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Titre Ra�nement en résolution et précision pour la compression et la simulation de
maillages volumiques en géosciences

En bref,
La recherche est entrée dans une ère marquée par l'utilisation intensive des données. La quantité
croissante d'informations scienti�ques pose un dé� dans plusieurs domaines d'application. C'est le
cas notamment en simulation, où l'utilisation d'énormes volumes de données créent des goulets
d'étranglement lors de calculs haute performance. Plusieurs méthodes de réduction des données sont
actuellement à l'essai pour tenter de résoudre ce problème.

Dans ce travail, nous nous concentrons sur la modélisation géologique et le wor�ow de simula-
tion en ingénierie réservoir. En géosciences, les modèles sont composés d'informations hétérogènes,
notamment la géométrie du maillage et les propriétés pétrophysiques. Ces derniers peuvent contenir
jusqu'à plusieurs millions de cellules. Des techniques d'upscaling/upgridding sont couramment uti-
lisées pour réduire le temps de simulation. Pourtant, elles sont souvent ad hoc et ne répondent pas
entièrement à tous les besoins de manipulation des données : visualisation, stockage, et génération
d'une donnée à résolution et précision adaptées pour la simulation.

Nous proposons une méthodologie complète permettant un ra�nement en résolution et en pré-
cision, basée sur HexaShrink, un outil de décomposition multi-échelle basé sur les ondelettes. Nous
évaluons ses capacités de compression sans perte puis avec perte en le combinant avec des codeurs
entropiques génériques et évolués (type "zerotree") , ainsi que sa pertinence visuelle en appliquant
la méthode sur une collection de maillages représentatifs.

Nous testons aussi de manière approfondie l'impact du ra�nement de la résolution et de la préci-
sion sur la simulation. Tous nos tests de simulation ont été réalisés sur Lundi, un modèle représentatif
de di�érents environnements géologiques, généré spéci�quement pour ce travail. Les résultats se com-
parent positivement aux codeurs de référence SZ et ZFP, en dé�nissant des métriques d'évaluation
objectives corrélées aux évaluations subjectives des résultats de simulation réservoir.

Mots-clefs maillages volumiques, multi-échelle, ondelettes, compression, simulation, ingénierie des

réservoirs





Title Re�nable resolution and precision for volume mesh compression and simulation in
geosciences

In short,
Research has entered a data-intensive era. The growing quantity of scienti�c information challenges
several application domains. That happens notably for the simulation science, where huge data vol-
umes create bottlenecks in high-performance computing work�ows. Several data reduction methods
are currently being developed as potential answers

We focus on geological modeling and reservoir simulation work�ows. Geoscience models are com-
posed of heterogeneous information, including mesh geometry and petrophysical properties, and may
contain several millions of cells. Upscaling and upgridding techniques are commonly used for simu-
lation time reduction. Yet there are often ad-hoc, and do not fully answer all the data manipulation
needs: visualization, storage and ultimately well production prediction at the appropriate resolution
and precision. We propose in this work a comprehensive methodology with re�nable resolution and
precision based on HexaShrink, a wavelet multiscale decomposition. We assess its performance on
size reduction and visual relevance with lossless and lossy compression in a benchmark of meshes
using entropy and zerotree coders.

We also extensively test the impact of re�nable resolution and precision on simulation. We
speci�cally designed case-studies based on Lundi, a representative model of di�erent geological envi-
ronments. Results compare positively with state-of-the-art coders SZ and ZFP, by designing objec-
tive performance metrics that correlate well to subjection reservoir production assessment. Finally,
we designed a complete work�ow including a shareable mesh (Lundi, to be released as open data),
designed for simulation in reservoir engineering. This model (meant to serve as a benchmark) can
be processed by our multiscale decomposition, and then compressed by di�erent encoders (lossless,
or progressive/lossy) and compared to alternative compression methods. The resulting compressed
meshes, generated at re�nable resolution and precision, can be processed, and their quality can be
evaluated at several steps of a simulation work�ow.

Keywords volume mesh, multiscale, wavelets, compression, simulation, reservoir engineering
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Résumé

Les sciences nous aident à appréhender le monde qui nous entoure : qu'il s'agisse du monde vivant,
d'objets naturels à petites ou grandes échelles, ou de phénomènes physiques proches ou lointains.
Cette connaissance du monde est nourrie par des avancées technologiques et intensivement docu-
mentée par une donnée générée en grande quantité. Face à ces volumes de données croissants les
capacités d'exploitation deviennent insu�santes.
Nous nous intéressons dans cette étude à la gestion des données de simulation pour les géosciences
grâce à la compression, deux notions qui seront dé�nies et contextualisées par la suite.

Dans cette introduction nous di�érencierons trois types de données scienti�ques courantes : la
donnée expérimentale, de simulation, d'apprentissage. La donnée expérimentale est une donnée pro-
duite par des outils de mesure dont la précision n'a de cesse d'augmenter (microscope, satellite,
méthodes de tomographie). Ils permettent aujourd'hui d'observer et mesurer des objets et des évè-
nements autrefois méconnus ou inaccessibles.

Ces dernières années les progrès du numérique ont démocratisé des outils qui viennent compléter
la vision naturaliste fournie par les données expérimentales. Notamment, les outils de simulation
approximent des phénomènes physiques dont la structure de base et le modèle mathématique sont
connus. Les résultats de la simulation peuvent être visualisés et analysés pour améliorer la compré-
hension d'un objet : sa formation et son devenir (courants océaniques, phénomènes météorologiques,
cosmologiques). Plus récemment les méthodes d'apprentissage ont été popularisées. Ce processus
se base sur l'exploitation de bases de données existantes, et ce pour dé�nir des liens profonds et
comprendre les rouages de phénomènes complexes.

Qu'importe leur type, le domaine, d'énormes quantités de données ont été générées par des scien-
ti�ques en soif de connaissance : plani�ant des campagnes d'acquisition colossales, et construisant
des centres de calculs aux performances exponentielles. Cette frénésie a été soutenue par la décou-
verte de matériaux innovants (intégrant les terres rares dans leurs compositions), qui ont permis la
miniaturisation des outils informatiques, augmenté les moyens, et facilité cette quête du savoir. Les
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découvertes et connaissances profondes qui en découlent constituent actuellement le socle et l'avenir
de nos sociétés technologiques.

Pourtant certains chercheurs tirent la sonnette d'alarme : les données scienti�ques sont générées
en volumes exponentiels, des volumes qui ne semblent pas se restreindre aux vues des futurs projets.
Or la manipulation de ces grands volumes est problématique à di�érentes étapes du processus. En
e�et elle peut altérer des puissances de calcul (simulation, apprentissage), ralentir la transmission
de la donnée de son lieux de production/calcul à l'outil d'analyse du scienti�que (ordinateur local),
sans parler des besoins de stockages croissants sous-jacents. Finalement, ces volumes de données sont
visualisés/analysés pour qu'en émanent des résultats parfois di�ciles à cibler, qui ont tendance à se
noyer dans ces volumes.
Ainsi di�érentes étapes du processus sont dites pénalisantes et appelées goulets d'étranglement par
la communauté scienti�que. De plus la gestion des volumes de données entraine un coût signi�ca-
tif de moyens, qu'ils soient matériels, énergétiques et économiques. Ce problème tend à limiter le
nombre et l'ampleur des projets en recherche. Pire encore, il contraint actuellement des scienti�ques
à détruire une partie de la donnée sans même l'avoir analysée.

Pour prévenir et anticiper ce déluge imminent, di�érentes solutions constituent des axes de re-
cherche majeurs. Ils visent à réduire la quantité de donnée en suivant cinq concepts distincts dont
on souligne ici l'imbrication. Premièrement le compressed sensing manipule des bases de données
naturelles qu'il échantillonne (spatialement/temporellement ou de manière aléatoire), ceci a�n de la
résumer par un sous-ensemble. Ce sous-échantillonnage contrairement aux autres méthodes contient
in �ne une donnée intelligible, semblable à la donnée initiale. Les prochaines notions quant à elles
se basent sur la transformation algorithmique de la donnée brute. De cette phase émerge des coe�-
cients représentatifs de la donnée initiale. Il s'agit d'une phase dite de concentration. S'en suit une
condensation, cette étape ne conserve que la partie émergente de la donnée transformée pour en
extraire moyennes et écarts-types etc.. La compression quand à elle intègre la donnée transformée,
et génère des �chiers binaires, choisissant ou non de tronquer la précision binaire (quanti�cation).
Une dernière étape, dite de compaction (encodage), assimile les phases de concentration et de com-
pression, structurant et réorganisant l'information binaire pour réduire le volume de données.

De ces notions imbriquées découle l'intuition qu'une donnée peut être hiérarchisée, et qu'une
partie restreinte mais signi�ante de la donnée pourrait su�re aux besoins scienti�ques. Le but ul-
time serait alors de pouvoir estimer pour une donnée la quantité minimale d'information utile : à
l'image de l'entropie de Shannon - notion fondamentale de la théorie de l'information.
A l'échelle de ce projet de thèse, il serait présomptueux et démesuré de vouloir satisfaire l'ensemble
de la communauté scienti�que. Cependant nous sommes convaincus que ce travail peut servir dif-
férents domaines et inspirer de nouvelles recherches. Ainsi ce projet de thèse s'est concentré sur
une donnée de simulation utilisée en géosciences. Nous avons construit une méthodologie adaptée,
motivée par des besoins métiers et une connaissance de la donnée, basée sur des notions et outils de
compression existants.

Nous présentons dans un premier temps la donnée sur laquelle l'ensemble de notre étude repose.
Il s'agit d'un maillage volumique : une structure numérique permettant de modéliser des formations
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géologiques profondes. Ce modèle est utilisé pour mieux visualiser et comprendre la mise en place de
structures complexes pouvant présenter de très grandes dimensions (bassin sédimentaires, 200-300
km). De plus, cet objet peut servir de support pour simuler les écoulements de �uides au sein d'une
formation poreuse (réservoir). De ce fait cette structure est "pleine", c'est à dire composée d'un
ensemble continu de volumes unitaires, appelées cellules (hexaèdres dans notre cas). Chaque cellule
comporte di�érents types d'information caractérisant la roche (propriété(s) pétrophysique(s) [valeurs
�ottantes], âge, nature de la roche [valeurs entières]). Le maillage géologique est donc une donnée
hétérogène, puisque constituée de composants di�érents en terme de nature et de dimensions (1D,
2D, 3D). L'association de ces données hétérogènes permet une représentation spatiale de l'ensemble
des propriétés scienti�ques, et à un géologue une analyse éclairée des structures pour proposer une
histoire géologique.
En e�et, des évènement tectoniques (compression, extension) peuvent engendrer des déformations
(plissements) et fracturer la roche soumise à une trop forte contrainte. Ces failles sont des objets
essentiels, représentés sur un maillage par le décrochement de cellules le long d'un plan (de faille).
Or l'ensemble des failles constitue un objet d'intérêt, puisqu'il devient un chemin préférentiel d'écou-
lement des �uides, il est donc essentiel d'en tenir compte.

A�n de modéliser des objets de grandes dimensions et d'augmenter le réalisme, les maillages ac-
tuelles peuvent comporter jusqu'à des millions de cellules. Cette tendance bien que louable engendre
des problèmes de visualisation et de simulation. Il s'agit là de problèmes connus et étudiés dès le
commencement des géosciences numériques,dans les années 90. Pour simpli�er la manipulation de
cette donnée, une approche consiste à réduire la résolution du maillage tout en conservant sa forme
et ses caractéristiques géologiques. Appelé upscaling (upgridding), ce procédé développé en ingénierie
réservoir vise à diminuer le nombre de cellules dans le maillage pour réduire le temps de calcul d'une
simulation et garantir ses résultats. Du côté de la littérature scienti�que, cette méthodologie fait écho
au principe de réduction couramment utilisé en simulation (a�n de réduire le nombre d'échantillons)
dans di�érents domaines.

Un outil de décomposition multi-échelle, nommé HexaShrink (Peyrot et al., 2019), a servi de
base à l'ensemble de notre étude. À partir d'un maillage initial, HexaShrink génère des maillages
à plus faibles résolutions. Cette méthode avait pour but premier de faciliter la visualisation de
grands maillages, en proposant un a�chage progressif multi-échelle, et en préservant pour chaque
sous-résolution les discontinuités structurales observées dans la donnée initiale. Cet outil est venu
combler un manque de l'état de l'art.
Les résultats d'HexaShrink ont été comparés aux options d'upscaling/upgridding disponibles dans
un geomodeller référent. À résolution inférieure, le réseau de failles est gommé et présente des
artéfacts, tandis qu'HexaShrink le préserve.

Pour se faire, l'outil associe plusieurs méthodes adaptées à chaque composant du maillage et
basées sur la notion d'ondelettes. Cette approche n'augmente pas la quantité d'information, confor-
mément au principe de décomposition en ondelettes. Pour illustrer cette transformation on prend
l'exemple d'un signal 1D constitué de n échantillons, la décomposition en ondelette génère deux sous-
ensembles (ou sous-bandes) chacune composée de n/2 coe�cients : une partie dite approximation,
semblable à la donnée initiale à la résolution inférieure, et la partie complémentaire appelée détail,
composée d'échantillons de faibles valeurs. Cette décomposition peut s'opèrer de manière récursive,
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et dépend du nombre de niveaux de décomposition. L'ensemble de la donnée décomposée représente
une structure imbriquée et ordonnée. La conservation des di�érents niveaux de détail garantit par
transformation inverse, la reconstruction d'une donnée identique à la version initiale. Ce concept a
été adapté à l'ensemble des composants du maillage volumique. La structure HexaShrink conserve
donc les volumes de données initiaux, et présente par conséquent un réel atout dans notre projet.

Un premier travail a consisté à tester la décomposition HexaShrink pour la visualisation puis
dans un but de compression sur divers maillages géosciences. Les maillages utilisés se distinguent
du fait de leurs dimensions, topologie, certains présentant des discontinuités structurales, mais aussi
de leur nombre et type de propriétés attachées. De cette manière nous évaluons les performances
de notre transformation HexaShrink sur une donnée scienti�que. Pour se faire nous avons calculé
l'entropie de la donnée transformée (indicateur de l'e�cacité de la transformation) mais aussi utilisé
de manière appliquée des encodeurs génériques existants (gzip, bzip2, LZMA), capables de compac-
ter l'information transformée. Ces outils sont dits génériques car ils peuvent traiter des données de
diverse nature (texte, image, son etc.) et ne sont donc pas optimisés pour une donnée scienti�que
composée de valeurs �ottantes de forte dynamique.
Ces codeurs sont �sans perte", c'est à dire qu'ils compressent et décompressent la donnée à l'iden-
tique comparé à la version originale. Cette pratique se distingue d'une compression dite avec pertes,
qui vise à augmenter les performances de compression en supprimant une partie de l'information
(par quanti�cation de la donnée transformée). L'altération de la donnée décompressée peut être
imperceptible et considérablement améliorer les performances de compression.

Ces di�érents encodeurs génériques sans perte ont assuré les étapes de compression et compaction
de notre donnée scienti�que. Pour véri�er la pertinence de la décompositionHexaShrink nous avons
appliqué notre méthodologie à un benchmark composé de sept maillages géosciences.

Quel que soit le maillage, l'utilisation de la décomposition HexaShrink augmente les perfor-
mances des encodeurs génériques sans perte.
Nous observons cependant que les performances de compression des maillages di�èrent selon l'enco-
deur. Leurs résultats coïncident intuitivement avec leur année d'apparition. Ainsi l'encodeur le plus
récent, LZMA, obtient de meilleurs taux de compression suivi dans l'ordre chronologique inverse par
bzip2 et gzip. De plus l'e�cacité de la compression dépend de la complexité du modèle traité. Notre
maillage le plus simple obtient un taux de compression proche de 12 :1, en utilisant la méthodes
HexaShrink/LZMA. Cette même méthode appliquée à un maillage plus complexe (présentant des
reliefs, failles) ne parvient qu'à réduire la quantité de donnée par 2. En détaillant les résultats selon
les composants, on observe que notre méthode appliquée aux propriétés pétrophysiques n'est pas
e�cace, au contraire la transformée tend à augmenter la quantité binaire (comparé à l'utilisation
simple d'un encodeur).
Cette observation corrobore les résultats de la littérature, traitant de la compression menée sur de
la donnée scienti�que. Sans perte, les taux de compression n'excèdent pas 2 :1. Une transformation
considérée e�cace pour la compression d'une donnée multimédia, n'a qu'un impacte limité voir né-
gatif sur une donnée �ottante, à grande dynamique.

De ce constat, il nous est paru essentiel d'utiliser une méthode de compression plus adaptée en
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choisissant un encodeur évolué. Les encodeurs génériques testés jusqu'à présent n'ont tenu compte
ni du volume de la donnée, ni de la décomposition multi-échelle opérée par HexaShrink.
A l'instar de JPEG2k nous avons complété la décomposition en ondelette d'un encodeur progressif
type zerotree. Cet outil exploite l'organisation multi-échelle héritée de la transformation. Se dessine
en e�et des structures, qui ont pour origine des coe�cients dans l'approximation (ou sous bandes
de haut niveau), là où se concentrent les fortes valeurs et s'étendent dans plusieurs sous bandes
de bas niveaux vers des coe�cients de plus faibles valeurs. Semblables à des arbres, ces structures
peuvent être remplies de zeros à la lumière de la profondeur binaire d'où le terme zerotree. Des plans
de bits les plus signi�catifs aux plans de bits les moins signi�catifs, la donnée est progressivement
encodée, et les arbres de zéros remplacés par un seul symbole. De cette manière le budget binaire
est économisé et la compaction de la donnée optimisée.
Le �ux binaire généré par l'algorithme zerotree est donc ordonné selon sa signi�ance. De cette ma-
nière la transmission même partielle d'une partie de la donnée encodée permet par décodage et
transformation inverse de reconstruire une version approchée de la donnée initiale, à précision nu-
mérique inférieure. Le reste de l'information ajoute du détail lors de la reconstruction, son utilisation
complète garantit une reconstruction de la donnée à l'identique.
Aux résultats obtenus avec des encodeurs génériques (LZMA, bzip2, gzip) sur des données pétro-
physiques [valeurs �ottantes], nous comparons ceux générés grâce au zerotree. Bien qu'intéressants
les taux de compression en sans perte sont limités comme le relaye la communauté scienti�que.

Par la suite, nous décidons de changer la précision de nos propriétés pétrophysiques. Nous pour-
suivons dès lors l'hypothèse initiale qu'une partie de l'information peut être su�sante pour des
besoins scienti�ques en jouant sur les notions de précision numérique ou résolution spatiale.

En modi�ant la précision d'une donnée on modi�e sa qualité. Ce changement peut être évalué
de manière objective ou subjective. L'évaluation objective se base sur un calcul mathématique, me-
surant la di�érence entre la donnée originale et la donnée dégradée. L'évaluation subjective quant à
elle se base sur l'opinion d'un panel d'observateurs non-quali�és. Selon leur appréciation (visuelle,
auditive..), une note subjective est attribuée à la dégradation.
Contrairement à la donnée multimédia, la donnée scienti�que peut servir de support à la simulation
(notre cas). Par conséquent son altération n'est pas seulement visuelle, mais son impact doit aussi
être évalué dans un work�ow de simulation et estimé par des professionnels. En complément des mé-
triques objectives classiques, nous développons de nouvelles méthodes adaptées a�n d'évaluer avec
justesse la qualité d'une donnée scienti�que. La confrontation des résultats obtenus avec di�érentes
métriques a pour but de valider ou rejeter certaines méthodes d'évaluation, plébiscitées par des tra-
vaux sur la compression de données scienti�ques.

A propos de la littérature, di�érents outils de réduction et compression ont déjà été intégrés avec
succès à des work�ows de simulation dans di�érents domaines (climatologie, cosmologie). La réduc-
tion et la compression avec perte permettent de considérablement réduire la quantité d'information
binaire, et ainsi soulager di�érents points clés de la simulation HPC.
L'application de ces méthodes reste encore marginale, car son impact est di�cile à évaluer. Cepen-
dant, le sujet gagne en popularité au vue de récentes publications, du partage de benchmark et de
la di�usion de codes open source. De plus de nombreuses conférences �eurissent à ce sujet.
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Pour poursuivre notre étude nous avons créé un work�ow de simulation (écoulement en milieu
poreux) pour évaluer dans un premier temps la méthode multi-échelle HexaShrink, et étudier dans
un second temps l'impact d'une précision ra�nable.
Nous construisons un cas d'étude comportant un réservoir faillé, baptisé lundi, sur lequel nous pa-
ramétrons une simulation d'écoulement, classiquement réalisée en ingénierie réservoir pour simuler
l'exploitation d'hydrocarbures. Étant amené à répéter un nombre de fois conséquent la même simu-
lation, les dimensions de lundi (128× 128× 32 cellules) sont restreintes, pour ne pas être contraint
par les temps de simulation excessifs. Aussi les trois failles que comporte lundi permettront de tester
HexaShrink, et d'évaluer ses performances d'upgridding. Concernant les propriétés pétrophysiques
deux environnements de dépôt ont conditionné la modélisation de quatre jeux distincts, chacun com-
posé de deux propriétés volumiques : porosité - perméabilité. Les deux environnements s'inspirent
de la donnée SPE10 (Christie and Blunt, 2001), un modèle réservoir utilisé pour évaluer l'upscaling.
L'environnement �uviatile comporte des objets saillants, appelés chenaux. Or l'upscaling de cette
propriété est périlleux, car la modi�cation des chenaux peut considérablement modi�er l'écoulement
des �uides dans le réservoir. Les trois autres environnements sont moins contraignants, la distribu-
tion spatiale des propriétés y est plus di�use.

lundi est modélisé à l'image d'un quarter �ve spot model : un cas d'école en ingénierie réservoir.
La forme générale du maillage est marquée par une pente, dont on peut évaluer le pendage le long
d'une de ses diagonales en surface. Pour simuler l'exploitation d'un champ pétrolier, on place au coin
le plus bas un puit injecteur opposé à un puit producteur, situé sur le coin de plus haute altitude.
Initialement le reservoir contient deux phases verticalement séquencées : une phase huileuse surplom-
bant une phase aqueuse. L'huile située dans la partie haute du reservoir est extraite par l'injection
d'eau dans la partie basse par le puit injecteur. Sous pression, la phase aqueuse pousse l'huile jus-
qu'au puit producteur où elle est extraite.
Les paramètres de simulation (pression, débit de production) restent �xes pour chaque expérience
a�n d'assurer une continuité, et pouvoir comparer les résultats des simulations.

Les résultats sont des paramètres physiques mesurés aux puits qui renseignent l'ingénieur réser-
voir de l'avancement de la production. Dans cette étude, nous nous concentrons sur la courbe �water
cut". Elle évalue l'évolution de la saturation en eau des volumes extraits durant l'exploitation du
champs. Un remaniement des données d'entrée peut modi�er le pro�l de la courbe. Son analyse sert
à valider des méthodes d'upscaling. En e�et, le changement opéré sur le maillage doit peu ou ne pas
impacter les résultats de simulation obtenus avec un maillage haute résolution.
Les di�érentes versions de lundi, les plus basses résolutions générées avec HexaShrink ainsi que la
donnée à précision ra�nable sont évaluées selon leur courbe �water cut". Dans la littérature, s'agis-
sant des études d'upscaling, les courbes sont tracées pour permettre à un oeil expert de se faire une
opinion quant à la méthode utilisée. Ici nous proposons d'automatiser cette phase de validation en
dé�nissant des enveloppes d'acceptabilité autour de la courbe �water cut" référence. De l'enveloppe
la plus proche �identique" à une enveloppe plus éloignée, nous dé�nissons cinq critères subjectifs
pour évaluer les résultats de simulation.

Quatre niveaux de décomposition HexaShrink sont appliqués au maillage lundi. Lors du pro-
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cessus de reconstruction, quatre résolutions intermédiaires sont générées et testées par simulation.
Comme détaillé avec la méthodologie HexaShrink, le maillage à la i

ème

résolution, noté res.-i est
issu de la donnée d'approximation du i

ème

niveau de décomposition. Ce maillage contient (23)i fois
moins de cellules que la donnée initiale. Nous utilisons les propriétés pétrophysiques de l'environ-
nement di�us, et observons l'impact de l'upgridding/upscaling d'HexaShrink sur les résultats de
simulation. L'impact pour res.-1 est modéré, l'évaluation subjective donne des résultats acceptables,
mais ne le sont plus à partir de la res.-3. Le temps de calcul de simulation diminue considérablement
avec le nombre de cellules, passant de 2 heures pour la haute résolution à un calcul quasi instantané
pour la res.-3. Ainsi nous démontrons que la décomposition multi-échelle HexaShrink obtient des
résultats acceptables et diminue considérablement le temps de calcul de la simulation. D'avantages
de tests pourraient conforter son utilisation pour manipuler des grilles peu complexes en ingénierie
réservoir.

Dans un second temps nous étudions l'impact de la compression avec perte dans notre work�ow
de simulation. Nous traitons dans cette expérience la haute résolution (128× 128× 32) de la per-
méabilité de lundi, à laquelle on applique un compandor, avant de procéder à la transformation en
ondelettes, et générer la donnée à di�érents niveaux de précision (zerotree, quanti�cation). L'utili-
sation d'un compandor est ré�échie et se justi�e par des pratiques courantes de modélisation basées
sur les lois de la physique.
Pour visualiser nos résultats on diminue la précision numérique de nos données dont on rapporte
l'évaluation objective en fonction de la quantité binaire de donnée compressée utilisée. La courbe
est tracée pour di�érentes métriques objectives et complété par l'évaluation subjective des résultats
de simulation. Ainsi on véri�e que l'évaluation objective de la donnée concorde avec la qualité des
résultats de simulation obtenus avec. Nous concluons sur le fait que certaines métriques, notamment
absolues, ne sont pas corrélées aux résultats de la simulation.
Nous démontrons que l'utilisation d'un compandor améliore la qualité objective/subjective et les
performances d'un outil de compression. De plus notre approche est comparée à d'autres outils (SZ
(Cappello et al., 2019), ZFP (Lindstrom, 2014)), connus et reconnus, optimisés pour la compression
de données scienti�ques en HPC. Leurs résultats sont comparables à ceux obtenus avec notre ap-
proche.

Aussi, nous avons étudié l'anisotropie des données en géologie, ce pour améliorer notre méthode
de compression. Les roches décrites par les propriétés pétrophysiques sont en e�et façonnées par
des évènements naturels anisotropes (sédimentation soumise à des courants orientés, pression lors
de l'enfouissement du matériel, autres évènements tectoniques). Le considérant nous avons testé une
méthode d'ondelettes en paquet, orientée selon l'anisotropie de la propriété. Cette décomposition
particulière nécessite l'adaptation de l'algorithme zerotree, étudiée dans ses travaux par Christophe
et al. (2008). Cette prise en compte de l'anisotropie améliore davantage la compression de cette
propriété.

Dans un dernier temps à l'image de nouveaux outils (TTHRESH (Ballester-Ripoll et al., 2019))
qui étudient les seuillages optimaux des méthodes de compression (SZ, ZFP), nous confrontons l'en-
semble de nos résultats objectifs/subjectifs, avec l'évolution de paramètres de compression mesurés



x

lors de l'encodage zerotree (bit rate per bit plan). Ce qui nous permet de valider expérimentalement
notre hypothèse initiale, à savoir : qu'il existe une quantité minimale d'information capable de rendre
compte d'une donnée scienti�que. Cette intuition fondamentale testée sur un nombre réduit de cas
pratiques nécessiterait davantage de tests.

Pour conclure nous avons démontré dans cette étude l'e�cacité d'HexaShrink : un outil de
décomposition multi-échelle développé pour améliorer la visualisation d'une donnée de grandes di-
mensions et faciliter son traitement : transmission, stockage. La méthode de décompositon basée
ondelettes est complétée d'outils de compression progressive évolués, capables de générer une don-
née scienti�que à précision réduite. Produite à partir d'une quantité d'information réduite, nous
avons montré qu'elle était su�sante pour les besoins de la simulation. Il est envisagé d'en faire usage
dans de futurs travaux a�n d'optimiser un wor�ow de simulation HPC.
Cette approche appliquée aux géosciences peut être adoptée dans d'autres domaines scienti�ques,
prenant toujours en compte les besoins métier, et la connaissance de la donnée manipulée.

Figure 1: Decorating my living room while writing.
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CHAPTER 1

General introduction

“Data is the new oil”

Clive Humby, 2006

Technological advances have raised our knowledge and structured the scienti�c process into
a work�ow. Its di�erent steps are fed by data, notably numerical data used for simulation, the
topic of this study. However, whatever the stage of the work�ow, the data quantity increases
exponentially. This is demonstrated by the endless deployment of data centers and the use of
ever-increasing computing resources. Today's scienti�c projects process a thousand times larger
data quantities than �fteen years ago. The energetic, economic and ecological impact of their use
encourages scientists to improve data processing by reducing data quantity. Several methods exist,
in particular compression, widely developed for processing multimedia data. Some of these methods
improve the gain by adjusting the precision of the data. This change is evaluated by quality metrics.

1



2 Chapter 1. General introduction

Researchers seek to understand the surrounding world using technological tools. Innovations
from measuring instruments and intensive development of computational resources allow us to bet-
ter apprehend our environment. Knowledge in diverse scienti�c �elds leaped forward: from materials
sciences to cosmology, for climate analysis or geosciences. Objects and phenomena at variable di-
mensions, di�cult to study in the past, are now accessible through digital technologies. Prior to
their development, sciences were documented by empirical descriptions and theoretical models. Nu-
merical tools has considerably broadened the �eld of possibilities by �rst enriching measurement
tools with digital components creating ever more sensitive sensors. Then, the rise of computational
resources made it possible to simulate complex natural phenomena such as multi-phase �ows, used
to study large objects as hurricanes, the �ow of liquid phases in the subsoil or on smaller scale air
�ow around a sail.

