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1
Introduction

The thesis is made up of two parts. In the first part we generalize the Abhyankar-Moh theory to a special
kind of polynomials, called free polynomials. These polynomials generalize to K[[x1, . . . , xe]][y] the well known
results about polynomials of K[[x]][y], where K is an algebraically closed field of characteristic zero. More
precisely, consider a polynomial :

f = yn + a1(x)y
n−1 + · · ·+ an(x)

in K[[x]][y], and assume that f is irreducible. The Newton-Puiseux theorem [25, 27] says that f admits a

solution y(x
1
n ) in the ring of fractional power series K[[x

1
n ]]. Moreover, we have :

f(xn, y) =
n
∏

i=1

(y − y(wix))

where w1, ..., wn are the n-th roots of unity in K. Furthermore, Abhyankar [2, 4] has proved that we can
associate with f a sequence of integers {m1, ...,mh} derived from the exponents of some root y =

∑

p cpx
p

of f(xn, y) = 0, and this sequence is independent of the choice of the solution. This set of integers is called
the set of Newton-Puiseux exponents of f , and is constructed as follows : m0 = n = d1, and for all k ≥ 1 :

mk = inf{p ∈ N, such that cp 6= 0, and dk does not divide p}, dk+1 = gcd(dk,mk)

Then h is such that dh+1 = 1. We can also associate with f its semigroup of values which is defined to be
the set :

Γ(f) = {int(f, g) = Ox(g(x
n, y(x))), g ∈ K[[x]][y]\(f)}

where Ox(g(x
n, y(x))) denotes the smallest integer among the exponents of the power series g(xn, y(x)). This

semigroup is generated by the elements r0, r1, ..., rh, defined by r0 = m0 = n, r1 = m1, and for all 2 ≤ k ≤ h :

rk =
dk−1

dk
rk−1 +mk −mk−1

Abhyankar proved in [4] that there exists a special king of polynomials {G1, ..., Gh}, namely pseudo-roots
of f , such that deg(Gi) =

n
di

and O(f,Gi) = ri. Moreover, he proves that O(f, gi) = ri for all i ∈ {1, ..., h}
where {g1, ..., gh} are the approximate roots of f (see Definition 4).
More generally let f = yn + a1(x1, ..., xe)y

n−1 + · · · + an(x1, ..., xe) be a polynomial in y with coefficients
ai(x1, ..., xe) ∈ K[[x1, ..., xe]], the ring of formal power series in several variables, for all 1 ≤ i ≤ n. Then, f is
said to be quasi-ordinary if its discriminant ∆y(f), which is defined to be the resultant in y of f and its y-
derivative fy, is of the form ∆y(f) = xα1

1 · · ·x
αe
e ε(x1, ..., xe), where ε(x1, ..., xe) is a unit in K[[x1, ..., xe]]. If f

9



10 CHAPITRE 1. INTRODUCTION

is irreducible then by the Abhyankar-Jung theorem [3, 18] f admits a solution y(x1, ..., xe) in K[[x
1
n

1 , ..., x
1
n
e ]].

Moreover we have :

f(xn1 , ..., x
n
e , y) =

n
∏

i=1

(y − yi(x1, ..., xe))

where yi(x1, ..., xe) = y(βi1x1, ..., β
i
exe) are conjugates of y, where βij is an n-th root of unity for all 1 ≤ i ≤ n,

1 ≤ j ≤ e. Now let y =
∑

(p1,...,pe)
c(p1,...,pe)x

p1
1 · · ·x

pe
e be a root of f(xn1 , ...x

n
e , y) = 0, and define the support

of f to be the set Supp(f) = {p ∈ Ne, such that cp 6= 0}. In [19], Lipman has proved that there exists a
sequence of elements m1, ...,mh ∈ Supp(y) such that :

(i) m1 < m2 < · · · < mh coordinate-wise.

(ii) If m ∈ Supp(f), then m ∈ (nZ)e +
h
∑

i=1

miZ

(iii) mi /∈ (nZ)e +
∑

j<imjZ for all i = 1, ..., h.

The semigroup of f is defined to be the set Γ(f) = {O(f, g), g ∈ K[[x1, . . . , xe]][y]\(f)}, where O(f, g) is
the lexiographical order of the the initial form of g(xn1 , ..., x

n
e , y(x1, ..., xe)). Define the D-sequence of f to be

D1 = ne, and for all 1 ≤ i ≤ h, Di to be the gcd of the e × e minors of the matrix [nIe,m
T
1 , ...,m

T
i ], where

T denotes the transpose of the vector. We have D1 > ... > Dh+1 = ne−1. We define the e-sequence to be
ei =

Di

Di+1
for all 1 ≤ i ≤ h, the r-sequence r10, ..., r

e
0, r1, ..., rh to be :

ri = ei−1ri−1 +mi −mi−1

for all 1 ≤ i ≤ h, and r10, ..., r
e
0 to be the canonical basis of Ze. The sequence {r10, ..., r

e
0, r1, ..., rh} forms a

system of generators of Γ(f). Gonzàlez Pérez in [16] proved that for all i ∈ {1, ..., h} f admits an i-th semi-
root, that is a polynomial g of degree n

di
such that g(xn, y(x)) = xriε for some ε unit in K[[x]]. Moreover, he

proved that for all i ∈ {1, ..., h} the di-th approximate root of f is an i-th semi-root of f .

In sections 2 and 3 of the thesis we recall some preliminary facts about G-adic expansions, approximate
roots, and affine semigroups. In section 4 we recall the Abhyankar-Jung theorem and the construction of the
characteristic monomials of a quasi-ordinary branch done by Lipman [19], and the study of the semi-roots
and approximate roots of a quasi-ordinary branch done by Gonzàlez Pérez in [16].

The aim of the first part of the thesis is to generalize these results from quasi-ordinary to a wider class of
polynomials. Let f(x1, ..., xe, y) be a polynomial in y with coefficients in the polynomial ring K[x1, ..., xe],
McDonald proved in [21] that f admits a root in the ring of Puiseux power series with support in strongly
convex polyhedral cone. Gonzàlez Pérez in [15] extended this result to polynomials with coefficients in the
ring of Puiseux power series with support in a strongly convex polyhedral cone. Moreover, Aroca and Ilardi
in [6] generalized McDonald results. Given ω ∈ Rn, they proved that the field of ω-positive Puiseux series
is algebraically closed, where a ω-positive Puiseux series is a Puiseux series with support in a translate of a
strongly convex rational polyhedral cone with ω.v ≥ 0 for all v in this cone.

In this work we take a polynomial f = yn + a1(x1, ..., xe)y
n−1 + · · · + an(x1, ..., xe) in K[[x1, ..., xe]][y] with

a y-discriminant ∆y(f)(where the y-discriminant is defined to be the y-resultant of f and its y-derivative).
By a preliminary change of variables we may assume that the homogeneous component of smallest degree of
∆y(f) contains a power of x1. Now by taking the change of variables :

x1 = X1, x2 = X2X1, ..., xe = XeX1

we get a new polynomial F (X1, . . . , Xe, y), which is quasi-ordinary, hence it has a root yN ∈ K[[X
1
n

1 , ..., X
1
n
e ]].

By taking the preimage we get a solution y of f(x1, . . . , xe, y) = 0, such that the support of y is in some line
free cone C (where a line free cone C is a cone such that for all x ∈ C we have −x /∈ C). Thus y is in the set

of fractional power series with exponents in the line free cone C, denoted by KC [[x
1
n

1 , ..., x
1
n
e ]] (assuming that

f is irreducible in KC [[x1, . . . , xe]][y]). This set forms a ring under the usual addition and multiplication of
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power series, moreover it is an integral domain.

The main idea of the birational change of variables above is the following : if f is irreducible in KC [[x1, . . . , xe]][y]
then F is an irreducible quasi-ordinay polynomial (see Theorem 4 and Lemma 17).
Since C is a line free cone, there exists an additive order ≤ on C which is compatible with C, i.e ∀p ∈ C ∩Ze

we have p ≥ (0, ..., 0). In particular every set S ⊆ C ∩ Ze has a minimal element with respect to this order,
and so if we consider the support of y, then it can be arranged in an increasing order with respect to this
order.

Let L be the fraction field of KC [[x1, ..., xe]], and let Ln = L(x
1
n

1 , ..., x
1
n
e ) be the field obtained by adjoining

x
1
n

1 , ..., x
1
n
e to L, then a conjugate yi of y is an element θ(y) for some automorphism θ of Ln over L. Note

that yi belongs to KC [[x
1
n

1 , ..., x
1
n
e ]] also. We define the set of characteristic exponents of f to be :

{O(yi − yj), such that yi, yj are distinct roots of f }

where O(yi − yj) is the smallest element in Supp(yi − yj) with respect to the order compatible with C.
Similarly, for every yi 6= yj let Mij be the initial monomial of yi − yj . The obtained set {Mij} is called the
set of characteristic monomials of f . Moreover, we prove that L(y) = L(M1, ...,Mh).
Obviously the set of characteristic exponents of f is a finite subset in C ∩Ze, hence we can arrange them in
an increasing order and write them as :

m1 ≤ · · · ≤ mh.

Moreover we prove that :

(i) For all m ∈ Supp(y), m ∈ (nZ)e +
h
∑

i=1

miZ

(ii) mi /∈ (nZe) +
i−1
∑

j=1

mjZ

LetD1 = ne, and defineDi+1 to be the gcd of the e×eminors of the matrix (nIe,m
T
1 , ...,m

T
i ) for all 1 ≤ i ≤ h,

and set ei =
Di

Di+1
. We obtain that D1 > · · · > Dh+1, and that the degree of extension of L(M1, ...,Mi) over

L(M1, ...,Mi−1) is equal to ei. Consider the sequence r10, ..., r
e
0, r1, ..., rh by taking r10, ..., r

e
0 to be the ca-

nonical basis of (nZ)e, and ri = ei−1ri−1 + mi − mi−1, then set di =
Di

ne−1 . Now define the semigroup of
f to be the set Γ(f) = {O(f, g), g ∈ KC [[x1, . . . , xe]][[y]]\(f)}, where O(f, g) is the smallest element in
Supp(g(xn1 , ..., x

n
e , y(x1, ..., xe))) with respect to the chosen order. As in the quasi-ordinary case, Γ(f) is ge-

nerated by r10, . . . , r
e
0, r1, . . . , rh. Furthermore, there exists a special set of polynomials g1, ..., gh(approximate

roots of f), such that O(f, gi) = ri for all i = 1, ..., h.

In the second part of this theis we consider numerical semigroups and their ideals and we study their appli-
cations on one dimensional K-algebras and the module of differentials of plane algebraic curves parametrized
by polynomials. The aim of this part is to characterize these curves in terms of invariants such as Milnor
number and Tjurina number.
A subset S of N is said to be a numerical semigroup if 0 ∈ S and for all a, b ∈ S we have a+ b ∈ S, and such
that the set G(S) = N\S is finite. Given a numerical semigroup S, we define the Frobenius number of S,
denoted by F (S), to be the maximum of the set G(S). Note that every numerical semigroup admits a finite
system of generators, that is, there exists s1, ..., sh ∈ S such that for all s ∈ S

s = λ1s1 + . . .+ λhsh

for some λ1, ..., λh ∈ N. In this part we will be interested in a special class of numerical semigroups, called
free numerical semigroups. Free numerical semigroups appear in the theory of singularities of algebraic plane
curves and also in the theory of algebraic plane curves with one place at infinity. We aim to use the techniques
developed in the theory of numerical semigroups and their ideals in order to characterize rational algebraic
plane curves with one place at infinity with respect to invariants such as Milnor number and Tjurina number.
Let S be a numerical semigroup and let I be a subset of N, then I is said to be a relative ideal of S if I+S ⊆ I
and for some α ∈ Z we have α+ I ⊆ S. Note that for a relative ideal I there exists a set {a1, ..., al} ⊆ I such
that I =

⋃l
i=1(ai + S). This set is called a system of generators of I.
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Let {f1, ..., fs} be a set of elements in the polynomial ring K[t] and let A = K[f1, ..., fs], where K is a field.
For every element f ∈ K[t] we denote by d(f) the degree of f in t. Consider the set d(A) = {d(f), f ∈ A}
and suppose that the length l(K[t]/A) < +∞. Then d(A) is a numerical semigroup. We say that {f1, ..., fs}
is a canonical basis of A if {d(f1), ..., d(fs)} generates d(A). It is proven that any K-algebra A admits a
canonical basis, moreover a basis can be obtained algorithmically form the elements f1, ..., fs (see [10]).

Let {F1, ..., Fr} be a set of non zero elements in K[t], and let M =
∑r

i=1 FiA be the A-module generated by
F1, ..., Fr. Set

d(M) = {d(F ), F ∈M\{0}}

Then d(M) is a relative ideal of d(A). We say that {F1, ..., Fr} is a canonical basis of M if {d(F1), ..., d(Fr)}
is a system of generators of d(M). Note that a basis of M can be obtained algorithmically from {F1, ..., Fr}.

Let {f1, ..., fr} be a set of polynomials of K[t]. For all i ∈ {1, ..., r} let Fi = f ′i be the derivative of fi with
respect to t. Set M = F1A + . . . + FrA, then I = d(M) is a relative ideal of S = d(A). Note that if g ∈ A,
then g′ ∈ M , and so if s ∈ d(A), then s − 1 ∈ d(M). This leads to the definition of the set of non-exact
elements of M , denoted by NE(M), which is

NE(M) = {a ∈ I, a+ 1 /∈ S}.

We define ne(M) to be the cardinality of NE(M).

Suppose that r = 2, that is A = K[X(t), Y (t)] for some X(t), Y (t) ∈ K[t], and let f(X,Y ) be the smallest
degree algebraic relation satisfied by X(t) and Y (t)(f(X,Y ) is the monic generator of the kernel of the
morphism K[X,Y ] 7−→ K[t], φ(X) = X(t), φ(Y ) = Y (t)). Then f has one place at infinity (see [4]). Denote
d(A) by Γ(f) and F (Γ(f)) by F . We can construct a set of generators {r0, ..., rh} of Γ(f) by taking the set

of ranks of the vector spaces K[X,Y ]
(f,g) where g runs over the set of approximate roots of f .

For all i ∈ {0, ..., h} let di+1 = gcd(r0, r1, ..., ri) and let ei =
di
di+1

for all i ∈ {1, ..., h}. Then d1 > d2 > · · · >

dh+1 = 1 and eiri ∈ 〈r0, ..., ri−1〉 for all i ∈ {1, ..., h}. That is Γ(f) is free with respect to the arrangement

(r0, ..., rh). Let fX , fY be the derivatives of f with respect to X,Y . Let µ(f) = dimK
K[X,Y ]
(fX ,fY ) be the milnor

number of f and ν(f) = dimK
K[X,Y ]

(f,fX ,fY ) be the Tjurina number of f . We use semigroup techniques in order

to prove that µ(f) = ν(f) if and only if ne(M) = 0, that is, every element of M is exact if and only if there
exists an isomorphism K[X,Y ] 7→ K[W,Z] such that the image of f by this isomorphism is of the form
Wn − Zm, with gcd(n,m) = 1 (Theorem 15, see also [7]). This theorem generalizes the local result of Saito
for curves in [30] and also the result of Zariski in [31].

Suppose that µ(f) > ν(f), that is ne(M) > 0. We prove in this case that ne(M) > 2h−1 (see Proposition 66).
Moreover we prove that if ne(M) = 1, then S =< m,n > and NE(M) = {F − 1}. Moreover, if ne(M) = 2,
then we have the following two cases (see Theorem 16) :

(i) h = 1 with Γ(f) =< m,n > and we either have :
•NE(M) = {F − 1, F −m− 1} or
•NE(M) = {F − 1, F − n− 1}.
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(ii) h = 2 with Γ(f) =< m,n, r2 > and we either have :
• NE(M) = {F − 1, F − n− 1} or,
• NE(M) = {F − 1, F −m− 1} or,
• NE(M) = {F − 1, F − r2 − 1}.
Finally we give a characterization of the semigroup Γ(f) in case ne(M) = 1 or ne(M) = 2.





2
Free polynomials

2.1 G-adic Expansion and Approximate roots

In this section we introduce the notion of G-adic expansion of a polynomial with respect to a set of po-
lynomials. We also introduce the notion of Tschirnhausen transform and that of approximate root of a
polynomial. These notions will be used later in order to characterize the set of generators of the semigroup
of a free polynomial.

2.1.1 Expansion of integers

Let (m0, ...,mh) be an (h+ 1)-tuple of integers with h ≥ 1. We set :
d1 = mo, d2 = gcd(m0,m1), ..., di = gcd(m0, ...,mi−1) = gcd(di−1,mi−1), where gcd stands for the greatest
common divisor. Suppose that d1 > d2 > ... > dh+1, and let ei =

di
di+1

for all i = 1, ..., h.

Definition 1 Let m = (m0,m1, ...,mh) be a finite sequence of integers. A strict linear combination of m is
an integer of the form :

a0m0 + a1m1 + · · ·+ ahmh

where a0 ∈ Z and 0 ≤ ai < ei for all i = 1, ..., h.

Proposition 1 With the above notation, a given integer n can be expressed in at most one way as a strict

linear combination n =

h
∑

i=0

aimi.

Proof : Suppose n =
h
∑

i=0

aimi =
h
∑

i=0

bimi with a0, b0 ∈ Z and 0 ≤ ai, bi < ei for all i = 1, ..., h. It is required

to prove that ai = bi for all i. Suppose to the contrary that it is not true, then there exists some j such that

aj 6= bj , and ai = bi ∀j < i ≤ h. Suppose that aj > bj . We have
h
∑

i=0

aimi −
h
∑

i=0

bimi =

j
∑

i=0

(ai − bi)mi = 0

with 0 < aj − bj < ej , and so (aj − bj)mj =

j−1
∑

i=0

(bi − ai)mi.

Since dj divides mi for all i = 0, ..., j − 1, then dj divides (aj − bj)mj , and so ej divides (aj − bj)
mj

dj+1
, but

ej and
mj

dj+1
are coprime, then ej divides aj − bj , which is a contradiction since aj − bj < ej . �

As a corollary we get the following :

15



16 CHAPITRE 2. FREE POLYNOMIALS

Corollary 1 Let u1, ..., uh be an h-tuple of distinct positive integers such that ui divides ui+1 for all

1 ≤ i ≤ h − 1. If
h
∑

i=1

aiui =
h
∑

i=1

biui with 0 ≤ ai <
ui+1

ui
and 0 ≤ bi <

ui+1

ui
for all i = 1, ..., h − 1 and ah, bh

are non negative integers, then ai = bi for all 1 ≤ i ≤ h.

Proof : Set m0 = uh,m1 = uh−1, ...,mh−1 = u1, and let di = gcd(m0, ...,mi−1), then d1 = uh, ..., dh = u1.
Now let ei =

di
di+1

for all i = 1, ..., h − 1 , then a1u1 + · · · + ahuh = ahm0 + ah−1m1 + · · · + a1mh−1 with

0 ≤ ah−1 <
uh
uh−1

= d1
d2

= e1, ..., 0 ≤ a1 <
u2
u1

=
dh−1

dh
= eh−1 is a strict linear combination of (m0, ...,mh−1).

By Proposition 1 this representation is unique, and so ai = bi for all 1 ≤ i ≤ h.�

2.1.2 G-adic expansion of a polynomial

Let R[Y ] be the polynomial ring in one variable, where R is a commutative unitary ring. For every element
f in R[Y ], let deg(f) be the degree of f in Y , with the convention that deg(0) = −∞.
Let G = (G1, ..., Gh) be an h-tuple of polynomials in R[Y ] satisfying the following conditions :
(i) The polynomial Gi is monic with deg(Gi) > 0 for all 1 ≤ i ≤ h.
(ii) deg(Gi) divides deg(Gi+1) for all 1 ≤ i ≤ h− 1, and deg(G1) = 1.

Let ui = deg(Gi) for i = 1, ..., h, and define the elements n1 =
u2
u1

= u2, n2 =
u3
u2
, ..., nh−1 =

uh
uh−1

and let nh = +∞. Let

A(G) = {a = (a1, ..., ah) ∈ Nh, 0 ≤ ai < ni ∀1 ≤ i ≤ h}

and associate with each element a in A(G) the polynomial Ga = Ga11 ...G
ah
h .

Definition 2 Let f be a polynomial in R[Y ] and suppose that f can be written in the form f =
∑

a∈A(G),fa∈R

faG
a

for a finite number of a’s. The expression
∑

a∈A(G)

faG
a is said to be a G-adic expansion of f .

For every element f =
∑

a∈A(G)

faG
a we define suppG(f) = {a ∈ A(G), fa 6= 0}.

Proposition 2 Let R[GA] be the R-submodule of R[Y ] generated by GA = {Ga, a ∈ A(G)}. Then R[GA] is
a free R-submodule.

Proof : It is obvious that GA is a system of generators of R[GA], and so it is required to prove that elements
in GA are linearly independent over R.
First of all, note that if a, b are distinct elements in A(G), then deg(Ga) 6= deg(Gb). In fact if deg(Ga) =

deg(Gb), then
h
∑

i=1

aiui =

h
∑

i=1

biui, and so by Corollary 1 we get that a = b.

For linearly independence, suppose that f =
∑

a∈A(G)

faG
a = 0 for some elements fa in R, and suppose

to the contrary that for some a ∈ A(G) we have fa 6= 0. Let c ∈ suppG(f) be such that deg(Gc) =
max{deg(Ga), a ∈ Supp(f)}, then deg(f) = deg(fcG

c). If c = 0 in Nh, then f = fcG
c = fc = 0, which

contradicts our assumption. Otherwise, if c 6= 0, then deg(Gc) = deg(f) is strictly positive, and so f 6= 0
which is impossible. Hence elements in GA are linearly independent, and so GA is a free R-basis of R[GA].�

From the above Proposition we conclude that if a polynomial f ∈ R[GA], then its G-adic expansion is unique.
Moreover, there exists a unique c ∈ suppG(f) such that deg(f) = deg(Gc) = max{deg(Ga), a ∈ suppG(f)}.

Lemma 1 Let a = (a1, ..., ah) be an element of A(G). Suppose that aj 6= 0 for some 1 ≤ j ≤ h, and ai = 0
for i = j + 1, ..., h. Then uj ≤ deg(G

a) < uj+1.
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Proof : Since ai ≥ 0 for all 1 ≤ i < j and aj > 0, then aj − 1 ≥ 0 and a1u1 + ... + (aj − 1)uj ≥ 0, and

so deg(Ga) =

j
∑

i=1

aiui ≥ uj . Concerning the right hand side of the inequality, we have a1 < n1 and so

a1u1 < n1u1 = u2. Now suppose that up to j− 1 we have the inequality

j−1
∑

i=1

aiui < uj , and consider

j
∑

i=1

aiui.

We have

j
∑

i=1

aiui =

j−1
∑

i=1

aiui + ajuj and aj < nj , and so

j
∑

i=1

aiui < (aj + 1)uj ≤ njuj = uj+1. Finally

uj ≤ deg(G
a) < uj+1. �

Lemma 2 Let f be a non-constant polynomial in R[GA], then there exists some j ∈ {1, ..., h − 1} such
that uj ≤ deg(f) < uj+1. Moreover, for all a ∈ suppG(f), a can be written as a = (a1, ..., aj , 0, ..., 0) with
0 ≤ ai < ni for all 1 ≤ i ≤ j.

Proof : Let a be a non-zero element in suppG(f), then a = (a1, ..., ak, 0, ..., 0) for some 1 < k ≤ h and ak 6= 0.
Let c = (c1, ..., cj , 0, ..., 0), with cj non zero, be the unique element in suppG(f) such that deg(f) = deg(Gc),
then by Lemma 1 we have uj ≤ deg(f) < uj+1. Also by Lemma 1 we have uk ≤ deg(Ga) < uk+1, but
deg(Ga) < deg(Gc), then uk < uj+1, and so k ≤ j. �

Proposition 3 Let G = (G1, ..., Gh) be a set of polynomials in R[Y ], such that deg(G1) = 1 and deg(Gi)
divides deg(Gi+1) for all i = 1, ..., h − 1, then every element f in R[Y ] is also in R[GA]. In particular this
expansion is unique.

Proof : We will prove this by induction on the degree of f . If deg(f) = 0 or 1, then the assertion is clear.
Suppose it is true for all polynomials h in R[Y ] with deg(h) < n, and let f be a polynomial of degree n. By
Lemma 2, there exists some j ∈ {1, ..., h} such that uj ≤ deg(f) < uj+1. Since uj+1 = njuj , then there exists
some k, with 0 < k < nj , such that kuj ≤ deg(f) < (k + 1)uj . Now dividing f by Gkj we get f = qGkj + r

with deg(r) < deg(Gkj ) = kuj ≤ deg(f), and so by the induction hypothesis, r admits a G-adic expansion.

It remains to prove that qGkj admits a G-adic expansion. Since deg(f) = deg(qGkj ), then deg(q) = deg(f)−

kuj < deg(f), hence q admits such an expansion, say q =
∑

a∈A(G)

qaG
a, qa ∈ R, and so :

qGkj =
∑

a∈supp(q)

qaG
aGkj =

∑

a∈supp(q)

qaG
a1
1 ...G

ah
h G

k
j

=
∑

a∈supp(q)

qaG
a1
1 ...G

aj−1

j−1 G
aj+k
j G

aj+1

j+1 ...G
ah
h

Since deg(q) < uj , then by the Lemma 2 every element a ∈ SuppG(q) has the form a = (a1, ..., aj−1, 0, ..., 0),

and so suppG(qG
k
j ) = {(a1, ..., aj−1, k, 0, ..., 0), a1 < n1, ..., aj−1 < nj−1, k < nj}, hence

∑

qaG
aGkj is a

G-adic expansion of qGkj , and so f admits a G-adic expansion.
From Proposition 2 we can easily see that the G-adic expansion of f is unique. �

2.1.3 Tschirnhausen Transform

Let g ∈ R[Y ] be a monic polynomial with degree m > 1, and let G = (G1, G2), where G1 = Y and G2 = g.
Let the notation be as before. In particular we have n1 = m = deg(g), n2 = ∞ and A(G) = {a = (a1, a2),
such that 0 ≤ a1 < m and a2 ∈ N}.
According to Proposition 3 every polynomial f(Y ) in R[Y ] can be written in a unique way as follows :

f(Y ) =
∑

ci,jY
ig(Y )j , 0 ≤ i < m, ci,j ∈ R.
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Now for each j let fj(Y ) =

mj
∑

i=1

ci,jY
i, then f can be expressed as :

f =
∑

j

fj(Y )g(Y )j

where fj(Y ) are all zero except for a finite number of them and deg(fj(Y )) < m for all j. Note that this

expression is unique so that if f can be written as
∑

k

hkg
k with deg(hk) < deg(g), then hj = fj for all j.

This unique expansion of f in terms of g is called the g-adic expansion of f .

Lemma 3 Let f be a monic polynomial in R[Y ] and consider another polynomial g such that g is monic
and deg(g) divides deg(f), then the g-adic expansion of f is of the form :

f = gd +
d−1
∑

i=0

c
(i)
f (Y )gi, where d =

deg(f)

deg(g)

Proof : Let f =

l
∑

i=1

cig
i, where ci ∈ R[Y ] and deg(ci) < deg(g) for all i = 1, ..., l, be the g-adic expansion of

f with respect to g. For all i = 1, ..., l − 1 we have :

deg(cig
i) = deg(ci) + i deg(g) ≤ deg(ci) + (l − 1) deg(g) < l deg(g) ≤ deg(clg

l)

and so deg(f) = deg(clg
l). Now write deg(f) = d · deg(g) for some strictly positive integer d. We have

deg(cl) + l. deg(g) = d · deg(g), but 0 ≤ deg(cl) < deg(g), hence deg(cl) = 0 and cl ∈ R. Moreover l = d. We
have deg(f) = deg(cdg

d) and deg(f − cdg
d) < deg(f). But f and g are monic, then cd = 1, and so the g-adic

expansion of f with respect to g is :

f = gd +
d−1
∑

i=0

c
(i)
f g

i .�

Definition 3 Let f be a non-constant polynomial in R[Y ], let g be a monic polynomial such that deg(f) =

d. deg(g) for some integer d, and let f = gd+
d−1
∑

i=0

c
(i)
f g

d−i be the g-adic expansion of f . Assume that d−1 ∈ R.

The Tschirnhausen transform of g with respect to f is defined to be

τf (g) = g + d−1cf (g)

where cf (g) = c
(d−1)
f is the coefficient of gd−1 in the g-adic expansion of f ; it is called the Tschirnhausen

coefficient.

Note that the Tschirnhausen transform is a monic polynomial with deg(τf )(g) = deg(g) since deg(cf (g)) <
deg(g), and so we can define recursively by induction the i-th Tschirnhausen transform of g to be :

τ if (g) = τf (τ
(i−1)
f (g))

Now let f = gd + cf (g)g
d−1 +

d−2
∑

i=0

cifg
i be the g-adic expansion of f as above, and suppose that cf (g) is

different from zero. Then deg(f − gd) = deg(cf (g)g
d−1) = deg(cf (g)) + (d− 1) deg(g), and so

deg(cf (g)) = deg(f − gd)− (d− 1) deg(g).

Proposition 4 Let the notation be as above, and let τf (g) = g + d−1cf (g) be the Tschirnhausen transform
of g with respect to f . Then deg(cf (τf (g))) < deg(cf (g)).
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Proof : Let n = deg(cf (g)) and h = τf (g) = g + d−1cf (g), then hd = gd + cf (g)g
d−1 + r, where r =

d
∑

i=2

Cidcf (g)
igd−i, and Cid represents the number of all i-combinations of d-elements. Now for all 2 ≤ i ≤ d

write i = j + 2, 0 ≤ j ≤ d− 2 then :

deg((cf (g))
igd−i) = i · n+ (d− i) deg(g) = (j + 2)n+ (d− 2− j) deg(g)

= 2n+ (d− 2) deg(g) + j(n− deg(g))

but n < deg(g), and so deg(cf (g)
igd−i) ≤ 2n + (d − 2) deg(g) < n + (d − 1) deg(g), hence deg(r) <

n+ (d− 1) deg(g).

We have f−hd = f−gd−cf (g)g
d−1−r =

d−2
∑

i=0

cifg
i−r, but

d−2
∑

i=0

cifg
i is the g-adic expansion of f−gd−cf (g)g

d−1

, hence :

deg(

d−2
∑

i=0

cifg
i) = deg(cd−2

f ) + (d− 2) deg(g) < (d− 1) deg(g) ≤ n+ (d− 1) deg(g)

Finally we got that deg(
d−2
∑

i=0

cifg
i) < n+ (d− 1) deg(g) and deg(r) < n+ (d− 1) deg(g), hence deg(f − hd) <

n+ (d− 1) deg(g). Since deg(cf (τf (g))) = deg(f − hd)− (d− 1) deg(h) and deg(g) = deg(h), then

deg(cf (τf (g))) < n = deg(cf (g)). �

Definition 4 Let f be a monic polynomial in R[Y ] of degree n, and let d be a divisor of n, a polynomial g
in R[Y ] of degree n

d is said to be a d-th Approximate root of f if deg(f − gd) < n − n
d . It is denoted by

Appd(f).

Proposition 5 Let f be a monic polynomial of degree n in R[Y ], and let d be a divisor of n. A monic
polynomial g is an approximate root of f if and only if deg(g) = n

d and cf (g) = 0.

Proof : Suppose that g is an approximate root of f . We have deg(f) = n and deg(f − gd) < n − n
d < n,

then deg(gd) = deg(f) = n and so deg(g) = n
d . Since deg(g) divides deg(f), then by Lemma 3 the g-adic

expansion of f is of the form :

f = gd +

d−1
∑

i=0

c
(i)
f g

i, with 0 ≤ deg(cif ) < deg(g) ∀i = 1, ..., d− 1.

Since the g-adic expansion of a polynomial is unique and deg(c
(i)
f ) < deg(g) for all i = 1, ..., d − 1, then

d−1
∑

i=0

c
(i)
f g

i is the g-adic expansion of f−gd. If cd−1
f = cf (g) 6= 0, then deg(f−gd) = deg(cf (g))+(d−1)deg(g),

and so (d − 1)deg(g) ≤ deg(f − gd). But this is impossible because deg(f − gd) < n − n
d = (d − 1)deg(g),

hence cf (g) = 0.
Conversely suppose that deg(g) = n

d and cf (g) = 0, then the g-adic expansion of f is of the form

f = gd +

d−2
∑

i=0

cifg
d−i

and so
d−2
∑

i=0

cifg
d−i is the g-adic expansion of f − gd , then :

deg(f − gd) = deg(cd−2
f ) + (d− 2)deg(g) < (d− 1)deg(g) = (d− 1)

n

d
= n−

n

d

and so g is a d-th approximate root of f .�
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Proposition 6 Let f be a monic polynomial of degree n in R[Y ], and let d be a divisor of n. Then f admits

a d-th approximate root and this approximate root is unique. In particular Appd(f) = τ
n
d

f (g).

Proof : Let g be any monic polynomial in R[Y ] of degree n
d . By Proposition 4 we have deg(cf (τf (g))) <

deg(cf (g)), and so for all i ≥ 2 we get deg(cf (τ
i
f (g))) < deg(cf (τ

i−1
f (g))) < deg(g) = n

d . In particular if we

take i = n
d , then cf (τ

i
f (g)) = 0. But deg(τf (g)) = deg(g), then by Proposition 5 τ if (g) is an approximate root

of f .
For uniqueness, let g1 and g2 be two d-th approximate roots of f with deg(g1) = deg(g2) = n

d . We have
deg(f − gd1) < n− n

d and deg(f − gd2) < n− n
d , and so :

deg(gd1 − g
d
2) ≤ max{deg(f − g

d
1), deg(f − g

d
2)} < n−

n

d

But gd1 − g
d
2 = (g1 − g2)

∑

i+j=d−1

gi1g
j
2. If g1 6= g2, then :

deg(gd1 − g
d
2) = deg(g1 − g2) + deg(

∑

i+j=d−1

gi1g
j
2) ≥ deg(g

i
1g
j
2) = (i+ j)

n

d
= (d− 1)

n

d
= n−

n

d

which is a contradiction, and so g1 = g2, and the d-th approximate root of f is unique.�

Proposition 7 Let f be a polynomial of of degree n in R[y], and let d1 > ... > dh+1 be a set of divisors of
n. For all i ∈ {1, ..., h} set ei =

di
di+1

. Then for all i = 1, ..., h− 1 we have Appdi(f) = Appei(Appdi+1
(f)).

