT_ DIALOG

IS_. TEXT_ NARRATIVE

| Syllabic features |

HAS ONSET

HAS CONDA

’ Positional features ‘

IS _IN_ONSET
IS LAST PHONEME_ OF BG

IS LAST PHONEME OF SENTENCE

IS_LAST SYL OF_ BG
IS_IN_WORD_END
IS_SYLLABLE END

IS _IN_CONDA
IS LAST PHONEME_ OF_ WORD
IS FIRST PHONEME OF WORD
IS IN WORD BEGIN
IS_ SYLLABLE BEGIN
IS_LAST SYL_ OF_SENTENCE

’ Phonological features ‘

IS PHONEME_LONG
IS PHONEME_LOW__STRESSED
IS_ VOWEL
IS PHONEME_PULMONIC
IS_. PHONEME_FRICATIVE
IS PHONEME_TRILL
IS PHONEME_FLAP
IS PHONEME_ ALVEOLAR
IS PHONEME_GLOTTAL
IS PHONEME BACK
IS PHONEME_RETROFLEX
IS PHONEME_ UVULAR
IS PHONEME_EPIGLOTTAL
IS PHONEME_ CENTRAL
IS_ PHONEME_CLOSE
IS PHONEME_NEAROPEN
IS PHONEME_CLOSEMID
IS PHONEME_CLICK
IS PHONEME_EJECTIVE
IS PHONEME_LABIODENTAL
IS PHONEME_DOUBLE
IS PHONEME_VOICED

IS PHONEME_NASAL
S_ PHONEME_HIGH_ STRESSED

IS_ PHONEME_ LIQUID

IS PHONEME PLOSIVE

IS PHONEME_APPROXIMANT
IS PHONEME LATERAL
IS PHONEME_ DENTAL
IS PHONEME_VELAR
IS PHONEME_ FRONT
IS PHONEME_ PALATOALVEOLAR
IS PHONEME_ PALATAL
IS PHONEME PHARYNGEAL
IS PHONEME_NEARFRONT
IS. PHONEME_NEARBACK
IS_. PHONEME_NEARCLOSE
IS PHONEME_MID
IS PHONEME_OPENMID
IS PHONEME_VOICEDIMPLOSIVE
IS PHONEME_BILABIAL
IS PHONEME_ ROUNDED
IS PHONEME AFFRICATE

Table 3.1 — Categorical attributes used to define the target cost.
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phones to synthesize and those of phones in the speech database. In this work, we use the

Euclidean distance:

Thybm'd<pi7pDBj) = d(ep“ eDBj) = Hepm €DB; Hz (3-4)

The rest of the process is done the same way as for expert unit selection. A sequence of
phones to be concatenated is selected in order to minimize to sum of the target and join
cost.

In order to perform hybrid unit selection, a DNN needs to be trained to extract phone
embeddings from linguistic descriptions. The next section introduces the architecture of
the DNNs used in this work.

3.2 Acoustic Models

In this section, we introduce the four DNNs trained as acoustic models. While not
all of them can be used to extract phone embeddings, they will allow us to investigate
the consequences of modifying the usual acoustic model architecture to allow phone
embedding extraction. After introducing the chosen architectures and training process,

we will evaluate those neural networks as acoustic models.

3.2.1 Presentation of the DNN Models

At synthesis time, the only available information on the phone p; to synthesize is its
linguistic features vector l;. Thus, in order to perform unit-selection guided by phone
embeddings, we need to train a neural network taking linguistic descriptors as input.
Also, in order for the embedding space to reflect the acoustic aspect of speech, the
neural network must predict an acoustic description of p;. The acoustic models used for
statistic parametric speech synthesis seem to be good candidates. However, adjustments to
their architecture need to be made to allow the extraction of phone-level low-dimensional
embeddings. The remainder of this section presents the architecture of four models applying
those adjustments. A visual summary of the different neural networks is presented on

Figure 3.2.

DNN-S The first model under consideration is a standard feed-forward acoustic model.
It will be referred to as DNN-S, with "S" standing for "Standard". The predictions of
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DNN-S
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Figure 3.2 — Architecture of the 4 acoustic models.

an acoustic description of the speech signal is done frame by frame, independently. This
means that for the j-th frame of phone p; the acoustic representation a,, ; of that frame
is predicted from the linguistic description 1, as well as a timing information encoding
the position of the frame j in the phone. For all of the models presented in this section,
the timing information is encoded as the phone duration d and the relative position of the
frame in the phone : t; = %. Similarly to (Z. Wu and King 2016), DNN-S has 5 hidden
feed-forward layers of dimension 1024 with tangent hyperbolic activation function, while
the prediction layer is linear. If we look at the output of the middle hidden layer, we
get ey, ; a high-dimensional embedding of the j-th frame of phone p;. However, for the
purpose of hybrid unit selection, the embedding must be at the phone-level, computed
only from l,,,. Furthermore, a low-dimensional embedding is preferred for low computation

time and low storage footprint of the speech database.

DNN-B The second acoustic model answers the need for a low-dimensional embedding
by using a bottleneck layer. It will be referred to as DNN-B, with "B" standing for
"Bottleneck". As with DNN-S, the network is completely feed-forward. The prediction
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is also done frame by frame using the linguistic description of a phone and the timing
information of the frame as input. However, for DNN-B, the hidden layers assume a non-
sequential "encoder/decoder" architecture. The inputs are encoded by going through 5
layers of dimension decreasing from 1024 to 64. The encoded information is then fed to
the decoder composed of 4 layers of dimension increasing from 128 to 1024. Finally, a
linear layer predicts the acoustic vector a,, ;. Again, all hidden layers are feed-forward
layers with tangent hyperbolic function. If we look at the output of the encoder, e, ;, we
get a low-dimensional frame embedding rather than a low-dimensional phone embedding

as needed.

DNN-BP The third model answers the need for a low-dimensional phone embedding. A
first solution to obtain a phone embedding would be to aggregate frame-level embeddings
by pooling statistics like (Merritt et al. 2016) (see Section 1.3.5). Another solution could
be using LSTM layers in the encoder and considering that the last frame embedding is
also a phone embedding since it would be a representation taking all previous frames into
account. However, since the phone embedding needed in our case must be obtainable solely
from linguistic description, we adopt an approach similar to (Wan et al. 2017). The encoder
only gets the linguistic description as input while the timing information is postponed and
used in conjunction with the output of the encoder as input for the decoder. That way we
do obtain a phone level embeddings e;, obtained purely from linguistic information, and
from which acoustic predictions are performed. Other than the timing information being
postponed, the rest of the architecture is identical to the one of DNN-B. This model will
be referenced to as DNN-BP, "BP" standing for 'Bottleneck-Postponed".

LSTM-BP Finally, we consider a fourth model where the first layer of the decoder
has been replaced by an LSTM layer in model DNN-BP. This model will be referred
to as LSTM-BP. This model stems from the assumption that the quality of an acoustic
model and the quality of the underlying phone embeddings are positively correlated. As
LSTM layers have been shown to improve the quality of acoustic models by modeling the
time-dependencies of speech (Z. Wu, Watts, and King 2016), the phone embeddings of
LSTM-BP could outperform those of DNN-BP.
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3.2.2 Dataset and Experimental Setup

The dataset used in this chapter is a private speech corpus. It corresponds to a French
book, "Albertine disparue" written by Marcel Proust, read by a French male professional
voice actor. Interestingly, due to the writing style of the author, the sentences are quite
long and written in a formal register. Furthermore, since the text contains both narration
and acted dialogues, the recorded speech is fairly expressive. In total, 3300 utterances are
recorded for a total of 11 hours of speech. This amounts to around 390 000 phonemes.
Due to the length of the corpus and the nature of the text, all phonemes of French are
covered at least once. The rest of this section will present the pre-processing done on the

data to obtain both the linguistic and acoustic features used for training the DNNs.

Linguistic Features The first step to obtain the linguistic descriptions is to apply the
front-end of the T'TS to all sentences in the dataset. This begins by converting the original
text strings into sequences of phones. In order to do so, the phonetizer of the espeak TTS !
is used. The phone transcription of words is predicted by first looking into a pronunciation
dictionary then falling back on pronunciation rules for words not found in the dictionary.
The pronunciation rules also allow to deal with the French "liaison", a phenomenon where
a consonant ending a word might be silent or not depending on the following word.

The resulting annotation was stored along the original text using the ROOTS toolkit
(Chevelu, Lecorvé, and Lolive 2014). This toolkit allows to store aligned textual sequences.
In this work, it is used to keep the alignment between phones and word sequences. It
allows to quickly obtain the word in which a given phone is used and thus to compute
statistics such as the position of the phone inside the corresponding word. The final
linguistic features used contains both categorical and numerical attributes. For each phone,
categorical attributes are the quinphone identity (identity of the current, two previous
and two following phones), identity of the syllable where the phone is used, articulatory
features (description of how the human articulation apparatus should be set to pronounce
the phone) and part of speech tag for the word where the phone is used, as well as the one
of the previous and following words. All of the categorical attributes are one-hot encoded.

The numerical attributes represent information such as the position of the phone inside
the word it was used, its position overall in the sentence it was used in, etc. A complete
list of the attributes used for the linguistic description can be found in Table 3.2.2. In

total the linguistic description is a vector of dimension 341. Those features are related to

1. http://espeak.sourceforge.net/
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Feature Dimensions
Phoneme label of the phone, two previous and two following 5*37 = 185
Description of the related syllable (label of the nucleus,
position and size of the syllable, etc.) 30
Position of the phone relative to the syllable,

word, sentence, etc. 17
Articulatory description of the phoneme (voiced, velar, alveolar, etc.) 38
Description of the related word (position, Part of Speech tagging, etc.) 60
Description of the phrase (number of syllables, words, etc.) 8
Description of the utterance (number of syllables, words, and phrases) 3

Table 3.2 — List of features used for linguistic description

that of the HT'S toolkit (Zen et al. 2007).

Acoustic features For the acoustic features, we use the vocoder parameters of the
WORLD vocoder (Morise, Yokomori, and Ozawa 2016). Considering frames with a size
of 5 ms, 60 dimension MCC coefficients, a 5 dimension Band-APeriodicity (BAP) vector
and the fundamental frequency F{, are extracted. Since there are voiced and unvoiced
phones, the Fy values are discontinuous with a value of 0 on unvoiced phones and a
strictly positive values on voiced phones. To deal with this discontinuity, the Fj values are
linearly interpolated on unvoiced phones and we use a boolean to remember if the phone
was actually voiced or unvoiced. Furthermore, the logarithm is applied to the interpolated
Fy. Finally to capture the dynamics of speech even though predicting frame by frame,
we compute the delta (first order derivative) and delta-delta (second order derivative) of
the MCC and BAP vectors as well as for log(Fp). Delta and delta-delta computation for

value for the frame ¢ of value v is done as follows (Chapaneri 2012):

D (vt +14) —o(t —1))

Av(t) = Zil Z~2

(3.5)

AD,(t) = Aa, (1)- (3.6)

In this work, we used D = 2. In total, the acoustic description is a vector of dimension
199.

The implementation was done using Keras with TensorFlow. Training was done on a
GTX 1080 Ti, over 100 epochs using RMSPROP as an optimizer with the mean square
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error as a loss function. The model weights with the best performance on the validation

set were saved. Those models were trained using the true duration values.

3.2.3 Objective Evaluation

Before attempting to extract phone embeddings from the trained models to perform
unit selection guided by phone embeddings, the quality of the underlying embedding
space needs to be evaluated. However, no relevant measures currently exist to evaluate
the quality of a phone embedding. Under the assumption that the quality of an embedding
space is positively correlated to that of the underlying model, the quality of the phone
embedding spaces can be approximated by evaluating the underlying DNNs as acoustic
models directly. This evaluation will be done both objectively and subjectively.

To evaluate the four neural networks objectively as acoustic models, we measure the
accuracy of their prediction. However, rather than simply measuring the loss function
used during training, each of the parts of the acoustic description vector can be evaluated
independently with a dedicated objective measure.

The acoustic description vector was composed of four components:

— MCC

— BAP

— voicing boolean

— fundamental frequency Fj.

The precision of the prediction of MCC and BAP coefficient can be evaluated through
acoustically motivated measures introduced in Section 1.4: MCD and BAP distortion. The
evaluation of the predictions for the voicing boolean can be done through an accuracy
measure. Finally, the Fjy prediction can be evaluated by measuring the Root Mean Square
Error (RMSE). These objective measures are computed between the predicted and reference
acoustic features of the test set and reported on Table 3.3. For all objective measures, the
lower the better.

As a sanity check, objectives measures from (Z. Wu, Watts, and King 2016) are also
reported on Table 3.3. The architecture of that neural network is the same as DNN-S and
the acoustic features are also extracted using the WORLD vocoder. However, the dataset
used in (Z. Wu, Watts, and King 2016) and in this chapter are different, in particular
the dataset of the reported paper is English while the one used in this chapter is French.
Comparing DNN-S with the results of the reported paper, all measures are higher for

our model, indicating a less accurate acoustic model. To some extent, the difference in
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MCD (dB) | BAP (dB) | V/UV (%) | RMSE(F_0) (Hz)
DNN-S 5.22 0.48 17.2 18.3
DNN-B 5.06 0.35 12.6 17.9
DNN-BP 5.09 0.36 13.7 18.2
LSTM-BP 5.80 0.49 19.7 19.5
DNN (reported from 4.54 0.36 11.38 9.57
(Z. Wu, Watts, and King 2016))

Table 3.3 — Objective measures for all four acoustic models. The lower the better.

measures can probably be explained by the use of a different dataset, especially since the
one used in this chapter is highly expressive. Since the magnitude of the values are similar,
DNN-S pass the sanity check.

The impact of having an encoder/decoder architecture to obtain a bottleneck embe-
dding layer can be evaluated by comparing the models DNN-S and DNN-B. Surprisingly,
the model with a bottleneck has lower measures than the one without. However, the
difference can not only be attributed to the presence or absence of a bottleneck layer.
Since DNN-S has overall a higher number of parameters, it might be more difficult for
the optimizer to reach an optimal solution in the number of epochs allotted for training.
Inversely, even though DNN-B has a lower number of parameters, it has more layers than
DNN-S allowing for more non-linearity. Despite not being able to conclude about the
benefit of having a bottleneck layer, having one does not seem to hurt the prediction

precision.

The impact of postponing the timing information can be evaluated by comparing the
models DNN-B and DNN-BP. For all objective measures, DNN-BP has slightly higher
values than DNN-B. This seems to indicate that postponing the timing information

decreases slightly the quality of an acoustic model.

Finally, by comparing DNN-BP and LSTM-BP, we can evaluate the impact of replacing
the first layer of the decoder in DNN-BP by an LSTM layer. Even though modeling time
dependencies with the use of an LSTM layer should improve the quality of the acoustic
predictions, LSTM-BP has much higher values than DNN-BP for all measures. This is due
to the fact that LSTM-BP was wrongly trained. The three models under the label DNN-*
work following the one-to-one paradigm: a single output vector is predicted from a single
input vector in a frame-by-frame manner. However, LSTM-BP works under the one-to-

many paradigm: predicting a sequence of output vectors from a single input vector. The
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correct way to train such a network would be the following. For a phone p; of duration d,,,,
all sequences of acoustic features [a,, o, .., @, ;] With j in [0, N] are independent training
samples where the output vectors [a,, o, .., @p, j—1] are discarded for the loss computation.
Instead, only the sequence [a,, o, .., @, n] appeared in the training set with no outputs
discarded for the loss computation. The model was not trained again using the correct
method. Indeed, despite the poor performance of LSTM-BP as an acoustic model, it is
interesting to keep it as a candidate for unit-selection guided by phone embeddings to
evaluate the impact of the quality of an acoustic model on the resulting embeddings at

synthesis time.

3.2.4 Perceptual Evaluation

In addition to the objective evaluation, a perceptual evaluation through listening
tests is mandatory to assert the quality of our four DNN as acoustic models. To do so,
synthesized speech for each of the models is obtained by predicting the acoustic features
of phones in the test set and converting those features into an audio sample using the
WORLD vocoder. In addition to the linguistic features, the timing information is also
needed for the prediction of the acoustic features. Rather than use the real values in an
oracle manner, a duration model is trained to predict the duration d,, of a phone p; from
the linguistic description I,,,. This duration model is a simple feed forward neural network
with 6 hidden layers, each with an hyperbolic tangent activation function. The model is
trained for 100 epochs and the weights of the better performing model are saved. At the
end of the training, the mean absolute error of the duration model is 3.7 frames.

