
HAL Id: tel-03237830
https://theses.hal.science/tel-03237830

Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minage de règles rapide, exact et exhaustif dans de
larges bases de connaissances

Jonathan Lajus

To cite this version:
Jonathan Lajus. Minage de règles rapide, exact et exhaustif dans de larges bases de connaissances.
Artificial Intelligence [cs.AI]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAT002�.
�tel-03237830�

https://theses.hal.science/tel-03237830
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

T0
02 Fast, Exact, and Exhaustive Rule Mining

in Large Knowledge Bases
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626
École doctorale de l’Institut Polytechnique de Paris (ED IP Paris)

Spécialité de doctorat : Informatique, données, IA

Thèse présentée et soutenue à Palaiseau, le 16 février 2021, par

JONATHAN LAJUS

Composition du Jury :

Thomas Bonald
Professor, Télécom Paris Président

Paolo Papotti
Associate Professor, EURECOM Rapporteur

Heiko Paulheim
Professor, University of Mannheim Rapporteur

Hannah Bast
Professor, University of Freiburg Examinatrice

Luis Galàrraga
Researcher, INRIA Rennes Examinateur

Fatiha Saı̈s
Professor, Paris Saclay University (LRI) Examinatrice

Fabian Suchanek
Professor, Télécom Paris Directeur de thèse

To my parents, my family and Minou.

1

Acknowlegements

Une thèse est un circuit de longue haleine. Tout a commencé il y a cinq ans
quand Fabian a accepté de me faire rejoindre l’équipe DIG. A l’époque, j’ai
commencé par me mettre dans la roue de Luis durant un stage de 6 mois.
Puis après son échappée, il m’a fallu prendre le vent.

Heureusement, je pu faire partie d’un formidable peloton, comprenant
Luis, Thomas, Thomas, Julien, Ned, Antoine, Marc, Marie, Pierre-Alexandre,
Jean-Louis, Mauro et tant d’autres avec qui j’ai pu partager cette aventure.
Je souhaite remercier particulièrement Fabian, qui en bon capitaine de route
a toujours su être à l’écoute. Je remercie également Bruno Defude, Bernd
Amann et Arnaud Soulet pour leur conseils en cours de route.

Le parcours était bien escarpé, avec des hauts et des bas, parfois en dan-
seuse mais souvent à mouliner. Je ne peux que remercier mes parents, toute
ma famille qui m’ont soutenu mais aussi mes colocataires qui m’ont supporté.
Sans oublier les Nadine, Samy, Sarah, Simon, Émilie, Romaing, Joris, Seya,
Doc, Guillaume, Malfoy et Camille pour les japs et les soirées jeux qui m’ont
permis de sortir la tête du guidon.

Bien que les rêves de maillot jaune ont disparu, j’ai pu au moins finir la
course. Il a fallu changer de braquet pour cette dernière étape de 153 pages.
Je remercie tous les membres du jury de donner de leur temps pour considérer
son homologation.

A thesis is a long ride. Everything started, five years ago, when Fabian made
me join the team. I first sat in the wheels of Luis during my master thesis.
Then, after he made a breakaway, I had to set my own pace.

Fortunately, I was part of a terrific peloton, including Luis, Thomas,
Thomas, Julien, Ned, Antoine, Marc, Marie, Pierre-Alexandre, Jean-Louis,
Mauro and many others, with who I could share this adventure. I would
like to particularly thank Fabian, who made a great raod captain, always
receptive and responsive. I would also like to thank Bruno Defude, Bernd
Amann and Arnaud Soulet for their valuable input along the road.

2

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

The journey was steep, with ups and downs. I have to thank my parents
and my whole family for their support, and my roommates who were able
to put up with me. I also thank the Nadine, Samy, Sarah, Simon, Émilie,
Romaing, Joris, Seya, Doc, Guillaume, Malfoy et Camille for dining out and
the game night that made me keep my head over the water.

If the dreams of the yellow jersey have faded away, I did at least finish
the race. I had to pick up an higher pace for this last stage of 153 pages.
I thank all the member of the jury for the time they spend as they have to
decide whether they certify this run.

3

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Contribution . 8

2 Introduction to Knowledge Bases and Rule Mining 11

2.1 Introduction . 11

2.2 Knowledge Representation . 11

2.2.1 Entities . 11

2.2.2 Classes . 14

2.2.3 Relations . 17

2.2.4 Completeness and Correctness 21

2.2.5 The Semantic Web . 21

2.3 Rule Mining . 22

2.3.1 Rules . 22

2.3.2 Rule Mining . 25

2.3.3 Rule Mining Approaches 29

2.3.4 Related Approaches . 35

2.4 Conclusion . 37

3 AMIE 3: Fast Computation of Quality Measures 38

3.1 Introduction . 38

3.2 AMIE 3 . 39

3.2.1 The AMIE Approach 39

3.2.2 AMIE 3 . 40

3.2.3 Quality Metrics . 44

3.3 Experiments . 45

3.3.1 Experimental Setup . 45

3.3.2 Effect of our optimizations 46

3.3.3 Comparative Experiments 49

3.4 Conclusion . 53

4

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

4 Star patterns: Reducing the Search Space 54
4.1 Introduction . 54
4.2 Star patterns . 55

4.2.1 Patterns . 55
4.2.2 Star patterns . 56
4.2.3 Related work . 57
4.2.4 Languages of star patterns 58

4.3 Mining star patterns . 60
4.4 Combining the star patterns into rules 62

4.4.1 Compatibility of the star patterns 62
4.4.2 Selection of compatible star patterns 66

4.5 Conclusion . 67

5 Star patterns and path rules 68
5.1 Introduction . 68
5.2 Path rules . 69

5.2.1 Path queries . 69
5.2.2 Path rules . 72
5.2.3 Other path rules . 73

5.3 Pruning the search space . 73
5.3.1 Star patterns and path rules 74
5.3.2 Generating all path rules 76
5.3.3 Incremental generation of candidates 76

5.4 The bipattern graph and other rules 77
5.5 Conclusion . 79

6 Pathfinder: Efficient Path Rule Mining 80
6.1 Introduction . 80
6.2 Heritable information . 81

6.2.1 Notation . 81
6.2.2 The sets of possible values 82
6.2.3 The iterated provenance 86
6.2.4 Backtracking the iterated provenance 88
6.2.5 Measure computation strategies 89

6.3 The bounds on the iterated provenance 89
6.3.1 Computing the lower bounds 90
6.3.2 Bounding the value of the quality measures 91

6.4 The complete Pathfinder algorithm 92
6.5 Experiments . 95

6.5.1 Experimental Setup . 95
6.5.2 Pathfinder generation methods 96

5

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

6.5.3 Pathfinder measure computation strategies 98
6.5.4 Scaling experiments . 100

6.6 Conclusion . 101

7 Identifying obligatory attributes in a KB 103
7.1 Introduction . 103
7.2 Related Work . 105
7.3 Preliminaries . 106
7.4 Model . 107

7.4.1 Problem Definition . 107
7.4.2 Our Approach . 108
7.4.3 Assumptions . 111
7.4.4 Random sampling model 112

7.5 Algorithm . 114
7.5.1 Confidence Ratio . 114
7.5.2 Algorithm . 115
7.5.3 Variations . 117

7.6 Experiments . 117
7.6.1 Datasets . 117
7.6.2 Gold Standard . 118
7.6.3 Evaluation Metric . 119
7.6.4 YAGO Experiment . 119
7.6.5 Wikidata Experiment 121
7.6.6 Artificial Classes . 122

7.7 Conclusion . 123

8 Conclusion 127
8.1 Summary . 127
8.2 Outlook . 129
8.3 Conclusion . 130

A Computation of Support and Confidence 131

B Number of items per relation 133

C Compatibility of a set of star patterns: Algorithm 136

D Résumé de la thèse en Français 141
D.1 Position du problème . 141
D.2 Contribution . 143
D.3 Conclusion . 145

6

Chapter 1

Introduction

1.1 Motivation

When we send a query to Google or Bing, we obtain a set of Web pages.
However, in some cases, we also get more information. For example, when
we ask “When was Steve Jobs born?”, the search engine replies directly with
“February 24, 1955”. When we ask just for “Steve Jobs”, we obtain a short
biography, his birth date, quotes, and spouse. All of this is possible because
the search engine has a huge repository of knowledge about people of common
interest. This knowledge takes the form of a knowledge base (KB).

The KBs used in such search engines are entity-centric: they know indi-
vidual entities (such as Steve Jobs, the United States, the Kilimanjaro, or the
Max Planck Society), their semantic classes (such as SteveJobs is-a computer-
Pioneer, SteveJobs is-a entrepreneur), relationships between entities (e.g.,
SteveJobs founded AppleInc, SteveJobs hasInvented iPhone, SteveJobs has-
WonPrize NationalMedalOfTechnology, etc.) as well as their validity times
(e.g., SteveJobs wasCEOof Pixar [1986,2006]).

The idea of such KBs is not new. It goes back to seminal work in Artifi-
cial Intelligence on universal knowledge bases in the 1980s and 1990s, most
notably, the Cyc project [47] at MCC in Austin and the WordNet project [24]
at Princeton University. These knowledge collections were hand-crafted and
manually curated. In the last ten years, in contrast, KBs are often built
automatically by extracting information from the Web or from text doc-
uments. Salient projects with publicly available resources include Know-
ItAll (UW Seattle, [22]), ConceptNet (MIT, [49]), DBpedia (FU Berlin, U
Mannheim, & U Leipzig, [46]), NELL (CMU, [12]), BabelNet (La Sapienza,
[67]), Wikidata (Wikimedia Foundation, [84]), and YAGO (Telecom Paris &
Max Planck Institute, [78]). Commercial interest in KBs has been strongly

7

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

growing, with projects such as the Google Knowledge Graph [19] (includ-
ing Freebase [9]), Microsoft’s Satori, Amazon’s Evi, LinkedIn’s Knowledge
Graph, and the IBM Watson KB [26]. These KBs contain many millions
of entities, organized in hundreds to hundred thousands of semantic classes,
and hundred millions of relational facts between entities. Many public KBs
are interlinked, forming the Web of Linked Open Data [8].

This large interlinked Knowledge can itself be mined for information. The
pattern or correlation found are expressed as rules such as:

married(x, y) ∧ livesIn(x, z)⇒ livesIn(y, z)

This rule expresses that “If X and Y are married, and X lives in Z, then Y
also lives in Z”, or in other words, that two married people usually live in
the same place. Such rules usually come with confidence scores that express
to what degree a rule holds.

Rule mining is the task of automatically finding logical rules in a given
KB. It usually focus on outputting the rules of highest quality, i.e the rules
that have a confidence score superior to a given user-defined parameter.

The rules can serve several purposes: First, they serve to complete the
KB. If we do not know the place of residence of a person, we can propose
that the person lives where their spouse lives. Second, they can serve to
debug the KB. If the spouse of someone lives in a different city, then this can
indicate a problem. Finally, rules are useful in downstream applications such
as fact checking [2], ontology alignment [28] or predicting completeness [29].

The difficulty in finding such rules lies in the exponential size of the
search space: every relation can potentially be combined with every other
relation in a rule. This is why early approaches (such as AMIE [31]) were
unable to run on large KBs such as Wikidata in less than a day. Since then,
several approaches have resorted to sampling or approximate confidence cal-
culations [30, 94, 63, 14]. The more the approach samples, the faster it
becomes, but the less accurate the results will be. Another common tech-
nique [63, 58, 94, 66] (from standard inductive logic programming) is to mine
not all rules, but only enough rules to cover the positive examples. This, like-
wise, speeds up the computation, but does not mine all rules that hold in
the KB.

1.2 Contribution

The main goal of this thesis is to study optimizations and novel approaches
to develop efficient rule mining algorithms that scale to large KBs, compute
the quality measures exactly, and are exhaustive with regard to user-defined

8

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

parameters. Such algorithms can serve as a baseline for other approximate
rule mining algorithms, and to produce a gold standard of mined rules.

Preliminaries. In Chapter 2, we define the main notions of entity-centric
Knowledge Bases and explain their principal characteristics. Then we intro-
duce the task of Rule Mining as an Inductive Logic Programming problem
and describe the multiple rule mining algorithms that apply on Knowledge
Bases. This chapter is based on our following tutorial paper:

- Fabian M Suchanek, Jonathan Lajus, Armand Boschin, and Gerhard
Weikum. Knowledge representation and rule mining in entity-centric
knowledge bases. In Reasoning Web. Explainable Artificial Intelligence,
pages 110–152. Springer, 2019

AMIE 3. In Chapter 3, we present AMIE 3, an improved version of the
rule mining algorithm AMIE+ [30]. In this new version we introduce new
optimizations on the computation of the quality measures, allowing AMIE
to once again become an exact and exhaustive rule mining algorithm. This
new version is also more efficient, allowing AMIE to scale to large KBs that
were previously beyond reach. This chapter is based on our following full
paper:

- Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. Fast and exact
rule mining with AMIE 3. In European Semantic Web Conference, pages
36–52. Springer, 2020

Pruning the search space. In Chapter 4, we further address the problem
of the exponential search that prevents AMIE from efficiently mining more
complex rules, for example rules of size 4 on large KBs. In particular, we
study how the decomposition of the rules into smaller entity-centric patterns,
the “star patterns”, can be used to identify and prune unsatisfiable rules
before any costly computation. This chapter is based on unpublished work.

Path rule mining. In Chapter 5, we restrict our study of efficient rule
mining to a certain type of rules, the path rules. In particular, we show that
all closed path rules can be generated without duplicates using a specific re-
finement operator, and that the star patterns introduced in Chapter 4 can be
used constructively to efficiently prune the search space of path rules. From
this, we deduce the “Pathfinder vanilla” algorithm, an exact and exhaustive
path rule mining algorithm.

9

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

In Chapter 6, we study the consequences of a fundamental dependency
in the Pathfinder vanilla algorithm: every rule comes from a unique parent
rule. In particular, we show that a parent rule can pass information to its
child rules and we use this idea to improve the computation of the qual-
ity measures and perform early pruning. Finally, we present the complete
“Pathfinder” algorithm, a refined version of the Pathfinder vanilla algorithm
which outperforms AMIE on path rules on most datasets, and by multiple
orders of magnitudes when mining longer rules. This part is also based on
unpublished work.

Rule mining about the real world. In Chapter 7 we present work that
can automatically determine the obligatory attributes of a class. For exam-
ple, our algorithm mines that every singer sings in the real world, even if
our KB is largely incomplete. In particular, we introduce a statistical mod-
elization of the incompleteness of the KB and deduce a metric to identify
obligatory attributes. This chapter is based on our following full paper:

- Jonathan Lajus and Fabian M. Suchanek. Are all people married? deter-
mining obligatory attributes in knowledge bases. In WWW, pages 1115–
1124. International World Wide Web Conferences Steering Committee,
2018

Conclusion. Chapter 8 concludes this thesis and present further
prospects.

10

Chapter 2

Introduction to Knowledge
Bases and Rule Mining

2.1 Introduction

The field of knowledge representation has a long history, and goes back to
the early days of Artificial Intelligence. It has developed numerous knowl-
edge representation models, from frames and KL-ONE to recent variants of
description logics. The reader is referred to survey works for comprehen-
sive overviews of historical and classical models [73, 76]. In the first part of
this chapter, we discuss the knowledge representation that has emerged as a
pragmatic consensus in the research community of entity-centric knowledge
bases.

In the second part of this chapter, we discuss logical rules on knowledge
bases. A logical rule can tell us, e.g., that if two people are married, then
they (usually) live in the same city. Such rules can be mined automatically
from the knowledge base, and they can serve to correct the data or fill in
missing information. We discuss first classical Inductive Logic Programming
approaches, and then show how these can be applied to the case of knowledge
bases.

2.2 Knowledge Representation

2.2.1 Entities

Entities of Interest

The most basic element of a KB is an entity. An entity is any abstract or
concrete object of fiction or reality, or, as Bertrand Russell puts it in his

11

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Principles of Mathematics [86]:

Definition 2.2.1 (Entity). An entity is whatever may be an object of
thought.

This definition is completely all-embracing. Steve Jobs, the Declaration of
Independence of the United States, the Theory of Relativity, and a molecule
of water are all entities. Events (such as the French Revolution), are entities,
too. An entity does not even have to exist: Harry Potter, e.g., is a fictional
entity. Phlogiston was presumed to be the substance that makes up heat. It
turned out to not exist – but it is still an entity.

KBs model a part of reality. This means that they choose certain entities
of interest, give them names, and put them into a structure. Thus, a KB is
a structured view on a selected part of the world. KBs typically model only
distinct entities. This cuts out a large portion of the world that consists of
variations, flows and transitions between entities. Drops of rain, for instance,
fall down, join in a puddle and may be splattered by a passing car to form
new drops [75]. KBs will typically not model these phenomena. This choice
to model only discrete entities is a projection of reality; it is a grid through
which we see only distinct things. Many entities consist of several different
entities. A car, for example, consists of wheels, a bodywork, an engine, and
many other pieces. The engine consists of the pistons, the valves, and the
spark plug. The valves consist again of several parts, and so on, until we
ultimately arrive at the level of atoms or below. Each of these components
is an entity. However, KBs will typically not be concerned with the lower
levels of granularity. A KB might model a car, possibly its engine and its
wheels, but most likely not its atoms. In all of the following, we will only be
concerned with the entities that a KB models.

Entities in the real world can change gradually. For example, the Greek
philosopher Eubilides asks: If one takes away one molecule of an object, will
there still be the same object? If it is still the same object, this invites one
to take away more molecules until the object disappears. If it is another
object, this forces one to accept that two distinct objects occupy the same
spatio-temporal location: The whole and the whole without the molecule. A
related problem is the question of identity. The ancient philosopher Theseus
uses the example of a ship: Its old planks are constantly being substituted.
One day, the whole ship has been replaced and Theseus asks, “Is it still the
same ship?”. To cope with these problems, KBs typically model only atomic
entities. In a KB, entities can only be created and destroyed as wholes.

12

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Identifiers and Labels

In computer systems (as well as in writing of any form), we refer to entities
by identifiers.

Definition 2.2.2 (Identifier). An identifier for an entity is a string of char-
acters that represents the entity in a computer system.

Typically, these identifiers take a human-readable form, such as Elvis-
Presley for the singer Elvis Presley. However, some KBs use abstract identi-
fiers. Wikidata, e.g., refers to Elvis Presley by the identifier Q303, and Free-
base by /m/02jq1. This choice was made so as to be language-independent,
and so as to provide an identifier that is stable in time. If, e.g., Elvis Presley
reincarnates in the future, then Q303 will always refer to the original Elvis
Presley. It is typically assumed that there exists exactly one identifier per
entity in a KB. For what follows, we will not distinguish identifiers from
entities, and just talk of entities instead.

Entities have names. For example, the city of New York can be called
“city of New York”, “Big Apple”, or “Nueva York”. As we see, one entity can
have several names. Vice versa, the same name can refer to several entities.
“Paris”, e.g., can refer to the city in France, to a city of that name in Texas,
or to a hero of Greek mythology. Hence, we need to carefully distinguish
names – single words or entire phrases – from their senses – the entities that
they denote. This is done by using labels.

Definition 2.2.3 (Label). A label for an entity is a human-readable string
that names the entity.

If an entity has several labels, the labels are called synonymous. If the
same label refers to several entities, the label is polysemous. Not all entities
have labels. For example, your kitchen chair is clearly an entity, but it
probably does not have any particular label. An entity that has a label is
called a named entity. KBs typically model mainly named entities. There is
one other type of entities that appears in KBs: literals.

Definition 2.2.4 (Literal). A literal is a fixed value that takes the form of
a string of characters.

Literals can be pieces of text, but also numbers, quantities, or timestamps.
For example, the label “Big Apple” for the city of New York is a literal, as
is the number of its inhabitants (8,175,133).

13

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

2.2.2 Classes

Classes and Instances

KBs model entities of the world. They usually group entities together to
form a class :

Definition 2.2.5 (Class). A class (also: concept, type) is a named set of
entities that share a common trait. An element of that set is called an
instance of the class.

Under this definition, the following are classes: The class of singers (i.e.,
the set of all people who sing professionally), the class of historical events in
Latin America, and the class of cities in Germany. Some instances of these
classes are, respectively, Elvis Presley, the independence of Argentina, and
Berlin. Since everything is an entity, a class is also an entity. It has (by
definition) an identifier and a label.

Theoretically, KBs can form classes based on arbitrary traits. We can,
e.g., construct the class of singers whose concerts were the first to be broad-
cast by satellite. This class has only one instance (Elvis Presley). We can
also construct the class of left-handed guitar players of Scottish origin, or of
pieces of music that the Queen of England likes. There are several theories
as to whether humans actually build and use classes, too [51]. Points of dis-
cussion are whether humans form crisp concepts, and whether all elements
of a concept have the same degree of membership. For the purpose of KBs,
however, classes are just sets of entities.

It is not always easy to decide whether something should be modeled
as an instance or as a class. We could construct, e.g., for every instance
a singleton class that contains just this instance (e.g., the class of all Elvis
Presleys). Some things of the world can be modeled both as instances and
as classes. A typical example is iPhone. If we want to designate the type of
smartphone, we can model it as an instance of the class of smartphone brands.
However, if we are interested in the iPhones owned by different people and
want to capture them individually, then iPhone should be modeled as a class.
A similar observation holds for abstract entities such as love. Love can be
modeled as an instance of the class emotion, where it resides together with
the emotions of anger, fear, and joy. However, when we want to model
individual feelings of love, then love would be a class. Its instances are the
different feelings of love that different people have. It is our choice how we
wish to model reality.

Some KBs do not make the distinction between classes and instances (e.g.,
the SKOS vocabulary, [89]). In these KBs, everything is an entity. There is,

14

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

however, usually a “is more general than” link between a more special entity
and a more general entity. Such a KB may contain, e.g., the knowledge that
iPhone is more special than smartphone, without worrying whether one of
them is a class. The distinction between classes and instances adds a layer of
granularity. This granularity is used, e.g., to define the domains and ranges
of relations, as we shall see in Section 2.2.3.

Taxonomies

Definition 2.2.6 (Subsumption). Class A is a subclass of class B if A is a
subset of B.

For example, the class of singers is a subclass of the class of persons,
because every singer is a person. We also say that the class of singers is
a specialization of the class of persons, or that singer is subsumed by or
included in person. Vice versa, we say that person is a superclass or a
generalization of the class of singers. Technically speaking, two equivalent
classes are subclasses of each other. This is the way the RDFS standard
models subclasses [88]. We say that a class is a proper subclass of another
class, if the second contains more entities than the first. We use the notion
of subclass here to refer to proper subclasses only.

It is important not to confuse class inclusion with the relationship between
parts and wholes. For example, an arm is a part of the human body. That
does not mean, however, that every arm is a human body. Hence, arm is not
a subclass of body. In a similar manner, New York is a part of the US. That
does not mean that New York would be a subclass of the US. Neither New
York nor the US are classes, so they cannot be subclasses of each other.

Class inclusion is transitive: If A is a subclass of B, and B is a subclass of
C, then A is a subclass of C. For example, viper is a subclass of snake, and
snake is a subclass of reptile. Hence, by transitivity, viper is also a subclass of
reptile. We say that a class is a direct subclass of another class, if there is no
class in the KB that is a superclass of the former and a subclass of the latter.
When we talk about subclasses, we usually mean only direct subclasses. The
other subclasses are transitive subclasses. Since classes can be included in
other classes, they can form an inclusion hierarchy – a taxonomy.

Definition 2.2.7 (Taxonomy). A taxonomy is a directed graph, where the
nodes are classes and there is an edge from class X to class Y if X is a proper
direct subclass of Y.

The notion of taxonomy is known from biology. Zoological or botanic
species form a taxonomy: tiger is a subclass of cat. cat is a subclass of mam-
mal, and so on. This principle carries over to all other types of classes. We

15

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

say, e.g., that internetCompany is a subclass of company, and that company
is a subclass of organization, etc. Since a taxonomy models proper inclusion,
it follows that the taxonomic graph is acyclic: If a class is the subclass of
another class, then the latter cannot be a subclass of the former. Thus, a
taxonomy is a directed acyclic graph. A taxonomy does not show the tran-
sitive subclass edges. If the graph contains transitive edges, we can always
remove them. Given a finite directed acyclic graph with transitive edges, the
set of direct edges is unique [4].

Transitivity is often essential in applications. For example, consider a
question-answering system where a user asks for artists that are married to
actors. If the KB only knew about Elvis Presley and Priscilla Presley being
in the classes rockSinger and americanActress, the question could not be
answered. However, by reasoning that rockSingers are also singers, who in
turn are artists and americanActresses being actresses, it becomes possible
to give this correct answer.

Usually (but not necessarily), taxonomies are connected graphs: Every
node in the graph is, directly or indirectly, linked to every other node. Usu-
ally, the taxonomies have a single root, i.e., a single node that has no outgoing
edges. This node identifies the most general class, of which every other class
is a subclass. In zoological KBs, this may be class animal. In a person
database, it may be the class person. In a general-purpose KB, this class has
to be the most general possible class. In YAGO and Wordnet, the class is
entity. In the RDF standard, it is called resource [87]. In the OWL stan-
dard [90], the highest class that does not include literals is called thing.