This constant improvement of tools and methods considerably increased the volume of exper-
imental data. The growing number of exascale1 projects in various scienti�c �elds demonstrates
our insatiable thirst of knowledge. While progress and discoveries seem in�nite, they are limited
by concrete aspects as handling of huge data quantities. From public side, the actual cost of what
is called �data" is largely ignored and even growing awareness among scientists, high precision in
quest for realism is the baseline from modeling to simulation, and leads to exponential rise of data
volume and computing resources. The increase in data may give hope for an increase in the volume
of knowledge, however, it could drown out the information.

Regarding simulation, the topic of our study, beyond di�culties in processing huge data quan-
tities, it is foreseen that calculation supports (as supercomputers) are reaching some limits. While
computational resources are improving rapidly for years, storage and bandwidth capacities are ac-
tually more limited. It consequently limits several steps of the simulation work�ow and slows down
the overall computation performances. Later in this section, we contextualize simulation within
numerical environment and communicate the real costs to highlight the emergency of the situation.

To provide partial answers to the problem of data quantity in science, we focus on compression,
popularized in the 80's in the multimedia context. We adapted and evaluated methods to propose
a data representation with tunable precision for needs in reservoir simulation.

1.1 Data feeds scienti�c work�ow

To address scienti�c issues, huge data quantities are daily generated and analyzed. Among them,
there are di�erent types with distinct structure and binary format. Whatever the type, we �nd them
at distinct steps of scienti�c work�ows. Their increasing consumption is illustrated by the worldwide
development of ever more data centers.

1Adjective refers to the computing resources, among 1018 �oating operations per second delivered by supercom-
puters.
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32 bits per value, π example

Figure 1.1: π number represented with IEEE-754 �oating-point standard, equal to 3.1415927 based
on single precision.

1.1.1 Data types

For scienti�c data, the widely used standard/norm is IEEE-754, used for calculations at �oating-
point precision. Behind this standard is the number of bits required to write each value. For simple
�oating-point precision, a value is coded on 32 bits, as illustrated with π example on Figure 1.1.
Among the 32 bits, one bit is dedicated to the sign while eight others are used for exponent and
23 remaining correspond to the mantissa. They allow to write a number with seven digits after
the decimal point. Other extended standards exist, they multiply the binary size by two or four.
They are respectively called double or quadruple precision. This use increases the dynamic range
and bring respectively a decimal precision of 16 and 34 digits. It is notably used in simulation for
ever more accurate calculation needs, but is currently questioned by scientists. Because for certain
applications a �xed precision may not be required and moreover would increase data volumes. For
several years concurrent formats of IEEE-754, as POSIX, adjust the length of mantissa to change
the precision of the data. However habits die hard, because change in standard would involve to
redesign the data chain from visualisation to storage such as the data work�ow.

Throughout classical work�ow, three types of data can naturally be considered: experimental
data, simulated data and �learning data", distinguishable because of their production. Experimen-
tal data is the result of a measure or observation made on real objects or phenomena. Considering
geological �eld, seismic and well data are precious and unique because respectively recovered dur-
ing huge and expensive acquisition campaigns and drilling operations. By contrast simulated and
learning data can be generated on request by code execution but are nonetheless expensive as we
will see later. Simulated data yields realistic representation of natural phenomena as �ow motion
description. While learning data is composed by data about real events and used to train a machine
for decision-making tasks, or generated by training during the process learning example. Three data
types are highly linked and feed entire work�ow. Experimental data are used in a �rst step for
modeling and then inform simulation, while learning processes can enrich and correct the original
model.

From the three types of data we can use in a work�ow, we focus on simulation and di�erentiate
the inputs, the pending data (used for calculation) and the outputs. For simpli�cation, we interest
�rst in simulation inputs. The objective is evaluate the impact of compression on simulation by
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using adapted metrics, or in other words to study the simulation integrity at re�nable precision.
Returning to a more general point of view, given the quantities of data, it is impossible to ignore

the digital infrastructure and overall data management procedures.

1.1.2 Digital infrastructures for data handling

Digital data is handled in the physical world, stored on the disk, loaded into memory, transmitted via
optical �ber and analyzed by using CPU-GPU resources. The hardware layer is of great importance
in studying the needs for data processing. The most representative infrastructures doing the job
are the data centers, whose number has increased considerably in recent years. According to data-
centermap.com (updated in 2020), there are around 4500 data centers worldwide in 122 countries,
including more than 1800 in the United States. As for France, there are 156 data centers, 35 % of
which are in the Ile-de-France (Paris) region.

A data center hosts a set of numerical infrastructures for storage, transfer and computing of data.
Combined to supercomputers one can perform High Performance Computing (HPC) to manage
massive data quantities and simulate objects or complex phenomena. Handling and processing
are now only evaluated in terms of �oating-point operations per second (�ops) only. For instance,
the most powerful supercomputer named Fugaku (Japan) is able to realize more than 400 billiard
of �oating-point operations per second (400 peta�ops). To a lesser extent, the supercomputer
used for simulation during our study has 440 tera�ops capacity. It is located at IFP Energies
nouvelles - Solaize and photographed on Figure 1.2. The website top500.org references performances
of worldwide largest supercomputers used for exascale projects2.
The concern comes from the increasing number of data centers growing in size and resources with
each new generation. Consumed power and its impact is becoming a �rst order matter.

1.2 Infobesity: source variety & growing production

The objective is to extract scienti�c insight from computed results in the large HPC facilities. Ac-
cording to the famous statement of mathematician Richard Hamming: �The purpose of computing
is insight, not numbers�. All these resources and their increase leads to fears of infobesity. By
de�nition, it consists in overload data at the risk losing the data essence and information.

Moreover having previously spoken about �ops, we must be aware that the entire power is not
exclusively dedicated to the pure mathematical power, but distributed between various handling
steps. First of all the memory context is transferred from the HPC through the network, to be
saved in a reliable storage (Naksinehaboon et al., 2008), waiting for its analysis in a next step. The
required time is mainly underestimated, and the storing cost as well. Obvious solution for speeding
up the computing process is to increase supercomputer resources and �op capacities. Nevertheless
such approach saturates global digital infrastructure and reveals system limitations and bottlenecks.

2https://www.exascaleproject.org/ registers and solutions american exascale projects.



1.2. Infobesity: source variety & growing production 5

Figure 1.2: On left, a picture of the IFP Energies nouvelles supercomputer, called ener440, at
Lyon - Solaize, with details of its back (right picture) and its cooling doors equipped with cold water
circuit 13 degrees.

Additionally in simulation because the data can be regenerated on demand, the cost it represents
and the notion of value disappears. The codes are therefore executed daily and data is produced
massively, with great precision in a permanent quest for realism. Intermediate results, often volumi-
nous, raise storage issues. Therefore some HPC simulation run are merely destroyed, because their
retrieval is not feasible. This represents both an energetic waste, and a loss in simulation history
and analysis.

It is crucial nowadays to consider the full data processing and report the actual price caused by
the infobesity. Indeed, it seems inconceivable within the current trend to ignore the ecological cost
of the so-called digitalization and its handling dependencies their energetic consumption (for cooling
computers) and their CO2 emissions for the user-cost.

Our concerns are the more or less hidden cost of all these operations. Let us also brie�y mention,
from a material point of view, the tensions around the rare earths necessary to produce ever powerful
computers and the around infrastructures. It contributes to the deterioration of the already complex
geopolitical situations in producer countries. Cost of digital is therefore a growing concern for energy,
economic as well as ecological and political reasons.

1.2.1 Scienti�c projects with oversized data

Here are two examples of experimental projects collecting huge data volumes analyzed by Big Data,
from the micro to the macroscopic scale. We talk about genomic investigations and go next to the
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sky to focus on stars and objects of the cosmos.

In genomics, technological advances have reduced the cost of DNA sequencing. From an esti-
mated cost of 100 M$ in 2000 for the sequencing the entire genome of a human, this cost decreased
to 1000$ starting in 2016. This lower cost has made it possible to study more and more cases. As
example, project of United Kingdom's Biobank plans �to sequence the genomes of 500 000 volun-
teers and follow them for decade� to give a more complete picture of society-wide health according
to Pavlichin et al. (2018). However, the data generated by the sequencing of an human genome
represents �ten to hundreds of gigabytes of data�. Such �gures demonstrate why this �eld promises
to be one of the most expensive in terms of storage.

Changing of scale: Digital Sky Survey (DSS) illustrates the scienti�c data consumption consid-
ering the astronomy. It is a huge atlas of sky pictures �started in 2000, [which] collected more data
through its telescope in its �rst week than had been amassed in history of astronomy� (according
to the Economist). Obviously, quantity of data for scienti�c usage did not increase progressively,
but exponentially. Considering the current world's largest digital sky survey (PAN-STARS, 2019),
it collected 1.60 PB of data during the four �rst years, which represents �30 000 times the total text
content of Wikipedia"3.

Far from being reassuring, the largest simulations currently generate up to several petabytes of
data in a single run, as the example of the code developed by NCAR [National Center for Atmospheric
Research] for analysis of climatology presented in Subsection 4.1.1. The size of its outputs (CMIP
[Coupled Model Intercomparison projects] current version of Phase6) has been multiplied by one
million in the space of 20 years from 0.50 TB to hundreds of petabytes in 2020.

This is not only question of data size, but these large volumes result in multiple sub-problems
throughout the work�ow.

1.2.2 Bottleneck & issues in data work�ow

In pushing the process and level of detail for simulation, scientists have pointed out some limits for
data handling. While these issues were known and investigated for data visualization, storage and
transmission, other steps have recently been identi�ed as bottlenecks to HPC performance.

As example to illustrate past transmission di�culties, we can cite a simulation code, named POP
[Parallel Ocean Program] (Smith and Gent, 2002), developed by Los Almos National Laboratory
and run on supercomputers. Its results were transmitted and analyzed by searchers in local on their
desktops. In 2011, for a bandwidth capacity of 1 MB s−1, the transfer of a data sets of size between
56 GB and 5.60 GB (daily production) could catch from 12 hours to 50 days, according to the report
of Woodring et al. (2011).

Although the bandwidth capacity has been steadily increased (reaching 2.50 TB s−1 for IBM
Summit, the world's second largest supercomputer), it did not improve enough compared to the

3https://hubblesite.org/contents/news-releases/2019/news-2019-12.html
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storage/memory size of supercomputers equipment. The latter has indeed increased tenfold over
the last ten years, while bandwidth has only improved its capacity by a factor of 2.5. Therefore, as
shown by Cappello et al. (2019), the HPC performance of the largest supercomputers is currently
limited by data transfer during simulation, which creates bottlenecks (as for checkpointing/restart
approach explained in Subsection 4.1.2). We could also mention the need for in situ visualisation
(mainly studied), code execution acceleration etc. improved using recent compression tools later
discussed in our literature review Subsection 4.1.2.

These bottlenecks mentioned in HPC studies are proofs of the limitation of a digital ecosystem
facing the rise of data production. Their deleterious e�ect is also perceptible at a more global level
by studying energetic, economic and ecological indices.

1.2.3 Energetic, economic and ecological cost

Let's start with some general �gures successively considering BigData, HPC and data centers. Cur-
rent forecast predicts the �eld of BigData analytic will represent a world market of 90 billion dollars
4 in 2025, and experiences a very strong growth of 20 % in the next �ve future years 5. In regard
HPC market, it is estimated to 60 billions dollars in 2025 6 with a growth of 7 % 7. 8

According to recent �gures on global energy consumption, digital has been estimated at 1.9 % in
2013 and 3.3 % in 2020 with a forecast growth of 9 % per year (Ahvar et al., 2019). Only considering
data centers, facilities have huge energy requirement as cooling post representing among half of their
needs. It represents 1 % of electrical energy consumption in 2005, 1.8 % in 2012 and potentially
will reach 5 % in 2030. This alarming observation is fueled by new technologies as machine learning
(García-Martín et al., 2019). In the �ood anticipation research is increasingly focusing on the ben-
e�ts of compression for saving space in data centers, and therefore energy (Raïs et al., 2019).

Germany is actively working on this ecological and economical problematic (Geveler et al., 2015)
in view of energetic transition of the country. Various studies in particular led by DKRK (Deutsches
Klimarechenzentrum - German Climate Computing Center) (Hübbe et al., 2013; Kunkel et al., 2014;
Kuhn et al., 2016) seek comparing various compression tools, and economical return by storage
optimization. Kunkel et al. (2014) estimated at this time at 144 000e per year the price of storing
5.60 PB of data dedicated to earth Science system. Among processing methods classically studied
to save space, he concluded compression is the most promising for the laboratory needs.

4https://www.statista.com/statistics/254266/global-big-data-market-forecast/
5https://www.businesswire.com/news/home/20190627005451/en/Global-Big-Data-Market-Witness-CAGR-19.7
6https://www.grandviewresearch.com/press-release/global-high-performance-computing-hpc-market
7https://www.marketsandmarkets.com/Market-Reports/Quantum-High-Performance-Computing-Market-

631.html
8Now all these market growth predictions are subject to change upwards in the light of recent events (majority of

references edited in 2019, pre-Covid19).
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1.3 Numerical diet for (scienti�c) data?

Given the growing increase in data production in HPC, scientists address the question by various
research axes. They notably explore approaches based on compression, deduplication, indexation
(Kraska et al., 2018) and clustering (Geist and Reed, 2016). Advances in those domains are carried
out by prominent research centers, for instance in the USA (Lawrence Livermore National Lab., Oak
Ridge National Lab., Argonne National Lab. National Center for Atmospheric Research (NCAR)),
in China or Japan (Sakai et al., 2013; Kolomenskiy et al., 2018). Large HPC facilities are being
developed, notably with exascale computing, able to perform billiars �ops. In particular, it is being
promoted at the International Conference for High Performance Computing, Networking, Storage,
and Analysis, on November 2020. The processing of their outputs has given rise to numerous studies.
More recently, the emergence of bottlenecks during simulation, mentioned in Subsection 1.2.2, has
led to new questions to overcome them. Scientists seek methods that can be integrated into the
scienti�c work�ow (in situ technologies) by satisfying divers applications that comprise it.

So far we pointed several bottlenecks along the simulation work�ow considering problematic data
volumes, but situation is worst than we believe. The �eld su�ers from a lack of standards, especially
in experimental and simulation sciences. Therefore a universal solution is not practicable. Conversely
multimedia data (pictures, videos, sound) have classical formats, leading to the development of
compression standards that have invaded our daily lives. From there we identify a classical scheme
of compression tools, and common methods to evaluate their e�ciency.

1.3.1 Legacy of multimedia standards

Compression facilitates the dissemination of information by reducing data size. It is worth noting
that multimedia compression supported the deployment of the web. Interestingly, the most used
standards for 1D signals (audio, known as MP3) and 2D images (pictures, with JPEG) were already
developed by the beginning of the 1990's. In audio and pictures, individual digital �les are relatively
small. Standards have evolved more steadily for 3D multimedia data instantiated by video (space
and time). While storage capacity and network transmission have witnessed an impressive increase
over the last decade, data quantity (including duplication) grows exponentially, and disk transfer
rates tend to plateau. For instance, a Full HD (high-de�nition) two-hour movie (1080 lines, 1920
pixels per line, 50 images per second) needs a transmission capacity of 2.49 Gbit s−1 for streaming
without compression. The entire video �le requires 2.49× 3600× 2, or 17.91 Tbit for storage! There
is no need to mention that video streaming would be impossible without compression. Two types of
compression are traditionally distinguished: with perfect information preservation, or allowing some
precision loss.

Lossless compressionOriginal data is perfectly reconstructed after compression/decompression.
It includes all the archiving techniques, generic such as the zip, and others, dedicated to data types.
It is used to store the data and recover it without any loss (documents, codes etc.). Compression
gains are generally limited to a factor of 2�3.

Lossy compression This approach is widespread in multimedia (audio, pictures, video) because
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useful compression rates are mostly higher (8�20 fold in audio or image) and thus better adapted to
the usage (cf. the above example with HD video). Lossy compression implies a variable data loss,
which means the data can not be perfectly reconstructed, and the decompressed data will not be
exactly similar to the initial data. Lossy compression involves a control of the data loss with respect
to the compression ratio. Using the imperfectness of human perception (vision or audition in the
multimedia context), data modi�cations are allowed, at locations or in frequencies where they are
not perceptible, or harmless for interpretation. The MP3 format, for instance, degrades frequen-
cies barely audible to the human ear, or sounds masked by others. Concerning images, edges and
textures are especially preserved, because the human eye is highly sensitive to their degradation.
Hence, compression gains are much higher, while respecting (hopefully su�cient) visual or auditive
quality.

1.3.2 Data compression components

Original
data Transform

Quantization

Coding

Analysis

Compressed
data

Inverse
transform Decoding

Synthesis

Decompressed
data

Figure 1.3: Classical compression/decompression pipeline.

Most of the time, compression and decompression follow several main steps, named components
in this study and illustrated in Figure 1.3. Firstly, the input data is generally transformed (or
predicted). The idea is to project original data onto a new space, better suited to compression.
An e�cient transform will decorrelate the data by changing values with coe�cients close or equal
to zero, because sparse data would be easier to handle and store. Transform e�ciency could be
measured by parameters as entropy (Shannon)9 : it assesses the improvement of data representation
after transformation. There are di�erent transformations, among the most widely used we can men-
tion discrete cosine transform (DCT), discrete Fourier transform (DFT), discrete wavelet (DWT)
transform. The latest transform has been popularized in compression for multimedia by JPEG2000
(Taubman and Marcellin, 2002).

9Mathematical estimation of the minimal binary quantity required to transmit a sample of an information.
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The second step is the quantization, that converts the transformed data into a �nite number of
symbols. By simpli�cation of small coe�cients, sparsity of the data is further increased to reduce
binary size of data and facilitate its handling. This use is for lossy compression only (MP3 example).
It signi�cantly improves compression performance while modifying precision of decompressed data.

Then, a coding step exploits the remaining redundancy in the quantized data, to further compact
it into a binary �le. It can be performed with quantities of entropy coders, the most popular being
developed by Hu�man (1952). We could also cite dictionary approach, whose the best representa-
tives belong to Lempel-Ziv family (LZMA for example, used in Subsection 3.4.1). Roughly, all these
methods look for replacement of repeated symbols by shorter one to compact the information, and
�nally to save bit-budget.

To better compress data acquired at various sampling rates, and to allow e�cient decompressions
at di�erent resolutions (think about screen sizes for seamless video viewing), recent standards have in-
vestigated data transformation using the concept of multiresolution. It permits to represent the data
at di�erent embedded (lower) resolutions (corresponding to �low frequencies� or approximations),
complemented by several detail components (or �high frequencies�). Details and approximations are
combined to reconstruct higher resolutions. Wavelet transforms are instances of such techniques, as
applied in our study (cf. Section 3.2).

As said, multimedia already possess many compression standards, well-known to the general
public: MP3 for music (developed in the MPEG-1/MPEG-2), JPEG for images, based on a discrete
cosine transform (Wallace, 1992), and all the MPEG-derived standards for video: H264, HEVC
for the more recent ones (Ohm and Sullivan, 2013). While some of these standards are �old�, pos-
sibly less e�cient than more recent techniques, they remain de facto standard, because they are
widespread. For instance, JPEG2000 (Taubman and Marcellin, 2002) previously mentioned out-
performs JPEG in quality, through its wavelet-based implementation, but did not �nd its expected
success in mainstream multimedia. In other words, maximum quality is not the only driver for
acceptance. Usability is also an important criterion.

1.3.3 Classical performances evaluation

Beyond usability, scientist should be picky about other measurable criteria to compare methods
and evaluate their performance. In this section, main metrics are listed according to the type of
compression.

Lossless compression is assessed in term of execution speed and compression ratio (CR). Last
parameter is related to the bits rate, which consists in the bit number used to code a sample of
compressed data. Depending on the user's needs, one of the parameters may be more important.
If the need is storage, emphasis is given to compression performance because as previously saw in
Subsection 1.2.3, space is precious and expensive. But when considering transfer and visualization,
execution times become the main concern. For these applications compression and decompression
should have a minimal impact on overall time. Some methods, even though based on same notions
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such as Lempel Ziv (dynamic dictionary) tools, obtain very di�erent performances, due to the opti-
mization of particular components. For example, LZAM is very competitive in term of compression
performance compared to LZ4. But LZ4 is the faster of the two (Szorc, 2017).

Lossy compression removes information during quantization step to improve compression per-
formance. It obviously degrades data obtained after decompression. This introduces a dilemma:
the better the compression the heavier the alteration due to the compression (as illustrated on Lena,
Figure 1.4, using jpeg compression standard). While data quantity must be minimal, a certain qual-
ity remains appreciable. By consequence, it appears that quality assessment is crucial with lossy
compression, and choice of metrics could be more or less adapted to evaluate alteration and to guide
suitable compression.

original image 10% of quality 5% of quality
262 Kbytes 7 Kbytes 4 Kbytes

Figure 1.4: Lena (512x512 grayscale image) generated by linux batch conversion, from original (on
left) to jpeg versions, by keeping 10% (middle) and 5% (right) of the quality, and reducing size of
image from 163 Kbytes to 4 Kbytes

There are two ways to assess the quality of decompressed data. First one is objective and based
on mathematical principles, while the second is subjective and focuses on opinion of a panel of ob-
servers. Their role is to provide marks according to the degree of alteration, called mean opinion
score (MOS). Degradation would not be necessary perceptible according to visible and audible spec-
trum. Such approach is heavy to set up, as human organization, contrary to objective evaluation,
as computing approach.

Objective evaluation is easily computerized. It quanti�es di�erence between original and de-
graded data. A majority of metrics arranged on Figure 1.5, derivate from Euclidean distance de�ned
by L2 , as normalized root mean square error (nRMSE) and variation of signal noise ratio (PSNR,
SNR, Λ-SNR). Considering gray scale images for example (whose pixels value ranges between 0
and 255), these metrics operate pixel by pixel, computing di�erence between original and degraded
version. Such an evaluation is valuable and reliable for visual appreciation.

https://people.sc.fsu.edu/~jburkardt/data/png/png.html
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But we express certain reservations about its use for scienti�c data without prior testing. As
depicted by Figure 1.5, we di�erentiate relative from absolute approaches. Unlike the absolute error,
the relative error is related to the original values. Hence, same error made on a sample would be
minor if concerns a high value, and major if the original sample is small. As will be seen later in
our experimental case (cf. Subsection 4.2.1), distinction is necessary and essential. Others metrics
could also be tested to evaluate the degradation of the data structure (SSIM [Structural Similarity
Index Measure], Fidelity, Q criteria).
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Figure 1.5: Classical objective quality metrics organized around the norms in their relative form
Lrp or absolute form Lp.

Finally, ultimate purpose would consist in correlating the subjective assessment with the objec-
tive scale. This in order to guarantee objective thresholds above which the decompressed data will
be subjectively acceptable and guide the suitable compression.

In conclusion to this �rst chapter, a general context has been established by addressing current
issues about data production in scienti�c �elds. The data volumes generated in mass are measured in
binary quantity and results from precision-resolution often over estimated. Injected at di�erent steps
of the scienti�c work�ow, we distinguish experimental from simulation and learning data. Re�ect
of its over consumption, the increasing number of data centers re�ects excess of modern time. To
highlight its consequences, we refer to its economic, energetic and ecological cost. In parallel high
technologies reveal limits in data management. Compression appears as a promising solution to
reduce data quantity. Commonly used with multimedia data, and assimilated by default to standard
formats invading our everyday life, the compression pipeline comprises di�erent components whose
nature in�uences its e�ciency. Performance is notably evaluated by various parameters. Finally,
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compression could be conservative or at re�nable precision to increase its gain. In the latter case, it
is required to assess the quality of decompressed data in order to evaluate the compression impact.

In this work, compression inspired us to manage scienti�c simulation data. We restricted the
scope to geosciences. Natural context and interest objects, called reservoir, are introduced in the
following chapter. Such areas modeled by meshes to execute �ow simulation are intensively studied.
In geosciences, the meshes are complex composite data hardly manageable, and time-consuming for
simulation because of potential large dimensions.





CHAPTER 2

Reservoir modeling context

We focus on the �eld of geosciences and study deep geological layers. Of great interest to the oil and
gas industry, they may contain rocks called reservoirs, whose porosity concentrates energy resources.
The pro�tability of their exploitation notably relies on simulations on numerical models. They
consist in meshes integrating structural discontinuities and �lled with petrophysical properties. The
latter are numerical data characterized by particular dynamics that, sometimes, can be preprocessed
with compandor to increase the quality of the compressed data. Our knowledge of the data and of
adjacent methods allows us to de�ne the basis of an innovative representation that preserves the
geological features, and thus to limit the impact of compression on the simulation.

15
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There are many scienti�c �elds using large data volumes for dedicated applications. Among
them, earth sciences are undeniably intensive users, to study large earth objects and stand therefore
for domains of choice in our study.

Geosciences are split into sub disciplines because Earth is composed by several envelopes and
each discipline will focus on a particular one. From the deeper to the higher, we distinguish the
Earth's core, mantle, crust, biosphere-hydrosphere and atmosphere, they are studied by diverse
communities from the geology to the climatology. Although resorting to dissimilar objects and
models, they may use comparable methodologies. Understanding of physical phenomena occurring
there bases on local �eld measures feeding a simulation model made of equations system. However
geosciences could refer to all these natural objects, we only focus on what happen on Earth's crust,
and will use for simpli�cation the term �geosciences� for this limited area.

The part of geosciences that is interested in energy production, notably the oil & gas industry,
remains of strong economical interest. Hence it keeps on investigating part of the subsoil and im-
proving elements of the work�ow used by geologists, geophysicists and reservoir engineers, illustrated
in Figure 2.1.
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Figure 2.1: Illustration of composite geoscienti�c work�ow. First step (left) is the geologists work.
To create a geomodel, they use experimental data measured on the �eld with di�erent methods.
These tools provide data at di�erent format and incertitude levels: from hard data extracted by
exploration wells to topographic images recovered during seismic acquisition campaigns. (Right)
generated geomodel is not directly usable for simulation and requires the generation of an additional
grid at lower resolutions to reduce computation time. Upscaling is operated by reservoir engineers.
Then, by simulation are predicted at certain incertitude level the production parameters. Finally, the
real parameters recovered during exploitation will enrich and correct the model in a feedback loop.
Terms of the steps of the work�ow will be further explained. Although speci�c to the geosciences, we
estimate a generic scienti�c work�ow would be close to this one.

Throughout this work�ow, a complex geological object can be modeled by a geological volume
mesh (GVM), mix between a volume mesh (VM) and geological mesh (GM). It corresponds in
heterogeneous data composed by diverse components to represent the 3D structure and the media
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properties. A reservoir mesh (RM) models a particular geological area (introduced in Subsection
2.1.1). RM could be used as support to simulate the �ow of liquid or/and gas that happen within.
In a quest for realism, it can be extremely detailed and dimensions can be extremely large1. If so,
their direct simulation would be less tractable because it would be too time consuming. To prevent
it, solutions exist (namely upscaling, cf. Subsection 3.1.1) in the �eld to decrease RM dimensions
but �nally present drawbacks in data management by creating tailored data versions but an addi-
tional amount of data. Our study aims at potentially addressing entire work�ow by using an original
data representation with tunable precision inspired by compression to overcome time and resources
constraints. We will use domains based knowledge on GMs and models to properly address each
components of meshes. Although integrated and tested for a precise application our methodology is
generic and has been designed to be reused by other �elds and applications.

2.1 From reservoir formation to numerical model

Our study focuses on sedimentary rocks localized now at kilometers deep. They come from sedi-
ments deposed on surface millions of years ago. Elements were progressively collected in particular
structures called basins at variable quantity and velocity. In Subsection 2.1.1, we will see that the
deposit environment and the nature of sediments in�uence the structure and petrophysical prop-
erties of the future rocks. Note that all information on sedimentary basins is of great interest for
oil & gas industry, because these structures can include large area of porous rock, called reservoirs,
draining fossil resources (oil and gas) over the years. Pro�tability of their extraction is determined
with help of numerical models. Basins and reservoirs of interest are represented by GMs, introduced
in Subsection 2.1.2. They are hypothetical models based on partial �eld data, integrated to the
work�ow illustrated in Figure 2.1. Modeling step is crucial, because geological features as structural
discontinuities (faults network) may strongly impact the liquids �ow and so the simulation. There-
fore it seems essential to identify them and preserve them throughout the work�ow.

2.1.1 A primer in geosciences for reservoir

The Earth crust could be represented by succession of horizontal rock layers. This stacking structure
could be formed in diverse geological contexts. Among them we focus on conditions that give rise
to the formation of fossil resources. This geological story started 20 to 350 millions years ago, with
progressive deposit of sediments in particular structures called sedimentary basins.

Nowadays exploited, these structures could extend on huge surfaces, up to several hundred kilo-
meters across, and the reservoir technical attainable set between 600 meters to 8 kilometers deep.

They originally consist of depressions in the earth's crust (most of the time) covered by water
(oceans, sees, �uvial systems or lakes), where the transport of sediments of variable origin stops.
The majority of sediments are detrital and come from continental erosion, but can also be organic
or linked to activity of living organism (of animal as plankton shell or vegetal origin). The nature

1up to billion of cells
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of sediments determines the types of rocks resulting from the sedimentation process.

Each formation (in sedimentary basin and others) could be described according to its deposit
age and its lithologic composition, while its physical state would be characterized by petrophysical
properties: the rock density, its porosity, its permeability and its phase saturation (water, gas, oil
present in the porous system). Such information represents properties data, part of GM components,
detailed next in Subsection 2.1.2. Among existing properties, we subsequently focus on two of them:
porosity and permeability.

Porosity, noted φ, is the percentage of the empty volume Ve on the total rock volume Vtot, as
described by Equation 2.1,

φ =
Ve
Vtot

. (2.1)

While permeability, noted K, evaluates the ability of rock to be crossed by liquids under a gradient
of pressure noted ~∇P . The Equation 2.2 is an extension of Darcy law for multi-phase �ow. It
computes for a liquid phase (water, oil, gas) its velocity, ~v, in function of its relative permeability,
kr, its density, ρ and its viscosity, µ, subject to a permeable media and the gravity, ~g. K is measured
in Darcy (homogeneous to one surface, one Darcy is equal to 9.87× 10−13 m2).

