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Cʉαtə bwə ntswî màd ǎ nkə nzîn nα nə̀ lò’ ndâ’tə njàŋ bǐn nə tαmtə nǔm bǐn mfǎ’mbu. 





Abstract

Title: Variable Importance Measures in Semiparametric and High-Dimensional Models

with or without Errors-in-Variables

During the last few decades, the advancements in technology we witnessed have con-

siderably improved our capacities to collect and store large amount of information. As

a consequence, they enhanced our data mining potential. The repercussions, on multiple

scientific fields, have been stark. In statistical analysis for example, many results derived

under the then common low dimensional framework, where the number of covariates is

smaller than the size of the dataset, had to be extended. The literature now abounds with

significant contributions in high dimensional settings. Following this path, the current the-

sis touches on the concept of variable importance that is, a methodology used to assess the

significance of a variable. It is a focal point in today’s era of big data. As an example, it is

often used for prediction models in high dimensional settings to select the main predictors.

Our contributions can be divided in three parts.

In the first part of the thesis, we rely on semiparametric models for our analysis. We

introduce a multivariate variable importance measure, defined as a sound statistical pa-

rameter, which is complemented by user defined marginal structural models. It allows

one to quantify the significance of an exposure on a response while taking into account all

other covariates. The parameter is studied through the Targeted Minimum Loss Estimation

(TMLE) methodology. We perform its full theoretical analysis. We are able to establish

consistency and asymptotic results which provide as a consequence p-values for hypoth-

esis testing of the parameter of interest. A numerical analysis is conducted to illustrate

theoretical results. It is achieved by extending the implementation of the TMLE.NPVI

package [20] such that it is able to cope with multivariate parameter.
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In the second part, we introduce a variable importance measure which is defined through

a nonparametric regression model under a high dimensional framework. It is partially de-

rived from the parameter described in the first part of the thesis, without the requirement

that the user provides a marginal structural model. The regression model comes with

the caveat of having a data structure which, in some cases, is subject to measurement er-

rors. Using a high-dimensional projection on an orthonormal base such as Fourier series,

smoothing splines and the Lasso methodology, we establish consistency and the conver-

gence rates of our estimators. We further discuss how these rates are affected when the

design of the dataset is polluted. A numerical study, based on simulated and on financial

datasets, is provided.

In the third and final part of this thesis, we consider a variable importance measure

defined through a linear regression model subject to errors-in-variables. This regression

model was derived in the previous chapter. The estimation of the parameter of interest

is done through a convex optimization problem, obtained by projecting the empirical co-

variance estimator on the set of symmetric non-negative matrices, and using the Slope

methodology. We perform its complete theoretical and numerical analysis. We establish

sufficient conditions, rather restrictive on the noise variables, under which to attain opti-

mal convergence rates for the parameter of interest and discuss the impact of measurement

errors on these rates.

Keywords: errors-in-variables, high dimensional estimation, Lasso, Slope, convex

optimization, semiparametric model, inverse problems, nonparametric model, TMLE,

variable importance measure, marginal structural model, statistical inference.



Résumé

Titre: Mesures de l’importance de variable au travers de modèles semi-paramétriques et

en grande dimension avec ou sans erreurs sur les variables

Les progrès technologiques de ces dernières décennies ont considérablement accru nos

capacités à collecter et sauvegarder une quantité importante d’information. Ce faisant,

notre marge de manœuvre pour l’exploitation de ces données, a été amplifiée. Les répercus-

sions, sur de nombreux domaines scientifiques, ont été fulgurantes. En analyse statistique

par exemple, de nombreux résultats obtenus sous le canevas habituel d’étude en petite

dimension, qui consistait à considérer le nombre de variables explicatives inférieur à la

taille de l’échantillon, ont dû être étendus. La littérature scientifique abonde maintenant

de nombreux résultats qui ont été mis en exergue, en prenant en compte cette nouvelle

realité qu’est la présence des données en grande dimension. Nos travaux s’inscrivent dans

cette droite lignée. En effet, cette thèse aborde le concept d’importance de variables, c’est-

à-dire un canevas permettant de déterminer la portée d’une variable. Il s’agit là d’un point

crucial dans cette nouvelle ère de données de grande taille. À titre d’exemple, ce concept

est largement utilisé dans des modèles de prédiction afin d’améliorer le choix des variables

explicatives. Nos contributions peuvent être divisées en trois parties.

Dans la première partie, nous introduisons une mesure multivariée dénomméemesure de

l’importance de variable, définit en tant que paramètre statistique, assujettie à des modèles

de structures marginaux. Nous nous sommes appuyés sur des modèles semi-paramétriques

pour son analyse. Cette mesure permet notamment de quantifier la pertinence d’une vari-

able explicative sur une réponse, en prenant en compte le reste des variables du problème.

Le paramètre d’intérêt est étudié grâce à la méthode du TMLE (Tartgeted Minimum Loss

Estimation). Nous effectuons son analyse théorique complète et sommes ainsi en mesure

d’établir la consistance de notre estimateur, ainsi que sa convergence asymptotique. Ce

dernier résultat nous permet donc de déduire les intervalles de confiance liés à l’estimateur.

Nous effectuons également une analyse numérique afin d’illustrer nos résultats théoriques.
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A cet effet, nous avons étendu l’implémentation du package TMLE.NPVI [20], de telle

sorte qu’il puisse traiter des cas où le paramètre d’intérêt est multivarié.

Dans la seconde partie de cette thèse, nous introduisons une mesure de l’importance de

variable définie au travers d’un modèle de régression non-paramétrique en grande dimen-

sion. Cette mesure provient en partie de celle introduite dans la première partie, sans la

contrainte supplémentaire que l’utilisateur doive fournir un modèle de structure marginal.

Au-delà, nous considérons également le cas où les données de notre échantillon sont pol-

luées. En s’appuyant sur une décomposition finie sur une base orthonormée du type base de

Fourier ou Splines par exemple, et en utilisant la méthode dite du Lasso, nous établissons

les vitesses de convergence de notre estimateur. Nous mettons aussi en exergue l’impact

des erreurs de mesure, dans notre design, sur ces vitesses de convergence. Au-delà, nous

proposons également une étude numérique basée sur des données synthétiques et une ap-

plication, s’appuyant sur des données financières réelles.

Dans la troisième et dernière partie, nous considérons une mesure d’importance de

variable définie grâce à un modèle de régression linéaire soumis à des erreurs de mesure

sur son échantillon. Ce modèle de régression trouve son origine dans la partie précé-

dente. L’estimation de notre paramètre d’intérêt s’effectue au travers d’un problème

d’optimisation convexe, obtenu en projetant la covariance empirique du design sur l’ensemble

de matrices définies positives, et en utilisant la pénalisation Slope. Nous effectuons ainsi

une analyse théorique et numérique complète. Au-delà, nous établissons les conditions suff-

isantes, assez restrictives concernant les erreurs, à respecter afin d’atteindre des vitesses op-

timales de convergence de notre paramètre d’intérêt, tout en mettant l’accent sur l’impact

de la pollution de notre échantillon sur ces vitesses.

Mots Clés: erreurs de mesure, estimation en grande dimension, inférence statistique,

Lasso, Slope, optimisation convexe, modèle semi-paramétrique, modèle

non-paramétrique, mesure de l’importance de variable, modèle de structure marginal,

problèmes inverses, TMLE
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Résumé substantiel

Cette thèse aborde principalement le concept de mesure de l’importance de variable. Il

s’agit d’un canevas qui permet de déterminer quantitativement, et parfois qualitativement,

la portée d’une variable. C’est une notion primordiale dans de nombreux domaines scien-

tifiques, notamment les problèmes statistiques comportant des jeux de données de grande

taille.

Notre étude de mesure d’importance de variable s’effectue sous deux principaux reg-

istres. Premièrement, on définit et étudie une mesure d’importance de variable de dimen-

sion finie et définit sur un espace non paramétrique. La mesure est ainsi qualifiée de non

paramétrique en ceci qu’elle est définie comme une valeur ψf(P0) d’une loi inconnue P0,

provenant d’une fonctionnelle ψf . Cette fonctionnelle est définie sur un ensemble non

paramétrique de loiM qui est soumise à des contraintes peu restrictives. Dans ce cadre, f

est une fonction fournie par l’utilisateur. Dans le Chapitre 3, nous développons et analysons

un estimateur basé sur la méthode dénommée targeted minimum loss estimation. Sous des

hypothèses bénignes, nous pouvons construire des intervalles de confiance asymptotique de

notre estimateur, associés à un niveau donné.

Deuxièmement, en s’inspirant de la définition de ψf , nous introduisons une seconde

fonctionnelle ψpen, de dimension finie. Elle est définie sur l’ensembleM′ ⊂M, caractérisé

sousM par la présence en son sein d’un modèle de régression. Contrairement à ψf , ψpen ne

requiert point une fonction définie par l’utilisateur. En supposant que P0 soit un élément

deM′, ψpen(P0) est bien défini et ce vecteur peut être interprété comme une autre mesure

d’importance de variable similaire à ψf(P0) et identique à ce dernier pour un choix précis de

f . Dans les chapitres 3 et 4, nous développons et analysons deux estimateurs de ψpen(P0),
basés respectivement sur les méthodes de Lasso et Slope. Sous des hypothèses propres à

ce registre, nous établissons des vitesses de convergence. Des analyses numériques sont

effectuées afin d’illustrer nos résultats théoriques.
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La mesure d’importance de variable ψf sous M

D’importants progrès ont été réalisés dans l’article [75] dans le domaine de mesure d’imp-

ortance de variable pour les problèmes statistiques. L’auteur y a proposé de définir

cette mesure comme un paramètre statistique. Il pouvait ainsi être étudié au travers

d’estimateurs adéquats. On pouvait donc en déduire des propriétés asymptotiques pour

les estimateurs, facilitant ainsi la construction d’intervalles de confiance pour un niveau

donné. Cette approche a inspiré de nombreux articles ultérieurs, dont le plus important

pour nous fût [22], sur lequel notre travail se repose.

Considérons le problème statistique s’appuyant sur la structure de données O =
(X,W,Y ), provenant d’une unité expérimentale d’intérêt W ∈ W ⊂ Rd, représentant des

vecteurs de variables explicatives, X ∈ R (une exposition continue) une variable réelle

de cause affectant Y ∈ R (une réponse continue), une valeur réelle de variables d’effets.

On nomme par P0 la vraie loi générant la structure de données O. On suppose que

l’exposition contient un niveau de référence x0. En d’autres termes, il existe 0 < c < 1/2 tel

que P0(X ≠ x0∣W ) ∈ [c,1 − c] P0−presque surement.

Notre objectif est de quantifier la relation qui existe entre X et Y , tout en prenant

en compte W . Il est primordial de considérer W pour établir cette relation car nous ne

pouvons pas tout simplement ignorer son impact. Par analogie avec [22], nous introduisons

une mesure d’importance de variable ψf(P0) caractérisée par

ψf(P ) = arg min
β∈Rd

EP [(Y −EP (Y ∣X = x0,W ) − (X − x0)fβ(W ))2] , (1)

où fβ(W ) = β⊺ ⋅ fCT (W ) avec fCT ∶ W → Rd une fonction fournie par l’utilisateur. Nous

remarquons ici que ψf(P0) est multivarié et sa taille correspond au nombre d’éléments de

W . Cette dernière characteristique de ψf(P0) est cruciale car elle permet d’obtenir une

mesure d’importance de variable qui capture le rôle que joue chaque élément de W dans la

relation qui existe entre X et Y . Nous ne faisons pas l’hypothèse qu’il existe un β tel que

Y = EP0(Y ∣X = x0,W ) − (X − x0)fβ(W ) + ε,

où ε est un bruit inconnu. En d’autres termes, ψf(P0) est universellement bien défini.

Le paramètre d’intérêt

Afin d’étudier le paramètre d’intérêt, nous utilisons une méthode d’estimation semipara-

métrique dénommée Targeted Minimum Likelihood Estimation (TMLE ) par analogie avec

[22].

Considérons (1) et supposons sans perte de généralité que x0 = 0. Nous dénommons
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ḟβ = ∂fβ
∂β = fCT , le gradient de fβ et L2

0(P ) l’ensemble des fonctions mesurables g tel

que EP [g2] < ∞ et EP [g] = 0. Nous dénommons aussi

θ(P )(X,W ) = EP (Y ∣X,W ), g(P )(W ) = P (X ≠ 0∣W ),

µ(P )(W ) = EP (Xḟβ(W )∣W ) et Σ(P ) = EP [X2ḟβ(W )⊺ḟβ(W )],

quelques propriétés importantes de la loi P . Si nous supposons que

• toutes les propriétés de P sont bien définies,

• Σ est inversible,

• il existe un c ∈]0,1/2[ tel que g(P )(W ) ∈]c,1 − c[ P -presque surement,

alors, la solution de (1) est unique et est donnée par

ψf(P ) = Σ(P )−1 [EP (Xḟβ(W ) (θ(P )(X,W ) − θ(P )(0,W )))] .

La procédure d’inférence statistique

La procédure d’inférence statistique est au cœur de notre analyse numérique. Elle s’appuie

sur n indépendantes copies O(i), avec i ∈ {1, . . . , n} de la structure de données observées

O. Comme mentionné plus haut, l’estimation de ψf(P0) est basée sur la méthode dite

du TMLE. Elle peut être divisée en deux principales étapes. Dans la première étape,

l’estimateur initial ψf(P 0
n) est évalué, avec P 0

n construit comme un élément deM s’appuyant

sur les données O(1), . . . ,O(n).

Nous remarquons que cet estimateur initial peut être biaisé. Ceci ne constitue pas une

difficulté car ce biais, si il existe, sera corrigé au travers des mises à jour successives. On

remarque également qu’il n’est pas nécessaire d’estimer toute la loi P0, mais seulement

certaines de ses propriétés, à savoir : µ(P0), g(P0), Σ(P0) et θ(P0).
Dans la seconde étape, on construit k mises à jour P 1

n , . . . , P
k
n , qui nous permettent

d’établir la séquence d’estimateurs {ψjn = ψf(P jn)}j=1,...,k. Les mises à jour P kn sont con-

struites à partir de la fonction d’influence éfficace liée à ψf . La procédure s’arrête lorsque

la suite d’estimateurs converge. Dans le chapitre 2, nous sommes donc en mesure d’établir

un théorème de convergence de notre estimateur. Il prouve ainsi qu’il est convergent et

asymptotiquement normal.
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Au-delà de ψf au travers un sous ensemble de M

Considérons la structure de données O = (X,W,Y ) d’une unité expérimentale d’intérêt où

X ∈ R est une exposition, Y ∈ R est une réponse et W ∈ W ⊂ Rd représente des variables

explicatives. Cette structure de données est extraite de la vraie loi P ∈ M′, oùM′ ⊂M et

M′ est caractérisé par (η⋆P , θ⋆P ) ∈ Rm ×Rk tel que

Y = Φ̄⋆
m(W )η⋆P +X ⋅ Φ̄⋆

k(W )θ⋆P + ε,

où Φ̄⋆
i = {Φ⋆

1 , . . . ,Φ
⋆
i } est un vecteur contenant les i premières composantes d’un espace

d’Hilbert.

La mesure d’importance de variable ψf(P ) (1) s’appuie sur une fonction fβ qui est

fournie par l’utilisateur, pour des raisons de simplicité. Cette fonction est par nature une

propriété inconnue de notre problème statistique et ce faisant une source de complexité.

Dans le chapitre 3, nous décidons d’aborder le problème sous un autre angle. Nous utilisons

la même mesure d’importance de variable sans toutefois demander à ce que la fonction fβ
soit spécifiée par l’utilisateur.

Notre objectif demeure de quantifier la relation qui existe entre la réponse Y et l’expo-

sition X, tout en prenant en compte W . On dénomme par F , l’ensemble des fonctions

non paramétriques et continues sur Rd. On introduit par analogie avec (1), un paramètre

statistique ψpen(P ) caractérisé par

ψpen(P ) = arg min
f∈F

EP [(Y −EP (Y ∣X = x0,W ) − (X − x0) ⋅ f(W ))2] . (2)

Nous remarquons que le paramètre d’intérêt est maintenant une fonction. Ce faisant, nous

introduisons une méthode plus flexible permettant de caractériser les interactions entre

les éléments de W . Ceci nous permettra ainsi d’avoir une lecture plus complète de notre

mesure d’importance de variable.

La fonction d’intérêt

Considérons Φ = (Φ1, . . . ,Φp, . . .) = {Φj}∞j=1 une base orthonormée (b.o.n.) de H, un espace

d’Hilbert. Sachant que P ∈ M′, on sait qu’il existe (ηP , θP ) ∈ Rm ×Rk tel que, sous P ,

Y = Φ̄m(W )ηP +X ⋅ Φ̄k(W )θP + ε, (3)

où ε est une variable aléatoire centrée gaussienne, ayant pour variance σ2, indépendante de

(X,W ), et Φ̄j = {Φ1, . . . ,Φj} représente un vecteur dont les éléments sont les j premières

composantes de la b.o.n. H. En plus, g(P )(W ) = EP [Y ∣X = 0,W ] = Φ̄m(W )ηP et, si on

choisit f(W ) = Φ̄k(W )θP , alors ψf(P ) = θP .
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Par analogie avec (1), Φ̄k(W ) ⋅ θP est notre nouvelle mesure d’importance de variable.

Nous n’exploitons par la forme de ψpen(P ) définit sous (2), mais plutôt nous nous appuyons

sur le modèle de régression (3) pour son analyse.

On réécrit (3) au travers de

Y = X ⋅ β + ε, (4)

où β =
⎛
⎝
η

θ

⎞
⎠
∈ Rp avec p =m + k et X correspondant à

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(W1) . . . Φm(W1) X1 ⋅Φ1(W1) . . . X1 ⋅Φk(W1)
⋮ ⋮ ⋮ ⋮

Φ1(Wn) . . . Φm(Wn) Xn ⋅Φ1(Wn) . . . Xn ⋅Φk(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

On assume n≪ p. Nous faisons ainsi face à un problème de grande taille. Les vecteurs θ et

η sont supposés creux avec des coefficients respectifs donnés par sθ et sη. Par conséquent,

β est aussi creux (c’est-à-dire, ∑pi=1 I(βj ≠ 0) = s≪ p) avec pour coefficient s = sη + sθ.

Estimateurs pénalisés

Dans le chapitre 3, nous optons pour la méthode du Lasso afin de trouver un estimateur

à notre paramètre d’intérêt. Le problème peut donc s’écrire

β̂ =
⎛
⎝
η̂

θ̂

⎞
⎠
= arg min

β∈Rp
{ 1

2n

n

∑
i=1

(Yi − (Xβ)i)
2

+ λ∥β∥1}, (6)

où ∥β∥1 = ∑pi=1 ∣βi∣ et λ > 0 est un paramètre de réglage.

Au travers d’une condition de compatibilité (voire [67, 74]), on arrive à établir les

vitesses de convergence ainsi que la consistance de notre estimateur β̂, et par conséquent

η̂ et θ̂.

Il est important de se rappeler que notre nouvelle mesure d’importance de variable

est donnée par Φ̄k(W ) ⋅ θP . Ce faisant, il peut être avantageux à bien des égards de

considérer un problème d’optimisation dont la pénalité s’appuie uniquement sur θ. Ceci

nous permettra ainsi d’avoir une vision plus appropriée de l’estimateur de la fonction

d’intérêt. Avec ce cadre, m est supposé largement inférieur à n, mais l’on conserve n≪ k.

On dénomme par Ψm, la matrice donnée par les m premières fonctions de la base

{Φ}∞j=1 au points W1, . . . ,Wn. Elle correspond à

Ψm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(W1) . . . Φm(W1)
⋮ ⋮

Φ1(Wn) . . . Φm(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Notre nouveau problème d’optimisation peut donc s’écrire

⎛
⎝
η̂

θ̂

⎞
⎠
= arg min

η∈Rm,θ∈Rk
{ 1

2n

n

∑
i=1

[Yi − (Ψi
m ⋅ η +Xi ⋅ (Ψi

k ⋅ θ))]
2 + λ∥θ∥1}. (7)

Grâce à une condition de compatibilité, nous arrivons à établir les vitesses de convergence de

nos estimateurs η̂ et θ̂, de même que leur consistance. Ceci améliore les vitesses d’estimation

de θ, lié au modèle (6).

Estimateurs pénalisés avec erreurs sur les variables

Nous savons que dans de nombreux cas de la vie réelle, les données observées sont en

général polluées. Ceci a été pris en considération dans la seconde phase de notre analyse.

Précisément, nous assumons que le modèle (4) est soumis à des erreurs additives sur les

variables correspondantes à Z =X +ν, où les éléments de ν sont extraits d’une distribution

centrée gaussienne de variance µ2. Nous introduisons ainsi le nouveau modèle caractérisé

par
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y = X ⋅ β + ε

Z = X +K
, (8)

où β =
⎛
⎝
η

θ

⎞
⎠
, et K est donné par

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 ν1 ⋅Φ1(W1) . . . ν1 ⋅Φk(W1)
⋮ ⋮ ⋮ ⋮
0 . . . 0 νn ⋅Φ1(Wn) . . . νn ⋅Φk(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

La présence d’erreurs sur les variables a naturellement un impact sur la formulation du

problème d’optimisation. Il s’écrit dorénavant sous la forme

β̂ ∈ arg min
β∈Rp

{1

2
β⊺Γβ − γTβ + λ∥β∥1} tel que ∥β∥1 ≤ c0

√
s,

où Γ = 1
n X̃

⊺X̃ − µ2ζ⊺ζ, γ = 1
n X̃

⊺Y , X̃ = [Ψm,DZΨk], ξ = (0, . . . ,0,1, . . . ,1), un vecteur de

taille p et c0 > 0 une constante relativement grande.

En s’appuyant sur une condition dénommée Restricted Eigenvalues (voire [8]), nous

pouvons établir de nouvelles vitesses de convergence, ainsi que la consistance de nos esti-

mateurs, sous certaines conditions bénignes.

Tout comme dans le cas précédent, il est intéressant d’étudier le problème d’optimisation

en pénalisant uniquement la variable θ. À cet effet, le nouveau problème d’optimisation

s’écrit donc

θ̂ ∈ arg min
∥θ∥1≤c0

√
sθ

{1

2
θ⊺Γθ − γ⊺θ + λ∥θ∥1}.
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En s’appuyant de nouveau sur la condition Restricted Eigenvalues, mentionnée ci-dessus,

nous établissons également la consistance et les vitesses de convergence de nos estimateurs

sous certaines conditions.

Estimateurs Slope avec erreurs sur les variables

Dans le chapitre 4, nous généralisons le modèle de régression (8) et introduisons le modèle

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y = X̄ ⋅ β⋆ + ε

W = X̄ +U
(9)

où Y = (Y1, . . . , Yn)⊺ est un vecteur de réponses, X̄ = [X̄ij]1≤i≤n,1≤j≤p
est une n× p matrice

de design et ε = (ε1, . . . , εn)⊺ est un vecteur gaussien dont les éléments sont indépendants

et identiquement distribués, de variance σ2. Au-delà, W = [Wij]1≤i≤n,1≤j≤p est une n × p
matrice de design polluée par U ∈ Rn×p. On suppose que les lignes de la matrice U sont

extraites indépendamment au travers d’une gaussienne centrée et multivariée ayant une

matrice de variance covariance de taille p × p dénommée CU .

Notre objectif est d’estimer le paramètre d’intérêt β⋆. Il est supposé s-parcimonieux, tel

que 0 < s≪ p. On rappelle que les données sont en grande dimension et que l’échantillon

de données de taille n est bien plus petit que p. Les variables ε et U sont supposées

indépendantes. L’estimateur Slope β̂ de β⋆ est donné par

β̂ ∈ arg min
β∈Rp

{β⊺Σ̃β − 2

n
Y ⊺Wβ + ∥β∥⋆}, (10)

où

Σ̃ ∈ arg min
M∈S≥0

∥Σ̂ −M∥2 avec Σ̂ = 1

n
W ⊺W −CU ,

et l’ensemble S≥0 est un ensemble de matrices symétriques définies positives découlant

d’une projection au travers de la norme de Frobenius. La norme Slope est donnée par

∥β∥⋆ = ∑pi=1 λi∣β∣(i), où λ1 ≥ . . . ≥ λp > 0 sont des paramètres de réglage.

En utilisant la projection Σ̃ au lieu de Σ̂, nous assurons la convexité du critère (10).

Au-delà, nous évitons de restreindre l’ensemble où β varie. Nous obtenons une vitesse de

convergence de β̂ sous une condition de compatibilité et en utilisant les propriétés de la

covariance empirique. Nous énonçons des conditions suffisantes sur les erreurs (relativement

restrictives) qui permettent d’atteindre les vitesses optimales, contrairement au Lasso.





Chapter 1

Introduction

During the last couple of decades, we have witnessed an unprecedented development in

technology. It has ultimately allowed us to collect a tremendous amount of data. Com-

monly called the era of big data, its impact looms large, touching a wide variety of scientific

fields such as economics, biology and medicine. Its repercussions on our daily life are be-

coming more and more visible since it is affecting a large portion of the “real” economy.

As examples, we can mention the health-care and automotive industries. The potential

of this era has not yet been fully harnessed. One of the reasons, for this state of affairs,

is that it comes with a lot of challenges. As far as statisticians are concerned, one of

these challenges is the curse of dimensionality. It has prompted an extensive amount of

research. The outcomes of these studies, in many cases, led to the extension of results

that were proven true in low dimension settings. Furthermore, the high dimensionality of

available data has also brought to light the need to carefully choose adequate covariates,

when defining a model. As such, several tools have been introduced among which the

concept of variable importance measure. It is at the core of this thesis.

Overview of our contributions. Our study of variable importance measure is achieved

under two main frameworks. On the one hand, we define and study a new nonparametric,

finite-dimensional, covariate-adjusted variable importance measure. It is nonparametric in

the sense that it is defined as the value ψf(P0) at the law P0 of the data of a functional

ψf , defined on a nonparametric set M of laws subject to mild constraints. Here, f is a

user-supplied function. In Chapter 2, we develop and analyze an estimator based on the

targeted minimum loss estimation methodology. Under mild assumptions, the estimator

lends itself to the construction of confidence regions of given asymptotic confidence level

and to the derivation of asymptotic p-values for related hypothesis testing.

On the other hand, drawing inspiration from the definition of ψf , we introduce a second
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high-dimensional functional ψpen, defined on a set M′ ⊂ M characterized within M by

a regression model. As opposed to ψf , ψpen does not rely on a user-supplied function.

Assuming that P0 falls in M′, ψpen(P0) is well defined and a subvector thereof can be

interpreted as another variable importance measure akin to ψf(P0), and equal to it for

a particular choice of f . In Chapters 3 and 4, we develop and study two estimators of

ψpen(P0), based respectively on the Lasso and the Slope methodologies. Under assumptions

that are typical of this kind of framework, we derive some convergence rates. Simulation

studies illustrate the theoretical results.

1.1 Variable importance measure

The analysis of variable importance has been simultaneously developed in several fields

such as engineering, economics, biology, statistics and machine learning, to only mention

those.

The era of big data has made these techniques of paramount importance. The authors

in [81] provide a rather exhaustive list of variable importance measures (VIM), covering a

broad spectrum of disciplines such as astronautic engineering, chemistry and environmen-

tal science. They argue that these measures could be regrouped in seven main categories:

Difference-based VIMs (i.e.: Derivatives-based methods [65]), Parametric regression tech-

niques (i.e.: correlation coefficient), Nonparametric regression techniques (i.e.: Generalized

Additive Model), Hypothesis test techniques (i.e.: entropy based measure [71]), Variance

based VIMs [42], Moment-independent VIMs [12] and Graphs VIMs[11].

There is not an unified definition for the notion of variable importance measure. How-

ever, within the predictive model world, it can be viewed as a scale which helps to determine

the dependence of an outcome of a regression model upon a single or a set of input variables.

We can cite as an example Random Forest [15], which is a well-known machine learning

algorithm for regression and classification. It relies on two main measures to evaluate a

variable importance. The first one, called Mean Decrease Impurity importance (MDI) or

Mean Decrease Gini, is based on the aggregation of the Gini Impurity across all nodes of

the decision tree, which helps to determine how to split the data at each node. The sec-

ond one, called Permutation Importance, is also based on the aggregation of a measure of

accuracy of the predictor, computed at each node of the tree. Random Forest and similar

decision tree techniques have a lot of benefits. They are well design for high dimensional

dataset. The construction of decision trees requires, at each node, only a subset of the

entire dataset. Furthermore, Random Forest is well-known to still be robust when the

dataset contains outliers.

Similar positive features can be presented regarding other VIMs of the same family.

However, it is also important to emphasize that most of them do have a few drawbacks.
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We know as an example that decision tree methods sometimes produce optimal predictors

which have very few variables, given the initial dataset (see [10]). Random Forest is known

for over-fitting learning datasets that are particularly noisy. Furthermore, most VIMs

techniques are known not to allow users to infer p-values, for hypothesis testing, from the

quantified variable importance. Some of these methods have been questioned by researchers

because they do not faithfully represent the true importance of a variable (see [54]).

1.2 The variable importance measure ψf over model M

Significant breakthroughs were achieved in the article [75] within the field of variable impor-

tance measure for statistical problems. The author proposed to define the latter measure as

a sound statistical parameter. It could then be studied through adequate estimators. One

could therefore infer asymptotic properties for these estimators, hence easing the derivation

of p-values for hypothesis testing. This work inspired several subsequent articles, with the

most important for us being [22], on which our work is based.

Let us consider a statistical problem with a data structure O = (X,W,Y ) of an ex-

perimental unit of interest W ∈ W ⊂ Rd, representing the vectors of covariates, X ∈ R (a

continuous exposure) a real valued variable of cause affecting Y ∈ R (a continuous response),

a real valued variable of effect. We denote by P0 the true data-generating distribution of

the data structure O. The exposure is assumed to feature a reference level x0. In words,

there exists 0 < c < 1/2 such that P0(X ≠ x0∣W ) ∈ [c,1 − c] P0-almost surely.

