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Abstract

This thesis is motivated by a research program between the LAMA (Mathematics, Univ. Gustave

Eiffel) and the Institut de Physique du Globe of Paris (Earth Sciences) on granular media and their

mathematical description.

We consider here a continuous description: the material is described as a fluid with viscoplastic

rheology, that allows us to model the transition between static (solid) states and mobile (liquid)

states. Incompressible models have been used since the introduction of the so called µ(I) rheology

(Jop et al. 2006). However such models do not represent accurately real flows, even in laboratory

experiments. Recent studies indicate that volume variations, even if not significantly large, play a

key role in the dynamics. Therefore compressible models have been recently considered (Barker et

al. 2017). Although particular rheologies such as Bingham or Herschel-Bulkley models have been

often considered in mathematical studies such as Malek et al. 2010, not much can be found on

general nonlinearities in terms of the trace and the norm of the strain rate tensor. We consider

here compressible models with general nonlinearities σ ∈ ∂F (D) where σ is the stress, D is the

strain rate and F is a convex viscoplastic potential. Under technical assumptions on F such

as subquadratic growth and superlinearity we prove the existence of solutions to the associated

variational problem. This is obtained in the viscous as well as in the inviscid cases. We establish

Euler-Lagrange characterizations of these solutions. No regularity is assumed on F , thus yield

stress rheologies are included. Numerical methods for viscoplastic laws have been classically used:

augmented Lagrangian or regularization methods. However these methods were designed merely

for Bingham or Herschel-Bulkley fluids, and moreover their cost is still too high for applications

to real configurations. Here we consider an iterative but explicit method in the sense that there

is no linear system to solve, inherited from the minimizing of total variation functionals used in

imaging (Chambolle, Pock 2011). It is applicable to any kind of nonlinearity, and includes a kind

of projection on some convex sets. We prove the convergence of the method discretized in space

with finite elements. Numerical tests confirm the theoretical results.
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Résumé

Cette thèse est motivée par un programme de recherche entre le LAMA (Mathématiques, Univ.

Gustave Eiffel) et l’Institut de Physique du Globe de Paris (Sciences de la terre) sur les milieux

granulaires et leur description mathématique.

Nous considérons ici une description continue: le matériau est décrit comme un fluide avec rhéologie

viscoplastique, qui permet de modéliser la transition entre les états statiques (solides) et mobiles

(liquides). Des modèles incompressibles ont été utilisés depuis l’introduction de la rhéologie µ(I)

(Jop et al. 2006). Néanmoins de tels modèles ne représentent pas correctement les écoulements

réels, même dans les expériences de laboratoire. Des études récentes indiquent que les variations

de volume, même si elles ne sont pas significativement grandes, jouent un rôle prépondérant dans

la dynamique. Des modèles compressibles ont alors été considérés récemment (Barker et al. 2017).

Bien que des rhéologies particulières telles que Bingham ou Herschel-Bulkley aient été souvent

considérées dans les études mathématiques telles que Malek et al. 2010, peu d’études concernent

des nonlinéarités générales en terme de la trace et de la norme du tenseur de taux de déformation.

Nous considérons ici des modèles compressibles avec nonlinéarité générale σ ∈ ∂F (D) où σ est le

tenseur des contraintes, D le taux de déformation, et F est un potentiel viscoplastique convexe.

Sous des hypothèses techniques sur F telles qu’une croissance sous-quadratique et une sur-linéarité,

nous prouvons l’existence de solutions au problème variationnel associé. Cela est obtenu dans le cas

visqueux aussi bien que dans le cas non visqueux. Nous établissons des caractérisations d’Euler-

Lagrange de ces solutions. Aucune régularité n’est supposée sur F , et donc les rhéologies avec seuil

de plasticité sont incluses. Des méthodes numériques pour les problèmes viscoplastiques ont été

classiquement considérées: lagrangien augmenté ou régularisation. Cependant ces méthodes ont été

mises au point essentiellement pour les fluides de Bingham ou d’Herschel-Bulkley, et de plus leur

coût est encore trop élevé pour les applications aux configurations réelles. Ici nous considérons une

méthode itérative mais explicite, dans le sens où il n’y a pas de système linéaire à résoudre, héritée

de la minimisation de functionnelles de type variation totale utilisée en imagerie (Chambolle, Pock

2011). Elle est applicable à n’importe quelle forme de nonlinéarité, et fait intervenir une sorte de

projection sur des ensembles convexes. Nous prouvons la convergence de la méthode discrétisée en

espace avec des éléments finis. Des tests numériques confirment les résultats théoriques.
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Chapter 1

Introduction

1.1 Physical origin

Constitutive rheological laws for granular materials

Classical Physics contain several very well-known equations called ”constitutive equations”:

Hooke’s law, Fick’s law, Ohm’s law... These laws do not illustrate directly fundamental laws of

nature, but rather a relation between two physical quantities, that should hold for any steady or

dynamical evolution. In fluid dynamics, a crucial constitutive relation characterizing a material is

called ”Rheology”. It means merely relations between stress and strain rate, and eventually other

quantities. The history of this issue traces back to the 17th century. Sir Isaac Newton observed

that each fluid has its own resistance to deformation at a given rate. It usually corresponds to

the informal conception of the ”thickness” of a fluid. For example, when pouring out a can of

honey and another one containing water, it can be observed that flow of water can easily deform

to a greater extent than the flow of honey does; thus one has tendency to conclude that Honey is

”thicker” than water. To debunk this misconception, the quantity ”viscosity” was created. Newton

claimed that under certain ideal conditions each fluid has its own constant viscosity, for example,

the statement ”honey has a higher viscosity than water” is considered to be more precise. Now, if

the fluid is examined under the assumption that its viscosity remains constant then it can be said

intuitively that the flow with the higher velocity is ”stronger”. Scientifically one concludes that with

higher strain rate (deformation over time), the fluids possesses higher stress tensor (internal forces

that neighbouring particles of a continuous material exert on each other). There are fluids such as

water, air, alcohol, glycerol, and thin motor oil, etc.. that have a linear stress-strain rate relation.

Such single-phase fluids made up of simple, small-weight molecules are called ”Newtonian fluids”.

Mathematically, the rheological relation can be formulated for Newtonian fluids as σ = ηDu, where

σ denotes the stress tensor and Du is the strain rate. However most fluids in the real world are

Non-Newtonian fluids. Roughly speaking this means that the fluid has a shear stress nonlinearly

proportional to the deformation of the media. A quite general constitutive equation can then be

formulated as σ = F̃ (Du) where F̃ is a nonlinear function.

Bingham fluid

Even in the world of Non-Newtonian fluids, there are certain classifications based on the non-

linearity of the stress - strain rate relation, such as: Fluids that exhibit a logarithmic increase

in shear stress with shear strain rate are called shear-thinning fluids or pseudo-plastic fluids (i.e.

blood, paint, ketchup). Meanwhile for other types of fluids which are called shear-thickening fluids

1
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Figure 1.1: Time independent stress - strain rate relation for different types of fluids

(or dilatants), the viscosity increases exponentially with the increase in strain rate (i.e. honey,

quicksand, oobleck, etc.). Various rheology types are sketched in Figure 1.1.

In 1913, [9, 8] a professor of the department of Chemistry at Lafayette College, named Eugene Cook

Bingham introduced the first mathematical form describing the motion of a fluid that behaves as a

rigid body at low stress but flows as a viscous fluid at high stress. This kind of Non-Newtonian fluid,

also called ”fluid by threshold”, is named after him Bingham fluid, and constitutes a very important

class of Non-Newtonian fluids. The study of Bingham materials is a crucial branch exhibiting the

fundamental character of viscoplasticity. That is the reason why the simulation of Bingham fluids

is always necessary and plays a key role in fully understanding the viscoplastic material; however,

the work of modeling all the properties of viscoplastic media can not rely solely on the study of

the Bingham model. Besides, modeling and simulating all the properties of viscoplastic media

seems to be an impossible task. In general, besides the Non-Newtonian behaviour, this thesis will

focus on the fact that viscoplastic fluids are also characterized by irreversible deformations inducing

dissipation.

Why studying viscoplastic materials is important?

Viscoplastic media are present in our real life much more frequently than it is thought. An

impressive example which proves that people cope with viscoplastic fluids everyday without even

being aware of: Every morning, say you want to get some toothpaste out of the tube; when placed

merely upside down, the paste will not come out even under the sole influence of the gravity or

when squeezed with insufficient force. At this point, the toothpaste is considered to have an infi-

nite viscosity and acts as a solid body. On the other hand, when the force is exerted beyond the

certain threshold, the toothpaste will become runnier and will behave more ”liquidy”. There are

numerous examples of viscoplastic media, namely butter, foams, pastes, slurries, oils, ceramics, etc.

The study upon viscoplastic fluid has a vast number of applications in: the prediction of the plastic

2



Figure 1.2: Snow avalanche, pyroclast are also considered as viscoplastic media (Source: Internet)

collapse of structures, dynamic systems exposed to high strain rates, crash simulations, etc. We

also can find their application in the petroleum industry: mitigation of paraffin wax, cements or

drilling mud from crude oil. Moreover, a large variety of products in food industry (milk products,

jam, chocolate confections, etc.) exhibit the fundamental characteristics of viscoplasticity. Their

applications are also found in the study of environmental disasters (as in Figure 1.2): avalanche,

ejection of volcanic magma, mudslides, and so forth.

This thesis is indeed motivated by the application to granular materials that are involved in the

modeling of landslides. Their description by appropriate viscoplastic models is the subject of a

research program between the Laboratoire d’Analyse et de Mathématiques Appliquées (Université

Gustave Eiffel) and the Institut de Physique du Globe de Paris. A first relevant rheology for gran-

ular materials has been proposed by [37], the so called µ(I) rheology. This model does however not

well represent real granular flows, even in experimental laboratory context. Additionally it has been

proved by [3] that this model is strongly ill-posed. In numerical computations it can show shear

band instabilities that are stronger and stronger when refining the mesh. The original µ(I) law

being an incompressible model, it has been then recently shown [4] that considering compressible

models could be a way to bypass the ill-posedness. Moreover volume variations, that do not exceed

10% in dry materials, are suspected to play nevertheless a key role in the dynamics. Moreover

in the presence of an interstitial fluid like water (wet flows), volume and pore pressure variations

are ubiquitous and their mathematical description are absolutely necessary. This is what is called

“dilatancy”, and a relevant law has been proposed in [51], that describes how the rheology should

involve the divergence of the velocity field. Hence it is necessary to build models and develop

simulations tools for viscoplastic compressible models with variable volume fraction. These models

must include a yield stress to simulate the static and flowing parts of the material.

Progress in the mathematical study and numerical simulation of viscoplastic media

The rigorous analysis of viscoplastic models is at the moment mostly restricted to Bingham’s

law or direct generalizations. Over the past 40 years most studies assumed rheological models with

a threshold of the stress tensor of Bingham or Herchel-Buckley type [34], where the viscosity follows

3



a power law, and depends only on the norm of the strain rate. Mathematical studies of compressible

viscoplastic models can be found in [44, 52, 32, 45]. But most viscoplastic fluids are not like this, a

dependency in the trace of the strain rate is important to include so called dilatancy effects, which

are not present in most studies that consider incompressible models. The subject of this thesis is

to discuss more complex models with nonlinearity that can include dilatancy effects. In particular

the pure plastic models are part of it: Cam-Clay model, Drucker dilatant model or degenerate

Bingham model. There is a theoretical issue in particular concerning the existence of solutions to

these models and their characterization.

Numerically simulating viscoplastic flows is not straightforward. The difficulty is due to the

presence of unknown interfaces separating the yielded and the unyielded regions, which are difficult

to track. The problem can be written as a set of nonlinear variational inequalities. The case where

it is well studied case is the Bingham case with viscosity [25, 29]. The most well-known method is

the regularization method [57], but the augmented lagrangian method is also very much used [50].

These methods have not been extended to general nonlinear laws, and moreover the case without

viscosity has not been much considered except [14].

1.2 Mathematical description of viscoplastic materials

1.2.1 Conservation of mass

Consider Ω ⊂ RN where N = 1, 2, 3 an open, bounded domain occupied by the medium. The

conservation of mass expresses that the rate of increase of mass equals to the mass influx through

the boundary of a control volume. Writing this law upon the control volume V ⊂ Ω which is an

arbitrary open, regular subdomain, this gives

d

dt

(∫
V
ρ(t, x) dx

)
= −

∫
∂V
ρ(t, x)u(t, x) · n(x) ds,

where n is the outward unit normal vector. The sign of the normal component of the velocity

determines whether the fluid flows goes in or out of the control volume. Applying the Stokes

formula this yields the concise form∫
V

(
∂ρ

∂t
+ div(ρu)

)
dx = 0.

Since this relation can be applied for all arbitrary neighborhood of a point x ∈ Ω and for any

t ∈ (0, T ), we obtain the local form of the conservation of mass in the differential form (known as

the continuity equation)

∂ρ

∂t
+ div(ρu) = 0 in (0, T )× Ω , (1.2.1)

where ρ = ρ(t, x) is the density of the flow, and u = u(t, x) = (ui(t, x))1≤i≤N is the velocity vector

field at point x and time t.

1.2.2 Conservation of momentum

The second relation is based on one of the most well-known law in physics: Newton’s third law:

the rate of increase of momentum equals to the net influx of momentum plus the exerted force. By

4



recalling the unit momentum per volume as ρu, we have the momentum in any control volume V
would be

∫
V
ρudx.

The net inflow momentum can be written according to Stokes’ formula

−
∫
∂V
ρu(u · n) ds =

∫
V

div(ρu⊗ u) dx .

The forces exerted upon the control volume V can be classified in two types of forces

• External force, in particular the total body force due to gravity. It can be formulated as∫
V
ρ g,

where g is the gravity vector that has constant magnitude.

• Internal force, caused by the deformation of the fluid, that can be written as∫
∂V
σtot n(x) ds,

where σtot(t, x) is the symmetric tensor of total stress.

Finally we obtain the following formula which expresses the conservation of momentum∫
V

(
∂(ρu)

∂t
+ div(ρu⊗ u)− div σtot

)
dx =

∫
V
ρ g dx .

The local form of the conservation of momentum is therefore

∂(ρu)

∂t
+ div(ρu⊗ u)− div σtot = ρ g in (0, T )× Ω. (1.2.2)

We shall assume from now on that the total stress can be decomposed as the sum of a compressible

pressure law and a material dependent stress:

σtot = −pth(ρ) Id +σ. (1.2.3)

1.2.3 Constitutive rheological law

The aim of this subsection is to discuss the heart of our subject: the law for σ. Let us start by

some familiar notions in matrix theory. The trace of a matrix is defined as

Tr(σ) :=
N∑
i=1

σii.

Let us denote by Id := (δij)1≤i,j≤N the identity matrix, where δij is the Kronecker symbol. Then

we can always decompose a (symmetric) tensor σ as

σ =
1

N
Tr(σ) Id +σ′, (1.2.4)

where σ′ (the “deviatoric” part of σ) satisfies Tr(σ′) = 0. We then introduce the pressure p by

p = − 1

N
Tr(σ). (1.2.5)

5



Combining (1.2.4) and (1.2.5) we get

σ = −p Id +σ′, Tr(σ′) = 0. (1.2.6)

Let us remark that there is a general difficulty in defining the notion of pressure in fluids mechanics.

It is surprising that such a classical notion remains not fully clear. Yet there is no concrete argument

for formulating the pressure p as (1.2.5). One may wonder: Why do we have to decompose the

diagonal part of the stress tensor? At least we can remark that if we define the inner product in

the space of the tensors as

σ : τ =

N∑
i,j=1

σijτij ,

then it follows that the decomposition (1.2.4) is orthogonal. The associated Fröbenius norm

|σ| = (σ : σ)1/2 has the property to be a physical invariant: it can be computed with the same

formula in any orthonormal basis.

The constitutive law expresses the relationship between the stress tensor σ and the strain rate

tensor

Du =
∇u+ (∇u)t

2
. (1.2.7)

Let us denote by Ms
N×N (R) the space of real symmetric matrices of size N × N . Suppose that

F : Ms
N×N (R) → R is convex, lower semi-continuous, and proper, where R := R ∪ {+∞}. Let us

recall that F is called proper if it is not identically +∞ i.e. there exists at least one D such that

F (D) < +∞. We are going to consider rheologies of viscoplastic type defined by a relation

σ ∈ ∂F (Du), (1.2.8)

where ∂F denotes the subdifferential, which is defined below. Knowing the monotonicity of the

subdifferential of a convex function, (1.2.8) characterizes the monotonicity of the stress-strain rate

relation. As we shall see this is an important property that ensures the existence of a variational

formulation for the momentum evolution (1.2.2) (at least without inertial terms).

Since the above assumptions on F will be repeated many times, let us name them as

Hypothesis 1. F : Ms
N×N (R)→ R is a convex, proper and lower semi-continuous function.

Due to the lack of regularity for F , the notion sub-gradient/subdifferential ∂F which generalizes

the classical gradient/differential, plays a crucial role. We denote by dom(F ) the set of Ds that

satisfy F (D) <∞.

Definition 1.2.1 (Subgradient). Suppose that F satisfies Hypothesis 1. A symmetric tensor σ is

called a subgradient of F at D if

F (D) ≥ F (D) + σ : (D −D), ∀D ∈Ms
N×N (R).

Definition 1.2.2 (Subdifferential). Suppose that F satisfies Hypothesis 1. The subdifferential

∂F (D) of F at D is the set of all subgradients:

∂F (D) =
{
σ ∈Ms

N×N (R) | F (D) ≥ F (D) + σ : (D −D) ∀D ∈Ms
N×N (R)

}
.
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Taking into account this definition in the constitutive relation (1.2.8), we see that we obtain a

set of inequalities, a so called variational formulation (here in a local setting, i.e. not integrated in

space).

Let us introduce some well-known viscoplastic models that enter the considered class, i.e. they

can be written as (1.2.8).

Examples

• Bingham model

It takes the form (1.2.8) with

F (D) = η
|D|2

2
+ σ0|D| ∀D ∈Ms

N×N (R), (1.2.9)

where η := η(ρ) > 0 represents the viscosity of the fluid, and σ0 := σ0(ρ) > 0 is the yield

stress. In other words the relation between σ and D isσ =
(
η + σ0

|D|

)
D if D 6= 0,

|σ| ≤ σ0 if D = 0.
(1.2.10)

Thus the material is solid (D = 0) for |σ| ≤ σ0, and liquid (D 6= 0) for |σ| > σ0. The case

without viscosity η = 0 is special: σ depends only on the direction of D, not on its magnitude.

In this case it is a pure plastic model.

• Herschel-Bulkley model

In this model F is taken as

F (D) =
η

1 + d
|D|1+d + σ0|D|,

where η > 0, d > 0. Taking the subdifferential of F gives{
σ = (η|D|d−1 + σ0|D|−1)D if D 6= 0,

|σ| ≤ σ0 if D = 0.

Again σ0 is the yield stress, η is the consistency parameter, d > 0 is the flow index. Roughly

speaking, for d < 1 the fluid exhibits shear-thinning properties whereas for d > 1 it is shear-

thickening. The case d = 1 corresponds to the Bingham model.

• Newtonian model

The simplest case in the Herschel-Bulkley model is to take n = 1 and σ0 = 0, i.e. F (D) =

η|D|2/2. The model then reduces to the well-known Newtonian model σ = ηD (Navier-Stokes

equations).

The previous models are rather simple: F depends only on |D|. There exist more elaborate models

which are relevant for granular media: Cam-Clay model, Drucker-dilatant model, degenerate Bing-

ham model. These will be discussed in Chapter 2. In general, the frame invariance principle says

that F should depend only the quantities Tr(Dk) for k = 1, . . . , N . If N = 2 this means that F can

depend on Tr(D) and |D|, or equivalently on Tr(D) and |D′| where D′ is the deviatoric part of D

because |D|2 = (Tr(D))2

N + |D′|2. If N = 3 there is an additional possible dependency in detD.
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ΓDΓD

ΓN

Ω

Figure 1.3: A domain with several boundary parts

For mechanically relevant models a difficulty is that the rheology is often formulated in different

variables. Indeed decomposing σ and D by their trace and deviatoric parts

σ = −p Id +σ′, D =
Tr(D)

N
Id +D′, (1.2.11)

the relation between σ and D when F depends only on Tr(D) and |D′| can be written as σ′ and D′

are colinear with same direction and (in the univalued part of ∂F )

p = f1(Tr(D), |D′|), |σ′| = f2(Tr(D), |D′|), (1.2.12)

with f1, f2 two scalar functions. The mechanical description of rheology is more often written as

|σ′| = g1(p, |D′|), Tr(D) = g2(p, |D′|), (1.2.13)

with g1, g2 two scalar functions that represent respectively the internal friction law and the dilatancy

law. It is not so easy to pass from (1.2.13) to (1.2.12).

1.2.4 Initial and boundary conditions

The problem (1.2.1), (1.2.2) is completed by initial conditions on the density and the velocity field,

ρ(t = 0, x) = ρ0(x), x ∈ Ω,

u(t = 0, x) = u0(x), x ∈ Ω. (1.2.14)

One has also to set conditions on the boundary of Ω. There are several boundary conditions that

are physically relevant: Dirichlet, Neumann, periodic, slip, friction conditions. To give an example,

let us consider that the boundary is decomposed as several parts and impose a different condition

on each of them, see Figure 1.3. It can be

Dirichlet u = 0 in (0, T )× ΓD,

Neumann σn = 0 in (0, T )× ΓN , (1.2.15)

slip u · n = 0 and (σn)× n = 0 in (0, T )× ΓS ,

where ∂Ω = ΓD ∪ ΓN ∪ ΓS . For applications to granular flows it is useful to have a moving free

boundary. In this thesis we shall not consider this case.
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1.2.5 Incompressible and compressible models

One states that “The compressibility (change in volume due to change in pressure) of a liquid is

inversely proportional to its volumic modulus of elasticity, also known as the bulk modulus”. In

simple terms, the compressibility of the fluid is related to the variation of its density ρ. When the

density is constant, the continuity equation (1.2.1) reduces to

div u = 0. (1.2.16)

Imposing this condition, the strain rate D = Du is no longer an arbitrary symmetric matrix, but it

has vanishing trace: Tr(D) = 0. Therefore in this case the constitutive relation (1.2.8) needs to be

understood with the subdifferential holding in the vector space of symmetric trace free matrices.

It follows that the pressure p is not determined by the constitutive relation. Instead it appears as

a Lagrange multiplier for the constraint (1.2.16). Thus the incompressible formulation is slightly

different from the compressible formulation described above. In this thesis we consider only the

compressible formulation.

1.2.6 Problem statement and state of the art

Combining (1.2.1), (1.2.2), (1.2.3), (1.2.8), (1.2.14), (1.2.15), our viscoplastic problem writes:

Find (ρ, u) satisfying

∂ρ

∂t
+ div(ρu) = 0 in (0, T )× Ω,

∂(ρu)

∂t
+ div(ρu⊗ u) +∇pth(ρ)− div σ = ρg in (0, T )× Ω,

σ ∈ ∂F (Du) in (0, T )× Ω,

u = 0 in (0, T )× ΓD,

σn = 0 in (0, T )× ΓN ,

u · n = 0 and (σn)× n = 0 in (0, T )× ΓS ,

ρ(t = 0, x) = ρ0(x), u(t = 0, x) = u0(x), x ∈ Ω.

(1.2.17)

where F satisfies Hypothesis 1. To simplify we can consider that pth(ρ) = κργ where γ > 1, a

classical behaviour in gas dynamics. Physically relevant values for gases are γ =
5

3
or

7

5
.

The previous system of equations is classical in fluid mechanics, except the rheological behaviour.

In the case of a Newtonian material σ = ηDu, this is the compressible Euler system of gas dynamics.

Existence of solutions to this system in the Newtonian case is now known in arbitrary dimension

for γ not too small. However this is still mostly an open problem for non Newtonian rheologies,

see however [27, 45], and [5] for the 1d case. Notice that the existence for the 2d incompressible

inviscid Bingham including inertial terms has been established in [39], see also [23].

1.3 Numerical scheme and time algorithm

In order to solve numerically the problem (1.2.17), we use the standard time splitting algorithm.

Let Nt be a positive integer. We consider a constant timestep ∆t > 0 and define the discrete times

by

tn = n∆t, n ∈ {0, 1, . . . , Nt}.
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We denote by un the approximation of the velocity field u at time tn, i.e. un ≈ u(tn), and similarly

for the density ρn ≈ ρ(tn). We use a similar notation for the stress tensor σn ≈ σ(tn) or other

useful quantities. We shall also need quantities un+ 1
2 , ρn+ 1

2 that are intermediate between n and

n+ 1.

In order to update the values ρn and un we proceed as follows. Suppose that ρn, un are known. As

a first step we apply the finite volume method (FVM) to solve the compressible Euler system, and

get un+ 1
2 , ρn+ 1

2 . In other words we have a finite volume discretization of
ρn+ 1

2 − ρn

∆t
+ div(ρnun) = 0,

ρn+ 1
2un+ 1

2 − ρnun

∆t
+ div(ρnun ⊗ un + pnth Id) = 0.

(1.3.1)

In the second step we obtain un+1, ρn+1 by using the finite element method (FEM) to solve
ρn+1 − ρn+ 1

2

∆t
= 0,

ρn+1un+1 − ρn+ 1
2un+ 1

2

∆t
− div σn+1 = fn+ 1

2 , σn+1 ∈ ∂F (Dun+1),

(1.3.2)

with fn+1/2 = ρn+1/2g. Since the first equation gives trivially ρn+1 = ρn+1/2, only the second

equation comes into play, it is a viscoplastic problem with a space dependent weight (the density).

We also need boundary conditions for each of the systems (1.3.2) and (1.3.1). We will discuss this

in more detail in Chapter 5.

1.4 The viscoplastic problem

In the previous subsection we have seen that the time splitting algorithm leads to the viscoplastic

problem (1.3.2). When the weight ρn+1/2 is constant (= 1) this can be written as a steady problem

αu− div σ = f, σ ∈ ∂F (Du), (1.4.1)

with α = 1/∆t and f = fn+1/2 + un+1/2

∆t . This viscoplastic problem can be formally obtained by

minimizing the functional

J(v) = α

∫
Ω

|v|2

2
+

∫
Ω
F (Dv)−

∫
Ω
f · v. (1.4.2)

This minimization can be proved to be equivalent to the variational formulation

α

∫
Ω
u · (v − u) +

∫
Ω
F (Dv) ≥

∫
Ω
F (Du) +

∫
Ω
f · (v − u), for all functions v. (1.4.3)

This problem has been studied a lot [25, 57, 58], but usually only the Bingham model with positive

viscosity is considered, or eventually the Herschel-Bulkley model. The case of inviscid Bingham has

been considered in [14], where the time dependent case is also treated. In this thesis we consider a

quite general F , with or without viscosity. Numerical methods to solve (1.4.1) are numerous, and

we refer to Chapter 2 for the description of classical ones.
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1.5 Space discretisation

As mentioned above the general scheme uses a splitting algorithm in order to solve two simpler

problems, one by the FVM and the other by the FEM. We use the approach of [12, 13] that deals

with a nonlinear hyperbolic scalar conservation law regularised by the total variation flow operator.

Here we consider a compressible fluid model together with viscoplastic rheology.

First we have to recall the space discretisation used in those articles, that allows us to create two

dual meshes, one for the FVM and the other for the FEM.

The finite element mesh, denoted by Th, is a conforming mesh of the open, bounded domain

Ω ⊂ RN of size h: Th is a finite set of disjoint open simplices such that ∪K∈ThK = Ω, and h is

the maximum value of the diameter of all K ∈ Th. The mesh is conforming in the sense that for

two distinct elements K,L of Th, K ∩ L is either empty or a simplex included in an affine subset

with dimension strictly lower than N , whose vertices are simultaneously vertices of K and L. The

finite set of the vertices of the mesh is denoted by {xi, i ∈ V }. Each element of Th is assumed to

be nonobtuse; which means that the angles between any two facets are less than or equal to π/2.

For any K ∈ Th, we denote by VK ⊂ V the set of the N + 1 indices of the vertices of K, and by EK
the set of the N + 1 faces of K.

The finite volume mesh, denoted by Dh, is a polyhedral mesh of Ω such that the interface

between two cells is a finite union of faces. The mesh Dh is a dual mesh of Th in the sense that

each cell of Dh contains one and only one node of Th. For any i ∈ V , the cell of Dh containing the

node xi is denoted by Qi. We assume that

∀i ∈ V,Qi ⊂
⋃

K∈Th,i∈VK

K. (1.5.1)

Besides, Ni is the set containing the indices of the neighbouring cells of Qi, Eh is the set of couples

(i, j) such that Qi and Qj are neighbours and i < j, Γi,j is the interface between two neighbour

cells Qi and Qj , ni,j is the unit normal vector to Γi,j pointing toward Qj .

The unknown function u(t, x) is reconstructed simultaneously from the values uh = (ui)i∈V at

the points xi for i ∈ V , using a continuous piecewise affine reconstruction denoted by ûh, and using

a piecewise constant reconstruction denoted by ūh. More explicitly, for all uh ∈ RV we have

ûh ∈ C(Ω), ûh |K is affine for each cell K ∈ Th, ûh(xi) = ui ∀i ∈ V,
ūh ∈ L1

loc(Ω), ūh(x) = ui ∀x ∈ Qi, i ∈ V.

Similarly, we use the same notation for ρ̂h, ρ̄h.

The numerical scheme approximating (1.2.17) is defined by

1 - Initialisation of u0
h ∈ RV , ρ0

h ∈ RV :

u0
i = uinit(xi) ∀i ∈ V,
ρ0
i = ρinit(xi) ∀i ∈ V.

2 - Finite volume step: Suppose that (unh, ρ
n
h) are known. We compute the numerical flux by a

first-order explicit formula

Fni,j = F (Uni , U
n
j ,ni,j) (1.5.2)

corresponding to each pair of neighbor cells Qi, Qj , where Ui = (ρi, ρiui). We assume that the

scheme is conservative, i.e. Fnj,i = −Fni,j . We impose the CFL condition (for Courant, Friedrichs,
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Levy [24]) on the timestep to prevent the blow up of the numerical values, under the form

∆tanij ≤ h, (1.5.3)

at each interface between two cells Qi, Qj , where aij is an approximation of the propagation speed,

that should be deduced from the choice of the numerical flux. We compute ρ
n+ 1

2
h , u

n+ 1
2

h by

U
n+ 1

2
i = Uni −

∆t

|Qi|
∑
j∈Ni

|Γi,j |Fni,j . (1.5.4)

3 - Finite element step: We set ρn+1
h = ρ

n+ 1
2

h . Then, define

Vh := {v̂h ∈ C(Ω) such that v̂h |K is affine for each cell K ∈ Th},
Λh := {σh ∈ L∞(Ω) such that σh |K is constant for each K ∈ Th}.

The values ρ
n+ 1

2
h , u

n+ 1
2

h being known, we look for (ûn+1
h , σn+1

h ) ∈ Vh × Λh such that

∫
Ω

ρ
n+1/2
h

ūn+1
h − ūn+ 1

2
h

∆t
· v̄h dx +

∫
Ω

σn+1
h : Dv̂h dx =

∫
Ω

f̄h · v̄h dx ∀v̂h ∈ Vh, (1.5.5)

σn+1
h ∈ ∂F (Dûn+1

h ) a.e. in Ω. (1.5.6)

1.6 Sketch of the results

Chapter 2 describes mathematical tools that are useful to study (1.4.1), and classical numerical

methods to solve this problem. A particular attention is given to the description of pure plastic

models. Then Chapter 3 concerns the rigorous analysis of the theoretical problem (1.4.1). Under

technical assumptions on F such as subquadratic growth and superlinearity we prove the existence

of solutions to the associated variational problem (1.4.3). This is obtained in the viscous as well

as in the inviscid cases. We establish Euler-Lagrange characterizations of these solutions, i.e. the

equivalence with the local formulation (1.4.1). No regularity is assumed on F , thus yield stress

rheologies are included. Then Chapter 4 introduces an iterative but explicit method in the sense

that there is no linear system to solve, inherited from the minimizing of total variation functionals

used in imaging [20]. It is applicable to any type of nonlinearity, and includes a kind of projection

on some convex sets, that already appears in the augmented Lagrangian method or in the time

regularized approach of [22]. We prove the convergence of the method discretized in space with

finite elements. Numerical tests performed in Chapter 5 confirm the theoretical results. Finally

Chapter 6 is a work on a lubrication equation for a simplified model of shear-thinning fluid, that has

been performed at the CEMRACS 2019 in collaboration with Khawla Msheik, Meissa M2̆019Baye

and François James.
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Chapter 2

Convex analysis and approximation

methods for nonlinear viscoplastic

models

In this section we consider the steady viscoplastic model
σ ∈ ∂F (Du),

αu− div σ = f in Ω,

u = 0 on Γ,

(2.0.1)

where α is a positive constant, F satisfies Hypothesis 1 and f is a given source. We are going to

introduce briefly the state-of-the-art concerning the numerical resolution of (2.0.1), and introduce

useful tools of convex analysis.

There are various methods concerning the numerical simulation of viscoplastic flows, in par-

ticular for the Bingham fluid when F (D) = |D|. These results have been the subject of intense

investigations from the early 1970 up to now. There are mainly two historical methods to ap-

proximate viscoplastic models. The first is based on the regularization procedure, and the second

is based on the use of duality formulations, as the augmented Lagrangian algorithm. Due to the

impossibility to present all the methods, we shall introduce here two methods within the two above

classes. Another class of methods have been formulated recently. These methods are based on the

idea to formulate the stress condition in (2.0.1) via a fixed point involving a projection. This is done

in [54, 22]. The history of the development of this kind of method is depicted in [55]. In Chapter

4 we shall introduce a more particular projection method that is inherited from image processing

[20], that is able to deal with general nonlinearities F .

2.1 Preliminaries

Throughout the next chapters we shall often use some basic results of convex analysis and opti-

mization. This section is dedicated to remind and list several classical results. One can easily find

them in [47, 49].

We consider a Hilbert space H, that will be taken later on as either H = Ms
N×N (R) the space

of symmetric square matrices of size N , or an infinite dimensional functional space. The scalar

product of two elements D,σ ∈ H will be denoted by D : σ.
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Definition 2.1.1 (Legendre - Fenchel transform). For F : H → R proper, we can define F ∗ : H →
R, the conjugate function of F , by

F ∗(σ) = sup
D∈H

(σ : D − F (D)), σ ∈ H, (2.1.1)

where we denote R = R ∪ {+∞}.

Here the property of F to be proper means that the domain of F , i.e. the set where F has a

finite value, is not empty. In other words, F is proper if and only if F is not identically +∞.

Proposition 2.1.2. Suppose that F is convex, proper and lower semi-continuous (l.s.c.). Then F ∗

is convex, proper and l.s.c. Moreover F ∗∗ = F .

We recall the definition of the subdifferential ∂F of the function F , for any D ∈ H,

∂F (D) =
{
σ ∈ H | F (D) ≥ F (D) + σ : (D −D), ∀D ∈ H

}
. (2.1.2)

Lemma 2.1.3. Let be F a proper, convex, l.s.c. function. Then

(a) If ∂F (D) is nonempty then F (D) <∞.

(b) For D,σ ∈ H,

σ ∈ ∂F (D)⇐⇒ D ∈ ∂F ∗(σ), (2.1.3)

and when this holds one has F (D) <∞ and F ∗(σ) <∞.

(c) σ ∈ ∂F (D) if and only if the sup in the definition of F ∗∗(D) = F (D) is attained at σ.