~v= −
kr

µ
K
(
~∇P − ρ~g

)
. (2.2)

Figure 2.2: Illustration of geological structures, with �uvial deposit environment (left) and schematic
geological cross section of basin, and resources localization (right).

These physical quantities have very di�erent numerical orders of magnitude. As the histograms
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of porosity and permeability will next illustrate in Figure 3.20. These parameters are governed by
physical laws (as power law, or exponential relation etc.), the regularity of which is con�rmed during
laboratory tests. As example, the basic K−φ law in reservoir geosciences is e�ective in many cases.
It regulates relation between porosity and permeability and consists in Equation 2.3 with A and B
criteria experimentally assessed.

K = A exp (φ) +B. (2.3)

In addition, certain ranges of values have a strong impact on �ow simulation. As small ones,
whose space accumulation can create impermeable structures. Their placement is inherited from the
time of sediment deposition.

Deposit environments example Depending on the deposit environment, very di�erent struc-
tures could be initiated, as illustrated with �uvial example on left Figure 2.2. Di�erence between
two pictures of left-�gure is the river water level, leading to distinct deposits at the same place. In
the upper left-�gure, low water �ow digs a channel and distributes the coarse and light sediments
according to the velocity felt in di�erent parts of the channel. In case of �ood illustrated in bottom
left Figure, water exits the riverbed and �oods the neighboring plain, called �ood plain. A �ne
deposit of sediments will form there the future silt and alluvium formations. These rocks have low
porosity & permeability and constitute natural impermeable border along channels. Made of coarser
elements, channels system is composed by sand formations with high porosity & permeability. It
therefore forms a preferential �ow way in the subsoil in case of �uvial system.

Maturation process, generation and storage of hydrocharbon Coming back to the forma-
tion of hydrocarbon resources, we know that the raw material is rich in carbon. It is mostly issued
from decomposition of living matter deposed on the basin �oor. To be preserved from oxygen and
decarbonisation, very speci�c conditions need to be set up around carbon matter. This requires fast
covering of organic elements by impermeable layers of mud, creating anaerobic environment. This
progressively allows to bury high quantity of carbon under successive sediment formations.

At depth, under extreme pressures and temperatures, organic sediments are changed into source
rock, as shown on the right of the Figure 2.2. Then starts the formation of oil and gas during
cooking process. These hydrocarbons will next migrate along faults across covered formation up
to porous layer called reservoir rock, whose porosity is naturally occupied by water, but replaced
by oil and gas during migration. In particular stratigraphic conditions2 if impermeable formation
(named caprock) covers reservoir formation, hydrocarbons stop their progression and accumulate in
this structure called trap.

Across geological time, formation features and structures are susceptible to evolve. Already com-
plex with regard to the petrophysical structures (channels) initiated during sedimentary deposition,
horizontal layers can be modi�ed by tectonic events (compression, extension) creating folds and

2submit of anticline structure: type of fold that is an arch-like as illustrated on right Figure 2.2.
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faults. As saw with hydrocharbon migration, these objects considerably in�uence the liquid phase
�ow. The understanding of the �eld allows us to pay attention to these details. Although such
small values appear insigni�cant relative to the global mesh scale, it is crucial to represent for GM
modeling and processing.

Considering software environments developed to manage GMs (such as Open�ow, Gocad, Petrel)
we notice their interest with regard to physical scales, and illustrate it by two following examples.
First, from a numerical point of view, the permeability property is commonly visualized with an
exponential color scale instead of linear to focus on small values. Secondly, from structural point of
view, it is possible to exaggerate the vertical scale to in�ate the thin geological layers to make them
accessible.
Then in next section, is detailed a mesh structure and its components, commonly used by geologist
to represent complex geomodel and tend to preserve geological features.

2.1.2 VM for reservoir modeling

VMs discretize the interior structure of 3D objects, sedimentary basin and reservoir in this study.
They partition their inner space with a set of three-dimensional elements named cells. While pyramid
and triangular prism partitions exist, most of the existing VMs are composed of tetrahedral (4 faces)
or hexahedral (6 faces) elements. They are called tets or hexes (sometimes bricks), respectively. A
VM composed of di�erent kinds of cells, tetrahedra and hexahedra for instance, is termed hybrid.
A VM is described by the location of vertices in 3D space (geometry) and the incidence information
between cells, edges, and vertices (connectivity). In function of the application domain, VMs also
contain physical properties (petrophysical properties in geosciences) associated to vertices, edges, or
cells.

Figure 2.3: Example of a GM used (left); same mesh with the associated porosity property (right).
Note that this mesh is hybrid and unstructured, with both hexahedral and tetrahedral elements.

A non-degenerate hexahedra has 6 faces named quads, 12 edges, and 8 vertices. Depending on
incidence information between cells, edges and vertices, hexahedral meshes are either unstructured
or structured. The degree of an edge is the number of adjacent faces. An hexahedral mesh is
unstructured if cells are placed irregularly in the volume domain, i.e., if degrees are not the same
for all edges of the same nature. Unstructured meshes have an important memory footprint, as all
the connectivity information must be described explicitly. However, they are well-suited to model
complex volumes, Computer-aided design (CAD) models for instance, as shown in Figure 2.4.

An hexahedral mesh is structured if cells are regularly organized in the volume domain, i.e., if
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Figure 2.4: CAD model de�ned by an unstructured VM.

the degree is equal to four for interior edges (inside the volume), and equal to two for border edges
(on a border of the volume). In that case, the set of hexahedral cells is topologically aligned on a
3D Cartesian grid (see Figure 2.5). Each vertex of the mesh can be associated to a node of the
grid. Hence, each cell can be indexed by only one triplet (i, j, k), and the connectivity information
becomes implicit: only the position of the vertices is needed to model the mesh.

Cell (elementary volume) 
(hexahedron, tetrahedron) 

Cell face 

Edge 

Node: grid vertices 

Grid 

Figure 2.5: Structured hexahedral mesh composed of (5× 4× 3) cells.

RMs used to perform simulations could include structural discontinuities and property par-
ticularities. Such features require speci�c handling, especially for a multiscale representation (cf.
Subsection 3.1.1).

Geometrical discontinuities In geosciences, hexahedral meshes are generally structured, and
thus based on a Cartesian grid. But these meshes may contain geometrical discontinuities, corre-
sponding for instance to geological faults. It induces a vertex disparity in space at the same node.
The association of one node of the Cartesian grid with 8 vertices (one for each adjacent cell) handles
this speci�city. Figure 2.6-(a) provides an illustration of a fault-free volume. On Figure 2.6-(b),
we see that this structure allows to describe for instance a vertical fault (by positioning vertices
di�erently about the node), while preserving the Cartesian grid.

The most popular data structure for structured hexahedral meshes with geometrical discontinu-
ities is the Corner Point Grid tessellation of an Euclidean 3D volume: a structure developed by
Ponting (1989) and still currently used (Røe and Hauge, 2016; Lie, 2016). This structure is often
termed pillar grid. It is based on a set of vertical or inclined pillars running from the top to the
bottom of the geological model. A cell is de�ned by its 8 adjacent vertices (2 on each adjacent pillar,
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1 node with 1 vertex 

1 node with 2 equal vertices
1 node with 4 equal vertices
1 node with 8 equal vertices 

1 nœud à 4 sommets de position P 
et 4 sommets de position P’ 

(a) Free-fault area.

1 nœud à 2 sommets identiques 

1 nœud à 4 sommets identiques 

1 nœud à 1 sommet

1 nœud à 8 sommets identiques 

1 node with 4 vertices at position P
         and 4 vertices at position P’ 

(b) Area with a vertical fault.

Figure 2.6: A fault-free and a fault area.

see Figure 2.7), and the vertices of the adjacent cells are described independently, in order to model
faults and gaps. Across the associated Cartesian grid, each cell can be indexed by a triplet (i, j, k).

i 

j 

k 

Node (0,1,1) 

Hexahedral cell 
(0,0,0) 

Lower extremity of 
pillar (1,1) 

Pillar (0,1) 

Grid (i,j) 

Figure 2.7: An hexahedron, according to the pillar grid structure.

This pillar grid also allows to model geological collapses (or erosion surfaces), by using degenerate
cells, i.e., cells with (at least) two vertices on one pillar located at the same position (see Figure 2.8
for di�erent degenerate con�gurations).

Globally, the description of the structure represents a large part of overall mesh sizes, between
one or two thirds for the GMs we studied. The remaining data consists in mesh properties attached
to the cells, describing their activity or various petrophysical properties: continuous or categorical.

Mesh properties Firstly, the cell activity is a Boolean parameter notably used to deactivate cells
and model irregular borders, or used to focus on an interest zone.

Secondly, there are categorical (N) and continuous (R) properties. Such properties are spa-
tially distributed in the mesh: each cell is linked with k discrete values and n �oating-point values
corresponding respectively to the k categorical properties and the n continuous properties. Their dis-
tribution is determined during mesh modeling by geostatistical tools (variogram, kriging) and based
on �eld measurements (typically well and the seismic data). The categorical properties describe for
instance the geological formation repartition (rock nature, deposit age). The discrete value is more
a label which could corresponds to various parameters, not rationally quanti�able or manipulable.
The continuous properties describe petrophysical properties attached to the cell, such as the porosity
and the permeability, de�ned in Subsection 2.1.1. Such parameters have a huge amplitude range
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(a) Single. (b) Two opposed. (c) Two adjacent.

Figure 2.8: Degenerate hexahedral cells due to a single collapsed pillar (a) or two di�erent collapsed
pillar locations (b), (c).

and require to preserve a high numerical precision. Considering for comparison an other quantity
as the values of pixels of an image. For black and white version, a gray scale is commonly used and
featured by a certain binary level, this means a certain number of bits, noted nbits, will be used for
each pixel. For a gray scale at 256 binary levels, a pixel intensity value necessitates thus one byte
to be coded (log2 256⇔ 8 bit); contrary to a physical value, whose numerical accuracy uses 7 digits
and requires on average up to 24 bit.

2.1.3 Using dynamic of reservoir property

As we plan to work on compression, we have to take into account the binary representation. We
know that on practice the data is quanti�ed due to the limited precision of computers. Given this
limitation, we have chosen to exploit it by giving the advantage of precision to certain ranges and
saving bits budget on others. As an example, we consider a large area with an almost constant
permeability of 1000 mD, if a value were to increase by 2 mD, it would have no impact on the �ow.
After a certain level of permeability, the material allows the liquid to pass through. Conversely small
values will have a strong impact on the �ow rate, if we add 2 mD to an initial value equal to 10−5

mD, this could create an artifact and have an impact on the �ow. This knowledge can be used to
our advantage, instead of an evaluation based on absolute error, we will focus on relative scale. The
logarithmic transform will allow to linearize a power law and to preserve a relative deviation.

Referring to the literature, it is known that this approach has already been used for the processing
of audio data. It allows coding fewer bits because the transform makes the data more homogeneous.
This treatment, called compandor (Li et al., 2005), noted Λ , is used to preserve whispering in a
loud sound environment. Compandor echoes to expander, noted

Λ

, the inverse method to return
to the original distribution.

We propose in this study an original version of the compandor noted Λα,nbits , parametrized by
α and nbits, expressed by Equations 2.4, with the original property denoted P .
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α can vary between 0 and 1. Equal to one, Λ is a simple linear function (stay in absolute scale),
but tends to logarithm functions with α approaching zero (moving to relative scale).

The factor 2nbits − 1 permits to convert the real values to discrete values distributed between 0
and (2nbits − 1). Thus, the choice of nbits allows us to clearly set the data precision.

Λα,nbits(P ) = round

(
λα(P )− λα(minP )

λα(maxP )− λα(minP )
× (2nbits − 1)

)
, (2.4)

with

λα(P ) =

{
log (P + 1) if α = 0
(P+1)α−1

α if α > 0

Whereas the expander

Λ

α,nbits is expressed as follows:

λ

α(P ) =

{
exp (P )− 1 if α = 0

(αP + 1)
1
α − 1 if α > 0

P̂ =

Λ

α,nbits(Λα,nbits(P )) =

λ

α(
Λα,nbits(P )

(2nbits − 1)
× (λα(maxP )− λα(minP )) + λα(minP )). (2.5)

To demonstrate the compandor e�ect, we use a vector composed of eight values between 0 and
20 000 displayed on the �rst line of the table 2.1. The data is a representative sample of the per-
meability property later introduced on the Figure 3.20, partly composed of small values lower than
hundred and sharing the same upper limit. By applying the Λα,nbits , we illustrate the interest of
using an adapted preprocess to preserve precision of the lowest values at a comparable nbits. We
start with 2 bits and incrementally increase nbits up to 4. Binary writing of a value is vertically
scaled from the most signi�cant bits (MSB) to the least signi�cant bit (LSB). The nbits increment
adds an LSB layer and increases the accuracy of the results by using the

Λ

α,nbits to return to the
original distribution.

We test on the �rst column a linear function by using α equal to one, and compare results applying
logarithm function by using α equal to zero on the second column. Focusing on the original value
10, we observe that for a linear preprocess, the result is always equal to 0, whatever the nbits used.
In comparison, by applying

Λ

0 and by increasing the nbits, result for 10 is re�ned from 26.10 to
15.90 to 13.00. Even considering 10 000, half of the maximal value, result from Λ0,4 use is closer to
the original than the result of using Λ1,4 , respectively equal to 10 334.10 and 10 666.70.

Then, we consider the Λ0 helps to better preserve the precision of the values of the sample, as
regards the values of the lower half, by passing from a linear scale to a relative scale. What is an
opportunity in our scienti�c context as in other �elds dealing with similar data3.

By revisiting the necessary precision to obtain realistic simulations, we decide to propose an
adaptive representation combining the numerical with spatial (multiscale) precision.

3Although it does not seem obvious what data would need this type of treatment. Objectively, we could start with
the data visualized using logarithmic scales.
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Original
data [0 0.1 1 10 100 1000 10 000 20 000]

α = 1 α = 0

Λα,2 [ 0 0 0 0 0 0 2 3 ] [ 0 0 0 1 1 2 3 3 ]

MSB 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1
LSB 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1

Λ

α,2 [0 0 0 0 0 0 13 333.3 20 000] [0 0 0 26.1 26.1 735.8 20 000 20 000]

Λα,3 [ 0 0 0 0 0 0 4 7 ] [ 0 0 0 2 3 5 7 7 ]

MSB 2 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1

LSB 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1

Λ

α,3 [0 0 0 0 0 0 1142.9 20 000] [0 0 0 15.9 68.7 1179.8 20 000 20 000]

Λα,4 [ 0 0 0 0 0 1 8 15 ] [ 0 0 1 4 7 10 14 15 ]

MSB 3 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1
2 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1

LSB 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1

Λ

α,4 [0 0 0 0 0 1333.3 10 666.7 20 000] [0 0 0.9 13.0 100.7 735.8 10 334.1 20 000]

Table 2.1: Λα,nbits e�ect on 1D data stream, changing α value (column), as the bits number (row).
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2.2 From storage to simulation

Problematic Beyond the di�culties of processing (storage, transmission, visualization) large data
volumes, some GMs could serve as inputs for simulation (RMs). The process gathers diverse hetero-
geneous components describing structure to petrophysical properties. Each component is featured
by speci�c dimension and dynamic range. Their combination models a geological object used to
simulate the �ow of liquid phases (oil, gas, water) occurring inside. However, the simulation is not
directly executable on the detailed mesh, but imposes an additional step in work�ow by creating
a supplementary data at lower resolution to run a faster simulation. Several ad-hoc methodologies
already exist and reduce RM dimensions by upgridding/upscaling the grid and the attached prop-
erties, as detailed later in Subsection 3.1.1. However, this approach does not appear to be the most
e�cient to data processing as it multiplies the data volumes and pipes in the work�ow. As regards
the multimedia, compression tools based on multiresolution approaches are promising options, but
are rarely used for simulations.

Proposition From these observations, we propose an approach inspired by tools from various
�elds and our geoscience knowledge that could integrate the work�ow. We are thus working on
an multiscale representation for GVMs dealing with components heterogeneity. For this purpose
we propose a method adapted to the data dimensions and dynamic range. In addition, we plan to
devote a larger share of the binary budget to a particular range, the accuracy of which is required
for simulation, this by changing notably the absolute scale into relative.

The change in scale and respect of the physical laws governing our properties in�uence our
evaluation metrics developed to ensure the preservation of data at re�nable precision (spatial &
numerical). Using adapted metrics we evaluate the method for di�erent applications, from storage
to visualization and simulation.

Figure 2.9 teasers our proposition for GVM representation. Essence of data is progressively
condensed across decompositions into smaller red subpart on �gure. It facilitates access to the lower
resolutions and order the binary data to get the appropriated numerical precision for simulation.
Thus, we want to know if huge GVMs can be wisely represented to deal with di�erent aspects taking
into account the context.

Plan Our work is divided into two chapters relating to our main contributions. First, in Chapter
3, we introduce a suitable representation for our GVMs, i.e. capable of arranging the data while
reducing its binary quantity for compression purpose. Secondly, in Chapter 4, the representation
is integrated into a simulation work�ow to evaluate the impact of the RM generated at re�nable
precision (still considering spatial & numerical precision).

To begin, we review in Science the existing representations used to manipulate volume data,
starting with geosciences and then broadening the spectrum (cf. Section 3.1). By combining the
strengths of all methods, we de�ne a dream scalable representation for our complex GVMs (cf.
Subsection 3.1.4). To lay the foundations of our representation we use HexaShrink, a multiscale
decomposition tool for GVMs, preliminary developed for visual purpose, introduced in Section 3.2.
We �rst apply HexaShrink on a benchmark composed by eight GVMs (cf. Section 3.3). Their
lower resolutions are visually compared to the results obtained with a popular geomodeller. Then to
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Res. -0 Res. -1 Res. -2 Res. -3

1st
transform

2nd
transform

3rd
transform

Figure 2.9: Teaser for data volume processing. Transformations are successively applied, to condense
information essence (approximation) in red subpart, whose lower resolutions are built from Res.-0
to Res.-3.

evaluate compression performances of the scalable representation we associate HexaShrink with
generics encoders in a conservative approach (cf. Section 3.4) and �nally with an evolved progressive
coder, named zerotree, to evolve toward re�nable approach (cf. Section 3.5). The quest for the
suitable re�ned precision is our objective to improve compression but not only. In Chapter 4, we
also assess the precision within simulation work�ow.
This second contribution starts with a state of the art on re�nable compression in simulation (cf.
Section 4.1). In this section, we detail some of the tools that will be later used for a comparative
study. In Subsection 4.2.1 we model a complete simulation work�ow to evaluate our representation
�rst in an upscaling purpose (cf. Subsection 4.2.2). Secondly the re�nable precision is applied
on mesh properties preprocessed or not by compandor to increase the precision on speci�c ranges
(cf. Subsection 4.2.3). To validate this processing, innovative metrics are suggested based on the
�eld knowledge and expectations. By combination with standard objective metrics we verify their
coherency. We thus seek to identify the parameters to evaluate the precision of data suitable for
simulation. We exploit on a last part some data features to improve the process (cf. Section 4.3).





CHAPTER 3

HexaShrink, a multiscale representation for
geological volume meshes. Application to

multiresolution rendering and storage

“Compression... What else?”

Laurent Duval, 2017

Scienti�c community is interested in various methods for handling large volume data. Regarding
the speci�c �eld of geosciences, we �rst mention the upscaling/upgridding techniques, daily used
in simulation for "simplifying" geological volume meshes. Then, we make an overview of generic
tools developed for compressing volume meshes. Finally, we approach the most popular techniques
existing for compressing scienti�c data in general. By gathering the bright sides of each method,
we present HexaShrink, a scalable representation dedicated for the geological volume containing
attributes and discontinuities. We show that HexaShrink provides nice renderings at di�erent
levels of detail, but can be also integrated in di�erent lossless-to lossy compression work�ows, to
facilitate the storage of geological volume meshes.

29
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3.1 A variety of representations for volume scienti�c data

In the �rst place, this section presents three ways that we explored to put forward a suitable rep-
resentation for the GMs, and particularly the RMs. Subsection 3.1.1 gives an overview of the
upscaling/upgridding methods, well established in geosciences for years in the context of simulation.
In a nutshell, it consists in generating a coarse mesh from a given highly resoluted mesh, and to use
it to drive simulation. By decreasing the number of cells, simulation time is ineluctably reduced.
Second, Subsection 3.1.2 overviews the multitude of compression methods dealing with VMs. The
main purpose of these methods is a compact storage, in scienti�c �elds generally not concerned by
simulation. Third, Subsection 3.1.3 is devoted to newer compression methods developed for scienti�c
data with �oating-point accuracy speci�cally. Finally, Subsection 3.1.4 summarizes the advantages
and the limitations of these three approaches in our context. We also discuss the required features
of an "ideal" representation for GMs.

3.1.1 Upscaling & upgridding techniques

For decades now, geosciences have been overwhelmed by data quantity, notably in reservoir sim-
ulation. Considering this growing issue, reservoir engineers promoted a research axis to generate
coarser grids more appropriate for simulation. The so-called upgridding/upscaling techniques remain
current practice in geosciences.

The integration of �eld measures (well and seismic data) with modern geostatistical tool (Jensen
et al., 2000) indeed generates highly resolved computational grids, in which petrophysical properties
(porosity, permeability, ...) are spatially distributed. Generally composed of hundreds of thousands
of cells, dimensions depend on the required level of detail. Numerical simulations performed on those
grids are used to describe the multiphase �ow to optimize the hydrocarbon recovery (Coats et al.,
1967; Peaceman, 1977; Thomas, 1981) during �eld exploitation. Simulations should be performed
several times to estimate the uncertainty level of the parametrized model (Durlofsky and Chen,
2012), but this could not be performed on the initial mesh.

To reduce the computation times, a coarse grid is generated from the initial data, by upscaling
the properties and upgridding the RM. These scale changes involve a merge of connected cells and
their attached continuous properties, reducing signi�cantly the number of cells. The porosity is
often upscaled by a simple bulk volume-weighted arithmetic average, while permeability upscaling
is di�cult, because the property is not additive. A generic approach consists in using arithmetic
and harmonic averages for the horizontal and vertical permeability, respectively. This method is
called static, performing arithmetic operations on property data. It could be su�cient for simpler
RMs. Li and Beckner (2000) study the spatial distribution of permeability, properties, and facies to
determine the optimal merging, and preserve details on the way of the main �ow. However other
dynamic methods, based on the �ow study are recommended for more complex meshes. To name
one (Durlofsky et al., 2000) uses a �ner resolution in high �uid velocity area, identifying it by the
resolution of local well-driven �ow problems. A large number of upscaling methods exists, provided
in detail by reviews (Qi and Zhang, 2009). The upgridding or grid coarsening is related to the
upscaling result, adapting the mesh structure by merging the cells whose the properties have been
upscaled. Quality of upscaling and upgridding can be assessed according to simulation results, as
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latter explained in Subsection 4.2.1, or by other metrics taken on upscaled data (Preux, 2014). The
main challenge is to choose the more e�cient for a given model, the one that will preserve result ac-
curacy, while allowing a signi�cant reduction of the cell number and consequently of computing time.

A wavelet-based upgridding/upscaling technique has been proposed by Mehrabi and Sahimi
(1997). Its e�ciency has been investigated in many works, and notably on RMs (Rasaei and Sahimi,
2008). The basic concept consists in performing a wavelet transformation on the permeability prop-
erty, producing blocks of details. Independently, their values are compared to a pre-de�ned threshold
to determine which block is considered as signi�cant during the �uid �ow. If a block is considered
as non signi�cant, the cells constituting this block are merged. Otherwise, the cells are preserved,
to conserve the full resolution in the regions of interest for simulation. Later, Babaei (2013) em-
ployed wavelets to provide a coarsening operator during simulation. Hence, the simulations are
driven by adapted grids, which reduces the computation times, while preserving satisfactory sim-
ulation results. A more recent article (Rezapour et al., 2019) generalizes the method to irregular
grids by using graphs, as later explained in Subsection 3.1.3 with the work of Iverson et al. (2012).
The irregular grids in geosciences are well known, and represent an elegant way to model reservoir
complexities, notably the faults. Nevertheless, the cell indexing is not possible, so the resolution of
linearized equation systems for �ow simulation are much more complicated.

Discussion These wavelet-based methods do not save the details removed during analysis to get
RMs of lower resolution, which could permit a perfect reconstruction by reversing the process (i.e.,
by synthesis). This pushes the users to store the initial data in parallel.

During the review made on geosciences and the simulation �elds, we also note the lack of details
on the wavelets used. This contrasts with the current practices in multimedia, where the precise
nature and the characteristics of the wavelets are given. We thus consider that, depending on the
nature and the regularity of the di�erent elements of our grids, a more rigorous choice of multiscale
representations can be bene�cial.

In a more global way, the upscaling techniques essentially serve the interest of the simulation
providing an additional lighter RM, promising faster executions and coherent results without taking
into account the consequence for storage.

3.1.2 Compression of VMs

VMs are used in many research domains. These are data that can be particularly massive, and often
generated in large quantities. Therefore many projects have focused on how to compress them.
The objective common to all the compression techniques presented hereinfater is to reach the best
compression ratios.

The basic principle and the most straightforward technique to encode a VM is to use an indexed
data structure: the list of all the vertex coordinates (three �oating-point values, which amounts to
96 bits par vertex), followed by their connectivity. The connectivity is de�ned cell after cell, each
cell being de�ned by the set of indexes of the adjacent vertices (8 integers per hex). They thus
only provide estimates of an actual compression performance. To reduce the memory footprint or
make the transmission of VMs faster, well-known techniques exist, for instance the quantization of
vertex coordinates. It consists of constraining the vertex coordinates to a discrete and �nite set of
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values. Hence, it becomes possible to encode each coordinate with an integer index, instead of a
32-bit �oating-point value. It is common to quantize the coordinates with 12 or 16 bits, reducing
the geometry information by a compression factor of 2.60 or 2 respectively. Quantization inevitably
introduces an irreversible loss in accuracy. Visualization typically tolerates precision loss (as long
as visual distortion remains negligible), unlike some numerical simulations requiring a priori more
precise computations.

Prediction (as well as related interpolation methods) further improves the geometry compactness.
Predictive coding resorts to estimating the position of a vertex from already encoded neighbor
vertices. Prediction errors (di�erences between predicted and actual positions) are generally smaller
in amplitude and sparser, which makes their entropy coding (which codes di�erently frequently
occurring patterns) e�cient (Salomon and Motta, 2009, p. 63 sq.). Regarding the connectivity,
when meshes are unstructured, the most frequent technique performs a traversal of mesh elements,
and describes the incidence con�gurations with a reduced list of symbols. These symbols are then
entropy coded. When meshes are structured, the connectivity is implicit, reducing its cost to zero.
For such meshes, the only additional information to encode are geometrical discontinuities describing
faults and gaps.

The basic tools previously presented can be implemented on the ontological structure of meshes,
and improved in many di�erent ways. Their combination, with the assistance of advanced com-
pression techniques, permits more e�cient tetrahedral or hexahedral mesh coding. Previously
proposed algorithms are presented below, classi�ed into two categories: single-rate and progres-
sive/multiresolution.

Single-rate mesh compression They lead to a compact mesh representation, most of the time
driven by e�cient connectivity encoding. The �rst method for tetrahedral meshes, Grow & Fold,
was presented by Szymczak and Rossignac (2000) at the end of the nineties. It is an extension
of EdgeBreaker (Rossignac, 1999) developed for triangle meshes. The method consists in building
a tetrahedral spanning tree from a root tetrahedron. The traversal is arbitrary among the three
neighboring tets (cf. Subsection 2.1.2) of the cell currently processed, and 3 bits are needed to
encode each cell. The resulting spanning tree does not retain the same topology as the original
mesh, because some vertices are replicated during the traversal. �Fold� and �glue� techniques are
thus needed during encoding to restore the original mesh from the tetrahedron tree. The additional
cost is 4 bits, leading to a total cost of 7 bits per tetrahedron.

The cut-border initiated by Gumhold and Straÿer (1998) was adapted to tetrahedral meshes
(Gumhold et al., 1999). It denotes the frontier between tetrahedra already encoded and those to
encode. At each iteration, either a triangle or an adjacent tetrahedron is added to the cut-border.
In this case, if the added vertex is not already in the cut-border, this latter is included by a con-
nect operation, and is given a local index. As the indexing is done locally, the integers to encode
are very small, leading to a compact connectivity representation. In addition, two methods are
proposed to encode geometry and associated properties, based on prediction and entropy coding.
This method yields good bit rates (2.40 bits per tetrahedron for connectivity) for usual meshes,
handles non-manifold borders, but worst-cases severely impact bitrates and runtimes (which tend
to be quadratic).
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Isenburg and Alliez (2003) are the �rst to deal with hexahedral VMs. The connectivity is en-
coded as a sequence of edge degrees � in a way similar to Touma and Gotsman (1998) for triangular
meshes � via a region-growing process of a convex hull called hull surface. It relies on the assump-
tion that hexahedral meshes are often highly regular, which implies that the majority of vertices are
shared by 8 cells. It involves an almost constant edge degree all over the mesh, which signi�cantly
decreases the entropy of the connectivity information. A context-based arithmetic coder (Witten
et al., 1987) is then used to encode the connectivity at very low bit rates, between 0.18 and 1.55 bits
per hexahedron. Regarding geometry, a user-de�ned quantization �rst restricts the number of bits
for coordinates, and then a predictive scheme based on the parallelogram rule encodes the position
of vertices added during the region-growing process.

Krivograd et al. (2008) propose a variant to Isenburg and Alliez (2003) that encodes the vertex
degrees � number of non-compressed hexahedra around a given vertex � instead of the edge de-
grees. On the one hand, this variant achieves better compression performances than Isenburg and
Alliez (2003) for dense meshes. On the other hand, it only deals with manifold meshes, and the
algorithm is complex as interior cells are encoded after border cells (it involves many speci�c cases
to process when encoding the connectivity).