Some taxonomies have at most one outgoing edge per node. Then, the
taxonomy forms a tree. The biological taxonomy, e.g., forms a tree, as does
the Java class hierarchy. However, there can be taxonomies where a class
has two distinct direct superclasses. For example, if we have the class singer
and the classes of woman and man, then the class femaleSinger has two
superclasses: singer and woman. Note that it would be wrong to make
singer a subclass of man and woman (as if to say that singers can be men
or women). This would actually mean that all singers are at the same time
men and women.

When a taxonomy includes a “combination class” such as FrenchFe-
maleSingers, then this class can have several superclasses. FrenchFe-
maleSingers, e.g., can have as direct superclasses FrenchPeople, Women, and
Singers. In a similar manner, one entity can be an instance of several classes.
Albert Einstein, e.g., is an instance of the classes physicist, vegetarian, and
violinPlayer.

When we populate a KB with new instances, we usually try to assign them
to the most specific suitable class. For example, when we want to place Bob

16

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Dylan in our taxonomy, we would put him in the class americanBluesSinger,
if we have such a class, instead of in the class person. However, if we lack
more specific information about the instance, then we might be forced to put
it into a general class. Some named entity recognizers, e.g., distinguish only
between organizations, locations, and people, which means that it is hard to
populate more specific classes. It may also happen that our taxonomy is not
specific enough at the leaf level. For example, we may encounter a musician
who plays the Arabic oud, but our taxonomy does not have any class like
oudPlayer. Therefore, a class may contain more instances than the union of
its subclasses. That is, for a class C with subclasses C1, . . . , Ck, the invariant
is ∪i=1..kCk ⊆ C, but ∪i=1..kCk = C is often false.

2.2.3 Relations

Relations and Statements

KBs model also relationships between entities:

Definition 2.2.8 (Relation). A relationship (also: relation) over the classes
C1, ..., Cn is a named subset of the Cartesian product C1 × ...× Cn.

For example, if we have the classes person, city, and year, we may
construct the birth relationship as a subset of the cartesian product per-
son×city×year. It will contain tuples of a person, their city of birth, and
their year of birth. For example, 〈ElvisPresley, Tupelo, 1935〉 ∈ birth. In
a similar manner, we can construct tradeAgreement as a subset of coun-
try×country×commodity. This relation can contain tuples of countries that
made a trade agreement concerning a commodity. Such relationships corre-
spond to classical relations in algebra or databases.

As always in matters of knowledge representation (or, indeed, informatics
in general), the identifier of a relationship is completely arbitrary. We could,
e.g., call the birth relationship k42, or, for that matter, death. Nothing
hinders us to populate the birth relationship with tuples of a person, and
the time and place where that person ate an ice cream. However, most KBs
aim to model reality, and thus use identifiers and tuples that correspond to
real-world relationships.

If 〈x1, ..., xn〉 ∈ R for a relationship R, we also write R(x1, ..., xn). In
the example, we write birth(ElvisPresley, Tupelo, 1935). The classes of R
are called the domains of R. The number of classes n is called the arity of
R. 〈x1, ..., xn〉 is a tuple of R. R(x1, ..., xn) is called a statement, fact, or
record. The elements x1, ..., xn are called the arguments of the facts. Finally,
a knowledge base, in its simplest form, is a set of statements. For example,

17

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

a KB can contain the relations birth, death and marriage, and thus model
some of the aspects of people’s lives.

Binary Relations

Definition 2.2.9 (Binary Relation). A binary relation is a relation of arity
2. We note R the set of binary relations of a KB.

Examples of binary relations are birthPlace, friendOf, or marriedTo. The
first argument of a binary fact is called the subject, and the second argument
is called the object of the fact. The relationships are sometimes called prop-
erties. Relationships that have literals as objects, and that have at most one
object per subject are sometimes called attributes. Examples are hasBirth-
Date or hasISBN. The domain of a binary relation R ⊂ A × B is A, i.e.,
the class from which the subjects are taken. B is called the range of R. For
example, the domain of birthPlace is person, and its range is city. The in-
verse of a binary relation R is a relation R−1, such that R−1(y, x) iff R(x, y).
For example, the inverse relation of hasNationality (between a person and a
country) is hasNationality−1 (between a country and a person) – which we
could also call hasCitizen.

Definition 2.2.10 (Signed relation). The set of signed relations R̃ of a KB
contains every relation R ∈ R of the KB and its respective inverse. R−1

Any n-ary relation R with n > 2 can be split into n binary rela-
tions. This works as follows. Assume that there is one argument po-
sition i that is a key, i.e., every fact R(x1, ..., xn) has a different value
for xi. In the previously introduced 3-ary birth relationship, which con-
tains the person, the birth place, and the birth date, the person is the
key: every person is born only once at one place. Without loss of gen-
erality, let the key be at position i = 1. We introduce binary relation-
ships R2, ..., Rn. In the example, we introduce birthPlace for the relation
between the person and the birth place, and birthDate for the relation be-
tween the person and the birth year. Every fact R(x1, ..., xn) gets rewrit-
ten as R2(x1, x2), R3(x1, x3), R4(x1, x4), ..., Rn(x1, xn). In the example, the
fact birth(Elvis,Tupelo,1935) gets rewritten as birthPlace(Elvis,Tupelo) and
birthDate(Elvis,1935). Now assume that a relation R has no key. As an
example, consider again the tradeAgreement relationship. Obviously, there
is no key in this relationship, because any country can make any number
of trade-agreements on any commodity. We introduce binary relationships
R1, ...Rn for every argument position of R. For tradeAgreement, these could
be country1, country2 and tradeCommodity. For each fact of R, we in-
troduce a new entity, an event entity. For example, if the US and Brazil

18

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

make a trade-agreement on coffee, tradeAgreement(Brazil,US,Coffee), then
we create coffeeAgrBrUs. This entity represents the fact that these two
countries made this agreement. In general, every fact R(x1, ..., xn) gives
rise to an event entity ex1,...,xn. Then, every fact R(x1, ..., xn) is rewrit-
ten as R1(ex1,...,xn, x1), R2(ex1,...,xn, x2), ..., Rn(ex1,...,xn, xn). In the exam-
ple, country1(coffeeAgrBrUs, Brazil), country2(coffeeAgrBrUs, US), trade-
Commodity(coffeeAgrBrUs, Coffee). This way, any n-ary relationship with
n > 2 can be represented as binary relationships. For n = 1, we can always
invent a binary relation hasProperty, and use the relation as an additional ar-
gument. For example, instead of male(Elvis), we can say hasProperty(Elvis,
male).

The advantage of binary relationships is that they can express facts even
if one of the arguments is missing. If, e.g., we know only the birth year of
Steve Jobs, but not his birth place, then we cannot make a fact with the
3-ary relation birth ⊂ person×city×year. We have to fill the missing argu-
ments, e.g., with null values. If the relationship has a large arity, many of its
arguments may have to be null values. In the case of binary relationships,
in contrast, we can easily state birthDate(SteveJobs, 1955), and omit the
birthPlace fact. Another disadvantage of n-ary relationships is that they do
not allow adding new pieces of information a posteriori. If, e.g., we forgot to
declare the astrological ascendant as an argument to the 3-ary relation birth,
then we cannot add the ascendant for Steve Job’s birth without modifying
the relationship. In the binary world, in contrast, we can always add a new
relationship birthAscendant. Thus, binary relationships offer more flexibility.
This flexibility can be a disadvantage, because it allows adding incomplete
information (e.g., a birth place without a birth date). However, since knowl-
edge bases are often inherently incomplete, binary relationships are usually
the method of choice.

Functions

Definition 2.2.11 (Function). A function is a binary relation that has for
each subject at most one object.

Typical examples for functions are birthPlace and hasLength: Every per-
son has at most one birth place and every river has at most one length. The
relation ownsCar, in contrast, is not a function, because a (rich) person can
own multiple cars. In our terminology, we call a relation a function also if it
has no objects for certain subjects, i.e., we include partial functions (such as
deathDate).

Some relations are functions in time. This means that the relation can
have several objects, but at each point of time, only one object is valid. A

19

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

typical example is isMarriedTo. A person can go through several marriages,
but can only have one spouse at a time (in most systems). Another example
is hasNumberOfInhabitants for cities. A city can grow over time, but at any
point of time, it has only a single number of inhabitants. Every function is
a function in time.

A binary relation is an inverse function, if its inverse is a function. Typical
examples are hasCitizen (if we do not allow double nationality) or hasEmail-
Address (if we talk only about personal email addresses that belong to a single
person). Some relations are both functions and inverse functions. These are
identifiers for objects, such as the social security number. A person has
exactly one social security number, and a social security number belongs
to exactly one person. Functions and inverse functions play a crucial role in
entity matching: If two KBs talk about the same entity with different names,
then one indication for this is that both entities share the same object of an
inverse function. For example, if two people share an email address in a KB
about customers, then the two entities must be identical.

Some relations are “nearly functions”, in the sense that very few subjects
have more than one object. For example, most people have only one nation-
ality, but some may have several. This idea is formalized by the notion of
functionality [79]. The functionality of a relation r in a KB is the number of
subjects, divided by the number of facts with that relation:

fun(r) :=
|{x : ∃y : r(x, y)}|
|{x, y : r(x, y)}|

The functionality is always a value between 0 and 1, and it is 1 if r is a
function. It is undefined for an empty relation.

We usually have the choice between using a relation and its inverse rela-
tion. For example, we can either have a relationship isCitizenOf (between
a person and their country) or a relationship hasCitizen (between a country
and its citizens). Both are valid choices. In general, KBs tend to choose
the relation with the higher functionality, i.e., where the subject has fewer
objects. In the example, the choice would probably be isCitizenOf, because
people have fewer citizenships than countries have citizens. The intuition is
that the facts should be “facts about the subject”. For example, the fact
that the author of this thesis is a citizen of France is clearly an important
property for this author.Vice versa, the fact that France is fortunate enough
to count this author among its citizens is a much less important property of
France (it does not appear on the Wikipedia page of France).

20

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

2.2.4 Completeness and Correctness

Knowledge bases model only a part of the world. In order to make this
explicit, one imagines a complete knowledge baseW that contains all entities
and facts of the real world in the domain of interest. A given KB K is correct,
if K ⊆ W . Usually, KBs aim to be correct. In real life, however, large KBs
tend to contain also erroneous statements. YAGO, e.g., has an accuracy of
95%, meaning that 95% of its statements are inW (or, rather, in Wikipedia,
which is used as an approximation of W). This means that YAGO still
contains hundreds of thousands of wrong statements. For most other KBs,
the degree of correctness is not even known.

A knowledge base is complete, if W ⊆ K (always staying within the
domain of interest). The closed world assumption (CWA) is the assumption
that the KB at hand is complete. Thus, the CWA says that any statement
that is not in the KB is not in W either. In reality, however, KBs are
hardly ever complete. Therefore, KBs typically operate under the open world
assumption (OWA), which says that if a statement is not in the KB, then
this statement can be either true or false in the real world.

KBs usually do not model negative information. They may say that
Caltrain serves the city of San Francisco, but they will not say that this
train does not serve the city of Moscow. While incompleteness tells us that
some facts may be missing, the lack of negative information prevents us
from specifying which facts are missing because they are false. This poses
considerable problems, because the absence of a statement does not allow
any conclusion about the real world [71].

2.2.5 The Semantic Web

The common exchange format for knowledge bases is RDF/RDFS [87]. It
specifies a syntax for writing down statements with binary relations. Most
notably, it prescribes URIs as identifiers, which means that entities can be
identified in a globally unique way. To query such RDF knowledge bases,
one can use the query language SPARQL [91]. SPARQL borrows its syntax
from SQL, and allows the user to specify graph patterns, i.e., triples where
some components are replaced by variables. For example, we can ask for
the birth date of Elvis by saying “SELECT ?birthdate WHERE { 〈Elvis〉
〈bornOnDate〉 ?birthdate }”.

To define semantic constraints on the data, RDF is extended by OWL [90].
This language allows specifying constraints such as functions or disjointness
of classes, as well as more complex axioms. The formal semantics of these
axioms is given by Description Logics [7]. These logics distinguish facts about

21

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

instances from facts about classes and axioms. The facts about instances are
called the A-Box (“Assertions”), and the class facts and axioms are called the
T-Box (“Theory”). Sometimes, the term ontology is used to mean roughly
the same as T-Box. Description Logics allow for automated reasoning on the
data.

Many KBs are publicly available online. They form what is known as
the Semantic Web. Some of these KBs talk about the same entities – with
different identifiers. The Linked Open Data project [8] aims to establish links
between equivalent identifiers, thus weaving all public KBs together into one
giant knowledge graph.

Knowledge can also be represented in the form of rules. For example, if a
doctoral student is advised by a professor, then the university of graduation
will be the employer of the professor. Again, this type of knowledge represen-
tation is well covered in classical works [73, 47], and recent approaches have
turned to using it for KBs [31, 30, 14]. This type of intensional knowledge is
what we will now discuss in the next section.

2.3 Rule Mining

2.3.1 Rules

Once we have a knowledge base, it is interesting to look out for patterns in
the data. For example, we could notice that if some person A is married to
some person B, then usually B is also married to A (symmetry of marriage).
Or we could notice that, if, in addition, A is the parent of some child, then
B is usually also a parent of that child (although not always).

We usually write such rules using the syntax of first-order logic. For
example, we would write the previous rules as:

marriedTo(x, y)⇒ marriedTo(y, x)

marriedTo(x, y) ∧ hasChild(x, z)⇒ hasChild(y, z)

Such rules have several applications: First, they can help us complete the
KB. If, e.g., we know that Elvis Presley is married to Priscilla Presley, then
we can deduce that Priscilla is also married to Elvis – if the fact was missing.
Second, the rules can help us disambiguate entities and correct errors. For
example, if Elvis has a child Lisa, and Priscilla has a different child Lisa, then
our rule could help find out that the two Lisa’s are actually a single entity.
Finally, those frequent rules give us insight about our data, biases in the
data, or biases in the real world. For example, we may find that European

22

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

presidents are usually male or that Ancient Romans are usually dead. These
two rules are examples of rules that have not just variables, but also entities:

type(x,AncientRoman)⇒ dead(x)

We are now interested in discovering such rules automatically in the data.
This process is called Rule Mining. Let us start with some definitions. The
components of a rule are called atoms:

Definition 2.3.1 (Atom). An atom is of the form r(t1, . . . , tn), where r is a
relation of arity n (for KBs, usually n = 2) and t1, . . . tn are either variables
or entities.

In our example, marriedTo(x, y) is an atom, as is marriedTo(Elvis, y). We
say that an atom is instantiated, if it contains at least one entity. We say that
it is grounded, if it contains only entities and no variables. A conjunction is
a set of atoms, which we write as ~A = A1 ∧ ... ∧ An. We are now ready to
combine atoms to rules:

Definition 2.3.2 (Rule). A Horn rule (rule, for short) is a formula of the

form ~B ⇒ h, where ~B is a conjunction of atoms, and h is an atom. ~B is
called the body of the rule, and h its head.

For example, marriedTo(x, y)⇒ marriedTo(y, x) is a rule. Such a rule is
usually read as “If x is married to y, then y is married to x”. In order to
apply such a rule to specific entities, we need the notion of a substitution:

Definition 2.3.3 (Substitution). A substitution is a function that maps
variables to entities or to other variables.

For example, a substitution σ can map σ(x) = Elvis and σ(y) = z
– but not σ(Elvis) = z. A substitution can be generalized straight-
forwardly to atoms, sets of atoms, and rules: if σ(x) = Elvis, then
σ(marriedTo(Priscilla, x)) = marriedTo(Priscilla, Elvis). With this, an in-
stantiation of a rule is a variant of the rule where all variables have been
substituted by entities (so that all atoms are grounded). If we substitute
x = Elvis and y = Priscilla in our example rule, we obtain the following
instantiation:

marriedTo(Elvis, Priscilla)⇒ marriedTo(Priscilla, Elvis)

Thus, an instantiation of a rule is an application of the rule to one concrete
case. Let us now see what rules can predict:

23

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Lisa

PriscillaElvis Barack Michelle

Sasha Malia

hasChild hasChild hasChild hasChild

marriedTo marriedTo

Figure 2.1 – Example KB

Definition 2.3.4 (Prediction of a rule). The predictions P of a rule ~B ⇒ h
in a KB K are the head atoms of all instantiations of the rule where the body
atoms appear in K. We write K∧ (~B ⇒ h) |= P . The predictions of a set of
rules are the union of the predictions of each rule.

For example, consider the KB in Figure 2.1. The predictions of the rule
marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z) are hasChild(Priscilla,
Lisa), hasChild(Elvis, Lisa), hasChild(Barack, Sasha), hasChild(Barack,
Malia), hasChild(Michelle, Sasha), hasChild(Michelle, Malia). This is use-
ful, because two of these facts are not yet in the KB.

Logic. From a logical perspective, all variables in a rule are implicitly uni-
versally quantified (over every entity defined in the KB). Thus, our example
rule is more explicitly written as

∀x, y, z : marriedTo(x, y) ∧ hasChild(y, z)⇒ hasChild(x, z)

It can be easily verified that such a rule is equivalent to the following dis-
junction:

∀x, y, z : ¬marriedTo(x, y) ∨ ¬hasChild(y, z) ∨ hasChild(x, z)

While every Horn rule corresponds to a disjunction with universally quanti-
fied variables, not every such disjunction corresponds to a Horn rule. Only
those disjunctions with exactly one positive atom correspond to Horn rules.
In principle, we could mine arbitrary disjunctions, and not just those that
correspond to Horn rules. We could even mine arbitrary first-order expres-
sions, such as ∀x : person(x) ⇒ ¬(underage(x) ∧ adult(x)). For simplicity,
we stay with Horn rules in what follows, and point out when an approach
can be generalized to disjunctions or arbitrary formulae.

24

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

2.3.2 Rule Mining

Inductive Logic Programming

We now turn to mining rules automatically from a KB. This endeavor is based
on Inductive Reasoning. To reason by induction is to expect that events that
always appeared together in the past will always appear together in the
future. For example, inductive reasoning could tell us: “All life forms we
have seen so far need water. Therefore, all life forms in general need water.”.
This is the fundamental principle of empirical science: the generalization of
past experiences to a scientific theory. Of course, inductive reasoning can
never deliver the logical certitude of deductive reasoning. This is illustrated
by Bertrand Russel’s analogy of the turkey [72]: The turkey is fed every
day by its owner, and so it comes to believe that the owner will always
feed the turkey – which is true only until Christmas day. The validity and
limitations of modeling the reality using inductive reasoning are a debated
topic in philosophy of science. For more perspectives on the philosophical
discussions, we refer the reader to [36] and [39]. In the setting of KBs,
inductive reasoning is formalized as Inductive Logic Programming [65, 74, 60]:

Definition 2.3.5 (Inductive Logic Programming). Given a background
knowledge B (in general, any first order logic expression; in our case: a
KB), a set of positive example facts E+, and a set of negative example facts
E−, Inductive Logic Programming (ILP) is the task of finding an hypothesis
h (in general, a set of first order logic expressions; in our case: a set of rules)
such that ∀e+ ∈ E+ : B ∧ h |= e+ and ∀e− ∈ E− : B ∧ h 6|= e−.

This means that the rules we seek have to predict all positive examples
(they have to be complete), and they may not predict a negative example
(they have to be correct). For example, consider again the KB from Figure 2.1
as background knowledge, and let the sets of examples be:

E+ = { isMarriedTo(Elvis, Priscilla), isMarriedTo(Priscilla, Elvis),
isMarriedTo(Barack, Michelle), isMarriedTo(Michelle, Barack)}

E− = { isMarriedTo(Elvis, Michelle), isMarriedTo(Lisa, Barack),
isMarriedTo(Sasha, Malia)}

Now consider the following hypothesis:

h = {isMarriedTo(x, y)⇒ isMarriedTo(y, x)}

This hypothesis is complete, as every positive example is a prediction of the
rule, and it is correct, as no negative example is predicted.

25

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

The attentive reader will notice that the difficulty is now to correctly
determine the sets of positive and negative examples. In the ideal case the
positive examples should contain any fact that is true in the real world and
the negative examples contain any other fact. Thus, in a correct KB, every
fact is a positive example.

Definition 2.3.6 (Rule Mining). Given a KB, Rule Mining is the ILP task
with the KB as background knowledge, and every single atom of the KB as
a positive example.

This means that the rule mining will find several rules, in order to explain
all facts of the KB. Three problems remain: First, we have to define the set
of negative examples. Second, we have to define what types of rules we are
interested in. Finally, we have to adapt our mining to cases where the rule
does not always hold.

The Set of Negative Examples

Rule mining needs negative examples (also called counter-examples). The
problem is that KBs usually do not contain negative information. We can
think of different ways to generate negative examples.

Closed World Assumption. The Closed World Assumption (CWA) says
that any statement that is not in the KB is wrong (Section 2.2.4). Thus,
under the Closed-World Assumption, any fact that is not in the KB can
serve as a negative example. The problem is that these may be exactly the
facts that we want to predict. In our example KB from Figure 2.1, we may
want to learn the rule marriedTo(x, y)∧hasChild(y, z)⇒ hasChild(x, z). For
this rule, the fact hasChild(Barack, Malia) is a counter-example. However,
this fact is exactly what we want to predict, and so it would be a counter-
productive counter-example.

Open World Assumption. Under the Open-World Assumption (OWA),
any fact that is not in the KB can be considered either a negative or a
positive example (see again Section 2.2.4). Thus the OWA does not help
in establishing counter-examples. Without counter-examples, we can learn
any rule. For example, in our KB, the rule type(x, person) ⇒ marriedTo(x,
Barack) has a single positive example (for x = Michelle), and no counter-
examples under the Open World Assumption. Therefore, we could deduce
that everyone is married to Barack.

26

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Partial Completeness Assumption. Another strategy to generate neg-
ative examples is to assume that entities are complete for the relations they
already have. For example, if we know that Michelle has the children Sasha
and Malia, then we assume (much like Barack) that Michelle has no other
children. If, in contrast, Barack does not have any children in the KB, then
we do not conclude anything. This idea is called the Partial-Completeness
Assumption (PCA) or the Local Closed World Assumption [31]. It holds
trivially for functions (such as hasBirthDate), and usually [30] for relations
with a high functionality (such as hasNationality). The rationale is that if
the KB curators took the care to enter some objects for the relation, then
they will most likely have entered all of them, if there are few of them. In
contrast, the assumption does usually not hold for relations with low func-
tionality (such as starsInMovie). Fortunately, relations usually have a higher
functionality than their inverses (see Section 2.2.3). If that is not the case,
we can apply the PCA to the object of the relation instead.

Random Examples. Another strategy to find counter-examples is to gen-
erate random statements [59]. Such random statements are unlikely to be
correct, and can thus serve as counter-examples. This is one of the meth-
ods used by DL-Learner [38]. It is not easy to generate helpful random
counter-examples. If, e.g., we generate the random negative example mar-
riedTo(Barack,USA), then it is unlikely that a rule will try to predict this
example. Thus, the example does not actually help in filtering out any rule.
The challenge is hence to choose counter-examples that are false, but still
reasonable. The authors of [63] describe a method to sample negative state-
ments about semantically connected entities by help of the PCA.

The Language Bias

After solving the problem of negative examples, the next question is what
kind of rules we should consider. This choice is called the language bias,
because it restricts the “language” of the hypothesis. We have already lim-
ited ourselves to Horn Rules, and in practice we even restrict ourselves to
connected and closed rules.

Definition 2.3.7 (Connected rules). Two atoms are connected if they share
a variable, and a rule is connected if every non-ground atom is transitively
connected to one another.

For example, the rule presidentOf(x, America) ⇒ hasChild(Elvis, y) is
not connected. It is an uninteresting and most likely wrong rule, because it
makes a prediction about arbitrary y.

27

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Definition 2.3.8 (Closed rules). A rule is closed if every variable appears
in at least two atoms.

For example the rule marriedTo(x, y) ∧ worksAt(x, z) ⇒ marriedTo(y,
x) is not closed. It has a “dangling edge” that imposes that x works some-
where. While such rules are perfectly valid, they are usually less interesting
than the more general rule without the dangling edge.

Finally, one usually imposes a limit on the number of atoms in the rule.
Rules with too many atoms tend to be very convoluted [30]. That said,
mining rules without such restrictions is an interesting field of research, and
we will come back to it in Chapters 4 to 6.

Support and Confidence

One problem with classical ILP approaches is that they will find rules that
apply to very few entities, such as marriedTo(x, Elvis) ⇒ hasChild(x, Lisa).
To avoid this type of rules, we define the support of a rule:

Definition 2.3.9 (Support). The support of a rule in a KB is the number
of positive examples predicted by the rule.

Usually, we are interested only in rules that have a support higher than
a given threshold (say, 100). Alternatively, we can define a relative version
of support, the head coverage [31], which is the number of positive examples
predicted by the rule divided by the number of all positive examples with
the same relation. Another problem with classical ILP approaches is that
they will not find rules if there is a single counter-example. To mitigate this
problem, we define the confidence:

Definition 2.3.10 (Confidence). The confidence of a rule is the number of
positive examples predicted by the rule (i.e., the support of the rule), divided
by the number of examples predicted by the rule.

