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Abstract / Résumé

Abstract

The scientific community relies more and more on computations, notably for nu-
merical simulation and data processing. While many scientific advances were made
possible by the technological progress of computers, additional performance gains
are still required for larger scale projects.

The race for performance is addressed with a growing hardware and software
complexity, which in turn increases the performance variability. This can make
the experimental study of performance extremely challenging, raising concerns of
reproducibility of the experiments, akin to the problems already faced by natural
sciences.

Our contributions are twofold. First, we present a methodology for predicting the
performance of parallel non-trivial applications through simulation. We describe
several models for communications and computations, with an increasing complex-
ity. We compare these models through an extensive validation by matching our
predictions with real experiments. This validation shows that modeling the spatial
and temporal variability of the platform is essential for faithful predictions. As
a consequence, predictions require careful sensibility analysis accounting for the
uncertainty on the resource models, which we illustrate through several case studies.
Second, we present the lessons learned while making the numerous experiments
required in the first part and how we improved our methodology. We show that mea-
surements can suffer from multiple experimental biases and we explain how some
of these biases can be overcome. We also present how we implemented systematic
performance non-regression testing, which allowed us to detect many significant
changes of the platform throughout this thesis.
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Résumé

La communauté scientifique s’appuie de plus en plus sur les calculs, notamment pour
la simulation numérique et le traitement des données. Alors que de nombreuses
avancées scientifiques ont été rendues possibles par les progrès technologiques des
ordinateurs, des gains de performance supplémentaires sont encore nécessaires pour
les projets à plus grande échelle.

La course à la performance est abordée avec une complexité matérielle et logicielle
croissante, qui à son tour augmente la variabilité des performances. Cela peut rendre
l’étude expérimentale de la performance extrêmement difficile, ce qui soulève des
préoccupations quant à la reproductibilité des expériences, de manière similaire aux
problèmes déjà rencontrés par les sciences naturelles.

Nos contributions sont doubles. Tout d’abord, nous présentons une méthodologie
pour prédire les performances d’applications parallèles non triviales par la simu-
lation. Nous décrivons plusieurs modèles de communications et de calculs, avec
une complexité croissante. Nous comparons ces modèles via une validation appro-
fondie en faisant correspondre nos prédictions avec des expériences réelles. Cette
validation montre que la modélisation de la variabilité spatiale et temporelle de
la plateforme est essentielle pour les prédictions. En conséquence, les prévisions
requièrent une analyse de sensibilité minutieuse tenant compte de l’incertitude sur
les modèles de ressources, que nous illustrons à travers plusieurs études de cas. Par
la suite, nous présentons les leçons apprises lors des nombreuses expériences me-
nées dans la première partie et comment nous avons amélioré notre méthodologie.
Nous montrons que les mesures peuvent souffrir de multiples biais expérimentaux
et nous expliquons comment certains de ces biais peuvent être surmontés. Nous
présentons également comment nous avons mis en œuvre des tests systématiques
de non-régression des performances, qui nous ont permis de détecter de nombreux
changements significatifs de la plateforme tout au long de cette thèse.
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Scientific computing: a story 1
1.1 First computers, from carbon to silicon

Science has always been tightly associated to computations, hence it is no surprise
that the first computers were not machines, but humans. Already in the second
century AD, Ptolemy, a scientist living in Alexandria, wrote the Almagest. This
book aggregated the state of the art in mathematics and astronomy and remained
a reference for centuries. It contained several tables that were computed by the
scientist, including a trigonometric table (called table of chords).

In 1757, three French astronomers, Clairaut, Lalande and Lepaute, started working
on the prediction of the next appearances of Halley’s comet [Gri05, Chapter 1].
Using the recent theories of Newton, they had to numerically solve the three-body
problem: they computed the orbits of Saturn and Jupiter around the Sun, taking into
account the attraction force between the two planets. They carried this computation
by splitting the orbits into tiny steps, computing the new planet locations for each
step. They used these sequences of coordinates to compute the orbit of Halley’s
comet around the Sun, by taking into account the effect of the two giant planets
on the comet and neglecting the effect of the comet itself on the three bodies. In
the end, they were successful in predicting the next appearance of the comet in the
beginning of 1759, making an error of only one month. Their work constitutes one
of the first recorded division of labor applied to computations, Lalande and Lepaute
computed the orbits of the two giant planets while Clairaut computed the orbit of
the comet.

Gaspard de Prony, a French civil engineer, went a step further in this endeavor of
organized computation [Gri05, Chapter 2]. In 1791, he was named director of the
Bureau du Cadastre. At the time, the French revolutionary government was preparing
reforms for their outdated system of weights and measures, which will eventually
result in the creation of the metric system. The reforms proposed to measure angles
in grades instead of degrees, dividing a right angle into 100 grades instead of 90
degrees. Prony was tasked to prepare trigonometric tables for this decimal grade
system. He organized his staff in a hierarchy with three levels:
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• The first class of workers, a handful of renowned scientists like Carnot or
Legendre, oversaw the operations. They had to research the appropriate
formulas for computing approximations of trigonometric functions with basic
arithmetical operations.

• The second class, subsequently named planning committee, was a team of eight
experienced computers. Their task consisted in translating the trigonometric
equations produced by the first class into a sequence of additions and subtrac-
tions. They prepared worksheets where all the basic operations were written
with a blank space for the result.

• The third class consisted in nearly ninety computers. Many of them were
former servants or wigmakers that lost their jobs with the Revolution and did
not know any mathematics besides the addition and subtraction. Their job
was to compute the results to fill the blank spaces left by the second class of
workers.

The idea of constructing a machine capable of doing computations is not recent.
Already in 1642, Blaise Pascal, a French mathematician, invented and built a mechan-
ical calculator that could perform the four arithmetical operations. The calculator
was not commercially viable at the time, so only twenty machines were built. Much
later, in the first half of the nineteenth century, Charles Babbage [Gri05, Chap-
ters 2-3], an English mathematician, invented two very innovative machines. The
difference engine, for computing tables of polynomial functions, and the analyti-
cal engine, a general purpose computer that would subsequently be qualified as
Turing-complete. Unfortunately, due to a lack of funding, he was never able to build
his inventions. In the same period, a French inventor named Thomas de Colmar
designed and manufactured a digital mechanical calculator, called arithmometer.
Capable of doing the four arithmetical operations, it was the first machine of its
kind to be reliable enough for a practical use. Similarly, Herman Hollerith, an
American inventor, created the tabulating machine. Initially built to process the
1890 US Census data, it worked by reading and summarizing information stored
in punched cards. It decreased considerably the duration and cost of the whole
census organization. These two last inventions [Gri05, Chapter 6] were commercial
successes and started an era of mechanical computations that lasted until the second
half of the twentieth century.

Gradually, computing became more and more important and recognized as a dis-
cipline. The apparition of modern statistics, mainly due to the work of Francis
Galton and Karl Pearson in the early twentieth century, led to a growing need for
computation power. The First World War itself was an important catalyst, as the

2 Chapter 1 Scientific computing: a story



American, French and English governments hired entire computing laboratories to
create ballistic tables [Gri05, Chapter 10]. By the time, electromechanical computers
were used everywhere, for their efficiency and reliability largely superior to human
computers. There was still an important need for human labor, not only for operating
these machines, but because some complex operations were still carried by hand.

The first working general purpose programmable computer, named Z3, was de-
signed and built more than two decades later in Germany by Konrad Zuse [Cop20].
Completed in 1941, it was an electromechanical machine, using both (mechanical)
relays and (electronic) vacuum tubes. Its programs, written on external tapes, could
use loops but not conditional branches. In 1944, the British government built the
first fully electronic computer, named Colossus. Made of vacuum tubes, its primary
function was to break the German ciphers during the war. Later, in 1945, the first
US electronic computer was unveiled, called ENIAC. Both the Colossus and ENIAC
computers were programmed by plugboards and switches, instead of reading from a
tape like the Z3. Interestingly, the Z3 and Colossus machines used binary arithmetic
while the ENIAC used decimal representation.

An important breakthrough came with the notion of stored-program computer, i.e.
the idea of storing the program instructions in memory. Although the original ideas
can be traced to Turing himself and his 1936 article, the real implementation in
electronic computers came several years later. The first stored-program computer
was the Manchester Baby, built at the University of Manchester in 1948 [Cop20].
Similarly, the successor of the ENIAC, called EDVAC was also a stored-program
computer. Yet, at the time, computers were still using vacuum tubes. Although this
was a great reliability improvement to the mechanical parts used before, the vacuum
tubes had a very large electricity consumption which started to become problematic
(the ENIAC consumed 150 kW, the EDVAC 56 kW). They also required many human
operators for their daily usage.

The invention of the transistor in 1947 by three Bell Labs physicists had a huge
impact on the whole electronic world. It achieves the same functionality as a
vacuum tube (amplifying and switching an electrical signal), but with a much lower
power consumption, much smaller size and easier to mass produce. Hence, it is no
surprise if the industry quickly started to use this new technology. The first transistor
computer was made in 1953 in the University of Manchester. Later, in 1955, IBM
announced the first commercial transistor computer, the IBM 608 [IBM21], made
of 3000 transistors. Compared to its predecessor, switching to transistors allowed
IBM to reduce the computer physical size by 50 % and its power consumption by

1.1 First computers, from carbon to silicon 3



90 % while multiplying its computing speed by 2.5, reaching a performance of 4500
additions per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.
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Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributors to this exponential growth of the number of transistors
is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific computing: a story



608 calculator commercialized in the 50s had transistors “no bigger than a paper
clip” [IBM21], the latest processors commercialized in 2020 have 5 nm transistors.

In 1974, Dennard et al. listed a set of rules for scaling simultaneously the transistor
density, clock frequency and power dissipation of processors [Den+74], which would
eventually be named Dennard scaling. The effect of this scaling on the device is
summarized in Table 1.1. A scaling of κ will result in a clock frequency multiplied
by a factor κ and a number of transistors multiplied by κ2 while the power density
of the chip remains constant, i.e. if the size of the processor does not change, it will
have the same power consumption and generate the same amount of heat.

Table 1.1.: Dennard scaling with a factor κ (table reproduced from [Den+74, Table 1]).

Device or Circuit Parameter Scaling Factor
Device dimension tox, L,W 1/κ
Doping concentration Na κ
Voltage V 1/κ
Current I 1/κ
Capacitance C = εA/t 1/κ
Delay time/circuit V C/I 1/κ
Power dissipation/circuit V I 1/κ2

Power density V I/A 1

Unfortunately, Dennard scaling came to an end 15 years ago. Indeed, it is no longer
possible to scale the operating voltage and the gate oxide thickness [Boh07], as
transistors have reached scales where power leakage is no longer negligible. With a
voltage that cannot be scaled anymore, the power density cannot remain constant
and reaches alarming levels of more than 4 W/mm2 [HP19; HP18], as illustrated in
Figure 1.2.
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Figure 1.2.: Evolution of the power density in the last 20 years (plot reproduced from
[HP19, Figure 3]).
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Consequently, it has become impossible to increase further the CPU frequency, which
has reached a limit of about 5 GHz since 2006 after an exponential growth of
several decades, as shown by Figure 1.1. One of the responses to keep the race for
performance was to design multicore processors. Nowadays, nearly all laptops and
smartphones have several cores, while high-end servers can have two or four sockets
with up to 64 cores per socket.

Yet, it appears that using several cores was only a short-term help for increasing the
CPU performance. With the end of Dennard scaling, the power density increases
with each generation of processor. Hence, to stay within a safe thermal design power
(TDP), it is no longer possible to power at the nominal voltage all the components of
the processors (notion named dark silicon). Esmaeilzadeh et al. predict that with the
8 nm processor generation, more than 50 % of their transistors might be unpowered
at any given time [Esm+11]. With these constraints, Hennessy and Patterson [HP19;
HP18] estimate that the single-processor performance is now only growing by a
mere 3 % per year, which is a much slower pace than the 50 % yearly growth rate
that the industry got used to for decades.

1.3 Scientific computing today

1.3.1 High performance computing

Computations are now used in every scientific fields, from small statistical calcula-
tions to large numerical simulations. Science as a whole has immensely benefited
from this exponential performance improvement. For instance, the price for sequenc-
ing an entire human genome has dropped from $100,000,000 in 2001 to $1000 in
2020 [NIH].

To reach the highest performance, a single processor is not enough, and the benefit
of doing computations in parallel was already well known at the time of human
computers, as discussed in Section 1.1. For this reason, the largest computations
are now performed on supercomputers, large machines made of many processors
connected through a fast network. The 500 fastest non-classified supercomputers of
the world are ranked biannually in the Top500 list [top500]. As shown by Figure 1.3,
they suffered from the same frequency staling as the rest of the industry in 2006, yet
their performance kept an exponential increase, in part explained by the exponential
increase of their total number of cores.
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Figure 1.3.: Evolution of the Top500 [top500] supercomputers between 1993 and 2020.
The line denotes the median, the inner ribbon contains the [10 %, 90 %] interval,
the outer ribbon contains all the values.
Data compiled by Dan Lenski [Len20] and plotted by ourselves.

The largest supercomputers now have thousands of processors, millions of cores
and power consumptions of several megawatts. At these scales, and with the
hardware and software complexity required to reach the highest performance, it is
extremely difficult to have an accurate picture of the whole platform. Even if all the
individual components are deterministic at a microscopic level, a supercomputer
observed at a macroscopic level can arguably be seen as a stochastic object. Hence,
it is very common for the operators or the users of these machines to stumble on
performance anomalies, i.e. the observed performance is different from the expected
performance. For instance, Petrini et al. [PKP03] found a severe but previously
undetected performance problem on the supercomputer they were using, responsible
for a 100 % performance variation and caused by operating system perturbations.
Likewise, Tuncer et al. [Tun+17, Section 1] list several examples of performance
problems observed in operation:

• The amount of variation in application running time can reach 100 % on
real-life systems [Bha+13; SK05].

• Orphan processes left over from previous jobs consuming system resources [Bra+10].

• Firmware bugs, affecting the CPU usage on the server and making the user
programs fail [Cisco].

• Memory leaks in applications, eventually leading to job failure [Age+15].

• CPU throttling of the nodes for thermal control [Bra+15].

• Resource contention [Bha+13; Dor+14].
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If unnoticed, these kinds of performance anomalies can severely impact the conclu-
sions than an experimenter would draw based on performance measures obtained
on the machine.

1.3.2 A reproducibility crisis

For several years there has been an ongoing concern of a reproducibility crisis in
science. An online survey done in 2016 found that among the 1576 scientists who
responded, 70 % have failed at least once to reproduce the work of another scientist,
50 % have even failed to reproduce their own work [Bak16]. This crisis is particularly
concerning in medical science, where some researchers estimate that a large part of
claimed research findings are false [Ioa05; Fre10]. In this field, the main sources
of non-reproducibility are a wrong usage of statistics, poor experimental methods
or even frauds [Sch20]. In other disciplines such as computational biology or
computational physics, reproducibility issues mainly come from numerical instability
and the growing complexity of software environments [Ahn+21].

Computer science is not immune to these concerns of statistical misusage, numerical
errors or frauds. A recurrent problem is also the unavailability of the software
programs, methods and data on which are based the research articles. For instance,
Collberg et al. examined 601 papers from ACM conferences and journals, they were
able to personally build the software of only 194 of them while they simply could
not access the code of 176 of these papers [CPW15]. Likewise, Papadopoulos et al.
propose eight methodological principles for better reproducibility and show that most
of the published articles they surveyed did not follow all these principles [Pap+19].

What may be more surprising is that computer science suffers from the same exper-
iment reproducibility problems than the other sciences: experimental biases exist
and may even be larger. For instance, Mytkowicz et al. show that simply changing
the environment variable size can account for a performance variability of more
than 30 % [Myt+09]. They propose two methods for detecting and avoiding such
measurement bias, based on experiment randomization. Similarly, Curtsinger and
Berger have implemented a software for repeatedly re-randomizing the layouts
of code, stack and heap at runtime, to avoid the bias introduced by a particular
binary layout [CB13]. Again, the growing problem of experimental reproducibility
we are describing here is tightly coupled to the growing software and hardware
complexity.
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1.4 This thesis

In this thesis, we argue that a large part of computer science, and in particular
high performance computing, is an experimental science. It is commonplace for
computer scientists to run experiments, e.g. for comparing the performance of
several algorithms. With the kind of variability described in Section 1.3, such
experiments could easily lead to false conclusions. We therefore advocate for using
similar methods to the natural sciences, which have been faced with the same issues
for decades.

Our contribution towards this goal of improving the confidence in the experimental
results is multiple:

• In Part I, we propose a methodology for predicting the performance of an
application through simulation. Similarly to biology or physics, making an
experiment in simulation can be of great help to rule out part of the experi-
mental bias. It can also enable the researchers to test scenarios that would be
too costly in reality.

– We contextualize this work in Chapters 2 and 3.

– We explain how to improve the efficiency of the simulation in Chapter 4.

– The models we used for the predictions are presented in Chapter 5.

– Chapter 6 is a thorough validation of the simulations, where we compare
the predicted performance with the observations made on real experi-
ments.

– We illustrate an important use case of such simulations in Chapter 7 by
performing several sensibility studies.

• In Part II, we present additional tools and methods to help experimenters
increase the quality of their work.

– Automation is a great way to improve both reliability and productivity. It
helped tremendously throughout the last century for scientific computa-
tions, as shown in Section 1.1. Machines make much fewer mistakes than
humans (if any) and are much faster. For these reasons, we implemented
several programs during this thesis. We automatized the execution of
experiments with an experiment engine, presented in Chapter 9. We also
implemented several tools, listed in Appendix B, for automating some
parts of the analyses as well as cumbersome daily tasks.
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– Several times while conducting the research in this thesis, our perfor-
mance models were not in agreement with the reality we observed. In
some instances, our models were too simple, and we needed to add
complexity to capture additional real-world phenomena, as described in
Chapters 5 and 6. But, most of the time, we suffered from an experimen-
tal bias (or the lack thereof). These difficulties are described in depth in
Chapter 10.

– With an experimental work that spans several years, like this thesis, it is
very likely that the object of the experimental study will evolve. In the
case of high performance computing, the machine can have hardware
or software upgrades, or even defects, that can all affect significantly
the measured performance. In Chapter 11, we present the performance
non-regression tests we implemented and used in the second half of this
thesis. They helped us to detect numerous platform changes that could
have led to wrong conclusions if unnoticed.
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Part I

Performance prediction through simulation





The work presented in this part has been published at a conference [CLH19] and
has been submitted for publication in a journal [CL21e]. The content of this
part contains near-verbatim extracts of these articles, with various additions. This
work also directly follows my master thesis [Cor17] whose main contribution is
summarized in Chapter 4 for the sake of completeness.
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Related work 2
In this chapter, we discuss the different techniques and tools available for predicting
the performance of an application. Section 2.1 explains why we need simulation to
obtain both efficient and faithful predictions while Section 2.2 gives an overview of
the simulator we used for this work.

2.1 Performance prediction

Researchers and engineers often need to make predictions about the performance
of a given parallel application on a given platform. The objectives are diverse: to
compare several algorithms, to verify if the observed performance is as high as one
could hope, or to estimate the gain they could get by upgrading their hardware.

Depending on the exact needs of its user, such a prediction should have several
qualities:

Extrapolation on the problem size Most of the applications can take as input
problems of various size. The size may denote the number of particles in a
physics simulator or the matrix rank in a linear algebra solver. The total dura-
tion will usually grow with the problem size. This criterion denotes whether
the considered approach can predict the performance of the application for an
arbitrary problem size.

Extrapolation on the configuration It is often possible to tune the behavior of the
application with some parameters, for instance to select the desired algorithm
or the desired granularity. The reason is that the optimal parameter combi-
nation may depend on the hardware, the number of nodes, the problem size.
This criterion designates if the approach can make predictions for an arbitrary
parameter combination.

No full-scale real run Some prediction methods require at least one run of the
application at the desired scale in terms of number of nodes. This criterion
denotes whether the approach can avoid making such expensive runs (note
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that the full-scale runs do not necessarily need to be done on the target
platform).

Hypothetical platform This criterion denotes the ability to study what-if scenarios,
e.g. to predict the performance of the application on a hypothetical cluster
with a higher network bandwidth than the ones available.

Efficiency Some approaches have a much higher resource requirement than others.
Several metrics can be considered: node-hours, time to solution, energy
consumption, memory footprint.

Accuracy While some predictions would only give an approximate trend, some
others would be much more accurate, as close as a few percents, even in the
presence of perturbations like network contention.

One very common prediction technique is the use of an analytical model. For
instance, most of the publications which present a new algorithm will give an
estimation of its asymptotic complexity, a.k.a. big-O analysis. These techniques
implicitly use an abstraction of the underlying hardware (e.g. the von Neumann
model, cache model [Fri+12], PRAM [KR89], LogP [Cul+93], LogGP [Ale+97],
BSP [Val90]). There also exists more systematic approaches, like Aspen [SV12],
which defines a domain specific language (DSL) for specifying formally the charac-
teristics of small components and combining them to model a whole application.
Figure 2.1 illustrates an Aspen model of a Fast Fourier Transform that can be used
within a larger application model. The main downside of these analytical techniques
is their inability to provide accurate estimates. For instance, complex phenomena
like network contention cannot be captured faithfully by these models.

kernel localFFT {
exposes parallelism [n^2]
requires flops [5 * n * log2(n)] as dp, simd
requires loads [a * (n*wordSize) * max(1, log(

n*wordSize)/log(z))] from fftVolume
}

Figure 2.1.: Example of model written in Aspen for a local 1D FFT [SV12].

Another approach for estimating the performance of parallel applications imple-
mented using the Message Passing Interface (MPI) standard is statistical modeling
of the application as a whole [LD12]. By running the application several times for
small- and medium-sized problem (or a few iterations of large problem sizes) and
using simple linear regressions, it is possible to predict its execution time for larger
sizes with an error of only a few percents and a relatively low cost. Unfortunately,
the predictions are limited to the same application configuration and studying the
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influence of the number of rows and columns of the virtual grid or of the broadcast
algorithms requires a new model and new (costly) runs using the whole target
machine. Singh et al. [Sin+07] proposed the reverse approach. They fixed the prob-
lem size and sampled random parameter configurations to train a neural network.
Again, this allowed them to make accurate predictions at a low cost, but it was not
possible to predict the execution time with an arbitrary problem size. Furthermore,
such approaches cannot be used to study what-if scenarios (e.g. to evaluate what
would happen if the network bandwidth was increased or if node heterogeneity was
decreased) that are particularly useful when investigating potential performance
improvements.

Simulation provides the level of details and flexibility that is lacking in such black-
box modeling approaches. Performance prediction of MPI applications through
simulation has been widely studied over the last decades but two approaches can be
distinguished in the literature: offline and online simulation.

With the most common approach, offline simulation, a trace of the application is first
obtained on a real platform. This trace comprises sequences of MPI operations and
CPU bursts and is given as an input to a simulator that implements performance
models for the CPUs and the network to derive predictions. Researchers interested
in finding out how their application reacts to changes to the underlying platform
can replay the trace on commodity hardware at will with different platform models.
Most HPC simulators available today, notably BigSim [ZKK04], Dimemas [Bad+03],
LogGOPSim [HSL10] and CODES [Mub+16], rely on this approach. The main
limitation of this approach comes from the trace acquisition requirement. Not only
is a large machine required but the compressed trace of a few iterations of an MPI
application can quickly reach a few hundred MB, making this approach quickly
impractical [Cas+15]. Worse, tracing an application provides only information
about its behavior at the time of the run: slight modifications (e.g. to communication
patterns) may make the trace inaccurate. The behavior of simple applications (e.g.
stencil) can be extrapolated from small-scale traces [WM11; CLT13] but this
fails if the execution is non-deterministic, e.g. whenever the application relies on
non-blocking communication patterns, which is unfortunately often the case.

The second approach discussed in the literature is online simulation. Here, the
application execution is emulated on top of a simulator that is responsible for
simulating the execution of each application process including inter-process com-
munication. This approach allows researchers to study directly the behavior of
MPI applications but only a few recent simulators such as SST Macro [Jan+10],
SimGrid/SMPI [Cas+14] and the closed-source xSim [Eng14] support it. To the best
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SUBROUTINE dm_x_bcs
...
CALL MPI_SENDRECV(dm(nx-1, 0:ny+1), ny+2, mpireal, &

proc_x_max, tag,dm(-1, 0:ny+1), ny+2, mpireal, &
proc_x_min, tag, comm, status, errcode)

...
END SUBROUTINE dm_x_bcs

(a) Original Fortran dm_x_bcs subroutine

void dm_x_bcs(int rank) {
...
mpi->sendrecv(ny+2, sstmac::sw::mpytype::mpi_real,\
proc_x_max, tag, ny+2, sstmac::sw::mpitype::mpi_real,\
proc_x_min, tag, world(), stat);
...

}

(b) Model dm_x_bcs subroutine

SUBROUTINE remap_x ! remap onto original Eulerian grid
...
DO iy= -1, ny+2

iym = iy - 1
DO ix = -1, nx+2

ixm = ix - 1
...

END DO
END DO
...

END SUBROUTINE remap_x

(c) Original Fortran remap_x subroutine

void remap_x(int rank) {
...
sstmac::timestamp t(remap_x_w*nx*ny);
compute(t);
...

}

(d) Model remap_x subroutine

Figure 2.2.: Example of skeletonization done by SST [Bir+13].

of our knowledge, only SST Macro and SimGrid/SMPI are mature enough to faith-
fully emulate an MPI application. This work relies on SimGrid as its performance
models and its emulation capabilities are now well established, but the proposed
developments would also be possible with SST. Note that the emulation described
in Chapter 4 should not be confused with the application skeletonization [Bir+13]
commonly used with SST. Skeletons are code extractions of the most important parts
of a complex application, as illustrated in Figure 2.2 (e.g. the original Fortran code
from Figure 2.2(c) has been translated into the skeleton from Figure 2.2(d)). In
our work, we only modify a few dozens of lines of the source code before emulating
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it with SMPI. Finally, it is important to understand that the proposed approach is
intended to help studies at the level of the whole machine and application, not
the influence of microarchitectural details as intended by gem5 [Low+20] or by
MUSA [Gra+16].

Some researchers from Intel unaware of our recent work recently applied the same
methodology as the one we proposed in [CLH19] to both Intel HPL and OpenHPL in
the closed-source CoFluent simulator[Xu+20]. To the best of our knowledge, their
work reports two faithful predictions for two large-scale supercomputers but without
investigating at all the impact of variability, heterogeneity, nor of communications
as we do in this work. Unfortunately, they gave very little details on what allowed
them to achieve such impressive results, and they did not publish their code. Given
the context, we believe their claims should be interpreted with caution.

2.2 Simgrid/SMPI

SimGrid [Cas+14] is a flexible and open-source simulation framework that was
originally designed in 2000 to study scheduling heuristics tailored to heterogeneous
grid computing environments but has later been extended to study cloud and
HPC infrastructures. The main development goal for SimGrid has been to provide
validated performance models particularly for scenarios making heavy use of the
network. Model validation usually consists of comparing simulation predictions
with results from real experiments to confirm or debunk network and application
models.

SMPI, a simulator based on SimGrid, has been developed and used to simulate
unmodified MPI applications written in C/C++ or FORTRAN [Deg+17]. SMPI
maps every MPI rank of the application onto a lightweight simulation thread. These
threads are then run one at a time, i.e. in mutual exclusion. Every time a thread
enters an MPI call, SMPI takes control and the time that was spent computing
(isolated from the other threads) since the previous MPI call is injected into the
simulator as a virtual delay. This time may be scaled up or down depending on the
speed of the simulated machine with respect to the simulation machine. Then, SMPI
has to estimate the duration of the communication, based on a network model.

