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Abstract

In this thesis, we shall investigate on the unification problem in ordinary modal
logics, fusions of two modal logics and multi-modal epistemic logics. With respect to a
propositional logic L, given a formula A, we have to find substitutions s such that s(A) is
in L. When they exist, these substitutions are called unifiers of A in L. We study different
methods for the construction of minimal complete sets of unifiers of a given formula A
and according to the cardinality of these minimal complete sets, we shall discuss on the
unification type of A. Then, we determine the unification types of several propositional
logics.

Résumé

Dans cette these, nous étudierons le probleme de I'unification dans les logiques
modales ordinaires, les fusions de deux logiques modales et les logiques épistémiques
multi-modales. Relativement a une logique propositionnelle L, étant donnée une for-
mule A, nous devons trouver des substitutions s telles que s(A) est dans L. Lorsqu’elles
existent, ces substitutions sont appelées unifieurs de A dans L. Nous étudions dif-
férentes méthodes pour construire des ensembles minimaux complets d'unifieurs d'une
formule donnée A et, en fonction de la cardinalité des ces ensembles minimaux com-
plets, nous discutons du type de 'unification de A. Enfin, nous déterminons les types
de I'unification de plusieurs logiques propositionnelles.
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Introduction

In many research area of computer science and artificial intelligence, non-classical
logics are considered: temporal logics, epistemic logics, etc. The main task to
be solved for the applicability of these logics is their mechanization. In Propo-
sitional logic, there exists an important problem which is called admissibility of
rules. A rule of inference is admissible in a given logic L if the set of theorems
in L does not change when that rule is added to the existing rules in L. In other
words, every formula that can be derived using that rule is already derivable
without that rule. Decision problem in admissibility of rules is the most prob-
lem. In Classical Propositional Logic, each admissible rule is derivable but in
general, the opposite of this phrase is not true. For example, In Intuitionistic
logic there are some rules which are admissible but are not derivable. Admis-
sible rules were studied by Lorenzen [42], Harrop [32] and Mints [50] who has
found interesting examples of admissible rules that are not derivable in Intu-
itionistic logic, in S4, etc. The question whether algorithms exist for recognis-
ing whether rules in Intuitionistic Propositional Logic IPC are admissible was
asked by Friedman [28]. This problem was solved by V. Rybakov [45] and [46]
for IPC and for modal logic S4. He also proved the same approach can be used
for a broad range of propositional modal logics, for example K4, S4, GL [44].
Unification theory provides a systematic approach to some important logical
problems, in particular, to the admissibility problem of inference rules. When-
ever the unification type of alogic is unitary or finitary there exists an algorithm
to recognize if a given inference rule is admissible in that logic. Two relation be-
tween admissibility of rules and unification problem is defined as follows:

e Let Lis a consistent logic. The following are equivalent:
1. The formula A is unifiable,

A
2. Theruler = n is non-admissible.

e If L is finitary then the following are equivalent:
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Ay, .., Ay . L.
1. Theruler = % is admissible

2. The formula o(B) € L for every maximal unifier o for formulas A;, ..., A;,.

As you see, To reduce admissibility to unification problem we need to know
about unification type of logic L.

Unification which is the problem of making terms syntactically equal by replac-
ing their variables by some new terms was introduced in automated deduction
by Robinson [51]. He showed that unifiable terms have a most one general uni-
fier. A unification problem is usually solved by substitution, which is the map-
ping of a symbolic value to every variable involved in the problem. In other
words, the unification problem essentially focus to look for a substitution in
order to unify two given terms. At the next step it is expected to provide a min-
imal and complete set of substitutions for a given problem. The unification in
logic also is related to find a substitution that makes a formula into theorem
or tautology. In general, the unification problem in a normal modal logic is to
determine, given a formula ¢ whether there exists a substitution o such that
o () is in that logic. In that case, o is a unifier of ¢. We shall say that a set of
unifiers of a unifiable formula ¢ is complete if for all unifiers o of ¢, there exists
a unifier 7 of ¢ in that set such that 7 is more general than 0. Now, an impor-
tant question is to determine whether a given unifiable formula has minimal
complete sets of unifiers [5], [22]. When such sets exist, they all have the same
cardinality. In that case, a unifiable formula is either infinitary, or finitary, or
unitary, depending whether its complete sets of unifiers are either infinite, or
finite, or with cardinality 1. Otherwise, the formula is nullary. E Baader, W. Sny-
der studied E-unification theory [6] where the terms are no longer required to
become syntactically equal, but only equivalent modulo the equational theory.
For example, if we consider the theory C = {f(x,y) = f(y,x)}, which says that
the binary function symbol f is commutative, then the unification problem
fx,y =? f(a, b) (for constants a, b) has the syntactic unifier o = {x — a, y — b},
which is also a C-unifier, but the substitution o = {x — b, y — aj} is another C-
unifier, which is not a syntactic one.

E Wolter and M. Zakharyaschev in [52] proved that unification problem is unde-
cidable for modal logics K* and K4* which are modal logic K and K4 extended
with the universal modality. They also proved that the admissibility problem
for inference rules is undecidable for these logics. In fact, these logics were the
first simple examples showing that the decidability of modal logics does not
guarantee decidability of unification and admissibility problems. V. Rybakov in



[47] answered to the question whether admissibility in the logic S4* is decid-
able. Also, admissibility rules in S4 have been studied in [4] by S. Babenyshev
et al. They made a sound, complete and terminating tableau calculus deciding
both admissibility and derivability of a given rule in modal logic S4. C. Gencer
proved that a modal logic A such that A 2 K4 and A possesses finite model prop-
erty inherits all admissible rules in K4 iff A satisfies the so-called co-cover prop-
erty which is a semantic property about K4-models [29].

For first time, S. Ghilardi introduced the notion of projectivity in [31] to deter-
mine that the unification type is finitary in S4 and K4 (Also see [36]). Jérabek in
[34] showed that the unification type is nullary in basic modal logic K. P. Bal-
biani et al. proved that unification type of modal logic K + LI L is finitary, or
unitary [12].

S. Babenysheyv, V. Rybakov proved that unification type of a propositional Lin-
ear Temporal Logic is unitary. Moreover, they presented an algorithm for con-
structing a most general unifier for unifiable formulas in Linear Temporal Logic
(see [3]).

W. Dzik in [24] proved that if a logic has projective unifiers then it is almost
structurally complete. W. Dzik in [25] proved that every unifiable formula has
a projective unifier in L iff L contains S4.3 where L is a normal modal logic
containing S4. S. Kost [37] showed that a transitive normal modal logic L have
projective unification iff L contains K4D1.

P Balbiani and C. Gencer in [7] proved that unification type of modal logics KD
is nullary. They used the similar arguments of Jérdbek in [34]. In addition, P.
Balbiani and C. Gencer in [10] proved that unification type of Modal Logics Be-
tween KB and KT B are nullary. And they also proved that unification type of
several non-symmetric non-transitive modal logics are nullary [9].

The thesis presents results on unification and unification types in modal
logics KD5, K5 and Alt; + UL, in fusions of modal logics and in Dynamic
Epistemic logic.

Chapter 2 contains necessary basic notions of modal logic.

In Chapter 3, the admissibility of rules in modal logic S$4 is investigated. In this
chapter we define a general reduced normal form. Then we transform an infer-
ence rule to a general reduced normal form. we present an algorithm inspired
by [44] for recognizing non-admissibility rules in logic S4. In this chapter, we
also consider sets of admissible rules and investigate about some properties of
them.

Chapter 4 contains the basic notion of unification. In this chapter, we review
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some of previous works and show that the unification type of modal logics KD5
and K5 is unitary or nullary.

In Chapter 5, we prove that unification type of the logic Al#; + L is unitary.
The proof follows from two statements. On the one hand, we prove that the
logic Alt; + UL is filtering hence it is nullary or unitary. On the other hand,
we prove that the logic Al#; + UL is reasonable then it is finitary or unitary.
Therefore, the logic Al#; + UL is unitary. In general, P. Balbiani et al. proved
that unification types of the modal logics determined by classes of determinis-
tic frames is unitary (see [11]). These results partly answer to an open problem
of S. Ghilardi (private communication, 2018). they will be presented during the
workshop UNIF [12].

Chapter 6 contains unification problem in fusion of two modal logics. Fusion
of modal logics are everywhere in computer science and artificial intelligence.
K. Fine and G. Schurz proved that some properties such as completeness and
decidability of modal logics L; and L, are inherited to the fusion L ® L [26].
See further about combining modal logics in [40]. In this chapter, we consider
fusion L; ® L, and prove that if L; is nullary and L; is a consistent modal logic
then the unification type of fusion L; ® L, is neither unitary nor finitary. For in-
stance, we prove that the unification type of fusion K; ® K is nullary. As well, in
this chapter we prove that the unification type of multi-epistemic logic (fusion
of §5; ® §5,) is nullary. (see [13]). This last result about S5; ® S5, is an answer
to an open problem of W. Dzik [22].

Chapter 7 contains unification in simple epistemic planning problem. In this
chapter, we solve the simple epistemic planning problem with unification tech-
nique. In this respect, we consider the associated formula A — (x) B where A
and B are epistemic formula and x is a variable, we find a public announcement
¥ by unification technique such that A — (y)B is valid in public announce-
ment logic. Then, we have to find a most general unifier for the associated for-
mula A — (x)B.
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Modal logic is a type of formal logic primarily developed in the beginning of
the 20th century [41] and in the 1960 by [33]. It extended Classical Propositional
Logic by operators expressing modalities. The most well-known modal propo-
sitions are propositions about what is a necessary case and what is a possible
case. For example, the following sentences are modal propositions:

e Itis possible that it will rain tomorrow.
* Aproposition p is not possible if and only if the negation of p is necessary.

The operators "it is possible that" and "it is necessary that" are called "modal"
operators.

2.1 Syntax

The language of Basic Modal Logic is an extension of the classical propositional
syntax. The two unary connectives [] and ¢ are added to the language of clas-
sical propositional logic. Let P is a countable set of atoms and we use the no-
tation p, g, r, ... for elements of P. The elements of P are also called atomic for-
mulas or propositional letters.

Definition 1 Formulas of basic modal logic are given by the following rule
p=plLlli-@l@ary) | Up

11
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where p is any atomic formula. We will also write formulas with lower case Greek
letter a, B, etc or with upper case Latin letter A, B, etc. We will write ¢ (px, ..., Pn)
(or a(p1,..., pn), A(p1,..., pn)) to insist on the fact that a formula only contains
the atomic formulas py, ..., pn. We will also write ¢(p) (or ap, A(p)) where p
denotes a tuple of atomic formulas. For all tuples x of atomic formulas, let F(x)
be the set of all formulas of the form ¢(x).

The Boolean connective T, V,— and < are defined as usual. In this case, the
diamond ("possible") connective is Q¢ ::= =[J-¢. The new connectives [] and
¢ are read "box" and "diamond" respectively and are dual of each other.
Substitution: Throughout this thesis we will use the notion of substitution. A
substitution is a function o from P to the set of all formulas. By induction on
the formula ¢, we can define the formula o (¢) as follows:

s g(p)=p,

ol)=1,

o(m) =0o(),

olpny)=oc(@)rno(y),

o(e) =Uo(¢).
Definition 2 (Degree) We define the degree of modal formulas as follows.

* deg(p) =0,

deg(l)=0,
* deg(n¢) =deg(p),
* deg(p Ay)=max{ideg(p),deg(y)},

deg(U(p)) =1+deg(yp).

An axiomatic system for a modal logic L consists of axioms and inference rules.
Axioms contain at least the Boolean tautologies and the axiom K:

« O(g — ) — g — Oy).

The rules contain at least modus ponens and necessitation:
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A a4
1

4
Oe
The theorems of a logic are all the formulas which can be derived from the ax-
ioms by the inference rules. To make a new axiomatic system we need to add
axioms and inference rules to the above minimal axiomatic system. Let us de-

fine inference rules and we will investigate about admissible rules in chapter
3.

Definition 3 An inference rule is usually given as a finite set of premise and a
conclusion. The rule is denoted as follows:

B A1 (X, eeey X))y eeny X (X7, weey X1)
B(x1, ..., Xp)

a
Where a, ..., a, B are formulas. We often user = E briefly.

Definition 4 For a formula ¢, we denote by sub(¢p) the set of all sub-formulas of
@. Foraruler = g, we denote by sub(a, ) the set of all sub-formulas of a and

p
B.

a
Definition 5 A rule r = — is admissible for the modal logic L, if for every substi-

tution fromo(a) € L it follows o (B) € L.

2.2 Semantics

In this section, we introduce frames and models and we explain how to deter-
mine whether a given formula is true or false in a given model.

Definition 6 A frame % in basic modal logic is a pair (W, R) such that
1. W is a non-empty set.
2. Risabinary relationon W.

That is, a frame for the basic modal language is simply a relational structure
bearing a single binary relation. The elements of W are called "possible worlds"
or "states". The binary relation R is called "accessibility relation".
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Definition 7 A model for the basic modal language is a pair 4 = (% ,V), where
ZF = (W, R) is a frame for the basic modal language and v is a function assigning
to each proposition letter p in P a subset v(p) of W. Formallyv : P — 2 (W),
where 22 (W) denotes the power set of W.

Definition 8 Suppose w is a state in a model 4 = (W,R,v). Then we induc-
tively define the notion of a formula ¢ being satisfied (or true) in # at state w as
follows:

e M, wEDPiffwev(p), wherepe P,

o M, WKL,

o M, wEiff M, wF ¢,

s M, WEQANYIffl,wEpand U, wFvy,

e M, wEUey ifandonlyifforallve W, wRv and 4, v F ¢.

It follows from this definition that 4/, w = O iff for some v € W we have wRv
and M, v E .

If ./ does not satisfy ¢ at w we often write .4, w ¥ ¢, and say that ¢ is false or
refuted in w. For all formulas @, letv(p) ={we W : .4, wF ¢}.

Definition 9 A formula ¢ is valid at a state w in a frame & (notation: &, w F
@) if @ is true at w in every model (¥,v) based on &; ¢ is valid in a frame &
(notation F F ¢) if it is valid at every state in & . A formula ¢ is valid in a class
of frames F (notation: F = @) if it is valid in every frame & in F; and it is valid
(notation: F ) if it is valid in the class of all frame. The set of all formulas that
are valid in a class of frames F is called the logic of F (notation: Ap).

Definition 10 The inference rule r = % is valid in model M iff 4 F a implies
MEP.

In this thesis we will consider the modal logics K, KD, §4, S5, etc. For example,
accessibility relation in logic S5 is transitive, reflexive and Euclidean.

Proposition 1 Let & = (W, R) be a frame, then

1. Risreflexiveifandonlyif # =Up — p,



2.2. SEMANTICS 15

2. R is transitive if and only if  F Up — UUp,
3. R is Euclidean ifand only if # = Op — OOp

Proof 1 refer to [18], Example 3.6.

Definition 11 We first define "disjoint unions" for the basic modal language. We
say that two models are disjoint if their domains contain no common elements.
For disjoint models 4; = (W;, R;,v;)(i € I), their disjoint union is the structure
; A = (W,R,v), where W is the union of the sets W;, R;s the union of the rela-
tions R;, and for each proposition letter p, v(p) =Wic1vi(p).

Proposition 2 For each modal formula ¢, for each i € I, and each element w of
M, we have M, wF @ iff Wic1 Mi, W E .

Proof 2 Refer to [18], proposition 2.3.

Definition 12 (Generated Submodels)We define generated submodels for the
basic modal language. Let 4 = (W,R,v) and /4’ = (W',R',v') be two mod-
els; we say that /' is a sub-model of 4 if W' < W, R’ is the restriction of R
to W' (that is: R' = Rn (W' x W')), and V' is the restriction of v to W1 (that is:
for each p, v'(p) = v(p) n W'). We say that 4" is a generated submodel of M
(notation:M' — M) if ' is a submodel of 4 and for all points w the follow-
ing condition holds:

ifwisin. /' and wRv, thenv isin /' .

Proposition 3 Let .4 and /' be models such that /' is a generated submodel
of M. Then, for each modal formula ¢ and each element w of #' we have that
MMawEQiff ol wE @.

Proof 3 Refer to [18], proposition 2.6.

Definition 13 (Bounded Morphisms) Let # = (W,R,v) and 4' = (W', R',v")
be models. for the basic modal language. A mapping [ : 4 — ' is a bounded
morphism if it satisfies the following conditions:

1. w and f(w) satisfy the same proposition letters.

2. (The forth condition) f is a homomorphism with respect to the relation R
(that is, if wRv then f(w)R' f(v).
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3. (The back condition) if f(w)R'vV' then there exists v such that wRv and
fvy="r.

If there is a surjective bounded morphism from 4 to ', then we say that 4 is
a bounded morphic image of A4, and write M — M.

Proposition 4 Let .4 and .#' be models such that f : # — M’ is a bounded
morphism. Then, for each modal formula ¢, and each element w € ., we have
A, wE @ iff o, f(w)E .

Proof4 Refer to [18], proposition 2.14.

Definition 14 Let /4 = (W, R, V) be a model. A subset X of W is called definable
(or expressible) iff there exists a formula a such that

X =V(a).

An element x € W is definable (or expressible) if the set {x} is definable. Let S
be a new valuation of certain propositional variables on the frame (W,R). The
valuation S is called definable (or expressible) if and only if for any letter p; from
the domain of S, there exists a formula a; such that S(p;) = V(a;).

2.3 Normal Modal Logic

A normal modal logic is simply a set of formulas satisfying certain syntactic clo-
sure conditions. Which conditions? We will define a Hilbert-style axiom system
called K. K is the "minimal" (or weakest) system for reasoning about frames;
stronger systems are obtained by adding extra axioms. We discuss K in some
detail, and then, at the end of the section, define normal modal logics.

A formula ¢ is K-provable if it occurs as the last item of some K-proof, and
if this is the case we write Fx ¢. K is the minimal modal Hilbert system in the
following sense. As we have seen, its axioms are all valid, and all three rules of
inference preserve validity, hence all K-provable formulas are valid. (K is sound
with respect to the class of all frames.) Moreover, the converse is also true: if
a basic modal formula is valid, then it is K-provable. (That is, K is complete
with respect to the class of all frames.) In short, K generates precisely the valid
formulas.
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Definition 15 (Normal Modal Logics) A normal modal logic A is a set of formu-
las that contains all Boolean tautologies, all formula of the form U(¢ — v) —

-y
{1/

(U — Uy), modus ponens and necessitation Di We call the small-

%
est normal modal logic K.

Definition 16 A proof is a finite sequence of formulas, each of which is an ax-
iom, or follows from one or more earlier items in the sequence by applying a rule
of proof . The axioms of K are all instances of propositional tautologies plus:
(K)U(p — v) — (U — Q). Its rules of proof are modus ponens and necessita-
tion.

Example 1 1. @pnAdq) — O(p A q) is K-provable.
2. O(pv q)— (OpVv_Oq) is K-provable.

In this thesis, we will consider the following modal logics:

K4 | Kelp—-Ulp
S4 Kiellp—p
S5 S4eOp—0UOp
KD KeUp—Op
KD5 | KDeOp —UOp
K45 | K4deOp—-UOp

Definition 17 Letn > 0. A Kripke model K;, = (W, R, V) is called n-characterizing
for a modal logic L (any normal modal logic)if the domain of the valuation V
from K, is the set P which consists of n different propositional variables, and if
the following holds: for any formula a which is build up of variables from P

aelo K, Fa

Let L be a logic. Let I be a set of formulas and A be a formula. A derivation of
A from T in L is a finite sequence Ay, ..., A, of formulas such that A, = A and
every formula in the sequence either is in L, or is in I, or is obtained by means
of modus ponens rule from previous formulas in the sequence, or is obtained
by means of necessitation rule from a previous formula in the sequence. We
will write I' - A if there exists a derivation of A from I in L.

IfT" = {By,..., By} is finite that we will write By, ..., B, -1 A.
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a
Definition 18 An inference ruler = E is called derivable in logic L ifa -1 .

We say that a frame F is a frame for modal logic L (or is an L-frame) if FF L.

Definition 19 A rule ) is semantically equivalent to a rule r, in modal logic L
iff FE T iff FE 1) for any L-frame F.
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The concept of an admissible rule was introduced by Paul Lorenzen (1955).
The admissible rules of a logic are the rules that can be added to the logic as in-
ference rules without producing any new theorems. Equivalently, they are rules
such that if the premises are made into theorems by any substitution then this
substitution also makes the conclusion into a theorem. Admissible rules have
been studied by many authors in particular, V. Rybakov. One important ques-
tion about admissible rules of a given logic is whether the set of all admissible
rules is decidable. Note that the problem is non-trivial even if the logic itself is
decidable. For instance, the basic modal logic K is decidable and the decidabil-
ity of the problem of admissibility in K is a major open problem. Modal Logic
S4 is decidable and the problem of admissibility in S4 is decidable as proved
by V. Rybakov (1985). In fact, admissibility of rules is known to be decidable
in many modal and superintuitionistic logics. The first algorithm or decision
procedures to recognize admissibility of rules was introduced by V. Rybakov
(1984,1985).

Example 2 The rule % is admissible in logic 54 since if g4 Uo(x) then - o(x)
for arbitrary substitution o.

There is a strong relation between admissibility and unification. Suppose L is a

A
modal logic (K4, §4,etc). Let — be an inference rule. So, — is non-admissible

iff there exists a substitution ¢ such that 6(A) € L and o(B) ¢ L. When L is
unitary or finitary, unifiable formulas possess finite minimal complete sets of
unifiers. As a result, when L is decidable and when minimal complete sets of

19



20 CHAPTER 3. ADMISSIBILITY IN THE LOGIC S4

unifiers can be computed for any arbitrary given unifiable formula, then the
non-admissibility problem in L can be decided as follows:

. A
e givenarule —,
B
¢ check whether A in L-unifiable,
e a s . A ..
¢ if Aisno L-unifiable then answer "rule 3 is L-admissible"

* otherwise, compute a minimal complete set X = {01, ...,0,} of L-unifiers
of Aandforalli=1,...,, n check whether o;(B) € L,

A
e ifforalli=1,..., n, 0;(B) € Lthen answer "rule 3 is L-admissible",

. A ..
¢ otherwise answer "rule B is non-L-admissible".

As can be seen from this algorithm, when L is decidable, when L-unification is
decidable, when L is either unitary or finitary and when one can compute the
minimal complete sets of L-unifiers for any given unifiable formula than the
above algorithm decides L-admissibility.

Conversely, L-unification can be reduced to non- L-admissibility seeing that for
all consistent modal logic L (it does not matter what is the unification type of

A
L), agiven formula A is unifiable in L iff the inference rule T is non-admissible
in L.

3.1 Syntactic criteria for admissibility in S4

In this section first we introduce the notion of admissibility for inference rules
and also some properties in the logic S4. Then we provide some theorems and
an algorithm introduced by V. Rybakov [44] which are used for recognizing the
admissibility of inference rules in modal logic S4. Historically this algorithm is
the first algorithm for recognising admissible rules of modal logic S4. In this
respect, we need to define the notion of reduced normal form.

Definition 20 A ruler is said to be in reduced normal form if it has the form
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V ¢;

IS
===

where each disjunct ¢ has the form

17,0 ..
= /\ xi(l] )/\ /\ (Oxi)[(l’]'l)

0<i<n 0<i<n
and
1. s and t are integers,
2. All¢; are different,
3. Xo,..., Xn are propositional variables,
4. tisa Boolean function t : {0,...,n} x {1,..., s} x {0,1} — {0, 1},
5. @’ =-a and a' = a for any formula .

X2 AQX2) V (mx3 A QX
Example 3 The rule r = (2 A Ox2) V (033 A O%5) is a rule in reduced normal
X1

form.

We usually use the notation rf(r) when a rule in reduced normal form obtained
from r. Let us see, how to convert an inference rule to its reduced normal form.
Also this method has been introduced by V. Rybakov.

Proposition 5 Ifan inference rule is derivable in L then the rule is admissible for
L.

Proof5 Suppose that ay(xy, ..., Xn), ..., Ay (X1,..., Xn) b B(X1,..., Xn). Consider a
substitution v, v(x;) =y; (v; is a L-formula) such that for every j, the inclusion
@;(x1,...,Xn) € L holds. We take an arbitrary derivation & of B from ay,...,ap
in L. Furthermore, we choose the substitution o which coincides with v on the
domain Dom(v) of v and maps any letter lying not in Dom(v) onto B, say. The
sequence %, obtained from ¥ by applying w to each their members, will be a
derivation in L from the empty set of hypothesis. Indeed, under substitution w
all hypothesis will turn into theorems of L, the set of theorems of is closed with
respect to substitutions, and all inference rules are structural (consistent with
substitutions). Thus 't BY, that is (y1,...,Yn) € L.
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a
Lemma 1 Any valid inference ruler = E in modal logic S4 is admissible for S4.

Proof 6 Refer to [44], Lemma 3.1.5.

Example 4 Let x be a propositional variable

Ox
e Theruler = — is derivable and admissible in S4. Be more concise: since

X
Fs4 Ux — x then the rule r is derivable. Thus the rule r is admissible by
Lemmalll

X
e Theruler = is not admissible and not derivable in S4. A substitution

which can be usgd to show that the rule non-admissible is o (x) = x — Ux.
Hence, g4 00 (x) and ¥ sa Q0o (x).

Let us see why tg4 JO (x — Ux) and¥ sy OU(x — Ox). Since, O(x — Ux) is
equivalent to x — QOUx and

Fsq Ox — OUx. Then,
Fs4 O(x — Ox). By necessitation,
g4 OO (x — Ox). But

Fsq OU(x — Ux). Let us see why ¥4 OU(x — Ux). Consider the fol-
lowing model M where the accessibility relation is the reflexive and

transitive closure of the one shown by the arrows. Hence, M,1 ¥ {[J(x —
Ox).

X X

X
Therefore, the rule r = is not admissible and by Lemma is not

O
OUx

derivable.
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OxNO—x

— The rule r = —— is admissible in S4 but it is not derivable in
S4 [27].

Lemma 2 There exists an algorithm which for any given inference rule r in the
language of modal propositional logic, constructs a suitable reduced normal

form rf(r).

Proof7 Letr = & be a rule. We need a set of new variables {zy |y € sub(a, B)}.
Let us consider the following steps:

» Step 1: replacer = % with ry = a/\(zz;;:'ﬁ).
* Inductive step: suppose theruler; = Yi was obtained in the i-th step. Find
Zp

0 € sub(y;) nsub(a, B) when 6 is not a variable and not a proper sub-
formula of any other formula in sub(y;) n sub(a, B). 0 is called final. At
the end, replace the rule r; with a new oneriyy = Y;—EI, namely

Yit1 = 2Za A A (zy = 7®)
YeSub(a,B)\Var(r)

where

Y@_{Z(svze, wheny=06Ve

x0, wheny = *0for * € {7, O}

Therefore after a finite number of steps we get a premise v, which is a
Boolean combination of literals of the form x or {x, where x is proposi-
tional variable.

* Final step: we transform the premise of the obtained rule rn = Yk into an
Zp
equivalent disjunctive normal form over literals

It is easy to show that the reduced normal form of inference rule is equivalent
to the original rule.
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Definition 21 A rule r; is equivalent by admissibility to a rule r» in a logic 84 if
r1 is admissible in S4 iff r, is admissible in S4.

Lemma 3 For any inference ruler, r is semantically equivalent to rf(r) in S4.
Proof 8 Refer to [44], Lemma 3.1.8.
Corollary 1 A ruler is valid in modal logic S4 iff the rule rf(r) is valid in S4.

Proof 9 Refer to [44], corollary 3.1.9.

V &;

1<j<s

Suppose r = is arule as defined in[20l Let O(r) = {¢, ..., s} be the set

X0
of all disjuncts of premise of r. Notice that if ¢; and ¢; are distinct elements of

O(r) then ¢; A ¢j is logically equivalent to L. For every ¢ € O(r), let
0(pj) =1{xi|t(i,j,0) =1} and O (¢p;) = {x; [ £(i, j,1) = 1}

In fact, 6(¢;) is the set of variables of r with positive occurrence in ¢;, and
04 (¢;) is the set of variables x; of r with the positive occurrence of Ox;in ¢ j-

To express the main theorem, we need to define a new model that is as-
sociated to r and to an arbitrary non-empty subset W of ©(r). We construct
M (O(r)) = (W, R,v) for every non-empty subset W of ©(r) as follows:

s WcO(rn),
* GiRp; © 04 (p;) SOy () forany ¢;,p; € W,
* piev(pj) © x;€0(¢p;) forany ¢; € W.

Now, we have all required tools to express main theorem which says a rule is
admissible or non-admissible in logic S4.

V ¢;

1<j<s
Theorem 1 Aruler =

in reduced normal form is admissible for modal

X0
logic S4 iff for any non-empty set W < O(r), the model 4 (O(r)) fails to have at
least one of the following properties.

1. Thereis¢je W such that 4 (O(r)),$; ¥ xo.

2. MO),pj=EjforallpjeW.
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3. For any subset D of W there exists ¢ j € W such that

00(pj) =0(p)u | 05 (@).

$eD
Proof 10 refer to [44], Theorem 3.9.6.

Thanks to Theorem [1}it is possible to construct an algorithm for deciding ad-
missibility in S4. Let us use an example to illustrate Theorem|I}

OxNOx

Example 5 Consider the rule r = ——— . We show that this rule is admis-

sible. In order to use[l} we should transform the rule r to a rule in reduced
normal form. Hence, we use Lemma 2 to find rf(r). Then, we have r f(r) =
TXATYoAYIAY2 AQXA QY2

Letpy =X AYAYIAY2 AQXAQY and W =
Yo
{(mxX A Yo Ay1 Ay2 AOx AQ Yo} Let us check the conditions of Theorem|l]

1. Asyou see, y is as conclusion of the rule rf(r) and 4 (O(r)), ¢1 ¥ yo.

2. let us prove that M4 (O(r)), 1 ¥ ¢,. Suppose 4 (O(r)),p; = Ox then, we
must have 4 (©(r)), ¢ F x. This is in contradiction to 4 (O(r)),p; F —x.

3. Let D = @. We have 0 (1) = {x,y2} and 0(¢p1) = {y1, )2} then, Oy(P1) #
0(p1). Thus, 0 (P1) # 0(¢1) i.e the third condition of Theorem]| failed.

First condition of Theorem|1] holds but second and third conditions of Theorem
do not hold. Therefore, the rule r is admissible.

Let us consider a general form when we transform a given rule r to reduced
normal form rf(r) and rf(r) has only two variables. In this case, the premise of
rule rf(r) will be subset of the following 16 formulas. Let the rule rf(r) be as

V ¢
iel
rf(r)=

f .
P1=x1 A X2 AQX1 AOX
P2 =x1 A X2 AQXI A QX2
P3="1x1 AX2 AOX A QX2
Ps="1x1 A2 AOXT A QX2
¢5=Xx1 ANX2 A\ Ox1 A0
P = x1 A1 X2 AQX1 A QX
P7="1x1 AX2 AOXT A QX

where I € {1,...,16} and ¢, to ¢ are as follows:
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Pg="1x1 A X2 AQXI AOX

g =x1 A X2 AQX AQ X2

P10=x1 A2 A QX AQX

b1 ="x1 Ax2 AOX AQX

P12 ="1x1 Ax2 AOX AOX

P13 =x1 A X2 A QX AOX

P14 =x1 A x2 A QX1 A0

P15 =x1 Ax2 A QX AOX

P16 = 11x1 A X2 A OX A QX

According to the definition of model .4 (©(r)), we have
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X1, X2
V¢i
This model is the model .# (©(r)) associated to the rule r = lEJIC when I ={1,...,,16} and
1
W= {(pl) ey (/)16}-
V ¢i

iel

Remark 1 In the model of the rule r = when I = {1,...,16}, notice that

X1
when 4 (O(r)),p; FE ¢;, we show ¢; like a reflexive point, otherwise it is irreflex-
ive point.
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V ¢i

iel

Remark 2 Theruler = when I =1{1,...,16} is non-admissible.

X1

V‘Pi
el when

X1
I= {1)213y4) 678) 11) 12r 16} and W= {¢1)¢2)¢3!¢4) (pbﬁr(pBr(pll!()ber(plG}-

V ¢

iel

This model is the model .# (©(r)) associated to the rule r =

such

X1
that {¢; : i € I} contains at least one of sets {¢p1,P3}, {P1, P4}, {3, D6}, {Ps, Pg},
{11} and {16} is non-admissible. Since these rules satisfy all conditions of The-
orem Let us see an example.

Remark 3 Notice that any rule in reduced normal form as r f(r) =

Example 6 Consider a rule in reduced normal formasr f (r) = % which con-
1

tains one of the above sets. Let us find which substitutions are appropriate to
make this rule non-admissible.
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V ¢i

iel

1. Letrf(r) = be a rule in reduced normal form such that its premise

Vojvorves
x

X1

contains {¢p1,¢ps}. Hence the ruler f(r) = where 1 = x1 A

Xo AOX1 AQX2 and b3 = 1x1 A xg AQX) A QXo. Le; us check all conditions
of Theorem([l] Let W = {1, 3.
Since 04 (p1) = 0o (p3) then, ¢ and ¢Pp3 can see each other. Also, x1,x2 €
v(¢1) and —x1, x2 € v(¢3). Hence, we have the model 4 (0O(r)) associated
to the rule and W ia as follows:

X1, X2

X1, X2

e First condition holds. Since, p1 ¢ v(¢3) then by definition of model
A (O(1)) we have, M (O(1)), P3 & x;.

* Second condition holds. Since, x1,x, € v(¢p1) then, M (O(r)), ¢ F
X1 A x2 and M (O(r)),p1 F Ox1 A Oxo. Then M (O(1)),p1 F x1 A X2 A
Ox1 A Ox2. Thus, M (O(r)), 1 E ¢y. Also since —1x1,x2 € v(ps) then,
M (O(1)), b3 F 1x1AXy. Since, p3Rpy and M (O(1)), P F x1, A (O(1)), 1 F
Xo thus, 4 (O(r)), ps F ¢s.

* Third condition holds. We only check the case D = @. Since, 0¢,(¢1) =
{x1,x2}, 0(p1) = {x1, x2} then Oy (1) = 0(¢1). As the reader can see, for
all other D € W, the third condition holds.

This means that the rule is not admissible in S4. So, now, it is time to find
an appropriate substitution showing that the rule is not S4-admissible.
Obviously, ¢, Vv ¢3 is S4-equivalent to x, A Qx1. Hence, we need a substi-
tution o such that¥ o(x1) and v o(x2) A Qo (xy). It is possible to consider
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o(x2) = T and also the following tablet lists some substitutions o which
satisfy the conditions¥ o (x;), - Q0o (xy).

For example, if o is a substitution such thato (x;) = T and o (x;) = x — Lx,
then, - o (x,), F Qo (x)) and¥ o(x)) in S4. So, o is a substitution showing

the rule w is not S4-admissible.
1

x—Ox Ox — O000x O Ox — OOx)

x—O0x O0x — O00x O0x — OO0 x)

x— Olx OO0x—0O0x | O00Ox — O00x)
x—O00x Ox—-00x) Ood0x — HOx)
x—0U0x | Ux— OL00x) OO (x — O0Ux)

Ox—-0O0x | OOx—-000x) | O00x—D0O0x)

Vi : :
. Letrf(r) = e such that \/ ¢; contains ¢,V ¢4. The rule rf(r) is non-

1
admissible and satisfies the condition 1 to 3 of Theorem/|l] But which sub-
stitution is appropriate for this rule?

Obviously, ¢y V ¢4 is S4-equivalent to (Ox) A Ox2) A (x1 — X2). We need a
substitution o such that¥ o(x1), - Qo (x1) and - Qo (x,). For this case, we
can use the above table as well.

