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CDPR – Cable-Driven Parallel Robot

DoF – Degrees of Freedom
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IGM – Inverse Geometric Model

SFW – Static Feasible Workspace, also denoted as S

TDA – Tension Distribution Algorithm
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General Notation

Writing convention: (a) boldface lowercase characters denote vectors; (b) boldface
uppercase characters denote matrices; (c) non-bold lowercase characters denote scalars;
(d) non-bold uppercase characters denote points.

B> – the transpose of B

B−1 – the inverse of B

B† – the pseudo-inverse of B

B̂ – the estimation of B

[b]× – the cross-product matrix of vector b

ib – vector b expressed in Fi

b∗ – the desired value of b

I – Identity matrix

n – number of the degrees of freedom of the moving-platform

m – number of cables

r – degree of redundancy

t – time

Ci – the ith cable

Fi – ith frame, for example Fb is the base frame

Oi – the origin of frame Fi

itj – (3× 1) translational vector from Fi to Fj

iRj – (3× 3) rotation matrix from Fi to Fj

iTj – (4× 4) homogeneous transformation matrix from Fi to Fj

u – 3-dimensional unit vector

θu – axis-angle representation of rotation

ipj – pose of Fj expressed in Fi, ipj = [itj θu]

ivj – velocity of Fj expressed in Fi, ivj = [ivj
iωv]

qm – m-dimensional motor position vector

q̇m – m-dimensional motor velocity vector

l – m-dimensional cable length vector

l̇ – m-dimensional cable velocity vector

Ai – ith cable exit point

Bi – ith cable anchor point
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rp – pulley radius

rw – winch radius

A – (m× n) Jacobian matrix that relates cable velocities l̇ to moving-platform
velocity vp

Ad – (6× 6) Adjoint matrix used to express a velocity ivj in a different frame

W – the wrench matrix,W = −A>

wg – 6-dimensional gravity wrench vector

tm – m-dimensional motor torque vector

δli – elongation of the ith cable

E – Young modulus

τ – m-dimensional cable tension vector

δl̇i – velocity correction of ith cable from TCA

kc – gain for δl̇i computation

s – j-dimensional feature vector with amount of features ideally j = n

e – error between the current features s and the desired s∗

λ – positive gain in visual servoing

Ls – (j× 6) interaction matrix that relates camera velocity cvc and ė

o – object center-point coordinates in the image, o = [xo,yo]

Π – Stability criterion

D – perturbation boundary

d – perturbation set within D





General Introduction

Robots have become an integral part of the industrial world. Automation of dull or
dangerous tasks allows the factories to improve the work conditions for their employees
and at the same time to increase the overall effectiveness of the plant. Furthermore,
with the recent outbreak of Covid-19, the need for autonomous task execution that
can be observed and interacted with off-site (or at least from a safe distance) only
grows. New use cases, such as disinfection of factories, technical halls and even public
transportation without putting the employee at risk, have emerged [Ver]. Different
mechanical architectures of robots are being studied to better respond to the increasing
and diversified demand for automation and robotization.

One promising type of robots with high potential is the Cable-Driven Parallel
Robot (CDPR). As the name suggests it is a kind of parallel robots that has cables instead
of rigid links. The moving-platform is connected to a base frame through the cables.
Moving-platform motion is achieved by changing the cable lengths by winding and
unwinding each cable on a winch, which is actuated by a rigidly fixed motor. CDPRs
are characterized by a large workspace in translation, a large payload capacity and a low
mass in motion. These advantages lead to interesting CDPR applications, such as: (a)
moving large objects over large distances [ABD92] [Gag+16]; (b) moving objects with
high velocity [Kaw+97]; (c) providing feedback for a virtual reality application [FCCG14];
(d) assisting human rescue operations [MD10]. However, currently available CDPRs are
often lacking accuracy. In order to improve the accuracy of CDPRs one can enrich the
mathematical models describing the geometric, kinematic, elasto-static and elasto-dynamic
behavior of such robots while using ad hoc techniques for the calibration of these
models [FCCG14]. In this case, the CDPR command is managed in its joint space. It
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is also possible to use exteroceptive sensors such as precise cameras to control the CDPRs
in the Cartesian space [RCM14] [Dal+19] [CCL15] [Beg+18].

This thesis focuses on the second approach since little work exists on the subject for the
moment whereas it is in our opinion a relevant and promising approach to considerably
improve the accuracy of CDPRs. Several configurations and their combinations can be
used: sensors onboard the moving-platform [RCM14]; remote sensors observing the
moving-platform [Dal+19] [CCL15] [Beg+18]; sensors observing the internals parts of
the robots, such as cables [Dal+19]. To improve the accuracy of a CDPR with respect to
an object, the camera is usually mounted on the moving-platform. In this configuration
the camera and the moving-platform approach the object simultaneously. Moreover, as
the camera approaches the object the accuracy is increased and at the desired state the
accuracy is indeed excellent. However, with the camera onboard the moving-platform, its
pose cannot be observed and thus must be estimated.

The kinematic models of the system comprising a CDPR and a camera have been
determined and different visual servoing approaches have been studied. More precisely,
we started with Pose-Based Visual Servoing (PBVS) [CH08]. Then, to improve the behavior
of the robot, 2½D Visual Servoing (2½D VS) [MCB99] [KKC04] was implemented. The
latter uses a combination of 3D information, such as the Cartesian pose of the object, and
2D information, such as object center-point coordinates in the image. Finally, Image-Based
Visual Servoing (IBVS) [CH08] was also implemented.

As mentioned before, having the camera on the moving-platform, it is impossible
to directly measure the moving-platform pose. Instead the pose has to be estimated.
To find the best suited estimation method, three different approaches were studied:
(a) control-based; (b) image-based; (c) model-based. In the control-based approach
the control output is integrated in order to estimate the new moving-platform pose. In the
image-based approach two images are used to measure the object pose in the camera frame
in two time instants. It assumed that on one of these time instants the moving-platform
pose is known. Then, assuming that the object does not move, the changes in the image
are due to camera motion. It is thus possible to estimate the new moving-platform pose
through frame transformation. Finally, in the model-based approach the lengths of the
six cables that are most in tension are used to compute the moving-platform pose in the
vicinity of the previous pose. In all of these approaches the initial moving-platform pose
needs to be known and the more precise the knowledge, the better the overall behavior of
the system. It was found that moving-platform pose estimation by integration of control
output is the most robust and best adapted for different tasks, including the tracking of a
mobile object with unknown velocity.

It was found that CDPRs with visual servo control are very robust to many different
perturbations, including errors in the CDPR model. To evaluate this robustness, the
Lyapunov stability analysis was performed for a planar and a spatial CDPRs. During
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the analysis, a link between the moving-platform pose and the system stability was
determined. Indeed, in the presence of the same perturbations in the system, it could
be stable with the moving-platform on one pose, yet unstable in another pose. Thus, a
novel workspace named Control Stability Workspace (CSW) was defined. It shows all the
moving-platform poses for which the system remains stable as long as the perturbations
are kept within their defined bounds. The workspace had to be computed separately for
each visual servoing approach on each of the CDPRs, namely one planar and two spatial
ones. By computing the CSW it was possible to quantify the effect of each perturbation
on the system. In fact, depending on the perturbed parameter, the effect on the CSW
volume is very different. For example, the camera position on the moving-platform could
be simply unknown, defining an arbitrary position within the moving-platform geometry.
A perturbation on the camera position that does not surpass the moving-platform size
has very little to no effect on the CSW volume. On the other hand, errors in cable exit and
anchor point coordinates rapidly reduce the CSW volume. Furthermore, the perturbation
limit that leaves a reasonable workspace size depends on the CDPR geometry. Indeed, the
larger the CDPR, the larger the perturbation within system stability.

As long as the system remains stable, the CDPR reaches the desired state with the
same accuracy, regardless of the perturbations. On the contrary, the trajectory to the
desired state can have large deviations once perturbations are introduced into the system.
An uncontrolled and unpredictable trajectory can be undesirable and even dangerous,
especially if the workspace is cluttered. To deal with this issue, trajectory planning and
tracking [MC02] has been implemented. A control algorithm was designed, defining
the planning and the tracking stages. It was shown that having trajectory planning and
tracking guarantees that the executed trajectory is very close to the ideal one, no matter
the perturbations. The algorithm was tested on both spatial CDPRs, improving greatly
their behavior.

Regardless of the chosen visual servoing approach, some cables can become slack.
This can happen for reasons such as modeling errors, accumulation of errors during
moving-platform pose estimation, higher number of cables than the number of degrees
of freedom of the moving-platform. For this reason new control approaches that take
into account cable tensions were proposed. The simplest one consists of a visual servoing
controller with a tension correction algorithm. The algorithm compares the current tension
measurement to a predefined tension threshold. If the measurement is too low, then a
cable velocity correction is computed for that cable to ensure that the slack is reduced.
The controller has been validated on two CDPRs showing a substantial difference in robot
behavior and system stability compared to the visual servoing approaches without this
enhancement. For example, in a long-term task, where the robot is tasked with tracking a
mobile object, the classic visual servoing controller fails in less than ten minutes, while the
controller with tension correction was fully functional even after three hours.
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Organization of the Thesis

The thesis is organized as follows:

Chapter 1 presents the context of this thesis and a review of the pertinent state of
the art. More precisely, CDPRs are introduced, giving details on their classification,
advantages, drawbacks, and currently known applications. Then state of the art of
CDPR modeling, workspace definition, control approaches and stability determination is
presented. This chapter also introduces geometric and kinematic models of CDPRs, as well
as the computation of the Static Feasible Workspace (SFW) and the Tension Distribution
Algorithm (TDA). The last section is dedicated to the introduction of different visual
servoing approaches.

Chapter 2 presents different moving-platform pose estimation methods. Altogether seven
methods are developed and tested on two CDPRs of different size. Moreover, a comparison
is made with the online measurement of the moving-platform pose obtained by an
HTC Vive tracker. The moving-platform pose estimation methods are tested with two
controllers: an open-loop velocity controller and a closed-loop visual servoing controller.
It is found that moving-platform pose estimation by the integration of control output
gives the best results when used with the visual servoing controller and is the most robust
for several tasks. The accuracy and repeatability of the two controllers are assessed. The
findings are submitted for publication in [VI].

Chapter 3 is dedicated the application of visual servoing to CDPRs with a particular
focus on stability. First, a thorough Lyapunov stability analysis is done for the PBVS of a
planar and a spatial CDPR. A link between moving-platform pose and system stability
is discovered. For this reason a new workspace, named Control Stability Workspace, is
defined and computed for the different CDPRs and visual servoing approaches. The
system behavior in the presence of perturbations is extensively tested with PBVS control
both in simulation and on real CDPRs. A short validation of 2½D VS controller is also
performed, as well as IBVS. It is concluded that visual servoing of CDPRs is very robust
to diverse large perturbations, including modeling errors. The accuracy at desired state
always remains the same as long as the system is stable. However, perturbations in the
system that are within the bounds of stability can heavily affect the produced trajectory.
Furthermore, cable tensions are not controlled and thus cable slack can occur, especially in
the presence of perturbations. The findings are published in [II],[V] and [IV].

Chapter 4 presents an algorithm for trajectory planning and tracking to improve the robot
behavior in the presence of perturbations. An extensive study is done on ACROBOT to
validate the improvement thanks to trajectory planning and tracking. It is also found
that the direction of the perturbation matters. More precisely, a perturbation on one
system parameter of the same size but different direction will have a different effect on the
executed trajectory. While trajectory planning and tracking greatly improves the produced
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trajectories, cables slackness occurs nonetheless. Concept is also validated on CAROCA.
The results are published in [I].

Chapter 5 proposes some approaches to combine visual servoing with tension
management. The Tension Correction Algorithm (TCA) is defined. It compares the
current tension measurement to a threshold and computes a cable velocity correction to
reduce cable slack. It is validated on both CDPRs with both static and moving objects. The
use of TCA on ACROBOT is published in [III].

General Conclusions, as the name suggests contain the main conclusions drawn during
this thesis along with propositions for future work. In short, it is concluded that, indeed,
visual servoing is an excellent control approach to improve the accuracy of CDPRs. It
is very robust to perturbations in the system and modeling errors. Moreover, having
perturbations in the system does not affect the accuracy of the robot at the desired state.
Indeed, only the transient phase is affected. Here, the robot behavior is greatly improved
by using planning and tracking of trajectory. Finally, cable slackness can be an issue,
however the proposed TCA removes slack rapidly and ensures that all cables of the CDPR
are tensed enough to participate in the displacement of the moving-platform.

Appendix presents: A.1 the two CDPRs located at IRT Jules Verne that were used during
this thesis as well as their simulation in V-REP; A.2 the measurement system Creaform
C-Track used to obtain ground-truth measurements of the moving-platform pose; A.3 the
expression of the equations necessary for the control scheme in a different reference frame;
A.4 a simple position controller; A.5 Control Stability Workspace results.
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1.1 Cable-Driven Parallel Robots

When the Degrees of Freedom (DoF) of an end-effector can be controlled via a
mechanical system, this system is called a robot [Mer06]. Two types of manipulators
can be distinguished: a serial and a parallel manipulator, shown in Figs. 1.1a and 1.1b,
respectively. The former is a series of rigid links connected by motor-actuated joints that
extend from a base to the end-effector. In a way, it resembles a human arm. In a parallel
manipulator multiple legs connect the base to the end-effector thus creating one or several
closed loops. Each leg is either serial kinematic chain or a chain containing one or several
closed-loops. One of the first parallel robots was created by Gough in 1954 and is shown
in Fig. 1.2, and now this concept has been used countless times, for example, in flight or
driving simulation (see Fig. 1.3) [Che+01].

Link i

Link n End-effector

Link 1

Base

(a)

Link (i,1)

Link (n,1) End-effector

Link (1,1)

Base

Link (1,j) Link (1,m)

Link (i,j)

Link (n,j)

Link (i,m)

Link (n,m)

Legm

(b)

Figure 1.1: Serial and parallel manipulators [Pic18]

Figure 1.2: The original Gough-Stewart platform

Cable-driven parallel robots (CDPRs) are a type of parallel manipulators, where the
rigid links are replaced by flexible cables that actuate the moving-platform (the end-effector
of parallel manipulators is usually named moving-platform). On one end each cable is
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Figure 1.3: National Advanced Driving Simulator (NADS) at University of Iowa [Che+01]

connected to the moving-platform, while on the other end it is wound on a winch that
is actuated by a motor, which itself is rigidly fixed to the base and does not move. Note
that the motors and winches do not necessarily have to be fixed to the base, they can also
be mounted on the moving-platform for some specific implementations [Ver] [Web16].
Passive pulleys are usually used to guide the cable from the winch to the cable exit point.
Generally, the base is fixed to the ground, however there have been studies on mobile
CDPRs [Ras+18]. The pose of the moving-platform is controlled by changing cable lengths.

1.1.1 Classification

A CDPR can be classified by its DoF, where the maximum is a six-DoF configuration as
shown in Fig. 1.4.

In the scope of this thesis we are interested in CDPRs with six DoF, for which two
configurations are possible: either fully-constrained or suspended as shown in Fig. 1.5.
For the former the cables are kept in tension by other cables, which means that in
theory such a robot could work in a reduced or zero gravity environment. Furthermore,
fully-constrained CDPRs are well suited for very fast motions [Kaw+97], however the
load capacity is reduced and there is a higher probability of cable collision with objects in
the workspace. On the other hand, in suspended CDPRs all cable exit points are above
the moving-platform and thus all cables can participate in load bearing. This leads to the
ability to lift heavy loads, but the velocities must be reduced to avoid the swaying of the
load.

To be able to actuate n-DoF, the CDPR must have at least n+ 1 cables [KI93]. Finally, it
is also possible to distinguish CDPRs as a function of degrees of redundancy:

• underconstrained: a CDPR withm < n+ 1 cables for the actuation of n-DoF
• completely constrained: a CDPR with exactlym = n+ 1 cables for the actuation of
n-DoF

• overconstrained or redundantly constrained: a CDPR with m > n+ 1 cables for the
actuation of n-DoF
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(a) 1T (b) 2T (c) 1R2T

(d) 3T (e) 2R3T (f) 3R3T

Figure 1.4: Different degrees of freedom achievable with actuation by cables, where T - translational
degree of freedom, R - rotational degree of freedom [Pot18]

moving-platform

pulleys

cables

base

Figure 1.5: A spatial CDPR with six DoF. Left: Fully-constrained configuration. Right: Suspended
configuration.

In practice, most of the CDPRs are redundantly constrained with eight cables to actuate
six-DoF, making their degree of redundancy r equal to 2.

1.1.2 Advantages and Drawbacks

The choice to use cables instead of rigid links leads to many advantages, such as
low mass of the moving parts, because only cables and the moving-platform are in
motion. Indeed, generally the motors are fixed on the base (on the ground) and thus
they do not move. Furthermore, cables are considerably less heavy when compared
to rigid links of classic parallel robots, such as the Gough-Stewart platform in Fig. 1.2.
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Consequently, having low mass in motion gives the possibility of achieving high velocities
and accelerations of the moving-platform, especially if the CDPR is assembled in the
fully-constrained configuration. For example, a CDPR named SEGESTA can achieve up to
10g acceleration and velocities around 10 m/s [Bru+06].

As the cables are wound on winches, there is generally no limit on available cable
length. This leads to great scalability of CDPRs, allowing for different CDPR workspace
sizes.

A CDPR can be easily reconfigured [Iza+13] [Gag+16]. That is, the pulleys working as
cable exit points on the base can be displaced to change CDPR geometry, an example is
shown in Fig. 1.6a1. Similarly, the shape of the moving-platform can be adapted to the
task at hand and to the sensors that need to be placed on it.

CDPRs have a large payload capacity, especially if they are assembled in the suspended
configuration. When compared to an overhead crane, which is typically installed in almost
every factory, a CDPR could keep the load more stiff and thus providing better safety.
Moreover, all six DoF of CDPR moving-platform can be controlled, thus increasing their
application range.

It should be noted that CDPRs can be portable and deployable [MD10] [BWT05], as
shown in Fig. 1.6b. There have even been studies on mobile CDPRs, whose frame is
mounted on two or four mobile bases [Ras+18] [Ras19].

(a) (b)

Figure 1.6: An example of (a) a reconfigurable and (b) a deployable CDPR structure [BWT05]

However, the use of cables instead of rigid links has some drawbacks too. As mentioned
above, CDPRs are usually redundant, with more cables than degrees of freedom to
compensate the fact that each cable can apply only a unidirectional force, that is, it can
only pull but it cannot push. At least m = n+ 1 cables are needed to fully constrain n
degrees of freedom (DoF) [RGL98], making a CDPR redundant in actuation to degree

1Dynamic reconfiguration of a CDPR can be seen in https://youtu.be/ja98QlLI5gc

https://youtu.be/ja98QlLI5gc
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r = m−n. Generally, eight cables are used for six DoF motion, because this increases the
CDPR workspace [LG13] [Gou+15].

Cables are elastic, they can sag under their own weight and become slack during
task execution. All of this significantly complicates the cable geometry [Irv92], thus
impacting the CDPR model and control. Usually a simplified model is chosen, assuming
that cables are massless, inelastic and straight [Gag+16] [Pic18]. This however can have a
negative impact on CDPR accuracy and stiffness [Sch17]. The loss of moving-platform
stiffness is directly correlated with increase in cable slackness. Indeed, if some cables
become slack for example due to CDPR model imprecision, then the moving-platform
loses its stiffness. In more extreme cases, cable slackness can lead to underactuation
of the moving-platform. On the other hand, it is possible to model cable elasticity and
sagging [MADS15] [Sch17] [Web16]. While that will not prevent cable slack, it can extend
the time necessary to accumulate a significant amount of slack. However, often additional
sensors, such as cable tension and cable angle sensors, will be necessary in order to
use more complex cable models [Dal+19] [FCCCL16]. A compromise between model
complexity and system behavior needs to be found for each individual task and each
CDPR geometry.

Even without cable modeling issues, the geometry of CDPRs is complex. Indeed,
CDPRs are part of parallel robots and thus the solution of the Direct Geometrico-Static
Model (DGSM) is a challenging issue, because many solutions can exist. Furthermore,
due to the fact that cables can only exert one-directional force on the moving-platform,
the complexity for CDPRs is even higher [CM13] [AC15]. Usually interval analysis is
used to solve DGSM [BMC16]. This is possible even for complex cable models [MADS15],
however it comes at a high computational cost.

CDPR payload capacity is generally lower than that of an overhead crane, e.g. a typical
maximum is 1 ton [Pot18]. Furthermore, payload capacity depends on the pose of the
moving-platform. More precisely, the higher the moving-platform along global z axis
and the closer the cables to being horizontal, the higher the cable tensions. Indeed, cable
tensions can become infinite in such configurations, which imposes limitations on the
workspace of CDPRs.

1.1.3 CDPR Applications

Possibly the best known commercial CDPR application is the cable-suspended camera
that is used to broadcast an immersive view of a sport or entertainment event. One such
example is SkyCam [Sky], shown in Figs. 1.7a and 1.7b, but there are several others, such
as CableCam and SpiderCam. The structure is always the same: four cables are used to
actuate the translational DoF of the moving-platform, where the camera is mounted. The
rotational DoF are actuated separately and usually the camera is moved by teleoperation.
A CDPR is used for this application, because it can easily cover an arena or a football field,
while not obstructing the view since cables are rather small in diameter.
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(a) SkyCam (b) SkyCam attachment on the arena

(c) A plane secured by a CDPR in a wind tunnel (d) FAST telescope

(e) NIST RoboCrane [ABD92] (f) CableBOT [Cab]

(g) CableRobot Simulator [Mie+16] (h) haptic interface at Laval University [FCCG14]

Figure 1.7: CDPR application examples
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Similarly, CDPRs are very convenient for wind tunnels [LLR02] [BSW11] [Yan+10].
Any object can be secured in the wind tunnel with cables whose diameter is small enough
to not cause any unwanted turbulence. Furthermore, it is even possible to change the
orientation of the object during a test, which creates a more realistic result. Indeed, planes
and cars change course with respect to the wind direction, thus ideally this change needs
to be simulated as well. An example is shown in Fig. 1.7c.

Probably the largest CDPR in the world is Five Hundred Meter Aperture Spherical
Telescope (FAST) [NL11], shown in Fig. 1.7d. Here, the pose of the receiver is changed via
six very long cables. Furthermore, the receiver weighs 50 tons, meaning that the cables
used to support it are large in diameter, have non-negligible weight and, evidently, cable
sag needs to be taken into account.

Large workspace capability is also interesting in indoor applications. Tedious and
monotonous tasks, such as cleaning and painting of airplanes can easily be done by
CDPRs [ABD92] [NG14] [Cab], as shown in Figs. 1.7e and 1.7f.

Similarly to the Gough-Stewart platform, a CDPR can be used in motion simulation.
CableRobot Simulator [Mie+16] has been built at Franhofer IPA in Stuttgart, Germany and
is shown in Fig. 1.7g. Unlike the Gough-Stewart platform, a CDPR can produce not only
rotational motion, but also a rather large translational displacement. This allows for an
immersive sensory feedback to a virtual reality headset.

When using a virtual reality headset it is surprisingly easy to believe what the eyes see.
However, it is more difficult to keep this sense of reality once some physical interaction
needs to happen. For example, if an object is picked up and is seen in the hand, one would
expect to feel it by touch and to sense its weight. Haptic interfaces are created to give this
physical feedback. A significant amount of research has been concentrated on the use of
CDPRs as haptic interfaces [DPL07] [YY09] [Ho+14] [FCCG14]. An example is shown in
Fig. 1.7h. Such haptic interfaces allow the operator to test the design of a part, an assembly
or even the whole factory layout before manufacturing has begun.

As mentioned previously, CDPRs can be deployable and even mobile. The latter can
be useful in storage facilities, especially if objects are stored on high shelves, as shown
in Fig. 1.8c. In other cases a deployable CDPR can be preferred, for example, when the
load to lift is rather large or when the CDPR would need to stay at the same location
for a significant amount of time. Considering the simplicity of CDPR transportation and
setup, it can be used for rescue operations [MD10] and for contour crafting [Bos+07]. The
examples are shown in Figs. 1.8a and 1.8b.

Similarly, in [Iza+17] walls were printed by a CDPR, however in this case it was indoors,
as CDPRs with a well known unchanging geometry are bound to be more precise. In
both applications, automation brings an increase in speed. An on-site printer could finish
the walls of a house in one day. And thanks to its large workspace, this could be done
without moving the base of the CDPR and thus no or just minimal intervention would be
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(a) MARIONET for patient transportation [MD10] (b) A portable CDPR for contour crafting [Bos+07]

(c) FastKit, a mobile CDPR [Ras19] (d) the CaRo printer [Pot+19] (e) the HangPrinter [Lud]

(f) a schematic of a wall plotter [PVF20] (g) drawing created by a wall plotter [Pol]

Figure 1.8: CDPR applications, part two

necessary. On the other hand, a set of printed pieces could be easily assembled in short
time on place. And since in this case no CDPR on-site setup would be necessary, it is
possible that the overall time spent on building the house would be the same.
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Rapid prototyping, also known as 3D printing, of (usually plastic) pieces is also a viable
application of CDPRs. The authors of [Pot+19] proposed a suspended CDPR, named
CaRo printer, shown in Fig. 1.8d, and defined the workspace, where the 3D printing
accuracy requirements were fulfilled. Furthermore, the authors showed great long-term
running robustness as the robot was exhibited in an exhibition during six months. Another
interesting CDPR 3D printer, named HangPrinter, was created by Torbjørn Ludvigsen
and is shown in Fig. 1.8e. This is an open-source project, that is available at [Lud]. In his
approach the printer uses a set of parallel cables coming from the top plate to control the
height of the moving-platform along z axis. Three other cable pairs are coming from the
ground and are used to control the displacement on xy plane. The author claims that this
printer only needs the top plate to be rigidly mounted on the ceiling and the three ground
points to be well anchored for it to work, meaning that theoretically there is no size limit,
as shown in [Han].

Indeed, CDPRs can be very interesting as autonomous creators of art pieces, especially
because the cables can be chosen so that they are not clearly visible, giving the impression
that the moving-platform is actually floating in the air on its own. A new trend is emerging
in using very simple two-cable CDPRs as wall plotters [Pol] [PVF20], shown in Fig. 1.8f.
These wall plotters can be set up on any wall and can create large and detailed art pieces,
such as the one shown in Fig 1.8g. The wall plotters are so popular and simple, that they
have become commercially available [Scr]. A recent paper [PVF20] describes the study of
exhibition visitor reactions to CDPR art and the ability to interact with the robot and the
art piece by the push of a button.

Clearly, the applications of CDPRs are vast and very different, ranging from industrial
use to creation of art pieces.

1.1.4 CDPRs at IRT Jules Verne

Two CDPRs were used during this thesis: a small CDPR prototype named
ACROBOT and a large CDPR named CAROCA. ACROBOT was developed as a
demonstration prototype that can be transported to exhibitions thanks to its compact
size of 1.2 m× 1.2 m× 1.2 m cube. It is shown in Fig. 1.9a. On the other hand, CAROCA
has the following dimensions: 7 m× 4 m× 3 m. Furthermore, it is reconfigurable and its
different reconfiguration strategies were studied in [Gag16]. CAROCA was developed
to research the possibility of CDPR industrialization for tasks such as photogrammetry,
sandblasting and painting of large complex parts, handling operations [Pic18]. CAROCA
is shown in Fig. 1.9b. Detailed information on both CDPRs, including their actuation and
sensors, is given in Appendix A.1.
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Figure 1.9: CDPR prototypes at IRT Jules Verne: (a) ACROBOT; (b) CAROCA
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1.2 State of the Art

One of the earliest studies on CDPRs was carried out for naval applications in the
early 1990s. Four cranes were used to load the containers from boats to docks and vice
versa [GJC01]. At the same time the NIST project, shown in Fig. 1.7e began.

By the end of 1990s the amount of research focused on CDPRs increased considerably.
For example, a joint project in Canada and the United States was carried out on the
characterization of the workspace in which a set of desired tensions could be generated
by the cables [RGL98]. This is a fundamental issue, because the cables can apply only a
one-directional force. Later on, notable work on deployable CDPRs for rescue missions
was done [MD10], shown in Fig. 1.8a. An elasto-static model of the ANR CoGiRo
prototype was developed to take into account the prototype’s heavy cables [Lam14].
Furthermore, the cited work also proposed a very interesting arrangement of the cables on
the moving-platform to improve the robot behavior when in the suspended configuration.

More recently, CDPR reconfigurability has been studied in [Gag+16] [Iza+13]. Indeed,
as the moving-platform is actuated by cables, it is possible to change the robot geometry
and behavior by simply changing the cable exit point coordinates.

In the following sections, the state of the art on the relevant research work on CDPRs is
presented.

1.2.1 Modeling

The modeling of CDPRs is similar to that of conventional "rigid" parallel robots, the
main difference being the modeling of the cables. In the majority of existing work, the cable
is considered to be of negligible mass. Its longitudinal elasticity is also often neglected.
However, there are works on the quasi-static analysis of parallel robots driven by ropes
whose mass and elasticity are not negligible, e.g. [Gou+12] and [KZW06]. In [Sch17]
Schmidt analyzed the importance of every CDPR model improvement by measuring the
resulting accuracy. It was found that cable elasticity and pulley geometry are the most
influential parameters. The robustness of sensor control techniques generally allows very
simplified models to be considered without loss of accuracy or stability. In the framework
of this PhD thesis, the simplest CDPR model is used and the influence of the unmodeled
characteristics, such as pulley kinematics and cable slackness, is analyzed.

A second noteworthy aspect of CDPR modeling is the solution of the direct
geometrico-static model (DGSM), where the aim is to determine the moving-platform
pose(s) and the corresponding tensions knowing the cable lengths. For all parallel robots
the DGSM is a challenging issue, because many solutions can exist. However, for CDPRs
the complexity is higher due to one-directional force that the cable can exert on the
moving-platform. The complexity of the problem has been highlighted by Carricato et al.
for suspended CDPRs with less than six cables in [CM13]. More precisely, for a 3-cable
CDPR the solution of DGSM is equivalent to finding the roots of a univariate polynomial
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of degree 156 [Car13] and of degree 216 for a 4-cable CDPR [CA13]. Finally, in 2015 the
analysis was extended to a generic underconstrained CDPR with n cables [AC15].

The use of interval analysis in the DGSM has proven to be one of the most efficient
methods [Ber15] [BMC16]. The proposed algorithm can be applied to both the fully
constrained and the suspended CDPR and it provides the complete solution of the DGSM
with all the moving-platform poses that could be reached by the given cable length set.
Furthermore, interval analysis can also be used for more complex CDPR models, for
example with the sagging cable model [MADS15]. However, it should be noted that
finding all the solutions has a high computational cost.

Once all solutions are available, it is however necessary to determine which is the
most probable one. Collard and Cardou propose to find the moving-platform pose
with the lowest equilibrium [CC13]. Indeed, for suspended CDPRs the most likely
moving-platform pose is the one where the moving-platform center of mass is closest
to the ground, which corresponds to the lowest equilibrium pose. The efficiency of the
algorithm is proportional to the amount of cables of the suspended CDPR. A common
work-around is to start at a known moving-platform pose and use an iterative scheme to
track that solution [Fan05].

1.2.2 Workspace

A workspace consists of all the CDPR moving-platform poses, in which certain
conditions are fulfilled. Depending on the selected conditions multiple workspaces can be
computed.

The simplest one is the Static Feasible Workspace (SFW), where the static equilibrium
of the moving-platform is used as the condition [SK06] [Gag16]. The Wrench Feasible
Workspace (WFW) is based on the static equilibrium along with the condition that
the moving-platform is able to withstand a set of external wrenches, named Required
Wrench Set (RWS), without moving. By definition, the WFW is the set of wrench feasible
moving-platform poses. A pose is wrench feasible when the cables can balance a set of
external moving-platform wrenches while the cable tensions stay in between given cable
tension upper and lower bounds [BREU06] [GDM11]. It can be said that SFW is a special
case of WFW when the external wrench is equal to zero and the static equilibrium is
achieved by compensating only the moving-platform weight. The tension bounds τub and
τlb are defined so that the tension does not surpass the cable or CDPR structure breaking
point on the upper bound and so that the cables cannot become slack on the lower bound.

Cable-cable interference can affect the pose the moving-platform attains. Indeed, as the
cable is no longer a straight line, but instead is bent at the interference point, the model
no longer corresponds to the real CDPR and thus a different moving-platform pose is
obtained. To avoid such situations one can compute the Interference Free Workspace (IFW),
which is the set of all moving-platform poses without collisions between cables [Per+10].
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An extension of this workspace is the Collision Free Workspace (CFW), which is the set of
all moving-platform poses without collisions between the cables, the moving-platform,
and the environment.

For some tasks a CDPR will be required to attain high velocities and the dynamics of
the robot will need to be taken into account. In such a case SFW and WFW cannot be used,
instead the dynamic workspace needs to be considered. For example, a Dynamic Feasible
Workspace (DFW) is the set of dynamic feasible moving-platform poses. Here, a pose
is dynamic feasible if the prescribed moving-platform acceleration set is feasible, while
cable tensions are kept within their bounds. For the planar CDPRs the dynamic equations
were solved analytically and thus the boundary of DFW could be found [BG05]. However,
the same strategy cannot be applied to spatial CDPRs due to their increased complexity.
Kozlov in [Koz14] extended the method for WFW computation described in [Gua+13] so
that DFW can be computed. However, this method does not take into account dynamics
of cables and winches, nor the external wrenches acting on the moving-platform. For this
reason Gagliardini proposed a new workspace called Improved DFW in [Gag16] [GGC18].

All of the mentioned workspaces portray the physical ability of the moving-platform
to arrive at a certain pose given a set of conditions that need to be fulfilled. The control
of the CDPR is not taken into account, meaning that there is no knowledge whether the
controller will be able to guide the moving-platform to the desired pose.

1.2.3 Control

Most of the existing control strategies for CDPRs are based on well-known methods,
such as PID controllers. Most CDPRs are a part of the family of over-actuated systems, i.e.
they have more actuators than degrees of freedom. This is motivated by the following fact:
the cables constituting these parallel robots can only pull and not push on the platform.
The presence of additional actuators is then a necessary condition for the control of all
the degrees of freedom of the robot [LG13] [Rui+15] [Pot18]. In addition, the presence of
redundant actuators increases the space that can be reached by the robot [LG13]. Thus,
recent works in the literature focus mainly on how to control the cables that actuate the
moving-platform while ensuring :

• a positive tension at all times for all the cables;
• a time-continuous tensioning, for safety reasons but also for equipment wear and

tear;
• to solve this control problem under strong real-time implementation constraints.

In general, at least the first two points are addressed. Most often a classic control
approach, such as torque control or sliding mode [OA04] [Hu+14], is used and the tension
distribution is taken into account by solving an optimization problem, which minimizes
the energy cost [Lam14] [Bor+09]. If the trajectory generation must be done online, it will
imply solving an optimization problem at each iteration, which can be difficult with the
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real-time constraint. For this reason, some approaches propose the use of simplifying
heuristics [Bor+09] [Mik+08].

For some CDPRs dynamic model must be taken into account in the control, otherwise
the system can exhibit some unsatisfactory behaviors. For example, cable elasticity is
taken into account in [Rie11] [Sch17] [Pic18]. Another parameter that can vary strongly in
the model is the embedded mass [Pic+18b].

Modeling all the cable characteristics can be a tedious task, which can become close to
impossible if the control needs to be recomputed at every iteration. Schmidt proposed
in [Sch+17] to use a simple CDPR model and to record the accuracy with which each pose
in the workspace can be attained. The authors first divided the workspace of their CDPR
into a grid of 1920 points. Each point was visited by the moving-platform and its pose
was measured with a Laser tracker AT901-MR with precision of 5µm and the difference
between the desired and the measured pose was recorded in a distortion grid. Then the
desired trajectory was corrected by taking into account the distortion grid. Indeed, since a
CDPR has high repeatability, it is possible to adjust the trajectory with the distortion grid
before it is to be given to the controller. This leads to the actual executed and measured
trajectory corresponding to the original desired one. Three trajectories were tested and a
substantial improvement of accuracy was seen in two of them, going from approximately
10.5 mm to 1.65 mm for a 7.0 m× 4.0 m× 3.0 m workspace. While the attained accuracy is
impressive, the approach is not robust and cannot be easily reused on different CDPRs.
Indeed, if the knowledge of initial pose is bad for any reason, the correction algorithm has
no way of knowing that and thus the trajectory and the final pose will not be the desired
one. Furthermore, the measuring step would need to be repeated in cases such as: changes
in moving-platform geometry and cable wear.

In general, to increase the robustness of the controller, some additional sensors are
used to provide feedback. Indeed, modeling of the whole environment is an impossible
task, because of many uncertainties and unpredictable perturbations. For example, when
dealing with considerable loads cable extension is unavoidable. For this reason, Picard
used force sensors to measure cable tensions [Pic+18a]. This allowed to determine the
actual mass of the moving-platform (with or without load), which noticeably improved the
CDPR behavior and final accuracy. Another approach is to use angular position sensors
to measure cable angle position [FCCCL16]. Weber proposed a control algorithm with
feedback from onboard inertial measurement units (IMUs) that actively damps vibrations
of the moving-platform [Web16]. Finally, in several studies, cameras were used to measure
the moving-platform pose [Dal+11] [Dal+12] [Beg+18] [Dal+19] [CCL15]. Furthermore,
cameras were used to measure the cable angle and compute cable sag [Dal+12] [Dal+19].
It is also possible to use the camera as an exteroceptive sensor such as in [RCM14], where
it was mounted on the moving-platform and used to detect the object of interest.
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Vision-Based Control of CDPRs

While model-based approaches insist on perfecting the CDPR model in order to have
a good accuracy, it is in general very difficult if not impossible to reach a millimetric
accuracy. This of course is due to the fact that no matter the CDPR model complexity
and closeness to the real robot, this control will not be robust to unmodeled changes or
perturbations. Furthermore, increasing the amount of details in the model increases the
complexity of computations and the time needed to get a solution.

Adding vision sensors to the system allows the control to be robust to changes in
the environment and, more importantly, to modeling errors of the CDPR. When using
vision sensors, a simplified CDPR model can be used. This is because the accuracy will
be achieved by the vision-system and not by the accuracy of the CDPR model. It also
allows us to avoid the computation of the direct geometrico-static model in some cases.
Furthermore, a vision-based approach is the most natural in a sense that it corresponds to
“eye-based control” in humans. Some possible use cases for a CDPR with vision-based
control are: (i) handling small objects over potentially large spaces; (ii) finding the correct
object among others; (iii) assembly of large parts in large spaces; (iv) large scale 3D
printing with different materials.

Visual servoing (VS) control for CDPRs is yet to be intensively researched. The authors
are aware of only a few studies related to this topic, while it should be noted that all of
them show promising results. Dallej et al. [Dal+11] describe an approach with a camera
onlooking the CDPR moving-platform, which is equipped with a marker to simplify
its recognition and thus computation of its pose. This choice to externally sense the
moving-platform pose in the feedback signal allows to avoid the solving of the forward
geometrico-static problem. In experimental tests on a 6-DoF CDPR named ReelAx8 the
approach shows a good accuracy. However, the authors conclude that another approach
is needed to deal with more dynamic tasks. Authors then move on to a second control
algorithm, which takes into account the dynamics of the moving-platform. The controller
is a standard computed torque controller in the Cartesian space, namely a PD with a
feed-forward, where the camera is used to determine the pose and the velocity of the
moving-platform. This controller is validated only in simulation with added noise to the
estimation of the moving-platform pose and velocity expressed in the base frame. A further
improvement to this algorithm is shown in [Dal+12]. Here, a combination of multiple
cameras is used to better determine the pose of the moving-platform. Furthermore,
additional set of cameras is used to detect the cables and compute their angles at their
exit point, which in turn leads to the determination of cable sag. This is necessary to
improve the previously described dynamic model. Now the dynamics of the cables are
also taken into account. The validation is done in simulation and shows promising results.
Furthermore, tension sensors are also used to measure cable tensions that are necessary
for the dynamic sagging cable model with non-negligible mass. The reported accuracy
is four times better (10 mm vs. 39.6 mm) and it is validated on a real robot [Dal+19].
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The resulting accuracy is especially impressive, when considering the size of the robot:
15 m× 11 m× 6 m.

Similarly, Chellal et al. proposed an approach with 6 infra-red cameras to precisely
determine the pose of the moving-platform [CCL15]. They used a Bonita motion-capture
system by Vicon to measure the moving-platform pose of the 6-DoF CDPR named INCA.
The algorithm is rather slow at approximately 6 Hz, but provides a high tracking accuracy
of less than 1 mm and less than 1◦ for a 3 m× 3 m× 3 m workspace. It should be noted
that this was designed as a haptic device for a virtual reality feedback.

Ramadour et al. take a different approach, by choosing to fix a camera on the
moving-platform so that the target object can be directly observed [RCM14]. Indeed,
there are no more cameras in the workspace and the control is computed relative to the
target object. Furthermore, the authors simplify the task, by using a 3-DoF CDPR with
only the translational degrees of freedom. This configuration was achieved by using
just 4 cables and connecting them all in a single point on the moving-platform, therefore
making the rotational DoFs impossible to control. This approach was chosen, because the
moving-platform was equipped with a magnet and the orientation of the object during
the pick&place task was not important. Due to the choice of control, the authors still
required the computation of the forward kinematic model in order to acquire the current
moving-platform pose. This is unlike Dallej et al. in [Dal+11] [Dal+12] and [Dal+19],
where the cameras were used to measure the moving-platform pose. The approach is
experimentally validated on a CDPR named Marionet-Assist [MD10]. The results clearly
show that the estimation of the actual moving-platform pose can be rather coarse without
making the task impossible. That is, even though the final computed moving-platform
pose in the base frame did not correspond to the actual one, it did not affect the system
too much, and the pick&place task was successful.

1.2.4 Stability

The stability of CDPR usually deals with the physical stability of the robot. In other
words, a moving-platform is stable if it is in a static (or dynamic) equilibrium [Pot18].
A static equilibrium pose is where the moving-platform will arrive once all external
wrenches are removed and only gravity is acting on it. For example, Carricato et al.
investigated the stability of equilibrium for underconstrained CDPRs [CM13]. A CDPR is
called underconstrained if the moving-platform can be moved by applying some external
forces on it, while the cable lengths are not changed. For example, one could attach
moving-platform with only 3 cables. Then the pose of the moving-platform at equilibrium
would depend on the location of the center of mass of the moving-platform. However
if one would apply a force to the moving-platform, it could be moved while keeping
the cables in the same length and still in tension. This analysis allows to determine the
region in which the moving-platform can move due to external force, while the lengths
of cables stay unchanged. By doing this analysis, the authors were able to determine the
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final equilibrium pose, where the moving-platform would return to once all perturbations
are ceased. Similar studies are presented in [SR19] underconstrained suspended CDPRs
for rehabilitation. Bosscher proposes a slope-based stability measure of a pose of an
underconstrained CDPR in [BEU04]. Park et al. present a stability analysis method for
dynamical CDPRs based on the cable tension bounds [PCM05].

There is a link between moving-platform stiffness and stability. The conditions to
analyze the stability of the cable robot are described in [BK06]. In particular, a CDPR can
be stabilized in the absence of external load if the kinematic Jacobian matrix is regular and
the active stiffness matrix is positive definite.

