Interactions au sein d’environnements tangibles et augmentés pour découvrir, comprendre et apprendre.

Philippe Giraudeau

To cite this version:

HAL Id: tel-03330760

https://tel.archives-ouvertes.fr/tel-03330760

Submitted on 1 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THÈSE PRÉSENTÉE
POUR OBTENIR LE GRAD DE
DOCTEUR
DE L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE MATHÉMATIQUES ET
INFORMATIQUE
MENTION INFORMATIQUE

Interactions au sein d’environnements tangibles et augmentés pour découvrir, comprendre et apprendre

Par Philippe GIRAUDEAU

Sous la direction de : Martin Hachet

Membres du jury :

Mme. Elise LAVOUÉ Maître de conférences (HDR) Univ. Jean Moulin Lyon 3 Rapportrice
Mme. Laurence NIGAY Professeur (HDR) Univ. Grenoble Alpes Rapportrice
M. Sebastien KUBICKI Maître de conférences ENIB Examinateur
Mme. Nadine COUTURE Professeur (HDR) ESTIA Présidente du jury
Mme. Stephanie FLECK Maître de conférences Université de Lorraine Invitée
M. Martin HACHET Directeur de Recherche Inria Bordeaux, France Directeur de thèse
Abstract

Digital technology is now an integral part of our daily lives. We use it to perform everyday tasks such as discovering, understanding and learning. Approaches based on physical manipulation and group activities have the capacity to facilitate such activities. However, traditional digital devices relying on interfaces using screens, keyboards and mice are limited in this type of approach.

In this thesis, we propose to use new interaction paradigms with the digital world, based on augmented reality and tangible interactions, in order to create mixed environments where the physical world serves as a support to the virtual world. Although these paradigms have existed for at least two decades, they are still not widely used in our society and are difficult to access outside of very specific use cases.

During this PhD, we have designed and evaluated environments that mix physical objects in the classroom such as paper, pencils and books, with projected digital elements (images, sounds, videos), within the same workspace. Thus, students can work actively and collectively, as they would in a purely physical space, while benefiting from the possibilities offered by digital technology. In a second step, we explored the use of tangible interactions and augmented reality to help users become aware of their energy consumption, and to optimize the layout and circulation of people within public buildings, to fight against the coronavirus epidemic.
Résumé

Le numérique fait désormais partie intégrante du quotidien en s’immisçant progressivement dans toute les activités de notre société. Nous l’utilisons pour réaliser des tâches courantes comme découvrir, comprendre et apprendre. Des approches basées sur la manipulation physique et les activités de groupe ont la capacité à faciliter ce genre d’activité. Cependant, les dispositifs numériques traditionnels s’appuyant sur des interfaces utilisant écrans, claviers et souris sont limités dans ce type d’approche.

Dans cette thèse, nous proposons d’utiliser de nouveaux paradigmes d’interaction avec le numérique, basés notamment sur la réalité augmentée et les interactions tangibles, afin de créer des environnements mixtes où le monde physique sert de support au monde virtuel. Si ces paradigmes existent depuis aux moins deux décennies, ils sont encore peu répandus au sein de notre société et difficilement accessibles hors de cas d’usage très spécifiques.

Dans un premier temps, nous avons conçu et évalué des environnements physico-numériques qui mélangent des objets physiques présents en salle de classe tels que du papier, des crayons et des livres, avec des éléments numériques projetés (images, sons vidéos), au sein d’un même espace de travail. Ainsi, les élèves peuvent travailler de façon active et collective, comme ils le feraient dans un espace purement physique, tout en bénéficiant des possibilités offertes par le numérique. Dans un deuxième temps, nous avons exploré l’utilisation des interactions tangibles et de la réalité augmentée pour aider les utilisateurs à prendre conscience de leur consommation énergétique, et à optimiser la disposition et la circulation des personnes au sein de bâtiments publics, pour lutter contre l’épidémie de coronavirus.
Liste des publications

— From Paper to Computer - Influence of the Tool on Pupils Categorization Activities (Soumis dans Computer & Education)

— “This is the Way” : Mobile Augmented Reality Prototyping of Spatial Organization with ARrangement (Soumis dans la conférence CHI 2021 - Late Breaking Work) (co-premier auteur)
Remerciements

Si l’écriture d’une thèse est une épreuve personnelle, ce doctorat est le résultat d’un travail collaboratif.

Tout d’abord, je me dois de remercier Martin de m’avoir fait confiance. Cette thèse a été une immense opportunité pour moi aussi bien professionnellement que personnellement. Je me suis épanoui dans ce métier et pour ça je t’en suis très reconnaissant ! Au-delà du rôle de directeur de thèse, j’ai aimé pouvoir interagir avec une personne bienveillante et ouverte d’esprit.

Je remercie également Sol pour son aide précieuse tout au long du doctorat. Merci de ton infaillible disponibilité, de ton écoute, de ton soutien, de tes conseils et d’avoir partagé ton savoir ! “Thank you Humane !”

Quand on se lance dans la création d’un environnement de réalité augmentée spatiale pour des enfants, qui doit être utilisé en salle de classe, il vous faut un ingénieur de grande qualité. Il doit être à l’écoute, pédagogue, ayant une grande connaissance de sujets techniques divers et variés. Si en plus vous avez la chance de tomber sur quelqu’un d’une grande gentillesse, vous êtes proche de "l’ultime" ! Merci Thibault !

Les personnes que je viens de citer font partie d’une équipe de recherche vraiment formidable. Oui, Potioc est une équipe où il fait bon vivre, composée de personnes passionnées et passionnantes. Parmi tant d’autres, merci Pierre-Antoine, Damien, Pascal, Camille, Aurélien, Fabien, Erwan, Raj pour ces longues discussions, ces débats, ces réunions, ces échanges qui font la richesse de l’équipe.

Je tiens également à remercier tous les membres du projet e-tac et notamment Joan, Alexis, Julien, David, Stéphanie et Robin avec qui j’ai adoré travailler, mais aussi pour les très bons moments partagés. Merci Stéphanie d’avoir géré ce projet d’une main de maître et d’avoir tenu la barque même par gros temps.

Enfin, merci Mado de m’avoir accompagné, aidé et soutenu dans cette aventure.
Table des matières

Table des matières

<table>
<thead>
<tr>
<th>Table des matières</th>
<th>vi</th>
</tr>
</thead>
</table>

PREMIÈRE PARTIE: RETOUR VERS LE RÉEL !

1 Des sciences cognitives aux IHM

1.1 Une cognition incarnée .. 4
1.2 De l’incarnation à l’interaction 5
1.3 Rapprocher monde numérique et monde physique 6

2 Vers une réalité mixte

2.1 Interagir avec le numérique dans le monde réel 9
2.2 La réalité augmentée ... 12
2.3 Interfaces tangibles .. 13
2.4 Approche et Méthodologie 16
2.5 Plan du manuscrit ... 16

INTERACTIONS EN RÉALITÉ MIXTE À L’ÉCOLE

3 Introduction et Contexte

3.1 Le projet e-TAC : Conception participative et évaluation d’Interfaces Tangibles et Augmentées pour l’apprentissage Collaboratif en contexte scolaire 21
3.2 Numérique et école .. 22
 Matériel informatique au sein de la classe 22
 Numérique et apprentissage scolaire 23

4 Le rôle de l’interaction dans les apprentissages chez l’enfant

4.1 Child-Computer Interaction 25
4.2 L’apprentissage chez l’enfant 26
 Faciliter l’apprentissage 28

5 Espaces physico-numériques pour l’éducation

5.1 Interfaces tangibles et augmentées pour l’éducation 31
5.2 Bénéfices des tables augmentées pour l’éducation 33
5.3 Table augmentée 3D ... 35
 Des tables augmentées pour l’éducation 37
6 Réalité augmentée et charge mentale

6.1 Introduction

6.2 État de l’art

6.3 Expérience

6.4 Résultats

6.5 Discussion

6.6 Conclusion

7 Conception d’un système de réalité augmentée spatiale

7.1 Réalité Augmentée spatiale

7.2 Détection et suivi d’objet

8 CARDS
8.4 CARDS : Une conception itérative .. 77
 Cycle 1 - Physicalisation des données 78
 Cycle 2 - Édition, hiérarchisation et collaboration 81
 Cycle 3 - Collaboration entre les objets et stabilité du système ... 85
 Implémentation technique ... 86
 Résultats qualitatifs .. 87
8.5 Discussion ... 90
8.6 Conclusion ... 92

9 Transitions physiques et numériques dans l'espace et le temps 95
 9.1 Introduction .. 95
 9.2 Livres et notes augmentés ... 96
 Travaux relatifs aux livres augmentées 96
 Explorations: physicaliser et numériser 98
 9.3 Préserver le passé et le faire cohabiter avec le présent 101
 Traverser le temps .. 102
 9.4 Conclusion et perspectives .. 103

Les interfaces post-WIMP face aux grands défis du XXIe siècle: Deux explorations ... 105

10 Erlen .. 109
 10.1 Introduction .. 109
 10.2 Visualiser la consommation énergétique 110
 10.3 L'environnement Erlen ... 112
 La plante, plus qu'une métaphore 114
 Ludification ... 115
 Susciter l'échange entre les individus 115
 10.4 Fonctionnement .. 115
 10.5 Conclusion et travaux futurs 117

11 Le projet Rantanplan .. 119
 11.1 Introduction .. 120
 11.2 État de l'art ... 120
 11.3 ARRangement .. 122
 Lignes directrices pour la conception 122
 Principales fonctionnalités 124
 Autres caractéristiques .. 126
 Implémentations .. 126
 11.4 Étude de cas .. 126
 Retours utilisateurs .. 127
 11.5 Discussion et travaux futurs 128
CONCLUSION ET PERSPECTIVES

12 Conclusion du manuscrit 133
 12.1 Récapitulatif des contributions 133
 12.2 Travaux futurs et perspectives 134
 Des interfaces pour découvrir et comprendre le monde 135
 12.3 Point final 135

Bibliography 137
Première partie : Retour vers le réel!
Ce chapitre introductif présente les fondements théoriques issus principalement des sciences de la cognition, qui soutiennent les travaux présentés dans cette thèse.

Bien que j’écrive ces premières lignes grâce à un ordinateur portable, j’ai tout d’abord passé un temps conséquent devant un carnet de notes à écrire, griffonner, déchirer et recommencer. Ce travail d’écriture préalable a lui-même été précédé par l’organisation de documents papiers sur mon bureau (voir Figure 1.1) avec, sur ma gauche, les papiers à lire, et ceux, sur ma droite, déjà "lus". La pile de droite n’est pas vraiment une pile ordonnée. Les papiers sont cornés, griffonnés, classés spatialement en plusieurs sous piles. Cette organisation qui, au premier abord, peut sembler manquer de structuration renferme bien au contraire une multitude d’indices sur la classification des documents, leur priorité, l’état d’avancement de la lecture ou bien les passages intéressants, etc.

Ainsi, je navigue en continu entre deux mondes : le premier qui me permet de construire des représentations mentales à travers les actions que j’ai réalisées avec mon corps et l’espace autour de moi ; le second, numérique, qui permet certes de présenter ce travail, mais dont l’interaction et les représentations restent contraintes et contraignantes par une interface constituée du triptique écran, clavier, souris 1.

Même si le cerveau a la capacité à s’adapter à une multitude de situations grâce à un mécanisme de plasticité cérébrale, cet état des choses est perfectible à bien des égards. Cependant, deux points semblent particulièrement importants. Le premier se résume à la manière dont nous semblons utiliser notre environnement : celui-ci nous permet de sélectionner, agencer et stocker agissant comme un support pour notre réflexion. L’ordinateur n’est pas présent dans cette sous-tâche. Le deuxième point, qui à première vue semble immuable, tient au fait que ces deux mondes n’échangent que très peu d’informations en dépit de leur proximité physique. Nous sommes ainsi constamment obligés de transférer des informations d’un monde à l’autre sans que ce surcoût nous permette de gagner en efficacité. Nous traitons ces deux points dans la suite de ce chapitre.

Une cognition incarnée

À contrario de la vision cognitiviste où la cognition serait une entité située uniquement au niveau de l’organe du cerveau et dont les composantes (perception, mémoire, raisonnement et émotion) ne seraient que des centres de traitement de symboles abstraits [1], la vision contemporaine des sciences cognitives nous apprend que notre cognition est bien au contraire rattachée au corps et à l’environnement qui l’entourent. C’est la vision de la cognition incarnée (*Embodied Cognition*) [2]. Cette théorie découle de la théorie de l’évolution selon laquelle notre système cognitif ait évolué au-dessus de systèmes nerveux basés essentiellement sur le traitement perceptif et moteur, permettant à l’homme d’interagir avec son environnement. Parmi les éléments qui rendent notre cognition incarnée, Wilson [3] démontre notamment qu’elle est située dans le monde physique et est tournée vers la perception et l’action, ce qui amènerait la cognition à utiliser l’environnement pour soulager une partie de sa charge mentale. Enfin, loin d’être un monolithe isolé du corps, la cognition reposait sur les différents systèmes sensorimoteurs du corps qui influenceraient les processus cognitifs (bottom-up process), en parallèle des processus cognitifs plus classiquement reconnus contrôlant en retour le corps (top-down process). C’est notamment ce que propose Goldin-Meadow [4] qui montre que nos gestes peuvent supporter notre cognition dans l’élaboration de nos pensées. Par ailleurs, il a été montré que la perception et la représentation d’un objet pouvaient évoluer selon sa position relative au corps [5, 6]. Au final, ce fonctionnement implique que la cognition, bien qu’étant la tour de contrôle de notre corps, est dans de nombreuses situations influencée par ce dernier, ses mouvements et son environnement².

Cette proposition résonne bien avec la vision écologique de la psychologie de Gibson [7] (*Ecological psychology*), qui propose que la psychologie soit vue comme l’étude de l’interaction entre le corps et l’environnement. L’un des concepts les plus repris par la recherche en IHM est l’affordance : nous ne percevons l’environnement qu’en termes d’affordances qui représentent les actions que nous pouvons effectuer avec notre corps sur l’environnement. L’exemple de la tasse de thé impossible de Don Norman (voir Figure 1.2) est particulièrement parlant. L’affordance perçue de cet objet ne correspond pas à l’utilisation que le commun des mortels envisagerait.
De l’incarnation à l’interaction

Ces théories ont inspiré bon nombre de chercheurs en Interaction Homme-Machine dont Paul Dourish [8] développant son idée d’*Embodied Interaction* [3], une vision de la cognition incarnée qui perçoit l’*Embodiment* avant tout comme une manière de penser l’interaction avec le numérique. Elle ne vise pas à faire disparaître l’interface mais plutôt à lui donner plus de sens, une substance, une forme. L’interface posséderait finalement une affordance comparable à un objet perçu, transportant un sens et une manière d’interagir avec ce dernier. Cette vision s’étend également à la sphère sociale. L’interaction sociale est plus qu’une propagation d’un signal à travers un milieu comme l’air [5], elle intervient à travers la présence des individus et de leurs corps, leurs mouvements, inscrits dans un contexte (environnement).

Pour aller plus loin dans l’intégration et l’entrelacement de l’homme avec son environnement, Hollan et al, livrent une nouvelle définition de la cognition créant une relation encore plus importante avec l’idée d’interaction. La théorie de la cognition distribuée [9] propose de briser les frontières communément admises de la cognition et postule que les processus cognitifs peuvent exister tant à l’intérieur du cerveau qu’à l’extérieur des individus, mais également sur la base des relations fonctionnelles des éléments qui participent ensemble à un processus donné. Cette définition de la cognition, bien que disruptive vis-à-vis de la vision plus conservatrice des sciences cognitives, n’en est pas moins intéressante. Elle reprend pratiquement in extenso la manière dont fonctionne notre cerveau, à ceci prêt que la communication entre deux systèmes cognitifs n’est dans ce cas, non pas représentée par des groupes d’axones, mais plutôt par différentes techniques de communication allant de la propagation d’ondes sonores à la disposition d’objets sur une table [6]. Cette diversité de représentations pourrait amener cette nouvelle organisation à aller plus loin dans le traitement et la réalisation de la tâche.

Ainsi, comme le note Rogers [10] [7], l’objet d’étude entre sciences cognitives et IHM n’est pas le même. Néanmoins, les IHM partagent les visions, cadres théoriques et approches de leurs homologues provenant des sciences cognitives. Elles n’apportent fondamentalement pas de nouvelles connaissances, mais proposent une couche d’abstraction nécessaire pour permettre à la communauté de l’interaction Homme machine de comprendre et de développer des environnements tirant parti de notre manière de résonner et de nos interactions avec le monde

3: “When I talk of “embodied interaction”, I mean that interaction is an embodied phenomenon. It happens in the world, and that world (a physical world and a social world) lends form, substance and meaning to the interaction.” Paul Dourish *Embodied Interaction: Exploring the Foundations of a New Approach to HCI.*

4: L’interface ne doit pas disparaître. Paul Dourish prend l’exemple du stylo. “Comment serais-je censé écrire si le stylo était invisible?”.

5: ou un signal envoyé par une personne A vers une personne B à travers un réseau “social”

6: Un système cognitif peut émerger entre un trio composé de deux individus (systèmes cognitifs) et une table permettant de stocker de nombreux objets, interprétés comme un système de stockage de l’information. Ainsi l’échange d’informations entre les deux individus sera oral, une communication simple à double sens, alors que la communication entre un individu et la table/objets sera physique dans un sens et visuel dans l’autre.

7: Cognitive science “had been developed to explain human cognition in terms of hypothetical processes exclusively inside the mind of one person”. While HCI “is essentially about how people interact with external representations at the computer interface.”
réel. Ainsi ces théories sur le traitement de l’information par l’interaction avec l’environnement ont servi de fondations théoriques à de nouveaux paradigmes d’interactions avec le monde numérique.

Rapprocher monde numérique et monde physique

Bien que le motif soit différent, l’idée de sortir le numérique hors de l’écran n’est pas nouveau. Dès 1968, Sutherland proposa une vision de l’ordinateur comme un outil qui pourrait aider l’utilisateur à comprendre son environnement physique mais également le manipuler. Cette idée de l’utilisation du numérique représente d’une certaine façon les 50 dernières années de recherche autour d’une meilleure intégration de l’informatique au monde réel.

Weiser réconcilie par la suite monde réel et monde virtuel à travers ce qu’il appelle l’information ubiquitaire (*Ubiquitous Computing* [11]). L’interface d’un ordinateur personnel est pour lui une notion dépassée. Pour Weiser, les technologies qui aboutissent et deviennent utilisées par tous sont celles qui disparaissent à l’arrière-plan, devenant une fonctionnalité du monde réel avec laquelle on peut interagir. Il affirme en outre que les ordinateurs et la réalité virtuelle éloignent les humains de leur "environnement naturel". Cette idée est plus tard affirmée par la proposition d’un numérique calme ("Calm Computing") sensé disparaître dans l’environnement quand l’utilisateur ne requiert pas cette technologie [12].

Enfin, la vision de Bret Victor à travers son essai *The Humane Representation of Thought* [13] permet d’intégrer l’ensemble des visions présentées durant ce chapitre. Pour B. Victor, le numérique devrait pouvoir manipuler la diversité de possibilités que l’humain a à sa disposition pour se représenter les informations et les échanger. Ces modes allant du symbolique à l’information spatiale en passant par le tangible (voir Figure 1.3). L’ordinateur personnel manque à la fois des possibilités de représentation, mais également d’interaction. Pour autant le numérique pourrait offrir l’opportunité de développer les représentations en leur permettant d’acquérir une propriété dynamique, qui évolue en fonction des états cognitifs des individus.

En utilisant cette vision partagée entre sciences cognitives et interaction Homme-machine, nous constatons qu’il est possible, et même souhaitable de passer d’une situation telle que décrite...
initialement vers une situation où le numérique viendrait s’intégrer au monde réel et physique, ancrant l’expérience utilisateur dans un espace unique, permettant au final à l’ordinateur de disparaître.

Figure 2.1 – Les quatre thèmes partagés par l’ensemble des interfaces post-WIMP. Tiré de [14].
Vers une réalité mixte

Les sous-domaines du cadre conceptuel de Jetter et al, appelé “Blended Interaction” : a) les interactions individuelles, b) les interactions sociales, c) le flux de travail, d) l’environnement physique. Tiré de [17].

peuvent (co)exister dans différents types d’interfaces allant des écrans tactiles à des interfaces tangibles. Nous pouvons retrouver ces 4 composantes au sein d’interfaces de réalité augmentée ou tangibles.

Ainsi, les systèmes implémentant le thème de physique naïve (naïve physics) pourraient par exemple réduire l’exigence d’abstraction et faciliter l’apprentissage, grâce à la façon plus naturelle d’interagir avec l’interface et son contenu [15]. Les éléments tangibles des interfaces pourraient également favoriser l’engagement et l’apprentissage actif [15, 16].

En substance, selon Jacob, il faut concevoir des environnements qui s’appuient sur notre connaissance intuitive du monde réel 2, en utilisant ces 4 sous domaines.

Blended Interaction

Plus récemment, Jetter et al, [17] ont proposé un cadre conceptuel prolongeant les 4 thèmes de RBI avec une dimension plus collaborative, appelé “interaction mélangée” (ou blended interaction). Ce cadre conceptuel est destiné à faciliter la conception d’espaces interactifs post-WIMP. En plus de tenir compte des notions propres à la cognition (affordance, espace d’interaction), Jetter et al, se reposent sur des concepts disponibles très tôt chez l’homme et partagés à travers les cultures et langues comme la substance, l’objet ou dedans/dehors, le contenu, plein/vide, la direction, le but/départ ..., comme base d’interaction. Enfin, il définit 4 sous domaines distincts (voir Figure 2.2) :

— L’échelle individuelle : comment un utilisateur va manipuler le contenu et l’objet au sein du système interactif.
— Les interactions sociales et la communication : il faut que le système interactif prenne en compte et ne bloque pas la communication entre les utilisateurs qui repose bien souvent sur des interactions sociales de base et nos capacités innées à dialoguer avec les autres.
— le flux de travail (workflow) : proposer un flux de travail permettant de réaliser la tâche visée grâce à plusieurs niveaux d’interactions allant de la découverte, au travail personnel puis vers la mise en commun.

Un continuum de techniques

![Continuum de Milgram proposé dans [18]](image)

Au-delà des cadres conceptuels, Milgram propose une vue unifiée de ces concepts post-WIMP sous la forme d’un continuum allant du réel, un monde physique non altéré par le numérique, au purement virtuel, ressemblant à la réalité virtuelle [18]. Sur cet axe, il considère les étapes intermédiaires sous l’appellation de Réalité Mixte (Mixed Reality) qui, selon la position du curseur, offre une augmentation du réel sur le virtuel ou inversement.

Il utilise les termes de Réalité Augmentée (RA) et de Virtualité Augmentée (VA) selon la proportion d’objets réels ou virtuels (voir Figure 2.3).

La réalité mixte que nous proposons dans ce manuscrit est cependant plus restrictive que ce que propose Milgram avec son continuum. Nous cherchons avant tout à installer le monde numérique dans le monde réel pour aider les utilisateurs à découvrir, comprendre et apprendre dans des contextes écologiques où l’engagement actif et la collaboration ne peuvent être réellement reproduits par des environnements numériques immersifs. Nous basons ainsi notre approche essentiellement sur des paradigmes permettant de projeter le numérique dans le monde réel et de manipuler physiquement ce numérique en l’intégrant dans les objets du quotidien. Pour ce faire, nous
utilisons la réalité augmentée et les interfaces tangibles, que nous décrivons dans la suite de ce chapitre.

2.2 La réalité augmentée

Azuma [20] définit la réalité augmentée (RA) comme un système qui complète le monde réel avec des objets virtuels donnant l’illusion de coexister dans le même espace que le monde réel. Ainsi un système de RA doit permettre de :

— combiner des objets réels et virtuels dans un espace réel;
— fonctionner de manière interactive et en temps réel;
— respecter la perspective de point de vue (représentation 3D).

Les interfaces de RA peuvent être créées à l’aide d’une grande variété de techniques qui peuvent toutes enrichir l’environnement de l’utilisateur avec des contenus générés par ordinateur. L’augmentation peut intervenir à travers un écran, par diffraction ou directement dans l’espace physique de l’utilisateur. Les travaux réalisés pendant ce doctorat ont notamment utilisé deux types de réalité augmentée. Le premier est la RA mobile qui augmente le flux vidéo enregistré par la caméra d’un appareil (smartphone, tablette). L’autre consiste à utiliser un projecteur vidéo pour afficher directement l’augmentation sur une surface physique. Dans ce cas, on parle de Réalité Augmentée Spatiale (RAS) [22]. Le concept de RAS a été introduit dans le milieu de la recherche par Raskar et al. [23], démontrant le potentiel.
immersif de la RAS. Pourtant, le premier concept d’augmentation par projection a été présenté par Wellner en 1993 [24] avec son interface Digital Desk, permettant de manipuler des informations physiques et virtuelles de manière similaire dans le même espace. La principale différence de la RAS est que l’affichage est séparé des utilisateurs. Dans cette configuration, l’écran n’est plus associé à un utilisateur (voir Figure 2.4), autorisant plusieurs utilisateurs à partager la même augmentation. De plus, nous verrons dans le Chapitre 6 comment la RA peut avoir un impact dans la réduction de la charge mentale induite par la tâche et de quelle façon cette dernière peut évoluer entre RA mobile et RAS. Enfin, la RAS autorise une manipulation directe des éléments augmentés et une spatialisation en ancrant le contenu numérique sur des surfaces physiques.

2.3 Interfaces tangibles

Les interfaces tangibles partagent avec la réalité augmentée la particularité de prendre en compte l’environnement physique (objets, espaces) pour interagir avec le monde numérique. Selon Shaer et Hornecker [26], les interfaces tangibles (ou Tangible User Interfaces) sont un type "d’interface qui s’attache à fournir des représentations tangibles des informations et des contrôles numériques, permettant aux utilisateurs de saisir littéralement les données avec leurs mains".

Comme le concept d’Ubiquitous Computing provenant de “Back to the Real World”, Welner, MacKay et Gold discutent de l’opportunité de sortir le monde numérique des écrans. Ceci afin de le placer à l’intérieur d’objets du quotidien pour les augmenter, tout en conservant leurs propriétés initiales. En 1995, Fitzmaurice, Hishii et Buxton [27] proposèrent le concept de Graspable User Interface. Le but ce type d’interface était de contrôler des objets virtuels à l’aide de proxies physiques tels que des cubes de bois. Ce type d’approche dépasse la sequentialité des inter-

Figure 2.5 – L’illustration du gradient allant des interfaces graphiques aux atomes radicaux en passant par les interfaces tangibles. Il faut noter que les Graspable User Interface ne sont pas pris en compte car, à bien des égards, ils peuvent être considérés comme une sous-catégorie ou une idée imparfaite des Tangible User Interface.

