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“The most beautiful thing we can experience is the mysterious. It is the source
of all true art and science.”

Albert Einstein
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Abstract

Multiple-input multiple-output (MIMO) technologies were developed to increase
system capacity and offer better link reliability. They allow a dense network archi-
tecture that will allow many users to connect in the same area without experiencing
slowdowns. 5G networks and beyond will use these MIMO technologies with many
small antennas allowing the beam to be focused on a given area. Coupled with high-
frequency bands, the use of these antennas will significantly increase throughput.

In such systems, multi-user (MU)-MIMO detection in the uplink reception and MU-
MIMO precoding in the downlink transmission enable separating user data streams
and pre-cancelling interference. However, some challenges have to be met under
realistic conditions, such as the reasonable complexity of the decoding and precod-
ing processes, the erroneous channel knowledge, and the adjacent cell interference.
This thesis addresses all these limitations above for the uplink reception and the
downlink transmission in MU-MIMO systems.

In the uplink reception, we study the well-known sphere decoding (SD) algorithm
for MIMO detection. We seek to reduce its complexity which increases exponen-
tially with the number of antennas and the constellation size. Thus, we profit from
recent advances in neural networks (NNs) to develop the low-complexity NN as-
sisted SD. We also propose the block recursive MIMO decoding, achieving almost
the maximum likelihood (ML) performance. Using deep neural networks (DNNs),
we suggest a new and low complex scheme for signal processing and cloud-RAN
(C-RAN) detection. This DNN scheme aims to mimic the whole transmission in up-
link C-RAN, which considers the quantization constraints at the radio remote units
(RRUs) and the corrupted observations at the central processor (CP).

In the downlink transmission, we study the non-linear vector perturbation (VP) pre-
coding. We design the combined VP to serve multiple users with different mod-
ulation coding schemes (MCSs). We also introduce the block VP algorithm, which
merges linear and non-linear precoding to offer a tunable tradeoff between complex-
ity and performance. To deal with the erroneous channel state information (CSI) in
the downlink precoding, we develop the new CSI accuracy indicator reporting to
design a novel precoder that is less sensitive to CSI errors.
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Résumé

Les technologies a entrées multiples et sorties multiples (MIMO) ont été dévelop-
pées pour augmenter la capacité du systéme et offrir une meilleure fiabilité de la
liaison. Ils permettent une architecture réseau dense qui permettra a de nombreux
utilisateurs de se connecter dans la méme zone sans subir de ralentissements. Les
réseaux 5G et au-dela utiliseront ces technologies MIMO avec de nombreuses petites
antennes permettant au faisceau de se concentrer sur une zone donnée. Couplées a
des bandes haute fréquence, 1'utilisation de ces antennes augmentera considérable-
ment le débit.

Dans ces systemes, la détection multi-utilisateurs (MU)-MIMO dans la réception de
la liaison montante et le précodage dans la transmission de la liaison descendante
permettent de séparer les flux de données utilisateur et de pré-annuler les inter-
férences. Cependant, certains défis doivent étre relevés dans des conditions réal-
istes telles que dans des conditions réalistes telles que la complexité raisonnable
des processus de décodage et de précodage, la connaissance erronée des canaux
et l'interférence des cellules adjacentes. Cette thése aborde toutes ces limitations
ci-dessus pour la réception en liaison montante et la transmission en liaison descen-
dante dans les systemes MU-MIMO.

Pour la réception sur la liaison montante, nous étudions 'algorithme bien connu de
décodage par spheres (SD) pour la détection MIMO. Nous cherchons a réduire sa
complexité qui augmente de maniére exponentielle avec le nombre d’antennes et la
taille de la constellation. Ainsi, nous profitons des récentes avancées dans le do-
maine des réseaux de neurones (NNs) pour développer le SD assisté par les NNs de
faible complexité. Nous proposons également le décodage MIMO récursif par blocs,
qui atteint presque la performance de maximum de vraisemblance (ML). En util-
isant les réseaux neuronaux profonds (DNNs), nous suggérons un nouveau schéma
peu complexe pour le traitement et la détection du signal dans la liaison montante
du cloud-RAN (C-RAN). Ce schéma DNN vise a imiter toute la transmission en li-
aison montante C-RAN, qui prend en compte les contraintes de quantification au
niveau des unités radio distantes (RRUs) et les observations corrompues au niveau

du processeur central (CP).

Dans la transmission en liaison descendante, nous étudions le précodage de la per-
turbation vectorielle (VP) non-linéaire. Nous concevons le VP combiné pour servir
plusieurs utilisateurs avec différents schémas de codage de modulation (MCSs).
Nous introduisons également 1’algorithme VP par blocs, qui fusionne le précodage
linéaire et non-linéaire pour offrir un compromis accordable entre complexité et per-

formance. Pour traiter les informations erronées sur 1'état du canal (CSI) dans le
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précodage de la liaison descendante, nous développons le nouvel indicateur de pré-
cision CSI pour concevoir un nouveau précodeur moins sensible aux erreurs CSI.



X

Acknowledgements

I want to express my gratitude to the people who have helped, encouraged, and
supported me to carry out this thesis work.

I want to thank from the deep of my heart, my supervisor Ms Ghaya Rekaya-Ben
Othman, Professor at Telecom Paris, who opened to me the doors to research and
gave me a taste for it. Thank you, Ghaya, for your listening, availability, guidance,
precious advice and the continuous trust you have placed in me. Without your
bright ideas, experience and competence, this work and its outcome would never
have seen the light of day. It was a great pleasure working with you. I am delighted
to have you as my thesis supervisor, and I hope this fruitful collaboration will see its

future continuity.

I want to thank the jury members very sincerely for participating in the jury of
my thesis. I thank Professor Michel Kieffer for acting as the chairman and Profes-
sors Samson Lasaulce and Elena Veronica Belmega for reviewing and evaluating
my work. Besides, I am grateful to Professors Jean-Frangois Hélard and Catherine
Douillard for being my thesis” examiners. I was honoured that Mr Philippe Sehier,
the product strategy manager within Nokia Bell Labs in France, participated in the

jury as a guest.

I would also like to thank Dr Hadi Ghauch at Telecom Paris to work and discuss
together during my thesis.

And a special thanks to Florence Besnard and Chantal Cadiat for services way be-
yond the call of duty. Let me also thank all my colleagues and PhD friends. I express
a huge thanks to Mehdi, Akram, Homa, Mehrasa, and Mustapha, with whom I had

a great time that I will never forget.

Above all, my heartfelt love is devoted to my fiancée Asma, whose love, care, help
and support encouraged me to work hard. Thank you, Asma, for all the beautiful
moments we shared. Also, my gratitude is devoted to my young brothers, Anis and
Khalil, whose love is exceptional. Last but not least, I express my deep gratitude to
my parents, Abdessattar and Faouzia, for their unconditional love, sacrifices, and
encouragements. I hope that this accomplishment makes all of you proud.






Contents

Abstract

Résumé

Acknowledgements

1 Introduction

2 The Uplink and Downlink Processing in MIMO Systems

2.1
2.2
2.3
24

2.5

2.6

Introduction . . . .. ... L L
Fundamental Aspects of MIMO Communication Systems . . . . . . ..
Uplink-Dowlink Duality . . ... ... ... ... .. .. ......
MIMO Decoding Techniques . . . ... ... ... ............
241 Sub-optimaldecoding . .. ... ........ . ... . ... ..
242 Optimaldecoding . .........................
MIMO Precoding Techniques . . . . ... ... .. ............
25.1 Linearprecoding . ... ... ... ... . ... .. .. ... ...
2,52 Non-linear precoding . . ... ... .. ... ... .. ......
Summary . . . ...

3 MIMO Decoding in the Uplink Reception

3.1
3.2

3.3

34

3.5

Introduction . . . ... ... L
Counting Lattice Points in the Sphere using NN . . . . ... ... ...
3.2.1 Definitions and properties of lattices . . . . ... ... ... ...
322 Learningapproach . .. ... ... ... ... ... .. ......
323 Simulationresults . ... ... ... ... ... . 0L,
Learning assistedSD . . . .. ... .. ... .. o o oL
3.3.1 NN assisted SD with a dichotomic search of radius . . . .. ..
3.3.2 Smart SD withimproved radius . . . .. ... ..........
333 NN-SDvs.SSD . .. ... .. .. . .
3.3.4 Simulationresults . .. ... ... ... .. .. 0 L.
Block Recursive MIMO Decoding . . . . . ... ..............
341 Blockdivision . . .. ... ... .. o oo
3.4.2 Diversity orderanalysis . . .. ... ................
3.4.3 Simulationresults . .. ... ... ... .. . L 0 L.

Summary . . .. ...

xi

vii

ix

11
13
14
16
21
21
22
26



xii

4 Learning assisted Fronthaul Compression for Uplink C-RAN 53
41 Introduction . .. ... ... .. ... ... 53
42 Background ... .. ... ... .. o 53
4.3 System Model and Problem Conception . . . . ... ... ........ 55
44 QDNetDesign . . ... ... .. ... ... . e 56

441 Quantization Process atthe BSside . . ... ... ........ 58
442 Decoding Process atthe CPside . ... .............. 59
443 QDNetComplexity . . . .. ...... ... .. .. ........ 62
45 Experiments . . .. ... ... 63
451 Implementationdetails . . ... ............... ... 63
452 Competingschemes . ... ..................... 63
453 Quantizationmodel . . ... ... ... ... ... .. ... ... 64
454 Experimentresults . .. ... ... .. ... .. .. . 0 L. 65
46 Summary . . . ... e 67

5 MU-MIMO Precoding in the Downlink Transmission 71
51 Imtroduction . . ... ... .. ... ... . L 71
5.2 MU-MIMO Precoding for Adaptive Modulation . . .. ... ...... 72

521 Combined MMSE-VP . ... .................... 74
522 Simulationresults . . ... ... ... ... . .. 000 L. 75
5.3 Block Recursive MU-MIMO Precoding . . . . ... ............ 78
53.1 Preliminaries . .. ... ... .. ... ... . ... .. 79
5.3.2 Decomposition of the VP error power . . . ... ... ...... 81
5.3.3 Diversity order: lowerbound . . . . ... ... ... .. L. 84
53.4 Diversity order: upperbound . . . . .. ... oo L 85
53.5 Simulationresults . ... ... ... ... ... 00 0L, 87
5.4 Precoding for Users with Different CSI Accuracy . . . . ... ... ... 88
54.1 CSlaccuracy indicator reporting . . . .. ............. 89
542 MMSEbased precoding . . . ... ... ... .. 0 L. 90
543 Performanceanalysis. . ... ... ... ... .......... 92
54.4 Simulationresults . .. .. ... ... ... ... 0 L. 95
55 Summary . ... ... 99

6 Conclusions and Perspectives 101

7 Shortened French Version 103
71 Introduction . ... ... .. ... . ... o 103
7.2 Liaisons Montantes et Liaisons Descendantes dans les Systemes MIMO 103

7.2.1 Aspects fondamentaux des systemes MIMO . . . .. ... ... 103
7.2.2  Dualité liaison montante - liaison Descendante . . . . . . . . .. 105
7.3 Décodage MIMO dans la Liaison Montante . . . . . ... ... ... .. 105
7.3.1 Comptage des points du réseau dans lasphére . . . . . ... .. 105

7.3.2 SD assisté par apprentissage . . . .. ... ... .. .. ... .. 107



C

D

7.3.3 Décodage MIMO récursif parblocs . .. ... ... ....... 109
74 Compression Fronthaul dans les systemes C-RAN assistée par Ap-
prentissage . . . . .. ... 113
74.1 Modele de systeme C-RAN et conception du probleme . . . . . 113
742 ConceptionduQDNet . . ... ... ... ... . ... ... 114
74.3 Résultats d’expérimentation. . . . .. ...... .. ... .. .. 116
7.5 Précodage MU-MIMO dans la Liaison Descendante . . .. ... .. .. 116
7.5.1 Précodage MU-MIMO pour la modulation adaptative . . . .. 118
7.5.2 Précodage MU-MIMO récursif parblocs . .. ... ... .... 120
7.5.3 Précodage avec des précisions CSI différentes . . . .. ... .. 121
76 Conclusion . . ... ... .. ... .. e 123
Chapter 3: Number of Radius Updates in the NN-SD 125
Chapter 5: Upper Bound Proof 127
Chapter 5: Proposition Proof 129
Chapter 5: Feedback Load 131

Bibliography 133






XV

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6

2.7

2.8
29
2.10

3.1
3.2
3.3
34
3.5

3.6
3.7
3.8
3.9
3.10
3.11

3.12

4.1
4.2
43
44

Primary5Gusecases.. . . . . ... ... .. ... oL 1
MIMOsystemmodel. . . . ... ....................... 8
MU-MIMO communicationmodels. . . ... ... ... ......... 9
MU-MIMO configurations. . . .. ... ... ... ... .. ...... 10
Similarity of primary decoding and precoding schemes. . . . . . . . .. 13
Primary MIMO decoding techniques. . . ... ... ........... 14
Diagram of the search tree in the SD algorithm for a2 x 2 system with

4-QAM constellation. . . . . . .. ... 19
BER performance of MIMO decoding techniques for an 8 x 8 MIMO

system with 16-QAM constellation. . . . . . ... ... ..... ... .. 19
Flowchart of the stack decoding algorithm. . . . . ... ... ... ... 20
THP systemmodel. . . ... ......................... 23
BER performance of MIMO precoding techniques for an 8 x 8 MIMO

system with 16-QAM constellation. . . . . .. ... ... ... ... ... 25
Fundamental parallelotope of a 2 dimensional lattice. . . .. ... ... 29
The SMAPE versus the actual number of points for dimension n = 10. 33
Plots of the SMAPE histogram of the DNNmodel. . . . . ... ..... 34
Flowchart of the NN-SD algorithm. . . . . ... .............. 38
BER performance of the NN-SD for the 8 x 8 MIMO system with 16-

QAM constellation. . . . . . . . . ... 40
Average number of radiusupdates. . . . . . ... ... oL 41
Average number of multiplications in the decoding process. . . . . .. 42
Average processing time in the decoding process. . . . ... ... ... 42
Average number of lattice points (N,y,) falling inside the search sphere. 43
Block division of the decoding system. . . . . .. ... .......... 45
BER performance of the block decoder for the 10 x 10 MIMO system

with 16-QAM constellation. . . . . . ... ... ... ... ........ 50
Average processing time in the block decoder. . . . .. ... ... ... 51
An uplink C-RAN system with a finite capacity fronthaul. . ... ... 55
The clipping function ¥, (.). . . . . . .. ... L o 58
NN structureateachnthBS. . . .. .. ... .. .............. 59
One block of an iterative estimation. . . . ... .. ... ... ...... 60



XVi

4.5
4.6
4.7
4.8
49

4.10

4.11
4.12

51

52
53
54
55
5.6
57
58
59
5.10
511
512

A flowchart representing a single layer of QDNet at the CP side. . . . . 61
[lustration of the QDNet architecture for uplink C-RAN. . . . ... .. 62
BER vs. SNR of different schemes for single BS scenario and 4-QAM. . 65
BER vs. SNR of different schemes for single BS scenario and 16-QAM. 66
BER vs. SNR of different schemes for 4-QAM modulation and 5 quan-

tizationbits. . . . ... L L 67
BER vs. SNR of different schemes for 16-QAM modulation and 5

quantizationbits. . . ... ... o o o 68
BER vs. number of quantization bits for 4-QAM modulation. . . . . . . 68
BER vs. number of quantization bits for 16-QAM modulation. . . . . . 69

Search tree diagram of the SE for a 2 x 2 system with 16-QAM at the
top level and 4-QAM at the bottom level. . . . .. ... ... ... ... 74
Averaged BER of all users applying for 3 different modulation types. . 76

BER performance of the users per modulation. . . ... ......... 77
Performance of combined MMSE-VP precoder. . . . . . ... ... ... 77
Ordering effect in the complexity of combined VP. . . . . ... ... .. 78
Block division of the precoding system. . . ... ... ... ....... 79
Block VP results for an 8 x 8 system with variable block sizes. . . . . . 87
Block VP for an 8 x 8 system with two modulation orders. . . ... .. 88
System model of precoding. . . . ... ... ... o oL 91
Performance of the new precoder with CSIAL . . . ... ... ..... 97
SER performance with fixed feedbackload. . . ... ... ... ... .. 98

SER performance with varied feedbackload. . . ... ... .. ... .. 98



XVil

List of Tables

3.1 Structureforthe NN. . . . . . . . . . . e 31
3.2 Accuracy experiment for arbitrary latticesin R". . . . . ... ... ... 32
3.3 Results for some known lattices. . . . . . . ... ... .. .. ... 35
5.1 SER for different SNRs and settings with linear MMSE. . . . .. .. .. 96

5.2 SER for different SNRs and settings with MMSE-VP. . . . . . ... ... 96






Xix

List of Abbreviations

AWGN  Additive White Gaussian Noise

BC Broadcast Channel

BER Bit Error Rate

BFS Breadth First Search

BS Base Station

CF Compress-and-Forward

CP Central Processor

C-RAN Cloud-Radio Acces Network
CSI Channel State Information

CSIAI Channel State Information Accuracy Indicator
CSI-RS  Channel State Information Reference Signal

CQI Channel Quality Indicator
cvp Closest Vector Problem

DFE Decision Feedback Equalizer
DFS Depth First Search

DL Deep Learning

DNN Deep Neural Network
DPC Dirty Paper Coding
FDD Frequency Divison Duplex

ICI Inter Cell Interference
IoT Internet of Things

ISI Inter Symbol Interference
LTE Long Term Evolution

MAPE  Mean Absolute Percentage Error
MCS Modulation Coding Scheme
MIMO  Multiple Input Multiple Output

ML Maximum Likelihood

MMSE  Minimum Mean Squared Error
MU Multi User

NN Neural Network

NR New Radio

OAMP  Orthogonal Approximate Message Passing
PDF Probability Density Function

PIC Partial Interference Cancellation

PMI Precoding Matrix Indicator



XX

QAM
RZF
SD
SDMA
SE
SGD
SIC
SINR
SMAPE
SNR
STBC
SU
SVD
TDD
THP
UE

VP
WiFi
ZF

Quadrature Amplitude Modulation
Regularized Zero Forcing

Sphere Decoding

Space Division Multiple Access

Sphere Encoder

Stochastic Gradient Descent
Successive Interference Cancellation
Signal-to-Interference-plus-Noise Ratio
Symmetric Mean Absolute Percentage Error
Signal-to-Noise Ratio

Space Time Block Coding

Single User

Singular Value Decomposition

Time Divison Duplex

Tomlinson Harashima Precoding

User Equipment

Vector Perturbation

Wireless Fidelity

Zero-Forcing



Chapter 1

Introduction

In the last decade, the fourth-generation (4G) [1] has become the standard for mo-
bile users worldwide. While 4G wireless technology has covered new mediums of
mobile consumption, it still requires an improved performance due to the rise of
massive internet of things (IoT) devices. The 5th generation (5G) of wireless net-
works [2—4] comes into play to bring the level of performance needed for massive
IoT. It promises order-of-magnitude improvements in throughput and latency, along
with increased network flexibility and scalability. In the 3" generation partnership
project (3GPP), additional aspects of the 5G New Radio (NR) specification are locked
in with every release. Release-15 introduced 5G enhanced mobile broadband (eMBB)
use cases [5,6]. In 2019, Release-16 added support for ultra-reliable low-latency
communication (URLLC) [5,7] and massive machine-type communication use cases
(mMTC) [8] (see Figure 1.1).

+  Multi-Gb/s peak downlink speed
eMBB Atleast 100 Mb/s everywhere

1 M devices per square km
Very low transfer rates
Low power for 7+ year battery life

Up to 500 km/h mobility
< 1 out of 100M packets lost
As low as 1 ms latency

FIGURE 1.1: Primary 5G use cases.
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MIMO technology is seen as one of the most promising and efficient solutions in 5G
NR as it is developed to answer the spectral efficiency request [9]. MIMO technol-
ogy is the traditional wireless communication technique for sending and receiving
multiple data signals simultaneously over the same radio channel. It plays an immi-
nent role in Wi-Fi communications as well as 3G and 4G networks. MIMO systems
were first proposed for point-to-point communications to enhance the throughput
and also transmission quality. Indeed, MIMO technology explores spatial diversity
by transmitting dependent and independent data on different antennas to enhance
signal reliability and boost throughput. In this perspective, space-time block cod-
ing (STBC) has been proposed to capture all the degrees of freedom offered by the
MIMO system. One can site, for example, the Alamouti code [10] and the Golden
code [11], designed for the open-loop case where the channel state information (CSI)
is assumed to be only known at the receiver side. The coding operation consists of
simple matrix multiplication, and a MIMO decoding is implemented at the receiver
side. Over the years, several MIMO detection algorithms have been developed. The
trade-off is the good performance in terms of bit error rate (BER) that can require
high complexities. Thus, the challenge relates to the complexity and energy con-
sumption of the signal processing at transceiver devices.

Point-to-point MIMO systems have been extended to multi-user (MU)-MIMO, where
many users equipped with multiple antennas communicate with an access point also
equipped with multiple antennas. We distinguish the uplink case in the multi-user
scenario, where the multiple users transmit simultaneously to the base station (BS).
The access point identifies and separates the different signals coming from multiple
users using multi-user detection techniques. For the downlink case, the BS transmits
simultaneously to multiple independent users. In this last case, it performs beam-
forming or precoding techniques to separate the users spatially. For that, the CSI is
needed to be known at the transmitter side. These kinds of systems are called closed-
loop ones. The complexity is now reported to the transmitter side, and the receiver
architecture for decoding is highly simplified. Precoding enables separating user
data streams and pre-cancelling interference such that one or more objective func-
tions are satisfied under one or more constraints. Different precoding techniques
exist in the literature to solve that and can be grouped into linear and non-linear.
Generally, precoding techniques are equivalent to MIMO decoding but done at the
transmitter side subject to the transmission power constraints.

5G NR introduces the concept of massive MIMO, which involves applying MIMO
technology for higher network capacity and larger coverage [12,13]. To transmit
massive sums of data in near real-time, new 5G BSs support massive MIMO, which
can include tens or even hundreds of antennas, each transmitting a unique data

stream. Massive MIMO designs allow the BS to send or receive multiple signals to
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or from different users at once, resulting in higher spectral efficiency and a more
significant signal-to-interference-plus-noise ratio (SINR). Correspondingly, higher
throughput is provided for users, and better coverage is achieved around the cell
site. Massive MIMO with smart antenna techniques such as beamforming and pre-
coding [14] is among the crucial technologies for providing higher throughput and
capacity gains promised by 5G and beyond. Precoding, also known as "transmit
beamforming", exploits the spatial degrees of freedom offered by the multiple trans-
mit antennas to simultaneously serve a plurality of users in a multi-antenna wire-
less communication system. To implement MIMO beamforming or precoding for
5G BSs, designers must carefully select hardware and software tools to simulate, de-
sign, and test highly complex systems containing tens or even hundreds of antenna
elements.

Recent years have seen a tremendous resurgence of interest in deep learning (DL)
and deep neural networks (DNNs). Thanks to solid learning ability from data,
DL today surpasses any other algorithm in the fields of image and speech recogni-
tion [15,16], and can achieve comparable performance to humans on specific tasks.
DNN:s are currently widely used for many artificial intelligence applications, includ-
ing computer science. DL techniques have recently been applied to design issues
in communication systems such as channel coding, modulation and demodulation
schemes, channel estimation, and data detection [17-23]. Motivated by DL technolo-
gies’ performance, our work leverages recent advances in DNNs to establish several
thesis results.

This PhD research study’s first objective is to study the complexity and performance
trade-offs involved in MIMO decoding for the uplink reception and MIMO precod-
ing for the downlink transmission. The second objective is to design new MIMO de-
coding and precoding techniques to answer the technical challenges of uplink and
downlink. The work is done under a collaborative project with Nokia. The purpose
of this collaboration is to design and evaluate new concepts relevant to exploitable
IPR (intellectual property rights) in 5G systems standardization and beyond regard-
ing advanced massive MIMO techniques. When comparing research solutions and
the current standards, there are several areas for improvements. Thus, we propose
new ideas to bring enhancements as possible. Established results have been pub-
lished and also patented.

The contents and contributions of the thesis chapters are summarized in the follow-
ing.

First, Chapter 2 presents the fundamentals of MIMO communication systems, which
include the single-user MIMO (SU-MIMO) and the multi-user MIMO (MU-MIMO).
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The reciprocity of uplink and downlink processing is described as the equivalence
between the decoding and precoding operations. Afterwards, relevant background
materials on MIMO decoding and precoding techniques are presented, and the per-
formance is evaluated in multi-user wireless communication systems. The presented
backgrounds in this chapter help develop reception and transmission schemes in the
following chapters.

Chapter 3 focuses on MIMO decoding in the uplink reception. A single cell environ-
ment is considered, where only one BS receives signals from different cell users. We
are interested in the well-known sphere decoding (SD) algorithm thanks to its effi-
cient performance. The SD requires high computational complexity for decoding;
thus, we propose in this chapter two algorithm modifications to reduce its complex-
ity while keeping almost optimal performance. The first algorithm that we propose
uses a learning approach to predict the number of lattice points in the sphere and
then applied in our proposed neural network (NN) assisted SD. More detail about
the learning approach is provided next in the chapter. The second algorithm modi-
fication is the block recursive MIMO decoding, which divides the entire MIMO sys-
tem into blocks. Then it performs sequential decoding to each block subject to some
constraints. We show through simulations a complexity reduction for different block
divisions than the SD algorithm while offering almost maximum likelihood (ML)
performance.