Our objective is to quantify the relationship, if any, that exists between X and Y , while

taking into account the covariates W . Taking the covariates in consideration is critical for

us since we cannot rule out their impact on the relationship between the exposure and

the response. By analogy with [22], we introduce a variable importance measure ψf(P0)
characterized by

ψf(P ) = arg min
β∈Rd

EP [(Y −EP (Y ∣X = x0,W ) − (X − x0)fβ(W ))2] , (1.1)

where fβ(W ) = β⊺ ⋅ fCT (W ) with fCT ∶ W → Rd is a user-supplied function. The as-

sumption here is that one could predefine the type of relationship that exists between

the covariates. As an example, with d = 2, we could have fCT (W ) = (W 2
1 ,W

2
2 ), where

W = (W1,W2). As such, we can infer that (X − x0)fψf (P0)(W ) is the best approximation

of the form (X − x0)fβ(W ) of Y − EP (Y ∣X = x0,W ). It is important to note here that

ψf(P0) is multivariate since its size corresponds to the number of covariates. This feature

is crucial since it allows us to have a variable importance measure which captures the role

played by each covariate in the relationship between the exposure and the response.

We emphasize here that we do not assume that there exists β such that

Y = EP0(Y ∣X = x0,W ) + (X − x0)fβ(W ) + ε,
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where ε is an unknown noise. In words, ψf(P0) is universally defined.

1.2.1 The parameter of interest

In order to study the parameter of interest, we use a semiparametric estimation methodol-

ogy called targeted minimum loss estimation (TMLE ), by analogy with [22]. We need to

identify and study its key properties in order to deploy the semiparametric model theory.

Influence Curve. a semiparametric model is a statistical model in which parameters of

interest are both an Euclidean vector and an infinite-dimensional parameter (also called

nonparametric component). When dealing with these models, one is usually interested in

estimating the Euclidean vector.

To solve this problem, the theory of asymptotic efficiency, as developed for paramet-

ric models, was extended. As such, the notion of semiparametric efficiency bounds was

introduced in [68] and further developed in [3, 9, 44, 55].

Keeping the above in mind, we can infer that the influence function plays a similar role

as the normalized score function in parametric models (see [79]). However, the influence

function is not unique. A corresponding function can be found through a projection on the

closure of a linear span of the tangent space (see [79]). This function, result of a projection,

is unique and is called the efficient influence curve. Through [9], we can establish that

by knowing the influence function (or even better the efficient influence function) of an

estimator, we can deduce its asymptotic distribution.

Now, considering (1.1), we assume without loss of generality that x0 = 0. Let us denote

by ḟβ = ∂fβ
∂β = fCT , the gradient of fβ and L2

0(P ) the set of measurable functions g such

that EP [g2] < ∞ and EP [g] = 0. We also denote by

θ(P )(X,W ) = EP (Y ∣X,W ), g(P )(W ) = P (X ≠ 0∣W ),

µ(P )(W ) = EP (Xḟβ(W )∣W ) and Σ(P ) = EP [X2ḟβ(W )ḟβ(W )⊺],

some relevant features of the distribution P . If we assume that

• all features of P are well-defined,

• Σ is invertible,

• there exists a c ∈]0,1/2[ such that g(P )(W ) ∈]c,1 − c[ P -almost surely,
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then the solution to (1.1) is unique and is given by

ψf(P ) = Σ(P )−1 [EP (Xḟβ(W ) (θ(P )(X,W ) − θ(P )(0,W )))] .

Furthermore, we can also infer that the functional ψf is path-wise differentiable at P . Let

us consider a bounded function s ∈ L2
0(P ) and ε ∈ Rd such that ∥s∥∞ < ∞ and ∥ε∥∞ < ∥s∥−1

∞ .

We can characterize a distribution Pε ∈ M such that

dPε(O) = (1 + ε⊺s(O))dP (O), (1.2)

If Pε verifies the conditions defined above, then ψf(Pε) is differentiable at ε = 0 and its

derivative is given by

lim
ε→0

ψf(Pε) − ψf(P )
ε

= EP [s(O)⊺D⋆(P )(O)] ,

where D⋆(P ) is the efficient influence curve, given by

D⋆(P ) = Σ(P )−1 [θ(P )(X,W ) − θ(P )(0,W ) −Xfβ(W )]Xḟ(W )

+Σ(P )−1 [(Y − θ(P )(X,W ))(Xḟ(W ) − 1X=0

g(P )(0∣W )µ(P )(W ))] .

We note here that this influence curve enjoys a key feature. It is double-robust (see [22])

in the sense that for any (P,P ′) ∈ M2, if either (µ(P ′) = µ(P ) and g(P ′) = g(P )) or θ(P ′)(0, ⋅) =
θ(P )(0, ⋅) holds then PD⋆(P ′) = 0 implies that ψf(P ′) = ψf(P ). This property is of im-

portance because it plays a crucial role in proving the consistency and asymptotic property

of the estimator of ψf(P0).

1.2.2 Statistical inference procedure

Having laid the groundwork of the underlying theory of the estimation methodology, we

turn our attention to the statistical inference procedure. It is at the heart of the numerical

analysis. The procedure is based on n independent copies O(i), with i ∈ {1, . . . , n} of the

observed data structure O. As mentioned above, the estimation of ψf(P0) is based on

the TMLE methodology which can be divided in two main steps. In the first step, an

initial estimate ψf(P 0
n) is evaluated, where P 0

n ∈ M is built as an element ofM based on

O(1), . . . ,O(n).

It is important to note that this initial estimate can be biased. It does not constitute

a drawback for the rest of the procedure, since this bias, if it exists, is corrected with

subsequent updates. We also emphasize that it is not required to estimate the whole

distribution P0 for our objective. In fact, only a few features of P0 must be estimated,

namely : µ(P0), g(P0), Σ(P0) and θ(P0).
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In the second step, using (1.2), we then construct k successive updates P 1
n , . . . , P

k
n which

allow us to build a sequence of estimates {ψjn = ψf(P jn)}j=1,...,k. For k large enough, the

procedure converges. In Chapter 2 (see 2.1), we then derive the following result:

Theorem 1.1. Let us denote ψ0 = ψf(P0). Suppose that performing kn iterations of

the updating procedure guarantees that ∥PnD⋆(P knn )∥∞ = oP ( 1√
n
). Suppose moreover that

there exists a function f1 with P0f1 = 0 such that ∥P0(D⋆(P knn ) − f1)(D⋆(P knn ) − f1)⊺∥∞ =
oP (1), and that ∥ψf(P knn )ψf(P0) −P0D

⋆(P knn )∥∞ = oP ( 1√
n
). In addition, suppose that Sn

estimates consistently EP0[f1(O)f1(O)⊺]. Then, ψ⋆n = ψf(P knn ) satisfies
√
n(ψ⋆ − ψ0) =

(Pn−P0)f1+oP (1), hence
√
nS

− 1
2

n (ψ⋆n−ψ0) converges in law to the d-multivariate Gaussian

law with zero mean and identity covariance matrix.

This result proves the consistency of the TMLE estimator and its asymptotic nor-

mality. It therefore allows one to construct confidence regions given a confidence level.

Furthermore, one can derive the parameter of interest p-values for hypothesis testing.

1.3 Going beyond ψf within a submodel of M

Let us consider the data structure O = (X,W,Y ) of an experimental unit of interest, where

X ∈ R is an exposure, Y ∈ R is a response and W ∈ W ⊂ Rd represents our covariates,

assumed drawn from the true data generating distribution P0 ∈ M′, where M′ ⊂ M and

M′ is characterized by (η⋆P , θ⋆P ) ∈ Rm ×Rk with potentially high dimensions m and k, such

that

Y = Φ̄⋆
m(W )η⋆P +X ⋅ Φ̄⋆

k(W )θ⋆P + ε,

where Φ̄⋆
j = {Φ⋆

1 , . . . ,Φ
⋆
j } is a vector containing the first j elements of an orthonormal basis

(o.n.b) of a Hilbert space. We recall that (1.1) is given by

ψf(P ) = arg min
β∈Rp

EP [(Y −EP (Y ∣X = x0,W ) − (X − x0) ⋅ fβ(W ))2] ,

where fβ(W ) = β ⋅fCT (W ), with fCT a function provided by the user. We chose to have fβ
linear in β for simplicity. It allowed a clearer path towards strong convergence rates results.

Furthermore, we emphasize here that the function fCT plays the role of representing the

interactions that exist between the covariates. Strictly speaking, it is an unknown feature

of our problem which is, in most cases, a source of considerable complexity. In Chapter 3,

we decide to analyze the problem through different lenses. We consider the same variable

importance measure without requesting that fβ be specified by the user.

Our objective remains to quantify the relationship that exists between the response Y

and the exposure X (having a reference level x0), while taking into account the covariates



1.3. Going beyond ψf within a submodel of M 31

W . Let us denote by F , the nonparametric set of all continuous functions on Rd. We

introduce, by analogy with (1.1), a statistical parameter ψpen(P ) characterized by

ψpen(P ) = arg min
f∈F

EP [(Y −EP (Y ∣X = x0,W ) − (X − x0) ⋅ f(W ))2] . (1.3)

It is important to note here that the parameter of interest is now a function. As such, we

are aiming at introducing a more flexible way of characterizing the interactions between

the covariates. It allows us to obtain a complete picture of the variable importance measure

with respect to the covariates in the dataset. From now on, we assume x0 = 0, without loss

of generality.

1.3.1 The function of interest

Nonparametric regression models have been extensively studied in the literature. Several

groups of techniques used to solve these problems have emerged through the years. We can

mention as examples the Kernel smoothing method [73], k-nearest-neighbors (see [1, 37] -

with few variations such as the weighted k-nearest-neighbors regression [63]), Wavelets (see

[51]), Smoothing spline (see [64, 73]) and nonparametric least squares. We rely upon this

last technique for what follows.

Let us consider Φ = (Φ1, . . . ,Φp, . . .) = {Φj}∞j=1 a complete orthonormal base of H, a
Hilbert space. Given that P ∈ M′, we know that there exists (ηP , θP ) ∈ Rm ×Rk such that,

under P ,

Y = Φ̄m(W )η⊺P +X ⋅ Φ̄k(W )θP + ε, (1.4)

where ε is a centered Gaussian random variable with variance σ2 that is independent of

(X,W ), and Φ̄j = {Φ1, . . . ,Φj} represents a vector whose elements are the first j compo-

nents of an o.n.b. of H. Furthermore, g(P )(W ) = EP [Y ∣X = 0,W ] = Φ̄m(W )ηP and, if

one chooses f(W ) = Φ̄k(W )θP , then ψf(P ) = θP . We emphasize here that by analogy

to (1.1), Φ̄k(W ) ⋅ θP is our new variable importance measure. Furthermore, we note that

the whole base {Φj}∞j=1 is not used in our decomposition. As such, there are potentially

residual terms which one would want to take into consideration. We assume here that they

are null under some smoothness conditions.

It is important to note that in what follows, we do not exploit the form of ψpen(P ) given
by (1.3), but rather rely on the regression model (1.4) for its analysis. The indices {m,k}
are assumed known and increase with n, but are function of P . The latter dependence is

not problematic in this study since we only consider a single data generating distribution

P .

We can now rewrite (1.4) as

Y = X ⋅ β + ε, (1.5)
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where β =
⎛
⎝
η

θ

⎞
⎠
∈ Rp with p =m + k and X is given by

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(W1) . . . Φm(W1) X1 ⋅Φ1(W1) . . . X1 ⋅Φk(W1)
⋮ ⋮ ⋮ ⋮

Φ1(Wn) . . . Φm(Wn) Xn ⋅Φ1(Wn) . . . Xn ⋅Φk(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (1.6)

We assume n ≪ p. As such, our problem is in high dimension. Giving this setting, the

vectors θ and η are assumed sparse with respective coefficients given by sθ and sη. As

a result, β is also sparse (in essence: ∑pi=1 I(βj ≠ 0) = s ≪ p) with a sparsity coefficient

denoted by s = sη + sθ.

Nonparametric Least square. Let us consider the statistical problem (1.5). A non-

parametric least square estimate of β is given by

arg min
β∈Rp

∥Y −Xβ∥2. (1.7)

In high dimensional settings, we know that the matrix X⊺X cannot be positive definite.

As such, (1.7) does not admit a unique solution.

One way of solving this issue in the literature has been to target a set of potential

solutions β⋆ which are sparse. This sparsity assumption implies that we do not want to

have values of β⋆ that are large, even if they lead to better fit. It is then common to adjust

the problem (1.7) by introducing a penalty term such that it is now given by

β̂LASSO = arg min
β∈Rp

∥Y −Xβ∥2 + pen(β), (1.8)

where pen(⋅) is a real-valued function of β. Several alternatives have been considered for

the choice of pen(⋅). The most natural one appeared to be pen(β) = λ ⋅ ∥β∥0, where λ > 0 is

a tuning parameter and ∥ ⋅ ∥0 represents the total number of non-zero elements. However,

with this choice of penalization problem, the resulting problem is impossible to compute

in polynomial time (it is NP -hard). The Lasso estimator, introduced in [72], has opted for

a convex relaxation of the penalty term with pen(β) = λ ⋅ ∥β∥1, where ∥ ⋅ ∥1 is the l1-norm.

The authors in [4] have shown that there exists a λ⋆ such that the Lasso estimator reaches

the optimal minimax rates of prediction and estimation, under some conditions on the

design matrix X.
We note that λ⋆ remains a function of the sparsity coefficient s of β, which is unknown

in practice. A solution that has been explored to alleviate this difficulty is to consider the

Slope estimator (see [50]). It relies on a penalty term given by pen(β) = ∑pj=1 λj ∣β∣(j), where
the tuning parameters verifies λ1 ≥ ⋯ ≥ λp > 0 and ∣β∣(j) is the jth largest component of

∣β∣. With this form, the objective is to penalize more the larger components of β, compare
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to the smaller ones. The authors in [4] have shown that there exist tuning parameters

{λ⋆i }i=1,...,p such that the Slope estimator attains the optimal minimax rates of estimation

and prediction.

1.3.2 The optimization problems and corresponding convergence rates
using Lasso

In Chapter 3, we opt for the Lasso methodology to find the estimator of the parameter

of interest. As mentioned above, it appears natural to use the penalty function pen(β) =
λ∥β∥1 for our optimization problem. However, we recall that Φ̄k(W ) ⋅ θP is now our new

variable importance measure. One can then prefer to use the penalty function pen(θ) =
λ ⋅ ∥θ∥1. By only penalizing θP , our variable of interest, it might be possible to infer a

better estimator. Both cases are explored below.

Penalty function based on β.

The optimization problem is given by

β̂ =
⎛
⎝
η̂

θ̂

⎞
⎠
= arg min

β∈Rp
{ 1

2n

n

∑
i=1

(Yi − (Xβ)i)2 + λ∥β∥1} (1.9)

where ∥β∥1 = ∑pi=1 ∣βi∣ and λ > 0 is a tuning parameter. We rely on the well-known

compatibility condition (see [67, 74]). It stipulates that, on an index set S0 having s0

elements, if for some φ0 > 0 and all γ ∈ Rp such that ∥γSc0∥1 ≤ 3∥γS0∥1, it holds that

∥γS0∥2
1 ≤

s0∥Xγ∥2
2

nφ2
0

.

It plays an important role in establishing the convergence rate of the estimator β̂. In

Chapter 3 (see 3.1), we then derive the following result:

Proposition 1.2. Assume that the variable X takes values in a compact space. Further-

more, assume that the compatibility condition holds. Then, with probability larger than

1 − 2 exp(− t22 ) and λ = 2σ∥X∥∞
√

t2+2 log(p)
n with arbitrary t > 0, the estimator β̂ of (1.9)

verifies
1

2n
∥X (β̂ − β) ∥2

2 + λ∥β̂ − β∥1 ≤ 4σ2∥X∥2
∞

8s

φ0
.
t2 + 2 log(p)

n
.

As a consequence, with the same probability,

∥β̂ − β∥1 ≤ 2σ∥X∥∞ ⋅ 8s

φ2
0

⋅
√

t2 + 2 log(p)
n

.

We can then infer similar results for the estimator η̂, and ultimately, θ̂ the estimator

of our parameter of interest.
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Penalty function based on θ.

This framework relates to a partially linear model with high-dimensional linear component,

i.e. m is assumed smaller than n, but we keep n ≪ k. We put more emphasis on the

estimation of θ as it is a key component of our parameter of interest. Let us denote by

Ψm, the matrix given by the first m functions of the base {Φ}∞j=1 at points W1, . . . ,Wn,

that is,

Ψm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(W1) . . . Φm(W1)
⋮ ⋮

Φ1(Wn) . . . Φm(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and by DX the diagonal matrix with elements {X1, . . . ,Xn}. Thus, X = [Ψm,DXΨk]. The
new optimization problem can now be written as

⎛
⎝
η̂

θ̂

⎞
⎠
= arg min
η∈Rm,θ∈Rk

{ 1

2n

n

∑
i=1

[Yi − (Ψi
m ⋅ η +Xi ⋅ (Ψi

k ⋅ θ))]
2 + λ∥θ∥1}. (1.10)

We solve this problem in two steps. In the first step, we solve for η̂ which minimizes (1.10)

for any θ.

It corresponds to a classic least square estimator whose solution is given by

η̂(θ) = 1

n
Ψ⊺
m ⋅ (Y − (DXΨk)) , where Y = {Yi}i=1,...,n.

In the second step, we replace the solution of the previous solution in (1.10), and then

obtain a resulting classic l1 optimization problem solely based on θ and given by

θ̂ = arg min
θ∈Rk

{ 1

n
∥V ⋅ (Y − Ψ̃k ⋅ θ) ∥2

2 + λ∥θ∥1}, (1.11)

where λ > 0 is a tuning parameter, V = (In×n − 1
nΨm ⋅Ψ⊺

m) and Ψ̃k = DXΨk. We are then

able to deduce convergence rates of our estimator. In Chapter 3 (see 3.2), we then derive

the following result:

Proposition 1.3. Let us assume that the compatibility condition holds. Thus with prob-

ability larger than 1 − 2 exp(− t22 ) and for λ = 2σ∥X∥∞
√

t2+2 log(k)
n , the estimator θ̂ is such

that
1

2n
∥V ⋅ Ψ̃k ⋅ (θ̂ − θ) ∥2

2 + λ∥θ̂ − θ∥1 ≤ 4σ2∥X∥2
∞ ⋅ 8sθ

φ2
0

⋅ t
2 + 2 log(k)

n

for some arbitrary t > 0. Hence,

∥θ̂ − θ∥1 ≤ 2σ∥X∥∞
8sθ
φ2

0

⋅
√

t2 + 2 log(k)
n

.

This result shows an improvement in the estimation of θ. However, we can notice that

the estimation rate of η deteriorates with respect to the case where θ and η are estimated

at the same time.
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1.3.3 Adding errors-in-variables and their impact on convergence rates
using Lasso

We know that in most real life examples, the dataset used for statistical analysis is pol-

luted. We have taken the latter fact in consideration in this second phase of our analysis.

Specifically, we assume that the model (1.5) is subject to additive measurement errors

corresponding to Z = X + ν, where elements of ν are drawn from a centered Gaussian

distribution with variance µ2. The variables ε and ν are assumed independent. Thus, we

introduce the model given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y = X ⋅ β + ε

Z = X +K
, (1.12)

where β =
⎛
⎝
η

θ

⎞
⎠
, and K is given by

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 ν1 ⋅Φ1(W1) . . . ν1 ⋅Φk(W1)
⋮ ⋮ ⋮ ⋮
0 . . . 0 νn ⋅Φ1(Wn) . . . νn ⋅Φk(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We further consider that there exists L > 0 such that

∥Ψk(W )θ∥2
2 < L, P -almost surely.

This assumption plays a key role in deriving the convergence rates of the estimators.

Similarly to Section 1.3.2, two types of penalty functions are considered.

Penalty function based on β.

We note that the presence of measurement errors surely has an impact on the optimization

problem as developed in (1.9). In fact,

E[∥Y − (Ψmη + (DZΨk)θ)∥2
2] = E[∥Y − (Ψmη + (DXΨk)θ)∥2

2] +E[∥(DνΨk)θ∥2
2]

− 2E[ε⊺(DνΨk)θ]

= E[∥Y − (Ψmη + (DXΨk)θ)∥2
2] + nµ2∥θ∥2

2.

From the above, it appears that the regularization requires a correction by a factor of

nµ2∥θ∥2
2. As such, the estimators η̂ and θ̂ are then defined by

⎛
⎝
η̂

θ̂

⎞
⎠
= arg min
η∈Rm,θ∈Rk

L(η, θ)
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with

L(η, θ) = 1

2n
∥Y − (Ψm ⋅ η + (DZΨk) ⋅ θ))∥

2

2

− 1

2
µ2∥θ∥2

2 + λ1∥η∥1 + λ2∥θ∥1,

where λ1 ≥ 0 and λ2 ≥ 0.

We denote by X̃, the equivalent of X in (1.5) with X replaced by its counterpart Z. The

matrix X̃ corresponds to X̃ = [Ψm,DZΨk], where DZ is a diagonal matrix with diagonal

elements Z1, . . . , Zn. We further consider the vector ξ = (0, . . . ,0,1, . . . ,1), of size p, where
the first m elements are equal to 0 and the last k are all equal to 1. Decomposing the loss

function, we obtain:

L(η, θ) = 1

2
( 1

n
∥Ψmη + (DZΨk)θ∥2

2 − µ2∥θ∥2
2) −

1

n
⟨Y,Ψmη + (DZΨk)θ⟩

+ 1

2n
∥Y ∥2

2 + λ1∥η∥1 + λ2∥θ∥1

= 1

2
( 1

n
∥X̃β∥2

2 − µ2∥ζβ∥2
2) −

1

n
⟨Y, X̃β⟩ + λ∥β∥1 +

1

2n
∥Y ∥2

2 with λ =
⎛
⎝
λ1

λ2

⎞
⎠
,

where β =
⎛
⎝
η

θ

⎞
⎠
and ζ = diag(ξ). Thus

L(η, θ) = 1

2
β⊺Γβ − γTβ + λ∥β∥1 +

1

2n
∥Y ∥2

2,

with Γ = 1
n X̃

⊺X̃ − µ2ζ⊺ζ and γ = 1
n X̃

⊺Y . The optimization problem becomes then

β̂ = arg min
β∈Rp

{1

2
β⊺Γβ − γTβ + λ∥β∥1}.

For µ ≠ 0, the matrix Γ is not positive definite. As such, we are dealing with a non convex

quadratic problem. Furthermore, if Γ has negative eigenvalues, the problem is unbounded.

Thus, we need to add constraints to the optimization problem (see 3.3.1). Therefore, the

problem is now given by

β̂ ∈ arg min
β∈Rp

{1

2
β⊺Γβ − γTβ + λ∥β∥1}, such that ∥β∥1 ≤ c0

√
s, (1.13)

where c0 > 0 is large enough.

Furthermore, we use a well-known Restricted Eigenvalues condition (see [8]) on the

matrix Γ. It stipulates that for some integer s, such that 1 ≤ s ≤ p, t0 > 0, a positive

number c0, the condition holds for the index set J0 ∈ {1, . . . , p} and for all δ ∈ Rp
⋆ such that

∣J0∣ ≤ s and ∥δJc0∥1 ≤ c0∥δJ0∥1, if we have

δ⊺Γδ

∥δJ0∥2
2

≥ t0. (1.14)

The above condition is crucial since it allows us to control the rank deficiency problem

related to the definition of Γ. In Chapter 3 (see 3.3), we then derive the following result:
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Theorem 1.4. We assume that the variable X takes values in a compact space. Further-

more, we also assume that the Restricted Eigenvalues condition holds. Then, there exist

t > 0, t0 > 0 and λ0 = (∥X∥∞(σ + µ
√
L) + µ

√
L)

√
2(1+t) log(p)

n τ0, with

τ0 = max{2µ2
√
L√

n

√
t,

4µ2L

n
t} + (σ2 + µ2) ⋅max{

√
t

n
,2δ

t

n
}

such that for 2λ0 ≤ λ, the estimators η̂ and θ̂ verify

∥β̂ − β∥1 = ∥θ̂ − θ∥1 + ∥η̂ − η∥1 ≤ 12λ ⋅ s
t0

with probability greater than 1 − 5 exp(− t2).

Penalty function based on θ.

As in Section 1.3.2, the resolution of the optimization problem is done in a two-step process.

The index m is assumed smaller than n, but we keep n ≪ k. We put more emphasis on

the estimation of θ as it is a key component of our parameter of interest. In the first step,

we solve for η̂ since it corresponds to a classic least square estimator. In the second step,

the optimization problem corresponding to the estimator θ̂ is adjusted due to the presence

of measurement errors. It is tentatively given by

θ̂ = arg min
θ∈Rk

{1

2
θ⊺Γθ − γ⊺θ + λ∥θ∥1}, (1.15)

where Γ = 1
n(V Ψ̃k)⊺(V Ψ̃k) − 1

nµ
2(VΨk)⊺(VΨk) and γ = 1

n(V Ψ̃k)⊺Y .

Again, Γ is singaular, we have to further constrain the problem. Hence, following [48],

the optimization problem (1.15) is replaced by

θ̂ ∈ arg min
∥θ∥1≤c0

√
sθ

{1

2
θ⊺Γθ − γ⊺θ + λ∥θ∥1}

where c0 > 0 is a large enough constant. We can then derive the convergence rate for our

estimator (see 3.4).

Theorem 1.5. We assume that the variable X takes values in a compact space. Further-

more, we assume that the Restricted Eigenvalues condition holds.

Then, there exists t > 0, t0 > 0 and λ0 = ∥X∥∞ (σ + µ
√
L)

√
2(1+t) log(k)

n τ0, with

τ0 = max{2µ2
√
L√

n

√
t,

4µ2L

n
t} + (σ2 + µ2) ⋅max{

√
t

n
,2δ

t

n
}

such that for λ0 ≤ 2λ, the estimator θ̂ verifies

∥θ̂ − θ∥1 ≤ 12λ
sθ
t0

with probability greater than 1 − 5 exp(− t2).
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1.3.4 Convergence rates using Slope

We now generalize the regression model (1.12) and consider the model

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y = X̄ ⋅ β⋆ + ε

W = X̄ +U
(1.16)

where Y = (Y1, . . . , Yn)⊺ is the vector of responses, X̄ = [X̄ij]1≤i≤n,1≤j≤p
is the n × p design

matrix of covariates and ε = (ε1, . . . , εn)⊺ is a Gaussian vector having centered independent

and identically distributed elements, with variance σ2. Furthermore, W = [Wij]1≤i≤n,1≤j≤p

is a n × p noisy design matrix, polluted by U ∈ Rn×p. We assume here that the rows of

the matrix U are drawn independently from a centered Gaussian multivariate distribution

with a p × p covariance matrix denoted by CU .

Our objective is to estimate the parameter of interest β⋆. It is assumed s-sparse, with

0 < s ≪ p. We recall that the dataset is in high dimension and the sample size n is much

smaller than p. The variables ε and U are assumed independent. The Slope estimator β̂

of β⋆ is tentatively defined through the following optimization problem

β̂ ∈ arg min
β∈Rp

{ 1√
n
∥Y − X̄ ⋅ β∥2

2 + ∥β∥⋆}, (1.17)

with ∥β∥⋆ = ∑pi=1 λi∣β∣(i), known as the Slope norm, where λ1 ≥ . . . ≥ λp > 0 are tuning

parameters. The presence of errors-in-variables requires a correction of the optimization

problem (1.17).

As such, instead of (1.17) we tentatively consider

β̂ ∈ arg min
β∈Rp

{ 1

n
∥Y −Wβ∥2

2 − β⊺CUβ + ∥β∥⋆}

∈ arg min
β∈Rp

{β⊺( 1

n
W ⊺W −CU)β −

2

n
Y ⊺Wβ + 1

n
Y ⊺Y + ∥β∥⋆}

∈ arg min
β∈Rp

{β⊺Σ̂β − 2

n
Y ⊺Wβ + ∥β∥⋆}

The problem above is not convex because the matrix Σ̂ could have negative eigenvalues.

Thus, we propose to project Σ̂ on the set S≥0 of symmetric positive semi-definite matrices

using the Frobenius norm. Therefore, we introduce Σ̃ defined by

Σ̃ ∈ arg min
M∈S≥0

∥Σ̂ −M∥F ,

which is equivalent to

Σ̃ ∈ arg min
M∈S≥0

∥Σ̂ −M∥2,

and finally consider the convex optimization problem given by

β̂ ∈ arg min
β∈Rp

{β⊺Σ̃β − 2

n
Y ⊺Wβ + ∥β∥⋆}. (1.18)
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In order to derive the bounds on the convergence rates of this estimator, we need to

rely on the well-known Weighted Restricted Eigenvalues condition, introduced in [4] and

applied to the design X̄. It was a key factor in deriving our convergence rates.

The condition states that the design matrix X̄ satisfied the WRE(s, c0) condition if

max
j=1,...,p

∥X̄ej∥n ≤ 1,

and

κ = min
δ∈CWRE(s,c0)

∥X̄δ∥2
n

∥δ∥2
> 0 (1.19)

where CWRE(s,c0) = {δ ∈ Rp ∶ ∥δ∥⋆ ≤ c0∥δ∥⋆
√
∑pj=1 λ

2
j} is a cone in Rp. We show that under

mild conditions and if X̄ verifies the WRE(s, c0) condition, then there exists a c0 ∈ R such

that
κ

2
= min
δ∈CWRE(s,c0)

δ⊺Σ̃δ

∥δ∥2
2

> 0 (1.20)

with probability at least 1 − 4
n − 2 exp(− t22 ), where t > 0. The convergence rate for our

estimator β̂ (see 4.1) is then given by

Theorem 1.6. Let s ∈ {1, . . . , p} and assume that the WRE condition holds. We choose

the following tuning parameters

λj =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ′
√

log(2p/j)
n if ∑sj=1 log(2p

j ) ≥ R2
n,p

Rn,p
√
s

if ∑sj=1 log(2p
j ) < R2

n,p

,

and assume that δ0 < e2−1/2 and

γ′ ≥ 2σ(4 +
√

2).