Proof : Let i ∈ {1, ..., h − 1}. Set gi = Appdi(f), gi+1 = Appdi+1
(f), and Gi = Appei(gi+1). Note that

degy(gi) =
n
di
, degy(gi+1) =

n
di+1

and degy(Gi) =
n
di

. Since Gi = Appei(gi+1) then the Gi-adic expansion of
gi+1 is of the form :

gi+1 = Geii + α2G
ei−2
i + . . .+ αei−1Gi + αei

Where αj ∈ R[y] for all j = 2, ..., ei such that degy(αj) <
n
di

. consider the gi+1-adic expansion of f

f = g
di+1

i+1 + β2g
di+1−2
i+1 + . . .+ βdi+1

Where βk ∈ R[y] for all k ∈ {2, ..., di+1} such that degy(βk) <
n

di+1
. Substituting the above value of gi+1 in

the equation of f , by an easy calculation we can prove that f = Gdii + ψ where ψ is a polynomial in R[y]

such that degy(ψ) < degy(G
di−1
i ) = (di − 1) ndi , and so the Gi-adic expansion of f is of the form

f = Gdii + γ2G
di−2
i + . . .+ γdi

With degy(γl) <
n
di

for all l ∈ {2, ..., di+1}. It follows that Gi+1 = Appdi(f) = gi.�
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2.2 Affine semigroups

This section aims to give some general results about affine semigroups. These results will be used constantly
in the next sections, since the semigroup associated with a free polynomial is an affine semigroup.

2.2.1 Free affine semigroups

Definition 5 A Semigroup is a set S equipped with an associative binary operation +, such that for every
x, y in S we have x+ y ∈ S.

A semigroup S is said to be finitely generated if there exists a finite number of elements v1, ..., ve in S such
that for every v ∈ S, we have v = λ1v1 + · · ·λeve with λ1, ..., λe ∈ N, in this case {v1, ..., ve} is said to be a
system of generators of S.

Definition 6 A semigroup S is said to be an Affine Semigroup if it is a finitely generated semigroup of
Ze for some e ∈ N∗.

Definition 7 A set C ⊂ Re is said to be a cone if ∀m ∈ C and λ ≥ 0 we have λ.m ∈ C.

If there exist some vectors v1, ..., vn in Re such that C = {λ1.v1 + ...+ λn.vn, λi ≥ 0, ∀ 1 ≤ i ≤ n}, then we
say that C is finitely generated. Furthermore if the generating set {v1, ..., vn} is a subset of Ze then the cone
is said to be rational. From now on all the considered cones are supposed to be rational finitley generated
cones.
Let v = (v1, ..., ve, ve+1, ..., ve+h) be a set of nonzero elements of Ze and let

Γ(v) = {

e+h
∑

i=1

aivi, ai ∈ N}, G(v) = {

e+h
∑

i=1

aivi, ai ∈ Z}

be the subsemigroup of Ne generated by v, and the subgroup of Ze generated by v respectively. Moreover,

for every 0 ≤ k ≤ h let Gk = {
e+k
∑

i=1

aivi, ai ∈ Z} be the subgroup of Ze generated by v1, ..., ve+k, Γk =

{
∑e+k

i=1 aivi, ai ∈ N} be the semigroup generated by v1, ..., ve+k, and cone(v1, ..., ve) the convex cone generated
by v1, ..., ve. More precisely

cone(v1, ..., ve) = {

e
∑

i=1

aivi, ai ∈ R+}

Assume that the dimension of cone(v1, ..., ve) is equal to e, i.e {v1, ..., ve} generates Re and that ve+1, ..., ve+h ∈
cone(v1, ..., ve).
Let D1 be the determinant of the matrix (vT1 , ..., v

T
e ), where vTi denotes the transpose of the vector vi, and

for all i = 2, ..., h+ 1, let Di be the gcd of the e× e minors of the matrix [vT1 , ..., v
T
e , v

T
e+1, ..., v

T
e+i−1]. For all

i = 1, ..., h set ei =
Di

Di+1
.

Definition 8 Let v1, ..., ve+h ∈ Ze and let S = Γ(v1, ..., ve, ve+1, ..., ve+h). Then S is said to be a free affine
semigroup if the following two conditions are satisfied :
(i) D1 > D2 > · · · > Dh+1, equivalent to saying that for all i = 1, ..., h, ve+i is not in the group generated
by v1, ..., ve, ve+1, ..., ve+i−1.
(ii) For each i = 1, ..., h we have eive+i ∈ Γ(v1, ..., ve+i−1).

2.2.2 Standard representation and the Frobenius vector.

Proposition 8 Let 0 ≤ k ≤ h and v ∈ Gk. There exist unique integers λ1, ..., λe, λe+1, ..., λe+k such that

v =

e+k
∑

i=1

λivi with 0 ≤ λe+i < ei for all i = 1, ..., k.
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Proof : Since v ∈ Gk, then v =
e+k
∑

i=1

civi where ci ∈ Z for all 1 ≤ i ≤ e + k. If k = 0, then the assertion is

clear. Assume that k ≥ 1, and that ce+k < 0. Write ce+k = pek + c̄e+k with 0 ≤ c̄e+k < ek, then

v =

e+k−1
∑

i=1

civi + (pek + c̄e+k)ve+k

Since ekve+k ∈ Gk−1 then so is for pekve+k and so we can write v as v =
e+k−1
∑

i=1

c̃ivi + c̄e+kve+k with

0 ≤ c̄e+k < ek, and c̃i ∈ Z for all 1 ≤ i ≤ e + k − 1. Now
e+k−1
∑

i=1

c̃ivi ∈ Gk−1, and so we get the result by

induction on k, hence the expression exists.

To prove the uniqueness, let v =

e+k
∑

i=1

aivi =

e+k
∑

i=1

bivi where 0 ≤ ae+i, be+i < ei for all i = 1, ..., k, and let α be

the greatest integer such that aα− bα 6= 0. Suppose that α = e+ j for some j ≥ 1, and also that aα− bα > 0,
then :

(ae+j − be+j)ve+j =

e
∑

i=1

(bi − ai)vi + (be+1 − ae+1)ve+1 + ...+ (be+j−1 − ae+j−1)ve+j−1 ∈ Gj−1

and 0 < aj − bj < ej , which contradicts the hypothesis. �

Definition 9 Let v be a vector in Gk, The standard representation of v is defined to be v =

e+k
∑

i=1

λivi with

0 ≤ λe+i < ei for all i = 1, ..., k.

Proposition 9 Let 0 ≤ k ≤ h, and consider a vector v ∈ Gk. Let

v =
e+k
∑

i=1

λivi

be its standard representation with respect to the vectors v1, ..., ve+k. The vector v ∈ Γk if and only if λi ≥ 0
for all i = 1, ..., e.

Proof : If λi ≥ 0 for all i = 1, ..., e, then obviously v ∈ Γ(v1, ..., ve+k). Conversely suppose that v ∈

Γ(v1, ..., ve+k), then v =

e+k
∑

i=1

aivi where ai ≥ 0 for all 1 ≤ i ≤ e+ k. If 0 ≤ ae+i < ei for all i = 1, ..., k, then it

is over. Otherwise, take j such that ae+j ≥ ej and 0 ≤ ae+i < ei for all i > j. Write ae+j as ae+j = mej + bj ,

where m ∈ N∗ and 0 ≤ bj ≤ ej . But ejve+j ∈ Γ(v1, ..., ve+j−1), and so ejve+j =

e+j−1
∑

i=1

civi, where ci ≥ 0 for

all 1 ≤ i ≤ e+ j − 1. Hence :

v =

e+j−1
∑

i=1

aivi + (mej + bj)ve+j +
k

∑

i=e+j+1

aivi

=

e+j−1
∑

i=1

(ai +mci)vi + bjve+j +
k

∑

i=e+j+1

aivi

Proceeding like this we can construct the standard representation of v, with v =
e+k
∑

i=1

αivi, and αi ≥ 0 for all

i = 1, ..., e.�
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Definition 10 Let v = (v1, ..., ve+h) be a set of non-zero vectors of Ze, and let the notation be as above. Let
C be the topological interior of cone (v1, ..., ve), i.e C = {λivi, λi ∈ R∗

+ ∀1 ≤ i ≤ e}. The Frobenius vector
of v is defined to be an element w ∈ cone (v1, ..., ve) such that w /∈ Γ(v), and for all v ∈ w + (C − {0}) we
have :

v ∈ G(v) =⇒ v ∈ Γ(v)

Theorem 1 Let the notation be as above with v = (v1, ..., ve+h), and C the interior of cone(v1, ..., ve). The
frobenius vector of v is equal to :

F (v) =
h
∑

k=1

(ek − 1)ve+k −
e

∑

i=1

vi

Proof : It is clear that
∑h

k=1(ek − 1)ve+k −
∑e

i=1 vi is a standard representation, but the coefficients of
v1, ..., ve are negative. By Proposition 9 we get that F (v) /∈ Γ(v).

Now let u ∈ C − {0}, and consider the vector v = F (v) + u. Assume that v ∈ G(v), and let v =
e+h
∑

k=1

αkvk be

the standard representation of v with 0 ≤ αe+k < ek for all k = 1, ..., h. We have :

v = F (v) + u =⇒
h
∑

k=1

(ek − 1− αe+k)ve+k + u = (α1 + 1)v1 + ...+ (αe + 1)ve

and since
h
∑

k=1

(ek−1−αe+k)ve+k+u ∈ C, then αk+1 > 0 for all k = 1, ..., e, and so αk ≥ 0 for all k = 1, ..., e.

By Proposition 9 we obtain v = F (v) + u ∈ Γ(v).�
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2.3 Quasi-Ordinary Polynomials

In this section we recall the notion of a quasi-ordinary polynomial and how to associate a semigroup to such
a polynomial.

2.3.1 Abhyankar-Jung theorem

Definition 11 Let f = anx
n + ...+ a1x+ a0 and g = bmx

m + ...+ b1x+ b0 be two polynomials of degree n
and m, respectively, in R[x], where R is an arbitrary ring. The resultant of f and g, denoted by R(f, g) is
defined to be the determinant of the (m+ n)× (m+ n) matrix given by :





























an an−1 · · · · · · a1 a0 0 · · · · · · 0
0 an an−1 · · · · · · a1 a0 0 · · · 0
...

...
0 · · · 0 an · · · · · · · · · · · · a1 a0
bm bm−1 · · · b1 b0 0 · · · · · · · · · 0
0 bm · · · b1 b0 0 · · · · · · 0
...

...
...

0 · · · 0 bm bm−1 · · · b1 b0





























where from the second row up to row m we shift the coefficients an, ..., a0 of f one step to the right and zero
elsewhere, and we do the same for bm, ..., b0 the coefficients of g from row m+ 2 up to row m+ n.

Proposition 10 Let K be an arbitrary field. Let f = anx
n + ...+ a1x+ a0 and g = bmx

m + ...+ b1x+ b0 be
polynomials in K[x] of degrees n and m, respectively. The resultant of f and g is given by :

R(f, g) = amn b
n
m

n
∏

i=1

m
∏

i=1

(yi − zj)

where y1, ..., yn are the roots of f , and z1, ..., zm are the roots of g in some extension field K̄ of K.

Definition 12 Let f = anx
n + ... + a1x + a0 be a polynomial of degree n in K[x], and let y1, ..., yn be its

roots in some extension field of K. The discriminant of f is defined to be :

∆(f) = a2n−2
n

∏

1≤i<j≤n

(yi − yj)
2

Note that we can also define the discriminant of f using the resultant of f and fx, where fx is the derivative
of f with respect to x, more precisely we can prove that :

∆(f) = (−1)
n(n−1)

2 · a−1
n R(f, fx).

Let K be an algebraically closed field of characteristic 0, and let K[[x1, ..., xe]] be the ring of formal power
series in x1, ..., xe. For simplicity we write xα Instead of xα1

1 · · ·x
αe
e , where α = (α1, ..., αe) ∈ Ne.

Similarly for each n ∈ N∗ we can define a ring of formal power series over K with fractional exponents denoted

by K[[x
1
n

1 , ..., x
1
n
e ]]. For simplicity we write K[[x

1
n ]] instead of K[[x

1
n

1 , ..., x
1
n
e ]] and K[[x]] instead of K[[x1, ..., xe]].

Note that an element in K[[x
1
n ]] is of the form y(x) =

∑

m∈Ne

cmx
m
n , where cm ∈ K and x

m
n = x

m1
n

1 ...x
me
n
e ,

where m = (m1, ...,me) ∈ Ne.

Definition 13 Let f = yn + a1(x)y
n−1 + · · · + an−1(x)y + an(x) be a monic polynomial in K[[x]][y], and

suppose that ai(0) = 0 for all i = 1, ..., n(such a polynomial is called a Weierstrass polynomial). Then f is
said to be a quasi-ordinary polynomial if its discriminant in y, ∆y(f) is of the form xN1

1 · · ·x
Ne
e u(x1, ..., xe),

where N1, ..., Ne ∈ N and u(x) is a unit in K[[x]], i.e u(x) = c + v(x) for some formal power series v(x)
satisfying v(0) = 0, and a constant c 6= 0.
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Theorem 2 Abhyankar-Jung Theorem Let f(x, y) be a quasi-ordinary polynomial in K[[x]][y]. There

exists a formal power series y(x
1
n

1 , ..., x
1
n
e ) in K[[x

1
n

1 , ..., x
1
n
e ]] such that f(x, y(x

1
n

1 , ..., x
1
n
e )) = 0 for some n ∈ N.

Furthermore if f is an irreducible polynomial of degree n, we have :

f(xn1 , ..., x
n
e , y) =

n
∏

i=1

(y − y(wi1x1, ..., w
i
exe))

where (wi1, ..., w
i
e)1≤i≤n are distinct elements of (Un)

e, where Un is the set of n-th roots of unity in K.

Definition 14 Let y(x) =
∑

p∈Ne

cpx
p

n ∈ K[[x
1
n ]], for some integer n. We define the support of y, denoted

Supp(y), to be the set Supp(y) = {p ∈ Ne, cp 6= 0}.

Note that if f is a polynomial in K[[x]][y] that admits a root y(x) =
∑

p∈Ne

cpx
p

n ∈ K[[x
1
n ]], then for every

w1, ..., we ∈ Un, Supp(y(w
i
1x1, ..., w

i
exe)) = Supp(y). We define the support of f to be Supp(f) = Supp(y)

for some root y of f .
Given a = (a1, ..., ae), b = (b1, ..., be) ∈ Ne, we say that a ≤ b (respectively a < b) coordinate-wise if ai ≤ bi
(respectively ai < bi) for all 1 ≤ i ≤ n.

2.3.2 Characteristic monomials of a quasi-ordinary polynomial

Proposition 11 Let f be an irreducible quasi-ordinary polynomial of degree n, and let {yi}1≤i≤n be the set

of roots of f . For all i 6= j we have yi − yj = Mijεij for some monomial Mij ∈ K[[x
1
n ]] and a unit εij in

K[[x]].

Proof : Let ∆(f) be the discriminant of f , then :

∆(f) =
∏

i 6=j

(yi − yj) =M.h

where M = x
m1
n

1 ...x
me
n
e and h is unit in K[[x

1
n ]], i.e h(0) 6= 0. Since K[[x

1
n ]] is a unique factorization domain,

and x
1
n

1 , ..., x
1
n
e are irreducible elements in K[[x

1
n ]] then for each 1 ≤ i, j ≤ n with i 6= j we have yi − yj =

x
α1
n

1 ...x
αe
n
e εij =Mijεij , where 0 ≤ αk ≤ mk are positive integers for all 1 ≤ k ≤ e that depends on yi and yj ,

and εij a unit in K[[x
1
n ]].�

Definition 15 Let the notation be as above with f a quasi-ordinary polynomial and {Mij}i 6=j the set of

monomials such that yi − yj =Mijεij for some εij unit in K[[x
1
n ]]. The set {Mij}i 6=j is said to be the set of

characteristic monomials of f .

Moreover, let y = y1 be one of the roots of f , and let Mij be one of the characteristic monomials of f . There
exists some conjugate yk of y such that y − yk =Mij .

Definition 16 Let f be a quasi-ordinary polynomial in K[[x]][y], and let y(x) ∈ K[[x
1
n ]] be a root of f . The

element y is said to be a quasi-ordinary branch. We define the set of characteristic monomials of y to be the
set of characteristic monomials of f .

Note that if a quasi-ordinary branch y ∈ K[[x]], then it has no characteristic monomials. If y ∈ K[[x
1
n ]]

for some n > 1 and z is a conjugate of y, then they both define the same set of characteristic monomials

{M1 = x
m1
n , ...,Mh = x

mh
n } with h ∈ N. The set {m1, ...,mh} ⊂ Ne is called the set of characteristic

exponents of y.

Proposition 12 Let f be an irreducible quasi-ordinary polynomial of degree n in K[[x]][y] with a root y ∈

K[[x
1
n ]]. The set of characteristic exponents of f is ordered with respect to the componentwise order.
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Proof : Let m1,m2 be two characteristic exponents of f , and let M1 = x
m1
n ,M2 = x

m2
n be the associated

characteristic monomials, then there exists yi, yj two conjugates of y in K[[x
1
n ]] such that y − yi = M1ε1

and y − yj = M2ε2 for some ε1, ε2 units in K[[x
1
n ]], and so yi − yj = (y − yj) − (y − yi) = M2ε2 −M1ε1.

By definition there exists a characteristic monomial Mij such that yi − yj = Mijεij with εij is a unit in

K[[x
1
n ]], and we get that M2ε2−M1ε1 =Mijεij , hence M2 divides M1 or M1 divides M2, and so m1 < m2 or

m2 < m1 component-wise. We finally conclude that the set of characteristic exponents of y can be arranged
as m1 < · · · < mh component-wise.�

Remark 1 Let f = yn + a1(x)y
n−1 + · · · + a1(x)y + a0(x) be a quasi-ordinary polynomial in K[[x]][y]. We

have :

f(0, y) =
n
∏

i=1

(y − yi(0)) = yn

Hence yi(0) = 0, and so the conjugate yi is a non unit in k[[x
1
n ]] for all 1 ≤ i ≤ n.

Conversely if y is a non-unit in K[[x
1
n ]], and for every yi conjugate of y we have y − yi = Miεi for some

monomial Mi ∈ K[[x
1
n ]] and some unit εi, then for all 1 ≤ j, k ≤ n we will have yj − yk = Mjkεjk for some

Mjk monomial and εjk unit in K[[x
1
n ]]. Take f =

∏

i(y − yi), then

∆(f) =
∏

j 6=k

(yj − yk) =
∏

j 6=k

Mjk

∏

j 6=k

εjk =M.ε

where M is a monomial and ε is a unit, and so f is a quasi-ordinary polynomial.

From now on L denotes the fraction field of K[[x]], and Ln = L(x
1
n

1 , ..., x
1
n
e ). It is well known that Ln is a

Galois extension of L.

Proposition 13 Let f be an irreducible quasi-ordinary polynomial in K[[x]][y], and let y be one of its roots in

K[[x
1
n ]] with characteristic monomials {M1, ...,Mh}. The field extensions L(y) and L(M1, ...,Mh) coincide.

Proof : Any automorphism of Ln over L that fixes y fixes all the monomials of y. In particular it fixes the
characteristic monomials of y since they appear as terms in y, and so L(M1, ...,Mh) ⊂ L(y). On the other
hand if an automorphism θ of Ln over L fixes all the characteristic monomials of y, then θ(y) = y. Indeed if
θ(y) − y 6= 0, then θ(y) − y = x

m
n .unit for some m ∈ Ne, hence x

m
n is a characteristic monomial of y with

θ(x
m
n ) 6= x

m
n which contradicts our hypothesis. Hence L(y) = L(M1, ...,Mh).�

Lemma 4 Let L be a field, and let α be an algebraic element over L. Then L(α) = L[α].

Proof : Since L[α] ⊆ L(α) and L(α) is the smallest field containing α and L, it is enough to prove that L[α]
is a field in order to deduce the equality.
Let f be the minimal polynomial of α over L, and suppose that deg(f) = n. Consider any nonzero poly-
nomial g ∈ L[x] with deg(g) < n. Since f is irreducible in L[x], then f and g are coprime, and so there
exists h1(x), h2(x) ∈ L[x] such that h1(x)f(x) + h2(x)g(x) = 1, hence h2(α)g(α) = 1, and so g(α) has a
multiplicative inverse in L[α]. If deg(g) > n, then dividing g by f we get g = f.q + r for some q, r ∈ L[x]
with deg(r) < n. Obviously g(α) = r(α), hence g(α) admits a multiplicative inverse in L[α], and so L[α] is
a field. We finally get L[α] = L(α). �
More generally, let α1, ..., αh be algebraic elements over L. By Lemma 4 we have L(α1) = L[α1]. Suppose
that L(α1, ..., αi) = L[α1, ..., αi] with i < h, then L(α1, ..., αi+1) = L(α1, ..., αi)(αi+1) = L(α1, ..., αi)[αi+1] =
L[α1, ..., αi][αi+1] = L[α1, ..., αi+1], and so L(α1, ..., αh) = L[α1, ..., αh].

Proposition 14 Let f be an irreducible quasi-ordinary polynomial with a root y(x) as above, and a sequence
of characteristic exponents m1, ...,mh in Supp(f) such that m1 < m2 < · · · < mh coordinatewise. We have :

(i) If m ∈ Supp(f), then m ∈ (nZ)e +

h
∑

i=1

miZ.

(ii) mi /∈ (nZ)e +
∑

j<imjZ for all i = 1, ..., h.
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Proof : Let M = x
m
n be a monomial of y with m ∈ Ze, where y ∈ K[[x

1
n ]] is a root of f , then M ∈ L(y),

but L(y) = L(M1, ...,Mh) = L[M1, ...,Mh]. Hence M = g(M1, ...,Mh) for some g = f1
g1
M

α1
1

1 ...M
α1
h

h + · · · +

fl
gl
M

αl
1

1 ...M
αl
h

h , with f1, ..., fl, g1, ..., gl ∈ K[[x]] and l ∈ N∗, and so :

g1...glM = f1g2...glM
α1
1

1 ...M
α1
h

h + · · ·+ flg1...gl−1M
αl
1

1 ...M
αl
h

h

Comparing both sides we can easily see that M = x
m
n = xa11 · · ·x

ae
e M

p1
1 · · ·M

ph
h for some a1, ..., ae, p1, ..., ph ∈

Z, hence m
n ∈ Ze +

h
∑

i=1

mi

n
Z, and obviously m ∈ (nZ)e +

h
∑

i=1

miZ.

Now for the second part of the proposition, consider the characteristic monomial Mi = x
mi
n of y, then by

definition there exists an automorphism θ of Ln over L such that y−θ(y) =Miεi with εi unit in K[[x
1
n ]]. Hence

θ(Mj) =Mj for all j = 1, ..., i− 1. On the other hand θ(Mi) 6=Mi, thus Mi does not lie in L(M1, ...,Mi−1),
hence mi /∈ (nZ)e +

∑

j<imjZ. �

Remark 2 In general let Mi = x
mi
n with i = 1, ..., t be a set of monomials with fractional exponents, and t ≤

h. Let M = x
m
n be an arbitrary monomial. Then x

m
n lies in L(M1, ...,Mt) if and only if m ∈ (nZ)e+

t
∑

i=1

miZ.

Let glex be the well-ordering on Ne defined as follows : α <glex β if and only if |α| =
e

∑

i=1

αi < |β| =

e
∑

i=1

βi

or |α| = |β| and α <lex β(where lex denotes the lexicographical order).

Definition 17 Let u =
∑

p

cpx
p in K[[x]] be a non-zero formal power series. Let u = ud + ud+1 + ... be the

decomposition of u into a sum of homogeneous components. We define the initial form of u to be In(u) = ud.

We set Ox(u) = d ; this quantity is called the x-order of u. We denote by expglex(u) the smallest exponent of
u with respect to glex. We denote by incoglex(u) the coefficient cexpglex , and we call it the initial coefficient

of u. We finally set Mglex(u) = incoglex(u)x
expglex(u), and we call it the initial monomial of u.

Remark 3 Let u(x) be a non-zero formal power series. Let ≺ be another well-ordering of Ne. Define the
leading exponent of u to be the leading exponent of In(u) with respect to ≺. In this way we get a different
notion of leading exponent (resp. initial coefficient, resp. initial monomial) of u.

Let g be a non-zero element of R[Y ]. The order of g with respect to f , denoted by Oglex(f, g), is defined to
be expglex(g(x

n
1 , ..., x

n
e , y(x)). Note that it is independent of the choice of the root y(x) of f(xn1 , ..., x

n
e , y) =

0. Indeed if y′ is another root of f , then there exists some automorphism θ such that θ(y) = y′. Hence
g(xn, y′(x)) = g(xn, θ(y(x))) = θ(g(xn, y(x))), and so g(xn, y′(x)) and g(xn, y(x)) have the same support.

Definition 18 The semigroup of f , denoted by Γ(f), is the subsemigroup of Ze defined by :

Γ(f) = { Oglex(f, g)| g ∈ K[[x]][y], g /∈ (f) }.

Proposition 15 Let n ∈ N∗ and let Y (x) =
∑

p

cpx
p

n ∈ K[[x
1
n ]], and suppose that there exists a finite

sequence of elements m1, ...,mh, of Supp(Y (x)) such that the following holds :
(i) m1 < m2 < ... < mh componentwise.

(ii) If p ∈ Supp(Y (x)), then p ∈ (nZ)e +

h
∑

i=1

miZ.

(iii) mi /∈ (nZ)e +
∑

j<i

mjZ for all i = 1, ..., h.

(iv) If p ∈ Supp(Y ) such that p ∈ Ze +

j
∑

i=1

miZ and p /∈ Ze +

j−1
∑

i=1

miZ for some j ∈ {1, ..., h} then mj ≤ p

coordinate wise.
Then Y (x) is a quasi-ordinary branch.



28 CHAPITRE 2. FREE POLYNOMIALS

Proof : For each i = 1, ..., h define the set Gi = Mi\Mi−1 and G0 = (nZ)e ∩ Supp(Y ), and define for each

i = 0, ..., h the power series Hi =
∑

m∈Gi

cmx
m
n , then Y (x) can be written as Y (x) = H0 +H1 + ... +Hh. If

m ∈ Gi, then m ∈ (nZ)e +
i

∑

j=1

mjZ and m /∈ (nZ)e +
i−1
∑

j=1

mjZ, hence by condition (iv) mi ≤ m, and so Hi

can be written as Hi = Miεi with Mi = x
mi
n and εi(0) 6= 0. Note that an automorphism θ of Ln over L

fixes H0, ..., Hi if and only if it fixes the monomials M1, ...,Mi. In fact if θ fixes Hj then it will obviously fix
all monomials M of Hj , in particular it fixes Mj . On the other hand suppose that θ fixes all the monomials
M1, ...,Mi and let M = x

m
n be a monomial of Hj for some 1 ≤ j ≤ i, then m ∈ Gj , and it follows from

Remark 2 that M ∈ L(M1, ...,Mj) but θ fixes M1, ...,Mj then it will fix M , hence Hj is fixed by θ. Now if θ
is an automorphism that does not fix y = H0+ ...+Hh, then θ does not fix all H1, ..., Hh, and so there exists
some i ≥ 0 such that θ fixes H0, ..., Hi and does not fix Hi+1, hence Y − θ(Y ) = Mi+1ε where εi(0) 6= 0. It
follows from Remark 1 that Y is a quasi-ordinary branch. �

2.3.3 Field extensions.

Lemma 5 Let m1, ...,me,m be (e + 1) vectors in Ze, and let D be the determinant of the matrix M =
(mt

1, ...,m
t
e) and Di be the determinant of the matrix Mi = (mt

1, ...,m
t
i−1,m

t,mt
i+1, ...,m

t
e) for all i ∈

{1, ..., e}. Then m can be written as m = x1m1 + ... + xeme for some x1, ..., xe ∈ Z if and only if D
divides Di for all 1 ≤ i ≤ e.

Proof : Let Xi be the matrix obtained by replacing the i − th column of the identity (e × e) matrix Ie by
the vector xt where x = (x1, ..., xe), then we will have M · Xi = Mi. Calculating the determinants we get
Det(M) · Det(Xi) = Det(Mi), but the determinant of Xi is obviously xi, hence D · xi = Di, and so the
equation m = x1m1 + ... + xeme admits a solution if and only if D 6= 0, and the obtained solution will be
xi =

Di

D for all 1 ≤ i ≤ e. In particular xi ∈ Z if and only if D divides Di for all 1 ≤ i ≤ e.�

Lemma 6 Let M be a subgroup of (nZ)e generated by the elements (B1, ..., Be). Consider another system
of generators {v1, ..., ve} of M . Then Det(Bt

1, ..., B
t
e) = Det(vt1, ..., v

t
e).

Proof : Consider the two matrices V = (vt1, ..., v
t
e) and B = (Bt

1, ..., B
t
e). For each of the e columns Bt

i of
B, there exists a vector x ∈ Ze such that Bt

i = V · x, so there exists an (e × e) integer matrix U such that
B = V ·U . Similarly, there exists an (e×e) integer matrix U ′ such that V = B·U ′, hence B = V ·U = B(U ′·U),
and so BTB = (U ′U)TBTB(U ′U) where BT is the transpose of B.
Taking determinants, we get that Det(BTB) = (Det(U ′U))2Det(BTB), and so Det(U ′U)2 = 1. Since U
and U ′ are integer matrices, then Det(U ′U) = Det(U ′)Det(U) = ±1, and so Det(U) = ±1. It follows that
Det(B) = Det(V )Det(U) = Det(V ).�

We start with a technical Lemma :

Lemma 7 Consider M0 = (nZ)e with its canonical basis A1, ..., Ae, let Ae+1 ∈ Ze be an arbitrary vector,
and consider the group M1 = (nZ)e +Ae+1Z. Then M1 is a free group of rank e. Let D1 be the GCD of the
(e × e) minors of the matrix A = (A1, ..., Ae, Ae+1), denoted by GCDM(A1, ..., Ae, Ae+1) or GCDM(A),
and let D be the absolute value of the determinant of the matrix (v1, ..., ve), where v1, ..., ve is a basis of M1.
Then D = D1.

Proof : We have (nZ)e ⊆ M1 ⊆ Ze, but Ze and (nZ)e are free abelian groups of rank e, then M1 is a free
abelian group of rank e. It is well known that a basis for M1 is obtained by applying the following elementary
operations on the columns of the matrix A :
(i) Ai ← Ai + kAj , adding a multiple of a column to another column.
(ii) Ai ↔ Aj , interchanging two columns.
Each operation of the above will not affect the GCD of the minors of the obtained matrix, so at the end of
the procedure we will obtain a matrix C = (B1, ..., Be, 0) where B1, ..., Be is a basis of M1 and GCDM(A) =
GCDM(C) = Det(B1, ..., Be), which is equal to D by Lemma 6.�
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Definition 19 Let f be a quasi-ordinary polynomial, and m1, ...,me be its set of characteristic exponents.
Let m0 = (m1

0, ...,m
e
0) be the canonical basis of (nZe), and Ie the unit e × e matrix. The D−sequence of f ,

D1, ..., Dh+1, is defined to be the set of integers : D1 = ne, and Di+1 the gcd of the e×e minors of the matrix
(nIe,m

T
1 , ...,m

T
i ).

Proposition 16 Let Mi = (nZ)e+
i

∑

j=1

mjZ, and consider a nonzero vector v in Ze. Let D̃ be the gcd of the

e× e minors of the matrix (nIe,m
T
1 , ...,m

T
i , v

T ). We have the following :
(i) v ∈Mi if and only if D̃ = Di+1.

(ii) Di+1

D̃
.v ∈Mi and if Di+1 > D̃ then for all 1 ≤ k < Di+1

D̃
, k.v /∈Mi.

Proof : Let v1, ..., ve be a basis of Mi, then obviously :

v ∈Mi if and only if v = α1v1 + ...+ αeve, where αi ∈ Z ∀ i = 1, ..., e.

Now let D′
1, (D

′
2, ..., D

′
e) be the determinant of the matrix (v, v2, ..., ve)((v1, v, ..., ve), ..., (v1, ..., ve−1, v)) res-

pectively, and D the determinant of the matrix (v1, ..., ve). It follows from Lemma 7 that D = Di+1, and
that D̃ is equal to the GCD of the minors of the matrix (v1, ..., ve, v).
By Proposition 5 we have : v = α1v1 + ...+ αeve if and only if D divides D′

k for all 1 ≤ k ≤ e, if and only if
Di+1 divides D′

k for all 1 ≤ k ≤ e which is equivalent to say D̃ = GCD(Di+1, D
′
1, ..., D

′
e) = Di+1.

Concerning part (ii), let 1 ≤ k ≤ Di+1

D̃
, and consider the vector k.v. Let A be the matrix (v1, ..., ve, (k.v)).

The determinant of the minors of this matrix are clearly k.D′
1, ..., k.D

′
e, Di+1.Let D̄ to be the GCD of the

minors of the matrix A. If k = Di+1

D̃
, then :

D̄ = GCD(Di+1
D′

1

D̃
, ..., Di+1

D′
e

D̃
,Di+1) = Di+1GCD(

D′
1

D̃
, ...,

D′
e

D̃
, 1) = Di+1

and so we can conclude that k.v ∈Mi from the first part. Now suppose that Di+1 > D̃, and let 1 ≤ k < Di+1

D̃
.

If k.v ∈Mi, then from part (i) we can conclude that D̄ = Di+1, then Di+1 divides kD′
1, ..., kD

′
e, Di+1, hence it

divides k.D′
1, ..., k.D

′
e, k.Di+1 and consequently dividesGCD(kD′

1, ..., kD
′
e, kDi+1) butGCD(kD′

1, ..., kD
′
e, kDi+1) =

k.GCD(D′
1, ..., D

′
e, Di+1) = k.D̃, which is a contradiction since k.D̃ < Di+1 by assumption.�

Now define the sequence (ei)1≤i≤h to be ei =
Di

Di+1
for all 1 ≤ i ≤ h, which is called the e−sequence associated

with f . Let M0 = (nZ)e and Mi = (nZ)e+

i
∑

j=1

mjZ for all 1 ≤ i ≤ h, where m1, ...,mh are the characteristic

monomials of f , then M0 ⊂M1 ⊂ · · · ⊂Mh ⊂ Ze are free abelian subgroups of rank e for all 1 ≤ i ≤ h.

