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“Not all who wander are lost.”

Cheshire Cat
in L.Caroll’s ‘Alice’s Adventures in Wonderland".
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Foreword

This memoir, appearing as a wander through symplectic topology and contact geometry presents
most of the results I obtained since the end of my PhD, and puts them in context. It reviews the
main questions I am interested in, explains my approach to those, and asks further questions.

A problem that has always fascinated me in the study of manifolds with boundary can be phrased
as:

How much structure do you need on a domain for the boundary to carry relevant information on
the interior? Reciprocally, how much does the interior of a domain “know” about its boundary?

This is inspired by Marc Kac’s paper [ ] “Can you hear the shape of a drum?”. This paper
generalises a question of H. A. Lorentz! which was answered by Weyl?. Weyl proved that one can
recover the area of a domain by examining how rapidly the Dirichlet eigenvalues of the Laplace
operator grow [ 1.

Symplectic and contact geometry originated in a mathematical formulation of the classical me-
chanics of dynamical systems with finitely many degrees of freedom. The objects studied are
smooth manifolds with an additional structure, symplectic in the even-dimensional case and con-
tact in the odd-dimensional one. One of the most prominent features of symplectic and contact
geometry is that rigidity and flexibility phenomena coexist. Flexibility is illustrated by Darboux’s

1Zum Schluss soll ein mathematisches Problem Erwdhnung finden, as vielleicht bei den anwesenden Mathematik-
ern Interesse erwecken wird. Es stammt aus der Strahlungstheorie von Jeans. In einer vollkommen spiegelnden
Hiille konnen sich stehende elektromagnetische Schwingungen ausbilden, dhnlich den Tonen einer Orgelpfeife; wir
wollen nur auf die sehr hohen Oberténe das Augenmerk richten. Jeans fragt nach der auf ein Frequenzintervall
dn fallenden Energie. Dazu berechnet er zuerst die Anzahl der zwischen den Frequenzen n und n + dn liegenden
Obertone und multipliziert die Zahl dann mit der zu jeder Frequenz gehorigen Energie, die nach einem Satze der
statistischen Mechanik fiir alle Frequenzen gleich ist. Auf diese Weise bekommt er in der Tat das richtige Gesetz
der Strahlung fiir langwellige Warmestrahlen. Hierbei entsteht das mathematische Problem, zu beweisen, dass
die Anzahl der geniigend hohen Obertone zwischen n und n + dn unabhéngig von der Gestalt der Hiille und nur
ihrem Volumen proportional ist. Fiir mehrere einfache Formen der Hiille, wo sich die Rechnung durchfiihren lasst,
wird der Satz in einer Leidener Dissertation bestétigt werden. Es ist nicht zu zweifeln, dass er allgemein, auch fiir
mehrfach zusammenhéngende Rdume, giiltig ist. Analoge Sitze werden auch bei andern schwingenden Gebiiden,
wie elastischen Membranen und Luftmassen etc., bestehen
To conclude, there is a mathematical problem which perhaps will arouse the interest of mathematicians who are
present. It originates in Jeans’ theory of radiation. In an enclosure with a perfectly reflecting surface, standing elec-
tromagnetic waves can form, similar to tones of an organ pipe; we shall focus only on very high overtones. Jeans
asks for the energy falling on a frequency interval dn. To do this, he first calculates the number of overtones lying
between the frequencies n and n + dn and then multiplies this number by the energy belonging to each frequency,
which according to a theorem of statistical mechanics is the same for all frequencies. In this way, he indeed gets the
right law of radiation for long-wave radiation. Here arises the mathematical problem of proving that the number
of sufficiently high overtones between n and n + dn is independent of the shape of the enclosure and proportional
only to its volume. For several simple shapes on which the calculations can be carried out, this theorem has been
confirmed in a Leiden dissertation. There is no doubt that it holds in general, even for multiply connected regions.
Analogous results for other vibrating structures, such as elastic membranes, air masses, etc. should also hold.

Zwho also introduced the term symplectic in [ ]
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theorem (locally all symplectic, respectively all contact, manifolds are “the same”) and by various
h-principles. Rigidity is illustrated by Gromov’s non-squeezing theorem (which is at the origin of
symplectic topology); it states that one can symplectically embedd a ball in a cylinder if and only
if the radius of the ball is less than that of the cylinder.

Understanding rigidity and flexibility is one of my goals. I approach this goal by considering a
symplectic manifold whose boundary is a contact manifold. The central question, almost formu-
lated as such in [ ], is then:

“How much does the contact boundary know about the symplectic interior, and, reciprocally, how
much does the symplectic interior know about its contact boundary?”

Two classical conjectures are directly related to this question. Weinstein conjecture (conjecture
1.1.1) concerns the existence of periodic orbits in the Reeb dynamics on a compact contact mani-
fold and Viterbo’s conjecture (conjecture 4.0.1) concerns symplectic embeddings and obstructions
(symplectic capacities) thereof.

This memoir is divided in two part; the First part is devoted to the how much does the symplectic
interior know about its contact boundary? viewpoint. Contact manifolds come with (a lot of)
dynamical systems (Reeb vector fields) and their study, in particular the periodic orbits, is the main
focus of this first part. The Second part is about the how much does the contact boundary know
about the symplectic interior viewpoint. The focus is on obstructions to symplectic embeddings
of a symplectic manifold in another one coming from the dynamics (periods of orbits) on the
boundaries.
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1. Introduction to Part |

1.1. General context

A contact manifold is an odd-dimensional manifold M2"~! endowed with a contact structure, i.e.
a codimension one distribution £ having a maximal non-integrability property. If we write locally
the distribution as the kernel of a 1-form, & = ker a, the condition is that @ A (da)""! is nowhere
vanishing; such a 1-form a is called a contact form. Throughout this memoir we shall always
assume that a contact structure is co-oriented, that is, a is defined globally.

One of the simplest examples of closed contact manifolds is the unit sphere $2"~! in R?" with
the standard contact form a, € Q!(52"~!) which is given by the restriction to the sphere of the
Liouville 1-form A, € Q!(R?").

n
g = Aglgaans = 3 2, (Y —yIdo)[ o 1D
j=1

where x;, y; are the standard coordinates on R2",

To a contact form a on M corresponds a unique vector field R, (the Reeb vector field) charac-
terized by the equations 1z da = 0 and a(R,) = 1. The Reeb vector field never vanishes; hence
its flow does not have any fixed point. Periodic orbits are thus the most noticeable objects thereof.
In his “traité de la mécanique céleste", Poincaré pointed out the interest of periodic orbits:

Ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi
dire, la seule bréche par ol1 nous puissions essayer de pénétrer dans une place jusqu’ici
réputée inabordable.

If a is a contact form on M, f a is also a contact form for any non-vanishing function f € C*(M, R).
There are thus as many Reeb vector fields on a contact manifold M as there are non-vanishing
smooth functions on M. Nonetheless there is, conjecturally, a very strong rigidity phenomenon.

Conjecture 1.1.1 (Weinstein, [ D. Every contact form on a compact contact manifold carries
at least one periodic Reeb orbit.

The Weinstein conjecture was proven in dimension three by Taubes in 2007 [ ]. Taubes’
result was later improved independently by Cristofaro-Gardiner and Hutchings [ ] and by
Ginzburg, Hein, Hryniewicz and Macarini [ ] who proved that every contact form on a
compact contact manifold of dimension three carries at least two geometrically distinct periodic
Reeb orbits. Recently, Cristofaro-Gardiner, Hutchings and Pomerleano [ ] have proven
that, modulo assumptions’, every contact form on a compact contact manifold of dimension three
carries either two or infinitely many geometrically distinct periodic Reeb orbits. This last result
does not generalize to higher dimensions since Albers, Geiges and Zehmisch [ ] constructed

!The assumptions are that the contact form is non-degenerate and the first Chern class of the contact structure is
torsion.



1. Introduction to Part I

examples, in all odd dimensions greater than three, of contact forms on compact connected contact
manifolds carrying an arbitrarily large (but finite) number of geometrically distinct periodic Reeb
orbits.

Those results motivate:

Question 1.1.2. Given a contact manifold, what is the lower bound on the number of geometrically
distinct periodic Reeb orbits and what is the topological (or analytic) significance of that bound?

Note that, at the time of writing, except for a few manifolds, we do not have any idea what this
bound should be.

1.1.1. degenerate vs non-degenerate

The bound in question 1.1.2 might depend on whether the contact form a is degenerate or non-
degenerate. Similarly to the Morse condition for smooth function, the non-degeneracy condition
is to ensure isolation of the periodic Reeb orbits.

Definition 1.1.3. A contact form is non-degenerate if all periodic Reeb orbits are non-degenerate.
A periodic Reeb orbit y of period T is non degenerate if 1 is not an eigenvalue of the Poincaré return
map; i.e. 1 is not an eigenvalue of the differential of the flow restricted to the contact structure &

Ra’T .
P 1 Sy(0) ™ Sy(1):

For smooth functions on a compact manifold f : M — R, we have lower bounds on the minimal
number of critical points of f.
If f is Morse, then we have the Morse inequalities

dim(M)
#Crit(f) = > bi(M)

where the b;(M) are the Betti numbers of M.
If f is not Morse, then
# Crit(f ) > cuplength(M) + 1

where the cuplength of M is defined as follows

Definition 1.1.4. Let M be a manifold. The cuplength of M is defined as
cuplength(M) := max {k e N|3fy,..., B e H} (M) such that f; U ... U i # 0} .

For instance, looking at the 2-torus T2, every Morse function f : T2 — R must have at least 4
critical points, but there exists smooth functions g : T? — R with only 3 critical points (which is
minimal). Figure 1.1 represent an immersion [ ] of T2 in R® where the height function has
only 3 critical points.

1.1.2. Smallest orbit

Another natural question is

Question 1.1.5. What is the minimal period among all periodic Reeb orbits?



1.1. General context

A STRANGE MHlEESIoN
oFF THE To€vs I THREE - SFACE,
THIS IMMERSIN HAS oNLY THREE
CRITICAL PaNTS : A Maximum (),
A MoNKEY SADPLE (IZ), AND A
Misimort (),

CAssipy cvenis  5f6/92.

Figure 1.1.: Immersion of T2, from [Cur92], for which the height function only have 3 critical
points

Note that, as stated, question 1.1.5 is not well-posed. Indeed, when multiplying the contact
form a by a constant k, the Reeb vector field is multiplied by % A more “reasonable” quantity
(since invariant by rescaling) to look at is called the systolic ratio of the contact form a and is
defined as

(Tmin,a)n

Vol(M, a)

where Ty, o denote the smallest period of a periodic orbit of R, and Vol(M, a) = §;; a A (da)™ 1.



1. Introduction to Part I

Question 1.1.5 would then become

Question 1.1.6. Given a contact manifold (M, &), is there a bound (upper and/or lower) for the
systolic ratios of all contact form defining the contact structure £?

1.2. Star-shaped hypersurfaces

A distinguished class of contact manifolds consists of the boundaries of some star-shaped? do-
mains with respect to the origin in R?". It appears naturally in many dynamical problems. For
instance, hypersurfaces bounding strictly convex domains (called strictly convex hypersurfaces)
arise as regularized energy hypersurfaces in the planar restricted three-body problem. The bound-
ary % of a star-shaped domain X is called a star-shaped hypersurface in R?". The 1-form ag :=
%Z?:l(xidyi — yidxi)|Z is a contact form on . The 2-form wq := day = >\, dx; Ady; isa
symplectic form on X

Lemma-Remark 1.2.1. The study of the Reeb field on all star-shaped hypersurfaces is equivalent to

the study of the Reeb field for all contact forms defining the standard contact structure® on the sphere
52n—1 .

Proof. Let X — R?" be a star-shaped bounded domain with smooth boundary ¥. Then

1 noo o
Ao = 5= ledyl — y'dx!
i=1

restricts to a contact form on X. Let hy : $?"~! — R a smooth positive function such that, X =
{rz|z € 8% 1,0 <r < hy(z)}. We now look at the diffeomorphism ¢ : $2*™1 — % : 2 +> hy(2)z
and we can easily check that

¢ (Aolz) = h%lo’s%—l-

O

Star-shaped hypersurfaces are one of the few manifolds for which we have a candidate for the
bound in Question 1.1.2.

Conjecture 1.2.2. Every star-shaped hypersurface in R?" carries at least n geometrically distinct
periodic Reeb orbits.

1.21. n=2

A crucial ingredient to study the planar restricted three-body problem is a global surface of
section, a notion which goes back to Poincaré. A global surface of section (of disk type) is an
embedded 2-disk in an energy hypersurface of dimension 3. It is equipped with the Poincaré return
map encoding the qualitative properties of the dynamics. In addition, the boundary is required
to be a periodic orbit, called a binding orbit. A global surface of section reduces the complexity
by one dimension. Finding this fascinating object is, in general, a nontrivial problem. However a
beautiful theorem due to Hofer, Wysocki, and Zehnder [ ] asserts that every dynamically

by star-shaped, I mean that the radial vector field is everywhere transverse to the boundary.
3Defined as Ker a,,.



1.2. Star-shaped hypersurfaces

convex* hypersurface in R* has a global surface of section. In contrast to perturbation methods,
[ ] uses holomorphic curve theory and dynamical convexity is essential for a compactness
result of holomorphic planes.

Both methods have their own merits. In perturbation theory, one begins with a well-known
dynamical system (e.g. Kepler problem) where we know which embedded disk is a global surface
of section. The disk survives under small perturbations but it is difficult to estimate how long this
lasts. For example perturbation methods show that in the planar restricted three-body problem
the most famous orbit, the retrograde orbit, is a binding orbit of a global surface of section if the
situation is close enough to the Kepler problem. On the other hand, the theorem in [ ]
enables us to easily know the existence of global surfaces of section in a given dynamical system
because strict convexity of a dynamical system is a property that can be checked a priori. For
example in [ ] the authors proved strict convexity and hence the existence of a global
surface of section in the planar restricted three-body problem close to the Hill’s lunar problem
where perturbation methods do not apply. But the method in [ ] does not tell where the
resulting global surface of section is located. This was already pointed out by Hofer, Wysocki,
and Zehnder and led them to raise the question whether a periodic orbit with the smallest action
always is a binding orbit of a global surface of section. In the following we call a periodic orbit
with the smallest action a smallest periodic orbit.

1.22. n>2

The problem of finding periodic Reeb orbits on a contact manifold which is embedded in a symplec-
tic manifold can often be translated into the problem of finding periodic orbits of a Hamiltonian
vector field on a prescribed energy level. For instance, if X is a star-shaped domain in R?" such
that 0 € IntX, finding periodic orbits of the Reeb vector field on the boundary % of X (for the stan-
dard contact form a;) amounts to finding periodic orbits of the Hamiltonian vector field defined
by a power of the gauge function, on the boundary of X which is a level set of this Hamiltonian.
Indeed, the gauge function of X, jy : R%" — [0, o0) is defined by

jx (x) :=min{h|¥ e C}
and the Hamiltonian vector field associated to Hg = jx ()P is

Xy, = gRao.
Finding periodic Reeb orbits on ¥ thus translates into finding T € R>° and a smooth curve
x : [0, T] — R?" such that
Hg(x(t)) =1 vt
x(t) = Xy, (1.2.1)
x(0) = x(T)

Solutions of (1.2.1) are usually called closed characteristics.

In this context, a beautiful idea was developped for strictly convex Hamiltonians: the Clarke-
Ekeland dual principle [ ]. A lot of foundational research in Hamiltonian dynamics and sym-
plectic geometry is based on it. Nevertheless after holomorphic curve theory has become one of
the main tools of symplectic geometry, this elegant idea has received little attention. A reason

“Dynamical convexity is a generalization of strict convexity, see Definition 1.3.2



1. Introduction to Part I

is that the Clarke-Ekeland dual principle is only valid under the condition of strict convexity. In
exchange however this tells stories that methods in modern symplectic geometry have not seen
so far. The main reason is that, in contrast to the classical action functional, the Clarke-Ekeland
dual action functional attains a minimizer. This minimizer yields a smallest periodic orbit. Thus
one of the things the dual principle tells is that in strictly convex Hamiltonian systems a periodic
orbit with the smallest action has minimal index. This is precisely the index for being a binding
orbit in dimension 3.

Another formulation (which generalizes to the case where X is only continuous) uses the ex-
terior normal vector, vy, and the complex structure J on R?". The Reeb vector field, R, is pro-
portional to J vy since t(J vs)da = 0 because t(J vs)da(Y) = w(Jvs,Y) = —(v5,Y) = 0 for all
Y e TZ. Thus

R, =cJvs
with |c| = |Rg]|-

Given in R?" a star-shaped domain X with boundary ¥, one can define for x € %, the normal
cone to X at x, Ny (x).

Ng(x):={y e R*"|{x' — x,y) <0,Vx" e X}.

Problem (1.2.1) then becomes finding T > 0 and an absolutely continuous curve x : [0, T] — R>"
such that:
x(t)eX Vvt

x(t) €e JNy(x)

x(0) =x(T)
This later formulation allows to look at periodic Reeb orbits on polytopes, for which algorithmic
methods were recently implemented, [ 1.

1.3. Convexity

Regarding question 1.1.6, It is shown in [ , ] that the systolic ratio of (S3,&,) is
unbounded. [ ] build examples of star-shaped hypersurface in R* with arbitrarily large
systolic ratio. On the other hand, it is believed that convex domains carry special rigidity phenom-
ena which general starshaped domains do not have. In particular, Viterbo [ ] conjectured a
systolic inequality for convex domains

Conjecture 1.3.1 (Weak Viterbo conjecture). If X — R?" is a convex set, then
(Toin)" < 1! VOL(X).
Moreover, equality holds if and only if X is symplectomorphic to the ball.

Note that here Vol(X) denotes the Euclidean volume of X. The Euclidean volume of X and the
contact volume of the boundary ¥ of X Vol(%, ) are related by

n!'Vol(X) = Vol(Z, ag).

Convexity is not a symplectically invariant property. This was already pointed out a long time
ago but only a few symplectic substitutions have been suggested. The most prominent one is
dynamical convexity, introduced in [ ], where they show that strict convexity guarantees
dynamical convexity. A natural question is whether these two notions agree.



1.4. Structure of Part I

Definition 1.3.2. A contact form a on $?>"~! is dynamically convex if all closed Reeb orbits have
Conley-Zenhder index at least n + 1.

Question 1.3.3. Is every dynamically convex domain symplectomorphic to a convex domain?

1.4. Structure of Part |

The rest of this first part is divided in two chapters. Chapter 2 presents the various results I
obtained in the direction of Question 1.1.2, first on star-shaped hypersurfaces in R?" then on
more general manifolds. Chapter 3 is an exposition of the tools (and their properties) used in
the proofs of the results in Chapter 2. In particular, §3.2 consists of an exposition of equivariant
symplectic homology which is also relevant to Part II.






2. Results

2.1. Star-shaped hypersurfaces in R?"

2.1.1. In any dimension

The first result in the direction of Conjecture 1.2.2 is the proof by Rabinowitz [ ] of the
existence of one periodic orbit on every star-shaped hypersurface; this was extended to all hy-
persurfaces in R?", of contact type by Viterbo [ ]. Conjecture 1.2.2 was proven by Ekeland
and Lasry [ ] and by Beresticky, Lasry, Mancini and Ruf [ ] for convex hypersurfaces
which are “pinched” between two spheres whose ratio of radii is strictly less than /2.

Theorem 2.1.1 ([ , 1). Let % be a star-shaped hypersurface in R?". Assume there exists
a point x, € R*" and numbers 0 < R; <R, such that:

R
VxeX, Ry <|x—x, <R, WithR—2<ﬁ
1

Assume also that Vx € %, T, X n By, (xg) = J. Then X carries at least n geometrically distinct
periodic Reeb orbits.

Long, Zhu, Hu et Wang [ s ] managed to remove the pinching assumption and
showed that every strictly convex hypersurface carries at least | 5| + 1 geometrically distinct peri-
odic Reeb orbits. They proved moreover that if all periodic Reeb orbits are non-degenerate, then
there are at least n of them. Those results rely on variational methods: the action functional and
its dual in the sense of Clarke-Ekeland, for which the convexity of the hypersurface is crucial. The
second ingredient in those proofs is a detailed study of the Conley-Zehnder index; it is an integer
number (or half-integer in the degenerate cases) associated to every periodic Reeb orbit.

My approach was to replace the variational tools by tools of a more symplectic nature. I devel-
opped properties of the positive S!-equivariant symplectic homology (denoted by CH from now
on) and obtained the following results. First, [ ] an elementary proof of theorem 2.1.1 of
Ekeland and Lasry and Beresticky, Lasry, Mancini and Ruf (with a non-degeneracy assumption).
Then, with Jungsoo Kang [ ], we considerably weakened the convexity assumption, keeping
a non-degeneracy assumption.

Theorem 2.1.2 ([ 1. Let (%, ap) be a non-degenerate star-shaped hypersurface in R*" such
that all periodic orbits have Conley-Zehnder index at least n — 1. Then (X, a) carries at least n
simple periodic Reeb orbits.

Replacing the convexity assumption by something weaker than dynamical convexity was per-
ceived as an interesting step. The main idea is to combine the homology CH (to find many periodic
Reeb orbits) and a “translation” of the common index jump theorem [ ] (to distinguish which
orbits are geometrically distinct).

11
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Theorem 2.1.3 (common index jump theorem ). Let yq,..., Y be simple periodic orbits on a given
contact manifold of dimension 2n— 1. Assume that all the iterates of the periodic orbits are nondegen-
erate and that all the mean indices! of the periodic orbits are positive; CZ(y;) > 0 foralli € [0,k].
Then, for any given M € N, there exist infinitely many N € N and (my,...,my) € NX such that for
anyme {1,...,M}
2m;—m 2m;+m
CZ(y;™ ™) =2N—CzZ(y") and CZ(y;""™™)=2N+CZ(y[")
and
2N — (n—1) < CZ(y?™) < 2N + (n—1).

Since then, our techniques have been generalized to other manifolds and pushed further by
other authors, [ , s , X ]. To the best of my knowledge, the
current optimal statement (compilation of the results by the aforementioned authors) is

Theorem 2.1.4. Let (X, a) be a compact star-shaped hypersurface in R".,

e If % is dynamically convex (possibly degenerate) then there is at least 5| + 1 simple periodic Reeb
orbits.

e If Y is non-degenerate, all periodic Reeb orbits have positive mean Conley-Zehnder index, and there
are no orbits of CZ-index 0 (if n is even) or no orbits of CZ-index —1, 0 or 1 (if n is odd), then
there are at least n simple periodic Reeb orbits.

e If ¥ c R8 is convex, then Conjecture 1.2.2 holds.

Removing completely the assumption on the indices, we showed [ ] that there are generally
“a lot” of periodic orbits, unless the quantities g—g; (where CZ and .o/ respectively denote the
mean Conley-Zehnder index and the action (i.e. the period)) are all equal.

Proposition 2.1.5 ([ D). Let (X, a) be a nondegenerate starshaped hypersurface in R*", for n
odd, with two simple periodic orbits y and 6. Then % carries another simple periodic orbit unless

Ar) _ @) (2.1.1)
CZ(y) CZ(5) a

This last Proposition shows the existence of rigidity and raised the question

Question 2.1.6. What is the topological significance of the quantities g—gg ?
Those quantities already appeared in [ s . ]. A non-degenerate contact form a

is called perfect if the number of good periodic nondegenerate orbits with Conley Zehnder index
k is equal to the dimension of the k-th positive S!-equivariant symplectic homology group. Giirel

[ ] proved that if a non-degenerate contact form on the sphere is perfect, then all the quan-
tities g—gi are equal. With Jungsoo [ 1, we proved that if a non-degenerate contact form

on the sphere is perfect, then there are precisely n even simple periodic orbits of the Reeb vector

field. If the contact form is moreover dynamically convex, the converse is also true.

The first guess is that the quantities g—(();; exhibit some kind of symmetry of the hypersurface.

A diffeomorphism f : (Z,a) — (X, a) is called a strict (anti)-contactomorphism if f*a = a or if
f*a = —a, respectively.

. . . . . . s . CZ(y™
!The mean index of a periodic orbit y is defined as CZ(y) = lim,,_, ., %

12



2.1. Star-shaped hypersurfaces in R*"

Question 2.1.7. If X is a star-shaped hypersurface in R*" and f : (%, ay) — (Z,aq) is a strict
(anti)-contactomorphism, are all periodic Reeb orbits invariant under f ?

We showed [ ] that if a non-degenerate star-shaped hypersurface (%, a) in R?" is dynam-
ically convex and has precisely n geometrically distinct periodic Reeb orbits, and if there exists a
strict (anti)-contactomorphism of (%, @), then all periodic orbits are invariant under it.

“Symmetric” hypersurfaces (in particular under the involution; i.e. ¥ = —) have been studied

in [ > 3 b b b ]'

2.1.2. In dimension 3

The most notable result in dimension three is due to Hofer Wysocki and Zehnder [ ]

Theorem 2.1.8. Any dynamically convex star-shaped hypersurface in R* carries either 2 or infinitely
many simple periodic Reeb orbits.

The key idea is to find for every dynamically convex star-shaped hypersurface in R* a disk-like
global surface of section and then use a result by Franks [ 1.

Definition 2.1.9. Let "' be a smooth flow on a closed manifold M of dimension 3. An embedded
surface ¥ — M is a global surface of section for @' if:

1. Each component of the boundary 0% of . is a periodic orbit of .
2. The flow @' is transverse to ¥\0%.

3. For every p € £\0%, there exist t* € R_o and t~ € R_q such that both ' (p) and ' (p)
belong to ¥\0X.

If % is diffeomorphic to a disk, then % is called disk-like.

Theorem 2.1.10 ([ ). Any dynamically convex Reeb flow on (S3,&,) admits a disk-like
global surface of section.

Theorem 2.1.11 ([ , D. Let y be a periodic orbit of a dynamically convex Reeb flow on
(S3,&,). Then y bounds a disk-like global surface of section if. and only if. it is unknotted and has
self-linking number —1. Moreover, such an orbit binds an open book decomposition whose pages are
disk-like global surfaces of section.

Question 2.1.12 ([ 1. Does a periodic orbit with the smallest action in a (dynamically)
convex hypersurface in R* always bound a global surface of section?

Question 2.1.13. On a (dynamically) convex hypersurface in R?, is the smallest periodic orbit un-
knotted and has self-linking number —1?

One can also do the “reverse process” and build a contact form on S° starting with a compactly
supported Hamiltonian diffeomorphism on the disk (viewed as a global surface of section) (see
[ , D). Using this, Abbondandolo, Bramham, Hryniewicz and Salomao build a dynam-
icaly convex contact form on S with a systolic ratio of almost 2.

Theorem 2.1.14 ([ 1). For every € > 0 there is a dynamically convex contact form a on S*
such that )
2 Tmin 2

E<——— <

Vol(S3,a A da)
In particular; the supremum of the systolic ratio over all dynamically convex contact forms on S is
at least 2.
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2.2. Other manifolds

Concerning the minimal number of periodic Reeb orbits on contact manifolds (of dimension > 5)
other than the sphere, very little is known and I would like to point out that nothing is known
outside some restricted class of prequantization bundles. That is, E is a C-bundle over a sym-
plectic manifold (W, w) with ¢;(E) = —[w] € H*(W;Z). In particular, the cohomology class [w]
of the symplectic form must admit an integral lift. A Hermitian connection on E gives rise to a
connection 1-form a, on the corresponding S!-bundle ¥ over W. The 1-form a; is naturally a
contact form. Its Reeb vector field is the infinitesimal generator of the S L_action on ¥, see [ s
Section 7.2] for more details. Moreover, the Hermitian structure defines circle resp. disk bundles
Sg resp. Dy of radius R > 0. We extend a, to E\M by pullback.
We call a hypersurface >y — E graphical if it can be written as the graph of a function f : ¥ —
R., inside E
Y ={f(x)x|[xex}. (2.2.1)

Then a; := fa is a contact form on X;.