Then, with probability at least 1 − 8
n − 4p1−2 log(2/δ0) − δ0, we have

∥β̂ − β⋆∥2 ≤ max{C1

√
s

n
log(2ep

s
),C2

¿
ÁÁÀ log2(1/δ0)

sn log(2ep/s) ,C3Rn,p}

where t =
√

2 log(2/δ0), C1 = (3+4σ)γ′

κ , C2 = 4(4 +
√

2)2 and C3 = 28
κ . Furthermore,

Rn,p(CU , ∥β⋆∥2, t) = Rn,p = t2
√

∥CU∥2

n
+ ∥β⋆∥2

⎛
⎝

2An,p(CU) + 3tp

√
2 log(p)

n
max
1≤j≤p

CjjU
⎞
⎠

where

An,p(CU) = c ⋅max{Tr(CU)
log(pn)

n
,

√
Tr(CU)∥CU∥2

log(pn)
n

}.

.

We note that the convexity of the problem (1.18) allows to minimize overall possible

values of β without restrictions. However, the rates are driven by the estimation rates of

the large covariance matrix of the design in the convolution model. Under very restrictive

conditions on the noise, we recover the optimal rates for estimating β⋆.



40

1.4 Computational contributions and simulation studies

1.4.1 Computational contributions

Our contributions are two-fold. On the one hand, we extended the TMLE package [20] so

that it could cope with the estimation of the multivariate variable importance measure,

that we developed in Section 1.2. The extension allows the user to derive confidence

regions.

On the other hand, we have relied on a bespoke version of coordinate descent to evaluate

the estimators of ψpen. In order to conduct our numerical studies, we could have chosen

a well-known algorithm such as Lars([32]). However, a majority of the problems we were

faced with assumed that our datasets were subject to measurement errors. This feature is

not always dealt with adequately in most of the existing solving packages. So we decided to

develop our own version of the coordinate descent algorithm, known to be very efficient. By

fully implementing our procedures, we could then control our setup and easily include the

intricacies of our problems. Furthermore, this choice allowed us to extend our procedures

initially written in R, to C++, in order to improve the overall speed.

Coordinate descent. The intuition behind Coordinate descent algorithm is quite straight-

forward: apply Newton Raphson algorithm consecutively and sequentially to each element

of a parameter of interest of the problem until convergence. It was first used to resolve

Lasso like problems in [35], where it was called Modified Newton Raphson. The author

analyzed the structures of bridge estimators and developed an overall approach to solve

bridge regression (penalized regression with penalty function given by ∑∣βj ∣γ and γ ≥ 1).

We can also mention [28] where the authors studied a linear inverse problem assumed to

have a sparse expansion. The corresponding quadratic regression problem was adjusted

through weighted lα penalties, where 1 ≤ α ≤ 2. However, it is truly the articles [34, 82]

which have been a catalyst for a greater interest by the statistician community in the

methodology. Since then, it has been utilized in different forms and for a large variety

of domain: Block coordinate descent([46]), Cyclic coordinate descent ([46]) and Stochastic

coordinate descent ([26]) are some of the known variations.

We recall here the regression model (1.16) is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y = X̄ ⋅ β⋆ + ε

W = X̄ +U

where X̄ ∈ Rn×p is a design matrix, ε is a centered Gaussian vector, Y ∈ Rn and β ∈ Rp is

our parameter of interest. Furthermore, U is a n×p matrix whose elements are drawn from

a p-multivariate centered Gaussian distribution of covariance CU ∈ Rp. The model is set in
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a high dimensional framework with n≪ p. The Lasso optimization problem corresponding

to the regression model above is defined by

β̂ = arg min
β∈Rp

{ 1

n
∥Y − X̄ ⋅ β∥2

2 + λ∥β∥1}, (1.21)

where λ > 0. In order to account for the pollution of the dataset, (1.21) has to be adjusted.

Instead of constructing β̂ given by (1.21), we aim for

β̂ = arg min
β∈Rp

{ 1

n
∥Y −W ⋅ β∥2

2 − β⊺ ⋅CU ⋅ β + λ∥β∥1}

= arg min
β∈Rp

{f̄(β) + ḡ(β)}, (1.22)

where ḡ(β) = λ∥β∥1 and f̄(β) = 1
n∥Y −W ⋅ β∥2

2 − β⊺ ⋅CU ⋅ β. In order to solve numerically

for β̂, using coordinate descent algorithm, one has to find the gradient of the functions f̄

and ḡ. The gradient associated with the function f̄ can be derived easily. However, the

function ḡ is not differentiable for all β. To solve this problem, the methodology relies on

a sub-gradient theory to compute ∇ḡ. We have

∂iḡ(β) = λ ⋅

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if βi > 0

−1 if βi < 0

[−1,1] if βi = 0

The coordinate descent algorithm can then be described as follows: Let us denote by

∇ih(β) = ∇if̄(β) +∇iḡ(β) the ith component of the gradient ∇h(β) = ∇f̄(β) +∇ḡ(β). At
each point of the iterative process, we update the ithk element of our estimate βk;βkik while

fixing all the remaining elements. As such, (1.22) becomes a unidimensional minimization

problem. We can then rely on the gradient ∇h(βk) to produce an update of βkik . The

procedure can be briefly resumed in the following pseudo code.

Algorithm 1.1 Coordinate descent for (1.22)
Set k ← 0 and choose β0 ∈ Rp.
While Termination test is not satisfied do

Choose index ik ∈ {1,2, . . . , p}.
βk+1 ← βk − αk[∇h(βk)]ikeik for some αk > 0.

k ← k + 1.

End While

The resolution of a Slope based optimization problem follows a similar pattern.
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1.4.2 Simulation studies

We provide in this thesis two main approaches to estimate the variable importance measures

ψf and ψpen that we introduce. Naturally, one would like to compare them. This is easy

when f , the user-supplied function, satisfies f = Φ̄k in which case Φ̄k(W ) ⋅ ψf(P0) =
ψpen(P0).

Let us denote by ψ̂f and ψ̂pen the estimators of ψf and ψpen in this special estimation.

One expects by design that the prediction risk linked to ψ̂pen will be smaller than the one

linked to ψ̂f . On the contrary, the confidence regions built from ψ̂pen will surely be less

precise than the ones built from ψ̂f .

Comparison of Prediction and Estimation Risks - No measurement errors

Given the above, we now introduce a framework, relying on the model (1.4), which will be

the base case for our analysis. We assume that the function g is given by g(W ) =W and

the function f , is given by f(W ) = 20 ⋅cos(2πW )+5 ⋅sin(2π2W ). We also assume that the

variables W and X are drawn from a [0,1]-uniform distribution. We then force randomly

15% of values of X to be equal to 0, so as to be in line with the constraints introduced in

[23]. The variable Y is generated through (1.4). We use a Fourier basis for our decompo-

sition. We generate data samples O = (X,W,Y ) of size n = {100,200,300,400,500,600}.
The Prediction Risk calculation is done through a two-step cross-validation process.

We partition the sample O in l distinct subsets Osubset, of equal size. In the firs step, we

set aside one of the Osubset
{i} , which is used as the test set, and use the l−1 remaining subsets

as training sets. For each test set, we compute the estimator θ̂{−i}. In the second step, we

use the Osubset
{i} to determine how close the estimator θ̂{−i} is to the real value. These two

steps are repeated successively l times. For each iteration calculated the difference between

the estimator and the true value function using the test set. The empirical average of these

l distances give us the desired Prediction and Estimation Risks.

We see from figures (1.1b) and (1.1a) that the TMLE estimators perform relatively

poorly compared to Lasso based ones for very small sample size. However, as data increases,

the performance, of both methods, tends to converge.

Comparison of Prediction and Estimation Risks - With measurement errors

We rely here on the model (1.12) in order to build the framework of our analysis. We

assume that W is drawn from a [0,1]-uniform distribution. The elements of Z are given

by Z =X +ν where X is drawn from a [0,1]-uniform distribution, and ν is a vector coming

from a centered Gaussian distribution with standard deviation µ = 20%. As before, we

force 15% of the elements of Z to be equal to 0. he variable Y is generated through (1.4).

We use a Fourier basis for our decomposition. We generate data samples O = (Z,W,Y ) of



1.4. Computational contributions and simulation studies 43

●

●

● ● ● ●

100 200 300 400 500 600

1
2

3
4

Sample size

V
al

ue
s

100 200 300 400 500 600

1
2

3
4

Sample size

V
al

ue
s

● LASSO
TMLE

(a) Evolution of the Prediction Risk of the
function f using both TMLE and Lasso
methodology

●

●

●

●
●

●

100 200 300 400 500 600

0.
5

1.
0

1.
5

Sample size

V
al

ue
s

● LASSO
TMLE

100 200 300 400 500 600

0.
5

1.
0

1.
5

Sample size

V
al

ue
s

(b) Evolution of the Estimation Risk of the
function f using both TMLE and Lasso
methodology

Figure 1.1 – Model without measurement errors

size n = {100,200,300,400,500,600}. We rely on the procedure described in the previous

paragraph to infer our Prediction and Estimation Risks for this case as well.

We see from figures (1.2b) and (1.2a) that the TMLE performs poorly for small sample

size and further struggles to improve even when we increase the sample size. As expected,

it is biased for cases when data sample is polluted.
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Figure 1.2 – Model with measurement errors



Chapter 2

Inference of a non-parametric

covariate-adjusted variable

importance measure of a continuous

exposure

This chapter is based on the manuscrit [23].

Abstract
We consider a setting where a real-valued variable of cause X affects a real-valued variable of effect
Y in the presence of a context variableW . We aim at quantifying the impact of (X,W ) on Y , while
making only realistic assumptions on the true data generating distribution of (W,X,Y ). To do
so, we introduce a non-parametric, context-adjusted variable importance measure, whose definition
relies on a user-supplied marginal structural model. It generalizes the variable importance measure
introduced by [22]. We show how to infer it by targeted minimum loss estimation (TMLE), conduct
a simulation study and present an illustration of its use.
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2.1 Introduction

The statistical literature offers different ways to assess the importance of a variable. One

way essentially consists in comparing the prediction performances of two models. The

bigger model uses all the prediction variables whereas the smaller one, a subset of the

bigger model, also relies on all prediction variables except the variable of interest. More

algorithmic in nature, another way consists in assessing the importance of a variable by

counting “the number of times” the variable of interest is used in the process of making

predictions. This is the case for instance in random forests [15]. To the best of our

knowledge, neither approach lends itself well to the construction of confidence regions.

Following the seminal article [75], a third way consists in defining the variable importance

measure as a sound statistical parameter and developing tailored estimators which, by the

central limit theorem, can be used to construct confidence regions. An example of such a

variable importance measure is introduced and studied by [22], upon which this manuscript

builds.

The setting. Consider the situation where a real-valued variable of cause, X ∈ R (a

continuous exposure), affects a [0,1]-valued variable of effect, Y (a continuous response),

in the presence of a variable of context W ∈ W (covariates). The objective is to assess to

what extent (X,W ) influences Y while making only realistic assumptions on the unknown

distribution P0 of O = (W,X,Y ). This requires both the definition of a tailored statistical

parameter and the elaboration of a semi-parametric inferential procedure to construct

confidence regions of a given asymptotic level based on independent copies of O drawn

from P0.

Marginal structural models are very useful tools in this regard. The notion of marginal

structural model was introduced in [60]. Widely used in the epidemiology literature, they

are parametric classes of regression functions. Let {msmβ ∶ β ∈ B} be such a class of

functions mapping R ×W to R. It yields a parameter, defined as a minimizer in β of

β ↦ EP0 ([Y −EP0(Y ∣X = x0,W ) −msmβ(X,W )]2) ,

where x0 is a reference value for X for which there exists 0 < c < 1/2 such that P0(X ≠
x0∣W ) ∈ [c,1−c] P0-almost surely. For instance, choosing a marginal structural model with

B = R and msmβ given by msmβ(X,W ) = β(X − x0) yields the non-parametric variable

importance measure studied in [21, 22].

For technical reasons, we focus on marginal structural models of the form

{(X,W ) ↦ (X − x0)fβ(W ) ∶ β ∈ B}, (2.1)

where fβ is linear in β. The statistical parameter of interest is formally defined as

ψ0 = arg min
β∈B

EP0 ([Y −EP0(Y ∣X = x0,W ) − (X − x0)fβ(W )]2) , (2.2)
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assuming that the minimizer exists and is unique. We interpret (X − x0)fψ0(W ) as the

best approximation of the form (X − x0)fβ(W ) to (EP0(Y ∣X,W ) − EP0(Y ∣X = x0,W )).
It quantifies the influence of X on Y , using x0 as a reference value, while accounting for

the covariates W on a linear scale.

Relevant literature. Our main source of inspiration is [21, 22]. These articles were

motivated by an application to the analysis of the effect of DNA copy number variations

(the exposure X) on gene expression (a response Y ) accounting for DNA methylation (the

covariates W ). Their parameter of interest corresponds to the marginal structural model

{(X,W ) ↦ β(X − x0) ∶ β ∈ R}. (2.3)

Contrary to [2, 49, 56, 70, 80], [21, 22] do not assume that the real-valued variable

of cause X is discrete (or do not discretize it), but rather exploit the fact that X has a

reference value x0 (x0 = 2 for DNA copy variations) and features a continuum of other

values. Moreover, contrary to [58, 59], [21, 22] do not assume a semi-parametric model

but rather exploit one. We do too exploit the marginal structural model (2.1) and do not

assume that EP0(Y ∣X,W ) −EP0(Y ∣X = x0,W ) belongs to it.

Our parameter of interest ψ0 (2.2) points to an element of (2.1) such thatEP0(Y ∣X,W )−
EP0(Y ∣X = x0,W ) is best approximated by (X −x0)fψ0(W ). In words, W is not averaged

out completely like in [21, 22]. Instead, the effect of X on Y is quantified as (X −x0) times

a function of the linear expression fψ0(W ) of W . Hence, contrary to [21, 22], we are able

to capture the role played by each component of W in the relationship between X and Y .

We will view ψ0 as the value of a functional Ψ at P0, where Ψ maps the statistical

model describing the experiment to B. Since Ψ is path-wise differentiable, we can carry

out the inference of ψ0 by targeted minimum loss estimation (TMLE) [21, 22, 76, 78]. The

TMLE template is a stepwise procedure. Its instantiation when the negative log-likelihood

is chosen as loss function can be described as follows. Set k = 0. The first step consists

in defining the parameter of interest as the value of a smooth functional Ψ at P0. The

second step consists in using machine learning to estimate some relevant features of P0

which are needed to derive an initial substitution estimator ψkn = Ψ(P kn ) of ψ0 and the

derivative D∗(P kn ) of the functional Ψ at P kn . This initial estimator is typically biased, or

does not satisfy a central limit theorem. The third step consists in defining a parametric

model through P kn whose score at P kn spans D∗(P kn ). The fourth step is a maximization of

the log-likelihood of this parametric model, which yields an update P k+1
n of P kn , hence and

updates ψk+1
n = Ψ(P k+1

n ), D∗(P k+1
n ) of ψkn = Ψ(P kn ), D∗(P kn ). The third and fourth steps

are iterated (in k) till convergence (specifically, in our case, till
´
D∗(P kn )dPn = oP (1/

√
n),

where Pn is the empirical measure). The TMLE estimator is the last of the updated

substitution estimators, denoted Ψ(P ⋆
n ).

Organization. Section 2.2 defines and studies the functional Ψ associated to ψ0 (2.2).
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Section 2.3 describes the inference procedure tailored to the construction of confidence

regions of a given asymptotic level for ψ0. Section 4.4 presents the results of a simulation

study. Section 2.5 gives an illustration based on real data on climate change. Relevant

materials and proofs are gathered in the appendix.

2.2 Studying the parameter of interest

Without loss of generality, we assume from now on that x0 = 0.

Differentiability and robustness. We denote ḟ = ∂
∂β fβ the gradient of fβ which, by

choice, does not depend on β. Denote d the dimension of the space where ḟ(W ) lives. For

every possible data-generating distribution P of O, we denote θ(P )(X,W ) = EP (Y ∣X,W )
and g(P )(W ) = P (X ≠ 0∣W ). Assume that P is chosen such that

1. µ(P )(W ) = EP (Xḟ(W )∣W ) and Σ(P ) = EP [X2ḟ(W )⊺ḟ(W )] are well-defined fea-

tures of P ;

2. Σ(P ) is invertible;

3. there exists c ∈]0,1/2[ such that g(P )(W ) ∈ [c,1 − c] P -almost surely.

Condition 3 is called a “positivity assumption”. It guarantees that, in every stratum of

W , the conditional probabilities of X = 0 and X ≠ 0 are larger than c > 0. Conditions 1

and 2 on the joint distribution of (X, ḟ(W )) are technical but standard. They are met if

Xḟ(W ) is a bounded random variable and if there is no deterministic linear combination

of the components of Xḟ(W ) which equals 0 P -almost surely. For such a P , the equation

Ψ(P ) = arg min
β∈B

EP ([θ(P )(X,W ) − θ(P )(0,W ) −Xfβ(W )]2) (2.4)

uniquely characterizes a parameter of P such that Ψ(P0) = ψ0, if P0 meets the constraints,

which we assume from now on to be true. It occurs that Ψ(P ) rewrites as

Ψ(P ) = Σ(P )−1[EP (Xḟ(W )(θ(P )(X,W ) − θ(P )(0,W )))]. (2.5)

The functional Ψ is path-wise differentiable at P , with an efficient influence curve

given by D⋆(P ) = D⋆
1(P ) +D⋆

2(P ) where D⋆
1(P ) and D⋆

2(P ) are two L2
0(P )-orthogonal

components characterized by

D⋆
1(P )(O) = Σ(P )−1 [(θ(P )(X,W ) − θ(P )(0,W ) −Xfβ(W ))]Xḟ(W ), and

D⋆
2(P )(O) = Σ(P )−1 [(Y − θ(P )(X,W ))(Xḟ(W ) −

1{X=0}

g(P )(0∣W )µ(P )(W ))] .

This means that, for any bounded s ∈ L2
0(P ) taking values in Rd and ε ∈ Rd with ∥ε∥∞ <

∥s∥−1
∞ , if we characterize a data-generating distribution Pε of O by setting

dPε
dP

(O) = 1 + ε⊺s(O),
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then for ε small enough, Pε meets Conditions 1, 2, 3, hence Ψ(Pε) is well-defined, and

moreover ε↦ Ψ(Pε) is differentiable at ε = 0 with a derivative given by

lim
ε→0

Ψ(Pε) −Ψ(P )
ε

= EP [s(O)⊺D⋆(P )(O)].

The efficient influence curve D⋆ enjoys a remarkable property: if P,P ′ are two data-

generating distributions of O satisfying Conditions 1, 2, 3 and such that EP (D⋆(P ′)(O)) =
0, then Ψ(P ) = Ψ(P ′) whenever θ(P ′)(0, ⋅) = θ(P )(0, ⋅) or (µ(P ) = µ(P ′) and g(P ′) =
g(P )). The validity of all the statements made in this section can be checked by adapting,

mutatis mutandis, the proofs in [22]. Although not straightforward, the exercise of

adapting the prior proofs was direct enough for us to decide to omit them in this document.

It is common sometimes to give a causal interpretation to a variable importance mea-

sure. It is possible to give such an interpretation in our case.

Causal interpretation. The causal interpretation partly relies on untestable as-

sumptions. Assume, in this section only, that there exists a collection (Yx)x∈R of random

variables such that (i) (Yx)x∈R ⊥X ∣W (randomization assumption), and (ii) Y = YX (con-

sistency assumption). The above holds for instance in the following structural equation

model: there exists three deterministic functions fW , fX , fY and three independent random

variables UW , UX , UY such that W = fW (UW ),X = fX(W,UX) and Y = fY (W,X,UY ). In
addition, assume that the conditional laws of X given W are all dominated by a common

measure µ. Then, there exists a collection of conditional densities φ(⋅∣W ) of X given W ,

all with respect to µ.

Let us denote by P the law of the full data (W,X, (Yx)x∈R). It holds that EP (Y ∣X =
x,W ) = EP(Yx∣X = x,W ) = EP(Yx∣W ), by independence of Yx and X. Furthermore, for

each β ∈ B,

EP {(EP (Y ∣X,W ) −EP (Y ∣X = 0,W ) −Xfβ(W ))2}

=
ˆ
EP [(EP(Yx − Y0 − xfβ(W )∣W ))2φ(x∣W )]µ(dx). (2.6)

proof of (2.6). The following series of equalities proves (2.6), where the third one is a

consequence of Fubini’s theorem:

EP {(EP (Y ∣X,W ) −EP (Y ∣X = 0,W ) −Xfβ(W ))2}

=EP {EP ((EP (Y ∣X,W ) −EP (Y ∣X = 0,W ) −Xfβ(W ))2∣W )}

=EP {
ˆ

(EP(Yx∣W ) −EP(Y0∣W ) − xfβ(W ))2φ(x∣W )µ(dx)}

=
ˆ
EP [(EP(Yx∣W ) −EP(Y0∣W ) − xfβ(W ))2φ(x∣W )]µ(dx)

=
ˆ
EP [(EP(Yx − Y0 − xfβ(W )∣W ))2φ(x∣W )]µ(dx).
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We recall here that, as aforementioned, we interpret (X − x0)fψ0(W ) as the best ap-

proximation of the form (X − x0)fβ(W ) to (EP0(Y ∣X,W ) − EP0(Y ∣X = x0,W )). Thus,

given the above, Ψ(P ) can be interpreted as the coefficient associated with the regression

of Yx on Y0 + fβ(x,W ) based on a weighted L2-loss function.

2.3 Inference

Inference is based of n independent random variables O(i) (i = 1, . . . , n) drawn from P0.

We infer ψ0 = Ψ(P0) by TMLE.

Initialization. The initialization consists in estimating the following features of P0:

marginal distribution ofW , µ(P0), g(P0), θ(P0), Σ(P0) and, for each of them, a companion

feature required to update them at the next step [see 22, Lemma 1]. We denote P 0
n a data-

generating distribution chosen such that (i) each estimator ηn of a feature η(P0) among

the above features of interest can be rewritten ηn = η(P 0
n), and (ii) we can sample (W,X)

from P 0
n . As soon as we have built estimators of the marginal distribution of W , µ(P0),

g(P0), θ(P0) and Σ(P0), we can also estimate ψ0 and D⋆(P0). This initial estimator of ψ0

can be biased. The evaluation of ψ0 is performed by Monte-Carlo simulation: we simulate

B independent random variables (W (0,b),X(0.b)) from the marginal joint distribution of

(W,X) under P 0
n , then compute

ψ0
n = B−1

B

∑
b=1

Σ(P 0
n)−1 [X(0,b)ḟ(W (0,b)) (θ(P 0

n)(X(0,b),W (0,b)) − θ(P 0
n)(0,W (0,b))] .

The construction of the marginal distribution of X given (W,X) ≠ 0 under P 0
n , has

been subject to some modifications relatively to [22]. In fact, the conditional distribution

can be any distribution whose conditional mean is deduced from µ(P 0
n) by

EP 0
n
(Xḟ(W )∣X ≠ 0,W ) = µ(P 0

n)(W )
1 − g(P 0

n)(0∣W ) , (2.7)

and such that the variable Σ verifies :

EP 0
n
[(1 − g(P 0

n)(0∣W ))EP 0
n
(X2ḟ(W )⊺ḟ(W ))] = Σ(P 0

n). (2.8)

Iterative updating. Say we have built (k − 1) updates P 1
n , . . . , P

k−1
n of P 0

n . The kth

update goes as follows. Set 0 < ρ < 1 a constant close to 1, for instance ρ = 0.99 and, for

each ε ∈ Rd, ∥ε∥∞ ≤ ρ∥D⋆(P k−1
n )∥∞, introduce P k−1

n (ε) given by

dP kn (ε)
dP k−1

n

(O) = 1 + ε⊺D⋆(P k−1
n )(O)
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where D⋆(P k−1
n )(O) is the current estimator of the efficient influence curve. This defines a

d-dimensional parametric model through P k−1
n fluctuating it in the direction of D⋆(P k−1

n ).
We let εk−1

n be the maximum likelihood estimator of ε in this model and characterize the

kth update as P kn = P k−1
n (εk−1

n ). This yields updated estimators of the features of interest

in the spirit of [22, Lemma 1], since it holds that

θ(Pε) = θ(P )(X,W ) + εEP (Y s(O)∣X,W )
1 + εEP (s(O)∣X,W ) ,

µ(Pε)(W ) = µ(P )(W ) + εEP (Xs(O)∣W )
1 + εEP (s(O)∣X,W ) ,

g(Pε)(0∣W ) = g(P )(0∣W ) + εEP (1{X = 0}s(O)∣W )
1 + εEP (s(O)∣X,W ) ,

Σ(Pε) = Σ(P ) + εEP [D⋆(O)X2ḟ(W )ḟT (W )].

The kth update of ψ0
n is obtained by simulating B independent random variables

(W (k,b),X(k,b)) from the marginal joint distribution of (W,X) under P kn then comput-

ing

ψkn = B−1
B

∑
b=1

Σ(P kn )−1 [X(k,b)ḟ(W (k,b)) (θ(P kn )(X(k,b),W (k,b)) − θ(P kn )(0,W (k,b))] . (2.9)

Theorem 2.1 (Central limit theorem). Suppose that performing kn iterations of the

updating procedure guarantees that PnD⋆(P knn ) = oP (1/
√
n). Suppose moreover that there

exists a function f1 with P0f1 = 0 such that P0(D⋆(P knn ) − f1)(D⋆(P knn ) − f1)⊺ = oP (1),
and that Ψ(P knn ) − ψ0 − P0D

⋆(P knn ) = oP (1/
√
n). In addition, suppose that Sn estimates

consistently EP0[f1(O)f1(O)⊺]. Then ψ∗n = Ψ(P knn ) satisfies
√
n(ψ⋆n − ψ0) = (Pn − P0)f1 +

oP (1), hence
√
nS

−1/2
n (ψ⋆n − ψ0) converges in law to the d-multivariate Gaussian law with

zero mean and identity covariance matrix. We refer the reader to [22, appendix] for the

proof of a similar result.

2.4 Simulation study

Simulation scheme. We essentially reproduce the simulation framework that has been

substantially developed in [22]. Let O1 = (OW1 ,OX1 ,O
Y
1 ), O2 = (OW2 ,OX2 ,O

Y
2 ) and O3 =

(OW3 ,OX3 ,O
Y
3 ) be the same real data structures as in [22, Section 6.4]. Let p = (p1, p2, p3)

be such that p1, p2, p3 ≥ 0 and p1 + p2 + p3 = 1 and w = (w1,w2,w3) be a vector of positive

numbers. Let λ0 ∶ [0,1] → [0,1] be a non-increasing mapping, σ2 be a positive number

and Σ1,Σ3 be two 2 × 2 covariance matrices.
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The sampling of a generic data structure O = (W,X,Y ) from the synthetic data-

generating distribution P s unfolds as follows. We first draw a latent class assignment U

from the multinomial distribution with parameter (1, p). Conditionally on U , the first

component W1 of W is

W1 = expit(logit(OWU ) +wUZ))

where Z is a standard normal random variable independent of U . The (d − 1) remaining

components of W are drawn from the Gaussian distribution with mean zero and identity

covariance matrix. Finally, (X,Y ) is drawn conditionally on (U,W ):

• if U = 2, then (X,Y ) = (0,OY2 + λ0(W1) + σ2Z
′), where Z ′

is a standard normal

random variable independent of (U,W,Z).

• if U ≠ 2, then (X,Y ) is drawn conditionally on (U,W ) from the bivariate Gaussian

distribution with mean (OXU −OX2 ,OYU ) and covariance matrix ΣU .

Implementation. We have substantially adapted the package [20]. The main changes

concern:

• the characterization of fβ in (2.1), which takes the form of a R formula;

• the adaptation of the fitting procedures of the features g, mu and sigma, and the

storage of the fitted objects;

• the computation of the confidence regions.

Results of the simulation study. We considered two choices of marginal structural

models (2.1): one is based on fβ(W ) = β1W1 + β2W2, the other based on fβ(W ) = β1W1 +
β2W

2
1 (β ∈ R2). The evaluation of the true value of ψ0 for each choice of marginal structural

model was performed by Monte-Carlo based on (2.5). We report the values in the second

row of Table 2.1. For each choice, independently, we repeated independently B = 1000

times the simulation of a data set of sample size n = 1000 and the simulation of another

data set of sample size n = 2000. We applied the TMLE procedure described in Section 2.3

to each data set, with the same choice of the fine-tune parameters as in [22] and with the

option flavor="learning".

The results are summarized in Table 2.1. The empirical coverage is satisfying.
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MSM fβ(W1,W2) = β1W1 + β2W2 fβ(W1,W2) = β1W1 + β2W
2
1

n ψ0,1 = 0.56 ψ0,2 = 0 ψ0,1 = 1.53 ψ0,2 = −1.42

1000 94.6% 95.0% 95.9% 94.5%

2000 93.9% 93.9% 95.6% 93.7%

Table 2.1 – Summary of the results of the simulation study. The values of the true param-

eter are reported in the second row. The third and fourth row give the empirical coverage

of the regions of confidence for each coordinate and each sample size n. MSM stands for

“marginal structural model”.

2.5 Illustration

It is commonly agreed today that human activities have significant impact on climate.

Among others institutions, IPCC (Intergovernmental Panel on Climate Change) has been

conducting exhaustive studies on the topic for decades. The effect of CO2 emissions on cli-

mate change is now much better understood [57, 66]. However, one of the major remaining

challenges is to understand which factors drive climate change. Our parameter (2.4) can

prove useful in this regard.

We exploit a publicly available data set of the World Bank1. We extract from it our

data set. It consists of n = 126 observed data-structures O1, . . . ,Oi = (Wi,Xi, Yi), . . . ,On
where, for the ith country,

• Wi gathers its under-five mortality rate, population growth, urban population growth,

CO2 emissions per unit of Gross Domestic Product (GDP), energy use per unit of

GDP, energy use per capita for the year 1998;

• Xi is a thresholded version of total amount of CO2 emissions per capita for the year

1998; we rely on a thresholded version to enforce the existence a reference value for

the exposure;

• Yi is the 10%-quantile of the projected annual temperature change for the period

2045–2065.

Under-five mortality rate is a reliable indicator of poverty. Population growth and urban

population growth are relevant indicators of economical development. CO2 emissions per

unit of GDP is an indicator of industrialization and reliance on fossil fuel. Finally, energy

use per unit of GDP and per capita reveal patterns of energy consumption by the industry

and by the country’s inhabitants.