This notion depends on how we choose our negative examples. For
instance, under the CWA, the rule marriedTo(x, y) ∧ hasChild(y, z) ⇒
hasChild(x, z) has a confidence of 4/6 in Figure 2.1. We call this value the
standard confidence. Under the PCA, in contrast, the confidence for the ex-
ample rule is 4/4. We call this value the PCA confidence. While the standard
confidence tends to “punish” rules that predict many unknown statements,
the PCA confidence will permit more such rules. We present in Appendix A
the exact mathematical formula of these measures.

In general, the support of a rule quantifies its completeness, and the
confidence quantifies its correctness. A rule with low support and high con-
fidence indicates a conservative hypothesis and may be overfitting, i.e. it

28

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

will not generalize to new positive examples. A rule with high support and
low confidence, in contrast, indicates a more general hypothesis and may be
overgeneralizing, i.e., it does not generalize to new negative examples. In
order to avoid these effects we are looking for a trade-off between support
and confidence.

Definition 2.3.11 (Frequent Rule Mining). Given a KB K, a set of positive
examples (usually K), a set of negative examples (usually according to an
assumption above) and a language of rules, Frequent rule mining is the task
of finding all rules in the language with a support and a level of confidence
superior to given thresholds.

2.3.3 Rule Mining Approaches

Using substitutions (see Definition 2.3.3), we can define a syntactical order
on rules:

Definition 2.3.12 (Rule order). A rule R ≡ (~B ⇒ h) subsumes a rule

R′ ≡ (~B′ ⇒ h′), or R is “more general than” R′, or R′ “is more specific

than” R, if there is a substitution σ such that σ(~B) ⊆ ~B′ and σ(h) = h′. If
both rules subsume each other, the rules are called equivalent.

For example, consider the following rules:

hasChild(x, y) ⇒ hasChild(z, y) (R0)
hasChild(Elvis, y) ⇒ hasChild(Priscilla, y) (R1)

hasChild(x, y) ⇒ hasChild(z, Lisa) (R2)
hasChild(x, y) ∧marriedTo(x, z) ⇒ hasChild(z, y) (R3)

marriedTo(v1, v2) ∧ hasChild(v1, v3) ⇒ hasChild(v2, v3) (R4)
hasChild(x, y) ∧marriedTo(z, x) ⇒ hasChild(z, y) (R5)

The rule R0 is more general than the rule R1, because we can rewrite the
variables x and z to Elvis and Priscilla respectively. However R0 and R2

are incomparable as we cannot choose to bind only one y and not the other
in R0. The rules R3, R4 and R5 are more specific than R0. Finally R3 is
equivalent to R4 but not to R5.

Proposition 2.3.13 (Prediction inclusion). If a rule R is more general than
a rule R′, then the predictions of R′ on a KB are a subset of the predictions
of R. As a corollary, R′ cannot have a higher support than R.

This observation gives us two families of rule mining algorithms: top-
down rule mining starts from very general rules and specializes them un-
til they become too specific (i.e., no longer meet the support threshold).

29

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Bottom-up rule mining, in contrast, starts from multiple ground rules and
generalizes them until the rules become too general (i.e., too many negative
examples are predicted).

Top-Down Rule Mining

The concept of specializing a general rule to more specific rules can be
traced back to [74] in the context of an exact ILP task (under the
CWA). Such approaches usually employ a refinement operator, i.e. a func-
tion that takes a rule (or a set of rules) as input and returns a set of
more specific rules. For example, a refinement operator could take the
rule hasChild(y, z) ⇒ hasChild(x, z) and produce the more specific rule
marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z). This process is iterated,
and creates a set of rules that we call the search space of the rule mining
algorithm. On the one hand, the search space should contain every rule of a
given rule mining task, so as to be complete. On the other hand, the smaller
the search space is, the more efficient the algorithm is.

Usually, the search space is pruned, i.e., less promising areas of the search
space are cut away. For example, if a rule does not have enough support,
then any refinement of it will have even lower support (Proposition 2.3.13).
Hence, there is no use refining this rule.

AMIE. AMIE [31] is a top-down rule mining algorithm that aims to mine
any connected rule composed of binary atoms for a given support and mini-
mum level of confidence in a KB. AMIE starts with rules composed of only
a head atom for all possible head atoms (e.g., ⇒ marriedTo(x, y)). It uses
three refinement operators, each of which adds a new atom to the body of
the rule.

The first refinement operator, addDanglingAtom, adds an atom composed
of a variable already present in the input rule and a new variable.

Some refinements of: ⇒ hasChild(z, y) (Rh)

are:

hasChild(x, y) ⇒ hasChild(z, y) (R0)

marriedTo(x, z) ⇒ hasChild(z, y) (Ra)
marriedTo(z, x) ⇒ hasChild(z, y) (Rb)

The second operator, addInstantiatedAtom, adds an atom composed of a
variable already present in the input rule and an entity of the KB.

Some refinements of: ⇒ hasChild(Priscilla, y) (R′h)

are:

hasChild(Elvis, y) ⇒ hasChild(Priscilla, y) (R1)

hasChild(Priscilla, y) ⇒ hasChild(Priscilla, y) (R>)
marriedTo(Barack, y) ⇒ hasChild(Priscilla, y) (R⊥)

30

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

The final refinement operator, addClosingAtom, adds an atom composed of
two variables already present in the input rule.

Some refinements of: marriedTo(x, z) ⇒ hasChild(z, y) (Ra)

are:

hasChild(x, y) ∧marriedTo(x, z) ⇒ hasChild(z, y) (R3)

marriedTo(z, y) ∧marriedTo(x, z) ⇒ hasChild(z, y) (Rα)
marriedTo(x, z) ∧marriedTo(x, z) ⇒ hasChild(z, y) (R2

a)

As every new atom added by an operator contains at least a variable present
in the input rule, the generated rules are connected. The last operator is
used to close the rules (for example R3), although it may have to be applied
several times to actually produce a closed rule (cf. Rules Rα or R2

a).
The AMIE algorithm works on a queue of rules. Initially, the queue

contains one rule of a single head atom for each relation in the KB. At each
step, AMIE dequeues the first rule, and applies all three refinement operators.
The resulting rules are then pruned: First, any rule with low support (such
as R⊥) is discarded. Second, different refinements may generate equivalent
rules (using the closing operator on R0 or Ra, e.g., generates among others
two equivalent “versions” of R3). AMIE prunes out these equivalent versions.
AMIE+ [30] also detects equivalent atoms as in R> or R2

a and rewrites or
removes those rules. There are a number of other, more sophisticated pruning
strategies that estimate bounds on the support or confidence. The rules that
survive this pruning process are added to the queue. If one of the rules is a
closed rule with a high confidence, it is also output as a result. In this way,
AMIE enumerates the entire search space.

The top-down rule mining method is generic, but its result depends on
the initial rules and on the refinement operators. The operators directly
impact the language of rules we can mine (see Section 2.3.2) and the per-
formance of the method. We can change the refinement operators to mine
a completely different language of rules. For example, if we don’t use the
addInstantiatedAtom operator, we restrict our search to any rule without
instantiated atoms, which also drastically reduce the size of the search space1.

Apriori Algorithm. There is an analogy between top-down rule mining
and the Apriori algorithm [1]. The Apriori algorithm considers a set of
transactions (sales, products bought in a supermarket), each of which is a
set of items (items bought together, in the supermarket analogy). The goal
of the Apriori algorithm is to find a set of items that are frequently bought
together.

1Let |K| be the number of facts and |r(K)| the number of relations in a KB K. Let d
be the maximal length of a rule. The size of the search space is reduced from O(|K|d) to
O(|r(K)|d) when we remove the addInstantiatedAtom operator.

31

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

These are frequent patterns of the form ~P ≡ I1(x)∧· · ·∧In(x), where I(t)
is in our transaction database if the item I has been bought in the transaction
t. Written as the set (called an “itemset”) ~P ≡ {I1, . . . , In}, any subset of ~P

forms a “more general” itemset than ~P , which is at least as frequent as P .
The Apriori algorithm uses the dual view of the support pruning strategy:
Necessarily, all patterns more general than ~P must be frequent for ~P to be
frequent2. The refinement operator of the Apriori algorithm takes as input
all frequent itemsets of size n and generate all itemsets of size n + 1 such
that any subset of size n is a frequent itemset. Thus, Apriori can be seen
as a top-down rule mining algorithm over a very specific language where all
atoms are unary predicates.

The WARMR algorithm [17], an ancestor of AMIE, was the first to adapt
the Apriori algorithm to rule mining over multiple (multidimensional) rela-
tions.

Ontological Pathfinding. AMIE (and its successor AMIE+) [31, 30] was
the first approach to explicitly target large KBs. While AMIE+ is at least
3 orders of magnitude faster than the first-generation systems, it can still
take hours, even days, to find rules in very large KBs such as Wikidata. On
these grounds, more recent approaches [13, 14] have proposed new strategies
(parallelism, approximations, etc.) to speed up rule mining on the largest
KBs. The Ontological Pathfinding method (OP) [13, 14] resorts to a highly
concurrent architecture based on Spark3 to calculate the support and the
confidence of a set of candidate rules. The candidates are computed by
enumerating all conjunctions of atoms that are allowed by the schema. Like
AMIE, OP calculates the exact scores of the rules and supports both the
CWA and the PCA for the generation of counter-evidence. At the same
time, the system supports only path rules of up to 3 atoms. Other types of
rules require the user to implement a new mining procedure.

RudiK. RudiK [63] is a recent rule mining method that applies the PCA
to generate explicit counter-examples that are semantically related. For
example, when generating counter-facts for the relation hasChild and a given
person x, RudiK will sample among the non-children of x who are children of
someone else (x′ 6= x). RudiK’s strategy is to find all rules that are necessary
to predict the positive examples, based on a greedy heuristic that at each step
adds the most promising rule (in terms of coverage of the examples) to the
output set. Thus, differently from exhaustive rule mining approaches [13, 31,

2instead of: if a rule is not frequent, none of its refinements can be frequent
3https://spark.apache.org

32

https://spark.apache.org

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

30, 34], RudiK aims to find rules that make good predictions, not all rules
above a given confidence threshold. This non-exhaustivity endows RudiK
with comparable performance to AMIE+ and OP. Note that RudiK is also
capable of mining negative rules, rules that predicts the absence of a fact, a
novel prospect that have not yet been studied by the other approaches.

Bottom-Up Rule Mining

As the opposite of a refinement operator, one can define a generalization
operator that considers several specific rules, and outputs a rule that is more
general than the input rules. For this purpose, we will make use of the ob-
servation from Section 2.3.1 that a rule b1 ∧ ... ∧ bn ⇒ h is equivalent to
the disjunction ¬b1 ∨ · · · ∨ ¬bn ∨ h. The disjunction, in turn, can be writ-
ten as a set {¬b1, . . . ,¬bn, h} – which we call a clause. For example, the
rule marriedTo(x, y) ∧ hasChild(y, z)⇒ hasChild(x, z) can be written as the
clause {¬marriedTo(x, y),¬hasChild(y, z), hasChild(x, z)}. Bottom-up rule
mining approaches work on clauses. Thus, they work on universally quanti-
fied disjunctions – which are more general than Horn rules. Two clauses can
be combined to a more general clause using the “least general generalization”
operator [65]:

Definition 2.3.14 (Least general generalization). The least general gener-
alization (lgg) of two clauses is computed in the following recursive manner:

– The lgg of two terms (i.e., either entities or variables) t and t′ is t if
t = t′ and a new variable xt/t′ otherwise.

– The lgg of two negated atoms is the negation of their lgg.

– The lgg of r(t1, . . . , tn) and r(t′1, . . . , t
′
n) is r(lgg(t1, t

′
1), . . . , lgg(tn, t

′
n)).

– The lgg of a negated atom with a positive atom is undefined.

– Likewise, the lgg of two atoms with different relations is undefined.

– The lgg of two clauses R and R′ is the set of defined pair-wise general-
izations:

lgg(R,R′) = {lgg(li, l
′
j) : li ∈ R, l′j ∈ R′, and lgg(li, l

′
j) is defined}

For example, let us consider the following two rules:

hasChild(Michelle, Sasha) ∧ marriedTo(Michelle, Barack)
⇒ hasChild(Barack, Sasha) (R)

hasChild(Michelle,Malia) ∧ marriedTo(Michelle, x)
⇒ hasChild(x,Malia) (R′)

33

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

In the form of clauses, these are

{¬hasChild(Michelle, Sasha), ¬marriedTo(Michelle, Barack),
hasChild(Barack, Sasha)} (R)

{¬hasChild(Michelle,Malia), ¬marriedTo(Michelle, x),
hasChild(x,Malia)} (R′)

Now, we have to compute the lgg of every atom of the first clause with every
atom of the second clause. As it turns out, there are only 3 pairs where the
lgg is defined:

lgg(¬hasChild(Michelle, Sasha),¬hasChild(Michelle,Malia))
= ¬lgg(hasChild(Michelle, Sasha), hasChild(Michelle,Malia))
= ¬hasChild(lgg(Michelle,Michelle), lgg(Sasha,Malia))
= ¬hasChild(Michelle, xSasha/Malia)

lgg(¬marriedTo(Michelle, Barack),¬marriedTo(Michelle, x))
= ¬marriedTo(Michelle, xBarack/x)

lgg(hasChild(Barack, Sasha), hasChild(x,Malia))
= hasChild(xBarack/x, xSasha/Malia)

This yields the clause

{¬hasChild(Michelle, xSasha/Malia), ¬marriedTo(Michelle, xBarack/x),
hasChild(xBarack/x, xSasha/Malia)}

This clause is equivalent to the rule

hasChild(Michelle, y) ∧ marriedTo(Michelle, x)⇒ hasChild(x, y)

Note that the generalization of two different terms in an atom should result
in the same variable as the generalization of these terms in another atom.
In our example, we obtain only two new variables xSasha/Malia and xBarack/x.
In this way, we have generalized the two initial rules to a more general rule.
This can be done systematically with an algorithm called GOLEM.

GOLEM. The GOLEM/RLGG algorithm [60] creates, for each positive
example e ∈ E+, the rule B ⇒ e, where B is the background knowledge. In
our case, B is the entire KB, and so a very long conjunction of facts. The
algorithm will then generalize these rules to shorter rules. More precisely, the
relative lgg (rlgg) of a tuple of ground atoms (e1, . . . , en) is the rule obtained

34

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

by computing the lgg of the rules B ⇒ e1, ..., B ⇒ en. We will call a rlgg
valid if it is defined and does not predict any negative example.

The algorithm starts with a randomly sampled pair of positive examples
(e1, e2) and selects the pair for which the rlgg is valid and predicts (“covers”)
the most positive examples. It will then greedily add positive examples,
chosen among a sample of “not yet covered positive examples”, to the tuple
– as long as the corresponding rlgg is valid and covers more positive examples.
The resulting rule will still contain ground atoms from B. These are removed,
and the rule is output. Then the process starts over to find other rules for
uncovered positive examples.

Progol and others. More recent ILP algorithms such as Progol [57],
HAIL [68], Imparo [41] and others [92, 40] use inverse entailment to com-
pute the hypothesis more efficiently. This idea is based on the observation
that a hypothesis h that satisfies B ∧ h |= E+ should equivalently satisfy
B∧¬E+ |= ¬h (by logical contraposition). The algorithms work in two steps:
they will first construct an intermediate theory F such that B∧¬E+ |= F and
then generalize its negation ¬F to the hypothesis h using inverse entailment.

2.3.4 Related Approaches

This chapter cannot give a full review of the field of rule mining. However,
it is interesting to point out some other approaches in other domains that
deal with similar problems:

OWL. OWL is a Description logic language designed to define rules and
constraints on the KB. For example, an OWL rule can say that every person
must have a single birth date. Such constraints are usually defined upfront
by domain experts and KB architects when they design the KB. They are
then used for automatic reasoning and consistency checks. Thus, constraints
prescribe the shape of the data, while the rules we mine describe the shape
of the data. In other words, constraints are used deductively – instead of
being found inductively. As such, they should suffer no exception. However,
rule mining can provide candidate constraints to experts when they want to
augment their theory [38].

Probabilistic ILP. As an extension of the classic ILP problem, Proba-
bilistic ILP [16] aims to find the logical hypothesis h that, given probabilistic
background knowledge, maximizes the probability to observe a positive ex-
ample, and minimizes the probability to observe a negative example. In our

35

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

case, it would require a probabilistic model of the real world. Such models
have been proposed for some specific use cases [44, 95], but they remain an
ongoing subject of research.

Graph Mining and Subgraph Discovery. Subgraph discovery is a well
studied problem in the graph database community (see [32] Part 8 for a
quick overview). Given a set of graphs, the task is to mine a subgraph that
appears in most of them. Rule mining, in contrast, is looking for patterns
that are frequent in the same graph. This difference may look marginal, but
the state-of-the-art algorithms are very different and further work would be
needed to determine how to translate one problem to the other.

Link Prediction. Rules can be used for link prediction, i.e., to predict
whether a relation links two entities. This task can also be seen as a classi-
fication problem ([32] Part 7): given two entities, predict whether there is a
relation between them. A notable work that unites both views [45] uses every
conjunction of atoms (a possible body for a rule, which they call a “path”)
as a feature dimension for this classification problem.

Representation learning, another link prediction approach based on ma-
chine learning, aims to represent entities and relations between those entities
in some vector space Rd. For example, given a fact r(s, o) in our KB, the
TransE model [10] will attempt to map r, s and o to vectors r, s and o in
Rd such that s + r ≈ o. For example, in the Example KB Figure 2.1, we
would have:

Elvis + marriedTo ≈ Priscilla
Elvis + hasChild ≈ Lisa
Barack + marriedTo ≈Michelle

Here, the task of fact prediction can be seen as finding the entity o such
that:

Barack + hasChild ≈ o

The “embeddings” s, r and o are learned by maximizing the scoring
function:

fr(s, o) = ||s + r − o||1 or 2

for any positive example r(s, o) of the KB, and minimizing the same scoring
function for any negative example (cf. the discussion Section 2.3.2 on how
to choose those negative examples).

The main problem of the TransE model is that, on 1-to-N relationships,
several entities will be mapped to the same vectors:

Michelle + hasChild ≈Malia ≈ Sasha

36

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Several other models such as DistMult [93], ComplEX [82] or ConvE [18],
have been proposed to address these issues. A comprehensive survey on the
domain of KB embeddings techniques can be found in [85].

Recent studies have shown that KB embeddings approaches do not per-
form significantly better than the rule mining approaches on the task of fact
prediction [52, 5].

2.4 Conclusion

In this chapter, we have investigated how entities, relations, and facts in a
knowledge base can be represented. We have seen the standard knowledge
representation model of instances and classes. We have also seen how to
represent more complex relationships between the entities in the form of
rules and presented classical and contemporary rule mining approaches.

However, many challenges persist. First, as the KBs grow larger and
larger, the scalability of the rule mining approaches remains a permanent
problem. Second, new approaches use custom quality metrics or new pruning
strategies to discover more productive rules for specialized purposes (fact
prediction notably). In terms of usability, bridging the gap between general
ILP-based and purpose-oriented rule mining approaches would be profitable
for both approaches.

37

Chapter 3

AMIE 3: Fast Computation of
Quality Measures

3.1 Introduction

In order to be able to process larger and larger Knowledge Bases, the pre-
vious version of AMIE, AMIE+ [30], resorts to use a sophisticated prun-
ing strategy called the functionality heuristic. As a result, AMIE+ is way
more performant than the original AMIE algorithm but this pruning heuris-
tic is not exact and may prune perfectly legitimate rules. For example, on
DBPedia 3.8, AMIE+ will wrongfully prune around 1.6% of the rules. Other
recent approaches, such as Ontological Pathfinding [13], use similar pruning
strategies, producing incomplete results.

Scaling is important but it should not be at the expense of the generality
of the result. Without any guarantee on the results, a rule mining algorithm
is just a tool that mines some rules, among many others. An exact and
exhaustive rule mining algorithm would be the rule mining algorithm par
excellence, as it provides a gold standard the other rule mining algorithms
can be compared against.

A first difficulty in mining exhaustively the rules from a KB lies in the
exponential size of the search space: every relation can potentially be com-
bined with every other relation in a rule. The second difficulty comes from
the exact computation of the quality measures, as the algorithm must con-
sider more predictions the larger the KB is. For example, to compute exactly
the confidence of the rule:

livesIn(x, Paris) ∧ livesIn(y, Paris)⇒ marriedTo(x, y)

the algorithm must consider every pair of person living in Paris, which
amounts to roughly 106 × 106 pairs for a complete KB.

38

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

In this chapter, we present AMIE 3, a successor of AMIE [31] and
AMIE+ [30]. Our system employs a number of sophisticated strategies to
speed up rule mining: pruning strategies, parallelization, and a lazy compu-
tation of confidence scores. This allows our system to scale effortlessly to
large KBs. At the same time, the system still computes the exact confidence
and support values for each rule, without resorting to approximations. Fur-
thermore, unlike its predecessor [30] and other systems, AMIE 3 exhaustively
computes all rules that hold in the KB for a given confidence and support
threshold.

Our experiments show that AMIE 3 beats the state of the art by a factor
of 15 in terms of runtime. We believe that the techniques that we have
discovered can be of use for other systems as well — no matter whether they
compute the exhaustive set of rules or not.

3.2 AMIE 3

In this section, we first recap the original AMIE algorithm [31] (Section 3.2.1).
Then we present a series of optimizations that give rise to AMIE 3 (Sec-
tion 3.2.2). Finally, we show different quality metrics that AMIE 3 can
compute (Section 3.2.3).

3.2.1 The AMIE Approach

The AMIE algorithm [31, 30] is a method to mine closed Horn rules on large
KBs. AMIE (Algorithm 1) takes as input a knowledge base K, and thresholds
l for the maximal number of atoms per rule, minHC for the minimum head
coverage, and minC for the minimum PCA confidence. AMIE uses a classical
breadth-first search: Line 1 initializes a queue with all possible rules of size 1,
i.e., rules with an empty body. The search strategy then dequeues a rule R at
a time and adds it to the output list (Line 6) if it meets certain criteria (Line
5), namely, (i) the rule is closed, (ii) its PCA confidence is higher than minC,
and (iii) its PCA confidence is higher than the confidence of all previously
mined rules with the same head atom as R and a subset of its body atoms.
If the rule R has less than l atoms and its confidence can still be improved
(Line 7), AMIE refines it. The refinement operator refine (Line 8) derives
new rules from R by considering all possible atoms that can be added to the
body of the rule, and creating one new rule for each of them, as described in
section 2.3.3.

AMIE iterates over all the non-duplicate refinements of rule R and adds
those with enough head coverage (Lines 10-11). The routine finishes when

39

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

the queue runs out of rules. The AMIE algorithm has been implemented in
Java with multi-threading. By default, AMIE sets minHC=0.01, minC=0.1,
and l = 3. AMIE+ [30] optimized this algorithm by a number of pruning
strategies, but did not change the main procedure.

Algorithm 1: AMIE

Input: a KB: K, maximum rule length: l, head coverage threshold:
minHC , confidence threshold: minC

Output: set of Horn rules: rules
1 q = [> ⇒ r1(x, y),> ⇒ r2(x, y) . . .> ⇒ rm(x, y)]
2 rules = 〈〉
3 while |q| > 0 do
4 R = q.dequeue()
5 if closed(R)∧ pca-conf(R) ≥ minC ∧ betterThanParents(R, rules)

then
6 rules .add(r)

7 if length(R) < l ∧ pca-conf(Rc) < 1.0 then
8 for each rule Rc ∈ refine(R) do
9 if hc(Rc) ≥ minHC ∧Rc /∈ q then

10 q.enqueue(rc)

11 return rules

3.2.2 AMIE 3

We now present the optimizations of Algorithm 1 that constitute AMIE 3,
the successor of AMIE+.

Existential Variable Detection. In order to decide whether to output a
rule, AMIE has to compute its confidence (Lines 5 and 7 of Algorithm 1),
i.e., it has to evaluate Equation A.1. If the PCA confidence is used, this
equation becomes (cf. Appendix A):

pca-conf(~B ⇒ r(x, y)) =
support(~B ⇒ r(x, y))

|{(x, y) : ∃y′ : ~B ∧ r(x, y′)}|
. (3.1)

This is for the case where fun(r) ≥ fun(r−). If fun(r) < fun(r−), the denom-

inator becomes |{(x, y) : ∃x′ : ~B ∧ r(x′, y)}|. To evaluate this denominator,

40

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

AMIE first finds every possible value of x. This is the purpose of Algorithm 2:
We find the most restrictive atom in the query, i.e., the atom A∗ with the
relation with the least number of facts. If x appears in this atom, we select
the possible instantiation of x in the atom for which the rest of the query
is satisfiable (Lines 3 and 4). Otherwise, we recursively find the values of
x for each instantiation of this most restrictive atom and add them to the
result set X . Once AMIE has found the set of possible values for x with
Algorithm 2, it determines, for each value of x, the possible values of y —
again by Algorithm 2. This is necessary because we cannot keep in memory
all values of y encountered when we computed the values of x, because this
would lead to a quadratic memory consumption.