A MUSHRA-like listening test is conducted with 21 French native speakers. Fach
listener is asked to rate the overall quality of synthesized samples for 10 group of sentences
on a range between 0 and 10 instead of the usual [0-100] range. The synthesized samples
are the 105 sentences from the test set. Each sample is rated by two different listeners. In
addition to the four models trained, natural speech is added as an hidden anchor, as well
as samples synthesized in an analysis/synthesis manner. Those two systems are referred
to as "NAT" and "VOC" respectively. Since the samples in the dataset are rather long,
sentences longer than 5 seconds are cut at a point between breath groups so as to get
a sentence of at most 5 seconds. The results are presented the box-and-whisker plot in
Figure 3.3. Such a plot represents the distribution of a measure graphically. Each column
correspond to a different system. Then, for a given column, the minimum and maximum

value measured for that system are represented as the lower and higher part of each
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Figure 3.3 — Results of the listening test for the models in statistical parametric mode for
in-domain utterances.

whisker. The first and third quartile is represented by the lowest and highest part of the
box. The median is represented by a yellow horizontal bar inside the box. Outliners are

represented as individual circles.

The natural samples were rated as perfect by most listeners, except for a couple samples
rated below 8. Some of the shortened samples were deemed to have unnatural prosody,
and thus rated lower than other samples from the natural system. Since the analysis-
synthesis system was rated with a mean score of 7.2, the WORLD vocoder was deemed
of "good" quality by the listeners according to the MUSHRA scale. Systems DNN-S,
DNN-B and DNN-BP were rated with a mean score of approximately 3 (2.8, 2.8 and
3.0 respectively). Thus judging our acoustic models of "poor" quality and none can be
distinguished from the other. This is coherent with the objective evaluation where the
3 models had slight difference in MCD values but significantly higher values than the
state-of-the-art model reported. At the very least, displacing the timing information does
not seem to perceptually lower the quality of synthesized speech. Finally, system LSTM-
BP is rated with a mean score close to 0. The synthesized speech was judged mostly

incomprehensible. This is also coherent with the objective measures, since LSTM-BP had
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much higher MCD values than other systems.

Overall, through both an objective and subjective evaluation, it seems that three out of
the four models trained perform as poor acoustic models, the last one being plainly bad
according to the MUSHRA scale. However, the aim is to use the underlying embeddings
rather the models themselves. It will be interesting to see how the quality of the acoustic
models impact the quality of speech synthesized using unit selection guided by phone

embeddings.

3.3 Hybrid Unit Selection Speech Synthesis Using
Phone Embeddings

In this section, we build three unit selection systems. The target cost of the first one
is defined with expert knowledge (see Section 3.1). The target cost of the two others is
based on a comparison of phone embeddings, as presented in Section 3.2.1. Then, the
three systems are compared in a listening test to determine the impact of automatically

defining the target cost.

3.3.1 Presentation of the TTS Engines

Out of the four models trained, only DNN-BP and LSTM-BP can be used to extract
phone-level embeddings. For unit selection synthesis systems, a speech database contains
pre-recorded audio samples segmented into phones. For the usual unit selection method,
the database is indexed according to the linguistic feature description vector of phones.
In the case of unit selection guided by phone embeddings, those phones must instead be
indexed by their phone embeddings.

The speech database is built in a similar manner to the pre-processing done in section
3.2.2, as seen on Figure 3.4. Every sentence s in the training set is analyzed by the front-
end of the T'TS system. This allows to obtain a sequence of phone p; and corresponding
linguistic vector 1, from sentence s. The phone sequence is then aligned with the audio
sample w of the sentence to obtain (p;, wy,) pairs. Acoustic features a,, are also extracted
from each waveform w,,. The acoustic features considered are MFCC, amplitude, and
fundamental frequency Fy. Then, the speech database is composed of each phone p;

in the dataset, described using a triplet (I,,,w,,,a,,). For hybrid unit selection, the
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Figure 3.4 — Process to create the speech database for an expert and hybrid unit selection
system.

linguistic features 1, are fed to either the DNN-BP or LSTM-BP neural network to
extract the corresponding embedding e,,. The embeddings are extracted from the middle
layer, represented in pink on Figure 3.2. Then, the speech database is composed of triplets
(€p,, Wy, Ap,)-

Similarly, at synthesis time, the target sentence is analyzed by the front-end to extract
a sequence of linguistic description vectors. For hybrid unit selection, the linguistic vectors
are additionally fed to DNN-BP or LSTM-BP to extract the corresponding phone embe-
ddings. For each target phone, the 25 best candidates in the speech database according
to the target cost are put in a lattice. The best sequence of candidate units is selected by
optimising the sum of the target and join cost.

Depending on the choices made to define the target cost, we create 3 different unit
selection TTS systems. For the two systems guided by phone embeddings, the target cost
is defined as the Euclidean distance between the phone embeddings e,, and e,, of the
target phoneme p; and a candidate unit p; extracted either from DNN-BP and LSTM-
BP. For the expert system, the target cost is defined directly on the linguistic feature
vectors I, and [, (see Section 3.1). The join cost is defined the same way for all system
(see Section 3.1).

In total, we create three unit selection TTS systems :

— EXP: a classic unit selection system where the target cost is defined using linguistic
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Figure 3.5 — Results of the listening comparing expert and hybrid unit selection

expertise

— DNN-BP: a unit selection system guided by phone embeddings extracted from the
DNN-BP neural network.

— LSTM-BP: a unit selection system guided by phone embeddings extracted from
the LSTM-BP neural network.

3.3.2 Comparison Between Automatic and Expert Cost

Similarly to the evaluation of the DNNs as acoustic models in Section 3.2.4, we perform
a MUSHRA-like test to evaluate the quality of the three unit selection systems. The 105
sentences from the test set are synthesized by all three systems. The natural samples are
added as a hidden reference. The maximum length of the samples is limited to 5 seconds
by cutting them on breaths. The same 21 French native speakers are asked to rate the
overall quality of the speech samples. Figure 3.5 presents the results.

As for the evaluation of the DNNs as acoustic models, a low number of natural
samples were rated lower than 8 as listeners found the prosody of those samples unnatural
because of the cut. The expert system was rated with a mean opinion score of 5.4, which

corresponds to a fair score according to the MUSHRA scale. Both of the hybrid synthesis

65



Part II, Chapter 3 — Lowering the need for linguistic expertise by using phone embeddings for
Unit Selection

L1

Rating

EXP DNN-BP LSTM-BP

Figure 3.6 — Results of the listening test for the models working in unit selection mode
for out-of domain utterances.

systems were rated with a mean opinion score of around 7 (6.8 for DNN-BP and 6.6 for
LSTM-BP), which corresponds to a good score. The differences between the expert and
hybrid systems is statistically significant, which suggests that defining the target cost using
phone embeddings is an improvement over the manually defined cost through linguistic
expertise. Interestingly, despite LSTM-BP performing poorly as an acoustic model, the
difference between the system using embeddings from DNN-BP and LSTM-BP is not
statistically significant. This means that even a poor acoustic model can be used to define

the target cost of a unit selection system and still achieve good quality speech synthesis.

Since the definition of the target cost for the hybrid systems is the conclusion of a
data-driven process, it seems important to assess whether the hybrid systems can still
perform on sentences from a different domain. To do so, we perform synthesis on the
Combescure dataset. This is a text dataset containing 100 sentences that globally share
the same phoneme distribution as the French language. The sentences are shorter than in
the audiobook used for the training, and the register is less formal. We perform a listening
test in the same condition as the previous one, except that no natural samples exist for

this dataset. The results of the listening test are reported on Figure 3.6.
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The system with the expert system is rated with a mean opinion score of around
5.9, while the hybrid systems using embeddings from DNN-BP and LSTM-BP are rated
with 6.9 and 6.3 respectively. The difference between the EXP (respectively LSTM-BP)
system and DNN-BP is statistically significant. However, the difference between the EXP
and LSTM-BP systems is not. This suggests that, outside of the training domain, the
embeddings from an acoustic model can also be used to define the target cost of a T'TS
system that performs as well as the expertly defined one, or even better depending on the

quality of the acoustic model.

Overall, through listening tests, we have shown that acoustic models can be used to
define the target cost of a unit selection T'TS system. Systems guided by phone embeddings
perform as well or better than systems where the cost is defined with linguistic expertise.
Interestingly, we have shown that an acoustic model producing incomprehensible speech
in SPSS can still be used to perform good unit selection speech synthesis. To improve our
understanding of the notion of quality of an embedding space for unit selection, the next

section presents an analysis of the phone embedding spaces defined by different models.

3.4 Embedding Analysis

In the previous section, we ran a listening test in order to measure the quality of
the trained embeddings for hybrid unit selection. However, listening test campaigns are
long and potentially expensive to run. We need a quick way to assess whether a phone
embedding space can be used for hybrid unit selection speech synthesis without having to
run the full listening test. Usually, objective measures are used to estimate the perceptual
quality of a TTS system. For example, the MCD of a neural acoustic model estimates the
perceptual quality of a SPSS system. However, to the best of our knowledge, no objective
measures have yet been defined for the quality of a phone embedding space.

The aim of this section is to define such objective measures. In doing so, we address
the general question of how to assess whether an embedding is good or not for a given
task without having to run that task. Section 3.4.1 presents the properties of embedding
spaces trained in other domains as well as how they were evaluated. Section 3.4.2 presents
the methodology followed to propose meaningful objective measures. Then Section 3.4.3

and following sections apply that methodology step-by-step.
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3.4.1 Embedding Properties and their Evaluation

The quality of an embedding space F containing embedding vectors e; is defined for
a given property ¢. That quality can be measured in one of two ways: intrinsically or
extrinsically. When measured in an intrinsic manner, the property ¢ is evaluated using
spatial criterion such as the position of points e; within E. For example, in the case of
word embeddings, a desirable property of the embedding space may be the ability to

enable algebra properties that reflect semantic relationship between words, such as:
"king” — "male” + 7 female” = "queen” (3.7)

The quality of the embedding space can be measured using a set of such relationships
(€ay, €res) Where e, is the word embedding computed using algebra and e,.s is the
embedding of the word expected as a result of the sum. The relationship is found true if
the distance between ey, and e, is small enough. Then the quality of the word embedding
space can be defined as the rate of relationships found true.

When measured in an extrinsic manner, the quality for property ¢ of an embedding
space E is investigated by measuring its potential use as input features to a machine
learning model learned for a task related to ¢q. The quality of the embedding space is
then assimilated to the accuracy of the model. In the case of word embeddings, the
quality property g being measured can be whether the embedding space encodes syntactic
property. Then, a model predicting the part-of-speech from embeddings can be trained.
In that case, the quality of the embedding space is estimated using the accuracy of the
model trained as a proxy measure.

In the case of phone embeddings for unit selection speech synthesis, the quality
property g being evaluated is the perceptual quality of speech synthesized by the system.
With that definition of quality, the intuition is that, in a good embedding space, similar
phones are close while two dissimilar phones are far away from each other. This similarity
can be motivated either linguistically, i.e. two similar phones were pronounced in similar
context, or acoustically motivated, i.e. two similar phones sound the same.

An intuitive intrinsic measure associated to the linguistic component would assert
whether there is a small distance between embeddings e,, and e, of phones p; and
p; pronounced in similar contexts. This would amount to measure whether linguistic
similarity is conserved in the embedding space. However, the definition of linguistic

similarity is not trivial. Similarly, for the acoustic component, the definition on acoustic
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similarity is difficult, especially since the waveform of each phone do not have the same
length.

Intuitive extrinsic measures would evaluate the accuracy of a model trained to predict
either the linguistic features [,,, or acoustic features a,, of a phone p; from the corresponding

embedding e,,.

The next section introduces the methodology followed to define meaningful measures

of a phone embedding space’s quality.

3.4.2 Methodology

To find realistic intrinsic criteria of the perceptual quality ¢ of phone embeddings
spaces, we tried to design objective measures that are able to make the distinction
between embeddings that were shown to work for unit selection and embeddings that
were purposefully trained to under-perform. More precisely, the remainder of the section

follows this methodology:

1. Train at least two good embedding spaces E,, and E,,, i.e. ones that work well for

unit selection speech synthesis.

2. Purposefully train bad embeddings spaces E,, i.e. ones that do not work well for

unit selection speech synthesis.

3. Perform a visualization of the embedding spaces to try to find distinctive criteria

between one good embedding space, say Ey,, and all the bad ones Ej,.

4. Design objective measures my that are able to distinguish between this same good

embedding space F,, and any bad one: Yk, Vj, my(Ey,) > my(Ep,)

5. Validate the objective measures on other "good" embedding space, here E,:
Vk, \V/j, mk(EQQ) > mk(Eb].)

In that case, the objective measures my allow to distinguish a good embedding space
from bad ones. Then for a new embedding space of uncertain quality F;, its usefulness
for hybrid unit selection can be estimated using my. Ideally, those measures should also
allow to compare good embeddings F,, and FE,, in such a way that:
mk(Egi) > mk(Egj) = Q(Egi) > Q(Egj)-
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3.4.3 Considered Embedding Spaces

To follow our methodology, we need at least two embedding spaces F, and Ey, for
which speech synthesis is of fairly good quality. In the previous section, we trained DNN-
BP and LSTM-BP that both satisfy this criterion, by extracting 64-dimensional phone
embeddings. DNN-BP will be used as the first good embedding F,, to design objective
measures, while LSTM-BP will be used as the left-out good embedding Fy, to validate
the usefulness of the objective measures.

Regarding bad embedding spaces, we train two models with the same architecture as
DNN-BP but in under-fitting or over-fitting conditions on a small amount of data. To do
s0, 256 phones are selected randomly from the training set, and only one random frame
of each of those phones is used for the training. The underfitting model DNN-BP-under
is trained for only one epoch on those 256 frames. The over-fitting one, DNN-BP-over,
is trained for 50 epochs on the 256 frames. For both models, the weights obtained at the

end of the last epoch are saved.

3.4.4 Embedding Space Visualization

For each of the phones in the test set, the phone embeddings corresponding to each
model is extracted. For visualization purposes, the phones are then projected in a two-
dimensional space using Principal Component Analysis (PCA). The results are presented
on Figure 3.4.4. Each point on the figures is a different phone from the test set, and its
color represents its corresponding phoneme. Since the number of colors available for the
visualization is limited, some phonemes are represented with the same color

On Figure 3.7(a), while no clear clusters can be distinguished, phones corresponding
to the same phoneme seem to be only found in a single part of the embedding space. For
example, all the /t/ phones can be found in the bottom right part of the picture, while all
/m/ phones are in the center. Interestingly, the structure of this phone embedding space
can be described through linguistic similarity. For example, all unvoiced consonants are in
the bottom of the figure, such as /t/, /k/ and /p/ phones. Similarly, all voiced consonants
such /m/, /n/, /b/ and /d/ phones are in the center of the picture. Finally, vowels such
as /a/ and /e/ are on the top of the picture. Furthermore, similar sounding vowels are
close together such as the /E/ and /e/ phones are both on the left part of the picture.
This leads us to believe the structure of the embedding space might also be respect some

acoustic similarities.
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Figure 3.7 — PCA visualization of embeddings from DNN-BP (a), DNN-BP-under (b),
DNN-BP-over (c)

On Figure 3.7(b), again, no clear clusters can be distinguished but phones corresponding
to the same phoneme can only be found in one part of the picture. For example, all /p/
phones are found in the bottom left part of the image. However, the groups of phones are
harder to distinguish from one another. For example, half of the /n/ phones are mixed
with /m/ phones, and the /b/ phones are mixed with /p/ and /d/ phones. The DNN-
BP-under phone embedding space seems to follow the same linguistic structure as the
DNN-BP embedding space. Unvoiced consonants such as /p/ and /k/ are found on the
bottom of the picture. Voiced consonants such as /m/ and /n/ can be found in the center
of the picture. Finally, vowels such as /a/ and /e/ are found in the upper part of the

picture.

On Figure 3.7(c), it is hard to distinguish any structure. In particular, phones correspon-
ding to the same phonemes only seem lightly grouped together, there does not seem to
be any structure corresponding to vowel and consonant and the structure does not seem

to follow any acoustic similarity.