Conjecture 2.2.1. Assuming (W, w) is a closed connected symplectic manifold with integral sym-
plectic form [w] € H2(M,Z) in the construction above, then the graphical hypersurface ¥ ¢ carries at
least k simple periodic Reeb orbits with

= th:niw b;(W) if ay is non-degenerate
cuplength(W) +1 if ay is degenerate
I gave the first results, in this context, answering partially Conjecture 2.2.1, thanks to the use
of the homology CH.

Proposition 2.2.2 ([ ). Let Xy be a graphical hypersurface in E such that the intersection of
dim

%¢ with each fiber is a circle. Then % carries at least Zi=ow b; geometrically distinct periodic Reeb

orbits, where b; denote the Betti numbers of W.

With Peter Albers and Doris Hein [ ], we gave one of the first geometrical explanation?
of the minimal number of geometrically distinct periodic Reeb orbits for some hypersurfaces in
prequantization bundles. This lower bound is given in terms of the cuplength of the base. In
particular for star-shaped hypersurfaces in R??, the minimal number originates in the cuplength
of CP" 1.

Theorem 2.2.3 ([ 1). Let E be prequantization bundle over the symplectic manifold (W?", w).
Assume that the graphical hypersurface %y < E is pinched between Sg and Sg, with % < /2. Then
there exist either infinitely many periodic Reeb orbits of R, . or there are periodic orbits y4,...,Y. of
Ry, with ¢ = cuplength(W) + 1 such that

TRY < Ay, (11) < ... < A, (1) < TR

where ., (y):= SY ay is the action or period of a Reeb orbit .

Note that the two previous results do not assume non-degeneracy of the contact form.

2See also [ ]
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Corollary 2.2.4. In the context of Theorem 2.2.3, either the minimal period of periodic Reeb orbits
of R, ’ is less than nR% or ay carries at least cuplength(W) + 1 simple periodic Reeb orbits.

In short, there is either a short periodic orbit or cuplength(M)+1 simple periodic Reeb orbits. As
a particular case of Corollary 2.2.4, we have Theorem 2.1.1. We recall that $?"~! is the S'-bundle
corresponding to a prequantization bundle over CP"~! and that cuplength(CP"~!) =n — 1.

Removing the pinching condition (but adding a non-degeneracy assumption), we proved, with
Miguel Abreu, Jungsoo Kang and Leonardo Macarini [ ] that under a mild growing con-
dition of the homology CH, there are always at least two periodic Reeb orbits.

Theorem 2.2.5 ([ D). Let (M2"*1 &) be a closed contact manifold admitting a strong sym-
plectic filling W such that ¢;(TW) = 0. Let T be a set of free homotopy classes of loops in W closed
under iterations and assume that there exist K € N and a non-vanishing section o of the determinant
line bundle A(’éﬂ TW such that

dim CH,(W,T) < dim CH,,, jx(W,T)

or
dimCH_,(W,T) < dimCH_,,_jx(W,T)

for every j € N, where the grading in CH,.(W,T') is taken with respect to the homotopy class of o.
Then every non-degenerate Reeb flow on M carries either infinitely many geometrically distinct closed
Reeb orbits or at least two geometrically distinct closed Reeb orbits v, and y, such that their Conley-
Zehnder indices satisfy ,u()/’{) # ,u()fg) for some k € N. Moreover, all these orbits have free homotopy
class in T.

We then showed that Theorem 2.2.5 applies to many manifolds: to displaceable contact mani-
folds exactly embedded in an exact symplectic manifold, to unit cotangent bundle of closed, spin,
oriented manifolds of dimension bigger than one (with an assumption on the 7t;), to good toric
contact manifolds, to prequantization bundles, to connected sums of Liouville domains,. ..

2.2.1. Displaceable contact manifolds

Given a contact manifold (M, &) and an exact symplectic manifold (X,dA), an embedding M — X
is called an exact contact embedding if it is bounding and if there exists a contact form a supporting
& such that a — A|y, is exact. Here bounding means that M separates X into two connected
components, with one of them relatively compact. This embedding is displaceable if M can be
displaced from itself by a Hamiltonian diffeomorphism with compact support on X. We say that
X is convex at infinity if there exists an exhaustion X = u; X by compact subsets X; < X, with
smooth boundaries such that 1|y, is a contact form for every k. A big class of contact manifolds
admitting displaceable exact contact embeddings in exact symplectic manifolds that are convex
at infinity is given in [ ]: the boundary of every subcritical Stein manifold.

Let (M, &) be a contact manifold admitting a displaceable exact contact embedding into a convex
at infinity exact symplectic manifold X such that ¢;(TX)|.,x) = 0 and denote by W the compact
region in X bounded by M.We showed that W satisfies the hypothesis of Theorem 2.2.5 for T’ =
{0}. Hence, we get the following result.

Corollary 2.2.6 ([ D. Let (M, &) be a contact manifold admitting a displaceable exact con-
tact embedding into a convex at infinity exact symplectic manifold X with ¢;(TX )|n2(X) = 0 and
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denote by W the compact region in X bounded by M. Then every non-degenerate Reeb flow on M has
at least two simple closed orbits contractible in W. If ¢;(TX) = 0 and H'(M,R) = 0 then every Reeb
flow on a contact finite quotient of M carries at least two simple closed orbits. Moreover, the closed
lifts of iterates of these orbits to M are contractible in W.

2.2.2. Cosphere bundles and closed geodesics

Let N be a closed Riemannian manifold and AN its free loop space. There is an isomorphism
between the (non-equivariant) symplectic homology of T*N and the homology of AN twisted by
a local system of coefficients. For the S'-equivariant version, if N is orientable and spin, we have
the isomorphism

CH, (D*N) =~ H,(AN/S',N;Q), (2.2.2)

where N = AN/S! indicates the subset of constant loops, D*N is the obvious filling of the co-
sphere bundle S*N given by the unit disk bundle. The grading of CH,.(D*N) is given by a non-
vanishing section of A(’éﬂ TD*N induced from the choice of a volume form in the base so that the
Conley-Zehnder index of a non-degenerate closed geodesic coincides with its Morse index, see
e.g. [ ]. This isomorphism respects the filtration given by the free homotopy classes, that is,

CHE(D*N) ~ H,(A"N/S',N; Q) (2.2.3)

for every set I' of free homotopy classes in D*N, where A'N denotes the set of loops in N with
free homotopy class in I'. (Note that, since 7, (D*N) = 7;(N), the set of free homotopy classes in
D*N and N are naturally identified. Moreover, N = A°N/S! and therefore if I' does not contain
the trivial free homotopy class then the right hand side of the isomorphism (2.2.3) has to be
understood as H, (A'N/S';Q).) For general N, it is expected that the same isomorphism holds
with a local system of coefficients as in the non-equivariant case but a rigorous proof has not been
written in the literature yet.

It turns out that if N is simply connected and H,, (AN /S',N; Q) is not asymptotically unbounded
then it satisfies the assumption in Theorem 2.2.5. Using this, we can prove the following result.
Before we state it, let us recall a definition and introduce a notation. A topological space X is k-
simple if 71 (X) acts trivially on 7 (X). If a closed manifold N has dimension bigger than one and
71(N) = Z then N is not rationally aspherical, that is, there exists j > 1 such that 7;(N) ®Q # 0.
Let k be the smallest such j. In what follows, &, denotes the canonical contact structure on S*N.

Corollary 2.2.7 ([ D. Let N be a closed oriented spin manifold with dimension bigger than
one. Suppose that N satisfies one of the following conditions:

() m,(N) is finite;
(i) m(N)=Z, ny(N)=0and N is k-simple, with k as discussed above;

(iii) 7, (N) is infinite and there is no a € 1, (N) such that every non-zero b € 1{(N) is conjugate
to some power of a.

In case (i), we have that every non-degenerate contact form on (S*N,&.,,) has at least two simple
closed orbits. Under hypothesis (ii) or (iii), we have two simple closed orbits for any contact form on
(S*N, & qn), without assuming that it is non-degenerate.
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Remark 2.2.8. The hypothesis that N is oriented spin is used only to have the isomorphism (2.2.3).
Possibly, it can be relaxed once we have this isomorphism with the relative homology of (AN /S',N)
twisted by a local system of coefficients.

Remark 2.2.9. In case (ii), the hypothesis that N is k-simple can be relaxed in the following way:
let a be a generator of m,(N) and denote by A the linear map corresponding to the action of a on
T (N) ® Q. Then it is enough that ker(A — Id) # 0. This hypothesis and the assumption that
75 (N) = 0 are probably just technical but we do not know how to drop them so far.

Theorem 2.2.5 is used to prove Corollary 2.2.7 only under hypothesis (i). For hypotheses (ii)
and (iii), we show the existence of two periodic orbits y; and y, such that no iterate of y; is freely
homotopic to y,. This is easy in case (iii) using (2.2.3) but highly non-trivial in case (ii) where we
show that CH2 (D*N) # 0 and CH%(D*N) # 0O for some non-trivial homotopy class a. The proof
in case (ii) actually shows the following result. It can be considered as a sort of Lusternik-Fet
theorem for Reeb flows; see e.g. [ 1.

Theorem 2.2.10 ([ D. Let N be a closed not rationally aspherical manifold. Suppose that
N is oriented spin, 71 (N) is abelian, m4(N) =0 and N is k-simple, with k as discussed above. Then
every (possibly degenerate) Reeb flow on S*N carries a contractible closed orbit. As a consequence,
if, furthermore, 7, (N) is infinite, then every Reeb flow on S*N has at least two simple closed orbits.

The hypothesis that N is oriented spin and the second and third conditions in item (ii) can be
dropped when we restrict ourselves to Reeb flows given by geodesic flows of Finsler metrics as
follows. The proof of item (i) in Theorem 2.2.5 uses only the fact that, given a non-degenerate
contact form o on M, CHE (W) is the homology of a chain complex generated by the good periodic
orbits of a with free homotopy class in I' graded by the Conley-Zehnder index; the nature of the
differential is absolutely unessential. Let F be a Finsler metric on N. It is well known that the
closed geodesics of F are the critical points of the corresponding energy functional defined on the
free loop space. We will say that F has only one prime closed geodesic if either the corresponding
geodesic flow has only one simple closed orbit or F is reversible (i.e. F(x,v) = F(x,—v) for every
(x,v) € TN) and its geodesic flow has only two simple periodic orbits (given by the lifts of a closed
geodesic y(t) and its reversed geodesic y(—t)).

It turns out that if F is bumpy (i.e. its geodesic flow is non-degenerate) and has only one prime
closed geodesic then H,(AN/S!,N;Q) is the homology of the chain complex generated by the
good periodic orbits of the geodesic flow of F with trivial differential. Using this fact we can
prove the following result. In what follows, we say that F has at least two prime closed geodesics
if it does not have only one prime closed geodesic in the sense above. (Note that every Finsler
metric has at least one prime closed geodesic.)

Corollary 2.2.11 ([ D. Let N be a closed manifold with dimension bigger than one. Suppose
that N satisfies one of the following conditions:

(1) m(N) is finite;
(i) m,(N) = Z;

(iii) 7, (N) is infinite and there is no a € 1;(N) such that every non-zero b € 1{(N) is conjugate
to some power of a.

In case (i), we have that every bumpy Finsler metric F on N has at least two prime closed geodesics.
Under hypothesis (ii) or (iii), we have two prime closed geodesics for any Finsler metric F on N,
without assuming that it is bumpy.
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Remark 2.2.12. Our contribution in this corollary is that we find two closed geodesics when N has
finite fundamental group and F is bumpy. The remaining cases can be covered by classical minimax
methods. This is in contrast with Corollary 2.2.7 for which these minimax methods are not available,
making the proof of item (ii) much harder than in the case of geodesic flows.

Remark 2.2.13. We are not aware of any example of N which is excluded in the statement, see
[ , Section 5]. For instance, if 7w1(N) is abelian, N meets the hypothesis in Corollary 2.2.11.

2.2.3. Good toric contact manifolds

Toric contact manifolds are the odd dimensional analogues of toric symplectic manifolds. They can
be defined as contact manifolds of dimension 2n+ 1 equipped with an effective Hamiltonian action
of a torus of dimension n 4 1. Good toric contact manifolds of dimension three are (S, &) and its
finite quotients. Good toric contact manifolds of dimension greater than three are compact toric
contact manifolds whose torus action is not free. These form the most important class of compact
toric contact manifolds and can be classified by the associated moment cones, in the same way
that Delzant’s theorem classifies compact toric symplectic manifolds by the associated moment
polytopes. We refer to [ ] for details.

In [ ] the authors show that on any good toric contact manifold (M?"*1 &) such that
¢1(&) = 0, any non-degenerate toric contact form is even, that is, all contractible closed orbits of
its Reeb flow have even contact homology degree, where the contact homology degree of a closed

orbit y is given by u(y) + n — 2. (As proved in [ ], this is also true for the non-contractible
closed Reeb orbits.) Suppose that M admits a symplectic filling W with vanishing first Chern class.
Then, as showed in [ , 1, CHg(W) can be computed in a purely combinatorial way in

terms of the associated momentum cone. Using this computation, we showed that W satisfies
the hypothesis of Theorem 2.2.5 for I' = {0} and consequently we get the following result. Note
that the fundamental group of every good toric contact manifold M is finite and consequently
HY(M,R) = 0.

Corollary 2.2.14 ([ 1. Let (M,&) be a good toric contact manifold admitting a strong
symplectic filling W such that ¢;,(TW) = 0. Then every non-degenerate contact form on a contact
finite quotient of M carries at least two geometrically distinct contractible closed orbits.

Remark 2.2.15. It turns out that every good toric contact manifold (M, &) in dimensions three and
five such that ¢, (&) = 0 admits a (toric) filling with vanishing first Chern class [. I:

2.2.4. Prequantization circle bundles over symplectic manifolds

Let (B2", ) be a closed integral symplectic manifold. Consider the prequantization circle bundle
(M, &) of (B, w), that is, the contact manifold given by the total space of a principal circle bundle
over B whose first Chern class is —[w] and with contact structure given by the kernel of a connec-
tion form. Suppose that M admits a symplectic filling W with vanishing first Chern class. Then,
under some assumptions on B, we can show that W satisfies the hypothesis of Theorem 2.2.5 with
I' = {0}. More precisely, we have the following result. In what follows,

cg :=inf{k e N | 3S € m,(B) with {¢;(TB),S) = k}

denotes the minimal Chern number of B.
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Corollary 2.2.16 ([ 1. Let (M, &) be a prequantization circle bundle of a closed integral
symplectic manifold (B, w) such that |, gy # 0, ¢1(TB)|., &) # 0 and, furthermore, H;(B; Q) = 0
forevery odd k or cg > n. Suppose that M admits a strong symplectic filling W such that ¢;(TW) = 0.
Then every non-degenerate Reeb flow on M carries at least two geometrically distinct closed orbits
contractible in W. If additionally, H'(M,R) = O then every contact form on a contact finite quotient
of M carries at least two geometrically distinct closed orbits. Moreover, the closed lifts of iterates of
these orbits to M are contractible in W.

Remark 2.2.17. It follows from the Gysin exact sequence that H' (M, R) = 0 whenever H,(B; Q) = 0.

Remark 2.2.18. When w|, ) = 0 and B satisfies some extra conditions (for instance, when m;(B) =
0 for every i > 2) it is proved in [ Jcf [ J) that every Reeb flow on M (possibly degen-
erate) carries infinitely many simple closed orbits.

Remark 2.2.19. We have that H,.(B; Q) vanishes in odd degrees and c,(TB)|,z) # 0 whenever B
admits a Hamiltonian circle action with isolated fixed points.

Note that the prequantization bundle M has a natural symplectic filling W given by the corre-
sponding disk bundle in the complex line bundle L > B whose first Chern class is —[w]. Suppose
that B is monotone, that is, [w] = Ac;(TB) for some A € R. (We say that B is positive monotone
if A > 0.) One can check that

c1(TW) = (1—A)*c;(TB).

Consequently, when A = 1 we have that ¢;(TW) = 0. Now, suppose that A is an integer bigger
than one and let M be the prequantization bundle of (B, %w) It is easy to see that M is the
finite quotient of M by the Z,-action induced by the obvious S!-action on M. Thus, we have the
following corollary; see Remark 2.2.17.

Corollary 2.2.20 ([ D. Let (M, &) be the prequantization circle bundle of a closed integral
symplectic manifold (B, w) such that w|, gy # 0, ¢1(TB)|r, ) # 0 and, furthermore, H,(B; Q) =0
for every odd k or cg > n. Suppose that [w] = Ac;(TB) for some A € N and that H,(B; Q) = 0. Then
every contact form on a contact finite quotient of M carries at least two geometrically distinct closed
orbits. Moreover, the closed lifts of iterates of these orbits to M have contractible projections to B.

2.2.5. Brieskorn spheres

Given a = (ay,...,a,41) € N"™2 define %3, as the intersection of the hypersurface
o Ant1
Zy +--+2,.7 =0

in C"*2 with the unit sphere $2"*3 — C"*2, It is well known that a, = éZ;li(} a;(z;dz; — Z;dz;)

defines a contact form on ¥, and (%, &, := kera,) is called a Brieskorn manifold. When n is
even, ay = +1 mod 8 and a; = --- = a,,; = 2 we have that X, is diffeomorphic to the sphere
5271 and called a Brieskorn sphere. Brieskorn spheres admit strong symplectic fillings given by

Liouville domains W satisfying c¢;(TW) = 0 and it turns out that W satisfies the hypothesis of
Theorem 2.2.5 with T' = {0}. Therefore, we obtain the following result which is a generalization
of [ , Theorem C].

Corollary 2.2.21 ([ D. Let M be a contact finite quotient of a Brieskorn sphere. Then every
non-degenerate Reeb flow on M carries at least two geometrically distinct closed orbits.
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2.2.6. Connected sums

Let (W, A,) and (W,, A,) be two Liouville domains of dimension 2n + 2. The boundary con-
nected sum of them is again a Liouville domain (W; #W,, A, #A,) and the contact connected sum
(OW,#0W,, E1#&,) is the boundary of it. The following result establishes that the main hypoth-
esis of Theorem 2.2.5 is preserved by boundary connected sums of Liouville domains, furnishing
many other examples of contact manifolds satisfying the assumptions of Theorem 2.2.5.

Theorem 2.2.22 ([ 1. Let (Wy, A1) and (W,, A,) be Liouville domains of dimension 2n + 2
with vanishing first Chern class. Assume that there are non-vanishing sections o, and o, of AEH TW;
and AgHTWZ respectively satisfying the hypothesis of Theorem 2.2.5 with T’ given by the set of all
free homotopy classes. Suppose that ¢, (T (W;#W,)) = 0 and let o be a non-vanishing section of
Ag“lT(Wl #W,) extending o1 and o,. Then W;#W, satisfies the hypothesis of Theorem 2.2.5 with
the grading of CH,,(W; #W,) induced by o.

2.2.7. A question

A question which emerged from all those examples is

Question 2.2.23. Ifa 2n— 1 dimensional manifold M admits a contact form a such that all periodic
Reeb orbits have Conley-Zehnder index at least n + 1 (dynamically convex), is M diffeomorphic to a
sphere?
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3. The methods

3.1. Action functional

The problem (1.2.1) of finding periodic orbits on a fixed energy level can be transformed in finding
periodic orbits with fixed period in the whole space. Indeed, solutions (T,y) of

x(t) =Xy :
x(0) = x(S)
come in continuous families parametrized by the energy level E. More precisely, if ¥ is a solution
of
x(t)=X
(£) =X, (3.1.1)
x(0) = x(1)

then, y : [0, T] — X is a closed characteristic with

This reduces the fixed energy problem to the fixed period problem.
It is known, since Lagrange, that solutions of problem (3.1.1) correspond to critical points of
the action functional.

Ay, 1 C*(SL,R*) >R

1

1
ey (1) = =4 | 970 v(©de~ | Hy (r(0)de.

0

3.1.1. Strategy to find periodic orbits

In view of Conjecture 1.2.2, the goal is to find critical points of the action functional corresponding
to geometrically distinct periodic orbits. So far, all the results are proved in two steps. The first one
is to find critical points. This is done almost always using some type of Morse theoretic argument
(recently, [ ], also introduce the use of Lusternik—Schnirelmann theory). The second step (for
which most of the assumptions in the statements are for) is to distinguish, among the critical points
found in step 1, which one originate from iterate of the same orbit and which one correspond to
geometrically distinct periodic orbits. Arguments for this second step use mostly combinatorial
properties of the Conley-Zehnder index. We won’t recall the definition of the Conley-Zehnder
index and its properties; we refer to [ , , , ] and references therein.
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3. The methods

3.1.2. Modifying the Hamiltonian

Since Hg is autonomous, every 1-periodic orbit, TH, of X Hy» corresponding to the periodic Reeb

orbit v, gives birth to a S'-family of 1-periodic orbits of X Hy which is denoted by S,.. For Morse
theoretic arguments, it is easier to have isolated critical points.

We can modify the Hamiltonian Hg, as in [ ], to deform this autonomous Hamiltonian
into a time-dependent Hamiltonian Hs with only non degenerate 1-periodic orbits. The Hamilto-
nian H; (6, p) will coincide with Hg (p) outside a neighbourhood of the image of the non-constant
1-periodic orbits of X;;. We proceed as follows:

We choose a perfect Morse function on the circle, f : S* — R.
For each 1-periodic orbit TH, of X Hy» We consider the integer lmﬂ so that yy . isa lYHﬁ -fold cover

of a simple periodic orbit:

[

Yy = max{k € N|yp, (6 + 3) = Y, (0) YO €S},

This number [, is constant on the S!-family of 1-periodic orbits of Xj; corresponding to the
B
periodic Reeb orbit y. We set [, = ZYHﬁ = % where T is the period of y.

We choose a symplectic trivialization v := (q,,) : U, — V S! x R?"~! between open
neighborhoods U, c W xR™ W of the image of T, and V of ! x {0} such that v (yHﬁ (0)) =

[,0. Here S* x R"~! is endowed with the standard symplectic form. Let § : S* x R**~! — [0, 1]
be a smooth cutoff function supported in a small neighborhood of S! x {0} such that gkwo} =1.

We denote by fy the function defined on S, by f oy -
Y
For 5 >0 and (6,p,p) €S' x Uy, we define

H5(0,p,p) :==h(p)+5& (¥ (p,p))f (1(p,p) —1,0). (3.1.2)
The Hamiltonian Hy coincides with Hg outside the open sets St x Uy.

Lemma 3.1.1 ([ , 1. The 1-periodic obits of Hs, for & small enough, are either con-
stant orbits (the same as those of Hg) or nonconstant orbits which are non degenerate and form pairs

(7,7) which coincide with the orbits in S, starting at the minimum and the maximum of fy respec-
tively, for each Reeb orbit y such that S, appears in the 1-periodic orbits of Hg. Their Conley-Zehnder

index is given by Mcz(?) =Ucz(y) —1and Mcz(?v’) = ez (7).
3.1.3. Reformulation of the functional

We can reformulate problem (3.1.1) as finding 1-periodic orbits of Hs. More generally, Let H :
S! x R?" — R be a smooth time-periodic Hamiltonian on R?". The 1-periodic orbits of X;; are the
critical points of the action functional

oy : C*(SLR™M) >R

1 1
Ay (y) = — %fo Jy(t)-y(t)dt —L H(t,y(t))dt (3.1.3)
:_f},mo_fH(t,y(t))dt. (3.1.4)
0 0
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3.2. Equivariant symplectic homology

The idea to approach Question 1.1.2 is to have a homology for this action functional and mim-
icking the Morse inequalities. The action functional is not bounded from below nor from above.
To build a homology of this functional, three ideas have been developped.

1. Build an infinite dimensional version of Morse homology (Floer / symplectic homology)

(83.2).

2. Modify the functional to a new functional (Clarke-Ekeland dual) where one can apply finite
dimensional Morse homology (§3.3).

3. Do a relative homology so that all intersections of stable and unstable manifolds are finite
dimensional (§3.4)

3.2. Equivariant symplectic homology

(Positive) symplectic homology was developed by Viterbo [ ], using works of Cieliebak, Floer,
and Hofer [ , ]. The S'-equivariant version of (positive) symplectic homology was
originally defined by Viterbo [ ], and an alternate definition using family Floer homology
was given by Bourgeois-Oancea [ , 82.2], following a suggestion of Seidel [ 1. We will
use the family Floer homology definition here which is often amenable to computations. We follow
the treatment in [ ], with some minor tweaks which do not affect the results.

Let (X, A) be a Liouville domain, so that X is a compact smooth manifold with boundary and
A € Q1(X) has the properties that dA is non-degenerate and that 1|,y is a contact form. We say
that (X, A) is non-degenerate if the linearized return map of the Reeb flow at each closed Reeb
orbit on 0X, acting on the contact hyperplane ker A, does not have 1 as an eigenvalue. We will
also assume that the first Chern class of TX vanishes on 7, (X).

In this situation, for each L € R we have an L-filtered positive S'-equivariant symplectic ho-
mology, SHS L (X, A), which will be defined properly in §3.2.3.3. To simplify notation, we often
denote SHS" L (X,7A) by CHE (X, 1) below?. These are Q-vector? spaces that come equipped with
maps 1, ;¢ CH"(X,A) — CH"2(X, A) for L; < Ly such that 1; ; is the identity and 1, ; o1, ;, =
U, L .3 The assumption on ¢; (TX) implies that the CH (X, A) are Z-graded. The (unfiltered) pos-
itive S-equivariant symplectic homology of (X, 1) is CH(X, ) = lim, CH L (X, 1) where the direct
limit is constructed using the maps t;_ .

Proposition 3.2.1 ([ , , 1). The positive S!-equivariant symplectic homology CH (X, A)
has the following properties:

(Free homotopy classes) CH(X, 1) has a direct sum decomposition

H(X,A) =@ CH(X,A,T)
r

where T ranges over free homotopy classes of loops in X. We let CH(X, A, 0) denote the sum-
mand corresponding to contractible loops in X.

!The reason for this notation is that positive S'-equivariant symplectic homology can be regarded as a substitute for
linearized contact homology, which can be defined without transversality difficulties [ , 83.2].

2It is also possible to define positive S-equivariant symplectic homology with integer coefficients. However the torsion
in the latter is not relevant to the applications explained here, and it will simplify our discussion to discard it.

3Warning: In [ ] the map that we denote by 1, ; is denoted by 1, ; .
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3. The methods
(Action filtration) For each L € R, there is a Q-module CH (X, A,T) which is an invariant of
(X, A,T). If Ly < Lo, then there is a well-defined map
1,1, CH"(X,2,T) — CH"2(X,A,T). (3.2.1)
These maps form a directed system, and we have the direct limit

Llim CHY(X,A,T) = CH(X,A,T).
—00

We denote the resulting map CH(X,A,T') — CH(X,A,T) by 1,. We write CH(X,1) =
@D CH: (X, A,T).

(U map) There is a distinguished map
U:CHX,A,T)— CH(X,A,T),
which respects the action filtration in the following sense: For each L € R there is a map
U, : CHY(X,A,T) — CHY(X,A,T).
IfLy <Ly thenUp, oty 1, =15, 1,°Ur,. The map U is the direct limit of the maps Uy, i.e.
yoU,=Uo1;. (3.2.2)

(Reeb Orbits) Assume as above that (X, A) is a non-degenerate Liouville domain with ¢;(TX )|, (x) =
0. There is an R-filtered chain complex (C Ci(X,A), &), freely generated over Q by the good?
Reeb orbits of A|px with the generator corresponding to a Reeb orbit y having filtration level
equal to the action SY A and grading equal to the Conley-Zehnder index of y, such that for each

k € Z and L € R the space CH,% (X, A) is the kth homology of the subcomplex CCi (X,A) of
CC.(X,A) consisting of elements with filtration level at most L, and such that for L; < L,
the image of the map 1, ; : CHil(X,A) — CH,f2 (X, A) is isomorphic to the image of the
inclusion-induced map Hy, (CCi1 (X,7)) — Hy (CCi2 (X,2)).

Moreover, the boundary operator 0 on CC, (X, A) strictly decreases filtration, in the sense that
if x € CCL(X,A) then there is € > 0 such that dx € CCL~¢(X, ).