5: “While in traditional desktop computing the screen is merely a window through which we reach into a digital world, with tangible interfaces we act within and touch the interface itself.” Hornecker et Burr [25]
Vers une réalité mixte

Étudiants en urbanisme en train de participer à une session de travail avec Urp. Tiré de [29]

La science-fiction s’est déjà emparée de cette vision d’Hiroshi Ishii à travers les “nanites”, brique de base des réplicateurs dans la série *Stargate SG1*, ou plus récemment et beaucoup moins dangereux, la “matière programmable” présentée dans la saison 3 de *Star Trek Discovery*.

actions traditionnelles (WIMP) avec le numérique en utilisant des interactions bi-manuelles.

Ce n’est qu’après quelques années de travail que Hiroshi Ishii présenta l’idée complète d’interface tangible avec *Tangible Bits* où les deux mondes des *bits* et des atomes coexisteraient. Le monde devient un support pour les données numériques qui peuvent se reposer sur les surfaces et être manipulées à l’aide d’objets tels que les *Graspable UI*.

Compte tenu de l’encrage dans le monde réel partagé entre la réalité augmentée et les interfaces tangibles, ces deux paradigmes peuvent être combinées dans une même interface (voir Figure 2.6). Urp [28] est une des premières matérialisations de cette association entre TUI et RA. Dans ce cas, et dans de nombreuses autres interfaces par ailleurs, la RAS est utilisé pour afficher des informations virtuelles dans l’environnement physique tandis que l’interface tangible est utilisée pour à la fois créer une représentation tangible d’un élément virtuel appartenant à la simulation et d’agir comme une entrée pour le système.

Notons que la vision et l’agenda d’Hiroshii Ishii ne s’arrêtent pas aux interfaces tangibles. *Radical Atoms* ou atomes radicaux [30] (voir Figure 2.5) est la vision finale (actuelle) d’Ishii qui propose de passer d’une interaction tangible à une interaction avec le matériel 6. Nous manipulons de nouveaux matériaux dynamiques "hypothétiques" dont les propriétés physiques (telles que forme, texture, couleur) pourraient être contrôlées numériquement.

Enfin, notre démarche peut être résumée à travers le travail de Rekimoto [31] qui explicite bien les différents styles d’interactions qu’il appelle lui-même "HCI styles". De bien des manières, la Figure 2.7, bien qu’étant une version simplifiée des nombreux travaux et courants en IHM, permet de résumer le
positionnement des interactions en réalité augmentée et tangible comparées à la plus traditionnelle interface WIMP. À noter que dans le cas de la GUI (Graphical User Interface), l’homme pourrait être lui-même catégorisé comme l’interface. Le médium qui traduit les entrées du monde réel pour les transposer d’une manière que l’ordinateur peut comprendre. Ce chapitre ne mentionne pas la réalité virtuelle comme potentielle solution pour rassembler monde réel et monde numérique. Plutôt que d’immerger l’utilisateur dans le monde virtuel, nous avons exploré des méthodes qui favorisent les activités prenant place dans le monde réel, là où notre cognition et les interactions avec d’autres utilisateurs peuvent être pleinement exploitées.
2.4 Approche et Méthodologie

Cette première partie "Retour vers le réel" est directement inspirée de la special issue, *back to the real world*. 25 ans après, il semble que la grande majorité de l’humanité étant en capacité d’interagir avec le monde numérique n’ait toujours pas pu vivre ce retour à la réalité, bien que la littérature et les techniques d’interaction dans les interfaces post-WIMP foisonnent.

À travers ce travail de thèse, nous nous sommes efforcés d’amener directement ces "nouvelles" interfaces en contexte écologique, là où ces dernières pourraient directement être utilisées et évaluées. Pour pousser à cette transition, nous nous sommes appuyés sur une méthodologie centrée utilisateur et de co-conception en concertation avec les experts des disciplines concernées et les utilisateurs finaux lorsque cela était possible.

Ainsi, la problématique de cette thèse a pour objet : *Conception d’environnements post-WIMP pour une utilisation en contexte écologique.*

2.5 Plan du manuscrit

![Image de la table](image)

Figure 2.8 – Ce manuscrit est composé de deux parties principales présentant les travaux majeurs réalisés pendant cette thèse. Une introduction générale est une conclusion encadrent ces deux parties.

Le manuscrit possède 4 parties abordant les travaux ou des aspects relatifs aux travaux réalisés dans cette thèse. La première
partie a offert au lecteur une vue d’ensemble des théories sur lesquelles repose les travaux présentés dans la suite de ce manuscrit ainsi qu’une introduction aux interfaces tangibles et à la réalité augmentée, utilisées tout au long de ces 3 ans.

La deuxième partie est consacrée aux travaux réalisés dans le cadre du projet e-tac. Dans cette partie nous présentons les résultats de nos expérimentations qui ont pour but de concevoir des environnements hybrides reposant sur les interactions tangibles et la réalité augmentée spatiale pour des activités d’apprentissage. Une présentation du projet et du contexte de cette partie peut-être lu dans le Chapitre 3 et Chapitre 4. Une revue de la littérature des tables augmentées est proposée dans le Chapitre 5.

Le Chapitre 6 présente une étude ayant pour but de discriminer les différences entre deux types de réalité augmentée sur une tâche de mémorisation avec ou sans manipulation pour essayer de répondre à la question suivante :

Existe-t-il des différences entre technologies de réalité augmentée sur la charge mentale pendant une tâche de mémorisation ?

Le Chapitre 8 présente la conception itérative d’un système de réalité mixte basé sur la RAS et les interactions tangibles et répond à la question suivante :

Comment mettre en place un environnement de réalité mixte qui puisse être favorable à des activités pédagogiques de groupe en contexte scolaire ?

Le Chapitre 9 aborde les questions relatives à la préservation du travail réalisé par les élèves dans des environnements hybrides tel que CARDS. Les problématiques abordées sont :

Comment permettre aux utilisateurs de récupérer et introduire des informations du monde physique vers l’environnement hybride et inversement ?

Comment sauvegarder l’organisation spatiale des objets physiques et numériques des objets présents sur la table entre deux activités pédagogiques ?

La troisième partie présente deux explorations menées tout au long de cette thèse. Les 2 questions suivantes traitent de l’utilité d’interfaces tangibles et augmentées en contexte écologique pour proposer des solutions aux grands défis du XXIe siècle. Plus particulièrement, nous abordons l’utilisation des interfaces ambiantes et de réalité augmentée pour favoriser la prise de
conscience de son environnement et stimuler les relations entre les personnes.

Comment pouvons nous aider les individus à réduire l’énergie utilisée par leurs activités numériques au travail grâce aux interfaces ambiantes et tangibles ?

Comment faciliter l’aménagement d’espaces physiques pour lutter contre la propagation de maladie ?

La dernière partie traitée dans le Chapitre 12 présente les enseignements que nous avons tiré de la conception de ces environnements et interfaces tout au long de cette thèse.
INTERACTIONS EN RÉALITÉ MIXTE À L’ÉCOLE
"I believe that the motion picture is destined to revolutionize our educational system, [...] and that in a few years it will supplant largely, if not entirely, the use of textbooks" Thomas Edison, 1922.

Ce chapitre introductif traite du projet de recherche auquel nous avons participé pendant ces 3 ans et introduit les spécificités du monde de l’éducation et plus particulièrement du numérique au sein de l’éducation nationale.

3.1 Le projet e-TAC : Conception participative et évaluation d’Interfaces Tangibles et Augmentées pour l’apprentissage Collaboratif en contexte scolaire

Depuis au moins deux décennies, le système scolaire a intégré l’outil informatique dans un premier temps pour former les futurs travailleurs de demain aux systèmes numériques (voir section 3.2), puis en a exploité les capacités en matière d’apprentissage. Bien que le numérique offre un nombre infini d’informations et permet une facilité de traitement de ces dernières, l’environnement numérique, et plus particulièrement les interfaces, reste trop souvent éloignés des considérations pédagogiques. Ce projet de thèse s’articule autour de l’idée que les outils numériques devraient être conçus pour s’adapter aux utilisateurs (apprenants et enseignants) et non l’inverse. L’exemple de l’apprentissage en contexte scolaire est particulièrement parlant. Les élèves apprennent dans un contexte de salle de classe où plusieurs dizaines d’élèves sont regroupés autour d’une/un professeur(e) et apprennent sur la base d’objets issus de ce que l’on pourrait appeler une approche papier-crayon. En effet, les supports sont encore majoritairement issus du papier et prennent la forme de livres ou de cahiers sur lesquels les élèves réalisent des exercices, notent le discours du professeur, etc. Si cette méthode comporte de nombreuses variantes\(^1\), elle est bien établie dans les pratiques éducatives depuis la création des écoles.

1: Les variantes vont du dessin sur une large feuille de papier lors d’activité en maternelle, aux exercices de mathématiques sur feuilles blanches, en passant par l’annotation de cartes en géographie et... moins scolaire, de pliage d’avion en papier pendant des heures de colle pas toujours justifiées.
Pour favoriser les apprentissages, notamment collaboratifs, en contexte scolaire, le projet e-TAC propose d’explorer les potentialités portées par des technologies post-WIMP, plaçant les interactions nécessaires aux apprentissages directement dans l’environnement physique et social de la classe. En rendant possible la manipulation d’informations virtuelles dans l’environnement physique de la classe, favorable aux interactions collaboratives, ces systèmes hybrides apportent un potentiel important de transformation des apprentissages et des pratiques professionnelles enseignantes.

Dans l’objectif de cerner ces potentialités en termes d’apprentissages et d’appropriation par les enseignants, le projet e-TAC propose : 1) de co-concevoir et évaluer des interfaces tangibles et augmentées spécifiquement pensées pour améliorer l’apprentissage collaboratif ; 2) d’agir sur les cultures professionnelles associées en participant à la formation initiale et continue des enseignants et jeunes chercheurs. L’originalité du projet e-TAC est ici de rendre possible des actions en contexte, centrées sur les besoins réels des apprenants et des enseignants et fondées sur la co-conception d’interfaces physico-numériques.

Ce projet de recherche porté par l’Université de Lorraine implique les équipes de recherche des laboratoires LCOMS et PERSEUS ainsi que l’INSPÉ de Lorraine, avec lesquelles nous avons notamment collaboré dans la conception et l’évaluation de l’environnement de réalité mixte CARDS présenté dans le Chapitre 8.

3.2 Numérique et école

Matériel informatique au sein de la classe

Figure 3.1 – Les différentes environnements numériques couramment rencontrées en contexte scolaire en France. A) Une classe disposant de tablettes tactiles permettant aux élèves un accès au numérique plus mobile. B) Le tableau blanc interactif est un dispositif de vidéo-projection rendant possible pour le professeur l’intégration de contenu numérique pendant le temps d’enseignement. C) Des élèves pendant une session de travail collaborative au sein d’une salle de classe “informatique” au collège.
Le matériel et les interfaces que nous avons rencontrés au travers de nos expérimentations au sein d’établissements scolaires sont le plus souvent localisés dans des espaces numériques dédiés tels que des salles de classe dites "informatiques". Il s’agit majoritairement d’ordinateurs traditionnels. Pour autant, certains matériels comme les tableaux blancs interactifs (TBI) (voir Figure 3.1) commencent à être largement déployés au sein des salles de classe traditionnelles (avec malgré tout une forte disparité entre écoles). Il s’agit toutefois d’un dispositif “top-down” (descendant) qui ne permet pas aux élèves de pratiquer le numérique. Une option plus rare consiste à utiliser des "classes mobiles", armoire mobile renfermant le plus souvent des tablettes tactiles qui peuvent être utilisées dans tout type de salle de classe. Ces interfaces reposent généralement sur les paradigmes encore majoritaires dits WIMP et leurs adaptations tactiles. Il a été démontré qu’ils sont limités pour les activités d’apprentissage qui impliquent des travaux manuels et des activités collaboratives [32].

En plus des activités pédagogiques réalisées avec les équipements classiques présents, des activités plus ponctuelles sont également prévues sur des séquences pédagogiques 2 réservées à l’initiation à l’informatique et à la programmation à l’aide de langages et robots spécialement conçus [33-35]. Bien entendu, l’année 2020 est probablement l’exception à la règle puisque l’enseignant, pour cause de crise sanitaire majeure, a souvent dû se réaliser à distance. Ce projet de recherche se focalise sur des environnements numériques physiquement présents en salle de classe et ne prend donc pas en compte les espaces numériques de travail (ou ENT) ou les outils permettant l’apprentissage à distance tels que les MOOCs.

Numérique et apprentissage scolaire

Le numérique est souvent présenté comme « une chance pour l’école ». Cependant, derrière les discours et les politiques publiques d’investissement, demeure une vraie dichotomie entre volontés institutionnelles, réalité d’utilisation et d’apports du numérique en salle de classe. Le rapport 2020 du Centre national d’études des systèmes scolaires (Cnesco) permet d’apprécier cette distance [36]. Le numérique n’est pas la révolution souhaitée par certains, mais plutôt contrastée selon les niveaux et disciplines. Par exemple, seul 14,8% des enseignants du 1er degré utilisent fréquemment le numérique en France contre 58,3% [37] qui rapportent ne pas du tout l’utiliser ou moins d’une fois par semaine. L’enseignement à l’aide du numérique
est plus développé (usage quotidien ou hebdomadaire) dans l’apprentissage des langues vivantes, lectures, apprentissages du calcul ou des sciences, mais beaucoup plus parcellaire dans le reste des enseignements (autant de recours réguliers que jamais utilisé) [35]. Quant aux apports du numérique, ils sont également irréguliers selon les disciplines (très utilisé pour l’évaluation, mais faiblement pour la motivation des élèves) [36].

La conception de nouvelles technologies pour l’éducation promet un renouvellement des pratiques éducatives aidant les élèves à mieux apprendre et d’une manière plus appropriée. C’est par ailleurs, l’objectif de nombreux acteurs du numérique tel que l’institut de recherche publique Inria qui, à travers son nouveau livre blanc baptisé Éducation et Numérique : enjeux et défis [38], montre l’étendue des projets menés dans ce domaine ainsi que les défis existants à relever. Malgré tout, Dillenbourg et Evans pointent deux erreurs qui, selon eux, se répètent systématiquement à chaque introduction d’une nouvelle technologie en salle de classe [39]. La première est la surgénéralisation (ou Over-generalization), qui est le résultat de la volonté de transférer la réussite d’une nouvelle technologie sur l’apprentissage dans un cas spécifique à l’ensemble des technologies numériques. Pour autant, il n’est pas garanti qu’un nouveau logiciel ou nouvelle technologie soit utile ou bien permette de favoriser l’apprentissage dans tous les cas d’usage. La deuxième erreur est l’emballlement (over-expectation) à chaque nouvelle technologie. Les promoteurs de ces nouvelles technologies peuvent promettre monts et merveilles aux futurs utilisateurs. Cependant, une technologie, bien que potentiellement intéressante pour certains cas d’utilisation en contexte scolaire, requiert la prise en main et l’adoption des toutes les parties du monde de l’éducation. Comme nous avons pu le voir dans le chapitre précédent, les fondements théoriques établissent que l’expérimentation, la manipulation physique et les interactions sociales sont de bonnes approches pour favoriser in fine l’apprentissage. De ce fait, nous basons notre approche sur des espaces qui valorisent ces pratiques.
Le rôle de l’interaction dans les apprentissages chez l’enfant

“A mind that is stretched by a new experience can never go back to its old dimensions.” — Oliver Wendell Holmes, Jr. (1841-1935)

Cette chapitre présente les champs de recherches tels que les interactions enfant-numérique, les sciences de l’éducation et les sciences cognitives. Nous présentons ici les notions essentielles à la bonne compréhension de cette deuxième partie. Nous commencerons par présenter le champ des CCI (Child-Computer Interaction) avant de présenter la manière dont les enfants se développent et apprennent.

4.1 Child-Computer Interaction

Nous devons ce champ de recherche aux premières expérimentations de Papert en 1980 [40], Kafai (1990) [41] et Ackermann (1991). La CCI est un champ de recherche qui concerne les phénomènes entourant l’interaction entre les enfants et les technologies informatiques et de communication [42]. Elle a essentiellement commencé autour de l’utilisation de l’informatique pour les enfants et notamment dans un contexte d’éducation et d’école [43], avant de devenir un champ de recherche à part entière. Il se différencie principalement du domaine plus général des IHM par la particularité de ses utilisateurs. Les enfants sont des utilisateurs en constante évolution, aussi bien psychologique que physiologique, mais également aux niveaux social et culturel. Ce champ de recherche est maintenant bien développé autour de communautés qui ne cessent de s’accroître et de se structurer grâce à des conférences comme ACM IDC Interaction and Design for Children, Computer Supported Collaborative Learning (CSCL) ou de journaux comme Computer and Education.

La communauté CCI recherche avant tout à soutenir les enfants dans leurs interactions avec le monde qui les entoure et les technologies qu’ils utilisent. Les recherches se focalisent notamment sur le développement personnel des enfants, l’apprentissage, le développement des compétences sociales, l’expression, le jeu et enfin leur santé et le bien-être [44]. Pour ce faire, les recherches laissent une place prépondérante à l’avis de l’enfant en utilisant des méthodes de conception participative [45].

Une part importante des travaux de ce champ essaie de définir les méthodes pour conduire des recherches avec des enfants...
Le rôle de l’interaction dans les apprentissages chez l’enfant

4.2 L’apprentissage chez l’enfant

L’apprentissage est un processus cognitif qui permet l’acquisition de nouvelles connaissances ou la modification de celles qui existent déjà [52]. C’est un domaine qui a donné lieu à maintes théories provenant de courants scientifiques issus des sciences cognitives, de la psychologie ou des sciences de l’éducation. Parmi ces théories, nous pouvons citer le béhaviorisme ou le cognitivisme. Ces deux courants de pensées envisagent l’apprenant comme respectivement une boîte noire ou un sous-système à conditionner ou stimuler pour que le processus de mémorisation soit déclenché. Une vision de nos jours très critiquée, voire abandonnée pour des théories plus modernes, basées notamment sur l’approche connexioniste des sciences cognitives ou sur les neurosciences.

Durant leur développement, les enfants sont influencés dans leur quotidien aussi bien par leur génétique, l’activité neuronale, leur comportement et l’environnement, et réciproquement (voir Figure 4.1). Le monde numérique, désormais partie prenante dans nos vies, a donc un rôle potentiellement important à jouer sur le développement des enfants en modulant l’interaction entre l’environnement et le comportement.

![Figure 4.1 – Une version simplifiée de l’influence bi-directionnelle du développement de l’enfant, tirée de [53]](image)

Le constructivisme est une vision plus haut niveau du développement de l’enfant, des méthodes d’apprentissage et de construction des représentations. Cette théorie a été développée initialement par Piaget en 1923 en réaction au béhaviorisme. Le constructivisme considère que l’apprentissage est un processus actif dans lequel l’apprenant construit ses connaissances en consolidant et en internalisant les concepts et les représentations...
L’apprentissage chez l’enfant

L’apprentissage se produit lorsqu’au cours de l’exploration active du domaine de la connaissance, l’apprenant découvre une lacune dans ses connaissances ou une incohérence entre sa représentation actuelle de la connaissance et son expérience, un principe attribué aux études de Piaget sur le développement cognitif des enfants (Piaget, 2003).

De ce point de vue, le rôle de l’enseignant est de créer l’environnement nécessaire pour que l’enfant puisse découvrir et comprendre par lui-même en manipulant les concepts et notions à apprendre. Cependant, l’enfant ne prend pas nécessairement pour argent comptant ce que le professeur dit. Il l’interprète et le comprend en prenant en compte les expériences passées.

Pour illustrer la vision de Piaget sur l’apprentissage de l’enfant, nous rapportons l’histoire du mathématicien français Alexandre Grothendieck exposé par Stanislas Dahene dans son cours sur l’apprentissage chez l’enfant [54], "Une erreur de jeunesse d’Alexandre Grothendieck" : "Vers l’âge de onze ou douze ans, alors que j’étais interné au camp de concentration de Rieucros (près de Mende), j’ai découvert les jeux de tracés au compas, enchanté notamment par les rosaces à six branches qu’on obtient en partageant la circonférence en six parties égales à l’aide de l’ouverture du compas, enchanté notamment par les rosaces à six branches qu’on obtient en partageant la circonférence en six parties égales à l’aide de l’ouverture du compas reportée sur la circonférence à six reprises, ce qui fait retomber pile sur le point de départ. Cette constatation expérimentale m’avait convaincu que la longueur de la circonférence était exactement égale à six fois celle du rayon. Quand par la suite [...], j’ai vu dans un livre de classe que la relation était censée être bien plus compliquée, que l’on avait $L = 2\Pi R$ avec $\Pi = 3.14...$, j’étais persuadé que le livre se trompait, que les auteurs du livre [...] n’avaient jamais dû faire ce tracé très simple, qui montrait à l’évidence que l’on avait tout simplement $\Pi = 3$. Cette confiance qu’un enfant peut avoir en ses propres lumières, en se fiant à ses facultés plutôt que de prendre pour argent comptant les choses apprises à l’école ou lues dans les livres, est une chose précieuse. Elle est constamment découragée pourtant par l’entourage." Ainsi, pour qu’un enfant abandonne une théorie ou une croyance sur le monde, il faut faire davantage que d’énoncer ou exposer l’individu à cette nouvelle vérité. Il faut que l’enfant puisse vivre et comprendre le phénomène [55]. Ce constat se vérifie également auprès de n’importe quel apprenant.

Tout au long de ce travail, nous avons basé notre approche sur des courants et concepts proches du constructivisme qui voient précédemment mémorisées, par de nouveaux concepts en cours d’apprentissage. Selon Piaget, nous développons des schèmes d’actions qui résultent de l’expérimentation et de la manipulation d’objets. En d’autres mots, l’apprenant bâtit lui-même son savoir à partir d’expériences passées et de l’expérience qu’il est en train de vivre. Ces connaissances peuvent être vues comme un échafaudage qui se construit et se restructure en continu. La théorie de Piaget offre un prisme de lecture très intéressant pour comprendre la manière dont l’enfant agit et pense à différents niveaux et ce, tout au long de son développement 1.

1: "L’apprentissage se produit lorsque, au cours de l’exploration active du domaine de la connaissance, l’apprenant découvre une lacune dans ses connaissances ou une incohérence entre sa représentation actuelle de la connaissance et son expérience", un principe attribué aux études de Piaget sur le développement cognitif des enfants (Piaget, 2003).
l’environnement comme un facteur important pour faciliter l’apprentissage et la construction des connaissances.

L’apprentissage en contexte scolaire possède une forte composante sociale où les apprenants sont souvent amenés à travailler ensemble. L’interaction entre le contexte social et les élèves est un élément essentiel nécessaire du processus d’apprentissage. Cette notion, mise en avant par Vygotsky, propose plutôt que l’enfant se développe par constructivisme social ou socioconstructivistes, grâce aux interactions sociales avec les autres. Cette théorie pointe plus particulièrement l’importance que représente l’environnement social et culturel dans la construction de l’enfant.

L’apprentissage collaboratif repose sur une approche socioconstructiviste de l’apprentissage. En ce sens, il rassemble plusieurs types d’activités et d’apprentissages [56]. Dillenbourg définit l’apprentissage collaboratif comme une "situation dans laquelle deux personnes ou plus apprennent ou tentent d’apprendre quelque chose ensemble". L’intérêt de l’apprentissage collaboratif repose dans l’interaction entre les individus. L’apprenant n’a pas nécessairement besoin des autres pour apprendre ; cependant, l’activité amène l’enfant à générer des sous-activités supplémentaires telles que la verbalisation (explication) ou le débat (régulation, négociation). Ces activités nécessitent des processus cognitifs supplémentaires de plus haut niveau impliquant des mécanismes réflexifs de métacognition et pouvant amener à une diminution de la charge mentale [56].

Faciliter l’apprentissage

La vision contemporaine des neurosciences identifie actuellement 4 facteurs influençant le développement de l’enfant et son apprentissage (vitesse et facilité d’apprentissage) appelé "les quatre piliers de l’apprentissage" par Stanislas Dehaene [54] :

— **L’attention.**
— Maximiser l’*engagement actif* de l’enfant et sa *curiosité* en le laissant découvrir et comprendre par lui-même.
— Donner à l’enfant un *retour* sur ses actions afin qu’il puisse prendre conscience de ses erreurs. Ce mécanisme permet de déclencher une cascade de réactions neuronales permettant de *corriger* les mécanismes cognitifs ayant permis une action non souhaitable dans une situation. Il faut également proposer un retour lors du succès d’une opération (récompense) afin, à l’inverse, de renforcer
les connexions et réseaux ayant déclenché l’action et le motiver à continuer.
— La consolidation qui correspond au transfert de l’information du conscient à l’inconscient permettant à la cognition de libérer des ressources pour de nouveaux apprentissages. Le sommeil joue dans ce processus, une part importante.

La théorie de Piaget et d’autres chercheurs du courant constructiviste tel que Bruner souligne l’importance des interactions multimodales et en particulier de l’utilisation de mouvements physiques et de l’incarnation [57]. En outre, pour optimiser la rétention des informations, le matériel à apprendre doit être présenté de manière à optimiser les capacités de la mémoire de travail [58, 59].

L’apprentissage peut également être affecté lorsque la charge cognitive [60] est trop élevée. La théorie de l’Instructional Design [61] se propose de décrire les différents aspects qui influencent la charge cognitive [60] durant l’apprentissage :

— La charge cognitive intrinsèque correspond à la complexité inhérente à l’apprentissage de la notion. Si l’activité pédagogique est trop difficile pour l’apprenant, ce dernier sera dans une situation de surcharge cognitive.

— La charge extrinsèque est générée par la présentation de l’information, notamment les informations parallèles et nécessaires à la tâche et au médium utilisés. Cette charge tend à augmenter lorsque l’activité comporte des éléments non pertinents, des notions parasites ou un matériel pédagogique trop compliqué à manipuler (mentalement ou physiquement) pour l’élève. Cette dernière peut être réduite en proposant une diversité de représentation de l’information qui peut induire une meilleure compréhension de la tâche et un développement renforcé de schéma cognitif.

— Enfin, la charge essentielle correspond à la charge demandée par le système cognitif pour enregistrer l’information en mémoire.

Ces différentes charges mentales vont s’additionner tout au long de la séquence pédagogique [62]. Du point de vue de cette théorie, le principal levier actionnable par les concepteurs de systèmes numériques pour l’éducation repose sur la charge extrinsèque qui représente le support d’apprentissage. Les deux autres composantes sont incompressibles autrement que par l’amélioration des connaissances ou la constitution de nouveaux schémas mentaux chez l’apprenant ou bien par la réduction
de la difficulté de l’activité. Ainsi, un des buts des environnements développés dans cette partie est de réduire la charge extrinsèque en libérant assez de ressources cognitives pour la charge essentielle durant l’utilisation du système, pour ainsi faciliter l’encodage en mémoire à long terme de la connaissance à apprendre.

Dans le chapitre suivant, nous présentons des interfaces et systèmes qui sont directement inspirés par ces courants de pensée. En particulier, ces systèmes reposent sur une approche constructiviste de l’apprentissage qui donne à l’apprenant les outils nécessaires pour découvrir, comprendre et échafauder de nouvelles connaissances, tout en encourageant les interactions entre pairs.
Ce chapitre présente les techniques d’interactions post-WIMP utilisables dans un contexte de salle de classe et offrant des expériences pédagogiques à la croisée entre monde physique et monde numérique. Nous baserons plus particulièrement notre approche sur des environnements interactifs qui autorisent plusieurs utilisateurs à réaliser une activité pédagogique ensemble.