Remark 4 We have mi+1 /∈ Mi, then by Proposition 16 we deduce that Di+2 > Di+1, ei+1mi+1 ∈ Mi, and
kmi+1 /∈Mi for all 1 ≤ k < ei+1.

Let F0 = K((x)) and let Fk = Fk−1(x
mk
n ) for all k = 1, ..., h. Obviously we have

F0 ⊂ F1 ⊂ ... ⊂ F0(x
m1
n , ..., x

mh
n ) = Fh.

Lemma 8 For all i = 1, ..., k the minimal polynomial of x
mk
n over Fk−1 is equal to hk = yek − xek

mk
n .

Proof : The polynomial hk belongs to Fk−1[y], since ekmk ∈ (nZ)e+m1Z+· · ·mk−1Z. obviously hk(x
mk
n ) = 0.

Suppose to the contrary that hk is not the minimal polynomial of x
mk
n . Then there exists some monic

polynomial f ∈ Fk−1[y] of degree α < ek such that f(x
mk
n ) = 0. Write f = yα + aα−1y

α−1 + · · ·+ a0 where

ai ∈ Fk−1 for all i = 0, ..., α− 1. We have f(x
mk
n ) = 0, and so :

xα
mk
n + aα−1x

(α−1)
mk
n + · · ·+ a1x

mk
n + a0 = 0

Hence there exists some i ∈ {0, ..., α − 1} such that one of the monomials of aix
i
mk
n is equal to xα

mk
n . Let

x
a
n be such monomial. Then a = b + imk for some b ∈ Ze +

∑k−1
j=1 mjZ, and so αmk = b + imk, hence

(α− i)mk = b ∈ Ze +
∑k−1

j=1 mjZ. But 0 < α− i < ei, which is a contradiction.�
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Proposition 17 Let the notation be as above. We have the following :
(i) For all k = 1, ..., h, Fk is an algebraic extension of degree ek of Fk−1.
(ii) For all k = 1, ..., h, Fk is an algebraic extension of degree ek.ek−1...e1 of F0.
(iii) n = degy(f) = e1...eh = D1

Dh+1
= ne

Dh+1
. In particular Dh+1 = ne−1.

Proof : (i) By Lemma 8 we have that for all 1 ≤ k ≤ h, the polynomial hk = yek − xek
mk
n is the minimal

polynomial of x
mk
n over Fk−1, which is a polynomial of degree ek. Hence Fk is an algebraic extension of

degree ek of Fk−1.
(ii) It follows from part (i) that Fk is an algebraic extension of Fk−1 of degree ek for all 1 ≤ k ≤ h , and so
Fk is an algebraic extension of F0 of degree ek...e1.
(iii) By Proposition 13, we have Fh = F0(y), but [F0(y);F0] = deg(f) = n, then [Fh, F0] = n. By part (ii) we
have that Fh is an algebraic extension of degree eh...e1 of F0, and so n = degy(f) = e1...eh = D1

D2
· · · Dh

Dh+1
=

D1
Dh+1

= ne

Dh+1
. It follows that Dh+1 = ne−1.�

2.3.4 Semi-roots and approximate roots of a quasi-ordinary polynomial.

Let f, g be two non zero polynomials, of degrees n,m respectively, in K[[x]][y] such that f.g is a quasi-
ordinary polynomial. Then ∆y(f.g) = xλ.ǫ for some ǫ unit in K[[x]]. It follows that f and g are quasi ordinary
polynomials. Let {yi}i=1,...,n and {zj}j=1,...,m be the roots of f and g respectively. Then by Proposition 11
for all i = 1, ..., n and j = 1, ...,m we have yi − zj = xλijεij where εij is a unit. Moreover the exponents λij
are ordered with respect to the component-wise order. In this case we say that f and g are comparable. This
leads to the following definition.

Definition 20 Let f and g be two comparable polynomials with {λij}
j=1,...,m
i=1,...,n as above. The order of coinci-

dence of f and g is defined to be the largest element λij where i ∈ {1, ..., n} and j ∈ {1, ...,m} with respect
to the component-wise order.

We define the sequence (d1, d2, ..., dh+1) by di =
Di

Dh+1
, in particular d1 = n and dh+1 = 1. This sequence is

called the d−sequence associated with f . Let (r10, ..., r
e
0) = (m1

0, ...,m
e
0) be the canonical basis of (nZ)e and

define the sequence (rk)1≤k≤h by r1 = m1 and :

rk+1 = ekrk +mk+1 −mk

For all 1 ≤ k ≤ h− 1. We call (r10, ..., r
e
0, r1, ..., rh) the r−sequence associated with f .

Remark 5 Each of the sequences (mk)1≤k≤h and (rk)1≤k≤h determines the other. More precisely m1 = r1

and rkdk = m1d1 +

k
∑

j=2

(mj − mj−1)dj(resp mk = rk −

k−1
∑

j=1

(ej − 1)rj) for all 2 ≤ k ≤ h. Hence we have

Mk = (nZ)e +
k

∑

j=1

mjZ = (nZ)e +
k

∑

j=1

rjZ and ekrk ∈ (nZ)e +
k−1
∑

j=1

rjZ for all k = 1, ..., h.

Definition 21 Let y be a quasi-ordinary branch, and let (r10, ..., r
e
0, r1, ..., rh) be the r-sequence associated to

y. The semigroup of y is defined to be (nN)e +

h
∑

i=1

riN, and denoted by Γy.

From now on we denote by Γ0 = (nN)e and Γj = (nN)e +

j
∑

i=1

riN for all j = 1, ..., h.

Lemma 9 Let the notation be as above. Then we have the following :
(1) eiri < ri+1 for all i = 1, ..., h− 1(where < means ≤ component wise but not equal).
(2) For all i ∈ {1, ..., h}. If u ∈Mj ∩ Ne, then u+ ejrj ∈ Γj.
(3) ei+1ri+1 ∈ Γi for all i = 1, ..., h− 1, that is Γy is a free affine semigroup.



2.3. QUASI-ORDINARY POLYNOMIALS 31

Proof : (1) We have rj+1 = ejrj + (mj+1 −mj). Then

ej+1rj+1 − ejrj = ej+1ejrj + ej+1(mj+1 −mj)− ejrj

= ej(ej+1 − 1)rj + ej+1(mj+1 −mj)

> (ej+1 − 1)(ejrj +mj+1 −mj)

= (ej+1 − 1)rj+1

It follows that ejrj < rj+1.
(2) For i = 1, it is obvious. Suppose that it is true up to j − 1 and let u ∈Mj ∩ Ne. Then u can be written
in a unique way as u = αrj + u′ with 0 ≤ α < ej and u′ ∈ Mj−1. Let v = u′ + ejrj − ej−1rj−1. since
ejrj ∈ Mj−1, then v ∈ Mj−1. On the other hand ejrj − ej−1rj−1 > (ej − 1)rj ≥ αrj component wise, and
so ejrj − ej−1rj−1 = αrj + ω for some ω ∈ Ne, then v = u′ + ejrj − ej−1rj−1 = u′ + αrj + ω = u+ ω ∈ Ne,
hence v ∈ Mj−1 ∩ Ne, then by the induction hypothesis v + ej−1rj−1 = u′ + ejrj ∈ Γj−1. But u + ejrj =
αrj + (u′ + ejrj), and so it belongs to Γj .
(3) For all i = 1, ..., h − 1 we have ei+1ri+1 = ei+1eiri + ei+1(mi+1 − mi). But mi+1 − mi ∈ Ne since
mi ≤ mi+1 coordinate wise, and ei+1mi+1 ∈Mi, then ei+1(mi+1 −mi) ∈Mi ∩N

e. Hence by part (2) we get
eiri + ei+1(mi+1 −mi) ∈ Γi, whence ei+1ri+1 ∈ Γi.�
Let d1, ..., dh+1 be the d sequence associated to y. Note that for all i = 1, ..., h we have ei =

di
di+1

, and so

di = di+1ei = ... = dh+1eh...ei = ei...eh. Hence n
di

= e1...eh
ei...eh

= e1...ei−1.

Definition 22 Let the notation be as above, and let i ∈ {1, ..., h}. A polynomial g ∈ K[[x]][y] is said to be
an i− th semi-root of f if degy(g) =

n
di

and g(xn, y) = xriε for some ε unit in K[[x]].

Remark 6 Let σ = 〈a1, ..., ae〉 be a cone in Re≥0 with ai = (ai1, ..., a
i
e) ∈ Ne for each i = 1, ..., e. This cone

defines a homomorphism of rings ψ : K[[x1, ..., xe]] 7→ K[[t1, ..., te]] defined by :

x1 7→ t
a11
1 · · · t

ae1
e

x2 7→ t
a12
1 · · · t

ae2
e

· · ·

x1 7→ t
a1e
1 · · · t

aee
e

Let M = xα1
1 · · ·x

αe
e = xα be a monomial, then ψ(M) = tβ11 · · · t

βe
e is a monomial, with (β1, ..., βe) = (<

a1, α >, ..., < ae, α >) and denoted by ψ(α), where < a, b > is the dot product of two vectors in Re. Also ψ
extends to a homomorphism from K[[x]][y] to K[[t]][y], by sending each g = any

n+ · · ·+ a1y+ a0 in K[[x]][y]
to ψ(g) = ψ(an)y

n + · · ·+ ψ(a1)y + ψ(a0) in K[[t]][y]. It is easy to see that ψ sends a unit to another unit.

Lemma 10 Let f ∈ K[[x]][y] be an irreducible quasi-ordinary polynomial of degree n and let {m1, ...,mh}
be its set of characteristic exponents. Then ψ(f) is an irreducible quasi-ordinary polynomial in K[[t]][y] and
{ψ(mi)}i=1,...,h is its set of characteristic exponents.

Proof : Since f is a quasi-ordinary polynomial then ∆y(f) = xm.unit. But ∆y(ψ(f)) = ψ(∆y(f)), then
∆y(ψ(f)) = ψ(xm).unit, hence ψ(f) is a quasi-ordinary polynomial. Let {y1, ..., yn} be the roots of f , then
{ψ(y1), ..., ψ(yn)} are the roots of ψ(f). By definition the characteristic exponents of ψ(f) are obtained by
taking the difference of its roots. In particular ψ(yi) − ψ(yj) = ψ(yi − yj) = ψ(xmi .unit) = ψ(xmij ).unit =
xψ(mij).unit where mij is a characteristic exponent of f . Then the characteristic exponents of ψ(f) are the
images of the characteristic exponents of f by ψ.�

Remark 7 we can rewrite the r sequence of f as :

rk = mk + (ek−1 − 1)mk−1 + (ek−2 − 1)ek−1mk−2 + ...+ (e1 − 1)e2...ek−1m1

= n
mk

n
+ n(ek−1 − 1)

mk−1

n
+ n(ek−2 − 1)ek−1

mk−2

n
+ ...+ n(e1 − 1)e2...ek−1

m1

n

= e1...ek−1[ek...eh
mk

n
+ ek...eh(ek−1 − 1)

mk−1

n
+ · · ·+ ek...eh(e1e2...ek−1 − e2...ek−1)

m1

n
]

= e1...ek−1[dk
mk

n
+ (dk−1 − dk)

mk−1

n
+ · · ·+ (d1 − d2)

m1

n
]
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for all k = 1, ..., h.

Definition 23 Let y =
∑

cpx
p be a formal power series in K[[x]]. The Newton polyhedron of y is defined

as the convex hull of the set H =
⋃

p∈Supp(y)(p+Ne), that is the smallest convex subset of Re containing H,
and it is denoted by N(y).

Let f be a quasi-ordinary polynomial, and let g ∈ K[[x]][y]. If y1, y2 are two roots of f , then supp(y1) =
supp(y2). Consequently N(g(x, y1)) = N(g(x, y2)). Moreover if g is quasi-ordinary of degree m, and {z1 =
z, z2, ..., zm} are its roots. Then :

N(

n
∏

i=1

g(x, yi)) = deg(f)N(g(x, y)) = N(

m
∏

j=1

(f(x, zj))) = deg(g)N(f(x, z)) = N(Resy(f, g)) (2.1)

Proposition 18 Let g be an irreducible quasi-ordinary polynomial in K[[x]][y] of degree m = n
di

(i ∈ {1, ..., h}).
Then g is an i−th semi root of f if and only if the order of coincidence between f and g is equal to mi

n .

Proof : Let {z1, ..., zm} be the roots of g. We have g(x, Z) =
∏m
j=1(Z − zj). Now suppose that g is an

i-th semi root, then by definition we have g(x, y(x)) = xriε for some unit ε. Since N(
∏n
i=1 g(x, yi(x))) =

deg(f)N(g(x, y(x))) and g(x, y(x)) =
∏m
j=1(y(x)− zj), then yi(x)− zj(x) = xαijεij for some unit εij , for all

i = 1, ..., n and j = 1, ...,m. Hence the order of coincidence between f and g is defined. Let α be the order of
coincidence between f and g, and suppose without loss of generality that y(x) − z(x) = xαω for some unit
ω. Remember that {m1, ...,mh, α} is an ordered set with respect to the component wise order because f.g
is quasi ordinary. Now let mk be the greatest characteristic exponent of z which is smaller than α (which is
also a characteristic exponent of y). For all r = 1, ..., h we have yr(x)− z(x) = (yr(x)− y(x))+ (y(x)− z(x)),

and so yr(x) − z(x) = xα.unit if and only if yr(x) − y(x) = x
mj

n · (unit) for some j > k, that is yj is the

image of y by some automorphism of L(y) over L that fixes x
m1
n , ..., x

mk
n . The number of roots satisfying this

property is equal to [L(y) : L(x
m1
n , ..., x

mk
n )] which is equal to ek+1...eh = dk+1. Moreover for all j = 1, ..., k

we have :

#{yj , yj − z = x
mj

n .unit} = #{yj , yj − y = x
mj

n .unit}

= [L(y) : L(x
m1
n , ..., x

mj−1
n )]− [L(y) : L(x

m1
n , ..., x

mj

n )]

= ej ...eh − ej+1...eh

= dj − dj+1.

Since gi is an i−th semi-root, by equation (2.1) and similary to Remark 7 we get

ri = e1...ei−1[(d1 − d2)
m1

n
+ · · ·+ (dk − dk+1)

mk

n
+ dk+1α] (2.2)

If k+1 > i, then from Remark 7 we get ri > ri, which is a contradiction and so k+1 ≤ i. If k+1 < i or α ≤
all the characteristic exponents of z, we deduce that α ≥ mi

n , and so mi−1

n < α and mi−1

n is a characteristic
exponent of z, which is a contradiction. Hence k+1 = i, and so by Remark 7 we easily deduce that α = mi

n .
Conversely if the order of coincidence between f and g is equal to mi

n , then it follows easily from equation
(2.2) that g is an i-th semi root of f .�

In what follows we will prove that every j−th semi-root of f is irreducible.

Definition 24 Let y ∈ K[[x]] and let N(y) be its Newton polyhedron. The Newton initial polynomial of y is
defined to be the sum of the terms of y lying on the compact faces of N(y), and is denoted by inN (y).

Recall that Γj represents the semigroup generated by (r10, ..., r
e
0, r1, ..., rj). Let K[Γj ] be the ring of polynomials

f =
∑

p cpx
p, with supp(f) a finite subset of Γj .

Proposition 19 Let the notations as before. Let g be a polynomial in K[[x]][y]. If deg(g) = 0, then in(g(xn, y)) ∈
K[Γ0]. Otherwise for all j = 1, ..., h if deg(g) < e1...ej =

n
dj+1

, then in(g(xn, y)) ∈ K[Γj ].
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Proof : If deg(g) = 0, then g = a(x) for some a(x) ∈ K[[x]], and so g(x, y) = a(x), then obviously in(g(x, y)) ∈
K[Γ0]. Suppose that the assumption is true for polynomials of degrees < e1...ej−1 and let g be a polynomial
of degree < e1...ej . Consider gj to be a j−th semi-root of f , and let

g = a0 + a1gj + · · ·+ adjg
dj
j

be the gj-adic expansion of g. where ai ∈ K[[x]][y] and deg(ai) <
n
dj

= e1...ej−1 for all i = 0, ..., dj . By

induction hypothesis we have in(ai(x, y)) ∈ K[Γj−1] for all i = 0, ..., dj . Since terms of the polynomials alx
lri

and akx
kri can not cancel each other for all 0 ≤ l 6= k ≤ dj , then the terms of the polynomial in(g) are terms

of the polynomials alx
lrj , j = 0, ..., dj . Hence in(g) ∈ K[Γj ].�

Proposition 20 Let f be a quasi-ordinary polynomial and let g ∈ K[[x]][y] be an i−th semi root of f . Then
g is an irreducible polynomial.

Proof : suppose to the contrary that g is not irreducible then there exists g1, g2 ∈ K[[x]][y] such that g = g1.g2
with deg(gj) <

n
di

for j = 1, 2. By Proposition 19 we have in(gj) ∈ K[Γi−1] for j = 1, 2. But ri is an exponent
in the polynomial in(g1) + in(g2), then ri ∈ K[Γi−1]. This is a contradiction.�

Lemma 11 Let the notation be as above with f a quasi-ordinary polynomial. Then for all i = 1, ..., h, f
admits an i-th semiroot.

Proof : Let y be a root of f , and write y = H0 +H1 + · · ·+Hh as in Proposition 15. For each i = 1, ...h, let
gi+1 be the minimal polynomial of H0 + · · ·+Hi. Then gi is a quasi-ordinary polynomial with characteristic
exponents {m1, ...,mi}, and it is obviously irreducible. We have deg(gi) = [L(M1, ...,Mi) : L] = e1...ei =

n
di+1

.

Obviously the order of coincidence between f and gi+1 is equal to mi+1

n , then by Proposition 18 gi+1 is an
(i+ 1)-st semi-root of f .�

Proposition 21 Let the notation be as above with f an irreducible quasi-ordinary polynomial. For each
i = 1, ..., h+ 1 let gi = Appdi(f) be the di-th approximate root of f . Then gi is an i− th semi root of f .

Proof : For i = h+ 1, gi = Appdh+1
(f) = f and so the assumption is true since f(xn, y) = 0 and rh+1 =∞.

Suppose that the assumption is true for i+1 and let us prove it for i. We have Appdi(f) = Appei(Appdi+1
(f)).

Let g be a polynomial of degree n
di

, then by Proposition 6, we have Appdi(f) = τ
n
di
gi+1(g), where τ represents

the Tschirnhausen transform. In order to prove that gi is an i− th semi-root, it is enough to prove that if g
is an i−th semi-root then τgi+1(g) is an i-th semi-root. Now suppose that g is an i-th semi-root, and let

gi+1 = gei + a1g
ei−1 + · · ·+ aei

be the g-adic expansion of gi+1 with ai ∈ K[[x]][y] and deg(ai) < deg(g) for all i = 1, ..., ei. By the induction
hypothesis we have gi+1(x

n, y) = xri+1 .unit. It follows that

N(a1(x
n, y)gei−1(xn, y) ⊆ N(gi+1(x

n, y))

But g is an i−th semi-root of f , and so g(xn, y) = xri .unit. Hence if m is an exponent of in(a1(x
n, y)), then

m+ (ei− 1)ri ∈ N(gi+1(x
n, y)), and so m+ (ei− 1)ri ≥ ri+1. Finally we get that m ≥ ri+1− (ei− 1)ri > ri.

Hence τgi+1g(x
n, y) = g(xn, y) + 1

ei
a1(x

n, y) = xri .unit, that is τgi+1(g) is an i-th semi root.�

Proposition 22 Let the notation be as above with f an irreducible quasi-ordinary polynomial. Let g be an
i−th semi-root of f with i ∈ {1, ..., h}. Then g is a quasi-ordinary polynomial.

Proof : Let ∆Y (g) be the discriminant of g, and let N(∆y(g)) be its newton polyhedron. Let σ = 〈a1, ..., ae〉
be a regular cone such that σ ⊆ Re≥0 and σ is compatible with N(∆y(g)). That is there exists a unique
ω ∈ N(∆y(g)) such that :

〈ai, ω〉 = inf
v∈N(∆y(g))

〈ai, v〉.
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for all i ∈ {1, ..., e}. Now let the notations be as in Remark 6, then the discriminant of ψ(g) is ψ(∆y(g)).

Moreover if xv = xv11 . . . xvee is a monomial of ∆y(g) for some v ∈ Ne, then ψ(xv) = x<a
1,v>

1 . . . x<a
e,v>

e is a

monomial of ψ(∆y(g)). Furthermore, ψ(xω) = x<a
1,ω>

1 . . . x<a
e,ω>

e , but 〈ai, ω〉 ≤ 〈ai, v〉 for all i ∈ {1, ..., e}.
It follows that the discriminant ψ(∆y(g)) of ψ(g) is of the form

ψ(∆y(g)) = xψ(ω).unit.

It follows that ψ(g) is a quasi-ordinary polynomial. Since f is a quasi-ordinary irreducible polynomial, then
by Lemma 10 we get that ψ(f) is a quasi-ordinary irreducible polynomial. Moreover, the set of characteristic
exponents of ψ(f) is {ψ(m1), ..., ψ(mh)}. Since ψ(g) is the the i−th semi root of ψ(f), then by Proposition
20 we get that ψ(g) is irreducible, and by Proposition 18 we get that the order of coincidence between ψ(f)
and ψ(g) is ψ(mi). Now since ψ(g) is an irreducible quasi-ordinary polynomial, it admits some root z(x) and
its set of characteristic exponents is equal to {ψ(m1), ..., ψ(mi−1)}.
It follows that the element ω does not depend on the chosen cone σ since it is determined by the characteristic
exponents m1, ...,mi−1 of f . Hence N(∆y(g)) has a unique vertex. Thus g is a quasi-ordinary polynomial.�

Proposition 23 Let the notation be as above with f an irreducible quasi-ordinary polynomial. Let g be an
approximate root of f . Then g is an irreducible quasi-ordinary polynomial.

Proof : Since g is an approximate root of f , then by Proposition 21 we get that g is a semi root of f . It
follows from Proposition 20 and Proposition 22 that g is an irreducible quasi-ordinary polynomial.�
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2.4 Free polynomials

In this section we generalize the results of section 4 to a free polynomial (see Definition 29). We also show
that we can generalize Abhyankar-Moh theory to such a polynomial.

2.4.1 Line Free Cones.

The material of this subsection can be found in [24].
In this subsection we will consider the set of formal power series with exponents in some line free cone C
with a non-empty interior, denoted by KC [[x]], and we will prove that this set is a ring. Also we will prove
that we can find some order on C ∩ Ze such that for each element y ∈ KC [[x]], the exponents of y can be
written in increasing order.

Definition 25 Let C be a cone, then C is said to be a line-free cone if ∀v ∈ C − {0} we have −v /∈ C.

Lemma 12 (Dickson’s lemma) Let S be a subset of Ne. Then there exists a finite set of elements H =

{s1, ..., sk} in S such that S ⊆
k
⋃

i=1

(si + Ne).

Proof : We will proceed by induction on e. For e = 1 S is a subset of N, so take s to be the minimal element
of S, then in this case H = {s}, and lemma is true for e = 1.
Suppose that the lemma is true up to e − 1 and consider a subset S of Ne. Let c = (c1, ..., ce) be any
element in S. If α = (α1, ..., αe) ∈ S with αi ≥ ci for all 1 ≤ i ≤ e, then α ∈ (c + Ne). Otherwise
there exists some 1 ≤ i ≤ e such that αi ≤ ci. For each 1 ≤ i ≤ e and 0 ≤ a ≤ ci define the set
Ai,a = {(α1, ..., αi−1, αi+1, ..., αe) ∈ Ne−1 such that (α1, ..., αi−1, a, αi+1, ..., αe) ∈ S}. By the induction
hypothesis there exists a finite subset Bi,a ⊆ Ai,a such that for every (α1, ..., αi−1, αi+1, ..., αe) ∈ Ai,a there
exists (β1, ..., βi−1, βi+1, ..., βe) ∈ Bi,a with (α1, ..., αi−1, αi+1, ..., αe) ∈ (β1, ..., βi−1, βi+1, ..., βe)+Ne−1. Hence
(α1, ..., αi−1, a, αi+1, ..., αe) ∈ (β1, ..., βi−1, a, βi+1, ..., βe) + Ne, and so the desired finite subset is
H = {c} ∪ {(β1, ..., βi−1, a, βi+1, ..., βe), with (β1, ..., βi−1, βi+1, ..., βe) ∈ Ba,i, 1 ≤ i ≤ e and 0 ≤ a ≤ ci}.�

Lemma 13 Fix a line-free cone C in Re with a non-empty interior. Let S be any subset of C ∩ Ze. Then

there exists a finite subset F = {α1, ..., αn} of S such that S ⊆
n
⋃

i=1

(αi + C).

Proof : Consider a set of generators {v1, ..., vk} of the cone C where v1, ..., vk ∈ Ze. Let s ∈ S. The element s
can be written as s1v1 + ...+ skvk for some s1, ..., sk ∈ R+. Since s ∈ Ze, s1, ..., sk are non negative elements
in Q. Define the set

B = {b1v1 + ...+ bkvk, bi ∈ [0, 1] ∀1 ≤ i ≤ k}

Since B is bounded, B ∩Ze is finite. Say B = {c1, ..., cl} for some l ∈ N. Then every s = s1v1+ ...+ skvk ∈ S
can be written as s = a1v1 + ... + akvk + ci where aj ∈ N is the integer part of sj for all j ∈ {1, ..., k} and
ci is some element in B. Now for each 1 ≤ i ≤ l, let Ni be the set of elements (a1, ..., ak) ∈ Ne such that
a1v1 + ... + akvk + ci ∈ S for some 1 ≤ i ≤ l. By Dickson’s Lemma there exists a finite set Hi ⊆ Ni such
that for every (a1, ..., ak) ∈ Ni there is some (h1, ..., hk) ∈ Hi such that (a1, ..., ak) ∈ (h1, ..., hk) + Ne, and
so (a1 − h1)v1 + ... + (ak − hk)vk ∈ C since (ai − hi) ≥ 0 for all 1 ≤ i ≤ k, hence a1v1 + ... + akvk + ci ∈
h1v1 + ...+ hkvk + ci + C, then the desired set F is equal to

l
⋃

i=1

{h1v1 + ...+ hkvk + ci, (h1, ..., hk) ∈ Hi}

which is obviously finite, say F = {α1, ..., αn} for some n ∈ N. We finally get S ⊆
n
⋃

i=1

(αi + C). �

Definition 26 Let ≤ be a total order on Ze. The order ≤ is said to be additive if for all m,n, k ∈ Ze we
have : m ≤ n =⇒ m+ k ≤ n+ k.
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Let ≤ be an additive order on a cone C ⊂ Re. The order ≤ is called compatible with C if for all m ∈ C ∩Ze

we have m ≥ 0, where 0 := (0, ..., 0). Note that if we have an additive order ≤, then for all m,n ∈ Zp with
m,n ≥ 0, we get am+ bn ≥ 0 for all a, b ∈ N.

Proposition 24 Let C be a line-free cone of dimension e. Then there exists an additive total order ≤ which
is compatible with C.

Proof : Consider any vector x = (x1, ..., xe) ∈ Re such that its components are linearly independent over
Q, and define the order on Ze as follows : for m,n ∈ Ze, n ≤x m ⇐⇒ n · x ≤ m · x, where "·" refers to
the scalar product on Re. It is clear that this is an additive total order on Ze since if n · x ≤ m · x, then
(n+ n′) · x ≤ (m+ n′) · x for any n′ ∈ Ze, and so n+ n′ ≤ m+ n′. It is antisymmetric since the coordinates
of x are linearly independent over Q, indeed for all m = (m1, ...,me), n = (n1, ..., ne) ∈ Ze if we have m ≤x n
and n ≤x m, then n · x = m · x, and we get (n1 −m1)x1 + ... + (ne −me)xe = 0, and so ni = mi for all
1 ≤ i ≤ e hence m = n.
To prove that there exists some order relation which is compatible with C, we have to prove that there exists
some x ∈ Re such that 0 ≤x n for all n ∈ C. Since C is a line-free cone it is enough to choose x to be in the
dual cone of C. This proves our assertion. �

Proposition 25 Let C be a cone, and let ≤ be an additive total order which is compatible with C. Then ≤
is a well-founded order on C ∩Ze, i.e, every subset of C ∩Ze contains a minimal element with respect to the
chosen order. Moreover this minimal element is unique.

Proof : Let S ⊂ C ∩Ze. By Lemma 13, we can find a finite subset {s1, ..., sn} of S such that S ⊂
n
⋃

i=1

(si+C).

Since ≤ is compatible with C it follows that for every m,n ∈ Ze such that m ∈ n+ C, then m ≤ n. So the
minimal element of S is the minimal element of the set {s1, ..., sn} which exists since ≤ is a total order. �
Let K be an algebraically closed field. Consider infinite formal power series in several variables of the form
y(x) =

∑

cax
a, where ca ∈ K, and a = (a1, ..., ae) ranges in Ze, and xa denotes the monomial xa11 · · ·x

ae
e . We

set Supp(y(x)) = {a, ca 6= 0}.
If we consider any two series y, z of this form, then y + z is naturally defined, while their multiplication
does not exist in general. For that reason the support of these series should be restricted to be in the same
line-free cone.

Definition 27 Let C be a line-free cone in Re. We define the set of formal power series with exponents in

C to be KC [[x]] := {y(x) =
∑

p∈Ze

cpx
p, Supp(y(x)) ⊆ C}

Proposition 26 Let C be a cone, and let ≤ be an additive order on Ze. Let {v1, ..., vk} be a set of generators
of C. C is compatible with ≤ if and only if vi ≥ 0 for all i = 1, ..., k.

Proof : If C is compatible with ≤, then v ≥ 0 for all v ∈ C. In particular vi ≥ 0 for all 1 ≤ i ≤ k. On the
other hand, suppose that vi ≥ 0 for all 1 ≤ i ≤ k, and let v ∈ C ∩ Ze, then v = a1v1 + · · · + aeve for some
a1, .., ae ∈ R+. Since ≤ is an additive order then v = a1v1 + · · ·+ aeve ≥ 0. Hence v ≥ 0 for all v ∈ C. �

Remark 8 Let ≤ be an additive order on Ze, and consider two cones C,C ′ in Ze which are compatible with
≤. Let {v1, ..., vk} be a set of generators of C, and let {w1, ..., wh} be a set of generators of C ′. By Proposition
26 vi, wj ≥ 0 for all 1 ≤ i ≤ k and 1 ≤ j ≤ h. But {v1, ..., vk, w1, ..., wh} is a set of generators of C + C ′,
hence by Proposition 26, C + C ′ is compatible with ≤.

In what follows we shall give some results in order to prove that KC [[x]] is a ring, where C is a line free cone
in Ze.

Proposition 27 Let K ⊆ Re be a closed and convex set. The set K is unbounded if and only if there exists
some u ∈ K and a non zero vector v ∈ Re, such that the ray R = {u + λv}λ≥0 ⊆ K. Moreover for all
u, u′ ∈ K we have {u+ λv}λ≥0 ⊆ K ⇐⇒ {u

′ + λv}λ≥0 ⊆ K.
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Proof : If K contains a ray then it is obvious that K is unbounded.
Now suppose that K is unbounded. Let u ∈ K, and let S be the unit sphere in Re centered at the origin.
For each λ > 0 consider the map π : u+ λS → u+ S defined by π(u+ x) = u+ x

‖x‖ and define the family

of sets {Pλ = π((u+ λS) ∩K)}λ>0. Since π is continuous and bijective. u+ λS is homeomorphic to u+ S,
and so u+ λS is closed and bounded, hence compact. Since K is closed, K ∩ (u+ λS) is compact and so Pλ
is compact for all λ > 0. Since K is unbounded, we have Pλ 6= φ for all λ > 0.
For all λ′ ≤ λ we have Pλ ⊂ Pλ′ . Indeed, let u + s = π(u + λs) ∈ Pλ for some s ∈ S. As λ ≥ λ′ we have
t = λ−λ′

λ ≥ 0, and so u+ λ′s = tu+ (1− t)(u+ λs) belongs to the segment [u, u+ λs]. Since K is convex we
have u+ λ′s ∈ K, hence u+ s = π(u+ λ′s) ∈ Pλ′ , and so Pλ ⊂ Pλ′ . Now the family {Pλ}λ>0 is a decreasing
nested sequence of non-empty compact subsets. By Cantor’s intersection theorem :

⋂

λ>0

Pλ 6= φ.

Let p be any vector in this intersection. For all λ > 0 there exists sλ ∈ S such that u + λsλ ∈ K and
p = π(u + λsλ) = u + sλ, and so sλ = p − u for all λ > 0, hence by letting v = p − u we will have
R = {u+ λv}λ≥0 ⊆ K.
Concerning the last statement of the Proposition, let u ∈ K be such that {u + λv}λ≥0 ⊆ K, and let u′ be
another point in K. We want to prove that u′ + λv ∈ K for all λ ≥ 0. Fix λ ≥ 0, and for each n ∈ N∗,
consider the point xn = (1− 1

n)u
′ + 1

n(u+ λnv). Since u′, u+ (λn)v ∈ K and 1
n ∈ [0, 1], and by the fact that

K is convex, we get that xn ∈ K for all n ∈ N∗. On the other hand xn = (1− 1
n)u

′ + 1
nu+ λv converges to

u′ + λv as n→∞, but K is closed then u′ + λv ∈ K. Hence u′ + λv ∈ K for all λ ≥ 0. �

Lemma 14 Let C ⊂ Re be a line free cone, and let B be a closed and convex set in Re such that C∩B = {0}.
Then for all k ∈ Re the set C ∩ (k +B) is bounded.