(6 map) There is a distinguished map
§:CH(X,A,T) — H,(X,0X;Q) ® H,(BS'; Q)
which vanishes whenever T' # 0.
(Scaling) If r is a positive real number, then there are canonical isomorphisms

CH(X,A,T) = CH(X,rA,T),
CHY(X,A,T) — CH™ (X,rA,T)

which commute with all of the above maps.

“Recall that a Reeb orbit y is bad if it is an even degree multiple cover of another Reeb orbit ¥’ such that the Conley-
Zehnder indices of y and y’ have opposite parity. Otherwise, y is good.
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3.2. Equivariant symplectic homology

(Star-Shaped Domains) If X is a nice star-shaped domain in R*" and A is the restriction of the
standard Liouville form Ay = %Z?:l(xi dy; — y;dx;), then:

(i) CH(X, ) and CH" (X, Ay) have canonical Z gradings. With respect to this grading, we

have
Q, if*en+1+2N,

0, otherwise. (3.2.3)

CH, (X, ) ~ {

(ii) The map & sends a generator of CH,,_1 ,91(X, Aq) to a generator of Hy, (X, 0X; Q) tensor
a generator of Hy,_(BS'; Q).

(iii) The U map has degree —2 and is an isomorphism
CH* (Xa )LO) — CH*—Z (X) AO))

except when * =n + 1.
(iv) If Aylsx is nondegenerate and has no Reeb orbit y with .o/ (y) € (Lq,L,] and CZ(y) =
n— 1+ 2k, then the map

(X, 2o) — CH™

. Ly
ULy - CH n—1+2k

n—1+2k (XJAO)

is surjective.

Now suppose that (X', ') is another nondegenerate Liouville domain and ¢ : (X, 1) — (X’, 1)
is a generalized Liouville embedding (see Definition 6.3.4) with ¢(X) < int(X’). One can then
define a transfer morphism

®:CH(X',M)— CH(X, ),

Proposition 3.2.2 ([ , 1. The transfer morphism ® has the following properties:

(Action) & respects the action filtration in the following sense: For each L € R there are distin-
guished maps
ol : cH' (X', V) — CHL(X,2)

such that if L; < L, then
CI)LZ o lesLl = lLZsLl O@Ll, (3.2.4)

and & is the direct limit of the maps ®*, i.e.
lL Oq)L :q)OlL. (3.25)
(Functoriality) The transfer map is functorial in the sense that if (X;,1;), (X, ), and (X3, 23)

are Liouville domains domains and if ¢ : X; — X, and Y : X, — X5 are either general-
ized Liouville embeddings or isomorphisms of Liouville domains, then the following diagram is

commutative:
cI)L L
L k4 L ¢ L
CH (X3,),3)ﬁ'CH (XZ,Az)ﬁCH (X]_,Al). (3.26)

L
W
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3. The methods

(Commutativity with U) For each L € R, the diagram

CHM (X', ) —% CH(X,2)

lUL lUL (3.2.7)
CHM (X', ) —% CH(X,2)

commutes.

(Commutativity with &) The diagram

CH(X',\) -2, CH(X, )
l& la (3.2.8)
H,(X',X';Q) ®H, (BS}; Q) 225 H,(X,0X;Q) ®H,(BS';Q)

commutes. Here p : H,(X',0X';Q) — H, (X, 0X; Q) denotes the composition
H, (X', 0X'; Q) — H, (X', X\ (int(X)); @) —> H, (¢(X),  (0X); Q) = H, (X, 2X; Q)

where the first map is the map on relative homology induced by the triple (X', X"\ ¢ (int(X)), 0X'),
and the second map is excision.

3.2.1. Symplectic homology

Let (X, A) be a Liouville domain with boundary Y. Let R, denote the Reeb vector field associated to
AonY. Below, let Spec(Y, A) denote the set of periods of Reeb orbits, and let € = % min Spec(Y, A).

Recall that the completion (X, 1) of (X, A) is defined by

> ~ A onX,
X:=Xu([0,0)xY) and A:=
ePAly on[0,00) xY

where p denotes the [0, c0) coordinate. Write & = dA. Consider a 1-periodic Hamiltonian on X,
i.e. a smooth function
H:S$'xX —R

where S! = R/Z. Such a function H determines a vector field X g on X for each 0 € S!, defined
by &(Xf,) = dH(6,-). Let 2 (H) denote the set of 1-periodic orbits of Xy, i.e. smooth maps

v : S! — X satisfying the equation y’(8) =Xf1 (v(9)).

Definition 3.2.3. An admissible Hamiltonian is a smooth function H : S* x X >R satisfying the
following conditions:

(1) The restriction of H to S' x X is negative, autonomous (i.e. S'-independent), and C%-small (so
that there are no non-constant 1-periodic orbits). Furthermore,

H> —e¢ (3.2.9)

on S! x X.
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3.2. Equivariant symplectic homology

(2) There exists po = 0 such that on S x [pg,0) x Y we have
H(0,p,y) = Bel +p’ (3.2.10)
with 0 < f8 ¢ Spec(Y,A) and 3’ € R. The constant 3 is called the limiting slope of H.

(3) There exists a small, strictly convex, increasing function h : [1,eP°] — R such that on S' x
[0, p0] x Y, the function H is C2-close to the function sending (0, p,x) — h(eP). The precise
sense of “small” and “close” that we need here is explained in Remarks 3.2.4 and 3.2.8.

(4) The Hamiltonian H is nondegenerate, i.e. all 1-periodic orbits of Xy; are nondegenerate.
We denote the set of admissible Hamiltonians by #,.

Remark 3.2.4. Condition (1) implies that the only 1-periodic orbits of Xy in X are constants; they
correspond to critical points of H.

The significance of condition (2) is as follows. On S x [0, ) x Y, for a Hamiltonian of the form
H.(0,p,y) =hy(ef), we have

Xfj (p,¥) = —hy(e”)Ra(¥)-

Hence for such a Hamitonian H, with hy increasing, a 1-periodic orbit of Xp;, maps to alevel {p} x Y,
and the image of its projection to Y is the image of a (not necessarily simple) periodic Reeb orbit of
period h') (e?). In particular, condition (2) implies that there is no 1-periodic orbit of Xy in [pg, %) x
Y.

Condition (3) ensures that for any non-constant 1-periodic orbit yy of Xy, there exists a (not
necessarily simple) periodic Reeb orbit y of period T < [3 such that the image of yy is close to the
image of y in {p} x Y where T = h'(ef).

Definition 3.2.5. An S'-family of almost complex structures J : S* — End(T)/(\ ) is admissible if it
satisfies the following conditions:

o J9 is &-compatible for each 6 € S'.

e There exists p; = 0 such that on [p;,0) x Y, the almost complex structure J 9 does not depend
on 0, is invariant under translation of p, sends & to itself compatibly with dA, and satisfies

J%(0,) =Ry. (3.2.11)
We denote the set of all admissible J by ¢.
GivenJ € #¢,and y_,y, € Z(H), let ﬁ(y,,er;J) denote the set of maps
u:Rx8'—X

satisfying Floer’s equation

%(s, 0) +J° (u(s, 0)) <2—g(s, 0) — X9 (u(s, 9))) =0 (3.2.12)

as well as the asymptotic conditions

i u(s,) =7
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3. The methods

If J is generic and u € M (y_,y4:;J), then M(y_, y.;J) is a manifold near u whose dimension is
the Fredholm index of u defined by

ind(u) = CZ;(y4) — CZ:(y-).

Here CZ. denotes the Conley-Zehnder index computed using trivializations 7 of 7, TX that extend

to a trivialization of u*TX. Note that R acts on M(}f_, y,;J) by translation of the domain; we
denote the quotient by M (y_,y;J).

Definition 3.2.6. Let H € /.4, and let J € _¢ be generic. Define the Floer chain complex (CF(H,J), 0)
as follows. The chain module CF (H,J) is the free Q-module® generated by the set of 1-periodic orbits
P H). If y_,y4 € Z(H), then the coefficient of vy, in 0y_ is obtained by counting Fredholm index
1 points in M (y_,y4;J) with signs determined by a system of coherent orientations as in [’ I
(The chain complexes for different choices of coherent orientations are canonically isomorphic.)

Let HF (H,J) denote the homology of the chain complex (CF (H,J), 0). Given H, the homologies
for different choices of generic J are canonically isomorphic to each other, so we can denote this
homology simply by HF (H).

The construction of the above canonical isomorphisms is a special case of the following more
general construction. Given two admissible Hamiltonians Hy, Hy € #4, write H; < Hy if H,(0,x) <
H,(0,x) for all (8, x) € S! x X. In this situation, one defines a continuation morphism HF (H,) —
HF(H,) as follows; cf. [ , Thm. 4.5] and the references therein. Choose generic J;,J, € ¢
so that the chain complexes CF(H;,J;) are defined for i = 1,2. Choose a generic homotopy
{(H,,J;)}ser such that Hy satisfies equation (3.2.10) for some f, 3’ depending on s; J; € ¢ for
each s € R; 0,H; > 0; (H,,J,) = (Hy,J;) for s << 0; and (H,,J;) = (H,,J,) for s >> 0. One
then defines a chain map CF(H,,J;) — CF(H,,J,) as a signed count of Fredholm index 0 maps
u:R x S! — X satisfying the equation

du 0 ou 0

= ou(a—Q—XHsou> ~0 (3.2.13)
and the asymptotic conditions lim,_, . u(s,-) = y; and lim,_,, u(s,-) = y,. The induced map
on homology gives a well-defined map HF (H,) — HF (H,). If H, < Hj, then the continuation
map HF(H,) — HF(H,) is the composition of the continuation maps HF (H;) — HF(H,) and
HF(H,) — HF (Hs).

Definition 3.2.7. We define the symplectic homology of (X, A) to be the direct limit

SH(X,7A):= lim HF(H)
Hemdrﬂ

with respect to the partial order < and continuation maps defined above.

5It is also possible to use Z coefficients here, but we will use Q coefficients in order to later establish the Reeb Orbits
property in Proposition 3.2.1, which leads to the Reeb Orbits property of the capacities ¢,. In special cases when
the Conley-Zehnder index of a 1-periodic orbit is unambiguously defined, for example when all 1-periodic orbits
are contractible and ¢; (TX)|,x) = O, the chain complex is graded by minus the Conley-Zehnder index.
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3.2. Equivariant symplectic homology

3.2.2. Positive symplectic homology

Positive symplectic homology is a modification of symplectic homology in which constant 1-
periodic orbits are discarded.

To explain this, let H : St x X — R be a Hamiltonian in Hyq- The Hamiltonian action functional
oy 1 CP(S!,X) — R is defined by

szH(y)::—f rA—| H(0,7(6))do6.
Sl Sl

If J € ¢, then the differential on the chain complex (CF(H,J), ) decreases the Hamiltonian
action .«/y. As a result, for any L € R, we have a subcomplex CF<L(H,J) of CF(H,J), generated
by the 1-periodic orbits with Hamiltonian action less than or equal to L.

To see what this subcomplex can look like, note that the 1-periodic orbits of H € 54 fall into
two classes: (i) constant orbits corresponding to critical points in X, and (ii) non-constant orbits
contained in [0, po| x Y.

If x is a critical point of H on X, then the action of the corresponding constant orbit is equal to
—H(x). By (3.2.9), this is less than e.

By Remark 3.2.4, a non-constant 1-periodic orbit of X} is close to a 1-periodic orbit of —h’(e” )R,
located in {p} x Y for p € [0, py] with h’(eP) € Spec(Y,A). The Hamiltonian action of the latter
loop is given by

—j ePA(—h'(eP)R;)dO — | h(eP)dO = ePR/(eP) — h(eP). (3.2.14)
St St

Since h is strictly convex, the right hand side is a strictly increasing function of p.

Remark 3.2.8. In Definition 3.2.3, we assume that h is sufficiently small so that the right hand side
of (3.2.14) is close to the period h'(ef), and in particular greater than €. We also assume that H is
sufficiently close to h(ef) on S* x [0, py] x Y so that the Hamiltonian actions of the 1-periodic orbits
are well approximated by the right hand side of (3.2.14), so that:

(i) The Hamiltonian action of every 1-periodic orbit of Xy corresponding to a critical point on X is
less than e; and the Hamiltonian action of every other 1-periodic orbit is greater than e.

(ii) If y is a Reeb orbit of period T < 3, and if v’ is a 1-periodic orbit of Xy in [0, po] x Y associated
to v, then
|- (y) = T| <min {f~", 58ap(B)}

Here gap(f3) denotes the minimum difference between two elements of Spec(Y, A) that are less
than .

We can now define positive symplectic homology.

Definition 3.2.9. Let (X, A) be a Liouville domain, let H be a Hamiltonian in #,, and let J € .
Consider the quotient complex
CF(H,J)

+ —
CF (H,J) = CF<€—(H,J)

The homology of the quotient complex is independent of J, so we can denote this homology by
HF"(H). More generally, if H; < H,, then the chain map used to define the continuation map
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3. The methods

HF(H,) — HF(H,) descends to the quotient, since the Hamiltonian action is nonincreasing along a
solution of (3.2.13) when the homotopy is nondecreasing. Thus we obtain a well-defined continuation
map HF*(H,) — HF " (H,) satisfying the same properties as before.

We now define the positive symplectic homology of (X, A) to be the direct limit

SH*(X,A):= lim HF"(H).
HeAyy

Positive symplectic homology can sometimes be better understood using certain special admis-
sible Hamiltonians obtained as follows.

Definition 3.2.10. [ JLet (X, A) be a Liouville domain. An admissible Morse-Bott Hamiltonian

X

is an autonomous Hamiltonian H : X — R such that:

(1) The restriction of H to X is a Morse function which is negative and C?-small (so that the Hamil-
tonian vector field has no non-constant 1-periodic orbits).

(2) There exists py = 0 such that on [pg,0) x Y we have

H(p,x) = e’ + '
with 0 < f8 ¢ Spec(Y,A) and 3’ € R.

(3) On [0,py) x Y we have
H(p,x) = h(eP)

where h is as in Definition 3.2.3, and moreover " —h’ > 0.
We denote the set of admissible Morse-Bott Hamiltonians by 56z.

Given H € #, each 1-periodic orbit of Xj; is either: (i) a constant orbit corresponding to
a critical point of H in X, or (ii) a non-constant 1-periodic orbit, with image in {p} x Y for
p € (0, pg), whose projection to Y has the same image as a Reeb orbit of period e’ h’(p). Since H
is autonomous, every Reeb orbit y with period less than 3 gives rise to an S! family of 1-periodic
orbits of Xy, which we denote by S, .

An admissible Morse-Bott Hamiltonian as in Definition 3.2.10 can be deformed into an admis-
sible Hamiltonian as in Definition 3.2.3, which will be time-dependent and have nondegenerate
1-periodic orbits:

Lemma 3.2.11. ([ , Prop. 2.2] and [ , Lem. 3.4]) An admissible Morse-Bott Hamil-
tonian H can be perturbed to an admissible Hamiltonian H' whose 1-periodic orbits consist of the
following:

(i) Constant orbits at the critical points of H.

(ii) For each Reeb orbit y with period less than f, two nondegenerate orbits ¥ and y. Given a
trivialization T of &|y, their Conley-Zehnder indices are given by — CZ.(Y) = CZ.(y) + 1 and

—CZ.(¥) = CZ:(y).

Remark 3.2.12. The references [ Jand [ Juse the notation ¥y, instead of ¥, and ¥ pjax
instead of . The motivation is that these orbits are distinguished in their S'-family as critical points
of a perfect Morse function on S*.
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3.2. Equivariant symplectic homology

3.2.3. S'-equivariant symplectic homology
3.2.3.1. S'-equivariant homology

Let X be a topological space endowed with an S'-action. If the S-action is free, X /g1 is a topo-
logical space. The aim of S!-equivariant homology is to build on the space X a homology which
coincides, when the action is free, with the singular homology of the quotient. One considers the
universal principal S'-bundle ES' — BS!.The diagonal action on X x ES! is free and one denotes
by X x g1 ES! the quotient (X x ES!)/g1.

Definition 3.2.13 (Borel). Let X be a topological space endowed with an S'-action. The S'-equivariant
homology of X with Z-coefficients is

HS' (X) := H, (X xg1 ES1, Z).

An axiomatic definition of equivariant homology was stated later by Basu, [Bas], based on the
following Proposition:

Proposition 3.2.14. The S'-equivariant homology with Z-coefficients is a functor Hﬁl from the

category of S'-spaces and S'-maps to the category of abelian groups and homomorphisms. Let X
1

be a topological space endowed with a S*-action, Hi associates to X a sequence of abelian groups:

Hfl (X,Z),i > 0. Let f : X — Y be an S'-equivariant map between topological spaces endowed with
an S'-action. It induces homomorphisms fiS1 : Hfl X,z) — Hl.S1 (Y,Z). The functor Hil satisfy the
two following conditions:

1. If the S'-action on X is free, then Hil (X,Z) =H,(X/g1,Z) (the singular homology of X /g1).

2. If f : X — Y induces an isomorphism f, : H.(X,Z) — H,(Y,Z), then it also induces an
isomorphism 5" : HS' (X,Z) — HS (Y, Z).

Any functor satisfying the two conditions of Proposition 3.2.14 is given by Definition 3.2.13.
Indeed, the projection pr; : X x ES' — X : (x,e) > x is an S!-equivariant map which induces an
isomorphism

pri. H, (X x ES',Z) - H,(X,Z)

since ES! is contractible. By 2, pr;, induces an isomorphism
pris :HS (X x ES',Z) —» HS (X, ).

Condition 1 then implies
HS' (X,Z) =~ H,(X g ES', 7).

3.2.3.2. S'-equivariant symplectic homology
Let (X, 1) be a Liouville domain with boundary Y. We now review how to define the S*-equivariant
symplectic homology SH s! (X, 7).

The S!-equivariant symplectic homology SH® ' (X, A) is defined as a limit as N — oo of homolo-

gies SHS'N (X,A), where N is a nonnegative integer. To define the latter, fix the perfect Morse

function fy : CPY — R defined by
N o
SN W
N 2
2lj—o W2

(WP iw]) =
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Let fy : S*N+1 R denote the pullback of fy to S2V*+1. We will consider gradient flow lines of
fx and fy with respect to the standard metric on S?N*! and the metric that this induces on CPN.

Remark 3.2.15. The family of functions fy has the following two properties which are needed below.
We have two isometric inclusions iy, i, : CPN — CPN ' defined by ig([zo:...:2x]) = [20: ... 125 :
Oland i;([zg:...:2x5]) =[0:29:...:2y] Then:

(1) The images of iy and i, are invariant under the gradient flow of fy ..

(2) We have fy = fy41 019 = fy+1 011 + constant, so that the gradient flow of fy_1 pulls back via
i or i to the gradient flow of fy.

Now choose a “parametrized Hamiltonian”
H:S'xX xS+l LR (3.2.15)
which is S!-invariant in the sense that
H(0+ ¢,x,pz)=H(0,x,2) VO, peS' =R/Z, xeX, ze SN+,
Here the action of S = R/Z on S2V ! = CN*! is defined by ¢ -z = e*™¥3.
Definition 3.2.16. A parametrized Hamiltonian H as above is admissible if:

(i) For each z € S>N*1, the Hamiltonian
H,=H(,2):S"xX —R
satisfies conditions (1), (2), and (3) in Definition 3.2.3, with 3 and 3’ independent of z.
(i1) If z is a critical point of fx, then the 1-periodic orbits of H, are nondegenerate.
(iii) H is nondecreasing along downward gradient flow lines of fN.

Let 5 (fy,H) denote the set of pairs (z,7), where z € S?N*1 is a critical point of fy, and y is
a 1-periodic orbit of the Hamitonian H,. Note that S! acts freely on the set #° ' ( fn, H ) by

¢ (z7)= (¢ z,y(-—9)).

Ifp=(z7)€ »S' (fu,H), let S, denote the orbit of (z,y) under this S action.
Next, choose a generic map

J:S'x$MNT o g, (0,2)—JY, (3.2.16)
which is S1-invariant in the sense that
0 0
for all p,0 € S' and z € S2N+1,
1, ~ —~
Letp™ = (z7,y")andp™ = (z*,y™) be distinct elements of 2% (fy,H). Define /4 (S,-,S,+;J)

to be the set of pairs (1),u), where n : R — $?*N*1 and u : R x S* — X, satisfying the following
equations:

N+ WN(n) =0,

0
O+ ou(dpu —Xyo 1) =0, (3.2.17)
Tim_ (n(s)us. ) €5,
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Here the middle equation is a modification of Floer’s equation (3.2.12) which is “parametrized by

—~

n”. Note that R acts on the set .#(S,-,S,+;J) by reparametrization: if o € R, then

o-(nu) = (n(-—0),u(-—0,").

In addition, S acts on the set (Sp-,S,+3J) as follows: if T € S', then
T (n3u) = (T : n:u("' - T))

Let 45 (Sp—»Sp+;J) denote the quotient of the set ///l\(Spf, ,+3J) by these actions of R and S'.

If J is generic, then .45’ (S J) is a manifold near (n,u) of dimension

p=>°9pts

ind(n,u) = (ind(fy,2") — CZ:(y")) — (ind(fy,z") = CZ:(y")) - 1.

Here ind(fy,z*) denotes the Morse index of the critical point z* of fy, and CZ, denotes the

Conley-Zehnder index with respect to a trivialization 7 of (Yi)*T}? that extends over u*TX.

Definition 3.2.17. [ , §2.2 | Define a chain complex (CFSl’N (H,J), 851> as follows. The chain

module CFS"N (H,J) is the free Q module® generated by the orbits Sp. If Sp—, Sp+ are two such orbits,

then the coefficient of S,+ in 85181,7 is a signed count of elements (n,u) of //lSI(S J) with
ind(n,u) = 1.

p—>°Op+>

We denote the homology of this chain complex by HF SN (H). This does not depend on the
choice of J, by the usual continuation argument; one defines continuation chain maps using a
modification of (3.2.17) in which the second line is replaced by an “n-parametrized” version of
Floer’s continuation equation (3.2.13).

We now define a partial order on the set of pairs (N, H), where N is a nonnegative integer and
H is an admissible parametrized Hamiltonian (3.2.15), as follows. Let?o : 82N+, 52N+3 denote
the inclusion sending z — (z,0). (This lifts the inclusion i, defined in Remark 3.2.15.) Then
(Ny,H;) < (Ny, H,) if and only if:

e N; <N,, and
Nk _ . . S
e H; < (iy )M>"NMH, pointwise on S x X x §2M+1,

: . S 1 1 . . .
In this case we can define a continuation map HF> *»(H;) — HFS **2(H,) using an increasing

~ %

homotopy from H; to (iy )Y "MH, on S x X x §2Ni+1,

Definition 3.2.18. Define the S'-equivariant symplectic homology

st 1 SIN
SH* (X,)L) .—h_n}HF* (H).
NH

It is sometimes useful to describe S'-equivariant symplectic homology in terms of individual
Hamiltonians on S! x X, rather than $?V*!-families of them, by the following procedure.

Remark 3.2.19. [ , §2.1.1 ] Fix an admissible Hamiltonian H' : S* xX — Randa nonnegative
integer N. Consider a sequence of admissible parametrized Hamiltonians {Hy }x_o, .y asin (3.2.15),
where H, is defined on S* x X x SZ+1 with the following properties:

%It is also possible to define SHS 1’*, using Z coefficients, as with SH.
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e Foreach k =0,...,N — 1, the pullbacks ?;;Hkﬂ and ?{Hkﬂ agree with H; up to a constant.
Here 17 : S2+1 — §2k%3 denotes the lift of i; sending z — (0, z).

e Foreachk =0,...,N and each z € Crit(fk), we have
Hi(0,x,2) =H' (6 — ¢(2),x) +c. (3.2.18)
Here c is a constant depending on k and z; and the map ¢ : Crit( fk) — S! sends a critical
point (0,...,0,62”i¢,0,...,0) — .
Next, choose a sequence of families of almost complex structures Jy : S! x §2k+1 — B4 ()? ) for k =

0,...,N such that:

e J, is generic so that the chain complex (CFSl’k(Hk,Jk), 851) is defined.
® igJir1 = 1Jky1 = Ik

The chain complex (CFSI’N (Hy,Jn)s 031> can now be described as follows. By (3.2.18), we can
identify the chain module as

CFS"N(Hy,Jy) = Q{1,u,...,u"} ®q CF(H',Jy). (3.2.19)

This identification sends a pair (z,y), where z € Crit(fN) is a lift of an index 2k critical point of fy
and vy is a reparametrization of a 1-periodic orbit y' of H', to uX @'
Since the sequences {H; } and {J} } respect the inclusions i, the differential has the form

k
& Wk @y) =D uk @ ¢;(y) (3.2.20)

i=0

where the operator @; on CF(H',J,) does not depend on k. In particular, ¢ is the differential on
CF(H',Jy). We can also formally write

s! N —i
07 = 2 u ' ®yp;
i=0

where it is understood that u™" annihilates terms of the form v/ ® y with i > j.

The usual continuation arguments show that the homology of this chain complex does not depend
on the choice of sequences {H; } and {J; } satisfying the above assumptions. We denote this homology
by HFS"N (H'),

Since in the above construction we assume that the sequences {Hy} and {J; } respect the inclusions
1o, it follows that when N; < N, we have a well-defined map HF $hN (H') — HF SL.N, (H') induced
by inclusion of chain complexes.

As before, if H] < H), then there is a continuation map HF SN (Hy) — HF SLN (H}) satisfying the
usual properties.

Asin [ , §2.3], we now have:

Proposition 3.2.20. The S'-equivariant homology of (X, ) is given by

st : SLN
SH, (X,A)= lim HF>"(H').
NeN, H'e#y
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3.2.3.3. Positive S'-equivariant symplectic homology

As for symplectic homology, S!-equivariant symplectic homology also has a positive version in
which constant 1-periodic orbits are discarded.

Definition 3.2.21. Let H : S* x X x $2N*1 _, R be an admissible parametrized Hamiltonian. The
parametrized action functional .e7j; : SV ! x C®(S!,X) — R is defined by

Ay (2,7) 1= —fi—J;lH(Q,y(Q),z)dQ. (3.2.21)
s

Lemma 3.2.22. If H is an admissible parametrized Hamiltonian, and if J is a generic S'-invariant
1 1

family of almost complex structures as in (3.2.16), then the differential 3° on CFS N (H,J) does not

increase the parametrized action (3.2.21).

Proof. Given a solution (n,u) to the equations (3.2.17), one can think of 7 as fixed and regard u
as a solution to an instance of equation (3.2.13), where J; and H; in (3.2.13) are determined by
1. By condition (iii) in Definition 3.2.16, this instance of (3.2.13) corresponds to a nondecreas-
ing homotopy of Hamiltonians. Consequently, the action is nonincreasing along this solution of
(3.2.13) as before. O

It follows from Lemma 3.2.22 that for any L € R, we have a subcomplex CFS V<L (H,J) of
CFS'N (H,J), spanned by S'-orbits of pairs (z,y) where z € Crit(fy) and y is a 1-periodic orbit of
H, with .o/ (2,7) < L.

As in §3.2.2, if the S'-orbit of (z,7) is a generator of CF SN (H,J), then there are two possibil-
ities: (i) y is a constant orbit corresponding to a critical point of H, on X, and ./ (2,y) < €; or
(ii) y is close to a Reeb orbit in {p} x Y with period —h’(ef), and ./ (z,y) is close to this period;
in particular ./ (z,7) > €.

Definition 3.2.23. Consider the quotient complex

CFS"N(H,J)
CFS'N.<¢(H,J) )

CFS'"NH(H,J) = (3.2.22)

As in Definition 3.2.9, the homology of the quotient complex is independent of J, so we can denote
1 1 1

this homology by HFS *N-* (H); and we have continuation maps HFS *Nvt(H,) — HFS N>*(H,)

when (Ny,H;) < (Ny,H,). We now define the positive S!-equivariant symplectic homology by

SHS (X, A) := Lim HFS N+ (H). (3.2.23)
N,H

Returning to the situation of Remark 3.2.19, define HF SLN "t(H') to be the homology of the
quotient of the chain complex (3.2.19) by the subcomplex spanned by u* ® y where  is a critical
point of H' in X. We then have the following analogue of Proposition 3.2.20:

Proposition 3.2.24. The positive S'-equivariant homology of (X, A) is given by

SHS ™t (X,A)= lim HFSNH(H').
NeN, H'e#y
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3.3. Clarke duality
3.3.1. Origin of Clarke duality

The Legendre tranform of a function F € C*(RN,R) is defined by the implicit formula
F*(v) = (v,u) — F(u)
v =VF(u)

when VF is invertible. It has the remarkable property that
(VF)~! = VF*,

Its geometrical meaning is the following: the tangent hyperplane to the graph of F with normal
[v,1] is given by {[w,s] € RN "!|s = (w,v) — F*(v)}. Thus the graph of F can be described in a
dual way, either as a set of points or as an envelope of tangent hyperplanes.