5.1 Interfaces tangibles et augmentées pour l’éducation

Les TUI (pour rappel, Tangible User Interface ou interface tangible) ont été grandement stimulées dans leur développement par les problématiques autour de l’aide à la résolution de problème et à l’éducation [26]. Dans la lignée de Piaget et du constructivisme de Papert (ex : Logo, Turtles), les TUI ont par exemple été utilisées pour faire découvrir aux enfants la programmation [63, 64] ou la causalité [16], des phénomènes souvent difficiles à intégrer pour des enfants, car complexes ou compliqués à percevoir et à expérimenter dans la vie quotidienne.

L’utilisation des TUI dans l’enseignement a comme principal objectif de faciliter l’apprentissage. Elles sont, pour la plupart, des versions augmentées d’objets physiques existants visant à élargir la gamme de concepts que les enfants peuvent explorer par manipulation directe. Les interfaces implémentant ce concept ont notamment la possibilité de modéliser des processus temporels et computationnels très abstraits. Lesley, et al. [65] ont par ailleurs comparé les TUI à une approche classique purement virtuelle (GUI) ainsi qu’à une condition sans numérique dans le cadre d’une activité de puzzles. Il apparaît que la condition TUI était moins frustrante pour les enfants. De plus, l’interface tangible avait tendance à être plus adaptée pour la collaboration que l’approche purement physique. Les TUI ouvrent de nouvelles possibilités, en particulier sur la compréhension de phénomènes complexes par rapport aux approches plus traditionnelles des ordinateurs de bureau et des tablettes [66].

La réalité augmentée quant à elle fait l’objet d’une forte attention depuis une dizaine d’années et notamment dans le
Espaces physico-numériques pour l'éducation

Figure 5.1 – 3 interfaces tangibles et/ou augmentées destinées à l’éducation. A) Teegi [71] une interface tangible pour aider les enfants à découvrir le fonctionnement du cerveau. B) Helios [66] une application de réalité augmentée see-through aidant les enfants à découvrir des notions complexes relatives à l’astronomie. C) The Robot Park, une interface tangible pour apprendre à programmer un robot grâce à des pièces en bois annotées.

domaine de l’éducation [67]. Plusieurs revues de la littérature se sont attachées à mesurer l’impact rapporté de la RA sur l’apprentissage [68, 69]. Les avantages les plus notables sont le "gain d’apprentissage" et une "motivation" plus importante. D’un point de vue d’ingénierie pédagogique, la RA peut être utilisée à la fois dans des contextes de classe, ou à l’extérieur pendant des travaux pratiques [70], grâce aux tablettes tactiles se démocratisant depuis quelques années.

Comme nous l’avons vu dans le Chapitre 2, RA et TUI sont souvent utilisés en tandem pour leurs caractéristiques complémentaires comme le montre Fleck, et al. [72] pour des applications supportant la compréhension de phénomènes complexes et abstraits (voir Figure 5.1).

Dans la suite de ce chapitre, nous nous focalisons sur des environnements interactifs combinant réalité augmentée et interaction tangible, et qui sont le plus souvent qualifiés de "table augmentée".

Casques de RA & RV

Au-delà des interfaces tangibles et des méthodes de réalité augmentée décrites jusqu’à présent, l’augmentation peut également se réaliser au moyen de casques de réalité augmentée (HMD pour Head Mounted Display). Toutefois, ces dispositifs sont assez coûteux et tendent à isoler l’utilisateur lors d’activités de collaboration. En outre, les enfants de moins de 13 ans ne peuvent pas les utiliser [73] notamment parce que ces dispositifs ont été conçus en fonction des caractéristiques physiologiques des adultes (par exemple, la distance inter-pupillaire). Sur ce sujet, certaines voies se sont élevées pour demander plus d’études et d’informations.
sur "les impacts physiologiques à court et long terme de la RV" [74]. Bailey, et al. [75] ont passé en revue les études déjà connues sur les effets de la RV sur les enfants. Ils en ont conclu que les conséquences résultant de l’utilisation de HMD nécessitaient des investigations plus poussées. C’est pourquoi certains HMD comme les Hololens de Microsoft ne peuvent pas être utilisés [73]. C’est pour ces raisons que nous avons concentré notre étude sur le RA mobile et RAS uniquement.

5.2 Bénéfices des tables augmentées pour l’éducation

Les environnements interactifs discutés dans ce chapitre reprennent la métaphore de tables de travail. Elles existent dans plusieurs configurations. Ici, nous faisons la distinction entre deux types d’environnements (voir Figure 5.2). Le premier type que nous appelons écran horizontal (prenant également la dénomination de table tactile) correspond à l’utilisation d’un écran tactile large (40 pouces et plus) posé horizontalement. Ces écrans présentent les avantages d’être facilement configurables et d’avoir des modalités d’interactions précises tout en permettant l’utilisation d’objets tangibles. Cependant, ils sont souvent très chers et leur encombrement peut être également un facteur limitant. Le deuxième type appelé table augmentée (aussi appelé table “augmentée 3D”, ou “augmentée et tangible”) fonctionne grâce à un ou plusieurs vidéoprojecteurs (voir section 5.3). Ces tables augmentées ont l’avantage d’être peu chères et offrent plus de possibilités d’interactions que les écrans tactiles. De plus, elles peuvent utiliser le mobilier de la salle de classe et sont moins fragiles. Néanmoins, elles sont moins précises et demandent plus de temps de mise en place.

Les tables augmentées et tangibles et, dans une moindre mesure, la catégorie plus globale des tables interactives partagent

Figure 5.2 – À gauche, un écran tactile et à droite, une table augmentée.
les avantages identifiés dans le Chapitre 2 avec le reste des interfaces post-WIMP. Cependant, de nombreuses recherches avec des tables interactives ont été réalisées en utilisant des tables tactiles [77-81]. Ces nombreuses recherches ont principalement montré que les écrans (tables) tactiles, et par extension l’ensemble des tables interactives, pouvaient être des bons supports pour les activités d’apprentissage collaboratives [82]. En facilitant la collaboration, ces écrans tactiles améliorent l’apprentissage à travers la métacognition [83] en favorisant l’élicitation et les raisonnements de plus haut niveau [39]. Ces écrans tactiles offrent un espace de travail conséquent, qui permet aux utilisateurs à la fois de disposer d’un espace personnel, et de partager le résultat avec les autres usagers au sein d’un espace partagé dit de “négociation” [76]. Cet espace est également plastique et en perpétuelle évolution en fonction de la tâche et de son avancement (voir Figure 5.3). Certes, ce type d’interfaces ne

Figure 5.3 – Exemple de travaux sur l’étude de la collaboration et des différents sous-espaces de travail (personnel, commun) grâce à des écrans utilisés comme des tables interactives. Tiré de [76].
rentrent pas dans la catégorie des tables augmentées 3D mais partage des caractéristiques physiques avec ces dernières. Par exemple, elles offrent la possibilité d’opérer des interactions bi-manuelles pour augmenter les capacités de l’utilisateur en lui offrant un degré de liberté plus important. Ces activités de manipulation physique peuvent supporter l’acquisition de connaissances, leur internalisation et la réduction de la charge cognitive [39].

5.3 Table augmentée 3D

Les tables augmentées 3D sont des dispositifs basés sur la réalité augmentée spatiale et les interactions tangibles afin de créer un environnement hybride. Ces deux paradigmes s’associent particulièrement bien dans cette configuration. La RAS projette dans le monde physique un espace 3D virtuel directement accessible aux utilisateurs. De ce fait, les interfaces tangibles et objets physiques (proxies ou outils physiques) entrant dans cet espace créent des points d’ancrage pour les items numériques afin d’être manipulés physiquement. Ainsi, la notion d’espace hybride prend tout son sens en effaçant les limites physiques qui pourraient demeurer avec des tables tactiles. De plus, les tables augmentées combinent l’utilisation d’une table interactive avec celle d’objets tangibles, tout en offrant un espace pouvant être multi-utilisateurs [84].

Les tables augmentées 3D existent dans plusieurs configurations. Une des plus complètes est proposée par [85] (voir Figure 5.4). Dans cette configuration, une table semi-transparente accueille plusieurs vidéoprojecteurs affichant les contenus virtuels. Un vidéoprojecteur placé sous la table projette l’environnement spatial sur la surface semi-transparente, alors que les vidéoprojecteurs situés au-dessus de la table augmentent les objets tangibles. Une caméra est également positionnée au-dessus ou sous la table 2 déTECTANT les objets sur la table. Cette configuration peut évoluer en fonction des usages et des contraintes d’utilisation à l’image de la Reactable [86] qui n’emploie pas de vidéoprojecteur au-dessus de la table mais utilise tout de même des objets tangibles. À l’inverse, les tables augmentées comme Urp [28] proposent une augmentation unique au-dessus de l’espace d’interaction.

Ces espaces permettent des interactions directes alors qu’avec la souris subsiste une dissociation entre l’espace des mouvements et l’espace écran. Ainsi, les tables augmentées 3D mettent à

2: Dans la proposition de Dalsgaard, et al. cette dernière est située au-dessous.
Les principaux composants et positions d’une approche créant un environnement de table 3D augmentée et tangible selon Dalsgaard, et al. [85]. 1, 4 et 5 représentent les vidéoprojecteurs. L’objet numéro 2 est une caméra, tandis que 3 est un objet tangible augmenté.

disposition de l’utilisateur plusieurs moyens d’interagir avec les contenus virtuels :

— Les objets tangibles : au sein des tables augmentées, les objets physiques jouent une part importante dans la manipulation des données virtuelles. Plusieurs taxonomies existent permettant de différencier leur contexte d’utilisation ou leurs propriétés, mais celle de Holmquist, et al. [89] est peut-être celle qui se rapproche le plus du contexte d’utilisation des tables augmentées. Il existe 3 catégories d’objets selon [89] : Les containers sont des objets génériques qui peuvent être associés à tout type d’information numérique (voir Figure 5.5, image de droite); Les tokens, sont des objets spécifiques qui contrôlant des informations particulières. Les tokens ressemblent souvent aux informations qu’ils représentent; enfin, les outils sont utilisés pour manipuler et modifier
les propriétés de l’information numérique.

— **Le papier**, bien que tombant dans la catégorie des objets tangibles, a été très souvent utilisé dans la littérature (i.e [90-94]). Il a la particularité de pouvoir agir à la fois comme support de l’information générique et de pouvoir modifier le contenu virtuel [95].

— **Les stylos interactifs** : les surfaces horizontales sont souvent des surfaces parfaites pour écrire et interagir avec des stylos. Ils ne sont donc pas seulement utilisés pour manipuler de l’information numérique mais également pour en créer. Ils peuvent également jouer le rôle de pointeur en remplacement de la souris.

— **Les interactions tactiles**, bien que plus spécifiques et souvent bien plus précises que les tables tactiles, elles ont également été utilisées pour interagir avec le numérique [86, 88, 90, 94].

Des tables augmentées pour l’éducation

Comme présenté dans le chapitre introductif de ce manuscrit, Underkoffler et al. ont sans doute été les premiers à proposer un environnement augmenté et tangible. Baptisé Urp, il a pour but de faire découvrir et comprendre comment l’ensoleillement et les mouvements de masses d’air peuvent évoluer en fonction du positionnement des bâtiments.

Parmi les travaux antérieurs qui ont été réalisés pour l’éducation, on peut citer Hobit pour *Hybrid Optical Bench for Innovative Teaching* [98]. L’enseignement de l’optique à l’université passe notamment par des travaux pratiques où les étudiants apprennent à manipuler des bancs optiques tel que l’interféromètre de Michelson. Ces outils sont cependant difficiles à utiliser au
Espaces physico-numériques pour l’éducation

Figure 5.6 – Trois tables augmentées simulent des activités autour de l’optique. De gauche à droite, Illuminating light, l’interface présentée dans [96] et Hobit [97]. Alors que Illuminating light était principalement une preuve de concept, Hobit est, quant à lui, un outil pédagogique utilisé en salle de travaux pratiques au sein de l’IUT d’optique de Bordeaux depuis plusieurs années. Signe sans doute que ce type d’interface est désormais assez mature pour être déployé plus largement que simplement pendant des expérimentations.

premier abord. De plus, il est parfois compliqué de mettre en relation la manipulation physique avec le résultat obtenu.

Hobit conjugue une approche physique où les éléments optiques (lentilles, miroirs) sont remplacés par des répliques imprimées en 3D composées de capteurs électroniques (voir Figure 5.6). Cette approche traditionnelle d’un banc optique en association avec une simulation numérique et des augmentations pédagogiques permet aux utilisateurs de mieux comprendre les phénomènes optiques intangibles et de permettre une approche basée sur l’essai-erreur, impossible à réaliser dans des conditions standards. L’interface positionne aussi les augmentations au sein d’un même espace que les objets physiques manipulés par les étudiants, et joue ainsi un rôle dans la construction des connaissances. Par ailleurs, l’utilisation de la RAS crée un espace supportant les interactions de groupe et le travail collaboratif.

Toujours dans le but de faciliter l’apprentissage de concepts complexes dans un contexte scolaire, Zufferey et al. ont développé Tinker Lamp [101]. Cet environnement hybride a donné naissance à plusieurs autres interfaces. Le premier est Tinker Logistic, un environnement de simulation d’entrepôt à petite échelle où des représentations 3D d’étagères industrielles sont manipulées par les étudiants pour leur apprendre à agencer et concevoir la logistique au sein d’un entrepôt. Une étude avec des apprentis logisticiens menée par Schneider et al. [102] a montré que l’ajout d’objets tangibles (en l’occurrence, les étagères) aidait les étudiants à mieux réussir la tâche demandée tout en obtenant un gain dans l’apprentissage. En outre, les groupes utilisant Tinker Logistic ont mieux collaboré, exploré davantage de conceptions alternatives et ont perçu la résolution de problèmes comme plus ludique.

Cuendet et al. [99, 103] (voir Figure 5.7, première image) ont également utilisé l’environnement Thinker pour aider des ap-
prentis charpentiers à acquérir des compétences en géométrie et développer leurs habilités spatiales. Avec cette interface, les étudiants manipulent des blocs de bois physiques. L’environnement produit 3 vues orthogonales qu’ils doivent redessiner par la suite. Bonnard et al. [104] ont eu recours au même environnement pour concevoir une interface dédiée à l’apprentissage de la géométrie en 2D.

BrainExplorer [105] permet aux élèves de découvrir le fonctionnement des voies neuronales et plus particulièrement du système visuel, en manipulant des représentations en 3 dimensions des différentes aires cérébrales. En créant et modifiant les liens entre les items, les étudiants déterminent par essais-erreurs successifs comment est altéré le champ de vision et ainsi, tirer activement des enseignements de leur exploration.

Digital mysteries [106] est une table interactive destinée à l’apprentissage collaboratif en salle de classe. Cette table a été développée selon un développement itératif partant d’un prototype basse fidélité en papier vers une version finale construite sur de la réalité augmentée spatiale. Le but de cette table était de soutenir les compétences de haut niveau comme la méta cognition et la réflexion dans un cadre d’apprentissage collaboratif. Les auteurs mettent également en avant le faible coût que
représente cette interface grâce à la RAS comparé à des tables tactiles et espèrent pouvoir développer ces outils dans un cadre éducatif.

Enfin, Caretta [107] (voir Figure 5.8) est une table augmentée à des fins d’apprentissage de l’urbanisme. Cette interface propose deux espaces physiquement distincts à l’instar de la majorité des autres tables augmentées. L’espace de la table est uniquement utilisé comme espace en commun. La table est une grille sur laquelle les utilisateurs manipulent des objets physiques tels que des maisons ou des magasins pour dessiner une ville. Les utilisateurs disposent de l’PDA servant d’espaces personnels pour changer la disposition du bâtiment et tester le plan. Avant d’appliquer un changement à l’organisation de la ville, les utilisateurs peuvent modifier leur espace personnel pour les aider à évaluer leurs propres plans. Si le résultat correspond aux souhaits de l’utilisateur, il peut proposer une évolution du plan au sein l’espace global après échanges entre les pairs.

Papier augmenté

Le papier dans sa forme primaire est un support pour l’information. Il est léger, facile à transporter et permet de prendre connaissance du contenu tout en naviguant au sein d’un document. Selon Schilit [108], 6 caractéristiques font que le papier est toujours un support incontournable :

— La **tangibilité** du papier lui permet d’être tenu, déplacé, plié facilement pour accroître sa lisibilité, à la différence de la lecture sur un écran, ce dernier restant plus compliqué à manipuler. Il est peut-être arrangé et agencé pour constituer un objet physique à part entière tel un livre. L’assemblage de papier donne alors naissance à un nouvel objet possédant ses propres affordances et donnant un sens différent à la feuille de papier originelle. Sa forme et sa taille induisent également différentes utilisations allant du post-it, facilement manipulable, au poster.
— **L’annoter librement.** Le papier peut être annoté sans restriction et n’entraîne pas une grosse charge mentale. De plus, l’annotation est une phase importante de lecture active.

— Le papier conserve *"l’orientation de la page"* contrairement à la page web et au document numérique qui sont beaucoup plus flexibles, ce qui peut participer à perdre le lecteur. Cette organisation facilite la navigation tout en supportant la mémoire spatiale.

— Le papier est considéré comme un écran pour Schilit (et également Holman [95]). Un écran qui peut être multiplié à l’infini pour un coût modéré.

— Les documents papier peuvent être facilement partagés de main à main.

— Le papier est lisible. Selon l’auteur, un nombre important d’études ont montré la capacité du papier à être plus lisible que les écrans en termes de vitesse de lecture et de correction orthographique.

Il est vrai cependant que le papier n’est pas facilement modifiable, réarrangeable ou indexable comparé à un document électronique. Il est par ailleurs plus difficile de le dupliquer [109, 110].

Cette dissociation entre documents papier et numérique a été décrite par Welmer (1993) en deux stratégies "paper pushing" et "pixel pushing" distinguant deux types de supports qui co-existent sur nos bureaux, mais qui pour autant restent isolés l’un de l’autre. Wellner a été le premier à montrer le potentiel de ce support pour la RAS en l’utilisant comme support de projection [24].

Au fil des années, de nombreuses recherches ont tenté de réunir ces deux stratégies. Pour Guimbretière [109], le papier peut faire office d’écran, peu cher et de taille variable, ou agir tel un affichage dynamique en assemblant plusieurs papiers.

Le papier peut-être augmenté grâce à plusieurs technologies telles que des marqueurs fiduciaires, des codes-barres, des puces RFID, ou encore des patterns permettant de numériser le tracer d’un stylo 3. Ces patterns permettent par la suite d’afficher des augmentations visuelles sur ou autour du papier, par projection ou en regardant à travers un écran.

Cette idée a été par la suite reprise autour d’un concept de papier écran implanté en 2005 par Holman avec son interface *PapierWindows* [95]. *PapierWindows* est un prototype de bureau augmenté qui simule l’utilisation de "digital paper displays" (ou écran de papier numérique) grâce à l’utilisation conjointe d’un

3: C’est le cas de la technologie utilisée par le stylo connecté Anoto.
Espaces physico-numériques pour l’éducation

Figure 5.9 – Un objet coloré (ici un stylo) est déposé sur une feuille de papier, lequel dispose d’un marqueur sous la forme de pastilles de couleur, permettant d’identifier la feuille, et d’un code informatique imprimé. Lorsque cette feuille entre en collision avec une feuille écran, le code s’exécute. Dans ce contexte, la couleur du stylo est utilisée pour colorer des cercles dans une animation virtuelle.

Figure 5.10 – tiré de [91]. Une table augmentée dédiée à la création de cartes mentales. Ici, l’utilisateur supprime un lien en réalisant un geste “ciseaux”.

projecteur et de feuilles de papier disposant de marqueurs infrarouges. En rapprochant une feuille de l’écran d’un ordinateur, il est possible de transférer, au moyen d’un simple geste, une fenêtre d’application sur la feuille. L’utilisateur peut naviguer sur un site, annoter des textes, partager du contenu, etc.

Cette utilisation a été reprise par plusieurs interfaces dédiées à l’apprentissage ou à la création. Le concept de Dynamic Land [111] est entièrement fondé sur l’accessibilité et la capacité du papier à accueillir des informations, virtuelles ou réelles. Dans Dynamic Land, chaque feuille de papier héberge un code informatique qui peut être exécuté et joint à d’autres codes pour agir ultérieurement sur des objets physiques ou une animation projetée sur la surface de travail (voir Figure 5.9). Grâce à leur bonne accessibilité, les documents papier peuvent ensuite faciliter le travail collaboratif en partageant le code informatique ou la simulation projetée sur chaque feuille à la vue de tous.

Le papier a également été utilisé avec des tables de travail augmentées dans les écoles pour les jeunes aveugles et malvoyants. Cela a notamment été le cas pour l’apprentissage de la mobilité et de l’orientation avec des cartes tactiles augmentées utilisant des projections et un retour sonore [112]. L’utilisation
du papier comme support tangible a été préféré par la majorité des étudiants aveugles et malvoyants aux objets en 3D.

Do-Lenh et al. [91] (voir Figure 5.10) utilisent une table augmentée pour construire des cartes conceptuelles à base de papiers disposant de marqueurs fiduciaires. En plaçant deux morceaux de papier côte à côte représentant des concepts, les utilisateurs créent un lien entre ces derniers pour former une carte.

Finalement, Prieto, et al. [113] ont rapporté que les interfaces papier permettaient une plus grande flexibilité, une expérience plus immersive avec le numérique et avaient la capacité de réduire la surcharge cognitives dans des tâches requérant des interactions complexes.

Le livre est à la fois un support physique et sémantique qui peut être utilisé pour accueillir des activités numériques. Nous reviendrons sur cet aspect dans le Chapitre 9.

Comme on peut le constater dans la littérature, la combinaison de l’augmentation spatiale et des manipulations tangibles sont d’excellents candidats à la création d’interfaces didactiques, et le papier est un support prometteur non seulement en raison de son coût, mais aussi de sa facilité de manipulation, sa compatibilité avec les méthodes d’enseignements ainsi que de sa disponibilité dans les salles de classe. Pour ces raisons, nous avons choisi de travailler avec ce médium au sein de tables augmentées. Nous présentons le résultat de ces travaux dans notamment dans les Chapitre 8 et Chapitre 9.
Ce chapitre présente une expérimentation visant à comparer et comprendre l’impact sur la cognition de deux types de réalités augmentées pendant une tâche de mémorisation. Ceci dans le but d’informer et d’éclairer sur les choix technologiques et d’interactions pour la conception d’environnements post-WIMP pour l’éducation. Notons toutefois que les choix technologiques de CARDS n’ont pas été fait au regard des conclusions de cette étude.

Ce chapitre a fait l’objet d’une soumission à la conférence IEEE VR 2020.

6.1 Introduction

En transposant de manière transparente le contenu numérique dans le monde physique, la RA offre à ses utilisateurs un environnement de travail qui leur permet d’accomplir des tâches d’interaction d’une manière qui diffère largement de ce qu’ils pourraient faire sur un poste de travail standard. C’est notamment le cas dans le domaine de l’éducation, où il a été démontré que la RA présente une valeur ajoutée intéressante pour de nombreuses tâches d’apprentissage ou de résolution de problèmes [39, 114]. Pour ces tâches, la réalité augmentée mobile basée sur smartphones ou tablettes tactile (par exemple [115]) et la réalité augmentée spatiale (SAR pour Spatial Augmented Reality) s’appuyant sur les vidéo-projecteurs semblent être les approches les plus prometteuses. Les différences pragmatiques entre ces deux technologies sont relativement bien connues (voir section 6.2). En revanche, leur impact sur la charge mentale des utilisateurs a été exploré dans peu de cas d’utilisation (voir section 6.2). La charge mentale est un élément clé pour l’accomplissement de nombreuses tâches, comme nous le rappelons dans la section 6.2. Par conséquent, au-delà des valeurs pragmatiques, il est fondamental de mieux comprendre dans
quelle mesure la technologie mobilise les ressources cognitives et quel impact elle aura sur l’accomplissement des tâches qui génèrent intrinsèquement une charge mentale élevée.

Dans ce travail, nous nous concentrons sur les environnements de travail de type tables augmentées, comme celui illustré dans la figure d’en-tête. Nous avons mené une expérience qui compare la réalité augmentée mobile (HAR pour Handled AR) basée sur tablette et la SAR dans une tâche de mémorisation. Nous avons considéré deux conditions, une où les sujets sont passifs (aucune action de manipulation) et une autre où ils manipulent activement le contenu augmenté. Notre objectif était d’étendre les connaissances actuelles en répondant à la question suivante : Quel est l’impact de la technologie de RA sur la charge de travail mentale ? Les études ayant exploré cette question sont rares (voir section 6.2) particulièrement dans le cadre d’une comparaison entre HAR et SAR sur la charge de travail mentale. Notre étude explore les différences entre ces deux approches de RA sur une tâche de mémorisation destinée à la charge de travail mentale. Les résultats tendent à montrer que les sujets avaient une charge de travail mentale significativement plus élevée en HAR qu’en SAR et que cette charge de travail mentale était significativement plus élevée dans le cas où les sujets devaient manipuler tout en mémorisant. Elle apporte de nouvelles connaissances qui pourraient guider le développement de futures applications de RA sur des tables dédiées à des tâches impliquant une charge mentale élevée, ce qui est notamment le cas dans le domaine de l’éducation.

6.2 État de l’art

Les deux technologies utilisées

Diverses techniques peuvent créer l’illusion que les objets physiques sont enrichis de contenu numérique. La plus courante s’appuie sur l’utilisation d’appareils mobiles (par exemple, téléphones et tablettes) où l’utilisateur voit l’augmentation à travers l’écran de l’appareil sur lequel le flux vidéo enregistré par la caméra intégrée est augmenté avec du contenu numérique. La HAR est désormais robuste et efficace et a été étudiée dans de nombreuses activités pédagogiques à l’école [116-118]. Cependant, elle exige que l’utilisateur tienne un appareil mobile à tout moment. En outre, elle crée une indirection visuelle puisque la perspective et la position de la caméra sont différentes de l’utili-
État de l’art

En ce qui concerne la calibration notamment.

C’est-à-dire sans support physique ayant pour conséquence de déplacer l’angle et réduit le champ de vision sur la zone d’intérêt [119].

Une alternative à l’approche HAR est d’utiliser la projection, comme nous l’avons vu dans le Chapitre 2 et le Chapitre 5. En SAR, les utilisateurs n’ont pas besoin de manipuler un appareil et peuvent voir les augmentations sans avoir recours à des moyens indirects. Actuellement, la technologie SAR est moins mature que HAR car elle est plus complexe à mettre en place en raison du manque d’outils d’installation automatique et d’une dépendance importante aux conditions d’éclairage. En outre, l’augmentation "in the air" n’est pas possible. Cependant, cette approche semble prometteuse pour de nombreuses activités pratiques telles que vues dans le Chapitre 5.