SMPI relies on SimGrid’s communication models where each ongoing communica-
tion is represented as a whole (as opposed to single packets) by a flow. Assuming
steady-state, contention between active communications can then be modeled as
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a bandwidth sharing problem that accounts for non-trivial phenomena (e.g. cross-
traffic interference [Vel+13]). If needed, communications that start or end trigger a
re-computation of the bandwidth share. In this fluid model, the time to simulate a
message passing through the network is independent of its size, which is advanta-
geous for large-scale applications frequently sending large messages and orders of
magnitude faster than packet-level simulation. SimGrid does not model transient
phenomena incurred by the network protocol but accounts for network topology
and heterogeneity.

SMPI is in charge of modeling the MPI behavior, both in terms of semantic and
performance. The complex network optimizations done in real MPI implementa-
tions need to be considered when predicting the performance of MPI point-to-point
communications. For instance, the behavior of MPI_Send depends on the message
size, as illustrated by Figure 2.3. The smallest messages are sent asynchronously
(Figure 2.3(a)), meaning that MPI_Send returns immediately and the data is trans-
ferred without waiting. The largest messages are sent synchronously (Figure 2.3(c)),
i.e. the call to MPI_Send will be blocking, waiting for the corresponding MPI_Recv
call to be made. The medium messages are sent in a detached way (Figure 2.3(b)),
the call to MPI_Send returns immediately but the data is only transferred when the
corresponding MPI_Recv call is made. These different protocols strongly impact the
communication performance, it is therefore important to model them accurately.
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(a) Asynchronous mode
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T2T4
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(b) Detached mode
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T4 T2

(c) Synchronous mode

Figure 2.3.: The “hybrid” network model of SMPI in a nutshell [Deg+17].

With SMPI, the user is responsible for instantiating the model, i.e. they have to
provide the aforementioned thresholds where the communication protocols change
as well as the bandwidths and latencies for each protocol. An alternative approach
was used by Emmanuel et al. [Emm+20] for modeling the Portals 4 protocol,
they used a lower abstraction level, at the message passing level instead of the
application. Applying the same approach in SMPI would amount to model message
communications on the network instead of MPI calls, the MPI calls would then
be emulated like the rest of the code. One benefit of this approach is that it
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would remove some burden of the user, since it would no longer be required to
provide the protocol thresholds and individual bandwidths and latencies, a few
bandwidth/latency pairs would be enough. The downside is that the simulation
would then depend on the MPI implementation (e.g. OpenMPI, MPICH, Intel MPI)
which should be provided either by SMPI or by the user. It would also be impossible
to simulate closed-source MPI implementations.

In SMPI, collective communications are simulated by emulation. Simgrid authors
have ported in SMPI all the collective communication algorithms of the main MPI
implementations, the user simply has to choose the implementation of their choice.
This is of little significance in this work, as HPL ships with its own implementation
of collective operations, but it can be critical for other applications.

The accuracy of simulations conducted with SMPI has been reported in the literature
for several applications. Recent results report consistent performance predictions
within a few percent for standard benchmarks on small-scale clusters (up to 12×
12 cores [Hei+17] and up to 128× 1 cores [Deg+17]). In this thesis, we validate
this approach at a much larger scale with HPL.
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High Performance Linpack 3
This chapter gives a thorough overview of the application we used as a case study for
this work, namely High Performance Linpack (HPL). It presents the different state-
of-the-art techniques employed in HPL to reach the highest possible performance,
making it more challenging to simulate accurately.

3.1 The benchmark

NB

L

U

A

N

Algorithm 1: HPL

allocate and initialize A
for k = N to 0 step NB do

allocate the panel
factor the panel
broadcast the panel
update the sub-matrix;

Figure 3.1.: Overview of High Performance Linpack.

In this work, we use the freely-available reference-implementation of HPL [Pet+]
as our main target application. HPL is a parallel application implemented with
MPI (Message Passing Interface), an established standard in the industry [For93].
HPL implements a matrix factorization based on a right-looking variant of the LU
factorization with row partial pivoting and allows multiple look-ahead depths. The
principle of the factorization is depicted in Figure 3.1. It consists of a series of
panel factorizations followed by an update of the trailing sub-matrix. HPL uses a
two-dimensional block-cyclic data distribution of A and implements several custom
MPI collective communication algorithms to efficiently overlap communications with
computations. The main parameters of HPL are:

• N is the order of the square matrix A.

• NB is the blocking factor, i.e. the granularity at which HPL operates when panels
are distributed or worked on.
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• P and Q denote the number of process rows and the number of process columns.

• RFACT determines the panel factorization algorithm. Possible values are Crout,
left- or right-looking.

• SWAP specifies the swapping algorithm used while pivoting. Two algorithms
are available: one based on binary exchange (along a virtual tree topology)
and the other one based on a spread-and-roll (with a higher number of parallel
communications). HPL also provides a panel-size threshold triggering a switch
from one variant to the other.

• DEPTH controls how many iterations of the outer loop overlap with each other.

• BCAST sets the algorithm used to broadcast a panel of columns over the process
columns. Legacy versions of the MPI standard only supported non-blocking
point-to-point communications, which is why HPL ships with in total six
self-implemented variants to overlap the time spent waiting for an incoming
panel with updates to the trailing matrix: ring, ring-modified, 2-ring,
2-ring-modified, long, and long-modified, as illustrated by Figure 3.2 and
Figure 3.3.
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(a) Broadcast ring.
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(b) Broadcast ring-modified.
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t=0 t=1 t=2
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t=2 t=3 t=4

(c) Broadcast 2-ring.

a b c d e f g h
t=0

t=1 t=2

t=2

t=3 t=4 t=5

(d) Broadcast 2-ring-modified.

Figure 3.2.: Illustration of the four HPL ring-broadcast algorithms.
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(a) Broadcast long, scatter phase.
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(b) Broadcast long, roll phase.

Figure 3.3.: Illustration of the two phases of the HPL long broadcast algorithm. The
long-modified algorithm (not shown) is very similar, except that process A
starts by sending the whole message to process B, then the long broadcast is
performed among all processes except process B which starts its computations.
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The modified versions guarantee that the process right after the root (i.e. the
process that will become the root in the next iteration) receives data first and
does not further participate in the broadcast. This process can therefore start
working on the panel as soon as possible. The ring and 2-ring versions each
broadcast along the corresponding virtual topologies (see Figure 3.2) while
the long version is a spread and roll algorithm: messages are chopped into Q
pieces, these Q pieces are scattered across the Q processes with a binary tree as
in Figure 3.3(a), then the pieces are rolled in Q-1 steps using mutual exchanges
as in Figure 3.3(b). According to HPL authors, the two long algorithms
generally lead to better bandwidth exploitation, these algorithms send a larger
number of messages but the total volume of communication is independent of
Q: this algorithm is particularly well suited for platforms where the nodes are
comparatively much faster than the network.

The ring and 2-ring variants rely on MPI_Iprobe, meaning they return con-
trol if no message has been fully received yet, hence facilitating partial overlap
of communication with computations as illustrated in Algorithm 2.

Algorithm 2: Illustrating the probing mechanism used in HPL broadcasts.

try to broadcast
while the broadcast did not succeed do

perform computations (including calls to dgemm)
try to broadcast

In HPL 2.1 and 2.2, this capability has been deactivated for the long and
long-modified algorithms. A comment in the source code states that some
machines apparently get stuck when there are too many ongoing messages.

The panel mentionned in Figure 3.1 is an intricate data structure used by multiple
functions of the application. It contains both ints (accounting for matrix indices,
error codes, MPI tags, and pivoting information) and doubles (corresponding to a
copy of a sub-matrix of A). To optimize data transfers, HPL flattens this structure
into a single allocation of doubles, as in Figure 3.4.

We would like to stress through these examples that although HPL is only a bench-
mark (as opposed to a real application used in physics simulations for instance), it is
already a complex program with elaborated programming techniques to reach the
highest available performance. It is possible to get a very rough estimation of HPL’s
execution time with an analytical model, but more accurate predictions require the
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typedef struct HPL_S_panel
{

struct HPL_S_grid * grid; /* ptr to the process grid */
struct HPL_S_palg * algo; /* ptr to the algo parameters */
struct HPL_S_pmat * pmat; /* ptr to the local array info */
double * A; /* ptr to trailing part of A */
double * WORK; /* work space */
double * L2; /* ptr to L */
double * L1; /* ptr to jb x jb upper block of A */
double * DPIV; /* ptr to replicated jb pivot array */
double * DINFO; /* ptr to replicated scalar info */
double * U; /* ptr to U */
int * IWORK; /* integer workspace for swapping */
void * * * buffers[2]; /* buffers for panel bcast */
int counts [2]; /* counts for panel bcast */
MPI_Datatype dtypes [2]; /* data types for panel bcast */
MPI_Request request[1]; /* requests for panel bcast */
MPI_Status status [1]; /* status for panel bcast */
int nb; /* distribution blocking factor */
int jb; /* panel width */
int m; /* global # of rows of trailing part of A */
int n; /* global # of cols of trailing part of A */
int ia; /* global row index of trailing part of A */
int ja; /* global col index of trailing part of A */
int mp; /* local # of rows of trailing part of A */
int nq; /* local # of cols of trailing part of A */
int ii; /* local row index of trailing part of A */
int jj; /* local col index of trailing part of A */
int lda; /* local leading dim of array A */
int prow; /* proc. row owning 1st row of trail. A */
int pcol; /* proc. col owning 1st col of trail. A */
int msgid; /* message id for panel bcast */
int ldl2; /* local leading dim of array L2 */
int len; /* length of the buffer to broadcast */
int lwork; /* total length of the WORK buffer */

} HPL_T_panel;

(a) Definition of the panel structure.

#define HPL_PTR( ptr_, al_ ) \
( ( ( (size_t)(ptr_)+(al_)-1 ) / (al_) ) * (al_) )

// [...]
PANEL->WORK = (void *)malloc( (size_t)(lwork) * sizeof(double) );
// [...]
PANEL->L2 = (double *)HPL_PTR( PANEL->WORK, dalign );
PANEL->ldl2 = Mmax( 1, ml2 );
PANEL->L1 = PANEL->L2 + ml2 * JB;
PANEL->DPIV = PANEL->L1 + JB * JB;
PANEL->DINFO = PANEL->DPIV + JB; *(PANEL->DINFO) = 0.0;
PANEL->U = ( nprow > 1 ? PANEL->DINFO + 1 : NULL );

(b) Sample of the panel structure initialization.

Figure 3.4.: HPL panel data structure.
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simulation of the application. The sequential time complexity of HPL’s factorization
is

flop(N) = 2
3N

3 + 2N2 +O(N)

where N is the order of the matrix to factorize. The parallel time complexity can be
approximated by

T (N) ≈

(
2
3N

3 + 2N2
)

P ·Q · w
+ Θ((P +Q) ·N2)

where w is the flop rate of a single node and the second term corresponds to the
communication overhead which is influenced by the network capacity and the
previously listed parameters (RFACT, SWAP, BCAST, DEPTH, . . . ) and is very difficult
to predict.

3.2 Typical runs on a supercomputer

Although the Top500 reports precise information about the core count, the peak
performance and the effective performance, it provides almost no information on
how (software versions, HPL parameters, etc.) this performance was achieved.
Some colleagues agreed to provide us with the HPL configuration they used and
the output they submitted for ranking (see Table3.1). In June 2013, the Stampede
supercomputer at TACC was ranked 6th in the Top500 by achieving 5168.1 TFlop s−1.
In November 2017, the Theta supercomputer at ANL was ranked 18th with a
performance of 5884.6 TFlop s−1 but required a 28-hour run on the whole machine.
Finally, we ran HPL ourselves on a Grid’5000 cluster named dahu whose software
stack could be fully controlled.

Table 3.1.: Typical runs of HPL.

Stampede@TACC Theta@ANL Dahu@G5K
Rpeak 8520.1 TFlop s−1 9627.2 TFlop s−1 62.26 TFlop s−1

N 3,875,000 8,360,352 500,000
NB 1024 336 128
P ×Q 77×78 32×101 32×32
RFACT Crout Left Right
SWAP Binary-exch. Binary-exch. Binary-exch.
BCAST Long modified 2 Ring modified 2 Ring
DEPTH 0 0 1
Rmax 5168.1 TFlop s−1 5884.6 TFlop s−1 24.55 TFlop s−1

Duration 2 hours 28 hours 1 hour
Memory 120 TB 559 TB 2 TB
MPI ranks 1/node 1/node 1/core
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The performance typically achieved by supercomputers (Rmax) needs to be compared
to the much larger peak performance (Rpeak). This difference can be attributed to
the node usage, to the MPI library, to the network topology that may be unable to
deal with the intense communication workload, to load imbalance among nodes
(e.g. due to a defect, system noise, . . . ), to the algorithmic structure of HPL, etc.
All these factors make it difficult to know precisely what performance to expect
without running the application at scale. It is clear that due to the level of complexity
of both HPL and the underlying hardware, simple performance models (analytic
expressions based on N,P,Q and estimations of platform characteristics) may be
able to provide trends but can by no means accurately predict the performance for
each configuration (e.g. consider the exact effect of HPL’s six different broadcast
algorithms on network contention). Additionally, these expressions do not allow
engineers to improve the performance through actively identifying performance
bottlenecks. For complex optimizations such as partially non-blocking collective
communication algorithms intertwined with computations, a very faithful modeling
of both the application and the platform is required.

One goal of this thesis is to simulate systems at the scale of Stampede. Given the scale
of this scenario (3785 steps on 6006 nodes in two hours), detailed simulations quickly
become intractable without significant effort. The simulation of HPL therefore comes
with at least two challenges:

• The time-complexity of the algorithm is Θ(N3) and Θ(N2) communications
are performed, with N being very large. The execution on the Stampede
cluster took roughly two hours on 6006 compute nodes. Using only a single
node, a naive emulation of HPL at the scale of the Stampede run would take
about 500 days if perfect scaling was reached.

• The execution of HPL at scale leads to enormous memory consumption. It is
therefore not possible to conduct executions at scale on a single or even a few
compute nodes.
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Simulating HPL at large scale 4
In this chapter, we present the changes to SimGrid and HPL that were required for a
scalable simulation. The experiments were done using a single core from nodes of
the Nova cluster provided by the Grid’5000 testbed [Bal+13] (32 GB of RAM, two
8-core Intel Xeon E5-2620 v4 CPUs, Debian Stretch OS (Linux 4.9)).

4.1 Speeding Up the Emulation

4.1.1 Compute Kernel Modeling

HPL heavily relies on BLAS kernels such as dgemm (for matrix-matrix multiplication)
or dtrsm (for solving an A · x = b equation). The analysis of an HPL execution with
64 processes and a very small matrix of order 30,000 showed that about 96 % of
the time is spent in these two kernels. Since the output of these kernels does not
influence the control flow, simulation time can be reduced by substituting dgemm and
dtrsm function calls with a performance model of the respective kernel.

Skipping kernels renders the content of some variables invalid but in simulation,
only the performance behavior of the application and not the correctness of compu-
tation results are of concern. Figure 4.1(a) shows an example of this macro-based
mechanism that allows to keep HPL code modifications to an absolute minimum.
The 1.029e-11 value represents the inverse of the flop rate for this compute kernel
and was obtained through benchmarking. The estimated time of the kernel is cal-
culated based on the given parameters and passed on to smpi_execute_benched
which advances the clock of the executing process by this estimate. The effect on the
simulation time for a small scenario is depicted in Figure 4.1(b). This modification
speeds up the simulation by orders of magnitude. The impact on the accuracy of
the simulation will be investigated in more details in the next chapter, but it can
already be observed that this simple kernel model leads to a sound, albeit slightly
more optimistic, estimation of the execution time.

In addition to the main compute kernels, a profiling of the code made it possible to
identify seven other BLAS functions as computationally expensive enough to justify a
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#define HPL_dgemm(layout, TransA, TransB, M, N, K, \
alpha, A, lda, B, ldb, beta, C, ldc) ({ \

double size = ((double)M)*((double)N)*((double)K); \
double expected_time = 1.029e-11*size + 1.981e-12; \
smpi_execute_benched(expected_time); \

})

(a) Non-intrusive macro replacement with a very simple computation model.
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(b) Gain in terms of simulation time.

Figure 4.1.: Replacing the calls to computationally expensive functions by a model allows
to emulate HPL at a larger scale.

specific handling: dgemv, dswap, daxpy, dscal, dtrsv, dger and idamax. Similarly,
a significant amount of time was spent in fifteen functions implemented in HPL:
HPL_dlaswp*N, HPL_dlaswp*T, HPL_dlacpy and HPL_dlatcpy. All these functions
are called during the LU factorization and hence impact the performance of the HPL
execution; however, because of the removal of the dgemm and dtrsm computations,
they all operate on invalid data and hence also produce invalid data. They have
been handled similarly to dgemm and dtrsm, through performance models and macro
substitution, which speeds up the simulation by an additional factor of 3 to 4 on
small (N = 30,000) and even more on larger scenarios.

4.1.2 Specific Adjustments

HPL uses pseudo-randomly generated matrices that are set up for every execution.
This initialization, just like the factorization correctness verification at the end of
the run, is not considered in the reported performance and can therefore be safely
skipped. Note that HPL implements an LU factorization with partial pivoting, which
requires a special treatment of the idamax function that returns the index of the first
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element equaling the maximum absolute value. Although the cost of this function
was ignored as well, its return value has been set to a random (but controlled) value
to make the simulation unbiased (but fully deterministic).

4.2 Scaling Down Memory Consumption

The largest two allocated data structures in HPL are the input matrix A (with a
size of typically several GB per process) and the panel which contains information
about the sub-matrix currently being factorized. Unfortunately, when simulating an
application with SMPI, all MPI processes are run within the same simulation process
on a single node and the memory consumption of the simulation can therefore
quickly reach several TB of RAM. Yet, as we no longer operate on real data, storing
the whole input matrix A is needless. However, since only a minimal portion of the
code was modified, some functions may still read or write some parts of the matrix. It
is thus not possible to simply remove the memory allocations of large data structures.
SMPI provides the SMPI_SHARED_MALLOC (SMPI_SHARED_FREE) macro to replace
calls to malloc (free). They indicate that some data structures can safely be shared
between processes and that the data they contain is not critical for the execution
(e.g. an input matrix) and that it may even be overwritten. SMPI_SHARED_MALLOC
works as follows (see Figure 4.2): a single block of physical memory (of default
size 1 MB) for the whole execution is allocated and shared by all MPI processes. A
range of virtual addresses corresponding to a specified size is reserved and cyclically
mapped onto the previously obtained physical address. This mechanism allows most
applications to obtain a nearly constant memory footprint, regardless of the size of
the actual allocations.

Although using the default SHARED_MALLOC mechanism works flawlessly for the
main matrix A, a more careful strategy needs to be used for the panel, the complex
data structure presented in Figure 3.4. As already discussed, HPL flattens the
whole structure into a single allocation (including matrix parts, but also integer
indices) to optimize data transfers (illustrated in Figure 4.3(a)). Using a fully
shared memory allocation for the panel therefore leads to index corruption that
results in classic invalid memory accesses. Since ints and doubles are stored
in non-contiguous parts of this flat allocation, it is therefore essential to have a
mechanism that preserves the process-specific content. We have thus introduced the
SMPI_PARTIAL_SHARED_MALLOC macro that allows us to specify which ranges of the
allocation should be preserved (i.e. are private to each process) and which ones may
be corrupted (i.e. are shared between processes). For a matrix of order 40, 000 and
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virtual physical

Figure 4.2.: SMPI shared malloc mechanism: large area of virtual memory are mapped
onto the same physical pages.

matrix parts indices matrix parts

can be shared can be sharedmust not be shared

(a) Structure of the panel in HPL.

initial buffer

current buffer

(b) Reusing panel allocation from an iteration to another.

Figure 4.3.: Panel structure and allocation strategy.

64 MPI processes, memory consumption decreases with this approach from about
13.5 GB to less than 40 MB.

Another HPL specific optimization is related to the systematic allocation and deal-
location of panels in each iteration, with the size of the panel strictly decreasing
from iteration to iteration. As explained above, the partial sharing of panels re-
quires many calls to mmap and introduces an overhead that makes these repeated
allocations / frees a bottleneck. Since the very first allocation can fit all subsequent
panels, we modified this allocation mechanism so that SMPI can reuse panels as
much as possible from an iteration to another (see Figure 4.3(b)). Even for a very
small matrix of order 40, 000 and 64 MPI processes, the simulation time decreases
from 20.5 sec to 16.5 sec. The number of page faults decreased from 2 million to
0.2 million, confirming the devastating effect these allocations/deallocations would
have at scale.

The next three optimizations are not specific to HPL. We leveraged the information
on which memory area is private, shared or partially shared to improve the overall
performance. By making SMPI internally aware of the memory’s visibility, it can
now avoid calling memcopy when large messages containing shared segments are
sent from one MPI rank to another. For fully private or partially shared segments,
SMPI identifies and copies only those parts that are process-dependent (private) into
the corresponding buffers on the receiver side. HPL simulation times and memory
consumption were considerably improved in our experiments because the panel is
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the most frequently transferred data structure but only a small part of it is actually
private.

As explained above, SMPI maps MPI processes to threads of a single process, effec-
tively folding them into the same address space. Consequently, global variables in the
MPI application are shared between threads unless these variables are privatized and
the simulated MPI ranks thus isolated from each other. Several technical solutions
are possible to handle this issue [Deg+17]. The default strategy in SMPI consists in
making a copy of the data segment (containing all global variables) per MPI rank at
startup and, when context switching to another rank, to remap the data segment
via mmap to the private copy of that rank. SMPI also implements another mechanism
relying on the dlopen function that allows to load several times the data segment
in memory and to avoid costly calls to mmap (and subsequent cache flush) when
context switching. For a matrix of order 80,000 and 32 MPI processes, the number of
minor page faults drops from 4,412,047 (with mmap) to 6880 (with dlopen), which
results in a reduction of system time from 10.64 sec (out of 51.47 sec) to 2.12 sec.

Finally, for larger matrix orders (i.e. N larger than a few hundred thousands), the
performance of the simulation quickly deteriorates as the memory consumption
rises rapidly. Indeed, folding the memory reduces the physical memory usage. The
virtual memory, on the other hand, is still allocated for every process since the
allocation calls are still executed. Without a reduction of allocated virtual addresses,
the page table rapidly becomes too large for a single node. Thankfully, the x86-64
architecture supports several page sizes, such as the huge pages in Linux. Typically,
these pages are around 2 MiB (instead of 4 KiB), which reduces drastically the page
table size. For example, for a matrix of order N = 4, 000, 000, it shrinks from 250 GB
to 0.488 GB.

4.3 Scalability Evaluation

The main goal of the previous optimizations is to reduce the complexity from
Θ(N3) + Θ(N2 · P ·Q) to something more reasonable. The Θ(N3) was removed by
skipping most computations. Ideally, since there are N/NB iterations (steps), the
complexity of simulating one step should be decreased to something independent
of N . SimGrid’s fluid network models, used to simulate communications, do not
depend on N . Therefore, the time to simulate a step of HPL should mostly depend
on P and Q. Yet, some memory operations on the panel that are related to pivoting
are intertwined in HPL with collective communications, meaning that it is impossible
to get rid of the O(N) complexity without modifying HPL more extensively.
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Figure 4.4.: Time complexity and memory consumption are linear in the number of pro-
cesses but remain mildly quadratic with matrix rank.

To evaluate the efficiency of our proposal, we conduct a first evaluation on a non-
existing but Stampede-like platform comprising 4,096 nodes interconnected through
a fat-tree topology. We run simulations with 512, 1024, 2048 or 4096 MPI ranks
and with matrices of orders 5× 105, 1× 106, 2× 106 or 4× 106. All other HPL
parameters are similar to the ones of the original Stampede scenario. The impact
of the matrix order on total execution time and memory is illustrated in Figure 4.4.
With all previously described optimizations enabled, the longest simulation took
close to 47 hours and consumed 16 GB of memory whereas the shortest one took 20
minutes and 282 MB of memory.
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Modeling HPL kernels and
communications

5
As explained in chapter 4, HPL spends most of its computation time in a dozen
specific functions for which a performance model has to be designed. Most compute
kernels have several parameters from which a very simple model can generally easily
be identified (e.g. proportional to the product of the parameters) but refinements
including the individual contribution of each parameter as well as the spatial and
temporal variability of the operation are also possible. Likewise, communications
between two nodes are mostly linear in message size, but the actual performance
can vary wildly depending on the range of the message size as MPI switches from
one protocol to another based on message size thresholds. In this chapter we
first introduce some notations to describe the complexity of the models we have
investigated, then we define these models and explain how we can instantiate
them.

5.1 Modeling notations

We denote as T the duration of an operation with parameters M , N , K (in the
case of the dgemm operation, these parameters describe the geometry of the input
matrices). We first consider the three following modeling options:

• Modeling option M−0: For simple compute kernels, the duration can be
modeled as a constant duration independent of the input parameters, i.e.
T ∼ α, where α is estimated through the sample average of the duration of
the operation (or simply 0 if the kernel is negligible).

• Modeling option M−1: A simple combination of the parameters (e.g. S =
M.N.K) may be the primary factor driving the performance of the operation.
Then T ∼ α.S (+β) and α and β can be estimated through a classical least-
square linear regression.

• Modeling option M−2: When the behavior of the operation is complex or
requires a faithful modeling over the full range of input parameters, a full
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polynomial model is required, i.e. T ∼ α.M.N.K + β.M.N + γ.N.P + . . .

Again, the α, β, γ, . . . can be estimated through a classical least-square linear
regression.

There are two situations where more elaborate variations need to be considered:

• Whenever the platform is slightly heterogeneous (spatial variability), the
previous models should be built for each host individually. This modeling
option is denoted MH .

• The behavior of the operation may be mostly linear but only for specific
parameter ranges. This is for example the case for networking operations or for
computing nodes on Stampede where Intel’s Math Kernel Library (MKL) uses
the Xeon Phi accelerator only when the input is large enough to compensate for
the data transfer. In such situations, the models considered will be piecewise
linear,

e.g., T ∼


if M < θ1 α1.M + β1

else if M < θ2 α2.M + β2

...

,

where the θ, α, β should all be estimated. This kind of model is denoted M ′.

All previous models can be fit with relatively simple linear regressions or maximum
likelihood learning methods. However, an important hypothesis underlying all
these methods is the homoscedasticity, i.e. that the variability is independent on the
parameters.

The residual (temporal) variability may be an important phenomenon to account for,
as “system noise” is known to be detrimental to the overall performance of parallel
applications like HPL. We thus consider different modeling options for this temporal
variability:

• Noise option N−0 (no noise): This is the simplest option. It consists in
injecting the value predicted by the model

• Noise option N−1 (homoscedastic): The simplest probability family to model
variability is the normal distribution, hence T ∼ M(M,N,K) + N (0, σ2),
where σ2 is the sample variance of the model residuals.

• Noise option N−2 (heteroscedastic): The conditional variance of the residuals
(i.e. σ2 given M,N,K) is modeled by a polynomial function of the input
parameters.
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Finally, even the sophisticated normal distribution from N−2 may be too simple
to describe the noise observed on real platforms. It may be common to have a
few operations being one order of magnitude slower than all the other ones even
though they had the same parameter set. In this case, a reasonable option consists in
modeling noise with a mixture of normal distributions whose parameters π1, . . . , πk

should be estimated. We denote this kind of model as N ′. Likewise, the per-host
estimations are denoted by NH .