The Fenchel transform extends the Legendre transform to not necessarily smooth convex func-
tions by using affine minorants instead of tangent hyperplanes. To motivate, notice that when F is
convex, the function F, : u — (v,u) —F(u) is concave and the definition of the Legendre transform
just expresses that u is a critical point of F,, and hence the global maximum of F, is achieved at
u. Consequently,

F*(v) = sup [(v,w) — F(w)]
weRn
and the right-hand member of this equality, which is defined as an element of | — o0, co] without
the smoothness and invertibility conditions required by the Legendre transforms is, by definition,
the Fenchel transform of the convex function F.

In classical Hamiltonian mechanics, if the Lagrangian L(t,q,r) is given, the corresponding

Hamiltonian H = H(t,q, p) is the Legendre transform of L(t,q, ), namely

H(t)q:p> = (p:q) —L(t,q,r)

where r is expressed in terms of (t, g, p) through the relation p = 0, L(t,q,r).

Besides this Hamiltonian duality, there is, in the study of Hamiltonian systems, another duality
based on the Legendre transform of H(t,-,-). If we write u = (g, p), the Hamiltonian equations
can be written in the compact form

—Ju(t) = VH(t,u(t)).
Setting v = —Ju, so that u = Jv — ¢ where c is a constant, we obtain
v =VH(t,u) orequivalently u=VH*(t,v)

if the Legendre transform H*(t,.) of H(t,.) exists. Therefore, the Hamiltonian equations ex-
pressed in terms of v become Jv — VH*(t,v) = c. The integrated Euler-Lagrange equations
corresponding to the critical points of the functions y defined on a suitable space of T-periodic
functions is

2) = | HOI.(0) +H (90 de

This dual action y can therefore be used as well as the Hamiltonian action to prove the existence
of T-periodic solutions of the Hamiltonian system.
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3.3.2. Clarke's dual action functional

Definition 3.3.1. Clarke’s dual action functional is defined by the formula

1 1
)= =4 [ i vode- [ H(oro)an

The functional .o/} is continuously differentiable on the Hilbert space
H, := H,(S', R*")/R*",
where the action of R?" onto the Sobolev space H;(S!,R?") is given by translations. Rather than
working with equivalence classes of curves modulo translations, it is convenient to work with
genuine curves by identifying H; with the space of closed curves with zero mean:

H; = {x e H (SLR™)| | x(t)dt = 0}.

Sl
Let IT : H,(S!,R?") — H; be the quotient projection.

There is a one-to-one correspondence between the critical points of .e/; and .¢/};. More precisely,
we have the following result

Lemma 3.3.2 ([ , 1. If x is a critical point of .oy, then I1(x) is a critical point of .<f/;;.
Conversely, every critical point x of f}; is smooth and there exists a unique vector vy € R?" such that
X + Vg is a critical point of .«fy. In this case, we have

Ay (x +vo) = 5 (x).

Question 3.3.3. Is it possible to extend the Clarke duality, first to star-shaped domains and thence
to all symplectic manifold?

3.3.3. Morse complex of the dual action functional

Proposition 3.3.4. Assume that the Hamiltonian H : S' x R?" — R2" is smooth and satisfies
the conditions 3.2.3.(2) (Asymptotics) and 3.2.3.(3) (Convexity). Then the dual action functional
/5 : H; — R satisfies the Palais-Smale condition.

If we assume that the smooth Hamiltonian H satisfies 3.2.3.(2), 3.2.3.(3), and 3.2.3.(4) (Non-
degeneracy), the functional .¢/;; is Morse, meaning that the (Gateaux) second differential of .</;;
at each critical point is non-degenerate. However, the functional .¢/}; is in general not of class c?
(it is not even twice differentiable), so some care is needed in order to associate a Morse complex
to it. The strategy from [ ] is to use the fact that ./} is smooth when restricted to a suitable
finite dimensional smooth submanifold of H;, which contains all the critical points of .¢/;; and is
defined by a saddle-point reduction.

Given a natural number N € N, consider the splitting

H, =H) " @H]"
with

N
H11\1,+ = {x eH, |x(t) = Z xe?™k x, € Rzn} ,
k=1

11—]111\"Jr = {x eH, |x(t) = Z xje?mkt 4 Z xR xp € ]RZ”} .
k<—1 k>N+1
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This splitting is orthogonal with respect to the H; and to the L? inner products. We identify H,
with the product space ]HIIIV’Jr X H11\1,+. The following proposition summarizes the main properties
of the saddle point reduction.

Proposition 3.3.5 ([ 1). Assume that the Hamiltonian H € C* (S, R?") satisfies 3.2.3.(2) and
3.2.3.(3). If N € N is large enough, then the following facts hold:

1. For every x € H11\1,+ the restriction of ./} to {x} x ]I?]IIIV’Jr has a unique critical point (x, Y(x)),
which is a non-degenerate global minimigzer of this restriction.

2. ThemapY : ]HI]1V’Jr — ]ﬁl’l\’+ takes values in C* (S, R?") and is smooth with respect to the C-norm
for any k € N on the target. In particular; its graph

M := {(x,y) e]HIIlV’Jr X ]If]III\I’Jr |y = Y(x)}
is a smooth 2nN-dimensional submanifold of H;.

3. The restriction of .</;; to M, which is denoted by v}, : M — R is smooth.

4. A point z € H, is a critical point of .«/;; if and only if it belongs to M and is a critical point of v5,.
In this case, the Morse index and the nullity with respect to the two functionals coincide:

ind(z; &) = ind(z;v};) null(z; o7 ) = null(z; 7).

5. If M is endowed with the Riemannian metric induced by the inclusion into H, the functional v},
satisfies the Palais-Smale condition.

If we further assume that the Hamiltonian H satisfies 3.2.3.(4), we obtain that 1)}; is a smooth
Morse function with finitely many critical points and satisfying the Palais-Smale condition on the
finite-dimensional manifold M. As such, it has a Morse complex, uniquely defined up to chain
isomorphisms, denoted by

{CM, (), oM}

The space CM, (y;;) is the Q-vector space generated by the critical points of 7, graded by
the Morse index. The boundary operator o™ : CM, (%) — CM,_,(v};) is defined for all x €
Crit(vy};) by the formula

M(x) =D #M(x,¥)y
Yy

where y ranges over all critical points with Morse index equal to the index of x minus 1 and
#.#(x,y) is the number of negative gradient flow lines of v}, going from x to y. Here, the
negative gradient vector field of v}, is induced by a generic Riemannian metric on M, uniformly
equivalent to the standard one and such that the negative gradient flow is Morse-Smale, meaning
that stable and unstable manifolds of pairs of critical points meet transversally. Changing the
generic metric changes the Morse complex by a chain isomorphism. The homology of the Morse
complex CM,, (y};) is isomorphic to the singular homology of the pair (M AE < a}), where a is
any number which is smaller than the smallest critical level of v7;:

HM($3) ~ Hi (M, {4} < a}).
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3.4. Morse Homology for the action functional

3.4.1. Morse homology for Hilbert spaces

Abbondandolo and Majer [ , s , ], have defined a relative Morse homology
on Hilbert spaces for some functionals. This applies, in particular, to the action functional but,
we start by recalling the general definition, following the aforementionned references. Let 3¢ be
a real Hilbert space and L a linear, invertible, self-adjoint operator on 5, one considers the class
of functionals f : 7 — R of the form

() = 5 (1x, x) + bx)

where b is C? and Vb : # — ¢ is a compact map. Denote this class of functionals by % (L).
The main idea is that under suitable assumptions, even so the Morse indices and coindices of the
critical points are infinite, the intersections of of stable and unstable manifolds, W"(x) n W*(y)
are finite dimensional. To prove such a result (and to define a relative Morse index) requires a
orthogonal decomposition of the Hilbert space 5# in two subspaces.

Given a bounded self-adjoint operator S : 5 — ¢, denote by V' (S) (respectively V™~ (S)) the
maximal S-invariant subspace on which S is strictly positive (respectively strictly negative). The
spaces V1 (S) and V~(S) are called the positive eigenspace of S and the negative eigenspace
of S respectively. Since the operator L has been fixed, we denote by ##* and s~ the positive
and negative eigenspaces of L

T =VvH(L), =V (L).

Note that we have % = #T @ .
The Hessian of a functional f € # (L) at x is given by

D2f (x) = L + D*b(x).

Note that D?f (x) is a Fredholm operator since D?b(x) is a compact linear operator (because Vb
is compact).
We now recall the notion of “relative Morse index” for the critical points of f.

Definition 3.4.1. Let V and W be closed linear subspaces of a Hilbert space 5. They form a Fred-

holm pair if dim(V " W) < o0, V + W is closed and dim 725 = dim(V +W)* = dim(V* nW+) <
Q0.

Remark 3.4.2. An operator A : 5, — 4, is Fredholm if and only if (3%’1 x {0}, Graph(A)) is a
Fredholm pair in 6, x #,. The index of a Fredholm pair (V,W) is defined as

ind(V,W) =dim(V n W) — codim(V + W) € Z.

Let V and W be closed linear subspaces of a Hilbert space 5. W is a compact perturbation of V
if Py, — Py is compact, where P is the orthogonal projection. In particular (V, Wi) is a Fredholm
pair. The relative dimension of V with respect to W is defined as dim(V,W) := ind(V,W') =
dim(V A Wt) —dim(V: A W).

If A is a self-adjoint Fredholm operator and K is a compact operator, V™~ (A) is a compact per-
turbation of V~ (A + K).
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Going back to the functional f, we have D2f (x) = L + D?b(x) where D?b(x) is a compact
operator. We have that V— (D2 f (x)) is a compact perturbation of #~ and we can define the
relative Morse index of x as

ind,,- (x) = dim (v— (D%f (x)),%f’_).

Remark that when 5~ = {0}, this index is the usual Morse index. We denote by crit, (f) the set
of critical points of f of relative Morse index k.

Now, let x and y be critical points of f, we look at W¥(x) n W*(y) to define moduli spaces of
gradient trajectories u’ = Vf (u).

Let I ¢ R u {—0, +00} be an interval.

Definition 3.4.3. A functional f € C?(#) is called Morse on I if the Hessian D*f (x) is invertible
for every critical point x such that f (x) € I.

Assuming that the functional f is Morse, we have the two following facts Vp € W*(x):

1. T,W"(x) is a compact perturbation of s~ with relative dimension ind - (x)
2. (TPWS(X),%”*) are Fredholm pairs

Ifpe W4 (x)nW*(y), (TPW”(x), T,W? (¥)) is a Fredholm pair of index ind 5 (x) —ind - (¥).
In our case, the gradient trajectories are of the form:

u(t)=—-Vf(u)=—Lu—Vb

So u’ + Lu = —Vb, multiplying by ‘L, we have

d
Eedu = el (u/ + Lu) = —e'TVb

and thus

u(t)=e & (u(O) — Jt eSLVb(u(s))ds) .

0

Definition 3.4.4. A functional f € C'(#) satisfies the Palais-Smale condition on I if every sequence
(x,) € # such that lim,_, ., f (x,) = c €I and lim,_,., Vf(x,) = 0 is relatively compact.

Lemma 3.4.5. The functional f satisfies the Palais-Smale condition (PS) if and only if all PS se-
quences are bounded.

Proof. Indeed, Vf (x) = Lx + Vb(x). Take a PS sequence x,, so Vf(x,) — 0 and, since Vb is
compact, Vb(x,) — z. Therefore Lx, — —z. Since L is invertible, x, — —L " 1z. O

Definition 3.4.6. A functional f € C?(#) has the Morse-Smale property on I up to order k if it is a
Morse function on I and the unstable and stable manifolds of every pair of critical points x, y € f ~*(I)
such that ind 5 (x) — ind 4 (y) < k, meet transversally

Theorem 3.4.7. Assume that the functional f € Z (L) satisfies PS and the Morse-Smale property
up to order k on the interval I. Let x,y € f ~*(I) be two critical points of f such that ind ,— (x) —
ind - (y) < k. Then W%(x) nW*(y), if nonempty, is an embedded C'-submanifold of # of dimen-
sion

dim (W"(x) nW*(y)) = indse— (x) — ind - ().

Moreover, we have the following:
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3.4. Morse Homology for the action functional

e Whenk >0, indy - (x) —indy, - (y) <0, and x # y, we have W"(x) n W¥(y) = (.
e When k > 0, and ind - (x) —indy-(y) =1, W*(x) n W¥(y) u {x,y} is compact.

This theorem implies, in particular, that when ind - (x) — indy - (y) = 1, there is a finite
number of trajectories from x to y. The manifolds W"(x) n W*(y) admit an orientation [ ,
§3.5] and thus, when ind - (x) — ind,-(y) = 1, all the trajectories from x to y come with a
sign.

The idea of orientation is the following. Let F,(¢) denote the set of Fredholm pairs in 5. We
have the non-trivial line bundle

AT (Y A W) @ AR ((Hiw) *>;> Det (F, (#))

|

()

If x is a critical point of the functional f, the pair (T,W(x),#") is in F,(#). We choose an
orientation of the determinanl line bundle over this pairs and we do the same at every (critical)
point. This induces an orientation over (T, W*(x), 7).
Thus, (TPW”(x),%”*) and (TPWS(x),%*) are oriented for all p € W¥(x). This induces a can-
nical orientation of ( T,WH(x), T,W? (x)). If the functional is Morse-Smale, we are done.

When ind - (x) —indy-(y) = 1, let #.4(x,y) denote the count, with signs, of trajectories
from x to y.

Given an interval I of the extended real line and a functional f satisfying the following condi-
tions

M.1) feZ(L);
(M.2) f satisfies the PS condition on I;
(M.3) f is a Morse function on I;
(M.4) f has the Morse-Smale property on I up to order 2;
(M.5) for every a € I and every k € Z, the set crit; (f, In (-0, a]) is finite;
we can define a Morse homology of the pair (f,I). The Morse complex in degree k is defined as
CM(f, 1) 1= @reerit (r,1) QX)-

and the boundary operator 6{’1 : CM(f,I) > CMy_1(f,I) is defined, for x € crit,(f,I), as

= Y RNy

yecrite_1(f,I)

Theorem 3.4.8. Assuming the functional f satisfies (M.1)-(M.5), the boundary operator 6£’I is an
actual boundary homomorphism, i.e.
6{’1 o 6;:’[ = 0.

Therefore the pair (CM(f,I), &il) is a chain complex called the Morse complex of (f,I) and its
homology is called the Morse homology of (f,I).
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3. The methods

3.4.2. The case of the action functional for star-shaped domains

Let A(R?") := C®(S!,R?") be the free loop space of R?". The Hamiltonian action functional ./
on A(R?") is defined as

Ay (y) ::—LAO—LIH(Q,y(Q))dO. (3.4.1)

To ensure, we have a Morse theory of this .¢f};, we have to complete A(R?") in a Hilbert manifold;

its structure will be induced by H(S!, R?"). Then we shall extend the functional .«; and check
that it satisfies the 5 conditions (M.1)—-(M.5) listed above.

3.4.2.1. The Hilbert manifold
Since A(R?")  L%(S!,R?"), every element x € A(R?") can be written as a Fourrier series with
coefficients in R".
x(t) = Z xp ke,
kez

Using this Fourrier decomposition, A(R?") can be completed in the Sobolev space: H 2 (S1,R?"M)
(which carries a Hilbert structure).

H%(sl,Rzn) = {x e L3(SY,R*")| Z k| [xe | < oo}.

keZ

We have the orthogonal decomposition
H2(SL,R™) = E* ®@E°@E~
with respect to the inner product {(x, y) := (X, Yo) + 27 > 01xez | K|{Xk, Yx) and where

E~ = {xeH2(S!,R*)|x; = 0 for k > 0}
E® = {x e HZ(S',R*)|x; = O for k + 0} =~ R?"
E* = {x e H?(S},R*") | x; = O for k < 0}.

Let Py, P and Pgo denote the orthogonal projections on E*, E~ and E° respectively.

3.4.2.2. The functional

Recall the class & (L) of functionals for which the Morse homology is defined. Let # be a real
Hilbert space and let L be a linear, invertible, self-adjoint operator on 5. We are looking at the
functional f : ¥ > R

1
£(x) = 5 (Lx, %) + b(x)
where b is C2 and Vb : 5 — 5 is a compact map. In the case of a nice star-shaped domain in
R?", the Hilbert space is 5 = H 2 and the functional is given by
1

oy (x) =—%JJ5c-xdt—L H(t,x(t))dt. (3.4.2)
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3.4. Morse Homology for the action functional

The fact that this functional coincides with the one from equation (3.4.1) is a direct computation.

Fixing L, we denote by /" the maximal L-invariant subspace on which L is positive and by
#¢~ the maximal L-invariant subspace on which L is negative. We have s¢ = #* @ s ~. Here
# decomposes as # = E* @ E° @ E~ where E® >~ R?" is the set of constant loops. We split E°
arbitrarily in E® = ES @E° where EY =~ R" =~ E° . In the previous notation, we take 5 = E*@E?

and 5~ = E~ @ E° by extending L with the matrix <I(c)1 _(;. d> .

Remark 3.4.9. By taking the splitting of E° to be given by E° = (xy,...,x,), we have that the
CZ-index is equal to the relative Morse index, see |[. 1

The functional then writes as

1 1
Ay = —%f Jic-xdt—f H(t,x(t))dt (3.4.3)
0 0
1
= 1(0Pe- I, 1Pe- (01 ) - [ H(ex(0))de (344
H2 H2 0
1
— (L, x)3 1P 2+ HPpoxl? — | (e x(0)de. (345
2 0

b

Proposition 3.4.10. [. , Lemma 3.4] The map b : # — R from equation (3.4.5) is differen-
tiable. Its gradient Vb : # — 5 is continuous and compact.

We need a better understanding of the Sobolev spaces H® before going on. Indeed not all
1
element of H2 can be represented by a continuous function.

Proposition 3.4.11. [/Z11, Proposition 3.4] Let s > 3. If x € H*(S',R?"), then x € C°(S,R?").
Moreover, there is a constant ¢, depending on s, such that

Ix[co <c|x|gs,  VxeH(SL,R™).

Recall that from [ , Proposition 3.3], for t > s > 0, the inclusion map I : H*(S!,R?") —
H*(S,R?") is compact.
The following inclusion j, and its adjoint j*, will play a key role in the following.

j EH% (Sl,R2n) _ Ho(Sl,RZ”) _ LZ(Sl,RZn)
j* . Lz(Sl,Rzn) N H%(Sl,RZn)
Proposition 3.4.12. [ , Proposition 3.5 ]
F(LA(shR*) c HY(SLR®) and (¥ (y)m < [y e

Proposition 3.4.13. [ ] The Hamiltonian action functional .oy : # — R is a smooth func-
tional. Its gradient, with respect to the inner product on H 2 s given by

V1 () = =Pp (x) + Pg-(x) +j*VH(,x ().

Moreover, V 1.9/ is Lipschitz continuous on ¢ with uniform Lipschitz constant. Its Jacobian is given
2
by

szdH(x) = —Pg+ + Pp- + J*V2H(:, x(")).
2
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3. The methods

We denote by X := — V1 .ofy the gradient vector field of the Hamiltonian action functional.
2
Assume that x €  is a critical point of the action functional; i.e. V1.9/;(x) = 0. Then x €
2

C®(S!,R"). Moreover it solves the Hamiltonian equation
x(t) =JVH(x(t)).

Lemma 3.4.14. [ , Lemma 3.7] The flow of x = X(x) is globally defined, maps bounded sets
to bounded sets and admits the representation

x-t=ex" +x%+e xT +K(t,x)

where K : R x ¢ — € is continuous and maps bounded sets in precompact sets.

3.4.2.3. The conditions (M.1)—(M.5) are satisfied by .o/

Condition (M.1) is satisfied and the decomposition /€ = s @ s¢~ is as in §3.4.1. To ensure the
Morse property, we have to pick a generic Hamiltonian

Proposition 3.4.15 ([ D. Thereis a residual set (in the sense of Baire) Hyeg © C®(StxR* R)

1
of Hamiltonians such that the negative H2-gradient X of .oy is a Morse vector field for evey H € 5,,,.
In particular, the set of critical points of .¢fy; is a finite set.

To ensure transversality (condition (M.4)), we need to perturb the vector field X = —V .o/
2

by adding a small compactly supported vector field X. We do it this way rather than following
[ ] in preparation for transversality for hybrid-type curves §3.5. Let & (#) < Cg’(%’) be
the closed subspace of all C3-vector fields which are compact and bounded on .. We choose a
C!-function g : # — R satisfying

1. g(p) > 0 everywhere else; i.e. for all p € 5\ Crit .o},

2. g(p) < %HV%&{H(p)H for all p € .

H3

In particular, we have g(x) = O for all x € Crit.«/};. We consider the subset of vector fields
Hy = {)_(e H ()| 3¢ > 0 such that X, ) <cg(p) Vpe %} .

This set is a Banach space when equipped with the following norm:

%, s

+ | VX | c.

X = sup
pes\Crit(.ty) &

We denote the open unit ball in ¥, with respect to the above norm, by ¢, ;. It is a Banach
manifold with trivial tangent bundle.

Lemma 3.4.16. Let X € Hy 1 and let X 1= — V%ﬁH +X. Then

1. The singular points of X are the critical points of the action functional

~

sing(X) = Crit(.o).
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3.5. All three homologies coincide
2. For all x € Crit(.ey), we have
DX(x) = —D?.ofy(x).
3. The action functional is a Lyapunov function for X; i.e.

D.o(p) ()?(p)) <0  forall pe #\Crit(.oy).

Theorem 3.4.17. There is a residual subset .., = K, 1 of compact vector fields X such that the
perturbed vector field X := —V 1 oy + X fulfills the Morse-Smale condition up to order 2.

We are therefore in a situation where we can define the Morse homology as in Section 3.4.1.

3.4.3. Continuations

In view of an isomorphism with symplectic homology, we need to be able to change the Hamilto-
nian. Let f; and f; be two functionals and let f, be a homotopy interpolating between the two;
fi=fofors<eand f, = f; fors >1—¢€. Let ¢ : R — R a smooth function with two critical
points: a maximum at 0, with ¢(0) = 1 and a minimum at 1 with ¢(1) = 0. Let fiRx# >R
be the functional defined by f (s,x) = @(s) + fs(x). The critical points of f of index k are

crity f = {0} x crity_; fo U{l} X crity f1.

The associated differential é’f writes as

This ¢ is precisely the continuation map (as in finite-dimensional Morse homology)

3.5. All three homologies coincide

This section describes some known results and ongoing work (joint with V. Ramos). The main
(ongoing) statement is that given an admissible Hamiltonian, there are chain complexes isomor-
phisms between the three aforementionned constructions which commute with continuations.
One of the isomorphism was proved by Abbondandolo and Kang. To prove the other one is under
progress.

Theorem 3.5.1 ([ 1). Let H : S' x R?" — R be a smooth Hamiltonian function satisfying the
conditions 3.2.3.(2), 3.2.3.(3), and 3.2.3.(4). Then there exists a chain complex isomorphism

©: (CM,_,(¥j;), ™) — (CF.(H,J),0)

The isomorphism © is defined as a count of “hybrid trajectories”. Let x and y be 1-periodic

orbits of Xj;. We shall see IT(x) € H; as a critical point of .¢/;; (and hence of v)};) and y € H 2
as a critical point of .. Let J be a family of uniformly bounded w,-compatible almost complex
structures on R?" parametrized by [0, 00) x S! such that J = J, on [0, 1] x S!. Denote by

.//Z(X,y) = //Z(X,}’,Hsj)
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3. The methods

the space of smooth maps u : [0,00) x S — R?" which solve the Floer equation
dsu +J (s, t,u)(dpu — Xy (u)) = 0 on [0,00) x st
with the asymptotic condition

lim u(s,-) = y in C*(S',R*"),

§—00

and the boundary condition

u(0,-) e "W ((I(x); = Vep3y) + H .

where W ((TI(x); —V},) is the unstable manifold of the negative gradient vector field of ¥, at
I1(x) in a finite dimensional submanifold M of H, which is used to construct the Morse complex
of v}, in §3.3.

Abbondandolo and Kang proved that, generically, .# (x, y) is a smooth manifold of dimension
CZ(x) — CZ(y); moreover if CZ(x) = CZ(y) then the manifold is compact and thus consists of
finitely many points. They then define for all k € Z the isomorphism © : (CMj_,(y5,), M) —
(CF¢(H,J),7) by

Oy (TI(x)) = Y #.4(x,¥)y

where the sum runs over all 1-periodic orbits y of X;; of Conley-Zehnder index k.
Note that the aforementionned isomorphism is defined with Z, coefficients. It should extend
to Q coefficients after an orientation have been added.

For the other isomorphism, the statement I am trying to prove with V. Ramos is

Statement 3.5.2. Let H : S! x R?" — R be a smooth Hamiltonian function satisfying the conditions
3.2.3.(2), 3.2.3.(3), and 3.2.3.(4). Then there exists a chain complex isomorphism

®: (CM,(H),oM) — (CF,(H,J),0)

We define this chain map ® : CM (H) — CF(H) by counting hybrid curves in a similar manner
as [ ]. Let Z = [0,00) x S and let x,y € 2 (H). We also let H and X be generic as explained
in Section 3.2.1. We define

My (3,7, X) = {u € H}, (2, 8%") | 8y,.0(u) = 0,u(0, ) € W(x), lim u(s, ) = y} .
As before, generically, .#},,;(x,y) is a smooth manifold of dimension CZ(x) — CZ(y); moreover
if CZ(x) = CZ(y) then the manifold is compact and thus consists of finitely many points. So we
let
d(x) = Z #Mpyp(X, ) Y-
u(y)=p(x)

We still have to prove that © and & commute with continuation maps and that we can “extend”

them to the S'-equivariant setup.
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Part II.

Symplectic embeddings
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4. Introduction to Part |l

If X and X’ are domains' in R?® = C", a symplectic embedding from X to X’ is a smooth em-
bedding ¢ : X < X’ such that ¢*w = w, where w denotes the standard symplectic form on R?".
If there exists a symplectic embedding from X to X', we write X < X',

An important problem in symplectic topology is to determine when symplectic embeddings
exist, and more generally to classify the symplectic embeddings between two given domains.
Modern work on this topic began with the Gromov nonsqueezing theorem [ ], which asserts
that the ball

B*(r)={zeC"|nlz|* <r}

symplectically embeds into the cylinder
Z*"(R) = {z e C" | n|z,|* <R}

if and only if r < R. Many questions about symplectic embeddings remain open, even for simple
examples such as ellipsoids and polydisks.
If there exists a symplectic embedding X < X', then we have the volume constraint vol(X) <
S

vol(X’). To obtain more nontrivial obstructions to the existence of symplectic embeddings, one
often uses various symplectic capacities. Definitions of the latter term vary; here we define a
symplectic capacity to be a function ¢ which assigns to each domain in R?", possibly in some
restricted class, a number ¢(X) € [0, 0], satisfying the following axioms:

(Monotonicity) If X and X’ are domains in R?", and if there exists a symplectic embedding
X — X', then ¢(X) < c(X).
S
(Conformality) If r is a positive real number then c(rX) = r2c(X).

We say that a symplectic capacity c is normalized if it is defined at least for convex domains and

satisfies
c(B**(1)) =c(2?"(1)) = 1.