The mentioned research does not cover the stability of control. Indeed, it is possible
that at some moving-platform pose, given a set of other parameters, the system becomes
unstable and the control output makes the robot deviate from its target. In control it
is common to analyze the Lyapunov stability of the system. It allows us to determine
whether the system will converge to its goal state despite errors in its model [Kha02].

1.3 CDPR Modeling

The geometric and kinematic modeling of a six-DoF CDPR with eight cables is
described in this section. The most basic model is created, considering cables as straight
lines that are mass-less and non-elastic. An extension of the model with the pulley
geometry taken into account is also presented.

A planar CDPR is also defined, as it will be necessary for a case study in stability
analysis, which is presented in Section 3.2.1. Finally, a very simple position controller is
proposed in Section A.4.

1.3.1 Geometric Modeling

The geometric model is the link between motor positions in joint space and
moving-platform pose in Cartesian space. The Direct Geometric Model (DGM) expresses
the moving-platform pose as a function of motor positions, as shown on the bottom part
of Fig. 1.10. The Inverse Geometric Model (IGM), as the name suggests, does the inverse,
i.e., it expresses the motor positions as a function of moving-platform pose (Fig. 1.10 top
part).

Cartesian spaceJoint space

Moving-platform pose
p

Motor positions
qm

Inverse geometric model

Direct geometric model

Figure 1.10: Input and output for direct and inverse geometric models
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For straight, inelastic and massless cables their length is directly proportional to the
motor position:

l = l0 + rw(l)(qm −qm0) (1.1)

where

• l0 is the cable length vector at t = 0 s, that needs to be computed from the
moving-platform pose;

• qm0 is the motor position vector at t = 0 s;
• qm is the current motor position vector;
• rw(l) = rw + dc/2, where rw is the winch radius and dc is the cable diameter;
• note that rw(l) can change with time, if the cable can be wound on a second or nth

layer.

For ACROBOT and CAROCA rw(l) is defined in Appendix A.1.

Basic Inverse Geometric Model

The schematic of a spatial CDPR with 8 cables is shown in Fig. 1.11. Here, Ai denotes
the exit point of the ith cable. In the simplest model the pulleys that are actually located
at the cable exit points are omitted from the model, thus the cable exit point is assumed
to be static and perfectly known. On the other end the ith cable is connected to the
moving-platform at its anchor point Bi. The vector ai, shown in Fig. 1.12, points from the
origin of base frame Fb to the cable exit point Ai. Likewise, the vector bi points from the
origin of moving-platform frame Fp to cable anchor point Bi.

moving-platform

cables

base

object

camera

Ai

Bi

li

Fp

Op

Fb

Ob

Fc Oc

Fo Oo

Figure 1.11: Schematic of a spatial CDPR with eight cables, a camera mounted on the
moving-platform and an object in the workspace

The length li of the ith cable is the 2-norm of the vector
#        »

AiBi pointing from cable exit
point Ai to cable anchor point Bi, namely,

li =
∥∥ #        »

AiBi
∥∥

2 (1.2)
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Ai

Bi

li

btp

ai

bi

Fp

Op

Fb

Ob

Figure 1.12: CDPR geometric parametrization

Thus the ith cable vector li can be expressed as:

li = li
pui = p #        »

AiBi =
pbi −

pai =
pbi −

pRb
bai −

ptb (1.3)

where pui is the unit vector of p
#        »

AiBi that is expressed as:

pui =
p #        »

AiBi∥∥p #        »

AiBi
∥∥

2

=
pbi −

pai∥∥p #        »

AiBi
∥∥

2

=
pbi −

pRb
bai −

ptb∥∥p #        »

AiBi
∥∥

2

(1.4)

Note that pRb and ptb are the rotation matrix and translation vector from frame Fp to
frame Fb.

Inverse Geometric Model with Pulleys

In reality, cable exit points are not fixed. Indeed, they move along the pulley sheave.
To find out whether pulley geometry needs to be taken into account, the pulley radius
and the average cable length need to be compared [Pot12]. The larger the pulley diameter,
the more significant its influence on the moving-platform pose.

Pulleys of ACROBOT and CAROCA are shown in Figs. 1.13 and 1.14. In both cases,
the pulleys have two DoF: the rotation axis of the pulley sheave and a vertical rotation
axis. The latter allows the pulley to rotate as the moving-platform moves. Due to this, it is
assumed that the cable does not twist, because it remains in a plane with its anchor point
and pulley.

While ACROBOT’s pulleys are small and the rotation axes intersect, this is not the
case for CAROCA. Indeed, for the larger CDPR pulley diameter is considerably bigger.
Furthermore, there is a distance between the vertical and pulley rotation axes that needs
to be taken into account.

For pulleys of non-negligible size, the cable exit point has to be defined as the tangent
point between the cable and the pulley sheave. The geometric model of a pulley is shown
in Fig. 1.15. Here, the frame Fi of the ith pulley has its origin in point Ai and the axes are
xi, yi and zi. Axis zi is vertical, xi goes through Ai and the center of the pulley Pi, and
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yi = zi × xi. The ith cable and the corresponding pulley sheave lie in the plane spanned
by vectors xi and zi.

vertical rotation axis

sheave rotation axis

Figure 1.13: ACROBOT pulley sheave of diameter 9 mm

vertical
rotation

axis

75 mm

inter-axis
distance

pulley
rotation

axis

Figure 1.14: CAROCA pulley sheave of diameter 150 mm
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Figure 1.15: Pulley geometry
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The actual ith cable exit point, that is, the tangent point to its pulley is noted as A
′
i in

Fig. 1.15. The vector pointing from Pi to A
′
i is named ci while the vector pointing from Pi

to Bi is namedmi. The exit point location on the pulley depends on the moving-platform
pose. Li is the length of the ith cable between points A

′
i and Bi. lpi denotes the length of

the cable wrapped on the pulley between points Ai and A
′
i. The full cable length from Ai

to Bi becomes:

lfi = Li + lpi (1.5)

with

lpi = rp
(
π−αi

)
(1.6)

and the angle αi is computed as:

αi = −βi + γi (1.7)

where:

βi = −atan2(Li, rp) (1.8)

and

γi = arcsin

(
baiz −

bbiz
||mi||2

)
(1.9)

Note that here baiz and bbiz are the third component of vectors bai and bbi,
respectively.

Vector bci can now be defined as:

bci =


rpcos(ϕi)cos(αi)

rpsin(ϕi)cos(αi)

rpsin(αi)

 (1.10)

The angle ϕi denotes the rotation of pulley plane about the axis zi. It can be computed
as:

ϕi = atan2(lyi, lxi) (1.11)

where lxi and lyi are the components of li along the x and y axes of the base frame Fb.
The vector bni points from the origin of the base frame Fb to the pulley center-point Pi
and is computed as:

bni =
bai + rp

bRi xb = bai + rp
bxi (1.12)
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with

bRi = Rzi(ϕi) =


cos(ϕi) −sin(ϕi) 0

sin(ϕi) cos(ϕi) 0

0 0 1

 (1.13)

and rp is the radius of the pulley sheave.

Vectormi is computed as:

mi =
bbi −

bni (1.14)

The ith cable vector Li is computed as:

Li =mi − ci (1.15)

Note that the length Li can be computed simply by:

Li =
√
mim

>
i − r2

p (1.16)

and the unit vector can be written as:

pUi =
Li
Li

(1.17)

1.3.2 Kinematic Modeling

The cable velocity vector l̇ is obtained upon differentiation of (1.2) with respect to time:

l̇ = A pvp (1.18)

where pvp is the moving-platform twist expressed in its own frame Fp and A is the
Forward Jacobian matrix of the CDPR. For a CDPR with negligible pulleys it is defined
as [Pot18]:

A =


pu>1 (pb1 × pu1)

>

...
...

pu>m (pbm × pum)>

 (1.19)

where m = 8 for a spatial CDPR with eight cables, which makes the Jacobian A a
(8× 6)–matrix.
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Note that in case pulley geometry needs to be taken into account, then the Forward
Jacobian becomes:

AII =


pU>1 (pb1 × pU1)

>

...
...

pU>m (pbm × pUm)>

 (1.20)

The instantaneous inverse kinematic model depends on constant parameters bai
and pbi, as well as the homogeneous transformation pTb between the moving-platform
frame Fp and the base frame Fb. Thus, the knowledge of the current moving-platform
pose in Fb is necessary.

Finally, the motor velocities q̇m are directly proportional to cable velocities:

q̇m =
1
rw
l̇ (1.21)

where rw is the drum radius of the winches mounted on the shaft of each motor.

It is also possible to express the moving-platform twist in the base frame Fb. The
expression of the corresponding Jacobian is detailed in Appendix A.3.1.

The Kinematic Model of a Planar CDPR

For stability analysis, described in Section 3.2.1, a planar CDPR is used as a
simplification to be able to write analytical expressions. For this reason, in this section we
present the kinematic equations of a planar CDPR, the schematic of which is shown in
Fig. 1.16.

This planar CDPR is actuated by four cables to achieve three-DoF and perform a 2T1R
motion type. To keep as much similarity with the spatial CDPRs as possible, here too,
the camera is mounted on the moving-platform, thus the transformation pTc between the
frames Fp and Fc does not change with time, unlike bTp between Fb and Fp, and cTo

between Fc and Fo.

In general, the cable velocity equation (1.18) obtained for the spatial CDPR applies also
for the planar CDPR. However, it must be noted that the dimensions of all variables are
reduced: (i) rotation matrices iRj are (2× 2)–matrices; (ii) homogeneous transformation
matrices iTj are (3× 3)–matrices; (iii) velocity vectors ivj are of size (3× 1); (iv) and
coordinates pbi and bai, as well as translation vectors itj are of size (2× 1).

Thus, for the planar CDPR (1.18) becomes:

l̇pl = Apl
pvp (1.22)
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Figure 1.16: Schematics of a planar CDPR with 4 cables, a camera mounted on its moving-platform
and an object in the workspace

where in the planar case l̇pl is a (4× 1)–vector, and Apl is the Forward Jacobian, which
takes the following form [GA88]:

Apl =


pu>1

pb1
> E> pu1

...
...

pu>m pbm
> E> pum

 (1.23)

where E =

0 −1

1 0

.

1.3.3 Static Feasible Workspace

The static equilibrium of the moving-platform is defined as:

Wτ+wg = 06 (1.24)

whereW is the wrench matrix and it is related to the Jacobian asW = −A>; τ is the vector
of cable tensions andwg is the gravity wrench.

Based on the static equilibrium equation (1.24), it is possible to define the Static-Feasible
Workspace (SFW) as [Gag+16]:

S = {pp ∈ SE(3) : ∃τ ∈ T, Wτ+wg = 06} (1.25)
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Namely, the workspace S is the set of all moving-platform poses pp for which there exists a
vector of cable tensions τwithin the cable tension space T such that the CDPR can balance
the gravity wrenchwg, andWτ+wg = 06. The tension space T is anm-dimensional box
of feasible tensions [Rui+15]:

T = {τ ∈ Rm : τlb 6 τ 6 τub} (1.26)

where τlb and τub are the lower and upper tension bounds, respectively.

Static Feasible Workspace of ACROBOT

The Static Workspace of ACROBOT was traced using the ARACHNIS software for the
analysis and parametric design of CDPRs [Rui+15]. The shape of the workspace depends
on multiple input parameters, including tension bounds and moving-platform shape and
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Figure 1.17: SFW for ACROBOT: (a) small moving-platform and τlb = 0 N; (b) small
moving-platform and τlb = 1 N; (c) big moving-platform and τlb = 0 N; (d) big
moving-platform and τlb = 1 N
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weight. Four examples are shown in Fig. 1.17. Both of the moving-platform sizes were
tested with lower bound tension τlb being equal to 0 N or 1 N.

Static Feasible Workspace of CAROCA

The Static Workspace of CAROCA was also traced using the ARACHNIS
software [Rui+15]. Only one moving-platform is used in this thesis, however the shape of
the workspace depends on tension bounds. Two examples are shown in Fig. 1.18 with
either τlb = 0 N or τlb = 30 N.
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Figure 1.18: SFW for CAROCA: (a) τlb = 0 N; (b) τlb = 30 N

1.3.4 Tension Distribution Algorithm

Introduction

It is possible to determine if the current moving-platform pose is in equilibrium with
given cable tensions according to (1.24). Unfortunately, it is tricky to find the tensions that
would keep the moving-platform in the static equilibrium. This is because using simply
τ = −W†wg, can lead to negative tensions in one or more cables, which means that the
cable would need to push the moving-platform. While this would not be a problem for
a Gough-Stewart platform, the cables of a CDPR can only pull, but they cannot push.
Instead the effect of a negative tension will be the creation of a sag in the cable, which is
undesirable.

For this reason, a Tension Distribution Algorithm (TDA) is used usually instead. It
computes the cable tensions so that the overall effort on the moving-platform is divided
among all the cables.

Using TDA is particularly important for fully constrained CDPRs, because its cables
are pulling in all directions and can create very high tensions that will finally lead to
the CDPR breaking. On the other hand, for suspended CDPRs it is used less often. This
is because without cables pulling from the bottom, it is unlikely to attain the tensions
computed by a TDA, unless the CDPR has very elastic cables. However, a TDA could be
used to determine whether the cables are slack or not, by comparing the TDA output and
cable tension measurements.
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There exist many tension distribution algorithms. The most notable are the
Median method [Pot14], which has a very low computation cost, and the Barycenter
method [Mik+08] [Gou+15].

A CDPR with eight cables and six–DoF has a redundancy degree r = m−n = 8 − 6 = 2.
For such CDPRs a TDA based on the computation of a feasible tension polygon is
used [HK11]. Gouttefarde et al. proposed a real-time capable feasible polygon computation
for the Barycenter method in [Gou+15]. This method has a limited amount of time to find
a solution, but if one is found it will respect all the given tension constraints.

A particular solution for the static equilibrium defined in (1.24) can be written as:

τ =W†wg +Nη (1.27)

whereN is the (m× 2) null space matrix of the wrench matrixW and η =
[
η1 η2

]> is an
arbitrary vector. The termNηmoves the particular solution τp =W†wg into the feasible
range of cable tensions. The mentioned feasible range is defined by a lower bound τlb
and upper bound τub.

The Barycenter Method

There exists an intersection Λ between the 2D space of solution obtained from (1.27),
defined as Σ, with the hypercube of feasible cable tensionΩ =

{
τ | 0 6 τlb 6 τi 6 τub

}
:

Λ = Σ∩Ω (1.28)

Λ is a 2D convex polytope of feasible cable tension sets, also known as feasible polygon.
Such a polygon exists if and only if there is at least one solution that satisfies all cable
tension limits as well as the static equilibrium of the moving-platform (1.24). The feasible
polygon is defined in the η–space by the following linear inequalities:

τlb − τp 6 Nη 6 τub − τp (1.29)

The feasible polygon, such as in Fig. 1.19, shows all the possible solutions. It is then
necessary to choose one of the solutions. In the Barycenter method, as the name suggests,
the barycenter of the feasible polygon is chosen (red dot in the middle of the polygons
shown in Fig. 1.19). This method chooses the solution that is as far as possible from all of
the tension limits.

As an example, the feasible polygon is computed for ACROBOT with the large
moving-platform based on the SFW shown in Fig. 1.17c. The feasible polygon shown
in Fig. 1.19a corresponds to the moving-platform being at the center of the workspace,
so that its pose is bpp =

[
0 m 0 m 0.15 m 0◦ 0◦ 0◦

]>. At this pose all the cables
should be equally tensed. Indeed, the tension set found with the Barycenter method is
τ =

[
5.22 N 5.46 N 5.16 N 5.41 N 5.13 N 5.39 N 5.22 N 5.46 N

]
.
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Figure 1.19: Feasible polygon plots: (a) moving-platform in homing pose; (b) moving-platform
close to the boundary of the workspace

The feasible polygon shown in Fig. 1.19b corresponds to the moving-platform pose
being bpp =

[
0.35 m − 0.27 m 0.45 m 0◦ 0◦ 0◦

]>. As a result, the tension set
is now τ =

[
2.08 N 2.08 N 2.43 N 2.58 N 3.74 N 4.30 N 12.76 N 13.31 N

]
. The

change in moving-platform position causes cable C7 and C8 to be significantly more tensed
than others. Furthermore, the size of the feasible polygon has significantly decreased.

1.4 Visual Servoing

1.4.1 Introduction

Visual servoing, also known as vision-based robot control and abbreviated as VS, is a
technique that uses vision sensors (cameras) in the feedback loop of the control algorithm
to control the motion of a robot. The goal is to reduce the error e = s(f(t),α) − s∗, where
the content of the feature vector s(f(t),α) and its desired value s∗ depend on the control
technique [CH08]:

• Image-based VS (IBVS), where the control is done in the image plane, as can be seen
in Fig. 1.20a. This approach does not necessitate an estimation of a Cartesian pose,
instead s consists of image-based features f(t), such as corners or image moments;
and the constant calibration parameters α. The controller is not well suited for
large-scale motion, because it can get stuck in a local minimum.

• Pose-based VS (PBVS), where the control is done in the Euclidean space, as can
be seen in Fig. 1.20b. In this approach, the visual primitive s is a pose, which is
computed from some image features f(t), the constant calibration parameters and
the 3D model of the object in α. The estimated pose is compared to the desired pose,
and the difference allows to determine the necessary motion. Due to the composition
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of s, errors in the pose estimation leave a significant impact on the accuracy and
stability of the control.

• Hybrid approaches use some combination of 2D (image-based) and 3D (pose-based)
servoing. The most popular examples are [CH08]:

– 2½D Visual Servoing, that takes advantage of IBVS and PBVS benefits, while not
suffering from their drawbacks. Here the rotational and translational motions
are decoupled. The feature vector s contains both 2D and 3D features, due to
which the controller does not get stuck in local minima and the impact of errors
in pose estimation on accuracy is reduced.

– Partitioned approach, where the motions related to x and y axes is decoupled
from those to z axis. Unlike 2½D VS, all of the features are expressed directly
in the image. The visual servoing task is split in two: the first task is to keep
the features in the field of view; the second task is to bring the camera to the
desired pose.

– Switching approach, where both controllers (image-based and pose-based) are
used sequentially, and the switches are determined based on some Lyapunov
functions for these controllers.

current image

desired image

2D error in the

image space

processing

motion commands

to the robot–

(a) Image-based Visual Servoing

current image

3D information Pose estimation desired 3D pose

current 3D pose 3D Cartesian error

driving the robot
+ –Fc

cTo

Fo
Fo∗

(b) Pose-based Visual Servoing

Figure 1.20: Image-based and Pose-based visual servoing visualization

Furthermore, as can be seen in Figs. 1.21a and 1.21b, regarding the position of the
camera, there can be two configurations:

• Eye-in-hand, where the camera is mounted on (or close to) the end-effector of the
robot. The camera is moving together with the end-effector.
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• Eye-to-hand, where the camera is fixed in the environment so that the end-effector of
the robot is within the field of view. Generally, the camera stays in the same location
while the end-effector moves. However, it is also possible that the camera is actuated
separately from the robot.

(a) (b)

(c) (d)

Figure 1.21: Camera configurations: (a) eye-in-hand; (b) eye-to-hand. Corresponding perception
in the image of the same robot motion: (c) eye-in-hand; (d) eye-to-hand.

When deciding which configuration to use, usually one should consider the task at
hand. The main advantages and drawbacks are summed up in Table 1.1. Note that the
choice of camera configuration also affects the hand-eye calibration problem. Indeed
in eye-in-hand configuration the hand-eye calibration consists of recovering the camera
pose with respect to the end-effector. On the contrary, in eye-to-hand configuration the
hand-eye calibration is used to obtain the camera pose in the base frame. The same robot
motion is perceived differently depending on the chosen camera configuration, as can be
seen in Fig. 1.21.

The interest of using visual servoing is in its robustness with respect to modeling and
calibration errors, as well as robustness to slight changes in the environment. If there is a
visual feedback, then the object does not have to be placed in exactly the same position
to be picked up correctly by the robot. Indeed, robot motion is adjusted as a function of
object location as seen by the camera. Furthermore, the target can be tracked during its
motion.

Of course the drawback of such an approach is in the load on the processor: many
images need to be processed in a short period of time to ensure system stability and high
accuracy of the motion.
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Table 1.1: Camera configuration differences

Eye-in-hand Eye-to-hand

The field of view changes with robot
motion

The field of view is constant

The end-effector (or the moving-platform
in CDPRs) cannot occlude the object of
interest

The end-effector can occlude the object by
approaching it

Since the camera moves with the
end-effector, it is possible to locate the
object of interest by doing a control sweep
over the workspace, thus if the object is in
the workspace it will be found

The object can be out of the field of view,
usually multiple cameras are necessary to
cover the whole workspace

Can achieve high accuracy with respect to
the object, because the camera approaches
the object with the end-effector motion
and the closer it is the more precise the
computer vision algorithm can be.

The further the object from the camera,
the lower the accuracy. Using multiple
cameras can improve accuracy but still
will not be as good as for eye-in-hand

The end-effector is not observed. Thus,
for a CDPR the moving-platform pose
must be estimated. The estimation is often
open-loop, which can lead to estimation
error accumulation and to loss of stability.

The moving-platform is observed by the
camera, thus its pose is known in the
camera frame.

In pick&place tasks or similar special care
is necessary to avoid covering the field of
view when the object is picked to be able
to perceive the place location.

Picking the object does not cover the
camera, no problem in guiding the robot
to the place location.

1.4.2 The Principle of Visual Servoing

No matter the chosen visual servoing approach, the main principles remain the same
and they are introduced in this section. As mentioned before, the task of visual servoing is
to reduce the error e between the current feature vector s and its desired value s∗. To do
so, the most basic strategy is to select an exponential decoupled decrease of the error:

ė = −λe (1.30)

where λ is a positive gain that can be either constant or adaptive. In the latter case, λ can
be designed as [ViS19]:

λ(x) = (λ0 − λ∞)e−(λ̇0/(λ0−λ∞))x + λ∞ (1.31)

where:

• x = ||e||2 is the 2–norm of error e at the current iteration
• λ0 = λ(0) is the gain tuned for very small values of x
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• λ∞ = λ(∞) is the gain tuned for very high values of x
• λ̇0 is the slope of λ at x = 0

Upon derivation of e = s− s∗ with respect to time, we get:

ė = Ls
cvc (1.32)

where Ls is the interaction matrix, also known as the Feature Jacobian, and its composition
depends on the chosen visual features. Furthermore, cvc is the Cartesian velocity of the
camera, expressed in its own frame Fc.

It is then possible to express the camera velocity from (1.30) and (1.32):

cvc = −λ L̂†s e (1.33)

where L̂†s is the pseudo-inverse of the interaction matrix estimation.

The closed-loop equation is expressed by injecting (1.33) into (1.32):

ė = −λLs L̂
†
s e (1.34)

According to Lyapunov stability analysis, the system remains globally asymptotically
stable as long as its stability criterionΠ = Ls L̂

†
s is positive definite [Kha02]. Indeed, it is

clear from (1.34) that as long asΠ > 0, the error e converges to zero.

Note that the camera velocity cvc is proportional to the error e. When using a constant
gain λ the velocity is very large at the beginning and becomes small as the desired vector
s∗ is approached. This leads to a sudden jerk in the beginning of the trajectory and a very
low velocity at the end of trajectory. The velocity can be so low that some of the actuators
do not overcome the static friction in their transmission and the overall motion becomes
asynchronous [RCM14]. Because of this, the adaptive gain, defined in (1.31) should be
preferred. Furthermore, a continuous velocity should be implemented to deal with the
jerk in the beginning of the trajectory. The jerk occurs because the initial velocity is 0
and as soon as it changes the acceleration becomes infinitely large for a short instant. A
continuous gain is applied to velocity cvc as follows [MC07]:

cvc = −λL̂†se+ λL̂
†
se(0)

e(0)e(−σt) (1.35)

where the first part corresponds to (1.33), while the second part ensures the continuity
of velocities. Furthermore, t is the time spent since the beginning of the task; e(0) is the
initial value of e at time t = 0 s; L̂†se(0) is the pseudo-inverse of the interaction matrix,
computed for e = e(0); and σ is a constant gain that needs to be tuned. This allows us to
have a smooth transition from initial velocity of 0 to the computed velocity, necessary to
fulfill the task.
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The Principle of Visual Servoing of CDPRs

A generic control scheme for visual servoing of a CDPR is shown in Fig. 1.22.

−λL̂†s Âd Â
CDPR&
Camera

Computer Vision
Algorithm

s∗ e
cvc

pvp l̇

images

−
+

Figure 1.22: Control scheme for visual servoing of a CDPR

The camera is mounted on the moving-platform in the eye-in-hand configuration.
Comparing the current feature vector s, which is available from a computer vision
algorithm, to the desired feature vector s∗, which is previously defined, it is possible
to compute the desired cable velocities that will make s converge to s∗.

The relation between the camera velocity cvc and the moving-platform velocity pvp is
expressed as:

pvp = Ad
cvc (1.36)

whereAd is the Adjoint matrix and in this case it takes the following form [KD04] [Sic+10]:

Ad =

pRc [ptc]×
pRc

03
pRc

 (1.37)

where ptc and pRc are the translation vector and rotation matrix that form the
homogeneous transformation matrix pTc from Fp to Fc.

The model of the system shown in Fig. 1.22 is written from Eqs. (1.18), (1.32) and (1.36):

ė = LsA
−1
d A
† l̇ (1.38)

where A† is the Moore-Penrose pseudo-inverse of the Jacobian matrix A.

Upon injecting (1.36) and (1.33) into (1.18), the output of the control scheme, i.e. the
cable velocity vector l̇, takes the form:

l̇ = −λ Â Âd L̂
†
s e (1.39)

where Â and Âd are the estimations of A and Ad, respectively.

Finally, the closed-loop equation is expressed by injecting (1.39) into (1.38):

ė = −λLsA
−1
d A
† Â Âd L̂

†
s e (1.40)
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Note that the control can also be expressed in the base frame Fb. This is done in
Appendix A.3.

1.4.3 Image-Based Visual Servoing

As the name suggests, for IBVS the feature vector s consists of 2D image features. More
precisely, s usually consists of normalized point coordinates, however it is not the only
choice [CH08].

For a point K the Cartesian coordinates (X, Y,Z) expressed in the camera frame project
into the image plane as a point k = (x,y) in the following way:

x =
X

Z
=
u− u0

px

y =
Y

Z
=
v− v0

py

(1.41)

where (u, v) are the pixel coordinates of the point; (u0, v0) are the pixel coordinates of
image center; px = f/lx and py = f/ly with f being the focal length and lx and ly being
the pixel size along x and y axes, respectively.

Then the velocity of point k is related to the camera velocity as:

k̇ = Lk
cvc (1.42)

where the interaction matrix Lk is expressed as:

Lk =

−
1
Z

0
x

Z
xy −(1 + x2) y

0 −
1
Z

y

Z
(1 + y2) −xy −x

 (1.43)

As can be seen in (1.43), the matrix Lk contains the Z coordinate of the 3D point K.
Thus, it is necessary to approximate this distance during the visual servo.

To be able to control six degrees of freedom, at least three points are necessary. In
such a case the feature vector becomes s = (k1,k2,k3) and similarly the final interaction
matrix Ls is a stack of interaction matrices Lk:

Ls =


Lk1

Lk2

Lk3

 (1.44)

However, it is known that with just three points in some configurations Ls is singular.
Furthermore, there exist four different camera poses for which e = 0. That is, there are
four global minima and it is not possible to differentiate between them [CH08]. For this
reason usually the feature vector s consists of at least four points.
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It should be noted that having more than three points in the feature vector affects system
stability. Indeed, for a system to be globally asymptotically stable, we need Ls L̂

†
s > 0.

Using 3 points we get j = 6 features, which coincides with the amount of degrees of
freedom that the camera can have. Then for 4 points we get j = 8 features, meaning
that the multiplication Ls L̂

†
s is a 8× 8-matrix, which is at most of rank 6. Thus, Ls L̂

†
s

has a nontrivial null space and that results in having local minima in configurations that
correspond to error e belonging to the kernel of L̂†s. Therefore, only local asymptotic
stability can be obtained for IBVS [CH08].

1.4.4 Pose-Based Visual Servoing

In case of PBVS, the feature vector s consists of 3D features. It is assumed that once
the object is seen in the image, it is possible to retrieve its Cartesian pose and compute
the feature vector s. It is then compared to the desired feature vector s∗ and an error
e =

[
e>t e>ω

]> is computed. Here, et is the translational error and it may be selected as
et =

cto−
cto
∗ with cto being the translational vector between the object frame Fo and the

camera frame Fc. Furthermore, eω is the rotational error that is defined as eω = θu, where
θ is the angle and u is the axis of the rotational matrix c

∗
Rc =

c∗Ro∗
cRo
> = c∗Ro

oRc.

Upon derivation of e with respect to time, we get:

ė =

ėt =
[
−I3 [et]×

]
cvc

ėω =
d(θu)
dt =

[
03 Lω

]
cvc

(1.45)

where

Lω(u, θ) = I3 +
θ

2
[u]× +

(
1 −

sinc(θ)
sinc2(θ/2)

)
[u]2× (1.46)

and sinc(θ) = sin(θ)/θ

Thus, for PBVS the interaction matrix takes the following form:

Ls =

−I3 [et]×

03 Lω

 (1.47)

Note that the determinant of Lω(u, θ) is det(Lω) = 1/sinc2(θ/2). Thus Lω(u, θ), and
therefore Ls, is singular if and only if θ = 2qπ with q 6= 0, which is outside of the
workspace of the CDPRs under study. The camera velocity is expressed as in (1.33),
however for PBVS the inverse of the interaction matrix can be directly used, because here
it is a (6× 6)–matrix and of full rank [CH08].

Ideally, with the chosen feature vector s, the origin of the object will have a pure
straight-line trajectory in the image. Thus, if the origin is defined close to the center of
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gravity of the object, it should never leave the image. However, the Cartesian trajectory of
the camera in the world frame does not follow a straight line.

If the camera trajectory must be a straight line, it can be achieved by changing the
design of the feature vector s. In this case, it is defined as s =

[
c∗tc θu

]> [CH08], where
θu is the axis-angle expression of c

∗
Rc as mentioned before; and c

∗
tc is the translational

vector from the desired camera frame to the current one. Since s already expresses the
difference between current and desired camera frames, then s∗ = 0 and e = s− s∗ = s.
For this feature vector the interaction matrix becomes:

Ls =

c∗Rc 03

03 Lω

 (1.48)

It should be noted that this Ls is a block-diagonal matrix, thus there is a decoupling
between translational and rotational motions. Furthermore, the interaction matrix depends
only on the rotational difference between Fc and Fc∗ . Indeed, c

∗
Rc is a rotation matrix

and does not contain any translation information. Similarly, as can be seen in (1.46), Lω
only depends on the rotational error.

Even though ideally the camera trajectory in the world frame now is a pure straight
line, it is no more true for the origin of the object in the image [CH08]. Some particular
configurations could surely be found, in which the object leaves the camera field of view.

1.4.5 2½D Visual Servoing

2½D Visual Servoing (2½D VS) is a hybrid approach that has the advantages of both
IBVS and PBVS, while suffering from the disadvantages of neither.

The hybrid nature of this approach lies in the design of the feature vector s. This
time it is a combination of 2D and 3D features. More precisely, the current feature vector

is defined as s =
[
c∗t>c xo yo θuz

]>
[MCB99] [KKC04]. Here, c

∗
tc is the translation

vector between the desired camera frame Fc∗ and the current camera frame Fc; xo and yo
are the image coordinates of the object center o; θuz is the third component of θu vector,
where u is the axis and θ is the angle of the rotation matrix c

∗
Rc. The error vector e is

defined by comparing s to s∗, namely

e = s− s∗ (1.49)

It should be noted that all components of the desired feature vector s∗ except x∗o and
y∗o are equal to 0. Thus, if one would define the desired object center-point coordinate
vector o∗ = [0; 0]>, then s∗ = 0 and (1.49) would simplify to e = s.

In perfect conditions, this choice of visual features leads to a straight-line trajectory
of the camera (because c

∗
tc is part of s), as well as a straight-line trajectory of object

center-point o in the image (as (xo,yo) is also part of s). The translational degrees of
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freedom are used to realize the 3D straight line of the camera, while the rotational degrees
of freedom are devoted to the realization of the 2D straight line of point o.

The interaction matrix Ls corresponding to the chosen feature vector s takes the
following form for 2½D VS [MCB99] [KKC04] [CH08]:

Ls =

c∗Rc 03

1
ZLv Lvω

 (1.50)

with:

Lv =


−1 0 xo

0 −1 yo

0 0 0

 (1.51)

Lvω =


xoyo −(1 + x2

o) yo

(1 + y2
o) −xoyo −xo

l1 l2 l3

 (1.52)

l1, l2, l3 being the components of the third row of matrix Lω in (1.46), and Z being the
current Cartesian distance along z axis from the camera to the object.

Finally, camera velocity cvc is expressed as in (1.33).

1.4.6 Visual Servoing with a Moving Object

It is important to know whether the object is in motion. Having a moving object means
that the error ewill change with time, with or without robot motion. This can be expressed
as [CH08]:

ė = Ls
cvc +

δe

δt
(1.53)

where the term δe
δt corresponds to the time variation of e due to the object motion.

To compensate the object motion, the computation of the camera velocity cvc is changed
to:

cvc = −λ L̂†s e− L̂
†
s

δ̂e

δt
(1.54)

where the first part corresponds to the classic VS, as shown in (1.33), and in the second
part the δ̂eδt is the estimation of the error variation due to object motion.

The closed-loop equation can be expressed as:

ė = −λLs L̂
†
s e− Ls L̂

†
s

δ̂e

δt
+
δe

δt
(1.55)
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According to Lyapunov analysis of the closed-loop equation, the system will remain
stable as long as Ls L̂

†
s > 0 [Kha02]. However, even if the system is stable, the error e will

converge toO if and only if the estimation δ̂e
δt is sufficiently accurate so that

Ls L̂
†
s

δ̂e

δt
=
δe

δt
(1.56)

Otherwise tracking errors will be observed. This can be explained by a simple
example from [CH08], where a scalar differential equation ė = −λe + b, which is a
simplification of (1.55), is analyzed. The solution is e(t) = e(0)exp(−λt) + b/λ, which
converges towards b/λ. Increasing λ reduces the tracking error. However, if it is too high,
it can yield the system unstable. Therefore, it is necessary to keep b as small as possible.

If the object motion is unknown, which is true most of the time, then one approach to
estimate the object motion is given by:

δ̂e

δt
=
s(t) − s(t− δt)

δt
− Ls(t− δt)

cvc(t− δt) (1.57)

where the feature vector at time t is compared to its previous value at time (t− δt). A
Kalman filter [CG93] can then be used to improve the estimated values obtained. Details
on other estimation approaches are given in [CH08].

Choice of Visual Features for the Tracking Task

For some tasks it is not necessary to control all the degrees of freedom of the
moving-platform. For example, in [RCM14] the task was to retrieve objects from the
environment using a magnet and the orientation of the object during the picking and
the placing operations was not important. Similarly, when picking a spherical object, the
orientation of the end-effector about its z axis can remain unconstrained.

As part of our experimental validation, we define a tracking task, where the object is
executing a full circular path. As no manipulation of the object is needed, tracking of the
object orientation about the global z axis is not necessary and thus the last DoF of the
moving-platform can remain free. To do so, the feature vector s needs to be adapted to
ignore the Z component of object orientation.

As described in Section 1.4.4, typically for one choice of PBVS the feature vector has
the following composition: s = (cto, θu), where cto corresponds to the object position
expressed in camera frame, and θu is the axis-angle representation of the rotation matrix
c∗Rc between the desired and the current camera frames. To avoid tracking object
orientation about z axis, θuz is removed from the feature vector s. Thus, only five
features remain and only five degrees of freedom of the moving-platform are controlled.
It means that the moving-platform orientation about z axis is free.

Similarly, adapting 2½D VS feature vector to track an object moving in a circular
trajectory simply means removing the last feature from its feature vector s so that it takes
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the form s5 = (c
∗
tc, xo,yo). Here, c

∗
tc is the translation vector between the desired and

the current camera frames, and (xo,yo) are the coordinates of the object center-point in
the image.

In case of IBVS a completely different set of features can be taken. Instead of using four
points as described in Section 1.4.3, two centered concentric circles parallel to the image
plane can be observed [CRE93]. The pattern is shown in Fig. 1.23. Each circle is represented
by an ellipse in the image plane and the corresponding feature vector for an ellipse is
defined as s = (xc,yc,n20,n11,n02), where (xc,yc) are the normalized coordinates of the
ellipse center; n20,n11,n02 are normalized centered moments [Cha04]. In this case, the
interaction matrix related to the two centered concentric circles parallel to the image plane
is:

Lcc =



−
1
Zc

0 0 0 −1 − R2
1 0

0 −
1
Zc

0 1 + R2
1 0 0

0 0
2R2

1
Zc

0 0 0

0 0 0 0 0 0

0 0
2R2

1
Zc

0 0 0

−
1
Zc

0 0 0 −1 − R2
2 0

0 −
1
Zc

0 1 + R2
2 0 0

0 0
2R2

2
Zc

0 0 0

0 0 0 0 0 0

0 0
2R2

2
Zc

0 0 0



(1.58)

where R1 is the radius of the first circle; R2 is the radius of the second circle; and Zc is the
distance along z axis of the circle plane from Fc. Furthermore, as two circles are used, the
rank of matrix Lcc is 5.

R1 R2

Figure 1.23: Two concentric circle pattern
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Note that the last column of the interaction matrix gives the expected non-controlled
3D motion. Indeed, the rotation of the pattern or of the camera about the camera optical
axis is invisible. Thus a virtual revolute link between the camera and the chosen pattern is
created [CRE93].

1.4.7 Visual Servoing with Trajectory Planning and Tracking

It is well known that having perturbations in the system, which do not cause loss of
stability, has an undesirable effect on the trajectory. Trajectory planning and following can
be used to increase the robustness of the chosen control w.r.t. modeling errors [MC02] and
to preserve the ideal shape of the trajectory [BMG97].

Indeed, the larger the error e = s− s∗, the bigger the effect of modeling errors on
system behavior. When tracking a chosen trajectory, at each iteration the error becomes
e(t) = s(t) − s∗(t). Consequently, when t = 0 s we have s∗(0) = s(0). Since s∗(t) is now
time varying, the control scheme needs to be slightly changed. More precisely, instead
of (1.32) we now have [CH08] [BMG97]:

ė = ṡ− ṡ∗ = Ls
cvc − ṡ∗ (1.59)

And similarly, to compensate the time variation of the desired feature vector, the
camera velocity is now expressed as:

cvc = −λL̂†s e− L̂
†
s
̂̇s∗ (1.60)

It should be noted that unlike tracking of mobile objects, described in the previous
section, here the velocity ṡ∗ is known. Indeed, it is set during the trajectory planning
phase. Thus, ̂̇s∗ = ṡ∗ and (1.60) becomes:

cvc = −L̂†s
(
λe+ ṡ∗

)
(1.61)

The success of any trajectory tracking is based on the time available to complete the
task. The higher the trajectory time tfull, the more accurate the trajectory tracking. Indeed,
the larger tfull, the lower the robot velocity, and the smaller the path step between two
iterations. This leads to a smaller difference between s∗(t) and s∗(t+ δt), which in turn
means a smaller difference between s(t) and s∗(t+ δt), thus a better path following. On
the other hand, we do not want the task execution to be too slow, thus a compromise has
to be found.
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2.1 Introduction

When the only camera in the system is an onboard camera, it is not possible to observe
the moving-platform pose. To be able to compute the required cable velocities l̇with (1.39),
the knowledge of current moving-platform pose is necessary. More precisely, (1.39)
contains the kinematic Jacobian matrixA, which depends on the moving-platform pose as
can be seen from (1.19) and (1.4).

Thus, it is necessary to estimate the moving-platform pose. Furthermore, the quality of
this estimation can influence the behavior of the robot. Therefore, it is necessary to ensure
that a good estimation method is used.

In this chapter several moving-platform estimation methods are developed. Extensive
experimental validations on two CDPRs and on different tasks are performed to find the
most versatile and robust estimation method.

2.2 Moving-Platform Pose Estimation Methods

Three moving-platform pose estimation methods are presented in this section, namely:
(i) control-based; (ii) image-based; (iii) model-based. In all three cases it is assumed that
the initial moving-platform pose bpp0 at t = 0 s is known.

The proposed methods do not depend on the chosen visual servoing approach. Indeed,
in any case, the control scheme remains as shown in Fig. 1.22. It does not matter whether
the controller is extended with trajectory planning and tracking, the principle of the
moving-platform pose estimation methods remains the same. However, special care is
necessary for mobile object tracking, because only the control-based and model-based
methods can be used in that case.

2.2.1 Control-Based Estimation

Assuming that the velocity produced by the CDPR corresponds to the velocity
prescribed by the controller, the control output can be used for the moving-platform
pose estimation. More precisely at every iteration the homogeneous transformation matrix
bTp can be updated as follows:

bTp(t) =
bTp(t−∆t) e(

pvp,∆t) (2.1)

where e(
pvp,∆t) is the exponential map [Ead14] given a velocity pvp and a time interval ∆t.

Note that pvp is computed by the controller.

2.2.2 Image-Based Estimation

The features from the previous image are recorded and then compared to the current
features. The difference in features allows us to retrieve the camera displacement between
the frames and thus the new moving-platform pose can be computed.
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Assuming that 3D features are available, like in PBVS and 2½D VS, it is possible
to express the object pose in the camera frame Fc as a homogeneous transformation
matrix cTo. It can then be expressed in the base frame Fb as:

bTo = bTp
pTc

cTo (2.2)

The transformation matrices present in (2.2) and the corresponding frames are shown
in Fig. 2.1.

Fp

Fb
Fc

Fo

bTp

bTo

cTopTc

Figure 2.1: Schematic of a spatial CDPR with the relevant homogeneous transformation matrices

Taking into account that the camera is fixed on the moving-platform and thus pTc does
not change with time, at two different iterations (2.2) can be expressed as:bTo(t−∆t) = bTp(t−∆t)

pTc
cTo(t−∆t)

bTo(t) =
bTp(t)

pTc
cTo(t)

(2.3)

where ∆t is the time period between two iterations.

For a motionless object, bTo does not change with time, thus bTo(t−∆t) = bTo(t) and
we can express bTp(t) from (2.3):

bTp(t) =
bTp(t−∆t)

pTc
cTo(t−∆t)

cTo
−1(t) pTc

−1 (2.4)

Thus, in the following experiments (2.4) is used when estimating the new
moving-platform pose from two consecutive images.

Furthermore, as the object is assumed to be motionless, bTo(0) at t = 0 s can be
computed from (2.2) and then simply used as a known and constant value in:

bTp(t) =
bTo(0) cTo

−1(t) pTc
−1 (2.5)
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In the following experiments, (2.5) is used to estimate the new moving-platform pose
from the first and the current image. Note that here the initial moving-platform pose is
still required to be able to compute the homogeneous transformation bTo(0) with (2.2).

Unlike control integration, this approach does not require the CDPR to achieve the
control velocity. Indeed, the calculation is done without taking into account the velocity
and time spent to achieve the current pose. Instead two separate object pose measurements
are used.