5.2 Modeling the CPU (i.e. dgemm function)

5.2.1 Different linear models

(a) dgemm heterogeneity

(b) dgemm model

Figure 5.1.: Illustrating the realism of modeling for dgemm function.
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HPL spends the most time in the dgemm kernel, it is therefore of extreme impor-
tance to model this function very faithfully. We evaluated the previous modeling
alternatives: M−{1, 2} N−{0, 1, 2} and MH−{1, 2} NH−{0, 1, 2}. The M ′ and
N ′ families were not investigated as nothing in our observations called for such
complexity on classical multi-core machines. Figure 5.1 illustrates various models
and their respective quality for the dgemm function. In these figures, the performance
of dgemm is evaluated by calling dgemm with randomized input sizes over all the
cores of each node (to reproduce experimental conditions similar to the one of HPL).
The first observation (Figure 5.1(a)) is that a few nodes exhibit quite a different
behavior (each color and each regression line under model MH−1 corresponds to
a different CPU, whereas the black dotted line corresponds to model M−1 over
all the nodes). These nodes will systematically be slightly slower than other nodes
and accounting for this spatial heterogeneity is likely to be rather important for
simulating the execution of HPL. Second, we took care of covering a wide variety of
combinations for M , N , and K. It can be observed that M.N.K is not sufficient to
describe correctly the performance of dgemm, even though the number of operations
performed by this function is expected to be proportional to M.N.K. Indeed, for
M.N.K ≈ 4.5× 109 some duration are systematically higher regardless of the node.
This happens for some particular (e.g., tall and skinny) matrix geometries, which
strongly suggests using the full polynomial model. Figure 5.1(b) depicts the per-
formance (red dots) of a given node as well as the prediction using a simple linear
model (MH−1, black line), a full polynomial model (MH−2, blue dots) and a full
polynomial model with heteroscedastic noise (MH−2 NH−2, orange dots). A close
inspection reveals that all experimental variability is actually very well explained by
both the polynomial model (better fit for particular parameter combinations) and
some temporal variability.

Figure 5.2.: Illustrating the realism of modeling for HPL_dlatcpy function.
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Four other BLAS kernels and a few other very small HPL compute kernels (often
related to memory management) are deeply intertwined with collective operations
to allow HPL to be as efficient as possible. Although the total duration of these
kernels is minimal compared to the total execution time, they may perturb collective
communication by introducing late sends and receives. The behavior of one of
these kernels is illustrated in Figure 5.2. This kind of data can only be obtained
by running HPL for a small input matrix over each node individually. Again, for
all these kernels a single parameter combination explains most of the performance
and there is some variability from one node to another (one blue regression line per
CPU) but it remains quite limited (black dotted line for the platform as a whole),
especially since these kernels are very short and infrequently called compared to
dgemm. Finally, since variability significantly increases with the value of the input
parameters, a N−2 model is clearly required. The blue dots in Figure 5.2 represent
the outcome of a M−1 N−2 model and are hardly distinguishable from the real
behavior. Similar results can be obtained with this category of model for all other
kernels.

5.2.2 Bayesian modeling and generative models

In Chapter 6, we will show that the model MH−2 NH−2 is required for the dgemm
kernel to make reliable performance predictions for HPL. We recall here the meaning
of this notation:

For each processor p, dgemmp(M,N,K) ∼ H(µp, σp)µp = αpMNK + βpMN + γpMK + δpNK + εp

σp = ωpMNK + ψpMN + φpMK + τpNK + ρp
,

(5.1)

where H(µ, σ) denotes a random variable that follows a half-normal distribution
with parameters µ, σ accounting for the expectation and the standard deviation. The
dependency on p allows accounting for platform heterogeneity (since αp, βp, . . . , ρp
can be specific to each node), i.e. the aforementioned spatial variability. The σp
parameter allows accounting for (short-term) temporal variability, i.e. to model the
fact that the duration of two successive calls to dgemm with the same parameters
M,N,K are never identical. Finally, we initially decided to use a half-normal
distribution instead of a normal distribution to account for the asymmetry of the
observed durations (e.g. there are no negative durations), but with hindsight we do
not believe this choice to be very important.
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As we will show, the performance of nodes exhibits several kinds of variability: i) a
spatial variability (between nodes) ii) a “short-term” temporal variability (the one
experienced within an HPL run) but also iii) a “long term” temporal variability (from
one day to another). As illustrated in Chapter 6, accounting for the first two kinds of
variability is essential but during our investigation of the simulation validity, which
spanned several months, we also had to deal with the fact that the node performance
from one day to another could significantly vary, thereby making our comparisons
between a real experiment and the simulation driven by models derived from past
measurements sometimes irrelevant.

This section explains how all sources of variability can be accounted for in a single
unified model. This will mainly be used in Chapter 7. From our observations, we
assume that on a given node p and a given day d, the duration of the dgemm kernel
can be modeled as follows:

∀M,N,K, dgemmp,d(M,N,K) ∼ H(αp,dMNK + βp,d, γp,dMNK) (5.2)

Compared to the model (5.1), this model includes the daily variability but drops the
complexity of a full-fledged polynomial. Such complexity may be important when-
ever trying to model a particular platform. However, when performing sensibility
analysis, a simpler model is preferred, especially as not all terms of the polynomial
may be statistically significant. In this model, the short-term temporal variability
stems from the γp,d term while the average performance of the node stems from the
αp,d and βp,d terms, which we gather in a single 3-dimensional vector

µp,d = (αp,d, βp,d, γp,d). (5.3)

Now, since every machine is unique it is natural to assume that for each machine:

∀d, µp,d ∼ N (µp,ΣT ) (5.4)

In this model, µp accounts for the average performance of the machine p, while ΣT

accounts for its day-to-day variability. From our observation we had no particular
reason to assume that this variability was different from one machine to another,
hence, ΣT is not indexed by p but global to all machines. However, the parameters
αp,d, βp,d, γp,d are generally correlated to each others, hence ΣT is the full covariance
matrix to account for interactions. The choice of a Normal distribution is natural
since it is the simpler distribution that accounts for a specific mean and variance,
but we will discuss its relevance later in this section.
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µp,d = (αp,d, βp,d, γp,d)

µp,d

N
D days
P nodes

Figure 5.3.: Generative model of kernel duration accounting for the spatial (ΣS), long-term
(ΣT ) and short-term variability (γp,d). The shaded node represents observed
variables and diamond node represents deterministic variables, while non-
shaded nodes represent latent variables. The solid node is the variable which
is estimated when conducting (in)validation studies while the dashed ones are
useful when conducting sensibility analysis and extrapolating to a hypothetical
cluster.

Finally, we need to account for the spatial variability, which we propose to model as
follows:

∀p, µp ∼ N (µ,ΣS) (5.5)

Again, in such a model µ accounts for the machines’ average performance while
ΣS accounts for the (weak) heterogeneity. This hierarchical model is depicted in
Figure 5.3.

The relevance of model (5.2) will be discussed in Chapter 6, but the relevance
of models (5.4) and (5.5) requires some attention. Figure 5.4(a) represent the
empirical distribution of µp,d = (αp,d, βp,d, γp,d) (the result of the linear regression)
for the 32 nodes of the dahu cluster on 40 different days from November 2019 to
February 2020. The distribution for each node appears approximately normal and
passed a Shapiro-Wilk normality test. Although the distribution of the βp,d appears
slightly skewed toward larger values and one of the nodes (the one with the larger
αp,d) stands out, there is no good reason for using a more complex distribution
than a Gaussian one. Although the correlation between α, β, and γ is very weak, it
appeared to be statistically significant (most ellipses are slightly tilted toward the
North-East), hence a full variance matrix is needed (at least for ΣT ).
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(a) Distribution of α, β, and γ (observations on 2 × 32 CPUs from November 2019 to February 2020).
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Figure 5.4.: Distribution of the regression parameters for around 20 dgemm calibrations
made on each of the 32 nodes. Each color/ellipse corresponds to a different
CPU.
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Figure 5.5.: Distribution of the regression parameters for around 20 dgemm calibrations
made on each of the 32 nodes. 4 of these nodes had a cooling problem, leading
to longer and more variable durations. Each color/ellipse corresponds to a
different group of CPUs.
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Given the above, it is easy to estimate µp and ΣT by averaging over the µp,d of
each node, and then to estimate µ and ΣS by averaging over all the nodes. This
moment-matching method is simple and provides very good estimates for µ, ΣT ,
and ΣS because we have enough measurements at our disposal and because it is
particularly suited to the Gaussian modeling assumption. Should more complex
models (e.g., a mixture to account for “outlier” nodes or a skew normal distribution
to account for the distribution’s skewness) be used, a general Bayesian sampling
framework like STAN [Car+17] would be more adapted. Such frameworks allow to
easily specify hierarchical generative models like the one presented in Figure 5.3
and to draw samples from the posterior distribution of µ, ΣT , and ΣS , which can be
used to generate realistic µp,d values for a new hypothetical cluster easily.

Such a process is depicted in Figure 5.4(b) where hypothetical regression parameters
for 16 nodes have been generated. Comparing such synthetic data with the original
samples from Figures 5.4(a) allows us to evaluate the model’s potential weaknesses.
Although the orders of magnitude of all parameters and the ellipses are excellent,
a few differences are visible. First, the variability of αp seems a bit overestimated
(the spread along the x-axis is larger). This can be explained by the fact that one of
the nodes seemed to be significantly slower (with much larger αp), which artificially
increased the spatial variability. Second, as expected from a Gaussian model, the
distributions of the βp,d are symmetrical whereas there was a slight negative skew
in the original samples, but this should be of little significance for our study. The
distributions of the γp,d however are particularly realistic.

We also illustrate the generality of this model with the data from Figure 5.5(a).
These measurements were obtained from October to November 2019 where the
cluster was less stable and where some nodes particularly misbehaved. Three nodes
(in orange, hence a total of 6 CPUs) are distinguished from the 28 others (in green)
and have lower performance (higher values for α, β, and γ) and one node (in blue)
is particularly unstable. Although this last node may be considered too abnormal to
represent anything, it would be reasonable to assume that a larger cluster would
present at least the two kinds of behaviors (green for stable nodes, and orange for
slower nodes). The higher layer of the model in Figure 5.3 should then be replaced
by a mixture of normal distributions (whose weights would then be sampled from a
Dirichlet distribution). Again, hypothetical regression parameters for 16 CPUs have
been generated with such a process on Figure 5.5(b) and are very similar to the
original measurements.
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Overall this model is therefore of excellent quality and can be used to generate large
configurations very easily and evaluate the influence of different kinds of variability
on the performance of HPL.

5.2.3 Conclusion

We have described in Section 5.2.1 different models with various levels of complexity,
from the most basic linear, homogeneous and deterministic model to more elaborated
ones with heterogeneity and random noise. The objective of Chapter 6 will be to
discuss the required level of complexity and (in)validate the quality of these models
for faithful performance predictions of HPL.

Then in Section 5.2.2 we have presented a method for generating new model
instances based on observed data. This allows to extrapolate a given cluster to a
larger one or even to modify some characteristics of the model such as the temporal
or spatial variability. This will be used in Chapter 7 for sensibility analysis.

Finally, some of the tests developed in Chapter 11 will use the regression coefficients
from Section 5.2.1.

5.3 Modeling the network

5.3.1 Modelization in Simgrid

Prior to this work, the standard way of accounting for protocol changes in SMPI was
to estimate breakpoints visually and to conduct a linear regression for each range.
The expected duration was then used directly in the simulation with no particular
effort with respect to the temporal variability (M ′−1 N−0). Yet, as illustrated
in Figure 5.6, the variability of high speed networks is quite particular, for some
intervals of message sizes the observed durations have several modes. These modes
happen homogeneously during the calibration experiment, they are not caused by a
transient perturbation of the system.

The ideal model for such observed data would be M ′−1 N ′−1, several intervals
of message sizes with abrupt breakpoints, and a noise distributed as a Gaussian
mixture for each range. Such temporal variability could explain some (overall
poor) performance since they generally get amplified by broadcast and pipelined
communication patterns.
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Figure 5.6.: Illustrating piecewise linearity and temporal variability of high-speed commu-
nications on two systems.

Automatically computing the best fit for a complex model like the aforementioned
one is much more difficult than for the dgemm model proposed in Section 5.3. It
should be possible to compute it in one go with a Bayesian framework like STAN, but
it would likely be computationally prohibitive. A more realistic solution is to perform
two steps: (1) average the durations per message size and find the breakpoints
using this aggregated data (i.e. fit a M ′−1 N−1 model), and (2) on each segment,
compute the linear regression with a noise mixture (i.e. fit a M−1 N ′−1 model).

1. We have tested two different solutions for computing a piecewise linear regres-
sion, a Python package named datadog-piecewise [Dat], and an R package
named cubist [KQ20]. Although both of them work perfectly on the simplest
generated datasets, they did not produce satisfying results with our real data.
The likely reason is both the exponential distribution of the predictor variable
and the heteroscedasticity of the noise. We decided to implement our own
solution, named pycewise, which is detailed in Section 5.3.3 and compared
to both datadog-piecewise and cubist.

2. We tested an existing R package named flexmix for computing a linear regres-
sion with a Gaussian mixture noise [GL08]. It proved to be fragile, the result
being non-deterministic: the number of modes found by the algorithm was
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not constant. We ended up clustering the data manually via visual inspection
and then computing a simple linear regression for each mode.

5.3.2 Finding semantic breakpoints

In network calibration experiments, i.e. the experiments carried to measure the
network performance and instantiate a model, we can observe sudden performance
changes, a.k.a. breakpoints (see Figure 5.6). As discussed previously, these break-
points happen because of a protocol change in MPI implementations. Some of
these changes also affect the semantic of the MPI_Send operation: we described in
Section 2.2 three communication modes, asynchronous, detached and asynchronous.
This section presents how to detect automatically such semantic breakpoints. In
this section as well as Section 5.3.3, MPI is seen as a black box and we use reverse-
engineering techniques to find a suitable model.

This work was done in collaboration with several Simgrid collaborators, we wish to
thank them for the ideas and the code prototype.

We define two MPI codes, Algorithm 3 and Algorithm 4. They both take in input
a message size N. We expect Algorithm 3 to produce a deadlock and not print
any message when N is large enough (the communication was synchronous) while
it should print the message “OK” for smaller values of N. Likewise, we expect
Algorithm 4 to have corrupted data and print the message “CORRUPTED” when N is
large enough (the communication was not asynchronous) while it should print the
message “OK” for smaller values of N.

Algorithm 3: Prints “OK” if the communication for size N is not synchronous.

Function deadlocktest(N):
MPI_Comm_rank(&myself)
other = 1-myself
buff = {0, . . . , 0}
MPI_Send (buff, N, other)
MPI_Recv (buff, N, other)
print("OK")

We repeatedly call the Algorithms 3 and 4, performing a binary search on the
argument N (we set a timeout of 3 s to kill Algorithms 3 in case of deadlock). This
allows to find the two semantic breakpoints easily:

• In asynchronous mode, we have no deadlock and no corruption.
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Algorithm 4: Prints “OK” if the communication for size N is asynchronous.

Function corruptiontest(N):
MPI_Comm_rank(&myself)
other = 1-myself
buff = {0, . . . , 0}
if myself = 0 then

MPI_Isend (buff, N, other)
for i = 1 to N − 1 do

buff[i] = 1
else

sleep(1)
MPI_Recv (buff, N, other)
corrupted=False
for i = 1 to N − 1 do

if buff[i] = 1 then
corrupted=True

if corrupted then
print("CORRUPTED")

else
print("OK")

• In detached mode, we have no deadlock, but we have corruption.

• In synchronous mode, we have corruption and a deadlock.

Note that in Algorithms 4, the function MPI_Isend is used instead of MPI_Send.
Indeed, the MPI standard specifies that the buffer of function MPI_Send can be
immediately reused once the function returns, this means that even if the function
returns before the communication is actually performed, the data is copied in an
auxiliary buffer to prevent any corruption. Since we rely on this data corruption
to detect whether we are in asynchronous or detached mode, we need to use func-
tion MPI_Isend which does not make such guarantees. Here we suppose that the
thresholds used in both functions are the same.

In our tests, we found that the three protocols did not always exist, and that the
threshold will depend on the hardware. For instance, on the dahu cluster, the
semantic breakpoints found by the two binary searches are equal. This means
that the detached mode does not exist in the MPI implementation installed on this
cluster (for a given size N, either we have both a deadlock with Algorithms 3 and a
corruption with Algorithms 4, or we have none, there is no alternative combination).
On clusters paravance and grisou, the search with Algorithm 4 does not find any
breakpoint, the message is always corrupted. This means that the asynchronous
mode does not exist.
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These kinds of inconsistencies show the fragility of the semantic approach for detect-
ing breakpoints. The three behaviors we described, namely asynchronous, detached
and synchronous, are not part of the MPI standard. They highly depend on both
the MPI implementation and the hardware. For instance, Algorithm 4 depends on
the semantic of a concurrent memory read and write, which can produce surprising
results on less common architectures. An alternative would be to instrument the
memory of the program to have a precise timing of when the memory reads and
writes occur.

5.3.3 Learning breakpoints

In this section, we present our solution for automatically computing a piecewise
linear regression. The goal is to find performance breakpoints with a statistical
approach and not a semantic approach as described in Section 5.3.2. This has been
implemented as a Python package named pycewise [CL21d].

Model and notations

We define here the base assumptions and notations for our optimization problem.
The predictor variables (e.g. the message size) will be denoted X, the response
variables (e.g. the communication duration) will be denoted Y . We will denote ` the
list of tuples (X,Y ). We assume that there are N different unknown breakpoints
B1 < · · · < BN , where N itself is also unknown. For convenience, we will denote
B0 = −∞ and BN+1 = +∞. Then, there are N + 1 tuples (αi, βi, γi, δi) such that:

Y ∼ αiX + βi +N (0, γiX + δi) if Bi ≤ X < Bi+1 (5.6)

Here, γi may be null (homoscedastic data) or non-null (heteroscedastic data). This
hypothesis will be discussed later. Likewise, the distribution of the Bi will be
discussed when comparing different solutions (no assumption is made yet).

A solution θ to the optimization problem consists in the list of breakpoints (Bi)
and tuples (αi, βi). The values (γi, δi) are not computed here, but they could be
estimated in a second phase. We will write fθ the (deterministic) prediction function
associated with the solution:

fθ(X) = αiX + βi if Bi ≤ X < Bi+1 (5.7)
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Two functions are considered:

• RSS(`, θ) =
∑

(X,Y )∈`(Y − fθ(X))2 is the usual residual sum of squares.

• BIC(`, θ) = K log(S) + S log(RSS(`, θ)) where S = |`| is the number of obser-
vations, K = 3(N + 1) + N = 4N + 3 is the number of parameters in the
model. This is the usual Bayesian information criterion.

The goal of the optimization problem is to minimize the BIC. The K log(S) term in
this function is intended to penalize the model size and thus prevent overfitting.

By an abuse of notation, we will write BIC(`) the BIC for the observations ` with a
simple linear regression without breakpoint (i.e. N = 0). We will write BIC(`1 ⊕ `2)
the BIC for the observations `1 ∪ `2 with a single breakpoint between the two lists
and a simple linear regression for each list (i.e. N = 1). The concatenation of lists
will be denoted `1 • `2, hence BIC(`1 • `2) will denote the BIC of a linear regression
without breakpoint (N = 0).

Main algorithm

The algorithm proceeds in two steps: it starts by a top-down step where new break-
points are greedily added, it finishes by a bottom-up step where some breakpoints
are greedily removed to simplify the solution. The first step is inspired by the work
of Malerba et al. [Mal+04].

In the top-down step (Algorithm 5), we recursively build a tree, where the inner
nodes represent breakpoints and the leaves represent simple linear regressions. The
function topdown takes as input a list ` of tuples (X,Y ) sorted by increasing X

and returns a list of sublists, each sublist representing an interval for the piecewise
regression. On a given call, we iterate on the list to test all the X values as a possible
breakpoint: we search for the X that minimizes the objective function. If the
objective with the new breakpoint is smaller than the objective without breakpoint,
then we recursively call the function on the two sub-lists.

In our implementation, each iteration of the foreach loop from Algorithm 5 is
executed in a constant time. This is possible because the list ` is sorted by increasing
X, no copies are made when splitting the list, and both the new linear regressions
and the new BIC are computed with online algorithms (i.e. adding or removing one
tuple (X,Y ) from the sublists `1 and `2 does not require recomputing from scratch
the new regression coefficients nor the BIC, it is possible to update the values from
the previous iterations). In the next sections, we change the objective function and
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Algorithm 5: Top-down step for computing the piecewise linear regression.

Function topdown(`):
best_BIC = +∞
foreach (X,Y ) ∈ ` do

split ` into `1 and `2 such that ∀X ′ ∈ `1, X ′ ≤ X and ∀X ′ ∈ `2, X ′ > X
new_BIC = BIC(`1 ⊕ `2)
if new_BIC < best_BIC then

best_BIC = new_BIC
best_solution = (`1, `2)

if new_BIC < BIC(`) then
(`1, `2) = best_solution
lists1 = topdown(`1)
lists2 = topdown(`2)
return lists1 ⊕ lists2

else
return `

have to drop this ability of doing an iteration in constant time. The effect on the
computation duration will be discussed.

In the bottom-up step (Algorithm 6), adjacent intervals are greedily merged (thereby
removing breakpoints), starting by fusions that decrease the least the RSS. All the
different iterations of the loop are kept in memory, the merging operation is carried
until there is no breakpoint left. In the end, we keep the iteration that minimizes
the BIC.

Algorithm 6: Bottom-up step for computing the piecewise linear regression.

Function bottomup(L = (`1, . . . , `N )):
S = []
add L to S
for i = 1 to N − 1 do

best_diff = +∞
n = N − i
for j = 1 to n− 1 do

new_diff = RSS(`j • `j+1)− (RSS(`j) + RSS(`j+1))
if new_diff < best_diff then

best_diff = new_diff
k = j

L = (`1, . . . , `k • `k+1, . . . , `n)
add L to S

let L ∈ S be the solution with minimal BIC
return L
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Objective function

The breakpoint learning process relies entirely on the objective function we defined,
based on the residual sum of squares (RSS) and its BIC counterpart that penalizes
the model size:

RSS(`, θ) =
∑

(X,Y )∈`
(Y − fθ(X))2 (5.8)

The algorithm is a heuristic to minimize the BIC, but the parameters of the linear
regressions are also the optimal estimators for this objective function.

In the case of heteroscedastic data, the noise is by definition not constant: it grows
linearly with the predictor variable. In this case, the RSS is not the best choice, as
it does not penalize errors relatively to the predictor variable. It will give much
more weight to the larger noise observed for larger predictor variables, hence a bias
towards those large values.

A classical solution for this problem is the use of weighted least square (WLS) instead
of the ordinary least square (OLS). A weight function w gives a different weight for
each predictor variable. We define the new objective function as such:

RSSweight(`, θ) =
∑

(X,Y )∈`
(w(X)(Y − fθ(X)))2 (5.9)

The BICweighted value is defined like the BIC, replacing the RSS value by RSSweight.
In our case, we used w(X) = 1/X, a classical choice for linear regressions in the
presence of heteroscedasticity.

As said previously, the optimal values for the regression parameters are not the same
with this objective function. A closed formula can be found by taking the derivative
of the function, very similarly to the ordinary least square.

α̂weight =
∑

(X,Y )∈`w(X)(X − X̂weight)(Y − Ŷweight)∑
(X,Y )∈`w(X)(X − X̂weight)2

(5.10)

β̂weight = Ŷweight − α̂weightX̂weight (5.11)

Here, X̂weight (resp. Ŷweight) denotes the weighted sample mean of the variables X
(resp. Y ), computed as:

X̂weight =
∑

(X,Y )∈`w(X)X∑
(X,Y )∈`w(X) (5.12)
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Ŷweight =
∑

(X,Y )∈`w(X)Y∑
(X,Y )∈`w(X) (5.13)

An alternative objective function is based on the logarithm of the observations and
the predictions:

RSSlog(`, θ) =
∑

(X,Y )∈`
(log Y − log fθ(X))2 (5.14)

Likewise, the value BIClog is naturally defined based on RSSlog. The main motivation
here is to penalize the prediction error relatively to the predictor variable and not in
absolute value.

With such an objective function, there is no closed form for the optimal regression
parameters. Instead, we implemented a gradient descent algorithm to find the
optimum. The downside of using a gradient descent is that the whole regression is
now significantly slower, the extent of this will be discussed later. On the other hand,
a nice benefit is the possibility to tune the objective function to better suit our needs.
For instance, in the case of network calibrations, the regression parameters α and β
represent respectively the inverse of the bandwidth and the latency, it would make
no sense for them to be negative. With the gradient descent approach, the search
space can easily be restricted to limit the possible solutions to positive values.

As a side note, the RSSlog objective function is the RSS we would naturally have
if we supposed that the noise was following a log-normal distribution instead of a
normal distribution. Two justifications could be made to support this hypothesis.
First, a random variable following a log-normal distribution is positive, which is what
we would expect of duration measures. Second, a log-normal distribution is the
product of many independent random variables (by using the central limit theorem
in the log domain). It would not be unreasonable to suppose that independent
performance perturbations have a multiplicative effect instead of an additive effect.
However, these are only a posteriori justifications that were not considered at the
time of implementing the solution. The next section shall determine if one objective
function is better than the others for our needs.

Comparison of the solutions

We compared different approaches for computing a piecewise linear regression.
We used a typical dataset for our context that has characteristics similar to that of
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the network calibration data (see Figure 5.6): the predictor variable is sampled
exponentially and the noise is heteroscedastic.

The different approaches are presented in Figure 5.7. Each row presents one solution,
the first two rows are Datadog-piecewise [Dat] and Cubist [KQ20]. The last three
rows are our proposed implementation with the three discussed objective functions.
The black points represent the observations, the colored lines represent the linear
regressions, while the different breakpoints are marked with dashed vertical lines.
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●

●

●

●

●

●

●
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●
●
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●

●
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●
●

●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●
●

●
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●

●

●

●

●
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●

●

●

●
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●
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●

●

●

●
●

●
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●
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●

●
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●
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●
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●
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●

●

●
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●

●

●

●

●

●
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●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
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●
●

●

●

●
●

●

●

●

●

●

●
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●

●

●
●

●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●
●

●
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●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●

●

●

●
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●
●

●

●

●
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●

●

●

●

●

●
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●

●
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●

●

●

●
●

●
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●

●

●

●

●

●

●

●
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●

●

●

●
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●

●

●

●

●

●
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●

●

●

●

●

●
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●
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●

●

●
●
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●

●●
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●

●

●

●
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●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●
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●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
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●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●

●

●

●
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●
●

●

●

●
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●

●

●

●

●

●
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●

●
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●

●
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●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
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●

●

●

●

●

●

●
●

●

●

●

●
●
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●

●

●
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●

●

●

●

●

●
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●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
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●
●

●

●

●
●

●

●

●

●

●

●
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●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
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●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
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●

●

●

●

●

●
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●

●

●●
●

●

●

●
●

●
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●
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●
●
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●

●
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●
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●

●

●

●
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●
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●

●

●

●
●

●

●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
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●
●

●

●

●
●

●

●

●

●

●

●
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●

●

●
●

●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●
●
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●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●

●

●
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●

●
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●
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●
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●
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●

●

●
●

●
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●

●

●
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●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
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●
●

●

●

●
●

●

●

●

●

●

●
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●

●

●
●

●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●
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●
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●

●

●

●

●

●●
●
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●

●

●

●

●

●

●

●

●

●
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●
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●

●

●
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●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
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●
●

●

●

●
●

●

●

●

●

●

●
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●

●

●
●

●

●

●

●

●

●

●
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●

●

●

●

●

●

●

●

●

●
●
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●

●

●

●
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●
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●

●
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●

●

●

●

●

●

●
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●
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●
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●
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●

●

●
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●

●

●

●

●

●
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●

●
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●

●

●
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●
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●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
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●
●

●

●

●
●

●

●

●

●

●

●
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●

●

●
●

●

●

●

●

●

●
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●

●

●

●
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●
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●

●
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●
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●
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●
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●
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Figure 5.7.: Illustrating different piecewise linear regression approaches on different
datasets. Only our implementation (pycewise) with the logarithmic objec-
tive function works well for all datasets.