This embedding space visualization gives insight into what makes a phone embedding
useful for hybrid unit selection speech synthesis. A good embedding space groups phones
according to the phoneme to which it corresponds, and it seems that similarly sounding
phones are close in the embedding space. However, these are only insight and hypothesis.
We still need to design objective measures corresponding to those criteria in order to try

to distinguish embeddings spaces according to their quality.
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3.4.5 Design of Objective Measures

The first distinctive criteria found during the visual observation of the phone embedding
space is a structure where phones corresponding to the same phoneme are close together
despite not forming clear clusters. This aspect can be objectively measured with intrinsic
measures based on a nearest neighbor search. As drawn on Figure 3.8, each phone p;
is described using a linguistic description I;, acoustic vector a; and embedding e;. For
an integer K, the result of a K-Nearest Neighbors (KNN) search for phone p; in the

embedding space is defined as :
KNN(pZ) = [xn(l), ...,xn(K)] with Tn(ry = (lj, a;, ej) (38)

where n is the ranking function. Once the phones p; have been ranked according to a
distance d to the embedding e;, n permutes a rank r with the index j of the corresponding

phone in the training set :

n(0) =1
n:N — Nand (3.9)
Vr € N d(e;, enr—1y) < d(es, enpry) < d(€i, enri1))

To assess the first aspect of quality, for each phone p; in the test set, we perform a 100-
nearest neighbor search among phones in the training set. Then, it can be measured one

of two ways :

1. By comparing the dominant phoneme label, i.e. the most frequent one, in KNN(p;)
to the one of p;. This method correspond to measuring the accuracy of a KNN

classification.

2. By counting the number of phones in KNN(p;) whose phoneme label is the same as

the one of p;. This corresponds to measuring the purity of the nearest neighbors.

The second distinctive criteria found during the visual observation of the phone embe-
dding space is a structure where similar sounding phones (in the case of vowels) are
close in the embedding space while dissimilar sounding phones (vowels vs consonant) are
separate in the embedding space. However, measuring an acoustic similarity between two
phones p; and p; using an objective measures such as the MCD between p; and p; is not
trivial. Indeed, since the two might not have the same length, they would need to be
aligned first, using a method such as Dynamic Time Warping (DTW). This process might

not be accurate and thus could impact the objective measures. Instead, we propose to
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Embedding space
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Figure 3.8 — Mechanism of a nearest neighbor search

evaluate the acoustic aspect extrinsically. We train a model predicting acoustic features
a; ; of frame j in phone p; from the embedding e; and timing information of the frame
t;. The model is trained on the training set and its accuracy measured on the test set is
used to evaluate extrinsically the quality of a phone embedding space. When designing
this model, it is important to note that its complexity may be considered as a bias in
the interpretation of the results. Indeed, good results may come from the adequacy of its
architecture for the target task, rather the from the quality of the embedding space. To
avoid this ambiguity, we aim to keep the model as simple as possible, and use a simple
linear regression model. This model maps (I;,t;) to a;;. It is trained to minimize the
residual sum of squares. This is similar to training a neural network containing a single

linear layer to minimize the MSE.

3.4.6 Application of the Objective Measures

The objective measures are first applied on embeddings extracted from the models
DNN-BP, DNN-under and DNN-over to see if they are able to distinguish between good

and bad embedding spaces. Those measures are also applied to the embedding space

73



Part II, Chapter 3 — Lowering the need for linguistic expertise by using phone embeddings for
Unit Selection

DNN-BP | DNN-under | DNN-over | LSTM-BP
KNN-classification (%) 95.2 89.3 88.2 93.0
Neighborhood purity (%) 92.2 84.3 81.5 89.6
MCD (dB) 5.84 6.66 6.70 6.20

Table 3.4 — Objective measures of the quality of embedding spaces

defined by the model LSTM-BP to validate that those measures also allow to compare
two embeddings of different quality for hybrid unit selection. The results of the objective
measures are reported on table 3.4.

The nearest neighbour classification in the DNN-BP embedding space has a precision of
more than 95%. This is slightly lower than 90% for both DNN-BP-under and DNN-BP-over.
It shows that the KNN classification measure allows to distinguish between "good" and
"bad" embeddings. Interestingly, the precision for all DNN-BP-* models is quite high, i.e.
even our bad models. This suggests that a low amount of data is sufficient to learn an
embedding that encodes somewhat faithfully the linguistic feature space. Similarly, the
DNN-BP embedding space has a neighborhood purity of 92% while under/over-fitting
models are under 85%. This gives rise to the same conclusion as for KNN classification.
This is not surprising since both measures are closely related to each other. The linear
acoustic model learned on DNN-BP embeddings has an MCD of 5.8 dB, while the MCD
is higher than 6.5 dB for both DNN-BP-* models. First, this suggests that training a
linear acoustic model on embedding space can also help to distinguish between "good'
and "bad" embeddings. Second, the MCD of the linear model is much higher than that of
original DNN-BP neural network (5.06 dB, see Table 3.3). This is not surprising since the
multi-layer non-linear decoder of the original architecture is replaced by the equivalent of
a single linear layer. This also suggests that most of the acoustic prediction is done by
the second half of the neural network.

The proposed measures allow to distinguish between DNN-BP and the two DNN-BP-*
models. However, we still need to make sure that those measures allow to compare
other "good" embeddings with those "bad" ones. The sames measures were applied to
embeddings extracted from LSTM-BP. For both linguistic measures, the DNN-BP-* models
have lower precision than LSTM-BP. Similarly, the corresponding linear acoustic models
have higher MCD than the one of LSTM-BP. This confirms that the proposed measures
allow to distinguish between "good" and "bad" embeddings. When comparing DNN-BP
and LSTM-BP, the measured values are all slightly worse for LSTM-BP. This indicates

that the proposed measures might also allow to compare "good" embeddings.
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3.5 Chapter conclusion

Overall, this chapter explored the use of phone embeddings for unit selection synthesis.
We trained two neural acoustic models of varying quality in order to extract embeddings
from the linguistic description of phones. We then compared the perceptual quality of an
expert unit selection system where the target cost is defined with linguistic expertise, to
hybrid systems where the target cost is automatically defined, as the Euclidean distance in
a phone embedding space. A listening test shows that the systems with the automatic cost
performed as well or outperformed the expert system. Interestingly, defining the target
cost using phone embeddings extracted from a bad acoustic model do not lead a decrease
of performance compared to the expert system. We then performed a visualization of the
phone embedding spaces. We observed that a good embedding space encodes linguistic
aspects of phones by grouping phones corresponding to the same phoneme together.
Furthermore, the position of phones in the embedding space follows a distribution according
to whether they are a voiced consonant, unvoiced consonant or a vowel. Similar sounding
vowels are also grouped together. This suggests a good embedding might encode both
linguistic and acoustic characteristics of speech. We measured the linguistic aspect intrinsi-
cally thanks to a nearest neighbor search. The acoustic aspect was measured extrinsically
by learning a simple acoustic linear model from phone embeddings. Both measures allow
to distinguish between good and bad embeddings, as well as between good embeddings
of different quality.

The method proposed to define the target cost of a unit selection system allows to lower
the amount of linguistic expertise. Indeed, the target cost is then defined automatically
rather than using expert knowledge on the linguistic features. However, on the scale
of a TTS as a whole, some amount of linguistic expertise remains. First, the choice of
the features used in the linguistic description and their extraction is done using linguistic
expertise. Second, the phonetization usually relies on pronunciation rules and /or a pronun-
ciation dictionary. Both methods require extensive linguistic expertise. As a next step
toward our goal of universal TTS, the next chapter investigates the use of end-to-end
TTS systems to further remove the linguistic expertise. More precisely, we aim to replace

entirely the front-end by a model learned automatically.
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CHAPTER 4

REMOVING LINGUISTIC EXPERTISE
FOLLOWING THE END-TO-END PARADIGM

Thanks to the increasing computer power and diversity of neural network layers
available, DNNs are nowadays able to accurately approximate complex pipelines of data
processing. For example, (Yao and Zweig 2015) learns a neural G2P following the sequence-
to-sequence architecture. Ultimately, the successives steps of expert systems can even be
entirely replaced by one or multiple DNNs. This new paradigm is called end-to-end.
In (Arik et al. 2017), every component of the traditional TTS pipeline is replaced by a
dedicated DNN. At best, the TTS pipeline becomes the two step-process drawn on Figure
4.1: (1) the generation by a T'T'S model of a mel-spectrogram corresponding to a given
text, then (2) the conversion from mel-spectrogram to audio waveform using a vocoder.
Tacotron (Wang, Skerry-Ryan, et al. 2017) is an example of such systems. Optionally, the
input text can be mapped to phonemes prior to the T'TS model.

End-to-end systems allow to lower the required amount of linguistic expertise to
solve a task. Although they can be trained on sequences of linguistic and contextual
features as in SPSS (Tian, Jing Chen, and Liu 2019), training of the sole corresponding
sequence of phoneme labels has shown to be successful as well (Yasuda et al. 2019). This
allows to remove the expertise needed to design and extract the linguistic and contextual
features. As previously explained, the model can even be directly trained on the sequence
of characters corresponding to the text (Sotelo et al. 2017; B. Li et al. 2019). This allows to

remove the entirety of the linguistic analysis module in a T'TS, thus completely removing

Mel-
spectrogram

Waveform

Grapheme- or text Vocoder

to-phoneme

Text-to-Speech
model

»
>

\

Figure 4.1 — TTS pipeline using end-to-end models.
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linguistic expertise from the TTS pipeline. However, relying on the model to infer text
readings may lead to pronunciation errors.

Few works involving end-to-end models have been conducted on the French language.
The aim of this chapter is to study the potential use of characters instead of phonemes for
French Tacotron-based speech synthesis. To do so, the difference between the two input
types will be evaluated in terms of overall perceptual quality and pronunciation errors.
Furthermore, the hidden representations learned by Tacotron models from characters are
not yet well understood. For example, it is unclear whether Tacotron character embeddings
are related to units of speech such as phonemes. Thus, we also perform an analysis of the
character embedding space to gain insight into the kind of representations automatically
learned by a Tacotron model.

In the remainder, Section 4.1 presents the Tacotron model used in this chapter. Section
4.2 introduces the French dataset on which it is trained. Section 4.3 compares a character-
based model to a phoneme-based one through a listening test and Automatic Speech
Recognition (ASR) experiments in order to evaluate the overall quality and amount of
pronunciation errors. Finally, Section 4.4 performs an analysis of the character embedding
space. It suggests that the Tacotron model encodes characters using a representation which
is similar to phonemes. This leads us to investigate the use of character embeddings to

train grapheme-to-phoneme modules.

4.1 Models

As previously stated, a TTS model and a vocoder are needed to get a complete end-
to-end text-to-speech synthesis system. In this work, the former is trained using a slightly
modified version of the Tacotron model, while the latter is trained using the WaveRNN

architecture. The rest of this section describes these two neural networks.

4.1.1 Slightly Modified Tacotron TTS Model

In this chapter, we use an extension of the original Tacotron architecture presented
in Section 2.3. The architecture is the same as in (Cooper, Lai, Yasuda, and Yamagishi
2020) and is drawn on Figure 4.2.

The model predicts a mel-spectrogram from a sequence of tokens describing a text to

synthesize. We consider two versions of the model. In the first one, tokens are character
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Figure 4.2 — Schema of the TTS model used to predict mel-spectrograms.

labels. For the second one, they are phoneme labels. These variants do not impact the
architecture despite a different number of parameters in the first layer of the network due
to the different vocabulary size of each type of token.

The architecture follows the sequence-to-sequence architecture. An encoder encodes
the sequence of tokens as a sequence of token contextual embeddings that represents both
a given token and the context it was written in. Then a decoder predicts a mel-spectrogram
from those embeddings using attention alignment.

As in the original architecture, the sequence of tokens is first encoded as a sequence of
independent token embeddings using a PreNet. Then, an extension of the CBHG is used to
extract contextual token embeddings. The GRU layer is replaced by an LSTM layer with
zone out regularization (Krueger et al. 2016), the module is thus dubbed CBH-LSTM.
Finally, a self-attention module is added to the output of the CBH-LSTM. The addition
of self-attention and the extension of the CBHG module allow to better capture long term
dependencies (Yasuda et al. 2019). This results in the encoder having two outputs : the
result of the self-attention and the outputs of the CBH-LSTM module.

In the decoder, each output of the encoder is attended over using two different attention
mechanism with respect to the mel-spectrogram frame predicted at the previous timestep,
encoded by a PreNet. The output of the self-attention is attented over using the additive
attention defined in Section 2.2. The output of the CBH-LSTM module is attended over
using forward attention (J.-X. Zhang, Ling, and Dai 2018). Then, the result of both
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Encoder - Prenet 2 * (Dense(512, relu), Dropout(rate=0.5))

Encoder - CBHG Convolution Bank : {Convl1D(128, ¢, relu), ¢t € [1, 16]}
Max-Pool : MaxPooling1D(pool size=2, strides=1)
Conv1D layers : ConvlD(512, 3, relu), ConvlD(512, 3, linear)
Highway layers : 4 * {H: Dense(256, relu), T: Dense(256, sigmoid)}

Table 4.1 — Precise configuration of the Tacotron model

attention module is concatenated. According to (Yasuda et al. 2019), this configuration
allows for a faster alignment learning while still capturing long-term information. The
result of the concatenation is fed to an LSTM layer to model speech time-dependencies
before its output is being attended over using self-attention. Finally, the result of the
attention module is fed to two feed-forward layers. The first, with a sigmoid activation
function, predicts whether the sample has been completely synthesized or is still ongoing.
The second, with a linear activation function, predicts a frame of the mel-spectrogram.

The precise configuration of each of the modules of the Tacotron model can be found
on Table 4.1.1.

4.1.2 WaveRNN Vocoder

The architecture of the neural vocoder follows the waveRNN model presented in
Section 2.4, conditioned on mel-spectrograms. It predicts the audio waveform corresponding
to a mel-spectrogram where each frame of the waveform is described as bits. Its architecture
is drawn on Figure 4.3.

In order to condition the waveRNN model on mel-spectrograms, those features are first
upsampled to match the sequence length of the audio waveforms using an upsampling
network. It is composed of multiple instance of a module upsampling the features by
repeating frames of the mel-spectrograms m s; times, followed by a convolution layer of
length 2 x s; to extract high level features. s; is called the scale factor.

Then a frame m; of the upsampled mel-spectrogram is concatenated to the coarse and
fine bits ¢;_; and f;_; predicted at timestep ¢t — 1 in order to predict those of timestep t,
¢; and f;. Those features are used as the input of the RNN layer presented in Section 2.4.
The dimensions of the output of that layer are separated into two halves h;; and h;o. A
classifier composed of a ReLLU layer followed by a Softmax layer is used to predict ¢; from
hi1. An identical classifier is used to predict f; from hy 5.

In this work, the upsample network is composed of 3 upsampling modules with scaling
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Figure 4.3 — Architecture of the neural vocoder.

factors 9, 8 and 4. In the waveRNN module, the RNN layer is of dimension 1024, the

ReLU layers are of dimension 1024 and the softmax layers are each of dimension 256.

4.2 Data and Experimental Setup

This work has been made during an internship at the National Institute of Informatics,
Tokyo, Japan. As a consequence, the private dataset used in Chapter 3 was unavailable.
Instead, the data used in this chapter are taken from the SIWIS dataset (Honnet et al.
2017). This is a high-quality recording of around 11 hours of speech from a professional
French female voice actor, with the corresponding texts. While the dataset is composed of
6 sections, we only used the 4 first part. The first section is readings of parliaments sessions,
with 4500 sentences for 4h of audio. The makers of the dataset chose those sentences as to
get "the best possible diphone coverage" and to contain only words among the 10 000 most
common words in the French language !. The second part is the reading of five french books

with 3500 sentences for 5h of audio. The third section is the reading of the french sentences

1. The rank of words were compiled on newspaper articles
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Raw M. Jean, agé de 34 ans.
Normalized text | monsieur jean, agé de trente-quatre ans.
Phonetic input | mosjg 3a <punctuation> aze do tyatkaty a

Table 4.2 — Example of the pre-processing applied to a sentence.

in the SIWIS database (Goldman et al. 2016) with 75 sentences for 4 minutes of audio.
Finally, the fourth section is the reading of 100 semantically unpredictable sentences for 5
minutes of audio. In total, we used 8175 sentences for a total 9h10 of audio. Hence, overall,
the data used in this chapter come from a well-curated dataset. It covers a wide-range of

useful vocabulary, with a good phone coverage, and recordings of high quality.