Chapter 4 focuses on the uplink reception for multi-antenna systems considering
this time the cloud radio access network (C-RAN) scenarios. Using DNNs, we de-
sign an efficient scheme, called QDNet, for fronthaul compression in uplink C-RAN.
The proposed architecture includes the processing done at the BSs and the process-
ing completed at the central processor (CP). With sparsely connected layers, QDNet
requires less complexity to compute, and it achieves good performance compared to
the existing detection algorithms.

Having studied and designed some new schemes in the uplink MU-MIMO recep-
tion, Chapter 5 focuses on the downlink MU-MIMO transmission. As precoding
provides user-specific spatial channels, we develop in this chapter reliable trans-
mission techniques for multi-user communications in the single-cell environment
based on linear and non-linear precoding techniques. The transmission system de-
sign should ideally be able to cope with CSI errors, lower or eliminate error floor
effects and achieve a close to the sum-capacity limit performance at a realistic com-
putational complexity.
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In the first part, we propose a combined vector perturbation (VP) precoding for MU-
MIMO downlink systems to answer this challenging question. It enables an adap-
tive modulation scenario where users apply different modulation coding schemes
(MCSs). The second part of the chapter introduces a low-complexity precoding tech-
nique which is the block VP algorithm. The proposed scheme allows for obtaining
the desired diversity order by fixing the block size. Finally, Chapter 5 presents a
novel transmission scheme based on reporting a new CSI accuracy indicator (CSIAI)
to deal with channel imperfections at the BS. Based on this new quantity, we develop
a downlink precoding technique that is less sensitive to CSI errors and improves the
overall system performance.

Finally, Chapter 6 concludes the thesis by summarizing the main results and sug-
gesting some perspectives for possible future work.






Chapter 2

The Uplink and Downlink
Processing in MIMO Systems

2.1 Introduction

The explosive development of MIMO systems has granted high data rate services
and an expanded variety of applications. IEEE 802.11, 3G, LTE, and 5G NR are some
technologies that rely on MIMO systems. In addition to the single-user MIMO, re-
cent progress in wireless communication systems has involved MU-MIMO scenar-
ios” design. These communication systems have the advantage to develop new gen-
erations of wireless mobile radio systems in 5G NR and beyond. This chapter gives
an insight into MU-MIMO scenarios. We firstly present the fundamental aspects of
MIMO communication systems. After that, we focus on the uplink and downlink
MU-MIMO schemes and describe the duality between the uplink and the downlink
processing. To do so, we present the communication system model for each task.
Then we introduce the MIMO decoding for the uplink reception and the MIMO pre-

coding techniques for the downlink transmission.

2.2 Fundamental Aspects of MIMO Communication Systems

Traditional MIMO communication systems are usually referred to as single-user
MIMO (SU-MIMO) or also point-to-point MIMO. The access point or the BS, in this
case, communicates with only one mobile terminal (user). Both the access point and
the user are equipped with multiple antennas as depicted in Figure 2.1.

The transmit antennas (Txy, ..., Txy,) respectively send signals (&1, ..., Zy,) to the

receive antennas (Rxy,...,Rxy, ). The received signals are respectively denoted by
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FIGURE 2.1: MIMO system model.
(91, --.,9N,). We express the received signal at antenna Rx; Vi € {1,...,N,} as
g = Z ﬁijfz]- + w; (2.1)
The MIMO channel model can be described by the following linear system
g=Hz+w (2.2)

Throughout this thesis, we avoid handling complex-valued variables, and convert

(2.2) to its equivalent real-valued representation by using the following convention

y=Hx+w (2.3)
where
y— [mm] o [w:f:)] o [%(w)] ,
c(y)_ u_(w) 3(w) o
e [%( 1) —S(H)
I(H) R(H)

R(.) and (.) are defined as the real and imaginary parts of a complex matrix or

vector, respectively.

The channel’s entries H are assumed to have a Rayleigh distribution that we fre-
quently use to model multi-path fading with no direct line-of-sight (LOS) path. The
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FIGURE 2.2: MU-MIMO communication models.

Rayleigh probability density function (PDF) may be constant (flat) or varying (selec-
tive) within blocks of transmission. If all frequency components of the signal experi-
ence the same magnitude of fading, it is called frequency flat fading. It occurs when
the coherence bandwidth of the channel is larger than the signal bandwidth. On the
other hand, if all the frequency components of the transmitted signal are affected
by different amplitude gains and phase shifts, the fading is frequency-selective. It
occurs when the shared signal bandwidth is more significant than the channel’s co-
herence bandwidth.

In contrast to the single-user case where the communication is only with a single
user, the BS in MU-MIMO systems can communicate with several mobile terminals.
MU-MIMO systems promise to employ multiple receivers to improve communica-
tion rate while keeping the same level of reliability. We have the uplink transmission
in the multi-user scenario where the multiple users transmit simultaneously to the
BS. We also have the downlink transmission in which the BS transmits to numerous
independent users. A representation of these systems is depicted in Figure 2.2. More
detail is reviewed next in section 2.3.

SU-MIMO and MU-MIMO systems are two possible configurations for multi-user
communications. We also find the MU-MIMO with cooperation between BSs. Fig-
ure 2.3 shows the basic configurations of MIMO systems.
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(A) SU-MIMO

BS cooperation

(¢) MU-MIMO with BS cooperation

FIGURE 2.3: MU-MIMO configurations.
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2.3 Uplink-Dowlink Duality

Transmission schemes for MU-MIMO systems comprise both uplink MU-MIMO
and downlink MU-MIMO. We assume that the BS is equipped with M antennas,

and there are K users; each kth user has M antennas.

In the uplink transmission, the BS figures out the channel information and decodes
the data streams from multiple transmit antennas of users. Let s be the transmitted
signal vector of user k € {1,...,K}, and Hj is the channel matrix from the kth user
to the BS. When an additive noise is present, the received signal vector at the BS is
expressed by

y=) Hisp+w (2.5)

K

k=1
where w is the additive white Gaussian noise (AWGN) with zero mean and variance
02. The number of transmitting antennas from all users is no more than the number
of receiving antennas at the BS. In other words, the following constraint should be

satisfied in the uplink scenario

K
Y My <M (2.6)
k=1

In fact, to solve a simultaneous linear system, the number of equations must be
greater than or equal to the number of variables. Hence, the BS should have at least
M = YK | M receiving antennas, i.e., M > YK | M.

Users in the uplink have no channel knowledge, while the BS is alone exploiting the
MIMO capacity. Hence, a complicated algorithm is required to decode the received
signal at the BS. For that reason, MIMO decoding techniques have been studied
extensively in the literature. One straightforward way to estimate the transmitted
signal s = (s],...,sL)T from the received signal y is to multiply y with an inverse
channel matrix, such as zero-forcing (ZF) or minimum mean squared error (MMSE)
equalizers. However, this is not the optimal detection that we can achieve using the
ML criterion. Optimum decoding which gives ML performance is reviewed later in

section 2.4.

In the downlink transmission, the K users are simultaneously receiving signals from
the BS. The transmitted signal vector x is expressed as the sum of signals intended
to users

2=y d 27)
k=1
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The channel matrix between the kth user and the BS is denoted by Hj. The received
signal vector at each kth user is given by

yk:Hkm+wk;k€{l,...,K} (2.8)

where wy is the AWGN noise. Equation (2.8) can be also written as

K
ye = Hide + Y Hid; +wy; ke {1,...,K} (2.9)
j#k

The sum term in equation (2.9) represents the interference signal by the cause of
multiple users. Processing techniques are used at the BS, such as beamforming
and precoding, to mitigate the multi-user interference and improve system perfor-
mance. In the context of MU-MIMO systems, precoding enables emitting multiple
data streams from the transmit antennas with independent and appropriate weight-
ings such that the link throughput is maximized at the receiver output. Precoding,
also known as transmit beamforming, exploits the spatial degrees of freedom of-
fered by the multiple transmit antennas to serve users’ plurality in a multi-antenna
communication system simultaneously. The system’s effective signal-to-noise ratio
(SNR) is increased, and the receiver architecture is potentially simplified. The com-
plexity is reported to the transmitter side, and the decoding is no more involved at
the receiver side. For example, with perfect knowledge of the channel H, the BS can
perform downlink precoding, as shown in the following equation

x =Fs (2.10)

where x is the transmitted signal, s is the data symbol vector, and F' is the precoding
matrix designed to suppress the channel effect. Here, the main problem is how to
obtain the channel knowledge at the transmitter side. Most current wireless stan-
dards allocate a feedback channel to transmit CSI reference signals (CSI-RS) to the
BS. This feedback solution can work in FDD and TDD system:s.

We notice duality between the uplink and downlink processing at the BS after re-
ception or before transmission through multiple antennas. Both communication
schemes utilize channel information in order to suppress its effect. Decoding op-
erations are similar to that of precoding, and most techniques perform an inverse
channel for detection or precoding. We primarily distinguish linear and non-linear
processing. Figure 2.4 summarizes the primary equivalent decoding and precod-
ing techniques covered in the literature for uplink and downlink scenarios. We can
note, for example, the ZF and the MMSE in both decoding and precoding operations.
We also find the decision feedback equalizer (DFE) in MIMO decoding, equivalent
to the Tomlinson Harashima precoding (THP). An exemplary of optimal detection
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Decoders/Precoders

Linear processing Non-linear processing

‘ ZF ‘ MMSE DFE/THP ‘ SD/SE ‘

FIGURE 2.4: Similarity of primary decoding and precoding schemes.

algorithms is the SD which gives the best system performance. An equivalent algo-
rithm for precoding is the sphere encoder (SE) which is the same version of the SD,
performed at the transmitter side.

24 MIMO Decoding Techniques

Several MIMO detection algorithms have been proposed over the years and cov-
ered extensively in the literature. On the one hand, we categorize the sub-optimum
decoding, which includes both linear and non-linear techniques such as the ZF, the
MMSE and the DEFE algorithms. On the other hand, we categorize the optimum de-
coding, which gives ML detection. It includes techniques based on lattice represen-
tation and sequential algorithms. We recognize the well-known SD algorithm using
the depth-first search (DFS) and the stack decoder algorithm using the breadth-first
search (BFS). Figure 2.5 summarizes the primary MIMO decoding techniques, which
mainly fall into two categories. These methods are described in detail next.
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Sub-optimal Optimal
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FIGURE 2.5: Primary MIMO decoding techniques.

2.4.1 Sub-optimal decoding

Consider K single antenna users transmitting signals to an N antenna BS. The re-
ceived signal from all users at the BS can be expressed as

y=Hs+w (2.11)

The purpose behind MIMO decoding is to find an estimation of the transmitted sig-

nal vector s. The main decoding techniques can be summarized as follows.

Zero-forcing

The traditional ZF receiver applies the pseudo-inverse of the channel to bring down
the inter-symbol interference (ISI) to zero. Knowing the channel H, it multiplies the
received signal with

H'= (H'H)'HY (2.12)

Then the estimated symbol vector is detected using some quantification operation to
find out the constellation point with the nearest Euclidean metric. The ZF receiver
removes all ISI and is excellent when the channel is orthogonal. When there is noise,
the ZF equalizer will amplify that noise greatly by cause of the ill-conditioned H" H.
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The covariance matrix of the resulting noise w = H Tw becomes then

Kaw = H Kyw(H')T
S ) (2.13)
=0,(H"H)~
Consider the eigenvalue decomposition of HYH = QAQ!, where Q is the square
unitary matrix, and A is the diagonal matrix whose diagonal elements are the cor-
responding eigenvalues (A;; = A; > 0). The covariance matrix of @ can be written

as
Ky = 05Q diag(A{L,..., Ah) QY (2.14)

Now it is clear from (2.14) that the noise amplification is caused by the small eigen-
values of the ill-conditioned matrix H H.

Zero-forcing DFE

A decision feedback equalizer (DFE) is more effective than linear receivers. What
characterizes a DFE is past symbol decisions to eliminate the ISI caused by previ-
ously detected symbols on the current symbol being estimated. The DFE equalizer
comprises two filters. The first one is called a feed-forward filter, similar to a linear
equalizer. Its input consists of the samples of the received signal. The second one
is called a feedback filter that is also working to remove ISI, operates on noiseless
quantized levels, and thus its output is free of channel noise.

The ZF criterion is applied in the following to select the taps. The received signal y
in equation (2.11) can be written as

y=QRs+w (2.15)

where H = QR is the "QR" decomposition of the channel H, R is an upper trian-
gular matrix, and @ is an unitary one, i.e., QM Q = I. First off, the received signal is
multiplied by Q¥ to obtain

9=Q"y=Rs+ (2.16)

w
~—
:QHw

Then the ZF-DFE estimates successively the symbol vector § = (.§1T ,..., 8 K)T as

w) e
S = 2.17)
Q(@(ﬂk—ﬂf—kﬂ Rkjéj)) ke{l,...,K—1}
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where Q(.) is the quantification operation used to estimate the constellation point
with the nearest Euclidean metric.

Minimum Mean Squared Error

The ZF receiver amplifies the noise to invert the channel completely. A more bal-
anced receiver, in this case, is the MMSE, which does not usually eliminate ISI com-
pletely but instead minimizes the total power of the noise and ISI components. The

MSE which we aim to minimize in this method can be expressed as
E. (H.§—5H2|H,s) (2.18)

where E,(.) denotes the expectation over w, and § = Fy is the received signal
multiplied by the linear equalizer F'. Deriving (2.18), the optimum filter Fysg min-
imizing the MSE can be written as

Funvise = (HHH + ZI) Tt (2.19)
5
where 02 = E(]s;|?), is the average power of the s vector components. The MMSE
criterion allows us to achieve better performances than the ZF, particularly for low-
to-moderate SNR range. However, at high SNR regime, the MMSE receiver is similar
to that of the ZF
SH" SNR -0
Fuvse = (2.20)
Fyp SNR — o0

2.4.2 Optimal decoding

By considering uniformly distributed constellation points, optimal detection can be
achieved with the ML criterion. For a known H, ML can be implemented by finding
the transmitted signal vector that minimizes the Euclidean distance to the received

signal vector y as shown in the following equation

$ = argmin ||y — Hs||? (2.21)

Unfortunately, ML's computational complexity is exponential with the number of
antennas and the constellation size, making the exhaustive search unsuitable for
practical implementations. Search tree algorithms significantly reduce this complex-
ity, whereby they offer ML performance. We investigate the following two widely
used optimum techniques, the SD [24], and the stack decoder [25].
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Sphere decoding

The mathematical analysis of the SD algorithm was presented by Fincke and Pohst
in [26], the geometric interpretation by Vieterbo and Biglieri in [27], and the practical
implementation for fading channels by Vieterbo and Boutros in [24].

Consider equation (2.11) which gives the lattice representation of the MIMO system

y=Hs+w

The principle goal of the SD is to look for the nearest point in a sphere of a given
radius, centred on the received point, i.e.,

minimize |y — Hs||?
L (2.22)
subjectto ||y — Hs|*> <r

If no candidate has been found, the sphere radius r is enlarged, and the search is

restarted. We look over points from the sphere surface inwards.

Let us go back to equation (2.16) which represents the new coordinate system

g=Q"y=Rs+ w
:QHw

Q is a unitary matrix, i.e., Q"Q = I,and the multiplication by Q" does not fluctuate
the previous system. Now we have an equivalent Euclidean distance to minimize to

the signal vector § in the lattice Ag subject to the constellation constraints

minimize |g— Rs|?

(2.23)
subjectto ||§ — Rs||*> <r
Let p and £ be defined as follows
p=R"g
(2.24)
E=p—s
By substituting in (2.23), we get
K-1 K 2
| RE|I” = qriéx + Z qii <Ei + Z qz‘jﬁj) <r (2.25)

i=1 j=i+1
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where

Qii:Rjj,iE{l,...,K}
R; . (2.26)
QijI#,]E{z+1,...,K}
11

Based on some mathematical analysis as described in [28], an interval I; = [bl(rll)f, bégp}
is derived to represent the bounds of s;. To find the closest point, the SD algorithm
visits the components of I; starting from i = K. The cumulative weight w(s;) is

evaluated for each visited node s;
K
w(si) = Zw](s]) (227)
j=i
where wj(s;) is the weight of s; which can be written as

qxk€x j=K
wils)) = , (2.28)
K .
gj <Ej + Zk=j+1 q]‘kEk) jed{l,...,K—-1}

A node located at the bottom level, i.e., i = 1, is called a leaf node. The SD algo-
rithm is based on a DFS strategy. If a leaf node is reached not satisfying the metric
constraint, the path leading to that leaf node downs to that parent node, and the SD
algorithm continuous the search tree to reach the other child nodes. When a leaf
node is reached, satisfying the metric constraint, the sphere radius is updated to the
found distance. Then the SD algorithm finds the new bounds and restarts the search
tree with the new metric constraint. Figure 2.6 shows a simplified diagram of the
search tree that would be performed in a 2 x 2 system with 4-QAM (+1) modula-
tion. The curve indicates an initial metric constraint, and the dashed lines indicate

the discarded paths due to that metric constraint.

Figure 2.7 shows the BER performances of the different sub-optimal decoding tech-
niques compared to the SD algorithm. We consider K = 8 single antenna users
transmitting to a BS with M = 8 antennas. The MIMO channel is Rayleigh fading
with 16-QAM input alphabets. We plot the BER performance versus the SNR which

is expressed as

K * 0?

where 02 is the average power of the s vector components belonging to the ¢-QAM
constellation. It is well-observed from Figure 2.7 that the SD algorithm significantly
outperforms the linear receivers and the DFE equalizer due to the diversity gain.
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FIGURE 2.8: Flowchart of the stack decoding algorithm.

Stack decoder

The stack decoder is based on a BFS strategy. It starts by generating all child nodes at
the top level, i.e., i = K, and computes their respective weights. The nodes are then
stored in a stack in increasing order of their weights. After that, the stack decoder
takes the top node of the stack having the best cost, generates its children, computes
their costs, stores them in the stack, and removes the top node just being expanded.
The stack is then reordered, and the same processing is performed until a leaf node
is on the top of the stack. The path corresponding to the leaf node represents the ML
solution. Figure 2.8 shows a flowchart of the stack decoder algorithm.

For an increasing constellation size, the traditional stack decoder requires a high
computational complexity since the algorithm goes on all the nodes. Many of these
nodes have a high cost and can not lead to the optimal solution; thus, they should
not be visited. The spherical-bound (SB) stack decoder has been proposed in [29] to
reduce the complexity. It combines the original stack decoder with the search region
of the SD algorithm. At each level of the tree, bounds are imposed on the children
weights to be stored in the stack. Nodes that do not satisfy the metric constraint are
discarded, and hence the number of visited nodes is reduced while preserving ML
performance. We should note that the spherical bounds are made larger if no child
satisfying the metric constraint is found.
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2.5 MIMO Precoding Techniques

The sum capacity of an MU-MIMO broadcast channel (BC) is achieved using the
dirty paper coding (DPC) technique. However, the DPC method has very high com-
plexity. Therefore, many precoding alternatives are proposed offering reasonable
complexity. These precoding techniques can be grouped into two categories based
on linear or non-linear processing.

Exemplary linear precoding techniques include the ZF and the regularized-ZF (RZF).
ZF precoding’s ability to entirely cancel out multi-user interference makes it useful
for high SNR regimes at the expense of losing some signal gain. However, ZF pre-
coding performs far from optimal in the noise-limited regime, particularly when
the number of served users approaches transmitting antennas. When using ZF pre-
coding, the transmitted vector is filtered using the channel matrix’s pseudo-inverse,
which requires a high transmission power, especially when it is ill-conditioned.
Non-linear precoding schemes have been proposed to improve the performance of
linear precoding. Tomlinson-Harashima precoding (THP) and vector perturbation
(VP) are two well known non-linear schemes.

2.5.1 Linear precoding

Consider an MU-MIMO BC composed of an M antenna BS and a group of K(< M)
non-cooperative single antenna users. Let the channel vector from the BS to the
kth user be H kT = (hg1, ..., hiy)T where hy; denotes the channel gain between the
jth transmit antenna and the kth user. We suppose the channel gains to be inde-
pendent and identically distributed (i.i.d) complex Gaussian random variables with

zero-mean and unit variance. When = = (cclT S, w}d)T is the transmit vector and

wy is the zero-mean complex Gaussian noise with variance o2, the received signal at

the kth user is given by

ye=Hix+w kel,... K (2.30)

Considering all users, the composite channel can be written as H = [H{,..., HE]T.
Then the received signal of all users y = (le PR y%)T can be expressed as

y=Hzxz+w (2.31)

where w = (w],...,w})T is the AWGN vector. The transmit signal z is built by

multiplying the data symbol vector s with the precoding matrix F’; thus & can be

T = \/EFS (2.32)

written as
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where 7 is the power scaling factor chosen to maintain the power constraint at the
BS such that ||z||? = P. Thus 7y can be defined as

v =|Fs|? (2.33)

ZF precoding

The ZF precoder [30] can be easily found by taking the pseudo-inverse of H

F=HY(HH?)™! (2.34)

It has been shown in [31] that ZF precoding performance is relatively low. The sum
rate of ZF saturates over increasing K and does not improve. Besides, the achieved
diversity without channel coding is shown to be N — K + 1. It can be observed that
7 characterizes the poor performance of ZF precoding. A considerable quantity of
the transmitted power is consumed by the smallest eigenvalues of HH".

Regularized-ZF precoding

The RZF precoding was proposed in [31] to surmount the issue due to the ill-conditioned
HH". Instead of building F as in (2.34), the RZF precoding uses

F=HYHH" +a1)™! (2.35)

where « is the regularization coefficient. By introducing «, the detrimental effect
caused by the smallest eigenvalues can be controlled, leading to better system per-
formance. It is proved in [31] that &« = Ko? /P is the optimal regularization coeffi-
cient in the sense of maximizing the SINR. The RZF converges to the ZF precoder at
a high SNR level, and thus, the diversity order achieved is N — K + 1. We refer to
the RZF with an optimal regularization term as a linear MMSE precoder.

2.5.2 Non-linear precoding

Compared to linear processing, non-linear precoding has been shown to achieve bet-
ter sum-rate performances. The gain is achieved by an additional signal processing
manageable at the BS in the downlink scenario. THP [32] and VP [33], two known
non-linear precoding schemes are investigated in the following. It is proven in [34]
that VP precoding achieves full diversity equal to N.
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FIGURE 2.9: THP system model.

Tomlinson-Harashima precoding

Figure 2.9 shows a simple system model of THP where the modulo function f(.)
will be described next. The symbol vector & = (i:lT, s, iZTVI)T is generated succes-
sively. B — I is chosen to be a strictly lower triangular matrix with one’s values in

the main diagonal. Without the modulo function f(.), we have

£=s—(B-I) =B s (2.36)

B depends on the random channel matrix H, thus the magnitude of some &,,, m €
{1,..., M}, can be large. To circumvent this issue, we apply the modulo operation
f=(.) to transfer each large magnitude &, to the original constellation boundary. The
function f-(.) is defined as

fola)2a-— V+T/2JT

(2.37)

where |.| denotes the greatest integer less than or equal to its input. We note here
that f-(.) is performed separately on both real and imaginary components. The pa-
rameter T is chosen to provide symmetric decoding regions around constellation

points and therefore, it depends on the employed modulation scheme
T = 2(|¢|max + A/2) (2.38)

where |c|max is the absolute value of real or imaginary elements of the constellation
symbols with the largest magnitude, and A is the spacing between the constellation
points. Now, in the presence of f(.), the symbol vector at the transmitter side can
be expressed as

T=s+tmw—(B-I)x (2.39)
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where v is an integer vector obtained as a result of the modulo function. From Fig-
ure 2.9 which represents the system model of THP, we have the following relation

r=THGZ +Tw (2.40)

where I' = diag(y1,...,7k), represents the scaling factors. We consider the "LQ"
decomposition of the channel matrix H = SF! where F is an unitary, and S is a

lower triangular matrix. Now we have the equivalent equation

r=TSFIGB s+ Tw (2.41)

THP is implemented by choosing

I = [diag(S)] ™"
B=TS (2.42)
G=F

We can see that this choice allows us to eliminate the intra-cell interference to form
user-specific spatial channels. After the transmission, each kth user’s receiver is able
to apply f-(.) independently on 7, to remove the component vy from the received

signal.

Although THP design reduces the required transmit power compared to linear pre-
coding techniques, better performance can be obtained by optimally perturbing the
data symbol vector s, so that further reduction in the transmit power is obtained.
Figure 2.10 shows the BER performances of the different linear precoding techniques
compared to the non-linear schemes. We consider a BS with M = 8 antennas serving
K = 8 single-antenna users. The MIMO channel is Rayleigh fading with 16-QAM
input alphabets. We plot the BER performance versus the SNR, which is expressed
as

P
SNR = 10log, <02> (2.43)
w

where P is the transmit power at the BS. We can see from Figure 2.10 that the VP
precoding has the best performance in terms of BER compared to the other precod-
ing techniques, which perform far from optimal when the number of served users
approaches that of transmit antennas.
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FIGURE 2.10: BER performance of MIMO precoding techniques for
an 8 x 8 MIMO system with 16-QAM constellation.

Vector perturbation precoding

The main purpose of VP precoding is to reduce the transmit power while perturbing
the data symbol vector s by an additional signal processing v referred as perturba-
tion vector. More precisely, using s and v, the symbol vector 3 is built as

S§=s+71V (2.44)

Then § is precoded using linear precoding such as ZF or RZF before transmission.
In other words, the transmit vector @ is formed by multiplying § with the precoding

x = \/§F§ = \/EF(S + Tv) (2.45)

Similar to THP, T in (2.39) is also used by VP which can be represented as an integer-

matrix F'

lattice search. At the transmitter side, v is chosen such that 7y is minimized. Thus the
optimal perturbation vector v* is given by

v* = argmin || F (s + )| (2.46)
veCzX

The arising issue is an integer least-squares problem, and the SE algorithm can solve
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this at the transmitter side. The SE is the similar version of the SD algorithm imple-
mented at the receiver side for detection.