(d) For D,σ ∈ H, one has the Fenchel-Young inequality [49]

σ : D ≤ F (D) + F ∗(σ). (2.1.4)

Moreover, equality holds if and only if σ ∈ ∂F (D).

(e) For σ1 ∈ ∂F (D1), σ2 ∈ ∂F (D2), we have

(σ1 − σ2) : (D1 −D2) ≥ 0. (2.1.5)

(f) inf F = −F ∗(0) and inf F ∗ = −F (0).

Proof. (a) If ∂F (D) is nonempty, there exists some σ ∈ ∂F (D). Then by definition of the subdif-

ferential,

F (D) ≥ F (D) + σ : (D −D), ∀D ∈ H. (2.1.6)

Since F is proper there is at least one D such that F (D) is finite. Hence the previous inequality

yields that F (D) <∞.

(b) Assume that σ ∈ ∂F (D). Then the inequality (2.1.6) holds. According to the definition of F ∗,

we have

F ∗(σ) ≥ D : σ − F (D), ∀σ ∈ H. (2.1.7)

Using (2.1.6) we deduce that

F ∗(σ) ≥ D : σ − F (D) + σ : (D −D), ∀σ ∈ H, ∀D ∈ H. (2.1.8)

Then using the definition of F ∗(σ) we obtain

F ∗(σ) ≥ F ∗(σ) +D : (σ − σ), ∀σ ∈ H, (2.1.9)
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which means that D ∈ ∂F ∗(σ). The converse follows from the fact that F ∗∗ = F . Finally the

properties F (D) <∞ and F ∗(σ) <∞ follow from (a).

(c) The definition of F ∗∗(D) is

F ∗∗(D) = sup
σ∈H

(σ : D − F ∗(σ)).

To say that the sup is attained at σ means that

σ : D − F ∗(σ) ≤ σ : D − F ∗(σ), ∀σ ∈ H.

Comparing to (2.1.2) this means exactly that D ∈ ∂F ∗(σ), or by (b) that σ ∈ ∂F (D).

(d) According to the definition (2.1.1) of F ∗, for a given σ one has F ∗(σ) ≥ σ : D−F (D) for all D,

and the inequality (2.1.4) follows. Equality means that D 7→ σ : D − F (D) attains its maximum

at D, which by (c) (reverting the role of F and F ∗) is equivalent to D ∈ ∂F ∗(σ), which gives the

claim with the property (b).

(e) When σ1 ∈ ∂F (D1) and σ2 ∈ ∂F (D2), we have

F (D) ≥ F (D1) + σ1 : (D −D1), ∀D ∈ H,
F (D) ≥ F (D2) + σ2 : (D −D2), ∀D ∈ H.

(2.1.10)

Taking D = D2 in the first inequality and D = D1 in the second one, we get

F (D2) ≥ F (D1) + σ1 : (D2 −D1),

F (D1) ≥ F (D2) + σ2 : (D1 −D2).
(2.1.11)

Since ∂F (D1) and ∂F (D2) are nonempty, we have F (D1) < ∞, F (D2) < ∞. Comparing the two

inequalities of (2.1.11) we conclude that 0 ≥ σ1 : (D2 −D1) + σ2 : (D1 −D2), which is the claim.

(f) The definition (2.1.1) of F ∗ gives F ∗(0) = sup(−F ) = − inf F , and reversing the role of F and

F ∗ we get the result.

Proposition 2.1.4 (Moreau envelope and proximal operator). Let F : H → R a convex, proper,

l.s.c. function. Then for any ε > 0 and D ∈ H we can define the Moreau envelope of F as

Fε(D) := inf
D∈H

{
F (D) +

|D −D|2

2ε

}
. (2.1.12)

Then Fε is finite everywhere, and

(a) The infimum is attained at the unique point D̂ = proxε F (D),

proxε F (D) = argmin
D∈H

{
F (D) +

|D −D|2

2ε

}
. (2.1.13)

Moreover D̂ is characterized by

D̂ + ε∂F (D̂) 3 D. (2.1.14)

We shall write then

D̂ = (Id +ε∂F )−1 (D). (2.1.15)

(b) The following Moreau identity holds for all r > 0 and σ ∈ H,

(Id +r∂F ∗)−1(σ) + r

(
Id +

∂F

r

)−1 (σ
r

)
= σ. (2.1.16)
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(c) The proximity operator D 7→ proxε F (D) is 1-Lipschitz continuous.

(d) The Moreau envelope Fε is locally Lipschitz continuous.

(e) The Moreau envelope Fε is continuously differentiable with a 1/ε - Lipschitz gradient given for

D ∈ H by

F ′ε(D) =
D − proxε F (D)

ε
∈ ∂F (proxε F (D)). (2.1.17)

(f) The Moreau envelope Fε is convex, and Fε(D) ↑ F (D) pointwise as ε→ 0.

Proof. (a) The proof is classical and can be found in [47, 49].

(b) Denote D̂ = (Id +ε∂F )−1 (D). We have

D − D̂
ε

∈ ∂F (D̂)⇐⇒ D̂ ∈ ∂F ∗
(
D − D̂
ε

)
⇐⇒ D

ε
∈ 1

ε
∂F ∗

(
D − D̂
ε

)
+
D − D̂
ε

.

It follows that

D

ε
∈
(

Id +
∂F ∗

ε

)(
D − D̂
ε

)
⇐⇒ D − D̂

ε
=

(
Id +

∂F ∗

ε

)−1(D
ε

)
.

We deduce that

D = ε

(
Id +

∂F ∗

ε

)−1(D
ε

)
+ D̂ = (Id +ε∂F )−1(D) + ε

(
Id +

∂F ∗

ε

)−1(D
ε

)
.

Setting r = 1/ε, D = εσ, we obtain (2.1.16).

(c) Denote D̂1 = proxε F (D1) and D̂2 = proxε F (D2). Then from (2.1.14) one has

D1 − D̂1

ε
∈ ∂F (D̂1),

D2 − D̂2

ε
∈ ∂F (D̂2).

Using the monotonicity of the subdifferential (2.1.5), one has

(D1 −D2 − D̂1 + D̂2) : (D̂1 − D̂2) ≥ 0,

(D1 −D2) : (D̂1 − D̂2) ≥ |D̂1 − D̂2|2,

|D1 −D2||D̂1 − D̂2| ≥ |D̂1 − D̂2|2,

|D1 −D2| ≥ |D̂1 − D̂2|. (2.1.18)

Thus

|D1 −D2| ≥ |proxε F (D̂1)− proxε F (D̂2)|, (2.1.19)

which proves the claim.

(d) Inserting D2 = 0, D1 = D into (2.1.19) gives

|D| ≥ |proxε F (D)− proxε F (0)| ≥ | proxε F (D)| − | proxε F (0)|,
|D|+ | proxε F (0)| ≥ | proxε F (D)|.

Since proxε F (0) = argmin
D

{
F (D) +

|D|2

2ε

}
= Cε, we get |proxε F (D)| ≤ CR,ε where |D| ≤ R.

Thus proxε F (D) is bounded when D is bounded. Next, considering D̂1 = proxε F (D1) and D̂2 =
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proxε F (D2), one has

Fε(D1) ≤ F (D̂2) +
1

2ε
|D̂2 −D1|2

= Fε(D2) +
1

2ε
(|D̂2 −D1|2 − |D̂2 −D2|2)

= Fε(D2) +
1

2ε
(D1 +D2 − 2D̂2) : (D1 −D2).

Therefore

Fε(D1)− Fε(D2) ≤ 1

2ε
(D1 +D2 − 2D̂2) : (D1 −D2) ≤ C̃R,ε|D1 −D2|,

when D1, D2 are in the ball BR of center 0 and radius R. Similarly, one has

Fε(D2)− Fε(D1) ≤ C̃R,ε|D1 −D2|,

thus for D1, D2 ∈ BR, one has |Fε(D1) − Fε(D2)| ≤ C̃R,ε|D1 −D2|. This proves that Fε is locally

Lipschitz continuous.

(e) We want to prove that Fε is differentiable. We consider as above D1, D2 ∈ H. Setting

Mε =
D1 +D2 − 2D̂1

2ε
,

one has

Fε(D2)− Fε(D1) ≤ 1

2ε
(D1 +D2 − 2D̂1) : (D2 −D1) = (D2 −D1) : Mε.

Defining L(D) =
D − proxε F (D)

ε
=
D − D̂
ε

, one has

Fε(D2)− Fε(D1)− L(D1) : (D2 −D1) ≤ (Mε − L(D1)) : (D2 −D1) =
|D2 −D1|2

2ε
. (2.1.20)

Using (2.1.19) we estimate (
L(D2)− L(D1)

)
: (D1 −D2)

=
1

ε

(
D2 − D̂2 −D1 + D̂1

)
: (D1 −D2)

=− 1

ε
|D1 −D2|2 +

1

ε
(D̂1 − D̂2) : (D1 −D2)

≤0. (2.1.21)

Reversing the role of D1 and D2 in (2.1.20) and using the previous inequality yields

Fε(D1)− Fε(D2)− L(D1) : (D1 −D2) ≤ |D2 −D1|2

2ε
.

Hence ∣∣∣Fε(D2)− Fε(D1)− L(D1) : (D2 −D1)
∣∣∣ ≤ |D2 −D1|2

2ε
. (2.1.22)

We deduce that Fε is differentiable and F ′ε(D) = L(D) =
D − proxε F (D)

ε
. Using (2.1.18) we write

(D1 −D2 − D̂1 + D̂2) : (D̂1 − D̂2 −D1 +D2) ≥ (D1 −D2 − D̂1 + D̂2) : (D2 −D1),
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thus

|D1 −D2 − D̂1 + D̂2|2 ≤ (D1 −D2 − D̂1 + D̂2) : (D2 −D2),

which implies that

|D1 −D2 − D̂1 + D̂2| ≤ |D1 −D2|. (2.1.23)

This proves that Id−proxε F is 1-Lipschitz continuous. Therefore F ′ε is 1/ε-Lipschitz continuous.

(f) The inequality (2.1.21) implies that (F ′ε(D2) − F ′ε(D1)) : (D2 − D1) ≥ 0, which gives that Fε
is convex. Then, the definition (2.1.12) gives directly that Fε increases as ε decreases. Taking

D = D we have also obviously that Fε(D) ≤ F (D). Then, for a fixed D, since F is l.s.c., for

any λ < F (D) there is a ball B(D, r) around D in which F ≥ λ. Then for D ∈ B(D, r) one has

F (D) + |D − D|2/2ε ≥ λ. But F is lower bounded by a linear function, F (D) ≥ A + σ0 : D for

some real number A and σ0 ∈ H. Thus for D 6∈ B(D, r),

F (D) + |D −D|2/2ε
≥|D −D|2/2ε+A+ σ0 : D − |σ0||D −D|
≥|D −D|2/4ε+A+ σ0 : D − ε|σ0|2

≥r2/4ε+A+ σ0 : D − ε|σ0|2.

Thus for ε small enough this will be larger than λ, and it follows that Fε(D) ≥ λ, which finishes

the proof that Fε(D) tends to F (D) as ε tends to 0.

Remark: Any convex, proper and lower semi-continuous F is lower bounded by an affine function.

It follows from Proposition 2.1.4(a): by taking arbitrary D ∈ H and ε > 0 we get some D̂ ∈ H
satisfying (2.1.14), which implies that ∂F (D̂) 6= ∅. Thus there is some σ ∈ ∂F (D̂), and the definition

(2.1.2) of ∂F (D̂) ensures that F is lower bounded by the affine function D 7→ F (D̂) + σ : (D− D̂).

Remark: Since F is convex, proper and lower semi-continuous, it follows that F is continuous on

the interior of its domain [49].

2.2 The regularization approach

One of the intriguing obstacles in the modelling of viscoplastic media is the presence of unknown

interfaces separating the yielded and the un-yielded regions, that are difficult to track. In (2.0.1)

they correspond to locations where the stress σ ∈ ∂F (Du) switches from a place where F is

differentiable to one that is not. To avoid the associated numerical difficulties, the regularization

method replaces the nonlinearity F by a smooth one, with a small approximation parameter ε. Then

the material behaves as a fluid in the entire computational domain, and we have a differentiable,

convex, proper, l.s.c .function Fε. Note that here Fε can be any function that approximates F . It

can be the Moreau envelope of F defined by (2.1.12), or any other approximation. The approximate

system is then {
αu− divF ′ε(Du) = f in Ω,

u = 0 on Γ.

This system can be solved by an iterative method with linearization, which is possible since Fε is

smooth. The classical theory of monotone operators is developed in [16, 58, 25]. The solution to
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the former problem can be formulated via a minimization problem as

inf
u∈H

∫
Ω

(
α
|u|2

2
+ F (Du)− f · u

)
dx,

where H is an appropriate Hilbert space of functions u(x) such that u 7→
∫
F (Du) is convex,

proper and l.s.c. There is here a difficulty to define such space for a general nonlinearity F , in

particular concerning the lower semi-continuity. This will be studied in Chapter 3 for quite general

nonlinearities F . In the regularization approach we have the approximate differentiable nonlinear

optimization problem

inf
uε∈H

∫
Ω

(
α
|uε|2

2
+ Fε(Duε)− f · uε

)
dx .

In fact the regularization approach has until now only been considerd for particular nonlinearities

F , that is for the Herschel-Bulkley model or the Bingham model, with or without viscosity. Let

us here consider the Bingham fluid with, which corresponds to F (D) = σ0|D|+ η|D|2/2, for some

yield stress σ0 > 0 and viscosity η ≥ 0. This particular problem can be considered as a model for

quasi-Newtonian viscous fluids [53, Chapter 2]. Then we have to find u ∈ H such that

αu− η divDu− σ0 div

(
Du

|Du|

)
= f in Ω, (2.2.1)

or

inf
u∈H

∫
Ω

(
α
|u|2

2
+ η
|Du|2

2
+ σ0|Du| − f · u

)
dx .

In the approximate problem we look for uε ∈ H realizing

inf
uε∈H

∫
Ω

(
α
|uε|2

2
+ η
|Duε|2

2
+ σ0(

√
|Duε|2 + ε2 − ε)− f · uε

)
dx,

where ε > 0. It corresponds to solve the well-posed nonlinear parabolic problem

αuε − η divDuε − σ0 div
Duε√

|Duε|2 + ε2
= f in Ω. (2.2.2)

It can be solved by an iterative algorithm,

αuk+1
ε − η divDuk+1

ε − σ0 div
Duk+1

ε√
|Dukε |2 + ε2

= f in Ω, (2.2.3)

each iteration giving rise to the resolution of a linear problem. An overall space discretization has

to be performed, usually by finite elements. The regularization method has certain advantages,

namely it can use classical numerical schemes and it can be implemented easily in many existing

codes. One of the key points in this method is finding the optimal value for ε. Indeed the smaller

is ε the smaller is the error done in the law (one can prove that ‖u− uε‖L2 '
√
ε), but larger is the

number of iterations needed. Thus for a given tolerance one has to choose the corresponding ε, as

well as the corresponding space size ∆x, as usual. Therefore some optimal relation between ε and

∆x has to be found. In [14] the authors propose an optimal relation of the form ε ∼ (∆x)2 for P 1

finite elements (or ε ∼ (∆x)4 in some cases when the solution less regular). A good formula for the

choice of ε is

ε ∼ 10−2∆x2|Du|2 α
σ0
, (2.2.4)
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in the case when the viscosity is small. Most of the time the regularization runs quite fast.

There are many studies using this classical approach, as [7, 21, 46]. Some studies [42, 38]

depicted certain drawbacks of this method: the yield/plug zones (where Du = 0) can be not well

resolved, or the asymptotic behaviour as t→∞ can be wrong. This is the motivation for developing

alternative approaches.

2.3 Augmented Lagrangian method

The second approach, especially designed to overcome the difficulty of non-differentiability of the

constitutive law, strongly uses the theory of variational inequalities that one can find in Duvaut

and Lions [25]. The viscoplastic problem can be formulated as a saddle point problem with La-

grange multipliers. Then the well-known Augmented Lagrangian method for solving constrained

optimization problems, first introduced by Fortin and Glowinski [28], can be applied. It is also is

called ADMM algorithm (Alternate directions method of multipliers), see [20].

Recall first that the viscoplastic problem (2.0.1) can be formulated via the convex-concave

Lagrangian

L(σ, u) =

∫
Ω

(
α
|u|2

2
+ σ : Du− F ∗(σ)− f · u

)
dx, (2.3.1)

as the two equivalent problems

inf
u

sup
σ
L(σ, u) = sup

σ
inf
u
L(σ, u). (2.3.2)

The principle of the method is to introduce an additional variable γ that is an approximation of

Du, and to set the Lagrangian multiplier corresponding to the constrain γ − Du = 0. Recalling

that F ∗(σ) = sup
γ

(σ : γ − F (γ)), the problem (2.3.2) can be rewritten as

sup
σ

inf
u,γ
L(σ, u, γ), (2.3.3)

with

L(σ, u, γ) =

∫
Ω

(
α
|u|2

2
+ σ : (Du− γ) + F (γ)− f · u

)
dx . (2.3.4)

The augmented formulation is to rewrite the problem as

sup
σ

inf
u,γ
Laug(σ, u, γ), (2.3.5)

with the augmented Lagrangian

Laug(σ, u, γ) = L(σ, u, γ) +
r

2
‖Du− γ‖2L2 , (2.3.6)

where r > 0 is a free parameter. The augmented term does not change the minimality condition,

nor the value of the minimum, but enforces the stability of the numerical methods. The algorithm

proposed by Fortin and Glowinski [28] contains the following steps:

• Initialize with given σ0, γ0.

• For k ≥ 0, assuming that σk, γk are known, calculate uk by uk := argmin
u
Laug(σk, u, γk), i.e.

uk solves

αuk − div σk − div r(Duk − γk) = f. (2.3.7)
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• Calculate γk+1 by γk+1 := argmin
γ
Laug(σk, uk, γ), i.e.

∂F (γk+1) 3 σk − r(γk+1 −Duk). (2.3.8)

• Calculate σk+1 by going into the direction of the gradient of Laug with respect to σ, i.e.

σk+1 = σk + r(Duk − γk+1). (2.3.9)

The first step consists in solving an elliptic problem, which can be done by the finite elements

method (FEM). The two latter steps are nonlinear but local, they can be calculated pointwise

efficiently. With the definition (2.4.1) of Pr and the Moreau identity (2.1.16), the update of γ and

σ can be written equivalently as

γk+1 = (Id +∂F/r)−1

(
σk + rDuk

r

)
=
σk + rDuk − σk+1

r
, σk+1 = Pr(σk + rDuk). (2.3.10)

The Augmented Lagrangian method was introduced in the 70s but is still used, one can find it in

the works of Saramito et al. [15]. However, the rate of convergence is still limited in comparison

with the regularization method when accurate determination of solid zones is not required. Another

delicate issue in this method is the determination of an appropriate value of r in order to have a good

convergence rate. An improvement with this respect is the Bermudez-Moreno scheme. Besides, the

preconditioned version of the ADMM method is equivalent to the primal-dual algorithm proposed

in [20], which is studied in Chapter 4.

2.4 Projection approach

We would like here to introduce a class of methods that have a formulation which is close to the

Augmented Lagrangian method, retaining the essential projection step (2.3.10). In particular, the

algorithms used in imaging such as [20] fall into this class. The most challenging task when solving

the viscoplastic model (2.0.1) is to solve the constraint σ ∈ ∂F (Du), since a single value of Du

leads to several possible values of σ. In the projection approach, the main idea is to formulate the

constraint via a fixed point on σ involving a projection. This kind of formulation is used in [22, 19]

in the context of incompressible Navier-Stokes equations with a viscous Bingham viscoplastic law.

In the incompressible setting, this approach is well suited in conjunction with the projection on free

divergence vector fields, that is described in [31] and that is useful for the simulation of turbulent

flows. The approach of [22] relies strongly on the presence of viscosity and can be interpreted as a

time regularization.

In this subsection, a projection formulation is introduced for a quite general nonlinearity F , and

viscosity is not necessary.

As in Section 2.1 we consider a convex, proper and l.s.c. function F defined on a Hilbert space

H, that will be taken later on as either the space Ms
N×N (R) of symmetric square matrices of size

N or eventually a space of functions. Then the proximal operator of F ∗, as defined in Proposition

2.1.4, is well defined. We consider thus for r > 0 the operator Pr defined as

Pr(σ) = (Id +r∂F ∗)−1(σ), σ ∈ H. (2.4.1)

Then according to Proposition 2.1.4(c), Pr is 1−Lipschitz continuous.

21



Lemma 2.4.1. For r > 0 and Pr defined as (2.4.1), one has:

(a) For σ ∈ H,

Pr(σ) = Fε
′
(σ
r

)
, with ε =

1

r
, (2.4.2)

where Fε is the Moreau envelope of F .

(b) Pr is 1−Lipschitz continuous, and monotone i.e. for any σ1, σ2 ∈ H(
Pr(σ2)− Pr(σ1)

)
: (σ2 − σ1) ≥ 0. (2.4.3)

(c) For D,σ ∈ H, one has the equivalence

σ ∈ ∂F (D)⇔ Pr(σ + rD) = σ. (2.4.4)

(d) σ ∈ ∂F (0)⇔ Pr(σ) = σ.

Proof. It follows from Proposition 2.1.4.

(a) The formula (2.1.17) applied to D = σ/r and the Moreau identity (2.1.16) yield (2.4.2).

(b) Proposition 2.1.4(f) gives the monotonicity.

(c) Since Pr(σ + rD) = (Id +r∂F ∗)−1 (σ + rD), we have

Pr(σ + rD) = σ ⇐⇒ σ + rD ∈ (Id +r∂F ∗)(σ)⇐⇒ D ∈ ∂F ∗(σ)⇐⇒ σ ∈ ∂F (D).

(d) It follows from (c) by taking D = 0.

The previous lemma enables to formulate the constraint σ ∈ ∂F (D) of (2.0.1) as σ being a fixed

point of the map σ 7→ Pr(σ + rD), which is a 1−Lipschitz mapping. Then one can think of an

iteration procedure in order to get a solution σ. However the mapping is not a contraction (which

is related to the fact that there could be several solutions), and thus the convergence is slow, if it

holds. This is studied in Chapter 4 when the iteration is coupled with the momentum equation.

Indeed according to Lemma 2.4.1, the viscoplastic model (2.0.1) can be rewritten as{
αu− div σ = f,

σ = Pr(σ + rDu),
(2.4.5)

where r is any positive constant. Note that the set ∂F (0) plays a particular role here since σ ∈ ∂F (0)

corresponds to the stresses σ that are admissible in solid zones i.e. where Du = 0.

An issue is how to compute Pr if F is known (but F ∗ is not known explicitly). One can think

of using the Moreau identity (2.1.16). When F has some regularity outside the origin we can use

the following formulas.

Proposition 2.4.2. Assume that F is a convex, proper, l.s.c. function on H, and that

F is finite everywhere, and F is differentiable outside the origin. (2.4.6)

Then for σ /∈ ∂F (0), there exists a unique D 6= 0 such that F ′(D) + rD = σ. For r > 0 we then

have

Pr(σ) =

{
σ if σ ∈ ∂F (0),

F ′((F ′ + r Id)−1(σ)) if σ /∈ ∂F (0).
(2.4.7)
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Proof. According to Moreau’s identity (2.1.16), we have

Pr(σ) = (Id +r∂F ∗)−1(σ) = σ − r
(

Id +
∂F

r

)−1 (σ
r

)
. (2.4.8)

For the case σ ∈ ∂F (0), we have

(
Id +

∂F

r

)
(0) 3 σ

r
, thus

(
Id +

∂F

r

)−1 (σ
r

)
= 0. Inserting it into

(2.4.8) we obtain Pr(σ) = σ.

For σ /∈ ∂F (0) there exists a unique D such that ∂F (D) + rD 3 σ. Then since σ /∈ ∂F (0), D

cannot be zero, and thus F ′(D) + rD = σ. It implies(
Id +

∂F

r

)−1 (σ
r

)
= D.

Hence we get

F ′((F ′ + r Id)−1(σ)) + r

(
Id +

∂F

r

)−1 (σ
r

)
= F ′(D) + rD = σ.

Therefore inserting it into (2.4.8), for σ /∈ ∂F (0) we conclude that Pr(σ) = F ′((F ′+r Id)−1(σ)).

2.5 Pure plastic models

We provide here particular properties for pure plastic models, which means that F is homogeneous

of degree 1. The mechanical interpretation is that in this case the law does not include any viscous

effect. These models are also called “rate independent” because when σ ∈ ∂F (D), σ depends only

on the direction of D, but not on its magnitude.

Proposition 2.5.1. Suppose that F is a convex, l.s.c, proper function on H. Then F is homoge-

neous of degree 1 i.e.

F (λD) = λF (D), for all λ > 0 and D ∈ H, (2.5.1)

if and only if there exists A ⊂ H convex, closed and nonempty such that

F ∗(σ) =

{
0 if σ ∈ A,
∞ if σ /∈ A.

(2.5.2)

Moreover, we have then

F (D) = sup
σ∈A

σ : D. (2.5.3)

Proof. Let us start from recalling the Fenchel conjugate function F ∗(σ) = sup
D

(σ : D−F (D)). If F

is homogeneous, then for all σ ∈ H and λ > 0, we have

F ∗(λσ) = sup
D

(λσ : D − F (D)) = sup
D

(
λσ :

D

λ
− F

(
D

λ

))
= sup

D

(
σ : D − F (D)

λ

)
=

1

λ
sup
D

(λσ : D − F (D)) =
1

λ
F ∗(λσ).
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Taking λ = 2 we deduce that F ∗(2σ) = 0 or ∞, for all σ. It means that F ∗(σ) = 0 or ∞ for all σ.

Hence F ∗ takes the form

F ∗(σ) =

{
0 if σ ∈ A,
∞ if σ /∈ A,

for some set A ⊂ H. We know that F ∗ is convex, l.s.c, and proper. Since F ∗ is proper it implies that

A 6= ∅. Since F ∗ is convex we get that A is necessarily convex. Lastly, to prove that A is closed,

take an arbitrary sequence σn ∈ A converging to σ ∈ H. Because F ∗ is lower semi-continuous,

F ∗(σ) ≤ limF ∗(σn) = 0. Thus F ∗(σ) = 0 and σ ∈ A. It proves that A is closed.

Conversely, if we define F ∗ by (2.5.2) for some A convex, closed and non-empty, as previously

we have that F ∗ is convex, lower semi-continuous and proper. Then F (D) = F ∗∗(D) = sup
σ

(D :

σ − F ∗(σ)) = sup
σ∈A

(σ : D). For all λ > 0, D ∈ H, we have F (λD) = sup
σ∈A

(λσ : D) = λ sup
σ∈A

(σ : D) =

λF (D). Hence F is homogeneous of degree 1. Moreover the formula (2.5.3) is proved.

Lemma 2.5.2. Suppose that F is convex, l.s.c, proper, and homogeneous of degree 1. Then we

have the following properties:

(a) F (0) = 0.

(b) The set A in (2.5.2) is given by A = ∂F (0).

(c) A is bounded if and only if domF = H.

Proof. (a) Taking D = 0, λ = 2 in (2.5.1), we deduce F (0) = 2F (0). Thus F (0) = 0 or F (0) = +∞.

If F (0) < ∞ then we are done. Otherwise, since F is proper, there exists D 6= 0 such that

F (D) <∞. Since F is l.s.c, we have

F (0) ≤ lim
λ→0+

F (λD) = lim
λ→0+

λF (D) = 0.

This implies that F (0) = 0.

(b) We have the equivalences

σ ∈ A ⇐⇒ F ∗(σ) ≤ 0⇐⇒ sup
D

(σ : D − F (D)) ≤ 0⇐⇒ F (D) ≥ σ : D ∀D

⇐⇒F (D)− F (0) ≥ σ : (D − 0) ∀D ⇐⇒ σ ∈ ∂F (0).

Hence A = ∂F (0).

(c) Because of (2.5.3), the property that F (D) <∞ for all D ∈ H means that A is weakly bounded,

which is equivalent to A bounded by the Banach-Steinhaus theorem.

Proposition 2.5.3. Suppose that F ∗ is defined as (2.5.2) for some A convex, closed and nonempty.

Then we have:

(a) If σ ∈ int(A), then ∂F ∗(σ) = {0}.
(b) If σ /∈ A, then ∂F ∗(σ) = ∅.
(c) If σ ∈ ∂A, then

D ∈ ∂F ∗(σ) ⇐⇒ D : (τ − σ) ≤ 0 ∀τ ∈ A. (2.5.4)

When D satisfies (2.5.4), we say that D is an outer direction of A at σ ∈ ∂A.

(d) In the case of a finite dimensional space H, if A has a C1 boundary and intA 6= ∅, then for

σ ∈ ∂A,

∂F ∗(σ) = R+ n(σ),

where n(σ) is the exterior normal of ∂A at the point σ.
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Proof. (a) Assume that σ ∈ int(A). Since F ∗ ≥ 0 and F ∗(σ) = 0, it follows that 0 ∈ ∂F ∗(σ).

Conversely suppose that D ∈ ∂F ∗(σ). Then there exists ε > 0 such that σ + εD ∈ A. It follows

that F ∗(σ + εD) = 0. Since D ∈ ∂F ∗(σ),

F ∗(σ + εD) ≥ F ∗(σ) +D : (σ + εD − σ),

thus 0 ≥ ε|D|2 and D = 0. Therefore ∂F ∗(σ) ⊂ {0}.
(b) If σ /∈ A, we have F ∗(σ) =∞, and by Lemma 2.1.3(a) it follows that ∂F ∗(σ) = ∅.
(c) If σ ∈ ∂A, a vector D ∈ H verifies D ∈ ∂F ∗(σ) if and only if

F ∗(τ) ≥ F ∗(σ) +D : (τ − σ) ∀τ,
0 ≥ D : (τ − σ) ∀τ ∈ A.

This proves the claim.

(d) The case of C1 boundary is obvious and not detailed here.

Remark: Some references call a function of the form (2.5.2) the indicator of the closed convex set

A, denoted by IdA. And the subdifferential ∂F ∗(σ) of an indicator of a closed convex set A, for

σ ∈ ∂A, is called a “normal cone”.

Proposition 2.5.4. Suppose that F is convex, l.s.c, proper and homogeneous of degree 1.

(a) If D = 0, then ∂F (D) = A.

(b) If D 6= 0, then ∂F (D) = {σ ∈ ∂A | D is an outer direction of A at σ}.

Proof. It follows from Proposition 2.5.3 by using the fact that D ∈ ∂F ∗(σ)⇐⇒ σ ∈ ∂F (D).

Remark: In the case of C1 boundary as stated in Proposition 2.5.3(d), when we have the relation

σ ∈ ∂F (D) and D varies (D 6= 0), σ remains in ∂A. Then a small variation δD of D induces a small

variation δσ of σ, that verifies δσ : D = 0. In such situation, mechanics call the law F “associated”.

Slightly different presentations of pure plastic models are possible, see [17].

Theorem 2.5.5. Suppose that F is convex, l.s.c, proper and homogeneous of degree 1. Let A =

∂F (0). If we define Pr(σ) = (Id +r∂F ∗)−1(σ) for r > 0, then Pr(σ) is independent of r and is the

orthogonal projection of σ on A. To find the projection Pr(σ) when σ /∈ A, we have to find σb ∈ ∂A
and nb an outer direction of A at σb, such that

σ = σb + nb. (2.5.5)

Then Pr(σ) = σb.

Proof. We recall that for a nonempty closed convex set A we can define uniquely an orthogonal

projection PA on A such that for any σ ∈ H, PA(σ) is characterized by

(σ′ − PA(σ)) : (σ − PA(σ)) ≤ 0 ∀σ′ ∈ A. (2.5.6)

By definition of the projection Pr, there exists some D ∈ H such that

Pr(σ) + rD = σ with Pr(σ) ∈ ∂F (D). (2.5.7)

Since D ∈ ∂F ∗(Pr(σ)), we have that ∂F ∗(Pr(σ)) 6= ∅ and that by Proposition 2.5.3 we obtain

Pr(σ) ∈ A. Thus either Pr(σ) ∈ int(A) or Pr(σ) ∈ ∂A.
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If Pr(σ) ∈ int(A) then D = 0 and Pr(σ) = σ = PA(σ).

If Pr(σ) ∈ ∂A, since D ∈ ∂F ∗(Pr(σ)) we have according to Proposition 2.5.3(c)

0 ≥ D : (σ′ − Pr(σ)) ∀σ′ ∈ A,

0 ≥ σ − Pr(σ)

r
: (σ′ − Pr(σ)) ∀σ′ ∈ A.

This means that Pr(σ) is the orthogonal projection of σ on the convex set A. This proves that

Pr = PA.

For the formula (2.5.5), consider σ 6∈ A. From the definition one has Pr(σ) = (Id +r∂F ∗)−1(σ),

which means that

Pr(σ) + r∂F ∗(Pr(σ)) 3 σ. (2.5.8)

It follows that ∂F ∗(Pr(σ)) 6= ∅. By Proposition 2.5.3 and since σ 6∈ A we get that Pr(σ) ∈ ∂A.

Then (2.5.8) means that σ − Pr(σ) is an outer direction of A at Pr(σ), which proves (2.5.5).

2.6 Examples

In this subsection we apply the results of the previous section to various pure plastic models,

corresponding to different choices of F (D) defined on the space H = Ms
N×N (R) of symmetric

square matrices of size N .

Bingham model

In this model we take F (D) = |D|. This is the most simple choice. Using that A = ∂F (0), we

obtain that σ ∈ A is characterized by

σ : D ≤ |D| ∀D.

It follows that A = {σ : |σ| ≤ 1}. We can represent A geometrically as a half circle in the variables

p, |σ′| with σ = −p Id +σ′, Trσ′ = 0, as shown on Figure 2.1a. In [22], L. Chupin and T. Dubois

used the associated projection PA on A. It is given simply by

PA(σ) =

σ if |σ| ≤ 1,
σ

|σ|
if |σ| > 1.

(2.6.1)

Degenerate Bingham model

In this model we take F (D) = |D′|, with D′ the deviator of D, i.e. D′ = D − Tr(D) Id /N .

Then since A = ∂F (0), the stresses σ ∈ A are characterized by

σ : D ≤ |D′| ∀D, (2.6.2)(
Tr(σ)

Id

N
+ σ′

)
:

(
Tr(D)

Id

N
+D′

)
≤ |D′| ∀D, (2.6.3)

Tr(σ) Tr(D)

N
+ σ′ : D′ ≤ |D′| ∀D. (2.6.4)

It implies that A = {σ = −p Id +σ′ | p = 0, |σ′| ≤ 1}. Next we compute the projection Pr(σ) from

(2.4.1), (2.4.8),

Pr(σ) = σ − r
(

Id +
∂F

r

)−1 (σ
r

)
. (2.6.5)
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(a) Bingham model
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(b) Degenerate Bingham model

Figure 2.1: Set A and orthogonal projection

Let us denote D =

(
Id +

∂F

r

)−1 (σ
r

)
. Then σ ∈ rD + ∂F (D), which means that

σ = rD +
D′

|D′|
if |D′| 6= 0,

Tr(σ − rD) = 0, |σ − rD| ≤ 1 if |D′| = 0.

(2.6.6)

If σ = rD +
D′

|D′|
with |D′| 6= 0, then

Tr(σ)
Id

N
+ σ′ = r

(
Tr(D)

Id

N
+D′

)
+

D′

|D′|
, (2.6.7)

which is equivalent to 
rTr(D) = Tr(σ),

rD′ +
D′

|D′|
= σ′.