This method can be improved as follows: Assume that our rule is simply
r1(x, z)∧r2(z, y)⇒ rh(x, y). Then AMIE will compute the number of distinct
pairs (x, y) for the following query (the denominator of Equation 3.1):

r1(x, z) ∧ r2(z, y) ∧ rh(x, y′)

AMIE will use Algorithm 2 to select the possible values of x. Assume that
the most restrictive atom is r2(z, y). Then AMIE will use all possible instan-
tiations σ : {z ← Z, y ← Y } of this atom, and find the possible values of x
for the following query (Lines 5 and 6 of Algorithm 2):

r1(x, Z) ∧ r2(Z, Y) ∧ rh(x, y′) (3.2)

However, we do not have to try out all possible values of y, because for a
fixed instantiation z ← Z all assignments y ← Y lead to the same value
for x. Rather, y can be treated as an existential variable: once there is a
single Y with r2(Z, Y), we do not need to try out the others. Thus, we can
improve Algorithm 2 as follows: If a variable y of A∗ = r(x, y) does not
appear elsewhere in q, then Line 5 iterates only over the possible values of x
in A∗.

Lazy Evaluation. The calculation of the denominator of Equation 3.1 can
be computationally expensive, most notably for “bad” rules such as:

R : directed(x, z) ∧ hasActor(z, y)⇒ marriedTo(x, y). (3.3)

In such cases, AMIE spends a lot of time computing the exact confidence,
only to find that the rule will be pruned away by the confidence threshold.
This can be improved as follows: Instead of computing first the set of values
for x, and then for each value of x the possible values of y, we compute for
each value of x directly the possible values of y —and only then consider the

41

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Algorithm 2: DistinctValues

Input: variable x, query q = A1 ∧ ... ∧ An, KB K,
Output: set of values X

1 X := ∅
2 A∗ := argminA(|{(x, y) : A = r(x, y), A ∈ q}|)
3 if x appears in A∗ then
4 return {x : x ∈ σ(A∗) ∧ σ(q \ A∗) is satisfiable}
5 for each σ : σ(A∗) ∈ K do
6 X := X ∪ DistinctValues(x, σ(q \ A∗),K)

7 return X

next value of x. Following the principle “If you know something is bad, do
not spend time to figure out how bad exactly it is”, we stop this computation
as soon as the set size reaches the value support(R)×minC−1. If this occurs,
we know that pca-conf(R) < minC , and hence the rule will be pruned in
Line 5 of Algorithm 1.

Variable Order. To compute the PCA confidence (Equation 3.1), we have
to count the instantiations of pairs of variables x, y. AMIE counts these
asymmetrically: It finds the values of x and then, for each value of x, the
values of y. We could as well choose to start with y instead. The number of
pairs is the same, but we found that the choice impacts the runtime: Once
one variable is fixed, the computation of the other variable happens on a rule
that has fewer degrees of freedom than the original rule, i.e., it has fewer
instantiations. Thus, one has an interest in fixing first the variable that
appears in as many selective atoms as possible. Alas, it is very intricate to
determine which variable restricts more efficiently the set of instantations,
because the variables appear in several atoms, and each instantiation of the
first variable may entail a different number of instantiations of the second
variable. Therefore, estimating the exact complexity is unpractical.

We use the following heuristic: Between x and y, we choose to start with
the variable that appears in the head atom of the rule in the denominator of
Equation 3.1. The reason is that this variable appears in at least two atoms
already, whereas the other variable appears only in at least one atom. We
show in our experiments that this method improves the runtime by several
orders of magnitude for some rules.

Parallel Computation for Overlap Tables. AMIE implements an ap-
proximation of Equation 3.1. This approximation misses only a small per-

42

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

centage of rules (maximally 5% according to [30]), but speeds up the cal-
culation drastically. In AMIE 3, this feature can be switched off (to have
exact results) or on (to have faster results). Here, we show how to further
speed up this heuristic. The method finds an efficient approximation of the
denominator of Equation 3.1 for a rule R. This approximation uses the join
structure of the query in combination with the functionality scores and the
overlaps of the different relations to estimate the total number of examples
(both positive and negative) of a rule. The exact formula and the rationale
behind it can be found in [30]. The functionality, domain and overlaps with
other relations are pre-computed for all relations. This pre-calculation can
be significant for large KBs with many predicates. In our experiments with
DBpedia, e.g., precomputing all overlaps takes twice as much time as the
mining. In AMIE 3, we exploit the fact that this task is easy parallelizable,
and start as many threads as possible in parallel, each treating one pair of
relations. This reduces the precomputation time linearly with the number of
threads (by a factor of 40 in our experiments).

Integer-based in-memory database. AMIE uses an in-memory
database to store the entire KB. Each fact is indexed by subject, by object,
by relation, and by pairs of relation/subject and relation/object. In order to
be able to load also large KBs into memory, AMIE compresses strings into
custom-made ByteStrings, where each character takes only 8 bits. AMIE
makes sure that ByteString variables holding equivalent ByteStrings point
to the same physical object (i.e., the ByteString exists only once). This not
just saves space, but also makes hashing and equality tests trivial. Still,
we incur high costs of managing these objects and the indexes: ByteStrings
have to be first created, and then checked for duplicity; unused ByteStrings
have to be garbage-collected; equality checks still require casting checks;
and HashMaps create a large memory overhead. Built-in strings suffer from
the same problems. Therefore, we migrated the in-memory database to an
integer-based system, where entities and relations are mapped to an integer
space and represented by the primitive datatype int. This is in compliance
with most RDF engines and popular serialization formats such as [25]. We
use the fastutil library1 to store the indexes. This avoids the overhead of
standard HashMaps. It also reduces the number of objects that the garbage
collector has to treat, leading to a significant speedup.

1http://fastutil.di.unimi.it/

43

http://fastutil.di.unimi.it/

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

3.2.3 Quality Metrics

AMIE is a generic exhaustive rule miner, and thus its output consists of
rules. These rules can serve as input to other applications, for example,
to approaches that predict facts [20, 63]. By default, AMIE uses the PCA
confidence to assess the quality of a rule, because it has been shown to rank
rules closer to the quality of their predictions than classical metrics such
as the CWA confidence [31]. However, the PCA cannot generate counter-
examples for functional relations, which is problematic for rules such as:

hasChild(z, x) ∧ politicianOf(z, y)⇒ politicianOf(x, y)

This rule has a high PCA confidence as the children of a politician that
are not politician are not counted as a counter-examples of the rule2. Thus
the rule actually represents the fact that every child of a politician who is
politician of some country is politician of the same country as their parents
but the same rule would be used to predict that every child of a politician
is a politician. We specifically give directions to address this problem in
Section 8.2.

AMIE 3 is not limited to the PCA and can compute any of the following
quality metrics that can be enabled by command lines switches:

Support & head coverage. Support is a standard quality metric that in-
dicates the significance of a rule. Due to the anti-monotonicity prop-
erty, most approaches use support to prune the search space of rules.
AMIE [31, 30] uses by default the head coverage (the relative variant
of support) for pruning.

PCA Confidence. The default confidence metric.

CWA confidence. This confidence is used in OP [13, 14]. Many link pre-
diction methods are evaluated under the closed world assumption as
well [80].

GPRO confidence. The work of [20] noted that the PCA confidence can
underestimate the likelihood of a prediction in the presence of non-
injective mappings. Therefore, the authors propose a refinement of
the PCA confidence, the GPRO confidence, which excludes instances
coming from non-injective mappings in the confidence computation. To
judge the quality of a predicted fact, the approach needs the GPRO
confidence both on the first and second variable of the head atom.
AMIE is not designed to judge the quality of a predicted fact, but can
compute the GPRO confidence on both variables.

2as they are not subject of a politicianOf relation.

44

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

GRANK confidence. This refinement of the GPRO metric is proposed
by [20] in order to take into account the number of instances of the
variables of the rule that are not in the head atom.

The rules mined by AMIE can be used to support task such as data clean-
ing or reasoning but can also be added to an open rule repository as proposed
in [3] to facilitate sharing and comparison between different approaches and
quality metrics.

3.3 Experiments

We conducted two series of experiments to evaluate AMIE 3: In the first
series we study the impact of our optimizations on the system’s runtime.
In the second series, we compare AMIE 3 with two scalable state-of-the-art
approaches, namely RudiK [63] and Ontological Pathfinding (OP) [13, 14]
(also known as ScaleKB) on 6 different datasets.

3.3.1 Experimental Setup

Data. We evaluated AMIE 3 and its competitors on YAGO (2 and 2s), DB-
pedia (2.0 and 3.8) and a dump of Wikipedia from December 2014. These
datasets were used in evaluations of AMIE+ [30], OP [13] and Rudik [63].
In addition, we used a recent dump of Wikidata from July 1st, 20193. Ta-
ble 3.1 shows the numbers of facts, relations, and entities of our experimental
datasets.

Configurations. All experiments were run on a Ubuntu 18.04.3 LTS with
40 processing cores (Intel Xeon CPU E5-2660 v3 at 2.60GHz) and 500Go of
RAM. AMIE 3 and RudiK are implemented in Java 1.8. AMIE 3 uses its
own in-memory database to store the KB, whereas RudiK relies on Virtuoso
Open Source 06.01.3127, accessed via a local endpoint. OP was implemented
in Scala 2.11.12 and Spark 2.3.4.

Unless otherwise noted, the experiments were run using the default set-
tings of AMIE: We used the PCA confidence, computed lazily with a thresh-
old of 0.1, with all the lossless optimizations (no approximations). The
threshold on the head coverage is 0.01 and the maximal rule length is 3 [31].

3Selecting only facts between two Wikidata entities, and excluding literals.

45

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table 3.1 – Experimental datasets

Dataset Facts Relations Entities

Yago2 948 358 36 834 750
Yago2s 4 484 914 37 2 137 469
DBpedia 2.0 6 601 014 1 595 2 275 327
DBpedia 3.8 11 024 066 650 3 102 999
Wikidata 12-2014 8 397 936 430 3 085 248
Wikidata 07-2019 386 156 557 1 188 57 963 264

Table 3.2 – Loading time and memory used. Ov. tables is the time needed
to compute the overlap tables.

Dataset Loading Ov. tables
Memory used

Integer ByteString

Yago2 7s 0.2s 6Go 9Go
Yago2s 45s 2.4s 16Go 19Go
DBpedia 2.0 55s 23.5s 29Go 32Go
DBpedia 3.8 1min 20s 15.2s 40Go 42Go
Wikidata 2014 59s 12s 27Go 54Go
Wikidata 2019 42min 53s 41.4s 479Go N/A

3.3.2 Effect of our optimizations

In-memory database. Table 3.3 shows the performance with the new
integer-based in-memory database and the old ByteString database. The
change reduces the memory footprint by around 3 GB in most cases, and by
50% in Wikidata. Moreover, the new database is consistently faster, up to
8-fold for the larger KBs such as DBpedia 3.8.

Laziness. As explained in Section 3.2.2, AMIE can invest a lot of time in
calculating the PCA confidence of low-confident rules. The lazy evaluation
targets exactly this problem. Table 3.4 shows that this strategy can reduce
the runtime by a factor of 4. We also show the impact of laziness when the
PCA confidence approximation is switched on. We observe that the parallel
calculation of the overlap tables reduces drastically the contribution of this
phase to the total runtime when compared to AMIE+ —where it could take

46

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table 3.3 – Old ByteString database vs. the new integer-based database.

Dataset Integer ByteString

Yago2 26.40s 29.69s
Yago2s 1min 55s 4min 10s
DBpedia 2.0 7min 32s 34min 06s
DBpedia 3.8 7min 49s 52min 10s
Wikidata 2014 5min 44s 6min 01s

Table 3.4 – Impact of laziness and of switching on the confidence approxi-
mation.

Dataset
Conf. Approx. off Conf. Approx. on
Non-lazy Lazy Non-lazy Lazy

Yago2 24.12s 26.40s 24.39s 21.41s
Yago2s 4min 28s 1min 55s 1min 42s 2min 03s
DBpedia 2.0 10min 14s 7min 32s 7min 42s 8min 13s
DBpedia 3.8 14min 50s 7min 49s 11min 07s 10min 18s
Wikidata 2014 19min 27s 5min 44s 5min 45s 4min 36s
Wikidata 2019 > 48h 16h 43min 17h 06min 16h 31min

longer than the mining itself. We also note that the residual impact of the
confidence approximation is small, so that this feature is now dispensable:
We can mine rules exhaustively.

Count variable order. To measure the impact of the count variable order,
we ran AMIE 3 (with the lazy evaluation activated) on Yago2s and looked at
the runtimes when counting with the variable that appears in the head atom
versus the runtime when counting with the other variable. For every rule
with three atoms and a support superior to 100, we timed the computation
of the PCA confidence denominator (Equation 3.1) in each case. The y-axis
of Figure 3.1 shows the runtime when we first instantiate the variable that
occurs in the head atom, whereas the x-axis shows the runtime when using
the other variable.

We see that every query can be run in under 10 seconds and that most
of the queries would run equally fast independently of the order of the vari-
ables. However, for some rules, instantiating first the variable that does not

47

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

1ms

10ms

100ms

1s

10s

1ms 10ms 100ms 1s 10s 1min 10min 1h 6h 1d 3d
Other variable

H
ea

d
va

ria
bl

e

Figure 3.1 – Impact of the variable order on Yago2s. Each point is a rule.
Cross points: pruned by the confidence approximation. Plain line: same
performance. Dashed lines: relative speedup of 10×.

appear in the head atom can be worse than the contrary by several orders of
magnitude. Some queries would take hours (days in one case) to compute,
even with lazy evaluation. In Yago2s, these rules happen to be pruned away
by the AMIE+ confidence upper bound (a lossless optimization), but this
may not be the case for all KBs. The problematic rules all have bodies of
the following shape:{

hasGender(x, g) ∧ hasGender(y, g)
isLocatedIn(x, l) ∧ isLocatedIn(y, l)

Both hasGender and isLocatedIn are very large relations as they apply to
any person and location, respectively. While early pruning of those “hard
rules” is the purpose of the confidence approximations and upper bounds of
AMIE+, these strategies may fail in a few cases, leading to the execution of
expensive queries. Finally, we show the overall impact of the count variable
order heuristic in Table 3.5. The results suggest that our heuristic generally
yields lower runtimes.

Impact of existential variable detection. Last but not least, the on-
the-fly detection of existential variables reduces the number of recursive calls
made to Algorithm 2. Table 3.6 shows the performances of AMIE 3 with and
without this optimization. This optimization is critical for AMIE 3 on most

48

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table 3.5 – Impact of the variable order: variable that appears in the head
atom (new AMIE 3 heuristic); variable that does not appear in the head
atom; variable that appears first in the head atom of the original rule (old
AMIE method).

Dataset Head Non-head Always first

Yago2 26.40s 25.64s 23.59s
Yago2s 1min 55s 4min 32s 4min 30s
DBpedia 2.0 7min 32s 12min 46s 6min 36s
DBpedia 3.8 7min 49s 21min 12s 8min 53s
Wikidata 2014 5min 44s 36min 09s 9min 50s

Table 3.6 – Existential variable detection (ED)

Dataset AMIE 3 No ED

Yago2 26.40s 24.84s
Yago2s 1min 55s > 2h
DBpedia 2.0 7min 32s 9min 10s
DBpedia 3.8 7min 49s > 2h
Wikidata 2014 5min 44s > 2h

datasets. This is less important for DBpedia 2.0 as it contains mostly small
relations.

Metrics. Table 3.7 shows the impact of different quality metrics on the
runtime, with iPCA being the PCA with injective mappings. The metrics
run slower than the PCA confidence, because we cannot use the PCA upper
bound optimization. The GRank metric, in particular, is very sensitive to
the number of facts per relation, which explains its performance on Yago2s
and DBpedia 3.8. For all other metrics, however, the numbers are very
reasonable.

3.3.3 Comparative Experiments

In this section, we compare the performance of AMIE 3 with two main state-
of-the-art algorithms for rule mining in large KBs, RuDiK and OP.

49

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table 3.7 – Different metrics (Section 3.2.3)

CWA iPCA GPro GRank

22.54s 38.42s 37.47s 33.36s
1min 56s 3min 30s 2min 45s > 2h
7min 26s 12min 31s 11min 53s 1h 16min
6min 49s 15min 22s 23min 31s > 2h
5min 48s 7min 04s 11min 50s > 2h

AMIE 3. We ran AMIE 3 in its default settings. In order to compare the
improvements to previous benchmarks of AMIE, we had AMIE compute the
standard CWA confidence for each rule, in addition to the PCA confidence
(except for Wikidata 2019, where no such previous benchmark exists).

RuDiK. We set the number of positive and negative examples to 500,
as advised on the project’s github page4. We tried to run the system in
parallel for different head relations. However, the graph generation phase
of the algorithm already runs in parallel and executes a lot of very selective
SPARQL queries in parallel. Hence, the additional parallelization flooded the
SPARQL endpoint, which rejected any new connection at some point. For
this reason, we mined the rules for every possible relation sequentially, using
only the original parallelization mechanism. RuDiK also benefits from infor-
mation on the taxonomic types of the variables. While the built-in method
to detect the types of the relations works out-of-the-box for DBpedia (which
has a flat taxonomy), it overgeneralizes on the other datasets, inverting the
expected benefits. Therefore, we ran RuDiK without the type information
on the other datasets.

Ontological Pathfinding. This system first builds a list of candidate rules
(Part 5.1 of [14]). Unfortunately, the implementation of this phase of the
algorithm is not publicly available. Hence, we had to generate candidate
rules ourselves. The goal is to create all rules that are “reasonable”, i.e., to
avoid rules with empty joins such as birthPlace(x, y) ∧ hasCapital(x, z). The
original algorithm discards all rules where the domain and range of joining
relations do not match. However, it does not take into account the fact that
an entity can be an instance of multiple classes. Thus, if the domain of acte-
dIn is Actor, and the domain of directed is Director, the original algorithm

4https://github.com/stefano-ortona/rudik

50

https://github.com/stefano-ortona/rudik

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table 3.8 – Performances and output of Ontological Pathfinding (OP),
RuDiK and AMIE 3. *: rules with support ≥ 100 and CWA confidence
≥ 0.1.

Dataset System Rules Runtime

Yago2s

OP (their candidates) 429 (52*) 18min 50s
OP (our candidates) 1 348 (96*) 3h 20min
RuDiK 17 37min 30s
AMIE 3 97 1min 50s
AMIE 3 (support=1) 1 596 7min 6s

DBpedia 3.8

OP (our candidates) 7 714 (220*) > 45h
RuDiK 650 12h 10min
RuDiK + types 650 11h 52min
AMIE 3 5 084 7min 52s
AMIE 3 (support=1) 132 958 32min 57s

Wikidata 2019
OP (our candidates) 15 999 (326*) > 48h
RuDiK 1 145 23h
AMIE 3 8 662 16h 43min

would discard any rule that contains actedIn(x, y) ∧ directed(x, z) —even
though it may have a non-empty support. Hence, we generated all candidate
rules where the join between two connected atoms is not empty in the KB.
This produces more candidate rules than the original algorithm (around 10
times more for Yago2s, i.e., 29762), but in return OP can potentially mine
all rules that the other systems mine.

Results

It is not easy to compare the performance of OP, AMIE 3, and Rudik, because
the systems serve different purposes, have different prerequisites, and mine
different rules. Therefore, we ran all systems in their default configurations,
and discuss the results (Table 3.8) qualitatively in detail.

Ontological Pathfinding. We ran OP both with a domain-based candi-
date generation (which finds fewer rules) and with our candidate generation.
In general, OP has the longest running times, but the largest number of
rules. This is inherent to the approach: OP will prune candidate rules using

51

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

a heuristic [13] that is similar to the confidence approximation of AMIE+.
After this step, it will compute the support and the exact CWA confidence of
any remaining candidate. However, it offers no way of pruning rules upfront
by support and confidence. This has two effects: First, the vast majority
(> 90%) of rules found by OP have very low confidence (< 10%) or very low
support (< 100). Second, most of the time will be spent computing the con-
fidence of these low-confidence rules, because the exact confidence is harder
to compute for a rule with low confidence.

To reproduce the result of OP with AMIE, we ran AMIE 3 with a support
threshold of 100 and a CWA confidence threshold of 10%. This reproduces
the rules of OP (and 8 more because AMIE does not use the OP functionality
heuristics) in less than two minutes. If we set our support threshold to 1,
and our minimal CWA confidence to 10−5, then we mine more rules than
OP on Yago2s (as shown in Table 3.8) in less time (factor 25×). If we mine
rules with AMIE’s default parameters, we mine rules in less than two minutes
(factor 90×).

The large search space is even more critical for OP on DBpedia 3.8 and
Wikidata 2019, as the number of candidate rules grows cubically with the
number of relations. We generated around 9 million candidate rules for
DBpedia and around 114 million candidates for Wikidata. In both cases,
OP mined all rules of size 2 in 1h 20min (≈ 21k candidates) and 14 hours
(≈ 100k candidates) respectively. However, it failed to mine any rule of size
3 in the remaining time. If we set the minimal support again to 1 and the
CWA confidence threshold to 10−5, AMIE can mine twice as many rules as
OP on DBpedia 3.8 in 33 minutes.

RuDiK. For RuDiK, we found that the original parallelization mechanism
does not scale well to 40 cores. The load average of our system, Virtu-
oso included, never exceeded 5 cores used. This explains the similar results
between our benchmark and RuDiK’s original experiments on Yago2s with
fewer cores. On DBpedia, we could run the system also with type informa-
tion —although this did not impact the runtime significantly. The loss of
performance during the execution of the SPARQL queries is more noticeable
due to the multitude of small relations in DBpedia compared to Yago. In
comparison, AMIE was more than 20× faster on both datasets. This means
that, even if RuDiK were to make full use of the 40 cores, and speed up 4-fold,
it would still be 5 times slower. AMIE also found more rules than RuDiK.
Among these are all rules that RuDiK found, except two (which were clearly
wrong rules; one had a confidence of 0.001).

In our experiment, RuDiK mined rules in Wikidata in 23 hours. However,

52

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

RuDiK was not able to mine rules for 22 of the relations as Virtuoso was not
able to compute any of the positive or the negative examples RuDiK requires
to operate. This is because RuDiK would timeout any SPARQL query after
20 seconds of execution5. Virtuoso failed to compute the examples during
this time frame on the 22 relations, which are the largest ones in our Wikidata
dataset: They cover 84% of the facts. Interestingly, RuDiK did also not find
rules that contain these relations in the body (except one, which covered
0.5% of the KB).

In comparison, AMIE mined 1703 rules with at least one of these relations,
computing the support, confidence and PCA confidence exactly on these
huge relations —in less time. For example, it found the rule inRegion(x, y) ∧
inCountry(y, z) ⇒ inCountry(x, z), which is not considered by RuDiK, but
has a support of over 7 million and a PCA confidence of over 99%.

AMIE 3. outperformed both OP and RuDiK in terms of runtime and
the number of rules. Moreover, it has the advantage of being exact and
complete. Then again, the comparisons have to be seen in context: RuDiK,
e.g., is designed to run on a small machine. For this, it uses a disk-based
database and sampling. AMIE, in contrast, loads all data into memory, and
thus has a large memory footprint (the 500GB were nearly used up for the
Wikidata experiment). In return, it computes all rules exactly and is fast.

3.4 Conclusion

We have presented AMIE 3, the newest version of the rule mining system
AMIE (available at https://github.com/lajus/amie/). The new system
uses a range of optimization and pruning strategies, which allow scaling to
large KBs that were previously beyond reach. In particular, AMIE 3 can
exhaustively mine all rules above given thresholds on support and confidence,
without resorting to sampling or approximations.

5Increasing the timeout parameter is not necessarily a good solution for two reasons:
First, we cannot predict the optimal value so that all queries finish. Second, it would in-
crease the runtime of queries succeeding with partial results thanks to Virtuoso’s Anytime
Query capability. This would largely increase RuDiK’s runtime with no guarantee to solve
the issue.

53

https://github.com/lajus/amie/

Chapter 4

Star patterns: Reducing the
Search Space

4.1 Introduction

The improvements of Chapter 3 were focused on improving the performances
of the computation of the support and confidence measures of a specific rule.
AMIE 3 still relies on the original base algorithm for exploring the search
space. This algorithm, however, shows clear limitations when we want to
mine more complex rules on large Knowledge Bases. For example, AMIE 3
is neither able to mine every rule of size 4 nor the rules of size 3 with constants
within 12 hours on Yago2s.

Instantiations are critical to handle properly some relations and recover
valuable rules. For example, using instantiations on the type relation allows
to get schema information about the rule, i.e the types of the variables used in
the rule. In contrast, without the instantiations, AMIE is able to mine only
that a variable “has a type” (and eventually, that two variables have the same
type). As for longer rules, they can model more complex relationships and
in practice the interest for such rules is appreciable among AMIE’s userbase,
according to the recent exchanges we had on AMIE’s project page.