The received signal of all users can be expressed as

y = \/EHF(S + Tv%) (2.47)

If we consider the VP precoding with the ZF precoder F = H'(HH")~!, we have

y= ﬁ (s + rv*) (2.48)

With the knowledge of P and v, each kth user scales its received signal with \/W
and applies the modulo function f(.) to remove Tv; without knowing its value. The
estimated symbol vector is then detected as the constellation point with the nearest
Euclidean metric.

The idea of VP precoding is developed using the MSE minimization to propose the
MMSE-VP [35,36]. In this approach, the precoding matrix and the optimal perturba-
tion vector are found jointly by minimizing the end-to-end MSE. Thus the MMSE-VP
achieves better performances than the VP with ZF or RZF precoder in the entire SNR

region.

2.6 Summary

In this chapter, the background material related to MIMO communication systems
is presented. At first, we present the different MU-MIMO configurations in both
the uplink and downlink schemes. Secondly, we describe the duality between the
uplink reception and the downlink transmission. Finally, the main MIMO decod-
ing techniques are described, and the primary precoding approaches are equivalent.
Simulation results are shown to evaluate the system performance and enable com-
parison between the different techniques.
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Chapter 3

MIMO Decoding in the Uplink
Reception

3.1 Introduction

This chapter focuses on MIMO decoding in the uplink reception. Multiple anten-
nas allow the BS to receive data from multiple users simultaneously. Several MIMO
transceiver architectures are covered in the literature. Some of these are linear re-
ceivers with or without successive cancellation, and the complexity is mainly at the
receiver. This chapter is interested in optimal decodings, such as the well-known SD
algorithm, which requires high complexity. Our purpose is to propose new decod-

ing algorithms based on the SD to offer a reduced complexity.

The first part of the chapter presents a DL model for regression to predict the num-
ber of lattice points in the sphere, which depends primarily on the sphere centre,
the lattice generator matrix and the sphere radius. Some essential definitions asso-
ciated with lattices are presented in this section to describe the predictive learning
approach afterwards. Based on the NN model, we introduce a systematic approach
of sphere radius design and control to improve the decoding sphere’s initial radius.
The learning approach can reduce the number of visited points during the search

phase, and thus, the processing time for decoding is decreased.

The second part of the chapter introduces the block recursive MIMO decoding,
which divides the whole MIMO system into small sub-systems. The challenge of
this technique is to decrease the complexity while preserving near-ML performance
essentially. The idea consists of splitting the received symbol vector into smaller
vectors. Accordingly, the channel matrix is split into blocks of sizes equal to that of
small vectors. This scheme is feasible for any number of blocks with variable sizes.
We obtain a significant complexity reduction coupled with an achieved diversity
order.
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3.2 Counting Lattice Points in the Sphere using NN

Among the many problems in connection with lattices, many remain open. In this

work, we focus on the problem of counting lattice points in the sphere.

3.2.1 Definitions and properties of lattices

In this section, we are going to review some essential concepts about lattices and
explain some of its main useful parameters in the following. A lattice is a discrete
(additive) subgroup of R". An equivalent definition is that a lattice A of rank p in R"
(p < n) consists of all integral linear combinations of linearly independent vectors
(b1,...,by)inR", ie.,

A={zibi+...+zpby | z1...2, € Z} (3.1)

Such a set of vectors b;’s is called a lattice basis B, i.e.,
B = (b;...by) (3.2)

and so B can be defined as the generator matrix of the lattice A. Now we can define
the Gram matrix of A as
G=B"B (3.3)

and the determinant of A as

det (A) = y/det (G) (34)

This determinant corresponds to the n-dimensional volume of the parallelotope spanned
by the b;’s and defined by

n
V:{ cjbj\cje]R,Ogcj<1;l§j§n} (3.5)
j=1

V is the fundamental domain of A in the sense that each € R" has a unique rep-
resentation ¢ = y + z with y € A and z € V. Figure 3.1 shows a two-dimensional
lattice and the fundamental parallelotope determined by the basis (b1, b2).

3.2.2 Learning approach

Let us denote with B, the n-dimensional Euclidean ball of radius r centred at the
origin, i.e.,
B, = {xcR": ||z|, <r} (3.6)
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L ] L
W

FIGURE 3.1: Fundamental parallelotope of a 2 dimensional lattice.

According to [37], we can make the volume approximation of a sphere containing N,
lattice points which is equal to the volume of N), fundamental parallelotopes. Hence
the number of lattice points lying within a sphere of radius r may be approximated
as

vol (B;)

where vol (B,) = 71"/ /T(n/2 +1). As we can see, the number of lattice points
inside the n-dimensional sphere is proportional to its volume. However, one does
not know the density of lattice points inside a given sphere. The approximation is
not tight, and the error term is not negligible [38,39]. This is an interesting problem
in pure geometry, and it has considerable practical importance, specifically when the
dimension 7 is larger than three (see [40]). The problem is also deeply connected to
complexity theory, particularly to the closest vector problem (CVP), and the Fincke
and Pohst variant used for MIMO detection [26]. In fact, decoding a received signal
y in R" means finding the lattice point closest to y, i.e., finding © of some lattice
A, such that |y — 9| < |y — v| for all v € A. The SD algorithm is well-known for
doing this detection [24]. This kind of algorithms requires high complexity scaling
exponentially in the lattice dimension. Our work addresses this issue by leveraging
recent advances in DNNs to reduce the computational complexity of several lattice

problems.

To that end, we train a feed-forward fully-connected DNN to predict the number of
lattice points falling inside a given sphere. The chief advantage of such an approach
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is that it drastically reduces the exponential complexity of CVP problems. Thus we
make use of DNNs to learn and predict the inherent characteristics of lattices. We
highlight related work in the literature that describes a DNN based SD [41]. How-
ever, this approach learns only the minimum radius and not the number of lattice
points falling inside the sphere, which is the quantity of interest. Our work is fun-
damentally different since we describe a mechanism for learning and predicting the
number of lattice points in the n-dimensional sphere with some radius centred at the
origin. We formulate the problem as a DNN regression task, which we use to predict
the number of lattice points. The training data is obtained via list SD implementa-
tions that give the correct number of points falling inside the sphere. This is, in turn,
obtained from the radius 7 and the upper triangular matrix R, which is derived from
the "QR" decomposition of the lattice generator matrix.

Considering these aspects, the DNN is trained using a set of input-output vector
pairs (x, N,) where x is the input vector, and N, is the actual number of lattice
points inside the sphere. We set z in the form of

* = 1[R11,...,Rnn]T (3.8)

where R;; are the coefficients of R matrix (1 < i < j < n). The DNN predicts the
number of lattice points at its output layer as

Ny = f(z;0) (3.9)

where 0 is the vector of DNN parameters. We use the well known rectified linear

unit (ReLU) as an activation function for each layer in the NN

o(u) =u" = max(0,u) (3.10)

To optimize the parameter vector 8 of the NN, which consists of the weights and
biases between input and output layers, we use the mean absolute percentage error

(MAPE) as a loss function which results in the following formula

(i) _ Mop
i<9>:#{15t}2 Ny~ f(;6)

o (3.11)
icS; N,

where N;gi) is the desired output when z(?) is used as an input and L(0) is the loss

function. Moreover, S; denotes the training mini-batch. By choosing a small mini-
batch of samples instead of the whole training set, the gradient complexity is sig-
nificantly reduced. However, the variance of the gradient estimate is inevitably in-
creased. As an optimization method to adjust parameters, we use Adadelta [42],
which adapts the learning rate to the parameters. We opted not to use methods such



3.2. Counting Lattice Points in the Sphere using NN 31

TABLE 3.1: Structure for the NN.

DNN parameters Value
1
Dimension of input variables n(n;—)
Dimension of output variables 1
Number of hidden layers 1to2
Number of hidden neurons 128

as Adam due to the exponential complexity resulting from hyper-parameter tuning.

3.2.3 Simulation results

In this section, we evaluate the performance of the proposed NN model through
several simulation experiments. We consider different sizes of systems, i.e., lattices
of dimensions 1, where 7 is varied from 5 to 10. Elements of the generator matrix
are modelled as i.i.d zero-mean Gaussian random variables with unit variance. The
upper triangular matrix R is obtained using the "QR" factorization of the genera-
tor matrix. Moreover, we choose the sphere radius at random and fix it during the
simulation results. The number of training samples is equal to 50000, and the mini-
batch size of S; used for stochastic gradient descent (SGD) is 10. The test set consists
of T = 10000 samples generated independently of the training set. The detailed
parametrization of the DNN is shown in Table 3.1.

To evaluate our model, we check the accuracy metric to help us determine whether
the estimations generated by our model are close to the correct values. The accu-
racy metric that we use for the prediction error is the MAPE that usually expresses
accuracy as a percentage, and is defined over T samples as

(3.12)

where Nl(,t) and Nr(,t) are the actual and predicted values respectively, for a sample t of
the test set. The MAPE is commonly used as a loss function for regression problems
and model evaluation thanks to its intuitive interpretation in relative error. Dividing
by the actual value N;(f) instead of the predicted value N,S” leads to a different result.
Thus the MAPE is not symmetric in the sense that interchanging Nét) and Nr(,t) does
not lead to the same answer. This issue has been raised in [43] and [44]. The symmet-
ric MAPE (SMAPE) has been proposed to provide symmetry and robustness against
outliers by dividing the absolute loss by the arithmetic mean of the actual N?gt) and
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TABLE 3.2: Accuracy experiment for arbitrary lattices in R".

Dimension n MAPE % SMAPE %
6 14.575 (14.700) 7.055 (7.052)
7 15.958 (16.290) 8.700 (8.842)
8 17.021 (17.147) 9.028 (9.036)
9 16.377 (16.724) 8.463 (8.701)
10 17.078 (17.078) 9.247 (9.809)
the predicted Nr(,t)
100% T t) _ N(t)
SMAPE = 00/ Z ’(’)| (3.13)
t=1 + N |

We plot the accuracy of our predictions for dimension n = 10 as shown in Figure 3.2,
which visualizes the SMAPE metric versus the actual number of points. We observe
that the percentage error is concentrated below 20%. This indicates that our model
fits the number of lattice points significantly well and can proceed with an accurate
prediction. Some accuracies of high errors happen for some unusual characteristics
of generator matrices.

Figure 3.3 shows the error histogram of the DNN. We plot the left figure for the train-
ing set error and the right one for the test set error. We present results for lattices of
dimension 10, but we generally observe similar results for all dimensions between
5 and 10. We can see a high percentage of points whose SMAPE is below 10%, in-
dicating that our model fits the number of points significantly well. In Table 3.2,
we present the MAPE and the SMAPE for each lattice dimension on the training set
and on the test set whose data occurs within parentheses. We observe the similarity
between the training error and the test error, which indicates that our model avoids
both under-fitting and over-fitting thanks to the use of /; and ¢, regularization tech-

niques.

To validate our DNN model, we use some known lattices. We used benchmarks
known as upper bounds on the number of lattice points in a small sphere of radius
equal to the "covering radius" for lattices A,, D, and E, (see [40] for a definition
of these lattices). In [45], the number of lattice points contained in a small sphere,
centred anywhere in R”, is upper bounded using two methods, via spherical codes
and Gaussian measures. The first method resembles the one used by Conway and
Sloane in [40] to upper bound the kissing number of a lattice, i.e., the number of
its shortest nonzero vectors. It is shown that lattice points in 5, can be rearranged
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FIGURE 3.2: The SMAPE versus the actual number of points for the

dimension n = 10.
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FIGURE 3.3: Plots of the SMAPE histogram of the DNN model over
the dimension n = 10, the left figure corresponds to the training error
and the right one to the test error.

inside B, as a spherical code with an absolute minimum angle. This gives rise to
upper bounds on N, since various methods to upper bound the cardinality of a

spherical code with a given minimum angle.

To also obtain upper bounds on |B,(z) N A| where

Bi(z)2{zx eR": ||z —z|, <r}

. (3.14)
min |jal <7
a#0eA

authors in [45] present a different approach based on Gaussian-like measures on A.

For each z € R", they give a positive real number 7, x , such that |B,(z) N A| <

YrAz- Based on worst-case assumptions on z, they also obtain a universal upper

bound, i.e., a positive real -y, x such that

sup |B,(z) NA| < 7, (3.15)

zeR"

We adopt these bounds here to enable direct comparisons. The comparison is shown
in Table 3.3. We can see through the results that the prediction is accurate as it is
almost the same as the actual number of points. The analytical upper bound is no
tighter as lattice dimensions increase. The last column of the table shows the SMAPE
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TABLE 3.3: Results for some known lattices.

Type| n |Spherical | Gaussian | Actual | Predicted | SMAPE
bound bound |number| number %

5 <24 26 7 6 7.69

A 6 <54 47 9 10 5.26
7 <140 99 13 12 4.00
8 - 188 41 32 12.33
9 — 391 69 64 3.76
10 - 758 119 125 2.46
5 16 20 7 6 7.69

D 6 <37 42 9 10 5.26
7 <88 88 11 11 0.00
8 240 183 77 62 10.79
9 — 595 103 88 7.85
10 — 1211 133 130 1.14

E 8 16 77 17 12 17.24

value indicating the normalized symmetric absolute deviation from the actual num-
ber of points. We notice that in some dimensions, our predicted values are produced

with some errors.

3.3 Learning assisted SD

We cannot deny it has always been a trade-off between efficiency and complexity;
both are proportional. This section is interested in the SD algorithm [24] thanks to
its good performance. However, its major problem is still highlighted. It requires
a considerable amount of computations compared to other decoding techniques. It
can be shown that, both from a worst-case and from an average point of view, the SD
requires an exponential complexity [46]. Several algorithm modifications have been
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explored in the past to reduce its complexity further. Techniques such as re-ordering
the computation sequence, performing a fixed number of operations, modified norm
definition, and early termination of search have been proposed [47-56]. Some sug-
gested modifications solve the ML decoding problem exactly, and others sacrifice

some performance to reduce complexity.

Some other cited works focused mainly on the change of sphere radius, which is cru-
cial and significantly affects the computational complexity [57]. On the one hand,
if the radius is too small, there might not be any lattice point inside the spherical
region. On the other hand, a vast radius may result in too many lattice points, in-
creasing the decoding complexity. A simple method (SDIRS) to increase the radius
search was proposed [24]. The SD algorithm starts with an initial radius of ; based
on the noise statistics in this approach. When the search fails, we increase the radius

to 2 (> r1) and the same procedure is repeated until we find the ML solution.

Since the sphere radius directly affects the search range and complexity, it is impor-
tant to design. Therefore, we profit from the learning approach, which predicts the
number of lattice points inside the sphere to reduce the SD algorithm’s computa-
tional complexity. However, we will consider in this time the received signal point
as an origin of the sphere. Hence, known sequences of the received signal, the gen-
erator matrix elements, the sphere radius, and the actual number of lattice points
create the training data set. The input vector of the NN is now in the form of

T
© = [yT, Rii,...,Run, 1 (3.16)

We should mention here that the radius is arbitrary fixed for each generator matrix.
The noise variance is randomly generated in such a way that the SNR is uniformly
distributed on [SNRyin, SNRinax] where SNRpyin and SNRp.x are the minimal and
maximal SNR values over which we used the network. We execute the same predic-
tive learning for counting the number of lattice points in the sphere centred at the
received point. This procedure is effected offline, and then we use the NN’s updated

parameters for the entire communication phase.

3.3.1 NN assisted SD with a dichotomic search of radius

Our principal purpose is to implement the SD algorithm using an enhanced initial
radius, leading to a small number of lattice points inside the sphere. In this case,
the NN model’s number of lattice points is predicted as a function of the received
signal point, the generator matrix, and the sphere radius. We start first by predicting
the number of lattice points falling inside the sphere with an initial radius equal to
that proposed in [24]. Then, if this expected number is large, we update the radius
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using a dichotomic search as proposed in [58]. Indeed, we divide the square radius
by two, and we predict the number of lattice points with the new radius again. We
repeat the same procedure until we attain a predicted number less or equal to a
given threshold. Finally, we start the search phase of the SD algorithm with the
suited radius. Figure 3.4 shows a flowchart of the proposed NN-SD algorithm.

3.3.2 Smart SD with improved radius

Every time we update the radius, NN computations are necessary to predict the
number of lattice points and check if it is still large or not. This leads to an additional
average complexity related to NN computations. Therefore, we seek to evaluate
the average number of radius updates as a function of the SNR. In other words,
we want to evaluate the average number of NN calculations before starting the SD
algorithm. With an initial radius r3 = 2102, we analyze theoretically the number of
radius updates using the equation in (3.7) which approximates the number of lattice
points N,. Let the SNR be defined as p = P/0?3. By successively dividing the square
radius L times till reaching a small expected number of lattice points, we start the SD
algorithm with the radius 7 = r3/2F. Now, if we use the approximate function in
(3.7), we determine the number of iterations L as a function of the SNR (p expressed
in dB)

L=ap+b (3.17)
where
PN
~ 10log;,2
2
b= nlog2 ( log,, Vi — E[log,, det (A)] — E[log,, Np]) (3.18)

1
—1 2nP
+ 1Og10 2 0810 h

Proof: see Appendix A.

As we deal with uncorrelated channels, we exploit some properties of Wishart dis-
tribution to determine the statistical expectation of log-determinant. The Wishart
distribution is a family of distributions for symmetric positive definite matrices. Let
Xi, ..., X, be independently drawn from a p-variate normal distribution N, (0, Z),
and form a p x n data matrix X = [Xj,..., X,]|. The distribution of a p X p ran-
dom matrix M = X X7 is said to have the Wishart distribution with n degrees of
freedom and covariance matrix Z.
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FIGURE 3.4: Flowchart of the NN-SD algorithm.
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So let A be distributed according to a p x p dimensional Wishart distribution with
n degrees of freedom and covariance matrix X. The expected value of the log-
determinant has the following formula [59]

E[ln det (A)] = l,bp(g) + pIn(2) + Indet (E) (3.19)

where 1, is the multivariate digamma function which represents the derivative of
the log of the multivariate gamma function. The latter is a generalization of the

gamma function.

Based on equation (3.17), we come up with a new algorithm, smart SD (SSD), with-
out NN computations. We start the search phase of the SD with an improved radius
which is equal to r3/2! with r3 = 2n03, and L is calculated as expressed in (3.17)
and (3.18).

3.3.3 NN-SD vs. SSD

In this part, we want to make a fair comparison between the NN-SD and SSD. First
off, we should mention that both algorithms find an enhanced initial sphere radius
before starting the SD search phase. In the beginning, we proposed the NN-SD
algorithm as described in 3.3.1. The main steps are presented in Figure 3.4. The
sphere radius is used as an element of the NN-SD input to predict the number of
lattice points. Every time the predicted number is high, we reduce the sphere ra-
dius, and we predict again. A fixed number of floating-point operations (FLOPS) is
required with every prediction due to NN computations (weight matrix multiplica-
tions). In this context, we find from simulations that the number of radius updates
L in the NN-SD decreases linearly as a function of SNR. Thus, we proposed the SSD
algorithm to evaluate L theoretically. The comparison results are similar to that of
NN-SD except for the processing complexity, which is reduced. Indeed, SSD has the
advantage to avoid NN computations as the enhanced initial sphere radius is de-
termined theoretically. However, we can not deny that if we had not proposed the
NN-SD, the idea of the SSD algorithm would not have reached.

3.3.4 Simulation results

In this section, we present computer simulations of the NN-SD compared to the
SDIRS algorithm. We evaluate the performance as well as the complexity advantage
yielded by the proposed scheme. We consider 8 x 8 MIMO channel with 16-QAM
input alphabet. The performance is evaluated in terms of BER for low-to-moderate
SNRs. The computational complexity is measured by counting the number of mul-
tiplications or measuring the processing time for decoding with the same computer
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FIGURE 3.5: BER performance of the NN-SD for the 8 x 8 MIMO sys-
tem with 16-QAM constellation.

processor. To compare with the SDIRS algorithm, we exploit the same sets of trans-

mitting signals, fading channels, and noises.

In Figure 3.5, we plot the system performance as a function of the SNR. We can see
that we have the best BER performance, and we assert perfectly that our proposed
NN-SD algorithm is an ML detector contrary to the DL based SD in [41], which loses
ML performance at low-to-moderate SNRs. As demonstrated earlier, we also pro-
pose the SSD algorithm for decoding with an improved sphere radius. We plot in
Figure 3.6 the average number of updates on the radius as a function of the SNR.
Correspondingly, we use this result to calculate the initial sphere radius immedi-
ately without NN computations. We can see that this number decreases linearly as
a function of the SNR (expressed in dB) as proved in 3.3.2 where we analyze this
behaviour theoretically. The line slope is independent of the system size, and it is
the same as calculated theoretically. However, the intercept depends on the size and
the statistical expectation of the log number of lattice points. The latter is not in an
explicit closed form. Therefore, it makes it empirically obtained from computer sim-
ulations using NNs.
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FIGURE 3.6: Average number of radius updates. The solid lines are
obtained theoretically, and the dashed lines are obtained empirically
from computer simulations.

In Figure 3.7, we plot the average number of multiplication to measure the compu-
tational complexity as a function of SNR. It is well observed that the NN-SD signif-
icantly reduces the number of operations compared to the SDIRS algorithm. This
complexity reduction is explained by choice of an initial sphere radius that allows a
small number of lattice points to fall inside the sphere, and thus the search tree size
decreases in the average sense. Besides, we plot in Figure 3.8 the average processing
time as a function of SNR. The comparison results are similar to that in Figure 3.7.
We compare the average decoding time of the SSD to that of the MMSE receiver and
the NN-SD. As seen, the decoding time is lower, and the reason for this complexity
reduction is that we do not need any more NN computations to update the radius.
For example, the average processing time for the SSD at 12 dB SNR is almost 10
times the MMSE decoding time, while it is almost 233 times for the SDIRS algorithm
compared to the MMSE receiver.

Figure 3.9 displays the average number of lattice points falling inside the decoding
sphere. We can see that this average in the NN-SD is almost constant as a function
of SNR, while it is higher in the SDIRS algorithm for low-to-moderate SNRs.
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FIGURE 3.8: Average processing time in the decoding process.
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FIGURE 3.9: Average number of lattice points (Nyy) falling inside the
search sphere.

3.4 Block Recursive MIMO Decoding

Block recursive decoding for space-time coded systems has been recovered in aca-
demic literature [60-65], and is shown to slightly reduce the complexity of ML detec-
tion. Partitioned signal sets are decoded recursively, taking advantage of the equiv-
alent channel matrix form induced by the code structure. The main issue of block
decoding is using, at one step, an exhaustive list over one block, which increases the
overall complexity. We can find in the literature two approaches for MIMO block de-
coding. The first one is based on the division of the channel matrix into two blocks.
In [60], an ML decoding scheme is performed on the first block of size p1; then, a DFE
equalizer is applied for the remaining system after subtracting the first ML output
from the received signal. It was shown that this scheme could increase the diversity
order for the worst channel from 1 to p;. The second approach, which is the partial
interference cancellation (PIC) group decoding [66], consists in splitting the received
signal into S > 2 subsets. A selection of one set likelihood function is performed,
informally

1. Perform an exhaustive list of solutions for the selected subset;
2. Cancel the decoded part from the received signal for each candidate;

3. Decode the remaining S — 1 subsets using the ZF equalizer;
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4. Select the optimal solution from all complete solutions.

The choice of the subset to decode first is crucial since it affects the system perfor-
mance. Thus empirical and analytical set selection criteria on the equivalent channel
matrix are developed. In [61-63], the main set selection criterion is considered a
determinant of the channel covariance matrix. This quantity measures the instanta-
neous SNR of the corresponding linear system. Another criterion is based on mini-
mizing the condition number of the covariance matrix to measure the ZF accuracy.
Then the ratio of these quantities should be maximized. Inspired by the works men-
tioned above, authors in [64] introduce two new low-complexity decoders, namely
adaptive conditional ZF (ACZF) and ACZF with successive interference cancellation
(SIC). They give two identical sufficient conditions based on STBC characteristics to
get full diversity. One sufficient condition is the total rank of at least one of the S

sub-matrices.

In our work, we propose a new block decoding strategy, which is a generalization
method of the work described in [67], where the MIMO system is only divided into
two blocks.

3.4.1 Block division

The idea is to resolve the sub-systems coming from any division into more than two
blocks. Let us consider the upper triangular matrix which is divided into k blocks
as depicted in Figure 3.10. Let (p1, . . ., px) be the block sizes satisfying 2}‘:1 pj = 2n.
R; € RP*Pi and B; € RP#~ (T-17)) are the upper triangular and feedback matrices,
respectively, where i € {1,...,k}. Accordingly, the transmitted and the received
signal vectors are split into (sW, ..., s®yand (yD,...,y"), respectively. Our pro-
posed recursive decoding method is implemented with two major steps. Firstly we
estimate the information symbols in the first (k-1) blocks using block decoding to
obtain a possible trial of the incomplete information symbols. Secondly, we search
for the remaining data which minimizes the overall ML metric. To summarize, the

decoding process consists of the following steps:
1. Choose the number of blocks k and their corresponding sizes (p1, . .., px);

2. Create a list of solutions for the first block using a sequential decoding. This
list is composed of the ML solution which minimizes the Euclidean distance
|y — Rys™M||?, and its neighbors;

3. Create anew list of solutions for each candidate in the previous list to minimize
the Euclidean metric [|y? — Bys() — Rys?|%;

4. Repeat the last procedure until achieving the (k-1)th block;

5. Sort the set of candidates in increasing order of their weights;
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FIGURE 3.10: Block division of the decoding system.