Finally, this method can be adapted to indirectly measure the moving-platform pose
given that the environment contains a known object at a known location. Indeed, if bTok
is known, then bTp can be directly expressed as bTp = bTok

cTok
−1 pTc

−1. This method is
not used in the following experiments, because it requires adding supplementary objects
in the environment that ideally would need to be seen throughout the experiment.

Tracking a Moving Object

When tracking a moving object, the difference between two images is due to both the
camera motion and the object motion. Usually, the object motion is unknown. Because of
this, it is impossible to use this estimation method.

It should be noted that any target object displacement will lead to a wrong
moving-platform pose estimation. This also applies to an accidental shifting of the target.
Indeed, as the object motion is not known and, more importantly, not expected, any and
all target object pose changes with respect to the camera frame are assumed to be due to
the moving-platform displacement.

2.2.3 Model-Based Estimation

The Direct Geometric Model (DGM) expresses the moving-platform pose as a function
of cable lengths. For a spatial CDPR with 8 cables this is a very complex problem, which
often cannot be solved rapidly enough to be used in control. Special approaches such
as interval analysis have been used in [Ber15] [BMC16] [MADS15] to obtain all of the
solutions for the Direct Geometrico-Static Model (DGSM), however this usually comes at
a relatively high computational cost. Furthermore, there is the need to then determine,
which solution is the correct one.

Using cable tension measurements, it is possible to estimate the moving-platform pose
given a previous pose and cable lengths. Several approaches are presented in the following
sections, depending on the selected CDPR model complexity.

Simplest CDPR model

In the simplest CDPR model the cables are assumed to be massless, non-elastic
and always straight. In such a case, at any given time at most six cables can be in
tension [Mer17]. Thus, the DGM can be simplified to only take into account the six cables
that are most in tension. Such a model is similar to the Gough-Stewart platform, whose
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DGM can have up to 40 solutions. The computation of all of the solutions can be a lengthy
process, which is not necessary in this case. Indeed, we are only interested in the solution
that is in the vicinity of the last known pose. In this case, it is possible to use the least
squares optimization method to find the moving-platform pose [Pot18]. The estimation
procedure is shown in Algorithm 2.

Algorithm 2: Moving-platform pose estimation from cable lengths

1: Initialization
2: Define the CDPR model with the Cartesian coordinates of Ai and Bi expressed in

Fb and Fp, respectively.
3: Define the initial moving-platform pose and record it in bppo
4: End of Initialization
5: Pose Estimation
6: while True do
7: Get measurements: cable tensions τ and lengths l
8: Find the six largest cable tensions
9: Compose the residual equations for these six cables: fi = ||bbi −

bai||2 − li
10: Compose the equation to normalize the quaternions: f7 = q2

1 + q
2
2 + q

2
3 + q

2
4 − 1

11: Find bpp with the least squares method, giving bppo as the initial guess and f1
to f7 as the system to be minimized

12: Update bppo = bpp for next iteration
13: end while
14: End of Pose Estimation

Note that here the expression of the moving-platform pose is important. For example,
by expressing it as the homogeneous transformation matrix, there are 12 unknowns for
6 equations. Instead, the pose can be expressed as bpp =

[
x y z q1 q2 q3 q4

]
,

where
[
x y z

]
is the translational part and

[
q1 q2 q3 q4

]
is the rotational part

expressed as quaternions. Note that, when using quaternions, their normalizing equation
q2

1 + q
2
2 + q

2
3 + q

2
4 = 1 must also be taken into account. Thus, there are 7 unknowns and 7

equations, which makes this system solvable.

The least squares algorithm to compute the moving-platform pose is fast (for example
the implementation in Python using scipy.least_squares takes about 0.009 s). Furthermore,
using only the lengths of six cables that are most in tension makes the algorithm robust
to cable slackness, because the slack cables are ignored. However, it is a model-based
estimation method, meaning that any error in the model or in the initial moving-platform
pose will lead to moving-platform pose estimation errors.

Elastic cables

Cable elasticity affects the final moving-platform pose as well as the tensions that are
obtained in the cables. Indeed, only with elastic cables it is possible to have all eight of
them in tension [Mer17].
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When considering elasticity, the ith cable tension at time t can be expressed as:

τi(t) = K(t) δli + τi(0) (2.6)

where:

• δli is the elongation of the ith cable;
• τi(0) is the ith cable tension with the moving-platform positioned on the ground;
• K(t) is the cable stiffness, which is expressed as K(t) = ES/li(t);
• E is the Young modulus of the ith cable;
• S is the cross-section of the ith cable;
• li(t) is the length of the ith cable at time t.

If tension measurements are available, then it will be possible to compute the cable
elongation from (2.6):

δli =

(
τi(t) − τi(0)

)
li(t)

ES
(2.7)

Thus the ith cable length li obtained from the motor encoders can be corrected
to l̂i = li + δli. The estimation of the moving-platform pose is done as described in
Algorithm 2, but in the equation on line 9 the cable length li is substituted by l̂i.

Pulley kinematics

Pulley kinematics have been introduced in Section 1.3.1. The only change to
Algorithm 2 is on line 9. Indeed, we no longer need the straight line length from Ai

to Bi, instead it is the cable length from point A
′
i on the pulley to Bi. Thus on line 9 the

equation (1.5) is used instead.

Elastic cables and pulley kinematics

Finally, we can also combine pulley kinematics and cable elasticity in the
moving-platform pose estimation. The full cable length from Ai to Bi that will be used in
Algorithm 2 on line 9 becomes:

l̂fi = L̂i + lpi = Li + δLi + lpi (2.8)

where Li, lpi and δLi are computed by (1.16), (1.6), and (2.7) respectively.

2.3 Case Study I: Evaluation of Moving-Platform Pose Estimation Methods

To evaluate the different estimation methods, several experiments were performed
on both CDPR prototypes (see Appendix A.1). The estimation methods are defined as
follows:

• Est. 1 is the estimation using control integration;
• Est. 2 is the estimation using two consecutive images;
• Est. 3 is the estimation using the first and current image;
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• Est. 4 is the estimation from cable lengths;
• Est. 5 is the estimation from cable lengths taking cable elasticity into account;
• Est. 6 is the estimation from cable lengths taking pulley geometry into account;
• Est. 7 is the estimation from cable lengths taking cable elasticity and pulley geometry

into account;
• Meas. 1 (for ACROBOT only) is the method where measurements from HTC Vive

are used inside the control instead of estimating the moving-platform pose.

Note that measurement by the HTC Vive (presented in Appendix A.1) was only
possible on ACROBOT due to the size of CAROCA. Creaform C-Track measurement
system, presented in Appendix A.2, was used to get the ground truth measurement of
the moving-platform pose for all experiments for off-line comparison. It was also used to
calibrate the HTC Vive tracker with the moving-platform at the center of the workspace.

First, an evaluation with an open-loop controller is done in Section 2.3.1. Here, the
position controller described in Appendix A.4 is used.

Then, the PBVS control presented in Section 1.4.4 is used in Sections 2.3.2 to 2.3.5.
Indeed, we are interested in finding the estimation method best suited for visual servoing,
thus dedicated experiments were necessary. More precisely, for the PBVS controller
the feature vector s is defined as s = (st, sω), where st = cto is the translational
distance between the camera frame and the object frame; and sω = θu is the axis-angle
representation of the rotational matrix c

∗
Rc between the desired and the current camera

frames. As a simplification of the computer vision part, fiducial markers named
AprilTags [Ols11] are used as objects. They are recognized and localized by algorithms
available in the ViSP library [MSC05].

Adaptive gain λ, defined in (1.31), is used. For ACROBOT the coefficients have been
tuned at the following values: λ0 = 2.0, λ∞ = 0.3 and λ̇ = 30. On the other hand, for
CAROCA the tuned values are: λ0 = 1.5, λ∞ = 0.1 and λ̇ = 30. For both CDPRs the IDS
camera is mounted on the moving-platform to observe the ground and the AprilTags
located on it.

2.3.1 Open-loop velocity control on ACROBOT

A simple open-loop controller described in Appendix A.4 is implemented to generate
a straight-line trajectory between the following points:

• bpp0 = [0.112 m, −0.032 m, 0.301 m, −12◦, −10◦, 0◦]
• bpp1 = [0.284 m, −0.197 m, 0.08 m, 0◦, 0◦, 0◦]
• bpp2 = [0.284 m, −0.197 m, 0.25 m, 0◦, 0◦, 0◦]

Initially the moving-platform is at bpp0 and a trajectory is generated to reach bpp1;
then height along z axis is increased to reach bpp2; and finally the moving-platform
returns to bpp0.
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For the image-based estimation method we use an AprilTag as an object. It is placed so
that it is visible throughout the experiment.

The experimental results are shown in Figs. 2.2 and 2.32. The task was executed once
using the controller described above. The planned moving-platform trajectory is shown
in orange in Fig. 2.2a. The moving-platform trajectory was measured by C-Track and it
is shown in cyan in Fig. 2.2a. Note that while the initial pose bpp0 is indeed where the
experiment starts, however the poses bpp1 and bpp2 are not reached accurately. At the
end of the first part of the trajectory the moving-platform passes bpp1 and comes to a stop
right afterwards. Then only the z component is changed, thus bpp2 is also not achieved
accurately. Finally, the moving-platform accurately returns to the initial pose bpp0. Indeed,
as can be seen in Figs. 2.3a and 2.3d the initial and final images received from the camera
are identical. Thus, it can be concluded that the CDPR executes the control velocity l̇
precisely. The positioning error in bpp1 and bpp2 can also be seen in Fig. 2.3. Ideally with
the moving-platform in bpp1 the AprilTag should be centered in the image and with no
orientation about z axis. However, as can be seen in Fig. 2.3b the AprilTag is not centered
and it is rotated. Similarly, in Fig. 2.3c the AprilTag is also rotated. These positioning errors
come from the fact that the analytical form of the Jacobian matrix A used in (A.21) is based
on a too simplified CDPR model not corresponding to the real robot, due to calibration
errors and approximations in the model, e.g., errors in the cable anchor and exit point
coordinates, uncertainties in cable elongation, etc.
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Figure 2.2: Experimental results: (a) moving-platform trajectory as estimated by the different
estimation methods and as measured by C-Track; (b) deviation of the moving-platform
pose estimation from the measurement by C-Track

After executing the task, the recorded values were supplied to all moving-platform
pose estimation methods. The resulting trajectories are shown in Fig. 2.2 as Est. 1 to Est. 6.

2Please also refer to the accompanying video at https://youtu.be/LAqBTIMj4NI

https://youtu.be/LAqBTIMj4NI
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(a) (b)

(c) (d)

Figure 2.3: Images from the onboard camera: (a) at t = 0 s at bpp0; (b) at t = 10 s when bpp1
is assumed to be reached; (c) at t = 15 s when bpp2 is assumed to be reached; (d) at
t = 25 s when bpp0 is assumed to be reached.

Surprisingly, the estimated trajectory with control-based and model-based estimators
corresponds to the planned one (but not to the achieved one). For instance, at the end of the
first part of the trajectory, the estimated moving-platform pose corresponds to bpp1, even
though the moving-platform is actually shifted by approximately 1 cm. Similarly, at the
end of the second part of the trajectory the estimated moving-platform pose corresponds
to bpp2. This means that all sampling effects are fully negligible in implementing (A.21),
leading the robot to achieve the computed velocity bvp(t) and reaching the desired cable
length values by successive integration of l̇. Finally, as the model-based methods rely on
a model, it is not surprising its results deviate from the ground-truth. Similarly, as the
control-based method is not based on any measurement, it is not surprising its results also
deviate from the ground-truth.

Fig. 2.2b allows us to evaluate the accuracy of estimation with each method. Here, the
deviation of the estimation from the actual moving-platform pose measurement is shown
as the translational and the rotational distance. Note that the rotational distance is the
angle θ from the axis-angle expression of the rotation matrix between the measured and
the estimated moving-platform poses. The vertical dotted lines at t = 10 s and t = 15 s
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correspond to the end of the first and second parts of the trajectory, when bpp1 and bpp2

are supposed to be reached.

Let us begin with Est. 2, because it is the only one producing a significantly different
result. Est. 2 corresponds to the image-based moving-platform pose estimation method.
It is clear that the AprilTag used in this experiment was too small to produce a good
measurement. Indeed, note the good accuracy of the measurement between t = 8 s
and t = 12 s, when the moving-platform is the closest to the AprilTag. On the other
hand, as the AprilTag becomes significantly smaller in the image, the estimation of the
moving-platform pose becomes highly noisy. Thus, with the image-based method the
accuracy of the moving-platform pose estimation depends on the distance between the
camera and the object and thus its size in the image.

The control-based estimation Est. 1 is shown in blue. The translational deviation reaches
1.4 cm at t = 12.4 s and the task is finished with a deviation of only 1.3 mm. The estimation
of the moving-platform orientation does not surpass 1.6◦ error and the task is finished
with a 0.55◦ error. The result with the model-based methods is almost the same. More
precisely, the largest translational deviation is 1.21 cm at t = 11.6 s and at the end of the
task reduces to just 1 mm, because the moving-platform returns to its initial pose bpp0.
The largest rotational distance is 1.6◦ at t = 14.3 s and it reduces to 0.55◦ by the end of
the task. Note that the results with all four model-based approaches are almost identical.
Indeed, for a small CDPR with Dyneema cables that are almost inelastic and very small
pulleys of 9 mm in diameter, the output of the four model-based estimation methods is
almost the same.

Finally, it is important to note that the current experimental setup on ACROBOT is
almost perfect, that is, its low-level controller is able to achieve the computed velocities.
Thus, it would be of interest to extend this study by implementing the same controllers
and estimation methods on larger CDPRs, such as CAROCA, with a high payload that are
not able to ensure this nice property. Unfortunately, CAROCA was not available during
this study.

2.3.2 Approaching a Static Object on ACROBOT by PBVS

The initial and desired values are the following:

• initial state:
� bpp0 =

[
0.112 m; −0.032 m; 0.301 m; −12◦; −10◦; 0◦

]
� cpo0 =

[
− 0.123 m; −0.101 m; 0.338 m; 168◦; −8◦; −179◦

]
• desired state:

� bpp∗ =
[
0.284 m; −0.197 m; 0.08 m; 0◦; 0◦; 0◦

]
� cp∗o =

[
0 m; 0 m; 0.09 m; 180◦; 0◦; 180◦

]
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where if the moving-platform is in pose bpp0 with respect to the base frame Fb, the object
will be in pose cpo0 with respect to the camera frame Fc. Similarly, by positioning the
moving-platform in bpp∗ , the object arrives at cp∗o.

Note that bpp0 was measured by Creaform C-Track and then used as the first
known pose, while all the following moving-platform poses were estimated by one
of the estimation methods. Indeed, a separate experiment was done with each of the
moving-platform pose estimation methods, unlike Section 2.3.1.

The same trajectory was repeated five times with each of the estimation methods.
The first run with each estimation method is shown in Fig. 2.4, while the average and
maximum deviations over all runs are shown in Fig. 2.5. As can be seen in Fig. 2.4a the
AprilTag center-point trajectory is almost ideal in all cases. Indeed, the pixel deviation
from the ideal straight-line trajectory does not surpass 15 pixels (see Fig. 2.4b). Moreover,
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Figure 2.4: Estimation method comparison on ACROBOT with a static object: (a) AprilTag
center-point trajectory in the image; (b) deviation from the ideal straight-line trajectory
in the image; (c) moving-platform trajectory in the base frame; (d) deviation of the
moving-platform pose estimation with respect to C-Track measurement



80 Chapter 2. Moving-Platform Pose Estimation
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Figure 2.5: Quality of the estimation methods on ACROBOT: (a) deviation of the AprilTag
center-point in the image; (b) moving-platform pose estimation deviation with respect
to C-Track measurement

for the control-based and image-based estimation approaches, namely Est. 1, 2 and 3, the
deviation does not surpass 10 pixels. Similarly, the moving-platform trajectories, which
were measured by Creaform C-Track and are shown in Fig. 2.4c, are also almost identical
no matter the estimation method.

Moving-platform pose estimation deviation from the C-Track measurement is shown
in Fig. 2.4d. Here, the translational distance and the angle θ of the axis-angle distance are
shown. The distance is computed by taking the C-Track measurement as ground truth and
comparing it to each estimation output at every time instant. The estimation by control
integration, shown in blue, appears to have the lowest translational deviation. It is closely
followed by model-based estimation approaches. Note that there is almost no difference
between Est. 4 and Est. 5, as well as between Est. 6 and Est. 7. Thus, it appears that taking
into account cable elasticity does not give any advantage, which is not surprising given
that the chosen Dyneema cables are quasi inelastic. However, interestingly, the pair of
estimation methods with pulley kinematics, namely Est. 6 and Est. 7, appear to have a
slightly larger final estimation deviation. Possibly, the modeling of ACROBOT pulleys
needs to be improved to take into account a small rotation that is possible around its
attachment point shown in Fig. 1.13. Finally, for the two image-based approaches Est. 2
and Est. 3 the estimation deviation is the largest one and also it appears to be the noisiest
one. It should be noted that it is not surprising to have a worse estimation at the beginning
of the trajectory, because initially the AprilTag is very small in the image, as can be seen
in Fig. 2.4a. Indeed, as the robot approaches the desired state, the AprilTag becomes
larger and the estimation of the moving-platform pose becomes less noisy. However, the
estimation deviation at the end of the trajectory remains the largest, compared to other
estimation methods.

Regarding the moving-platform orientation estimation, the control-based and
model-based methods produce basically the same deviation of less than 2◦. On the
other hand, the image-based methods are noisy with spikes up to almost 6◦.
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Regarding the experiment repeatability, Est. 1 appears to give the best results. Indeed,
while Est. 2 and Est. 3 produce smaller pixel deviation spikes in Fig. 2.5a, the repeatability
is worse, especially for Est. 2. All model-based methods and HTC Vive measurement
produce worse results. Est. 2 produces the worst repeatability for moving-platform pose
estimation, as shown in Fig. 2.5b, especially in rotation. It is closely followed by Est. 3 and
Meas. 1. Model-based methods all produce similar results, however it appears that the
simplest model used in Est. 4 is the best suited for ACROBOT. Comparing Est. 1 to Est. 4,
the former produces a better result for translation estimation, while the latter results in a
slightly better orientation estimation.

Note that the use of HTC Vive in Meas. 1 does not appear to improve the behavior of the
CDPR. On the contrary, it produces the worst results regarding the AprilTag center-point
trajectory. The measurement of the moving-platform orientation appears to be noisy,
many spikes can be seen in Fig. 2.4d. Furthermore, there is an error of 1.2 cm at the
beginning of the task, which reduces to 0.5 cm at the end. This is because HTC Vive
was calibrated at the center of the workspace without rotation about any axis, while the
moving-platform trajectory during these experiments does not cross this point. Thus,
even though ACROBOT is a small robot, HTC Vive does not provide a high enough
measurement accuracy. If it is possible to ensure that the initial pose is very well known,
for example by always starting from a physical support that is measured by Creaform
C-Track, then estimation of the moving-platform pose is more precise than its measurement
by HTC Vive.

When compared to the open-loop control in Section 2.3.1, the results are very similar.
Indeed, the image-based method produces a noisy estimation, while the model-based
methods are very precise. The only estimation method with some difference in accuracy
is the control-based method Est. 1. Indeed, when used with a closed-loop controller
it provides the best moving-platform pose estimation accuracy, not surpassing 0.9 cm
and 2◦. As we now use a closed-loop controller, the controller adapts its output to all
perturbations, including the misestimation of the moving-platform pose. For this reason,
the control-based moving-platform pose estimation gives better results. Thus, the choice
of the moving-platform pose estimation method depends on the choice of the controller.

2.3.3 Approaching a Static Object on ACROBOT by PBVS with Perturbations

This set of experiments has the same initial and desired states, however the initial
moving-platform pose is perturbed. That is, at t = 0 s the assumed moving-platform
pose is defined as bp̂p0 = [0.056 m, −0.077 m, 0.308 m, −6◦, −12◦, −5◦], thus the error is
0.072 m and 7◦.

The AprilTag trajectory is no longer a straight line, as can be seen in Fig. 2.6a. Note that
Est. 2 and Est. 3 appear to be more perturbed than the rest. This can also be seen in the bar
graph in Fig. 2.7a. Estimation with the simplest CDPR model has the lowest repeatability
of the pixel deviation from the straight line. Despite the issues with repeatability, the
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mean and max pixel deviation is lower than for Est. 2 and Est. 3. The rest of model-based
estimation methods along with control-based estimation method produce the same mean
and maximum pixel deviation. Note that here, as in Fig. 2.5a Est. 5 and Est. 7 have the
highest repeatability of both the mean and the maximum pixel deviation.
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Figure 2.6: Estimation methods on ACROBOT with a static object and perturbations: (a) AprilTag
center-point trajectory in the image; (b) deviation from the ideal straight-line trajectory
in the image; (c) moving-platform trajectory in the base frame; (d) deviation of the
moving-platform pose estimation with respect to C-Track measurement

Since the initial moving-platform pose already has an error, it is not surprising that the
estimation deviation along the trajectory remains quite large, as can be seen in Fig. 2.7b.
However, note that for Est. 1 and Est. 5 through Est. 7 the mean and maximum deviation
is very close and the repeatability is almost ideal, the margins being almost invisible on
the plot. On the other hand, for Est. 4 the repeatability is about 1 cm and 2◦. Interestingly,
Est. 2 and Est. 3 show mean values that are even below the initial perturbation. It appears
that the perturbation affected the controller with these two estimation methods differently,
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Figure 2.7: Quality of the estimation methods on ACROBOT with perturbation: (a) deviation of
the AprilTag center-point in the image; (b) moving-platform pose estimation deviation
with respect to C-Track measurement
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the accumulated estimation error actually having the opposite sign compared to the initial
perturbation. It is thus surprising to see that these estimation methods produced the worst
AprilTag center-point trajectories.

2.3.4 Approaching a Static Object on CAROCA by PBVS

The initial and desired values are the following:

• initial state:
� bpp0 =

[
0.322 m; 0.17 m; 2.018 m; −20◦; 7◦; −3◦

]
� cpo0 =

[
− 0.899 m; 0.775 m; 2.267 m; −157◦; −7◦; −179◦

]
• desired state:

� bpp∗ =
[
− 0.827 m; −1.392 m; 0.89 m; 0◦; 0◦; 0◦

]
� cp∗o =

[
0 m; 0 m; 0.60 m; 180◦; 0◦; 180◦

]
As for ACROBOT, the experiments are repeated five times, the first run is shown in

Fig. 2.8, while the bar graphs summarizing the results are shown in Fig. 2.9. As the CDPR
is significantly larger, so is the trajectory from the initial to the desired state. Furthermore,
the cables are steel and their pulleys are large.

The AprilTag center-point trajectory, shown in Fig. 2.8a, is more perturbed than the
one shown in Fig. 2.4a. Indeed, even the best result shows a deviation of more than 15
pixels, as can be seen in Fig. 2.8b and 2.9a. Furthermore, here the difference between
different estimation methods is more distinct. As in the perturbed case on ACROBOT,
here Est. 2 and Est. 3 produce the worst results with almost 35 pixel deviation from the
ideal straight-line trajectory. Est. 1 produces a significantly better result, however it is still
slightly worse than the model-based approaches. For CAROCA similarly as for ACROBOT,
it appears that taking cable elasticity into account does not improve the AprilTag trajectory.
On the other hand, taking pulley kinematics into account is beneficial.

Moving-platform trajectory measured by Creaform C-Track is shown in Fig. 2.8c. Note
that when using Est. 2 and Est. 3 the produced moving-platform trajectory is significantly
different than with other estimation methods. This can be explained by the rapid deviation
of the moving-platform pose estimation that can be seen in Fig. 2.8d. Indeed, the
translational error rapidly overpasses 0.1 m. The rotational error appears to be small,
just over 1◦, however at approximately t = 10 s this estimation becomes very noisy, which
could be affecting the robot behavior. Regarding the other estimation methods, two
groups can be distinguished. First, Est. 1 with Est. 4 and Est. 5, where the translational
error reaches about 0.07 m. And second, Est. 6 and Est. 7, where the translational error
does not surpass 0.04 m. Clearly, when the initial moving-platform pose is well known,
using an estimation method that takes pulley kinematics into account leads to the best
CDPR behavior.
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Figure 2.8: Estimation method comparison on CAROCA with a static object: (a) AprilTag
center-point trajectory in the image; (b) deviation from the ideal straight-line trajectory
in the image; (c) moving-platform trajectory in the base frame; (d) deviation of the
moving-platform pose estimation with respect to C-Track measurement
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Figure 2.9: Quality of the estimation methods on CAROCA: (a) deviation of the AprilTag
center-point in the image; (b) moving-platform pose estimation deviation with respect
to C-Track measurement
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2.3.5 Approaching a Static Object on CAROCA by PBVS with Perturbations

The initial and desired state are defined as follows:

• initial state:
� bpp0 =

[
0.713 m; 0.102 m; 1.899 m; −18◦; 10◦; −5◦

]
� cpo0 =

[
− 1.042 m; 0.709 m; 2.277 m; −159◦; −10◦; −179◦

]
• desired state:

� bpp∗ =
[
− 0.689 m; −1.374 m; 0.757 m; 0◦; 0◦; 0◦

]
� cp∗o =

[
0 m; 0 m; 0.6 m; 180◦; 0◦; 180◦

]
The added perturbation is 0.4 m and 8◦, making the initial moving-platform pose

estimation bp̂p0 =
[
0.561 m; −0.11 m; 2.202 m; −25◦; 12◦; 3◦

]
.
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Figure 2.10: Estimation methods on CAROCA with a static object and perturbations: (a) AprilTag
center-point trajectory in the image; (b) deviation from the ideal straight-line trajectory
in the image; (c) deviation of the moving-platform pose estimation with respect to
C-Track measurement



86 Chapter 2. Moving-Platform Pose Estimation

Est. 1 Est. 2 Est. 3 Est. 4 Est. 5 Est. 6 Est. 7
0

20

40

60

80

100

120

Mean pixel deviation
Max pixel deviation repeatability

(a)

Est. 1 Est. 2 Est. 3 Est. 4 Est. 5 Est. 6 Est. 7
0

20

40

60

80

Mean transl. dev., cm
Max transl. dev., cm

Mean rot. dev., ◦

Max rot. dev., ◦
repeatability

(b)

Figure 2.11: Quality of the estimation methods on CAROCA with perturbations: (a) deviation of
the AprilTag center-point in the image; (b) moving-platform pose estimation deviation
with respect to C-Track measurement

Having such a large perturbation leads to a large deviation of the AprilTag trajectory
from the straight line, as can be seen in Figs. 2.10a and 2.10b. Moreover, when the
moving-platform pose is estimated from images, namely in Est. 2 and Est. 3, the task
fails. It appears that the same kind of perturbation affects these two estimation methods
differently when compared to the other methods. Indeed, here the translational distance
only increases, while for Est. 1, Est. 4 and Est. 5 it is almost halved by the end of the task
(see Fig. 2.10c). This behavior is consistent among all of the repeated experiments, as can
be seen in the bar graphs shown in Fig. 2.11.
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Figure 2.12: Plots for Est. 7: (a) translational estimation comparison to C-Track measurement; (b)
cable velocities

When the system is perturbed, the model-based estimation methods are no longer
superior. Indeed, in this case estimation by control integration gives the best results.
The results for the model-based estimation methods are very similar, however slightly
worse. This can be explained by analyzing Fig. 2.10c. Here for all model-based estimation
methods the curves have sudden changes. It can be clearly seen for the rotational difference
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between estimation and C-Track measurement, but is also true for the translational
distance. As an example, the translational plots of Est. 7 is shown in Fig. 2.12a. Note that
the initial difference at t = 0 s is due to the perturbation that was added to the initial
moving-platform pose. In the first three seconds the estimation, shown in green, does not
change while C-Track measurement changes. During this time the estimation algorithm
was not capable of finding a solution, given the previous moving-platform pose and the
new cable lengths. This is not surprising as the initial cable lengths are computed from the
initial moving-platform pose, which in this case is erroneous. The new cable lengths are
computed as a sum of previous cable lengths and cable length change, where the latter is
computed from the motor position change. Once a solution is found, it is a very different
pose compared to the previous successful computation. Due to this cable velocities change
abruptly at t = 3 s and then again at t = 4 s for the same reason. In this case, luckily,
once the algorithm was capable of computing a pose, it was indeed in the vicinity of the
actual moving-platform pose. However, it is also possible that a pose can be found that
significantly increases the distance between the actual and the estimated moving-platform
pose and makes the system unstable. Or on the contrary, the algorithm can be unable
to compute a new pose for a longer time period, making the distance between the last
computed pose and the actual pose large enough to make the system unstable. Thus,
model-based estimation methods should only be used when the initial moving-platform
pose is known with sufficient accuracy.

2.3.6 Accuracy and Repeatability of the Final Moving-Platform Pose

In this section the goal accuracy and repeatability of the previous experiments
are analyzed. Each CDPR repeated the same trajectory altogether 35 times without
perturbation and 35 times with perturbation on the initial moving-platform pose. Note that
here we do not take into account the experiments on ACROBOT with the moving-platform
pose measured by HTC Vive. We also do not take into account the experiments with
image-based moving-platform pose estimation in the presence of perturbations for
CAROCA, because there the task was not finished successfully and the desired pose
was never reached. Thus for CAROCA with perturbations the repeatability is computed
out of 25 experiments.

An example of accuracy and repeatability is shown in Fig. 2.13. Here, for a position the
repeatability is the radius rr of the sphere with the origin at ta encircling all the position
measurements t1 to t6. Note that ta is the mean of all the position measurements t1 to t6.
Accuracy is the distance da between the mean position ta and the desired position td.

Thus, we take four sets of 35 moving-platform poses measured by C-Track at the end
of each experiment and we find the average pose. Then we find the maximum distance
in translation and in rotation from this average pose. The results are shown in Table 2.1.
Note that we could not compute the accuracy for CAROCA, because this computation
depends on the AprilTag pose measurement with C-Track, which was not possible.
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Figure 2.13: Translational parameter X and its perturbation radius rx

Table 2.1: Goal repeatability

CDPR Perturbation
Translation Rotation

Repeatability Accuracy Repeatability Accuracy

ACROBOT no 0.0010 m 0.0017 m 0.42◦ 0.68◦

ACROBOT yes 0.0009 m 0.0019 m 0.49◦ 0.59◦

CAROCA no 0.0015 m - m 0.17◦ -◦

CAROCA yes 0.0016 m - m 0.31◦ -◦

In fact, the recorded poses are incredibly close. Even though CAROCA is of
considerable size, the repeatability is lower than 2 mm and 0.4◦. ACROBOT is of
significantly smaller size, thus not surprisingly the translational repeatability is even
better here. All of the measurements on ACROBOT are within a sphere with radius of
just 1 mm and most of the measurements are within 0.26 mm of the average position. For
ACROBOT the rotational repeatability is worse than for CAROCA, while still remaining
below 0.5◦. A very good accuracy has been shown for ACROBOT: it is below 2 mm
and 0.7◦.

Finally, as two different controllers were used on ACROBOT to arrive at bpp1

from bpp0, it is possible to evaluate the accuracy achieved by these controllers. The
bar-graph is shown in Fig. 2.14. To evaluate repeatability the experiment with the
open-loop velocity controller was repeated 10 times. Similarly, the experiment with
the PBVS controller was repeated 30 times. More precisely, five repetitions were done
using each of the six moving-platform pose estimation methods in the PBVS control loop.
When using PBVS the translational accuracy is five times better, while the rotational
accuracy is four times better. Indeed, as the AprilTag is perceived, the task is only finished
when the current object pose converges to the desired one and thus a high accuracy can be
achieved.

Thus, CDPRs with visual servoing have an excellent accuracy and repeatability.
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Figure 2.14: ACROBOT moving-platform pose accuracy at the desired pose bpp1

2.3.7 Tracking a Mobile Object on ACROBOT

In this subsection ACROBOT is tasked with tracking a small mobile robot that itself is
following a black line as shown in Fig. 2.15. With a fully charged battery, each lap takes
approximately 16 s. The PBVS controller has no knowledge of the mobile robot trajectory.
It simply attempts to keep the AprilTag, which is stuck on the mobile robot, in the desired
pose with respect to the camera frame Fc. Since in this task the target is moving, the
image-based estimation methods Est. 2 and Est. 3 cannot be used. Each experiment was
continued until task failure.

PulleyBase

Cable

Moving-platform

Camera

AprilTags

Track

Mobile robot

Tension sensor

Figure 2.15: ACROBOT with the big moving-platform and tension sensors

The moving-platform trajectory is shown in Figs. 2.16a and 2.16b. The deviation of the
moving-platform pose estimation is shown in Fig. 2.16c. Considering the high amount
of overlap in Fig. 2.16c, the moving-platform position estimation deviation is shown
separately for each estimation method in Fig. 2.17. Note that the axes are equalized for
plots in Fig. 2.17 with the exception of Est. 1.

As it can be seen in Fig. 2.17, the use of different moving-platform pose estimation
methods leads to a different time of task failure. Indeed, the controller with the estimation
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Figure 2.16: Moving-platform trajectory while tracking mobile robot and the estimation deviation
from C-Track measurement

method Est. 4, which is based on the simplest CDPR model, is the first one to fail, after
only 2 laps (Fig. 2.17a). Experiments with Est. 5 and Est. 6 failed after 3 laps (Figs. 2.17b
and 2.17c). When using the estimation method Est. 7 that takes into account cable elasticity
and pulley geometry task failure occurs after 4 laps (Fig. 2.17d). Finally, using control
integration method Est. 1 the task failure occurs after 12 laps (Fig. 2.17e), which is 3
times more than with Est. 7. It is even more impressive if we take into account the large
estimation deviation that occurs. Indeed, the error along z axis is almost 0.3 m at the end.
This value far surpasses the estimation error with the model-based methods as can be
seen in Fig. 2.16c. On the other hand, the accumulation of the error is smooth, especially
for the translational part. This is not the case for the model-based methods, where large
and evenly distributed spikes can be seen. Interestingly, all of the model-based method
curves have the spikes at the same time. This can also be seen in Figs. 2.17a through 2.17d,
where at about t = 8 s, t = 24 s and t = 42 s deviation can be seen between the C-Track
measurement in blue and the estimation in pink. These problems occur always at the
same place on the track. The estimation algorithms take the six cables that are most in
tension and estimate the new pose based on these six cables. If there is slack in the system,
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Figure 2.17: The translational deviation of different estimation methods with respect to C-Track
measurement

it will have to be transferred between cables as the moving-platform pose changes. With
significant slack at this transfer point more than two cables can become slack making the
moving-platform underactuated for a short period of time. If this occurs, a slack cable will
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Figure 2.18: Cable tensions τi
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be used by the estimation algorithm, leading to a wrong moving-platform pose estimation.
In fact, at about t = 24 s the slack is transferred from cables C1 and C2 to cables C5 and C6

as can be seen in Fig. 2.18. Even though in the next iteration the correct moving-platform
pose will probably be found, these spikes of significantly large errors affect the controller
in a worse way than a slowly accumulating estimation error as in Est. 1.

2.4 Conclusions

Three moving-platform pose estimation approaches were developed: control-based,
image-based and model-based. In the control based approach the control output is
integrated to find the new moving-platform pose, given that the previous moving-platform
pose is known. In the image-based approach two images are compared and assuming that
the initial moving-platform pose is known, the new pose can be computed using frame
transformations. Two different image pairs can be used: either two consecutive images or
the first and the current image. In the model-based approach moving-platform pose is
computed from cable lengths of six cables that are most in tension. Four different models
were used: simplest one corresponding to the CDPR model used in control; model taking
into account cable elasticity; model taking into account pulley geometry; and model taking
into account both cable elasticity and pulley geometry. Thus, altogether seven different
methods were tested along with using HTC Vive tracker for online moving-platform pose
measurement.

If the initial moving-platform pose is well known, then there will be almost
no difference between the seven estimation methods on ACROBOT. Interestingly,
moving-platform estimation with image-based approaches is the worst (while still
very good), however the produced trajectory is actually slightly better than with the
model-based approaches and about as good as for the control-based approach. For
CAROCA, the model-based approaches give the best results both in moving-platform
pose estimation accuracy and in the produced image trajectory. Furthermore, the models
that take into account pulley geometry give the best results. Moving-platform pose
estimation with image-based approaches is the worst and the produced trajectory is also
the worst. Thus, if it is possible to perfectly know the initial moving-platform pose,
then the choice of the pose estimation method will be trivial for ACROBOT, but not for
CAROCA. One way of knowing the initial moving-platform pose is using a homing
support, on which the moving-platform fits tightly, so that the initial pose is always the
same.

When using image-based methods in the presence of perturbations, CAROCA fails its
task. With the other methods the task is successfully finished. Furthermore, model-based
and control-based approaches produce very similar results. However, it can be seen that
for the model-based methods there are abrupt changes in the estimated pose from one
iteration to another. In such a case the computed velocities will also change from one
instant to another meaning that the CDPR motion can have some sudden jerks.
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It is not possible to use image-based methods when the object is in motion. Indeed,
it is not possible to discern between the camera motion and the object motion without
supplementary observations.

The remaining five estimation methods were tested with a mobile object and the
tracking continued until task failure. For the model-based estimation methods, the more
precise the model, the longer the time period until task failure. However, even taking
into account pulley kinematics and cable elasticity, the tracking continued only for 70 s.
On the other hand, using control integration the robot was able to continue tracking the
object for 210 s, thus three times longer. The cause to this large difference appears to be
cable slackness. Indeed, during the tracking slack accumulates on the cables and at the
furthest points of the track the slack rapidly transfers to different cables. At this moment
more than two cables are slack and the moving-platform is temporarily underactuated.
This leads to using some slack cables in the computation of the moving-platform pose for
the model-based methods, which produce an incorrect moving-platform pose estimation.
In fact, it appears that computing significantly deviated moving-platform pose for just
a few iterations in an overall precise estimation has a worse effect on system stability
than slowly and smoothly accumulating estimation error. With model-based estimation
methods the moving-platform pose was wrongly estimated at certain points of the track
and the task failed rapidly. On the other hand, with control-based estimation the error
accumulated smoothly and the task only failed after reaching almost 0.3 m and 15◦ error.

It should be noted that model-based moving-platform estimation methods can become
sensitive to model perturbations, such as badly known cable exit and anchor point
coordinates or badly known initial moving-platform pose. This type of perturbation
can affect the solvability of the equations. Indeed, even the computation of the initial cable
lengths is based on the knowledge of the initial moving-platform pose. Thus it can occur
that no solution is found for a given bad previous moving-platform pose estimate and
new cable lengths. To conclude, model-based estimation methods should only be used
when the initial moving-platform pose is known with sufficient accuracy. Furthermore,
when using model-based estimation methods cable slack needs to be avoided.

Thus, control integration is the most robust moving-platform estimation method that
can be used for both static and moving targets and that provides a smooth estimation even
in the presence of perturbations. Indeed, a smooth rather than mostly precise estimation
is the key for the best CDPR behavior.

HTC Vive tracker was used as an online measurement system to directly measure
the moving-platform pose. Its accuracy is varying and not certified. The tracker was
calibrated in the center of ACROBOT workspace. The initial moving-platform pose
during the experiments is not at the center and is indeed measured with a small error.
In fact, this leads to having a small perturbation on the initial moving-platform pose,
which was avoided for the experiments with moving-platform pose estimation, because
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C-Track measurement could be used as the initial knowledge. Overall, if the initial
moving-platform pose can be well known, it is preferred to use an estimation method,
such as the control-based estimation, instead of measurements by HTC Vive.
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3.1 Introduction

In Chapter 2 it was found that PBVS of CDPRs is robust to some perturbations and
modeling errors. The simplest CDPR model was used for both CDPRs, namely for
ACROBOT and CAROCA presented in Appendix A.1, while the cables of CAROCA
are elastic and pulleys have a large radius. Nevertheless, the tasks were successfully
completed. When tracking a mobile object and using control-based moving-platform
pose estimation method the system appeared to be remarkably robust to errors in the
moving-platform pose. Indeed, by the end the accumulated error amounted to 0.25 m
and 10◦. To quantify the robustness to different perturbations, a stability analysis can be
done. It is presented in Section 3.2 and subsequently a novel workspace is defined and
computed in Section 3.3.

3.2 Stability Analysis

In visual servoing the Lyapunov stability of the system is usually analyzed. It allows
us to determine whether the system is capable of converging to the desired state with the
existing uncertainties and modeling errors [Kha02].

From the closed-loop equation (1.40) the stability criterionΠ of the complete system
can be expressed as:

Π = LsA
−1
d A

†Â Âd L̂
†
s > 0, ∀t (3.1)

It is a sufficient condition, meaning that ifΠ > 0, then the system will stable. However
ifΠ 6 0, then the stability of the system will be unknown.

3.2.1 Stability Analysis of a Simple Planar CDPR with PBVS

Introduction

The choice to first analyze a planar CDPR is due to its simplicity. Indeed, as introduced
in Section 1.3.2 having a planar four cable CDPR allows us to have a simplified expression
of the forward kinematic Jacobian matrix Apl.

A PBVS is used to control the CDPR, however we must first express its planar version.
Thus, in this section, similarly as in Section 1.3.2, all variables are planar: (i) rotation
matrices iRj are (2× 2)–matrices; (ii) homogeneous transformation matrices iTj are (3×
3)–matrices; (iii) pose ipj and velocity ivj vectors are of size (3× 1); (iv) and coordinates
pbi and bai are of size (2× 1).

The feature vector becomes spl =
[
sx; sy; θp

]>. Thus the error is epl = spl − s
∗
pl,

where s∗pl is the desired feature vector.
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Interaction matrix Ls,pl that was defined for PBVS in (1.47) simplifies to:

Ls,pl =


−1 0 ey

0 −1 −ex

0 0 −1

 (3.2)

where ex and ey are the first two components of epl. Note that the planar interaction
matrix does not depend on the rotational error, but only on the two components of the
translational error.

Thus we can express ėpl as:

ėpl = Ls,pl
cvc (3.3)

The system model defined in (1.38) can be written for the planar CDPR in the following
form:

ėpl = Ls,plA
−1
d,plA

†
pl l̇pl (3.4)

and the cable velocity vector l̇pl can be expressed as:

l̇pl = −λ Âpl Âd,pl L̂
−1
s,pl epl (3.5)

where the inverse of the interaction matrix is computed as:

L̂−1
s,pl =


−1 0 −êy

0 −1 êx

0 0 −1

 (3.6)

and the Adjoint matrix (1.37) for the planar CDPR simplifies to [Ead14]:

Ad,pl =

 pRc E>ptc

0 0 1

 (3.7)

with ptc being the (2× 1)–vector pointing from Op to Oc; and E =

0 −1

1 0

.

Thus, the stability criterion Π to ensure the global asymptotic stability (GAS) is
expressed for the planar case as:

Πpl = Ls,plA
−1
d,plA

†
pl Âpl Âd,pl L̂

−1
s,pl (3.8)
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Accordingly, if the estimations of the Jacobian matrix Âpl, the adjoint matrix Âd,pl and
the interaction matrix L̂s,pl are not too coarse,Πpl will be near the identity matrix, and
hence positive definite, ensuring that the system is GAS.

Here, the stability analysis is performed in three steps with increasing difficulty. First,
only perturbations in the vision system, i.e., perturbations in object pose estimation, are
taken into account (Stability Analysis I). Then, errors in the pose of the camera w.r.t. Fp are
considered (Stability Analysis II). Finally, the CDPR model errors are examined (Stability
Analysis III).