Vi

X1
admissible and satisfies the condition 1 to 3 of Theorem[l| But which sub-

stitution is appropriate for this rule?

such that \/ ¢; contains ¢p3 Vv ¢pg. The rule rf(r) is non-

Obviously, ¢ps V g is S4-equivalent to Ox1 A (1x] — X2) A (Tx] < Ox2) A
x1 < Ux;). Hence we need a substitution o which has the properties ¥
o(x1), F Qo (x1), F n0o(x1) < o(x2) andt o(x)) — Uo(x1) andt o (x1) <

Qo (x2).
Vi

X1
admissible and satisfies the condition 1 to 3 of Theorem|l| But which sub-

stitution is appropriate for this rule?

such that \/ ¢; contains ¢pg V ¢pg. The rule rf(r) is non-

Obviously, ¢g V ¢pg is S4-equivalent to O x) A= x,. Hence we need a substi-
tution o which has the properties¥ o(x;), = Qo (x1) andt+ Qo (x2). o(x1)
can be any member of the above table and o (x,) = L.
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Vi

5. Letrf(r)=

1
and satisfies the condition 1 to 3 of Theorem([ll But which substitution is
appropriate for this rule?

suchthat\/ ¢; contains ¢y,. Therulerf(r) is non-admissible

Obviously, ¢y, is S4-equivalent to ~Ox; A x,. We need a substitution o
such that¥ o(x;), = Qo (x1) and - o(x). For this case, we can consider
ox))=Lando(x)=T.

6. Letrf(r) = Vi
X1

and satisfies the condition 1 to 3 of Theorem|ll But which substitution is
appropriate for this rule?

such that\/ ¢; contains ¢¢. The rulerf(r) is non-admissible

Obviously, ¢1¢ is S4-equivalent to ~Ox1 A O x,. We need a substitution o
such that ¥ o(x1), - 7Qo(x1) and - Qo (x»). For this case, we can con-
sidero(x1) =o(x2) = 1.

3.2 Generalized reduced normal form

At the previous section, we discussed Rybakov’s results on the admissibility

V ¢
iel

. In this

condition of any given rule in reduced normal form as r f(r) =

section, we generalize the definition of reduced normal form. Also, (i)n this sec-
tion, we express some criteria that a set of rules in this general reduced normal
form may have and see how these criteria can help to decide S4-admissibility.
In this respect, we define general reduced normal form as follows:

Definition 22 A ruler is in general reduced normal form if it has the form

V ¢,

_Jel

"V

JeJ

where each disjunct ¢ ; has the form

o .
¢i= N\ x7TA N ©OxptErD

0<i<n 0<i<n

and
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1. JcI

2. All¢; are different,

3. Xo,..., Xn are propositional variable,

4. tisa Boolean function t: {0,...,n} x {1,..., s} x{0,1} — {0, 1},
5. @’ =-a and a' = a for any formula a.

6. O(r)={p;:jell}.

Lemma4 There exists an algorithm which for any given inference rule r in the
language of modal propositional logic, constructs a suitable general reduced nor-
mal form rf(r).

Proof11 Letr = % be a rule. We need a set of new variables {z, | y € Sub(a)} and
{z;, |y € Sub(p)}. Let us consider the following steps:

* Step1: replacer = § with i = %ﬁgf’:g))
p

* Suppose the rule r; = % was obtained in the ith step. Find 6 € sub(y;) N

sub(a) and &' € sub(y;) N sub(f) when § and &' are not a variable and
not a proper sub-formula of any other formula in Sub(y;) N sub(a) and
Sub(x;) Nnsub(B). 6 and &' are called final. At the end, replace the rule r;
with the new oneriy; = ;"“ namely

. )
i+1

Yis1 = Za A N (zy = ¥®) and
yeSub(a)\Var(r)

Xis1 =25 A A (zy = ¥®)
yeSub(B)\Var(r)

where

o _ )28V Ze, wheny=0Vve
%0, when'y = %6 for * € {=,(}

and



3.2. GENERALIZED REDUCED NORMAL FORM 33

o z(’svzé, wheny=06've
r= *6', wheny = =6’ for * € {7,0}

Therefore after a finite number of steps we get a premise y and a conclu-
sion yx, which is a Boolean combination of literals of the form x or {x,
where x is propositional variable.

* Final step: we transform the premise and conclusion of the obtained rule

N = Yi into an equivalent disjunctive normal form over literals.

ap

We have seen in Theorem 1] that V. Rybakov gave a simple criterion for the ad-
missibility of inference rules. We want to extend Theorem 1| to inference rules
in general reduced normal form.

Definition 23 Let M = (W, R, V) be an S4-model. Let S be a valuation on W. We
say that S is a definable valuation if there exists a substitution o such that for all
propositional variable x, forallw e W, w € S(x) iff M, w F o (x).

Lemma5 Let. .4 = (M,R,V) bea S4-model. Let S be a valuation on M.

1.

3.

If o is a substitution and S(x;) = V(0 (x;)), then S is a definable valuation
such that S(a) = V(o(a)) for each formula a, that is (M,R,S),w F « iff
(M,R,V),wFo(a) foreach we M.

Iffor each variable x; thereis a formula; such that forallw € M, (M,R,S), wE
x; iff (M,R, V), w E ¢;, and if o is the substitution such that for each x;,
0(x;) = ¢; then foreach formulaa, S(a) = V(o (a)), thatistosay (M,R,S), wF
a iff(M,R,V),wFE o(a) foreach w € M.

If o is a substitution, S is a definable valuation for which S(a) = V(o (a))
for each formula a, r := =29 js q rule and o (r) := U(“l)(;'(b‘)’(“’") thenr is
validin (M, R,S) iffo(r) isvalid in (M, R, V).

Proof 12 1. Byinduction on a:
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e (=) Leta = x;. Let (M,R,S),w FE x;. Since, S(x;) = V(o(x;)) then,
(M,R, V), wE o(x;).
(<) Let (M, R, V), wFE o(x;).Since, S(x;) = V(o (x;)) then, (M,R,S), wF
Xi.

* (=) Leta=(pAvy). Let (M,R,S), wE (¢ Ay). Hence, (M,R,S), wF ¢
and (M,R,S),w F v. By induction hypothesis, (M,R,V), w FE o(p)
and (M,R,V),wF o). Then, (M,R,V),wF (¢ Ay).

(<) Let(M,R,V),wEo(@Ay). Then, (M,R,V),wE o(p) and(M,R,V),wF

o (y). By induction hypothesis, (M, R,S),w E ¢ and (M,R,S),wF .
Hence, (M,R,S), wE (¢ Ay).

o (=) Leta =0¢. Let (M,R,S),wE Q. Let w' € M such that wRw'
and, (M, R,S), w' = ¢. By induction hypothesis, (M, R, V), w' E a(¢).
Then, (M,R, V), w E Qa(p).

(<) Let (M,R,V),wkE Qo (). Let w' € M such that wRw' and, (M,R, V), w' E

o (). By induction hypothesis, (M, R, S), w' = ¢. Then, (M,R,S), w F
Og.
The proof of (2) can be done by induction on a and the proof of (3) by using (1)
and (2).

Theorem 2 Let (K, Ry, V) nen be a sequence of n-characterizing models for S4
(see Definition|17). Inference rules ry := W,, T = w are inad-
missible in S4 with the same substitution o iff ry, ..., rx are invalid in (K, Ry, S)
for some n € N and some definable valuation S of variables from ry,..., 1y in K,

(that is, If S(a;j) = Ky, and S(B;) # Ky fori=1,...,k and j =1,...,m;).

Proof 13 (=) Supposery,..., ri are not admissible in S4 with the same substitu-
tion o. Let o be a substitution such that g4 0(a;;) and¥ sy o(B;) fori=1,..,k
and j = 1,..., m;. Let the number of propositional variable occurring in o(a; ;)
and o(f;) be n. Hence we have fori =1,....k and j = 1,...,m;, (K, Ry, Vy,) Fsa
o(a;ij) and (Ky, Ry, Vi) ¥sa 0 (B;) by definition of n-characterizing models. Let S
be a valuation on K,, such that S(x;) = V(o (x;)) fori =1,...,n. Hence, since S is
definable and (K, Ry, V) Fsa 0(a;j) and (Ky, Ry, Vi) Fsa 0(B;), then, S invali-
dater;. Therefore, 11, ..., 1y are invalid in (K, Ry, S).

(<) Suppose 11, ..., 1y are invalid in (Ky, Ry, S) with the definable valuation S
for some n € N. Then by the part 2 of Lemmal, there is a substitution o for
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each variable x; in ry,..., 1y such that S(x;) = V,(0(x;)). Hence by definition
of the truth of formulas in Kripke models we obtain, S(a;j) = Vy(o(a;j)) and
S(Bi) = Vulo(B) fori=1,..,kand j =1,..,m;. Thus, (Ky,Ry, V) Fss 0(a;j)
and (K, R, V) Bsq 0(Bi). Since, K,, is n-characterizing model then, tg,4 o(aij)
and¥ s, o(B;i). Thereforery, ..., ry are not admissible in S4 with the same substi-
tutiono.

Before presenting our main theorems that gives a characterisation of admissi-
ble rules in reduced normal form, we need the following technical important

lemma.
V ¢

iel

V ¢,

jeJ

In Lemma 6, we consider the rule in general reduced normal form.

Lemma6 Let A = (N,R,V) bea S4-model. Let I < {1,...,s}. Assume N E \/(,bl-

iel
andlet W ={¢p; €O(r)|iel, dae N s.t N,al=p;}. Notice that W # @. Let
M (O(r)) be the S4-model associated tor and W. Then

1. If ¥,al=¢; then N,a = ¢ iff 4 (O(r)),d; |= ¢ for each formula P € O(r).
2. Wci{p;eO) |iel, L(Or)),d; = ¢}

3. LetI' < I. Then, #(©O1) = \/ ¢; iff WS ;€O |iel).

iel

4. LetI'< 1. Then, ¥ E \/ ¢; iff W< {p; €Or) |iel}.

iel
5 NExiiff M(O(r)) E x fork=1,...,n.

6. If for each subset D of N there exists a € N such that

Oo(a) =0(a)u | 0.(d)
deD

then for each subset D of W there exists ¢ j € W such that

0o(pj) =0(pj) U | 0.(¢h)

¢$eD
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where forallae N, O(a) ={x; | &,aF x;} and ©s(a) = {x; | N, aF ox;}.

Proof 14 Remind that if ¢; and ¢ are distinct elements in ©(r) then ¢; A is
logically equivalent to L. Since & = \/ ¢; then for all a € N, there exists exactly

onei € I such that & ,aF ¢;. We dejl‘ielfte a surjective function f : N — W such
that foralla € N, f(a) = ¢; wherei €I and N,aF ¢;. We claim that f is a
homomorphism. Let b,a € N such that bRa. Leti,j € N such that f(b) = ¢;
and f(a) = ¢j. Let xi € 0,(¢p;). Then N,aF oxi and N ,bF oxi. Therefore,
Xk €04(¢pi). As aresult, f(b) can see f(a) in #(O(r)).

1. Let /,b = ¢;. We prove by induction on ¢.

* (=) Let¢p=xi. Let V,bF xi. Since N ,bFE ¢; then, xi € 0(¢;). Then,
Xi € Vu(¢i). Therefore, 4 (O(r)),p; F xk.
(<) Let (O(r)),; F x.. Then, xi € V,,(¢p;). Thus, xi € 8(¢p;). Since
N,bE¢; then, N ,bF xi.

* (=) Let¢p = xk. Let N, bF ~xy. Since N ,bFE ¢; then, 7 xy € 0(¢p;).
Then, ~xy € V,,(¢p;). Therefore, 4 (O(1)),P; F —1xk.
(<) Let 4 (O(1)),¢p; E xx. Then, ~xi € Vy(¢p;). Thus, ~xy € 0(¢;).
Since N, bF ¢; then, & ,bF —1x.

e Letp=pAy. N, bEQAY iff ¥, bE@and N ,bEy iff 4 (O(1)),¢; F
@ and M (O(r)),¢p; F v (by induction hypothesis) iff 4 (O(r)),¢p; F
PAY.

e () Let ¢ = Opg. Let /', bE Qxi. Let a € N and bRa such that
N,aF xr. Let f(b) = ¢; and f(a) = ¢;. Since, N,aF ¢; then,
xXi € 0(¢pj). Then, #(O(r)),¢p; F xr. Since, bRa and the function
f isa homomorphism then, ¢;R¢p ;. Therefore, 4 (O(r)),p; = O xy.
(<) Let M (O(1)), i E Ox. Then, Oxi € Vy,(i). By our assumption,
N,bE ¢; then, N/',bFE {xy.

2. Byitem1.
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3. (=) Suppose M ©O(r)) E \/ ¢;. Letpj € W. Let b€ N such that N ,bE ¢;.
iel
We have 4 (©(r)),¢; = ¢; by 1. By our assumption 4 (©(r)) E \/ ¢; then
iel

there exists i € I' such that 4 (©(r)),¢; = ¢;. Then, pj=¢p;. Then, jeI'.
Therefore, ¢ € {p; €O | i€ I'}.
(<) Suppose W < {¢p; € O(r) | i € I'}. For all pj € W we have to show that
MO(1), ;i F \/ ¢i. Let b€ N such that &,b¥= ¢ ;. Then, 4 (O()),p;F

iel
¢ bypart1. Since, pj € W S {p; €O, | i€ I'} and M (O(1)),¢p;F ¢; then,
M(O(r), ¢ E \/ ¢i. Therefore, #(©O()F \/ ¢;.

iel iel

4. Suppose (=) N E \/ ¢p;i. Letpj € W. Let b € N be such that N ,b E ¢;.
iel
Since N/ E \/ ¢; then & ,bE \/ ¢;. Thus thereisi € I' such that & ,bE
iel iel
¢i. Letie I'and N ,bE ¢;. Since N ,bE ¢ thendp; =¢pjand jeI'. So we
have proved that W < {¢p; :i € I'}.

(<) Suppose W < {¢; : i € I'}. We have to prove that ¥ = \/ ¢;. Letbe N
iel
and let us prove & ,bE \/ ¢;. Since N E \/ ¢; then let i € I be such that
iel iel

N ,bE ¢;. Thenp; € W. Since W < {¢p;:i€I'} thenieI'. Hence, ¥, bE

V ¢

iel
5. (=) Suppose N ¥ xi. Let b € N such that ¥ ,bE —x. Since &/ E\/ ¢;
iel
then let ¢; € ©(r) such that &, b= ¢;. Consequently, xi ¢ 0(¢;). Moreover,
HM(O(1)),¢; E i by part 1. Since, 4 (O(r)),d; F ¢; and xi. ¢ 0(¢p;) then,
M (O(1)),d; # xi.. Therefore, 4 (O(r)) & xy.

(<) Suppose # (O(1)) ¥ xi. Let p; € W such that 4 (O(r)),p; ¥ xi. Hence,
Xi ¢ 0(¢p;). Since ¢p; € W then there is b € N such that A ,b F ¢;. Since,
N,bE ¢; and xi ¢ 0(¢p;) then, N, b¥ xi. Therefore, N F x.

6. Let D' = {¢y,...,r} € W. Since f : N — W is surjective then there are
by,...,bx € N such that, f(b;) = ¢; for1 <i < k. Then we have N ,b; F ¢;
for1 < i< k bydefinition of f. Let D = {b,...,bi}. Let a € N be such that
O0,(a)=0(a)u U 0.(ay) by our assumption.

areD

Claim 1 Letb; € N. We have
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(@ 0(b;) =0(¢;)
(b) 0,(b;) =0,(;)

Proof15 (a) Suppose xy € 0(b;). Then, N, b; E xi. Since f(b;) = ¢; then
N, bi E¢;. Since N, b; F xj. such that xi € ¢;.
Reciprocally, suppose py € ¢;. Since N ,b; E ¢; then N,b; E x.
Hence, x;. € 0(b;).

(b) Suppose xi. € 0p(x;). Then, N,b; E Oxi. Let a € N be such that

biRa and N ,a E xi. Then f(b;)Rf(a;). Then x € 8(a) and xy €
0(f (a)). Sincef (b;)Rf(a;) then Qxi € O(f(b;)). Since f(b;) = ¢; then
X € 9<> (([)l)
Reciprocally, suppose xi. € 0 (¢p;). Then 4 (O(r)),¢p; F Oxi. Letpj €
Wbe such that ¢;Rp; and 4 (O(r)),p; & pi. Since [ is surjective, let
a € N be such that f(a) = ¢;. We have 4 (O(1)), f(a) F xi, therefore
Xk € pj and xy € 0(a).

Since,0(b) = 0(¢;) and 0,(b) = 0,(¢p;) then, 0,(¢p;) =0(¢p;) U U 0.(¢).
$eD
This ends the proof of Lemmal6]

Now, we are prepared to express our results as follows. We firstly determine
under which conditions a rule in general reduced normal form is invalid and
then, we discuss about admissibility of such rules.

VivVe;

Theorem 3 Aruler = ZEI\/—(;)E] is invalid for S4-models iff there is a non-
J

jeJ
empty set W € {¢p; € O(r) | i € [ U J} such that the model 4/ (0(r)) associated to r
and W satisfies the following conditions:

1. MOr),pjFE¢jforallpjeW.

A ACIG AV IAVAVAITS

iel jeJ

3. Thereexistsi € I such thatp; € W and M (O(r),pi ¥ \/ ¢;.
jeT
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Proof 16 (=) Suppose r is invalid in & = (N,R,V). Then &/ E\/ ;v \/ ¢;
iel jeJ
and N ¥ \/c/)j. LetW ={¢;€O(r)|i€,Jwe N s.t N/, w = ¢;}. Obviously, W
jeJ
is non-empty. Let 4 (O(r)) be the model associated tor and W.

1. Let¢j € W. Hence there is w € N such that we have &, w |= ¢; by defini-
tion of W. Then 4 (O(r)), ¢ F ¢ ; by Lemmalp|

2. Let ¢ € W. We have to show that 4 (©r),pr E \/ ¢iVv \/ ¢j. Since
iel JjeJ

¢ € W then let w € N be such that ¥, w & ¢. Then, by part2 of Lemmal6,

M (O(1)), Px E Pi.. Moreover, since N, w= \[ ;v \/ ¢ then 4 (©Or)), pi F

iel JjeJ
VoivVe;.

iel JjeJ

3. By our assumption, & ¥ \/ ¢;. Then W € {¢p; € ©(r) | i € J} by part (4)
jeJ
of Lemmal6| Since W < {¢p; € ©(r) | i € U J} then there existsanie I—]
such thatp; € W. By ¢; — = \/ ¢ and 4 (O(1)),$; E ¢; then we obtain
Jjel
M (O(r), i E\/ ¢;j. Therefore, 4 (O(), ;¥ \/ ¢;.
jeJ jeJ
Therefore, r is invalid in 4 (O(r)).
(<) The model 4 (O(r)) has all properties of Lemma 3.4.9 of [44] then by
Lemma 3.4.10 of [44] there exists a definable valuation S of the rule r such

thatr is not provable in Chgy(n). Therefore the ruler is invalid in Chgy(n).

VoivVe;
Theorem 4 Aruler = % is inadmissible for S4 iff there is a set W <
J

jeJ
{p; €O(r) | i € IU ]} such that
1. ¢;i e W forsomeiel.
2. MOW),pjE; forallp;eW.

3. For each subset (D) of M there exists ¢pj € W such that

0.(pj) =0(pj)u | 0,(¢h).

¢eD
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Proof 17 (=) Proof of this direction is similar to Theorem|]]

(<) Theruler isinvalid in 4 (0(r)) by Theorem[3| By Lemma3.4.10 of [44] there
exists a definable valuation S of the rule r such that invalidate r in Chgy(n).
Therefore the rule r is inadmissible in S4 by Lemmal2]



Unification and Unification
Types in modal Logic

Contents
4.1 Fundamental Notions of Unification. . . . . .......... 42
[4.2 Unification in Classical PropositionalLogic| . ......... 45
4.3 UnificationinModalLogic| .................... 47
4.3.1 Unificationin ModalLogicK] . . . ... .......... 48
4.3.2 Unificationin ModalLogicKD|. . . ... ......... 51
[4.3.3 Unification in Modal Logics Extending K4] . . . . .. .. 55
[4.3.4 Unification In the modallogic S5. . . . . ... ... ... 56
[4.3.5 Unification in Modal Logics KD5and K5|. . . . ... .. 59

In logic and computer science, unification means solving logical equations.
Unification in logic is the problem of finding a substitution that transform a
given formula into a theorem (or a tautology). For instance consider, (¢; <
Y1) A ... A (@, — ¥y). If we can find a substitution o such that - (o(¢;) <
o)) A...A(0(py) — o(y,)) then we can say that this formula is unifiable in
the considered logic L.

Chapter 4 presents already existing results on unification in propositional logic
and modal logic.

* (Classical Propositional Logic has projective unification (Proposition 9, p.
45) and thus is unitary (see Proposition 8).

e Jerabek proved that modal logic K is nullary.

e P Balbiani and C. Gencer adapted Jefdabek’s argument to KD and proved
that KD is nullary too.

41
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Ghilardi proved that K4 and its extensions are finitary and given a for-
mula, its finite complete sets of unifiers can be computed.

W. Dzik showed that S5 is unitary.

P. Balbiani and T. Tinchev showed that K D45 is unitary.

KD5 and K5 are both filtering hence either unitary or nullary. The exact
type is open.

4.1 Fundamental Notions of Unification

To discuss about unification type of modal logics, first we give some basic defi-
nitions and then we consider unification type of modal logics.

Definition 24 We define some features of substitution:

* A substitution o is a mapping from variables to a formulas. It is denoted
by o : x — F(y). Substitutions will generally be represented by o, 0, A, T
and so on.

» Composition of two substitutions o : X — F(y) and 1 : y — F(z) is the sub-
stitution T oo : X — F(z2) defined by
To0(x)=1(0(x)).

foreach x € x.

* A substitution o : x — F(y) is equivalent in a logic L to a substitution 7 :
x— F(z) if

cx)—=1(x)elL
foreach x € x. We will denoteitbyo = T

Definition 25 Let A(xy, ..., X,) is a formula built up from variables x;, ..., x, and
denoted by A(x). Let L be a logic.

* asubstitution o is an L-unifier of A if A(o(x1),...,0(x,)) € L.
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Aisunifiablein L if there exists a substitution o such that A(o (x1), ...,0(x,)) €
L. In this case, A is called unifiable in L.

* A substitution o : x — F(y) is more general (or less specific) than a substi-
tution 1 : X — F(z) in L iff there exist a substitution A : y — F(z) such that
Ao (x)) < 1(x) € L for all variable x € x. We will denote itbyo < 7.

* A substitution o of the form o : X — F(@) is called ground unifier or closed
unifier.

* Let UL(A) be the set of all unifiers for the formula A in a logic L. A set
U < UL (A) is said to be complete set of unifier for A, if for every unifier t for
A there is a unifier from the set U which is more general than .

* Acomplete set of unifiers for A in L is a minimal complete set if its members
are pairwise incomparable with respect to <.

* A unifier o for A in logic L is called a most general unifier (mgu) in L for a
formula A, if {o} is a complete set of unifiers for A.

Example 7 The formula Ux v U-x is unifiable in K. The ground substitutions
ot ando definedbyot =T ando ) = 1 are K-unifiers of Ux v U-x.

Note that a most general unifier is not unique. There are always more than 1
most general unifiers. Nevertheless, of course, if 71 and 7, are two most general
unifiers, then there exists substitutions A; and A, such that 1, o7; ~; 75, and
A2 072 = 71 hence, 71 <1 72 and 72 < 71. This means they are equivalent
instances of each other.

Lemma 7 Ifa given formula L has two minimal complete sets T and ¥’ in logic
L thencard(Z) = card(X').

Proof 18 Let f:X — X and g:%' — X such that
e ForalloeZ, f(o)<0,
e Forallo' €Y', glo') <0’

The functions [ and g exist because ¥ and X' are complete. We show that f is
injective. Let 0,7 € X such that f(o) = f(1). Notice that g(f(0)) X1 f(0o) L
o and g(f (1)) <1 f(r) X 7. Since f(o) = f(1) then g(f(0)) = g(f(r)). But
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g(f(o) € X, 0,7 € X. Since g(f(0)) Xr o then g(f(0)) = o by minimality of
Y. Since g(f (1)) <1 T then similarly g(f(zr)) = 1. Since g(f (o)) = g(f(r)) then
o=T.

By the same way we can prove g is injective. Consequently, card(X) = card(X').

Definition 26 Let A(x) be a unifiable formula in logic L.

* The formula A has unification type unitary if it has a minimal complete
set of unifiers of cardinality 1.

* The formula A has unification type finitary if it has a finite minimal com-
plete set of unifiers for formula A and cardinality fo this minimal complete
set is strictly greater than 1.

* The formula A has unification type infinitary if it has a infinite minimal
complete set of unifiers.

* Theformula A has unification type nullary if it does not have any minimal
complete set of unifiers.

Definition 27 Let L be a logic
* L is unitary if every L-unifiable formula is of type unitary.

* L is finitary if there exists a L-unifiable formula of type finitary and every
L-unifiable formula is either of type unitary, or of type finitary.

* L is infinitary if there exists a L-unifiable formula of type infinitary and
every L-unifiable formula is either of type unitary, or of type finitary, or of
type infinitary,

* L is nullary if there exists a L-unifiable formula of type nullary.

Let us see these definitions at the following example:

Example 8 Let A = xV y. Consider the substitutions o, defined by o,(x) = x
and o1(y) = 7x. After applying o1, we have: 01(A) = 01(x) Vo1(y) = xV 7x.
Therefore, 01(A) is a tautology. In this case, A is unifiable and o is unifier of A
in Classical Propositional Logic.

Consider the substitution o, defined by o2(x) =T and o2(y) = T. Hence, 02(A)
is a tautology and o, is also a unifier of A.
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Lemma 8 Let A be a unifiable formula in logic L. Then the formula A possesses
a ground unifier in logic L.

Proof 19 Let A be a unifiable formula in logic L. Let o be a unifier of A such that
o0(A) € L. Let T be a ground substitution. Sincec(A) € L thent(o(A)) € L. Sincet
is ground substitution thus, T o 0 is a ground unifiers of A.

Definition 28 A unifier o for a formula A is said to be projective in logic L if for
eachxeXx

AFpo(x) —x

A formula is projective in logic L iff there exists a projective unifier for the for-
mula. If each unifiable formula is projective in logic L, then we say that L has
projective unification.

Lemma9 Each projective unifier for A is a most general unifier for A.

Proof 20 Let o is a projective unifier of unifiable formula A. Then At o(x) —
x. Let T be a unifier of A then, -1 T(A). By applyingt on A+ o(x) < x, we ob-
taint(A) Fr 1(0(x)) < 1(x). Sincet T(A) then, b1 (t(0(x)) — 1(x)). Therefore,
0 XL T (sinceT was arbitrary) and o is a most general unifier of A.

Proposition 6 If L has projective unification then, unification type L is unitary.

4.2 Unification in Classical Propositional Logic

In this section, we are going to review unification problem and unification type
of Classical Propositional Logic [49]. It has been proved that all unifiable for-
mulas in Classical Propositional Logic have a most general unifier. To prove
that Classical Propositional Logic has unitary unification, we will use Léwen-
heim formula.
Let us prove that unification type of Classical Propositional Logic is unitary.
Syntax and semantic of Classical Propositional Logic are as usual.
Consider a formula A and a substitution y. Let A be the substitution defined
by A(x) = (AA x) V (mAAY(x)). The substitution A is the so-called Lowenheim
substitution associated to A and y. Variant of it in modal logics have been used
by [22] and [31].
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Lemma 10 Lev be a valuation. For any formula B
1. Ifv(A) =T then, v(B) = v(A(B)).

2. Ifv(A) = 1 then, v(y(B)) = v(A(B)).
Proof 21 1. Supposev(A) = T. We prove by induction on B:

e Let B = x. We have to prove v(x) = v(A(x)). Since v(A) = T and
V(A(x)) = (v(A) AV(X)) V (v(A) Av(y(x)) then, v(x) = v(A(X)).

e Let B= 1. We have to prove v(Ll) = v(A(L)). Since L is Boolean con-
stant and A is substitution hence, A(L) = L. Thenv(A(L1)) = L hence,
v(L) =v(A(L)).

e Let B=-B'. We have to prove v(~B') = v(A(-~B")). By induction hy-
pothesis, v(B') = v(A(B"). Therefore, v(7B') = v(A(—~B")).

e Let B=B'AB". We have to provev(B' AB") = v(A(B' A B')). By induc-
tion hypothesis, v(B') = v(A(B") and v(B") = v(A(B")). Therefore,
v(B' AB") =v(A(B' A B")).

2. Letv(A) = L. We prove by induction on B:

e Let A= x. We have to prove v(y(x)) = v(A(x)). Sincev(A) = L and
V(A(X)) = (v(A) AV(X)) V (mv(A) Av(y(x)) then, v(y(x)) = v(A(x)).

e Let B= 1. We have to prove v(y(l)) = L = v(A(Ll)). Since A(L) = L
andy(Ll) =1 hencev(A(L1)) = v(y(Ll)).

e Let B = -B'. We have to prove v(y(=B')) = v(A(-B)). By induc-
tion hypothesis, v(y(B")) = v(A(B")). Hence, =v(y(B')) = ~v(A(B)).
Therefore, v(y(1B')) = v(A(B")).

* Let B= B' A B". We have to prove v(y(B' A B")) = v(A(B' A B")). By
induction hypothesis, v(y(B")) = v(A(B")) and v(y(B")) = v(A(B")).
Therefore, v(y(B' A B")) = v(A(B' A B")).

Theorem 5 Let A be a unifiable formula and y unifier of A. The substitution A
defined above is a most general unifier of A.

Proof 22 First, we prove that A is a unifier for A. Suppose A is not a unifier of A.
Then¥ A(A). Hence, there exists a v such that v(A(A)) = L. Hence we have two
cases:
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1. Ifv(A) = T: then by Lemma[10, v(A(A)) = v(A). Then L =T. Thisisa
contradiction.

2. Ifv(A) = L: then by Lemmal[10}, v(A(A)) = v(y(A)). Then L =v(y(A)). Then
¥ y(A): this is a contradiction with the fact thaty is a unifier of A. There-
fore A is a unifier of A.

Second, we prove that A is most general:

Let T be a unifier of A. Then, - t(A). Let x be an arbitrary variable. By part (1) of
Lemmall0| we have - A — (A(x) < x). Then by applyingt ont A — (A(x) < x)

we get, - 1(A) — (1(A(x)) < 1(x)). Sincet 1(A) and F 1(A) — (T(A(x)) < 1(x))

then, - 1(A(x)) < 1(x). Therefore A is most general than 1 (A < 1) in Classical
Propositional Logic.

Lemma 11 The substitution A defined above is a projective unifier for A.

Proof 23 Firstly, - A(A) by Theorem|p|
Secondly, b A— (A(x) < x) by part 1 of Lemmal10]
Therefore, A is projective unifier.

From the above results, it follows:

Proposition 7 Classical Propositional Logic has projective unification.

Proposition 8 Every unifiable formula in Classical Propositional Logic has a
most general unifier.

Example 9 Consider the formula A= xV y. The substitution o such that o (x) =
x and o(y) = "x is one of the unifiers of A. Let A be the substitution defined by
Ax) =(AAx)V (nAAO(x) and A(y) = (AN Y)V (mAAO(y)). Hence we have
Ax)=(AAX)V(DAAX)=xand A(y) =(AANy)V(TAA—-X)=yV x. By Lemma
we know that A is a most general unifier of A.

4.3 Unification in Modal Logic

In this section, we consider some modal logic such as K, §4, S5 and so on and
we explain their unification type; Unification type of these modal logics respec-
tively, are nullary, finitary and unitary.
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4.3.1 Unification in Modal Logic K

Emil Jefdbek in [34] has proved that unification type in normal modal logic
K is nullary. In this respect he considered a formula and introduced some
substitutions. First, he proved that these substitutions are K-unifiers of that
formula. Then, he proved that these unifiers are not more general than each
other. Let us see which formula and substitutions he considered and how he
proved that modal logic K is nullary. In Chapter 6, we will adapt the argument
of Jefdbek show that the fusion S5 ® S5 is nullary. Jefdbek considered the for-
mula ¢ = x — [x. He introduced the substitutions o, (x) = O0<"x A" L (for
each n > 0) and o1(x) = T and then proved that

Lemma 12 Foreach neN
1. The substitution o, is a K -unifier of the formula ¢.
2. The substitution o1 is a K-unifier of the formula ¢.

v

Proof 24 1. By the inference rule = which is derivable in K, and by

—

the distributivity of Ll over A, we have

O<"xA0"l - O0"x e K and
0" 1 — O™ 1 €K thus,
O<"xA0"L -OO"xA0"L)eK

2. Clearly, T— T eK.

The Lemmas and (14| show that 0, <k 0,-1 <k ... <k 00 and 0¢ Ak 01 Ak
.ee Kan.

Lemma 13 Letk,leN. Ifk <l theno; <k of.

Proof 25 Suppose k < I. Letv be the substitution defined by v(x) = x AOF L. It
is easy to check thatvoo; =g oy. Hence, 0; Xg 0.

Lemma 14 Letk,leN. Ifk <l thenoy Ak 0.

Proof 26 Suppose k < | and oy <k 0;. Let v be a substitution such that v o
ok =k 0;. Hence, Fg v(0k(x)) < 0(x). Thus, Fx O<!x A0/ L - Oky(x) A0k L.
Consequently, after replacing x by T, Fx 0! L — O 1: a contradiction.
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Then Jefébek [34] showed that some o, or o1 are more general in some cases
than a given unifier o of ¢ as follows:

Lemma 15 Ifo is a unifier of ¢ = x — Ux and n € N, the following are equiva-
lent:

1. go0oy,=xo0,
2. 0p k0,
3. Frox)—-0O"1.
Proof27 1. (1= 2) Bydefinition of Xx.

2. 2 = 3 Suppose 0, <k 0. Letv be a substitution such thatvoo, =g o.
Hence, g v(o,(x)) < o(x). Then, Fgo(x) — O™ L.

3. 3=1) Supposet-g a(x) — 1" L. Since o is a unifier of ¢ then, g o(x) —
Oo(x). Hence, Fx 0(x) — O"o(x). SinceFx o(x) — O"1L and ‘g o(x) —
O<"o(x) then Fx o(x) — O<"0(x) AO"L. Thus, Fg o(x) — o(0,(x)).
Now, we consider two following cases:

e Ifn=0thentx "1l — o(x) and
e Ifn>1thentg 00 (x) — o(x).

Therefore, g [(1<""a(x) A" L — 0(x). Hence, =g 0(0,(x)) — 0(x). Since,
Fxo(x) — o(op(x) andbg o(o,(x)) — o(x) therefore,c o0, =k 0.

Lemma 16 Ifo is a substitution, the following are equivalent:
I. o1 Xk o0,
2. 0o0T =k 0,
3. Fxo(x).

Proof 28 The proofis similar to the proof of Lemmal|l5|

At the next step, Jefdbek stated that the unifiers o, or o1 are more general than
any unifier o of ¢.

Theorem 6 Let o be a K-unifier of ¢ = x — Ux then one of the following condi-
tions holds:
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1. o7 xkoO.

2. Thereexistne N such thato, <k 0.

Proof29 Letn > deg(o(x)). Suppose none of the above conditions holds. Hence,
0y, Ax 0 and o1 £k 0. By Lemmas and we have that ¥x o(x) and ¥x
o(x) — O™ 1. Then, there are models M; = (W1, R',v1) and My, = (W», R",v») and
there are s; € Wy, s, € Wh such that, My, s1 ¥ o(x), M, s, = o(x) and M, s, ¥
O"L. Lets},...,s) ., € Wa be such that s;R"s}...R"s" . By the tree-model prop-
erty of K, we can assume without loss of generality that s,, sy, ..., S|, . | are pairwise
different. Let us construct the model M = (W, R,v) which is an extension of the

disjoint union of models M, and M, and we define the model M as follows:
e W=WUW,,

e R=R'UR"U{(s" ,,s1)},

n+1’

* v=v1 UV that is to say for all proposition letters y, v(y) = v1(y) Uva(y).