All the Xi are non-negative. Their empirical distribution is represented in the LHS

plot of Figure 2.1. In order to introduce a reference level to the exposure X, we set to
1 http://data.worldbank.org/data-catalog/climate-change
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Figure 2.1 – Left: Histogram of the variable X. Right: Confidence region of asymptotic

level 95% for parameter (ψ0,2, ψ0,3).

x0 = 0 exactly all the Xi smaller than 0.99, which is the 25%-quantile of the empirical

distribution of X.

We assume that O1, . . . ,On are independently drawn from a common distribution P0.

We infer ψ0 = Ψ(P0) given by (2.5) for the marginal structural model {(X,W ) ↦Xfβ(W ) ∶
β ∈ R6} with fβ(W ) = β⊺W .

Using the asymptotic normality of the TMLE ψ∗n, we carry out Student tests of “ψ0,k =
0” against “ψ0,k ≠ 0” for k = 1, . . . ,6. We reject the null for its alternative at level 5% only for

k = 2,3, i.e., for population growth and urban population growth, with p-values respectively

equal to 3.69 × 10−10 and 2.01 × 10−8. The corresponding estimates are ψ∗n,2 = 9.30 ± 1.33

and ψ∗n,3 = −8.34 ± 1.35, see also the RHS plot in Figure 2.1. In other words, we estimate

fψ0(W ) with fψ∗n(W ) ≈ 9.30 ×W2 − 8.34 ×W3.

The results above teach us that only population growth and urban population growth

seem to be playing key roles in the relationship between climate change and CO2 emissions

per capita.

Remark. We have carried out the same study with (W,X) corresponding to the years

1990 to 1997. The results of inference and subsequent conclusions were very similar to

those presented here (results not shown).
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Conclusion. We have generalized the variable importance measure introduced in

[22], through the introduction of a more general and flexible marginal structural model,

where each covariateW is individually taken into account. Similarly to [22], we proved that

its TMLE estimator is consistent and asymptotically convergent, under mild conditions (as

mentioned before, although not straightforward, the exercise of adapting the proofs from

[22] was direct enough for us to decide to omit them in this document.). Furthermore, we

have extended the package [20] so that it can handle the new parameter of interest.





Chapter 3

Linear regression model with

functional coefficients and

errors-in-variables

This chapter is based on the manuscript [24].

Abstract
We study an univariate linear regression model Y = g(W )+X ⋅f(W )+ε, whose coefficients g and f
are real-valued functions of (possibly multivariate) covariates W . We assume that g and f admit
a finite dimensional expansion on some orthonormal basis in the Hilbert L2(W), where W ⊂ Rd is
the space of outcomes of the covariates. These dimensions can be large for both g and f , or just for
f . We estimate g and f by a Lasso like procedure. We also study the same estimation problem in
the presence of errors-in-variables, that is, instead of X we observe Z =X + ν where ν is assumed
centered, with known variance and independent of X. We evaluate the behaviour of the procedure
on synthetic data and compare our estimator of f with the TMLE in a semi-parametric model for
f . Finally, our methodology is applied to a financial dataset in order to search for a (relatively)
small portfolio to replicate the predict (daily return) of a given financial index.
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3.1 Introduction

Statisticians are often confronted with the problem of selecting a subset within a large

sample of variables in order to build a predictor of an outcome of interest. The selection

is important because it helps choose relevant explanatory variables, necessary to define a

consistent and unbiased predictor.

When dealing with high dimensional data, the selection problem becomes more acute.

Consider the case where we use all variables in the dataset to build a regression model. The

resulting predictor will likely be poor. In fact, it will yield too many main regressors. One

can attempt to change the functional form of the model in order to improve the performance

of the predictor, but the selection of a smaller set will always be preferable. As such,

many solutions have been developed in the literature to help quantify the importance of a

variable in a given regression model or while attempting to define one. They can essentially

be divided in two groups. The first group, generally, builds successive predictors with

and without a variable (or a set of variables) of interest, respectively, which we wish to

measure the importance. The difference in accuracy between both predictors will provide

the measure of importance. A general, but detailed, overview of these methods is provided

in [41]. The second group consists of ensemble learning methods which, for some of them,

relies on decision trees learning in order to define the best predictor. An early example

of such algorithm is called bagging and was introduced in [13]. A detailed comparison,

of some of these methods (i.e.: bagging, boosting and randomization), is proposed in [31].

A similar method called Random Forest, which is based on a random bootstrapping of

the main learning set was also introduced in [14]. For this group of methods, two main

measures are commonly used to quantify the variable importance. The first one is known as

Mean Decrease Impurity importance (MDI) or Mean Decrease Gini. It is based on the Gini

impurity which is computed at each node of the decision tree to help determine how to split

the data within the node into smaller datasets. Once aggregated over the entire decision

tree, it produces the MDI value for each covariate. The second measure is called Mean

Decrease Accuracy (MDA), also known as Mean Permutation Importance. Similarly to the

first measure, at each node of the decision tree, the accuracy of the predictor is evaluated

by randomly permutating a variable in the out-of-bag sample. An aggregation over the

entire decision tree provides the desired value. We note however that these solutions have

a few drawbacks. Tree decision methods sometimes produce optimal predictors which have

very few variables, given the initial dataset (see [10]). This is far from being a desirable

feature. Random Forest is known for over-fitting learning datasets that are particularly

noisy. Moreover, both of these groups do not allow the calculation of a confidence interval

related to the variable importance measure.

A new type of measure was introduced in [77] to solve some of these issues. It relies on
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a model which establishes a relation between an outcome Y and a set of covariates W . It

is defined as a real-valued parameter ϕvdL(P ), predictor of EP (Y ∣A,W ) and given by

ϕvdL(P )(a) = EP ⋆(EP (Y ∣A = a,W ) −EP (Y ∣A = 0,W )), (3.1)

where (W,Y ) are elements of an unknown distribution P , P ⋆ is a known function of

P and A is considered to be either a subset or a function of W . This parameter is

interesting because it provides a predictor which measures directly the variable importance

of a covariate, and to which we can associate a p-value. A similar variable importance

measure was introduced in [22], and extended to a multivariate setup in the manuscript

[23].

Let us consider the following statistical problem. We observe the data structure O =
(W,X,Y ) of an unknown distribution P0, containing n i.i.d elements, where W ∈ Rd

represents a vector of covariates, with d ≥ 1, X ∈ R represents an exposure and Y ∈ R
is a response. The exposure has a reference level x0 which is considered to be given by

x0 = 0, without loss of generality. We want to study the relationship that exists between

the response Y and the exposure X, when taking into account the covariates W . Their

inclusion makes sense specifically when it is not possible to rule out completely their

influence in the relationship. In [22], the parameter ϕCNvdL is given by

ϕCNvdL(P ) = arg min
b∈R

EP [(Y −EP (Y ∣X = 0,W ) −X ⋅ b)2] .

Hence, ϕCNvdL(P ) can be seen as the coefficient of the best linear approximation of Y −
EP (Y ∣X = 0,W ). It is important to note here that ϕCNvdL is a real number. As such, it

only provides an aggregated view of the variable importance measure of all covariates in the

model through a single real value. One might want to have a granular view of that measure.

To be specific, it might be more informative to have a variable importance measure whose

elements are uniquely linked to each covariate of the problem. This gap was addressed,

in [23], where we considered a function f given by f(B,W ) = B⊺ ⋅ fCT (W ), with

fCT (W ) ∶ Rd → Rd supposed known and B ∈ Rd such that the d-dimensional parameter of

interest ϕCT , was given by

ϕCT (P ) = arg min
B
EP [(Y −EP (Y ∣X = 0,W ) −X ⋅ f(B,W ))2] . (3.2)

We note that ϕCT (P ) takes into account each covariate present in the model, when de-

scribing the relationship that exists between the exposure X and the response Y . It is

important to note that the parameters ϕCNvdL and ϕCT were both studied through a sta-

tistical inference method called TMLE (Targeted Minimum Likelihood Estimator). A brief

overview of the analysis of the parameter ϕCT is presented in Section 3.4.2.

As aforementioned, we are interested in this article in the estimation of the function

f as a mean to derive a more refined expression of the variable importance measure. By
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assuming fCT known in [23], the author was constraining his framework to a very specific

form in order to define the relation that existed between the covariates. As an example,

considering the case where the model had only two covariates, the user may choose to define

fCT through f(W,β) = β⊺ ⋅ fCT (W ) = β1W
2
1 +β2W

2
2 , with W = (W1,W2) and β = (β1, β2).

In fact, for the parameter ϕCT to be well defined, due to the definition space of fCT , it had

to be of length d. Now, by considering f unknown, we are deriving a flexible relationship

between the covariates and as a consequence lifting the constraint on the size of ϕCT . It

then allows us to obtain a complete picture of the measure of variable importance linked

to the covariates of the model, since we are now able, as an example, to potentially take

into account a large variety of interaction terms among the covariates.

We recall that f ∶ Rd → R is now the non-parametric function of interest. Keeping in

mind the framework developed in [23], the function of interest is an extended, unknown

and nonparametric form of the parametric form f(ϕCT ,W ), where f was supposed known.

Hence, it can be viewed as a real-valued variable importance measure which takes into

account the impact of the covariates W . Its estimator is computed through a penalized

optimization problem. Furthermore, in order to derive the estimator’s convergence rate,

we assume the existence of a model which defines the relationship that exists between the

exposure X, the response Y and the covariates W .

Consider the model

Y = g(X,W ) + ε (3.3)

where ε is a centered Gaussian variable of variance σ2, independent of X and W , and

g(X,W ) = g(0,W ) + f1(X,W ), with g(0,W ) = EP (Y ∣X = 0,W ) and f1 an unknown

function. We further simplify the model (3.3) by analogy to (3.2). We assume that g is

linear in X such that

g(X,W ) = g(0,W ) +X ⋅ f(W ). (3.4)

We may see f as the partial derivative of g with respect to X at point 0. For the rest of this

article, we denote g(W ) = g(0,W ), through a slight abuse of notation, with f, g ∶ Rd → R.
Let us consider Φ = (Φ1,⋯,Φp,⋯) = {Φj}∞j=1 be an orthonormal base of the Hilbert space

L2(Rd). We define the subspace S(s, p) ⊂ H, with {s, p} ∈ N. A function h ∈ S(s, p), if the
function verifies the following properties:

i) can be written as h(W ) =
p

∑
j=1

Φj(W )bj where b ∈ Rp

ii) the support of b is of size smaller or equal to s(∣{bj ; bj ≠ 0}∣ ≤ s).

From now on, we assume that there exists {sm,m} ∈ N and {sk, k} ∈ N such that

g ∈ S(sm,m) and f ∈ S(sk, k). Hence,

g(Xi,Wi) =
m

∑
j=1

Φj(Wi) ⋅ ηj +Xi

k

∑
j=1

Φj(Wi) ⋅ θj , with η ∈ Rm and θ ∈ Rk. (3.5)
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It is important to note here that, by analogy to (3.2), Φ(W ) ⋅ θ is the new variable impor-

tance measure. We note here that we could have assumed that f and g relied, for their

definition, on the full list of elements of the basis Φ. However, following this hypothesis,

we would have g(Wi) = ∑mj=1 Φj(Wi) ⋅ηj + rgm(Wi) and f(Wi) = ∑kj=1 Φj(Wi) ⋅θj + rfk(Wi),
where the functions rfk and rgm could be considered as residuals, that are small enough un-

der smoothness assumptions. Therefore, it would be necessary to first include the impact of

these residuals on consistency and convergence rate when estimating f and g. Secondly, we

would also have to derive their appropriate characteristics in order to improve the previous

estimation measures. Given (3.5), the linear model (3.3) becomes

Y = X ⋅ β + ε (3.6)

where β =
⎛
⎝
η

θ

⎞
⎠
∈ Rp with p =m + k. Moreover, X is given by

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(W1) . . . Φm(W1) X1 ⋅Φ1(W1) . . . X1 ⋅Φk(W1)
⋮ ⋮ ⋮ ⋮

Φ1(Wn) . . . Φm(Wn) Xn ⋅Φ1(Wn) . . . Xn ⋅Φk(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

Furthermore, we denote by Ψm, the matrix given by the first m functions at points

W1,⋯,Wn

Ψm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(W1) . . . Φm(W1)
⋮ ⋮

Φ1(Wn) . . . Φm(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and by DX the diagonal matrix with diagonal elements X1,⋯,Xn. Thus, X = [Ψm,DXΨk].
A Lasso like methodology is developed and used to derive a consistent estimator β̂ of β, an

ultimately the estimator θ̂ of θ, our main variable of interest. From now on, we consider

that there exists δ > 0, a fixed constant, such that:

∣Φj(W )∣ ≤ δ, for all W in the data structure O and j ∈ {1, . . . , p}. (3.8)

Measurement errors occur in most experiments and are integral part of any scientific

process. As such, the aforementioned elements (X,W,Y ) can rarely be collected without

being subject to errors. We consider the case of additive error on the random variable Xi,

i.e. we observe Zi =Xi+νi with i = 1,⋯, n. As such, further generalizing (3.3), we preserve

the statistical framework introduced above, except from the sample’s elements. Hence, the

dataset is given by Õ = (W,Z,Y ) of a distribution P̃ , such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y = g(X,W ) + ε

Z =X + ν
(3.9)
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where ν is a centered Gaussian distribution of variance µ2. The variables ν and ε are con-

sidered independent. Our goal is to see how the measurement errors affect the estimation

of g and f , as well as the prediction risk of our model. From now on, we assume, without

loss of generality that, for all j, ∑ni=1 Φj(Wi)2 = n.

Review of Literature

Looking at (3.4), one can realize that f is the partial derivative of g(X,W ) in X, at

X = 0. Hence, estimating the function f , corresponds in this setting at finding the best

approximate of the derivative of an unknown function. This problem has been studied in

the literature (see [29, 38, 61, 84]). However, we did not pursue this path. Given the model

formulation in (3.6), we opted for a Lasso based approach.

The Least Absolute Shrinkage and Selection Operator(Lasso) was introduced in [72]. It

is well known to be attractive for large and sparse set of high dimensional data which is a

key characteristic of interest for the models developed in this article. The Lasso has been

extensively studied in the literature. The book [40] provides a good overview of its different

properties in both low and high dimensional settings. Some of them are worth a reminder.

In fact, within the space of linear models, [52] showed that under an appropriate set of

conditions, Lasso estimator is consistent. We can also cite [83] who proved the consistency

of the model selection performed by the Lasso. Finally, [43] generalized, to high dimensional

settings, the oracle property of estimator based on adaptative Lasso, introduced in [85].

The latter is a L1 weighted optimization problem, relying on a pre-computed starting

point. If we suppose an initial estimator β0 = wnj with j = 1, . . . , pn, then the least square

optimization problem is given by ∥Y −X̃β∥2
2−2λ∑ni=1wnj ∣βj ∣ where X̃ is a matrix. The goal

of the weight is to reduce the estimation bias and improve the variable selection accuracy.

Under an adaptative irrepresentable condition, [85] proved that the estimator satisfies an

oracle property. Some of the properties mentioned above, are covered in this document

through the analysis of (3.6), which corresponds to a linear model case. We derived the

error bounds of β̂ and then deduced the ones of the variables η̂ and θ̂.

Errors-in-variables models have been studied in the literature. Let us cite the semi-

parametric model Y = fθ0(X) + ζ and Z = X + ε, developed in [18], where the efforts

were directed at attaining parametric rates for estimating the finite dimensional θ0. We

further note that high-dimensional linear models have been studied in the presence of

measurement errors. We can mention [62], who analyzed a linear regression model given

by Y = Rc ⋅ θ + ε and Z = Rc + U , where the number of covariates is much larger than

the sample size and the matrix Rc is polluted by the matrix U . They proved that the

regular Lasso estimator, as well as the Dantzig selector produced unstable results. They

then introduced a Matrix Uncertainty selector which, under certain eigenvalues restrictions
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applied on Rc, is stable and capable of reproducing a sparse pattern of θ. Furthermore, [67]

studied a linear model using the Lasso procedure knowing that the covariates are subject

to measurement errors and for p ≫ n. They proved that using a correction method and

under certain conditions, the corrected Lasso produced sign consistent covariate selection.

A similar correction method is used in this document, when dealing with noisy data. [27]

completed the study of a similar setting, by introducing a convex corrected Lasso. They

established error bounds of the corresponding estimator and showed its asymptotic sign

consistent selection property. Finally, we can also mention [48], whose work is based on

the same setting, using both multiplicative and additive type errors, through a non convex

optimization problem. They established non asymptotic error bounds for the estimator

and showed that a gradient descent based algorithm makes the estimator converge in

polynomial time, in a neighborhood of the set of all global optimizer. We note here that

for most, if not all of the aforementioned articles, measurement errors are applied on the

design matrix Rc. In our model (3.9), the noise is affecting the variable multiplicative

of the function f . To the best of our knowledge, we have not seen an article treating of

measurement errors while considering this type of noise.

Looking closely at (3.5), we realize that it provides us with a very specific model which

might find its roots in the family of partial linear models. The latter are characterized

by regression of the type Y = X̃ ⋅ β + v(Z) + ε where β is the variable of interest, X̃ a

matrix and the function v is unknown. These models have been explored in the literature,

usually through the use of polynomial splines, for estimating the non-parametric part v.The

authors in [47] used such a method and were able to derive the asymptotic normality of

the estimators. Looking also at (3.3) and (3.4), we also realize that it is a regression model

which shares some similarities with problems based on the estimation of linear functionals.

We can cite for example [17]. In the latter article, the authors considered the regression

model Zi = Xi + ε, where (Xi)i∈N and (εi)i∈N are independent sequences of real valued

random variables. They were interested in the estimation of linear functionals linked to

the unknown density function of Xi, studying specifically the rate of convergence of its

quadratic risk. As previously mentioned, instead of using a spline methodology, we relied

on a decomposition in a Hilbert space to provide a desirable form to our unknown functions

and hence derived their estimators. We note also that the partial linear models have been

studied in the literature when subject to measurement errors such as [45]. They used a

non convex corrected penalized least square, as well as a penalized quantile regression to

calculate its estimators. They established their convergence rate and asymptotic normality

property. A lot of similarities can be drawn between our model and the partial linear model

but as mentioned before, they are not identical. The studies that have been achieved so

far, when the model is subject to measurement errors, usually assumed that the linear

segment of the partial linear model has a fixed dimension. In our case, we do not. In fact,
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we assume that m can be as large as possible hence adding another layer of complexity and

allowing to derive better estimator of the unknown function g. Furthermore, in contrary to

both articles mentioned above, we used a Lasso type methodology to find our estimators.

The rest of this article is organized as follows. Section 3.2 establishes convergence

rates of the estimator of β under two different penalty functions used to define problem

(3.6). Section 3.3 establishes convergence rate of the estimator of β based on the errors-

in-variables model (3.9). Two different penalty functions are also considered to define the

optimization problem from their model. Section 3.4 provides a simulation study which ex-

hibits the aforementioned characteristics of our estimators for both models (3.6) and (3.9).

We also compare these results to the ones computed through the TMLE estimator. In

Section 3.5, we present an application of our methodology in finance by finding an optimal

portfolio which replicates the daily return of the S&P500 index. All proofs are developed

in the Appendix 3.6.

3.2 High dimensional regression model

Let us consider the model (3.6). The variable ε is a vector of size n, whose elements are

drawn from a centered Gaussian distribution of variance σ2.

3.2.1 Convergence rate for globally penalized Lasso

The penalized optimization problem derived from (3.6) is given by

β̂ =
⎛
⎝
η̂

θ̂

⎞
⎠
= arg min

β∈Rp
{ 1

2n

n

∑
i=1

(Yi − (Xβ)i)2 + λ∥β∥1}, (3.10)

where λ > 0. In order to bound the estimation error of the variables of interest, a compat-

ibility condition is needed. It was first coined in [74] for the resolution of a Lasso based

optimization problem. As we see below, it is an additional constraint, not always verifiable,

applied to the matrix X such as to derive fast convergence rate of the estimator. It is a

well known condition, which has been extensively used in the literature (see [67]).

Definition 1. Let us consider the n × p matrix X. The compatibility condition holds

for the index set S0, having s0 elements, if for some φ0 > 0 and all γ ∈ Rp such that

∥γSc0∥1 ≤ 3∥γS0∥1, it holds that

∥γS0∥2
1 ≤

s0∥Xγ∥2
2

nφ2
0

. (3.11)
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Proposition 3.1. Assume that the variable X takes values in a compact space. Further-

more, let us assume that the compatibility condition (3.11) holds. Then, with probability

larger than 1 − 2 exp(−t22 ) and λ = 2σ∥X∥∞
√

t2+2 log(p)
n with arbitrary t > 0, the estimator

β̂ of (3.10) verifies

1

2n
∥X(β̂ − β)∥2

2 + λ∥β̂ − β∥1 ≤ 4σ2∥X∥2
∞

8s

φ2
0

⋅ t
2 + 2 log(p)

n
.

As a consequence, with the same probability,

∥β̂ − β∥1 ≤ 2σ∥X∥∞ ⋅ 8s

φ2
0

⋅
√

t2 + 2 log(p)
n

.

Similar results could be inferred directly on the distinct estimators η̂ and θ̂ through a

unique equation. The demonstration of the proposition has been inserted in the Appendix,

for reader convenience. The convergence rate of the estimator is then of the order of

s
√

log(p)
n .

3.2.2 Convergence rate for partially penalized Lasso

We study here the model (3.6) by only penalizing the variable θ. As mentioned before,

f(W ) can be viewed as the partial derivative in X of the function g(X,W ). As such, it

is natural to assume that we need more information (hence, more coefficients) in order to

fully capture its characteristics. The corresponding penalization problem is then given by

⎛
⎝
η̂

θ̂

⎞
⎠
= arg min

η,θ
{ 1

2n

n

∑
i=1

[Yi − (Ψi
m ⋅ η +Xi(Ψi

k ⋅ θ))]
2 + λ∥θ∥1}. (3.12)

It can be solved in two steps. We first find the estimator η̂ which minimizes (3.12), for any

θ. It corresponds to a classical least square estimator. We assume here that m ≤ n and

that the matrix Ψ⊺
m ⋅Ψm = n ⋅ Im×m, with I being the identity matrix. Hence,

η̂(θ) = 1

n
Ψ⊺
m ⋅ (Y − (DXΨk) ⋅ θ) . (3.13)

The penalization problem (3.12) can then be rewritten using (3.13) as

θ̂ = arg min
θ

{ 1

n
∥V ⋅ (Y − Ψ̃k ⋅ θ) ∥2

2 + λ∥θ∥1}, (3.14)

where V = (In×n − 1
nΨm ⋅Ψ⊺

m) and Ψ̃k = DXΨk. Note that V is an orthogonal projection

(V 2 = V , with V symmetric) and that rank(V ) = n −m. Thus, the data V ⋅ Y lives in the

image space of V .
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Proposition 3.2. Let us denote by sθ the sparsity factor of the variable θ. Let us as-

sume that the compatibility condition (3.11) holds. Thus, with probability larger than

1 − 2 exp(− t22 ) and for λ = 2σ∥X∥∞
√

t2+2 log(k)
n , the estimator θ̂ is such that

1

2n
∥V Ψ̃k ⋅ (θ̂ − θ)∥2

2 + λ∥θ̂ − θ∥1 ≤ 4σ2∥X∥2
∞ ⋅ 8sθ

φ2
0

⋅ t
2 + 2 log(k)

n

for some arbitrary t > 0. Hence,

∥θ̂ − θ∥1 ≤ 2σ∥X∥∞
8sθ
φ2

0

√
t2 + 2 log(k)

n
.

Proposition 3.2 gives the expected rate related to the sparsity sθ. Furthermore, we

note that the rate depends on sθ

√
log(k)
n . However, the estimator of η suffers from the

estimation of θ which acts here as a nuisance parameter.

E∥η̂(θ̂) − η∥2
2 = E∥ 1

n
Ψ⊺
m(Y − Ψ̃kθ̂) − η∥2

2

= E∥ 1

n
Ψ⊺
m(Ψmη + Ψ̃kθ + ε − Ψ̃kθ̂) − η∥2

2

= E∥ 1

n
Ψ⊺
mε +

1

n
Ψ⊺
mΨ̃k(θ − θ̂)∥2

2

≤ 2

n2
σ2Tr(ΨmΨ⊺

m) + 2

n2
E∥Ψ⊺

mΨ̃k(θ − θ̂)∥2
2

where Tr is the Trace of the matrix. On one hand, we have 1
nTr(ΨmΨ⊺

m) =m and on the

other hand,

2

n2
E∥Ψ⊺

mΨ̃k(θ − θ̂)∥2
2 ≤

2

n2
E[(θ − θ̂)⊺Ψ̃⊺

kΨmΨ⊺
mΨ̃m(θ − θ̂)]

≤ 2

n
E∥Ψ̃k(θ − θ̂)∥2

2

≤ 2

n
∥X∥2

∞E∥Ψk(θ − θ̂)∥2
2

≤ 2∥X∥2
∞E∥θ − θ̂∥2

2

≤ 2∥X∥2
∞E∥θ − θ̂∥2

1 since for all y, ∥y∥2 ≤ ∥y∥1.

However,

E∥θ − θ̂∥2
1 =
ˆ ∞

0
P (∥θ − θ̂∥2

1 ≥ u)du

≤ 2

ˆ ∞

0
exp(−1

2
( nu

4σ2∥X∥2
∞

( φ
2
0

8sθ
) − 2 log(k)))du

≤ 2
8σ2∥X∥2

∞

n
(8sθ
φ2

0

)2k.

Finally, we can conclude that

E∥η̂(θ̂) − η∥2
2 ≤

2σ2m

n
+ 4k ⋅ 8σ2∥X∥4

∞

n
(8sθ
φ2

0

)
2

.
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Discussion. We emphasize here that in both sections above, β is an aggregate of

two signals : η and θ. In Section 3.2.1, the estimators of these variables of interest were

computed simultaneously. Hence, the sparsity inherent in the Lasso like procedure is present

by design in both variables. However, in Section 3.2.2, the objective was to estimate both

signals where one is sparse, θ̂. The convergence rate of the estimator θ̂ is similar in both

cases. However, the convergence rate of η̂ is negatively impacted when η̂ is function of θ̂.

3.3 High dimensional regression model with errors-in-variables

All proofs are developed in Section 3.6. Let us consider the model (3.9) with g(X,W ) in

(3.4) and such that g ∈ S(sm,m) and f ∈ S(sk, k). It can be written as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y = g(W ) +Xf(W ) + ε

Z =X + ν
(3.15)

where the variables ν ⊥ X, ε ⊥ ν and W ⊥ ν. Moreover, elements of ν are drawn from a

centered Gaussian distribution with variance µ2. However, similar results can be obtained

for more general sub-exponential distributions. The above set of equations can be rewritten

as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y = X ⋅ β + ε

Z = X +K
(3.16)

where β =
⎛
⎝
η

θ

⎞
⎠
, X is the matrix introduced in (3.6) and K is given by

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 ν1 ⋅Φ1(W1) . . . ν1 ⋅Φk(W1)
⋮ ⋮ ⋮ ⋮
0 . . . 0 νn ⋅Φ1(Wn) . . . νn ⋅Φk(Wn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Under a certain set of assumptions, [19] established the consistency, as well as the conver-

gence rate of the estimator of our variable of interest. The above methodology seems to

be the most natural way to resolve (3.9). However, we use the specificities of our model to

provide a Lasso type estimator of β =
⎛
⎝
η

θ

⎞
⎠
. From now on, we consider that there exists

L > 0, such that :

∥Ψk(W )θ∥2
2 < L, for all W of our data structure O. (3.17)
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3.3.1 Convergence rate for globally penalized corrected Lasso

One could assume that even with the presence of measurement errors, the optimization

problem could be written exactly as in (3.10), where the variable X is to be replaced by

Z. Nonetheless, the regularization problem needs to be adjusted. In fact,

E[∥Y − (Ψmη + (DZΨk)θ)∥2
2] = E[∥Y − (Ψmη + (DXΨk)θ)∥2

2] +E[∥(DνΨk)θ∥2
2]

− 2E[ε⊺(DνΨk)θ]

= E[∥Y − (Ψmη + (DXΨk)θ)∥2
2] + nµ2E[∥θ∥2

2].

From the above, it appears that the regularization needs to be corrected by the factor

nµ2∥θ∥2
2. As such, the estimators η̂ and β̂ are then defined by

⎛
⎝
η̂

θ̂

⎞
⎠
= arg min

η,θ
L(η, θ) (3.18)

with

L(η, θ) = 1

2n
∥Y − (Ψm ⋅ η + (DZΨk) ⋅ θ))∥2

2 −
1

2
µ2∥θ∥2

2 + λ1∥η∥1 + λ2∥θ∥1,

where λ1 ≥ 0 and λ2 ≥ 0. We denote by X̃, the equivalent of X in (3.7) where the variable

X has been replaced by its counterpart Z. We also consider the vector ξ = (0,⋯,0,1,⋯,1),
of size p, where the first m elements are equal to 0 and the last k are all equal to 1.

Decomposing the loss function, we obtain:

L(η, θ) = 1

2
( 1

n
∥Ψmη + (DZΨk)θ∥2

2 − µ2∥θ∥2
2) −

1

n
⟨Y,Ψmη + (DZΨk)θ⟩

+ 1

2n
∥Y ∥2

2 + λ1∥η∥1 + λ2∥θ∥1

= 1

2
( 1

n
∥X̃β∥2

2 − µ2∥ζβ∥2
2) −

1

n
⟨Y, X̃β⟩ + λ∥β∥1 +

1

2n
∥Y ∥2

2 with λ =
⎛
⎝
λ1

λ2

⎞
⎠

where β =
⎛
⎝
η

θ

⎞
⎠
and ζ = diag(ξ). Thus

L(η, θ) = 1

2
β⊺Γβ − γTβ + λ∥β∥1 +

1

2n
∥Y ∥2

2

where Γ = 1
n X̃

⊺X̃ − µ2ζ⊺ζ and γ = 1
n X̃

⊺Y . The optimization problem becomes then

β̂ = arg min
β∈Rd

{1

2
β⊺Γβ − γTβ + λ∥β∥1}.

For µ ≠ 0, the matrix Γ is certainly not positive definite. As such, we are dealing with a

non convex quadratic problem. Furthermore, if Γ has negative eigenvalues, the problem

is unbounded. Thus, we have to add additional constraints to the optimization problem.