The dataset is split into train/validation/test subsets. All sentences from every part
of the dataset are mixed. Then, 200 sentences are randomly chosen for the test set. Out
of the remaining sentences, 400 are randomly drawn for the validation set. Finally, the

training set is made of the remaining 7575 sentences.

To limit the use of linguistic expertise, the amount of textual preprocessing was
kept as low as possible. An example is reported in Table 4.2. It involved only replacing
common abbreviation by their full form (eg. "M." would be expanded into "Monsieur")
and replacing the numbers written in arab numbers by their full form (eg. "34" would
be expanded into "trente-quatre"). The punctuation was kept as it was and all characters
were lower-cased. Since two versions of the models are to be trained, either on characters
or on the phoneme transcription, phonetization of the cleaned sentences was performed
using the phonetizer of the Espeak TTS as in Chapter 3. All punctuation mark in the
phoneme sequence were replaced by a single special token. Finally, the sequences of tokens

(characters or phonemes) were one-hot encoded using the respective size of their alphabet.

On the acoustic side, the samples were downsampled to 24kHz before removing leading
and trailing silences. Silence removal is done by cutting audio at the beginning and end
of the sample where the amplitude of the signal is below 20 dB. Finally, 80-dimensional

mel-spectrograms are extracted with frame of bms.

Two version of the Tacotron models are trained. The first one is trained on character

inputs, the second one on phoneme inputs. The two models are trained for 10 days on a
GPU.
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4.3 Comparison of Phoneme and Character-based

Tacotron

The aim of this chapter is to assess to what point raw characters can be used as input
of an end-to-end model for speech synthesis, rather than a phoneme sequence. To do so,
samples synthesized following both methods are compared using a listening test in Section

4.3.1 and using objective measures in Section 4.3.2.

4.3.1 Listening test

A listening test is performed to compare speech synthesized using a phone transcription
as input with speech synthesized from raw characters. A random subset of 50 samples from
the test set are selected for the listening test. Mel-spectrograms corresponding to the text
of those samples is synthesized using both the phoneme and character Tacotron model.
The mel-spectrograms were manually checked for alignment errors. Out of the 50 samples,
only 2 contain alignment errors for the phoneme model, while none were found for the
character model. The mel-spectrograms are then converted to audio using the WaveRNN
vocoder. For the purpose of evaluating the quality of the waveRNN model, reference
mel-spectrograms are extracted for the 50 samples and converted back to audio using a
waveRNN neural vocoder.

At each step of the listening step, the listeners get the text of a sentence and 4
corresponding audio samples in a random order. Those samples correspond to natural
speech, the output of the WaveRNN model on the reference mel-spectrograms and speech
synthesized by the two Tacotron models. The listeners are then asked to answer two
questions. They are first asked to rate the overall quality of the audio samples on a 0-100
scale. The listeners are instructed that for each set of samples, at least one sample must

be rated with a value of 100. The scale is annotated with the following values :

— 0-20 : Bad
— 20-40 : Poor
— 40-60 : Fair
— 60-80 : Good

— 80-100 : Excellent
The second question asks the listeners to rate the level of perceived pronunciation

error by comparing the audio samples to the text of the synthesized sentence. Listeners
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Figure 4.4 — Whisker plot of the scores for the overall quality

were free to consider what a pronunciation error was. However, they were informed that
they could expect errors such as mismatch between the text and audio, as well as missing
or superfluous liaisons. The listeners were asked to rate the level of pronunciation error
on a 1-5 scale annotated as follow :

— 1 : Complete mismatch between the text and audio

— 2 : Lots of pronunciation errors

— 3 : Pronunciation error noticeable and bothering

— 4 : Pronunciation error noticeable but not bothering

— 5 : No perceived pronunciation error
Listeners were instructed that, unlike the first question, there is no need to have at least
one sample per set rated with a value of 5. This question is meant as a proxy of the usual
intelligibility test. This allows to avoid the lengthy and complex task of asking listeners
to manually transcribe the speech signals.

12 french volunteer listeners took part in the listening test and rated 25 sets of samples
each. Thus, each of the synthesized samples are covered by 6 listeners. Whisker plots
reporting the results of the listening of the listening test can be found in Figure 4.4
(quality) and 4.5 (pronunciation errors).

Let us begin by examining the impact of using characters as inputs rather than
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Figure 4.5 — Whisker plot of the scores for the pronunciation errors

phonemes on the overall quality. Unexpectedly, the natural speech samples were rated
almost exclusively with value of 100, with only a couple values down to 80. In contrast,
the samples synthesized using the reference mel-spectrograms and waveRNN as a vocoder
were rated with a mean opinion score of 82.96. This indicates that the waveRNN model
is well trained and gives an upper bound to the quality of synthesized speech. As seen
on the whisker plot, speech synthesized from the character and phone models were rated
fairly similarly with the character model receiving a mean score of 73.83 and the phone
model a mean score of 71.93. According to a Student test with 95% confidence interval, the
difference between the two mean values is not statistically significant since the p-value is
higher than 0.005. From this listening test, we can conclude that using character as input
does not lower the overall quality of synthetic speech in comparison with a model trained
on a phoneme transcription.

One of the main reason of using phones as input rather than characters is to make
sure that the model does not mispronounce words of the sentence to synthesize. Thus, it
is important to observe whether or not listeners perceived noticeably more pronunciation
errors for the character-based model. Unexpectedly, since the test data correspond to
speech recorded by a professional voice actor, there is no pronunciation errors in the

natural samples and so they received a mean opinion score of 4.93. Similarly, the samples
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Figure 4.6 — Method applied to measure the amount of pronunciation errors introduced
by the synthesizing process.

synthesized from the reference mel-spectrograms do not contain pronunciation errors and
thus were rated with a mean opinon score of 4.79. The character and phone models were
rated with mean scores of 4.26 and 4.06 respectively. Again, the difference between the
two mean values is not statistically significant. This indicates that using character rather

than phones does not increase the amount of pronunciation errors.

4.3.2 Further Investigations on the Pronunciation Errors

To strengthen the claim that character-based TTS does not degrade pronunciation
prediction, we attempted to objectively measure the amount of pronunciation errors of
the character and phone-based models following the method drawn on Figure 4.6. This is
done by transcribing the synthetic speech samples using an ASR system. The amount of
pronunciation errors can be measured extrinsically by comparing the predicted transcript
to the actual text of the synthesized sentence and measuring how much they match.

For this study, we used a readily available speech recognizer : the IBM Watson Speech
to Text service. This cloud-based service allows to upload audio samples in a variety
of language (among which French) and receive the corresponding predicted sequence
of words. The prediction is done using two models. The acoustic model predicts the

most probable sounds corresponding to an audio sample. The language model predicts
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Natural | Character | Phoneme | Vocoder
SIWIS sentences | 0.04926 | 0.07256 0.07712 | 0.07845
Tongue-twisters NA 0.23267 0.23996 NA

Table 4.3 — Mean Phoneme Error Rate for sentences from the SIWIS listening test or
from the tongue-twister dataset

what word those sounds are most likely making, taking into accounts the previously
predicted words. The language model was not fine-tuned to our own dataset. To attempt
to remove the errors of transcription due to the language model, the predicted transcript
and reference text are both phonetized using the phonetizer of espeak. Espeak was also
used to predict the phoneme sequences used as inputs of the phoneme-based Tacotron.
This removes potential pronunciation errors introduced by the espeak phonetizer from
the evaluation. The phonetization step allows to remove errors such as predicting the
word "maison" in singular instead of the plural "maisons" which sound exactly the same.
Similarly, it allows to remove error due to conjugation and homonyms. The pronunciation
errors is then estimated by measuring the Phoneme Error Rate (PER) between the
phoneme sequences of the predicted transcript and reference text. The PER is computed
by aligning two phoneme sequences using the Levenshtein distance. Then, the number of
substitutions S, deletions D and insertion operations [ to transform a predicted sequence
Sprea Of length M into a reference sequence s,y of length IV are counted. Finally, the PER

is computed as :
S+D+1

PER<Spred7 Sref) = N

(4.1)

For this experiment, we used sentences from two dataset. In addition to using the
sentences of the test set, we collected a set of 200 tongue-twister French sentences. This
second dataset allows to study how both models perform on hard-to-pronounce sentences.
The experiment is also applied on the natural sentences of the test set as well as the
corresponding analysis-synthesis samples. In the case of the tongue-twister sentences, since
the dataset is purely textual, there are no audio references. The result of the experiments
can be found on Table 4.3.2.

When looking at the measures for the sentences from SIWIS used for the listening test,
the differences between the PER of each system are not statistically significant. Despite
not being able to conclude anything from the measure on this dataset, this allows to
have a baseline for the mean PER. For the tongue-twister sentences, the PER measured

for both the phoneme and character systems is much higher than the baseline value on
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normal sentences. This is to be expected since tongue-twister sentences are both harder to
pronounce and to comprehend. Interestingly, the difference between the measured values
for the character and phoneme systems is not statistically significant. This reinforces the
claim that using characters instead of a phone transcription as input of an end-to-end

T'TS french system does not lead to more pronunciation mistakes.

4.4 Analysis of the Embedding Space

4.4.1 Visual Analysis

The perceptual and objective evaluation of pronunciation errors showed that character
can be used directly for end-to-end speech synthesis. However, this did not give any insight
into why they are a good alternative. In particular, we have no idea about what kind of
representation is learned by the end-to-end model. To that end, we propose to visually
observe the contextual character embedding space.

In this work, we focus on the embeddings that can are extracted by the last layer of the
encoder, the output of the bi-directionnal recurrent layer. For a sentence s = (cy, .., cy)
with IV characters, the encoder extracts a sequence of N contextual character embeddings
(e1,..,en). We extract embeddings for all the sentences in the test set using the character
model. For visualization purposes, for each embedding, we register the identity of the
corresponding character ¢; as well as the previous and following characters (¢;_1,¢;11) in
order to deduce the pronunciation of the corresponding phoneme.

The result of a t-SNE visualization (Maaten and G. Hinton 2008) of the embedding
space can be found on Figure 4.7. For the sake of visualization purpose, the amount of
points is limited to 3000 randomly chosen contextual character embeddings. Overall, the
t-SNE visualization allows to discern group of embeddings. When looking more precisely,
those groups sometimes contain more than one type of characters, and the same character
can be found in different groups. The t-SNE is used here rather than the PCA as
in Chapter 3 in order to analyze the composition of groups rather than their relative
positions.

On the upper right part of the figure, At least four different groups of the character
"n" can be found. The first group contains only the character "n" and corresponds to
the embedding of a character written in contexts such as "nne" or "ene'. All of those

corresponds to the "/n/" phone. Then the three other groups mix both "n" and "m'
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Figure 4.7 — t-SNE visualization of the contextual character embeddings. Top-left : All
embeddings are highlighted. Top-right : All "n" characters are highlighted. Bottom-
left : All "u" characters are highlighted. Bottom-right : All punctuation characters are
highlighted.
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characters. Fach of those three groups also correspond to a different phoneme. For example,
a first group contains the embedding of characters written in contexts such as "emb",
"end" or "ant', which correspond to the phoneme /a/. Similarly, the other two groups
correspond to the phoneme /€/ and /5/. The same observation can be done for vowel
characters. Looking at the lower left part of the figure, at least three groups of the "u"
character can be found. They correspond respectively to the phonemes /u/, /o/ and /k/.
Finally, the lower right part of the figure shows the behavior of punctuation contextual
characters embeddings. All punctuation, such as ".", "?" and "," can be found in the same
group of embeddings. Some non-punctuation characters can also be found in the group.
Most of those are actually mute characters such as "s" or "t" ending a word without being
pronounced, or the space character. Interestingly, embeddings corresponding to the space
character can be found in most group of embeddings. However, their presence in a given
group cannot always be explained by a similar textual context.

Overall, according to the observations made thanks to the t-SNE visualization, it seems
that the structure of the contextual character embeddings follows a structure where they
can be separated into group depending on their corresponding phoneme. This is not
surprising since the Tacotron architecture simulates N-grams extraction thanks to the
CBHG module (see Section 2.3). This allows to capture information at a higher level
than the character one. It is interesting to notice that the Tacotron model seems to learn
word pronunciation by discovering the phoneme structure of speech and the phonology of

French, without any linguistic expertise.

4.4.2 Further Use of the Character Embeddings

The observation of the contextual character embedding space led us to hypothesize
that the Tacotron model learns an internal representation tied to phonemes. In order
to measure this property objectively, we propose to build a phonetizer working with
contextual character embeddings or raw characters as input and compare the performance
of the two systems.

To do so, as in Section 3.4.5 we aim to build the least complex model possible. The
model (drawn on Figure 4.8) is a neural network built using the ESPNET (Watanabe
et al. 2018) framework. It takes either a sequence of contextual character embeddings
or one-hot encoded raw characters as input, and outputs a sequence of one-hot encoded
phonemes. The model consists of a single LSTM layer with 64 units and a feed-forward

softmax layer. Since the input and output sequence do not match temporally, the network
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Figure 4.8 — Architecture of the model used to perform grapheme-to-phoneme conversion

Raw Characters | Contextual Character embeddings
All training data 0.19 0.13
All validation data 0.30 0.16

Table 4.4 — Phoneme Error Rate of all models after G2P training. The lower the better

needs a mechanism to align the two sequences. To keep the model as simple as possible,
rather than use an attention mechanism, the model makes use of the Connection Temporal
Classification (CTC) loss (Graves et al. 2006). This method allows to predict label directly
from unsegmented sequences by introducing a blank token between each of the output
tokens. This token can be repeated to indicate that the preceding non-blank token is
repeating. In the case of this experiment, the blank token indicates that the current

character is joined to the previous one to form a phoneme.

The models are trained over 20 epochs on the entire training set. Then, the quality
of the models is measured by comparing the predicted and reference sequence using PER
over the test set. A second training is done for both models with a limited number of
training data. The second training is done on the 400 sentences of the validation set,
which were not seen during the training of the contextual character embedding space.

The results of the experiment are reported on Table 4.4.2.

When training on all data available, the phonetizer working from contextual character
embeddings slightly outperforms the one working on raw characters. The difference between
the two mean values is statistically significant. This suggests that the contextual character
embeddings are indeed a closer representation to phoneme than raw characters are. When
trained on the validation set, the performance of the G2P working on embeddings slightly

worsen. This suggests that either the model benefits from a larger amount of data or
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that embeddings extracted from unseen data during training are slightly less related
to phonemes than those extracted from the training data. The precision of the model
trained on raw characters on the validation set worsened significantly when trained on
the validation set. Comparing the two models trained on the validation set shows that

contextual character embeddings are indeed more related to phoneme than characters are.

4.5 Conclusion

By design, the use of end-to-end models for speech synthesis allows to reduce the
needed amount of linguistic expertise. Indeed, rather than to rely on hand-crafted linguistic
features, the Tacotron model learns meaningful representations of phoneme sequences.
Furthermore, the model can be trained on raw characters rather than on a phoneme
sequence. Then, the Tacotron model replaces both the linguistic analysis and part of the
audio generation module of the traditional pipeline. In the case of a well-curated French
dataset, we have shown that using characters instead of phoneme does not lead to a lower
quality or any increase of pronunciation errors. Such end-to-end models fulfill half of the
requirements for universal speech synthesis that we had defined in the introduction of
this thesis. Toward universal speech synthesis, the next chapter focuses on adding easily

controllable variety in the synthesized output. Namely, speaker and accents variety.
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CHAPTER 5

ADDING VARIETY TO END-TO-END
SPEECH SYNTHESIS

Speech can be defined with three main components. The first is content, the message
conveyed through speech. The second is speaker voice, the voice with which the sample
is synthesized. The third is expressiveness, the different manners in which the message is
conveyed. Expressiveness can be due to many factors, such as regional accent, emotion,
etc. In the rest of this chapter, those factors of expressiveness and speaker voice will be
called speech style factors. In order for speech synthesis to become universal, a single T'TS
system needs to be able to produce a wide variety of speech. The TTS systems built in
Chapter 3 and 4 are already able to express a wide variety of content. However, they are
limited to a single speaker voice and are not expressive. Toward universal speech synthesis,
this chapter aims to enable the control of multiple style factors by conditioning an end-
to-end model on embeddings modeling those style factors explicitly. More precisely, this
work focuses on speaker voice and accents.