Charge cognitive

La charge cognitive (ou mentale) est la quantité de ressources cognitives utilisées pour accomplir une tâche. Baddeley et Hitch ont proposé un modèle basé sur la mémoire de travail pour la décrire [120]. L’un des concepts clés est que la mémoire de travail dispose d’une quantité limitée de ressources pour traiter les informations. Une surcharge entraîne de moins bonnes performances et un sentiment de stress [121]. Les habilités spatiales reposent sur le calepin visuo-spatial de la mémoire de travail pour manipuler des éléments spatiaux [122]. Ainsi, ces capacités peuvent être affectées par une surcharge de la mémoire de travail. Les performances lors d’une tâche peuvent être affectées si la charge de travail est trop élevée [123], en particulier dans le cas de tâches d’apprentissage. Par exemple, un champ de vision restreint peut augmenter la charge de travail [124, 125], et par conséquent réduire les performances [126]. Cependant, il a été montré que les applications en RA utilisent les habilités spatiales et peut faciliter la compréhension de phénomènes complexes en sciences (géométrie) ou géographie [127], notamment chez les utilisateurs possédant de faibles habilités spatiales.

Les mesures de la charge mentale peuvent être divisées en trois classes : les mesures basées sur la performance, les mesures physiologiques et les mesures subjectives [128]. Il est recommandé de collecter au moins deux classes sur trois pour avoir une bonne estimation de la charge mentale [129]. Dans cette étude, nous utilisons une mesure de performance (décrite dans la section 6.3) et un questionnaire subjectif sur la charge de travail mentale.
Charge cognitive et charge mentale

La charge cognitive est une théorie proposée par Sweller [123] alors que la charge mentale est la quantité de ressources cognitives utilisées pour réaliser une tâche.

Comparaison des technologies de réalité augmentée

Peu d’études ont comparé les différentes techniques de RA en ce qui concerne la facilité d’utilisation, les performances ou leur impact sur la cognition. Malinverni [130] a mené une étude auprès d’enfants pour comparer deux paradigmes de RA pour les technologies mobiles. Le premier était un dispositif mobile de RA transparent et l’autre un projecteur de poche équipé d’une caméra. Ils ont conclu que, par rapport à l’appareil mobile à vision directe, une approche basée sur le projecteur permet une meilleure compréhension de l’expérience et une plus grande attention au monde réel et aux autres personnes qui l’entourent. Ils ont également constaté que la RA amenait les enfants à se concentrer davantage sur l’écran que sur l’environnement physique dans lequel l’activité avait lieu.

Plasson, et al. [131] ont étudié expérimentalement les performances et ainsi que l’utilisabilité d’interactions basées sur des tablettes et HMD (Head-Mounted Display) dans le but de sélectionner des objets virtuels placés sur une table. Ils ont comparé 3 techniques d’interaction ; deux techniques de pointage avec HMD (raycasting et pointage avec le doigt) et un pointage sur écran tactile dans la condition tablette. Les auteurs ont notamment observé que la technique de pointage sur tablette semblait être moins affectée par les petites cibles et les occultations.

Certaines études se sont intéressées aux différences entre plusieurs types de réalité augmentée sur la charge cognitive et le temps d’exécution des tâches, principalement autour de tâches d’assemblage [132, 133]. Büttner, et al. [134] ont étudié la différence entre SAR et HMD face à une condition où l’utilisateur lisait les instructions sur papier. Leurs résultats ont montré que la condition SAR ainsi que les conditions papier ont un temps de complétion de la tâche plus rapide et comportent moins d’erreurs que dans la condition HMD. À l’exception des études sur les tâches d’assemblage, très peu de recherches ont été menées pour tenter de différencier les technologies de RA sur le plan cognitif.
Baumeister, et al. [125] ont comparé l’impact de différents affichages de RA sur la charge cognitive pendant une tâche procédurale où l’utilisateur devait appuyer sur des boutons le plus rapidement possible. Dans cette tâche, les auteurs ont utilisé quatre conditions en utilisant quatre matériels différents. Trois conditions utilisaient des HMD (modèles différents) et une condition disposait d’un système de projection. Les auteurs ont utilisé le temps d’exécution comme score de performance et un questionnaire subjectif pour mesurer la charge cognitive. Ils ont constaté que l’utilisation de la projection permettait d’obtenir des performances nettement meilleures et une charge mentale subjective plus faible. Cependant, cette expérience n’utilisait pas d’appareil de HAR tels que des tablettes ou des smartphone.

Mackamul, et al. [135] ont étudié les différences de performances et d’expérience de l’utilisateur entre la HAR et la SAR sur une tâche collaborative colocalisée. L’expérience a été construite autour d’un jeu de "cartes" où l’utilisateur devait se rappeler des positions de paires de cartes. Ils devaient effectuer la tâche dans les deux conditions en utilisant soit des tablettes, soit la projection. Ils ont constaté que la SAR permettait d’accélérer considérablement le temps d’exécution de la tâche et d’augmenter le nombre d’interactions effectuées pour mener à bien une tâche collaborative. Néanmoins dans cette expérience, la charge mentale n’était pas évaluée.

Enfin, Alves, et al. [136] ont utilisé la RA pour guider les utilisateurs dans une tâche d’assemblage. Les auteurs ont comparé RA et SAR entre elles et ont constaté que les sujets avaient préféré la SAR. Les sujets étaient également plus rapides et ont déclaré avoir eu une charge mentale plus faible dans la condition SAR.

Dans l’ensemble, les études tendent à montrer que la SAR peut surpasser la HAR dans diverses tâches. Ces études s’appuient généralement sur le temps d’exécution comme mesure de la performance. Dans notre approche, nous avons plutôt choisi une tâche de mémorisation comme moyen de quantifier la charge mentale, en plus des questionnaires subjectifs.

6.3 Expérience

Pour comprendre l’impact de la technologie sur la charge mentale, nous avons construit un protocole expérimental où les sujets devaient réaliser une tâche de mémorisation consistant à mémoriser des items virtuels. Les sujets devaient alternativement utiliser une tablette tactile et un système de SAR. Enfin,
une tâche de manipulation était également rajoutée au milieu de l’expérience.

Tâches

La tâche de mémorisation

La tâche principale que le sujet devait effectuer pendant toute l’expérience était une tâche de mémorisation. Pour chaque essai, les sujets avaient 8 secondes pour mémoriser une série de 5 images ou mots sur des feuilles de papier (voir la section 6.3), comme l’illustre l’image d’en tête de chapitre. Une fois le temps écoulé et le contenu numérique disparu, les sujets devaient répondre à une question relative à ce contenu, comme par exemple retrouver la position d’un élément donné (voir Section 6.3).

Tâche secondaire

Une tâche secondaire était introduite à la moitié de l’expérience consistant à effectuer une tâche de manipulation pendant la phase de mémorisation. Pour chaque essai, un carré bleu apparaît aléatoirement à 10 cm sous l’une des 5 cartes. Le sujet doit déplacer la carte correspondante à l’emplacement de ce carré bleu, qui devient rouge dès que la carte est suffisamment proche (voir Figure d’en-tête). Le sujet peut alors ramener la carte à sa position initiale et poursuivre la phase de mémorisation.
Hypothèse

Ainsi, nos hypothèses pour cette expérience étaient :

— H1 : Les sujets auront un meilleur score dans la condition SAR et une charge mentale moindre.
— H2 : Les sujets auront un temps de complétion plus court en SAR.
— H3 : Les sujets auront un score plus faible lorsqu’ils doivent réaliser de la manipulation en plus de la tâche principale.

Sujets

Nous avons recruté 20 sujets (9 femmes / 11 hommes) en diffusant des annonces publiques dans les universités/laboratoires et par le biais de listes de diffusion et de médias sociaux. Leur âge variait de 19 à 41 ans. La plupart des sujets étaient des étudiants venant de l’université ou des employés de l’université ou des laboratoires proches. Tous les sujets recrutés ont déclaré n’avoir aucun problème médical connu, que ce soit physiquement ou psychologiquement, et étaient francophones. Cette étude a été approuvée par le COERLE (Comité Opérationnel d’Évaluation des Risques Légaux et Éthiques), le comité d’éthique d’Inria.

Procédure

Les sujets ont été accueillis dans une salle dédiée où le dispositif expérimental avait été installé préalablement. Avant de commencer l’expérience, nous avons demandé aux sujets de remplir un questionnaire démographique (âge, sexe, emploi/statut actuel) et de signer un formulaire de consentement, décrivant l’expérience et leurs droits concernant les données collectées. Ils ont également répondu à deux tests concernant leurs capacités spatiales : un test de rotation mentale [137], traduit en français [138] et une simulation informatique du test Corsi [139] qui est liée à la capacité de la mémoire de travail. Ensuite, l’expérimentateur a présenté les deux configurations et la manière d’interagir avec elles. Au cours de cette démonstration, nous avons également expliqué la tâche principale.

Un bloc consistait en deux groupes d’essai (un pour chaque condition - HAR et SAR) comme le montre la Figure 6.2. L’ordre entre les deux conditions à l’intérieur d’un bloc était contrebalancé. Après un bloc, les sujets remplissaient un questionnaire NASA-RLTX (NASA Raw Task Load Index) pour une évaluation
subjective de leur charge de travail mental liée spécifiquement au bloc.

Dans les trois premiers blocs, le sujet devait mémoriser l’emplacement des cartes et le contenu de chaque carte. Pour maintenir la concentration, une courte pause était prévue après les trois blocs. Après cette pause, les sujets devaient répéter 3 nouveaux blocs, cette fois avec l’introduction de la tâche secondaire (voir section 6.3). Avant de commencer, une courte démonstration était effectuée.

Enfin, un bref entretien était mené concernant les préférences du sujet ainsi que ses difficultés et ses sentiments par rapport à l’expérience.

Les tests de Corsi et de rotation mentale nécessitaient environ 15 minutes pour l’explication, la réalisation et les pauses. Les sujets ont eu besoin en moyenne de 5 minutes pour tester et s’adapter aux deux conditions. Un essai a été calibré pour durer 15 secondes en moyenne. En comptant 1 minute pour une réalisation NASA-TLX, un bloc devrait donc prendre entre 4 et 5 minutes au total. Au total, compte tenu du questionnaire démographique, des pauses entre les entretiens et de l’interview, la durée d’une expérience pour un sujet était d’environ 1h15.

Figure 6.2 – L’expérience est composée de 2x3 blocs. Chaque bloc est composé de deux sous-blocs permettant aux sujets de faire l’expérience à la fois avec la tablette et avec la projection. Un groupe est composé de 8 essais (8 secondes chacun) suivis d’une question (voir section 6.3). Les trois premiers blocs effectuent les essais sans manipulation tandis que les blocs 4, 5 et 6 effectuent les essais avec la tâche secondaire.

Score de performance

Le score repose sur la capacité des sujets à répondre correctement aux questions qui se rapportent à ce qu’ils viennent de
voir. Nous avons conçu quatre types de questions différents. Après chaque essai, nous posons 4 questions :

— Position : Quelle était la position de cette photo/mot?
— Image : Quelle était la position de cette image / ce texte en position X?
— Présence : Laquelle de cette image/mot était présente?
— Absence : Laquelle de cette image/mot était absente?

Les quatre types de questions n’exigeaient pas de nommer l’image ni le mot. Il était possible de répondre à chaque question en utilisant un chiffre entre 1 et 5. Par exemple, dans le cas de "Quelle est la position de cette image/ ce texte?", le sujet voyait apparaître l’image/le mot correspondant et pouvait répondre par le numéro représentant la position de l’élément, 1 étant la position la plus à gauche et 5 la position la plus à droite. Cela nous permet de construire un score sur 8 pour chaque groupe d’essais et de 24 (3x8) pour chaque condition.

Mesures

Cette section résume les mesures que nous avons utilisées pour l’expérience.

— **Habilités spatiales** : Deux scores ont été obtenus avec le test Corsi et le test de rotation mentale.

— **Score de performance** : Ce score est sur 24 (3x8 essais). Voir la section 6.3.

— **Temps de complétion** : Nous avons mesuré le temps nécessaire pour répondre à la question, calculé entre l’apparition de la question et la validation du sujet (voir section 6.3). Le temps de complétion de la tâche est la moyenne des 24 temps d’achèvement enregistrés pour chaque condition.

— **Le NASA TLX** : Nous avons utilisé ce questionnaire comme une mesure subjective pour compléter le score de performance.

Matériel

Pour les conditions HAR et SAR, le contenu numérique est affiché sur des feuilles de papier de 19 cm sur 12 cm, avec des repères imprimés. Lors de la manipulation, des marqueurs supplémentaires sont utilisés pour indiquer la position de la zone cible, où le carré bleu est affiché. La tâche de manipulation
Réalité augmentée et charge mentale

Les deux configurations de RA utilisées pendant l’expérience. L’image de gauche montre la paire projecteur/caméra montée sur un pantographe. Sur l’image de droite, un sujet utilisant l’iPad et exécutant l’application de RA.

Est terminée lorsque les marqueurs de référence d’une carte et la zone cible sont suffisamment proches.

Afin d’assurer une expérience cohérente entre les deux configurations, les applications HAR et SAR ont été mises en œuvre en utilisant la même application Unity3D 2020.1 avec laquelle le protocole a été rédigé.

Afin de pouvoir afficher/projeter des images et des mots sur des feuillets de papier, nous avons créé un plugin Unity3D utilisant la bibliothèque OpenCV et la bibliothèque ARuCo [140]. Ce plugin permet à l’application Unity de : 1) détecter les marqueurs ARuCo dans le cadre de la caméra, 2) estimer la pose du marqueur par rapport à la caméra et 3) calculer la position du marqueur dans l’espace général des coordonnées mondiales de l’application Unity.

Réalité Augmentée mobile

Concernant la condition HAR, les sujets ont manipulé un Apple iPad 6, faisant tourner une application dédiée à la réalité augmentée réalisée avec Unity3D, Unity ARFoundation et Apple ARkit.

Installation de réalité augmentée spatiale

Pour le dispositif de recherche et de sauvetage, nous avons utilisé un projecteur Optoma UHD60 et un Logitech Brio pour détecter les marqueurs imprimés. Le projecteur affichait une
image à 1920 × 1080 et 60 Hz et était monté sur un pantographe, pointant vers le bas en direction de la table.

La taille de la projection était d’environ 114 cm par 64 cm et projetait des images d’environ 15 cm de largeur par 12 cm de hauteur. Nous avons calibré le couple projecteur-caméra afin de projeter correctement les images sur les feuilles de papier. La précision globale de l’ensemble de l’installation était d’environ 2 cm, ce qui permettait de toujours afficher les images sur les cinq feuilles de papier.

Questions posées

Dans la condition RA, les sujets répondent aux questions en appuyant directement sur les boutons affichés sur l’écran tactile, comme illustré dans la figure Figure 6.4.

En ce qui concerne la condition SAR, plusieurs modalités d’entrée ont été testées. Nous avons sélectionné la plus rapide qui consiste à modifier un clavier comme mécanisme de saisie où certaines touches sont remplacées par des touches plus grosses (voir Figure 6.4). Le clavier a été centré sous la zone de projection et près du bord du tableau afin d’être proche du sujet (moins de 20 cm).

Contenu affiché

Nous avons utilisé un ensemble de 120 stimuli visuels différents, la moitié étant des images et l’autre, des mots. Nous avons choisi
des stimuli concrets, faciles à comprendre / à retenir, afin d’éviter d’ajouter une charge cognitive supplémentaire. Les mots ont été tirés des 866 mots concrets français de [141] et nous avons extrait les 60 mots les plus courants, en utilisant (lexique.org). Les images ont été prises à partir de [142], un ensemble d’images standardisées à haute résolution et en couleur d’objets ou de concepts concrets. Comme pour les mots, nous avons sélectionné 60 images ayant le rang de familiarité le plus élevé.

6.4 Résultats

Analyse des données

Nous avons traité les données pour obtenir une moyenne par sujet et par condition pour le temps de réalisation et le score de performance. Comme le protocole impliquait un plan avec 2 facteurs, type AR [SAR]; [HAR] et avec ou sans tâche secondaire [MANIP; NO_MANIP]. Nous avons utilisé une ANOVA à mesures répétées pour analyser à la fois le SCORE et le TEMPS. En ce qui concerne le NASA Raw TLX, nous avons effectué un test T apparié pour chaque sous-échelle. Toutes les analyses de données ont été effectuées à l’aide de SPSS 25.

Nous n’avons trouvé aucune différence ou corrélation entre les données de l’expérience et les tests d’aptitudes spatiales et les informations démographiques, ni entre les aptitudes spatiales et les informations démographiques.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>Moyenne</th>
<th>Std. Déviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE SAR_NO_MANIP</td>
<td>21.90</td>
<td>2.049</td>
</tr>
<tr>
<td>SCORE SAR_MANIP</td>
<td>20.00</td>
<td>3.325</td>
</tr>
<tr>
<td>SCORE HAR_NO_MANIP</td>
<td>19.00</td>
<td>3.009</td>
</tr>
<tr>
<td>SCORE HAR_MANIP</td>
<td>15.70</td>
<td>2.677</td>
</tr>
</tbody>
</table>

Score de performance Lorsque l’on compare les scores entre les deux conditions du facteur AR, la moyenne en SAR est de 20,950 (std = 2.89) et en HAR = 17,5 (std = 3.27). Il y avait une différence statistique lorsque l’on comparait les deux conditions du facteur AR avec F(1, 53,941), p < .0001. Les sujets ont obtenu un score plus élevé pour la condition SAR comparé à la condition HAR. En ce qui concerne le facteur MANIPULATION, les sujets ont obtenu une moyenne de 20,45 (stdev = 2.93) dans le cas du NO_MANIP et une moyenne de 17,85 (stdev = 3.69) dans le cas du MANIP. Les sujets ont obtenu des résultats nettement meilleurs dans la condition sans tâche secondaire (NO_MANIP) que lorsque la manipulation a été ajoutée.
Le tableau Table 6.1 résume le score obtenu dans chaque condition.

Temps de complétion : Dans le facteur AR, la moyenne des conditions SAR était de 5,095 secondes (std = 0,94) et la moyenne dans le HAR était de 5,24 secondes (std = 1,41). Aucune différence statistique significative n'a été constatée lors de l'exécution de l’ANOVA bilatérale répétée. Pour le facteur MANIPULATION, la condition NO_MANIP obtient une moyenne de 5,0575 (std = 1,05) et la condition MANIP une moyenne de 5,285 (std = 1,328). Il n'y a pas de différence significative entre les deux conditions.

Mesures subjectives de la charge mentale : Comme énoncé précédemment, nous avons utilisé le questionnaire subjectif NASA (Raw) TLX Les sujets ont rempli le questionnaire sans pondération individuelle pour chaque sous-échelle. Nous avons trouvé des différences significatives entre les conditions AR sur la sous-échelle de la demande physique (p < .001), la demande temporelle (p < .05), la frustration (p < .01) ainsi qu’un résultat tendanciel sur la sous-échelle mentale p = .08. Nous avons constaté des différences significatives lors de l’exécution du test t sur chaque sous-échelle sur le niveau de demande physique et de frustration entre les quatre conditions. Dans le détail, il y a une différence significative entre la condition SAR_NO_MANIP et HAR_NO_MANIP p < .05; entre SAR_NO_MANIP et SAR_MANIP avec p < .05; et entre HAR_NO_MANIP et HAR_MANIP sur la sous-échelle de la demande physique. En ce qui concerne le niveau de frustration, une différence significative a été constatée entre HAR_NO_MANIP et HAR_MANIP p < .01 (voir Figure 6.6).
Interviews

Cette section rapporte quelques citations intéressantes qui seront utilisées pour discuter des résultats dans la prochaine section.

À la fin de chaque expérience, nous avons posé aux sujets une série de questions sur : comment le sujet a vécu toute l’étude? ; quelles étaient ses préférences ? ; quelles étaient ses préférences et ses sentiments sur les premiers blocs ; et même question pour les 3 derniers blocs.

Dans l’ensemble, les sujets ont trouvé la tâche "stressante" (S1/S3/S7/S18). Ils devaient être (tous les sujets) "concentrés" sur la tâche. Concernant le premier bloc de manipulation, les sujets ont rapporté : S2 "J’étais totalement dans la tâche (c’est-à-dire concentré) la première partie mais les deux derniers blocs me semblaient très longs". S8 : "À la fin, je voulais juste m’asseoir et me détendre". Bien que l’une des conditions requises pour participer à l’étude était d’être francophone, deux sujets n’étaient pas des locuteurs natifs. Parmi eux, S16 : "Les images me viennent en allemand et les mots sont en français". Lorsque leur a été demandée leur préférence concernant la technologie de la RA, ils ont notamment mentionné S4 : "sans aucun doute, je préfère la projection", S5 : "c’est plus facile avec le projecteur car il est plus stable". S15 a répondu : "Le petit écran m’a un peu dérangé au début. La projection semble plus naturelle". S14 : "il
y a toujours des mouvements pour effectuer la tâche”, alors que "en RA, c’est moins le cas".

Analyses exploratoires

Nous avons exploré les données après l’expérience sans aucune hypothèse en tête. Nous avons décidé d’examiner plus particulièrement l’évolution des scores de chaque bloc sur les deux conditions de RA (voir Figure 6.7). Les performances sur les 6 blocs sont plus élevées en SAR qu’en HAR. L’évolution des deux conditions au cours de l’expérience montre une diminution des performances en général. Tout d’abord, c’est le cas tout au long des 3 blocs dans la condition NO_MANIP. Cette baisse est plus importante dans les 4e et 5e blocs avant de remonter dans le dernier bloc. Nous avons observé des différences significatives entre les blocs dans chaque condition AR, à partir du bloc 3 jusqu’au bloc 6. Les valeurs de P sont indiquées dans la Figure 6.7.

Figure 6.7 – Évolution du score sur les 6 blocs pour chaque condition AR. Cette évolution représente la moyenne avec un intervalle de confiance de 95%. Les résultats significatifs sont indiqués par des étoiles (** : p<.01 et * : p<.05).

6.5 Discussion

Dans l’ensemble, nos résultats sont conformes à ceux des études précédentes. Dans cette section, nous examinerons plus spécifiquement comment nos résultats nous permettent de répondre aux hypothèses énoncées précédemment. Nous les comparons ensuite avec la littérature et discutons de certaines limites de notre étude.
Différences entre les conditions de RA

Comme nous pouvons le voir dans la section des résultats, il existe des différences entre les deux conditions RA qui nous permettent de confirmer notre hypothèse H1. Tout d’abord, nous avons observé une différence sur la mesure de la performance. Les sujets ont obtenu un score plus élevé avec la configuration SAR. En effet, les deux conditions SAR_NO_MANIP et SAR_MANIP sont plus élevées que les conditions HAR malgré la tâche secondaire (voir tableau Table 6.1) et c’est également le cas au niveau du bloc (voir Figure 6.7). Ces résultats sont corroborés par les réponses au NASA TLX sur les sous-échelles "physique" et de "frustration". L’effet tendanciel sur la sous-échelle "Dimension mentale" (Figure 6.6- Mental D.) renforce également cette affirmation.

Il semble que la charge mentale nécessaire pour accomplir la tâche soit plus élevée dans les conditions HAR que dans les conditions SAR. En prenant en compte la théorie de la charge cognitive de Sweller, tenir un appareil ou faire l’expérience du décalage de l’angle de vision créé par le point de vue de la caméra de l’appareil, tout en effectuant une lourde tâche cognitive, pourrait augmenter la charge cognitive extrinsèque. Ces résultats sont compatibles avec des études antérieures, et plus particulièrement avec les travaux de [125, 136], qui ont montré que le SAR avait un impact moindre sur la charge mentale pendant l’activité pratique par rapport à d’autres interfaces de RA. Au-delà de la performance, les sujets ont généralement trouvé l’expérience compliquée et stressante, ce qui est l’une des indications d’une charge mentale élevée [121].

La majorité des sujets interrogés lors des échanges libres menés après l’expérience semblent indiquer qu’ils préféraient la réalité augmentée spatiale pour effectuer cette tâche. Il est intéressant de noter que les quatre sujets qui ont indiqué une préférence pour la tablette avaient des arguments similaires à ceux des sujets de l’étude de Mackamul, et al [135]. Cependant, dès lors que la manipulation a été introduite, ils ont changé d’avis et ont préféré la projection. Cette préférence pour la tablette était principalement due à la familiarité avec l’interface, mais aussi au fait que les mouvements étaient limités. Dans les conditions sans manipulation, il était ainsi préférable de regarder une plus petite zone telle que l’écran plutôt que de devoir regarder sans indirection, mais également de répondre aux questions sans avoir à regarder le clavier.

En ce qui concerne le temps de réalisation, aucune différence n’a été constatée malgré la différence de demande temporelle
Discussion
du TLX de la NASA, ce qui nous permet de rejeter notre deuxième hypothèse H2. Néanmoins, la modalité d’entrée n’était pas la même. Dans le cas de la condition SAR, les sujets devaient changer le focus attentionnel par rapport à ce qui était projeté sur la table et la position des boutons sur le clavier. Dans la condition HAR, les sujets avaient accès aux boutons et aux stimuli directement dans le même "espace" ou la même zone de leur champ de vision, les doigts étant le plus souvent directement à proximité des boutons sur l’écran. Le choix d’avoir deux modalités de réponses a été réalisé dans le but de se rapprocher le plus possible des conditions réelles d’utilisations de tablettes tactiles ou de tables augmentées.

Différences entre les conditions de manipulation

La tâche secondaire s’est avérée avoir un impact important sur la charge mentale des sujets. Plus précisément, nous avons constaté que les blocs effectués dans la condition MANIP ont obtenu un score inférieur dans les deux configurations. En examinant les résultats du NASA TLX, nous pouvons voir que la demande physique augmente entre SAR_NO_MANIP et SAR_MANIP et aussi entre HAR_NO_MANIP et HAR_MANIP. Nous pouvons donc accepter notre hypothèse H3. Lorsque nous avons interrogé les sujets sur la manipulation, ils ont dit que l’exercice était devenu plus difficile après l’inclusion de la deuxième tâche. Les sujets ont également déclaré qu’ils avaient dû ajuster leur stratégie après l’augmentation de la difficulté.

Limitations

Bien que cette étude présente des résultats qui permettent de distinguer le HAR et le SAR, elle présente certaines limites que nous décrivons dans cette section. Tout d’abord, le choix de la tâche a été fait pour s’assurer que les sujets aient une partie importante de leur champ de vision naturel prise. Cela a conduit à privilégier la condition SAR. Nous aurions pu comme dans l’expérience de Baumeister [125] contrôler le champ visuel dans une condition différente. Dans leur cas, les différences étaient moins significatives entre les conditions avec HMD et projection. Néanmoins, il aurait été moins intéressant de comparer ces deux techniques de RA sur un espace plus petit alors que les deux techniques peuvent augmenter les grands espaces en prenant, par exemple, une certaine distance physique par rapport à l’augmentation dans le cas de la HAR.
Bien que cela n’ait pas été nécessaire puisque notre hypothèse principale portait sur la tâche de mémorisation, il aurait été intéressant de contrebalancer l’ordre des deux conditions MANIP et NO_MANIP. Nous aurions contrôlé la fatigue et l’effort mental induit par le fait d’avoir la partie la plus difficile de l’expérience à la fin. Nous ne pouvons pas exclure qu’une certaine partie de la différence entre les conditions NO_MANIP et MANIP soit due à un effet d’ordre.