6. Search for the remaining data symbol vector in the kth block by starting with
the top of ordered candidates.

The last step ends when an examined full candidate’s smallest weight is less than the
next one’s partial weight to examine. The second, third, and fourth steps need a set
of radiuses (rq,...,rc_1) representing the thresholds on weights to create the lists.
For that, these radiuses are computed based on the derivation of an upper bound of
the frame error rate P, f-

3.4.2 Diversity order analysis

At high SNR level, the frame error is caused by an error on one symbol with high
probability. Thus the frame error rate can be approximated by Py = 2nPes, where
Pes is the symbol error rate. In [68], we have derived in detail an upper bound of P,¢
given by i

k-1 1"”(%, T )
F(%)

P <cp "+

i

(3.20)

Il
_

where ¢ > 0 is some constant, p denotes the SNR expressed in dB, and T’ (g, x) is the
upper Gamma function.

Proof:

Let us denote with
T
T T . "
o s — (s(k) S, sl ) the transmitted vector split into k blocks;

e 3 the estimated information symbols;
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o 5 the event that s was visited during the search;
o 5 the event that s() was visited during the search;

By using the conditional probability rule, the frame error rate P,; = Pr(s # §) could

be written as

Py =Pr(8 #sN3)+Pr(8 #sN8&)

s | 8)Pr(5) + Pr(s # s | &) Pr(&)
—_———

RN

|
s | 8) + Pr(5) (3.21)

We start by deriving Pr (8 # s | §)

Pr(s#s|s)=EgrE,) Pr(||y—Rs ||°’<|y— Rs |]?)

s'eS
s'#s
(3.22)
where § is the set of visited candidates during the search, and we have
R(s — 2
Pr(|| g — Rs'|*’<|| g — Rs HZ)SQ( ”(8028)”) (3.23)
w

where Q(.) is the Gaussian Q-function. After performing the QR decomposition of
H = QR, we derive the distributions of Rl%- fori € {1,...,2n}. The diagonal entries
Rlzi are obtained from the Bartlett decomposition [69] of the following random matrix

[%(H)] ’ [%(H)] 620

where %(I?)
S(H)
1,1/2) fori € {1,...,n}. Additionally, R, ~ x*(2,1/2) and the approximate

PDF of R fori € {n+1,2n — 1}, is derived in [70].

has iid. entries according to N (0,1/2); thus R% ~ x?(2n —i+

Hence, from the Chernoff bound, we obtain

Eg (Pr(|y— Rs' |*<||y—Rs |?))
2 2

< <1+ HS’Z(—T;\ZY < <1+%>n (3.25)
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where dpin is the distance between the nearest neighbors. Accordingly,

2
Pr(s§#s|8) <Es), 7
o8 (1 38)

< Bip™" (3.26)

where 1 is some positive constant.
Now we derive Pr(3°)
k .
-1P ( (s gm)) < Pr ( 5D A...n g<l>> (3.27)
Denoting by &; = Pr (§(i)c ] (é(i_l) Nn...N 5(1))> fori € {1,...,k},it follows that
k

Pr(s) <) & (3.28)
We derive &; fori € {1,...,k — 1} and we let the derivation when i = k later. Recall
that & implies that the weight of s() given the right partial transmitted message

T
(s(i_l)T, e, s(l)T> , falls over a certain fixed threshold r;

&= ]ERiZPI‘ (S(l)) % PI‘( I ,g(i) _ Ris(i) H2> 7’1‘2)

() e APi
( | 20 2> 12) (3.29)
. T .
where () = (s sWT) . Since z() is a vector of pi Gaussian en-
tries characterised by N (0,02 /2), then [E 2i)‘|2 is distributed according to the x? (p;
y w gw/z g p
|20 )2 7
z—PI‘(UZ/Z >0_7%/2
2
y Tu(8, )
= [ filx)dx = —5= (3.30)
/ | r(%)

where f; is the PDF of x? with p; degrees of freedom, and Lula (( )) is the regularized

upper Gamma function.

The last term & in (3.27) depends on the decoding scheme that we apply for the
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last block. We propose to perform an ML decoder such that the SD algorithm after
eliminating the interference caused by the previously detected symbols. We have

& <ErE, Y. Pr(]| g% - Res'™ P<)| g% — Res™ |?)
) Zs®)

2
<Euw )L s 2
) ( T 7)

2
< E

= Z 2. \"
min
s/(K) £5(k) (1 208 )

Similarly to (3.25), the entry of the first column of Ry is distributed according to

(3.31)

x*(2n,1/2) which explains the last two inequalities in (3.31). Hence, we can write
E < Bop™" (3.32)

for some positive constant . Now, from (3.28), we have

‘)’%) (3.33)

(3.34)

SEACH
Por < (B1+B2)p " + )“’

i=1

The diversity order that could be achieved by this decoding scheme is controlled
by the second term given that the first one achieves full diversity. To guarantee
an overall diversity order of at least d € {1,...,n}, each term of the sum should
decrease at the order of p~?. This goes back to find for each ith block the minimum
threshold r; such that

2

Fu(%/ 2;1; 2)

(%)

<ép % ic{l,.. . k-1} (3.35)

for some positive constant ¢ that controls the SNR gain. In [67], r;’s are calculated
numerically for two blocks. Now, in this work as described in [68], we give the an-
alytical calculus of r;. Indeed, the inequality on 7; is solved based on the asymptotic
inversion of incomplete Gamma functions [71]. We are interested in the x-value that
solves the following equation at each ith level

—q (3.36)
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where a = p;/2,x =r?/202 and g = 5p~? € [0, 1].

The approximations are obtained by using uniform asymptotic expansions of the
incomplete Gamma functions in which an error function is a dominant term

Qa,x) = perfe(V/ar2) + Ro(n) 337

The real parameter 7 is defined by
%172 =A—1—InA, A =x/a, sign(y) = sign(A — 1) (3.38)
We denote the solution of the above equation by #(g,a). The inversion problem

starts by inverting the error function considering R,(7) in (3.37) as a perturbation.
Thus, we define the number 79 = 79(g, a) as the real number that satisfies the equa-

tion
%erfc(qOM) =q (3.39)
We write
1n(q,a) = 1o(q,a) +€(q,a) (3.40)

and we determine the function € that appears in the form

€1 €2 €3
6(q,a)~;+afz+$+..., (3.41)

The coefficients €; can be found in [71] as functions of 77y using the Taylor expansions.
In our work, only the first and second-order terms, i.e., €; and €3, are considered.

3.4.3 Simulation results

This section presents numerical results of the proposed recursive decoder compared
to the original SD algorithm. We consider a 10 x 10 MIMO channel with a 16-QAM
input alphabet and a block division on 2 and 3 blocks. The figure legend indicates
the block sizes (p1, .- ., pk)-

In Figure 3.11, we plot the decoder performance as a function of SNR. We can see
that, by fixing the target diversity to 10, the block decoder achieves almost ML per-
formance for all considered divisions. In Figure 3.12, we plot the average processing
time for decoding as a function of SNR. We use the same computer processor and the
same programming language C to measure the processing time. It is well observed
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FIGURE 3.11: BER performance of the block decoder for the 10 x 10
MIMO system with 16-QAM constellation.

that the SD algorithm has a more considerable time of processing than the recursive
block decoder.

The computer simulations are obtained with different values of §, which refers to the
factor gain appearing in the determination of r;’s. Since it is not in an explicit closed-
form, this factor requires a numerical optimization obtained from simulations. We
should mention its crucial effect on the trade-off between the proposed block recur-
sive decoder’s performance and complexity.

3.5 Summary

To reduce the complexity of the well-known SD. At first, we train a NN model to pre-
dict the number of lattice points falling inside the n-dimensional sphere with some
radius centred at the origin. We argued that the proposed model is more reliable than
the analytical upper bounds covered in the literature for some known lattices. For
the general case, our model can proceed with an accurate approximation. Secondly,
we use the learning approach to propose the NN assisted SD, which gives the ML
performance significantly lower complexity. Besides, we propose another decoding
algorithm without NN computations, and we obtain more significant complexity re-

duction. Finally, we propose the block recursive MIMO decoder. The latter achieves
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FIGURE 3.12: Average processing time in the block decoder com-
pared to the SD algorithm.

a complexity reduction coupled with the desired diversity order. The general case
of multiple blocks with different sizes is studied. Some structures of block sizes re-
duce the complexity with a guarantee of almost ML performance. As the goal is to
lower the complexity, the main issue of this approach is the unknown size of blocks
to divide the MIMO system and obtain the minimum complexity. We focus on the
problem of dividing the MIMO system in such a way that the gain in complexity
reduction achieved by the block decoding is maximized. One does not know the
best blocks’ sizes that provide the minimum complexity. This is an exciting prob-
lem, and it has considerable importance since it affects computational complexity.
A novel strategy can be presented to predict the optimal blocks’ sizes to resolve the
mentioned problem. To that end, we can train, for example, a feed-forward NN to
predict blocks’ sizes allowing us to achieve the minimum complexity compared to
all other divisions.
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Chapter 4

Learning assisted Fronthaul
Compression for Uplink C-RAN

4.1 Introduction

In this chapter, the MIMO decoding in the uplink reception remains to be investi-
gated. However, this time, it will be reviewed in the cloud-RAN, sometimes referred
to as centralized-RAN. C-RAN is an architecture for cellular networks consisting
of many radio remote units (RRUs) or BSs connected to a central processor (CP).
Due to the prohibitive complexity of computations, the most efficient uplink C-RAN
schemes are challenging to be implemented in practical systems. Using DNNs, we
propose a new and low complex method for uplink C-RAN subject to some quanti-
zation rules. This is the first work that uses DNNs to mimic the C-RAN system to
the best of our knowledge. Our architecture’s objective, called QDNet, is to jointly
optimize the processing done at the BSs and the processing done at the CP side. Our
goal is not to solve signal detection in multi-antenna systems. Instead, the goal is to
mimic the whole transmission in uplink C-RAN, which considers the quantization
constraints at the BSs and the corrupted observations at the CP. Inspired by the pro-
jected gradient descent algorithm, QDNet is designed as a distributed DNN with
sparse connections. Experiment results are provided and show that our scheme
outperforms linear receivers such as the ZF) equalizer and achieves near-optimal

performance compared to the SD algorithm.

4.2 Background

With the extensive use of advanced wireless devices and video streaming, smaller-
sized cellular networks emerge to meet the increasing data rates demand. Conse-
quently, the distance between BSs becomes small, inducing higher inter-cell interfer-
ence (ICI). C-RAN has been seen as a valuable model to cope with the dominant ICI
by enabling the joint precoding in the downlink transmission and the joint decoding
in the uplink reception at the CP side [72,73]. The compress-and-forward (CF) is
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one of the most studied techniques in the uplink C-RAN. Each BS first transforms,
quantizes, and then transmits the quantized signal to the CP via the finite capacity
fronthaul. However, it is challenging to find the optimal compression scheme that
minimizes the distortion error within capacity constraints. This can be more prob-
lematic if a high quantity of observations is available. Under certain assumptions
such as Gaussian signals or channels, this problem has been formulated in [74, 75]
with a single BS and Wyner-Ziv compression.

Nevertheless, due to the computational complexity and latency induced by an infi-
nite blocklength coding, this compression scheme is troublesome to be implemented
in practical communication systems. To avoid the delay caused by long block length
coding, we deal with quantization schemes that are exceptional cases of source cod-
ing with a fixed block length. Thus, the objective of BSs turns into finding a trans-
formation scheme that can better adapt the given quantization rules. Besides, we
aim to find an adequate decoding scheme at the CP side to mitigate the quantization
noise impact efficiently.

It is not easy to solve this joint optimization problem with classical mathematical
tools as the quantization noise is not simple to characterize. Therefore, we resort
to recent advances in DNNs to mimic the whole transmission chain in uplink C-
RAN. Several recent works focus on MIMO detection by using DNNs to improve
the widely used iterative algorithms. In [76], authors proposed a DNN architecture
called DetNet and demonstrated good performance oni.i.d. Gaussian channels. [77]
proposed a sparsely connected NN which can reduce the computational complexity
while ensuring good performance. Inspired by the orthogonal approximate mes-
sage passing (OAMP) and iterative soft-thresholding algorithms, OAMPNet [78],
and MMNet [79] are developed, respectively. They are shown to be efficient in re-
constructing the transmitted messages via i.i.d. Gaussian and 3GPP channels. How-
ever, all the algorithms mentioned above are proposed for a point-to-point MIMO
configuration. The NN architectures are used to ensure the decoding at the receiver
side based on the received signals.

Motivated by DL technologies” performance, we resort to recent advances in DNNs
to mimic the whole transmission chain in uplink C-RAN. Due to the finite capacity
fronthaul, we aim to find an efficient way to forward the quantized signals at the
BSs and find a correspondent decoding scheme at the CP side. This is the first work
that uses DNNs to mimic the C-RAN system to the best of our knowledge. So the
challenge is to design a distributed NN which is jointly optimized at the BSs and the
CP. The aim of our work is not to solve signal detection in MIMO systems. Instead, it
aims to mimic the whole transmission in uplink C-RAN where the CP observations
are corrupted due to the quantization. Our work is different from previously pro-
posed NN-assisted MIMO receivers in the literature since they are assuming perfect
knowledge of observations contrary to our work which deals with corrupted obser-

vations.
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FIGURE 4.1: An uplink C-RAN system with a finite capacity fron-
thaul.

4.3 System Model and Problem Conception

We consider an uplink C-RAN model as shown in Figure 4.1, where K remote users
with N; transmit antennas emit their messages independently to N remote BSs. Each
nth BS is equipped with N, receiving antennas and connected to the CP via a noise-
less fronthaul link with a limited capacity C, V n € {1,...,N}. The transmitted
message sent by the ith user is denoted as §; and belongs to a finite constellation S.
In practice, we assume that the constellation set S is given by a QAM modulation.
All constellations are normalized to unit average power (e.g., 4-QAM constellation is
represented by {j:\% +j % }). The received signal g, at the nth BS can be expressed
as

K
Un = Y Hyi3i + wy (4.1)
i=1

where H;,, € CN*Nt ig the channel matrix between the ith user and the nth BS, and
W, ~ CN(0,2021y,) is the AWGN correspondent to the nth BS. The main challenge
in MIMO detection is the use of complex-valued signals which are less common in
machine learning. Thus, by using the convention in chapter 2, we convert (4.1) to its

equivalent real-valued representation

K
Yn = 2 Hi,si+wy (4.2)
i=1
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Let us denote with H = (H{,..., H])T the global channel in the C-RAN architec-
ture where H, V n € {1,..., N} is the channel to the nth BS when considering all K
users. So the received signal at all BSs can be expressed as

y=Hs+w (4.3)

where s = (s!,...,sl)T is the transmitted message sent from all users in the system

and w = ('wlT, e, wIE)T is the AWGN noise.

Since there are no direct links among the BSs, the received signals at the BSs need to
be transformed and quantized in a distributed way. The quantization schemes that
canbe applied toy, Vn € {1,..., N} such as the scalar quantization, the Lloyd-Max
quantization [80], or Grassmannian [81], induce severe degradation due to the great
size of y,. For instance, if we assume that the scalar quantization is applied and the
quantization resources are uniformly allocated, each element of y, is going to have
Cn/2N;, capacity to be exploited. In a massive MIMO system with high N;, the dis-
tortion error induced by the scalar quantization can lead to poor performance at the
CP side. Hence, we should use a transformed version 7, of y,, which has a smaller
dimension and so can be quantized with less deterioration. It is possible to make the
best use of the quantizer to improve the decoding process at the CP side. In this per-
spective, our work aims to find a useful transformation scheme at the BS side before
quantization as long as a correspondent decoding scheme at the CP side which takes
into account the considered quantization scheme. Mathematically, if we assume that
7y is the quantized version of r, = T,(yu; H,), and 8 = D(#;...;7N; H) is the
estimated message at the CP side, then the optimization problem can be expressed
as

A

‘8—8

2
minimize IES[ }
Ti(.),...,Tn(.), D(.) (4.4)
subject to Ry(7y) <CyVne{l,...,N}

where T),(.) is the transformation done at the nth BSV n € {1,...,N}, Ry(.) is the
required number of bits subject to the quantization rule g, and D(.) is the decoding
process done at the CP side.

There are N + 1 unknown mappings and functions to be found in the optimization
problem (4.4), which seems challenging to obtain with classical approaches. Thus,
we choose to use NNs to reformulate our problem (4.4) as a NN regression task to
predict the transmitted message s.

4.4 QDNet Design

In this section, we present our NN architecture designed for uplink C-RAN con-
sisting of multiple BSs, and called QDNet (Quantization-and-Decoding Network).
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The prediction of the transmitted message s of all users is primarily based on the
received signal y, at each nth BS and the global channel H. Considering these
aspects, the NN is trained using a set of input-output vector pairs (e, s) where
e = ((y1; H1),...,(yn; Hy)) is the input vector. The NN predicts the estimated
message § at its output layer as

§=f(e;0) 45)

where 6 is the vector of NN parameters. To optimize 8, we use the mean squared
error (MSE) as a loss function which results in the following formula

min 1E<A14 ﬁ st - §<m>H2> (4.6)
m=1

where M indicates the number of training examples, s(") and (") are the desired
target vector and the output vector, respectively, of the mth example.

Our proposed scheme is inspired by the iterative projected gradient descent algo-
rithm. For a given observation y, the probability p(y|s) can be proved to be in-
versely proportional to the distance ||y — Hs|*>. Correspondingly, a projected gra-
dient descent algorithm based on the ML detection can be expressed as

_dlly - H8||2| }
S=S8j

81 =11 Fk P

4.7)
— 11 {gk s (HTy _ HTH§k>]

where s; is the estimate of s in the kth iteration, I1[.] is a non-linear projection op-
erator, and Jy is a step size. Intuitively, each iteration is a linear combination of 3§,
H"y, and HT H3; followed by a non-linear projection. This hints that two main
ingredients in the architecture should be H Ty and HTH3;. Our NN construction
is based on mimicking that projected gradient descent like a solution for the maxi-
mum likelihood optimization. For massive MIMO systems, the matched filter [82]
is widely-used linear detector and seems to be a good solution. It is attractive for
practical implementations thanks to its low complexity. So it is clear to recognize the
signal HTy to be forwarded to the CP instead of the received signal y of large di-
mension. Besides, regarding the fronthaul with limited capacity, it is better to work
with smaller dimensions to mitigate the degradation induced by the quantization

noise.

Let us remark that the terms H Ty and HT H can be rewritten as

N

HTy = E HnTyn (4.8)
n=1
N

H'H =) HH, (4.9)

n=1
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FIGURE 4.2: The clipping function ¢, (.).

Although each BS transforms and quantizes its observation in a distributed way, the
term HTy can be approximated at the CP side by taking the sum of all the transmit-
ted signals sent by the BSs to the CP. Each BS has its transformation and quantization
processes, whereas the decoding process is done at the CP side with a shared net-

work.

4.4.1 Quantization Process at the BS side

Without loss of generality, we present the architecture corresponding to the nth
BS employing the scalar quantization. Before being quantized, the signal Hy, is
clipped at the nth BS by involving a piece-wise linear soft sign operator ¢,,(.) defined
as

Pu(x) = vy +p(x+0v,) —p(x —vy) (4.10)

where p(x) = max{0, x} and v, > 0 is the clipping threshold parameter to be opti-
mized during the training phase. The operator is plotted in Figure 4.2, and the NN
structure is illustrated in Figure 4.3.
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FIGURE 4.3: NN structure at each nth BS.

4.4.2 Decoding Process at the CP side

At this time, 7, is the nth BS’s output which will be transmitted to the CP. Once all

signals are received from all BSs, the CP adds up these signals to obtain
N
F=) 7y (4.11)
n=1

7 represents a degraded version of H'y due to the distortion induced by the trans-
formation and quantization processes. To take into account this distortion, we mod-

ify the gradient descent algorithm in (4.7) to this form:
8y =11 {§k 16 (f - HTH§k>] (4.12)

In the first step, we enhance these iterations in (4.12) by changing the step size ¢, for
each kth iteration by 9,&1) and 9,&2) corresponding to # and HT H 3, respectively, that
is

8pq =11 [gk +olVr — e,ﬁz)HTﬂgk} (4.13)

In the second step, to mimic the non-linear projection operator I1[.], a non-linear
denoiser (k(.) is applied to z; to produce 8,1 where z, = §; + 0,9)1“ — BIEZ)H THS,.
Together, the linear and denoising steps aim to recover an improved estimate 5
from one iteration to another. Figure 4.4 illustrates each iteration of the estimation

algorithm which assumes §p = 0.

The denoiser is a non-linear function {; : R — R applied to each element of z.
Many existing MIMO detection schemes [83, 84] assume that the noise z; — s at the
input of the denoiser has an i.i.d Gaussian distribution with a variance ¢2. In this

perspective, an optimal element-wise denoising function is given by

(2 O'k Z s; exp < HSI_zHZ) (4.14)

seS k



60 Chapter 4. Learning assisted Fronthaul Compression for Uplink C-RAN

|

h v A

linear P |denoiser

FIGURE 4.4: One block of an iterative estimation.

L2 ) . . .
— M) The noise z; — s consists of three different noise

where Z =}, csexp (
kinds: the channel noise, the contribution of the clipping and quantization noise, and
the residual error caused by deviation of s; from the true value of s. As the clipping
and quantization noise are challenging to characterize, we predict the variance o7 as

a function of the channel noise as follows
ot =0 x (2 +6) (4.15)

where 9,53) > 0and 9154) > ( are the parameters to optimize in the kth iteration during
the training phase. As we can see, the standard deviation of the input noise at the
denoisers, 0y, varies from iteration to another and depends on the linear steps in each
iteration. Figure 4.5 shows a flowchart representing a single layer of QDNet which
corresponds to the kth iteration of the estimation process. The model has only four
parameters per layer: 9,51), 9,52), 6,53), and 9,54). These parameters are optimized during
the training phase over randomly sampled i.i.d Gaussian channels. The training is
done offline, and then the optimized parameters of the NN are used for the entire

communication phase

Unlike DetNet introduced in [76], a sparsely connected NN is used in our archi-
tecture to highly reduce the computational loads as proposed in [77]. The intuition
behind our NN architecture is twofold. On the first hand, the contribution of 9,51) and
GISZ) is useful to compensate for the degradation induced by the corrupted observa-
tion 7. On the other hand, the introduction of the denoising function {(.) is conve-
nient to improve the quality of the estimate s, from one iteration to the next. The goal
of QDNet is to mimic the transmission chain in the uplink C-RAN such that we can
find appropriate transformation and decoding schemes that minimize the estimation
error at the CP side while adhering to some quantization rules at the BSs. Thus, two
different tasks need to be accomplished by QDNet, namely, optimize the parameters
{v,}), at the BSs, and also optimize the parameters {9,51), 9,&2), 9153), 9,54) }]Z; where
L is the number of layers used for decoding at the CP side. Figure 4.6 summarizes



4.4. QDNet Design 61
r X
S P@ > 2, i
H'H X
ol + X > o)

FIGURE 4.5: A flowchart representing a single layer of QDNet at the
CP side.
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FIGURE 4.6: Illustration of the QDNet architecture for uplink C-RAN.

the transmission system in uplink C-RAN as modelled by the QDNet design. The
received signals at BSs are quantized and sent in parallel to the CP. Once signals are
reinforced at the CP side, the shared network of QDNet estimates all users’ trans-

mitted message.

4.4.3 QDNet Complexity

The QDNet is proposed to simplify the detection network model in uplink C-RAN,
and the simplification runs throughout the entire data processing. First, the network
connection structure is simplified by working with sparse connectivity instead of
full connectivity, which reduces the number of required FLOPS. Each node of input
is only connected to one node of the output. Second, the input/output variables
and the loss function are optimized to avoid irreversible problems with the channel
matrix. Moreover, the gain in processing complexity is not negligible as no matrix
inversion is needed to be calculated. For example, the ZF or MMSE detector’s ma-
trix inversion using Gauss-Jordan elimination requires O( (KN¢)?) elementary oper-
ations. This complexity is skipped in the QDNet scheme. Based on the above im-
provements, the network complexity is reduced to O((KNt)z). This can be seen from
the flowchart representing a single layer in Figure 4.5, which shows the operations
of multiplications and the element-wise denoising function. Hence, the O((KN;)?)
complexity of classical linear detectors is reduced to O((KN;)?) with the proposed
QDNet model.
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4.5 Experiments

In this section, we show the performance and advantages of our proposed QDNet
using computer simulations. The performance evaluation of QDNet is given for i.i.d
Gaussian channels.

451 Implementation details

In our simulation, the QDNet is implemented in Keras. The number of layers, i.e.,
the number of iterations in the estimation algorithm is set to L = 10. Training and
test data are generated through the model described in section 4.3. They consist of
randomly generated sources: the signal s, the channel matrix H,, correspondent to
each nth BS in the C-RAN system, and the channel noise w, Vn € {1,...,N}. The
transmitted data s is generated randomly and uniformly from Q-ary QAM modu-
lation symbols. All users in the system are assumed to use the same modulation.
All simulation channels are given fast fading channels randomly generated with
iid CN(0,1/N,) elements. During training, the SNR is uniformly distributed on
[SNRmin, SNRinax] where SNRpyin and SNRyax are the minimal and maximal SNR
values over which we used the network. The SNR of the system is used to measure
the noise level and is defined as

(4.16)

SNR(dB) = 10log,, ( KN )

N, x 202,

We train the QDNet network with 10000 iterations with a batch size of 500 samples.
For the optimization algorithm in training, Adam [85] method is employed, and
the learning rate is set to 0.001. In our experiment settings, we choose the MSE as
defined in (4.6) as the cost function.