Following the works presented in Section 2.5, we consider that the control mechanism
for speech style factors in a universal system should use reference samples. The resulting
system is drawn in Figure 5.1. The use of reference samples allows the system to analyze
a real example of speech to derive automatically a representation of the factor wished for.
Then, this representation can be used to condition the production of a synthesized speech
sample. In this chapter, we study the possibility of a system taking multiple style factors
into account. Furthermore, we assume that each of the factors under consideration are
labeled on the training set.

To allow control over each style factor independently, they must be modeled separately
and must be disentangled from one another. To do so, we propose to train a Tacotron
model conditioned on one embedding per factor considered. The style factor embeddings
are obtained from encoders taking reference samples as input. In order to disentangle each

factor, the encoders must be trained at the same time, in an adversarial manner. To only
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Figure 5.1 — Drawing of a T'TS system modeling explicitly multiple speech factors.

study the impact of style factor embeddings, the Tacotron models used in this chapter
take phoneme sequences as input rather than characters.

In particular, in this chapter, we focus on the case of a system able to explicitly model
two style factors : the speaker’s voice and regional accents. Section 5.1 will begin by
building a system able to synthesize multiple speaker voices. Then, Section 5.2 attempts

to extend the system to synthesize multiple speaker voices and accents.

5.1 Multi-speaker Speech Synthesis

Before attempting to model multiple style factors, this section focuses on a single factor
and aims to tackle speaker voices. The goal of this section is to build a multi-speaker speech
synthesis system. By conditioning a Tacotron model on speaker embeddings, the system
should be able to synthesize speech with the different training voices. Furthermore, if
the model learns to generalize well over the speaker embedding space, it should also be
able to synthesize voices that were unseen during training with no additional training
required. The remainder of this section introduces the system built for that purpose, the
data used to train it, as well as an analysis of its performance. More precisely, Section 5.1.1
presents an extension of the model used in Chapter 4 to allow multi-speaker synthesis.
Section 5.1.2 introduces the dataset used to train the model. Since the dataset originally
contains a large amount of data unfit for training a speech synthesis system, Section 5.1.3
explores multiple data augmentation schemes to improve the quality of the attention
model. Finally, Section 5.1.4 evaluates objectively how well the model reproduces the

voices of speakers.
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Figure 5.2 — Architecture of the tacotron model conditioned on speaker embeddings. The
speaker encoder extracts LDE embeddings and is pre-trained before the tacotron model.

5.1.1 System

The overall architecture (drawn in Figure 5.2) of the model used in this section is
an extension of the one used in Chapter 4, with the addition of a speaker embedding
derived from a pre-trained speaker encoder. The speaker voice should only affect the
spectrogram generation, not the analysis of the text pronunciation. Thus, only the decoder
is conditioned on the speaker embedding. More precisely, as in (Cooper, Lai, Yasuda, Fang,
et al. 2020), the embedding is concatenated with the inputs of the additive attention,
forward attention, and Prenet. All hyper-parameters are the same as in Chapter 4.

The speaker encoder extracts LDE embeddings from one sequence of acoustic features.
Similarly to x-vectors, LDE embeddings are extracted by applying convolution layers to
the sequence of acoustic features at the frame level. Then, those features are pooled to
obtain a single vector representing the whole utterance. This vector is either called x-vector
or LDE embedding depending on the method of pooling. Finally, a classifier is trained to
predict the identity of the speaker in the input utterance from the pooled vector. This
allows the embedding to capture the speaker’s voice characteristics. The mechanism for
x-vectors and LDE embeddings is drawn on Figure 5.3.

In the case of x-vectors, the pooling method is usually statistical. The mean and
standard deviation of the frame-level embeddings are computed. An x-vector is the concate-
nation of those values. For LDE embeddings (Cai, Jinkun Chen, and M. Li 2018), the
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Figure 5.3 — Architecture of the neural networks used to extract x-vectors (a) and LDE
embeddings (b).

pooling relies on a mechanism similar to attention, aligning the frame embeddings = to
a sequence of C' vectors u. learned during training. Each vector p. represents unspecified
components of speaker characteristics. A set of weights is computed to express how much

a frame-level embedding x; is related to component g,

_em(—fm —pel?) )
I e el |
S0 eop(— e — )

Wye

Then, the L frame-level embeddings are pooled by each components to obtain C' e, vectors:

o = Zf:l wtc(xt - ﬂc) (52>

L
Zt:l Wie

Finally, the LDE embeddings are the concatenation of the pooled values : E = (eq, .., ec)

In the rest of this section, the speaker encoder extracts LDE-embeddings. x-vectors will

be used for evaluation in Section 5.1.4.
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5.1.2 Dataset and Experimental Setup

A large number of speakers is needed to obtain a system able to adapt to new voices
without additional training. However, there is currently no open speech dataset available
for French with a large number of speakers. Thus, we used a private dataset recording
206 speakers, initially designed for automatic speech recognition. The audio quality is
reasonably good since the recordings were done in a silent environment with a high-end
microphone. However, elements of the corpus might be ill-suited for high-quality speech
synthesis. For example, the speakers used for the recordings are not professional voice
actors. This led to some utterances containing disfluences such as missing or repeated
words. Some sentences also contain mispronounced words. Also, depending on speakers,
the audio corresponding to plosive phonemes might be saturated due to the lack of
experience of the speakers. Another reason of why the dataset might not be the most
adapted for speech synthesis is its textual content. A large part of the original dataset is
made of voice commands recorded during the development of speech interactive telephones.

The texts in the dataset can be sorted in five different categories:
1. short basic commands for hands-free telephone control
2. sequences of numbers and phone symbols
3. name of streets, cities, rivers and other geographical french landmarks
4. sentences selected from newspaper for phoneme covering
5. single words selected for phoneme covering

All but the fourth category might be undesirable for speech synthesis since they do not
match the target domain which is continuous natural speech. The utterances in the first
category are very short (one to five words) and are not always grammatically correct.
The second, third and fifth categories are not actual sentences. Under the assumption
that those categories might hinder the quality of a speech synthesis model, we limited
ourselves to use only the fourth category : complete sentences, grammatically correct and
similar to natural speech.

As such the main corpus used in the rest of this section is composed of 100 sentences
for each of the 206 speakers. This results in a total of 20600 utterances for around 10 hours
of speech. Due to the way in which the dataset was originally designed, the newspaper
sentences for each speaker are randomly chosen among a set limited to 2282 sentences.

As a result, each newspaper sentence is read by multiple speakers.
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As in the previous chapter, the audio samples are downsampled to 24 kHz. Beginning
and trailing silences are trimmed. 80 dimensional mel-spectrograms are extracted. The
text sentences are normalized to extend simple abbreviations and numbers into their full
form. Then, the corresponding phoneme sequences are predicted using the phonetizer of
Espeak before encoding each of the phonemes using one-hot encoding.

Finally, the main corpus is divided in train/test/development subsets. The test set is
composed of all the samples read by 28 speakers. Similarly, the validation set is composed
of all the samples read by another group of 28 speakers. The training set is composed of
the remaining samples. Following this split, the voices of the test speakers are entirely
unseen by the system during training. However, the text of the samples read by the test
speakers are also present in the train and development set. This is due to the fact that
each sentence in the dataset is read by multiple speakers.

The speaker encoder used in this section is the same as in (Cooper, Lai, Yasuda,
Fang, et al. 2020). We use the pre-trained weights given by the authors without any
fine-tuning. Due to the architecture and training of the speaker encoder, the resulting
embeddings are supposed to be extracted independently from the textual content of the
reference samples. As such, they should also be language-agnostic. We extract the LDE
embeddings corresponding to each audio samples in the dataset. Then, for each speaker,
an average speaker embedding vector is computed from 10 randomly chosen embedding
vectors of that speaker. This allows to alleviate features that might be related to a single
sample, not shared with the other, and thus not representative of the speaker as a whole.

The weights of the conditioned Tacotron model are initialized using warm-starting
(Baylor et al. 2017). It consists in initializing parts of the weights of a neural network
using saved weights from a previous run of that neural network. Since the model used in
this section is an extension the phoneme model trained in Chapter 4, it contains additional
weights. All weights existing in both models are initialized with the values from the speaker
dependent model, the remaining are initialized randomly. The model is trained during 10
days and gets poor results in an informal listening test due to a high rate of attention
alignment errors. Section 5.1.3 aims to reduce the rate of alignment error, before measuring

how well the system is able to reproduce a speaker’s voice in Section 5.1.4.

5.1.3 Attention Alignment Errors

The first multi-speaker Tacotron model trained leads to poor performance because a

high number of samples are synthesized with alignment errors. An example of such sample
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Figure 5.4 — Exemple of alignment errors

can be found in Figure 5.4. Three types of alignment errors are possible :

— Discontinuity: The most salient attention weights are discontinuous. It can lead to
skipping and repeating words.

— Incompleteness: The most salient attention weights for the last frames of the mel
spectrograms do not match the last character of sentences. It leads to sentences
being partially read.

— Frozen attention: The most salient attention weights for consecutive mel-spectrogram
frames are matched with the same character. This leads to long lingering sounds
or pauses.

The aim of this section is to measure automatically the quality of the attention model for
alignment. We compare multiple data augmentation schemes to decrease the number of

alignment errors.

Attention Alignement Error Detection

For speech synthesis, the attention model computes an alignment between a text and
the corresponding mel-spectrogram. When reading, the reader is focused on a couple
of characters at most and focuses its attention on each of the characters sequentially,
without suddenly going back to characters previously read or skipping words. Similarly,
the alignment in the Tacotron model should be continuous. The errors can be detected
automatically by looking at the attention weights. Using the same definitions as in Section
2.2, for each timestep ¢ of the output sequence, the result of the alignment model is a

weigthed sum over each timestep j of the input sequence « :
N
C; = Z Q5. (53)
j=1
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The most salient weight «; for timestep i of the output sequence is found for timestep J

of the input sequence :
o; = a;; = max;(a;;), with

(5.4)

5 = argmax;(o;).

For ease of notation, we note n the function mapping an input timestep ¢ and the output

timestep ; for which the most salient weight is found :
n i — argmax;(o;) (5.5)
Then, the progress in alignment between two following input timesteps is computed as :
In(i) —n(i+ 1) (5.6)

According to the continuity hypothesis, this progress should happen gradually. Thus, we

can detect swift changes using a threshold 7"
In(i) —n(@+ 1| <T (5.7)

If equation 5.7 is true for each timestep ¢ of the ouput sequence, then the alignment is

continuous.

Furthermore, a text must be read completely, to its end. Similarly, the alignment
process should match the last frames of a mel-spectrogram to the last characters of the
sentence synthesized. For an mel-spectrogram of length M, the most salient weight is
found for the character at index n(M). For the alignment to be complete, that character
should be close to the end of the sentence. According to the completeness property, For a
sentence of length N :

n(M)~ N (5.8)

This can be detected using the same threshold as previously :
N—n(M)<T (5.9)

If equation 5.9 is true, then the alignment is complete.

Due to the difficulty of distinguishing between long pauses and frozen attention, this
work does not attempt to detect those type of errors. However, we can observe that

samples with frozen attention are also often incomplete. Finally, the attention alignment
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error rate is defined as the number of samples where at least one type of alignment error

has been automatically detected, over the number of samples considered.

Data Augmentation Schemes

The high amount of attention alignment errors might be due to the low amount of
data available after the pruning of the original dataset. In order to lower the alignment
error rate, we explore two data augmentation schemes. First, we can observe that the
amount of original sentences in our dataset is quite low. In order to increase the amount
of textual data, we consider adding all the utterances previously left out of the dataset
(category 1, 2, 3 and 5). This augmentation scheme is referred to as text augmentation.

Alternatively, in order to increase the amount of audio data available without adding
new sentences from a different dataset, we can derive new samples from the original ones
by manipulating audio. Hence, from every original samples, we generated two new ones
by speeding up or slowing down the signal by a factor 1.1 without pitch correction. The
absence of pitch correction leads to the voice in the slowed down (respectively sped up)
signal being perceived as deeper (respectively sharper). The result is an audio signal
with natural sounding speech for two new virtual speakers. This augmentation scheme is
referred to as speaker augmentation.

We consider each augmentation scheme independently, and their combination. In the
case of the combination, we first augment the corpus with textual sentences. Then, we
apply the speaker augmentation scheme to all textual data, including the ones added
by the textual augmentation. When speaker augmentation is used, the mean speakers

embeddings are also extracted, in the same way as for real speakers.

Comparison of the Data Augmentation Schemes Using Alignment Error Rate

The multi-speaker Tacotron model is trained on the main dataset and on each of
the augmented corpus for 10 days. The quality of the alignments is then measured
automatically. Since there are no unseen texts in the test set, we measure the alignment
error rate on the sentences from the test set defined in Chapter 4. It is composed of 100
French sentences taken from books, parliament sessions, or semantically unpredictable
sentences. The result for the models trained with different data augmentation scheme are
reported in Table 5.1.

The rate of alignment errors for the model trained on the main corpus is of 22.9%.

More than a fifth of the sentences are synthesized with at least one alignment error.
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No Text Speaker Both
augmentation | augmentation | augmentation | augmentations
22.9% 10.8% 13.8% 15.8%

Table 5.1 — Automatic alignment error rate measured for different augmentation schemes.
The lower the better

While not all errors caught by the automatic detection correspond to total failure of the
synthesizing process, most impact the quality of the synthesized speech.

When augmenting the dataset with every textual data available in the corpus, the
rate of alignment errors falls down to 10.8%. While more data is usually considered better
when training neural networks, it is surprising that utterances with only one word or
sequences of numbers did not hinder the alignment process. A possible explanation is
that the addition of textual data, in particular the name of French landmarks, increases
the amount of vocabulary seen during training. As such, the generalization property of
the network improves.

When augmenting the dataset with virtual speakers, we augment the amount of audio
data without adding more vocabulary. The result is an improvement of the alignment
error rate to 13.8%. This suggests that the main corpus does not contain enough data
for optimal training. Interestingly, the difference between the error rates of the text and
speaker augmentation scheme is statistically significant. This suggests that, for alignment
errors, increasing the vocabulary is more effective than recording a higher number of
speakers with the same text.

Finally, augmenting the dataset with text and speaker augmentation (in that order)
also leads to an improvement. This suggests again that the main corpus is not big enough
to train a convincing alignment model. The difference between this system and the ones
trained with a single data augmentation is statistically significant. This result is surprising
since the expected outcome would be that the combination of both augmentation schemes
should outperform each scheme taken independently. Despite training this model with
different sets of hyper-parameters, the result has always been the same. Our hypothesis
is that, since the augmented textual data are repeated due to the speaker augmentation,
there is a slight over-fitting on the augmented data (sequence of numbers, etc.).

Overall, this experiment suggests that a certain amount of data is needed to train a
convincing attention mechanism for multi-speaker speech synthesis. Interestingly, it seems
that increasing the size of the vocabulary, even through single-word utterances, increases

the quality of the alignment process. However, there appears to be a trade-off on the
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amount of those poorly constructed sentences. Finally, this experiment leads us to think
that a corpus designed for multi-speaker speech synthesis should strive to record different
texts for each speaker, in order to facilitate the training of the attention mechanism. In
the rest of this work, we focus on the model trained with text augmentation as it gave

the best alignment performances.

5.1.4 Speaker Similarity

The main goal of multi-speaker synthesis is to reproduce the voice of multiple speakers
with high fidelity. This section aims to objectively evaluate the similarity between the
voices of target speakers and the voices actually synthesized by the multi-speaker system.
We follow the methodology described in (Cooper, Lai, Yasuda, Fang, et al. 2020) and
assimilate speaker similarity to the cosine similarity between speaker embeddings. We
first present the evaluation methodology before showing it allows to distinguish between
natural speakers. Then, we apply this methodology to measure the speaker similarity
between natural and synthesized speakers. Finally we investigate different speaker adapta-

tion method to improve the performance of the voice cloning.