Proof : Let A = C ∩ (k + B) for some k ∈ Re. Since C and k + B are closed and convex, A is closed and
convex. Suppose that A is unbounded, then by Proposition 27, there exists u ∈ A and a non zero vector
v ∈ Re such that {u+ λv}λ≥0 ⊆ A .
Since u ∈ A, then u ∈ C. But 0 ∈ C. Applying Proposition 27 to u and 0 we get

{u+ λv}λ≥0 ⊆ C ⇐⇒ {λv}λ≥0 ⊆ C

and so λv ∈ C for all λ ≥ 0. In particular v ∈ C for λ = 1.
On the other hand u ∈ A, and so u ∈ k +B. But k ∈ k +B since 0 ∈ B. Applying Proposition 27 to u and
k we get

{u+ λv}λ≥0 ⊆ k +B ⇐⇒ {k + λv}λ≥0 ⊆ k +B

hence k + v ∈ k +B, and so v ∈ B.
We obtained that v ∈ C ∩B, which is a contradiction since v 6= 0. Therefore A is bounded. �

Remark 9 Let C be a line free cone in Ze and let k ∈ Ze. We have C∩−C = {0}, where −C = {−x, x ∈ C}.
By Lemma 14 we get that C ∩ (k − C) is a bounded set in Ze, and so it is finite.

Remark 10 Let C be a line free cone and let ≤x be the total additive order compatible with C given by
Propostion 24. Then for all i ∈ C the set of elements j ∈ C such that j ≤x i is finite. Indeed, let B = {α ∈
Re, α ·x ≤ 0}. Since j ≤x i, then j = i+α for some α ∈ B, and so j ∈ i+B. For all a ∈ C we have a ·x ≥ 0,
then C ∩B = {0}. It follows from Proposition 14 that C ∩ (i+B) is bounded in Re, and so C ∩ (i+B)∩Ze

is finte. Hence the set of elements j ∈ C such that j ≤x i is finite.

Proposition 28 Let C be a line-free cone in Re. The set KC [[x]] is a ring.

Proof : The neutral elements 0 and 1 are obviously in KC [[x]]. It is easy to see that addition is well defined.
Concerning the multiplication, let f(x) =

∑

i aix
i and g(x) =

∑

j bjx
j be two elements of KC [[x]], the

natural definition of multiplication of f and g is :

f(x).g(x) =
∑

k

(
∑

i+j=k

aibj)x
k
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Each k in Supp(f.g) is of the form i + j for some i ∈ supp(f) and j ∈ Supp(g), and since Supp(f) and
Supp(g) are both in the same cone C then i + j = k ∈ C also, hence Supp(f.g) ⊂ C. In order to show
that multiplication is well defined, the coefficient of each xk which is

∑

i+j=k aibj must be a finite sum. By
Remark 9 we get that for each k in Supp(f.g) the set C ∩ (k−C) contains only a finite number of points in
Ze, hence the sum is finite. �

Lemma 15 (Principle of Noetherian Induction) : Let C be a set and let ≤ be a well founded order on C. To
prove that a property p(x) is true for all x ∈ C. It is enough to prove that p(x) is true for minimal elements
and for every x ∈ C we have

(I) : p(y) is true for all y < x =⇒ p(x) is true

Proof : Suppose to the contrary that (I) is true but p(z) is not true for some z ∈ C. Let N be the set of all
elements such that p(z) is false. Since ≤ is a well founded order on C and N is a non empty set, then N
admits a minimal element, say m. Now let y ∈ C such that y < m. Since m is a minimal element in N , then
y /∈ N , and so p(y) is true. We get that p(y) is true for all y < m. It follows from our hypothesis (I) that
p(m) is true. This is a contradiction. �

Theorem 3 Let y(x) =
∑

a cax
a be an element of KC [[x]], where C is a line free cone in Re. There exists

z(x) ∈ KC [[x]] such that y(x).z(x) = 1 if and only if c0 6= 0.

Proof : In fact if c0 = 0, it is impossible to find a multiplicative inverse for y, since for any z(x) =
∑

i dix
i ∈

KC [[x]], the constant term of y(x)z(x) will be c0d0 = 0 while it should be equal to 1.
Conversely if c0 6= 0, then we can construct a power series z(x) =

∑

i dix
i, with d0 = 1

c0
. Now consider

an additive order ≤ on Ze that is compatible with, which exists since C is line free-cone, then it is a well
founded order on C. We will prove our statement by noetherian induction. Suppose that the coefficients di
of z(x) can be chosen in a unique way for all i < k, and let us prove that dk can be chosen in a unique way.
We have :

y(x)z(x) =
∑

k

(
∑

i,j∈C,i+j=k

cidj)x
k

So the coefficient of xk is equal to
∑

i+j=k

cidj = c0dk +
∑

i 6=0

cidk−i. Let i > 0, then −i < 0 since the order is

additive. It follows that j = k − i < k, and so by the induction hypothesis dk−i are obtained in a unique

way. Since the coefficient of xk should be equal to zero, then it is enough to take dk = −
1
c0

∑

i 6=0

cidk−i.

It follows from the principle of noetherian induction that for all k ∈ C we can choose dk in a unique way.
Hence we get the result.�
As we can see, K[[x]] is a special case of KC [[x]] when C is the cone generated by the canonical basis of Ne,
and the properties of K[[x]] generalize to rings of the form KC [[x]] for any line-free cone C.

2.4.2 Fractional power series solutions

We will define a kind of polynomials, namely free polynomials. They are polynomials in KC [[x]][y] that admit

a fractional power series solution in KC [[x
1
n ]], where C is some line free cone, and n is the degree of the

polynomial. We will prove also that a polynomial f of degree n in K[[x]][y] admits a fractional power series

solution in KC [[x
1
n ]] after some change of variables. Hence it is free.

Consider the polynomial :

f(x1, ..., xe, y) = f(x, y) = yn + a1(x)y
n−1 + · · ·+ an−1(x)y + an(x).

Then f is a polynomial in y with coefficients in the multivariate formal power series ring K[[x]], where
K is an algebraically closed field of characteristic zero. Let ∆ be the discriminant of f in y, and write
∆(x1, ..., xe) =

∑

p∈Ne c(p1,...,pe)x
p1
1 ...x

pe
e ∈ K[[x]]. Set :

Supp(∆) = {p = (p1, ..., pe) ∈ Ne, c(p1,...,pe) 6= 0}.
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Write ∆ =
∑

d≥0 ud(x1, ..., xe) where ud(x1, ..., xe) =
∑

p1+...+pe=d

c(p1,...,pe)x
p1
1 . . . xpee is the homogeneous com-

ponent of ∆ of degree d. Let a = inf{d, ud 6= 0}. Note that if a = 0, then f is a quasi-ordinary polynomial.
Suppose that a 6= 0. Then ua is a non constant polynomial in K[[x]], say ua =

∑

λ(a1,...,ae)x
a1
1 . . . xaee .

Moreover, suppose without loss of generality that x1 appears in ua.

Remark 11 Consider the mapping

ξ : K[[x1, ..., xe]] 7→ K[[X1, ..., Xe]]

defined by ξ(x1) = X1 and ξ(xi) = Xi + tiX1 for all i ∈ {2, ..., e}, where ti is a parameter to be determined.
For all y =

∑

cax
a1
1 . . . xaee in K[[x1, ..., xe]] we have ξ(y) = y(X1, X2+t2X1, . . . , Xe+teX1) =

∑

caX
a1
1 (X2+

t2X1)
a2 . . . (Xe + teX1)

ae . It is obvious that ξ is a homomorphism of rings. Morover consider the mapping
φ : K[[X1, ..., Xe]] 7→ K[[x1, ..., xe]] defined by φ(Y ) = Y (x1, x2 − t2x1, ..., xe − tex1) =

∑

apx
p1
1 (x2 −

t2x1)
p2 . . . (xe − tex1)

pe for all Y (X) =
∑

apX
p1
1 . . . Xpe

e , then

ξ ◦ φ(Y ) =
∑

apX
p1
1 (X2 − t2X1 + t2X1)

p2 . . . (Xe − teX1 + teX1)
pe =

∑

apX
p1
1 X

p2
2 . . . Xpe

e = Y.

It follows that for all y(x) ∈ K[[x1, ..., xe]] and Y (X) ∈ K[[X1, ..., Xe]] we have φ◦ξ(y) = y and ξ ◦φ(Y ) = Y .
Hence φ is the inverse of ξ and so ξ is an isomorphism.

Let ψ : K[[x]][y] 7→ K[[X]][y] be the extension of the map ξ in Remark 11. That is for all f =
an(x)y

n + . . .+ a1(x)y + a0(x) in K[[x]][y] we have ψ(f) = ξ(an(x))y
n + . . .+ ξ(a1(x))y + ξ(a0(x)). Then ψ

is an isomorphism between K[[x]][y] and K[[X]][y].

Now let the notation be as above and let ∆(ψ(f)) be the discriminant of ψ(f). Then

∆(ψ(f)) =
∑

c(p1,...,pe)X
p1
1 (X2 + t2X1)

p2 ...(Xe + teX1)
pe .

Moreover, ∆(ψ(f)) =
∑

d≥0 ud(X1, X2+ t2X1, ..., Xe+ teX1). For all d ≥ 0 let vd(X1, . . . , Xe) = ud(X1, X2+
t2X1, ..., Xe + teX1). Then

vd(X1, ..., Xe) =
∑

p1+...+pe=d

c(p1,...,pe)X
p1
1 (X2 + t2X1)

p2 . . . (Xe + teX1)
pe

= εd(t2, . . . , te)X
p1+...+pe
1 + v′d(X1, . . . , Xe) = εd(t2, . . . , te)X

d
1 + v′d(X1, . . . , Xe)

where v′d is a homogeneous polynomial of degree d, and εd(t2, . . . , te) is a polynomial in t2, . . . , te. Since K is
an infinite field, we can choose t2, . . . , te ∈ K such that εd(t2, . . . , te) 6= 0.
Note that ǫd(t2, . . . , te) =

∑

p1+...+pe=d
c(p1,...,pe)t

p2
2 . . . tpee , hence this polynomial cannot be identically zero.

This is clear if ud(x1, . . . , xe) is a monomial. Otherwise, since p1+ . . .+pe = d for all (p1, . . . , pe) ∈ Supp(ud),
all elements in Supp(ǫd) are pairwise distinct.

Example 1 Let ∆ = x1x2 − x1x3. Then the change of variables X1 = X1, X2 = X1 + X2, x3 = X1 + X3

gives us the new polynomial X1(X1 +X2) −X1(X1 +X3) = X1X2 −X1X3. This justifies the above use of
the variables t2, . . . , te since we need the new discriminant to contain a power of X1

Let a = inf{d : ud 6= 0}. By the above change of variables we may assume that the following condition
holds :

(1) The polynomial ua contains xa1 with a nonzero constant.

From now on we suppose that f is a polynomial in K[[x]][y] that satisfies the above condition.

Theorem 4 Consider a polynomial f(x, y) in K[[x]][y] and assume that f satisfies condition (1). Then the
polynomial

F (X1, ..., Xe, y) = f(X1, X2X1, . . . , XeX1, y)

is a quasi-ordinary polynomial.
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Proof : Let ∆ =
∑

p c(p1,...,pe)x
p1
1 . . . xpee be the discriminant of f . Consider the change of variables :

x1 = X1, x2 = X2X1, ..., xe = XeX1

The new discriminant ∆N of F (X1, ..., Xe, y) = f(X1, X2X1, . . . , XeX1, y) is ∆N = ∆(X1, X2X1, . . . , XeX1).
Write ∆ =

∑

d≥0 ud, where ud is the homogeneous component of degree d of ∆. Let a = inf{d : ud 6= 0}. By
hypothesis ua = cax

a
1 + ... with ca 6= 0. Then

ua(X1, X2X1, . . . , XeX1) = xa1(ca + ǫa(X1, . . . , Xe))

with ǫ(0, . . . , 0) = 0. On the other hand, if ud =
∑

c(d1,...,de)x
d1
1 . . . xdee then

ud(X1, X2X1, . . . , XeX1) = Xd
1ud(1, X2, . . . , Xe) = Xd

1εd(X1, ..., Xe)

with ǫd(X1, . . . , Xe) 6= 0. We finally obtain that

∆N = Xa
1 (c+ ε(X1, . . . , Xe))

with c 6= 0 and ε(0, . . . , 0) = 0. That is, F is a quasi-ordinary polynomial. �
In the following we will introduce a line free cone which is independent of the choice of the polynomial f .
However, we should keep in mind that in order to use this cone, the given polynomial should satify condition
(1).

Proposition 29 Let the notation be as above. Consider the set C defined by :

C = {(c1, ..., ce) ∈ Re, c1 ≥ −(c2 + . . .+ ce), ci ≥ 0 ∀ 2 ≤ i ≤ e}

Then C is a line free convex cone.

Proof : Let c = (c1, ..., ce) ∈ C and λ ≥ 0, then c1 ≥ −(c2 + . . . + ce) and ci ≥ 0 for all 2 ≤ i ≤ e, and
so λc1 ≥ −λ(c2 + . . . + ce) = −(λc2 + . . . + λce) and λci ≥ 0 for all i ∈ {2, ..., e}. It follows that λ.c ∈ C,
hence C is a cone. Now consider c = (c1, ..., ce), c

′ = (c′1, ..., c
′
e) ∈ C, then ci + c′i ≥ 0 for all 2 ≤ i ≤ e and

c1 + c′1 ≥ −(c2 + c′2 + . . . + ce + c′e), and so c + c′ ∈ C. In particular, if c, c′ ∈ C and 0 ≤ λ ≤ 1, then
λc+ (1− λ)c′ ∈ C, and so C is a convex cone.
Finally to prove that C is a line free cone, let c = (c1, ..., ce) ∈ C such that c 6= 0, and let us prove that
−c = (−c1, ...,−ce) /∈ C. We have ci ≥ 0 for all i ∈ {2, ..., e}. If ci > 0 for some i ∈ {2, ..., e}, then obviously
−c = (−c1, ...,−ce) /∈ C. If ci = 0 for all i ∈ {2, ..., e}, then c1 ≥ −(c2+ . . .+ ce) = 0, but c 6= 0, then c1 > 0,
and so −c = (−c1, 0, ..., 0) /∈ C. Hence C is a line free cone.�
From now on C denotes the cone defined in Proposition 29 unless otherwise specified.

Lemma 16 Let Y (X1, ..., Xe) be an element of K[[X]] = K[[X1, ..., Xe]]. Consider :

y(x1, ..., xe) = Y (x1, x2x
−1
1 , . . . , xex

−1
1 ).

We have y ∈ KC [[x]].

Proof : Write Y (X1, ..., Xe) =
∑

(a1,...,ae)

γ(a1,...,ae)X
a1
1 . . . Xae

e . We have :

y(x1, ..., xe) =
∑

(a1,...,ae)

γ(a1,...,ae)x
a1
1 (x2x

−1
1 )a2 . . . (xex

−1
1 )ae

=
∑

(a1,...,ae)

γ(a1,...,ae)x
a1−(a2+...+ae)
1 xa22 . . . xaee

Let Supp(Y ) be the support of Y , then

Supp(y) = {(a1 − (a2 + . . .+ ae), a2, ..., ae), (a1, ..., ae) ∈ supp(Y )}.

Now let q = (q1, q2, ..., qe) = (a1 − (a2 + . . . + ae), a2, ..., ae) be an element of Supp(y), where (a1, ..., ae) ∈
supp(Y ). Since Y (X) ∈ K[[X]], then (a1, ..., ae) ≥ 0 componentwise. Hence q1 = a1 − (a2 + . . . + ae) ≥
−(a2 + . . . + ae) = −(q2 + . . . + qe) and qi = ai ≥ 0 for all 2 ≤ i ≤ e, and so q ∈ C. It follows that
y ∈ KC [[x]].�
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Definition 28 Let n, e ∈ N∗. We define the ring KC [[x
1
n

1 , ..., x
1
n
e ]], denoted by KC [[x

1
n ]], to be the set of

formal power series of the form
∑

p=(p1,...,pe)∈C

cpx
p

n =
∑

p=(p1,...,pe)

cpx
p1
n

1 . . . x
pe
n
e .

Lemma 17 Let f be a polynomial in K[[x]][y]. Then f is irreducible in KC [[x]][y] if and only if F (x1, ..., xe, y) =
f(x1, x2x1, ..., xex1, y) is irreducible in K[[x]][y], where polynomials are considered as polynomials in the va-
riable y.

Proof : Suppose that f is irreducible in KC [[x]][y] and suppose to the contrary that F is reducible in K[[x]][y].
There exists some monic polynomials G,H ∈ K[[x]][y] such that F = G.H and 0 < degy(G), degy(H) < n.
But f(x1, ..., xe, y) = F (x1, x2x

−1
1 , . . . , xex

−1
1 , y). Then :

f(x1, ..., xe, y) = G(x1, x2x
−1
1 , . . . , xex

−1
1 , y).H(x1, x2x

−1
1 , . . . , xex

−1
1 , y)

Let g(x, y) = G(x1, x2x
−1
1 , . . . , xex

−1
1 , y) and h(x, y) = H(x1, x2x

−1
1 , . . . , xex

−1
1 , y). Let m = degy(G) and

write G(x, y) = ym + a1(x)y
m−1 + ...+ am(x), where ai(x) ∈ K[[x]] for all i = 1, ...,m. Then :

g(x, y) = ym + a1(x1, x2x
−1
1 , . . . , xex

−1
1 )ym−1 + ...+ am(x1, x2x

−1
1 , . . . , xex

−1
1 )

Since ai(x) ∈ K[[x]] for all i = 1, ...,m, then by Lemma 16 we get that ai(x1, x2x
−1
1 , . . . , xex

−1
1 ) ∈ KC [[x]] for

all i = 1, ...,m. It follows that g ∈ KC [[x]][y]. Similarly we can prove that h ∈ KC [[x]][y]. Hence f = g.h with
0 < degy(g) = degy(G) < n and 0 < degy(h) = degy(H) < n = degy(f), and so f is reducible in KC [[x]][y],
which is a contradiction. It follows that F is irreducible in K[[x]][y].
Conversely Let F be an irreducible polynomial in K[[x]][y], and let f = F (x1, x2x

−1
1 , . . . , xex

−1
1 , y). Since

F ∈ K[[x]][y], then F is a polynomial in y with coefficients in K[[x]]. It follows from lemma 16 that f is a
polynomial in y with coefficients in KC [[x]], and so f ∈ KC [[x]][y]. Now suppose to the contrary that f is
reducible in KC [[x]][y], that is there exists h1, h2 ∈ KC [[x]][y] such that f = h1h2 with degy(h1), degy(h2) <
degy(g).
Now let a(x1, ..., xe) =

∑

cax
a1
1 . . . xaee be an element in KC [[x]], then

a(x1, x2x1, ..., xex1) =
∑

cax
a1
1 (x2x1)

a2 . . . (xex1)
ae =

∑

cax
a1+a2+...+ae
1 xa22 . . . xaee

Since a(x) ∈ KC [[x]], then a1 ≥ −(a2+ . . .+ae) for all (a1, ..., ae) ∈ Supp(a(x)). It follows that a1+a2+ . . .+
ae ≥ 0 for all (a1, ..., ae) ∈ Supp(a(x)). Hence, a(x1, x2x1, ..., xex1) ∈ K[[x]]. Then h1(x1, x2x1, ..., xex1, y),
h2(x1, x2x1, ..., xex1, y) ∈ K[[x]][y]. But

F (x1, ..., xe, y) = f(x1, x2x1, ..., xex1, y) = h1(x1, x2x1, ..., xex1, y)h2(x1, x2x1, ..., xex1, y).

Hence F is reducible in K[[x]][y], which is a contradiction.�

Definition 29 Let f be a polynomial of degree n in KC [[x]][y]. Then f is said to be a free polynomial if f

is irreducible in KC [[x]][y] and if it admits a solution in KC [[x
1
n ]].

Theorem 5 Let f(x, y) = yn+a1(x)y
n−1+ · · ·+an−1(x)y+an(x) be a polynomial of K[[x]][y] that satisfies

condition (1). Suppose that f is irreducible in KC [[x]][y], then f is free.

Proof : By Theorem 4 the polynomial F defined by

F (X1, ..., Xe, y) = f(X1, X2X1, . . . , XeX1, y)

is a quasi-ordinary polynomial of K[[X]][y].
By Lemma 17 we get that F is an irreducible quasi-ordinary polynomial in K[[X]][y] of degree n, then by

the Abhyankar-Jung theorem there exists a formal power series Z(X1, ...Xe) =
∑

(a1,...,ae)

γ(a1,...,ae)X
a1
n

1 ...X
ae
n
e

in K[[X
1
n

1 , ..., X
1
n
e ]] such that F (X1, ..., Xe, Z(X1, ..., Xe)) = 0. But :

F (X1, ..., Xe, Z(X1, ..., Xe)) = f(X1, X2X1, . . . , XeX1, Z(X1, ..., Xe))

Then f(x1, x2, ..., xe, Z(x1, x2x
−1
1 , . . . , xex

−1
1 )) = 0. It follows that Z(x1, x2x

−1
1 , . . . , xex

−1
1 ) is a solution of

f(x1, ..., xe, y) = 0. Since Z(X1, ..., Xe) ∈ K[[X
1
n ]], then by Lemma 16 we deduce that Z(x1, x2x

−1
1 , . . . , xex

−1
1 )

belongs to KC [[x
1
n ]]. This proves our assertion.�
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Proposition 30 Let the notation be as above, with f a free polynomial of degree n in K[[x]][y] that satisfies
condition (1). Let d be a divisor of n. Then the d-th approximate root of f is free.

Proof : By Theorem 4 and Lemma 17 the polynomial F defined by

F (X1, ..., Xe, y) = f(X1, X2X1, . . . , XeX1, y)

is a quasi-ordinary irreducible polynomial of K[[X]][y]. Let G be the d-th approximate root of F , and let

F = Gd + C1(X, y)G
d−1 + . . .+ Cd(X, y)

be the G-adic expansion of F , with degy(Ci) <
n
d for all i ∈ {1, ..., d}. Since G is the d-th approximate root

of F , then by Proposition 5 we get that C1(X, y) = 0. Hence :

f(x1, ..., xe, y) = F (x1, x2x
−1
1 , . . . , xex

−1
1 , y)

= gd(x, y) + C ′
2(x, y)g

d−1(x, y) + . . .+ C ′
d(x, y)

Where g(x, y) = G(x1, x2x
−1
1 , . . . , xex

−1
1 , y) and C ′

i(x, y) = Ci(x1, x2x
−1
1 , . . . , xex

−1
1 , y) for all i ∈ {2, ..., d}.

By Lemma 16 we have g ∈ KC [[x]][y] and C ′
i ∈ KC [[x]][y] for all i ∈ {2, ..., n}. Since degy(C

′
i) <

n
d for all

i ∈ {2, ..., d} and degy(g) =
n
d , then again by Proposition 5 we get that g is the d−th approximate root of

f in KC [[x]][y]. By Proposition 6, f admits a unique d−th approximate root in KC [[x]][y], but f ∈ K[[x]][y]
and K[[x]][y] ⊆ KC [[x]][y], then g is the d−th approximate root of f in K[[x]][y].
Since G is the approximate root of an irreducible quasi-ordinary polynomial then by Proposition 23 it is an

irreducible quasi-ordinary polynomial, hence by the Abhyankar-Jung theorem G admits a root in K[[x
1
n
d ]].

But g(x, y) = G(x1, x2x
−1
1 , . . . , xex

−1
1 , y), then by a similar discussion as in Theorem 5 we get that g admits

a root in KC [[x
1
n
d ]]. Moreover g is irreducible in KC [[x]][y] by Lemma 17. Hence g is free with respect to C.�

2.4.3 Characteristic exponents

Let the notation be as above where f ∈ KC [[x]][y] is a free polynomial with a root y ∈ KC [[x
1
n ]]. We will

study a special set of exponents of y, namely the set of characteristic exponents, with their properties.
Let L be the field of fractions of KC [[x]]. Moreover set :

L1 = L(x
1
n

1 ), L2 = L1(x
1
n

2 ), ..., Ln = Ln−1(x
1
n
e ) = L(x

1
n

1 , ..., x
1
n
e )

The field Li is obtained by adjoining the root x
1
n

i of the irreducible polynomial Y n − xi to Li−1, and Ln is a

Galois extension of L of degree ne. Let Un be the set of nth roots of unity in K. The conjugates of x
1
n

i over

L are ω.x
1
n

i with ω ∈ Un.

Definition 30 Let z(x) =
∑

cpx
p

n ∈ KC [[x
1
n ]]. The support of z, denoted by Supp(z), is defined to be the

set {p ∈ Ze, cp 6= 0}. Obviously Supp(z) ⊆ C ∩ Ze.

Let θ ∈ Aut(Ln/L). For all i = 1, ..., e we have θ(x
1
n

i ) = ωix
1
n

i for some ωi ∈ Un. Then :

θ(x
p

n ) = θ(x
1
n

1 )
p1 . . . θ(x

1
n
e )

pe = ωp11 x
p1
n

1 . . . ωpee x
pe
n
e = ωp11 . . . ωpee x

p

n = k.x
p

n

where k is a non-zero element in K.
Now let Roots(f) = {yi}1≤i≤n be the conjugates of y over L, with the assumption that y1 = y =

∑

cpx
p

n .
Then for all 2 ≤ i ≤ n there exists some automorphism θ ∈ Aut(Ln/L) such that yi = θ(y). Hence :

yi = θ(y) = θ(
∑

cpx
p

n ) =
∑

cpθ(x
p

n ) =
∑

cpkpx
p

n , kp ∈ K∗.

Since kp ∈ K∗ for all p ∈ Supp(y), we have Supp(y) = Supp(yi) for all i = 1, ..., h.

By Proposition 24, there exists an order ≤ on Ze which is compatible with C. Hence for all z(x) in KC [[x
1
n ]],

Supp(z(x)) can be arranged as an increasing sequence. We define the following notion : the order of z to be :
O(z) = inf(Supp(z)) if z 6= 0, and O(z) = ∞ for z = 0. We set LM(z) = x

p

n where p = O(z), and we call
it the leading monomial of z. We set LC(z) = cO(z) and we call it the leading coefficient of z.
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Definition 31 Let the notation be as above with {y1, ..., yn} = Roots(f) and y1 = y. The set of Characte-
ristic exponents of y is defined by :

{O(yi − yj), yi, yj ∈ Roots(f) and yi 6= yj}.

Similarly we define the set of Characteristic monomials of y to be : {LM(yi − yj), yi 6= yj}. Note that this
set depends on the order that we are using.

Proposition 31 Let the notation be as above. Then the set of Characteristic exponents of y is equal to the
set {O(yk − y), yk 6= y}.

Proof : For every 1 ≤ i 6= j ≤ n let cij = LC(yi − yj) and Mij = LM(yi − yj), then :

yi − yj = cijMij + ǫij

where ǫij ∈ Ln with O(ǫij) > O(Mij). Now let θ ∈ Aut(Ln/L) be the automorphism such that θ(yj) = y.
Then θ(yi) = yk for some 1 ≤ k ≤ n, and θ(yi − yj) = θ(yi) − θ(yj) = yk − y = ck1Mk1 + ǫk1 with
O(ǫk1) > O(Mk1). On the other hand θ(yi − yj) = θ(cijMij + ǫij) = cijαMij + θ(ǫij) with α 6= 0 and
O(θ(ǫij)) > O(Mij). Hence Mk1 =Mij = LM(yi − yj), and so we get :

{O(yi − yj), yi 6= yj are conjugates of y} = {O(yk − y), yk 6= y}. �

It follows from Proposition 31 that the set of characteristic monomials of y is given by :

{LM(yi − yj), yi 6= yj} = {Mk = LM(yk − y), k = 2, ..., n} = {LM(θ(y)− y), θ(y) 6= y, θ ∈ Aut(Ln/L)}.

Note that if n ≥ 2, then the characteristic monomial Mk does not belong to L for all k = 2, ..., n. Indeed,
for each Mk there exists an element θ ∈ Aut(Ln/L) such that θ(y)− y = ckMk + ǫk where ck is a non zero
constant in K and O(ǫk) > O(Mk). Since Supp(y) = Supp(θ(y)) then Mk is a monomial of y. Moreover we
have :

y = p+ cMk + q

where c is a non zero constant and p, q are in KC [[x
1
n ]] such that O(p) < O(Mk) < O(q), then θ(y) − y =

(θ(p)−p)+ c(θ(Mk)−Mk)+(θ(q)− q). It follows that θ(p)−p = 0 and θ(Mk)−Mk 6= 0, hence θ(Mk) 6=Mk

and so Mk /∈ L.
Now we write the characteristic monomials in an increasing order and we reindex them as :

M1 < M2 < ... < Mh

Proposition 32 Let the notation be as above with {M1, ...,Mh} the set of characteristic monomials of y.
The two field extensins L(y) and L(M1, ...,Mh) are equal.

Proof : Let θ ∈ Aut(Ln/L(y)), then θ is an L-automorphism of Ln with θ(y) = y. But if θ(y) = y then
θ(y) = θ(

∑

cpx
p

n ) =
∑

cpθ(x
p

n ) =
∑

cpkpx
p

n = y =
∑

cpx
p

n , with kp 6= 0 ∀p ∈ supp(y), and so θ(x
p

n ) = x
p

n .

Hence x
p

n ∈ L(y) ∀ p ∈ supp(y). In particular M1, ...,Mh are monomials of y, then M1, ...,Mh ∈ L(y), and
so L(M1, ...,Mh) ⊂ L(y).
Conversely y ∈ L(M1, ...,Mh). Since if θ ∈ Aut(Ln/L(M1, ..,Mh)), i.e if θ is an L automorphism of Ln
such that θ(Mi) = Mi ∀ i = 1, ..., h, then θ(y) = y. In fact if θ(y) 6= y then θ(y) − y = cMi + ǫi for some
characteristic monomial Mi, hence for this i we have θ(Mi) 6= Mi which contradicts the hypothesis. Then
L(y) ⊂ L(M1, ...,Mh), and so L(y) = L(M1, ...,Mh). �

Note that for all k = 1, ..., h the characteristic monomials of y are of the form Mk = x
mk
n for some mk ∈ C.

Moreover x
mk
n is a root of the polynomial Y n − xmk which belongs to L[Y ] since xmk ∈ L, and so Mk is

algebraic over L. Hence L(M1, ...,Mi) = L[M1, ...,Mi] for all i = 1, ..., h.

Proposition 33 Let the notation be as above with {m1, ...,mh} the set of characteristic exponents of y. Let

m ∈ Ze be an element of Supp(y), then m ∈ (nZ)e +

h
∑

i=1

miZ.
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Proof : Write M = x
m
n . Since M is a monomial of y, then M ∈ L(y) = L(M1, ...,Mh) = L[M1, ...,Mh].

Hence :

M =
f1
g1
M

α1
1

1 . . .M
α1
h

h + . . .+
fl
gl
M

αl
1

1 . . .M
αl
h

h .

for some f1, ..., fl, g1, ..., gl ∈ KC [[x]] and l ∈ N∗, and so :

g1 . . . glM = f1g2 . . . glM
α1
1

1 . . .M
α1
h

h + . . .+ flg1 . . . gl−1M
αl
1

1 . . .M
αl
h

h

Comparing both sides we get that LM(g1 . . . glM) = xaM
αi
1

1 . . .M
αi
h

h for some i ∈ {1, ..., l} and a ∈ Ze.
Now write LM(g1 . . . gl) = xb for some b ∈ Ze, then nb + m = na + αi1m1 + ... + αihmh, and so m =

n(a− b) + αi1m1 + ...+ αihmh. It follows that m ∈ (nZ)e +
∑h

i=1miZ.�

Now we define the following fields :

F0 = L

Fi = L[M1, ...,Mi] = Fi−1[Mi] for all i = 1, ..., h.

We also set :

Gi = (nZ)e +
i

∑

j=1

mjZ

for all i = 1, ..., h, and we write G0 = (nZ)e. Similar to Proposition 33 we can prove that for any monomial
M = x

m
n with m ∈ C, we have M ∈ Fi ⇔ m ∈ Gi.

Definition 32 Let the notation be as above with y =
∑

cpx
p

n a root of f in KC [[x
1
n ]]. Let {m1, ...,mh} be

the set of characteristic exponents of y. We define the following sequences :
• The GCD-sequence {Di}1≤i≤h+1, with D1 = ne and for all i ∈ {2, ..., h} Di+1 = gcd(nIe,m

T
1 , ...,m

T
i ), the

gcd of the (e, e) minors of the e× (e+ i) matrix A = (nIe,m
T
1 , ...,m

T
i ), where Ie is the identity e× e matrix.

• The d−sequence {di}1≤i≤h+1 with di =
Di

Dh+1
.

• The e-sequence {ei}1≤i≤h with ei =
Di

Di+1
= di

di+1
.

• The r−sequence {r10, ..., r
e
0, r1, ..., rh} by (r10, ...r

e
0) the canonical basis of (nZ)e, r1 = m1, and for all k ∈

{1, ..., h− 1} rk+1 = ek · rk +mk+1 −mk.

Note that we also have the following

rk+1 ·Dk+1 = Dk+1 · ek · rk + (mk+1 −mk) ·Dk+1 = Dk · rk + (mk+1 −mk) ·Dk+1

= m1 ·D1 +
k+1
∑

i=2

(mi −mi−1)Di.

Proposition 34 Let the notation be as in Definition 32 and let v be a non zero vector in Ze. Let D̃ be the gcd
of the e×e minors of the matrix (nIe,m

T
1 , ...,m

T
i , v

T ). Then v ∈ (nZ)e+
∑i

j=1mjZ if and only if D̃ = Di+1.

Moreover, Di+1

D̃
.v ∈ (nZ)e+

∑i
j=1mjZ and if Di+1 > D̃ then for all 1 ≤ k < Di+1

D̃
, k.v /∈ (nZ)e+

∑i
j=1mjZ.

Proof : Same as the proof of Proposition 16.�

Definition 33 Let a, b ∈ C. We say that x
a
n < x

b
n if a < b.