To mine longer rules and rules with constants efficiently, we must address
how AMIE handles the search space directly. More precisely, for any rule,
AMIE computes the support of any refinements of this rule and potentially
prune it if it is a duplicate or if its support does not meet the required
threshold. In both cases, the computation of the support is, a posteriori,
superfluous. We propose in this chapter a method to discard, a priori, an
unwanted rule, without computing the support of the rule at all. Such an
early pruning process should speed up AMIE exploration significantly.

54

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Contribution. In particular, we will decompose the rules into simpler pat-
terns, the star patterns, that will be used to identify, a priori, unsatisfiable
rules.

This chapter is structured as follows: In Section 4.2 we define the star
patterns and introduce the necessary condition used to prune the rules early
on. Then, in Section 4.3 we show how frequent pattern mining can be used to
extract from the KB all the star patterns that satisfy the necessary condition.
Finally, in Section 4.4 we present a method to combine the star patterns into
rules that satisfy the necessary condition, thus achieving the construction of
our pruned search space. However, we also show in this last section that the
naive generation of all rules is not tractable in the general case.

In Chapter 5, we will show that in the specific case of path rules, the
necessary condition can be used constructively to efficiently prune the search
space.

4.2 Star patterns

4.2.1 Patterns

A Knowledge Base can be seen as a directed graph with labelled edges be-
tween entities. The task of rule mining can thus be seen as the task of finding
frequent closed subgraphs in this huge graph. We can represent these sub-
graphs using patterns, a graph representation of a rule with variables in place
of vertices. For example the pattern in Figure 4.1a represents the rule

marriedTo(y, x)⇒ marriedTo(x, y)

In the Elvis KB (represented as a labeled graph in Figure 2.1), we can
find four couples of values for (x, y) that satisfy this rule: (Elvis, Priscilla),
(Priscilla, Elvis), (Barack, Michelle) and (Michelle, Barack). Finding those
couples is equivalent to finding where the pattern matches on the labeled
graph representation of the KB, printing the pattern over a tracing paper
and trying to find matches on the KB graph.

The patterns are just representations of the rules, and there are just as
expressive. Some apply on a KB and others do not. Some are simple and
others are ridiculously complex. But even a more complex pattern can be
broken into smaller patterns, simpler to find, to help localize where the bigger
pattern applies. It is as if you cut the tracing paper into smaller pieces.

To match the pattern of Figure 4.1a1, AMIE also breaks it into smaller

1to find the set of pair of entities (x, y) of the KB satisfying marriedTo(y, x) ∧
marriedTo(x, y)

55

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

yx
marriedTo

marriedTo

(a) Pattern for marriedTo(y, x) ∧marriedTo(x, y)

yx yx
marriedTo

marriedTo

(b) Relational sub-patterns for marriedTo(y, x) ∧marriedTo(x, y)

x

?? ? ?

y
marriedTo marriedTo marriedTo marriedTo

(c) Star (sub-)patterns for marriedTo(y, x) ∧marriedTo(x, y)

Figure 4.1 – Patterns and sub-patterns on a simple example

patterns. These patterns are centered around the relation, as AMIE will
try out all the pairs (x, y) satisfying marriedTo(y, x) against the condition
marriedTo(x, y) (or the opposite depending on the most restrictive relation).
Thus it will consider the sub-patterns represented in Figure 4.1b.

In order to find a necessary condition, we will consider the other set of
smaller pieces: the star patterns, i.e the patterns centered on a single variable
as in Figure 4.1c.

4.2.2 Star patterns

Definition 4.2.1 (Star pattern). For a rule R and any variable x of this
rule, we can construct the star patterns of x in the rule R, noted sp(x,R) as
follows:

• First we identify in the rule the relations [ri1 , . . . rin] where x appears
in the subject position and the relations [rj1 , . . . rjm] where x appears
in the object position.

• Then we pose:

sp(x,R) =
n∧
k=1

∃yk.rik(x, yk) ∧
m∧
k=1

∃zk.rjk(zk, x)

As such, a star pattern is a conjunctive query where only one variable is open
and the other variables are existentially quantified.

56

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

For example, in the rule R = marriedTo(y, x) ⇒ marriedTo(x, y), x is
in the subject position of the relation marriedTo and in the object position
of another marriedTo atom. Thus we have:

sp(x,R) = ∃a.marriedTo(x, a) ∧ ∃b.marriedTo(b, x)

The star patterns capture the pattern of relations around a single variable.
Represented as in Figure 4.1c, we can directly identify that the variable x
must be in the subject position and in the object position of the marriedTo
relation.

Set notation. To simplify the notation, we denote every atom of the form
∃y.r(x, y) by the item r and represent a conjunction of such atoms as a set
of items. Finally, we use signed relations to represent the atoms where x
appears in the object position. Using this notation, we have:

sp(x,R) = {marriedTo,marriedTo−1}

Definition 4.2.2 (Support and Satisfiability of a star pattern). By substitu-
tion, we can identify the entities that satisfy a star pattern (seen as a simple
conjunctive query) in a KB K. The number of such entities in K is called
the support of the star pattern, and we say that a star pattern is satisfiable
if its support is at least one.

Proposition 4.2.3 (Necessary condition). In a KB K an entity E can be a
valid substitution for x in the rule R only if E satisfies sp(x,R) in K.

As a consequence, a rule is satisfiable in a KB K only if every one of its
star patterns is satisfiable in this KB.

Proof. Syntactically, sp(x,R) is more general than R.

Proposition 4.2.3 gives us a necessary condition for a rule to be satisfiable.
In Section 4.2.4, we will introduce the language of star patterns considered
and a systematic way to decompose a rule into star patterns of this language.

The first observation of Proposition 4.2.3 will also be used in order to
restrict the set of possible instantiations for any variable x and speed up the
computation of the quality measures of a rule in Section 6.2.5.

4.2.3 Related work

Star patterns have already been introduced in [62] under the name of Char-
acteristic sets in order to compute cardinality estimations of a Sparql query.

57

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

z

yxPerson

hasChild hasChild

marriedTotype

(a) The example rule R

?

?x?

hasChild

marriedTotype

(b) The star pattern sp(x,R)

?

y?

hasChild

marriedTo

(c) The star pattern sp(y,R)

z

??

hasChild hasChild

(d) The star pattern sp(z,R)

Figure 4.2 – The example rule R and its star patterns

Further works have been proposed, focusing on query optimization [55, 53],
data profiling [33] or KB sampling [37].

To the best of our knowledge, those characteristic sets have never been
used in the context of rule mining, or in an attempt to compute the complete
set of satisfiable queries as we are doing here.

In the following, we will keep our notion of “star patterns” for what
has been called “characteristic sets” in the literature because the graphical
representation we introduced is more intuitive for the purpose of rule recom-
bination.

4.2.4 Languages of star patterns

The definition 4.2.1 of a star pattern has two main limitations. In this section
we introduce these limitations via the study of the example rule:

R = type(x, Person) ∧marriedTo(x, y) ∧ hasChild(x, z)⇒ hasChild(y, z)

and we define different languages of star patterns in order to cope with those
limitations.

The example rule R and its star patterns are depicted in Figure 4.2. The
logical formulae corresponding to these star patterns are:

58

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

(4.2b) sp(x,R) = ∃c.type(x, c) ∧ ∃a.marriedTo(x, a) ∧ ∃b.hasChild(x, b)

(4.2c) sp(y,R) = ∃c.hasChild(y, c) ∧ ∃d.marriedTo(d, y)

(4.2d) sp(z, R) = ∃e.hasChild(e, z) ∧ ∃f.hasChild(f, z)

Multiplicity. The first limitation comes from the logical representation
of sp(z,R). The pattern depicted in Figure 4.2d represents the fact that z
should have at least two parents. However, the multiplicity of the relation is
lost when we use the logical formula:

sp(z,R) = ∃e.hasChild(e, z) ∧ ∃f.hasChild(f, z)

which is equivalent to ∃e.hasChild(e, z). In order to take the multiplicity
into account, we define:

spmult(z,R) = ∃e, f. (e 6= f ∧ hasChild(e, z) ∧ hasChild(f, z))

In general, given the list of relation [ri1 , . . . , rin] where x appears in the sub-
ject position and given a relation ri appearing m times in the list, spmult(x,R)
contains the term ∃yi1 ...∃yim

∧
1≤k<j≤m yik 6= yij

∧m
k=1 ri(x, yik).

Instantiations. The second limitation comes from the handling of con-
stants. In our example rule R, the type of x is clearly identified. However,
this value is lost when we consider the star-pattern sp(x,R). As our purpose
is to recombine star patterns into rules, this effect will eventually prevent us
from mining rules with constants. Thus we define:

spinst(x,R) = type(x, Person) ∧ ∃a.marriedTo(x, a) ∧ ∃b.hasChild(x, b)

In general, spinst(x,R) can be computed by computing sp(x,R) without con-
sidering the atoms with a constant where x appears and by adding these
atoms directly to the result.

Note that we can use both languages, with multiplicity and instantiations,
together.

Set notation. We extend the set notation we introduced in Section 4.2.2
to take into account multiplicity and instantiations. For this we define new
types of items as shown in Table 4.1.

59

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Item Logical equivalent Language considered

r ∃a.r(x, a) All
r(E) r(x,E) with E any entity of the KB With instantiations
rn ∃y1...∃yn

∧
1≤i<j≤n yi 6= yj

∧n
i=1 r(x, yi) With multiplicity

Table 4.1 – Item notation and its logical equivalent for a signed relation r

Example. We recall here our example rule:

type(x, Person) ∧marriedTo(x, y) ∧ hasChild(x, z)⇒ hasChild(y, z)

Using the items defined in Table 4.1, we can transform the star patterns of
this rule in their equivalent set notation:

(x) spinst(x,R) = {type(Person),marriedTo, hasChild}

(y) sp(y,R) = {hasChild,marriedTo−1}

(z) spmult(z, R) = {hasChild−2}

Note that we also simplified the item (hasChild−1)2 to hasChild−2.
This way the star patterns can be represented as itemsets, i.e set of items

as defined in Table 4.1. The size of a star pattern is defined as the sum of
the multiplicity of the different items (the power of the items).

4.3 Mining star patterns

Our goal here is to mine the satisfiable star patterns from an input KB,
because these patterns are the necessary conditions for a rule to hold.

In the following, we fix an input KB K and we note E the set of entities of
K and I the set of all syntactically possible items of K (using instantiations
and multiplicity). The star patterns that are satisfiable in K can be mined
by translating K into a transactional database over I and using the Apriori
algorithm.

Definition 4.3.1 (Itemset of an entity). The itemset of an entity E in a KB
K is the maximal star pattern (for set inclusion) sp(E) ∈ 2I that E satisfies
in K.

Definition 4.3.2 (The KB as a transactional database). We define the trans-
actional database sp(K) ∈ 22I as:

sp(K) = {sp(E) : E ∈ E}

60

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Definition 4.3.3 (Starθ). Given a transactional database sp(K) and a pos-
itive integer parameter θ, we define the set of star patterns Starθ(K) as:

Starθ(K) = {σ ∈ 2I : support(σ) ≥ θ}

By definition,

∀θ, θ′ ≥ 1, θ > θ′ ⇒ Starθ ⊆ Starθ′

And the set of satisfiable star patterns of K is Star1(K).

In an actual KB, star patterns are naturally selective: it means that if
you take a star pattern at random, such as {birthP lace−1,marriedTo} or
{type(Dog),marriedTo}, it is unlikely that it will be satisfiable. This is
essentially due to the heterogeneity of the data and of the relations that are
present in a KB. Indeed, most items are incompatible in the sense that they
never actually co-occur: we don’t expect to find a birth place married to
someone nor a married dog.

However, the satisfiability of a star pattern is very sensible to errors or
outliers2 as a single (eventually erroneous) entity is sufficient to allow new
possible star patterns. The θ parameter allows us to measure the impact of
these outliers in the size of Starθ(K), in the tables below.

But for the purpose of rule mining, we will have to consider the entire set
of satisfiable star patterns, i.e. Star1(K) for our approach to be exhaustive.
Indeed, the following valid rule3 in YAGO:

hasGender(x, g) ∧ hasChild(x, y)⇒ hasGender(y, g)

possesses the satisfiable star pattern {hasGender−2} (for g) but the support
of this star pattern in our KB is only two4. This means that we cannot find
this rule by combining star patterns of Star3(YAGO).

Star pattern selectivity and schema constraints. The natural selec-
tivity of the star patterns is a consequence of the schema of the relations
of a KB (cf. Definition 2.2.3), as most classes, e.g Dog or Person, do not
intersect. But instead of relying on the schema information provided by the
KBs, which is often unreliable or too general, the star patterns capture from
the actual data the compatibility or the incompatibility of the items. In this
sense, star patterns are a generalization of the schema constraints.

2as married dogs in fact: https://fxn.ws/2SxIkgH
3according to AMIE with the default parameters
4only Male and Female are genders in YAGO.

61

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table 4.2 – Number of items in Yago2

Type of items Star1(K) Star10(K) Star50(K)

p 68 68 65
pn (n > 1) 23 969 4 410 1 388
p(E) 3 838 590 1 377 867 24 806

Total 3 862 627 1 382 345 26 259

The star patterns on an actual Knowledge Base

Table 4.2 shows the impact of θ on the number of items extracted from the
Yago2 Knowledge Base using the facts and the transitive typing of the enti-
ties. Note that the number of instantiated items is huge largely because of the
very precise typing of Yago. The precise distribution of the number of items
per relation (multiplicity or instantiated items) is detailed in Appendix B.

We have computed the star patterns in Table 4.3 using the fpgrowth algo-
rithm [35, 11] with a timeout of 2hours and 300Go of available memory. The
experiment shows that for Star1 and Star10 with instantiations, fpgrowth
was not able to compute the star patterns at all.

In the next section, we will discuss how to combine the star patterns found
into new rules. Fortunately, we will see that the instantiations do not play
any role in this process. Thus, we can restrict our analysis to star patterns
without instantiations at first. However, we will also see that the process
of combining star patterns into rules is also computationally challenging in
itself.

4.4 Combining the star patterns into rules

In Section 4.3, we discussed the methodology to mine the set of satisfiable
star patterns from the KB, i.e Star1(K). In this section, we consider we are
given as input a set of star patterns Σ and try to construct every possible
rule from it. Obviously, not every set of star patterns Ω ⊆ Σ will form a
syntactically well-defined rule. Hence, we will first define a condition for
a set of star patterns Ω to define a closed rule. Then, we will discuss the
complexity of finding every subset Ω of Σ that defines a closed rule.

4.4.1 Compatibility of the star patterns

A set of star patterns is said to be “compatible” if it defines a closed rule.

62

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table 4.3 – Number of star patterns in Yago2. TO = Timeout, OOM = Out
of Memory.

(a) Without instantiated items

Star patterns Star1(K) Star10(K) Star50(K)

Size 2 807 578 453
Size 3 4 710 2 691 1 592
Maximal TO 33 411 13 135

(b) With instantiated items

Star patterns Star1(K) Star10(K) Star50(K)

Size 2 OOM OOM 299 729
Size 3 TO TO 2 327 815
Maximal TO TO 199 948

Existential definition of the compatibility

Given a set of star patterns Ω ⊆ Σ, we have to decide whether this set can
be combined into a rule R we would want to mine in AMIE, i.e a closed
connected rule without existential quantifiers.

Definition 4.4.1 (Compatibility condition). A set of star patterns Ω can be
combined into a rule R if there exists a surjective function:

ρ : V(R) → Ω
xi 7→ spmult+inst(xi, R)

Here, V(R) is the set of variables of the rule R.
A set Ω is said to be compatible if it can be combined into a rule R

that is closed, connected and that does not use any existentially quantified
variables.

In this definition, ρ is a function, which means that the star pattern of
any variable of R must be in Ω. Moreover ρ is surjective, which means that
every star pattern of Ω must describe at least one variable.

For example Ω0 = {{marriedTo,marriedTo−1}} can be combined into
the rule:

marriedTo(y, x)⇒ marriedTo(x, y)

as both variables have the star pattern {marriedTo,marriedTo−1}.

63

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Alternative definition. In order to decide whether Ω is compatible, we
can equivalently look for a bijective function ρ, while considering at the same
time Ω as a multiset. In this setting, every star pattern of Ω in the input
will be mapped to exactly one variable of the combined rule. This greatly
simplifies the design of an algorithm that check the compatibility of a set Ω.

Using this alternative definition Ω0 is no longer compatible but the fol-
lowing multiset is:

L0 = {{marriedTo,marriedTo−1}, {marriedTo,marriedTo−1}}

It is easy to verify if a rule R is described by a set of star patterns Ω,
but the problem here is to find, given a set Ω, a proper rule R, which is not
trivial.

An effective method to find a compatible rule

In order to find a compatible rule, we proceed by analysis-synthesis: we
enumerate every necessary condition the rule must meet and deduce a method
to construct such a rule.

Closure. A rule is closed if every variable appears at least twice and a
variable appears twice if and only if the size of its star pattern is at least
two. Thus we can ignore every star pattern of size one.

Connectivity. There is no way to know if the generated rule will be con-
nected just from the star patterns. We will filter out the non connected rules
after the generation.

Removal of the existential quantifiers. One cannot simply remove the
quantifiers, as the previously existentially quantified variable must be re-
placed by another variable in our rule. Thus we need to have another star
pattern in Ω that can describe this variable.

This last condition is very restrictive and allows us to constructively check
the compatibility of a set of star patterns.

Definition 4.4.2 (Multiplicity of a signed relation in a star pattern). Given
a star pattern σ, the multiplicity of the signed relation p in σ is defined as:

mult(p, σ) =

{
0 if ∀n > 0 pn /∈ σ
max(n > 0 : pn ∈ σ) otherwise.

64

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Proposition 4.4.3 (Compatibility condition). A multiset of star patterns
L = {σ1, . . . , σn} is compatible if and only if for every signed relation p, there
is a mapping Mp : L→ L such that:

• ∀i ∈ {1, n}, σi has exactly mult(p, σi) images by Mp.

• ∀i ∈ {1, n}, σi has exactly mult(p−1, σi) antecedents by Mp.

Such a mapping defines exactly the atoms with the p relation of the generated
rule. More precisely, if (σi, σj) ∈ Mp then the atom p(ρ−1(σi), ρ

−1(σj)) will
be in the constructed rule.

Example 1. Given the following set of star patterns:

Ω1 =

{type(Person),marriedTo, hasChild}
{hasChild,marriedTo−1}
{hasChild−2}

We first associate a variable symbol to each star pattern of this set:

(x) σx = {type(Person),marriedTo, hasChild}

(y) σy = {hasChild,marriedTo−1}

(z) σz = {hasChild−2}

As the variable x is subject of one marriedTo relation, we must find
another variable in Ω1 to play the role of the object of this relation. As
only y can be an object of the marriedTo relation, we must have the atom
marriedTo(x, y) in the combined rule. Here MmarriedTo = {(σx, σy)}.

As the variable z is object of two hasChild relations, we must find two
different variables in Ω1 to play the role of the subject of this relation. Here
MhasChild = {(σx, σz), (σy, σz)}. From this we recover the combined rule5:

type(x, Person) ∧marriedTo(x, y) ∧ hasChild(x, z)⇒ hasChild(y, z)

Note that the instantiated atom does not play any role in the process.

Example 2. Now consider the following two sets of star patterns:

Ω2 =

{
{marriedTo, hasGender}
{hasChild,marriedTo−1}

}
Ω3 =

{
{hasChild2}
{hasChild−2}

}
5In practice we only recover a conjunctive query where any atom may be used as a

head atom.

65

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

In Ω2, we can deduce that both variables are married together, but we can
associate neither the gender of the first variable nor the child of the second
variable to a star pattern of the set. Ω2 is thus incompatible.

In Ω3, the multiplicity enforces that the first variable must have two
different children and the second variable must have two different parents.
Thus even if we make the first variable the parent of the second, we cannot
find a second child nor a second parent in our set. Thus Ω3 is incompatible.

In Appendix C, we present an efficient6 algorithm that decides construc-
tively the compatibility of a set of star patterns and we prove its correctness.

Remark 1. A star pattern may contain a relation and its inverse (as
{marriedTo,marriedTo−1}). This means the mapping may map a star
pattern to itself and those mappings would produce reflexive atoms in the
corresponding rule.

Remark 2. Compatibility requires the existence of a mapping for every
relation. However, there may exist multiple valid mappings for a relation.
As such, every combination of valid mappings across the different relations
generates a new candidate rule. Moreover, nothing prevents multiple combi-
nations of mappings to generate equivalent rules.

4.4.2 Selection of compatible star patterns

Even if we can decide efficiently if a set of star patterns is compatible, the
enumeration of all compatible subsets of Σ may remain intractable.

Proposition 4.4.4 (Necessary condition for the compatibility). A list of
star patterns (σ1, . . . , σn) is compatible only if for every relation p:

n∑
i=1

mult(p, σi) =
n∑
j=1

mult(p−1, σj)

If we index every unsigned relation of our KB as (p1, . . . , p|R|) we can
map every star pattern σ ∈ Σ into a multidimensional integer space, using
the function:

f : Σ → Z|R|

σ 7→

 mult(r1, spi)−mult(r−11 , spi)
...

mult(r|R|, spi)−mult(r−1|R|, spi)

6O(n× log(n)) where n is the sum of the sizes of the different star patterns.

66

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Doing so, we can recognize an instance of the zero sum subset problem
in a multidimensional setting, which is NP-Complete.

Proposition 4.4.5 (As a zero sum subset problem). A set Σ of star patterns
contains a compatible subset only if:

∃{σi1 , . . . , σim} ⊆ Σ :
m∑
k=1

f(σik) = 0Z|R|

This proposition does not constitute a proof of complexity, but it strongly
suggests that our problem is hard and given the size of our input (cf Ta-
ble 4.3), probably intractable.

4.5 Conclusion

In this chapter, we defined the star patterns: simple patterns that can be
extracted from a rule. We showed how these star patterns, that can be mined
with relative efficiency using frequent itemset mining algorithms, can then
be used to prune unsatisfiable rules.

Then, we introduced the compatibility condition that decides if a set of
star patterns can describe a rule or not and presented a polynomial algorithm
that decides the compatibility in Appendix C. However, we also showed that
different compatible sets of star patterns can represent duplicate rules and
that finding all compatible sets of star patterns is intractable. Thus, we
cannot use this approach to generate uniquely all satisfiable rules in the
general case.

That said, we will see in the next chapter how star patterns can be used
to efficiently explore, and prune, the search space of rules of a specific shape:
the path rules.

67

Chapter 5

Star patterns and path rules

5.1 Introduction

We showed in the previous chapter that generating the entire search space of
rules using star patterns is not tractable in the general case. This is because
the general case is too general and considers all satisfiable star patterns inde-
pendently of their sizes. In practice, the bigger star patterns represent rules
with a large number of atoms, which are rarely usable rules. Thus, in this
chapter, we study simpler star patterns, those of size 2, and the simpler type
of rules they generate: the path rules. The goal here is still to propose a
method that will discard a priori unwanted rules, but this time working only
on path rules.

Efficient path rule mining should greatly benefit the general task of rule
mining for two reasons. First, the path rules are the hardest type of queries
when it comes to computing the support and the confidence [30]. Second, as
we will see in Section 5.4, a divide-and-conquer approach can be implemented
as any rule can be decomposed into multiple conjunctive path queries (paths
in a connected graph). Moreover, path rules constitute most of the output of
AMIE in practice. For example on Yago2s, only 1 over the 97 output rules
is not a path rule1. This is why multiple works in the literature also address
specifically the problem of path rule mining [45, 13].

Contribution. In this chapter, we identify the two instrumental properties
of path rules. First, we can produce all path rules without generating any
duplicate if we enforce a simple constraint on the refinement operator. Sec-

1This is also mainly due to the skyline pruning strategy [31] that prevents a rule to be
output if it does not have a better confidence than its output parents, the parent being a
more general rule.

68

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

ond, given the simplicity of the star patterns of the path rules, the necessary
condition and the compatibility condition of those star patterns can be used
efficiently and constructively to generate a pruned search space. These two
properties allow us to devise the “Pathfinder vanilla” algorithm that explores
incrementally and efficiently the pruned search space of path rules, without
duplicates to eliminate.

This chapter is structured as follows: In Section 5.2 we introduce path
rules and describe our refinement operator that does not introduce any du-
plicate rule. From this, we derive the Pathfinder vanilla algorithm. In Sec-
tion 5.3 we present the bipattern graph that represents the compatibility
condition of the satisfiable star patterns of size 2. Then we demonstrate how
it can be used a priori, to generate all satisfiable path rules, or incrementally,
in the Pathfinder vanilla algorithm. Finally, in Section 5.4 we discuss how
we could generalize the usage of the bipattern graph to other types of rules
in future work.

In Chapter 6 we will further enhance the Pathfinder vanilla algorithm and
experimentally compare the performance of this new approach with AMIE.

5.2 Path rules

Definition 5.2.1 (Path rules and path queries). Path rules are connected
rules where every variable appears at most twice. Path queries are connected
conjunctive queries where every variable appears at most twice.