Methodology

The methodology applied to measure speaker similarity is drawn on Figure 5.5. For
a given speaker, 10 samples are randomly selected to extract x-vectors. Then, a mean
speaker embedding is computed as the average of those 10 x-vectors. We synthesize the
texts corresponding to those samples using the multi-speaker Tacotron model conditioned
on the average LDE embedding of that speaker. X-vectors are also computed from those
10 synthesized samples and averaged to obtain a mean x-vector corresponding to the
synthesized voice. Finally, the speaker embedding derived from original data e, and

from synthesized data egy,s, can then be compared using the cosine similarity defined as:

eoTig . esynth
| _ . 5.10
C05(€orig, €synth) |€orig|ll|€synen | o

The cosine similarity is 0 when the two vectors are orthogonal which means they are
dissimilar. The similarity is 1 when the two vectors are co-linear which means they are
entirely similar. It is important to note that if e € R¥, the cosine similarity can also be

negative. Then, we interpret the range [—1, 0] as dissimilarity.
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Figure 5.5 — Drawing of the methodology applied to objectively measure the speaker
similarity between natural and synthesized speech.

Woman 1 | Woman 2 | Man 1 | Man 2

Woman 1 1 0.608 0.182 | 0.447

Woman 2 0.608 1 0.110 | 0.579

Man 1 0.182 0.110 1 0.523
Man 2 0.447 0.579 0.523 1

Table 5.2 — Comparison of 4 speakers using the cosine similarity on average x-vectors
extracted from natural speech.

Similarity Between Natural Speakers

We start by asserting whether this measure is well-founded or not. To do so, the cosine
similarity is used to compare two female and two male speakers with x-vectors derived
from natural samples. Those speaker are chosen randomly from the test set. The resulting
similarity measures can be found on Figure 5.2.

Overall, the cosine similarity between the mean x-vectors of each of the speaker is
around or below 0.6. This suggests that this measure can indeed be used to distinguish
between speakers. However, it is hard to interpret the actual scale of the values measured.
For example, the similarity measured between speakers of the same sex is of 0.5 or 0.6. But

the similarity between "Man 2" and both women is also around 0.5. Thus, this measure
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Woman 1 | Woman 2 | Man 1 | Man 2
0.883 0.820 0.810 | 0.775

Table 5.3 — Cosine similarity measure between average x-vectors embeddings computed
from natural and synthesized speech

can help to distinguish between speakers but might not be completely interpretable as a

proxy of perceptual similarity between two voices.

Similarity Between Natural and Synthesized Speakers

We can then measure the ability of the model to produce new voices by measuring the
speaker similarity for unseen speakers between natural and synthetic speech. The multi-
speaker Tacotron model can be adapted to new speakers by feeding it with their LDE
embedding. Again, the speaker similarity is measured as the cosine similarity between x-
vectors computed from natural and synthesized speech. The unseen speakers are the ones
selected for the previous experiment. The samples used to compute the average synthesized
x-vectors are randomly selected among samples that did not present alignment errors. The
results of the experiment are reported on Table 5.3.

All cosine similarities are between 0.78 and 0.88. Thus, all of those values are greater
than the threshold of 0.6 previously found. This suggests that for a speaker s,q ;, the
corresponding cloned voice Sgynpn; in synthesized samples is closer to s,4:; than to a
different speaker s,. ;. However, the values on the lower end suggest that perceptual
speaker similarity might be quite low. Indeed, an informal listening test led to observe
that listeners were not able to confidently say that the voices of the synthesized and

natural samples were the same, nor the contrary.

Comparison of Different Adaptation Methods

The result of the previous experiment shows that the model perform poor speaker
adaptation when it consists only in feeding the speaker embedding of an unseen speaker.
However, the speaker similarity might be improved by fine-tuning the model on samples
from the target speaker. This then raises the question of how much data is needed for the
fine-tuning. Furthermore, if fine-tuning is necessary, are multi-speaker models beneficial
in any way compared to a speaker dependant model trained to synthesize the voice of
a single speaker 7 In order to answer these questions, another experiment has consisted

in fine-tuning the phone-based single-speaker Tacotron model obtained in Chapter 4 and

105



Part I, Chapter 5 — Adding Variety to End-to-End Speech Synthesis

MSM MSM MSM MSM
SSM | without fine-tuning | fine-tuning | fine-tuning
fine-tuning | 10 sentences | 20 sentences | 50 sentences

0.948 0.803 0.947 0.914 0.906

Table 5.4 — Cosine similarity measured between average x-vectors extracted from natural
and synthesized speech. Comparison a Single Speaker Model (SSM), a Multi-Speaker
Model (MSM) adapted without fine-tuning, a multi-speaker model fine-tuned on a varying
amount of data.

our Tacotron multi-speaker one. Both models, fine-tuned on a single speaker, can then be

compared to evaluate these two speaker adaptation schemes.

Since the data of a single speaker from the corpus used in this section might not
be enough, we instead use a small subset from the Synpaflex corpus (Sini et al. 2018).
It contains recordings of audio-books read by an amateur female speaker. The audio
quality is similar to that of the corpus used to train the multi-speaker Tacotron model.
We consider a total of 943 sentences, 743 are used for the train set, 100 are kept the
validation and test set each. An LDE-embedding vector is extracted for that new speaker
and the multi-speaker Tacotron model is fine-tuned on a varying amount of data from the
new speaker training set for 20 epochs. The single-speaker model is also fine-tuned for 20
epochs on the entire new speaker training set. The results of the experiment are reported
on Table 5.4.

As expected, the speaker similarity between the samples synthesized from the single-
speaker model and natural speech is quite high. This suggests that if a T'T'S system only
needs to synthesize speech with a single voice, if a low amount of data (couple of hours)
is available for that given voice, fine-tuning a high quality model is a good alternative
to training from scratch. The cosine similarity for the multi-speaker model without any
fine-tuning is of 0.8. This value is similar to those found in the previous experiment. This
confirms the behavior of the model on unseen speakers. Then, for all amounts of data
used for fune-tuning the multi-speaker model, the cosine similarity is higher than 0.9.
In particular, the model fine-tuned on only 10 sentences has similar value as the single-
speaker model. This suggests that fine-tuning a multi-speaker model, even on a really
small amount of data (couple of minutes), is a good alternative to fine-tuning a speaker
dependent model. This method has the benefit of being faster to train. Furthermore,
it seems that the amount of data needed to compute an average speaker embedding is

enough to perform the fine-tuning.
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A universal TTS system must be able to synthesize a wide variety of speech. In
this section, we have studied the use of speaker embeddings to condition a sequence-
to-sequence model predicting mel-spectrograms to allow multi-speaker speech synthesis.
However, a universal system should be able to add more variety with little or no effort. In
theory, the use of speaker embeddings allows to synthesize speech with the voice of unseen
speakers by using the corresponding audio as a reference. However, in practice, this type
of speaker adaptation is not optimal. The adaptation can be improved by fine-tuning the
multi-speaker model on the data used to compute the speaker embeddings. While this
process is far from perfect, it serves as a first step toward universal speech synthesis. To
get closer to that goal, the next section attempts to model two speech factors at the same

time: speaker voice and accent.

5.2 Multi-speaker Multi-accent Speech Synthesis

After having modeled a first speech factor, we attempt to model two speech factors
concurrently. The goal of this section is to build a multi-speaker multi-accent speech
synthesis system. By conditioning a Tacotron model on speaker and accent embeddings,
the system should be able to synthesize speech with different voices and accents. Furthermo-
re, if the two speech factors are modeled independently, in such a way that their representa-
tions are disentangled, each speech factor should be controllable separately. In the case of
a multi-speaker multi-accent model, this would allow to synthesize speech with the voice
of a chosen speaker and an accent different than the speaker’s original one. This is called

accent transfer.

The remainder of this section introduces the multi-speaker multi-accent speech synthe-
sis system, the data used to train it, as well as an analysis of its performance. More
precisely, Section 5.2.1 introduces the architecture of a Tacotron model predicting mel-
sprectrograms from text and conditioned on speaker and accent embeddings. Then, Section
5.2.2 presents the dataset used to train the model. Section 5.2.3 measures how much the
speaker voice and accent speech factors were disentangled in the speaker and accent
embeddings. Finally, Section 5.2.4 measures how well the speaker voices and accents are

reproduced, as well as the quality of the accent transfer.

107



Part I, Chapter 5 — Adding Variety to End-to-End Speech Synthesis

mel-
spectrogram

5 Conv
stop flag | postNet

A

[ sigmoid | [ linear ]
\/
H  2LSTM Iaye{s |
A

2 Layer
Pre‘net

- Location Attention |
Decoder

| Bi-LSTM |
[}
[ 3 Con\i layers |

| Speaker Encoder | |[ 2 Layer PreNet || | Accent Encoder |
Encoder 1

1
| Reference Sample | |Sequence of phonemes|| Reference Sample |

Figure 5.6 — Architecture of the multi-speaker multi-accent model.

5.2.1 Model

In this section again, the model used to predict mel-spectrograms from texts is based
on the Tacotron architecture. It is drawn on Figure 5.6. We follow the modifications
introduced by (Shen et al. 2018) to simplify the model. The CBHG module in the text
encoder is replaced by 3 usual 1-dimensional convolution layer, followed by a bi-directional
LSTM. This serves the same purpose as the CBHG module: to extract contextual phoneme
embeddings. Furthermore, in order to explicitly model speaker and accent-related informa-
tion, we condition the decoder on speaker and accent embeddings. The two embeddings
are concatenated to the ouput of the text encoder before being fed to the attention model
of the decoder. The speaker and accent embeddings are computed by a speaker encoder
and an accent encoder respectively. Those encoders are trained at the same time as the
Tacotron model in order to compute a single vector summarizing an entire reference mel-
spectrogram while capturing speaker or accent characteristics.

In order to independently control the voice being synthesized and the accent with
which the text is read, we aim to learn disentangled representation of those two speech
factors. The aim is similar to (Hsu et al. 2019) where the authors attempt to disentangle

the speaker and noise information. As such, we use the same architecture for our encoders.

108



5.2. Multi-speaker Multi-accent Speech Synthesis

It is drawn on Figure 5.7. The frame sequence s,.; of a mel-spectrogram is fed to a stack of
two convolutional layers each with 512 filters of width 3 and stride 1. This allows to extract
contextual features for each frame of the mel-spectrogram. Then, those features are fed to
a stack of two bi-LSTM layers with 256 units in each temporal direction in order to model
time dependencies both forward and backward in time. Finally, the sequence of frame-level
embeddings is pooled using statistics. The embedding vector is the concatenation of the
mean and standard deviation of the features over time. In the case of the speaker encoder,
this process is similar to the training and extraction of x-vectors. The main difference is in
the layers used in the encoder. The speaker and accent encoders are trained at the same

time as the Tacotron model

MB In order to constrain the speaker and accent encoder to learn characteristics corre-
sponding to speaker voice and accent respectively, a classifier is added to each encoder
during training. The architecture of these classifiers is drawn on Figure 5.7. A reference
mel-spectrogram s,.; is encoded by the speaker and accent encoder to obtain the embe-
ddings ey, and eq... Then, the first classifier predicts the ID 2d,y; of the speaker that
uttered the sample, from e,,,. The ID is a one-hot vector of size N, the number of
speakers in the training set. Similarly, the second classifier predicts the ID 2d,.. of the
accent spoken from the embedding e,.., where id,.. is a one-hot vector of size N, the
number of accents in the training set. The presence of those two classifiers during training
results in a multi-task model predicting a mel-spectrogram, a speaker ID and an accent
ID. The model is trained to minimize the sum of three losses corresponding to each task
of the model:
— The reconstruction loss L,... It is computed as the mean square error between the
predicted and ground-truth mel-spectrograms s,,cq and Sirye,
— The speaker classification loss L. It is computed as the categorical cross-entropy
between the predicted and ground-truth speaker IDs tdpi preq and 2dspr trye,
— The accent classification loss L. It is computed as the categorical cross-entropy
between the predicted and ground-truth speaker IDs tdgcc preq and 2dgec true-

Then, the overall loss L;,; of the model is defined as:

Ltot = Lrec(stru67 Sref) + Lspk (idspk,tru& idspk,ref) + Lacc(idacc,truea idacc,ref)' (511)

The classifiers are composed of two feed-forward layers. The first is a linear projection

of dimension 256, the second is a softmax prediction layer. Since this model does not
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Figure 5.7 — Architectures of the encoder and classifier used to model speech factors. Model
MB follows the architecture drawn in (a). Model MP and MPS follow the architecture
drawn in (b). Additionally, the weights of the classifiers with the same hatching are shared
for model MPS.

have any mechanism to disentangle the two speech factors, it will serve as a baseline in
the following experiments. Thus, the Tacotron model and the associated encoders will be
called Model Baseline (MB).

MP Learned in such a manner, the speaker and accent embeddings are allowed to
capture speaker and accent characteristics respectively. However, there is no assurance
that each embedding encodes only characteristics corresponding to the speech factor it
models. In order to attempt to disentangle speaker and accent characteristics, we add
a second classifier after each encoder. The resulting model is drawn on Figure 5.7. The
first additional classifier predicts the ID of the speaker idy; from the accent embedding
€qcc- The second additional classifier predicts the ID of the accent 2d,.. from the speaker

embedding e,,. Those classifiers add two additional tasks to the model. They are taken
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into account through the following loss functions:

acc
spk*

between the ground-truth speaker ID 2d e and the speaker ID predicted from

— The speaker classification loss L. It is computed as the categorical cross-entropy

acc

the accent embedding ¢dgy .04,

— The accent classification loss L*P*. It is computed as the categorical cross-entropy

acc”

between the ground-truth accent ID 2dgcc irue and the accent ID predicted from the

spk
acc,pred*

speaker embedding zd
In order to penalize the speaker (respectively accent) encoder if it encodes accent (respecti-
vely speaker) characteristics, these two losses are added to the overall loss L;,; as penalty

terms:

1 . 1
A+ L2 (idgeeprue, 325 ) A+ LA (dph true, 335G 1)

ace,pred

Lioia = Lot + (5.12)
where ) is a constant value added to avoid a division by zero. Indeed, the categorical cross
entropy takes values greater or equal to zero. Since the model attempts to disentangle the

two speech factors using penalty losses, it will be called Model Penalty (MP).

MPS Finally, we consider a second way to disentangle the two speech factors. We
attempt to train model MP while sharing the weights of the classifiers predicting the same
type of IDs. The speaker classifier predicting from speaker embeddings and the speaker
classifer predicting from accent embeddings share the same weights. We apply the same

process for the accent classifiers. This model will be referred to as Model Penalty Shared
(MPS).

5.2.2 Dataset and Experimental Setup

To the best of our knowledge, there is currently no open dataset containing a high
number of French speakers with different accents, with a sufficient total amount of data to
train end-to-end systems. In this section we use VCTK (Veaux, Yamagishi, MacDonald, et
al. 2016), an anglophone public dataset, to train our models and evaluate them. It contains
the text and recordings of anglophone speakers from different regions of the world, leading
to different accents. More precisely, the dataset contains recordings of 110 speakers, coming
from one of 11 regions, and with around 400 utterance per speaker. The accent represented
are from the United Kingdom (English, Welsh, Scottish, Northern Irish), Ireland, USA,

Canada, South Africa, Australia, New Zealand and India. Additional information such as
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age and region of living are present but were not used in our experiments. The recordings
are of high quality, but the speakers are not professional voice actors. The number of
speakers per accent is not balanced. English and American are the most covered with 33
and 22 speakers respectively. The least represented ones are New Zealand, and Welsh,
with a unique speaker each. The dataset’s gender distribution is overall well balanced
with 61 women and 47 men. All speakers first read a short excerpt called the Rainbow
Passage (Fairbanks 1940). Then, different sentences from a set of newspaper excerpts are

selected for each speaker, in a way that maximizes the phonetic coverage.

Before extracting acoustic features from the audio, the samples were down-sampled
to 16 kHz and the beginning and trailing silences were trimmed. Then, 80-dimensional
mel-spectrograms are extracted. Phoneme sequences are extracted from the texts using

the phonetizer from Espeak.

The corpus is divided in train/development/test subsets. The test set is composed
of all samples from 11 speakers, 1 per accent, with 6 women and 5 men. Due to the
unbalanced nature of the dataset, the Welsh and New Zealand accents are only present
in the test set. The validation set is composed of a random 10% of the remaining data.
Finally, the training set is composed of the remaining samples. The test set allows to
evaluate the model on unseen speakers and unseen accents. The validation set allows to

evaluate the model on seen speakers, but unseen reference waveforms and texts.