(2.6.8)

By the second equation |σ′| > 1, A′ and σ′ are co-linear, and taking the absolute value we obtain
Tr(D) =

Tr(σ)

r
,

|D′| = |σ
′| − 1

r
, D′ =

|σ′| − 1

r

σ′

|σ′|
.

(2.6.9)

Then

D =
Tr(σ)

rN
Id +
|σ′| − 1

r

σ′

|σ′|
. (2.6.10)

Besides, if Tr(σ − rD) = 0, |σ − rD| ≤ 1 with |D′| = 0, then

D =
Tr(σ)

rN
Id, and |σ′| ≤ 1.
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Therefore we obtain in any case(
Id +

∂F

r

)−1 (σ
r

)
=

Tr(σ)

rN
Id +

(
|σ′| − 1

r

)
+

σ′

|σ′|
. (2.6.11)

With (2.6.5) we deduce that

PA(σ) =


σ′ if |σ′| ≤ 1,

σ′

|σ′|
if |σ′| > 1.

Cam-Clay model

We consider the well-known Cam-Clay viscoplastic model. Defining the set A or the function

F is equivalent, and we choose here to first define A. Afterwards we shall deduce F , as (2.6.21).

Writing σ = −p Id +σ′ with Tr(σ′) = 0, we define A in the variables σ′ and p as a half-ellipse,

A :=

{
σ | 0 ≤ p ≤ p0,

|σ′|2

sin2 δ
≤ p(p0 − p)

}
=

{
σ | 0 ≤ p ≤ p0,

|σ′|2

sin2 δ
+
(
p− p0

2

)2
≤ p2

0

4

}
,

(2.6.12)

where p0 > 0 and sin δ > 0 are given, see Figure 2.2. Then

F (D) = sup
0≤p≤p0

sup
|σ′|≤sin δ

√
p0p−p2

(−pTr(D) + σ′ : D′)

= sup
0≤p≤p0

(
−pTr(D) + |D′| sin δ

√
p0p− p2

)
. (2.6.13)

We set g(p) = −pTr(D) + |D′| sin δ
√
p0p− p2. Writing that the derivative of g vanishes at the

maximum of the concave function g, we obtain

−Tr(D) + |D′| sin δ p0 − 2p

2
√
p0p− p2

= 0,

|D′| sin δ(p0 − 2p) = Tr(D)2
√
p0p− p2. (2.6.14)

We remark that it implies that Tr(D) has the same sign as p0 − 2p, thus

Tr(D) > 0⇒ p <
p0

2
,

Tr(D) < 0⇒ p >
p0

2
. (2.6.15)

Then we take the square in (2.6.14), giving

|D′|2 sin2 δ(p2
0 − 4p0p+ 4p2) = 4 Tr(D)2(p0p− p2), (2.6.16)

p2 − pp0 +
|D′|2 sin2 δ

4(|D′|2 sin2 δ + Tr(D)2)
p2

0 = 0, (2.6.17)

p =
p0

2
± p0

2

Tr(D)√
|D′|2 sin2 δ + Tr(D)2

. (2.6.18)

Recalling from (2.6.15) that Tr(D) has the same sign as p0− 2p, we get that the sign is minus, thus

p =
p0

2

(
1− Y√

1 + Y 2

)
, with Y =

Tr(D)

|D′| sin δ
. (2.6.19)
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Figure 2.2: Set A in the Cam-Clay model, and orthogonal projection.

The relation between p and Y can also be inverted as

Y =
p0 − 2p

2
√
p0p− p2

. (2.6.20)

Hence (2.6.13) yields

F (D) = −p0

2

(
1− Y√

1 + Y 2

)
Tr(D) + |D′| sin δ p0

2
√

1 + Y 2
.

Using that Tr(D) = Y |D′| sin δ, it can be recast as

F (D) =
p0

2

sin δ|D′|√
1 + Y 2 + Y

.

Thus

F (D) =
p0

2

sin δ|D′|
Y +

√
1 + Y 2

, with Y =
Tr(D)

|D′| sin δ
. (2.6.21)

We have to mention that according to Lemma 2.1.3(c), the point σ where the supremum (2.6.13)

is attained gives ∂F (D).

For |D′| = 0 one has F (D) = 0 if Tr(D) ≥ 0, F (D) = −p0 Tr(D) if Tr(D) ≤ 0.

Finding the orthogonal projection on the half ellipse

Since the orthogonal projection on A is involved in Theorem 2.5.5, it is useful to compute it.

For a stress σb on the boundary of A, one has an outer normal nb, such that for a small variation

δσb one has nb : δσb = 0. In order to find the orthogonal projection of σ = −p Id +σ′ on A (σ 6∈ A),

according to Theorem 2.5.5 one has to find σb ∈ ∂A and λ ≥ 0 such that σ = σb + λnb. Then

PA(σ) = σb. One has

σb = −pb Id +σ′b sin δ
√
pb(p0 − pb), (2.6.22)

with Tr(σ′b) = 0, |σ′b| = 1, and 0 ≤ pb ≤ p0. Assume that 0 < pb < p0. Then for a small variation

δσb of σb one has

δσb =
(
− Id +σ′b sin δ

p0 − 2pb

2
√
pb(p0 − pb)

)
δpb + δσ′b sin δ

√
pb(p0 − pb). (2.6.23)

Then since Tr(δσ′b) = 0, σ′b : δσ′b = 0, we compute

δσb : Id = −Nδpb, δσb : σ′b = sin δ
p0 − 2pb

2
√
pb(p0 − pb)

δpb. (2.6.24)
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Thus we get

δσb :
(
σ′b +

sin δ

N

p0 − 2pb

2
√
pb(p0 − pb)

Id
)

= 0, (2.6.25)

and it follows that we can take

nb = σ′b +
sin δ

N

p0 − 2pb

2
√
pb(p0 − pb)

Id . (2.6.26)

This formula could also be deduced from the computation of the supremum above, by Proposition

2.5.3(d), with the help of Lemma 2.1.3(b,c), and using the inversion formula (2.6.20). Thus in order

to find the orthogonal projection of σ = −p Id +σ′ on A (σ 6∈ A), one has to find σb ∈ ∂A and

λ ≥ 0 such that

σ ≡ −p Id +σ′ = −pb Id +σ′b sin δ
√
pb(p0 − pb) + λ

(
σ′b +

sin δ

N

p0 − 2pb

2
√
pb(p0 − pb)

Id
)
. (2.6.27)

Taking the trace and the deviator parts we get that σ′ and σ′b are aligned (thus σ′b = σ′/|σ′|) and

the equations

− p = −pb + λ
sin δ

N

p0 − 2pb

2
√
pb(p0 − pb)

, (2.6.28)

|σ′| = λ+ sin δ
√
pb(p0 − pb). (2.6.29)

These two equations determine 0 ≤ pb ≤ p0 and λ ≥ 0, that should be unique under the assumption

that σ 6∈ A i.e. either p < 0, or p > p0, or 0 ≤ p ≤ p0 and |σ′| > sin δ
√
p(p0 − p). Inserting the

expression of λ from (2.6.29) into (2.6.28) yields

− p = −pb +
sin δ

N

p0 − 2pb

2
√
pb(p0 − pb)

(
|σ′| − sin δ

√
pb(p0 − pb)

)
, (2.6.30)

which is a quartic equation in pb. This can be rewritten equivalently in terms of Yb related to pb by

(2.6.19), as

sin δ

N

2

p0
|σ′|Yb +

(
1− sin2 δ

N

) Yb√
1 + Y 2

b

+
2p

p0
− 1 = 0. (2.6.31)

As soon as |σ′| > 0 this equation always has a single real solution Yb. One can check that this

solution gives λ ≥ 0 provided that σ 6∈ A. The solution Yb to (2.6.31) can be computed by the

Newton method. In the case |σ′| = 0 we simply have pb = 0 if p < 0, pb = p0 if p > p0. Finally we

get PA(σ) = σb = −pb Id +
σ′

|σ′|
sin δ

√
pb(p0 − pb).

Drucker-dilatant model

Next we introduce the Drucker-dilatant viscoplastic model. As for the Cam-Clay model, let us

start from defining A. We take it as a triangle, as shown on Figure 2.3,

A :=
{
σ | 0 ≤ p ≤ p0 and |σ′| ≤ p sinψ

}
, (2.6.32)

where p0 > 0 and sin Ψ > 0 are given. According to Proposition 2.5.1 we can then formulate F as
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Figure 2.3: Set A in the Drucker-dilatant model with 4 possible cases of projections.

F (D) = sup
σ∈A

(σ : D) = sup
0≤p≤p0

sup
|σ′|≤p sinψ

(−pTr(D) + σ′ : D′)

= sup
0≤p≤p0

(
−pTr(D) + |D′|p sinψ

)
= sup

0≤p≤p0

p(sinψ|D′| − Tr(D))

=

{
0 if sinψ|D′| − Tr(D) ≤ 0,

p0(sinψ|D′| − Tr(D)) if sinψ|D′| − Tr(D) ≥ 0.

Thus F can be rewritten more concisely under the form

F (D) = p0(sinψ|D′| − Tr(D))+. (2.6.33)

Using Lemma 2.1.3(c), we get that for a given D, the stress σ = −p Id +σ′ ∈ ∂F (D) is characterized

by σ′ = p sinψ D′

|D′| if D′ 6= 0, |σ′| ≤ p sinψ if D′ = 0, and
p = 0 if sinψ|D′| − Tr(D) < 0,

0 ≤ p ≤ p0 if sinψ|D′| − Tr(D) = 0,

p = p0 if sinψ|D′| − Tr(D) > 0.

(2.6.34)

In particular, having a pressure p < p0 implies that Tr(D) ≥ 0. This justifies the name “Drucker-

dilatant”: as long as the pressure does not take the maximal value, the material dilates. Moreover,

as long as 0 < p < p0, we must have the dilatancy law Tr(D) = sinψ|D′|.
Finding the orthogonal projection on the triangle

We take σ = −p Id +σ′ 6∈ A, and we have to find PA(σ) = σb ∈ ∂A, such that σ = σb + λnb,

with nb the external normal to ∂A at σb, and λ ≥ 0.

Let us first consider the case of the inclined boundary. Then

σb = −pb Id +pb sinψσ′b, (2.6.35)

with Tr(σ′b) = 0, |σ′b| = 1. Then δσb = − Id δpb + sinψσ′bδpb + pb sinψδσ′b. We have then

Tr(δσb) = −Nδpb, δσb : σ′b = sinψδpb. Thus δσb : (σ′b + Id sinψ/N) = 0. Therefore we can take
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nb = σ′b + Id sinψ/N . We write that σ = σb + λnb, which gives

− p = −pb + λ
sinψ

N
, σ′ = (λ+ pb sinψ)σ′b. (2.6.36)

If follows that

σ′b =
σ′

|σ′|
, |σ′| = λ+ pb sinψ, −p = −pb + λ

sinψ

N
. (2.6.37)

Plugging the value of λ into the equation on p we obtain

− p = −pb + (|σ′| − pb sinψ)
sinψ

N
, (2.6.38)

thus

pb =
p+ |σ′|sinψ

N

1 +
sin2 ψ

N

, σb =
p+ |σ′|sinψ

N

1 +
sin2 ψ

N

(
− Id + sinψ

σ′

|σ′|

)
. (2.6.39)

This formula is valid if 0 ≤ pb ≤ p0, and λ ≥ 0, which gives the conditions

0 ≤ p+ |σ′|sinψ
N
≤
(

1 +
sin2 ψ

N

)
p0, and p sinψ ≤ |σ′|. (2.6.40)

Next let us consider the case of the right boundary. In this case σb = −p0 Id +µσ′b, with Tr(σ′b) = 0,

|σ′b| = 1, 0 ≤ µ ≤ p0 sinψ. Then δσb = δµσ′b + µδσ′b, Tr(δσb) = 0. It follows that we can take

nb = − Id. Then writing that σ = −p Id +σ′ = σb + λnb we obtain

− p = −p0 − λ, σ′ = µσ′b. (2.6.41)

It follows that

σ′b =
σ′

|σ′|
, |σ′| = µ. (2.6.42)

Finally σb = −p0 Id +σ′. This is valid when p ≥ p0 and |σ′| ≤ p0 sinψ.

For the other values of σ, σb is one of the corners. Thus finally, for σ 6∈ A,

PA(σ) =



0 if p+
sinψ

N
|σ′| ≤ 0,

p+
sinψ

N
|σ′|

1 +
sin2 ψ

N

(
− Id + sinψ

σ′

|σ′|

)
if 0 ≤ p+

sinψ

N
|σ′| ≤

(
1 +

sin2 ψ

N

)
p0, p sinψ ≤ |σ′|,

−p0 Id +p0 sinψ
σ′

|σ′|
if p+

sinψ

N
|σ′| ≥ (1 +

sin2 ψ

N
)p0, |σ′| ≥ p0 sinψ,

−p0 Id +σ′ if |σ′| ≤ p0 sinψ, p ≥ p0.

(2.6.43)

A logarithmic model

In this model we define A as

A :=
{
σ | 0 ≤ p ≤ ep0 and |σ′| ≤ λp

(
1− ln

p

p0

)}
, (2.6.44)

for some given p0 > 0, λ > 0, and where e = exp(1), see Figure 2.4. Using Proposition 2.5.1 we
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Figure 2.4: Set A in the logarithmic model, and orthogonal projection.

compute F as

F (D) = sup
σ∈A

(σ : D)

= sup
0≤p≤ep0

sup
|σ′|≤λp(1−ln(p/p0))

(−pTr(D) + σ′ : D′)

= sup
0≤p≤ep0

(
−pTr(D) + |D′|λp

(
1− ln

p

p0

))
= λ sup

0≤p≤ep0

(
p

(
|D′| − Tr(D)

λ

)
− |D′|p ln

p

p0

)
.

In the case |D′| = 0, one has

F (D) =

{
0 if Tr(D) ≥ 0,

−ep0 Tr(D) if Tr(D) ≤ 0.
(2.6.45)

Otherwise if |D′| > 0 we set g(p) = p

(
|D′| − Tr(D)

λ

)
−|D′|p ln

p

p0
. The concave function g attains

its maximum at the point pmax where the derivative of g vanishes. In other words pmax solves

−Tr(D)

λ
− |D′| ln pmax

p0
= 0,

thus

pmax = p0 exp

(
−Tr(D)

λ|D′|

)
. (2.6.46)

Knowing that we have the constrain that 0 ≤ p ≤ ep0, we deduce that

• If pmax ≤ ep0 then the supremum is attained at p = pmax.

• If pmax > ep0 then the supremum is attained at p = ep0.

We check that

pmax ≤ ep0 ⇐⇒ p0 exp

(
−Tr(D)

λ|D′|

)
≤ ep0 ⇐⇒

−Tr(D)

λ|D′|
≤ 1⇐⇒ Tr(D) ≥ −λ|D′|.

It follows that
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• If Tr(D) ≥ −λ|D′| then the supremum is attained at p = pmax.

• If Tr(D) < −λ|D′| then the supremum is attained at p = ep0.

Then for Tr(D) ≥ −λ|D′|, taking p = pmax gives

F (D) = λ

(
pmax

(
|D′| − Tr(D)

λ

)
− |D′|pmax ln

pmax
p0

)
= λ

(
p0 exp

(
−Tr(D)

λ|D′|

)(
|D′| − Tr(D)

λ

)
+ |D′|p0 exp

(
−Tr(D)

λ|D′|

)
Tr(D)

λ|D′|

)
= λp0|D′| exp

(
−Tr(D)

λ|D′|

)
.

Otherwise if Tr(D) < −λ|D′|, taking p = ep0 gives

F (D) = λ

(
ep0

(
|D′| − Tr(D)

λ

)
− |D′|ep0

)
= −ep0 Tr(D). (2.6.47)

Finally we obtain the general formula

F (D) =

λp0|D′| exp

(
−Tr(D)

λ|D′|

)
if Tr(D) ≥ −λ|D′|,

−ep0 Tr(D) if Tr(D) ≤ −λ|D′|.
(2.6.48)

Moreover, using Lemma 2.1.3 we obtain that for D′ 6= 0, ∂F (D) is a single point σ obtained by

σ′ = λp(1− ln p
p0

) D′

|D′| and

p =

p0 exp

(
−Tr(D)

λ|D′|

)
if Tr(D) ≥ −λ|D′|,

ep0 if Tr(D) ≤ −λ|D′|.
(2.6.49)

In the case D′ = 0 and Tr(D) 6= 0, ∂F (D) is a single point σ defined as σ = 0 if Tr(D) > 0,

σ = −ep0 Id if Tr(D) < 0.

We observe in particular that for D′ 6= 0 and Tr(D) ≥ −λ|D′|, we have

σ′ = p
(
λ+

Tr(D)

|D′|

) D′
|D′|

, (2.6.50)

which is a friction law of the type expected in granular materials: proportional to the pressure with

a coefficient which is the sum of a constant and the dilatancy ratio Tr(D)/|D′|. The dilatancy law

is

Tr(D) = −λ|D′| ln p

p0
, (2.6.51)

with a critical pressure p0.

Finding the orthogonal projection on A for the logarithmic model

We take σ = −p Id +σ′ 6∈ A, and we have to find PA(σ) = σb ∈ ∂A, such that σ = σb + γnb,

with nb the external normal to ∂A at σb and γ ≥ 0. One has

σb = −pb Id +λpb

(
1− ln

pb
p0

)
σ′b, (2.6.52)
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with Tr(σ′b) = 0, |σ′b| = 1. Then

δσb = − Id δpb − λ ln
pb
p0
σ′bδpb + λpb

(
1− ln

pb
p0

)
δσ′b. (2.6.53)

Then since Tr(δσ′b) = 0, σ′b : δσ′b = 0, we compute

δσb : Id = −Nδpb, δσb : σ′b = −λ ln
pb
p0
δpb. (2.6.54)

Thus we get δσb :
(
σ′b −

λ

N
ln
pb
p0

Id
)

= 0, and it follows that nb = σ′b −
λ

N
ln
pb
p0

Id. Writing that

σ = σb + γnb we obtain

− p = −pb − γ
λ

N
ln
pb
p0
, σ′ =

(
γ + λpb

(
1− ln

pb
p0

))
σ′b. (2.6.55)

If follows that σ′b =
σ′

|σ′|
,

|σ′| = γ + λpb

(
1− ln

pb
p0

)
, (2.6.56)

p = pb + γ
λ

N
ln
pb
p0
. (2.6.57)

Inserting the expression of γ from (2.6.56) into (2.6.57) yields

p = pb +
λ

N
ln
pb
p0

(
|σ′| − λpb

(
1− ln

pb
p0

))
. (2.6.58)

We observe graphically on Figure 2.4 that for σ = −p Id +σ′ 6∈ A, the projection PA(σ) = σb is

given by

• If |σ′| = 0 and p ≤ 0 then σb = 0,

• If |σ′| ≤ N

λ
(p− ep0) then σb = −ep0 Id,

• If |σ′| > 0 and |σ′| > N

λ
(p− ep0) then σb is given by (2.6.52) with σ′b =

σ′

|σ′|
and pb ∈ (0, ep0)

solution to (2.6.58) such that pb
(
1− ln

pb
p0

)
≤ |σ

′|
λ

.

Remark: In the three last models, the assumption that F is convex, lower semi-continuous, proper

is not obvious from its expression. Nevertheless it follows by construction from Proposition 2.5.1

that depicts the relation between the function F and the set A, knowing that A is convex, closed

and non-empty, which is true when it is defined by an inequality of the form |σ′| ≤ f(p) with f

concave.

We remark that in the Bingham model, when σ ∈ A the pressure p = −Tr(σ)/N can take

negative values. The other models presented above verify p ≥ 0 when σ ∈ A, which is more

physical. One could also ask the stronger condition σ ≤ 0 in the sense of symmetric matrices. A

sufficient condition for that is |σ′| ≤
√

N
N−1p (it is also necessary if N = 2). It indicates that the

set A should be cut below this line, similarly as in the Drucker-dilatant model. In this case, and if

0 ∈ A, we see geometrically that |D′| <
√

N−1
N Tr(D)⇒ ∂F (D) = {0}. A related property is that

|Tr(D)| <
√

N
N−1 |D

′| implies that the eigenvalues of D are not all of the same sign.
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Chapter 3

Existence of the solution for the

steady viscoplastic model with

nonlinear rheology

Before going to the numerical approximation of (2.0.1), an existence theory is necessary. Moreover

the analysis of Chapter 4 shows that we need a formulation in the local sense (not only in integral

form). This is sometimes called the Euler-Lagrange equation, and it does not follow directly from

the variational theory.

In the case of the (possibly viscous) incompressible Bingham model, i.e. F (D) =
η

2
|D|2 +σ0|D|,

one can find in the literature some discussions on the existence of solutions for the inviscid case

η = 0, as in [39] or [14]. In all the classical results of [26] the analysis relies on the viscous term,

and strongly depends on the assumption η > 0. Meanwhile in [14] the results are established for

the case η = 0. These results show that the two cases (viscous or inviscid) have to be treated by a

slighly different analysis, relying on the theory of variational inequalities and monotone operators

[16], but with a different choice of Hilbert space.

In this chapter we consider the viscoplastic model (2.0.1) with σ ∈ ∂F (Du) where F is convex,

proper, l.s.c. on Ms
N×N (R) the space of symmetric square matrices of size N , and satisfies some

growth conditions. We recall that the problem can be formulated as

inf
u∈H

∫
Ω

(
α
|u|2

2
+ F (Du)− f · u

)
dx, (3.0.1)

where H is an appropriate Hilbert space of functions u(x) with values in RN . The key issue is to

define the space H for a general nonlinearity F , in such a way that u 7→
∫
F (Du) is convex, proper

and l.s.c. on H. Then one has to prove also the Euler-Lagrange equations, i.e. the local formulation

(2.0.1).

3.1 With viscosity

We first consider the case with additional viscosity η > 0, i.e.

inf
u∈H

∫
Ω

(
α
|u|2

2
+
η

2
|Du|2 + F (Du)− f · u

)
dx . (3.1.1)
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Another way to formulate it would be to consider the problem (3.0.1) with a coercive nonlinearity

F (D) + η
2 |D|

2. We recall that Hypothesis 1 means that F is convex, l.s.c. and proper. This will

always be assumed. Then from Section 2.1 we have that F is necessarily bounded below by an

affine function. With the notation of Proposition 2.1.4 we have the following result.

Lemma 3.1.1. Suppose that F satisfies Hypothesis 1. Then |proxε F (0)| is bounded independently

of ε as long as 0 < ε ≤ ε0.

Proof. Since F is proper, there exists D0 such that F (D0) <∞. Then since proxε F is 1−Lipschitz,

one has |proxε F (0)−proxε F (D0)| ≤ |D0|. Thus proving that proxε F (0) is bounded independently

of ε is equivalent to proving that proxε F (D0) is bounded independently of ε. The definition of the

Moreau envelope gives

Fε(D0) = inf
D

{
F (D) +

|D −D0|2

2ε

}
≤ F (D0). (3.1.2)

We have that F is lower bounded by an affine function, thus F (D) ≥ A : D − B for some matrix

A and some real number B. It follows that

F (D) +
|D −D0|2

2ε
≥ A : (D −D0) +A : D0 −B +

|D −D0|2

2ε

≥ −|D −D0|2

4ε
− ε|A|2 +A : D0 −B +

|D −D0|2

2ε

≥ |D −D0|2

4ε
+A : D0 −B − ε0|A|2. (3.1.3)

Therefore Fε(D0) ≥ A : D0 − B − ε0|A|2. Moreover there is some M > 0 such that the above

quantity is larger than F (D0) for
|D −D0|√

ε
≥ M . It follows that F (D) +

|D −D0|2

2ε
has to attain

its infimum inside the ball |D − D0| ≤ M
√
ε. Since ε ≤ ε0 this set is bounded by |D0| + M

√
ε0.

Consequently, |proxε F (D0)| ≤ |D0|+M
√
ε0 for all 0 < ε ≤ ε0.

In the following we shall consider several growth assumptions.

Hypothesis 2. For any D ∈Ms
N×N (R) and σ ∈ ∂F (D) one has

|σ| ≤ C(1 + |D|),

where C is a positive constant independent of D and σ.

Lemma 3.1.2. Under Hypothesis 1, 2, we have

(a) the derivative of Fε verifies

|F ′ε(D)| ≤ C ′(1 + |D|), (3.1.4)

where C ′ is a positive constant independent of D and ε ≤ ε0,

(b) F is finite everywhere and for all D

|Fε(D)| ≤ C ′′(1 + |D|2), |F (D)| ≤ C ′′(1 + |D|2), (3.1.5)

where C ′′ is a constant independent of D and ε ≤ ε0.
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Proof. (a) According to Proposition 2.1.4(e) we have F ′ε(D) ∈ ∂F (proxε F (D)), thus

|F ′ε(D)| ≤ C(1 + | proxε F (D)|).

Besides, Proposition 2.1.4(c) ensures that proxε F is 1-Lipschitz, giving

|F ′ε(D)| ≤ C(1 + | proxε F (0)|+ |D|). (3.1.6)

With Lemma 3.1.1 we obtain (3.1.4).

(b) The inequality (3.1.4) implies that

|Fε(D)− Fε(0)| ≤ C ′|D|(1 + |D|). (3.1.7)

Following (3.1.3), Fε is lower bounded by an affine function independent of ε ≤ ε0. Thus Fε(0) is

bounded below by a constant independent of ε. Moreover according to Proposition 2.1.4(f) we have

Fε(0) ↑ F (0) as ε → 0. If Fε(0) were unbounded, (3.1.7) would imply that Fε(D) → ∞ for all D,

which is not the case since F is proper. Thus F (0) <∞, |Fε(0)| remains bounded, and (3.1.7) gives

|Fε(D)| ≤ C ′′(1 + |D|2). Since Fε(D) ↑ F (D) we deduce that F (D) <∞ with the same bound.

Lemma 3.1.3. Let F satisfy Hypothesis 1 and assume that F is finite everywhere and there exists

a constant C ′′ > 0 such that for all D

|F (D)| ≤ C ′′(1 + |D|2). (3.1.8)

Then

(a) For all σ one has

F ∗(σ) ≥ 1

4C ′′
|σ|2 − C ′′. (3.1.9)

(b) For any D and σ such that σ ∈ ∂F (D) one has

|σ| ≤ 8C ′′(1 + |D|), (3.1.10)

so that F satisfies Hypothesis 2.

Proof. (a) Using the definition of F ∗ and (3.1.8), one has

F ∗(σ) ≥ sup
D

(
σ : D − C ′′(1 + |D|2)

)
. (3.1.11)

The supremum is attained at the value of D given by D = σ/(2C ′′). We deduce that

F ∗(σ) ≥ |σ|
2

2C ′′
− C ′′

(
1 +

|σ|2

4C ′′2

)
, (3.1.12)

which yields (3.1.9).

(b) Consider D1, D2, and a number R > 0 such that D1 6= D2 and |D1| ≤ R, |D2| ≤ R. Let us then

set

D3 = D2 +R
D2 −D1

|D2 −D1|
. (3.1.13)

We have then |D3| ≤ 2R and

D2 =
R

|D2 −D1|+R
D1 +

|D2 −D1|
|D2 −D1|+R

D3, (3.1.14)
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so that by convexity of F ,

F (D2) ≤ R

|D2 −D1|+R
F (D1) +

|D2 −D1|
|D2 −D1|+R

F (D3). (3.1.15)

We deduce with (3.1.8) that

F (D2)− F (D1) ≤ |D2 −D1|
|D2 −D1|+R

(F (D3)− F (D1)) ≤ |D2 −D1|
R

2M, (3.1.16)

With M = C ′′(1 + 4R2). Therefore

F (D2)− F (D1) ≤ |D2 −D1|2C ′′
( 1

R
+ 4R

)
. (3.1.17)

The case D2 = D1 being trivial, we have now that this inequality holds for all D1, D2 such that

|D1| ≤ R and |D2| ≤ R Now, given D1 and D2, if max(|D1|, |D2|) ≤ 1/2 then we can take R = 1/2,

so that 1/R + 4R = 4. Otherwise we must have R ≥ 1/2, which implies that 1/R + 4R ≤ 2 + 4R.

Thus in any case we get for all D1, D2

F (D2)− F (D1) ≤ |D2 −D1|8C ′′
(

1 + max(|D1|, |D2|)
)
. (3.1.18)

Consider now D1 and σ given, such that σ ∈ ∂F (D1). It follows that for all D2,

F (D2) ≥ F (D1) + σ : (D2 −D1). (3.1.19)

With (3.1.18) we deduce

σ : (D2 −D1) ≤ |D2 −D1|8C ′′
(

1 + max(|D1|, |D2|)
)
. (3.1.20)

Taking D2 in a neighbourhood of D1 but such that D2 − D1 takes all the possible directions, we

conclude that |σ| ≤ 8C ′′(1 + |D1|), which concludes (3.1.10).

Remark: Lemmas 3.1.2 and 3.1.3 prove that for a nonlinearity F satisfying Hypothesis 1, one has

equivalence between Hypothesis 2 and (3.1.8).

We consider now an open bounded subset Ω of RN . We shall need a variant of the Sobolev

space H1(Ω), adapted to the symmetric derivative Du = (∇u + (∇u)t)/2 where u takes values in

RN . We define

H1s(Ω) =
{
u ∈ L2(Ω), with values in RN , such that Du ∈ L2(Ω)

}
, (3.1.21)

with the scalar product 〈u, v〉L2 + 〈Du,Dv〉L2 . Then H1s(Ω) is a Hilbert space. We shall denote

by H1s
0 (Ω) the closure of C∞c (Ω) in H1s(Ω).

Definition 3.1.4. Suppose that F satisfies Hypothesis 1, 2 and define for Ω an open bounded subset

of RN , ψ : H1s
0 (Ω)→ R as

∀u ∈ H1s
0 (Ω), ψ(u) =

∫
Ω

F (Du). (3.1.22)
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Remark: The shorthand notation
∫
Ω

F (Du) is used, meaning
∫
Ω

F (Du(x)) dx. According to Lemma

3.1.2(b) and since Ω is bounded, the integral is always finite.

Lemma 3.1.5. Assume that F satisfies Hypothesis 1, 2. Then ψ is finite everywhere, convex and

lower semi-continuous on H1s
0 (Ω).

Proof. (a) ψ is convex.

If u, v ∈ H1s
0 (Ω) and θ ∈ (0, 1), then since F is convex

ψ(θu+ (1− θ)v) =

∫
Ω

F (θDu+ (1− θ)Dv) ≤
∫
Ω

(
θF (Du) + (1− θ)F (Dv)

)
= θψ(u) + (1− θ)ψ(v).

(b) ψ is lower semi-continuous.

Suppose un → u in H1s
0 . Then one has Dun → Du in L2. Thus after extraction of a subsequence,

Dun → Du almost everywhere. Since F is l.s.c, one has F (Du) ≤ limF (Dun) almost everywhere.

According to Lemma 3.1.2(b), F (Dun) is bounded in L1. Taking the integral over Ω, we get∫
Ω

F (Du) ≤
∫
Ω

limF (Dun). (3.1.23)

Next, F (D) is lower bounded by an affine function ϕ(D). Appying Fatou’s Lemma to F (Dun) −
ϕ(Dun) ≥ 0, one has∫

Ω

lim(F (Dun)− ϕ(Dun)) ≤ lim

∫
Ω

(F (Dun)− ϕ(Dun)).

Since ϕ(Dun)→ ϕ(Du) in L2 and a.e., we deduce that∫
Ω

limF (Dun) ≤ lim

∫
Ω

F (Dun). (3.1.24)

With (3.1.23) we conclude that
∫
F (Du) ≤ lim

∫
F (Dun), i.e. ψ(u) ≤ limψ(un). Thus ψ is l.s.c.

Lemma 3.1.6. Suppose G is a bounded linear form on H1s
0 (Ω), u ∈ H1s

0 (Ω), ψ is a convex, proper,

l.s.c. function on H1s
0 (Ω), η, ∆t are positive constants. Then the two following sets of inequalities

are equivalent

∀v ∈ H1s
0 (Ω)

1

∆t

∫
Ω

u · (v − u) +
η

2

∫
Ω

|Dv|2 − η

2

∫
Ω

|Du|2 + ψ(v) ≥ ψ(u) +G(v − u), (3.1.25)

∀v ∈ H1s
0 (Ω)

1

∆t

∫
Ω

u · (v − u) + η

∫
Ω

Du : (Dv −Du) + ψ(v) ≥ ψ(u) +G(v − u). (3.1.26)

Proof. Since g(D) = |D|2/2 for all D ∈M s
N×N (R) is a convex function and g′(D) = D, we have

|Dv|2

2
≥ |Du|

2

2
+Du : (Dv −Du).

This gives directly that (3.1.26) implies (3.1.25).
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Reciprocally, assume that (3.1.25) hold. Take v = u+ θ(v0 − u) where θ ∈ [0, 1] and v0 ∈ H1s
0 (Ω).

Then Dv = Du+ θ(Dv0 −Du). Taking the square of both sides and the integral over Ω we get∫
Ω

|Dv|2 −
∫
Ω

|Du|2 = 2θ

∫
Ω

Du : (Dv0 −Du) + θ2

∫
Ω

|Dv0 −Du|2. (3.1.27)

Multiplying by
η

2
, substituting in (3.1.25) and using that by convexity of ψ one has ψ

(
u+ θ(v0 − u)

)
≤

(1− θ)ψ(u) + θψ(v0) (and observing that (3.1.25) implies that ψ(u) <∞), we obtain

θ

∆t

∫
Ω

u · (v0 − u) + θη

∫
Ω

Du : (Dv0 −Du) +
η

2
θ2

∫
Ω

|Dv0 −Du|2 + θψ(v0)− θψ(u) ≥ θG(v0 − u).

Dividing by θ > 0 and letting θ → 0, we recover (3.1.26).

Remark: (a) Since
∫
Ω

Du : (Dv − Du) =
1

2

(∫
Ω

|Dv|2 −
∫
Ω

|Du|2 −
∫
Ω

|Dv −Du|2
)

, the variational

inequality (3.1.26) can be written as

∀v ∈ H1s
0 (Ω)

1

∆t

∫
Ω

u ·(v−u)+
η

2

∫
Ω

|Dv|2− η
2

∫
Ω

|Du|2− η
2

∫
Ω

|Dv−Du|2 +ψ(v) ≥ ψ(u)+G(v−u).

This inequality looks stronger than (3.1.25). However, Lemma 3.1.6 says that there is indeed equiv-

alence with (3.1.25).

(b) The variational formulation (3.1.26) is powerful and plays a crucial role to establish estimates,

see [26] and references therein. However it can be difficult to establish it when numerical approxi-

mations are involved. Indeed when using test functions in finite elements spaces, a large number of

inequalities arise. Then it is useful to use the Euler-Lagrange local formulation, see Theorem 3.1.9

below.

Proposition 3.1.7. Assume that F satisfies Hypothesis 1, 2. Then there is a unique solution

u ∈ H1s
0 (Ω) to

∀v ∈ H1s
0 (Ω)

1

∆t

∫
Ω

u · (v−u)+

∫
Ω

F (Dv)−
∫
Ω

F (Du)+η

∫
Ω

Du : (Dv−Du) ≥ G(v−u), (3.1.28)

where G is a bounded linear form on H1s
0 (Ω), and η, ∆t are positive constants (the correspondence

with (3.1.1) is α = 1/∆t).

Proof. With ψ coming from Definition 3.1.4, the set of inequalities (3.1.28) identifies to (3.1.26).