Four variations of the dataset are used, one variation per column:

• The real data comes from a real experiment we performed on a node. These
are durations of calls to memcpy function for various buffer sizes. Each point is
the average of several measures with a same size, so we can reasonably expect
the noise to be normally distributed.

• The three other variations are generated data. We performed a piecewise
linear regression on the real data with three manually selected breakpoints,
we sampled a new series of predictor variables, then we computed the ex-
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pected durations. The response variables of the no noise dataset are entirely
deterministic.

• The homoscedastic dataset has been generated by adding a normally distributed
noise of mean 0 and standard deviation 5× 10−9 to the no noise dataset.

• The heteroscedastic dataset has been generated by adding a normally dis-
tributed noise of mean 0 and standard deviation 2× 10−12 ×X to the no noise
dataset, where X denotes the predictor variable.

The goal of using generated data was to understand better the limitations of each
approach. From Figure 5.7, it is clear that both Datadog-piecewise and Cubist
are unfit for our needs (first and second rows), as they could not even find the
three breakpoints with the generated data without noise. The likely reason is the
exponential sampling of the predictor variable: the points on the left part of the plots
would get compressed into a single point if the data was plotted in linear scale.

As expected, the ordinary least square method (third row) works perfectly in the
absence of noise or with homoscedastic noise, as it finds the three breakpoints.
Unfortunately, it fails to find any breakpoint with the heteroscedastic noise. With the
real data, it finds too many of them for large values but misses an obvious breakpoint
for smaller values near 1× 104.

The weighted least square method (fourth row) works as expected with heteroscedas-
tic data, finding the three breakpoints. It also performs quite well with the real
data, finding three obvious breakpoints, but it also detects a spurious one near
the smallest values. It also fails spectacularly with the two other datasets, missing
obvious breakpoints with the homoscedastic data and finding too many with the
no-noise data.

In the end, only the logarithmic least square method (last row) works perfectly for
all the datasets.

Another interesting feature of the last method is the positivity constraint. With this
approach, it is possible to force the two parameters of each linear regression to
be positive, as discussed previously. The three other methods all have an issue for
at least one dataset where the intercept of one regression is negative, resulting in
negative predictions when the predictor variable is too low. This can be seen when
the prediction lines falls very sharply on the left. Note that this positivity constraint
is only due to the gradient descent implementation and not to the objective function.
We could very well add a similar constraint for the other objective functions if they
were also implemented with a gradient descent instead of a simple formula.
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The quality of the fit computed by pycewise with the logarithmic objective function
is demonstrated in Figure 5.8. We do not show results for the alternative regression
methods here because, like for the memcpy experiment, they do not work properly.
We executed our MPI calibration program on four clusters of Grid’5000: dahu, gros,
paravance and pyxis. For each of them, we measured the duration of individual
MPI_Recv, MPI_Send and a whole ping-pong for various message sizes. Once again,
we aggregated the data by taking the average duration for each message size. In
this figure, one piecewise regression is computed for each cluster/operation pair.
We also plotted with a small dotted line the regression we would get without
breakpoints, with the logarithmic objective function. This dotted lines shows that
without breakpoints, we would make large prediction errors in some cases (for
instance, in the send experiment for clusters gros and paravance, the durations of
20 kB communications would be greatly over-estimated by a simple regression).
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Figure 5.8.: With the logarithmic objective function, pycewise finds acceptable fits for the
12 datasets.

Since this is real experimental data, there is no “ground truth” that could serve as
reference for evaluating the quality of the fit. Computing the optimal solution that
minimizes the objective function would be computationally intractable. Therefore,
we can only rely on a visual evaluation of the regression lines to decide if the fits are
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satisfying. In Figure 5.8, all the obvious breaks have been found and the lines match
the points very closely.

This gradient descent comes with a cost, computing the piecewise linear regression is
now significantly slower. Figure 5.9 compares the three different objective functions
from our implementation. The logarithmic least square is one order of magnitude
slower than the weighted least square, which is itself one order of magnitude slower
than the ordinary least square. The nature of the noise does not affect the duration,
but we expect that a dataset with more breakpoints would lead to a larger duration.
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Figure 5.9.: Duration of a complete regression with pycewise for different numbers of
observations.

In our context of network calibration, each communication for a given message
size is repeated several times. Then, to generate a model, we start by averaging
the durations per message size before doing the regression, as discussed previously.
We can therefore safely expect to have only a few hundreds of observations: the
logarithmic approach is perfectly reasonable.

5.4 Conclusion

We have presented different models for both the network communications and
the computation kernels. One difficulty resides in instantiating the models, i.e.
computing the best fit for some observations, in the most automated way possible.
Bayesian formalism is an interesting candidate for such a task. With Bayesian
sampling tools like STAN, we should be able to fit arbitrarily complex models and
even have an estimation of the uncertainty of the resulting parameters. However,
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the benefit of these tools is not clear for our context as their computation time is
particularly long. Furthermore, we had great difficulties in writing down our models
in their formalism. In the end, a simpler approach like the method of moments
revealed to be enough for our needs.

The model instance, i.e. the fit we compute, will obviously depend on the input data.
The experimental protocol for collecting the said data will therefore be as important
as the statistical tools. This will be further discussed in Part II.

No model can capture the complexity of the real world perfectly. In Chapter 6, we
will discuss what level of complexity is required for achieving a sufficiently faithful
performance prediction. We will also demonstrate in Chapter 7 how these models
can be used for sensibility analysis.
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Validation 6
It is not possible to formally prove the “correctness” of a model like we would do for
a theorem. The only reasonable method to evaluate the soundness of our approach is
to compare simulation to reality. The goal here is to meticulously try many relevant
configurations of the application to possibly unveil any flaw of the models discussed
previously.

6.1 Experimental setup

We used the dahu cluster from the Grid’5000 testbed. It has 32 nodes connected
through a single switch by 100 Gbit s−1 Omni-Path links. Each node has two Intel
Xeon Gold 6130 CPU with 16 cores per CPU and we disabled hyperthreading. We
used HPL version 2.2 compiled with GCC version 6.3.0. We also used the libraries
OpenMPI version 2.0.2 and OpenBLAS version 0.3.1. Last, we used one single-
threaded MPI rank per core.

Although this machine is much smaller than top supercomputers, faithfully simulat-
ing an HPL execution with such settings is already quite challenging.

• We used one rank per core to obtain a higher number (1024) of MPI process.
This is more difficult than simulating one rank per node, as (1) this increases
the amount of data transferred through MPI and (2) the performance is then
subject to memory interference and network heterogeneity (we used a different
model for local and remote communications).

• We used a smaller block size than commonly used, which leads to a higher
number of iterations and hence more complex communication patterns.

• We used relatively small input matrices, which reduces the makespan and
makes good predictions harder to obtain.
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6.2 Analyzing the internal behavior of the application

In this section, HPL executions were done using a block size of 128 and a matrix
of varying size (from 50,000 to 500,000). We used a look-ahead depth of 1, the
increasing-2-ring broadcast with the Crout panel factorization algorithms.

Our first evaluation consists in comparing the traces of the simulations with reality.
We instrumented HPL to collect the start and end timestamps of each kernel and
MPI call. We limited the execution to 256 ranks and the first five iterations. A
first qualitative validation can be done by visually comparing the Gantt charts of
the simulations with reality (see Figure 6.1). Calls to dgemm are depicted in yellow,
MPI_Send in red, MPI_Recv in blue. Although the structure is similar in all charts,
the shape and the duration of the communication phases can be overly optimistic
in simulations compared to reality. The major difference are the calls to MPI_Send
at the start of the execution, they take a much longer duration in reality (large red
rectangles) than in simulation. This discrepancy is then attenuated in the rest of the
execution. Furthermore, the charts show that, at this scale, using a deterministic
or a stochastic model for the network has no noticeable impact on HPL simulation.
However, having a more complex model for the kernels leads to much more realistic
traces. The variability in the computation durations leads to an increase of the
time spent in communications and an overall slightly longer execution. In HPL,
computation variability directly translates to late senders/receivers that harm the
efficiency of collective operations.

This demonstrates one of the advantages of simulation over other prediction methods.
By generating a trace, we can have a very thorough visual inspection of the simulated
execution, which makes it possible to identify the culprits of accuracy losses.

6.3 Evaluating the influence of the problem sizes

We now provide a more quantitative comparison using the whole cluster and varying
matrix sizes, focusing on the GFlop s−1 rate reported by HPL (see Figure 6.2). The
real executions are depicted in black, for each matrix size we performed 8 runs of
HPL, to illustrate the temporal variability of the performance. The line (a), on the
top, is our first attempt to simulate HPL. The simulation was done with a simple
model: M−1 for the kernels and M ′−1 for the network with no noise (N−0) in
both cases. This model overestimates HPL performance by more than 30 %. We
initially thought that the network model was too optimistic, however, switching to a
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Figure 6.1.: Gantt charts of HPL first iterations in simulation.
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stochastic multi-modal network model (N ′−1, the line (b)), does not significantly
improve the prediction precision.

Figure 5.1 shows that there is a significant heterogeneity in the cluster. For this
reason, we started using a MH−1/N−0 model for dgemm while keeping the models
for the other kernels and the network as before. This increases very significantly
the realism of the simulation as the performance is now overestimated by only 9 %
(the line (c)). Using a polynomial model for dgemm instead of a linear model (thus
switching from MH−1 to MH−2) further improves the performance prediction, in
particular for smaller matrices. This new model (the line (d)), is very close to reality
at the beginning but becomes equivalent to the previous model for larger matrices.
We found that adding the temporal variability noise (N−2 for all kernels, NH−2 for
dgemm) is the key ingredient to obtain the last bit of realism. The prediction (the line
(e)) is now extremely close to reality as it slightly underestimates the performance by
less than 5 % and even as little as 1 % for the larger matrices. Adding back temporal
variability to the network model (N ′−1, line (f)) still has no significant effect but
this can be explained by the fact that HPL mostly communicates very large amounts
of data in bulk. Network temporal variability is however a very important aspect to
model applications that are more latency-bound.
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Figure 6.2.: HPL performance: predictions vs. reality for various matrix
ranks.
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DEPTH 1

As illustrated in Figure 6.2 (rightmost labels), we would like to stress again that ac-
curate predictions require a careful modeling of both spatial and temporal variability.
Overall, although this was not particularly foreseeable and could have been different
with another application, only the dgemm kernel needs to be carefully modeled with a
MH−2-NH−2 model. A detailed modeling of all (BLAS and HPL) kernels is possible
but a minimal calibration of the dgemm kernel over a representative set of nodes is
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thus sufficient to consistently predict the performance of HPL on this machine within
a few percent of reality.

6.4 Evaluating the influence of a platform change

This validation study has been carried out over several years (from 2018 to 2020).
Despite our efforts to keep the experimental setup stable for the sake of reproducibil-
ity, the platform has evolved. The Linux kernel had a minor update, from version
4.9.0-6 to version 4.9.0-13, and the BIOS and firmware of the nodes have been
upgraded. During this time frame, the cluster has also suffered from hardware
issues, such as a cooling malfunction on four of its nodes. This malfunction had an
enormous impact on the performance of HPL, which significantly complicated our
validation study but also makes it more meaningful as it has been conducted on a
particularly challenging setup.
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Figure 6.3.: HPL performance: predictions vs. reality (effect of the cooling issue on the
nodes dahu-{13,14,15,16}).

Our simulation approach makes it possible to predict the performance of HPL for a
new platform state by merely conducting a new calibration whenever a significant
change is detected. This ability to reflect in simulation a platform change is illustrated
in Figure 6.3 which, similarly to Figure 6.2 (acquired in March 2019), showcases the
influence of matrix size on the performance but at different periods. The left plot
represents the normal state of the cluster (in September 2020), whereas the right
plot has been obtained (in March-April 2019) when 4 of the 32 nodes had a cooling
issue which lowered their performance by about 10 %. In all cases, we consistently
predict performance within a few percent and performing a new dgemm calibration
on these four nodes was all that was needed to reflect this platform change in the
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simulation. This result illustrates both the faithfulness of our simulations and a
potential use case for predictive simulations: a discrepancy between the reality
and the predictions can sometimes indicate a real issue on the platform (similar
situations have already been reported with SMPI [Deg+17]).

6.5 Evaluating the influence of the geometry

Figure 6.4(b) illustrates the influence on the performance of the geometry of the
virtual topology (P and Q) used in HPL. As expected, geometries that are too
distorted lead to degraded performance. All the HPL parameters were fixed (matrix
rank is fixed to 250,000 and the other parameters are the same as in Section 6.3)
except for the geometry as we evaluate all the pairs (P, Q) such that P× Q = 960. We
used only 30 nodes instead of 32 to cover a larger number of geometries, as 960 has
more divisors than 1024.

As in all our previous studies, we report both the predicted performance and the
one measured in reality. Like the comparisons presented in the previous section,
the simulation was done with the dgemm model from Equation (5.1) (stochastic,
heterogeneous, and polynomial) and the simplest linear models for the other kernels.
In our first simulation attempt that relied on a relatively simple network model
(deterministic yet piecewise-linear to account for protocol switch) depicted on the
leftmost plot of Figure 6.4(a), we obtained the unsatisfactory orange line on top of
Figure 6.4(b) for the prediction. The simulations with the smallest value of P had
relatively large prediction errors, with a systematic over-estimation that reaches up
to +50% for the 1× 960 and 2× 480 geometries. A qualitative comparison of the
execution traces obtained in reality and simulation showed that the broadcast phases’
duration was greatly underestimated in simulation. We found out that with such
elongated geometries, the message size is significantly larger than what we had used
in our calibration, and the performance surprisingly and significantly drops for such
size (compare with the rightmost plots of Figure 6.4(a)). This performance drop is
explained by poor optimization of the DMA locking mechanism in the Infiniband
network layer [Den11]. A similar performance drop also happens for intra-node
communications that poorly manage the caches above a given size. Furthermore, the
communication patterns generated by HPL during the ring broadcast are significantly
impacted by the busy waiting of HPL that intensively calls MPI_Iprobe and dgemm
on small sub-matrices. Our initial procedure for calibrating the network did not
capture this phenomenon since we did not inject any additional CPU load. This
problem is further discussed in Section 10.7.
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(a) Illustrating the effect of the two MPI calibration methods. The optimistic method merely samples
message size smaller than 1 MB and extrapolates for larger sizes. Unfortunately, for messages larger
than 160 MB, the effective bandwidth significantly drops. The more realistic calibration measures
MPI communication duration for messages up to 1 GB while injecting some computation load in the
background.
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(b) HPL performance: predictions vs. reality (testing all the possible geometries for 960 MPI ranks).

Figure 6.4.: The first (optimistic) network calibration gives poor predictions for very elon-
gated geometries while the improved calibration provides perfect predictions.

We address the above problem by improving our network calibration procedure:
(1) we use a distinct model for local and remote calibrations, (2) we sample the
message sizes in a larger interval, and (3) we add calls to dgemm and MPI_Iprobe
between each call to MPI_Send and MPI_Recv. The goal was to make the calibration
environment more similar to what happens in HPL. The resulting network model
is illustrated in the rightmost plots of Figure 6.4(a). This more realistic network
model solved every previous misprediction and allows us to produce very faithful
simulations (purple line on Figure 6.4(b)), which are now a few percent of the
reality regardless of the geometry. This figure also illustrates the influence of the
geometry on overall performance since there is almost a factor of ten between the
worst configuration (960×1) and the best one (30×32). Although it is not surprising
to see that the geometries which are as square as possible lead to better performance
as they minimize the overall amount of data movements, it is interesting to observe
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the asymmetric role of P and Q in the overall performance (smaller values for P lead
to better performance) and which can be explained by the structure of the collective
operations but requires a close inspection of the code.

6.6 Evaluating the influence of the other parameters

Although geometry is among the most important parameters to tune, six other
parameters control the behavior of HPL. In Figure 6.5, we compare the performance
reported by HPL when fixing the matrix rank to 250,000 and varying the following
parameters: block size (128 or 256), depth (0 or 1), broadcast (the six available
algorithms), swap (the three available algorithms). The geometry was fixed to
P×Q = 32×32 = 1024 as it is best experimentally (the simpler calibration procedure
and the network model depicted on the leftmost plot of Figure 6.4(a) were thus
used). The parameters pfact and rfact (panel factorization) were respectively
fixed to Crout and Right, as they had nearly no influence on HPL performance in
our early experiments.
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Figure 6.5.: Influence of HPL configuration on the performance (factorial experiment).
Parameters have been reorganized based on their influence on performance to
improve readability. The boxed configuration corresponds to the one boxed in
Figure 6.2.

Figure 6.5 depicts the 72 parameter combinations we tested. These parameters
account for up to 30 % of variability in the performance, which is less important
than the geometry but is still quite significant. For 61 of them, the prediction error is
lower than 5 %. Only two combinations have shown a large error of approximately
15 %, obtained with a block size of 256, a depth of 1, the 2-ring broadcast algorithm,
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and either the long or the mix swap algorithm. This demonstrates the soundness
of our approach, as our predictions are reasonably accurate most of the time. This
experiment confirms that, although the prediction of HPL performance for a given
parameter combination has a systematic bias, the error remains within a few percent
most of the time. Therefore, this surrogate is good enough for parameter tuning and
should be considered when preparing a large-scale run.

While testing all the parameter combinations is the safest method to discover the
combination that provides the highest performance, its cost can be prohibitive due
to the high number of combinations. An alternative often used in practice is to
explore only a small subset of the parameter space and to analyze variance (ANOVA)
to identify the parameters with the more substantial effect on performance and then
select the appropriate combination. We applied this procedure on samples of both
datasets (the one obtained from real runs and the one obtained in simulation). In
both cases, the two parameters with the highest effect were the block size NB and the
depth, as shown in Figure 6.5, followed by bcast and swap. The best combinations
selected in both cases were also identical, demonstrating once again the faithfulness
of our simulation approach and how it can be used to reduce the experimental cost
of parameter tuning.

6.7 Conclusion

Accurately predicting the performance of an application is not a trivial task. Dis-
crepancies between reality and simulation can be multiple: the platform may have
changed (e.g. the cooling issue that affected four nodes in Section 6.4), the model
could be inaccurate (e.g. the homogeneous and deterministic dgemm model is too
simple as in Section 6.3) or not correctly calibrated (e.g. the calibration procedure
does not cover the appropriate parameter space, or the experimental conditions are
too different as in Section 6.5). As expected in any serious investigation of model
validity, our validation study is not a mere collection of positive cases. Instead, it is
the result of a thorough (we extensively covered the HPL parameter space) attempt
to invalidate our model as well as explanations on how we did so. By meticulously
overcoming each of these issues, we have demonstrated the ability of our approach
to produce very faithful predictions of HPL performance on a given platform.

The difficulties encountered while conducting experiments will be discussed more
thoroughly in Part II.
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Sensibility analysis 7
We have shown that many typical HPL case studies could be conducted in simulation.
However, their conclusions (optimal geometry and parameters) are specific to the
cluster we used and they require a precise model of several aspects of the target
cluster, which may not be possible at early experimental stages. In particular, only
a few cluster nodes may be available at first and the whole cluster model should
then be constructed from a limited set of observations and carefully extrapolated.
This section shows how typical what-if simulation studies should be conducted
given such uncertainty. We have presented in Section 5.2.2 a generative model
of node performance that can easily be fit from daily measurements and used to
produce a similar platform. This model is used to quantify the importance on overall
performance of temporal variability of the dgemm kernel in Section 7.1 and of spatial
variability of nodes in Section 7.2. In particular, we show how to study the efficiency
of a simple slow node eviction strategy. Finally, we study in Section 7.3 the influence
of the physical network topology on overall performance. Most of these studies are
particularly difficult to conduct through real experiments because of the difficulty to
finely control the platform.

7.1 Influence of dgemm temporal variability

In Section 6.3, we were able to highlight the importance of accounting for temporal
variability of the dgemm kernel to obtain faithful HPL predictions. To the best of our
knowledge, HPL developers and experts are often aware of this influence (or at least
suspect it). However, they have never fully quantified it since designing and per-
forming real experiments to evaluate it would be quite difficult. Although increasing
this variability would be feasible, reducing it would be particularly complicated.
This can however easily be done through simulation using the hierarchical model of
Section 5.2.2. In our experiments, the order of magnitude of the temporal variability
with respect to actual performance (i.e., the ratio between γp,d and αp,d in Equa-
tion (5.2)) was around 3 %. This may be a “normal” value or could be considered
too high and possibly improved by better controlling thread mapping or Operating
System noise. Such a task can be quite tedious and knowing how much performance
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gain can be expected beforehand is thus quite useful. In this section, we study the
influence of this variability by generating 10 cluster scenarios using the previous
model (as in Figure 5.4), comprising 1024 nodes each, but by constraining γp,d to
be equal to γ.αp,d with γ ∈ [0, 0.1], which represents the coefficient of variation of
the dgemm kernel. We evaluate the performance of HPL with one multi-threaded
MPI rank per node, a block size of 512, a look-ahead depth of 1. We used the
increasing-2-ring broadcast with the Crout panel factorization algorithms and
P× Q = 8× 32, and we tested matrix sizes ranging from 100,000 to 500,000. Let us
denote by T (N,Ci, γ) the performance of HPL when factorizing a matrix of rank N
on cluster Ci with a temporal variability of γ. The overhead for this configuration is
the ratio

O(N,Ci, γ) = E[T (N,Ci, γ)]
T (N,Ci, 0) − 1.
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Figure 7.1.: The overhead on HPL duration appears to be linear in dgemm temporal variabil-
ity. Although it is negligible for small matrices, it severely inflates for larger
matrices.

Each bubble in Figure 7.1 represents one such overhead. For any γ, this overhead
appears to be negligible for small matrices and to increase and flatten when N grows
large. In most Top5000 qualification runs, the matrix is made as large as possible
and the overhead would thus appear to grow roughly linearly with γ. On a new
cluster, a simple statistical evaluation of the nodes’ performance using the model
of Section 5.2.2 would thus be a good first diagnosis of whether trying to decrease
temporal variability is a promising tuning target or not.
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7.2 Influence of dgemm spatial variability

Although we showed in Section 6.3 that temporal variability could account for about
9 % of performance degradation, spatial variability was even more important as it
was responsible for 22 % of overhead compared to a fully homogeneous cluster. In
practice, the replacement of a few nodes may be possible but such spatial variability
is expected and common [Ina+15] and a workaround would have to be found. A
common approach consists in dropping out a few of the slowest nodes. Indeed,
since the matrix is evenly divided between the nodes, the computation inevitably
progresses at the speed of the slowest node. However, removing the slowest nodes
also decreases the overall processing capability and impacts the virtual topology’s
geometry (the P and Q parameters of HPL). Such adjustment is often done by trial
and error and is all the more tricky as temporal variability and uncertainty from real
experiments come into play. In this section, we show how such a subtle trade-off
can be studied in simulation.
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Figure 7.2.: Influence of the number of nodes on the performance of HPL. The geometry
of the virtual topology is particularly influential, and it appears that P × Q
configurations with a small P perform significantly better than those with a
larger P. Each configuration is summarized through the average overhead over
the 10 clusters and error bars represent a 95 % confidence interval.

Using the model from Section 5.2.2, we generate 10 mildly heterogeneous 256 node
clusters (i.e., where nodes are similar to the ones of our cluster when operating in
the normal state as in Figure 5.4(a)) and we study the performance obtained when
removing 1 to 16 of the slowest nodes. When removing nodes, the geometry should
be adjusted depending on how the number of remaining nodes decomposes in prime
factors. As observed in Figure 6.4(b), having P ≈ Q is generally a good idea to reduce
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the total amount of communication. However, it may be counter-productive for a
given broadcast or swap algorithm that serializes communications. Figure 7.2 shows
the average (over the 10 clusters) overhead for a matrix of rank 250,000 compared
to the best performance obtained using the whole cluster. We group the different
P × Q decompositions and order them by increasing P. Again, we use the 2-Ring
and Binary-exch algorithms, which are among the best configurations according to
the study of Section 6.6. It appears that the 4× 64 geometry now achieves the best
trade-off between the total amount of communications and how well they overlap
with each other. The optimal configuration for each number of nodes is boxed
in Figure 7.2. It reveals that there is not much to gain, probably because of the
mild spatial heterogeneity of our cluster, but that optimizing the virtual topology is
particularly important.
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Figure 7.3.: Influence of node removal on performance while taking into account the matrix
rank. Due to the mild heterogeneity of these scenarios, evicting nodes brings
no benefit.

Figure 7.3 investigates how this overhead for the best geometry and node selection
also depends on the matrix rank. It appears that in this scenario, except for very
small matrices, removing nodes cannot help improve performance. Note that the
overhead for 5 × Q configurations with a matrix rank 200,000 appears to behave
differently from what happens for other matrix sizes. This surprising effect probably
arises from a subtle combination of matrix size and virtual topology. We could
indeed observe on our cluster that such configurations had a weakly but significantly
worse performance than the other configurations. Such interaction also explains why
designing a faithful analytical model of HPL is so difficult and why a full simulation
of the whole application is generally required. Although absolute performance
should be taken with a grain of salt when studying such subtle effects, they are easily
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overlooked when conducting real experiments. In this particular small scale mild
heterogeneity scenario, there is thus no gain in removing nodes but, as illustrated
in Figure 7.4 where we used a multimodal spatial heterogeneity (as in Figure 5.5),
this may be a relevant approach. This sensibility analysis shows how, for a given
supercomputer, a simple statistical evaluation of the spatial heterogeneity allows
evaluating whether spatial variability is a promising tuning target or not.
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Figure 7.4.: Influence of node removal on performance in a stronger heterogeneity scenario
(extrapolation of our test cluster when it had a cooling problem on 4 of its
nodes). Removing 6 to 12 nodes our of 256 nodes may bring substantial
improvement and such optimization would therefore be worth investigating.

7.3 Influence of the physical topology

Finally, since virtual topology and communications appear to significantly influence
the overall performance, one may wonder how much the physical topology influ-
ences the performance. Indeed, several recent articles [Leó+16; Taf+19] report
that interconnect networks are often oversized compared to the actual need of
applications and that turning off some switches could sometimes go completely
unnoticed by end-users. In this section we consider ten 256-node clusters with
variable node performance (as in Figure 5.4) interconnected by a 2-level fat-tree
and quantify by how much performance degrades when the top-tier switches are
gradually deactivated. More formally, we use a (2;32,8;1,N;1,8) fat-tree with
N ∈ {1, 2, 3, 4}.

Figure 7.5 depicts this degradation as a function of matrix size. As one could expect,
the impact is more significant for smaller matrix sizes (where the execution is more
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Figure 7.5.: Influence of the physical topology on the overall performance. It is possible
to remove up to 2 of the top-level switches without significantly hurting per-
formances for large matrices. Beyond this point, communications become the
main performance bottleneck.

network bound). Although removing one switch leads to absolutely no visible
performance loss, removing two or three switches can have a dramatic effect. Again,
such degradation depends on the broadcast and swap algorithms and may be slightly
mitigated. To the best of our knowledge, it is the first time such sensibility analysis
is conducted faithfully. Generating random node configurations allows avoiding
potential bias, in particular against perfectly homogeneous scenarios. We believe
such a tool can be quite useful in the earlier steps of a supercomputer design when
performing capacity planning to adjust the network capacity to a given cost and
power envelope.
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Conclusion 8
HPC application developers implement many elaborate algorithmic strategies whose
impact on performance is often dependent on both the input workload and the target
platform. This structure makes it very difficult to model and accurately forecast the
overall application performance, and many HPC application developers and users
are often left with no other option but to study and tune their applications at scale,
which can be very time- and resource-consuming. We believe that being capable
of precisely predicting an application’s performance on a given platform is useful
for application developers and users. It will become invaluable in the future as it
can, for example, help computing centers with deciding which one of the envisioned
technologies for a new machine would work best for a given application, or if an
upgrade of the current machine should be considered.