The three models presented in Section 5.2.1 are trained for 10 days. During training,
for each training sample, a mel-spectrogram from the speaker to synthesize is chosen

randomly and used as the input of both the speaker and accent encoders.

5.2.3 Experiment: Disentangling Speaker and Accent Embeddings

Three models conditioned on speaker and accent embeddings have been trained to
allow multi-speaker multi-accent speech synthesis. In order to control both speech factors
independently, the two embedding spaces need to be disentangled. The aim of this section
is to evaluate whether the methods proposed to train the speaker and accent embeddings
were successful in learning disentangled representations. The evaluation is performed
objectively, first by measuring the accuracy of the classifiers trained on speech factor
embeddings, second by using KNN classification on the speech factor embeddings spaces

themselves.
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classification task | embedding space | MB MP MPS
speaker speaker M %1 9% | 99 %
accent accent 8% | 9% | 99 %
speaker accent / 10.30% |26 %
accent speaker / 38% | 11 %

Table 5.5 — Comparison of the 3 tacotron models according to the accuracy of the
underlying classifiers. In the first two rows, the higher the better. In the last two row, the
lower the better.

Accuracy of the Classifiers

We first investigate the disentanglement by evaluating the precision of the classifiers
trained at the same time as the embedding encoders and Tacotron model. Since the test
set only contains unseen speakers, the accuracy of the classifiers cannot be measured on
the test set. Thus, we compute the accuracy of the classifiers associated to each model
using the development set. The measured values are reported in Table 5.5

The first model trained, MB, does not attempt to disentangle the speaker and accent
dimensions. As such, it can be used as a baseline to evaluate the effectiveness of the
other proposed methods. The model possesses only one classifier per type of variety. The
baseline is an accuracy of 90% for a classifier predicting the identity of a speech style
according to the corresponding speech style embedding.

The second model, MP, adds a second classifier to each embedding in order to act
as a penalty during the learning. Compared to the baseline, this method allows for an
improved precision of the classifiers working on the corresponding speech style embedding.
The accuracy of the speaker classifier working on accent embeddings is close to 0%, while
that of the accent classifier working on speaker embeddings is 3.8%. This means that the
speaker classifier is not able to predict the speaker identity from an accent embeddings
(similarly for the accent classifier). This hints that the regional accent embeddings might
not contain speaker characteristics. Thus, the speaker and accent speech factors might
have been untangled.

The third model, MPS, adds an additional constraint to the training process by
constraining the speaker classifier working on accent embeddings to share its weights with
the speaker classifier working from speaker embeddings (similarly for the accent classifier).
When predicting from the corresponding speech factor, the accuracy of the classifiers is
similar to that of MP. Interestingly, the precision of the speaker classifier predicting from

accent embeddings is significantly higher for model MPS than model MP. Idem for the
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accent classifier predicting from speaker embeddings. This means that if the untangling
process was successful, the speech and accent factors are probably more correlated in the
embedding spaces of model MPS than those of model MP.

We proposed to disentangle the speaker and accent embeddings by learning penalty
classifiers attempting to predict the accent or speaker ID from the embeddings. The
measures show that the penalty classifiers were successfully trained, in such a way that
they are not able to predict the speaker ID from the accent embedding (and vice-versa).
This suggests the underlying embedding might not encode anything but the characteristics
of the speech factor it is supposed to encode. However, those measures are not based on
the embeddings themselves but on classifiers trained to fail. As such, it is important to

validate those observations by investigating the embeddings directly.

Investigation of the Speech Factor Embeddings

Measuring the accuracy of the classifiers showed hints that the disentangling process
might have been successful since classifiers predicting from embeddings of the opposite
speech factor have bad accuracy. However, those classifiers might have learned a strategy
to disregard the embeddings they are supposed to predict from. In this experiment, we
evaluate the disentanglement process via a KNN classification in the embedding spaces,
similarly to section 3.4.6. The reasoning is that if the speaker and accent embeddings
are truly disentangled, then the distribution of the embeddings in the accent embedding
space should be independent of the speaker identity. As such, the nearest neighbors of
an acoustic embedding e uttered by a speaker s with accent a should be embeddings
uttered by speakers with accent a but who are not speaker s. We project utterances from
the development set in either the acoustic or speaker embedding space defined by the
utterances in the training set. For each utterance in the development set, we search the
20-nearest neighbors among the training embeddings. The mean accuracy of this 20-NN
classification is reported in Table 5.6

The first row corresponds to the accuracy of the KNN speaker classification in the
speaker embedding space. Both models MP and MPS provide an improvement of the
accuracy over the baseline. This suggests that the speaker encoder of those models capture
speaker characteristics more efficiently than the baseline. This is coherent with the observa-
tion made in the previous experiment. Similarly, the accent classification performed in the
accent embedding space shows that both models also improve the baseline results.

The third row of Table 5.6 evaluates the accent classification in the speaker embedding

114



5.2. Multi-speaker Multi-accent Speech Synthesis

classification task | embedding space | MB | MP | MPS
speaker speaker 57 % | 72 % | 69 %
accent accent 81 % | 98 % | 90 %
speaker accent 38 % | 56 % | 45 %
accent speaker 68 % |83 % | 74 %

Table 5.6 — Comparison of the 3 tacotron models according to the accuracy of a KNN
classification in the embedding spaces. In the first two rows, the higher the better. In the
last two row, the lower the better.

space. All models have an accuracy between 80 and 90%. Such a high value means that
almost all neighbors of an embedding in the speaker embedding space are utterances
spoken with the same accent. This is not surprising since the speaker embedding space
should gather utterances spoken by similar speakers together. In particular, utterances
from the same speaker should be close to each other. Since all utterances from a given
speaker share a same accent, it is not surprising to have such a high accuracy.

Finally, the fourth row measures the speaker classification in the accent embedding
space. Both the MP and MPS model have an accuracy between 50 and 60%. This means
that half the neighbours of a given utterance in the accent embedding space were spoken
by the same speakers. While this number is high, it is significantly lower than the 84 or
86% accuracy of the speaker classification in the speaker embedding space. This means
that the accent embedding space encodes less speaker characteristics than the speaker
embedding space. Surprisingly, the accuracy of the baseline is only of 34%. This suggests
that the schemes introduced to disentangle the speaker and accent dimensions might have

hindered the process instead of helping it.

Overall, we investigated the disentanglement of the speaker and accent embeddings
with two different approaches. The first approach is based on measuring the accuracy
of the classifiers trained from the embeddings. It hints that the disentanglement process
is successful. However, it is doubtful whether a measure based on a classifier trained to
fail is reliable. The second approach is based on performing a nearest neighbor search in
the embedding space. It confirms that the accent embedding space encodes less speaker
characteristics than the speaker embedding space. However, it also suggests that the
schemes introduced are hurtful for the disentangling process. It is also doubtful whether
this measure is the best proxy for evaluating disentanglement. Independently of whether

the speaker and accent dimensions are still entangled, we next proceed to evaluate the
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ability of the systems to synthesize speech for different speakers and accents.

5.2.4 Evaluation of Voice Cloning and Accent Transfer

Since the multi-speaker multi-accent models are conditioned on two separate embeddings,

two use-cases are possible :

— The embedded accent matches the accent of the embedded speaker. This case is
similar to Section 5.1 with an additional explicit modeling of the accent. This is
voice adaptation, or voice cloning.

— The embedded accent does not match the accent of the embedded speaker. In this
case, we try to suppress the original accent of the embedded speaker and to apply
a different one. This is accent transfer.

The aim of this section is to evaluate objectively the capacity of the model to perform both
use cases, starting with voice cloning. To do so, as in Section 5.1.4, we compare average
speaker embeddings derived from natural speech to those derived from synthesized speech
using cosine similarity. Additionally, we perform the same comparison on average accent
embeddings to investigate whether the system is able to correctly synthesize a speaker’s
accent during voice cloning, then to check if the accent was efficiently reproduced during
accent transfer. But first, the objective measure is used to compare the speaker and accent

embeddings of natural samples as a baseline.

Speaker and Accent Similarities Between Natural Samples

In order to avoid biases, the average embeddings must be extracted from the same
neural network. Furthermore, this neural network must not be models MB, MP, or MPS
since they are under evaluation. We train two separate neural networks following the
encoder /classifier architecture presented in Section 5.2.1 over the training set, without
any Tacotron model or any disentangling scheme. The first DNN is trained to extract
speaker embeddings and will be referred to as Egy, the second is trained to extract
accent embeddings and will be referred to as E,... We begin by asserting the usefulness
of those encoders by comparing average embeddings derived from natural speech. For
each speaker ¢ in the development set, the corresponding natural samples are fed to
Egpi to derive speaker embeddings which are then averaged to obtain a single average
speaker embedding per speaker s?*. Similarly, for each accent j in the development set,

we compute the average accent embedding a;‘“t by averaging the embeddings extracted
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p334 | p310 | p244 | p251 | p271 | p230
p334| 1 | 0.01 [-0.18] 0.31 | 0.28 | -0.10
p310 | 0.01 | 1 | 0.20 | 0.19 | -0.04 | 0.04
p244 [ -0.18 [ 020 | 1 |-0.06 | -0.17 | 0.31
p251 | 0.31 | 0.19 [-0.06 | 1 | 0.48 |-0.11
p271 | 0.28 | -0.04 | -0.17 | 048 | 1 | 0.19
p230 | -0.10 | 0.04 | 0.31 |-0.11 | 0.19 | 1

Table 5.7 — Subset of the cosine similarity computed between pair of speakers from natural
speech. The letter "p" followed by an integer is the ID of the speaker in VCTK.

American | English | Indian | Scottish | South | Irish | Canadian | Northern | Australian
African Irish
American 1 -0.01 -0.29 0.06 0.05 0.06 0.30 0.10 -0.35
English -0.01 1 0.09 0.14 -0.05 0.28 0.13 0.08 -0.33
Indian -0.29 0.09 1 -0.11 -0.17 | -0.16 -0.25 -0.24 -0.02
Scottish 0.06 0.14 -0.11 1 -0.36 | -0.03 -0.12 -0.17 -0.13
South
African 0.05 -0.05 -0.17 -0.36 1 0.11 -0.23 0.08 -0.56
Irish 0.06 0.28 -0.16 -0.03 0.11 1 -0.17 -0.18 -0.25
Canadian 0.30 0.13 -0.25 -0.12 -0.23 | -0.17 1 0.05 0.28
Northern
Irish 0.10 0.08 -0.24 -0.17 0.08 | -0.18 0.05 1 -0.16
Australian -0.35 -0.33 -0.02 -0.13 -0.56 | -0.25 0.28 -0.16 1

Table 5.8 — Cosine similarity between each pair of average accent embedding. The highest
similarity is highlighted in bold

from F,.. over all speakers speaking that accent. We compute the cosine similarity between

each pair of speakers and each pair of accents in the development set.

Table 5.7 presents a small subset of the cosine similarity computed on speaker embe-

ddings between pairs of speaker. Since the cosine similarity is a symmetric measure, so
is the similarity matrix, with 1 on the diagonal. Overall, the smallest cosine similarity
measured is -0.62, the highest is 0.78, for a mean value of 0.04. This quick verification
shows that comparing average speaker embeddings extracted from FE,, using the cosine
similarity allows to distinguish between two speakers. In particular, a cosine similarity
higher than 0.78 should be a good indicator that the average embeddings are derived

from samples uttered by the same speaker.

Similarly, Table 5.8 presents the cosine similarity computed between the average accent

embeddings extracted with E,.. for all pairs of accent. The highest measured value is 0.30
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1) Average Embedding Extraction 2) Speech Synthesis H 3) Speaker Similarity H 4) Accent Similarity
for Conditioning Measure Measure
Siym Synthesized : . : )
4 Audio E ’->Cosme4‘ E ’>C03|ne<-‘
Mean synth nat E synth nat
TR ) ER— SiE,, Sie, iE a; g
: Model m i Model m i 4” 4‘” : 4 *
Decoder
HEE * i Mean Mean H Mean Mean

Speaker| | Accent Text Speaker| | Accent Text Embe- Embe- Embe-
: |Encoder| |Encoder| |[Encoder| | i |Encoder| |Encoder| |[Encoder]| i . ddings ddings H ddings
-------------------- A : :

Audio of H

Speaker S
ith Accent A

Figure 5.8 — Drawing of the methodology applied to objectively measure the speaker and
accent similarity between natural and synthesized speech.

between the Canadian and American accents. The lowest value measured is -0.56 between
the South African and Australian accents. Overall, the mean measured value is -0.07. It
seems that computing the cosine similarity between average accent embedding extracted
from FE,.. allows to distinguish between accents. Furthermore, a cosine similarity higher
than 0.30 can be interpreted as the embeddings being extracted from samples uttered by

speakers with a same accent.

Evaluation of the Voice Cloning

By extracting average embeddings from natural samples using the encoders Ej,; and
FE4ce, and by computing cosine similarity, one can decide objectively if natural audio
samples were uttered by the same speakers, and if they were uttered by speakers with
the same regional accent. A similar method (drawn on Figure 5.8) is applied between
embeddings extracted from natural and synthesized speech to evaluate whether the voice
of a speaker was cloned correctly and if her accent has been reproduced faithfully. We
first use this method to evaluate our models’ ability to clone voices. We select 9 speakers
from the development set randomly so as to get one speaker per accent.

For a given model m among MB, MP and MPS, for each speaker ¢, we extract an

average accent a;,, and speaker embedding vector s;,, from 10 natural speech samples
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p226 | p234 [ p293 | p245 | p248 [ p299 | p316 | p323 | pa74

MB | speaker similarity | 0.87 | 0.91 | 0.79 | 0.86 | 0.95 | 0.95 | 0.95 | 0.88 | 0.96

accent similarity | 0.83 | 0.96 | 0.69 | 0.89 | 0.70 | 0.82 | 0.85 | 0.73 | 0.94

MP | speaker similarity | 0.98 | 0.97 | 0.84 | 0.95 | 0.95 | 0.92 | 0.97 | 0.83 | 0.97

accent similarity | 0.89 | 0.95 | 0.83 | 0.88 | 0.80 | 0.86 | 0.88 | 0.48 | 0.94

MPS | speaker similarity | 0.96 | 0.92 | 0.81 | 0.91 | 0.96 | 0.96 | 0.97 | 0.74 | 0.97

accent similarity | 0.91 | 0.91 | 0.77 | 0.76 | 0.84 | 0.87 | 0.89 | 0.59 | 0.94

Table 5.9 — For each model, cosine similarity between embeddings (accent or speaker)
extracted from synthesized and natural speech for 9 speakers. For each speaker, the best
similarity for each speech factor is highlighted.

using the encoders of m. We synthesize 10 samples per speaker by conditioning the model
m on a;, and s;,,. Finally, the average speaker and accent embeddings are extracted

. . . synth synth .
from the synthesized samples using F,, and E,.. to obtain Si By and Qi The voice

synth

cloning process can then be evaluated by measuring the cosine similarity between s;’ Eop

nat S : synth nat
and si'p . Similarly for accents by comparing a;, . and a

ce 1, Bace”

The first row of Table 5.9 reports the cosine similarity computed between average
speaker embeddings extracted from natural speech or from speech synthesized by model
MB. All 9 speakers were measured with a similarity higher than 0.78. This value was the
threshold found previously, under which two average speaker embeddings can be said to
correspond to the different speakers. This suggests the voice of those 9 speakers has been
cloned successfully by model MB. The average speaker similarity measured for model MB
is 0.89. Similarly, all speaker similarities measured for model MP and MPS are also above
the threshold. This means our 3 models are able to reproduce a speaker’s voice when used
in a speaker adaptation manner. The average speaker similarity measured for model MP
and MPS is of 0.93 and 0.91. On average, no model outperformed the others significantly.

Thus, all models perform speaker adaptation with a similar level of quality.