Bien que la tâche de manipulation consistait à manipuler les cartes que le sujet devait mémoriser, ces deux tâches étaient sémantiquement dissociées. En d’autres termes, il n’y avait aucune raison pour que les sujets souhaitent manipuler les cartes tout en essayant de les mémoriser. C’est ce que nous avons décidé afin de séparer expérimentalement les deux conditions. Même si, dans le contexte écologique, ces tâches sont souvent liées entre elles. Une telle interaction tangible a été liée à une compréhension plus profonde (ce qui a également été critiqué par Hornecker, et al [143]), et favorise l’apprentissage actif [114].

6.6 Conclusion

Ce chapitre présente des résultats qui pourraient être utiles aux chercheurs et développeurs qui conçoivent et utilisent la réalité augmentée dans un contexte où la charge mentale est particulièrement importante. Ce type de tâche est particulièrement fréquent dans les domaines de l’éducation, de la prise de décision et de la résolution de problèmes. Cette étude s’appuie sur des études antérieures qui ont déjà comparé la SAR avec les HMD ou la HAR sur des activités pratiques comme la charge mentale. Ici, nous avons testé les deux activités où les sujets manipulaient ou non un objet physique. Dans les deux cas, l’impact de la SAR sur la charge mentale est inférieur à celui du HAR. Cette étude n’a pas permis de déterminer quelle composante de l’interaction avec les appareils HAR est la plus lourde pour la charge mentale. Néanmoins, comme l’interaction avec des objets réels semble être plus difficile avec cette technique de RA, la RA ne peut pas tirer pleinement parti de l’interaction physique (physique naïve [14]), qui pourrait réduire l’exigence d’abstraction et faciliter l’apprentissage, grâce à la façon plus intuitive d’interagir avec le monde et leur contenu physique et virtuel [15]. Ainsi, si l’activité ne nécessite pas d’explorer de grands espaces ou d’utiliser des contenus virtuels en 3D, la SAR semble être une meilleure candidate.
Conception d’un système de réalité augmentée spatiale

La théorie, c’est quand on sait tout et que rien ne fonctionne. La pratique, c’est quand tout fonctionne et que personne ne sait pourquoi. Ici, nous avons réuni théorie et pratique : Rien ne fonctionne... et personne ne sait pourquoi ! Albert Einstein

Ce chapitre explique de manière succincte comment réaliser un système de réalité augmentée spatiale en proposant tout d’abord une explication théorique du fonctionnement de la RAS. Nous présenterons également l’implémentation pratique qui est celle en vigueur dans les travaux présentés dans cette partie. Enfin, nous reviendrons sur les choix retenus pour créer un système de RAS utilisable dans le cadre d’activités pédagogiques en contexte écologique de salle de classe.

7.1 Réalité Augmentée spatiale

Comme nous l’avons présenté dans le chapitre introductif de ce manuscrit, la réalité augmentée spatiale a émergé à partir des travaux de Welmer en 1993 où une première vision de ce que peut offrir la RAS est proposé avec The Office of the Future [144], un affichage spatial immersif ("spatially immersive display") au sein d’un simple bureau.

La réalité augmentée spatiale s’appuie sur plusieurs composantes pour créer l’illusion que la projection se marie avec la surface physique dans la ligne de mire, ou plutôt le frustrum du vidéo-projecteur. La théorie se compose d’une partie d’optique, d’infographie et de vision par ordinateur. Nous détaillons ces 3 parties dans la suite de cette section.

Les systèmes de RAS ont principalement deux composantes optiques, un vidéo-projecteur et une caméra. Ces deux composantes optiques peuvent être modélisés grâce au modèle sténopé (ou Pinhole Camera Model) qui décompose une caméra ou un vidéo-projecteur\(^1\) en deux sous-parties. La première regroupe les propriétés optiques intrinsèques et de distorsions de la lentille et la deuxième composante, appelée extrinsèque permet de décrire la position et la rotation de l’objet dans l’espace vis-à-vis d’un repère du monde. Au final, ce modèle permet de transformer un point 3D du monde en un pixel dans l’image caméra.

1: Un vidéo-projecteur peut être réduit à une caméra inversée.
Le modèle sténopé

Les appareils tels que les vidéo-projecteurs et les caméras peuvent être décrits à l’aide d’un modèle sténopé (voir Figure 7.1). Ce modèle combine à la fois les propriétés intrinsèques de l’objectif (focale, centre optique) et la distorsion de l’optique. Il est ainsi possible de faire correspondre un pixel de l’image avec un point donné dans la scène. La matrice intrinsèque décrit la relation entre le centre optique de la caméra et le capteur. Ainsi la matrice regroupe les informations concernant la taille de la focale (ou taille du capteur) notée f_x, f_y et le centre optique (centre de l’image) noté c_x, c_y.

Grâce à cette matrice et en supposant une distorsion nulle, il est possible de faire correspondre un point dans l’espace 3D avec un point dans le plan image en 2D.
7.1 Réalité Augmentée spatiale

Réalité Augmentée spatiale

Les deux principales distorsions pouvant toucher différents éléments optiques : a) Aucune distorsion. b) Distorsion radiale positive. c) Distorsion radiale négative.

Figure 7.2 – Les deux principales distorsions pouvant toucher différents éléments optiques : a) Aucune distorsion. b) Distorsion radiale positive. c) Distorsion radiale négative.

<table>
<thead>
<tr>
<th>Position 2D à partir d’un point 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\begin{bmatrix} u \ v \end{bmatrix} = \begin{bmatrix} fx & 0 & cx \ 0 & fy & cy \ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \ y \ z \end{bmatrix}]</td>
</tr>
</tbody>
</table>

Distorsion

La grande majorité des caméras sont équipées avec un objectif possédant un ou plusieurs types de distorsions. Les vidéos-projecteurs possèdent une distorsion (en particulier pour les nouveaux modèles) qui peut être considérée comme négligeable. La distorsion va notamment influencer l’estimation de la position 3D d’un pixel dans l’image et inversement. La distorsion est généralement décrite grâce à 5 coefficients décrivant pour k1, k2 et k3 la distorsion radiale et pour p1 et p2, une distorsion tangentielle.

<table>
<thead>
<tr>
<th>Coefficients de distorsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients de distorsions = (k1 \quad k2 \quad p1 \quad p2 \quad k3)</td>
</tr>
</tbody>
</table>

Calibration

La calibration est un processus essentiel des systèmes de RAS qui détermine une estimation des valeurs des matrices intrinsèques et des coefficients de distorsion (voir Figure 7.2) des caméras et des projecteurs. Elle calcule également la matrice estimant la position et la rotation du vidéo-projecteur par rapport à
Conception d’un système de réalité augmentée spatiale

la caméra (voir Figure 7.4). Une bonne calibration produira une cartographie précise entre le monde physique et les images des caméras et des projecteurs, ce qui permettra de savoir où projeter des informations dans le monde physique ou autour d’objets. Plusieurs méthodes permettent d’obtenir une calibration d’un système Pro-Cam.

Figure 7.3 – Exemple d’images acquises par la caméra pendant la calibration. Le vidéo-projecteur projette sur l’image de gauche une lumière blanche sur toute la surface de la projection. L’image de droite propose une lumière structurée verticale. Tiré de [145].

Le premier type de calibration dite "automatique" calibre automatiquement et sur un temps assez court un système de RAS. Une des méthodes très utilisées consiste à utiliser une combinaison d’un pattern imprimé, tel qu’un damier dont la taille de chaque carré est connue, et de la lumière structurée [145] (voir Figure 7.3). Une autre méthode itérative consiste à seulement utiliser un pattern imprimé [146]. Ces méthodes automatiques bien que rapides sont généralement très sensibles aux conditions lumineuses et également contraintes par la résolution de la caméra.

Une autre alternative consiste à calibrer "manuellement" le système. Plutôt que d’utiliser un algorithme qui minimise le temps de calibration, l’utilisateur fait correspondre les deux espaces caméra et vidéo-projecteur à l’aide d’un système de détection/tracking (voir Section 7.2). Pour ce faire, l’utilisateur place plusieurs objets dans l’espace de la projection est fait correspondre la position 3D de l’objet à la position 2D \((u,v)\) au sein de l’espace du vidéo-projecteur. Cette méthode nécessite un système de détection et de tracking déjà calibré ou une caméra dont les valeurs intrinsèques sont déjà connues. Cette méthode est plus robuste aux contraintes lumineuses, mais reste dépendante de la qualité de l’algorithme de tracking.
Le système vidéo-projecteur/caméra est un couple dont la relation est fixe. R et T sont respectivement la matrice de rotation 3x3 et le vecteur de translation, le tout formant une matrice 4x4 extrinsèque.

Le système de réalité augmentée spatiale composé d’un couple vidéo-projecteur/caméra. Le système de réalité augmentée est ici accompagné d’interfaces ambiantes et tangibles pour l’orchestration de classe et la gestion du temps.
7.2 Détection et suivi d’objet

Nous avons vu dans le Chapitre 5 plusieurs moyens d’interagir avec les contenus virtuels au sein de table augmentée 3D. Dans cette section, nous allons à présent détailler les différents algorithmes permettant de rendre possible cette fusion entre objets numériques et physiques. La détection et le suivi d’objet sont deux étapes essentielles dans un système interactif de RA. Ils permettent à la fois de créer l’illusion que l’objet interagit avec le monde virtuel et que le monde virtuel est intégré au monde réel. Ces deux étapes sont souvent regroupées et désignées par un abus de langage sous l’anglicisme tracking. Plusieurs types de tracking peuvent être utilisés pour détecter et suivre des objets dans un environnement hybride :

— *Features-based tracking* ou détection de caractéristiques naturelles est un type d’algorithme utilisant des caractéristiques uniques d’un objet comme sa couleur, contraste, texture ou ligne, qui génèrent une trace unique de l’objet. Ce type de tracking requiert une phase d’initialisation permettant de construire la représentation de l’objet. Par la suite, pour chaque image produite par la caméra, l’algorithme de détection recherche dans l’image un ensemble de caractéristiques similaires. Certains types d’algorithmes peuvent également faire évoluer la représentation de l’objet au cours du temps. Ce type d’approche à l’avantage de pouvoir être mis en place sans avoir à utiliser des objets spécifiques. Cependant ces algorithmes sont sensibles aux changements de conditions lumineuses, ce qui peut être pénalisant pour une application de réalité augmentée spatiale. Une variante de cette approche permet de détecter et suivre des modèles 3D en enregistrant préalablement le modèle 3D et sa représentation.

— *Marker-based tracking* ou détection de marqueur fiduciaire comportant un motif binaire (noir ou blanc) imprimé, projeté ou affiché sur une surface. Ce type de pattern présente l’avantage d’être rapide et facile à détecter et permet d’estimer avec une bonne précision la position 3D du motif dans l’espace caméra. Il faut néanmoins connaître en amont de l’estimation de la position la taille réelle de chaque marqueurs et avoir préalablement des marqueurs à disposition. Cette technique reste l’une des plus simple et plus robuste à mettre en place.

— *Machine Learning-based* ou l’apprentissage automatique est la méthode permettant d’obtenir aujourd’hui les meilleurs résultats en classification ou détection. L’algorithme fonc-
Détection et suivi d’objet

La détection et le suivi d’objet se concentre la majorité du temps sur une architecture de type réseau de neurones artificiels et plus particulièrement sur une approche de réseau de neurones profonds. Ce type d’approche est utilisé dans la grande majorité des tâches de détections allant de la classification d’images à la segmentation et la labélisation de chaque pixel dans une image en passant par la détection d’objet. L’avantage de cette approche repose sur sa très grande robustesse au bruit et aux conditions lumineuses mais requiert un entraînement préalable qui peut varier de quelques minutes à plusieurs jours suivant les architectures de réseaux, le dataset et la quantité d’informations déjà apprises par le réseau (ré-entraînement).

Ce que nous avons présenté dans ce chapitre est la base théorique et pratique de l’implémentation de l’environnement CARDS présenté dans le prochain chapitre.
Ce chapitre présente la conception de CARDS, un environnement hybride pour les activités pédagogiques de création de cartes mentales.

Ce chapitre a fait l’objet de plusieurs publications dans les conférences ACM ISS’19 (mention honorable), ainsi qu’une publication d’une démonstration à IHM’18, et une présentation lors d’une rencontre doctorale à la conférence IDC’18. Ce travail fait également l’objet d’une soumission dans la revue ComputerEducation à laquelle nous avons participé.

8.1 Introduction

Comme nous l’avons vu dans le Chapitre 3, les technologies numériques jouent un rôle majeur dans l’éducation, comme l’a notamment déclaré la Commission européenne [147, 148], qui établit la technologie numérique dans les écoles comme l’une des priorités pour l’enseignement, l’apprentissage et le développement des compétences du XXIe siècle. Pour ce type d’activités, nous avons vu dans le Chapitre 5 que l’utilisation des interfaces tangibles et de la réalité augmentée, et notamment la réalité augmentée spatiale, a un fort potentiel dans les activités pédagogiques et les tâches d’apprentissages. En outre, les qualités pragmatiques de ce type d’environnement peuvent favoriser une utilisation en salle de classe (voir Chapitre 5). L’étude que nous avons menée dans le Chapitre 6 montre, quant à elle, que les environnements de réalité augmentée spatiale dans une configuration de table augmentée semblent pertinents comparés à d’autres approches de RA. Pour toutes ces raisons, nous avons donc choisi de mettre au point un dispositif construit sur la technologie de RAS que nous décrivons dans le Chapitre 7.
Malgré leur potentiel, les mises en œuvre concrètes de telles approches à l’école restent rares. Cela nous invite à explorer, à l’aide de méthodes basées sur une recherche fondamentale et appliquée, comment mettre en place un environnement de réalité mixte qui puisse être favorable à des activités pédagogiques de groupe en contexte scolaire ? En suivant cet objectif général, nous présentons un nouvel environnement éducatif interactif basé sur la manipulation de contenu physique et numérique (voir Figure d’en-tête). Cet outil appelé CARDS pour Collaborative Activities based on the Real and the Digital Superimposition, rassemble des activités physiques et numériques dans un espace de travail homogène pour l’apprentissage collaboratif à l’école.

Nous ciblons dans ce travail deux types d’applications pédagogiques : le tri informationnel et la construction de cartes mentales, où les utilisateurs peuvent physiquement manipuler des feuilles de papier sur lesquelles le contenu numérique (par exemple des textes, des images, des vidéos) est projeté. À titre d’exemple, l’enseignant peut demander aux élèves de discuter et de créer différentes catégories (par exemple, les types d’énergie en fonction de leur bilan carbone). Ainsi, les élèves peuvent se rassembler autour d’une table d’école standard sur laquelle a été installé l’environnement CARDS. Les apprenants peuvent ainsi travailler physiquement avec les éléments numériques qui leur ont été fournis par l’enseignant de manière autonome et collective.

CARDS a pu être développé grâce à la collaboration entre les différents membres du projet E-tac impliquant notamment des experts en sciences de l’éducation, en ergonomie et en IHM. L’interface s’est développée à travers une approche centrée utilisateur et itérative avec de jeunes apprenants âgés de 9 à 13 ans, des enseignants et des praticiens de l’éducation.

Pour Oviatt [149], l’approche centrée utilisateur « préconise une approche plus prometteuse et durable qui est dans un premier temps de copier le comportement naturel des utilisateurs en incluant toutes les contraintes liées à leurs aptitudes à participer, apprendre et exécuter ; ainsi les interfaces peuvent être conçues pour être plus intuitives, plus faciles à apprendre et exemptes d’erreur d’utilisation ». Aussi, dès le séminaire de lancement du projet e-tac, des focus groups ont été organisés avec des enseignants et des chercheurs en sciences de l’éducation, ergonomie et en IHM, pour l’identification des besoins des enseignants centrés sur les contenus, la conduite et l’organisation des actions de classe. Au total, 11 sessions de focus groups ont été organisées entre janvier 2017 et juin 2018 impliquant 10 enseignants par session (4 professeures des écoles
enseignant en Cycle 3, 6 professeurs de collège enseignant en Cycle 4 en Français, Histoire et Géographie, Technologie, SVT et Allemand). En complément des focus groups, des observations passives (voir figure Figure 8.1) en classe ont été réalisées en Cycles 3 et 4 lors des années scolaires 2017-18 et 2018-19, avec plus de 75 séances d’apprentissage de 45 à 120 minutes en approche projet, pour un total de 150 enfants et adolescents.

Tout au long du processus de conception, notre objectif a été de développer un outil qui peut être utilisé efficacement à l’école par les enfants, et qui soutient les séquences pédagogiques des enseignants et les dynamiques d’apprentissage collaboratif.

8.2 Identification des pré-requis

Afin de produire des spécifications pour guider notre conception, les membres du projet e-tac ont menés des groupes de discussion et des observations en salle de classe pendant plus de 250 heures sur une période de 6 mois avant le début du développement.

Groupes de discussion

7 groupes de discussion ciblés sur les besoins pédagogiques et professionnels liés à l’apprentissage collaboratif ont été formés. Les commentaires des enseignants et des formateurs (n=18) ont permis de définir les besoins pédagogiques. Les plus pertinents sont les suivants :

- **R1** Proposer des environnements qui ne sont pas trop éloignés des réalités de la pratique et compatibles avec l’utilisation pédagogique des ressources papier (par exemple, contenu imprimé, livres, travaux à la plume);
- **R2** Fournir une interface qui "donne envie de travailler", adaptable/compatible avec le niveau de compétence de chaque apprenant pour permettre une différenciation pédagogique;
- **R3** Proposer des systèmes qui soutiennent deux compétences transversales clés pour lesquelles les enfants et les adolescents ont besoin : compétence 1) Collectivement et/ou individuellement, traiter les informations recueillies, les organiser, les stocker dans des formats appropriés et les mettre en forme; compétence 2) Travailler en équipe, partager les tâches, engager un dialogue constructif;
R4 Permettre un degré de manipulation très ouvert, déplacer les documents "librement" afin d’assurer un certain contrôle sur les actions à entreprendre et rendre possible des activités basées sur la résolution de problèmes ou l’enquête ;
R5 Soulever la nécessité de trier les documents et les informations afin de les relier et de les regrouper et fournir un moyen de stocker cette organisation (hiérarchie et dossiers).

Nous constatons que les ordinateurs et tablettes standards ne répondent pas à la plupart des exigences identifiées. C’est également le cas des tableaux blancs numériques ou des grands écrans tactiles. Ces exigences observées tendent à montrer que la réalité augmentée spatiale et les objets tangibles peuvent être mieux adaptés que les technologies numériques traditionnelles pour de nombreuses tâches éducatives à l’école.

Observation dans les salles de classe

La dynamique de collaboration a également été observée dans 36 groupes différents, de 4 à 6 élèves dans 2 écoles primaires et 1 école secondaire. Les principaux résultats qualitatifs indiquent que les élèves ont systématiquement endossé trois types de rôles : l’opérateur, les conseillers et les spectateurs lors de l’utilisation d’outils limités (physiques ou numériques). L’élève qui dispose de l’instrument pour effectuer la tâche (stylo, souris, clavier, etc.) assume le rôle de l’opérateur. Celui ou ceux situés à proximité visuelle de l’opérateur assument le rôle de conseillers. Les autres élèves, éloignés de la zone d’interaction, sont placés en position de spectateur, ce qui les maintient en dehors des tâches d’apprentissage.

Outre la répartition des tâches, la disposition et la taille de l’espace de travail déterminent également l’interaction : le positionnement des enfants à 360° autour des documents limite la possibilité pour la moitié des élèves de lire et de s’approprier le contenu, maintenant de fait les enfants dans leur travail individuel habituel (voir figure Figure 8.1). Par conséquent :
1) l’espace de travail influence la position des élèves pendant l’activité de collaboration avec des outils physiques, qu’ils soient numériques (pendant l’observation, uniquement WIMP) ou physiques (papier, crayons, etc.); 2) la disponibilité des outils d’interaction représente une contrainte très forte à la mise en œuvre de la collaboration au sein des groupes d’élèves observés et donc à l’apprentissage du travail en équipe et du partage des tâches.
En permettant un positionnement à 180° devant les supports d’apprentissage et la disponibilité de multiples outils, les contenus et les tâches d’apprentissage pourraient devenir accessibles à tous les enfants. Cela implique que l’espace de travail soit également suffisamment grand pour accueillir confortablement tous les enfants.

8.3 Première exploration : TACOTAC

Sur la base des recommandations apportées et des observations recueillies en contexte écologique, nous avons créé un premier prototype appelé TACOTAC pour *Tangible and Augmented COLlaborative Table for pedagogical Activities with Children*. Cette table augmentée 3D est destinée à favoriser les activités pédagogiques d’organisation de documents (i.e. trier, classifier, hiérarchiser, spatialiser) et de création de cartes mentales (voir Figure 8.2).

Présentation générale

TACOTAC est un prototype de table augmentée 3D dont le but était de servir de support au développement d’interactions dans un environnement hybride. Dans TACOTAC, l’espace d’interaction est divisé en deux sous-espaces de travail distincts.
Premier prototype du projet e-tac : Tacotac. Il possède deux espaces d’interactions, l’un permettant de réaliser des interactions tactiles, l’autre d’interagir grâce à des proxies tangibles.

La notion de token fait référence ici à des objets génériques. Une définition plus détaillée est présentée dans le Chapitre 5 avec la présentation de la taxonomie de [89].

afin de répondre aux deux tâches spécifiques identifiées dans la création de cartes mentales : la sélection de documents et leur classification, hiérarchisation et organisation.

Le premier espace (espace de gauche sur l’image d’en-tête de chapitre) offre la possibilité aux utilisateurs de sélectionner, insérer/supprimer, éditer les documents numériques au sein de l’environnement. Les utilisateurs interagissent via une interface tactile (voir la prochaine section). La grammaire de geste communément admise sur les interfaces tactiles (multitouch) peut être également utilisée ici (pinch, zoom, rotate, scroll). L’espace est composé d’une liste déroulante hébergeant l’ensemble des médias et d’un espace large autorisant l’agencement spatial des images, textes et vidéos. Lorsque que les deux espaces sont connectés entre eux pour chaque token\(^1\), un cercle coloré est affiché sur la droite. L’utilisateur a ainsi la possibilité de transférer d’un espace à l’autre les médias par glissé-déposé sur un ou plusieurs cercles.

Le deuxième et principal espace est dédié à la manipulation de documents par tri, hiérarchisation, classification, création de groupes et de cartes mentales. Les utilisateurs manipulent physiquement des documents numériques projetés grâce à des...
tokens physiques. Ces tokens peuvent regrouper jusqu’à 4 médiels envoyés par l’utilisateur via l’espace de gauche. L’utilisateur peut lier deux tokens en rapprochant ces derniers jusqu’à les faire se toucher avant de les écartser pour instancier un lien. Ce dernier peut être supprimé en réalisant la même interaction.

Néanmoins, l’agencement de l’environnement TACOTAC contrai gnait physiquement le travail des utilisateurs en imposant une spécialisation de l’espace allant à rebours des observations et recommandations proposées précédemment. Par ailleurs, et dans une considération moins interactionnelle, ce type d’approche reposant sur deux espaces et deux matériels différents avait pour conséquence d’augmenter le coût du projet, ainsi bien en temps de développement qu’en termes financiers. Le projet e-tac se plaçant dans une approche écologique avec un déploiement de plusieurs systèmes en salle de classe, nous n’avons pas poursuivi son développement.

Description technique

Le fonctionnement de l’environnement pédagogique TACOTAC est basé sur plusieurs technologies, chacune prenant en charge une zone d’interaction. La première zone d’interaction est prise en charge par un Sony Xperia Touch. Cet appareil est un projecteur laser qui rend tactile une surface tel qu’une table afin de l’utiliser comme une tablette tactile traditionnelle. La surface de projection équivaud à 23 pouces ou 58 cm de diagonale.

La deuxième zone dédiée au travail collaboratif fonctionne sur un système similaire à celui décrit dans le Chapitre 7.

8.4 CARDS : Une conception itérative

Sur la base des groupes de discussion, des séances d’observations et des explorations de précédents prototypes, nous avons
conçu un système hybride pour soutenir la classification et la spatialisation des informations (voir exigence R3). Ce système a été développé selon un processus itératif, réalisé en trois étapes, comme l’illustre la figure Figure 8.3. Nous avons mené des expérimentations à chaque étape, soit dans les écoles, soit lors de manifestations de vulgarisation scientifique.

Au total, 133 élèves âgés de 9 à 13 ans ont participé à cette conception itérative de 6 mois. Pour les cycles 2 et 3, un protocole expérimental a été défini, déterminant l’activité à réaliser, le nombre d’élèves par groupe et les données collectées, y compris les questionnaires et les enregistrements vidéo pour les évaluations futures.

Cette section est organisée comme suit : nous présentons l’objectif de chaque cycle et le processus par lequel nous avons mis en œuvre les interactions ciblées, y compris les alternatives envisagées. Ensuite, nous décrivons la méthodologie, les résultats et nous les discutons en ce qui concerne cette itération spécifique. Enfin, nous présentons les résultats qualitatifs de toutes les itérations.

Cycle 1 - Physicalisation des données

L’objectif principal du système est d’offrir la possibilité aux utilisateurs de manipuler physiquement les médias numériques projetés, comme cela pourrait être fait avec des médias physiques. Les médias supportés peuvent être du texte, des images, des sons ou des vidéos.

L’atome de base de l’environnement prend la forme d’une carte de papier rectangulaire "CARD", comportant un marqueur d’identification unique (voir section 3) imprimé dessus, sur laquelle il est possible de projeter des informations numériques (voir Figure 8.4. C’est avec cet atome que les utilisateurs peuvent physiquement manipuler tout document projeté en suivant la recommandation R1 (voir section 8.2). La carte a également sa représentation dans l’environnement virtuel permettant des interactions avec d’autres objets et documents dans l’espace hybride.

Nous avons considéré différents facteurs de forme pour la carte, allant d’un jeton en bois ou d’un plus petit morceau de papier qui ne pouvait qu’accueillir le marqueur. Dans les deux cas, le support était projeté autour de l’objet et non sur celui-ci. Nous avons finalement choisi la carte pour sa capacité à accueillir un média projeté, ce qui renforce le sentiment
La première itération de l’environnement augmenté composé désormais d’un espace unique d’interaction, où les médias virtuels sont physicalisés au sein de cartes papier.
de manipulation, tout en réduisant l’ambiguïté concernant l’association entre l’objet physique et son média, en particulier lorsque les objets physiques sont vraiment proches les uns des autres. Ensuite, nous nous sommes concentrés sur la taille, en optant pour des images suffisamment grandes (6x5 cm) pour être manipulées directement par les mains des enfants sans occultation et suffisamment petites pour permettre l’utilisation de plusieurs marqueurs dans le tableau.