4.5.2 Competing schemes

The system performance depends on the considered MIMO detector. Therefore, we
have tested the performance of the following detection schemes:

e QZF: ZF detector [86] with quantized observations of H Ty.

e QSD: SD algorithm [86] with quantized observations of UTy where U is an
2N, x 2KN; semi-unitary matrix. The latter results from the singular value
decomposition (SVD) of the channel matrix H = ULVT.

e QDNet: Our proposed NN algorithm is described in section 4.4. We imple-
ment this NN with 2 layers at the BS side for transformation and quantization,
and L = 10 layers at the CP side for decoding. The layer for transformation
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of Hl'y, Vn € {1,...,N} contains only one trainable parameter which repre-
sents the clipped threshold v,. In contrast, each kth layer for decoding at the
CP side contains four trainable parameters {9,51), 9,52), 9,53), 9,54) }. Intuitively, the
total number of parameters in the QDNet network is equal to N +4L. This
demonstrates that the complexity of QDNet is not high compared to other NN

architectures.

In our work, we choose to compare the QDNet results to well-known decoders for
detection: the sub-optimal ZF and the optimal SD. The comparison is fair since the
quantization process is the same for all detection schemes. In this perspective, we
should mention that our proposed algorithm, QDNet, is not optimal when consider-
ing complete observations, i.e., when no quantizer is applied. Indeed, the SD algo-
rithm has been developed to attain low complexity with the ML performance [24].
Thus, the QSD scheme outperforms QDNet as we move to a high number of quanti-
zation bits. However, QDNet performance is significant as we address fewer quan-
tization bits, and even QDNet can outperform the QSD.

4.5.3 Quantization model

The scalar quantization encoding with R; bits is performed in all detection algo-
rithms before sending observations from BSs to the CP. Although, as one would
expect, this is not ideal and will not approach any theoretical limits, scalar quanti-
zation is a relatively simple technique commonly implemented in hardware archi-
tecture. We have used the uniform quantization in our work, which represents the
simplest form of scalar quantization. The peak-to-average power ratio of the signal
can be limited by clipping the signal amplitude. This would help to reduce later the
quantization error. The clipped signal is defined by

x(t) |x(t)] < om
O (4.17)
oy x(t

where vy, > 0 is the clipping threshold.

As the clipping process introduces additional noise, a trade-off between the clipping
and quantization noise must be found. Therefore, we resort to machine learning as
introduced in the QDNet network to find the optimal transformation by optimizing
the clipping threshold v,, Vn € {1,...,N} at each nth BS. For the QZF and QSD
schemes, it is challenging to find this clipping threshold straightforwardly. Thus, we
use a grid search to get this optimal factor to achieve the best performance subject to
the number of quantization bits.

To construct the uniform quantizer in the QDNet, we employ the rounding function
to the clipped signals. However, rounding is a fundamentally non-differentiable
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FIGURE 4.7: BER vs. SNR of different schemes for single BS scenario
and 4-QAM modulation (4 transmitters and 10 receivers).

function; thus, we force its gradient in the training process equal to that of the iden-

tity function.

4.5.4 Experiment results
Single BS scenario

We consider the single BS case where only one BS is sending its observations to the
CP. The experiments address a MIMO channel with an input of size K = 4 single
antenna users and an output of N, = 10 receiving antennas. We plot the bit error
rate (BER) performance versus the SNR. Figures 4.7 and 4.8 show that the QDNet
outperforms the QZF in the entire SNR region. It is also observed that relative per-
formance is achieved to that of the optimal detector QSD as we move to a high

number of quantization bits.

Multi-BS scenario

For the multi-BS case, we consider N = 2 and N = 3 BSs in the C-RAN system. The
MIMO channel correspondent to each BS has an input of size K = 4 single antenna
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FIGURE 4.8: BER vs. SNR of different schemes for single BS scenario
and 16-QAM modulation (4 transmitters and 10 receivers).

users and an output of N, = 6 receiving antennas. In this setting, the QZF and QSD
perform joint detection with a high degree of cooperation among BSs to exchange
information. This can be regarded as one large distributed MIMO system with an
output of size equal to N x N, receiving antennas.

Intuitively, the QZF and QSD schemes perform detection established on the quan-
tized version of the signal H'y instead of the signal # which is equal to the sum of
all quantized signals sent by BSs to the CP. For that reason, the two schemes have the
advantage of getting a reduced quantization noise compared to the QDNet network.
However, this is the task of NNs to learn from the corrupted observations, and so
can result in equivalent or improved performance. Thus, we adopt the QZF and
QSD schemes to enable only direct comparisons, but we should mention that these
two schemes can not be applied in practical systems as long as quantized signals are
sent from all BSs in the C-RAN system.

Figure 4.9 shows the BER performance versus SNR of the different schemes for 4-
QAM modulation. We can see that QDNet performs well for detection as long as
quantized signals from BSs are used constructively at the CP side in the QDNet
architecture. The gain in QDNet performance is significant as the number of BSs
increases in the C-RAN system. This indicates that the proposed NN architecture is
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FIGURE 4.9: BER vs. SNR of different schemes for 4-QAM modula-
tion and 5 quantization bits.

reliable for likely fronthaul compression for multi-antenna uplink C-RAN. It is more
suitable for scenarios with a large scale of antennas or a high number of BSs. This
is also approved in Figure 4.10 for 16-QAM modulation. Hence, we consider in the

following N = 3 BSs to see the quantization noise effect.

By varying the number of quantization bits, we plot the BER of the different schemes
to see the performance degradation at high quantization noise. For fixed SNRs,
Figure 4.11 shows the BER as a function of R, for 4-QAM modulation. It is well
observed that the QDNet performance outperforms that of the QSD scheme as we
move to less number of quantization bits. This improvement in BER can be ex-
plained by the fact that the QDNet has well learned from the corrupted observations,
especially at high quantization noise levels. Figure 4.12 also shows that QDNet be-

haviour is confirmed for 16-QAM modulation.

4.6 Summary

This chapter proposed a distributed DNN architecture, called QDNet, to design an
efficient scheme for fronthaul compression in multi-antenna uplink C-RAN. QDNet
includes the quantization process at the BSs and the decoding process at the CP.
So the challenge was to design a distributed NN which is jointly optimized at the
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BSs and the CP. Our goal was not to solve the signal detection in multi-antenna
systems but to mimic the whole transmission in uplink C-RAN. We compare the
proposed NN results to well-known receivers for detection: the sub-optimal ZF and
the optimal SD. We did not compare NN-assisted receivers in the literature since
all works assume perfect knowledge of observations contrary to our work which
deals with corrupted ones. Our paper has used the uniform quantization encoding
with R, bits in all detection algorithms before sending observation from BSs to the
CP. Hence, the capacity constraint is defined by the number of quantization bits R;.
We have used a sparsely connected NN to reduce computational loads highly while
maintaining outstanding performance than existing detection algorithms.
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Chapter 5

MU-MIMO Precoding in the

Downlink Transmission

5.1 Introduction

In Chapters 3 and 4, we have studied the MIMO decoding in the uplink reception
(many-to-one). This chapter shifts the focus to the downlink scenario (one-to-many)
and studies the MU-MIMO precoding techniques. We develop reliable transmission
schemes for multi-user communications in the single-cell environment based on lin-

ear and non-linear precoding techniques.

The first part of this chapter presents a combined VP (Comb-VP) precoding for MU-
MIMO downlink systems, taking into account different MCSs. It enables an adaptive
modulation scenario where users apply different MCSs. The perturbation vector’s
search is combined for all users like in the conventional VP (Conv-VP), but different
modulations are used simultaneously. The performance of the combined VP is op-
timal compared to existing solutions. We propose the combined MMSE VP in this
setting, which achieves better error rate performance by minimizing the MSE crite-
rion. Besides, we suggest an ordering of users according to their modulation size.
Indeed, by starting with the highest modulation order in the search tree of the SE
algorithm, this has the advantage of reducing the complexity by minimizing the size
of the search tree in the average sense.

The second part of the chapter introduces a low-complexity block VP (Block-VP)
precoding, which has the advantage of choosing the desired diversity order by fix-
ing the size of blocks. The idea of Block-VP is to apply perturbation for each block
resulting from the QR-decomposition of the precoding matrix, taking into account
the feedback information from previously perturbed blocks. The block division may
be interpreted as a user grouping method in such scenarios of adaptive modulation,
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and its performance is better than other precoding techniques covered in the litera-
ture.

Finally, this chapter considers the downlink precoding in MU-MIMO when CSI er-
rors are present in cellular networks due to imperfect estimation and quantization.
These CSI impairments can degrade significantly the performance of precoders used
to mitigate the intra-cell interference. Most importantly, several users are present in
the network with different CSI accuracy, making the precoder more sensitive to CSI
errors. Thus, we propose a new feedback quantity referred to as the CSI accuracy
indicator (CSIAI). This quantity will be transmitted by the user equipment (UE) to
the BS to cope with CSI errors. The design of an appropriate precoder based on the
CSIAI reporting has the advantage of achieving a better performance in the down-
link transmission. The system design can lower or eliminate the ceiling effects. Sim-
ulation results show that an improvement in the average symbol error rate (SER)
performance is achieved.

5.2 MU-MIMO Precoding for Adaptive Modulation

Conventional VP precoding does not exploit the fact that users use different MCSs,
depending on the SINR. In [87], block diagonalization and VP are combined to pro-
pose the block diagonalized VP (BD-VP). The latter enables different users to apply
various modulation schemes. Besides, authors in [88] propose the user grouping VP
(UG-VP), which improves BD-VP performance. These existing solutions are sub-
optimal since VP is applied for each user or group independently. To eliminate the
performance loss, authors in [89] propose a joint VP algorithm applied to adaptive
modulation scenarios. By scaling the constellation, the modulo base for different
modulation types is made the same; thus, the joint VP reaches a comparable perfor-

mance with the conventional VP.

To keep also the performance advantage of conventional VP, we propose in our
work, a combined VP to mitigate downlink interference between users applying
different MCSs. We also introduce the combined MMSE VP that achieves the best
performance by minimizing the end-to-end MSE. Indeed, the new design of the com-
bined VP includes a diagonal matrix T instead of the scalar modulo base T which

has a constant value:
T

T = (5.1)

K

The data symbol vector s is perturbed by adding a perturbation signal T't, where T is
a diagonal matrix of elements equal to the modulo bases relative to each modulation
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type, and t is the K-dimensional integer vector. Then, the transmit signal can be
expressed as

x = LF(s +1Tt) (5.2)
VB
where B = || F(s + Tt)|? to satisfy the unit transmit power. The combined VP can
be represented as an integer-lattice search where at the transmitter £ is chosen such
that 8 is minimized, that is

t = argmin || F(s + Tt)||? (5.3)
teczX

With this transformation, the optimal perturbation vector’s search tree can be ap-
plied within K dimensions so that there will be no performance loss compared to
BD-VP and UG-VP, sub-optimal. Elements of the diagonal matrix T" may take any
order so that 7; corresponds to the ith user using modulation type M;. Regarding
this setting, we propose a user ordering which allows complexity to decrease. With-
out loss of generality, we assume there are Q modulation types applied, denoted as
My, ..., Mg. With the same value of the initial sphere radius, we find that starting
the search in the SE algorithm with the highest modulation order is less complex
than starting with any other order. The reduction in complexity comes from the fact
that the SE algorithm is based on a DFS strategy. If a leaf node is reached not sat-
isfying the metric constraint linked to the sphere radius, i.e., it is outside the search
sphere, the tree’s path leads to that leaf node downs to that parent node, and the SE
continuous the search tree to reach the other child nodes. It should be noted that the
order in which the child nodes originating from the same parent node are visited
is relevant to the final complexity of the SE. When a leaf node is reached to satisfy
the metric constraint, the SE updates the radius and restarts the search tree with the
new metric constraint. Hence, when we consider the lowest modulation order at the
bottom level of the tree, this will faster the search by reducing the SE’s total number
of paths. Figure 5.1 shows a simplified diagram of the search tree that would be
performed in a 2 x 2 system with 4-QAM (£1) and 16-QAM (+£1, £3) modulations.
The curve indicates the initial metric constraint, and the dashed lines indicate the
discarded paths due to that metric constraint. During the search, the nodes corre-
sponding to 4-QAM modulation (at the bottom) will be more frequently visited than
the nodes at the top level. This has the advantage of reducing the size of the search
tree in the average sense.
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r e root

FIGURE 5.1: Search tree diagram of the SE for a 2 x 2 system with
16-QAM at the top level and 4-QAM at the bottom level.

Rewrite F = [Fq,, ..., Fuq,]. The transmit signal norm can be written as

2
1F(s+T8)|2 = || [Fag, ) Fag) - (s—i—Tt)H
= i:Z/\:/ll F; . (s;+ 1t)) ‘ (5.4)
= Y uF.(t'si+t;) )
i=M;y

where t; is the perturbation vector corresponding to modulation type M;.

5.2.1 Combined MMSE-VP

In the literature, the conventional VP idea is extended using the mean squared error
(MSE) minimization criterion, and this approach is known as the MMSE-VP [35]. It
is worth mentioning that the MSE minimization approach has been successively ap-
plied to obtain precoder designs in various multi-user downlink transmission sce-
narios. In MMSE-VP, the precoder and the optimal perturbation vector are found
jointly by minimizing the end-to-end MSE. Indeed, the MMSE-VP seeks a balance
between noise enhancement suppression and residual interference mitigation. How-
ever, the conventional-VP finds the optimal perturbation vector that minimizes the
noise enhancement effect for a given linear precoder such as ZF and regularized-
ZF. For these reasons, the MMSE-VP achieves better BER performance compared to
conventional-VP in the entire SNR region.
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Based on the idea of the combined VP, we propose the combined MMSE-VP for
adaptive modulation to minimize the MSE criterion. We define a deviation vector to
measure the distortion between the scaled received vector /By and the perturbed
vector s + T't as

d=+\/By— (s+Tt)=(HF —I)(s+Tt) + /pw (5.5)

Given the data vector s and the channel matrix H, the MSE is expressed as a function
ofv=Ttand F

e(v, F) = Eyu(||d|*|H, )

5.6
= |(HF — I)(s+Tt)|? + KBc?, (6)

where E,,(.) denotes the noise expectation. The optimal precoding matrix that min-

imizes (5.6) is obtained referring to [35]
-1
F, = H" (HHH + KafuI) (5.7)
The optimal perturbation vector can be found as

-1
t, = argmin Ko235" (HHH + Kafvl) 5 (5.8)
teCzK

where § = s + T't denotes the perturbed data vector. With Cholesky factorization,
(5.8) can be rewritten as

t, = argmin || L (s + Tt)||? (5.9)
teczk

-1
where (H HHY + Ko3I K) = LL" with L a lower triangular matrix.

5.2.2 Simulation results

This section evaluates the proposed combined VP scheme’s performance with con-
ventional VP [33], which considers the highest modulo base for all users. We also
compare with UG-VP [88], which outperforms BD-VP when reducing the number of
individual searches for the perturbation vector, i.e., the number of different groups.
We consider an MU-MISO BC with a BS equipped with M = 8 transmit anten-
nas serving K = 8 single antenna users simultaneously. We note that the proposed
scheme can be applied to any MU-MIMO system with a total number of receive an-
tennas N, (< M). The performance is evaluated in terms of BER versus the SNR,
and we average the performance through Monte Carlo simulations.
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FIGURE 5.2: Averaged BER of all users applying for 3 different mod-
ulation types.

Figure 5.2 shows the BER performance averaged over all users of UG-VDP, Conv-VP
and Comb-VP. It is assumed that users 1, 2 apply 4-QAM, users 3,4, 5 apply 16-QAM
and the other ones 64-QAM. It is well observed that our proposed algorithm Comb-
VP outperforms UG-VP and Conv-VP, in which the highest modulo base 7 is used
for all users. To see the difference in performance per user, we plot in Figure 5.3 the
BER of users applying different modulations versus the SNR. For example, the users’
BER performance applying 16-QAM with the proposed algorithm is even better than
the conventional VP. The modulo base’s choice T is crucial since it provides the de-
coding region around every signal constellation point. Hence, when we consider
only the highest modulo base for all users, T is made too large for users applying for
smaller modulation order. Therefore, the minimization yields a null perturbation
vector for these users, independently of their data symbol vectors, and the pertur-
bation technique reduces to simple channel inversion.

For comparison, Figure 5.4 shows that the combined MMSE-VP precoder outper-
forms the combined ZF-VP. In general, the diversity of these two precoders is the
same. However, we observed an SNR gain achieved by the combined MMSE-VP in

the entire SNR region for any adaptive modulation scenario.
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FIGURE 5.5: Ordering effect in the complexity of combined VP.

As mentioned earlier, ordering users from the highest modulation order to the low-
est order has the advantage of reducing the complexity. This is shown in Figure 5.5,
which visualizes the processing time as a function of the number of antennas. The
processing time is measured using the same computer processor for all algorithms.
We consider the case where we have M = K, the one-half of the users apply 4-QAM
and the other half 16-QAM. The complete line shows the running time when we
start the SE algorithm’s search tree with 4-QAM modulation at the tree’s top level.
In contrast, the dashed line shows when we start with 16-QAM modulation at the

top level, which is much faster to select the desired perturbation vector.

5.3 Block Recursive MU-MIMO Precoding

This section introduces a low-complexity precoding technique called the block VP
(Block-VP) algorithm based on the "QR" decomposition of the precoding matrix. VP
is applied for each block by taking into account the feedback information of the pre-
viously perturbed blocks. Thus the perturbation will not be applied for each group
independently as in BD-VP and UG-VP. The proposed scheme allows for achiev-
ing the desired diversity order by fixing the size of blocks. We decompose the VP
error power concerning the considered block division, and we derive the diversity
order of all users. In Block-VP, we consider the block division of the upper trian-
gular matrix R, which is developed from the QR decomposition of the precoding
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FIGURE 5.6: Block division of the precoding system.

matrix F = QR. We divide the MU-MIMO system into two blocks, as depicted in
Figure 5.6. The first block is of size I;, and the second block at the bottom is of size 5.
Accordingly the data symbol and the perturbation vectors are split into (s(!),s(2))
and (v(l), v ), respectively.

5.3.1 Preliminaries

Without loss of generality, we assume single-antenna receivers. We note that all
scheduled users are symmetric because they have the same multiplexing gain, equal
to one. Hence the user is said to have 4 as the diversity order if its average bit error
probability decays as SNR™?. Moreover, because all users have the same received
SNR, they all experience the same diversity order. We introduce some preliminary
results, as presented in [90], which will be used in this section to calculate the diver-
sity order when the block VP is performed.

Definition 1 (see [40]): Two lattices are said to be congruent if one can be obtained
from the other by a combination of rotations and reflections, i.e., if and only if their
generator matrices, A and A’ are related by

A = QAU (5.10)

where U is a square unimodular matrix and @ is a matrix with orthonormal columns,
such that Q7Q = I. The distance between any pair of points is preserved due to
the equivalence of congruent matrices. Note that A and A’ have the same number

of columns but may differ in the number of rows.

Lemma 1: Let A be a generic M x K matrix, with K < M, and let B = (A")~ be the

Moore-Penrose pseudo-inverse of its Hermitian transpose. Let us consider a generic
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partitioning of the columns of the two matrices: A = [A1|Ay] and B = [B1|Bg],
and let us indicate with A; the projection of A; in the orthogonal complement of A,
and with A, the projection of A, in the orthogonal complement of A,

A & (I, — 14)A (5.11)
Ay & (I, — Pa,) Az (5.12)
A

where Py, £ (A1)t Al and P4, £ (AT Al are the projection matrices on the

column space of A, and Aj, respectively. The following identity holds true

B, = (A)! (5.13)

Proof: see [90].

Corollary 1: Let [a],...,a}] be the orthogonalized basis of A = [ay,...,ak] and
B = [by,...,bx] = (AH)'. The following identity holds true:

1

lakll

bkl = (5.14)

Proof: From Lemma 1, we obtain: bx = ((a}))", from which the assert follows.

Lemma 2 (see [91]): Let p and ¢ be functions of the random channel H, such that they
satisfy the following relationship for any channel realization

p=>ct (5.15)

where c is a constant. Then, if p represents the SNR and ¢ is a x?-distributed random
variable with 2k degrees of freedom, the diversity order of the system d is at least k,
i.e., once denoted with P, the average BER

d 2 Lim logpg > k (5.16)
03-0 log o3,
Similarly, if p < ¢, we haved < k.
Lemma 3: Let the received SNR p have the following lower bound
Y >c min{él/---ré{k} (517)

where p, ¢y, ..., Cx are generic functions of the transmit power and the channel re-
alization, and c is a constant. Then, for a given random channel distribution, the
error exponent is lower bounded by the minimum of the k error exponents associ-
ated with the SNRs p; = ¢1,...,0¢ = k. In formulas, let P, be the average error
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probability provided by p and P, ..., P, x the average error probabilities given by
1, - - -, Pk, respectively, then

m long > min{ lim lOgPeél,.--, lim logPezk} (5.18)
020 log 0w —0 log %) 020 IOgO'w

Proof: see [90].

5.3.2 Decomposition of the VP error power

Let us partition the M x K matrix F = (H)" into two parts F = [F|F], with Fy
of size M x |1 and F; of size M x I such that /1 + [ = K. Similarly, let us partition
5 = [3(1)T|s(2)T}T and H" = [H|H;]. Let us indicate with Hj, the projection
of H; in the orthogonal complement of H; and with P, the projection of F> in the
orthogonal complement of Fj. Therefore the subspace (F» — F) lies in the column
space of F}. Besides, by applying Lemma 1, the following identities hold

F = (H)' (5.19)
By = (Hy) (5.20)

Correspondingly, we can split the transmitted vector into two orthogonal compo-
nents, the first one in the space spanned by Fj and the other in its orthogonal com-

plement

v =[1F (s + )|
= | Fo(s® + o) |2 + ||(F3 — B2) (s +v?) + Fy (s +0W)2 (5.21)

2 T

By taking the QR-decomposition of the partitioned F

R
w&B%ﬂQ1Qﬁ<;_g> (5.22)
we can write
Fi =y (5.23)
F,=Q:R; (5.24)

F,—F,=Q:B (5.25)
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Based on these identities, the transmitted power reads

7= Q:Ra(s® + )|+ |@QiB(s?) +v?) + Qi Ri(s) + 0|2

2 T

(5.26)

Let us bound the two terms in (5.21). We start with the first one, denoted as ;. In-
spired by [34], we consider G = (HZ!) as the generator matrix of an l,-dimensional

lattice in CM. The covering radius of this lattice is defined as

7(G) £ max min ||G(a — z)|| (5.27)
acC? zezCh

Introducing the covering radius [40] is useful since it provides the following conve-

nient upper bound to

12 = [|G&|* = min [|G(s? +12)|? < T2A(G) (5.28)
zezCh
where 52 = s(2) 4 (?), and 7 is the scalar integer associated to the perturbation
vector vo. Using a result of Banaszczyk [92], it follows that

my ( H3)S((H3)') <1 (5.29)

where m (HZ!) denotes the first successive minima or equivalently the shortest lat-
tice vector of the dual lattice generated by H. ZH ,l.e.,

mi(Hy') £ min |Hy'z| (5.30)
zezZCM\ {0}

We note that [92] applies to real-valued lattices, but (5.29) follows directly by consid-
ering one complex dimension as two real valued dimensions. Combining (5.28) and

(5.29) yields
(th)?

12 = [|G&|* <
mi(Hj')

(5.31)
The implication of (5.31) is that » cannot be large unless there is in the denominator
a short non-zero vector in the lattice generated by HI. Note, however, that the
existence of such a short non-zero vector is not sufficient for -, to be large. Using
(5.31), we obtain

Pr(y2 > x) < Pr (m%(HzH) < (le)zx_l) (5.32)

where x > 0 is arbitrary. It follows from [34] that

Pr(mi(Hy') <p~')=p M (5.33)
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where ¢(p) = h(p) is used to denote the equality to first order in the exponent

lim 1988(0) _ ;. logh(p) (5.34)

p—oo logp _p—>00 logp

Now let us turn to the second term in (5.21), denoted as y;. The optimal perturba-
tion vector v(1) is found by searching for the point of the lattice F; A" nearest to the
vector ((Fy, — Fy)(s® +v@) + FisM)) € Ry ch.

Two approximate solutions to the closest point problem were introduced in [93],
based on the lattice reduction algorithm of [94]: the rounding-off and the nearest
plane procedures which are also referred to as Babai points. We upper bound the
second term in (5.21) under the rounding-off solution. Let us introduce the Lovasz-
reduced basis 'y = [fy1,..., f1,,] of the complex lattice F}, such that Fy = F1U;
with Up an [; X I unimodular matrix. Let us introduce the orthogonalized basis
[f11,---, f1,,] of the reduced lattice, such that

fai= ZVj,i?;,j with p;; =1 (5.35)

i<j

Finally, let us denote with r the covering radius [40] of the lattice A. In Appendix B,
we show that for 1 < [; < K, the second term in (5.21) can be upper bounded as
follows

I(F2 — F2)8® + FisW|2< Cy 11,117
(5.36)
with Cy, = 252"
A1 2 1
where 51) = s() +- (1), Note that the above upper bound holds for the full lattice
search as well because the error introduced by the full sphere search cannot be larger

than the error given by the lattice reduction with the Babai approximation.

Letuscall Hy = [hy,..., hyy ] = (F2)* the pseudo-inverse of the reduced genera-

tor matrix. Using Corollary 1, we obtain

N C
»—Fy)3Y + F13 < = 5.37
F (2) (1) 2 All ( )
[, 12

Now we show the following result.

Proposition: The lattice generated by the M x I; random matrix H; is congruent
to a lattice generated by a complex Gaussian matrix, say H,, of size (M — ) X
l;. In particular, the minimum distances of the lattices H1 and H, have the same
distribution.
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Proof: see Appendix C.