Lindstrom and Isenburg (2008) proposed an original algorithm for unstructured meshes called
Hexzip. This algorithm is considered as fully lossless, because the initial indexing of vertices and
hexahedra is preserved. For this purpose, connectivity is encoded directly in its indexed structure,
by predicting the eight indices of an hexahedron from preceding ones. This technique is suitable be-
cause hexahedral meshes generally have regular strides between indices of subsequent hexahedra. A
hash-table is then used to transform the index structure into a very redundant and byte-aligned list
of symbols, that can be compressed e�ciently with gzip (Deutsch, 1996). Concerning the geometry,
spectral prediction (Ibarria et al., 2007) is used. This algorithm is faster and less memory intensive
than Isenburg and Alliez (2003) as the connectivity is not modi�ed. It handles non-manifold meshes
and degenerate elements. On the other hand, bitrates are higher because of the lossless constraints.

Unlike methods presented above, Chen et al. (2005) focus on geometry compression for tetrahe-
dral meshes. The authors proposed a �ipping approach based on an extension of the parallelogram
rule (initially proposed for triangle meshes (Touma and Gotsman, 1998)) to tetrahedra. It consists in
predicting the position of an outer vertex of two face-adjacent tetrahedra, with respect to the other
vertices. To globally optimize the geometry compression, a Minimum Spanning Tree minimizing the
global prediction error for the whole mesh is computed. This method is more e�cient than prior
�ipping approaches whose traversal does not depend on the geometry, but solely on the connectivity.

Streaming compression is a subcategory of single rate compression, dedicated to huge data that
cannot �t entirely in the core memory. A particular attention to I/O e�ciency is thus required,
to enable the encoding of huge meshes with a small memory footprint. Isenburg and coworkers
are the �rst to propose streaming compression for VMs (extended from his method for triangular
meshes ): for tetrahedral meshes (Isenburg et al., 2006), and then for hexahedral meshes (Courbet
and Isenburg, 2010). In the latter, for instance, the compressor does not require the knowledge of
the full list of vertices and cells before encoding. The compressor starts encoding the mesh as soon
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as the �rst hexahedron and its eight adjacent vertices have been read. For a given hexahedron: i)
its face-adjacency is �rst encoded in function of its con�guration with hexahedra already processed;
ii) positions of vertices that are referenced for the �rst time are predicted (spectral prediction from
adjacent cells); iii) prediction errors are encoded; iv) data structures relative to vertices, becoming
useless (because their incidence has been entirely described) are �nally removed from memory. Com-
pared to other single rate techniques, streaming tends to achieve similar compression performances
for geometry, but poorer performances for connectivity.

Progressive/multiresolution mesh compression Progressive algorithms (also called scalable
or multiresolution) enable the original meshes to be represented and compressed at successive LODs
(levels of details). The main advantage is that it is not necessary to decompress a mesh entirely
before vizualising it. A coarse approximation of the mesh (also known as its lowest resolution) is �rst
decompressed and displayed. Then this coarse mesh is updated with the successive LOD (termed
higher resolutions) that are decompressed progressively. While they cannot achieve yet compression
performance of single-rate algorithms, progressive algorithms are popular because they enable LOD,
and also adaptive transmission and displaying, in function of user constraints (network, bandwidth,
screen resolution. . . ).

Pajarola et al. (1999) are the �rst to propose in 1999 a progressive algorithm dedicated to VM
compression. This work is inspired by a simpli�cation technique for tetrahedral meshes (Staadt and
Gross, 1998). It simpli�es a given tetrahedral mesh progressively, by using successive edge collapses
(Hoppe et al., 1993). Each time an edge is collapsed, its adjacent cells are removed, and all the
information required to reverse this operation is stored: index of the vertex to split, and the set of
incident faces to �cut". Thus, during decompression, the LODs can be also recovered iteratively, by
using the stored data describing vertex splits. During coding, an edge is selected such as its collapse
leads to the minimal error, with respect to speci�c cost functions. This algorithm gives a bitrate
inferior to 6 bits per tetrahedron (for connectivity only).

In 2003, Danovaro et al. (2002) propose two progressive representations based on a decomposition
of a �eld domain into tetrahedral cells. The �rst is based on vertex splits, as the previous method,
the second is based on tetrahedron bisections. This operation consists in subdividing a tetrahedron
into two tetrahedra by adding a vertex in the middle of its longest edge. Unlike with vertex splits,
the representation based on tetrahedron bisections is obtained by following a coarse-to-�ne approach,
i.e., by applying successive bisections to an initial coarse mesh. Also, this representation only needs
to encode the di�erence vectors between the vertices added by bisections and theirs real positions.
This representation is thus more compact, as the mesh topology does not need to be encoded, but
it only deals with structured meshes.

VMs multiresolution decomposition based on wavelets (Jacques et al., 2011) was proposed by
Boscardín et al. (2006) for tetrahedral meshes. It is based on the tetrahedron subdivision scheme
(Bey, 1995) that transforms a tetrahedron into 8 sub-tetrahedra, by introducing 6 new vertices on
each edge. After analysis, the input mesh is replaced by a base tetrahedral mesh, and several sets
of detail wavelet coe�cients. Although coe�cients corresponding to di�erences between two resolu-
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tions could be encoded for mesh synthesis, this work does not provide an actual compression scheme.

Chizat (2014) proposed a prototype for a multiresolution decomposition of geoscienti�c hexahe-
dral meshes with the pillar grid structure (cf. Subsection 2.1.2). His main contribution resides in a
multiresolution analysis (MRA) that partially manages geometrical discontinuities representing the
faults. It can be achieved by using a morphological wavelet transform (cf. Subsection 3.2.1). This
non-separable transform enables the preservation of some fault shapes at di�erent resolutions, as
depicted in Figure 3.1.

Figure 3.1: Dyadic non-separable multiresolution rendering on a simple geological mesh Chizat
(2014).

This work is the �rst to deal with meshes from geosciences at IFP Energies nouvelles. The mul-
tiresolution concept manages structural discontinuities, while preserving the fault network through
resolutions. The proof of concept is developed in Peyrot et al. (2019), and compression performance
is thoroughly analyzed in (Bouard et al., 2018). HexaShrink is detailed later in Section 3.2.

3.1.3 Compression of scienti�c data

Ongoing advances in computer science allows performing simulations on ever larger and detailed
models, while their management becomes ever more di�cult. This subsection present solutions for
compressing 3D experimental and simulation data. By using various approaches: data reduction
(Cunningham and Ghahramani, 2014), data clustering (Geist and Reed, 2016) and data indexation
(Kraska et al., 2018). Recently Li et al. (2018) and Duwe et al. (2020) published surveys on compres-
sion of scienti�c data in the context of HPC, which indicates a growing interest for this topic. Note
that a major driving application for compression concerns climatology-related simulations (meteo-
rology, oceanography), where the data generated tend to be the heaviest ones (cf. Subsection 4.1.1).
As always in compression, two categories can be identi�ed: lossless and lossy.
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Lossless techniques Generic lossless methods are used by broad audience to compress a wide
variety of data, regardless of data features (dimension, type, ...). Mainstream methods although
generic, such as gzip or LZMA (tested in Subsection 3.4.1), may be e�cient in term of compression
ratios and execution times. Nevertheless, lossless methods dedicated to scienti�c data are now
available.

FPC (Floating-Point Compression) is a fast and lossless algorithm conceived to optimize the
transmission and the storage of �oating-point numbers Ratanaworabhan et al. (2006). Based on
prediction techniques, FPC compresses better and faster than other algorithms available at the time
of its release. But its e�ciency decreases with the randomness rate of the data.

Later, many scientists, particularly climatologists, adopted two standard formats to store multi-
dimensional data in an uni�ed library interface: NetCDF (Network Common Data Form) and HDF5
(Hierarchical Data Format 5) (Koranne, 2011). Yet, in this format the original data are not available
anymore, and must be decompressed entirely to be used. HDF5 provides compression components
to develop tools designed speci�cally for climatology, such as MAFISC (Hübbe and Kunkel, 2012).
A sequence of �lters is applied to the data and completed by generic encoding tools.

Other compression formats have been developed speci�cally for HPC. For instance, ISOBAR
(Schendel et al., 2012) proposes to identify and �lter hard-to-compress datasets in order to better
target the compression needs.

Lossy techniques Lossless methods ensure a perfect reconstruction of the initial data, but their
compression performance is limited. Despite this limitation, many researchers are reluctant to
use lossy compression, fearing that the losses will bias or distort simulation results. However, as
highlighted ironically by Kipnis et al. (2018), �data discretization in simulation is already a form of
quantization, which leads to a lost of information�.

Today, popular formats such as HDF5 progressively incorporate powerful and easily imple-
mentable lossy compression tools (Linear Packing, Layer Packing (Silver and Zender, 2017), Bit
shaving, Bit Grooming (Zender, 2016), Digit Rounding (Delaunay et al., 2019) etc.) that remove
last bits of values considered as noise and/or irrelevant data. These irreversible and drastic com-
ponents are completed by lossless techniques that rearrange bits (Shu�e) and coders (DEFLATE,
Zstandards). The results obtained by Delaunay et al. (2019) on meteorological and oceanic exper-
imental datasets made of �oating values are promising. Their degradation is positively assessed by
objective metrics (SNR, mean relative error, mean absolute error).

Lossy compression allows achieving higher compression gains, but implies to control the data
degradation strictly. However, there is no metric established in the context of simulation, because
expectation vary according to the application. In this case, quality metrics borrowed from the
visualization �eld are found su�cient, and are used to appreciate the distortion involved by lossy
compression (maximum point wise error, root mean squared error (RMSE), peak signal to noise
ratio (PSNR)).

Lossy compression is now a common place in climatology (Baker et al., 2017, 2019), where the
data volume for the forecast are the most massive. One of our oldest references in simulation data
compression ((Bradley and Brislawn, 1993)) already dealt with storage of data generated by super-
computers from NCAR.
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As already noted in the context of lossless compression, it is fairly common to test popular lossy
compression methods on scienti�c data although not adapted. JPEG and JPEG2000 developed for
multimedia data have been for example tested on climatology by (Hübbe et al., 2013; Woodring
et al., 2011; Baker et al., 2014), and �uid mechanics (Schmalzl, 2003).

Computational �uid dynamics (CFD) is powerful tool for simulating turbulent �ows. However,
computational time can be high, due to the large scale of simulated data. To address this problem,
Nakahashi (2005) proposes a compact support called BCM (Building Cube Method) to decrease
the number of cells. It assemblies sub-cubes (Cartesian grids) at variable resolutions to create an
unstructured grid, with local re�nement adapted to geometry and �ow features. To diminish the
size of binary data and relieve the computation, run-length coding is applied to the BCM grids.
The work of Sasaki et al. (2015) improves this method by applying the �lter CDF 9/7 to each cube.
Wavelet coe�cients are then quanti�ed at various thresholds, and then zerotree coded (the method
is presented in Subsection 3.5.2).

In Clyne et al. (2007), VAPOR enables compression and visualization of massive computational
datasets. It also facilitates analysis thanks to its interface. This work has been motivated by
the data complexity of two particular applications: turbulent plume dynamics and current sheet
formation. VAPOR is based on a wavelet decomposition (mainly Haar) that generates a hierarchical
representation. Last version of VAPOR (Li et al., 2019) guarantees that the �visualization package
[is] tailored to analyze simulation data in earth system�.

To further investigate lossy compression based on wavelets, Li et al. (2015) worked on a volume
data set characterizing turbulent �ows. The e�ciency of several wavelets (Haar, CDF 9/7, CDF
8/4) are evaluated for visualization, with classical objective and proper �eld metrics: the best option
seems to be a combination of the �lter CDF 9/7 and coe�cient prioritization (instead of approxi-
mation). The method has been also implemented on spatio-temporal data (Li et al., 2017b).

Wavelet based methods inspired many works on scienti�c data compression in various �elds, from
seismic in geosciences to tomography in medical. Most of the works deals with experimental data,
but very few with simulation data. However, in recent years, simulation �elds tended to catch up. As
mentioned above with our oldest reference on the topic, we observed that the interest of integrating
compression in a simulation work�ow is not new. Bradley and Brislawn (1993) worked on wavelet
based solution with quantization step for NCAR ocean models. Its dimensions were limited, but
already problematic to repatriate the simulated data from supercomputers. Hereafter open source
libraries as QccPack Fowler (2000) permit simple implementations of methods based on wavelets.
Coming back to �uid mechanics, we can mention other works using wavelets on various structured
simulation data, from 2D to 4D (Wilson, 2002; Schmalzl, 2003; Kolomenskiy et al., 2018) or point
clouds (Salloum et al., 2018). Loddoch and Schmalzl (2006) proposed an equivalent approach for
compressing volume �uid dynamic datasets by replacing wavelets by other transform and such as
DCT, B-splines, etc. and predictors such as Lorenzo, etc.

Fpzip (Lindstrom and Isenburg, 2006) is an online compressor for �oating-point values, imple-
mentable on the I/O of diverse applications. It manages various data through its multidimensional
prediction scheme based on the Lorenzo predictor. Depending on the usage, the scheme proceeds
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progressive lossy compression by truncation of the less signi�cant bits. The impact of such a reduc-
tion is notably studied on di�erent simulation codes (LULESH: Lagrangian shock hydrodynamics,
Miranda: High-order Eulerian hydrodynamics, details in Subsection 4.1.1) by Laney et al. (2014) as
detailed in Subsection 4.1.2.

ISABELA (In-situ Sort-And-B-spline Error-bounded Lossy Abatement) by Lakshminarasimhan
et al. (2011) provide an adaptation to noisy data. To prepare it, a smoothing spatial preprocessing
is applied. Then, the data is approximated using B-splines or wavelets. Additionally, the temporal
dimension is also exploited by temporal pattern identi�cation. However, the decompression can not
be performed on the entire data, but only on subsets, which complicates its usage.

Iverson et al. (2012) develop a compression model for unstructured meshes in geosciences, by
conversion of the grid into a graph, taking advantage of the locality. In such a structure, the graph
is de�ned by N nodes of the mesh, the set of edges E connecting two nodes. A zero weight indicates
if the connection does not exist, otherwise a weight proportional to the connection importance is
used. It can correspond to a distance if considering the mesh geometry, but can deal with multiple
other properties.

After fpzip, Lindstrom (2014) introduces ZFP, available on HDF5, ADIOS library. The con-
cept is notably inspired by �xed-rate texture compression methods used in graphics hardware. It
permits a random access to compressed �oating-point data, by splitting into blocks at variable pre-
cision. Floating-point representation is exploited by di�erentiating the exponents and the mantissa
in IEEE-754 format. DCT is applied to the mantissa elements within subblocks, and the resulting
coe�cients are zerotree coded. The exponents are distinctly stored. A current work aims at deter-
mining a closed form expression for bounds on the error introduced by the three compression options
of ZFP (Di�enderfer et al., 2019).

SZ (Cappello et al., 2019) is a predictive method for multidimensional �oating point data. A �rst
step consists in �attening the data into a single dimensional array. If appropriate, a log-mapping
transform can be applied (in the version 2.0 (Liang et al., 2018a)). The array is then read progres-
sively, and the values are predicted from the previous ones, looking for the best �tting among various
deterministic models (mean-integrated Lorenzo predictor, curve �tting scheme constant, linear or
quadratic). Quantization, Hu�man coding and gzip complete the compression work�ow.

In two years, Ainsworth et al. (2018, 2019, 2020a,b) produce four sequential works on multilevel
techniques for compression and reduction of scienti�c data (MGRAD project). From univariate
to multivariate cases, Ainsworth et al. (2020b) �nally manages 2D and 3D meshes. This method
employs an orthogonal decomposition based on the Riesz basis properties. In this study, airfoils are
studied to evaluate preservation of aerodynamic force and coe�cients of pressure. Other applications
are mentioned in Subsection 4.1.2 to evaluate the impact of compression in simulation.

Discussion SZ and ZFP appear today as the most competitive compression tools for scienti�c data.
Complementary tools are trying to exploit their shortcomings. For example, FRaZ (Underwood
et al., 2020) works on improvement of user modes (�xed-rate, absolute error bound etc.) and Wang



3.1. A variety of representations for volume scientific data 39

et al. (2019) are interested in intrinsic metrics of both compression tools, to better understand
processes.

In addition to netCDF and HDF, new libraries speci�c to lossy compression emerge for large
scienti�c data. For example, SCIL (Scienti�c Compression Library) (Kunkel et al., 2017) notably
integrates ZFP and SZ. Several compression components can be combined according to the needs of
users. CubismZ, created by Hadjidoukas and Wermelinger (2019) is another recent example. This
library proposes a parallel implementation of methods based on wavelets, or tools such as ZFP, SZ
and fpzip.

Finally, lossy compression has been often employed in the context of simulation, but researchers
remain cautious about the risk of data degradation. Beyond the size reduction, compression promotes
discussions toward a rationalization of ever growing datasets, on terms of �required� precision and
discretization. Even if compression did not seem to pervade the �eld of simulation in geosciences
(except in Iverson et al. (2012) and Lindstrom et al. (2016)), an awareness on the need to manage
data at a reduced precision already exists, if considering the simpli�cation brought by upscaling.

3.1.4 How taking advantage of these three techniques for a �dream representa-
tion� of GVM?

We now discuss the main features borrowed to the methods of upscaling/upgrading, VM compression
and scienti�c data compression. Then, we set the bases of a new representation adapted to our
GVMs. Concerning our �dream representation�, we can gather the following key observations:

� Our representation has to be based on an embedded multiscale decomposition scheme,
which o�ers obvious advantages for visualization, storage, but also simulation. One of the
avantages is that the decomposed data could not take up more space than the initial data,
unlike the upscaled/upgraded data.

� Despite their high performance in term of compression, the progressive methods developed
for VMs are not appropriate for our data. Indeed, the GMs contain fault networks, involving
local geometrical discontinuities that are not managed by these generic compression methods.
Therefore our multiscale mesh representation must take into account the speci�c
morphological features of the initial data, and must preserve them as much as
possible across the resolutions.

� The continuous properties are 3D �oating values, sometimes of high numerical precision,
which is not always necessary for visualization or simulation. Thus our representation
must propose an encoding of these properties at re�nable precision, according to the
application and the user needs. To assess the e�ciency of our encoder at re�nable precision,
popular compression tools for scienti�c data such as ZFP or SZ will serve as reference for
comparison study.

� Particular orientations are observable for properties, that can be explained by their geological
origin. This anisotropy needs to be preserved at various scales, preserving by this way
the coherency of the mesh in a multiresolution structure.
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During a previous collaboration between IFP Energies nouvelles and I3S, some of these obser-
vations have been considered to implement the core of HexaShrink (Peyrot et al., 2016, 2019).
HexaShrink is a multiscale decomposition scheme for hexahedral meshes from geosciences. It com-
bines several wavelet transforms adapted to the speci�c features of these meshes (detailed in next
section). Firstly developed for multiscale renderings, the HexaShrink structure is the starting
point of our current research, focused on compression and its impact on simulation results.

3.2 Description of HexaShrink

This section introduces HexaShrink, the mesh hierarchical structure on which our work has been
based. Some paragraphs of this section are extracted from Peyrot et al. (2019).

MRA or multiscale approximation can be interpreted as a decomposition of data at di�erent reso-
lutions, LOD or scales, through a recursive analysis process. It is called exact, reversible or invertible
when a synthesis scheme can retrieve the original data. Inter-scale relationships (Chaux et al., 2007,
2008) often yield sparsi�cation or increased compressibility on su�ciently regular datasets. In dis-
crete domains, each analysis stage transforms a set of values (continuous or categorical, in one or
several dimensions), denoted by S0. The resulting representation consists in one subset S−1 that
approximates the original signal at a lower resolution, plus one subset of details D−1, or a com-
bination thereof. The latter represents information missing in the approximation S−1. Depending
on the MRA scheme, the lower resolution S−1 may represent a coarsening or �low frequencies� of
the original samples, or an upscaling in geosciences (cf. Subsection 3.1.1). The subset D−1 rep-
resents re�nement, fast variation or �high-frequency� details removed from S0. We consider here
exact systems, allowing the perfect recovery of S0 from a combination of subsets S−1 and D−1.
Hence, a similar analysis stage can be applied iteratively, and perfectly again, to the lower reso-
lution S−1, in a so-called pyramid scheme. Thus, with the non-positive extremum decomposition
level L, and indices 0 ≥ l ≥ L, after an |L|-level multiresolution decomposition, the input set S0

is now decomposed and represented by the subset SL � a (very) coarse approximation of S �
and |L| subsets of details DL, . . . , Dl, . . . , D−1, representing information missing between each two
consecutive approximations.

To get an idea of what a MRA will generate from VMs, Figure 3.2 gives an overview of a decom-
position obtained with HexaShrink on one of our GMs. To obtain this decomposition, we consider
in the following four di�erent MRA �avors, all called wavelets for simplicity. They stem from it-
erated, (rounded) linear or non-linear combinations of coe�cients, as well as separable (applied
separately in 1D on each direction) or non-separable ones. Without going into technicalities here
(cf. Subsection 3.2.1), computations are performed using the lifting scheme. It su�ces to mention
that lifting uses complementary interleaved grids of values, often indexed with odd and even indices.
Values on one grid are usually predicted (approximations) and updated (details) from the others.
The main interests reside in reduced computational load, in-place computations and the possibility
to maintain exact integer precision, using for instance only dyadic-rational coe�cients (written as
m/2n, (m,n) ∈ Z × N) and rounding. We refer to Jacques et al. (2011, sections 2.3., 3.2 and 4.3)
for a concise account on both non-separable and non-linear wavelet MRAs, and to Sweldens (1996);
Bruekers and van den Enden (1992); Rao and Bopardikar (1998); Kova£evi¢ et al. (2012) for more
comprehensive vision of wavelets and their lifting implementations. A recent use in geological model
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Figure 3.2: A |L|-level decomposition of a geological mesh obtained by MRA (mesh#6 from Figure
3.5). From the initial mesh (top-left), an approximated version of the initial mesh (SL) plus |L| sets
of details (Di) are obtained. The number of sets of details increase with the level of decomposition
|L|, but the global quantity of data remain stable.
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upscaling is given in Rezapour et al. (2019).

More simply put, for our hexahedral VMs, the dyadic analysis stage transforms each cell block Cl
of values around 23 = 8 contiguous cells (possibly borrowing values from a limited cell neighborhood)
at resolution l. They are turned into 1 approximating cell (lower resolution (Sl−1), and a subset of
23 − 1 = 7 detail cells Dl−1, as depicted in Figure 3.3 along with the reverse synthesis stage.

Analysis 

Original group of  
(2,2,2) coefficients 

Detail  
coefficients 

Approximation 
coefficient 

Synthesis 

Detail  
coefficients 

Approximation 
coefficient 

Original group of  
(2,2,2) coefficients 

Figure 3.3: Analysis and synthesis stages for VMs.

Hence, if a VM at resolution l is composed of
(
Cli × Clj × Clk

)
cells, Cli being the number of

cells in direction i, the VM of lower resolution will be of dimension
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2

⌉
×
⌈
Clj
2

⌉
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⌈
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2

⌉
, to take

into account non-power-of-two sized grids. As several digital attributes are associated to each cell
(geometry, continuous or categorical properties), di�erent types of MRA are performed separately
on the di�erent variables de�ning these properties, as explained in the following sections.

3.2.1 Multiresolution scheme for geometry

Standard linear MRA schemes rely on smoothing or averaging and di�erence �lters for approxima-
tions and details, respectively. To preserve coherency of representation of geometrical discontinuities
� whatever the resolution � a special care is taken to avoid excessive smoothing, while at the same
time allowing the reverse synthesis. As the pillar grid format is used (cf. Subsection 2.1.2), vertices
are inevitably positioned along pillars. So, our multiresolution scheme for geometry information
only focuses on:

� the z coordinates of the 8 vertices associated to each node. According to the naming conven-
tion presented in Figure 3.4, those 8 vertices can be di�erentiated according to their relative
positions [Back (B)/Front (F), Bottom (B)/Top (T), Left (L)/Right (R)];

� the x and y coordinates of the nodes describing the low (bottom) and high (top) extremities
of all the pillars (the x and y coordinates of intermediary nodes being implicit). The nodes
are called hereinafter the �oor and ceil nodes, respectively.

The GVMs can exhibit very irregular boundaries. Hence, a Boolean �eld called Actnum may
be associated to each cell to inactivate its display (and its in�uence during simulations as well). It
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Figure 3.4: Vertex naming with the Back (B)/Front (F), Bottom (B)/Top (T), Left (L)/Right (R)
convention.

enables the description of either mesh boundaries (Figure 3.5), or caves/overhangs. Resultantly, this
Actnum �eld must be carefully considered during the MRA of the geometry information, to avoid
artifacts at lower resolutions on frontiers between active and inactive cells (cf. Subsection 3.2.1 and
Figure 3.10).

Figure 3.5: Mesh#5 (in yellow) has inactive cells (in red) to describe its boundaries using the
Actnum �eld.

By construction, most GVMs have no horizontal fault, as there is no vertical gap between any
two adjacent layers of cells. For every node, each of the four top vertices has the same z coordinate
as its counterpart bottom vertex. Therefore, from now on, our geometry multiscale representation
method only deals with the z coordinates of the bottom vertices BBL, BBR, FBL, and FBR of each
node.
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An instance of the decomposition shown in Figure 3.3 can be implemented with the proposed
two-step technique depicted by arrows in Figure 3.6:

� A non-linear and non-separable 2D morphological wavelet transform applied on the nodes,
in order to detect the faults in the input VM, and then to preserve their coherency in the
lower resolutions. This step relies on a fault segmentation within the input VM obtained
by studying all possible fault con�gurations for the top view of the VM (see Figure 3.7);

� A non-linear 1D wavelet transform applied on the output of the above �rst step to analyze
the z coordinates of the vertices along each pillar. The same 1D wavelet transform is
also applied on the sets of x and y coordinates of the �oor and ceil nodes, to complete the
�horizontal� decomposition.

Figure 3.6: HexaShrink multiresolution scheme for geometry: (left) input grid and its top view;
(middle) output from the non-separable, non-linear 2D morphological wavelet based on a fault
segmentation (based on the top view); (right) non-linear 1D wavelet transform along pillars (orange
lines).

Fault segmentation This stage detects the faults in the original mesh, in order to preserve them
during the morphological wavelet analysis. For each node, a dozen of fault con�gurations, depending
on BBL, BBR, FBL, and FBR, is possible: fault-free (1), straight (2), corner (4), T-oriented (4) or
cross (1), as illustrated in Figure 3.7.

Each con�guration depends on the four orientations of the cardinal axes (north, south, east and
west), which are either active or inactive. For instance, the T-north con�guration has its south
axis inactive, while the three remaining ones are active. Assuming that a fault con�guration is z-
invariant, meaning that the nodes belonging to the same pillar present the same fault con�guration,
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Figure 3.7: The 12 possible fault con�gurations (in black lines) at a given node.

a single 2D con�guration map is su�cient to represent the fault con�guration of the whole mesh,
as illustrated by Figure 3.8.
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Figure 3.8: Fault segmentation within the original mesh.

Horizontal 2D morphological wavelet transform The fault segmentation guides the MRA to
preserve faults, as much as possible, all over the decomposition process. The fault con�guration of 4
associated nodes at resolution l is used to predict the extension of the downsampled fault structure
at resolution l − 1.

This horizontal prediction is based on the logical function OR (∨), computed on each side of
each group of 4 nodes. For instance, a resulting fault node con�guration contains a west axis if
the fault con�gurations of the 2 left nodes contain at least 1 west axis, as illustrated in Figure 3.9.
By repeating the procedure for each axis of each resulting node, fault node con�gurations at lower
resolutions are fully predicted. This non-linear and peculiar choice is meant to maintain a directional
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�avor of orientated faults for �ows; other choices could be devised, depending on physical rules and
geological intuitions.

Finally, from this prediction, the node whose con�guration minimizes its distance with the pre-
dicted one, corresponds to the aforementioned approximation coe�cient, which will be part of the
novel Z matrix at lower resolution l − 1. The same procedure can be applied recursively until the
wanted resolution.

Figure 3.9: Prediction of a fault node at resolution l − 1 from the four parents' con�guration at
resolution l, orange ovals denoting ∨ operands.

Rounded linear 1D wavelet transform This 1D wavelet transform is applied on the output of
the above horizontal 2D morphological wavelet, to analyze the z coordinates of the 4 sets of vertices
BDR, FDR, BDL and FDL separately, along each selected pillar. The HexaShrink multiresolu-
tion here acts on z-locations, decomposing them at each scale location zl into a subsampled pillar
coordinate zl−1 and its associated detail dl−1. By geomodel construction, coordinate behavior along
the pillars is expected to be relatively smooth. This entails the use of a modi�ed, longer spline
wavelet. The latter can be termed LeGall (Le Gall and Tabatabai, 1988), or CDF 5/3 (after Cohen,
Daubechies and Feauveau (Cohen et al., 1992)), or biorthogonal 2.2 from its vanishing moments.

The lifting analysis operations Prediction and Update are depicted by Figure 3.6. To retrieve
respectively the sets of details dl and the zl coordinates at resolution l−1 from scale l, the following
equations are used (∀n ∈ N):

dl−1[n] = zl[2n+ 1]−
⌊
zl[2n] + zl[2n+ 2]

2

⌋
, (3.1)

zl−1[n] = zl[2n+ 0] +

⌊
dl−1[n− 1] + dl−1[n]

4

⌋
, (3.2)

where both dyadic integers and rounding are evident. With rounding, lifting schemes can thus
manage integer-to-integer transformations Calderbank et al. (1998). For synthesis, to reconstruct
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resolution l from resolution l − 1, we only have to reverse the order and the sign of the equations:

zl[2n] = zl−1[n]−
⌊
dl−1[n− 1] + dl−1[n]

4

⌋
, (3.3)

zl[2n+ 1] = dl−1[n] +

⌊
zl[2n] + zl[2n+ 2]

2

⌋
. (3.4)

Managing externalities: borders and boundaries A pertinent multiresolution on complex
meshes requires to cope with externalities that may hamper their handling: �oor and ceil borders and
outer boundaries (Figure 3.5). First, to keep borders unchanged from the original mesh, throughout
all resolutions, the following constraints must be met:

zl−1[0] = zl[0] , (3.5)

zl−1[nl−1
k − 1] = zl[nlk − 1] . (3.6)

Both constraints can be ful�lled if one satis�es the following conditions:

� Floor border condition to meet (3.5):

dl−1[−1] = −dl−1[0] , (3.7)

� Ceil border condition to meet (3.6):

dl−1[nl−1
k − 1] = −dl−1[nl−1

k − 2] , (nlk odd) (3.8)

dl−1[nl−1
k − 1] = −dl−1[nl−1

k − 2] (nlk even)

+4zl[nlk − 1]− 4zl[nlk − 2] . (3.9)

To complete the MRA of the geometry, the same rounded 1D wavelet is also applied to the sets
of �oor and ceil nodes of the initial VM, to get the x and y coordinates of the extremities of the
remaining pillars at the lower resolution.

