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RÉSUMÉ EN FRANÇAIS

Contexte et motivations

Figure 1 – Illustration de l’utilisation
du modèle de ventouse dans le cadre du
projet Imagine: les différentes actions
de démantelement d’un disque dur sont
simulées, en utilisant notamment une
ventouse fixée à l’extrémité d’un bras
de robot. Les simulations sont issues
des travaux réalisés pendant la thèse.

La thèse s’est déroulée dans le contexte du projet européen
H2020 Imagine (https://imagine-h2020.eu/) qui a pour ob-
jectif de mieux comprendre les actions des robots en imaginant
leurs effets. Le concept d’imagination s’apparente dans ce con-
texte à l’utilisation de techniques d’apprentissage couplées avec
des simulations basées physiques afin de prédire les actions d’un
robot en réponse à des actions déjà réalisées par le passé. Au
sein de ce projet, une pince robotique multi-usages a été conçue
afin d’expérimenter la méthodologie proposée dans le contexte
du recyclage et du démantelement d’objets électroniques poten-
tiellement dangereux. La pince réalisée contient notamment une
ventouse qui lui permet d’agripper les objets à manipuler (voir
Figure 1 pour un exemple de démantelement d’un disque dur à
l’aide d’une simulation réalisée dans le cadre de la thèse). Un
des objectifs du projet était donc de pouvoir simuler les effets de
succion de cette ventouse afin de réaliser des simulations prédic-
tives des actions de la pince robotique dans différents situations
applicatives.

La réalisation de simulations interactives et basées physique du phénomène de succion a été très peu
étudiée dans la litérature et l’objectif de la thèse était donc de concevoir un nouveau modèle de ce phénomène
physique complexe afin de pouvoir réaliser des simulations interactives et réalistes du comportement de
ventouses. Au-delà du projet Imagine, un modèle du phénomène de succion trouve son intérêt dans d’autres
contextes robotiques, les robots porteurs de ventouses étant utilisés dans plusieurs applications, notamment
pour les robots déformables. Des simulations interactives du phénomène de ventouses trouvent également
leur intérêt dans d’autres domaines tels que l’animation en informatique graphique ou bien dans les jeux
vidéo.
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Contributions de la thèse

Les contributions scientifiques de la thèse se situent à plusieurs niveaux: (1) tout d’abord du point de
vue de la modélisation, nous avons proposé un nouveau modèle basé physique permettant de modéliser le
phénomène de succion au sein d’une ventouse en interaction avec son environnement en s’intéressant aux
variations de pression à l’intérieur de la cavité de la ventouse, (2) puis du point de vue de la simulation, nous
avons proposé de nouveaux algorithmes permettant de réaliser une simulation interactive des phénomènes
de succion, (3) enfin du point de vue de la validation, nous avons proposé d’évaluer notre modèle et les
simulations associées au travers de plusieurs protocoles expérimentaux avec des données réelles et simulées.

Un nouveau modèle basé physique pour le phénomène de succion

Notre nouveau modèle basé physique du phénomène de succion est construit à partir de matériaux
déformables simulés avec la méthode des éléments finis. Nous avons tout particulièrement choisi la méthode
des éléments finis corotationnelle permettant de prendre en compte les grands déplacements. La dynamique
de l’air ous la ventouse est modélisée sous la forme de différents états qui dépendent des contacts en cours
sur la ventouse ainsi que les différentes forces qui sont appliquées.

Notre première contribution est la mise en place d’un algorithme permettant de détecter les cavités d’air
qui surviennent au moment d’une interaction physique entre un objet de type ventouse et un objet de surface
quelconque. Cet algorithme est illustré sur la Figure 2 et peut se découper en trois étapes: (1) la surface de
contact entre la ventouse et l’objet en collision est déterminée au travers des points de contact localisés
par la détection de collision; (2) à l’aide d’une procédure par inondation, la surface interne de la cavitée
de la ventouse et sa bordure interne (approximée) sont identifiées, les points de contact sont mis à jour en
conséquence; (3) la bordure interne est rafinée puis projetée sur l’object en collision pour faire place à une
seconde surface interne qui est associée à la première pour former la cavité géométrique. La topologie des
maillages de la ventouse et de la surface sur laquelle elle adhère est dynamiquement modifiée au moment
du calcul de la bordure interne rafinée.

Notre deuxième contribution porte sur la modélisation de la dynamique de l’air sous la ventouse. Nous
avons fait le choix de modéliser les pressions d’air contenues à l’intérieur des cavités détectés non pas en
considérant précisément la dynamique du fluide au travers d’un système de particules, mais en considérant
uniquement la distribution de la pression d’air au niveau des parois de la cavité à la place. Ce choix nous
permet d’obtenir de meilleures performances en termes de calcul et ainsi obtenir des simulations en temps
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Figure 2 – Etapes de notre algorithme de détection de cavité : A gauche: la surface de contact est déterminée
à partir des données de la détection de collision (rouge). Au centre: les surfaces internes (vert) et les bordures
internes approximées (ligne bleue en pointillés) sont identifiées au travers d’une procédure par inondation.
A droite: Les bordures internes rafinées (ligne bleue continue) sont calculées en utilisant de nouveaux
sommets ajoutés au maillage, et les surfaces internes sont ensuite associées par paire pour constituer la
cavité géométrique.

intéractif. Les pressions d’air des cavités sont formulées sous la formes de contraintes qui sont couplées
avec les contraintes de contact et de frottement que l’on retrouve communément dans le domaine de la
simulation physique. Deux types de succion sont considérés:

— la succion active où la cavité de la ventouse est controllée directement par l’utilisateur à l’aide d’une
pompe à air par exemple (dans ce cas, la valeur de la pression est connue).

— la succion passive qui est celle qu’on retrouve dans le cas d’une ventouse traditionnelle. La résolution
des contraintes de pressions sont alors basées sur la loi des gaz parfaits.

Simulation interactive

Nous avons implémenté notre modèle de succion en C++ à l’aide de SOFA, un framework spécialisé
dans la simulation d’objets déformables. Ce dernier a l’avantage d’être très modulaire, open source, et aussi
doté de multiple fonctionnalités notamment en termes de gestion de collisions et traitement de contraintes.
Afin d’optimiser les performances, nous avons utilisé un préconditionneur asynchrone implémenté sur
GPU, basé sur une décomposition LDL, disponible dans un plugin SOFA. La décomposition LDL consiste
à décomposer la matrice systèmeA sous la formeA=LDLT avec L une matrice triangulaire etD une
matrice diagonale. Cette technique permet de préconditionner le système afin de pouvoir le résoudre de
manière plus efficiente.

Afin de tester les aptitudes de notre modèle de succion, nous l’avons soumis à plusieurs scénarios pour
lesquels nous avons par ailleurs mesurer les performances de calcul. Les résultats sont indiqués dans le
tableau ci-après.
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Figure 3 – Aperçu des différents scénarios de simulation pour lesquels nous avons mesuré les performances
de calcul.

Les temps de calcul sont indiqués à l’échelle d’une frame (le pas de temps utilisé est de 10 ms), sur la base
d’une moyenne d’un échantillon de 150 frames. Ils sont exprimés en millisecondes et sont détaillés pour
chaque étape de notre pipeline. Les pourcentages écrit entre parenthèses indique la portion du temps utilisé
durant l’étape de manière relative aux autres étapes de la pipeline. Les scénarios dotés d’un astérisques
sont ceux n’ayant pas pu bénéficier de l’accélération GPU pour des raisons de stabilité (l’accélération GPU
induit des approximations en termes de déformations).

Scénario
Nb de

sommets
Nb de
tetras

Nb moy. de
contraintes

Tps moy.
par frame

Mouvement
libre

Détection
de collision

Détection
de cavités

Construction du
sys. contraintes

Résolution du
sys. contraintes

static plane 576 1685 2406.41 451.39 0.51 (0.23%) 8.31 (3.68%) 33.18 (22.05%) 31.57 (13.99%) 86.13 (57.24%)
rigid bunny 576 1685 2707.56 678.19 0.58 (0.17%) 5.65 (1.67%) 2.58 (0.76%) 97.24 (28.68%) 224.54 (66.22%)
static sphere 576 1685 4527.12 827.68 0.51 (0.12%) 7.84 (1.90%) 1.49 (0.54%) 69.63 (16.82%) 215.19 (78.00%)
rigid cube 576 1685 3164.74 910.04 0.58 (0.13%) 12.53 (2.75%) 56.72 (12.46%) 104.33 (22.93%) 273.71 (60.15%)
octopus arm∗ 731 1935 878.01 300.15 6.24 (4.16%) 6.47 (4.94%) 22.98 (30.62%) 24.78 (18.01%) 59.50 (39.65%)
toy∗ 576 1685 1444.31 477.74 27.60 (11.56%) 4.81 (3.67%) 20.92 (8.76%) 15.11 (10.95%) 149.05 (62.40%)
deformable cube∗ 576 1685 3361.09 1498.57 8.60 (1.15%) 4.89 (0.98%) 36.39 (4.86%) 125.72 (16.78%) 364.42 (72.95%)
dart∗ 723 2002 2686.25 1133.17 28.09 (4.96%) 13.71 (2.54%) 69.16 (12.21%) 52.00 (9.47%) 393.53 (69.46%)

Pour aller plus loin, nous avons ensuite exécuté le scénario "rigid cube" avec différentes résolutions de
maillages puis nous avons comparé les performances. Les résultats sont indiqués dans le tableau ci-dessous:
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Nb de
noeuds

Nb de
tetras

Nb de
constraintes

Tps moy.
par frame

Mouvement
libre

Détection
de collision

Détection
de cavités

Construction du
sys. de contraintes

Résolution du
sys. de contraintes

76 205 244.88 11.66 0.10 (1.71%) 0.88 (15.04%) 0.41 (10.55%) 0.81 (13.88%) 0.87 (22.25%)
125 372 452.93 52.95 0.14 (0.54%) 3.56 (13.46%) 8.49 (48.09%) 2.34 (8.84%) 3.33 (18.87%)
141 413 623.56 75.94 0.16 (0.41%) 4.07 (10.73%) 11.56 (45.66%) 3.51 (9.26%) 6.59 (26.03%)
151 449 642.34 75.48 0.17 (0.45%) 3.96 (10.48%) 11.29 (44.86%) 3.68 (9.75%) 6.80 (27.03%)
159 470 830.41 104.65 0.18 (0.35%) 4.55 (8.70%) 14.76 (42.30%) 4.92 (9.40%) 11.61 (33.27%)
203 613 996.07 132.82 0.23 (0.35%) 5.03 (7.58%) 17.39 (39.27%) 6.94 (10.45%) 16.41 (37.07%)
363 1078 2294.55 486.40 0.36 (0.15%) 9.00 (3.71%) 45.15 (27.85%) 26.37 (10.84%) 88.23 (54.42%)
415 1241 2584.75 603.13 0.39 (0.13%) 10.50 (3.49%) 53.29 (26.50%) 32.11 (10.65%) 113.98 (56.70%)
455 1378 2837.21 703.27 0.44 (0.13%) 11.54 (3.29%) 60.05 (25.62%) 39.68 (11.29%) 134.81 (57.51%)
502 1472 3133.83 839.36 0.48 (0.11%) 12.66 (3.02%) 69.39 (24.80%) 48.05 (11.45%) 163.78 (58.54%)
552 1598 3323.07 896.17 0.51 (0.11%) 13.33 (2.98%) 71.87 (24.06%) 51.57 (11.51%) 177.27 (59.34%)
576 1685 3450.77 993.11 0.55 (0.11%) 14.14 (2.84%) 78.33 (23.66%) 55.08 (11.10%) 199.68 (60.32%)

Comme nous pouvons l’observer, plus la résolution des maillages est élevée, plus les performances
diminuent. Ceci est lié au fait que des maillages haute résolution induisent une quantité plus importante de
points de contacts lors de collisions, et que par conséquent, le nombre de contraintes de contact frictionnel
à résoudre augmente. Nous avons pu vérifier, au travers de tests plus approfondis, que les performances
sont en effet principalement impactées par le nombre de contraintes à résoudre au cours d’un pas de temps.

Validation

A l’égard du processus de validation de notre modèle de succion, nous avons réalisé plusieurs expériences,
d’une part sous la forme de simulations, puis avec des comparaisons avec des données réelles.

Premièrement, dans le contexte de la succion active, nous avons mis en place une expérience afin
d’évaluer la géométrie des ventouses simulées, ainsi que les forces générées sur la ventouse. Pour cela, nous
avons mis en place un scénario dans lequel nous avons fabriqué plusieurs ventouses en silicone avec des
propriétés rhéologiques connues. Nous avons dans un premier temps comparé la géométrie des ventouses
réelles avec les ventouses virtuelles de nos simulations pour un même scénario donné. Ce scénario consistait
à appliquer à l’intérieur des ventouses une pression que nous controllions. La géométrie des ventouses
réelles a été reconstruite par le biais de techniques de photogrammétrie afin de pouvoir être comparée avec
la géométrie des ventouses virtuelles. Puis, dans un second temps et toujours dans le cas de la succion
passive, nous avons réalisé une expérimentation physique qui a consisté à comparer les forces nécessaires
pour décoller une ventouse en fonction de son élasticité et de la pression d’air appliquée à l’intérieur de la
cavité. Les résultats mesurés ont été comparés avec ceux de nos simulations et montrent que les géométries
obtenues et les forces comparées étaient similaires.
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De la même manière que pour la suction active, nous avons réalisé une expérience similaire dans le
cadre de la succion passive cette fois. Nous avons de plus considéré plusieurs niveaux de courbures pour la
surface sur laquelle la ventouse adhère. Les expérience sont illustrées sur la Figure 4. Enfin, nous avons
également réalisé plusieurs expériences virtuelles permettant d’observer les limites des capacités de notre
modèle de succion.

pipe

suction cup

force sensor

Figure 4 – Expérience menée dans le contexte de la succion passive ayant pour objectif de valider les forces
nécessaires pour décoller des ventouses de formes et d’élasticités différentes. La ventouse est appuyée
contre une surface puis tirée vers le haut. Plusieurs degrés de courbure ont été testés.
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CHAPTER 1

INTRODUCTION

1.1 Context and motivations

Figure 1.1 – Examples of animals us-
ing suction as a mean of locomotion:
octopus on the top image and snail on
the bottom image.

The overall goal of this thesis is to provide novel approaches
based on physics-based simulations in order to improve the dex-
terity of robots. Our research focus is on the understanding and
the simulation of suction phenomenon because of its interesting
features in regards to robot manipulation. Furthermore, controlling
suction phenomenon would be of high interest in the design of soft
robots as well as other applications beyond robotics.

In daily life, we encounter a considerable amount of objects
and situations involving suction phenomena. For instance, suction
phenomenon occurs when we join and separate our hand palms.
Another everyday example is the act of holding a plastic cup around
our mouth by inhaling air and then stop breathing. In nature, the
locomotion of snails and octopuses also takes advantage of suction
(Figure 1.1). But the most obvious example is likely the traditional
suction cup. The latter is able to stick to some surfaces and we can
grasp objects with it too. Suction cups are a part of many objects
such as tea towel hooks, suction cup unblockers, care cups, dart
guns, pop up spring toys and glass suction cups (Figure 1.2).

Nowadays, suction cups have been widely adopted in robotics
(Figure 1.3). Vaccum grippers for instance are often used through as-
sembly line wherein machines have to manipulate brittle and smooth
materials like glass. Indeed, a suction cup is made of a deformable
material (silicon) and is consequently suitable to manipulate delicate
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Introduction

Figure 1.2 – Examples of common objects made with suction cups: tea towel hooks, suction cup unblocker,
care cups, dart gun, pop up spring toys, glass suction cups.

materials while avoiding damage. In addition, a vacuum pump can be linked to the cavity of the cup in
order to reinforce the suction effect and ensure the grasping operation without accidental dropping. Another
example is the case of the wall-climbing robots. Some of them are designed with suction cup actuators.
Thanks to these actuators, they are able to climb flat surfaces. Beyond that, we think that controlling the
suction phenomenon has a great potential in robotics especially with the emerging soft robots. These
robots are commonly made of silicon and have the advantage of limiting damage, being flexible and
adapt themselves for accomplishing tasks. That is why they are particularly used in surgery. The design
of soft robots is mostly inspired by nature. In our context, we could imagine a robot whose locomotion is
motivated by octopus. The animal disposes of cups which are arranged along its multiple arms. Each cavity
is surrounded by muscles that the octopus can activate in order to increase the volume of this cavity. This
action has the effect of inducing a suction phenomenon allowing the animal to stick to surfaces. In fact,
suction cups rely on this same principle. Such a robot would be very complex to design and the challenge
would be multiple: on the one hand, soft robots tend to have an infinite number of degrees of freedom
meaning their motion is hard to predict and control. On the other hand, whereas we perfectly know forcing
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Figure 1.3 – Examples of robots using suction cups: vaccum grippers, wall-climbing robots [RP17], soft
pneumatic actuators [XDA+20].

suction thanks to a vaccum pump (active suction), dealing with suction without any external device (passive
suction) is more difficult especially in terms of control and design. From this observation, we are conviced
that physics simulation of the suction phenomenon will become a powerful tool when designing soft robots.
This concern about control is even more important in the medical field wherein any motion error could be
critical.

This thesis is funded by the European H2020 project Imagine (https://imagine-h2020.eu). The
overall objective of this project is to give to robots the ability to understand their environment and the
way they are affected by their own actions. The project takes place in the context of electronic devices
dismantlement and it relies on multiple software components coming from the different research partners.
In fact, those components are gathered together in order to constitute the whole artificial intelligence of
the robot. An association engine allows the robot to visually analyze the electronic device that it has to
dismantle, and then generate a list of actions (manipulation tasks) to complete its mission. When an action
seems subject to risks, this one is beforehand simulated thanks to a physics engine which is actually our
project contribution as a research partner. On the one hand, robots could be able to judiciously choose
their actions and parameters regarding to the simulated performance. On the other hand, they can monitor
their progression by comparing the outcome of the real manipulation with the predicted behavior inside the
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suction cup

Figure 1.4 – Left: gripper robot from the Imagine project and its actuator equipped with a suction cup
(image of courtesy from Karlsruhe Institute of Technology). Right: illustration of a physics-based simulation
using our physics-based model of suction cup: the suction cup at the end of a gripper is used to dismantle a
hard drive [SHGSA+20].

simulation. In this respect, the robot can improve its own performance by learning through the executed
scenarios. The robot can use different kinds of actuator for object manipulation purposes. Among these
actuators, one is a suction cup as shown in Figure 1.4. For this reason, my task was to realize and provide
physics simulation of suction cups in the context of this project.

1.2 Scientific challenges

The suction phenomenon is difficult to control due to its most important features: on the one hand, the
rim of the cup must be absolutely sealed to guarantee the air-tightness of the cavity. Otherwise the suction
effect would not succeed or it would just partially work. Scenarios involving irregular surfaces like bumpy
surfaces are especially difficult to handle. On the other hand, the dynamics of the deformable material are
correlated with the dynamics of the fluid (air) which both drive suction. Moreover, friction between the
interacting materials has an impact on suction.
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Modeling: In terms of modeling challenges, one difficulty is that we deal with deformable objects
(suction cups are commonly made of silicon). In addition, they could interact with other involved deformable
objects, leading to more complex situations. This aspect means that the modeling of the object dynamics
(displacement and distortion) is likely based on continuum mechanics. The air dynamics has to be considered
likewise because it plays a crucial role about how the inner air pressure is distributed. A last problem we
have to manage is the cavity detection of the suction cup. Indeed, depending on the contact configuration
of the suction cup with the colliding object, the rim would be more or less sealed. On top of that, the air
trapped in cavity could escape and it would be difficult to estimate the precise amount of air loss.

Simulation: In physics-based simulation, we often look for a trade-off between stability, accuracy,
and computation-time performance. In our situation, we mainly focus on robotics applications meaning
the accuracy of our simulations is important. But we also would like to be able to obtain simulations at
interactive time. However, computation-time performance is faced off by some costly aspects within the
simulation: First, the computation of the object deformations itself is already challenging because the
object has a lot of degrees of freedom so it often necessitates to solve a large linear system. Secondly,
interacting objects implies dealing with collision detection, resulting in a lot of contact points to handle.
Thirdly, simulating the dynamics of the fluid (air) could be very costly depending on the numerical method
we choose. To finish, the more the scene is complex, the more the above listed elements are amplified. This
complexity essentially depends of the granularity of the geometric representations of the simulated objects,
the number of involved objects and how much they interact together.