Proposition 35 For all i = 1, ..., h − 1 let Hi be the algebraic extension of L obtained by adjoining all the
monomials M of y such that M < Mi+1 then :
(i) Fi = Hi and Mi does not belong to Fi−1

(ii) The degree [Fi : Fi−1] of the field extension Fi−1 ⊂ Fi is equal to ei.
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Proof : (i) Since mj < mi+1 for all j = 1, ..., i, then M1, ...,Mi ∈ Hi, and so Fi ⊆ Hi. In order to prove
that Hi ⊆ Fi, consider a monomial M of y such that M < Mi+1. For each θ ∈ Aut(Ln/Fi), θ is an L
automorphism of Ln and θ(Mj) =Mj for all j < i+ 1. Hence LM(θ(y)− y) ≥Mi+1, and so θ(M) =M for
all M < Mi+1, hence M ∈ Fi. Finally we get that Hi = Fi. Now to prove that mi /∈ Fi−1, let θ ∈ Aut(Ln\L)
such that θ(y) − y = cMi + ε with O(ε) > mi and c a non zero constant( such θ obviously exists since
Mi is a characteristic monomial of y), then θ(Mj) = Mj for all j = 1, ..., i − 1 and θ(Mi) 6= Mi, and so
θ ∈ Aut(Ln\Fi−1) with θ(Mi) 6=Mi, hence Mi does not belong to Fi−1.
Note that (i) is equivalent to say that between all the exponents m of y, mi is the samllest one which does
not belong to Gi−1.
(ii) Since Mi /∈ Fi−1, then mi /∈ Gi−1, and so Di > Di+1. Moreover eimi ∈ Gi−1 and for all 0 < α < ei
we have α ·mi /∈ Gi−1. Now let g = yl + a1y

l−1 + ... + al with ak ∈ Fi−1 for all i = 1, ..., l be the minimal
polynomial of Mi over Fi−1 and suppose that l < ei. Since g(Mi) = 0, then there exists some k ∈ {0, ..., l−1}

such that xl
mi
n = x

α
n .x

kmi
n for some α ∈ Gi−1, and so (l − k)mi = α ∈ Gi−1 with 0 < l − k < ei which

is a contradiction. Hence the degree of the minimal polynomial of mi is at least ei. It follows easily that
Y ei − xei·

mi
n is the minimal polynomial of x

mi
n over Fi−1, hence [Fi : Fi−1] = ei.�

Proposition 36 Let f be a free polynomial of degree n, and let {m1, ...,mh}, {r1, ..., rh} and {e1, ..., eh}
be its sequence of characteristic exponents, its r−sequence, and its e−sequence respectively. Then for all
i ∈ {1, ..., h} we have eiri ∈ (nZ)e +

∑i−1
j=1 rjZ and αri /∈ (nZ)e +

∑i−1
j=1 rjZ for all 1 ≤ α < ei.

Proof : Note that each of the sequences (mk)1≤k≤h and (rk)1≤k≤h can be obtained from the other. In particular
the r−sequence can be rearranged in the following way : r1 = m1,r2 = e1 ·r1+m2−m1 = e1 ·m1+m2−m1 =
m2+m1(e1−1) and so we get that rk = mk+mk−1(ek−1−1)+mk−2(ek−2−1)ek−1+ ...+m1(e1−1)e2...ek−1.
Hence (nZ)e +

∑i
j=1 rjZ ⊆ (nZ)e +

∑i
j=1mjZ for all i ∈ {1, ..., h}.

On the other hand we have m1 = r1 and m2 = r2 − (e1 − 1)r1. Suppose that mk = rk + (ek−1 − 1)rk−1 +
. . .+ (e1 − 1)r1 up to some k with k ≥ 2, and let us prove it for k + 1. We have

rk+1 = ekrk +mk+1 −mk

= mk+1 + (ek − 1)rk + (ek−1 − 1)rk−1 + . . .+ (e1 − 1)r1.

Hence mk+1 = rk+1 − (ek − 1)rk + . . . + (e1 − 1)r1, and so it is true for all k ∈ {2, ..., h}. It follows that
(nZ)e +

∑i
j=1 rjZ = (nZ)e +

∑i
j=1mjZ for all i ∈ {1, ..., h}.

We have proved that for any α ∈ N we have αmi = αri − α(ei−1 − 1)ri−1 − . . . − α(e1 − 1)r1 and that
(nZ)e +

∑i−1
j=1mjZ = (nZ)e +

∑i−1
j=1 rj−1Z. It follows easily that αri ∈ (nZ)e +

∑i−1
j=1 rjZ if and only if

αmi ∈ (nZ)e +
∑i−1

j=1mjZ.

Now let i ∈ {1, ..., h} and let Mi = x
mi
n be the characteristic monomials. We have mi /∈ (nZ)e +

∑i−1
j=1mjZ.

Otherewise, we will get that mi = α1m
1
0+. . .+αem

e
0+β1m1+. . .+βi−1mi−1 for some α1, . . . , αe, β1, . . . , βe ∈

Z. It follows that x
mi
n = xα1

1 . . . xαe
e M

β1
1 . . .M

βi−1

i−1 ∈ L(M1, ...,Mi−1). Which is a contradiction. It follows from

Proposition 34 that eimi =
Di

Di+1
mi ∈ (nZ)e +

∑i−1
j=1mjZ and βmi /∈ (nZ)e +

∑i−1
j=1mjZ for all 1 ≤ β < ei.

It follows directly that eiri ∈ (nZ)e +
∑i−1

j=1 rjZ and αri /∈ (nZ)e +
∑i−1

j=1 rjZ for all 1 ≤ α < ei�.

Remark 12 Since [L(y) : L] = n, it follows from Proposition 35 that [L(y) : L] = e1 . . . eh = D1
Dh+1

. But

[L(y) : L] = n and D1 = ne, hence Dh+1 = ne−1. Moreover d1 = n and dh+1 = 1.

Now we define the following sets :

Q(i) = {θ ∈ Aut(Ln/L), such that O(y − θ(y)) < mi}

R(i) = {θ ∈ Aut(Ln/L), such that O(y − θ(y)) > mi}

S(i) = {θ ∈ Aut(Ln/L), such that O(y − θ(y)) = mi}

Proposition 37 Let the notation be as above with {Di}i the GCD-sequence associated to y, then #S(i) =
Di −Di+1, where #S(i) is the cardinality of the set S(i).
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Proof : Since Ln is an extension of degree ne of L, then #Aut(Ln/L) = [Ln : L] = ne. We have

θ ∈ R(i)⇔ O(y − θ(y)) > mi ⇔ θ(Mj) =Mj ∀j < i⇔ θ ∈ Aut(Ln/L(M1, ...,Mi−1))

Hence #R(i) = #Aut(Ln/L(M1, ...,Mi−1)) = [Ln : L(M1, ...,Mi−1)] = [Ln : Fi−1]. By Proposition 35 we
have :

[Fi−1 : L] = [Fi−1 : Fi−2] · · · [F1 : L] = ei−1 · · · e1

=
D1

D2
·
D2

D3
· · ·

Di−1

Di
=
D1

Di
=
ne

Di

But [Ln : L] = [Ln : Fi−1] · [Fi−1 : L] = ne, then [Ln : Fi−1] = Di, and so #(R(i)) = Di. Now let θ ∈ R(i+1),
then O(y − θ(y)) > mi+1, but mi+1 > mi, then O(y − θ(y)) > mi, and so θ ∈ R(i), hence R(i+ 1) ⊂ R(i).
Moreover θ ∈ S(i) if and only if O(y − θ(y)) = mi if and only if θ ∈ R(i) and θ /∈ R(i + 1). It follows that
#S(i) = #R(i)−#R(i+ 1), and so #S(i) = Di −Di+1. �

2.4.4 The initial form of the minimal polynomial of y<mi

Let f be a free polynomial of degree n in KC [[x]][y], and let y =
∑

cpx
p

n ∈ KC [[x
1
n ]] be a root of f . Let

{m1, ...,mh} and {r1, ..., rh} be the set of characteristic exponents and the r−squence of y respectively. For
all i ∈ {1, ..., h} we will define a specific polynomial Gi called the i−th pseudo-root of f . We will prove that
O(Gi(x, y(x))) = ri. Moreover, we will prove that Gi is a free polynomial in KC [[x]][y] for all i ∈ {1, ..., h},
and we will find the relation between the characteristic exponents of f and those of Gi.

Definition 34 Let the notation be as above, and let m be one of the exponents of y. Then an m−truncation

of y is defined to be y<m :=
∑

p<m

cpx
p

n with p ∈ Supp(y).

By p < m we mean that p ≤ m with respect to the defined order on C and p 6= m. Note that since C is a
line free cone, y<m is a finite sum of monomials, and it is obviously an element in KC [[x

1
n ]] ⊂ Ln.

Definition 35 Let the notation be as above with {m1, ...,mh} the set of characteristic exponents of y. For
all i = 1, ..., h let y<mi

be the mi-truncation of y, then the i-th pseudo-root of f is defined to be the minimal
polynomial of y<mi

over L.

Proposition 38 Let the notation be as above. For all i = 1, ..., h let Gi be i-th pseudo-root of f , then
degy(Gi) =

ne

Di
= n

di
.

Proof : By Proposition 35 we have L(y<mi
) = L(M1, ..,Mi−1). By a similar argument as in the proof of

Proposition 37, we get :

degy(Gi) = [L(y<mi
) : L] = [L(M1, ...,Mi−1) : L] =

ne

Di
.�

For all i = 1, ..., h the i − th pseudo-root Gi splits completely in Ln. Moreover the conjugates of y<mi
over

L are θ(y<mi
), with θ ∈ Aut(Ln/L), which are elements of KC [[x

1
n ]], then Gi has ne

Di
roots in KC [[x

1
n ]]. Let

z1, ..., z ne

Di

be the roots of Gi, then

Gi =

ne

Di
∏

i=1

(y − zi) ∈ KC [[x
1
n ]][y]

but Gi ∈ L, hence Gi ∈ KC [[x]][y].

Proposition 39 Let the notation be as above with f a free polynomial of degree n and y = y(x
1
n ) a root of

f , then :

f(x, Y )n
e−1

=
∏

θ∈Aut(Ln/L)

(Y − θ(y))
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Proof : Let {y1, ..., yn} be the conjugates of y over L. For all i = 1, .., n set :

Ai = {θ ∈ Aut(Ln/L), θ(y) = yi} and ai = #(Ai).

We have θ ∈ A1 if and only if θ ∈ Aut(Ln/L) and θ(y) = y1 = y if and only if θ ∈ Aut(Ln/L(y)), hence :

#(A1) = #Aut(Ln/L(y)) = [Ln : L(y)].

But [Ln : L(y)][L(y) : L] = [Ln : L] with [Ln : L] = ne and [L(y) : L] = deg(f) = n, then [Ln : L(y)] = ne

n =
ne−1 and so a1 = #(A1) = ne−1.
Write A1 = {β1, ..., βne−1} and we want to prove that #(Ai) = #(A1) = ne−1 for all i = 1, .., n. Let yi be a
conjugate of y other than y. Since Ln/L is a normal extension then there existes some αi ∈ Aut(Ln/L) such
that αi(y) = yi. For all i = 1, ..., ne−1 we have αi ◦βj(y) = αi(y) = yi and so αi ◦βj ∈ Ai. Moreover, if j 6= k,
then αi ◦ βj 6= αi ◦ βk, hence ai = #(Ai) ≥ #(A1) = a1 = ne−1. If al > a1 = ne−1 for some l = 2, ..., n, then
n
∑

l=1

al > ne, but
n
∑

l=1

al = ne, this is a contradiction. It follows that for all i = 1, ..., n we have ai = a1 = ne−1.

Hence for all i = 1, ..., n Ai can be written as

Ai = {θ
j
i , 1 ≤ j ≤ n

e−1}

Hence :

∏

θ∈Aut(Ln/L)

(Y − θ(y)) =

ne−1
∏

j=1

n
∏

i=1

(Y − θji (y)) =
ne−1
∏

j=1

n
∏

i=1

(Y − yi) =
ne−1
∏

j=1

f = fn
e−1

Hence the proof is completed. �

Proposition 40 Let the notation be as above. For all i = 1, ..., h let Gi(x, Y ) be the i-th pseudo root of f .
Then

(Gi(x, Y ))Di =
∏

θ∈Aut(Ln/L)

(Y − θ(y<mi
))

Proof : Let y1, ..., y ne

Di

be the conjugates of y<mi
with y1 = y<mi

. For all i = 1, ..., n
e

Di
set :

Aj = {θ ∈ Aut(Ln/L), θ(y<mi
) = yj} and aj = #Aj

For each j = 1, ..., n
e

Di
there exists αj ∈ Aut(Ln/L) such that αj(y1) = yj , so we define the set {αj ◦θ, θ ∈ A1}

and we denote it by αj ◦A1. We want to prove that Aj = αj ◦A1.
Let θ ∈ A1, we have θ(y1) = y1, hence αj ◦ θ(y1) = αj(y1) = yj . But αj , θ ∈ Aut(Ln/L), then αj ◦ θ ∈
Aut(Ln/L), and so αj ◦ θ ∈ Aj this implies that αj ◦A1 ⊂ Aj .
Now let β ∈ Aj , then β(y1) = yj . Write β = αj ◦ (α

−1
j ◦ β). Then :

αj((α
−1
j ◦ β)(y1)) = β(y1) = yj = αj(y1)

But αj is injective, then (α−1
j ◦ β)(y1) = y1, hence α−1

j ◦ β ∈ A1. It follows that β = αj ◦ (α
−1
j ◦ β) ∈ αj ◦A1.

Then Aj ⊂ αj ◦A1. Finally we get that Aj = αj ◦Aj .
Now A1 = {θ ∈ Aut(Ln/L), θ(y<mi

) = y<mi
} = Aut(Ln/L(y<mi

)) = Aut(Ln/L(M1, ...,Mi−1)) by Proposi-
tion 35. Hence a1 = #A1 = #Aut(Ln/L(M1, ...,Mi−1)) = Di but since ∀θ1, θ2 ∈ A1 and θ1 6= θ2 we have
αj ◦ θ1 6= αj ◦ θ2 then aj = #Aj = #A1 = a1 = Di. Write Aj = {θ

k
j , 1 ≤ k ≤ Di}, we get :

∏

θ∈Aut(Ln/L)

(Y − θ(y<mi
)) =

Di
∏

k=1

ne

Di
∏

j=1

(Y − θkj (y<mi
)) =

Di
∏

k=1

ne

Di
∏

j=1

(Y − yj) =

Di
∏

k=1

G = GDi . �



48 CHAPITRE 2. FREE POLYNOMIALS

Lemma 18 Let the notation be as above with y ∈ KC [[x
1
n ]] a root of a free polynomial f ∈ KC [[x]][y], and

let {m1, ...,mh} be the set of characteristic exponents of y and {D1, ..., Dh+1} be its GCD sequence. For all

1 ≤ i ≤ h set Si = m1 ·D1 +
i

∑

j=1

(mj −mj−1)Dj then we have :

O(
∏

θ∈Q(i)

(y − θ(y))) = Si−1 −mi−1 ·Di.

Proof : We have θ ∈ Q(i) if and only if O(y − θ(y)) < mi if and only if O(y − θ(y)) = mj for some
j ∈ {1, ..., i− 1}. It follows that Q(i) = ∪i−1

j=1S(j). Hence

∏

θ∈Q(i)

(y − θ(y)) =

i−1
∏

j=1

∏

θ∈S(j)

(y − θ(y)).

By Proposition 37 we have #(S(j)) = Dj −Dj+1, and so for all j = 1, ..., i− 1 we have :

O(
∏

θ∈S(j)

(y − θ(y))) = (Dj −Dj+1)mj .

Hence :

O(
∏

θ∈Q(i)

(y − θ(y))) = (D1 −D2)m1 + (D2 −D3)m2 + ...+ (Di−1 −Di)mi−1

= D1m1 +D2(m2 −m1) + ...+Di−1(mi−1 −mi−2) +Dimi−1

= Si−1 −mi−1 ·Di.�

Definition 36 Let y be a formal power series in KC [[x]]. Let ≤ be an order which is compatible with C, and
let LM(y) and LC(y) be the leading monomial and the leading coefficient of y with respect to this order. The
initial form of y with respect to this order is defined to be : Info(y) := LC(y) · LM(y).

Definition 37 Let the notation be as above with {m1, ...,mh} the set of characteristic exponents of y,
and Z 6= 0 an indeterminate. Let i ∈ {1, ..., h}, by an (i, Z)-deformation of y we mean an element y∗ ∈

K′(Z)C [[x
1
n ]] where K′ is an overfield of K, such that Info(y∗ − y<mi

) = Z · x
mi
n . Note that the initial form

is taken with respect to the chosen order on C.

Proposition 41 Let f be a free polynomial with a root y. Let {m1, ...,mh} be the set of characteristic
exponents of y, and for all 1 ≤ i ≤ h let Gi be the i-th pseudo root of f and y∗ be an (i, Z) deformation of
y. Then :

Info(Gi(x, y
∗)) = c · Z · x

ri
n .

Where c ∈ K is a non zero constant.

Proof : By Proposition 40 we have :

Gi(x, y
∗)Di =

∏

θ∈Aut(Ln/L)

(y∗ − θ(y<mi
)).

Since Aut(Ln/L) is the disjoint union of R(i) and Q(i)), then :

Info(Gi(x, y
∗))Di = Info(

∏

θ∈Aut(Ln/L)

(y∗ − θ(y<mi
)))

= Info(
∏

θ∈Q(i))

(y∗ − θ(y<mi
))) · Info(

∏

θ∈R(i)

(y∗ − θ(y<mi
))).
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Consider the equation :

y∗ − θ(y<mi
) = (y∗ − y<mi

) + (y<mi
− y) + (y − θ(y)) + (θ(y)− θ(y<mi

))

For all θ ∈ Aut(Ln/L) we have O(θ(y) − θ(y<mi
)) = O(θ(y − y<mi

)) = O(y − y<mi
) = mi, also by the

definition of the deformation y∗, we have O(y∗ − y<mi
) = mi. Then :

(i) If θ ∈ Q(i), we have Info(y∗ − θ(y<mi
)) = Info(y − θ(y)), and using Lemma 18 we get :

Info
∏

θ∈Q(i)

(y∗ − θ(y<mi
)) = Info

∏

θ∈Q(i)

(y − θ(y)) = λ · x
Si−1−mi−1Di

n (2.3)

Where λ is a non zero constant in K.

(ii) If θ ∈ R(i), then θ(y<mi
) = y<mi

, and so Info(y∗ − θ(y<mi
)) = Info(y∗ − y<mi

) = Z · x
mi
n . But

card(R(i)) = Di, then :

Info
∏

θ∈R(i)

(y∗ − θ(y<mi
)) =

∏

θ∈R(i)

Info(y∗ − θ(y<mi
)) =

Di
∏

i=1

(Z · x
mi
n ) = ZDi · x

miDi
n

Combining (i) and (ii) we get :

Info(Gi(x, y
∗))Di = Info

∏

θ∈Q(i)

(y∗ − θ(y<mi
)) · Info

∏

θ∈R(i)

(y∗ − θ(y<mi
))

= λ · x
Si−1−mi−1Di

n · ZDi · x
miDi

n

= λ · ZDi · x
Si−1−mi−1Di+miDi

n = λ · ZDi · x
Si
n = λ · ZDi · x

riDi
n

Hence Info(Gi(x, y
∗)) = c · Z · x

ri
n for some c ∈ K∗. Moreover, O(Gi(x, y

∗)) = ri.�

As a corollary of Proposition 41 we get the following :

Corollary 2 Let the notation be as in Proposition 41. We have O(Gi(x, y(x))) = ri.

Proof : In fact, y(x) = y∗(x)|Z=1. Hence the result follows.

Proposition 42 Let f be a free polynomial in KC [[x]][y], and let Gi be the i-th pseudo root of f , where

i ∈ {1, ..., h}. Then Gi is a free polynomial. In particular its root y<mi
∈ KC [[x

1
n
di ]] and its characteristic

exponents are m1
di
, ..., mi−1

di
.

Proof : We want to prove that y<mi
∈ KC [[x

1
n
di ]]. Let x

λ
n be a monomial of y<mi

, then λ ∈ (nZ)e+
∑i−1

j=1mjZ.

Let D be the gcd of the minors of the matrix (m1
0, ...,m

e
0,m1, ...,mi−1, λ), then by Proposition 16 we have

D = Di. For all l ∈ {1, ..., e} the matrix Al = (m1
0, ...,m

l−1
0 , λ,ml+1

0 , ...,me) is one of the minors of the matrix
(m1

0, ...,m
e
0,m1, ...,mi−1), then Di divides Det(Al) for all l ∈ {1, .., e}. Write λ = (λ1, ..., λe), then obviously

Det(Al) = ne−1λl, and so Di divides ne−1λl for all l ∈ {1, ..., e}. It follows that Di divides ne−1λ, and so

ne−1λ
Di

= λ
di
∈ Ze. Moreover, since λ ∈ C, and 1

di
≥ 0, then λ

di
∈ C. It follows that x

λ
n = x

λ′

n
di where λ′ = λ

di
,

and so x
λ
n ∈ KC [[x

1
n
di ]].

Let θ(y<mi
) be a conjugate of y<mi

, then obviously LM(θ(y<mi
)− y<mi

) = x
mj

n for some j ∈ {1, ..., i− 1}.

But
mj

n =

mj

di
n
di

, hence the set of characteristic monomials of y<mi
is {m1

di
, ..., mi−1

di
}.�
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2.4.5 The initial form of the approximate roots of f

Let the notation be as above with f a free polynomial of degree n in KC [[x]][y] and let y(x) ∈ KC [[x]] be a
root of f(xn, y) = 0. Let g ∈ KC [[x]][y] such that f does not divide g. From now on we will write O(f, g)
for the smallest element in the set Supp(g(xn, y(x))) with respect to the given order on the cone. Note that
if z(x) is another root of f , then z = θ(y) for some θ ∈ Aut(Ln\L), and so g(xn, z(x)) = g(xn, θ(y(x))) =
θ(g(xn, y(x))). But Supp(g(xn, y(x))) = Supp(θ(g(xn, y(x)))). It follows that O(f, g) does not depend on the
choice of the root of f . Note also that if g1, g2 are nonzero elements of KC [[x]][y], which are not divisible by
f , then O(f, g1g2) = O(f, g1) +O(f, g2).
Now for each polynomial g such that f does not divide g, we will consider O(f, g). We will prove that the set
of such elements form a semigroup. Moreover, if degy(g) <

n
di

, then O(f, g) ∈< r10, ...., r
e
0, r1, ..., ri−1 >. For

all i ∈ {1, ..., h} we will take gi to be the di-th approximate root of f , where {d1, ..., dh} is the d−sequence of
f . We will prove that ri = O(f, gi) for all i ∈ {1, ..., h}. The following Proposition shows that O(f,Gi) = ri
if Gi is the i-th pseudo-root of f .

Proposition 43 Let i ∈ {1, . . . , h} and let Gi be the i-th pseudo-root of f . We have O(f,Gi) = ri.

Proof : This is an immediate consequence of Corollary 2.

Proposition 44 Let f be a free polynomial of degree n in KC [[x]][y], and let {G1, ..., Gh} be the set of pseudo
roots of f . Let i ∈ {1, ..., h}, then we have O(Gi, Gj) =

rj
di

for all j ∈ {1, ..., i− 1}.

Proof : Let y ∈ KC [[x
1
n ]] be a root of f , and let {m1, ...,mh} be its set of characteristic exponents, and

let {d1, ..., dh} be its d−sequence. For all j = 1, ..., i − 1 the
mj

di
truncation of y<mi

is obviously y<mj
. By

Proposition 42 we have that m1
di
, ..., mi−1

di
are the characteristic exponents of Gi. It follows directly that the

pseudo-roots of Gi are {G1, ..., Gi−1}. Let D′
1, ..., D

′
i be the GCD−sequence of Gi. Then

D′
j = GCD(

r10
di
, ...,

re0
di
,
m1

di
, ...,

mi−1

di
) =

1

di
Dj

for all j ∈ {1, ..., i}. Let {e′j}1≤j≤i−1 be the e−sequence of Gi. We have d′j =
D′

j

D′

i
=

Dj

di
Di
di

=
Dj

Di
. Hence

e′j =
D′

j

D′

j+1
=

Dj

Dj+1
= ej . Let {α1

0, ..., α
e
0, r

′
1, ..., r

′
i−1} be the r−sequence of Gi where {α1

0, ..., α
e
0} is the

canonical basis of ( ndiZ)
e. Then α1

0 =
r10
di
, ..., αe0 =

re0
di

and r′1 = m′
1 = m1

di
= r1

di
. Suppose that r′k = rk

di
for

k = 1, ..., j, then

rj+1 = e′jr
′
j +m′

j+1 −m
′
j = ej

rj
di

+
mj+1

di
−
mj

di
=

1

di
(ejrj +mj+1 −mj) =

rj+1

di
.

It follows that the r−sequence of Gi is equal to {
r10
di
, ...,

re0
di
, r1di , ...,

ri−1

di
}. Finally by Proposition 43 we get

O(Gi, Gj) =
rj
di

for all j ∈ {1, ..., i− 1}.�

Recall that for all H ∈ KC [[x]][y] the expansion of H with respect to (G1, ..., Gh, f) is given by :

H =
∑

θ

cθ(x)G
θ1
1 . . . Gθhh f

θh+1

Where θ = (θ1, ..., θh+1) with 0 ≤ θi < ei =
di
di+1

for all i = 1, ..., h and θh+1 ∈ N. Moreover we have the
following proposition :

Lemma 19 Let f a free polynomial in KC [[x]][y], and let g ∈ KC [[x]][y] be such that g is not a multiple of

f . Let g =
∑

θ

cθ(x)G
θ1
1 . . . Gθhh f

θh+1 be the expansion of g with respect to (G1, ..., Gh, f). Then there exists a

unique θ ∈ A such that O(f, g) = O(f, cθ(x)G
θ1
1 . . . Gθhh f

θh+1).
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Proof : Note that the expansion of g with respect to (G1, ..., Gh, f) is given by g =
∑

θ

cθ(x)G
θ1
1 . . . Gθhh f

θh+1

with θ = (θ1, ..., θh+1) ∈ A = {(β1, ..., βh+1), 0 ≤ βj < ej ∀j = 1, ..., h, θh+1 ∈ N}. Let cθ(x)G
θ1
1 . . . Gθhh ,

cθ′(x)G
θ′1
1 . . . G

θ′
h

h be two distinct elements of g, and let θ0 = O(f, cθ(x)) and θ′0 = O(f, cθ′(x)). Suppose that

O(f, cθ(x)G
θ1
1 . . . Gθhh ) = O(f, cθ′(x)G

θ′1
1 . . . G

θ′
h

h ), that is θ0 +
∑h

i=1 θiri = θ′0 +
∑h

i=1 θ
′
iri and let j be the

greatest element such that θj 6= θ′j , and suppose that θj > θ′j . Then

(θj − θ
′
j)rj = (θ′0 − θ0) +

j−1
∑

k=1

(θ′k − θk)rk

with 0 < θj − θ′j < ej , which is a contradiction because ej is the smallest positive integer α such that

αrj ∈ (nZ)e +
∑j−1

k=1 rkZ (see Proposition 36). Now If θh+1 6= 0 for all θ with cθ(x) 6= 0, then g = h.f for
some h ∈ KC [[x]][y], and so f divides g which contradicts the hypothesis. It follows that there exists at least
an element θ ∈ A with cθ(x) 6= 0 which is of the form (θ1, ..., θh, 0), and by the above discussion we conclude
that there exists a unique cγ(x)G

γ1
1 . . . Gγhh such that

O(f, g) = O(f, cγ(x)G
γ1
1 . . . Gγhh ) = γ0 +

h
∑

i=1

γiri = inf{O(f, cθG
θ1
1 . . . Gθhh ), cθ 6= 0}

by the additive property of O, where γ0 = O(f, cγ(x)) =
∑e

i=1 λ
i
0r
i
0 for some λ10, ..., λ

e
0 ∈ Z.�

Remark 13 Note that Lemma 19 is equivalent to saying that if f is a free polynomial and f does not divide
g, there exist unique λ10, ..., λ

e
0, λ1, ..., λh ∈ Z such that O(f, g) =

∑e
i=1 λ

i
0r
i
0 +

∑h
i=1 λiri with 0 ≤ λi < ei for

all i ∈ {1, ..., h}.

Proposition 45 Let the notation be as above, and consider a non zero polynomial F in KC [[x]][y] such that
degy(F ) <

n
di

for some 1 ≤ i ≤ h. Then O(f, F ) ∈ (nZ)e + r1N+ . . .+ ri−1N.

Proof : Since degy(F ) <
n
di

, then the expansion of F with respect to (G1, ..., Gh, f) is given by :

F =
∑

θ

cθ(x)G
θ1
1 ...G

θi−1

i−1 .

Where θ = (θ1, ..., θi−1) ∈ B = {(β1, ..., βi−1), 0 ≤ βj < ej =
dj
dj+1

∀j = 1, ..., i− 1}. Similar to

Lemma 19, we can prove that there exists a unique cγ(x)G
γ1
1 . . . G

γi−1

i−1 such that

O(f, F ) = O(f, cγ(x)G
γ1
1 . . . G

γi−1

i−1 ) = γ0 +

i−1
∑

i=1

γiri = inf{O(f, cθG
θ1
1 . . . G

θi−1

i−1 ), cθ 6= 0}

where γ0 = O(f, cγ(x)) =
∑e

i=1 λ
i
0r
i
0 for some λ10, ..., λ

e
0 ∈ Z. Hence we get the result.�

Proposition 46 Let the notation be as above with {G1, ..., Gh} the set of pseudo-roots of f . Let g ∈ KC [[x]][y]
such that degy(g) <

n
di

for some i ∈ {1, ..., h}. Then O(f, g) = diO(Gi, g).

Proof : Let g =
∑

θ

cθ(x)G
θ1
1 . . . Gθhh f

h+1 be the expansion of g with respect to (G1, ..., Gh, f). Since degy(g) <

degy(Gi) =
n
di

, then the expansion of g with respect to (G1, ..., Gh, f) coincides with the expansion of g with
respect to (G1, ..., Gi−1). In particular for all θ such that cθ(x) 6= 0 we have θ = (θ1, ..., θi−1, 0, ..., 0). Since

degy(g) <
n
di

, then by Proposition 45 there exists a unique cθ0(x)G
θ01
1 . . . G

θ0i−1

i−1 such that :

O(f, g) = O(f, cθ0(x)G
θ01
1 . . . G

θ0i−1

i−1 ) = O(f, cθ0(x)) +

i−1
∑

j=1

θ0j rj
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Also by Proposition 45 we have

O(Gi, g) = inf{O(Gi, cθG
θ1
1 . . . G

θi−1

i−1 ), cθ 6= 0}

By Proposition 44 we have O(Gi, Gj) =
rj
di

for all j ∈ {1, ..., i−1}, also we have O(Gi, cθ(x)) =
1
di
O(f, cθ(x)),

then O(Gi, g) = O(Gi, cθ0(x)) +
∑i−1

j=1 θj
rj
di

= 1
di
(O(f, cθ(x)) +

∑i−1
j=1 θjrj) =

1
di
O(f, g).�

Let f be a polynomial of degree n in KC [[x]][y], and let d1 > . . . > dh+1 be the set of divisors of n. For all
i ∈ {1, ..., h} set ei =

di
di+1

. Let i ∈ {1, ..., h} and consider a monic polynomial Gi of degree n
di

. Let

f = Gdhh (x, y) + C1(x, y)G
dh−1
h (x, y) + . . .+ Cdh(x, y).

be the Gi−adic expansion of f . Recall that, with the notation and results of Section 2.3, the Tshirnhausen
transform of Gi with respect to f , denoted by τf (Gi) is the polynomial

τf (Gi) = Gi +
1

di
C1

Obviously degy(τf (Gi)) = n
di

. Hence we can define for all j ≥ 2, the j − th Tshirnhausen transform of Gi

with respect to f , denoted by τ jf (Gi) = τf (τ
j−1
f (Gi)).

Also recall that for all i ∈ {1, ..., h}, there exists a unique polynomial gi of degree n
di

such that deg(f−gdii ) <
n− n

di
, this polynomial is called the di−th approximate root of f , and denoted by Appdi(f). Moreover, recall

that, by Proposition 6 Appdi(f) exists and it is unique for all i ∈ {1, . . . , h}.

Proposition 47 Let f be a free polynomial of degree n in KC [[x]][y], and let {di}1≤i≤h and {ri}1≤i≤h be its
d−sequence and r−sequence respectively. Let {g1, ..., gh} be the set of approximate roots of f . Then for all
i ∈ {1, ..., h} we have O(f, gi) = ri.

Proof : Let {G1, ..., Gh} be the set of pseudo-roots of f . Let i = h and consider the Gh−adic expansion of
f :

f = Gdhh (x, y) + C1(x, y)G
dh−1
h (x, y) + . . .+ Cdh(x, y).

where Ck(x, y) ∈ KC [[x]][y] with degy(Ck(x, y)) <
n
dh

for all k = 1, ..., dh. Consider the Tschirnhausen
transform of Gh with respect to f

τfGh(x, y) = Gh(x, y) + d−1
h C1(x, y).

We have O(f,Gh) = rh. We want to prove that O(f, C1) > rh. Taking C0 = 1 we get that f(x, y) =
dh
∑

k=0

Ck(x, y) ·Gh(x, y)
dh−k.

For all α 6= k ∈ {0, ..., dh−1} we haveO(f, CαG
dh−α
h ) 6= O(f, CkG

dh−k
h ). In fact, suppose thatO(f, CαG

dh−α
h ) =

O(f, CkG
dh−k
h ), that is O(f, Cα)+(dh−α)rh = O(f, Ck)+(dh−k)rh. Suppose that α > k, then (α−k)rh =

O(f, Cα) − O(f, Ck). But degy(Cα), degy(Ck) <
n
dh

, then by proposition 45 we get O(f, Cα), O(f, Ck) ∈
(nZ)e + r1Z + . . . + rh−1Z, and so (α − k)rh ∈ (nZ)e + r1Z + . . . + rh−1Z, with 0 < α − k < dh. But by
Remark 12 we have dh+1 = 1, and so eh = dh

dh+1
= dh, hence 0 < α− k < eh. Which is a contradiction since

jrh /∈ (nZ)e + r1Z+ . . .+ rh−1Z for all 0 < j < eh (see Proposition 36).
Similarly, for all k ∈ {1, ..., dh− 1} we have 0 ≤ dh− k < dh = eh and O(f, Ck) ∈ (nZ)e+ r1Z+ . . .+ rh−1Z.
Hence O(f, CkG

dh−k
h ) = O(f, Ck) + (dh − k)rh 6= O(f, Cdh), otherwise we will get that (dh − k)rh =

O(f, Cdh) − O(f, Ck) ∈ (nZ)e + r1Z + . . . + rh−1Z, which is a contradiction again by Proposition 36. For

all k ∈ {0, ..., dh} Let Mk = LM(CkG
dh−k
h (xn, y(x))) and suppose that for some l ∈ {1, ..., dh − 1} we have

0 6= Ml < Mdh . Moreover suppose that Ml is the smallest element in the set M1, ...,Mdh−1. Since Ml 6= Mk

for all k ∈ {0, ..., dh} with k 6= l, it follows that Ml = LM(f(xn, y(x))), but f(xn, y(x)) = 0, which is a
contradiction. Hence M1 < Mk for all k ∈ {1, ..., dh − 1}, but f(xn, y(x)) = 0, and so M1 = Mdh . It follows
that

O(f,Gdhh ) = O(f, Cdh) and O(f,Gdhh ) < O(f, CkG
dh−k
h )∀k ∈ {1, ..., dh − 1}
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In particular O(f,Gdhh ) = dhrh < O(f, C1G
dh−1
h ) = O(f, C1) + (dh − 1)rh, and so O(f, C1) > rh. It follows

that

O(f, τfGh) = O(f,Gh +
1

dh
C1) = O(f,Gh) = rh.