Hence,

β̂ ∈ arg min
β∈Rd

1

2
β⊺Γβ − γTβ + λ∥β∥1, such that ∥β∥1 ≤ c0

√
sβ (3.19)
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where c0 > 0 is large enough, and sβ is the sparsity of β. We note here that sβ = sθ + sη,
with sθ and sθ the sparsity attached to the variables θ and η. Furthermore, we define

an assumption that is used in order to bound the estimation error. It is known as the

restricted eigenvalues assumption and is discussed in [8].

Definition 2. For some integer s, such that 1 ≤ s ≤ p, t0 > 0, positive number c0, the

Restricted Eigenvalues (RE) condition holds for the index set J0 ∈ {1,⋯, p} and for all

δ ∈ Rp⋆ such that ∣J0∣ ≤ s and ∥δJc0∥1 ≤ c0∥δJ0∥1 if we have:

δ⊺Γδ

∥δJ0∥2
2

≥ t0. (3.20)

The integer s here plays the role of an upper bound of the sparsity of the vector δ.

It is important to note that in high dimensional settings, for the least square loss

function to be strongly convex, it requires the eigenvalues of the core matrix to be bounded

away from 0. In our case, the matrix Γ can be rank deficient. As such, in order to resolve the

optimization problem, we need to impose a strong convexity condition. We emphasize here

the similarity that exists between the Restricted Eigenvalues (3.20) and the compatibility

(3.11) conditions. The RE condition is actually stronger since its implies the compatibility’s

one. In fact, ∥δ∥2
2 ≥ ∥δJ∥2

2 ≥ 1
s∥δJ∥

2
1.

Theorem 3.3. (Prediction and Estimation Risk) We assume that the variable X

takes values in a compact space. Furthermore, we also assume that the Restricted Eigen-

values condition (3.20) holds. Then, given (3.17), there exists t > 0, t0 > 0 and λ0 =
(∥X∥∞(σ + µ

√
L) + µ

√
L)

√
2(1+t) log(p)

n + τ0 , with

τ0 = max{2µ2
√
L√

n

√
t,

4µ2L

n
t} + (σ2 + µ2)max{

√
t

n
,2δ

t

n
},

where the constants δ and L are defined respectively in (3.8) and (3.17), and such that with

2λ0 ≤ λ, the estimators η̂ and θ̂ verify

∥β̂ − β∥1 = ∥θ̂ − θ∥1 + ∥η̂ − η∥1 ≤ 12λ ⋅ sβ
t0

with probability greater than 1 − 5 exp(− t2).

3.3.2 Convergence rate for partially penalized corrected Lasso

The optimization problem can not be the same as (3.14) with the presence of measurement

errors. In fact,

E[∥V (Y − (DZΨk)θ)∥2
2] = E[∥V (Y − (DXΨk)θ)∥2

2] +E[∥V (DνΨk)θ∥2
2]

− 2E[ε⊺V ⊺(DνΨk)θ]

= E[∥V (Y − (DXΨk)θ)∥2
2] + µ2E[∥VΨkθ∥2

2].
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We recall that V = (In×n − 1
nΨm ⋅Ψ⊺

m). As such, the initial optimization problem needs to

be adjusted. The estimator is then given by

θ̂ = arg min
θ

1

2n
∥V ⋅ (Y − (DZΨk) ⋅ θ)∥2

2 −
1

2n
µ2∥V ⋅Ψk ⋅ θ∥2

2 + λ∥θ∥1, (3.21)

where λ > 0. We introduce a loss function L(θ) defined by θ̂ = arg minθ L(θ). Decomposing

the loss function gives us

L(θ) = 1

2n
∥V ⋅ (Y −DZΨk ⋅ θ)∥2

2 −
1

2n
µ2∥V ⋅Ψk ⋅ θ∥2

2 + λ∥θ∥1

= 1

2
θ⊺ ( 1

n
(V DZΨk)⊺(V DZΨk) −

1

n
µ2(VΨk)⊺(VΨk)) θ

− 1

n
(V Y )T (V DZΨk)θ + λ∥θ∥1 + ∥V Y ∥2

2.

Since ∥V Y ∥2
2 is not a function of θ, we have

θ̂ = arg min
θ

1

2
θ⊺Γθ − γ⊺θ + λ∥θ∥1,

where Γ = 1
n(V Ψ̃k)⊺(V Ψ̃k) − 1

nµ
2(VΨk)⊺(VΨk) and γ = 1

n(V Ψ̃k)⊺Y . The matrix Γ is

degenerate in the sense that it is not positive definite. As such, the eigenvalues of the

optimization problem can be negative, thus the problem is unbounded and as a consequence

we need to add more constraints to the estimator. Hence following [48], the optimization

problem is replaced by:

θ̂ ∈ arg min
∥θ∥1≤c0

√
sθ

{1

2
θ⊺Γθ − γ⊺θ + λ∥θ∥1}, with c0 > 0. (3.22)

Theorem 3.4. (Prediction and Estimation Risk) We assume that the variable X

takes values in a compact space. Furthermore, let us assume that the Restricted Eigen-

values condition (3.20) holds. Then, given (3.17), there exists t > 0, t0 > 0 and λ0 =
∥X∥∞ (σ + µ

√
L)

√
2(1+t) log(k)

n + τ0, with

τ0 = max{2µ2
√
L√

n

√
t,

4µ2L

n
t} + (σ2 + µ2)max{

√
t

n
,2δ

t

n
},

where the constants δ and L are defined respectively in (3.8) and (3.17), and such that with

λ ≥ λ0
2 , the estimator θ̂ verifies

∥θ̂ − θ∥1 ≤ 12λ
sθ
t0
,

with probability greater than 1 − 5 exp(− t2).

3.4 Simulation study

In this section, we show the accuracy of our estimation methodology, using practical cases.

Two main risk metrics are used: Prediction Risk and Estimation Risk.
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3.4.1 Evaluation of estimates

Let us consider a sample data containing the observations Oi = (Yi,Xi,Wi) of P ⋆, a known

distribution. We assume that W ∈ [0,1]d, X ∈ [0,1] and Y ∈ R, with d ≥ 1. We know that

the observations Xi, Yi and Wi are linked through (3.3), (3.4) and also (3.6). For what

follows, the variables W and X are generated from the [0,1]−uniform distribution. We

consider a single set of basis functions, for the decomposition of the functions f and g : the

Fourier Basis. The simulation described here can be adapted with other basis functions

such as the Spline Basis.

To evaluate the accuracy of the estimator f̂(W ) = Ψk(W )⋅θ̂, we computed its Prediction

Risk value, for several sample sizes through a two-step cross-validation process. Let us

denote by n, the data sample size. We partition the sample in l distinct subsets Osubset,

of equal size. First step: We set aside one of the Osubset
{i} , which are used as the test set,

and we use the l − 1 remaining subsets as training sets. Using the latter, we then compute

the estimator θ̂{−i}. Second Step: we use the Osubset
{i} (test set - left out from the initial

estimation), to determine how close the estimator θ̂{−i} is to its real value. These two steps

are repeated successively l times. For each iteration, we calculated the difference between

the estimator and the true value function using the test set. The empirical average of these

l distances give us the desired Prediction Risk measure. In brief, the Prediction Risk (PR)
value of a sample of size n is given by

PR = 1

l

l

∑
i=1

1

∣O{i}∣
∥f(WOsubset

{i}
) − f̂n−i(WOsubset

{i}
)∥2

2, (3.23)

where ∣O{i}∣ is the number of elements of the subset Osubset
{i} , and f̂n−i(W ) = Ψk(W ) ⋅ θ̂i.

For a single sample size, we computed the Prediction Risk u(≥ 20) times. It allowed

us to evaluate the confidence interval associated with the measure. It is important to note

that for a convergent estimation procedure, the PR should converge to 0 as n increases.

We show below results for various cases : univariate (W ∈ R) , bivariate (W ∈ R2) and

lastly an univariate case where X is measured with errors. Furthermore, for each estimator

f̂ , corresponding to a given sample size, we compared it to its corresponding true function

f . To achieve this, we constructed a grid linked to the space on which lies the variable W .

We then compared the ordinate difference between the estimator and the true function.

The empirical square difference gave us a measure of our Risk Estimation. In brief, if we

consider a grid κ and an estimator f̂j , the Estimation Risk of our function f is given by

ER = 1

V ol(κ) ∑
κ⊂[0,1]

(f(Wj) − f̂j(Wi))2, (3.24)

where V ol(κ) represents the volume of our equidistant grid (i.e.: , if κ = [0,1] ⊆ R and we

consider a grid step given by δ = 0.01, then V ol(κ) = 100. Similarly, if κ = [0,1]2 ⊆ R2 and

we consider a grid step given by δ = 0.01, then V ol(κ) = 1002).
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Beyond these risk measures, we also introduced a breaking point concept. It consists of

lowering iteratively as much as possible one of the coefficient associated with the definition

of the true function f and identifying the level at which the estimator is not able to recover

it, for a given sample size. This is an important exercise as it allows us to test the quality

of fit for extreme values. We now present in details three examples, to put in perspective

the notions we just described.

Univariate covariate W case (d = 1)

Let us consider the functions f(Wi) = 20 ⋅cos(2π ⋅5Wi)+10 ⋅sin(2π ⋅4Wi)+
√

5 sin(2π ⋅8Wi)−
7 sin(2π ⋅11Wi) and g(Wi) =Wi. The variables W and X are drawn from a [0,1]−uniform
distribution. We generated data samples of size n = {50,100,150,200,250,300} and used

each sample to compute the estimator of f . As shown in figure 3.1a, we computed the PR

corresponding to each sample size, with u = 30. Furthermore, we used a Fourier basis of

size p = 450(m = 50;k = 400). We note here that we chose a greater value for k compared

with m because we wanted to put more emphasis on the estimation of the function f .

One can see that for a very small sample size, the methodology provides less accurate

estimators. However, it improves rapidly as the sample size reaches n = 100.

We also show in figure 3.1b that the Estimation Risk changes with increasing sample

size. As before, it converges towards 0, as expected. The Estimation Risk was computed

using a grid with an incremental step δ = 0.05. It is important to note that even for small

sample size (i.e: n = 50), where the results of both Estimation Risk and Prediction Risk

appear relatively off compared to the other samples, the resulting estimator is still of good

enough quality. We show in figure 3.2 the different estimators of f per sample size.

Remark: We tried our methodology with different variations of the function g. The

results were very convincing, but are not shown here.

To further study the stability of the simulation, we have analyzed its behaviour through

the aforementioned breaking point concept. In fact, we iteratively reduced the coefficient

associated with the component “sin(2π ⋅ 8Wi)”, called B, of the function f . We wanted to

see the lowest coefficient for which the methodology was still able capture its impact on

the response variable Y . We ran the simulation method for three different sample sizes.

For each one, we iteratively increased the value of B, starting at 0. For each value of the

coefficient B, we ran the simulation 100 times and counted the number of estimators in

which the coefficient associated with the breaking point component was null.

What transpires from Table 3.1 is that, the methodology struggles to recover the effect

played by the component B when its value is very small. This is magnified when the sample

size is small as well. However, the greater the sample size the better the methodology is

able to capture the component’s effect, even for very small value. On the contrary, for
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B 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

n = 50 94.9% 89.9% 86.2% 94.9% 81.9% 99.2% 34.5% 86.2% 45.5% 45.2%

n = 100 100% 100% 79.5% 37.5% 83.3% 79.8% 36.1% 1.7% 0.2% 0.034%

n = 150 100% 94.9% 91.8% 83.9% 91.1% 12.8% 1.3% 40% 13.4% 0%

n = 200 100% 94.7% 78.8% 69.8% 22.2% 18.4% 0% 0.04% 0% 0%

n = 250 99.8% 94.9% 74.8% 3.7% 8.5% 4.1% 0% 0.01% 0% 0%

Table 3.1 – Breaking point analysis - fraction of simulation runs (out of 100 replications)

where the component associated with B is not part of the estimator - f(Wi) = 20 ⋅ cos(2π ⋅
5Wi) + 10 ⋅ sin(2π ⋅ 4Wi) +B ⋅ sin(2π ⋅ 8Wi) − 7 sin(2π ⋅ 11Wi)

significantly high value of the coefficient, the methodology performs well, even for small

sample size.

Bivariate covariates W case (d = 2)

Let us consider a function f ∶ R2 → R such that f(Wi) = f(W 1
i ,W

2
i ) = 10 ⋅ cos(2π ⋅ 2W 1

i ) ⋅
cos(2π ⋅W 2

i ) + 4 ⋅ sin(2π ⋅W 1
i ) ⋅ cos(2π ⋅W 2

i ), where Wi ∈ [0,1]2. We assume the function

g to be defined by g(Wi) = g(W 1
i ,W

2
i ) =W 1

i +W 2
i . The elements of the variables W and

X drawn from the [0,1]−uniform distribution as before. We computed the risk prediction

values for several sample sizes n = {50,100,150,200,250,300} and with u = 30. As one can

see in figure 3.3a and 3.3b, both Estimation Risk and Prediction Risk measures decrease as

the sample size increases. As before, the first sample size doesn’t perform well compared

to the others. The estimation risk measure was computed using 2−dimension grid with an

increment given by δ = 0.05.

Univariate covariate W (d=1) with errors-in-variables

We put in perspective in this case the behaviour of the methodology assuming that the

data is subject to measurement errors. As such, let us consider the function f given by

f(Wi) = 20⋅cos(2π⋅5Wi)+10⋅sin(2π⋅4Wi)+
√

5 sin(2π⋅8Wi)−7 sin(2π⋅11Wi) and g(Wi) =Wi.

The sample data is based on (Y,Z,W ) where Z = X + ν, with ν is a centered normal

distribution of standard deviation µ. The variable W is drawn from the [0,1]−uniform
distribution, as well as the variable X. The latter, combined with ν allows us to derive

the values of Z. We used several sample sizes which were n = {50,100,150,200,250,300}
and u = 30. We also used three different values of µ = {0.033,0.066,0.099}. This allowed

us to test the accuracy of the methodology with increasing noise size.



74

●

●

●
● ● ●

50 100 150 200 250 300

0
5

10
15

Sample size

V
al

ue
s

(a) Evolution of the Prediction Risk.
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(b) Evolution of the Estimation Risk.

Figure 3.1 – Univariate covariate case with function f from Section 3.4.1 - Confidence

Intervals were computed through u = 30 replications for each sample size
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Figure 3.2 – Univariate covariate case - Evolution of the true function f from Section

3.4.1 and its corresponding estimators (each iteration linked to an estimator, which is an

increase of the previous sample size by 50, with n = 300 for the last iteration).
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(a) Evolution of the Prediction Risk
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(b) Evolution of the Estimation Risk

Figure 3.3 – Bivariate covariate case with function f from Section 3.4.1 - Confidence

Intervals were computed through u = 30 replications for each sample size

We implemented a local version of the Coordinate Descent algorithm (see [34]), in order

to solve the optimization problem and find the estimators. The implementation was com-

pleted in C++, and linked with the software R through packages Rcpp and RcppArmadillo.

We significantly increased the computation time in comparison with a similar algorithm

fully set up in R.

For all different values of µ, we can see from figures 3.4b, 3.5b, 3.7b, 3.4a, 3.5a and

3.7a that the methodology performs well. However, we note that the magnitude of our

risk estimation level, as well as the prediction risk level, are greater than the ones shown

in section 3.4.1. Furthermore, we also see that the algorithm needs more information, said

differently more data points in the sample, to reach levels seen in section 3.4.1. As before,

we can see in figures 3.6 and 3.8 that the estimators of f , for all sample sizes, are of good

quality.

3.4.2 Comparison with the TMLE estimator ϕCT

The TMLE (Targeted Minimum Likelihood Estimation) has been used, among others, in

the literature to find etimators of the variable importance measure. The latter was intro-

duced in [77] and further generalized in [22] by assuming the covariates to be continuous.

It was further extended in the manuscript [23] by adjusting the definition of the parameter

of interest such that it becomes multivariate. We recall here the definition of the variable
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(a) Evolution of the Prediction Risk

●

●

●
●

● ●

50 100 150 200 250 300

0
20

40
60

80
10

0
12

0
14

0

Sample size

V
al

ue
s

(b) Evolution of the Estimation Risk

Figure 3.4 – Univariate covariate case with errors-in-variables and function f from Section

3.4.1 - Confidence Intervals were computed through u = 30 replications for various sample

sizes - noise parameter given by µ = 3.33%
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(b) Evolution of the Estimation Risk

Figure 3.5 – Univariate covariate case with errors-in-variable and function f from Section

3.4.1 - Confidence Intervals are computed through u = 30 replications for various sample

sizes - noise parameter given by µ = 6.66%
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Figure 3.6 – Univariate covariate case with errors-in-variable - Evolution of the estimators

of the function f (each iteration is linked to an estimator, which is an increase of the

previous sample size by 50, with n = 300 for the last iteration) - noise parameter given by

µ = 6.66%
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(b) Evolution of the Estimation Risk

Figure 3.7 – Univariate covariate case with errors-in-variables - and function f from Section

3.4.1 - Confidence Intervals were computed through u = 30 replications for each sample

size - noise parameter given by µ = 9.99%
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Figure 3.8 – Univariate covariate case with errors-in-variable - Evolution of the estimators

of function f (each iteration is linked to an estimator, which is an increase of the previous

sample size by 50, with n = 300 for the last iteration) - noise parameter given by µ = 9.99%
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ϕCT (3.2) which is given by

ϕCT (P ) = arg min
B∈Rd

EP [(Y −EP (Y ∣X = 0,W ) −X ⋅ f(B,W ))2] ,

where f is assumed known. This definition introduces a variable importance measure

whose size is equal to d, the number of covariates since ϕCT (P ) ∈ Rd. Hence, it provides

a granular view of the variable importance such that each element of the parameter of

interest ϕCT (P ) can be linked to a covariate.

The TMLE procedure is an iterative method which relies on the computation of the

efficient influence curve of the parameter of interest, in order to derive its consecutive

estimators. The iterative procedure can be described in few steps. First, we define the pa-

rameter of interest as a smooth functional Ψ at P0 (the true and unknown data-generating

distribution). Second, using machine learning techniques, we compute the initial estimate,

based on an empirical law P 0
n , which can be biased. Third, we define a submodel based on

P 0
n such that its score relies on the gradient of the functional Ψ. Fourth, we maximize the

log-likelihood of the submodel such that we can build an update estimate P kn . In the final

phase, the last two steps are iterated until the procedure converges to an updated P ⋆
n . The

final estimator is then given by ϕ⋆CT = Ψ(P ⋆
n ). It is shown, in [23], that the estimator ϕ⋆CT

is consistent and asymptotically normal under mild conditions.

We would like in this section to evaluate the performance of a TMLE based estima-

tor against the ones from the methodologies introduced in this document. We consider

consecutively the model (3.3) and (3.9), while assuming that our function g is given by

g(W ) =W . Furthermore, the function f , is given by f(W ) = 20cos(2πW ) + 5sin(2π2W ).
We also ensure that (i) P (X = 0) > δ with δ > 0, in order to respect a constraint introduced

in [22] and preserved in [23]. We note that such a direct comparison is possible because we

chose a function f which is a linear combination of elements of a Fourier basis. As such,

the TMLE estimator is then computing the coefficients associated with the function.

Through our tests, we have realized that the TMLE doesn’t perform well in high dimen-

sional settings and even more so when the parameter of interest is sparse. As such, we have

restricted ourself to a compact case, which should ease the performance evaluation. We as-

sume that the number of elements in our variable of interest is much lower than our sample

size (p≪ n). We also use metrics previously introduced for our evaluation : Prediction Risk

and Estimation Risk. We generate data samples of size n = {100,200,300,400,500,600}
and decompose the function f and g using a Fourier basis such that p = 10(m = 5, k = 5).
We note here that each data sample is used for both methods. Furthermore, similarly to

the previous section, we repeat our procedure u = 20 times for each data sample size, in

order to find error bounds for our metrics.
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(b) Evolution of the Estimation Risk

Figure 3.9 – Model without measurement errors using both TMLE and Lasso methodologies

for function f

Model without measurement errors

Let us consider the data sample named O = (X,W,Y ). The variable W and X are drawn

from a [0,1]-uniform distribution. We then force randomly 15% of values of X to be

equal to 0, to be in line with condition (i). The variable Y is generated through the

aforementioned functions f and g.

We see from figures (3.9b) and (3.9a) that the TMLE estimators perform relatively

poorly compared to our estimators for very small sample size. However, as data increases,

the performance of both methods tends to converge.

Performance evaluation for model with measurement errors

Let us consider the data sample named Oerr = (Z,W,Y ), where W is drawn from a [0,1]-
uniform distribution. The variable Z is given by Z =X +ν where X is drawn from a [0,1]-
uniform distribution, and ν is a centered Gaussian distribution with standard deviation

µ = 20%. As before, we force 15% of the elements of Z to be equal to 0. The resulting

variable Y will be generated through the function f and g.

We see from figures (3.10b) and (3.10a) that the TMLE performs poorly for small

sample size and further struggle to improve even when we increase the sample. Clearly, it

is biased for cases when measurement errors are added to the covariates. To the best of our

knowledge, there are no bias corrections in the literature of TMLE for errors-in-variables
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Figure 3.10 – Model with measurement errors using both TMLE and Lasso methodologies

for the function f - noise parameter given by µ = 20%

models.

Discussion: The main objective in [22] is to find estimators of the variable of interest

Ψ(P ) (3.2), using the TMLE methodology. The model developed in this document put

more emphasis on finding estimator of the function f , defining the relationship that exists

between the covariates W and the response variable Y . It was supposed known in [22, 23].

Assuming a limited amount of information on the characteristics of the function f , finding

a good estimator of f , can lead to a good estimator of Ψ(P ). However, for an unknown

function f , the estimator of Ψ(P ) can be derived through the metric Prediction Risk. As

such, we made sure to include its characteristics in the simulation cases explored above.

3.5 Application to a real data set

It is very common in financial markets for an investor to build portfolios which attempt to

track the return of an existing financial index. As such, the investor has to find a selection

of securities which, bundle together, recover to a certain degree of accuracy the return and

risk profile of the target index. This exercise doesn’t have to be a full replication of the

index in question. It should not, in most cases. In fact, a full replication, which consists of

buying exactly the same amount of securities which are existing in the index, is impractical

and not cost effective.
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Let us consider a portfolio containing p securities, where the return of the ith security

at time t is denoted by r{i,t} =
P t+1i

P ti
−1, where P ti (respectively P t+1

i ) represents the closing

price of the ith security at time t (respectively t+1). Furthermore, let us consider a universe

of n timestamps {t1,⋯, tn} where one is able to construct a n × p matrix of return, called

Rnp , of all the securities in the portfolio. We denote by wi, with i ∈ {1,⋯, p}, the amount

of capital invested in the ith security and by ry, the 1 × n vector of return of the target

index. Thus, at time t, ry,t =
P yt+1
P yt

−1, where P yt (respectively P yt+1) is the price of the index

at time t (respectively t + 1). The optimal replicating portfolio is given by

ŵ = arg min
w

∥ry −Rnp ⋅w∥2
2,

where w = (w1,⋯,wp). It is a linear regression problem whose solution is known to be

unstable. However, it can be improved by adding a L1 regularization to the problem.

Indeed, it has several benefits among which the sparsity of the solution. When trying to

replicate an index, investors are most often looking for portfolio with a low amount of

securities. The reduction of all costs is key since they impact the overall return of the

strategy.

As such, the replication problem is rewritten as

ŵ = arg min
w

∥ry −Rnp ⋅w∥2
2 + λ∥w∥1 (3.25)

such that λ > 0 and ∑pi=1wi = 1. It can be further extended by taking into account errors-

in-variables in the model.

An investor trying to replicate the return profile of an index needs to take into consid-

eration not only the open and close prices of the constituents and the index, which are in

most cases publicly known, but few other factors which could impact its net return. We

can mention as an example the management fees, which are periodic payments paid to the

fund investment advisor. We can also mention the transaction costs which are expenses in-

curred when buying or selling some constituents when attempting to rebalance a portfolio.

Another point to consider is also the liquidity cost which is linked to the daily volatility

of the financial instruments in the market. This price volatility can be substantial during

periods of considerable market stress. As such, it is also important for investors to have

access to live and historical intraday prices which sometimes come at a hefty cost. Some

of these historical data are in some instances polluted. To incorporate the aforementioned

elements in the regression model guiding the relationship between the return of an index

and its constituents, one can assume that the model is subject to measurement errors. The

article [62] used similar considerations.

As such, we observe a matrix Znp = Rnp +Σ, where Σ is considered to be a multivariate
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Gaussian distribution. The replication problem can then be reformulated as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ŵ = arg minw ∥ry −Rnp ⋅w∥2
2 + λ∥w∥1

Znp = Rnp +Σ.
(3.26)

Let us consider that there exists a function g, element of a Hilbert space H, such that

ry = g(r) + ε, where ε is a white noise and r = {ri}i=1,⋯,p is the vector of return of all the

constituents in the initial portfolio. The estimation of the function g, leads to the precise

definition of the constituents we want to keep in the replicating portfolio, as well as their

corresponding weight. We consider Φ = (Φ1,⋯,Φp,⋯) = {Φj}∞j=1, a complete Legendre

orthonormal base in H. Hence, following (3.5), there exists m > 0 and β ∈ Rm such that

g(wi) = ∑mj=0 Φj(wi) ⋅ βj . Based on the matrix form developed in (3.6), we can rewrite

(3.25) as

β̂ = arg min
β

∥ry − R̃nm ⋅ β∥2
2 + λ∥β∥1 (3.27)

where R̃nm is a m×n matrix which correspond the expansion of Rnp in the base Φ. We note

that m≫ n. Similarly as above, (3.26) can then be rewritten as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

β̂ = arg minβ ∥y − R̃nm ⋅ β∥2
2 + λ∥β∥1

Z̃ = R̃nm +Σ.
(3.28)

The index of interest is called Standard & Poor ’s 500 (also known as S&P500). It is an

American stock market index based on the capitalizations of 500 large companies having

common stock listed on the New York Stock Exchange or the NASDAQ stock exchange.

It is an extremely liquid equity index and certainly one of the most followed. Because

of its broad constituency, it is considered as one of the best representation of the U.S.

stock market. In order to categorize the majorly traded public companies, the term GICS

was coined in 1999 by MSCI and Standard & Poor’s for use in the financial community.

GICS, which stands for Global Industry Classification Standard, consists of 11 sectors :

Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples, Health Care,

Financials, Information Technology, Telecommunication Services, Utilities and Real Es-

tate. The companies in the S&P500 covered all 11 GICS Sectors. This point will be of

further importance later on. The data used to perform the analysis was retrieved from the

yahoo website (https://finance.yahoo.com/quote/DATA/ ). The list of constituents of the

S&P500 is also public. The dataset extracted only contained 375 of the full 500 that could

be found in the aforementioned constituent’s list. We now illustrate the notions developed

above through three cases : synthetic target index, S&P500 index with direct observations

and with errors-in-variables, respectively.

Case 1: We start here by constructing synthetic target indices, that we aim to track.

These synthetic indices are based on securities which are within the dataset we extracted.
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We constructed a total of two synthetic indices. Each target index closing price St is the

sum of its constituents closing prices. Using all St, we can infer the daily return of the

synthetic target portfolio.

To produce replicating portfolios for both synthetic indices (see tables 3.2 and 3.3), we

used the 375 constituents of the initial dataset, amongst them were the ones used to build

the synthetic targets. We chose to only use two degree of freedom for the Legendre Basis

decomposition of g. Two main reasons motivated this decision. First of all, it allows us to

have a matrix R̃nm, which not only contains the return linked to each constituent but also

to their cross product of size 2. We could then measure their impact, if any. Secondly, prior

analysis taking into account higher degree of freedom showed us that is was not relevant

for the study to go beyond that level. The above cross products allow one to quantify the

role played, if any, by the interdependence between a pair of stocks. It is a feature mostly

known in the literature as the interaction term, and has been used in econometrics (see

[53]) and quantitative finance (see [33]).

We chose windows of one-year length for this study. The amount of data points available

n, was then to remain well below the number of basis m. We extracted daily closing prices

for our synthetic index and all the constituents of our portfolio and then deduced the daily

discrete return rate for each one of them. Using Legendre basis, we built the matrix R̃nm,

with m = 375, n ≈ 250 (for each portfolio) and computed the measure associated with

each element of our replicating portfolio. We emphasize here that the underlying Lasso

methodology used also performs a variable selection. Hence, not only do we know what are

the constituents to include in our replicating portfolio, but also the capital to associate to

each of them. Furthermore, it outlined any interdependency between constituents, if any.

The windows considered were: 2008 and 2014. The first one corresponds to the start of

the financial crisis in which we experienced a lot of volatility in the financial markets. The

second is considered as a post crisis period, where volatility was low. Those two different

windows are important because they allow us to apply the method in two different regimes

and hence help assess the quality of the estimation methodology.

For the period 2014, we obtained a replicating portfolio whose constituents are displayed

in Table 3.5. It contains all the securities available in the synthetic portfolio (see Table 3.2).

An intercept was produced with a β value of 0.00133, negligible then. For the period 2008,

we obtained a replicating portfolio whose elements are in Table 3.4. The match, again,

in this case is perfect as we retrieved the exact number of constituents which were in the

synthetic portfolio (see Table 3.3). An intercept was produced with a β value of −0.00278,

negligible as for the previous case. From the full dataset, we were able to identify the key

drivers of our synthetic indices. Furthermore, we see that even in high volatility period, we

are still very accurate in our reconstruction. These synthetic indices help demonstrate the

correctness of the method. Thus we can conclude through simple yet convincing examples
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Ticker Symbol Security GICS Sector

CSCO Cisco Systems Information Technology

HRS Harris Corporation Information Technology

XRX Xerox Corporation Information Technology

Table 3.2 – Synthetic Index 1 - based on securities from the same GICS Sector

Ticker Symbol Security GICS Sector

GPS Gap Inc. Consumer Discretionary

HST Host Hotels & Resorts. Real Estate

ORLY O Ŕeilly Automative Consumer Discretionary

Table 3.3 – Synthetic Index 2 - based on securities from different GICS Sector

that on a predefined framework, we can accurately identify the key drivers of a target

index.