Validation: We distinguish two kinds of suction: active suction and passive suction. Active suction
corresponds to the situation wherein the cavity of the cup is connected to a vaccum pump for instance,
meaning the inner air pressure is directly controlled by the user. In contrast, passive suction means that the
air dynamics inside the cavity is only driven by the distortion of the materials, the friction of the rim, and
other effects but without any artificial device. In other words, passive suction coincide with the traditional
suction cups scenarios. From a model validation point of view, the results of our virtual physics simulations
must be compared with ground truth data. It implies achieving real physics experiments to measure forces,
geometry, and other interesting metrics associated to scenarios involving the suction phenomenon. This part
is particularly challenging in our context. Among the encountered difficulties, we mention the tracking of
the shapes of the deformable objects plus the measure of the pressures and forces. The validation of the
model is particularly important in robotics because we want to be sure our simulation is meaningfully close
to reality.
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1.3 Contributions of the manuscript

We introduced a novel physics-based model of the suction phenomenon in two versions: active suction
and passive suction. Our model includes an algorithm which detects the geometries of air cavities which
may arise when a suction cup (or another kind of suction object) interacts with another object. In addition,
we use a constraint formulation wherein we introduced a new air pressure constraint that we coupled with
contact and friction constraints. Besides, we designed several simulation scenarios illustrating our suction
model and we measured their computation-time performance. We also made several physical and virtual
experiments (additional scenarios) to test and validate our suction model in terms of geometry and forces.
These above contributions are detailed in the following.

Regarding numerical methods, we decided to use the popular Co-rotational Finite Element Method [MG04]
to simulate the deformations of the objects dues to its accuracy. Our first contribution is the elaboration
of an algorithm which is able to detect the cavities wherein air is trapped when a suction object interacts
with another object. Each detected cavity is associated to mechanical values related to the ideal gas law,
namely the internal air pressure, the volume of the cavity and its quantity of air. In terms of modeling, we
decided to not represent air dynamics (through a particles system for instance) because, even if the pressure
distribution is impacted by the air dynamics, we think this aspect is negligible in our context. Instead, we
solely consider a uniform pressure distribution along the walls of the cavities. This simplification allows us
to obtain better time performances and therefore achieve interactive simulations. Our second contribution is
that we formulated the air pressures inside cavities as constraints coupled with the traditional contact and
friction constraints we use in physics simulation. The resolution of these pressure constraints is based on
the ideal gas law in the case of passive suction (the pressure value is already known in the case of active
suction).

We have established several simulation scenarios for illustrative and benchmark purposes about our
suction model. We use an asynchronous GPU-implemented preconditioner which accelerates the resolution
of the constraint system. The time performances of our simulations has been measured and compared
using different mesh resolutions. We observed that the time performance is essentially slowed down by the
numerous contact and friction constraints. As expected, the more the resolution of the meshes is high, the
more we have contact points meaning more constraints to solve. Thus, computation-time performance is
basically proportional to the degree of granularity of the meshes.

Our last contribution is the validation of our model through several physical and virtual experiments.
Regarding the active suction version of our model, we compared the geometry of photogrammetry-
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reconstructed suction cups coming from reality with the simulated ones. To achieve this, we linked
the cavities of the real cups to a vacuum pump with a regulator in-between in order to obtain the desired
material configurations. Still about active suction, we measure the necessary pull forces to detach our
suction cups in a real experiment, and we compared the results with the ones from our simulation. Later, we
did a similar experiment in the context of passive suction, except we additionally tested different degrees of
surface curvatures (contact surface). Furthermore, we also made some virtual experiments to illustrate the
features of our suction model. Roughly, they consist of grasping objects by suction and test different object
shapes and curvatures.

To summarize, our research focuses on the modeling and simulation of suction phenomenon due to its
very interesting features in regards to object manipulation purposes, soft robots locomotion and design.
The organisation of this thesis is as follows: In Chapter 2, we sketch the state of the art of the suction
phenomenon: physics-simulation of deformable objects, collision detection, constraint formulation and
resolution. In Chapter 3, we explain our modeling and the algorithmic aspects of our method. In Chapter 4,
we provide some implementation details, our illustrative scenarios, and the measured time performances. In
Chapter 5, we detail the physical and virtual experiments we made to validate our model. After that, we
conclude with a discussion of our work.

1.4 Published research papers

— Antonin Bernardin, Christian Duriez, and Maud Marchal. An interactive physically-based model for
active suction phenomenon simulation. In IEEE/RJS International Conference on Intelligent Robots
and Systems (IROS), 2019.

— Alejandro Suárez-Hernández, Thierry Gaugry, Javier Segovia-Aguas, Antonin Bernardin, Carme
Torras, Maud Marchal, and Guillem Alenyà. Leveraging multiple environments for learning and
decision making: a dismantling use case. In IEEE/RJS International Conference on Intelligent
Robots and Systems (IROS), 2020.

— Antonin Bernardin, Guillaume Cortes, Rebecca Fribourg, Tiffany Luong, Florian Nouviale, and
Hakim Si-Mohammed. Toward intuitive 3d user interfaces for climbing, flying and stacking. In
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 860–861, 2018.
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As teased in Section 1.3, we elaborated a physically-based model of the suction phenomenon that can
notably be applied to simulate suction cups. Obviously, such a simulation does not solely depend upon
our contributions. It also relies on existing methods in matter of physics simulation of deformable objects.

21



Part , Chapter 2 – State of the Art

Because of this, the purpose of this chapter is to sketch an overview of related work while explaining
the different modeling and numerical approches regarding time integration, object distortion, collision
detection, and contact handling.

The chapter is organized as follows: Section 2.1 draws existing work related to the modeling of the
suction phenomenon. Section 2.2 gives an overview of the state-of-the-art methods and related background
to simulate deformable objects, with a specific focus on the Finite Element Method that we use in the
context of our work. Next, some explanations about time integration schemes are given plus a comparison
between the different simulation methods. Section 2.3 deals with collision detection algorithms having
the special ability to handle self-collision, an important feature in the case of soft bodies. Section 2.4 is
about the different approaches to simulate contacts between colliding objects. In particular, we detail the
constraint-based approach and the underlying possible constraint formulations knowing that our model
relies on a novel air pressure constraint. Finally, Section 2.5 quickly discusses about linear solvers while
mentioning some commonly used ones.

2.1 Suction phenomenon

A significant amount of work have been recently published in order to improve the design of suction cups.
One problem with traditional rubber suction cups is that they are not suitable to grip rough surfaces due to
air leakages. To tackle this issue, Xin [XZK+14] developed a new pneumatic sucker having a cylindrical
cavity in which a rotating air flow is produced through tangential nozzles. The air flow generates a cupped
negative pressure distribution which creates a suction phenomenon. The author compared its new sucker to
traditional ones and proved that it is superior in handling rough work-pieces. Other recent works seek to
design very small suction cups: Knowing the traditional suction mechanism with an air pump is difficult to
miniaturize, Hu [HY18] designed a valveless piezoelectric pump which is integrated into a micro-suction
cup. Additionally, Nishita [NO17] proposed a novel liquid-filled flexible micro suction-controlled array
(MISCA) for humanoid robot hands. The array includes multiple tiny suction units onto a sheet (membrane)
of 1 centimeter squared area, made of a flexible material. The latter lays onto a body wherein a micro-
channel network was dug to let an incompressible fluid circulate. When the array is put against a surface
and that the syringe pump is then enabled, the fluid is moved in a way the membrane distorts itself. It has
the effect of increasing the volumes of the suction units cavities and decreasing the respective air pressures
in return, leading to suction phenomena. This system, which looks similar to the suckers of an octopus arm,
allows robots to hold curved or grooved surface objects. Speaking of octopus, there exists an impressive
amount of bio-inspired robots and actuators especially in the domain of soft robots. One special mention
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would be the octopus-like suction cups from Tramacere [TFPM15].

Whereas suction cups are widely used in Robotics, physics-based modeling of the suction phenomenon
has been reported by relatively few papers in the literature. One of the earlier, but relevant, work on the
topic from Bahr [BLN96] focuses on the design and analysis of a climbing robot that was equipped with
suction cups at the tip of its two legs. In their work, they established a theoretical analysis of the suction
cup to find the minimal vacuum pressure for avoiding both falling down and sliding. Some years later,
Liu [LTBY06] presented an analytic modeling of suction cups for window-cleaning robots, in which
the friction was omitted by considering that the window surface was always perfectly wet. Through a
quantitative study of the attachment and detachment of a passive suction cup, Ge [GMS+15] modeled
the forces acting on the cup considering only the vertical ones for a sake of simplicity. More recently,
Mahler [MML+18] proposed a compliant suction contact model wherein the suction cup is seen as a
quasi-static spring system. Their model estimates the deformation energy to maintain a seal and it quantifies
the ability to resist to external wrenches. Nevertheless, and to the best of our knowledge, there is no existing
physics-based model of suction cup with a coupling between its deformation and the inner pressure. Such
methods require simulations of both deformable models and contact model between different objects. We
therefore gave a response to this challenge through our suction model presented in this thesis.

2.2 Physics-based modeling of deformable objects

Soft body simulation is often based on physical laws and considerations coming from the field of
continuum mechanics: An elastic object is usually defined by its undeformed shape, also called rest
configuration, and by its set of material parameters such as its modulus of elasticity. The closed surface of
the rest shape is considered continuous and defines the boundary of the material domain D of the object.
We assumem the material coordinates (location in the initial configuration) of an arbitrary particule in the
domain such asm ∈ D, with x= x(m, t) its position at a time t and ẋ= ẋ(m, t) its associated velocity
vector.

When forces are applied to the object, each material particlem is moved to a new location x (Figure 2.1).
From the displacement vector field u = x−m, we can calculate the elastic strain ε, a dimensionless
quantity which is simply equal to ∆l/l in the linear 1D case with l the rest length of a spring and ∆l the
offset between its rest length and its current length. A spatially constant displacement field represents a
translation of the object with no strain. From this observation, we now understand that the strain of the
deformable object is directly related to the variation of its displacement field u. For elastic bodies, the strain
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Figure 2.1 – Continuum mechanics: a deformable object moves from its initial configuration to a deformed
configuration.

is often described using the Green’s nonlinear symmetric strain tensor εG:

εG =
1
2
(∇u+[∇u]T +[∇u]T ∇u) (2.1)

However, in case of small displacements, the nonlinear part of the definition can be neglected, leading to a
linearization of εG, also known as Cauchy’s linear strain tensor εC:

εC =
1
2
(∇u+[∇u]T ) (2.2)

with the gradient ∇u representing the spatial derivatives along each axis of our euclidean space.

When a soft body is strained by external forces, it implies internal forces which appear as a consequence.
These forces, which are called internal stresses, tend to return the strained body to its rest configuration. It
means there exists a law which connects the stress tensor with the strain tensor according to the mechanical
properties of the deformable object. It is the purpose of a constitutive law. If the material is considered as
perfectly elastic and isotropic, the linear Hooke’s law can be used, which is a popular choice in computer
graphics:

σ = 2µε+ γ tr(ε)I (2.3)
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with I the identity matrix and tr the trace function. The term µ is the first Lamé coefficient and γ is the
second Lamé coefficient, also called shear modulus. These two coefficients only depend of two properties
of the material which are respectively the Young modulus Y and the Poisson ratio ν such that:

µ =
Y

2(1+ν)
, (2.4)

γ =
Y ν

(1+ν)(1−2ν)
. (2.5)

The Young modulus represents the elasticity of the material, whereas the Poisson’s ratio characterizes the
ratio of contraction or expansion in perpendicular directions relative to the applied load.

Deformable object modeling is often governed by continuum mechanics but computer computation
capabilities are however limited. In other words, simulation of soft bodies needs to represent the geometry
of the objects as non-continuous representations (see Section 2.2.1 and Section 2.2.2). And the same idea
applies for the representation of time, for which a time integration scheme has to be used (see Section 2.2.4).
Physics simulation needs numerical methods to discretize time and space.

Several kinds of spatial discretization exist in the literature. They can be divided into two classes according
to the way they spatially represent the objects. On the one hand, the mesh-based methods represent the
deformable object using a mesh. On the other hand, the mesh-free methods represent the object using
something else than a mesh. All mesh-based methods and the mesh-free methods are detailed and compared
in Section 2.2.2. The only exception is the mesh-based Finite Element Method which has a dedicated
Section (Section 2.2.1) because it is a popular method and the one we use in the context of our work.

2.2.1 Spatial integration with FEM methods

The dynamic behavior of the object is governed by the Newton’s second law which can conveniently be
formulated as an ordinary differential equation (ODE):

M(x)ẍ= g(t)−f(x, ẋ) (2.6)

where the right-hand terms represents the gathering of all forces which impact the motion of the deformable
object, whileM(x) represents its constant diagonal mass matrix and ẍ its acceleration. Two types of forces
are considered in this equation: g(t) the external forces which apply onto the object’s surface and f(x, ẋ)
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the internal forces. Assuming we deal with elastic objects, these internal forces are actually elastic forces.
They try to restore the object to its rest configuration from inside.

In the following, the Newton’s second law will be denoted ẍ = N(x, ẋ, t). One of the most popular
numerical methods for deformable object is the Finite Element Method (FEM). This one performs a
discretization (mesh) of the deformable object and often transforms the partial differential equation of
motion (PDE) into a piece-wise linear function (ODE). The Finite Element Method (FEM) considers the
deformable objects as continuous volumes but discretized as irregular meshes, giving a finite number of
elements. The latter are typically hexahedra or tetrahedra in order to capture the volumetric aspect of the
object in terms of deformation computation. Besides, triangles can be used when the simulation takes place
within a 2D euclidean space. Even if acceleration techniques exist, one drawback of the FEM is typically the
slowness of the simulation, especially when dealing with high resolution meshes. However, one advantage
of the method is it respects the law of conservation of matter.

Knowing the spatial representation of the simulated objects is done through irregular meshes, the FEM
needs to solve Partial Differential Equations (PDE) on them. The PDE which is used to simulate dynamic
elastic materials is formulated as follows:

ρü= ∇ ·σ+g (2.7)

where ρ is the density of the material, u the displacement vector, g the external forces and ∇ the divergence
operator. This equation is often approximated with a very specific subset of functions which are solved
numerically. Some methods use linear interpolation within each element. The consequence is that it restricts
the solution to a piece-wise linear function. However, the solution can be represented more accurately by
using quadratic functions instead of piece-wise linear functions, or even more elaborated bases. Knowing
that in the FEM, the continuous deformation is approximated by a sum of linear basis functions (one per
each node of the mesh), the goal is to find all the unknown positions xi(t) for the next time step, according
to the following equation:

x(m, t) = ∑
i
xi(t) bi(m) (2.8)

where bi is the Kronecker Delta property. In the explicit FEM, the masses, the internal forces, and the
external forces are lumped to the vertices. The strain field ε(m) and stress field σ(m) are computed from
u(m). Then, the deformation energy can be determined according to the following equation:

E =

˛
D
ε(m) ·σ(m) dm . (2.9)

26



2.2. Physics-based modeling of deformable objects

Figure 2.2 – Large rotational deformations yields to inflation artifacts when not using Co-rotational Finite
Element Method [MG04].

After that, the forces can be computed as the derivatives of the energy according to the nodal positions. The
relationship between nodal forces and nodal positions is often nonlinear but can be linearized as:

fe =Keue (2.10)

for which fe contains the ne nodal forces and ue the ne nodal displacement of an element. Thus, Ke ∈
R3ne×3ne is the stiffness matrix of the element e. The stiffness matrix of the entire mesh can be expressed as
K = ∑eKe. HereK is a sparse matrix containing zeros at positions related to nodes not adjacent to the
element. OnceK has been determined, the linear algebraic equation of motion can be used at each time
step of the simulation (between time t0 and t with u= x−x0):

g =Mü+Cu̇+Ku (2.11)

withM the mass matrix, C the damping matrix and g the externally applied forces. Besides,M and C
can be transformed to diagonal matrices using a technique called mass lumping. If we use a linear strain
measure and Hooke’s law for isotropic materials (a material having identical values of a property in all
directions), the PDE to solve becomes the Lamé’s linear PDE:

ρẍ= ν∆u+(µ + γ)∇(∇ ·u) (2.12)

wherein the constants µ and γ are respectively the first and second Lamé coefficients that we have defined
in Equation 2.4 and Equation 2.5.

Co-rotational FEM: Although using linear PDE’s yields linear algebraic systems which can be solved
faster while keeping a good stability compared to nonlinear PDE, linearized elastic forces are only valid
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for small deformations. Indeed, as it is represented on Figure 2.2, large rotational deformations yield
highly inaccurate restoring forces, causing inflation artifacts on parts on which the object is distorted. In
order to avoid this artifact, Müller et al. [MG04] proposed a technique based on his previous work called
Stiffness Warping [MDM+02]. The author computes the elastic forces for every element (tetrahedron) in a
local unrotated coordinate frame. This method is now commonly called co-rotational in the community.
Assuming we know the rotational partRe of the deformation of the tetrahedron e and its stiffness matrix
Ke, the force fe on the element is computed as:

fe =ReKe · (R−1
e x−x0) =ReKeR

−1
e x−ReKex0 =K

′
ex+f

′
0e

(2.13)

The elastic forces of the entire mesh are given as f =K ′x+f ′0 whereinK ′ is the global stiffness matrix.
f ′0 represents the sums of the element’s rotated stiffness matrices K ′e = ReKeR

−1
e and force offsets

f ′0e
=Ref0e with global vertex numbers. By using the co-rotational technique, there is no ghost force

because the elastic forces in fe are guaranteed to sum up to zero, meaning the forces in f sum to zero too.

Reduced deformation models: In order to speed up the simulation at the expense of loosing a bit of
accuracy, one solution is to use reduced deformation models. A reduced deformation model approximates
deformed point locations x by a linear superposition of n displacement fields, given by the columns ofU . As
illustrated in Figure 2.3, the amplitude of each displacement field is given by q the reduced coordinates, such
that x= x0 +Uq. One major way to obtain reduced deformable models is to use modal analysis [PW89].
The principle behind using modal analysis for deformable objects is the decoupling of the linear algebraic
equationMü+Cu̇+Ku= f into several linearly independent ODE, by use of the whitening transform
which simultaneously diagonalizesM , C andK. And to find the whitening transform, it is necessary to
solve the eigenvalue problem ΛΦ =M−1KΦ where Λ and Φ are the eigenvalues and eigenvectors of
M−1K. Note that Φ is likewise called the modal matrix. One interesting aspect with modal analysis is
that, once the analysis has been performed, we are able to select only a few modes in order to reduce the
number of degrees of freedom (DOF).

(a) (b) (c) (d)

Figure 2.3 – Reduced deformation models [NMK+06]: (a) reference shape x0, (b) displacement field U1,
(c) displacement field U2 ,and (d) one possible deformed shape x= x0 +U1 +0.5U2.
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After the introduction of modal analysis by Pentland [PW89], a few significant contributions have been
presented since then: Stam [Sta97] applied modal analysis to the simulation of tree branches subjected to
turbulence. Hauser [HSO03] combined constraints with reduced deformation models to achieve fast and
stable simulations with complex objects. James and Pai [JP02] invented a precomputed Dynamic Response
Texture (DyRT) storing mode shapes and other quantities into graphics hardware. In terms of implemen-
tation, displacements are efficiently applied to the undeformed mesh thanks to a vertex program. Barbic
and James [BJ05] presented an approach for fast subspace integration of reduced-coordinate nonlinear
deformable models for interactive applications. James [JP04] introduced the Bounded Deformation Tree
(BD-Tree), a collision detection method using reduced deformable models wherein costs are comparable
to collision detection with rigid objects. James and Fatahalian [JF03] elaborated a reduced deformation
model without using modal analysis. Instead, the approach consists in precomputing data-driven models
of interactive physically based deformable scenes meaning that collision, contact, and dynamics of the
deformable objects are all precomputed. To support runtime interaction, the method builds a lookup table of
Impulse Response Functions (IRF) for a limited range of external impulses from the user. These IRFs are
dimensionally reduced through the technique of Principal Component Analysis (PCA), and are blended
based on the user interaction. Another data-driven model has been elaborated by Wang [WObR11]. The
author developed a new measurement techniques for studying the elastic deformations of real cloth samples.
And he additionally proposed a piece-wise linear elastic model having parameters which can be fit to
observed data with a well-posed optimization procedure. The main purpose of this technique is to accurately
animate clothes materials such as silk or denim for which elastic behavior deals with anisotropic stretching
and bending phenomena.