Thus according to Lemma 3.1.6 it is equivalent to (3.1.25). Using the argument of the proof of

Lemma 3.1.6 applied to the first term
∫
u · (v − u) we obtain that it is also equivalent to

∀v ∈ H1s
0 (Ω)

1

∆t

∫
Ω

1

2
(|v|2 − |u|2) +

η

2

∫
Ω

|Dv|2 − η

2

∫
Ω

|Du|2 + ψ(v)− ψ(u) ≥ G(v − u),

which means that u is a minimum over H1s
0 (Ω) of the functional

J(v) =
1

∆t

∫
Ω

1

2
|v|2 +

η

2

∫
Ω

|Dv|2 + ψ(v)−G(v). (3.1.29)

This functional is the sum of the square of the H1s norm and a l.s.c. function. Thus by Proposition

2.1.4(a), there is a unique minimum in H1s
0 (Ω).
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The Moreau envelope Fε of F enables to build uniformly bounded approximations to our vari-

ational problem (3.1.28).

Lemma 3.1.8. Assume that F satisfies Hypothesis 1, 2. Then for any ε > 0 there is a unique

solution uε ∈ H1s
0 (Ω) to

∀v ∈ H1s
0 (Ω)

1

∆t

∫
Ω

uε · (v − uε) +

∫
Ω

Fε(Dv)−
∫
Ω

Fε(Duε) + η

∫
Ω

Duε : (Dv −Duε) ≥ G(v − uε),

(3.1.30)

where G is a bounded linear form on H1s
0 (Ω), and η, ∆t are positive constants. Moreover uε, Duε

are bounded in L2(Ω) uniformly in ε ≤ ε0.

Proof. According to Proposition 2.1.4 and Lemma 3.1.2(a), Fε satisfies the same hypotheses 1, 2 as

F . Thus applying Proposition 3.1.7 to Fε we get the existence and uniqueness of uε. Then inserting

v = 0 in (3.1.30) we get

1

∆t

∫
Ω

|uε|2 + η

∫
Ω

|Duε|2 +

∫
Ω

Fε(Duε) ≤ G(uε) +

∫
Ω

Fε(0). (3.1.31)

We have Fε(0) ≤ F (0) which is finite according to Lemma 3.1.2. Following (3.1.3), Fε is lower

bounded by an affine function independent of ε ≤ ε0. The functional G is also bounded by a

constant times the H1s norm, thus from (3.1.31) we deduce bounds on uε and Duε in L2(Ω)

uniformly in ε ≤ ε0.

Theorem 3.1.9 (Euler-Lagrange equations). Assume that F satisfies Hypothesis 1, 2, and let

η,∆t > 0. Then finding u ∈ H1s
0 (Ω) solution to (3.1.28) where G(v) = 〈fn + un

∆t , v〉 + η〈Dun, Dv〉
for some fn ∈ L2(Ω), un ∈ H1s(Ω), is equivalent to finding (u, σ) ∈ H1s

0 (Ω)× L2(Ω) such that
u− un

∆t
− div σ − η divDu = −η divDun + fn in Ω,

σ ∈ ∂F (Du) a.e. in Ω.
(3.1.32)

Moreover one has F ∗(σ) ∈ L1(Ω).

Proof. Assume that (3.1.32) holds, the first equation being understood in the sense of distributions.

Then by density we can apply it to test functions in H1s
0 (Ω). Taking v − u as test function, where

v ∈ H1s
0 (Ω), we obtain denoting by 〈., .〉 the L2(Ω) scalar product,

1

∆t
〈u− un, v − u〉+ 〈σ,Dv −Du〉+ η〈Du,Dv −Du〉 = η〈Dun, Dv −Du〉+ 〈fn, v − u〉. (3.1.33)

Since σ ∈ ∂F (Du) a.e. we have F (Dv) ≥ F (Du) + σ : (Dv −Du) a.e. Thus∫
Ω

F (Dv) ≥
∫
Ω

F (Du) + 〈σ,Dv −Du〉. (3.1.34)

Using this in (3.1.33) it follows that

∀v ∈ H1s
0 (Ω)

1

∆t
〈u, v − u〉+

∫
Ω

F (Dv)−
∫
Ω

F (Du) + η〈Du,Dv −Du〉 ≥ G(v − u). (3.1.35)

Hence (3.1.28) holds.
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Reciprocally, assume that (3.1.28) holds. Following Proposition 2.1.4, we can consider the

sequence of Moreau envelopes Fε of F, which are convex and continuously differentiable and satisfy

Fε ↑ F pointwise as ε→ 0. We define uε as the unique solution to the problem in which we replace

F by Fε, i.e. uε solves (3.1.30). At fixed ε we take then v = uε + sw in (3.1.30), where w ∈ H1s
0 (Ω)

and s is a real number. Since Fε is differentiable, we have

Fε(Duε + sDw)− Fε(Duε)
s

−→ F ′ε(Duε) : Dw a.e. as s −→ 0.

Moreover, since F ′ε is 1/ε-Lipschitz, we also have for some 0 ≤ θs(x) ≤ 1

Fε(Duε + sDw)− Fε(Duε)
s

= F ′ε(Duε + θssDw) : Dw,∣∣∣∣Fε(Duε + sDw)− Fε(Duε)
s

∣∣∣∣ ≤ (|F ′ε(0)|+ 1

ε
|Duε + θssDw|

)
|Dw|

≤
(
C +

|Duε|+ |s||Dw|
ε

)
|Dw|.

Therefore by Lebesgue’s dominated convergence theorem,

Fε(Duε + sDw)− Fε(Duε)
s

−→F ′ε(Duε) : Dw in L1(Ω) as s→ 0.

Taking v = uε + sw in (3.1.30) where s > 0 and w ∈ H1s
0 (Ω) and dividing by s, one gets

1

∆t
〈uε, w〉+

∫
Ω

Fε(Duε + sDw)− Fε(Duε)
s

+ η

∫
Ω

Duε : Dw ≥ G(w),

thus letting s→ 0

1

∆t
〈uε, w〉+

∫
Ω

F ′ε(Duε) : Dw + η

∫
Ω

Duε : Dw ≥ G(w). (3.1.36)

Similarly by taking s < 0 we get

1

∆t
〈uε, w〉+

∫
Ω

F ′ε(Duε) : Dw + η

∫
Ω

Duε : Dw ≤ G(w), (3.1.37)

and it follows that

1

∆t
〈uε, w〉+

∫
Ω

F ′ε(Duε) : Dw + η

∫
Ω

Duε : Dw = G(w) ∀w ∈ H1s
0 (Ω). (3.1.38)

Thus (uε, σε) is a solution to

uε − un

∆t
− div σε − η divDuε = −η divDun + fn, (3.1.39)

σε = F ′ε(Duε). (3.1.40)

In order to get (3.1.32) it remains to pass to the limit as ε→ 0. According to Lemma 3.1.8, uε and

Duε are bounded in L2(Ω) uniformly in ε ≤ ε0. Therefore with Lemma 3.1.2(a), σε is bounded in

L2. Then according to Lemma 2.1.3(d) we have

Duε : σε = Fε(Duε) + (Fε)
∗(σε). (3.1.41)
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According to Lemma 2.1.3(f), (Fε)
∗ is lower bounded by a constant independent of ε. Taking

w = uε in (3.1.38) we get that ∫
Ω
Duε : σε ≤ G(uε). (3.1.42)

The right-hand side is bounded because uε and Duε are bounded in L2(Ω), and with (3.1.41) we

deduce that
∫

Ω(Fε)
∗(σε) is upper bounded. Since (Fε)

∗ is lower bounded by a constant we conclude

that (Fε)
∗(σε) is bounded in L1(Ω) independently of ε.

Hence after extraction of a subsequence, there exists u ∈ H1s
0 (Ω) and σ ∈ L2(Ω) such that

uε⇀u, Duε⇀Du, σε⇀σ, (3.1.43)

where ⇀ denotes the weak convergence in L2, and additionally uε → u locally strongly. Letting

ε→ 0 in (3.1.39), we obtain

u− un

∆t
− div σ − η divDu = −η divDun + fn. (3.1.44)

Now we would like to prove that σ ∈ ∂F (Du) a.e. Since σε = F ′ε(Duε) a.e., we have

∀W Fε(W ) ≥ Fε(Duε) + σε : (W −Duε) a.e.

For ε ≤ ε0, we have Fε(Duε) ≥ Fε0(Duε), thus

∀W Fε(W ) ≥ Fε0(Duε) + σε : (W −Duε) a.e.

Multiplying by ϕ ∈ C∞c (Ω), ϕ ≥ 0, and taking the integral over Ω we obtain∫
Ω

ϕFε(W ) ≥
∫
Ω

ϕFε0(Duε) +

∫
Ω

ϕσε : W −
∫
Ω

ϕσε : Duε. (3.1.45)

But multiplying (3.1.39) by ϕuε, we get∫
Ω

uε
∆t
· uεϕ+

∫
Ω

σε : D(ϕuε) + η

∫
Ω

Duε : D(ϕuε) = G(ϕuε),

∫
Ω

ϕ
|uε|2

∆t
+

∫
Ω

ϕσε : Duε+

∫
Ω

σε : (uε⊗∇ϕ)+η

∫
Ω

ϕ|Duε|2+η

∫
Ω

Duε : (uε⊗∇ϕ) = G(ϕuε). (3.1.46)

Similarly, taking ϕu as test function in (3.1.44), we get∫
Ω

ϕ
|u|2

∆t
+

∫
Ω

ϕσ : Du+

∫
Ω

σ : (u⊗∇ϕ) + η

∫
Ω

ϕ|Du|2 + η

∫
Ω

Du : (u⊗∇ϕ) = G(ϕu). (3.1.47)

Since uε → u locally strongly, we can pass to the limit in the terms involving ∇ϕ. Thus taking the

limit ε→ 0 in (3.1.46) and comparing to (3.1.47), we obtain∫
Ω

ϕσε : Duε −
∫
Ω

ϕσ : Du+ η

∫
Ω

ϕ|Duε|2 − η
∫
Ω

ϕ|Du|2 −→ 0.

Since Duε ⇀ Du, we have
∫
Ω

ϕ|Du|2 ≤ lim
∫
Ω

ϕ|Duε|2. Consequently we obtain

lim

∫
Ω

ϕσε : Duε ≤
∫
Ω

ϕσ : Du.
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Hence, taking the lim as ε→ 0 in (3.1.45), we get∫
Ω

ϕF (W ) ≥
∫
Ω

ϕFε0(Du) +

∫
Ω

ϕσ : W −
∫
Ω

ϕσ : Du.

Then letting ε0 → 0 this yields∫
Ω

ϕF (W ) ≥
∫
Ω

ϕF (Du) +

∫
Ω

ϕσ : W −
∫
Ω

ϕσ : Du.

This is true for all ϕ ∈ C∞c (Ω) such that ϕ ≥ 0, thus

F (W ) ≥ F (Du) + σ : W − σ : Du a.e.

This is true for all W . But since F is finite everywhere and convex on a finite dimensional space,

it is continuous, and consequently for a.e. x ∈ Ω the inequality holds for all W . We conclude that

σ ∈ ∂F (Du) a.e. in Ω. Therefore (u, σ) satisfies (3.1.32). We have already proved that this implies

that u is the solution to (3.1.28), which is unique according to Proposition 3.1.7.

Finally the last assertion F ∗(σ) ∈ L1(Ω) follows from Lemma 2.1.3(d) that ensures that σ : Du =

F (Du) + F ∗(σ) a.e.

Remark: In the particular case of a Bingham fluid, i.e. F (D) = |D|, the proof of Euler-Lagrange

equations was provided in [26, 58]. In this case, additionally to the regularization method that

we have used here, the use of the Hahn-Banach theorem is possible. A stronger version of the

Euler-Lagrange equations is also available for the Bingham problem, see [18].

3.2 Without viscosity

We consider now the case without viscosity (3.0.1), that corresponds to the unmodified problem

(2.0.1). We shall need several growth assumptions on F .

Hypothesis 3. F is lower bounded, which means that there is a constant E such that for all

D ∈Ms
N×N (R)

E + F (D) ≥ 0. (3.2.1)

According to Lemma 2.1.3(f), this assumption is equivalent to F ∗(0) <∞.

Hypothesis 4. F is finite everywhere and there is a constant C > 0 such that for all D

F (D) ≤ C(1 + |D|2). (3.2.2)

Hypothesis 5. F is superlinear, which means that

F (D)

|D|
−→ ∞ as |D| −→ ∞. (3.2.3)

We consider again the Moreau envelope Fε of F , as defined in Proposition 2.1.4. We have the

following result.
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Lemma 3.2.1. Under Hypothesis 1, 3, 4, we have

(a) Fε is uniformly lower bounded,

E + Fε(D) ≥ 0, (3.2.4)

(b) For all ε > 0 and all D,

Fε(D) ≤ C(1 + |D|2), (3.2.5)

(c) The estimates obtained in Lemma 3.1.3 are valid.

(d) If hypothesis 5 is satisfied, then it is also satisfied for Fε, uniformly for ε ≤ ε0.

Proof. (a) By (3.2.1) one has F (D) ≥ −E, and the definition (2.1.12) of Fε gives immediately

Fε(D) ≥ −E.

(b) One has Fε(D) ≤ F (D), so that (3.2.2) gives immediately (3.2.5).

(c) Because of (3.2.1) and (3.2.2), F satisfies |F (D)| ≤ max(C,E)(1+ |D|2). Therefore the assump-

tions of Lemma 3.1.3 are satisfied.

(d) Hypothesis 5 means that

∀λ > 0, ∃R > 0 inf
|D|≥R

F (D)

|D|
≥ λ. (3.2.6)

According to (2.1.12) one has

Fε(D) = inf
D
Hε(D,D), (3.2.7)

with

Hε(D,D) = F (D) +
|D −D|2

2ε
. (3.2.8)

Let λ > 0 be given. Then according to (3.2.6) there exists R > 0 such that for all |D| ≥ R, one has

F (D) ≥ λ|D|. Assuming that ε ≤ ε0 for some fixed ε0 > 0, one can assume that R > λε0. Then

let us take D such that |D| ≥ R. We have for all D satisfying |D| ≥ R,

Hε(D,D) ≥ λ|D|+ |D −D|
2

2ε
. (3.2.9)

The right-hand side is larger than its minimum over all D, which is attained at D = (|D| −
λε)+D/|D|. Since |D| ≥ R > λε, plugging this value in the right hand side of (3.2.9) yields

∀|D| ≥ R, Hε(D,D) ≥ λ(|D| − λε) +
λ2ε

2
. (3.2.10)

For |D| ≤ R, one has

Hε(D,D) ≥ −E +
(|D| −R)2

2ε
. (3.2.11)

We deduce that

inf
D
Hε(D,D) ≥ min

(
λ|D| − λ2ε0,−E + (|D| −R)2/2ε0

)
. (3.2.12)

It follows with (3.2.7) that Fε(D)/|D| ≥ λ/2 as soon as |D| ≥ R, for some R large enough and

depending only on λ, ε0, E,R. This concludes that Fε(D)/|D| → ∞ as |D| → ∞, uniformly in ε as

long as ε ≤ ε0.

We consider now an open bounded subset Ω of RN , and functions u ∈ L2(Ω) that take values

in RN . We use as previously the symmetric derivative Du = (∇u+ (∇u)t)/2 which is in general a

distribution.
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Definition 3.2.2. Suppose that F satisfies Hypothesis 1, 3, 4, and define for Ω an open bounded

subset of RN ,

KF (Ω) =
{
u ∈ L2(Ω) such that Du ∈ L1(Ω) and F (Du) ∈ L1(Ω)

}
, (3.2.13)

and KF
0 (Ω) ⊂ KF (Ω) by u ∈ KF

0 (Ω) if and only if

Du = Du in RN , (3.2.14)

where for a function w defined in Ω, w denotes the extension by 0 of w, i.e. the function defined

over the whole space RN as w = w in Ω, w = 0 outside Ω.

Notice that since by Hypothesis 3 F is lower bounded by a constant −E, for any u ∈ L2(Ω)

such that Du ∈ L1(Ω) one can consider
∫

Ω F (Du) ∈ R. Then this integral is finite if and only if

F (Du) ∈ L1(Ω). Note also that C∞c (Ω) ⊂ KF
0 (Ω) ⊂ KF (Ω).

Lemma 3.2.3. When F satisfies Hypothesis 1, 3, 4, we have

(a) KF (Ω) and KF
0 (Ω) are convex and contain 0.

(b) Assuming additionally Hypothesis 5, if we have a sequence un ∈ KF (Ω) such that ‖un‖L2 and∫
Ω F (Dun) are bounded, then ‖Dun‖L1 is bounded and there exist u ∈ KF (Ω) and a subsequence

un′ such that

un′ ⇀ u in L2(Ω) weak, Dun′ ⇀ Du in L1(Ω) weak. (3.2.15)

Moreover we have then ∫
Ω
F (Du) ≤ lim

∫
Ω
F (Dun′). (3.2.16)

Additionally, if un ∈ KF
0 (Ω) then u ∈ KF

0 (Ω).

Proof. (a) If u, v ∈ KF (Ω) and 0 ≤ θ ≤ 1, we have that w = (1 − θ)u + θv ∈ L2, Dw =

(1− θ)Du+ θDv ∈ L1, and by convexity of F∫
Ω
F (Dw) ≤

∫
Ω

(
(1− θ)F (Du) + θF (Dv)

)
= (1− θ)

∫
Ω
F (Du) + θ

∫
Ω
F (Dv) <∞. (3.2.17)

Hence w ∈ KF (Ω). This proves that KF (Ω) is convex. Next if u, v ∈ KF
0 (Ω), by linearity of (3.2.14)

one has also w ∈ KF
0 (Ω), proving the convexity of KF

0 (Ω). Finally 0 ∈ C∞c (Ω) ⊂ KF
0 (Ω) ⊂ KF (Ω).

(b) Since F is superlinear (Hypothesis 5), there is some R0 > 0 such that for any R ≥ R0, for all

|D| ≥ R one has |D| ≤ KRF (D), where KR > 0 verifies KR → 0 as R → ∞. Indeed one has just

to take 1
KR

= inf
|D|≥R

F (D)
|D| .

We deduce that Dun is bounded in L1. Indeed,∫
Ω

|Dun| =
∫

|Dun|≥R

|Dun|+
∫

|Dun|<R

|Dun|

≤ KR

∫
|Dun|≥R

F (Dun) +R|Ω|

= KR

∫
Ω
F (Dun)−KR

∫
|Dun|<R

F (Dun) +R|Ω|

≤ KR

∫
Ω
F (Dun) +KRE|{|Dun| < R}|+R|Ω|,

(3.2.18)
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and it is enough to take a single R to get the boundedness in L1. Then the same estimate (3.2.18)

gives that ∫
|Dun|≥R

|Dun| → 0, as R→∞, uniformly in n, (3.2.19)

which gives that Dun is uniformly equi-integrable since Ω is bounded. Therefore we can extract a

subsequence un′ such that un′ ⇀ u in weak L2, for some u ∈ L2, and such that Dun′ ⇀ w weakly

in L1, where w ∈ L1. This implies that 〈Dun′ , ϕ〉 → 〈w,ϕ〉 for all ϕ ∈ C∞c (Ω). But since un′ ⇀ u

in weak L2 we have 〈Dun′ , ϕ〉 = −〈un′ ,divϕ〉 → −〈u,divϕ〉. It follows that Du = w ∈ L1 and

Dun′ ⇀ Du weakly in L1.

One can check that the map which to w(x) ∈ L1(Ω) associates
∫
F (w) is convex, l.s.c. on L1 strong.

It follows that it is also l.s.c. on L1-weak. Therefore, since Dun′ ⇀ Du in L1-weak, we deduce that∫
Ω

F (Du) ≤ lim

∫
Ω

F (Dun′) <∞.

This gives that u ∈ KF (Ω) and concludes the proof in the case of KF (Ω).

Finally, for the case un ∈ KF
0 (Ω), the convergences un′ ⇀ u in weak L2(Ω) and Dun′ ⇀ Du in

weak L1(Ω) imply that un′ ⇀ u in weak L2(RN ) and Dun′ ⇀ Du in weak L1(RN ). Thus we can

pass to the limit in (3.2.14) and obtain u ∈ KF
0 (Ω).

Lemma 3.2.4. Assume that F satisfies Hypothesis 1, 3, 4, and that Ω is strictly star-shaped. Then

for u ∈ KF
0 (Ω) there exists a sequence uk ∈ C∞c (Ω) such that

uk → u in L2(Ω) strong, Duk → Du in L1(Ω) strong,

∫
Ω
F (Duk)→

∫
Ω
F (Du). (3.2.20)

Proof. The property for Ω to be star-shaped means that there exists a point x0 ∈ Ω such that for

any x ∈ Ω, one has [x0, x] ⊂ Ω. It is strictly star-shaped if additionally for any x ∈ ∂Ω, [x0, x) ⊂ Ω.

Consider u ∈ KF
0 (Ω). Then (3.2.14) ensures that u ∈ L2(RN ), Du ∈ L1(RN ). Moreover∫

RN

(
F (Du)− F (0)

)
=

∫
Ω

(
F (Du)− F (0)

)
=

∫
Ω
F (Du)− |Ω|F (0). (3.2.21)

Consider then for λ > 0

vλ(x) =
1

λ
u(x0 + λ(x− x0)). (3.2.22)

Then vλ ∈ L2(RN ), Dvλ ∈ L1(RN ) and as λ→ 1 one has vλ → u in L2(RN ), Dvλ → Du in L1(RN ),

and ∫
RN

(
F (Dvλ)− F (0)

)
=

∫
RN

(
F
(
Du(x0 + λ(x− x0))

)
− F (0)

)
= λ−N

∫
RN

(
F
(
Du
)
− F (0)

)
.

(3.2.23)

Consider then a smoothing sequence ρδ(x) on RN , and define wδ = ρδ ∗ vλ, that indeed depends

on δ and λ. Then we have that wδ ∈ C∞c (RN ), and as δ → 0 at fixed λ, wδ → vλ in L2(RN ),

Dwδ → Dvλ in L1(RN ). Moreover by Jensen’s inequality

F (Dwδ(x)) = F

(∫
Dvλ(x−y)ρδ(y)dy

)
≤
∫
F
(
Dvλ(x−y)

)
ρδ(y)dy = (ρδ∗F

(
Dvλ)

)
(x). (3.2.24)
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It follows that ∫
RN

(
F (Dwδ)− F (0)

)
≤
∫
RN

(
F (Dvλ)− F (0)

)
. (3.2.25)

Now, for a given integer n one can find λn > 1 such that

‖vλn − u‖L2(RN ) ≤
1

n
, ‖Dvλn −Du‖L1(RN ) ≤

1

n
. (3.2.26)

Define

Ωn =
{
x ∈ RN such that x0 + λn(x− x0) ∈ Ω

}
⊂ Ω. (3.2.27)

Since Ω is strictly star-shaped, one has ∂Ωn ∩ ∂Ω = ∅. Furthermore, vλn has support in Ωn, and

dist(Ωn, ∂Ω) > 0. Therefore for δ small enough, wδ ∈ C∞c (Ω). Thus we can find such small δ = δn
so that

‖wδn − vλn‖L2(RN ) ≤
1

n
, ‖Dwδn −Dvλn‖L1(RN ) ≤

1

n
. (3.2.28)

It follows that

‖wδn − u‖L2(RN ) ≤
2

n
, ‖Dwδn −Du‖L1(RN ) ≤

2

n
. (3.2.29)

Moreover using (3.2.25), (3.2.23) and (3.2.21), one gets∫
RN

(
F (Dwδn)− F (0)

)
≤ λ−Nn

(∫
Ω
F (Du)− |Ω|F (0)

)
. (3.2.30)

Taking into account that both wδn and u have support in Ω, (3.2.29) and the previous inequality

yield that

wδn → u in L2(Ω), Dwδn → Du in L1(Ω), lim

∫
Ω
F (Dwδn) ≤

∫
Ω
F (Du). (3.2.31)

But by lower semicontinuity one has∫
Ω
F (Du) ≤ lim

∫
Ω
F (Dwδn), (3.2.32)

which concludes the proof.

Definition 3.2.5. Suppose that F satisfies Hypothesis 1, 3, 4, and define for Ω an open bounded

subset of RN , ψ : L2(Ω)→ R as

∀u ∈ L2(Ω), ψ(u) =


∫
Ω

F (Du) if u ∈ KF
0 (Ω),

∞ otherwise.

(3.2.33)

Proposition 3.2.6. Under Hypothesis 1, 3, 4, 5, we have that ψ is convex, proper and lower

semi-continuous on L2(Ω).

Proof. (a) ψ is convex.

Assume that u, v ∈ L2(Ω) and θ ∈ (0, 1). If u 6∈ KF
0 or v 6∈ KF

0 , then ψ(u) =∞ or ψ(v) =∞, and

it follows obviously that ψ((1− θ)u+ θv) ≤ ∞ = (1− θ)ψ(u) + θψ(v). Next if u ∈ KF
0 and v ∈ KF

0
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one has also (1 − θ)u + θv ∈ KF
0 since KF

0 is convex, and D((1 − θ)u + θv) = (1 − θ)Du + θDv.

Then since F is convex

ψ((1− θ)u+ θv) =

∫
Ω

F ((1− θ)Du+ θDv) ≤
∫
Ω

(
(1− θ)F (Du) + θF (Dv)

)
= (1− θ)ψ(u) + θψ(v).

(b) ψ is proper.

Since F is finite everywhere one has F (0) < ∞, thus using that 0 ∈ KF
0 we deduce that ψ(0) =

|Ω|F (0) <∞.

(c) ψ is l.s.c.

Suppose that un → u in L2(Ω). We have to prove that ψ(u) ≤ limψ(un). One can assume that

limψ(un) < ∞, and extracting a subsequence if necessary, one can assume that ψ(un) tends to

some limit, that is necessarily finite since ψ is lower bounded. Then for n large enough ψ(un) is

finite, thus un ∈ KF
0 (Ω). Applying Lemma 3.2.3(b) we deduce that u ∈ KF

0 (Ω) and (3.2.16) yields

that ψ(u) ≤ limψ(un).

Proposition 3.2.7. Assume Hypothesis 1, 3, 4, 5 and consider ∆t > 0, un, fn ∈ L2(Ω). Then

there is one and only one solution u ∈ L2(Ω) to the problem

∀v ∈ L2(Ω)
1

∆t
〈u, v − u〉+ ψ(v) ≥ ψ(u) +G(v − u), (3.2.34)

which moreover satisfies

u = argmin
v∈L2(Ω)

J(v), (3.2.35)

where J : L2(Ω)→ R is defined by

J(v) =
1

∆t

∫
Ω

|v|2

2
+ ψ(v)−G(v), (3.2.36)

with G(v) = 〈fn +
un

∆t
, v〉, and ψ is as in Definition 3.2.5.

Proof. By Proposition 3.2.6 ψ is convex, proper and l.s.c. The result is thus classical, as in Propo-

sition 2.1.4(a).

Lemma 3.2.8. Assume Hypothesis 1, 3, 4, 5, and that Ω is strictly star-shaped. Consider σ ∈
L2(Ω) satisfying div σ ∈ L2(Ω) and F ∗(σ) ∈ L1(Ω). Then we have

∀w ∈ KF
0 (Ω)

∫
Ω
σ : Dw ≥ −

∫
Ω

(div σ) · w. (3.2.37)

The meaning of the integral
∫
σ : Dw in (3.2.37) needs to be explained. Under the assumptions

on F , both F and F ∗ are lower bounded by a constant. Thus integrals like
∫
F (Dw) or

∫
F ∗(σ)

are well defined, as finite or +∞. The properties F (Dw) ∈ L1 (which holds since w ∈ KF
0 (Ω)) or

F ∗(σ) ∈ L1 (which is assumed here) mean exactly that these respective integrals are finite. Then

according to the inequality (2.1.4) one has

σ : Dw ≤ F (Dw) + F ∗(σ) a.e. (3.2.38)

It follows that σ : Dw is upper bounded by an L1 function, and thus that
∫
σ : Dw is well-defined,

as finite or −∞. The equation (3.2.37) says in particular that this integral must be finite, i.e.

σ : Dw ∈ L1(Ω).
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Proof of Lemma 3.2.8. Let w ∈ KF
0 (Ω). Then according to Lemma 3.2.4, there exists a sequence

wk ∈ C∞c (Ω) such that wk → w in L2, Dwk → Dw in L1, and
∫
F (Dwk)→

∫
F (Dw). Extracting

if necessary a subsequence we have Dwk → Dw a.e. in Ω. Since wk ∈ C∞c one has∫
Ω
σ : Dwk = −

∫
Ω

(div σ) · wk. (3.2.39)

Then according to the Fenchel-Young inequality we have

gk ≡ F (Dwk) + F ∗(σ)− σ : Dwk ≥ 0 a.e. in Ω. (3.2.40)

By assumption F ∗(σ) ∈ L1 thus gk ∈ L1. Since F is continuous we have that gk → g a.e, with

g = F (Dw) + F ∗(σ)− σ : Dw ≥ 0. (3.2.41)

By Fatou’s Lemma we have ∫
Ω
g ≤ lim

∫
Ω
gk. (3.2.42)

Using (3.2.39) we have ∫
Ω
gk =

∫
Ω
F (Dwk) +

∫
Ω
F ∗(σ) +

∫
Ω

(div σ) · wk, (3.2.43)

thus

lim

∫
Ω
gk =

∫
Ω
F ∗(σ) +

∫
Ω

(div σ) · w +

∫
Ω
F (Dw) (3.2.44)

Using this in (3.2.42) and taking into account the value (3.2.41) of g we obtain that g ∈ L1,

σ : Dw ∈ L1 and

−
∫

Ω
σ : Dw ≤

∫
Ω

(div σ) · w, (3.2.45)

which yields (3.2.37).

Remark: If F is even, i.e. F (−D) = F (D), then in the previous lemma we can apply the same

result to −w instead of w, thus we obtain that there is indeed equality in (3.2.37). In the general

case, we do not know if there could be a strict inequality in (3.2.37).

Theorem 3.2.9 (Euler-Lagrange equations). With the same assumptions as in Proposition 3.2.7

and if Ω is strictly star-shaped, the solution u ∈ L2(Ω) to the problem (3.2.34) is characterized by

the existence of σ ∈ L2(Ω) such that

u ∈ KF
0 (Ω), F ∗(σ) ∈ L1(Ω), (3.2.46)

u− un

∆t
− div σ = fn in Ω, (3.2.47)

σ ∈ ∂F (Du) a.e. in Ω, (3.2.48)∫
Ω

u− un

∆t
· u+

∫
Ω
F (Du) +

∫
Ω
F ∗(σ) ≤

∫
Ω
fn · u. (3.2.49)
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Proof. Assume first that u ∈ L2 and σ ∈ L2 satisfy (3.2.46), (3.2.47), (3.2.48), (3.2.49). Then

(3.2.47) gives that div σ ∈ L2, and according to Lemma 3.2.8 one has

∀v ∈ KF
0 (Ω)

∫
Ω

u− un

∆t
· v +

∫
Ω
σ : Dv ≥

∫
Ω
fn · v. (3.2.50)

Then according to (3.2.48) we have

σ : Du = F (Du) + F ∗(σ) a.e. in Ω. (3.2.51)

Replacing in (3.2.49) we obtain∫
Ω

u− un

∆t
· u+

∫
Ω
σ : Du ≤

∫
Ω
fn · u. (3.2.52)

Note that since u ∈ KF
0 (Ω), with (3.2.50) this yields that there is indeed equality in (3.2.52).

Making the difference with (3.2.50) we obtain

1

∆t
〈u− un, v − u〉+ 〈σ,Dv −Du〉 ≥ 〈fn, v − u〉. (3.2.53)

Since σ ∈ ∂F (Du) a.e. we have F (Dv) ≥ F (Du) + σ : (Dv −Du) a.e. Thus∫
Ω

F (Dv) ≥
∫
Ω

F (Du) + 〈σ,Dv −Du〉. (3.2.54)

Using this in (3.2.53) it follows that

1

∆t
〈u, v − u〉+

∫
Ω

F (Dv)−
∫
Ω

F (Du) ≥ G(v − u). (3.2.55)

Hence (3.2.34) holds for all v ∈ KF
0 (Ω). But if v ∈ L2(Ω) and v 6∈ KF

0 (Ω), then ψ(v) = ∞, and

(3.2.34) holds also trivially. Finally (3.2.34) holds for all v ∈ L2(Ω).

Knowing that there is existence and uniqueness of a solution to (3.2.34), to conclude the theorem

it remains only to prove that there is a solution (u, σ) ∈ L2 × L2 to (3.2.46), (3.2.47), (3.2.48),

(3.2.49).

According to Lemma 3.1.3(b), Hypothesis 2 is satisfied. Therefore for η > 0 we can apply

Proposition 3.1.7 and Theorem 3.1.9. It gives uη ∈ H1s
0 (Ω), ση ∈ L2(Ω) satisfying

uη − un

∆t
− div ση − η divDuη = fn in Ω, (3.2.56)

ση ∈ ∂F (Duη) a.e. in Ω, (3.2.57)

and F ∗(ση) ∈ L1(Ω). Equation (3.2.56) can also be formulated as

∀w ∈ H1s
0 (Ω),

1

∆t

∫
Ω
uη · w +

∫
Ω
ση : Dw + η

∫
Ω
Duη : Dw =

∫
Ω

(
fn +

un

∆t

)
· w. (3.2.58)

Taking w = uη we get

1

∆t

∫
Ω
|uη|2 + η

∫
Ω
|Duη|2 +

∫
Ω
ση : Duη =

∫
Ω

(
fn +

un

∆t

)
· uη. (3.2.59)
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According to (3.2.57) and Lemma 2.1.3(d) (case of equality) we have

ση : Duη = F (Duη) + F ∗(ση) a.e. (3.2.60)

Thus we can rewrite (3.2.59) as

1

∆t

∫
Ω
|uη|2+η

∫
Ω
|Duη|2+

∫
Ω

(
E+F (Duη)

)
+

∫
Ω

(
F (0)+F ∗(ση)

)
=

∫
Ω

(
fn+

un

∆t

)
·uη+|Ω|(E+F (0)).

(3.2.61)

Writing that ∫
Ω

(
fn +

un

∆t

)
· uη ≤

1

2∆t

∫
Ω
|uη|2 +

∆t

2

∫
Ω

∣∣∣fn +
un

∆t

∣∣∣2,
we obtain the estimate

1

2∆t

∫
Ω
|uη|2+η

∫
Ω
|Duη|2+

∫
Ω

(
E+F (Duη)

)
+

∫
Ω

(
F (0)+F ∗(ση)

)
≤ ∆t

2

∫
Ω

∣∣∣fn+
un

∆t

∣∣∣2+|Ω|(E+F (0)).

(3.2.62)

Since F ≥ −E and F ∗ ≥ −F (0) all the terms on the left-hand side are nonnegative, and we therefore

get bounds on these quantities uniformly with respect to η. In particular we have

‖uη‖2L2 ≤ ∆t2
∥∥∥fn+

un

∆t

∥∥∥2

L2
+2∆t|Ω|(E+F (0)),

∫
Ω
F (Duη) ≤

∆t

2

∥∥∥fn+
un

∆t

∥∥∥2

L2
+|Ω|F (0). (3.2.63)

We claim that uη ∈ KF
0 (Ω). Indeed since uη ∈ H1s

0 (Ω), there exists a sequence uk ∈ C∞c (Ω) such

that uk → uη in L2(Ω) and Duk → Duη in L2(Ω). Then uk ∈ KF
0 (Ω), and passing to the limit in

(3.2.14) it yields uη ∈ KF
0 (Ω).