Accordingly, we can relate the denominator in (5.37) to the minimum distance m g,
of the lattice H.A" as follows

min { [, [, ||} > min| [ Hyt]| = mp, (5.38)
teAll
from which, we finally obtain

. C
n =[(F - F)5? + 50 |2< AL (5.39)
m
H,
The distribution of m g, is unknown in general, however, in [34], an upper bound
is derived for complex Gaussian matrices with i.i.d. entries of zero-mean and unit-
variance. By applying this result to the (M — I) x I; Gaussian matrix H,, we obtain,

for some constant ¢

(5.40)

2 _a a1 (5)M-L(logPyM-1+1 K =M, P > ae
Primy < <
P c1 (&ML K<M

where the expression for K = M holds for sufficiently large transmit power with e
being the Euler constant.

5.3.3 Diversity order: lower bound

By combining together (5.21), (5.31), and (5.39), we obtain a lower bound on p = g
P
> -
p= 2max{y1, 72}
(5.41)

Zlmm Hc,Pml< 2)
2 Cpn (tlp)?
From a well-known result due to Bartlett [95] on the element distribution of the
"QR" factorization of Gaussian matrices (see for example [96]), we note that the first
[ terms are independent random variables and X%\/Ifl “ distributed. The next step of
the derivation is to find the error exponent associated with the term in (5.41)
B Pm%qc

I = 542
. (5.42)
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Let us bound the bit error probability P, as follows

P, < N;E

2
Q rdm;w]

N g drznin .
< 75 e "4 fr(ﬂ) da (5 43)
0

N dz : © d%nin
_ '8 mm/ e %1 Fr(ﬂ) da
8 Jo

where fr(a) and Fr(a) are the density and distribution functions of I, respectively,
Amin is the minimum distance between constellation points, and N; is the maximum
number of nearest neighbor symbols. In (5.43), we have used the upper bound on
the Q-function: Q(x) < exp(—x2/2)/2, while the last equation results from the

integration by parts. Now, because

C

Fr(a) = Pr [mz < ’1\)’1”] (5.44)
by combining (5.40) and (5.44) with (5.43) and replacing all the terms that do not

depend on P with constants c; and c3, we obtain the following bound

Peg{cz“"gliﬁf” K=M, P — o 5.45)
3w T, K<M
Therefore, we obtain for any K
lim —11‘;%5 1; > M-I (5.46)
Finally from Lemmas 2 and 3 applied to (5.41), we conclude
d>min{M,M—L}=M-1, (5.47)

5.3.4 Diversity order: upper bound

We will show in this section that the lower bound in (5.47) is also an upper bound,
then the diversity order is precisely M — I,. First, we acknowledge that with fixed
M and I, if we increase K, [; = K — I, is increased, the diversity order in the system
cannot increase because of the fundamental trade-off between diversity and multi-
plexing. Let us call d; the diversity order for a system withl, = K—1,and [} = 1. We
can derive an upper bound for d; by lower bounding the power normalization factor.
From (5.21), after noting that Fy is an M x 1 vector and (F, — F») = Fu® € F C,
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2)

where u(?) is a linear combination of the data symbol vector s(?), we obtain

Y2 HFl(u(z) +sM 4 U(U)HZ
5.48
= | QA (u® + sM) — (@ + M) 2 (5.48)

where Q4 denotes the quantization processing in the complex lattice A. From Corol-
lary 1 and (5.19), it follows that || Fy||> = 1/|| H; ||?, where Hj is the projection of the
vector Hj in the orthogonal complement of the M X [, matrix H,. By taking the

expectation of (5.48) concerning the data, we obtain

E [|QA(u(2) sy = (u® S(l))ﬂ
|| Hq |2 (5.49)

Y2

;e #0
IIH 1||2
for some constant c4, where the expectation is non zero because u? and s are
independent. If the numerator of (5.49) is zero then (u(® + s1)) € A. Therefore,
if A = TZ[]], there exists a Gaussian integer (kg + jk;) € Z[j], such that u®? =

(kg + jk;) — 51, which implies that u(®) and s(1) are not independent. Finally, we
obtain an upper bound on £ +» which reads

P _ P|H,|?

- < 5.50
<= (550

)

From the Bartlett decomposition in [96] on the M x (1 + I,) Gaussian matrix H,
we know that, by construction, || Hj]|? is x2-distributed with 2(M — I,) degrees of

freedom. Therefore, from Lemma 2, we obtain

d<d <M-1I (5.51)

By combining (5.47) and (5.51), we can conclude that in an M transmit antennas
MIMO Gaussian BC with K (< M) single-antenna users, the diversity order for each
user achieved by the Block-VP is

d=M—1 (5.52)

where 0 < [, < K — 1 is the size of the block at the bottom. Correspondingly, we
can say that in terms of diversity, the size of the first block at the top I; = K — 1,
defines the target diversity order d = M — K + [;. Consequently, the proposed block
VP achieves a complexity reduction coupled with the desired diversity order.
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FIGURE 5.7: Block VP results for an 8 x 8 system with variable block
sizes.

5.3.5 Simulation results

To validate our analysis for the proposed Block-VP, we calculate the error exponent
numerically from the BER versus SNR curves. Figure 5.7 shows results of the Block-
VP, for a square system with M = K = 8 and a block division into two blocks with
variable size I; = 2,4 and 6. The modulation scheme is 16-QAM. Simulation results

confirm that the diversity order is M — K + [; in all cases.

Figure 5.8 shows the curves for the scenario where we have two modulation types,
4-QAM and 16-QAM. Users 1,2, 3,4 apply 4-QAM and the other ones 16-QAM. In
this case, we consider a block division or a user grouping based on the type of mod-
ulations. Users with the same modulation order are allocated into the same group,
i.e., the same block. It is well observed that the Block-VP outperforms the UG-VP
algorithm and has comparable performance to the conventional VP, which uses the
modulo base T relative to the highest modulation order. The Block-VP advantage is
that the complexity is reduced compared to the conventional VP since the perturba-
tion vector’s search is divided into searches with smaller sizes. However, we should

note that the Comb-VP always has optimal performance compared to all schemes.
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FIGURE 5.8: Block VP for an 8 x 8 system with two modulation or-
ders.

5.4 Precoding for Users with Different CSI Accuracy

MU-MIMO downlink precoding is a closed-loop transmission where the knowledge
about CSl is needed at the BS. In a time-division duplexing (TDD) system, CSI can
be acquired at the BS by exploiting its reciprocity channels. In a frequency-division
duplexing (FDD) system, the BS can have quantized CSI, obtained via finite-rate
feedback from users. Unfortunately, the CSI obtained at the transmitter is not perfect
due to quantization and feedback errors. In TDD, ambient noise and time variation
make the BS’s CSI imperfect. In FDD, quantization noise causes noise in the BS’s
downlink CSI knowledge. For these reasons, the CSI available at the BS is never per-
fect in practice. Therefore the impact of CSI errors in MU-MIMO BC is an important
issue that needs to be addressed. Analysis of the impact channel estimation errors

on the performance can be found in many studies [97-101].

Under perfect or imperfect CSI, two VP precoding schemes, namely conventional-
VP [33], and MMSE VP [35,102], are generally used. In [103] and [99], conventional-
VP was performed under the CSI Gaussian error model. The SER performance
shows high error floor levels, especially in high SNR regions. The idea of conventional-
VP using the MSE minimization criterion is known as the MMSE-VP. The latter seeks
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a balance between noise enhancement suppression and residual interference mitiga-
tion. Thus it achieves better SER performance compared to conventional-VP in the
entire SNR region under perfect CSI assumption. Motivated by this, the MMSE-VP
under the Gaussian error model was investigated in [102].

5G networks employ MU-MIMO techniques for managing the intra-cell interference.
It has been shown that these techniques can achieve high spectral efficiency and sup-
port high data rate user services. However, its performance depends on the channel
response’s accuracy, which is the leading performance-limiting factor in such sce-
narios. In 3GPP, the channel quality indicator (CQI) is usually reported for wireless
communication systems. We propose a new approach based on reporting a new
CSIALI that measures each user’s channel estimation error to deal with the channel
imperfections. This indicator represents the CSI accuracy and can be calculated as a
function of the wireless channel conditions, e.g., quantized SNR measurement, UE
SINR, and UE mobility. Based on this CSIAI reporting, we develop a downlink pre-
coding technique that is less sensitive to CSI errors and has improved performance.

5.4.1 CSI accuracy indicator reporting

In various studies as in [99,104] and references therein, the channel coefficients esti-
mated at the BS deviate from the real channel coefficients by a Gaussian error. This
model captures various scenarios such as errors due to channel estimation, feedback
delay, channel quantization in FDD systems, and reciprocity mismatch in TDD sys-
tems. When the BS has only an estimate H = [ﬁl, eeey ﬁK]T of the channel H, then
the relation between H and H is given by

H=H+E (5.53)

where we assume that the error matrix E hasi.i.d. zero mean Gaussian random com-
ponents. The CSI accuracy is characterized by the error matrix which is assumed to
be independent of H. Also, we assume that E is independent of the data vector s
and the Gaussian noise w. In our channel model assumption, the transmitter precod-
ing matrix needs to be designed based on the knowledge of the estimated channel
matrix H. In fact, given H, we are interested in designing the precoding matrix F
at the BS such that the MSE signal at each user receiver is minimized. Therefore the

optimization problem to solve is

2
Fopt = argmin E

HHFS +7w —s
Te(FHF)<P

H] (5.54)

which minimizes the above MSE objective function.
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In the literature, the random components of E are assumed to have the same error
variance ‘732- However, this could be far from a realistic scenario, where the channel
estimation errors could be different for each user. For example, this can be related to
the user estimation technique defined by the UE vendor based on reference signals.
This can also be related to the number of bits used for quantization per user when
channel quantization is performed. To cope with this variety of channel estimation
errors, we propose a new feedback quantity referred to as CSIAI, which can track
each user’s error variance. Therefore, the components of each ith row of E have the
error variance 7. The statistics of E can be estimated at the BS considering the CSIAI
reporting to know the different error variances associated with users. Depending on
the estimated channel matrix H, we need to compute the optimal precoder that
minimizes the above expectation (5.54) taken over the distributions of w and E.

5.4.2 MMSE based precoding

In this section, we consider the optimization problem proposed in (5.54), where
we aim to derive the optimal precoding matrix which minimizes the MSE objec-
tive function given the estimated channel matrix H at the BS. In order to compute
the precoding matrix Fpi, knowledge of the error variance o7 for each ith user is
available at the BS thanks to the CSIAI reporting.

Given that the elements of the channel H have unit variance, the matrix H has the
same distribution as H with a reduced variance equal to 1 — 07 per each ith row. Let
H be defined as

H=DH (5.55)

where D is the diagonal matrix defined as

-1 -

\/1—0?
D= (5.56)
1

I ,/1—(71%_

It is evident to see that H has the same distribution as H. Therefore, we introduce

the system model of precoding with quantized feedback or channel mismatch, as
shown in Figure 5.9. The received signal vector can be written as

1
y=—=DHFs+ Dw

vV

1 N
= ﬂ<s+ (DHF—IK)3+DEF3> + Dw

(5.57)
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FIGURE 5.9: System model of precoding.

with an arbitrary precoding matrix F, and 4 = Tr(F" F)/P. The deviation vector is
obtained as

=+\/Yy—s
ﬁy (5.58)
= (DHF — Ix)s + DEFs + \/4Dw
Given the data vector s and the estimated channel matrix H, the MSE is obtained as

a function of F by taking the expectation over w and E

e(F) = Euw,p(|d|*|H, )

K (5.59)
= |(DHF — Ix)s|* +

i= i

2 4 2
O + 0 . . . .
Let us denote ‘Tezq = 1yK, 1“’_ 02’ to simplify equations. A comparison between

(5.6) and (5.59) shows that the optimization problems of MSE share a similar form.
It follows that the optimal precoding matrix is given by [105]

. . -1
Fopt = (DH)Y (DH(DH) + Ko? IK) (5.60)
Now the optimal perturbation vector can be found as
. . -1
vopt = argmin KoZ 5" (DH(DH) + Ko? IK> 5 (5.61)
v

where § = s + v denotes the perturbed data vector. With Cholesky factorization of

. -1
(DH(DH) + Ko IK) , (5.61) can be rewritten as

vopt = argmin || L (s + v)||? (5.62)
v

R -1
where (DH (DA)H + K(72 I K) = LL" with L is a lower triangular matrix.



92 Chapter 5. MU-MIMO Precoding in the Downlink Transmission

Special Case

We assume that the error matrix E has K x M independent elements with zero mean
and error variance equal to 082, ie., O'iz = (762 Vie{l,...,K}. In this case, D is equal
to the identity matrix scaled by some factor, that is

1
D=~ (5.63)

Vi-a?

Substituting (5.63) in (5.60), the optimal precoding matrix can be written as
-1
Fopt = \/1—02 x H" (HHH +K(0? + 03)1K> (5.64)

Then, from the system model, the received signal vector is obtained as

-1
NN 1
y=HHA" (HHH + K(02 + 03)1K> s+ —m——w (5.65)

e
Hence, we can say that our results share a similar form of the precoding matrix that

appears in many studies where the error variance is the same for all users as in [106].

5.4.3 Performance analysis

This section provides equivalence relations between the quantized and perfect chan-
nel feedback in the MMSE criterion and SER. We analyze the performance of the
system by considering the SINR value at each user receiver. Then we show how to
scale the quantization level for each user in the MMSE-VP to achieve the full diver-
sity order for VP precoding.

Equivalence relations

In the following, Lemmas 1 and 2 are applicable for both linear precoding and VP
precoding. We use the term "MMSE based precoding" to refer to both linear MMSE
and non-linear MMSE-VP.

Lemma 1: In a transmission system with imperfect CSI for K users, where each ith

user has a channel estimation error of variance (712 and an additive noise of variance

2

(o

%, the MMSE based precoding is equal to that in a transmission system with perfect

02 + 0?

1-0?"

. o . 1
CSI where the additive noise is of variance (qu =X Y&,
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Proof: In the last section 5.4.2, we have shown that for a given H, there exists a cor-
02 + o?

K Lzz which has the
1—o0:

same distribution as H. Based on equation (5.59), the resulting MMSE is averaged

over the distribution of H = DH. So we can say that the MMSE based precoding

is equivalent to that in a transmission system with perfect CSI, where the channel

matrix is H and the noise variance is afq.

N 1
responding H with an additive noise power ofq =% Y

Let e(02, (02,...,02)T) denote the SER of MMSE based precoding with imperfect
CSI for K users, each ith user has a channel estimation error of variance 0'1»2. We note
that (¢7,...,0%2)T = 0T corresponds to the SER with perfect CSI.

Lemma 2: In a transmission system with imperfect CSI for K users, where each ith

user has a channel estimation error of variance 0'1-2 and an additive noise of variance
2

07, the SER of MMSE based precoding is equal to that in a transmission system with
perfect CSI where the additive noise power is of variance qu = %25:1 Jf"j;;,
1
namely
(02, (2., 0})T) = e<11<i"15’_+:oT> (5.66)

Proof : Since the deviation vector determines the number of incorrectly detected sym-
bols, we can claim from (5.58) that both cases of perfect and imperfect CSI achieve
the same SER under different noise variances.

Feedback load

It is proved in [34] that VP precoding with perfect channel feedback achieves full
diversity of order M, namely

o 2 T 2 T
L —108(e(e,07)) . log(e(oy,07))
p—ro0 log(p) 20  log(oz)

=M (5.67)

The following Lemma shows how much feedback load is required to obtain the same
precoding diversity order under specific quantized channel feedback.

Lemma 3: To achieve the same diversity order as perfect channel feedback, MMSE-
VP precoding with quantized channel feedback has to increase each user’s feedback
load by at least 3.32 x M bits for every 10 dB increase in SNR.

Proof: see Appendix D.
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SINR performance analysis

Assuming that the BS designs its transmitted signal using the proposed precoding
technique, we derive a general expression for the SINR of each user and closed form
expressions for the SINR value at high SNR. Let the ith row of H be given by h; =
h; + e;, where h; and e; denote the ith rows of the matrices H and E, respectively.
The received signal of the ith user can be written as

y-—L(ﬁ-%—e-)f-s'—i—i(fl-%—e')Zf-s-%—w- (5.68)

1 ﬂ 1 1 1<1 ﬂ 1 1 ];Al 197 1 .

where f; denotes the ith column vector of F,i. From (5.68), we can notice that the
signal and interference components, where s; is the symbol intended for user i and
the interfering signal isAgiven by (h; +e€;) Y.i+i fisj. We can first compute the ith user
SINR conditioned on H and e;. In this case we let

SINR; (e;) ]E[‘%(’Alﬁ-ei)fisl'\z\ﬁ,ei] 6569
i(e) = — - .
]E[‘%(hﬁ‘ei)zj'#ifisi+wz‘\2\H,61}

denote the ith user SINR value given the estimated channel matrix H and the ith
user channel estimation error e;. The expectation is taken over the distribution of
the noise w;. From the above definition, a general expression for the ith user SINR
value is given by

SINR; = E [SINRi(ei) |Iﬂ (5.70)

where the expectation is taken over the distribution of the ith user channel estima-
tion error e; conditioned on the estimated channel matrix H. Given H and e;, the

expression in (5.69) can be easily computed and given by

5|(hi + ) fil?

0%+ 5| Lizi(hi + ei) fil?

_ pl(hi+ei) fil>
Tr(FEFopt) + 0 Xz | (Bi + €:) il

SINRZ' (ei) =

(5.71)

At high enough SNR, the MMSE’s performance converges to the ZF. This happens
since the regularization coefficient in the MMSE precoding matrix is proportional
to the inverse of SNR. Thus the MMSE precoder converges to the ZF precoder at
asymptotically high SNR levels. Hence, at high SNR, the precoding matrix Fypt
converges to the ZF solution with f; given by the ith column vector of the pseudo-
inverse of the channel matrix H noting that h; = h; and e; = 0. From (5.71), when
the BS has perfect and full knowledge of the CSI, we can see that each user’s aver-
age SINR grows linearly with the SNR. Hence the average SER goes to zero, and the
achievable capacity of each user is unbounded.
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In the second case when there are channel estimation errors and (71.2 is assumed to
have a value that is greater than zero

h N £.]2
lim SINR;(e;) = ———— ol(hi + ei) fil? :
p—o0 Tr(FoptFopt) + 1Y 2]751 |(h1 —+ el).f]|

_ (hi e £
Yizil(hi+ i) £

(5.72)

where f;° is the ith column vector of

00 (Dﬁ)H(Dﬁ(Dﬁ)H+Z 121>1

opt —

The SINR of the ith user is now given by

( |(hi + e) £ )
Yii | (i + €) £

which is obviously a function of the estimated channel matrix H, the channel esti-

SINRY = E

H] (5.73)

mation error variance (712 for each ith user, and is independent of the SNR value.

5.4.4 Simulation results

We consider an MU-MISO BC channel composed of a BS equipped with M = 12
transmit antennas serving K = 12 single antenna users at the same time. Perfor-
mance is evaluated in terms of averaged SER overall users versus the SNR. The
modulation scheme is 16-QAM. We average the performance through Monte Carlo
simulations. We assume that the the channel estimation error E has i.i.d zero-mean
complex Gaussian random variables with an error variance o? per each ith row.
Without loss of generality, we assume there are two different error variances (7821 and
0¢,. Users are allocated into two groups, each ith group of six users has 2. We note
that the proposed scheme can be more general and applied to any MU-MIMO con-
figuration.

Table 5.1 presents some simulation results of the SER performance of the linear
MMSE precoding under imperfect CSI and its equivalent perfect CSI whose SER
appears within parentheses. It shows relative values between the two sets, which
validate the equivalence relation given by (5.66). Table 5.2 also shows similar results

for the non-linear MMSE-VP precoding which is in concordance with lemma 2.
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TABLE 5.1: SER for different SNRs and settings with linear MMSE.

Setting\SNR 18 dB 27 dB 36 dB
ol =2* 5.007e-1 4.464e-1 4.379-1
of =2 (5.005e-1) | (4.535e-1) | (4.470e-1)
og =2° 3.674e-1 2.392-1 2.174e-1
o, =28 (3.663e-1) | (2417e-1) | (2.192e-1)
ol =28 3.090e-1 1.224e-1 8.516e-2
og, =210 (3.093e-1) | (1.223e-1) | (8.157e-2)
of =210 2.919-1 7.952e-2 3.110e-2
g, =212 (2918e-1) | (7.922e-2) | (3.023e-2)

TABLE 5.2: SER for different SNRs and settings with MMSE-VP.

Setting\SNR 14 dB 21dB
og =2* 3.37e-1 2.00e-1
o, =2° (3.42e-1) | (2.07e-1)
ol =2° 2.12e-1 3.47e-2
o, =28 (2.09e-1) | (3.29e-2)
oz =28 1.70e-1 4.36e-3
og, =210 (1.69e-1) | (4.17e-3)
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FIGURE 5.10: Performance of the new precoder with CSIAI compared
to other existing precoding techniques for M = 12, K = 12, Uezl =277
and 02 =277,

In Figure 5.10, we plot the average SER of the proposed precoding technique as
a function of the SNR. For comparison, we plot the linear ZF’s performance, the
regularized-ZF, and the non-linear conventional-VP, with imperfect CSI on the exact
figure. As we can see from Figure 5.10, the linear MMSE precoding technique ex-
ploiting the different values of channel estimation error variances outperforms the
ZF and regularized-ZF. The proposed non-linear MMSE also performs better than
the conventional-VP, which does not cope with CSI errors. We can see the ceiling
effect where the average SER of all precoding techniques flattens for high SNR and
does not improve by increasing the SNR. However, the proposed precoding tech-
nique can improve the ceiling and decrease the error floor level. We can say that the
suggested MMSE precoding exploits well the channel estimation error statistics as
long as CSIAl is reported. So the system performance is significantly enhanced.

Figure 5.11 shows the SER performance averaged over all MMSE-VP users under
quantized and perfect channel feedback. The dashed line represents the perfect CSI
where we have (762] = (7622 = 0, whereas the other complete lines correspond to the
imperfect CSI. In Figure 5.11, the channel estimation error variances are fixed and
independent of SNR. It is well-observed that the proposed precoding matrix consid-
ering the different quantization error variances performs better than the one using

the same variance. The error floor level due to imperfect CSI is decreased.
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FIGURE 5.11: SER performance with fixed feedback load.
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FIGURE 5.12: SER performance with varied feedback load.
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With a varied feedback load per user such that 0? = (02)%, the SER floor disappears
as shown in Figure 5.12. When the feedback load is adjusted in such a way that
a; > 1V i, the SER is shown to decrease at the same rate as perfect channel feedback
for high SNR region. On the other hand, the SER performance can not achieve the
full diversity order when there exists at least one ith user with a; < 1, which confirms
our theoretical results presented in section 5.4.3.

5.5 Summary

In this chapter, we investigate the downlink precoding in MU-MIMO BC systems. At
first, we propose a combined VP precoding that takes into account different MCSs.
The perturbation vector search is combined for all users as in conventional VP. The
performance achieved by the proposed algorithm is optimal compared to existing
solutions in the literature. We also propose the combined MMSE VP, which achieves
better performance by minimizing the MSE criterion.

Moreover, we suggest an ordering of users according to their modulation sizes. In-
deed, starting with the highest order in the search tree has the advantage of reducing
complexity. Secondly, we develop the block VP algorithm in which the perturbation
is applied separately for each block. We analytically derived the diversity order for
the MIMO Gaussian BC. The block VP achieves the desired diversity order by fixing
the block size. This would provide more flexibility to the BS to update its precoder
while achieving the required diversity order. Finally, we investigate the downlink
precoding when the CSI is erroneous. Thus, we introduce a new CSIAl reporting for
massive MU-MIMO systems. The CSIAIis computed at the UE side and transmitted
to the BS via uplink channels. It can be used to select the appropriate timing to trig-
ger full CSI reporting, including PMI information. Based on this feedback quantity;,
we design an optimized precoding matrix under the MMSE criterion, which con-
siders channel estimation errors. The proposed precoding technique outperforms
previously existing techniques such as the ZF and the regularized-ZF. It was shown
that an improvement in the average SER performance is achieved. The ceiling is
improved, and the error floor level is decreased. We also model a channel vector
quantization following the rate-distortion theory. We establish an equivalent rela-
tion between the SER of VP precoding with specific quantized and perfect channel
feedback. Based on the equivalent relation, we show that the feedback load per user
should scale at Mlog,(p) to achieve full diversity order.
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Chapter 6

Conclusions and Perspectives

This thesis is dedicated to analyzing, designing, and evaluating MIMO decoding
techniques in the uplink reception and MIMO precoding approaches in the down-
link transmission. Different MU-MIMO configurations are considered in the single-

cell as well as the multi-cell environments.

We first address the problem of designing low-complexity decoding algorithms in
the uplink MIMO reception. We take profit from recent advances in deep learning
(DL) to propose the neural network (NN) assisted sphere decoder (SD), which sig-
nificantly reduces the processing time for decoding compared to the original SD.
Afterwards, we introduce the block recursive MIMO decoding, where the MIMO
system is divided into small sub-blocks. This has the advantage to reduce the com-
plexity of decoding, which increases exponentially with the size. Simulations results
show the complexity reduction achieved by the proposed algorithms while preserv-

ing almost ML performance.

Second, MIMO decoding in the uplink reception for cloud-RAN (C-RAN) is investi-
gated. Due to the prohibitive complexity of computations, the most efficient uplink
C-RAN schemes are challenging to be implemented in practical systems. Therefore,
we resort to recent advances in deep neural networks (DNNs) and propose QDNet
architecture, representing a new and low complex method for uplink C-RAN subject
to some quantization rules. Joint optimization of the quantization process done at
the BSs and the decoding process completed at the central processor is performed.
Simulation results show that QDNet achieves good performance for detection while

requiring low complexity.