Déroulement du début d’activité : Au début de chaque activité, les documents virtuels sont placés au hasard sur l’espace de projection et les cartes ne comportent aucun document.

Association physique-virtuelle : Un document virtuel ne peut être manipulé (par exemple, agrandi, déplacé ou modifié) sans avoir été attaché à un objet physique (carte, dossier, etc.). L’association d’une carte avec un support est réalisée par leur superposition. L’association est ensuite réalisée lorsque les objets entrent en collision dans l’espace virtuel. Le document restera donc attaché à la carte pendant toute la durée de la manipulation.

Ces premières fonctionnalités permettent de spatialiser les différents médias sur l’ensemble de l’espace d’interaction pour effectuer les tâches d’organisation des documents.

Observations et commentaires des utilisateurs

La matérialisation des données virtuelles a fait l’objet d’une présentation à deux classes d’élèves de 10 et 11 ans, lors d’une journée de vulgarisation scientifique2. L’objectif de cette présentation était de vérifier si les élèves pouvaient comprendre comment les documents virtuels étaient matérialisés dans une feuille de papier.

À titre d’exemple, un ensemble d’images correspondant à différents modes de déplacement urbain (vélo, bus, voiture, etc.) avait été placé sur la table. Les expérimentateurs ont ensuite demandé aux élèves de classer les images par groupes. Une fois la tâche terminée, une question leur a été posée : “Ils ont répondu qu’ils n’avaient aucune difficulté à manipuler les images. Cependant, les élèves ont été gênés par l’instabilité du système de détection qui a fait “sauter” ou “clignoter” les cartes. Au-delà du besoin de stabilité requis par les élèves, nous avons constaté que la résolution du projecteur posait problème. Les images semblaient trop pixélisées sans être de petite taille (6x5cm). Les participants avaient des difficultés à comprendre les images et, par conséquent, à effectuer le tri demandé. Nous

avons remédié à ce problème en changeant le projecteur (de 720p à 1080p) et en ajoutant un filtre temporel³ au suivi du marqueur.

Cycle 2 - Édition, hiérarchisation et collaboration

Le deuxième cycle s’est concentré sur l’introduction de nouveaux mécanismes pour gérer l’organisation des documents dans l’espace de travail, ainsi que sur l’ajout d’interactions pour éditer et visualiser les documents virtuels (conformément aux exigences R3, R5 de la section 8.2). Cette itération a été la première du cycle à être testée dans un contexte scolaire. Pour chacune des manipulations explorées dans ce cycle, diverses alternatives ont été envisagées, allant du numérique classique au tangible pur. La solution qui en résulte utilise une combinaison des deux, car les outils tangibles soutiennent la distribution des tâches mais ne sont pas particulièrement adaptés à une utilisation à proximité les uns des autres.

Les mécanismes de manipulation inclus dans ce cycle ont été :

Zoomer : Afin d’agrandir un document, nous avons introduit un objet tangible dans l’environnement hybride. L’utilisateur muni d’un pointeur ayant la forme d’une loupe (voir Figure 8.5-a) peut placer cette dernière sur le document virtuel pour en augmenter sa taille.

Lier : La création de liens entre les objets est essentielle pour réaliser une tâche de cartographie mentale. Dans notre système, le lien entre deux objets est matérialisé par la création d’une ligne entre ces derniers. Cette ligne peut être supprimée, (re)nommée

³ 1€ filter [150]
et personnalisée notamment en changeant sa couleur (voir la section 3). Lors des premières expériences autour de cette fonctionnalité, plusieurs interactions ont été conçues pour relier deux objets entre eux. La première façon de créer et de détruire le lien a consisté à rapprocher les deux objets. La même interaction était nécessaire pour supprimer ce lien. Cette interaction était facilement réalisable, mais elle avait tendance, au fur et à mesure que l’activité pédagogique avançait, à perturber la spatialisation des documents sur la table et était sujette à des problèmes de détection lors du regroupement. La deuxième option, qui a finalement été choisie, consiste à utiliser un stylo interactif qui contrôle le curseur de l’ordinateur. Pour créer le lien, l’utilisateur doit toucher le premier objet, puis le deuxième objet à relier. Pour supprimer un lien entre deux objets, l’utilisateur doit "couper" le lien avec le stylo numérique.

Grouper : Pour regrouper les objets, les élèves ont la possibilité d’agréger les cartes en les répartissant sur la table et en les regroupant pour créer des catégories distinctes. Nous avons également exploré des techniques de regroupement d’éléments, en introduisant une métaphore de "bulle" comme dans bubble cluster [151] (voir Figure 8.6). Cependant, cette approche a tendance à encombrer l’espace dès que plusieurs objets sont manipulés, c’est pourquoi nous avons introduit un nouvel objet, le dossier, qui regroupe physiquement un ensemble de cartes. Les dossiers sont des objets composés de deux pages, une couverture et une page pour stocker les cartes (voir figure Figure 8.5-b). Ils conservent les mêmes propriétés que les cartes et peuvent être déplacés librement ou renommés. En outre, des aperçus des supports stockés dans un dossier apparaissent sous forme d’images miniatures sur la page de couverture. Lorsque le dossier est fermé, le groupe de cartes peut être déplacé.
facilement. Il prend moins de place dans l’espace de travail hybride et a pour objectif d’aider les élèves à construire une représentation mentale de la catégorie d’items stockés dans le dossier. Cet approche offre une forte affordance, car les élèves regroupent les cartes dans un dossier physique, comme ils le font classiquement dans des activités non-numériques. Ainsi la métaphore peut-être directement comprise et le temps d’apprentissage très réduit. L’encapsulation physique à un potentiel intéressant pour favoriser la création de groupes par les élèves.

Édition : L’édition et la personnalisation des documents est une demande forte des enseignants dans le cadre des séquences pédagogiques (voir notamment la section 3). Nous avons d’abord envisagé de n’offrir aux enfants que la possibilité de nommer ou de renommer un média, afin d’observer l’utilisation de cette fonction et de prendre en compte les réactions des utilisateurs. Ainsi, dans la première version du dispositif, le nommage d’un élément se fait selon la même approche gestuelle que l’interaction de grossissement d’une image. L’élève utilise un pointeur physique spécifique (voir Figure 8.5-b). Après avoir placé le pointeur sur le support à nommer, un retour sous forme de contour blanc apparaît. À partir de ce point, l’élève peut utiliser le clavier fourni avec l’environnement pour éditer le nom de la carte En plus des cartes, les dossiers et les liens peuvent également être nommés.

Observations et commentaires des utilisateurs

Cette première évaluation en contexte a eu lieu dans un livinglab du réseau Canopé, où une classe de CM2 (9-10 ans) et une classe de 5e (12-13 ans) ont été exposées à chacune des caractéristiques développées dans ce cycle. Un entretien semi-dirigé a été mené après la manipulation du système. Les enfants ont ainsi été invités à donner leur avis sur leur expérience avec ce dernier. L’interview semi-dirigée était divisée en deux parties. Tout d’abord, les élèves ont écrit sur des Post-it leurs sentiments vis-à-vis des objets (cartes, dossiers, pointeurs physiques) qu’ils ont manipulés (voir Figure 8.7). Ceci terminé, l’expérimentateur leur a demandé de dire à haute voix ce qu’ils avaient pensé de l’expérience, ayant ainsi la possibilité de demander plus de détails sur les sentiments de chaque élève.

Les résultats de ces entretiens peuvent être divisés en deux parties : 1) les commentaires des utilisateurs sur la convivialité et les interactions du système, et 2) les commentaires généraux sur l’impression que le système a laissé aux utilisateurs (par
Deux exemples de feuilles A3 sur lesquels les élèves pouvaient déposer des post-its afin de donner leur avis sur le système. Dans ces deux exemples, les élèves aiment les dossiers, trouvent le stylo bugué et intéressant à la fois. Ils pensent aussi que la qualité du vidéo-projecteur n’est pas bonne et sa luminosité pas assez élevée.

exemple, stabilité, qualité de la projection, taille de la zone de projection).

Tout d’abord, le zoom et l’édition du pointeur physique ont été identifiés comme étant pratiques : “C’est pratique”, “facile à utiliser” ou “c’est simple”, un autre élève trouve que “le pointeur facilite beaucoup le zoom”, mais “on doit connaître la fonction de l’objet pour l’utiliser”. Ce dernier commentaire nous invite à travailler sur la forme des objets et leur accessibilité. En ce qui concerne les fichiers, les commentaires dominants soulignent une faible stabilité, mais ne sont pas inquiétants : “Les cartes étaient bugués, mais ce n’était pas un problème pour travailler.” Enfin, au sujet de la la création de liens avec le stylo interactif : “c’est facile d’écrire avec l’ordinateur et de relier avec le stylo”, “la façon dont les liens ont été créés était amusante” ou “Le stylo ne salit pas la table”. Dans l’ensemble, les interactions proposées ont été appréciées.

Bien que perceptible, le manque de stabilité n’a pas semblé perturber la réalisation de l’activité : “C’est bugué, mais on s’y habitue, on comprend que c’est comme ça que ça marche.” Ce commentaire est répété par tous les groupes d’enfants. Cependant, les élèves de 5e (11-12 ans) sont plus indulgents et ne tiennent pas compte des problèmes de stabilité, contrairement aux élèves de 6e (10-11 ans), pour qui cela pourrait poser problème lors de l’exécution de certaines actions. C’est ce qui a fait l’objet des itérations suivantes.
Cette dernière itération a introduit un nouvel objet qui a pour objectif de rassembler les interactions d'édition et de zoom en une nouvelle façon d’interagir.

Inspecteur : L’itération précédente a introduit les interactions de zoom et édition. Bien que les commentaires des utilisateurs n’aient pas souligné de problèmes particuliers, les élèves ont eu certaines difficultés de manipulation lorsqu’il était nécessaire de renommer un média. Il arrivait que le clavier soit éloigné de la carte à renommer. Dans cette configuration, l’utilisateur n’avait pas une bonne vision sur le champ de texte conduisant à plus d’erreurs. De plus, il était impossible pour les utilisateurs de renommer les cartes en zoomant dessus, principalement à cause de l’occultation générée par les deux pointeurs physiques entourant l’image.

Pour compenser ces erreurs d’interaction, nous avons développé un nouvel objet doté de plusieurs fonctionnalités. Cet objet, que
nous appelons l’Inspecteur (voir Figure 8.8), vise à remplacer les différentes actions d’édition en les centralisant dans un seul espace. Il prend la forme d’un papier rigide de format A4 et propose aux utilisateurs de renommer un média ou de connaître le type de document inspecté (dossier, lien, vidéos...).

Nous reprenons la métaphore du menu pop-up. On accède à un certain nombre de paramètres liés à l’objet pointé au travers d’un "panel" que l’on peut déplacer où l’on veut dans l’espace. Pour inspecter un élément, nous avons conservé la loupe à pointeur physique (voir Figure 8.8) et son interaction.

Nous avons également introduit la possibilité de visualiser en détail les médias placés dans un dossier, sans avoir à le parcourir manuellement ainsi que la possibilité d’associer une couleur à un lien, un dossier ou une fiche afin de faciliter la création de groupes d’objets ou de distinguer plus facilement les types d’objets.

Au cours de cette itération, nous n’avons pas demandé de retour sous forme d’entretiens semi-structurés.

Implémentation technique

Le dispositif dans sa version actuelle est composé d’un vidéo-projecteur, d’une webcam, d’un stylo interactif et d’un ordinateur. Une structure en profilé aluminium et bois permet de fixer le couple vidéo-projecteur/caméra en s’attachant au rebord d’une table. La structure se veut rigide et légère, autorisant le déplacement du matériel sans avoir besoin de calibrer le dispositif avant chaque utilisation.

Lors de la dernière itération, nous avons changé le vidéo-projecteur pour un Optoma GT1080E courte focale avec une résolution de 1080p et une luminosité de 3000 ANSI Lumens. La caméra est une logitech Brio, permettant de fournir un flux vidéo en 720p à 90fps, connectée en USB. La latence introduite par la webcam est de l’ordre de 180ms. Ce modèle a été choisi pour sa fréquence d’image élevée (60 ou 90fps), limitant le flou introduit par un mouvement et permettant ainsi une détection des marqueurs même lorsqu’ils sont déplacés rapidement. Le système utilise un stylo interactif eBeam Edge+ pour créer des liens entre les différents objets virtuels et sélectionner des éléments d’interface. Il s’agit d’un produit commercial composé d’un stylo qui émet des ultra-sons de manière omnidirectionnelle et d’une base avec deux microphones connectés à l’ordinateur. Après une calibration sous forme d’homographie, le eBeam se comporte comme une souris pour l’ordinateur.
La partie logicielle fonctionne sous forme d’architecture client-serveur. Le serveur traite la partie vision par ordinateur qui se limite pour le moment à la calibration et à la détection des marqueurs fiduciaux dans l’espace. Il est programmé en C++ et se base sur les librairies logicielles [152] et ArUco [140, 153]. Le client traite de la partie interaction et rendu graphique, il est réalisé à l’aide du moteur de jeu Unity3D *

La calibration du couple vidéo-projecteur/caméra est réalisée grâce à une méthode manuelle en deux étapes conformément à la technique décrite dans le Chapitre 7.

Résultats qualitatifs

![Diagramme des résultats qualitatifs](image)

Tout au long du cycle de conception participative, des évaluations quantitatives ont été proposées à tous les participants, tant aux enseignants qu’aux enfants, par le biais de questionnaires de désirabilité.

Note: Unity 3D https://unity.com
Le questionnaire d’Attrakdiff est basé sur un modèle théorique à deux dimensions : 1) les qualités pragmatiques du système évalué, c’est-à-dire la capacité à soutenir l’exécution de la tâche 2) les qualités hédoniques, à savoir le potentiel du système à être agréable à utiliser. L’Attrakdiff présenté aux enfants est une version simplifiée de l’Attrakdiff original, dont la version française est validée, et qui a déjà prouvé son adéquation à l’utilisation des enfants [71]. La Figure 8.9 compile les réactions des enseignants et des enfants des différentes sessions. Un groupe a été exclu en raison de résultats extrêmes : ce groupe était en conflit avec le superviseur adulte. Dans l’ensemble, les enfants et les enseignants estiment que notre système est souhaitable (voir Figure 8.9). La Figure 8.10 présente plus en détail les résultats du questionnaire simplifié d’Attrakdiff. Globalement, les qualités pragmatiques sont positivement notées par les enfants (note moyenne : 1,36 - std : 1.049 avec une échelle entre -3 et +3) et par les enseignants (note moyenne : 1,58 - std : 0,664). En ce qui concerne les qualités hédonistes, la moyenne est respectivement de 1,87 (std : 0,91) et de 1,79 (std : 0,664) pour les enfants et les adultes. Les critères évalués, qu’ils soient pragmatiques, hédonistes ou attractifs, sont notés positivement. Ils mettent particulièrement en évidence les qualités pragmatiques de "simple" et "pratique" et les qualités hédonistes de "captivant" et "haut de gamme". En outre, le dernier élément présenté dans la Figure 8.10, même s’il n’appartient pas à l’Attrakdiff, montre que les enfants ont jugé le système motivant.
Figure 8.10 – Résultats du questionnaire Attrakdiff simplifié après avoir utilisé l’interface pour effectuer une activité. A la question "En général, j’ai trouvé le système :", suivi d’adjectifs antonymes proposés sur une échelle de Likert à 7 points (à pas de 1). Par exemple : compliqué (-3) et simple (+3). Les attributs de Q1 à 4 = Qualités pragmatiques, Q5 à 8 = Qualités hédonistes ; Q9 et 10 = Attrait global du système [154]. Le dernier point correspond à la motivation et ne fait pas partie de l’Attrakdiff simplifié. La flèche montre que les enfants trouvent le système plus désirable par le biais des séances.
8.5 Discussion

Les résultats aux questionnaires proposés tout au long de l’étude suggèrent une bonne acceptabilité et désirabilité de CARDS. Ces résultats peuvent s’expliquer en partie par la méthode de conception de l’environnement hybride, qui a suivi une approche itérative de co-conception permettant in fine d’améliorer le système, en tenant compte des retours de la part des utilisateurs et experts.

Cependant, les qualités pragmatiques sont affectées par l’imprévisibilité du système. En effet, qu’il s’agisse de la population des enseignants ou des élèves, tous évaluent faiblement la stabilité du système (voir Figure 8.9, QP3), avec une variabilité importante entre les répondants. Ce manque de stabilité est lié à la difficulté d’assurer un suivi sûr par vision informatique des objets manipulés. En conséquence, le système peut parfois répondre différemment de ce que les utilisateurs attendaient, ce qui affecte l’expérience de l’utilisateur. Notre prototype actuel est en cours d’amélioration pour renforcer la partie de suivi de vision et pour améliorer son acceptabilité générale.

Notre conception et les métaphores utilisées telles que les cartes (manipulation), les dossiers (ouverture/fermeture) et les liens (utilisation d’un stylo pour créer les liens) cherchent à minimiser l’écart entre leur utilisation dans un environnement physique et leur utilisation dans l’environnement hybride pour maximiser le couplage entre le comportement virtuel et réel de l’objet. Il est également possible que les objets développés pour CARDS soient trop axés sur la copie d’objets réels. Sur ce point, Hornécker et al [155] ont montré que les enfants sont sensibles au couplage entre la forme des objets physiques et leur fonctionnement au sein du système. Plus particulièrement, les objets affordent une grande variété de comportements d’interaction et susciter des attentes inégalées quant à la manière d’interagir. En d’autres termes, les élèves s’attendaient à ce que les augmentations numériques se comportent et réagissent de la même manière que les objets imités. Ainsi nous avons constaté que lorsque ces dernières étaient trop proches de la réalité, les élèves commençaient à oublier que ces interactions sont également virtuelles. Ceci est notamment le cas du dossier. Son fonctionnement essaye de reproduire fidèlement l’utilisation d’une feuille de papier pliée en deux, pour jouer le rôle de container. De ce point de vue, le dossier semble bien remplir cet objectif. Néanmoins, les élèves ont tendance à vouloir l’utiliser pour ce qu’il semble être, à savoir, deux feuilles de papiers attachées entre elles permettant de grouper des cartes à un seul endroit. De ce
fait, très souvent les élèves ne prennent pas la peine d’ouvrir pleinement les dossiers. Cela a pour conséquence de ne pas rendre visible par le système le marqueur imprimé sur la page intérieure qui déclenche les animations et la prise en compte du dépôt d’un média dans le dossier, qui n’est donc pas ajouté lorsque l’élève referme le dossier. Le dossier n’est "pas assez intelligent" malgré les nombreuses heuristiques développées dans la machine à état du dossier.

Ce constat rejoint d’autres travaux comme celui d’Hornecker, et al. [156] ou Macaranas, et al. [157] qui tempèrent un peu l’idée que les interactions tangibles doivent posséder un couplage, une affordance et une correspondance avec l’objet copié ou augmenté. En particulier, Hornecker, et al. démontrent que le couplage entre l’affordance et son domaine d’application numérique est parfois plus compliqué à atteindre que prévu. "Avec les éléments numériques, il n’est pas toujours évident de savoir comment les lois du monde physique doivent s’appliquer ni sur quels objets elles doivent agir" [156].

Enfin, la représentation mentale d’un système numérique chez les enfants crée un biais dans la manière d’interagir avec le système4. Les jeunes élèves sont habitués pour la plupart à évoluer dans un écosystème technologique composé principalement d’écrans et où les interactions sont rapides et les grammaires de gestes, interfaces et feedbacks uniformisés. Cela ne participe pas à la compréhension d’un nouveau système numérique basée sur des paradigmes radicalement différents. Pour preuve, lorsqu’on interroge les élèves sur le comportement de l’interface, l’occurrence de l’expression "c’est magique" est assez élevée5. Dernière cette expression, se cachent principalement deux sens. Le premier fait état de leur surprise lorsqu’ils découvrent CARDS. Ce système est nouveau et n’utilise pas d’écran. Pourtant, des images, des textes non physiques peuvent être manipulés avec nos mains. Le deuxième sens est plus problématique puisque les enfants ne comprennent pas comment le système fonctionne. De ce fait, les élèves ont du mal à analyser les limites et possibilités offertes par le système.

L’introduction de l’inspecteur, qui ressemble davantage à un objet virtuel (bouton, boîte de saisie), semble limiter ce problème et rapprocher le fonctionnement de CARDS avec des méthodes d’interactions avec le numérique déjà connues et automatisées. Les élèves n’ont pas à automatiser le fait de devoir "cliquer" à nouveau sur un bouton si l’interaction souhaitée n’a pas eu lieu. Ainsi, par la suite nous prêterons d’avantage attention à la conception des objets et des interactions qui imitent l’utilisation dans le monde physique. Malgré ces limites, notre version

4: Sur ce sujet, plusieurs enfants ont essayé de zoomer avec le geste “Pinch-to-zoom” (pincer et écarte) sur des images ou papiers, et ce malgré l’absence d’écran tactile.

5: Réponses récupérées principalement pendant le cycle 2 grâce aux entretiens semi-dirigés de groupe et réponses écrites sur post-it
actuelle du prototype répond à la plupart des exigences que nous avons identifiées dans la section 8.2, en particulier les exigences R2.

L’utilisation de la conception itérative dans un contexte scolaire nous a permis de comprendre l’utilisateur final qui, dans notre cas, est très différent d’un adulte. Nous avons pu observer les différences de comportement des enfants entre les séances de vulgarisation scientifique, et les séances en contexte scolaire (à l’école ou en living lab), apportant des retours utilisateurs différents en fonction du contexte. De plus, nous avons constaté que l’utilisation et la perception de CARDS par les enfants changeaient en fonction de leur âge. Bien que la population soit assez homogène, les jeunes enfants ont une utilisation plus restrictive de l’environnement et sont plus facilement gênés par certains comportements non anticipés par le système ou par les enfants. Au contraire, les élèves plus âgés sont capables d’accomplir la tâche en dépassant les bugs et problèmes d’interactions, inhérents à un système informatique en développement. D’autres facteurs écologiques tels que la composition des groupes d’élèves, le moment de la journée et le lieu du test influencent également la perception de l’interface par les élèves. Les enfants sont plus concentrés et ont tendance à être plus sérieux sur la tâche à accomplir à l’école que sur un événement de vulgarisation scientifique. Ce type de différence a eu un impact sur la qualité du retour d’information. Nous avons également constaté que laisser les élèves essayer le système sans l’aide des expérimentateurs a permis d’observer comment les enfants comprenaient les interactions et la philosophie qui les sous-tend. Ces comportements ont fourni un retour d’information complémentaire avec des entretiens semi-dirigés ou des questions directes posées lors de la manipulation.

8.6 Conclusion

La version courante de CARDS (voir Figure 8.11) est composée de cartes de papier qui servent de proxis physiques pour les éléments numériques tels que le texte, les vidéos et les images. Ces fiches peuvent être manipulées librement dans l’environnement, ce qui permet de regrouper, d’organiser et de sélectionner les informations en fonction de la capacité inhérente du système à spatialiser les éléments. Nous avons également introduit des dossiers augmentés qui stockent des cartes et affichent les miniatures des médias sur la première page. Les dossiers permettent aux utilisateurs de réduire la quantité d’éléments sur la table et de travailler avec des informations de plus haut
Conclusion

niveau (catégorie, groupe sémantique, etc). Afin de créer ou de supprimer des liens entre les objets sur la table, nous utilisons un stylo interactif. Les liens, comme tout autre objet sur la table (à l’exception des tokens et de l’inspecteur), peuvent être édités (changer son nom ou sa couleur). L’inspecteur permet aux élèves de visualiser de plus près le contenu qui est stocké dans des cartes ou des dossiers et de le modifier. Il peut également personnaliser les liens en changeant l’étiquette ou les couleurs qui lui sont associées.

Au-delà des études présentées dans ce document, nous avons participé avec nos collègues du projet e-tac à une étude comparative ayant pour objectif d’évaluer l’influence de l’outil lors de tâche de catégorisation. Les élèves participants ont réalisé la tâche dans les conditions suivants : Activité papiers standard, papier augmenté (CARDS), grande surface tactile, et avec un ordinateur de bureau. Les résultats de cette étude tendent à montrer que CARDS fournit aux élèves un environnement favorable pour des activités de catégorisation. Notamment CARDS permet aux élèves d’explorer plus longtemps et plus de solutions que dans les autres conditions. De plus, CARDS a permis une meilleure catégorisation que les conditions ordinateur et écran tactile.

Dans ce chapitre, nous avons présenté CARDS, un système interactif dont l’objectif est de promouvoir l’apprentissage collaboratif à l’école par la manipulation physique de cartes augmentées. Ce système a été conçu sur la base de considérations théoriques tirées de la littérature, de considérations pratiques liées à l’environnement scolaire dans lequel il est destiné à être utilisé, mais également issus d’un processus de conception itératif guidé par des expériences avec les élèves et les enseignants. Cette approche nous a permis de concevoir un nouveau système interactif qui semble être globalement souhaité par les utilisateurs.
Dans ce chapitre, nous abordons la problématique d’ajout d’informations physiques dans l’environnement de CARDS ainsi que la préservation du travail réalisé d’une séance pédagogique à l’autre.

9.1 Introduction

CARDS a été conçu dans le but de créer un environnement de travail hybride, afin de réaliser des activités pédagogiques et collaboratives. Les tables augmentées 3D telles que CARDS créent un espace hybride éphémère qui projette le monde virtuel dans la salle de classe tant qu’il est nécessaire et disparaît afin de rendre aux apprenants un environnement physique vierge de tout numérique. Cette expérience conçue pour être éphémère pose toutefois deux problèmes dans une utilisation scolaire.

Notre première problématique concerne les limites physiques et spatiales de CARDS. L’environnement projette le monde numérique au sein de l’espace physique des utilisateurs. Cet espace hybride, tout en reposant sur le monde physique, est à ce jour quelque peu dissocié du monde réel des utilisateurs. En effet, les élèves n’ont pas la possibilité d’introduire dans l’espace de travail hybride des objets qui comptent pour eux (i.e. des photos personnelles, des dessins, etc). À l’inverse, les élèves n’ont pas la possibilité de récupérer le contenu numérique sous une forme personnalisable et interprétable par eux (i.e. récupérer des images, un morceau de carte mentale).

La deuxième est d’ordre temporel et tient à la conservation du travail réalisé durant l’activité. En effet, la plupart des enseignements fonctionnent sous forme de séquences pédagogiques qui s’étalent sur plusieurs séances. Il n’est donc pas rare que le travail réalisé lors d’une première séance soit utilisé dans la ou les suivantes.

Ainsi, ce chapitre se propose de répondre aux deux problématiques suivantes :

— Comment permettre aux utilisateurs de récupérer et introduire des informations du monde physique vers l’environnement hybride et réciproquement?
— Comment sauvegarder l’organisation spatiale des objets physiques et numériques des objets présents sur la table entre deux activités pédagogiques ?

Pour répondre à ces deux questions, nous présentons dans ce chapitre deux méthodes implémentées au sein de CARDS, mais qui n’ont pas à ce jour pu être testées en conditions écologiques. Nous présentons tout d’abord un système permettant aux élèves de prendre des notes augmentées sur un cahier et un moyen d’introduire des dessins et contenus physiques dans CARDS. Nous présentons dans une deuxième partie, un système de sauvegarde et de restauration dédié aux systèmes hybrides autorisant une continuité pédagogique sans avoir à laisser les objets physiques tels que les cartes et dossiers en place.