Applying now Lemma 3.2.3(b) we get the existence of u ∈ KF
0 (Ω) and a subsequence of ηs

tending to 0 such that

uη ⇀ u in weak L2, Duη ⇀ Du in weak L1,

∫
F (Du) ≤ lim

∫
F (Duη). (3.2.64)

The estimate (3.2.62) also gives a bound on
∫
F ∗(ση) independent of η. By Lemma 3.1.3(a) we get

a bound on ‖ση‖L2 . Therefore, extracting if necessary a subsequence, we obtain some σ ∈ L2(Ω)

such that

ση ⇀ σ in L2 weak. (3.2.65)

Moreover we have also ∫
F ∗(σ) ≤ lim

∫
F ∗(ση) <∞. (3.2.66)

According to (3.2.62) we have ‖Duη‖L2 ≤ C/√η, and it enables to pass to the limit in the sense of

distributions in (3.2.56), giving

u− un

∆t
− div σ = fn in Ω. (3.2.67)

From (3.2.61) we obtain by lower semicontinuity

1

∆t

∫
Ω
|u|2 +

∫
Ω
F (Du) +

∫
Ω
F ∗(σ) ≤

∫
Ω

(
fn +

un

∆t

)
· u. (3.2.68)

Thus we have proved (3.2.46), (3.2.47), (3.2.49), and it only remains to prove (3.2.48), i.e. σ ∈
∂F (Du) a.e. Taking into account (3.2.67) we apply Lemma 3.2.8 to w = u, giving

1

∆t

∫
Ω
|u|2 +

∫
Ω
σ : Du ≥

∫
Ω

(
fn +

un

∆t

)
· u. (3.2.69)
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Alltogether with (3.2.68) we obtain∫
Ω

(
F (Du) + F ∗(σ)− σ : Du

)
≤ 0. (3.2.70)

Applying Lemma 2.1.3(d) we conclude that F (Du) + F ∗(σ) − σ : Du = 0 a.e. and thus that

σ ∈ ∂F (Du) a.e., concluding the proof.

Remark: The condition (3.2.48), i.e. σ ∈ ∂F (Du) a.e. could be removed in the statement of the

previous theorem, since as the end of the proof shows it is a consequence of the other conditions.

Notice that the solution u is unique, but σ associated to u may be nonunique.

Remark: For applications to granular flows, it is important not to assume any special dependency

of F (D) with respect to D, such as dependency only on |D|. In particular, the above proofs would

simplify somehow for an even nonlinearity F , i.e. verifying F (−D) = F (D), but we cannot assume

that, as the examples of Section 2.6 show. The assumptions we have made on F are only on its

asymptotic growth. Only the assumption of superlinearity Hypothesis 5 is a bit restrictive, since it

excludes a linear behavior at infinity. For a 1-homogeneous function such as described in Section

2.5 one should be able to get well-posedness results with the approach of [14]. In this case Du

could be a measure instead of an L1 function, which modifies significantly the proofs. However it

would be desirable to consider a nonlinearity F that can be superlinear in certain directions, and

asymptotically linear in other directions. At the time being we do not know how to treat this case.

The superlinearity assumption can indeed be related to the finiteness of F ∗, as the following

lemma shows.

Lemma 3.2.10. Let F be a convex, proper, l.s.c. function on a Hilbert space. If F is superlinear

i.e. F (D)
|D| →∞ as |D| → ∞, then F ∗ is finite everywhere. In finite dimension the converse is true.

Proof. Suppose that F is superlinear. One has

F ∗(σ) = sup
D

(σ : D − F (D)). (3.2.71)

For a given σ, since F is superlinear there exist M > 0 (depending on |σ|) such that

|D| ≥M =⇒ F (D)

|D|
≥ |σ|. (3.2.72)

Thus

∀|D| ≥M, σ : D − F (D) ≤ σ : D − |D||σ| ≤ 0. (3.2.73)

But since F is lower bounded by an affine function, there is some β such that F (D) ≥ β for all D

such that |D| ≤M . It follows that

∀|D| ≤M, σ : D − F (D) ≤M |σ| − β. (3.2.74)

Therefore with (3.2.73) we deduce that F ∗(σ) <∞.

Conversely suppose that F is not superlinear. Then

∃C > 0,∀M > 0, ∃|D| > M such that F (D) ≤ C|D|. (3.2.75)
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We can then find a sequence Di such that |Di| → ∞ and F (Di) ≤ C|Di| for all i. Then we have

for all σ

F ∗(σ) = sup
D

(σ : D − F (D)) ≥ sup
i

(σ : Di − C|Di|). (3.2.76)

We can find a subsequence such that Di
|Di| ⇀ V , for some unit vector V (here we use that we are in

finite dimension, otherwise V could be null). Then for σ such that |σ| > C and σ
|σ| = V , one has

F ∗(σ) =∞, which finishes the proof.
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Chapter 4

Explicit primal-dual algorithm

In this chapter we introduce a numerical scheme based on an algorithm used in image processing [20].

We give convergence estimates on both the space continuous formulation and the approximation by

finite elements (FEM). The scheme is intended to solve the viscoplastic problem with or without

viscosity, the well-posedness of which has been established in the previous chapter. Two algorithms

are introduced, one is the first-order primal dual algorithm as in [20], the other is the acceleration

scheme with the theoretical higher order convergence rate O(1/n2) whereas the former has the rate

O(1/n) in terms of the primal-dual gap, where n is the number of iterations.

According to Chambolle et al. [20], our inviscid minimization problem

inf
u∈H

∫
Ω

(
α
|u|2

2
+ F (Du) + η

|Du|2

2
− f · u

)
dx, (4.0.1)

with η ≥ 0, can be considered formally as a particular case of the problem

inf
u∈H

(
h(Ku) + g(u)

)
, (4.0.2)

where g, h are convex, proper, l.s.c. and K : H −→ L2(Ω) is a linear map. For us

Ku = Du, h(Ku) =

∫
Ω

F (Du), g(u) =

∫
Ω

(
α
|u|2

2
+ η
|Du|2

2
− f · u

)
. (4.0.3)

As before denote by 〈., .〉 the L2 duality. The principle of the algorithm is to rewrite (4.0.2) as a

primal problem (P) and a dual problem (D) as follows

(P) = inf
u∈H

(
h(Ku) + g(u)

)
= inf

u∈H
sup
σ∈L2

(
〈σ,Ku〉 − h∗(σ) + g(u)

)
(4.0.4)

= inf
u∈H

sup
σ∈L2

(
〈u,K∗σ〉 − h∗(σ) + g(u)

)
≥ sup

σ∈L2

inf
u∈H

(
〈u,K∗σ〉 − h∗(σ) + g(u)

)
= sup

σ∈L2

(
−g∗(−K∗σ)− h∗(σ)

)
= (D). (4.0.5)

Here K∗ denotes the adjoint operator of K. In our case of Ku = Du, we have K∗σ = −div σ. This

formulation corresponds to (2.3.1), (2.3.2), and here the Lagrangian is

L(σ, u) = 〈σ,Ku〉 − h∗(σ) + g(u). (4.0.6)
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The solution (u, σ) is characterized by ∂uL(σ, u) 3 0 and ∂σL(σ, u) 3 0, which can be written

∂g(u) 3 −K∗σ, ∂h(Ku) 3 σ. (4.0.7)

Then given u and σ, a way to measure the error from the exact solution is to compute the primal-

dual gap

h(Ku) + g(u) + g∗(−K∗σ) + h∗(σ)

=
(
g(u) + g∗(−K∗σ)− 〈u,−K∗σ〉

)
+
(
h(Ku) + h∗(σ)− 〈σ,Ku〉

)
≥ 0,

(4.0.8)

that vanishes only when (u, σ) is a solution. We can notice that when the first relation of (4.0.7) is

satisfied (which corresponds to the momentum conservation (3.2.47)), the primal-dual gap reduces

to (3.2.49).

The idea of the algorithm is to characterize a solution (u, σ) by{
Ku ∈ ∂h∗(σ),

−K∗σ ∈ ∂g(u),
⇐⇒

{
σ ∈ ∂h(Ku),

u ∈ ∂g∗(−K∗σ),
⇐⇒

{
σ = (Id +r∂h∗)−1(σ + rKu),

u = (Id +τ∂g)−1(u− τK∗σ),
(4.0.9)

where r > 0, τ > 0 are two parameters. It leads us to the iterative algorithm of [20],
σk+1 = (Id +r∂h∗)−1(σk + rKūk),

uk+1 = (Id +τ∂g)−1(uk − τK∗σk+1),

ūk+1 = uk+1 + θ(uk+1 − uk),

(4.0.10)

for k ≥ 0, where θ ∈ [0, 1]. According to [20] the stability condition is

rτ‖K‖2 ≤ 1. (4.0.11)

The iteration is completed with initial values u0, σ0, and we set u−1 = u0 so that applying the ū

formula of (4.0.10) also to k = −1 gives ū0 = u0.

The main algorithm is for the choice θ = 1, then ūk = 2uk − uk−1.

4.1 Continuous formulation

Taking into account the definitions (4.0.3), the algorithm (4.0.10) with θ = 1 can be writtenσk+1 = Pr
(
σk + r(2Duk −Duk−1)

)
,

uk+1 − un

∆t
− div σk+1 +

uk+1 − uk
τ

− div ηDuk+1 = −div ηDun + fn,
(4.1.1)

where Pr is defined by (2.4.1). One can see the formal consistency of (4.1.1) with
û− un

∆t
− div σ̂ − div ηDû = −div ηDun + fn,

σ̂ ∈ ∂F (Dû),
(4.1.2)

since according to Lemma 2.4.1(c), σ̂ ∈ ∂F (Dû) if and only if σ̂ = Pr(σ̂ + rDû).

When the viscosity is positive η > 0, at each iteration (4.1.1) we have to solve an elliptic problem.

On the contrary in the inviscid case η = 0 each iteration is fully explicit. The term (uk+1 − uk)/τ
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can be thought as a relaxation term that enforces the convergence. One can consider also a more

regularizing algorithm, replacing it by −div(Duk+1 −Duk)/τ .

We define H = L2(Ω) if η = 0, and H = H1s
0 (Ω) if η > 0, with the norm ‖v‖2

H1s
0

= ‖v‖2L2 +

‖Dv‖2L2 . According to Theorems 3.1.9 and 3.2.9, under some hypotheses on F and Ω there is a

solution (û, σ̂) ∈ H × L2(Ω) to (4.1.2), that satisfies F (Du) ∈ L1(Ω) and F ∗(σ) ∈ L1(Ω).

In order to get error estimates we consider that v 7→ Dv is a bounded operator, i.e. there exists

a constant L ≥ 0 such that

‖Dv‖L2 ≤ L‖v‖L2 . (4.1.3)

Of course this is not true for the inviscid case since then H = L2, but when using discrete approxi-

mations this becomes true with a constant L depending on the approximation space. In the case of

taking the relaxation term as −div(Duk+1−Duk)/τ the assumption (4.1.3) can be simply replaced

by the definition L ≡ 1. In order to understand the mechanism of the estimates, we state a formal

result with the assumption (4.1.3).

Proposition 4.1.1 (Formal). If rτL2 ≤ 1, then the sequence (uk, σk) defined by (4.1.1) verifies

uk → û in L2 as k →∞, where (û, σ̂) is the solution to (4.1.2). Moreover, if η > 0 then Duk → Dû

in L2 as k →∞. If rτL2 < 1 then σk is bounded in L2, and σk+1 − σk → 0 in L2.

Remark: The convergence of σk to σ̂ is a difficult issue related to the non-uniqueness of σ̂ (as

shown in [33] in the case of a Bingham fluid). However div σ̂ is unique.

Proof. We use the shorthand notation ‖ · ‖ for the norm in L2(Ω). In the proof we temporary

ignore the regularity of uk+1, σk+1 and their integrability. By the definition (2.4.1) of Pr we have

σk+1 = (Id +r∂F ∗)−1(σk + r(2Duk −Duk−1)), which is equivalent to

∂F ∗(σk+1) 3 σk − σk+1

r
+ 2Duk −Duk−1.

It follows that

∀σ ∈ L2

∫
F ∗(σ) ≥

∫
F ∗(σk+1) + 〈σk − σk+1

r
+ 2Duk −Duk−1, σ − σk+1〉.

Using the identity 2a · b = |a|2 + |b|2 − |a− b|2, one gets∫
F ∗(σ) ≥

∫
F ∗(σk+1) +

‖σk − σk+1‖2

2r
+
‖σ − σk+1‖2

2r
− ‖σk − σ‖

2

2r
+ 〈2Duk −Duk−1, σ − σk+1〉.

(4.1.4)

Multiplying both sides of the momentum equation of (4.1.1) by u − uk+1 and taking the integral

over Ω, we get for any u ∈ H

〈uk+1 − un

∆t
, u− uk+1〉+ 〈σk+1, Du−Duk+1〉+ 〈uk+1 − uk

τ
, u− uk+1〉 − 〈fn, u− uk+1〉

− η〈Dun −Duk+1, Du−Duk+1〉 = 0.

Applying again the quadratic identity above, we deduce that for any σ ∈ L2

‖u‖2 − ‖uk+1‖2 − ‖u− uk+1‖2

2∆t
− 〈fn − div ηDun +

un

∆t
, u− uk+1〉+ 〈σk+1, Du〉

− 〈σ,Duk+1〉+ 〈σ − σk+1, Duk+1〉 −
‖uk+1 − uk‖2

2τ
− ‖u− uk+1‖2

2τ
+
‖u− uk‖2

2τ

+
η

2
‖Du‖2 − η

2
‖Duk+1‖2 −

η

2
‖Du−Duk+1‖2 = 0.
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Taking the opposite we obtain

‖uk+1‖2

2∆t
+
η

2
‖Duk+1‖2 − 〈fn − div ηDun +

un

∆t
, uk+1〉+ 〈σ,Duk+1〉

+
‖u− uk+1‖2

2∆t
+
η

2
‖Du−Duk+1‖2 +

‖uk+1 − uk‖2

2τ
+
‖u− uk+1‖2

2τ

=
‖u‖2

2∆t
+
η

2
‖Du‖2 − 〈fn − div ηDun +

un

∆t
, u〉+ 〈σk+1, Du〉+

‖u− uk‖2

2τ
+ 〈σ − σk+1, Duk+1〉.

(4.1.5)

Hence, adding (4.1.5) to (4.1.4) one gets for all (u, σ) ∈ H × L2

‖σk − σ‖2

2r
+
‖u− uk‖2

2τ

≥
(
‖uk+1‖2

2∆t
+
η

2
‖Duk+1‖2 −

∫
F ∗(σ)− 〈fn − div ηDun +

un

∆t
, uk+1〉+ 〈σ,Duk+1〉

)
−
(
‖u‖2

2∆t
+
η

2
‖Du‖2 −

∫
F ∗(σk+1)− 〈fn − div ηDun +

un

∆t
, u〉+ 〈σk+1, Du〉

)
+
‖uk+1 − uk‖2

2τ
+
‖u− uk+1‖2

2τ
+
‖σk − σk+1‖2

2r
+
‖σ − σk+1‖2

2r

+
‖u− uk+1‖2

2∆t
+
η

2
‖Du−Duk+1‖2 + 〈σ − σk+1, 2Duk −Duk−1 −Duk+1〉. (4.1.6)

Besides, (û, σ̂) being the exact solution to (4.1.2), we have

∀σ ∈ L2

∫
F ∗(σ) ≥

∫
F ∗(σ̂) + 〈Dû, σ − σ̂〉, (4.1.7)

and applying the same estimate as in (4.1.5),

∀u ‖û‖2

2∆t
+
η

2
‖Dû‖2 − 〈fn − div ηDun +

un

∆t
, û〉+ 〈σ̂, Dû−Du〉+

‖u− û‖2

2∆t
+
η

2
‖Du−Dû‖2

=
‖u‖2

2∆t
+
η

2
‖Du‖2 − 〈fn − div ηDun +

un

∆t
, u〉. (4.1.8)

From (4.1.7), (4.1.8) one has for all (u, σ) ∈ H × L2(
‖u‖2

2∆t
+
η

2
‖Du‖2 −

∫
F ∗(σ̂)− 〈fn − div ηDun +

un

∆t
, u〉+ 〈σ̂, Du〉

)
−
(
‖û‖2

2∆t
+
η

2
‖Dû‖2 −

∫
F ∗(σ)− 〈fn − div ηDun +

un

∆t
, û〉+ 〈σ,Dû〉

)
≥‖u− û‖

2

2∆t
+
η

2
‖Du−Dû‖2. (4.1.9)

Substituting σ = σ̂, u = û in (4.1.6), we can then subtract to (4.1.9) with σ = σk+1 and u = uk+1,

to obtain

‖σk − σ̂‖2

2r
+
‖uk − û‖2

2τ
+ 〈σk − σ̂, Duk −Duk−1〉

≥‖σk+1 − σ̂‖2

2r
+
‖uk+1 − û‖2

2τ
+ 〈σk+1 − σ̂, Duk+1 −Duk〉 − 〈σk+1 − σk, Duk −Duk−1〉

+
‖σk+1 − σk‖2

2r
+
‖uk+1 − uk‖2

2τ
+
‖uk+1 − û‖2

∆t
+ η‖Duk+1 −Dû‖2. (4.1.10)
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Now we have according to the Young inequality, for any λ > 0,∣∣∣〈σk+1 − σk, Duk −Duk−1〉
∣∣∣ ≤ λ‖Duk −Duk−1‖2

2
+
‖σk+1 − σk‖2

2λ
. (4.1.11)

Therefore

‖σk − σ̂‖2

2r
+
‖uk − û‖2

2τ
+ λ
‖Duk −Duk−1‖2

2
+ 〈σk − σ̂, Duk −Duk−1〉

≥‖σk+1 − σ̂‖2

2r
+
‖uk+1 − û‖2

2τ
+ λ
‖Duk+1 −Duk‖2

2
+ 〈σk+1 − σ̂, Duk+1 −Duk〉

+

(
1

2r
− 1

2λ

)
‖σk+1 − σk‖2 +

‖uk+1 − uk‖2

2τ
− λ‖Duk+1 −Duk‖2

2
+
‖uk+1 − û‖2

∆t
+ η‖Duk+1 −Dû‖2.

(4.1.12)

Supposing λ ≥ r, we set

ak =
‖σk − σ̂‖2

2r
+
‖uk − û‖2

2τ
+ λ
‖Duk −Duk−1‖2

2
+ 〈σk − σ̂, Duk −Duk−1〉 ≥ 0. (4.1.13)

Since by (4.1.3) we have ‖Duk+1 −Duk‖ ≤ L‖uk+1 − uk‖, (4.1.12) yields

ak ≥ ak+1 +

(
1

2r
− 1

2λ

)
‖σk+1 − σk‖2 +

(
1

2τL2
− λ

2

)
‖Duk+1 −Duk‖2

+
‖uk+1 − û‖2

∆t
+ η‖Duk+1 −Dû‖2.

(4.1.14)

With the condition τλL2 ≤ 1, or in other words

r ≤ λ ≤ 1

τL2
, (4.1.15)

we deduce that the sequence {ak} is nonincreasing, and it follows that

∞∑
k=0

‖uk+1 − û‖2 <∞, η

∞∑
k=0

‖Duk+1 −Dû‖2 <∞. (4.1.16)

Consequently uk → û, and Duk → Dû if η > 0.

If rτL2 < 1 then one can take λ > r satisfying (4.1.15), and according to the Young inequality

one has

ak ≥
(

1

2r
− 1

2λ

)
‖σk − σ̂‖2. (4.1.17)

Since ak is nonincreasing it is bounded, and it follows that ‖σk− σ̂‖ is bounded, thus σk is bounded

in L2. We also have from (4.1.14) that(
1

2r
− 1

2λ

) ∞∑
k=0

‖σk+1 − σk‖2 <∞, (4.1.18)

which implies that ‖σk+1 − σk‖ → 0.

Remark: In the case of taking the relaxation term as −div(Duk+1−Duk)/τ , all the terms in 1/τ

in (4.1.12) are modified, the norms ‖v‖ of a quantity v are replaced by ‖Dv‖, thus the assumption

(4.1.3) is not necessary, we have simply to take L = 1.
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Remark: The result says nothing about the 2̆018best2̆019 choice of the parameters r, τ . Mean-

while the convergence rate depends a lot on this choice, this is discussed in Chapter 5. Another

heuristic efficient approach is proposed in [30]. A particular feature of this primal2̆013dual al-

gorithm is that it can be accelerated when the function g is uniformly convex. In our case

g(u) =
∫
Ω

(
α |u|

2

2 + η |Du|
2

2 − f · u
)

is α-uniformly convex (recall that α = 1/∆t). Thus accord-

ing to [20] one can get convergence at rate O(1/k2) for the primal-dual gap, which means O(1/k)

for the velocity error.

Proposition 4.1.2 (Formal). Define the accelerated algorithm as

• Initialization: Choose u0, σ0, r0, τ0 such that r0τ0L
2 ≤ 1, and set u−1 = u0.

• Iteration (k ≥ 0): Update rk, τk, uk, σk as

σk+1 = Prk
(
σk + rk(Duk + θk(Duk −Duk−1))

)
,

uk+1 − un

∆t
− div σk+1 +

uk+1 − uk
τk

− div ηDuk+1 = −div ηDun + fn,

τk+1 = θk+1τk, rk+1 =
rk
θk+1

, with θk+1 = 1√
1+2

τk
∆t

.

(4.1.19)

Then uk → û in L2 as k → ∞, with ‖uk − û‖L2 = O(1/k), where (û, σ̂) is the solution to (4.1.2).

Moreover, if r0τ0L
2 < 1, then σk is bounded in L2 and ‖σk+1 − σk‖L2 → 0.

Proof. Note that the value of θ0 is not defined, but does not matter since it appears as a factor of

Du0 −Du−1 = 0. We proceed as in the previous proposition. The inequality (4.1.10) becomes

‖σk − σ̂‖2

2rk
+
‖uk − û‖2

2τk
≥ ‖σk+1 − σ̂‖2

2rk
+
‖uk+1 − û‖2

2τk
+
‖σk+1 − σk‖2

2rk
+
‖uk+1 − uk‖2

2τk
+
‖uk+1 − û‖2

∆t

+ η‖Duk+1 −Dû‖2 +
〈
σk+1 − σ̂, Duk+1 − (Duk + θk(Duk −Duk−1))

〉
.

(4.1.20)

The last term can be decomposed as〈
σk+1 − σ̂, Duk+1 − (Duk + θk(Duk −Duk−1))

〉
=〈σk+1 − σ̂, Duk+1 −Duk〉 − θk〈σk − σ̂, Duk −Duk−1〉 − θk〈σk+1 − σk, Duk −Duk−1〉. (4.1.21)

According to the Young inequality, for any λk > 0 we have

θk

∣∣∣〈σk+1 − σk, Duk −Duk−1〉
∣∣∣ ≤ λkθ2

k

‖Duk −Duk−1‖2

2
+
‖σk+1 − σk‖2

2λk
. (4.1.22)

Hence

‖σk+1 − σ̂‖2

2rk
+
‖uk+1 − û‖2

2τk
+ 〈σk+1 − σ̂, Duk+1 −Duk〉

+

(
1

rk
− 1

λk

)
‖σk+1 − σk‖2

2
+
‖uk+1 − uk‖2

2τk
+
‖uk+1 − û‖2

∆t
+ η‖Duk+1 −Dû‖2

≤ ‖σk − σ̂‖
2

2rk
+
‖uk − û‖2

2τk
+ θk〈σk − σ̂, Duk −Duk−1〉+ λkθ

2
k

‖Duk −Duk−1‖2

2
. (4.1.23)
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Dividing by τk and taking λk ≥ rk, we get

‖σk+1 − σ̂‖2

2rkτk
+

(
1

2τ2
k

+
1

∆tτk

)
‖uk+1 − û‖2 +

1

τk
〈σk+1 − σ̂, Duk+1 −Duk〉+

η

τk
‖Duk+1 −Dû‖2

+

(
1

rk
− 1

λk

)
‖σk+1 − σk‖2

2τk
+

(
1

2τ2
k

‖uk+1 − uk‖2 −
λk
2τk
‖Duk+1 −Duk‖2

)
+
λk
τk

‖Duk+1 −Duk‖2

2

≤ ‖σk − σ̂‖
2

2rkτk
+
‖uk − û‖2

2τ2
k

+
θk
τk
〈σk − σ̂, Duk −Duk−1〉+

λkθ
2
k

τk

‖Duk −Duk−1‖2

2
. (4.1.24)

We notice that

rk+1τk+1 = rkτk,
rk
τk

=
rk+1

τk+1
θ2
k+1,

1

τk
=
θk+1

τk+1
, (4.1.25)

1

2τ2
k

+
1

∆tτk
=

1

2τ2
k

(
1 + 2

τk
∆t

)
=

1

2τ2
k θ

2
k+1

=
1

2τ2
k+1

,

and we define {λk}k≥0 by r0 ≤ λ0 ≤ 1/(τ0L
2) and the update formula

λk+1 = λk
τk+1

τkθ
2
k+1

. (4.1.26)

It follows that λk+1/rk+1 = λk/rk, and λk ≥ rk for all k. By setting

ak =
‖σk − σ̂‖2

2rkτk
+
‖uk − û‖2

2τ2
k

+
λkθ

2
k

τk

‖Duk −Duk−1‖2

2
+
θk
τk
〈σk − σ̂, Duk −Duk−1〉 ≥ 0, (4.1.27)

using that ‖Duk+1 −Duk‖ ≤ L‖uk+1 − uk‖ we obtain

ak+1 +
η

τk
‖Duk+1 −Dû‖2 +

(
1

rk
− 1

λk

)
‖σk+1 − σk‖2

2τk
+

(
1

τ2
kL

2
− λk
τk

)
‖Duk+1 −Duk‖2

2
≤ ak.

(4.1.28)

Since λkτkL
2 = (λ0/r0)rkτkL

2 = λ0τ0L
2 ≤ 1, we have that {ak} is a nonincreasing nonnegative

sequence. As a consequence,

a0 ≥ ak ≥
‖uk − û‖2

2τ2
k

. (4.1.29)

Therefore uk → û in L2 at rate O(τk). According to [20] one has τk ∼ ∆t
k for large k, thus uk → û

at rate O(1/k).

If r0τ0L
2 < 1, then we can take λ0 such that r0 < λ0 < 1/(τ0L

2). Since λk/rk and λkτk are

constant we have then rk < λk < 1/(τkL
2) and

ak ≥
(

1

rk
− 1

λk

)
‖σk − σ̂‖2

2τk
+
‖uk − û‖2

2τ2
k

. (4.1.30)

Since (1/rk − 1/λk)/τk is a positive constant, it follows that ‖σk − σ̂‖ is bounded, so that σk is

bounded in L2. Moreover from (4.1.28) we have

∞∑
k=0

(
1

rk
− 1

λk

)
‖σk+1 − σk‖2

2τk
<∞, (4.1.31)

which proves that ‖σk+1 − σk‖ → 0.

Remark: Since τk → 0 as k →∞, we have rk →∞ and θk → 1.

Remark: It is not clear how to choose τ0, r0 (satisfying r0τ0 ≤ 1/L2) and k in order to reach a given

accuracy at the lowest cost, especially if L is large, which is the case when a space discretisation

comes into play as in the next subsection.
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4.2 Finite element approximation

We suppose now that Ω is a polyhedral domain, and that we have a mesh Th as described in Section

1.5. We define

Vh := {vh ∈ C(Ω) such that vh |K is affine for each cell K ∈ Th, vh |∂Ω= 0}, (4.2.1)

Λh := {σh ∈ L∞(Ω) such that σh |K is constant for each K ∈ Th}. (4.2.2)

Following Theorem 3.1.9, we consider the problem of finding (ûh, σ̂h) ∈ Vh × Λh such that∫
Ω

ûh − un

∆t
· vh +

∫
Ω

σ̂h : Dvh + η

∫
Ω
Dûh : Dvh = η

∫
Ω
Dun : Dvh +

∫
Ω

fn · vh ∀vh ∈ Vh, (4.2.3)

σ̂h ∈ ∂F (Dûh) a.e. in Ω. (4.2.4)

As in Chapter 3 we have to consider the integrated version, which is: find ûh ∈ Vh such that

∀vh ∈ Vh
1

∆t
〈ûh−un, vh−ûh〉+

∫
Ω
F (Dvh)−

∫
Ω
F (Dûh)+η〈Dûh−Dun, Dvh−Dûh〉 ≥ 〈fn, vh−ûh〉,

(4.2.5)

where 〈., .〉 still denotes the L2 duality.

Proposition 4.2.1. We assume that η ≥ 0, and that F is convex and finite everywhere. Then

there exists one and only one solution ûh to the problem (4.2.5), and moreover it satisfies

ûh = argmin
vh∈Vh

J(vh), (4.2.6)

where J is defined by

J(v) =
1

∆t

∫
Ω

1

2
|v|2 +

η

2

∫
Ω

|Dv|2 +

∫
Ω
F (Dv)−G(v), (4.2.7)

with G(v) = 〈fn + un

∆t , v〉+ η〈Dun, Dv〉.

Proof. We note that Vh ⊂ H1s
0 (Ω). Moreover for vh ∈ Vh, Dvh ∈ L∞. Since F is convex and finite

everywhere on a finite-dimensional space, it is continuous and bounded on bounded sets. It follows

that vh 7→
∫

Ω F (Dvh) is a finite valued convex function on Vh. Since Vh has finite dimension, this

functional is thus continuous. Since G is a linear form on Vh, the result follows from the classical

Proposition 2.1.4(a).

Proposition 4.2.2. We assume that η ≥ 0, and that in the viscous case (η > 0) F satisfies

Hypothesis 1, 2, 3, whereas in the inviscid case (η = 0), F satisfies Hypothesis 1, 3, 4, 5. We

denote H = H1s
0 (Ω) if η > 0, H = L2(Ω) if η = 0. Let û ∈ H be the solution to the problem

(3.1.28) if η > 0, respectively (3.2.34) if η = 0, and ûh be the solution to the problem (4.2.5). Then

‖ûh − û‖2L2

∆t
+ η‖Dûh −Dû‖2L2 ≤ 2R̂û, (4.2.8)

and ∣∣∣∫
Ω
F (Dûh)−

∫
Ω
F (Dû)

∣∣∣ ≤ 6

√
MR̂û, (4.2.9)
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where

R̂û = inf
vh∈Vh

(
√
M
(‖vh − û‖2L2

∆t
+η‖Dvh−Dû‖2L2

)1/2
+max

(
0,

∫
Ω
F (Dvh)−

∫
Ω
F (Dû)

))
, (4.2.10)

M = 2|Ω|(E + F (0)) + ∆t‖fn +
un

∆t
‖2L2 + η‖Dun‖2L2 . (4.2.11)

Proof. According to Propositions 3.1.7 and 3.2.7, û is the unique function in H such that

∀v ∈ H 1

∆t
〈û, v − û〉+ η〈Dû,Dv −Dû〉+ ψ(v) ≥ ψ(û) +G(v − û), (4.2.12)

where ψ is defined on H either by (3.1.22) or by (3.2.33). Thus ψ(v) is either
∫

Ω F (Dv) if η > 0, or

if η = 0,
∫

Ω F (Dv) for v ∈ KF
0 (Ω), +∞ if v 6∈ KF

0 (Ω). We have Vh ⊂ H1s
0 (Ω) ⊂ KF

0 (Ω), and ψ(v)

is equal to
∫

Ω F (Dv) for v ∈ Vh. The problem (4.2.12) is also equivalent to minimizing J over H,

with

∀v ∈ H, J(v) =
1

∆t

∫
Ω

1

2
|v|2 +

η

2

∫
Ω

|Dv|2 + ψ(v)−G(v). (4.2.13)

This value of J reduces to (4.2.7) when v ∈ Vh. The problem (4.2.5) with solution ûh ∈ Vh can be

written also

∀vh ∈ Vh
1

∆t
〈ûh, vh − ûh〉+ η〈Dûh, Dvh −Dûh〉+ ψ(vh) ≥ ψ(ûh) +G(vh − ûh). (4.2.14)

In order to prove the estimates, we follow [14] and we denote f = fn + un

∆t . Setting vh = 0 in

(4.2.14), we get

‖ûh‖2

∆t
+ η‖Dûh‖2 + ψ(ûh) ≤ ψ(0) + 〈f, ûh〉+ η〈Dun, Dûh〉. (4.2.15)

Using the Young inequality we obtain

‖ûh‖2

2∆t
+
η

2
‖Dûh‖2 + ψ(ûh) ≤ ψ(0) +

∆t

2
‖f‖2 +

η

2
‖Dun‖2. (4.2.16)

Since F satisfies Hypothesis 3 i.e. F (D) ≥ −E for all D ∈Ms
N×N (R), we deduce

‖ûh‖2

2∆t
+
η

2
‖Dûh‖2 ≤ |Ω|(E + F (0)) +

∆t

2
‖f‖2 +

η

2
‖Dun‖2. (4.2.17)

From (4.2.14), one has for all vh ∈ Vh

1

∆t
〈ûh, û−ûh〉+η〈Dûh, Dû−Dûh〉+ψ(û)−ψ(ûh)+R(vh) ≥ 〈f, û−ûh〉+η〈Dun, Dû−Dûh〉, (4.2.18)

with

R(vh) =
1

∆t
〈ûh, vh−û〉+η〈Dûh, Dvh−Dû〉+ψ(vh)−ψ(û)−〈f, vh−û〉−η〈Dun, Dvh−Dû〉. (4.2.19)

Hence, taking the infimum gives

1

∆t
〈ûh, û− ûh〉+η〈Dûh, Dû−Dûh〉+ψ(û)−ψ(ûh)+ inf

vh∈Vh
R(vh) ≥ 〈f, û− ûh〉+η〈Dun, Dû−Dûh〉.

(4.2.20)
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Taking v = ûh in (4.2.12), we get

1

∆t
〈û, ûh − û〉+ η〈Dû,Dûh −Dû〉+ ψ(ûh)− ψ(û) ≥ 〈f, ûh − û〉+ η〈Dun, Dûh −Dû〉. (4.2.21)

Adding the inequalities (4.2.20) and (4.2.21) yields

‖û− ûh‖2

∆t
+ η‖Dû−Dûh‖2 ≤ inf

vh∈Vh
R(vh). (4.2.22)

We notice that M in (4.2.11) is twice the right-hand side of (4.2.17), thus

‖ûh‖2

∆t
+ η‖Dûh‖2 ≤M. (4.2.23)

Therefore we can estimate (4.2.19) as

R(vh) ≤ 1

∆t
‖ûh‖ ‖vh − û‖+ η‖Dûh‖ ‖Dvh −Dû‖+

(
ψ(vh)− ψ(û)

)
+

+‖f‖ ‖vh − û‖+ η‖Dun‖ ‖Dvh −Dû‖

≤
(‖ûh‖2

∆t
+ η‖Dûh‖2

)1/2(‖vh − û‖2
∆t

+ η‖Dvh −Dû‖2
)1/2

+
(

∆t‖f‖2 + η‖Dun‖2
)1/2(‖vh − û‖2

∆t
+ η‖Dvh −Dû‖2

)1/2
+
(
ψ(vh)− ψ(û)

)
+

≤ 2
√
M
(‖vh − û‖2

∆t
+ η‖Dvh −Dû‖2

)1/2
+
(
ψ(vh)− ψ(û)

)
+
.

(4.2.24)

Taking the infimum over vh ∈ Vh and taking into account that û ∈ KF
0 (Ω) so that ψ(û) =

∫
F (Dû),

it yields

inf
vh∈Vh

R(vh) ≤ 2R̂û. (4.2.25)

With (4.2.22) it gives (4.2.8).