Third, we focus on the design of novel transmission schemes in the downlink MU-
MIMO scenario. At first, we study the vector perturbation (VP) precoding, and we
come up with the combined VP algorithm to serve multiple users applying different
modulation coding schemes (MCSs). Secondly, we introduce the block VP precod-
ing, which has the advantage of choosing the desired diversity order by fixing the
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block size. Finally, we study the downlink precoding in MU-MIMO when several
users are present in the network with different CSI accuracy, making the precoder
more sensitive to CSI imperfections. So we propose a new quantity referred to as CSI
accuracy indicator (CSIAI) reported by the UE. Accordingly, we design the down-
link precoding based on CSIAI reporting. Simulation results show an improvement

in the average BER performance.

This thesis’s contributions can be implemented and developed to satisfy some objec-
tive functions subject to environmental constraints. In the following, we give insight

into possible research directions.

In massive MU-MIMO systems, the number of BS antennas is enormous compared
to the number of scheduled users. Non-linear precoding in these systems requires
high computational complexity due to the high number of antennas at the trans-
mitter side. This is a critical issue to be addressed. Indeed, someone should look
forward to merging different types of precoding in such a way that further perfor-

mance enhancements are achieved at reasonable computational complexity.

Nevertheless, when the number of users is high and much larger than the number
of BS antennas, user scheduling in the downlink precoding must be performed to
satisfy all network users. Thus, how to perform user scheduling is an exciting topic
in the downlink MU-MIMO. New signalling between UEs and the BS could help
make smart decisions and achieve users’ fairness.

We have designed the downlink precoding in the single-cell environment taking into
account the imperfect CSI at the BS. Also, it is essential to investigate the impact of
CSI errors in the multi-cell environment. We should note that the CSI is available at
different stages for the users, inside the cell or at the cell edge. How to explore the
coordinated multi-point (CoMP) transmission in such scenarios could be the solu-

tion to overcome this problem of CSI signalling.

At last, it is interesting to investigate possible avenues of machine learning for com-
munications. Applications of machine learning will be present in the next genera-
tion to restore some 5G architecture functionalities. Someone should think of how to
profit from recent advances in DL and NNs to design reliable transmission schemes
for beamforming, precoding and decoding in MU-MIMO systems.
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Chapter 7

Shortened French Version

7.1 Introduction

La technologie a entrées multiples et sorties multiples (MIMO) est considérée comme
l'une des solutions les plus prometteuses et les plus efficaces de la 5G NR. Elle est
développée pour répondre a la demande d’efficacité spectrale [9]. Les technolo-
gies MIMO exploitent les dimensions spatiales et temporelles pour coder et multi-
plexer davantage de symboles de données en utilisant une multiplicité d’antennes
d’émission et de réception, sur une pluralité de tranches de temps. Ainsi, la capacité

et la fiabilité des systémes de communication MIMO peuvent étre améliorées.

Dans ces systemes, la détection multi-utilisateur (MU)-MIMO dans la réception de la
liaison montante et le précodage dans la transmission de la liaison descendante per-
mettent de séparer les flux de données utilisateur et de pré-annuler les interférences.
Cependant, les performances du systéme se détériorent dans des conditions réalistes
telles que la complexité raisonnable des processus de décodage et de précodage, la
connaissance erronée des canaux et l'interférence des cellules adjacentes. Cette these
se concentre sur les scénarios mentionnés ci-dessus pour la réception et la transmis-
sion dans les systemes MU-MIMO.

7.2 Liaisons Montantes et Liaisons Descendantes dans les Sys-
temes MIMO

7.2.1 Aspects fondamentaux des systemes MIMO

Les systémes de communication MIMO traditionnels sont généralement appelés
mono-utilisateurs MIMO (SU-MIMO) ou également point a point MIMO. Le point
d’acces ou la station de base (BS), dans ce cas, ne communique qu’avec un seul ter-
minal mobile (utilisateur). Le point d’acces et 1'utilisateur sont équipés de plusieurs
antennes, comme le montre la Figure 7.1. Les antennes d’émission envoient des sig-

naux (&i,...,&N,) aux antennes de réception. Les signaux regus sont désignés par
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FIGURE 7.1: Modele de systeme MIMO.
(1, --.,9n,)- Nous exprimons le signal récu a 'antenne Rx; Vi € {1,..., N, } comme

Y = Z h,lji] + w; (7.1)

Le modele de canal MIMO peut étre décrit par le systéme linéaire suivant
9=HZ+w (7.2)

ou g est le signal récu, H est le canal san fil dont les entrées sont supposées avoir
une distribution de Rayleigh, Z est le vecteur des symboles transmis, et w est le bruit
Gaussian blan additif (AWGN), de moyenne nulle et variance 202. Tout d’abord,
nous devons mentionner que tout au long de cette these, nous évitons de manip-
uler des variables a valeurs complexes, et convertissons (7.2) en sa représentation

équivalente a valeurs réelles en utilisant la convention suivante

y=Hx+w (7.3)
y— [%(y)] o [%(a:)] o [%(w)] ,
3(9), 3(@) 3(w) _—.
H [%( ) —%(_H)]
S(H) R(H)

Contrairement au cas mono-utilisateur, la BS dans les systemes MU-MIMO peut
communiquer avec plusieurs terminaux mobiles. Nous avons la transmission de
liaison montante ot les multiples utilisateurs transmettent simultanément a la BS.
Nous avons également la transmission descendante dans laquelle la BS transmet a

de nombreux utilisateurs indépendants.
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7.2.2 Dualité liaison montante - liaison Descendante

Plusieurs algorithmes de détection MIMO ont été proposés au fil des ans et ont fait
’objet d’une large couverture dans la littérature. D’une part, nous classons le dé-
codage sous-optimal, qui comprend des techniques linéaires et non linéaires tels que
les algorithmes ZF, MMSE et DFE. D’autre part, nous classons le décodage optimal,
qui permet de détecter le maximum de vraisemblance (ML). Il comprend des tech-
niques basées sur la représentation en treillis et des algorithmes séquentiels. Nous
reconnaissons le décodeur par sphéres (SD) qui utilise la recherche en profondeur
(DFS), et I’algorithme de décodage en pile utilisant la recherche en largeur (BFS).

La capacité totale d’'un canal de diffusion MU-MIMO est obtenue grace a la tech-
nique du codage DPC. Cependant, la méthode DPC est trés complexe. C’est pourquoi
de nombreuses alternatives de précodage sont proposées, offrant une complexité
raisonnable. Ces techniques de précodage peuvent étre regroupées en deux caté-
gories, selon qu’elles sont linéaires ou non linéaires. Les techniques de précodage
linéaire exemplaires comprennent le ZF et le ZF régularisé (RZF). Avec le précodage
ZF, le vecteur transmis est filtré en utilisant le pseudo-inverse de la matrice de canal,
ce qui nécessite une puissance de transmission élevée. Des schémas de précodage
non-linéaire ont été proposés dans la littérature pour améliorer les performances du
précodage linéaire. Le précodage Tomlinson-Harashima (THP) et la perturbation

vectorielle (VP) sont deux schémas non-linéaires bien connus.

Nous remarquons une dualité entre le traitement de la liaison montante et de la
liaison descendante a la BS apres réception ou avant transmission via plusieurs an-
tennes. Les deux schémas de communication utilisent les informations de canal afin
d’en supprimer l'effet. Les opérations de décodage sont similaires a celles du pré-
codage, et la plupart des techniques exécutent un canal inverse pour la détection
ou le précodage. Nous distinguons principalement les traitements linéaires et non-
linéaires. On peut noter, par exemple, le ZF et le MMSE a la fois dans les opérations
de décodage et de précodage. On retrouve également le THP dans le précodage
MIMO, équivalant au décodage DFE, et le codeur sphérique (SE) qui est la méme
version du SD, exécuté du coté émetteur.

7.3 Décodage MIMO dans la Liaison Montante

7.3.1 Comptage des points du réseau dans la sphere

Parmi les nombreux problémes liés aux réseaux de poins, beaucoup restent ouverts.

Dans ce travail, nous nous concentrons sur le probleme du comptage des points
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du réseau dans la sphere. Désignons par B, la boule Euclidienne de rayon r a di-
mension 7 centrée a l'origine. Le nombre de points de réseau a l'intérieur de la
sphere dimensionnelle est proportionnel a son volume. Cependant, on ne connait
pas la densité des points de réseau a l'intérieur d’une sphére donnée. Le probleme
est également lié a la théorie de la complexité, en particulier au probleme vectoriel
le plus proche (CVP), et a la variante de Fincke et Pohst utilisée pour la détection
MIMO [26]. L’algorithme SD est bien connu pour effectuer cette détection [24]. Ce
type d’algorithmes nécessite une mise a I'échelle de grande complexité de maniére
exponentielle dans la dimension du réseau. Notre travail aborde ce probléme en
tirant parti des progres récents des réseaux neuronaux profonds (DNNs) pour ré-
duire la complexité de calcul. A cette fin, nous formons un DNN entiérement con-
necté pour prédire le nombre de points tombant dans une sphére donnée. Les don-
nées d’apprentissage sont obtenues par des implémentations de 1'algorithme SD,
donnant le nombre correct de points tombant dans la spheére. Celui-ci est, a son tour,
obtenu a partir du rayon 7, et de la matrice triangulaire supérieure R qui est dérivée
de la décomposition "QR" de la matrice génératrice de réseau de points. Compte
tenu de ces aspects, le DNN est formé en utilisant un ensemble de paires de vecteurs
d’entrée-sortie (z, N) ou x est le vecteur d’entrée, et N est le nombre réel de points
du réseau a l'intérieur de la sphére. Nous définissons x sous la forme

x = HRH, N .,Rnn] ! (7.5)

ol R;; sont les coefficients de la matrice R (1 < i < j < n). Le DNN prédit le
nombre de points du réseau a sa couche de sortie comme

N, = f(x;0) (7.6)

ol 0 est le vecteur des parametres DNN. Nous utilisons 1'unité linéaire rectifiée bien
connue (ReLU) comme fonction d’activation pour chaque couche du réseau neu-
ronal (NN). Pour optimiser 6, nous utilisons 1’erreur en pourcentage absolu moyen
(MAPE) comme fonction de perte qui aboutit a la formule suivante

_ ('),-9
Lo #{s ; y ’ ) 7.7)

i€St

ol N;(,i) est la sortie souhaitée lorsque x*) est utilisé comme entrée. Comme méth-
ode d’optimisation pour ajuster les parametres, nous utilisons Adadelta [42]. Nous
évaluons les performances du modele NN proposé a travers plusieurs expériences
de simulation. Nous considérons différentes tailles de systemes, c.-a-d des réseaux
de dimensions n, ot n varie de 5 a 10. Le MAPE est couramment utilisé comme
fonction de perte pour les problemes de régression et 1’évaluation du modéle grace
a son interprétation intuitive en erreur relative. La division par la valeur réelle N;(,t)

(1)

au lieu de la valeur prédite N, ’ conduit a un résultat différent. Ce probleme a été
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FIGURE 7.2: Tracés de I'histogramme SMAPE du modele DNN pour
la dimension n = 10.

soulevé dans [43] et [44]. Le MAPE symétrique (SMAPE) a été proposé pour fournir
la symétrie et la robustesse contre les valeurs aberrantes en divisant la perte absolue

par la moyenne arithmétique du N;gt) réel et du N,S” prédit

o T INW _ R
sMAPE = 1207 Z’ a f(’t)‘
T t=1 |Np +Np ‘

(7.8)

La Figure 7.2 montre 'histogramme d’erreur du DNN. Nous tracons la figure de
gauche pour l'erreur d’ensemble d’apprentissage et celle de droite pour 'erreur
d’ensemble de tests. Nous présentons des résultats pour des réseaux de points
de dimensions 10, mais en général, nous observons des résultats similaires pour
toutes les dimensions entre 5 et 10. Nous pouvons voir un pourcentage élevé de
points dont le SMAPE est inférieur a 10%, ce qui indique que notre modéle s’adapte
tres bien au nombre de points. Dans le tableau 7.1, nous présentons le MAPE et le
SMAPE pour chaque dimension de réseau de points sur I’ensemble d’apprentissage,
et sur I'ensemble de tests dont les données se trouvent entre parentheses. Nous
observons la similitude entre 'erreur d’apprentissage et l'erreur de test, ce qui in-
dique que notre modele évite a la fois le sous-ajustement et le sur-ajustement grace

a l'utilisation des techniques de régularisation /; et /5.

7.3.2 SD assisté par apprentissage

On peut montrer que, a la fois du pire des cas et du point de vue moyen, le SD
requiert une complexité exponentielle [46]. Etant donné que le rayon de la sphére
affecte directement la plage de recherche, il s’agit d"un parametre important pour la
conception. Par conséquent, nous profitons de I'approche d’apprentissage dans la
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TABLE 7.1: Précision pour des réseaux arbitraires dans IR".

Dimensionn | MAPE% | SMAPE% |
6 14.575 (14.700) | 7.055 (7.052)
7 15.958 (16.290) | 8.700 (8.842)
8 17.021 (17.147) | 9.028 (9.036)
9 16.377 (16.724) | 8.463 (8.701)
10 17.078 (17.078) | 9.247 (9.809)

section 7.3.1, qui prédit le nombre de points de réseau a l'intérieur de la sphére pour
réduire la complexité de calcul de l'algorithme SD. Cependant, nous considérerons
dans ce temps le point du signal regu y, comme une origine de la sphere. Le vecteur
d’entrée du NN se présente maintenant sous la forme de

T T
€= [y ,Ru,...,Rum, 7 (7.9)

Notre objectif principal est d’implémenter 1’algorithme SD en utilisant un rayon ini-
tial amélioré, conduisant a un petit nombre de points de réseau a l'intérieur de la
sphére. Dans ce cas, le nombre de points de réseau est prédit par le modele NN en
fonction du point de signal requ, de la matrice génératrice et du rayon de la sphere.
Nous commengons par prédire le nombre de points de réseau tombant a 'intérieur
de la spheére avec un rayon initial égal a celui proposé dans [24]. Ensuite, si ce nom-
bre attendu est grand, nous mettons a jour le rayon en utilisant une recherche di-
chotomique comme proposé dans [58]. En effet, nous divisons le rayon carré par
deux, et nous prédisons a nouveau le nombre de points de réseau avec le nouveau
rayon. Nous répétons la méme procédure jusqu’a ce que nous atteignions un nom-
bre prédit inférieur ou égal a un seuil donné. Enfin, nous commencons la phase de

recherche de I’algorithme SD avec le rayon adapté.

Chaque fois que nous mettons a jour le rayon, des calculs NN sont nécessaires pour
prédire le nombre de points du réseau et vérifier s'il est encore grand ou non. Cela
conduit a une complexité moyenne supplémentaire liée aux calculs NN. Par con-
séquent, nous voulons évaluer le nombre moyen de calculs NN avant de démarrer
l'algorithme SD. Avec un rayon initial 3 = 2n02, nous analysons théoriquement
le nombre de mises a jour de rayon. En divisant successivement le rayon carré L
fois jusqu’a atteindre un petit nombre attendu de points de réseau, nous démar-

2

rons l'algorithme SD avec le rayon r; = r(z)/ 2L On arrive a déterminer le nombre

d’itérations L en fonction du SNR (p exprimé en dB)
L=ap+b (7.10)

ol a et b sont les deux parametres déterminés théoriquement. Sur la base de (7.10),
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FIGURE 7.3: Nombre moyen de multiplications dans le processus de
décodage.

nous proposons un nouvel algorithme, smart SD (SSD), sans calculs NN. Nous com-

mencons la phase de recherche de SD avec un rayon amélioré égal a r3 /2.

Maintenant, nous présentons des simulations informatiques du NN-SD par rapport
a l'algorithme d’origine SDIRS qui commence la recherche avec le rayon r2. On
considere le canal 8 x 8 MIMO avec 16-QAM. Dans la Figure 7.3, nous tragons le
nombre moyen de multiplications pour mesurer la complexité de calcul en fonc-
tion des rapports signal-sur-bruit (SNRs) faibles & modérés. On observe bien que le
NN-SD réduit considérablement le nombre d’opérations par rapport a I'algorithme
SDIRS. Cette réduction de complexité s’explique par le choix d’un rayon de sphére
initial qui permet a un petit nombre de points de réseau de tomber a l'intérieur de
la sphere, et ainsi la taille de I’arbre de recherche diminue dans le sens moyen. La
Figure 7.4 affiche le nombre moyen de points de réseau tombant a I'intérieur de la
spheére de décodage. Nous voyons que cette moyenne dans le NN-SD est presque
constante en fonction du SNR, alors qu’elle est plus élevée dans 1’algorithme SDIRS
pour des SNRs faibles a modérés.

7.3.3 Décodage MIMO récursif par blocs

Dans cette section, nous proposons une nouvelle stratégie de décodage par blocs,
qui est une méthode de généralisation du travail décrit dans [67], ol le systeme
MIMO est seulement divisé en deux blocs. L'idée est de résoudre les sous-systemes
issus de toute division en plus de deux blocs. Considérons la matrice triangu-
laire supérieure qui est divisée en k blocs comme le montre la Figure 7.5. Soit
(p1,--.,px) les tailles de blocs satisfaisant 1’égalité Z;-‘Zl p;j = 2n. R; € RF*Pi et
B; € R #1X(D1 7)) sont les matrices triangulaires supérieures et de rétroaction, re-
spectivement, ot i € {1,...,k}. En conséquence, les vecteurs de signaux émis et
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FIGURE 7.4: Nombre moyen de points de réseau (N,y¢) tombant dans
la sphere de recherche.

recus sont divisés en (sV), ..., s)) et W, yh), respectivement. Notre méth-
ode de décodage récursif proposée est implémentée en deux étapes principales.
Tout d’abord, nous estimons les symboles d’information dans les premiers (k-1)
blocs en utilisant le décodage par blocs pour obtenir un essai éventuel des symboles
d’information incomplete. Deuxiemement, nous recherchons les données restantes
qui minimisent la métrique globale de ML. Pour résumer, le processus de décodage
comprend les étapes suivantes:

1. Choisir le nombre de blocs k et leurs tailles correspondantes (py, ..., px);

2. Créer une liste de solutions pour le premier bloc en utilisant un décodage
séquentiel. Cette liste est composée de la solution ML qui minimise la distance
Euclidienne ||y — R;s()||2, et ses voisins;

3. Créer une nouvelle liste de solutions pour chaque candidat de la liste précé-
dente afin de minimiser la métrique Euclidienne ||y?) — Bys(!) — Rps(?)||%;

4. Répéter la derniere procédure jusqu’a le (k-1)eme bloc;
5. Trier 'ensemble des candidats par ordre croissant de leur poids;

6. Rechercher le vecteur de symboles de données restant dans le kéme bloc en
commengcant par le haut des candidats classés.

La derniere étape se termine lorsque le poids le plus petit d’'un candidat complet
examiné est inférieur au poids partiel de celui a examiner. La deuxieme, troisiéme et
quatriéme étapes nécessitent un ensemble de rayons (ry,...,rx_1) représentant les

seuils sur les poids pour créer les listes. Pour cela, ces rayons sont calculés sur la
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FIGURE 7.5: Division en blocs du systeme de décodage.

base de la dérivation d’une borne supérieure du taux d’erreur de trame P,:

I =CY
Py < (B1+B2)o " + e (7.11)
= I(3)

L’ordre de diversité qui pourrait étre atteint par ce schéma de décodage est controlé
par le deuxiéme terme étant donné que le premier atteint une diversité complete.
Pour garantir un ordre de diversité global d’au moins d € {1,...,n}, chaque terme
de la somme doit décroitre de ’ordre de p~. Cela revient a trouver pour chaque

ieme bloc le seuil minimum r; tel que

2

F(%, 2:;7%) <5 -d
— i Sop Y e{l,...,.k—1} (7.12)
r'(3)

pour une constante positive § qui contréle le gain SNR. Dans notre travail, nous
donnons le calcul analytique de r;. En effet, I'inégalité sur r; est résolue sur la base de
I'inversion asymptotique des fonctions Gamma incompletes [71]. Pour présenter des
résultats numériques, nous considérons un canal MIMO 10 x 10 avec 16-QAM et une
division en 2 et 3 blocs. La légende des figures indique les tailles de blocs (py, . . ., pk)-
Dans la Figure 7.6, nous représentons le taux d’erreur binaire (BER) en fonction du
SNR. Nous pouvons voir qu’en fixant la diversité cible a 10, le décodeur par blocs
atteint des performances presque ML pour toutes les divisions considérées. Dans la
Figure 7.7, nous tracons le temps de traitement moyen pour le décodage en fonction
du SNR. Nous utilisons le méme processeur informatique et le méme langage de
programmation C pour mesurer ce temps. On observe bien que l'algorithme SD a

un temps de traitement plus important que le décodeur par blocs récursif.
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FIGURE 7.7: Temps de traitement moyen dans le décodeur de bloc
par rapport a I’algorithme SD.
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7.4 Compression Fronthaul dans les systémes C-RAN assistée
par Apprentissage

Dans cette section, le décodage MIMO dans la réception de la liaison montante reste
a étudier. Cependant, cette fois, il sera examiné dans le cloud-RAN (C-RAN). Ce
dernier est une architecture pour des réseaux cellulaires qui consistent en de nom-
breuses BSs afin de déplacer la charge de calcul vers le processeur central (CP).
Cependant, en raison de la complexité des calculs, certains schémas C-RAN sont
difficiles & mettre en ceuvre dans des systéemes pratiques. En utilisant les DNNSs,
nous proposons un schéma pragmatique de C-RAN, appelé QDNet, soumis a cer-
taines regles de quantification.

741 Modéle de systeme C-RAN et conception du probleme

Nous considérons un modele C-RAN de liaison montante comme le montre La Fig-
ure 7.8, ou K utilisateurs distants avec N; antennes de transmission émettent leurs
messages indépendamment vers N BSs distantes. Chaque néme BS est équipée
de N, antennes de réception et reliée au CP par un fronthaul de capacité limitée
C,Vn e {1,...,N}. Ainsi, les signaux regus aux BSs doivent étre comprimés et
quantifiés de maniere distribuée. Le message transmis par le iéme utilisateur est
désigné comme 3; et appartient a une constellation finie S. En pratique, nous sup-
posons que ’ensemble de la constellation S est donné par une modulation QAM.
Toutes les constellations sont normalisées a une puissance moyenne unitaire (par
exemple, la constellation 4-QAM est représentée par {j:% +j %}) Le signal recu
Yn au neme BS peut étre exprimé comme

K
Un =Y Hyi3 + wy (7.13)
i=1

ott H;, € CN*Nt est la matrice de canal entre le iéme utilisateur et la néme BS, et
W, ~ CN(0,2021y,) est le bruit Gaussian regu par la néme BS. Le principal défi de
la détection MIMO est l'utilisation de signaux a valeur complexe, moins courants
dans 'apprentissage automatique. Ainsi, en utilisant la convention (7.4), nous con-

vertissons (7.13) en sa représentation équivalente en valeur réelle

K
yn = Y Hiysi +wy (7.14)
i=1

Désignons par H = (H{,..., H})" le canal global dans l'architecture C-RAN ot
H,Vne{l,...,N} estle canal vers la néme BS en considérant tous les utilisateurs.
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Central
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FIGURE 7.8: Un systeme C-RAN de liaison montante avec un fron-
thaul de capacité finie.

Ainsi, le signal requ a toutes les BSs peut étre exprimé comme

y=Hs+w (7.15)

T

ot s = (sl,...,sL)T est le message transmis envoyé par tous les utilisateurs du

4
systeme et w = (w{,..., wl)T estle bruit Gaussian.

7.4.2 Conception du QDNet

Le schéma que nous proposons s’inspire de 1’algorithme itératif de descente de gra-
dient projeté. Pour une observation donnée y, la probabilité p(y|s) est inversement
proportionnelle a la distance ||y — Hs|?>. En conséquence, un algorithme de de-
scente de gradient projeté basé sur la détection ML peut étre exprimé comme

9|y — Hs|]?

8kr1 = 1|8 P

|S_Sk} —II [s:k s (HTy - HTH§k>] (7.16)
ol sy est 'estimation de s dans la kéme itération, I'1[.] est un opérateur de projection
non linéaire, et §; est un pas. Intuitivement, chaque itération est une combinaison
linéaire de §;, H'y, et H' H3; suivie d’une projection non linéaire. Cela indique
que les deux principaux ingrédients de I’architecture devraient étre H'y et H' H §;.
Notre construction est basée sur I'imitation de cette descente en gradient projetée
comme une solution pour I'optimisation du ML. I est clair de reconnaitre le signal
HTy a transmettre au CP au lieu du signal requ y ayant une grande dimension. Tout
d’abord, il est évident que les termes Hy et H' H peuvent étre réécrits comme

N N
H'y=Y H'y, & H'H=)Y HH, (7.17)
n=1 n=1

Chaque BS a ses processus de transformation et de quantification, tandis que le pro-
cessus de décodage est effectué du coté CP avec un réseau partagé. Avant d’étre
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quantifié, le signal H [y, est écrété a la néme BS en impliquant un opérateur de
signe souple linéaire par morceaux ¢, (.) défini comme

Pu(x) = —vy +p(x +0,) — p(x — vy) (7.18)

ot p(x) = max{0,x} et v, > 0 est le parametre de seuil d’écrétage a optimiser
pendant la phase d’apprentissage.