5.2.1 Path queries

Theorem 5.2.2 (Forms of path queries). Any closed path query has one of
the following forms:

Rc[r1, . . . , rn] := r1(x0, x1) ∧ r2(x1, x2) ∧ · · · ∧ rn(xn−1, x0) (close)
Ri(E1, E2)[r1, . . . , rn] := r1(E1, x1) ∧ r2(x1, x2) ∧ · · · ∧ rn(xn−1, E2) (inst)

Here r1, . . . rn are signed relations, x0, . . . , xn are variables and E1 and E2 are
entities of the KB. They can be seen as refinements of an open path query,
which has the form:

Ro[r1, . . . , rn] := r1(x0, x1) ∧ r2(x1, x2) ∧ · · · ∧ rn(xn−1, xn) (open)

Proof. We can transform any path query into a graph where the vertices are
the variables of the rule (or the entities E1 and E2) and where the labeled

69

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

directed edges between the vertices represent the atoms. As this graph rep-
resents a path query, it must be connected and the degree of each vertice is
at most 2. Thus it is either a simple path or a simple cycle.

Reading one simple path from one end to another and using the signed
relations to enforce the increasing order of the variables, we recover the open
path queries. We proceed similarly with the simple cycles, choosing any
vertice for the role of the extremity of the path, recovering the closed path
queries.

Closed variant. The path query Rc[r1, . . . , rn] will also be called the closed
variant of the path query Ro[r1, . . . , rn].

Remark 3. There is actually a second form for the open path query, a half
instantiated form but we will not consider this edge case here:

Roi(E1)[r1, . . . , rn] := r1(E1, x1) ∧ r2(x1, x2) ∧ · · · ∧ rn(xn−1, xn) (oi)

Corollary 5.2.3 (Reduced notation). All path queries can be represented
as Rc[r1, . . . , rn], Ri(E1, E2)[r1, . . . , rn] or Ro[r1, . . . , rn]. In other words, the
form (Rc, Ri(E1, E2) and Ro) and the list of signed relation used [r1, . . . , rn]
totally describes the path query.

Examples. The open path query:

hasChild(x, y) ∧ hasChild(z, w) ∧marriedTo(x, z)

has two extremities, y and w. We first rename the variables choosing one
extremity, here y, as x0 and rename the following variable linked to y, here
x, as x1, the other variable linked to x, here z, as x2 and so on. Then we
reorder the atoms and the variables in the atoms using the signed relations to
recover the desired order on the variables ((x0, x1), (x1, x2), . . . , (xn−1, xn)):

hasChild(x, y) ∧ hasChild(z, w) ∧marriedTo(x, z)
hasChild(x1, x0) ∧ hasChild(x2, x3) ∧marriedTo(x1, x2) (rename)
hasChild(x1, x0) ∧marriedTo(x1, x2) ∧ hasChild(x2, x3) (reorder)

hasChild−1(x0, x1) ∧marriedTo(x1, x2) ∧ hasChild(x2, x3) (switch)
Ro[hasChild

−1, marriedTo, hasChild] (as list)

For the closed path query:

hasChild(x, y) ∧ hasChild(z, y) ∧marriedTo(x, z)

70

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

we proceed similarly, here also choosing y as the “extremity” x0:

hasChild(x, y) ∧ hasChild(z, y) ∧marriedTo(x, z)
hasChild(x1, x0) ∧ hasChild(x2, x0) ∧marriedTo(x1, x2) (rename)
hasChild(x1, x0) ∧marriedTo(x1, x2) ∧ hasChild(x2, x0) (reorder)

hasChild−1(x0, x1) ∧marriedTo(x1, x2) ∧ hasChild(x2, x0) (switch)
Rc[hasChild

−1, marriedTo, hasChild] (as list)

Theorem 5.2.4 (Equivalent path queries). For any list of signed relations
[r1, . . . , rn] and any circular permutation ς, the following path queries are
syntactically equivalent:

Rc[r1, . . . , rn] ≡ Rc[r
−1
n , . . . , r−11]

Rc[r1, . . . , rn] ≡ Rc[ς(r1, . . . , rn)]
Ro[r1, . . . , rn] ≡ Ro[r

−1
n , . . . , r−11]

Ri(E1, E2)[r1, . . . , rn] ≡ Ri(E2, E1)[r
−1
n , . . . , r−11]

Moreover, this list is exhaustive. Two path queries are not syntactically
equivalent if they are not equivalent under these transformations2.

Proof. The choice of the extremity in the proof of Theorem 5.2.2 is not
enforced and the different possibilities still represent the same initial rule.

The exhaustivity comes from the fact that a path query, or any of its
equivalent rewritings, will be represented by the same graph in the construc-
tion of the proof of Theorem 5.2.2.

Examples. Consider the previous example query:

hasChild(x, y) ∧ hasChild(z, w) ∧marriedTo(x, z)

Using w as the extremity we recover the equivalent query:

Ro[hasChild
−1, marriedTo−1, hasChild]

Consider the previous closed query:

hasChild(x, y) ∧ hasChild(z, y) ∧marriedTo(x, z)

We can still choose the extremity y but now choosing z as x1 which
gives us the equivalent rule Rc[hasChild

−1, marriedTo−1, hasChild].
Choosing z as extremity (and x as x1) gives us the equivalent rule
Rc[marriedTo

−1, hasChild, hasChild−1].

2or for the closed path queries, under any combination of the two transformations.

71

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

5.2.2 Path rules

Any path rule is one of those path queries where we have chosen one atom to
take the role of the head. Thus a conjunctive query of length n can describe n
different rules. We extend the notation introduced above to make the chosen
head atom apparent:

Definition 5.2.5 (Path rule notation). We write Ro[r1, . . . , ri, . . . , rn] for
the path rule Ro[r1, . . . , rn] using the atom ri(xi−1, xi) as the head.

We write Rc[r1, . . . , ri, . . . , rn] for the path rule Rc[r1, . . . , rn] using the
atom ri(xi−1, xi) as the head (rn(xn−1, x0) if i = n).

Using this notation, we can deduce the following proposition, which is
actually a corollary of Theorem 5.2.4.

Proposition 5.2.6 (Unicity of closed path rules). All closed path rules can
be written univocally as Rc[r1, . . . , rn] where r1 is an unsigned relation.

Algorithm 3: Pathfinder (vanilla)

Input: maximum rule length: l, support threshold: minS ,
confidence threshold: minC

Output: set of path rules: rules
1 q = Queue()
2 rules = 〈〉
3 for any unsigned relation ri do
4 q.push([ri])

5 while |q| > 0 do
6 [r1, . . . , rn] = q.pop()
7 for any possible refinement rn+1 of the rule [r1, . . . , rn] do
8 if support(Ro[r1, . . . , rn, rn+1]) > minS then
9 if n+ 1 < l then

10 q.push([r1, . . . , rn, rn+1])

11 if support(Rc[r1, . . . , rn, rn+1]) > minS
12 and confidence(Rc[r1, . . . , rn, rn+1]) > minC then
13 rules .add(Rc[r1, . . . , rn, rn+1])

14 return rules

72

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Algorithm. We present the Pathfinder vanilla algorithm in Algorithm 3.
In this algorithm, every rule is represented as a list of signed relations and
refining a rule only consists of adding a signed relation to the end of this
list. The queue of rules is initialized with all the rules containing only the
head atom, using every possible unsigned relation. This way, according to
Proposition 5.2.6, every closed path rule will be considered at most once, i.e
no duplicate rules are generated.

5.2.3 Other path rules

In its current form, the Pathfinder vanilla algorithm only outputs the closed
path rules satisfying the given thresholds minS and minC. On one hand,
it is straightforward to adapt this algorithm to mine the path rules having
the head atom as an extremity, i.e the rules of the form Ro[r1, . . . , rn] or
Ri(E1, E2)[r1, . . . , rn]3, and it should be implemented in the near future.

On the other hand, mining the other path rules, i.e rules of the form
Ro[r1, . . . , ri, . . . , rn] or Ri(E1, E2)[r1, . . . , ri, . . . , rn] is not easy with this al-
gorithm. However, we should also point out that these rules can be considered
less interesting than the former, in particular for fact prediction [5]. Indeed,
those rules are “product rules” and would predict the head fact based on
two independent conditions on the head variables. For example, the rule
Ro[r1, . . . , ri, . . . , rn] stands for:

ri(xi−1, xi)⇐
i−1∧
j=1

rj(xj−1, xj)︸ ︷︷ ︸
independent condition on xi−1

∧
n∧

j=i+1

rj(xj−1, xj)︸ ︷︷ ︸
independent condition on xi

5.3 Pruning the search space

Proposition 5.2.6 ensures that every possible closed path rule is considered
at most once by Algorithm 3 (i.e there are no duplicates). Thus, we can use
any signed relation as a “possible refinement rn+1” (Line 7 of the algorithm)
to ensure that all closed path rules are considered exactly once.

In this section, we will see how we can further restrict the “possible
refinements rn+1” using the star patterns to prune the search space before the
computation of the support of the rules while still outputting every satisfiable
closed path rule.

3On the specific case of instantiated rules, refining the rules of the form Roi(E1)[r1]
instead of the more general rules Ro[r1] is also a promising strategy.

73

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Lisa

PriscillaElvis Barack Michelle

Sasha Malia

hasChild hasChild hasChild hasChild

marriedTo marriedTo

Figure 2.1 – Example KB (Reproduced here)

5.3.1 Star patterns and path rules

Proposition 5.3.1 (Star patterns of a path rules). The star patterns of the
variables of a path rule are:

∀i ∈ {1, n− 1}, sp(xi, Rc[r1, . . . , rn]) = sp(xi, Ro[r1, . . . , rn])
= {r−1i , ri+1}

and sp(x0, Rc[r1, . . . , rn]) = {r−1n , r0}

For example, the star patterns of the path rule:

Rc[hasChild
−1, marriedTo, hasChild]

which stands for:

R : hasChild−1(x0, x1) ∧marriedTo(x1, x2) ∧ hasChild(x2, x0)

are:
sp(x0, R) = {hasChild−2}
sp(x1, R) = {marriedTo, hasChild}
sp(x2, R) = {marriedTo−1, hasChild}

This proposition suggests some kind of cyclic structure that we describe
below.

Definition 5.3.2 (The bipattern graph). The “bipattern graph” of a KB K
is the directed graph (R̃, E) containing a directed edge (ri, rj) (resp. an edge
(r−1, r)) if and only if the star pattern {r−1i , rj} (resp. {r2}) is satisfiable in
K.

The star patterns of size 2 of the Example KB (Figure 2.1) are depicted
in Table 5.1a with the entities satisfaying those star patterns. Each star
pattern of size 2 {r−1i , rj} will generate two edges in the bipattern graph:
an edge (ri, rj) and a dual edge (r−1j , r−1i). For example, the star pattern
{marriedTo−1, hasChild} will give us two edges in the bipattern graph:
(marriedTo, hasChild) and (hasChild−1,marriedTo−1). The resulting bi-
pattern graph is depicted in Figure 5.1b.

74

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Star patterns of size 2 Entities

{marriedTo,marriedTo−1} {Elvis, Priscilla, Barack,Michelle}
{marriedTo, hasChild} {Elvis, Priscilla,Michelle}
{marriedTo−1, hasChild} {Elvis, Priscilla,Michelle}
{hasChild−2} {Lisa}

(a) Star patterns of size 2

hasChild

hasChild−1

marriedTo marriedTo−1

(b) Bipattern graph

Figure 5.1 – Transformation of the Example KB (Figure 2.1)

Theorem 5.3.3 (Bipattern graph and path rules). Ro[r1, . . . , rn] (resp.
Rc[r1, . . . , rn]) is satisfiable in a KB K only if the bipattern graph contains
the path r1 → · · · → rn (resp. the cycle r1 → · · · → rn → r1).

This means that each cycle in the bipattern graph represents a satisfiable
closed path query. For example the cycle:

hasChild−1 → marriedTo→ hasChild→ hasChild−1

represents the satisfiable path query:

Rc[hasChild
−1, marriedTo, hasChild]

and the cycle:

marriedTo→ marriedTo→ marriedTo

represents the path query Rc[marriedTo, marriedTo], i.e:

marriedTo(x, y) ∧marriedTo(y, x)

Note that a path (resp. cycle) r1 → · · · → rn represents the path query
Ro[r1, . . . , rn] (resp. Rc[r1, . . . , rn]) but its dual r−11 ← · · · ← r−1n also repre-
sents the equivalent path query Ro[r

−1
n , . . . , r−11] (resp. Rc[r

−1
n , . . . , r−11]).

75

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

From the star pattern perspective, an edge in the bipattern graph repre-
sents a star pattern of size 2 from our KB and the cyclic structure is the com-
patibility condition of a set of star patterns. Indeed, a path ri−1 → ri → ri+1

resolves the assignments for ri as it necessarily introduces a bipattern con-
taining r−1i (the edge ri → ri+1) and another one containing ri (the edge
ri−1 → ri). As the compatibility condition must also be solved for the rela-
tion ri+1 we must follow a new edge from ri+1 and so on. Only cycles ensure
compatibility for every pattern.

From a KB perspective, computing the possible bipatterns amounts to
computing which relation range or domain effectively intersects with another
relation range or domain, which is already done by AMIE+.

5.3.2 Generating all path rules

As sought out in Chapter 4, we can use the bipattern graph to generate,
a priori, all satisfiable path rules (open or closed). More precisely, we can
extract every path or cycle of the bipattern graph to find every satisfiable
path query. Then, we just need to distinguish a query from its dual and
choose a head atom as in Section 5.2.2.

We used this approach in the AMIE 3 experiments (Section 3.3) to gener-
ate the set of all possible closed path rules on Yago, DBPedia and Wikidata,
generating “our” set of candidate rules for the Ontological Pathfinding al-
gorithm. Originally, the Ontological Pathfinding algorithm uses the schema
constraints to compute the set of possible rules. “Our” set of candidate rules
is generated using the star patterns instead, which is more general than these
schema constraints (cf. discussion in Section 4.3).

In Section 6.5, we will also define in our benchmark the “Star pattern”
approach as a generate-and-test rule mining algorithm, that will generate all
closed path rules using this approach and test their support and confidence
using AMIE’s methods.

5.3.3 Incremental generation of candidates

In practice, we propose three different methods to generate the “possible re-
finements rn+1” in Line 7 of the Pathfinder vanilla algorithm (Algorithm 3).
The method can be chosen using a command line option. The possible re-
finements of Ro[r1, . . . , rn] are, depending on the method:

Naive (ALL): Any signed relation is used as a possible refinement.

BiPattern existence (BP): Any signed relation rn+1 such that the edge
(rn, rn+1) exists in the bipattern graph.

76

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

BiPattern Path existence (BPP): Given a maximal rule length l, any
signed relation rn+1 such that there exist an edge (rn, rn+1) and a path
of length at most l − n between rn+1 and r1 in the bipattern graph.

In addition to the star pattern condition, the bipattern path existence
method captures whether a rule Ro[r1, . . . , rn, rn+1] is “closable” within l−n
refinements or not and prunes the rule in the latter case. As the distance
(up to l) between the nodes of the bipattern graph can be precomputed, this
last method is the most efficient in practice.

The exploration of the search space is still guaranteed to be exhaustive
using any of these increasingly restrictive methods.

5.4 The bipattern graph and other rules

As stated in the introduction, any rule can be decomposed into multiple
path rules. Thus, for a rule to be satisfiable, all of the path rules that
compose it must be satisfiable. In particular, all of these path rules must
meet the conditions of Theorem 5.3.3 and appear in the bipattern graph. As
a consequence they create together a complex, but recognizable, pattern in
the bipattern graph.

Method. We can do a case by case study: given rules of a specific shape,
we give the pattern that must appear in the bipattern graph for the rules to
be satisfiable.

In the following, we illustrate this approach on two representative examples.

Example 1. Any rule with 3 atoms and 2 variables

r1(x, y)⇐ r2(x, y) ∧ r3(x, y)

can be decomposed into 3 path rules/conjunctive queries:

r1(x, y)⇐ r2(x, y)
r1(x, y)⇐ r3(x, y)
r2(x, y) ∧ r3(x, y)

These can be represented as 3 cycles and 3 dual cycles in the bipattern graph
of the KB, resulting in the pattern depicted in Figure 5.2.

77

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

r1

r−12

r3

r−11

r2

r−13

Figure 5.2 – Pattern in the BP Graph for a rule with 3 atoms and 2 variables

r−13

r−14

r2

r1

r−11

r−12

r4

r3

Figure 5.3 – Pattern in the BP Graph for Example 2

78

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Example 2. Any rule with 4 atoms and 3 variables

r1(x, y)⇐ r2(x, y) ∧ r3(x, z) ∧ r4(z, y)

can be decomposed into two path rules/queries of size 3:

r−11 (y, x)⇐ r3(x, z) ∧ r4(z, y)
r−12 (y, x) ∧ r3(x, z) ∧ r4(z, y)

and a path rule of size 2:

r1(x, y)⇐ r2(x, y)

These can be represented as 2 cycles of size 3, one cycle of size 2 and their
respective dual cycles in the bipattern graph, resulting in the pattern depicted
in Figure 5.3.

Note that the bipattern graph cannot represent completely the star pat-
terns of the rules above as it only represents their subsets of size 2. For
example the star pattern of x in the rule of Example 1 is {r1, r2, r3} but the
pattern in the bipattern graph only ensures that {r1, r2}, {r1, r3} and {r2, r3}
are satisfiable which is a weaker necessary condition.

5.5 Conclusion

In this chapter we showed how the shape of the path rules allows us to devise
a lean generation method that considers every path rule only once, getting
rid of the need to eliminate duplicates. In addition, we demonstrated how
the star patterns can be used to efficiently prune the search space.

Unfortunately, we will see in the experimental section of the next chap-
ter (section 6.5) that this fine-tuned exploration method alone is not quite
enough to make Pathfinder Vanilla significantly better than AMIE. However,
we will see in the next chapter how some improvements on the computation
of the quality measures can make this algorithm faster. These improvements
are possible only through the Pathfinder vanilla approach that generates each
candidate rule independently.

79

Chapter 6

Pathfinder: Efficient Path Rule
Mining

6.1 Introduction

The Pathfinder Vanilla algorithm that we have seen in the last chapter is not
consistently faster than AMIE on path rules. This is because AMIE performs
the computation of the support of all the refinements of a rule as a whole and
thus benefits from some data reusage. In Pathfinder Vanilla, there are less
possible refinements to consider but the algorithm recomputes the support
of each of them independently.

However, in a rule mining process the rules considered are not indepen-
dent. Exploiting the dependencies between the rules can significantly speed
up the computation of the different quality measures, as AMIE does for
the computation of the support of the refinements of a rule. In particular,
reusing information between related rules can not only helps computing the
support of a rule but also the confidence of this rule or the support of its
refinements. Moreover, the reused data can also provide quantitative bounds
on the value of the different quality metrics, avoiding unnecessary and costly
computations.

Instead of using the dependencies between the different refinements of a
rule only once, as AMIE does during the bulk computation of the support,
we propose to go even further: we will carry over the information used in
the computation of the quality metrics of a rule to all the refinements of this
rule. This way a refined rule will inherit data from its parent that will be
reused to speed up the computation, or bound the value, of its own quality
measures. In this sense, data can be passed on to the next generation. As
a consequence, the longer a rule is, the more it should benefit from this

80

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

approach.

Contribution. In this chapter we define three different type of heritable
information from a rule to its refinements: the set of possible values of the
variables, the iterated provenance and some bounds on the size of the former.
The first two allow us to design more efficient measure computation strate-
gies, which use the locally stored information to speed up the computation
of the quality measures of the rules. The bounds on the size of the iterated
provenance give us bounds on the value of the quality measures of the rules,
allowing us to bypass the exact computation of those measures (a very costly
operation) when it is not necessary. Then, using these optimizations, we
develop the full Pathfinder algorithm, which consistently outperforms AMIE
and its precursor Pathfinder Vanilla, by multiple orders of magnitude on
longer rules.

This chapter is structured as follows: First, in Section 6.2 we describe
how to efficiently compute the set of possible values of the variables and the
iterated provenance from a path rule and we present the different measure
computation strategies that make use of this data. Then, in Section 6.3
we introduce the local bounds used to speed up the Pathfinder algorithm,
an algorithm that we extensively describe in Section 6.4 and experimentally
evaluate in Section 6.5.

6.2 Heritable information

6.2.1 Notation

Here we define the functions image and prov in a KB K and introduce the
equivalent “diamond” notation (that uses the symbol �). Given any signed
relation r, we define the image of an entity x by r as:

image(x, r) ≡ {y ∈ K : r(x, y)} ≡ r(x, �)

We extend this function and notation to a set X of entities:

image(X, r) ≡ {y ∈ K : ∃x ∈ X, r(x, y)} ≡ r(X, �)

As such the domain and range of r can also be written as:

dom(r) = r(�,K) = image(K, r−1)
rng(r) = r(K, �) = image(K, r)

81

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

The provenance of Y ⊆ image(X, r) is defined as the subset of X that
generated Y :

prov(X, r, Y) ≡ {x ∈ X : ∃y ∈ Y, r(x, y)} = r(�, Y) ∩X

When we use this notation, we always consider we use a known KB K
given as input to the program.

6.2.2 The sets of possible values

The AMIE and Pathfinder Vanilla algorithms always consider every rule
independently and never remember more than the value of the quality metrics
for each given rule. This means that, for each new rule considered, they
must recompute those quality metrics by testing possible instantiations of
each variable.

But as stated in the introduction, rules are not created independently of
each other and those algorithms do not exploit the core dependency between
a rule and its further generation: every variable of a specialized rule can only
take its value among the values the same variable took in the parent rule.

Example. Consider a rule and one of its refinements:

hasChild(x, y)⇐ marriedTo(x, z)
hasChild(x, y)⇐ marriedTo(x, z) ∧ hasChild(z, v)

In order to compute the support of the first rule, AMIE first determines
the set of possible value of the variable x, and for every possible value of the
this variable, it counts the number of corresponding values of the variable y.
For the PCA body size, it counts the number of corresponding values of the
variable z.

For the second rule, it will also compute the set of possible value of the
variable x and count the corresponding y. But the possible values of x (or
y or z) in the second rule must also be a solution of the less restrictive first
rule to be solution of the second. We can reduce the strain of looking for
candidate in the whole KB in the second rule by looking only among the
candidates of the first rule.

Propagation. For any path rule

Ro[r1, . . . , rn] = · · · ∧ rn−1(xn−2, xn−1) ∧ rn(xn−1, xn)

we denote by X0, . . . , Xn the sets of possible values of the variables x0, . . . , xn.
During the refinement of this rule, i.e when the atom rn(xn−1, xn) is added,

82

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Rule Local Set Provenance

Ro[r1] X1 ← r1(K, �) X0 ← prov(K, r1, X1)
Ro[r1, r2] X2 ← r2(X1, �) X1 ← prov(X1, r2, X2)

· · ·
Ro[r1, . . . , rn] Xn ← rn(Xn−1, �) Xn−1 ← prov(Xn−1, rn, Xn)

Table 6.1 – Computation of the local sets for Ro[r1] and its refinements

Pathfinder computes the set of possible values for xn in Ro[r1, . . . , rn] as
the image of Xn−1 by rn: Xn = rn(Xn−1, �). Moreover, it also restricts
further the values of Xn−1 to the provenance of Xn: prov(Xn−1, rn, Xn)) =
Xn−1∩ rn(�, Xn) in the refined rule. This process is summarized in Table 6.1
and illustrated in Figure 6.1, where the ellipses represent the different sets of
entities and the arcs between ellipses represent the computation of the image
of the different sets by a relation.

For example, in order to form the rule:

Ro[hasChild−1, marriedTo, hasChild]

on the Example KB (Figure 2.1), the Pathfinder algorithm will first consider
the rule Ro[hasChild−1]1 and compute the sets:

X1 = hasChild(�,K) = {Elvis, Priscila,Michelle}
X0 = prov(K, hasChild−1, X1) = {Lisa,Malia, Sasha}

Then, for the refined rule Ro[hasChild−1, marriedTo], it will compute
the set:

X2 = marriedTo(X1, �) = {Elvis, Priscilla, Barack}

As every entity of X1 is subject of the marriedTo relation, the set X1 is
unchanged. Finally, for the path rule

Ro[hasChild−1, marriedTo, hasChild]

Pathfinder computes the sets:

X3 = hasChild(X2, �) = {Lisa}
X2 = prov(X2, hasChild,X3) = {Elvis, Priscilla}

1the rule hasChild(x1, x0)⇐.

83

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Figure 6.1 – Illustration of the computation of candidate sets

Lisa

PriscillaElvis Barack Michelle

Sasha Malia

hasChild hasChild hasChild hasChild

marriedTo marriedTo

Figure 2.1 – Example KB (Reproduced here)

To conclude, the possible values of the variables of the last rule are, for the
Example KB:

X0 = {Lisa,Malia, Sasha}
X1 = {Elvis, Priscilla,Michelle}
X2 = {Elvis, Priscilla}
X3 = {Lisa}

First, these sets can be used for early pruning because if a set Xi is empty
then the rule is unsatisfiable. Second, they will be used in Section 6.2.5 to
speed up the computation of the quality measures of this rule: using these

84

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

sets, we know we do not need to consider Barack as a possible value for x2
during the computation of the quality measures for example. In particular,
for the closed rule

Rc[hasChild−1, marriedTo, hasChild]

the possible values of x0 are further reduced to X0 ∩X3.
Note that Pathfinder needs to know only the set Xn−1 to compute

the new set Xn and that the same set Xn−1 can be used for any re-
finement of the rule Ro[r1, . . . , rn−1]. In our previous example, the rule
Ro[hasChild−1, marriedTo] can also be refined as

Ro[hasChild−1, marriedTo, marriedTo]

Knowing that we had X2 = {Elvis, Priscilla, Barack}, the set X3 for this
new refinement would be marriedTo(X2, �).