Next, according to (4.2.20) one has

ψ(ûh)− ψ(û) ≤ 〈f, ûh − û〉+ η〈Dun, Dûh −Dû〉+
1

∆t
〈ûh, û− ûh〉+ η〈Dûh, Dû−Dûh〉+ inf

vh∈Vh
R(vh)

≤

((
∆t‖f‖2 + η‖Dun‖2

)1/2
+
(‖ûh‖2

∆t
+ η‖Dûh‖2

)1/2
)

×
(‖ûh − û‖2

∆t
+ η‖Dûh −Dû‖2

)1/2
+ inf
vh∈Vh

R(vh)

≤ 2
√
M
(‖ûh − û‖2

∆t
+ η‖Dûh −Dû‖2

)1/2
+ inf
vh∈Vh

R(vh). (4.2.26)

Similarly using (4.2.21),

ψ(û)− ψ(ûh) ≤ 1

∆t
〈û, ûh − û〉+ η〈Dû,Dûh −Dû〉 − 〈f, ûh − û〉 − η〈Dun, Dûh −Dû〉

≤

((
∆t‖f‖2 + η‖Dun‖2

)1/2
+
(‖û‖2

∆t
+ η‖Dû‖2

)1/2
)

×
(‖ûh − û‖2

∆t
+ η‖Dûh −Dû‖2

)1/2
. (4.2.27)
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But similarly as (4.2.17), taking v = 0 in (4.2.12) yields that û satisfies the same bound (4.2.23) as

ûh. Thus together with (4.2.26) we obtain, noticing that by (4.2.22) the infimum is nonnegative,

∣∣ψ(ûh)− ψ(û)
∣∣ ≤ 2

√
M
(‖ûh − û‖2

∆t
+ η‖Dûh −Dû‖2

)1/2
+ inf
vh∈Vh

R(vh). (4.2.28)

Taking into account (4.2.22) we deduce that∣∣ψ(ûh)− ψ(û)
∣∣ ≤ 2

√
M inf

v̂h∈Vh
R(v̂h) + inf

vh∈Vh
R(vh). (4.2.29)

But taking vh = 0 in (4.2.19) we have

inf
vh∈Vh

R(vh) ≤ R(0) = − 1

∆t
〈ûh, û〉 − η〈Dûh, Dû〉+ ψ(0)− ψ(û) + 〈f, û〉+ η〈Dun, Dû〉

≤M + |Ω|(E + F (0)) +M

≤ 5

2
M.

(4.2.30)

Therefore (4.2.29) yields, with (4.2.25)

∣∣ψ(ûh)− ψ(û)
∣∣ ≤ (2

√
M +

√
5

2
M
)√

inf
vh∈Vh

R(vh) ≤
√

2
(

2 +

√
5

2

)√
MR̂û ≤ 6

√
MR̂û. (4.2.31)

Corollary 4.2.3. With the same assumptions as in Proposition 4.2.2 and if Ω is strictly star-

shaped, when h → 0 one has ûh → û in H1s
0 (Ω) if η > 0, or in L2(Ω) if η = 0. Moreover

Dûh ⇀ Dû in weak L1(Ω) and
∫

Ω F (Dûh)→
∫

Ω F (Dû).

Proof. Since û ∈ H and û ∈ KF
0 (Ω) with ψ(û) <∞ if η = 0, for any ε > 0 there exists w ∈ C∞c (Ω)

such that

‖w − û‖H ≤ ε and
∣∣∣∫ F (Dw)−

∫
F (Dû)

∣∣∣ ≤ ε. (4.2.32)

Indeed if η > 0, by definition of H1s
0 we can find a sequence wk ∈ C∞c such that ‖wk − û‖H1s

0
→ 0.

Then since F is subquadratic one has that
∫
F (Dwk) →

∫
F (Dû), and the result follows. In the

case η = 0, the result follows from Lemma 3.2.4. Then, w being given in C∞c , for h small enough

there is a function vh ∈ Vh such that

‖vh − w‖H1(Ω) ≤ ε and
∣∣∣∫ F (Dvh)−

∫
F (Dw)

∣∣∣ ≤ ε, (4.2.33)

because again v 7→
∫
F (Dv) is continuous on H1s(Ω). From (4.2.32), (4.2.33) we get that for h

small enough we have a function vh ∈ Vh such that

‖vh − û‖H ≤ 2ε and
∣∣∣∫ F (Dvh)−

∫
F (Dû)

∣∣∣ ≤ 2ε. (4.2.34)

This proves that R̂û → 0 as h→ 0. With the estimates (4.2.8), (4.2.9) we conclude the convergence

of ûh to û in H and the convergence of
∫
F (Dûh). About the weak L1 convergence of Dûh, if η > 0

this is obvious since we have convergence in L2. If η = 0 we apply Lemma 3.2.3 and get that after

extraction of a subsequence, Dûh converges in weak L1. Since the limit is necessarily Dû, it proves

that the convergence holds without extracting any subsequence.
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Remark: In Corollary 4.2.3 the convergence holds as h→ 0 at ∆t fixed. The analysis in the case

of small ∆t for a time-dependent problem is slighly different and is done in [14], at least in the case

when F attains its minumum at 0, i.e. E + F (0) = 0.

Proposition 4.2.4 (Discrete Euler-Lagrange equations). We assume that η ≥ 0, and that F is

convex, finite everywhere and lower bounded. Then the solution ûh ∈ Vh to the problem (4.2.5) ob-

tained in Proposition 4.2.1 is characterized by the existence of σ̂h ∈ Λh such that the local equations

(4.2.3), (4.2.4) hold.

Proof. Assume first that (ûh, σ̂h) ∈ Vh × Λh satisfy (4.2.3), (4.2.4). Consider wh ∈ Vh. Then by

(4.2.4) one has

F (Dwh) ≥ F (Dûh) + σ̂h : (Dwh −Dûh) a.e. in Ω. (4.2.35)

Integrating over Ω we obtain∫
Ω
F (Dwh) ≥

∫
Ω
F (Dûh) + 〈σ̂h, Dwh −Dûh〉. (4.2.36)

Taking in (4.2.3) vh = wh−ûh and using the previous inequality we get (4.2.5) with the test function

wh.

Conversely, knowing that there is existence and uniqueness for (4.2.5), we only have to prove that

there exists a solution (ûh, σ̂h) ∈ Vh × Λh to (4.2.3), (4.2.4). Let us consider first the case when

F is continuously differentiable. Then we have a solution ûh to (4.2.5). Consider a test function

wh ∈ Vh, and take vh = ûh + twh for t 6= 0, in (4.2.5). We obtain

1

∆t
〈ûh − un, twh〉+ η〈Dûh −Dun, tDwh〉

+

∫
Ω
F (Dûh + tDwh)−

∫
Ω
F (Dûh) ≥ 〈fn, twh〉.

(4.2.37)

Dividing by t > 0 and letting t→ 0 we obtain using Lebesgue’s theorem since Dûh, Dwh belong to

L∞,
1

∆t
〈ûh − un, wh〉+ η〈Dûh −Dun, Dwh〉+

∫
Ω
F ′(Dûh) : Dwh ≥ 〈fn, wh〉. (4.2.38)

Using the same argument for t < 0 we obtain the converse inequality, we we deduce that (4.2.38)

is indeed an equality. Since ûh ∈ Vh is continuous and piecewise affine, Dûh is piecewise constant,

i.e. Dûh ∈ Λh. Setting σ̂h = F ′(Dûh) ∈ Λh, we obtain (4.2.3), (4.2.4).

Now in the general case when F is not differentiable, for any ε > 0 we can consider the Moreau

envelope Fε of F of Proposition 2.1.4. Then Fε is continuously differentiable, and converges mono-

tonically to F as ε→ 0. We can apply the existence result to Fε, thus there exist (ûεh, σ̂
ε
h) ∈ Vh×Λh

satisfying∫
Ω

ûεh − un

∆t
· vh +

∫
Ω

σ̂εh : Dvh + η

∫
Ω
Dûεh : Dvh = η

∫
Ω
Dun : Dvh +

∫
Ω

fn · vh ∀vh ∈ Vh,

(4.2.39)

σ̂εh ∈ ∂Fε(Dûεh) a.e. in Ω. (4.2.40)
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We have that ûεh also satisfies (4.2.5) with F replaced by Fε. Since F is lower bounded by a constant

−E one has that Fε is lower bounded by the same constant. Thus taking vh = 0 as test function,

we can do the same estimate (4.2.17) as in Proposition 4.2.2, and get

‖ûεh‖2

2∆t
+
η

2
‖Dûεh‖2 ≤ |Ω|(E + Fε(0)) +

∆t

2
‖f‖2 +

η

2
‖Dun‖2. (4.2.41)

We have Fε(0) ≤ F (0), thus ûεh is bounded in H independently of ε. But since ûεh ∈ Vh and Vh
is finite dimensional, we deduce that ûεh is bounded in Vh, and thus that Dûεh is bounded in L∞.

Since ∂F (D) remains bounded when D lies in a bounded set, using Lemma 3.1.1 and Proposition

2.1.4(c)(e) we deduce that F ′ε(D) remains bounded when D lies in a bounded set, independently

of ε ≤ ε0. It follows that σ̂εh is bounded in L∞ independently of ε. Extracting a subsequence if

necessary, (Vh and Λh are finite dimensional), we get ûεh → ûh ∈ Vh, σ̂εh → σ̂h ∈ Λh as ε→ 0. The

spaces Vh and Λh being finite dimensional, we have thus Dûεh → Dûh in L∞, σ̂εh → σ̂h in L∞. Thus

we can pass to the limit in (4.2.39) and get (4.2.3). Then according to (4.2.40) one has for all D

Fε(D) ≥ Fε(Dûεh) + σ̂εh : (D −Dûεh) a.e. in Ω. (4.2.42)

The ’almost everywhere’ means indeed that it holds on all cells K ∈ Th, since the quantities are

constant on each cell. For ε ≤ ε0 we have Fε(Dû
ε
h) ≥ Fε0(Dûεh). Thus letting ε→ 0 we get

F (D) ≥ Fε0(Dûh) + σ̂h : (D −Dûh) a.e. in Ω. (4.2.43)

Finally we let ε0 → 0 and get that σ̂h ∈ ∂F (Dûh) a.e., i.e. (4.2.4).

We can now give a complement to Corollary (4.2.3).

Proposition 4.2.5. With the same assumptions as in Proposition 4.2.2 and if Ω is strictly star-

shaped, when h→ 0 one has ûh → û in H. According to Proposition 4.2.4 there exists some σ̂h ∈ Λh
such that the local equations (4.2.3), (4.2.4) hold. Then after extraction of a subsequence one has

σ̂h ⇀ σ̂ in weak L2(Ω), where (û, σ̂) is a solution to (3.1.32) if η > 0, or to (3.2.46), (3.2.47),

(3.2.48), (3.2.49) if η = 0. Moreover one has
∫

Ω F
∗(σ̂h)→

∫
Ω F

∗(σ̂).

Proof. Since σ̂h satisfies (4.2.4), we have

σ̂h : Dûh = F (Dûh) + F ∗(σ̂h) a.e. in Ω. (4.2.44)

The functions involved in this identity are indeed constant in each cell K ∈ Th. If follows that

F ∗(σ̂h) ∈ L∞(Ω). Then taking vh = ûh in (4.2.3) and using (4.2.44) we obtain

‖ûh‖2

∆t
+ η‖Dûh‖2 +

∫
Ω
F (Dûh) +

∫
Ω
F ∗(σ̂h) = η〈Dun, Dûh〉+ 〈fn +

un

∆t
, ûh〉. (4.2.45)

Since F and F ∗ are lower bounded, this gives bounds on ‖ûh‖H ,
∫
F (Dûh),

∫
F ∗(σ̂h) independent

of h. By Lemma 3.1.3(a) we deduce that σ̂h is bounded in L2(Ω) independently of h. Thus

after extraction of a subsequence, there is some σ̂ ∈ L2(Ω) such that σ̂h ⇀ σ̂ in weak L2. Since

σ 7→
∫
F ∗(σ) is convex and l.s.c. on L2, thus it is also l.s.c. on weak L2. Therefore passing to the

limit in (4.2.45) and using Corollary (4.2.3) we obtain

‖û‖2

∆t
+ η‖Dû‖2 +

∫
Ω
F (Dû) +

∫
Ω
F ∗(σ̂) ≤ η〈Dun, Dû〉+ 〈fn +

un

∆t
, û〉. (4.2.46)
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Thus if η = 0 we get (3.2.49) and (3.2.46). Next, for ϕ ∈ C∞c (Ω) and ε > 0, as in Corollary (4.2.3),

for h small enough there exists vh ∈ Vh such that ‖vh − ϕ‖H1 ≤ ε. The formulation (4.2.3) ensures

then that for h small enough∣∣∣∣∣
∫
Ω

ûh − un

∆t
· ϕ+

∫
Ω

σ̂h : Dϕ+ η

∫
Ω
Dûh : Dϕ− η

∫
Ω
Dun : Dϕ−

∫
Ω

fn · ϕ

∣∣∣∣∣ ≤ Cε, (4.2.47)

where C is a constant independent of h and ε. Letting h→ 0 we get∣∣∣∣∣
∫
Ω

û− un

∆t
· ϕ+

∫
Ω

σ̂ : Dϕ+ η

∫
Ω
Dû : Dϕ− η

∫
Ω
Dun : Dϕ−

∫
Ω

fn · ϕ

∣∣∣∣∣ ≤ Cε. (4.2.48)

Since this holds for any ε > 0 we conclude that

û− un

∆t
− div σ̂ − η divDû = −η divDun + fn, (4.2.49)

in the sense of distributions in Ω. This proves the first equation of (3.1.32) in the case η > 0 or

(3.2.47) in the case η = 0. Then we have to prove the second equation of (3.1.32) in the case η > 0,

or (3.2.48) in the case η = 0, which is any case writes σ̂ ∈ ∂F (Dû) a.e. in Ω. We have proved in

Theorem 3.2.9 that for η = 0 this condition was consequence of the others, thus it is not necessary

to prove it. In the case η > 0 we can use the same argument. By density of C∞c in H1s
0 we can take

û as test function in (4.2.49), giving

‖û‖2

∆t
+ η‖Dû‖2 + 〈σ̂, Dû〉 = η〈Dun, Dû〉+ 〈fn +

un

∆t
, û〉. (4.2.50)

Comparing to (4.2.46) we deduce that∫
Ω
F (Dû) +

∫
Ω
F ∗(σ̂) ≤ 〈σ̂, Dû〉, (4.2.51)

which proves that σ̂ ∈ ∂F (Dû) a.e. in Ω. Finally we have F (Dû) + F ∗(σ̂) = σ̂ : Dû a.e. in Ω, and

we deduce that there is equality in (4.2.46) (in the case η = 0 this was already proved in Theorem

3.2.9). Therefore comparing to (4.2.45) we conclude that
∫

Ω F
∗(σ̂h)→

∫
Ω F

∗(σ̂).

Next we prove the convergence of the algorithm (4.1.1), corresponding to θ = 1, applied at the

discrete level. This means that we define a sequence (ukh, σ
k
h) ∈ Vh×Λh for all k ≥ 0 by the iteration

formula: for k ≥ 0 σk+1
h = Pr

(
σkh + r(2Dukh −Duk−1

h )
)

a.e. in Ω,

〈
uk+1
h − un

∆t
, vh〉+ 〈σk+1

h , Dvh〉+ 〈
uk+1
h − ukh

τ
, vh〉+ η〈Duk+1

h −Dun, Dvh〉 = 〈fn, vh〉, ∀vh ∈ Vh,
(4.2.52)

where Pr is defined by (2.4.1) and 〈., .〉 still denotes the L2 scalar product. Here r > 0 and τ > 0

are parameters. We observe that the first equation in (4.2.52) deals with data that are constant in

each cell K ∈ Th. Thus this formula is applied independently in each cell. By the Riesz theorem

the second equation determines a unique solution uk+1
h ∈ Vh.

Given u0
h ∈ Vh and σ0

h ∈ Λh we set u−1
h = u0

h. Then the above iteration formulas define (ukh, σ
k
h) ∈

Vh × Λh for all k ≥ 0. One can see the formal consistency with (4.2.3), (4.2.4).

The operator vh 7→ Dvh being linear, it is bounded on Vh since Vh is finite dimensional,

‖Dvh‖L2 ≤ Lh‖vh‖L2 ∀vh ∈ Vh. (4.2.53)
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Theorem 4.2.6. We assume that η ≥ 0, and that F is convex, finite everywhere and lower bounded.

We denote by ûh ∈ Vh the solution to (4.2.5) obtained in Proposition 4.2.1, and we assume that

rτL2
h ≤ 1. (4.2.54)

Then the sequence defined by the algorithm (4.2.52) verifies ukh → ûh in Vh as k →∞. Moreover if

there is strict inequality in (4.2.54) then σkh is bounded in Λh, and up to extraction of a subsequence

one has σkh → σ̂h in Λh, where (ûh, σ̂h) ∈ Vh×Λh solves (4.2.3), (4.2.4), as obtained in Proposition

4.2.4.

Proof. We proceed as exposed in the formal proof of Proposition 4.1.1. Due to the definition (2.4.1)

of Pr, one has

∂F ∗(σk+1
h ) 3

σkh − σ
k+1
h

r
+ 2Dukh −Duk−1

h a.e. in Ω. (4.2.55)

We deduce that F ∗(σk+1
h ) <∞ and thus since it is piecewise constant, F ∗(σk+1

h ) ∈ L∞ and

∀σh ∈ Λh

∫
F ∗(σh) ≥

∫
F ∗(σk+1

h ) + 〈
σkh − σ

k+1
h

r
+ 2Dukh −Duk−1

h , σh − σk+1
h 〉. (4.2.56)

Using the quadratic identity, it follows that for any σh ∈ Λh∫
F ∗(σh) ≥

∫
F ∗(σk+1

h ) +
‖σkh − σ

k+1
h ‖2

2r
+
‖σh − σk+1

h ‖2

2r
−
‖σkh − σh‖2

2r
+ 〈2Dukh −Duk−1

h , σh − σk+1
h 〉.

(4.2.57)

Taking vh = uh − uk+1
h in the momentum equation of (4.2.52) we get for any uh ∈ Vh

〈
uk+1
h − un

∆t
, uh − uk+1

h 〉+ 〈σk+1
h , Duh −Duk+1

h 〉+ 〈
uk+1
h − ukh

τ
, uh − uk+1

h 〉
+η〈Duk+1

h −Dun, Duh −Duk+1
h 〉 − 〈fn, uh − uk+1

h 〉 = 0.
(4.2.58)

Then following the proof of Proposition 4.1.1 we obtain (4.1.6). Besides, according to Proposition

4.2.4 one can complete the solution ûh to (4.2.5) by σ̂h ∈ Λh so that (ûh, σ̂h) solves (4.2.3), (4.2.4).

Then since σ̂h ∈ ∂F (Dûh) a.e., one has F ∗(σ̂h) ∈ L∞ and

∀σh ∈ Λh

∫
F ∗(σh) ≥

∫
F ∗(σ̂h) + 〈Dûh, σh − σ̂h〉. (4.2.59)

Then we follow the proof of Proposition 4.1.1. We take some λ such that

r ≤ λ ≤ 1

τL2
h

, (4.2.60)

which is possible according to (4.2.54). Defining ak as (4.1.13), we obtain the inequality (4.1.14),

and the estimates (4.1.16). We deduce that ukh → ûh in L2. In the case of strict inequality rτL2
h < 1,

one can choose λ with strict inequalities in (4.2.60). Then (4.1.17), (4.1.18) hold, and it follows

that σkh is bounded in L2 and ‖σk+1
h − σkh‖ → 0 as k → ∞. Since Λh is finite dimensional, after

extraction of a subsequence one has σkh → σ̂h ∈ Λh (that may be different from the one previously

considered). Passing to the limit in (4.2.52) and using that ukh → ûh and σk+1
h − σkh → 0 we obtain

(4.2.3), (4.2.4).

One can also consider the accelerated algorithm (4.1.19), that can be written as defining

(ukh, σ
k
h) ∈ Vh × Λh by
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• Initialization: Choose u0
h ∈ Vh, σ0

h ∈ Λh, r0, τ0 such that r0τ0L
2
h ≤ 1, and set u−1

h = u0
h.

• Iteration (k ≥ 0): Update rk, τk, u
k
h, σkh as

σk+1
h = Prk

(
σkh + rk(Du

k
h + θk(Du

k
h −Du

k−1
h ))

)
a.e. in Ω,

〈
uk+1
h − un

∆t
, vh〉+ 〈σk+1

h , Dvh〉+ 〈
uk+1
h − ukh
τk

, vh〉+ η〈Duk+1
h −Dun, Dvh〉 = 〈fn, vh〉, ∀vh ∈ Vh,

τk+1 = θk+1τk, rk+1 =
rk
θk+1

, with θk+1 = 1√
1+2

τk
∆t

.

(4.2.61)

Theorem 4.2.7. We assume that η ≥ 0, and that F is convex, finite everywhere and lower bounded.

We denote by ûh ∈ Vh the solution to (4.2.5) obtained in Proposition 4.2.1, and we assume that

r0τ0L
2
h ≤ 1, (4.2.62)

where Lh is such that (4.2.53) holds. Then the sequence defined by the algorithm (4.2.61) verifies

ukh → ûh as k → ∞ with ‖ukh − ûh‖L2 = O(1/k). Moreover if there is strict inequality in (4.2.62)

then σkh is bounded in Λh, and up to extraction of a subsequence one has σkh → σ̂h in Λh, where

(ûh, σ̂h) ∈ Vh × Λh solves (4.2.3), (4.2.4).

Proof. It is identical to the one of the previous theorem, taking into account the arguments in the

proof of Proposition 4.1.2.

Remark: For the inviscid case η = 0, we would like to use a really explicit algorithm, thus not

having to invert the mass matrix in order to get uk+1
h from the second line of (4.2.52). With the

notation of Section 1.5 we thus introduce the scalar product over Vh × Vh

〈uh, vh〉h =

∫
Ω
uh · vh. (4.2.63)

We then use this scalar product instead of the L2 scalar product on Vh × Vh. In particular, the

second line of (4.2.52) is changed into

〈
uk+1
h − un

∆t
, vh〉h+ 〈σk+1

h , Dvh〉+ 〈
uk+1
h − ukh

τ
, vh〉h+η〈Duk+1

h −Dun, Dvh〉 = 〈fn, vh〉h, ∀vh ∈ Vh,
(4.2.64)

where un and fn are approximations in Vh of un and fn respectively. Note that we do not modify the

scalar product of matrices: the terms involving D are unmodified. Then with this formulation there

is no linear system to invert at all, each iteration is the multiplication of the vector of unknowns

by a (sparse) matrix. The definition of Lh has to be modified however, as

‖Dvh‖L2 ≤ Lh〈vh, vh〉
1/2
h , ∀vh ∈ Vh. (4.2.65)

Remark: It is not straightforward to use a higher order approximation in space, for example by

taking Vh = P2 for u and Λh = P1 for σ, since the projection step (first line of (4.2.52)) would not

operate in the discrete space Λh. Thus one would have to consider a further projection to Λh as

〈σk+1
h , σh〉 = 〈Pr

(
σkh + r(2Dukh −Duk−1

h )
)
, σh〉, ∀σh ∈ Λh. (4.2.66)

Then we cannot ensure the condition σ̂h ∈ ∂F (Dûh) a.e. for the limit (ûh, σ̂h) obtained as k →∞.
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Chapter 5

Numerical experiments

5.1 1D Bingham model with Euler transport

In the numerical experiments, additionally to the viscoplastic rheology we include transport (iner-

tial) terms. With such terms, incompressible viscoplastic models were considered years ago, and

lots of explicit or reference solutions are available, as well as laboratory experiments. One of the

obstacles in the numerical evaluation of compressible models with Euler transport terms is the lack

of explicit solutions. In this first test we propose an analytical solution for the one-dimensional

compressible Euler equations with Bingham rheology. This will be used as a particular 1d solution

to our 2d model. In the 1d model the unknown (ρ(t, x), u(t, x)) has to satisfy



∂tρ+ ∂x(ρu) = 0 in (0, T )× (0, L),

∂t(ρu) + ∂x(ρu2 + p(ρ))− ∂x
(
σ0

∂xu

|∂xu|

)
= f in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 for t ∈ (0, T ),

ρ(0, x) = ρini(x), u(0, x) = uini(x) for x ∈ (0, L),

(5.1.1)

where p(ρ) =
1

2
ρ2, Ω = (0, L) and f(t, x) is a given force term. We take L = 4, σ0 = 1, T = 1 and

we build an exact solution such that u has the form

u(t, x) =


tx if 0 ≤ x ≤ 1,

t if 1 ≤ x ≤ 3,

t(4− x) if 3 ≤ x ≤ 4.

(5.1.2)

Indeed ρ and f will be derived from this choice. In order to find the density we look for the flow

X(s, t, x) that satisfies

dX

ds
= u(s,X), X(t, t, x) = x. (5.1.3)

Classically, a function V (t, x) satisfies the linear transport equation

∂tV + u∂xV = 0 (5.1.4)
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if and only if V (t, x) = V0(X(s = 0, t, x)). In our case of u given by (5.1.2) a (not so simple)

computation gives for s, t ≥ 0 and 0 ≤ x ≤ 4

X(s, t, x) =


min

(
xe

s2−t2
2 , 1

)
+ min

(
( s

2−t2
2 − ln 1

x)+, 2
)

+
(
1− 1

xe
2+(t2−s2)/2

)
+

if 0 ≤ x ≤ 1,

min
(
e
s2−t2

2
+x−1, 1

)
+ min

((
x− 1 + s2−t2

2

)
+
, 2
)

+
(
1− e3−x+(t2−s2)/2

)
+

if 1 ≤ x ≤ 3,

min
(

1
4−xe

s2−t2
2

+2, 1
)

+ min
((

s2−t2
2 + 2− ln(4− x)

)
+
, 2
)

+
(
1− (4− x)e

t2−s2
2

)
+

if 3 ≤ x ≤ 4.

Then by taking s = 0 and assuming t ≤ 2 we get

X(s = 0, t, x) =



xe−
t2

2 if 0 ≤ x ≤ 1,

ex−1− t
2

2 if 1 ≤ x ≤ 1 + t2

2 ,

x− t2

2 if 1 + t2

2 ≤ x ≤ 3,

3− t2

2 − ln(4− x) if 3 ≤ x ≤ 4− e−
t2

2 ,

4− (4− x)e
t2

2 if 4− e−
t2

2 ≤ x ≤ 4.

(5.1.5)

Taking the spatial derivative of (5.1.4), we get ∂tρ+∂x(ρu) = 0 with ρ = ∂xV . Thus ρ(t, x) is given

by ρ(t, x) = ρ0(X(s = 0, t, x))∂xX(s = 0, t, x). Taking ρ0(x) = 1 we obtain

ρ(t, x) = ∂xX(s = 0, t, x) =



e−
t2

2 if 0 < x < 1,

ex−1− t
2

2 if 1 < x < 1 + t2

2 ,

1 if 1 + t2

2 < x < 3,

1
4−x if 3 < x < 4− e−

t2

2 ,

e
t2

2 if 4− e−
t2

2 < x < 4.

(5.1.6)

Then we compute

∂xu =


t if 0 < x < 1,

0 if 1 < x < 3,

−t if 3 < x < 4,

(5.1.7)

and we take

sgn ∂xu =


1 if 0 < x < 1,

2− x if 1 < x < 3,

−1 if 3 < x < 4,

(5.1.8)

which implies that

∂x(sgn ∂xu) =


0 if 0 < x < 1,

−1 if 1 < x < 3,

0 if 3 < x < 4.

(5.1.9)

Therefore f is finally deduced as

∂t(ρu)+∂x(ρu2+p(ρ))−∂x(sgn ∂xu) = f(t, x) =



xe−
t2

2 (1 + t2) if 0 < x < 1,

ex−1− t
2

2 + e2x−2−t2 + σ0 if 1 < x < 1 + t2

2 ,

1 + σ0 if 1 + t2

2 < x < 3,

1− t2 + 1
(4−x)3 if 3 < x < 4− e−

t2

2 ,

e
t2

2 (4− x)(1− t2) if 4− e−
t2

2 < x < 4.

(5.1.10)

74



x0 x1 x2 xNx xNx+1

h/2 h h h h/2

Figure 5.1: Locations xi of the degrees of freedom and size of the cells

Space Discretisation. The interval [0, L] is divided intoNx+1 finite element cells (x0, x1),. . . ,(xNx , xNx+1)

with

0 = x0 <
h

2
= x1 <

3h

2
= x2 < · · · <

(
Nx −

1

2

)
h = xNx < L = xNx+1, (5.1.11)

where h =
L

Nx
, see Figure 5.1. The two boundary cells have size half of the size of the internal

cells. We denote uni ≈ u(tn, xi), ρ
n
i ≈ ρ(tn, xi). In our scheme the unknown function u(t, x) is

reconstructed simultaneously from the values uh = (ui)i∈{0,··· ,Nx+1} using a continuous piecewise

affine reconstruction denoted by ûh, and a piecewise constant reconstruction denoted by ūh. Thus

for all uh ∈ RNx+2 we have

ûh ∈ C([0, L]), ûh is affine for each interval [xi, xi+1], ûh(xi) = ui ∀i ∈ {0, · · · , Nx + 1}, (5.1.12)

ūh ∈ L1
loc((0, L)), ūh(x) = ui ∀x ∈ ((i− 1)h, ih), i ∈ {1, · · · , Nx}. (5.1.13)

We use the same notation for ρh, ρ̄h.

Numerical scheme. The numerical scheme approximating (5.1.1) is given by

1- Initialisation of u0
h ∈ RNx+2, ρ0

h ∈ RNx+2:

u0
i = uinit(xi) ∀i ∈ {0, · · · , Nx + 1},
ρ0
i = ρinit(xi) ∀i ∈ {0, · · · , Nx + 1}.

2- Finite volume step: Suppose that (unh, ρ
n
h) are known. We define u

n+ 1
2

h , ρ
n+ 1

2
h which approximate

(un+ 1
2 , ρn+ 1

2 ), the solution to 1.3.1:

U
n+ 1

2
i = Uni −

∆t

h

(
Fi+ 1

2
− Fi− 1

2

)
, (5.1.14)

where Uni := (ρni , ρ
n
i u

n
i ) and similarly with U

n+ 1
2

i . We consider here only first-order explicit three

points schemes where

Fi+ 1
2

= F (Uni , U
n
i+1). (5.1.15)

The function F (Ul, Ur) is called the numerical flux. There are lots of different choices for F , some

of being well-known and widely used, as the upwind, Lax-Friedrichs or Siliciu schemes. We will not

discuss further this here, and just apply a known numerical flux such as the Suliciu one, see [11].

There is however an associated CFL condition (for Courant, Friedrichs, Levy [24]) on the timestep

to prevent the blow up of the numerical values, under the form

∆ta ≤ h, (5.1.16)

where a is an approximation of the propagation speed.

We have to use compatible boundary conditions between the finite volume and finite element

steps. We use the Dirichlet boundary condition in the finite element step and the “wall” condition
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for the finite volume step. This means that, the basic unknowns being for i = 1, . . . , Nx, we set

before the finite volume step

ρn0 = ρn1 , ρnNx+1 = ρnNx , un0 = −un1 , unNx+1 = −unNx . (5.1.17)

3- Finite element step: for illustrative purpose we use the regularisation method. Suppose

that (u
n+ 1

2
h , ρ

n+ 1
2

h ) are known. We define un+1
h , ρn+1

h which approximate un+1, ρn+1 the solution to

(1.3.2), as ρn+1
h = ρ

n+1/2
h and

∫ L

0
ρn+1
h

ūn+1
h − ūn+ 1

2
h

∆t
v̄h dx +σ0

∫ L

0

∂xû
n+1
h

|∂xûn+1
h |

∂xv̂h dx =

∫ L

0
f̄hv̄h dx ∀v̂h ∈ Vh. (5.1.18)

Using the regularisation method, we replace this by the approximation, for a small positive ε,

∫ L

0
ρn+1
h

ūn+1
h − ūn+ 1

2
h

∆t
v̄h dx +σ0

∫ L

0

∂xû
n+1
h√

|∂xûn+1
h |2 + ε2

∂xv̂h dx =

∫ L

0
f̄hv̄h dx ∀v̂h ∈ Vh. (5.1.19)

Note that ε is chosen “optimally” as

ε ∼ 10−2h
2||∂xu||2ρ
σ0

1

T
, (5.1.20)

see [43]. We use the fixed point method to get un+1
h . We initialize un+1,0

h = u
n+1/2
h , and when

un+1,k
h is known we compute un+1,k+1

h by

∫ L

0
ρn+1
h

ūn+1,k+1
h − ūn+ 1

2
h

∆t
v̄h dx +σ0

∫ L

0

∂xû
n+1,k+1
h√

|∂xûn+1,k
h |2 + ε2

∂xv̂h dx =

∫ L

0
f̄hv̄h dx ∀v̂h ∈ Vh.

(5.1.21)

The unknown ûn+1,k+1
h has to vanish at 0 and L, thus it remains only the unknown values un+1,k+1

i

for i = 1, . . . , Nx. By choosing v̂h = v̂jh the function such that v̂jh(xk) = 1 if k = j and 0 if k 6= j, it

yields

∫ L

0
ρn+1
h

ūn+1,k+1
h − ūn+ 1

2
h

∆t
v̄jh =

Nx∑
i=1

hρ
n+1/2
i

un+1,k+1
i − un+ 1

2
i

∆t
vji = hρ

n+1/2
j

un+1,k+1
j − un+ 1

2
j

∆t
, j = 1, . . . , Nx,

(5.1.22)

∫ L

0

∂xû
n+1,k+1
h√

|∂xûn+1,k
h |2 + ε2

∂xv̂
j
h =



un+1,k+1
1 −un+1,k+1

2√
h2ε2+

∣∣∣un+1,k
1 −un+1,k

2

∣∣∣2 +
un+1,k+1

1√
h2

4
ε2+(un+1,k

1 )2
j = 1,

un+1,k+1
j −un+1,k+1

j+1√
h2ε2+

∣∣∣un+1,k
j+1 −un+1,k

j

∣∣∣2 +
un+1,k+1
j −un+1,k+1

j−1√
h2ε2+

∣∣∣un+1,k
j −un+1,k

j−1

∣∣∣2 2 ≤ j ≤ Nx − 1,

−un+1,k+1
Nx−1 +un+1,k+1

Nx√
h2ε2+

∣∣∣un+1,k
Nx

−un+1,k
Nx−1

∣∣∣2 +
un+1,k+1
Nx√

h2

4
ε2+(un+1,k

Nx
)2

j = Nx,

(5.1.23)
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∫ L

0
f̄ v̄jh =



h

(
f0

12
+
f1

2
+
f2

6

)
j = 1,

h

(
fj−1

6
+

2fj
3

+
fj+1

6

)
2 ≤ j ≤ Nx − 1,

h

(
fNx−1

6
+
fN
2

+
fNx+1

12

)
j = Nx.

(5.1.24)

To find un+1,k+1
h , one has to solve the system of linear equations AX = F as



a1 −b1
−b1 a2 −b2

−b2 a3 −b3
. . .

−bNx−2 aNx−1 −bNx−1

−bNx−1 aNx





un+1,k+1
1

...

...

...

...

un+1,k+1
Nx


=



F1

...

...

...

...