Simulation is an effective approach in this context and SimGrid/SMPI has previ-
ously been successfully validated in several small-scale studies with simple HPC
benchmarks [Deg+17; Hei+17]. In this work, we have explained how SMPI could
be used to efficiently emulate HPL. The proposed approach only requires minimal
code modifications and applies to any application whose behavior does not strongly
depend on data-dependent intermediate computation results. Although HPL is not
a real application, it is quite optimized from an algorithmic point of view and its
behavior can be controlled through 6 different parameters (granularity, geometry
of the virtual topology, broadcast/swapping/factorization algorithm, and the num-
ber of concurrent iterations). HPL features classical optimization techniques such
as heavily relying on MPI_Iprobe to overlap communication with computations,
making it particularly challenging both in terms of tuning and simulation.

We present in Chapter 6 an extensive validation study which covers the whole
parameter space of HPL. Our study emphasizes the importance of carefully modeling
(1) the platform heterogeneity (not all nodes have exactly the same performance),
(2) the short-term temporal variability (e.g., system noise) for compute kernels
as it may propagate in communication patterns, and (3) the complexity of MPI
(performance often wildly differs between small and large messages and between
intra-node and extra-node communications). We show that disregarding any of
these aspects may lead to wildly inaccurate predictions even on an application as
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regular as HPL. By building on a few well-identified micro-benchmarks of the BLAS
and MPI, we show that these aspects can be modeled accurately, which allows us
to systematically predict the overall performance of HPL within a few percent. Our
experimental results span over two years and we report situations (in Sections 6.4
and 6.5) where the simulation helped us to identify performance regression or
anomalies incurred by the platform when the prediction did not match the real
experiments.

We show in Chapter 6 how this faithful surrogate can be used to evaluate the
significance of application parameters and tune them accordingly solely through
simulations. We also propose a generative model for the compute nodes’ performance
that can easily be fit from daily measurements and used to produce synthetic
platforms similar to the ones at hand. We demonstrate in Chapter 7 how this model,
which allows us to easily control temporal and spatial variability, can feed our
simulations to assess the impact of variability on the performance of the application
or of mitigation strategies (e.g., the eviction of the slower nodes). Likewise, the
simulation makes it possible to assess precisely the influence of the physical network
on the overall performance. Most of these what-if studies would be particularly
difficult to conduct through real experiments because of the difficulty to finely
control the platform. This is to the best of our knowledge one of the first sensitivity
analyzes of a real HPC code accounting for platform uncertainty.

As future work, building on the effort of SimGrid developers on supporting the emu-
lation of a wide variety of applications with SMPI [SG19], we also intend to conduct
similar studies with other HPC benchmarks (e.g. HPCG [DHL15] or HPGMG [F
A+14]), real applications (e.g. BigDFT [Gen+08]) and larger infrastructures. As
explained in this thesis, a good model of compute kernels and the MPI library is es-
sential. Therefore, the main challenge for systematic use of our simulation technique
now lies in the automation of measurements through well-designed experiments and
the automatic detection of when the envisioned models miss essential characteristics
of the platform (multi-modal behaviors, heteroscedasticity, discontinuities,. . . ). We
intend to provide a fully automatic calibration procedure for MPI as well as for every
BLAS function, which would allow us to effortlessly predict the performance of many
applications by simply linking against a BLAS-replacement library.

This work has required many experiments, notably for measuring the durations of
the MPI and BLAS functions and for performing real executions of HPL. In Part II,
we will present the difficulties that were encountered while doing these experiments
and how they were overcome.
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Part II

Experimental control





Experimental testbed and
experiment engines

9

9.1 State of the art

9.1.1 Grid’5000

Nearly all the experiments presented in this document have been carried out on the
Grid’5000 [Bal+13] testbed. Quoting its official website1: “Grid’5000 is a large-scale
and flexible testbed for experiment-driven research in all areas of computer science,
with a focus on parallel and distributed computing including Cloud, HPC and Big
Data and AI.” It provides dozens of clusters, each one having between 2 and 124
homogeneous compute nodes. There is a high diversity of hardware, including
several generations of Intel processors available, AMD and ARM processors, GPU,
persistent memory (PMEM) as well as high-performance networks such as Infiniband
or Omni-Path. Another important feature is the ability for the experimenter to get
full control on the nodes, as it is possible to deploy a new operating system and
therefore to gain superuser access.

9.1.2 Experiment engines

While it is possible to run a complete experiment on a testbed like Grid’5000
by manually issuing commands in an interactive shell, it is not advisable as it
quickly becomes extremely tedious and error-prone. Automating the experiment
is a necessary condition for reproducible results. A first step toward this goal is
to write some ad hoc script. However, two independent experiments might still
share many steps that could be refactored in a common layer, e.g. OS deployment,
package installation, or even more advanced features like node instrumentation or
environment logging.

1https://www.grid5000.fr/
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For these reasons, it is a common practice to use an experiment engine. Buchert et al.
describe the features of eight different engines [Buc+15]. To the best of our
knowledge, only three offer a native support for Grid’5000, namely expo, XPFlow and
execo. Unfortunately, expo and XPFlow are now longer maintained, the last commit
in their respective repositories was done on November 2014 and September 2015
For these reasons, the experiment engine execo [Imb+13] is often recommended to
Grid’5000 newcomers.

Experiments with execo are described as a Python script. We believe this is one of
its best qualities, as it offers a lot of freedom and flexibility to the experimenter, com-
paratively to other experiment engines that use custom domain specific languages
(DSL). Yet, we made the choice to not use it. The main reason is that a typical
execo experiment uses many low-level constructs that are really cumbersome and
unintuitive to write and read. Section 9.2.2 presents a comparison between the
approach we implemented and execo. Furthermore, execo lacks many important
features, like node instrumentation and metadata collection, i.e. we would still have
needed to implement many functionalities on top of execo.

9.2 Yet another experiment engine: peanut

9.2.1 Key features

We implemented our own experiment engine, named peanut [Cor21c]. It comes as
a Python library that experimenters can use to write their own experiments, also as
a Python script.

A new experiment can be defined by inheriting from the class Job. Three methods
can be overridden: setup, run_exp and teardown.

Once the experiment is written, it can be launched in a single command line. The
following steps will happen:

• Implicitly, submit a job with the given characteristics (e.g. cluster, number of
nodes, wall time, etc), then deploy the given OS image.

• Implicitly (but optionally) enable or disable some performance functionalities
like hyperthreading, turboboost, C-states.
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• Implicitly (but optionally) instrument the nodes to collect at a regular interval
some system metrics (e.g. core frequencies and temperatures, CPU power
consumption, network traffic, memory consumption).

• Implicitly (but optionally) run the stress command on all the nodes to warm
them up.

• Run the methods setup, run_exp and teardown in that order.

• Produce a zip archive containing relevant results and metadata. The exper-
imenter can explicitly add any file to the archive. In addition, the following
content is also implicitly archived:

– Metrics collected with the aforementioned instrumentation.

– Human-readable log of the commands issued during the experiment.

– Machine-parsable log of the commands (in JSON format) with their
timestamps and output (both stdout and stderr).

– Machine-parsable file (in Yaml format) containing relevant information
like the exact versions used for peanut, gcc, MPI and the Linux kernel,
the command line that was used to launch this experiment, the cluster
and the list of nodes, start and end timestamps for each of the three main
methods, the list of the git repositories cloned during this experiment
with their remote URL and the git hash of the checkout.

– For each node, the content of the file /proc/cpuinfo as well as the output
of the commands env, lstopo, lspci, dmidecode, lsmod, dmesg.

In addition, the experiment can be executed interactively in a Python terminal. All
the implicit functionalities described previously can also be explicitly called (e.g.
there are methods disable_hyperthreading, start_monitoring and perform_stress).

An experiment can be parameterized by two means:

• An installation file. This is a Yaml file that can be used to describe how the
setup phase should be done. Typically, it can contain the desired version for
different libraries like OpenBLAS or OpenMPI, but also the duration of the
warm-up or the frequency of the monitoring.

• An experiment file. These can be of any kind. A typical use case is to provide
a CSV file where each line is a particular piece of the experiment (e.g. an
individual call to dgemm) and the columns represent the parameters for these
experiments (e.g. the sizes M, N and K used by dgemm).
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9.2.2 Comparison with execo

In this section, we use a small example to illustrate key differences between peanut
and execo. The goal is to write an experiment that will take several nodes on a given
Grid’5000 cluster, compile the CRoaring library2 and run one of its benchmarks.

First, Listing 9.1 shows such an experiment using execo. It should be executed as:
python script.py

1 import execo
2 import execo_g5k as g5k
3

4 site = ’grenoble’
5 cluster = ’dahu’
6 nodes = 2
7 time = ’00:20:00’
8 image = ’debian9−x64−base’
9

10 if __name__ == ’__main__’:
11 query = "{cluster in (’%s ’)}/nodes=%d,walltime=%s" % (cluster, nodes, time)
12 [(jobid , site )] = g5k.oarsub([(g5k.OarSubmission(resources=query, job_type=’deploy’), site)])
13 if jobid:
14 print( ’Created job %d’ % jobid)
15 g5k.wait_oar_job_start(jobid, site )
16 node_list = g5k.get_oar_job_nodes(jobid, site)
17 g5k.deploy(g5k.Deployment(node_list, env_name=image), check_timeout=180)
18 print( ’Terminated deployment’)
19 execo.Remote(’apt update −qq’, node_list).run()
20 execo.Remote(’DEBIAN_FRONTEND=noninteractive apt install −qq −y build−essential make git cmake

’,
21 node_list) .run()
22 execo.Remote(’git clone https://github.com/RoaringBitmap/CRoaring.git CRoaring &&\
23 cd CRoaring && git checkout v0.2.66’, node_list) .run()
24 execo.Remote(’cd CRoaring && mkdir −p build && cd build && cmake .. && make −j’, node_list).run()
25 print( ’Terminated installation ’ )
26 p = execo.Remote(’cd CRoaring && ./build/benchmarks/real_bitmaps_benchmark ./benchmarks/

realdata/census−income’,
27 node_list) .run()
28 for proc in p.processes:
29 print(proc.host.address)
30 print(proc.stdout)
31 print( ’Terminated experiment’)
32 g5k.oardel([(jobid, site )])

Listing 9.1: Small experiment example using execo.

2https://github.com/RoaringBitmap/CRoaring
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This script, albeit fairly small, is already difficult to read in some places. For instance,
in lines 11-12, one has to write a complex query as a string as follows:

OarSubmission("{cluster in (’dahu’)}/nodes=2,walltime=00:20:00")

It would be much more pleasant to write it as follows:

OarSubmission(cluster="dahu", nodes=2, walltime="00:20:00")

Now, Listing 9.2 demonstrates how the same experiment can be rewritten using
peanut in a much more concise and readable way.

It should be executed as: peanut script.py run tocornebize \
--deploy debian9-x64-base --cluster dahu --nbnodes 2 \
--walltime 00:20:00

1 import peanut
2

3 class MyExperiment(peanut.Job):
4 def setup(self ):
5 self . apt_install ( ’ build−essential ’ , ’make’, ’ git ’ , ’ cmake’)
6 self . git_clone( ’ https://github.com/RoaringBitmap/CRoaring.git’, ’CRoaring’, checkout=’v0.2.66’)
7 self .nodes.run(’mkdir −p build’, directory=’CRoaring’)
8 self .nodes.run(’cmake .. && make −j’, directory=’CRoaring/build’)
9

10 def run_exp(self):
11 output = self .nodes.run(’./build/benchmarks/real_bitmaps_benchmark ./benchmarks/realdata/census

−income’,
12 directory=’CRoaring’)
13 for node, result in output.items():
14 print(node.host)
15 print( result .stdout)

Listing 9.2: Small experiment example using peanut.

The script is not only half as long, it is also arguably much easier to read. Further-
more, it accomplishes a lot more than Listing 9.1, as it produces a peanut archive
that contains all the metadata related to the experiment.

9.2.3 EnOSlib, a promising alternative

A recent experiment engine, called EnOSlib [Sim18], appears to be promising. It
is a Python library that allows an easy deployment and execution of experiments.
The experiment scripts written with EnOSlib are concise and readable, thanks to
well-designed abstractions. Compared to peanut which has been solely implemented
and used for the Grid’5000 platform, EnOSlib offers multiple backends. One issue is
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that it currently does not support the archive building of peanut with the automatic
collection of experiment data and meta-data.

At the time we started working on peanut, we did not know about EnOSlib, which
was at its early stage of development and not yet advertised. Today, we believe it
would be better to join forces and port the main features of peanut in EnOSlib.
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On the difficulties of
experimentation

10

Suppose some researcher wants to evaluate the memory bandwidth of their laptop.
A first way to answer this question could be to write a small program that allocates a
buffer, then write some data on this buffer with the memset function while measuring
the duration of this operation. The problem is that the time taken to make this
memory write may not be representative. The following writes would very probably
have different durations due to cache effects. Therefore, it would be better to make
several measures that should then be carefully analyzed (maybe simply taking the
average, or perhaps there are some outliers that should be removed). However, by
doing so we only measure the performance of a write for a given size. The effective
bandwidth could be very different with a smaller or a larger buffer. The natural
solution here is to repeat these sequences of measures for several sizes.

A general advice shared by experimental scientists in such situations is to randomize
the experiments. In general, this randomization should happen for:

• The parameter space (in this example, the set of sizes that are evaluated).
The goal is to avoid bias, for instance sizes that are a power of two may lead
to a different performance. Note that in some occasions, as this chapter will
illustrate, it is desirable to bias the experiment towards some particular values.

• The experiment order (in this example, the order of the sizes). The rationale
here is to avoid temporal perturbations. In particular, there are often at least
two phases, a load build up which converges toward a steady state. There
can also be changes that happen once the steady state is reached, e.g. caused
by some external source. By randomizing the order of the experiments, it
becomes much easier to recognize an eventual temporal perturbation simply
by plotting the data.

In this chapter, we will discuss several lessons learned for conducting faithful
experiments, most of the time the hard way.
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10.1 Experimental setup

All the experiments presented in this chapter share a common setup. They have
been repeated on several nodes with peanut and follow the same steps:

1. Deploy and install a fresh OS on the node.

2. Run the stress command for 10 minutes to warm the node.

3. Start a background process [CM21] to monitor the core frequencies and
temperature every second.

4. On each core, run a custom code [SG21] to measure the durations of a
given operation (either dgemm or several MPI functions, depending on the
experiment).

Unless specified otherwise, we used nodes from the dahu cluster from Grid’50001.
Each of these nodes has two Intel Xeon Gold 6130 CPU, which are 16 core CPU from
the Skylake generation. They have a base frequency of 2.1 GHz and a turbo frequency
of up to 3.7 GHz, but their turbo frequency is limited to 2.4 GHz when their 16 cores
are active and in AVX2 mode2. We have used OpenBLAS [OpenBLAS] version 0.3.1
and OpenMPI [OpenMPI] version 2.0.2 compiled with GCC version 6.3.0 on a
Debian 9 installation with kernel version 4.9.0.

10.2 Defining the parameter space

Two families of experiments are discussed in this chapter: (1) MPI operations such
as calls to MPI_Recv or MPI_Send, their duration is proportional to S, the size of
the buffer that is being communicated, and (2) calls to the dgemm function, whose
duration is proportional to the product of the sizes MNK but also depends on
individual interactions of those sizes.

An experiment consists in a sequence of calls to the function of interest, with various
sizes as parameters. The goal of this section is to discuss how and why the parameters
of these sequences are generated.

1https://www.grid5000.fr/w/Grenoble:Hardware
2https://en.wikichip.org/wiki/intel/xeon_gold/6130
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10.2.1 MPI communications

If we assume that the duration of a communication is linear in the amount of data
being sent, the easiest way to sample the data is to only measure two sizes, one
very small buffer (e.g. 1 B) and one very large buffer (e.g. 1 GB). To avoid any bias,
we could even try several small and large buffers with slight differences in their
respective sizes. However, we saw in Part I that this linearity assumption does not
hold, there are large discontinuities. We therefore need to also sample sizes between
the two extreme values to (1) make sure that all the breakpoints are visible in our
dataset and (2) perform one linear regression in each linear zone.

Given this requirement, the natural sampling method would be a uniform sampling,
taking S ∼ U

(
1, 109). However, in our experiments, we found out that the break-

points are not uniformly spread, but rather exponentially. For instance, the MPI_Send
on the dahu cluster has four breakpoints: 8.14 kB, 34.0 kB, 63.8 kB and 285 MB. If
the sizes of the experiment were uniformly sampled, we would very probably miss
the smaller breakpoints: by sampling uniformly and independently 1000 numbers
in the interval [1, 109], the probability to have at least one number smaller or equal
to 105 is a bit less than 10 %. The reason for these exponentially spread breakpoints
likely comes from the hardware. Typically, each layer of the memory hierarchy is
one order of magnitude larger than the previous layer. For instance, each core of a
dahu node has 32 KiB L1 instruction and data caches and one 1 MiB L2 cache. Then,
the 16 cores of a same CPU share a 22 MiB L3 cache and a 93 GiB memory.

For these reasons, we made the choice to sample the sizes exponentially in the
considered interval. More precisely, each size S is sampled as:

S ∼ 10U(0,9)

10.2.2 Function dgemm

The situation is different with the dgemm function. We did not observe any breakpoint
in the performance plots as for the MPI communications. Hence, we did not have
any reason to use an exponential sampling. A first solution would therefore consist
in taking M = N = K and sampling the product MNK uniformly in some interval.
This could be sufficient for a simple linear regression with only one parameter, but
as discussed in Part I we need several coefficients of the polynomial. For this reason,
we have to cover a larger zone of the parameter space.
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Two options have been considered. Suppose we would like the three sizes M,N,K

to be smaller or equal to some constant Σ and their product MNK to be smaller or
equal to some other constant Π.

Independent sizes Each of the three sizes M , N and K is sampled independently
and uniformly in the desired interval:

1. M ∼ U (1,Σ) and N ∼ U (1,Σ) and K ∼ U (1,Σ)

2. Repeat until MNK ≤ Π

3. Return (M,N,K)

This is the easiest method to implement. With this approach, the product
MNK is not uniform, it is heavily skewed towards the small values. Addition-
ally, we use rejection sampling to make sure that the product of the sizes does
not get too large.

Uniform product We start by sampling the size product P uniformly in the desired
interval, then the sizes M , N and K are sampled randomly to get (approxi-
mately) the correct product:

1. P ∼ U (1,Π)

2. A ∼ U
(
1, 3√P

)
3. B ∼ U

(
1,
√

P
A

)
4. C = P

AB

5. Repeat steps 2 to 4 until A ≤ Σ and B ≤ Σ and C ≤ Σ

6. Return the six possible permutations: (M,N,K) = (A,B,C), (C,A,B), . . .

The goal of returning all the permutations of the sizes is to avoid any bias in
the sampling procedure, since they are not generated independently of each
other. We also use rejection sampling to make sure that one of the sizes does
not get too large.

These two generation methods are illustrated in Figure 10.1. A list of 100,000 size
tuples was sampled with each approach.

The left plot shows that as expected, the product MNK appears to have a large
left-skew with the first approach and to be uniformly distributed with the second
approach. The right plot is more surprising, since the parameter M is not uniformly
distributed with the first approach. The reason is the rejection sampling, large values
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Figure 10.1.: Distribution of the product MNK and the size M with the two generation
methods. The maximal product is set to 1010 and the maximal size to 10,000.

for M are more likely to give a product MNK above the specified limit and thus to
be rejected.

Since the product MNK is the most significant factor for the duration of dgemm,
it is more natural to use a uniform distribution for this term, we therefore made
the choice to use the second approach for generating experiment files for the dgemm
experiments, with two minor modifications:

• Instead of sampling the product uniformly with MNK ∼ U (1, S), we made
the choice to use a quasi-random approach. We first compute γ different values
that are uniformly but deterministically spread in the given interval, i.e. we
compute the set

{
S, S − S

γ , S − 2Sγ , . . .
}

(typically, γ = 30). Then we add a
random noise independently to each of these sizes. The goal is to ensure a
similar (yet still random) distribution of the products MNK each time we
generate a new experiment file. This approach is similar to Latin hypercube
sampling (LHS).

• In addition of the size tuples randomly generated, we systematically add a few
tuples to the list, like (1, 1, 1) or (2048, 2048, 2048). The goal is to ensure that
we have a few identical calls to dgemm in every experiment, in case we want a
fine comparison.
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10.3 Randomizing the order

The network model in SMPI needs to be instantiated with a careful calibration of
the MPI communication performance, as presented by Degomme et al. [Deg+17].
This was done with an MPI program created by the Simgrid team that performed a
sequence of measures with two hosts. Several kinds of measures were implemented:
the recv (a call to MPI_Recv with waiting to avoid late senders), the isend (a call to
MPI_Isend), the pingpong (a call to MPI_Send followed by a call to MPI_Recv to get
the round-trip time) as well as several more minor MPI primitives.

read the sequence of sizes S1, typically |S1| ≈ 1000;
S2 := S1 · S1 · · · · · S1︸ ︷︷ ︸

N concatenations, typically N≈50

;

for each kind of measure (recv, isend, pingpong, etc.) do
for s ∈ S2 do

perform the measure K ≈ 10 times and output each individual duration

Although the sequence of sizes S1 is a random sequence, there are still two obvious
biases in this experiment. First, the final sequence S2 is a concatenation of several
instances of S1, so the same (random) order will be used in these N runs. Then, the
different kind of measures are performed one after the other.

In a first step towards a better methodology, we started by shuffling entirely the
sequence S2 after the concatenation. The observed durations for function MPI_Recv
with both methods are presented in Figure 10.2. There is no obvious difference here,
in both cases the duration is piecewise linear in the message size and several modes
are present for the small and medium messages.

To compute a network model for SMPI, we need to perform a (segmented) linear
regression on this data. One assumption for the simple least-square regression is
that the noise should be normally distributed, which is clearly not the case with
our dataset, the noise is multi-modal. One simple solution for this is to compute
the average duration for each message size, which all have many measures (500 in
this figure). With the central limit theorem, assuming that the measures for similar
message sizes are independent and identically distributed, their sample average is
normally distributed. This means that by averaging the data, we should get a normal
noise which would allow us to compute a linear regression.

The aggregated data is presented in Figure 10.3. With the shuffled experiment
(right plot), the average durations have a single-mode, as expected. However,
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Figure 10.2.: The duration of MPI_Recv is piecewise linear, with several modes for small
messages.

Figure 10.3.: The average durations of MPI_Recv in the non-shuffled case still show several
modes, which should not happen according to the central limit theorem.
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in the non-shuffled case (left plot), at least two modes are clearly present. This
contradicts the conclusion of the central limit theorem, thereby threatening the
analysis of the experiment. This is confirmed by Figure 10.4, where we zoomed on
a few distinct message sizes between 700 B and 800 B. Each point is the duration
of an individual call to MPI_Recv, the crosses represent the average durations. In
the shuffled experiment, on the right, the duration distributions are similar for all
message sizes, with two modes clearly identifiable and the average in between. In
the non-shuffled case, on the left, the durations of three message sizes are different,
namely 703 B, 767 B and 779 B. For these three calls, the distributions have only
one mode, so their average durations are significantly shifted. The assumption of
identical distribution for these different message sizes is clearly not satisfied here.

Figure 10.4.: Distribution of the MPI_Recv durations for six different message sizes between
700 B and 800 B. The durations are not identically distributed in the non-
shuffled case. Durations truncated to 4 µs for a better readability.

Since shuffling correctly the experiments prevents the occurrence of this issue, a
possible reason could be that the individual calls to MPI_Recv are not truly indepen-
dent. The sequence before the calls for the sizes like 703 B, 767 B or 779 B would
lead to particularly good conditions and thus an excellent performance, which does
not systematically happen in the shuffled case because of the proper randomization.
However, we could not identify anything suspect regarding the message sizes of the
calls made just before these high-performance calls. Some of them had messages of
a few bytes, some others had messages of several hundreds kilobytes.

In Figure 10.5, we present the temporal evolution of the durations for the calls to
MPI_Recv made with the sizes presented in Figure 10.4. In the non-shuffled case,
we can identify a temporal pattern. During the first 20 seconds of the experiment,
the calls with sizes 705 B, 741 B and 782 B (in orange) have durations above 2 µs for
a large fraction of them, only a small part have durations below 1.5 µs. After the
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20-second timestamp, this suddenly changes, there are at least two time windows
where all these calls have a low duration. Even outside these time windows, a much
larger fraction of these calls have low durations. This temporal pattern is not visible
in the other cases.

Figure 10.5.: Temporal evolution of the MPI_Recv durations for six different message sizes
between 700 B and 800 B. A temporal pattern can be observed. Durations
truncated to 4 µs for a better readability.

Another view of the non-shuffled experiment is presented in Figure 10.6. Now all
the calls with a size lower than 1 kB are shown, but only a small fraction of the
whole experiment is displayed. The calls to MPI_Recv can be divided into two groups
depending on their durations, lower (in green) or greater (in orange) than 1.7 µs.
The rug plot on the top of the figure highlights the position in time of each of these
MPI_Recv calls. Although there are slow and fast calls uniformly distributed during
this time window, there appears to be some clusters where nearly all the calls are of
the same kind.

A possible explanation for such a temporal pattern could be an external perturbation
that happens at a regular interval. Since we are measuring very small durations, the
culprit would be a short but frequent noise (e.g. a system daemon). This is very well
explained by Petrini et al. [PKP03]:

Substantial performance loss occurs when an application resonates with
system noise: high-frequency, fine-grained noise affects only fine-grained
applications; low-frequency, coarse-grained noise affects only coarse-
grained applications.

A similar temporal pattern can be observed in the shuffled experiment. However,
since the order of the sizes is completely random, it affects them all equally.
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Figure 10.6.: Temporal evolution of the MPI_Recv durations for all the sizes between 1 B
and 1 kB during a 0.2 s time window of the non-shuffled experiment. Another
temporal pattern can be observed. Durations truncated to 4 µs for a better
readability.

Later on, we went a step further in improving the methodology of this experiment
by also randomizing the outer loop, i.e. the measures are now shuffled, there are
pingpong measures between isend and recv measures and vice-versa. This change
did not bring any noticeable effect on our observations.

The experiments described in this section were performed in 2018. Two years
later, we were unable to replicate this phenomenon, despite using the same MPI
implementation and an identical cluster: the averaged data has a single mode, even
in the non-shuffled case. We cannot state with certainty the reason this behavior
disappeared. It could be due to a change in our calibration program, or on the
platform itself. This motivates the implementation of performance non-regression
tests, as discussed in Chapter 11.