9.2 Livres et notes augmentés

Nous implémentons un concept de livre augmenté permettant de faire transiter du contenu physique vers du contenu numérique, et inversement. Le livre est le vecteur qui transporte l’information entre un monde purement physique et un espace où le numérique est accessible. Plus précisément, l’approche retenue consiste à utiliser cet objet (tout du moins à l’école) sous la forme de carnet de notes. Le format livre/carnet de notes peut être vu d’un point informatique comme un système de sauvegarde personnel pour l’élève. Il est également un mécanisme offrant la possibilité aux enfants d’introduire des images ou des dessins. En effet, l’espace de travail de CARDS se situe sur une table de classe, là où les élèves posent leurs affaires. Le cahier a ainsi naturellement sa place. Quand bien même introduire des médias dans CARDS de cette façon peut paraître sous-optimale pour un grand nombre de médias, il autorise tout au moins l’enfant à personnaliser le travail en cours plutôt que de se reposer sur les images provenant exclusivement du professeur.

Travaux relatifs aux livres augmentées

Cette section présente, de manière non exhaustive, quelques travaux relatifs aux livres augmentés.

Depuis de nombreuses années la communauté IHM crée des interfaces informatiques intuitives mêlant réel et virtuel. Les objets physiques, tels que les livres, ont également été utilisés dans ce sens. Le MagicBook (ou Livre magique) de Billinghurst
Livres et notes augmentés

[158] (voir Figure 9.1) est l’une des premières tentatives qui consiste à explorer comment un objet physique peut amener l’utilisateur à glisser vers le monde virtuel. Pour ce faire, Billinghurst utilise le livre, qui possède déjà métaphoriquement la capacité d’amener le lecteur vers un monde à part.

Grasset, et al. [159] proposent une amélioration de livre augmenté en lui rajoutant des éléments auditifs virtuels sur un livre classique précédemment publié. L’augmentation dans cette proposition est effectuée grâce à des lunettes de RA tenue grâce à une main.

Dans leur article “The Design of a Mixed-Reality Book : Is It Still a Real Book ?” [160], Grasset, et al. interrogent la compatibilité d’un livre standard face à un livre augmenté sans pour autant répondre directement. Les auteurs présentent les différentes augmentations possibles en fonction du placement dans la page, la méthode d’interaction ou encore le type d’augmentation (voir Figure 9.2) montrant la vaste étendue des possibilités offertes avec ces livres augmentés.

Cesário [161] propose une étude comparative sur la différence entre la lecture sur tablette ou sur papier et sur l’utilisation de tablette ou de livre pour une activité de lecture. Les enfants interrogés aiment de manière égale les deux expériences, mais préfèrent le côté tangible du papier et plébiscitent également les médias dynamiques sur tablette pour leur côté interactif.

Concernant la prise de note, de nombreux travaux ont également été réalisés. La plupart d’entre eux ont pour ambition de proposer des méthodes d’interaction permettant à l’information existant physiquement d’être numérisée. HoloDoc [162] est un exemple de ce type de pratique : l’interface présente une façon d’annoter les articles scientifiques avec un hololens, un
stylo de type Anoto et des marqueurs disposés sur les papiers annotés.

Explorations : physicaliser et numériser

Toujours dans l’optique d’effacer la frontière entre monde numérique et monde physique dans la salle de classe, nous avons développé deux groupes d’interactions qui supportent la physicalisation des données numériques et la numérisation de contenus physiques. À rebours de la littérature brièvement présentée dans la section précédente, nous utilisons des procédés d’augmentation de cahiers pour en quelque sorte ancrer des données provenant d’activités pédagogiques avec CARDS dans les cahiers personnels des utilisateurs. La deuxième proposition fait en sorte d’aider les élèves à personnaliser les éléments manipulés sur la surface de travail en ajoutant des dessins et autres documents 2D dans l’espace hybride.

Physicaliser

Pour physicaliser des données provenant de l’espace de travail, les élèves ont la possibilité d’utiliser leurs cahiers traditionnels. Ils ont alors à disposition des marqueurs Aruco qu’ils doivent disposer sur le coin supérieur de la page. La prise de note des élèves peut se faire dans un premier temps telle que les élèves ont l’habitude de le faire sans numérique. Lorsque l’élève souhaite intégrer un média présent sur l’espace hybride, il doit préalablement dessiner un rectangle sur la page du carnet. Le rectangle est alors détecté par le système et un feedback est renvoyé par le système pour valider la détection. Ce feedback prend la forme d’un rectangle blanc projeté par-dessus le rectangle dessiné reprenant la même forme et taille (voir Figure 9.3 A). La
deuxième étape consiste simplement à déposer la carte média par-dessus le rectangle vierge. Le média est alors dupliqué pour être ancré au sein du rectangle (voir Figure 9.3 B et C). Tant que le carnet est disponible dans l’espace de projection, l’augmentation est disponible. Cependant, lorsque l’espace éphémère disparaît, le média virtuel disparaît également. Pour préserver, cet agencement entre virtuel et note physique, l’utilisateur peut décalquer le média ou apposer une légende sous le rectangle.

Figure 9.3 – A) Une page d’un carnet de note disposant d’un marqueur Aruco peut être transformé en carnet de notes augmenté. L’utilisateur dessine un rectangle à un endroit de la page pour créer un espace dédié à un média virtuel. B) L’utilisateur amène une carte disposant d’un média sur le rectangle détecté. C) Le média est copié dans le carnet de notes. D) Sans numérique les annotations permettent toujours de se rappeler du contenu. De plus, l’utilisateur peut décalquer la projection afin d’avoir un aperçu basse fidélité.

Numériser

Le carnet de dessin : (voir Figure 9.4)
Pour numériser un petit objet, une image ou dessin dans un système hybride, nous avons décidé d’utiliser un carnet de notes. Plutôt qu’utiliser un clavier pour écrire un texte, l’utilisateur peut écrire à la main, dessiner une esquisse, un symbole, utiliser un tampon, etc. Avec le même mécanisme, il peut ensuite amener cet item produit de façon purement physique dans le monde numérique. Cela permet une réelle intégration d’éléments du monde réel avec des éléments numériques, et ouvre de nouvelles possibilités pour les utilisateurs et l’activité au sein de CARDS. Ce carnet dispose de pages identiques comportant chacune un marqueur Aruco et un rectangle imprimé délimitant la zone de numérisation.

Figure 9.4— Scénario d’utilisation du carnet de dessin. A) Un dessin fait par un utilisateur sur une page de carnet. B) L’utilisateur pose une carte vierge de tout média sur la zone verte attachée au carnet de dessin. Puis, lorsqu’il pose l’objet loupe sur l’icône appareil photo, l’image est transférée sur la carte. C) Une fois l’image transférée, l’utilisateur peut librement enlever la carte. D) Cette carte peut être par la suite inspectée et modifiée.
Numériser des éléments d’un livre : Pour des items ne pouvant être déposés sur le carnet de dessin comme des livres, nous utilisons le E-Beam, le stylo interactif utilisé dans CARDS pour créer des liens (voir Chapitre 8). Pour capturer une portion de livre (Storyboard en Figure 9.5), l’utilisateur doit positionner la partie à capturer au sein de l’espace hybride. À l’aide du stylo, l’utilisateur sélectionne la partie de la page qu’il souhaite isoler en formant un rectangle par un glissé en diagonale. Lors du relâchement, une capture d’image est prise via la caméra du système CARDS. Le média généré et instancié dans la zone de projection au côté du livre. Il devient alors capturable par une carte média.

![Figure 9.5 – Scénario d’utilisation pour numériser un contenu issu d’un livre. A) Le livre est déposé dans l’espace hybride. B) L’utilisateur peut sélectionner une image en positionnant le e-Beam sur le coin supérieur gauche. C) L’utilisateur effectue un glissé en diagonale pour ajuster le contenu à numériser. D) L’image est sélectionnée. E) Après le relâchement de la position, l’image est capturée et dupliquée à côté du livre. F) L’image dupliquée devient un média manipulable.](image)

9.3 Préserver le passé et le faire cohabiter avec le présent

L’un des nombreux avantages du monde numérique comparé au monde réel réside dans sa capacité à enregistrer des données fidèlement et de pouvoir les restituer telles quelles quelques mois/années après. Cet enregistrement ne prend pas de place "physique" autrement que la taille physique intrinsèque du support d’enregistrement. Sauvegarder une disposition d’objets physiques sur un espace de travail est bien plus compliqué,
Transitions physiques et numériques dans l'espace et le temps
d’autant plus lorsque cet espace est partagé entre plusieurs utilisateurs ou groupes d’utilisateurs différents. Dans le cadre de séquences pédagogiques qui requièrent plusieurs activités, il est souvent nécessaire aux élèves de pouvoir reprendre leurs travaux précédemment réalisés pour les continuer.

Il faut reconnaître que les explorations consistant à manipuler le temps à l’aide de systèmes post-WIMP sont assez rares alors même que l’informatique regorge de ce type de fonctionnalités. Assez éloignées de notre cas d’utilisation, certaines applications d’exploration du patrimoine culturel proposent de restaurer grâce à la réalité augmentée, des morceaux du passé. *TimeWrap* [165] (ou d’autres, comme [166]) est une application de RA mobile qui rend possible un voyage dans le temps en rendant l’aspect originel des bâtiments anciens. L’utilisateur peut découvrir à quoi ressemblaient certaines parties d’une ville à différentes époques. Plus proche de nos intentions, Lindlbauer, et al. [167] ont créé avec *Remixed Reality* un espace de réalité mixte où le temps peut être mis sur pause, bouclé ou répété, donnant aux utilisateurs la possibilité d’éliminer les frontières entre espace et temps.

Traverser le temps

Afin de préserver le travail réalisé par les élèves durant une activité pédagogique avec CARDS, nous avons développé une boîte à outil qui offre la possibilité aux élèves d’enregistrer une activité à la fin de celle-ci, de charger une activité préalablement sauvegardée et de faire coexister une activité passée avec une activité en cours grâce à une différenciation entre cartes physiques en cours de manipulation et les “fantômes” de cartes, dossiers et lien précédemment conservés.

Lors du chargement d’une ancienne activité, les utilisateurs se retrouvent face à un plan de travail purement virtuel où chaque élément physique (i.e. carte) ou virtuel (i.e. lien) est affiché sous la forme de fantômes. La disposition spatiale et le nombre de médias dans chaque dossier sont représentés tels qu’ils ont été sauvegardés. La particularité de cette configuration est qu’il n’est pas possible aux utilisateurs de manipuler physiquement ces items. Pour ce faire, les élèves doivent tout d’abord réanimer les items en déposant une carte ou dossier vierge sur le fantôme de leur choix (voir Figure 9.6 B). Pour la carte, le mécanisme est similaire à l’attribution d’un média à une carte physique : l’utilisateur dépose une carte physique vierge sur le fantôme visé et le fantôme disparaît en donnant l’ensemble des propriétés numériques à la carte. Pour le dossier, le mécanisme est
également le même. Cependant, le dossier a été conçu pour contenir physiquement des cartes papier. Deux choix sont alors possibles en fonction de l’utilisation future du dossier :

— Si le dossier n’est plus destiné à être modifié, alors aucune autre étape n’est nécessaire. Le dossier peut toujours être parcouru via l’inspecteur ou changer de nom.

— Si le dossier doit être modifié (par exemple, enlever un média), l’ensemble des médias doivent être également physicalisés. Pour ce faire, les élèves doivent ouvrir le dossier et déposer le nombre de cartes vierges correspondant aux médias présents. L’action de poser une à une chaque carte génère à chaque fois une validation indiquant qu’un média fantôme a bien été physicalisé.

Après avoir récupéré les cartes et dossiers à physicaliser, l’activité peut continuer tout en conservant une partie des items dans un mode fantôme. Les liens peuvent être toujours modifiés supprimés, y compris entre une carte fantôme et une nouvelle carte, ou une carte réanimée.

9.4 Conclusion et perspectives

Les solutions proposées dans ce chapitre nous amènent à reconnaître les limites spatiales et temporelles des tables augmentées pour l’apprentissage à l’école.

L’objectif est bien entendu de faciliter les apprentissages scolaires avec le numérique. Dès lors, il est souhaitable de donner
Transitions physiques et numériques dans l'espace et le temps

Bien que la prise de notes sur tablette avec un stylet existe, elle n’est pas encore utilisable en salle de classe.

S’il était déjà possible pour les élèves de prendre des notes classiques grâce à leur cahier et un stylo, le faire avec du matériel virtuel ne l’était pas. Ces solutions ouvrent de nouveaux potentiels pour ce type d’interface.

À l’inverse de la prise de notes sur carnet, réservé au monde physique1, la sauvegarde provient du monde numérique. Conserver un travail entre deux séances, qui plus est lorsqu’il implique plusieurs élèves, demande une organisation particulière. Les enfants peuvent perdre des papiers importants ou les endommager. La solution proposée permet de conserver l’agencement sans avoir à physiquement préserver la disposition de l’ensemble des médias et dossiers. Enfin, cette proposition donne aussi l’opportunité aux élèves de bâtir sur l’activité précédente sans avoir à reagencer l’ensemble des items sur la table.

Grâce à ces améliorations, les approches hybrides ont le potentiel de passer d’un statut d’activités particulières à une intégration plus poussée en salle de classe, favorisant une continuité entre les différentes activités pédagogiques qu’elles soient purement basées sur une approche sans numérique, tout numérique ou hybride.

1 Bien que la prise de notes sur tablette avec un stylet existe, elle n’est pas encore utilisable en salle de classe.
Les interfaces post-WIMP face aux grands défis du XXIe siècle : Deux explorations
À propos de cette partie

Jusqu’à présent, nous avons vu que les approches s’appuyant sur la réalité augmentée et les interactions tangibles disposaient de propriétés intéressantes pour des sujets liés à l’éducation. Nous pensons également que ce genre d’approches a un rôle à jouer dans les grands défis qui se présentent à nous. Cette partie aborde deux explorations en lien avec la consommation énergétique et la lutte contre la pandémie de COVID-19.
De plus en plus de recherches en IHM commencent à s’intéresser à lutte contre le changement climatique, notamment l’utilisation des ressources, et à la lutte contre le gaspillage d’énergie, en montrant l’impact que peut avoir un humain sur son environnement. De manière générale, l’objectif de ces recherches est de proposer des solutions pour aider les humains à réduire la pression engendrée par la société sur l’environnement. Par ailleurs, de plus en plus d’appels à projets gérés par des collectivités ou institutions proposent de financer des projets citoyens pour améliorer la qualité de vie. Ce chapitre se situe à l’intersection de ces deux situations. Conscient et désireux de proposer des solutions pour aider la société à réduire son empreinte sur l’environnement, nous avons répondu à un appel à projets étudiants de l’Université de Bordeaux appelé “Hack’Ta Fac”. Le but de notre projet était de proposer des solutions à plusieurs échelles pour aider les étudiants et employés du campus à collectivement réduire la facture électrique de l’université. Dans ce chapitre, nous exposons une de ces solutions développée conjointement avec Thibault Lainé, Pierre-Antoine Cinquin et Léo Cousin. Ce travail a fait l’objet d’une démonstration à la conférence IHM’18

10.1 Introduction

La civilisation contemporaine s’est établie depuis la révolution industrielle sur une pente privilégiant la croissance des biens et services sans forcément se préoccuper des limites physiques de l’environnement et des conséquences que peut avoir la création et la transformation d’énergie sur ce dernier. Depuis de nombreuses années, la communauté scientifique appelle sociétés et dirigeants à prendre des décisions en faveur de la réduction des
gaz à effet de serre, par la limitation de notre consommation d’énergie (pétrole, gaz, électricité), et d’un changement des modes de consommation (nourriture, voyages, achats). Ces modifications de comportements sont à implémenter à tous les niveaux de la société, de la plus petite unité qui est l’individu, à la plus grosse, l’état, en passant par les entreprises.

Concernant la consommation d’énergie électrique, une part croissante de cette dernière provient de l’équipement informatique des entreprises qui augmente sans discontinuer chaque année (3,3%) et avec elle la consommation électrique globale [168]. Celle-ci représente 21 % (en augmentation) des coûts de fonctionnement d’une entreprise, les deux tiers se produisant en période d’inactivité1. Bien que les gestes pour réduire la consommation à son poste de travail soient simples (éteindre son ordinateur et l’écran la nuit, mettre en veille, réduire la luminosité de l’écran), ils ne sont pas nécessairement intégrés dans les pratiques quotidiennes ou sont simplement méconnus des employés. De plus, les citoyens sont relativement peu informés du vocabulaire et des métriques présentes dans la majorité des interfaces de gestion d’énergie [169].

Partant de cet état de fait, nous cherchons dans ce chapitre à répondre à la problématique suivante : Comment pouvons nous aider les individus à réduire l’énergie utilisés par leurs activités numériques au travail ?

Nous présentons ainsi une exploration qui vise à aider les salariés d’entreprises et les institutions à : 1) prendre conscience de leur consommation énergétique individuelle à leur poste de travail, pour 2) les aider à réduire la en proposant des indicateurs tangibles sur la base d’un système de ludification.

10.2 **Visualiser la consommation énergétique**

De nombreux travaux ont déjà exploré différentes techniques de visualisation à travers des interfaces du type WIMP (Windows, Icon, Menu, Pointer) ou multitouch [170-172].

Une autre approche consiste à utiliser l’affichage ambiant, développé par Wisneski, Hishii et al [173] en 1969 qui “présentent des informations dans un espace par le biais de changements subtiles de lumière, sons et mouvements, qui peuvent être traités inconsciemment par l’homme”.
Plus récemment, un nouveau paradigme basé sur les interfaces tangibles, appelé *Data Physicalization*, propose d’interagir physiquement avec les données pour améliorer leur compréhension [174].

De plus, sortir la solution hors du monde virtuel pour la physiciiser dans l’environnement réel de l’utilisateur nous paraît orienter positivement l’expérience utilisateur en proposant une interaction réelle proche de l’utilisateur plutôt que virtuelle, qui pourrait manquer d’incidence sur les comportements.

Dans une revue de la littérature, Daniel, et al [175] synthétisent les objectifs de travaux de recherches pour la maîtrise de l’énergie déjà publiés dans le domaine de l’interaction Homme-machine. Pour les auteurs, ces systèmes proposent aux utilisateurs de :

— Observer les conséquences de leur consommation d’énergie;
— Évaluer les conséquences de leur comportement (pression sur l’environnement).
— Aider l’utilisateur à se fixer des objectifs à atteindre pour réduire sa consommation.

Ens, et al. [176] utilisent un environnement immersif basé sur la RA et l’interaction tangible pour soutenir l’analyse de la consommation de bâtiment de manière collaborative. Un écran horizontal est utilisé pour rassembler les utilisateurs et créer une zone de collaboration tandis que des hololens sont utilisés pour augmenter et projeter la consommation électrique de chaque étage, au dessus des miniatures de bâtiments posés sur l’écran.

Daniel, et al. [177] ont conçu CAIRN (voir Figure 10.1), une interface ambiante à changement de forme qui représente les pics de production d’énergie renouvelable pour inciter les usagers à recharger ou utiliser leurs outils pendant les périodes d’accalmie. Cette interface représente un cairn² de 10 disques en verre, chacun représentant une heure de la journée.

Backlund, et al. [178] propose plusieurs interfaces ambiantes qui, une fois placées dans l’environnement, sont destinées à augmenter notre sensibilité vis-à-vis de notre consommation d’énergie. À travers trois métaphores, ils proposent des explorations qui rendent tangible et physique la consommation électrique (voir Figure 10.2). Deux sont développées en utilisant des lampes. La première utilise un papier qui, au contact de la chaleur générée par la lampe, change d’aspect (Figure 10.2-A), alors que la deuxième (Figure 10.2-C) utilise la métaphore d’une pile de pierres (le plus souvent) placée à dessein pour marquer un lieu particulier. On les retrouve le plus souvent en montagne.

Figure 10.1 – Le CAIRN de Daniel, et al. [175]. Le diamètre de chaque disque peut évoluer pour physiciiser la production d’énergie.

²: Une pile de pierres (le plus souvent) placée à dessein pour marquer un lieu particulier. On les retrouve le plus souvent en montagne.
10.3 L’environnement Erlen

En nous appuyant sur les paradigmes des interfaces tangibles et des afficheurs ambiants, nous avons développé Erlen, un environnement tangible et ambiante pour aider l’employé à la maîtrise de sa consommation au poste de travail. L’ambition de ce projet est de faire prendre conscience aux utilisateurs de leur consommation énergétique à leur poste de travail et de leur permettre de prendre de nouvelles habitudes de consommation moins énergivores, en proposant une expérience ludique, immersive et collaborative. Pour ce faire, le projet Erlen crée une expérience éphémère où il est proposé : 1) une physicalisation de la consommation quotidienne de l’individu à son poste de travail ; 2) une matérialisation des efforts consentis par un groupe d’utilisateurs sur le long terme, à travers l’utilisation d’une interface ambiante prenant la forme et la fonction d’un pot de fleurs connecté accueillant une plante.

Le système Erlen comprend deux interfaces tangibles. La première interface est l’Erlen, une interface tangible et ambiante prenant la forme d’une fiole erlenmeyer permettant aux utilisateurs de visualiser et interagir avec une simulation numérique d’eau (voir Figure 10.3). Nous avons développé deux types de fonctionnement qui créent deux situations distinctes et engendrent différents comportements chez l’utilisateur. Le mécanisme développé au début du projet consistait à remplir...
l’Erlen d’un liquide inconnu au fur et à mesure que l’utilisateur utilisait de l’énergie pour travailler. Lorsque les capacités virtuelles de la fiole étaient atteintes, le liquide commençait à changer d’intensité lumineuse. L’utilisateur était alors invité à aller vider dans une poubelle le liquide emmagasiné. Cette métaphore, bien que fonctionnelle, n’invitait pas l’utilisateur à changer de comportement puisqu’il reproduisait, d’une certaine manière, le comportement d’un consommateur allant jeter ses déchets.

Nous avons développé une deuxième mécanique d’interaction qui consistait cette fois-ci à essayer de conserver le plus de liquide possible au sein de l’Erlen. L’utilisation du dispositif peut être décrite au moyen d’une boucle d’interaction comprenant quatre étapes :

1. *Initialisation.* Au début de la journée de travail, lorsque l’utilisateur s’installe à son poste de travail, l’Erlen prend vie et se remplit d’un liquide virtuel bleu clair.
2. *Consommation.* En fonction de la consommation électrique du poste de travail, l’Erlen se vide progressivement. Ce liquide, que l’on peut identifier comme étant de l’eau (lumière bleue), va progressivement "s’évaporer" au fur et à mesure que l’utilisateur consomme de l’électricité à son bureau. À tout moment, l’utilisateur peut prendre en mains l’erlenmeyer pour le remuer. Le liquide virtuel propose le même comportement physique que pourrait avoir un liquide dans une fiole similaire.
3. *Interaction fiole-base.* À la fin de sa journée de travail, l’utilisateur (seul ou en compagnie de ses collègues) vide le contenu restant de la fiole dans une base sur laquelle est disposée une plante. Pour ce faire, l’utilisateur approche..
Évolution. La plante située dans la base va alors évoluer en fonction de la quantité d’eau qu’elle a reçue. Ainsi, le liquide "économisé" permet de nourrir la plante, invitant l’utilisateur à adopter un comportement responsable et lui permettant de rendre tangible l’impact vertueux d’une économie d’énergie à long terme, en lien direct avec l’état physiologique de la plante. Le pot connecté est également le point de rendez-vous des utilisateurs d’Erlen : il invite, par sa présence, les utilisateurs à se réunir pour discuter de la santé et de la croissance de la plante.

La plante, plus qu’une métaphore

Afin d’offrir une récompense pour l’effort consenti par l’utilisateur, nous utilisons une plante qui offre un retour rapide et captivant sur le court terme pour matérialiser l’économie d’énergie de la personne ou de groupes associés à un pot connecté. Pour offrir un retour rapide, nous utilisons une Rose de Jéricho (voir Figure 10.4) qui a la particularité de se refermer sur elle-même et devenir grise lorsqu’elle manque d’eau. Inversement, lorsqu’une personne verse de l’eau sur cette plante, son métabolisme se réactive en quelques minutes et la rose s’ouvre rapidement, à tel point que ce processus est visible à l’œil nu en quelques minutes.
Ludification

Après quelques actions concrètes telles que mettre en veille son écran entre midi et deux ou éteindre son ordinateur le soir, le niveau de liquide présent reste important en fin de journée. Afin de conserver la motivation de l’utilisateur tout au long de l’expérience avec Erlen, nous avons développé un système de niveaux. La règle est assez simple. Si pendant deux journées consécutives, l’utilisateur termine avec au moins 20 % de volume restant, il progresse d’un niveau. Concrètement le coefficient "d’évaporation" devient plus important, obligeant l’utilisateur à trouver de nouvelles méthodes d’économie d’énergie.

Il est important de noter qu’un niveau acquis ne peut être perdu. Par ailleurs, si l’utilisateur consomme plus que ses partenaires à cause d’un équipement plus gourmand en énergie, il ne sera pas pénalisé par rapport aux autres, mais aura toujours le défi de ne pas terminer la journée sans liquide.

Susciter l’échange entre les individus

Si la boucle d’interactions principale d’Erlen se situe à l’échelle de l’individu, nous avons souhaité réunir les utilisateurs une fois par jour autour d’un totem incarné par le pot connecté. Plutôt que créer un pot pour chaque Erlen, nous utilisons un seul objet. À une heure définie par le groupe, les Erlen se mettent à clignoter symbolisant le moment où il est temps pour chacun d’aller vider sa fiole. Les utilisateurs se retrouvent autour du pot connecté pour alimenter la plante. Ce moment est l’occasion pour chacun de comparer ce qu’il a pu économiser et discuter avec les autres des meilleures stratégies à adopter pour réduire la consommation générale.

10.4 Fonctionnement

Comme vu dans la section précédente, l’environnement Erlen se compose de deux interfaces représentant deux systèmes techniques distincts. L’interface tangible Erlen a été conçue par impression 3D. Elle abrite un ruban de LED permettant d’afficher la simulation de fluide, une Raspberry Pi reliée à une centrale inertielle. La récupération des données de consommation électrique (en watts) se fait au moyen d’une prise connectée par Wifi et envoyés à chaque seconde à l’Erlen (voir Figure 10.6). Enfin, l’Erlen possède une batterie et sa recharge s’effectue en le branchant à une base.
Le pot connecté est, quant à lui, constitué d’une plante installée en son centre. L’alimentation en eau de la plante est gérée par une Raspberry Pi connectée à un lecteur de tag RFID permettant au micro-ordinateur de connaître le volume d’eau fictif restant dans un Erlen (Figure 10.6). Une pompe contrôlée par la Raspberry Pi permet de délivrer la quantité d’eau nécessaire à la plante.