Case 2: We turn our attention to the S&P500 index, which now represents our target

index. Similarly to the prior case, two windows were considered: 2008 and 2014. The

reasons for this choice are the same as previously discussed.

For the first period, results show a replicating portfolio containing 80 constituents (the

full list is not shown here). All these elements can be grouped in 11 distinct GICS Sectors.

They represent the exact number of unique GICS sectors in the original S&P500 list of

constituents. As such, the replicating portfolio does cover the full spectrum of market

segments represented by the index. For the second period 2014, the replicating portfolio

Ticker Symbol Security GICS Sector β value

GPS Gap Inc. Consumer Discretionary 0.04483074

HST Host Hotels & Resorts Real Estate 0.01420947

ORLY O Ŕeilly Automative Consumer Discretionary 0.1347531

Table 3.4 – Replicating Portfolio 2 - with their respective importance measure - year 2008
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Ticker Symbol Security GICS Sector β value

CSCO Cisco Systems Information Technology 0.06976

HRS Harris Corporation Information Technology 0.1707516

XRX Xerox Corp. Information Technology 0.1364902

Table 3.5 – Replicating Portfolio 1 - with their respective importance measure - year 2014

has 139 constituents. As for the prior period, it covers as well all 11 sectors present in

the index list of constituents. We represent in Table 3.6 the number (in percentage) of

securities linked to each GICS Sector. Thus, we show the distribution of our replicating

portfolios.

Having constructed these portfolios, we were then interested in measuring their sta-

bility. Given the scaling profile of these replicating portfolios (β values corresponding to

each constituent) provided by the decomposition, we wanted to know how the return pro-

file performs using out of sample data relatively close to the time frame of the analysis

windows.

Let us denote by {tn+1,⋯, tm} the out of sample time-stamps we want to use to gauge

the portfolio performance. Let us denote by βi, with i ∈ {1,⋯, p} where p represents the

number of drivers infer from our methodology. If we denote by ỹ the vector containing the

prediction values of our replicating portfolio, such that ỹj =
P ỹj

P ỹj−1
−1, where P ỹj = ∑pi=1 βi ⋅P

j
i ,

j ∈ {tn+1,⋯, tm} and P ji is the closing price of the ith key driver at time j. We can see

from the pictures 3.11 and 3.12 that the replicating portfolios performed well.

Case 3: The target index remains the S&P500. We would like to replicate it within the

framework defined in (3.26). We applied the same standard deviation µ to all constituents

in the initial portfolio, hence defining the variable Σ. Like in prior cases, we have considered

two periods for this analysis : the year 2008, at the heart of the financial crisis, characterized

by a high volatility and the year 2014, which is more of a low volatility period. For

each period, we used the following values for µ ∈ {0.001; 0.003; 0.005; 0.007; 0.01} which

correspond to cases where the matrix of return, that we observed, is more and more

polluted.

Our results (see Tables 3.7 and 3.8) show us that the greater the value of µ, which

implies a heavily polluted matrix of return, the more difficult it is for the methodology

to construct a well-behaved replicating portfolio. However, we can still note that even



3.5. Application to a real data set 87

GICS Sector Name S&P500 Rep. Port. - 2008 Rep. Port. - 2014

Industrials 13.09 % 12.658% 14.49%

Health Care 12.3 % 13.92% 13.7%

Information Technology 13.88% 16.455% 14.49%

Consumer Discretionary 16.66% 12.65% 13.76%

Utilities 5.55% 5.06% 4.34%

Financials 13.49% 15.18% 14.49%

Materials 4.96% 6.32% 6.52%

Real Estate 6.54% 5.06% 2.17%

Consumer Staples 6.74% 3.79% 8.69%

Energy 6.34% 7.59% 5.79%

Telecommunication Services 0.59% 1.26% 1.44%

Number of Securities in Portfolio 500 80 139

Table 3.6 – percentage of each sector present in the S&P500 and the replicating portfolios

for the period 2008 and 2014.
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Figure 3.11 – Difference in daily return between S&P500 and replication portfolio - pro-

jection dates are in 2009 - sample data covers the period 2008
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Figure 3.12 – Difference in daily return between S&P500 and replication portfolio - pro-

jection dates are in 2015 - sample data covers the period 2014

µ 0.001 0.003 0.005 0.007 0.01

Industrials 5% 14.49% 10.6% 9.52% 5.55%

Health Care 13.75% 7.24% 10.6% 4.76% 8.33%

Information Technology 21.25% 13.04% 10.6% 11.9% 8.33%

Consumer Discretionary 20% 18.8% 22.72% 9.52% 22.22%

Utilities 6.25% 2.89% 3.03% 2.38% 5.55%

Financials 12.5% 23.18% 25.75% 30.95% 25%

Materials 2.5% 4.34% 0% 0% 2.77%

Real Estate 6.25% 4.34% 4.54% 4.76% 5.55%

Consumer Staples 2.5% 5.79% 3.03% 0% 0%

Energy 8.75% 5.79% 7.57% 23.81% 16.66%

Telecommunication Services 1.25% 0% 1.51% 2.38% 0%

Number of Securities in Portfolio 81 70 67 43 37

Table 3.7 – representation of each sector in the replicating portfolio with respect to the

starting list, for each value of µ, on the period 2008
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µ 0.001 0.003 0.005 0.007 0.01

Industrials 15.85% 12.5% 15.68% 21.73% 20.58%

Health Care 13.41% 17.85% 15.68% 13.04% 8.82%

Information Technology 13.41% 16.07% 25.49% 15.21% 11.76%

Consumer Discretionary 10.97% 5.35% 7.84% 10.86% 11.76%

Utilities 2.43% 3.57% 1.96% 2.17% 2.94%

Financials 20.73% 19.64% 23.52% 23.91% 23.52%

Materials 4.87% 8.92% 3.92% 6.52% 8.82%

Real Estate 2.43% 1.78% 0% 0% 0%

Consumer Staples 7.31% 7.14% 0% 0% 2.94%

Energy 7.31% 7.14% 5.88% 2.17% 8.82%

Telecommunication Services 1.22% 0% 0% 4.34% 0%

Number of Securities in Portfolio 83 57 52 47 35

Table 3.8 – representation of each sector in the replicating portfolio with respect to the

starting list, for each value of µ, on the period 2014

with large amount of noise in the data, the methodology constructs a portfolio whose

constituents are adequately distributed among GICS sector. Hence, even through the

noise, the methodology is able to recognize the role played by each sector in defining the

overall behavior of the target index.

3.6 Appendix

Proof of Proposition 3.1: Given (3.10), we get

1

2n
∥Y −Xβ̂∥2

2 + λ∥β̂∥1 ≤
1

2n
∥Y −Xβ∥2

2 + λ∥β∥1

for all β ∈ Rp. This can be rewritten as

1

2n
∥X(β̂ − β)∥2

2 + λ∥β̂∥1 ≤
1

n
ε⊺X(β̂ − β) + λ∥β∥1.

We write, through Hölder inequality,

1

n
ε⊺X(β̂ − β) ≤ 1

n
∥ε⊺X∥∞∥β̂ − β∥1

and consider the event A = { 1
n∥ε

⊺X∥∞ ≤ λ0}. On A, we get

1

2n
∥X(β̂ − β)∥2

2 ≤ λ0∥β̂ − β∥1 + λ∥β∥1 − λ∥β̂∥1.
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We denote by S = {j ∶ βj ≠ 0} and by N = {j ∶ βj = 0} and we split the vector β̂ − β and β̂

according to the sets S and N . Note also that ∥β∥1 = ∥βS∥1, thus

1

2n
∥X(β̂ − β)∥2

2 ≤ λ0∥(β̂ − β)S∥1 + λ0∥(β̂ − β)N∥1 + λ∥βS∥1 − λ∥β̂S∥1 − λ∥β̂N∥1.

We remark that ∥β̂S −βS∥1 ≥ ∥βS∥1−∥β̂S∥1, which implies that −λ∥β̂S∥1 ≤ −λ∥βS∥1+λ∥(β̂−
β)S∥1. Hence,

1

2n
∥X(β̂ − β)∥2

2 ≤ (λ0 + λ)∥(β̂ − β)∥1 + λ0∥(β̂ − β)N∥1 − λ∥β̂N∥1

≤ (λ0 + λ)∥(β̂ − β)S∥1 + (λ0 − λ)∥β̂N∥1

≤ 3λ

2
∥(β̂ − β)S∥1 −

λ

2
∥β̂N∥1 for λ0 ≤

λ

2
.

In particular, we obtained here that ∥(β̂ − β)N∥1 = ∥β̂N∥1 ≤ 3∥(β̂ − β)∥1. We used here the

compatibility condition (3.11) and apply it to β̂−β and get ∥(β̂−β)S∥1 ≤
√
s

φ0
√
n
∥X(β̂−β)∥2.

We then have

1

2n
∥X(β̂ − β)∥2

2 +
λ

2
∥β̂ − β∥1 ≤

3λ

2
∥(β̂ − β)S∥1 −

λ

2
∥β̂N∥1 +

λ

2
∥(β̂ − β)S∥1 +

λ

2
∥β̂N − βN∥1

≤ 2λ∥(β̂ − β)S∥1 ≤ 2λ

√
s

φ0
√
n
∥X(β̂ − β)∥2.

We use the inequality 2ab ≤ a2

4 + 4b2 to get

1

2n
∥X(β̂ − β)∥2

2 +
λ

2
∥β̂ − β∥1 ≤

1

4n
∥X(β̂ − β)∥2

2 + 4λ2 s

φ2
0

and this gives
1

2n
∥X(β̂ − β)∥2

2 + λ∥β̂ − β∥1 ≤ 8λ2 s

φ2
0

.

For λ = 2σ∥X∥∞
√

t2+2 log(p)
n , we can then conclude that

1

2n
∥X(β̂ − β)∥2

2 + λ∥β̂ − β∥1 ≤ 4σ2∥X∥2
∞

8s

φ2
0

t2 + 2 log(p)
n

and

∥β̂ − β∥1 ≤ 2σ∥X∥∞ ⋅ 8s

φ2
0

⋅
√

t2 + 2 log(p)
n

.

We note that the choice of λ is such that λ ≥ 2λ0 and that A holds with high probability

P (Ac) = P (max
1≤j≤p

1

n
∣ε⊺Xj ∣ > λ0) ≤ 2 exp(− t

2

2
)

where λ0 = 2σ∥X∥∞
√

t2+2 log(p)
n with t > 0.

The above inequality relies on what follows. It is used at several occasions in the

demonstrations below.
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We note here that if we assume Z ∼ N(0,1). Hence, for all t > 0

P (Z > t) = 1

2
√
π

ˆ ∞

t
exp(−x

2

2
)dx

≤ 1

2
√
π

ˆ ∞

t

x

t
exp(−x

2

2
)dx = 1

2t
√
π

exp(− t
2

2
).

Proof of Proposition 3.2:

We repeat here classical arguments for proving convergence rates for (3.14). By defini-

tion, for all θ ∈ Rk, we have

1

2n
∥V ⋅ (Y − Ψ̃kθ̂)∥2

2 + λ∥θ̂∥1 ≤
1

2n
∥V ⋅ (Y − Ψ̃kθ)∥2

2 + λ∥θ∥1,

which can be rearranged into

1

2n
(∥V Ψ̃kθ̂∥2

2 − ∥V Ψ̃kθ∥2
2) ≤

2

2n
⟨V Y,V Ψ̃k(θ̂ − θ)⟩ + λ∥θ∥1 − λ∥θ̂∥1

giving also

1

2n
∥V Ψ̃k(θ̂ − θ)∥2

2 ≤
2

2n
⟨V (Y − Ψ̃kθ), V Ψ̃k(θ̂ − θ)⟩ + λ∥θ∥1 − λ∥θ̂∥1

We know that V (Y − Ψ̃kθ) = V (Ψmη + ε) = V ε. Indeed, VΨm = 0. Therefore,

1

2n
∥V Ψ̃k(θ̂ − θ)∥2

2 ≤
2

2n
ε⊺V Ψ̃k(θ̂ − θ) + λ∥θ∥1 − λ∥θ̂∥1

≤ 1

n
∥ε⊺V Ψ̃k∥∞∥θ̂ − θ∥1 + λ∥θ∥1 − λ∥θ̂∥1 through Hölder inequality.

Let us assume that 1
n∥ε

⊺V Ψ̃k∥∞ ≤ λ0 on some event A. However, we split the coordinates

of θ in Sθ = {j ∶ θj ≠ 0} and Nθ = {j ∶ θj = 0}. Thus,

1

2n
∥V Ψ̃k(θ̂ − θ)∥2

2 ≤ λ0∥θ̂S − θS∥1 + λ0∥θ̂N∥1 + λ∥θS∥1 − λ∥θ̂S∥1 − λ∥θ̂N∥1

Using ∥θ̂S − θS∥1 ≥ ∥θS∥1 − ∥θ̂S∥1, we then get

1

2n
∥V Ψ̃k(θ̂ − θ)∥2

2 ≤ (λ0 + λ)∥θ̂S − θS∥1 + (λ0 − λ)∥θ̂N∥1

3λ

2
∥θ̂S − θS∥1 −

λ

2
∥θ̂N∥1

for λ0 ≤ λ
2 . Given the compatibility condition (3.11), we know that there exists φ0 > 0 and

sθ the sparsity of θ such that for all θ in the cone ∥θN∥1 ≤ 3∥θS∥1, we have

∥θS∥2
1 ≤

sθ
φ2

0

∥V Ψ̃kθ∥2
2

n
.
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We can then say that

1

2n
∥V Ψ̃k(θ̂ − θ)∥2

2 +
λ

2
∥θ̂ − θ∥1 ≤ 2λ∥θ̂S − θS∥1 ≤ 2λ

√
sθ

φ0
√
n
∥V Ψ̃k(θ̂ − θ)∥2.

We use the inequality 2ab ≤ a2

4 + 4b2 to infer that

1

2n
∥V Ψ̃k(θ̂ − θ)∥2

2 +
λ

2
∥θ̂ − θ∥1 ≤

1

4n
∥V Ψ̃k(θ̂ − θ)∥2

2 + 4λ2 sθ
φ2

0

thus,
1

2n
∥V Ψ̃k(θ̂ − θ)∥2

2 + λ∥θ̂ − θ∥1 ≤ λ2 8sθ
φ2

0

.

For λ = 2σ∥X∥∞
√

t2+2 log(k)
n , we can then conclude that

1

2n
∥V Ψ̃k(θ̂ − θ)∥2

2 + λ∥θ̂ − θ∥1 ≤ 4σ2∥X∥2
∞

8sθ
φ2

0

⋅ t
2 + 2 log(k)

n
.

Furthermore,

∥θ̂ − θ∥1 ≤ 2σ∥X∥∞
8sθ
φ2

0

⋅
√

t2 + 2 log(k)
n

.

This choice of λ ≥ 2λ0 is such that P ( 1
n∥ε

⊺V Ψ̃k∥∞ > λ0) ≤ 2 exp(− t22 ) for some t > 0. We

note that

∥ε⊺V Ψ̃k∥∞ = ∣(ε⊺V Ψ̃k)j ∣ = max
j=1,...,k

∣
n

∑
i=1

εi[V Ψ̃k]ij ∣.

we have ∑ni=1 εi[V Ψ̃k]ij ∼ N(0, σ2v2
j ) and

v2
j =

n

∑
i=1

[V Ψ̃k]2
ij =

n

∑
i=1

X2
i [VΨk]2

ij

≤ max
i

∣Xi∣2(VΨkΨ
⊺
kV

⊺)ij

≤ ∥X∥2
∞(Ψ⊺

kV
2Ψk)jj

≤ ∥X∥2
∞(Ψ⊺

kVΨk)jj since V 2 = V , and 0 ≤ V ≤ I (the identity matrix)

≤ ∥X∥2
∞(Ψ⊺

kΨk)jj = n∥X∥2
∞.

Hence, we have ∥ε⊺V Ψ̃k∥∞ ≤ σ∥X∥∞
√

2n(1 + t) log(k) with probability larger than 1 −
exp(− t22 ).

Proof of Theorem 3.3:

We denote by L̃ = 1
2β

⊺Γβ − γTβ + λ∥β∥1 the loss function to be minimized. We denote

by β the true value of our variable of interest. Hence, we know that β is feasible but the

estimator β̂ is optimal for (3.19). Hence, L̃(β̂) ≤ L̃(β). Thus,

β̂⊺Γβ̂ − β⊺Γβ ≤ 2⟨γ, β̂ − β⟩ + 2λ(∥β∥1 − ∥β̂∥1). (3.29)
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Let us denote define the variable ∆ = β̂ − β. We have

∆⊺Γ∆ = ∆⊺Γβ̂ −∆⊺Γβ

= β̂⊺Γβ̂ − β⊺Γβ̂ + β̂⊺Γβ − β⊺Γβ − 2∆⊺Γβ.

Then, ∆⊺Γ∆ + 2∆⊺Γβ = β̂⊺Γβ̂ − β⊺Γβ.

Thus (3.29) can be rearranged into,

∆⊺Γ∆ ≤ 2⟨∆, γ − Γβ⟩ + 2λ(∥β∥1 − ∥β̂∥1). (3.30)

Let us now turn our attention to the term ⟨∆, γ − Γβ⟩. Using Hölder inequality, it can be

written,

⟨∆, γ − Γβ⟩ ≤ ∥γ − Γβ∥∞∥∆∥1.

Furthermore, we know that

∥γ − Γβ∥∞ = ∥ 1

n
(X̃⊺Y − X̃⊺X̃β + nµ2ζβ) ∥∞, since ζ2 = ζ⊺ζ = ζ. (3.31)

We note that,

X̃⊺X̃ = X̃⊺X + X̃⊺K

= X⊺X +X⊺K + (X⊺K)⊺ +K⊺K,

moreover,

U1 = (X⊺K)⊺ = [0n×m,DνΨk]⊺ [Ψm,DXΨk] =
⎡⎢⎢⎢⎢⎣

0m×m 0m×k

(DνΨk)⊺Ψm (DνΨk)⊺DXΨk

⎤⎥⎥⎥⎥⎦

and

U2 = K⊺K = [0n×m,DνΨk]⊺ [0n×m,DνΨk] =
⎡⎢⎢⎢⎢⎣

0m×m 0m×k

0k×k (DνΨk)⊺DνΨk

⎤⎥⎥⎥⎥⎦
.

Thus,

X̃⊺X̃ = X⊺X +U1 +U⊺
1 +U2.

Knowing that Y = Xβ + ε and the previous expression of X̃⊺X̃, we can then write (3.31)

∥γ − Γβ∥∞ = 1

n
∥X⊺ε +K⊺ε −U⊺

1β −U⊺
2β + nµ2ζβ∥∞

≤ 1

n
∥(X⊺ +K⊺)ε∥∞ + 1

n
∥U⊺

1β∥∞ + 1

n
∥(Ψ⊺

kDν2Ψk −Ψ⊺
kDµ2Ψk)θ∥∞

≤ 1

n
∥X⊺ε∥∞ + 1

n
∥K⊺ε∥∞ + 1

n
∥U⊺

1β∥∞ + 1

n
∥Ψ⊺

kDν2−µ2Ψkθ∥∞.

In order to find an upper bound of ∥γ − Γβ∥∞, we look individually at each of the four

terms of the inequality above and find their corresponding upper bound.
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(i) We know that ∥X⊺ε∥∞ = maxj=1,...,p∑ni=1 εiXiΦj(Wi) ∼ N(0, σ2d2
j). The variable

dj can be bounded as follows : d2
j = ∑ni=1XiΦ

2
j ≤ n∥X∥2

∞. Hence, we can conclude that,
1
n∥X

⊺ε∥∞ ≤ σ∥X∥∞
√

2(1+t) log(p)
n with probability greater than 1 − exp(− t22 ).

(ii) We have

∥K⊺ε∥∞ = max
j=1,...,k

n

∑
i=1

Km+jεi

≤ max
j=1,...,k

n

∑
i=1

∣εiνiΦj(Wi)∣

≤ max
j=1,...,k

1

4

n

∑
i=1

∣̃ε2iΦj(Wi)∣ + max
j=1,...,k

1

4

n

∑
i=1

∣ν̃2
i Φj(Wi)∣ (3.32)

with ν̃i = εi − νi ∼ N(0, σ2 + µ2) , ε̃i = εi + νi ∼ N(0, σ2 + µ2) and using the equality xy =
1
4{(x+y)

2−(x−y)2}. Let us introduce the variable Nj = 1
4n ∑

n
i=1 ∣̃ε2iΦj(Wi)∣ = 1

4n ∑
n
i=1 ε̃

2
iBij

with Bij = ∣Φj(Wi)∣. Let us found from above the Laplace transform of Nj :

E [exp( λ

4n

n

∑
i=1

ε̃2iBij)] =
n

∏
i=1

E [exp( λ
4n
ε̃2iBij)]

=
n

∏
i=1

E [exp(λα
2

4n
Bij ⋅

ε̃2i
α2

)] with α2 = σ2 + µ2

≤
n

∏
i=1

exp(2(λα
2

4n
Bij)2)

≤ exp(1

2

λ2α4

4n2

n

∑
i=1

B2
ij) with λ subject to ∣λ∣ ≤ n

α2Bij
∀i = 1, . . . , n

≤ exp(1

2

λ2α4

4n
) with ∣λ∣ ≤ n

α2δ

with the constant δ > 0 which satisfies ∣φj(Wi)∣ ≤ δ for all i and j. Note that such a constant

exists by construction. We know that if Z is a sub-exponential variable with non-negative

parameters (κ, b), then

P [∣Z −E[Z]∣ ≥ max{κ
√
u, bu}] ≤ exp(−u

2
), for all u > 0. (3.33)

Given the expression of the Laplace transform, we obtained thatNj is a sub-exponential

random variable with parameter κ = α2

2
√
n
and b = α2δ

n . Hence, for all j,

Nj ≤ max{α
2

2

√
t

n
,α2δ

t

n
},

for t > 0, with probability greater than 1 − exp(− t2). The same analysis provides the same

bounds for the second term in (3.32). We then have, 1
n∥K

⊺ε∥∞ ≤ (σ2 +µ2)max{
√

t
n ,2δ

t
n}

with probability larger than 1 − 2 exp(− t2).
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(iii) Let us denote by Tj = ∑ni=1 νiΦj(Wi)[Ψkθ]i and Sj = ∑ni=1 νiXiΦj(Wi)[Ψkθ]i,
such that ∥U⊺

1β∥∞ = max{maxj=1,...,p ∣Tj ∣,maxj=1,...,p ∣Sj ∣}. We know that for all j, Tj ∼
N(0, µ2v2

j ). The variance v2
j can be bounded as follows :

v2
j =

n

∑
i=1

(Φj(Wi)2[Ψkθ]i)2

= Φ⊺
jΨkθθ

⊺Ψ⊺
kΦj

≤ Tr(Ψkθθ
⊺Ψ⊺

k)Tr(ΦjΦ
⊺
j )

≤ nL since
k

∑
l=1

(Φl(Wi)θl)2 ≤ L by hypothesis.

Similarly, we know that for all j, Sj ∼ N(0, µ2v2
j ). As before, we show that

v2
j ≤ ∥X∥2

∞ max
i

[Φj(Wi)(Ψkθ)i]2 = ∥X∥2
∞nL.

As such, we can write that (iii), 1
n∥U

⊺
1β∥∞ ≤ µ(1 + ∥X∥∞)

√
2(1+t)L log(p)

n with probability

greater than 1 − exp(− t22 ).
(iv) Let us denote byMj the jth element of the vector 1

n[Ψ
⊺
kDν2−µ2Ψkθ] such thatMj =

1
n[ΦjDν2−µ2(Ψkθ)]j = 1

n ∑
n
i=1(ν2

i − µ2)Vij where Vij = (∑kl=1 Φl(Wi)θl)Φj(Wi). Applying

the Laplace transform to the variable Mj , we obtain

E[exp(λ
n

n

∑
i=1

(ν2
i − µ2)Vij)] =

n

∏
i=1

E[exp(λ
n
(ν2
i − µ2)Vij)]

=
n

∏
i=1

E[exp(λµ
2

n
(ν

2
i

µ2
− 1)Vij)] with

ν2
i

µ2
∼ χ2

1

=
n

∏
i=1

exp(λµ
2

n Vij)√
1 − 2Vij

λµ2

n

≤
n

∏
i=1

exp(1

2

4λ2µ4

n2
V 2
ij)

with
∣λ∣µ2

n
Vij <

1

4
, ∀i = 1, . . . , n

since, max
i

∣Vij ∣ ≤ max
i

∣φj(Wi)∣
k

∑
l=1

∣φl(Wi)θl∣ ≤ δ∥Ψk(W )θ∥2
2 ≤ δL,

and
1

n

n

∑
i=1

V 2
ij ≤ L by hypothesis .

We have,

E[exp(λ
n

n

∑
i=1

(ν2
i − µ2)Vij)] ≤ exp(1

2

4λ2µ4

n
L) for ∣λ∣ ≤ n

2µ2δL

Given the expression of the Laplace Transform, we know that we are dealing with a sub-

exponential random variable with parameter κ = 2µ2
√
L

√
n

and b = 4µ2δL
n . Hence, from (3.33),

we can conclude that, for all j, ∣Mj ∣ ≤ max{2µ2
√
L

√
n

√
t, 4µ2L

n t} with probability greater than

1 − exp(− t2).
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From the results (i), (ii), (iii) and (iv), we can then conclude that, with probability greater

than 1 − 5 exp(− t2), with t large enough (we note here that P (A ∩B) ≥ P (A) +P (B) − 1).

Hence, there exists λ0 ∈ R such that ∥γ − Γβ∥∞ ≤ λ0, with

λ0 = (σ∥X∥∞ + µ
√
L(1 + ∥X∥∞))

√
2(1 + t) log(p)

n

+max{2µ2
√
L√

n

√
t,

4µ2δL

n
t}+(σ2 + µ2) ⋅max{

√
t

n
,2δ

t

n
}.

Thus (3.30) can be rewritten as,

∆⊺Γ∆ ≤ 2λ0∥∆∥1 + 2λ(∥β∥1 − ∥β̂∥1).

We know that S = {j ∶ βj ≠ 0} and by N = {j ∶ βj = 0}. Hence,

λ(∥β∥ − ∥β̂∥1) ≤ λ∥βS∥ − λ∥β̂S∥1 − λ∥β̂N∥1 since ∥βN∥ = 0

≤ λ∥β̂S − βS∥1 − λ∥β̂N∥1

therefore,

∆⊺Γ∆ ≤ 2(λ0 + λ)∥β̂S − βS∥1 + 2(λ0 − λ)∥β̂N − βN∥1

≤ 3λ∥β̂S − βS∥1 − λ∥β̂N − βN∥1, assuming λ0 ≤
λ

2

≤ 3λ∥β̂S − βS∥1

From the above, we can infer that ∆ verifies the cone property with c0 = 3. Given

the Restricted Eigenvalues condition (3.20), we can write that ∆⊺Γ∆ ≥ t0∥∆S∥2
2. Since,

∥∆S∥2
1 ≤ sβ∥∆S∥2

2, then we have ∆⊺Γ∆ ≥ t0
sβ

∥∆S∥2
1. Then, from the above, we have:

t0
sβ

∥∆S∥2
1 ≤ 3λ∥∆S∥1, then ∥∆S∥1 ≤ 3λ

sβ

t0
.

Furthermore, we know that ∥∆N∥1 ≤ c0∥∆S∥1, thus ∥∆∥1 ≤ (c0 + 1)∥∆S∥1. We can then

conclude that

∥β̂ − β∥1 ≤ λ ⋅ sβ ⋅
12

t0

with probability larger than 1 − 5 exp(− t2), and t large enough.

Proof of Theorem 3.4:

Let us denote by θ the true value of our parameter of interest. We know that θ is

feasible and θ̂ is the optimal parameter for (3.22). Hence, L(θ̂) ≤ L(θ). Thus,

θ̂⊺Γθ̂ − θ⊺Γθ ≤ 2⟨γ, θ̂ − θ⟩ + 2λ(∥θ∥ − ∥θ̂∥1).
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It can be rearranged into,

∆⊺Γ∆ ≤ 2⟨∆, γ − Γθ⟩ + 2λ(∥θ∥ − ∥θ̂∥1), similarly to (3.30) and with ∆ = θ̂ − θ. (3.34)

Through Hölder inequality, we can write,

⟨∆, γ − Γβ⟩ ≤ ∥γ − Γβ∥∞∥∆∥1.

Furthermore, knowing that V ε = V Y − V DXΨkθ we have,

∥γ − Γθ∥∞ = 1

n
∥(V DZΨk)⊺Y − (V DZΨk)⊺(V DZΨk)θ + µ2(VΨk)⊺(VΨk)θ∥∞

= 1

n
∥(DZΨk)⊺V ε − (DZΨk)⊺V DνΨkθ + µ2Ψ⊺

kVΨk∥∞

= 1

n
∥Ψ⊺

kDZV ε −Ψ⊺
kV DXDνΨkθ +Ψ⊺

kDν2−µ2VΨk∥∞

≤ 1

n
∥Ψ⊺

kDZV ε∥∞ + 1

n
∥Ψ⊺

kV DXDνΨkθ∥∞ + 1

n
∥Ψ⊺

kDν2−µ2VΨk∥∞

≤ 1

n
∥Ψ⊺

kDXV ε∥∞ + 1

n
∥Ψ⊺

kDνV ε∥∞ + 1

n
∥Ψ⊺

kV DXDνΨkθ∥∞ + 1

n
∥Ψ⊺

kDν2−µ2VΨk∥∞

In order to find an upper bound of ∥γ −Γθ∥∞, we look individually at each of the four

terms of the inequality above and find their corresponding upper bound.

(i) We know that ∥Ψ⊺
kDXV ε∥∞ ≤ maxj=1,...,k∑ni=1 εiXiΦj(Wi) ∼ N(0, σ2d2

j). The vari-

able dj can be bounded as follows : d2
j = ∑ni=1X

2
i (Φ⊺

kV )2
ij ≤ n∥X∥2

∞ since V 2 = V and 0 ≤
V ≤ I (Identity matrix). Hence, we can conclude that 1

n ∣Ψ
⊺
kDXV ε∥∞ ≤ σ∥X∥∞

√
2(1+t) log(k)

n

with probability greater than 1 − exp(− t22 ).