Adaptive models: Another kind of model allows to speed up simulation: the Adaptive Models. Regard-
less of the chosen method, choosing the degree of space discretization is part of the challenge of achieving
a good trade-off between accuracy and computational resources. This observation leads to the emerging
spatial adaptive models: The principle is to dynamically adapt the spatial resolution of the simulated object
according to the current situation. According to one or several carefully chosen criteria, the method dynami-
cally determines on which geometric regions higher resolution is needed. Then, a refinement/coarsening
strategy allows the dynamic modification of the geometric representation of the simulated object to adapt
it to the desired resolution. The quality of the simulation depends a lot of the refinement criteria. Often,
simple heuristics such as the distance to boundaries, surface curvature, presence of contacts are used.
Otherwise, the refinement criteria can be tied to the dynamics of the system, especially in case of elastic
and plastic solids. Wicke et al. [WRK+10] used the strain gradient as the refinement criterion for dynamic
local remeshing. In this way, regions undergoing severe deformation are refined locally. Another approach
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is to perform view-dependent adaptivity using a refinement criteria based on visibility and distance from
the camera. It means refining the coarser regions which come into the field of view. Koh et al. [KNO14]
invented a technique to increase the resolution in advance using camera path information. Depending on the
chosen numerical method to simulate the deformation of the object (see Table 2.1), accelerating spatial
structures can be used to speed up the simulation. These structures are either structured meshes, grids
(kD-trees for instance), or unstructured meshes. Structured meshes allows more core re-usability when
converting from a regular grid to an adaptive one whereas fully unstructured meshes gives more flexibility.
Note that time-stepping adaptivity can also be applied, by using freezing techniques or Asynchronous
Variational Integrators [TPS08] for instance. For more information about adaptive models, the reader can
refers to the survey from Manteaux [MWN+17].

Geometry of simulated objects can be represented in different ways. They can be split into two categories:
the mesh-based methods and the mesh-free methods. Mesh-based methods, like the Finite Element Method
(FEM), represent the simulated objects using meshes. Indeed, FEM is actually an accurate mesh-based
method which discretize the geometry of the object while considering volume and energy. However, FEM
is rather slow to compute and it is sometimes necessary to turn towards efficient mesh-based methods. The
efficient mesh-based methods often uses rough representations of the simulated objects, using regular grids
for instance. Contrary to mesh-based methods, the free-based methods represent a given simulated object
as something else than an mesh. They typically use particles. It induces no mesh generation nor runtime
re-meshing operations, meaning a better suitability when dealing with spatial adaptation. Another interesting
feature of free-based methods is the easy construction of complex shape functions allowing to obtain any
desired order of spatial continuity. However, these shape functions often have to be re-evaluated at each
time-step. Consequently, the free-based methods are generally more time-consuming than mesh-based
methods.

2.2.2 Mesh-based methods for spatial discretization

Mass-spring system: Mass-spring systems [Kim20] (Figure 2.4) are popular in some real-time applica-
tions like video game wherein the computation speed is crucial. These systems are especially fast when
combined with an explicit time-integration scheme (see Section 2.2.4). Instead of solving the equation of
motion as a PDE, the deformable model is a set of point masses which are linked together by a network
of springs (mesh). The motion of each point mass is expressed as a single Ordinary Differential Equation
(ODE) which corresponds to the Newton’s second law (equation of motion). Consequently, a mass spring
system amounts to solve a system of coupled Ordinary Differential Equations (ODE) at each time step,
which is relatively fast. It is a simple and intuitive model in spite of a lack of precision.
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point mass
structural spring

shear spring

Figure 2.4 – Mass spring system [NMK+06].

In a mass-spring system, each mass point i also carries its respective position xi and its velocity ẋi

both varying over time. At each time step, the force fi of the mass point i is computed with respect to
its spring connections with its neighbors in addition of forces such as gravity and friction. The time-
integration scheme can be, like explained in Section 2.2.4, either implicit or explicit, depending of the
desired precision, stability, and performance of the mass-spring system. The springs are modeled as being
elastic but sometimes a viscous force (damping) is added to produce energy dissipation during deformation.
Therefore, the force fi j of a spring between two mass points i and j is governed by the following formula:

fi j = ks

(
(|xi j|− li j)

)
xi j

|xi j|
+ kd

(
(ẋ j− ẋi) ·

xi j

|xi j|

)
xi j

|xi j|
(2.14)

where xi j is the difference between the two mass position vectors (x j−xi), meaning xi j
|xi j| is the direction

of the spring. The term li j is the rest length of the spring while ks is the spring stiffness and kd the spring’s
damping constant. The modeling of the spring can obviously be modeled in more appropriate ways depend-
ing of the application and its underlying purposes. For instance, in the case of cloth simulations [BW98],
the modeling has to reproduce physics behavior like bending and wrinkling. Besides, deformation energies
can eventually be defined and minimized through soft constraints in order to improve the stability of the
mass-spring system.

Finite Difference Method: The Finite Differences Method (FDM) [TPBF87] uses a regular spatial
grid (mesh) in order to discretize the equation of motion. But the boundaries of the object are difficult to
determine with such a rough representation of the object geometry. Moreover, local adaptations are only
possible with irregular meshes.
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Finite Volume Method: The Finite Volume Method (FVM) computes the nodal forces using the stress
tensor in a direct way: Let’s assume than the mesh is composed of planes, the internal forces per unit area
with respect to a certain plane orientation is f = σn̂ with n̂ the normalized vector of the plane. From this
observation, we can say that the total force applied on the face S of a finite element is fS =

´
Sσ dS. Thus,

if we use linear basis function, the stress tensor is constant within an element. For instance, if the elements
of the mesh are planar faces, the previous equation can be simplified as fS = Sσn̂ where S is the area of
the face and n̂ its normal. To compute all the nodal force, we just have to iterate among all the faces Si of
the elements, and distribute the force fSi among the nodes which are adjacent to that face.

Boundary Element Method: The Boundary Element Method (BEM) handles the elasticity of the object
on the surface (boundary) instead of its volume. Thus, the volume integral is transformed into a surface
integral by applying the Green-Gauss theorem, reducing the model to two dimensions. This complexity
reduction allows to gain an important speed up in terms of computation. However, the approach is not
compatible with non-linear distortions.

2.2.3 Mesh-free methods for spatial discretization

Spatially Coupled Particle Systems Particles has been used for decades to simulate fuzzy objects [Ree83]
such as fire or clouds. They are also commonly used in fluid simulation through Smooth Particle Hydrody-
namics (SPH) systems [YWH+09]. But particles can also be applied to simulate deformable objects. The
principle of a particle system is the following: particles are actually points placed in a 3D space. They are
generated to make a cloud of points which fits with a desired shape. Each particle has a certain number of
attributes like position, velocity, lifetime, temperature. The values of these attributes can be either fixed or
stochastically determined. Positions of the particles are updated according to their respective velocities.
Often, a particle dies when it reaches its lifetime, and other particles can eventually spawn. In short, the
attributes globally drives the dynamic behavior of the particles over time.

Particles interacting with each other are called Spatially Coupled Particle Systems. This type of rep-
resentation presents some advantages: First, the simplicity of it. Secondly, it enables a huge number of
particles in complex scenes. Thirdly, topological changes can be easily modeled with this method. The
motion of the particles is determined from their energies. Each particle has its own potential energy which
is related to the pairwise potential energies between itself and all the others particles within the system. The
computation of the potential energy between two particles can be performed by the Lennard-Jones potential.
Once the energies have been computed, the forces can be computed as the derivative of these energies. In
contrast with the FEM, we notice that Spatially Coupled Particle Systems simulate the deformable object
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on a microscopic scale. The resulting Lennard-Jones forces are indeed very small compared to the order of
magnitude of the forces that we expect using FEM.

Point-based animation: Another technique is the combination with mesh-free physics and point sampled
surfaces. It is called Point-based Animation [MKN+04]. In this approach, elastic body forces are derived
via the strain energy density φ = 1

2(ε ·σ). The elastic force per unit volume at a particle pi with material
coordinates mi is computed using the directional derivative ∇ui . Combining with linear Hooke’s law
(σ =L ·ε with L constant), the elastic force is computed using the following formula:

fi =−∇uiφ =−1
2

∇ui(εi ·L ·εi) =−σ ·∇uiεi . (2.15)

Note that the approximation of ∇ui from the displacement vectors u j of the neighboring particles is often
computed using the Moving Least Square Method (linearization).

Shape matching: Shape Matching from Müller et al. [MHTG87] is a meshless method which, like
mass-spring systems, represents the object as a cloud of mass points. However, these mass points correspond
to the nodes of the volumetric mesh of the object, and there are no connections between the different nodes.
The physics simulation performs like a simple particle system but without particle-particle integrations:
after each time step, each particle is pulled towards its respective goal position. These goal positions are
determined via a generalized shape matching of the undeformed rest state with the current deformed state
of the point cloud.

2.2.4 Time integration schemes

As mentioned earlier, in the context of physics simulation, we are interested in numerical solutions
knowing we have to discretize time and space. Most popular spatial discretization methods have been
described above but these need to be combined with a time-integration scheme. In the following, we will
consider that the domain D of our deformable object is constituted by a finite set of material particles. Let
m be one of these particles. It actually exists multiple time-stepping integration method but the simplest
one is the Euler’s method. Assuming that our initial value for x is x0 = x(t0) = x(m, t0) at a time t0, we
have to find x at a later time t0 +h with h a fixed time-step. Euler’s method simply computes x(t0 +h) by
taking a step in the derivative direction ẋ(t0). It means the derivatives are numerically approximated with
finite differences.

x(t +h) = x(t)+h ẋ(t) and ẋ(t +h) = ẋ(t)+h N(x(t), ẋ(t), t) (2.16)
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The two above equations formulate the Euler’s method using an explicit scheme, which is the simplest
one. The latter provides explicit formulas for the quantities ẋ and x at the next time step. An explicit
scheme is simple to implement but it is stable only if h is smaller than a value (that depends on the ratio
between mass and stiffness in the model and the size of the elements). Otherwise, the forces could get too
large causing an exponential gain of energy and finally resulting in an explosion. To avoid this conditional
stability, an implicit scheme can be used instead. This one uses quantities at the next time step on both sides
of the equations. For instance, the implicit Euler scheme can be written:

x(t +h) = x(t)+h ẋ(t +h) and ẋ(t +h) = ẋ(t)+h N(x(t +h), ẋ(t +h), t) . (2.17)

This improvement allows to use larger time-steps without a stability loss, and implies to know an
expression of the derivable force. However, it induces to solve an algebraic system at each time step, which
is more costly. For this reason, explicit scheme is often used in the case of computer games for which the
performance is crucial. Besides, it is also possible to use an implicit scheme only for the evaluation of the
position x, whereas the velocity ẋ is computed in the first place using an explicit scheme:

ẋ(t +h) = ẋ(t)+h N(x(t), ẋ(t), t) and x(t +h) = x(t)+h ẋ(t +h) . (2.18)

This mix between explicit and implicit has the advantage to be more stable than a pure explicit scheme,
without any computational overhead. In Equation 2.16 related to Euler’s method, we notice that the time
derivatives are approximated as the first order Taylor series expansion between two consecutive times. From
this observation, we can conclude that this approximation leads to an error of O(h2). To reduce this error,
we could intuitively use a larger order Taylor serie expansion. For instance, using a second order expansion
leads to an error of O(h3), and so on. In conclusion, all the time-stepping methods are actually based on the
Taylor series.

In our case, we deal with simulations wherein collisions frequently occur, implying discontinuous
phenomenons. For this reason, using a time-integration scheme of higher order than 1 such as the middle-
point method (order 2) or the Runge Kunta method (order 4) would be not suitable. Indeed, high order
expansion of Taylor series allows to know the motion of the object along a larger time-step, which is only
useful when this motion is not disturbed during that time-step. In addition, the more the order is high, the
more the polynomial will be costly to compute, resulting in poor time performances.
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2.2.5 Discussion

Spatial discretization
method

Mesh-based
or Mesh-free

Lagrangian
or Eulerian

Advantages Drawbacks

Finite Element
Method (FEM)

Mesh-based Lagrangian Accurate method. Respect

the law of conservation of

matter.

Rather slow to compute.

Mass-Spring
Systems

Mesh-based Lagrangian Efficient method when us-

ing explicit time-integration

scheme.

Lack of accuracy.

Finite Difference
Method (FDM)

Mesh-based Lagrangian Simple object representa-

tion: a regular spatial grid.

Object boundaries are diffi-

cult to determine with that

kind of mesh.

Finite Volume
Method (FVM)

Mesh-based Lagrangian - -

Boundary Element
Method (BEM)

Mesh-based Lagrangian - Not compatible with non-

linear distortions.

Spatially Coupled
Particle Systems

Mesh-free Eulerian Simple object representa-

tion: particles. Easy topolog-

ical changes.

Simulate at a microscopic

scale which is not suitable

in our case.

Point-based
animation

Mesh-free Lagrangian - -

Shape matching Mesh-free Lagrangian No particle-particle integra-

tions. Efficient method.

Lack of accuracy.

Table 2.1 – Comparison between the state-of-the-art spatial discretization methods.

Choosing the most suitable spatial discretization method (see Table 2.1) in regards to the desired
application lays on numerous criteria knowing that the most important ones are probably accuracy, stability,
and efficiency (time-performances). The time-performances factor is crucial in computer games and virtual
reality applications, in order to guarantee a smooth experience in despite of accuracy. That is why efficient
methods like mass-spring systems are commonly used in these cases, in combination with an explicit
time-integration scheme (fast to compute). In contrast, virtual simulations of soft robots, as well as surgery
applications, requires to be precise enough to be significant, and could be more tolerant about slow
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simulations. From this observation, Finite Element Method is generally used in this situation, and with an
implicit time-integration scheme in order to guarantee a better stability. Besides, the time performances of
the simulations are also impacted by the selected collision detection methods (see Section 2.3) as well as
the selected contact handling technique (see Section 2.4). Nowadays, the most advanced implementations
of physics simulations actually boost the time performances by taking advantage of the GPU while using
acceleration methods like the Reduced Deformations Models or the Adaptive Models that we explained
earlier.

2.3 Collision detection

In a virtual scene using FEM, when a lot of objects may collide each other, the naive approach is to
test each element-element collision in an exhaustive way. Unfortunately, it is a very inefficient approach
because the complexity is equals to O(n2) in this way, knowing n the total number of elements. To overpass
this issue, collision detection is often performed through a pipeline containing several stages corresponding
to different levels of granularities. The pipeline is typically constituted of three stages:

— Broad-phase: the bodies are approximated by simple geometric primitives, such as the sphere for
example, for which the computation of the euclidean distances between the primitives is very fast.
This step allows to keep only the bodies which are roughly close enough and put all the other bodies
aside.

— Mid-phase: the remaining bodies are split in several parts in the case they are complex shapes.
During this phase, some of these parts are culled in local body space.

— Narrow-phase: the parts of the remaining bodies are used in order to find the precise body feature in
contact and the location of the contact points.

By structuring the collision pipeline as such, we prune a lot of collision tests progressively through the
pipeline, improving time performances. In addition, collision detection stages often carry spatial data
structures to speed up the simulation. These structures are built in a preprocessing stage in the case of rigid
bodies whereas they need to be updated frequently in the context of soft body simulation. Most popular
spatial data structures are Bounding-Volume Hierarchy (Section 2.3.2) and Distance Fields (Section 2.3.3).
In addition to time performances, an other important aspect with collision detection is the formatting of
the output data. Indeed, collision detection returns either penetration depth, or a minimal distance between
object meshes, or interpenetration volumes, or pairs of primitive. Also, it is important to mention that,
contrary to rigid body, self-collision is an aspect which is necessary to handle for realistic behavior in the
context of simulation of deformable objects.
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2.3.1 Spatial subdivision

(a) (b) (c)

Figure 2.5 – Different spatial structures, here represented in 2D: (a) uniform grid, (b) kD-tree, (c) BSP-tree.

One aspect when dealing with collision detection of deformable objects is to partition the space. The
simulated objects are consequently wrapped around spatial structures. These can be uniform grids, kD-trees,
or BSP-trees as shown in Figure 2.5.

The uniform grids are the simplest structures. They partition the space uniformly into axis-aligned cells.
But hashed storage can however be applied for non-uniform distribution.

An octree [Sam88] is a hierarchical structure (tree) which partition the space into rectangular and axis-
aligned cells. In fact, an octree corresponds to a kD-tree with k = 3 where k is the number of dimensions of
the space wherein the simulation takes place. The octree’s root corresponds to the Axis-Aligned Bounding
Box (AABB) of the objects while its internal nodes correspond to subdivisions of the AABB. Each node can
owns until 8 children, meaning the space is recursively subdivided in 8 octants. Octrees take less memory
than uniform 3D grids but more than BSP-trees. The subdivision of space can be uniform or non-uniform
when using octrees. Moreover, the hierarchy can be dynamically updated.

BSP means Binary Space Partitioning [TN87], and BSP-trees are structures which recursively partition
the space in convex zones and in a hierarchical way. It means that each node of the tree is associated to a
subspace of its parent node. In other words, the space is divided in two subspaces in order to obtain the
same number of polygons inside each subspace. And then, each one of these subspaces is also subdivided
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in two subspaces and so on, until there is no any possible division. One interesting observation is: if all the
subspaces are axis-aligned, then the BSP-tree is actually a kD-tree.

2.3.2 Bounding volume hierarchies

Bounding-Volume hierarchies (BVH) are efficient data structures for collision detection. Whereas they
are commonly used for rigid body collision detection, they are especially suitable for soft bodies because
they can be employed to accelerate self-collisions. Often, the 3D objects of the scene are made up using
a set of homogeneous primitives like polygons, tetrahedrons or sometimes NURBS patches. Knowing
that, the principle of BVH is, at a scale of an object, to partition these primitives recursively until some
leaf criterion is encountered. It leads to the construction of a hierarchy wherein each node is associated
with a subset of primitives and a Bounding Volume (BV) which encloses this subset. The hierarchies are
commonly binary trees in cases of rigid objects, meaning one child by node. Instead, the number of children
by node is typically 4 or 8 for deformable objects. The reason is that that fewer nodes need to be updated,
improving the time performances of the update step.

As illustrated in Figure 2.6, it exists different classes of Bounding Volumes (BV): OBBs, DOPs, AABBs,
spherical shells, convex hulls to name just a few. Among those, the most interesting ones are Oriented
Bounding Boxes (OBB) and Discrete Orientation Polytope (k-DOP). In the one hand, an OBB wraps
primitives into a rectangular bounding box at an arbitrary orientation in the 3D space. The main advantage
of OBBs is they can bound geometry more tightly than Axis-Aligned Oriented Boxes (AABB) and spheres,
thanks to their variable orientation. In the other hand, a k-DOP is a convex hull whose precision is determined
by a chosen k value, which is very convenient.

The BVHs are traversed top-down in order to test overlap between two colliding objects. During the
traversal, there are three possible cases to manage: If the overlapping nodes are both leaves then the enclosed
primitives are directly tested for intersection. In the case of one is a leaf but the other is an internal node,
then the leaf is tested against each of the children of the internal node. The last case is when the overlapping
nodes are both internal nodes. In this situation, it is tried to minimize the probability of intersection as fast
as possible.

The BVHs can be built following one of the three different approaches: top-down, bottom-up, and
insertion. The most used strategy is the top-down strategy. In this method, the set of the object primitives
are split until a threshold is reached. An heuristic guides the splitting in order to yield an appropriate BVH
regardless to the chosen criterion.
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convex hull

AABB sphere OBB spherical shell

prism cylinder intersection
of other BVs

DOP

Figure 2.6 – It exists numerous types of Bounding Volumes [TKH+05].

With deformable objects, the BVHs have to be updated or refitted each time a deformation happens.
Therefore, these operations need to be efficient. Usually, during the simulation, the structure of the tree is
kept and only the extents of the BVs are updated.

2.3.3 Distance fields

Distance fields (or distance volumes), illustrated in Figure 2.7, specify the minimum distance to a closed
surface (an object in the scene) for all points in the field. From this observation, the distance may be
signed to distinguish between inside (positive value) and outside (negative value), which is very convenient.
Besides, distance fields works with any kind of object topology. One of the other advantages is that the
collision detection response is very fast and does not depend of the geometric complexity of the object. It
is also important to notice that in this approach, collision detection between deformable and rigid object
can be performed efficiently without updating the distance fields. Before collision detection, the distance
fields must be generated first, and this step is unfortunately very slow in practice. The distance field can be
represented through a variety of different data structures. The most popular are uniform 3D grids, BSP-trees
and octrees we explained in Section 2.3.1.