Applying the same process as above to f and τf (Gh) instead of f and Gh we get that O(f, τ2fGh) = rh.

Repeating this process consecutively, we get that O(f, τλf Gh) = rh for all λ ≥ 1. But gh = Appdh(f) =

τdhf (Gh). Hence we get that O(f, gh) = rh.
Now suppose that O(f, gi+1) = ri+1, ..., O(f, gh) = rh, and let us prove that O(f, gi) = ri. By Proposition 7

we have that gi = Appei(gi+1). Since degy(Gi) =
n
di

=
degy(gi+1)

ei
, then gi = Appei(gi+1) = τ eigi+1

(Gi). Let

gi+1 = Geii (x, y) + β1(x, y)G
ei−1
i (x, y) + . . .+ βei(x, y) (2.4)

be the Gi−adic expansion of gi+1. We are given that O(f,Gi) = ri since Gi is a pseudo-root. Then by
a similar discussion as above, and since we have by our hypothesis that O(f, gi+1) = ri+1 and ri+1 /∈<
r10, ..., r

e
0, r1, ..., ri >. We get that O(f,Geii ) = O(f, βei) = eiri and O(f, β1G

ei−1
i ) > O(f,Geii ) = eiri. Hence

O(f, β1) + (ei − 1)ri > eiri, and so O(f, β1) > ri. It follows that

O(f, τgi+1(Gi)) = O(f,Gi +
1

ei
β1) = ri

Applying the same process to f and τgi+1(Gi) instead of f andGi. We get that O(f, τ2gi+1
(Gi)) = ri. Repeating

the same process we get that O(f, gi) = O(f, τ eigi+1
(Gi)) = ri. It follows that O(f, gi) = ri for all i ∈ {1, ..., h}.

This completes the proof.�

Definition 38 Let f ∈ KC [[x]][y] be a free polynomial. The semigroup of f is defined to be the set :

Γ(f) = {O(f, g), g ∈ KC [[x]][y], f does not divide g}.

The fact that this set is a semigroup follows from the additive property of the order O.

Proposition 48 Let f ∈ KC [[x]][y] be a free polynomial, and let r10, ..., r
e
0, r1, ..., re be the r-sequence asso-

ciated to f . Then Γ(f) is generated by the elements r10, ..., r
e
0, r1, ..., re.

Proof : Let g ∈ KC [[x]][y] be a polynomial which is not a multiple of f , and let g =
∑

θ

cθ(x)g
θ1
1 . . . gθhh f

θh+1

be the expansion of g with respect to (g1, ..., gh, f), where {g1, ..., gh} is the set of approximate roots of
f . Then similar to Proposition 45, we can prove that there exists a unique λ10, ..., λ

e
0, λ1, ..., λh such that

O(f, g) =
∑e

i=1 λ
i
0r
i
0 +

∑h
i=1 λiri with 0 ≤ λi < ei for all i ∈ {1, ..., h}.�





3
Canonical bases of modules over one

dimensional K-algebras

3.1 Numerical semigroups and ideals.

3.1.1 Numerical semigroups.

Let {a1, ..., an} be a set of non-negative integers, and let b ∈ N. Numerical semigroups arise in a natural way
in the study of non-negative integer solutions to Diophantine equations of the form :

a1x1 + · · ·+ anxn = b

Note that x1, ..., xn is a solution of the above Diophantine equation if and only if x1, ..., xn is a solution of
the Diophantine equation a1

d x1 + · · · +
an
d xn = b

d , where d = gcd(a1, ..., an) is the greatest common divisor
of a1, ..., an. Hence the problem of finding solutions to Diophantine equations is reduced to the case where
gcd(a1, ..., an) = 1.

Definition 39 Let S be a subset of N. The set S is a submonoid of N if the following holds :
(i) 0 ∈ S.
(ii) If a, b ∈ S, then a+ b ∈ S.

Clearly, {0} and N are submonoids of N. Also, if a is an element of S, then λa ∈ S for all λ ∈ N. Hence if
S 6= {0}, then S is an infinite set.

Definition 40 Let S be a submonoid of N, and let G = {
∑s

i=1 λiai, λi ∈ Z, ai ∈ S} be the subgroup of Z
generated by S. If 1 ∈ G, then we say that S is a numerical semigroup.

Proposition 49 Let S be a submonoid of N. Then S is a numerical semigroup if and only if N\S is a finite
set.

Proof : Let S be a numerical semigroup, and let G = {
∑s

i=1 λiai, λi ∈ Z, ai ∈ S} be the subgroup generated
by S in Z. In order to prove that N\S is a finite set, its enough to find some integer m such that for all n ≥ m,
n ∈ S. Since S is a numerical semigroup then there exist some integeres λ1, ..., λk ∈ Z∗ and a1, ..., ak ∈ S
such that 1 =

∑k
i=1 λiai. Without loss of generality, suppose that λ1, ..., λh < 0 and λh+1, ..., λk > 0, and let

s =
∑h

i=1(−λiai). Obviously s ∈ S, and s+1 =
∑k

i=h+1 λiai ∈ S. Now takem = (s−1)(s+1), and let n be any
integer such that n ≥ m, and write n = qs+r with r < s. Since r ≤ s−1 and n = qs+r ≥ m = (s−1)s+(s−1),
then q ≥ s− 1, and so q ≥ r. But n = qs+ r = qs− rs+ rs+ r = (q − r)s+ r(s+ 1). Hence n ∈ S for all
n ≥ m, and so N\S is a finite set.
Conversely, suppose that N\S is a finite set, then there exists some s ∈ S such that s + 1 ∈ S. Hence
1 = s+ 1− s ∈ G.�

55
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Definition 41 Let S be a numerical semigroup. The set of gaps of S is defined to be the set N\S, denoted
by G(S). Moreover the cardinality of G(S) is called the genus of S, and denoted by g(s).

We set F (S) = Max(G(S)), and we call it the Frobenius number of S. We define C(S) = F (S) + 1. Note
that C(S) is the smallest integer in S, such that for all n ≥ C(S), we have n ∈ S. Finally we define
m(S) = inf(S\{0}) to be the least positive integer in S which is called the multiplicity of S.
Even though any numerical semigroup S has infinitely many elements, there exists a finite number of elements
in S, such that any other element in S can be written as a linear combination with non-negative integer
coefficients in terms of theses elements.

Definition 42 Let S be a numerical semigroup. A subset A of S is said to be a system of generators of S,
written as S = 〈A〉, if for all s ∈ S there exists λ1, ..., λh ∈ N and a1, ..., ah ∈ A such that s =

∑h
i=1 λiai.

Moreover, S is said to be finitely generated if there exists a finite subset A = {a1, ..., ah} of S, such that
S = 〈A〉 = 〈a1, ..., ah〉.

Proposition 50 Let S be a numerical semigroup. Then S is finitely generated.

Proof : Let A be any system of generators of S, and note that such a system of generators always exist since
S is a system of generators of itself. Let m be the multiplicity of S, then obviously m ∈ A since its the least
non zero element in S. Let a be an element of A, and let b be any element of A which is congruent to a
modulo m with b > a, then b = km+ a for some k ∈ N∗, and so we can find a new system of generators of
S by excluding all such elements b from A. At the end of this process we will have at most one element in
each congruence class modulo m. Hence we obtain a finite system of generators of S.�
Let {a1, ..., ah} be a system of generators of a numerical semigroup S. We say that {a1, ..., ah} is a minimal
system of generators of S if ai /∈ 〈a1, ..., ai−1, ai+1, ..., ah〉 for all i = 1, ..., h.

Definition 43 Let S be a numerical semigroup, and let n ∈ S∗. The Apéry set of S with respect to n,
denoted by Ap(S, n), is defined to be the set :

Ap(S, n) = {s ∈ S, s− n /∈ S}.

Proposition 51 Let S be a numerical semigroup and let n ∈ S∗. For all i = 1, ..., n let ω(i) be the smallest
element of S such that ω(i) ≡ i mod n. Then :

Ap(S, n) = {0, ω(1), ..., ω(n− 1)}.

Proof : Let i ∈ {1, ..., n}. By definition ω(i) ∈ S and ω(i) = λn+i for some λ ∈ N, then ω(i)−n = (λ−1)n+i,
and so ω(i)−n ≡ i mod n, but ω(i)−n < ω(i), then ω(i)−n /∈ S. Hence ω(i) ∈ Ap(S, n) for all i = 1, ..., n.
Since ω(i) + (λ− 1)n ∈ S for all λ > 0, then ω(i) + λn /∈ Ap(S, n) for all λ > 0. Now let α ∈ Ap(S, n), then
α ∈ S, and α = ω(i) + λn for some λ ≥ 0 and i ∈ {0, ..., n − 1}, hence λ = 0, and so α = ω(i). Finally we
get the equality.�
Moreover for all n ∈ S∗, S is generated by the set A = 〈n, ω(1), ..., ω(n− 1)〉.

Proposition 52 Let S be a numerical semigroup and let n ∈ S∗. Then F (S) = max(Ap(S, n))− n.

Proof : Since max(Ap(S, n)) is an element in Ap(S, n), then max(Ap(S, n)) − n /∈ S. Now let x ∈ N with
x > max(Ap(S, n)) − n then x + n > max(Ap(S, n)). Let us prove that x ∈ S. Write x + n = kn + i with
k ∈ N and i ∈ {0, ..., n − 1}, and let ω(i) ∈ Ap(S, n) be the smallest element of S which is congruent to i
modulo n, then ω(i) = λn+ i for some λ ∈ N, and so x+ n = kn+ i = (k− λ)n+ λn+ i = (k− λ)n+ ω(i),
but x+ n > ω(i), then k − λ > 0. Hence x = (k − λ− 1)n+ ω(i) with (k − λ− 1) ∈ N, and so x ∈ S. �
Consider the set {x ∈ N, x ≤ F (S)}. The cardinality of this set is obviously equal to F (S) + 1. Let n(S) be
the cardinality of the set {s ∈ S, s ≤ F (S)}. We deduce the following Lemma :

Lemma 20 Let S be a numerical semigroup, then n(S) ≤ g(S). Moreover we have g(S) ≥ F (S)+1
2 .
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Proof : Let s ∈ S, then F (S)−s /∈ S. Indeed, suppose that F (s)−s ∈ S, then we get (F (S)−s)+s = F (S) ∈ S
which is a contradiction. We conclude that n(S) is smaller than or equal to g(S). But n(S)+g(S) = F (S)+1,

hence g(S) ≥ F (S)+1
2 . �

Definition 44 Let the notation be as above. Then a numerical semigroup S is said to be symmetric if
g(S) = F (S)+1

2 .

We will be interested in a special class of numerical semigroups, namely free numerical semigroups. The
definition is as follows.

Definition 45 Let S = 〈r0, r1, ..., rh〉 be a numerical semigroup, and let di+1 = gcd(r0, r1, ..., ri) for all
i ∈ {0, ..., h}(in particular d1 = r0 and dh+1 = 1), and let ei =

di
di+1

for all i ∈ {1, ..., h}. We say that S is

free for the arrangement (r0, ..., rh) if the following conditions hold :
(i) d1 > d2 > · · · > dh+1 = 1.
(ii) eiri ∈ 〈r0, ..., ri−1〉 for all i ∈ {1, ..., h}.

Note that the notion of freeness depends on the arrangement of the generators. For example, S = 〈4, 6, 13〉
is free for the arrangement (4, 6, 13) but it is not free for the arrangement (13, 4, 6).

If S is a numerical semigroup generated by a0, ..., an, then an element s ∈ S may be expressed in different
ways as a linear combination with integer coefficients in terms of a0, ..., an. While if S is free with respect to
the arrangement (a0, ..., an), then each element in S has a unique representation in terms of this system in
case we impose some bounds on the coefficients. This representation is called the standard representation.
The following Lemmas are special cases of the Lemmas proved in the section about Affine Semigroups.

Lemma 21 Let S be a free numerical semigroup with respect to the arrangement (a0, ..., ah). Then for all
x ∈ Z, x can be written in a unique way as :

x = λ0a0 + · · ·+ λhah

where 0 ≤ λk < ek for all k = 1, ..., h and λ0 ∈ Z.

Lemma 22 Let S be a free numerical semigroup for the arrangement (a0, ..., ah). Let x ∈ N and let
∑h

k=0 λkak be its standard representation. Then x ∈ S if and only if λ0 ≥ 0.

Proposition 53 Suppose that S is a free numerical semigroup with respect to the arrangement (a0, ..., ah).
Then we have :
(i) F (S) =

∑h
k=1(ek − 1)ak − a0

(ii) S is symmetric, that is g(S) = F (S)+1
2 .

Proof : (i) Let r =
∑h

k=1(ek − 1)ak − a0. Obviously r /∈ S. Let s > r and write s = λ0a0 + λ1a1 + · · ·+ λhah
with 0 ≤ λi < ei for all i = 1, ..., h and λ0 ∈ Z. Since s > r, then (λ0 + 1)a0 >

∑h
k=1(ek − 1 − λk)ak, but

λk ≤ ek − 1 for all k = 1, ..., h, then (λ0 + 1)a0 > 0, and so λ0 + 1 > 0 and λ0 ≥ 0. Hence s ∈ S, thus the
frobenius number F (S) of S is equal to

∑h
k=1(ek − 1)ak − a0.

(ii) Let a, b ∈ N such that a+ b = F (S), and let us prove that if a /∈ S then b ∈ S. Write a = α0a0 +α1a1 +
· · ·+αhah and b = β0a0 + β1a1 + · · ·+ βhah with α0, β0 ∈ Ze and 0 ≤ αi, βi < ei for all i = 1, ..., h. We have
(α0+β0)a0+

∑h
i=1(αi+βi)ai = −a0+

∑h
i=1(ei−1)ai. suppose that αh+βh ≥ eh, then eh ≤ αh+βh ≤ 2eh−2,

and so αh+ βh = eh+ γh for some 0 ≤ γh ≤ eh− 2. Hence a+ b = γ0a0 +
∑h

i=1 γiai with γ0 ∈ Z, 0 ≤ γi < ei
for all i = 1, ..., h− 1 and 0 ≤ γh ≤ eh − 2, which is a contradiction since a+ b = −a0 +

∑h
i=1(ei − 1)ai and

this representation is unique. Hence αh + βh = eh − 1. Similarly, we can prove that αi + βi = ei − 1 for all
i = 1, ..., h and α0 + β0 = −1. If a /∈ S then α0 < 0 but α0 + β0 = −1, then β0 ≥ 0, and so b ∈ S.
Now let n(S) be the cardinality of the set {s ∈ S, s ≤ F (S)}. By our discussion, we have proved that
g(S) ≤ n(S), but n(S) ≤ g(S) by Lemma 20. It follows that n(S) = g(S), but n(S) + g(S) = F (S) + 1.

Hence g(S) = F (S)+1
2 .�
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3.1.2 Ideals of numerical semigroups

Definition 46 Let S be a numerical semigroup, and let I be a subset of Z. The set I is said to be a relative
ideal of S if for all a ∈ I and s ∈ S we have a+ s ∈ I(in short I + S ⊆ I), and there exists some d ∈ Z such
that d+ I ⊆ S. The second condition implies that I has a minimum.

Definition 47 Let I be a relative ideal of a numerical seimgroup S, and let A ⊆ I. The set A is said to be
a system of generators of I if I = A+ S. Moreover I is said to be finitely generated if it admits a system of
generators A which is finite.

Let a ∈ Z, we write a+ S to represent the sum {a}+ S. The following proposition shows that every relative
ideal is finitely generated :

Proposition 54 Let S be a numerical semigroup, and let I be a relative ideal of S, then there exists a finite
set {a1, ..., al} ⊆ I such that I = ∪li=1(ai + S).

Proof : Since I is a relative ideal of S, then I + S ⊆ I, but I ⊆ I + S, then I + S = I, and so I is a system
of generators of I. Let C(S) be the conductor of the semigroup S, and let m be the minimal element of I.
For all a ∈ I such that a > m+ C(S), we have a = m+ C(S) + n for some n ≥ 1. Since C(S) + n > C(S)
then C(S) + n ∈ S, hence a ∈ m + S. Define the set A = {a ∈ I, a < m + C(S)}. Since I has a minimum
then A is a finite set, say A = {a1 = m, a2, ..., al}. Finally we get I = ∪li=1(ai + S).�

Let I be a relative ideal of S with a system of generators {a1, ..., al}. If furthermore ak /∈ ∪i 6=k(ai + S), then
we say that a1, ..., al is a minimal system of generators of I.

Remark 14 Obviously any relative ideal I admits a minimal system of generators. Moreover, let ≤S be the
order defined on S as a ≤S b if b = a + s for some s ∈ S, then Min≤S

(I) is a minimal set of generators
of I. Indeed, let m(S) be the multiplicity of the semigroup S, and define for i = 0, ...,m(S) − 1 the integer
ai to be the smallest integer in I which is congruent to i, which obviously exist. Let a + s be an element in
I, with a ∈ I and s ∈ S, then there exists some 0 ≤ i ≤ m(S) − 1 and λ ∈ N such that a = λm(S) + ai,

then a + s = ai + (λm(S) + s) ∈ ai + S. Hence I = ∪
m(S)−1
i=0 (ai + S). If for some 0 ≤ j ≤ m(S) − 1

aj /∈ Min≤S
{a0, ..., am(S)−1}, then aj = ai + s for some i 6= j and s ∈ S, and so aj + S ⊆ ai + S. We

conclude that the set Min≤S
{a0, ..., am(S)−1} is a minimal set of generators of I.

Corollary 3 Let I and J be two relative ideals of a numerical semigroup S, then I ∩ J is a relative ideal.

Proof : It is required to prove that (I ∩ J) + S ⊆ I ∩ J . Let a ∈ I ∩ J , and let s ∈ S. Since I, J are relative
ideals of S then a+ s ∈ I and a+ s ∈ J , and so a+ s ∈ I ∩ J . Hence I ∩ J is a relative ideal.�

In particular, given a, b ∈ N, (a+S)∩ (b+S) is a relative ideal. Assume that {a1, ..., ar} is the set of minimal
generators of (a+ S) ∩ (b+ S). We set

R(a, b) = {(ak − a, ak − b), k = 1, ..., r}

Example 2 Let S = 〈3, 4〉 = {0, 3, 4, 6, 7,→}, and let a = 3, b = 5. We have 3 + S = {3, 6, 7, 9, 10,→} and
5 + S = {5, 8, 9, 11, 12,→}. Hence (3 + S) ∩ (5 + S) = {9, 11, 12,→} = (9 + S) ∪ (11 + S). Note that {9, 11}
is the set of minimal elements of (3 + S) ∩ (5 + S) with respect to ≤S and that R(3, 5) = {(6, 4), (8, 6)}.

Let S = 〈α1, ..., αn〉 be a numerical semigroup, and let I be a relative ideal of S. Let {a1, ..., ar} be a
minimal system of generators of I. Let K be a field and consider the algebra A = K[tα1 , ..., tαn ] = K[S]. Let
M = ta1A+ · · ·+ tarA and let

φ : Ar 7→M, φ(f1, ..., fr) = ta1f1 + · · ·+ tarfr.

The kernel ker(φ) is a submodule of Ar. The following result gives explicitly a generating system for ker(φ).
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Theorem 6 Let the notation be as above where I is the relative ideal generated by {a1, ..., ar}. For all

1 ≤ i, j ≤ r with i 6= j write R(ai, aj) = {(αijk , β
ij
k ), 1 ≤ k ≤ cij}. Then ker(φ) is generated by {tα

ij
k ei −

tβ
ij
k ej , 1 ≤ i 6= j ≤ r, 1 ≤ k ≤ cij}, where {e1, ..., er} denotes the canonical basis of Ar.

Proof : Let (f1, ..., fr) ∈ ker(φ), then
∑r

i=1 t
aifi = 0. Let si = deg(fi) denotes the degree of fi in t which

obviously belongs to S for all i = 1, ..., r, and let s = max{deg(taifi), i = 1, ..., r}, then there exists
at least i, j ∈ {1, ..., r} with i 6= j and s = ai + si = aj + sj . Without loss of generality suppose that
s = a1 + s1 = · · · = ah + sh for some 2 ≤ h ≤ r and s 6= ai + si for all h < i ≤ r. For all i = 1, ..., h write
fi = cit

si + fi with deg(f̄i) < si, then
h
∑

i=1

cit
aitsi = 0.

There exists some (α12, β12) ∈ R(a1, a2) and s12 ∈ S such that (a1+s1, a2+s2) = (a1+s12+α
12, a2+s12+β

12),
Hence :

c1t
s1ta1 + c2t

s2ta2 = c1t
s12(tα

12
ta1 − tβ

12
ta2) + (c2 + c1)t

s2ta2

Now we restart with (c2 + c1)t
s2ta2 +

∑h
i=3 cit

sitai , which is obviously equal to 0. We finally get that :

h
∑

i=1

cit
sitai =

∑

i,j

cijt
sij (tα

ij

tai − tβ
ij

taj )

where for all (i, j), (αij , βij) ∈ R(ai, aj). We have :

r
∑

i=1

taifi =
∑

i,j

cijt
sij (tα

ij

tai − tβ
ij

taj ) +
h
∑

i=1

taif i +
r

∑

i=h+1

taifi

with
∑h

i=1 t
aif i +

∑r
i=h+1 t

aifi = 0 and maxi,f i 6=0(deg(f i + ai)) < s and deg(
∑r

i=h+1 t
aifi) < s. Then we

restart with
∑h

i=1 t
aif i +

∑r
i=h+1 t

aifi. This process will eventually stop, proving our assertion.�

Example 3 Let S = 〈3, 4〉 and let I = (3 + S) ∪ (5 + S). Let A = K[t3, t4] and consider φ : A2 7→
t3K[t3, t4] + t5K[t3, t4], defined by φ(f1, f2) = t3f1 + t5f2. Then ker(φ) is generated by (t6,−t4), (t8,−t6).
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3.2 Basis of K-Algebra

Let K be a field and let f1(t), ..., fs(t) be s polynomials of K[t]. Let A = K[f1, ..., fs] be a subalgebra of K[t],
and assume, without loss of generality, that fi is monic for all i = 1, ..., s. Given f(t) =

∑p
i=0 cit

i ∈ A, with
cp 6= 0, we set d(f) = p and M(f) = cpt

p, the degree and leading monomial, respectively.
Let f be a polynomial in K[t], we define the support of f to be the set supp(f) = {i, ci 6= 0}. The set
d(A) = {d(f), f ∈ A} is a submonoid of N. We shall assume that l(K[t]/A) < ∞. In this case d(A) is a
numerical semigroup.

Definition 48 Let A = K[f1, ..., fs] be a subalgebra of K[t]. {f1, ..., fs} is said to be a basis of A if {d(f1), ..., d(fs)}
generates the numerical semigroup d(A).

Let K[M(f), f ∈ A] be the polynomial ring generated by the leading monomials of the polynomials in A,
then clearly {f1, ..., fs} is a basis of A if and only if K[M(f), f ∈ A] = K[M(f1), ...,M(fs)].

Proposition 55 Let A = K[f1, ..., fs] be a subalgebra of K[t]. Consider f(t) ∈ K[t], then there exist g(t) ∈ A
and r(t) ∈ K[t] such that the following conditions hold :
(i) f(t) = g(t) + r(t) =

∑

α cαf
α1
1 · · · f

αs
s + r(t), with α = (α1, ..., αs) ∈ Ns.

(ii) If g(t) 6= 0(respectively (r(t)) 6= 0), then d(g) ≤ d(f)(respectively d(r) ≤ d(f))
(iii) If r(t) 6= 0, then supp(r(t)) ⊆ N\〈d(f1), ..., d(fs)〉.

Proof : If f ∈ K, then the assertion is clear. Suppose that f /∈ K, and let f(t) =
∑p

i=0 cit
i with p = d(f) > 0. If

p /∈ 〈d(f1), ..., d(fs)〉, then we set g1 = 0, r1 = cpt
p and f1 = f − cpt

p. Otherwise if p ∈ 〈d(f1), ..., d(fs)〉, then
there exists θ = (θ1, ..., θs) ∈ Ns such that p = θ1d(f1) + · · · + θsd(fs), and so cpt

p = cθM(f1)
θ1 · · ·M(fs)

θs

with cθ ∈ K (Note that this expression is not unique). In this case we set g1 = cθf
θ1
1 · · · f

θs
s , r1 = 0 and

f1 = f − g1.
Finally we get f = f1 + g1 + r1, with g1 ∈ A and the following conditions hold :
(1) If r1 6= 0, then supp(r1) ⊆ N\〈d(f1), ..., d(fs)〉.
(2) If f1 /∈ K, then d(f1) < d(f).
Then we restart with f1 and apply the same process. In each step we will obtain f i+1 = f i + gi + ri, with
gi ∈ A and f1, r1 satisfying the above two conditions. Since d(f i+1) < d(f i) , then clearly there exists some
k ≥ 1 such that d(fk) = 0, and so fk ∈ K. We set g = g1 + · · · gk + fk and r = r1 + · · ·+ rk, which proves
our assertion.�
The polynomial r(t) obtained in the above proposition is called the remainder of f with respect to {f1, ..., fs},
and it is not unique. We denote this polynomial by R(f, {f1, ..., fs}).

Proposition 56 Let A = K[f1, ..., fs] be a subalgebra of K[t], then {f1, ..., fs} is a basis of A if and only if
R(f, {f1, ..., fs}) = 0 for all f ∈ A.

Proof : Suppose that {f1, ..., fs} is a basis of A. Let f ∈ A, then f(t) = g(t) + r(t) where g(t) and r(t) =
R(f, {f1, ..., fs}) are as in Proposition 55, and so r(t) ∈ A. If r 6= 0 then d(r) ∈ 〈d(f1), ..., d(fs)〉, because
f1, ..., fs is a basis of A. This is a contradiction.
Conversely, suppose that R(f, {f1, ..., fs}) = 0 for all f ∈ A. Take f 6= 0, if d(f) /∈ 〈d(f1), ..., d(fs)〉, then by
Proposition 55 we have R(f, {f1, ..., fs}) 6= 0, which is a contradiction.�

Proposition 57 Let the notation be as above and let {f1, ..., fs} be a basis of A. Let f ∈ K[t], then
R(f, {f1, ..., fs}) is unique.

Proof : Let f ∈ K[t], and suppose that f = g1 + r1 = g2 + r2, where g1, g2 and r1, r2 are as in Proposition
55. Suppose that r1 6= r2. We have r2 − r1 = g1 − g2 ∈ A, then d(r2 − r1) ∈ 〈d(f1), ..., d(fs)〉, which is a
contradiction since supp(ri) ⊆ N\〈d(f1), ..., d(fs)〉 for i = 1, 2.�
Let A = K[f1, ..., fs], and consider the homomorphism :

φ : K[X1, ..., Xs] 7→ K[t], φ(Xi) =M(fi), for all i = 1, ..., s.

Let {F1, ..., Fr} be a system of generators of the kernel of φ, then Fi is a binomial for all i = 1, ..., r. To each

Fi = X
αi
1

1 · · ·X
αi
s

s − X
βi
1

1 · · ·X
βi
s

s in ker(φ), we associate the polynomial Si = f
αi
1

1 · · · f
αi
s

s − f
βi
1

1 · · · f
βi
s

s . The
polynomials S1, ..., Sr are called the S− polynomials associated with {f1, ..., fs}. Since Fi ∈ ker(φ) for all
i = 1, ..., r, then obviously

∑s
k=1 α

i
kd(fk) =

∑s
k=1 β

i
kd(fk) = d, and so d(Si) < d.
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Theorem 7 let A = K[f1, ..., fs] and let {Si}i=1,...,r be the S−polynomials associated to {f1, ..., fs}. Then
{f1, ..., fs} is a basis of A if and only if R(Si, {f1, ..., fs}) = 0 for all i = 1, ..., r.

Proof : Suppose that {f1, ..., fs} is a basis of A, then R(f, {f1, ..., fs}) = 0 for all f ∈ A. In particular Si ∈ A
for all i = 1, ..., r, then R(Si, {f1, ..., fs}) = 0.
Conversely suppose that R(Si, {f1, ..., fs}) = 0 for all i = 1, ..., r, and let us prove that {f1, ..., fs} is a basis
of A. Let f ∈ A, and suppose to the contrary that d(f) /∈ 〈d(f1), ..., d(fs)〉. Write :

f =
∑

θ

cθf
θ1
1 · · · f

θs
s

For all θ = (θ1, ..., θs) such that cθ 6= 0, we set pθ = d(fθ11 · · · f
θs
s ) =

∑s
i=1 θid(fi). Let p = max{pθ, cθ 6= 0},

then there exists {θ1, ..., θl} with cθi 6= 0 and d(f
θi1
1 · · · f

θis
s ) = p for all i = 1, ..., l. Obviously

∑l
i=1 cθiM(f

θi1
1 · · · f

θis
s ) =

0, otherwise we will have d(f) = p ∈ 〈d(f1), ..., d(fs)〉, which contradicts our hypothesis. Hence :
∑l

i=1 cθiM(f1)
θi1 · · ·M(fs)

θis = 0, and so
∑l

i=1 cθiX
θi1
1 · · ·X

θis
s ∈ ker(φ). Then :

l
∑

i=1

cθiX
θi1
1 · · ·X

θis
s =

r
∑

k=1

λkFk

with λk ∈ K[X1, ..., Xs] and d(λkFk) = p for all k = 1, ..., r. Substituting fi in Xi for all i = 1, ..., r we get :

l
∑

i=1

cθif
θi1
1 · · · f

θis
s =

r
∑

k=1

λk(f1, ..., fs)Sk

with d(Sk) + d(λk) < p for all k = 1, ..., r. By hypothesis, we have R(Sk, {f1, ..., fs}) = 0 for all k = 1, ..., r,
then by Proposition 55 Sk can be written as :

Sk =
∑

β

cβf
β1
1 · · · f

βs
s

with d(fβ11 · · · f
βs
s ) ≤ d(Sk) for all β such that cβ 6= 0. Hence we can write :

f =
∑

θ′

cθ′f
θ′1
1 · · · f

θ′s
s

with max{d(f
θ′1
1 · · · f

θ′s
s ), cθ′ 6= 0} < p. We apply the same process to the new expression of f . After applying

this process more than p times, we will get a contradiction.�
The following algorithm explains how to find a basis for an algebra A = K[f1, ..., fs].

Algorithm 1

Let A = K[f1, ..., fs], and let S1, ...., Sr be the S−polynomials associated to {f1, ..., fs}. Then :

(1) If R(Sk, {f1, ..., fs}) = 0 for all k = 1, ..., r, then {f1, ..., fs} is a basis of A.

(2) If r(t) = R(Sk, {f1, ..., fs}) 6= 0 for some 1 ≤ k ≤ r, then we set fs+1 = r(t), and we restart with

{f1, ..., fs+1}. We will have 〈d(f1), ..., d(fs)〉 ( 〈d(f1), ..., d(f), d(fs+1)〉.

Since N\〈d(f1), ..., d(fs)〉 is finite, then this process will stop obtaining a subset {f1, ..., fs, fs+1, ..., fs+h}
of A. If {S′

1, ..., S
′
n} are the S−polynomials of {f1, ..., fs+h}, then we have R(S′

i, {f1, ..., fs+h}) = 0 for all
i = 1, ..., n. Obviously we have A = K[f1, ..., fs+h]. Finally by Theorem 7 we get that {f1, ..., fs+h} is a basis
of A.

Definition 49 Let A = K[f1, ..., fs] where {f1, ..., fs} is a basis of A. Then {f1, ..., fs} is said to be a minimal
basis of A if {d(f1), ..., d(fs)} is a minimal system of generators of the semigroup d(A). Moreover we say
that {f1, ..., fs} is a reduced basis of A if supp(fi(t)−M(fi)) ⊆ N\d(A) for all i = 1, ..., s.
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An algebra A can have many different bases, since if {f1, ..., fs} is a basis of A, then if we take any polynomial
f ∈ A with f 6= fi for all i = 1, ..., s, then obviously {f1, ..., fs, f} is also a basis of A. Now suppose
that {f1, ..., fs} is a basis of A. If d(fi) ∈ 〈d(f1), ..., d(fi−1), d(fi+1), ..., d(fs)〉 for some i ∈ {1, ..., s}, then
{f1, ..., fi−1, fi+1, ..., fs} is also a basis of A. After repeating this process we obtain a minimal basis of A,
which is not unique.

Remark 15 Suppose that {f1, ..., fs} and {g1, ..., gt} are two minimal basis of A. The two sets 〈d(f1), ..., d(fs)〉
and 〈d(g1), ..., d(gt)〉 are minimal sets of generators of the numerical semigroup d(A), which is unique. Then
s = t and for each i ∈ {1, ..., s} there exists a unique j ∈ {1, ..., s} such that M(fi) = M(gj). Thus two
minimal basis of A have the same cardinality. The following corollary shows that a minimal reduced basis of
A is unique.

Corollary 4 Let the notation be as above. Then A has a unique minimal reduced basis up to constants.