Proposition 6.2.1 (Path existence). Given a rule Ro[r1, . . . , rn], the set
Xn and the provenance sets X0, . . . , Xn−1 computed as in Table 6.1, Xn is
exactly the set of entities xn such that:

∃x0, . . . , xn−1 ∈ K : r1(x0, x1) ∧ r2(x1, x2) ∧ · · · ∧ rn(xn−1, xn)

And for any entities x0, . . . , xn−1 satisfying this relation, we have in particu-
lar: x0 ∈ X0, . . . , xn−1 ∈ Xn−1. We say that “there exists a path from a x1
(in rng(r1)) to xn” or that “x1 generated xn”.

Note that the possible values of the other variables x0, . . . , xn−2 are also
impacted by the addition of the new atom rn(xn−1, xn), i.e the sets of possible
values X0, . . . , Xn−2 are not tight for the refined rule. However, recomput-
ing those stricter restrictions would result in a prohibitive overhead in used
memory and computation time with no guarantee those restrictions would
be significantly tighter.

Overhead. Even computing just the new image Xn+1 can be a high cost
operation, and there is no guarantee that the computed set would be of any
usage at all, for example if the generated rule is pruned right away.

In terms of space, those sets cannot be larger than the size of the domain
(or range) of the relation the variable appears in, which is usually relatively
small. However, we need to maintain one set per atom for each rule that is
yet to be refined or yet to be considered for output, i.e for any rule in the
working queue. That is the main reason we use a stack for q in Algorithm 4

85

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

instead of a queue. The depth-first search ensures these local sets are freed
as soon as possible.

The sets of possible values can be used to reduce the scope of the count
queries, but the count queries still have to be performed. In the next section,
we introduce the iterated provenance which contains enough information in
itself to compute the confidence metrics without querying the KB.

6.2.3 The iterated provenance

In this section, we show that if we know all the pairs (x1, xn) that satisfy
the query: r1(x0, x1) ∧ · · · ∧ rn(xn−1, xn) then we can compute the quality
metrics of Ro[r1, . . . , rn] and Rc[r1, . . . , rn] directly (Proposition 6.2.4). We
will also show that this information, which we call the iterated provenance
of xn, is heritable.

Definition 6.2.2 (Iterated provenance). We define the iterated provenance
of a rule Ro[r1, . . . , rn], given the sets X2, . . . , Xn computed as in Table 6.1,
as:

∀x2 ∈ X2, prov2(x2) = prov(X1, r2, {x2})
∀i ∈ {3, . . . , n}, ∀xi ∈ Xi, provi(xi) =

⋃
xi−1∈prov(Xi−1,ri,{xi})

provi−1(xi−1)

Propagation. For a rule Ro[r1, . . . , rn] we compute locally and incremen-
tally the sets:

Xprov
2 = {(x2, prov2(x2)) : x2 ∈ X2}

. . .
Xprov
n = {(xn, provn(xn)) : xn ∈ Xn}

by computing unions of the iterated provenance of the entities of the previous
generation as in the formula of Definition 6.2.2.
For example, we have for the rule Ro[hasChild−1, marriedTo, hasChild]:

Xprov
2 =

(Elvis, prov(X1,marriedTo, {Elvis}) = {Priscilla}),
(Priscilla, prov(X1,marriedTo, {Priscilla}) = {Elvis}),
(Barack, prov(X1,marriedTo, {Barack}) = {Michelle})

Xprov

3 = {(Lisa, {Priscilla} ∪ {Elvis})}

as prov(X2, hasChild, {Lisa}) = {Elvis, Priscilla} and {Priscilla} is the
provenance of Elvis in Xprov

2 and {Elvis} is the provenance of Priscilla in
Xprov

2 .

86

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Proposition 6.2.3 (Iterated provenance and path existence). Given a rule
Ro[r1, . . . , rn], the “iterated provenance” provi(xi) of any element xi ∈ Xi

is the subset of X1 that generated xi, i.e all the entities x1 ∈ X1 for which
there exists a path r1(x0, x1) ∧ · · · ∧ ri(xi−1, xi).

This means that there are two pairs of values for the variables (x1, x3) such
that we have:

hasChild−1(x0, x1) ∧marriedTo(x1, x2) ∧ hasChild(x2, x3)

in the Example KB. These pairs are: {(Elvis, Lisa), (Priscilla, Lisa)}

Proposition 6.2.4 (Iterated provenance and quality measures). The iter-
ated provenance is sufficient to compute directly the support and confidence
of a rule Ro[r1, . . . , rn] and its closed variant, as we have:

support(Ro[r1, . . . , rn]) =
∑

x1∈
⋃
provn(xn)

‖r1(�, x1)‖

support(Rc[r1, . . . , rn]) =
∑

xn∈Xn∩X0

‖provn(xn) ∩ r1(xn, �)‖

pca-body(Ro[r1, . . . , rn]) =
∑

xn∈Xn

‖provn(xn)‖

In our example, knowing that Xprov
3 = {(Lisa, {Priscilla} ∪ {Elvis})}, we

can compute:

support(Ro[hasChild−1, marriedTo, hasChild])
=

∑
x1∈{Elvis,Priscilla}

‖hasChild(x1, �)‖ = 2

support(Rc[hasChild−1, marriedTo, hasChild])
= ‖prov3(Lisa) ∩ hasChild(�, Lisa)‖ = 2

pca-body(Ro[hasChild−1, marriedTo, hasChild])
= ‖prov3(Lisa)‖ = 2

Overhead. If we consider the size of the sets provi(xi) that need to be
computed and maintained locally, we notice that they are, taken together,
as large as the PCA Body Size (cf. the formula to compute the PCA Body
size above).

This value can be huge and the whole point of the lazy strategy introduced
in Chapter 3 was to bypass the exact computation of this value when it grows
too large. Here we have to compute all the sets provi(xi) exactly, which is
costly and cannot be lazy.

87

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

6.2.4 Backtracking the iterated provenance

Since computing and storing the iterated provenance a priori may be too
costly, we can also recompute the sets provi(xi) on the rules of interest, a
posteriori. This way, it will prevent unnecessary computations while still
taking advantage of Proposition 6.2.4.

Proposition 6.2.5 (Iterated provenance backtracking). We define recur-
sively the function back-provi such that:

∀i ≥ 3, ∀Ai ⊆ Xi, back-provi(Ai) = back-provi−1(prov(Xi−1, ri, Ai))
∀A2 ⊆ X2, back-prov2(A2) = prov(X1, r2, A2)

This way we have: ∀i ≥ 2, ∀xi ∈ Xi, provi(xi) = back-provi({xi})

In the previous example:

back-prov3({Lisa})
= back-prov2(prov({Elvis, Priscilla}, hasChild, {Lisa}))
= back-prov2({Elvis, Priscilla})
= prov({Elvis, Priscilla},marriedTo, {Elvis, Priscilla})
= {Elvis, Priscilla}

To compute the iterated provenance of Lisa, we need to compute the
iterated provenance of its provenance, i.e {Elvis, Priscilla}. This set, and
only this set, is required to compute the iterated provenance of Lisa: the
provenance of a subset (for example {Elvis}) may return a the partial re-
sult (here {Priscilla}) while the provenance of a superset (for example
{Elvis, Priscilla, Barack}) may return a wrong result (here the superset
{Elvis, Priscilla,Michelle}). In this sense this backtracking method is valid
and tight2.

Thus we can compute the quality measures of any rule using Proposi-
tion 6.2.4 by backtracking the iterated provenance when necessary. Using
this method, we no longer need to propagate the iterated provenance as in
Section 6.2.3, which has a large overhead, and we can even compute PCA
body size lazily.

Mixed strategy. However, computing the support of the closed rule using
backtracking underperforms compared to the other approaches due to the
additional join. Indeed, computing provn(xn) ∩ r1(xn, �) is not the optimal

2this is due to the fact that we consider for the provenance only the entities that
contributed to a path in the first place, cf Proposition 6.2.1.

88

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

way to compute the subset of entities of X1 that contributes to the support.
This is why we introduce in the next section a mixed strategy which uses
backtracking to compute all the quality measures of a rule except for the
support of the closed rule.

6.2.5 Measure computation strategies

In our proposed algorithm Pathfinder, described in Section 6.4, the following
measure computation strategies are available, via command line options:

Legacy: The legacy strategy uses the methods of AMIE 3 (Algorithm 2) to
perform every count query, without using any of the local information
computed above.

Restricted: The restricted strategy also uses the methods of AMIE 3. As
Algorithm 2 performs recursively on the different instantiations of the
rule, we restrict the values of the instantiations used to the possible
values of each variables, limiting this way the number of recursive calls.

Restricted (Vanilla setting): We can also use the restricted strategy with
the Pathfinder Vanilla algorithm (that does not compute any local set)
using the star patterns to restrict the possible values of the variables
(as in Proposition 4.2.3).

FullSet: The FullSet strategy computes and stores locally the iterated
provenance for each rule and computes the different quality metrics
using the formulae of Proposition 6.2.4.

Backtrack: The Backtrack strategy computes the quality measures using
the formulae of Proposition 6.2.4, backtracking the iterated provenance
when necessary.

Mixed Restricted: It uses the Restricted strategy to compute the support
of the closed rule and the Backtrack strategy for the other measures.

The Legacy and Restricted computation strategies can also be used with
the option “Laziest”. Using this option, the algorithm will compute the
support of the open rule lazily, up to the required support threshold.

6.3 The bounds on the iterated provenance

Approach. For a rule Ro[r1, . . . , rn], we compute two weights for every
entity xn ∈ Xn:

89

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

1. the lower bound w1
n on the number of entities x1 of X1 that generated

xn (i.e the entities x1 for which there exists a path r1(x0, x1) ∧ · · · ∧
rn(xn−1, xn) in the KB);

2. the lower bound wyn on the number of pairs (x0, x1) ∈ X0 × X1 such
that x1 generated xn and r1(x0, x1) ∈ K.

We will see how these weights can be used to bound the value of the quality
measures of Ro[r1, . . . , rn] and Rn[r1, . . . , rn] in Section 6.3.2.

6.3.1 Computing the lower bounds

Definition 6.3.1 (The weights w1
i and wyi). During the computation of

the local sets X1, . . . , Xn of a rule Ro[r1, . . . , rn] (as in Section 6.2.2), we
additionally compute the following weights:

∀x1 ∈ X1, w1
1(x1) = 1

wy1(x1) = ‖r1(�, x1)‖

and we use the following propagation formula for both weights w1 and wy:

∀i ≥ 2,∀xi ∈ Xi, wi(xi) =
∑

xi−1∈prov(Xi−1,ri,{xi})

wi−1(xi−1)

‖ri(xi−1, �)‖

Propagation. In the same manner as for the iterated provenance, for a
rule Ro[r1, . . . , rn] we compute locally and iteratively the sets:

Xw
1 = {(x1, w1

1(x1), w
y
1(x1) : x1 ∈ X1}

. . .
Xw
n = {(xn, w1

n(xn), wyn(xn) : xn ∈ Xn}

computing the weights of a generation using the propagation formula of Defi-
nition 6.3.1 on the weights of the previous generation. In Algorithm 4 below,
we will actually store a map, mapping an entity to its corresponding weights.

Now, we will prove that these weights actually are the desired lower
bounds, for this we introduce the following theorem:

Theorem 6.3.2 (Bound on the weights). The sum of a weight over a set of
entities is bounded by the sum of its weight on its provenance, i.e for each
weight:

∀Y ⊆ Xi,
∑
xi∈Y

wi(xi) ≤
∑

xi−1∈prov(Xi−1,ri,Y)

wi−1(xi−1)

with equality if Y = Xi.

90

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Proof. By construction, every element of prov(Xi−1, ri, Y) and only those
elements will contribute to the weights of the elements of Y .

For any element xi−1 of prov(Xi−1, ri, Y), Y contains at most (if Y = Xi,
exactly) ‖ri(xi−1, �)‖ entities that are the images of xi−1 by ri. Each of these

will receive a contribution of wi−1(xi−1)
‖ri(xi−1,�)‖ from xi−1 to their respective weight.

Thus the total contribution of xi−1 to the sum of weights of Y is at most (if
Y = Xi, exactly) wi−1(xi−1).

Corollary 6.3.3 (Lower bounds). We have the desired lower bounds:

∀Y ⊆ Xi,
∑
xi∈Y

w1
i (xi) ≤ ‖{x1 : xi ∈ Y, r1(x0, x1) ∧ · · · ∧ ri(xi−1, xi)}‖

∀Y ⊆ Xi,
∑
xi∈Y

wyi (xi) ≤ ‖{(x0, x1) : xi ∈ Y, r1(x0, x1) ∧ · · · ∧ ri(xi−1, xi)}‖

Proof. With prov(Xi−1, ri, Y) taking the role of Y , we can recursively bound
the right term in Theorem 6.3.2 to deduce:

∀Y ⊆ Xi,
∑
xi∈Y

wi(xi) ≤
∑

x1∈back-provi(Y)

w1(x1)

Overhead. Those weights can be computed directly when we compute the
image of a local set Xi as above. Thus this computation does not change the
computational complexity of our approach.

6.3.2 Bounding the value of the quality measures

Support of the open rule. The second result of Corollary 6.3.3 gives us
a lower bound on the support of any path rule:∑

xn∈Xn

wyn(xn) ≤ support(Ro[r1, . . . , rn])

If the lower bound is superior to the support threshold then we can di-
rectly proceed and refine the rule. Otherwise, we need to actually compute
the support in order to decide whether to prune the rule or not.

91

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Support of the closed rule. We deduce this bound directly from Propo-
sition 6.2.4 which states:

support(Rc[r1, . . . , rn]) =
∑

xn∈Xn∩r1(�,X1)

‖provn(xn) ∩ r1(xn, �)‖

Thus we have in particular the following weaker upper bound:

support(Rc[r1, . . . , rn]) ≤
∑

xn∈Xn∩r1(�,X1)

‖r1(xn, �)‖

Then we can discard the rule if the computed upper bound does not meet
the support threshold.

PCA confidence. The PCA body size is the number of pairs (x1, xn)
such that there exists a path from x1 to xn. We can take as lower bound
either the number of xn or the number of x1 for which such a path exists.
The first number is simply the size of Xn and the second is, according to
Corollary 6.3.3, superior to

∑
xn∈Xn

w1
n(xn):

max(|Xn|,
∑
xn∈Xn

w1
n(xn)) ≤ pca-body(Ro[r1, . . . , rn])

This gives us an upper bound of the PCA confidence, allowing us to discard
the rules which do not pass the confidence threshold before computing the
exact value of the confidence.

6.4 The complete Pathfinder algorithm

The Pathfinder algorithm presented as Algorithm 4 is based on the Pathfinder
Vanilla algorithm (Algorithm 3). As such, its refinement method (Line 23 of
Algorithm 4) can also be implemented using the different strategies presented
in Chapter 5 (ALL, BP, or BPP).

The main additions compared to the vanilla version are the computation
of the local information and the usage of the local weights for early pruning.

The sets of possible values of the variables are stored in the Atom struc-
ture defined Lines 1 to 5 of our algorithm. Any rule R is a list of such
atoms. At each step of the exploration, the function computeWeightedImage
(Line 26) computes the image of the last atom of the rule by a signed relation
ri and stores the computed sets Xw

i and prov(Xi−1, ri, Xi) in a new Atom.
This atom is then pushed to the end of the list of atoms of the initial rule

92

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Algorithm 4: Pathfinder (full)

Input: maximum rule length: l, support threshold: minS ,
confidence threshold: minC

Output: set of path rules: rules
1 struct {
2 Relation r;
3 Set〈Entity〉 prov;
4 Map〈Entity, double× double〉 X;

5 } Atom;
// A rule is represented as a list of such Atoms

6 S = Stack()
7 for each unsigned relation ri do
8 S.push([Atom(ri,K, {(x, (1, |ri(�, x)|)) : x ∈ ri(K, �)}])
9 rules = 〈〉

10 while |S| > 0 do
11 R = S.pop()
12 lastAtom = R.last(); rn = lastAtom.r;
13 headAtom = R.head(); r1 = headAtom.r;
14 if (R.size() > 1 and BPGraph.hasEdge(rn, r1)
15 and

∑
y∈lastAtom.X∩r1(�,headAtom.X) |r1(y, �)| > minS

16 and (sup = computeCloseSupport(R)) > minS) then
17 maxBody = (sup/minC) + 1
18 if (|lastAtom.X| < maxBody
19 and

∑
x∈lastAtom.X w

1(x) < maxBody
20 and computeBodyUpTo(R,maxBody) < maxBody) then
21 rules .add(R)

22 if R.size() < l then
23 for any possible refinement rn+1 of R do
24 if

∑
x∈rn+1(�,K)∩lastAtom.X w

y(x) > minS

25 or computeOpenSupport(R + [rn+1]) > minS then
26 nX, nProv =

computeWeightedImage(K, lastAtom.X, rn+1)
27 Rc = R + [Atom(rn+1, nProv, nX)]
28 S.push(Rc)

29 return rules

93

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Algorithm 5: computeWeightedImage

Input: a KB: K, weighted map of entity: Xin, relation r
Output: weighted image of Xin by r: Xout, provenance

prov(Xin, r,Xout): prov
1 Xout = Map()
2 prov = 〈〉
3 for x ∈ Xin do
4 Y = compute(r(x, �))
5 if |Y | > 0 then
6 prov.add(x)
7 (w1(x), wy(x)) = Xin.get(x) ; // weights to propagate

8 for y ∈ Y do
9 (w1(y), wy(y)) = Xout.getOrDefault(y, (0, 0))

10 w1(y) = w1(y) + (w1(x)/|Y |)
11 wy(y) = wy(y) + (wy(x)/|Y |)
12 Xout.put(y, (w1(y), wy(y)))

13 return Xout, prov

R to form the refined rule Rc. The actual computation of the image by the
function computeWeightedImage is described in Algorithm 5 and is the main
source of overhead of our algorithm compared to the vanilla version.

The bounds presented in Section 6.3.2 are used as follows: the support of
the closed rule upper bound is used in Line 15, the confidence upper bounds
in Lines 18 and 19 and the final bound, the lower bound of the support of
the rule, is used in Line 24.

It is important to note that the weights are computed only once, by
the function computeWeightedImage, and then stored in the Atom structure.
Thus the instructions in Lines 19 and 24 access only the value of the weights
stored in lastAtom.X and do not recompute them.

Finally, the implementation of the functions that computes the exact
value of the quality measures (Lines 16, 20 and 25) depends on the measure
computation strategy chosen among those presented in Section 6.2.5. The
restricted and the backtrack approaches use the provenance sets stored in the
Atom structure to restrict the mappings, the legacy method uses no addi-
tional information and the FullSet approach uses additional local information
bundled in the Atom structure (not depicted here).

94

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Dataset Facts Relations Entities

Yago2 948 358 36 834 750
Yago2s 4 484 914 37 2 137 469
DBPedia 2.0 6 601 014 1 595 2 275 327
DBPedia 3.8 11 024 066 650 3 102 999
Wikidata 12-2014 8 397 936 430 3 085 248
Wikidata 07-2019 386 156 557 1 188 57 963 264

Table 3.1: Datasets

6.5 Experiments

In this section we will compare the performance of the full Pathfinder algo-
rithm and the Pathfinder Vanilla algorithm, using AMIE 3 as a baseline. We
will first perform an analysis of the performance of the different candidate
generation methods. Then we will focus on the impact of the different mea-
sure strategies. Finally, we will study the scaling capabilities of the different
algorithms.

6.5.1 Experimental Setup

For the sake of comparability, we used the exact same experimental setup
as in our previous AMIE 3 experiments (section 3.3). We recall this setup
briefly here and specify precisely the baselines used for comparison.

Data. We evaluated our approaches on YAGO (2 and 2s), DBPedia (2.0
and 3.8) and Wikidata 2014. For the scaling experiment, we used a recent
dump of Wikidata from July 1st 2019. Table 3.1 recalls the numbers of facts,
relations and entities of our experimental datasets.

System settings. All experiments were run on a Ubuntu 18.04.3 LTS with
40 processing cores (Intel Xeon CPU E5-2660 v3 at 2.60GHz) and 500Go of
RAM. AMIE 3 and Pathfinder are implemented in Java 1.8 and use the
same integer-based in-memory database to store the KB (using the fastutils
library3).

3http://fastutil.di.unimi.it/

95

http://fastutil.di.unimi.it/

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Baseline: AMIE-Path. We want to use AMIE 3 as a baseline. However,
as AMIE 3 computes exhaustively all rules given some quality thresholds,
it seems unfair to compare it with an algorithm that reports only a subset
of these rules: the path rules. Thus, we use as baseline a modified version
of AMIE 3, “AMIE-Path”, that refines only the open rules4. In this way,
AMIE-Path produces only path rules.

6.5.2 Pathfinder generation methods

Configurations

We use here the legacy methods to compute the quality measures for every
algorithm and we report the total running time (wall time) taken to mine
every closed path rule with the default parameters (maximal length of 3,
minimal head coverage of 0.01, minimal PCA confidence of 0.1).

AMIE-Path. As AMIE, AMIE-Path computes the support of every rule
of a new generation using bulk computation (cf Section 6.1), selects the rules
above the support thresholds and performs duplicate elimination.

Star pattern. Here we first use the bipattern graph to generate all the
possible path rules in our KB. Then we use AMIE to compute the support
and the confidence of each rule, one-by-one. We expect this approach to
underperform compared to an incremental approach.

Pathfinder-vanilla. We compare the performance of our three generation
methods: ALL, BP and BPP. As those methods are increasingly selective, we
expect our algorithm to be increasingly faster (BP faster than ALL and BPP
faster than BP). It will also allow us to measure the tradeoff between the bulk
computation of the support in AMIE and the independent computation of
the support on smartly selected candidate relations of Pathfinder vanilla.

Pathfinder. We compare the performances of our three generation meth-
ods and expect similar speedup between the different methods than the
vanilla algorithm. The variation of performances between the vanilla and
the full version will come exclusively from the difference between the over-
head of the computation of the weighted images and the speedup of using
the bounds on the quality measures.

4We add the condition ¬closed(R) to the test line 7 in Algorithm 1

96

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Dataset Pathfinder
Generation method

ALL BP BPP

Yago2
Vanilla 14.37s 10.31s 8.97s
Full 13.50s 11.34s 8.18s

Yago2s
Vanilla 1min 20s 43.42s 38.98s
Full 1min 05s 45.34s 44.46s

DBPedia 2.0
Vanilla > 2h 31min 07s 6min 18s
Full > 2h 15min 43s 5min 59s

DBPedia 3.8
Vanilla 54min 48s 14min 53s 17min 02s
Full 41min 02s 20min 54s 10min 31s

Wikidata 2014
Vanilla 6min 53s 4min 02s 3min 59s
Full 12min 06s 3min 47s 2min 55s

Table 6.2 – Impact of the generation method on Pathfinder

Dataset AMIE-Path Star Pattern P.-vanilla Pathfinder

Yago2 23.34s 19.05s 8.97s 8.18s
Yago2s 1min 40s 56min 36s 38.98s 44.46s
DBPedia 2.0 6min 21s > 2h 6min 18s 5min 59s
DBPedia 3.8 10min 00s > 2h 17min 02s 10min 31s
Wikidata 2014 4min 38s > 2h 3min 59s 2min 55s

Table 6.3 – Impact of the generation algorithm

Results

Table 6.2 shows the performances of Pathfinder using the different generation
methods.

First, we observe the expected hierarchy of performances on most
datasets: BPP is faster than BP, which is faster than ALL except on DBPe-
dia 3.8 (Vanilla). The speedup between the approaches is more pronounced
on DBPedia. As it has more relations, the search space is larger, thus the
pruning coming from the BP graph has a more noticeable effect.

Second, if we compare Pathfinder and Pathfinder vanilla with the same
generation method on the different datasets, we observe that the tradeoff
between computing the local information and the speedup of the measure
bounds is really dependent on the case considered. There is no clear-cut
winner. However, if we compare the performances on the best performing

97

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

generation method, then Pathfinder is faster than Pathfinder-vanilla on all
datasets except Yago2s.

In Table 6.3, we confront the performances of our Pathfinder algorithms
(using BPP) with the performances of our baseline (AMIE-Path) and of
the Star Pattern approach. This last approach does not scale to larger
KBs and is clearly outperformed by any algorithm using incremental gen-
eration of candidate. The performances of our baseline (using bulk computa-
tion) and Pathfinder (using BPP) are comparable, with a speedup of 2× on
datasets with a small number of relations (Yago and Wikidata) and identical
or slightly worse on datasets with more relations (DBPedia). Note that the
bulk computation is way faster than the Naive approach (Pathfinder ALL),
but the usage of BPP counteracts this effect overall.