FNx


, (5.1.25)
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where

bi =
σ0∆t√

h2ε2 +
∣∣∣un+1,k
i+1 − un+1,k

i

∣∣∣2 , i = 1, . . . , Nx − 1,

a1 =
σ0∆t√

h2ε2 +
∣∣∣un+1,k

2 − un+1,k
1

∣∣∣2 +
σ0∆t√

h2

4 ε
2 +

(
un+1,k

1

)2
+ hρ

n+1/2
1

= b1 +
σ0∆t√

h2

4 ε
2 +

(
un+1,k

1

)2
+ hρ

n+1/2
1 ,

aNx =
σ0∆t√

h2ε2 +
∣∣∣un+1,k
Nx−1 − u

n+1,k
Nx

∣∣∣2 +
σ0∆t√

h2

4 ε
2 +

(
un+1,k
Nx

)2
+ hρ

n+1/2
Nx

= bNx−1 +
σ0∆t√

h2

4 ε
2 +

(
un+1,k
Nx

)2
+ hρ

n+1/2
Nx

,

ai =
σ0∆t√

h2ε2 +
∣∣∣un+1,k
i−1 − un+1,k

i

∣∣∣2 +
σ0∆t√

h2ε2 +
∣∣∣un+1,k
i − un+1,k

i+1

∣∣∣2 + hρ
n+1/2
i

= bi−1 + bi + hρ
n+1/2
i , i = 2, . . . , Nx − 1,

F1 = h∆t

(
f0

12
+
f1

2
+
f2

6

)
+ hρ

n+1/2
1 un1 , FNx = h∆t

(
fNx−1

6
+
fN
2

+
fNx+1

12

)
+ hρ

n+1/2
Nx

unNx ,

Fi = h∆t

(
fi−1

6
+

2fi
3

+
fi+1

6

)
+ hρ

n+1/2
i uni , i = 2, . . . , Nx − 1.

This tridiagonal system is resolved classically writing

un+1,k+1
i = λiu

n+1,k+1
i+1 + ri, for i = 1, . . . , Nx − 1. (5.1.26)

The system (5.1.25) indeed gives the recursive formulas

λ1 =
b1
a1
, λi =

bi
ai − bi−1λi−1

for i = 2, . . . , Nx − 1, (5.1.27)

r1 =
F1

a1
, ri =

Fi + bi−1ri−1

ai − bi−1λi−1
for i = 2, . . . , Nx. (5.1.28)

We find un+1,k+1 by setting un+1,k+1
Nx

= rNx and applying (5.1.26).

The previous procedure enables to find un+1,k+1 from the knowledge of un+1,k. We stop the

iteration procedure when a stopping criterion is satisfied, ‖un+1,k+1 − un+1,k‖ ≤ εtol.

The numerical results are shown on Figure 5.2 with Nx = 300 and εtol = 1e-7. It uses 32603

iterations in time with the final time T = 1 and ∆t = 1.114e-5 for the final time step. As can be
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Figure 5.2: One-dimensional compressible Bingham model: comparison between exact and approx-

imate solution computed by the regularisation method. Left: ρ, right: u.

seen in the left subfigure of Figure 5.2 there is no significant difference between the computed ρ

(red line) and the exact ρ (green line) at the final time T = 1. We have the same conclusion for u.

In fact, the L1 error in this case is 3.872e-3 i.e. ‖(ρ̂NTh − ρ(T )‖+ ‖ûNTh − u(T ))‖L1(0,L)=3.872e-3.

5.2 2D compressible Bingham model

5.2.1 Steady case

In this subsection the primal-dual algorithm is considered to solve the two-dimensional steady

Bingham equation

αu− div

(√
2
Du

|Du|

)
= f, for (x, y) ∈ (−1, 1)× (−1, 1). (5.2.1)

An analytical solution is built under the form u(x, y) = Φ(r)

(
−y
x

)
where r =

√
x2 + y2. Then

|Du|/
√

2 = r|∂rΦ|/2 and we have the equation(
αΦ(r)− ∂r(sgn ∂rΦ)

r
− 2sgn ∂rΦ

r2

)(
−y
x

)
= f. (5.2.2)

We consider

For 0 ≤ r ≤ 1/6,

sgn ∂rΦ = (12r − 36r2)2, Φ = 1, f =
(
α− 2× 122(1− 3r)(2− 9r)

)(−y
x

)
.

For 1/6 ≤ r ≤ 1/3,

sgn ∂rΦ = 1, Φ = 6r, f =
(
6αr − 2/r2

)(−y
x

)
.

For 1/3 ≤ r ≤ 1/2,

sgn ∂rΦ = cos(π(6r − 2)), Φ = 2, f =

(
2α+

6π sin(π(6r − 2))

r
− 2 cos(π(6r − 2))

r2

)(
−y
x

)
.
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For 1/2 ≤ r ≤ 5/6,

sgn ∂rΦ = −1, Φ = 5− 6r, f =
(
α(5− 6r) + 2/r2

)(−y
x

)
.

For 5/6 ≤ r ≤ 1,

sgn ∂rΦ = −1 + cos(π(6r − 5))

2
, Φ = 0, f =

(
−3π sin(π(6r − 5))

r
+

1 + cos(π(6r − 5))

r2

)(
−y
x

)
.

For 1 ≤ r,
sgn ∂rΦ = 0, Φ = 0, f = 0.

Space discretisation: We consider a rectangular domain Ω = (−Lx, Lx) × (−Ly, Ly), and we

discretize it in both directions similarly as we did in the 1d case, see Figure 5.1. We denote by

Nx + 2 and Ny + 2 the numbers of points in the horizontal and vertical directions. We define the

spatial steps hx =
2Lx
Nx

, hy =
2Ly
Ny

and the grid points as

x0 = −Lx, xNx+1 = Lx, y0 = −Ly, yNy+1 = Ly, (5.2.3)

xi = −Lx +

(
i− 1

2

)
hx, i = 1, · · · , Nx, (5.2.4)

yi = −Ly +

(
j − 1

2

)
hy, j = 1, · · · , Ny, (5.2.5)

xi+ 1
2

=
1

2
(xi + xi+1), i = 0, · · · , Nx, (5.2.6)

yi+ 1
2

=
1

2
(yi + yi+1), j = 0, · · · , Ny. (5.2.7)

For each couple of integers i,j such that 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, we define the rectangular

cells as

Ri,j = (xi, xi+1)× (yj , yj+1). (5.2.8)

In order to get a mesh of triangles, these cells are cut in two along one diagonal, see Figure 5.3(left)

giving the cells K ∈ Th.

We use the primal-dual algorithm, under the form (4.2.52) modified as (4.2.64) (mass lumped

scheme). We have here F (D) =
√

2|D|, thus ukh and σkh being known we look for uk+1
h and σk+1

h

solution to

σk+1
h = Pr(σkh + r(2Dûkh −Dûk−1

h )), (5.2.9)

α

∫
Ω

ūk+1
h · v̄h dx +

∫
Ω

σk+1
h : Dv̂h dx +

∫
Ω

ūk+1
h − ūkh

τ
· v̄h dx =

∫
Ω

f̄h · v̄h dx ∀v̂h ∈ Vh, (5.2.10)

where

Pr(σ) =

σ if |σ| ≤
√

2,
√

2
σ

|σ|
otherwise.

(5.2.11)
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We denote uh = (ui)i∈I = (uxi , u
y
i )i∈I where I is a set of indices corresponding to the nodes in the

domain. For n ∈ I, the finite volume cell around the node n is denoted by Qn. Then one has

α

∫
Ω

uk+1
h · v̄h dx = α

∑
n∈I
|Qn|uk+1

n · vn = α
∑
n∈I
|Qn|(ux,k+1

n vxn + uy,k+1
n vyn),

∫
Ω

ūk+1
h − ūkh

τ
· v̄h dx =

∑
n∈I
|Qn|

uk+1
n − ukn

τ
· vn =

∑
n∈I
|Qn|

(
ux,k+1
n − ux,kn

τ
vxn +

uy,k+1
n − uy,kn

τ
vyn

)
,

∫
Ω

f̄h · v̄h dx =
∑
n∈I
|Qn|fn · vn =

∑
n∈I
|Qn|(fxnvxn + fynv

y
n).

Then, writing v̂h in terms of basis function as v̂h =
∑
n∈I

vnϕn where vn is a constant vector and

where ϕn is an affine function such that ϕ(xn) = 1 and ϕ(xm) = 0 for all m 6= n, one has

Dv̂h =
∑
n

vn ⊗∇ϕn +∇ϕn ⊗ vn
2

=
∑
n

(
vxn∂xϕn

vxn∂yϕn+vyn∂xϕn
2

vxn∂yϕn+vyn∂xϕn
2 vyn∂yϕn

)
.

It gives∫
Ω

σ : Dv̂h =
∑
K∈Th

|K|σK : (Dv̂h)K (5.2.12)

=
∑
K∈Th

∑
n∈I
|K|
(
σK,xxv

x
n(∂xϕn)|K + σK,yyv

y
n(∂yϕn)|K + σK,xy

(
vxn(∂yϕn)|K + vyn(∂xϕn)|K

))
.

(5.2.13)

By choosing v̂h =

(
1

0

)
ϕn in (5.2.10) we get for n ∈ I

α|Qn|ux,k+1
n + |Qn|

ux,k+1
n − ux,kn

τ
+

∑
K∈V (n)

|K|
(
σk+1
K,xx(∂xϕn)|K +σk+1

K,xy(∂yϕn)|K
)

= |Qn|fxn . (5.2.14)

Similarly by choosing v̂h =

(
0

1

)
ϕn it gives for n ∈ I

α|Qn|uy,k+1
n + |Qn|

uy,k+1
n − uy,kn

τ
+

∑
K∈V (n)

|K|
(
σk+1
K,yy(∂yϕn)|K + σk+1

K,xy(∂xϕn)|K
)

= |Qn|fyn . (5.2.15)

Therefore we can compute explicitly uk+1
h as

ux,k+1
n = 1

α+ 1
τ

(
fxn + 1

τ u
x,k
n −

∑
K∈V (n)

|K|
|Qn|

(
σk+1
K,xx(∂xϕn)|K + σk+1

K,xy(∂yϕn)|K
))

,

uy,k+1
n = 1

α+ 1
τ

(
fyn + 1

τ u
y,k
n −

∑
K∈V (n)

|K|
|Qn|

(
σk+1
K,yy(∂yϕn)|K + σk+1

K,xy(∂xϕn)|K
))

.

(5.2.16)

An illustration is on Figure 5.3(right).

Primal-dual algorithm on a structured mesh using Fortran. To avoid any geometric com-

plexity we use the above structured mesh together with Fortran coding for the primal-dual algorithm

(without acceleration). The results are shown on Figure 5.4.
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(xi−1, yi) (xi+1, yi)

(xi+1, yi−1)(xi, yi−1)

(xi, yi+1)(xi−1, yi+1)

Qn

K5

K6 K1 K2

K3K4

n

Figure 5.3: Space discretisation

rτ Number of iterations Error

> h2/6 NaN NaN

h2/6 4103 1.0683

h2/8 4407 0.1068

h2/16 5076 0.1067

h2/32 6270 0.1067

Table 5.1: Test with various values of rτ

Optimal constant C in the formula rτ = Ch2

In the convergence of the primal-dual algorithm, Theorem 4.2.6 requires the stability condition

rτL2
h ≤ 1 where Lh is defined according to (4.2.65) by

‖Dv̂h‖L2 ≤ Lh
(∫

Ω
|v̄h|2

)1/2

, ∀v̂h ∈ Vh. (5.2.17)

Since obviously Lh is of the order of 1/h, the stability condition means that rτ ≤ Ch2 for some

appropriate constant C. We test various values of the product rτ in the case hx = hy = 1/20

with the stopping criteria εtol = 10−6 and r = τ =
√
Ch, α = 1. As can be seen in Table 5.1,

the error increases as C decreases, even though it decreases significantly in the case C = 1/8 in

comparison with C = 1/6, and then decreases slowly with smaller values of C. On the other hand,

the number of iteration increases proportionally to the increase of 1/C. Besides, the algorithm

does not converge for values higher than 1/6. Thus we choose C = 1/8 as the optimal value for

h = 1/20.

Testing with h = 1/20, 1/40, 1/80 the optimal C is found to be 1/6 with respect to both the number

of iterations and the error.

Optimal choice for the stopping criterion εtol for the primal-dual algorithm

In the first primal-dual algorithm we have set a stopping criterion ‖ûk+1
h − ûkh‖L2 ≤ εtol for the

iteration loop. A smaller εtol means a smaller error, but more iterations. According to Table 5.2

showing the error, we can find the optimal stopping value for each value of h. In this test we fix

α = 1, r = τ = h√
8
.

Optimal choice of the parameters r, τ for the primal-dual algorithm

Starting from the term σ+rDu, we expect that r ∼ [σ]
[Du] ∼ h

[σ]
[u] , where the square brackets represent
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(a) uxh computed (b) uxh exact

(c) Error between uxh exact and uxh com-

puted. It is everywhere less than 4%.

Figure 5.4: Primal-dual algorithm with structured mesh for h = 1/80

εtol h = 1/20 h = 1/40 h = 1/80

10−2 0.1713 0.4452 0.1713

10−3 9.5816e-2 8.2301e-2 8.5686e-2

10−4 0.1038 7.7183e-2 4.5593e-2

10−5 0.1054 7.9293e-2 4.5555e-2

10−6 0.1064 7.9830e-2 4.6098e-2

Table 5.2: Computed error for different values of h and εtol. Boldface numbers correspond to the

optimal choice of εtol, the largest for which we obtain the floor value of the error.

the order of magnitude of a quantity. Hence the expected order of magnitude of r is

r ∼ h [σ]

[u]
. (5.2.18)

In the iteration scheme one can expect that the term αu has the same order of magnitude as

the penalty term uk+1−uk
τ . Thus τ is comparable to 1

α . On the other hand, from the equation

αu− div σ = f , one has α ∼ [div σ]
[u] ∼

[σ]
h[u] . Hence an expected order of magnitude of τ is

τ ∼ h[u]

[σ]
. (5.2.19)

We notice that the quantity [u] in (5.2.18) and (5.2.19) can eventually be replaced by [f ]
α , because

from the equation αu − div σ = f one has merely [f ] ∼ α[u]. For a time-dependent problem one

can use instead [u] = [u0] + t[f ], where u0 is the initial datum.

In Tables 5.3, 5.4, 5.5, we give the error and the cost for several choices of r and τ and different

values of h. The optimal value in the three tables is r = h
16 and τ = 2h. Notice that the choice for
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(τ, r)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 30 272 270 236 236 233 193 147 908

Error 0.9375 0.3424 0.1443 9.7019e-2 9.5816e-2 9.8947e-2 9.4793e-2 6.7218e-2 0.1649

Table 5.3: Number of iterations and error for different choices of τ , r for h = 1/20, εtol = 10−3.

(τ, r)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 242 1559 1002 849 775 695 489 370 4174

Error 0.9402 0.1044 7.6578e-2 7.6836e-2 7.7183e-2 7.6476e-2 6.8291e-2 4.8981e-2 7.0575e-2

Table 5.4: Number of iterations and error for different choices of τ , r for h = 1/40, εtol = 10−4.

which the error is the smallest is also the choice for which the number of iterations is the smallest.

Considering that here [u] = 2, the previous considerations lead to the “optimal” choice

r =
1

8
h

[σ]

[u]
, τ =

h[u]

[σ]
. (5.2.20)

If we replace [u] by [f ]
α and considering that here [f ]

α = 32, this leads rather to the formula

r = 2h
α[σ]

[f ]
, τ =

1

16

h[f ]

α[σ]
. (5.2.21)

Primal-dual algorithm without mass lumping

Consider now using the original primal-dual iteration method (4.2.52) without the mass lumping

modification (4.2.64). In other words we use the FEM scalar product instead of the FVM scalar

product. The main difference between both methods is that now one has to solve a linear system

of equations. Its cost is known to be generically O(n2 log n) for a general matrix, and O(n log n) in

case of a “good” sparse matrix, with n the size of the matrix.

For dealing with the method without mass lumping we use the software FreeFEM++, that automat-

ically generates a mesh. For it we choose the number of intervals n = 40, we take uinit = σinit = 0,

τ = r = h/6. We make the test for a scalar function (i.e. for the so called TV minimization

problem), with various values of εtol. The results are as follows.

• Without mass lumping

ε = 10−2 err = 0.332847 n.o.iter = 153 execution time = 26.4396s

ε = 10−3 err = 0.113881 n.o.iter = 418 execution time = 69.0468s

ε = 10−4 err = 0.10936 n.o.iter = 746 execution time = 112.164s

ε = 10−5 err = 0.109946 n.o.iter = 1055 execution time = 172.84s

(τ, r)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 31915 5174 3218 2466 2162 1858 1283 1153 18882

Error 0.5222 4.9833e-2 4.6645e-2 4.6131e-2 4.5556e-2 4.4453e-2 4.0351e-2 3.2291e-2 3.3465e-2

Table 5.5: Number of iterations and error for different choices of τ , r for h = 1/80, εtol = 10−5.
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(τ0, r0)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 232 106 86 69 69 69 70 71 73

Error 0.3931 0.1130 6.5399e-2 4.1523e-2 3.6311e-2 3.6448e-2 4.0468e-2 4.3254e-2 4.4897e-2

Table 5.6: Number of iterations and error for the Accelerated scheme with different choices of τ0,

r0 for h = 1/20, εtol = 10−3.

(τ0, r0)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 1843 517 484 365 365 365 367 368 370

Error 0.2497 5.1105e-2 2.9266e-2 1.8845e-2 1.6860e-2 1.6701e-2 1.7926e-2 1.8984e-2 1.9894e-2

Table 5.7: Number of iterations and error for the Accelerated scheme with different choices of τ0,

r0 for h = 1/40, εtol = 10−4.

• With mass lumping

ε = 10−2 err = 0.770504 n.o.iter = 92 execution time = 12.4226s

ε = 10−3 err = 0.112977 n.o.iter = 419 execution time = 52.3369s

ε = 10−4 err = 0.111199 n.o.iter = 752 execution time = 93.9013s

ε = 10−5 err = 0.111853 n.o.iter = 1077 execution time = 134.989s

In conclusion, the primal-dual algorithm without or with mass lumping give the same quality of

approximation for the same number of iterations. However the mass-lumped method runs faster

because there is no linear system to solve. The gain is not big here because the mass matrix is

almost diagonal and it is not much costly to invert it.

5.2.2 Accelerated scheme

We evaluate here the accelerated primal-dual algorithm (4.2.61) (with mass lumping). For this

method we have to choose r0 and τ0.

Optimal choice for r0, τ0

Similarly as in the previous non-accelerated scheme we try several values. The error and number

of iterations are reported in Tables 5.6, 5.7, 5.8. We take here α = 20. We can see that the most

efficient choice is (τ0, r0) = (h2 ,
h
4 ).

Comparison between the two methods

We choose α = 100 and consider the normal and accelerated primal-dual algorithms. Following

Tables 5.9, 5.10, 5.11, 5.12, for any value of h the accelerated scheme with the best parameters

(τ0, r0) = (h2 ,
h
4 ) gives only a slightly smaller error than the normal scheme with the best parameters

(τ, r) = ( h16 , 2h). Meanwhile, the accelerated scheme uses more iterations to attain this value of the

(τ0, r0)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 13172 2284 1812 1660 1659 1660 1661 1663 1666

Error 0.1581 2.4531e-2 1.5232e-2 1.0248e-2 9.5125e-3 9.4371e-3 9.8587e-3 1.0252e-2 1.0655e-2

Table 5.8: Number of iterations and error for the Accelerated scheme with different choices of τ0,

r0 for h = 1/80, εtol = 10−5.
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(τ, r)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 111 27 32 49 60 73 103 4 3

Error 3.4703e-2 1.9001e-2 2.2308e-2 2.5919e-2 2.9566e-2 3.5135e-2 5.4811e-2 0.1299 0.1324

(τ0, r0)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 144 52 37 33 32 32 33 33 34

Error 0.1750 0.1130 4.9285e-2 1.9822e-2 1.8080e-2 1.7683e-2 1.7864e-2 1.8335e-2 1.8452e-2

Table 5.9: Number of iterations and error for normal and accelerated schemes with different choices

of τ , r for h = 1/20, εtol = 10−3, α = 100

(τ, r)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 932 99 120 161 195 243 406 693 3

Error 2.7232e-2 1.0971e-2 1.3108e-2 1.6009e-2 1.7693e-2 1.9275e-2 2.2429e-2 2.6756e-2 0.1324

(τ0, r0)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 985 244 192 166 164 164 165 166 167

Error 0.1116 2.3446e-2 1.4898e-2 1.0437e-2 9.5771e-3 9.3094e-3 9.3612e-3 9.4723e-3 9.5632e-3

Table 5.10: Number of iterations and error for the normal and accelerated schemes with different

choices of τ , r for h = 1/40, εtol = 10−4, α = 100

error, and this is worse for smaller h. However if we choose (τ, r) = ( h√
8
, h√

8
) for both methods,

the accelerated scheme performs better. We conclude that finding optimal values for r, τ (or r0, τ0)

is more important that choosing the normal or accelerated scheme. For the normal scheme the

formula (5.2.21) performs quite well since [f ]/α = 2 here.

5.2.3 Implementation of various types of boundary conditions

In the previous tests we always implemented the Dirichlet boundary condition when solving the

viscoplastic part (1.3.2). It is however possible to formulate and implement the finite element for-

mulation in the case of other boundary conditions, by adding degrees of freedom on the boundary of

the domain. One can treat in particular Neumann or slip boundary conditions. The implementation

of a friction condition is a bit more difficult.

We consider the viscoplastic model

αu− div σ = f, (5.2.22)

(τ, r)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 2688 386 529 739 886 1026 1385 2060 4

Error 7.3377e-3 5.7931e-3 6.4370e-3 7.6133e-3 8.4351e-3 9.7475e-3 1.3268e-2 1.6938e-2 0.1324

(τ0, r0)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 6531 1149 875 864 863 862 863 864 865

Error 7.0693e-2 1.0937e-2 7.7052e-3 5.6862e-3 5.3788e-3 5.2727e-3 5.2671e-3 5.3037e-3 5.3370e-3

Table 5.11: Number of iterations and error for the normal and accelerated schemes with different

choices of τ , r for h = 1/80, εtol = 10−5, α = 100
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(τ, r)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 12621 1319 2074 3078 3717 4479 6532 9264 4

Error 3.7658e-3 3.2884e-3 3.3942e-3 3.6961e-3 3.9771e-3 4.3723e-3 5.5668e-3 7.6527e-3 0.1325

(τ0, r0)
(
h2

8 , 1
) (

h
16 , 2h

) (
h
8 , h
) (

h
4 ,

h
2

) (
h√
8
, h√

8

) (
h
2 ,

h
4

) (
h, h8

) (
2h, h16

) (
1, h

2

8

)
No of iterations 58940 5104 3894 3582 3578 3577 3578 3579 3581

Error 6.3156e-2 5.4191e-3 4.0941e-3 3.3500e-3 3.2154e-3 3.1653e-3 3.1567e-3 3.1718e-3 3.1893e-3

Table 5.12: Number of iterations and error for the normal and accelerated schemes with different

choices of τ , r for h = 1/160, εtol = 10−6, α = 100

σ ∈ ∂F (Du). (5.2.23)

We have the corresponding variational formulation

α

∫
u · (v − u) +

∫
F (Dv) ≥

∫
F (Du) +

∫
f · (v − u), ∀v ∈ V. (5.2.24)

For Dirichlet boundary conditions we take

V = KF
0 , (5.2.25)

see Definition 3.2.2.

For Neumann boundary conditions σn = 0, we take

V = L2. (5.2.26)

For slip boundary conditions u · n = 0, (σn)× n = 0, we take

V = {u ∈ KF | u · n = 0}. (5.2.27)

Dirichlet condition. We use the radial solution

u(x, y) = Φ(r)

(
−y
x

)
, (5.2.28)

where r =
√
x2 + y2, Ω = (−1, 1)× (−1, 1), that has been used in subsection 5.2.1.

Neumann condition. We use the radial solution

u(x, y) = Φ(r)

(
−y
x

)
+

(
3

5

)
, (5.2.29)

which is a solution to (5.2.22) with α = 1 and with Neumann condition if we add

(
3

5

)
to the

previous f . We use 161 points in each direction. The stopping criterion is 10−6.

The numerical results give the error 4.63.10−2, and the number of iterations 3740.

Note: We have to change the value of τ , r as τ = r =
dx

5
. The results are shown on Figure 5.5.

Slip condition: u · n = 0 and (σn)× n = 0. We take

u =

(
ux(x)

0

)
. (5.2.30)
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Figure 5.5: Numerical results for Neumann boundary condition

Then

Du =

(
∂xux 0

0 0

)
, (5.2.31)

σ =

(
sgn(∂xux) 0

0 0

)
, (5.2.32)

for F (Du) = |Du|. On the right edge we have n = (1, 0)T , thus the boundary condition writes

ux |x=1= 0, (5.2.33)(
sgn(∂xux)

0

)
×

(
1

0

)
= 0. (5.2.34)

This last condition holds trivially. Similarly we get ux |x=−1= 0. We take

ux =


2x+ 2 if − 1 ≤ x ≤ −0.5,

1 if − 0.5 ≤ x ≤ 0.5,

−2x+ 2 if 0.5 ≤ x ≤ 1,

(5.2.35)

sgn(∂xux) =


1 if − 1 ≤ x ≤ −0.5,

− sin(πx) if − 0.5 ≤ x ≤ 0.5,

−1 if 0.5 ≤ x ≤ 1,

(5.2.36)

fx = αux − ∂xsgn(∂xux) =


2x+ 2 if − 1 ≤ x ≤ −0.5,

1 + π cos(πx) if − 0.5 ≤ x ≤ 0.5,

−2x+ 2 if 0.5 ≤ x ≤ 1.

(5.2.37)
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Figure 5.6: Numerical results for slip boundary condition

Note: We do not take any degree of freedom at the corners, do not take any degree of freedom for

ux at the right, left edges; do not take any degree of freedom for uy at the top, bottom edges.

we take 161 points in each direction. The stopping criterion is 10−6. We obtain

Error 5.55.10−3

Number of iterations 2071

The results are shown on Figure 5.6.

5.2.4 Comparison with the regularization and augmented Lagrangian methods

We implement the primal-dual algorithm, its accelerated version, the regularization method, and

the augmented Lagrangian method within the same FreeFEM++ software, so as to compare them

in particular concerning their execution time. The test case is the radial one of Subsection 5.2.1,

with α = 100. The results are shown in Tables 5.13, 5.14, 5.15, 5.16. We observe that for a

given space resolution, the error that we obtain with each method (taking its best parameters)

is more or less the same, the accelerated primal-dual method having a slightly smaller error. On

the contrary the number of iterations varies a lot. More iterations are necessary with the primal-

dual algorithm, and in particular with the accelerated algorithm (which is unexpected since it is

supposed to converge faster). We observe that comparing the unstructured mesh used here with the

Cartesian mesh used with the Fortran code, the primal-dual algorithm takes more or less the same

number of iterations, whereas the accelerated version takes more iterations in the unstructured

mesh configuration than in the Cartesian one (compare the last columns of Tables 5.13, 5.14 to

Table 5.11). Then we have to compare execution time, which is the real issue since each step of the

iteration does not have the same cost for all the methods (regularisation and augmented Lagrangian

methods have linear systems to solve). We can see that the primal-dual algorithm takes more time
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than the regularisation method, but is faster than the augmented Lagrangian method. In fact the

augmented Lagrangian method can take more iterations. This maybe due to the fact that the

penalty parameter r is not chosen optimally, indeed this is difficult to know the best value. We

conclude that for this test the regularisation method is the best, knowing that in FreeFEM++

linear systems are solved very efficiently. Moreover here α = 100 thus the problem is not stiff. We

have to remember also that in some cases the regularisation method has difficulties to well localise

the solid zones, what the primal-dual algorithm is supposed to do well.

Nx = Ny 20 40 80 160

Number of iterations 8 26 99 390

Execution time 0.4183 3.54173 45.1022 678.248

Error 0.06157 0.02445 0.00971 0.00424

Table 5.13: Error, number of iterations and execution time for the primal-dual algorithm for various

spatial steps with optimal values (τ, r) = (h/16, 2h).

Nx = Ny 20 40 80 160

Number of iterations 7 40 269 1354

Execution time 0.39274 4.9762 117.139 2360.7

Error 0.04528 0.01746 0.00665 0.00357

Table 5.14: Error, number of iterations and execution time for the accelerated primal-dual algorithm

for various spatial steps with optimal values (τ0, r0) = (h/2, h/4).

Nx = Ny 20 40 80 160

Number of iterations 2 6 21 65

Execution time 0.2434 1.2775 12.3118 145.835

Error 0.046120 0.02411 0.01062 0.00476

Table 5.15: Error, number of iterations and execution time for the regularization method for various

spatial steps with optimal value ε =
800

N2
x

= 200h2.

Nx = Ny 20 40 80 160

Number of iterations 8 23 85 281

Execution time 0.5775 4.97562 70.8981 926.449

Error 0.06159 0.02216 0.00863 0.00409

Table 5.16: Error, number of iterations and execution time for the augmented Lagrangian algorithm

for various spatial steps with constant penalty parameter r = 10.
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5.2.5 Time dependent case

We now consider the Bingham problem in the time dependent case, i.e. (5.2.1) with αu replaced by

∂tu. We build an exact solution as previously with u(t, x, y) = Φ(t, r)

(
−y
x

)
with r =

√
x2 + y2.

Then the problem can be written(
∂tΦ(t, r)−

∂r
(
sgn ∂rΦ(t, r)

)
r

− 2sgn ∂rΦ(t, r)

r2

)(
−y
x

)
= f. (5.2.38)

An exact solution is built under the form

• For 0 ≤ r ≤ 1/6,

sgn ∂rΦ = (12r − 36r2)2, Φ = t, f =
(
1− 2× 122(1− 3r)(2− 9r)

)(−y
x

)
.

• For 1/6 ≤ r ≤ 1/3,

sgn ∂rΦ = 1, Φ = 6rt, f =
(
6r − 2/r2

)(−y
x

)
.

• For 1/3 ≤ r ≤ 1/2,

sgn ∂rΦ = cos(π(6r − 2)), Φ = 2t,

f =

(
2 +

6π sin(π(6r − 2))

r
− 2 cos(π(6r − 2))

r2

)(
−y
x

)
.

• For 1/2 ≤ r ≤ 5/6,

sgn ∂rΦ = −1, Φ = (5− 6r)t, f =
(
5− 6r + 2/r2

)(−y
x

)
.

• For 5/6 ≤ r ≤ 1,

sgn ∂rΦ = −1 + cos(π(6r − 5))

2
, Φ = 0,

f =

(
−3π sin(π(6r − 5))

r
+

1 + cos(π(6r − 5))

r2

)(
−y
x

)
.

• For 1 ≤ r,

sgn ∂rΦ = 0, Φ = 0, f = 0.

Comparison between various values of the timestep

Considering that the problem is of parabolic type we have a natural value of the timestep

∆t ∼ h2 [Du]

[σ]
. (5.2.39)
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Nt 20 40 80 160 320 640

No of iterations 294 314 316 414 653 1162

Error estimate 0.2384 0.2815 0.3535 0.3586 0.3245 0.2294

Table 5.17: Time dependent model with τ = r = h
3 , for various values of the timestep

Nt 20 40 80 160 320 640

No of iterations 57 55 84 160 320 640

Error 0.44292 0.4585 0.4681 0.4730 0.4755 0.4768

Table 5.18: Time dependent model with τ = h∆t
3 , r = h

3∆t , for various values of the timestep

We consider two choices τ = r = h
3 or τ = h∆t

3 , r = h
3∆t . We take tmax = 0.5, h = 1/20, εtol = 10−3.

According to Tables 5.17 and 5.18 we can see that the first choice is better in terms of error, but

the second one is less costly in terms of iterations. In both cases the value of the error depends

very little on the timestep, this maybe due to the fact that the solution u is linear in time. More

experiments would be necessary in order to better achieve the balance between τ and r, and decide

whether the first or the second choice is the best.

5.3 Compressible Euler equations with Bingham viscoplasticity

5.3.1 Numerical scheme for the hyperbolic part

As described in the introduction, the compressible Euler equations with Bingham viscoplasticity

can be solved by the splitting method. For the Euler hyperbolic part we have to solve

∂tρ+ div(ρu) = 0, (5.3.1)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (5.3.2)

with p = p(ρ). We shall take p(ρ) = ρ2/2. This can be written as

∂tU + div(F (U)) = 0, (5.3.3)

or

∂tU + ∂x(Fx(U)) + ∂y(Fy(U)) = 0, (5.3.4)

where U = (ρ, ρu)T and F (U) = (ρu, ρu ⊗ u − pI)T . In order to solve the system (5.3.3) we use

the finite volume method, which at first order consists in updating the value of Uni corresponding

to each cell Qi by the formula

Un+1
i = Uni −

∆t

|Qi|
∑
j∈Ni

|Γij |Fij , (5.3.5)

where ∆t is the timestep, |Qi| is the area of Qi, |Γij | is the length of Γij , Ni is the set of indices

j corresponding to cells Qj having a common interface Γij with Qi, and Fij is a numerical flux

between the cells Qi, Qj .
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Figure 5.7: Primal mesh (black) and dual mesh(red) in the case without degrees of freedom on the

boundary

Since (5.3.3) is conservative, it is natural to ask that (5.3.5) is conservative as well, i.e. we assume

that

Fij = −Fji. (5.3.6)

This ensures that
∑

i |Qi|Uni is time independent. We take the numerical flux of the form

Fij = F (Ui, Uj , nij), (5.3.7)

which means that given the direction nij we have to solve the system (5.3.3) in the direction nij .

The consistency of the numerical scheme is that F (U,U, n) = nxFx(U) + nyFy(U). More details

can be found in [11].

Formulation with dual meshes

The location of the degrees of freedom are the (xi, yj) as defined by (5.2.3)-(5.2.7). The primal mesh

is the FEM mesh made of triangles with (xi, yj) as nodes. The dual mesh is the FV mesh made

of rectangles around each (xi, yj). The case with or without degrees of freedom on the boundary

(depending on the type of boundary conditions) are shown on Figures 5.7 and 5.8.

5.3.2 Numerical results for the 2D Euler/Bingham model

We now consider the 2D Euler transport together with the viscoplastic model Bingham rheology

∂tρ+ div(ρu) = 0, (5.3.8)

∂t(ρu)+ div(ρu⊗ u+ p(ρ)I)− div

(
Du

|Du|

)
= f, (5.3.9)
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Figure 5.8: Primal mesh (black) and dual mesh(red) in the case of degrees of freedom on the

boundary

Figure 5.9: Euler/Bingham model: approximate and exact density ρ

with p(ρ) = 1
2ρ

2.

We take the exact solution depending only on x

u =

(
ux(x)

0

)
, (5.3.10)

where ux, ρ and fx are those of the one-dimensional solution given by (5.1.2), (5.1.6), (5.1.10). Slip

boundary conditions are applied. The results are shown on Figures 5.9, 5.10, 5.11.

Number of time steps: 273.

Error: ‖(ρ, ux, uy)approx − (ρ, ux, uy)ex‖L2 = 0.733.

As we can observe on Table 5.19, by choosing the optimal value of εtol the scheme is first-order

accurate with respect to the number of points in each direction, as with the 1d code (Table 5.20).