The first example of a normalized symplectic capacity is the Gromov width defined by

cer(X) = sup{r B¥(r) ?X}

This trivially satisfies all of the axioms except for the normalization requirement cg,(Z%"(1)),
which holds by Gromov non-squeezing theorem. A similar example is the cylindrical capacity
defined by

cz(X) = inf{R ‘X = ZZ”(R)} )

n this memoir, a “domain” is the closure of an open set. One can of course also consider domains in other symplectic
manifolds, but we will not do so here.
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4. Introduction to Part II

Additional examples of normalized symplectic capacities are the Hofer-Zehnder capacity ¢y
defined in [ ] and the Viterbo capacity cgy defined in [ ]. There are also useful families of
symplectic capacities parametrized by a positive integer k including the Ekeland-Hofer capacities
cEH defined in [ , ] using calculus of variations; the “equivariant capacities” CIEH defined
in[ ] using positive equivariant symplectic homology; and in the four-dimensional case, the
ECH capacities CECH defined in [ ] using embedded contact homology. For each of these
families, the k = 1 capacities cf¥, ¢, and cF“" are normalized. For more about symplectic
capacities in general we refer to [ R ] and the references therein.

The goal of this second part is to present some results and examples related to the following
conjecture, which apparently has been folkore since the 1990s.

Conjecture 4.0.1 (strong Viterbo conjecture). If X is a convex domain in R*", then all normalized
symplectic capacities of X are equal.

Viterbo originally conjectured the following statement? in [ 1:

Conjecture 4.0.2 (Viterbo conjecture). If X is a convex domain in R*" and if ¢ is a normalized
symplectic capacity, then
c(X) < (n!Vol(X))/", (4.0.1)

The inequality (4.0.1) is true when c is the Gromov width c,, by the volume constraint. Thus
Conjecture 4.0.1 implies Conjecture 4.0.2. The Viterbo conjecture recently gained even more
attention as it was shown in [ ] that it implies the Mahler conjecture® in convex geometry.

Lemma 4.0.3. If X is a domain in R?", then cg.(X) < c;z(X), with equality if and only if all nor-
malized symplectic capacities of X agree (when they are defined for X).

Proof. It follows from the definitions that if ¢ is a normalized symplectic capacity defined for X,
then ¢ (X) < ¢(X) < cz(X). O

Thus the strong Viterbo conjecture is equivalent to the statement that every convex domain X
satisfies ¢, (X) = ¢z (X). We now discuss some examples where it is known that cg, = c;. Her-
mann [ ] showed that all T"-invariant convex domains do satisfy cg, = c;. This generalizes
to S'-invariant convex domains by the following elementary argument:

Proposition 4.0.4 (Y. Ostrover, private communication). Let X be a compact convex domain in C"
which is invariant under the St action by ' -z = (e!%21,...,e!%2,). Then cg(X) = c;(X).

Proof. By compactness, there exists 2z, € 0X minimizing the distance to the origin. Let r > 0 denote
this minimal distance. Then the ball (|z| < r) is contained in X, so by definition cg, (X) > mr2.
By applying an element of U(n), we may assume without loss of generality that z, = (r,0,...,0).
By a continuity argument, we can assume without loss of generality that 0X is a smooth hyper-
surface in R?". By the distance minimizing property, the tangent plane to 0X at 2, is given by
(z-(1,0,...,0) = r) where - denotes the real inner product. By convexity, X is contained in

%Viterbo also conjectured that equality holds in (4.0.1) only if int(X) is symplectomorphic to an open ball.
3The Mabhler conjecture [ ] states that for any n-dimensional normed space V, we have

Vol(By ) Vol(By s ) > 4—,,
n:

where B, denotes the unit ball of V, and B, s denotes the unit ball of the dual space V*. For some examples of
Conjectures 4.0.1 and 4.0.2 related to the Mahler conjecture see [ 1.
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4.1. Structure of Part 2

the half-space (z - (1,0,...,0) < r). By the S! symmetry, X is also contained in the half-space
(z-(e¥,0,...,0) < r) for each @ € R/2nZ. Thus X is contained in the intersection of all these
half-spaces, which is the cylinder |z;| < r. Then c;(X) < nr? by definition. O

Remark 4.0.5. A similar argument shows that if k > 3 is an integer and if X < C" is a convex
domain invariant under the Z/k action by j -z = (e2™/kz,, ..., e*™i/kg ), then

cz(X)
CGr (X )

The role of the convexity hypothesis in Conjecture 4.0.1 is somewhat mysterious. We shall
explore to what extent non-convex domains satisfy cg, = c;.

k
<= k).
ntan(rc/ )

4.1. Structure of Part 2

Part 2 is structured as follows: Chapter 5 is devoted to toric domains which will provide the frame-
work for all results concerning symplectic embeddings. Chapter 6 presents the ECH capacities,
the Ekeland-Hofer capacities and the new capacities from positive S'-equivariant symplectic ho-
mology as well as computations and applications. Chapter 7 consists of known and new results
around Conjecture 4.0.1. Chapter 8 presents a new notion of inequivalence of symplectic embed-
dings and examples thereof. The Last Chapter, about symplectic convexity, consists essentially of
a list of questions and open problems which I intend to work upon.
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5. Toric domains

This chapter introduces toric domains and one of the main result is Proposition 5.1.4 which gives
a necessary and sufficient geometric condition for a toric domain to be dynamically convex.

5.1. Definition and examples

To describe an important family of examples of symplectic manifolds, let RY ) denote the set of
x € R" such that x; > 0 for all i = 1,...,n. Define the moment map u : C" — RL by

:u(ZlJ' -'JZn) = 713(’21|2, cees |Zn|2)'

If Q is a domain in R” ., define the toric domain

=0’
Xq=pu () ccn

The factors of 7t ensure that
vol(Xq) = vol(Q2). (5.1.1)

Example 5.1.1. If a;,...,a, > 0, define the ellipsoid

E(ay,...,a,) = {ZE(C"

zn: l|2 } (5.1.2)

We will occasionally find it convenient to extend this to the case that some a; = 0 by taking E(...,0,...) =
@. The polydisk is defined as

P(al,...,an):{zeC” nlz]? < a;, Vizl,...,n}. (5.1.3)
Also, define the ball B(a) = E(a,...,a).
7t|z5|? 7|z [
a, a,
a; 7|z, a 7|z, |2
Example 5.1.2. The four dimensional cylinder, Z(a) := {(21,2,) € C*| |z,|* < a} is a (limit of)

toric domain whose underlying domain in R? is an lnﬁnlte strip”.
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5. Toric domains

a 7|z |2

Let 0, Q denote the set of u € 0Q2 such that u; >0 forall j =1,...,n.

Definition 5.1.3 ([ 1. Amonotone toric domain is a compact toric domain X, with smooth
boundary such that if u € 0,.Q and if v is an outward normal vector at u, then v; > 0 for all
j=1,...,n

A strictly monotone toric domain is a compact toric domain X, with smooth boundary such that
ifue é’+_§2 and if v is a nonzero outward normal vector at u, then v; >0 forall j = 1,...,n.

Note that monotone toric domains do not have to be convex; see §5.2.4 for details on conditions
for toric domains to be convex. (Toric domains that are convex are already covered by Proposi-
tion 4.0.4.)

To clarify the hypothesis, let X be a compact domain in R?" with smooth boundary, and suppose
that X is “star-shaped”, meaning that the radial vector field on R?" is transverse to 0X. Then
there is a well-defined Reeb vector field R on 0X. We say that X is dynamically convex if, in
addition to the above hypotheses, every Reeb orbit y has Conley-Zehnder index CZ(y) > n +
1 if nondegenerate, or in general has minimal Conley-Zehnder index! at least n + 1. It was
shown by Hofer-Wysocki-Zehnder [ ] that if X is strictly convex, then X is dynamically
convex. However the Viterbo conjecture would imply that not every dynamically convex domain
is symplectomorphic to a convex domain; see Remark 7.0.2 below.

Proposition 5.1.4 ([ D. (proved in §5.2.4) Let X, be a compact star-shaped toric domain in
R* with smooth boundary. Then X, is dynamically convex if and only if Xq is a strictly monotone
toric domain.

Two special type of monotone toric domains are defined as follows. Given 2 < R, define

Q={(x1,..., %) €R"| (|x1],-.., |xn]) € Q.

Definition 5.1.5. [ JA convex toric domain is a toric domain X, such that Qs compact and
convex.

1f v is nondegenerate then the Conley-Zehnder index CZ(y) € Z is well defined. If y is degenerate then there is
an interval of possible Conley-Zehnder indices of nondegenerate Reeb orbits near y after a perturbation, and for
dynamical convexity we require the minimum number in this interval to be at least n+ 1. In the 4-dimensional case
(n = 2), this means that the dynamical rotation number of the linearized Reeb flow around y, which we denote by
p(y) € R, is greater than 1.

54



5.1. Definition and examples
This terminology may be misleading because a “convex toric domain” is not the same thing as
a compact toric domain that is convex in R2?; see Proposition 5.1.7 below.

Definition 5.1.6. [ ] A concave toric domain is a toric domain X, such that Q is compact
and RY \Q is convex.

We remark that if X, is a convex toric domain or concave toric domain and if X has smooth
boundary, then it is a monotone toric domain.

Proposition 5.1.7. A toric domain X, is a convex subset of R?" if and only if the set

Q= {uemn 7'c(|,u1|2,...,|,u|2)eﬂ} (5.1.4)

is convex in R™.

Proof. (=) The set Q is just the intersection of the toric domain X, with the subspace R" c C".
If X, is convex, then its intersection with any linear subspace is also convex.
(<) Suppose that the set Q is convex. Let 2,2’ € X, and let t € [0,1]. We need to show that

(1—t)z +tz' € Xq.
That is, we need to show that

(1—t)z, +2|) e (5.1.5)

(‘(1 —t)z; + tz]

geeey

We know that the 2" points (+|z1],..., £|z,|) are all in €, as are the 2" points (+|z/],...,+[z! ).
By the triangle inequality we have

[(1—t)z; + tz]] < (1 —t)z] + t]z]]

for each j = 1,...,n. It follows that the point in (5.1.5) can be expressed as (1 — t) times a
convex combination of the points (+|z;],...,+|2,|), plus t times a convex combination of the
points (+|z]],..., +[2/|). Since £ is convex, it follows that (5.1.5) holds. O

Example 5.1.8. If X, is a convex toric domain, then X, is a convex subset of R,

Proof. Similarly to the above argument, this boils down to showing thatif w,w’ e Cand0 <t <1
then
(1 —t)w+tw' ] < (1 —t)|w]* + t|w'|%

The above inequality follows by expanding the left hand side and using the triangle inequality. I

However the converse is not true:

Example 5.1.9. Let p > 0, and let Q be the positive quadrant of the LP unit ball,

zn:,uf<1}.
i=1

Then X, is a concave toric domain iff p < 1, and a convex toric domain iff p > 1. By Proposi-
tion 5.1.7, the domain X, is convex in R?" if and only if p > 1/2.

Qz{,ueR’;O
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5. Toric domains

5.2. Dynamics on the boundary

We perturb €2 to have some additional properties that will be useful. We may assume the following,
where X denotes the closure of the set 0Q N R ;:

(i) X is a smooth hypersurface in R".

(ii) The Gauss map G : & — S™ ! is a smooth embedding, and 0Xg, is a smooth hypersurface in
R?". In particular, X, is a nice star-shaped domain.

(iii) If w € ¥ and if w; = O for some i, then the i*" component of G(w) is positive and small.

5.2.1. Reeb vector field

We first compute the Reeb vector field on 0Xq = u~(X).
Let we ¥ and let z € u~*(w). Also, write G(w) = (vy,..., v,). Observe that

2 vw; = [G(w)|g-
i

We now define local coordinates on a neighborhood of z in C" as follows. Fori = 1,...,n, let
C; denote the i*" summand in C". If z; = 0, then we use the standard coordinates x; and y; on
C;. If z; # 0, then on C; we use local coordinates u; and 6;, where u; = TE(XiZ + _yiz), and 6; is the
angular polar coordinate.

In these coordinates, the standard Liouville form (1.1.1) is given by

1
Ao =7 Z (x;dy; — yidx;) + 5= Z i d;.
2W1:0 27T wﬁéO

Also, the tangent space to 0X, at z is described by

> viaizo}.

w; #0

0 0

w;=0 w; #0

It follows from the above three equations that the Reeb vector field at z is given by

27 0
R=—2 _ % 2 (5.2.1)
Gels 2,70,

For future reference, we also note that the contact structure & at z is given by

0 0
gz:W@OCiG‘){ 2 <aia—‘ui+bia—9i> 2 v;a; =0, 2 WibiZO}. (5.2.2)

w;#0 w;#0 w;#0

5.2.2. Reeb orbits

We now compute the Reeb orbits and their basic properties.
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5.2. Dynamics on the boundary

It is convenient here to define a (discontinuous) modification G : ¥ — R" of the Gauss map G
by setting a component of the output to zero whenever the corresponding component of the input
is zero. That s, fori = 1,...,n we define

5(W)i={ 0. w0 (5.2.3)

Observe from (5.2.1) that the Reeb vector field R is tangent to u~*(w). Let Z(w) denote the
number of components of w that are equal to zero; then u~!(w) is a torus of dimension n — Z (w).
It follows from (5.2.1) that if G(w) is a scalar multiple of an integer vector, then u ! (w) is foliated
by an (n — Z(w) — 1)-dimensional Morse-Bott family of Reeb orbits; otherwise u~!(w) contains
no Reeb orbits.

Let V denote the set of nonnegative integer vectors v such that v is a scalar multiple of an
element 7 of the image of the modified Gauss map G. Given v € V, let d(v) denote the greatest
common divisor of the components of v. Let 2 (v) denote the set of d(v)-fold covers of simple

Reeb orbits in the torus p~* <§_1 (17)> Then it follows from the above discussion that the set of

Reeb orbits on 0X, equals L,y & (v). Moreover, condition (iii) above implies that v € V whenever
Equation (5.2.1) implies that each Reeb orbit y € & (v) has symplectic action

A (1) = vig-

Also, we can define a trivialization 7 of &|, from (5.2.2), identifying &, for each z € y with a
codimension two subspace of R?" with coordinates x;, y; for each i with w; = 0, and coordinates
a;, b; for each i with w; # 0. Then, we have

aly,r) = Z V;. (5.2.4)

i=1

5.2.3. Nondegeneracy

We now approximate the convex toric domain X, by a nice star-shaped domain X’ such that A | 5x/
is nondegenerate.

Given v € V with d(v) = 1, one can perturb 0Xg, in a neighborhood of the n — Z(v) dimensional
torus swept out by the Reeb orbits in & (v), using a Morse function f on the n—Z(v) — 1 dimen-
sional torus & (v), to resolve the Morse-Bott family & (v) into a finite set of nondegenerate Reeb
orbits corresponding to the critical points of f (possibly together with some additional Reeb orbits
of much larger symplectic action). Owing to the strict convexity of %, each such nondegenerate
Reeb orbit y will have Conley-Zehnder index with respect to the above trivialization 7 in the range

Z(v)<CZ.(y)<n-—1. (5.2.5)
It then follows from (5.2.4) that
ZW)+2) v <CZy)<n—-1+2) v, (5.2.6)
i=1 i=1
In particular,

CZ(y)=2k+n—1=k < (5.2.7)

1

- n—1-2Z(v)
v, <k+ —mmM.
=1 2
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5. Toric domains

Moreover, even if we drop the assumption that d(v) = 1, then after perturbing the orbits in
2 (v/d(v)) as above, the family & (v) will still be replaced by nondegenerate orbits each satisfying
(5.2.6) (possibly together with additional Reeb orbits of much larger symplectic action), as long
as d(v) is not too large with respect to the perturbation.

Now choose € > 0 small and choose

—1
veN”,Zvi<k+n2 }
i

We can then perturb X, to a nice star-shaped domain X’ with A,|;x, nondegenerate such that for
each v € V with |[v[|§ <R, the Morse-Bott family & (v) is perturbed as above; each nondegenerate
orbit y arising from each such & (v) has symplectic action satisfying

R> max{|v\;

A(y)=|v|§ —€ (5.2.8)

and there are no other Reeb orbits of symplectic action less than R.

5.2.4. Proof of Proposition 5.1.4.

Proof. As a preliminary remark, note that if a Reeb orbit has rotation number p > 1, then so does
every iterate of the Reeb orbit. Thus X, is dynamically convex if and only if every simple Reeb
orbit has rotation number p > 1.

Since X, is star-shaped, Q2 itself is also star-shaped. Since X, is compact with smooth boundary,
0, Q is a smooth arc from some point (0, b) with b > 0 to some point (a,0) with a > 0.

We can find the simple Reeb orbits and their rotation numbers by the calculations in [ ,
§3.2] and [ , §2.2]. The conclusion is the following. There are three types of simple Reeb

orbits on 0Xq:

(i) There is a simple Reeb orbit corresponding to (a,0), whose image is the circle in 0X(, with
7t|21/* = a and 2, = 0.

(ii) Likewise, there is a simple Reeb orbit corresponding to (0, b), whose image is the circle in
0Xq with z; = 0 and 7t|z,| = b.

(iii) For each point u € 0, Q where 0, Q has rational slope, there is an S* family of simple Reeb
orbits whose images sweep out the torus in 0Xg where 7(|2;|2, |25]2) = u.

Let s; denote the slope of @, Q at (a,0), and let s, denote the slope of @, at (0,b). Then the
Reeb orbit in (i) has rotation number p =1 —s° 1, and the Reeb orbit in (ii) has rotation number
p =1—s,. For a Reeb orbit in (iii), let v = (v, v,) be the outward normal vector to J, Q2 at u,
scaled so that v;, v, are relatively prime integers. Then each Reeb orbit in this family has rotation
number p = v; + v,.

If X, is strictly monotone, then s1,s, < 0, and for each Reeb orbit of type (iii) we have v, v, > 1.
It follows that every simple Reeb orbit has rotation number p > 1.

Conversely, suppose that every simple Reeb orbit has rotation number p > 1. Applying this
to the Reeb orbits (i) and (ii), we obtain that s;,s, < 0. Thus 0, has negative slope near its
endpoints. The arc 0, 2 can never go horizontal or vertical in its interior, because otherwise there
would be a Reeb orbit of type (iii) with v = (1,0) or v = (0, 1), so that p = 1. Thus X, is strictly
monotone. O
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6. Symplectic capacities

This chapter presents some known capacities (ECH and Ekeland-Hofer) and the capacities I in-
troduced with Michael Hutchings. The latter are defined using positive S*-equivariant symplectic
homology. A nice feature is that they can be computed explicitely for all convex or concave toric
domains. A nice application is to prove (Theorem 6.3.18) that the inclusion gives the “optimal”
symplectic embedding of a cube in any concave or convex toric domain.

6.1. ECH capacities

Let (Y, A) be a non-degenerate 3-dimensional contact manifold. The embedded contact homology
(ECH) of Y is the homology of a chain complex (over Z) which is generated by the ECH generators.
We refer to [ ] and the reference therein for a complete presentation.

Definition 6.1.1. An ECH generator is a finite set of pairs a = {(a;,m;)} where the a; are distinct
periodic Reeb orbits, the m; are positive integers and if a; is hyperbolic, then m; = 1.
The symplectic action of an ECH generator is defined as

I(a):= Zmiﬂ(ai)

The differential counts certain embedded pseudo-holomorphic curves in R x Y. In general
the ECH is a topological invariant of compact three-manifolds, related to Seiberg-Witten Floer
homology (see [ , D.

The ECH spectrum of Y is a sequence of real numbers

0<cfM(Y)<dH(Y)< - <

such that CECH (Y) is the minimal L such that the grading 2k class in ECH can be represented in

the ECH chain complex by a linear combination of ECH generators each having symplectic action
< L. When Y is the boundary of a symplectic manifold X, chH (Y) is called the k™ ECH capacity
of X.

We now recall some facts about ECH capacities which we will use to prove Theorem 7.0.1.

Definition 6.1.2. A weakly convex toric domain in R* is a compact toric domain Xq < R* such
that Q is convex, and 0, is an arc with one endpoint on the positive u, axis and one endpoint on
the positive 5 axis.

Theorem 6.1.3 (Cristofaro-Gardiner [ D. In four dimensions, let X, be a concave toric domain,
and let X o, be a weakly convex toric domain. Then there exists a symplectic embedding int(Xq) < Xq
S

if and only if ¢;M(Xq) < M (Xoy) for all k = 0.

To make use of this theorem, we need some formulas to compute the ECH capacities C]];:CH. To
start, let us consider a 4-dimensional concave toric domain X. Associated to X is a “weight
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6. Symplectic capacities

sequence” W (Xg), which is a finite or countable multiset of positive real numbers defined in
[ ], see also [ ], as follows. Let r be the largest positive real number such that the
triangle A%(r) © Q. We can write Q\A2%(r) = Q; L £,, where €, does not intersect the u,-axis
and €2, does not intersect the u;-axis. It is possible that €2, and/or Q, is empty. After translating

1 1
the closures of Ql or Qz by (—r,0) and (0, —r) and multiplying them by the matrices [ 0 1] and

10
[1 1} , respectively, we obtain two new domains 2; and €, in Rio such that X and X, are
concave toric domains. We then inductively define
W(Xq) = (r) UW(Xq,) uW(Xg,), (6.1.1)

where ‘U’ denotes the union of multisets, and the term W (X, ) is omitted if ; is empty.

Let us call two subsets of R? “affine equivalent” if one can be obtained from the other by the
composition of a translation and an element of GL(2,Z). If W(Xq) = (ay,das,...), then the do-
main  is canonically decomposed into triangles, which are affine equivalent to the triangles
A%(a;),A%(ay),. .. and which meet only along their edges; the first of these triangles is A%(r).
See [ , 83.1] for more details. We now recall the “Traynor trick”:

Proposition 6.1.4. [ JIfT ¢ R2 <o Is a triangle affine equivalent to A?(a), then there is a
symplectic embedding int(B*(a)) > Xiny(r)-

As a result, there is a symplectic embedding

Hmt B4 ) < Xq.

Consequently, by the monotonicity property of ECH capacities, we have

cEet (Hlnt B*(a ) cECH(x). (6.1.2)

Theorem 6.1.5 ([ D. If Xq is a four-dimensional concave toric domain with weight expan-
sion W(Xq) = (a;,a,,...), then equality holds in (6.1.2).

To make this more explicit, we know from [ ] that!
cpeH (Hmt B*(a ) = sup ZCECH int(B*(q;))) (6.1.3)
ky+--=k
and
M (int(B*(a))) = ;M (B*(a)) = da, (6.1.4)

where d is the unique nonnegative integer such that
d*+d <2k <d*+3d.
To state the next lemma, given a;, a, > 0, define the polydisk

|z1\ sd, T |Zz| 2}

This is a convex toric domain X, where Q' is a rectangle of side lengths a; and a,.

P(aj,a,) = {z e C?

For the sequence of numbers a; coming from a weight expansion, or for any finite sequence, the supremum in (6.1.3)
is achieved, so we can write ‘max’ instead of ‘sup’.
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6.1. ECH capacities

Lemma 6.1.6. Let X, be a four-dimensional concave toric domain. Let (a,0) and (0, b) be the points
where 0, Q intersects the axes. Let u be a point on 0, Q minimizing Wy + W, and write r = iy + Uy.
Then there exists a symplectic embedding

int(Xq) < P(r,max(b,a — uy)).

Proof. One might hope for a direct construction using some version of “symplectic folding” [ 1,
but we will instead use the above ECH machinery. By Theorem 6.1.3, it is enough to show that

FM(Xq) < cfM(P(r,max(b,a — py)) (6.1.5)

for each nonnegative integer k.

Consider the weight expansion W (Xq) = (a;,a,,...) where a; = r. The decomposition of 2
into triangles corresponding to the weight expansion consists of the triangle AZ(r), plus some
additional triangles in the quadrilateral with corners (0, 1), (1, 42), (41, b), (0, b), plus some ad-
ditional triangles in the quadrilateral with corners (uy, 4,), (1,0), (a,0), (a, u); see Figure 6.1a.
The latter quadrilateral is affine equivalent to the quadrilateral with corners (uy, u,), (1,0), (r,a —
1), (U1, a—uq); see Figure 6.1b. This allows us to pack triangles affine equivalent to A%(a;), A?(ay),. ..
into the rectangle with horizontal side length r and vertical side length max(b,a — ;). Thus by
the Traynor trick, we have a symplectic embedding

L[int(B(ai)) < P(r,max(b,a — py)).

Then Theorem 6.3.14 and the monotonicity of ECH capacities imply (6.1.5). O

(a) Weights of X, (b) Ball packing into a polydisk

Figure 6.1.: Embedding a concave toric domain into a polydisk
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6. Symplectic capacities

6.2. Ekeland-Hofer capacities

Let s = H'/2(S, R?"). We can decompose J# = #+ @ #° @ s~ where #* and £~ are the
subsets of the functions that only contain positive and negative Fourier coefficients, respectively,
and #° is the subset of constant functions. Let H : R?® — R a Hamiltonian which is quadratic
outside of a compact set and whose support contains Q. For x € 5, we define

1 1

Jx(t)-x(t)dt —J H(t,x(t))dt.

0

ylx)=—4 |

0

For an S! invariant subset X — #, one can define an index a(X) € Z as follows. Consider the
classifying map f : X xg1 ES' — BS! = CP®. So f induces a map f* : H*(CP®) — Hg (X) =
H*(X xg1 ES'). Let u be a generator of the ring H*(CP®) and define

a(X) = max{k € Z|f *u* # 0}.

Now we give an alternative description of the index a. Let U : Hil X) — Hil (X) be the map
defined by U(y) = f*unvy.

Proposition 6.2.1. Let X be an S'-space. Then
a(X) = max{k € Z|U* # 0}.

Proof. We first remark that there is a map “U on the dual. We have H, (X) ~ Hom (H il (X);Q).

Hom (HS'(X); Q) < Hom (H$' (X); Q)

] uf*(w) l

Hg, (X) Hg, (X)

U~ Uf* ()
Fact 6.2.2. U =0if and only if "U = 0.

The fact follows from the “duality” between U and "U; i.e. (*Ua, b) ={a,Ub).
Thus,
sup{k|UX # 0} = sup{k|("U)* # 0} = sup{k|f*u* # 0}

Indeed, to see the last equality, note first that > is obvious and < is because f*u* U1 = f*u*. O
q

Ekeland and Hofer defined a subgroup T of the group of homeomorphisms of 5# with compact
support (which we recall later) and denoted by S* the unit sphere in #*. For an S'-invariant
subspace £ c 52, they also defined

ind(§) = mina(X nh(ST))
heTl’
Finally, they defined
¢! (H) = inf {sup .%;(£)|ind(&) > k}.

Let us now recall the definition of the group I': a homeomorphism h belongs to T" if h is of the
following form:
h(x) = e (x4 x0 e (x4 K(x)
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6.3. Capacities from positive S'-equivariant symplectic homology

where y* and y* are maps # — R which are required to be continuous, S!-invariant and map-
ping bounded sets into bounded sets while K : # — # is continuous, S'-equivariant, mapping
bounded sets to pre-compact sets. Additionally, there must exists a number p > 0 such that, either
Ay (x) <O0or x| > p implies y*(x) =y (x) =0and K(x) = 0.

Computations of these capacities are known in a few examples. To state these, if a;,...,a, > 0,

yeee

in nondecreasing order with repetitions. We then have:

o [ , Prop. 4] The Ekeland-Hofer capacities of an ellipsoid are given by

o (E(ay,...,a,)) = Mi(ay,...,a,). (6.2.1)

o [ , Prop. 5] The Ekeland-Hofer capacities of a polydisk are given by

c(P(ay,...,a,)) = k-min(ay,...,a,). (6.2.2)

e Generalizing (6.2.2), it is asserted in [ ,Eq. (3.8)] that if X = R?" and X’ = R¥" are

compact star-shaped domains, then for the (symplectic) Cartesian product X xX’ < R2(n+1)

we have
H(X xX') = iﬂigk{clEH(X) + e (X"}, (6.2.3)

where i and j are nonnegative integers and we interpret ch =0.

6.3. Capacities from positive S!'-equivariant symplectic
homology
6.3.1. Nondegenerate Liouville domains

We first define the capacities ¢, for nondegenerate Liouville domains, imitating the definition of
ECH capacities in [ , Def. 4.3].