Stability Analysis I

While considering the errors in the vision system only, matrices Âpl and Âd,pl are
assumed to be determined accurately. Thus, the stability criterion (3.8) is simplified to:

Πp1 = Ls,plL̂
−1
s,pl =


1 0 êy − ey

0 1 ex − êx

0 0 1

 > 0 (3.9)

The symmetric part ofΠp1, named
(
Πp1

)
Sym

, is obtained as follows:

(
Πp1

)
Sym

=
1
2

(
Ls,plL̂

−1
s,pl +

(
Ls,plL̂

−1
s,pl

)>)
=


1 0 êy−ey

2

0 1 ex−êx
2

êy−ey
2

ex−êx
2 1

 (3.10)

Consequently, the eigenvalues of
(
Πp1

)
Sym

are:
λ1

λ2

λ3

 =


√

(ex−êx)2+(ey−êy)2

2 + 1

−

√
(ex−êx)2+(ey−êy)2

2 + 1

1

 (3.11)

For (3.9) to hold, the eigenvalues λ1, λ2, and λ3 must all be positive [Joh70]. Note that
λ1 is always positive, because the term under the square root is always non-negative.
Since epl = spl − s∗pl and ŝ∗pl = s

∗
pl, then λ2 will be positive if and only if the following

condition holds true:√
∆s2
x +∆s

2
y < 2 (3.12)

where ∆sx = sx − ŝx and ∆sy = sy − ŝy.
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Thus, we can conclude that the distance ∆spl =
√
∆s2
x +∆s

2
y between the current

object pose spl and its estimation ŝpl must be smaller than 2 meters. This of course is only
true if there are indeed no other perturbations in the system.

It is important to understand the control behavior when the estimation ŝpl is not
sufficiently close to spl. If a bias3 exists on spl, but not on s∗pl, then the desired state will
never be reached. More precisely, the error epl will converge to zero, while the actual
desired state will not be reached. Thus, it can be concluded, that a bias on spl, but not on
s∗pl leads to a bad accuracy. To avoid this, s∗pl needs to be measured with the same bias
as spl. In this case, as the error epl converges to zero, the system will converge to s∗pl
and will be stable. This conclusion is also true for the spatial case, discussed later in the
manuscript.

Note that this is true for any CDPR because no perturbation in the CDPR model
parameters is considered here. More precisely, this is true for any robot, because here only
the pure visual servoing part of the control is considered.

Stability Analysis II

Here, the hand-eye calibration errors are also taken into account. That is, the errors in
the camera pose in Fp are considered along with the ones described in Stability Analysis I.
Accordingly, matrix Ad,pl, expressed in (3.7), is considered in the stability criterion (3.8),
which becomes:

Πp2 = Ls,plA
−1
d,plÂd,pl L̂

−1
s,pl =


Rψ

d1

d2

0 0 1

 > 0 (3.13)

where:

Rψ = cRp
pR̂c =

cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)

 (3.14)

d1 = êycos(ψ) − ey + êxsin(ψ) −∆tycos(θpc) +∆txsin(θpc) (3.15)

d2 = −êxcos(ψ) + ex + êysin(ψ) +∆tysin(θpc) +∆txcos(θpc) (3.16)

and ψ is the rotational error between θpc and its estimation θ̂pc.

Note that the camera pose in the moving-platform frame Fp is expressed as
ppc =

[
ptc
> θpc

]>
=
[
tx ty θpc

]>
. Furthermore, ∆tx = tx − t̂x and ∆ty = ty − t̂y.

3A bias is a systematic measurement error with a non-zero mean.
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The eigenvalues of
(
Πp2

)
Sym

are the following:
λ1

λ2

λ3

 =


cos(ψ)

cos(ψ)+1+
√

(1−cos(ψ))2+d2
1+d

2
2

2
cos(ψ)+1−

√
(1−cos(ψ))2+d2

1+d
2
2

2

 (3.17)

λ1 is positive if and only if

|ψ| = |θpc − θ̂pc| < π/2 (3.18)

λ2 is always positive, because the term under the square root is non-negative, given that
(3.18) is held. Finally, due to the complexity of the expression, λ3 is analyzed numerically.

By analyzing the stability criterion Πp2 and the eigenvalues of
(
Πp2

)
Sym

, it is clear
that the camera position in the moving-platform frame does not have any effect on system
stability. Indeed, it is the difference between the actual position ptc and its estimation pt̂c
that can have an effect on the system stability, but not those values themselves. This is not
true for the other variables, i.e. et and θpc and their estimations.

In the numerical analysis it was found that there is no single answer. Indeed, an
infinite amount of solutions is possible, because stability criterion is affected by multiple
parameters at the same time. Furthermore, these parameters are inter-dependent. More
precisely, by reducing value of one parameter, it becomes possible to increase the value
of another without making the system unstable. Some illustrative examples are shown
in Fig. 3.1, where each vertical line corresponds to one of the possible combinations. For
instance, from Combination (Cb.) 2 the system will be stable if:

|epl| =

|ex| = |sx − s
∗
x| 6 5.0 m

|ey| = |sy − s
∗
y| 6 5.0 m

|∆epl| =

|∆ex| = |ex − êx| 6 0.5 m

|∆ey| = |ey − êy| 6 0.5 m

|∆t| =

|∆tx| 6 0.3 m

|∆ty| 6 0.3 m

|∆θ| = |ψ| 6 6◦
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From Cb. 13, the system will be stable if:

|epl| =

|ex| = |sx − s
∗
x| 6 0.5 m

|ey| = |sy − s
∗
y| 6 0.5 m

|∆epl| =

|∆ex| = |ex − êx| 6 0.3 m

|∆ey| = |ey − êy| 6 0.3 m

|∆t| =

|∆tx| 6 0.2 m

|∆ty| 6 0.2 m

|∆θ| = |ψ| 6 61◦
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Figure 3.1: Example of possible combinations of design variables (e, ∆e, ∆t, ∆θ) for a stable system

It should be noted, that for any combination, each variable can take any value within
the chosen limit. For example, in Cb. 2 detailed above the rotational error ∆θ can be of
any value from -6◦ to 6◦, while in Cb. 13 it can be any value from -61◦ to 61◦. Therefore, it
can be concluded that the system is exhibiting very strong robustness.

It should also be noted that at this level the stability analysis is still independent of
the robot model. Indeed, only the pure visual servoing parameters and the hand-eye
calibration in the form of camera pose in Fp are analyzed here.

Stability Analysis III

Finally, the whole system is analyzed, including perturbations on the robot model: the
moving-platform pose w.r.t. Fb, the exit points Ai and anchor points Bi. This means that
this stability analysis requires us to define the robot model. Since no planar CDPR was
available for this thesis, we use a planar version of ACROBOT prototype for this analysis
(see Appendix A.1.1). In short: (i) the WS size of the robot is supposed to be equal to
1 m×1 m; (ii) the origin of Fb is located at the WS center; (iii) the moving-platform is
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assumed to be 0.11 m×0.11 m, thus the maximum offset between the origins of Fp and Fc

is equal to 0.055 m.

Here, the stability criterionΠpl cannot be simplified and keeps the form defined in (3.8).
Due to its complexity, especially the need for the pseudo-inverse of the Jacobian matrix
A
†
pl, the stability analysis is performed numerically.

As in Stability analysis II, once again it is not possible to arrive at one single solution,
because of the many interacting parameters and perturbations. Some sets of variable
ranges that ensure system stability are shown in Fig. 3.2.

Some other characteristics were also observed:
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i. The smaller the desired displacement range of the moving-platform w.r.t the WS
center, the larger the tolerated perturbation ∆btp.

ii. The difference between e and êmust always be smaller than e itself.
iii. ptc and θpc range do not have any effect on stability. Indeed, the camera can be put

anywhere on the moving-platform;
iv. Reducing ∆ptc often leads to significant increase in the rotational range for θpb.
v. Similarly, reducing ∆bi allows having larger rotational errors of the

moving-platform.
vi. If ∆btp and ∆epl are comparatively small, and the moving-platform is not in

the vicinity of the WS limits, platform could rotate up to 46◦. The closer the
moving-platform to the center of the WS, the larger its range of rotation.

In conclusion, despite having so many input variables, the system is highly robust to a
wide range of perturbations. Furthermore, considering the first characteristic from the list
above, it appears that the stability criterionΠ depends on the moving-platform pose. This
case study is continued in Section 3.3.2.

3.2.2 Stability Analysis of a Spatial CDPR with PBVS

As shown in the theoretical analysis of a planar CDPR in Section 3.2.1, doing
stability analysis of a closed-loop system allows us to evaluate its robustness to different
perturbations.

In this section, stability analysis is divided into three subsections depending on the
perturbations that are being taken into account.

Stability Analysis I

When considering only the errors in the vision system, the stability criterion (3.1)
simplifies to:

Πs1 = LsL̂
−1
s =

I3 −
(
[et]× − [êt]×

)
L̂−1
ω

03 LωL̂
−1
ω

 =

I3 −[∆et]×L̂
−1
ω

03 LωL̂
−1
ω

 > 0 (3.19)

where ∆et = et − êt =
(
st − s

∗
t

)
−
(
ŝt + s

∗
t

)
= st − ŝt.

Upon examination of Πs1 it is clear that the translational error et or indeed object
position st (or the desired one s∗t) has no effect on the stability criterion. In fact, it is the
difference between the current position st and its estimation ŝt that can affect the stability
criterion. Interestingly, it is not the same with rotations. The upper right term −[∆et]×L̂

−1
ω

contains L̂−1
ω , where the estimation of θu is present. Thus, not only the difference between

the current object orientation and its estimation, but also the values themselves can affect
the stability criterion.

SinceΠs1 is a (6× 6)–matrix, the analytical stability analysis of this criterion turns out
to be very complex. The numerical results are shown in Fig. 3.3.
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Figure 3.3: Example of possible combinations of design variables (∆e, θ, ∆θ)

Once again the variable ranges are interdependent. It means that the lower ∆e, the
higher the acceptable range for θ and/or ∆θ. The following maximum values were found:
(i) ∆e can be at most 1.5 m (Fig. 3.3 Cb. 1 through 10); (ii) θ can be at most 160◦ (e.g.
Cb. 56); (iii) ∆θ can be at most 90◦ (e.g. Cb. 55).

Stability Analysis II

Here, only the Jacobian matrix is assumed to be perfectly known. Therefore, the
stability criterion (3.1) becomes:

Πs2 = LsA
−1
d Âd L̂

−1
s =

cRppR̂c d3

03 Lω
cRp

pR̂cL̂
−1
ω

 > 0 (3.20)

where d3 =
(
cRp

pR̂c[êt]× − [et]×
cRp

pR̂c −
cRp[∆

ptc]×
pR̂c

)
L̂−1
ω and ∆ptc = ptc −

pt̂c

As in the planar case, described in Section 3.2.1, here it is clear that camera position ptc
in the moving-platform frame Fp has no effect on the system stability. Indeed, it is only
the difference between the actual camera position ptc and its estimation pt̂c that has an
effect of system stability.

Due to the high variability of the previous numerical analysis (Fig. 3.3), adding another
two sets of spatial rotation makes such a graph too complex to be useful. Indeed, there are
three rotations in this stability criterion: target object orientation θu in the camera frame;
camera orientation pRc in the moving-platform frame; and the estimation pR̂c of the latter.
As it was found in the stability analysis of the planar CDPR, all perturbations affect the
stability criterion jointly. For this reason, there are indeed countless possible combinations
of the three rotations within system stability.

Main observations as a result of the numerical analysis are:
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i. The system will be stable as long as ∆e 6 e.
ii. The lower ∆e, the larger the available rotational range.

iii. Finally, ∆ptc does not affect system stability, as long as it is reasonably small (tested
range was up to 0.2 m).

Note that the Jacobian matrix has not been considered as it is assumed to be precisely
estimated. Accordingly, the stability criterion is affected only by the perturbations in
hand-eye calibration, which is expressed as the transformation matrix pTc, and by the
visual servoing. It appears that the system stability is little sensitive to perturbations in
hand-eye calibration. Therefore, the object pose estimation should be the primary focus to
improve system behavior.

Stability Analysis III

Finally, the perturbations in all the matrices L̂s, Â, and Âd are taken into account. The
stability criterion is kept in its full unsimplified form (3.1).

The effect of errors in the CDPR model on the stability of the system is investigated.
The model of ACROBOT, the CDPR prototype shown in Fig. 1.9a is used. This model
considers the Cartesian coordinates of exit points Ai and anchor points Bi, defined in
Table A.1. It is assumed that ∆Bi = 0.008 m, meaning that the Euclidean distance between
the actual anchor point Bi and its estimation B̂i is 0.008 m.

Some variable range examples to ensure system stability are shown in Fig. 3.4. Since the
rotation range about z axis for a CDPR is significantly greater than about x or y axis, in this
analysis the orientation of the moving-platform and its estimation has been represented
with Euler angles. The following notation is used: θ, φ and ψ are Euler angles about x, y
and z axes respectively.

Some noteworthy characteristics were observed in addition to (i)-(ii) of Stability
Analysis II :

i. The smaller ∆btp or ∆ptc, the higher the range of rotation of the moving-platform,
especially about z axis.

ii. The lower the rotation of the moving-platform about z axis, the higher its rotation
about x and y axes.

iii. System stability is heavily dependent on moving-platform position in the base
frame Fb. The closer the moving-platform to the origin of Fb, the larger ∆btp while
keeping the system stable.

iv. Similarly, the closer the moving-platform to the origin of Fb, the larger the range of
rotation.

Perturbations affect the stability criterion jointly. By improving the knowledge of one
parameter and thus reducing the expected level of error on this parameter, it is possible
to increase the perturbation range of another parameter within system stability. As for
a planar CDPR, here a correlation can be seen between the desired moving-platform
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∆φ, ∆θ, ∆ψ)

motion range and the perturbation size. For this reason, a novel workspace named Control
Stability Workspace is defined and computed in Section 3.3.

The presented system is robust to large perturbations, including those in the CDPR
model. The robustness to CDPR model errors is possibly one of the main advantages of
visual servoing w.r.t model-based control.

3.2.3 Stability Analysis of a Spatial CDPR with IBVS

The control strategy for IBVS is the same as for PBVS, shown in Fig. 1.22. Of course the
feature vector s no longer contains 3D features, but instead four points in the image are
used as described in Section 1.4.3.

As mentioned before, when the feature vector consists of four points system stability is
affected. In this case the stability criterion Π, defined in (3.1), becomes a (8× 8)-matrix
that is at most of rank 6. Thus, the conditionΠ > 0 cannot be held.
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Only local asymptotic stability can be obtained for IBVS. To study it, we define a new
error e ′ so that e ′ = L̂†se. The time derivative of e ′ is:

ė ′ =
˙̂
L†s e+ L̂

†
s ė =

(
O+ L̂†s Ls

)
cvc (3.21)

whereO is equal to 0 when e = 0 for any choice of s [CH08].

The model equation for IBVS of CDPRs then becomes:

ė ′ =
(
O+ L̂†s Ls

)
A−1
d A

† l̇ (3.22)

Note that camera velocity cvc expressed as a function of the new error e ′ becomes:

cvc = −λL̂†se = −λe ′ (3.23)

Thus, the cable velocity vector can be expressed from (1.18), (1.37) and (3.23) as:

l̇ = −λ Â Âd e
′ (3.24)

Finally, the closed-loop equation is expressed by injecting (3.24) into (3.22):

ė ′ = −λ
(
O+ L̂†s Ls

)
A−1
d A

†Â Âd e
′ (3.25)

which is locally asymptotically stable in the neighborhood of s = s∗ if

ΠLAS = L̂†s LsA
−1
d A

†Â Âd > 0 (3.26)

3.3 Control Stability Workspace

Before using a CDPR, one needs to know its workspace. Among the existing
workspaces [SK06] [Ver04], the static feasible workspace (SFW of S) that was introduced
in Section 1.3.3 is a simple one. It is a kineto-static workspace that shows all the poses that
the moving-platform is physically able to attain. In addition, it is important to evaluate
the ability of the CDPR to reach a pose from a control perspective.

While analyzing the planar and spatial CDPRs in Section 3.2, it was concluded that the
results of stability analysis are dependent on the moving-platform pose, because it shows
up in the stability criterion Π through the Jacobian matrix A, which is a function of the
moving-platform pose. We showed that the closer the moving-platform to the origin of
the base frame Fb, the larger the tolerated perturbations within system stability.

Accordingly, a novel workspace, named Control Stability Workspace (CSW), can be
defined as follows:

Z = {pp ∈ SE(3) : ∀d ∈ D,Π > 0} (3.27)
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The workspace Z is the set of all moving-platform poses pp, for which the stability
criterionΠ is positive definite for any vector of perturbations d that is within bounds D.
It means that for any moving-platform pose within its CSW, the robot controller will be
able to guide the moving-platform to its goal.

Note that the range combinations shown in Fig. 3.2 are examples of different definitions
of perturbation bounds D.

It is of interest to create a compound workspace, that takes into account the
controller and the kineto-static performance of the robot. Indeed, on the one hand, a
moving-platform pose can belong to S while being outside of Z, namely, it is in a static
equilibrium, but it may fail to reach the goal. On the other hand, a moving-platform
pose can belong to Z while being outside of S, namely, the robot controller will make
the moving-platform reach the goal although the moving-platform is not in a static
equilibrium (and thus it could be unable to remain in that pose). Thus we define a
compound workspace, named SZ, as the intersection of S and Z:

SZ = {pp ∈ SE(3) : ∃τ ∈ T, ∀d ∈ D, Wτ+wg = 06, Π > 0} (3.28)

The compound workspace SZ is the set of all moving-platform poses pp for which there
exists a vector of cable tensions τ within the cable tension space T such that the CDPR can
balance the gravity wrenchwg leading toWτ+wg = 06, and for which for any vector of
perturbations d that is within bounds D, the stability criterionΠ is positive definite.

3.3.1 The Definition of Perturbation Bounds D

As was shown in the stability analysis, there are many parameters that can be perturbed.
However, it is possible to divide them in two categories: rotational and translational
perturbations. Here, the physical meaning of these bounds is defined for a planar and a
spatial CDPR.

Planar Case

Here, for the planar CDPR, we assume that the perturbations are also planar to be able
to take them into account when computing the stability criterionΠ. Given a translational
parameter X, the translational perturbation bound is defined as a radius rx of a circle, as
shown in Fig. 3.5.

It signifies that the perturbation dx of parameter X that is within the range Dx can
have a magnitude of up to rx and can be in any direction. Thus, the perturbed value of
parameter X can be anywhere within the circle, e.g. it could take the value Xd1 or Xd2.

For any angle θ the perturbation bound is defined as ∆θ, as shown in Fig. 3.6. Thus,
the perturbed value of the angle will be within the range: θ−∆θ 6 θd 6 θ+∆θ.
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X

rx
Xd1

Xd2

Figure 3.5: Translational parameter X and its perturbation radius rx

θ∆θ

∆θ

Figure 3.6: Parameter θ and its perturbation angle ∆θ

Spatial Case

In spatial case the perturbations are also spatial. For a position X the translational
perturbation bound is defined as a radius rx of a sphere, as shown in Fig. 3.7. Similarly to
the planar case, any perturbation vector with origin at X and magnitude less than or equal
to rx belongs to this perturbation bound Dx. Consequently, the perturbed value of X will
be within the sphere defined by its origin at X and radius rx. Two examples, Xd1 and Xd2,
are shown in Fig. 3.7.

X
rx

x

y

z

Xd1

Xd2

Figure 3.7: Translational parameter X and its perturbation radius rx

For the rotational perturbation the axis-angle representation is used. The rotational
perturbation bound is defined as the angle ∆θ for all axes u. That is a perturbation bound
Dθ contains all rotational perturbations with the angle less than or equal to ∆θ and any
axis u.
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3.3.2 CSW for a Planar CDPR with PBVS

As a continuation of the case study shown in Section 3.2.1, the Control Stability
Workspace was computed for the planar CDPR and for different perturbation bounds D.
The planar CDPR is presented in Section 1.3.2.

First, the baseline perturbation bounds Db is defined with the following values:

• moving-platform position error range rbp = 0.03 m
• moving-platform orientation error range ∆θbp = 3◦

• camera position error range rpc = 0.01 m
• camera orientation error range ∆θpc = 3◦

• cable exit point error range rAi = 0.005 m
• cable anchor point error range rBi = 0.005 m
• target object position error (feature vector error) rs = 0.01 m

These values are chosen based on the geometry of ACROBOT and taking into account
some manufacturing errors that could be present on the robot. For example, there are
pulley sheaves of 9 mm diameter on cable exit points that are not taken into account
in the kinematic modeling of the CDPR. Similarly, cable anchor points are modeled as
points, while they are actually located on a sphere of 0.008 m diameter about the modeled
points. Camera position and orientation errors can also be amounted to manufacturing
errors. Finally, the moving-platform position and orientation errors illustrate the possible
coarseness of estimation of the moving-platform pose. Indeed, for many CDPRs the initial
or homing moving-platform pose is often measured by hand and thus having a small error
on the pose estimation is clearly possible. Furthermore, as was shown in Chapter 2 even
when the initial moving-platform pose is measured before the experiment, the estimation
of the moving-platform pose accumulates errors over time.

Note that the feature vector error consists of only the translational part, because the
orientation of the target object is not present in the stability criterionΠpl and thus a bad
estimation of the orientation cannot make the conditionΠpl > 0 to be not true.

During CSW computation, the workspace was discretized to a matrix of 33× 33 points
with X and Y coordinates ranging from −0.48 m to 0.48 m and the step being 0.03 m. The
area of a complete workspace is 0.92 m2. Thus, 1089 moving-platform positions were
tested for stability. For each of the moving-platform poses, the perturbation bound was
applied as described in Section 3.3.1.

CSW was computed for Db and is used as a reference. It is shown in every sub-figure
of Fig. 3.8 in blue and its area is 0.878 m2 or 95.4% of the full workspace. Then the range
of each perturbation was increased, while keeping the rest as defined in Db. Every time
CSW was created and its area was computed. The change of CSW area as a function of
different perturbations is shown in Fig. 3.9, while the full results can be found in Table A.8
of Appendix A.5. Note that in Fig. 3.9 the CSW area is shown as a percentage of the
maximum area of 0.92 m2. Furthermore, some CSW examples are also shown in Fig. 3.8.
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It can be observed that some perturbations have a higher impact on CSW area, while
others affect it only marginally. Indeed, increasing camera position error rpc expressed
in Fp from 0.01 m to 0.20 m, only slightly decreases the workspace area from 0.878 m2

to 0.849 m2, as shown in Figs. 3.9a and 3.8d. Indeed, only 3.1% of workspace is lost by
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Figure 3.8: CSW for planar CDPR as a function of perturbation range
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Figure 3.9: CSW area as a function of perturbation range

increasing rpc twenty times. Furthermore, considering that the moving-platform size is
0.1 m×0.1 m, then it means that the camera can be anywhere on the moving-platform,
without knowing where it is. The results are very similar for the translational error in
object pose rs, as can be seen in Fig. 3.9a, the curves for rs and rpc overlap. On the
contrary, coarse moving-platform position estimation leads to a rapid reduction of CSW,
as can be seen in Fig. 3.8a. By increasing the perturbation range to rbp = 0.1 m, the CSW
area is reduced to 0.336 m2, which is only 36.5% of the full workspace. Similarly, errors in
robot model, that is in cable exit and anchor points, have a significant influence on the
workspace size, as can be seen in Figs. 3.8b, 3.8c and 3.9a.

Regarding rotational errors, the results are similar. That is, increasing the
moving-platform rotational error ∆θbp has a worse effect on the workspace area than the
rotational error on camera pose ∆θpc, as can be seen in Fig. 3.9b.

It appears that the location of the parameter in the stability criterion determines how
much its perturbation can affect the stability. Let us observe the stability criterion:

Πpl = Ls,plA
−1
d,plA

†
pl Âpl Âd,plL̂

−1
s,pl =


−1 0 ey

0 −1 −ex

0 0 −1


 cRp −cRpE

>ptc

0 0 1



pu>1

pb1
> E> pu1

...
...

pu>m pbm
> E> pum


†
pû>1

pb̂1
> E> pû1

...
...

pû>m pb̂m
> E> pûm


pR̂c E>pt̂c

0 0 1



−1 0 −êy

0 −1 êx

0 0 −1

 (3.29)

The robot model in the form of cable anchor and exit points as well as moving-platform
pose are all in the Jacobian matrix Apl and its estimation Âpl. These are the parameters
whose increased perturbation can rapidly make the system unstable. It should be noted
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that the Jacobian and its estimation are right in the middle ofΠpl and it is the only matrix
and its estimation pair that is directly multiplied by one another. The rest of the parameters
are either in the adjoint matrix Ad,pl or in the interaction matrix Ls,pl and they appear to
have very little effect on the stability criterion. Indeed, even when their perturbations are
set to high values, such as ∆θpc = 50◦ or rs = 0.5 m, the CSW remains large.

As an example, the CSW was also computed for two perturbation bounds found during
the case study described in Section 3.2.1. More precisely, Cb. 2 and 16 are shown in Fig. 3.10
in gray and green, respectively. While workspace for Cb. 16 is almost full, the workspace
for Cb. 2 is very limited. This is because almost all of the parameter perturbations have
been increased in Cb. 2 when compared to Cb. 16. Note that leaving X or Y value close to
0 it would be possible to access the very border of CDPR workspace.

To conclude, visual servoing of a planar CDPR appears to be highly robust to many
different perturbations and their combinations. However, significant errors in the robot
model and bad moving-platform pose estimation can make the stability criterionΠpl no
longer be positive definite.

3.3.3 CSW for a Spatial CDPR with PBVS

CSW is computed for ACROBOT and CAROCA under PBVS control. Indeed, as the
CDPR size is different, the workspace needs to be computed separately.
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Figure 3.10: Control Stability Workspace example
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The baseline perturbation bounds Db are defined as follows:

• moving-platform position error range rbp = 0.03 m
• moving-platform orientation error range ∆θbp = 3◦

• camera position error range rpc = 0.01 m
• camera orientation error range ∆θpc = 3◦

• cable exit point error range rAi = 0.005 m
• cable anchor point error range rBi = 0.005 m

The bounds Db are chosen to be the same for both robots for the sake of comparability.
The baseline workspace is computed using Db and then each of the perturbation ranges is
increased incrementally.

CSW for ACROBOT with PBVS

For ACROBOT moving-platform positions are assigned as follows. The potential
workspace is discretized to a set of 12 planes that are parallel to the global xy plane. Each
plane is then discretized to a matrix of 33× 33 points with X and Y coordinates ranging
from −0.48 m to 0.48 m and the step being 0.03 m. The Z coordinate of the planes ranges
from 0 m to 1.1 m with the step being 0.1 m. Thus, the full workspace volume is 1.014 m3.
The workspace is computed for both moving-platform geometries that are presented in
Appendix A.1.1. The evolution of the workspace volume is shown in Figs. 3.11 and 3.12 for
the small and the large moving-platform geometries, respectively. Note that the vertical
axis denotes the ratio of the current volume over the maximum volume of 1.014 m3.
Furthermore, the full results are shown in Appendix A.5 in Tables A.9 and A.10.
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Figure 3.11: The effect of increasing perturbation range on CSW volume for ACROBOT with the
small moving-platform and PBVS

First, the workspace corresponding to baseline perturbation bounds Db is computed.
For the small moving-platform the volume of CSW with Db amounts to 0.875 m3 or 86.3%.
While for the large moving-platform the CSW volume, shown in Fig. 3.13a, is 0.88 m3 or
87.0%. Clearly, at this stage the difference is not significant.



3.3 Control Stability Workspace 117

0 0.1 0.2 0.3 0.4 0.5 0.6
perturbation range, m

0

20

40

60

80

100
C

SW
vo

lu
m

e,
pe

rc
en

t rAi
rBi
rbp
rpc

(a)

0 10 20 30 40 50
perturbation range, degrees

0

20

40

60

80

100

C
SW

vo
lu

m
e,

pe
rc

en
t

∆θbp

∆θpc

(b)

Figure 3.12: The effect of increasing perturbation range on CSW volume for ACROBOT with the
large moving-platform and PBVS

Then the perturbation ranges are incrementally increased one by one, leaving the
rest of perturbations as defined in Db. Some examples for the large moving-platform
are shown in Fig. 3.13. It can be seen that all of the workspace reduction occurs in a
downward direction along z axis no matter the perturbation. This is because ACROBOT
is a suspended CDPR and its most stable position is btp = [0 0 0]>. Indeed, in Fig. 3.13i
the tiny workspace is centered around btp = [0 0 0]> with about 0.1 m displacement
possible in any direction.

By comparing Figs. 3.11b and 3.12b, it is clear that the rotational perturbations have
the same effect on the system, no matter the moving-platform geometry. Similarly, the
increase rpc and rbp ranges leads to the same curves in Figs. 3.11a and 3.12a. However,
this is not the case with errors on cable anchor and exit points. Indeed, for the smaller
moving-platform, the CSW volume decreases significantly faster when rBi is increased.
For example, for rBi = 0.02 m, CSW volume for the large moving-platform is 0.618 m3,
while for the small moving-platform it is only 0.391 m3. Then, for rBi = 0.03 m the
workspace reduces to 0.447 m3 and 0.091 m3, respectively. Similarly, when rAi is increased,
the CSW volume decreases more rapidly for the small moving-platform. Thus, it can
be concluded that the geometry of the moving-platform influences the robustness of the
system with respect to the CDPR modeling errors, namely, those in cable exit and anchor
point coordinates.

As can be seen in Fig. 3.11a, the perturbations in cable exit and anchor points have the
highest influence on system stability. Indeed, only 0.04 m error reduces the workspace
by more than a half. However, if the error is no more than 0.01 m, then the workspace
remains sufficiently large. For ACROBOT, the pulley diameter is 0.009 m as presented in
Section 1.3.1. Indeed, the pulley radius is 0.0045 m and thus is lower than rAi = 0.005 m
defined for Db. Thus, it is clear that for ACROBOT, the pulleys are small enough to be
negligible.
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Figure 3.13: Visualization of CSW for ACROBOT with large moving-platform and PBVS

Finally, it appears that most of the CSW volume curves in Figs. 3.11 and 3.12 are almost
straight lines, at least for the translational perturbations. Thus, it can be concluded that the
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relationship between perturbation range and CSW volume is linear for the translational
perturbations. The curve for rotational perturbation ∆θbp is close to a straight line, while
the one corresponding to ∆θpc has a concave downward shape.

CSW for CAROCA with PBVS

CAROCA is a significantly larger CDPR than ACROBOT. The potential workspace is
discretized to a set of 11 planes parallel to the global xy plane. Each of these planes is
discretized to a matrix of 33× 33 points. The X coordinate ranges from −1.98 m to 1.98 m
with the step being 0.12 m. The Y coordinate ranges from −3.465 m to 3.465 m, with the
step being 0.21 m. Finally, the Z coordinate of planes ranges from 0 m to 3 m with the step
being 0.3 m. This makes the full workspace volume equal to 82.33 m3.

The CSW computed for CAROCA with baseline perturbation bounds Db has a volume
of 63.06 m3, which is 76.6% of the full workspace. The change of the CSW volume
depending on perturbation range is shown in Fig. 3.14, while some examples are shown
in Fig. 3.15. Note that in Fig. 3.14 the percentage shown is the obtained volume for a
given perturbation set over the maximum volume of 82.33 m3. The full results can be
found in Table A.12 in Appendix A.5. In general, the shape of the curves in Fig. 3.14
is similar to those in Figs. 3.11 and 3.12 for ACROBOT. More precisely, perturbation in
CDPR model has the highest effect on CSW volume, following by moving-platform pose
estimation and finishing with eye-hand calibration errors. However, in Fig. 3.15a the
green curve of the translational error rbp has an exponential shape. Furthermore, with
the increased CDPR size, the range of this perturbation has increased. Even having set
rbp = 1 m does not make the workspace null, instead it is equal to approximately 10% of
the full workspace and appears to be almost flat, as can be seen in Fig. 3.15d. Similarly,
having rBi = 0.1 m or rAi = 0.1 m does not make the CSW non-existent for CAROCA.
Instead, approximately 30% and 50% of the full workspace remains available, respectively,
as can be seen in Figs 3.15j and 3.15l. Furthermore, even setting the camera position
error range rpc = 0.5 m has little effect on the CSW size, which remains at 71.9%. On
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Figure 3.14: The effect of increasing perturbation range on CSW volume for CAROCA with PBVS
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the other hand, rotational errors rapidly reduce the workspace. Especially those in the
moving-platform pose estimation, where at ∆θbp = 10◦ the volume is at 42.1% (Fig. 3.15e)
and at ∆θbp = 30◦ the volume is only at 0.003% (Fig. 3.15f). While the rotational error
∆θpc on the camera pose also has a significant effect on the CSW size, however having
∆θpc = 30◦ allows us to use 43.4% of the workspace (Fig. 3.15h), which is significantly
larger than for ∆θbp of the same size.

Having such a large CDPR also allows us to compare the change of CSW shape when
some perturbations are increased. For example, the increase of rbp is shown in Figs. 3.15a
through 3.15d and appears to flatten the workspace by greatly reducing the range along z
axis before affecting the workspace range in xy plane. On the other hand, rotational errors
in eye-hand calibration appears to affect the xy range more severely. This can be seen by
comparing Fig. 3.15a with 3.15g and 3.15h.
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Figure 3.15: Visualization of CSW for CAROCA with PBVS
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CSW for a Fully-Constrained CDPR

In a fully-constrained CDPR some of the cable pulleys are located on the ground.
Due to this, cables are pulling on the moving-platform from all directions, which greatly
increases its stiffness and velocity range. While both of the presented CDPRs are used
in the suspended configuration, it is possible to reconfigure them in a fully-constrained
configuration. In this section ACROBOT is used and four of its cables are reconfigured to
exit from pulleys located on the ground. The modified cable exit point coordinates are
shown in Table 3.1.

Table 3.1: ACROBOT cable exit point coordinates for the fully-constrained configuration

Cable exit points expressed in Fb, m

A1 [0.52; 0.475; 0.0]> A5 [−0.52;−0.465; 0.0]>

A2 [−0.47; 0.53; 1.165]> A6 [0.47;−0.52; 1.165]>

A3 [−0.52; 0.475; 0.0]> A7 [0.525;−0.47; 0.0]>

A4 [0.47; 0.53; 1.165]> A8 [−0.47;−0.525; 1.165]>

The evolution of the CSW size is shown in Fig. 3.16 and the full results can be found
in Table A.11 in the Appendix A.5. Some examples of CSW visualization are shown in
Fig. 3.17. As it can be seen in Fig. 3.17a, the workspace with Db is quite large, however
increasing the perturbation range leads to a rapid decrease in the workspace volume.

Similarly as with the suspended CDPR, the perturbation rpc on the camera position
with respect to the moving-platform frame appears to have no effect on the workspace
size. Indeed, by increasing the perturbation from rpc = 0.01 m to rpc = 0.2 m the
workspace volume changes from 0.985 m3 to 0.983 m3, as shown in Fig. 3.16a. The
tolerance of rotational error ∆θpc is significantly larger than for ∆θbp (see Fig. 3.16b).
Indeed, even with ∆θpc = 30◦ the workspace is still almost at its maximum size and
then starts to decrease. The CSW volume is still above 70% with ∆θpc = 50◦. On the
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Figure 3.16: The effect of increasing perturbation range on CSW volume for fully-constrained
ACROBOT with PBVS



122 Chapter 3. Stability Analysis and Control Stability Workspace

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(a) Db

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(b) rbp = 0.10 m

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(c) rbp = 0.25 m

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(d)∆θbp = 20◦

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(e) rAi = 0.02 m

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(f) rAi = 0.05 m

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(g) rAi = 0.1 m

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(h) rBi = 0.02 m

1.0

0.8

0.6

0.4

0.2

0
-0.5

0
0.5

-0.5

0

0.5

z,
m

x, m

y, m

(i) rBi = 0.05 m

Figure 3.17: CSW volume visualization for fully-constrained ACROBOT with perturbations on
multiple variables

other hand, increasing ∆θbp above 10◦ leads to a rapid decrease of CSW volume. For
example, with ∆θbp = 20◦ the CSW volume, shown in Fig. 3.17d, is only at 45.4%.
The workspace of a fully-constrained CDPR is still most affected by perturbations in
cable exit point coordinates Ai and anchor point coordinates Bi, as shown in Fig. 3.16a.
Unlike the suspended CDPR, here the errors in the moving-platform position reduce the
workspace almost as rapidly as model errors. Indeed, as can be seen in Fig. 3.17b, with
rbp = 0.10 m the workspace is already quite small, its volume being 0.348 m3. And then
with rbp = 0.25 m the workspace volume is only 0.05 m3, which is only 5% of the full
workspace size. Thus, it can be concluded that a CDPR in a fully-constrained configuration
is significantly more sensitive to moving-platform pose errors.
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The computation of CSW is rather strict, meaning that for a given moving-platform
pose the perturbation needs to be validated in all the directions. Thus, even if in
just one direction the perturbation leads to the stability criterion not being held, that
moving-platform pose is marked as out of the CSW. Furthermore, it appears that the
simple CDPR model with straight inelastic cables might be insufficient to evaluate the
stability of a fully-constrained CDPR.

3.3.4 CSW for a Spatial CDPR with 2½D VS

Here, the CSW is computed for 2½D VS used on ACROBOT and CAROCA using the
same initial perturbation bound Db and perturbation augmentation as defined for PBVS
in Section 3.3.3.

CSW for ACROBOT with 2½D VS

The description of CSW computation for ACROBOT is presented in the corresponding
section for PBVS, namely Section 3.3.3. The results of CSW computation for ACROBOT
with 2½D VS control are presented in this section. The workspace is computed for
both moving-platform geometries, described in Appendix A.1, and the change of the
workspace volume can be seen in Figs. 3.18 and 3.19, while the full results can be found
in Tables A.13 and A.14 of Appendix A.5. In Figs. 3.18 and 3.19 the percentage shown is
the ratio of the computed CSW volume for the given perturbation set over the maximum
volume of 1.014 m3 for ACROBOT. Furthermore, CSW volume visualization for the large
moving-platform and different perturbation sets is shown in Fig. 3.20.
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Figure 3.18: The effect of increasing perturbation range on CSW volume for ACROBOT with the
small moving-platform and 2½D VS

First, the results for two moving-platform geometries are compared. Clearly, there is
no significant difference with respect to rotational errors, as can be seen in Figs. 3.18b
and 3.19b. Similarly, change of rpc has the same negligible effect in both cases.
Furthermore, the curve of rbp appears to be the same in Figs. 3.18a and 3.19a. However,
the CDPR model errors, namely rAi and rBi have a very different effect. Indeed, with
the larger moving-platform 40.2% of the workspace remain available with rAi = 0.1 m,
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Figure 3.19: The effect of increasing perturbation range on CSW volume for ACROBOT with the
large moving-platform and 2½D VS

while for the smaller moving-platform the CSW is non-existent for this value. Indeed,
at rAi = 0.05 m the workspace is already at only 47.6% for the small moving-platform.
Similarly, having rBi = 0.02 m leads to CSW being at 14.5% for the small moving-platform
and at 66.5% for the large one. Thus, for 2½D VS same as for PBVS, increasing the
moving-platform size allows us to increase the robustness to CDPR model errors.

It is also possible to compare the CSW volume for same moving-platform geometry
and different VS controllers. When baseline perturbation set Db is used, the resulting
CSW is almost the same for PBVS and for 2½D VS, as can be seen in Figs. 3.13a and 3.20a.
Indeed, for 2½D VS it is only 2.9% larger. Comparing the overall trend, it appears that
2½D VS is more robust to smaller perturbations, leading to a noticeably larger workspace
when the perturbation range is rather low. But as the perturbation range is increased, the
CSW volume decreases rapidly. For example, the CSW with ∆θbp = 10◦ is significantly
larger for 2½D VS, shown in Fig. 3.20d, than for PBVS, shown in Fig. 3.13d. However,
setting ∆θbp = 30◦ leads to a very small CSW for 2½D VS as shown in Fig. 3.20f, when
compared to PBVS, shown in Fig. 3.13e. Similarly, the CSW for rbp = 0.5 m for 2½D VS is
smaller than for PBVS as can be seen in Figs. 3.20c and 3.13c, respectively, while it was
larger before reaching this perturbation range.

2½D VS appears to be more robust to perturbation in the cable exit points. Indeed,
at rAi = 0.1 m the CSW is at 40.2%, as can be seen in Fig. 3.20i, while it is only at
0.3% for PBVS, shown in Fig. 3.13i. However, note that the corresponding blue curve in
Fig. 3.19a is steep; in fact it is only slightly less steep than the one in Fig. 3.18a for the small
moving-platform. Thus, even though at rAi = 0.1 m the workspace is still large, it is clear
that it decreases very rapidly.

On the other hand, the robustness to perturbation in cable anchor points diminishes
even more rapidly. That is, for rBi = 0.02 m the CSW of 2½D VS is larger, but it becomes
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Figure 3.20: Visualization of CSW for ACROBOT with large moving-platform and 2½D VS
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non-existent at rBi = 0.04 m, while some small workspace still exists for PBVS even at
rBi = 0.05 m.

CSW for CAROCA with 2½D VS

The description of CSW computation for CAROCA is presented in the corresponding
section for PBVS, namely Section 3.3.3. The results of CSW computation for CAROCA
with 2½D VS control are presented in this section. The change of the workspace volume
can be seen in Fig. 3.21. Here the ratio of the CSW volume for the given perturbation set
over the full workspace size of 82.33 m3 is given. The full results can be found in Table A.15
of Appendix A.5. Furthermore, CSW volume visualization for different perturbation sets
is shown in Fig. 3.22.
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Figure 3.21: The effect of increasing perturbation range on CSW volume for CAROCA with 2½D VS

As for PBVS, the larger CDPR has a greater perturbation range. The moving-platform
position error can go even up to 1 m with 30% of the full workspace remaining available.
In comparison to PBVS, here a larger size of workspace is available for the same size
of perturbation. This was true for ACROBOT, however it is even more pronounced for
CAROCA. For example, for baseline perturbation bounds Db 94% of the full workspace
are available with 2½D VS, while only 76.6% are available with PBVS. On the other hand,
the change of workspace size is more abrupt. With rAi = 0.1 m CSW is at 84.6%, while
with rAi = 0.2 m CSW is suddenly only at 8.4%. Similarly, for the camera pose in the
moving-platform frame the workspace goes from 94% to 76.4% to 0% by increasing
rpc = 0.2 m to rpc = 0.3 m to rpc = 0.4 m. Though it should be noted that, given
the moving-platform size, having rpc = 0.2 m means that the camera position on the
moving-platform does not need to be known. Also, note that this is the only combination
of a visual servoing approach and a CDPR geometry where some value of rpc has not just
a visible effect on the CSW volume, but can actually make the workspace empty.
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Figure 3.22: Visualization of CSW for CAROCA with 2½D VS

3.3.5 CSW for a Spatial CDPR with IBVS

As described in Section 3.2.3, only the local asymptotic stability can be evaluated for
IBVS, because there are more features in the vector s than DoF of the moving-platofrm.
Thus, the computed CSW is more an illustration and not a proof. Indeed, for most of the
trajectory the system stability will be unknown.