10.4 Randomizing the sizes

The calibration measures for the dgemm function are done with a random sequence
of tuples, as discussed in Section 10.2.2. This sequence is properly shuffled, so we
eliminated the possible experimental bias discussed in Section 10.3. In this section,
we will approach two difficulties that were encountered with the sizes themselves
(as opposed to the order of the sequence).
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10.4.1 Effect of the experiment file

Through the numerous dgemm calibrations that were performed, we eventually
realized that the set of sizes used for the experiment had a significant effect on the
statistical model obtained with these measures. To demonstrate this effect, we have
generated three different experiment files using exactly the same generation method
described previously. These three experiments, named A, B and C, were repeated
several dozens of times during a weekend in a random order. They have been carried
on 8 different nodes of the dahu cluster, for a total of 16 different processors, the
results are extremely similar for all of them.

The average dgemm performance observed in each experiment is reported in Fig-
ure 10.7. Some performance variability can be observed, the most efficient runs
are approximately 3 % faster than the least efficient ones. A large fraction of this
variability appears to be significantly caused by the experiment file, since all the
runs made with file C have a higher performance than those made with file B, which
are themselves more efficient than those made with file A. Thanks to the proper
randomization of the experiments, we can rule out any temporal bias.
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Figure 10.7.: Average performance observed on CPU 1 of dahu-5, each point represents
one experiment. A significant part of the variability is due to the choice of the
experiment file.

The effective performance is not the only aggregated metric affected by the choice of
the experiment file. The distributions of two regression coefficients are represented
in Figure 10.8, namely the coefficients corresponding to the products MNK and
NK (the effect of the experiment file on the coefficients for MK and MN is
extremely similar to NK). It appears here that the experiment file causing the
highest performance gives the highest cubic coefficient and the lowest quadratic
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Figure 10.8.: Distribution of two of the regression parameters for CPU 1 of dahu-5, each
point represents one experiment. The experiment file has a clear effect on the
generated model.

coefficients. In other words, this means that with this experiment file, a larger
fraction of the dgemm durations is explained by the cubic coefficient.

These observations suggest that experiments A and B may be less cache-friendly than
experiment C, since in a matrix product the number of arithmetic operations grows
cubically with the size of the input whereas the number of memory accesses grows
quadratically.

A non-aggregated view of the data is presented in Figure 10.9, each point represents
one individual call to dgemm. It appears that most of the calls in the three experiments
have extremely similar durations for a given product MNK. However, a small
fraction of the dgemm calls were significantly slower than the others with experiments
A and B. All these calls have are for a tall and skinny matrix, with K ≥ 3000, which
corroborates the hypothesis of a bad cache utilization.

A final argument towards this hypothesis is presented with Figure 10.10, the average
DRAM power consumption during each run is presented. Similarly to Figure 10.7,
there is a clear difference between the three experiments that cannot be explained
by any temporal perturbation. Experiment C, which was the fastest, has the smallest
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Figure 10.9.: Durations of individual dgemm calls for CPU 1 of dahu-5. Several calls have
significantly longer durations than others. Identical black line on the three
plots, with slope 6.7× 10−11.
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Figure 10.10.: Average DRAM power consumption observed on CPU 1 of dahu-5, each
point represents one experiment.

DRAM power consumption. This suggests that the memory was used less intensively
with this experiment, i.e. there was a better cache utilization.

In this section, we compared several dgemm experiments performed with three sets of
sizes. These sets have been generated according to the same statistical distribution,
yet they lead to significantly different dgemm models. We would like to stress that
this discrepancy of the resulting models is due to a difference in the experimental
conditions and not (only) to a statistical artifact. We proposed the hypothesis of
a poor cache utilization, but other possibilities should not be dismissed, since this
study was only observational. Our hypothesis would need to be confirmed or refuted
with a properly designed experimental study.
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10.4.2 Effect of the experiment file generation method

Section 10.4.1 has shown that the experiment file had a significant impact on the
experimental conditions which affected the resulting statistical model. We generated
three different sequence of sizes using the uniform product method and performed
several runs with each of these sequences.

Now, we investigate briefly the effect of the generation method itself. We compare
the independent sizes and the uniform product methods described in Section 10.2.
For each of these methods, we generated several experiment files and performed
one run with each of these files.

Although there is a large variability, which is due to the use of several experiment
files, it appears that the two generation methods lead to significantly different
experimental conditions, as shown by Figure 10.11. With the uniform product
method, dgemm average performance is higher and the DRAM power consumption is
lower.
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Figure 10.11.: Average dgemm performance and power consumption observed on CPU 1 of
dahu-5, each point represents one experiment.

10.4.3 Effect of calibrating with a fixed size

In the experiments described in Section 10.4.1 and Section 10.4.2, the three dgemm
parametersM , N andK can take arbitrary values, to avoid any bias. One of the main
reasons we make such measures is to generate a statistical model of dgemm durations
for simulating HPL. For this model to be faithful, the experimental conditions of
our measures must be as realistic as possible compared to what happens during
HPL execution. However, nearly all the dgemm calls performed in HPL use the same
value for the parameter K, equal to HPL block size (i.e. the parameter NB). For this
reason, biasing the calibrations by using a fixed value for K could help to improve
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the simulation accuracy. This section investigates the question. We have generated
five sets of experiment files:

Random This is the usual uniform product generation procedure already discussed
in previous sections.

Fixed K We modified the uniform product procedure to have a constant value for
K. We generated three sets of files, with K = 128, K = 256 and K = 512.

Several fixed K We modified the uniform product procedure to have the value of K
chosen randomly in {128,256,512}. This is equivalent to concatenating three
files generated with the fixed K method and then shuffling the resulting file.

For each of the five experiment kinds, we have generated several dozens of experi-
ment files. Then, we performed one experiment with each of these files in a random
order during a weekend on two nodes of the dahu cluster for a total of four different
processors. Again the results are similar for all of them, so we will focus on a single
processor.

Figure 10.12 presents the observed dgemm performance with the five experiments.
We can observe that again, the generation method for the size sequence has an
enormous effect on the experiment. First, using a fixed value for K reduces very
significantly the inter-run performance variability. The average performance is also
greatly affected, it is the highest with K fixed to 128, the lowest with K fixed to
256 or 512 or with the random generation, and it is intermediate with K randomly
sampled in {128, 256, 512}.
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Figure 10.12.: Average dgemm performance observed on CPU 1 of dahu-5, each point repre-
sents one experiment.
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The monitoring data collected during the experiments also reveals interesting dif-
ferences. The average CPU frequency is reported in Figure 10.13. It appears that
the frequency is the highest with K = 128 and with the random experiment. It is
significantly lower with K chosen randomly among the three sizes, and even lower
with K = 256 and K = 512. Interestingly, there is a positive correlation between the
frequency and dgemm performance, but the random experiment is a clear exception
as it leads to a relatively low performance and high frequency.
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Figure 10.13.: Average CPU frequency, observed on CPU 1 of dahu-5, each point represents
one experiment.

The average CPU power consumption, presented in Figure 10.14, is particularly
notable, and peculiar. The random experiment has a power consumption sig-
nificantly lower and more variable than the four other experiments that are all
extremely stable, with nearly no inter-run variability. This observation is very
counter-intuitive, since the CPU power consumption is in general proportional to
the CPU frequency [Hei+17]. This only happens on the CPU 1 of the two nodes we
tested, the power consumption of the CPU 0 is extremely stable and similar for the
five experiment kinds.

The five experiments exhibit very different average DRAM power consumption, as
depicted in Figure 10.15. The experiment with K = 128 is the most energy-hungry,
followed by the experiment with K ∈ {128, 256, 512}, then the experiments with
a random K, K = 256 and K = 512. It is interesting to note that the experiment
with the highest DRAM power consumption is also the one with the highest average
dgemm performance, which is the opposite of what was observed in Section 10.4.1.
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Figure 10.14.: Average CPU power consumption, observed on CPU 1 of dahu-5, each point
represents one experiment.
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Finally, the performance of individual dgemm calls are presented in Figure 10.16. We
made the observation earlier that there was much less inter-run variability when the
value of K was fixed. This plot shows that there is also significantly less intra-run
variability. Furthermore, we can compare the performance of dgemm for a given value
of K. With K = 128, the performance is higher in the experiment where all the calls
are done with K = 128 than in the experiment with K ∈ {128, 256, 512}. With the
two other values, K = 256 and K = 512, this is the opposite, the performance is
higher in the mixed experiment than in the experiment with only one K value. This
shows that the durations of individual dgemm calls are not independent, one call can
be faster or slower depending on the calls previously made.

Figure 10.16.: Durations of individual dgemm calls for CPU 1 of dahu-5.

In this section, we demonstrated once again that the sampling method has an
important effect on the measured performance. This will affect any statistical model
that relies on the measured data, not because of a statistical bias, but because of
an experimental bias. Such a bias might be desirable, for instance it should help
improve the prediction accuracy of our HPL simulations. It comes at a price though,
since we need to perform a new dgemm calibration if we want to simulate HPL with
another block size.

10.5 Randomizing the data

The work presented in this section has been published as a technical report [CL19].
The content of this section is therefore a near-verbatim copy of this report.

This experiment comes, yet again, from an unfortunate phenomenon we stumbled
upon when calibrating the platform for our simulations. Our predictions were
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wrong, so we investigated further and we noticed a significant mismatch between
the durations measured with our calibration code and the durations observed in HPL.
We found out that the performance of the dgemm function depends on the content
of the matrix, which was unexpected. All the experiments described in this section
were done with matrices of fixed size 2048×2048, but the phenomenon we observed
is reproducible with any matrix size.

10.5.1 Randomization of the matrix initialization

The three matrices are allocated once at the start of the program as a buffer of
size N2 with N = 2, 048. Then, their content is initialized in three different ways,
depending on the experiment:

1. All the elements of the matrices are equal to some constant. We have tested
with three different values: 0, 0.987 and 1.

2. The elements of the matrices are an increasing sequence in the interval [0, 1].
More precisely, mat[i] = i/(N^2-1) for i in [0, N2 − 1].

3. Each element of the matrix is randomly and uniformly sampled in the interval
[0, 1].

Figure 10.17 shows the evolution of the dgemm durations during the experiment. A
clear temporal pattern can be distinguished, the performance is oscillating. Further-
more, several layers can be seen, the durations of dgemm are the highest when the
matrices are initialized randomly and the lowest when they are initialized with a
constant value. The sequential initialization is in between.

Figure 10.17.: Durations of individual dgemm calls are lower with constant values in the
matrices.
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Such an observation was unforeseen. The function dgemm implements the usual ma-
trix product with cubic complexity. The control flow of the function does not depend
on the matrix content, so we did not expect its duration to be data-dependent.

The observations we have made on dgemm performance can be explained by Fig-
ure 10.18 which shows the evolution and the distribution of the core frequencies
during the experiment. There is a clear correlation between the frequencies and
dgemm performance: the random initialization produces lower frequencies whereas
the constant initialization gives higher frequencies. A similar temporal pattern can
also be distinguished with clear oscillations.

Figure 10.18.: Core frequencies are higher with constant values in the matrices.

This experiment has been repeated on other Grid’5000 clusters, each time on at
least four distinct nodes. Table 10.1 gives a summary of our observations. Five
other clusters show a similar behavior, the performance of dgemm is higher when
the matrices are generated with a constant value. However, for five other clusters,
this phenomenon could not be observed, the matrix content had no impact on the
performance.

10.5.2 Hypotheses

Several hypotheses were discussed to explain this unexpected phenomenon.

There could be a small cache on the floating-point unit of the cores to memorize the
results of frequent operations. This could explain why the durations were higher
when the matrices were initialized randomly, but this does not explain why the
sequential initialization is in between.
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Table 10.1.: Observation of the performance anomaly on Grid’5000 clusters.

Cluster CPU Generation Release date Anomaly

nova Intel Xeon E5-2620 v4 Broadwell Q1’12 no
taurus Intel Xeon E5-2630 Sandy Bridge Q1’12 no
ecotype Intel Xeon E5-2630L v4 Broadwell Q1’12 yes
paranoia Intel Xeon E5-2660 v2 Ivy Bridge Q3’13 no
parasilo Intel Xeon E5-2630 v3 Haswell Q3’14 yes
chiclet AMD EPYC 7301 - Q2’17 no
dahu Intel Xeon Gold 6130 Skylake Q3’17 yes
yeti Intel Xeon Gold 6130 Skylake Q3’17 yes
pyxis ARM ThunderX2 99xx - Q2’18 no
gros Intel Xeon Gold 5220 Cascade Lake Q2’19 yes
troll Intel Xeon Gold 5218 Cascade Lake Q2’19 yes

This could be due to kernel same page merging (KSM), a mechanism that allows
the kernel to share identical memory pages between different processes. Again, this
would explain the difference between the random initialization and the constant
one, but not why the sequential initialization gives intermediate performance.

A last hypothesis is the power consumption of the cores. Each state change of the
electronic gates of the CPU costs an energy overhead. In the case of the constant
initialization, the registers will change less often during the execution of dgemm, in
comparison with the random initialization. Thus, with the constant initialization,
the processor cores would be able to maintain a higher frequency while respecting
the thermal design power (TDP), with the random initialization the frequency would
be throttled more aggressively and thus the performance would be lower. As for
the sequential initialization, we can imagine that we have a locality effect: nearby
elements of the matrices will have more bits in common, this would cause fewer bit
flips than the random initialization but more bit flips than the constant initialization
and thus an intermediate performance.

10.5.3 Testing the bit-flip hypothesis

To test the hypothesis that the lower frequencies are caused by more frequent bit
flips in the processor, the matrix initialization has been changed. Now, each element
of the matrix is randomly and uniformly sampled in the interval [0, 1]. Then a bit
mask is applied on the lower order bits of their mantissa. As a result, all the elements
of the matrices have some bits in common. This method is illustrated in Figure 10.19,
the mantissa of the matrix elements (in blue) is at first completely random, then we
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apply a mask so that the right-most bits (in green) become deterministic3. Several
mask sizes have been tested, from 0 (the elements are left unchanged) to 53 (the
mantissa becomes completely deterministic, all the elements are equal).

0001111111110111010000111000000010011011101110000000010001000011

exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

0001111111110111010000111000000010011011101110111111111111111111

exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

Figure 10.19.: Illustrating the effect of applying a mask on the random part of the matrix
elements.

The evolution and the distribution of the dgemm durations is plotted in Figure 10.20.
There is a very clear correlation between the mask size and the performance: the
larger the mask, the lower the duration. Similarly to the previous experiment, some
temporal patterns can also be distinguished.

Figure 10.20.: Durations of individual dgemm calls are lower with larger bit masks.

This correlation with the mask size can also be seen with the frequencies in Fig-
ure 10.21: larger masks lead to higher frequencies.

3Image adapted from https://en.wikipedia.org/wiki/Double-precision_floating-point_f
ormat
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Figure 10.21.: Core frequencies are higher with larger bit masks.

This experiment has been repeated on two other Grid’5000 clusters, ecotype and
gros. For both of them, the same observations could be made, a clear correlation
between the mask size, the frequencies and the performance.

10.5.4 Conclusion

We have shown that the performance of the dgemm function is data-dependent. The
best explanation we have for this counter-intuitive fact is an energy cost overhead
caused by bit flips inside the processor. To respect its energy budget, the CPU has to
throttle more aggressively its frequency when matrix elements are more diverse and
thus more energy consuming. This theory has been corroborated by a controlled
experiment where the elements of the matrices are initialized semi-randomly: they
all share an identical bit suffix.

To strengthen this claim further, the next steps will be to perform a similar experiment
with another compiler, another BLAS library and/or another computation kernel.
We also need to understand why some processors are subject to this phenomenon
and some others are not.

We warmly thank our colleagues who helped us find hypotheses for this performance
anomaly. In particular, Guillaume Huard suggested that the performance anomaly
may be caused by the bit flips in the processor.
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10.5.5 Related work

M. Laß, C. Plessl and R. Schade (Paderborn Center for Parallel Computing) indepen-
dently made similar observations (personal communications on 2020/09/24 and
2020/11/11). Their findings are summarized here:

• They observed that dgemm performance depended on the content of the matrix.
They also made the hypothesis that it was caused by bit-flips. To test this
hypothesis, they used the same approach, they filled the matrices with random
values with a mask applied to the lower-order bits. They observed a correlation
between the mask size and dgemm performance, which is an argument in
favor of this hypothesis. Their experiment was done using another dgemm
implementation than the one used in this work (Intel MKL) on an Intel Xeon
Gold 6148 (Skylake-SP family) from a noctua node4.

• They reproduced the same experiment on an FPGA (more precisely, a Bittware
520N PCIe accelerator card, equipped with an Intel Stratix 10 GX 2800 FPGA).
This time, the way the matrix was filled had an effect on the power consump-
tion and not the performance. This was expected since there is no DVFS on
FPGA.

• To see whether the effect was caused by the CPU arithmetic units or the cache,
they adapted a micro-benchmark5 to perform multiplications with more or
less random data, using only the registers of the CPU. They did not observe
any difference of performance caused by the data, but they did observe a
higher power consumption of 5 % with random data. This power consumption
remained under the TDP even after the increase, so the CPU frequency did not
get throttled.

Schöne et al. [Sch+19] observed a data-dependent power consumption with a
Skylake-SP processor using AVX instructions. Note that in their experiment, the core
frequency and the instruction rate were constant.

André et al. [And+20] observed in one of their experiments that limiting the uncore
frequency (i.e. the frequency of the L3 cache and the memory controller) can increase
the performance of HPL by about 1.5 %. The reason is that HPL power consumption
reaches TDP, so lowering the uncore frequency allows a higher power consumption
of the cores and thus a higher frequency.

4https://pc2.uni-paderborn.de/hpc-services/available-systems/noctua/
5https://github.com/pc2/Flops
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10.6 Beware of extrapolations

On several occasions when working on Part I, we found that our predictions were
inaccurate because of a wrong extrapolation. The measures made for instantiating
the model were made with parameters that were very different to the ones needed
when using these models in simulation. This happened at least twice, with the dgemm
function and with MPI communications.

Function dgemm The model used to be instantiated using the durations of dgemm
calls made with random arguments M,N and K, as described in Section 10.2.
The maximum value of these three parameters was 15,000. However, when
HPL is executed with very elongated geometries (e.g. a very small P or a very
small Q), it performs dgemm calls with very elongated matrices. We observed
in some experiments that M or N could take values as large as 150,000 while
the two other parameters remained rather small. In these conditions, the
durations of individual dgemm calls are much more variable, while the average
performance is slightly lower.

Functions MPI_Recv and MPI_Send In the legacy script for calibrating MPI com-
munications for Simgrid, the message size was sampled randomly, with a
maximum size of 1 MB. However, similarly to the dgemm calibration issue we
had, some communications in HPL are much larger, up to 1 GB in our exper-
iments. When increasing the maximal size, we found out that the network
performance drops very significantly at some point.

These two examples can seem obvious after the fact. Yet, they show the difficulty
of anticipating when the usage of a model will reach its limits. In both cases, we
had to instrument the HPL code to generate a trace and find that the parameters
space used in the calibration was very different from the parameter space used
during the execution. One way to limit the risk of missing such extrapolations would
be to define explicitly in the model files the parameter ranges that were used for
calibrating them. Then, during a simulation, we could raise a warning whenever a
model is used too often outside its parameter space.

10.7 Beware of experimental conditions

We already have demonstrated numerous times in previous sections that the exper-
imental conditions are of utmost importance in this work, any change can have a
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significant effect on the measures, as harmless as it may seem. In this section, we
give some details on an interaction between computations and MPI communications
we observed while working on Part I.

We compare four different scenarios for sending a message of 256 MiB with MPI.
For each scenario, we performed two experiments, one where this communication
happens locally and another one where it is done remotely. The result is presented
in Figure 10.22.

• Scenario idle. Two MPI ranks perform a simple ping-pong with the aforemen-
tioned message. Each MPI rank is bound to one core (either two cores of the
same node for the loopback communication, or two cores of distinct nodes in
the remote case). All the other cores are kept idle.

• Scenario dgemm. This one is identical to the scenario idle, except that all the
cores not involved in the communication are performing dgemm calls.

• Scenario MPI_Iprobe. The communication pattern is more elaborated in this
scenario. It uses two nodes, for a total of 64 cores. It repeats several times a
sequence of 64 steps, where at step i the MPI rank i performs a ping-pong with
the MPI rank (i+1) mod 64. This is similar to a ring broadcast, except that the
ranks perform a two-way exchange instead of one-way. All the ranks waiting
for an incoming communication are performing a busy waiting, looping on the
result of the function MPI_Iprobe.

• Scenario MPI_Iprobe & dgemm. This scenario is identical to the MPI_Iprobe
scenario, except that every rank performs a call to function dgemm between
any call to function MPI_Iprobe.

The two last scenarios may seem contrived. The goal was, again, to implement a
micro-benchmark that is as close as possible to what happens in the real application
we tried to model, HPL in this case.

The background noise we introduced had a large effect on the performance of
the ping-pong. The durations of individual calls to MPI_Recv are presented in
Figure 10.22. Making simple calls to dgemm in the background increases the remote
duration by nearly a factor 3, without affecting the local durations. The ring
communication pattern with MPI_Iprobe busy waiting increases both the local and
remote durations, although the effect remains small for the local communication.
Finally, adding dgemm calls to the busy waiting increases a lot the durations of all
communications, by adding an overhead of about 0.1 s.
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Figure 10.22.: Durations of a call to MPI_Recv with a message of 256 MiB and different
background activities.

Although we do not have a definitive explanation of the root cause of this phe-
nomenon, it is extremely important to reproduce it in the calibration benchmark if
we wish to have a faithful model.

10.8 Conclusion

A common theme to several sections of this chapter was the importance of the
randomization. It is of great help to avoid or at least limit any experimental bias.
We have presented several counter-intuitive phenomena that were only revealed
through randomization (or the lack thereof). However, in some cases, we needed
our experiments to be biased, to have more realistic experimental conditions. When
we execute a micro-benchmark that supposedly mimic a real application, the main
objective is for this micro-benchmark to be the best possible surrogate for the real
application, being unbiased is only a secondary goal.

During our work, we have been confronted multiple times to external factors that
unknowingly affected our experiments (e.g. cooling issues, BIOS upgrades). With
this kind of experimental artifacts, it can become more difficult to trust any experi-
mental results, especially in the presence of unexpected phenomena like the ones
presented here. This demonstrates the great importance of gaining back this trust
by (1) having an experiment engine to automate the entire experimental process
(thereby greatly reducing the human errors) and collect relevant information and
(2) making regular tests on the platform to detect possible changes.
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Performance non-regression
tests

11
When working on the simulations described in Part I, we occasionally encountered
inconsistent performance across different time periods. The reasons are multiple,
ranging from the hardware to the software. This motivated the implementation
of performance non-regression tests, to help us detect any noteworthy change on
the platform. In this chapter, we start by giving an overview of the existing state
of the art in Section 11.1. We then describe our contribution in Section 11.2. We
start by detailing the statistics on which rely our tests. Then, we describe how we
implemented these tests, from the experiment execution to the final test result. We
show and explain the graphical representation of our test results, and we describe
the various events we were able to detect on the Grid’5000 platform. Finally, in
Section 11.3 we propose several ways to improve this work.

11.1 State of the art

Testing is a core activity of software development. It is usually taught as early as
the first programming courses, students need to verify that their programs work as
expected. More experienced software developers generally use a wide variety of
techniques and methodologies to limit the presence of bugs.

Performance testing is less common, the main reason being that it is arguably much
more difficult than testing for correctness:

• For a performance value to be meaningful, a lot of care needs to be taken
when running the test for controlling the experimental environment.

• The result of a benchmark is a raw performance value (e.g. a duration, an
amount of memory or an amount of energy). Ultimately, the test should return
a boolean, stating whether the test was successful or failed. It is difficult
to define properly such a ground truth. One could define an interval for
the expected value, but this will most of the time be an arbitrary choice. A
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complementary solution, to ensure that the performance values remain stable
throughout the life cycle of the software, would be to use statistical tests.

11.1.1 Lack of tests

This section lists several examples of well-established software projects with limited
or even nonexistent performance testing.

Simgrid [Cas+14], the simulation framework used in Part I, is a well-established
software. In the last twenty years, several dozens of contributors have helped to
improve or extend it. Simgrid has also supported the research for several hundreds
of articles, demonstrating a wide user base (relatively to its niche area). The main
developers of Simgrid have spent countless hours in optimizing the speed of its core
components, like the linear maxmin solver. Despite these efforts, there are currently
no performance test in place to prevent eventual performance regressions.

To the best of our knowledge, even HPC libraries like OpenBLAS [OpenBLAS] and
OpenMPI [OpenMPI] do not use automated performance tests. OpenBLAS has
several benchmarks implemented1, but they rely on human intervention to run
the tests and interpret the performance results. OpenMPI has a software, named
MTT2, to automatically deploy a middleware on an infrastructure and run correction
tests as well as benchmarks. Yet again, the result of these benchmarks has to be
interpreted by a human.

SimdJSON [LL19] is a state-of-the-art C++ library to parse JSON documents ex-
tremely efficiently. It can process documents at about 2.5 GB/s, more than twice
faster than the concurrent JSON parsers. It is widely used, with more than twelve
thousand stars on GitHub. Yet, in April 2020, one of the main contributors submitted
an issue3 to report a previously unnoticed 50 % performance drop when the library
was compiled with Visual Studio 2019 instead of G++ 7.5.0. This shows that even
high performance libraries do not always have the methodology and tools to avoid
performance regressions.

1https://github.com/xianyi/OpenBLAS/tree/f917c26e/benchmark
2https://open-mpi.github.io/mtt/
3https://github.com/simdjson/simdjson/issues/812
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11.1.2 Existing work

Benchmarking software: testing code snippets

Several libraries already exist for benchmarking C++ software. Catch2 [Catch2] is
a widely used unit testing framework for C++. It also provides basic functionalities
for benchmarking code snippets. Several alternatives exist, developed specifically for
C++ benchmarking [Celero; Hayai; Nonius], but seemingly no longer maintained
and with a smaller user base.

Google Benchmark [GBench] is a C++ library to benchmark code snippets. It is
well-established with several dozens of contributors and about 5000 stars on GitHub.
It greatly facilitates the creation of parametric micro-benchmarks by adding only
a few lines to an existing code. The result can be pretty-printed in the terminal
or written in a file in a CSV or JSON format. It is even possible to automatically
compute the asymptotic complexity. Finally, they provide a script4 to compare the
results of two executions of the same benchmark, it will print the difference with a
raw value as well as a percentage. If there is a large enough number of repetitions
of these benchmarks, the script can also perform a Mann–Whitney U test to test if
the performance for these two series of runs is statistically identical.

All these libraries suffer from at least one of the following limitations:

• For a given code snippet and a given input, they will perform several iterations
and report the average duration. The user has no control on this number of
iterations which is not even deterministic, as the code snippet is executed in a
loop for a fixed period of time.

• We do not have any information on the distribution of these durations, only
the average is reported, the standard deviation is not displayed, and we do
not have any confidence interval for the estimations of the mean. Note that
this is understandable, these libraries typically start a timer, then perform the
iterations, they never measure the duration of an individual iteration. It makes
sense when measuring an extremely short code snippet that can take a few
nanoseconds, but this is more problematic in our use case where we measure
longer function calls that take at least several milliseconds.

• There is no support for randomization as the code snippets are executed in a
deterministic order. The calls to a given snippet with different parameters are
also executed in a deterministic order.

4https://github.com/google/benchmark/blob/8f5e6ae0/tools/compare.py
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• The statistical tests implemented (if any) are quite basic. There is also no
graphical visualization of the results, which would greatly help the user to
(1) better understand the outcome of the test (not everyone knows what is a
P-value) and (2) visually detect eventual differences not captured by the test
(the Anscombe’s quartet is the classical example).

• There is no support for comparing long-term performance evolution. With
these libraries, it is possible to make performance measures for a given state
of the codebase on a given machine. It is even possible to make point-to-point
comparison with Google Benchmark, i.e. to compare two states of the codebase
or two machines. However, we still miss the full picture, the variation of the
performance on a historical timeframe.