Since My, s1 ¥ o(x), then M, sy ¥ o(x). Since My, s, F o(x) and n > deg(o(x)),
then M, s, F o(x). Since g o(x) — Oo(x) then M, s) F o(x),..,M,s) .| Fo(x).
Then M, s1 E 0(x): a contradiction.

The main result about unification type of modal logic K has been proved as
follows.

Lemma 17 The set of substitutions £ = {0, : n € w} U {oT} is a complete set of
K-unifiers of ¢ = x — Ux.

Proof 30 By Theorem(6, X constitutes a complete set of unifiers of the formula
@=x—0x.

Lemma 18 The formula ¢ = x — Ux does not possess a minimal complete set of
K-unifiers.

Proof 31 Suppose ¢ possesses a minimal complete set X' of K -unifiers. Since
X" is complete, let 0’ € ¥’ be such that ¢’ <k 0¢. Since d' is a K-unifier of ¢,
then o'(x) — Oo’(x) € K. Hence, by the rule of margin [34] either o'(x) € K or
o' (x) — [4e8@' ™) ] ¢ k.

In the former case, by Lemma oT <k 0. Since o' Xx 09, then o1 <k 0y.
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Thus, T — L1 € K: a contradiction.

In the latter case, byLemmasinceZ' is a set of unifiers of @, then o geg(o'(x)) <K
o'. Since I’ is complete, let 0" € X' be such that 0" <k Ogeg(o'(x)+1- Since
O deg(o'(x)+1 SK Odeg(o’(x)) <Kk 0, then 0" < o'. Since X' is minimal, then
0" =o' Since 0gegovy Sk 0 and 0" Sk G aeg(o'(x)+1, then O aeg(o'(x) <k

O deg(o'(x))+1: @ contradiction with Lemmal14]
Proposition 9 Unification type is nullary in modal logic K.
Proof32 By Lemmall8

We shall adapt this method in Chapter 5 to investigate on unification type of
modal logic K; ® K, and S5, ® S5, for instance

4.3.2 Unification in Modal Logic KD

P. Balbiani and C. Gencer have adapted Jefdbek argument to KD. They proved
that unification type of modal logic KD is nullary [7] too. In this respect, they
used a special kind of atomic formulas called parameters and they considered
the formula ¢ = (x — p) A (x — [plx). Parameters are atomic formulas that are
not replaced by formulas when a substitution is applied. For all parameters p,
the modal connective [p] is defined as follows:

e [plx:=U(p— x).
For all parameters p, the modal connective [p]*
lows for each n e N:

is inductively defined as fol-

o (pllpu=0,

]k+1 .

s [p = [plipI¥e.

A parameter is a propositional letter that is not moved by substitutions. Pa-
rameters will be denoted by p, q,etc. A parameter is like a constant proposi-
tion letter. For instance, if o is the substitution defined by o(x) = Up v Uy and
o(y)=0Uy,theno(U(x —Upvy)) =UUpvUy - UpvUy).Parametrized uni-
fication (as well as parametrized admissibility) have been considered by several
authors, but mainly considered by V. Rybakov [44].

For all parameters p, the modal connective [p]<¥ is inductively defined as fol-
lows for each n e N:
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o [P0 u=T.
. [p]<k+l(p::: []9]<k(,0/\ [p]k(l)

Consider the formula ¢ = (x — p) A (x — [p]x) and substitutions ¢, (x) = p and
0 (x) =pApl="x A [p]" L where n € N. P. Balbiani and C. Gencer proved that

Lemma 19 ForallneN
1. 0,(x)=pAlpl="xA[p]"L isa KD-unifier of ¢.
2. op(x) = pisa KD-unifier of ¢.

Proof33 1. Itisclear thatt p A[p]="x A [p]"L — p. Since
Fxp p — [plp. Hence,
Fxp pAIpI="x A p]"L — [plp. Since
Fxp [p1="x A [p]" L — [pllpl~"x and
Fkp [pl" L — [p]"*! L then,
Fkp pALPIS"X A [pI" L — [plp ALplIpI="x A [p]"H L.
Therefore, 0, is a KD-unifier of ¢.

2. Since, (p — p) andt p — [plp then, - (p — p) A (p — [plp). Therefore,
0p is a KD-unifier of ¢.

In order to adapt Jefdbek argument, it is needed to prove that the sequence of
substitutions o, for n € N satisfies the property o, <xp ... <xp 0o and oy ﬁKD

ﬁKD On

Lemma20 Letk,leN. Ifk <l theno;<kp 0.

Proof 34 Suppose k < 1. Letv(x) = x A [p]* L. Since,

Fixp [p1<tx — [p1<Fx and

Fixp [pI<tipI* L — [pI¥ L. Therefore,

Fxp pAIPIS A [pI* L) A [pl L — p A [pl<Fx A [p]* L. Since,
Fxp [pI¥ L — [pl'L and

Fxp [P1*x A [pI* L — [p1='x and,

Fxp [pIF L — [p1<![pI* L therefore,

Fxkp (P APk x A [pI*L) — p A Ip]<l(x A [p]*L) A [p)! L. Hence,
Frp pALPIS A IpI) A Lpl L < p A [pI<Fx A [pIF L.
Consequently, o; <kp Ok.
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Lemma2l Letk,leN. Ifk <l thenoy Axp 0.

Proof 35 Suppose k < | and o <xp 0;. Let v be a substitution such that -xp
V(o k(X)) = 01(x). Then, Fxp pA[pI~*v(x) A [pI*L < pApl<tx Ap)l L. Then,
Fxp [pl' L — [pI¥ L. This is contradiction.

P. Balbiani and C. Gencer proved that if there exists a unifier o of the formula
¢ = (x — P) A (x — [p]x) then either 0, <gp o or there exists n € N such that
0, <kp 0. In this respect, they proved that

Lemma 22 Leto be a KD-unifier of ¢. The following conditions are equivalent:
l. opo0=kpo.
2. 0p<KkDO.
3. Fxkpo(x) < p.

Proof 36 (1= 2): By definition of Xkp.

(2 = 3): Suppose 0, <kp 0. Let v be a substitution such that tgp v(0 p(x)) <
o(x). Then, Fxp p — o(x).

(3= 1): Supposet-gp 0(x) < p. Then, -xp 0(x) < 0(0,(x)). Hence, 0,00 =gp
o.

Lemma 23 Let 0 be a KD-unifier of ¢ = (x — p) A (x — [plx). Let k e N. The
following conditions are equivalent:

1. opo0=gpo
2. Ok <KDO
3. Frpo(x)— [pl*FL.

Proof 37 (1 = 2): By definition of <kp.

(2 = 3): Suppose 0,, <kp 0. Let v be a substitution such that --xp v(o,(x)) <
o(x). Thentgpo(x) — [pIFL.

(3= 1): Suppose -xp o(x) — [pI¥L. Since o is a unifier of ¢ then, Fxp o(x) —
pAlpl<¥o(x). Hence, Fxp o(x) — pAlpl<Fo(x) Alp]* L. Consider two following
case:

Ifn=0thentgp [p]kJ_ — o(x) and

Ifn>1then, bFxp pAlpl<fo(x) A [plFL — o(x).

Therefore, Fxp p A [p]<ka(x) A [p]kJ_ —0(x). Thus, 0,00 =xp 0.
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Lemma 24 Let o is a unifier of ¢. Let n > deg(o(x)). Then one of the following
conditions holds:

®* OpKDO Or

®* 0,<KDO.

Proof 38 Suppose none of the above conditions hold. Hence by Lemmal22| and
Fikp o(x) — p and¥kp o(x) — [pl"L. Since, o is a unifier of ¢ then, Fgp
o(x) — p. Hence, ¥gp p — a(x). Consider two models M; = (W1, R',v,) and
My = (W, R",v,) and s; € Wy, s, € Ws such that My, s1 ¥ p — o(x) and My, s, ¥
o(x) — [pl"L. Thus My, s1 E p, My, s1 ¥ a(x), My, s2 F a(x) and My, s; ¥ [p]™ L.
Hence, there exists t3,..., ty+2 € Wa such that s;R"t3R"t4...R" t,42. By the tree-
model property of KD, we can assume that s», ts, ..., ty4+2 are pairwise distinct.
Notice that ts, ..., ty4+2 € v(p). Let model M = (W,R,v) be an extension of the
disjoint union of My and M, and defined as follows:

° W:W1UW2:
e R— R,UR” @] {(tn+2) Sl)}y
° ’V:’VIUVZ.

By our assumption o is a unifier of ¢ and +xp o(x) — [plo(x). By proposition
M, s; F p and M, s, ¥ o(x). Moreover, since n > deg(o(x)), then M, s, F o(x).
Since o is a unifier of (x — p) A (x — [plx), then M, t; F 0 (x), ..., M, ty12 F 0(X).
Then, M, t,+2 F [plo(x). Since M, s, = p and t,+2Rs;, then M, s1 F o(x): a con-
tradiction.

At the end step, P. Balbiani and C. Gencer showed that

Lemma 25 The set of substitutions ~ = {0} U {0y | n € N} is a complete set of
K D-unifiers of ¢.

Proof 39 By Lemmas[19|to[24]
Lemma 26 The formula ¢ does not possess a minimal complete set of K D -unifiers.

Proof 40 Refer to [7], Lemma 7. The proof of this Lemma is similar to the proof

of lemmal18
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Proposition 10 Unification type is nullary in modal logic KD.
Proof41 By Lemma

We shall use the same method in chapter 6 to discuss on unification type of the
fusion KD ® KD,.

4.3.3 Unification in Modal Logics Extending K4

S. Ghilardi showed that some modal logics extending K4 (like K4 itself, S4, GL,
Grz, etc.) are finitary and that finite complete sets of unifiers can be effectively
computed [31].

As we already said the most important role of most general unifiers in unifi-
cation theory is generating all unifiers of a formula. In classical propositional
logic every unifiable formula has a most general unifier. S. Ghilardi investigated
whether every unifiable formula in modal logic L has a most general unifier.
The answer was negative for many modal logics L enjoying disjunction prop-
erty. For example, consider the formula Ux v L1—x. This formula has unifiers in
K4, S4 and GL:

b 01(X) = T)
e oy(x)=1.

and there is no unifier more general than both of them because if

Fr Oo(x) vO=-o(x)

then by the modal disjunction property, we have: either -1 o(x) (so that o is
equivalent to o) or 1 7o (x) (so that o is equivalent to 0»). Thus this formula
has no most general unifier. Moreover, X = {01,0>} is a minimal complete set of
unifiers for Llx v [-x in K4, S4 and GL. Hence, Ghilardi in [31] proved many
transitive modal logics have finitary unification type and that finite complete
set of unifiers can be effectively computed.

S. Ghilardi investigated which modal logics are unitary in [30]. Hence he intro-
duced a significant characterisation of modal logic that called filtering unifica-
tion. See [35] for further discussion about filtering unification.

Definition 29 A given logic L is filtering iff for all L-unifiable formulas ¢ and for
all L-unifiers o,t of ¢ there exists a L-unifier u of ¢ such thatu <y o andu=<rt.



56 CHAPTER 4. UNIFICATION AND UNIFICATION TYPES IN MODAL LOGIC

S.Ghilardi proved that filtering unification in modal logic is characterized by the
fact that finitely presented projective algebras are closed under binary prod-
ucts. Then he used this characterization to the case of normal extensions L of
the modal system K4 and showed that a normal modal logic K4 < L has filter-
ing unification iff L extends K4.2*. The logic K4.2" is the logic obtained from
K4 by adding the axiom ¢*[0*A — (0O A where (0" and (" are defined by
(O0f =0BABand ¢* = 0BV B. At the next step, he proved that unification is
unitary in K4.2". Hence, S. Ghilardi proved that

Lemma 27 IfL is filtering then either L is unitary, or L is nullary.

Proof 42 Suppose L is filtering and neither L is unitary, nor L is nullary. Hence,
either L is finitary, or L is infinitary. Let ¢ be a L-unifiable formula either of
type finitary, or of type infinitary. Since unification type of ¢ is either finitary
or infinitary then let Z be a minimal complete set of L-unifiers of ¢ such that
Card(XZ) = 2. Since Card(X) = 2, we can suppose that there exist 0,7 € X such
that o # 1. Let u be a L-unifier of ¢ such that u < o and p < 7. Such L-unifier
of ¢ exists because L is filtering. Since X is a complete set of L-unifier of ¢ then
there exists av € Z such thatv < u. Since u <X o and pu <X 1 therefore, v < o and
v <X 1. Since X is a minimal set therefore, v =0 andv =1 then o =1 and thisisa
contradiction.

4.3.4 Unification In the modal logic S5

W. Dzik in [23] showed that the modal logic S5 and all extensions of the modal
logic S5 have unitary unification type. Dzik discussed on unification and unifi-
cation types in four areas of logic: non-Fregean logics, intermediate logics (ex-
tensions of intuitionistic logic), modal and multimodal logics, including Tense
Logics and Epistemic Logics (Logics of Knowledge) in [22]. Let us see how Dzik
proved that the unification type of Epistemic logic S5 is unitary.

Consider an S5-unifiable formula A and a substitution o. Suppose o is an S5-
unifier of A. Let A be the substitution defined as follows for all variables x oc-
curring in A:

Ax)=UAAXx) Vv (UAA0(X))
Notice how A is similar to the Lowenheim substitution used in Section 4.2.

Lemma 28 For any formula B
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1. Fss LJA— (A(B) < B).

2. kg5 "LJA— (A(B) < g(B)).

Proof 43 1. Byinduction on B

e Let B = x. We have to provet-[JA — (A(x) < x). Since
- HA—- (HAAX) v (0UAA0(x)) — x) is equivalent to (JAA x —
x). Thus,
- Fss A — (A(x) — x). Since,
- kg5 (AN x) — A(x) hence,
- g5 LA — (x — A(x)). Since,
- Fgs A — (A(x) — x) and
- Fss LA — (x — A(x)) therefore,
— s A — (A(x) < x).

e Let B= 1. We have to prove g5 [JA — (A(L) — 1). Since, A(L) =L
hence, Fg5 LJA — (A(L) < 1).

e Let B=-B'. We have to prove g5 JA — (A(~B') < = B’). By induc-
tion hypothesis,
- Fs5 A — (A(B") < B'). Since,
- ts5 (A(B') < B') = (7A(B') < = B’). Then,
- Fss JA— (A(~B) < —B).
* Let B= B'AB". We have to provet-s5 (1A — (A(B'AB") < ((B'AB"))).
By induction hypothesises,
- Fss A — (A(B") < B") and
- Fss A — (A(B") < B"). Therefore,
- Fgs A — (A(B'AB") < ((B'AB"))).
* Let B=0UB'. We have to provet-g5 1A — (A(OB') — [OB"). By induc-
tion hypothesis,
- kg5 A — (A(B") < B'). By necessitation and axiom K,
— Fgs O0A — (A(OB') — OB"). Since,
- kg5 LA — LILIA then,
~ Fgs A — (A(OB") — OB).



58 CHAPTER 4. UNIFICATION AND UNIFICATION TYPES IN MODAL LOGIC

2. Byinduction on B

e Let B = x. We have to prove, - "[JA — (A(x) < o(x)). Since,

A — (HAAXx)Vv(0UAA0 (X)) — 0(x)) is equivalent to ~"[LJAA
o(x) — o(x) then,

- Fgs 1A — (A(x) — o (x)). Since,
- Fss ((OAA (X)) — A(x) hence,
- g5 10A - (0(x) — A(x)). Since,
- g5 10A— (A(x) — 0(x)) and
- kg5 1A — (o(x) — A(x)) therefore,
- Fgss 1A — (A(x) < o(x)).
e Let B= 1. We have to prove, g5 "[JA — (A(L) — o(1l)). Since,
A(L) =0o(L) = L. Therefore, g5 "[JA — (A(L) < o (L1)).
e Let B =~B'. We have to prove, g5 "[JA — (A(0B') < o(—B")). By
induction hypothesis,
- kg5 "0A — (A(B) < a(B')). Since,
- (A(B") = 0(B") = ("A(B') = =0 (B')) then,
- g5 00A— (A(~B') < o(0B").
* Let B=B' A B". We have to prove g5 (1A — (A(B'AB") < (6(B") A
o(B")). By induction hypothesises,
- kg5 "0A— (AMB') < o(B") and
- kg5 10A — (A(B") < a(B")). Therefore,
- kg5 0A— (AB'AB") < =(o(B") Ao (B"))).
* Let B =[1B'. We have to prove g5 [ 1A — (A(LUB') < [OB’). By in-
duction hypothesis,
- kg5 "0A — (A(B') < a(B")). By necessitation and axiom K,
Fs5 7OJA — (A(OB') < a(JB"). By axiom 5,
Fs5 "JA — QLA then,
Fss "0A — (A(OB") < o(OB")).

Lemma 29 A is a most general unifier.

Proof 44 First, we prove that A is a unifier. By part (1) of Lemmal[28}
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1. Fs5s A — (A(A) — A). Since,

2. Fgs LA — A then,

3. Fss 0OA — A(A). By part (2) of Lemmal[28}

4. kg5 "LJA — (A(A) < 0 (A)). Since, o is a unifier of A then,
5. kg5 1LJA — A(A). By lines 3 and 5,

6. g5 A(A).

Therefore, A is a unifier of A. Second, we have to prove that A is a most general
unifier.

Let T be a unifier of A. Then, Fg5 T(L1A). Let x is an arbitrary variable. We have
Fss A — (A(x) < x) by part (1) of Lemmal28| Then, g5 1(JA) — (T1(A(x)) <
7(x)). Since g5 T(LA) and g5 T(HA) — (T(A(x)) < T(x)) then, g5 T(A(x)) —
7(x). Therefore A is a most general unifier of A (A <5 7).

Example 10 Consider the formula A =U-x v Uy. The substitution o such that
o(x) = x and a(y) = Qx is one of the S5-unifiers of A. Let A be the substitution
defined by A(x) = UAAx) v (0"UAA 0 (X)) and A(y) = LJAAy) v (CUAA G ().
Hence we have A(x) = (UAAx) vV ("UAAX) =x and A(y) = (LUAAy) v (0LAA
Ox) =y v Ox. By Lemmas[29} this means that A is a most general unifier of A.

4.3.5 Unification in Modal Logics KD5 and K5

In this section, we interest in the logics KD5 and K5. Notice that K4 Q KD5
and K4 ¢ K5. P. Balbiani and T. Tinchev showed that unification type of modal
logic KD45 is unitary [15]. Hence we need to express some Lemmas as follows:

Lemma 30 Every variable-free formulain KD5, is K D5-equivalentto L or KD5-
equivalentto T.

Proof 45 Let ¢ be a variable-free formula. We have to provel- ¢ — L ort ¢ <
T. We prove by induction on ¢. We only consider the case ¢ := Cg'. We remind
thatt-gps L — L andbtgps T <~ T.

By induction hypothesis we have thattxps ¢' — L ortgps ¢’ — T. Then gps
O¢' — L ortxps 0" < T. Therefore, -xps ¢ — L ortxps @ < T.
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Lemma 31 Every closed substitution in KD5 is KD5-equivalent to a substitu-
tion o such that for every variable x, eithero(x) =T oro(x) = L.

Proof 46 Leto be a closed substitution. Then for all variables x, o (x) is variable-
free formula hence, by Lemmal[30, o (x) is KD5-equivalent to T or KD5-equivalent
to L.

Lemma 32 Let ¢ be a formula, then the following conditions are equivalent in
KD5:

1. ¢ is KD5-unifiable,

2. There exists a KD5-unifier o of ¢ such that for all variable x, either o (x) =
Toro(x)=1.

Proof 47 1. (1 = 2) Suppose ¢ is KD5-unifiable. Let the substitution o such
that -k ps o (¢), by Lemmal8, ¢ possesses a closed K D5-unifier o' and for
all variables x, o' (x) is variable-free formula hence, by Lemmal[31} o’ (x) is
KD5-equivalentto T or L.

2. 2<«1) Itis easy.

Lemma 33 Every variable-free formula in K5 is either K5-equivalent to T or
K5-equivalent to L or K5-equivalent to[J L or K5-equivalent to {T.

Proof 48 Let ¢ be a variable-free formula. We have to prove s ¢ — L or ks
@ — T ortgs @ — UL ortgs @ — OT. We prove by induction on ¢. We only
consider the case ¢ := C¢'.

By induction hypothesis we have thattks ¢’ — L ortgs @' < T orkgs ¢’ < OL
ortgs @' — OT. Hence,

Iftgs @ — L then bgs D¢’ — OL. Iftgs @ < T thentgs O’ — T. Ifbks
¢' - 0L then g5 O¢' — OOL. Thus, Fis 0o’ < OL. Iftgs @ — OT then
Fxs O’ — OO T. Hence, Fgs o' — T.

Lemma 34 Every closed substitution in K5 is K5-equivalent to a substitution
o such that for every variable x, either o(x) =T oro(x) = L oro(x) = UL or
o(x)=0T.

Proof 49 Leto be a closed substitution. Then for all variables x, o (x) is variable-
free formula hence, by Lemma[33| o (x) is either K5-equivalent to T or K5-equivalent
to L or K5-equivalent to )T or K5-equivalent to[J L.
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Lemma 35 Let ¢ be a formula, then the following conditions are equivalent in
K5:

1. ¢ is K5-unifiable,

2. There exists a K5-unifier o of ¢ such that for all variable x, eithero(x) = T
oro(x)=Lloro(x)=0L oro(x)=0T.

Proof 50 1. (1 = 2) Suppose ¢ is K5-unifiable. Let the substitution o be such
that s o (¢). By Lemmal8, ¢ possesses a closed K5-unifier o’. Then for
all variables x, o' (x) is variable-free formula hence, by Lemmal31} o’ (x) is
K5-equivalent to either T or L orJL orQT.

2. 2=1) Itis easy.

With Lemma[32]and 35} we can only conclude that given a modal formula ¢, it
is relatively simple to determine whether ¢ is KD5-unifiable or K5-unifiable.
For instance, given ¢, to determine if ¢ is KD5-unifiable it suffices to non-
deterministically replace in ¢ each variable either by L, or by T and then to see
if the resulting closed formula is in KD5. In K5, it suffices to non-deterministically
replace variables in ¢ either by L, or by L, or by L] L, or by OT. Now, let us try
to determine the unification type of KD5 and K5 which is still unknown. No-
tice that the result of Ghilardi mentioned after Definition 29 cannot be used for
K D5 and K5 because K4 ¢ KD5 and K4 ¢ KD5.

Let ¢ be a modal formula and o, 7 be substitutions. Let y be a new variable.
This means that y does not occur in ¢. Moreover, for all variables x occurring
in ¢, y does not occur in o(x) for variables x in ¢. Let a‘;(’]gs be substitution
defined by

ayps(x) = ([O0y Ac(x)) V(oY AT(x)).

Lemma 36 Leto be a substitution of a given formula ¢.

0,7
1. X ps =<KD5O.

o,T
2. X ps =<KkD5T.

Proof 51 1. Let v be the substitution defined by v(y) = T and for all other
variable x, v(x) = x. Since the variable y is new hence, v o a;’lgs(x) ~KD5
0 (x). Then, a3}, <kp5 0.
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2. Letv be the substitution defined by v(y) = L and for all other variable x,
v(x) = x. Since the variable y is new hence, v o a%’gs(x) ~kps5 T(x). Then,

aYps <kDsT.
Lemma 37 Lety be a formula not containing y.
1. Fxps OOy — (@@ s W) — o).
2. Fips 00y — (@ghs (W) = T()).

Proof 52 We will do the proof by using the semantics of KD5. Remind that KD5-
models are of the form (W, R, V) where R is serial and Euclidean.Notice that if
w € W is such that M, w E Uy then for all v in the sub-model of M generated
fromw, we have M, v E JQy. Similarly, ifw € W is such that M, w E ({$—y then
for all v in the sub-model of M generated from w, we have M, v F ({$—y. Sup-
pose M = (W, R, V) is KD5-model. Then for all formulasvy we prove by induction
onvy that:

1 IfM,wk=DOQy then M, wF ag . () iff M, wE o ().

2. IfM,wE OO~y then M, wk al) (W) iff M, w kT (y).

1. Suppose M, w = OOy we want to show that M, w F a%-(v) iff M,w E
o(w). The proofis done by induction on v.

¥ =x. Hence, M, w = a,(x) iff M, w E (O0y A0 (X)) V(00my AT(X))
iff M, wF o(x) since M, wF [y.

e ¢ =-'. By our assumption,

()M, w = U0y. By induction hypothesis
@M, wE (ayps (W) < o). By2

BYM, wE ~agp. (w') — o (y'). Then
@M, wE ayp (') < o(~y).

* The case whenw =vw' Ay". By our assumption,
(1) M, w = U0Oy. By induction hypothesis,
M, wkE (agés (w:/) - 0(1#’,),) and
B)M, wk (Cf#,%Df’(u{ )H”U(u/ )). ,Ther,z,,
@OM,wE ay W' AY") =o' Ay,
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o w =[y'. By induction hypothesis, we know that for all v in the sub-
model of M generated from w,
(WM, vE (a%h. (") < o@"). Then

@M, wkE ay.(Oy') < oOy".

2. if we suppose that M, w F ({—y then the argument is similar.

. o,T .
Lemma 38 Let ¢ be a formula. If o and t are KD5-unifiers of ¢ then a/;. is a
K D5-unifier of ¢.

Proof 53 Suppose o and t are KD5-unifiers of ¢. Then,

(1) Fxps 0() and

(2) Fkps T(¢p). By Lemmal37|

(3) Fxps OOy — (@ ps(P) — o (¢) and

(4) EKDS %%ﬁgb — (Ua;ISS((/))BHZT((pg. Byl and3,

5 —a; . 4

EG; ':KDS 00 Yy K}g#‘/’) ;; San 4
KD5 a:(’b — A ns (). By5 and®6,

(7) Exps @' ps ().

Proposition 11 Unification in KD5 is filtering.

Proof54 Let ¢ be a KD5-unifiable formula. Let o,t be KD5-unifiers of ¢. By
Lemmas and aps is a KD5-unifier of ¢ such that ai},s($p) <xps o and
aps(P) =xps T. As ¢ is an arbitrary K D5-unifiable formula, K D5 is filtering.

As a consequence, KD5 is either of type unitary or of type nullary (see Lemma
[27). We conjecture that, like K5, KD5 is unitary. Now, let us adapt our line or
reasoning to the case of modal logic K5.

Consider a modal formula ¢ and substitutions o, 7. Let y be a new variable. Let
a%sr be the substitution defined for all variable x occurring in ¢,

a%I (x) = (@O0y A (VO ATV (OOyV (y ATL)) A T(x))

Lemma 39 Let o be a substitution of a given formula ¢.

0,7
® Ups <Kk50.

* als <ksT.
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Proof 55 The proofis similar to the proof of Lemmal36

Lemma 40 Lety be a formula
() Fgs A0y A (y v OT)) — (afs ) < o).
) Fxs OOy Vv (my A1) — (als W) < T(y).

Proof 56 The proof can be done by using the semantics of K5. We remind that
models of K5 are of the form (W, R, V) where R is Euclidean. Notice that ifw € W
issuch that M, w = OOyA(yv{OT) then forall v in the sub-model of M generated
from w, we have M, vE Oy A (yv OT). Similarly, if w € W is such that M, w F
OOy Vv (my AldL) then for all v in the sub-model of M generated from w, we
have M,vE OOy v (nyall).

Lemma 41 Ifo andt are K5-unifiers of ¢ then a;’g is a K5-unifier of ¢.
Proof 57 The proof is similar to the proof of Lemma|38

Proposition 12 Unification in K5 is filtering.

Proof 58 The proofis similar to the proof of Proposition

Proposition 13 (1) Either K5 is unitary, or K5 is nullary.
(2) Either KD5 is unitary, or KD5 is nullary.

Proof 59 By Lemmal|27 and Lemmas[11and

The exact unification type of KD5 and K5 is still unknown. The main difficulty
in determining this type is that neither KD5 nor K5 contain K4. Hence, the
techniques developed by Ghilardi [31] for showing that K4 and some of its ex-
tension like S4 and GL are finitary cannot be used. In other respect, Ghilardi’s
results [30] saying that an extension L of K4 has filtering unification iff L con-
tains K4.2" cannot be applied in the case of KD5 and K5 for the same reason
(neither K D5 nor K5 contains K4).
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In chapter 4, we have seen that the unification in modal logics KD5 and K5
are either unitary or nullary, the exact unification type of these logics are still
unknown. This is quite surprising, considering the fact that KD5 and K5 are
relatively simple logics. Another simple modal logic is Alf; = K& 0 A — JA.
Balbiani and Tinchev [14] have proved that Alf; is nullary. Models of Alt; are
of the form (W, R, v) where R is deterministic relation (every possible world has
at most one successor). In this section, after a suggestion of Silvio Ghilardi, we
investigate the unification type of logics Alf; + L] L. Models of Alt; +[L] L are
very simple. They are structures of the form (W, R,v) where W contains exactly
1 world and R = @, or W contains exactly two worlds w and v and R = {(w, v)}
(thatis to say w can see v and w, v are irreflexive). In this Chapter, we show that
unification type of Al#; +LILIL is unitary. It is obvious that some results have
to be proven. Now, we introduce a result which will prove to be very useful in
Section 5.6. For all set S, notation | S || will be used as the cardinality of the
set S. For all non-empty sets S, for all equivalence relations ~ on S and for
all a € S, notation [a] will denote the equivalence class modulo ~ with «a as its
representative. For all non-empty sets S, for all equivalence relations ~ on S and

65
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forall T < S, T/ ~ will denote the quotient set of T modulo ~. Notice that for all
non-empty sets S, for all equivalence relations ~ on S and forall a, € S,a ~
iff a € [B] iff [a] N [B] # @. Now, we introduce a result which will be very useful
in Section[5.6

Proposition 14 Let S, T be finite non-empty sets. Let ~ be an equivalence rela-
tion on S. The following conditions are equivalent:

LIS/ ~I<I TI<I ST,

2. there exists a surjective function f from S to T such that forall o, € S, if

fla)=f(B) thena ~ B.

Proof 60 (1 = 2) Supposel S/ ~|<| T |I<I|| S|. Let h be a function from S/ ~ to
S such that forall a € S, hla] € [a]. h is injective. Let Sy = {h[a] : @ € S}. Since h
is injective, therefore| S/ ~|=|| So ||. Since | S/ ~|<|| T ||, therefore || So I|<I|| T ||
Let Ty be a subset of T such that | Ty |=| So ||. Let fo be a one-to-one correspon-
dence between Sy and Ty. Let Ty = T\ Ty. Notice that Ty and T, make a partition
of T. Since | T ||| S|l and || Ty lI=| So Il, therefore | Ty |<I|| S\ So ||. Let S be
a subset of S\ Sy such that || Ty ||=| S1 |I. Let fi be a one-to-one correspondence
between Sy and Ty. Let Sy = (S\ Sp) \ S1. Let f> be the function from S, to T such
that forall a € Sy, fo(a) = fo(h([al)). Let f be the function from S to T defined
by f1So=fo,f|S1=fiand f| S, = fo. By construction of f, it is easy to show
that f is surjective and for all a, B € S, if f(a) = f(B) then a ~ B.

S T
s’ *
k *k
k (o] (o] (o] *k o] o] o]
%k *k
So S1 S2 To Th
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(2 = 1) Suppose f is a surjective function from S to T such that forall a, €
S, if f(a) = f(B) then a ~ B. For the sake of the contradiction, suppose either
| S/ ~I>I T\, or |l T|>|SI. Since f is surjective, therefore || T ||<|| S ||. Since
either | S/ ~|>|| T |l, or | T ||>|| S |, therefore || S/ ~||>|| T ||. Let p € N and
B, ...,BP € Sbesuchthatp>| T | andforallg,r eN, ifl<qg,r<pandq#r
then B9 ~ B". Hence, for all q,r €N, ifif1 < q, r < p and q # r then f(B9) #
f(B). Thus, p<|| T |: a contradiction.

We remind that P is a countably infinite set of propositional variables (with typ-
ical members denoted x, y, etc). Let (x1, X2, ...) be an enumeration of P without
repetitions. For all n € N, let FOR,, be the set of all formulas based on the vari-
ables xi,..., X;.

We shall say that a frame (W, R) is deterministic if for all s,z,u € W, if sRt and
SRu then t = u.

We shall say that a frame (W, R) is bounded if for all sy, 51, s» € W either sy Rs;
or s; Rsy.

Let (gcl;e , be the class of all deterministic bounded frame. Let L be the logic char-
acterized by ‘65et. Asiswell-known, L = Alt; +[JJL. Forall n > 1, an n-tuple of
bits (denoted a, B, etc) is a function from {1, ..., n} to {0, 1}. Forall n > 1, let BIT,,
be the set of all n-tuples of bits. For all @ € BIT,,, we will write a = (a3, ..., a,).
Obviously, frames in € é’e , are disjoint unions of the following structures where
circles represent irreflexive possible worlds.

O

In this chapter, when we write "frame F = (W, R)" we mean "frame F = (W, R)

. b n
1n<€det.

5.1 Semantics

Instead of considering models giving truth values to any kind of formulas, we
will use models giving values to formulas based on a restricted (finite) set of
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variables. Let n > 1. An n-model based on a frame (W, R) is a triple (W, R, v)
where v is a function assigning for all i € 1,...,,n, a subset v(x;) of W to the
variable x;. Given an n-model (W, R, V), the n-satisfiability of ¢ € FOR, at s €
W (in symbols s =, ¢ ) is inductively defined as follows:

o sk, x;iff se V(x;),

o sE, 1,

o skELwpiff sE, @,

e sFpnyiffskE,pand sk, v,

e skE,Ugpiffforall te€ Wif sRt then tF, ¢.

We shall say that ¢ € FOR,, is n-true in a n-model (W, R, v) if ¢ is n-satisfied at
allseWw.

We shall say that ¢ € FOR,, is n-valid in a frame (W, R) if ¢ is n-true in all n-
models based on (W, R).

We shall say that ¢ € FOR,, is n-valid (in symbol F ¢) if ¢ is n-valid in all frames.
Remind that, in this Chapter, all frames are bounded deterministic.

Let =" be the equivalence relation on FOR,, defined by

s p="yiffFp -y,

where ¢ and ¥ range over FOR,,. The next result follows from the fact that in the
logic Alt; + UL for all ¢ € FOR,,, there exists ¢ € FOR,, such that deg(y) <1
and F ¢ < v.

Proposition 15 ¢ f;e . 18 locally tabular. That is to say for all n > 1, the equiva-
lence relation ="* possesses finitely many equivalence classes.

Proof 61 Refer to [18], Proposition 2.29.

Let 96 Ze . be the class consisting of all frames of the form (W, R) where W =
{s0, s1} and sy # s; and R = {(sg, s1)}. Notice that %%Zet c <€5et. The next result
shows that %%Zw and %5” determine the same modal logic: Alt1+0CIL. Its

proof is standard.

Proposition 16 For all ¢ € FOR,, ¢ € Alt, + UUL iff ¢ is n-valid in all frames
ofcgé’et iff ¢ is valid in all frames offg%zet.
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5.2 Unification

In order to show that Alt; + [J[JL is unitary, we will use a special notation for
substitution. We remind from Chapter 4 that a substitution is a mapping o :
x — F(y) where X, y are finite tuples of variables and F(y) is the set of formulas
based on the variables in y. In this chapter, we will use a different notation for
substitutions. Let n > 1. An n-substitution is a pair (k,o) where k > 1 and o is
a homomorphism from FOR,, to FORy, i.e. 0 : FOR,, — FOR{ is such that

e o(l)=1,

* a(mp) ="0(y),

s g(pAw)=0c(@)Ano(y),
* oUyp)=Ua(y).