An uniform 3D grid is the most easy way to implement distance fields: Distances are computed for
each grid point and intermediate values are obtained using trilinear interpolation. Distance queries can be
computed in constant time, which is a very interesting property for interactive applications. Most collision
response schemes require normals computation which can be performed by normalizing the analytical
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Figure 2.7 – Happy Buddha [TKH+05] and three color-mapped slices coming of its distance field. Blue
indicates close distances while red indicates medium distances.

gradient of the trilinear interpolation. Although the resolution of the grid can be adapted, it is often huge
and therefore requires a large memory capability.

The advantage of using a BSP-tree is mainly that the memory consumption can be reduced using a
piece-wise linear approximation of the distance field, which is not necessarily continuous. Furthermore,
several algorithms exist for selecting appropriate splitting planes in order to partition the space in a very
compact way. Unfortunately, the construction of a BSP-tree is costly.

Frisken and al. [FPRJ00] proposed Adaptively sampled Distance Fields (ADF) stored in a hierarchy,
typically an octree. In this approach, the data is able to increase the sampling rate in regions of fine detail.
Compared to uniform 3D grids, an ADF provides a good compression ratio.

The computation of the distance field’s Euclidean distances to the surface is generally a simple evaluation
function. For example, in a case of an object mesh made up of triangles, finding the minimum distance
between a given point and a triangle can be done efficiently using Voronoi [SOM04] regions of the features
of the triangle. Moreover, this method can use the GPU capabilities to speed up computation.
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2.3.4 Stochastic methods

Another approach to detect collisions efficiently is to use stochastic methods. Although they are in-
exact methods, these methods are motivated by the fact that the geometry of the 3D objects are already
approximated when using polygonal models. A first approach from Klein and al. [KZ03] is to estimate
the possibility of a collision in respect to a quality criterion chosen by the user. This model is convenient
for time-critical systems, because it is possible to assess the quality according to a chosen maximum
time-budget. The author’s framework uses extended BVH called average-distribution trees or ADB-trees
which additionally stores characteristics about the average distribution of the set of polygons in the scene.
Another technique consists in performing a stochastic sampling within colliding bodies in order to guess
colliding pairs.

2.3.5 Image-space techniques

Image-space techniques are efficient ways to calculate collision without any processing and by using GPU
capabilities. An early approach was from Shinya et al. [SF91] using rasterization: the projection of the target
objects are rasterized in a depth buffer, allowing the detection of overlapping objects. Faure et al [FAFB08]
extended the method using Layer Depth Images (LDI) to process contacts between objects bounded by
triangular surfaces. Unlike previous techniques of the same category, this one relies on image-based volume
minimization. It has the advantage to eliminate complex geometrical computations and robustly handles
deep overlap, which eventually occurs between the unconstrained configurations of two colliding objects.

2.4 Contact handling and constraints

In the context of our work, we seek to simulate the suction phenomenon which typically implies an
interaction between a deformable object and another object which may be deformable too. It means our
simulation has to manage object collisions by handling contact forces as the third law of Newton states,
in order to avoid object-object interpenetration. But additional phenomena can be taken into account, like
friction, depending of the goal of the simulation and the desired realism. In fact, the principle of contact
handling consists in producing a collision response according to the output of the collision detection
algorithm. Most of the time, at the scale of a time step, the simulation firstly computes the new material
configurations of the deformable objects without considering contacts (unconstrained motion). These
configurations are commonly called free-motion configurations (or unconstrained configurations) and can
overlap each other. The simulation is consequently able to detect collisions regarding to the overlap between
two interpenetrating free-motion configurations. Once collision detection is finished, the stage regarding
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the contact handling typically occurs. In our case, we introduced the suction phenomenon into the contact
handling stage. Several approaches exist for contact handling. They can be classified into three categories:

— Penalty-based: spring-damper forces are used to separate objects at contact (Section 2.4.3).
— Impulse-based: iterative solver which solves multiple contacts as a sequence of individual collisions

(Section 2.4.4).
— Constraint-based: the contact is designed as a complementarity problem (Section 2.4.5).

Among these three categories of approaches, we are particularly interested by the Constraint-based methods
in our context because of their accuracy (see Section 2.4.5). In the following, we explain the main laws
and concepts related to contact handling. Then, we give an overview of the state of the art of the contact
handling techniques in each category. For a more complete survey, the reader can refers to the one from
Benedetti [Ben02].

2.4.1 Signorini’s law

In continuum mechanics, the Signorini problem is known to deal with contacts between deformable
bodies. It consists in finding the elastic equilibrium configuration of an anisotropic non-homogeneous elastic
body, resting on a rigid friction-less surface and subject only to its mass forces. Moreau [Mor66] introduced
the use of quadratic programming (QP) to solve it. QP is a particular type of nonlinear programming which
is intended to optimize a quadratic function of several variables subject to a set of linear constraints. On a
surface ξ , the contact forces are an integration of elementary surface forces d fs that exert on the elementary
surfaces ds (triangle for instance) are defined as:

d fs =−σ · n̂ ·ds =−σs ·ds

where n̂ is the normal vector of the elementary surfaces ds and σ the stress tensor of the deformable object.
Thanks to QP, the Signorini’s formulation becomes a Complementarity Problem (CP):

0≤ δn(P)⊥ σn(P)≥ 0

σt(P) = 0

where ⊥ represents a complementarity between the two constraints 0 ≤ δn(P) and σn(P) ≥ 0 (see Sec-
tion 2.4.5). P is a point of the object surface ξ and δn represents the minimal distance between every point
P and its near surrounding. σn and σt are respectively the normal stress and the shearing stress which both
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belong to the surface stress tensor σs. These terms are expressed as follows:

σn = σs · n̂ and σt = σs · t̂

where n̂ and t̂ are respectively the normal vector and the tangent vector of the elementary surface ds

which carries the point. The Signorini’s formulation considers two states: Either the point P is actually
a contact point and in this case δn(P) = 0 and σn(P) > 0. Otherwise P is not yet a contact point which
means that δn(P)> 0 and σn(P) = 0. Further details about the formulation of contact phenomena using
complementarity constraints are given in Section 2.4.5.

2.4.2 Coulomb friction model

Friction is often simulated using the Coulomb’s law, also called the Coulomb friction cone (Figure 2.8).
This friction model is an isotropic model which describes friction in a simplified way. This law distinguishes
two cases: When the solids slide one on the other (slip state or dynamic friction) and when there is an
adhesion between both solids (stick state or static friction). In both cases, we assume that each mutual
action exerted between the two solids contains a normal vector fn which press them one against other, and
a tangent vector ft which is an opposing force to slipping. The two solids are in a static friction state while
ft < f

0
t , knowing that f0

t is a limit force defined as f0
t = µ0×fn. In this formula, µ0 is the static friction

coefficient which depends of the material properties and the condition of solid surfaces. In a geometric
point of view, we are in a stick state while the contact force fc = ft +fn stays inside a cone, called friction
cone (Figure 2.8). The aperture of this cone is twice the angle φ0 = arctan(µ0). In the contrary, we are in a
slip state when f0

t ≥ ft or in other words, when fc is outside of the cone. In this case, ft = µ×fn with µ

the dynamic friction coefficient. Leine et al. [LG03] extended the Coulomb model to also take into account
a normal friction torque (drilling friction) and spin. Their work was inspired by the work from Contensou
whose conducted drilling friction experiments and established the dependence of the sliding friction force
on the sliding velocity and spin. For this reason, the extended model is called Coulomb–Contensou friction.

2.4.3 Penalty-based models

One approach to resolve detected collisions consists in applying penalty forces [TMOT12] when two
objects collide: the collision detection stage compute the interpenetration metric from the respective free-
motion configurations. After that, temporary springs are attached between the contact points. Each spring
compresses and applies equal and opposite forces to separate the two bodies. These forces are the penalty
contact forces. They increase with the interpenetration. It means the penalty forces acts as a repulsion
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Figure 2.8 – Illustration of the Coulomb friction cone [Dur13].

between the two free-motion configurations to prevent the interpenetration. Mathematically speaking, a
penalty force b is often formulated as it follows:

b=−(ks(‖s‖− l)+ kd ‖ẋh‖) s‖s‖
(2.19)

with ks the stiffness of the spring and kd the damping of the spring. The vector s is the difference vector
between the two contact points and l the initial length of the spring. The penalty method is simple particularly
when combined with an explicit time-integration scheme. Consequently, it requires small integration time
steps to guarantee stability when dealing with large penalty contact forces.

2.4.4 Impulse-based models

The idea of the impulse-based approach is to model all contacts between objects through a series of
impulses [Pro97]. The latters aim to avoid interpenetration between colliding objects by correcting their
trajectories. An impulse g is the product of the force b and the time step h such as g = bh in Newtons per
second. The appliance of the impulse instantaneously change the velocity of the two colliding objects. The
change of velocity ∆v is equals to: ∆v = g

m with m the mass. Impulse-based approaches work as it follows:
When a collision is detected, meaning the free-motion configurations of two object overlap each other, the
collision impulse g is then computed:

g =M−1
∆u (2.20)

with ∆u the change in the contact point velocity over the course of the collision, andM a matrix dependent
only upon the masses and mass matrices of the colliding bodies. The impulse g is instantaneously applied
on the first object while −g is applied on the second one. The advantage of the impulse-based approach
in contrast with penalty-based is its ability to estimate the exact time of every impact event. Contrary to
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the penalty-based approach, the impulse-based approach usually guarantees a collision-free state of the
colliding objects. The major disadvantage of this method is its inability to efficiently handle simultaneous
and persistent contacts.

2.4.5 Constraint-based models

The contacts between deformable objects can be handled using constraints [OTSG09]. It leads to
reformulate the second law of Newton (Equation 2.6) into:

M(x)ẍ= g(t)−f(x, ẋ)+HTλ (2.21)

with g(t) the external forces, f(x, ẋ) the elastic forces,H the constraint matrix which embed the directions
of the constraint forces and λ the intensities of these constraint forces. Generally speaking, a constraint can
be either bilateral (equality) or unilateral (inequality). Among the constraints, some of them could have
complementarities each other, such as contact constraints with friction constraints when using the Coulomb
friction cone (Section 2.4.2). It consequently leads to formulate a Complementarity Problem (CP) in the form
of an algebraic system. Complementarity between two constraints c1 and c2 is commonly noted as c1 ⊥ c2

such that c1 · c2 = 0, meaning they are orthogonal. The CP can be either a Non-Linear Complementarity
Problem (NCP), a Linear Complementarity Problem (NCP), a Mixed Non-Linear Complementarity Problem
(MNCP) or a Mixed Linear Complementarity Problem (MLCP). A mixed complementarity problem
contains inequalities, equalities and unrestricted variables, whereas non-mixed include only inequalities.
Mathematically speaking, these four categories of CP can be illustrated using the following examples:

NCP 0≤ f (x)⊥ x≥ 0 f (x) : Rm 7→ Rm is a non-linear function. x ∈ Rm is the seeking vector.

LCP 0≤ y(x)⊥ x≥ 0
y(x) : Rm 7→ Rm is a linear function such that y(x) =Ax+b.
A ∈ Rm×m and b ∈ Rm are known.

MNCP
0≤ f (x,w)⊥ x≥ 0

g(x,w) = 0
x ∈ Rm and w ∈ Rn are the seeking vectors.
f (x,w) : Rm+n 7→ Rm and g(x,w) : Rm+n 7→ Rn are both non-linear functions.

MLCP
0≤ y(x,w)⊥ x≥ 0

z(x,w) = 0

y(x,w) : Rm+n 7→ Rm and z(x,w) : Rm+n 7→ Rn are both linear functions.
y(x,w) = Fx+Bw+a with known values for F ∈ Rm×m,B ∈ Rm×n, a ∈ Rm

z(x,w) =Cx+Dw+r with known values for C ∈ Rn×m,D ∈ Rn×n, r ∈ Rn.

Most often, the constraints we include into the system are unilateral contact constraints and non-linear
friction constraints. These are respectively those coming from the Signorini’s law (Section 2.4.1) and the
Coulomb friction cone (Section 2.4.2). Knowing Coulomb’s friction involves nonlinear constraints, we deal
with an inconvenient NCP from this observation. A popular approach is to simplify the friction phenomenon
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by using a pyramid discretization of the friction cone in order to transform the current NCP into a LCP.
Note that the number of sides of the pyramid must be carefully chosen in respect to the desired precision.

Lagrange multipliers: One method to solve the constraint system is to beforehand transform it into
an optimization problem without constraints using Lagrange multipliers. In Equation 2.21, the constraint
matrixH can be considered as the Jacobian of the mapping between the physics space and the constraint
space while λ actually represent the vector of Lagrange multipliers. Considering a single linearization by
time step, Equation 2.6 can be reformulated as the following linear system:

M(x)∆ẋ=−h(g(t)+f(x, ẋ)−HTλ)

that we can write in a simpler way as:
A∆ẋ= b+hHTλ

In case of two interacting objects, it actually leads to two Equations (one per object):

A1∆ẋ1 = b1 +hHT
1 λ and A2∆ẋ2 = b2 +hHT

2 λ .

This system can then be solved in two steps: We first compute the free-motion configurations ∆ẋ
f ree
1 and

∆ẋ
f ree
1 for each object by setting λ= 0. Secondly, we found the vector of Lagrange multipliers λ which

counteract the vector of constraint violations δ̇. The latters are evaluated in terms of velocity from the
collision detection stage and expressed relatively to the Lagrange multipliers as:

δ̇ =H1∆ẋ1−H2∆ẋ2 +Wλ

whereW is the Schur complement ofA and defined as:

W = h(H1A
−1
1 HT

1 +H2A
−1
2 HT

2 )

Once the Lagrange multipliers have been found thanks to a Gauss-Seidel solver for instance, the motion
corrections of the two interacting objects are applied onto their respective free-motion configurations.

Volume constraints: Contact constraints can be represented as points and solved according to the
penetration distances. But to be accurate, the number of points must be important, often resulting to a large
LCP, expensive to compute. Another approach is to use volume constraints. In this case, the penetration
volumes have to be solved. It results to a MCP but which can be solved as a LCP using a compliance
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matrix. The number of volumes depends of the size of a regular grid over the space. In most cases, the
number of volume constraints is much less than point constraints, which consequently reduces the size
of the LCP, which becomes more efficient to solve. Allard et al. [AFC+10] introduced a new method
for simulating frictional contact between volumetric objects using interpenetration volume constraints.
Contact between highly detailed meshes can be simplified to a single unilateral constraint equation, or
accurately processed at arbitrary geometry-independent resolution with simultaneous sticking and sliding
across contact patches. The intersection volumes and gradients are efficiently provided thanks to a GPU
implementation of the Layered Depth Image (LDI) collision detection method from Heidelberger [HTG03].
Talvas et al. [TMDO15] designed a physics model for virtual dexterous manipulation with soft fingers using
a constraint-based formulation. The method takes advantage of volume constraints to reduce the size of
the complementarity problem and consequently speeds up the simulation. The authors actually generate
aggregate volume constraints from multiple classical contact constraints, hence the word aggregation.

2.5 Linear solvers

We explained in Section 2.2.4 the importance of choosing either an implicit or explicit time integration
scheme. To summarize, an implicit scheme allows the use of larger time steps while guaranteeing a better
stability compared to an explicit scheme. However, an explicit scheme is very fast to solve contrary to an
implicit scheme, and is more suitable to efficiently solve non-stiff problems. In the end, using an explicit or
explicit scheme impacts on the construction of a complete linear systemAx= b arising from the dynamics
of a given deformable object. More precisely, explicit contributions at the current time step x(t) will
contribute to the right hand side vector b, while implicit contributions at the next time step x(t +h) will
contribute to the left hand side matrix A. Besides, the combination of explicit and implicit methods is
also possible, it is called semi-implicit or semi-explicit schemes. Eventually, the problem can otherwise be
formulated as a non-linear system to simulate non-linear deformations. Besides, assuming the constraints
such as contact constraints and friction constraints have been gathered into a LCP, the latter may have been
transformed into a linear system without constraints thanks to the Lagrange multipliers method.

Once the linear system Ax = b has been built, the latter then needs to be solved in order to find the
material configuration of the object at the next time step. The solving process can be performed using either
a direct linear solver or an iterative linear solver. On the one hand, direct solvers find the exact solution by
computingA−1b in one single step. They are suitable in the context of well-conditioned and even some
quite ill-conditioned problems. On the other hand, an iterative solver gradually converges towards the
solution: it firstly finds an approximated solution which is then refined through multiple next iterations. The
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convergence of an iterative solver remains monotonic for well-conditioned problems and might be slower
for ill-conditioned systems. The iterative solver computes the residual r =Ax− b at each iteration. It
continues to iterate until either the current solution is satisfactory (the residual r is below a given tolerance)
or the number of executed iterations overreaches a fixed maximum value. In other words, the formulation
becomes an optimization problem wherein the goal is to minimize the residual r. Assuming that A is a
positive definite matrix, the optimization function (evaluation function of the residue) becomes:

r(x) =
1
2
xTAx−bTx (2.22)

One popular iterative solver for linear matrix problems is the conjugate gradient solver. As a matter of fact,
it exists a wide literature about linear solvers, especially when theA matrix is sparse, which is our case.

In our context, we decided to use a conjugate gradient solver combined with an asynchronous precondi-
tioner based on LDL decomposition to compute the free-motion configurations of the simulated objects.
LDL decomposition means the system matrix A is decomposed through the form A=LDLT with L a
lower unit triangular matrix and D a diagonal matrix. This technique allows to precondition the system
meaning that it can be solved efficiently.

2.6 Conclusion

In conclusion of this chapter, we have drafted the state of the art of the simulation of deformable objects
and contact handling. In our context, we chose to use the Co-rotational Finite Element Method (with an
implicit time scheme) because it is an interesting trade-off between accuracy and time-performance. In
order to compute the free-motion configuration of the simulated objects, we decided to use a Projected
Conjugate Gradient solver combined with an asynchronous preconditioner which takes advantage of LDL

decomposition. Besides, in terms of collision detection, knowing our simulations include only a few objects,
our broad-phase is a simple brute force collision detection with simple Axis-Aligned Bounding Boxes
(AABB) wrapped around the simulated objects. And our narrow-phase collision detection use virtual cones
for which their tips are positioned along the vertices of the collision meshes. When a vertex from a collision
mesh (external to the current object) enters into the cone, it means one precise portion of contact area is
close. Furthermore, we use a constraint formulation to handle frictional contact between colliding objects.
It leads to a Non-linear Complementarity Problem (NCP) which is built using Lagrange multipliers, and we
use the iterative Projected Gauss-Seidel (PGS) solver to find their values. In the next chapter, we will see
how we add new constraints into this NCP formulation in order to simulate the suction behavior.
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The suction phenomenon implies the consideration of multiple physical aspects such as the dynamics of
the air (fluid) as well as the dynamics of the deformable materials while considering contact and friction
phenomena. Our choices in terms of modeling were driven by the most relevant features we need for an
accurate model without overloading the complexity and time performances.

The purpose of this chapter is to explain the suction phenomenon while giving details about our scientific
contributions from a modeling and algorithmic point of view. In the first part of this chapter, we provide
an illustrated explanation of how the suction phenomenon works through an example involving a suction
cup (Section 3.1). Knowing the cavity of the suction cup must be sealed to produce the suction effect,
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we propose a cavity detection algorithm that we describe in Section 3.2. After that, we clarify the chosen
numerical methods and we present the mathematical formulation of our novel air pressure constraint in
Section 3.3.3.

3.1 Description of the suction phenomenon

In the context of our research, we distinguished two types of suction: active suction and passive suction.
Active suction is the simplest case in terms of modeling. It assumes that the air pressure inside the cavity
of the suction cup is directly controlled by an external device such as a vacuum pump which would be
connected to the cavity. In this case, the time-variation of the pressure inside the cavity is known. On
the contrary to active suction, the cavity is not linked to any external device in the passive suction case.
Consequently, the time-variation of the pressure inside the cavity is driven by the ideal gas law and the
suction cup undergoes deformation in function of the elasticity and friction phenomena.