CSW for ACROBOT with IBVS

The results of CSW computation for ACROBOT with IBVS control are presented in this
section. The change of the workspace volume as the perturbation range is increased is
shown in Figs. 3.23 and 3.24, while the full results can be found in Tables A.16 and A.17.
In Figs. 3.23 and 3.24 it is the ratio between the CSW volume corresponding to a given
perturbation set and the full workspace volume of 1.014 m3 that is shown. Moreover, CSW
volume visualization for the large moving-platform is shown in Fig. 3.25.
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Figure 3.23: The effect of increasing perturbation range on CSW volume for ACROBOT with the
small moving-platform and IBVS
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Figure 3.24: The effect of increasing perturbation range on CSW volume for ACROBOT with the
large moving-platform and IBVS

Overall the curves in Figs. 3.23 and 3.24 show the same tendency as for PBVS and
2½D VS. However, the workspace volume reduction rate is noticeably slower. For example
with rbp = 0.5 m CSW for IBVS is 0.395 m3 (Fig. 3.25c), while it is only 0.112 m3 for
2½D VS (Fig. 3.20c) and 0.295 m3 for PBVS (Fig. 3.13c). Similarly with rAi = 0.1 m,
the workspace measures 0.480 m3, 0.407 m3 and 0.003 m3 for IBVS, 2½D VS and PBVS,
respectively (see Figs. 3.25i, 3.20i and 3.13i, respectively). Note that the shape of the
workspace changes in the same way for each perturbation no matter the visual servoing
control. For example, increasing rbp decreases the height of the CSW, but the corners
remain within the workspace. On the contrary, increasing ∆θbp the CSW shape becomes
like a pyramid or a cone (especially in Fig. 3.20f). Increasing rBi the workspace flattens
towards the yz plane.
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Figure 3.25: Visualization of CSW for ACROBOT with large moving-platform and IBVS
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CSW for CAROCA with IBVS

The results of CSW computation for CAROCA with IBVS control are presented in this
section. The ratio of CSW volume for a given perturbation set over the full volume of
82.33 m3 is given in Fig. 3.26, while the full results can be found in Table A.18. Moreover,
CSW volume visualization is shown in Fig. 3.27.
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Figure 3.26: The effect of increasing perturbation range on CSW volume for CAROCA with IBVS
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Figure 3.27: Visualization of CSW for CAROCA with IBVS

Given that for IBVS we can only compute the local asymptotic stability, it is no surprise
that the resulting CSW is large. None of the tested perturbation ranges result in a void
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workspace. Indeed, only with ∆θbp = 50◦ does the workspace become tiny (but not void),
its volume being 3.75 m3. Even with unreasonably large perturbation values, such as
rBi = 0.4 m (Fig. 3.27i) or rbp = 1.0 m (Fig. 3.27c) the CSW remains above 50% of the full
workspace. Note that for IBVS not only rpc has no effect on the workspace, but also ∆θpc.
In fact, with ∆θpc 6 30◦ the workspace remains at its maximum volume of 77.414 m3. By
increasing ∆θpc up until 50◦ the workspace volume becomes 75.479 m3, thus decreasing
by less than 2 m3.

Despite the increased CSW volume, the trend for IBVS is just as it was shown for PBVS
and 2½D VS. More precisely:

• Perturbation on camera position in the moving-platform frame has little to no effect
on CSW volume and system stability (the only exception being with 2½D VS on
CAROCA);

• Similarly, perturbation on camera orientation in the moving-platform frame has
the smallest effect on CSW volume, when compared to all of the remaining
perturbations;

• There can be significant perturbation on the moving-platform position in the base
frame without making the system unstable;

• Perturbation on the CDPR model, that is on cable exit and anchor point coordinates,
has the largest effect on CSW volume;

• Perturbation on cable anchor points leads to a smaller CSW than same size
perturbation on cable exit points;

• Translational perturbation bounds scale with CDPR geometry:
� The larger the moving-platform, the larger rBi can be without making the

workspace empty;
� The larger the CDPR, the larger rAi and rbp without making the workspace

empty;
• On the other hand, the rotational perturbations ∆θbp and ∆θpc do not scale

with CDPR geometry. They remain approximately the same for ACROBOT and
CAROCA.

3.4 Experimental Validation of Stability Analysis and CSW

All the different experiments used to validate stability analysis and CSW computation
are assembled in this section. Note that all case studies are numbered sequentially in this
thesis and the first one can be found in Section 2.3.

3.4.1 Case Study II: Experimental Validation of Stability Analysis on ACROBOT with PBVS

Experimental Setup

As the very first controller, it was chosen to implement the pose-based visual
servoing (PBVS) controller presented in Section 1.4.4. More precisely, the feature vector s
is defined as s = (st, sω), where st = cto is the translational distance between the camera
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frame and the object frame; and sω = θu is the axis-angle representation of the rotational
matrix c

∗
Rc between the current and desired camera frames. The control scheme is shown

in Fig. 1.22.

The small moving-platform of ACROBOT is equipped with the Media-tech camera. It
is mounted in the eye-in-hand configuration facing the ground. AprilTags are still used as
object, as presented in Chapter 2.

Adaptive gain λ, defined in (1.31), is used and the coefficients have been tuned at
the following values: λ0 = 1.7, λ∞ = 0.2 and λ̇ = 30. Furthermore, to avoid velocity
discontinuity at the beginning of the task, a continuous behavior is used as defined
in (1.35).

To consider the task completed, the error e needs to become sufficiently small. For
these experiments we define two thresholds: ket = 0.0005 m and keω = 0.01 rad. The task
is considered completed if ||et||2 6 ket and θ 6 keω, where θ is the angle from eω.

For ACROBOT, there are multiple sources of errors or perturbations:

i. Cable anchor points Bi cannot be precisely measured due to the mechanical
connections between the cables and moving-platform. In the model Bi is considered
as a point, while in experiments it is actually a point located on a ⌀0.01 m sphere
around its nominal location;

ii. ACROBOT pulleys are not taken into account in the CDPR model;
iii. Moving-platform pose is estimated by control integration as shown in Section 2.2.1.

The initial moving-platform pose was measured by hand, the expected accuracy
is ±2 cm.

iv. The auto-focus option of the chosen camera leads to the image being zoomed in and
out. This is an additional perturbation on the AprilTag localization, leading to a less
precise computation of s.

These perturbations are covered by the baseline perturbation bound Db in the CSW
computation. Evidently, they are not large enough to make the system unstable, however
they are also not negligible.

Three types of experiments are done. First, without any voluntarily added perturbation.
Second, adding voluntary perturbations within the bounds exhibited in Section 3.2.2. And
third, adding perturbations that do not respect these bounds. The perturbation input
values were taken from Cb. 18 in Fig. 3.4.

To ensure the comparability of the results, each time the initial and the desired poses are
the same. Only the voluntarily added perturbations change. The initial moving-platform
pose bpp0 and the desired moving-platform pose bpp∗ are defined as:

bpp0 =
[
0.097 m −0.026 m 0.323 m 20◦ −20◦ 45◦

]
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bpp∗ =
[
0.35 m 0.28 m 0.06 m 0◦ 0◦ 0◦

]
Voluntarily added perturbation within bounds of stability: rbp = 0.1 m and ∆θbp = 5◦.
Voluntarily added perturbation out of bounds of stability: rbp = 0.2 m and ∆θbp = 10◦.

Experimental Results

The experimental results are shown in Figs. 3.28 through 3.304. More precisely, the
AprilTag trajectory in the image is shown in Fig. 3.28; the error e over time is shown in
Fig. 3.29; and the cable velocities l̇ over time are shown in Fig. 3.30.

0 100 200 300 400 500 600
u, pixels

0

100

200

300

400

v,
pi

xe
ls

(a)

0 100 200 300 400 500 600
u, pixels

0

100

200

300

400

v,
pi

xe
ls

(b)

0 100 200 300 400 500 600
u, pixels

0

100

200

300

400

v,
pi

xe
ls

(c)

Figure 3.28: ACROBOT: AprilTag trajectory in the image: (a) no perturbation added; (b)
perturbations within bounds of stability added; (c) perturbations out of bounds
of stability are added

As can be seen in Fig. 3.28, even without added perturbation, the AprilTag trajectory in
the image is not a straight-line, which is the expected outcome for an ideal system. This
is due to the existing perturbations in ACROBOT, which are described above. Here, it
appears that the low quality camera is the largest contributor. As will be seen in other
experiments - once the MediaTech camera is replaced by the IDS camera, the behavior
improves. Nevertheless, the task is succeeded both in Fig. 3.28a and in Fig. 3.28b. Indeed,

4Please also see the accompanying video at https://youtu.be/gqov84Xo9Og

https://youtu.be/gqov84Xo9Og
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Figure 3.29: ACROBOT: Error e over time: (a) no perturbation added; (b) perturbations within
bounds of stability added; (c) perturbations out of bounds of stability are added

as expected, the robot is able to finish its task despite having a rather coarse estimation of
its initial pose. On the other hand, when the perturbation on the initial moving-platform
pose is doubled, the task fails as can be seen in Fig. 3.28c. The deviation of the trajectory
due to added perturbation is too large and the AprilTag leaves the image, which makes
the continuation of the task impossible.

Despite the noise present in the system, a good decoupled decrease of e can be observed
in Fig. 3.29a. In case of perturbations within system stability, more time is necessary for e
to converge to 0, as can be seen in Fig. 3.29b.

Note that in all three experiments initially the error reduces very slowly (Fig. 3.29). This
is because a continuous behavior, defined in (1.35), is used, to ensure a smooth beginning
of the motion. Indeed, in Fig. 3.30 in all three experiments the velocity of each cable has a
smooth transition from zero to the maximum speed.

To compare the vision-based control method of CDPRs to other existing methods,
it was chosen to implement the simple position controller presented in Appendix A.4.
Given the previously mentioned initial and desired moving-platform poses, bpp0 and
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Figure 3.30: ACROBOT: Cable velocities over time: (a) no perturbation added; (b) perturbations
within bounds of stability added; (c) perturbations out of bounds of stability are added

bpp∗ respectively, a trajectory is generated and at each iteration a command is sent to
ACROBOT.

Figure 3.31 shows the final pose of the moving-platform. It appears that no matter
the additional perturbations, the moving-platform reaches the same pose with PBVS
control as seen in Figs. 3.31a and 3.31c. On the contrary, using position control the final
moving-platform pose is far from the targeted one for both experiments shown in Fig. 3.31b
and Fig. 3.31d. Indeed, the position controller does not use any external sensors, thus
cannot correct its trajectory to arrive at the desired pose. Furthermore, it appears that
even the small errors present in the model are significant enough to influence the final
pose in Fig. 3.31b. Therefore, CDPR position control is highly sensitive to any errors in the
robot model and to coarse estimation of the initial moving-platform pose. On the contrary,
PBVS control turns out to be much more robust to perturbations. Indeed, as long as the
system is stable, any uncertainty present in the model has an effect on the transient phase,
namely, the trajectory performed to reach the goal, but not on the final reached pose. This
makes a clear difference in terms of accuracy between vision-based control and a pure
position controller.
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(a) (b)

(c) (d)

Figure 3.31: ACROBOT moving-platform pose at the end of a prescribed trajectory: (a) PBVS
and (b) position control, when no perturbations are added; (c) PBVS and (d) position
control, when perturbations within system stability are added

3.4.2 Case Study III: Comparison of Stability in ACROBOT and its Simulation

Clearly, the model of ACROBOT is very simple and some characteristics, such as pulley
geometry, are not modeled. In addition, its geometry can have manufacturing defects and
some perturbation is present in the vision system. This results in the robot not behaving
as an ideal system would, as was shown in the previous experiment.

Furthermore, it was discovered in the stability analysis that all the different
perturbations affect the system stability jointly. For this reason, if other perturbations exist
in the system, one of them can only be increased to a strictly limited range, otherwise the
CSW volume begins to rapidly reduce.

It is thus of interest to compare the difference of behavior in simulation and on a
real CDPR. To do so, an additional analysis was done, where all parameters but one
were assumed to be known perfectly. Then the perturbation of this single parameter was
increased to find the limit at which the CSW starts to reduce in volume.

It was found that:

• No matter the translational perturbation rpc value, the CSW remains at its maximum
volume of 1.014 m3. Indeed, even with rpc = 1.0 m the workspace size does not
decrease;
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• The rotational perturbation ∆θpc can be as large as 40◦ with the workspace
remaining full, however then it starts to rapidly decrease. With ∆θpc = 55◦ the
workspace is 0.514 m3 and it becomes null with ∆θpc = 65◦;

• No matter the translational or rotational perturbation on feature vector s, the
workspace remains unchanged. The maximum tested values were rs = 0.5 m and
∆θs = 90◦;

• With cable exit point error rAi = 0.01 m the workspace still has a rather large volume
of 0.802 m3 and with rAi = 0.03 m it decreases to 0.503 m3;

• The results for cable anchor points are very similar. With rBi = 0.01 m the CSW
volume is 0.794 m3 and with rBi = 0.03 m the CSW volume decreases to 0.506 m3;

• With rotational error ∆θbp = 3◦ of the moving-platform pose estimation, the CSW is
almost at its maximum size, the volume being 0.936 m3. It then decreases to 0.786 m3

by increasing the error to ∆θbp = 10◦;
• With translational error rbp = 0.01 m of the moving-platform pose estimation, the

workspace is also considerably large, its volume is 0.907 m3. It decreases to 0.761 m3

by increasing the error to rbp = 0.1 m.

Experimental Setup

The experimental setup is almost the same as in Section 3.4.1. Only the initial and
desired state has been changed to:

• initial state:
� bpp0 =

[
0.097 m; −0.026 m; 0.323 m; 20◦; −20◦; 45◦

]
� cpo0 =

[
− 0.02 m; 0.02 m; 0.328 m; 177◦; −31◦; 139◦

]
• desired state:

� bpp∗ =
[
0.10 m; 0.075 m; 0.09 m; 0◦; 0◦; 0◦

]
� cp∗o =

[
0 m; 0 m; 0.06 m; 180◦; 0◦; 180◦

]
Note that the moving-platform poses are shown here simply to give an idea of the

motion with respect to the CDPR workspace. The desired moving-platform pose is not
used in control, while the initial pose is used as the initial input for the moving-platform
pose estimation.

To compare the ideal and the real CDPR, a rotational perturbation ∆θpc is added to
the system. According to the findings described above, the ideal system would still be
stable with ∆θpc = 55◦. As can be seen in Fig. 3.32 the corresponding CSW is quite large
even though the corners of the workspace have become unavailable. When taking into
account that this perturbation is not the only one present in the system, the workspace
becomes null. More precisely, we used the baseline perturbation set Db and increased
the rotational error to ∆θpc = 55◦, for which not a single moving-platform pose could
be found so that Π > 0. The moving-platform pose shown in Fig. 3.32 corresponds to
bpp0 and the green dot notes the position of bpp∗ . Note that the cyan dashed line is the
shortest path, however with the chosen feature vector s definition the moving-platform
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trajectory is not controlled. Indeed, it is only the object center-point trajectory in the image
that should be a straight line ideally.
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Figure 3.32: CSW for a simulated CDPR with only one perturbed parameter: ∆θpc = 55◦

Experimental Validation

Here, the behavior of a CDPR prototype ACROBOT and its simulation in V-REP is
compared. Note that the V-REP model is presented in Appendix A.1.3. The experimental
results are shown in Figs. 3.33 to 3.355.
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Figure 3.33: V-REP simulation with ∆θ = 85◦: (a) AprilTag center-point trajectory; (b) error e over
time. System is not stable

In the first experiment, shown in Fig. 3.33, the simulated system has a large rotational
error on the camera pose expressed in moving-platform frame Fp. More precisely,
∆θpc = 85◦ and the axis of this angle corresponds to the vertical z axis. As shown in
Fig. 3.33a the AprilTag center-point steadily diverges from the desired position in the
image center. Indeed, the motion can be described as an outward spiral and continues

5Please also see the accompanying video at https://youtu.be/tfiTDlp1ZIY

https://youtu.be/tfiTDlp1ZIY
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Figure 3.34: CDPR behavior depending on added perturbations. (a) and (b): the AprilTag trajectory
and error e over time in V-REP with ∆θ = 55◦, system is stable; (c) and (d): the
AprilTag trajectory and error e over time on ACROBOT with ∆θ = 55◦, robot does
not converge because AprilTag leaves the camera field of view.

until the AprilTag leaves the field of view, which leads to a task failure. Consequently, each
component of the error e oscillates with an increasing amplitude, as shown in Fig. 3.33b.
Clearly, while attempting to reduce the error in order for s to converge to s∗ the computed
control signal actually makes the error increase. Thus, the system is not stable.

According to the results of stability analysis, if we set ∆θpc = 55◦ the simulated robot
should still succeed. The AprilTag trajectory is shown in Fig. 3.34a and indeed the task
is finished successfully. Of course, the trajectory is highly perturbed, as is expected with
such large perturbations in the system. The effect of the perturbations is also clearly visible
on the errors plots in Fig. 3.34b. It can be seen that the trajectory takes a long time and
some components of e oscillate around the horizontal axis with a decreasing amplitude.
The same rotational error on the actual robot is shown in Fig. 3.34c. The initial behavior
is similar, but the radius of the deviation is too large and the AprilTag leaves the image,
leading to a task failure. This is not surprising, given that ACROBOT is not ideal and thus
there are small differences between the robot model and ACROBOT.
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Figure 3.35: CDPR behavior depending on added perturbations. (a) and (b): the AprilTag trajectory
and error e over time in V-REP with ∆θ = 16◦; (c) and (d): the AprilTag trajectory and
error e over time on ACROBOT with ∆θ = 16◦; system is stable in both experiments

Finally, ∆θpc was set to a value that is within the bounds of stability, i.e. ∆θpc = 16◦.
This time not only the simulated robot, but also ACROBOT finishes the task successfully.
As can be seen in Fig. 3.35, AprilTag trajectory by ACROBOT is more perturbed and it
takes a slightly longer time to make the error e converge to zero. Furthermore, there are
no more oscillations in the error plots.

To summarize, for an ideal robot the range of perturbation on a single parameter is very
large. However, a real robot is not ideal and the use of the simple kinematic model permits
some small errors in the system. Once this is taken into account, then each individual
perturbation has quite a limited range within the bounds of stability. Nevertheless, the
control is very robust to many perturbations and their combinations.

3.4.3 Case Study IV: PBVS on CAROCA

Experimental Setup

In this case study the CAROCA prototype is used with the IDS camera mounted on its
moving-platform. The initial and desired states are defined as follows:
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• initial state:
� bpp0 =

[
0.713 m; 0.102 m; 1.899 m; −18◦; 10◦; −5◦

]
� cpo0 =

[
− 1.042 m; 0.709 m; 2.277 m; −159◦; −10◦; −179◦

]
• desired state:

� bpp∗ =
[
− 0.689 m; −1.374 m; 0.757 m; 0◦; 0◦; 0◦

]
� cp∗o =

[
0 m; 0 m; 0.6 m; 180◦; 0◦; 180◦

]
Perturbation within bounds of stability amounts to 0.2 m and 4◦ of error on the initial

moving-platform pose. The perturbation out of bounds of stability is 0.4 m and 8◦.

The adaptive gain λ for PBVS of CAROCA is tuned as in Section 2.3.

Experimental Results

The experimental results are shown in Figs. 3.36, 3.37 and 3.38.
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Figure 3.36: CAROCA: AprilTag trajectory in the image: (a) no perturbation added; (b)
perturbations within bounds of stability added; (c) perturbations out of bounds
of stability are added

The AprilTag trajectories, shown in Fig. 3.36 are smoother than the ones in Fig. 3.28 for
ACROBOT. This is due to the change of camera. Here, an industrial camera is used and
it outputs an image of higher quality, which reduces the noise of AprilTag localization.
However, the trajectory in Fig. 3.36a is not a straight line. It can be explained by the
simplified CDPR model that is used in the control. CAROCA has large pulleys of 0.15 m
in diameter and its steel cables tend to sag, especially when the moving-platform is not
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Figure 3.37: CAROCA: Error e over time: (a) no perturbation added; (b) perturbations within
bounds of stability added; (c) perturbations out of bounds of stability are added

carrying any payload [Pic18]. Nonetheless, the deviation is rather small and as can be
seen in Fig. 3.37a the error e reduces smoothly. Similarly, there are no abrupt changes in
cable velocity curves in Fig. 3.38a.

Adding a 0.2 m and 4◦ perturbation on the initial moving-platform pose only slightly
affects the trajectory of AprilTag center-point shown in Fig. 3.36b. As a reminder, a 0.2 m
perturbation caused task failure on ACROBOT, as shown in Fig. 3.28c. For CAROCA the
error e reduces almost identically in Fig. 3.37b as in Fig. 3.37b, where the former takes
only 2 s more time to finish the task.

When the large perturbation is applied, the AprilTag almost leaves the image. Note
the two upper corners of the AprilTag in Fig. 3.36c, where they pass by the very margin
of the image frame. However in the end the task is successfully completed despite the
perturbation being out of bounds of stability. Indeed, criterionΠ > 0 is only a sufficient
condition and when it is not held the stability of the system is unknown. The initial
motion produced by the controller lead to decreasing the distance to the desired state.
As mentioned before, the smaller the error e the more robust the system to different
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Figure 3.38: CAROCA: Cable velocities over time: (a) no perturbation added; (b) perturbations
within bounds of stability added; (c) perturbations out of bounds of stability are added

perturbation. Thus along the trajectory the stability criterion is fulfilled again and the
task is successfully finished. Note that this trajectory took about 46 s, which is 50% more
than for the other two experiments. Furthermore, some of e components, such as ey
change their sign over time. Note also the abrupt increase of cable velocities at t = 38 s in
Fig. 3.38c, which is an undesired behavior. This increase of velocities corresponds to θuy
changing its sign to negative, as can be seen in Fig. 3.37c.

It can be concluded that the perturbation bounds within system stability depend on the
CDPR size. Indeed, for a larger CDPR the perturbation can also be larger without causing
task failure. Furthermore, even though pulleys were not modeled, the CDPR successfully
finished its task with the same accuracy despite the different perturbations. On the other
hand, not taking pulleys into account leads to a non-ideal trajectory being produced.
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3.4.4 Case Study V: 2½D VS on CAROCA

As shown in previous sections, PBVS of CDPRs is robust to perturbations and very
accurate. However, due to the selected feature vector, the camera trajectory to the goal is
not controlled. Indeed, only the target center-point trajectory in the image is a straight
line. By choosing 2½D VS and defining the feature vector as shown in Section 1.4.5 both
the target center-point trajectory in the image and the camera Cartesian trajectory should
be straight lines.

The control strategy for 2½D VS is the same as for PBVS, shown in Fig. 1.22. It should
be kept in mind that the composition of the feature vector s (subsequently its desired
value s∗ and error e) and the interaction matrix Ls is different from PBVS, as defined in
Section 1.4.5.

Experimental Setup

The experiment is defined as in Section 3.4.3, including the initial and desired
moving-platform poses in base frame Fb and object pose in camera Fc. 2½D VS, requires
to also define the AprilTag center-point coordinates in the image, which are the following:

• initial state:
� o0 =

[
− 0.469 m; 0.304 m

]
• desired state:

� o∗ =
[
0.0 m; 0.0 m

]
Results

The results are shown in Fig. 3.39. Without added perturbation the camera trajectory,
shown in Fig. 3.39c in blue appears almost ideal. Indeed, the deviation from the
straight-line trajectory is at most 7 cm as can be seen in Fig. 3.39d. It a very small deviation
when compared to the traveled distance of about 2.3 m. The AprilTag trajectory, shown in
Fig. 3.39a is more perturbed. Note that this deviation is smaller for 2½D VS than for PBVS,
which is shown in Fig. 3.36a. Thus, without added perturbation using 2½D VS we obtain
a slightly better object trajectory in the image as well as a controlled camera trajectory.

Once the 0.2 m and 4◦ error on the initial moving-platform pose is added, the behavior
of the controller becomes perturbed. The image trajectory, shown in Fig. 3.39a in pink, is
only slightly worse at the beginning, however this kind of perturbation induces a large
overshoot at the end of the trajectory. It is even visible for the camera trajectory shown
in Fig. 3.39c in pink, where at the very end the curve surpasses the desired state that is
indicated by a green dot. By doubling the error in the initial moving-platform pose the
task fails because the two upper corners of AprilTag leave the image during the overshoot.
Furthermore, doubling the perturbation produces twice as large deviation of camera
trajectory, as can be seen by comparing pink and orange curves in Figs. 3.39c and 3.39d.

Exactly the same experimental setup was used for 2½D VS as for PBVS in Section 3.4.3.
The resulting behavior however is different. Indeed, the produced AprilTag center-point
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Figure 3.39: 2½D VS experiments on CAROCA: (a) the trajectory of AprilTag center-point in the
image; (b) The pixel deviation from the ideal straight-line trajectory; (c) the trajectory
of the camera in the frame Fb; (d) the deviation from the ideal straight-line 3D
trajectory.

trajectory in the image was more curved for PBVS without any added perturbation, while
with supplementary perturbation in the system 2½D VS produced large overshoot that
lead to task failure.

3.4.5 Case Study VI: IBVS on ACROBOT
Experimental Setup

In this section IBVS control is used on ACROBOT with the IDS camera mounted on its
moving-platform. A pattern of four points, shown in Fig. 3.40, is used as an object. The
control scheme is shown in Fig. 1.22.

Adaptive gain λ, defined in (1.31), is used and the coefficients have been tuned at the
following values: λ0 = 1.0, λ∞ = 0.2 and λ̇ = 30.

The initial and the desired states are defined as follows:
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k1 k2

k3k4

0.1 m

0.1 m

Figure 3.40: Pattern with four points used for IBVS

• initial state:
� bpp0 =

[
0.118 m; −0.104 m; 0.459 m; 16◦; 13.8◦; 20.6◦

]
� k1 =

[
− 0.276; −0.281

]
� k2 =

[
− 0.116; −0.213

]
� k3 =

[
− 0.179; −0.040

]
� k4 =

[
− 0.329; −0.114

]
• desired state:

� bpp∗ =
[
0.314 m; −0.006 m; 0.262 m; 0◦; 0◦; 0◦

]
� k∗1 =

[
− 0.167; −0.167

]
� k∗2 =

[
0.167; −0.167

]
� k∗3 =

[
0.167; 0.167

]
� k∗4 =

[
− 0.167; 0.167

]
where k1 to k4 are the normalized coordinates of the four points in the image that are used
in the feature vector s in this IBVS experiment.

Several experiments are done with the following perturbations:

• E1 - no perturbation added;
• E2 - rbp = 0.08 m and ∆θbp = 10◦;
• E3 - rbp = 0.145 m and ∆θbp = 19◦;
• E4 - rbp = 0.28 m and ∆θbp = 37◦.

Please note that additional experiments with the same experimental setup and different
perturbations on different parameters are shown in Appendix A.6.

Experimental Validation

The experimental results are shown in Figs. 3.41 through 3.44. The initial position
of the four points in the image is shown with red crosses in Fig. 3.41, while the desired
one is shown with green crosses. Note that in experiment E4 the final position does not
correspond to the desired one and is shown with pink stars in Fig. 3.41d.
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Figure 3.41: Trajectory of four points in the image

0 2 4 6 8 10 12 14 16
t, s

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

ex1
ey1
ex2
ey2

ex3
ey3
ex4
ey4

e
j

(a) E1

0 2 4 6 8 10 12 14 16
t, s

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

ex1
ey1
ex2
ey2

ex3
ey3
ex4
ey4

e
j

(b) E2

0 5 10 15 20
t, s

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1

ex1
ey1
ex2
ey2

ex3
ey3
ex4
ey4

e
j

(c) E3

0 20 40 60 80
t, s

-0.3

-0.2

-0.1

0

0.1

0.2

ex1
ey1
ex2
ey2

ex3
ey3
ex4
ey4

e
j

(d) E4

Figure 3.42: Error e over time
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Figure 3.43: Cable velocities over time

In experiment E1 the trajectories of the four points are almost straight lines, as can be
seen in Fig. 3.41a. Furthermore, the components of error e, shown in Fig. 3.42a, rapidly
converge to zero. The trajectory of the moving-platform is shown in Fig. 3.44 in blue and
it is smooth, with no deviation.

A small perturbation is added in E2, which leads to a curved trajectory of the four
points in the image, as shown in Fig. 3.41b. This corresponds to the overshoot of error
e components in Fig. 3.42b. For example, the black curve of ey2 begins at −0.045 m
and reaches 0.045 m at t = 5 s before starting to converge to zero. The trajectory of the
moving-platform shown in pink in Fig. 3.44 is deviated.

The perturbation is doubled in E3. Here, the point trajectories have become significantly
more perturbed in Fig. 3.41c, however the task is still finished successfully. The overshoot
in the error plots in Fig. 3.42c has also increased. For ey2 it now reaches 0.12 m before
converging to zero. Note that the convergence to zero takes about 4 s longer in E3. The
trajectory of the moving-platform shown in orange in Fig. 3.44 is even more deviated than
in E2.

The perturbation is doubled once more in E4. While for all of the previous experiments
the task was finished successfully, in E4 that is not the case. The trajectory to the goal is
highly perturbed and in the vicinity of the goal the system becomes unstable. Indeed, as
can be seen in Fig. 3.42d, the errors had almost converged to zero at t = 40 s, however
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Figure 3.44: Moving-platform trajectory

instead the error oscillates around zero with an increasing amplitude. Note that at about
t = 65 s the amplitude of the oscillation is no longer increasing. The controller appears to
be stuck in the vicinity of the desired state unable to converge. The same oscillations can
also be seen in cable velocity plots in Fig. 3.43d. Finally, the outward spiral that can be seen
in the image trajectory in Fig. 3.41d, can also be seen in the moving-platform trajectory
shown in Fig. 3.44. The yellow curve for E4 is highly deviated from other curves. Near
the desired pose a spiral can be seen. Here, however the changes in the moving-platform
pose were too close and the trajectory curve looks like a filled disk at the end.

Thus, similarly as for PBVS and 2½D VS, IBVS is a robust visual servo control that
allows us to increase the accuracy of the CDPR at the desired state. Furthermore, this is
true even though only the local asymptotic stability of the system can be demonstrated, as
described in Section 3.2.3. Despite the added perturbations, the accuracy at the desired
state is the same, as long as the system is stable. However, when the system becomes
unstable, the behavior can be unpredictable. In this case getting stuck close to the desired
state and oscillating around it endlessly.
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The additional experiments, shown in Appendix A.6, allow us to evaluate the system
behavior when a different parameter is perturbed. It can be concluded that having only a
coarse estimation of the camera position on the moving-platform does not greatly affect
the robot behavior. Indeed, changing the estimated position to three different arbitrary
points leads only a slight perturbation of the produced trajectories. On the contrary,
perturbation on cable anchor points has a significant effect on robot behavior and the
produced trajectories.

3.5 Conclusions

After initial proof of concept study, it was concluded that visual servoing control of
CDPRs is possible and is robust to some uncertainties and perturbations.

To quantify the robustness of the system with respect to perturbations, stability analysis
was done. It was shown that many different perturbations can exist, including modeling
errors. However, it was also shown that the system is highly robust to perturbations,
despite their quantity and combined effect on the stability.

From the analysis carried out in Section 3.2.2, it turns out that a CDPR with PBVS
controller is little sensitive to uncertainties in the robot model. This is of course true for
all the visual servoing schemes. Since the object of interest is observed with a visual
servoing control, it is possible to know whether the desired pose has been reached or not.
It means that no matter the amount of perturbations in the system, the moving-platform
will always reach its targeted pose as long as the system is stable.

With a visual servoing control, the CDPR accuracy mainly depends on camera quality
and the task completion threshold. Indeed, the task completion threshold is in fact the
goal accuracy. If it is set too coarse, then the accuracy is also coarse. On the other hand,
setting the threshold to be very small can lead to a task that cannot be finished, because
the measurement noise is larger than the threshold.

When analyzing the separate perturbation’s effect on stability, it was found that for an
ideal system any one parameter could be highly perturbed without making the system
unstable. This result was successfully validated in simulation in V-REP. Surely, when
attempting to control ACROBOT with same large perturbation, the system does not
converge. However, if the applied perturbation is kept within the corresponding (noisy
system) range, the robot will be able to complete its task. Thus, it is clear that there is
a large difference between a simulated and a real CDPR, which can be the reason why
model-based control approaches are struggling with accuracy.

For ACROBOT, the tolerated perturbation on cable exit points is rather large. This is
beneficial, because it allows us to avoid adding pulley kinematics to the CDPR model.
Indeed, cable exit point variations on the pulley are smaller than the tolerated perturbation,
which does not affect the stability of the system.
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It was discovered that the stability of the system depends on the moving-platform pose.
Indeed, using the same perturbation set the stability criterion can be positive definite for
one moving-platform pose and negative for another. For this reason a novel workspace,
named Control Stability Workspace (CSW), was defined and computed for ACROBOT
and CAROCA with each of the three different visual servoing controllers. Having a
workspace computed for different perturbation sets allows us to evaluate the effect of each
perturbation on the workspace size. Indeed, depending on the perturbed parameter, the
decrease of the CSW volume happens at different rate. For example, translational error of
camera pose in the moving-platform frame appears to have almost no effect on the CSW
volume. On the contrary, CDPR model parameters such as cable exit and anchor points
cannot be highly perturbed. With a 0.1 m error for ACROBOT on the cable anchor points
renders the CSW void no matter the chosen visual servoing approach. On the other hand,
such a large error on each of the cable exit of anchor points for such a small CDPR is rather
unlikely. Furthermore, with reasonably sized perturbations, such as 0.005 m to 0.01 m, the
CSW remains large at no less than 75% of the full workspace size for PBVS and above 80%
for 2½D VS and IBVS.

The perturbation range that does not make the system unstable depends on the CDPR
size. Indeed, having a 0.2 m translational error on the initial moving-platform pose caused
task failure on ACROBOT, while only slightly affected task execution on CAROCA.
Furthermore, on CAROCA the task was successful even with 0.4 m translational error.
Similarly, the CSW remains significantly larger for increased cable exit and anchor point
coordinate errors. For example, for CAROCA with the above mentioned perturbation
rBi = 0.1 m, the CSW remains at 48.8% for PBVS and above 80% for 2½D VS and IBVS.
Indeed, while not modeling the pulleys on CAROCA has some effect on the produced
trajectory, it does not make the system unstable. This is because the pulley radius is 0.06 m
and when we set rAi = 0.06 m the resulting CSW of PBVS is at about 60% of the full
workspace, easily covering the trajectories of our experiments. Note that it is even larger
for 2½D VS and IBVS.

Indeed, the CSW volume of the three visual servoing approaches differs. For example,
the same kind of small to moderate sized perturbation results in a larger workspace for
2½D VS than for PBVS. This is especially visible for the large CDPR CAROCA. On the
other hand, once the perturbation increases, the CSW of 2½D VS reduces very rapidly.
Regarding IBVS, the workspace is always larger than for the other two visual servoing
approaches, no matter the perturbation. However, it should be noted that for IBVS only
the local asymptotic stability can be evaluated and thus the computed CSW is more like
an illustration.

Finally, using an onboard camera to observe an object of interest is beneficial in order to
increase robot accuracy. Indeed, as the camera moves together with the moving-platform,
it also approaches the object of interest. Furthermore, the smaller the error between the
current and the desired state, the better the visual servoing behavior. This characteristic is
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used in Chapter 4 to improve the behavior of the robot in the presence of perturbations by
using trajectory planning and tracking and thus having a time-varying desired state.

An onboard camera cannot observe the moving-platform itself, thus the well known
issue of the knowledge of the moving-platform pose arises. In these experiments the
moving-platform pose is estimated by control integration, which of course is an open-loop
estimation and thus it is bound to drift. Similarly, the cables are not observed either and
can become slack. This is even more true because of the moving-platform pose estimation
method and the fact that many experiments include voluntarily perturbing the system.
While the system appears stable from a control point of view, it can become underactuated
due to cable slack. This issue is addressed in Chapter 5.
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4.1 Introduction

It was shown in the previous chapter that visual servoing of a CDPR is highly robust.
However, even if perturbation levels are kept within the boundaries of stability, they have
an undesirable effect along the trajectory to the goal.

To further improve the robustness and the ability to achieve the expected trajectory,
planning and tracking of a trajectory can be used. Trajectory planning and tracking take
advantage of stability and robustness to large perturbations of classical visual servoing
approaches in the vicinity of the goal [MC02]. Indeed, when the difference between
current and desired visual features is small, the behavior of the system approaches the
ideal one, even in the presence of large perturbations as long as the system is stable. With
the implementation of trajectory planning and tracking, the desired features are varying
along the planned trajectory keeping the difference between current and desired visual
features small at all times.

4.2 Definition of Trajectory Planning and Tracking Algorithm

Once trajectory planning and tracking is considered, the model of the system is written
from Eqs. (1.18), (1.59) and (1.36):

ė = LsA
−1
d A
† l̇− ṡ∗ (4.1)

Injecting (1.30), (1.36) and (1.59) into (1.18) and expressing cable velocity vector l̇ leads
to :

l̇ = Â Âd L̂
−1
s (−λe+ ̂̇s∗) (4.2)

Hence, the new control scheme is shown in Fig. 4.1.
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Figure 4.1: Control scheme for VS with trajectory tracking of a CDPR

The implementation of the trajectory planning and tracking for 2½D VS is shown in
Algorithm 1. The strategy is similar for PBVS and IBVS.



4.2 Definition of Trajectory Planning and Tracking Algorithm 155

Algorithm 1: Trajectory planning and tracking

1: Initialization
2: Set the desired object pose c

∗
p∗ofin and center-point coordinates o∗fin

3: Define final feature vector s∗fin
4: Read and record initial object pose cpoinit and center-point coordinates oinit
5: Define initial feature vector sinit
6: Compute trajectory time tfull from (4.4)
7: Compute the constant velocity ν as in (4.5)
8: End of Initialization
9:

10: Trajectory Planning
11: s∗(0) = sinit
12: cf = tfull/∆t
13: for c = 1 : cf record
14: s∗(c∆t) = sinit + c∆tν
15: end for
16: End of Trajectory Planning
17:
18: Trajectory Tracking
19: while

∥∥s(t) − s∗fin∥∥2 > threshold do
20: Retrieve current desired feature vector s∗(t)
21: Compute current feature vector s(t)
22: Compute current error e(t) = s(t) − s∗(t)
23: Compute current L̂s, Â and Âd
24: Compute l̇ using (4.2) and send to CDPR
25: end while
26: End of Trajectory Tracking

There are three distinct phases: (i) initialization; (ii) trajectory planning; (iii) trajectory
tracking. During the initialization phase, the final desired object pose c∗p∗ofin and
center-point o∗fin are defined. They are used to compute the final feature vector s∗fin.
Similarly, the initial feature vector sinit is defined based on the initial pose cpoinit and
center-point oinit of the object of interest that are measured and recorded. This allows us
to compute the full error:

efull = sinit − s
∗
fin (4.3)

and trajectory time:

tfull = max
( eh

vh
,h = 1 to 6

)
(4.4)

where eh stands for the h-th component of efull; vh stands for the h-th component of the
desired average velocity v.
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The current desired feature vector s∗(t) varies at a constant velocity ν that is expressed
as:

ν =
efull
tfull

(4.5)

At the trajectory planning phase s∗(t) is defined. At the beginning, when t = 0 s, it
is clear that s∗(0) = sinit. Then for c = 1, . . . , cf, where cf = tfull/∆t and ∆t is the time
interval between two iterations, the trajectory planning is expressed as:

s∗(c∆t) = sinit + c∆tν (4.6)

As a consequence, we can set in (4.2):

̂̇s∗ = ṡ∗ =
ν when t < tfull

0 when t > tfull
(4.7)

The third phase iterates until the difference
∥∥s(t) − s∗fin∥∥2 reaches a defined threshold.

At each iteration, the current feature vector s(t) is computed from the current object pose
and the current object center-point coordinates. The current desired feature vector s∗(t)
is retrieved from trajectory planning algorithm. This allows us to compute the current
error e(t) = s(t) − s∗(t), which is then used as input of the control scheme.

When trajectory tracking is involved, the closed-loop equation is written by
injecting (4.2) into (4.1). Then, by using (4.7), we obtain:

ė = −λLsA
−1
d A
†Â ÂdL̂

−1
s e+ LsA

−1
d A
†Â ÂdL̂

−1
s ṡ
∗ − ṡ∗ (4.8)

The stability criterionΠ keeps the form defined in (3.1). However, even ifΠ is positive
definite, the error e will decrease to zero if and only if the estimations are sufficiently
accurate so that

LsA
−1
d A
†Â ÂdL̂

−1
s ṡ
∗ ≈ ṡ∗ (4.9)

Otherwise tracking errors will be observed. Indeed, VS with trajectory tracking is in
this way similar to VS for tracking a moving object, described in Section 1.4.6.

Most importantly, as the current desired feature vector s∗(t) approaches regularly the
final desired feature vector s∗, the desired feature velocity vector ṡ∗fin will become 0 as
stated in (4.7), which makes the tracking errors vanish at the end.
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4.3 Case Study VII: Trajectory Planning and Tracking on ACROBOT

4.3.1 Experimental Setup

The small CDPR prototype ACROBOT is used for this experimental validation. The
IDS camera is mounted on the small moving-platform facing the ground. AprilTags are
still used as objects.

In order to pick the initial and desired moving-platform poses for this experiment,
the workspace must first be computed. The presence of modeling and manufacturing
errors on cable exit and anchor points are taken into account and they are assumed to be
up to 0.005 m along any arbitrary axis. Similarly, hand-eye calibration errors in camera
pose in the moving-platform frame Fp are simulated as 0.01 m along and 3◦ about any
arbitrary axis. This corresponds to the baseline set of perturbation bounds defined as
Db in Section 3.3.3 and to the workspace shown in Fig. 3.20a. In order to verify the
controller behavior in presence of large perturbations, we compute new workspaces
for increased perturbations on the initial moving-platform pose, the camera pose on
the moving-platform and cable anchor and exit points. Furthermore, we are interested
in changing the orientation of the moving-platform, thus the computed CSW allows
for up to ±30◦ rotation of the moving-platform about any arbitrary axis. The new
workspaces are shown in Fig. 4.2. The workspaces are noticeably smaller due to the
increased perturbations.

Four perturbation sets are defined as d1, d2, d3 and d4. These sets are within the
bounds D1, D2, D3 and D4 shown in Figs. 4.2a, 4.2b, 4.2c, and 4.2d, respectively. The set
d1 includes the following perturbations:

• a perturbation of initial moving-platform pose of 0.19 m and 8.4◦ about
axis u =

[
0.73; 0.67; −0.14

]
, making the assumed initial moving-platform pose

bp̂p0 =
[
0 m; −0.15 m; 0.25 m; 15◦; −25◦; 3◦

]
;

• a perturbation on the camera orientation expressed in Fp of 18◦ about
axis u =

[
0.61; −0.51; −0.61

]
.

The set d2 includes the following perturbations:

• a perturbation of initial moving-platform pose of 0.13 m and 9.5◦ about
axis u =

[
− 0.52; 0.85; −0.04

]
;

• a perturbation of camera pose in the moving-platform frame Fp of 0.05 m and 12.5◦

about axis u =
[
0.78; −0.51; −0.35

]
;

• a perturbation of 0.005 m in a random direction for each cable exit point Ai and
anchor point Bi.