Let SUB,, be the set of all n-substitutions. The equivalence relation =" on SUB,,
is defined by

o (k,o)="(l,7)iffforall i € {1,..., n},Fo(x;) < 1(x;),
where (k,0), (I, 7) range over SUB,,. The pre-order <" on SUB,, is defined by

o (k,0) <" (I,7) iff there exists a k-substitution (m,v) such that for all i €
{1,..,n}, Evio(x) < 1(x)),

where (k,0), (I,T) range over SUB,,. Obviously, ~" is contained in <”. An n-
unifier of ¢ € FOR,, is an n-substitution (k,o) such that F o(¢p). We say that
¢ € FOR,, is n-unifiable if there exists a n-unifier of ¢. We say that a set X of
n-unifiers of a n-unifiable ¢ € FOR,, is n-complete if for all n-unifiers (k, o) of
@, there exists (I, 7) € X such that (/,7) 5" (k,0).

Definition 30 For all n-unifiable ¢ € FOR,,, we shall say that

* o is n-filtering if for all n-unifiers (k,0), (1,7) of ¢, there exists a n-unifier
(m,v) such that (m,v) X" (k,0) and (m,v) <" (I, 1).

The next result is standard and Lemma[27|rephrases itself as the following Lemma.

Lemma42 Let ¢ € FOR,, be n-unifiable. If ¢ is n-filtering then either ¢ is n-
nullary, or ¢ is n-unitary.
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Proof 62 The proof is similar to the proof of Lemma[27]

Definition 31 For all n-unifiable ¢ € FOR,, and for all ® > 1, we shall say that

* ¢ is n-n-reasonable if for all n-unifiers (k, o) of ¢, if k > n then there exists
a n-unifier (1,7) of ¢ such that (1,7) X" (k,0) and l < 7.

In other words, an n-unifiable ¢ € FOR,, will be n-r-reasonable where every
n-unifier of ¢ is an instance of an n-unifier (/,7) such that / < 7, that is to say
the variables occurring in 7(x;), ..., 7(x,,) belong to the set {x1, ..., x;} < {x1, ..., Xz}.
The next result is new. Combined with Proposition {42} it will be very useful in
Section[5.4]for showing that unifiable n-formulas are unitary in Al#; + OO,

Proposition 17 Let ¢ € FOR,, be n-unifiable and n > 1. If ¢ is n-n-reasonable
then either ¢ is n-finitary, or ¢ is n-unitary.

Proof 63 Suppose ¢ is n-n-reasonable. Let T be the set of all n-unifiers of ¢.
Notice that X is n-complete. Let X' be the set of n-substitutions obtained from X

by keeping only the n-substitutions (k, o) such that k < n. Since Z is n-complete

and ¢ is n-n-reasonable, therefore' is n-complete. Let X" be the set of n-substitutions
obtained from X' by keeping only one representative of each equivalence class
modulo =". Since X' is n-complete, therefore X" is n-complete. Moreover, since

Cgfl’e ; is locally -tabular, therefore >"" is finite. Hence, either ¢ is n-finitary, or ¢

is n-unitary.

5.3 About bounded deterministic frames

Let n > 1. The next result implies that in Alt; + (UL, unifiable n-formulas are
either nullary, or unitary.

Proposition 18 For all ¢ € FOR,,, if ¢ is n-unifiable then ¢ is n-filtering.

Proof 64 Let ¢ € FOR,,. Suppose ¢ is n-unifiable. Let (k,0), (I,T) be n-unifiers
of p. Let m = max{k,l} +1. Notice that x,, does not occur in ¢,0 and t. Let
(m, 1) be the n-substitution defined by

o 105 = (0% v (o ADLL) AT ()| v (O A (6 v OTY AT,

where i ranges over {1,...,n}. Let (m, A1) and (m,A,) be the m-substitutions de-
fined by
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e ifi <mthen At(x;) =x; elseA1(x;)=T,
e ifi<mthenAy(x;)=x;elsed;(x;)=1,

where i ranges over {1,..., m}. Notice that for alli € {1,...,n}, E At (u(x;)) < o(x;)
and F A (u(x;)) < t(x;). Hence, (m,u) <" (k,0) and (m,u) <" (I,7). More-
over, by induction on ¥ € FOR,, the reader may show that= Qxp, V (X ALJL) —
(L) = o) andFO=xp, A(xpy VOT) = (Uy) < T(Y)). ThusE QOxpm V (Xm A
O1) — () andE O-x, A0 Xy, VOT) — wle). Consequently, E u(p) and (m, w)
is a n-unifier of ¢. Since (m,u) X" (k,0) and (m,u) " (1,7), therefore ¢ is n-
filtering.

In order to show thatin Al# +[J]L, unifiable n-formulas are reasonable (Propo-
sition[25), we introduce an alternative semantics as follows.

A n-model is a structure of the form (a, A) where a is an n-tuple of bits and A

is a set of n-tuples of bits of cardinality 0 or 1.

Let MOD},? be the set of all n-models (a, A) such that A = @ hence MOD}? =

{(a, A) : a € BIT,,, A= @} and MOD?Zj be the set of all n-models (a, A) such that

A # ¢ hence, MODﬁQ ={(a,A): a € BIT,, || A|=1}. Let MOD,, be the set of all

n-models hence, MOD,, = MOD;,? UMOD??. The binary relation F,, of satisfi-

ability between MOD,, and FOR,, is defined in two following cases.

If (a, A) € MOD?? then,

e (a,A) ':n Xi iffa,- =1,

(@, A Fp L,

(a, AFpAviff (a,AF,pand (a,A) F, v,

(a, A) B, Og iff for the unique a’ € A, (a/, ) E;, .

If (@, A) € MOD,? then,
o (a,A)F, x;iffa; =1,
® (a) A)#n J—)

° (a,A)F, niff (a, A) ), @,



72 CHAPTER 5. UNIFICATION IN THE LOGIC ALT, + UL

e (a, AAF oAy iff (a,A)F, ¢ and (a, A) F, v,

* (a,A)F, Ugp.
The next result shows that (5‘626 . and n-models determine the same modal
logic. Its proof is standard.
Proposition 19 Forallp € FOR,, (g%get Fn @ iffforall(a, A) e MOD,, (a, A) F,
Q.
We remind that for all formulas v, ¢° denotes ~y and v denotes .

Definition 32 The function for, from MOD,, to FOR,, is inductively defined as
follows:

o ifA# @ then for,((a, A) = x;" A...Axp" AOfor, (&, @), where A= {a'},
* if A= @ then for,((a, A) = x;"" A..Axp" ANOL
where (a, A) ranges over MOD,,.

Proposition 20 Let (k,0) € SUB,,. Let (a, A) € MODy. and (8,B) € MOD,,. If
(a,A) Fro(for,((B,B))) then | Al=| B |.

Proof65 Let || A |#| B ||. Hence either | All<| B || or | B |I<|| A|. Assume
| All=@ and || B ||I# @. By our assumption we have (a,®) = o(for,((8,B))).
Hence, (a,®) Ex OT because B ¢ ¢ and this is contradiction.

Let| B ||<|| A|l. In this case, we can do similar to the case || A|<| B]|.
Therefore|| All=| B .

Proposition 21 Let (a, A), (8, B) € MOD,,. The following conditions are equiva-
lent:

1. (a,A) =(B,B),
2. (a,A) E, for, (B, B)).

Proof66 (1 = 2) Let (a,A) = (B,B). Hence, a« = § and A = B. We consider two
following cases:

e Let A= @ and B = @. By definition (a,A) F, x;' A...Ax,". Since a = f

then, a; = B; for each i = 1,...,n, hence, (@, A) F, x{' A...Ax,". Since,

A = @ hence, (a,A) F, L. Hence, (a,A) E, xl1 A A xg” AOL. Since
A= B =@ then, (a, A) =, for, (8, B)).
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o Let A# @ # B. By definition (@, A) Fp x;' A... A xo". Since a = B then,
p

a; = P foreachi=1,..,n, hence, (a, A) Fp x|' A...AX),". Since, A# @ let
a'€ Aand (d,9) E, xf/l A A xg’". By our assumption, A= B and B # @.
Let ' € BIT,, such that B = {'}. Hence a' = ' and (&', ) =, xl,1 Ao A
xﬁ'n. Then, (a, A) £, <>(x1,1 A A xg%). Since (a, A) =, <>(x1,1 A... /\xg") and
(@, AFE, X" A A xg” therefore, (a0, A) Ep, for, (8, B)).

(2=1) Let (a, A) Fy, for, (5, B)). Hence, (a, A) Fy x; ! /\.../\xg”/\DJ_ whereB = @

and (a, A) F,, x;" /\.../\x’g” AQ(x;! /\.../\xgln) where B = {f'}. It follows that A = ¢
where B = @ and A # @ where B # @. We consider two following cases:

e et A= @ and B = . Hence A = B. It is enough to show a = 3. Since
(a, A) F, xl1 /\.../\xg” then, (a, A) F, xf" foreachi=1,..,n. Then a; = B;
foreachi=1,...,n. Thus, a = .

o Let A# @ and B # @. Let ' € BIT,, such that B = {f'}. Let a' € BIT, such
that A={a'}. Since (a, A) F, x] ' /\.../\xg" then (a, A) =, x'l.Bi foriefl,.., n}
hence, a = B. Since (a, A) F,, O(x;' A ... A xn,") then (&', @) =, XA LA x'gl”

anda’ = f'. Since a = § and a' = B’ therefore, (a, A) = (B, B).

Proposition 22 Let (k,0) € SUB,,. Let (o, A) € MODy. There exists (B, B) e MOD,,
such that (a, A) Fy o (for, (8, B))).

Proof 67 We consider two following cases:

* Case A= @. Let € BIT,, be such that foralli € {1,...,n}, if (a, A) Fr o(x;)
then B; = 1 else B; = 0. Consequently, (a,A) Er o(x)P' A ... Ao (x,)Pr.
Since A= @ then, (a, A) Ex OL. Thus(a, A) Ex o (x))Pr A...A o (x,)Pr ACIL.
Therefore, (a, A) = o (for, (B, 9))).

* Case A# @. Let a' € BIT,, be such that A= {a'}. Let § € BIT,, be such that
forallie{l,..,n}, if(a, A) Fr o(x;) then B; =1 else B; = 0. Consequently,
(a, A) Ey a(x))P1 A ... Ao (x,)P". Moreover, since A# @ let B’ € BIT),, be such
that (&', @) F a(xl)ﬁll A A a(xn)ﬁ,n. Since (a, A) Ex o(x)PL A .. Ao (x,)Pn
then (a, A) £ o (for,, (8, {'))).

Proposition 23 Let (k,0) € SUB,,. Let (o, A) € MODy. For all (3,B),(y,C) €
MOD,, if (a, A) & o (for,((B, B)) and (a, A) =i o (for,((y, C))) then (B, B) = (y,C).
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Proof 68 We consider two following cases.

* Case A= @. Let (B, B), (y,C) € MOD,, be such that (a, A) &\ o(for,((8,B)))
and (a, A) Fi o(for,((y,C))). Hence, if B # @ then (a, A) Fi a(x)PUA LA
a(xn)ﬁ" A O(U(xl)ﬁll A... /\O'(Xn)ﬁ;l) where B = {f'} else (a, A) F a(x1)Pr A
AT (x)Pr ADL. IfC # @ then (a, A) Fr o(x)" /\.../\U(xn)Y”/\Q(U(xl)Y,l A
.../\a(xn)Y'ﬂ) where C = {y'} else (a, A) Ex a(x1)"' A...A0 (x,)"" AL L. Since,
A = @, therefore B= @, C = @ and for alli € {1,...,n}, (a, A) Fi o(x;)Pi
and (a, A) Fy 0(x;)"i. Thus p =vy. Since B=C = ¢ and f =y therefore
(,B,B) = (Y: C)

* Case A# @. Let (B, B), (y,C) € MOD,, be such that (a, A) F\ o(for,((8,B)))
and (a, A) Fy o(for,((y,C))). Hence, if B # @ then (a, A) Fi a(x)PUA LA
a(xn)gAO(a(xl)ﬁll /\.../\U(xn)ﬁ/") where B = {'} else (a, A) F a(x)PrA..A
o(x,)PrAOL and ifC # @ then (a, A) Fr o(x)" /\.../\a(xn)yﬂ/\O(a(xl)?”l A
/\a(xn)V’n) where C = {y'} else (a, A) B o0 (x))"' A... A0 (X)) AOJL. Since
A # @ therefore B# @ and C # ¢ and foralli € {1,...,n}, (a, A) Fi U(x,-)ﬁf
and (a,A) Fy o(x;)Yi. Hence, B =y. Moreover (a',®) Ey U(xl)ﬁll A A
o (xp)Pr and (@', @) Fr 0(x))"1 A ... Ao (x)"". Hence, B/ =y'. Since f=7y
and B' =y’ consequently, (B, B) = (y,C).

From proposition 22| and 23} we conclude that for all (k,0) € SUB,, and for
all (a, A) € MODy, there exists exactly one (8, B) € MOD,, such that (a, A) F
o (for,((8, B))).

For all k > 1, a (k, n)-morphism is a function f from MOD; to MOD,, such that
for all (a, A) e MODy and for all (8, B) e MOD,,, if f ((a, A)) = (8, B) then

» Forward condition: if A # @ then B # @ and there exists a’ € BITy, ' €
BIT,, such that A= {a'}, B={f} and f((a’,®)) = (B, ®).

* backward condition: if B # @ then A # @ and there exists a’ € BITy, ' €
BIT,, such that A= {a’}, B={f} and f((a’,®)) = (B, ®).

This kind of morphisms is different from the bounded morphisms usually con-
sidered in modal logic (see [18], definition 2.10). In particular, in the above
definition, there is no condition related to the valuation of variables. The next
result is a good example of what the properties of morphism are like.

Proposition 24 Let k > 1. Let f be a (k, n)-morphism. Let (B, B) € MODy. and
(y,C) € MOD,,. If the following conditions hold then f((3, B)) = (y, C):
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o forallie{l,..,n}, f((B,B) Fpx),

* if B# @ then C # @ and there exists ' € BITy and y' € BIT,, such that
B={f"},C=1{y'Yand f((B',2)) = (v, ®),

e if C # @ then B # ¢ and there exists ' € BITy and y' € BIT,, such that
B={p"}, C={yYand f(B',2)) = (Y, ®).

Proof 69 Supposeforallie{l,...,n}, f((B,B))F, xl.Yi. Moreover, suppose if B # @
then C # @ and there exists ' € BIT}. andy' € BIT,, such that B = {f#'}, C = {y'}
and f (B, @) = (y',®) and if C # @ then B # ¢ and there exists ' € BITy andy' €
BIT), such that B={f'}, C=1{y'} and f (', ®)) = (Y, ®). For the sake of the con-
tradiction, suppose f((8, B)) # (y,C). Let (8, D) e MOD,, be such that f((f,B)) =
(0,D). Consequently, (y,C) # (8,D). Since foralli € {1,...n}, f((B,B)) Fn xz./i,
therefore for alli € {1,...,n}, (6,D) F, xz./". Since foralli € {1,...,n}, (6,D) F, x?"
thereforey = 6. Since f((8,B)) # (y,C) and f((B,B)) = (6, D), therefore (y,C) #
(6,D). Sincey = 0, therefore C # D. It follows that either C # @ or D # ¢. We
consider the following two cases:

* C# @. Hence B # @ and there exists ' € BIT; and y' € BIT,, such that
B=1{p"}, C={y"t and f(B,®)) = (Y, ®). Since f is a (k, n)—morphism
and f((B,B)) = (6,D), therefore D # @ and f(f',®)) = (6',®) for some
&' € BIT,, such that D = {6'}. Since’y =6 and f(f',®)) = (6, ®), therefore
(y,C) = (8, D): a contradiction.

* D#@. Since f is a(k,n)—morphism and f ((, B)) = (6, D), therefore B # ¢
and f(B',)) = (6',0) for some p' € BIT} such that B = {'} and some
' € BIT,, such that D = {6'}. Thus, C # @ and f(f',®)) = (y',®) for some
Y' € BIT,, such that C = {y'}. Since’y =6 and f(f',®)) = (6, ®), therefore
(y,C) = (8, D): a contradiction.

5.4 Main Results

Let m = n. The next result implies that in Alt; + L1, unifiable n-formulas are
either finitary or unitary.

Proposition 25 For all ¢ € FOR,,, if ¢ is n-unifiable then ¢ is n-n-reasonable.
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Proof 70 Let ¢ € FOR,,. Suppose ¢ is n-unifiable. Let (k,0) be a n-unifier of ¢
such that k > n. Hence, F o(¢p). Moreover, since n < n, therefore k > n. Let g be
a (k, n)-morphism such that for all («, A), (B, B) € MODy, if g((a, A)) = g((B, B))
then foralli e {1,...,n}, (o, A) Fr o(x;) iff (B, B) Fx 0(x;). The proof of the exis-
tence of g is presented in Section[5.5]

Let f be a surjective (k, n)-morphism such that for all (a, A), (B, B) € MODy, if
fUa, A) = f((B,B)) then g((a, A)) = g((B, B)). The proof of the existence of f is
presented in Section|5.6

Let (n,71), (k,Vv) be the n-substitution defined by

* 7(x;) = V{for,(f((a,A)): (@, A) € MODyis such that (a, A) F o(x;)},
* v(x;) = V{for.((a, A) : (o, A) € MODyis such that f((a, A)) F, xi},

where i ranges over {1,...,n}. Now, we show that ¢ is n — n-reasonable. In this
respect, we have to prove Lemmas[43)}, and

In actual fact, the purpose of Lemmas and[46]is to show that (n, 1) is
an n-unifier of ¢ such that (n,7) <, (k,0).

Lemma43 Lety € FOR,,. For all (8, B) € MOD,, the following conditions are
equivalent:

1. there exists (a, A) € MODy. such that f ((a, A)) = (B, B) and (a, A) Fr o(y),
2. forall (a, A) e MODy. if f((a, A) = (B, B) then (a, A) Fr o (y),
3. (B,B)FTt(v).

Proof 71 Byinduction ony € FOR,,. We consider the following cases v = x; and
v =[0x.

e Lety =x;. Let (8, B) € MOD,,.

(1 = 2) Suppose (a, A) € MODy. is such that f((a, A)) = (8,B) € MOD,
and (a,A) Fr o(x;). Let (y,C) € MODy be such that f((y,C)) = (B, B).
Since f((a, A)) = (B, B), therefore f((a, A)) = f((y,C)). Hence, g((a,A)) =
g((y,0). Thus, (a,A) Fr o(x;) iff (y,C) Ex o(x;). Since (a, A) Fr o(x;)
therefore (y,C) Fr o(x;).

(2 = 3) Suppose for all (a, A) € MODy if f((a, A)) = (B, B) then (a, A) Fi
o(x;). Since f is surjective therefore let (y, C) € MODy. be such that f ((y,C)) =
(B, B). Since for all (a, A) € MODy, if f (o, A)) = (B, B) then (a, A) Fr o(x;),
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therefore (y,C) Fi o(x;). Consequently (B,B) &, for,(f((y,C))) — 1(x;).
Since f((y,C)) = (B, B), therefore (B, B) =, for, ((8,B)) — t(x;). Since by
Proposition (B, B) =y, for, (B, B)), therefore (B, B) =, T(x;).

(3 =1) Suppose (B,B) F, 1(x;). Let (a, A) € MODy. be such that (a, A) F
o(x;) and (B, B) F,, for, (f ((a, A))). Such (a, A) exists by the definition of 7.
Hence, by Proposition[21} f((a, A)) = (B, B).

e w=_LUly. Let (B, B) € MOD,,.
(1 = 2) Suppose (a, A) € MODy. is such that f((a, A)) = (B, B) € MOD,, and
(a,A) FroUy). Let (y,C) € MODy be such that f((y,C)) = (B, B). Suppose
(y,C) ¥x o(@y). Thus, C # @ and (y', @) # a(y) for y' € BIT} such that
C ={y'}. Since f is a (k, n)-morphism and f ((y,C)) = (B, B), therefore B #
@ and f((y',®)) = (B, @) for some ' € BIT,, such that B = {f'}. Since f is
a (k, n)-morphism and f ((a, A)) = (B, B), therefore A# @ and f((a',)) =
(B, @) for some a' € BIT}. such that A = {a'}. Since (y',®) £ a(y) and
(Y, @) = (B,9), therefore, (a',®) ¥ a(x). Hence, (a, A) ¥ a(y): a
contradiction.
(2 = 3) Suppose for all (a, A) € MODy, if f((a, A)) = (B, B) then (a, A) F
o(dy). Suppose (B, B) #;. T(Jy). Consequently, B # @ and (B, @) #, T(y).
Since f is surjective, therefore let (y,C) € MODy be such that f((y,C)) =
(B, B). Since forall (a, A) € MODy, if f ((a, A)) = (B, B) then (8, B) Fr a(Uy),
therefore (y, C) Froy). Since f is a(k, n)-morphism, B # ¢ and f ((y,C)) =
(B, B), therefore C # @ and f((y',®)) = (B, @) fory' € BIT}. such that C =
{y'}. Since (B',) ¥, 1(x), therefore by induction hypothesis, (y',3) ¥
o(x). Thus, (y,C) B o(y): a contradiction.
(3=1) Suppose (B, B) =, T(Uy). Since f is surjective, therefore let (o, A) MODy
be such that f((a, A)) = (B,B). Suppose (a, A) ¥ o(Uy). Consequently,
A# @ and (&', @) #i a(y) for some a' € BIT. such that A= {a'}. Since f is
a (k, n)-morphism and f((a, A)) = (B, B), therefore B # ¢ and f((a',®)) =
(', @) for some B’ € BIT), such that B = {'}. Since (&', @) ¥y a (), therefore
by induction hypothesis, (B',®) ¥, T(y). Hence, (B, B) ¥, t((y): a contra-
diction.

Lemma 44 For all (§,B) € MOD;. and for all i € {1,...,n}, the following condi-
tions are equivalent:

1. (B,B) Frv(x;),
2. f((B,B)) Fp xi.
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Proof 72 Let (B, B) € MODy and i€ {l,..., n}.

(1 = 2) Suppose (B,B) Fi v(x;). Let (a, A) € MODy be such that f((«a, A)) F
x; and (B, B) Fy for,.((a, A)). Such (a, A) exists by the definition of v. Thus, by
proposition (B,B) = (a, A). Since f((a, A)) E, x;, therefore, f((B,B)) Fj, x;.

(2 = 1) Suppose f((B,B)) E, x;. Consequently, by the definition of v, (8, B) Fx
fori.(B,B)) — v(x;). Since by Proposition 21|, (B, B) F for;.((8,B)), therefore
(B, B) B v(xi).

Lemma 45 Let (8, B) € MODy and (y,C) € MOD,,. The following conditions are
equivalent:

1. f((B,B)=(y,0),
2. (B, B) i v(for,((y,C))).

Proof 73 Obviously, if f (B, B)) = (y,C) then B = ¢ iff C = @. Similarly, if (B, B) Fx
v(for, ((y,(C))) then B = ¢ iff C = @. For this reason we consider two following
cases.

e CaseB=@¢ andC = @.

(1 = 2) Suppose f(B,®)) = (y,®). Since for alli € {1,...,n}, (y,d) F, x}”',
therefore for all i € {1,...,n}, f((B,®)) Fn xz.”'. Thus, for alli € {1,...,n}, by
Lemma (B, ®) Ex v(x;)Yi. Hence, (B,?) Fr v(x)" A...AV(xy)"". Since
B =@ and C = @, therefore (, B) Fi v(for, ((y, C))).

(2=1) Suppose (B, ) Er v(for, ((y,®))). Consequently, (B, ) Fx v(x1)"" A
.. A\Vv(xp)'". Hence for alli € {1,...,n}, (B,®) Fx v(x;)Vi. Thus foralli e
{1,...,n}, by Lemma B, ) Fn xz.’i. Since B = @ and C = @, therefore
by Proposition24}, f (B, ®)) = (v, ®).

e CaseB# @ and C # ¢.

(1 = 2) Suppose f((B,B)) = (y,C). Since for alli € {1,...,n}, (y,C) F, xz./",
therefore for alli € {1,...,n}, f((B,B)) Fy xl.Yi. Moreover, since f is a (k, n)-
morphism B # @ and C # @, therefore f (', ®)) = (y', ) for ' € BITy, y' €
BIT,, such that B = {f'}, C = {y'}. Hence for alli € {1,...,n}, by Lemmal44}
(B, B) Fr v(x;)Yi. Moreover, by the first case above, since f((f',®)) = (v, @),
(B, 2) Ex v(for,((y',®))). Consequently, (B,B) Fi v(x1)" A ... Av(xp)'m.
Moreover, (B, B) E. Ov(for, ((y', ). Thus, (8, B) Ei v(for,((y,C))).

(2 = 1) Suppose (B,B) Fr Ov(for,((y,(C))). since C # @ then (B,B) Fi
VXD A AV A Qv (for, (Y, ) thus, foralli€{1,...,n}, (B,B) Fi
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v(x;)Yi. Moreover, (f',9) Ei v(for,((y',®))) for p’ € BITy, y' € BIT, such
that B =1{f'}, C = {y'}. Thus foralli € {1,...,n}, by Lemmaldd4} f((B,B)) Fy,
x}’i. Moreover, by the first case above since (f', @) Fi. v(for,((y', ©))) then,
f((B,®) =y, ). Consequently, by Proposition[24, f((8,B)) = (y, C).

Lemma 46 For all (8, B) € MODy and for alli € {1,...,n}, The following condi-
tions are equivalent:

1. (B, B) Frv(T(x:),

2. (B,B)Fro(xi).

Proof 74 Let (3, B) € MODy and i€ {1,...,n}.

(1 = 2) Suppose (B, B) Fr v(t(x;)). Let (o, A) € MODy. be such that (a, A) F o(x;)
and (B, B) B v(for,(f ((«, A)))). Such (a, A) exists by the definition of T. Hence,
by Lemmal[45, f((B,B)) = f((a, A)). Thus, g((B,B)) = g((a, A)). Since (&, A) Fi
o(x;), therefore (B, B) Fr 0 (x;).

(2 = 1) Suppose (B, B) F o(x;). Consequently, by the definition of T, (8, B) Fx
v(for, (f((B,B))) — v(1(x;)). Since by Lemmal[45}, (B, B) Fi v(for,(f((8,B))),
therefore, (B, B) Fi v(T(x;)).

Since F o (), therefore by Proposition for all (a, A) € MODy, (@, A) Fr o ().
Thus by Lemma for all (8,B) € MOD,,, (B,B) F, (). Consequently, by
Proposition [19} F 7(¢). Hence, (n,7) is a n-unifier of ¢. Moreover, by Lemma
(n,7) X (k,0). Since n < 7, therefore ¢ is n — m-reasonable. This is the end
of the proof of Proposition

The next result follows from Propositions and[25]

Proposition 26 For all ¢ € FOR,,, if n-unifiable then ¢ is n-unitary.
Now, our main result can be state as follows.

Proposition 27 Unification in Alt, + UL is unitary.

Proof 75 By Proposition[26|and|18]
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5.5 Definition of the function g used in section 5.4

Let n > 1. Let (k,0) € SUB,,. Now, we define the function g used in Section[5.4
Let g be the function from MOD; to MOD,, such that

* g((a, A)) is the unique (B, B) € MOD,, such that (a, A) F o (for,((B, B))),

where (a, A) ranges over MOD .. Notice that by Propositions[22]and[23] g is well-
defined. Propositions[28|and [29|show that g possesses the properties required
in Section

Proposition 28 g is a (k, n)—morphism.

Proof 76 Let (a, A) € MODy and (3, B) € MOD,, be such that g((a, A)) = (5, B).
Hence, (a, A) Fy o(for,((B,B))). Thus, if B # @ then (a,A) Fi a(x)Pr A LA
a(xp)P" A Qo (for, ((B',))) where ' € BIT, is such that B = {#'} else (a, A) Fy
o(x)P A AT (x)Pr AOL. Consequently, if A# @ then B # @ and (&', ®) Ex
o(for, (B, ), (where a' € BITy is such that A = {a'}) and g((a/,®)) = (', 2).
Moreover, if B # @ then A # @ and (&', ®) Fy o(for,(f,2)), i.e. gla, @) =
8, 2).

Proposition 29 For all (a, A), (8, B) € MODy, if g((a, A)) = g((, B)) then for all
iefl,..n},(aAFox) iff (B,B) Fro(x;).

Proof 77 Let (a,A),(B,B) € MODy. Suppose g((a,A)) = g((,B)). Hence, let
(y,C) € MOD,, be such that g((a, A)) = (y,C) and g((B, B)) = (y, C). Thus, (a, A) F
o (for,((y,C))) and (B, B) Fi o (for,((y’C))). Consequently, (a, A) Fi o (x1)"'A...A

o(x,)"" and (B, B) Fr o(x))"* A... Ao (x,)"". Hence, foralli€{1,...,n}, (a, A) Fi

o(x;))" and (B, B) Fx 0(x;)". Thus, foralli€{1,...,n}, (a, A) Fr o(x;) iff (B, B) Fx

o (x;).

5.6 Definition of the function f used in section 5.4

Letn > 1. Let (k,0) € SUB,, be such that k > n. Let g be a (k, n)-morphism such
that for all (a, A), (8, B) € MODy, if g((a, A)) = g((B, B)) then for all i € {1,..., n},
(a, A) Fy o(x;) iff (B,B) Fr o(x;). The proof of existence of g has been pre-
sented in Section In order to define the function f used in Section
we need define the function fy and fi such that f is a function from MOD;Qj
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to MOD},? and f; is a function from MODfQ) to MOD?,?. Firstly, we define the
function f; and then we define the function f; based on fy. Let U = {g((a, @) :
(a,®) € MOD;Q’}. By Proposition U < MOD;,?. Let h be a function from
U to MOD?Z§ such that g(h(g((a,®)))) = g((a, ®)). Obviously, h is injective.
Hence we have, | U ||=| {h(g((a,®))) : a € BIT} ||. Since k > n, therefore,
I MOD?\U 1<l MOD;‘D\{h(g((a, ?))) : a,€ BITy} ||. Let S be a subset of
MOD, “\{h(g((a,®))) : & € BITy} such that || S =] MOD;”\U |. Let f; be a
one-to-one correspondence between S and MOD;?\U.

Now, we define the function fj. Let fy be the function from MOD?Zs to MOD},?
such that

¢ if (@, @) € Sthen fy((a,®)) = f; (@, @) else fo((a, B)) = g((a, B)),

where (a, ) ranges over MOD;Q’. Lemma [47| and 48| show that f possesses
interesting properties as follows.

Lemma 47 [y is surjective

Proof 78 Let (B8, ®) € MOD},®. We consider the following two cases:

* (B,8) € MOD,”\U. Since fo is one-to-one, therefore let (a, @) € MOD;¢
be such that (o, ®) € S and fo*(((x,gz))) = (B, ). Consequently, fo((a,®)) =
fo (a, @)). Since f; ((a, @) = (B, @), therefore fo((a, B)) = (B, D).

e (B,8) ¢ MOD,°\U. Thus, (B,®) € U. Consequently, let (a, ) € MOD;(D
be such that g((a, ®)) = (B, ®) and («, @) = h((B,®)). Hence, fo((a,d)) =
g((a, ®)). Since g((a, ®)) = (B, @), therefore fo((a, B)) = (B, D).

Lemma 48 Forall(a,®), (B, ) € MOD.?, if fo((a, ®)) = fo((B, ) then g((a, ®)) =
g((B, ).

Proof79 Let (a,®),(B, ) € MOD;¢. Suppose fo((a, ) = fo((B,®)). We con-
sider the following three cases.

* (a,9) € Sand (B,9) € S. Hence, fo((a,®)) = f; (@, @) and fo((B,®)) =
fo ((B,@)). Since folla, @) = fo((B, D)), therefore f ((a,®)) = f; (B, D).
Since f is one-to-one, therefore (a, ®) = (8, ). Consequently, g((a, ®)) =
g((B,2)).
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* (a,®) € S and (B, ) ¢ S. Hence, fo((a,®)) = f; (a,®)) and fo((B,®)) =
g((B,®)). Since fo((a, B)) = fo((B, ®)), therefore f; ((a, ®)) = g((B, ®)). Since
[ (@, )) € MOD;,°\U and g((f,®)) € U, therefore MOD,,°\U and U do
not make a partition of MOD,” : a contradiction.

* (a,9) ¢ S and (B,p) ¢ S. Hence, fo((a,®)) = gl(a,®)) and fo((B,D)) =
g((B,®)). Since fo((a,®)) = fo((B, D)), therefore g((a, @) = g((B, D).

The surjective function fy from MOD;Q to MOD;,? has been defined such that
forall (a/, @), (B, ®) € MOD;,%, if fo((a',8)) = fo((f',8)) then g((a', 8)) = (B, ®)).
For &’ € BIT,,, let S((6',®)) = {(B,{B')) : B, B’ € BIT,and fo((f',8)) = (6',®)} and
T8, @) = {(e,{€) : €,¢' € BIT,, ¢’ = §'}. Notice that For 6’ € BIT,,, S((6',®)) <
MOD’?? and T((§',®)) < MOD}?. Also notice that | T((8',®)) [|=2". For §' €
BIT,, let ~(5',4) be the equivalence relation on S((6’, ®)) such that

* (B,B) ~w@.0 (v, C) iff g((B, B)) = g((y, ),

where (B, B), (y,C) range over S((6’,®)). The next result will allow us to use
Proposition

Proposition 30 For all §' € BIT,,,
LS, o)~ I<I TS, o) I,
2.1 T, o) Il S, o)) Il

Proof 80 Let6' € BIT,,. Obviously, | T((6',®)) ||=2".

1. For the sake of contradiction, suppose || S(6',®))/ ~&.¢) 1> T((&', @) II.
LetpeNand (B, B),...,(BP, B'P) € S(&', ®)) be such that p >|| T((5',®)) |
and forall q,r N, ifl< q,r < p and q # r then (B9, ') = 4 (B7, 7).
Thus, fo((B"",®)) = (6',0),... fo((BP,®)) = (8',8). Consequently, let €' €
BIT" be such that g(f'', ) = (¢/,9),...g(BP,®) = (€/,®). Since g isa
(k, n)-morphism, therefore let €',...,e” € BIT,, be such that g((8!, ")) =
€l,eN,...g((BP, B'P)) = (€P,€"). Sinceforallg,r eN,ifl< q,r < pandp #
r then (B9, B'P) =51 4 (B", B'"), thus forall q,rN, ifI< g, r<pandq#r
then g((B7, B') # g((B", ). Since g((B', ™) = (€',€),..., g((BP, B'P)) =
(eP,€"), thus forall g,r €N, if1 < g, r < p and q # r theneP # ¢". Hence
p <2". Sincel| T((6',9)) |= 2", therefore p <|| T((6',®)) |I: a contradic-
tion.
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2. Since fy is surjective, therefore obviously, || S((6', @)) || = 2k, Sincek > n
and || T((6",®)) ||=2", therefore || T((&',®)) | < S((&",®)) |

Hence, for all §’ € BIT,,, by Proposition (14| and let fl((s"q” be a surjective
function from S((6’,®)) to T((6',®)) such that for all (B, B), (y,C) € S((&',)),
if £2°2((,B)) = £ ((y,C)) then (B, B) ~',¢) (¥, ).

Now, we define the function f;. Let f; be the function from MOD;,’C'f<Z§ to
MOD’,? such that

. fi((BB) = P2 (B, By,

where (S, B) ranges overMODst and f' € BIT is such that B = {§'}. Lemma
and[50[show that f; possesses interesting properties.

Lemma 49 f is surjective.