Second, the Actnum �eld should also be considered to lessen mesh boundary artifacts. Indeed,
severe disturbances may appear at lower resolutions if not wisely processed during analysis, as shown
in Figure 3.10. A cell is deemed active if and only if its 8 adjacent vertices are active at the resolution
l. During our study, we found that one vertex at resolution l − 1 could be considered active if and
only if its parent vertices selected by the morphological wavelet at resolution l (cf. Subsection 3.2.1)
are active. So, a cell at resolution l − 1 is considered active if and only if its 8 × 2 corresponding
parent vertices are active at resolution l.

3.2.2 Multiresolution scheme for properties

Continuous properties Once the geometry is coded, one can focus on associated continuous
properties. For scalar ones, a value pi ∈ R is associated to each cell i in the mesh. Consistently with
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(a) Boundary artifacts with-
out proper Actnum manage-
ment.

(b) Lower mesh resolution
with e�cient Actnum

Boolean values care-taking.

Figure 3.10: Inadequate Actnum �elds management during analysis may lead to severe boundary
artifacts (left) that can be dealt with (right) as exampli�ed with mesh#5 from Figure 3.5 .

the handling of cell blocks C of 2×2×2 cells throughout scales, we use an adaptation of the well-known
Haar wavelet. The resolution l − 1 is a scaled average of cells at resolution l. The approximation
coe�cient pl−1 is thus the average value of the related eight property coe�cients {pl1, pl2, . . . , pl8}.
The seven details required for synthesis are di�erences with respect to the approximation coe�cient:

pl−1 =
1

8

8∑
n=1

pln ; dl−1
n = pln − pl−1 , ∀n 6= 1 .

To deal with real-valued (�oating-point) properties, and avoid accuracy imprecision due to the
divide operator, we introduce the following modi�cations. First, reals are mapped into integers up
to a user-de�ned precision, here with a 106 factor. Second, we disable the division by using a sum.
The analysis system thus becomes:

pl−1 =

8∑
n=1

pln ; dl−1
n = 8pln − pl−1 , ∀n 6= 1 ,

and the synthesis system turns into:

pln =
1

8
(dl−1
n + pl−1) , ∀n 6= 1 ; pl1 = pl−1 −

8∑
n=2

pln .

Approximation and coe�cients are stored as is. To recover the accurately scaled values, the
division operator should however be applied as a simple linear post-processing.

Categorical properties We complete the global mesh multiresolution decomposition with an
original categorical-valued scheme called modelet (Antonini et al., 2017). We assume that a mesh
cell category belongs to a set of classes Ω0 = {ω1, ω2, ..., ωW }, taking discrete values. The cell block
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Cl = {pl1, pl2, . . . , pl8} thus contains, at resolution l, integers indexing categories from Ωl. They take
values in a subset of Ω. The multiresolution scheme is expected to produce, at lower resolutions,
discrete values in embedded subsets: Ω0 ⊃ Ω−1 ⊃ · · · ⊃ Ωl ⊃ · · · . In other words, a cell category
can only belong to an existing category at an upper resolution. We choose here the modal value
(mode) i.e., the most frequently represented in Cl. If |ωw| denotes the cardinal of this class, then∑W

w=1 |ωlw| = |Cl| = 8. We choose for the modelet:

pl−1 = arg max{|ωlw|, ωlw ∈ Ωl} .

It may happen that the above de�nition does not yield a unique maximum. If two or more categories
dominate a cell block, a generic approach consists in taking into account its �rst block cell neighbor-
hood (the surrounding 26 cells, except at mesh borders and boundaries). We a�ect the dominant
value in the �rst neighborhood to pl−1. In case of a draw again, the second-order surrounding can
be used, iteratively. In practice for the presented version of HexaShrink, we limit to the �rst-order
neighborhood, and choose the lowest indexed category when the maximum is not unique. Equipped
with this unique lower resolution representative value, we proceed similarly to Subsection 3.2.2 for
details, by using di�erences between original categories and the mode. As classes are often indexed
by positive integers, a slight motivation allows to get only non-negative indices. By avoiding negative
values, one expects a decrease in data entropy of around 5 %, which bene�ts to compression.

We thus change the sign of a detail coe�cient if and only if it generates a value out of the range
of {ω1, ω2, . . . , ωW }, and then control this condition during reconstruction. So, all details {dl−1

n } for
a cell block C are determined by:

dl−1
n = (−1)(pln−pl−1<0)∧((2pl−1−pln)/∈Ω) × (pln − pl−1).

During synthesis, the coe�cients {pli} are obtained thanks to the closed-form equation:

pln = pl−1 + (−1)((pl−1+dl−1
n )/∈Ω) × dl−1

n .

HexaShrink performs a decomposition of the mesh into a pyramidal structure, the inverse
process perfectly reconstructs the data from the lower scale to the initial mesh, integrating details
progressively. Adapted transforms are distinctly implemented on the various components, dealing
with their dimensions and features as previously explained. The tool has �rstly been designed for a
visualization purpose, using thus multimedia concepts. Later, positive compression results demon-
strated the HexaShrink capability as a compression tool. The decomposition generates sparser
data. Then, encoding steps permit to reduce the data quantity by reordering the data, to a more
compact storage size. The prime contribution consists in analyzing the process and experimenting
the method on various meshes, in order to validate an appropriate generic approach.

3.3 Visual results: decompositions obtained with HexaShrink

Geosciences o�er a huge variety of meshes, because of their various dimensions, structures and
properties. We propose to validate HexaShrink on a representative benchmark of eight meshes.
By this way we expect to experiment a generic methodology, suitable for various meshes.
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The geological meshes are produced by petroleum companies during expensive drilling projects
and seismic programs. These meshes are realistic, and carefully treasured by companies. Collecting
geological meshes thus is a complicated quest, which explains the limited number of meshes in
our benchmark. However, this dataset aims to be representative of the variety of meshes found in
geosciences.

Our eight meshes are illustrated by Figure 3.11, and their main features are indicated in Table
3.1. They have various geometries (from smooth to fractured), and di�erent dimensions (from small
to large). To have an order of magnitude, the largest mesh (mesh#8) contains almost 380 times more
cells than the smallest one (mesh#3). Also, several meshes contain continuous and/or categorical
properties.

#1 #2

#3 #4 #5

#6 #7 #8

Figure 3.11: Our benchmark composed by eight meshes.

Figures 3.12 and 3.13 show respectively the decompositions of mesh#1 and mesh#8 provided by
HexaShrink. The di�erent resolutions are arranged in rows, by decreasing scale. The �rst column
represents the mesh without any attribute. The second and the third columns represent the same
mesh onto which a continuous and a categorical property is mapped, respectively.

Mesh#1 is decomposed to the lowest possible resolution (Figure 3.12, bottom), which is not very
relevant from a geologist perspective. However, while all properties are almost constant, the lower
arch corresponding to an anticlinal on the mesh at original resolution remains perceptible on the
�nal �Lego brick� resolution. Looking at the porosity property (middle column), one observes how
the values are progressively homogenized on coarser hexes. Concerning the rock type (last column),
one observes that the modelet scheme tends to locally maintain predominant categories resolution
after resolution, which is very satisfactory.

Figure 3.13 shows our largest mesh, mesh#8, that contains an isolated fault on the left side (the
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Mesh Characteristics Properties
index # Cells Dimension Faults File size Actnum Continuous Categorical

1 93,600 80× 45× 26 No 4.62MB 100% Porosity Rock type

2 1,000,000 100× 100× 100 No 42.46MB 100% � �

3 36,816 59× 39× 16 Yes 1.46MB 100% � �

4 210,000 100× 100× 21 Yes 7.88MB 20% � �

5 450,576 149× 189× 16 Yes 22.73MB 46% Porosity, Permeability �

6 524,288 128× 128× 32 Yes 64.27MB 100% Porosity, Permeability

7 5,577,325 227× 95× 305 Yes 274.57MB 97% Porosity Rock type

8 13,947,600 240× 295× 197 Yes 580.94MB 100% Porosity Rock type

Table 3.1: Our collection of geological meshes with their ontological characteristics and geological
properties.

diagonal crest shape) and a faulty block on the right. Even at the coarsest level, corresponding to
a downsampling by 24 × 24 × 24, these two structural discontinuities are still present, while keeping
a good shape �delity, globally. Concerning the attributes, the decompositions are also adequate.

Figure 3.14 confronts meshes mesh#5 and mesh#7 downsampled at power-of-two resolutions
with HexaShrink and with the geomodeller SKUA-GOCAD�. SKUA-GOCAD�, but also PE-
TREL�, are two geomodellers frequently used in geosciences to handle geological objects and to
generate meshes for �ow simulation. They include in particular upscaling/upgridding functions. We
recall that upscaling/upgridding functions convert the properties and the geometry of a given mesh
in a non-reversible manner to obtain a simpli�ed version for �ow simulation. Such functions are usu-
ally �exible yet often ad-hoc. We can see that HexaShrink tends to better preserve faults (colored
in red). Figures emphasize an improved preservation of mesh borders, with an e�cient management
of Actnum throughout resolutions. Some artifacts may appear with SKUA-GOCAD�'s upgridding,
which are automatically averted by HexaShrink, leading to nicer meshes at low resolution. As a
summary, HexaShrink, while being fully reversible at dyadic scales only, e�ciently and automat-
ically manages structural discontinuities in the VMs. It may provide an interesting complement to
existing irreversible upscaling/upgridding proposed by several geomodellers.

3.4 Conservative compression work�ow for GMs

We just showed that HexaShrink is a powerful tool for structuring the GVMs into in pyramidal
models, emphasizing the continuous zones, and rendering them sparser by transformation. It per-
mits to display nice simpli�ed versions, faithful to the original data. Additionally, HexaShrink
should be also suitable for compression. Therefore, we will now study its potential compression
performance, by combining it with an appropriate encoder. Our �rst experimentation is to combine
HexaShrink with generic lossless encoders, to propose a conservative compression work�ow.

We retain three generic lossless encoders: gzip (1992), bzip2 (1996), and LZMA (1998). They are
used by a general audience to compress diversi�ed data. gzip has been proposed by Adler and Gailly.
The �rst version was released in 1992 while optimized versions are still updated on zlib library. Its
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Geometry. Porosity. Rock type.

Original mesh#1.

Resolution −1.

Resolution −2.

Resolution −3.

Resolution −4.

Figure 3.12: Original mesh#1, its attributes, and four levels of resolution generated with Hexa-

Shrink.
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Geometry. Porosity. Rock type.

Original mesh#7.

Resolution −1.

Resolution −2.

Resolution −3.

Resolution −4.

Figure 3.13: Original mesh#7, its attributes, and four levels of resolution generated with Hexa-

Shrink.
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Mesh#5 with SKUA-GOCAD

Mesh#5 with HexaShrink

Mesh#7 with SKUA-GOCAD

Mesh#7 with HexaShrink

Figure 3.14: After dyadic downsampling/upgridding, HexaShrink (bottom) better preserves
faults, and manages non-active cells (i.e., with null Actnum values) across scales, yielding nicer
borders at each resolution, contrary to GOCAD, as exampli�ed with mesh#5 and mesh#7. From
left to right: resolution −1, −2, and −3, respectively.
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structure is based on a combination of LZ77 and Hu�man algorithms. bzip2, developed four years
later, is in direct competition with gzip, and uses the Burrows-Wheeler transform (Burrows and
Wheeler, 1994), taking advantage of recurring patterns, and �nishing also by an Hu�man algorithm.
The method yields better compression ratios with slower speed performance. Again four years later
in 1998 LZMA (Lempel-Ziv-Markov chain algorithm) makes good compression performance, even
better than both concurrents (gzip, bzip2) using a dictionary compression process. Its memory cost
as its execution time are however higher. Such preliminary tools are not dedicated to scienti�c data
unlike the following, but they illustrates the variety of approaches, and the complexity to develop
an ideal tool for all applications and needs.

3.4.1 Coding performance

Table 3.2 presents the compression ratios obtained with gzip, bzip2, and LZMA applied to the
outputs of HexaShrink. Each mesh component is encoded independently. A compression ratio
(CR) is the ratio between the size of the raw data and the size of the compressed/encoded data. The
higher the compression ratio, the more e�cient the compression/encoder. The lines none indicate
the CRs obtained when the raw data are directly encoded (HexaShrink is disabled). The lines
with a number i indicate the CRs obtained when the mesh components are decomposed i times
with HexaShrink, and then encoded. The main objective is to con�rm the contribution of Hexa-
Shrink in the size reduction whatever the encoder used, but also to determine the most e�cient
for a further implementation on HexaShrink.

We focus our analysis on the mesh#5, a quite complicated and faulty model. Without decom-
position, we observe variable CRs according to the coder: from 2.46 for gzip to 3.33 for LZMA. The
similar observation is made for the other meshes, except for the mesh#7, in which gzip is slightly
more e�cient than bzip2. But whatever the mesh, LZMA provides the best compression results.
With only one level of decomposition, we can see a signi�cant improvement. Always considering the
mesh#5, the CR obtained with LZMA increases up to 3.71. A growing gain up to 3.81 is obtained
using a second decomposition, yet additional decompositions only provide a marginal improvement.

The HexaShrink decomposition improves the e�ciency of the coders. This observation could
be generalized on the global Benchmark, yet LZMA performance decreased on the mesh#8 using
HexaShrink. This might be explained by certain mesh modeling practice with a geomodeller:
horizons of the formation layers are preliminary modeled, before incorporating it into the mesh.
The user �rst determines for each layer the number of cells in height, and then the thickness of the
layers are computed by interpolation. Hence, locally, an observed value v may arise from a scale
s and an o�set o relationship v = s × m + o, on some integer index m, easier to compress than
v. LZMA's superior capability owes to its capacity to capture complex models of byte patterns.
By contrast, with a wavelet decomposition, the a�ne relationship is poorly captured throughout
approximations, due to the rounding in wavelet lifting (cf. Subsection 3.2.1). Hence, multiscale
decompositions may slightly reduce the raw compression performance for meshes presenting initial
�numerical format� artifacts, or illusory �oating-point precision. This however does not hamper
the usability of HexaShrink for storage and visualization, as the direct access to a hierarchy of
resolutions respecting discontinuities is granted, while already providing impressive compression
rates of about 8�9, superior to most results for the others meshes.
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Mesh Level gzip bzip2 LZMA

1
none 3.73 4.98 6.43

1 5.62 6.07 7.52
2�4 5.67 6.12�6.13 7.42�7.44

2
none 3.23 8.41 10.12

1 6.49 10.82 11.81
2�6 7.48�7.58 12.75�13.03 13.35

3
none 2.67 2.99 3.63

1 3.88 4.70 5.24
2�4 4.03�4.05 4.92�4.93 5.47�5.48

4
none 1.83 1.89 2.21

1 2.64 3.06 3.48
2�4 2.76 3.22�3.23 3.64�3.65

5
none 2.46 2.55 3.33

1 3.14 2.83 3.71
2�4 3.25�3.26 2.91�2.92 3.80�3.81

6
none 1.88 2.25 3.04

1 2.70 3.17 3.71
2�6 2.84�2.86 3.39�3.42 3.90�3.93

7
none 2.32 2.25 3.04

1 3.31 3.53 4.44
2�6 4.14�4.24 4.48�4.68 5.54�5.73

8
none 3.20 5.98 12.52

1 5.42 7.07 8.90
2�7 5.80�6.72 7.63�10.12 9.05�10.23

Table 3.2: Coding performance of our conservative compression work�ow. HexaShrink is combined
with gzip, bzip2 and LZMA, for di�erent levels of decomposition.

3.4.2 Speed performance

The execution time is also a signi�cant issue, a delay could indeed become critical depending on the
application. In the present situation, we may resort to asymmetrical compression-decompression
schemes, sometimes termed �compress once, decompress many�. The encoding can take more time
because it is performed only once, to optimize storage and transfer. Rather, decoding should be
faster to be performed several times, on demand. The speed performance of the conservative com-
pression work�ow are highly dependent on the mesh, its complexity, its dimensions and the level
of decomposition. For a baseline evaluation, a Java implementation was run on a laptop with Intel
Core i7-6820HQ CPU @ 2.70 GHz processor and 16 GB RAM. Each mesh was compressed to the
maximum level, and decompressed, twelve times. As the outcomes were relatively stable, they were
averaged.

Figure 3.15 presents the execution times of our conservative compression work�ow in function
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Figure 3.15: Comparison of the execution times of our conservative compression work�ow depending
on the encoder. Timings for analysis and synthesis are also presented.

of the encoders used. Timings of the analysis and synthesis are also presented. The synthesis stage
(i.e., the inverse transform of HexaShrink) is faster than the analysis, up to 4 times for instance
for small meshes such as mesh#4, while this di�erence reduces with larger meshes. Of the three
generic coders, gzip is de�nitely the fastest in general for coding and decoding, followed by bzip2
and LZMA. LZMA necessitates more times to code the data, but is faster than the bzip2 to de-
code the largest meshes as mesh#8. This observation supports our previous expectation, promoting
a fast decompression to be performed several times against a slower compression, performed only
once. Moreover, the LZMA speed performance con�rms its e�ciency already demonstrated with the
compression rates.

3.4.3 In-depth analysis of the coding performance

As previously explained, a GM is a composite object made of a geometrical structure and continuous,
categorical properties. The components are separately treated by an adapted wavelet, generating
for each component a hierarchical structure.

To complement the global coding performance of the conservative compression work�ow pre-
sented in Subsection 3.4.1, we now study and compare the performance achieved for each mesh
component (Zcorn, Pillar, Activity, Continuous and Categorical properties) to demonstrate the rel-
ative e�ciency of the various transforms integrated in HexaShrink. The histogram of Figure 3.16
presents the average binary cost (number of bits per value or symbol) for each component of the
mesh#5 with LZMA, in function of the number of successive HexaShrink decompositions. As a
reference, the bar named Raw gives the native binary cost of each mesh component. The results for
the entire benchmark are available in appendices (page 119).

According to the component and its required precision, the native values are written on 64 bits,
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Figure 3.16: Binary cost of each component on mesh#5 in function of the number of successive
HexaShrink decompositions.

32 bits or 8 bits, corresponding to standard formats. Applied on the raw data, LZMA e�ciently
reduces the number of bits whatever the considered component: an altitude value (Zcorn), coded on
64 bits only needs 25.8 bits through LZMA. One �rst HexaShrink decomposition allows reducing
it by 2 bits in more, and a second by 0.4 bits. As previously shown with the global mesh results
(the gains become modest after two decomposition levels). The same goes for the coordinates values
(Pillar), both constitute indeed the geometry, and wavelet methods have already proven to be very
e�cient on this kind of data.

Meanwhile, the decomposition applied on the continuous property does not have the expected
impact. LZMA signi�cantly reduces the native 64 bits needed to encode a cell label (up to 6.28),
but one HexaShrink decomposition slightly increases (up to 8.46). This limited e�ect could be
explained by a high magnitude and an over numerical precision required by the simulation. Besides
the lossless generic encoders do not e�ciently use the inter-scale redundancy in the multiscale struc-
ture generated by HexaShrink. Such observations encourage us to test more evolved coders, such
as the zerotree coders. This concept will be developed in the next subsection. Also, we observe
that the transformation employed currently in HexaShrink for the cell activity is not the most
appropriate. The cell activity consisting in binary values, we believe that a binary wavelet (Pigeon
and Bengio, 1999) should be more performant. It will be tested in the future.

Finally, with this benchmark study, we veri�ed the relevance of using HexaShrink in a com-
pression work�ow. The global performance, as the execution time, obtained on the global meshes
are meaningful and promising for our future work. However, the in-depth analysis for each mesh
component reveals a disparity according to the type of property, for the continuous ones in partic-
ular. More evolved encoders could provide an adapted solution for both, exploiting the correlation
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inter subbands and o�ering performant compression at re�nable precision.

3.5 Compression work�ow at re�nable precision for GMs

The HexaShrink methodology yields a multiscale representation of each mesh component. As
illustrated by Figures 3.12 and 3.13, the renderings at di�erent scales exhibit an evident visual cor-
relation. This inter subband correlation can be employed to improve the coding performance, with
the help of a coder at re�nable binary precision.

3.5.1 How coding at re�nable precision?

The notion of coding/decoding (or compression/decompression) at re�nable precision is illustrated
by Figure 3.17. In a nutshell, let us consider a 1D vector containing eight integer values (top-left),
from zero to 15. Typically, the binary cost of each value is 4. Each original value can thus be
progressively encoded, from the Most Signi�cant Bit (MSBO) to the Least Signi�cant one (LSBO)
plus a sign bit, as shown in the left part of the Figure 3.17 (the index O refers to the original data).
During the decoding stage, we can reconstruct the original vector at re�nable precision by using
only a limited number of bit planes, starting from the MSBO (plus the sign bits). On the left-part of
Figure 3.17, we can also see the vector reconstructed with only three bit planes (in that case, LSBO

= 1), and with only two bit planes (in that case, LSBO = 1). The lower the number of bit planes,
the less precise the reconstructed vector.

This principle can be also applied on transformed or decomposed data. In the right part of
Figure 3.17, we show for example the original vector on which a simple |2|-level S+P transform (for
sequential/prediction, cf. Said and Pearlman (1993),) has been applied to. This transform, that can
be considered as a non-linear avatar of the Haar wavelet (Haar, 1910; Jacques et al., 2011), yields
several subsets of values: one subset of approximation coe�cients, and several subsets of details,
two in our case. If sl[k] denotes a sequence of approximation coe�cients at a given level l, the S+P
transform yields two half-length subsequences:

sl+1[k] =

⌊
sl[2k] + sl[2k + 1]

2

⌋
, (3.10)

dl+1[k] = sl[2k]− sl[2k + 1] , (3.11)

with dl[k] denoting detail coe�cients at level l.
The resulting multiscale data (shown at top-right, the red bars separating the di�erent subsets)

can be also fully encoded with 4 four bit planes, and also decoded partially with a limited number
of bit planes, before reconstruction. In that case, we can also reconstruct at re�nable precision.

That being said, some remarks can be done, to emphasize the relevance of using transformed
data. The absolute values of the combined multiscale data are globally smaller in amplitude, as
the transform captures data regularity at di�erent scales. As a consequence, only one symbol "1"
remains in the MSBM , and for an approximation coe�cient. At the opposite, the symbols "1" repre-
senting the details in the multiscale data are mainly concentrated in the LSBM , which allows reducing
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Original Multiscale
data 0 0 1 4 7 10 14 15 data 1 11|-2 -6|0 -3 -3 -1

Sign 1 1 1 1 1 1 1 1 Sign 1 1 |0 0 |1 0 0 0
Most Signi�cant Bit 3 0 0 0 0 0 1 1 1 Most Signi�cant Bit 3 0 1 |0 0 |0 0 0 0

(MSBO) 2 0 0 0 1 1 0 1 1 (MSBM) 2 0 0 |0 1 |0 0 0 0
1 0 0 0 0 1 1 1 1 1 0 1 |1 1 |0 1 1 0

Least Signi�cant Bit 0 0 0 1 0 1 0 0 1 Least Signi�cant Bit 0 1 1 |0 0 |0 1 1 1

Result 0 0 1 4 7 10 14 15 Result 0 0 1 4 7 10 14 15

Sign 1 1 1 1 1 1 1 1 Sign 1 1 |0 0 |1 0 0 0
MSBO 3 0 0 0 0 0 1 1 1 MSBM 3 0 1 |0 0 |0 0 0 0

2 0 0 0 1 1 0 1 1 2 0 0 |0 1 |0 0 0 0
LSBO 1 0 0 0 0 1 1 1 1 LSBM 1 0 1 |1 1 |0 1 1 0

Result 0 0 0 4 6 10 14 14 Result 0 0 1 3 6 8 12 12

Sign 1 1 1 1 1 1 1 1 Sign 1 1 |0 0 |1 0 0 0
MSBO 3 0 0 0 0 0 1 1 1 MSBM 3 0 1 |0 0 |0 0 0 0
LSBO 2 0 0 0 1 1 0 1 1 LSBM 2 0 0 |0 1 |0 0 0 0

Result 0 0 0 4 4 8 12 12 Result 1 1 1 2 6 7 10 10

Figure 3.17: A textbook case with a 1D vector to show the interest of encoding trans-
formed/decomposed data at re�nable precision. (Left) the original vector coded/decoded at re�nable
precision. The index O refers to the original data. (Right) a multiscale version of the original vec-
tor (obtained by transformation) coded/decoded at re�nable precision. The index M refers to the
multiscale data.
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the global binary cost. To illustrate this very interesting feature in a context of compression, let us
simply calculate the total number of bits required to perfectly retrieve the original vector from the
original bit planes and from the bit planes representing the multiscale data. By neglecting the sign
bit, 21 and 16 bits are respectively necessary, which attests that a transformed/hierarchical data can
facilitate the encoding. Moreover, the same phenomenon occurs when the reconstruction is done at
re�nable precision, as shown in the middle and bottom parts of Figure 3.17.

This methodology can be generalized to data of higher dimensions, using dependencies between
the subsets of di�erent levels. Since approximations shrink by a factor of two in each dimension (cf.
Equation 3.10), 2d blocks of values at level l relate to one value at level l+ 1. This results in binary
trees, whose the inheritance between the subbands are depicted in Figure 3.18 for 2D and 3D data.

LL

LH2

LH1

HL2

HH2

HL1

HH1

Figure 3.18: Inheritance between the subbands generated by wavelet-based decomposition on 2D
and 3D grids.

3.5.2 Principle of zerotree coding

When multiscale data are parsed from most to least signi�cant bits according to the binary trees,
a signi�cant quantity of 0 is very often observed. In that case, the binary trees are called zerotrees
(ZT). They have been popularized for image compression, early with EZW (Embedded Zerotree
Wavelet, (Shapiro, 1993)), later with SPIHT (Set Partionning In Hierarchical Trees or SPIHT, Said
and Pearlman (1996)).

The principle of ZT coding is to replace a tree of zeros with a single symbol to reduce the
information quantity. To succeed, the root node of the tree should be identi�ed. It corresponds
to the lowest scale, while related coe�cients in higher frequency subbands draw the tree branches.
After an appropriate wavelet decomposition, structured data become parsimonious, generating sub-
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trees mostly composed of zero or close to zero coe�cients. By property inheritance, an insigni�cant
coe�cient in a particular subband is likely to have insigni�cant descendants in related subbands.
The principal mechanism for data coding consists in localizing signi�cant root coe�cients above
a given threshold. Then bit plane per bit plane, descendant coe�cients below the threshold are
coded globally as zerotrees. The progressive compression process starts with a threshold close to
the maximal coe�cient. When a wavelet bit plane (corresponding to amplitudes between 2q−1 and
2q−1) is encoded, the threshold is reduced to describe the lower bitplane. By �rst coding signi�cant
features, and progressively thereafter smaller details, this approach better takes into account the
inherent wavelet decomposition structure than external lossless coders. The transmission of a ZT
coded data could be interrupted at any time, resulting in a (de)compression at re�nable precision.
The truncated data would correspond to a more or less accurate approximation of the initial data.
This is lossless/conservative when all bit planes are transmitted.

Combining a ZT coder with HexaShrink seems to be a promising way to encode GMs in a
progressive way, to �nally provide a compression/decompression work�ow at re�nable precision, and
at re�nable resolution. Aside pure compression gains, we are interested in the potential of ZT to
contribute to simulation e�ciency. Indeed, works are currently devoted to �nding alternatives to
�oating-point representations (Muller et al., 2018; Lindstrom et al., 2018; Cappello et al., 2019). A
ZT-based structure permits to decrease the grid resolution in a dyadic fashion, and to re�ne the
precision by power-to-two factors. Its combination with multiscale approximations is illustrated
by Figure 3.19: starting with properties values coded on 5 bits (top-left image), the grids can
be represented at three di�erent resolutions, and at re�nable precision by limiting the number of
signi�cant bits (nMSBM).

3.5.3 Coding performance

Implementing a ZT coder for 3D data is not trivial. An experimental version is implemented within
the JPEG 2000 standard (Schelkens et al., 2006), and serves as a reference to several works in the
�eld. During this study, we use the algorithm developed by Christophe et al. (2008) for 3D Carte-
sian hyperspectral satellite data. It was kindly communicated by the CNES, and we ponder on
the opportunity of a collaboration, in a joint e�ort toward knowledge advancement. This tool was
developed with the anisotropy of hyperspectral data in mind, a feature also observed in geosciences,
along depth (cf. Subsection 4.3.1). Our code is also based on QccPack library, developed by Fowler
(2000) in open source. Some adaptations have been required, considering precision and dynamics of
our raw data.

Because the mesh#6 is complete and has ideal dimensions for the reservoir simulations presented
in the next chapter, unlike other meshes1, all our tests with the ZT coder will be performed on this
mesh. In addition, we only present the CR obtained on continuous properties, as we showed in the
previous section that these data are the most delicate to compress.