The second row of Table 5.9 reports the cosine similarity computed between average
accent embeddings extracted from natural speech or extracted from samples synthesized
by model MB. Similarly to the observation for speaker similarity, the values for all 9
speakers are higher than the threshold of 0.30 for accent embeddings. This suggests that
the accent of those 9 speakers was reproduced faithfully. The same observation can be
done for model MP and MPS. The average accent similarity measured for model MB, MP
and MPS is of 0.82, 0.83 and 0.83 respectively. Again, no model outperforms the others
significantly.
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English | Scottish | Northern | Irish | Indian | American | Canadian | South | Australian
Irish African
MB 0.17 0.28 0.04 0.18 | -0.01 0.30 0.03 0.15 -0.16
MP 0.39 0.37 0.13 0.31 | 0.23 0.23 0.09 -0.01 -0.01
MPS | 0.39 0.37 0.13 0.31 | 0.23 0.23 0.09 -0.01 -0.01

Table 5.10 — Mean cosine similarity between accent embeddings extracted from natural

speech and from speech synthesized with accent transfer. Values higher than 0.3 are
highlighted

Overall, this experiment shows that the three models trained can be used for voice
cloning. Then, the voice of each speaker and their accent will be reproduced faithfully
according to this objective measure. Interestingly, no model outperforms the others signifi-
cantly. This implies that the scheme implemented to disentangle the speaker and accent

dimensions do not alter the behavior of the model for voice adaptation.

Evaluation of the Accent Transfer

Finally, the second use-case of a multi-speaker multi-accent TTS system is accent
transfer : the reference used for the accent embedding does not match the accent of the
speaker in the reference used for the speaker embedding. To evaluate the behavior of
the models on this use case, we select the same 9 speakers as previously. The evaluation
method is similar to the one used for the first use-case. For a given model m among MB,
MP and MPS, for each speaker 7, we extract an average accent a; ,, and speaker embedding
vector s;,, from 10 natural speech samples using the encoders of m. To test the accent
transfer of each accent to each speaker, we synthesize 10 samples for each permutation

of a;,, and s;,, to condition the model m. Finally, the average accent embeddings are

synth

.5 . We can then evaluate
yHace

extracted from the synthesized samples using F,.. to obtain a

synth

the accent transfer process by measuring the cosine similarity between a;% " and a}%

Z'7E(LCC :

Table 5.10 reports the mean similarity measured per accent for each of our 3 models.
The highest mean similarity value measured for model MB is 0.3 when transferring to
the American accent. For model MP and MPS, the mean similarities for English, Scottish
and Irish are also slightly higher than 0.3. The baseline highest value of similarity between
two different natural accent was 0.3. This means that almost all synthesized accents are
objectively dissimilar from their corresponding natural accents. In the case of the three
accents that were measured with a value above 0.3, this means the synthesized accents are

somewhat similar to the corresponding natural target accent. However, since the value is
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so low, it is doubtful whether they are perceptually similar.

Overall, the accent transfer did not lead to faithfully reproducing a given target accent.
This failure might be due to multiple reasons. First, the disentangling process of the voice
and accent speech factor was incomplete. This could hinder the accent transfer since the
average accent embedding would encode information other than accent characteristics.
Second, the conditioning of the Tacotron model on the accent embeddings might also be
incomplete. It might be useful to also condition the text encoder on accent embeddings

for example.

5.3 Chapter conclusion

In this chapter, we attempted to build a T'TS system which explicitly models multiple
speech components through the use of speech factor embeddings. The aim is to obtain
a system where each speech component is controllable independently. In particular, we
investigated the case of multi-speaker multi-accent TTS. As a first step, we have built a
multi-speaker Tacotron model conditioned on speaker embeddings. Different data augmen-
tation schemes were investigated in order to stabilize the attention alignment process.
The results suggest that data usually unsuited for the training of high speech synthesis
system might still be useful to learn more stable alignment models. We then objectively
evaluated the voice adaptation ability of the multi-speaker model. The results suggest that
in order to reproduce voices faithfully, the model needs to be fine-tuned. Interestingly,
it seems that fine-tuning over 10 sentences is enough to be comparable to a system
solely designed to synthesize the same voice. Then, we presented an extension of the
model to perform multi-speaker multi-accent speech synthesis. This extension consists in
conditioning the Tacotron model on both speaker and accent embeddings. We showed that
despite implementing training schemes to disentangle the speaker and accent dimensions,
both speech factors are still entangled. This failure might be due to the fact that speaker
identity and accents are intrinsically correlated. Indeed, the accent of a speaker can be
deduced from a speaker’s identity since each speaker speaks with only one accent. However,
a speaker’s identity cannot be deduced solely from its accent, so disentangling speaker
and accent should at least be possible in the accent embedding space. We evaluated
objectively the capacity of the model to perform speaker adaptation and accent transfer.
The results suggest that the model is able to faithfully reproduce a given target speaker

and her/his accent. Finally, we attempted to adapt the original accent of a speaker to a
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target one. However, the results showed that the synthesized accent shares characteristics

of the target accent while still being recognized as a different one.
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CHAPTER 6

CONCLUSION AND PERSPECTIVES

Conclusion

The aim of this thesis was to investigate the use of embeddings toward universal
speech synthesis. We identified two aspects of universality where embeddings derived from
neural networks can be used in speech synthesis. First, it should be easy to understand
how something universal work, and it should be easy to modify it. However, building a
TTS system usually implies an heavy pipeline where one needs to have both linguistic
and acoustic expertise. We investigated ways to use embeddings to lower the amount of
linguistic expertise needed. The second aspect is that something universal must be usable
in every situations. Then, a universal T'T'S must be able to synthesize speech corresponding
to a wide variety of speaking style. We investigated ways of using embedding to explicitly
model those speech components, thus enabling a TTS system to synthesize speech with
different styles.

This thesis began at the same time as disruptive advances were made to speech
synthesis with the introduction of end-to-end systems, replacing unit selection and stati-
stical parametric systems as the state of the art. In that context, we began by showing
that embeddings can be used to lower the amount of linguistic expertise needed to build
a unit selection TTS. More precisely, the traditional target cost of a unit selection system
is defined using linguistic expertise. We showed that phone embeddings extracted from
an acoustic neural network can be used to defined the target cost automatically as the
Fuclidean distance in the phone embedding space. We made three contributions to the
unit selection guided by neural networks method. First, we compared the hybrid and
traditional approach. This showed that, despite lowering the amount of expertise needed,
the automatically defined cost leads to synthesized speech of similar quality as the expert
cost. Second, we compared the use of acoustic models with different quality to define the
target cost. This proved that even bad acoustic models can lead to good unit selection

speech synthesis. Third, we investigated the notion of quality for phone embeddings. We
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showed that embeddings leading to good speech synthesis encode both linguistic and
acoustic aspects of speech. However, pieces of linguistic expertise remain in the unit
selection pipeline. It is still needed to predict the pronunciation of a text and to define

the linguistic features used as input of the acoustic model.

We then showed that embeddings can further lower, if not completely remove, the need
for linguistic expertise thanks to end-to-end systems. Such systems predict an acoustic
description of speech directly from the text or from its phonetization. If using phoneme as
inputs, the expertise is lowered by removing the need to explicitly define linguistic features
for acoustic prediction. However, some expertise still remains in the phonetization process.
We showed that, in the case of a well-curated French dataset, the end-to-end model can
be learned directly from characters with no loss in speech quality, and without additional
pronunciation errors. This work made two main contributions. First, it applied end-to-end
speech synthesis to the French language, which is rarely done. Second, we investigated
the character embedding space to understand how it relates to pronunciation. We found
that the end-to-end model learns contextual character embeddings that encode phoneme

characteristics without phonetic label supervision.

Finally, we investigated the use of embeddings to explicitly model speech components.
We began by conditioning an end-to-end model on speaker embeddings to allow multi-
speaker synthesis. Two main contributions were made. First, the particular dataset used
to train the models led us to investigate different data augmentation schemes in order
to stabilize the learning of the attention alignment module. We showed that all types of
textual data are actually useful to learn a stable alignment model. Our second contribution
is the objective evaluation of the model’s ability to adapt to new speakers. We showed
that while fine-tuning is still needed to adapt to new voices, the fine-tuning can be done
on a small amount of audio data. We then extended the system to model a second type of
speech style factor: accents. We made two main contributions. First, in order to control
both factors independently, we proposed different training scheme to disentangle the
speaker and accent embeddings. However, it is inconclusive whether the disentanglement
was successful because the identity of a speaker (his/her voice) can lead to guess the
accent. The second contribution is the evaluation of the voice cloning and accent transfer
processes. Through objective measures, we showed that the system is able to correctly
synthesize the true accent of speakers. However, when trying to replace a speaker’s accent
to a target one, our approaches fail to actually transfer the accent, due to the lack of

disentanglement.
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Perspectives

Following this thesis, perspectives are opened in different directions. First, the notion
of embeddings has shown, as in many other domains, to outperform several aspects of a
TTS system by removing linguistic expertise. Hence, one can wonder if this could not be
applied for other aspects which were not tackled in this PhD work. Second, our difficulties
to mix multiple voices and accents shows that the problem is still not solved, calling for
potential solutions. Finally, once T'T'S will have reached the universality objective, it seems
to me that the next step to generalize it to multi-modal synthesis in order to progress

toward better artificial avatars. The following details these three lines of future research.

Use of embeddings to remove expertise in other problems

Even if unit selection is almost not used anymore (or at least not a major research
focus), further work could be conducted to generalize the hybrid approach proposed in
Chapter 3. While we have explored the use of embeddings to define the target cost of a
unit selection system, the selection process also makes use of a join cost to predict how well
two units can be defined together. Embeddings could then also be used to define the join
cost in addition to the target cost. Indeed, the join cost is usually defined as a comparison
between acoustic descriptors. As such, if phone embeddings successfully encode acoustic
characteristics, then the join cost can probably be defined as a distance between phone
embeddings, thus removing acoustic expertise.

Then, we have shown that character embeddings learnt by Tacotron systems relate to
phonemes. This means that phonetizers could be trained based on those embeddings rather
than on characters directly, possibly improving the performance of phonetization systems.
Furthermore, this method could allow to learn phonetizers for languages and dialects
where no phonetically annotated data exist (pronunciation dictionaries or phonetically
labelled speech). Indeed, if a corpus containing textual and audio data does exist, a
Tacotron model can be learned. Then, a phonetizer could be derived from the underlying

character embeddings.

Integrating more speech style factors

The experiments on disentangling the speaker’s voice and regional accent were inconclu-

sive. This raises the question of whether the approach might not still be relevant for
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other speech style factors, and what might be solutions to enable a generic disentangling
approach.

On the one hand, I think that the proposed architecture might still be applied to other
speech style factors with less intrinsic correlation. For example, the same method could
be applied to disentangle speaker’s voice and emotion in acted speech. A successful model
could then be used to generate audiobooks, where speech styles are different between
acted dialogues and neutral narration.

On the other hand, further work is necessary to make accent transfer successful. In
this work, we tried to condition the synthesis based on accent embeddings. A strong
assumption was that these accent embeddings should not contain any other information
than the one related to accent (especially, nothing about the speaker’s voice). However,
this does not relate enough to the use case of accent transfer. At training time, the models
should probably also to be told that the generated speech signal must sound like the target
accent. To do this, an additional classifier could be appended to the model in order to
analyze the generated mel-spectrogram, for instance the same as the one used in the
accent encoding step. When considering several factors, e.g. the accent and the speaker’s
voice, this architecture should furthermore guarantee that (1) the accent from the speaker
sample is not taken into account, and (2) the voice from the accent sample is neither.
Again, this can be expressed as constraints on back-end classifiers. This whole approach
is actually close to what can be found in the textual style tranfer litterature, where style-
tranferred sentences are a posteriori analysed to check that the target style is met whereas
the meaning is still the same. While this seems to be a promising perspective, the next
question would probably be how to enable this approach based on a larger number of
different factors (voice, accent, age, spontaneousness, emotion, etc.). Indeed, issues would
be raised during training because of the exponential number of possible combinations of

factors.

Multi-modal Synthesis

More personally, in the long term, I believe that speech synthesis should be included
in the larger context of multi-modality. While related work already shows promising
results on audio-visual speech synthesis, facial or gesture animation, and body motion,
the question of full-body multi-modal speech synthesis does not seem to be addressed
yet. This synthesis would for instance enable an avatar to speak while acting mental or

physical characteristics. One could imagine an avatar who would talk while running and
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being in an happy mood. To be realistic, he/she would be hopping while running, and
the speech could be halted at times due to shortage of breath. The avatar generation may
be conditioned on various precise instructions (here for instance, textual message, motion
type, emotion). Alternatively, the generation could be conditioned on only a few of those
instructions, and then the others should be inferred (e.g., text message only).

Overall, this objective calls for unresolved questions regarding modeling, data and

evaluation.

Modeling Combining the state-of-the-art approaches from the speech synthesis and
animation domains would probably be enough to build a proof-of-concept for full-body
audio-visual synthesis. However, the quality of the resulting model would probably be
debatable as the key aspect here is that inter-dependencies should be taken into account
between all the dimensions under study. This is asking questions about how to interconnect
the models (joint training) or even to build a unified model (joint model). For example,
how should the different timing between each domains be addressed ? Deep learning offers

the first avenues to study in order to respond, for example through multi-tasking models.

Data Inevitably, data is required, especially when thinking about complex unified models.
On the one hand, the separate task involved in full-body audio-visual synthesis rely on
interesting (and sometimes massive) datasets that could help to bootstrap task-specific
components. On the other hand, several technologies exist to collect clean multi-modal
data acted in studios. Nonetheless, it seems to be more realistic to think about capturing
real (i.e. non-acted) situations to build very massive and diverse datasets. To automatically
extract annotations, methods that try to estimate information from traditional video
( Kocabas, Athanasiou, and M. J. Black 2020) or far field audio recordings (Peddinti
et al. 2016) are particularly interesting.

Evaluation Finally, evaluation methods have to be designed. Again, objective measures
coming from existing tasks can be used but specific metrics taking into account the
dependence between modalities should probably be proposed also. Then, as we are dealing
with reproducing human behaviors, perceptual evaluations would be certainly needed. For
example, human annotators should be asked to infer the type of motion, the emotion
carried and the quality of speech in a synthesized video. Ideally, the quality of the
produced avatars should be measured through a satisfaction degree of users when using

an application.
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Vers une synthése de parole universelle : utilisation d’embeddings linguistiques et
stylistiques pour des systemes flexibles et sans expertise.

Mots clés : Synthése vocale, Réseaux de neurones, Embeddings, Sélection d’unités, Tacotron

Résumé : La synthese vocale est une
technologie permettant de générer un
échantillon de parole correspondant a la lecture
dun texte. La majorité des systémes
commerciaux repose sur une expertise
linguistique, et sont limités a générer des
échantillons avec une voix unique, dans un seul
style de parole. Pour que la synthése vocale
devienne universelle, elle doit étre facilement
personnalisable et permettre de produire de
nombreux styles de parole. Cette thése a deux
buts. 1) Etudier la possibilit¢ de diminuer
l'expertise  linguistique  nécessaire  pour
construire ou modifier un systéme de synthése
vocale. 2) Etudier la possibilité de synthétiser de
la parole pour différents locuteurs, avec leur voix

et accents régionaux respectifs. Ce manuscrit
propose trois contributions. Premiérement,
l'utilisation de la propriété d’embedding des
réseaux de neurones pour diminuer I'expertise
linguistique d'un systéme de synthése par
sélection d'unités. Deuxiémement, I'utilisation
d’embeddings de caractéres pour éliminer
toute expertise linguistique d'un systéme de
synthése bout en bout. Enfin, la modélisation
explicite des caractéristiques de locuteurs et
d’accents a laide dembeddings pour
conditionner un modéle bout en bout et ainsi
construire un systéme de synthése vocale
multi-locuteurs multi-accents.

Toward universal speech synthesis : harnessing linguistic and stylistic embeddings for

expertise-free and flexible systems.

Keywords : Text-to-speech synthesis, Neural networks, Embeddings, Unit selection, Tacotron

Abstract : Text-to-speech synthesis (TTS)
turns a written text into an audio speech signal.
Many commercial systems rely on human
linguistic expertise, while being limited to
synthesize speech for a single speaker voice
and speaking style. For speech synthesis to
become universal in its usage and abilities, it
must be easily customizable while being able to
produce widely varied speech. The goal of this
thesis is two-fold. 1) To study whether it is
possible alleviate the need for human linguistic
expertise to build or modify a TTS system. 2) To
study whether it is possible to produce speech
corresponding to different speakers, with their
respective tone and regionalism accent. This
manuscript present three contributions.

First, we show that the embedding property of
neural networks can be used to lower the
amount of expertise in unit selection speech
synthesis. Second, we show that character
embeddings can remove all linguistic expertise
for end-to-end systems. Finally, we attempt to
explicitty = model speaker an  accent
characteristics in order to build a multi-speaker
multi-accent end-to-end speech synthesis
system.