Benchmarking software: long-term performance evolution of an application

Oliveira et al. show how it is possible to implement performance non-regression
tests as part of a software development practice, akin to the usual unit tests and
integration tests for verifying the correctness of the software [Oli+17]. Their goal is
to avoid running the full benchmark whenever a new commit is made. To this end,
they perform static analysis on the binary and have a list of several indicators to
trigger a new execution of the benchmark (e.g. if the number of functions added or
deleted by the commit is larger than some threshold). Their article also presents
particularly well the state of the art, notably regression benchmarking, continuous
integration systems, regression test selection and performance bug detection in the
field.

Another interesting work is related to the StarPU project [Aug+11]. StarPU is a
state of the art C/C++ task programming library that handles task dependencies
and optimized usage of resources (heterogeneous scheduling and data transfers).
It is also possible to accurately simulate a StarPU application, using the Simgrid
simulation framework [Sta+15]. As part of their development methodology, the
StarPU team performs nightly runs of a few selected StarPU applications and mea-
sures their performance, both in reality and in simulation. The goal is to detect any
performance regression possibly introduced by a change in the software. Figure 11.1
presents the temporal evolution of the StarPU implementation of spotrf, which
computes a Cholesky factorization of a given matrix. The green line is the observed
performance in reality, the orange line is the estimation made in simulation. The
large jump on 15/12/2017 is due to a hardware upgrade. The real runs exhibit a
large variability, which are mainly experiment artifacts: some experiments were
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performed on a badly configured node which does not report the correct number
of cores, so StarPU cannot use appropriately the machine. Since the StarPU team
is interested in detecting regressions in StarPU itself and not the platform, these
simulations are extremely valuable to them, allowing them to rule out the false
conclusions that would be made by looking only at the real runs.
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Figure 11.1.: Evolution of the performance of a StarPU implementation of spotrf function,
both in reality and in simulation [TSL20].

The approach of the StarPU team is particularly interesting, because they executed
their application on a controlled environment on a near-daily basis for several years.
An important issue however is that they did not perform any statistics. They only
relied on a visual inspection of the plot to decide whether the last modifications
of their codebases had any significant effect on performance. While this can be
satisfying to some extent, it raises two concerns:

• They could miss a subtle change in the performance or detect it much later, as
it can be extremely difficult and error-prone. 5

• This does not scale well, adding more applications or running the test on more
machines would make this visual inspection very tedious.

Benchmarking systems

Other tools exist for measuring the performance of a platform under some workload.
Here, we are not interested in the execution of a given software, but rather the whole
platform, i.e. the combination of the hardware, the operating system and eventual
programs running concurrently on the system. High Performance Linpack [Pet+]

5Emery Berger uses the term “eyeball statistics”: https://youtu.be/r-TLSBdHe1A
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is such a tool. It performs a dense linear algebra operation using one or several
computers and reports the observed flop rate.

Another system benchmarking tool is stress-ng [Stress-ng]. It runs a selected work-
load for a given duration and reports various aggregated performance. Over 240
different stress tests are implemented and can be combined (e.g. it is possible to
launch three processes that perform many I/O operations and five processes that
are CPU-intensive with vectorized floating-point operations). The reported metrics
include the duration, but also the number of instructions, the number of cache reads
and writes, the number of page faults, etc. Several dozens of bugs have been found
in the Linux kernel thanks to the use of this benchmark.

These libraries suffer from the same limitations previously described: there is no
randomization when several configurations are combined, and no statistical tests
are available.

The Grid’5000 platform already has tests in place. First, a script called g5k-checks
verifies each time a node boots that its characteristics match the reference informa-
tion (e.g. the amount of memory, the BIOS version). Additionally, more extensive
tests are executed on a regular basis on all the nodes [Nus17]. These are mostly
correctness tests. They perform several operations (e.g. node deployment, network
reconfiguration) that can either succeed or fail. Two performance tests are imple-
mented, one for the network bandwidth, the other for the disk bandwidth. However,
they use threshold values to define what is an acceptable performance, hence they
will detect a severe regression but will miss more subtle changes.

11.2 Performance non-regression statistical testing

11.2.1 Statistical test basis

In this section, we describe how to compute a prediction region for multivariate
normal variables. This will then be used to implement a statistical test. This section
is mostly based on the work by Chew [Che66, Section 4.4].6

6This publication, dating from 1966, is one of the oldest papers used in this thesis. It has been written
by an employee of RCA Service Co., a contractor of the US Air Force. The author of the paper
describes the typical use case: computing the coordinates of a prediction ellipse for the splash point
of a future missile shot. I believe this is a poor usage of statistics.
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Suppose that we have already observed n vectors of dimension p: x1, . . . ,xn ∈
Rp. We define the random variable m(r) to be the sample mean of the
next (unknown) r observations: m(r) = xn+1+···+xn+r

r . We assume here
that all the xi are independent and identically distributed according to
a multivariate normal distribution of unknown mean and covariance
matrix.

Then, the prediction region of m(r) with probability γ is:

nr

n+ r
(m(r)−x)TS−1(m(r)−x) = (n− 1)p

n− p
QF (1− γ, p, n− p) (11.1)

Where x and S are respectively the sample mean and sample covari-
ance matrix of the n observed xi, and QF (α, v1, v2) denotes the upper
α quantile of F (v1, v2), the F-distribution with v1 and v2 degrees of
freedom.

We therefore propose the following statistical test for m(r) with confidence γ. First,
compute the value:

t = nr(n− p)
(n+ r)(n− 1)p(m(r) − x)TS−1(m(r) − x) (11.2)

Then, raise an error if t ≥ QF (γ, p, n− p). Note that there is no closed form for the
value QF , but it can be obtained (numerically) in R with the function qf7 and in
Python with the function scipy.stats.f.ppf8.

The proposed test is illustrated in Figure 11.2. Numerous points, in black, have
been generated according to a known bivariate normal distribution. Their abscissa
(resp. ordinate) are distributed according to a normal distribution of mean µx and
standard deviation σx (resp. µy and σy). The abscissa and ordinates of the points are
not independent, they have a correlation coefficient of -0.7. The 99.5 % prediction
regions are shown in blue. Two additional points are shown in the scatter plot,
representing new observations. The orange point has coordinates (µx+2σx, µy+2σy)
and the green point has coordinates (µx + 2σx, µy − 2σy).

If each dimension was considered independently, we would conclude that the
probabilities to observe the orange point or the green point are equal. Indeed,
these two points have equivalent positions in the one-dimension density plots and
they both fall within the 99.5 % interval. Now, when we look at both dimensions

7https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Fdist.html
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html
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simultaneously, the green point becomes much more likely to be observed as it is
within the blue ellipse while the orange point is outside.

In Figure 11.3, two sets of five additional observations are presented as colored
dots. Individually, they were all likely to be observed, they are within the dashed
ellipse representing the 99.5 % prediction region for a single point (i.e. r = 1).
However, if we consider them together, the prediction region for their averages
shrinks drastically. Now it becomes clear that the set of green points was more likely
to be observed than the set of orange points: the green average (marked by a cross)
is within the filled ellipse representing the 99.5 % region for a five-point average (i.e.
r = 5) whereas the orange average is outside.

11.2.2 Implementation workflow

This section describes the different steps and tools involved to perform the per-
formance test described in Section 11.2.1, from the execution of the experiment
on the target machines to the generation of the final plots. It discusses several
technical choices that have been made and gives some insights to their advantages
and limitations.

The workflow, illustrated in Figure 11.4, consists of three main steps. The first
one is implemented with peanut while the two others are implemented with
cashew [CL21b], a Python library implemented specifically for this task.

Experiment execution The dgemm calibration program is executed on the desired
nodes. We obtain a zip archive containing the experiment data and metadata.

Archive extraction and aggregation The data is extracted from the archive and
appended to two HDF5 files (one for the dgemm duration, one for the monitor-
ing data). Then, some statistics are computed with this new data on a per-CPU
and per-experiment basis (e.g. average dgemm performance and average CPU
temperature), these aggregated values are added to two CSV files.

Statistical test computation Several statistical tests are done on the sequence
of aggregated data. The result is presented as several Jupyter notebooks
containing plots.
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Figure 11.2.: Illustrating the proposed test with two sets of one observation (r = 1) and
a bivariate normal distribution (p = 2). The blue zones represent the 99.5 %
prediction regions.
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Figure 11.3.: Illustrating the proposed test with two sets of five observations (r = 5) and
a bivariate normal distribution (p = 2). The blue dashed lines represent
the 99.5 % prediction regions for single observations, the blue zones repre-
sent the 99.5 % prediction regions for the averages of five new observations,
represented by crosses.
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Experiment file Installation file

ZIP archives

Extraction & aggregation
- Append the raw data to the 
HDF5 database.
- Compute statistical values, 
append them to the CSV files.

Non-regression test
- Compute the test for all 
clusters and all factors.
- Upload the notebooks to the 
website.

Jupyter 
notebooks 
(website)

Process
Process

Experiment execution
- Node deployment
- Warmup stress
- DGEMM experiment
- Build & upload the archive

Performance 
data (HDF5)

Monitoring 
data (HDF5)

Performance 
data (CSV)

Monitoring 
data (CSV)

Peanut

Cashew

Figure 11.4.: Full workflow implemented by our tests.
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Experiment execution

The experiment script is written in Python and uses the peanut experiment en-
gine [Cor21c] (see Section 9.2). This is also the script used to perform the dgemm
calibrations for HPL simulation (see Part I).

On a regular basis, typically three to four times a week, we use this script to submit
new experiment jobs to Grid’5000’s scheduler. This regular submission could have
been easily automatized, e.g. with cron or systemd, but we made the choice to keep
this step manual. By inspecting the Grid’5000 Gantt chart, we can check whether
the clusters are currently heavily used or not and decide if we should postpone
our experiment to avoid disturbing too much the other users. A particularly good
timeframe for our experiments is usually between 7 a.m. and 9 a.m., when the
(longer) nightly experiments have terminated and the (shorter and interactive) daily
experiments have not started yet. We generally submit one job per cluster, requesting
all the nodes, but we sometimes have to split the experiments and make several
smaller jobs when only a subset of the nodes is free immediately. The alternative
would be to submit the full-scale job anyway, but it would get scheduled later in the
day, which might disturb other users that need to work interactively on some nodes.
Again, this kind of decisions is the reason why this step is not trivial to automatize.

When scheduled, the experiment script performs the following steps:

1. Deploy a fresh Debian image on all the nodes of the job and install the required
dependencies.

2. Apply the desired setup to the nodes (e.g. enable turboboost, disable hyper-
threading, use the lowest C-state and P-state).

3. Start the node monitoring script in the background.

4. Perform a stress of 10 min on the nodes as a warm-up.

5. Run the dgemm calls with the desired experiment file.

6. Collect the resulting data (two CSV files, one for dgemm durations and one for
monitoring values) and meta-data (system files, software versions, etc.) and
build an archive.

7. Push the archive to the git repository.
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The choice to use a git repository for storing the experiment data can seem peculiar.
Git is a very good version control system for small text files but is not the best choice
to store gigabytes of data (although we mitigated this by using git LFS). It would
have been undoubtedly more efficient to set up a proper database server for this
task, but probably longer to implement.

The dgemm CSV file contains one row for each individual dgemm call. The columns
are the hostname of the node, the core ID, the exact time at which the call was made,
the duration of the call and the dgemm parameters (including the matrix sizes M , N
and K).

The monitoring CSV file contains one row per sample, which typically happens every
5 s. The columns are the hostname of the node, the exact time at which this sample
was taken, then one column for each available metric (e.g. temperature of the CPU
n°1, frequency of the core n°6, power consumption of the CPU n°0).

Archive extraction and aggregation

Once the experiments of the day have terminated, we submit an extraction job on
Grid’5000. In the first versions of this work, this step used to be implemented with
GitLab’s continuous-integration, but this quickly revealed to be too demanding for
the runner of our GitLab instance.

The extraction job is a small script that uses cashew. It performs the following
steps:

1. Clone the git repository.

2. Iterate on all the new archives to extract the performance and monitoring data.
Append it to the two HDF5 data files.

3. Process the new additions in the data files to produce aggregated values,
append these aggregated values to the CSV files.

4. Push the changes to the git repository.

In the extraction step, we use the archive metadata to add some information to the
tables stored in the two CSV files. For instance, we add the ID of the job and its
scheduled date, the cluster of the node and a hash of the experiment file. We also
reshape the monitoring table to switch from its wide format to a long format (i.e.
each row now has a set of identifier variables and a single measure variable). These
two tables are then appended to the two hdf5 files.
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We compared several alternative file formats to store this data: a simple CSV file,
a CSV file compressed with zip, SQLite [SQLite], Apache Arrow [Arrow] and
HDF5 [HDF5] with various options. The Apache Arrow library had the fastest read
and write operations as well as the smallest file. HDF5 with the table format and
the zlib compression algorithm was the second best, the other alternatives were
largely inferior in terms of I/O speed and disk footprint. Two important features of
HDF5 made it preferable to Apache Arrow for our use case: (1) The possibility to
append data to a file. With Apache Arrow, for each new experiment we would have
to read the whole file in memory to add the new data. (2) The ability to load only a
subset of the data based on a logical predicate. For instance, it is possible to load the
measures made on a given node between two given dates without having to read
the whole file.

In the aggregation step, we summarize the data from a given experiment into a
single row for each CPU of each node. We keep the dgemm data and the monitoring
data separated. Both these files have identifier columns: cluster name, node ID, CPU
ID, job ID, experiment start time and experiment file hash. Their measure columns
are listed below:

• In the dgemm file, each row has the observed dgemm performance, computed
as the total number of flops (equal to 2

∑
iMiNiKi) divided by the total

duration. Each row also has the coefficients of the linear regression using the
full polynomial model, as discussed in Part I.

• In the monitoring file, each row has the observed mean temperature, frequency,
CPU power consumption and DRAM power consumption. To represent the
steady state of the experiment, these averages are computed on a subset of
the available values, a window starting 2 min after the start of the dgemm
calibration program and ending 2 min later.

Statistical test computation

When the extraction and aggregation of the new data is terminated, we compute
the statistical test. This is usually done in the same Grid’5000 job as the previous
step, but it can be done independently. The test does not need the full repository,
instead it automatically downloads the required files.

The implementation directly follows the formula described in Section 11.2.1. It
relies heavily on NumPy and Pandas for a better efficiency.
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Several factors are available. They are all tested independently, as a one-dimensional
variable (i.e. p = 1). For each of them, two tests are realized, one with a window of
one job (i.e. r = 1) and one with a window of five jobs (i.e. r = 5). The different
factors are:

Performance Average dgemm performance, including all calls. We recall that it
is computed as the total number of flops (equal to 2

∑
iMiNiKi) divided by

the total duration. This is not equal to the arithmetic mean of the individual
performance values.

Performance2048 Average dgemm performance, restricted to the calls with matrices
of size 2048× 2048.

Frequency Average CPU frequency during the dgemm calls.

PowerCPU Average CPU power consumption during the dgemm calls.

PowerDRAM Average DRAM power consumption during the dgemm calls.

Temperature Average CPU temperature during the dgemm calls.

Model All the parameters of the linear regression for the dgemm durations, i.e. the
intercept and the coefficients for the variables MNK, MN , MK, NK, M , N
and K. The regression parameters of the linear regression for dgemm variability
are also available.

A multi-dimensional test is also performed on the eight parameters of the linear
regression for dgemm durations (i.e. p = 8). An overview of the graphical presentation
of these test results is presented in section 11.2.4.

As for the previous step, the test is implemented with cashew and uses a Jupyter
notebook. This notebook is instantiated and executed several times, once per cluster
and per factor. All these copies are then converted to HTML and deployed to a
website.

11.2.3 On the normality assumption

The statistical test described in Section 11.2.1 assumes that the data follows a normal
distribution. In this section, we argue that all the variables described previously
satisfy this hypothesis.
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• The factors Frequency, Temperature, PowerCPU and PowerDRAM are all an
arithmetic mean of several dozens of values. It comes directly by the central
limit theorem that these averages follow a normal distribution.

• The Model factors (e.g. MNK) are coefficients of an ordinary least-square linear
regression (OLS). The input data are the averaged dgemm durations, for each
distinct tuple M,N,K, we compute the arithmetical mean of the durations
observed on all the cores of a given CPU. Thus, by the central limit theorem,
the input data has a normally distributed noise. Now, if we note X the n× 8
matrix of regressors (each of the n rows is an observation, the 8 columns
are the products MNK,MN,MK,NK,M,N and K that were used for this
observation) and we note y the vector of observed durations, the estimator of
regression coefficients β̂ can be obtained by computing β̂ =

(
XTX

)−1
XTy.

By doing this regression, we assume that y = Xβ + ε where β is the true
(unknown) vector of coefficients and ε is the normally distributed noise. It
follows that the estimator β̂ is also normally distributed.

• The factors Performance and Performance2048 are defined as a ratio of two
values, the total number of operations divided by the total duration. The
number of operations is constant, only the duration is a random variable. Since
it is itself the sum of individual durations, it follows a normal distribution, by
the central limit theorem. If we note the ratio as R = F

T+ε where F and T

are constant and ε is a random normal noise, we have R =
(
F
T

) (
1

1+ε/T

)
≈

F
T

(
1− ε

T

)
. The last approximation is obtained by the Taylor expansion, it holds

because T � ε, i.e. the variability of the total duration is small compared to its
average. Since F and T are constant and ε is normally distributed, it follows
that R is also approximately normally distributed.

11.2.4 Presentation of the test results

Evolution plot

The historical evolution of the mean performance of two nodes is presented in
Figure 11.5. Each point represents the observed performance on a given experiment.
The vertical dashed lines denote changes in the platform that had a significant effect
on at least one of the observed factors. The gray lines (with a label on bottom) are
protocol changes, we modified the experiment in a way that affected the results.
The orange lines (with a label on top) are events that happened on the platform
regardless of our will. The gray ribbon is the fluctuation interval, we expect all
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the observations to fall within this interval with a given confidence (99.99 % in this
figure). The reference set of observations used to compute this interval consists of
past observations that were made after the last change. In other words, (1) we do
not consider the observations that were made in the future and (2) each time we
recognize a change and add a vertical line, the fluctuation interval gets reset.
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(a) Performance evolution of node dahu-14.

2019-08 2020-02 2020-08 2021-02

20

25

30

35

M
ea

n 
pe

rfo
rm

an
ce

 (G
flo

p/
s)

cpu: 0
BIOS upgradepower drain BIOS upgrade

protocol protocol protocol protocol

Outlier
False
True

Weird
False
positive
negative

2019-08 2020-02 2020-08 2021-02
Date

cpu: 1
BIOS upgradepower drain BIOS upgrade

protocol protocol protocol protocol

(b) Performance evolution of node dahu-26.

Figure 11.5.: Evolution of the mean performance of the two processors of two nodes from
cluster dahu (the fluctuation interval has a confidence of 99.99 %).

The fluctuation interval for a new value m(r) (which is the sample mean of r new
observations xn+1, . . . , xn+r, note that r = 1 in Figure 11.5) follows a rewriting of
Equation 11.2 with a single dimension (p = 1). Noting x (resp. s2) the sample mean
(resp. sample variance) of the reference set, the fluctuation interval is defined as:

I = x± s
(√

n+ r

nr
QF (γ, 1, n− 1)

)
(11.3)

Whenever an observation falls outside the fluctuation interval, it is detected as an
anomaly. It is classified as either a positive anomaly and colored in red if it is larger
than the sample mean, or it is classified as a negative anomaly and colored in blue if
it is lower than the sample mean.
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It occasionally happens that a single observation is way outside the fluctuation
interval (e.g. on Figure 11.5(b), one experiment had a performance of approximately
23 GFlop/s near the end of 2020). When this happens, we manually label this point
as an outlier and remove it from the reference set: it will not be taken into account
for computing the reference interval afterwards.

Overview plot

We are running regular tests for several factors on hundreds of nodes, therefore it
would be very long and tedious to review each individual plot. For this reason, we
implemented overview plots, as presented in Figure 11.6. In this presentation, each
processor of each node occupies one row. Individual experiments are still presented
as points and the vertical gray or orange lines represent the same platform changes.
We added intermediate levels in the colors to display how unlikely it was to make
a given observation. In the one-dimension case (i.e. p = 1), this represents the
distance between the observation and the sample mean of the reference set.
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Figure 11.6.: Overview of the test result for the mean performance on cluster dahu.

More formally, this likelihood is the probability to make an observation at least as
extreme. To compute it, we use the value t defined in Equation 11.2 and define the
likelihood L as follows:

L = 1− FF (p,n−p)(t) (11.4)
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Here, FF (v1,v2) denotes the cumulative distribution function of the F-distribution
with v1 and v2 degrees of freedom. An implementation is available in R with the
function pf7 and in Python with the function scipy.stats.f.cdf8.

Windowed test

The test presented in Figure 11.6 and Figure 11.5 was done with a single factor
(p = 1), for comparing a single new observation to the reference set (r = 1). A
similar test is implemented to compare five new observations to the reference set,
still with a single factor (p = 1 and r = 5).

Figure 11.7 shows the performance evolution of two nodes of the cluster dahu with
the five experiment window. Taking the average of several runs reduces the noise.
This allows reducing considerably the width of the fluctuation interval, thereby
permitting to detect much more subtle changes. The downside is that it introduces a
lag, meaning that the change might not be detected immediately.
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(a) Performance evolution of node dahu-14.
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(b) Performance evolution of node dahu-26.

Figure 11.7.: Evolution of the mean performance of the two processors of two nodes from
cluster dahu using a window of five experiments (the fluctuation interval has
a confidence of 99.99 %).
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The overview plot with the five experiment window is displayed in Figure 11.8. The
vertical orange line on 2020/12/15 marks a platform change we noticed. On this
plot, it is very clear that the change has affected significantly a large fraction of
the nodes by increasing their performance (positive anomaly). This was slightly
visible on the non-windowed plot from Figure 11.6, but much more tenuous. This
demonstrates well the complementarity of both tests: the non-windowed test is
better for detecting quickly any large change, whereas the windowed test is best at
detecting more subtle changes but with some lag.
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Figure 11.8.: Overview of the test result for the mean performance on cluster dahu using a
window of five experiments.

Multi-factor test

We have also implemented the multidimensional test. Figure 11.9 presents the
overview plot for this test made on the eight regression parameters (i.e. p = 8, the
parameters are MNK,MN,MK,NK,M,N,K and the intercept). With several
dimensions, there is no notion of negative or positive anomaly, hence all the detected
anomalies are colored in red. Likewise, we cannot represent graphically the temporal
evolution of these eight factors like we did in the single-dimension case.
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Figure 11.9.: Overview of the test result for the eight regression parameters on cluster
dahu.

This figure should be compared to Figure 11.6, since both of them aim at detecting
changes in dgemm durations. We can notice two interesting differences:

• The first change, which happened on 2019/07/13, was detected as very
significant on all the nodes with the multi-factor test. On the other hand, the
single-factor test only marked a subset of the nodes.

• Two events have gone completely unnoticed by the multi-factor test whereas
they were reported by the single-factor test: the positive anomaly on dahu-26
from 2020/05/18, and the series of negative anomalies (that we later decided
to be outliers) between 2020/11 and 2020/12 on nodes dahu-29, dahu-30,
dahu-31 and dahu-32. The reason they went unnoticed is that a change
was registered shortly before, so the reference set had a very low number of
points. The radius of our fluctuation region is proportional to QF (γ, p, n− p),
it is obviously not defined when n ≤ p. When n is larger than p, the value
QF (γ, p, n− p) starts extremely high, then quickly decreases. Hence, although
it is defined, the test is not useful yet, we need to have a few more observations
as reference. The same problem obviously exists when p = 1, but we have to
wait longer with a larger number of parameters.
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One way to limit this issue is to limit the number of factors used in the test.
It appears that only three of the regression parameters are really significant:
MNK,MK and NK. By doing so, the multi-factor test is able to detect the
anomaly from 2020/05/18 on dahu-26, but it still misses the outliers from
2020/11-2020-12.

Website presentation

A screenshot of the landing page9 of the Grid’5000 performance tests we imple-
mented is presented in Figure 11.10. Each cluster is represented by a row, each
factor by a column. Clicking on a button will open the test notebook for the desired
cluster and factor. The last column is a drop-down menu showing all the coefficients
for the linear regression, as well as a multi-dimensional test made on the first eight
coefficients together.

Figure 11.10.: Landing page of the test website.

9The website presented here is publicly available at https://cornebize.net/g5k_test/ and
permanently archived on Zenodo [CL21c].
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(a) Parameter definitions

(d) Cluster overview (test result)

(b) Cluster distribution in the last run

(e) Historical evolution of each node

(c) Cluster overview (raw value)

Figure 11.11.: Overview of a notebook (cluster gros, average performance).

An extract of a single-factor notebook is presented in Figure 11.11. The different
parts of the notebooks are:

a This part is intended to import the required libraries and set up a few options,
but most importantly to define three variables: the desired cluster, factor(s)
and confidence.

b This is a histogram of the values obtained in the last run among the different
processors of the cluster for the desired factor. The average value as well as
the spatial variability coefficient are also displayed.

c This is an overview plot of the cluster, similar to the overview plots previously
presented. The main difference is that the colors do not encode a test result,
but the raw value. Like the histogram, it helps to visualize the heterogeneity
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of the cluster. It also demonstrates once again the utility of statistical tests:
only the most abrupt changes are visible in this plot, the more subtle ones get
completely unnoticed to the naked eye.

d This is the non-windowed overview plot, as presented previously.

e These are the non-windowed evolution plots, as presented previously.

This notebook extract is obviously incomplete, only three evolution plots are shown.
It also contains in a second part the windowed versions of the overview plot and
evolution plots.

11.2.5 Detected events

Our non-regression tests have been used on a regular basis on twelve Grid’5000
clusters during a period of several months (from July 2019 to March 2021 for dahu,
the first cluster we started to monitor). In total, we have tested 454 nodes (792
processors).

The list and basic characteristics of these clusters is described in table 11.1. It has
been curated from Grid’5000 documentation10.

Table 11.1.: List of the Grid’5000 clusters covered by our tests.

Cluster Nodes CPU Cores Memory
chetemi 15 2× Intel Xeon E5-2630 v4 2× 10 256 GiB
chiclet 8 2× AMD EPYC 7301 2× 16 128 GiB
dahu 32 2× Intel Xeon Gold 6130 2× 16 192 GiB
ecotype 48 2× Intel Xeon E5-2630L v4 2× 10 128 GiB
grisou 51 2× Intel Xeon E5-2630 v3 2× 8 128 GiB
gros 124 1× Xeon Gold 5220 1× 18 96 GiB
grvingt 64 2× Intel Xeon Gold 6130 2× 16 192 GiB
parasilo 28 2× Intel Xeon E5-2630 v3 2× 8 128 GiB
paravance 72 2× Intel Xeon E5-2630 v3 2× 8 128 GiB
pyxis 4 2× ThunderX2 99xx 2× 32 256 GiB
troll 4 2× Intel Xeon Gold 5218 2× 16 384 GiB
yeti 4 4× Intel Xeon Gold 6130 4× 16 768 GiB

We give in this section an exhaustive list of the events detected by running our
tests.

10https://www.grid5000.fr/w/Hardware
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BIOS upgrade

The Grid’5000 technical team occasionally upgrades the BIOS and the firmware of
all the nodes of a cluster. Most of the time, it does not affect the nodes noticeably,
but we did measure a significant change on several occasions.

• On 2020/02/06, cluster gros. The temperature of all the nodes increased by
several degrees. In a more subtle way, but still significant, the frequency and
the dgemm performance have decreased on a large fraction of the nodes (T-test
with a 95 % confidence).