The set d3 includes the following perturbations:

• a perturbation on the initial moving-platform pose of 0.075 m and 8◦ about
axis u =

[
0.6; 0.78; −0.15

]
;
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Figure 4.2: ACROBOT CSW for four perturbation bounds D1, D2, D3 and D4

• a perturbation on the camera pose in the moving-platform frame Fp of 0.05 m and
18◦ about axis u =

[
0.15; −0.63; 0.76

]
;

• a perturbation for each cable exit point Ai and each cable anchor point Bi of 0.01 m
along a randomly generated direction.

Finally, the set d4 includes the following perturbations:

• a perturbation on the initial moving-platform pose of 0.11 m and 6◦ about
axis u =

[
− 0.49; −0.5; 0.71

]
;

• a perturbation on the camera orientation in the moving-platform frame Fp of 15◦

about axis u =
[
− 0.47; −0.65; −0.60

]
.

Clearly the set d4 belongs not only to D4, but also to D1. Note that the smaller
workspaces correspond to D2 and D3, where perturbations on cable exit and anchor points
are also taken into account.

The initial values are the following:
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• bpp0 =
[
0.107 m; −0.026 m; 0.35 m; +20◦; −20◦; 0◦

]
• cpo0 =

[
− 0.022 m; 0.136 m; 0.449 m;−157◦;−18◦;−176◦

]
• o =

[
− 0.043 m; 0.301 m

]
and desired values are selected to be:

• bpp∗ =
[
0.30 m; 0.25 m; 0.12 m; 0◦; 0◦; 0◦

]
• cp∗o =

[
0 m; 0 m; 0.09 m; −180◦; 0◦; −180◦

]
• o∗ =

[
0 m; 0 m

]
Note that the initial moving-platform pose is shown in Fig. 4.2, it is clearly within

all of the workspaces. In two cases the desired moving-platform pose (shown with a
green dot) is outside of the workspace. However, this does not mean that the system will
become unstable. With the moving-platform very close to the desired state the error e
will be small, the remaining motion in translation and rotation will be small as well, thus
the system will be more robust to the perturbations. Indeed, the computed CSW is very
conservative as it always assumes that (a) the distance to the goal is large; (b) each kind
of perturbation range needs to be valid in all directions, while in an experiment only one
direction is tested at a time.

For 2½D VS the adaptive gain λ, defined in (1.31), is used with the following coefficient
values: λ0 = 2.0, λ∞ = 0.4 and λ̇ = 30. Furthermore, the behavior is improved by applying
the gain σ = 4.0 to avoid velocity discontinuities as shown in (1.35).

For the controller with trajectory tracker, λ = λ0 = 2.0 has been set, since the error is
always small. Additionally, for the planner tfull is set to be equal to the execution time of
the classic 2½D VS in order to ease comparability of the results. Finally, ∆t = 0.05 s.

4.3.2 Results

The very first experiment is a simulation in VREP and the results can be seen in Fig. 4.3.
The trajectories of controllers without added perturbation are close to the ideal trajectories.
Indeed, the error never surpasses 5 pixels or 7 millimeters, however it exists. The reason is
that the VREP simulation includes slight cable elasticity, which is not taken into account in
the control. Furthermore, the camera is not ideal, the frames it outputs are rather pixelated,
which can lead to some small AprilTag localization errors.

When the perturbation set d2 is used, it is clear that the effect of the perturbations is
more pronounced on the Cartesian trajectory of the camera, as can be seen in Figs. 4.3c
and 4.3d. The maximum deviation of camera trajectory with 2½D VS is almost 60 mm,
while the AprilTag center-point trajectory deviation does not reach 20 pixels. On the
contrary, the controller with trajectory tracking successfully deals with the added
perturbation and the deviation does not surpass 5 pixels and 10 mm.
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Figure 4.3: 2½D VS experiments in VREP: (a) the trajectory of AprilTag center-point in the image;
(b) The pixel deviation from the ideal straight-line trajectory; (c) the trajectory of the
camera in the frame Fb; (d) the deviation from the ideal straight-line 3D trajectory.

The results from experiments on ACROBOT are shown in Figs. 4.4 and 4.56. Note that
the experiments with perturbations are divided in two pairs and are shown in two figures
to avoid overly cluttered plots. Figures 4.4a and 4.5a show the trajectories of the AprilTag
center-point in the image, while Figs. 4.4c and 4.5c show the 3D trajectories of the camera
in the base frame Fb. Additionally, the deviation from the straight-line trajectory in the
image and in Fb is shown in Fig. 4.4b and Fig. 4.5b for perturbation sets d1 and d2; and
Fig. 4.4d and Fig. 4.5d for perturbation sets d3 and d4, respectively.

Each controller, the classic 2½D VS and the one with trajectory tracking (named
“Traj. tracking" in all of the figures) was tested without added perturbations and under the

6Please also see the accompanying video at https://youtu.be/WsrWoH-Ping

https://youtu.be/WsrWoH-Ping
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Figure 4.4: 2½D VS experiments on ACROBOT: (a) the trajectory of AprilTag center-point in the
image; (b) The pixel deviation from the ideal straight-line trajectory; (c) the trajectory of
the camera in the frame Fb; (d) the deviation from the ideal straight-line 3D trajectory.

effect of each perturbation set d1, d2, d3 and d4. Each experiment was repeated 15 times
and the results are combined in a bar graph shown in Fig. 4.6.

While on a real CDPR the curves are not smooth even for the experiments without
added perturbation, the behavior is in general similar to the simulation. Namely, under
good conditions the trajectories are close to straight lines both in 3D and in the image.
When no perturbation is added, the behavior of 2½D VS controller with and without
trajectory tracking is similar. For both controllers the deviation does not surpass 0.01 m
and 10 pixels. The superiority of trajectory tracking can be clearly seen when the system is
perturbed. Each of the perturbation sets forces the classic 2½D VS to produce deviations
from the ideal trajectories. d2 leads to highest deviation on the 3D trajectory (orange line
in Fig. 4.4c), while d1 has the most pronounced effect on the trajectory in the image (light
green line in Fig. 4.4a). The other two perturbation sets, shown in Fig. 4.5, lead to very
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Figure 4.5: 2½D VS experiments on ACROBOT: (a) the trajectory of AprilTag center-point in the
image; (b) The pixel deviation from the ideal straight-line trajectory; (c) the trajectory of
the camera in the frame Fb; (d) the deviation from the ideal straight-line 3D trajectory.

similar trajectory deviations even though the perturbation sets are clearly different. Indeed,
depending on the direction of the perturbation of the same magnitude, the effect on the
trajectories can be very different. And similarly, some very different sets of perturbations
can be found that produce identical deviations.

On the contrary, the perturbation sets have a minimal effect on the trajectories produced
by the controller with trajectory planning and tracking as depicted by the gray, yellow,
brown and cyan lines in Figs. 4.4 and 4.5. Indeed, for the 3D trajectory the five lines
corresponding to the trajectory tracking controller remain very near. The behavior is
slightly worse in the image, where perturbation sets d1, d3 and d4 lead to about 18 pixel
error (violet, brown and cyan lines, respectively). However, it is two to three times better
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Figure 4.6: Bar graph showing the max and mean deviation from the ideal object center-point c
trajectory in image and the ideal camera trajectory in Fb with and without voluntarily
added perturbations. Classical 2½D VS A - without added perturbation; C - under the
effect of perturbation set d1; E - under the effect of perturbation set d2; G - under the
effect of perturbation set d3; I - under the effect of perturbation set d4. 2½D VS with
trajectory planning and tracking: B - without added perturbation; D - under the effect
of perturbation set d1; F - under the effect of perturbation set d2; H - under the effect of
perturbation set d3; J - under the effect of perturbation set d4. Repeatability of results
shown over 15 runs of each experiment.

than the deviation obtained with the classic 2½D VS under the same perturbations in
Figs. 4.4b and 4.5b.

Figure 4.6 shows the maximum and the mean deviation from the ideal 2D and 3D
trajectories for both controllers subjected to each of the perturbation sets. When there
is no perturbation, the behavior of the controller without and with trajectory tracker is
similar (groups A and B). No matter the perturbation set, the errors are at least two to
three times smaller when the trajectory tracker is used: groups C and D for d1; groups E
and F for d2; groups G and H for d3; groups I and J for d4. Furthermore, with trajectory
tracking the 3D trajectory deviation (and the deviation of the trajectory in image for d2)
remains similar to the experiment without perturbation shown as group B.

4.4 Case Study VIII: Trajectory Planning and Tracking on CAROCA

A short validation is done on CAROCA as well. As was shown in Section 3.4.4, even
without additional perturbation, the produced AprilTag trajectory is rather curved most
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likely due to not taking into account cable elasticity and pulley kinematics. Thus, it is of
interest to see the CDPR behavior once trajectory planning and tracking is implemented.

4.4.1 Experimental Setup

To ease the comparison, the experimental setup from Section 3.4.4 is reused. For the
trajectory tracker, the trajectory time tfull is set to 28 s with ∆t = 0.05 s, and the constant
gain λ is defined as λ = λ0 = 1.7.

4.4.2 Results

The experimental results are shown in Fig. 4.7. The resulting trajectories generated by
the controller with trajectory planner and tracker are shown in pink. Clearly the AprilTag
center-point trajectory in Fig. 4.7a is a straight line. Indeed, the deviation is not perceptible
as it remains less than 5 pixels throughout the trajectory, as can be seen in Fig. 4.7b. The
improvement compared to classic 2½D VS is more than 5 times.
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Figure 4.7: Trajectory planning and tracking experiments on CAROCA: (a) the trajectory of
AprilTag center-point in the image; (b) The pixel deviation from the ideal straight-line
trajectory; (c) the trajectory of the camera in the frame Fb; (d) the deviation from the
ideal straight-line 3D trajectory.
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Figure 4.8: Error e plot for trajectory planning and tracking

The improvement of the camera trajectory in Fig. 4.7c is significantly less perceptible.
This is because 2½D VS had less than 7 cm deviation for a 2.3 m distance. The controller
with trajectory planner and tracker improves this behavior even more and now the
deviation is no more than 1.5 cm, which is more than four times smaller.

It should be noted that the image deviation plot shown in Fig. 4.7b appears particularly
noisy for the controller with trajectory planning and tracking. As can be seen in Fig. 4.8,
multiple components of error e oscillate about value 0. It means that at two consecutive
instants the computed cable velocities change significantly enough to produce a sort of
moving-platform vibration. However, it is small enough to not influence the camera
trajectory too greatly. As a reminder, it was measured by Creaform C-Track with accuracy
of 0.02 mm (more details can be found in Appendix A.2). Thus, for CAROCA a smoothing
filter should be applied to the computed error to obtain smoother control output.

4.5 Conclusions

This chapter proposed the use of trajectory planning and tracking with visual servoing.
First, the proposed controller aims to increase the robustness of the system with respect to
perturbations and errors in the robot model. Furthermore, it ensures that the produced
trajectories are close to the ideal ones. It is implemented with 2½D VS and thus the
straight-line motion of both the center-point of the AprilTag in the image and the camera
in the base frame is ensured.

An extensive experimental validation was done. Several perturbation sets were selected
for ACROBOT. It was found that depending on the perturbation direction, the behavior of
the robot is different. Indeed, the amplitude and direction of trajectory deviation changed
by changing the perturbation direction. Thus not only the range but also the direction of
the perturbation matters.
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The improvement of robustness due to the use of trajectory planning and tracking was
clearly shown in experimental validation on ACROBOT. While both systems, namely,
without and with trajectory tracking, remain stable and achieve the goal, the trajectory
produced by the former is clearly affected by perturbations.

CAROCA is a large CDPR with cables that tend to sag and pulleys of non-negligible
diameter, thus in practice it differs from the simple CDPR model used in the control.
This affects classic visual servo controllers and the produced trajectories are not ideal.
However, using trajectory planning and tracking it is possible to obtain near-ideal output
with unnoticeable deviation. Indeed, using 2½D VS with trajectory planning and tracking,
the produced trajectory was nearly an ideal straight line for the camera and for the object
center-point. More precisely, the deviation of the camera from the straight line over a 2.3 m
distance is at most 1.5 cm and the mean is 0.71 cm with standard deviation of 0.34 cm.

In summary, as shown in our experiments, the addition of trajectory planning and
tracking to the visual servoing controller allows us to keep the robot behavior close to
the ideal one even in the presence of large perturbations. Such control of trajectories is
especially important in an industrial environment or simply in a cluttered one. Indeed, as
the trajectories are kept close to ideal, there is less chance of collisions with objects in the
environment caused by perturbations.

However, it can occur that the perturbations are very high and even with trajectory
planning and tracking, the deviations become significant. In such a case, when the system
is very badly modeled/calibrated, it could occur that the current feature vector s(t)
becomes very far from the desired one s∗(t). In this case it could be of interest to re-plan
the trajectory. However, in practice the robot is able to withstand a perturbation of≈ 0.2 m
on the moving-platform position (combined with other perturbations), while its workspace
is a 1 m3 cube. Therefore, it is highly unlikely that a re-planning step would be required
for ACROBOT.

Note that any kind of trajectory can be planned. It does not necessarily have to be
a straight line in Cartesian space or in the image. Thus, visual servoing with trajectory
planning and tracking is an excellent approach to ensure not only goal accuracy, but also
precise tracking of a predefined trajectory.
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5.1 Introduction

In the previous chapters it was shown that visual servoing is a robust and accurate
approach to control CDPRs. Using an onboard camera leads to high accuracy in the
vicinity of the target while also providing robustness to different perturbations, including
modeling errors. It was shown that the perturbations in the system do not affect the final
accuracy, while they have an effect on the trajectory to the target. This issue was then
successfully dealt with in Chapter 4. However, the implemented controllers do not deal
with cable management. Indeed, it is assumed that as the CDPR executes the task, all of
the cables are tensed and can thus pull on the moving-platform according to the control
output.

In practice, cables can become slack during task execution or they can already be slightly
slack at the beginning of the task. The slackness can occur for various reasons, such as:
(i) CDPR modeling errors; (ii) coarse estimation of the initial moving-platform pose;
(iii) reaching the border of SFW for the current orientation; (iv) cable creep (long-term
extension); (v) coiling errors; (vi) having more cables than degrees of freedom of the
moving-platform.

For a redundantly actuated CDPR, having r cables slack does not prevent the
moving-platform from remaining in a given pose in a static configuration. Indeed, if
cables are considered non-elastic then for a suspended CDPR at most six cables will
be in tension [Mer17]. However, no matter the control approach, cable slackness leads
to the CDPR being only partly responsive to the control output and thus not behaving
as expected. Moreover, during a trajectory, cable slack will be transferred to different
cables at the transition between two six-cable configurations [Mer17], the moving-platform
becoming temporarily underactuated.

While some limited slackness does not make the system unstable, it acts as an additional
perturbation. Indeed, if a cable is slack, applying a velocity to it will not produce the
desired displacement of the moving-platform. A simplified example is shown in Fig. 5.1.
Here, on the left a cable is in tension with initial length li = 2 m and after applying a
velocity l̇ = 0.12 m/s for 1 s the final cable length is lf = 1.88 m and the moving-platform
has been moved by this cable. On the right the initial location of points A and B is the
same as before, but the cable is now slack and its initial length is li = 2.12 m. With the
same cable velocity, the final cable length becomes lf = 2 m, but the moving-platform
does not move. Indeed, the applied velocity only led to cable slack reduction and not yet
to moving-platform motion.

With slack cables the actual displacement of the moving-platform differs from the
estimated one. This can lead to accumulation of additional errors in moving-platform pose
estimation for the methods based on control integration and on the CDPR model. This in
turn leads to computation of cable velocities that can increase cable slackness. Thus, it is
important to avoid cable slackness in order to improve the CDPR behavior and to keep its
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Figure 5.1: Effect of cable slackness on moving-platform displacement

moving-platform as stiff as possible. In this chapter different approaches to ensure cable
tension management are proposed to enrich visual servoing controllers.

5.2 Tension Management Approaches

Cable tensions and moving-platform stiffness can be managed in multiple ways. First,
cable tensions can be used in the CDPR model [Dal+12] [Dal+19]. This is unavoidable
once a more complex cable model is to be considered, such as a sagging cable with
non-negligible mass. In fact, the authors used not only tension sensors, but also four
additional cameras to detect the cable angle that was also necessary for their chosen cable
model. Note that using tensions in the control loop and not comparing them to a desired
value does not ensure that there will be no slack in the system. While it is less likely thanks
to the accurate cable model, cable slack can occur, especially if some cable characteristics
are badly determined or due to perturbations in the system.

Usually, a Tension Distribution Algorithm (TDA) is used to determine the desired set
of tensions for a desired moving-platform pose [CCL15] [Kra+14] [Ras+18]. The optimal
tension distribution can be computed for all moving-platform poses in a path offline.
These tensions are then used in control as output or they are transformed into motor
torques for each iteration. If tension sensors are not available, the control is based on
motor torques [CCL15]. Generally, extensive tuning is necessary to ensure good behavior
and to avoid cable slack.

Ideally, if tension sensors are available, the control output is based on the difference
between the TDA output and current tension measurements [Kra+14]. This allows to
correct any cable slackness that might occur. This approach is not widely used because
finding a good TDA solution online during the task execution can be problematic and
special techniques are necessary [Bor+09] [Gou+15] [Pot14]. In [Kra+14] the main control
is a position control and the tension measurements are compared to the output of a
TDA and a cable length correction is produced. The final control output is a sum of
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the inverse kinematics output and the correction. From their experiments, all cables
of a fully-constrained CDPR are in tension and overall the cable tension values have
tripled after correction. As a consequence, the stiffness of the manipulator is substantially
increased.

Note that a position control scheme is developed in [Kra+14]. It is not directly usable
for a velocity control. On the contrary, our goal is to keep using visual feedback in order
to remain robust and accurate and to enrich this controller with tension management
capability.

5.2.1 Visual Servoing with Tension-Based Correction of Velocity

Possibly the simplest approach is to keep the visual servoing controller as shown in
Fig. 1.22 of Section 1.4.2 and to add a cable velocity correction that would deal with the
cable slack. The proposed control scheme with a Tension Correction Algorithm (TCA) is
shown in Fig. 5.2. This controller requires the addition of cable tension sensors.
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Figure 5.2: Visual servoing control of a CDPR with a TCA

Here, at every iteration cable tensions are measured and recorded in vector τm.
Each component of this vector is then compared to a threshold tension τt and the ith
component δl̇i of a cable velocity correction vector δl̇ is computed as:

δl̇i =

−kc(τt − τmi
) if τmi

< τt, i = 1, . . . ,m

0 otherwise
(5.1)

where τmi
is the measured tension of the ith cable, and kc is a positive gain that needs to

be tuned. The tension τt is the threshold value under which the cable is considered to be
slack.

The resulting behavior depends on the sign of the ith cable velocity l̇i computed
by the controller. Note that negative velocity leads to the cable becoming shorter, and
positive velocity leads to the cable becoming longer. Furthermore, according to (5.1) δl̇i
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is not positive. Thus applying δl̇i to a negative l̇i results in cable length reducing faster.
Applying δl̇i to a positive l̇i results in cable length increasing slower.

It should be noted that the correction speed is a function of the gain kc. The greater
the gain, the faster the correction. However, setting kc too high may perturb the main
controller. Thus, kc should be tuned based on the frequency of the TCA loop. Furthermore,
kc is used to change the order of magnitude between the tension difference and cable
velocities. For example, if (τt − τmi

) ≈ 1 N and l̇i ≈ 0.05 = 5× 10−2 m/s, then kc will be
defined as kc = 10−2 m/Ns.

The threshold τt is a tension that is feasible for every cable no matter the
moving-platform pose. Such a tension can be found by tracing a workspace, e.g. the Static
Feasible Workspace (SFW), presented in Section 1.3.3, and choosing the lower tension
bound τlb. Indeed, τlb is feasible for every cable and for all moving-platform poses within
SFW, thus it is a good pick for τt.

The proposed tension correction algorithm is greatly simplified when compared
to [Kra+14]. Indeed, instead of using a TDA and a complex computation of the final
tension correction, we simply compare the current tension measurement to a threshold.
In this case, the need for the knowledge of the moving-platform pose is avoided since
the tension threshold is constant. It is very convenient, because we only have a coarse
moving-platform pose estimation. Furthermore, using a coarse moving-platform pose
estimation with a TDA could be impossible. More precisely, the tension set provided
by the TDA could be unattainable with the current moving-platform pose in case of
estimation errors. This would lead to perturbing the visual servo controller and possibly
even making it unstable, thus failing the task. In addition, the simpler the calculations, the
faster the controller response to each incoming image.

In case TCA is not efficient enough due to its simplicity, there are several ways to
extend it as shown in the following sections. Note that these approaches will require a
better knowledge of at least the initial moving-platform pose.

Gain as a Function of Cable Lengths

To increase the slack correction rate, it could be possible to set the gain as a function of
cable lengths. More precisely, the gain should depend on the cable length error.

This approach would require a good moving-platform pose estimation or ideally its
measurement. Given a moving-platform pose, it is possible to compute the expected cable
length vector le. It can then be compared to the actual cable length vector la. The latter is
retrieved from the motor positions qm and the initial cable length vector l0:

la = l0 + rwqm (5.2)

Note that here it is assumed that at t = 0 s when la = l0, the motor positions qm are
reinitialized to zero.
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Then an adaptive gain ka can be expressed as:

ka = kcδl (5.3)

where δl = la − le and kc is the previously defined constant gain.

The obtained gain vector ka is used to compute the velocity correction δl̇:

δl̇i =

−kai(τt − τmi
) if τmi

< τt, i = 1, . . . ,m

0 otherwise
(5.4)

Consequently, cable velocity correction only occurs when cable slack is detected by
the tension sensors. However, with the adaptive gain, the correction rate increases with
the increased slack. Thus, the correction of 1 cm and 8 cm slack should happen in the
same amount of time. Rapidly correcting cable slack allows us to reduce the probability of
underactuation during transfer of slack between different cables. The drawback remains
that this approach requires a rather good knowledge of moving-platform pose in order to
avoid creating incorrect corrections and thus the use of another sensor at least at the very
beginning of the task.

Threshold τt as a Function of Cable Lengths

Setting τt as a function of cable length could increase the stiffness of the
moving-platform. In fact, this can be considered a middle step between TCA and TDA.

It could be assumed that the shorter the cable, the higher the tension to be applied by
that cable. This assumption is based on the fact that the shorter the cable Ci, the closer the
moving-platform to the exit point Ai and thus the larger the part of the moving-platform
mass that is supported by this cable.

First of all, the higher limit of the threshold needs to be found along with the
corresponding cable length. Note that with the same cable length but different cable
angle the tension measurement will be different. Indeed, a vertical and a horizontal cable
of same length will not have the same tension. Thus it appears that τt should be a function
of cable length and cable angle. The latter however can be difficult to obtain without
additional sensors. Indeed, it can be estimated from the moving-platform pose, but that
requires a good knowledge of the pose.

Another concern is the relation between cable length and cable tension. It could be
defined as simply linear or exponential. The risk with such an approach is that if the
threshold is set too high, the correction algorithm will attempt to correct a false-slack cable
and by doing so will pull on the moving-platform. This in turn can make another cable
register as slack and the TCA would start correcting it too. This behavior would make the
whole system become unstable. The tuning of such a system would be very complex.
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To conclude, such an approach is indeed possible, but would require a careful tuning
and use of additional sensors. It stands to question whether the improvement, which may
come, would be worth the increased complexity. It should also be noted that the feasible
polygon is usually very small for suspended CDPRs. Therefore, the size of possible cable
tension space is small. Accordingly, selecting a set of cable tensions at the barycenter of
the feasible polygon or at its boundary (the current solution) will not change the behavior
of the CDPR that much. Of course, this is not true for fully-constrained CDPRs and there
a constant threshold will not be optimal.

Obtaining τt Through TDA

It should be noted that it is not possible to use directly a TDA instead of a TCA, because
the final control is in velocity. Instead TDA could be used to provide a tension vector τt
for a given moving-platform pose. An updated control scheme is shown in Fig. 5.3.
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Figure 5.3: Visual servoing control of a CDPR with a TDA

The TDA block requires the next expected moving-platform pose as an input. Indeed,
we want to compute the tension distribution corresponding to the pose where the
moving-platform would arrive after ∆t seconds. Thus, it is necessary to use control-based
moving-platform pose estimation in the block MP pose estim. as shown in Section 2.2.1.
The expected moving-platform pose is denoted as bT̂pe. The control scheme contains a
PID block, but initially just a proportional controller could be used. Indeed, in such a case
the proportional gain would be similar to kc, which was defined for TCA.

Evidently, this scheme is more complex. Furthermore, we suspect that it will be less
robust to moving-platform pose estimation errors. This is because the moving-platform
pose is required by the TDA to be able to compute a corresponding tension set τt. To be
able to fully take advantage of the TDA, a moving-platform pose measurement should
be added to the control. In such a case, one could assume that the moving-platform pose
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is well known and attempting to attain the computed tension set τt will not perturb the
main controller.

5.2.2 Visual Servoing with Cable Length-Based Velocity Correction

A similar cable length-based approach can be created. In this case the cable velocity
correction vector δl̇ is computed based on cable lengths. The control scheme is shown in
Fig. 5.4.
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Figure 5.4: Visual servoing control of a CDPR with a TCA

More precisely, the current tension measurements τm and motor positions qm are
retrieved from the CDPR. Current cable lengths la are computed with (5.2). A second set
of cable lengths lmp is computed via the IGM for the estimated moving-platform pose in
matrix form bT̂p. Note that here we estimate the current moving-platform pose, unlike
Fig. 5.3. Using the tension measurements τm we find the two cables Cb1 and Cb2 with the
lowest tension and the velocity correction is computed as:

δl̇i =


(
lmpi + lt − lai

)
/(kl∆t) if lmpi + lt < lai and

(
Ci = Cb1 or Ci = Cb2

)
0 otherwise

(5.5)

where lmpi is the ith element of lmp; lai is the ith element of la; kl > 1 is a gain that
needs to be tuned; lt is a non-negative threshold cable length that can be set to 0.

Thus, the correction is only computed for the two cables with the lowest tension
measurement and only if the actual length lai is longer than the correct length for the
current moving-platform pose lmpi summed with a safety threshold lt. In a perfectly
known system lt would be set to zero, however in our case it should be a positive value
with the initial guess being lt = 0.01 m. The gain kl is used to adjust the correction rate.
Ideally it could be set to kl = 1, however it would be safer to choose a larger value.
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The risk with such a scheme and constant gain values is to never remove slack
completely. An adaptive gain could be used instead, as described in the improvement
propositions of Section 5.2.1.

5.2.3 Visual Servoing with Torque Control

Instead of controlling the robot in velocity, it can be done also with motor torques.
In this case the camera velocity computed by the visual servo controller needs to be
transformed into the expected moving-platform pose bT̂pe to be used in the TDA block.
The proposed control scheme is shown in Fig. 5.5.
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Figure 5.5: Vision-based torque control

The TDA, presented in Section 1.3.4, computes the desired set of tensions τ that
corresponds to the given moving-platform pose. The tensions τ need to be transformed
into motor torques, which is done simply by defining tc = rw

Rg
τ, where rw is the winch

radius and Rg is the gearbox reduction rate.

However, this controller cannot be used directly, because the motor torques computed
from the cable tensions are not sufficient to surpass motor friction. Indeed, the final torque
command tm given to the robot must include a second component covering the motor
friction, as shown in Fig. 5.6:

tm = tc + tf (5.6)
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Figure 5.6: Vision-based torque control with motor friction
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where

tf = Fc + (Fs − Fc)e(−q̇m/ωs) + Fvq̇m (5.7)

with Fc being the Coulomb friction coefficient, Fs being the static friction coefficient, Fv
being the viscous friction coefficient,ωs being the Stribeck velocity, and q̇m is the motor
velocity vector, which can be obtained from cable velocities l̇ as:

q̇m =
1
rw
l̇ (5.8)

The determination of friction coefficients Fc, Fs and Fv must be done experimentally
for each motor. The torque measurements for each motor at different velocities need to
be recorded. Then, by tuning the friction coefficients, the curve is fitted to the recorded
torque measurements.

One should also note that motor torques that are retrieved from motor encoders are
often very noisy. Due to this it would be preferable to use, e.g., tension sensors and a
PID to control the robot, as shown in Fig. 5.7. Here, the measured tensions τmeas are
compared to the tension vector τ produced by the TDA. The difference is then used in the
PID controller. The latter outputs the motor torques tm.
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Figure 5.7: Vision-based tension control with a PID

Finally, such a controller suffers from the fact that the moving-platform pose estimation
is open-loop. Indeed, the currently available sensors, namely the onboard camera and
tension sensors, do not allow us to measure the moving-platform pose. Instead, it needs
to be estimated. Once the estimation becomes too coarse, the robot will not be able to
arrive at the desired location. This is because the computed tension set τ corresponds
to the estimated moving-platform pose. In fact, it could happen that this tension set
is not within the feasible polygon of the actual moving-platform pose. Thus, ideally
this controller would need to be enriched by a measurement system that would retrieve
the moving-platform pose. For example, a second camera, used in the eye-to-hand
configuration, can be used to localize the moving-platform in the Cartesian space. The
measured moving-platform pose could then be given to the Pose Estim. block to compute
the desired moving-platform pose at this step, as can be seen in Fig. 5.8.



5.2 Tension Management Approaches 177

−λL̂†s Âd
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Figure 5.8: Vision-based tension control with a PID and an eye-to-hand camera

5.2.4 Vision-Based Position and Torque Control

In the previous section the focus was on keeping the advantages of visual servoing and
transforming the control signal into torque control, while passing by the TDA. Here, we
propose abstracting from the classic visual servoing controller even more. There are two
options, either position or torque control can be used. As can be seen in Figs. 5.9 and 5.10,
the approach is basically the same.
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Figure 5.9: Position control based on object pose measurements

It is assumed that the object pose in the camera frame can be retrieved from the
Computer Vision Algorithm. This pose is expressed as a transformation matrix cTo.
Similarly, the desired object pose is defined as the desired transformation matrix c

∗
To∗ .

The current moving-platform pose is retrieved from a static camera and the transformation
matrix bTp is defined. Then the desired moving-platform pose is found as:

bTp∗ =
bTp

pTc
cTo

c∗T−1
o∗

cTp (5.9)

Since it is highly likely that bTp∗ is far from bTp, then giving the desired
moving-platform pose directly to IGM or TDA can lead to very high cable velocities
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Figure 5.10: Torque control based on object pose measurements

and tensions. Instead a planner needs to be used to find a bTp∗(t) that is not too far from
bTp and would ensure smooth transition from the initial state to the desired one.

In case of the position controller, bTp∗(t) is given to the IGM, which outputs the desired
cable length vector l∗. The latter is compared to the current cable length vector lc in the
PID block. Finally, PID outputs the motor positions.

In case of the torque controller, bTp∗(t) is given to TDA, which outputs the desired
tension vector τ∗. The latter is compared to the measured cable tensions τmeas in the PID
block and the CDPR receives the resulting torque vector tm.

In both cases it is assumed that the inner loop with the PID has a significantly higher
frequency than the outer loop with cameras. Indeed, the onboard camera is used to update
the current knowledge of the object pose in the camera frame. This in combination with
the current moving-platform pose allows us to correct the desired moving-platform pose.

It should be noted that with such a controller it is highly likely that the target object
leaves the camera field of view. Indeed, here the control output is generated by a PID
and not by visual servoing. For this reason the object can leave the image frame and
consequently, the straight-line motion of the object in the image is not ensured.

5.3 Implementation of TCA on two CDPRs

In the following sections the TCA is validated on both ACROBOT and CAROCA.
Considering the very good results obtained, the more complex methods have not been
implemented.

5.3.1 Case Study IX: VS with TCA on ACROBOT

Experimental Setup

The small CDPR prototype ACROBOT is used to validate experimentally the effect
of cable slackness on the system behavior. The large moving-platform is used, because
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it houses the tension sensor hardware. Tension sensors are mounted on the cables close
to their anchor points Bi. They are calibrated for a range from −25 N to 75 N, with an
accuracy of 0.24 N and repeatability of 0.01 N. Of course a cable cannot compress, however
it was not possible to calibrate the sensors only for tension.

The main loop frequency is 25 Hz. The TCA loop can be as fast as 512 Hz, but for
the following experiments it was kept at main loop frequency. The tuning of gain λ is
described in Section 4.3. After tracing SFW as shown in Section 1.3.3, it was found that
the optimal lower bound of cable tension is τlb = 1 N, because the workspace remains
large and all cables remain in tension. Thus, we set τt = τlb = 1 N. Finally, TCA gain kc
is tuned to be 0.04 m/Ns.

Experiments with Cable Slackness at the Initial Moving-Platform Pose

Every experiment starts at a predefined initial moving-platform pose corresponding to
the initial feature vector s. Similarly, the desired moving-platform pose, corresponding to
the desired feature vector s∗, is the same for all experiments.

The initial values are the following:

• bpp0 =
[
0.202 m; 0.118 m; 0.268 m; −18◦; 10◦; 4◦

]
• cpo0 =

[
0.1 m; −0.05 m; 0.26 m; 165◦; 10◦; 179◦

]
• o0 =

[
0.38 m; −0.19 m

]
and desired values are selected to be:

• bpp∗ =
[
− 0.11 m; −0.20 m; 0.366 m; 13◦; −20◦; 33◦

]
• cp∗o =

[
− 0.14 m; 0.115 m; 0.35 m; 178◦; −20◦; 147◦

]
• o∗ =

[
−0.39 m; 0.33 m

]
Meanwhile, bpp0 and bpp∗ have been measured with the HTC Vive tracking system,
described in Appendix A.1.1, and serve as ground truth. It is different from the bpp used
in the control scheme. Note that Creaform C-Track was not available to be used in these
experiments.

Given the initial moving-platform pose bpp0 , slack can be introduced on l1 and l2.
In the scope of experiment the robot behavior is examined with cable slack being
between 2 cm and 8 cm. More precisely, once the moving-platform is in its initial pose
bpp0 , the winches actuating the cables C1 and C2 were turned to increase their length by
2 cm, 4 cm, 6 cm or 8 cm. Ten experiments, named E1 to E10 are defined:

• E1 is 2½D VS without cable slack;
• E2 is 2½D VS with TCA without cable slack;
• E3 is 2½D VS with 2 cm cable slack;
• E4 is 2½D VS with TCA with 2 cm cable slack;
• E5 is 2½D VS with 4 cm cable slack;
• E6 is 2½D VS with TCA with 4 cm cable slack;
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• E7 is 2½D VS with 6 cm cable slack;
• E8 is 2½D VS with TCA with 6 cm cable slack;
• E9 is 2½D VS with 8 cm cable slack;
• E10 is 2½D VS with TCA with 8 cm cable slack.

The experimental results are shown in Figs. 5.11 through 5.167. Cable lengths, velocities
and tensions are shown in Figs. 5.11, 5.12 and 5.13, respectively. Note that due to the
symmetry in CDPR design and the diagonal moving-platform trajectory, only curves for
cables C1, C2, C5 and C6 contain significant information. Indeed, the length and velocity
curves for the other four cables are essentially the same no matter the experiment. In this
first part, for a matter of clarity only experiments E1, E2, E5, E6, E9 and E10 are shown. The
added slack can be seen in Figs. 5.11a and 5.11b, where cable lengths l1 and l2 are shown.

First, the behavior of the CDPR under 2½D VS control with slack and no TCA is
analyzed. Cables C1 and C2 remain longer in E5 and E9 than in E1 along the whole
trajectory (gray and green curves against blue curve, respectively, in Figs. 5.11a and 5.11b).
Without TCA the cables C1 and C2 remain slack. However, at the end of trajectory the final
cable lengths l1 and l2 in E5 and E9 are the same as in E1. This does not mean that slack
has disappeared. Indeed, it can be seen in Figs. 5.11e and 5.11f that the final length l5 and
l6 has increased proportionally for the gray and green curves. Thus, the slack has been
transferred from C1 and C2 to C5 and C6. This can also be seen in the tension measurements.
Indeed, at first τ1 and τ2 are below the threshold τt, but by the end of the trajectory their
values increase, while τ5 and τ6 decrease below τt. Note that more than two cables can
become slack. For instance, at t = 4 s for both the gray and green curves, the cable tensions
τ2, τ5 and τ6 are below τt.

Once TCA is added to the controller, the behavior is different. It can be seen that
the brown curve of E6 aligns with pink and blue curves at approximately t = 0.8 s in
Figs. 5.11a and 5.11b. Thus, at t = 0.8 s cable lengths l1 and l2 are equal for blue and brown
curves of E2 and E6, respectively. Indeed, until t = 0.8 s velocity l̇1 of the brown curve
is increased because of the TCA algorithm, as can be seen in Fig. 5.12a. Moreover, cable
tension τ1 of the brown curve also starts to increase at t = 0.8 s, as shown in Fig. 5.13a.
Thus, it can be concluded that 4 cm of cable slack have been successfully detected and
corrected in less than one second. The cyan curves, corresponding to E10, show a similar
trend. Indeed, in Figs. 5.12a and 5.12b increased velocities l̇1 and l̇2 can be observed until
approximately t = 1.5 s. At this time the tensions τ1 and τ2 start to increase (see Figs. 5.13a
and 5.13b) and cable lengths l1 and l2 align with the blue and pink curves (see Figs. 5.11a
and 5.11b). It can be concluded that the larger the cable slack, the higher the time to reduce
cable slack.

Note that for cables C5 and C6 the velocity curves of E6 and E10 remain aligned with
the curves of E2, as can be seen in Figs. 5.12e and 5.12f. Similarly, cable length remains the

7Please also refer to the accompanying video at https://youtu.be/fS8Xf3wud_4

https://youtu.be/fS8Xf3wud_4
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Figure 5.11: Cable lengths li
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Figure 5.12: Cable velocities l̇i



5.3 Implementation of TCA on two CDPRs 183

0 2 4 6 8

t, s

0

2

4

6

8

10

12
τ

1,
N

(a)

0 2 4 6 8

t, s

0

2

4

6

8

10

12

τ
2,

N

(b)

0 2 4 6 8

t, s

0

5

10

τ
3,

N

(c)

0 2 4 6 8

t, s

0

5

10

τ
4,

N

(d)

0 2 4 6 8

t, s

0

2

4

6

8

10

12

τ
5,

N

(e)

0 2 4 6 8

t, s

0

2

4

6

8

10

12

τ
6,

N

(f)

0 2 4 6 8

t, s

0

5

10

τ
7,

N

(g)

0 2 4 6 8

t, s

0

5

10

τ
8,

N

(h)

E1: 2½D VS, no slack
E2: 2½D VS with TCA, no slack
E3: 2½D VS, slack=4 cm

E4: 2½D VS with TCA, slack=4 cm
E5: 2½D VS, slack=8 cm
E6: 2½D VS with TCA, slack=8 cm

Figure 5.13: Cable tensions τi
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same for pink, blue, brown and cyan curves in Figs. 5.11e and 5.11f, which means that no
slack remains in the system. Thus, the slack is corrected before the transfer point and thus
the moving-platform does not become underactuated at any point of the trajectory, when
TCA is used.

Upon inspecting the final tension distribution after each task with TCA, it is clear that
there are some differences. Indeed, TCA is not a TDA, it does not define precise tension
values for each cable in each iteration. Instead, only a threshold is given and the tension
in any cable is only corrected if it is below this threshold τt. For this reason, the tension
distribution at the desired pose for pink, brown and cyan curves in Fig. 5.13 slightly varies.
To evaluate the feasibility of the obtained tension distributions, the feasible polygon is
plotted for the moving-platform at the desired pose bpp∗ and is shown in Fig. 5.14. The η1

and η2 values corresponding to the final tension measurement of each experiment have
been computed and are also shown in Fig. 5.14 and in Table 5.1. For experiments E3, E5,
E7 and E9 the final tension set is not within the feasible polygon. This is because the final
tension of two cables is below the threshold τt, which corresponds to the lower bound
tension τlb that is used to delimit the feasible polygon. On the contrary, all experiments
with TCA are finished with a tension distribution within the feasible polygon. However,
an outward trend can be observed, where the plotted point is further from the barycenter
with increased initial slack. Indeed, in E2 no slack is added and it is the closest to the
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Figure 5.14: Feasible polygon of tensions at the final moving-platform pose with the final cable
tension set for each experiment
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barycenter. The residual is computed as εEi = τpv +NηEi − τEi, where the particular
solution τpv is computed by (1.27). As can be seen, the residual is never zero. One of
the reasons can be that it is affected by the tension sensor accuracy, which is 0.3 N. The
effect of sensor accuracy can be seen in Fig. 5.15, where for each experiment the lowest
and highest residual value was found within 0.3 N of the tension measurement that was
recorded during experiments. Clearly, sensor accuracy has a considerable effect on the
residual error. Nonetheless, with TCA it is always lower, reaching the lowest value in E2,
when no slack was added.

Table 5.1: Tension sets at final moving-platform pose and corresponding λ values

Exp. Tension set, N η = [η1;η2] Residual error,N

E1 τE1 = [9.4; 7.3; 4.8; 6.1; 2.8; 3.7; 5.7; 5.9] ηE1 = [0.27; 0.32] εE1 = 1.21

E2 τE2 = [10.0; 7.8; 3.9; 5.4; 3.1; 4.0; 5.9; 6.1] ηE2 = [−0.69; 0.07] εE2 = 0.68

E3 τE3 = [7.2; 4.5; 7.1; 9.6; 0.0; 0.0; 8.0; 9.4] ηE3 = [7.77; 3.92] εE3 = 0.99

E4 τE4 = [9.2; 6.5; 4.6; 6.6; 2.9; 3.0; 6.2; 6.9] ηE4 = [1.14; 1.44] εE4 = 0.88

E5 τE5 = [7.2; 4.8; 7.6; 9.2; 0.0; 0.0; 7.8; 9.4] ηE5 = [7.75; 3.61] εE5 = 1.54

E6 τE6 = [9.4; 6.8; 4.8; 6.6; 2.5; 2.2; 6.4; 7.2] ηE6 = [1.62; 1.82] εE6 = 0.96

E7 τE7 = [6.8; 4.5; 7.0; 9.5; 0.0; 0.0; 8.1; 9.4] ηE7 = [7.83; 3.81] εE7 = 1.09

E8 τE8 = [9.5; 6.1; 5.3; 7.9; 2.8; 2.3; 7.5; 8.4] ηE8 = [2.92; 2.68] εE8 = 1.63

E9 τE9 = [7.4; 4.8; 7.6; 9.3; 0.0; 0.0; 8.8; 9.5] ηE9 = [8.11; 3.47] εE9 = 1.06

E10 τE10 = [8.3; 5.9; 5.2; 7.0; 1.8; 2.1; 6.8; 7.6] ηE10 = [3.11; 1.88] εE10 = 1.02
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Figure 5.15: Residual error as a function of tension sensor accuracy

The effect of cable slackness on the AprilTag center-point trajectory in the image is
visible in Fig. 5.16. Here, all ten experiments are shown, including E3, E4, E7 and E8. The
larger the initial cable slack, the larger the deviation from the straight-line trajectory. As
the moving-platform rapidly falls to a new cable configuration, it causes a sideways drift
in the image trajectory. In fact, the cable configuration is changed twice in the middle of
the trajectory, which is the reason why the trajectory in Fig. 5.16a exhibits a drift to both
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sides for E5, E7 and E9. This is also the reason why there are two spikes on the trajectory
deviation plot in Fig. 5.16b. Furthermore, right after the second spike a rapidly damping
oscillation can be seen for E5, E7 and E9. This corresponds to the rapid changes of τ1 and
τ2 in Figs. 5.13a and 5.13b. Indeed, as the moving-platform is not stiff and the cables are
very slack, the moving-platform oscillates slightly due to the inertia of its fall to a different
cable configuration.
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Initial position
Desired position
E1: 2½D VS, no slack
E2: 2½D VS with TCA, no slack
E3: 2½D VS, slack=2 cm
E4: 2½D VS with TCA, slack=2 cm

E5: 2½D VS, slack=4 cm
E6: 2½D VS with TCA, slack=4 cm
E7: 2½D VS, slack=6 cm
E8: 2½D VS with TCA, slack=6 cm
E9: 2½D VS, slack=8 cm
E10: 2½D VS with TCA, slack=8 cm

Figure 5.16: AprilTag center-point trajectory in the image and the deviation from the desired
straight-line trajectory in pixels

On the contrary, when TCA is used, the produced trajectories are very close to the
desired straight lines. Indeed, the deviation with TCA is approximately the same in every
experiment. Thus, TCA does not perturb the main controller. Indeed, it improves the
visual servoing controller by reducing cable slack. However, it does not improve the
visual servoing controller’s robustness to other perturbations. To reduce this deviation,
one could combine the trajectory planning and tracking with TCA.
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Figure 5.17: Translational and rotational deviation of final moving-platform pose estimation

Eventually, cable slackness affects the accuracy of moving-platform pose estimation,
because slack cables do not produce the desired moving-platform displacement. In
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Fig. 5.17 the distance between the actual final moving-platform pose and its estimation
is shown for each of the ten experiments. Here, the rotational deviation is defined as
the angle θ of the axis-angle θu representation of the rotation matrix p̂Rp between the
estimated and the actual moving-platform pose. In all five experiments, where TCA is
used, the deviation remains approximately the same, that is, the translational error is
approximately 0.03 m and the rotational error is approximately 2◦. On the contrary, when
TCA is not used, the estimation deviates reaching almost 10 cm and 5◦ error for E9. Given
the short trajectory time of only 8 s, it can be concluded that large cable slack leads to fast
deviation of the moving-platform pose estimation. Moreover, the larger the initial cable
slack, the larger the error in moving-platform pose estimation.