Proof 81 Let (8,D) € MOD?,?. Let &' € BIT,, is such that D = {5'}. Hence, (5,D) €
T((&',@)). Since fl(‘sl’m is surjective, therefore let (8, B) € S((6', ®)) be such that
F9(B,B) = (6,D). Let f € BITy is such that B = {§}. Thus, fo(f,®)) =

(8, @). Moreover, f,((B, B)) = f""?"?" (8, BY). Consequently, f, (8, B)) = £"? (B, B)).
Since "9 (8, B)) = (5, D), Therefore f, (8, B)) = (5, D).

Lemma 50 Forall(a, A),(B,B) € MODzQ), if filla, A)) = fi((B,B)) then g((a, A)) =
g((B,B)).

Proof 82 Let (a,A),(,B) € MOD.”. Suppose fi((a,A) = fi((§,B)). Leta' €
BITy. be such that A= {a'}. Let ' € BIT be such that B = {'}. Hence f((a, A)) =

@D (4 ) and f(B,B) = FPP?((,B)). Since fi((a, A) = fi((B, B))
thereforeflf(’((a”@))((a,A)) = {0(([3”@)((&3)). Let(y',®),(6', @) € MOD,,® be such
that fo((@',®)) = (v, ®) and fo (B, 8)) = (&', ®). Since £ (a, 4) = £ FP (, By,
therefore {72 (a, A)) = £ P (B, B)). Since 7" ((a, A) € T((y',9)) and f©"? (B, B)) €

T((d', @), therefore (', @) = (6', 2). Sincefl(yl’m((a,A)) = fl(‘s"@)((ﬁ, B)), therefore
(a0, A) ~y,) (B, B) and (a, A) ~5,¢) (B, B). Consequently, g((a, A)) = g((5, B)).

Now, we define the function f used in Section[5.4|Let f be the function from
MOD;. to MOD,, such that

* f((B,B) = fo((B,®)) when B = g,
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* f((B,B) = f1((B,B)) when B # @.

where (8, B) ranges over MOD,. Propositions show that f possesses the
properties required in Section ...

Proposition 31 f is a (k, n)—morphism.

Proof 83 Suppose f is not a (k,n)—morphism. let (a, A) € MODy and (f,B) €
MOD,, be such that f ((a, A)) = (B, B) and either forward condition does not hold,
or backward condition does not hold. In the former case, A # @ and B = ¢, or
there exists a' € BITy, ' € BIT, such that A = {a'}, B = {f'} and f(a,®)) #
(B, @). Since A # @ and f((a,A)) = (B,B), then B # @. Thus let a' € BITy,
p' € BIT), such that A= {a'}, B={f"} and fo((a',®)) # (B, ). Since f((a’, A)) =
(B,B) then P (a,(a')) = (B,1BD). Then (B,1B')) € T(fo((a',0))), then
folle!, @) = (B',8): a contradiction.

In the latter case, B # @ and A = @ or there exists a' € BITy, ' € BIT,, such that
A={a'}, B={f}and f(a',®)) # (B',®). Since B+# @ and f((a, A)) # (B, B) then
A # @. And the rest of the argument is similar to the one used in the former case.

Proposition 32 Forall(a, A), (B, B) € MODy, if f ((a, A)) = f((B, B)) theng((a, A)) =
g((B,B)).

Proof 84 By Lemmas[48 and

Proposition 33 f is surjective.

Proof 85 By Lemmas[47|and

In this Chapter, we have shown that Al¢#; + OO is unitary (Proposition [27).

The adaptation of this proof to K + UL (showing K + L] L) will be presented
during the workshop UNIF 2020.
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The fusion L; ® L, of two normal modal logics L; and L, formulated in lan-
guages £ and %, with disjoint sets of modal operators is the smallest normal
modal logic containing L, UL,. Itis easy to see that if each L; is axiomatized by a
set )_; of axioms (written in the respective language) then L; ® L, is axiomatized
by the union ) ; U)_,. Fusion of modal logics are everywhere in computer sci-
ence and artificial intelligence. For instance Public Announcement Logic is like
a fusion of finitary many S5 logics. In this chapter we consider some fusions of
two modal logics and discuss about their unification type.

6.1 Syntax

Let VAR be a countable set of atomic formulas called variables (denoted x, y,
...). Formula of modal languages £, and %» are respectively defined as follows

=x|L]lnl(@vy) L,
x|L2el(@vy)|Ue.

ASIRS
L[]

85
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Definition 33 Formulas of the fusion £ of £\ and &> are given by the following
rule

pu=x|Lln@l(@vy) | Uelle.

As usual, the rest of the connectives are defined from the ones given. In this
case, we have Q¢ ::= ;g and Q¢ := "¢

Definition 34 Let L, be a normal modal logic in £, and L, be a normal modal
logicin &». The fusion of L, and L, (denoted L} ® L, ) is the least normal modal
logic in £ containing L, and L.

A number of transfer results have been obtained. For instance, if L; is decidable
and L, is decidable then L; ® L, is decidable [38] and [53]. For us, in this chapter,
itwill be important to remember that when L, is consistent and L, is consistent,
the fusion L, ® L, is a conservative extension of L; and L, respectively, that is to
say: for all i € {1,2} and for all formulas ¢ in £;, pe L1 ® Ly iff p € L;.

6.2 Semantic

In this Section, we will see Semantics of fusion of two modal logic L; ® L;.

Definition 35 A Frame & for £ is a triple (W, Ry, R») where W is a non-empty
set of possible worlds and R, and R, are binary relations on W.

Definition 36 A model ./ is a structure (W, Ry, R»,v), where

e W is a set of possible worlds,

* Ry and R, are binary relations on W to evaluate ], and [, respectively and
evisafunctionv: W — P (Var).

We define the notion of a formula ¢ being true in model .4 = (W, Ry, R,,v) ata
world w € W (in symbols .4, w = ¢) as follows:

e U, wExiff weV(x),
o M, Wk,

s M, wEiff M, wF @,
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o M, wE Vv iffeither 4, wFE@or M4, wFEv,
o M, wEDgiffforall w' e W,if wR,w' then, 4, w' = ¢,
o M, wEyyiffforall w' e W, if wR,w' then, 4, w' = ¢.
As aresult,
o M, wE Oq¢ iff there exists w' € W such that wRyw' and 4, w' E ¢,

o M, wE Oy iff there exists w’' € W such that wRyw' and .4, w'E ¢.

Example 11 Consider the formula ¢ = $1(x AUOyy). Let 4 = (W, Ry, R, V) be a
model of K@ K. M satisfies O1(xA2y) at a world wy € W iff there exists wy € W
such that woR, wy and M satisfies x N[,y at w,. But this means w; € v(x) and
wy € v(Uay). A satisfies o v(y) at w iff for every w, € W such that wy Ry w, we
have 4 satisfies v(y) at wo.

6.3 Unification Type in fusion K; ® K,

Dzik proved that the fusion K; ® K> of K with itself provides the rule of disjunc-
tion [22]. In this section, we mention shortly about the rule of disjunction in
the fusion K; ® K>.

Definition 37 Let L, Ly be normal modal logics in £, and £, respectively. The
fusion L = Ly ® L, provides the rule of disjunction if the following condition hold
forany A, A e ZL:

e FU Ay v, Ay then, - A; for somei €{1,2}.

At the below Lemma, we claim that fusions K; ® K> satisfies the rule of disjunc-
tion.

Theorem 7 The fusion Ky ® K, provides the rule of disjunction.

* |_K1®K2 D]AV DZB 3"[(1@](2 A or |_K1®K2 B

Proof 86 Suppose¥k sk, A and¥x,ex, B. We have to show that¥ g, ¢k, L1 A1 v
0,B. Let 4, = (W1, R}, R}, v1) and > = (W», R}, R}, v2) be Ki ® K>-models. Let
t € Wy and s; € W5 such that 4, 61 ¥ A and 4>, s1 ¥ B. Let us construct the
model 4 = (W, Ry, R,,v) which is the disjoint union of ., and > together
with a new state wy. We define the model as follows:
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e W=W,uW,U{wp},

* Ry =R{UR/U{(wp, t1)},

* Ry =R, UR) U{(wo,s1)} and
s V=viUVy.

Obviously, the sub-model of 4 generated from t; is equal to the sub-model of
M generated from t; and the sub-model of 4 generated from s, is equal to
the sub-model of 4, generated from s,. Since, 41, t; ¥ A then, 4, t; F A. Since,
Mo, 51 % B then, 4, s1 ¥ B. Since wyR1 t1 and M, t; ¥ A then, 4, t; ¥ [, A. Since
woRys1 and M, s1 ¥ B then, 4, s, ¥ [yB. Then, 4, wy ¥ [, Av U, B. Therefore,
%K1®K2 DlAV DzB.

Since we know that some logics providing the rule of disjunction (for example
K and K4) does not possess a unitary unification type. For example consider
the formula [J; x v [y —x. This formula has unifiers

e 01(x)=T,
e oy(x)=1.

and there is no unifier more general than both of them because if

Frek, Uio(x) V1o (x)

then either Fx, sk, 0(x) (so that o is equivalent to 01) or Fx,ex, 70(x) (so that
o is equivalent to o). Thus this formula has no most general unifier.

Theorem 8 Unification type of the fusion K, ® K is not unitary.

Before discussing on unification type of fusion K; ® K, we consider a general
form oflogic L; ® L, when L; has nullary unification type and L; is a consistent
modal logic. Then we show unification type of fusion L; ® L, is not finitary and
not unitary.

Consider two unimodal logics Triv = K + {{Ip < p} and Ver = K + {Llp}. D.
Makinson proved a property of consistent unimodal logics[48]. This well-known
property is as follows:

 Ifunimodal logic L is consistent then L < Triv or L < Ver.

For instance, S5 € Triv, S5 & Ver, K4 < Triv and K4 < Ver. We define a transla-
tion ¢ from the language £ to the language % as:
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Definition 38 Since L, is consistent, we have L, < Triv, or L, < Ver,. Lett: £ —
%1 be a function defined as follows:

e (x)=x,
* 1(p)=p,
e f(L)=11,

o t(h) = t(y),

* tlpvy) =tlp) VL),

o t(Lhe)=0hty),

o t(Lp) = t(p), when Ly < Triv.

e t(Lp@) =T when Ly < Vers.

The below lemmas show that if L; is nullary and L; is consistent then L; ® L, is
not unitary and not finitary.

Lemmab5l Let Ly € £ and Ly, < %, be normal modal logics. if L is nullary
and L, is consistent then L, ® L, is not unitary.

Proof 87 Suppose L, is nullary and L, is consistent. Suppose L, ® L, is unitary.
Since, L, is nullary, therefore let ¢ € £, be such that ¢ is L, -unifiable and ¢ has
no minimal complete set of Ly -unifiers. Let o be an %, -substitution such that
o(p) € Ly. Since the fusion L, ® L, contains both L, and L, hence, o(¢p) € L, ® L.
Thus, ¢ is (L1 ® L) -unifiable. Since L, ® L, is unitary, Let T be an £ -substitution
such that t is an (L1 ® Ly)-unifier of ¢ and for all & -substitution o', if o' is an
(L, ® Ly)-unifier of ¢ then v <1,e1, 0'. Since Ly is consistent therefore either
L, = Triv, or Ly, < Vers.

Lett: & — %) be the function defined in Definition[38| For all £ -substitutions
0, let 0" be the £, -substitution such that for all variable x, 6 (x) = t(0(x)).

Claim 2 Forally € £y, 0" (w) = t(O(y)) for all £ -substitutions 6.

Proof 88 By inductiononvy € %4;:



90 CHAPTER 6. UNIFICATION IN FUSION OF TWO MODAL LOGICS

o Lety = x. We have, 0" (x) = t(0(x)).
o Letw = 1. We have,0'(1) = L.

o Lety = @Vv¢'. Byinduction hypothesis0' () = t(0(p)) and 0 (¢") = t(0(¢")).
Hence, 0 (o Vv @) = t(O(p Vv ¢)).

o Lety =1¢'. By induction hypothesis 0" (¢') = t(0(¢")). Then, ;0% (¢') =
(1 20(¢") = t(:0(¢") = t(O(19").

Claim 3 Forally e £
1. If L, < Triv, then (y — t(y)) € L ® Triv,.
2. IfL, < Ver, then (y — t(y)) € L, ® Ver>.
Proof 89 by induction ony.
1. Suppose L, < Triv,. We only explain the cases w = 0y’ andy = Oy,

e Letw = yy'. By induction hypothesis v' — t(y') € L, ® Triv,. By
necessitation (1w’ — Oht(y') € Ly ® Triv,. Thus, D' < t(Chy') €
L, ® Triv,.

e Letw = Uoy'. By induction hypothesis ' — t(y') € L, ® Triv,. By
necessitation [y’ — O t(y') € Ly ® Trivo. Consequently, oy’ —
t(y') € Ly ® Triv,. Since t(oy") = t(y') thus, Doy’ < t((hw') e L1 ®
Trivz.

2. The proof of this item is similar to the proof of item 1.
Claim4 Forallye £, ifyeL;®Ly thent(y) € L.
Proof 90 We consider the two following cases:

1. Suppose Ly < Trivs. Lety € L1 ® Ly. Then by Claim[3}, (y < t(y)) € L; ®
Triv,. Since,w € L1 ® Ly and L, ® Ly, < Ly ® Triv, then, v € Ly ® Triv,. Since,
v € L1 ®Triv, and (v — t(y)) € L1 ® Triv, then, t(y) € L ® Triv,. Therefore,
knowing that L, ® Triv, is a conservative extension of Ly, t(y) € L;.

2. Suppose L, < Ver. Lety € Ly ® L. Then by Claim[3, (y — t(y)) € L ® Ver.
Since, w e Ly ® Ly and L, ® L, < Ly ® Ver, then, v € L, ® Ver,. Since, ¥ €
L, ® Ver, and (v — t(y)) € L, ® Ver, then, t(y) € L, ® Ver,. Therefore,
knowing that L, ® Ver, is a conservative extension of L, t(w) € L,.
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Since, T is an (Ly ® Ly)-unifier of ¢, therefore t(¢) € L; ® L,. Hence, by Claim[4}
t(t(p)) € Ly. Thus by Claim 1!(¢) € L,. Consequently, ! is an Ly -unifier of ¢.

Claim 5 For ally € & and for all £ -substitution A, t(A(y)) = AL (¢(y)).
Proof 91 By induction onvy.

Let 0 be an %, -substitution such that 0 is an L, -unifier of ¢. Hence, 0(p) € L.
Hence, O(¢p) € Ly ® L. Thus, knowing that the t defined before Claim 2| is a
most general unifier of ¢ in Ly ® Ly, T 1,81, 0. Let A be an £ -substitution
such that for all variables x, A(t(x)) < 0(x) € L, ® L,. Hence, by Claim[4}, for
all variable x, t(A(1(x))) < t(0(x)) € L. Thus by Claim[5, for all variables x,
ATt (x)) < O(x) € L. Consequently, T <, 6.

As a result, T" is an Ly -unifier of ¢ (by the remark preceding Claim and for all
£, -substitutions 0, if 0 is an L, -unifier of ¢ thent' <1, 0. Thus, {t'} is a min-
imal complete set of L, -unifiers of ¢ and this is contradiction with assumption
that ¢ has no minimal complete set of L, -unifiers. This ends the proof of Lemma

51

Lemmab52 Let L) € %) and Ly, < %, be normal modal logics. if L is nullary
and Ly is consistent then Ly ® Ly is not finitary.

Proof 92 Suppose L, is nullary and L, is consistent. Suppose L, ® L is finitary.
Since, Ly is nullary, therefore let ¢ € £, be such that ¢ is Ly-unifiable and ¢
has no minimal complete set of L, -unifiers. Let o be an £ -substitusion such
that o(¢p) € Ly. Hence, o(p) € Ly ® Ly. Thus, ¢ is (L ® Lp)-unifiable. Since,
Ly® L is finitary, let 1, ..., T, be £ -substitutions such thatt,...,1, are (Ly® Ly)-
unifiers of ¢ and for all & -substitutions o', ifo’ is an (L; ® Ly)-unifier of ¢ then
T; <1,0L, O forsomei€{l,...,n}. Since L, is consistent therefore either L, < Triv,
or Ly < Very.

Lett: ¥ — % be a function defined as in Definition[38]

Since, T; fori € {1,...,n} is an (L, ® Ly)-unifier of ¢, therefore t;(¢p) € L1 ® L, for
i€{l,...,n}. Hence, t(t;(¢)) € L. Thus Tf((p) € L, forie{l,..., n}. Consequently,
T} is an Ly -unifier of .

Let 0 be an £, -substitution such that 0 is an L, -unifier of ¢. Hence, 0(¢p) € L;.
Hence, 0(p) € L1 ® Ly. Thus, remembering that {1y, ..., T,} is a complete set of uni-
flersofpin L1 ® Ly, T; <1,81, 0 for somei € {1,...,n}. Let A be an £ -substitution
such that for all variables x, A(t;(x)) < 0(x) € L, ® L,. Hence, by Claim 4] for
all variable x, t(A(t;(x))) < t(0(x)) € Ly. Thus, by Claim[5} for all variables x,
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AH(Ti(x)) < 0(x) € Ly. Consequently, T} <1, 6 for somei € {1,...,n}.
As a result, {t},..., T} in a complete set of L -unifiers of ¢ and this is contradic-
tion with our assumption.

Since K is nullary and K; is consistent hence fusion K; ® K3 is not unitary by
Theorem 51| and not finitary by Theorem At the following, we shall show
that there exists a (K} ® K»)-unifiable formula which has no minimal complete
set. Hence K; ® K3 is nullary. In this respect, we shall use Jefdbek’s method in
[34] in order to show that the unification type of the fusion (Kj ® K>) is nullary.
We need to define

o (i) =9

o (1) g = (O0) (01 02) "

o (0100 =T

o (1O = (0" A (i) "

where 7 is a non-negative integer.
The next Lemma expresses some required facts that we will use to prove K; ® K3
is nullary.

Lemma 53 Let k,l €N and ¢,y be £ -formula.
1. Ifl— Y-y thenkE |:|1|:|2(p - |:|1|:|21,U.

2. Ifk <1 thent (O0;0)% L — (0,0 L.

W

. Ifk < 1 thent (0,0,)<lp — (O0;02)%e.

H

CIfk <1 thent (O0o) % A (O10)% L — (O,0,) <.

)]

. Ifk < I then, ¥ (0,0,) L — (0,0x)F L.
6. Ifk <1 thent (0;0)% L — (0,0 <M, 0% L.
Proof93 Letk,leN.

1. Supposet- @ — . Then, Uy (@ — ) by necessitation. Hence we obtain -
L@ — Uy by axiom K;. Since - Uy — Uy hence, - U (L — Lhy)
by necessitation. Thus, - [1L¢ — U Uow by axiom K;.
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2. Supposek < 1. Since, - L — ((010,)" "% 1 thent+ O, L — Oy (0,0,) % L by
necessitation and axiom K,. Then we obtain, - 1,0, L — [0,0,(0;0,) %L
by necessitation and axiom K;. We can use k-times axiom Ky and K.
Thus, - (0, 0x)* L — (0,02)%(0,0,) % L. Therefore, - (0,00)* L — (0,0,) L.

3. Suppose, k < 1. By definition we have,
(D1D2)<l(p =@AN (D1D2)<p JATAN (DIDZ)k(p N...N\ (Dlmg)l_l([) Then,
H (O 02 — (0:0x)%.

4. We have,

F (OO L — (@00 A .. A (0102 g (sincek < 1) and
(01 02)<%p — @ A ... A (O;0,)% L. Hence,

- (010 kp A (O 0L — ((Dlmz)k(p/\.../\(Dlmz)l_l(p)/\ ((p/\.../\
(Dng)k_l(p). Therefore,

F (O O2)Fe A (010 L — (0:0,) <.

5. Consider a K1 ® Ky-model M = (W, Ry, Ry, v) such that W = {wx, ...., Wog4+1}
and wi1RiwoRy...Ryw»i.1. Hence, M, w; = (Dﬂjg)l_]_ (since k < 1) and
M, wy ¥ (10K L. Thus, M, w; # (0;0)! L — (O,02)F L.

6. Suppose k < 1. Since, (0:02) <L, 0% L = (0,00 LA A0 Op) 1L

hence by part (2), + (O,0)F L — (0,00 LA A@OOy) k11 Therefore,
F (01025 L — (@ 0)<H@ 0% L.

Consider the formula ¢ = x — [J;[,x and the substitutions o1(x) = T and
0 n(x) = (O0,0)"x A ((0;00,)" L. We will show that ¢ is unifiable in K ® K, and
nullary.

Lemma54 ForallneN,

1. 0,(x) = 00" x A (O010,)" L is a Ky ® Ky -unifier of ¢.

2. o7(x) =T isa Ky ® K,-unifier of ¢.

Proof94 LetneN.
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1. We have to prove o, is a unifier of ¢. By part (4) of Lemma[53| we have
F (O 02" x A ([0h02)" L — (0:02) (01 02)<"x. By part (2) of Lemmal53)
(OO L — (0,02)"* L then,
F (010" x A (01 02)" L — (0;02) (04 02) " x A (0:02) (04 02) ™ L. Thus,
F (O 0) <" x A (0;02)" L — (01 E) (E; O2) <" x A (00" 1),
Therefore, - 0 ,(x) — U U0, (x). Consequently, o, is a unifier of ¢.

2. Since, = T — U1, T itis clear that o is a unifier of ¢.
Lemmab55 Letk,leN. Ifk <l theno; < 0.

Proof 95 Suppose k < 1. We have to prove o; < 0. Let v(x) = x A (0 L.
Since, - ((0,0,) < x — (0;0,)*x (since k < 1) and
F (1) <M 01 02)F L — (0,0,)F L then,
F (01 0) <! xA (0 0) <M O2) LA (O Oo) L — (3,02 <k xA(0,0,)% L. Hence,
F (O 0~ x A (01 0)F D) A (O10) L — (@1 020 x A (O O2) L.
For the other direction we shall prove as follows. By part 6 of Lemmal[53|we have,
F Ok L — (0,0 <4010 L and by part (5) of Lemmal53]
F (1 02) <% x A (01 02)% L — (0,02)<'x and by part (2) of Lemmal53)
F (01 0)F L — (O,0,) L. Thus,
F (0<% x A (01 0)% L — (0102)<Hx A (0% L) A (O,02) <L L. Since,
F O A (OO D) A (O L — @100 x A (02 L and
F(0102)<*x A (O O)F L — (O10) <! (x A (O10)F L) A ([O,02) L therefore,
F (O 00 A (O D) A (O 0p) L = (@02 x A (O O L.

Thus, voo; = oy. Consequently,0; <X 0.

Lemma56 Letk,leN. Ifk<Ithenoy 40

Proof 96 Suppose k < 1. Suppose oy < 0;. Letv be a substitution such that -
V(Or(x) < 07(x). Then, - (0;02)S*v(x) A (O 0) L — (O,02) S x A (O Op) L.
Hence, - ((0102) <! xA(0102) L — (0:02)<*v(x) A(O10,)% L. Then by replacing
xby T, 0,)! L — (O0,0,)F L. This is a contradiction with part (5) of Lemma
53l

Lemma 57 Let o be a substitution. The following conditions are equivalent:
l. oToo=0.

2. oTxXo0.
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3. Fo(x).

Proof 97 (1 = 2): By definition of X.

(2 = 3): Suppose o1 <X 0. Letv be a substitution such that+ v(oT(x)) < o(x).
Then, - T < o(x). Therefore, - 0 (x).

(3= 1): Supposet- o(x). Thent+ T < o(x). Hence, - 0(x) < o(o1(x)). There-
fore,cto0=0.

Lemma 58 Let k € N. Let o be a unifier of ¢. The following conditions are equiv-
alent:

1. op,00=0.
2. o, xX0.
3. Fo(x)— (010" L.

Proof 98 (1 = 2) By definition of <.

(2 = 3) Suppose o, < 0. Let v be a substitution such that - v(o,(x)) < o(x).
Then, - (O:0)<"v(x) A ((0;0)" L < o(x). Hence, - o(x) — ((O0;02)<"v(x) A
(L4 Op)"* L. Therefore, o (x) — (J10)" L.

(3=1) Supposet o (x) — (J,002)" L. Since o is a unifier of ¢ then,

Fo(x) — (U)o (x). Hence by necessitation and axiom Ky and K,

F (i0z)o(x) — (i 0p) (0 U) o (x). Hence,

Fo(x) — (U,02) (0, 0s)0 (x). By necessitation, axiom K, and K, (n—times),
Fo(x) — (0,02)<"0 (x). By our assumption,

= a(x) i (D]Dg)nJ_ and

Fo(x) — (O0,0,)"0(x) then,

Fo(x)— (0,000 (x) A ([0;0)" L.

We consider two cases:

e Ifn=0thenF (J;[)"L — o(x).
e Ifn<1 thent ((;00,)%"0 (x) — o (x).

Therefore in both cases, F ((J10,) <" o (x) A ((0,2)" L — o (x). Since,
Fo(x)— (D1D2)<nU(JC) A (DIDZ)nJ_ and

F(O:0)"0(x) A (000" L — o(x) thus,

F (O O00"0(x) A (O0;0)" L «— o(x). Thus,

Fo(o,(x)) < o(x). Therefore,

0,00 =0.
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Theorem 9 Let o be a unifier of ¢ = x — UL, x then eithert o(x) ort+ o(x) —
(102" L wheren > deg(o(x)).

Proof 99 Suppose neither¥ o(x) nor¥ o(x) — (L 0Lp)" L. Let

M, = (W1, R}, R}, v1) be a model and t, € Wy such that My, t, ¥ o(x). Let M =
(Wa,R{,R},v2) be a model and w, € W, such that Mo, w; F o(x) A (0102)"T.
Since, My, w1 E (0102)"* T then there exists a sequence wy,..., Wap+1 € Wo such
that wi R woR} w3RY...R) Wop41. By the tree-model property of Ki ® Ky, we can
assume that wy, w, ws, ..., Wan+1 are pairwise distinct and that the path

w1 R} waR) w3RY...R) Wop11 is the shortest path in M, between wy and woy .
Let M = (W, Ry, Ry, V) where:

e W =Wy uUW,uU/{ty} where ty is a new possible worlds,
* Ry =R UR] U{(W2n+1, 00)},

* Ry =R,UR)U{(t, 1)},

e V=V UVs.

Since M is a disjoint union of My, M, and the state ty and M, t; ¥ o(x) then,
M, t, ¥ o(x). Since n > deg(o(x)), M is a disjoint union of M, M, and the
state ty and M, w; F 0 (x) then M, w, F o(x). By our assumption o is a unifier
of ¢ then F o(x) — ULho(x). Since M, w, F o(x) therefore M, w,;4+, F o(x)
foralli=1,..,n. Thus, M, ws,+1 F U1 Lho(x). Since, wan+1R1toR2 1 therefore
M, t Eo(x). This is contradiction .

Lemma 59 The set of substitutions ~ = {o1} U {0, | n € N} forms a complete set
of K1 ® K -unifiers of p = x — U U x.

Proof 100 By Lemmas[p4} and|p8 and Theorem[9]

Lemma 60 The formula ¢ = x — U,L>x does not possess a minimal complete
set of Ky ® K -unifiers.

Proof 101 Let T be a minimal complete set of unifiers of ¢ and o € I'. SinceT
is complete, then let 0 € T be such that o < 0. Since o is a unifier of ¢ hence
0T <K 8K, O Or forsomeneN, 0, <Xk ,ek, O by Theorem@

Suppose o, Xk ek, 0. By definition ofZ, 0,11 € Z. Leto’ €T such thato' < o p41.
Since 0’ X 0p41 X 0, < 0 then 0’ < 0. SinceT is minimal complete set and
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its members are pairwise incomparable then ¢’ = 0. Since 0, < 0 and o' <
On+1 then, 0, X 0pt1. Sincen < n+1 by lemma On ﬁ O 41 and this is a
contradiction.
Suppose 0T <Xk,ek, 0. Since o < 0 then, o1 < 0. ThereforetT <~ L. Thisis
contradiction.

Lemma 61 Unification type is nullary in fusion K ® K

Proof 102 By Lemmal60]

6.4 Unification in Fusion KD; ® KD,

In this section we will discuss on unification type of the fusion KD; ® KD,. In
order to show the unification type of the fusion KD; ® KD- is nullary we use
the method mentioned in [7]. In this respect, we need to define the following
abbreviation where p is a parameter:

e [plx==0ULa(p— x).

For all parameters p, the modal connective [p]¥ is inductively defined as fol-

lows for each k € N:
e [pl =0,
o [pI*1p = [pliplce.

For all parameters p, the modal connective [p]<¥ is inductively defined as fol-
lows for each k € N:

o [pI<0pu=T.
° [p]<k+1(p::: [p]<k(p/\ [p]k(p

Consider the formula ¢ = (x — p) A (x — [plx) and substitutions o, (x) = p
and 0,(x) = p A [pI="x A [p]" L where n e N.

Lemma 62
1. Ep—I[plp.
2. Eipllo Ay) < [plo Alply.
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3. Ifk <1 then, + [p]<'[pl* L — [pI* L.

4. Ifk <1 then, + [pI<*x A [pIFL — [p]<'x.
5. Ifk <l then, + [pl*L — [pI<![p]* L.

6. Ifk <1 then, + [p]*L — [p]'L.

7. Ifk <1 then, ¥ pAlpl' L — [pIFL
Proof 103 The proof of this Lemma is similar to the proof of Lemmals3]

Lemma 63 ForallneN
1. 0,(x)=pApl="xA[p]"L isa KD, ® KD,-unifier of ¢.

2. 0p(x) = pisa KD, ® KD,-unifier of ¢.

Proof 104 1. We have to prove - (0 ,(x) — p) A (0,(x) — [plo,(x)). Hence
we have to provet 0, (x) — p and ‘- 0,(x) — [plo,(x). Since,
FpAlpl="xA[pl" L — p thus,

Fon(x) — p.

Let us prove = (p A [p1="x A [p]"L) — [pl(p A [p]1="x A [p]"L). Hence, By
part (2) of Lemmal62| we have to prove

FpAlpl="xAlpl”L — [plpAlplipl="xAlplip]" L. By part (1) of Lemma
we have

= p — [plp. Hence,

FpAlpl<"x A [pl"L — [plp.By part (5) of Lemmal62| we have

F(pI<"x A [p]" L — [pllp]<"x. By part (7) of Lemmal62| we have

Fpl"L — [p]"™*! L. Then,

FpAlpl="xAlpl" L — [plp Alplipl<"x A [p]"*! L. Thus,
EpAlpl="xAlpl"L—[pl(p AlpI="x A [pl" L).

Therefore, 0, is an KD ® K D, -unifier of ¢.

2. Since, (p — p) andt p — [plp then, - (p — p) A (p — [plp). Therefore,
0p is a KDy ® KD -unifier of ¢.

Lemma64 Letk,leN. Ifk <l theno;<kp,exD, Ok-
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Proof 105 Suppose k < I. We have to prove 0; <xp,exD, Ok.- Let v(x) = x A
[p]¥ L. Hence we have to show thatt p A[p]<'(x A [pI* L) A[pl' L < pApl=Fx A
[p1* L. To provet p A [pl1<'x A [p1< IpI* L A [p)' L — p Alp]<*x A [pI* L we shall
do as follows. By part (3) of Lemmal62| we have

- [p]<lx — [p]<kx. By part (4) ofLemma

Fpl<'[pl* L — [pI*L. Thus,

FpAlpl<ixapl<tipl* LA [pl'L — p A [pI<*x A [p]* L. Therefore,
FpAlpl<tx Alpl*L) Alpll L — p A IpI=Fx A [pI¥ L. For the other direction, we
shall do as follows:By part (7) of Lemmal62)]

[ [p]kJ_ — [p]lJ_. By part (5) ofLemma

FIpl<kx A [pI*L — [pI<'x. By part (6) ofLemma

FplF L — [pI='[pl* L. Then,

F(pAplI<*xAlpl*L) = (p A lpI<tx A [pI<tpl* L A [p]'L). Therefore,
F(pAlpl<*xalpl*L) = pAlpI<t(x A [pIFL) A[p] L. Since,
Fpalpl<lxalpl* L Alplt L — pApl<kx A [pl*L and

FpAlpl<fx A pl<*L — p A lpI<tx A IpI*L) A [pI<' L therefore,

Fp Al n pI) Alp) L= pAlplI<Fxa[pl* L.

Thus, - v(0(x)) < o(x). Consequently, 0; <xp,ekD, Tk-

Lemma65 Letk,leN. Ifk <1 thenoi Akp,ekD, O1-

Proof 106 Supposek < landoy < o;. Letv be a substitution such thatt v(o(x)) <
o1(x). Then, = p ApI=*v(x) A [pI*L < pA[p]<'x A [p) L. Hence, - p Alp)=lx A
[p)!L — pALpI<*v(x) A [pI* L. Then by replacing x by T, - p A [p]' L — [p]* L.
This is contradiction with part (7) of Lemma|62]

Lemma 66 Let 0 be a KD ® KD,-unifier of ¢. The following conditions are
equivalent:

1. Opo0d=0.
2. 0p=x0.

3. Fo(x) < p.

Proof 107 (1 = 2): By definition of <.

(2 = 3): Suppose 0, < 0. Let v be a substitution such that = v(o,(x)) < o(x).
Then, + p < o(x).

(3= 1): Supposel-o(x) < p. Then, - g(x) < g(0(x)). Hence, o000 = 0.



100 CHAPTER 6. UNIFICATION IN FUSION OF TWO MODAL LOGICS

Lemma 67 Leto bea (KD, ® KD,)-unifier of ¢. Let n > 0. The following condi-
tions are equivalent:

1. op,00=0
2. 0,0
3. Fox)—[pl"L.

Proof 108 (1 = 2): By definition of <.

(2 = 3): Suppose 0, < 0. Let v be a substitution such that - v(o ,(x)) < o(x).
Then, = p A [p]="v(x) A [p]" L < o(x). Hence, - a(x) — p A [p]="v(x) A [p]" L.
Therefore we have, o (x) — [p]" L.

(3= 1): Supposet- o(x) — [pl" L. Since o is a unifier of ¢ then, - o(x) — p and
Fo(x) — [plo(x). Since, - o(x) — [plo(x) hence by necessitation and axiom K
we have - o(x) — [p]~"0(x). Since, - a(x) — [p]"L, +o(x) — p and o(x) —
[pI="0(x) then, - a(x) — pAp]~"o(x) A [p]"L.

For the converse implication, we consider two cases:

e Ifn=0thent [p]"L — o(x) and
e Ifn>1then,  [p]~"0(x) — o(x).

Hence in both cases, = pA[p]=" o (x) A[p]" L — o (x). Therefore, - pA[p]~" o (x)A
[p]"L < o(x). Thus, 0,00 ~0.

Lemma 68 Let o is a unifier of . Let n > deg(o(x)). Then one of the following
conditions holds

*Fop<xoor
e o,<xo0.

Proof 109 Suppose none of the above conditions holds. Then, neithert-0, < o

nor - 0, < 0. Hence by Lemmal66 and|[67} ¥ o(x) — p and¥ o(x) — [p]"L.
Since, o is a unifier of ¢ then, - o(x) — p. Hence, ¥ p — o(x). Let M) =
<W1,R1,Ré,\/1) and M2 = <W2,Ri’,Rg,V2> be KD] ®KD2—models and s € W1 and

t1 € W, such that My, s ¥ p — o(x) and My, t; ¥ o(x) — [pl"L. Since, My, t; ¥

[p1" L then there exists a sequence of ti, ..., taps1 € Wo such that ti R to R} t3R] ...R) t2 11
and My, ti+1 F p for 0 < i < n. Again, as in the proof of Theorem[11} by the
tree-model property of KDy ® KD,, we can assume that ty, ..., tzp41 are pairwise
distinct and that the path ty R} R} t3R] ...R} t>,,41 is the shortest path in M, be-
tween t) and tp 1. Let M = (W, Ry, Ry, V) be the model defined as follows:
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W =Wy U W, U sy where s is a new possible world,

Ry = R} URY U{(t2n+1,50)},

Ry = Ry U Ry U{(s0, 9},
e v=viUVs.