Désignons par 7, la sortie de la néme BS qui va étre transmise au CP. Une fois que
tous les signaux sont recus de toutes les BSs, le CP additionne ces signaux pour
obtenir 7 = Zﬁ’zl 7. Cela entrainerait la modification des itérations dans (7.16)
comme suit

S0y =TI [sk s (f - HTH§k)] (7.19)

Dans un premier temps, nous enrichissons ces itérations dans (7.19) en changeant la
taille du pas & pour chaque kéme itération par 9,51) et 9152) correspondant respective-
ment a 7 et HT H 4, soit

8piy =11 [.§k ol — e,ﬁz)HTHgk} (7.20)

Dans la deuxiéme étape, pour imiter 1'opérateur de projection non linéaire I1[.], un

débruiteur non linéaire {i(.) est appliqué a zy = 8 + 9,&1)

T — QISZ)HTHék pour pro-
duire 3;,;. Dans cette perspective, une fonction optimale de débruitage des élé-

ments est donnée par

I(z;0%) Z s; exp ( ||sl—z]|2> (7.21)

seS k

U = _ M SRS VRPN e .
ouZ =Y csexp ( 7 ) Comme le bruit d’écrétage et de quantification est
difficile a caractériser, nous prédisons la variance (7,% en fonction du bruit du canal

comme suit
ot =0 x (o2 +06) (7.22)

ou 9]£3) > 0et 9]E4) > 0 sont les parametres a optimiser dans la kéme itération pen-
dant la phase d’apprentissage. La Figure 7.9 montre un organigramme représen-
tant une seule couche de QDNet qui correspond a la keme itération du processus
d’estimation. Le modele n’a que quatre parametres par couche: 9,&1), 9,52), 9,&3) et 9,54) .
Ces parametres sont optimisés pendant la phase d’apprentissage qui se fait hors
ligne sur des canaux Gaussiens i.i.d échantillonnés de maniere aléatoire. Ensuite, les

parametres optimisés du NN sont utilisés pendant toute la phase de communication.
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FIGURE 7.9: Organigramme représentant une seule couche de QDNet
coté CP.

7.4.3 Résultats d’expérimentation

Les performances du systéme dépendent du détecteur MIMO considéré. Par con-
séquent, nous avons testé les performances des schémas de détection suivants:

o QZF: Détecteur ZF [86] avec des observations quantifiées de H Ty.

e QSD: Algorithme SD [86] avec des observations quantifiées de UTyou U est
une matrice semi-unitaire 2N, X 2KN;. Ce dernier résulte de la décomposition
en valeurs singuliéres (SVD) de la matrice de canal H = ULV

e QDNet: Notre proposition d’algorithme NN.

Le codage de quantification scalaire avec R; bits est effectué dans tous les algo-
rithmes de détection avant I’envoi des observations au CP par les BSs. Nous consid-
érons N = 3 BSs dans le systeme C-RAN. Le canal MIMO correspondant a chaque
BS a une entrée de taille K = 4 utilisateurs d’antenne unique et une sortie de N, = 6
antennes de réception. Les Figures 7.10 et 7.11 montrent les performances BER en
fonction du SNR des différents schémas pour les modulations 4-QAM et 16-QAM,
respectivement. Nous pouvons voir que QDNet fonctionne bien pour la détection
tant que les signaux quantifiés des BSs sont utilisés de maniéere constructive du coté
CP dans l'architecture QDNet.

7.5 Précodage MU-MIMO dans la Liaison Descendante

Nous avons étudié le décodage MIMO en réception montante (plusieurs-a-un). Cette

section se concentre sur le scénario de liaison descendante (un-a-plusieurs) et étudie
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les techniques de précodage MU-MIMO. Nous développons des schémas de trans-
mission fiables pour les communications multi-utilisateurs dans un environnement

a cellule unique, basés sur des techniques de précodage linéaires et non-linéaires.

751 Précodage MU-MIMO pour la modulation adaptative

Le précodage VP conventionnel n’exploite pas le fait que les utilisateurs utilisent
différents schémas de codage de modulation (MCSs), en fonction du rapport signal-
sur-interférence-plus-bruit (SINR). Dans [87], la diagonalisation des blocs et le pré-
codage VP sont combinés pour proposer le bloc VP diagonalisé (BD-VP). Ce dernier
permet a différents utilisateurs d’appliquer différents schémas de modulation. En
outre, les auteurs de [88] proposent le groupement d’utilisateurs VP (UG-VP), qui
améliore les performances du précodage BD-VP. Ces solutions existantes ne sont
pas optimales puisque le VP est appliqué pour chaque utilisateur ou groupe in-
dépendamment. Pour conserver l'avantage de performance du VP conventionnel
(Conv-VP), nous proposons dans nos travaux, le VP combiné (Comb-VP) pour at-
ténuer l'interférence entre les utilisateurs appliquant différents MCSs. En effet, la
nouvelle conception du précodage du VP combiné comprend une matrice diagonale

T au lieu de la base modulo scalaire T qui a une valeur constante

T
T= (7.23)
T,
Le vecteur symbole de données s est perturbé par ’ajout d'un signal de perturbation
Tt, ou T est une matrice diagonale d’éléments égaux aux bases modulos relatifs a
chaque type de modulation, et t est le vecteur entier a dimension K. Ensuite, le

signal d’émission peut étre exprimé sous la forme

1
x=——F(s+Tt) (7.24)
VB
ou B = ||F(s+ Tt)||?* pour satisfaire la puissance d’émission de 1'unité. Le VP

combiné peut étre représenté comme une recherche de réseau entier oti, a I’émetteur,
t est choisi de telle sorte que f soit minimisé, c.-a-d.

{ = argmin || F(s + Tt)|? (7.25)
teczk

Sur la base de I'idée du VP combiné, nous proposons le MMSE-VP combiné pour la
modulation adaptative afin de minimiser le critére d’erreur quadratique moyenne
(MSE). La matrice de précodage optimale qui minimise le MSE est obtenue en se
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FIGURE 7.12: BER moyen de tous les utilisateurs avec 3 types de
modulation différents.

référant a [35]
F,= HY(HH" + Ko2I)™! (7.26)

Le vecteur de perturbation optimal peut étre trouvé comme

t, = argmin Ko25(HH" + Ko2I) 15 (7.27)
teCzX

ou 8§ = s+ Tt désigne le vecteur de données perturbé. Avec la factorisation de
Cholesky, (7.27) peut étre réécrit comme

t, = argmin || L% (s + tt)]? (7.28)
teczk

ou (HH H 4 Ko2Ix)~! = LL" avec L une matrice triangulaire inférieure.

Maintenant, nous évaluons les performances du schéma de précodage VP combiné
proposé avec le VP conventionnel [33], qui considere la base modulo la plus élevée
pour tous les utilisateurs. Nous comparons également les résultats avec UG-VP [88].
On considére une BS équipée de M = 8 antennes d’émission desservantes K = 8 util-
isateurs d’antenne unique en méme temps. La Figure 7.12 montre les performances
BER moyennes sur tous les utilisateurs, de UG-VP, Conv-VP et Comb-VP. On sup-
pose que les utilisateurs 1, 2 appliquent 4-QAM, les utilisateurs 3,4, 5 appliquent 16-
QAM et les autres 64-QAM. 1l est bien observé que notre algorithme proposé Comb-
VP surpasse UG-VP et Conv-VP. La Figure 7.13 montre que le MMSE-VP combiné
surpasse le ZF-VP combiné. En général, la diversité de ces deux précodeurs est la
méme. Cependant, nous avons observé un gain SNR obtenu par le MMSE-VP com-

biné dans toute la région SNR.
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FIGURE 7.13: Performances du précodeur combiné MMSE-VP.
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FIGURE 7.14: Block division of the precoding system.

7.5.2 Précodage MU-MIMO récursif par blocs

Cette section présente une technique de précodage de faible complexité appelée al-
gorithme de VP par blocs (Block-VP) basé sur la décomposition "QR" de la matrice
de précodage. Dans Block-VP, le VP est appliqué pour chaque bloc en tenant en
compte les informations de retour des blocs précédemment perturbés. Ainsi, la per-
turbation ne sera pas appliquée pour chaque groupe indépendamment comme dans
le cas de BD-VP et UG-VP. Le schéma proposé permet d’obtenir I’ordre de diversité
souhaité en fixant la taille des blocs. Nous considérons la division en blocs de la
matrice triangulaire supérieure R qui est développée a partir de la décomposition
"QR" de la matrice de précodage F' = QR. Nous divisons le systeme MU-MIMO en
deux blocs, comme le montre la Figure 7.14. Le premier bloc en haut est de taille
et le second bloc en bas est de taille . En conséquence, le symbole de données et les
vecteurs de perturbation sont divisés en (s(l), 3(2)) et ('v(l), v ), respectivement.

Sur la base d"une analyse mathématique, nous concluons que dans un systeme MIMO
Gaussien avec M antennes d’émission et K (< M) utilisateurs a antenne unique,
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FIGURE 7.15: Résultats de Block VP pour un systeme 8 x 8 avec des
blocs de taille variable.

'ordre de diversité pour chaque utilisateur obtenu par le Block-VP est
d=M-1 (7.29)

ou 0 < Il < K—1 est la taille du bloc en bas. En conséquence, on peut dire qu’en
termes de diversité, la taille du premier bloc en haut /; = K — I, définit ’ordre de
diversité cible d = M — K + [;. Par conséquent, le précodage VP par blosc permet
d’obtenir une réduction de complexité couplée a 1’ordre de diversité souhaité.

Pour valider notre analyse pour le Block-VP proposé, nous calculons 1'exposant
d’erreur numériquement a partir des courbes BER en fonction du SNR. La Fig-
ure 7.15 montre les résultats du Block-VP, pour un systéme carré avec M = K = 8
et une division en deux blocs de taille variable [; = 2,4 et 6. Le schéma de modula-
tion utilisé est le 16-QAM. Les résultats de la simulation confirment que I’ordre de

diversité est égal a M — K + [; dans tous les cas.

7.5.3 Précodage avec des précisions CSI différentes

Pour faire face aux imperfections du canal, nous proposons un signalement d’un
nouvel indicateur, appelé CSIAI, qui mesure l'erreur de canal de chaque utilisa-
teur. Cet indicateur représente la précision d’informations sur 1’état du canal (CSI) et
peut-étre calculé en fonction des conditions du canal. Dans diverses études comme
dans [99, 104] et leurs références, les coefficients de canal connus de la BS s’écartent
du vrai canal par une erreur Gaussienne. Ce modéle capture divers scénarios tels
que les erreurs dues a l'estimation de canal, le retard de rétroaction, la quantification
de canal dans les systemes FDD et la non-concordance de réciprocité dans les sys-
témes TDD. Quand la BS n’a qu’une estimation H du vrai canal H, alors la relation
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entre H et H est donnée par
H=H+E (7.30)

ol nous supposons que la matrice d’erreur E a des composantes aléatoires Gaussi-
ennes de moyenne nulle. Dans la littérature, les composantes aléatoires de E sont
supposées avoir généralement la méme variance d’erreur 2. Cependant, ce n’est
pas un scénario réaliste, car la variance d’erreur est associée a chaque utilisateur. En
effet, plusieurs utilisateurs sont présents dans le réseau avec une précision CSI dif-
férente. Par conséquent, les composantes de chaque iéme ligne de E ont la variance
d’erreur 0. Nous notons que les statistiques de E peuvent étre estimées a la BS
en considérant le signalement de CSIAI qui inclut les différentes variances d’erreur
associées aux utilisateurs. Etant donné que les éléments du vrai canal H ont une
variance unitaire, la matrice H a la méme distribution que H avec une variance

réduite égale a 1 — 07 pour chaque iéme ligne. Soit H défini comme suit
H=DH (7.31)

—05 —05
ou D est la matrice diagonale ayant les éléments { (1 - (7%) PR (1 - (712<> }

1l est évident de voir que H a la méme distribution que H. Par conséquent, nous
introduisons le modele systeme de précodage avec rétroaction quantifiée ou discor-
dance de canal, comme le montre la Figure 7.16. Le vecteur de signal recu peut étre

écrit comme

1 1 A
y=—=DHFs+Dw=—(s+ (DHF — Ix)s+ DEFs) + Dw (7.32)
Vi Vi

avec une matrice de précodage arbitraire F, et 4 = Tr(F"F)/P. 1l s’ensuit que la
matrice de précodage optimale est donnée par [105]

Fopt = (DH)"(DH(DH)" + Koy, Ix) ™ (7.33)

02402
1-0?

ol (qu =1 Y& . Par conséquent, le vecteur de perturbation optimal peut étre

trouvé comme
vopt = argmin Koz, 8" (DH(DH)™ 4+ Kog, Ix) '3 (7.34)
v

ol § = s + v désigne le vecteur de données perturbé.

Dans la Figure 7.17, nous tragons le BER moyen de la technique de précodage pro-
posée en fonction du SNR. Sur la méme figure, nous tracons les performances des
techniques ZF linéaire, ZF régularisé, et VP conventionnel non-linéaire, avec CSI im-
parfait. Comme nous pouvons le voir sur la Figure 7.17, la technique de précodage
MMSE linéaire exploitant les différentes valeurs de variances d’erreur surpasse le
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FIGURE 7.16: Modeéle systeme de précodage.
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FIGURE 7.17: Performances du nouveau précodeur avec CSIAI avec
M=12,K=12

ZF et le ZF régularisé. On peut voir aussi que le MMSE non-linéaire proposé a de
meilleures performances que le VP conventionnel qui ne supporte pas les erreurs
CSI. Nous pouvons voir 'effet-plafond ot1 le BER moyen de toutes les techniques de
précodage s’aplatit pour un SNR élevé et ne s’Taméliore pas en augmentant le SNR.
Cependant, la technique de précodage proposée peut améliorer le plafond et dimin-
uer le niveau du plancher d’erreur. A ce stade, nous pouvons dire que le précodage
MMSE suggéré exploite bien les statistiques d’erreur de canal tant que le CSIAI est
signalé. Ainsi, les performances du systéme sont considérablement améliorées.

7.6 Conclusion

Cette these a été dédiée a I'analyse, la conception et I'évaluation des techniques de
décodage MIMO dans la réception montante et de précodage MIMO dans la trans-
mission descendante. Différentes configurations MU-MIMO sont envisagées dans
les environnements a cellule unique et a cellules multiples.

Les contributions de cette these peuvent étre mises en ceuvre et développées pour

satisfaire diverses fonctions objectives avec des contraintes environnementales.
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Appendix A

Chapter 3: Number of Radius
Updates in the NN-SD

To develop equation (3.17), we have used the following function, which approxi-
mates the volume of a sphere B, with some radius r containing N, lattice points to
the volume of N}, fundamental parallelotopes:

vol (B;)
det (A)

where det (A) is the determinant of A, and vol(B,) = r"7"/?/T(n/2 + 1) = r"V,,.

Ny=#{xeA:[ly—Hs|,<r}= (A1)

Let the SNR be defined as p = 101og,,(P/03), and let rj = 2no? be the initial square
radius. By successively dividing the square radius r% L times till expecting a small
number of lattice points N, less or equal to a fixed threshold Ny, we start the SD
search phase with the square radius r7 = r3/2L. We obtain

A
~ rizvn (21’[0'w/2)
P~ det (A) det (A)

[

(A.2)

By applying log,,(.), we obtain
n
log,((Np) = E(logw(Zna,%) - Llogm(Z)) +1og,o (Vi) —logy(det (A))  (A.3)

Now, L can be written as

L= 1 log,,(2n0%)

2
log;(2) 2) (10810(Var) — logyg(det (A) —log1o(Np))

_I_
n log10 )

By using the SNR definition, and taking the expectation over the lattice A, we get
equation (3.17), where a and b are defined as in (3.18).
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Appendix B

Chapter 5: Upper Bound Proof

By definition of the Lovasz-reduced basis, the following conditions hold [107]

3, —x )
||f11+ﬂz 11f11 (= ZHfl,i—lellzzl"'/ll (B.2)

In particular, by using (B.1) in (B.2), it follows

— 1 —« .
[ FLill> > EHfl,iAHZI i=2,...,h (B.3)

We attempt to find an upper bound to the second term of the sample error power in
(5.21) for lattice reduction with rounding-off approximation. We use the decompo-
sition of z1 = (F2 - Fz)(Sz + ’Uz) + Fis1 € F1Cl1

ho
z1=) Bify, (B4)
i=1
In the rounding-off procedure, the lattice translation is given by

Iy o
Fiv = Z/\l'fLi, with A= QA<[31) (B5)

i=1

Hence, we can write the following identities:

L

z1 + Fivp = Z(,Bi + i) fr
i=1

I

= 1[51+A Zmlflj (B.6)

11

1
= 2,51+A Hi,i

j=1
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Therefore, we obtain

2 SR 2p2 L —j
21+ Fron < YoIIF PR (1 + =) (B7)
j=1
. 211—1 ' ;
<Pl Y 2(1+5) (BS)
i=0
—k _ _ 1
= [[F3 2R (2" =217t 4 1282 - 5 (B9)
3 —x
< Jh2"R?[F, 117 (B.10)

where in (B.7) we used the covering radius definition and (B.1), in (B.8) we used

(B.3), in (B.9) we used the identities: } ;' ; x" = 1]?;1 and Y ix! = x(tf)lz — ”1%";1,

and finally in (B.10) we used the fact that [; > 1.
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Appendix C

Chapter 5: Proposition Proof

Firstly, we recognize that H; and H; are two generator matrices of the same lattice.
By using (5.19), we obtain

= —H
AN =R =FU, = (H,))'Uy (C.1)

which yields
H, = HiU{ (C.2)

where U} is an unimodular matrix. By taking the QR-decomposition of HH

HY = (H, H)) = (Q Q) (1;1 52) (C.3)
we can write
N A= [Rq
H, = (Q Qu)=Q ( 0 ) (C4)

for some M x (M — K) orthogonal matrix Q11 such that Q; is M x (M — I,) orthonor-
mal. Let Q, be randomly chosen and uniformly distributed over the manifold of
complex unitary (M — I) x (M — I) matrices and independent of R;

Q. = (QulQuu) (C.5)
where Q,, is (n — 1) x Iy and Q,y, is (M — ;) x (M — K). Let H, be defined as
H . =Q,R, (C.6)
and the M x (M — I) orthonormal matrix Q. as

Q.= Q. Q. (C.7)

From (C.4), we obtain
H, = Q.H, (C.8)
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By combining (C.8) and (C.2), we can write

H,=Q.HU (C.9)

Hence, by definition 1, we conclude that H; is congruent to H,.. Moreover, by ap-
plying a known result on the QR decomposition of Gaussian matrices [96], we note
that the /1 x I; upper triangular matrix R in (C.3) is such that its diagonal entries
are x? random variables with 2(M — i + 1) degrees of freedom, the off-diagonal el-
ements are complex Gaussian and all entries are independently distributed. There-
fore, if we multiply R; to the left by an independently distributed random matrix
Q., uniformly distributed over the manifold of complex (M — 1) x I; matrices such
that Q/'Q, = I, we obtain by construction that (C.6) is an (M — ) x I; standard
complex Gaussian matrix. The assert of the proposition then follows.
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Appendix D
Chapter 5: Feedback Load

Let the feedback load for each ith user increases with the SNR such that
02 = ki(02)# + 0(02) (D.1)

where z; (> 1) € N. Let a; = 3} for the ith user, be the lowest power with the
polynomial, namely

lim
020 (07)%

=0 (D.2)

2, 2
K Tt 0;

=102

Accordingly, the sum }

that appears in Lemmas 1 and 2 in section 5.4.3

can be written as
i oo +07 i o + ki(03)" + o(03)

= - (D.3)
= 1-0?2 S 1-ki(05)%+o0(03)
From (5.67), we can express the SER with perfect channel feedback as
2 0TV — 2 2
log (e(Uw,O )) = Mlog(oz) + o(log(aw)) (D.4)
where )
lim 2U108(%)) _ (D.5)

020 log(o2)

Using (5.66), (D.3), and (D.4), we obtain

log(e(og, (0., 0%)"))

— Mlog (Z o5 + ki(o)" + 0(%%)) Yo (10g <i og + ki(og)" +o(a§])>>

=1 ki(02)% 4 o(02) = 1—ki(03)% +o(03)
(D.6)
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The diversity order can then be determined as

02 —0 log(c2)

g (€2 @2, D)) { Mo min{z)>M 0

lim =
min {z;} 1<min{z;} <M
1 1

Thus we have to keep 07 = k;(02)! i

to achieve full diversity order where ¢; > 0
fori € {1,...,K}. Following the rate distortion theory in [108], the lower bound of

mutual information between h; and h; is given by
M
R(D;) = Mlog, D D; <M (D.8)
1

where D; is the average squared-error distortion between h; and h;. For conve-
nience, we let 07 = D;/M and we obtain the following relation between the feed-
back load and SNR

R(D;) = M( log, (p) — log, (ki) (DY)
which reveals that we need an extra 3.32 x M bits per user for every 10 dB SNR to

obtain the full diversity. In the general case, each user should get 3.32 x 4 bits for
every 10 dB SNR to experience the diversity order d (< M) of the system.
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Résumé:

Les technologies a entrées multiples et sor-
ties multiples (MIMO) ont été dévelop-
pées pour augmenter la capacité du sys-
teme et offrir une meilleure fiabilité de la
liaison. IIs permettent une architecture
réseau dense qui permettra a de nombreux
utilisateurs de se connecter dans la méme
zone sans subir de ralentissements. Les
réseaux 5G et au-dela utiliseront ces tech-
nologies MIMO avec de nombreuses pe-
tites antennes permettant au faisceau de se
concentrer sur une zone donnée. Couplées
a des bandes haute fréquence, 1'utilisation
de ces antennes augmentera considérable-
ment le débit.

Dans ces systemes, la détection multi-
utilisateurs (MU)-MIMO dans la réception
de la liaison montante et le précodage
dans la transmission de la liaison descen-
dante permettent de séparer les flux de
données utilisateur et de pré-annuler les
interférences. Cependant, certains dé-
fis doivent étre relevés dans des condi-
tions réalistes telles que dans des con-
ditions réalistes telles que la complexité
raisonnable des processus de décodage et
de précodage, la connaissance erronée des
canaux et l'interférence des cellules adja-
centes. Cette thése aborde toutes ces lim-
itations ci-dessus pour la réception en li-
aison montante et la transmission en liai-
son descendante dans les systemes MU-
MIMO.

Pour la réception sur la liaison montante,
nous étudions l’algorithme bien connu de
décodage par spheres (SD) pour la détec-
tion MIMO. Nous cherchons a réduire sa

complexité qui augmente de maniere ex-
ponentielle avec le nombre d’antennes et
la taille de la constellation. Ainsi, nous
profitons des récentes avancées dans le
domaine des réseaux de neurones (NNSs)
pour développer le SD assisté par les NNs
de faible complexité. Nous proposons
également le décodage MIMO récursif par
blocs, qui atteint presque la performance
de maximum de vraisemblance (ML). En
utilisant les réseaux neuronaux profonds
(DNNs), nous suggérons un nouveau
schéma peu complexe pour le traitement et
la détection du signal dans la liaison mon-
tante du cloud-RAN (C-RAN). Ce schéma
DNN vise & imiter toute la transmission
en liaison montante C-RAN, qui prend en
compte les contraintes de quantification au
niveau des unités radio distantes (RRUs)
et les observations corrompues au niveau
du processeur central (CP).

Dans la transmission en liaison descen-
dante, nous étudions le précodage de la
perturbation vectorielle (VP) non-linéaire.
Nous concevons le VP combiné pour
servir plusieurs utilisateurs avec dif-
férents schémas de codage de modula-
tion (MCSs).
ment l'algorithme VP par blocs, qui fu-

Nous introduisons égale-

sionne le précodage linéaire et non-linéaire
pour offrir un compromis accordable entre
complexité et performance. Pour traiter les
informations erronées sur l'état du canal
(CSI) dans le précodage de la liaison de-
scendante, nous développons le nouvel in-
dicateur de précision CSI pour concevoir
un nouveau précodeur moins sensible aux
erreurs CSI.
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Abstract:

Multiple-input multiple-output (MIMO)
technologies were developed to increase
system capacity and offer better link reli-
ability. They allow a dense network archi-
tecture that will allow many users to con-
nect in the same area without experiencing
slowdowns. 5G networks and beyond will
use these MIMO technologies with many
small antennas allowing the beam to be fo-
cused on a given area. Coupled with high-
frequency bands, the use of these antennas
will significantly increase throughput.

In such systems, multi-user (MU)-MIMO
detection in the uplink reception and
MU-MIMO precoding in the downlink
transmission enable separating user data
streams and pre-cancelling interference.
However, some challenges have to be met
under realistic conditions, such as the rea-
sonable complexity of the decoding and
precoding processes, the erroneous chan-
nel knowledge, and the adjacent cell inter-
ference. This thesis addresses all these lim-
itations above for the uplink reception and
the downlink transmission in MU-MIMO
systems.

In the uplink reception, we study the well-
known sphere decoding (SD) algorithm
for MIMO detection. We seek to reduce its
complexity which increases exponentially

with the number of antennas and the con-
stellation size. Thus, we profit from re-
cent advances in neural networks (NNs) to
develop the low-complexity NN assisted
SD. We also propose the block recursive
MIMO decoding, achieving almost the
maximum likelihood (ML) performance.
Using deep neural networks (DNNs), we
suggest a new and low complex scheme
for signal processing and cloud-RAN (C-
RAN) detection. This DNN scheme aims
to mimic the whole transmission in up-
link C-RAN, which considers the quanti-
zation constraints at the radio remote units
(RRUs) and the corrupted observations at
the central processor (CP).

In the downlink transmission, we study
the non-linear vector perturbation (VP)
precoding. We design the combined VP to
serve multiple users with different mod-
ulation coding schemes (MCSs). We also
introduce the block VP algorithm, which
merges linear and non-linear precoding to
offer a tunable tradeoff between complex-
ity and performance. To deal with the er-
roneous channel state information (CSI) in
the downlink precoding, we develop the
new CSI accuracy indicator reporting to
design a novel precoder that is less sensi-
tive to CSI errors.
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