The continuous properties porosity and permeability of the mesh#6 are inspired by the tenth SPE

1Seven other meshes in the benchmark are sedimentary basins and have kilometric spatial dimensions. The average
distance of in�uence between two wells is 300m, so the dimensions of the basins are much too large to consider simple
cases.
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Original

5MSBM 4MSBM 3MSBM 2MSBM

Res. -1

Res. -2

Figure 3.19: 2D data at three di�erent resolutions (Haar wavelet) and re�ned numerical precision:
from the original with 8× 8 values in 0�31 with 5MSBM (top-left) to a two-fold coarser resolution
coded with 2MSBM (bottom-right).
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Comparative Solution Project (also known as SPE10) Christie and Blunt (2001). We experimented
two formations (cf. Figure 3.20): a Tarbert formation, prograding near shore environments, and a
Uperness formation, prograding �uvial environments.
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Figure 3.20: Visualization of the permeability (left) and porosity (right) properties of SPE10. The
four histograms show the distribution of these properties according two environments: near shore
environment (Tarbert formation on top) and �uvial environment (Upernees formation on bottom).
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Figure 3.21: Visualization of the eight sets of continuous properties tested with the ZT coder on
the mesh#6, generated from four distinct geological environments. The dynamic range of the dis-
tribution is 0 to 0.5 for porosity, and 0.0007 to 20 000 mD for permeability, except with nearshore0,
whose the minimal permeability value is higher (4.7 mD).

The Tarbert formation inspired us three models, named hereinafter nearshore0, nearshore1 and
nearshorea (the index �a� indicates an anisotropic distribution along one direction). The Tarbert
formation conditioned one model, named hereinafter fluvial. The four resulting datasets are shown
in Figure 3.21. They mainly di�er in their spatial distribution: the three nearshore environments
present smooth variations, while the �uvial environment exhibits sharper contrasts, with distinctive
heterogeneous geological objects. This discrepancy between environments primarily allows a wide
range of petrophysical behaviours.
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Our �rst experimentation is to encode the eight datasets presented just above with ZT in lossless
mode, and to compare its CRs with those obtained with LZMA in the same context. Table 3.3 shows
the CRs obtained with four combinations of transforms and encoders:

� HSP+LZMA: the transform for continuous properties proposed in HexaShrink (presented in
Subsection 3.2.2, page 47) followed by LZMA;

� HSP+ZT: the same transform followed by ZT in lossless mode;

� Haar+ZT: the transform HSPis substituted by the classical 3D Haar transform;

� CDF 9/7+ZT: the transform HSPis substituted by the popular CDF 9/7 transform.

Regarding the properties of the nearshore0 environment, the best CR is obtained when LZMA
is applied directly to the data, without any transform (line none). One level of HexaShrink
decomposition decreases the LZMA e�ciency from 2.79 to 2.12, and to 2.11 for several levels of
decomposition. By substituting LZMA with ZT, we expected an improvement, but �nally obtain
a poorer result, at 1.93. This fact reveals that the transform proposed in HexaShrink for the
continuous properties is not optimal in term of compression performance. The reason is that this
transform considerably increases the dynamic range of decomposed data, in order to ensure a fully
reversible decomposition. Haar and CDF 9/7 better perform, but remains lower than LZMA after
all. Our explanation bases on the environment physiognomy: smoother and more homogeneous.
Therefore the performance of an evolved encoder using the residual dependencies within multi-scale
decomposition are less remarkable. However, regarding the three other environments, the classi-
cal wavelets Haar and CDF 9/7 combined with ZT outperform HS+ZT again, itself outperforming
LZMA alone. Similar results are obtained for the permeability.

We can thus conclude that, globally, ZT seems to be a better solution than generic lossless en-
coders. Also, the transform proposed in HexaShrink seems to be less appropriate than Haar or
CDF 9/7 to get the best compression performance on the continuous properties. On the other hand,
it ensures a fully reversible decomposition, contrary to Haar or CDF 9/7. Indeed ZT needs integer
values as input, a quantization before using it is thus required. Nevertheless, we will see hereinafter
that this slight "degradation" does not necessarily have an impact on the visual quality and on the
simulation results, which allows us to consider a ZT-based work�ow as "quasi-conservative".

Our second experimentation is to use the ZT coder in progressive mode, in order to evaluate
its e�ciency in the context of compression at re�nable precision. By progressively decoding the
bit planes, from the MSB to the LSB, a SNR curve can be drawn in function of the quantity of
bits decoded, and thus for di�erent precisions. Figure 3.22 shows the resulting SNR curves when
the Haar transform is used. Each graph analyzes one of our eight continuous properties presented
before. Each marker corresponds to a speci�c number of bit planes decoded. The rightmost marker
of each curve corresponds to the CR obtained in lossless mode (Haar+ZT in Table 3.3), i.e., when
all the bit planes are used. For purposes of comparison, the bit budgets corresponding to the CR
obtained for the methods LZMA, HSP+LZMA and HSP+ZT in lossless mode (previously presented
in Table 3.3) are also represented in each graph (by three vertical straight lines).



3.5. Compression workflow at refinable precision for GMs 67

Porosity Level HSP HSP Haar CDF 9/7
LZMA ZT ZT ZT

nearshore0
none 2.79

1 2.12
2�5 2.11 1.93 2.36 2.40

nearshore1
none 1.69

1 2.10
2�5 2.09 1.93 2.29 2.30

nearshore ani
none 1.68

1 2.10
2�5 2.07 1.94 2.26 2.28

�uvial
none 1.60

1 2.11
2�5 2.09 1.93 2.18 2.20

Permeability Level HSP HSP Haar CDF 9/7
LZMA ZT ZT ZT

nearshore0
none 2.76

1 1.55
2�5 1.53 1.34 2.17 2.18

nearshore1
none 1.80

1 1.53
2�5 1.52 1.34 2.10 2.07

nearshore ani
none 1.78

1 1.51
2�5 1.51 1.34 2.05 2.03

�uvial
none 1.84

1 1.55
2�5 1.54 1.34 2.02 1.97

Table 3.3: Comparative (near) lossless coding performances on porosity (top tabular) and perme-
ability (bottom tabular) property from our four environments with compression ratios at di�erent
decomposition levels combining HexaShrink with LZMA, zerotree, and Haar wavelet transform
with ZT.
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Figure 3.22: SNR curves of four compression work�ows. Three of them are conservative (LZMA,
HSP+LZMA, HSP+ZT in lossless mode), while Haar+ZT is used in progressive mode. The marks are
obtained thanks to a progressive decoding of the bit planes. The four red circles in the bottom-right
graphic refer to visual representations of Figure 3.23.
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As expected, a (de)compression work�ow at re�nable precision allows reaching bit budgets much
more smaller than the lossless methods. In the same time, the SNR inevitably decreases according to
the bit budget, indicating data less and less precise, and thus less and less faithful to the initial data.

A trained eye would notice the shape of our SNR curves di�ers from the SNR curves classically
obtained for images and videos (whose pixel value is commonly encode on less bits). Usually, the
curves increase sharply to gradually reach a plateau at a certain bit budget. At this point pro-
gressive decompression can stop, because a higher binary budget would not signi�cantly improve
the objective quality. Considering our results obtained on scienti�c data, the interpretation is more
di�cult because curves are incredibly linear. The same trend is noticeable in other scienti�c studies
working on similar topics (Cappello et al., 2019). This problem could be addressed by testing other
metrics.

To have an idea of the impact of a (de)compression at re�nable precision in a context of geological
data visualization, Figures 3.23 and 3.24 show the renderings of two given permeability properties
decompressed at di�erent bit budgets. For comparison purposes, the original data are also shown
on the top corner left of each �gure. On the �rst �gure we can oberve that the visual degradations
are quasi imperceptible until a bit budget of 19.71 bits/value, which corresponds to a much lower
bit budget than those obtained with the lossless methods. A similar observation can be done on the
second �gure until a bit budget of 18.85 bits/value. Moreover, as a teaser of the compandor e�ect on
continuous properties (see next chapter), these �gures also show the high quality of the renderings
obtained for these two properties with only 12.65 and 12.17 bits/value respectively (bottom corner
right of each �gure), when a compandor is applied before the compression work�ow. The visual
results are even more satisfactory.

All these results are very promising, and validate the fact that processing the continuous prop-
erties of geological meshes with a compression work�ow at re�nable precision does not necessarily
a�ect the data severely for certain applications. This is the case for visualization, but we will see in
the next chapter that the same observations can be made in the context of simulation.

Conclusion of this chapter In this chapter we have shown that a suitable multiscale represen-
tation such as HexaShrink can improve the compression work�ow for the storage and the visual-
ization at di�erent levels of detail of geological meshes. HexaShrink is the result of a literature
review of existing approaches dealing with VMs, in particular geological, and other more general sci-
enti�c data. This solution gathers di�erent wavelet-based transforms adapted to the heterogeneous
components of the GMs. Firstly developed for visualization (Peyrot et al., 2019), it decomposes an
initial mesh into embedded hierarchical structure. The process is fully reversible and generates lower
resolutions while preserving the mesh features across resolutions (as faults and properties coherency).

My �rst contribution consisted in validating the skills of HexaShrink in a comparative study
with upgridding techniques available in popular geomodellers, on a representative benchmark com-
posed of eight meshes. Then, we used HexaShrink in the context of compression, by combining it
with generic encoders. We observed that globally HexaShrink improves the coding performance,
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Figure 3.23: Original �uvial permeability property generated at re�nable precisions by using lower
bit budgets of data (preprocessed by Λ ) processed by Haar+ZT combination. Quality is evaluated
here by SNR metric. Precisions noted from 1 to 4 correspond to the red circles on Figure 3.22.
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Figure 3.24: Original nearshore0 permeability property generated at re�nable precisions by using
lower bit budgets of data (preprocessed by Λ ) processed by CDF 9/7+ZT combination. Quality is
evaluated here by SNR metric.
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but the e�ciency depends on the encoder and on the meshes features. As the mesh is heteroge-
neous, we also detailed the compression performance according to the mesh components. We noted
a general improvement compression by using HexaShrink whatever the component, except for the
continuous properties. For this data, HexaShrink combined to an encoder slightly increases the
size of the encoded data, compared to using an encoder alone. The reason is that the continuous
properties are �oating-point data, with a high precision and distributed on a wide range, which
makes their compression more challenging.

The second contribution was to experiment an evolved encoder as the ZT coder to better exploit
the multiscale representation provided by HexaShrink. One conclusion is that the HexaShrink
decomposition developed for continuous properties is not the most suitable for compression, although
fully reversible and exact. Therefore we replaced it by classical 3D wavelets, and associated them
with success to the ZT coder. We showed that compression at re�nable precision is possible, by
gradually decompressing the data, which permits to reach bit budgets signi�cantly lower than with
generic lossless encoders. Finally, our experimental results showed that, even at limited precision,
the visual degradation of the mesh renderings can be negligible.

In next chapter, we continue to demonstrate the bene�ts of our data representation, showing in
particular that a re�nable precision has a limited impact on a simulation work�ow.



CHAPTER 4

Impact on simulation performances

“It is not about the loss of information, it is about doing more science!”

John Dennis, 2013

Lossy compression has progressively integrated simulation. For few years now, it is used for
visualization of large simulation outputs, and only recently �rst tests combine it with calculation
to relieve the work�ow. However, whatever the step �compressed� in the work�ow, it is primordial
to evaluate its impact on simulation outcomes. While there are many metrics for visual assessment
none metric objectively assess the impact on simulation since expectations di�er according to the
�eld. To optimize the compression in simulation, we thus need to understand the requirements
of professionals in geoscience. The discipline uses the simulation results to validate any change in
simulation parameters. For this study, we re�ne the precision or resolution of our mesh properties
thanks to HexaShrink. The quality of the re�ned data is evaluated upstream with objective
metrics, and veri�ed downstream after simulation with its results and a subjective validation made
by engineers.
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4.1 Compression in simulation

In this chapter, we study the impact of re�nable precision on simulation, both for spatial and
numerical precision. We especially focus on the impact of numerical precision induced by lossy
compression in our literature review than on data reduction with resolution change. Although
the latter is a standard but crude method in science to accelerate the computation process (by
subsampling, such as upscaling/upgridding), it has recently been shown that data reduction has a
impact on analytical results worse than compression, at equivalent binary quantity. This observation
motivates our interest for lossy compression for simulation. The following review, mainly related to
studies in the �elds of �uid mechanics and climatology, con�rms our intention to quantify spatial
and numerical precision of simulation data.

Until few years ago, scientists were suspicious about the use of lossy compression during a
computational process, fearing the loss of signi�cant data. Usually accepted in the context of
visualization, it was contested for simulation and analysis. But this is now changing. Slowly, in
conjunction with the exponential increase in digital consumption, researchers are becoming aware
of the growing di�culties with bottlenecks and the increasing costs of computing resources reported
in Section 1.2. Baker et al. (2014) explain that daily-generated simulation results are signi�cantly
under-exploited considering their cost of production, due in part to limited storage capacity.

Lossless compression �rst appears as a suitable solution, by reducing the data quantity while
preserving the exact accuracy of processed data. Unfortunately, this conservative method provides
poor performance on scienti�c data. The compression ratio indeed barely exceeds two (Son et al.,
2014) because of the high precision and the dynamic range of numerical data. Besides, it is known
in multimedia that lossy compression allows improving signi�cantly compression ratios, with mostly
undisturbing perceptual changes. Accordingly, our objectives in this chapter are to address the
e�ects of compression on simulation work�ows and to understand to what extent its impact may be
acceptable in simulation. Finally, we question the need to maintain the high precision of simulation
data.

To illustrate the heavy process of simulation, we describe the Computational Fluid Dynamics
(CFD) approach, used in our case study (cf. Subsection 4.2.1). Similar to geosciences, other �elds
using simulation are strongly impacted by processing huge data quantities, especially in climatol-
ogy. Here, compression is increasingly looked at, as evidenced by the sharing of large datasets in
open source to study the impact of lossy compression. However, the majority of studies still use
compression more to improve visualization and storage than to integrate it into their work�ow. Our
review focuses on integration work and classi�es the studies according to their �elds, databases and
codes. Besides, part of the review refers to quality measures commonly used to study the impact
of compression. Subsection 4.1.2 is the core of our review: compression and evaluation methods are
described in an applicative context. We note a growing use of compression and the establishment
of routines in the choice of evaluation tools and methods. These routines are mostly borrowed from
the research teams that develop the most popular compression tools for scienti�c data, namely SZ
and ZFP. Referencing their studies can help tracking additional work and identifying innovative
thinking.
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4.1.1 Application for �uid dynamic

Simulation is a numerical tool used by researchers and engineers to study and generate multiple
cases, in order to better understand a complex system (gas injection, combustion, turbulent �uid
behavior etc.). It may provide a detailed vision of an inaccessible phenomenon, at di�erent levels of
resolution.

Its use extends to various �elds, ranging from engineering design (vehicle, aerospace, etc.) to the
study of the formation of the universe, using molecular dynamics (MD). At a smaller scale, MD can
also simulate the behavior of materials and chemical reactions. But as mentioned in the introduction,
our scope of interest is more focused on geosciences and in particular on applications using CFD
for simulation. Biology domain also use simulation resources to learn about gene expression by
simulating probabilistic and statistical events.

Fluid dynamics example

The study of �uid motion by CFD in a limited volume involves solving systems of partial di�eren-
tial equations (PDEs) using numerical methods as �nite di�erence, �nite volumes, �nite elements,
or spectral methods. The scienti�c domains using CFD di�er by the nature of �uid and the con-
text, such as climatology considering an air volume (atmosphere) for weather forecasting or climate
change studies. Projects in this domain are carried out by leading international laboratories like
NCAR, because the atmosphere is a complex area in interaction with adjacent layers, de�ned in the
introduction of Chapter 2.

In a straightforward case of �uid dynamics, as laminar �ow into cylinder pipe, the issue could
be analytically solved. It means the exact solution can be computed for any given point in the
control volume, with pressure and velocity values as results. But considering complex problems,
an analytical solution does not necessarily exist. In this case, we try to approximate the �ows by
a physical law formalized by parameterizable mathematical equations (Navier-Stokes equation for
the study of turbulent �ows, Darcy equation for the study of �ows in porous media). The most
complex situations may require additional components. For example, the modeling of the transport
of chemical elements in the atmosphere (such as pollution) additionally uses an advection-di�usion
equation, which exponentially increases the numerical and temporal cost of resolution. For reasons of
economy, the modeling of a system of equations is the result of a compromise between representation
accuracy and computational resources.

After modeling the system of equations, the solution is calculated on the control volume. To
obtain results at di�erent points, the volume is discretized into small blocks (cells introduced in
Subsection 2.1.2). The physical parameters of �uid (velocity, pressure, etc.) are calculated for
each cell. Their values are conditioned by the values of nearby cells interacting with each other.
The solution would certainly be more accurate by using an unstructured mesh but the structured
case remains an attractive option because the mesh generation, as well as simulation code, are
simpler. Finally, CFD obtains a discretized approximation of the real �ow relevant to scienti�c
exploration/analysis.

Depending on the size of the mesh and the precision required, the size of the output of large
simulations could reach several terabytes or even petabytes, knowing that the time dimension multi-
plies the volume of data by the number of time steps. Furthermore, the number of outputs (velocity,
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pressure, etc.) tends to increase with the complexity of the system of equations discussed earlier in
this section.

Selected domains

As mentioned above, di�erent scienti�c �elds use CFD simulation. The �uid mechanic is the parent
discipline. It includes several applicative domains (such as climatology, branches of geology, etc.)
studying �uid �ows in various volumes of interest (from the atmosphere to reservoir formations). To
solve the data processing problem and optimize the use of computing resources, several �elds now
embrace compression.

Tables 4.1 and 4.2 summarize information pertaining to datasets founding in the literature: do-
mains, format, size and code function. The names of these data are written in bold. In the �eld
of �uid mechanics, a �rst comment is to note that the majority of them have sought to integrate
compression into computational codes (such as LULESH, Nek5000 etc.) instead of applying com-
pression to databases (Johns Hopkins Turbulence). Fluid mechanics being the mother discipline,
we can foresee that the integration of compression into simulation is an ultimate goal, from which
the �ndings will later be applied to other areas. As a second comment, looking at the example
of CMIP in Table 4.1, we observe an increasing evolution of volumes generated within the same
project over time. From 2000 to today, the few terabytes of scienti�c data have become several
petabytes.

Climatology - oceanography Currently, the simulation domain the most a�ected by issues in
data management is climatology. Unsurprisingly it is the most interested by compression, given
the growing number of publications. Simulations made in the domain are meant to understand
past, present and to forecast future climates. Studies mentioned in the review are a�liated to
well-established computing centers: National Center for Atmospheric Research (NCAR) in Denver,
German Computing Center (Deutsches Klimarechenzentrum, DKRZ) in Hamburg and the weather
machine at the Los Alamos National Laboratory, New Mexico.

Yet, the majority of the examples of simulation data provided in open-access are from NCAR.
Among their projects, we can cite ASR [Artic System Reanalysis], and POP [Parallel Ocean Cli-
mate] (initiated by Los Alamos Laboratory and revised by NCAR) meaning for compression. The
project the most often encountered in this literature review is unquestionably the CESM-LE [Com-
munity Earth System Model-Large Ensemble] simulation code. The generated data are open-source,
and the results of its analysis are discussed during IPCC Intergovernmental Panel on Climate Change
(GIEC [Groupe d'experts intergouvernemental sur l'évolution du climat] in french), which sets every
four or �ve years. This gathering of scientists aims at alerting public opinion on climate change.
Nevertheless, the cost of simulation and the energy required to transfer/store large volumes of data
are underestimated and contrary to claims. Data are indeed likely to be exchanged and copied many
times since they are freely accessible to maintain transparency on their analysis.

CESM-LE produced in 2005 2.5 petabytes of raw data, post-proceeded to obtain 170 terabytes,
which compose CMIP Phase5 (Meehl et al., 2005) in netCDF format. While CMIP Phase6
(Eyring et al., 2016) is estimated to be between 20 and 40 petabytes. To give an idea and visualize
what its storage implies, consider a standard external hard drive whose capacities are between 2 and
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4 terabytes for a thickness of about 2 cm. To store the largest version of CMIP Phase6 it would
be necessary to pile ten thousand disks of 4 terabytes, with a stack height of 200 meters.

There are several versions of CMIP (or side projects: CESM-ATM, ASR, CAM-SE). The
set represents the most tested data to assess compression. Allison Baker, notably, is one of the
�rst researchers who investigated the subject of lossy compression in climatology. She tested varied
tools and encouraged the development of methods inspired by multimedia. Lossy compression tools
(such as fpzip, ISABELA, GRIB2, wavelet-zerotree) were used in Baker et al. (2014) to question the
relevance of over-precision when transmitting, storing and analyzing data. In this article, she notably
underlines the sensitivity of complex scienti�c codes. With di�erent supercomputers, CESM code
�will not give the same bit-for-bit results". Therefore, it seems relevant to ask what is interesting
in preserving the full precision of the data. Because it appears that limited changes were tolerable,
results are subjectively evaluated by experts. It motivates Baker et al. (2017) to pursue this line of
research looking to de�ne acceptability by using the subjective opinion of climatologists.

SWOT [Surface Water and Ocean Topography mission] deals with experimental data registered
by satellites (NASA, CNES) to provide information on large rivers, lakes, and reservoirs. Although
the data are not generated by simulation, we mention his mission because it is a current project of
large dimension. Moreover it served to assess compression performance of generic �lters available
on netCDF format (Delaunay et al., 2019).

Other meteorological objects, such as hurricanes, are tested to assess compression impact (ISAB-
EL). Hence datasets in climatology and meteorology generally consist in 2D, 3D or 4D grids mod-
elling the evolution of the global or local atmosphere. Temperature, pressure, humidity parameters
and velocity vectors compose the information stored in grid cells.

With much fewer public attention than climatology, other domains generate equivalent or even
greater data volumes. This review aims at broadening the scope by considering additional domains
and projects in cosmology (HACC/NYX), quantum computers for chemistry.

Geology The domain is rich and comprises several sub-disciplines using simulation. In reservoir
engineering, our case study, �ow simulation studies the motion of phases (gas, oil and water) in
porous media as detailed in Subsection 4.2.1. Furthermore, �uids can also be the geological materi-
als, as it is the case for convective process in Earth mantle/core or magneto-convection in the outer
core (Schmalzl, 2003). If the task is to study the rupture of geological material, other simulation
approaches than CFD could be used and focus on small objects, such as drill cores (Bouard, 2017)
or on larger objects with earthquakes. While, for the moment, little work is still devoted to the
use of lossy compression for simulation, such a practice is more frequent for the transmission and
storage of seismic data.

An important part of the publications listed here results from collaborations with simulation
projects. Some datasets may be con�dential and unreferenced. For the sake of repeatability, we
listed only works whose data origins are known and referenced. The ones marked by an asterisk (*),
are referenced by Scienti�c Data Reduction Benchmarks1 recently constituted to assess compression
methods. The initiative in the context of Exascale Computing Project came mainly from Argonne
and Livermore laboratories teams, leading actors on the subject.

1https://sdrbench.github.io/
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4.1.2 Impact of compression on application

The usage of lossy compression through simulation work�ows became popular in the last �ve years.
This practice knows an increasing success with the introduction of new lossy compression tools for
scienti�c data, �rstly with ZFP (Lindstrom, 2014), followed by SZ (Di and Cappello, 2016; Liang
et al., 2018b; Tao et al., 2017), already introduced in Subsection 3.1.3. Behind these projects are
research teams on compression from Lawrence Livermore National Laboratory (LLNL) and Argonne
National Laboratory (ANL), led respectively by Peter Lindstrom and Franck Cappello. They pro-
duced a large number of publications to test and compare performances of compression tools on
scienti�c data from diverse domains.

As an evidence of the growing interest for the topic, since 2016, more than a dozen of graduate
students joined ANL team to work on SZ projects, to apply and adapt the method to various steps
of simulation for di�erent domains. They contributed to publishing more than twenty papers at
various IEEE Conferences on Big Data - for High Performance Computing, Networking, Storage
and Analysis - Parallel Distributed processing Symposium etc. mainly dedicated to HPC. The
reference article of Cappello et al. (2019) compiles seven lossy case studies and points the main
simulation bottlenecks (listed in Subsection 1.2.2, and denoted in italics in the rest of the section).
By identifying the speci�c needs in rate, ratio, and accuracy for each application, they promote the
notion of a specialized compressor to meet particular requirements.

To accelerate the execution of quantum simulation in chemistry, Gok et al. (2018) adapted SZ
into SZ-PaSTRI. They improved SZ prediction by pattern identi�cation. In the same vein, Liang
et al. (2018b) considerably ameliorated compression performance on cosmology simulation (HACC)
by reducing storage footprint. They combined SZ with a logarithm mapping transform and changed
the tool name into SZ_vlct. The method was �nally incorporated into SZ 2.0 (selecting point wise
relative option). In heavy simulation, checkpointing consists in creating periodically temporary �les
to backup intermediate steps in case of simulation failure. Lossy compression is there used to reduce
�le size, in order to relieve the overall process without degrading simulation results. This simulation
step has been the subject of many works from leading laboratories, testing the impact of lossy
compression on temporary �les. In the example of Calhoun et al. (2018), at ANL, SZ is used in
PlasComCM code to reduce the overall checkpointing time.

Most recently, Underwood et al. (2020) developed FraZ to optimize existing tools (SZ, ZFP,
MGRAD). Since compression codes are rich in options, performance varies depending on option
selection2. To reduce these di�erences, FraZ optimizes the �xed rate option, which is less e�cient,
compared to the �xed accuracy. A�liated to ANL, we note that simulation data used for the work
are shared at the Scienti�c Data Reduction Benchmark (such as Hurricane, HAAC, CESM,
NYX).

From LLNL, Di�enderfer et al. (2019) theoretically established the bound of the error introduced
by ZFP integrating operators during its compression. Continued by Fox et al. (2020), the method
theoretically addresses forward and backward error for simulation and validates the process by us-
ing PDEs that model di�usion and advection phenomena. We note that Lindstrom et al. (2016)

2It is, therefore, necessary to have a good knowledge of the tool to obtain the best compression: what is di�cult
to ask from users of non-computer science backgrounds.
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collaborated on an isolated work related to geology. In this �eld, compression methods are familiar
because they have been historically used on seismic data (but barely for simulation, as already said
at the end of the Subsection 4.1.1). This time, instead of applying the method to the experimental
data, the compression is applied to an operator used for full 3D seismic waveform tomography (f3dt)
simulation.
Beyond the studies carried out by LNL and ANL, SZ and ZFP are commonly used as benchmarks in
other laboratories to compare their performance with their proper compression tools. Zhang et al.
(2019), for instance, compare SZ & ZFP to a method based on block decomposition supplemented
by DCT and followed by adaptive quantization. They demonstrate the viability of their solution to
restart a simulation from a lossy state, by checking error propagation. The method is applied with
success to CMIP5 and Nek5000. As seen with the previous example, the rest of the section deals
with tools based on wavelet transforms or using similar decompositions to integrate it into their
work�ow. SSEM, for instance, is a wavelet-based method developed by Sasaki et al. (2015) during
a collaborative work between Tokyo Institute of Technology and LNL to deal with checkpoints for
a climate application: NICAM. In another study, Nek5000 is again used by Otero et al. (2019)
to simulate a turbulent pipe, or the e�ect of wind on a wing. They apply a compression based on
the Chebyshev transform to the outputs. This preliminary study visually evaluates the impact and
invariance of results through an statistical analysis. Otero et al. discusses the fact that 70 % of
the data could be truncated, while preserving accuracy for scienti�c needs. In the article conclu-
sion, compression for checkpointing/restart �gures as future works. Indeed, this step represents an
accessible bottleneck in the work�ow, easily optimized: by reducing the quantity of processed data,
the simulation becomes faster. The ultimate purpose would involve integrating the method into the
simulation code to optimize, for instance, the memory allocation. But for the moment, the majority
of studies are examining the feasibility of lossy compression by visualizing and quantifying its impact
through objective metrics.

Objective evaluation

We now focus on the methods used to evaluate the impact of lossy compression in simulation. As
with image and video compression, the impact on simulation can be assessed using conventional
objective measures. However, these measures may not be relevant since they are not adapted to the
scienti�c application.

To optimize scienti�c data visualization, the TTHRESH project developed by Ballester-Ripoll
et al. (2019) evaluates the impact of compression on volume data from the Johns Hopkins tur-
bulence database. The choice of classic objective measures (such as relative error, RMSE, and
PSNR) seems relevant if it is limited to a visual assessment. The same argument is questionable
when considering simulation data. Therefore it would be wise to �assess the e�ects of data compres-
sion in simulations using physically motivated metrics", as stated by Laney et al. (2014). Their study
uses, among others, fpzip compression, and integrates it into three simulation codes. Among them,
there are a Lagrangian shock-hydrodynamics code from LULESH and an Eulerian higher-order
hydrodynamics turbulence modeling from Miranda. Metrics motivated by physics are symmetry
shock radius for the �rst case, and Rayleigh-Taylor instability and spectrum of perturbations in
the second case. This work is a landmark study, being the �rst �applying lossy compression to the
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physics state of simulations as a strategy for mitigating the data movement bottleneck expected on
future systems". He considers that compression ratios under 3:1 do not a�ect the simulation results.
The usage of greater compression ratios may be dependent on applications.

Nevertheless, it is undeniable that objective metrics are easily implemented and fast to com-
pute (because roughly computed from point to point di�erences as explained in Subsection 1.3.3).
It appears resourceful in this case to combine such evaluations with more costly physical analysis
methods (introduced by Laney et al. (2014) for instance) and check their correlation. For exam-
ple, to determine the optimal wavelet kernel for turbulent �ow visualization, Li et al. (2015) in a
comparative study evaluate classical error metrics such as nRMSE in parallel with the enstrophy.
This parameter, in �uid mechanics, computes the kinetic energy by considering the volumes of the
highest values. In the same vein, Pulido et al. (2016) compare the impact of di�erent multiresolu-
tion transforms (B-splines, Daubechies, Coi�et, curvelet, surfacelet etc.) and evaluate alterations on
turbulence datasets by considering vorticity, isosurface, curvature etc. in parallel to classical PSNR.
Such a crossing between di�erent evaluation methods is classical in multimedia. By combining clas-
sical objective metrics and subjective evaluations (like MOS de�ned in Subsection 1.3.3), we could
obtain reasonable objective thresholds for which a subjective alteration is acceptable for human per-
ception. For scienti�c data, a subjective evaluation depends on the competent opinion of specialists
who interpret the quality of (de)compressed data.