Since M is a disjoint union of My, M, and sy and My, s ¥ o(x) and M,,s F p
then, M,s ¥ o(x) and M,s F p. Since n > deg(o(x)), M is a disjoint union of
My, M, and sy and M, t; F 0(x) and M, t;1 E p for0<i < nthen M, F
o(x) and M, ty;+1 F p for 0 < i < n. By our assumption o is a unifier of ¢ then
F o(x) — [plo(x). Since M, t; F o(x) therefore M, ;41 F o(x) for 0 < i < n.
Then, M, t,41 F [plo(x). Since, t2,+1R1SoR2 s therefore M, s (p — o(x)). Since,
M, s p thus M, s E o(x). This is contradiction .

Lemma 69 The set of substitutions = {0} U{o, | n € N} is a complete set of
KD, ® KD, -unifiers of ¢.

Proof 110 By Lemmas[63] and|[67|and Theorem[68]

Lemma 70 The formula ¢ does not possess a minimal complete set of KD; ®
KDy -unifiers.

Proof 111 Proof112 LetT be a minimal complete set of unifiers of ¢ ando €T.
SinceT is complete then let o € T be such that o < 0¢. Let n = deg(o(x)) Since o
is a unifier of ¢ hence ot <Xkp,exD, 0 0T Oy, <KD,®KD, O by Theorem
Suppose 0, <kp,ekD, 0. By definition ofZ, 041 € Z. Let o' €T such that o’ <
Ont1. Sinced' K 0y11 <0, <0 theno' < 0. Sincel is minimal complete set
and its members are pairwise incomparable then ¢' = 0. Since 0, < 0 and o' <
On+1 then, 0, X 0p41. Sincen < n+1 by lemma@ Opn ﬁ On+1 and this is a
contradiction.

Suppose 0, SKkD,ekD, O- Since o X 0 then, o, < 0g. Therefore - ~p. This is
contradiction.

Lemma 71 Unification type is nullary in fusion KDy, ® KD,

Proof 113 By Lemmal70]
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6.5 Unification in Fusion S5 ® S5

In this section we will discuss on unification type of the fusion §5; ® S5, and
we will show that unification type of fusion S5, ® S5, is nullary. By doing so,
we are answering an open question of Dzik [22] (2007) who conjectures that
§51 ® S5, is nullary or infinitary. In this respect, we consider the formula ¢ =
(x — Ax) A (x — N—x) where,

* By =Lh(pgr — Ua(pqr — Ui (pgr — Ua(pqr — Ui (pqr — Ux(pqr —
1¥)))))) and

* Ny = (pqr — Ua(pqr — Ui(pqr — Ua(pgr — Ui (pqr — Ua(pqr —
Uyy))))).

We will show that ¢ is nullary for §5; ® S5,. In order to prove the unification
type of the fusion S5; ® S5, is nullary we need to define the modal connective
@* and N¥ inductively as follows for each k € N:

* |ZIO(,0::: @,

s pflpu=p k.

e M=o,

o ¥l =k .
As aresult, we define also:

« =g

. ®k+1(p::: ®®k(p.

The modal connective 1<¥ and N <* are inductively defined as follows for each
keN:

e <0 :=T.

o <Ml =<kp A gk

N<Cp:=T.

o Mg = <k A k.
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As aresult, we define also:
. ®O(p =1,
. ®<k+1(p . ®<k(p v ®k(p.
Initially, we need to prove the following Lemma:
Lemma 72 For all formulas o,
1. If+ ¢ then, - Qe.
2. Fd(p —vy) — Qe — Y).
3. FOMlp - prnp<to.
4. -k — @ wherek > 1.

5. Ifk<lthen +p<*1L —p<l1.

Proof114 1. Suppose,
1- v hence,
2—+(pqr — ) byl and CP
3—FUh(pqgr — w) by 2 and necessitation
4—F pqr — s (pqr — ) by3 and CP
5-+FUi(pgr — Ua(pgr — v)) by 4 and necessitation
6—Fpqgr — Ui (pqgr — Us(pqr — v)) by5 and Cp
7-+FUa(pgr — Uy (pgr — Ua(pqgr — v))) by 6 and necessitation
8-t pgr —Lh(pgr — Ui(pqgr — Ua(pqr — Ui (pqr — Ua(pgr — y)))))
by 7 and CP
9-+ Dl(ﬁqF ndand Dz(ﬁr - D1@q7—> Dg(ﬁqr d Dl(pW_’ Dg(pﬁr -
¥)))))) by 8 and necessitation
10—+ pgr — Uy(pgr — Ua(pgr — Uy (pgr — Ua(pgr — v)))) by 9 and
CP
-+ Ua(pgr — Uh(pgr — Ua(pqr — Ui (pgr — Ua(pgr — v))))) by 10
and necessitation
12—+ pgr — Ua(pqr — Ui(pqr — Ua(pgr — Uh(pgr — Ua(pqr —
) by 11 and CP
13—+ DIW— - Dg(ﬁr d Dl(ﬁq7—> Dg(ﬁqr - Dl(PW—’ Dz(pﬁl‘ s
¥)))))) by 12 and necessitation.
Therefore, - .
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2. We have by tautology
(1) F (@ — v) — (¢ — y) hence,
@)+ (pgr — (¢ — ) — (pgr — (@ — ¥)). By2 and CP
B)F (pgr — (¢ — v)) — (pqr — ¢) — (pqgr — v)). By 3, necessitation
and axiom k
4) Do (pgr — (@ —y) — O2(pqr — @) — Ua(pgr — ). By4 and CP
6) F (pgr — Da2(pgr — (9 — ) — ((pgT — Do(pqr — ¢)) — (pqr — Da(pqr — v))). By 5, ne-
cessitation and axiom k.
6) F 01 (pqT — Da(pqr — (9 — ) — (O1 (pq7 — Da(pqr — ¢)) — Oh (pg7 — D2 (pgr — v))). By
6, CB necessitation and axiom k
(7 F 02 (pgr — 0h (pgr — Da(pqr — (@ — ) —
(02 (Bar — 01 (pa7 — Do pr — @) — Dz (Par — On (pGF — Ca(pr — w)) ). By7, CR ne-
cessitation and axiom k
®) - 01 (pa7 — Oz (Bar — Oh (paT — Da(pGr — (9 — 1)) ) —

(Dl(ﬁq% Oa (Par — Oh (pqF — Da(pqr — 90)) ) = 01 (paT — D2 (par — Dh (paF — Da(pr — w)))])-
By 8, CP necessitation and axiom k

© 0P — 04(par — D2 (par — O (57 — Dapr — (o — ) )| =

(Dz(ﬁr - Dl(ﬁtﬁ—' Oz (Pgr — O (pgr — Da(pqr — ) )) -

Oz (par — 0w (P47 — 0z (Bar — On (paF — Da(pr — v)) ))) By9, CP, necessitation and
axiom k

(10 F Dl(ﬁ% O (par — O (P47 — Oz (Pgr — Ou (a7 — Ca(pr — (o ~w>)))))) -

(017 — Ca(ar — 01 (par — e (par — O (477 — Catr — ) ) -

(a7 — Cafpar — O (pa7 — e (par — 01 (7 — Catpr — )
Therefore, - (¢ — y) — (D@ — AY).

3. Since, B<F1p — pAD@A...AQ @ andt- o ADQA...ATB @ — @ AD(@ A
. AD* L) then, - <o — p A<k o.

4. Sopposek > 1. Sincet 1<Fp - oA A ..AD Lo and+- o ADQA ... A
k=lp — ¢ thus, - 1<*¢ — ¢.

5. Letk <. Since, - L — 1'% 1 then we havet *(L — =% 1) by part (1).
Since, - 1*(L — 1'=* 1) thus we havet 1* 1 — @' L by part (3).
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Lemma 73 Let k,l € N. For all formulas ¢, vy,

1. If+ ¢ then, - Ne.
2. FR(p —v) — (Ng — Ny).
3 FRMlp o pAREFo.
4. FN<*p — @ wherek > 1.
5. Ifk <1then +N<*1L —p=<l1.
6. Ifk <1 then, ' T — OF T,
7. Ifk<lthen¥ 'l — ;" 1.
8. Ifk <1 then¥ ' T — ST,
9. KOIT ;L.

10. ¥ T~ L.

Proof 115 We prove items7 to 10.

7. Let M = (W, Ry, Ry, V) be the modal defined as follows:

W = {50, 51,1, 51,2, $1,3) $1,4» 51,5, $1,6+--Sk,1» Sk,2» Sk,3» Sk,4» Sk,5) Sk,6}»

R, is the least equivalence relation on W such that syR1 51,1, $12R151,3, S1,4R1 815,
S1,6R182,1, -y Sk-1,6R15k,1, Sk,2R15k,3, Sk,aR1Sk 5,

R isthe least equivalence relation on W such that s1,1 R2s1,2, $1,3R281,4, $1,5R251,6
v Sk 1R2 Sk 25 Sk 3R2Sk 4, Sk,5R2Sk,6,

v(p) =1{51,5, 51,65 - Sk,5) Sk,6}

v(q) =1{51,3, 51,6, -+ Sk,5, Sk,6}»

v(r) = {Sl,Zy $1,45 81,65 +++» Sk,2» Sk,4» Sk,G}-

Obviously, M, sy F D!l but M, so ¥ F L. Thus, ¥ 'l — k1.

8. Let M = (W, Ry, Ry, v) be the modal defined as follows:

W =1{s0, 51,1, 51,2, $1,3) $1,4» 51,5, S1,6, -+-Sk, 1, Sk, 2> Sk,3» Sk, 4» Sk,5» Sk,6»

R, isthe least equivalence relation on W such that s;,1 Ry 51,2, S1,3R151,4, $1,5R151,6,
cor Sk, 1R1Sk 25 Sk,3R1Sk 45 Sk,5R1Sk6)

R is the least equivalence relation on W such that soR2$1,1, $1,2R251,3, S1,4R2815,
S1,6R282,1, .-y Sk-1,6 R2Sk,1, Sk,2R2Sk 3, Sk,aRo2 Sk 5,

v(p) = {50, 81,15 .- $2,1, 2,6},

v(q) = {81,2, 51,3, ++» Sk,2) Sk 3}
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V(1) = {80, 51,2, 51,4» -+ Sk,2» Sk,4» Sk, 6} -

Obviously, M, sy F ST but M, So ST, Thus, ¥ OFT - QIT.

9. Suppose +- @lT — 1. Hence, by Lemma + @l_lT — %11, Thus,
by using Lemma extralemmas, | — 1 times, we obtain - T — k11 . Hence,
F** L. Thus, b p** 1+ L — @gk*1 1 : g contradiction with item (7).

10. Suppose - QFT — @'l Hence, by using Lemma SF T o i1y
Thus by Lemma(72}, k —1 times, we obtain+ T — "1 L. Here, - '+ L. Thus,
okt | ak* ] - g contradiction with item (7).

Consider substitutions o1 (x) = A<*x A ¥ L and 74 (x) = "(R<F~x A =¥ L). We
will show that o (x) and 7 (x) are (S5; ® S5,)-unifiers of ¢(y. Notice that o (x)
and 74(x) can be written as follows:

oo(x) = L and,

Or1(0) =K x AL = x A<k xap* L = xAap@<kxamkLl) = xA
Aok (x).

To(x) =T and,

i1 (%) = AR AR L) = 2(x AR Fx AR L) = 2 (xAR(EFxn
FLD) = x v S1e(x).

It is well-known that in S5, ® §5,, we have for all formula ¢, ¥

® I—(p—>D11//1ffI—<>1<p—>1//and

* ¢ — Oy iff - 29 — . Moreover,

Lemma 74 For all formulas v, the following conditions are equivalent:
1. Fo—Dy.
2. Fy — Ne.

Proof 116 Supposet-1 ¢ — y. Then,

Fro—Ui(pgr — La(pgr — Ui (pgr — L (pgr — Ui (pgr — Ua(pgr — y))))))
L0190 — (pgr — Ua(pqr — U1 (pgr — Ua(pqr — Ui (pgr — a(pqr — v))))))
L (pgr AC19) — Dh(pgr — Uh(pgr — Ua(pgr — Ui (pqr — Ua(pgr — y))))
Fr O2(pqr A O19) — (pqr — Ui (pgr — Da(pgr — Uy (pqr — U (pqr — v)))))
Frpqr AO2(pqr AO19) — U (pgr — Ua(pgr — Uy (pqr — Ua(pqr — v))))

Fr O1(pqr AQ2(pqr A1) — (pqr — Ua(pqr — Ui (pqr — Ua(pqr — v))))
FLpgr AO1(Pqr AO2(pgr AO19)) — La(pgr — Oy (pqgr — e (pqr — y)))

Fr O2(pgr AO1(pgr A O2(pqr A1) — (pqr — Ui (pqr — La(pqr — v)))



6.5. UNIFICATION IN FUSION S5 ® 85 107

Frpgr nO2(pq7 AO1(pgr AO2(pqr AO19))) — Ui (pqr — D (pgr — )
FrO1(pgr AO2(pqr AO1(pqr AO2(pgr AG19))) — (pqr — La(pqr — )
FLpgr AnO1(pqr AQ2(pgr AO1(pqr AO2(pqr AO19))) — Ua(pqr — v)

Fr O2(pqr AO1(pgr AO2(pgr AO1(pgr AG2(pqr AO19)))) — (pqr — )

Fr (pqr AQ2(pqr AO1(pgr AO2(pgr AO1(pqr AQ2(pqT AO19)))) — W

Fr 2w — 2(pgr AO2pqr AO1(pgr AQ2(pgr AO1(Pqr A O2(pqT A Q19))))))

FL 2y — (pqr — Ua(pqr — Uh(pgr — Ua(pgr — Ui (pqr — Ua(pqr — Thy))))))
Fr 7w — N-@. The proof of the converse direction is similar.

Lemma?75 ForallkeN,
1. oy isan (851 ® S57) -unifier of ¢y.

2. T isan (851 ® §57) -unifier of ¢o.

Proof117 LetkeN.

1. By Lemmal|74}] it suffices to prove - o (x) — o (x). In fact, we have to
prove
F@<*xAp*Ll) - B@<*x A* L) or equivalently
F@*xapfl) - m<*xAprk L. We know that
Dk x=p@xAdxA..AR* V) =paxAddxA... A0 x and
Dkx=xAvxAddxA...AB%Vx). Since,
Faxapxapxn.an® Vy) - @xapdxa...Aan%*Vy) and
F kL — @k x then we have,
F@kxapkl) - @xapdxa..Ann* Vxapkx). Thus,
F@<*xAm* 1) — a@<Fx. By part (5) ofLemma
FokL — @kt Since,
F@<*x A% L) — <k x therefore,
F@<*xAp*L) — (@@<*x Ar**1 L) or equivalently
F@<*fxAp*l) — r@<kx Ak L). Therefore,
For(x) — Dor(x).

2. By Lemmal(74], it suffices to prove - =7 (x) — N-1(X). In fact, we have to
provet (N<*-x ARF 1) — R(N<F-x ARFL). We know that
NN*-x=NExANXALANEDax) = N XARNN XA ... ANF-x and
N<k-x = (XxANTXARNNTXA.LA El(k_”—lx). Since,

FExANXANN XA AN YAy - (M xANN XA ARKDax)
and
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FNF L — MY then we have,

F (AR L) — (R X ARE XA ARKEDax A RFx). Thus,
- (8<Fx ARF L) — §NF . By part (5) of Lemmal7s)

FrkL — kL. Since

F (N<k—x ANFL) — NNk x therefore,

F(<FxARFL) — (NN -x AR5 L) or equivalently

- (El<kﬁX/\ ElkJ_) _ N(N<k_'x/\ |Z]k_L). Then,

Fotr(x) = N1 (x).

Lemma 76 Forallk,leN,ifk<ltheno;<ss5ess5, Ok and T <sss5, Tk-

Proof 118 Let k,l € N. Suppose k < l. We have to prove 0| <s5,8s5, O. Let the
substitution v be defined by v(x) = x A vk 1. We want to show thatojov =65, 855,
o k. Hence we have to prove
F@<txAar*L)Aartl) — (@<*xAr*L). Let us prove
F@<'xap<'p* LHap'L — @*xAFL). Since
px=xADxA..AQ ' x andd<*x = xADx A ... AB* 1 x hence,
Fo<lx - »<kx. Thus
F@<lxap<';* 1) - »<kx. Since
Fo<'pF L= LAapp*L.Ar'"'@* L then
Fo<!m* L — kL. Hence,
F@<'xam<'ma* L) - kL. Since,
F@<'xAp<'p* 1) — <Fx therefore
F@<xap<'p* H)anll — @kxamkl).

For the other direction we have to prove
F@kxapkl) - @<lxap<'r* Lar'l). Since
px=xADxA..AQ ' x andd<*x=xADx A ... AB* 1 x hence,
F@<*xAm* L) — o<'x. By part (5) ofLemma
Fokl — L. Since »<'* L = pFLA..AR'"' 3% L hence, by part (5) of
Lemmal72],
Frf L —p<'m* L. Since
F@<*kxAmkl) - r<ix and
Fufl — 'l and
Fok L — <@k L therefore,
F@*fxapfl) — @<'xap<in* Lar'L).
Consequently, - @< (xAB* L)Ar' L) — @<k xAr¥L). Thus, 070V =g5,6s5, 0.
Therefore, 0] <s5,855, Ok-

We have to prove T; <s5,855, Tk- Let the substitution v be defined by v(x) =

k <l
xVv< T, Let us show ;0 v =~g5,as5, Tx. Hence we have to show - (S (x v
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SFTIvOIT) = (©Fxv O ). Letus prove

FOYav O v = ©Fxv o ) or equivalently

HO v OIS TV — (2 v OF ). By part (6) ofLemma

F M — OF T since, 'S T = OF T v . v ©1TIONT hence by part 6) of
Lemmal73l

+ ®<l®kT . @kT. Since, ®<lx =XV..V @l_lx and ®<kx =XV..V ®k_1x

hence
FxVv..v @k_lxv @kxv .V ®l_1x —XV..V @k_lxv ®kT then,

FOMx = &F v OFT. since,
FOIT - &FT and
OSSR T — OF T and
FOx = O F v OF T thus,
QM xv OO TV M) = (©Fx v OFT). Therefore,
O v O v = (©Fxv & .
For the other direction we have to prove
FOFxv OF T - v &S TV ST Since
FOFx = OV x and SIS T = ST v v T S T then,
[ ®kT — ®<l®k'|'. Therefore,
FOF v OF T = & v OIS T v O T. Since,
F O v O v — (©Fx v OF 1) and
F O xv O ) = &5 e v O T) v &' T then,
O v TV T) o (S Fxv SFT). Hence, T|OV g5 055, Tk Therefore,
T] 85,885, Tk-

Lemma 77 Forallk,leN, ifk <l then oy £ss es5, 01 and Ty Ass,s5, T1-

Proof 119 Suppose k <l and o <s5,8s5, 0. Let v be a substitution such that
OkoU =g5 655 0. Hence, - v(ok(x)) < o;(x). Thus, - (Z<kv(x) A ZkJ_) —
(@<'x Ar'l). Hence, - @<'x Az'1l) — @*L. Thus by replacing x by T, +
! L — @ L. This is a contradiction with the part (7) ofLemma

Suppose k <l and T\ <Xs5,855, T1. Letv be a substitution such that Ty ov ~gs5,¢ss,
1,. Hence, F v(ti(x)) — 7;(x). Thus, F (S Fux) v OFT) = (O x v ST,
Hence, - ®<kv(x)v®kT — ®<lxv®lT. Then, + ®kT — ®<lxv®lT. Hence,
by replacing x by L, - @k'l' - @l'l'. This is a contradiction with the part (8) of
Lemmal73l

Lemma 78 Forallk,leN, ifk <l thenoy £ss,es5, T1 And Ti A 55,055, 0.
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Proof 120 Suppose k < | and oy <s5,e55, T1- Let v be a substitution such that
OOV =g5,055, T]. Hence, - v(ok(x)) < 17;(x). Then, - @<kvx)Ankl) - (x<!
~xv N L), Hence, - (O x v &'T) — m<ku(x) Ak L. Thus, - O'T — @k L.
This is a contradiction with the part (9) of Lemmal73]

Suppose k < | and 1 <1 0;. Let v be a substitution such that T ov = 0.
Hence, - v(t(x)) < o;(x). Then, - SFu0) v O T « @<!x A'L). Hence,
+ (®<kv(x) v @kT) — @<'xArtl). Thus E @kT — @l 1. This is a contradic-
tion with the part (10) of Lemmal73|

Lemma 79 Letu be an (S5, ® 85,)-unifier of ¢y. For all k € N, the following con-
ditions are equivalent:

1. Okop=g5es5 U
2. O 85,085, K
3. b5 085, 1(x) — @F L.

Proof 121 (1 = 2) By definition of <ss5,55,-

(2= 3) Suppose o <Xs5,8s5, 4. Letv be a substitution such that o ov =gs5,gs5, U.
Hence, + v(0k(x)) < p(x). By definition of o we have, - (Z<*v(x) A1*1) —
w(x). therefore, - u(x) — ¥ L.

(3 = 1) Suppose - u(x) — B L. Since u is a unifier of py then - u(x) — Du(x).
Since, - p(x) — Dp(x) then we have, - p(x) — p(x) A AR A ... AB<*"Tu(x) by
part (2) and (3) ofLemma Thus, + u(x) — Z<k,u(x). Since - u(x) — k1
then - u(x) — B*L A<*u(x). Therefore - u(x) — p(o(x)). Now, it is enough
to prove - u(o(x)) — w(x). In this respect, we consider two cases,

Case k =0: Sincegy(x) = L then, u(oy(x)) = L.

Case k > 1: Since, - Du<*(x) — u(x) then, - Du<F(x) AB*L — u(x). Thus in
both cases we have,

F ulok(x)) — pu(x). Since b u(x) — plox(x)) and - (o (x)) — u(x) therefore,
F u(ok(x) < p(x). Consequently, Lo 0 =g5,855, H-

Lemma 80 Let u be an S5, ® S5, -unifier of ¢g. For all k € N, the following con-
ditions are equivalent:

1. Tgou =55,®552 M,
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2. Tk <S51®S52 M,

3. Fss5,085, p(x) — ML,

Proof 122 (1 = 2) By definition of <s5,es5, -

(2= 3) Suppose T <s5,855, 4. Let v be a substitution such that T ov =gs5, 855, U-
Hence, - v(1(x)) < u(x). By definition of T we have, - = (N<*-w(x) ANFL) —
p(x). Then, -~ N<*=w(x) v =¥ L — p(x). Hence, - 7 =* L — pu(x). Therefore,
Fp(x) — &L

(3 = 1) Suppose - ~u(x) — N¥L. Then, " N¥ L — u(x). Since u is a unifier
of @o then + —u(x) — N-u(x). Hence, b ~u(x) — N<F=u(x) by part 2) and
(3)0fLemma Thus, - ~N<* —~u(x) — p(x). Since, F "N* L — u(x) hence,
F = (8FLANFap(x) — p(x). Therefore, F pu(ti.(x)) — w(x). Now, it is enough
to prove - u(x) — p(t(x)), in this respect, we consider two cases,

Case k = 0: Since, To(x) = T thus, - u(x) — u(ro(x)).

Case k > 1: Since, - u(x) — " N<* ~u(x) then, F u(x) - "N -ux) v =F L.
Thus, - u(x) — w(t(x)).

Since, - pu(r(x)) — p(x) and - p(x) — p(ry(x)) therefore, - u(r(x)) < p(x). Con-
sequently 1o T =555, [-

Theorem 10 Let u be an (851 ® S5,)-unifier of ¢. Then there exists k € N such
that either o\ <s5,855, I OF Tk <55,855, M-

Proof 123 Let k > deg(u(x)). Suppose neither o <s5,055, It BOT Tk <X55,855, I
forall ke N. Let k > deg(u(x)). Then by Lemmas[79 and[80}, ¥ s5,es5, t(x) —
2* L and¥ g5, 655, 1(x) — ¥ L. Let 4ty = (Wh, R}, R}, v1) and M = (W, R}, R}, v2)
be (S5, ® S5,)-models such that t; € Wy, s, € Wy and 4, t; ¥ u(x) — nk1 and
Mo, 51 ¥~ u(x) — N¥ L. We will define now the unravelling M| of A, around t
and the unravelling M, of 4, around s, as follows:

The unravelling of 4, around t, is the model 4| = (X1, S}, S},v1) where

* X is the set of all finite sequences of the form (my, a;, my, ..., ay, my) where
k eN, mg,my,... mp € Wy, ay,...,ax € {1,2}, mp = t; and for all i € N, if
i<k thenm;R;  mi.

* S| isthebinary relation on X; such that (uo, ai, s, ..., ag, ux) Sy (vo, b1, v1, ..., by, v1)
iffthereisme Nsuchthatm < k,m < I, (uy, ay, uy, ..., Am, Upm) = (Vo, b1, V1,0 By, Vi)
and foralli > m, ifi <k thenajy; =1 and ifi <l then bj;1 =1.
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* S, isthebinaryrelation on X, such that (uo, ay, uy, ..., ax, ux) Sy (vo, b1, v1, ..., by, v7)
iffthereisme N suchthatm < k,m < I, (uy, ay, Uy, ..., m, Um) = (Vo, b1, V1, .0y By, U)
and foralli > m, ifi <k thena;.; =2 and ifi <l then b;+; = 2.

* V) is the valuation on X, such that for all propositional variables or pa-
rameters «, v'l(a) = {(ug, ar, Uy, ..., ag, Uy) € Xy : ux € vi(a)}.

The unravelling 4, = (X»,S7,S5,v2) of 4> around s, can be defined in a similar
way. Notice that (t;) € X; and (sy) € Xo. Moreover, notice that S’1 and 8’2 are
equivalence relations on X, whereas S| and S, are equivalence relations on X,.
Let f, : X1 — Wy and f, : X, — W, be defined as follows:

e Forall (up, a1, uy, ..., ax, ux) € Xy, let fi(up, ar, uy, ..., ag, ugx) = ug,
* Forall (uy, a1, uy, ..., ag, ux) € X, let fo(ug, ay, uy, ..., ag, ug) = uy.

Obviously, fi is a bounded morphism from (| to 4 and f> is a bounded mor-
phism from ., to M. By the bounded morphism Lemma ([18], Theorem 3.14),
since A, t) ¥ u(x) — vk L and M, sy ¥ u(x) — Nk L, we have /%1’, (11) F u(x),
M, () E DR L, ), (52) ¥ pu(x) and A, (s5) =L

Consequently, there exists tx1, 122, 12,3, 02,4, 2,5, 02,6, -+» Lk, 1) tk,2) tk,3) Lhcds L 50 Bhc,6 €
Wi such that

* I Ri fgleé t2,2Ri tzngé t2y4Ri [2y5Ré t2»6"'Ri l“k’lRé tk,ZRi tk,gRé tk,4Ri l“k,5R£ Ik,65

o M\, ) EPQT, M, 0o E DT, M, s E DT, M, a E DT, M, s F
PW; f/%lr t2,6 F Pﬁr; weey e/%b tk,l F pqr, J%l! tk,Z = W", '/%lr tk,3 = ﬁqFr
M, s Epqr, M, s E pqr, A, e E pqr.

Similarly, there exists $,1, 52,2, 52,3, 52,4, 2,5, 52,61 --+» Sk, 1, Sk,2» Sk,3» Sk,4» Sk,5» Sk,6 € W2
such that

o M>, s F pqr, Mo, s00 F pqr, Mo, s20 F pqr, Mo, s23 F pqr, Mo, s34 F
Wr, .%2, 32’5 ': pqr; -/%2}82,6 ': pﬁrr ceey '/%Zr Sk,l ': pw; '%Z)Sk,z |: ﬁqr;
Mo, Sk3 EPAT, Mo, Ska E DT, Mo, Sk 5 EPqT,

" " " " " " " " " " " "
b 82R2 82,1R1 Sgysz Szngl 32,4R2 82,5R1 82)6...R2 Sk,lRl Sk,ng Sk,3R1 Sk,4R2 S]C,5R1 Sk,6-

Let #(° = (W°,RY,R),v°) be the disjoint union of 4, and ;. By Theorem 3.14
in [18], we have:
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MO, (1) E pu(x), M0, (s) ¥ p(x). Let M® = (W®,RE, RS, v®) be the model ob-
tained from #(° by adding new possible worlds wy, w», w3, Wy, ws and such that

(11,1, 61,2, 122,1,13,2, 04,1, 02 5,2, b2 6,00, 1, Ti 1,2, Lic,2, 1, £ 3,2, B a5 1, Bk 50 2, Bicy6)
Rie Ll}lR;B LUZRiB WSREB LU4R§B LU5R§B

(32) 2; 82,15 1, 32,2r2) 82,3, 1’ 82,4, 27 82,5, 1) 82,6, ---»2r Sk, 1» 1’ Sk,2» 2’ Sk,3» 1! Sk,4» 2, Sk,5 1» Sk,G)

and M ®, w1 Epqr, 4, w, Epqr, 4%, w3 EDqT, 4%, wyEpqr and 4%, ws
pqr.

Since the shortest path from (t) and

(h,1,01,2,02,1,03,2, 14,1, 825,2,t26,.., 1, Lk,1,2, Lk 2, 1, Tk 3, 2, Lic,as L, Bk 5, 2, T y6)
is of length 6.k and the shortest path from (s,) and

(82,2, $2,15 1, 52,2,2, 82,3, 1, 82y4,2, 82,5, 1, 82,6 ...,2, Sk,1» 1, Sk,2,2, Sk,3» 1, Sk,4,2, Sk,5» 1, Sk,g)
is of length 6.K that (knowing that k > deg(u(x))), we have 4%, () E u(x) and
MO, (s2) ¥ p(x). Now, b u(x) — Au(x), because u is a unifier of ¢q. It follows
that F u(x) — B u(x). Since 42, (t1) E u(x) then, 4%, (t;) E @**  u(x). Con-
sequently, M %, (sp) F w(x). This is contradiction.

Lemma 81 The set of substitutionsZ = {o, | n e N}U{t, | n € N} form a complete
set of S51 ® S5, -unifiers of ¢y.

Proof 124 By Lemmas[75|to[78 and Theorem[10]
Lemma 82 ¢ does not possess a minimal complete set of (S5, ® S5,) - unifiers.

Proof 125 Let T be a minimal complete set of unifiers of ¢o. Let p €T be such
that u < o¢. Then by Theorem there exists k € N such that oy <s5,855, 4
or Ty <Xs5,885, 1. Consider firstly the case oy <ss5,8s5, I By definition of Z,
Ori1 €EZ. Let ' €T such that ' < 0g41. Since ' < 01 <0k < U then u' < .
Sincel is minimal complete set and its members are pairwise incomparable then
@ =p. Sinceoy <X pandy' < oy then, o < 0gy1. Since k < k+ 1 by lemma
Ok ﬁ O i+1 and this is a contradiction with lemma

Consider the second case T < (s5,855,) M- Since L X 0¢ then Ty < 09, a contradic-
tion with Lemmal78

Lemma 83 Unification type is nullary in fusion S5® S5

Proof 126 By Lemma
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6.6 Unification in fusion K4, ® K4,

Dzik in Chapter 6 of [22] proved that the fusion K4 ® K4 has the rule of dis-
junction. Hence, unification type of the fusion K4 ® K4 is not unitary. In this
section, we shall prove that unification type of the fusion K4 ® K4 nullary. Con-
sider the formula ¢ = x — U;[yx and substitutions o1(x) = T and o,(x) =
(O;0)<"x A (O;05)" L where neN.

Lemma84 ForallneN,

1. o,(x)=O0:0)"x A (0,0,)" L is a K41 ® K4, -unifier of ¢.

2. o7(x) =T isa K4, ® K4,-unifier of ¢.
Proof 127 The proofis similar to the proof of Lemma|54}
Lemma85 Letk,leN. Ifk <l theno; < 0.
Proof 128 The proofis similar to the proof of Lemmal55}
Lemma86 Letk,leN. Ifk<ltheno 40

Proof 129 The proofis similar to the proof of Lemmal56| Since we consider K4®
K4, we will use the fact that if k < | then ¥xsoxa (J102)! L — (0,0)FL. The
proof of this fact is similar to the proof of item 5 in Lemmal53|

Lemma 87 Let o be a substitution. The following conditions are equivalent:
1. oro0=0.
2. o7x0.
3. Fo(x).

Proof 130 The proof is similar to the proof of Lemmal57]

Lemma 88 Letn € N. Leto be a unifier of ¢. The following conditions are equiv-
alent:

1. op00=0.
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2. op,x0.

3. Fox)— 0" L.
Proof 131 The proofis similar to the proof of Lemma|58}

Theorem 11 Let o be a unifier of ¢ = x — ULy x then either Fgy9x4 0(X) OF
Fxa,ek4, 0(x) = (01002)" L wheren > deg(o(x)).

Proof 132 Suppose neither¥ o(x) nor¥ o(x) — (0;0,)" L. Let My = (W1, R}, R}, v1)
be a model and t, € Wy such that My, t) ¥ o(x). Let My = (W, R{,R},v>) be a
model and t, € W, be such that M, t; ¥ o(x) — (J,02)" L. We will define the
unravelling M{ of My around t, and the unravelling Mé of M, around t,. Let
M =(X31,8),S,,v}) where

* X, is the set of all finite sequences of the form (uy, ay, uy, ..., ax, ux) where
keN,up,uy,...ur € Wy,ay,...ar€{1,2},ug = t; and foralli e N, ifi < k
then u;R;.  ui.1,

. S’1 is the binary relation on X, such that (ugy, a, uy, ..., ai, uk)S’l(vo,bl, v1,..., b, Up)
iff k <1, (wy, a1, uy,...,ar, ux) = (vo, b1, v1,..., b, Vi) and for all i > k, if
i<kthenb;j =1,

* S, isthebinary relation on X, such that (uy, ai, us, ..., ag, ux) Sy (vo, b1, v1, ..., by, v1)
iff k <1, (wy, a1, uy,...,ar, ux) = (vo, b1, v1,..., b, vg) and for all i > k, if
i<kthenb; =2,

* V) is the valuation on X, such that for all propositional variable or param-
etersa, v’l(a) = {(ug, ay, uy, ..., ai, uy) € Xy : u € vi(a)l.

The unravelling M, = (X»,SY,S},v,) of M, around t, is described in a similar
way. Notice that (1)) € X; and (t2) € X». Notice also that S’1 and S’2 are transitive
relations on X, and S’l’ and S'2' are transitive relations on X,. In other respect,
let fi : Xy, — Wy and f> : X, — W, be defined as in the proof of Theorem [10]
The functions fi and f, being bounded morphism, it follows from [18] (Theorem
3.14) that M., (1) F o(x) and M, (t2) F o(x) and M}, (1) ¥ (O0;0,)" L.
Consequently, there exists uy, vy, ..., Up, Uy € Wo such that t Ryuy Ry vy ... Ry up Ro vy,
Notice that therefore (12,1, uy,2, v1,...,1,uy, 2, v,) € Xp. Let MY = (WO,R?,Rg,VO)
be the disjoint union of M} and M,,. By theorem 3.14 in [18], we have M°, (1) ¥
o(x) and M°, (t,) E o(x). Moreover, (t;)(R; © R2)"(t2,1,u1,2, v1,..., 1, Upn,2, Uy).
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Notice that the shortest path between (t;) and (t2,1,u1,2, vy, ..., 1, Upn,2,vy) is of
length 2n. Let M® = (W®, R, R ,v®) be obtained from M° by adding a new
possible world w such that (t,1,u1,2, V1,..., 1, un, 2, v,) RY WRS (). Since n >

deg(o(x)), M, (t;) ¥ o(x) and M°, (t;) F o (x), then M®, (t;) ¥ 0 (x) and M®, (t,) =
o(x). Since o is a unifier of x — ULx, then + o(x) — U,0L,0(x). Hence,

Fo(x) — (00" o (x). It follows from M®, (t,) F o (x) that

M®, (5,1, u1,2,v1,...,1,u,,2,v,) EO 00 (x). Since

(t2,1,u1,2,v1,...,1,Up, 2, v,) Ry WR3 (t1), it follows that M®, () F o(x). Thisisa
contradiction.