Definition 6.3.1. Let (X, A) be a nondegenerate Liouville domain and let k be a positive integer.
Define
(X, A) € (0,00]

to be the infimum over L such that there exists a € CHL (X, A) satisfying

U l1,a = [X]®[pt] € H.(X,0X) ® H,(BSY). (6.3.1)

6.3.2. Arbitrary Liouville domains

We now extend the definition of ¢, to an arbitrary Liouville domain (X, ). To do so, we use the
following procedure to perturb a possibly degenerate Liouville domain to a nondegenerate one.

First recall that there is a distinguished Liouville vector field V on X characterized by 1,dA = A.
Write Y = 0X. The flow of V then defines a smooth embedding

(—0,0] x Y — X, (6.3.2)
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6. Symplectic capacities

sending {0} x Y to Y in the obvious way, such that if p denotes the (—o0, 0] coordinate, then d,, is
mapped to the vector field V. This embedding pulls back the LioEviAlle form A on X to the 1-form
e (Aly) on (—00,0] x Y. The completion of (X, A) is the pair (X, A) defined as follows. First,

X =X uy ([0,0) x Y),

glued using the identification (6.3.2). Observe that X has a subset which is identified with R x Y,
and we denote the R coordinate on this subset by p. The 1-form A on X then extends to a unique
1-form A on X which agrees with e? (Aly) on R x Y.

Now if f : Y — R is any smooth function, define a new Liouville domain (X;, A, ), where

X =X\{(p,y)eRxY|p>f(y)}

and A is the restriction of A to X 7. For example, if f = 0, then (X;,A¢) = (X, 7). In general,
there is a canonical identification

Y e 8Xf,
y—(f(y),y)eRxY.

Under this identification,
Af|axf =/ Aly.

We now consider c; of nondegenerate perturbations of a possibly degenerate Liouville domain.
Lemma 6.3.2. (c¢f [ , Lem. 3.5]))

(@) If (X, A) is any Liouville domain, then

sup ¢ (X¢ ,Ar )= inf ¢.(Xr ,Ar ). (6.3.3)
sup, (XpoAp ) = infleXr,, Ar,)

Here the supremum and infimum are taken over functions f_ : Y — (—0,0) and f, : Y —
(0, 00) respectively such that the contact form e+ (A|y) is nondegenerate.

(b) If (X, A) is nondegenerate, then the supremum and infimum in (6.3.3) agree with ¢, (X, A).
As a result of Lemma 6.3.2, it makes sense to extend Definition 6.3.1 as follows:

Definition 6.3.3. If (X, A) is any Liouville domain, let us define c;(X,A) to be the supremum and
infimum in (6.3.3).

Definition 6.3.4. Let (X, A) and (X', A") be Liouville domains of the same dimension. A generalized
Liouville embedding (X,A) — (X', ") is a symplectic embedding ¢ : (X,dA) — (X',dA") such that

[(¢*A' = 2)| ] = 0 HY(OX;R).

Of course, if H 1((9X ;R) = 0, for example if X is a nice star-shaped domain in R?", then every
symplectic embedding is a generalized Liouville embedding.

Theorem 6.3.5. The functions c; of Liouville domains satisfy the following axioms:

(Conformality) If (X,7) is a Liouville domain and r is a positive real number, then c(X,rA) =
rc(X,A).
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(Increasing) ¢, (X, A) < cy(X,A) < -+ < o0.

(Restricted Monotonicity) If there exists a generalized Liouville embedding (X, 1) — (X', 1), then
(X, 2) < (X, 2).

(Contractible Reeb Orbits) If ¢; (X, L) < o, then ¢ (X,A) = .o/ (y) for some Reeb orbit y of A|sx
which is contractible® in X.

Remark 6.3.6. In the case where X is a star-shaped domain in R?" and if Ao|sx is nondegenerate,
then c;.(X) = /() for some Reeb orbit y of Ag|sx with CZ(y) =2k +n—1.

Remark 6.3.7. Monotonicity does not extend from generalized Liouville embeddings to arbitrary
symplectic embeddings: in some cases there exists a symplectic embedding (X,dA) — (X',d}’) even
though c; (X, A) > ¢ (X', A"). For example, suppose that T < X' is a Lagrangian torus. Let A denote
the standard Liouville form on the cotangent bundle T*T. By the Weinstein Lagrangian tubular
neighborhood theorem, there is a symplectic embedding (X,dA) — (X',dA), where X < T*T is
the unit disk bundle for some flat metric on T, and A = A¢|x. Then (X, A) is a Liouville domain.
But A|sx has no Reeb orbits which are contractible in X, so by the Contractible Reeb Orbits axiom,
(X, A) = oo for all k.

Note that the symplectic embedding (X,dA) — (X',dA") is a generalized Liouville embedding if and
only if T is an exact Lagrangian torus in (X', A"), that is A’|; is exact. The Restricted Monotonicity
axiom then tells us that if (X', 1’) is a Liouville domain with ¢; (X', 1") < oo, then (X', 1) does not
contain any exact Lagrangian torus.

Remark 6.3.8. The functions c; are defined for disconnected Liouville domains. However; it follows
from the definition that

m
Ck (]_[(Xi,/li)> = Mmax cx (X3, Ay).
e B B N

As a result, Restricted Monotonicity for embeddings of disconnected Liouville domains does not tell us
anything more than it already does for their connected components.

Remark 6.3.9. One can ask whether, by analogy with ECH capacities [ , Prop. 1.5] the exis-
tence of a generalized Liouville embedding [ " | (X;, A;) — (X', A’) implies that

m
Z (X, Ay) < i, (XA (6.3.4)

for all positive integers kq,--- ,k,. We have heuristic reasons to expect this when the k; are all
multiples of n — 1. However it is false more generally.

For example, in 2n dimensions, the Traynor trick [ J can be used to symplectically embed the
disjoint union of n? copies of the ball B(1/2 — €) into the ball B(1), for any & > 0. If (6.3.4) is true
with all k; = 1, then we obtain

n*(1/2 —¢) < n.

But this is false when n > 2 and € > 0 is small enough.

2Here ./ (y) denotes the symplectic action of y, which is defined by .«/ (y) = SY A.
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6.3.3. Computations

One can compute the capacities ¢; for many examples of star-shaped domains in R?", using only
the axioms in Theorem 6.3.5.

We now compute the capacities c; of a convex toric domain X, in R?". If v € RZ, is a vector
with all components nonnegative, define®

[v[§ = max{(v,w) | we Q} (6.3.5)
where (-, -) denotes the Euclidean inner product. Let N denote the set of nonnegative integers.
Theorem 6.3.10 ([ 1). Suppose that X, is a convex toric domain in R*". Then

n
cx(Xg) =min{ [v]5 [ v=(vi,...,v) N, D vy =k . (6.3.6)
i=1

In fact, (6.3.6) holds for any function ¢, defined on nice star-shaped domains in R?" and satisfying
the axioms in Theorem 6.3.5.

Example 6.3.11. The polydisk P(ay,...,a,) is a convex toric domain X, where Q) is the rectangle
Q={xeRl |[x;<aq,Vi=1,...,n}
In this case .
Ivig = Z a;v;.
i=1
It then follows from (6.3.6) that
c(P(ay,...,a,)) =k -min{ay,...,a,}.

Example 6.3.12. The ellipsoid E(ay, ..., a,) is a convex toric domain X, where Q) is the simplex

_ n
Q= xeRZO

In this case
* _— . .
vlg =  max a;v;.

=1,...,

Then (6.3.6) gives
ce(E(aq,...,a,)) = min max a;v;.

Zi Vi:k i=1,...,n
It is a combinatorial exercise? to check that
min  max a;v; = Mi(ay,...,a,). (6.3.7)
Yivi=ki=1,.,n
We conclude that
c(E(ay,...,a,) = Mi(ay,...,a,). (6.3.8)
3The reason for this notation is as follows. Let || - |, denote the norm on R" whose unit ball is Q. Then in equation
(6.3.5), || - | * denotes the dual norm on (R")*, where the latter is identified with R" using the Euclidean inner

product.

“To do the exercise, by a continuity argument we may assume that a;/ a; is irrational when i # j, so that the positive
integer multiples of the numbers q; are distinct. If v € N" and ; v; = k, then the k numbers ma; where 1 <i <n
and 1 < m < v; are distinct, which implies that the left hand side of (6.3.7) is greater than or equal to the right
hand side. To prove the reverse inequality, if L = M;(a,...,a,), then the numbers v; = |L/a;| satisfy >, v; = k
and max,_, _,a;v; = L.
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Comparing the above two examples with equations (6.2.1) and (6.2.2) suggests that our capac-
ities ¢, may agree with the Ekeland-Hofer capacities CEHZ

Conjecture 6.3.13. Let X be a compact star-shaped domain in R*". Then
c(X) = ¢ (X)
for every positive integer k.

We can also compute the capacities ¢ of another family of examples: concave toric domains.
Suppose that X, is a concave toric domain. Let % denote the closure of the set 92 NRY . Similarly

to (6.3.5), if ve R, define®
[v]q = min {(v,w) | we =} . (6.3.9)
Theorem 6.3.14 ([ 1). If Xq is a concave toric domain in R?", then

n
c(Xa) =max{[v]g veNL, Zvi =k~|—n—1}. (6.3.10)
i=1

Note that in (6.3.10), all components of v are required to be positive, while in (6.3.6), we only
required that all components of v be nonnegative.

Example 6.3.15. Let us check that (6.3.10) gives the correct answer when X, is an ellipsoid E(ay, . . ., a,).
Similarly to Example 6.3.12, we have

[V]lo = min a;v;.
i=1,..,n

Thus, we need to check that

max min aq;v; = M (ay,...,a,) (6.3.11)
Zi vi:k+n—1i:1,...,n

where, unlike Example 6.3.12, now all components of v must be positive integers. This can be proved
similarly to (6.3.7).

A quick application of Theorem 6.3.14, pointed out by Schlenk [ , Cor. 11.5], is to compute
the Gromov width of any concave toric domain®:

Corollary 6.3.16 ([ 1). If Xq is a concave toric domain in R?", then
cgr(Xq) = max{a | B(a) € Xq}.

Proof. Let ap,, denote the largest real number a such that B(a) c X. By the definition of the
Gromov width cg,, we have ¢ (Xq) = apnac- To prove the reverse inequality cg (Xq) < @max
suppose that there exists a symplectic embedding B(a) — Xg; we need to show that a < ap,,,. By
equation (6.3.8), the monotonicity property of c;, and Theorem 6.3.14, we have

a=c(B(a))
< ¢ (Xq)

WEZ}
O

>Unlike (6.3.5), the function [-]q is not a norm; instead it satisfies the reverse inequality [v + v']q = [v]q + [V']a-
5The four-dimensional case of this was shown using ECH capacities in [ , Cor. 1.10].
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6.3.4. Application to cube capacities

We now use the above results to solve some symplectic embedding problems where the domain
is a cube.
Given 6 > 0, define the cube

(,(8) = P(5,...,8) = C.

Equivalently,
[0.(0) = {z eC"| max {m|z|*} < 5}
i=1,..., n
Definition 6.3.17 ([ 1. Given a 2n-dimensional symplectic manifold (X, w), define the cube
capacity

(X, w) =sup{6 > 0 | there exists a symplectic embedding [1,(6) — (X, w)}.
It is immediate from the definition that ¢ is a symplectic capacity.

Theorem 6.3.18 ([ D. Let Xo = C™ be a convex toric domain or a concave toric domain. Then
q(Xq) =max{é | (5,...,0) € Q}.

That is, ¢(X() is the largest 6 such that [J,(6) is a subset of Xq; one cannot do better than
this obvious symplectic embedding by inclusion.

Since the proof of Theorem 6.3.18 is short, we will give it now. We need to consider the non-
disjoint union of n symplectic cylinders,

.....

L,(6)= {z eC"

Lemma 6.3.19 ([ D. (L, (8))=6(k+n—1).
Proof. Observe that L,(8) = X, where

Qa = {XER;O

As such, Q5 is the union of a nested sequence of concave toric domains. By an exhaustion argu-
ment, the statement of Theorem 6.3.14 is valid for X, . Similarly to Example 6.3.11, we have

[v]ﬂg =0 Z Vi.
i=1

The lemma then follows from equation (6.3.10). O
Proposition 6.3.20 ([ D. (L, (6)) = 6.

Proof. We have [J,,(5) < L, (), so by the definition of ¢, it follows that ¢(L,(5)) = 6.

To prove the reverse inequality (L, (8)) < &, suppose that there exists a symplectic embedding
[1,(8") — L,(8); we need to show that §’ < §. By the Monotonicity property of the capacities ¢,
we know that

c([a(8")) < c(Ly(5))
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for each positive integer k. By Example 6.3.11 and Lemma 6.3.19, this means that
ké'<8(k+n—1).
Since this holds for arbitrarily large k, it follows that §' < & as desired. O

Proof of Theorem 6.3.18. Let 6 > 0 be the largest real number such that (J,...,5) € Q. It follows
from the definitions of convex and concave toric domain that

[(,(8) € Xq < L,,(5).

The first inclusion implies that § < c¢(Xq) by the definition of ¢, while the second inclusion
implies that ¢5(Xg) < & by Proposition 6.3.20. Thus c5(Xg) = 6. O

Remark 6.3.21. The proof of Theorem 6.3.18 shows more generally that any star-shaped domain

X < C" such that
[(1,(6) =X < L,(5) (6.3.12)

satisfies co(X) = 6.
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7. Results towards the strong Viterbo
conjecture

In this chapter, we prove the strong Viterbo conjecture for all dynamically convex toric domains
in R*. We then study non convex domains and check whether they satisfy the equality of all
capacities. The last section of this chapter is devoted to higher dimensions.

Theorem 7.0.1 ([ 1). If Xq is a monotone toric domain in R?, then Car(x) = cz(X).

Proof. Let r be the largest positive real number such that A%(r) Q. We have B*(r) c Xg, so
r < ¢ (Xq), and we just need to show that ¢ (Xq) <.

Let u be a point on 092, such that u; + u, = r. By an approximation argument, we can assume
that X, is strictly monotone, so that the tangent line to 0, at u is not horizontal or vertical.
Then we can find a, b > r such that Q is contained in the quadrilateral with vertices (0, 0), (a,0),
(U1, M), and (0, b). It then follows from Lemma 6.1.6 that there exists a symplectic embedding
int(Xq) < P(r,R) for some R > 0. Since P(r,R) = Z*(r), it follows that c; (Xg) <. O

By proposition 5.1.4, Theorem 7.0.1 implies that all dynamically convex toric domains in R*
have cg, = c;.

If X is a star-shaped domain with smooth boundary, let A_;,(X) denote the minimal period of
a Reeb orbit on 0X.

Remark 7.0.2. Without the toric hypothesis, not all dynamically convex domains in R* have cg, = c5.
In particular; it is shown in [. Jthat for € > 0 small, there exists a dynamically convex domain
X in R* such that Ap; (X)?/(2vol(X)) > 2 — €. One has ¢S (X) > Apin(X) by [ , Thm. 1.1],
but cg,(X)? < 2vol(X) by the volume constraint. Thus

cz(X
X o s
Car (X )
Remark 7.0.3. It is also not true that all star-shaped toric domains have cg, = c;. Counterexamples
have been known for a long time, see e.g. [ J and in §7.1 we consider a new family of examples

where we can explicitly compute both cg, and c;.

For monotone toric domains in higher dimensions, we do not know how to prove that all nor-
malized symplectic capacities agree, but we can at least prove the following:

Theorem 7.0.4 ([ ). (proved in §7.3) If X, is a monotone toric domain in R?", then
car(Xa) = ¢ (Xq)- (7.0.1)

Returning to convex domains, some normalized symplectic capacities are known to agree (not
the Gromov width or cylindrical capacity however), as we review in the following theorem:
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Theorem 7.0.5 (Ekeland, Hofer, Zehnder, Abbondandolo-Kang, Irie). If X is a convex domain in
R2", then:

(@ ci"'(X) = ez (X) = csp(X) = 77 (X).
(b) If in addition 0X is smooth’, then all of the capacities in (a) agree with A, (X).

Proof. Part (b) implies part (a) by a continuity argument.

Part (b) was shown for ¢z (X) by Hofer-Zehnder in [ ] and for cg(X) by Irie [ ] and
Abbondandolo-Kang [ ]. The agreement of these two capacities with ¢S (X) for convex do-
mains now follows from the combination of [ , Theorem 1.24] and [ , Lemma 3.2], as
explained by Irie in [ , Remark 2.15]. Finally, part (b) for c?H (X) has been claimed and un-
derstood for a long time, but since we could not find a complete proof in the literature we give
one here in §7.2. O

7.1. A family of non-monotone toric examples

We now study a family of examples of non-monotone toric domains, and we determine when they
satisfy the conclusions of Conjecture 4.0.1 or Conjecture 4.0.2.

For 0 < a < 1/2, let Q, be the convex polygon with corners (0,0), (1 — 2a,0), (1 — a,a),
(a,1—a) and (0,1 — 2a), and write X, = X, . Then X, is a weakly convex (but not monotone)
toric domain.

Proposition 7.1.1 ([ D. Let 0 < a < 1/2. Then the Gromov width and cylindrical capacity
of X, are
cgr(X,) =min(1 —a,2 —4a), (7.1.1)
cz(X,) =1—a. (7.1.2)

Corollary 7.1.2. Let 0 < a < 1/2 and let X, be as above. Then:

(a) The conclusion of Conjecture 4.0.1 holds for X, i.e. all normalized symplectic capacities defined
for X, agree, if and only if a < 1/3.

(b) The conclusion of Conjecture 4.0.2 holds for X,, i.e. every normalized symplectic capacity c¢

defined for X, satisfies c(X,) < /2Vol(X,), if and only if a < 2/5.

Proof of Corollary 7.1.2. (a) By Lemma 4.0.3, we need to check that ¢, (X,) = cz(X,) if and only
if a < 1/3. This follows directly from (7.1.1) and (7.1.2).
(b) Since c; is the largest normalized symplectic capacity, the conclusion of Conjecture 4.0.2

holds for X, if and only if
¢z (X,) < 4/2Vol(X,). (7.1.3)

By equation (5.1.1), we have

1 — 4a?
VOI(XQH) = .
It follows from this and (7.1.2) that (7.1.3) holds if and only if a < 2/5. O
!Without the smoothness assumption, it is shown in [ , Prop. 2.7] that ¢,y (X) agrees with the minimum action

of a “generalized closed characteristic” on 0X.
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To prove Proposition 7.1.1, we will use the following formula for the ECH capacities of a weakly
convex toric domain Xq,. Let r be the smallest positive real number such that Q = A%(r). Then
A%(r)\Q=Q; L Qz where Ql does not intersect the u,-axis and €2, does not intersect the u,-axis.
It is possible that Q; and/or Q, is empty. As in the discussion preceding (6.1.1), the closures of
Ql and Qz are affine equivalent to domains ; and Q, such that X, and X, are concave toric
domains. Denote the union (as multisets) of their weight sequences by

W(XQ]) U W(ng) = (al,...).
We then have:

Theorem 7.1.3 (Choi-Cristofaro-Gardiner [ D. If X is a four-dimensional weakly convex toric
domain as above, then

CFOH (X ) = mf{cgg; (B4(r)) — cFCH (HB4 )} (7.1.4)

We need one more lemma, which follows from [ , Cor. 4.2]:

Lemma 7.1.4. Let uq,uy = a > 0. Let 2 be the “diamond” in R2>0 given by the convex hull of the
points (g £ a, uy) and (U, Uy + a). Then there is a symplectic embedding

int(B*(2a)) < Xq.

Proof of Proposition 7.1.1. To prove (7.1.1), we first describe the ECH capacities of X,. In the
formula (7.1.4) for X, we have r = 1, while the weight expansions of Q; and €2, are both (a,a);
the corresponding triangles are shown in Figure 7.1(b). Thus by Theorem 7.1.3 and equation
(6.1.3), we have

ECH _ : ECH ECH 4
Cr (Xa) = inf { k+11+12+l3+l4 Z c B } . (7.1.5)

[1,514 =0
We also note from (6.1.4) that
ECH(B4( ) = ECH(B4( ) =1, ECH(B4( ) = 2r.
Taking k = 1 and ([4,...,14) = (1,0,0,0) in equation (7.1.5), we get
M Xg,) <1-a. (7.1.6)
Taking k =5 and (;,...,14) = (1,1,1,1) in equation (7.1.5), we get
M (Xg,) <2—4a. (7.1.7)
By (7.1.6) and (7.1.7) and the fact that cECH is a normalized symplectic capacity, we conclude that
cor(Xg,) <min(1l —a,2 —4a). (7.1.8)

To prove the reverse inequality to (7.1.8), suppose first that 0 < a < 1/3. It is enough to prove
that there exists a symplectic embedding int(B*(1 — a)) < X . By Theorem 6.1.3, it is enough
s a

to show that
ECH(B4(1 )) ECH(XQ )
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1—a 1

(0<a<1/3 (b)1/3<a<1/2

Figure 7.1.: Ball packings

for all nonnegative integers k. By equation (7.1.5), the above inequality is equivalent to

4
CIE:CH(B4(1 - Cl)) + Z C£CH(B4(a)) < CE$I?1+12+13+14(B4(1)) (719)
i=1
for all nonnegative integers k,[,...,l4 = 0. To prove (7.1.9), by the monotonicity of ECH capac-
ities and the disjoint union formula (6.1.3), it suffices to find a symplectic embedding
int(B*(1 — a) uB*(a) uB*(a) L (B*(a) L B*(a)) — B*(1).
N
This embedding exists by the Traynor trick (Proposition 6.1.4) using the triangles shown in Figure
7.1(a).
Finally, when 1/3 < a < 1/2, it is enough to show that there exists a symplectic embedding
int(B*(2 — 4a)) — X, . This exists by Lemma 7.1.4 using the diamond shown in Figure 7.1(b).
s a
This completes the proof of (7.1.1). Equation (7.1.2) follows from Theorem 7.1.5 below. O

Theorem 7.1.5 ([GHR20]). Let X < R* be a weakly convex toric domain, see Definition 6.1.2. For
j=1,2 let

M; = max{u; | u e Q}.

Assume that there exists (M, o) € 0,Q with puy, < My, and that there exists (1, M,) € 0, Q with
Uy < M,. Then
cz(Xq) = min(M, My).

That is, under the hypotheses of the theorem, the optimal symplectic embedding of X, into a
cylinder is the inclusion of X, into either (7|21 |> < M;) or (7|2, |> < My).
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Proof. From the above inclusions we have c; (X) < min(M;, M,). To prove the reverse inequality,
suppose that there exists a symplectic embedding

X Z*(R). (7.1.10)

We need to show that R > min(M;, M,). To do so, we will use ideas? from [ 1.

Let € > 0 be small. Let (4,0) and (0,B) denote the endpoints of @, Q. By an approximation
argument, we can assume that <9+_Q is smooth, and that 0, 2 has positive slope less than e near
(A,0) and slope greater than e~ ! near (0, B). As in the proof of Proposition 5.1.4, there are then
three types of Reeb orbits on 0Xq:

(i) There is a simple Reeb orbit whose image is the circle with 7|z, \2 = A and z, = 0. This Reeb

orbit has symplectic action (period) equal to A, and rotation number 1 — e~ 1.

(ii) There is a simple Reeb orbit whose image is the circle with z; = 0 and 7|z,|? = B. This Reeb
1

orbit has symplectic action B and rotation number 1 —e™".

(iii) For each point u € 0, Q where 0, Q has rational slope, there is an S* family of simple Reeb
orbits in the torus where 7t(|z;|?, |25|?) = u. If » = (v, v,) is the outward normal vector
to 0, at u, scaled so that vy, v, are relatively prime integers, then these Reeb orbits have
rotation number v; + v, and symplectic action u - v, see [ , 82.2].

We claim now that
(*) Any Reeb orbit on 0X, with positive rotation number has symplectic action at least min(M;, M5).

To prove this claim, we only need to check the type (iii) simple Reeb orbits where v; + v, > 1.
We must have ¥; > 1 or v, > 1. If v; > 1, then by the hypotheses of the theorem there exists u,
such that (My, u,) € (%F_Q and M; > uj,. Since Q is convex and v is an outward normal at u, the
symplectic action

pev = (My,pg) v =M+ (v; = 1)(My — py) + (v + v = D)py > M.

Likewise, if v, > 1, then the symplectic action u - v > M,.
Now starting from the symplectic embedding (7.1.10), by replacing X, with an appropriate
subset and replacing Z*(R) with an appropriate superset, we obtain a symplectic embedding X" <
S

int(Z'), where:

e 7' is an ellipsoid whose boundary has one simple Reeb orbit y, with symplectic action
4 (y,) = R+ € and Conley-Zehnder index CZ(y,) = 3, another simple Reeb orbit with
very large symplectic action, and no other simple Reeb orbits.

e X' is a (non-toric) star-shaped domain with smooth boundary, all of whose Reeb orbits are
nondegenerate. Every Reeb orbit on 0X’ with rotation number greater than or equal to 1
has action at least min(M;, M,) — €.

2The main theorem in [ ] gives a general obstruction to a symplectic embedding of one four-dimensional convex
toric domain into another, which sometimes goes beyond the obstruction coming from ECH capacities. This theorem
can be generalized to weakly convex toric domains; but rather than carry out the full generalization, we will just
explain the simple case of this that we need.
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The symplectic embedding gives rise to a strong symplectic cobordism W whose positive bound-
ary is 0Z' and whose negative boundary is 0X’. The argument in [ , §6] shows that for a
generic “cobordism-admissible” almost complex structure J on the “completion” of W, there exists
an embedded J-holomorphic curve u with one positive end asymptotic to the Reeb orbit y, in 07,
negative ends asymptotic to some Reeb orbits y,...,7,, in 0X’, and Fredholm index ind(u) = 0.
The Fredholm index is computed by the formula

ind(u) =2g + [CZ(y,) — 1] - i [CZ(y;) — 1] (7.1.11)

where g denotes the genus of u. Furthermore, since J-holomorphic curves decrease symplectic
action, we have

A(rs) =), A1) (7.1.12)
i=1

We claim now that at least one of the Reeb orbits y; has action at least min(M;, M,) — €. Then
the inequality (7.1.12) gives
R+ e > min(M;,M,) — e,

and since € > 0 was arbitrarily small, we are done.

To prove the above claim, suppose to the contrary that all of the Reeb orbits y; have action less
than min(M;, M,) — €. Then all of the Reeb orbits y; have rotation number p(y;) < 1, which
means that they all have Conley-Zehnder index CZ(y;) < 1. It now follows from (7.1.11) that
ind(u) > 2, which is a contradiction®. O

7.2. The first Ekeland-Hofer capacity

The goal of this section is to (re) prove the following theorem. This is well-known in the community
and is attributed to Ekeland, Hofer and Zehnder [ , ]. It was first mentioned by Viterbo
in[ , Proposition 3.10].

Theorem 7.2.1 (Ekeland-Hofer-Zehnder). Let W < R?" be a compact convex domain with smooth
boundary. Then
CEH(W) =Apin(W).

Proof. Since W is star-shaped, there is a unique differentiable function r : R?" — R which is C*
in R?™\{0} satisfying r(cz) = c?r(z) for ¢ > 0 such that

W= {zeR?|r(z) <1},
oW = {zeR™|r(z) =1}.

Let @ = Apip (W) and fix € > 0. Let f € CZ(R) be a convex function such that f (r) =0 forr <1
and f (r) = (a+€)(r — 1) for r > 2. In particular,

f(r)=(a+e€)(r—1), forallr (7.2.1)

30ne way to think about the information that we are getting out of (7.1.11), as well as the general symplectic em-
bedding obstruction in [ ], is that we are making essential use of the fact that every holomorphic curve has
nonnegative genus.
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We now choose a convex function H € C*°(R?") such that

H(z) = f(r(z), ifr(z)<2,
H(z) > f(r(z)), forallzeR?>™", (7.2.2)
H(z) = clz|5, if 2 >> 0 for some ¢ € R.(\7Z.