Subjective evaluation

To subjectively assess the performance of several compression tools, Baker et al. (2019) collaborate
with climatologists on the project CESM-LE. Four distinct variables are compressed (2D surface
temperature, 2D clear sky net solar �ux, 3D grid box averaged cloud liquid number, 2D convective
precipitation rate) at re�nable precisions. Thereafter, they are subjectively evaluated by climatol-
ogists, who are asked whether the data are �the same�, or di�erent from the original. To identify
the relevant objective metrics, i.e., correlated with expert opinion, ten objective metrics are tested,
including MSE, PSNR, SSIM (as de�ned in Subsection 1.3.3). For this study, SSIM obtains the
closest results to the subjective opinion of specialists. The SSIM threshold required to preserve the
data precision in this study is higher than the SSIM required for medical data to ensure diagnosis
(Baker et al., 2017).

In conclusion to this state of the art, we demonstrated that compression in simulation is a
relatively recent concern. Although the publications on this topic are still in limited number, they
are carried by renowned laboratories, and the number of related papers rises. Some works use
classical methods (tools, quality assessment) borrowed from multimedia data compression, while
others study the domain requirements to propose tailored solutions. More recently, exascale projects
in simulation emerged, giving rise to the need to process mass-produced data. The quantity of data
to be produced in the future encouraged the development of compression tools for scienti�c data
and the creation of speci�c benchmarks, highlighting the advent of a new discipline marked by the
necessity of rationalizing the simulation data.

Considering this review, our work will be between the works of Laney et al. (2014) and of Baker
et al. (2019). Similarly with the �rst one, we focus on the application of simulation and consider
metrics speci�c to the �eld of reservoir engineering. We also specify subjective criteria, as in the
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second publication, that we crossed with objective methods to validate our compression work�ow
on an extensive simulation benchmark.

4.2 Evaluation of multiresolution progressive compression method

To evaluate the impact of a lossy compression stage in a simulation work�ow, we �rst design a case
study (introduced in Subsection 4.2.1). It includes an input mesh, called lundi, which is none other
than the mesh#6 in the benchmark introduced in Section 3.3. This mesh has been already processed
with HexaShrink and generic encoders for lossless compression. This enables us to make the link
with a complete simulation work�ow.

Subsections 4.2.2 and 4.2.3 present simulation results using our scalable progressive represen-
tation. We perform tests according to re�nable resolutions and re�nable precisions. Results are
objectively and subjectively assessed to validate the coherency of the di�erent metrics. Finally, the
simulation performance obtained from our compression work�ow at re�nable precision is compared
with those obtained from the two most prominent compression tools: SZ and ZFP.

4.2.1 Proposed �uid simulation work�ow

Our simulation work�ow represents a typical case of reservoir engineering, as detailed in the three
next subsections. First, we describe the input mesh. Second, we shortly present the simulation of
liquid phase �ow through the reservoir. Third, we detail the simulation results, which are analyzed
to optimize the exploitation of the reservoir. Since simulation runs are generally repeated a large
number of times for sensitivity studies, the aim is to accelerate their calculation by decreasing the
number of cells. The method is validated if the outputs of the simulation are not modi�ed or if the
change remains acceptable. To evaluate our representation of the mesh at re�nable precision and
resolution, this argument is decisive, as explained in Subsection 4.2.1.

Versatile RM

Our RM is called lundi3. If the global structure of the model has been brie�y described for the
compression benchmark (cf. Section 3.3), it is further detailed in this section. We designed a global
subsurface morphology integrating three continuous vertical faults. They are not aligned along grid
axes, and possess di�erent o�sets, to emulate mildly complex environments. This morphology may
also challenge compression algorithms. This model can be discretized with di�erent grid dimensions.
For our evaluation, we choose a grid with 128× 128× 32 cells to allow reasonable simulation times,
with respect to our extensive comparative work�ow. The average cell size in this lundi realization
is about 1.7× 1.7× 0.95 m3. This shape ratio for the tiles is common in (sedimentary) geology for
modeling mesh cells. It is consistent with progressive horizontal �ne deposits of material over the
years.

lundi topography arises from a realistic geological context. It models a side of an anticline
structure (classical in hydrocarbon trap reservoir study), as spotlighted by Figure 4.1. Therefore
the most elevated corner of lundi corresponds to the top of the anticline (at 3360 m depth). The

3
lundi refers to the Atlantic pu�n in the Icelandic language (macareux moine in French), a pelagic and relatively

paci�c bird in the rather competitive world of Petrel and Skua seabirds, or associated software.
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Figure 4.1: (Left) illustration of a quarter �ve-spot model. Blue dotted lines depict motion of water
injected from corners by four wells noted Ii up to producer P1 on the top of anticline. Our model
lundi (quarter of anticline) is highlighted in brown and limited by vertical red planes. It only
considers two wells (I1 and P1) among �ve. (Top-right) water cut curve measured over a year at P1.
The red dot indicates the water breakthrough.

opposite corner on the diagonal is situated 50 m below. Our benchmark is thus based on a quarter of
the anticline modeled by lundi. The global shape of lundi as well as its structural discontinuities,
have been thought as a challenge for multiscale visualization and faithful upgridding for simulation.

Two-phase �ow simulation

We use for our simulation the black oil model (Thomas et al., 1976), and limit the study to two liquid
phases: oil and water (we ignore gas phase for the sake of simplicity). The system can be described
by physical laws (conservation of mass and Darcy law). It can be modeled by a mathematical system
composed of non-linear partial di�erential equations. Finally, unknown system parameters, such as
pressure and saturation, are computed for each cell, for each time step.

Two-phase �ow simulation is thereafter performed on lundi. It is meant to predict oil production
in a two-phase reservoir, driven by water injection. At the initial time, the two phases in the reservoir
are horizontally strati�ed, with oil above water. We simulate a quarter �ve-spot con�guration
inspired by (Lie, 2016, Chapter 5.4.1). It involves two wells, as shown by Figure 4.1: one producer
P1 and one injector I1 (among the four ones {Ii} localized on the anticline base). Water is injected
by I1 in the lower part of reservoir. The water pressure pushes the oil through the reservoir up to the
producer P1 (distant from 300 m). Injector pressure and producer rate remain constant, respectively
set at 300 bars and 300 m3 per day.
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Reservoir production overtime

Oil production is evaluated according to various reservoir properties and injection settings. One of
the reference indicators is the estimated water cut (WC), or the ratio of water produced in a well
compared to the total liquid volume. It is recorded over a period of time, for a certain time step, and
can be illustrated by the typical WC shape in Figure 4.1-right. Furthermore, output analysis can
also focus on other parameters known to reservoir engineers, such as well pressure or oil production,
to be sensitive to the slightest change in the input data.

WC is a valuable source of information for decision anticipation for �eld exploitation. The
in�ection point marked by a red point on the curve Figure 4.1 is the water breakthrough. It denotes
the ��rst� water arrival to the production well. After this date, extracted liquid will progressively
contain more and more water. Hence, to avoid eliminating water by expensive post-treatment
or surface equipment, this is interesting to delay this date by changing the exploitation method.
Simulation is a powerful tool to predict the water breakthrough and to determine the best option,
by testing di�erent methods and conditions. Hence simulation can be run a large number of times
with varying parameters (reservoir sensitivity analysis). It therefore seems reasonable to limit its
calculation cost by using a lower resolution grid.

Well production metric

To check whether standard upscaling is suitable for simulation, reservoir engineers carefully inspect
the simulation outcomes and compare them to outcomes obtained with the reference RM. This
approach is common to validate the accuracy of a RM at a lower resolution. We extent it to the
assessment of compression at re�nable precision through a complete comprehensive compression-
simulation work�ow, illustrated in Figure 4.2. The reference for well production is the WC curve

Original
RM

P

Analysis

Re�nable compression

∗
P Synthesis

RM at
re�nable

resolution/precision

P̂

Simulation work�ow

Objective metric

WC ŴCSubjective metric

Figure 4.2: Objective and subjective evaluation steps throughout our compression-simulation work-
�ow.

provided by simulation of the original RM. We denote by ŴC the water cut curve provided by
simulation of compressed RMs. We separately address the impact of a global re�nable resolution of
mesh (for upscaling/upgridding), and that of re�nable precision of properties (here permeability).
The di�erences between WC and ŴC curves should be evaluated with respect to the expected
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bene�ts of a re�nable precision. Firstly, we evaluate well production subjectively with a qualitative
ranking based on reservoir engineering expertise. Secondly, to automate decision of suitable re�nable
compression, we assess candidate objective metrics, and �nally propose adaptations to better predict
subjective evaluations on di�erent geological environments.

Subjective evaluation of simulation results Depending on their distance to the reference WC
curve, simulated ŴC outcomes are categorized into �ve qualitative classes distinguished by their
degree of accuracy. For the sake of rigor and reproducibility, we de�ne dotted lines delineating the �ve
classes. The overall shape is summarized as follows (we refer to appendices for a detailed description,
page 122). We expect that the ŴC curves, and by implication the class boundaries, stand close to
the reference at the beginning of oil production. The day corresponding to the water breakthrough
should be evaluated as precisely as possible since it corresponds to essential information during oil
production. Later in the production, precise time accuracy is less vital, and regions are allowed to
drift further away from the reference WC. Four pairs of boundaries almost symmetric above and
below the WC curve therefore delimit �ve classes de�ned by colored areas in Figure 4.3: identical,
correct etc.

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Identical
Correct
Acceptable
Uncorrect
Aberrant

days

w
at
er

cu
t
sa
tu
ra
ti
on

Figure 4.3: Subjective evaluation of simulation results, using region boundaries around the water cut
curve (around WC curve from nearshore0 environment) to de�ne a qualitative ranking: 'Identical'
(in blue), 'Correct' (in green), 'Acceptable' (in yellow), 'Uncorrect' (in orange) and 'Aberrant' (in
red).

Objective evaluation of re�nable representations With HexaShrink, we generate di�erent
resolutions of the RM, and then several versions of the RM at full resolution �lled by continuous
properties at re�nable precision. During this work, we mainly focus on permeability for re�nable
precision.

When considering an upscaling on a RM, several quality indicators, related to petrophysical
properties, have been proposed to evaluate the resulting information losses (Preux, 2014). When
considering a precision re�nement, the conventional objective metrics are classically based on di�er-
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ences between the cell values of the original property denoted P (c) (c being the indexation of the
cells in the mesh) and the cell values �lled by a re�ned property denoted P̂ (c). These di�erences are
generally averaged, and can be considered relative to the original values or squared etc., generating a
large number of potential metrics, previously introduced in Figure 1.5 in Subsection 1.3.3. However,
they might be ill-suited to petrophysical properties. In the following, we only concentrate on a lim-
ited number of objective metrics and propose a novel family of quality indicators combining classical
metrics and compandor. The classical metrics we select are: MRE, nRMSE and SNR (respectively
on Equations 4.1, 4.2 and 4.3).

MRE =
1

C
×
C∑
c=1

|P (c)− P̂ (c)|
P (c)

, (4.1)

nRMSE =

√√√√ 1

C
×
C∑
c=1

(
P (c)− P̂ (c)

)2
, (4.2)

SNR = 10log10

 ∑C
c=1 P (c)2∑C

c=1

(
P (c)− P̂ (c)

)2

 . (4.3)

The novel family of metrics is obtained by appending the compandor operator lambda to the
classical metrics. For instance, the Λ-SNR equation becomes:

Λ-SNR = 10log10

 ∑C
c=1 Λ(P (c))2∑C

c=1

(
Λ(P (c))− Λ(P̂ (c))

)2

 . (4.4)

4.2.2 HexaShrink evaluation in upscaling/upgridding

The HexaShrink representation can perform up to 5 levels of decomposition on the lundi reser-
voir model. The �rst three resolutions �lled by nearshore0 properties (permeability and porosity)
are shown on Figure 4.4. Structurally, the faults remain visually coherent across resolutions. The
uniformly reduced number of cells across resolutions is detailed in Table 4.3. Properties results of
HexaShrink decompositions for our four environments are represented in Figures 5.11 and 5.12 in
appendices (page 126).

The two-phase �ow simulation is applied on the di�erent lundi resolutions, resulting in distinct
ŴC curves. They are compared with the reference curve obtained from the original RM. The results
in the nearshore0 environment are displayed on Figure 4.5. The results for the three other envi-
ronments are available in appendices (page 124). First, we observe that the ŴC curve simulated
on the reconstructed resolution res-0 is identical to the reference WC whatever the environment.
This con�rms that the HexaShrink decomposition is fully reversible for simulation. Then, we
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Figure 4.4: (Top-row, left to right) reconstruction of lundi and its �rst three resolutions obtained
with HexaShrink. (Center and bottom) the same resolutions �lled with the permeability and
porosity data, themselves decomposed.
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Figure 4.5: Overlay of WC simulated on �ne grid lundi mesh, (nearshore0 environment) and ŴC
curves simulated on its lower resolutions (up to res-3) generated by HexaShrink.
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Resolution Fine scale model size Total cell number
0 128× 128× 32 524288
-1 64× 64× 16 65536
-2 32× 32× 8 8192
-3 16× 16× 4 1024
-4 8× 8× 2 128
-5 4× 4× 1 16

Table 4.3: Dimensions of lundi and its lower resolutions generated by HexaShrink.

observe that the shape of the reference WC curve is modi�ed depending on the lundi environ-
ment (nearshore0, nearshore1, nearshorea, fluvial). The water breakthrough in fluvial environment
happens 30 days after the water breakthrough observed with nearshore0 environment. Thus, the
petrophysical properties signi�cantly a�ect the simulation outcomes.

Considering the resolution res-1 in the nearshore0 environment, with a number of cells reduced
by eight, its ŴC curve stays close to the WC curve reference. Then, according to our subjective
metric (explained in Subsection 4.2.1) its ŴC curve is �acceptable�. Compared to the equivalent
ŴC curves obtained in three other environments, the outcome obtained with nearshore0 is the best.
This di�erence may be explained because of the high permeability of nearshore0 environment (mostly
green according to the permeability color scale). In that case, the modi�cation of permeability would
have less impact on the simulation. This allows us to focus mainly on the impact of the change in
structure due to the use of lower resolutions. We infer that the structure of the mesh res-1 remains
suitable to preserve the quality of simulations. Thus, HexaShrink is a promising upgridding
technique, while further improvements are necessary for property upscaling.

At equal quality, the HexaShrink-based simple upscaling is computationnaly e�cient. While
the original mesh required more than three hours for simulation, only ten minutes are needed with
the resolution res-1 on the IFP Energies nouvelles supercomputer Ener440. For comparison pur-
pose, the same simulations run on a scienti�c laptop (with Intel Core i7-6820HQ CPU @ 2.70 GHz
processor and 16 GB RAM) would take much longer: seventy-two hours on the full resolution, and
four hours on the resolution res-1.

The results presented in this section highlight the power of upscaling/upgridding in saving sim-
ulation time but also the sensitivity of the simulation to the features of the input mesh. A mesh
scaling is a complex process that requires care in �nding the optimal approach for each component
of the RM. From the literature review, we know that the best methods are dynamic approaches pre-
sented in Subsection 3.1.1. Unlike uniform merging of cells (eight by eight), the dynamic approach
only uses cells outside the �ow path to limit the impact on �ow dynamic. As e�cient upscaling
methods use Local Grid Re�nement (LGR), we used it to correct the position of the wells.

As speci�ed when describing the simulation in Subsection 4.2.1, the vertical wells cross through
the cell columns located at opposite corners of the mesh. Considering the original data, {Ii} is
located at surface coordinates (1,1). Using lower resolutions, {Ii} is still located at the (1,1) but
is spatially translated because of cell dimensions increase. LGR method has been applied around
the wells to avoid this issue. It retains the full original resolution on cell columns crossed by wells.
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However this care does not seem to signi�cantly improve simulation results.

As observed, changes in mesh resolution are not simple. Such manipulations can signi�cantly
impact the simulation results. The HexaShrink inherent structure constrains possibilities for
upscaling improvement, yet with a simple dyadic decomposition, lower resolutions may provide
consistent results and accelerate simulation. In the following, we pursue our quest of essential data
required for simulation, we explore the impact of numerical precision and improve the compression
ratios.

4.2.3 Continuous properties, which precision?

In the previous chapter (cf. Section 3.5), we showed that a ZT coder o�ers promising compression
performance on the continuous properties, in comparison with generic encoders. We now pursue
this methodology to investigate the impact of re�nable precision on simulation outcomes. In Section
3.5.3, we show that the quality of data compressed with our work�ow at re�nable precision is eval-
uated by SNR between 150 dB and 200 dB (see Figure 3.22). It is therefore questionable whether
such a quality is adequate and necessary for scienti�c applications, given that the values dynamic are
much higher than those encountered in multimedia. If su�cient, we can further go into compression
using lower numerical precisions. Then we will try to de�ne a minimum precision threshold, i.e.,
the minimum binary quantity (bit budget) for suitable simulation.

Re�nable representation with zerotree

Our method is applied to permeability properties. As other scienti�c data, they are hardly com-
pressible because of their distribution. A speci�city of permeability is a large range of possible values
(typically from 0.0007 to 20 000 mD as SPE10 model) with a large proportion of very small values.
We especially investigate the use of preprocessing permeabilities with compandors (cf. Subsection
2.1.3) noted Λα. We compare the performance using objective metrics as well as subjective validation
through the simulation work�ow. Our principle observations are summarized in italic hereinafter.

On Figure 4.6 are displayed three versions of nearshore1 permeability at di�erent precisions. The
original one and two others only using the eighteen MSBM of data decomposed by CDF 9/7 wavelet
(Cohen et al., 1992) and then encoded with ZT. They di�er from the use of a compandor, applied
before transformation as a preprocessing. The version on the left uses Λ0 (logarithmic compandor)
while the right one uses Λ1 (linear compandor). We observe that the left version is better preserved,
for instance around the blue patch with low values. On the right picture, the same patch appears
noisy with the use of Λ1 . It concurs that the lower values are better preserved by compression if
using Λ0 . Besides, for a similar MSBM , the overall bit budget is lower with Λ0 , but also the quality
is better, visually. This demonstrates that a ZT coder is more e�cient on this preprocessed data,
better decorrelated by the wavelet transform when the compandor Λ0 is included in the compression
work�ow.

� It appears Λ0 increases the compression performance of a ZT, and better preserves lower
values, visually.
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Λ0 Λ1

bit budget = 11.81 bits/value
Λ-SNR = 38.95 dB
SNR = 78.78 dB*
MRE = 0.070
nRMSE = 9× 10−6*

Correct

bit budget = 10.16 bits/value
Λ-SNR = 68.84 dB*
SNR = 58.23 dB
MRE = 0.0019*
nRMSE = 1× 10−4

Identical*

Figure 4.6: From original nearshore1 permeability (top) are decompressed two versions of the data
at re�nable precision, both using 18 MSBM processed by compandor: (left) with Λ0 or (right) with
Λ1 . Data are objectively, subjectively assessed and classical λ compandor objective metrics. (*)
indicates the data with the best metric evaluation.

Next, we look at objective metrics whose assessment is correlated to visual expectations and
especially to simulation validation, supporting an enlightened use of compression for simulation.

Successively considering the objective metrics MRE, SNR, nRMSE, Λ-SNR, we note several
anomalies. As an example, the SNR is equal to 78.78 dB with Λ1 , and it is superior to the
SNR obtained with Λ0 (58.23 dB). This would mean that the Λ1 is more appropriate than Λ0

. Considering our previous conclusions, it �nally appears that the standard SNR assessment is
contrary to visual appreciation. We note the same anomaly using nRMSE. However, Λ-SNR and
MRE indicate the Λ0 is of better quality, as visually approved. Considering now the simulation
results, Λ0 yields �identical� mention, while the simulation outcome is only considered as �correct�
with Λ1 . Subjective evaluation of simulation results is in this case correlated to visual intuitions.
Because simulation is a decisive aspect, we observe that Λ0 �nally generates higher quality data,
in terms of visualization but also of simulation. Data quality is foreseeable regarding Λ-SNR and
MRE, while SNR and nRMSE provide misleading assessments.

� Simulation validates visual quality and bene�t of the use of the Λ0 compandor.

� Λ-SNR and MRE corroborate visual appraisal and simulation results.

This example questions the blind use of some metrics (SNR, nRMSE) on scienti�c data (with
their particular distributions), whose assessment could be counter-intuitive.

Figure 4.7 summarizes the MRE, SNR, nRMSE, and Λ-SNR curves we obtained for nearshore1

permeabilities. Dashed curve refers to Λ1 (linear compandor) while the solid curve denotes the
Λ0 use (logarithm compandor). The bit budget depends on the precision targeted during the
(de)decompression, corresponding to a number of bit planes decoded. These graphs also indicates
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the subjective evaluation of simulation results with the color code introduced in Subsection 4.2.1.
The two compandor versions of permeability displayed in Figure 4.6 are also indicated by surrounded
markers on the four graphs, for the four objective metrics.
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Figure 4.7: Permeability from nearshore1 generated at re�nable precision for decreasing bit budget
(a mark per precision) by our alternative (changing compandor parameter), objectively evaluated
by four quality metrics: Λ-SNR (top-left), MRE (top-right), SNR (bottom-left), nRMSE (bottom-
right). Subjective appreciation of simulation results is represented by a color code.
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Whatever the objective metric or the compression method, we observe that as expected the
global quality decreases with the bit budget (MRE and nRMSE increase, SNR and Λ-SNR de-
crease). Depending on the relative position of the curves, we can rank the e�ciency of the methods.
Considering MRE and nRMSE (graphs on the right), the lower curve identi�es the best method. For
SNR evaluations (graphs on the left), this is the highest curve. As previously noted, the evaluations
provided by SNR and Λ-SNR are con�icting despite their mathematical relation. In the same logic,
we consider that the Λ-SNR assessment is the most coherent because it is validated by subjective
results, while SNR is not consistent with what simulation would suggest. Indeed, regarding sub-
jective evaluation provided by marks color of the SNR curves (bottom-left graph), the simulation
results based on Λ1 are �acceptable� for a bit budget around ten bits. At equivalent bit budget, Λ0

yield �identical� simulation results. We thus expected that the SNR curve for Λ0 would be higher,
synonymous of better quality. However, it is the reverse. This con�rms that the SNR leads to faulty
reasoning on these data for reservoir simulation.

Finally, by focusing on consistent objective metrics (top graphs), the higher the Λ-SNR or the
lower the MRE, the greater the chances of obtaining suitable simulation results. This seems to
provide an objective limit (underlined by the blue dotted lines), below which the data are no longer
suitable for simulating with enough accuracy. For a better understanding of the graphics, triangles
are attached to the y-axis. They represent a balance between subjective and objective evaluations.
Their red tip tends toward poor data quality, while their blue base indicates higher quality.

In the remainder of our report, we only focus on Λ-SNR graphs considered as more readable.
Therefore Figure 4.8 keeps the upper left graphic from Figure 4.7 and adds on the right the Λ-SNR
graph for fluvial permeability (the results for all the properties are available in appendices). In the
same logic as before, a graduated evaluation scale (�gured by the color triangle) can be drawn, linking
objective evaluation to the subjective one. This allows us to concur that the �identical� threshold
varies according to the property and its environment. Considering the fluvial environment, �identical�
simulations are obtained for Λ-SNR quality evaluated above 55 dB, while 45 dB is su�cient for the
nearshore1 environment. The di�erence between the two thresholds can be explained by their level
of complexity. The fluvial environment would require a higher objective quality level to preserve
channel objects.

In all the studied cases, the use of the Λ0 compandor enhances the re�nable representations of
the permeability. Considering the Figure 4.9, we can better perceive this compandor e�ect. First of
all, whatever the value of the alpha parameter used for Λ , the data processed by Λare distributed
between 0 and 2nbits−1. If the shape of the distribution remains unchanged using α = 1 (linear),
histograms are better spread using α = 0 (logarithm). Indeed the height of the �rst bar decreases for
fluvial (bimodal: channels and �oodplain) and tends to disappear for nearshore1. The small values,
originally concentrated between 0 and 250 mD, are dispersed to several distinct bars. The use of
Λ0 gives them more weight, and preserves them during compression. Concretely, from a physical
point of view, it is necessary to preserve the lower permeability values, to save impermeable barriers
and to maintain �ow. Results for all the other environments are available in appendices (page 130).
The �identical� threshold lies between 40 dB and 55 dB. It means that whatever the environment
we certify that, above a Λ-SNR equal to 55 dB, simulation results are identical, and those for a
considerably reduced bit budget.
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Figure 4.8: Permeability from nearshore1 (left) and fluvial (right) environments generated at re-
�nable precision decreasing the bit budget (a mark per precision) using our method (compandor),
objectively evaluated by Λ-SNR. Subjective appreciation of simulation results is represented by a
color code.



4.2. Evaluation of multiresolution progressive compression method 95

nearshore1 permeability fluvial permeability

Initial
distribution

Λα=1

Λα=0

0 0.5 1 1.5 2

·104

0

0.2

0.4

0.6

0.8

1

Fr
eq
ue
nc
y

0 0.5 1 1.5 2

·104

0

0.2

0.4

0.6

0.8

1

0 1 2 3

·107

0

0.2

0.4

0.6

0.8

1

F r
eq
ue
nc
y

0 1 2 3

·107

0

0.2

0.4

0.6

0.8

1

Figure 4.9: Histograms of nearshore1 permeability (top-left) and fluvial permeability (top-right).
Initial distribution is between [0, 20 000], then Λα,25bits using α = [0, 1] distributes the properties
between [0, (225bits − 1)] (bottom).

Comparative study with state-of-the-art

To challenge our method and check the positive e�ect of Λ0 , we add to our graphs the curves of the
probably two most popular compression tools for scienti�c data : SZ and ZFP (introduced in Section
4.2). We use their recent versions, and compile them with their most e�cient options according to
(Underwood et al., 2020):

� SZ, 2.1.3 version, with PSNR compilation option;

� ZFP, 0.5.5 version, with accuracy compilation option.

Results are displayed on Figure 4.10 and complement those presented in Figure 4.8. Dashed lines
represent compression results for the regular use of the tools, while solid lines assess the e�ect of Λ0

on their compression performance. In addition, the point wise relative error option of SZ was also
been tested. It integrates a logarithm transform mapping before prediction, and is akin to our Λ0

approach.
Taking a step back, the results of the other tools con�rm the previous observations, notably the

�identical� threshold (dotted blue line) at 45 dB for nearshore1 environment, and at 55 dB for fluvial
environment, below which the data precision is no longer su�cient for simulation. We observe that
Λ0 , as the logarithm mapping, also improves the compression performance of both compression
tools. Focusing on the fluvial permeability (right graph), the data processed by Λ0 (solid lines)
obtain identical simulation results for Λ-SNR above 60 dB. At similar objective/subjective quality,
the regular methods (dotted lines) require about 5 bits more per value than the same method using
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Figure 4.10: Permeability from nearshore1 (left) and fluvial (right) environments generated at re-
�nable precision decreasing the bit budget (a mark per precision) using our method, SZ and ZFP
(with or without compandor stage), objectively evaluated by Λ-SNR. The subjective appreciation
of the simulation results are still represented by the color code.
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a Λ0 , demonstrating the interest of a compandor stage.
We observe that Λ0 , as the logarithm mapping, also improves the compression performance of both
compression tools. Focusing on the fluvial permeability (right graph), the data processed by Λ0 (solid
lines) obtain identical simulation results for Λ-SNR above 60 dB. At similar objective/subjective
quality, the regular methods (dotted lines) require about 5 bits more per value than the same method
using a Λ0 , demonstrating the interest of a logarithm compandor stage.

More speci�cally, we observe that our method gives results comparable to the other tools (SZ and
ZFP). With Λ1 our alternative is just below ZFP, the best method (without Λ0 use). Lindstrom's
tool is indeed known to be the most e�cient on volume data. Like our alternative, it combines a
transform with a ZT coder. Thus, it seems consistent to obtain comparable trends.

ZFP gets its superiority from the sub-blocking process explained in Subsection 3.1.3. The equal-
ization of the exponents (�oating-point writing) within each subblock absorbs high variations of data
scales. This is also one of the bene�ts of the logarithm function. Therefore combining Λ0 with ZFP
increases the compression performance but not as much as it does for other methods that take the
lead. Considering SZ, with Λ0 we obtain results equivalent to those obtained by SZ with the point
wise relative error option.

Although not evaluated in term of execution speed for HPC implementation, our approach (re-
garding its compression performance) provides suitable results comparable to �state of the art�
compression tools for simulation. Therefore, incorporating precision layer to HexaShrink consti-
tutes a promising research axis for scalable representations in simulation work�ows, including all the
components of a RM. The recent paper of Hoang et al. (2021) actually o�ers an uni�ed encoding of
resolution and precision for scalar �elds.

To conclude, continuous properties can be generated at re�nable numerical precision without
visual noticeable degradation, while the simulation outcomes remain �identical� to the reference. To
guide the user through the compression process, we identify objective metrics correlated to profes-
sional expectations. Our tests show performant compression provides identical simulation results
using less than the half of the binary quantity originally used for permeability property (nearshore1

environment): among 12 bits per value instead of 34 bits. Moreover, the use of compandor functions
seems to provide consistent predictions in addressing the properties distribution (here permeability),
by better taking into account the physical laws that in�uence the continuous properties. This exam-
ple shows that the knowledge of the data (in particular their speci�c distribution) can considerably
improve their processing. Such observations were drawn whatever the geological environment chosen
for the simulation of our model lundi.

Lastly, a comparative study with SZ and ZFP tends to corroborate the above observations.
There seems to be a minimum quantity of binary information to recover the essence of the RM.
This value depends on the data, since our subjective/objective thresholds vary according to the
property environment. But even using di�erent tools, there seems to be an agreement to an objective
threshold (blue dotted lines in graphics of Figure 4.10). We aim at �nding heuristics on the essential
binary information to preserve for lossy compression, in the spirit of the entropy bound for lossless
source coding. Delving into the extensions of the above contributions, taking advantage of the data
anisotropy or investigating the bit plane encoding may o�er novel insights.
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4.3 Deepening the method

We present in this section partial investigations and intuitions that appear to be promising for
optimizing the RM compression. The anisotropy of our meshes �rst inspired us. This feature
particularly observable on properties can be studied using a classical statistical tool in geosciences,
called variogram. It allows determining preferential orientations in the distribution of petrophysical
properties. In the next subsection, we test a packet wavelet decomposition along these orientations,
to exploit this feature. Such a method should increase compression performances without degrading
the simulation results.