(ii) We also have,

∥Ψ⊺
kDνV ε∥∞ ≤ max

j=1,...,k
∣
n

∑
i=1

εiνiΦj(Wi)∣

≤ max
j=1,...,k

n

∑
i=1

∣εiνiΦj(Wi)∣

≤ max
j=1,...,k

1

4

n

∑
i=1

∣̃ε2iΦj(Wi)∣ + max
j=1,...,k

1

4

n

∑
i=1

∣ν̃2
i Φj(Wi)∣ (3.35)

with ν̃i = εi − νi ∼ N(0, σ2 + µ2) , ε̃i = εi + νi ∼ N(0, σ2 + µ2) and using the equality xy =
1
4{(x+y)

2−(x−y)2}. Let us introduce the variable Nj = 1
4n ∑

n
i=1 ∣̃ε2iΦj(Wi)∣ = 1

2n ∑
n
i=1 ε̃

2
iBij

with Bij = ∣Φj(Wi)∣. Let us found from above the Laplace transform of Nj :
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E [exp( λ

4n

n

∑
i=1

ε̃2iBij)] =
n

∏
i=1

E [exp( λ
4n
ε̃2iBij)]

=
n

∏
i=1

E [exp(λα
2

4n
Bij ⋅

ε̃2i
α2

)] with α2 = σ2 + µ2

≤
n

∏
i=1

exp(2(λα
2

4n
))2

≤ exp(1

2

λ2α4

4n2

n

∑
i=1

B2
ij) with λ subject to ∣λ∣ ≤ n

α2Bij
,∀i = 1, . . . , n

≤ exp(1

2

λ2α4

4n
) with ∣λ∣ ≤ n

α2δ

with the variable δ > 0 an assumption of the theorem which satisfies ∣φj(Wi)∣ ≤ δ for all

i and j. Note that such a constant exists by construction. Given the expression of the

Laplace transform, we obtained Nj is a sub-exponential variable with parameter κ = α2

2
√
n

and b = α2δ
n . Hence, given (3.33), for all j, Nj ≤ max{α2

2

√
t
n , α

2δ tn} for t > 0, with

probability greater than 1 − exp(− t2). The same analysis provides the same bounds for

the second term in (3.35). We then have ∥Ψ⊺
kDνV ε∥∞ ≤ (σ2 + µ2) ⋅ max{

√
t
n ,2δ

t
n} with

probability greater than 1 − 2 exp(− t2).

(iii) We also know that ∥Ψ⊺
kV DXDνΨkθ∥∞ = maxj=1,...,k∑ni=1 νiXiΦj(Wi)[VΨkθ]i =

maxj=1,...,k ∣Tj ∣. We can infer that Tj ∼ N(0, µ2v2
j ). The variable vj can be bounded as

follows

v2
j =

n

∑
i=1

X2
i Φj(Wi)2[VΨkθ]2

i

≤ ∥X∥2
∞ max

i
[Φj(Wi)(V ψkθ)]2

≤ ∥X∥2
∞(θ⊺Ψ⊺

kV
⊺ΦjVΨkθ)jj

≤ ∥X∥2
∞nL where (

k

∑
l=1

Φl(Wl)θl)2 ≤ L by hypothesis and 0 ≤ V ≤ I(Identity matrix).

Hence, we can conclude that, 1
n∥ΨkV DXDνΨkθ∥∞ ≤ µ

√
L∥X∥∞

√
2(1+t) log(k)

n with proba-

bility greater than 1 − exp(− t22 ).

(iv) Let us denote by Mj the jth element of the vector 1
n[Ψ

⊺
kDν2−µ2VΨkθ] such that

Mj = 1
n[ΦjDν2−µ2(VΨkθ)]j = 1

n ∑
n
i=1(ν2

i − µ2)Gij where Gij = (VΨkθ)iΦj(Wi). Applying
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the Laplace transform to the equation above, we obtain

E[exp(λ
n

n

∑
i=1

(ν2
i − µ2)Gij)] =

n

∏
i=1

E[exp(λ
n
(ν2
i − µ2)Gij)]

=
n

∏
i=1

E[exp(λµ
2

n
(ν

2
i

µ2
− 1)Gij)] with

ν2
i

µ2
∼ χ2

1

=
n

∏
i=1

exp(λµ
2

n Gij)√
1 − 2Gij

λµ2

n

≤
n

∏
i=1

exp(1

2

4λ2µ4

n2
G2
ij) with

λµ2

n
Gij <

1

4
,∀i = 1, . . . , n

since, max
i

∣Gij ∣ ≤ δ∥VΨk(W )θ∥2
2 ≤ δL and

1

n

n

∑
i=1

G2
ij ≤ L by hypothesis

hence, E[exp(λ
n

n

∑
i=1

(ν2
i − µ2)Gij)] ≤ exp(1

2

4λ2µ4

n
L) since

1

n

n

∑
i=1

(Gij)2 ≤ L.

Given the expression of the Laplace transform, we know that we are faced with a sub-

exponential random variable with parameter κ = 2µ2
√
L

√
n

and b = 4µ2δL
n . Hence, from (3.33),

we can conclude that, for all j, ∣Mj ∣ ≤ max{2µ2
√
L

√
n

√
t, 4µ2L

n t} with probability greater than

1 − exp(− t2).
From the results (i), (ii), (iii) and (iv), we can conclude that with probability greater

than 1 − 5 exp(− t2), with t large enough (we note here that P (A ∩B) ≥ P (A) +P (B) − 1).

Hence, there exists λ0 ∈ R such that ∥γ − Γθ∥∞ ≤ λ0, with

λ0 = ∥X∥∞(µ
√
L + σ)

√
2(1 + t) log(k)

n
+max{2µ2

√
L√

n

√
t,

4µ2L

n
t}

+ (σ2 + µ2)max{
√

t

n
,2δ

t

n
}.

Thus (3.34) can be rewritten as,

∆⊺Γ∆ ≤ 2λ0∥∆∥1 + 2λ(∥θ∥ − ∥θ̂∥1).

We know that S = {j ∶ θj ≠ 0} and by N = {j ∶ θj = 0}. Hence,

λ(∥θ∥ − ∥θ̂∥1) ≤ λ∥θS∥ − λ∥θ̂S∥1 − λ∥θ̂S∥1 since ∥θN∥ = 0

≤ λ∥θ̂S − θS∥1 − λ∥θ̂N∥1

therefore,

∆⊺Γ∆ ≤ 2(λ0 + λ)∥θ̂S − θS∥1 + 2(λ0 − λ)∥θ̂N − θN∥1

≤ 3λ∥θ̂S − θS∥1 − λ∥θ̂N − θN∥1, assuming λ0 ≤
λ

2

≤ 3λ∥θ̂S − θS∥1
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From the above, we can infer that ∆ verifies the cone property with c0 = 3. Hence, given

the Restricted Eigenvalues condition (3.20), we can write that ∆⊺Γ∆ ≥ t0∥∆S∥2
2. Since,

∥∆S∥2
1 ≤ sθ∥∆S∥2

2, we have ∆⊺Γ∆ ≥ t0
sθ

∥∆S∥2
1. Then, from the above, we have,

t0
sθ

∥∆S∥2
1 ≤ 3λ∥∆S∥1, then ∥∆S∥1 ≤ 3λ

sθ
t0
.

Furthermore, we know that ∥∆N∥1 ≤ c0∥∆S∥1, thus ∥∆∥1 ≤ (c0 + 1)∥∆S∥1. We can then

conclude that

∥θ̂ − θ∥1 ≤ λ ⋅ sθ ⋅
12

t0

with probability larger than 1 − 5 exp(− t2), and t large enough.



Chapter 4

Slope for high dimensional linear

models with measurement errors

This chapter is based on the manuscript [25].

Abstract
We study the linear regression model Y =X ⋅β⋆ + ε, while considering that the n× p design matrix
X is subject to an additive noise given by W = X + U , where n is the number of elements of our
dataset, p is the number of covariates and β⋆ is our true parameter of interest. The response
Y ∈ Rn and the matrix of covariates W ∈ Rn×p are observed. The n × p matrix U is drawn
from a Gaussian distribution with a known covariance matrix CU . We consider a Slope based
optimization procedure to estimate our parameter of interest. A correction of the least-squares
criterion is inevitable to take into account measurement errors. The corrected risk is no longer
convex and we project it on the space of convex quadratic functions. We give sufficient conditions
on the errors’ distribution in order to attain the optimal rates and quantify the loss in the rate
otherwise.
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4.1 Introduction

We consider the errors-in-variables linear regression model where we observe Y and W

satisfying
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y =Xβ⋆ + ε

W =X +U
(4.1)

where Y = (Y1,⋯, Yn)⊺ is the vector of responses, X = [Xij]1≤i≤n,1≤j≤p is the n × p design

matrix of covariates and ε = (ε1,⋯, εn)⊺ is a Gaussian vector, having centered independent

and identically distributed elements with variance σ2. Furthermore, W = [Wij]1≤i≤n,1≤j≤p

is a n× p matrix of noisy covariates X, that is X being polluted by additive measurement

errors U ∈ Rn×p. We will assume that the rows of U are drawn independently from a

centered Gaussian multivariate distribution such that its p×p covariance matrix is denoted

by CU .

We want to estimate the unknown p-dimensional parameter β⋆. It is assumed s-sparse,

hence ∥β⋆∥0 ≤ s. The model is considered to be high dimensional which usually implies

that the number of covariates p is assumed (much) larger than the number of elements n

of the dataset (p > n). The variables ε and U will be considered independent.

We call the direct model the linear regression model where Y and X are observed. The

Slope estimator β̂ of β⋆ is defined through the following optimization problem

β̂ ∈ arg min
β∈Rp

{ 1√
n
∥Y −Xβ∥2

2 + ∥β∥⋆} (4.2)

with ∥β∥⋆ = ∑pi=1 λi∣β∣(i), known as the Slope norm, where λ1 ≥ ⋯ ≥ λp > 0 are tuning

parameters.

In this paper, we introduce a Slope based estimator for errors-in-variables regression

model (4.1) and study its properties.

There is a vast literature on high dimensional regression methods. Most popular and

immensely studied are the Lasso estimator (Least Absolute Shrinkage and selection op-

erator), which was introduced in [72] and the Dantzig selector [19]. Its full theoretical

study was developed through multiple subsequent articles and several books such as [39]

and [36] that provide an exhaustive list of its properties. Recently, it was noted that the

Lasso attains a suboptimal rate that can be improved by the Slope Sorted L-One Penalized

Estimation, see [69] and [50]. The authors introduced a convex optimization problem with

a different penalty whose algorithm solution has a complexity similar to most common `1
penalization procedures. They provided a path for solving the question of variable selection

through a non-orthogonal design. The properties, namely the convergence rate, of both

aforementioned methods were improved to
√
s log(p/s)/n instead of

√
s log(p)/n for the
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Lasso. In [4], the authors were able to prove that both Lasso (with known or estimated

sparsity s) and Slope estimators achieve the minimax prediction and l2 estimation rate of
√
s log(p/s)/n. The minimax optimal bounds were also obtained for an lq estimation error,

with 1 ≤ q ≤ 2.

Many derivations of the Lasso were thoroughly studied. Let us mention the Square

Root Lasso, which was introduced in [5]. The authors showed that by minimizing the

squared root of the least-squares criterion penalized with the usual `1 norm, the Square

Root Lasso estimator did not rely on the noise of the model, and was able to achieve

minimax optimal rate of σ
√
s log(p)/n, where σ is the variance of the noise of the model.

Based on some of the results developed in [4], the author in [30] improved the estimation

rate of the Square Root Lasso and introduced the Square Root Slope estimator. He showed

that both estimators can achieve optimal minimax rate of
√
s log(p/s)/n. The author was

able to preserve the adaptivity to σ.

In many examples, measurement errors are inevitable. Errors-in-variables (EIV) re-

gression models (4.1) have been largely considered in the literature, mostly in parametric

or semi-parametric setups. More recently, in high dimensional EIV linear regression mod-

els, [62] have proved that the regular Lasso or Dantzig estimator is unstable. They then

introduced matrix uncertainty selectors and their improvements in [6], which are stable,

consistent and capable of reproducing a sparsity pattern common to most high dimensional

settings, see also [7]. We can also mention the authors in [67] who introduced a corrected

Lasso estimator and were able to prove its sign consistency, among other properties. Simi-

larly, the authors in [27] introduced a corrected convex optimization problem to tackle the

errors-in-variables model. They developed a convex corrected Lasso estimator and showed

that it was sign consistent. Lastly, the authors in [48] opted for a non-convex optimization

problem from which they derived the estimator’s error bounds and showed that a gradient

descent based algorithm allowed the estimator to converge in polynomial time.

In this paper, we consider a corrected least-square criterion that we project on the space

of convex quadratic functions. We introduce a Slope penalized procedure for estimating

the errors-in-variables linear regression model (4.1) and study its properties. We describe

sufficient conditions on the parameters of the model in order to attain the rates known

optimal in the direct case. As expected, these conditions are quite stringent, however we

also give upper bounds on the slower rates that are attained in the opposite case. As

discussed at the beginning of Section 4.6.2, these results can be extended to sub-Gaussian

random rows under an additional assumption, following [16].

Notation and organization of the article

For a given vector v ∈ Rp, we use the notation ∥v∥q for the lq norm, with 1 ≤ q ≤ ∞, and

∥v∥0 for the number of non-zero coordinates of v. For any set of coordinates S ⊂ {1,⋯, p},
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we denote by vS , the vector (vi1{i ∈ S})i=1,⋯,p. Furthermore, we denote by v(j), the j-th

largest component of v. As an example, ∣v∣(k) is the k-th largest component of the vector

∣v∣, whose components are the absolute value of the components of v. We will use the

notation ⟨⋅, ⋅⟩ for the inner product with respect to the Euclidean norm and (ej)j=1,⋯,p for

the canonical basis in Rp. We will also use the notation (a)+ = max{a,0}, a∨b = max{a, b}
and a ∧ b = min{a, b} for all a, b ∈ R. Similarly, for all v ∈ Rp and A ∈ Rp×p, we will

have v+ = (max{vi,0})i=1,⋯,p. The transpose of a matrix X is noted X⊺. If we consider a

random variable z, the symbol E[z] denotes its expected value. Let us denote byM a p×p
matrix. We will consider that ∥M∥F =

√
trace(M⊺M) =

√
Σp
i=1ηi(M) is the Frobenius

norm, where ηi is the i-th eigenvalue of M⊺M . Similarly, ∥M∥2 = supβ≠0
∥Mβ∥2
∥β∥2

, is the

spectral or operator norm. Furthermore, ∥M∥1 (respectively ∥M∥∞) is the l1 induced

norm (respectively the l∞ induced norm). In general, an lq induced norm is given by

∥M∥q = sup
β≠0

∥Mβ∥q
∥β∥q

.

The article will be presented as follows. Section 4.2 presents the adjustments performed

on the optimization problem (4.2) in order to construct our estimator β̂ of β⋆. Section

4.3 gives upper bounds of the estimation risk of β̂. A numerical analysis of the estimation

procedure is provided in section 4.4. All proofs are developed in Section 4.6.

4.2 Estimation procedure

Penalized methods are based on unbiased estimators of E ( 1
n∥Y −Xβ∥2

2). In order to take

into account the errors-in-variables, a correction for the errors is necessary and we consider

F (β) ∶= E ( 1

n
∥Y −Wβ∥2

2) − β⊺CUβ, where CU = 1

n
E[U⊺U],

CU is the covariance matrix of the p-dimensional vector U .

The empirical version given by

1

n
∥Y −Wβ∥2

2 − β⊺CUβ = β⊺( 1

n
W ⊺W −CU)β −

2

n
Y ⊺Wβ + 1

n
Y ⊺Y (4.3)

has the major inconvenient of being a quadratic form which is not necessarily convex.

Indeed, the symmetric matrix

Σ̂ ∶= 1

n
W ⊺W −CU = 1

n
X⊺X + 1

n
(X⊺U +U⊺X) + 1

n
U⊺U −CU

may have negative eigenvalues. Therefore, we project Σ̂ on the set S⪰0 of symmetric

positive semi-definite matrices in Frobenius norm. We denote by

Σ̃ = arg min
M∈S⪰0

∥Σ̂ −M∥F . (4.4)

The following shows that Σ̃ defined in (4.4) also minimizes the operator norm over S⪰0.
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Lemma 1. The matrix Σ̃ defined in (4.4) is such that

Σ̃ ∈ arg min
M∈S⪰0

∥Σ̂ −M∥2. (4.5)

The proof is in Section 4.6.3.

Let us see that Σ̃ is easily constructed from Σ̂. We note here that Σ̂ is a p×p symmetric

matrix and thus, it allows a spectral decomposition. Let us denote by D a p × p diagonal

matrix whose elements are the eigenvalues (η̂j)j=1,⋯,p of the matrix Σ̂. We also denote by

V a p× p orthogonal matrix of eigenvectors of Σ̂. As such, we can write Σ̂ = V ⊺DV . From

the equation (4.4), we can then deduce that

Σ̃ = V ⊺D+V, (4.6)

with D+ the diagonal matrix whose elements are the positive parts (η̂j)+ of η̂j , j = 1, ..., p.

We define the estimator β̂ of β∗ by

β̂ ∈ arg min
β∈Rp

β⊺Σ̃β − 2

n
Y ⊺Wβ + ∥β∥⋆ (4.7)

where ∥β∥⋆ = ∑pi=1 λi∣β∣(i), with λ1 ≥ ⋯ ≥ λp > 0.

The non-convex character of the optimization problem (4.3) has been addressed through

different means in the literature. For example, the authors in [48] introduced a constraint

on the space of possible solutions through the equation ∥β∥1 ≤ b0
√
s where b0 is a suit-

able constant which must verify b0 ≥ ∥β⋆∥2. This assumption is restrictive and relies

on a constant which can not be necessarily implied from the dataset, since β⋆ is an un-

known parameter. We can also mention the authors in [27] which have relied on a positive

semidefinite projection of the matrix Σ̂ in order to derive a convex optimization problem.

However, the projection is an element-wise one which was then complemented by element-

wise concentration inequalities in order to derive desirable error bounds. These inequalities

help define suitable convergence rates but yet again it is not obvious under which global

assumptions they are satisfied. In this paper, we consider a matrix projection of Σ̂ in

Frobenius norm on the space S⪰0 of positive and semi-definite matrices. Using this convex

criterion, we derive sufficient conditions for optimal convergence rate of our estimator, as

well as quantify the loss in the rate when these conditions are not satisfied.

4.3 Sufficient conditions for optimal convergence rate

In this section, we derive sufficient conditions to attain the optimal rate for the Slope

estimator β̂. In most cases, the rates attained by our procedure are much slower due to
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the high-dimensional noise that interferes with the estimation. We will illustrate a few

examples where the optimal rates from the direct problem can still be attained. We recall

the Weighted Restricted Eigenvalues (WRE) condition introduced in [4].

Definition We say that the design matrix X satisfies the WRE(s, c0) condition if

max
j=1,⋯,p

∥Xej∥n ≤ 1

and

κ ∶= min
δ∈CWRE(s,c0)

∥Xδ∥2
n

∥δ∥2
2

> 0 (4.8)

where CWRE(s,c0) = {δ ∈ Rp ∶ ∥δ∥⋆ ≤ c0∥δ∥2

√
∑sj=1 λ

2
j} is a cone in Rp.

Note that theWRE(s, c0) condition is written with respect to X which is unknown. It

is possible as we will see below to deduce an analogous condition with respect to δ⊺Σ̃δ with

high probability. Indeed, δ⊺Σ̃δ is the natural quadratic risk associated to our optimization

problem (4.7).

Let us introduce the following notation

Rn,p(CU , ∥β⋆∥2, t) = t2
√

∥CU∥2

n
+ ∥β⋆∥2

⎛
⎝

2An,p(CU) + 16tp

√
1

n
∥CU∥2

⎞
⎠

(4.9)

An,p(CU) = c ⋅max

⎧⎪⎪⎨⎪⎪⎩
Tr(CU)

log(pn)
n

,

√
Tr(CU)∥CU∥2

log(pn)
n

⎫⎪⎪⎬⎪⎪⎭
, (4.10)

with t > 1 and c > 0.

Assumption. We assume that

An,p(CU) + 2t

√
p

n
∥CU∥2 ≤

κ

2
, (4.11)

when n, p, s are large enough and for t > 0 large enough. In the rest of the article, An,p,CU
will be used interchangeably with A.

Lemma 2. Under the assumption (4.11) and if X verifies the WRE(s, c0) condition then

κ

2
= min
δ∈CWRE(s,c0)

δ⊺Σ̃δ

∥δ∥2
2

> 0 (4.12)

with probability at least 1 − 4
n − 2 exp(− t22 ).

The proof is in Section 4.6.3.

The next theorem gives upper bounds for the L2-risk. These bounds allow to deduce

sufficient conditions on the parameters of the noise distribution in order to attain the

known optimal rates for estimating the sparse parameter β. They also quantify the loss in

the rate when these conditions are not verified.
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Theorem 4.1. Let s ∈ {1,⋯, p} and assume that the unknown design X satisfies the

WRE(s, c0) condition (4.12) and that the assumption (4.11) holds. We choose the following

tuning parameters

λj = v ⋅max

⎧⎪⎪⎨⎪⎪⎩

√
1

n
,Rn,p(CU ,B, t)

⎫⎪⎪⎬⎪⎪⎭
⋅ log(2p/j), (4.13)

where t =
√

2 log(2/δ0), B is an upper bound of ∥β∗∥2 and we assume that δ0 < 2e−1/2 and

that

v ≥ 2σ(4 +
√

2). (4.14)

Then, with probability at least 1 − 8
n − 4 exp(−2p(2 log(2/δ0) − 1)) − δ0, we have

∥β̂ − β⋆∥2 ≤ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1

√
s

n
log(2ep

s
),C2

¿
ÁÁÀ log2(1/δ0)

sn log(2ep/s) ,C3Rn,p(CU ,B, t)
√
s log(2ep

s
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

(4.15)

where C1 = (3+4σ)γ
κ , C2 = 4(4 +

√
2)2 and C3 = 28

κ .

The proof is in Section 4.6.3.

As expected, the presence of measurement errors affects the overall convergence rates in

most cases. If the covariance matrix has small enough rank and spectral norm, it is possible

to attain the rates of convergence known optimal in noiseless case. Let us illustrate with

the following example sufficient conditions for optimal rates of convergence. Suppose the

noise W has a diagonal covariance matrix CU = v ⋅ diag(1, ...,1,0, ...0) where the rank is

r < p. We get An,p(CU) = c ⋅ v
√
r ⋅ log(pn)/n that needs to be bounded. Moreover,

Rn,p =
√

s log(pn)
n

(v
√
r + p

√
v)

is smaller than
√

s
n log(2ep

s ) provided that

max{v2r, vp2} ≪ log(2ep/s)
log(pn) .

For example, v = p−2−ε and any r ∈ {1, ..., p} check the constraints, that is a full rank

covariance matrix CU = p−2−εIp or p−2−εdiag(1, ...,1,0, ...0).

4.4 Simulation Analysis

We highlight below experiments that were conducted to illustrate the optimization method-

ology, on a predefined dataset. The implementation is based on the coordinate descent

algorithm.
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4.4.1 Construction of datasets

The n × p elements of the matrix X are drawn from i.i.d [0,1]- uniform distribution. The

elements of ε are drawn from a centered Gaussian distribution with standard deviation

given by σ. The matrix CU is built using a centered Gaussian distribution, with standard

deviation µ (we assumed that it exists a c > 0 such that µ = c⋅σ) such that CU is symmetric.

Two cases are considered in order to ensure that CU is symmetric. In the first one,

we only draw the diagonal term from the aforementioned Gaussian distribution and we

further set all of the non-diagonal term to be equal to 0. In the second case, we draw all

the p × p elements of a matrix M from the same Gaussian distribution. The matrix CU is

implied fromM using the formula CU = 1
pM

⊺M . The elements of the parameter of interest

β⋆ are drawn from a [0,1]−uniform distribution such that ∥β⋆∥0 = s. Hence, for known

n, p, σ, s and c, we can infer using the above methodology a predefined dataset. In fact,

having drawn the parameters X, β⋆, CU , we then draw the elements of the n × p matrix

of U from a centered multivariate Gaussian distribution with matrix of covariance given

by CU . The elements of W are given by W = X +U . Similarly, the elements of Y , will be

given by Y =X ⋅ β⋆ + ε.

4.4.2 Convergence metrics

Let us now considered a predefined dataset given by O = (W,Y ) of size n which is derived

using the methodology described above. We then compute an estimator of our parame-

ter of interest β̂, defined by the optimization problem (4.7). To assess the optimization

methodology of our estimator, we compute its Estimate Risk value, for several sample sizes

n, for a given p, through a two-step cross-validation process.

In fact, we partitioned the sample in l distinct subsets Osubset, of equal size. In the first

step, we set aside one of the Osubset
{i} , which will be used as the test set, and we use the l−1

remaining subsets as training sets. Using the latter, we then compute the estimator β̂. In

the second step, we use the subset Osubset
{i} (test set left out from the initial estimation),

to determine how close the estimator β̂ is to its real value. These two steps are repeated

successively l times. For each iteration, we calculate the difference between the estimator

and the true oracle value, using the test set. The empirical average of these l distances

give us the desired Estimation Risk measure. In brief, the Estimation Risk (ER) value of

a sample of size n is given by

ER = 1

l

l

∑
i=1

1

∣O{i}∣
∥β⋆ − β̂∥2

2,

where ∣O{i}∣ is the number of elements of the subset Os
{i}ubset. For a single sample size n,

we computed the Estimation Risk u(>= 20) times. It allowed us to imply the confidence

interval associated with the measure.
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Figure 4.1 – Evolution of the Estimation Risk for different value of n - First case.

The exact same methodology was used to imply the Prediction Risk with our estimate

given by X ⋅ β̂. As such the Prediction Risk (PR) value of a sample size n was given by

PR = 1

l

l

∑
i=1

1

∣O{i}∣
∥X ⋅ β⋆ −X ⋅ β̂∥2

2.

Similarly, for a single sample size, we computed the Prediction Risk u times. It allowed us

to imply the confidence interval of the measure. It is important to note that for a convergent

estimation procedure, the values PR and ER should converge to 0, as n increases, for a

given p.

4.4.3 Results

We show below two set of results corresponding to the evolution of the key metrics: Esti-

mation Risk, Prediction Risk. We also show for completeness at each step the value taken

by key noise parameters such as Tr(Cu) and ∥CU∥2. In each of these two cases, the value

p is fixed while n increases. It is important to note that the synthetic data construction

methodology follows the step described in section 4.4.1. For both cases, u = 20.

First case. p = 500, σ = 1, µ = .05 and n = {150,200,250,300,350,400}.
As the value of n increases, we realize that the Prediction Risk and Estimation Risk

converges steadily towards 0. Furthermore, Tr(CU) and ∥CU∥2 are well below critical

levels.

Second case. p = 500, σ = 1, µ = .1 and n = {150,200,250,300,350,400}.
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Figure 4.2 – Evolution of the Prediction Risk for different value of n - First case.
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First case.

Similarly as the first case, the overall conclusion is the same. However, we see a

deterioration of the estimation risk, even though the values themselves remain very small.

Remark. As the value of µ further increases, the deterioration of the overall estimation

metrics become more and more flagrant. The results are not shown here.

4.5 Conclusion

We have established sufficient conditions under which we can reach optimal rates for our

Slope based estimators, given a polluted design matrix. The impact on rates is also out-

lined when these conditions are not fulfilled. Our approach is novel since it relies on a

Frobenius based projection in order to derive a convex optimization problem. The study

was completed by a simulation study which illustrated the accuracy and correctness of

our optimization methodology, with an implementation based on the coordinate descent

algorithm.
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Figure 4.7 – Levels taken by Tr(CU) at each step of the iteration process - Second case.

4.6 Proofs

4.6.1 Preliminary results

The following result is demonstrated in [36, p. 112]. It has been used as a lemma in [30]

and is reproduced here for the reader’s convenience.

Lemma 3. With probability at least 1 − (1 + e2)e−n/24, we have

σ√
2
≤ ∥ε∥2√

n
≤ 2σ.

Similarly, the following results are cited for reader’s convenience. In the following

Lemmas 4 and 5, we use

λj = γ
√

log(2p/j)
n

, for γ ≥ 4(4 +
√

2) > 0 large enough.

Lemma 4 ([30]). We have,

γ
√

(s/n) log(2p/s) ≤
¿
ÁÁÀ

s

∑
j=1

λ2
j ≤ γ

√
(s/n) log(2ep/s).

Lemma 5 ([4, Theorem 4.1]). Let 0 < δ0 < 1 and let X ∈ Rn×p be a matrix such that

max
j=1,⋯,p

∥Xej∥n ≤ 1.
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For any u = (u1,⋯, up) ∈ Rp, we define :

G(u) ∶= (4 +
√

2)σ
√

log(1/δ0)
n

∥Xu∥n,

H(u) ∶= (4 +
√

2)
p

∑
j=1

∣u∣(j)σ
√

log(2p/j)
n

,

F (u) ∶= (4 +
√

2)σ
√

log(2p/s)
n

⎛
⎝
√
s∥u∥2 +

p

∑
j=s+1

∣u∣(j)
⎞
⎠
.

If ε ∼ N(0, σ2In×n), then the random event

{ 1

n
ε⊺Xu ≤ max (H(u),G(u)) ,∀u ∈ Rp}

is of probability at least 1 − δ0/2. Moreover, by the Cauchy-Schwarz inequality, we have

H(u) ≤ F (u), for all u ∈ Rp.

4.6.2 Auxiliary results

We say that a real valued random variable V is ν2-subGaussian if E[etV ] ≤ exp(t2ν2/2), for
all t. We denote by ∥⋅∥ψ2 the sub-Gaussian norm defined by ∥X∥ψ2 = supk≤1 k

− 1
2 (E[∣X ∣k]) 1

k .