1 2

3 4

Figure 3.1 – Illustration of the suction phenomenon through a scenario in the context of passive suction: (1)
The suction cup is positioned on the floor. The red arrows represent the internal pressure while the blue
ones represent the atmospheric pressure. Both pressure values are the same at this moment. (2) We push the
cup onto the ground. Some air escapes. (3) The cup tends to an equilibrium state. The atmospheric pressure
is stronger than the internal pressure. The dark grey arrows represent the elastic forces. (4) We pull the
suction cup thus increasing the volume of the cavity and decreasing the internal pressure accordingly.
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3.1. Description of the suction phenomenon

In a nutshell, the suction phenomenon occurs when there is a difference in terms of air pressurization
between two neighboring air volumes. The explanation of the suction phenomenon is sketched in Figure
3.1 as a series of four states along a simple scenario in which we push a traditional suction cup against
a flat ground surface and then pull it. Note that we deal with passive suction in this scenario but the
same principles apply in the context of active suction except that the air pressure value is already known
(because it is controlled by the user). We detail the four states of the scenario below in order to give a better
understanding of how passive suction works:

1. We simply put the suction cup onto the floor. At this state, it results in an airtight cavity. In other
words, a volume of air is trapped inside the cavity. The air pressure has approximately the same air
pressure intensity inside as outside the cavity at this time. The relation between the air pressure p,
the volume v, and the air quantity n inside the cavity relies on the ideal gas law pv = nRT with R

the ideal gas law constant and T the temperature. Assuming that T is constant, the right-hand term
of this equation is likewise constant as long as the cavity is airtight.

2. We then push the suction cup against the ground. The volume of the cavity progressively decreases,
the gas particles inside the cavity are compressed which consequently create an over-pressurization.
The more the gas particles are compressed, the more the air pressure inside the cavity is strong. But
the internal pressure quickly becomes strong enough to slightly leverage the rim of the cup and let
some gas particles escape, meaning the cavity is suddenly not airtight anymore. Due to the fact
that the number of gas particles has decreased and in respect of the ideal gas law, the air pressure
decreases too.

3. We stop pushing against the suction cup. No air escape anymore which means the air-tightness
of the cavity is restored. We assume pv = const. At this moment, we know we have a pressure
difference between the air pressure and the atmospheric pressure: we just reached a state in which
the suction phenomenon occurs. More precisely, the atmospheric pressure is stronger than the air
pressure inside cavity. In this situation, the force field of the atmospheric pressure pushes the walls
of the suction cups towards the inside. But in contrast, the elastic forces of the material try to restore
the rest configuration of the object. It progressively results in an equilibrium wherein elastic forces
and the internal pressure confront the atmospheric pressure. With regards to pv = const, the elastic
forces tend to increase the cavity volume while decreasing the internal air pressure. This behavior
actually reinforces the effect of the atmospheric pressure which keeps the suction cup stuck to the
ground.
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4. We now pull the suction cup. The cavity is still airtight at this state. The pulling increases the cavity
volume and reinforces more intensively the effect of the atmospheric pressure. That is why the more
we pull onto the cup, the more it becomes difficult to go further. But in the case the pulling force
becomes strong enough, the suction cup finally detaches from the ground.

The above description of the suction phenomenon reveals several aspects which seem important to
highlight in terms of modeling. On the one hand, the material deformation has to be simulated thanks to a
numerical method. We choose the Co-rotational Finite Element Method to achieve it (Section 3.3.2). On the
other hand, the non-constant terms of the ideal gas law has to be determined. In our approach, we decided
to elaborate an algorithm which is able to detect these cavities, detailed in Section 3.2. Thereby, the cavity
volume can be geometrically computed afterwards (Section 3.2.6).

For modeling the pressure exerted by the air in the cavity, we chose to not focus on the air dynamics as
we are more interested on the effect of the pressures on the structure than on a precise modeling of the air
flows. Although the fluid dynamics has an impact on the evolution of the air pressure distribution, we think
that impact is negligible in our context knowing we deal with simple cavity geometries. For this reason,
we decided to not represent the dynamics of the fluid (air) in our modeling, but solely the pressures which
apply onto the surfaces of the materials using uniform pressure distributions. In our modeling, we chose a
constraint-based formulation to represent the pressure forces. We introduced a novel air pressure constraint
in our model that we combine with the traditional contact and friction constraints. The underlying constraint
formulation is described in Section 3.3.3 as well as the constraint resolution.

3.2 Geometric cavity detection

In our model, we seek to detect if the cavity of the suction cup is sealed or not. In other words, we are
interested in determining the state of the cavity. On top of that, it is possible to obtain multiple small air
cavities due to the object distortion. Several cavities can also arise when dealing with unusual shapes of
suction objects.

Knowing air can be trapped in cavities when a suction cup interacts with a physical object, one key point
of our method is therefore to detect the geometry of these cavities. In our approach, a cavity consists of three
parts: the internal surface region of the suction cup, as detected by the collision model when the suction
cup is colliding an other body; the surface region under the cavity and belonging to the body in collision

52



3.2. Geometric cavity detection

Figure 3.2 – Workflow of the cavity detection. Left: the contact surface is determined from the narrow-phase
collision response (red). Middle: inner surfaces (green) and approximate inner borders (dashed blue) are
identified thanks to flood-fill operations. Right: exact inner borders (continuous blue line) are computed
using new vertices that are added to the mesh, and inner surface regions are paired to constitute the unified
geometric cavities.

with the suction cup; and the mechanical values needed for pressure computation (pressure, volume, and air
quantity). Our method detects a cavity and then handles the pressure and volume computations both from a
geometrical and a mechanical points of view.

The workflow of the cavity detection process is explained in Figure 3.2 and detailed in the following
subsections. First, the contact surface is determined using information from narrow-phase collision output
(Section 3.2.1). Then, flood-fill operations are performed on mesh surfaces to find the inner cavity surfaces
and their respective approximate inner borders (Section 3.2.2). After that, we compute what we call the
exact inner borders from the approximated ones using a refinement operation (Section 3.2.3). The vertices
along these exact inner borders correspond to new vertices which are added into the topology of the suction
object. Thanks to a projection of the computed exact inner border plus another executions of flood-fill
procedures, we pair the inner surfaces from the suction object with those of the colliding object (Section
3.2.4). The result is a set of unified geometric cavities, each composed of two inner surfaces from the two
colliding objects respectively. On top of that, we use the centroids of cavities to track them over time, as
we must keep track of their varying mechanical properties, such as the quantity of air in a cavity and the
pressure (Section 3.2.5).

3.2.1 Contact surface determination

The contact points that make up the contact surfaces are detected thanks to proximity queries. The
narrow-phase collision detection and threshold distances used in our simulation are illustrated in Figure 3.3.
Each vertex below an alarm distance of the opposite mesh creates a pair of contacting points (one point
on each mesh) with an associated contact constraint. This alarm distance should not be too close to zero
otherwise there is a great chance that contact points are missed in this case. In fact, the value of the alarm

distance must be carefully chosen according to the granularity of the mesh, its velocity, and the magnitude
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Figure 3.3 – Collision distances. All vertices below the alarm distance (dashed line) generate contact
constraints. The contact distance (dotted line) delimits a gap between the two colliding objects which must
be satisfied after constraint resolution. We use a sealing threshold (continuous blue line) to identify the
vertices of the contact surface. The intersection of the sealing distance with the inner surface of the cavity
delimits the exact inner border.

of the time step. The gap function of the contact constraint (normal constraint) is equal to the signed
distance between the free-motion configurations of the overlapping objects plus a contact distance (an
additional threshold to ensure that objects never interpenetrate, see dotted line in Figure 3.3). However, we
use an additional threshold, the sealing distance, to classify points as being in contact before they strictly
interpenetrate the other object. The more this value is high, the more the sealing is reinforced. We found that
it especially helps to improve the robustness of the cavity detection algorithm when dealing with collisions
against bumpy surfaces. Once the collision detection is complete and potential contact points have been
filtered according to the distance thresholds, we label the set of all vertices which have been classified as
contact points to identify the contact surface.

3.2.2 Flood-fill of inner and outer surfaces

Once the contact surface has been determined, the next stage of the cavity detection is to classify the
remaining vertices from the suction object, and in particular to determine which vertices are inside the
cavity, but not part of the contact surface. This is accomplished by executing a series of flood-fill procedures
until all vertices have been classified as being inside the cavity, or outside. The process is illustrated in
Figure 3.4.

Our flood-fill works on vertices and uses mesh topology to identify connected vertices within the collision
mesh. It starts from an initial seed vertex, that we add to a stack. For each vertex in the stack, the algorithm
examines the neighboring vertices in the collision mesh. If the neighboring vertex is not yet classified, it is
classified and added to the stack. The algorithm proceeds through all the vertices in this stack until the latter
becomes empty.
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Figure 3.4 – Illustrations of the vertex classification stages before inner border refinement. The illustrated
surface is a sample of the closed surface of an arbitrary suction object. The green area represents the exact
contact area. Left: The contact points are classified first. Middle: Vertices outside cavity are flood-filled
starting from a user-defined seed vertex. Right: Remaining vertices are flood-filled to be classified as points
inside cavities and the approximated inner borders are revealed.

We first flood-fill the region of vertices that are outside the cavity with the help from a user-defined seed
vertex on each collision mesh. We choose a vertex which is unlikely to be contained within the suction
cavity (e.g., the top of the suction cup stem). After the first filling of the outside regions, the remaining
vertices are inevitably the inner surfaces. Then we use a first unclassified vertex as a seed, to flood-fill a first
inner surface. If there is only one cavity, the process stops here and all vertices are classified, otherwise, we
take a new unclassified vertex as a new seed to find a new inner surface and we proceed sequentially until all
vertices have been classified. Note that each time a inner surface is classified, we identify its approximated
inner border.

3.2.3 Inner border refinement

When the flood-fill step identifies an inner surface, we also obtain a set of vertices approximating the
inner border. We make an ordered list of these vertices along the inner border such that they form a line
loop, that is, vertices in the ordered list are adjacent if they are also adjacent in the mesh.

However, as specific vertices that make up the contact surface may change between time steps, this
introduces severe discontinuities in the computation of the inner border and hence the cavity volume. In
order to avoid these artifacts, we refine the approximated inner border by computing the exact inner border
as the contour line defined by the contact surface vertices. This set of vertices is found by the proximity
queries below a given sealing distance (see Figure 3.3).

For each inner-border node, there is an edge that connects it to a node that is strictly inside the cavity. For
each of these edges, we use linear interpolation to find the point on the edge that intersects the isocontour
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defined by the sealing distance. Given that the approximated inner border nodes are sorted, the newly
computed points along the contour line are sorted as well. These points constitute the exact inner border of
the cavity we are looking for. We insert them as vertices into the topology of the suction cup’s collision
mesh. In practice, we remove the triangles which are crossed by the contour line beforehand and we apply
an ear clipping triangulation algorithm [Ebe08] after adding the new vertices (Additional implementation
details are given in Section 3.2.7). We refresh vertex classification of the approximated inner border after
each refinement.

The reason for modifying the topology of the collision geometry is due to the fact we later compute the
cavity volume gradient and the air pressure distribution from it (see Section3.3.3), which implies to get a
clean discretization of the geometry of the detected cavity beforehand in order to obtain accurate values.
Furthermore, the contour line on one object is then projected onto the other, and another flood-fill operation
is used to determine the cavity. This flood-fill, which we describe in the subsequent section, relies on having
the exact inner border as part of the mesh.

3.2.4 Pairing cavity inner surfaces

The exact inner border determined by the contour line refinement is projected onto the collision mesh
of the colliding object. As a result, the topology of the colliding object is modified in the same way as
described in Section 3.2.3 whereby the collision mesh is modified to include the exact inner border. The
purpose of this projection is to pair the two inner surfaces, which finally constitute a unified cavity geometry.
The classification of the regions from the colliding object is performed through the application of a flood-fill
procedure similar to the method described in Section 3.2.2 for the suction object. One small difference here
is that one of the vertices that lies on the projected contour line is used as the seed vertex used to initialize
the flood-fill on the paired surface. Each inner surface is closed by the centroid of its exact inner border.
The outcome is a discretization of the cavity as two associated closed surfaces.

The projection of the inner border has two advantages. First, it means that the two interacting objects
do not necessary need to have the same mesh resolution for the cavity to be detected, and furthermore the
result is a clean discretization of the inner cavity. Note that at the end of the time-step, the initial topologies
of both objects are restored.
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3.2.5 Tracking cavities over time

The vertex classification algorithm is independently executed at each time-step without considering
the classifications coming from the previous time step. Therefore, the detected geometric cavities are not
persistent. However, our method introduces persistent mechanical cavities which carry the mechanical values
(pressure, air quantity, volume). These persistent mechanical cavities are linked with the non-persistent
geometric cavities which allow to track the cavities over time. If the cavity was already detected at the
previous time step, the previous mechanical values are re-used. The purpose of our cavity tracking algorithm
is to decide if we should link detected cavities to existing mechanical cavities at the previous time step, or
to create new ones.

The algorithm proceeds as follows: first, it associates each detected cavity to the closest cavity at the
previous time-step. The association is handled through a proximity criterion, corresponding to the Euclidean
distance between the cavity centroids. The proximity is only considered if the given Euclidean distance
does not exceed a maximal value, which is defined by the user. Then, our algorithm identifies the surface
cavities which are not assigned to any previously existing mechanical cavity, and creates new mechanical
cavities for them. Finally, the previously existing mechanical cavities that have not been associated to a
detected surface cavity are deleted.

3.2.6 Volume computation

Once we have a clean discretization of the geometric cavity thanks to the exact inner border, we are able
to compute its volume. To this end, we close the two surface regions of the mechanical cavity to sum-up
their signed volume. This aspect elucidates why curved surfaces inside cavities can be handled with our
method, no matter if it is a bump or a hollow region.

Each geometric cavity is virtually closed by the centroid of the inner border, and the volume is then
geometrically-computed using the technique from [ZC01]: it consists in creating an arbitrary reference point
PO whereby we connect the vertices PA

t , PB
t , PC

t of the triangles from the collision mesh. The term t denotes
the triangle indices and we assume it exists n triangles. In practice, PO is actually the centroid of the inner
border of the geometric cavity. Each triangle t thus reveals a tetrahedron for which we compute its signed
volume vt . The sign of its volume actually depends on the position of PO according to the plane of the
concerned triangle. In case the created point is located on the side of the plane where the triangle’s normal
n̂t points out, the sign is negative. In the opposite case, the sign is positive. By summing the signed volumes
vt of all the revealed tetrahedra, the outcome is v the volume of the geometric cavity. Mathematically
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speaking, we can write down the calculation of v as:

v =
n

∑
t=0

vt =
n

∑
t=0

st
UOA

t · (UOB
t ×UOC

t )

6
,

with UOA
t = (PA

t −PO) ; UOB
t = (PB

t −PO) ; UOC
t = (PC

t −PO) ,

and st =

{
1 if UOA

t · n̂> 0
−1 if UOA

t · n̂< 0

3.2.7 Dynamic topology

As seen in Figure 3.2, the cavity detection process performs the projection of the exact inner border of
the suction cup onto the colliding object. The aim is to pair the two geometric cavities while obtaining a
clean discretization of these, and then summing their volumes to finally get the volume of the mechanical
cavity. This projection implies to dynamically change the topologies of the two meshes.

In the context of the suction cup, the exact inner border is actually a closed chain of segments knowing
that the points between the consecutive segments belong to existing edges. The topology adaptation is
consequently straightforward: each existing triangle is split in two polygons by a portion of the chain of
segments. From this state, the only remaining operation consists in applying a triangulation algorithm onto
the revealed polygons. We chose to apply the well-known ear clipping algorithm [Ebe08] for its simplicity
but any triangulation algorithm would work.

Figure 3.5 – Illustration of the procedure consisting in dynamically adapting the topology of the colliding
mesh after inner border projection. From left to right: 1) Points along the exact inner border (blue) are
projected onto the colliding object. 2) Projected points (red) are linked and intersection points with existing
edges are added (Grey). 3) Each original triangle is split in two polygons through the projected inner border.
These polygons are triangulated (green) thanks to the well-known ear clipping algorithm.
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The topology adaptation is illustrated in Figure 3.5 through three steps from left to right: In the first step,
the sorted points along the exact inner border (blue) are projected onto the triangles of the colliding object.
Note that each projected point (red) now belongs to a triangle and this data is kept in memory. In the second
step, those points are linked together and intersection points with existing edges are added in-between
(green). More precisely, we trace a vector from a first projected point to the next one and we are looking for
the intersected edge of the current triangle. Then we know on which neighbor triangle we must jump to
continue the operation until we reach the next projected point. We do not omit to compute the intersection
points (Grey) along this process. We repeat the operation until all the projected points have been treated.
The outcome is that all existing triangles are now split in two polygons. In the third step, we execute the
ear-clipping algorithm (triangulation) onto the revealed polygons (green). As a result, original triangles are
respectively substituted by sets of smaller triangles.

3.3 Numerical methods

We previously described the physical and geometrical aspects of the simulation of the suction phe-
nomenon. In this subsection we detail the numerical aspects of the modeling.

3.3.1 Simulation pipeline

Our simulation pipeline proceeds by first simulating the unconstrained motion (also called free-motion)
of deformable objects. It is performed thanks to an asynchronous preconditioner using LDL decomposition
followed by a direct solver. LDL decomposition means the system matrix A is decomposed through the
form A=LDLT with L a lower unit triangular matrix and D a diagonal matrix. After this first step, a
collision detection stage determines the contact points, namely the points of the collision meshes included
in the overlapping of the free-motion configurations. The cavity detection algorithm described in Section
3.2 is then executed. Finally, a complementarity problem is defined and then solved through a Gauss-Seidel
solver. The aim is to resolve contacts, simulate friction and the suction phenomenon all together using
constraints. The resolution of the complementarity problem results in a motion correction applied over the
unconstrained motion (see Section 3.3.3). This simulation pipeline is summarized in Algorithm 1 in which
the mathematical terms are detailed further in this chapter.
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Algorithm 1 General pipeline of our suction simulation.
O∞ and O∈ represent the two colliding objects while C represent the collision response data.
p, v, n are respectively the pressure, volume, and air quantity in the cavity.
A is the system matrix,H the constraint matrix, λ the vector of Lagrange multipliers, and h the time step.

1: procedure STEP

2: solveA∆ẋ= b

3: // Update configuration
4: x0← x+h(ẋ+∆ẋ)

5: Hc,C ← COLLISIONDETECTION(O∞,O∈)
6: Hp,n,v← CAVITYDETECTION(O∞,O∈,C )
7: λ, p← SOLVECONTACTPRESSURE(Hc,Hp,n,v)
8: update ∆ẋ← ∆ẋ+hA−1HT

c λ+hA−1HT
p p

9: ẋ← ẋ+∆ẋ

10: x← x+hẋ

11: end procedure

3.3.2 Corotational Finite Element Method

The simulation of the deformable objects is performed through the Co-rotational Finite Element Method
(FEM) and an Euler implicit time-integration scheme. The word cororotational means the rotational part
of the deformation is computed separately from the rest in order to avoid an inflating artifact (Figure 2.2).
Each deformable object is represented as a set of volumetric tetrahedra (FEM mesh). Additional triangle
meshes representing the surface of each object are used for collision detection purpose (collision mesh).
Theses two topological representations are illustrated in Figure 3.6.

We suppose that the state of the mechanical system is given by the position x and the velocity ẋ of a
total of N nodes across the finite element models. The implicit stepping of the unconstrained elastic system
involves computing updates to the nodal velocities ∆ẋ by solving

(
M −hC−h2K

)︸ ︷︷ ︸
A

∆ẋ= h f (x, ẋ)+h2Kẋ+hg︸ ︷︷ ︸
b

. (3.1)

Here, h is the time step,M , C, andK are respectively the mass, damping, and stiffness matrices of the
finite element models, ẋ are the nodal velocities, and elastic forces are given by f(x, ẋ), and external forces,
such as gravity, given by g.
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Figure 3.6 – Two topological representations of a suction object. Left: FEM mesh composed of tetrahedral
elements. Right: Collision mesh composed with triangles along the object surface.

3.3.3 Constraint formulation

First of all, we decided not to take into account the dynamics of the air in our model but only the air
pressure distributions along surfaces that we consider uniform. Indeed, although the air dynamics has an
impact on the pressure distribution, we think it is negligible dues to the simple geometries of the cavities.
Moreover, computing fluid dynamics would consume time performance knowing we already have to
simulate deformable objects which is likewise costly.