In the second subsection, we focus on the ZT-based encoding stage. The study of its intrinsic
parameters provides information on the data structure and could advise on the minimum amount of
binary data required for simulation. Their analysis could even be more complete than the objective
study performed so far.

4.3.1 Exploiting the anisotropy

For this experimentation, our approach is still evaluated on the continuous properties of the four
geological environments, generated on purpose with anisotropic behavior. The distribution of these
properties is conditioned by the depositional environment: sediments, initial sedimentary basin
topology, sediments transport, diagenesis (Fowler and Yang, 2003) as explained in Subsection 3.1.3.
Such parameters are directionally dependent, subject to marine/�uvial current during the deposit
and more generally by the gravity, the pressure from the upper layers, or other constraints during
all its genesis. The sedimentary structure is strati�ed, composed of horizontal layers of varying
thickness and composition. By de�nition, this structure is thus spatially anisotropic along (~ı,~),
with a potentially di�erent behavior along a depth (~k), as shown in Figure 4.11. Consequently,
considering that these properties are isotropic is probably suboptimal for compression.

Isotropic Isotropic on surface
Anisotropic through the depth

Anisotropic
in three directions

Figure 4.11: Continuous properties modeled from three di�erent variograms. The ranges in the three
main directions (red lines) are illustrated by the ellipsoid shape.
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Exploiting spatial properties distribution with variograms

A variogram, de�ned from the Equations 4.5 and 4.6, is a geostatistic tool used to describe the
spatial variability/continuity of properties in speci�c directions. It is de�ned as the variance of the
di�erence between values at two points separated by a distance h, equivalent to a number of cells.

γ(xi, xj) =
1

2
Var(Z(xj)− Z(xi)) . (4.5)

γ(h) =
1

2N(h)

N(h)∑
i=1

(Z(xi + h)− Z(xi))
2 . (4.6)

The (uniform) distance separating points xi, xj is denoted by h, while N(h) denotes the number
of pairs of points (separated by distance h).

Along the three main directions ~ı, ~, and ~k, three 1D variogram curves can be computed. As
illustrated in Figure 4.12, the curve is described against its sill (asymptotic limit), and its range
(distance in which the di�erence of the variogram from the sill becomes negligible).

h

γ(h)

Sill

Range

Figure 4.12: Variogram curve in one direction, for an exponential model (among spherical, gaussian,
cubic etc. models).

Estimating the variogram could �gure as a preprocessing to compression, to determine some
preferential directions in the data. An anisotropic wavelet decomposition could then be applied
to bene�t from this feature. This kind of approach has been already proposed in Christophe et al.
(2008) for hyperspectral data. This work uses wavelet packets on approximation and detail subbands
localized along directions pointed by the study of variograms.

Our geoscienti�c data also presents anisotropy. Here we focus on the petrophysical properties
introduced in Subsection 3.5.3, whose the anisotropy orientation should be along the vertical axis
~k but is not necessarily intuitive, considering the various cell dimensions. The variogram of the
porosity in the nearshore1 environment is displayed in Figure 4.13 (the other environments can be
found in appendices, page 128). The range distance initially expressed in meters (4.20× 4.20× 1
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meters), is converted into number of cells, because of property discretization and average dimensions
cells. We observe that the range along ~ı and ~ are ten times higher than the range obtained along
~k. This means that along ~ for instance, two cells separated by less than 55 other cells are likely
to be correlated. Above that distance, a weaker link is expected along the ~k direction. Such
a spatial distribution is common and these variograms are comparable to those obtained on the
Tarbert formation (from SPE10 model), equal to (14,32,3).

Because the range computed in the ~k direction (depth) is short, we assume that the information
changes fast. Classical dyadic decomposition can leave behind information on detail subbands that
are still correlated.
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Figure 4.13: 1D variogram curves of the permeability property in the nearshore1 environnement.

Preliminary results with anisotropic decomposition

Figure 4.14 illustrates the two approaches compared in this section. The volume data on the left
(preprocessed by Λ0,25bits) is decomposed with a 3D dyadic wavelet, generating a structure displayed
in the middle of the �gure. For this experimentation, we used 25 bits for Λ (instead of 34 bits)
and two decomposition levels (instead of �ve) for sake of simplicity on the �gure. This method
is compared to the wavelet packet decomposition illustrated on the right, more suitable to handle
data anisotropy. The previous study of variograms recorded a very short range along ~k, showing
sudden spatial changes and concentration of information in this speci�c direction. Despite the
�rst dyadic decomposition, the LLH1 detail subband is still correlated. We can recognize in this
subband an approximation of the original data at a lower resolution, rather than detail data. It
should therefore look more like noisy data, and be composed of small values. At this place, the
wavelet packet decomposition uses two additional decompositions to better decorrelate information
on this subband.

To assess the interest of using a wavelet packet transform to take into account the data anisotropy,
we compare the weighted entropy (Shannon, 1948) of the two approaches. The entropy designates
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weighted
entropy

(in bits per value)

Λ0,25bits

18.92

LLH1

2 dyadic wavelet
decompositions

15.62

2 wavelet packet
decompositions

14.99

Figure 4.14: Dyadic decomposition (middle) vs wavelet packet decomposition along ~k (right). The
initial data (left) is the permeability property in nearshore1 environment preprocessed by Λ0 . The
weighted entropies for each data is indicated in the bottom part of the �gure.
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the asymptotic number of bits per symbol required to transmit the minimal quantity of information
in a lossless compression perspective. For a data constituted by C discrete values, each value c has
a probability of occurrence equal to Pc. The entropy, in bits per value, is de�ned by

H = −
C∑
c=1

Pc log2(Pc).

In case of decomposed data, the weighted entropy is generally used. It consists in weighting the
entropy of each subband by the ratio between its number of cells and the total number of cells:

wH =
N∑
k=1

nb cells in subband k
nb cells in data

H(k).

Computed on the entire data preprocessed by Λ0,25bits , the weighted entropy is close to 19 bits
per value, whatever the environment (all the results are in appendices, page 128). Considering the
property in the nearshore1 environment, the classical 3D dyadic decomposition reduces the weighted
entropy from 18.92 to 15.62 bits per value. With the wavelet packet decomposition, the weighted
entropy reaches 14.99 bits per value, which is thus lower.

As demonstrated previously, our evaluation method introduced in Section 4.2 is complete and
relevant to assess compression in a simulation work�ow. We therefore use it in the same way in this
section to assess the anisotropic wavelet decomposition. For this experimentation, we made again
�ve decomposition levels and 34 bits, to be compared with former results. Results displayed on
Figure 4.15 in black thus complement the graphs of Figure 4.10.

So far, the performance of our alternative method was close to the concurrence. The anisotropic
approach, based on Λ0 , a wavelet packet decomposition and an adapted ZT structure (Christophe
(2006)) surpasses the concurrence results. This experimentation con�rms the positive e�ect of Λ0

compared to Λ1 : solid lines are always above dashed lines. In addition, the objective thresholds
determined earlier, correlated to subjective evaluation, are still valid (dotted blue lines). In the
fluvial environment, the best result was held by SZ (point wise relative option). The lower data
precision able to satisfy the simulation work�ow is generated with a budget of 8.92 bits, and assessed
by a Λ-SNR equal to 53.77dB. For a lower bit budget of 8.83 bits, the new anisotropic method (black
solid line) generates a data at higher objective quality, equal to 56.77 while maintaining �identical�
simulation results.

In short, wavelet packet decompositions show promising performance, and would require in-depth
experimentations.

4.3.2 Thresholding at necessary precision

The objective of this last experimentation is to determine the precision required for suitable simu-
lation data. Up to now, our results designate thresholds by using adapted objective metrics (blue
dotted lines). Nevertheless, the threshold value varies according to the data type. Therefore our
research pursues a quest to address the minimum information, regardless of the handled data.
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Figure 4.15: Permeability from nearshore1 (left) end fluvial (right) environments generated at re�n-
able precision decreasing the bit budget (a mark per precision) using our method (wavelet packet
or dyadic decomposition), SZ and ZFP (using or not compandor), objectively evaluated by Λ-SNR.
Subjective appreciation of simulation results is represented by a color code.
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We focus henceforth on encoding parameters, in particular on the ZT activity measured for each
bit plane and below de�ned. The notion of bits per bit plane has been particularly studied by Wang
et al. (2019) to describe the ZFP activity, while others have detailed the encoding process of SZ.

The standard ZT coder (Shapiro, 1993) uses four symbols to encode wavelet transformed data
(POS, NEG, ZTR, IZ). They determine the status of a coe�cient for a particular bit plane consid-
ering its previous state in the higher bit plane. As explained in Subsection 3.5.2, the coe�cients
are successively visited and compared to a decreasing threshold equal to 2bit plane. If the value of
the coe�cient is higher than the threshold, the coe�cient is considered signi�cant, and is included
in the list of signi�cant coe�cients. From this bit plane, the coe�cient is encoded using POS and
NEG symbols. On the contrary, if the coe�cient is lower than the threshold, it means that all its
bits considered so far were zero. Depending on its location in the decomposed structure, a coe�-
cient �gures as the ZT root (encoded with a ZTR symbol) or belongs to a ZT (by consequence it is
implicitly represented by a root element) while IZ is for �isolated zero�.

Consequently, the state of a coe�cient changes continuously using lower thresholds. From un-
expressed, it is potentially identi�ed as a ZTR or IZ and �nally becomes signi�cant. We de�ne
the activity as the number of coe�cient state changes for a bit plane, with nSIG the number of
signi�cant symbols (POS, NEG), and nZ the number of zero symbols (ZTR, IZ) at the ith bit plane.
The activity is relative to the total number of coe�cients noted C , and de�ned by:

ZT activity(i) =
nSIG(i)− nSIG(i+ 1) + nZ(i)− nZ(i+ 1)

C
(4.7)

Figure 4.16 shows the curve of ZT activity according to the bit plane for the permeability in
the nearshore1 environment, preprocessed by Λ0,34bits and decomposed by the CDF 9/7 wavelet.
This curve describes the progressive encoding process of binary data from the MSB to the LSB.
Consequently, this reverses the quality progression (Λ-SNR, bit budget) drawn so far, that showed
the precision decreasing from left to right using less bit budget along the x-axis. Now, reading
along the same axis involves using more and more binary planes, thus increasing the precision of the
reconstructed data.

We interpret the ZT activity as a clue on the encoding evolution and allows identifying di�erent
phases. At beginning, using a partial number of MSBM planes, ZT are few but constitute large
structures (comprising a large number of zero coe�cients). Consequently the starting activity is low
because only few nZ and nSIG are encoded. Progressively, the number of ZTs tends to increase by
splitting precedent large ZTs into smaller ones, while ever more coe�cients become signi�cant. For
the example of Figure 4.16, the ZT activity takes o� from the 36th bit plane and peaks at the 31th

bit plane. Then, the ZT activity decreases to zero as well as the number of ZTs, since all coe�cients
become signi�cant using an ever lower threshold. From the 22th bit plane, we observe that the ZTs
vanish. However, the ZT can continue to encode bit planes, even though they no longer have a
structure. Our postulate is that, beyond this bit plane, information consists of incoherent data that
does not contribute to the increasing of the precision for the reconstructed RM.

Besides, if considering the renderings, as soon as the activity returns to zero, i.e., once the 22th

bit plane is processed, the (de)compressed data is already very close to the original data visually
(indexed by �8� in the Figure). The decoding of the subsequent bit planes will only add very light
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visual details. If considering now the simulation accuracy, as soon as the activity returns to zero,
our simulation results are already �identical�. This can be seen thanks to the color of the marks on
the activity curves that allude to the subjective evaluation, as previously done in Subsection 4.2.3.
Finally, it would seem that we learn more about the data precision required to have a good visual
quality and also an unbiased simulation outcomes by interpreting ZT activity than by analyzing
objective metrics such as the curve Λ-SNR, displayed at the bottom of the �gure.

Figure 4.17 shows the curve of ZT activity according to the bit plane for the permeability in the
nearshore1 environment, but this time preprocessed by Λ1,34bits . The curve is quite similar than
with Λ0,34bits . A peak is observable between the 36 and 18th bit plane, although less pronounced.
But the conclusion is the same: as soon as the activity returns to zero, the visual quality is good,
and the simulation accuracy is already considered as �identical�. It con�rms the fact the ZT activity
seems to be a relevant information to assess the quantity of data required for simulation, whatever
the compandor features.

To summarize, in this last section, we showed that the compression work�ow could be probably
improved, �rst by taking into account the anisotropy of some continuous properties. It could be
simply done for instance by changing the dyadic decomposition by a wavelet packet decomposition,
which enhances the decorrelation of some subbands neglected by an isotropic approach. Second
we showed that the decrease of ZT activity during (de)compression seems to indicate the minimal
data quantity required for obtaining accurate simulation outcomes even with a limited precision
(as for displaying very nice reconstructions, with negligible visual losses). Finally, we also showed
that, even if the bit planes subsequent to the peak of activity do not further improve the quality
of the decompressed data, the curves of the objective measurements (Λ-SNR) continue to increase
linearly, demonstrating an �illusory" precision. Actually, the linearity of this curve does not allow
us to distinguish the signi�cant data from the rest considered as noise by (Natarajan, 1993).
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Figure 4.16: Correlation between ZT activity (top-curve) and objective evaluation by Λ-SNR
(bottom-curve) of permeability from nearshore1 environment generated at re�nable precision by
increasing bit planes number for reconstruction while our compression alternative using Λ0 .



4.3. Deepening the method 107

0510152025303540
0

0.1

0.2

0.3

0.4

876543
2

1

ith bit plan

Z
T
ac
ti
vi
ty

7 8 original
data

4 5 6

1 2 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

50

100

150

200

87654321

bit budget

Λ
-S
N
R

Figure 4.17: Correlation between ZT activity (top-curve) and objective evaluation by Λ-SNR
(bottom-curve) of permeability from nearshore1 environment generated at re�nable precision by
increasing bit planes number for reconstruction while our compression alternative using Λ1 .





CHAPTER 5

Conclusions & perspectives

5.1 Conclusions

This work evaluated the relevance of compression for reservoir meshes, from visualization to sim-
ulation through lossless and lossy storage, along four chapters. The �rst chapter provided context
on the growing concern of data handling in data-intensive science. In a second chapter, we focused
on geosciences and volume meshes used to model objects and simulate geological phenomena and
reservoir behaviors. The third chapter reviewed methods employed to deal with huge datasets in
various scienti�c �elds. We then introduced a comprehensive multiscale approach for the di�erent
components of geological volume meshes. Its evaluation for visualization and compression shows the
bene�ts of combining embedded scales with both generic and re�nable data encoding techniques.
The impact of re�ning spatial resolution and numerical precision on a complete simulation work�ow
is �nally assessed in Chapter 4 on the lundi reservoir model. We thereafter provide more details
on our contributions.

Compression in the domain of multimedia is very commonly used to reduce data quantity and
improve the distribution of sound, images and videos. Compression standards (jpeg, mp3) have
gradually invaded our daily digital lives, without end users being really aware of their bene�ts and
implications. Compressing digital data often involves the concatenation of regular components fol-
lowing a logical scheme. The singularity of a compression algorithm often lies in the nature of
its components, chosen to meet speci�c needs: execution speed, compression ratio, quality. It is
hardly optimal on all fronts. Hence, it is therefore essential to identify user needs, to �nd a balance
between theoretical advances and practical concessions. This allows to propose adaptable and per-
fectible models for various data sources.

Contrary to multimedia, data formats in sciences is not well standardized, as they are not in-
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tended, originally, to be exchanged amid a wide audience. However, their quantity exploded as well
in the last decade, in a quest for better reality representation, leading to increased model precision
and resolution. Technological advances on computational resources and facilities (high-performance
computing, gigantic data centers) allows the processing of ever more detailed data. Yet, this sys-
tem is gradually touching its limits, and bottlenecks are appearing in data storage, transmission, or
computing. To address these growing issues, researchers have being re-examining compression for
scienti�c data, in a variety of application �elds with very di�erent data nature and dimensions. In
geosciences, volume meshes are complex data made of heterogeneous elements (from structure to
properties). Their reduction � to better handle their growing dimensions and therefore reduce the
computation time of reservoir �ow simulations � is already a research subject. Still, the variety
of models and the assessment of quality at di�erent steps of a simulation work�ow still requires
attention.

We demonstrated in the third chapter that compression can signi�cantly reduce the quantity of
scienti�c data by studying diverse meshes and di�erent compression tools, with approaches ranging
from lossless to lossy. In the spirit of upscaling methods deployed in geosciences, we base our
generic hexahedral mesh representation on HexaShrink, a multiscale decomposition o�ering dyadic
intermediate resolutions. It is principally non-expansive: lower resolutions are embedded in a single
structure that does not increase the number of binary objects. It is based on di�erent kinds of discrete
wavelet decompositions, adapted to each mesh component. We take a special care in the visual
preservation of discontinuities, like faults. The relevance of this scheme for visualization is veri�ed
on eight meshes, in a comparison with lower-resolution grids obtained from known geomodellers.

HexaShrink allows a sparser representation of regular data variations. Combined with several
generic encoders, this hierarchical decomposition is thereafter proved e�cient for storing meshes in
a lossless manner. Their size can be decreased by a factor of two to ten, while faithfully preserving
their exact information. A detailed analysis for each mesh component shows huge di�erences in
compression ratios. Contrary to structure data, continuous properties were hardly compressible.
This is corroborated by the literature, and related to the dynamic range of petrophysical data with
classically-used scienti�c �oating-point formats.

This observation encouraged us to pursue our work on compressing continuous properties with
an evolved progressive coder, named zerotree. It aims at better handling multiscale decompositions
by exploiting remaining redundancies in the transformed data. Besides being adapted to spatial
re�nement across resolutions, it also parses data in a binary-depth order. Contrary to the lossless
methods used before, data can be generated at re�nable precision, allowing a progressively lossy
compression, from the most to the least signi�cant bits.

The quality of reconstructed data was evaluated on a wide range of bit-per-cell values, using
objective metrics and visual clues. A focus was laid on continuous properties of lundi, a reser-
voir model designed for the purpose of a second comparative benchmark. We demonstrated that
a wavelet transform associated to zerotree coding was again competitive in performance with re-
spect to generic encoders. It saved at best about ten bits per value at single �oating-point precision
(32 bits). It however requires a strict control of degradation, to be used with con�dence in simulation.

Indeed, in the fourth chapter, we demonstrated that compression may used very little negative
impact on simulation, if properly guided. It is analyzed on the lundi reservoir mesh across a cus-
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tomizable base of simulation parameters. Motivated by the di�culties to compress permeability
data, we complemented the wavelet/zerotree compression with compandor, a scalar data transfor-
mation inspired from physical principles. We also proposed a novel family of compandor-modi�ed
objective metrics. Although simple, they proved well-suited to objectively measure the subjective
quality of well production evaluated on compressed meshes.

To be able to conduct the above proof-of-concept for a compression scheme with re�nable res-
olution and precision, the HexaShrink decomposition was chosen isotropic. Expecting increased
performance with the knowledge of reservoir data orientation, and guidance on the actual precision
needed for accurate simulation, we �nally explored two complementary directions. The �rst one
uses anistropy information obtained from variograms, and suggested that sparser decompositions
(hence better compression) could be achieved with wavelet packets instead of wavelets. The second
one consists in investigating the binary activity of bit depths in zerotree encoding. Looking at the
binary precision of the data, we may detect when encoding has already attained a limit of structured
information that can be used to compress data. Below that limit, the binary bit planes add little to
no information. They thus carry a noise-like content, and could be discarded as unuseful.

These preliminary results however remain solid intuitions, showing promises to be con�rmed in
future works.

5.2 Perspectives

We proposed a comprehensive assessment for the validation of compression methods to be used in
a simulation work�ow. It included lundi, a versatile reservoir model, a combination of subjec-
tive evaluations and novel objective metrics. The multiscale HexaShrink representation is usable
throughout a complete simulation work�ow (visualization, lossless and lossy compression, model sim-
ulation). It provided overall positive performance with respect to state-of-the-art tools. However,
while solid, this work could be complemented in the following directions.

The dataset for comparative evaluation could be extended. The lundi mesh could be �lled
with di�erent property distributions, additional topological discontinuities and especially increased
in volume1. This motivates our goal to share those datasets with the simulation community, to allow
other independent benchmarks to be run.

By studied other volume meshes and di�erent property natures, we could further investigate
the use of companding as a useless preprocessing step, and the associated compandor metrics for
objective/subjective assessment.

As geoscience meshes are composite, a �nal compressed bitstream for all the objects should be ob-
tained. This requires to implement progressive coding on every component: activity, corners, pillars,
discrete properties, etc. Complexity may arise from the interdependence of the latter: depending on
a rock type, and its thickness, its continuous altitude might be quantized at lower precision, without
a�ecting notably the main simulation features. Being able to exploit � jointly � their impact has
potential in improving compression ratios.

We have obtained limited results regarding the acceleration of simulation: only the �rst lower
resolutions from HexaShrink can be used for upscaling. We may expect improvements by em-
bracing anisotropy, and notably dissociate the decomposition along depth. This would increase the

1We use a limited size of 128×128×32 for e�ciency reasons, to be able to performed a large quantity of simulations.
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complexity of the global coding of all mesh components.

Finally, a major line of research would reside at the interface of simulation and compression.
Simulation codes use complicated re�nement schemes, potentially on multiresolution grids. They
can be sensitive to the data precision, hence the use of extended �oating-point formats. They are not,
to the best of our knowledge, devised to use the prioritization of information that can be a�orded by
compression tools: prominent information at speci�c resolutions, precision that can be re�ned upon
numerical accuracy bounds, etc. Such a blending of compression pipelines and simulation work�ows
could yield gains in both data storage and computational time.
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Subsection 3.4.3: In-depth analysis of the coding performance#
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Figure 5.1: Binary cost of each component for mesh#1 and mesh#2 in function of the number
of successive HexaShrink decompositions. Complementary results from Section 3.4. If the mesh
contains two continuous properties, only the results for porosity property is presented.
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of the number of successive HexaShrink decompositions. Complementary results from Section 3.4.
If the mesh contains two continuous properties, only the results for porosity property is presented.
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Figure 5.3: Binary cost of each component for mesh#7 and mesh#8 in function of the number
of successive HexaShrink decompositions. Complementary results from Section 3.4. If the mesh
contains two continuous properties, only the results for porosity property is presented.

Subsection 4.2.1: Subjective evaluation of simulation results#

Fives areas around WC are delineated, as illustrated by Figure 4.3, to de�ne a containing area for
ŴC. From the closer to the most distant, we de�ne: identical - correct - acceptable - incorrect -
aberrant areas.

To limit di�erent areas, functions (Equations 5.2 & 5.1) are generated by editing WC reference
using speci�c error parameters. Acceptable error varies according to the category type, and exploita-
tion moment. It tends to progressively increase across time, such as interest of reservoir engineer.

The temporal evolution is detailed on Figure 5.4, by dividing the exploitation duration (almost
one year) into three phases, separated by two red dashed lines, noted d1 and d2. First line set at
water breakthrough (in�ection point of WC), while second line points water saturation at 0.2.

During the �rst phase, extracted �uid does not contain any water. Therefore water saturation is
zero or close to zero. There, only tiny constant error E0 is tolerated by reservoir engineer. During
the middle phases, water saturation sharply increases to progressively reach a plateau during last
phase. Acceptable errors, respectively noted E1 and E2 temporally grows, by cumulation of ei and
a delay for two last periods, as reported in the Table 5.1.
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Figure 5.4: Water cut curve in blue obtained on the original data: near shore environement, serves
as reference. The water breakthrough is spotted by �rst red point.

WCsup(d) =


WCref (d) + E0 , d < d1

WCref (d+ delay) + E1(d+ delay) , d ∈ [d1, d2]

WCref (d+ delay) + E2(d+ delay) , d > d2

(5.1)

WCinf (d) =


WCref (d)− E0 , d < d1

WCref (d− delay)− E1(d− delay) , d ∈ [d1, d2]

WCref (d− delay)− E2(d− delay) , d > d2

(5.2)

with


E0 = e0

E1(d) = e0 + e1
WCref (d)−WCref (d1)
WCref (d2)−WCref (d1)

E2(d) = e0 + e1 + e2
WCref (d)−WCref (d2)

WCref (dfinal)−WCref (d2)

(5.3)

Identical Correct Acceptable Uncorrect Aberrant
e0 0.001 0.0025 0.025 0.025
e1 0.001 0.005 0.02 0.03 Remaining
e2 0.001 0.005 0.02 0.3 Area

delay 0 day 0 day 1 day 2 days

Table 5.1: Error parameters
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Figure 5.5: Subjective evaluation of simulation results, using region boundaries around the WC
(around water cut curve curve from nearshore1 environment) to de�ne a qualitative ranking: 'Iden-
tical' (in blue), 'Correct' (in green), 'Acceptable' (in yellow), 'Uncorrect' (in orange) and 'Aberrant'
(in red).
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Figure 5.6: Subjective evaluation of simulation results, using region boundaries around the water cut
curve (around WC curve from nearshorea environment) to de�ne a qualitative ranking: 'Identical'
(in blue), 'Correct' (in green), 'Acceptable' (in yellow), 'Uncorrect' (in orange) and 'Aberrant' (in
red).
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Figure 5.7: Subjective evaluation of simulation results, using region boundaries around the water
cut curve (around WC curve from fluvial environment) to de�ne a qualitative ranking: 'Identical'
(in blue), 'Correct' (in green), 'Acceptable' (in yellow), 'Uncorrect' (in orange) and 'Aberrant' (in
red).

Subsection 4.2.2: HexaShrink evaluation in upscaling/upgridding
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Figure 5.8: Overlay of water cut curve simulated on �ne grid lundi mesh, (nearshore1 environment)
and ŴC simulated on its lower resolutions (up to res-3) generated by HexaShrink.
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Figure 5.9: Overlay of water cut curve simulated on �ne grid lundi mesh, (nearshorea environment)
and ŴC simulated on its lower resolutions (up to res-3) generated by HexaShrink.
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Figure 5.10: Overlay of water cut curve simulated on �ne grid lundi mesh, (fluvial environment)
and ŴC simulated on its lower resolutions (up to res-3) generated by HexaShrink.
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Figure 5.11: Visualization of the lundi lower resolution from HexaShrink �lled by continuous
properties, with porosity on upper part and permeability on lower part, for the four distinct geological
environments: "nearshore0 " (left), "nearshore1 " (right).
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Figure 5.12: Visualization of the lundi lower resolution from HexaShrink �lled by continuous
properties, with porosity on upper part and permeability on lower part, for the four distinct geological
environments: "nearshorea " (left), "fluvial " (right).
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Subsection 4.3.1: Exploiting the anisotropy
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Figure 5.13: Three variograms of the mesh directions computed on continuous property on nearshore1

environment.

Weighted entropy
Volume data Dyadic wavelet transform packets wavelet transform

nearshore0 18.48 15.58 14.97
nearshore1 18.92 15.61 14.99
nearshorea 18.92 15.61 14.99

fluvial 18.81 15.62 15.00

Table 5.2: Weighted entropies computed on permeability property of four environments decomposed
by dyadic wavelets or wavelet packets.
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Figure 5.14: Three variograms of the mesh directions computed on continuous property on nearshorea

environment.
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Figure 5.15: Three variograms of the mesh directions computed on continuous property on fluvial
environment.
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Subsection 4.2.3: Continuous properties, which precision?
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Figure 5.16: Permeability from nearshore0 (top on the left) end nearshore1 (top on the right)
nearshorea (bottom on the left) and fluvial (bottom on the right) environments generated at re�nable
precision for decreasing bit budget (a mark per precision) by our alternative (wavelet packet or dyadic
decomposition), SZ and ZFP (using or not Λ0 ), objectively evaluated by Λ-SNR; highlighted by
subjective appreciation of simulation results (color code).
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Figure 5.17: Permeability from nearshore0 (top on the left) end nearshore1 (top on the right)
nearshorea (bottom on the left) and fluvial (bottom on the right) environments generated at re�nable
precision for decreasing bit budget (a mark per precision) by our alternative (wavelet packet or
dyadic decomposition), SZ and ZFP (using or not Λ0 ), objectively evaluated by MRE; highlighted
by subjective appreciation of simulation results (color code).
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Subsection 4.3.2: Thresholding at necessary precision

Figure 5.18: Correlation between ZT activity (top-curve) and objective evaluation by Λ-SNR
(bottom-curve) of permeability from nearshorea environment generated at re�nable precision by
increasing bit planes number for reconstruction with our compression alternative using Λ1 .
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Figure 5.19: Correlation between ZT activity (top-curve) and objective evaluation by Λ-SNR
(bottom-curve) of permeability from nearshorea environment generated at re�nable precision by
increasing bit planes number for reconstruction with our compression alternative using Λ0 .
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Figure 5.20: Correlation between ZT activity (top-curve) and objective evaluation by Λ-SNR
(bottom-curve) of permeability from nearshore0 environment generated at re�nable precision by
increasing bit planes number for reconstruction with our compression alternative using Λ1 .
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Figure 5.21: Correlation between ZT activity (top-curve) and objective evaluation by Λ-SNR
(bottom-curve) of permeability from nearshore0 environment generated at re�nable precision by
increasing bit planes number for reconstruction with our compression alternative using Λ0 .
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Figure 5.22: Correlation between ZT activity (top-curve) and objective evaluation by Λ-SNR
(bottom-curve) of permeability from fluvial environment generated at re�nable precision by in-
creasing bit planes number for reconstruction with our compression alternative using Λ1 .
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Figure 5.23: Correlation between ZT activity (top-curve) and objective evaluation by Λ-SNR
(bottom-curve) of permeability from fluvial environment generated at re�nable precision by in-
creasing bit planes number for reconstruction with our compression alternative using Λ0 .
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