Dans un souci de maintien d’une bonne homéostasie de la plante, nous régulons les entrées d’eau et ce quelque soit les performances des utilisateurs. Ainsi, si les utilisateurs ne parviennent pas à économiser suffisamment de liquide, la plante sera tout de même maintenue en vie grâce à une faible quantité d’eau. De la même manière, la plante ne pourra pas recevoir une quantité d’eau supérieure à un seuil déterminé en amont.
10.5 Conclusion et travaux futurs

Ce chapitre a présenté une exploration d’interfaces ambiantes et tangibles incitant les employés à la diminution de la consommation énergétique au niveau de leur poste de travail. À ce jour le système Erlen n’a pu être déployé ou testé auprès d’utilisateurs. L’environnement Erlen fera l’objet de tests utilisateurs sur l’acceptabilité et l’utilisabilité ainsi que sur l’évolution de la consommation et des pratiques des sujets testés.

Paradoxalement, ce projet est resté à l’état d’exploration et ceux malgré "l’urgence climatique". Une urgence en remplaçant une autre, nous n’avons pu terminer ce projet à ce jour.
11 Le projet Rantanplan

L’épidémie de coronavirus en cours nous a poussés à apprendre de nouvelles pratiques sociales permettant de réduire les risques de propagation du virus entre les individus. Parmi ces mesures, la distanciation physique est particulièrement importante pour réduire le taux de reproduction de base (R₀) du virus qui est particulièrement haut (entre 2 et 3).

Le projet Rantanplan que nous avons porté vise à explorer les potentialités apportées par des paradigmes comme la réalité augmentée pour apporter modestement une solution supplémentaire à la lutte contre l’épidémie de COVID-19. De ce projet est né ARangement, une application de réalité augmentée à visée pédagogique, pour représenter visuellement les distances inter-individuelles que chacun doit respecter. Cette application détecte les humains dans le champ visuel de la caméra et projette un cercle rouge aux pieds de la personne pour signifier la zone de 1 mètre à ne pas franchir. Plusieurs cercles peuvent aussi être ajoutés afin de délimiter une distance « parfaite », « moyenne », etc. Cette application peut être également complétée par l’ajout d’une fonctionnalité de détection permettant d’afficher les objets (poignées de portes, chaise, table) où les gouttelettes et mains peuvent se (dé)poser et potentiellement propager le virus.

Ce travail a fait l’objet d’une soumission à CHI 2021 dans la section Late Breaking Work.

1: acronyme pour : Réalité Augmentée pour NoTifier des AgencemeNts et aider à la PLANification
11.1 Introduction

La crise COVID-19 a eu des répercussions non seulement sur notre vie personnelle, mais aussi sur le fonctionnement de la plupart des institutions. Les magasins, les bureaux et, de manière générale, tous les établissements accueillant le grand public ont dû réorganiser leurs locaux pour se conformer aux mesures gouvernementales. Afin de s’adapter à ces restrictions sans précédent, beaucoup se sont tournés vers la technologie comme moyen de compenser les pénuries causées par la crise. En particulier, la réalité augmentée (RA) a connu un regain d’intérêt lié à sa compatibilité avec les mesures sanitaires dans diverses tâches [179].

Alors que les recherches précédentes ont largement étudié l’utilisation de la RA pour l’interaction à distance [180, 181], très peu se sont concentrées sur la question inverse : être ensemble avec un contact minimal. Pour de nombreux établissements, rendre cela possible représente un investissement considérable en termes d’équipement et de temps. En effet, que ce soit à l’intérieur ou à l’extérieur, les visiteurs doivent pouvoir se déplacer sans se croiser tout en conservant une distance de sécurité à chaque instant. Trouver la configuration idéale pour limiter les risques de contamination, conserver la facilité de déplacement et d’entretien des locaux est une équation difficile à résoudre.

Dans ce travail, nous nous sommes intéressés à la manière dont la RA peut aider à éviter les contacts entre des personnes réunies dans un même espace. Nous présentons ARrangement, une application qui combine les moyens uniques de la RA mobile et le prototypage en amont afin de simplifier l’organisation à grande échelle des espaces publics. Elle permet aux utilisateurs de manipuler et de visualiser des équipements et des éléments de signalisation virtuels (panneaux, directions de circulation, etc.) grâce à une simple interaction tactile (voir image d’en-tête). Dans cet article, nous examinons comment la RA mobile constitue une solution efficace pour faciliter l’organisation de l’espace. Nous examinons les résultats de deux études de cas réalisées dans le contexte de l’épidémie de COVID-19 et fournissons des indications pour les travaux futurs.

11.2 État de l’art

La RA a été utilisée avec succès pour réaliser des simulations d’organisation spatiale [182]. Les applications liées à l’amé-
nagement intérieur sont des exemples très répandus de cette utilisation, tant dans le milieu universitaire [183-186] que sur le marché des consommateurs (par exemple, Ikea Place, Houzz, DecorMatters). Ces systèmes de RA permettent généralement aux utilisateurs de placer virtuellement des modèles 3D de meubles à domicile, en respectant les dimensions réelles de l’objet et de l’espace dans lequel il s’insère. Si la plupart d’entre eux sont destinés à des utilisateurs individuels, des travaux antérieurs ont également montré leur caractère pratique dans des cadres de collaboration. Par exemple, Urban CoBuilder [187] est une application mobile conçue pour la planification urbaine participative qui affiche les infrastructures extérieures dans un système de RA basé sur la localisation.

La RA mobile a également été utilisée pour la navigation dans des environnements réels peu familiers [188]. De Oliveira et al. [189] ont proposé une application permettant aux utilisateurs de fauteuils roulants de trouver des itinéraires contenant moins d’obstacles. En scannant des balises imprimées avec leur téléphone, des flèches virtuelles apparaissent sur le flux de la caméra, pointant dans la direction visée.

Gladston et al. [190] ont mis en œuvre une application pour smartphone permettant d’afficher des balises virtuelles au-dessus des portes, des flèches et des informations sur les lieux pour aider les utilisateurs à trouver leur chemin dans les grandes infrastructures telles que les aéroports ou les hôpitaux. De même, l’application mobile de Cruz et al. [191] utilise la RA pour indiquer le chemin le plus court vers un article choisi dans un grand magasin de détail, compte tenu de la connaissance préalable de sa disposition. L’interface permet également à l’utilisateur de visualiser et de manipuler le modèle 3D grandeur nature de l’article recherché hors de son emballage.

Bien qu’un grand nombre d’applications aient été développées pour faire face à la pandémie COVID-19 [192, 193], nous n’avons pas connaissance de recherches impliquant la RA pour aider à l’exécution de directives préventives (par exemple, la distanciation physique). Certaines applications mobiles ont tirées parties de la RA pour créer des animations en RA (Snapchat, titok). Plusieurs travaux ont porté sur la détection de la distanciation physique basée sur la vision [194-196], principalement par la segmentation d’images en direct et l’apprentissage profond. Cependant, aucun ne semble l’avoir combiné à la visualisation en RA avec laquelle l’utilisateur peut interagir en temps réel. À ce jour, notre travail nous apparaît donc comme le premier à fournir un outil permettant la prévention de la contamination.
et la mise en application de mesures de sécurité basées sur la RA mobile.

11.3 ARrangement

ARrangement (AR + Arrangement) est une application mobile AR destinée à aider les utilisateurs dans le processus d’organisation de grands espaces destinés à accueillir du public. Les utilisateurs peuvent sélectionner et positionner du contenu 3D dans le monde réel en visant l’endroit souhaité avec la caméra de leur appareil et en touchant le flux vidéo affiché sur son écran. ARrangement comprend également une signalisation virtuelle et des personnages 3D pour simuler la répartition des personnes et des chemins vers les points d’intérêt (Figure 11.1.A et Figure 11.1.B). La position des objets peut ensuite être mesurée avec précision et modifiée à l’aide d’une grille de 1 mètre sur 1 mètre, posée sur le sol (Figure 11.1.C).

Figure 11.1 – Captures d’écran fournissant des exemples de ce que les utilisateurs peuvent produire avec l’application. A) Visualisation de la distanciation physique dans la file d’attente d’un restaurant. B) Cheminement fait de flèches virtuelles tracées sur le sol. C) Barrières et sens de marche dans la cafétéria d’un bâtiment.

Lignes directrices pour la conception

Au-delà des recommandations UX traditionnelles (i.e guidage, retour d’information), nous avons suivi les principes de con cep-
tion appliqués par les principaux acteurs du secteur de la RA [197, 198] afin de mettre en œuvre les aspects de base d’une application mobile de réalité augmentée. Bien que la RA gagne en popularité et en accessibilité ², de nombreux utilisateurs de téléphones portables ne connaissent pas encore les interactions qu’elle offre. Il a donc fallu confectionner un flux de travail suffisamment intuitif pour que l’utilisateur puisse découvrir et apprendre rapidement les interactions de base utilisées dans ARrangement. Pour ce faire, nous nous sommes appuyés sur les principes suivants pour établir notre stratégie de conception :

— Les appareils mobiles ayant un espace d’écran limité, les utilisateurs doivent pouvoir utiliser tout l’écran pour visualiser la scène de RA. L’interface utilisateur (UI) en 2D ne doit contenir que des fonctionnalités persistantes (par exemple l’accès au menu principal) afin de conserver une place importante au flux vidéo augmenté.

— Les utilisateurs doivent avoir accès à l’état de suivi de l’application et pouvoir la réinitialiser au cas où. La détection de plans horizontaux ou verticaux et la cartographie de l’environnement restent sujettes aux erreurs car sensibles aux conditions d’éclairage, aux surfaces réfléchissantes ou au manque de données.

— Les utilisateurs sont susceptibles de commettre des erreurs de placement lorsqu’ils positionnent des objets virtuels dans l’environnement réel si aucun aperçu n’est donné. Ce problème peut être résolu en affichant un indicateur de placement lors de l’ajout d’objets à la scène (voir la section Mode objet).

— Pour éviter la confusion et l’encombrement visuel, seules les surfaces qui conviennent à l’instanciation des objets doivent être affichées. Les autres types de surfaces détectées qui ne sont pas destinées à accueillir ces objets (par exemple, les tables, les murs) doivent rester invisibles.

— En raison des divergences entre le contenu réel et virtuel, les utilisateurs sont enclins à mal juger la position relative des objets dans les scènes de RA. L’occultation d’objets virtuels peut améliorer la perception et l’expérience utilisateur.

— Pour éviter toute frustration, notamment pour les personnes qui ne sont pas familiers avec la RA mobile, une séquence de bienvenue doit aider l’utilisateur à comprendre comment interagir avec les différents modes de l’application (voir la section Mode objet). Pour chaque fonctionnalité, un message contextuel présente de mode d’emploi de la fonctionnalité.

2: Ici nous parlons surtout d’expériences en réalité augmentée mobile comme les scènes augmentées proposées au sein d’applications classiques (Snapchat, TikTok). Ces expériences sont majoritairement des augmentations automatiques du visage ou des ajouts d’objets virtuels dans l’environnement, sans pour autant donner à l’utilisateur le choix de l’emplacement.
Principales fonctionnalités

ARrangement sépare le processus de conception en trois modes, accessibles à partir d’un bouton menu (voir Figure 11.1) : 1 le mode objet, 2 le mode chemin et 3 le mode visualisation. Chacun d’entre eux regroupe des caractéristiques utiles à différentes phases de la conception en cours. La scène de RA (c’est-à-dire ce que voit la caméra) reste cependant indépendante du mode car seule l’interface utilisateur change.

Mode objet

Ce mode permet à l’utilisateur de sélectionner, d’ajouter ou de supprimer des objets virtuels de la scène (Figure 11.2, “Object List” et “Place List”). La sélection des objets se fait par le biais d’une liste carrousel, après appui sur le bouton central “+”. En touchant l’un des objets disponibles, la liste se replie et un indicateur de placement apparaît sur le sol à l’endroit indiqué par l’utilisateur.

L’élément sélectionné peut ensuite être déplacé en le faisant glisser ou tourner autour d’un axe vertical en gardant un doigt sur l’objet et en le faisant glisser vers la gauche ou vers la droite avec un autre doigt.

Figure 11.2 – Vue d’ensemble du mode Objet qui comprend la sélection, le placement, la suppression, la duplication, la rotation et la translation d’objets 3D.
Mode chemin

Le mode chemin (ou Path Mode) permet la création de chemins fléchés sur les surfaces détectées (Figure 11.1.C). Ces chemins sont créés en touchant des zones du sol pour instancier un nœud. Une suite de nœuds forme un chemin (Figure 11.3, “Line edit Draw” et “Path Mode”). Après validation, l’utilisateur a toujours la possibilité de supprimer ou de modifier le chemin en le sélectionnant.

![Image](image.png)

Figure 11.3 – Vue d’ensemble du mode chemin comprenant la création, l’édition, la suppression et la sélection des couleurs d’un chemin.

Mode visualisation

Dans ce mode, les utilisateurs peuvent faire des captures d’écran de la scène conçue ou basculer une grille de 1 mètre sur 1 mètre tracée au sol pour une meilleure évaluation des distances. Cette grille apparaît dans une position fixe du monde réel et peut être tournée manuellement au cas où l’utilisateur aurait besoin qu’elle soit alignée sur un mur ou un objet spécifique de la pièce (par exemple, Figure 11.1.C). Si la permission est accordée,
les photos prises dans ARrangement seront enregistrées localement sur l’appareil et masqueront les éléments de l’interface utilisateur superposés à la scène capturée (par exemple, Figure 11.1 A et C).

Autres caractéristiques

Pour son bon fonctionnement, l’application nécessite de balayer l’environnement avec la caméra de l’appareil. Ce balayage est lancé dès le début de l’application et crée un ensemble de surfaces marquées (par exemple, le sol, le mur, les meubles), qui évoluent au fur et à mesure des déplacements de l’utilisateur. En cas d’erreur de classification, cet ensemble peut être réinitialisé par le menu de démarrage en relançant le balayage.

Impléments

ARrangement a été développé pour les appareils Android et iOS avec Unity3D 2020.1. Il utilise ARFoundation, un ensemble de développement multi-plateforme Unity qui unifie les fonctionnalités natives de divers plugins XR, dont ARCore (Android) et ARKit (iOS). Ces frameworks permettent le suivi et l’étiquetage sans marqueur de surfaces planes avec détection de mouvement. Toutefois, certaines des fonctionnalités qu’ils proposent pour leurs plateformes respectives ne sont pas toujours équivalentes (par exemple, le détail des étiquettes de plans); nous avons dû nous adapter à ces différences pour que l’application fonctionne de manière identique sur les deux plateformes.

La structure fonctionnelle de l’application s’appuie sur une simple machine à états finis qui prend en compte l’interaction tactile de l’utilisateur. Le fait d’appuyer sur l’écran à l’emplacement des éléments de l’interface utilisateur déclenchera un événement (par exemple, l’instanciation d’un objet) ou un changement d’état (par exemple, le passage en mode Chemin). La détection de l’interaction tactile repose sur l’interface d’entrée de Unity qui a accès aux données multi-touch et accéléromètres de l’appareil.

11.4 Étude de cas

Bien que menée dans un contexte particulier ne permettant pas la tenue de tests utilisateurs dans de bonnes conditions, nous avons quand même voulu vérifier que l’application pouvait
correctement atteindre son objectif. Pour ce faire, nous avons organisé une session de tests qui a été menée lors du premier confinement. Il s’agissait de deux études de cas, composées chacune d’un participant. La première étude de cas a été réalisée en présence de l’expérimentateur, tandis que la seconde a été réalisée à distance par une participante qui avait installé l’application sur son téléphone. Les deux participants ont eu pour objectif de créer une configuration de leur choix fonctionnant pour l’espace à aménager. Ils ont reçu des explications sur la manière d’utiliser chaque fonctionnalité, comprenant le balayage de la zone, le positionnement des objets virtuels et leur modification avant de les essayer eux-mêmes.

Participants

Les deux participants ont montré un intérêt pour l’utilisation de la RA dans leurs domaines de travail respectifs.

Le premier participant travaillait dans le département des services généraux d’un bâtiment et était chargé de réorganiser les locaux après l’épidémie de COVID-19. Cette personne souhaitait utiliser l’application pour découvrir comment la cafétéria du bâtiment pourrait éventuellement être réorganisée afin de garantir le respect des mesures sanitaires relatives au coronavirus. Il souhaitait en particulier savoir combien de personnes pourraient s’installer dans la cafétéria tout en préservant les distances de sécurité, et quelles voies permettraient d’éviter les contacts étroits lors de la marche.

La deuxième personne était propriétaire d’un petit magasin. Elle devait créer l’environnement le plus sûr possible pour elle-même, ses employés et les clients du magasin. Contrairement au premier participant, le magasin avait déjà rouvert et un protocole sanitaire était déjà en place. Son objectif était donc de découvrir s’il existait un meilleur moyen de protéger les personnes à l’intérieur.

Retours utilisateurs

Bien que très différents, les commentaires des deux utilisa- teurs ont été principalement positifs.

Dans le premier cas, l’utilisateur a utilisé avec succès l’application pour scanner l’ensemble de l’espace de restauration. Il a trouvé que l’affichage d’une grille de 1 mètre sur 1 mètre était
particulièrement pratique pour se rendre compte des possibilités existantes lors de la conception d’un chemin de circulation à double sens (les règles locales suggèrent au moins 1 mètre entre les personnes). Il a également utilisé la grille pour calculer combien de tables pouvaient être installées dans l’espace de la cafétéria compte tenu de leurs dimensions. Après ce calcul, il a ajouté des objets 3D pour créer la scène présentée dans la Figure 11.1.C. La configuration virtuelle construite pendant ce test a été sauvegardée et utilisée plus tard comme modèle pour mettre en œuvre la réorganisation de la cafétéria.

Lors du deuxième test, après avoir introduit l’application, il est apparu que la participante ne voyait pas l’intérêt d’utiliser ARrangement pour un espace si restreint qu’elle savait déjà comment organiser. En effet, les petites infrastructures comme la sienne accueillent généralement un nombre limité de personnes et l’espace, plutôt réduit, limite les directions de marche. La configuration optimale apparaît donc comme une évidence et nécessite moins de temps pour sa mise en œuvre que dans l’étude de cas précédente. Néanmoins, la participante était toujours intéressée par l’utilisation de captures d’écran prises avec ARrangement pour informer les clients du magasin sur la manière de se comporter à l’intérieur et devant l’entrée.

11.5 Discussion et travaux futurs

Les réactions que nous avons recueillies pour les tests utilisateurs ont été globalement positives, en particulier dans la première étude de cas où la disposition testée dans l’application pour la cafétéria a été effectivement mise en œuvre et
reste conservée à ce jour. Cela montre que l’application peut permettre aux utilisateurs de construire des configurations spatiales de A à Z tout en assurant la meilleure expérience possible, la sécurité et le bien-être des visiteurs. Cependant, la deuxième étude de cas montre les limites de la pertinence d’un tel processus de prototypage : les commentaires de la participante (propriétaire d’un petit magasin) soulignent que cet outil est peut-être mieux adapté à des espaces plus vastes où le nombre de configurations possibles est important et où les personnes peuvent se déplacer librement. Elle convient néanmoins que ARrangement pourrait être utile après la mise en place du protocole sanitaire pour vérifier si les distances physiques sont respectées et pour fournir des indications visuelles aux visiteurs. Nous prévoyons de mener une évaluation plus complète afin de mieux définir les avantages de l’utilisation de ARrangement.

Pour conclure, nous pensons qu’il y a un intérêt potentiel à utiliser ARrangement dans des scénarios au-delà du champ d’application présenté (c’est-à-dire la création de dispositifs sanitaires liés au COVID-19). Par exemple, les événements publics tels que les expositions à venir dans les musées et les galeries d’art pourraient bénéficier de cette application en tant qu’outil de prototypage. Ce type d’utilisation nécessiterait une fonctionnalité de téléchargement permettant aux utilisateurs d’intégrer leurs modèles 3D personnels à la scène de la RA. Dans nos travaux futurs, nous avons l’intention de mettre en œuvre ce type de fonctionnalité et d’explorer plus avant la manière dont la RA mobile peut être utilisée pour concevoir des espaces.
CONCLUSION ET PERSPECTIVES
Conclusion du manuscrit

Cette thèse a exploré comment réconcilier le monde numérique et le monde physique dont les propriétés intrinsèques sont assez éloignées mais pourtant complémentaires. Ce travail a consisté à comprendre les particularités de cette hybridation, imaginer de nouveaux usages, prototyper des techniques d’interaction, pour enfin les évaluer lorsque cela était possible. Au-delà de cette tentative, une part importante de notre travail a été de sortir ces technologies des laboratoires. Ce chapitre conclut ce manuscrit en soumettant une vision plus générale de notre contribution, en discutant des limites comme des possibilités offertes aux interfaces conçues dans cette thèse.

12.1 Récapitulatif des contributions

— La première partie (chapitres 1 à 5) a permis de donner un cadre en rappelant les fondements théoriques des interfaces post-WIMP, d’introduire le contexte de recherche du projet e-tac et de proposer une revue de littérature centrée sur les tables augmentées utilisées en contexte scolaire.
— Le Chapitre 6 a étudié les différences entre réalité augmentée spatiale et réalité augmentée mobile pour une tâche de mémorisation. De forts indices nous ont amené à postuler que réaliser une tâche demandant un effort cognitif important serait plus simple à effectuer avec une table augmentée qu’avec une tablette. Ces résultats renforcent notre choix de s’orienter vers des dispositifs facilitant les manipulations physiques pour favoriser les tâches d’apprentissage.
— CARDS : Le Chapitre 8 aborde la conception et l’évaluation de CARDS, un système hybride dédié aux activités de groupes en salle de classe dont l’objectif est de favoriser l’utilisation du numérique dans des activités collaboratives, tout en conservant les bénéfices des manipulations physiques.
— Les travaux présentés dans le Chapitre 9 offrent des passerelles physiques et temporelles qui ont du sens pour les utilisateurs et le milieu, grâce à des approches purement physiques (livres, carnets de notes) et purement numériques (sauvegarde, chargement d’une session).
— Le Chapitre 10 présente Erlen : Des interfaces tangibles et ambiantes qui proposent une aide à la réduction de notre consommation énergétique. La métaphore de l’éco-geste est ici poussée encore plus loin. Les conséquences de nos actions ont des effets immédiats sur l’épanouissement d’une plante, représentant de la flore et du vivant.

12.2 Travaux futurs et perspectives

Bien qu’une conception itérative validée par les utilisateurs finaux ait été réalisée, l’environnement CARDS nécessite une évaluation sur son potentiel pédagogique. En effet, pendant cette thèse, nos efforts se sont concentrés sur la création d’un système hybride généraliste utilisable dans un environnement écologique. Si cette contribution est importante (par le temps requis pour arriver à cette fin), il nous reste encore à évaluer la capacité du système à soutenir l’apprentissage collaboratif.

Au-delà de la validation du système pour l’apprentissage, la perspective d’un déploiement à plus grande échelle nécessite un important travail sur l’expérience utilisateur et la création de guidelines dans le but d’offrir, comme au sein d’environnement WIMP, une expérience commune facilitant la prise en main des systèmes par les utilisateurs et ainsi faciliter leur dissémination.

Nous n’utilisons actuellement qu’un seul type de RA au sein de CARDS. Cette augmentation 2D est souhaitable pour les interactions bi-manuelles ainsi que pour les activités de groupe où les utilisateurs ont besoin de manipulation physique. Mais lorsqu’une augmentation flottant au dessus de la table est nécessaire, la RAS ne peut pas être utilisée par plusieurs utilisateurs sans recourir à des lunettes stéréoscopique et un vidéo-projecteur particulier. Il serait intéressant pour les utilisateurs de pouvoir explorer des informations numériques sous plusieurs représentations. Une représentation 2D, visible sur la table à l’aide de la projection, et une représentation 3D mobile co-localisée avec la projection. Cette proposition n’a rien de nouveau et a déjà été étudiée notamment par [199]. Cependant, elle prend tout
son sens à la suite de notre expérience. Les élèves pourraient manipuler à plusieurs un même modèle. Nous postulons que les environnements hybrides pourraient suppléer les ordinateurs dès lors que ces derniers trouvent leurs limites dans les salles de classe et dans le monde de l’entreprise, notamment dans les salles de réunion. Plutôt que d’être assis autour d’une table, séparé les uns des autres par des écrans d’ordinateurs personnels, la table pourrait devenir l’espace commun autorisant l’échange d’informations de tout type et la collaboration entre les pairs. La prise de notes serait assistée et augmentée par le numérique et les fameux comptes-rendus de réunion seraient générés à partir du travail réalisé sur l’espace de travail commun, intégrant objets virtuels et physiques.

Des interfaces pour découvrir et comprendre le monde

Bien que le projet Erlen ait pu profiter de sessions de groupe de discussion avec les utilisateurs potentiels de l’université de Bordeaux, le système reste à ce jour un prototype qui n’a pu être évalué, aussi bien sur son acceptabilité que sur son impact réel sur la consommation des utilisateurs. Pour autant, l’exploration réalisée avec ce projet consistant à mélanger vivant et numérique nous encourage à pousser plus loin ce type de métaphore pour favoriser l’engagement de l’utilisateur.

Enfin, loin des considérations scientifiques, la conception de l’application ARrangement nous encourage à pousser encore davantage la réalité augmentée hors des laboratoires. Malgré le temps de conception assez court du projet Rantanplan, nous avons pu créer une version stable et déployable de l’application. Pour ce qui est de la réalité augmentée mobile, il semble que nous sommes arrivés à une situation où il est désormais possible que la recherche en réalité augmentée rencontre directement les utilisateurs finaux afin que les contributions scientifiques obtiennent un impact plus large.

12.3 Point final

Finalement, augmenter le monde physique nous invite à repenser l’évolution actuelle du numérique. Les humains sont aujourd’hui plus que jamais reliés à ce monde par des connexions toujours plus rapides et des écrans toujours plus nombreux. Le retour vers la réalité que nous avons décrit en introduction, nous l’avons d’une certaine manière vécu, avec les interfaces
Conclusions du manuscrit que nous avons conçues pendant cette thèse. Notre vision développée tout au long de ce manuscrit se veut une alternative à une "digitalisation" à outrance de la société. Dans notre cas, le numérique devient une affaire d’interaction entre des humains, et avec des objets qui existent depuis des siècles (i.e. pot, fioles, papier).

La technologie utilisée pour "présenter" l’information importe assez peu. Le numérique est présent pour aider, faciliter et augmenter les interactions entre les femmes et les hommes. Ainsi, dans cette thèse nous dessinons, manipulons, rangeons et observons des papiers dans le but de découvrir, comprendre et apprendre. Lorsqu’on nous donne la possibilité de le faire, nous prenons soin du vivant plutôt que du confort d’une lumière allumée ou d’un écran un peu trop brillant. C’est peut-être lorsque notre monde vacille par la force de phénomènes difficiles à percevoir et à comprendre, que rendre le numérique plus physique, concret et tangible, nous assurera que notre réalité sera toujours préservée.
Bibliography

[55] Edith Ackermann. « Piaget’s constructivism, Papert’s constructionism : What’s the difference ». In : (cf. p. 27).