Following [16], we say that a random vector V of Rp is subGaussian if V ⊺u is subGaussian

for all p-dimensional vector u and define the subGaussian norm using the Orlicz norm

∥V ∥ψ2 = supu∶∥u∥2=1 ∥V ⊺u∥ψ2 . We also make the additional assumption that there exists a

constant c0 > 0 such that

c0∥V ⊺u∥2
ψ2

≤ u⊺Cu, for all u ∈ Rp. (4.16)

This implies that V ⊺u is ∥u∥2
2∥C∥2/c0-subGaussian. Note that, if in particular V has a

Gaussian distribution Np(0,C), then V ⊺u is ∥u∥2
2∥C∥2-subGaussian. We say that a real

valued random variable V is (ν2, b)-subexponential with parameters (ν2, b), with b > 0, if

E[etV ] ≤ exp( t
2ν2

2
) , for all ∣t∣ ≤ 1

b
.

If V is (ν2, b)-subexponential then the Bernstein inequality gives that

∣V ∣ ≤ (ν
√
u) ∨ (bu), with probability larger than 1 − 2e−u/2, for all u > 0.

Lemma 6. Let us consider two arbitrary vectors v,w ∈ Rp. If U has independent rows,

identically distributed as a subGaussian vector satisfying (4.16) we have, with probability

at least 1 − 4
n :

∣v⊺( 1

n
U⊺U −CU)w∣ ≤ c∥v∥2 ⋅ ∥w∥2 ⋅max

⎧⎪⎪⎨⎪⎪⎩
Tr(CU)

log(pn)
n

,

√
Tr(CU)∥CU∥2

log(pn)
n

⎫⎪⎪⎬⎪⎪⎭
,

where c > 0 depends only on c0. Note that, if the rows {Ui⋅}i=1,...,n are Gaussian, then

c0 = 1.
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Proof of Lemma 6. The proof of the lemma is a direct consequence of the application

of Cauchy-Schwarz inequality and the Theorem 2.1 in [16]. Hence,

∣v⊺( 1

n
U⊺U −CU)w∣ ≤ ∥v∥2 ⋅ ∥w∥2 ⋅ ∥

1

n
U⊺U −CU∥2

≤ ∥v∥2 ⋅ ∥w∥2 ⋅ c ⋅max

⎧⎪⎪⎨⎪⎪⎩
Tr(CU)

log(pn)
n

,

√
Tr(CU)∥CU∥2

log(pn)
n

⎫⎪⎪⎬⎪⎪⎭

with probability at least 1 − 4
n .

Lemma 7. For all t > 1 and β ∈ Rp, we will have

∣ 1
n
ε⊺Uβ∣ ≤ σ√

n
∥β∥2∥CU∥1/2

2 t,

with probability larger than 1 − 2e−t/2.

Proof of Lemma 7. The scalar product 1
nε

⊺Uβ can be rewritten as:

1

n
ε⊺Uβ = 1

n

n

∑
i=1

εiUi ⋅ β, where Ui⋅ ⋅ β =
p

∑
j=1

Uijβj .

The Laplace transform of the above random variable writes, for all t ∈ R and β ∈ Rp

E [exp( t
n
ε⊺Uβ)] = E [exp(

n

∑
i=1

t

n
εiUi,⋅ ⋅ β)]

= E (
n

∏
i=1

E [exp( t
n
εi(Ui,⋅β)) ∣Ui,⋅])

≤ E [
n

∏
i=1

exp( t2

2n2
σ2(Ui,⋅β)2)]

= E [exp( t
2

2n
σ2(U1,⋅β)2)] ,

where we used that εi are Gaussian i.i.d. and that the rows Ui,⋅ are independent. Now,

since U1,⋅ is a ∥CU∥2-subGaussian vector, then (U1,⋅ ⋅β)2 is subexponential and that implies

E [exp( t
2σ2

2n
(U1,⋅β)2)] ≤ E [exp( t

2σ2

2n
⋅ ∥β∥2

2∥CU∥2(
U1,⋅β√
β⊺CUβ

)2)] = E exp(λZ2),

where Z is a standard Gaussian random variable and λ = t2σ2

2n ⋅ ∥β∥2
2∥CU∥2. Now,

E exp(λZ2) = eλE exp(λ(Z2 − 1)) ≤ 1√
1 − 2λ

≤ eλ,

for λ < 1/2. In conclusion,

E [exp( t
n
ε⊺Uβ)] ≤ exp( t

2

2n
σ2∥β∥2

2∥CU∥2) , for all
t2

n
σ2∥β∥2

2∥CU∥2 ≤ 1

which means that 1
nε

⊺Uβ is (σ2

n ∥β∥2
2∥CU∥2,

σ√
n
∥β∥2∥CU∥1/2

2 )-subexponential, and we get

the result.
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Lemma 8. For all t ∈ R, and β,u ∈ Rp, we will have

∣ 1

n
β⊺U⊺Xu∣ ≤ t ⋅ ∥u∥2∥β∥2

√
p

n
⋅ ∥CU∥2

with probability 1 − 2e−
t2

2

Proof of Lemma 8. Let us bound from above the Laplace transform,

E [exp( t
n
β⊺U⊺Xu)]

= E [exp( t
n

n

∑
k=1

β⊺U⊺
k⋅Xk⋅u)]

=
n

∏
k=1

E [exp( t
n
Xk⋅u ⋅Uk⋅β)]

=
n

∏
k=1

exp( t2

2n2
(Xk⋅u)2 ⋅ β⊺CUβ)

≤ exp
⎛
⎝
t2

2n2

n

∑
k=1

p

∑
j=1

X2
kj∥u∥2

2∥β∥2
2∥CU∥2

⎞
⎠

≤ exp( t
2p

2n
∥u∥2

2∥β∥2
2∥CU∥2) , since

1

n

n

∑
k=1

X2
kj ≤ 1.

By the Bernstein inequality,

∣ 1
n
β⊺U⊺Xu∣ ≤ t ⋅ ∥u∥2∥β∥2

√
p

n
⋅ ∥CU∥2,

with probability larger than 1 − 2e−
t2

2 .

Lemma 9. For all t > 1, c > 0 and β,u ∈ Rp, we will have

∣u⊺ (Σ̃ − Σ̂)β∣ ≤ ∥β∥2 ⋅ ∥u∥2 ⋅
⎧⎪⎪⎨⎪⎪⎩
c ⋅max

⎧⎪⎪⎨⎪⎪⎩
Tr(CU)

log(pn)
n

,

√
Tr(CU)∥CU∥2

log(pn)
n

⎫⎪⎪⎬⎪⎪⎭
+∥ 1

n
(X⊺U +U⊺X)∥2} ,

with probability 1 − 4
n . Moreover,

∥ 1

n
(X⊺U +U⊺X)∥2 ≤ 3tp

√
2 log(p)

n
max
1≤j≤p

CjjU

with probability larger than 1 − 4 exp(−(t2 − 1) log(p)), and

∥ 1

n
(X⊺U +U⊺X)∥2 ≤ 16tp

√
1

n
∥CU∥2

with probability larger than 1 − 2 ⋅ exp(−2p(t2 − 1)).
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Proof of Lemma 9. We know that through Cauchy-Schwarz inequality we can write

∣δ⊺(Σ̃ − Σ̂)β⋆∣ ≤ ∥δ∥2∥Σ̃ − Σ̂∥2∥β⋆∥2.

We also know that Σ̃ is the positive semi-definite projection of Σ̂. As such, for all Σ0 ∈ S⪰0,

we will have ∥Σ̃−Σ̂∥2 ≤ ∥Σ0−Σ̂∥2. Let us choose Σ0 = 1
nX

⊺X which is positive semi-definite.

∥Σ0 − Σ̂∥2 = ∥ 1

n
X⊺X − 1

n
W ⊺W +CU∥2

= ∥ 1

n
X⊺X − 1

n
X⊺X − 1

n
U⊺U − 1

n
X⊺U − 1

n
U⊺X +CU∥2

= ∥(CU −
1

n
U⊺U) − ( 1

n
X⊺U + 1

n
U⊺X) ∥2

≤ ∥CU −
1

n
U⊺U∥2 + ∥ 1

n
X⊺U + 1

n
U⊺X∥2. (4.17)

We give 2 different bounds on this last quantity. Firstly, the squared matrix 1
n(X

⊺U +
U⊺X) is symmetric. Therefore, its spectral norm is the smallest of all matrix induced

norms. Hence, we can write

∥ 1

n
(X⊺U +U⊺X)∥2 ≤ ∥ 1

n
X⊺U + 1

n
U⊺X∥1 ≤ ∥ 1

n
X⊺U∥1 + ∥ 1

n
U⊺X∥1. (4.18)

On the one hand, we have

∥ 1

n
U⊺X∥1 = max

1≤j≤p

p

∑
i=1

1

n
(U⊺X)ij = max

1≤j≤p

p

∑
i=1

n

∑
k=1

1

n
UkiXkj =∶ max

1≤j≤p
Vj .

Let us bound from above the Laplace transform on Vj . We will have

E [exp(tVj)] = E [exp( t
n

p

∑
i=1

n

∑
k=1

UkiXkj)]

=
n

∏
k=1

E [exp( t
n

p

∑
i=1

UkiXkj)]

≤
n

∏
k=1

exp( t2

2n2
X2
kjV ar(

p

∑
i=1

Uki))

≤ exp
⎛
⎝
t2

2n

p

∑
i,j=1

CijU
⎞
⎠
, since

1

n

n

∑
i=1

X2
kj ≤ 1.

Moreover, ∑pi,j=1C
ij
U = ∑iCiiU+2∑i<j CijU ≤ 3Tr(CU). Indeed, CijU ≤

√
CiiUC

jj
U ≤ 1

2(C
ii
U+C

jj
U ).

We can then deduce that

∣Vj ∣ ≤ t
√

3

n
Tr(CU), with probability larger than 1 − 2e−

t2

2 ,

and then, for t > 1,

∥ 1

n
U⊺X∥1 ≤ t

√
6 log(p)

n
Tr(CU) , with probability 1 − 2 exp(−(t2 − 1) log(p)). (4.19)
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On the other hand,

∥ 1

n
X⊺U∥1 = max

1≤j≤p

p

∑
i=1

1

n
(X⊺U)ij = max

1≤j≤p

p

∑
i=1

n

∑
k=1

1

n
XkiUkj =∶ max

1≤j≤p
Wj .

The Laplace transform of Wj

E [exp(tWj)] = E [exp( t
n

p

∑
i=1

n

∑
k=1

XkiUkj)]

=
n

∏
k=1

E [exp( t
n

p

∑
i=1

XkiUkj)]

≤
n

∏
k=1

exp( t2

2n2
(
p

∑
i=1

Xki)2CjjU )

≤ exp( t2

2n2

n

∑
k=1

(
p

∑
i=1

Xki)2CjjU )

≤ exp( t
2p

2n
CjjU ) since

1

n

n

∑
i=1

X2
kj ≤ 1.

Thus,

∣Wj ∣ ≤ t
p√
n

√
CjjU , with probability larger than 1 − 2 exp(− t

2

2
)

and, by a union bound,

∥ 1

n
X⊺U∥1 ≤ tp

√
2

log(p)
n

max
1≤j≤p

CjjU , (4.20)

with probability larger than 1−2 exp(−(t2−1) log(p)). Putting together (4.18), (4.19) and

(4.20) we get that

∥ 1

n
(X⊺U +U⊺X)∥2 ≤ t

√
2 log(p)

n
(
√

3Tr(CU) + pmax
1≤j≤p

√
CjjU )

≤ 3tp

√
2 log(p)

n
max
1≤j≤p

CjjU ,

with probability larger than 1−4 exp(−(t2 −1) log(p)). This result and Lemma 6 conclude

the proof.

Secondly, a slightly different bound can be obtained for ∥ 1
n(X

⊺U + U⊺X)∥2 using the

definition of the norm and the metric entropy of the sphere, as follows. Denote by W =
1
n(X

⊺U +U⊺X) and recall that

∥W ∥2 = max
v∶∥v∥2≤1

∣v⊺Wv∣.

For any point v, there exists a point vk belonging to an 1/2-net {v1, ..., vN} such that

∥v − vk∥2 ≤ 1/2. It is known that N ≤ 5p, we use log(N) ≤ 2p. We write for any v such that
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∥v∥2 ≤ 1:

∣v⊺Wv∣ ≤ 2∣v⊺kWvk∣ + 2∣(v − vk)⊺W (v − vk)∣

≤ 2∣v⊺kWvk∣ + 2 max
u∶∥u∥2≤1/2

∣u⊺Wu∣

≤ 2∣v⊺kWvk∣ +
1

2
max

u∶∥u∥2≤1
∣u⊺Wu∣.

We deduce that maxv∶∥v∥2≤1 ∣v⊺Wv∣ ≤ 4 maxk=1,...,N ∣v⊺kWvk∣. We get

P (∥W ∥2 ≥ 16tp

√
1

n
∥CU∥2) ≤ P (4 max

k=1,...,N
∣v⊺kWvk∣ ≥ 16t

√
p

√
p

n
∥CU∥2)

≤
N

∑
k=1

P ( 2

n
∣v⊺kX

⊺Uvk∣ ≥ 4t
√
p

√
p

n
∥CU∥2)

≤ 2N exp(−(2t)2p/2) ≤ 2 exp(−2pt2 + 2p)

= 2 exp(−2p(t2 − 1)).

Lemma 10. Let us recall the definition Rn,p in (4.9). We have

∣⟨K(β⋆), δ⟩∣ ≤ ∣ 1
n
ε⊺Xδ∣ +Rn,p(CU , β⋆, t) ⋅ ∥δ∥2, (4.21)

with probability larger than 1 − 8
n − 4 exp(− t22 ) − 4 exp(−2p(t2 − 1)).

Proof of Lemma 10. We know that

∣⟨K(β⋆), δ⟩∣ ≤ ∣⟨[(Σ̃ − Σ̂)β⋆ + ( 1

n
U⊺U −CU)β⋆ −

1

n
X⊺ε − 1

n
U⊺ε + 1

n
X⊺Uβ⋆] , δ⟩∣.

Given Lemma 9 and the definition (4.10) of An,p , we have

∣δ⊺ (Σ̃ − Σ̂)β⋆∣ ≤
⎛
⎝
An,p + 16tp

√
1

n
∥CU∥2

⎞
⎠
∥δ∥2∥β⋆∥2 (i)

with probability at least 1 − 4
n − 4 exp(−2p(t2 − 1). Furthermore, from Lemma 6, we have

∣δ⊺ ( 1

n
U⊺U −CU)β⋆∣ ≤ ∥δ∥2∥

1

n
U⊺U −Cu∥2∥β⋆∥2 ≤ An,p∥δ∥2∥β⋆∥2 (ii)

with probability at least 1 − 4
n . Moreover, from Lemma 7 we will have

∣ 1

n
δ⊺U⊺ε∣ ≤ t2

√
∥CU∥2

n
∥δ∥2 (iii)

with probability at least 1 − 2 exp(− t22 ). Finally, from Lemma 8 we have

∣ 1

n
δ⊺X⊺Uβ⋆∣ ≤ t

√
p

n
∥CU∥2∥δ∥2∥β⋆∥2 (iv)
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with probability at least 1− 2 exp(− t22 ). Given the results (i) − (iv), we can conclude that

∣⟨K(β⋆), δ⟩∣ ≤ ∣ 1
n
ε⊺Xδ∣ +Rn,p(CU , β⋆, t) ⋅ ∥δ∥2

with probability larger than 1 − 8
n − 4 exp(− t22 ) − 4 exp(−2p(t2 − 1)).

4.6.3 Additional Proofs

Proof of Lemma 1. By definition of Σ̃, for any symmetric, positive definite matrix M ,

we know that

∥Σ̃ −M∥F ≤ ∥Σ̃ − Σ̂∥F + ∥M − Σ̂∥F ≤ 2∥M − Σ̂∥F .

The matrix Σ̃ can be rewritten as Σ̃ = Σp
i=1η̂

i
+viv

⊺
i where ηi is the i-th eigenvalue of the

matrix Σ̂ and (vi)i=1,⋯,p are its eigenvectors. Similarly, Σ̂ = Σp
i=1η̂

iviv
⊺
i .

For convenience, let us assume that η̂1 ≥ η̂2 ≥ ⋯ ≥ η̂p. Furthermore, we will also

assume that η̂p < 0, otherwise Σ̃ = Σ̂ and the result is trivial. We would like to show

that Σ̃ is also a solution of arg minM∈S⪰0 ∥Σ̂ −M∥2. We know that Σ̂ = Σp
i=1η

iviv
⊺
i then

v⊺i Σ̂vi = v⊺i (Σp
j=1η̂jvjv

⊺
j ) vi = Σp

j=1η̂jv
⊺
i vjv

⊺
j vi = η̂i.

Let Σ be any positive semidefinite matrix, we will have

∥Σ − Σ̂∥2 = sup
∥v∥2=1

v⊺(Σ − Σ̂)v ≥ v⊺p(Σ − Σ̂)vp

= v⊺pΣvp − v⊺p Σ̂vp ≥ −η̂p

If we define Σ̃ = Σp
i=1 max{η̂i,0}viv⊺i , we will have ∥Σ̃ − Σ̂∥2 = −η̂p. Hence,

Σ̃ ∈ arg min
Σ∈S⪰0

∥Σ − Σ̂∥2.

Proof of Lemma 2. Let us consider δ⊺Σ̃δ. We write that

δ⊺Σ̃δ = δ⊺Σ̃δ − δ⊺Σ̂δ + δ⊺Σ̂δ

= δ⊺ (Σ̃ − Σ̂) δ + δ⊺ ( 1

n
W ⊺W −Cu) δ

= δ⊺ (Σ̃ − Σ̂) δ + δ⊺ ( 1

n
(X +U)⊺ (X +U) −Cu) δ

= δ⊺ (Σ̃ − Σ̂) δ + 1

n
δ⊺X⊺Xδ + 1

n
δ⊺ (X⊺U +XU⊺) δ + δ⊺ ( 1

n
U⊺U −Cu) δ.
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By the definition given in (4.4), we know that δ⊺ (Σ̃ − Σ̂) δ ≥ 0, hence using Lemma 6,

Lemma 8 and the assumption (4.11) we have

δ⊺Σ̃δ ≥ 1

n
∥Xδ∥2

2 − ∣ 2

n
δ⊺X⊺Uδ∣ − ∥δ∥2

2∥
1

n
U⊺U −Cu∥2

≥ κ∥δ∥2
2 − 2t∥δ∥2

2

√
p

n
∥CU∥2 − ∥δ∥2

2 ⋅An,p

≥ ∥δ∥2
2 (κ − 2t

√
p

n
∥CU∥2 −An,p)

≥ ∥δ∥2
2

κ

2

with probability at least 1 − 4
n − 2 exp(− t22 ).

Proof of Theorem 4.1. Let us consider the function f ∶ β → β⊺Σ̃β − 2γ⊺β, where γ ∶=
1
nW

⊺Y , and denote by

K(β) ∶= ∇f(β) = Σ̃β − 1

n
W ⊺Y. (4.22)

The function f is convex, hence we will have

f(β̂) − f(β⋆) ≥K(β⋆) ⋅ (β̂ − β⋆)

that can also be written as

(β̂⊺Σ̃β̂ − 2γ⊺β̂) − (β⋆⊺Σ̃β⋆ − 2γ⊺β⋆) ≥ ⟨K(β⋆), δ⟩ with δ = β̂ − β⋆. (4.23)

The estimator β̂ is solution of the optimization problem (4.7):

β̂⊺Σ̃β̂ − 2γ⊺β̂ + ∥β̂∥⋆ ≤ β⋆⊺Σ̃β⋆ − 2γ⊺β⋆ + ∥β⋆∥⋆,

then

(β̂⊺Σ̃β̂ − 2γ⊺β̂) − (β⋆⊺Σ̃β⋆ − 2γ⊺β⋆) ≤ ∥β⋆∥⋆ − ∥β̂∥⋆.

We follow here the lines of proof in [30]. We recall that the sorted l1 norm can be written

as

∥v∥⋆ = max
p

∑
j=1

λj ∣vφ(j)∣

where the maximum is taken over all permutations φ = (φ(1),⋯, φ(p)) of {1,⋯, p}.
Let us choose the permutation ψ such that

∥β∗∥⋆ =
s

∑
j=1

λj ∣β∗ψ(j)∣ and ∣δψ(s+1)∣ ≥ ∣δψ(s+s)∣ ≥ ⋯ ≥ ∣δψ(p)∣.

Thus

∥β⋆∥⋆ − ∥β̂∥⋆ ≤
s

∑
j=1

λj (∣β⋆ψ(j)∣ − ∣β̂ψ(j)∣) −
p

∑
j=s+1

λj ∣β̂ψ(j)∣

≤
s

∑
j=1

λj (∣β⋆ψ(j)∣ − ∣β̂ψ(j)∣) −
p

∑
j=s+1

λj (∣β⋆ψ(j) − β̂ψ(j)∣) . (4.24)
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Hence, given the permutation mentioned above, we can then write

∥β⋆∥⋆ − ∥β̂∥⋆ ≤
s

∑
j=1

λj (∣β⋆ − β̂∣(j)) −
p

∑
j=s+1

λj (∣β⋆ − β̂∣(j)) (4.25)

Putting together (4.23)-(4.25), we can conclude that

p

∑
j=s+1

λj ∣δ∣(j) ≤
s

∑
j=1

λj ∣δ∣(j) − ∣⟨K(β⋆), δ⟩∣. (4.26)

From now on, the calculations are specific to our model and estimator. Given Lemma (10),

we can conclude that

p

∑
j=s+1

λj ∣δ∣(j) ≤
s

∑
j=1

λj ∣δ∣(j) + ∣ 1

n
ε⊺Xδ∣ + ∥δ∥2Rn,p(CU , β⋆, t),

then, by Lemma 5,

∥δ∥⋆ ≤ 2
s

∑
j=1

λj ∣δ∣(j) +max{H(δ),G(δ)} + ∥δ∥2Rn,p(CU , β⋆, t). (4.27)

From now on, we keep the notation λj for the case where Rn,p = O(1)/√n and use λ̃j
otherwise (see Case III below).

Case I. max{H(δ) + ∥δ∥2 ⋅Rn,p,G(δ)} ≤H(δ) + σ∥δ∥2

√
∑sj=1 λ

2
j

From (4.27) and (4.14), we infer that

∥δ∥⋆ ≤ 2
s

∑
j=1

λj ∣δ∣(j) + ∣ 1

n
ε⊺Xδ∣ +Rn,p∥δ∥2

≤ 2
s

∑
j=1

λj ∣δ∣(j) +H(δ) + 2σ∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j

≤ 2
s

∑
j=1

λj ∣δ∣(j) + 2σ∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j + σ

4 +
√

2

γ′
∥δ∥⋆

≤ 2(1 + σ)∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j +

1

2
∥δ∥⋆

hence,

∥δ∥⋆ ≤ 4(1 + σ)∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j

We can then conclude that δ ∈ CWRE(c0) with c0 = 4(1 + σ).

By the definition of β̂ as the solution of the optimization problem (4.7), there exists w

such that

∇f(β) +w = 0.
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We also know that

δ⊺Σ̃δ = (β̂ − β⋆)⊺Σ̃(β̂ − β⋆)

= ⟨Σ̃β̂ − 1

n
Y ⊺W,δ⟩ − ⟨Σ̃β⋆, δ⟩ + ⟨ 1

n
Y ⊺W,δ⟩

= ⟨K(β̂), δ⟩ − ⟨K(β⋆), δ⟩

= −⟨w, δ⟩ + ∣⟨K(β⋆), δ⟩∣

≤ ∥δ∥⋆ + ∣⟨K(β⋆), δ⟩∣, since ∥w∥dual ≤ 1. (4.28)

We will then have, with probability at least 1 − 8
n − 4 exp(− t22 ) − 4 exp(−2p(t2 − 1)) − δ0

2 ,

δ⊺Σ̃δ ≤ ∥δ∥⋆ + ∣⟨K(β⋆), δ⟩∣

≤ ∥δ∥⋆ + ∣ 1

n
ε⊺Xδ∣ +Rn,p∥δ∥2 ≤ ∥δ∥⋆ +H(δ) + 2σ∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j .

Let us recall at this point that H(δ) = (4 +
√

2)∑pj=1 ∣δ∣(j)σ
√

log(2p/j)
n ≤ ∥δ∥∗/2. This gives

δ⊺Σ̃δ ≤ 3

2
∥δ∥⋆ + 2σ∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j ≤ (3

2
+ 2σ)∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j

≤ 1

2
(3 + 4σ)∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j . (4.29)

Given the WRE condition (4.12)

δ⊺Σ̃δ ≥ κ
2
∥δ∥2

2

and using Lemma 4, we have

κ

2
∥δ∥2 ≤

1

2
(3 + 4σ)

¿
ÁÁÀ

s

∑
j=1

λ2
j

≤ 1

2
(3 + 4σ)γ

√
s

n
log(2ep

s
)

hence,

∥δ∥2 ≤
(3 + 4σ)γ

κ

√
s

n
log(2ep

s
).

Case II. max{H(δ) + ∥δ∥2 ⋅Rn,p,H(δ) + σ∥δ∥2

√
∑sj=1 λ

2
j} ≤ G(δ)

From the assumption of this case, we infer that

(4 +
√

2)
p

∑
j=1

∣δ∣(j)σ
√

log(2p/j)
n

+ σ∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j ≤ σ(4 +

√
2)

√
log(1/δ0)

n
∥Xδ∥n
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then

(4 +
√

2)σ
γ
∥δ∥⋆ + σ∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j ≤ σ(4 +

√
2)

√
log(1/δ0)

n
∥Xδ∥n.

We can imply from the above that both

(4 +
√

2)σ
γ
∥δ∥⋆ ≤ (4 +

√
2)σ

√
log(1/δ0)

n
∥Xδ∥n and

σ∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j ≤ (4 +

√
2)σ

√
log(1/δ0)

n
∥Xδ∥n,

then,

∥δ∥⋆ ≤ γ
√

log(1/δ0)
n

∥Xδ∥n and ∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ2
j ≤ (4 +

√
2)

√
log(1/δ0)

n
∥Xδ∥n.

We know that, with probability at least 1 − 8
n − 4 exp(− t22 ) − 4 exp(−2p(t2 − 1)) − δ0

2 ,

δ⊺Σ̃δ ≤ ∥δ∥⋆ +Rn,p ⋅ ∥δ∥2 + ∣ 1

n
ε⊺Xδ∣ ≤ ∥δ∥⋆ + 2G(δ)

≤ γ
√

log(1/δ0)
n

∥Xδ∥n + 2(4 +
√

2)σ
√

log(1/δ0)
n

∥Xδ∥n

≤ 2γ

√
log(1/δ0)

n
∥Xδ∥n (4.30)

We also know that, using Lemma 6 and Lemma 8

δ⊺Σ̃δ = δ⊺ [(Σ̃ − Σ̂) + 1

n
X⊺X + ( 1

n
U⊺U −CU) +

1

n
(X⊺U +U⊺X)] δ

≥ ∥Xδ∥2
n + ⟨( 1

n
U⊺U −CU) δ, δ⟩ +

1

n
⟨(X⊺U +U⊺X) δ, δ⟩ since δ⊺ (Σ̃ − Σ̂) δ ≥ 0

≥ ∥Xδ∥2
n − ∣⟨( 1

n
U⊺U −CU) δ, δ⟩ +

1

n
⟨X⊺U +U⊺X,δ⟩∣

≥ ∥Xδ∥2
n − ∥δ∥2

2 (An,p + 2t

√
p

n
∥CU∥2)

with probability larger than 1 − 4
n − 2 exp(− t22 ). Hence,

∥Xδ∥2
n ≤ δ⊺Σ̃δ + ∥δ∥2

2 (An,p + 2t

√
p

n
∥CU∥2)

≤ δ⊺Σ̃δ + (4 +
√

2)2

∑sj=1 λ
2
j

log(1/δ0)
n

(An,p + 2t

√
p

n
∥CU∥2) ∥Xδ∥2

n

≤ δ⊺Σ̃δ + (4 +
√

2)
4 sn log(2p

s )
log(1/δ0)

n
(An,p + 2t

√
p

n
∥CU∥2) ∥Xδ∥2

n. (4.31)

Recall that we assumed

An,p + 2t

√
p

n
∥CU∥2 ≤

κ

2
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when n, s, p are large enough. Hence, we deduce that for such large enough values of n, s, p

(4 +
√

2)
4 sn log(2p

s )
log(1/δ0)

n

⎛
⎝
An,p + 2t

√
Tr(CU)

n

⎞
⎠
≤ 1

2
.

Together with (4.31) this gives that

1

2
∥Xδ∥2

n ≤ δ⊺Σ̃δ,

and using (4.30) we get

∥Xδ∥n ≤ 4γ

√
log(1/δ0)

n
.

Furthermore, this leads to

∥δ∥⋆ ≤ 4(γ)2 log(1/δ0)
n

and to

∥δ∥2 ≤
(4 +

√
2)σ√

∑sj=1 λ
2
j

4γ
log(1/δ0)

n
≤ 4(4 +

√
2)σ√

sn log(2p/s)
log(1/δ0).

Case III. max{G(δ),H(δ) + σ∥δ∥2

√
∑sj=1 λ

2
j} ≤H(δ) + ∥δ∥2 ⋅Rn,p

Given (4.27), we deduce that

∥δ∥⋆ ≤ 2
s

∑
j=1

λ̃j ∣δ∣(j) +H(δ) + 2Rn,p ⋅ ∥δ∥2

≤ 2∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ̃2
j +

1

2
∥δ∥∗ + 2Rn,p∥δ∥2 ≤

1

2
∥δ∥∗ + 4∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ̃2
j

giving

∥δ∥⋆ ≤ 8∥δ∥2

¿
ÁÁÀ

s

∑
j=1

λ̃2
j ≤ 8∥δ∥2Rn,p

√
s log(2pe/s).

As already seen in the previous two cases, we write that with probability at least 1 − 8
n −

4 exp(− t22 ) − 4 exp(−2p(t2 − 1)) − δ0
2

δ⊺Σ̃δ ≤ ∥δ∥⋆ +H(δ) + 2Rn,p∥δ∥2

≤ 3

2
∥δ∥⋆ + 2∥δ∥2Rn,p

√
s log(2pe/s)

≤ 14Rn,p∥δ∥2

√
s log(2pe/s),

hence,

∥δ∥2 ≤
28

κ
Rn,p

√
s log(2pe/s).
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