Lemma 89 The set of substitutions Z = {o1}U {0, | n € N} forms a complete set
of Ky ® Ky -unifiers of p = x — ULy x.

Proof 133 By Lemmas|[84} and|[88|and Theorem/[11]

Lemma 90 The formula ¢ = x — [, x does not possess a minimal complete
set of K4, ® K4, -unifiers.

Proof 134 The proofis similar to the proof of Lemmal60]
Lemma 91 Unification type is nullary in fusion K4, ® K4,.

Proof 135 By Lemmal[90}
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In general, epistemic planning extends automated planning with epistemic
notions such as knowledge and belief. When the number of agents is one, it is
called epistemic planning for single agent and this kind of epistemic planning
consider the following problem:

An agent’s current state of knowledge,

a desirable state of knowledge,

how does it get from one to the other by executing a finite sequence of ac-
tion?

But in the case of epistemic planning for multi-agents, the current and desir-
able states of knowledge might also refer to the states of knowledge of other
agents.

In this chapter, we define a kind of simple epistemic planning problem where
atomic actions are public announcements and then, we struggle to find some
appropriate announcements by unification technique.
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7.1 Simple epistemic planning problem with public
announcement logic

We are going to solve some simple epistemic planning problems with unifi-
cation technique. In this section, actions are public announcements. In this
respect we need to know syntax and semantic of public announcement logic.
Dynamic Epistemic Logic (DEL) considers information change and the infor-
mation change is modeled by transforming Kripke models. In fact, in Dynamic
Epistemic Logic an agent’s information change during communication. In terms
of Kripke models, that means that the accessibility relations of the agents have
to change (and consequently the set of states of the model might change as
well). Language of Dynamic Epistemic Logic is an extension of the language
of Epistemic Logic by announcements. The first extension of the language of
Epistemic Logic was called public announcement logic and was introduced by
Plaza [43](1989).

At the following, we consider syntax and semantic of public announcement
logic based on [20].

7.1.1 Syntax of the public announcement logic

Let A be a finite set of agents and P be a countable set of atoms.

Definition 39 The language £y is inductively defined by

pu=p 2@ [ (@Ay) |[Uap [yle
Besides the usual propositional language, U, is read as agent a knows that ¢,

and [y]g is read as after announcement of v, it holds that ¢. We will use the
following abbreviation:

° <>a(p = —||:|a_|(p,

s (Y)Y ="yl

We will also write A, B, etc for formula.
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7.1.2 Semantics of the logic of announcements

The public announcement of y restricts the epistemic state to all (factual) states
where ¢ holds, including access between states.

Definition 40 An epistemic model is a triple M = (W, ~,V) where W # @, for
each a€ A, ~, is an equivalence relation on W and foreachpe P, V(p) < W.

Definition 41 Let an epistemic model 4 = (W, ~,v) for set of agents A and set
of atoms P be given, the truth conditions for the formulas in Ly are defined as
follows:

e M,wEDp iff wev(p)

s M,wE dOff M,wFe

MawEQANYIf M, wE@and M, wEY

M, wELge iff  forallv suchthatw ~, v, M, vE @

Mo wE Yl iff M, wEy implies M |y, wE @

where M |y= (W', ~",v') is defined as follows (where [y]_ is the set of all states
ve W such that 4,vEvw

W'= [yl g
~a=~a (W x Wl a)
Ve =vpnWlu

As aresult:

M, wE O 4 if there exists v such that w ~, v and 4, w E ¢.
My wE Wy iff M, wEyand A |y, wE @.

Since [J, and ¢ are interpreted by equivalence relation, the formulas like
e u(AvOyB) < U0 AV OyB and
e Uu(ANQeB) = UgANOB

are valid.
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7.1.3 Axiomatisation of Public Announcement Logic

The axiomatisation PAL of Public Announcement Logic has been introduced in
[20] and it consists of the following axioms and rules:

* all instantiations of propositional tautologies

e Uylp — v) — (Uge — Ugy) (distribution of L], over —)

e Uy — o (truth)

e Uup — UL (positive introspection)

e =l — U, U, (negative introspection)

* [p]lp < (p — p) (atomic permanence)

e [p]7y < (¢ — ~[ply) (announcement and negation)

e [pl(y A x) < ([@ly A [@ly) (announcement and conjunction)
e [plUuy < (¢ — Ugsleply) (announcement and knowledge)
* [pllv]x < (@ A [@ly]y (announcement composition)

* From ¢ and ¢ — v, infer ¢ (modus ponens)

e From ¢, infer [J,¢ (necessitation of L, )

Now, we present a simple epistemic planning problem then we will solve
it by unification technique. Bolander and Anderson have introduced different
epistemic planning problem [19].

Let us define our main problem. Our problem is a special kind of epistemic
planning problem. Let us define our problem and see how it will be solved by
unification technique as follows:

Definition 42 A simple epistemic planning problem is a pair (A, B) where
» Input: A and B are formulas in L.

* Question: is there a public announcement v such that each time A holds,
w can be announced and, after announcing v, B becomes true.

In this chapter, we will also consider the other following problems:
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 Input: formulas A, B in ), an agent i,

* Question: is there a public announcement ¥ such that A — (y)LJ;B is
valid?

¢ Input: formulas A, C in &, an agent j,

* Question: is there a public announcement ¥ such that A — (y){;C is
valid?

* Input: formulas A, By, ..., By, in &y, agents iy, ..., im,

* Question: is there a public announcement y such that A — (y)([J;, By A
..AU; Bp) is valid?

e Input: formulas A, Cy, ..., C,, in &y, agents ji,..., jn,

¢ Question: is there a public announcement v such that A — (¥)($ i1C1A
.. A Qj,Cp) is valid?

e Input: formulas A, By, ..., By, Cy,...,Cy in Ly, agents iy, ..., iy, i, jn»

* Question: is there a public announcement ¥ such that A — (y)(U; B; A
A, B AQj,CL A AG;,Cp) is valid?

We propose to use unification tools for solving such problems. How?

For instance, for a given input (A4, B, i) of the first problem, we will consider the
PAL-formula P = A — (x)[J; B. Here we assume A, B do not contain the variable
x. In fact, we suppose A, B only contain parameters. Then, we will use the
reduction axiom of PAL to obtain a PAL- formula P; which has the same unifiers
as P and for which it seems easier to compute a most general unifier. In this
respect, we will also use the fact that the modalities [J;,[Jy, ... are interpreted
in models by equivalence relations and, consequently, the following inference
rules are admissible:

¢ — Uiy Qip—y

Qip—vy p— Ly
Then, considering P, we will find a necessary and sufficient condition for the
unifiability of P, and then of P.

Finally, assuming this necessary and sufficient condition holds, we will con-
struct a most general unifier of P; and then of P.
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Example 12 Consider the case A=, p and B = U, p the planning problem is a
unification problem. It is the problem of unifying the formula U, p — (x)Up.
Let the agent 1 knows that p is true. Is there any announcementy such that after
announcing v, the agent 2 knows p? Our answer to this question is positive.
Since we can announce agent 1 knows p or U p. In this case, after announcing
Uy p then the agent 2 knows that p is true that is to say L, p becomes true.

To solve such problems by unification technique, we consider the associated
formula A — (x) B. Hence, we apply the following steps to solve the associated
formula A — (x)B.

1. Use axiomatisation of public announcement logics in order to simplify
the formula A — (x)B.

2. Determine a necessary and sufficient condition in order to be able to
unify to the formula A — (x)B.

3. When condition of item 2 holds, compute or find one unifier or solution
of the formula A — (x)B.

4. If there exists a unifier, can we find a most general unifier?

7.2 Simple epistemic planning problem A — (x)B

In this part, we consider all possible cases as A — (x)B and we have to find an
appropriate public announcement ¥ such that the formula A — (y) B is valid.

Lemma 92 Let P = A — (x)B where B is Boolean formula. Then, E A — B iff P
possesses a unifier.

Proof 136 We have to do the steps 1 to 4.
1. Use axiomatisation of public announcement to simplify P .

e A—-(x)B

A— xA[x]B
(A—x) AN (A—[x]B)
(A= x)AN(A— (x— B))
(A= x)AN(A—B)
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Hence, let Py = (A — x) A (A — B). Notice that P and P, are equivalent in
PAL. Hence, they have the same unifiers.

2. Now, let us show that P, is unifiable iffs A— B. IfF A— B theno(x) =T
is a unifier of P1. Reciprocally, if T is a unifier of P, then F A — B. We
remind that A, B contain only parameters.

3. Now, assuming that= A — B, let us find a unifier of P,. Since= A — B, it
is clear that o(x) = B is a unifier of P;.

4. Now, assuming that = A — B, let us find a most general unifier of P, if it
exists.

Notice that in Py, all occurrences of x are at the level 0. Consider Lowenheim
substitution € associated to Py and o as follows: €(x) = (P1 A x) V (7P A o(x)).
Since, o(x) = B hence we have €(x) = (P A x) V (1P A B) or equivalently €(x) =
(P1V B) A (xV Py) A(xV B). In order to check, €(x) is a most general unifier of
Py, we have to prove first, € is a unifier of Py and second € is a most general of P, .
First, let us prove € is a unifier of P,. Hence, we have to prove= A — £(x). Since,

1. E=(A— x) — P, then,

2. E(AAN"x)V x— (0P V x). Hence,

3. E(AvV x) — (0P V x) thus,

4. F A— (7Py Vv x). Since by our assumption, = A — B then,
5. F A— (P1 VvV B) A (xV B). By steps (4) and (5) we have,

6. FA— (7P VvXx)A(PyVB)A(xV B). Therefore

7. EA—egx).

Therefore, € is a unifier of P;.

Second, let 0’ be a unifier of P;. We have to prove € < ¢'. Since o' is a unifier
of P, thent a'(Py). Hence, 0'(e(x)) = (6’ (P1) Ad’(x)) v (ma’(Py) A B) is logically
equivalent to o' (x). Thus, e < o’.

Consequently, € is a most general unifier of P,. Since Py and P are equivalent
and P and P, have the same unifiers then, € is a most general unifier of P.

Lemma 93 Let P = A — (x)LUB where B is Boolean formula. Then, P possesses a
unifier iffF A— B.
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Proof 137 We have to do the steps 1 — 4 described in the proof of Lemmal92)

1. Use axiomatisation of public announcement to simplify P. by the reduc-
tion axioms of PAL, P is logically equivalent to P' = (A — x) A (A — O(x —
B)).Since [ is interpreted by an equivalence relation, then P' has the same
unifiers as P" = (A — x) A (0A — (x — B)) which has itself the same uni-
fiers as Py = (A — x) A (x — (0A — B)). Hence, let P1 = (A — x) A (x —
(OA— B)).

2. Now, let us prove that P is unifiable iff= A — B. Suppose= A — B. Hence,
obviously o (x) = B is a unifier of P;. Now, suppose P, has a unifiert. Thus,
FA—1(x)andF1(x)— (0A— B). Hence,= A— (0A— B) and~= A— B.
We remind thatE A — QA.

3. Suppose= A — B. Since= A — B, it is clear that o(x) = B is a unifier of P;.
4. Let us find a most general unifier of P;.

Notice that in Py, all occurrences of x are at the level 0. Consider Lowenheim’s
formula e(x) = (Py Ax) V (0P Ao(x)). Since, o(x) = B hence we have €(x) =
(P1 Ax)V (0P A B) or equivalently e(x) = (P1V B) A(xV 2 P1) A(xV B). In order
to check, €(x) is a most general unifier of Py, we have to prove first, € is a unifier
of P, and second € is a most general unifier of Py. First, let us prove € is a unifier
of P,. Hence, we have to prove

1. FA—¢e(x) and

2. Fe(x) — (OA— B).

1. We have to prove= A — £(x). Since,

(@) F ~(A— x) — Py then,

(b) E(AA-x)V x— (0PyV x). Hence,

(c) E(AvV x) — (0P V x) thus,

(d) E A— (0P V x). Since by our assumption, = A — B then,
(e) FA— (P, VvV B)A(xV B). Bysteps (c) and (e) we have,

(f) EA— (P VvV Xx)A(P1V B)A(xV B). Therefore

(g FA—e(x).
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2. To provek g(x) — (O A — B) we have to provel= (mP; AB) — (0)A— B) and
E{PAx)— (QA— B).

It is clear thatE (W P; AB) — (0 A — B). SincekE P; — (x — (0A — B)) then,
E(P1Ax)— (OA— B).

Therefore, € is a unifier of P;.

Second, let o' be a unifier of P,. Since ¢’ is a unifier of P, then t o' (P;). Hence,
o' (e(x)) = (0’ (P1) Ao’ (X)) v (na'(Py) A B) is logically equivalent to o' (x). We re-
mind that B contains only parameters; B contains no occurrence of x. Thus,
exo.

Consequently, € is a most general unifier of P,. Since Py and P are equivalent

and P and P, have the same unifiers then, € is a most general unifier of P.

Lemma94 LetP = A— (x)(L;B; A... AU, B,) where By, ..., B, are Boolean for-
mulas. Then, = A— (B A ... A By) iff P possesses a unifier.

Proof 138 We have to do the steps 1 — 4 as before.

1. Simplification of P in this Lemma is similar to simplification of P in
Hence, let Py = (A — x) A (x = (01A — B)) A ... A (x — (OnA — Bp)). By
an argument similar to the argument used in the proof of Lemma we
know that P and Py have the same unifiers.

2. As well, one can show that P, is unifiable iffE A — (By A ... A Bp).

3. Suppose= A — (B A...ABy). Since= A — (By A... A By), it is clear that
o(x) = A is a unifier of P;.

4. Now, let us find a most general unifier of P;.

Notice that all occurrences of x in Py are at the level 0. Consider Lowenheim’s
formula e(x) = (P1 Ax) v (0P; Ao(x)). Since, o(x) = A hence we have €(x) =
(P1 Ax)V (0Py A A). In order to check, €(x) is a most general unifier of Py, we
have to prove first, € is a unifier of Py and second ¢ is a most general unifier of P;.
First, let us prove € is a unifier of P,. Hence, we have to prove

1. EA—¢e(x) and

2. F £(x) — ((<>1A — Bl) VANRAN (<>nA - Bn))

1. to proveF A — &(x), we use similar method as in the proof of Lemmal[93]
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2. To proveF g(x) — (O;jA— Bj) for1 < i < n, we have to proveF (WP; A A) —
(QiA— Bj) andF (PyAx) — (QO;jA— B;) for1 <i< n.
Since, = A — (By A...A By) then, E (P A A) — (0;A— B;) for1 <i < n.
Since,
F Py — (x— (0;A— B))) then,
F(PyAX)— (0;A— Bj) foralll <i< n.
Thus, F e(x) = (01A— B A ... A(OnA— By).

Therefore, € is a unifier of P;.

Second, let ' be a unifier of P,. Since ¢’ is a unifier of Py then t o' (P1). Hence,
o' (e(x)) = (0’ (P1) Ao’ (x)) vV (o' (Py) A A) is logically equivalent to o' (x). We re-
mind that A contains only parameters. Thus, € < 0.

Consequently, € is a most general unifier of P,. Since Py and P are equivalent
and P and P, have the same unifiers then, € is a most general unifier of P.

Lemma95 Let P = A— (x)OC where C is Boolean formula. Then, F A — {C iff
P possesses a unifier.

Proof 139 We have to do the steps 1 — 4 as before.
1. Use axiomatisation of public announcement to simplify P.

e (A— (x)00)
e (A= xA[x]-0-0)
'UA~MAQ%»uhDﬂO)

* (A= 0 A= (x = =1x0-0))
* (A=A (A= =1x0-0)

* ((A=»A A=~ —DOlx-0))
* (A=A A= -0-0)
-UA~MAM~ﬂDu~ﬂOﬂ
* ((A—wr@=0waC)),

Hence, let Py = (A — x) A(A— Q(xAC)). P and P, are logically equivalent.
More importantly, they have the same unifiers.
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2. Now, let us show that Py is unifiable iff = A — (C. Suppose= A — {C.
then, obviously o (x) = T is a unifier of P1. Reciprocally if some substitution
T are unifiers of P, then, = A — O(1(x) A C). Thus,F A— {C.

3. Suppose= A — OC. Since,F A— (C itis clear that o(x) = T is a unifier of
p;.

4. Now, let us find a most general unifier of P;.

Notice that, contrary to the cases of Lemmas |92} [93| and[94} in P, there is one
occurrence of x at the level 0 and one occurrence of x in the scope of ¢. So, in
Lowenheim'’s formula we will replace Py by L1P; as in modal logic S5 in Chapter
4. Consider Lowenheim’s formula e(x) = (UPy Ax) v (07UPy Ao (x)). Since, 0(x) =
T hence we have €(x) = (UP; A x) v (0JPy A T) or equivalently e(x) = 7LJP v x
which is equivalent to (x) = (UP; — x). In order to check, £(x) is a most general
unifier of Py, we have to prove first, € is a unifier of P; and second € is a most
general unifier of P,. First, let us prove € is a unifier of P,. Hence, we have to
prove

1. FA—¢e(x) and

2. FA-{Qex)AQ).

1. We have to proveF A — ¢(x). Since,
FOP; — (A— x) then,
E (dP; A A) — x hence,
FA— (P, — x).

2. We have to prove that= A — {(e(x) AC). Since e(x) =[P, — x, it is equiv-
alent to prove that= AAN(C — OP;) — O(x A C). we remind that ] and
{ are interpreted in models by equivalence relations. Since,

e EAAL(C —0OPy) — AN (OC — UPy) and by our assumption,

EA— OC then,

FAAO(C —0OPy) — OP; A A. Since,

EOP; — (A— O(x A C)) hence,

FOP;,AA— Q(xAQ)). Since,

FAAL(C—0UP) —UPAA, and
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e EOPIAA— O(xAQ)) thus,
e FAALC—0OP) — O(xAC).

Therefore, € is a unifier of P;.

Second, let 0’ be a unifier of P,. Since ¢’ is a unifier of Py then o’ (P;). Hence,
o' (e(x)) =o' (x) v ~Od’(Py) is logically equivalent to o' (x). Thus, e < o’.
Consequently, € is a most general unifier of P,. Since P, and P are equivalent
and P and P, have the same unifiers then, € is a most general unifier of P.

Lemma 96 LetP = A— (x)(01C1 A...AO,Cp) where C; is a Boolean formula for
alli=1,..,n. ThenE A— (01Cy A ... AO,Cy) iff P possesses a unifier.

Proof 140 We have to do the steps 1 — 4 as for the proof of the previous Lemma.

1. Simplification of P in this lemma is similar to simplification of P In Lemma
Hence, let Py = (A= X)AN(A—= Q1(Xx AC)) A ... A(A— On(x ACp)). By
the reduction axioms of PAL, P and P, are logically equivalent.

2. Obviously, as well, Py is unifiable iff= A — (01C1 A ... AR C).

3. Moreover, if we assumeFE A — O1C1 A ... AO,Cy it is clear that o(x) =T is
a unifier of P;.

4. Now, let us find a most general unifier of P;.

Notice that in Py, there is one occurrence of x at the level 0 and foralli =1,...,n,
there is one occurrence of x in the scope of );. For this reason, we adapt Lowen-
heim’s formula to the context of P,. Consider Lowenheim’s formulae(x) = (L P1 A
W AURPLAX)V (0 (U Py Ao ADRPy) Ao (). Since, o(x) =T hence e(x) is logi-
cally equivalent tol 1y, Py A...AU1,,P1 — x. In order to check, €(x) is a most general
unifier of Py, we have to prove first, € is a unifier of P; and second € is a most
general unifier of Py. First, let us prove € is a unifier of P;. Hence, we have to
prove

1. FA—¢e(x) and

2. FA-Qie(x)ACy) for1 <i< n.

1. The proof of this part is similar to the proof of Lemma|95|
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2. We have to prove that E A — Qi(e(x) A C;) for 1 < i < n or equivalently
FEAAL;(C = 1P A ... AP — Qi (xACy). Since,

e EAANL(C; = 1Py A...AO,Py) — AN (O;C; — O;0;Py) and by as-
sumption

EA— O;C; then,

FAALL(C; = 1P A...AL,P) — AAL]; Py. Since,

FO;P; — (A= O1(xAC)IA..A(A— On(xACp))) thenforl < i< n,
FO;PiAA— Qi(xACy). Since,

FAAL;(C; = WP A...AO,P) — AANL; Py and

FO;PiANA— Oi(x AC;) thus,

FAANL(C; = 1P A...AO,P) — Oi(xAC).

Therefore, € is a unifier of P;.

Second, let o' be a unifier of Py. Since o' is a unifier of P, then+ [0’ (Py), ...,
O,0'(Py). Hence, 0'(e(x)) = 010’ (P1) A ... AL o' (Py) — o' (x) is logically equiv-
alent too'(x). Thus, e < o’.

Consequently, € is a most general unifier of P,. Since P, and P are equivalent
and P and P, have the same unifiers then, € is a most general unifier of P.

Lemma97 LetP=A— (x)((Dlel A ANk, B) A (O CrA LA OlnCn)) where
B; and C; are Boolean formula for1 <i < mand1 < j < n. Let B = O A—
B) A .. A (Qk,,A— Bp). Then,E A— B'AO, (CiAB)A...AO,(C AB) iff P
possesses a unifier.

Proof 141 We have to do the steps 1 — 4 as for the previous Lemmas.

1. Simplification of P in this Lemma is similar to simplification of Lemmas
94| and[96| Hence, let Let Py = (A — X) A (X — (O, A= B) A . A (O, A—
Bu)ANA—= O (xAC)A..A(A— O, (xACy)). Py and P are not logically
equivalent. Nevertheless, they have exactly the same unifiers.

2. As before, it happens that P, is unifiable iff E A— B'A Q1 (CLAB)YA . A
01,(Cp AB") where B' = (O3, A— B)) A ... A (Ok,, A— Bpy).

3. Assuming= A— B'A O (CiAB)A...AQy, (Cy AB') where B' = (O, A —
B) A ... A(Ok,, A— By,) itis clear that o(x) = B is a unifier of P;.



130CHAPTER 7. UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM

4. Now, let us find a most general unifier of P;.

Notice that there are two occurrences of x in Py at level 0 and n occurrences in the
scopes of 1y, ..., 01, Consider Léwenheim’s formula e(x) = (O;, Py A ... AQ;, Py A

)V (O, PrA...AO, P1) Ao (x)). Since, 0(x) = B' hence we havee(x) = (Oy, Py A

AOp,PrAx) v (0O, Py A...ADy;, P1) AB'). Notice that €(x) is equivalent with
(((Dllpl A..AO,P)VBYA(xVvB)A @Oy P1A...AOL PV x)). In order to
check, e(x) is a most general unifier of P, we have to prove first, € is a unifier of
Py and second ¢ is a most general unifiers of Py. First, let us prove € is a unifier of
P,. Hence, we have to prove

1. EA—¢e(x) and

2. E@OuPiA..AOPyAx)V (O, Pr A oA, PY)AB) = (O, A— B A

3 FA-OLE@XAC)A.AA— O, (E(X)ACY).
1. To proveFE A — g(x) we consider the following steps: Since,

* F1(A—x)— 0y, P1A... ALy, Py) then,

FA— P A..ALG, PV x. Since,

F A— B then,

FA— (OyP1A...AO;,P) Vv B) A (xV B'). Since,
FA—-,Pr A ALy, PV X then,

FA— (O,PiA...AO;, PY)VBYA(xvBYA(—(O P A...AL, PV X).
Thus,

e EA— e(x).

2. Obviously, = (~(;, Py A...AQ;, P))AB") = (O, A— B A A(Ok,, A— Bi).
Since,
FUOLPLA .. AL P — (x = (O, A= B) A ... A(Qk,, A— Bpy)) then,
= Dllpl JARTWAN Dlnpl NX— (<>k1A — Bl) JARIWAN (<>kmA — Bm). Since,
FOLPIA...AOLPIAX— (O, A— B) A .. A(Ok,, A— Bp) and
FEOLPiA .. AO,PY)AB) = (O, A— B)) A ... A(Ok,,A— By,) then,
FOLPiAAOLPyAX) V(O Pr A AL, P A B — (O, A— B1) A
e A (Qk,, A — Bp,). Therefore,
Eex) = (O A— B A .. A (O, A— By).



3. We have to prove thatF (A— QO (E(X)AC) A .. A(A— O (€(xX) ACy). In
this respect, we will only prove, E A — (1, (e(x) A C1). Let us provel= A —
On@pPrA A0, PrAXxAC) VO, (@, PrA...AOy, P1)AB' ACy) or
equivalently= ANO;, (B'ACy — Oy Py A...A0,P)) = O 03P A A
01, P1 AxACy). Since, = A— Oy (B'ACy), then

e EANA Dll (B, ANC] — (Dllpl VARAN Dlnpl)) — DhPl and

FAANOL(B'AC,— @Oy P A...AOp, P1) = O (x ACy). Then,

FAAOL(B'ACy — @Oy Py A...AO;, Py)) — O, (xACy) Ay, Py. Hence,

FAANOL(B'AC— @Oy P A...AOp, P1) = O (x ACy A Py). Since,

= P; A x — B’ hence,

= A/\Dl1 (B,/\Cl — (Dllpll\.../\Dlnpl)) — <>ll (X/\B,/\Cl/\Pl). Since,

FAAOLB'AC,— OpPiA...AOp P) — 0O, (B'AC — (O, P1 A
..AU, P1)) and

= A/\Dl1 (B//\ Cl — (DhPl /\---/\Dlnpl)) — <>l1 (x/\B’/\ C1 /\Pl) then,

FAAO,B'AC— OyPiA.AOp,P1) = OOy Py A AD, Pr A
xACy).

Therefore, € is a unifier of P;.

Second, let ¢’ be a unifier of P,. Since ¢’ is a unifier of P, thent- 0,0’ (Py), ...,
0,0’ (P1). Hence, 0’ (e(x)) = (Oy,0' (P A...AO, 0’ (P Ao’ (X)) v (0O 0" (P1) A
..AO;,0'(P1) A B') is logically equivalent to o’ (x). Thus, e < o'

Consequently, € is a most general unifier of P,. Since P, and P have the same
unifiers then, € is a most general unifier of P too.

The last Lemma contains simple epistemic planning problem of the form A —
0@k Bi A ATk, Bin) A (04,1 A-.. A 01, C) | where By, .., B and Cj1,..., Gy
are Boolean formulas. The solutions of these problem are formulas v such that
if A holds then y can be announced and after v is announced, agent k; knows
B; hold (1 < i < m) and agent /; considers it is possible that C; holds (1 < j <
n).
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A—(y)B Necessary condition o(x) mgu
A—(x)B FA—B T EX)=P1AX)V (P AO(X))
A— (x)UB FA—B T eEx)=P1AXx)V(PAO(X))
A—-{(x)(yByA...AO,By) FA— (BiA...ABy) BiA...ABy, eEx)=P1Ax)V(PAO(X))
A—(x)(C FA—{OC T e(x)=UPyAx)v (0P Ao (X))
n n
A= (X)(O1CL A ... ANO,Cy) EA—(01C1A...AO,Ch) T ex)=(A\TiPiAx)v( \T;P1 Ao (X))
i=1 i=1
B' e@®) = (A O PiAx) v (=(A\ Oy Py Ao(x)

m n n
\leXVA>D5~wN>>QGQ\.V _H\wlw\>>0¢ﬁﬁ\.>w\v
j=1 j=1

i=1

j=1 j=1

Table 7.1: Simple epistemic planning problem A — (x)B
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7.3 Simple epistemic planning problem A — ((Ix)B

In this section, the solution of the simple epistemic planning problems that we
will consider should be of the form Uy .

Lemma 98 Let P = A — (L1x)B Where B is Boolean formula. Then, F A — B iff
P possesses a unifier.

Proof 142 We have to do the steps 1 to 4.

1. We use axiomatisation of public announcement to simplify P. Hence, let
P, = (0A—[x) A (A— B). By the reduction oxioms pf PAL and by the fact
that[J and { are interpreted in models by equivalence relations, we obtain
that P and Py have the same unifiers.

2. If Py is unifiable then F A — B. we remind that A, B contain only parame-
ters. Reciprocally, suppose’= A — B. Then o(x) =T is a unifier of P;.

3. Nouw, let us find a unifier of P,. Since= A — B, itis clear thato(x) =T isa
unifier of P;.
4. Now, let us find a most general unifier of P;.
Consider Lowenheim'’s formula e(x) = (UPy A x) v (0UP; Ao (x)). Since,0(x) =T
hence we have €(x) = (UPy A x) v (mLJPy A T) or equivalently €(x) = (LUP; — x).
In order to check, €(x) is a most general unifier of Py, we have to prove first, € is

a unifier of Py and second € is a most general general unifier of Py. First, let us
prove ¢ is a unifier of Py. Hence, we have to proveE ) A — [e(x). Since,

1. EOP) — (OA— Ox) then,

2. EOP;AOA— Ox. Since,

3. FUx — x hence,

4. EOP;AOA— x. Then,

5 FOA— (OP; — x).
Therefore, € is a unifier of P, .

Second, let 0’ be a unifier of P,. Since ' is a unifier of P then+ o’ (P;). Hence,
!/

o' (e(x)) = Do’ (Py) — d'(x)) is logically equivalent to o' (x). Thus, € < d’.
Consequently, € is a most general unifier of P,. Since P, and P are equivalent

and P and P, have the same unifiers then, € is a most general unifier of P.
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Lemma 99 Let P = A — (Llx)ULIB where B is a Boolean formula. then,F A — 1B
iff P has a unifier.

Proof 143 We have to do the steps 1 — 4.

1. Use axiomatisation of public announcement to simplify P. By the reduc-
tion axioms of PAL, P is logically equivalent to P' = ((A —Hx)A (A —

D[Dx]B)). Since (I is interpreted by an equivalence relation, then P’ has

the same unifiers as P" = ((<>A —Ox)AOQA— Ox — B))) which has itself
the same unifiers as P, = (0A— x) A (OA— B).

2. Obviously, Py is unifiable iffE ) A — B. We remind that A, B contain only
parameters.

3. Suppose= O A — B. Itis clear that o (x) = T is a unifier of P;.
4. Let us find a most general unifier of P;.

Consider Lowenheim's formula e(x) = (UPy Ax) v (0UPy Ao (x)). Since, o(x) =T
hence we have e(x) = (P, — x). In order to check, (x) is a most general unifier
of Py, we have to prove first, € is a unifier of Py and second € is a most general
unifier of P,. First, let us prove € is a unifier of P,. Hence, we have to prove
FEOA— Le(x). Since,

1. EOP; — (OA — Ox) then,
2. EOP; AOA — Ox. Since,
3. FUx — x hence,

4. EOPiANOA— x. Then,

5. F0A— (OPy — x). Then,
6. FOA—- (P, — x)

Since= O A — B, we obtain that € is a unifier of P,.

Second, let 0’ be a unifier of P,. Since o' is a unifier of P, then+ Ca’(Py). Hence,
o' (e(x)) = Do’ (Py) — d'(x)) is logically equivalent to o' (x). Thus, € < d’'.
Consequently, € is a most general unifier of P,. Since Py and P are equivalent
and P and P, have the same unifiers then, € is a most general unifier of P.
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Lemma 100 LetP = A — ({J;x)[, B where B is Boolean formula. Then, = ;A —
(O2A — B) iff P possesses a unifier.

Proof 144 We have to do at the following steps:

1. Simplify P by axiomatisation of public announcement logic. By the reduc-
tion axioms of PAL, P is logically equivalent to P' = ((A - hx)A(A—

Ly [Dlx]B)). Since [, and U, are interpreted by equivalence relations,

then P’ has the same unifiers as P = ((A — O 0)A02A— [Dlx]B)) which
has itself the same unifiers as Py = (01 A — 1 x) A (01 x — (O2A— B)).

2. Assume, F Q1A — (02A — B). Hence, o (x) = 01 A is a unifier of P,. Recip-
rocally, it is obvious that if T is a unifier of P, thenE $; A — (02 A — B).

3. Let us find a most general unifier of Py. We claim Lowenheim’s formula
e(x) = U1 Py Ax) v (0 Py Ao (x)) is a most genearl unifier of Py .

(a) Let us prove € is a unifier of P,. We need to make sure that € is a uni-
fier of P, hence, we have to proveF 01 A — Ue(x) and F Uye(x) —
(O2A— B).

To prove first part: Since
i. EOP — (01A—x)
ii. FLIPLANO1A—Thx
iii. Flx—x
iv. FLLPIAO1A— X
v. FO1A— (0P —Xx)
vi. EO1A— 00, P — x)
vii. FO1A— D1 (WP AX) V(G0 PLAO1A)).

To prove second part: Let us provel= ((DlPl /\Dlx)v(—Dlpl/\OlA)) —
(O2A— B). Since,
i. 0P — (O1x — (02A — B)) then
ii. EO;P; A01x7) — (O02A— B). Since
iii. FQ1A— (02A— B) Then,
iv. E(0O; P AO1A) — (O2A— B). Thus,
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v £ (O1PL AV (01 PyAOLA)| = (024 — B).
Therefore, € is a unifier of P;.

(b) Second, let d' be a unifier of P,. Since o' is a unifier of P, then +
0,0’ (Py). Hence, o' (e(x)) = (O,0"(P) Ao’ (x) v (000" (P1) AO1 A) is
logically equivalent to o' (x). Thus, € < o’.

Consequently, € is a most general unifier of Py. Since P and Py have
the same unifiers then, € is a most general unifier of P.

Lemma 101 LetP = A— ({1 x)(U2Ba A...AU, By) where B; are Boolean formu-
las for2 <i < n. Then, = 01A— (02A — Ba) A... A(OnA — By) iff P possesses a
unifier.

Proof 145 Simplify P by axiomatisation of public announcement logic. We pro-
ceed as in Lemmal[100, Hence, let P; = (01A— 1 x) A (O1x — (O2A— Ba)) A... A
(O1x — (OnA — By)). Supposel= O1A — (O2A — B) A... A (O A — By). Since
FO1A— (O2A— B) A... A (OnA — By), itis clear that o(x) = 01 A is a unifier of
P,. Reciprocally, when Py has a unifier, then 01A — (02A— B2) A ... A (OpA—
By,). Let us find a most general unifier of P,. We claim that Lowenheim’s formula
e(x) = (01Py A x) v (01 Py A a(x)) is a most general unifier. Since, o(x) = (1A
hence, e(x) = (1 P1 A x) v (0 Py AOLA).

* Let us prove ¢ is a unifier of Py. We need to make sure that € is a unifier
of Py hence, we have to prove F ;A — [1e(x) and F U e(x) — (02A —
Bo) A .. A(OpA— Bp).