Stability Analysis of the Cable Slackness Experiments

This section deals with the stability analysis for the given experiments. The stability
criterionΠ is computed off-line as defined in (3.1) and the recorded variables were used
as follows:

• the same in the model and estimation: s, s∗, Ls, Ai, Bi, pTc, Ad;
• estimation: bT̂p as estimated by the controller;
• model: bTp acquired from HTC Vive tracking system.

The chosen expression of the CDPR model and thus stability criterion Π does not
contain cable tensions. For CDPRs with light cables, if one cable becomes slack, as
detected by tension measurements, then it can be considered non-existent. Indeed, a
light cable exerts a negligible force on the moving-platform when slack. Furthermore,
while a cable is slack, reducing its length without elimination of slack does not induce any
moving-platform motion. The expression of the Jacobian matrix A is updated at every
iteration accordingly. For example, if at t = 0 s tension τm1 < τt, then the corresponding
row of matrix A is removed and it becomes a (7× 6)–matrix. Furthermore, if more
than two cables are slack, the Jacobian A will be rank deficient and the robot will be
underactuated. Considering the stability criterion Π, it is clear that once rank(A) < 6,
then rank(Π) < 6 and thus the stability criterion will not be fulfilled.

Fig. 5.18 contains the results of stability analysis over time. Here, the Boolean Stable
is true if Π > 0 and false otherwise. As expected, when no cable slack is added to the
system, it remains stable throughout the trajectory no matter the controller, as shown in
Fig. 5.18a. It can also be seen that at one iteration one tension measurement goes below
the threshold. However, that does not render the system unstable, because there are still
seven cables in tension. For experiment E3, shown in Fig. 5.18b in orange, in the middle
part of the trajectory three cables are becoming slack. Furthermore, at some iterations
even four cables are becoming slack. As the cable slack is increased in experiments,
the time period with moving-platform being underactuated also increases. Indeed, in
E3, shown in Fig. 5.18b, the moving-platform is underactuated for approximately two
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Figure 5.18: The correlation between the amount of cables in tension and system stability for: (a)
no slack; (b) 2 cm slack; (c) 4 cm slack; (d) 6 cm slack; (e) 8 cm slack



5.3 Implementation of TCA on two CDPRs 189

seconds. However, in E9, shown in Fig. 5.18e, the moving-platform is underactuated for
approximately four seconds, which is half of the trajectory time.

Once the moving-platform is underactuated,Π > 0 is no longer true. Thus, when the
moving-platform is underactuated, it is no longer in equilibrium and the stability of the
system is not ensured. Hence, the equilibrium of the moving-platform and the stability of
the system are linked.

On the other hand, when TCA is added to the control, it rapidly corrects the slack and
the system remains stable all along the trajectory, as can be seen in Fig. 5.18. In this figure
one can clearly see that by increasing the cable slack, the time required to fix it increases
proportionally. For example, in E4 with 2 cm slack, shown in Fig. 5.18b, 0.4 s are needed
for the first slack cable to become tensed. In E6 the slack is doubled, i.e. it is now 4 cm and
the required time to fix it is also doubled to 0.8 s. And finally in E10 the slack is doubled
once more and the required time to fix it is approximately 1.6 s.

It can be concluded that if the CDPR becomes underactuated due to cable slack, it
makes the moving-platform lose its equilibrium and the stability criterion Π > 0 is no
longer ensured.

Tracking a Mobile Robot

In this subsection the CDPR behavior over a longer time period is shown. ACROBOT
is tasked with tracking a small mobile robot that itself is following a black line as shown in
Fig. 2.15. A PBVS controller is used and it has no knowledge of the mobile robot trajectory.
It simply attempts to keep the AprilTag of the mobile robot in the desired pose. At the end
of every lap, a known AprilTag comes in the field of view. This allows the controller to
reinitialize the moving-platform pose estimation. As shown in Section 2.3.7, without this
cheat the tracking fails at t = 210 s.

The moving-platform trajectory is shown in Figs. 5.19 and 5.20 for PBVS without and
with TCA, respectively. The cable length sum change over different laps is shown in
Fig. 5.21. Finally, the tension measurements are shown in Figs. 5.22 and 5.23 for PBVS
without and with TCA, respectively.

As can be seen in Fig. 5.19, the classic PBVS fails in lap 29, making the total task
execution time just under ten minutes. Compared to results of Section 2.3.7, it is clear that
using a known tag to reinitialize the moving-platform pose estimation is beneficial. Indeed,
the total time has been tripled. Nevertheless, the moving-platform trajectory gradually
becomes worse. Note that the deterioration of the trajectory changes exponentially. For
example, the deterioration between laps 10 and 20 is comparable to the one between laps
20 and 24. Sharp deviations can be seen on the farthest corners of the track. These are due
to slack in the cables. Thus, even though moving-platform pose estimation is frequently
reinitialized, the task still fails.
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Figure 5.19: Moving-platform trajectory with classic PBVS
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Figure 5.20: Moving-platform trajectory with PBVS with TCA

On the other hand, the moving-platform trajectory of the VS with TCA, shown in
Fig. 5.20, remains almost exactly the same be it lap 10 or 700. Indeed, only the first lap,
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Figure 5.21: Sum of cable lengths over time
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Figure 5.22: Tension measurements with classic PBVS: (a) lap 1; (b) lap 10; (c) lap 20; (d) lap 29
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Figure 5.23: Tension measurements with PBVS and TCA: (a) lap 1; (b) lap 10; (c) lap 30; (d) lap 700

shown in gray, is significantly different. However, this is due to the manual placing of the
mobile robot on the track and initialization of the task. This is also true for the experiment
without TCA, where the first lap is shown in dark blue in Fig. 5.19.

It can be concluded that, when TCA is used, the quality of tracking the mobile robot in
lap 700, which occurred after 180 minutes, remains as good as in the beginning of the task.
The experiment was stopped, because no deterioration of behavior could be seen.

The cable length sum is shown in Fig. 5.21. It allows us to rapidly detect any significant
increase of cable slack in the system, regardless of individual cable length changes. Here,
it can be seen that a noticeable increase in cable lengths appears already in lap 10 for
classic PBVS, shown in pink. Then in lap 20, shown in orange, at some instants it reaches
approximately 0.15 m compared to lap 10. Finally, in lap 29, shown in yellow, the spike at
around t = 5 s surpasses the curve of lap 20 by additional 0.3 m, which eventually leads to
task failure at the beginning of the next lap. On the contrary, when TCA is used, cables are
kept in tension and do not become slack.

In Fig. 5.22a it can be seen that even during the very first lap, most of the time one cable
was slack, sometimes even two cables. However, during lap 1 the slack is insignificant
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and it transfers rapidly to other cables. During laps 10 and 20 two cables are always slack.
The transfer of slack takes up to 1 s in lap 20, as shown in Fig. 5.22c at t = 15 s. Here, C7

becomes slack, when there are already two cables, namely C3 and C6, that are slack. Cable
C3 stops being slack only after t = 16 s. Thus, the moving-platform was underactuated
during one second.

The situation is significantly worse during lap 29. As can be seen in the small zoomed
segment in Fig. 5.22d, during task failure at t = 22 s there are already three cables slack
and a fourth one becomes slack momentarily. More precisely, cables C3, C6 and C7 are all
slack in the time period between t = 15 s and task failure. Thus, the last six seconds the
moving-platform was underactuated, which lead to the task failure.

On the contrary, when TCA is used, no more than two cables are slack at any given
time, as can be seen in Fig. 5.23. It can also be seen that TCA is participating in the control
throughout each lap. Indeed, there are usually one or two cable tensions that are right on
the threshold τt. There is no significant difference between tension curves in lap 10, 30 or
700, shown in Figs. 5.23b, 5.23c and 5.23d, respectively. Indeed, it appears that no matter
whether two or 180 minutes have passed since the beginning of the task, the behavior is
similar. It can thus be concluded that TCA successfully deals with cable slackness and
keeps the CDPR responsive to the control signals of PBVS.

5.3.2 Case Study X: VS with TCA on CAROCA

Experimental Setup

The ten experiments with increasing amount of slack were repeated on the large CDPR
as well. The initial values are the following:

• bpp0 =
[
− 0.608 m; −0.925 m; 1.501 m; 3◦; 0◦; −23◦

]
• cpo0 =

[
0.547 m; −0.287 m; 1.339 m; 179◦; 2◦; −160◦

]
• o0 =

[
0.39 m; −0.21 m

]
and desired values are selected to be:

• bpp∗ =
[
0.873 m; 0.308 m; 1.668 m; −16◦; 4◦; −2◦

]
• cp∗o =

[
− 0.698 m; 0.586 m; 1.764 m; −161◦; −4◦; −28◦

]
• o∗ =

[
−0.39 m; 0.33 m

]
2½D VS is used as the main controller. The tuning of TCA is more complex on CAROCA.

This is because it is equipped with tension sensors that are made for high loads up to
25000 N. The accuracy of these sensors is 0.3% of the full scale output or 75 N. Furthermore,
due to sensor calibration and also due to cable weight, the sensors do not show 0 N
when their cables become slack. Indeed, for the moving-platform of approximately
150 kg the tension measurement with slack cables at the center of the workspace is: τs =[
120 N, 90 N, 90 N, 50 N, 90 N, 100 N, 0 N, −20 N

]
. As shown in Fig. 1.18, setting tension

lower bound τlb = 30 N does not reduce the SFW too much. Thus, for CAROCA we set
τt = τlb = 30 N. Note that this value needs to be added to τs in order to get the correct
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threshold tensions: τt = τs + τt =
[
150 N, 120 N, 120 N, 80 N, 120 N, 130 N, 30 N, 10 N

]
.

The issue with sensor accuracy is that for different moving-platform poses and thus
different cable lengths, the sensor will register a substantially different slack tension.

Due to increased tensions, the gain kc needs to be tuned to a significantly smaller value.
Finally, it was set to kc = 0.001 m/Ns.

Experimental Results

The results are shown in Figs. 5.24 and 5.25. Note that due to the good tensioning for
the initial moving-platform pose, once slack is added in the system, the moving-platform
rotates a little, which creates a small displacement of the initial AprilTag center-point,
as can be seen in Fig. 5.24a. Of course this displacement does not affect the controller,
because the current AprilTag pose is computed at every iteration and the desired pose has
been left unchanged.

When no slack exists, the trajectories produced by 2½D VS with and without TCA are
almost identical as shown in Fig. 5.24 with pink and blue curves, respectively. Then, as
the slack increases, the deviation of the AprilTag center-point trajectory becomes larger
for 2½D VS. This is also true for the camera trajectory in the base frame. Indeed, for 6 cm
slack, shown in light green, the deviation reaches 80 pixels and 100 mm. Then, with the
slack increased to 8 cm the task fails (shown in dark green).

On the other hand, when using TCA slack is rapidly corrected. For 6 cm slack, shown
in violet, the deviation reaches only 35 pixels and 20 mm. Only the reduction of 8 cm slack
takes enough time to produce significant deviation in the trajectories as it reaches 90 pixels
and 40 mm (shown in cyan).

As can be seen in Fig. 5.25, the tension measurement range for CAROCA is significantly
larger and for some cables such as C1 the measurement never reaches the threshold.
Furthermore, as mentioned before, the difference between the initial tensions is significant
when comparing the experiments with and without slack. Due to adding slack, τ2 and τ7

are just below their corresponding threshold values at t = 0 s. Then, C7 remains slack for
approximately 10 s for the experiments without TCA, namely E3, E5, E7 and E9. On the
contrary, for the experiments with TCA the tension measurement τ7 reaches its threshold
in less than 2 s. Around t = 4 s the tension measurement τ3 reaches the threshold. Then
the curves corresponding to experiments without TCA descend below the threshold, while
the rest remains on the threshold. Note that during the trajectory for some experiments
τ4 and τ6 also reach the threshold, where similarly the TCA ensures that the tension
measurement does not pass below the threshold. Overall, TCA was necessary during
most of the trajectory, despite the good trajectories produced by the controller no matter
cable slack (with the exception of E10).

The final moving-platform pose estimation deviation from the Creaform C-Track
measurement is shown in Fig. 5.26. To make these measurements C-Track was positioned
as shown in Fig. A.12d of Appendix A.2 in order to cover the workspace as much as
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Initial position
Desired position
E1: 2½D VS, no slack
E2: 2½D VS with TCA, no slack
E3: 2½D VS, slack=2 cm
E4: 2½D VS with TCA, slack=2 cm

E5: 2½D VS, slack=4 cm
E6: 2½D VS with TCA, slack=4 cm
E7: 2½D VS, slack=6 cm
E8: 2½D VS with TCA, slack=6 cm
E9: 2½D VS, slack=8 cm
E10: 2½D VS with TCA, slack=8 cm

Figure 5.24: (a) AprilTag center-point trajectory in the image and (b) the deviation from the desired
straight-line trajectory in pixels; (c) camera trajectory in the base frame Fb and (d) the
deviation from the desired straight-line trajectory in mm.

possible. The deviation at the end of experiments without slack, namely E1 and E2 is
the same, meaning that TCA does not intervene with moving-platform pose estimation.
Indeed, it only pulls on the cables that are too slack to participate in the control and thus
does not induce any undesirable motion. When slack exists in the system, deviation
remains approximately the same for E4, E6 and E8, while it becomes worse for E10. This
is because in E10 the 8 cm slack was not fully corrected when the slack cable became
necessary and thus some limited undesired motion was produced by the moving-platform
changing its six-cable configuration.

For the given experiment, adding slack appears to affect the orientation estimation
significantly more than the position estimation. Indeed, in E3, E5 and E7 the rotational
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E1: 2½D VS, no slack
E2: 2½D VS with TCA, no slack
E3: 2½D VS, slack=2 cm
E4: 2½D VS with TCA, slack=2 cm
E5: 2½D VS, slack=4 cm
E6: 2½D VS with TCA, slack=4 cm

E7: 2½D VS, slack=6 cm
E8: 2½D VS with TCA, slack=6 cm
E9: 2½D VS, slack=8 cm
E10: 2½D VS with TCA, slack=8 cm
threshold τt

Figure 5.25: Cable tensions τi
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Figure 5.26: Translational and rotational deviation of final moving-platform pose estimation

deviation grows rapidly. On the other hand, the translational deviation at the end of E3 is
actually smaller than in the other experiments. However, it does increase with the increase
of added slack, reaching 6 cm in E7. Note that for E9 we show the deviation at the moment
of task failure. The translational deviation had already reached 5 cm while the rotational
deviation had surpassed 20◦.

5.4 Conclusions

In this chapter, multiple tension management approaches were proposed. The
approaches can be distinguished by the different level of abstraction from visual servoing
of CDPRs as it was introduced in Chapter 1. In the simplest case, the visual servoing
control scheme is simply enriched by a tension correction algorithm (TCA). In the TCA
the current tensions are compared to a minimum threshold and if they are too low, a cable
velocity correction is computed. On the other hand, in the most changed approach the
current object and the current moving-platform poses are obtained through computer
vision. Then , knowing the desired object pose, it is possible to compute the corresponding
moving-platform pose and thus control cable lengths or tensions to ensure that the current
moving-platform pose converges to the desired one.

The TCA was then implemented on the two CDPRs to deal with cable slackness. It is a
simple algorithm that is efficient at its task of reducing cable slack, while not perturbing the
main controller. Indeed, when simplicity is efficient, it can be considered as an advantage.
The tension correction only occurs, when cable slackness is detected and it is stopped
as soon as the cable is tensed enough to pull on the moving-platform. The proposed
algorithm is efficient in reducing cable slack and its rapidity depends on the tuning of the
gain and the amount of slack on the cable.

Cable slack affects not only the CDPR responsiveness to control output, but also its
stability. Indeed, when slack is large, the moving-platform can become underactuated
along the trajectory. Furthermore, underactuation leads to the stability criterion being no
longer ensured. In addition, the larger the cable slack, the larger the moving-platform
pose estimation error, when TCA is not used.

When cable slack is transferred between cables, the moving-platform can sway
uncontrollably, leading to sharp changes of the target trajectory in the image. As the
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cable slack increases, it becomes more likely that the target will leave the field of view,
resulting in task failure.

Cable slack accumulates rapidly in longer tasks. This is true even if a periodical
moving-platform pose update is available. On the contrary, using a tension correction
algorithm along with a periodical moving-platform pose update allows the CDPR to
execute prolonged tasks without any significant deterioration of system behavior.

Tension correction only removes cable slack, it does not address the underlying causes.
TCA greatly improves the responsiveness of the CDPR to the control signal. However,
other perturbations can exist in the system and the produced trajectory can be not ideal.
In this case a combination of TCA and trajectory planning and tracking could be used.



General Conclusions and Perspectives

General Conclusions

This thesis was focused on the implementation and analysis of visual servoing for
CDPRs in order to improve their accuracy. The advantage of visual servoing is that it is
possible to continuously observe an object of interest and thus to know when the desired
state has been reached. Thanks to this, the accuracy at the goal state is always the same.
Indeed, no matter the perturbation, as long as the system converges the desired state is
achieved with the same accuracy. Furthermore, since an onboard camera is used for the
visual servoing, it approaches the object together with the moving-platform, and the closer
it is to the object the higher the accuracy with respect to the object.

Three visual servoing approaches were analyzed: image-based, pose-based and
2½D visual servoing. It was rapidly found that a CDPR with visual servo control is
robust to many perturbations, for example having only a coarse estimation of the initial
moving-platform pose. To understand the limits of this robustness an extensive Lyapunov
stability analysis was performed first on a simple planar CDPR and then on a spatial
one. It was concluded that many parameters can be perturbed in the system and all
these perturbations have a joined effect on system stability. Indeed, for an ideal robot it is
possible to voluntarily increase the perturbation on one parameter to a very high value.
However, once other perturbations are taken into account, then each of them can only be
increased to a certain limit before making the system unstable.

Furthermore, a link between the moving-platform pose and the stability of the system
was determined. That is, if in one pose a certain set of perturbations does not make the
system unstable, then in a different pose the same set can make the system unstable. Thus,
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a novel workspace, named Control Stability Workspace, was defined. It is the set of all
moving-platform poses for which the stability criterion is held as long as the perturbation
set is within the predefined perturbation bounds. As with all workspaces, CSW is
model-dependent, thus it had to be computed separately for the two spatial CDPRs that
were available for experimental validation. Moreover, CSW is also control-dependent, so it
was computed for each of the visual servoing approaches. The effect of each perturbation
on the system stability can be evaluated through CSW. More precisely, by increasing the
amplitude of a perturbation the CSW volume decreases, however the rate is different
based on which parameter is being perturbed. For example it was found that camera
position in the moving-platform can be very coarsely set. That is, some arbitrary poses
within the moving-platform can be given to the controller and that will have no effect on
the workspace size. On the other hand the perturbation range on cable exit and anchor
points is directly related to the size of the CDPR prototype. That is, the larger the base
frame of the CDPR, the larger the perturbation on cable exit points within system stability.
Similarly, the larger the moving-platform, the larger the perturbation on cable anchor
points within system stability. For ACROBOT the pulleys and anchor mechanisms are so
small that they can be assumed to be points without greatly reducing the size of CSW. For
CAROCA the pulleys are significantly larger, thus the CSW is reduced by not using pulley
geometry in control, however the remaining workspace is still sufficiently large.

In order to ensure the best accuracy, it was chosen to mount the camera on the
moving-platform in the eye-in-hand configuration. However, in this configuration the
moving-platform itself is not observed and thus its pose cannot be directly measured.
Instead it needs to be estimated. Three different estimation approaches were developed:
control-based, image-based, and model-based. The control-based approach is based on the
integration of control output. The image-based approach is based on the use of two images
to recover two object poses and thus compute the new moving-platform pose from the
transformation of frames. Note that one can either use two consecutive images or the first
and the current image for this approach. Finally, the model-based approach signifies the
computation of the moving-platform pose from cable lengths, which is basically solving
the direct geometric model. Here, four CDPR models were used: the simplest model;
model taking into account cable elasticity; model taking into account pulley geometry;
and model taking into account both cable elasticity and pulley geometry. Note that tension
sensors are used to find the six cables that are most in tension and only these six cables are
used in the computation of the moving-platform pose. Thus, altogether seven estimation
methods were tested on two different CDPRs and with the object being either static or in
motion. It was found that control integration is the most robust moving-platform pose
estimation method. With the latter the robot produced the best trajectories in the presence
of perturbations. Furthermore, using control integration lead to the longest mobile object
tracking time before failure. The drawback of image-based methods is that a static object
has to be observed, while in reality it can also move, be it on purpose or by accident. It also
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has to appear large in the image to provide a good accuracy of the estimated pose. The
drawback of model-based methods is that they require the robot to correspond well to the
model and cable slackness leads to finding the wrong moving-platform pose. Furthermore,
these methods rely on the use of tension sensors that may not be available. Interestingly, it
was found that the smoothness of estimation is more important than estimation accuracy.
Control integration provides a very smooth change of moving-platform pose that can
deviate significantly over an increased period of time. On the other hand model-based
methods are very precise with the exception of some wrong computations due to cable
slackness. While control integration was found to be the most suitable for our needs, it
also has drawbacks. More precisely, it relies on the assumption that the robot is indeed
capable of achieving the computed velocity. If that is not the case, then the estimation will
rapidly drift from the actual pose. Control integration is well adapted to be used with
closed-loop control schemes, such as visual servoing, because they adapt their output to
the inaccuracy in the models.

The added perturbations affect the trajectory to reach the goal, which can become
heavily deviated. This deviation can be a problem when the robot workspace is cluttered,
for example. Moreover, many industrial tasks require being able to follow precisely the
chosen trajectory to the goal along with requiring a good accuracy at the goal. In this
case trajectory planning and tracking can be used. It allows to not only ensure that the
ideal trajectory is closely followed, but also to further increase the robustness to different
perturbations. Indeed, in trajectory tracking the desired state is always very close to the
current one, which leads to very high robustness of the system. An extensive validation
was done on the two CDPRs. It was concluded that the direction of the perturbation
affects the robot behavior. That is, having almost the same amplitude of perturbation
with a different direction produces different behavior of the system. Nevertheless, when
trajectory planning and tracking is used the produced trajectories are always close to the
ideal ones. The results are especially noteworthy for the large CDPR CAROCA, where
over a distance of 2.3 m the deviation never surpasses 1.5 cm and the mean is 0.71 cm with
the standard deviation of 0.34 cm.

Usually, and especially in the work described previously, the cables are not observed
and their tensions are not controlled. Thus they can become slack. This can occur due to
many reasons, such as the number of cables being greater than the number of degrees
of freedom of the moving-platform; drift of moving-platform pose estimation; modeling
errors; uncertainties in the system. Cable slack affects the CDPR responsiveness to control
output and also its stability. With slack in the system it will need to be transferred between
cables as the moving-platform pose changes. During this transfer the moving-platform
can become temporarily underactuated, which in turns leads to the stability criterion no
longer being ensured. At this moment the moving-platform sways freely, which results in
abrupt changes in the image and can cause task failure if the object leaves the image.
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Some tension management approaches for visual servoing were proposed and
subsequently the tension correction algorithm was implemented. The algorithm is based
on comparing the current tension measurement to a threshold and computing a cable
velocity correction to reduce the slack. It was shown that TCA successfully detects and
removes cable slack without perturbing the main visual servoing controller. Indeed, TCA
produces a velocity correction only for the slack cables. These cables are not participating
in the control due to the slack and thus the velocity correction does not perturb the
resulting moving-platform motion. It was shown that having a TCA allows to greatly
improve the ability to track a mobile object. In fact, having all of the cables in tension
allowed us to continue tracking the mobile object for several hours, while the visual servo
without TCA failed in a matter of minutes.

Perspectives

The perspectives are divided into three groups: (a) short-term goals to extend the
current results, building directly on what has been done so far; (b) use cases that are more
industry-oriented; (c) work to limit some of the perturbations in the system.

Extension of current results

It was shown that trajectory planning and tracking is an excellent tool to ensure CDPR
accuracy all along the trajectory. Similarly, the TCA is a simple and efficient algorithm
that keeps the cables in tension and allows the CDPR to execute long-term tasks. Indeed,
the TCA deals only with cable slack, however it does not deal with other perturbations
in the system and thus the produced trajectory can still be not ideal. Consequently, a
combination of TCA and trajectory planning and tracking could be envisioned to have
high accuracy, an ideal trajectory and to keep all cables in tension.

A combination of an onboard and one or multiple external cameras could be
implemented. The external cameras can be used to measure the moving-platform pose,
however as it was shown in Chapter 2, the provided measurement accuracy needs to be
high for this to be beneficial. Furthermore, cameras can be used to detect the cable angle
and slackness. In the latter case, by detecting the amount of slack on a cable the TCA
correction rate can be adjusted to decrease a large slack more rapidly.

Once a good moving-platform pose measurement will be available, it can be of interest
to implement some of the more advanced tension management approaches. Indeed,
knowing the moving-platform pose a tension distribution algorithm (TDA) could be used
to increase the stiffness of the moving-platform.

Use cases

When dealing with real use cases we inevitably encounter constraints and specific
requirements coming from the industrial environment. The best way to determine if
a CDPR with visual servoing control would be well adapted for a particular task is to
implement it on a prototype.
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For most of the experiments an AprilTag was used as an object to simplify the computer
vision part. In many cases it is not possible to equip the object of interest with an AprilTag
or the four-point pattern used for IBVS. Thus, it is of interest to study realistic objects and
to define visual servoing control with respect to these objects. Moreover, specific CDPR
use cases need to be studied. For example, dealing with occlusion of the field of view
during pick-and-place operations. Indeed, it can occur that when the object is picked, it
occludes the field of view completely and thus it is not possible to ensure accuracy during
the placing of the object. Solutions such as using a pan-tilt camera and changing its angle
after picking the object or using multiple cameras can be envisioned.

A sensor fusion can be useful to improve the measurement made by computer vision
or to add a missing one. For example, depth sensors can be used to measure the distance
along the z axis of the camera. Similarly, an IMU can provide the moving-platform
orientation.

As mentioned above, it is possible that a camera cannot be used during task execution,
for example, due to concerns for confidentiality. In this case, other exteroceptive sensors
could be used. The possibilities are vast, from infra-red cameras and color sensors, to event
cameras, laser trackers and GPS, among many. Thus the generalization of the proposed
control approaches to other exteroceptive sensors is indeed of interest.

Controlling the perturbations

A thorough stability study has been performed and it was shown that the different
perturbations affect the system in a combined manner. In fact, while having just one
perturbation it could be increased to a very high value. On the other hand, when taking
into account all perturbations in the system, each of them can only be increased to a limited
value before the CSW becomes too small. Thus, by removing some of the perturbations,
the robustness to the remaining ones only grows. Therefore, a further improvement
would be to develop a control law that allows us to detect and counteract some of these
perturbations, for example the modeling errors, instead of increasing control’s robustness
to them.

Modeling errors can come from not only using the simplified CDPR model, but also
from manufacturing. Indeed, the CDPR can simply not correspond to its CAD model.
Furthermore, there exist deployable CDPRs that can be used on unknown terrain, making
their geometric model badly estimated. Having these model-to-robot differences can
seriously affect the system robustness to the remaining perturbations that can occur
during task execution. Thus, it would be beneficial to develop a vision-based algorithm
to obtain the real cable exit and anchor point coordinates. Indeed, by decreasing these
errors, we increase the robustness to other perturbations. This can be crucial in case of the
deployable CDPR, where the environment can be highly unpredictable, including weather
or smoke. Furthermore, as was shown with large perturbations on cable exit and anchor
points, the corners of the workspace become unavailable, while the robot can be required
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to work there too. Finally, such an algorithm would also be useful for cases when vision
cannot be used during task execution, however can be permitted shortly during CDPR
installation.
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A.1 CDPRs at IRT Jules Verne

A.1.1 ACROBOT

ACROBOT, shown in Fig. A.1, is a small CDPR available at IRT Jules Verne, Nantes. It
was developed as a demonstration prototype that is small enough to be transported to
exhibitions.

Geometry

ACROBOT’s frame is a cube of 1.2 m×1.2 m×1.2 m. It is assembled in a suspended
configuration. It has six DoF that are actuated by eight Dyneema SK78 cables of 2 mm
diameter. The Young Modulus of these cables is 111 GPa [VB06]. The cables are wound on
winches with radius rw = 0.04 m.

Pulley

Base

Cable

Moving-platform

Camera

AprilTags

Figure A.1: ACROBOT: a CDPR prototype located at IRT Jules Verne, Nantes

The origin of the base frame Fb is assumed to be at the center of the xy plane, on the
floor of the workspace. The coordinates of cable exit points in base frame Fb and anchor
points in moving-platform frame Fp, are presented in Table A.1. The first set of cable
anchor points corresponds to the small 11 cm×11 cm×7 cm and 1.5 kg moving-platform
visible in Fig. 1.9a. The second corresponds to a larger 18 cm×17 cm×7 cm and 3.5 kg
moving-platform that houses not only a camera, but also a set of eight tension sensors and
their transmitters (see Fig. A.2). For simplicity, cable anchor points are called B1 . . . B8 for
both moving-platforms, because they cannot be used simultaneously.
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Figure A.2: Large moving-platform for ACROBOT housing a camera and eight tension sensors

Table A.1: Coordinates of ACROBOT cable exit and anchor points

Cable exit points expressed in Fb, m

A1 [−0.47;−0.525; 1.165]> A5 [0.47; 0.53; 1.165]>

A2 [−0.52;−0.465; 1.165]> A6 [0.52; 0.475; 1.165]>

A3 [−0.52;−0.475; 1.165]> A7 [0.525;−0.47; 1.165]>

A4 [−0.47; 0.53; 1.165]> A8 [0.47;−0.520; 1.165]>

Cable anchor points expressed in Fp for the small moving-platform, m

B1 [0.055;−0.055; 0.07]> B5 [−0.055; 0.055; 0.07]>

B2 [−0.055; 0.055; 0.025]> B6 [0.055;−0.055; 0.025]>

B3 [−0.055;−0.055; 0.07]> B7 [0.055; 0.055; 0.07]>

B4 [0.055; 0.055; 0.025]> B8 [−0.055;−0.055; 0.025]>

Cable anchor points expressed in Fp for the large moving-platform, m

B1 [0.0895;−0.087; 0.072]> B5 [−0.0895; 0.087; 0.072]>

B2 [−0.0895; 0.087; 0.0065]> B6 [0.0895;−0.087; 0.0065]>

B3 [−0.0895;−0.087; 0.072]> B7 [0.0895; 0.087; 0.072]>

B4 [0.0895; 0.087; 0.0065]> B8 [−0.0895;−0.087; 0.0065]>

Actuation

ACROBOT is equipped with four synchronous motors with a holding brake and four
synchronous motors without a holding brake. The maximum speed of the motors amounts
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to 3000 RPM and their gearbox reduction is Rg = 10. All motors are fixed to the ground.
Winches are mounted directly on motor axis.

Sensors

The small moving-platform is only equipped with one camera. Depending on the
experiment, it is either a Media-Tech AUTOPIX MT4018 [MT19] or UI-3250CP-C-HQ Rev.2
by IDS [Ids]. The large moving-platform is equipped with the IDS camera and also with
eight VLU850 tension sensors by Stellar Tech [Tec] used for cable tension measurement.
Finally, another camera, namely Astra by Orbbec [Orb], is fixed statically in the workspace
to observe the moving-platform. The HTC Vive tracking [Viv] system is used to measure
the moving-platform pose during experiments, to serve as ground-truth when Creaform
C-Track was not available.

The choice of RGB cameras without depth-sensing is due to the size of ACROBOT.
Most of the time the moving-platform would be too close to the object (or ground) to use
a depth sensing camera on the moving-platform.

Media-Tech AUTOPIX MT4018 For the initial studies, especially for the proof of
concept, the simplest webcam by Media-Tech was used, because it was readily available
at IRT JV. It is shown in Fig. A.3 and its specification is detailed in Table A.2. It should
be noted that the auto focus feature is not controllable, which, as it was found in the
experiments, led to quite a bit of noise in the system due to rather frequent zooming in
and out.

Table A.2: Media-Tech AUTOPIX MT4018 specifications, taken from [MT19]

Image Sensor 1280x1024 pixels, CMOS

Lens Specification F2.8, f=4.02 mm, auto-focus lens

White Balance Auto

Exposure Auto

Frame Rate (up to)
1280× 1024 @ 8∼10fps

640× 480 @ 30fps

Focus Range Auto focus, 7 cm to infinity

Depth of Field 50 cm to infinity

PC Interface USB2.0

Power From USB port

IDS UI-3250CP-C-HQ Rev.2 Considering the drawbacks of the webcam, it was
decided to use a more advanced camera. The necessary improvements were: (i) better
actual frame-rate; (ii) better image quality; (iii) no auto-focus (or at least one that is
controllable). Thus UI-3250CP-C-HQ Rev.2 by IDS was chosen, it is shown in Fig. A.4a
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Figure A.3: Media-Tech AUTOPIX MT4018 web-camera

and the specifications are presented in Table A.3. For simplicity, it is called the IDS camera
in the text.

Table A.3: IDS UI-3250CP-C-HQ Rev.2 specifications, taken from [Ids]

Image Sensor 1600× 1200 pixels, CMOS

White Balance Modifiable

Exposure Modifiable

Frame Rate 60fps

Shutter Global and Rolling

PC Interface USB3.0

Power From USB port

Industrial cameras, such as the IDS, can be paired with a wide range of lenses. Here,
we use KOWA LM5NCL lens that is shown in Fig. A.4b. Its specifications are presented in
Table A.4.

Table A.4: KOWA LM5NCL specifications, taken from [Kow]

Focal Length 4.5 mm

Iris Range F1.4–F16, manual control

Focusing Range 0.2 m–∞, manual control

Angle of View H = 79◦; V = 59.4◦; Diag. = 98.2◦

Mount C-mount

Finally, to improve the light conditions for the visual servoing, a ring light is mounted
on the lens (Fig. A.4c).

Orbbec Astra Another camera was necessary for the eye-to-hand configuration and
to record videos of the robot during task execution. The Astra camera by Orbbec was used



220 Appendix

(a) (b) (c)

Figure A.4: (a) IDS camera, (b) KOWA lens and (c) red light ring

(Fig. A.5). Its specifications are shown in Table A.5. It is a RGB-D camera, i.e. the fourth
channel contains depth information, however this has not been used in the scope of this
thesis.

Table A.5: Orbbec Astra specifications, taken from [Orb]

Image Resolution 640× 480 pixels

Frame Rate 30fps

Angle of View H = 60◦; V = 49.5◦; Diag. = 73◦

Range 0.6 m–8 m

PC Interface USB2.0

Power From USB port

Figure A.5: Orbbec Astra camera

Stellar Tech VLU850 The tension sensors are shown in Fig. A.6. These are very
small tension sensors with 50 Lb load capacity. Most important characteristics are
detailed in Table A.6. They are attached to the cables close to their anchor points to
the moving-platform.

HTC Vive tracking system During the evaluation of different moving-platform pose
estimation methods, HTC Vive tracking system, shown in Fig. A.7a, was used as an
online measurement tool for the sake of comparison. HTC Vive is a virtual reality headset
developed by HTC. While it is mainly advertised as an entertainment product, it is also
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Table A.6: Stellar Tech VLU850 tension sensor specifications, taken from [Tec]

Type Tension and Compression, calibrated for tension

Load range 0–50 Lb, recalibrated to 0–20 Lb for higher accuracy

Max. Overload 75 Lb

Accuracy 0.5% of full scale output

Repeatability 0.01% of full scale output

Size (see Fig. A.6) ⌀ D = 12.7 mm; H = 8 mm, C = 4 mm

Thread 4–40 UNC

(a) (b)

Figure A.6: Stellar Tech VLU850 tension sensor: (a) image and (b) technical drawing

widely used for academic purposes. Indeed, it is a low-cost system that is easy to set up
and that provides a decent measurement accuracy, especially for static or slowly moving
objects. Of course, it does not provide the same accuracy as a laser tracker, but often a
millimetric accuracy is good enough.

A standard Vive set includes the headset, two controllers and two base stations shown
in Fig. A.7a. However, for robotics the tracker shown in Fig. A.7b is more convenient.
Indeed, it can easily be attached to the robot end-effector or another object of interest.

A tracker is mounted on the moving-platform and two base stations are positioned
to cover the whole workspace as shown in Fig. A.7c. It is possible to retrieve the
moving-platform pose with respect to the base frame, once the pose of the Vive tracker in
the base frame is known. The Vive tracker pose in the base frame is retrieved as follows:

• Setup the tracking system, for example, as shown in Fig. A.7c and launch the internal
calibration of the tracker. At this point the tracker pose in the Vive reference frame
Fv becomes available. It can be expressed as vTtr;

• Retrieve the pose of the tracker in the moving-platform frame Fp from the CAD
model and express it as pTtr;

• Measure the moving-platform pose in the base frame Fb with C-Track and express it
as bTp;

• Then the origin of Fv can be expressed in Fb as: bTv = bTp
pTtr

vTtr
−1
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Controllers

Base stations

Headset

(a)

Tracker

(b)

Moving-platform

Tracker

Base station 1 Base station 2

(c)

Figure A.7: HTC Vive tracking system: (a) standard Vive kit; (b) tracker; (c) tracker mounted on
the moving-platform and base stations located in the close vicinity

• Finally, at each time instant t the moving-platform pose as measured by the Vive
tracker becomes: bTp(t) = bTv

vTtr(t)
pTtr

−1

A.1.2 CAROCA

CAROCA is a large reconfigurable CDPR located at IRT Jules Verne, Nantes. It
was developed to research the possibility of CDPR industrialization for tasks such as
photogrammetry, sandblasting and painting of large and complex parts, pick and place
operations [Pic18]. The reconfiguration strategies of CAROCA were studied in [Gag16].

Geometry

CAROCA, shown in Fig. A.8, has the following dimensions: 7 m×4 m×3 m. It has six
DoF and is connected to the base by eight steel cables of 6.0 mm diameter. The Young
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Modulus of these cables has been experimentally evaluated at 102.2 GPA [BCC18]. The
cables are wound on winches with radius rw = 0.06 m.

Unlike ACROBOT, here the pulleys at cable exit points are of non-negligible size,
i.e. pulley radius is 150 mm. Furthermore, steel cables are heavy and elastic, thus a

(a)

(b)

Figure A.8: A large six DoF CDPR named CAROCA: (a) image and (b) CAD model [Pic18]
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sagging elastic cable model should be used for this robot. CAROCA can be assembled
in a suspended or a fully constrained configuration. Moreover, due to its reconfigurable
frame, it is possible to change pulley location by moving the blue columns in the frame
and the pulleys themselves on these blue columns (see Fig. A.8a). While in a suspended
configuration, CAROCA is capable of lifting up to one ton [Pic18].

The moving-platform of CAROCA is 42 cm×32 cm×23 cm and its mass is 150 kg.
It is equipped with one onboard camera and eight tensions sensors for cable tension
measurement. Cable exit and anchor point coordinates are given in Table A.7.

Table A.7: Coordinates of CAROCA cable exit and anchor points

Cable exit points expressed in Fb, m

A1 [1.659;−2.850; 3.221]> A5 [−1.659; 2.850; 3.221]>

A2 [1.350;−3.159; 3.221]> A6 [−1.350; 3.159; 3.221]>

A3 [−1.350;−3.159; 3.221]> A7 [1.350; 3.159; 3.221]>

A4 [−1.659;−2.850; 3.221]> A8 [1.659; 2.850; 3.221]>

Cable anchor points expressed in Fp, m

B1 [0.21; 0.13; 0.23]> B5 [−0.21;−0.13; 0.23]>

B2 [−0.14;−0.16; 0.02]> B6 [0.14; 0.16; 0.02]>

B3 [0.14;−0.16; 0.23]> B7 [−0.14; 0.16; 0.23]>

B4 [−0.21; 0.13; 0.02]> B8 [0.21;−0.13; 0.02]>

Actuation

The cables of CAROCA are actuated by eight synchronous motors of nominal speed
equal to 2200 RPM and nominal torques equal to 15.34 Nm. Each motor has a gearbox
with reduction ratio Rg = 40.

Sensors

The moving-platform of CAROCA can be equipped with the IDS camera described in
Appendix A.1.1.

The moving-platform is equipped with eight Tractel force sensors [Tra] shown in
Fig. A.9. Unlike Stellar Tech sensors, these are made for the measurement of large forces
up to 25000 N. Their accuracy is rated at 0.3% of the full scale output, which is thus 70 N.

A.1.3 Simulation of CDPRs in V-REP

The V-REP simulation environment [RSF13] was used in order to create a dynamic
model of the previously described CDPRs including the vision sensor. Both V-REP models
are shown in Fig. A.10. This gives us the capacity to use the same software to control real
and virtual hardware. As a result it is possible to speed up the development, testing and
debugging of algorithms in simulation (with a perfectly known ground truth), leaving
only final tuning and verification for the real robots.
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Figure A.9: Tractel force sensors

(a) (b)

(c) (d)

Figure A.10: V-REP model of (a) ACROBOT; (b) CAROCA. In second row: (c) the representation
of a cable and its pulley in V-REP; (d) the connection of seventh cable to the
moving-platform
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To create a dynamical simulation, the pulleys and cables are modeled as a sequence
of joints and mass objects, as shown in Fig. A.10c. The model shown in Fig. A.10 does
not take into account the pulley diameter or the cable sag. Each pulley is represented
as a vertical revolute passive joint followed by a small spherical mass and a horizontal
revolute passive joint. The cables are modeled as a sequence of prismatic joint, cylindrical
mass, prismatic joint, cylindrical mass and a final spherical joint attaches the cable to the
moving-platform (Fig. A.10c). The first prismatic joint is used to change the cable length.
The second prismatic joint is responsible for the cable behavior through a specific joint
control callback script, which models the cable forces as either an elastic spring, when in
tension, or an element transmitting zero force, when in compression.