Proof : Let {f1, ..., fs} be a minimal basis of A. Applying the division process of Proposition 55 to fi−M(fi)
for each i ∈ {1, ..., s}, we will obtain a reduced minimal basis of A. For uniqueness, let {f1, ..., fs} and
{g1, ..., gt} be two minimal reduced basis of A, moreover we can suppose that these polynomials are monic. By
Remark 15, we have s = t. Without loss of generality suppose that M(fi) =M(gi) for all i = 1, ..., s. We have
d(fi) = d(gi), if fi−gi 6= 0, then d(fi−gi) ∈ d(A). But d(fi−gi) ⊆ supp(fi(t)−M(fi))∪supp(gi(t)−M(gi)).
This is a contradiction since the bases are reduced. Finally we get fi = gi for all i = 1, ..., s, and so A admits
a unique minimal reduced basis.�

Example 4 Let f1 = t4 + t2 and f2 = t3, and compute the reduced minimal basis of A = K[f1, f2]. First we
start by computing the kernel of φ1 : K[X1, X2] 7→ K[t], with φ1(X1) = t4 and φ1(X2) = t3. The kernel of
φ1 is generated by F1 = X3

1 −X
4
2 . Hence we check the S−polynomial S1 = f31 − f

4
2 = 3t10 + 3t8 + t6. We get

R(S1, {f1, f2}) = 0. Then {f1, f2} is a reduced basis of A and d(A) = 〈3, 4〉.

Example 5 Let f1 = t4 + 5t3 and f2 = t2, and compute the reduced minimal basis of A = K[f1, f2].
First we start by computing the kernel of φ1 : K[X1, X2] 7→ K[t], with φ1(X1) = t4 and φ1(X2) = t2.
The kernel of φ1 is generated by F1 = X1 − X

2
2 . Hence we check the S−polynomial S1 = f1 − f

2
2 = 5t3.

We get R(S1, {f1, f2}) = 5t3. Then we add f3 = t3 to obtain a new generating set {f1, f2, f3}. Hence
A = K[f1, f2, f3] = K[t4 + 5t3, t2, t3] = K[t2, t3]
Now we consider φ2 : K[X1, X2] 7→ K[t], defined by φ2(X1) = t3, φ2(X2) = t2. We get ker(φ2) =
(F2 = X3

2 −X
2
1 ). The associated S−polynomial to F2 is S2 = 0. Hence {t2, t3} is a reduced basis of A and

d(A) = 〈2, 3〉.
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3.3 Modules over K-Algebras

Let A = K[f1, ..., fs] be the subalgebra of K[t] generated by {f1, ..., fs}. Let F1, ..., Fr be a set of nonzero
elements of K[t], and consider the A−module M generated by F1, ..., Fr :

M =

r
∑

i=1

FiA.

We set d(M) = {d(F ), F ∈ M\{0}} and d(A) = {d(f), f ∈ A\{0}}. Let i ∈ d(M) and s ∈ d(A), then
i = d(F ) and s = d(f) for some F ∈ M and f ∈ A. Write F =

∑r
i=1 Figi for some g1, ..., gr ∈ A, then

F.f =
∑r

i=1 Fi(gif) ∈M . It follows that i+s = d(F )+d(f) = d(F+f) ∈ d(M). Hence d(M)+d(A) ⊆ d(M),
and so d(M) is a relative ideal of d(A). From now on we denote by I the relative ideal d(M), and by S the
numerical semigroup d(A).

Definition 50 Let the notation be as above. Then {F1, ..., Fr} is said to be a basis of M if I = ∪ri=1(d(Fi)+
S). In other words {F1, ..., Fr} is a basis of M if {d(F1), ..., d(Fr)} is a basis of the relative ideal I of S.

Theorem 8 Let F1, ..., Fr ∈ K[t] and consider the A-module M =
∑r

i=1 FiA. Let F be a non zero element
in K[t], then there exists g1, ..., gr, R ∈ A satisfying the following conditions :
(1) F =

∑r
i=1 giFi +R.

(2) For all i = 1, ..., r, if gi 6= 0, then d(gi) + d(Fi) ≤ d(F ).
(3) If R 6= 0, then d(R) ≤ d(F ) and d(R) ∈ N\ ∪ri=1 (d(Fi) + S).

Proof : If F ∈ K, then the assertion is clear. Let F be a non constant polynomial in K[t] with d(F ) = p > 0,
and write F =

∑p
i=0 cit

i. If p /∈ ∪ri=1(d(Fi) + S), then we set g1 = ... = gr = 0, r1 = cpt
p and F 1 = F − cpt

p.
Otherwise if p ∈ ∪ri=1(d(Fi) + S), then p ∈ d(Fi) + S for some i ∈ {1, ..., r}, and so p = d(Fi) + si for some
si ∈ S, hence cpt

p = ctsiM(Fi) with c ∈ K. Choose some g ∈ A such that M(g) = ctsi which obviously
exists. Set g1i = g and g1j = 0 for all j 6= i, R1 = 0 and F 1 = F −gFi. Now we have F = F 1+

∑r
i=1 g

1
i Fi+R

1,
and the following conditions hold :
(1) g1i ∈ A for all i ∈ {1, ..., r}.
(2) If R1 6= 0, then supp(R1) ⊆ N\ ∪ri=1 (d(Fi) + S).
(3) If F 1 /∈ K, then d(F 1) < d(F ) = p.
Now we apply the same procedure for F 1 as in the case of F . In each step we will obtain F k such that
d(F k+1) < d(F k), and so there exists some k ≥ 1 such that F k ∈ K. We set gi = g1i + · · · + gki for all
i ∈ {1, ..., r} and R = R1 + · · ·+Rk + F k. �
From now on we denote the polynomial R of Theorem 8 by RA(F, {F1, ..., Fr}).

Proposition 58 Let M = F1A + · · · + FrA with F1, ..., Fr ∈ K[t]. Then {F1, ..., Fr} is a basis of M if and
only if RA(F, {F1, ..., Fr}) = 0 for all F ∈M .

Proof : Suppose that {F1, ..., Fr} is a basis of M . Let F ∈M , then by Theorem 8 F =
∑r

i=1 giFi +R where
g1, ..., gr, R satisfies the conditions of that theorem. We have RA(F, {F1, ..., Fr}) = R = F −

∑r
i=1 giFi ∈M .

If R 6= 0, then d(R) ∈ N\ ∪ri=1 (d(Fi) + S), which is a contradiction.
Conversely suppose that RA(F, {F1, ..., Fr}) = 0 for all F ∈ M . Let F ∈ M , and suppose to the contrary
that d(F ) /∈ ∪ri=1(d(Fi) + S), then by Theorem 8 we have RA(F, {F1, ..., Fr}) 6= 0. This is a contradiction.�
Let the notation be as before with F1, ..., Fr ∈ K[t]. Assume without loss of generality that F1, ..., Fr are
monic, and let M(Fi) = tai for all i = 1, ..., r. Consider the homomorphism of A−modules φ defined by :

φ : Ar 7→M = F1A+ · · ·+ FrA, φ(f1, ..., fr) =
r

∑

i=1

fiM(Fi)

Let (si, sj) ∈ R(ai, aj), then si, sj ∈ d(A) with ai + si = aj + sj . Hence there exists some gi, gj ∈ A
with d(gi) = si and d(gj) = sj(note that these polynomials are not unique). Write M(gi) = cgit

si and
M(gj) = cgj t

sj . Obviously we have tsiM(Fi)− t
sjM(Fj) = 0, and so tsiei − t

sjej ∈ ker(φ) where {e1, ..., er}
is the canonical basis of Ar. Set :

F = cgjgiFi − cgigjFj
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SinceM(cgjgiFi) =M(cgigjFj), then d(F ) < d(giFi) = ai+si = d(gjFj) = aj+sj . We call F an S-polynomial
of (F1, ..., Fr). Every element of Ker(φ) gives rise to an S-polynomial. The set of all S-polynomials is denoted
by SP (F1, ..., Fr) and is constructed in the above way.

Theorem 9 Let the notation be as above, in particular F1, ..., Fr ∈ K[t] and M =
∑r

i=1 FiA. Then {F1, ..., Fr}
is a basis of M if and only if RA(F, {F1, ..., Fr}) = 0 for all F ∈ SP (F1, ..., Fr).

Proof : Suppose that {F1, ..., Fr} is a basis of M , then RA(F, {F1, ..., Fr}) = 0 for all F ∈ M . But
SP (F1, ..., Fr) ⊆M , then RA(F, {F1, ..., Fr}) = 0 for all F ∈ SP (F1, ..., Fr).
Conversely, let F ∈ M − {0} and suppose to the contrary that R = RA(F, {F1, ..., Fr}) 6= 0. Since R ∈ M ,
then there exists g1, ..., gr ∈ A such that R = g1F1 + · · ·+ grFr. Let

p = maxi,gi 6=0(d(gi) + d(Fi)).

Since R 6= 0, then by Theorem 8 d(R) /∈ ∪ri=1(d(Fi)+d(A)), and so p 6= d(R). In particular p > d(R). Suppose
without loss of generality that p = d(gi) + d(Fi) for i = 1, ..., l and p > d(gi) + d(Fi) for i = l + 1, ..., r.
Clearly l ≥ 2. We shall prove by induction on l that we can rewrite R as R = g′1F1 + · · · + g′rFr with
p > maxi,g′i 6=0(d(g

′
i) + d(Fi)).

(i) Suppose that l = 2, that is d(g1) + d(F1) = d(g2) + d(F2) = p and d(gi) + d(Fi) < p for all i = 3, ..., r.
Let M(g1) = cg1t

α1 , M(g2) = cg2t
α2 . By our hypothesis, we have M(g1f1) = −M(g2f2) and so cg2 = −cg1

and a1 + α1 = a2 + α2 ∈ (a1 + S) ∩ (a2 + S), and so there exists (s1, s2) ∈ R(a1, a2) such that α1 = s+ s1
and α2 = s+ s2. hence we have :

cg1t
α1ta1 + cg2t

α2ta2 = ts(cg1t
s1ta1 − cg1t

s2ta2)

The polynomial ts(cg1t
s1ta1 − cg1t

s2ta2) gives rise to the S−polynomial

h = g̃1F1 + g̃2F2

with g̃1, g̃2 ∈ A such that M(g̃1) = cg1t
s1 and M(g̃2) = cg2t

s2 = −cg1t
s1 . We have d(g̃1F1) = d(g̃2F2) =

s1 + a1 = α1 + a1 − s = p− s and M(g̃1F1) = −M(g̃2F2), and so d(h) < p− s. Since h is an S−polynomial,
then by our hypothesis RA(h, {F1, ..., Fr}) = 0, then h can be written as

h = ḡ1F1 + · · ·+ ḡrFr

with d(ḡiFi) ≤ d(h) < p− s for all i = 1, ..., r. Hence

R = g1F1 + g2F2 + tsg̃1F1 − t
sg̃1F1 + tsg̃2F2 − t

sg̃2F2 +
r

∑

i=3

giFi

= (g1 − t
sg̃1)F1 + (g2 − t

sg̃2)F2 + ts(g̃1F1 + g̃2F2) +
r

∑

i=3

giFi

Since d((g1− t
sg̃1)F1) < p and d((g2− t

sg̃2)F2) < p and d(ts(g̃1F1+ g̃2F2)) = d(ts
∑r

i=1 g̃iFi) < s+p−s = p,
then R is of the form R =

∑r
i=1 ĝiFi with d(ĝiFi) < p for all i ∈ {1, ..., r}.

(ii) Suppose that the hypothesis is true up to l−1, and let us prove it for l. For all i = 1, ..., r setM(gi) = cgit
si .

Write :

R =
r

∑

i=1

giFi = g1F1 −
cg1
cg2

g2F2 + (
cg1
cg2

+ 1)g2F2 +

r
∑

i=3

giFi

The polynomial g1F1−
cg1
cg2
g2F2 satisfies the conditions of part (i), and so there exists ḡ1, ..., ḡr ∈ A such that

g1F1−
cg1
cg2
g2F2 = ḡ1F1+· · ·+ḡrFr with maxi,ḡi 6=0d(ḡiFi) < p. Hence R can be written as R = g̃1F1+· · ·+g̃rFr

with g̃1 = ḡ1 and where the set {i, d(g̃iFi) = p} has at most l − 1 elements. It follows from the induction
hypothesis that

g̃1F1 +

r
∑

i=2

g̃iFi = g̃1F1 +

r
∑

i=1

ĝiFi

with d(ĝiFi) < p for all i such that ĝi 6= 0 and we have that d(g̃1F1) < p. This proves our assertion.�
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Algorithm 2

Let the notation be as above. In particular M =
∑r

i=1 FiA.

(1) If RA(F, {F1, ..., Fr}) = 0 for all F ∈ SP (F1, ..., Fr), then by Theorem 9 {F1, ..., Fr} is a basis of M .

(2) If RA(F, {F1, ..., Fr}) 6= 0 for some F ∈ SP (F1, ..., Fr), then we set Fr+1 = RA(F, {F1, ..., Fr}) and

we restart with {F1, ..., Fr, Fr+1}.

Since the set N\∪ri=1 (d(Fi+S)) is finite, then the process (2) in the algorithm cannot be infinite. Hence we
get a basis of M , after a finite number of steps.
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3.4 Curves with one place at infinity.

Let K be an algebraically closed field of characteristic zero, and let K((x)) denote the field of meromorphic
series in x.

Theorem 10 (Newton Puiseux Theorem) Let f(x, y) ∈ K((x))[y] be a polynomial in y with coefficients in
K((x)) and suppose that f is irreducible. Then there exists an element y(t) ∈ K((t)) such that f(tn, y(t)) = 0.
Moreover :
(i) f(tn, y) =

∏

ωn=1(y − y(ωt)).
(ii) y(ωt) 6= y(ω′t) for all ω, ω′ distinct n-th roots of unity.
(iii) gcd(n, Supp(y(t))) = 1.

To an irreducible polynomial f ∈ K((x))[y], we will associate a special sequences of integers, namely the
characteristic sequences of f . Suppose that f is of degree n, then by Newton Puiseux theorem there exists
an element y(t) ∈ K((t)) such that f(tn, y(t)) = 0. Write y(t) =

∑

p cpt
p. Let d1 = n = degy(f) and set :

m1 = inf{p ∈ Supp(y(t)), d1 ∤ p} and d2 = gcd(d1,m1).

Suppose we have defined m1, ...,mi−1 and d1, ..., di and set :

mi = inf{p ∈ Supp(y(t)), di ∤ p} and di+1 = gcd(di,mi).

Then there exists some h ≥ 1 such that dh+1 = 1. This sequence m = (m1, ...,mh) is called the set of
Newton-Puiseux exponents of f . Now for all i = 1, ..., h we set ei =

di
di+1

. Finally we define the r = (r0, ..., rh)
sequence associated to f as follows :

r0 = n, r1 = m1

ri = ei−1ri−1 +mi −mi−1 for all i = 2, ..., h.

The sequences m, r and d = (d1, ..., dh+1) are the characteristic sequences associated to f .
Moreover the set of Newton-Puiseux exponents of f can be defined in a similar manner to that in the case
of quasi-ordinary polynomials.
Now for all y ∈ K((t)), let Ot(y) represent the order of y in t, that is the smallest element in supp(y), which
is obviously in Z.

Lemma 23 Let f be an irreducible polynomial in K((x))[y] of degree n, and let y(t) ∈ K((t)) be such that
f(tn, y(t)) = 0. Let {m1, ...,mh} be the set of characteristic exponents of f . Then :
(i) {m1, ...,mh} = {ordt(y(t)− y(ωt)), ω

n = 1 and ω 6= 1}
(ii) The cardinality of the set {y(ωt), ordt(y(t)− y(ωt)) > mk} is equal to dk+1.
(iii) The cardinality of the set {y(ωt), ordt(y(t)− y(ωt)) = mk} is equal to dk − dk+1.

Definition 51 Let f be as above with y(t) ∈ K((t)) such that f(tn, y(t)) = 0. Consider a nonzero polynomial
g in K((x))[y]. The intersection multiplicity of f and g, denoted by int(f, g), is defined to be int(f, g) =
ordt(g(t

n, y(t))).

Note that if ω is an n-th root of unity in K, then ordt(g(t
n, y(t))) = ordt(g(t

n, y(ωt))). Thus the definition
of intersection multiplicity of f with a polynomial g is independent of the choice of the root of f(tn, y) = 0.

Theorem 11 Let the notation be as above, and let d = (d1, ..., dh+1) be the gcd-sequence associated to f .
For all i = 1, ..., h let Appdi(f) be the di-th approximate root of f , then int(f,Appdi(f)) = ri.

For all i = 1, ..., h let gi = Appdi(f), which is obviously a monic polynomial of degree n
di

. Let g ∈ K((x))[y]
and remember that the expansion of g with respect to (g1, ..., gh, f) is defined to be :

g =
∑

θ

cθ(x)g
θ1
1 ...g

θh
h .f

θh+1

where θ = (θ1, ..., θh+1) ∈ Nh+1 with 0 ≤ θk < ek for all k = 1, ..., h, and cθ(x) ∈ K((x)).
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Proposition 59 Let the notation be as above, and let g ∈ K((x))[y] such that g /∈ (f). Then int(f, g) =
∑h

k=0 λkrk for some λ0 ∈ Z and 0 ≤ λi < ek for all k = 1, ..., h.

Lemma 24 Let the notation be as above. Then for all i = 1, ..., h we have :

eiri =
i−1
∑

j=0

λjrj

with λj ∈ N for all j = 0, ..., i− 1.

Now suppose that f is an irreducible polynomial in K[[x]][y], then Appdi(f) ∈ K[[x]][y] for all i = 1, ..., h.
Moreover, ri = int(f,Appdi(f)) ∈ N for all i = 1, ..., h.

Definition 52 Let f be as above. The semigroup of values of f is defined to be :

Γ(f) = {int(f, g), g /∈ (f)}.

Proposition 60 Let f be an irreducible polynomial in K[[x]][y], and let r = (r0, ..., rh) be its associated
r-sequence. Then Γ(f) is a numerical seimgroup generated by r0, ..., rh. Moreover it is free with respect to the
arrangement (r0, ..., rh) and ekrk < rk+1 for all k = 1, ..., h where ek =

dk
dk+1

.

Theorem 12 Let the notation be as above with f an irreducible polynomial in K[[x]][y], and Γ(f) its free
semigroup. Let C(Γ(f)) be the conductor of Γ(f), then int(fx, fy) = C(Γ(f)).

Proof : Let fx, respectively fy, be the derivative of f with respect to x, respectively y. Write

fy = Hα1
1 ...Hαs

s

whereHi is irreducible of degree ni for all i ∈ {1, ..., s}. By the Newton-Puiseux theoremHi =
∏ni

j=1(y−z
i
j(t)),

where zij ∈ K((t)) for all i ∈ {1, ..., s} and j ∈ {1, ..., ni}. Using the chain rule of derivatives, we get that for
all i ∈ {1, ..., s} we have :

d

dt
f(tni , zi1) =

df

dx
(tni , zi1(t)).(nit

ni−1) +
df

dy
(tni , zi1(t))(z

′(t)) =
df

dx
(tni , zi1(t)).(nit

ni−1)

Hence int(f,Hi)− 1 = int(fx, Hi) + ni − 1 for all i ∈ {1, ..., s}. It follows that :

int(f, fy) = int(f,Hα1
1 ...Hαs

s )

=
s

∑

i=1

αiint(f,Hi) =
s

∑

i=1

αiint(fx, Hi) +
s

∑

i=1

αini

=
s

∑

i=1

int(fx, H
α1
1 ...Hαs

s ) + deg(fy) = int(fx, fy) + n− 1.

Now write f(tn, y) =
∏n
i=1(y − yi(t)). Then fy(t

n, y) =
∑n

i=1

∏

k 6=i(y − yk(t)), and so fy(t
n, y1(t)) =

∏n
k=2(y1(t)− yk(t)). Hence

int(f, fy) =

n
∑

k=2

ordt(y1(t)− yk(t)) =

h
∑

k=1

(dk − dk+1)mk =

h
∑

k=1

(ek − 1)rk = int(fx, fy) + n− 1.

It follows that int(fx, fy) =
∑h

k=1(ek − 1)rk − n + 1. But C(Γ(f)) =
∑h

k=1(ek − 1)rk − n + 1 since Γ(f) is
free, and so C(Γ(f)) = int(fx, fy).�
Consider a polynomial f(x, y) ∈ K[x][y] of degree n and assume that after a change of variable, f can be
written as

f = yn +
∑

i,j,i+j<n

cijx
iyj
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Definition 53 Let the notation be as above and let C = {f = 0} be the curve defined by f in K2. The
projective closure of C is defined to be the curve C̄ = {Hf = 0} in P2

K, where Hf = yn +
∑

ciju
n−i−jxiyj ∈

K[u, x, y].

Definition 54 Let the notation be as above. Then f is said to be a curve with one place at infinity if
f∞(u, y) = H(u, 1, y) is irreducible in K[[u]][y].

To every polynomial f ∈ K[x][y] we associate the polynomial F (x, y) = f(x−1, y). Obviously F (x, y) ∈
K[x−1][y] ⊆ K((x))[y].

Proposition 61 Let the notation be as above. Then F (x, x−1y) = x−nf∞(x, y), moreover f has one place
at infinity if and only if F (x, y) is irreducible in K((x))[y].

Proof : Write f = yn +
∑

i+j<n cijx
iyj , then F (x, y) = f(x−1, y) = yn +

∑

i+j<n cijx
−iyj , Hence :

F (x, x−1y) = (x−1y)n +
∑

i+j<n

cijx
−i(x−1y)j = x−nyn +

∑

i+j<n

cijx
−i−jyj

= x−n(yn +
∑

i+j<n

cijx
n−(i+j)yj) = x−nf∞(x, y).

Now we want to prove that f∞ is irreducible in K[[x]][y] if and only if F (x, y) is irreducible in K((x))[y].
Suppose that f∞ is not irreducible in K[[x]][y], then there exists f1, f2 ∈ K[[x]][y] such that f∞ = f1.f2 and
deg(fi) = ni < deg(f∞) for i = 1, 2. We have

F (x, x−1y) = x−nf∞(x, y) = x−(n1+n2)f1(x, y).f2(x, y) = x−n1f1(x, y).x
−n2f2(x, y).

Hence :
F (x, y) = x−n1f1(x, xy).x

−n2f2(x, xy).

Setting F1 = x−n1f1(x, xy) and F2 = x−n2f2(x, xy), we get that F = F1.F2 with F1, F2 ∈ K((x))[y] and
deg(Fi) < deg(F ) for i = 1, 2, hence F is not irreducible in K((x))[y]. Similarly we can prove that if F is not
irreducible in K((x))[y], then f∞ is not irreducible in K[[x]][y].�

Definition 55 Let the notation be as above. The semigroup of F is defined to be the set

Γ(F ) = {int(F,G) = OtG(t
n, y(t)), G(x, y) ∈ K[x−1][y]}

Now let f, g ∈ K[x][y]. Note that the intersection multiplicity between f and g is the rank of the K−vector

space K[x,y]
(f,g) , and its denoted by Int(f, g).

Theorem 13 Let the notation be as above with f = yn+
∑

i+j<n aijx
iyj. Consider a polynomial g ∈ K[x, y],

and suppose that g can be written as g = yp+
∑

i+j<p x
iyj and let F (x, y) = f(x−1, y) and G(x, y) = g(x−1, y),

then Int(f, g) = −int(F,G).

Proof : Let y(t) be a root of F (tn, y(t)) = 0. By Proposition 61 we have :

f∞(x, y) = xnF (x, x−1y) and g∞(x, y) = xpG(x, x−1y)

Hence f∞(tn, tny(t)) = tn
2
F (tn, t−ntny(t)) = tn

2
F (tn, y(t)) = 0, and so tny(t) is a root of f∞(tn, y) = 0.

Hence :

int(f∞, g∞) = ordtg∞(tn, tny(t)) = ordt((t
n)pG(tn, t−ntny(t)))

= ordt(t
np) + ordt(G(t

n, y(t))) = np+ int(F,G).

On the other hand by Bezout’s Theorem we have :

int(f∞, g∞) + Int(f, g) = np

Comparing both equations we get Int(f, g) = −int(F,G).�
More generally we can prove that if f is a curve with one place at infinity, then Int(f, g) = −int(F,G) for
all g ∈ K[x, y] where F (x, y) = f(x−1, y) and G(x, y) = g(x−1, y).
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Definition 56 Let the notation be as above with f ∈ K[x, y] a curve with one place at infinity. The semigroup
of f is defined to be :

Γ(f) = {Int(f, g), g ∈ K[x, y] and g /∈ (f)}

Proposition 62 Let f be a polynomial in K[x, y] with one place at infinity, and let F (x, y) = f(x−1, y).
Let (r0, ..., rh) be the r−sequence associated to F , then according to the previous propositions Γ(f) is a free
numerical semigroup with respect to the arrangement (r0, ..., rh).



70 CHAPITRE 3. CANONICAL BASES OF MODULES OVER ONE DIMENSIONAL K-ALGEBRAS

3.5 Kahler Differentials

Let {f1, ..., fr} be a set of polynomials of K[t], and let A = K[f1, ..., fr] be the algebra generated by f1, ..., fr.
Set :

S = d(A) = {d(f), f ∈ A}

We shall assume that S is a numerical semigroup. For all i = 1, ..., r set Fi(t) = f ′i(t), the derivative of fi with
respect to t, and let M = F1A+ ...+FrA. Now let I = d(M) = {d(F ), F ∈M}, then obviously I is a relative
ideal of S. Moreover, let g ∈ A, then g =

∑

α cαf
α1
1 ...fαr

r , and so g′ =
∑

α cα(
∑r

i=1 αif
α1
1 ...fαi−1

i ...fαr
r f ′i),

hence g′ ∈ M . Note that d(g′) = d(g)− 1. It follows that for all s ∈ S we have s− 1 ∈ I. This leads to the
following definition :

Definition 57 Let the notation be as above. An element s ∈ I is said to be an exact element if s + 1 ∈ S.
Other elements are called non exact elements of I, and they are denoted by NE(M), i.e

NE(M) = {i ∈ I, i+ 1 /∈ S}.

Note that if s ∈ NE(M), then s + 1 ∈ G(S) where G(S) is the set of gaps of S. Since S is a numerical
semigroup, then G(S) is a finite set, and so the number of non exact elements in I is finite. We denote the
cardinality of the set NE(M) by ne(M). It follows that :

ne(M) ≤ g(s)

In what follows we will be interested in the case where r = 2. We will also use the notation of x(t), y(t) for
f1(t), f2(t).
Now write x(t) = tn + a1t

n−1 + ... + an and y(t) = tm + b1t
m−1 + ... + bm, and suppose without loss of

generality that m < n. Consider the map :

ψ : K[X,Y ] 7→ K[t], ψ(X) = x(t), ψ(Y ) = y(t).

and let f ∈ K[X,Y ] be the monic generator of the kernel of this map. Then f is a curve with one place
at infinity. In this case we will denote S = d(A) = d(K[x(t), y(t)]) by Γ(f). Note that for any nonzero
polynomial g(X,Y ) ∈ K[X,Y ], the element degt(g(x(t), y(t))) of Γ(f) coincides with the rank over K of the

K-vector space K[X,Y ]
(f,g) .

Let K be an algebraically closed field, and let f(X,Y ) be an irreducible plane curve in A = K[X,Y ], where

A is the ring of polynomials in two variables over K. Let Θ = K[X,Y ]
(f) be the coordinate ring of f , and let

φ : K[X,Y ] 7→ K[X,Y ]
(f) be the canonical homomorphism defined by f . Let x = φ(X) and y = φ(Y ), then

Θ ∼= K[x, y].

Definition 58 The module of Kahler differentials of Θ is defined to be the Θ-module generated by dx and
dy and subject to the relation fxdx+ fydy = 0, where fx, respectively fy represents the partial derivative of
f with respect to x, respectively y. This module is denoted by ΘdΘ.

Note that elements in ΘdΘ are of the form gdx+hdy for some g, h ∈ K[x, y]. Moreover the module of Kahler
differentials associated to f is isomorphic to M = x′(t)A+ y′(t)A, where A = K[x(t), y(t)]. From now on we
write l(N) for the length of an Θ-module N .

Definition 59 The torsion module of ΘdΘ is defined to be the set :

T = {ω ∈ ΘdΘ, gω = 0, for some non zero element g ∈ Θ}

Definition 60 The Tjurina number of f is defined to be l( K[X,Y ]
(f,fX ,fY )) = l( Θ

(fx,fy)
), and is denoted by ν(f).

Moreover, the jacobian ideal of Θ is defined as J := Θfx +Θfy, hence ν(f) = l(ΘJ ).

Lemma 25 Define the set U = {g ∈ Θ, gfx = hgfy for some hg ∈ Θ}. Then

l(T ) = l(
U

Θ.fy
).
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Proof : Note that for each g ∈ U , there is a unique hg ∈ Θ such that gfx = hgfy. Hence we can define the
Θ-homomorphism :

ϕ : U 7→ ΘdΘ

by setting ϕ(g) = hgdx+ gdy. For all g ∈ U , we have :

fx · ϕ(g) = fxhgdx+ fxgdy = fxhgdx+ hgfydy = hg(fxdx+ fydy) = 0

Similarly we can prove that fy · ϕ(g) = 0. Supposing that f is non constant then fx 6= 0 or fy 6= 0, hence
ϕ(g) ∈ T .
Conversely let hdx+ gdy ∈ T , then there exists some λ ∈ Θ such that λ(hdx+ gdy) = 0 = k(fxdx+ fydy)
for some k ∈ Θ. Hence λ · h = k · fx and λ · g = k · fy, and consequently λ(h · fy) = λ(g · fx) = k · fx · fy.
Hence h · fy = g · fx, and so g ∈ U and ϕ(g) = hdx+ gdy. Whence Im(ϕ) = T .
On the other hand if g ∈ Ker(ϕ), then ϕ(g) = hgdx + gdy = 0, and so hgdx + gdy = γ(fxdx + fydy) for
some γ ∈ Θ, hence g = γ · fy ∈ Θ · fy. Conversely if g ∈ Θ · fy, then g = λ · fy for some λ ∈ Θ, and so
g.fx = (λ.fx).fy, hence ϕ(g) = λ.fxdx+ gdy = λ(fxdx+ fydy) = 0. Thus Ker(ϕ) = Θ.fy. Finally we get :

T ∼=
U

Θ.fy
.

Consequently l(T ) = l( U
Θ.fy

).�.

Proposition 63 Let the notation be as above, where T is the torsion module of ΘdΘ. Then

l(T ) = ν(f).

Proof : Define the following Θ-homomorphisms :

ψ1 : Θ 7→ Θ.fx, ψ(h) = h.fx ∀h ∈ Θ.

ψ2 : Θ.fx 7→
Θ.fx

Θ.fx ∩Θ.fy
, to be the canonical surjection.

Since Θ.fx
Θ.fx∩Θ.fy

∼= J
Θ.fy

. Then we set the Θ−homomorphism defined by :

ψ = ψ2 ◦ ψ1 : Θ 7→
J

Θ.fy
, to be the composition of ψ2 and ψ1.

We have ω ∈ Ker(ψ) if and only if ω.fx = 0 in J
Θ.fy

if and only if ω.fx ∈ Θ.fy if and only if ω ∈ U . Hence
Θ
U
∼= J

Θ.fy
. It follows that :

l(
Θ

U
) = l(

J

Θ.fy
). (3.1)

Since Θ.fy ⊂ J ⊂ Θ, then l(ΘJ ) = l( Θ
Θ.fy

)− l( J
Θ.fy

). Also Θ.fy ⊂ U ⊂ Θ, then l(ΘU ) = l( Θ
Θ.fy

)− l( U
Θ.fy

), and

so l( U
Θ.fy

) = l( Θ
Θ.fy

) − l(ΘU ). It follows from Equation 3.1 that l(ΘJ ) = l( U
Θ.fy

). Hence by Lemma 25 we get

that ν(f) = l(ΘJ ) = l( U
Θ.fy

) = l(T ).�

Let Θ̄ be the integral closure of Θ, and let Θ̄dΘ̄ be the module of kahler differentials of Θ̄ regarded as an
Θ- module. Note that if (x(t), y(t)) is a parametrization of the curve f , then Θ = K[x(t), y(t)]. Moreover
Θ̄ = K[t]. In this case Θ̄dΘ̄ = K[t]dt, and an element hdx + gdy ∈ ΘdΘ can be regarded as an element in
Θ̄dΘ̄ by taking h(x(t), y(t))d(x(t))+g(x(t), y(t))d(y(t)), keeping in mind that d(tn) = ntn−1dt for all n ∈ N∗.
We define the conductor ideal of Θ in its integral closure Θ̄ to be the set ℑf = {g ∈ Θ̄, gΘ̄ ⊂ Θ}, and we
write c for its length.
Now let (f−λ)λ∈K be the family of translates of f , and for all λ ∈ K let V (f−λ) = {P ∈ K2, (f−λ)(p) = 0}
be the curve of K2 defined by f − λ.

Definition 61 Let λ ∈ K and p = (a, b) ∈ V (f − λ). Let Mp be the maximal ideal defined by p, that is
Mp = (X − a,X − b), and let F = K[X,Y ]Mp be the localization of K[X,Y ] at Mp. The local Milnor number

of (f − λ) at p, denoted by µλp , is defined to be the rank of the K-vector space F
(fX ,fY ) , where (fX , fY ) is the

ideal generated by fX , fY considered as elements in F .
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Note that a point p ∈ V (f − λ) is said to be a singular point of f − λ if µλp > 0, otherwise p is a smooth
point of f − λ.

Definition 62 Let λ ∈ K. Then f − λ is said to be singular if µλp > 0 for some p ∈ V (f − λ).

In our setting if f −λ is singular, then it has only a finite number of singular points. Moreover, there is only
a finite number of λ such that f − λ is singular. Note that if µ(f) = dimK

K[X,Y ]
(fX ,fY ) is the Milnor number of f ,

then µ(f) is the sum of local Milnor numbers at the singular points of the translates of f . That is

µ(f) =
∑

λ∈K

∑

p∈V (f−λ)

µλp .

Lemma 26 (Berger’s Formula) Let the notations be as above, where Θ is the coordinate ring of f , and
Θ̄ its integral closure. Then :

ν(f) = l(
Θ̄dΘ̄

ΘdΘ
) +

c

2
= l(

Θ̄dΘ̄

ΘdΘ
) +

µ(f)

2
.

Let v denotes the natural valuation on Θ̄. The valuation of an element g in Θ is the valuation of g regarded
as an element of Θ̄. Moreover v(g(t)dh(t)) = v(g(t)) + v(h(t))− 1. Now we define the following sets :

Γ(f) = {v(g), g non constant element in Θ}, the set of values of elements in the coordinate ring.
Γ′(f) = {v(g)− 1, g non constant element in Θ}, the set of values of exact differential forms.
Γ∗(f) = {v(ω), ω ∈ ΘdΘ}, the set of values of Kahler differentials.