Let X, € E be an action-minimizing Reeb orbit on 0W, reparametrized as a map x, : R/Z = S! —
R2" of speed a, so that A(x,) = a and r(x,) = 1 and x, = aJVr(xy). From a simple calculation
we deduce that x; is a critical point of the functional ¥ : E — R defined by

U(x)=A(x) —ajlr(x(t))dt. (7.2.3)

Observe that ¥(cx) = c?W(x) for ¢ = 0. So sx, is a critical point of ¥ for all s > 0. Let & =
[0,00) - PTx, ®E°DE".

We now claim that ¥(x) < 0 for all x € £. To prove this, let &, = sPTx,@E°@®E~. Observe that
W, is a concave function. Since sx, is a critical point of Wy it follows that max ¥ (&;) = W(sx,) =
s2W(xy) = 0..

From (7.2.1), (7.2.2) and (7.2.3) we obtain

1

A (x) < ¥(x) +a+e—ef r(x(t))dt<a+e.
0

Note that & is S-invariant. Moreover it is proven in [ ]that h(§) n St # @i forall heT. So
i1 < o+ €. Hence [ (W) < a + € for all € > 0. Therefore

(W) < a.
To prove the reverse inequality, recall from [ , Prop. 2] that cfH(W) is the symplectic action

of some Reeb orbit on 0W. Thus
(W) = a.

7.3. High dimensions

We start by proving Theorem 7.0.4. (Some related arguments appeared in [ , Lem. 1.19].)
Ifaq,...,a, > 0, define the “L-shaped domain”

L(ay,...,a,) = {MGR;O’,{LJ < qj forsomej}.

Lemma 7.3.1. Ifaq,...,a, > 0, then

CfH (XL(al ----- an)) = Z a;.

Proof. Observe that
R;O\L(al,...,an) = (a;,00) x -+ x (a,, ).
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is convex. Thus X4, 4, satisfies all the conditions in the definition of “concave toric domain”,
except that it is not compact.

A formula for CIS‘H of a concave toric domain is given in [ , Thm. 1.14]. The k = 1 case of
this formula asserts that if X, is a concave toric domain in R?", then

n
CH(XQ):min{Z,ui ue@+ﬂ}. (7.3.1)

i=1
By an exhaustion argument (see [ , Rmk. 1.3]), this result also applies to X (g, . q,)- For
Q= L(ay,...,a,), the minimum in (7.3. 1) is realized by u = (ay,...,a,). O

Lemma 7.3.2. If X, is a monotone toric domain in R*" and if u € 0,9, then Q < L(u1,- .., Un)-

Proof. By an approximation argument we can assume without loss of generality that X, is strictly
monotone. Then J, Q is the graph of a positive function f over an openset U R’;)l with J;f <0
for j=1,...,n— 1. It follows that if (u],...,u, ;)€U and ,u; > ujforall j=1,...,n—1, then
fuy,..u 1) < f(Uq,...,uy_1). Consequently  does not contain any point u' with ,u; > U;
for all j = 1,...,n. This means that Q@ < L(uq,...,u,). Figure 7.2 illustrates this inclusion for
n=2. O

Observe that the toric domain X an(q) is the ball B?"(a). Now let a > 0 be the largest real number
such that A™(a) < Q; see Figure 7.2.
We have B?'(a) c Xq, so by definition a < cg,(Xg). Since cfH is a normalized symplectic

Proof of Theorem 7.0.4. For a > 0, consider the simplex

A"(a) = {MGR’;O

capacity, g (Xg) < c$%(Xq). By the maximality property of a, there exists a point y € 0..Q with
Z] 1 4j = a. By an approximation argument we can assume that y € 0, Q. By Lemma 7.3.2,

Xo © X1(u,,...,)- By the monotonicity of ¢¢ o H and Lemma 7.3.1, we then have

n
M(Xq) < C1CH (XL(“l ~~~~~ un)) = Z pj = a.
Combining the above inequalities gives cg, (Xg) = ¢ (Xg) = a. O
We conclude this section by a quick sketch on how to prove Theorem 7.0.5.

Proof of Theorem 7.0.5. We assume that 0X is smooth. By monotonicity of the capacities the result
follows for all convex domains.
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7.3. High dimensions

Uz

Figure 7.2.: The inclusions A" (a) € Q < L(uq,...,U,) forn =2

We will use the following commutative diagram [ , Theorem 1.2]
SH{(X) SH (X) (7.3.2)
[-1] /
L
a SH,™"(X) b

CH (X)i_»
By [ , Lemma 4.7], the first equivariant capacity is given by

" (X) =inf{L|CHL, | (X) # O}. (7.3.3)

Since X is convex, 0X is dynamically convex, which implies that the three elements of the lower
triangle in Equation (7.3.2) vanish in degrees n — 1 and n — 2.

si, s,
SH, °5(X) =0=SH, *{(X)
si, s,
SH, 5(X) =0=SH, *{(X)
CH: ,(X)=0=CH! |(X)

Thus, in degree n, the maps a, b and ¢ are isomorphisms. Therefore

inf{L | CHY, | (X) # 0} = inf{L|SH", (X) # 0}. (7.3.4)
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7. Results towards the strong Viterbo conjecture
From Viterbo’s isomorphism ([ , Proposition 1.4]) we know that SHY, , ; (X) = 0Oand SH (X ) =
Q. So from the upper triangle in Equation (7.3.2)we obtain the following exact sequence:

0 — SHE, | (X) — SH,", (X) > SHE(X) — SHE(X) —0

Now recall from [ , Main Corolary] that cgy (X) = Ly, (0X). If the map SH¢(X) — SH=(X)
is zero, then the map ¢ is surjective, in particular SHL’L1 (X) #0. So

nin (0X) = cspy (X) = Inf{L > € | SH=¢(X) — SHZ"(X) is zero} > inf{L | SH, % (X) # O}.

(7.3.5)
It now follows from Theorem 7.2.1, (7.3.3), (7.3.4) and (7.3.5) that
CfH(X) = lmin(aX) = CSH(X) = C1CH(X) = lmin(aX)'
Therefore
(X)) = et (X)) = csp(X).
O
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8. Knotted embeddings

Recent years have seen a significant improvement in our understanding of when one region in
R* symplectically embeds into another, see e.g. [ 11 11 ]. Complementing this
existence question, one can ask whether embeddings are unique up to an appropriate notion of
equivalence; in particular, if A U — R* this entails asking whether every symplectic embedding
A — U is equivalent to the inclusion. Somewhat less is known about this uniqueness question,
though there are positive results in [ 1l ] and negative results in [ LI 1.
We showed with M. Usher [ ] that modern techniques of constructing symplectic embeddings
B — U often give rise, when restricted to certain subsets A B n U, to embeddings A < U that
are distinct from the inclusion in a strong sense.

The subsets of R* (and in some cases more generally in R2?" ~ C™") that we consider are toric
domains, see §5.

We use the following standard notational convention:

Definition 8.0.1. If Ac C" and a > 0, we define aA = {y/aa|a € A}.

(The square root ensures that any capacity ¢ will obey c(aA) = ac(A), and also that we have
E(aay,...,aa,) = aE(ay,...,a,) and similarly for polydisks.)

For any subset B — C" let B® denote the interior of B. We were mostly concerned with symplectic
embeddings X < aX° where X is a concave or convex toric domain and a > 1. The definitions
imply that concave or convex toric domains X always satisfy X < aX® for all a > 1, so one such
embedding is given by the inclusion of X into aX“. However we will find that in many cases there
are other such embeddings that are inequivalent to the inclusion in the following sense:

Definition 8.0.2. Let A and U be symplectic manifolds, and let ¢ and , be symplectic embeddings
A— U . Wesay ¢, and @, are equivalent if there exists a symplectomorphism ¥ : U — U such that
W o ¢;(A) = py(A). Otherwise they are called inequivalent.

In the particular case of nested domains in C", we introduced the notion of knottedness as
follows.

Definition 8.0.3. Let A < U < C", with A closed and U open, and let ¢ : A — U be a symplectic
embedding.! We say that ¢ is unknotted if there is a symplectomorphism ¥: U — U such that
W(A) = ¢ (A). We say that ¢ is knotted if it is not unknotted.

Note that we do not require the map ¥ to be compactly supported, or Hamiltonian isotopic
to the identity, or even to extend continuously to the closure of U; accordingly our definition of
knottedness is in principle more restrictive than others that one might use.

In [ ] we have proven the existence of knotted embeddings from X to aX° for many toric
domains X — C? and suitable a > 1.

1Since A may not be a manifold or even a manifold with boundary we should say what it means for ¢: A — U to be
a symplectic embedding; our convention will be that it means that there is an open neighborhood of A to which
¢ extends as a symplectic embedding. When A is a manifold with boundary it is not hard to see using a relative
Moser argument that this is equivalent to the statement that ¢: A — U is a smooth embedding of manifolds with
boundary which preserves the symplectic form.
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8. Knotted embeddings

Figure 8.1.: The shaded regions are examples of choices of €2 such that Theorem 8.0.4 gives knot-
ted embeddings X — aX( for suitable a > 1. The dashed lines delimit the regions
which are assumed to contain (02) N (0, 00)" in, respectively, Cases (i) and (ii) of the
theorem.

Theorem 8.0.4. Let X — C? belong to any of the following classes of domains:
(i) All convex toric domains X such that, for some ¢ > 0, B*(c) € X < P(c,c).

(ii) All concave toric domains Xq such that, for some ¢ > 0,
{(x,y) €[0,00)?|min{2x + y,x + 2y} <c} = Q< {(x,y) € [0,0)?|x + y < c}.

(iii) All complex (P balls {(w,z) € C?||w|P + |z|P < rP} for p > % ~ 1.23, except for p = 2.

(iv) All polydisks P(a,b) for a < b < 2a.
Then there exist a > 1 and a knotted embedding ¢ : X — aX°.

For context, recall that McDuff showed in [ ] that the space of symplectic embeddings
from one four-dimensional ball to another is always connected; by the symplectic isotopy exten-
sion theorem this implies that symplectic embeddings B*(c) — aB*(c)° can never be knotted. (In
particular the exclusion of B4(c) from each of the classes (i), (ii), (iii) above is necessary.) McDuff’s
result was later extended to establish the connectedness of the space of embeddings of one four-
dimensional ellipsoid into another [ ] or of a four-dimensional concave toric domain into a
convex toric domain [ ]. So Theorem 8.0.4 reflects that embeddings from concave toric do-
mains into concave ones, or convex toric domains into convex ones, can behave differently than
embeddings from concave toric domains into convex ones.

We do not know whether the bound b < 2a in part (iv) of Theorem 8.0.4 is sharp. The bound
p > ig%z in part (iii) is not sharp; we are aware of extensions of our methods that lower this bound
slightly, though in the interest of brevity we do not include them. Note that the domains in part
(iii) are concave when p < 2 and convex when p > 2 (in the latter case the result follows directly
from part (i)).
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While our primary focus in this paper is on domains in R*, we show in Theorem 8.0.5 that
the embeddings from Cases (i) and (iv) of Theorem 8.0.4 remain knotted after being trivially
extended to the product of X with an ellipsoid of sufficiently large Gromov width. It remains
an interesting problem to find knotted embeddings involving broader classes of high-dimensional
domains that do not arise from lower-dimensional constructions.

Theorem 8.0.5. Let X — C? belong to any of the following classes of domains:
(i) All convex toric domains X such that, for some ¢ > 0, B*(c) € X < P(c,c).
(ii) All polydisks P(a,b) for a < b < 2a.

Then there exist numbers a > 1 and R > 0 and a knotted embedding ¢ : X x E(by,...,b,_5) —
a(X x E(bq,..., bn_z))ofor any bq,...,b,_ with each b; > R.

By the way, embeddings such as those in Theorem 8.0.4 can only be knotted for a limited range
of a, since the extension-after-restriction principle [ , Proposition A.1] implies that for any
compact set X < C" which is star-shaped with respect to the origin and contains the origin in its
interior and any symplectic embedding ¢ : X — C", there is ay > 1 such that ¢ (X) < a,X° and
such that ¢ is unknotted when considered as a map to aX° for all a > a,. The values for a that
we find in the proof of Theorem 8.0.4 vary from case to case, but in each instance lie between 1
and 2. This suggests the:

Question 8.0.6. Do there exist a domain X < R?", a number o > 2, and a knotted symplectic
embedding ¢ : X — aX°?

Theorem 8.0.4 concerns embeddings of a domain X into the interior of a dilate aX® of X; of
course it is also natural to consider embeddings in which the source and target are not simply
related by a dilation. Our methods in principle allow for this, though the proofs that the embed-
dings are knotted become more subtle. We carried this out for embeddings of four-dimensional
polydisks into other polydisks, and in particular we proved the following:

Theorem 8.0.7. Given any y > 1, there exist polydisks P(a, b) and P(c,d) and knotted embeddings
of P(a,b) into P(1,y)° and of P(1,y) into P(c,d)".

Theorem 8.0.7 and Case (iv) of Theorem 8.0.4 should be compared to [ , Section 3.3], in
which it is shown that, if a < b < c but a+ b > ¢, then the embeddings ¢4, ¢5: P(a,b) — P(c,c)°
given by ¢1(w,z) = (w,z) and ¢,(w,2) = (2, w) are not isotopic through compactly supported
symplectomorphisms of P(c,c)°. However our embeddings are different than these; in fact the
embeddings from [ ] are not even knotted in our (rather strong) sense since there is a sym-
plectomorphism of the open polydisk P(c, c)° mapping P(a, b) to P(b,a). If one instead considers
embeddings into P(c,d) with ¢ < d chosen such that P(c,d)° contains both P(a, b) and P(b,a)
and a + b > d, then P(a,b) and P(b,a) are inequivalent to each other under the symplecto-
morphism group of P(c,d)°. However in situations where this construction and the construction
underlying Theorem 8.0.4 (iv) and Theorem 8.0.7 both apply, our knotted embeddings represent
different knot types than both P(a, b) and P(b,a).

Let us be a bit more specific about how we prove Theorem 8.0.4; the proof of Theorem 8.0.7
is conceptually similar. The knotted embeddings ¢: X — aX° described in Theorem 8.0.4 are
obtained as compositions of embeddings X — E — aX° where E is an ellipsoid. In the cases
that X is convex, the first map X — E is just an inclusion, while the second map E — aX° is
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8. Knotted embeddings

1.5 1 151 4

1.01 4 1.0 4
b R

0.5+ - 0.5 H 4
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00 02 04 06 08 1.0 12 00 02 04 06 08 10 12

Figure 8.2.: The strategy underlying our knotted embedding in the case that X is the ¢° ball of
capacity 1, as in Case (i) or (iii) of Theorem 8.0.4. X is the toric domain associated
to the smaller region on the left; the toric domain associated to the triangle on the
left is the ellipsoid E = E((3/2)%°,3%%), which in particular contains X. The larger
region at right is obtained by dilating X by a = (1 + €)(3/2)%/ for a small € > 0, and
we showed that there is a symplectic embedding ¢ : E — aX® (in fact, ¢ has image
contained in the preimage under u of the inscribed quadrilateral on the right). Our
knotted embedding is ¢ |x; Theorem 8.0.9(a) implies that any unknotted embedding
X — aX° that extends to a symplectic embedding E — aX° would have a > 2%/5,
whereas in this construction a can be taken arbitrarily close to (3/2)/°.

obtained by using recent developments from [ 1L ] that ultimately have their roots in
Taubes-Seiberg-Witten theory. (For a limited class of convex toric domains X that are close to a
cube P(c,c), we provide a much more elementary and explicit construction in Section 8.1.) In
the cases that X is concave the reverse is true: E — aX° is an inclusion while X — E is obtained
from these more recent methods. Meanwhile, we use the properties of transfer maps in filtered
S'-equivariant symplectic homology to obtain a lower bound on possible values a such that there
can exist any unknotted embedding X — aX° which factors through an ellipsoid E. In each case
in Theorem 8.0.4, we will find compositions X — E — aX° arising from the constructions for
which «a is less than this symplectic-homology-derived lower bound, leading to the conclusion
that the composition must be knotted. Figure 8.2 and its caption explain this more concretely in
a representative special case.

To carry this out systematically, let us introduce the following two quantities associated to a
star-shaped domain X c C", where the symbol — always denotes a symplectic embedding:

O0en(X) =inf{a > 1|(3ay,...,a,)(X — E(ay,...,a,) — aX’)} (8.0.1)
and
u . (Jaq,...,a,, f: X — E(ay,...,a,),
Oa(X) = 1nf{a Z 1’ g: E(ay,...,a,) — aX®)(gof is unknotted.) (8.0.2)
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(The u in &3 stands for “unknotted.”) To put this into a different context, as was suggested to
us by Y. Ostrover and L. Polterovich, one can define a pseudometric on the space of star-shaped
domains in C" by declaring the distance between two domains X and Y to be the logarithm of the
infimal a € R such that there is a sequence of symplectic embeddings a~'/2X < Y — al/2X°;
a more refined version of this pseudometric would additionally ask that neither of the resulting
compositions X — aX° and Y — aY° be knotted. Then (at least if n = 2) the logarithm of & (X)
or of 5 (X) is the distance from X to the set of ellipsoids with respect to such a pseudometric.
(In the case of &7, this statement depends partly on the result from [ ] that when E is an
ellipsoid in R* a symplectic embedding E < aE° is never knotted.)

We will prove Theorem 8.0.4 by proving, for each X as in the statement, a strict inequality
Sen(X) < 6g,(X). This entails finding upper bounds for 6, (X) by exhibiting particular composi-
tions of embeddings X < E < aX°, and finding lower bounds for 63, (X) using filtered positive
Sl-equivariant symplectic homology. As it happens, for convex or concave toric domains both
our upper bounds and our lower bounds can be conveniently expressed in terms of the following
notation:

Notation 8.0.8. For a domain Q < [0,00)" we define functions | - || and [-]q from R" to R as
follows:

e For aeR", |d|g =sup{a-v|VeQ}.
e For aeR", [d]g = inf{a V|V €[0,00)"\Q}.
The estimates for &, that are relevant to Theorem 8.0.4 are given by the following result:

Theorem 8.0.9. (a) If X C? is a convex toric domain, then

) LD
Sal¥e) > L L O O D}

(b) If X — C? is a concave toric domain, then

min{[(2,1)], [(1,2)]a}
[(1,D)]a '

As for upper bounds on &, we proved the following:

Sen(Xa) =

Theorem 8.0.10. (a) Suppose that Q  [0,0)? is a domain such that € is convex and such that
contains points (a,0),(0,b), (x,y) withO <x <a<b<x+y. Then

5e11(Xn)<’<1 - )

ax+y

*

Q
(b) Suppose that [0,0)? is a domain that contains (0,0) in its interior and whose complement
in [0,00)? is convex, and such that points (a,0), (0,b), (x,y) with 0 < x + y < a < b all belong to

[0,00)2\Q2. Then
1

|G75)

(c) For a polydisk P(a, b) with a < b < 2a we have

Oen(Xq) <

*

[0,a]x[0,b]

3 1
Oe(P(a,b)) < || —,
a(P(ab)) ’<a+b 2a+b>
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8. Knotted embeddings

8.1. An explicit construction

The embeddings that underlie Theorem 8.0.10 are obtained by very indirect methods and are dif-
ficult to understand concretely. We will now explain a more direct construction that, for instance,

leads to an explicit formula for a knotted embedding P(1,1) — aP(1,1)° for any a € <ﬁ§, 2).

The key ingredient is a toric structure on the complement of the antidiagonal in S2 x $2 that
appears (at least implicitly) in [ , Example 1.22], [ 1 , Section 2]. View S? as
the unit sphere in R® and let A = {(v,w) € S? x §?|w = —v} be the antidiagonal. Define functions
Fi,Fy: §2 xS2 >R by

Fi(v,w) =v3 +wq Fy(vyw) = |v+w|.

Now F, fails to be smooth along A = F, 1({0}), but on $? x $?\A the Hamiltonian flows of the
functions F; and F, induce S'-actions that commute with each other and are rather simple to
understand: F; induces simultaneous rotation of the factors about the z-axis, and F, induces the
flow which rotates the pair (v, w) € % x S?\A about an axis in the direction of v + w. In formulas:

br ((v1,v2,v3), (W1, wa, ws)) (8.1.1)

= (((cos t)vy — (sint)vy, (sint)vy + (cost)vy,v3), ((cost)wy — (sint)wo, (sint)w; + (cos t)wz,w3)>

and
v+w V—w WXV v+w w—v VX W
L (v,w =<——|— cost + (sint ,— + (cost)—— + (sint )
o, (vw) = (52 + (cost) (St (@80T + (it
(8.1.2)

Define
J: $2x 8?2 > R? by Jv,w)=2—=|v+w|,|v+w|—vs—w3),

ie. J = (2—F,,—F, +F,). Then J is smooth away from A, and its restriction to S? x S?\A is
the moment map for a Hamiltonian T2-action.? It is not hard to see that J has image equal to
A := {(x,y) € [0,00)%|x/2 + y/4 < 1}, and that the preimage of {x/2 + y/4 = 1} is equal to
Q:= {(v,w) € S>x S?|v3+w5 = —|v+w|}. (In other words, Q is the locus of pairs (v, w) € §? x §2
such that v + w is on the nonpositive z axis.)

Proposition 8.1.1. Let A° = {(x,y) € [0,00)?|5 + ¥ <1} and define s: A° — S? x S? by

n=(((C-D (5-9-5)
(2 (392

22

2
Then, writing E(4m,8m)° = {(w,z) e C?| ‘WT| + 5 < 1}, the map

2 2
(ere, mle') = of, (07 (s (25 221) ) )

2 2
defines a symplectomorphism ®: E(4m,87m)° — S2 xS2\Q which satisfies Jo®(z;,2,) = (lz%l, %)

*Here we view T? as (R/2nZ)?. On the other hand the map u(w,z) = (m|w|?, n|z|?) that we have considered
elsewhere is the moment map for a Hamiltonian (R/Z)*-action; to get a (R/2nZ)?-action one would take 3-.
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8.1. An explicit construction

Proof. First we observe that s indeed takes values in S% x $? = R® xR3, which follows by computing

X x y ( x+y)2
1-= 1-= -2 1—
x( 4)”( 2 4>+ 2

2,2 2 2
x“+y xy x“+2xy +y
=x+y-— ——+1-x- =1
YT, 2 4
Given (x,y) € A°, if we write (v,w) = s(x,y), then
2 X _Jy 2_ .2 2
v+ w| =4y(1—§—z)—|—(2—x—y) =x“—4x+4=(2—x)7,

so (since x < 2)
J(s(x,y)) = (2— [v+w|,—vs—ws+ Hv—i—WH) =(,x+y—2+2—x)=(x,Y).

In particular, the image of s is contained in S? x §*\Q = J~1(A°), and it intersects each fiber of
J|7-1(a0) just once.

Moreover, since the image of s is contained in {(v,Rv) | v € S*} where R is the reflection through
the v,v3-plane and hence is antisymplectic, we see that s*Q2 = 0 where  is the standard product
symplectic form on $? x S2. Thuss: A° — J~!(A°) is a Lagrangian right inverse to the moment
map J.

Write wge’w) (z1,25) = (7192, e71¥2,) for the standard T2-action on E(47,87)° (with moment
map % having image equal to A°; the negative signs in front of 8 and ¢ arise because our
convention for Hamiltonian vector fields is wq (X, -) = dH). Likewise write prw) =¢ le Yo qb;fz_e

for the T2-action on S? x $2\Q induced by the moment map J. Our map  maps the Lagrangian
section of % given by the nonnegative real locus of E(4m,87)° to the Lagrangian section of
J|s2xs2q given by the image of s, and & obeys J o ® = 5= and, for all (6,¢) € T, o 1,[)29 0 =

%9 ) © ®. These facts are easily seen to imply that & is a symplectomorphism, as it identifies

action-angle coordinates on E(47,87)° with action-angle coordinates on S? x S*\Q. The last
statement is immediate from the formula for ® and the facts that J os is the identity and that J is
preserved under the Hamiltonian flows of F; and Fs. O

Remark 8.1.2. With sufficient effort, one can derive the following equivalent formula for the map
®: E(4m,87)° — S? x S2 from Proposition 8.1.1: regarding S as the unit sphere in C x R, we have

®(w,z) = (T(w,2),T(—w,2)) where

/8 — 2((8—=2 2 2 ~ 2 .
F(W,Z) _ ( ‘W‘ (( 8(4‘_M/|‘M/2)‘Z‘ >W+WZ ) _'_% /8_2’W|2_|Z|2, (8.13)

B I LR Ut I P
4 44— w)?) '

1

Since E(4m,8m)° is precisely the locus where 2|w|* + |z|? < 8, this makes clear that & is a smooth
(indeed even real-analytic) map despite the appearance of square roots in the formula for s in Propo-

sition 8.1.1.
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8. Knotted embeddings

Now if D(41) denotes the open disk of area 47 (so radius 2) in C, there is a symplectomorphism
o: S2\{(0,—1)} — D(4n) defined by

2
1+V3

o(z,v3) = b4 (8.1.4)

where as in Remark 8.1.2 we regard S? as the unit sphere in C x R.

Soif welet # = ({(0,—1)} x $?) U (S? x {(0,—1)}) then o x o defines a symplectomorphism
S? x S2\# =~ P(4m,4n)° = D(47n) x D(4m).

For v = (3,v3) € S2 = C x R, we have

v+ (0,-1)|> =|2[* +vZ —2v3+ 1 =2—2v

and hence

J(%,(0,-1)) = J((0,~1),v) = (2 /2 2vg,\ /2~ 2v5 + (1 v3)> .

Thus
J(ﬂ)c{(x,y)e]R2|(2—x)2=2(x+y)—4}={(x,y)eR2|y=%2—3x+4}.

Since 4= = J o ®, we have 1-(®~!(.#)) = J(.#). From this we obtain the following:

Proposition 8.1.3. Suppose that X, is a convex toric domain where Q < {(2nx,2my) € [0,00)?|y <

x; —3x —|—4}. Then there is an ellipsoid E such that X, < E° and such that the map ® from Proposition
8.1.1 maps E to a subset of S? x S?\.#. Hence (o x o) o ®|j is a symplectic embedding from E to
P(4m,4m)°.

Proof. The sets %Q and S := {(x,y) € [0,00)?|y > x; — 3x + 4} are disjoint, closed, convex
subsets of R?, and the first of these sets is compact, so the hyperplane separation theorem shows
that they must be separated by a line ¢, which passes through the first quadrant since both sets
are contained in the first quadrant. This line £ must have negative slope, since S intersects all
lines with positive slope and also intersects all horizontal or vertical lines that pass through the
first quadrant. So we can write the separating line as { = {(x, y)eR?| >+ % = 1} with a, b > 0,
and then it will hold that 5=Q = {£ + ¥ <1} and S = {£ + ¥ > 1}. The first inclusion shows
that X = E(2ma,2nb)°. Meanwhile since (2,0),(0,4) € S = {X + ¥ > 1}, we have a < 2 and
b < 4. So E(2ma,2mnb) is contained in the domain of the map ¢ from Proposition 8.1.1, and by the
discussion before the proposition the fact that £ NS = @& implies that E(27a,2nb) n®~1(.#) = @.
Hence the proposition holds with E = E(2na,27b). O

Corollary 8.1.4. Suppose that X, is a convex toric domain with Q < {(2nx,2my) € [0,0)2|y <

%2—3x+4}, and that we have P(4m,4m) c aXg forsome a < 6(Xq). Then (0 x0)o®[x : Xg
P(4m,4m)° < aX( defines a knotted embedding X — aX.

Proof. By Proposition 8.1.3 we have an ellipsoid E and a sequence X, < E° < P(4m,4m)° < aX]
where the first map is the inclusion and the second map is (o x o) o ®|. So the corollary follows
directly from the assumption that a < 63,(Xq) and the definition of 6. O
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8.1. An explicit construction
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Figure 8.3.: After appropriate rescalings, the map ® from Proposition 8.1.1 sends the interior of
the ellipsoid E(1,2) to a product of spheres of area 1, with the preimage of (S? x
{(0,0,—1)}) U ({(0,0,—1)} x §?) contained in u~!(C) where C is the red curve at
left. Consequently the preimage under u of any domain lying below C, such as the
small square at left, is embedded into the polydisk P(1,1)° by a rescaling of (o x 0 )o®.
This gives an explicit knotted embedding P(c,c) < P(1,1)° for 1/2 < ¢ < 2 — /2.