To have a stable simulation some model design rules need to be considered [VR19].
The cable mass needs to be exaggerated given that very low mass shapes won’t be able to
exert large forces and that the associated joint might display soft and wobbly behavior.
The parallel kinematic chains are handled in V-REP as constraints that enforce the cable
free end coincidence with the associated anchor point on the moving-platform as shown
in Fig. A.10d. The Vortex physical engine is used.

Simulation of cable slackness

In case of CDPR model errors or perturbations in the system some cables can become
slack. It is important to be able to simulate this characteristic. For this reason, the
ACROBOT model shown in Fig. A.10a is enriched with a cable slackness detection
algorithm.

As described above, the second prismatic joint of the cable model, shown in Fig. A.10c,
takes care of cable elasticity and transmits zero force, when it is in compression. Physically,
if this joint is in compression, it means that the actual cable length is larger than the
straight-line distance between cable exit point (the pulley) and cable anchor point. Thus
the cable is slack.

Furthermore, it is possible to recover the amount of slack in a cable. The actual length
of the cable can be retrieved via sim.getJointPosition(name_of_the_joint). And then the length
of the straight line between cable exit point Ai and cable anchor point Bi is computed
through the Inverse Geometric Model, which is presented in Section 1.3.1.

The new model is shown in Fig. A.11. Here, the cables are in different colors to simplify
the graph reading during an experiment. That is, for example, the cable C1 is colored
blue and the corresponding curves in tension and length graphs, shown in Figs. A.11c
and A.11d, respectively, are also in the same color. Furthermore, if a cable becomes slack,
that is, if the elastic joint is in compression, then it is colored in red on the model (see cable
C2 in Fig. A.11b).

It should be noted that the moving-platform pose shown in Fig. A.11a corresponds to
t = 88 s on cable tension and length graphs shown in Figs. A.11c and A.11d, respectively.
Similarly, the moving-platform pose shown in Fig. A.11b corresponds to t = 94 s. After
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(a) (b)

(c) (d)

Figure A.11: New V-REP model of ACROBOT: (a) moving-platform in initial pose at t = 88 s; (b)
moving-platform in final pose at t = 94 s; (c) cable tensions; (d) cable lengths

executing a straight-line trajectory between the first and second pose, cable C2 has become
slack. For this reason, it is no longer colored in orange, but now has become red in
Fig. A.11b.

It can be seen that at t = 94 s tension measurement of C2 is τ2 ≈ 5 N instead of zero. This
is due to the exaggerated cable masses that were described previously. Furthermore, the
moving-platform used in this model corresponds to the small moving-platform geometry
described in Section A.1.1, but its weight is also increased to 4.3 kg instead of 1.5 kg. This
explains the overall increased cable tension measurements shown in Fig. A.11c.
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A.2 Creaform C-Track

The Creaform measuring system is used in this thesis as ground truth for most
experiments. More precisely, it is used in Chapter 2; in all experiments with CAROCA
in Chapter 3; in IBVS experiments in Chapter 3; in Chapter 4 for CAROCA; in Chapter 5
for mobile object tracking experiments with ACROBOT and slackness experiments with
CAROCA. Their measuring device C-Track is shown in Fig. A.12a. It is a two camera
system that recognizes and localizes reflective targets, such as the ones shown in Fig. A.12b.
It is possible to define a system of reflective targets as a model and to define its Cartesian
frame. For example the sphere on ACROBOT moving-platform along with several
reflective targets on the body of the moving-platform is defined as a single model. The
origin of the moving-platform model is defined on the bottom of the moving-platform in
the middle of the xy plane, as shown in Fig. A.12b. Similarly, multiple targets are placed

(a)

Sphere
with

reflective
targets

Reflective targets

Fb

Fp

(b)

(c)

C-TrackTracking volume

(d)

Figure A.12: Creaform measuring system: (a) C-Track; (b) ACROBOT with reflective targets; (c)
C-Track volume
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on the frame of the CDPR and the origin of base frame Fb is located in the middle of the
ground. Having the two models, the accompanying program VXelements can track the
displacement of one model with respect to the other. This measurement is only available
as a CSV file after the tracking, it was thus not possible to use them directly in the control.

As can be seen in Fig. A.12c, the tracking volume is quite limited, especially the distance
from C-Track. Indeed, targets can only be measured within 1.5 m and 4.2 m, thus the
translation along the z axis of C-Track can be at most 2.7 m. While this is not a problem
for ACROBOT, it is clear that C-Track cannot track the moving-platform of CAROCA
throughout the whole workspace. To maximize the tracking volume C-Track was mounted
on top of CAROCA as shown in Fig. A.12d.

Technical characteristics [CT]:

• maximum tracking volume: 16.6 m3

• accuracy: 0.1 mm
• repeatability: 0.02 mm
• tracking frequency: up to 80 Hz
• tracking output: csv file with the Cartesian pose of the model
• minimum reflective targets per model: 4, ideally at least 6
• maximum angle of detection for targets: 45◦, ideally less than that for a more precise

detection

A.3 Control scheme expressed in base frame

This appendix shows in detail the expression of the control expressed in the base
frame Fb.

A.3.1 Expression of the Jacobian matrix

moving-platform

cables

base

object

camera

Ai

Bi

li

Fp

Op

Fb

Ob

Fc Oc

Fo Oo

Figure A.13: Schematic of a spatial CDPR with eight cables, a camera mounted on the
moving-platform and an object in the workspace
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In Fig. A.13 Ai is the cable exit point, Bi is cable anchor point, li is the length of the ith
cable, which can be defined as:

li
bui = b #        »

AiBi =
bbi −

bai =
bRp

pbi −
bai +

btp (A.1)

where bui is the unit vector of b
#        »

AiBi that is expressed as:

bui =
b #        »

AiBi∥∥b #        »

AiBi
∥∥

2

=
bbi −

bai∥∥b #        »

AiBi
∥∥

2

=
bRp

pbi −
bai +

btp∥∥b #        »

AiBi
∥∥

2

(A.2)

Here, bRp and btp are the rotation matrix and the translation vector of the homogeneous
transformation matrix bTp from Fb to Fp.

To obtain the cable velocities l̇, (A.1) is differentiated with respect to time:

d
(
li
bui
)

dt
=
d
(
b #        »

AiBi

)
dt

l̇i
bui + li bu̇i =

d
(
bRp

pbi
)

dt
−
d
(
bai
)

dt
+
d
(
btp

)
dt

Both sides of equation are multiplied by bu>i on the left. Also bai is constant, therefore
its derivative is zero:

l̇i
bu>i

bui + li bu>i
bu̇i = bu>i

(
d
(
btp

)
dt

+
d
(
bRp

pbi
)

dt

)

Since, according to [Dal+11], bu>i
bui = 1 and bu>i

bu̇i = 0, then:

l̇i =
bu>i

(
d
(
btp

)
dt

+
d
(
bRp

pbi
)

dt

)

If we take into account that bRppbi = bbi, then its derivation becomes:

d
(
bRp

pbi
)

dt
=
d
(
bbi

)
dt

= ˙bbi = ˙bRppbi = ˙bRp bRp> bbi = [bωp]×
bbi =

bωp × bbi

where bωp is the angular velocity.

Furthermore,
d
(
btp

)
dt = ˙btp = bvp is the translational velocity of the moving-platform.

Finally, the cable velocities are:

l̇i =
bu>i

bvp +
bu>i

(
bωp × bbi

)
= bu>i

bvp +
bω>p

(
bbi × bui

)
And if expressed in matrix form, the cable velocity vector l̇ becomes:

l̇ = bA bvp (A.3)
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where the Jacobian matrix bA is

bA =


bu>1

(
bRp

pb1 × bu1
)>

...
...

bu>m
(
bRp

pbm × bum
)>


and the Cartesian velocity bvp is

bvp =

 bvp
bωp


A.3.2 Expression of the Adjoint matrix

This appendix shows in detail the expression of the Adjoint matrix, which is used to
relate the moving-platform twist bvp and the camera velocity cvc.

First, let us express cvc from bvp :

cvc =
cRb

bvp −
cRb[

b #  »

PC]×
bωp (A.4)

cωc =
cRb

bωc =
cRb

bωp (A.5)

The above equation (A.5) is possible, because both origins Op and Oc of frames Fp

and Fc, respectively, are located on the same moving-platform, therefore it can be deduced
that bωp = bωc.

Taking into account (A.4) and (A.5), it is possible to express cvc in the matrix form:

cvc =

 cvc
cωc

 =

cRb −cRb[
b #  »

PC]×

03
cRb

 bvp
bωp

 = bA−1
d
bvp (A.6)

Here, the (6 × 6) matrix is denoted as bA−1
d , it is the inverse of the Adjoint

transformation matrix.

We are actually interested in the inverse relation:

bvp =
(
bA−1
d

)−1 cvc = Ad cvc (A.7)

Therefore, the Adjoint transformation matrix bAd must be determined now. First, we
express bωp from (A.5):

bωp = cRb
−1 cωc =

bRc
cωc (A.8)
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Then (A.8) is injected in (A.4) and bvp can be expressed as:

bvp = cRb
−1
(
cvc +

cRb[
b #  »

PC]×
bRc

cωc

)
=

= bRc
cvc +

bRc
cRb[

b #  »

PC]×
bRc

cωc =

= bRc
cvc + [b

#  »

PC]×
bRc

cωc

(A.9)

Therefore the (A.7) can be rewritten as:

bvp = bAd
cvc =

bRc [b
#  »

PC]×
bRc

03
bRc

 cvc
cωc

 (A.10)

Finally, we rewrite [b
#  »

PC]× = [btc]× = bRp[
ptc]×, therefore the final form of the

Adjoint matrix is:

bAd =

bRc bRp[
ptc]×

bRc

03
bRc

 (A.11)

A.3.3 Closed-loop equation

Thus, we can write the full system equation from Eqs. (A.3), (1.32) and (A.10):

ė = Ls
bA−1
d
bA† l̇ (A.12)

and upon injecting (A.10) and (1.33) into (A.3), the output of the control scheme, i.e. the
cable velocity vector l̇, takes the form:

l̇ = −λ bÂ bÂd L̂
−1
s e (A.13)

Making the final closed-loop equation:

ė = −λLs
bA−1
d
bA† bÂ bÂd L̂

−1
s e (A.14)

It should be noted that bA−1
d
bA† = A−1

d A
†, where Ad and A are given in (1.37)

and (1.19), respectively. Indeed, no matter the chosen frame, the control output will
be the same. For this reason it was chosen to use the Jacobian and the Adjoint matrix
expressed in Fp, because they have a slightly simpler form.

A.4 Velocity Control

To compare the vision-based control of CDPRs to another existing method, it was
chosen to implement a simple velocity controller. Given an initial moving-platform
pose bpp0 and a desired pose bpp∗ , a trajectory is generated using a fifth-order
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polynomial [BCG17]:

s = bt5 + ct4 + dt3 + et2 + ft+ g (A.15)

while considering the following conditions at the start and at the end of the trajectory:s(t0) = 0 ṡ(t0) = 0 s̈(t0) = 0

s(tf) = 1 ṡ(tf) = 0 s̈(tf) = 0
(A.16)

where t0 is the initial time, which generally is t0 = 0 s; and tf is the final time.

The moving-platform position btp and translational velocity bvp as a function of time
are expressed as:{

btp(t) = ts + (tf − ts) s(t) (A.17a)
bvp(t) = (tf − ts) ṡ(t) (A.17b)

where btp0 and btp∗ are the translational parts of bpp0 and bpp∗ , respectively.

As for the rotation, the rotational distance can be computed as:

p0Rp∗ =
bR>p0

bRp∗ (A.18)

where bRp0 and bRp∗ are the rotation matrices for poses bpp0 and bpp∗ , respectively.

p0Rp∗ is then changed to axis-angle representation and it is noted as θpup. Here, the
unit vector up is constant and the angle θp is a function of time θp(t) = θp s(t). Once
the angle θp(t) is calculated for time t, the corresponding rotation matrix p0Rpcurr can be
computed. Consequently, the current rotation matrix of the moving-platform is computed
as:

bRpcurr =
bRp0

p0Rpcurr (A.19)

Finally, the angular velocity bωp is computed as:

bωp(t) = θp up ṡ(t) (A.20)

Then the cable velocities are computed as:

l̇ = Â bvp(t) (A.21)

where bvp(t) =
[
bv>p (t)

bω>p (t)

]>
is given from (A.17b) and (A.20). Note that in (A.21),

the Jacobian matrix Â uses the moving-platform pose estimation that is computed
from (A.17a) and (A.19).
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A.5 Control Stability Workspace results

All of the CSW numerical results are shown here. The tables show the change in CSW
volume as a function of increase in perturbation range. The results are shown as follows:

• PBVS on a planar CDPR in Table A.8
• PBVS on ACROBOT with small moving-platform in Table A.9
• PBVS on ACROBOT with large moving-platform in Table A.10
• PBVS on ACROBOT in a fully constrained configuration with large moving-platform

in Table A.11
• PBVS on CAROCA in Table A.12
• 2½D VS on ACROBOT with small moving-platform in Table A.13
• 2½D VS on ACROBOT with large moving-platform in Table A.14
• 2½D VS on CAROCA in Table A.15
• IBVS on ACROBOT with small moving-platform in Table A.16
• IBVS on ACROBOT with large moving-platform in Table A.17
• IBVS on CAROCA in Table A.18
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Table A.8: Planar CDPR CSW area as a function of perturbation range

Perturb. Range CSW area % of full

rbp

0.03 m 0.878 m2 95.4%

0.05 m 0.774 m2 84.1%

0.10 m 0.336 m2 36.5%

0.15 m 0 m2 0%
(a)

Perturb. Range CSW area % of full

∆θbp

3◦ 0.878 m2 95.4%

5◦ 0.869 m2 94.5%

10◦ 0.856 m2 93.0%

20◦ 0.788 m2 85.6%

30◦ 0.687 m2 74.7%

50◦ 0 m2 0%
(b)

Perturb. Range CSW area % of full

rpc

0.01 m 0.878 m2 95.4%

0.03 m 0.859 m2 93.4%

0.05 m 0.858 m2 93.3%

0.10 m 0.855 m2 92.9%

0.20 m 0.849 m2 92.3%
(c)

Perturb. Range CSW area % of full

∆θpc

3◦ 0.878 m2 95.4%

5◦ 0.875 m2 95.1%

10◦ 0.869 m2 94.5%

20◦ 0.861 m2 93.6%

30◦ 0.844 m2 91.7%

50◦ 0.694 m2 75.4%
(d)

Perturb. Range CSW area % of full

rAi

0.005 m 0.878 m2 95.4%

0.01 m 0.849 m2 92.3%

0.02 m 0.783 m2 85.1%

0.03 m 0.684 m2 74.3%

0.04 m 0.551 m2 59.9%

0.05 m 0.405 m2 44.0%

0.06 m 0.158 m2 17.2%

0.08 m 0 m2 0%
(e)

Perturb. Range CSW area % of full

rBi

0.005 m 0.878 m2 95.4%

0.01 m 0.849 m2 92.3%

0.02 m 0.790 m2 85.9%

0.03 m 0.729 m2 79.2%

0.04 m 0.578 m2 62.8%

0.05 m 0.387 m2 42.1%

0.06 m 0.121 m2 13.2%

0.08 m 0 m2 0%
(f)

Perturb. Range CSW area % of full

rs

0.01 m 0.878 m2 95.4%

0.05 m 0.869 m2 94.5%

0.10 m 0.853 m2 92.7%

0.20 m 0.850 m2 92.4%

0.30 m 0.819 m2 89.0%

0.40 m 0.804 m2 87.4%

0.50 m 0.757 m2 82.3%
(g)
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Table A.9: PBVS of ACROBOT with small moving-platform

Pert. Range CSW volume % of full

rbp

0.03 m 0.875 m3 86.3%

0.05 m 0.828 m3 81.6%

0.10 m 0.733 m3 72.3%

0.20 m 0.597 m3 58.9%

0.25 m 0.532 m3 52.5%

0.30 m 0.480 m3 47.4%

0.50 m 0.298 m3 29.4%

0.60 m 0.206 m3 20.3%

0.70 m 0.088 m3 8.7%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 0.875 m3 86.3%

5◦ 0.853 m3 84.1%

10◦ 0.765 m3 75.5%

20◦ 0.565 m3 55.7%

30◦ 0.356 m3 35.1%

40◦ 0.077 m3 7.6%

50◦ 0 m3 0%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 0.875 m3 86.3%

0.03 m 0.874 m3 86.2%

0.05 m 0.874 m3 86.2%

0.10 m 0.874 m3 86.2%

0.20 m 0.873 m3 86.1%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 0.875 m3 86.3%

5◦ 0.874 m3 86.2%

10◦ 0.871 m3 85.9%

20◦ 0.826 m3 81.5%

30◦ 0.743 m3 73.3%

40◦ 0.556 m3 54.8%

50◦ 0 m3 0%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 0.875 m3 86.3%

0.01 m 0.680 m3 67.0%

0.02 m 0.518 m3 51.1%

0.03 m 0.325 m3 32.1%

0.04 m 0.138 m3 13.6%

0.05 m 0.040 m3 3.9%

0.1 m 0 m3 0%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 0.875 m3 86.3%

0.01 m 0.654 m3 64.5%

0.02 m 0.391 m3 38.5%

0.03 m 0.091 m3 8.9%

0.04 m 0 m3 0%
(f)
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Table A.10: PBVS of ACROBOT with large moving-platform

Pert. Range CSW volume % of full

rbp

0.03 m 0.880 m3 87.0%

0.05 m 0.837 m3 82.5%

0.10 m 0.742 m3 73.2%

0.20 m 0.599 m3 59.1%

0.25 m 0.540 m3 53.2%

0.30 m 0.490 m3 48.3%

0.50 m 0.295 m3 29.1%

0.60 m 0.201 m3 19.8%

0.70 m 0.109 m3 10.8%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 0.880 m3 87.0%

5◦ 0.856 m3 84.5%

10◦ 0.765 m3 75.5%

20◦ 0.579 m3 57.1%

30◦ 0.381 m3 37.6%

40◦ 0.111 m3 10.9%

50◦ 0 m3 0%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 0.880 m3 87.0%

0.03 m 0.879 m3 86.7%

0.05 m 0.879 m3 86.7%

0.10 m 0.879 m3 86.7%

0.20 m 0.878 m3 86.6%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 0.880 m3 87.0%

5◦ 0.878 m3 86.6%

10◦ 0.875 m3 86.3%

20◦ 0.861 m3 84.9%

30◦ 0.767 m3 75.6%

40◦ 0.606 m3 59.8%

50◦ 0 m3 0%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 0.880 m3 87.0%

0.01 m 0.762 m3 75.2%

0.02 m 0.676 m3 66.7%

0.03 m 0.572 m3 56.4%

0.04 m 0.461 m3 45.5%

0.05 m 0.348 m3 34.3%

0.1 m 0.003 m3 0.3%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 0.880 m3 87.0%

0.01 m 0.754 m3 74.3%

0.02 m 0.618 m3 61.0%

0.03 m 0.447 m3 44.0%

0.04 m 0.244 m3 24.1%

0.05 m 0.070 m3 6.9%

0.1 m 0 m3 0%
(f)
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Table A.11: PBVS of ACROBOT in fully constrained configuration

Pert. Range CSW volume % of full

rbp

0.03 m 0.985 m3 97.0%

0.05 m 0.917 m3 90.4%

0.10 m 0.348 m3 34.3%

0.20 m 0.139 m3 13.8%

0.25 m 0.050 m3 4.9%

0.30 m 0.0 m3 0%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 0.985 m3 97.0%

5◦ 0.983 m3 96.9%

10◦ 0.945 m3 93.2%

20◦ 0.461 m3 45.4%

30◦ 0.366 m3 36.1%

40◦ 0.166 m3 16.40%

50◦ 0.017 m3 1.7%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 0.985 m3 97.0%

0.03 m 0.984 m3 97.0%

0.05 m 0.984 m3 97.0%

0.10 m 0.984 m3 97.0%

0.20 m 0.983 m3 97.0%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 0.985 m3 97.0%

5◦ 0.985 m3 97.0%

10◦ 0.984 m3 97.0%

20◦ 0.983 m3 96.9%

30◦ 0.972 m3 95.8%

40◦ 0.890 m3 87.8%

50◦ 0.720 m3 71.0%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 0.985 m3 97.0%

0.01 m 0.958 m3 94.4%

0.02 m 0.896 m3 88.4%

0.03 m 0.698 m3 68.9%

0.04 m 0.548 m3 54.1%

0.05 m 0.479 m3 47.3%

0.1 m 0.222 m3 21.9%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 0.985 m3 97.0%

0.01 m 0.956 m3 94.3%

0.02 m 0.883 m3 87.1%

0.03 m 0.673 m3 66.4%

0.04 m 0.593 m3 58.5%

0.05 m 0.529 m3 52.1%

0.1 m 0.0 m3 0%
(f)
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Table A.12: PBVS of CAROCA

Pert. Range CSW volume % of full

rbp

0.03 m 63.064 m3 76.6%

0.05 m 59.543 m3 72.3%

0.10 m 53.046 m3 64.4%

0.20 m 43.085 m3 52.3%

0.25 m 39.674 m3 48.2%

0.30 m 35.827 m3 43.5%

0.50 m 24.450 m3 29.7%

0.60 m 19.974 m3 24.3%

0.70 m 15.825 m3 19.2%

0.80 m 12.257 m3 14.9%

0.90 m 9.366 m3 11.4%

1.00 m 6.898 m3 8.4%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 63.064 m3 76.6%

5◦ 55.615 m3 67.6%

10◦ 34.657 m3 42.1%

20◦ 7.320 m3 8.9%

30◦ 0.003 m3 0.003%

40◦ 0 m3 0%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 63.064 m3 76.6%

0.03 m 63.015 m3 76.5%

0.05 m 62.952 m3 76.5%

0.10 m 62.271 m3 75.6%

0.20 m 61.982 m3 75.3%

0.30 m 60.867 m3 73.9%

0.40 m 60.384 m3 73.3%

0.50 m 59.215 m3 71.9%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 63.064 m3 76.6%

5◦ 62.197 m3 75.55%

10◦ 60.028 m3 72.9%

20◦ 35.772 m3 43.5%

30◦ 5.64 m3 6.8%

40◦ 0 m3 0%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 63.064 m3 76.6%

0.01 m 60.539 m3 73.5%

0.02 m 58.781 m3 71.4%

0.03 m 56.858 m3 69.1%

0.04 m 54.654 m3 66.4%

0.05 m 52.32 m3 63.6%

0.1 m 40.207 m3 48.8%

0.2 m 3.795 m3 4.6%

0.3 m 0 m3 0%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 63.064 m3 76.6%

0.01 m 60.141 m3 73.0%

0.02 m 57.555 m3 69.9%

0.03 m 54.486 m3 66.2%

0.04 m 51.181 m3 62.2%

0.05 m 46.580 m3 56.6%

0.1 m 24.926 m3 30.3%

0.2 m 17.187 m3 20.9%

0.3 m 7.920 m3 9.6%

0.4 m 3.684 m3 4.5%
(f)
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Table A.13: 2½D VS of ACROBOT with small moving-platform

Pert. Range CSW volume % of full

rbp

0.03 m 0.908 m3 89.6%

0.05 m 0.883 m3 87.1%

0.10 m 0.789 m3 77.8%

0.20 m 0.606 m3 59.8%

0.25 m 0.514 m3 50.7%

0.30 m 0.430 m3 42.4%

0.50 m 0.101 m3 9.9%

0.60 m 0 m3 0%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 0.908 m3 89.6%

5◦ 0.893 m3 88.1%

10◦ 0.828 m3 81.6%

20◦ 0.502 m3 49.5%

30◦ 0 m3 0%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 0.908 m3 89.6%

0.03 m 0.906 m3 89.3%

0.05 m 0.904 m3 89.1%

0.10 m 0.894 m3 88.2%

0.20 m 0.889 m3 87.7%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 0.908 m3 89.6%

5◦ 0.907 m3 89.4%

10◦ 0.904 m3 89.1%

20◦ 0.889 m3 87.8%

30◦ 0.846 m3 83.4%

40◦ 0.603 m3 59.4%

50◦ 0 m3 0%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 0.908 m3 89.6%

0.01 m 0.835 m3 82.4%

0.02 m 0.747 m3 73.7%

0.03 m 0.654 m3 64.5%

0.04 m 0.565 m3 55.7%

0.05 m 0.482 m3 47.6%

0.1 m 0 m3 0%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 0.908 m3 89.6%

0.01 m 0.777 m3 76.6%

0.02 m 0.147 m3 14.5%

0.03 m 0 m3 0%
(f)
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Table A.14: 2½D VS of ACROBOT with large moving-platform

Pert. Range CSW volume % of full

rbp

0.03 m 0.911 m3 89.9%

0.05 m 0.887 m3 87.4%

0.10 m 0.791 m3 78.0%

0.20 m 0.608 m3 60.0%

0.25 m 0.518 m3 51.1%

0.30 m 0.445 m3 43.9%

0.50 m 0.112 m3 11.1%

0.60 m 0 m3 0%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 0.911 m3 89.9%

5◦ 0.896 m3 88.4%

10◦ 0.830 m3 81.8%

20◦ 0.536 m3 52.9%

30◦ 0.0003 m3 0.03%

40◦ 0 m3 0%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 0.911 m3 89.9%

0.03 m 0.909 m3 89.6%

0.05 m 0.907 m3 89.4%

0.10 m 0.898 m3 88.6%

0.20 m 0.890 m3 87.8%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 0.911 m3 89.9%

5◦ 0.910 m3 89.8%

10◦ 0.907 m3 89.5%

20◦ 0.893 m3 88.1%

30◦ 0.851 m3 83.9%

40◦ 0.602 m3 59.4%

50◦ 0 m3 0%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 0.911 m3 89.9%

0.01 m 0.881 m3 86.9%

0.02 m 0.840 m3 82.9%

0.03 m 0.788 m3 77.7%

0.04 m 0.742 m3 73.2%

0.05 m 0.680 m3 67.1%

0.1 m 0.407 m3 40.2%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 0.911 m3 89.9%

0.01 m 0.867 m3 85.5%

0.02 m 0.674 m3 66.5%

0.03 m 0.209 m3 20.6%

0.04 m 0 m3 0%
(f)
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Table A.15: 2½D VS of CAROCA

Pert. Range CSW volume % of full

rbp

0.03 m 77.414 m3 94.0%

0.05 m 75.640 m3 91.9%

0.10 m 75.479 m3 91.7%

0.20 m 66.018 m3 80.2%

0.25 m 64.807 m3 78.7%

0.30 m 63.462 m3 77.1%

0.50 m 53.715 m3 65.2%

0.60 m 50.044 m3 60.8%

0.70 m 45.168 m3 54.9%

0.80 m 40.074 m3 48.7%

0.90 m 34.543 m3 41.9%

1.00 m 28.976 m3 35.2%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 77.414 m3 94.0%

5◦ 75.786 m3 92.1%

10◦ 66.749 m3 81.1%

20◦ 35.205 m3 42.8%

30◦ 1.938 m3 2.4%

40◦ 0 m3 0%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 77.414 m3 94.0%

0.03 m 77.414 m3 94.0%

0.05 m 77.414 m3 94.0%

0.10 m 77.414 m3 94.0%

0.20 m 77.414 m3 94.0%

0.30 m 62.865 m3 76.4%

0.40 m 0.0 m3 0%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 77.414 m3 94.0%

5◦ 75.870 m3 92.2%

10◦ 75.866 m3 92.1%

20◦ 75.479 m3 91.7%

30◦ 75.003 m3 91.1%

40◦ 61.736 m3 74.9%

50◦ 0 m3 0%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 77.414 m3 94.0%

0.02 m 77.414 m3 94.0%

0.05 m 77.414 m3 94.0%

0.10 m 69.626 m3 84.6%

0.20 m 6.955 m3 8.4%

0.30 m 0.0 m3 0%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 77.414 m3 94.0%

0.02 m 73.931 m3 89.8%

0.05 m 72.614 m3 88.2%

0.10 m 67.191 m3 81.6%

0.20 m 65.308 m3 79.3%

0.30 m 60.751 m3 73.8%

0.40 m 52.703 m3 64.0%
(f)
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Table A.16: IBVS of ACROBOT with small moving-platform

Pert. Range CSW volume % of full

rbp

0.03 m 0.917 m3 90.4%

0.05 m 0.898 m3 88.6%

0.10 m 0.810 m3 79.9%

0.20 m 0.700 m3 69.0%

0.25 m 0.649 m3 64.0%

0.30 m 0.596 m3 58.8%

0.50 m 0.394 m3 38.9%

0.60 m 0.300 m3 29.6%

0.70 m 0.205 m3 20.2%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 0.917 m3 90.4%

5◦ 0.909 m3 89.6%

10◦ 0.885 m3 87.3%

20◦ 0.760 m3 75.0%

30◦ 0.613 m3 60.4%

40◦ 0.335 m3 33.0%

50◦ 0.03 m3 3.0%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 0.917 m3 90.4%

0.03 m 0.917 m3 90.4%

0.05 m 0.917 m3 90.4%

0.10 m 0.916 m3 90.4%

0.20 m 0.916 m3 90.3%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 0.917 m3 90.4%

5◦ 0.917 m3 90.4%

10◦ 0.916 m3 90.3%

20◦ 0.913 m3 90.0%

30◦ 0.912 m3 89.9%

40◦ 0.907 m3 89.4%

50◦ 0.897 m3 88.5%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 0.917 m3 90.4%

0.01 m 0.878 m3 86.6%

0.02 m 0.805 m3 79.4%

0.03 m 0.718 m3 70.8%

0.04 m 0.643 m3 63.4%

0.05 m 0.570 m3 56.2%

0.1 m 0.002 m3 0.2%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 0.917 m3 90.4%

0.01 m 0.872 m3 86.0%

0.02 m 0.730 m3 71.9%

0.03 m 0.435 m3 42.9%

0.04 m 0.077 m3 7.5%

0.05 m 0 m3 0%
(f)
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Table A.17: IBVS of ACROBOT with large moving-platform

Pert. Range CSW volume % of full

rbp

0.03 m 0.918 m3 90.5%

0.05 m 0.900 m3 88.8%

0.10 m 0.816 m3 80.5%

0.20 m 0.703 m3 69.3%

0.25 m 0.661 m3 65.2%

0.30 m 0.598 m3 58.9%

0.50 m 0.395 m3 38.9%

0.60 m 0.299 m3 29.4%

0.70 m 0.204 m3 20.1%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 0.918 m3 90.5%

5◦ 0.911 m3 89.9%

10◦ 0.885 m3 87.3%

20◦ 0.761 m3 75.0%

30◦ 0.625 m3 61.7%

40◦ 0.403 m3 39.8%

50◦ 0.057 m3 5.6%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 0.918 m3 90.5%

0.03 m 0.918 m3 90.5%

0.05 m 0.918 m3 90.5%

0.10 m 0.918 m3 90.5%

0.20 m 0.917 m3 90.4%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 0.918 m3 90.5%

5◦ 0.918 m3 90.5%

10◦ 0.918 m3 90.5%

20◦ 0.915 m3 90.3%

30◦ 0.913 m3 90.0%

40◦ 0.908 m3 89.6%

50◦ 0.900 m3 88.8%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 0.918 m3 90.5%

0.01 m 0.895 m3 88.2%

0.02 m 0.882 m3 86.9%

0.03 m 0.818 m3 80.7%

0.04 m 0.766 m3 75.5%

0.05 m 0.718 m3 70.8%

0.1 m 0.481 m3 47.4%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 0.918 m3 90.5%

0.01 m 0.897 m3 88.4%

0.02 m 0.856 m3 84.4%

0.03 m 0.757 m3 74.6%

0.04 m 0.611 m3 60.3%

0.05 m 0.421 m3 41.5%

0.1 m 0 m3 0%
(f)
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Table A.18: IBVS of CAROCA

Pert. Range CSW volume % of full

rbp

0.03 m 77.414 m3 94.029%

0.05 m 75.479 m3 91.7%

0.10 m 73.974 m3 89.9%

0.20 m 71.828 m3 87.2%

0.25 m 68.358 m3 83.0%

0.30 m 66.722 m3 81.0%

0.50 m 61.312 m3 74.5%

0.60 m 57.467 m3 69.8%

0.70 m 55.404 m3 67.3%

0.80 m 50.159 m3 60.9%

0.90 m 48.465 m3 58.9%

1.00 m 46.335 m3 56.3%
(a)

Pert. Range CSW volume % of full

∆θbp

3◦ 77.414 m3 94.029%

5◦ 75.479 m3 91.7%

10◦ 72.972 m3 88.6%

20◦ 64.107 m3 77.9%

30◦ 45.333 m3 55.1%

40◦ 22.250 m3 27.0%

50◦ 3.754 m3 4.6%
(b)

Pert. Range CSW volume % of full

rpc

0.01 m 77.414 m3 94.029%

0.03 m 77.414 m3 94.029%

0.05 m 77.414 m3 94.029%

0.10 m 77.414 m3 94.029%

0.20 m 77.414 m3 94.029%

0.30 m 77.414 m3 94.029%

0.40 m 77.414 m3 94.029%

0.50 m 77.414 m3 94.029%
(c)

Pert. Range CSW volume % of full

∆θpc

3◦ 77.414 m3 94.029%

5◦ 77.414 m3 94.029%

10◦ 77.414 m3 94.029%

20◦ 77.414 m3 94.029%

30◦ 77.414 m3 94.029%

40◦ 75.694 m3 91.9%

50◦ 75.479 m3 91.7%
(d)

Pert. Range CSW volume % of full

rAi

0.005 m 77.414 m3 94.029%

0.01 m 77.414 m3 94.029%

0.02 m 74.738 m3 90.8%

0.05 m 73.974 m3 89.9%

0.1 m 72.567 m3 88.1%

0.2 m 71.380 m3 86.7%

0.3 m 67.657 m3 82.2%

0.4 m 61.057 m3 74.2%
(e)

Pert. Range CSW volume % of full

rBi

0.005 m 77.414 m3 94.029%

0.01 m 74.738 m3 90.8%

0.02 m 73.974 m3 89.9%

0.05 m 73.544 m3 89.3%

0.1 m 71.456 m3 86.8%

0.2 m 67.416 m3 81.9%

0.3 m 64.163 m3 77.9%

0.4 m 42.427 m3 51.5%
(f)
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A.6 Additional IBVS Experiments with Different Perturbations

The experimental setup is as defined in Section 3.4.5. However, here the perturbations
are added to different parameters: perturbation on camera pose in the moving-platform
frame in Section A.6.1; perturbation on cable anchor points in Section A.6.2; perturbation
on cable exit points in Section A.6.3.

A.6.1 Perturbation on camera pose in the moving-platform frame

During stability analysis it was found that the real camera position on the
moving-platform could be unknown, and some arbitrary position can be given to the
controller. Here we test exactly that.

Several experiments are done with the following perturbations:

• E1 : no perturbation added, ptc =
[
− 0.0631 m; 0.0 m; 0.01 m

]
• E2 : rpc = 0.064 m and pt̂c =

[
0.0 m; 0.0 m; 0.0 m

]
;

• E3 : rpc = 0.128 m and pt̂c =
[
0.0631 m; 0.0 m; −0.01 m

]
;

• E4 : rpc = 0.106 m and pt̂c =
[
0.0 m; −0.08 m; −0.02 m

]
.

The experimental results are shown in Figs. A.14 through A.17.
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Figure A.14: Trajectory of four points in the image
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Figure A.15: Error e over time
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Figure A.16: Cable velocities over time
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Figure A.17: Moving-platform trajectory

Of course, when no perturbation on camera position in the moving-platform frame
exists, then the overall behavior is better and the error e rapidly converges to zero.
Interestingly, with all three perturbation sets in E2 to E4, the behavior is very similar.
Indeed, the direction of the deviation of the point trajectories is the same, as shown in
Fig. A.14. Similarly, in all three experiments errors ey1 and ey2 increase at first and then
proceed to decrease rapidly to zero. The remaining curves for components of e are also
similar in these three experiments, with the exception that ex1 changes its sign in E4 before
converging to zero.

Thus, indeed, the camera position in the moving-platform frame can be set arbitrarily.
None of the tested perturbations could make the system unstable. Moreover, the effect of
these perturbations on the system is small.

A.6.2 Perturbation on Cable Anchor Point Coordinates

In this section, perturbations are added to cable anchor point coordinates. The
experiments are defined as follows:

• E1 : no perturbation added;
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• E2 : rBi = 0.038 m;
• E3 : rBi = 0.073 m;
• E4 : rBi = 0.108 m.

The experimental results are shown in Figs. A.18 through A.21.
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Figure A.18: Trajectory of four points in the image

As can be seen in Fig. A.18, the larger the perturbation, the larger the deviation of point
trajectories. The gradual change of the robot behavior can also be observed in Fig. A.21,
where the moving-platform pose trajectory becomes more and more perturbed. The error
e does not reduce smoothly. Indeed, its components, such as ex1 and ex4 increase before
decreasing to zero. Moreover, there are components, such as ey2 that start to decrease, then
increase even above its initial value and only then do they converge to zero. Interestingly,
the trajectory time decreases. Indeed, without perturbations in E1 the task takes about 17 s,
while in E4 it decreases to about 14 s.

Clearly, perturbations on cable anchor points affect the system more than perturbations
on camera position in the moving-platform frame.
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Figure A.19: Error e over time
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Figure A.20: Cable velocities over time
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Figure A.21: Moving-platform trajectory

A.6.3 Perturbation on Cable Exit Point Coordinates

In this section, perturbations are added to cable exit point coordinates. The experiments
are defined as follows:

• E1 - no perturbation added;
• E2 - rAi = 0.032 m;
• E3 - rAi = 0.103 m.

The experimental results are shown in Figs. A.22 through A.25.

In these experiments, the size of the perturbation on cable exit point coordinates
reaches that of the previous section on cable anchor point coordinates. On the contrary,
the produced trajectories in the image are a lot less perturbed, as can be seen in Fig. A.22.
Indeed, the trajectory time is only slightly increased and all the cable velocity plots in
Fig. A.24 look identical. Same is true for the moving-platform trajectories shown in
Fig. A.25.

Thus, the system is less sensitive to perturbations on cable exit points than on cable
anchor points.
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Figure A.22: Trajectory of four points in the image
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Figure A.23: Error e over time



A.6 Additional IBVS Experiments with Different Perturbations 253

0 2 4 6 8 10 12 14 16
t, s

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
l̇ i

,m
/s

l̇1 l̇2
l̇3 l̇4
l̇5 l̇6
l̇7 l̇8

(a) E1

0 2 4 6 8 10 12 14 16
t, s

-0.05

0

0.05

0.1

l̇ i
,m

/s

l̇1 l̇2
l̇3 l̇4
l̇5 l̇6
l̇7 l̇8

(b) E2

0 2 4 6 8 10 12 14 16
t, s

-0.05

0

0.05

0.1

l̇ i
,m

/s

l̇1 l̇2
l̇3 l̇4
l̇5 l̇6
l̇7 l̇8

(c) E3

Figure A.24: Cable velocities over time
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Figure A.25: Moving-platform trajectory





Titre : Conception et analyse de stabilité de l’asservissement visuel sur des robots parallèles à
câbles pour une amélioration de la précision

Mots clés : Robots à câbles, précision, asservissement visuel, analyse de stabilité, espace
de travail, commande

Résumé : Cette thèse présente l’amélioration de
la précision des robots parallèles à câbles (RPC)
par l’asservissement visuel (AV) et l’utilisation de
l’analyse de stabilité pour évaluer la robustesse
du système robotique. Les RPC sont une sorte
de robots parallèles avec des câbles au lieu
de liaisons rigides. Ils sont caractérisés par un
grand espace de travail, une charge utile et une
reconfigurabilité élevées. En revanche, ils sont
généralement peu précis, ce qui les empêche
d’être largement utilisés. Avec une caméra
embarquée sur la plateforme mobile (PM) et en
contrôlant le RPC avec un AV, il est possible
d’avoir une grande précision par rapport aux
objets qu’elle perçoit. En effet, comme l’objet est
constamment observé, la commande ne s’arrête
que lorsque la précision souhaitée est atteinte.
Cependant, la PM n’est pas observée et sa pose
doit être estimée.

Les contributions de cette thèse sont les
suivantes. Trois méthodes d’estimation de pose
de PM ont été proposées et évaluées. Il a
été constaté que l’estimation par intégration de
commande est la plus polyvalente. Une analyse
de Lyapunov a été réalisée sur un RPC planaire
et spatial. Un lien entre la pose de la PM et
la stabilité du système a été déterminé et un
nouvel espace de travail appelé Control Stability
Workspace a été défini. Il a été calculé pour
plusieurs approches d’AV sur plusieurs RPC.
L’impact de différentes perturbations et erreurs
de modélisation a été évalué. Il a été montré
que la précision du RPC reste toujours la même
tant que le système est stable. Les perturbations
du système n’affectent que la trajectoire vers
l’objet, qui peut être amélioré en utilisant un suivi
de trajectoire. Enfin, pour traiter les pertes de
tension des câbles, un algorithme de correction
de tension pour l’AV a été proposé et validé.

Title : Design and stability analysis of visual servoing on cable-driven parallel robots for accuracy
improvement

Keywords : Cable robots, accuracy, visual servoing, stability analysis, workspace, control
Abstract : This thesis presents accuracy
improvement of Cable-Driven Parallel Robots
(CDPRs) by visual servoing (VS) and the use of
stability analysis to evaluate the robustness of
the robotic system. CDPRs are a kind of parallel
robots with cables instead of rigid links. They
are characterized by a large workspace, a large
payload capacity and reconfigurability, including
a changeable moving-platform. However, CDPRs
lack accuracy, which prevents them to be
widely used. With an onboard camera on the
moving-platform (MP) used in VS control of
CDPRs, it is possible to have high accuracy with
respect to a target object. Indeed, as the object
is perceived, the control is only stopped when the
desired accuracy is achieved. However, the MP is
not observed and its pose must be estimated.
The contributions of this thesis are the following.
Three moving-platform pose estimation methods

were proposed and evaluated on different tasks.
It was found that estimation by control integration
is the most versatile. Thorough Lyapunov stability
analysis was performed on a planar and a
spatial CDPRs. A link between the MP pose and
system stability was determined and thus a novel
workspace named Control Stability Workspace
was defined. It was computed for several VS
approaches on multiple CDPRs. The impact
of different perturbations and modeling errors
was evaluated. In experimental validation it was
shown that CDPR accuracy always remains
the same as long as the system is stable.
Perturbations in the system affect only the
trajectory to the goal. It was shown that trajectory
tracking greatly improves CDPR behavior despite
the perturbations. Finally, to deal with cable
slackness, a Tension Correction Algorithm for VS
was proposed and validated.
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