A reduced system of equations involving only the constraint variables is built and the Lagrange multipliers
are computed by defining a Complementarity Problem (CP). This problem accounts for the bounds of the
non-interpenetration, friction, and our novel air pressure constraints. As the gas law is non-linear, we favored
the use of a Projected Gauss-Seidel (PGS) solver that allows iteratively solving small blocks of non-linear
constraints while taking into account the coupling between them. Finally, we apply the correction forces
resulting from the constraint solve to the nodal degrees of freedom (DOFs). It results in a penetration-free
configuration of the FEM meshes, but also accounts for the depressurization and suction of the cavities.

Since contacts are an essential component of suction simulation, we constrain the elastic bodies by
introducing non-interpenetration and friction constraints, that we regroup under the name of frictional
contact constraints. Suction is also modeled in our simulations using a novel air pressure constraint we
coupled with the other constraints. The constraint matrixH , as illustrated in Figure 3.7, embed the directions
of the frictional contact constraint forces and the uniform air pressure distributions of the detected cavities.
In contrast, the intensities of the frictional contact forces as well as the scalar internal pressures from the
cavities are represented by Lagrange multipliers.
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Figure 3.7 – When a cavity exists due to collision, three types of rows exist in the constraint matrix:
non-penetration constraint directions (red), friction constraint directions (two per contact, blue), and the
uniform negative pressure distribution in the cavity (green).

For reasons of clarity in our formulation, let’s splitH into two sub-parts:Hc andHp. On the one hand,
Hc ∈ R3k×3N encodes the non-interpenetration and friction constraints of each contact point, assuming
there are k contact points. We observe that Hc provides important information about the separation and
tangent slip velocity at contacts Hcẋ. By the way, the Lagrange multipliers related to these frictional
contact constraints are gathered into the vector λ. On the other hand, Hp ∈ Rl×3N encodes the uniform
air pressure distribution in the cavities with l the number of cavities. Assuming there is only one detected
cavity, implying l = 1, the scalar internal pressure is represented by the Lagrange multiplier p. Letting
Hp ∈ R1×3N be the volume gradient of a sealed cavity, we observe that this is a row vector only has
non-zero components at nodes that participate in defining the volume of the cavity. This constraint matrix
also provides the rate of volume change in the cavity based on nodal velocities as

v̇ =Hpẋ (3.2)

With the system in (3.1) being solved to obtain ∆ẋ, that is, at the velocity level, we have constraint
forces acting according to Lagrange multipliers λ and p, which respectively enforce the contact and air
pressure constraints. These forces act in constraint directions determined byHT

c andHT
p , and a time step

factor of h is used to make these constraint forces act as impulses. An update to the unconstrained motion
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computed in (3.1) can then be obtained by:

∆ẋ← ∆ẋ+hA−1HT
c λ+hA−1HT

p p (3.3)

We note that the terms A−1HT
c and A−1HT

p can be computed efficiently by using a sparse linear solve.
For each contact point, a block is added to the matrix Hc that encodes the contact normal and friction
directions. We use λn ∈ R to denote the non-interpenetration constraint force of a contact, and λt ∈ R2 for
the frictional forces.

3.3.4 Constraint resolution

The inner loop of the Projected Gauss-Seidel (PGS) solver (Algorithm 2) computes contact forces
block-wise by solving for the tuple of constraint forces that satisfy Signorini and Coulomb laws. This
involves solving three non-linear equations with complementarity conditions:

0≤ λn ⊥Hc,n(ẋ+∆ẋ)≥ 0 (3.4)(
‖λt‖2 < µλn

)
⊕
(
λt =−µλn

Hc,t(ẋ+∆ẋ)

‖Hc,t(ẋ+∆ẋ)‖2

)
(3.5)

where ⊕ denotes exclusive disjunction. In (3.4), the term Hc,n(ẋ+∆ẋ) is the velocity in the normal
direction at the contact at the end of the time step. Similarly, in (3.5), Hc,t(ẋ+∆ẋ) is the 2D velocity in the
tangent plane at the contact, and when ‖λt‖2 < µλn, this tangential velocity is constrained to be zero.

The Schur complement is used to solve for contact constraint forces, accounting for the unconstrained
motion update ∆ẋ and the current estimate of the suction pressure p:

hHcA−1HT
c λ=Hc

(
ẋ+∆ẋ−hA−1HT

p p
)
. (3.6)

When multiplied by the constraint matrix, we obtain the nominal constraint gap function velocity
gcb =Hc(ẋ+∆ẋ) due to the known forcing terms and the current velocity. Likewise, we solve hA−1HT

p

in advance, allowing us to write the compliance, i.e., rate at which the constraint velocity changes due to
pressure, asWcp = hHcA−1HT

p . Thus:

hHcA−1HT
c λ=−gcb−Wcp p . (3.7)

Note thatWcp could be updated if the vertices that define the boundary of the cavity were to change, but
contacts included in the solution are fixed at the beginning of the time step. The additional challenge in
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coupling contact and pressure is that the directions ofHp would also need to change in the situation where
contact forces show a gap forming at the inner boundary of the contact patch. We avoid this complication
not including vertices that form the inner boundary in the volume gradientHp.

As mentioned above, the PGS solver for frictional contact follows the well proven approach [JAJ98]
of solving in sequence blocks of 3 equations (contact and friction) for each contact. The corresponding
Lagrange multipliers λn and λt are updated in turn and projected to bounds as necessary. The pressure
constraint, however, is non-linear and requires closer inspection to ensure the correct solution. The initial
quantity of air in a cavity is set to n, and at each time step we compute the pressure p and a change in air
quantity ∆n≤ 0. If the gas law constraint can be satisfied, then the cavity remains airtight and the quantity
of trapped air remains constant, i.e., ∆n = 0. However, if the gas law cannot be satisfied without increasing
the pressure above the maximum Pmax, then we allow an air quantity change ∆n < 0 during the time step.

We elaborated on two versions of our suction model by considering active suction on the one hand and
passive suction on the other hand. Active suction is the simplest version: it assumes that the cavity of the
cup is linked to a vacuum pump in practice, meaning the air pressure is directly controlled by user through
a regulator. In this case, the pressure p is known and the only remaining unknown becomes the air quantity
n we can simply compute as n = pv

RT by following the ideal gas law.

In contrast, passive suction states that we deal with a traditional suction cup without any artificial
vacuum device. It means p and air quantity n still have to be determined. In the case of passive suction, the
pressure computation must account for how the volume will change over the next time step due to contact
forces, the change in the amount of trapped air, and the pressure itself. Thus we solve for p in:

p(v+hv̇) = (n+∆n)RT (3.8)

and using Equation 3.2 with the velocity at the next time step we obtain:

p(v+hHp(ẋ+∆ẋ)) = (n+∆n)RT . (3.9)

Recall that before starting the contact PGS solve, we compute solutions for the velocity changes due to
b and the pressure constraint direction HT

p , to multiply by Hc and thus prepare the contact constraint
velocities gcb andWcp used in Equation 3.7. Here, we similarly prepare in advance the volume velocity due
to forcing terms b and the current FEM velocity as gpb =Hp(hA−1b− ẋ), and the compliance, i.e., volume
velocity produced by pressure,Wpp =HphA−1HT

p (note thatWpp is a scalar if there is only one cavity).
Furthermore, pre-computing (at start of time step) complianceWpc = (HphA−1)HT

c , Equation 3.9 can be
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expanded as:

p
(
v+hgpb +hWpcλ+hWpp p

)
= (n+∆n)RT . (3.10)

Collecting terms on the left hand side yields:(
hWpp

)
︸ ︷︷ ︸

a>0

p2 +
(
v+hgpb+hWpcλ

)︸ ︷︷ ︸
b>0

p+
(
− (n+∆n)RT

)
︸ ︷︷ ︸

c<0

= 0 . (3.11)

This quadratic in p is easy to solve for one cavity (and cavity by cavity with Gauss-Seidel in case of
multiple cavities), if roots are not complex. Let’s prove the impossibility of complex roots. First, note that
Wpp, and quadratic term coefficient a, are positive, provided thatA and its inverse are symmetric positive
definite (which is typically the case, and can be guaranteed by choosing a small enough time step even if
the simulation state involves a large and indefinite elastic stiffnessK). Furthermore, the value of c must be
negative (or zero) because n+∆n must always be a positive (or zero) quantity of air trapped in the cavity
at the next time step, and constants R and T are positive. Thus, the discriminant d = b2−4ac is always
positive, and it is also greater or equal to b2.

Now let us understand the impossibility of multiple positive solutions for p. Notice that the linear term
coefficient b measures the volume at the next time step accounting for the current velocity, external and
elastic forces, and the contact forces, while ignoring the influence of pressure on the cavity. The total will
be non-negative provided that we can rely on the resolution of contacts to ensure contact forces that prevent
the cavity going past a zero volume state with interpenetration between the surfaces forming the cavity.
Thus, with b > 0, we have one negative solution p = (−b−

√
d)/(2a), and with the discriminant d≥ b2,

we will also always have a positive (or zero) solution:

p = (−b+
√

d)/(2a) . (3.12)

This is the solution we chose.

When the solution for p exceeds Pmax, then p must be clamped at maximum value, and a change in air
quantity over this time step is computed by evaluating the quadratic Equation 3.11 with the pressure set to
Pmax, that is:

∆n =
aP2

max +bPmax

RT
−n . (3.13)
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We observe that ∆n is zero if p is exactly Pmax (i.e., the pressure has not yet exceeded the limit, does not
need to be clamped, and the gas law is satisfied). When the solution p is clamped to Pmax, we notice that ∆n

becomes negative as the first term in Equation 3.13 becomes smaller. That is, the air quantity will never
increase when p is clamped. This first term is positive because coefficients a and b, and the maximum
pressure are positive (the air quantity can never be reduced below zero over a time step). Thus obtain at a
complementarity condition:

0≤ (Pmax− p)⊥−∆n≥ 0 . (3.14)

A summary of our constraint resolution through our PGS solver is unfolded below (Algorithm 2).

Algorithm 2 Solver algorithm for pressure and contact forces (Projected Gauss-Seidel).
1: procedure SOLVECONTACTPRESSURE(Hc,Hp,n,v)
2: ∆n = 0
3: for i < max iterations do
4: // Solve for contacts
5: for each contact
6: solve and project λn,λt // Equations 3.4-3.7
7: end for
8: // Solve for pressure
9: p = (−b+

√
d)/2a // Equations 3.11 and 3.12

10: if p > Pmax then
11: p = Pmax
12: ∆n = (aP2

max +bPmax)/(RT )−n // Equation 3.13
13: end if
14: i = i+1
15: end for
16: return λ, p,∆n
17: end procedure

3.4 Conclusion

In conclusion of this chapter, we proposed a new suction model composed of several features that we
described from a modeling point of view.

The first important feature of the suction model is a cavity detection algorithm. The latter is able to handle
multiple cavities meaning we can simulate suction effect on objects with arbitrary geometry. Moreover,
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the algorithm computes exact inner borders involving dynamic topological changes to obtain a clear
discretization of the detected air cavities and thus avoid discontinuities.

The second important feature is a novel pressure constraint we coupled with non-interpenetration and
friction constraints. These constraints are gathered to form a Non-linear Complementarity Problem (NCP)
which is built using Lagrange multipliers and solved thanks to a Projected Gauss-Seidel solver. In the
context of passive suction, the scalar pressure values of the cavities are found thanks to a resolution which is
based on the ideal gas law. The next chapter clarifies implementation details about these two contributions.
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In Chapter 3, we described the equations and algorithms related to our scientific contributions about the
modeling of the suction phenomenon. In the first part of this chapter, we explained how we implemented
theses equations and algorithms into SOFA, a C++ simulation framework, by giving details in terms of
software design. Then, in the second part of this chapter, we describe the multiple simulation scenarios we
implemented in order to test our simulation model in terms of features and time-performance. Besides, the
scenarios related to our model validation are presented in Chapter 5.

4.1 Implementation

We implemented our modeling and algorithms in C++ using SOFA [ACF+07], a simulation framework
with facilities for handling the simulation of deformable objects. This decision was essentially motivated by
several reasons:

— The framework already contains a lot of interesting features. In particular, we were interested in
the collision detection features, the time-integration schemes, a simulation pipeline suiting our
requirements, an existing constraint solver (Gauss-Seidel), and the graphical user interface. The fact
that such features are provided resulted in time saving.
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— It is an open-source framework. Thus, when we detect a bug in the framework, we do not have to
wait for a patch because we can solve it ourselves. In addition, we are completely free to change the
design and behavior of the core components.

— SOFA is a modular framework relying on scene components (see Section 4.1.1).
— The framework contains a large community whose members are mainly from the Inria laboratory,

which is very convenient and helpful in the context of our research.

In order to implement the simulation of the suction phenomenon from our modeling presented in Chapter 3,
we created new software components that we assembled into a dedicated SOFA plugin.

4.1.1 General organization of SOFA

In SOFA, a simulation is setup by the definition of a scene in XML or Python language wherein we
describe a set of SOFA components. These components determine the techniques we use through the
simulation pipeline as well as the parameters of the simulated objects. In SOFA, one simulated object can
have multiple representations, namely a FEM mesh, a collision mesh and a visual model. This kind of
configuration is the most common case. Each representation relies on a mesh. For each vertex of this mesh,
the degrees of freedom including positions and velocities are stored in a MechanicalObject component.
And those representations are linked together thanks to Mapping components. Most of the time, the topology
of the FEM is composed of tetrahedra, leading to a suitable geometric and volumetric representation of the
object. In the case of the collision mesh, knowing that it is a surface mesh, its topology is commonly made
of triangles. These topologies are likewise defined by SOFA components inside the described scene. Note
that the physics parameters of the materials are also defined through components.

4.1.2 Cavity detection

Vertex classification: As explained in Section 3.2, the points of the collision meshes are classified just
after the collision detection stage and the classification is then adjusted after the computation of the exact
inner border because of vertices which are dynamic added into the topology. A simplified UML class
diagram about vertex classification operations is given in Figure 4.1. On collision, the two interacting
objects, namely the suction cup and the other colliding object, each own classification data as an instance
of the VertexClassificationData class. In fact, the latter stores vertex classification as a vector of
PointTags whereby order follows the indices of the vertices of the collision mesh. In this way, we can
easily access to the classification value (tag) of a given vertex knowing its index. But we also would like to
efficiently browse the set of points of a given tag. That is why VertexClassificationData additionally
stores one vector of point indices per tag. Theses accelerating data structures are populated once the entire
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classification of the collision mesh is completed. About the vertex classification operations, notably the
flood-fill procedure, those are defined in a dedicated class called VertexClassifier.

VertexClassifier

+floodFill(PointTag, PointID seed)
+classifyAs(PointTag, ...)

«enumeration»
PointTag

+NOT_CLASSIFIED
+IN_CONTACT
+STRICTLY_INSIDE
+INNER_BORDER
+STRICTLY_OUTSIDE
+OUTER_BORDER

VertexClassificationData

+classification: vector<PointTag>
+ptsIndices_InContact: vector<PointID>
+ptsIndices_StrictlyInside: vector<PointID>
+ptsIndices_InnerBorder: vector<PointID>
+ptsIndices_StrictlyOutside: vector<PointID>
+ptsIndices_OuterBorder: vector<PointID>

+writes into

Figure 4.1 – Simplified UML class diagram about vertex classification.

Dynamic topology: In the process of the cavity detection, the approximated inner border is classified and
then refined by adding new vertices into the topology of the collision meshes (Section 3.2). As shown in Fig-
ure 4.2, we introduced the class TopologyAdaptator which computes the exact inner border of the cavity
and let it appear onto the topology of the two collision meshes. In fact, the projection of the exact inner bor-
der is performed thanks to RayCastingProjector. In SOFA, topological changes can already be handled
by a native TriangleSetTopologyModifier. However, in our case, we need to change the mesh topology
but we also want to restore the original one at the end of the time-step. To answer to this problematic,
we extended the base class by creating the child class TriangleSetTopologyModifierWithRollback.
This one is able to register all the topological changes in a way they can be rollbacked. Besides, note that
the triangulation method we use (ear clipping) has been written in a separated class called EarClipping
for better code flexibility.

Cavity linkage: We also explained in Section 3.2 that a cavity is composed of two cavity meshes (inner
surfaces that we close using centroids) and an associated mechanical cavity. As illustrated in Figure 4.3,
related data is respectively stored in classes SingleGeometricCavity and SingleMechanicalCavity.
On the one hand, SingleGeometricCavity stores the geometrically-computed volume of the associated
cavity mesh. On the other hand, SingleMechanicalCavity stores the real volume of the cavity, computed
as the sum of the volumes of the two cavity meshes. In fact, the aim of SingleMechanicalCavity is
to store all the mechanical values related to the ideal gas law (the volume of the cavity, the quantity of
air inside, and the inner pressure). In addition, it contains the cavity state and a boolean indicating that
the mechanical cavity is either a fresh new cavity or an existing one coming from the previous time-
step. Whereas the two geometric cavities are directly paired through the projection of the exact inner
border, they have to be linked to mechanical cavities over time (Section 3.2.4). This feature is fulfilled
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by CavityLinker. As a reminder, the linkage is based on the centroids of the geometric and mechanical
cavities. These centroids are defined as an attribute in the base class SingleAbstractCavity. Besides, the
instances of SingleGeometricCavity and SingleMechanicalCavity are contained into the respective
containers GeometricCavitiesData and MechanicalCavitiesData. These two classes are actually
template specializations of the template class AbstractCavityData. The reason of this implementation
choice is that AbstractCavityData is able to generate cavity IDs and data is indexed in a way that a
given cavity, either mechanical or geometric, can be accessed directly from its own ID. It also explains why
there is an id attribute in class SingleAbstractCavity.

TopologyAdaptator

+computeExactInnerBorder()

TriangleSetTopologyModifierWithRollback

+registerMutation(BidirectionalTopologyMutation)
+rollbackMutations()

TriangulationMethod

+triangulate()

11

EarClippingRaycastingProjector

+castRay(...)

BidirectionalTopologyMutation

+originalTrianglesIds: vector<TriangleID>
+originalTriangles: vector<Triangle>
+additionalVerticesIds: vector<Point>
+additionalTriangles: vector<Triangle>
+additionalTrianglesIds: vector<TriangleID>
+edgeIntersectionPointsIds: vector<PointID>

*1

TriangleSetTopologyModifier

+addTriangles(...)
+removeTriangles(...)

Figure 4.2 – Simplified UML class diagram about how we handle dynamic topology in order to compute
the exact inner border of the cavities.
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CavityLinker

SingleGeometricCavity

+surfacePointsIds: vector<PointID>
+insideTriangleIds: vector<TriangleID>
+borderTrianglesIds: vector<TriangleID>
+volume: double

SingleCavity

2

1

SingleMechanicalCavity

+state: CavityState
+isNew: bool
+p: double
+v: double
+n: double

1

1

«enumeration»
CavityState

+AIRTIGHT
+RELAXATION

SingleAbstractCavity

+id: CavityID
+Point: centroid

«template»
AbstractCavityData

#vecOfCavities: vector<T>
#indexation: map<CavityID; T*>

#createNewCavity(): T
#generateCavityId(): CavityID
#reindex()
+erase(CavityID)
+clear()
+size(): size_t

T

GeometricCavitiesData

T -> SingleGeometricCavity

MechanicalCavitiesData

T -> SingleMechanicalCavity

+generates

+pair

1

1

Figure 4.3 – Simplified UML class diagram about cavity linkage.

4.1.3 Constraint system

Regarding the constraint system, namely its construction and the resolution of it, this aspect is essentially
performed thanks to the classes illustrated in Figure 4.4. More precisely, it works as follows: once the
unconstrained configurations of the scene objects have been computed and the collision detection is finished,
GenericConstraintSolver triggers the construction of the constraint system through a visitor mecha-
nism (design pattern) which is native to SOFA. A visitor browses all the possible PairInteractionConstraint
instances which are actually components of the current SOFA scene and call their buildConstraintViolations
methods. It consequently generates multiple kinds of constraints which are aggregated into the constraint
matrix: ContactConstraintSet generates contact and friction constraints into the constraint matrix while
PressureConstraintSet generates air pressure constraints. In addition, respective ConstraintResolution
instances are generated knowing that GenericConstraintSolver has access to this data.

The entire complementarity problem (or constraint system) is solved by the GenericConstraintSystem
(native class in SOFA) which iterates over the generated ConstraintResolution objects and calls their
resolution methods until the tolerance or the maximum number iterations criterion is satisfied. Note that
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GenericConstraintSolver is actually a Gauss-Seidel solver with successive over-relaxation.

ActivePressureConstraintResolution

PassivePressureConstraintResolution

ContactConstraintSet

PressureConstraintSet

UnilateralConstraintResolutionWithFriction

ConstraintResolution

+resolution(...)