Theorem 14 Let the notation be as above, where ν(f) is the Tjurina number of f , and c is the length of
the conductor ideal of Θ. Then :

ν(f) ≤ c.

Proof : Note that the number of missing integers in Γ(f), (cardinality of N\Γ(f)), is equal to l( Θ̄Θ) = c
2 ,

which is obviously equal to the cardinality of N\Γ′(f). Now consider an integer s − 1 = v(g) − 1 ∈ Γ′(f)
for some g ∈ Θ, then s − 1 = v(dg), but dg ∈ ΘdΘ, hence s − 1 ∈ Γ∗(f), and so Γ′(f) ⊆ Γ∗(f). Hence
N\Γ∗(f) ⊆ N\Γ

′

(f), and consequently :

l(
Θ̄dΘ̄

ΘdΘ
) = #(N\Γ∗(f)) ≤ #(N\Γ

′

(f)) =
c

2

It follows from Bergers formula that ν(f) = l( Θ̄dΘ̄ΘdΘ) +
c
2 ≤

c
2 + c

2 = c.�

Note that ν(f) = c if and only if l( Θ̄dΘ̄ΘdΘ) = c
2 , that is every integer in Γ∗(f) is of the form v(g) − 1 for

some g ∈ Θ. Hence if ω is a differential form then there exists some g1 ∈ Θ such that v(ω) = v(dg1),
moreover we can choose g1 such that ω1 = ω − dg1 satisfies v(ω1) < v(ω), then we choose some g2 ∈ Θ
such that v(ω1) = v(dg2) and v(ω2 = ω1 − dg2) < v(ω1). We finally get a sequence g1, ..., gn ∈ Θ with
ω = d(g1 + · · ·+ gn), hence ω is an exact differential form. Finally we conclude the following proposition :

Proposition 64 Let the notations be as above, with c = l(ℑf ) and ν(f) the Tjurina number of f . Then
ν(f) = c if and only if every differential form is exact.

Note that if g(x, y) ∈ K[x, y], then d
dtg(x(t), y(t)) ∈M , and so d( ddtg(x(t), y(t))) ∈ I. It follows that {s−1, s ∈

Γ(f)} ⊆ I and d( ddtg(x(t), y(t))) is an exact element. In particular, l( Θ̄dΘ̄ΘdΘ) is the cardinality of the set
{s ∈ G(Γ(f)), s− 1 /∈ S}. This cardinality is equal to

g(Γ(f))− ne(M) =
µ(f)

2
− ne(M)

It follows from the Berger’s formula that

ν(f) =
µ(f)

2
− ne(M) +

µ(f)

2
= µ(f)− ne(M)
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Let the notation be as above with x(t) = tn + a1t
n−1 + ... + an and y(t) = tm + b1t

n−1 + ... + bn, and
Γ(f) = d(K[x(t), y(t)]). Obviously n,m ∈ Γ(f). Suppose without loss of generality, that m < n and also (by
taking the change of variables t1 = t+ b1

n ) that b1 = 0. Recall that a set of generators of Γ(f) is constructed
as follows : r0 = m = d1 and r1 = n, then we take d2 = gcd(d1, r1) and we let g2 = Appd2(f) to be
the d2-th approximate root of f , we get that r2 = d(g2(x(t), y(t))). Suppose that r0, r1, ..., ri and d1, ..., di
are constructed, and let di+1 = gcd(ri, di), then we take gi+1 = Appdi+1

(f) and ri+1 = d(gi+1(x(t), y(t))).
Consequently we get a finite system of generators r0, ..., rh such that Γ(f) = 〈r0, ..., rh〉. Moreover, Γ(f) is
free with respect to this arrangement.

Lemma 27 Let q(t) = t +
∑

i≥1 cit
−i ∈ K((t)) and consider the map l : K((T )) 7→ K((t)) defined by

l(α(T )) = α(q(t)) for all α(T ) ∈ K((T )). In particular l(T ) = q(t). Then l is an isomorphism.

Proof : Let α(T ), β(T ) ∈ K((T )), then clearly we have l(α(T )+β(T )) = l(α(T ))+l(β(T )) and l(α(T )β(T )) =
l(α(T ))l(β(T )). Furthermore, l(1) = 1 and ker(l) = {0}. In order to prove that l is an isomorphism we are
going to construct the inverse of l. More precisely we are going to prove that t = l(T + b1T

−1 + b2T
−2 + . . .)

for some T + b1T
−1+ b2T

−2+ . . . ∈ K((T )). We shall prove this by induction on k ≥ 1. That is for all k ≥ 1,
we shall prove that there exists bk ∈ K such that

degt(t− l(T + b1T
−1 + . . .+ bkT

−k)) ≤ −k − 1.

Note that for all k ∈ Z, we have

l(T k) = tk +
∑

i≥1

cki t
k−i−1.

If k = 1, then we set b1 = −c1. We get

t− l(T + b1T
−1) = t− q(t)− b1l(T

−1)

= t− (t+ c1t
−1 + c2t

−2 + . . .)− b1(t
−1 + c−1

1 t−3 + c−1
2 t−4 + . . .)

= (−c1 − b1)t
−1 −

∑

i≥1

γ1i t
−1−i =

∑

i≥1

γ1i t
−1−i.

Where γ1i ∈ K for all i ≥ 1. It follows that deg(t− l(T + b1T
−1)) ≤ −2. Hence the assertion is clear for k = 1.

Suppose that the assertion is true for k and let us prove it for k + 1. By hypothesis we have

t− l(T + b1T
−1 + . . .+ bkT

−k) =
∑

i≥1

γki t
−k−i.

Where γki ∈ K for all i ≥ 1. Then we set bk+1 = γk1 . But l(T−k−1) = t−k−1 +
∑

i≥1 c
−k−1
i t−k−i−2, and so

bk+1l(T
−k−1) = bk+1t

−k−1 +
∑

i≥1 bk+1c
−k−1
i t−k−i−2. It follows that

t− l(T + b1T
−1 + . . .+ bk+1T

−k−1) = t− l(T + b1T
−1 + . . .+ bkT

−k)− bk+1l(T
−k−1)

=
∑

i≥1

γki t
−k−i − bk+1t

−k−1 −
∑

i≥1

bk+1c
−k−1
i t−k−i−2

= (γk1 − bk+1)t
−k−1 +

∑

i≥2

γki t
−k−i −

∑

i≥1

bk+1c
−k−1
i t−k−i−2

=
∑

i≥1

γk+1
i t−k−1−i

Hence degt(t− l(T + b1T
−1 + . . .+ bk+1T

−k−1)) ≤ −k − 2. This proves the assertion for k + 1.
Let q1(T ) = T +

∑

k≥1 bkT
−k and let us define the mapping

l1 : K((t)) 7→ K((T ))

by setting l1(β(t)) = β(q1(T )) (in particular l1(t) = q1(T )). Since degt(t− l(q1(T ))) ≤ −k for all k ≥ 0, then
t = l(q1(T )). This proves that l is surjective, hence an isomorphism. Note that l1 = l−1 because l(l1(t)) = t.�
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Now let us make the following change of variables, y(t) = ȳ(T ) = Tm, that is :

T = t(1 + b2t
−2 + ...+ bmt

−m)
1
m = t(1 +

1

m
b2t

−2 + . . .) = q(t).

This change of variables defines a map l : K((T )) 7→ K((t)), with l(T ) = q(t). It follows from Lemma 27 that
l is an isomorphism. Let x̄(T ) = x(l−1(t)), then x̄(T ) = Tn +

∑

p<n cpT
p. Note that for all g ∈ K[X,Y ] we

have d(g(x(t), y(t))) = d(g(x̄(T ), ȳ(T ))). Furthermore the Newton-Puiseux exponents of f are constructed
as follows :

Let m1 = −n, and let D2 = gcd(n,m) = d2. Then for all i ≥ 2 set :

mi = inf{−p, p ∈ supp(x̄(T )) and Di ∤ p}, and Di+1 = gcd(Di,mi).

Note that Dh+1 = 1 and Di = di for all i = 1, ..., h. Moreover, the sequence {r0, ..., rh} is related to the
Newton-Puiseux exponents of f as follows : r0 = m, r1 = n, and for all k ≥ 1 we have :

−rk+1 = −ekrk + (mk+1 −mk).

where ek =
dk
dk+1

for all i = 1, ..., h.

Now write x(T ) = Tn + cλT
λ + ... and y(T ) = Tm, where λ = max{p, p < n, cp 6= 0} and suppose that

λ > −∞, that is x(t) is not of the form x(T ) = Tn. Define the following differential form :

W (T ) = mx′(T )y(T )− ny′(T )x(T )

which is equal to :

W (T ) = mTm(nTn−1 + λcλT
λ−1 + ...)− nmTm−1(Tn + cλT

λ + ...)

= (mnTm+n−1 +mλcλT
m+λ−1 + ...)− (nmTm+n−1 + nmcλT

m+λ−1 + ...)

= (λ− n)mcλT
m+λ−1 + terms of lower degree.

It follows that if m+ λ /∈ Γ(f), then W (T ) is a non exact element of M . On the other hand if m+ λ ∈ Γ(f)
we have the following proposition :

Proposition 65 Let the notation be as above, with W (T ) = mx′(T )y(T )−ny′(T )x(T ). Suppose that m+λ ∈
Γ(f), then λ 6= −m2. Moreover, m+ λ = an+ bm for some a, b ∈ N with a ≤ 1.

Proof : Suppose to the contrary that λ = −m2. In this case m + λ is of the form an + bm + cr2 for
some a, b, c ∈ N. We have −r2 = −e1r1 + m2 − m1, then r2 = e1r1 + m1 − m2, but r1 = −m1, and so
r2 = (e1−1)r1−m2 and −m2 = r2− (e1−1)r1. Hence m−m2 = m+r2− (e1−1)r1 = an+ bm+ cr2, and so
m−(e1−1)r1 = am+bm+(c−1)r1. If c ≥ 1, then m−(e1−1)r1 ≥ 0, but m−(e1−1)r1 = m−(e1−1)n < 0
since m < n, which is a contradiction. It follows that c = 0 and m + r2 − (e1 − 1)r1 = an + bm, hence
r2 = (a+ e1 − 1)n+ (b− 1)m, and so d2 = gcd(n,m) divides r2 which is a contradiction. We conclude that
λ 6= −m2, and so λ > −m2 and λ is in the group generated by n,m, hence m + λ = an + bm for some
a, b ∈ N. We have n > m > λ and λ = (a− 1)n+ bm+ (n−m), so if a > 1 it follows that λ > n, which is a
contradiction, hence a ≤ 1.�

Theorem 15 Let x(t) = tn + a1t
n−1 + ...+ an and y(t) = tm + b1t

m−1 + ...+ bm be the equations of a poly-
nomial curve in K2, and let f be as above. Let M = x′(t)A+y′(t)A be the A-module generated by x′(t), y′(t).
Then the following conditions are equivalent :
(i) µ(f) = ν(f).
(ii) Every element in d(M) is exact.
(iii) There exists an isomorphism K[x, y] 7→ K[X,Y ] thats sends f to the polynomial Xm − Y n, with
gcd(m,n) = 1.
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Proof : The equivalence between (i) and (ii) is due to the fact that µ(f) = C(Γ(f)) = c(f) where c(f) is the
length of the conductor ideal, and Proposition 64.
Now let us prove that (ii) is equivalent to (iii). For the necessary condition, suppose that every element in
d(M) is exact, and let the notations be as in Proposition 65 with x(T ) = Tn+ cλT

λ+ ... and y(T ) = Tm. By
assumption we have W (T ) is exact, and so m+ λ ∈ Γ(f), then by Proposition 65 we have m+ λ = an+ bm
for some a, b ∈ N with a ≤ 1. We will distinguish two cases :
(I) Suppose that a = 1, then λ = n+ (b− 1)m. If b ≥ 1 we will get λ ≥ n which is not true, hence b = 0 in
this case and m+ λ = n. Now let ỹ(T ) = y(T ) + α with α ∈ K∗. We have :

W̄ (T ) = mx′(T )ỹ(T )− nỹ′(T )x(T )

= (m.nTn−1 +mλcλT
λ−1 + ...)(Tm + α)− nmTm−1(Tn + cλT

λ + ...)

= (αmn+mλcλ − nmcλ)T
m+λ−1 + ...

= m(αn+ cλ(λ− n))T
m+λ−1 + ...

Then if we choose α = cλ(n−λ)
n , then d(W̄ ) < m+λ−1. Now let ȳ = T̃m = Tm+α, then x̃ = T̃n+cλ1 T̃

λ1+ ...
with λ1 < λ.
(II) Now suppose that a = 0, then m + λ = bm, and so λ = (b − 1)m. Consider the change of variables
x̄ = x − cλy

b−1 and ȳ = y. We will get x̄ = (Tn + cλT
λ + ...) − cλT

(b−1)m, hence we will get either x̄ = Tn

or x̄ = Tn + cλ′T
λ′ + ... with λ′ < λ.

Following these two process we will get a new parametrization (x̄, ȳ) with

(x̄, ȳ) = (Tn, Tm) or (x̄, ȳ) = (Tn + cλ′T
λ′ + . . . , Tm)

We shall prove that these two processes will eventually stop. In case (I), it is clear since λ = n−m > 0, so
we are constructing a decreasing sequence of nonnegative integers. In case (II), if h ≥ 2, then this is clear
since the set of integers in the interval [λ,−m2] is finite. Suppose that h = 1, that is gcd(m,n) = 1. If the
process is infinite, then after a finite number of steps we will obtain a new parametrization of the curve of
the form x̃ = Tn + αT−l + . . . , ỹ = Tm with l > nm, which is a contradiction.
It follows that either we will finally get a parametrization (x(T ) = Tn, y(T ) = Tm), or a parametrization
(x(T ), y(T )) such that W = mx′(T )y(T )− ny′(T )x(T ) is non exact. By our assumption we have that every
element is exact, and so the new parametrization must be of the form (Tn, Tm). Hence the equation of the
curve is of the form Xm − Y n with gcd(m,n) = 1.
For the sufficient condition, suppose that x(T ) = Tn and y(T ) = Tm. To prove that every element in M is
exact it is enough to prove that elements of the form xiyjx′ and xiyjy′ are exact for all i, j ∈ N. We have :

(xi+1yj)′ = (Tn(i+1)Tmj)′ = n(i+ 1)Tn(i+1)−1Tmj +mjTn(i+1)Tmj−1

= (n(i+ 1) +mj)Tn(i+1)+mj−1

= (n(i+ 1) +mj)(Tn)i(Tm)jTn−1 =
n(i+ 1) +mj

n
xiyi(nTn−1)

=
n(i+ 1) +mj

n
xiyix′

Hence xiyjx′ = ( n
n(i+1)+mjx

i+1yj)′, and so it is exact. Similarly we can prove that :

xiyjy′ = (
m

ni+ (j + 1)m
xiyj+1)′.

It follows that every element in M is exact.�

Proposition 66 Let the notation be as above with x(T ) = Tn + cλT
λ + ... and y(T ) = Tm. Suppose that

ne(M) > 0, then ne(M) ≥ 2h−1.

Proof : Let ω = mx′y − ny′x, then d(ω) = m+ λ− 1 with m+ λ /∈ S. Furthermore λ ≥ −m2. We are going
to distinguish two cases
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(i) λ = −m2. Since m+ λ /∈ S, then m+ λ = m−m2 = −am+ bn+ cr2 with a, b, c ∈ N and a > 0, 0 ≤ b <
e1, 0 < c < e2. But −m2 = r2 − (e1 − 1)r1 and r1 = n, then m + r2 − (e1 − 1)n = −am + bn + cr2, and so
(c− 1)r2 = (a+1)m− (e1 − 1+ b)n. If c ≥ 1, then d2 = gcd(m,n) divides (c− 1)r2 which is a contradiction
since c < e2. Hence c = 1, and (a + 1)m = (e1 − 1 + b)n. If b = 0, then m divides (e1 − 1)n, which is a
contradiction, hence b ≥ 1, and so e1 − 1 + b ≥ 2. It follows that we should have a ≥ 2. Finally we get :

m+ λ = −am+ bn+ r2 with a ≥ 2.

Consider the following elements gα3
3 · · · g

αh

h w of M with αi ∈ N and 0 ≤ αi < ei for all i = 3, ..., h, then
d(gα3

3 · · · g
αh

h w) + 1 = m + λ + α3r3 + ... + αhrh = −am + bn + r2 + α3r3 + ... + αhrh. Since a > 0, then
d(gα3

3 · · · g
αh

h w)+1 /∈ S for all α3, ..., αh. Since ei ≥ 2 for all i = 3, ..., h, then the cardinality of such elements
is at least 2h−2.
Moreover d(yω) + 1 = −(a − 1)m + bn + r2 with a ≥ 2, then yω is not exact. Then we can prove similarly
that ygα3

3 · · · g
αh

h ω are non exact elements, and the cardinality of such elements is at least 2h−2. It follows
that ne(M) ≥ 2h−1.
(ii) λ > −m2. In this case m + λ = −am + bn with a, b ∈ N, a > 0 and 0 ≤ b < e1. Consider the
elements gα2

2 · · · g
αh

h ω with αi ∈ N and 0 ≤ αi < ei for all i = 2, ..., h. We have d(gα2
2 · · · g

αh

h ω) + 1 =
d(ω) + 1 + α2r2 + ...+ αhrh = −am+ bn+ α2r2 + ...+ αhrh /∈ S. Since ei ≥ 2 for all i = 2, ..., h, it follows
that the number of such elements is at least 2h−1. Hence ne(M) ≥ 2h−1.�

Corollary 5 Let the notation be as above, and suppose that ne(M) = 1. Then S = d(A) =< m,n > with
gcd(m,n) = 1. Moreover let F (S) be the Frobenius number of S, then NE(M) = {F (S)− 1}.

Proof : Suppose that ne(M) = 1. By Proposition 66, we have 2h−1 ≤ ne(M), and so 2h−1 = 1. It follows that
h = 1 and the gcd sequence of f is (d1 = m, d2 = 1), and so S =< m,n > with gcd(m,n) = d2 = 1 and e1 =
d1 = m. Let ω = mx′y−nxy′ = cTm+λ−1+ · · · . By Theorem 15 we can suppose that d(ω)+ 1 = λ+m /∈ S.
Hence it is of the form λ+m = −am+ bn for some a, b ∈ N with a ≥ 1 and 0 ≤ b ≤ e1 − 1 = m− 1. Note
that we have F (S) = −m+(m− 1)n. Now if a > 1, then d(yω)+ 1 = −am+ bn+m = −(a+1)m+ bn /∈ S,
and so yω is a non exact element different from ω, which is a contradiction. Hence a = 1. If b < m − 1,
then d(xω) + 1 = −am + bn + n = −m + (b + 1)n /∈ S since b + 1 ≤ m − 1, and consequently xω is
a non exact element different from ω, which is again a contradiction. It follows that b = m − 1, and so
d(ω) + 1 = −am+ bn = −m+ (m− 1)n = F (S). Hence d(ω) = F (S)− 1 and NE(M) = {F (S)− 1}.�

Suppose that ne(M) = 1 , that is we have one non exact element. In this case h = 1, Γ(f) =< m,n >
with m < n and gcd(m,n) = 1. Furthermore, m+λ = F (S) = −m+(m− 1)n < m+n because λ < n. This
implies that (m− 2)n < 2m < 2n. In particular m < 4. If m = 2, then n = 2p+ 1 for some p ≥ 1. If m = 3,
then n < 2m = 6 and n > m = 3 implies that either n = 4 or n = 5.

Proposition 67 Let the notation be as above, and suppose that ne(M) = 2. One of the following two
conditions holds :
(i) h = 1. In this case S =< m,n > with gcd(m,n) = 1. Moreover NE(M) = {F (S)− 1, F (S)−m− 1} or
NE(M) = {F (S)− 1, F (S)− n− 1}.
(ii) h = 2. In this case S =< m,n, r2 > with d3 = 1. Moreover we will have NE(M) = {F (S) − 1, F (S) −
r2 − 1} or NE(M) = {F (S)− 1, F (S)−m− 1} or NE(M) = {F (S)− 1, F (S)− n− 1}.

Proof : By Proposition 66, we have 2h−1 ≤ ne(M), and so 2h−1 = 1 or 2h−1 = 2, hence h = 1 or h = 2. Let
ω be a non exact element with d(ω) + 1 < F (S), and let d(ω) be minimal in NE(M).
(i) h = 1. Since ω is non exact, then d(ω) + 1 = −am+ bn for some a ≥ 1 and 0 ≤ b ≤ m− 1. If a ≥ 2 and
b < m − 1, then d(yω) + 1 = −(a − 1)m + bn /∈ S and d(xω) = −am + (b + 1)n /∈ S, and so ω,xω and yω
are three non exact elements, but ne(M) = 2. This is a contradiction. Hence we have :
(1) a = 1 and b < m − 1. Hence, xω, ..., xm−b−1ω are non exact elements, but ne(M) = 2, then b = m − 2,
and so d(ω) + 1 = −m+ (m− 2)n = F (S)− n and d(xω) + 1 = −m+ (m− 1)n = F (S). Finally we get :

NE(M) = {d(ω), d(yω)} = {F (S)− 1, F (S)− n− 1}.
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(2) a ≥ 2 and b = m − 1. Hence, yω, ..., ya−1ω are non exact elements, but ne(M) = 2, then a = 2, and so
d(ω) + 1 = −2m+ (m− 1)n and d(yω) + 1 = −m+ (m− 1)n = F (S). Hence :

NE(M) = {F (S)− 1, F (S)−m− 1}.

(ii) h = 2. In this case S =< m,n, r2 > with d3 = 1. Furthermore d(ω) + 1 = −am + bn + cr2 with a ≥ 1,
0 ≤ b ≤ e1 − 1, and 0 ≤ c ≤ e2 − 1. If a ≥ 3 then yω and y2ω are non exact elements, and so ne(M) ≥ 3,
which is a contradiction. Hence a = 1 or a = 2.
(1) a = 1. If b < e1 − 1 and c < e2 − 1, then xω and g2ω are non exact elements, which is a contradiction.
Hence we have :
• a = 1, b = e1 − 1 and c < e2 − 1. By a similar discussion as above, we get that the only possible
condition to get ne(M) = 2 is c = e2 − 2. In this case ω and g2ω are non exact elements, and d(g2ω) + 1 =
−m+ (e1 − 1)r1 + (e2 − 1)r2 = F (S) and d(ω) + 1 = −m+ (e1 − 1)r1 + (e2 − 2)r2 = F (S)− r2. Hence :

NE(M) = {F (S)− 1, F (S)− r2 − 1}.

• a = 1, b < e1− 1 and c = e2− 1. As above we get b = e1− 2. In this case ω and xω are non exact elements
with d(ω)+1 = −m+(e1−2)n+(e2−1)r2 = F (S)−n and d(xω)+1 = −m+(e1−1)n+(e2−1)r2 = F (S).
Hence :

NE(M) = {F (S)− 1, F (S)− n− 1}.

(2) a = 2. If b < e1 − 1 or c < e2 − 1, then yω, xω are non exact, or yω g2ω are non exact, which is a
contradiction. We get that a = 2, b = e1 − 1 and c = e2 − 1. In this case ω and yω are non exact elements
with d(ω)+1 = −2m+(e1−1)r1+(e2−1)r2 = F (S)−m and d(yω)+1 = −m+(e1−1)r1+(e2−1)r2 = F (S).
Hence :

NE(M) = {F (S)− 1, F (S)−m− 1}.�

Let the notations be as above and suppose that d(M) admits two non exact elements. We are going to
describe the semigroup S under this condition :

Suppose that h=1 : In this case, S =< m,n > with m < n and gcd(m,n) = 1. By Proposition 67 we
have m+ λ ∈ {F (S), F (S)− n, F (S)−m}. We distinguish the three different cases :
• If m + λ = F (S) = −m + (m − 1)n, then λ = −2m + (m − 1)n. But λ < n, then −2m + (m − 2)n < 0.
We have −2m+ (m− 2)n = m(n− 2)− 2n = (n− 2)(m− 2)− 4, and so (n− 2)(m− 2) < 4. It follows that
m = 2 or m = 3. If m = 2 then n = 2k + 1 for some k ≥ 1 since gcd(m,n) = 1. Hence :

S =< 2, 2k + 1 > .

If m = 3, then (n− 2) < 4 and m < n implies that n = 4 or n = 5. Hence :

S =< 3, 4 > or S =< 4, 5 > .

• If m+λ = F (S)−m = −2m+(m−1)n. Hence λ = −3m+(m−1)n < n. It follows that (n−3)(m−2) < 6,
and so m = 2 or m = 3 or m = 4. Similar calculations as above leads to :

S =< 2, 2k + 1 > k ≥ 1, or S =< 3, 4 > or S =< 3, 5 > or S =< 4, 5 > .

• If m+λ = F (S)−n = −m+(m− 2)n. Similar calculations as above implies that (n− 2)(m− 3) < 4, and
so m = 2 or m = 3 or m = 4. It follows that :

S =< 2, 2k + 1 > k ≥ 1, or S =< 3, n > with gcd(m,n) = 1, or S =< 4, 5 > .

Suppose that h=2 : Let S =< m,n, r2 >. In this case m+λ ∈ {F (S), F (S)−m,F (S)−n, F (S−r2)}.
We will distinguish the four cases :
• Suppose that m+ λ = F (S) = −m+ (e1− 1)n+ (e2− 1)r2. Since e2 6= 1, then λ = −m2 = r2− (e1− 1)n.
Hence :

m+ λ = m+ r2 − (e1 − 1)n = −m+ (e1 − 1)n+ (e2 − 1)r2

and so (e2−2)r2 = 2m−2(e1−1)n, then d2 = gcd(m,n) divides (e2−2)r2. But d2 ∤ ir2 for all i = 1, ..., e2−1,
and so (e2 − 2)r2 = 0. It follows that m = (e1 − 1)n, which is a contradiction.
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• If m + λ = F (S) − r2 = −m + (e1 − 1)n + (e2 − 2)r2. If e2 6= 2, then λ = −m2 = r2 − (e1 − 1)n, and so
m+ r2 − (e1 − 1)n = −m+ (e1 − 1)n+ (e2 − 2)r2. It follows that :

(e2 − 3)r2 = 2m− 2(e1 − 1)n

Hence d2 = gcd(m,n) divides (e2 − 3)r2, but d2 ∤ ir2 for all i = 1, ..., e2 − 1. Hence (e2 − 3)r2 = 0, which is a
contradiction. It follows that e2 = 2, d2 = e2 = 2 and e1 =

d1
d2

, then m+λ = −m+(e1−1)n = −m+(m2 −1)n.
But m+ λ < m+ n. It follows that :

−2
m

2
+ (

m

2
− 2)

n

2
< 0

By similar calculations as above we obtain the inequality : (m2 − 2)(n2 − 2) < 4. Hence (m2 ,
n
2 ) is either

(2, 2k + 1) with k ≥ 1, or (3, 4) or (3, 5). Since d2 = 2 ∤ r2, then r2 is odd. Moreover we (m,n, r2) satisfies
one of the following conditions :
(i) m = 4, n = 4k + 2, r2 = 2p+ 1 with 2p+ 1 < 8k + 4
(ii) m = 6, n = 8, r2 = 2p+ 1 and 2p+ 1 < 24.
(iii) m = 6, n = 10, r2 = 2p+ 1 and 2p+ 1 < 30.
• If m+ λ = F (S)−m = −2m+ (e1 − 1)n+ (e2 − 1)r2. Since e2 6= 1, then λ = −m2 = r2 − (e1 − 1)n. This
implies that m+ λ = m+ r2 − (e1 − 1)n = −2m+ (e1 − 1)n+ (e2 − 1)r2. Hence :

(e2 − 2)r2 = 3m− 2(e1 − 1)n (3.2)

It follows that d2 = gcd(m,n) divides (e2 − 2)r2, and so (e2 − 2)r2 = 0. Hence e2 = 2, d2 = e2 = 2 and
e1 = d1

d2
= m

2 . Since (e2 − 2)r2 = 0, then by Equation (3.2), we get that 3m − 2(m2 − 1)n = 0, and so
3m2 −

m
2 n+ n = 0, hence (m2 − 1)(n− 3) = 3. If m

2 ≥ 4, then n > m ≥ 8, and so (m2 − 1)(n− 3) > 15, which
is a contradiction. Hence m

2 = 2, and so m = 4 and n = 6, and it is the only solution. Moreover r2 = 2p+ 1
with r2 < 12.
• If m+ λ = F (S) − n = −m+ (e1 − 2)n+ (e2 − 1)r2. Since e2 6= 1, then λ = −m2 − (e1 − 1)n. It follows
that :

(e2 − 2)r2 = 2m− (2e1 − 3)n (3.3)

Hence e2 = d2 = 2 and e1 =
m
2 . Using Equation (3.3) we get that 2m−(m−3)n = 0, and so (m−3)(n−2) = 6.

The only possible case is m = 4 and n = 8.

These results can be summarized into the following theorem.

Theorem 16 Let X(t) = tn + a1t
n−1 + . . . + an, Y (t) = tm + b1t

m−1 + . . . + bm and assume that m < n
and that gcd(m,n) < m. Let f(x, y) be the monic polynomial of K[X,Y ] such that f(X(t), Y (t)) = 0
and let Γ(f) be the semigroup associated with f . Assume that Γ(f) is a numerical semigroup and let
Γ(f) = 〈m = r0, n = r1, . . . , rh〉 where r2, ..., rh are constructed as above. Let µ(f) and ν(f) be the Mil-
nor number and the Tjurina number of f respectively. Assume that µ(f) > ν(f). We have the following :
(i) If µ(f) = ν(f) + 1, then h = 1.
(ii) If µ(f) = ν(f) + 2, then h = 1, 2.
Furthermore we have :
(1)If µ(f) = ν(f) + 1, then Γ(f) =< m,n > and one of the following conditions holds :
• (m,n) = (2, 2p+ 1), p ≥ 1.
• (m,n) = (3, 4).
• (m,n) = (3, 5).
(2) If µ(f) = ν(f) + 2 and h = 1 then Γ(f) =< m,n > and one of the following conditions holds :
• (m,n) = (2, 2p+ 1), p ≥ 1.
• (m,n) = (3, 4).
• (m,n) = (3, 5).
• (m,n) = (4, 5).
• (m,n) = (3, n) with gcd(3, n) = 1.
(3) If µ(f) = ν(f) + 2 and h = 2 then Γ(f) =< m,n, r2 > and one of the following conditions holds :
• (m,n, r2) = (4, 4p+ 2, 2q + 1), p ≥ 1 and 8p+ 4 > 2q + 1.
• (m,n, r2) = (6, 8, 2p+ 1), p ≤ 11.
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• (m,n, r2) = (6, 10, 2p+ 1), p ≤ 14.
• (m,n, r2) = (4, 6, 2p+ 1), p ≤ 5.
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Thèse de Doctorat

Ali ABBAS

Combinatoire des singularités de certaines courbes et hypersurfaces

Combinatorics of singularities of some curves and hypersurfaces

Résumé
La thèse est constituée de deux parties. Dans la
première partie on généralise la Théorie
d’Abhyankar-Moh à un type special de polynômes, les
polynômes libres. Soit f un polynôme non nul de
K[[x1, ..., xe]][y] et supposons, moyennement un
changement des variables élémentaire, que la
composante homogène de plus bas degré du
discriminant de f contient une puissance de x1. Une
transformation monômiale dans K[[x1, ..., xe]]
transforme f en un polynôme quasi-ordinaire avec

une racine dans K[[x
1

n

1
, ..., x

1

n

e ]], n ∈ N. En prenant la
Préimage de f par le morphisme, nous obtenons une

solution y ∈ KC [[x
1

n

1
, ..., x

1

n

e ]] de f(x1, ..., xe, y) = 0, où

KC [[x
1

n

1
, ..., x

1

n

e ]] est l’anneau des séries fractionnaires
dont le support appartient à un cône convexe C. Ceci
nous permet de construire l’ensemble des exposants
caractéristiques de y, et de généraliser certains des
résultats concernant les polynômes quasi-ordinaire au
polynôme f . Dans la deuxiéme partie, nous donnons
un algorithme pour calculer le monoïde des degrés du
module M = F1A+ . . .+ FrA oú
A = K[f1(t), . . . , fs(t)] et F1, . . . , Fr ∈ K[t]. Nous
donnons ensuite des applications concernant le
probléme de la classification des courbes
polynômiales (C’est-á-dire, des courbes algébriques
paramétrées par des polynômes) par rapport à
certains de leurs invariants, en utilisant le module de
différentielles Kähleriennes.

Abstract
The thesis is made up of two parts. In the first part we
generalize the Abhyankar-Moh theory to a special kind
of polynomials, called free polynomials. We take a
polynomial f in K[[x1, ..., xe]][y] and by a preliminary
change of variables we may assume that the leading
term of the discriminant of f contains a power of x1.
After a monomial transformation we get a

quasi-ordinary polynomial with a root in K[[x
1

n

1
, ..., x

1

n

e ]]
for some n ∈ N. By taking the preimage of f we get a

solution y ∈ KC [[x
1

n

1
, ..., x

1

n

e ]] of f(x1, ..., xe, y) = 0,

where KC [[x
1

n

1
, ..., x

1

n

e ]] is the ring of formal fractional
power series with support in a specific line free cone
C. Then we construct the set of characteristic
exponents of y, and we generalize some of the results
concerning quasi-ordinary polynomials to f . In the
second part, we give a procedure to calculate the
monoid of degrees of the module
M = F1A+ . . .+ FrA where A = K[f1, ..., fs] and
F1, . . . , Fr ∈ K[t]. Then we give some applications to
the problem of the classification of plane polynomial
curves (that is, plane algebraic curves parametrized
by polynomials) with respect to some of their
invariants, using the module of Kähler differentials.

Mots clés
Polynômes quasi-ordinaires, Cônes sans droites,
Racines approchées, Semigroupes numériques,
Nombre de Milnor, Nombre de Tjurina

Key Words
Quasi-ordinary polynomials, Line-free cones,
Approximate roots, Numerical semigroups,
Tjurina number, Milnor number.
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