Notice that [y e(x) is logically equivalent to ((J; Py AU x) vV (00 P A QL A).
To prove first part: Since

1. E Dlpl - (<>1A—> Dl)C) then,
2. FO1A— (O, Py — Uy x). Therefore,
3. EOLA— ((DlPl AChx) v (<0, Py /\<>1A))

To prove second part: Let us prove F ((D1P1 ALl x) v (0L P A <>1A)) —
(024 Bo) .. A (OnA — By)). Since,

1. E0L P — (Dlx e (OsA— B) A A(OpA— Bn)) then
2. F (Dlpl N Dlx) — (<>2A — By))A...A (<>nA — B,,). Since
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3. ':<>1A—’(<>2A—>Bg)/\.../\(<>nA—>Bn) Then,
4. E (1P AOL1A) — (O2A— Bo) A ... A(OpA— By). Thus,
5. F ((D1P1AD1x)V(—|D1P1 /\<>1A)) - ((<>2A - Bg)/\.../\(<>nA—> Bn))

Therefore, € is a unifier of P;.

* Second, let o’ be a unifier of P,. Since ¢’ is a unifier of P, thent [ 0’ (Py).
Hence, ' (e(x)) = (o' (PY) Ad’ (%)) v (70107 (P1) A Q1 A) is logically equiv-
alenttoo'(x). Thus, e < o’'.

Consequently, € is a most general unifier of P,. Since P, and P are equiva-
lent and P and P, have the same unifiers then, € is a most general unifier

of P.

Lemma 102 Let P = A — (x)OC where C is a Boolean formula. Then, F A —
QC iff P possesses a unifier.

Proof 146 Simplify P by axiomatisation of public announcement logic. Hence
1. (A—({Ox)OC)
2. (A= 00 A (A— [Ox1-0-0)
3. A-=Tx)A(A—={Ox A Q).

Let Py = (A— [Ox)A (A — OUx A Q). Then P and P, have exactly the same
unifiers. If, F A— QC hence, o(x) = T is a unifier of P,. Reciprocally, obviously,
if Py is unifiable then F A — QC. Let us find a most general unifier of P,. We
claim that e(x) = (UP; A x) v (7JP; Ao (x)) is a most general unifier of P;. Since,
o(x) =T hence, e(x) = ~LP; v x is equivalent to (_JP; — x). In this respect,:

1. We prove € is a unifier of P,. In this respect, we need to provel= A — Ue(x)
and A — {(Je(x) A C). Let us prove= A — (P, — x): Since,
FUP; — (A— Ux) then,
F (dP; A A) — Ox. Hence,
F A— (UP; — x). Therefore,
FA—Ue(x).
Let us prove prove that = A — O(J(OPy — x) A C) or equivalentlyF A —
Q0P AC) v O(dx A C). In this respect, it is enough to show thatE A A
O(C —0OPy) — Gx A C). Since,
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FAAL(C —0OPy) — AN (OC — IPy) and by our assumption,
F A— OC Hence,

FAAOC —0OP;) — OP; A A.We know that

EOP; — (A— OOx A Q) then,

EOPiAA— OOxACQC). Since,
FAAOC—-0OP) —UOP; AAand

EOPiAA— OxACQC) then,

FEAADOC —0OP)) — O0x A C). Thus,

FEA—O0e(x)AQ).

Therefore, € is a unifier of P;.

2. Second, let a' be a unifier of P,. Since ' is a unifier of P, then 0’ (Py).
Hence, o' (¢(x)) = ~Oa’(Py) v o' (x) is logically equivalent to o' (x). Thus,
exo.

Consequently, € is a most general unifier of P,. Since P and P, have the

same unifiers then, € is a most general unifier of P.

Lemma 103 Let P = A — ((J;x)02C where C is a Boolean formula. Then, = A —
Q2 C iff P possesses a unifier.

Proof 147 Use axiomatisation of public announcement logic. Hence, let P, =
(A—-Tx) A(A— O2(0,x A Q). P and Py have exactly the same unifiers. Sup-
pose = A — (,C. Since, F A — (»C hence, o(x) = T is a unifier of P,. Recipro-
cally, if Py has a unifier thenF A — ,C. Let us find a most general unifier of P;.
We claim that €(x) = (LU Py A x) v (00U L Py A 0(X)) is a most general unifier
of Py. Since, 0(x) =T hence, e(x) = 71U, Py v x. In this respect, we consider the
following steps:

1. We prove ¢ is a unifier of P,. In this respect, we need to prove= A — [J;&(x)
andF A — (2(1e(x) A C). Let us prove first one: Since,
F0,0,P; — (A— Uy x) then,
F (0;0,P; A A) — U x hence,
FA— (L0, P; — Uy x). Therefore
FA—Le(x).
Second, we have to prove that= A — {,((J1e(x) A C) or equivalentlyF A A
DZ(C e Dlmgpl) — <>2(Dlx/\ C). Since,
FAAN(C—0,0,P) — AN (Q2C — O200100, Py) and by assumption
EA— O»C then,
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FAALL(C—[hLyPy) — <>2D1D2P1 A A. We know that,
= <>2D1D2P1 ANA— [, P; A A. Since,

= DZPI — (A— <>2(D1)C/\ ) hence,

= Dgpl NA— <>2(D1X/\ C). Since,

FEAA DZ(C - |:|1|:|2P1) - <>2|:|1|:|2P1 AN A and

= <>2D1D2P1 NA— DZPI AN A and

E,PiAA— Oo(1x A C) thus,

FAA DZ(C - Dlljgpl)) — <>2(|:|1)C/\ ).

Therefore, € is a unifier of P;.

2. Let us prove that € is more general than any unifier of Py. Let o’ be a unifier
of P,. Since d' is a unifier of P, then + [1,0,0'(Py). Hence, o'(e(x)) =
a[00,0'(Py) v 0’ (x) is logically equivalent to o' (x). Thus, € < o' (x).
Consequently, € is a most general unifier of Py. Since validity of P, and P
are equivalent then, € is a most general unifier of P.

Lemma 104 LetP = A— ({1 x)(02Co A ... A O, Cp) where C; are Boolean formu-
las for2 < i< n. Then,E A— (2Co A ... AO,Cy, iff P possesses a unifier.

Proof 148 (=) Simplify P by axiomatisation of public announcement logic. Hence,
letP1 = (A—- 1 x)A (A= O2(1xAC))A . A(A— O (L1 xACy)). P and Py have
the same unifiers. SupposeE A — (2CoN... N, Cp. Since, E A— (2Con... A, Cp
hence, o(x) = T is a unifier of P,. Reciprocally, if P, has a unifier then it is clear
thatE A — $2Co A ... ANORCy,. Let us find a most general unifier of Py. We claim
thate(x) = (. Pi A ... AOOPiAX) V(10 Py A .. ADO,PY) AC(X)) isa
most general unifier of P;. Notice that €(x) = ~(LLL,Py A...AULL,P) VX, In
this respect, we will do the following steps:

1. We prove that € is a unifier. In this respect, we have to prove = A — [J;&(x)
andF A— Q;(0ye(x) ACy) forall2 < i< norequivalently= AN; (C; —
D1D2P1 N A Dlljnpl) — <>i(|j1X/\ C;).Since,

FO0aPy A...A00,P; — (A— U x) then,

= (Dll:lgpl JANRA D]anl ANA) — Dlx hence,
FA— (0P A... AL, Py — Uy x). Therefore,
FA—-Lje(x).

Let us prove the second one: Since,
EANA Di(Ci - D1D2P1 VANV D]anl) — AN (<>l-C,- - Qi(DlDZPI JANAAN
U,0,P1)) and by assumption
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EA— O;C; then,

FAAL;(C; — hOPy Ao AChHO,P) — AANQ;(1E Py A Lo AT O, PY).
We know that for all2 < i < n,

FOi(01 0Py Ao AL O, PY)ANA— Py A A. Sinceforall2 <i<n,
;P — (A= Qa1 x AC) Ao A (A— Opn(1x A Cy))) then,
FL;P1ANA— O;(yxACj). Since,

FANA Di(C,- d D1D2P1 VARAN DanPl) — AN <>,-(D1D2P1 VARRYAN D1DnP1),
= <>i(D1D2P1 VAN Dlljnpl) NA— Dipl AN A and

FO;PiAA— O;(OyxAC)) thus,

EAA Di(C,- - Dﬂ:]zpl N A DanPl) - <>,-(D1x/\ Ci).

2. Let us prove that € is more general than any unifier of P,. Let o’ be a unifier
of Py. Since ¢’ is a unifier of Py then - o'(Py) and F [;00;0' (Py) for each
i =2,..,n. Thus, o'(e(x)) = 7"(0,00"(P)) A ... AL O,,0'(Py) vV o' (x) is
logically equivalent to o' (x). Therefore, € < o'(x).

Consequently, € is a most general unifier of P,. Since P, and P have the
same unifiers then, € is a most general unifier of P.

Lemma 105 Let P = A — (Cy0)((Cg, B Ao ATk, B) A (04,C1 A A 01, C)
where B; and C; are Boolean formulas for1 <i<mand1 < j<n. Let B' =
(Ox, A= BOAA(Qk,, A— Bp). Then, = A— T B'AQ, (CLALLB)A..AQ;, (CyA
(01 B") iff P possesses a unifier.

Proof 149 Simplify P by axiomatisation of public announcement logic. Hence,
let Py = (1A — ) A (Chx — Li((O, A — B A A Ok, A — B)) A(A —
O, 01 xAC)IA..A(A— O, (L1 xACy)). Clearly, P and P, have exactly the same
set of unifiers. Suppose, = A— 01 B'AQ, (Cy ALY B A...A,(C, AL B'). Hence,
o(x) =1 B’ is a unifier of Py. Let us find a most general unifier of P;. We claim
that Lowenheim’s formula €(x) = (LU, 0, Py Ao ALLO; Py AX) v (00, P A
.. AO10;, P1) Ao (x)) is a most general unifier. Since, o(x) = 0B’ then, e(x) =
(Dlﬂll P /\.../\|:|1DlnP1 AX)V (_'(Dlljl] Py /\.../\D1DlnP1) /\DlBI). In this respect,
we have to do the following steps:

1. We should prove that € is a unifier of P,. Then we should provel (; A —
Ohe(x) and F Oye(x) = 01 (O, A— B Ao A(Qk,,A— Bp)) and = (A —
OnO1e@) AC) A AM(A— Oy, (L1€(x) A Cp)). Let us prove
first one: Since,
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Fa(01A—Lhix) — _‘(DlDllpl JARRAN DlDlnpl) then,

FO1A— (0, Py A ... AT, Py) v x. Since,

E A— [01B then,

E01A— 0O, B hence,

= <>1A — ((D1D11P1 JARAN DIDI,,Pl) \Y DIB/) AN (Dle DlBl). Since,
FO1A— _'(DIDllpl A... /\DIDlnpl) v U x then,

FO1A— (10, Py A .AD O, P VO BYA (i x v BYA (=[O0, Py A
.. NUiy, P1) v Ui x). Therefore,

':<>1A—> Dls(x).

Second one: we have to prove that F Ue(x) — Ui (O, A — Bi) A ... A
(Ok,,A— Bpm)). In this respect, we need to prove

= (DIDhPlA---ADIDI,,PI/\Dlx)v(_'(‘:’lljllplA---ADIDIHPI)ADIDIB,) ad
1 ((Ok, A= B Ao A(Qk,, A— By)). It is obvious,

FEOOLP A AL O, PY)AOB) — (O A— B A .. A(O,, A— Bp).
Since,

E DlﬂllPl/\.../\DlDlnPl d (Dlx - (<>k1A d Bl)/\.../\(okmA — Bw)) then,
= Dlljllpl /\---/\DIDI,,PI Al x— (QkIA — Bi)A.LA (<>kmA — By,). Since,
FOO,Py A ADWO, PrADix— (O, A— B) Ao A(Ok,,A— Bp) and
FEOOLPy A ADOL,P)ADB) = (O, A= BI) A A(Ok,,A— Bp)
then,

= (D1D11P1 TANAAN D1DlnP1 AX)V (—l(DlﬂllPl JANAAN DlﬂlnPl) A DlB,) -
(O, A= B Ao A (Ok,, A — Bp). Since,

E (Dlljllpl VAN D1DlnP1 AX)V (_'(Dlljllpl VANAN D1DlnP1) AN DlB,) B
Ok, A— Bi) A ... A(Qk,, A— Bp) hence,
i:Dl((EhDhPl/\.../\Dlmlnpl/\x)V(_|(|:|1|:|11P1/\.../\Dlmlnpl)/\DlB/)) —
Oh ((Ok, A= B)) Ao A(Ok,,A— Bp)) then,

= (D1D11P1 VANVAN D1DIHP1 AX)V (—l(D1DhP1 VAN D1DlnP1) AN DlB,) B
Ui (Oky A= Bi) Ao A(Ok,, A — Bp)). Therefore,

FOe) — (O, A— B A A Ok, A— Bi)).

Third one: we have to prove= (A — (¢, (1e(x) AC) A A(A— O, [he(x)A
Cp)). In this respect, we will prove, E A — Oy, (L1e(x) A Cy) and the proof
of rest of parenthesis are similar. Let us prove F A — {; (010, Py A ... A
DlDlnpl/\Dlx/\Cl)lel(—'(DlDllPl/\.../\DlDlnPI)/\DlB’/\Cl) orequiv-
alem‘ly|= AN Dll (DlB,/\ C - (D1D11P1 N A DIDI,,PI)) d <>ll (Dﬂ:lllpl N
VAN |:|1|:|lnpl N |:|1X/\ C1). Since,

FAAO, (O,B'AC, — (OO0 PiA...ATL O, Py) — O, Py andE AND, (O,B'A
C— (DIDIIPI A... /\DlDlnpl)) — <>11 Oy x A Cy) then,

FAA Dll (DlB,/\ C— (D1D11P1 N... /\DlDlnPI)) B <>11 (Dlx/\ C) /\Dllpl
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hence,

EANA Dll (DlB, ANCp — (|:|1|:|11P1 Ao A DIDI,,PI)) nd <>ll (|:|1x ANCy A Py).
Since,

E Py AOyx — OB’ hence,

= A/\Dl1 (DlB’/\ C— (DlDllPl /\.../\DlDlnPl)) - <>ll (Dlx/\DlB'/\Cl N
Py). Since,

= A/\Dl1 (DIB,/\Cl d (DthPl/\.../\DlDlnpl)) g Dll (DIB,/\Cl d (DthPl/\
. ANUhU, P) and

EAA Dll (DlB,/\ C - (DlﬂllPl VAR DIDI,,PI)) - <>ll (Dl)C/\ DlB//\ CiNn
Py) then,

FEAA Dll (DlB, ANC, — (D1D11P1 VANAY DIDIHPI)) nd Oll (D1D11P1 VARYAN
U0, Py AUix A Cy). Therefore,

€ is a unifier of P;.

2. Let us prove that € is more general than any unifier of P,. Let o' be a unifier
of Py. Since o' is a unifier of Py then \- o'(Py) and + 0h10,0' (P A ... A
[0,00;,0"(Py). Hence, 0'(e(x)) = (100" (P A ... AT O, 0/ (P AT (X)) v
@O0 0" (PO A...AT O;, 0" (P1) AL BY) is logically equivalent to o' (x).
Therefore, € < 0.

Consequently, € is a most general unifier of P,. Since P, and P have the
same unifiers then, € is a most general unifier of P.

Lemma 106 Let P = A — ({yx);[JoB where B is a Boolean formula. Then,
F A — U, B iff P possesses a unifier.

Proof 150 We simplify P by axiomatisation of public announcement logic. Hence,
Let P; = (A — ax) A (ox — (O1A — [2B)). Suppose E A — [,B. Since,
F A — U, B then, o(x) = B is a unifier of P. Let us find a most general unifier of
Py. We claim that Léwenheim’s formula €(x) = (L, Py A x) v (0P Ao (X)) isa
most general unifier of P, . Since, 0(x) = B hence, €(x) = (U2 Py Ax) Vv (0L Py AB).
In this respect, we will do the following steps:

1. We have to prove € is a unifier of P,. Let us prove F A — Le(x) and F
Hae(x) = (01A—[2B).

The proof of first one: it is equivalent to proveE A — (o Py VI B)A (Lo xv
L Py) A (Uax v U B). By our assumption,

F A— [,B. Then,

FA— (Dgpl \% DZB) AN (Dgx \% DZB) Since,
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F=(A— Uyx) — 2, Py then,

FA— -l,P; vix. Since,

FA— (DgPl \Y DZB) N (Dgx \Y DZB) and

FA— -[,P; vUsx thus,

FA— (DzPl V DZB) AN (Dgx V _||:|2P1) A (sz Vv DZB) Therefore,
FA-—Le(x).

Let us prove = Le(x) — (01 A — Uy B). It is enough to show that F (L, Py A
o x) — (O1A — [2B). Since,

FOyPy — (ox — (01A— [02B)) then,

= (Dgpl N sz) — (<>1A — DgB) Thus,

= Dzé'(x) - (QlA i DzB)

Therefore, €(x) is a unifier of P;.

2. Let us prove that € is more general than any unifier of Py. Let o’ be a unifier
of Py. Sinced' is a unifier of P thent o' (Py). Hence, o' (e(x)) = ((Oy0” (P1) A
o' (x)) v (=0,0'(P1) A B) is logically equivalent to o' (x). Therefore, e < 0.
Consequently, € is a most general unifier of P,. Since P, and P have the
same unifiers then, € is a most general unifier of P.

(<) Let o be a unifier of P1. Then,
1. FA—-ho(x) and
2. E0so(x) — (O1A— ,B). Hence,
3. E A— (O1A— [2B). Therefore,

4. FA—-[hB.

Lemma 107 Let P = A — (o x)(LJ100o By A ... AU, 00 B,,) where B; are Boolean
formula for1 <i< n. Then,F A— B A... AU By, iff P possesses a unifier.

Proof 151 Let use axiomatisation of public announcement logic in order to sim-
plify P. Hence, let P; = (A — [ox) A (Lox — (014 — oB)) Ao A (Lox —
(OnA—UyBy)). Clearly, P and P, have exactly the same set of unifiers. Suppose
FA— By A...AOyB,,. Since,E A— U>B1 A... AU B, then, 0(x) = B; A...A B,
is a unifier of Py. And of course, reciprocally, when Py has a unifier then F A —
LBy A...AUaBy,. Weclaim that e(x) = (Ua Py AX) vV (07U Py Ao (X)) is a most gen-
eral unifier of P,. Since, o(x) = By A... A By, then, €(x) = (aPy A x) v (0o Py A
(B1 A ... A By)). We can use the method of[106] to prove € is a most general unifier.
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Lemma 108 Let P = A — (yx)UL;LJoB where B is a Boolean formula. Then,
F 01A — B iff P possesses a unifier.

Proof 152

We have to do the following steps:

1. We can simplify P by axiomatisation of public announcement logic as be-
fore. Let Py = (01A— 1 x)A(U1x — (0201A — B)). Clearly, P and P, have
exactly the same set of unifiers. Assume, = 1A — B. Hence, o(x) = 01A is
a unifier of P,. Reciprocally, if Py is unifiable then= $; A — B.

2. Let us find a most general unifier of Py. We claim Lowenheim's formula
e(x) = (01 Py A x) v (0 Py A Q1 A) is a most general unifier of Py .

(@)

(b)

Let us prove € is a unifier of Py. We need to make sure that £(x)
is a unifier of P, hence, we have to prove F 1A — [Je(x) and F
Uhe(x) — (0201A— B).
To prove first part: Since
i. F Dlpl i (QlA - DI.X,')

ii. F D1P1 AN <>1A - |:|1x

iii. F01A— (0, Py — Uy x). Therefore,

iv. F <>1A — (Dlpl N Dlx) \Y% (_|D1P1 A\ <>1A)
To prove second part: Let us proveF (J; Py AL x) v (0 Py AO A)) —
(©201A — B). Since,

i F Dlpl — (D1x1 — (<>2<>1A — B)) then

ii. E (Dlpl N Dlxl) — (<>2<>1A — B). Since

iii. £01A—— B then,

iv. F (_'Dlpl N QIA) - (<>201A—’ B) Thus,

v. BE(hPrAlhx) v (0L Py A Q1 A) — (02014 — B).

Therefore, € is a unifier of P;.

Let us prove that € is more general than any unifier of P,. Let ¢’ be
a unifier of Py. Since d' is a unifier of P, then + (0,0’ (P1). Hence,
o' (e(x)) =[O0’ (P Ad'(x) v (0010 (P1) A Q1 A) is logically equiva-
lent to o'(x). Therefore, e < d’.

Consequently, € is a most general unifier of Py. Since Py and P have
the same unifiers then, € is a most general unifier of P.



Lemma 109 LetP = A — ({1 x)(0102Bs A ... AU O, By,) where B; are Boolean
formulas for2 <i < n. Then, E 1A — (B2 A... A By) iff P possesses a unifier.

Proof 153 We simplify P by axiomatisation of public announcement logic as
before. Hence, let Py = (01A — 1 x) A (U1 x — (02014 — B)) Ao A (Uhx —

(OnQ1A — By)). Clearly P and P, have exactly the same unifiers. Now, suppose
FO1A— (BoA...ABy) hence, o(x) = {1 A is a unifier of P,. Reciprocally, if P, has
a unifier then obviously = 01 A — (Ba A ... A B). We claim Lowenheim’s formula
e(x) = (1 Py A x) v (01 Py Ao (X)) is a most general unifier of Py. The method of
proving € is a most general unifier is similar to

Lemma 110 Let P = A — ({1 x)[0,02B where B is a Boolean formula. Then,
F A — [, Q2B iff P possesses a unifier.

Proof 154 We use axiomatisation of public announcement logic. Hence let Py =
(A—1x) A (O1A— O2(01x A B)). SupposeE A — [,02B. SinceF A— [1;0,B
then, o(x) = T is a unifier of P1. Reciprocally if P, has a unifier then it is clear
that = A — [J;02B. Let us find a most general unifier of P,. We claim Lowen-
heim’s formulae(x) = (1L Py A x) v (00U Lo Py Ao (X)) is a most general unifier
of P1. We can use the similar method of Lemmall03] to check € is a most general
unifier.

Lemmalll Let P = A— ((01x)(0;02B> A ... ALO; 0, By,) where B; are Boolean
formulas for2 < i < n. Then, F A — [;02Ba A ... A1 OBy, iff P possesses a
unifier.

Proof 155 We use axiomatisation of public announcement logic as before. Hence
we assume P; = (A— 1 xX)A Q1A — Qa(hxAB)) A A(O1A— Opn(d1xABy)).
Suppose F A — [0102Bs A ... AL OBy, SinceF A — [0102Bs A ... ALLO,B,
then, o(x) = T is a unifier of Py. Let us find a most general unifier of P,. We
claim Léwenheim’s formula €(x) = (U1 Py A .. ALLO Py A X) v (0L L Py A
.AULO,Py) Ao (x)) is a most general unifier. To check € is a most general unifier,
we use the similar method of Lemma|104

The last Lemma contains simple epistemic planning problem of the form A —
(1 x)([0102B2 A ... AL O, By). The solutions of these problems are formula v
such that if A holds then agent 1 can announce y and after this announcement,
agent k; knows B; (1 < i < m) and agent [; consider it is possible that C; holds
a<sj<n.
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A—(y)B Necessary condition o(x) mgu
A— {Ox)B FA—B T e(x)=0PyAx)v(0OPyAO(x)
A— ({x)OB FA—UB T e(x) =Py Ax) Vv (-OP; Ao (x))
A— (O1x)0,B FO1A— (02A—0B) 0O1A e(x) = (AP Ax) VvV (-OP; Ao (x))
n
A— D x)(2B2 A ... AU, By) FO1A— A\ (©iA— B) 014 e(x) = [ PyAx)Vv (0L P AG(X))
i=2
A—{Ox)OC EA—-OC T e(x)=0PyAx)v(0OPLAC(X)
A— Ox)0»C EA—-OC T e(x) HADHDNP>é<AJDHDNP>QCﬂ:
A— (0110 (02Co A ... AO,Ch) FA— (02CoA...ANO,Cy) T m€|ﬁ>D 0; P>5<I>D 0;P)) Ao (x))
i=2 i=2
A= O (AOKBiA N O;,C) FA-TWB AN O, (CiAThB)  ThB e =(A\Ti0;PrAx) v (A DO, P AG(x)
i=1 j=1 j=1 j=1 j=1
A— ADNHVDHDNW FA— DNW B e(x) = ADNWH AX)V AI_DNNuH Ao (X))
A— (hx)(0:02B; A...AO,0.By,) FA—-[LBiA...AU>By, BiA...ABy, e(x)=P1Ax) Vv (0P Ao (X))
\wlvA_H_HHv_H_H_H_Nm _HAVH\—llm AvH\» .m.CSHADHWH>XV<AJDHWH>QAH:
BlA_H_HHVADHDNWN>...>DH_H_:W~L _HAVH\—lWN>...>W: AvH\u MCSHADHWH>HU<AJDHﬁH>QC&5
A— ADTHVDHAVNW T\—lﬂﬁ@wW T e(x) HADHDNMJ>HV<AI__U~_H_N~J>Q.CQV
A— (Chx) (01 02B2 A .. AL ORBy) [FA— (L1 02B2 A .. AL OnBy) T ex)=(ADOP Ax) v (A O1OP) Ao (x)

i=2 i=2

Table 7.2: Simple epistemic planning problem A —

(Ux)B




7.4. SIMPLE EPISTEMIC PLANNING PROBLEM A — () X)B 147

7.4 Simple epistemic planning problem A — (O x)B

In this section, the solution of the simple epistemic planning problem that we
will consider should be of the form A — ({x)B.

Lemma 112 Let P = A — ({x)B where B is a Boolean formula. Then, = A — B
iff P possesses a unifier.

Proof 156 We use axiomatisation of public announcement logic to simplify P.
Let Py = (A — Ox) A (A — B). By the reduction axiom of PAL, P nd P, have the
same unifiers. Supposet= A — B. SinceF A — B then o(x) = T is a unifier of
P,. Reciprocally, we have= A — B if P, has a unifier. Let us find a most general
unifier of P,. We claim that Léwenheim’s formula €(x) = (UP; A x) v (7JP; A
o(x)) is a most general unifier. Notice that since o (x) = T then €(x) is equivalent
toJP, — x. In order to prove ¢ is a most general unifier, we proceed the following
steps:

1. We prove ¢ is a unifier of Py. In this respect, we have to prove = A — (Q¢e(x).
Since,
FOP; — (A— Ox) then,
EOP;AA— Ox hence,
F A— (OP; — Qx). Therefore,
FA—-QOOP) — x).

2. Let us prove that € is more general than any unifier of Py. Let o' be a unifier
of P1. Since 0’ is a unifier of Py then \- (o’ (P;). Hence, o' (e(x)) = o'(x) v
-[Oa’(Py) is logically equivalent to o' (x). Therefore, € < o’

Consequently, € is a most general unifier of P. Since P, and P has the same
unifier then, € is a most general unifier of P.

Lemmall3 Let P = A — (01x)[yB where B is a Boolean formula. Then, F
O1A — (O2A — B) iff P possesses a unifier.

Proof 157 We use axiomatisation of public announcement logic. Let P, = (01 A —
Q1x) A (O1x — (O2A — B). Supposek 1A — (02 A— B). SinceE 1A — (02A—
B) then, o(x) = A is a unifier of P,. Moreover, if P has unifiers then obviously,
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F O01A — (02A — B). Let us find a most general unifier of P;. We use Lowen-
heim’s formula €(x) = (1 Py A x) v (02U Py Ao (x)). Since, 0(x) = A is a unifier of
P thene(x) = (L Py A x) v (U Py A A). To check € is a most general unifier, we
will do the following steps:

1. We prove that € is a unifier of Py. In this respect, we have to provel= 01 A —
Or1e(x) and E $1e(x) — (QO2A — B). Let us prove first one. Notice that
O1€(x) is logically equivalent to (1 Py v $1A) A (1P v O1%) A (O1x Vv
O1A). SinceE 01A— Q1A thenE 01 A— (1P vO1 AN (O1xvO1A). Since
= Dlpl — (<>1A — <>1X) then,

FO1A— (01 Py — O1x). Therefore,
014 01((D1PrAX) v ((Dh Py A A),

Let us proveF {1e(x) — (02 A — B). Since, F 1A — (02 A — B) then,
F (=P AO1A) — (O2A— B). Since,

FU P — (O1x — (O2A— B)) then,

E Dlpl N <>1x d (OzA — B). Since,

F 0P AOLA) — (O2A— B) then,

F ({01 P1AO1X) vV (01 Py AO1A) — (O2A— B).

Therefore, € is a unifier of Py .

2. Let us prove that € is more general than any unifier of P,. Let ¢’ be a uni-
fier of Py. Since o' is a unifier of Py then - [(J10'(Py). Hence, o' (e(x)) =
(10" (P Ad! (X)) v (20107 (Py) A A) is logically equivalent to o' (x). There-
fore,e < o',

Consequently, € is a most general unifier of P,. Since P, and P have the
same unifiers then, € is a most general unifier of P.

Lemma 114 LetP = A— (01x) (2B A... AU, By,) where B; are Boolean formu-
las for2 <i < n. Then, = Q1A — (02A— B) A... A(OpA— By) iff P possesses a
unifier.

Proof 158 We use axiomatisation of public announcement logic to simplify P
as before. Hence, let P} = (01 A — O1X) A (Ox1 — (024 — B)) Ao A (Ox) —
(OnA — Bp)). SupposeE O1A — (02A— Bo) A... A(OnA— By). SinceE O1A—
(Q2A — Ba) A... A (OnA — By) then, o(x) = A is a unifier of P,. Let us find a
most general unifier of P,. We claim that Lowenheim’s formula €(x) = (1 Py A
x) v (01 Py A 0(x)) is a most general unifier. Since, o(x) = A hence, €(x) =
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(U1 Py Ax) Vv (0 Py A A). To check € is a most general unifier, we use the similar
method of the proof of Lemma|113

Lemmall5 Let P = A — (Q1x)02C. Then, E A — O,C iff P possesses a most
general unifier.

Proof 159 We use axiomatisation of public announcement logic to simplify P.
Let Py =(A— 01X) A (A— Q2(01x A C)). Suppose= A — (»C. Since, F A— (,C
hence, o(x) = T is a unifier of P,. Let us find a most general unifier of P;. We
claim Lowenheim’s formula €(x) = (U1 Py A x) v (U1 0o Py A 0(x)) is a most
general unifier. To check € is a most general unifier, we use the similar method of
the proof of Lemmal|103

Lemmal16 LetP = A — (01x)(02Co A ... A O Cy) where C; are Boolean formu-
las. Then,E A— (02Ca A ... A Cy) iff P possesses a most general unifier.

Proof 160 Use axiomatisation of public announcement logic. Let P; = (A —
C1X)A (A= Q2(Q1XAC) A e A(A— On(O1XACR)). SupposeE A— (O2Co AL A
OnCr). Since,F A— (02Co A ... AN, Cp) hence, 0(x) =T is a unifier of Py. Let us
find a most general unifier of P,. we claim Léwenheim’s €(x) = (1L Py A ... A
UhO,PrAx) v (o[ 0o Py AL ALL L, Py) Ao (X)) is a most general unifier. Since,
o(x) =T hence, e(x) =1, Py A... AU, Py — x is a most general unifier of
P,. To check € is a most general unifier, we use the similar method of the proof of
Lemmal[l04

Lemmall7 Let P = A — (<>1x>(([lk1B1 A ADg, Bu) A (O1,CL A oo A <>,ncn))
where B; and C; are Boolean formulas for1 <i<mand1< j< n. LetB' =
O, A— BOAA(O,, A— Bm). Then,E A— O1B'AO (CLAO1B)A..AQ, (CpA
O1B') iff P possesses a unifier.

Proof 161 We use axiomatisation of public announcement logic in order to sim-
plify P. Let Py = (01 A — 01X) A (01X = O1((Or; A — B A A (Ok,,A— Bw)) A
(A= 0 (Q1XxAC)) A . A(A— O, (01X A Cp)). Supposel= A— O1B' A O (Cr A
O1BYA...AQ 1, (CuAO1BY). Since,E A— O1B'AO, (CiAO1BYA. A, (CrAO1BY)
hence, o(x) = (1B’ is a unifier of P,. Let us find a most general unifier of P,. In
this respect, we claim Lowenheim’s formula e(x) = (LU, Py AL AL L, PrAX) V
(@07, Py A ... AL 0;, Py) AO1B') is a most general unifier of Py. To check € is
a most general unifier, we use the similar method of Lemmas[97) and[104]
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Lemma 118 Let P = A — (Q1x)[,[Jy B where B is a Boolean formula. Then,
FO1A— (O2A— ) B) iff P possesses a unifier.

Proof 162 Let us use axiomatisation of public announcement logic in order to
simplify P. Hence let Py = (A — 01x) A (O1x — (O2A — 01 B)). Supposer 01 A —
(Q2A — [01B). Since O1A — (02A — U1 B) hence, o(x) = A is a unifier of P;.
Let us find a most general unifier of P,. We claim Lowenheim's formula €(x) =
(U1 Py Ax) Vv (0L Py Ao (X)) is a most general unifier. To check € is a most general
unifier, we use the similar method of the proof of Lemmal106

Lemmall9 Let P = A — ({01x)((0200, By A ... AJ, 1 B,) where B; are Boolean
formulas for2 <i < n. Then,F01A— (02A— 1 B1) A ... A(OnA— [ By) iff P
possesses a unifier.

Proof 163 Let us simplify P by using axiomatisation of public announcement
logic. Let, P1 = (A— Q1 X) A (Qx1 — (O2A = L B) A AOX1 — (OnA— T By)).
Suppose = O1A — (O2A — L1 B1) A ... A(OpA — 1By). SinceE O1A — (O2A —
1B A ... A(QOnA— 1 By), itis clear that o (x) = A is a unifier of P. Let us find
a most general unifier of Py. We use Lowenheim's formula €(x) = (JyP; A x) V
(=, Py A o (x)) as a most general unifier. To check € is a most general unifier, we
use the similar method of Lemma|107
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-a Conclusion

The unification problem and the admissibility problems are strongly related, as
explained at the beginning of the thesis. As seen in Chapters 4 to 7, there are
many different ways to study the unification types of modal logics. There are
still many open problem about unification types of modal logics. In Chapter 4
of this Thesis, we have proved that unification type of modal logics KD5 and
K5 are unitary or nullary. Here, there are some open question as follows:

* What is exact unification type of logics KD5 and K5?
e What is unification type of logics KD5 and K5 with constant?
e What is unification type of every logic extending K5?

In Chapter 5, we have proved that unification type of Al#; + UL is unitary.
We have in [12] that K + L is finitary. Here also there are open questions as
follows:

 What is unification type of Alt; + %1 and K + 0% 1L when d > 3?
e What is unification type of Alt; + $T?

e What is unification type of Al#; + 191 and K+ %1 when d > 2 for uni-
fication with constant?

In chapter 6, we have proved that if L; is nullary and L; is consistent modal
logic then unification type of the fusion L; ® L, is not unitary and not finitary.
Also we have proved that unification type of fusion §5; ® §5, with constants is
nullary. Now, there are open questions as follows:

* is unification type of the fusion of two consistent modal logics always
nullary when these logics are different from Triv and Ver?

e What is the unification type of the fusion S5; ® S5, without constants?
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* What is the unification type of the fusion KD; ® KD, without constants?

In chapter 7, we have considered simple epistemic planning problem with as-
sociated formula A — (x)B, A — ((Jx)B, A — (Qx)B and found necessary and
sufficient condition for existence of unifier when announcements are public
announcements. Here also there are some open problems concerning what
is necessary and sufficient condition for existence of unifier when announce-
ment ¥ is a group announcements [1], semi-private announcement [21], com-
plete private announcement [16][17] etc. For example, one may ask, given epis-
temic variable-free formulas A, B and C whether there exists a semi-private an-
nouncement i to agent 1 such that the following formula is valid in the logic of

semi-private announcement [16]: A — (% (Ly)(;BA Or0).

In natural language, such planning problem consists in computing a formula
v in the language of semi-privately announced to agent 1 and, after announce-
ment, agent j knows B holds and agent k considers that C is possible.

Can we adapt the approach developed in Chapter 7 when announcements are
lies [2]?
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