PairInteractionConstraint

+buildConstraintMatrix(...)
+getConstraintViolations(...)
+getConstraintResolutions(...)

«Gauss-Seidel»
GenericConstraintSolver

-tolerance
-maxIterations

+buildSystem(...)
+solveSystem(...)
+applyCorrection(...)

+solves LCP by successively iterating over

1

*
+generates

*

+generates

*

+generates

*

+builds LCP by calling

1

*

Figure 4.4 – Simplified UML class diagram about constraint implementation.

4.1.4 GPU acceleration

We use an asynchronous preconditioner [CADC10] with a GPU implementation. It is based on a LDL
decomposition which allows us to reduce the condition number of our system (i.e., Equation 3.6), by
approximating the system matrixA in a manner that is easy to invert. The GPU implementation also allows
us to accelerate the computation of the W matrix defined as W = hHA−1HT . This matrix is actually
built to solve the constraint system knowing δ = δ0 +Wλ with δ the current constraint violations, δ0 the
initial violations which are evaluated from the overlapping of the free-motion configurations of the two
colliding objects (in the case of frictional contact constraints), and λ is the vector of Lagrange multipliers.
The preconditioner is asynchronously recomputed on a dedicated thread, while the primary thread uses the
last-computedA matrix approximation for solving purpose. In terms of implementation, the preconditioner
was already provided in a SOFA plugin called SofaAsyncSolvers, which is actually an extend of the plugin
SofaCUDASolvers.

4.2 Illustrative scenarios

We simulated different scenarios to illustrate the performances of our approach. These scenarios are
listed and described in Table 4.1. In all these scenarios except the octopus arm scenario, the Young modulus
of the suction cup is set to 338 kPa, which corresponds to soft silicone. In all experiments, we set the
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Poisson ratio to 0.42. While our experiments include suction cups of several different shapes, the first four
scenarios below involve a standard suction cup shape, and its mass is equal to 30 g. The diameter of the
outside border measures 40 mm. The diameter of the cavity is 8 mm at the lowest and 32 mm at the highest
(inner border). The height of the cavity is 9 mm. And the thickness of the rim is 4 mm.

Figure 4.5 – Animation, from left to right, of our different simulation scenarios illustrating our suction
model that we described in Table 4.1.
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Static Plane: The suction cup is pushed onto a static plane and then pulled out
vertically. The suction cup first sticks on the plane before being released when the pressure
constraints are not strong enough to compensate for the elasticity and pulling forces.

Bunny: The suction cup is used to lift a rigid bunny. This scenario is more complex
than the cube scenario since the bunny surface is not planar. The cup manages to slightly
lift the bunny by suction, but it finally drops. The air-tightness of the cavity is weak dues
to of the curved and bumpy surface.

Toy This scenario involves a jumping toy that combines a spring and a suction cup. The
toy has a solid base (red) attached to a suction cup (blue) by a spring. The spring is physi-
cally simulated with a finite element model using a wrapped deformable model [NKJF09]
composed of hexaedra. A rigid monster head is placed above the suction cup and can be
pushed, sticking the suction cup on the base. Pressure forces and elasticity forces coming
from the spring are then applied to the suction cup. With the right spring stiffness, the toy
finally jumps into the air after a short amount of time.

Dart This scenario consists of a dart gun shooting a dart (with a suction cup at the tip)
at a target. Note that the dart is a deformable model, but the elasticity of the rod has been
made rigid. When the suction cup hits the target, we can observe an oscillating motion of
the rigid rod driven by the elastic deformation of the suction cup.

Octopus Arm. This scenario is composed of an octopus arm with suction cups of
varying sizes. The arm can be manipulated to grasp a can. The scenario illustrates the
ability of our approach to detect multiple cavities because the arm is composed of multiple
cavities. The arm is driven by user using pulling cables. We use a Young modulus of
150 kPa for the arm in this example.

Deformable Cube In this last scenario, the suction cup is used to lift a deformable
cube. The cube is modeled as an elastic FEM model, has side length 115 mm, a mass of
30 g, and it is very soft with a Young modulus is 10 kPa. The suction cup deforms the
cube by pushing on it, then deforms in turn and finally lifts the cube.

Table 4.1 – Illustrative scenarios of our suction model.
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4.3 Computation time performance

We performed timings for simulations running on a laptop with an Intel Core i7-7820HQ CPU at 2.90
GHz, 32GB of DDR4 system memory, and a NVIDIA Quadro P3000 Mobile graphics card. Below, in
Table 4.2, we respectively report timings for the above scenarios (Table 4.1).

Scenario
Nb of

vertices
Nb of
tets

Avg. Nb of
constraints

Avg. time
per frame

Free
motion

Collision
detection

Cavity
detection

Constraint sys.
construction

Constraint sys.
resolution

static plane 576 1685 2406.41 451.39 0.51 (0.23%) 8.31 (3.68%) 33.18 (22.05%) 31.57 (13.99%) 86.13 (57.24%)
rigid bunny 576 1685 2707.56 678.19 0.58 (0.17%) 5.65 (1.67%) 2.58 (0.76%) 97.24 (28.68%) 224.54 (66.22%)
static sphere 576 1685 4527.12 827.68 0.51 (0.12%) 7.84 (1.90%) 1.49 (0.54%) 69.63 (16.82%) 215.19 (78.00%)
rigid cube 576 1685 3164.74 910.04 0.58 (0.13%) 12.53 (2.75%) 56.72 (12.46%) 104.33 (22.93%) 273.71 (60.15%)
octopus arm∗ 731 1935 878.01 300.15 6.24 (4.16%) 6.47 (4.94%) 22.98 (30.62%) 24.78 (18.01%) 59.50 (39.65%)
toy∗ 576 1685 1444.31 477.74 27.60 (11.56%) 4.81 (3.67%) 20.92 (8.76%) 15.11 (10.95%) 149.05 (62.40%)
deformable cube∗ 576 1685 3361.09 1498.57 8.60 (1.15%) 4.89 (0.98%) 36.39 (4.86%) 125.72 (16.78%) 364.42 (72.95%)
dart∗ 723 2002 2686.25 1133.17 28.09 (4.96%) 13.71 (2.54%) 69.16 (12.21%) 52.00 (9.47%) 393.53 (69.46%)

Table 4.2 – Computation time performance of the different scenarios. Average computation time per frame
is reported in milliseconds as well as the average number of constraints and the detailed computation
times among the different components of the simulation. For each measurement we additionally indicate
in parentheses the portion of total simulation time as a percentage. The scenarios which are marked with
an asterisk "*" do not use GPU asynchronous preconditioners for stability reasons (they involve larger
deformations than the others).

Furthermore, we ran the "rigid cube" scenario with different mesh resolutions and compared time-
performance as shown below, in Table 4.3.

Nb of
nodes

Nb of
tetrahedra

Nb of
constraints

Avg. time
per frame

Free
motion

Collision
detection

Cavity
detection

Constraint system
construction

Constraint system
resolution

76 205 244.88 11.66 0.10 (1.71%) 0.88 (15.04%) 0.41 (10.55%) 0.81 (13.88%) 0.87 (22.25%)
125 372 452.93 52.95 0.14 (0.54%) 3.56 (13.46%) 8.49 (48.09%) 2.34 (8.84%) 3.33 (18.87%)
141 413 623.56 75.94 0.16 (0.41%) 4.07 (10.73%) 11.56 (45.66%) 3.51 (9.26%) 6.59 (26.03%)
151 449 642.34 75.48 0.17 (0.45%) 3.96 (10.48%) 11.29 (44.86%) 3.68 (9.75%) 6.80 (27.03%)
159 470 830.41 104.65 0.18 (0.35%) 4.55 (8.70%) 14.76 (42.30%) 4.92 (9.40%) 11.61 (33.27%)
203 613 996.07 132.82 0.23 (0.35%) 5.03 (7.58%) 17.39 (39.27%) 6.94 (10.45%) 16.41 (37.07%)
363 1078 2294.55 486.40 0.36 (0.15%) 9.00 (3.71%) 45.15 (27.85%) 26.37 (10.84%) 88.23 (54.42%)
415 1241 2584.75 603.13 0.39 (0.13%) 10.50 (3.49%) 53.29 (26.50%) 32.11 (10.65%) 113.98 (56.70%)
455 1378 2837.21 703.27 0.44 (0.13%) 11.54 (3.29%) 60.05 (25.62%) 39.68 (11.29%) 134.81 (57.51%)
502 1472 3133.83 839.36 0.48 (0.11%) 12.66 (3.02%) 69.39 (24.80%) 48.05 (11.45%) 163.78 (58.54%)
552 1598 3323.07 896.17 0.51 (0.11%) 13.33 (2.98%) 71.87 (24.06%) 51.57 (11.51%) 177.27 (59.34%)
576 1685 3450.77 993.11 0.55 (0.11%) 14.14 (2.84%) 78.33 (23.66%) 55.08 (11.10%) 199.68 (60.32%)

Table 4.3 – Performance of the cube grasping scenario with different mesh resolutions for the suction
cup. The average computation time for a time step is listed in milliseconds and for each component of the
algorithm we additionally indicate between brackets the portion of total simulation time as a percentage.

Measured performances

Table 4.2 summarizes the computation time performance of our approach for different scenarios. We
measured the total time needed to achieve the entire simulation with respect to the complexity of the
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scenario. In addition to the total time, we report the average times needed per frame for the computation
of the free-motion configuration, the collision detection, as well as the times needed more specifically for
simulating the suction cup phenomenon: the cavity detection, the constraint system construction (including
the pressure constraints, the friction constraints, the contact constraints) and the constraint resolution. The
time units are in milliseconds and for each measure we additionally indicate in parentheses the coverage
percentage over the time-step simulation. For all scenarios, we used a time-stepping value of 10 ms. The
maximum number of Gauss-Seidel iterations was clamped to 50. All the results were acquired using
averages onto a sample of 150 time-step iterations, starting from the beginning of the simulation.

Note that the scenarios in Table 4.2 that have an asterisk next to their name are those for which we do not
use the GPU asynchronous preconditioners. This is because we observe that the asynchronous behavior
leads to a loss of precision in the deformations, and produces instabilities in these scenarios. Note also that
the toy and octopus arm scenarios both have a low time-performance average despite the large number of
nodes involved. This is because there is a longer period without contact at the start of these simulations in
comparison to the other scenarios.

Different mesh resolutions: We ran the cube scenario with several resolutions in order to illustrate
how the different computation times evolve as a function of the resolution of the suction cup. The results
are shown in Table 4.3. As expected, the total time increases with the mesh resolution. The times of all
the components of the simulation are impacted by the mesh resolution, since the number of vertices is
involved in both the flood-fill procedures of the cavity detection and the constraint system construction and
resolution.

In order to confirm that the time-performance is primarily impacted by the number of constraints, we
collected the number of constraints at each frame and the corresponding time-performance at the scale of a
time-step. The results are shown in Figure 4.6. We displayed the dots using a gradient of color from black
to blue which respectively indicates if a dot has been collected early or lately in the simulation. Note that
the computation time stays low even for a large number of constraints when there is no contact at the very
beginning of the simulation (i.e., when vertices fall below the alarm distance, but before constraint forces
are needed to prevent them from passing the contact surface). That is why we can see on the graph that the
blackest dots form a horizontal line on the graph. Those have been collected when the suction cup is close
from the ground without touching it. Most importantly, we observe that the blue dots on top of the graph
trace a line which show that the time-performance of the simulation seems almost linearly proportional to
the number of constraints within the range of the number of constraints we used for our tests. It should be
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noted that the low number of iterations of Gauss-Seidel (without relying on a precision criterion to stop the
iterations) artificially reduces the cost for systems with many constraints. Indeed, the theoretical cost of a
Gauss-Seidel type algorithm executed entirely sequentially is quadratic.

Figure 4.6 – Computation time performance in function of the number of constraints. The blue dots on top
of the graph trace a line. The black dots on bottom of the graph denote simulation steps where constraints
are generated but contact has not yet formed (i.e., they have trivial solutions).

4.4 Conclusion

In conclusion of this chapter, we briefly presented the SOFA framework that we used in our research
and we provided implementation details regarding both our cavity detection and the constraint resolution.
Secondly, we established some illustrative scenarios (simulations) for which we measured time-performance
and we tested different mesh resolutions. As expected, we observed that the more the resolution of the
meshes is high, the more we potentially have contact points meaning frictional contact constraints that must
be solved, leading to a time-performance drop. To go further in terms of tests, we performed a validation of
our model through physical experiments and additional simulations (virtual experiments) that we detail in
Chapter 5.
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We listed illustrative scenarios in Chapter 4 that were also used for time-performance benchmarking. But
other additional scenarios, called virtual experiments, were implemented to test the abilities of the suction
model. In addition, we did several physical experiments to ensure our model is close from reality, notably
in terms of forces and geometry. Those physical and virtual experiments seek to validate our simulation
model. In this chapter, we first describe the physical experiments related to our suction model in the context
of active suction. And we then describe the experiments which take place in the context of passive suction.

5.1 Experiments for validating active suction

The goal of the two first experiments was to evaluate the active suction version of our suction model. Both
experiments constitute evaluations based on comparisons with real data. One of these experiments aims
to validate the geometry of the suction cups that we obtained after deformation with our model, whereas
the other experiment seeks to validate the forces computed from our simulations. The two experiments are
presented in the following subsections and in this order.

We designed two different types of silicone suction cups. We cast 3D printed suction cups, using
respectively Dragon Skin A20 silicon (Young modulus = 843 kPa) and Dragon Skin A30 silicon (Young
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modulus = 1067 kPa). In the following, we will refer to the names A20 and A30 for the two suction cups.
We generated the meshes using the CAD models built for 3D printing (see Figure 5.1).

Figure 5.1 – Dimensions of our two suction cups A20 and A30.

5.1.1 Geometry validation

The objective of the geometry validation experiment with active suction was to compare the shape of the
real suction cup with the shape of the virtual one, in order to validate the geometry under a static approach.
We designed an experimental setup wherein the suction cup is positioned on a flat surface, on top of a
small hole which is connected to a vacuum pump via a tube. The pressure inside the suction cup’s cavity is
controlled (active suction) using a pressure regulator and an associated numeric pressure sensor both placed
along the tube (Figure 5.2). In this way, we were able to control the shape of the cup by gently varying the
internal pressure through the regulator. We applied an internal depressurization of −11 kPa and −6 kPa
respectively to the suction cups A30 and A20 and we recorded the initial shapes of the real suction cups as
well as the final ones.

Pressure 

sensortube

Vaccum 

pump

Pressure 

regulator

Figure 5.2 – The cavity of the suction cup is connected to a vaccum pump via a tube. The user can control
the internal pressure using a pressure regulator and an associated numeric pressure sensor both placed along
the tube.
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Figure 5.3 – Photogrammetry reconstruction of
the real suction cup.

Figure 5.4 – Shape comparison between the real
suction cup (Grey) and the virtual one (red) at
their final states.

We extracted the shapes of the real suction cups using a photogrammetry procedure. For that purpose, we
used the Meshroom software (https://alicevision.github.io/) to reconstruct the 3D shapes from
pictures we took during the experiment (see Figure 5.3). Once the 3D real data were reconstructed, we
could compare them with the resulting shapes from our simulation.

In order to avoid the noise resulting from the photogrammetry reconstruction, we applied smoothing
and filtering operations afterwards. As illustrated in Figure 5.4, we compared the real suction cup with the
virtual one using the Hausdorff distance. This metric is simply the greatest of all the distances from a vertex
in the virtual mesh to the closest vertex in the real mesh. In a nutshell, it measures the error between our
simulations and reality. When comparing the final states, we obtained the following measurements: for the
suction cup A20, we measured a Hausdorff distance of 1.59 mm. For the suction cup A30, the Hausdorff
distance was 3.29 mm.

These measures are not so close to zero which means that the virtual shape coming from simulation and
the photogrammetry-reconstructed shape does not match perfectly together. Intuitively, when we look at
Figure 5.4, we observe that the walls of the two cups are not aligned so it would mean the error essentially
comes from there. But in fact, the error potentially come from different factors: noise in the photogrammetry-
reconstruction, approximation dues to the linearization of the deformations in our simulations, resolution of
the meshes.

5.1.2 Force validation

The objective of the force experiment in the context of active suction was to measure the intensity of the
pull force required to detach the suction cup from the surface, assuming it was completely stuck thanks to
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a vacuum. As illustrated in Figure 5.5, we attached the top of the suction cup to an actuator with a hook.
In addition, a force sensor was positioned between the tip of the actuator and the hook. In this setup, we
consequently were able to measure the pulling force. The actuator had only one degree of freedom, which
means it can exclusively move vertically. As for the geometry experiment (Section 5.1.1), we connected the
cavity of the suction cup to the vacuum and were thus able to regulate the internal pressure.

Figure 5.5 – Experimental setup for the force measurements. The suction cup is attached to a force sensor.
When it is positioned on a flat surface, its cavity is linked to a vacuum pump with a regulator in-between.

We ran the experiments with both suction cups A20 and A30. For each one, as illustrated in Figure 5.6,
we proceeded as it follows: first of all, thanks to the actuator, the suction cup was positioned on top of
the hole without pushing it too much against the flat surface. After that, the vacuum was switched on and
we set the cavity depressurization to a fixed value (either −5 kPa, −10 kPa, −15 kPa or −20 kPa) using
the pressure regulator, achieving a deformation of the suction cup. To finish, we pulled the suction cup by
moving the actuator up at a speed of 5 mm/s.

Regarding this experiment, we reproduced a similar scenario in the simulation. We were then able to
compare the force variation as a function of time and to detect the necessary pull force to detach the suction
cup from the flat surface. The forces comparison between the virtual one and the ground truth to reach
detachment is provided in Figure 5.7 with suction cup A20 and different internal pressures.
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Figure 5.6 – Workflow of the force experiment (active suction). From left to right: first, the suction cup
is positioned on a flat surface and on top of the hole which is linked to a vacuum. Secondly, we use the
pressure regulator to set the desired pressure in the cavity, leading to a distortion of the material. Thirdly,
the actuator goes up to pull the cup. Finally, the suction cup detaches.

Figure 5.7 – Force measurement from real data and simulations (called virtual) for different depressuriza-
tions. The force increases because the actuator pulls the suction to the top. The force drops to zero when
the suction cup detaches from a flat surface. Simulation forces are represented with dashed lines. A time
offset of 0.2 s has been voluntarily introduced between the curves from real data and simulation for better
readability.
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According to the results (Figure 5.7), we notice that the shapes of the curves representing real data
and the ones representing our simulations tend to be globally the same. However, we can see there are
discontinuities in the time-variation of the vertical forces in the context of the simulation. The reason
is that the computed inner borders of the cavity were just the approximated inner borders because the
computation of the exact inner borders (Section 3.2.3) were not yet implemented at the time we plotted
these curves. Therefore, there were discontinuities in the time-variation of the cavity volume, and thus in
the time-variation of the internal pressure too, leading to vibrations of the suction cup, especially when the
pressure becomes high.

5.2 Experiments for validating passive suction

After finishing the experiments with active suction, we decided to extend the validation by making
more experiments but now in the context of passive suction. More precisely, we made a new force
experiment similar to the one presented in Section 5.1.2 and we additionally performed several virtual
experiments, namely simulation scenarios which aim to test the abilities of our suction model. We present
these experiments in the following subsections.

5.2.1 Forces and curvatures

As an extend of the force validation experiment with active suction, we decided to make another similar
second experiment but in the context of passive suction. As illustrated in Figure 5.8, the setup of this
one relies on a robotic arm (CB3 UR3 from Universal Robots) which push and pull passive suction cups
(vertical motion only) against surfaces with different degrees of curvatures. In practice, we used plastic
pipes with different diameters that we fixed onto the workbench just under the robot actuator. The diameters
of the pipes that we used are 40 mm, 50 mm, 63 mm and 101 mm. In addition of running the experiment
by varying the curvatures, we also ran it with different suction cups in terms of material elasticity and
dimensions. We used three silicon materials having different elasticities to cast the suction cups: Dragon
Skin A10, Dragon Skin A20, and Dragon Skin A30. We actually made four suction cups: three small ones
made of A10, A20, A30 respectively and a bigger one made of A20. They however all have the same wall
thickness as well as the same stem’s diameter. We detail their properties in Table 5.1.
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pipe

suction cup

force sensor

Figure 5.8 – Setup of our force experiment in the context of passive suction: the cup is attached at the tip of
a robot arm and is pushed against a pipe (curved surface) and then pulled. The necessary detachment force
is measured thanks to a force sensor near the actuator.