This is true even though uyexact = 0 but uyapprox is not zero.
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Figure 5.10: Euler/Bingham model: approximate and exact velocity ux

Figure 5.11: Euler/Bingham model: approximate and exact velocity uy
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N error number of iterations εtol
20 0.763 31 10−2

40 0.2219 60 10−4

80 0.11 120 10−5

160 6.706e−2 241 10−6

320 3.817e−2 482 10−7

Table 5.19: Error and number of iterations with the 2d code

N error estimate

32 7.07e−2

75 4.541e−2

150 2.695e−2

300 3.87e−3

600 3.03e−3

1200 1.849e−3

Table 5.20: Error obtained with the 1d code
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Chapter 6

A lubrication equation for a simplified

model of shear-thinning fluid

This short chapter has been conducted independently from the other parts of this thesis. It is

extracted from a manuscript which was submitted to ESAIM review: ProcS, a joint work with two

other PhD students Khawla Msheik and Meissa M’Baye under supervision of François James. This

proceeding is a part of a project launched in CEMRACS 2019.

6.1 Introduction

The lubrication equation is quite a classical simplification of the incompressible Navier-Stokes sys-

tem. It is obtained for thin films of fluid, when viscous effects balance the pressure force. This

occurs for instance for thin films of oil, hence the name of the equation. The study of this approxi-

mation goes back to Reynolds in 1886 [48]. Several scalings are involved to obtain this model. First

the aspect ratio between the thickness of the film and the characteristic length of the substrate must

be small, say δ. Simultaneously, the time scale has to be of order 1/δ. This is the so-called long

wave regime, and is classically used in the shallow-water approximation. The lubrication equation

requires another assumption of balance between the viscous effects and the pressure effects, which

amounts to neglect all kinematic effects. This simplified flow is known as the Stokes flow. The

lubrication equation itself is then obtained by integration over the fluid thickness.

We are interested here in the lubrication model for a class of non Newtonian fluids. Several

fluids are known to depart from the usual Newtonian rheology, where the deviatoric stress tensor

is a linear function of the strain rate tensor, thus defining the dynamical viscosity of the fluid.

The lubrication equation for Newtonian fluids has been studied for instance by Huppert [35]. Non

Newtonian fluids arise in several applications in engineering, biology, geophysics... In particular,

viscoplastic or pseudoplastic fluids are involved in various geological problems, for instance lava

flows, mudslides and avalanches. We refer to [1] for a review on the subject. A model which is

widely used is the so-called Bingham-plastic model. This model involves a yield stress, namely a

threshold on strain rate: for values of the strain rate above this threshold the fluid behaves like a

viscous fluid, for values below, it looks like a solid. This can be thought of as an infinite viscosity

fluid. We refer to the papers by Liu and Mei [41] and Balmforth et al. [2] for the study of such

fluids in the lubrication approximation. Both papers contain also a complete bibliography. Liu and

Mei also introduced in [40] a perturbed Bingham model, which is actually a two viscosities model,

with a high viscosity for small deformations. When this viscosity goes to ∞ the Bingham model is
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recovered, thus giving a fluid mechanics interpretation of this solid behaviour.

This is precisely the two viscosities model we investigate here. First we describe the mathemat-

ical model we use, namely the incompressible Navier-Sokes equations in a time-dependent domain,

since we consider a free-boundary problem. In particular we explain in some details all the scalings

involved. Next, we turn to the lubrication equation itself, which is a one-dimensional equation,

obtained by averaging the previous ones along the thickness. Finally we provide a few numerical

illustrations based on a finite volume scheme.

6.2 Mathematical model

In this section we set up the model. The starting point is the incompressible Navier-Stokes system.

We limit ourselves in this paper to the two-dimensional case, thus aiming at a one-dimensional

lubrication equation. Similar computations can be performed in three space dimensions. The

domain we consider is Ωt defined by fb(x) < z < ϕ(t, x), for t > 0 and x ∈ (−∞,+∞), where fb is

given topography, and ϕ is a free surface. The notation we use is gathered in Figure 6.1.

z∗

ϕ(t, x)

fb(x)

substrate

x

z

0

h∗

h∗

h(t, x)

Figure 6.1: Notation for the two viscosities fluid: ϕ is the free surface; fb is the topography of

the substrate; z∗ is the ordinate which separates “small deformations” (white zone) from “large

deformations” (green zone), see Section 6.3 below. We introduce the thicknesses h = ϕ − fb,

h∗ = ϕ− z∗, h∗ = h− h∗.

The incompressible Navier-Stokes equations are

∂xu+ ∂zv = 0, (6.2.1)

∂tu+ u∂xu+ v∂zu = − 1

ρ

(
∂xp+ ∂xτxx + ∂zτxz

)
, (6.2.2)

∂tv + u∂xv + v∂zv = − g − 1

ρ

(
∂zp+ ∂xτzx + ∂zτzz

)
, (6.2.3)

where ρ is the density of the fluid, U = (u, v) is the velocity field, and the stress tensor σ is written

as the sum of a volumetric stress tensor, involving the pressure p, and a deviatoric stress tensor τ :

σ = −pId + τ, τ =

(
τxx τxz
τzx τzz

)
.

The density ρ is assumed to be constant here, and the tensor σ will be defined in Section 6.2.1

below.
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Boundary conditions are:

z = ϕ: fluid-atmosphere interface. We have continuity of the stress tensor at the free surface,

together with a kinematic boundary condition. Since the atmosphere can be viewed as an ideal

fluid, the stress tensor can be taken equal to zero above ϕ. Hence we get

σ · n|ϕ = (−pId + τ) · n|ϕ = 0, ∂tϕ+ uϕ∂xϕ = vϕ. (6.2.4)

z = fb: interface between the fluid and the substrate, which is fixed. This is a material interface,

on which we have the no-slip boundary condition

u|fb = ub, v|fb = vb. (6.2.5)

Here (ub, vv) is the so-called basal velocity. Often in fluid mechanics the basal velocity is zero, but

for geophysical applications it can actually be the driving force, and thus depend on (t, x).

6.2.1 Rheology

For a fluid, the deviatoric stress tensor τ is usually a function of the strain rate tensor

ε̇ =

(
ε̇xx ε̇xz
ε̇zx ε̇zz

)
=

1

2
(∇U +∇UT ) =

1

2

(
2∂xu ∂xv + ∂zu

∂xv + ∂zu 2∂zv

)
. (6.2.6)

A Newtonian fluid is characterized by a linear relation, defining the viscosity of the fluid, which

is assumed here to be isotropic and constant. Therefore we introduce the dynamical viscosity

coefficient µ, and define the Newtonian stress tensor by

τN = 2µε̇ = 2ρνε̇,

where ν = µ/ρ is the kinematic viscosity.

Fluids that do not follow this kind of constitutive law are non-Newtonian. In the general

case, the material invariance principle implies that the stress tensor depends only on the similarity

invariants of the strain rate tensor, in particular the coefficients of its characteristic polynomial. In

dimension 2 there are only two such coefficients ε̇I and ε̇II . Namely ε̇I is the trace of the matrix

and ε̇II its determinant. For an incompressible fluid, the trace is zero, and moreover we have

ε̇II = ε̇xxε̇zz − ε̇zxε̇xz = ∂xu∂zv −
1

4
(∂xv + ∂zu)2 = −

(
(∂xu)2 +

1

4
(∂xv + ∂zu)2

)
.

This allows to define the strain rate γ̇ as

γ̇ = 2
√
−ε̇II = 2

√
(∂xu)2 +

1

4
(∂xv + ∂zu)2. (6.2.7)

In a similar way we can check that the Frobenius norm of ε̇, that is ‖ε̇‖2 =
∑

i,j(εij)
2, satisfies

‖ε̇‖2 = γ̇2/2. (6.2.8)

A very sketchy illustration of the possible behaviours of non-Newtonian fluids is given in Figure

6.2. We will be mostly interested in this work in the so-called pseudoplastic case, that is the red

curve in Figure 6.2, for which experimental evidence can be given, see [10]. This kind of models are

also used in geophysics, see [6, 56, 60] We wish to give a simplified model for this pseudo-plastic
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Figure 6.2: Qualitative behaviour of various types of fluids. Left: stress vs shear stress – Right:

apparent viscosity vs shear stress. The Bingham type fluids can be viewed as enjoying infinite

apparent viscosity below the threshold τc.

fluid, that allows to handle explicit computations. The main feature of this kind of fluids is a

nonlinear viscosity, decreasing with the strain rate. Mimicking the Bingham model, which is based

on a threshold on the shear stress, we consider a model with a threshold on the strain rate: the

viscosity is equal to some large µB for small deformations, that is γ̇ < γc, where γc > 0 is a given

constant, and to another value µ for large deformations, γ̇ > γc. Such models were introduced by

Liu and Mei [40], and the limit case νB → ∞, which leads to a Bingham fluid, is studied in [41]

and [2]. Notice that using (6.2.8) the threshold γc on γ̇ can be replaced by a threshold γ′c = γc/
√

2

on ‖ε̇‖.
A multidimensional formulation for these simplified pseudo-plastic fluids is therefore

τPP =

2ρνB ε̇ if ‖ε̇‖ 6 γ′c,

2ρνε̇+ 2ρ(νB − ν)γ′c
ε̇

‖ε̇‖
if ‖ε̇‖ > γ′c,

(6.2.9)

where we have introduced the kinematic viscosities ν and νB.

A particular limit case is νB → ∞, which leads to a Bingham type fluid. To view this, it is

convenient to define the following quantities (see Figure 6.3 below for an illustration in 1 dimension)

τc = νBγ
′
c, τ∗ = (νB − ν)γ′c = (1− ν/νB)τc, (6.2.10)

so that definition (6.2.9) can be rewritten

τPP =

2ρνB ε̇ if ‖ε̇‖ 6 τc/νB,

2ρνε̇+ 2ρ(1− ν/νB)τc
ε̇

‖ε̇‖
if ‖ε̇‖ > τc/νB.

(6.2.11)

It is clear on this formulation that the relevant limit is νB → +∞, together with γ′c → 0, keeping

νBγ
′
c = τc. In doing so, we recover the classical Bingham stress tensor, with threshold τc:

τBing =

any τ s.t. ‖τ‖ 6 τc if ε̇ = 0,

2ρνε̇+ 2ρτc
ε̇

‖ε̇‖
if ‖ε̇‖ > 0.
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Finally, notice that in the pseudo-plastic (or shear thinning) context, we consider 0 < ν < νB, but

similar computations can be performed in any case.

It is convenient for the scalings below to rewrite expression (6.2.11) using an equivalent kinematic

viscosity νeq, which satisfies ν 6 νeq 6 νB:

τPP = ρνeq ε̇, where νeq =

2νB if ‖ε̇‖ 6 γ′c,

2ν + 2(1− ν/νB)
τc
‖ε̇‖

if ‖ε̇‖ > γ′c.
(6.2.12)

6.2.2 Scalings

We introduce now the scaling laws, namely thin layer, or more precisely long wave approximation,

and slow motion, in order to finally obtain the lubrication model. This kind of scalings is already

present e.g. in [2] in the context of a visco-plastic fluid. Hence we propose the following family of

scalings: we introduce a first set of characteristic scales, namely dimensions `0 and h0, characteristic

velocities u0 and v0, and a characteristic time t0. The quantities `0 and u0 correspond to the

horizontal direction, h0 and v0 to the vertical one. The aspect ratio δ = h0/`0 will be an important

parameter, assumed to be small in the thin layer case. Dimensionless variables are then defined by

x = `0x̄, z = h0z̄, t = t0t̄

u = u0ū, v = v0v̄.

First, we rewrite the incompressibility equation (6.2.1) in the rescaled variables. We obtain

u0

`0
∂x̄ū+

v0

h0
∂z̄ v̄ = 0,

and following the least degeneracy principle [59], this implies u0/`0 = v0/h0, or equivalently `0/h0 =

u0/v0. Thus v0/u0 = δ, so that in the thin layer approximation v0 is also small compared to u0.

We turn now to the kinematic part of the equation. Using u0/`0 = v0/h0, we readily obtain

∂tu+ u∂xu+ v∂zu =
u0

t0
∂t̄ū+

u0v0

h0
ū∂x̄ū+

u0v0

h0
v̄∂z̄ū.

Once again we apply the least degeneracy principle and obtain t0 = `0/u0 = h0/v0, or, as expected,

u0 = `0/t0 and v0 = h0/t0. We proceed in the same way for the momentum equation in v and

finally obtain

∂tu+ u∂xu+ v∂zu =
u0v0

h0
(∂t̄ū+ ū∂x̄ū+ v̄∂z̄ū) = δ

u2
0

h0
(∂t̄ū+ ū∂x̄ū+ v̄∂z̄ū) , (6.2.13)

∂tv + u∂xv + v∂zv =
u0v0

`0
(∂t̄v̄ + ū∂x̄v̄ + v̄∂z̄ v̄) = δ2u

2
0

h0
(∂t̄v̄ + ū∂x̄v̄ + v̄∂z̄ v̄) , (6.2.14)

where we have emphasized the aspect factor δ = h0/`0 = v0/u0.

Following Balmforth [2], we rescale the pressure and the stress tensor by

p = ρgh0p̄, τ = ρν
u0

h0
τ̄ . (6.2.15)

We can write now the rescaled version of the Navier-Stokes momentum equations (6.2.2) and (6.2.3):

δ
u2

0

h0
(∂t̄ū+ ū∂x̄ū+ v̄∂z̄ū) = − δg∂x̄p̄+ ν

u0

h2
0

(δ∂x̄τ̄xx + ∂z̄ τ̄xz) , (6.2.16)

δ2u
2
0

h0
(∂t̄v̄ + ū∂x̄v̄ + v̄∂z̄ v̄) = − g∂z̄ p̄− g + ν

u0

h2
0

(δ∂x̄τ̄xz + ∂z̄ τ̄zz) . (6.2.17)
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At this stage, we introduce two classical dimensionless quantities, namely the Froude and

Reynolds numbers, defined from the characteristic horizontal velocity u0, the vertical extension

h0, and the viscosity for large deformations ν:

1

Fr2
=
gh0

u2
0

,
1

Re
=

ν

u0h0
. (6.2.18)

We divide the previous two equations by u2
0/h0, and noticing that τ = ρReu2

0τ̄ , we obtain

δ (∂t̄ū+ ū∂x̄ū+ v̄∂z̄ū) = − δ

Fr2
∂x̄p̄+

1

δRe
(δ∂x̄τ̄xx + ∂z̄ τ̄xz) , (6.2.19)

δ2 (∂t̄v̄ + ū∂x̄v̄ + v̄∂z̄ v̄) = − 1

Fr2
∂z̄ p̄−

1

Fr2
+

1

Re
(δ∂x̄τ̄xz + ∂z̄ τ̄zz) . (6.2.20)

The idea now is to send δ to zero, thus implementing the thin layer assumption, but in a regime

where the Reynolds number Re is kept of order 1, together with a balance between viscosity and

gravity forces. Therefore we set

Fr2 = δRe. (6.2.21)

This readily gives

u0 =
gh3

0

`0ν
= δ

gh2
0

ν
, (6.2.22)

which is the scaling proposed in [2]. It introduces another characteristic velocity, namely u′0 =

(gh2
0)/ν. The latter equality shows that this is indeed a slow motion scaling, thus we meet the

initial requirement.

Inserting (6.2.21) in equations (6.2.19) and (6.2.20), and keeping only the dominant terms of

order δ−1 gives first the dimensionless Stokes equation

− ∂x̄p̄ = ∂z̄ τ̄xz, (6.2.23)

then the dimensionless hydrostatic relation for the pressure

∂z̄ p̄ = − 1. (6.2.24)

Now we compute τ̄ from (6.2.12). We start by rewriting ε̇ in rescaled variables

ε̇ =
1

2

 2
u0

`0
∂x̄ū

v0

`0
∂x̄v̄ +

u0

h0
∂z̄ū

v0

`0
∂x̄v̄ +

u0

h0
∂z̄ū 2

v0

h0
∂z̄ v̄

 =
1

2

u0

h0

(
2δ∂x̄ū δ2∂x̄v̄ + ∂z̄ū

δ2∂x̄v̄ + ∂z̄ū 2δ∂z̄ v̄

)
. (6.2.25)

From this we easily deduce

τ̄ =
1

2

νeq
ν

(
2δ∂x̄ū δ2∂x̄v̄ + ∂z̄ū

δ2∂x̄v̄ + ∂z̄ū 2δ∂z̄ v̄

)
−→
δ→0

1

2

νeq
ν

(
0 ∂z̄ū

0 0

)
. (6.2.26)

We define a dimensionless equivalent viscosity by ν̄eq = νeq/ν, and rewrite equation (6.2.23)

∂z̄
(
ν̄eq∂zū

)
= − ∂x̄p̄. (6.2.27)

We turn now to the expression of ν̄eq. We first notice that, using (6.2.25)

‖ε̇‖ =
u0

h0

√
2

√
δ2(∂x̄ū)2 +

1

4
(δ2∂x̄v̄ + ∂z̄ū)2 −→

δ→0

1√
2

u0

h0
|∂z̄ū|. (6.2.28)
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Hence the condition ‖ε̇‖ > γ′c leads us to define a dimensionless threshold γ̄c = (
√

2h0/u0)γ′c =

(h0/u0)γc, so that the condition ‖ε̇‖ > γ′c becomes |∂z̄ū| > γ̄c. Thus we get

ν̄eq =
νeq
ν

=


2
νB
ν

if |∂z̄ū| 6 γ̄c,

2 + 2(1− ν/νB)
τc
ν

h0

u0

√
2

|∂z̄ū|
if |∂z̄ū| > γ̄c.

(6.2.29)

We introduce a dimensionless viscosity ν̄B and a dimensionless yield stress B by setting

ν̄B =
νB
ν

> 1, B =

√
2τch0

νu0
, (6.2.30)

so that the dimensionless deviatoric stress tensor becomes (see Figure 6.3)

τ̄xz =

{
ν̄B∂z̄ū if |∂z̄ū| 6 γ̄c,

∂z̄ū+ (1− 1/ν̄B)B sgn(∂z̄ū) if |∂z̄ū| > γ̄c.
(6.2.31)

This is the model proposed by Liu and Mei in [40].

γ̇

|τ |

pse
udo

pla
sticτc

γc

τ∗

Figure 6.3: Simplified shear-thinning model. We consider a piecewise linear approximation (in

black) of the “theoretical” pseudoplastic law (in red). Parameters τ∗ and τc are defined by (6.2.10).

The blue curve is the Bingham limit: νB → +∞, γc → 0 with γcνB = τc. The green dashed line is

the pure Newtonian limit νB → ν.

As concerns the boundary conditions, we notice that the no-slip and kinematic boundary con-

ditions remain unchanged by the scaling. In contrast, the continuity of the stress tensor across the

free surface ϕ is greatly simplified. Recalling that ϕ = h0ϕ̄, we indeed obtain

σ · n =

(
−p∂xη + τxx∂xϕ− τxz
− p+ τxz∂xϕ− τzz

)
= ρ

−δp̄gh0∂x̄ϕ̄+ δν
u0

h0
τ̄xx∂x̄ϕ̄− ν

u0

h0
τ̄xz

− p̄gh0 + δν
u0

h0
τ̄xz∂x̄ϕ̄− ν

u0

h0
τ̄zz

 .

Now making use of (6.2.26), we obtain

σ · n = ρ


δ
(
(δνeq

u0

h0
∂x̄ū− gh0p̄)∂x̄ϕ̄− δνeq

u0

2h0
∂z̄ v̄
)
− νeq

u0

2h0
∂z̄ū

δνeq
u0

2h0

(
δ2∂x̄v̄ + (∂z̄ū

)
∂x̄ϕ̄− ∂z̄ v̄

)
− gh0p̄

 .
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Letting δ go to zero gives therefore

[p̄]|ϕ̄ = 0, [∂z̄ū]|ϕ̄ = 0, (6.2.32)

where [g]ϕ̄ is the jump of some function g across ϕ̄. In other words, we recover separately the

continuity of the pressure and the continuity of ∂zu.

6.3 Lubrication equation

The so-called lubrication equation is obtained by integrating equations (6.2.1) along the vertical

direction. The long wave and slow motion assumptions imply that we obtain a single nonlinear

equation on the depth ϕ. Similar computations were performed by Liu and Mei [40], for a two-

viscosity model, in order to justify the Bingham case, which corresponds to νB →∞ in our context.

For Bingham fluids, we refer to Liu and Mei [41], and more recently to Balmforth [2]. The final

equation is obtained through three steps we present in detail now.

We recall the equations we obtained in the preceding section, dropping the bars for clarity. First

we have the hydrostatic relation

∂zp = −1, fb 6 z 6 ϕ. (6.3.1)

Next, the dimensionless Stokes equation (6.2.23)

∂z(τxz) = −∂xp, fb 6 z 6 ϕ, (6.3.2)

where τxz is the dimensionless deviatoric stress tensor defined by (6.2.31).

These equations are coupled with the following boundary conditions (in these relations, t and

x are hidden parameters):

• on the free surface z = ϕ

p(ϕ) = 0, ∂zu(ϕ) = 0, (6.3.3)

• on z = fb
u(fb) = ub, v(fb) = vb. (6.3.4)

Concerning first the pressure, using the boundary condition on the free surface we obtain the

usual hydrostatic approximation

p(z) = ϕ− z, fb 6 z 6 ϕ. (6.3.5)

The averaged equation we look for is obtained by integrating in z the incompressibility equation,

or mass conservation,

∂xu+ ∂zv = 0.

This is quite classical, see e.g. [2] in the same slow motion context, or [36] for shallow water

approximation. We obtain

v(t, x, ϕ) = v(t, x, fb)−
∫ ϕ

fb

∂xu(z) dz (6.3.6)

= v(t, x, fb)− ∂x
(∫ ϕ

fb

u(z) dz

)
+ u(t, x, ϕ)∂xϕ− u(t, x, fb)∂xfb. (6.3.7)
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The kinematic boundary condition on z = ϕ leads to v(t, x, ϕ) − u(t, x, ϕ)∂xϕ = ∂tϕ = ∂th in the

first equation. For z = fb, we make use of the no-slip boundary condition (6.3.4), to obtain the

following averaged equation

∂th+ ∂x

(∫ ϕ

fb

u(z) dz

)
= vb. (6.3.8)

The flux

∫ ϕ

fb

u(z) dz can be computed explicitly as a function of ϕ, by integrating twice equation

(6.3.2).

The first step towards the computation of the flux is to obtain the vertical velocity profile. The

general structure of this profile is as follows. We have τxz = F (∂zu), where F is a continuous, one-

to-one, increasing function, with F (0) = 0, see (6.2.31) and Figure 6.3. From (6.3.2) and (6.3.5)

we are led to solve ∂z
(
F (∂zu)

)
= ∂xϕ. Since F (∂zu) = 0 for z = ϕ (or equivalently ∂zu = 0) we

get F (∂zu) = ∂xϕ(z − ϕ), so that F (∂zu) is monotone (increasing if ∂xϕ > 0, decreasing if not).

Because F is increasing, ∂zu is monotone as well, in particular, since ∂zu = 0 for z = ϕ, its sign

remains constant. Therefore |∂zu| is decreasing in z (increasing with depth).

The threshold in formula (6.2.31) eventually splits the fluid in two layers. Let z∗ be defined by

|∂zu(z∗)| = γc. Provided z∗ ∈]fb, ϕ[ (see below for precise formulas), we have a “small deformation”,

that is |∂zu(z)| < γc, region for z ∈]z∗, ϕ[, because |∂zu| is decreasing from 0 for increasing depth.

Similarly for z ∈]fb, z
∗[ we have |∂zu(z)| > γc, so that finally, according to (6.2.31), the velocity is

ruled by the system of equations

νB∂zzu = ∂xϕ, z∗ 6 z 6 ϕ,

∂zzu = ∂xϕ, fb 6 z 6 z∗,

where for the second equation we have used that ∂zu has a constant sign. These equations are

complemented with the boundary conditions

∂zu = 0, z = ϕ ; u = 0, z = fb.

Notice that the curve z = z∗ is not a physical interface, yet we have continuity of the stress tensor,

or equivalently here continuity of ∂zu.

Now the computations are quite easy. We integrate once the first equation between ϕ and z∗,

to obtain

∂zu =
1

νB
∂xϕ(z − ϕ).

This leads to

γ̇ = |∂zuS | =
1

νB
|∂xϕ|(ϕ− z),

so that the value of z∗ and the thickness h∗ of this layer are given by

z∗ = max

(
ϕ− B

|∂xϕ|
, fb

)
, h∗ = ϕ− z∗ = min

(
B

|∂xϕ|
, h

)
. (6.3.9)

These definitions ensure that z∗ > fb and h∗ 6 h, and are valid for ∂xϕ = 0 with the convention

B/0 = ∞. Notice that z∗ can be equal to fb for weak slopes (small ∂xϕ), or small depths (small

h). Conversely, z∗ → ϕ when |∂xϕ| goes to ∞.

Integrating once again between z∗ and ϕ, we obtain the velocity profile for ϕ > z > z∗:

u(z) =
1

2νB
∂xϕ(ϕ− z)2 +K,
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where the constant K will be determined later. Notice for further use that by construction

∂zu(z∗) =
1

νB
∂xϕ(z∗ − ϕ) = γc. (6.3.10)

We turn now to the lower layer, z∗ > z > fb. The fluid here has dimensionless viscosity 1, and

we use the boundary conditions (6.3.10) for z = z∗, and no slip (6.3.4) at z = fb. First we get,

using (6.3.10),

∂zu = ∂xϕ(z − z∗)− 1

νB
∂xϕh

∗,

next, integrating once again between fb and z∗,

u =
1

2
∂xϕ(z∗ − z)2 − 1

νB
∂xϕh

∗z + L,

where L is computed using (6.3.4), leading to

L = ub −
1

2
∂xϕ(z∗ − fb)2 +

1

νB
∂xϕh

∗fb,

so that

u =
1

2
∂xϕ

(
(z∗ − z)2 − (z∗ − fb)2

)
− 1

νB
∂xϕh

∗(z − fb) + ub, (6.3.11)

Finally, we use the continuity of the velocity at z = z∗ to obtain the constant K:

1

2νB
∂xϕ(ϕ− z∗)2 +K = − 1

2
∂xϕ(z∗ − fb)2 − 1

νB
∂xϕh

∗(z∗ − fb) + ub.

The velocity profile is therefore given by

u(z) =


∂xϕ

2

(
(z∗ − z)2 − (z∗ − fb)2

)
− ∂xϕ

νB
h∗(z − fb) + ub, fb 6 z 6 z∗,

∂xϕ

2

(
(ϕ− z)2 − (ϕ− z∗)2

)
− ∂xϕ

2
(z∗ − fb)2 − ∂xϕ

νB
h∗(z∗ − fb) + ub, z∗ 6 z 6 ϕ.

(6.3.12)

Notice that for νB = 1, easy computations show that the profile is the same in the two layers,

namely u =
∂xϕ

2
(z − fb)(z − fb − 2h) + ub, which is as expected the usual parabolic profile for a

Newtonian fluid.

On the other hand, letting νB → +∞, and γc → 0, keeping νBγc = τc, we recover formally the

Bingham fluid velocity, as in Balmforth [2]:

u(z) =


−∂xϕ

2

(
(y∗)2 − (y∗ − (z − fb))2

)
+ ub, fb 6 z 6 z∗,

−∂xϕ
2

(y∗)2 + ub, z∗ 6 z 6 ϕ,

where we have set y∗ = z∗ − fb = h− h∗.
It is now straightforward to obtain the flux in (6.3.8), since∫ ϕ

fb

u(z) dz =

∫ z∗

fb

u(z) dz +

∫ ϕ

z∗
u(z) dz.
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We have on the one hand∫ z∗

fb

u(z) dz = − ∂xϕ

3
(y∗)3 − ∂xϕ

2νB
h∗(y∗)2 + uby

∗,

on the other hand∫ ϕ

z∗
uT (z) dz = − ∂xϕ

3νB
(h∗)3 − ∂xϕ

2
(y∗)2h∗ − ∂xϕ

νB
y∗(h∗)2 + ubh

∗.

Therefore the flux we are looking for is given by∫ ϕ

fb

u(z) dz = − ∂xϕ

3

(
(y∗)3 +

3

2

( 1

νB
+ 1
)
(y∗)2h∗ +

3

νB
y∗(h∗)2 +

1

νB
(h∗)3

)
+ ubh. (6.3.13)

It is easy once again to check on this formula that we recover the usual cubic flux −∂xϕ
3
h3 for the

Newtonian fluid νB = 1. On the other hand the limit case νB →∞ gives back Balmforth’s formula∫ ϕ

fb

u(z) dz = −∂xϕ
6

(y∗)2(y∗ − 3h).

Inserting (6.3.13) in the conservation equation (6.3.8) leads to the following advection-diffusion

equation:

∂th+ ∂x(ubh) = vb + ∂x (D(h, ∂xh)∂x(h+ fb)) , (6.3.14)

where

D(h, ∂xh) =
1

3

(
(y∗)3 +

3

2

( 1

νB
+ 1
)
(y∗)2h∗ +

3

νB
y∗(h∗)2 +

1

νB
(h∗)3

)
(6.3.15)

and we recall the definitions of h∗ from (6.3.9), and y∗

h∗ = min

(
B

|∂xϕ|
, h

)
, y∗ = h− h∗ = z∗ − fb. (6.3.16)

Notice that 0 < D(h, ∂xh) 6 h3/(3νB).

6.4 Numerical illustrations

We turn now to numerical examples to illustrate the behaviour of the two-viscosity fluid. The point

here is not to give an accurate specific scheme, which is an interesting perspective since the diffusion

term may degenerate, but is beyond the scope of this work. We merely apply here a simple finite

volume strategy. The infinite space domain is replaced by some finite computational domain [a, b].

Since we do not want to cope with boundary conditions here, we merely impose a free flux on the

boundaries, which is compatible with the examples we choose. Positive time and space steps ∆t

and ∆x being given, we introduce the usual notation tn = ∆t, n > 0, and xj = j∆x, 0 6 j 6 J ,

where J = (b− a)/∆x. An approximation of the depth h is saught for in the form

hn+1
j = hnk −

∆t

∆x
(Fnj+1/2 − F

n
j−1/2) +

∆t

∆x
(Gnj+1/2 −G

n
j−1/2),

where Fnj+1/2 is the numerical advection flux, and Gnj+1/2 the numerical diffusion flux, both com-

puted at interface xj+1/2. In the following we denote unj the discretized basal velocity, and fj the

discrete topography, which are both given functions.
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The advection flux is merely an upwind flux

Fnj+1/2 =

{
hnj (unj + unj+1)/2 if unj + unj+1 > 0,

hnj+1(unj + unj+1)/2 if unj + unj+1 6 0.

For the diffusive flux, we write Gnj+1/2 = Dn
j+1/2K

n
j+1/2, where Kn

j+1/2 is the approximate value of

the slope ∂xϕ

Kn
j+1/2 =

hnj+1 − hnj
∆x

+
fj+1 − fj

∆x
,

and Dn
j+1/2 is a discretization of (6.3.15). To obtain it we need to compute h∗ and y∗ at the

interface. Accordingly to (6.3.16), we put

(h∗)nj+1/2 =


B

|Kn
j+1/2|

if B <
hnj+1 + hnj

2
|Kn

j+1/2|,

hnj+1 + hnj
2

if not,

and (y∗)nj+1/2 = (hnj+1 + hnj )/2− ((h∗)nj+1/2, so that Dn
j+1/2 is given by

Dn
j+1/2 =

1

3

((
(y∗)nj+1/2

)3
+

3

2

( 1

νB
+ 1
)(

(y∗)nj+1/2

)2
(h∗)nj+1/2

+
3

νB
(y∗)nj+1/2)

(
(h∗)nj+1/2

)2
+
(
(h∗)nj+1/2

)3)
.

The time step ∆t is actually updated at each time step using the CFL condition

∆tn

∆x2
=

σ

2Dn
, with Dn = max

j
Dn
j+1/2, where σ < 1.

The following simulations have been performed with J = 200 cells in the interval [−1, 1], together

with σ = 0.9. All figures are gathered at the end of the paper.

The first set of simulations concerns the collapse of a square-shaped stack on a horizontal flat

bottom: h0(x) = 1 for x ∈]− 1/3, 1/3[, 0 elsewhere, with zero basal velocity (ub = vb = 0). We first

propose a comparison between the two viscosities model and the high viscosity and low viscosity

models. The small deformation viscosity is νB = 100 (recall that ν = 1), and the yield stress is

0.1 in Figure 6.4, and 0.5 in Figure 6.5. These figures are complemented by Figure 6.6 where we

display for four values of the yield stress B a time-lapse of the evolution of both the total thickness

of the fluid h (plain lines) and the thickness of the low velocity layer (dashed lines).

For B = 0.1, the fluid clearly behaves similarly as the low viscosity fluid in the early stages, then

eventually it slows down, when the low viscosity layer tends to disappear, see Figure 6.6, top left.

With a yield stress B = 0.5, the two viscosities model stays in-between the other two, as expected,

faster that the high viscosity model, slower than the low viscosity one, see Figure 6.5. However, one

can check that the front hardly moves between t = 10 and t = 50, indicating that the fluid tends

to behave as the high velocity one. This is made more explicit in Figure 6.6, top right, where for

t = 10 and t = 50 the low viscosity layer is very small. In general, the thickness y∗ decreases with

time, faster when B is larger. It is hardly observable fot t = 50 when B = 2.5, indicating that the

fluid is almost completely driven by the high viscosity.
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Using the same initial data, we check the convergence of the two viscosities model towards the

Bingham fluid when νB goes to ∞. We take a yield stress B = 1.25, and νB = 10, 100, 1000. As

expected, the behaviour becomes close to the Bingham fluid, yet it departs from it for larger times,

see Figure 6.7.

We turn now to a different context, closer to the situation in geophysics. The flow here is no

longer purely gravity driven, it is actually dragged along by a non zero basal velocity. The idea here

is that our pseudo-plastic fluid is a very crude model of some planetary lithosphere, below which

lies the mantle. The basal velocity is the upper trace of convection currents in the mantle, which

are supposed to be the main drivers of plate tectonics. The initial thickness is constant equal to 1,

and we use two basal velocities Ub(x) = (ub(x), 0), where

ub(x) = − sin(2πx)/10 · 1]−0.5,0.5[(x), ub(x) = sin(2πx)/10 · 1]−0.5,0.5[(x). (6.4.1)

These velocities crudely correspond respectively to the vertical motion of a magma bubble, which

generates local perturbations of the velocity. The first one corresponds to some bubble lift, with

negative velocity on the left and positive on the right. It generates some kind of a valley surrounded

by mountains, see Figure 6.8. Conversely, the descent of a bubble reverses the velocities, and

produces a mountain surrounded with valleys, Figure 6.9. We notice in both cases that the small

velocity model has very little influence on the time evolution, and that the two viscosity model

leads to rather sharp angles in the thickness.
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Figure 6.4: Comparison between the three models, time evolution. Yield stress B = 0.1, νB = 100
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Figure 6.5: Comparison between the three models, time evolution. Yield stress B = 0.5, νB = 100
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Figure 6.6: Influence of the yield stress B. νB = 100. Color code in pictures - plain lines: total

thickness h, dashed lines: small viscosity zone thickness y∗.
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Figure 6.7: Convergence towards the Bingham model. Yield stress B = 1.25. From top to bottom:

νB = 10, 100, 1000.
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Figure 6.8: Lift of a magma bubble - Yield stress B = 1.25 - νB = 100 -Top left: basal velocity -

Top right: Timelapse oh thickness h and low viscosity layer y∗ - Next 6 pictures: time evolution of

the three models
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Figure 6.9: Descent of a magma bubble - Yield stress B = 1.25 - νB = 100 - Top left: basal velocity

- Top right: Time-lapse of thickness h and low viscosity layer y∗ - Next 6 pictures: time evolution

of the three models
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