• On 2020/04/01, cluster dahu. The upgrade caused a performance drop of
5 % on node dahu-26, as well as a decrease of its frequency and temperature.
There was also a statistically significant (albeit very small) change on the other
nodes of the cluster (T-test with a 95 % confidence). This issue on dahu-26 has
later been resolved by an administrator doing a power drain of the node. Note
that this return to normal was also detected by our tests.

• On 2020/06/10, cluster gros. All the nodes of the cluster had a performance
drop of about 1 %. The frequency has also dropped noticeably.

• On 2020/09/29, cluster troll. A very large temperature drop followed the
upgrade. The largest effect was on CPU n°1 of node troll-2, where the
temperature decreased from 86 ◦C to 60 ◦C. Not all the processors of the
cluster encountered this temperature anomaly. In a more subtle but still
significant way, the dgemm performance of several processors has increased.
The frequency was not affected.

• On 2020/10/01, cluster gros. The average dgemm performance of nearly all
nodes had a small but significant increase. The frequency has also slightly
increased, whereas the temperature was not affected.

• On 2020/12/15, cluster dahu. A large fraction of the nodes had a performance
increase of 1 %. The frequency also slightly increased and the temperature
decreased.

Cooling issue

Four nodes from cluster dahu encountered some issues in two occasions, namely
dahu-13, dahu-14, dahu-15 and dahu-16. Their performance and frequency was
lower by 10 % whereas their temperature was much higher, especially on their CPU
n°0 where it went above 90 ◦C instead of the usual 70 ◦C. Our hypothesis is that
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for some unknown reason the cooling system of the nodes started to malfunction.
It is interesting to note that the four nodes are located in the same chassis, which
probably explain why they were all affected at the same time.

This problem appeared a first time between October 2018 and March 2019. We did
not perform regular measures on the platform at the moment, so we do not have a
more precise timeframe. The issue was solved on 2019/05/15 by changing the node
chassis.

A few months later, the same issue arose again on the same four nodes, their
performance and frequency had a very large drop and their temperature rose
dramatically. We do not have an accurate date for this event, it could have happened
between 2019/08/20 and 2019/09/16. The problem was solved on 2019/11/27 as
a side effect of some work done in the server room. A cluster was installed, so some
computer racks were moved and some cable management was done.

Faulty memory

Occasionally, some nodes became extremely slow. The performance difference was
so large that our test program did not even have the time to terminate in the usual
timeframe we use for the jobs. Thus, we did not detect these events as a non-green
point in the plots, but simply because our jobs were failing.

We were able to reproduce the issue with a much simpler program that was stressing
the memory, by calling the function memset on all the cores of the node simultane-
ously. Each time, it was located on a single processor of the node, the other processor
was functioning normally.

This issue was noticed on the following instances:

• Node yeti-3 on 2019/07/05.

• Nodes dahu-20 and dahu-24 on 2019/08/14.

• Nodes dahu-20 and dahu-22 on 2019/11/03.

• Node dahu-7 on 2020/09/17 and on 2020/09/28.

• Node dahu-14 on 2020/09/28.

The Grid’5000 team was able to solve this problem, sometimes by swapping two
memory sticks, sometimes by replacing one memory stick, sometimes by simply
performing a power drain of the nodes.
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Power instability

The CPU power consumption on nodes from cluster dahu is very stable when the
dgemm calls are performed. On a normal experiment, each individual processor has
an average consumption between 124.63 W and 124.65 W. Yet, sometimes one node
has a large drop of the CPU power consumption on both its processors. We identified
at least 68 events of one node having the consumption of one of its processors
below 124 W, which is already very significant given the extreme stability that we
usually observe. On half of these events, the power consumption was below 119.4 W.
The largest power drop happened on node dahu-26 on 2020/12/04, where its CPU
n°0 consumed only 97.5 W. For reasons we ignore, such power drops happened
particularly frequently on the four nodes dahu-29, dahu-30, dahu-31 and dahu-32
between November 2020 and February 2021. Since the four nodes are part of the
same chassis and therefore share their power supply, our first hypothesis was that
there could be an issue with the power supply itself.

Whenever these power drops happens, both the frequency and the dgemm perfor-
mance also have a huge drop, up to 10 %, whereas the temperature is unaffected.

Every time, this was a temporary anomaly, the affected nodes were back to normal
on the following experiments. For this reason, we did not add a new platform change
for these events, instead we marked them as outliers in the plots.

After some investigations with Grid’5000 staff, we realized that most of these power
drops started to happen when a new cluster, called drac, was installed in the same
machine room. It also appears that the jobs where we observed a power drop had
been scheduled when most of the drac nodes were used, on the other hand we did
not observe any drop when no job was scheduled on the drac nodes. Submitting
an idle job on the whole drac cluster (i.e. all the nodes were booted, but idle) was
enough to cause a power drop on some dahu nodes.

This drac cluster is made of 12 nodes, each node has two Power8 CPUs and four
Nvidia Tesla P100 GPU. When booted but idle, a single node has a power consump-
tion between 600 W and 800 W, this consumption can rise to more than 2000 W
when the nodes are under heavy load. This is a large consumption compared to
other Grid’5000 nodes (the dahu nodes consume about 350 W at most).

These later findings tend to confirm our initial hypothesis: the power supply cannot
sustain enough power, which results in a power drop, a frequency drop and a
performance drop on some nodes of dahu cluster.
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System upgrade

On March 2021, we decided to upgrade both the operating system and the BLAS
library used to perform these tests. We upgraded Debian from version 9 to version
10 (thereby upgrading GCC from version 6.3.0 to version 8.3.0 and the Linux kernel
from version 4.9.0 to version 4.19.0). We also upgraded OpenBLAS from version
0.3.1 to version 0.3.13. OpenBLAS had several changes between these two versions,
including the AVX512 support for dgemm (until now, they only used AVX2).

This resulted in huge changes on a lot of clusters. For instance, on cluster dahu:

• The average performance increased from 27 GFlop/s per core to 45 GFlop/s.

• The average frequency decreased from 2.2 GHz to 1.8 GHz.

• The mean power consumption of the DRAM increased from 12 W to 15 W.

• The mean power consumption of the CPU and the temperature were not
affected significantly.

The same observations could be made on nearly all clusters. We also observed
significant drops of CPU power consumption on some nodes of a few clusters (e.g.
on troll or gros clusters).

The performance increase is understandable, dgemm is a compute-intensive kernel
for dense linear algebra, it was expected that wider vector instructions would be
more efficient. It is also expected that the maximal turbo frequency of processors
depends on the workload, for instance Intel Xeon Gold 6130 CPU (the processor of
the dahu nodes) has a maximal frequency of 2.8 GHz when all cores are active with
normal instructions, 2.4 GHz when all cores are active with AVX2 instructions and
1.9 GHz when all cores are active with AVX512 instructions11.

Other issues

Several other significant and durable changes have been detected on individual
nodes. To this day, we were unable to determine their root cause. On seven nodes of
four different clusters, the temperature has inexplicably dropped by several degrees,
from 5 ◦C to 15 ◦C depending on the nodes. Some of them were back to normal a
few weeks later, but others remained in this state. Table 11.2 summarizes those
unexplained changes. Most of the time, the frequency and dgemm performance were
also slightly affected, but to a lower extent.

11https://en.wikichip.org/wiki/intel/xeon_gold/6130
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Table 11.2.: Unexplained changes detected on Grid’5000 nodes.

Node Date Back to normal Temperature drop
ecotype-24 2020/05/21 2020/07/02 15 ◦C
ecotype-47 2020/07/13 NA 15 ◦C
grisou-12 2020/08/06 2021/01/23 15 ◦C
parasilo-1 2020/09/13 NA 10 ◦C
parasilo-11 2020/09/19 NA 15 ◦C
dahu-29 2020/10/15 2020/12/15 5 ◦C
dahu-30 2020/10/15 2020/12/15 5 ◦C

The two nodes parasilo-1 and parasilo-11 also had a temperature increase of
5 ◦C a few weeks later, on 2020/10/06. This new change was not enough to revert
the effect of the first change.

The two nodes dahu-29 and dahu-30 had a temperature increase a few weeks
later and went back to normal, this change coincided with the BIOS upgrade that
happened on the whole cluster.

11.3 Conclusion and future work

We have implemented statistical tests for detecting performance regressions on
computers. The novelty of our work does not reside on the statistics, our approach
is entirely based on a 55-year-old paper. However, to the best of our knowledge, we
are the first to apply these statistics for testing computer performance.

We have monitored 454 nodes from Grid’5000 testbed for more than one year,
running new tests several times a week. This allowed us to detect multiple events
that had a significant effect on the nodes, from subtle performance changes of 1 % to
much more severe degradations of more than 10 %, or even nodes that were literally
unusable when their memory was under heavy load. These events went unnoticed
by both Grid’5000 technical team and Grid’5000 users, yet they could greatly harm
the reproducibility of experiments and lead to wrong scientific conclusions. We
therefore believe that our approach could greatly benefit to the HPC community.

There remains some engineering work before targeting a broader adoption. Some
parts of our workflow should be re-implemented with other more suitable technolo-
gies, for instance the data should be stored with a proper database management
system. There also remains some automation to implement, in particular the schedul-
ing of new experiments, with the constraint that it should not bother other users too
much.
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Our test currently relies solely on performance measures for the dgemm function.
This is a CPU intensive workload that makes a heavy use of vector floating-point
operations and, to a lesser extent, also stresses the memory. For a broader coverage,
it would be interesting to implement new tests that stress other parts of the platform,
e.g. with workloads that perform many memory operations, disk operations, or even
network communications. To this end, the stress-ng [Stress-ng] benchmark would
be a great source of inspiration.
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Discussion 12
12.1 Contribution

This thesis has contributed to the improvement of experimental reproducibility in
high performance computing.

In Part I, we described a method for predicting the performance of MPI applications
through simulation. Using Simgrid/SMPI simulator, we managed to emulate the
High Performance Linpack benchmark at scale by applying only a few modifications
to its source code. We compared several computation and communication models
and showed the importance of modeling both the temporal and spatial variability
of the platform. In a thorough comparison of the simulations with real executions,
we show that the prediction error remains very low, only a few percent, thereby
demonstrating the faithfulness of this approach. Several sensibility analyses are then
performed to quantify the effect of platform variability and showcase an important
use case of simulation.

The lessons learned during this work are then presented in Part II. We start by
describing the experiment engine we developed and that was used throughout
this thesis. Then, we present an in-depth report of the many experimental biases
we faced, including very unsettling phenomenons we did not anticipate. While
some of these biases can be desirable if they are also occurring in the simulated
application, most of them had to be suppressed through randomization. Finally,
we showcase the performance non-regression test we implemented. While not a
statistical novelty, they allowed us to detect many changes on Grid’5000 platform
that affected significantly the performance and could harm experiments if gone
unnoticed. We believe the HPC community could greatly benefit of such tests.

12.2 Trusting our predictions

Unlike mathematical theorems or algorithms, the correctness of a model like those
of Part I cannot be formally proven. The only sound method for validating its
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faithfulness is to thoroughly try to break it, by comparing predictions to reality
while methodically changing the configurations. As presented in Chapter 6, we did
cover an extensive range of configurations in our validation. Before managing to
systematically obtain accurate predictions, we stumbled on many problems which
caused our predictions to be unrealistic. We had to investigate, understand and
overcome these multiple obstacles, as reported in Part II.

A few weeks before the defense of this thesis, we decided to repeat the whole
simulation study from scratch on another Grid’5000 cluster named gros, using 60 of
its nodes. This cluster has different nodes (one Intel Xeon Gold 5220 processor per
node with 96 GB of memory), a different network (with 25 Gbit/s Ethernet) and we
used a more recent version of OpenBLAS (resulting in the use of AVX512 instructions
by the dgemm function instead of AVX2). Over the course of a weekend, we calibrated
the platform by measuring the dgemm and MPI durations. Then, we performed real
and simulated HPL executions. At first, the predicted performance was too low by
one order of magnitude. This was due to a mistake we made: we computed the
linear regression of the dgemm model using all the terms of the polynomial, even
those of degree one (i.e. M , N and K) which were not statistically significant. This
resulted in an overfitted model with spurious predictions. After fixing this issue by
only considering the significant terms, we obtained extremely accurate predictions
of HPL performance for various matrix sizes (see Figure 12.1).
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Figure 12.1.: HPL performance: prediction vs. reality for various matrix ranks, using 60
nodes of the gros cluster.

Similarly to what we observed in Chapter 6, the predictions are more accurate with
a complex dgemm model (i.e. heterogeneous, stochastic and polynomial) than with a
simpler model (i.e. homogeneous, deterministic and linear). However, the simpler
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model still makes reasonably low prediction errors here as the gros cluster has less
variability than the dahu cluster.

This small additional study demonstrates clearly the level of trust we can now have
in our model, but also its fragility, as seemingly inoffensive changes in the approach
can lead to widely inaccurate predictions.

12.3 Future work

Besides the next steps already discussed in Chapter 8 and Section 11.3, there also
remains a unification work. By going a step further in the automation, we could use
the data produced by the non-regression tests to generate new model instances for
Simgrid. It would then be possible to make new simulations with a platform model
that reflects the latest changes of the real platform. Then, by implementing the same
statistical test on the performance predicted by the simulation, we should be able
to detect whether a platform change has affected the application performance and
quantify this effect. A minor performance drop of the computation kernels could
be amplified by the synchronization phases of the application and become very
concerning at a larger scale. Conversely, it could also be attenuated by the global
noise and go completely unnoticed.

We believe that our predictions could be extremely valuable to the whole life cycle
of supercomputers:

Design Using simulations, manufacturers could apply co-design techniques to
construct the most performant machines for a given set of target applications
and within a given budget. This could help achieve more faithful results than
the current techniques relying on less accurate simulations or even guesswork.

Development Simulations could also largely benefit software developers. Both
debugging and tuning the application are more convenient and less expensive
in simulation than in reality, especially if large scale runs are required.

Maintenance Whenever the platform employees need to perform some mainte-
nance, there is a non-negligible risk of affecting the machine performance, as
we illustrated in Chapter 11. To verify that the performance did not change,
the usual method is to perform large-scale runs of a benchmark such as HPL,
which can largely lengthen the maintenance duration. A more convenient
alternative would be to (1) carry small but carefully designed performance
tests as those described in Chapter 11 to check if there is anything obviously
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wrong, and (2) perform large-scale simulations with the updated model and
compare the new predictions with the previous ones.
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Using a laboratory journal for
better reproducibility

A

Throughout the several years of this thesis, we used meticulously a laboratory
journal, inspired by the lectures from Legrand et al. [PLH20; LV20]. Since we firmly
believe that this was a great help for improving the reproducibility of this work, this
chapter succinctly describes our methodology.

The journal is written with Org-mode [ORG]. This is a mode from the Emacs text
editor for editing, formatting and organizing text documents, using a lightweight
markup language. It offers multiple functionalities such as hierarchy within a file,
TODO lists, tags, hyperlinks, file attachments and even code execution. We use git
for versioning and collaborating.

The journal follows a chronological order and hierarchy, as illustrated by Figure A.1.
There is one main part for each year, then subparts for months and days. Within the
part of a given day, we create additional subparts, called journal entries, related to
the topic that should be recorded. Each part can be folded and unfolded to keep a
reasonable amount of displayed text. For instance, in Figure A.1, the first journal
entry of 2021 is simply a link to a video presentation.

Each journal entry can have one or several tags, displayed on the right in upper-case
and delimited by colons. These keywords are used for organizing the different entries
by semantic. For instance, we can easily list all the entries related to experiments
made on the dahu cluster by making a search for the tag DAHU.

We used three kinds of journal entries:

Experiment analysis All the experiments carried during this thesis have been exe-
cuted by the peanut experiment engine (see Part II), resulting in an archive
containing data and meta-data for the experiment. Then, we collected, an-
alyzed and made plots for these archives using literate programming, with
Jupyter notebooks [IPYNB]. Although this could be done directly within Org-
mode, thanks to its code execution capability, we simply preferred the Jupyter
ecosystem. When the analysis was done, we compiled the notebook to HTML,
created a new entry in the journal and attached the notebook. This process
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has been automatized by a Python script we made, called org_attach [CB21].
This new entry contains at least two parts, one to summarize the experiment
(what, why and how) and one to list the various observations we made in the
analysis.

Paper reading Whenever we find an interesting paper, we create a new journal
entry, named after the paper title. The entry is marked with a keyword READ
or UNREAD if we have already read the paper or not. The entry also contains
at least three parts, namely the paper abstract, any notes we may have taken
while reading the paper, and the bibtex. Finally, the PDF file of the paper
is attached to the entry. Again, the process of creating the new entry and
attaching the paper is automatized by org_attach.

Free text We also write in the journal any relevant material. This can be a discussion
with colleagues, a seminar we attended, some unorganized thoughts, a short
piece of code to test a new idea or demonstrate a new tool, etc. Again, the use
of proper tags is important to be able to find these entries after a while.

In the end, the text file of the journal has now more than one thousand entries. The
text file has a size of more than 2.7 MB, while the attachments totalize more than
1.1 GB.

Such a rigorous method can appear as a waste of time, even overwhelming. We
argue that despite the steep learning curve of org-mode, this time investment was
worth it. We were able to come back to some early experiments several years later,
understand precisely what these experiments were doing, and know with certitude
the software versions that were used. Furthermore, we could also read the thought
process we had at the time, the hypotheses we made that were later confirmed
or rebutted. This is obviously of great help for reproducing these experiments or
writing this thesis.

A2 Appendix A Using a laboratory journal for better reproducibility



Figure A.1.: Screenshot of the laboratory journal used throughout this work.
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List of software and data B
As this thesis was above all experimental, we implemented several programs to assist
us in our work. Furthermore, the many experiments that we performed generated
large amounts of data. For the sake of reproducibility, both software and data are
permanently archived on Zenodo. The full list is described in Table B.1.

Table B.1.: Software and data produced during this thesis.

[Cor21c] peanut The experiment engine described in Section 9.2, written in
Python. It allows to easily write scripts for deploying and running
experiments, producing an archive with the experiment data and
meta-data.

[CL21b] cashew The Python library described in Section 11.2.2 used for
extracting the relevant data and meta-data from peanut archives,
summarizing the data, computing non-regression tests on the ag-
gregated data and generating the notebooks.

[CB21] org_attach A small Python script described in Appendix A to add
an entry in an Org-mode laboratory journal with an attachment
(either a paper or a Jupyter notebook).

[CL21a] calibration_analysis Nearly all the experiment data produced
during this thesis (i.e. peanut archives) and the jupyter notebooks
to analyze it. This includes MPI calibrations, dgemm calibrations,
real and simulated runs of HPL, etc.

[CL21c] g5k_test The data and notebooks of the performance non-
regression tests made on Grid’5000. This includes all the peanut
archives, the HDF5 files containing the raw data, the CSV files con-
taining the aggregated data and a full copy of the website presenting
the test results.

[Pet+21] hpl The source code of High Performance Linpack, with the mod-
ifications we had to make for simulating its execution on top of
SMPI.

[SG21] platform-calibration The micro-benchmarks used to calibrate
the models for the durations of dgemm and MPI communications.

[CL21d] pycewise The Python library described in Section 5.3.3 for auto-
matically computing piecewise linear regressions.

[CM21] ratatouille A Python script launched as a background process
in experiments for monitoring system metrics such as the CPU
temperature, core frequencies, CPU and DRAM power consumption.
These metrics are collected at a fixed pace (e.g. every five seconds)
and written in a CSV file.

A5



Additional material has also been archived once the defense had been carried out,
the full list is described in Table B.2.

Table B.2.: Additional material archived after this thesis.

[Cor21a] defense The video of this thesis defense, which was live-streamed
on YouTube.

[Cor21b] manuscript The repository used for writing this manuscript and the
slides of the defense. Besides the text and images, it also contains
the code and a copy of the data used for generating the figures.

Unfortunately, the laboratory journal described in Appendix A could not be published,
as it contained numerous copyrighted articles as well as confidential information.
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Carbon footprint of this thesis C
This thesis was written between November 2020 and March 2021, in the midst
of the COVID-19 pandemic. At the time of the writing, more than two millions
persons had already passed away and several millions will probably have long-term
medical issues. Yet, this world disaster is arguably much less threatening than
global warming. It is now established that the average temperature on Earth is
increasing, mainly caused by anthropogenic emissions of greenhouse gases. It is
difficult to estimate the damage that will be caused by global warming. The World
Health Organization (WHO) writes that it is already causing 150,000 excess deaths
per year [WHOb] and that this figure is likely to rise to 250,000 per year between
2030 and 2050 [WHOa], mainly caused by heat exposure, diarrhea, malaria and
childhood undernutrition. For the year 2018, according to the French government,
the average carbon footprint of a French person is estimated to 11 t of CO2eq. This
is more than five times larger than the yearly 2 t target to limit the warming to
2 ◦C [MTE].

For this reason, we felt it was important to compute the direct effect of this thesis on
global warming. This chapter tries to estimate the greenhouse gases emission we
generated, in carbon dioxide equivalent. We account for the two principal sources
of CO2 emissions, i.e. the business trips we made and the computing time we used
on Grid’5000. The goal is not to compute an exact figure, which would be extremely
tedious, but rather to make a rough estimate and compare it to the 2 t target.

Business trips

Several business trips done during this thesis required to take a plane. In the
following, we will use the value of 195 g/km of CO2eq for long haul flight and
254 g/km for short haul flights [BBC]. We will neglect the emissions caused by the
train travels, as this transportation mean is much less problematic (a French high
speed train emits about 2 g/km for each passenger).

• On April 2017, I attended a Simgrid meeting in Bordeaux. I had to go by plane
from Lyon (435 km) as the train lines are very Paris-centered in France. This
trip emitted about 0.2 t of CO2eq.
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• From October to December 2017, I visited Argonne National Laboratory in
Chicago, USA. The outward flights went from Lyon to Frankfurt (562 km) then
to Chicago (6967 km). The return flight went directly from Chicago to Paris
(6653 km). In total, this trip has emitted approximately 2.8 t of CO2eq.

• In November 2017, I attended the Supercomputing conference in Denver, USA.
I went there with a direct flight from Chicago (1475 km), emitting about 0.7 t
of CO2eq.

• In September 2019, I presented a paper at the Cluster conference, in Albu-
querque, USA. The outward flights went from Paris to Los Angeles (9085 km)
then to Albuquerque (1067 km). The return flights passed by Dallas (586 km),
then New York City (2206 km) and finally Paris (5837 km). This trip emitted
approximately 3.9 t of CO2eq.

Hence, the total amount of greenhouse gas emissions of this thesis due to airplane
transportation is 7.6 t of CO2eq.

Computing time

This thesis had a very important experimental component, it is therefore natural
to expect a large amount of computing time usage. Figure C.1 summarizes the
cumulated computing time spent on Grid’5000 clusters during these years, grouped
by usage type, for a total of 2,112,014 core hours. The performance tests described
in Chapter 11 represent slightly more than half of this total time, which is very large.
However, this should be contrasted by the consumption of the official Grid’5000
tests: the ajenkins user, a bot responsible for periodically verifying the integrity of
the platform, spent 3,272,044 core hours in the year 2020 alone.1

Berthoud et al. estimate the greenhouse gas emissions caused by GRICAD another
French computing center [Ber+20]. They tried to account for several parameters,
including the electrical consumption of the hardware (computing nodes, storage
nodes, network, cooling system), the manufacturing of this hardware, but also the
emissions caused by the employees in charge of operating this computing center
in their daily commute to work. They estimate that one hour of computation on
one core is responsible for the emission of 5 g of CO2eq. The distribution of these
emissions is depicted in Figure C.2, slightly more than half of these 5 g is caused by
the electrical consumption of the machine. It should be noted that French electricity

1https://intranet.grid5000.fr/stats/users.html
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Figure C.2.: Source of greenhouse gases emission in a French scientific computing center,
one core hour emits approximately 5 g of CO2eq [Ber+20].

is particularly low-carbon, meaning that this figure might be significantly larger in
other countries that rely more on fuel and coal.

In the end, we estimate that the total amount of greenhouse gas emissions of this
thesis due to computing is 10.6 t of CO2eq.

Conclusion

In this chapter, we tried to estimate the carbon footprint of this thesis. We do not
claim to have an accurate figure to present (these back-of-the-envelope calculations
are themselves based on rough approximations) but we should have the correct
order of magnitude.
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We estimate that this thesis was responsible for the emission of 18.2 t of CO2eq. This
is significantly larger than the average yearly emission of a French person (11 t of
CO2eq) and six times larger than the yearly target emission to limit the warming to
2 ◦C (2 t of CO2eq). Maybe counter-intuitively, this thesis emitted more greenhouse
gases with computations than with airplane transportation, despite four transatlantic
flights.
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Abstract
The scientific community relies more and more on computations, notably for numerical simulation and data
processing. While many scientific advances were made possible by the technological progress of computers,
additional performance gains are still required for larger scale projects.
The race for performance is addressed with a growing hardware and software complexity, which in turn
increases the performance variability. This can make the experimental study of performance extremely
challenging, raising concerns of reproducibility of the experiments, akin to the problems already faced by
natural sciences.
Our contributions are twofold. First, we present a methodology for predicting the performance of parallel
non-trivial applications through simulation. We describe several models for communications and computations,
with an increasing complexity. We compare these models through an extensive validation by matching our
predictions with real experiments. This validation shows that modeling the spatial and temporal variability
of the platform is essential for faithful predictions. As a consequence, predictions require careful sensibility
analysis accounting for the uncertainty on the resource models, which we illustrate through several case
studies. Second, we present the lessons learned while making the numerous experiments required in the
first part and how we improved our methodology. We show that measurements can suffer from multiple
experimental biases and we explain how some of these biases can be overcome. We also present how we
implemented systematic performance non-regression testing, which allowed us to detect many significant
changes of the platform throughout this thesis.

Résumé
La communauté scientifique s’appuie de plus en plus sur les calculs, notamment pour la simulation numérique
et le traitement des données. Alors que de nombreuses avancées scientifiques ont été rendues possibles par les
progrès technologiques des ordinateurs, des gains de performance supplémentaires sont encore nécessaires
pour les projets à plus grande échelle.
La course à la performance est abordée avec une complexité matérielle et logicielle croissante, qui à son
tour augmente la variabilité des performances. Cela peut rendre l’étude expérimentale de la performance
extrêmement difficile, ce qui soulève des préoccupations quant à la reproductibilité des expériences, de manière
similaire aux problèmes déjà rencontrés par les sciences naturelles.
Nos contributions sont doubles. Tout d’abord, nous présentons une méthodologie pour prédire les performances
d’applications parallèles non triviales par la simulation. Nous décrivons plusieurs modèles de communications
et de calculs, avec une complexité croissante. Nous comparons ces modèles via une validation approfondie en
faisant correspondre nos prédictions avec des expériences réelles. Cette validation montre que la modélisation
de la variabilité spatiale et temporelle de la plateforme est essentielle pour les prédictions. En conséquence,
les prévisions requièrent une analyse de sensibilité minutieuse tenant compte de l’incertitude sur les modèles
de ressources, que nous illustrons à travers plusieurs études de cas. Par la suite, nous présentons les leçons
apprises lors des nombreuses expériences menées dans la première partie et comment nous avons amélioré
notre méthodologie. Nous montrons que les mesures peuvent souffrir de multiples biais expérimentaux et
nous expliquons comment certains de ces biais peuvent être surmontés. Nous présentons également comment
nous avons mis en œuvre des tests systématiques de non-régression des performances, qui nous ont permis de
détecter de nombreux changements significatifs de la plateforme tout au long de cette thèse.
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