Cup ID S10 S20 S30 B20

Size small small small big

Material A10 A20 A30 A20

Young modulus 667 kPa 843 kPa 1067 kPa 843 kPa

Mass 2.4 g 2.5 g 2.6 g 4.5 g

Small Big
Inner diameter 24 mm 38 mm

Cavity’s height 4.5 mm 10 mm

Cavity’s volume 1195 mm3 6063 mm3

Wall thickness 4 mm 4 mm

Stem’s diameter 10 mm 10 mm

Table 5.1 – Properties of the different suction cups from our force experiment related to passive suction.

S10 S20 S30 B20
Figure 5.9 – We cast 4 models of suction cups for the force experiment in the passive suction case.
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At each run of the experiment, as illustrated in Figure 5.10, the actuator goes down at a speed of 10 mm/s
until the suction cup is completely flattened (i.e. stuck) against the pipe. After that, it takes a short break to
let the suction cup reaching an equilibrium state and it then goes up at the same speed than the descending
phase in order to detach the suction cup. The vertical forces are measured over time thanks to a native force
sensor located at the level of the robot’s actuator.

Figure 5.10 – Workflow of the force experiment with different curvatures (passive suction). From left to
right: first, the actuator goes down. Secondly, the suction cup becomes completely flattened against the
pipe, and the actuator takes a short break at this moment. Thirdly, it goes up to pull the suction cup. Finally,
the suction cup ends up to detach.

The force measurements are given in Figure 5.11. Generally, we observe that the signed vertical force
goes into negative values due to the fact we push the cup against the pipe. And then, the force goes into
positive value because we pull the cup whereas the suction effect resists to the detachment. In the end, the
force returns to zero when the cup has been detached.

We plan to compare the results with those from our simulations. Unfortunately, it has not been done yet
due to some difficulties about keeping the tracking of the cavity in our simulation. In fact, knowing our
cavity detection is based on a flood-fill procedure (Section 3.2.2), the vertices located on the bottom part
of the cup are all considered as contact points when the cavity is completely flattened onto the surface,
meaning no vertex is classified as being inside the cavity. And as a result, the cavity detection is lost. This
case raises a limitation that we need to overpass. Indeed, in reality, when the suction cup is completely
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Figure 5.11 – Force experiment with passive suction: measurement of vertical forces over time with
different curvatures (pipes with different diameters). The colors represent the IDs of the suction cups (see
Table 5.1).
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flattened, it remains numerous tiny air cavities along the contact surface that allows the suction cup to stay
stuck. However, we do not capture them in our simulation because the resolution of the mesh is not high
enough. Assuming we increase the mesh resolution, it would be likewise necessary to manage the merges
and splits of the air cavities over time. Otherwise we would be not able to correctly track the pressure values
inside the cavities. This discussion reveals a new feature we should implement into our cavity detection
algorithm as future work.

Although the comparison between the virtual simulations and real data is still an ongoing work, we have
learned several lessons through this experiment. First, we noticed the same trends about the influence of
the curvature of the surface on which we push the suction cup, namely the more the degree of curvature
is important, the less the suction effect is strong. Furthermore, we made one virtual experiment related
to this aspect (presented in Section 5.2.2) wherein we try to lift an object by varying the curvature of its
shape. Secondly, the boundary conditions related to the location on which we attach the suction cup has a
meaningful impact on the result.

5.2.2 Virtual experiments

In order to test the abilities of the suction model, we created some appropriate simulation scenarios that
we executed using different parameters. These are described in the following.

Lifting of curved objects: Figure 5.12 shows an experiment in which we vary the curved shaped of an
object until the suction cup is no longer able to lift the object. We used a cylinder (diameter: 120 mm) with
different non-uniform scales to produce test surfaces, using scale factors from 0.2 up to 1 along the vertical
axis. The suction cup is able to lift by suction all the flattened versions of the cylinder, but not the original
cylinder. In the high curvature case of the original cylinder, the suction cup only lifts the object briefly, at
which point it swings slightly, breaking the seal, and the object falls. This behavior tends to be the same in
reality whereas we did not perform a complete validation about this.

Figure 5.12 – The suction cup is able to lift objects with curved surfaces by suction, but fails when the
curvature is too high. From left to right: we increase the curvature of the object.
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5.2. Experiments for validating passive suction

Cube lifting with different shapes: The scenario consists in trying to lift a deformable cube by suction
using different shapes of suction cups (Figure 5.13). We experimented three different shapes:

— Red: a cup with a round border, like a plunger, with the diameter of its cavity being 7 mm at the
lowest and 51 mm at the highest (inner border). The diameter of its outside border is 55 mm and the
thickness of the rim is 2 mm. The height of the cavity is 21 mm.

— Blue: a cup with straight borders, where the diameter of its cavity is 8 mm at the lowest and 32 mm
at the highest (inner border). The diameter of its outside border is 40 mm, and the thickness of the
rim is 4 mm. The height of the cavity is 9 mm.

— Green: a cup with an asymmetric shape, where the longest Euclidean distance between two points
of its inner border is 57 mm. The longest euclidean distance between two points on its outer border
is 60.5 mm. The diameter of the cavity at the top is 4.5 mm, the thickness of the rim is 2 mm, and
the height of the cavity is 8 mm.

The red and blue suction cups are able to lift the cube, but the green one cannot. Because of its unusual
shape, a well-sealed cavity cannot form due to its borders which rise when the cup is pressed against the
cube. This behavior is obviously the same in reality.

Figure 5.13 – We attempt to lift a deformable cube with 3 different suction cup models. Left-to-right shows
the progression of the 3 benchmark scenarios. The red one and the blue cups succeed, whereas the shape of
the green cup does not allow it to make a large sealed cavity because its borders rise when it is pushed onto
the cube.
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Cube lifting with different masses: The first experiment consists in grasping a rigid cube by suction
force. We vary the mass of the cube at each run of the experiment while collecting the variation of the
vertical pull force along time. We plot in Figure 5.14 the time-variation of the vertical force for each mass.
The purpose is to determine how much weight a suction cup is able to grasp. In this experiment, we used
two different suction cups:

— Small: the diameter of its cavity is 8 mm at the lowest and 32 mm at the highest (inner border), the
diameter of the outside border is 40 mm. The thickness of the rim is 4 mm. The height of the cavity
is 9 mm.

— Large: the diameter of its cavity is 12 mm at the lowest and 48 mm at the highest (inner border), the
diameter of the outside border is 69 mm. The thickness of the rim is 10.5 mm. The height of the
cavity is 13.5 mm.

They both have the same mass (30 g) and the same elastic properties, namely 338 kPa for the Young
modulus.
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Figure 5.14 – Benchmark involving different masses where two suction cups of different sizes are pressed
against a cube (2-4 s), and then slowly lifted (4-6 s). Left: the small suction cup is able to lift 50 g and
100 g, but fails for masses 200 g and above. Right: the large suction cup has a larger cavity which allows it
to lift heavier objects.

In Figure 5.14, from 0 s to 2 s, the cup goes down and ends up touching the cube. The force is not zero
during this time due to the mass of the cup. From 2 s to 4 s, the cup continues to go down while gently
deforming due to contact with the cube. During this motion, the force applied in the vertical axis becomes
negative because of the counteracting elastic force of the suction cup.
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The force continues to decrease until we stop pushing the cup. From 4 s, the ascending phase begins
and continues until the end of the simulation. Here, we observe that the force increases to the point that it
supports the weight of both the cup and the cube knowing the latter is lifted by suction. Finally, the scenario
has one of two possible endings according to the physical properties. In all but one case, the cup is able to
lift the cube and we observe an approximately constant force from the moment the cube lifts off the ground.
In the case of the small cup and the heaviest cube, the cup is not able to maintain a seal and it detaches, and
that is why we see that the force returns to its initial value.

In Figure 5.14, we observe that the small suction cup (top plot) is able to grasp by suction 50 g and 100
g, but not 200 g, while the larger cup (bottom plot) succeeds with all masses in the experiment. It can be
explained by the fact the larger suction cup has a larger cavity, meaning the internal pressure acts on a
larger area, and can also go lower due to its larger volume. As already mentioned in Section 5.2.1, we also
noticed during the experiments that this is not possible to obtain an absolute void in the cavity. The latter
still contains some air molecules.

Air tunnel: This scenario involves a deformable cube which includes a tunnel connecting two holes
on its top surface. With this scenario, we demonstrate that cavity detection is able to handle the tunnel as
a closed cavity when we place the suction cup so as to simultaneously cover the two holes. In contrast,
when the suction cup only covers one hole, no cavity is formed as we correctly identify that the tunnel
communicates between the cavity of the cup and the outside. Figure 5.15 shows the result.

Figure 5.15 – In this experiment, a deformable cube includes a tunnel connecting two holes. Left-to-right
shows the progression of the 2 benchmark scenarios. If the suction cup is pushed down onto only one hole,
the cavity detection algorithm correctly identify the air passage and an airtight cavity is not formed. In
contrast, we can lift the cube by suction when the rim of the suction cup covers both holes. In this case the
tunnel is part of the cavity.
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Figure 5.16 – Time-variation of the mechanical values of the cavity during the scenario wherein a rigid
cube is lifted by the suction cup. The timeline is split in 3 time periods: pushing the cup onto the targeted
object, pulling it while the object is still on the ground, and finally lifting the object assuming it is not too
heavy and that the cavity stays airtight.

Ideal gas law: The purpose of this experiment is to run the scenario wherein the rigid cube is grasped by
suction in order to observe the time-variation of the air pressure, the volume, and the air quantity inside the
detected cavity. The results of this experiment are shown in Figure 5.16. To explain the variation of the
curves, we split the graph into three time periods using dotted orange vertical lines. In the first time period,
the suction cup is pushed onto the cube and the curves in the graph start once the cavity has been detected.
The volume of the cavity decreases, as well as the air quantity because our pressure constraint lets air
escapes from the cavity when the pressure is clamped to Pmax. In the second time period, we begin to pull
on the suction cup. Here, the cavity is airtight, which can be seen by the constant quantity of air, while the
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volume of the cavity increases due to deformation of the suction cup. The consequence is a depressurization
in the cavity to satisfy the gas law. In the third time period, the cube is lifted by suction. The cavity is still
airtight, and we observe a constant quantity of air (the cup is not completely flattened to keep track of the
cavity). The pressure and volume are likewise almost constant, but show some variation as there are some
dynamic deformations of the suction cup as the cube swings gently when it is raised into the air.

Regarding this virtual experiment, we think it would be very interesting to measure the time-variation of
the pressure inside cavity in a physical experiment. The latter could be performed using an experimental
setup similar to the one from the force experiment (Section 5.2.1) but with a pressure sensor. In this way,
we will be able to compare the results of the virtual experiment with virtual data.

5.3 Conclusion

In conclusion to this chapter, we made multiple experiments in order to validate the suction model. We
learned some lessons through these, notably the fact we need to improve the cavity detection algorithm
to capture the remaining air molecules along the contact surface when the cup is completely flattened.
Furthermore, it would be very interesting to measure the pressure inside cavity over time in a physical
experiment and compare measured data with the results of the virtual experiment related to the ideal gas
law (end of Section 5.2.2). We think further experiments related to friction and air pressure measurements
over time would be very interesting to complete our model validation.
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CHAPTER 6

CONCLUSION

6.1 Summary of the contributions and future work

For the last three years, our research on the simulation of the suction phenomenon led to several
contributions.

Modeling: In Chapter 3, we proposed a new suction model composed of two important features: a cavity
detection algorithm and a novel air pressure constraint to simulate suction. In terms of modeling, we decided
to solely represent uniform air pressure distributions because, although air dynamics has an influence on
the pressure distribution, we though it can be neglected in our context to get better time-performance. In
terms of numerical methods, the object deformations are achieved through the Co-rotational Finite Element
Methods as a trade-off between time-performance and accuracy. We have proposed and implemented a
cavity detection algorithm which is able to handle multiple cavities meaning we can simulate suction objects
beyond traditional suction cups. Moreover, the algorithm computes exact inner borders involving dynamic
topological changes to obtain a clear discretization of the detected air cavities. It allows us to obtain an
accurate geometrically-computed volume of the cavity without discontinuities over time, regardless of the
granularity of the meshes. In order to simulate suction, we decided to introduce an air pressure constraint
that we coupled with classical contact and friction constraints. These constraints are gathered to form a
Non-linear Complementarity Problem (NCP) which is built using Lagrange multipliers and solved thanks
to a Projected Gauss-Seidel solver. The suction can be simulated as active suction (the internal pressure is
directly controlled by the user) or passive suction (case of traditional suction cups). In that latter case, the
pressure values inside cavities are found thanks to a resolution based on the ideal gas law.

Simulation: In Chapter 4, we explained that we implemented the above contributions in C++ using
SOFA, a specific framework for deformable objects. We have designed several simulation scenarios to
illustrate our suction model. In addition, we measured time-performance in each of these scenarios using
different mesh resolutions. We mentioned that we use an asynchronous GPU-implemented preconditioner
based on a sparse LDL factorization to accelerate performance. As expected, the higher the resolution, the
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more we have contact and friction constraints, but we did not observe any important drop in the computation
time-performance.

Validation: In order to validate our model, we made some experiments as described in Chapter 5. In the
context of active suction, we achieved a geometry experiment and a force experiment whereas in the context
of passive suction, we also made a force experiment plus some virtual experiments to test the abilities of our
model. The geometry experiment with active suction compares the material configuration of the suction cup
between our virtual simulations and reality using a photogrammetry-reconstructed mesh. The measurements
(Hausdorff distance) reveals that the two shapes do not match perfectly together. The force experiment in
active suction consisted in measuring the necessary pull force to detach the suction cup once this one is
sticked to a flat surface. The results showed that the forces in our simulations and in reality globally have
the same trends. The force experiment with passive suction is similar to the one with active suction except
that we test the suction onto surfaces having different curvatures. We figured out through this experiment
that the cavity detection algorithm has some limitations which prevent the comparison of the measures with
those from our simulations. However, we noticed the same trends about the influence of the curvature of the
surface. About the virtual experiments with passive suction, we performed cube lifting attempts (by suction)
with different masses while measuring the vertical force. We observe that, at a certain threshold in terms
of mass, the suction is not able to lift the cube anymore, which is obviously the same behavior in reality.
Still in the context of cube lifting, we tested different shapes of suction cups. As expected, one suction cup
failed to lift the cube because of its unusual shape for which its borders rise when the cup is pushed against
the cube, leading to a not-sealed cavity. Another virtual experiment consisted in lifting a half cylinder this
time, instead of the cube. We varied the degree of curvature of the surface at each run by scaling the half
cylinder on one axis. In this experiment, the suction cup ends to dropping the object when its curvature is
too high. Whereas we did not compare this virtual experiment with reality, we observed the same trends
than in reality. Next, we performed a virtual experiment involving a tunnel connecting two holes on a top
surface of the cube. The experiment demonstrated that our cavity detection algorithm is able to handle the
tunnel as a closed cavity when the cup lays onto the two holes. To finish, a last virtual experiment traced the
time-variation of the mechanical values inside the cavity, namely the pressure, volume and air quantity. The
curves revealed an accordance regarding the ideal gas law.

6.2 Short-term possible improvements

On further consideration, it would be interesting to improve our cavity detection algorithm by implanting
a new feature which manage the merges and splits of the air cavities over time. In this way, the suction
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model would be able to correctly track over time the numerous tiny cavities which may arise when the cup
is completely flattened. However, this technique would work provided that the resolution of the collision
mesh is high enough. Knowing a high resolution mesh means numerous constraints and consequently lower
computation time-performance, one optimization may be to dynamically adapt its resolution according
to the geometries and the locations of the detected cavities for instance. Besides, it would also be very
interesting to adapt the friction coefficient with regards to the rugosity of the surface on which the cup
eventually slip. Regarding the Imagine project that we briefly presented in Chapter 1, this aspect would be
especially relevant knowing the cup (located at the tip of the robot actuator) may be lead to lift electronic
cards by suction, knowing these constitute noisy surfaces which could be considered as rough surfaces.

Another point is that it would be necessary to find a way to improve time-performance when the number
of contacts points becomes high. One solution could be, for instance, to gather some contact points which
are close together. In addition, we could optimize computation-time performances of the constraint solver.

Regarding model validation, we think it would be interesting to go further with additional experiments
especially in the passive suction case. For instance, we could do an experiment wherein we measure
the pressure inside the cavity over time and compare the values with the results from our simulations.
Furthermore, measuring the impact of friction regarding the suction effect would be also a very interesting
experiment. Besides, we only tested suction onto flat or curved surfaces for now, so another idea of
experiments would be to test suction onto surfaces with different levels of rugosity. We could even let the
suction cup slide along these surfaces and measure friction as well as the sealing reliability.

6.3 Long-term future work and applications

We believe our suction model will be of great interest in robotics, especially with the emerging soft
robots. It could be used as a tool to design robots which are equipped of suction cups. Such a tool would be
useful to decide the shape of the cups, their positions, their rheological properties, and so on. The concerned
robots could use suction to grasp so in this case, the objective in terms of design would be to optimize this
task. But we can also imagine soft robots using suction as a means of locomotion. These robots could be
inspired by animals like the octopus or even the snail (Figure 1.1). Finally, we think our suction model will
let emerge more sophisticated robots by exploiting suction the best way.
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Titre : Simulation Interactive basée Physique du Phénomène de Succion
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Résumé : Cette thèse porte spécifiquement sur la modé-
lisation ainsi que la simulation du phénomène de succion
en raison de ses vertus très intéressantes vis-à-vis de la
manipulation, surtout dans le domaine de la robotique.
Au sein de nos recherches, nous faisons la distinction
entre la succion active (pression d’air contrôlée direc-
tement par une pompe à air par exemple) et la succion
passive (cas d’une ventouse traditionnelle). En termes de
contributions, nous avons proposé un modèle de succion
composé de deux composants principaux : un algorithme
de détection de cavités et une contrainte de pression d’air.
L’algorithme de détection de cavités permet de locali-
ser et identifier les géométries des poches d’air qui sur-
viennent lorsqu’une ventouse (ou objet similaire) rentre
en contact avec un autre objet. Quant à la contrainte de
pression d’air, celle-ci est couplée avec les contraintes
traditionnelles de contact et de frottement. Afin d’accé-

lérer la simulation, la distribution de la pression d’air à
l’intérieur des cavités est représentée au sein de notre mo-
dèle sans pour autant simuler le comportement complexe
des dynamiques du fluide d’air. Au delà de la conception
de notre modèle de succion, nous avons réalisé plusieurs
expérimentations physiques et virtuelles : Nous avons
mesuré les forces nécessaires pour détacher des ven-
touses dans le contexte de la succion active puis de la
succion passive. Nous avons lancé ces expérimentations
en utilisant plusieurs élasticités de matériaux au niveau
de la ventouse. Par rapport à la succion passive, nous
avons en plus fait varier la courbure de la surface contre
laquelle la ventouse est appuyée. En outre, nous avons
mis en place plusieurs scénarios illustratifs pour mesurer
les performances de calcul, et aussi des scénarios de test
pour analyser les capacités de notre modèle de succion.

Title: Interactive Physically-based Simulation of the Suction Phenomenon

Keywords: Suction, Contact, Deformable, Physics simulation, Manipulation, Robotics

Abstract: This thesis focus on the modeling and
physics simulation of the suction phenomenon in regards
to its very interesting features related to manipulation,
especially in the robotics context. In our research, we
distinguish active suction (air pressure value is directly
controlled by a vacuum pump for instance) from passive
suction (case of a traditional suction cup). In terms of
contributions, we proposed a suction model composed
of two main features: a cavity detection algorithm and a
novel air pressure constraint. The cavity detection algo-
rithm allows to locate and identify the geometries of air
cavities which may arise when a suction cup (or similar
object) collides with another object. As for the air pres-
sure constraint, it is coupled with the traditional contact

and friction constraints. In order to speed up the simu-
lation, the air pressure distribution inside the cavities is
represented in our model without simulating the com-
plex behavior of air dynamics. In addition our elaborated
suction model, we made several physical and virtual ex-
periments: We measure the necessary forces to detach
suction cups in the context of active and passive suction.
We ran these experiments using different elasticities re-
garding the suction cup material. About passive suction,
we additionally varied the degrees of curvature of the
surface onto which the suction cup is pushed. Further-
more, we performed different illustrative to test time-
performances and also benchmarking scenarios to test
the abilities of our suction model.
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