We emphasize that this embedding (o x o) o ® is completely explicit: o is defined in (8.1.4)
and @ is defined in Proposition 8.1.1 based partly on the formulas (8.1.1) and (8.1.2), or even
more explicitly is given by (8.1.3).

Example 8.1.5. For instance, Q could be taken to be a square [0,27c]? with ¢ smaller than the

smallest root of the polynomial %2 — 4x + 4, namely 4 — 2+/2 (see Figure 8.3). So we obtain an
embedding (o x o) o ®: P(2mc,2mc) — P(4m,4m)° = %P(ZTCC,ZTCC)O, which is knotted provided
that % <oy (P(2mc,2mc)). By Theorem 8.0.9 we have e (P(a,a)) = 2forany a, so our embedding

is knotted provided that 1 < ¢ < 4—2+/2. So after conjugating by appropriate rescalings our explicit
embedding (o x o) o ® defines a knotted embedding P(a,a) — aP(a,a)® provided that 2 > a >

2_1 7 ~ L.71. For comparison, our less explicit construction (leading to the bound 6 (P (a,a)) < 3/2
from Theorem 8.0.10) gives knotted embeddings P(a,a) — aP(a,a)® whenever 2 > a > 1.5.

Choosing the scaling so that the codomain is P (41, 41)°, the image of this embedding a P (4, 4m) <

P(4m,4m)° is not hard to describe explicitly as a subset of P(4m,4m)°: it is given as the region

{(21,22) € P(47,47)°|Gy(21,25) = 2 — 2/, —G1(21,25) + Go(21,22) < 2/a},

where G; = F;o (0 x o)}, i.e,

|21 1% + |2,

G1(21,22) =2 — D)

89



8. Knotted embeddings
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Corollary 8.1.4 also applies to some other convex toric domains besides the cube P(a, a), though
it as not as broadly applicable as Theorem 8.0.4. For example the reader may check that, in
Corollary 8.1.4, for appropriate a one can take X, equal to a polydisk P(1,a) with 1 < a < 1.2,
or to an appropriately rescaled £? ball as in Theorem 8.0.4 for p > 10.

and

Remark 8.1.6. By construction, the embedding & from Proposition 8.1.1 maps the torus T, s :=
{(w,2) € C?||w| = |z| = V2 } to the Lagrangian torus in S* x $? that is denoted K in [FP09, Example
1.22], and which can be identified with the Chekanov-Schlenk twist torus ©, see [ L[ 1
Since, as shown in [ ] there is no symplectomorphism mapping K to the Clifford torus in S x S2
(i.e., to the image of T, ;5 under the standard embedding (o x o)~ of P(4m,4m)° into S? x S2), one
easily infers independently of our other results that (o x o) o ®: P(2mc,2mc) < P(4m,4m)° must
not be isotopic to the inclusion by a compactly supported Hamiltonian isotopy for 1 < c¢ < 4 — 2+/2
(for such a Hamiltonian isotopy could be extended to S? x S2, giving a symplectomorphism that would
send K to the Clifford torus). However this argument based on Lagrangian tori does not seem to adapt
to yield the full result that (o x o) o ® is knotted in the stronger sense of Definition 8.0.3.

By the way, if ¢ < 1, our embedding (o x o) o ®: P(2mc,2nc) — P(4m,4m)° is unknotted.
Indeed in this case the ball B*(4c) is contained both in P(4m,4m)° and in E(4m,87)\® (.#), and
so both (0 x 0) 0 ®|p(azc 2nc) and the inclusion P(2mc,27c) < P(4m,47)° extend to embeddings
B*(4mc,4mc) < P(4m,4m)°; these two embeddings of the ball are symplectically isotopic by [ X
Proposition 1.5]. Thus a transition between knottedness and unknottedness occurs at the value ¢ = 1,
which is precisely the first value for which P(21c,2mc) contains the torus T, ;5 mentioned at the start
of the remark.

Remark 8.1.7. A similar construction to that in Proposition 8.1.1, using results from [ , Section
3], allows one to construct a symplectic embedding of E(37,127)° into CP? where the symplectic
form on CP? is normalized to give area 6 to a complex projective line, such that the torus T /3 Is sent
to the CP? version of the Chekanov-Schlenk twist torus ©. Combining this with a symplectomorphism
from the complement of a line in CP? to a ball and restricting to P(27c,27c) for c slightly larger
than 1, we obtain a symplectic embedding P(2mc,2mc) < B*(6m)° which cannot be Hamiltonian
isotopic to the inclusion because © is not Hamiltonian isotopic to the Clifford torus. It is less clear
whether this embedding P(2mc,2mc) < B*(6m)° is knotted in the sense of Definition 8.0.3; the
symplectic-homology-based methods in the present paper seem ill-equipped to address this because
the filtered positive S'-equivariant symplectic homology of B*(67) does not have as rich a structure
as that of the domains X that appear in Theorem 8.0.4.
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9. Symplectic convexity

As we saw throughout this memoir, convexity plays a big role in symplectic geometry, and is often
synonymous of rigidity but is not invariant under symplectomorphism. The main question is

Question 9.0.1. What is the symplectic analogue of convexity?

In R?", defining symplectic convexity as being symplectomorphic to a convex domain is a hardly
verifiable condition and therefore not ideal. The main alternative is dynamical convexity.

Question 1.3.3. Is every dynamically convex domain in R?" symplectomorphic to a convex domain
: 2n
in R“"?

The answer is NO. Recently, Chaidez and Edtmair [ , Theorem 1.8] constructed a dynam-
ically convex domain which is not symplectomorphic to a convex one. The main new ingredient
in Chaidez and Edtmair is the Ruelle invariant (see [ ) , D.

The “Ruelle invariant” is defined for a contact form on a homology three-sphere, which, roughly
speaking, is a measure of the average rotation rate of the Reeb flow. We follow the exposition from
[ ] in what follows.

Let :ST)(RZ, Q) denote the universal cover of the group Sp(R?, ) of 2 x 2 symplectic matrices.
There is a standard “rotation number” function

rot : Sp(R%, Q) — R

defined as follows. Let A € Sp(R?,§), and let A € éT)(RZ,QO) be a lift of A. This lift A can be
represented by a path {A; }¢[o,1] in Sp(R?,9Q,) with Ay = Id and A; = A. If v is a nonzero vector in

R?, then the path of vectors {Atv}te[o’l] rotates by some angle which we denote by 2np(v) € R.
We then define

n—oo n

n
rot (2\) = lim 1 Z Jol (Ak_lv) .
k=1

This does not depend on the choice of nonzero vector v. For example, if A is conjugate to rota-
tion by angle 270, then rot (A) is a lift of & from S' = R/2nZ to R. The rotation number is a

quasimorphism: if B is another element of éT)(RZ, Qg), then

~~

|r0t (AB) —rot (A) —rot (§)| <1.

Now let Y be a homology three-sphere, and let A be a contact form on Y with associated contact
structure & and Reeb vector field R. For t € R, let ¢, : Y — Y denote the diffeomorphism given
by the time t Reeb flow. For each y € Y, the derivative of ¢, restricts to a linear map

doe:8y — Ep.(y)

which is symplectic with respect to dA. Now fix a symplectic trivialization of &, consisting of a
symplectic linear map 7 : §, — R? for each y € Y. Then for y € Y and t € R, the composition

2 7! d¢, 2
R* ~— Sy =S4,y —R
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9. Symplectic convexity

is a symplectic matrix which we denote by A; .- Inparticular, if y € Y and T > 0, then the path of

symplectic matrices {A]  }c[o,r) defines an element of Sp(2). We denote its rotation number by

rot,(y,T) = rot <{A§,,t}te[o,T]> eR.

One can use the quasimorphism property to show [ . ] that for almost all y € Y,
the limit

.1
p(y) = lim —rot;(y,T)
is well defined and independent of 7, and the function p is integrable.

Definition 9.0.2. If Y is a homology three-sphere and A is a contact form on Y, define the Ruelle
invariant

Ru(Y,A) = J pAAdA
Y

Definition 9.0.3. If X is a star-shaped domain in R* with smooth boundary, then we define
Ru(X) = Ru (X, Ap|sx) -
For example of computations, we have the following proposition:

Proposition 9.0.4 (Gutt-Zhang). Let X, be any 4-dimensional toric star-shaped domain®. Then its
Ruelle invariant is
Ru(Xq) =a(Q) + b(Q)

where a(Q) and b(2) are the wy-intercept and wq-intercept, respectively, of the moment image Q2 in
[0,00)2 (in (w;,ws)-coordinate.

The question of being symplectomorphic to a convex domain still remains for the particular
example of Theorem 2.1.14. If this example were to be symplectomorphic to a convex domain,
this would imply that the weak Viterbo conjecture is false.

Another approach to Question 1.3.3, is by using some interleaving distance, see [ , SZ].
The notion of knotted embedding (Definition 8.0.3) allows one to define a Banach-Mazur type
distance on the set of star-shaped domains in R?". Given two star-shaped domains X and Y in
R?", their distance p(X,Y) is defined as

there exists symplectic embeddings A 71X < Y < AX;
inf { log A | { there exists symplectic embeddings A 'Y < X < AY;

the two compositions above are unknotted.

This distance is invariant under symplectomorphism. By [ , Theorem III], any convex body
K < R" has an associated John ellipsoid Ex which obeys Ex < K < nEg. Thus any dynamically
convex domain which is “far” from the set of ellipsoids would not be symplectomorphic to any
convex domain. This criterion fails on the example from Theorem 2.1.14. This prompted the
question

'Here, a toric star-shaped domain means 0X, is smooth and the radial vector field of R* is transversal to 0X,. In
particular, 09 is smooth and the radial vector field of R? is transversal to 0f2.

92



Question 9.0.5. Are all dynamically convex domain close (at interleaving distance less than /n) to
the set of ellipsoids?

Another argument in favor of Viterbo’s conjecture is

Theorem 9.0.6 (Hryniewicz, private communication). In dimension 4, the strong Viterbo Conjec-
ture implies a positive answer to Question 2.1.12

An alternative notion of symplectic convexity, in dimension 4, is to be monotone toric (see
Definition 5.1.3).

Question 9.0.7. Is every convex set in R* symplectomorphic to a monotone toric domain?

An affirmative answer would provide a proof of the strong Viterbo Conjecture in dimension 4.
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Perspectives

In the text, I have mentioned questions and developments directly related to the results presented
in this memoir and which I intend to study. This last section will be devoted to present a longer
term perspective for my research.

Coming back to the motivation of uncovering the link between the geometry of a symplectic
manifold and the contact geometry of its boundary, the long term dream is to try to mimick what
has been done in the Riemannian case and relate those links to operator theory.

Does there exist an operator (or a family of operators) defined on an “appropriate space”
(depending on the given symplectic manifold) such that its spectrum is related to
symplectic capacities?

This is in the spirit of Lorentz question (see Foreword) about the Dirichlet spectrum of the Lapla-
cian. Recall that if (M, g) is a Riemannian manifold with boundary, then M has a Laplace opera-
tor A, defined by A(f) := —div(grad f ), that acts on smooth functions on M. The spectrum of
M is the sequence of eigenvalues of A. The Dirichlet spectrum is the spectrum of A acting on
smooth functions that vanish on the boundary and the Neumann spectrum is that of A acting
on functions with vanishing normal derivative at the boundary. The spectral gap is the smallest
positive eigenvalue of A.

The dreamy idea is to first try to build such an operator for star-shaped domains in R?", starting
with n = 2, then to extend it to cotangent bundles and prequantization bundles and see if it can
be generalised to other symplectic manifold. The definition of such an operator would require
additional geometric structures (other than the symplectic form), for instance a compatible almost
complex structure or an appropriate symplectic connexion.

In the near future, the first step is to study the desired spectrum (i.e. symplectic capacities). The
various directions which are described in what follows are: the asymptotics of the capacities, their
behaviour under symplectic products, the smallest capacity, and applications to Reeb dynamics.
The next step, consisting in the combined approaches of building an operator from its spectrum
and computing the spectrum of known operators carrying some symplectic data, being at this
point wildly speculative, will not be developed here.

As seen in Chapter 6, there are, in dimension 4, two distinct sequences of capacities, the ECH
capacities (§6.1) and the capacities from positive S'-equivariant symplectic homology (§6.3) /
Ekeland-Hofer capacities (§6.2). The latter being well-defined in higher dimensions. In the fol-
lowing, we shall distinguish the case of dimension 4, where we are going to focus on ECH ca-
pacities, and the higher dimensional case, where we shall consider the capacities from positive
Sl-equivariant symplectic homology.

Dimension 4

There is the following fundamental result about the ECH spectrum
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Theorem 0.1 ([ D. Let (X, A) be a four dimensional Liouville domain such that ¢; " (X, 1) <

oo for all k. Then
2
(e, )

lim 2 — 4Vol(X, A).

This Theorem is to be compared to the following Theorem, named Weyl’s law (which generalises
Weyl’s answer to Lorentz question). We refer to [ ] and references therein for a nice history
of Weyl’s law and later work.

Theorem 0.2 (Weyl’s law in dimension 4, [ , D. Let X be a star-shaped domain in R*
with smooth boundary Y := 0X. Denote by {A; | k € N} the Dirichlet spectrum (associated to X).
Then 5
1, )Lk 327‘[2
im — =
k—w k Vol (X)

For the higher order terms, there is the Weyl conjecture which is proven under the assumption
that the set of all periodic geodesic billiards has measure 0.

On the ECH side the higher order terms have been studied in [ s ]. Given a Liouville
domain (X, A), one define the error term as

ex(X) := cf M (X) — 24/ k Vol(X)

Conjecture 0.3 ([ 1. If X is a star-shaped domain in R?, then
ex(X) =0(1)
So far, [ s , ], the current statement is that e, (X ) = O(k‘lt). In fact, Hutchings
proved that
Theorem 0.4 ([ D. If X « R* is a strictly convex or strictly concave toric domain, then
lim e (X) = —3Ru(X) (0.1)

where Ru(X) is the Ruelle invariant (see Definition 9.0.3). Hutchings conjectured Equation
(0.1) to hold for all generic star-shaped domains. The term “generic” is crucial since (0.1) is false
for the ball. Also,

Counterexample 0.5 (Gutt-Zhang). The ellipsoid E(1,2) and the polydisk P(1,1) have the same
ECH capacities and the same volume (and thus same e;). But, by Proposition 9.0.4, their Ruelle
invariant is different.

Remark 0.6. The ellipsoid E(1,2) and the polydisk P(1,1) where already distinguished as non-
symplectomorphic by the third Ekeland-Hofer capacity or the third capacity from positive S*-equivariant
symplectic homology.

cs7(E(1,2)) =c3(E(1,2)) =3  and " (P(1,1)) =c3(P(1,1)) =2.
This led Jun Zhang and I to the three following questions / future directions:

Question 0.7. Can one generalise the Ruelle invariant to contact flows (i.e. flows preserving the
contact structure but not necessarily a contact form) and extract dynamical information, in particular
on periodic orbits, on those flows?
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Question 0.8. Can we compute the Ruelle invariant (for Reeb flows) for other manifolds than the
sphere. For instance for prequantized spaces (e,g, unit cosphere bundles)?

Question 0.9. Can we generalise the Ruelle invariant to higher dimensions?

At the moment, we focus our attention on the latter question where the starting point is to
use the map p from [ ] (and constructed in details in [ , ] to generalize the
rotation number.

Dimension > 4

The main sequences of symplectic capacities defined in any dimension are the Ekeland-Hofer
capacities (for star-shaped domains in R?", §6.2) and for all Liouville domains the capacities from
positive S!-equivariant symplectic homology (§6.3). The conjecture is that those coincides:

Conjecture 6.3.13 ([ 1). For all star-shaped domain X in R*", we have
M (X) = e (X).

Remark 0.10. More evidence for this conjecture: Theorem 6.3.10 implies that our capacities c;. satisfy
the Cartesian product property (6.2.3) in the special case when X and X' are convex toric domains.
We do not know whether the capacities c; satisfy this property in general.

The proof of this conjecture is ongoing work with V. Ramos. Our strategy is the following:

1. Define an S!-equivariant Morse theory in infinite dimension for the Hamiltonian action
functional, for a fixed Hamiltonian. This was done in the non-equivariant case for star-
shaped domains by Abbondandolo and Majer [ ]. We shall adapt this construction to
the S'-equivariant setting, define HM (.«/) as the direct limit of this S*-equivariant Morse
homology in infinte dimensions over a family of admissible Hamiltonians (in the sense of
the homology CH).

2. Show that HM(.«/) is isomorphic to the homology CH. In fact, we would like to show
that the two chain complexes (for the same fixed Hamiltonian) of those two homologies
are chain-complex isomorphic and that this isomorphism “commutes” with the direct limit
operation. M. Hecht [ ] showed such an isomorphism on tori in the non-equivariant
case and for a fixed Hamiltonian. See §3.5 for more details about those two first points.

3. Show that the Ekeland-Hofer capacities, ¢!, are spectral invariants of the homology HM (.«/ ).

The major problem here is to understand the Fadell-Rabinowitz index in the context of sym-
plectic homology:.

4. The fact that the Ekeland-Hofer capacities are the same as the equivariant capacities should
result from the three previous points.

For the asymptotics of those capacities, little is known and it will be different from the ECH
case. Indeed, the example of the Polydisk (see Example 6.3.11) in particular show that the ca-
pacities from positive S!-equivariant symplectic homology do not detect the volume, not even
asymptotically.
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The proof of Theorem 6.3.18 shows that if X — C" is a star-shaped domain satisfying (6.3.12),

then x)
. Ck
klir{.lo = q(X). (0.2)
This is related to the following question of Cieliebak-Mohnke [ 1.

Given a domain X — R?", define the Lagrangian capacity c; (X) to be the supremum over A
such that there exists an embedded Lagrangian torus T — X such that the symplectic area of every
map (D?,0D?) — (X, T) is an integer multiple of A. It is asked in [ ] whether if X « R?" is a

convex domain then -

¢ (X)
lim X
k—o0

It is confirmed by [ , Cor. 1.3] that (0.3) holds when X is a ball.
Observe that if X is any domain in C", then the Lagrangian capacity is related to the cube

capacity by

= ¢ (X). (0.3)

q(X) < ¢ (X),

because if [,(6) symplectically embeds into X, then the restriction of this embedding maps the
“corner”
ul(s,...,8) c1,(8)

to a Lagrangian torus T in X such that the symplectic area of every disk with boundary on T is
an integer multiple of 6. Thus the asymptotic result (0.2) implies that if X < C" is a domain
satisfying (6.3.12), then
g (X)
lim =22
ks k
Assuming Conjecture 6.3.13, this proves one inequality in (0.3) for these examples.

< cp(X).

Question 0.11. What about the higher order asymptotics?

In order to construct an operator whose spectrum is (or at least contains) the capacites from
positive S'-equivariant symplectic homology, the more information we have on the behavior of
¢ the merrier. This imply finding new algebraic structures on the homology CH. For those, we
would like to start by exploring the two following directions: the pair-of-pants product and the
Kiinneth formula. The pair-of-pant product is defined in non-equivariant symplectic homology.
The lift of this product to the homology CH is not a product anymore but becomes a bracket.
We plan to use Floer trajectories, with an additional constraint on the angle, to build a product
structure on the homology CH. To construct a Kiinneth-type long exact sequence for the homology
CH, we plan to use techniques such as those in the construction of the long exact sequence for
non-equivariant symplectic homology by Oancea [ ]. This would in principle lead to the
Cartesian product property (6.2.3).

k(X xX') = min {¢;(X) 4+ ¢;(X")},
i+j=k
where i and j are positive integers and X < R?® and X’ R2" are star-shaped domains.

Another approach to build algebraic structures on the homology CH of the unit disk bundle
(DT*N, A.qn) (Whose boundary is the contact manifold ST*N), for N a closed spin oriented man-
ifold, is to prove the following isomorphism:

CH,(DT*N,A.q,) = H,(AN/S*,N;Q), 0.4)
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where AN is the free loop space of N and N — AN indicates the subset of constant loops. Then
we would “push” the operations on H, (AN /S, N; Q) onto CH via this isomorphism. This isomor-
phism is mentioned without any proof in [ ] and [ ]. We would like to point out that
there are several approaches to the non-equivariant version of this isomorphism [ , ,

s ] and we expect that both the methods of Abbondandolo and Schwarz [ ] and of
Abouzaid [ ] should adapt to the S'-equivariant setting that we consider.

Another sequence of symplectic capacities called the higher symplectic capacities was intro-
duced by K. Siegel [ , ]. Those are defined using Rational Symplectic Field The-
ory [ ] and are conjectured to wield similar properties as ECH capacities. They make
use of the £ -structure. The higher symplectic capacities differ from the capacities from pos-
itive S!-equivariant symplectic homology, as shown by computation in [ ]. These capacities
are particularly suited for obstructions of stabilized symplectic embeddings (i.e. of the form 4-
dimensional manifold xR?n).

Question 0.12. What is the asymptotics of the higher symplectic capacities?

Application to Dynamics

The symplectic capacities from positive S'-equivariant symplectic homology carry relevant infor-
mation on the dynamics of the Reeb vector field on the boundary for all contact form defining the
contact structure

Theorem 0.13 ([ 1). Let Y be a star-shaped hypersurface in R?". If Y carries only finitely many
simple periodic Reeb orbits, then, foralli > 1

¢i(Y) <cipa(Y)

The same statement holds true in R* with the ECH capacities. The actual statement from
[ ]is a bit stronger. It states that the inequality remains valid for “capacities” defined in a simi-
lar way as in §6.3 but taking the “inverse image by powers of U of any class in H, (X, 0X )®H, (BS?)
(with correct degree)”. It is therefore very tempting to ask for a lower bound on the minimal num-
ber of geometrically distinct periodic Reeb orbits in a prescribed homotopy class. Together, with
J. Kang, we consider prequantization bundles i.e. complex line bundles E over a symplectic man-
ifold (M, w) sucht that ¢;(E) = —[w] € H?(M;Z). The circle bundle in E is naturally a contact
manifold. Without restriction on the homotopy class, the minimal number of geometrically dis-
tinct periodic Reeb orbits is bounded below (in some case) by the sum of the Betti numbers of the
base (in the non-degenerate case) and by the cuplength of the base (in the degenerate case).

We plan to check whether these lower bounds remain valid if we consider only periodic Reeb
orbits homotopic to a fiber (in particular non-contractible). The restriction to this particular free
homotopy class of loops comes from the fact that in the case of RP?"~!, finding periodic Reeb
orbits homotopic to a fibre is equivalent to finding periodic orbits on a star-shaped hypersurface
in R?" which are invariant by antipodal reflection.

The positive S!-equivariant symplectic homology CH decomposes as a direct sum of homologies
corresponding to orbits in different homotopy classes. It is difficult to obtain information on
this decomposition from the global homology. We plan to use the fact that periodic orbits are
homotopic to a fibre if and only if they are the boundary of a disk and have winding number
equal to 1. We try to construct a variant of the homology CH, using positivity of intersection in a
similar manner as what is done in [ ] to detect the orbits in a given homotopy class. Another
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approach would consist in defining an S!-equivariant version of the Rabinowitz-Floer homology

[AF12].

Smallest capacity

In this last section, we describe some questions and research related to the first capacity (or related
spectral invariant!) which we call spectral gap in what follows. The first question would be

Question 0.14. What is the significance of the spectral gap?

Can the spectral gap be read on the barcode of the homology CH? Also, if all eigenvalues are
distinct, can we extract a lower bound on the minimal number of simple periodic Reeb orbits?

The hope is that the spectral gap will shed some light on Question 2.2.23. So far, Jean-Francois
Barraud and I try to apply the “crocodile walk” techniques [ ]; it generate the fundamental
group from the Floer moduli spaces. We try to extend this to equivariant symplectic homology.
Assuming the contact manifold is fillable by a cotangent bundle and assuming dynamical convexity
we try to extract information about its 7, from CH.

Question 2.2.23 is related to questions stemming from algebraic geometry. We refer to [ ]
and references therein for the algebraic geometrical interpretation.

Definition 0.15. Given a compact contact manifold (M, &), define the minimal log discrepancy as

min. log. discr.(M, £) := sup min {(CZ(y) +n—3)3 + 1}
a YeEZP(a)

where the supremum is taken over all contact forms a such that kera = & and & () is the set of all
periodic Reeb orbits of R,,.

Remark that min. log. discr.(S?"~1, £,,4) = n. Question 2.2.23 reformulates in this context as
Question 0.16. Given a 2n-1-dimensional compact contact manifold (M, &), is it true that
min. log. discr.(M, &) <n
with equality if and only if M is diffeomorphic to the sphere S?"~1?

Note that this question englobes Shokurov’s conjecture [ ] and a positive answer to the
first part would give a disproval of a conjecture (expected to be false) of a conjecture by Thurston.
Recall that a c-symplectic manifold is a triple (X, J, ¢) such that

1. X is a 2n-dimensional compact manifold,
2. J is an almost complex structure on X,
3. ce H3(X,R) such that c" :=c U ---Uc # 0.

Conjecture 0.17 (Thurston). c-symplectic = symplectic.

1One direction is to impose condition on the linking number or on the index of the orbit whose action represent the
symplectic capacity
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It is expected that for a generic compact contact manifold, min.log.discr.(M,&) = —oo. The
approach to this conjecture is to test it on link of affine variety (i.e. the intersection of an affine
variety and a large ball) where the homology CH and the spectral gap, together with the additional

ambiant structure might generalise [ ]. The other approach is by looking the case n = 2 and
using ECH.
There are some links [ ] (also McLean, private communications) between minimal log

discrepancy and arc space (i.e. space of holomorphic disks). This prompted the question whether
the two-systole can be detected from symplectic capacities?
Defining the two-systole of the 4-dimensional torus endowed with a Riemmannian metric to be

syso(T*, g) := infA(%)

where the infimum is taken over all non-trivial cycle 6 of Hy(T*,Z,) and A(6) is the area of €.
We have the following question:

Conjecture 0.18 (Balacheff-Gutt). Let (T*, wg) be the standard symplectic 4-torus. There exists a
constant K > 0 such that for all Riemmannian metrics which are wq-compatible, we have

(sys,(T%,8))* <K2Vol(T4, g).

Remark 0.19. This statement is known to be false for a non wy-compatible metric but true for all
flat metrics which are wy-compatible [ ]
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Résumé

Ce mémoire se présente comme une promenade dans le domaine de la topologie symplectique et
de la géométrie de contact, présentant dans leur contexte les résultats que j’ai obtenus depuis la
fin de ma these.

Le fil conducteur de mes recherches est la question suivante: Dans le cadre d’une variété symplec-
tique a bord de type contact, quelle information Uintérieur posséde t-il sur le bord et réciproquement,
quelle information le bord posséde t-il sur Uintérieur?

Ce mémoire est divisé en deux parties correspondant aux deux volets de la question ci-dessus.

La premiére partie est consacrée a 'étude du nombre minimal d’orbites périodiques du champ
de Reeb d’abord sur des hypersurfaces étoilées dans R?" ensuite sur des variétés plus générales.
Un des outils principaux est ’'homologie symplectique S*-équivariante positive; elle est construite
a partir d’orbites périodiques de champs de vecteurs hamiltoniens sur une variété symplectique
dont le bord est la variété de contact considérée.

La deuxiéme partie est consacrée aux plongements symplectiques d’une variété symplectique
dans une autre et plus précisément a leur obstructions (capacités symplectiques). Nous présentons
une nouvelle construction d’une suite de capacités symplectiques ainsi que quelques applications
et calculs. La conjecture forte de Viterbo énonce que toutes les capacités normalisées coincident
sur les domaines convexes de R?". Nous en donnons une démonstration en dimension 4 dans le
cadre des domaines toriques monotones (que nous introduisons). Nous définissons une nouvelle
notion d’équivalence de plongements symplectiques et donnons des exemples de plongements
non-équivalents.

Le dernier chapitre présente certaines perspectives envisagées pour mes recherches futures.
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