To conclude, if we consider the different generation strategies: bulk com-
putation vs BPP, Pathfinder vs Pathfinder-vanilla, they offer relatively simi-
lar performances for rule mining. However this comparison only stands using
the legacy measure computation strategy on rules of size 3 and as such, does
not make full use of the local information computed by Pathfinder.

6.5.3 Pathfinder measure computation strategies

The previous experiment used the “Legacy” measure computation strategy5

for each algorithm. In this section, we present the performance of the other
measure computation strategies, introduced in Section 6.2.5, available for the
Pathfinder and Pathdinder Vanilla algorithms. We use the BPP generation
method for both versions of the Pathfinder algorithm.

Results. In Table 6.4, we report the running time of our different mea-
sure strategies. In general, the usage of the Mixed Restricted computation
method allows the Pathfinder algorithm to consistently outperform the other
algorithms.

The Pathfinder Vanilla algorithm (using the restricted laziest strategy)
competes with the Pathfinder algorithm on the Yago and the Wikidata
datasets but underperforms on the DBPedia datasets. We believe this is
due to the prolixity of small relations of DBPedia, increasing the selectivity
of the the set of possible values of the variables and as such improving the
beneficial impact of using these sets in Pathfinder.

As discussed in Section 6.2.4, these results confirm that the lazy approach
of the Backtrack strategy performs better than the FullSet strategy on most

5i.e AMIE 3 base methods

98

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

A
lg

or
it

h
m

M
ea

su
re

st
ra

te
gy

R
u
n
n
in

g
ti

m
e

Y
ag

o2
Y

ag
o2

s
D

B
P

ed
ia

2.
0

D
B

P
ed

ia
3.

8
W

ik
id

at
a

20
14

A
M

IE
-P

at
h

L
eg

ac
y

25
.0

2s
2m

in
12

s
4m

in
34

s
10

m
in

22
s

4m
in

18
s

P
.-

va
n
il
la

L
eg

ac
y

8.
97

s
38

.9
8s

6m
in

18
s

17
m

in
02

s
3m

in
59

s
R

es
tr

ic
te

d
7.

79
s

52
.0

2s
2m

in
31

s
5m

in
30

s
1m

in
48

s
R

es
t.

L
az

ie
st

6
.1

0
s

37
.3

6s
2m

in
43

s
2m

in
55

s
1
m

in
1
6
s

P
at

h
fi
n
d
er

L
eg

ac
y

8.
18

s
44

.4
6s

5m
in

59
s

10
m

in
31

s
2m

in
55

s
R

es
tr

ic
te

d
6.

46
s

44
.0

2s
2m

in
19

s
4m

in
04

s
1m

in
53

s
R

es
t.

L
az

ie
st

6.
86

s
45

.2
7s

2m
in

19
s

2m
in

29
s

1m
in

46
s

F
u
ll
S
et

8.
40

s
44

.7
3s

8m
in

13
s

10
m

in
02

s
2m

in
41

s
B

ac
k
tr

ac
k

8.
68

s
44

.9
4s

5m
in

46
s

8m
in

23
s

3m
in

17
s

M
ix

ed
R

es
t.

6
.1

4
s

3
7
.1

4
s

1
m

in
5
3
s

1
m

in
2
0
s

1
m

in
1
6
s

T
ab

le
6.

4
–

Im
p
ac

t
of

th
e

m
ea

su
re

st
ra

te
gy

99

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

AMIE-Path P.-vanilla Pathfinder

Yago2 25.02s 6.10s 6.14s
Yago2s 2min 12s 37.36s 37.14s
DBPedia 2.0 4min 34s 2min 43s 1min 53s
DBPedia 3.8 10min 22s 2min 55s 1min 20s
Wikidata 2014 4min 18s 1min 16s 1min 16s
Wikidata 2019 16h 43min > 48h 36h 12min

Table 6.5 – Running time on increasingly large datasets

AMIE-Path P.-vanilla Pathfinder

Yago2 3min 55s 1min 15s 10.77s
Yago2s > 6h 7min 00s 1min 53s
DBPedia 2.0 > 6h 2h 35min 47min 31s
DBPedia 3.8 > 6h 3h 20min 23min 22s
Wikidata 2014 > 6h > 6h 14min 20s

Table 6.6 – Rule mining of rules with maximal length of 4

datasets and that the computation of the support of the closed rule is in-
deed the bottleneck of both approaches. This is why the mixed strategy
consistently outperforms both of these approaches.

6.5.4 Scaling experiments

We distinguish two distinct scaling factors: the size of the Knowledge Base
and the size of the search space. This last factor is mostly impacted by
the number of relations of the KB and the length of the rules we aim to
mine. Both have a significant impact on the performances of AMIE and of
our proposed Pathfinder algorithms as they are exact and exhaustive rule
mining algorithms.

In particular, we expect that an increasing number of facts per relation
would have a negative impact on the performances of Pathfinder as it in-
creases significantly the overhead of computing the image of the sets. How-
ever, the extensive reusage of the data between a rule and its refinement
should greatly benefit the Pathfinder algorithm while mining longer rules
and allow it to scale in the size of the search space as no other algorithms
has achieved before.

100

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Results. In Table 6.5, we present the performance of our approaches on
increasingly large datasets. The Pathfinder algorithm outperforms AMIE-
Path on all datasets except the bigger one Wikidata 2019, which has a large
number of facts per relation. Interestingly, the Pathfinder algorithm per-
forms better than the Pathfinder Vanilla algorithm on this dataset, which
means that computing the sets of possible values of the variables is actually
beneficial overall and that the main overhead comes from the independent
computation of the support of the refined rules (in comparison to AMIE-
Path).

On a larger search space however, the Pathfinder algorithm achieves to
compute all the path rules of length 4 on all datasets within less than hour,
which is unprecedented. In comparison, we show in Table 6.6 that AMIE-
Path cannot complete in less than 6 hours on all datasets except Yago2 and
the Pathfinder Vanilla algorithm cannot complete in less than 1 hour an all
datasets except the Yago datasets. This demonstrates the impact of our
optimizations in the Pathfinder algorithm: the lower bounds on the iterated
provenance, the restricted computation of the support of the closed rule and
the backtracking of the iterated provenance for the computation of the other
metrics.

Finally, the Pathfinder algorithm can scale to even longer rules: for ex-
ample it mines all path rules of length at most 5 in 2 minutes and 30 seconds
on Yago2 and in less than 37 minutes on Yago2s.

6.6 Conclusion

In this chapter presented the algorithm Pathfinder which mines exactly and
exhaustively all the path rules from a KB. It uses the unique generation
process and the pruning capabilities of the bipattern graph presented in the
last chapter and exploits a data reusage technique introduced in this chapter
to deduce an optimal measure computation strategy and local bounds on the
quality measures. This allows Pathfinder to outperform other rule mining
approaches on most datasets, by orders of magnitude on longer rules.

Future works. The direct followup of this work would be to use the
Pathfinder algorithm to mine path rules with instantiatied extremities (rules
of the form Ri(E1, E2)[r1, . . . , rn]). We expect an even more significant
speedup on these rules than on longer rules.

However, more work is required to make Pathfinder scale to Knowledge
Bases with a large number of facts per relations such as Wikidata 2019.
Multiple directions can be considered: the usage of caching during the back-

101

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

tracking process or the implementation of an hybrid algorithm that computes
the sets of possible values only if those sets are selective enough compared
to the star patterns.

102

Chapter 7

Identifying obligatory
attributes in a KB

In this chapter, we use the incomplete KB to mine rules about the real-world.
This chapter is based on our following full paper:

- Jonathan Lajus and Fabian M. Suchanek. Are all people married? deter-
mining obligatory attributes in knowledge bases. In WWW, pages 1115–
1124. International World Wide Web Conferences Steering Committee,
2018

7.1 Introduction

Knowledge Bases find applications in information retrieval, machine transla-
tion, and question answering. The usefulness of these applications depends
on the data quality of the knowledge base. One important dimension of
quality is the correctness of the data. But there is another important dimen-
sion: the completeness of the data – i.e., whether or not a statement about
an entity is missing from the KB. Data completeness affects queries about
cardinalities, about existence, and about top-ranked entities. For example,
if the population of Tokyo is missing from the KB, then a query about the
top-10 most populous cities in the world will return a factually wrong result.

If we knew that every city has to have a population, we could know that
the reason for Tokyo’s missing population is not that Tokyo does not have a
population in the real world, but that the number was not added to the KB.
We could thus alert the user that the data on which the query is computed is
known to be incomplete. We say that the population is an obligatory attribute
for the class city. Not all attributes are obligatory. For example, not every

103

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

city has to be the capital of a region. The same goes for other classes: Every
person has to have a birth date, but not every person has to be married.

If we were able to distinguish obligatory attributes from optional ones, we
could easily identify where information is missing in the KB. This, in turn,
could help the designers of the knowledge base focus their effort on completion
on this particular data. For example, collaborative knowledge bases such as
Wikidata could ask contributors specifically for the obligatory attributes of a
new entity. Moreover, the obligatory attributes can give semantics to classes.
For example, the characteristics of actors is that they act in a movie. Such
information can help decide whether an entity belongs to a class or not, it
can guide the process of taxonomy design, and it can help define schema
constraints [42]. We note that even obligatory attributes with a few counter-
examples would be helpful for these goals. For example, it is good to know
that people generally have a nationality – even if there are some people who
do not have one. Our goal is to find the rule rather than the exception.

It is not easy to determine whether an attribute is obligatory or not.
Today’s KBs contain not just people and cities, but literally hundreds of
thousands of other classes. They also contain hundreds, if not thousands of
attributes. It is thus infeasible to specify the obligatory attributes manually.
It is also hard to find them automatically: In YAGO, e.g., 2% of soccer
players have a club – and that is an obligatory attribute for professional
soccer players. At the same time, 2% of people have a spouse – and that
is an optional attribute. Using the available data to determine obligatory
attributes thus amounts to generalizing from a few instances to all instances
of a class. This is a very difficult endeavor – even for humans. The case of
KBs is even more intricate, because most KBs do not explicitly say that a
statement does not hold in reality. For example, the KBs do not say that
Pope Francis is not married. Rather, they operate under the Open World
Assumption: A statement may be missing from the KB either because it was
not added, or because it does not hold in reality. Thus, we find ourselves
with the task of generalizing from a few instances in the absence of counter-
examples.

In this chapter, we present methods that can detect obligatory attributes
automatically. Our key idea is to use the class hierarchy: Most modern KBs
contain extensive class hierarchies (YAGO, e.g., contains 650,000 classes;
DBpedia and Wikidata have manually designed taxonomies). And yet, the
KBs use the class hierarchy mainly to specify domain and range constraints.
They do not exploit the semantics of the hierarchy any further. Our idea is
to make use of the classes to determine obligatory attributes. More precisely,
our contributions are as follows:

104

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

• a formal definition of the problem of obligatory attributes

• a probabilistic model for the incompleteness of a KB

• an algorithm that can determine obligatory attributes automatically

• extensive experiments on different datasets with different competitors,
showing that obligatory attributes can be detected with a precision of
up to 90%.

We first present our approach discuss related work in Section 7.2 and
the preliminaries in Section 7.3. Then we present a formal definition of our
problem, describe our approach and define the probabilistic model it is based
upon in Section 7.4. Finally we present our algorithm in section 7.5 and how
it performs on actual datasets in section 7.6.

7.2 Related Work

Query Completeness. Much recent work [56, 48, 70] has investigated the
completeness of queries when the completeness of the data is known. These
approaches are orthogonal to our work, which aims to establish whether the
data is complete in the first place.

Measuring Incompleteness. Several studies have confirmed that KBs
are incomplete. A watermarking study [77] reports that 69%–99% of in-
stances in YAGO and DBpedia lack at least one property that other entities
in the same class have. In Freebase, 71% of people have no known place
of birth, and 75% have no known nationality [19]. Wikidata is aware of
the problem of incompleteness, and has developed tools to specify complete-
ness [21], as well as tools to manually add completeness information [15].
Unlike our work, these approaches do not aim at determining completeness
automatically.

Determining Incompleteness. Closest to our work, several approaches
have recently taken to measure the incompleteness in knowledge bases [71,
29]. However, these works determine whether a particular subject (such
as Emmanuel Macron) is incomplete with respect to a particular attribute
(such as birthDate). Our work, in contrast, aims at determining whether
an attribute is obligatory or not for a given class. It thus operates on the
schema level.

105

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Schema Mining. Other work has investigated the more general problem
of schema mining [64, 83, 38, 6, 31]. The work of [64] mines domain and
range constraints for relations. Our work, in contrast, mines relations that
are obligatory for classes. [38] uses machine learning to find OWL class
descriptions. However, they rely on negative facts given by the user, or on
prior knowledge about the schema – while we require none of these. [83]
mines Horn rules on a KB. However, this approach is not targeted towards
sparse obligatory attributes. We use it as a baseline in our experiments. [31]
also mines Horn rules, and can deal with sparse data. At the same time, it
cannot mine rules with existential variables in the head. Any such rule would
trivially have a confidence of 100% in their model, because the model makes
the Partial Completeness Assumption. Another work [6] mines definitions of
classes. This approach comes closer to our goal, but is not exactly targeted
towards obligatory attributes. We use such an approach as a baseline in our
experiments.

7.3 Preliminaries

Notations. Given a Knowledge Base K and a signed relation p, we note
pK the set of entities of K that satisfies the star pattern {p} in K. For
example, presidentOfYAGO represents the set of subjects of the presidentOf
relation in Y AGO, containing notably the entities Macron or Obama. A
class CK

1 of K is the set of entities satisfying the star pattern {type(C)} in
K. For example Macron and Obama are members of the classes PersonYAGO

or PresidentYAGO. We note CK the set of classes of the KB K.

Ideal KB. As in Section 2.2.4, we consider a (hypothetical) ideal KB W ,
which contains all facts of the real world. With this, our work is in line with
the other work in the area [56, 48, 70, 71, 29], which also assumes an ideal
KB. The problems of determining how such a KB could look are discussed
in [71].

Generalization Rules. A generalization rule for a KB K is a formula of
the form A ⊆ B, where A and B are classes of K, signed relations of K, or
intersections thereof. For example, if PresidentW is the class of presidents in
the real world, then the following generalization rule says that all presidents
are presidents of some country:

PresidentW ⊆ presidentOfW
1always capitalized to distinguish it from the signed relations.

106

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

With this, we can already make a simple observation:

Proposition 7.3.1 (Heredity). In any KB K, for every class CK ∈ CK, any
subclass DK ⊆ CK, and every property p: if CK ⊆ pK then DK ⊆ pK.

This proposition tells us that if a generalization rule holds for a class, it also
holds for all subclasses. The confidence of a generalization rule is defined as

conf(A ⊆ B) =
|A ∩B|
|A|

Finally, we can make a second simple observation:

Proposition 7.3.2 (Separation). If CK ⊆ pK for some class CK of some KB
K and some property p, then the following holds for any class DK of K:

conf(CK ∩ pK ⊆ DK) = conf(CK ⊆ DK)

7.4 Model

7.4.1 Problem Definition

Goal. In this chapter, we aim to find generalization rules of the form CW ⊆
pW . Such a rule says that every instance of the class C in the real world must
have the property p in the real world. We call p an obligatory attribute of
the class C. For example, we aim to mine

FilmW ⊆ directed−1W

Here, directed−1 is an obligatory attribute for the class Film, i.e., every film
has to have a director. The difficulty is to find such a rule in W by looking
only at the data of a given KB K. In the following, we write CW for the class
C in the real world, and CK for the corresponding class in K.

Baseline 1. One way to find obligatory attributes is assume that the KB is
complete (Closed World Assumption) and correct. Under these assumptions,
we can predict that an attribute p is obligatory for a class C if and only if
all instances of C have p in the KB K:

(CK ⊆ pK)
?⇒ (CW ⊆ pW)

This is how a rule mining system under the Closed World Assumption would
proceed [83], if applied naively to our problem. In practice, however, KBs are
rarely complete. They operate under the Open World Assumption. There
will be hardly any property p that all instances of class C have.

107

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Baseline 2. Another method would be to predict that an attribute p is
obligatory for a class C, if the corresponding generalization rule has a confi-
dence above a threshold θ in the KB K:

conf(CK ⊆ pK) ≥ θ
?⇒ (CW ⊆ pW)

For example, if more than 90% of presidents in K have the property president-
Of, then we would predict that presidentOf is an obligatory attribute for the
class of presidents. The problem is that an attribute may be very prevalent
without being obligatory. For example, many film directors also acted in
movies – but acting in a movie is not an obligatory attribute for film directors.

Baseline 3. Yet another idea (inspired by [6]) is to make use of the tax-
onomy. Given a property p and a KB K, we can find the lowest class CK
of the taxonomy such that nearly all instances with p fall into that class.
This is motivated by the contraposition of Proposition 7.3.2. Formally, the
method predicts that, for any property p, for any class CK of a KB K, and
for a threshold θ:

conf(pK ⊆ CK) ≥ θ ∧
∀DK ⊂ CK : conf(pK ⊆ DK) < θ

?⇒ (CW ⊆ pW)

This approach will work well for properties whose domain is a class, such as
the property presidentOf with the class President. However, it will work less
well if the attribute applies to only a subset of the class. For example, every
person x with ∃y : hasSpouse(x, y) ∈ K belongs to the class Person. Thus,
the above confidence will be 1 for hasSpouse and Person, and the method
will conclude that every person is married.

7.4.2 Our Approach

Our approach is based on the assumption that the incompleteness of the KB
is distributed equally across all classes of the KB. The implications of such
a hypothesis are better grasped on an example.

Consider the whole living French population. As humans, we know that
around 40% of the population is married. We represent this in figure 7.1
by the rings uniting 20 couples among 100 french people. In our knowledge
base however, only 24% of French people are married. This is due to the
incompleteness of our KB that we model given the following process:

1. every French is represented by an entity in our KB

2. we have access to all marriage certificates of French people

108

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Real World: 40% Observed KB: 24%

Extraction

Figure 7.1 – Marriage example: Random sampling

Given this information, one would expect the KB to know about every
marriage made in France. However, processing those marriage certificate is
not an easy task. In order to be precise, the information extraction algo-
rithm may take a conservative approach and extract a marriage fact only
if it recognize the entities indubitably. The question is now, given only the
extracted data, are all people married in the real world?

Random Sampling. The information extraction algorithm achieves to ex-
tract the marriage information from a sample of the marriage certificates.
Thus, in the knowledge base, the married couples observed are a sample of
the married couples of the real world. For example, in Figure 7.1, the in-
formation extraction algorithm achieved to identify only 60% of the facts
from the marriage certificates, resulting in a KB with only 12 couples on the
original 20.

In the general case, we assume that we know neither the percentage of
married people in the real world nor the sensitivity of the information ex-
traction algorithm (the percentage of successful extraction among the doc-
uments). However, the observed married couples are a sample of a very
specific population, the population of married people of the real world. This
means that the opposite population, the single people (in the real world),
still induces a statistical bias in the observed distribution of marriages in our
Knowledge Base that can provide valuable information.

Spread. The “spread” is an indicator of non-correlation of two different
features. For example, the residence of an individual is usually uncorrelated

109

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Paris Lyon Toulouse

40% 40% 40%
Real World: 40%

Paris Lyon Toulouse

25% 30% 20%
Observed KB: 24%

Extraction

Figure 7.2 – Marriage example: Spread

with its marital status: the proportion of married Parisians should also be
roughly 40% of all Parisians, the same for natives of Marseille or Toulouse.
But as the observed marital status is a random sample of the actual marital
status, the observed proportion of married Parisians should be similar to
the observed proportion of married French, married Marseillais and married
Toulousain, as in Figure 7.2. The observed proportion of married people
“spreads” across the different place of residence, indicating that the latter
and the marital status are uncorrelated.

Amplification. In contrast, when two features are correlated, for example
the marital status and the age, we can observe a relative increase (or decrease)
in the relative representation of married people in the different age group,
as in Figure 7.3. As the proportion of married french teenagers is really low
compared to the whole population, it is even lower in the observed sample,
but more importantly, lower than the observed proportion in the population
(0% versus 24%). On the contrary, the observed proportion of married adults
is larger than in the whole population (40% versus 24%), we observe an
“amplification” of the density.

To sum up, under the random sampling assumption, the observed relative
proportion of married people in different classes follows the actual proportion
of married people in that class. In particular, if the attribute is obligatory in
a class, this proportion must be maximal: there should be an amplification
compared to any superclass and a spread towards any subclass.

In our example, the spread of the “marriages” across all places of resi-
dence is a signal that being married may be obligatory for all french, more

110

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Adults: 67%

Children: 0%
Real World: 40%

Adults: 40%

Children: 0%
Observed KB: 24%

Extraction

Figure 7.3 – Marriage example: Amplification

precisely it tells us it is not not obligatory for all french people. However,
the amplification (and the inverse phenomenon in the opposite class) of the
married attribute relatively to the age is a strong signal that not all french
are married.

We will now show how to formalize this idea, and under which conditions
we can guarantee that an attribute is not obligatory for a class.

7.4.3 Assumptions

In order to deduce formal statements about obligatory attributes in the real
world from our KB K, we have to make a number of assumptions about K.

Assumption 1 (Correctness of the KB K). Every fact that appears in the
KB K also appears in the ideal KB W : K ⊆ W .

This assumption basically says that the KB does not contain wrong state-
ments. This is a strong assumption, which may not hold in practice [78, 23].
However, we use it here mainly for our theoretical model. Our experiments
will show that our method works even if there is some amount of noise in the
data. We make a second assumption:

Assumption 2 (Class Hierarchy of the KB K). The classes of the KB K are
correct and complete, i.e., CK = CW .

Again, this is a strong assumption that we use mainly for our theoretical
model. In practice, three types of problems can appear. First, an instance

111

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

can belong to a wrong class in the knowledge base. Second, an instance may
be tagged with a too general class (e.g., Macron belongs to Person, but not
to President). Finally, a class may be missing altogether (such as Sciences-
PoAlumni for Macron). These problems impact our method, as we discuss in
Section 7.6.5. However, for Wikidata, the class system that we use appears
sufficiently complete and correct to make our method work. For YAGO, the
data is known to be highly accurate [78], and furthermore, the Wikipedia
categories are included in the class hierarchy. This makes the hierarchy
sufficiently complete for our method to work. In DBpedia, in contrast, each
instance is tagged with only one class. This results in so much incompleteness
that our method cannot work. For example, in DBpedia, the proportion of
singers who wrote a song is higher than the proportion of song-writers who
wrote a song. This indicates that many singers should actually (also) be
tagged as song-writers – which they are not.

Assumption 2 allows us to omit the subscript from the classes from now
on. With Assumptions 1 and 2, we can already show:

Proposition 7.4.1 (Upper bound for Confidence). Under Assumptions 1
and 2,

conf(C ⊆ pK) ≤ conf(C ⊆ pW)

for any KB K, any class C, and any property p.

This proposition holds because Assumption 1 tells us that x ∈ pK implies
x ∈ pW . Furthermore, Assumption 2 tells us that the classes of K are the
classes of W .

7.4.4 Random sampling model

Our method assumes that the incompleteness of the KB is evenly distributed.
More formally, let us consider the space of all possible KBs under Assump-
tion 1. These are Ω = 2W . We assume a probability distribution P(·) over
this space. Given a property p and instances s, o, the statement p(s, o) ∈ K
becomes a boolean random variable defined on a KB K, and we denote it
by p(s, o). In the same way, the expression |pK ∩ C| becomes a numerical
random variable defined on a KB K, and we denote it by |p ∩ C|. Likewise,
conf(C ⊆ pK) becomes a numerical random variable, and we denote it by
conf(C ⊆ p). We constrain P(·) by the following assumption:

Assumption 3 (Random sampling). On the space of all KBs in Ω = 2W ,
there exists a probability lp for each property p such that:

∀x, y.P(p(x, y)) =

{
lp, if p(x, y) ∈ W
0, otherwise

112

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

The second case follows from Assumption 1. The first case states that facts
with the property p in our KB come from a uniform random sampling of all
true facts with property p in the real-world.

Several factors can thwart this assumption. First, the KB may be biased
towards popular instances. For example, Wikipedia contains more informa-
tion about American actors than about Polish actors, and people magazines
are more concerned about the extra-marital affairs of actors than about the
affairs of an architect. Thus, any KB that extracts from these sources will
be biased. Second, the information extraction itself may have a bias. For
example, several information extraction methods feed from the Wikipedia
infoboxes. These infoboxes come in a number of pre-defined templates, and
these templates define the properties. This entails that the presence or ab-
sence of a property in the KB depends on whether the instance happens to
belong to an infobox template that defines this property or not. That said,
making such simplifying assumptions about the probability distribution of
facts is not unusual [19, 45, 61]. Our experiments will show that our model
works also in cases where this assumption is violated to some degree.

We constrain P(·) further by adding in the PCA (Equation A.2).

Assumption 4 (PCA). On the space of all KBs in Ω = 2W , P(K) = 0 if
there exists a property p (which is not an inverse) and instances x, y, y′ with
p(x, y) ∈ K, p(x, y′) /∈ K and p(x, y′) ∈ W .

The PCA is a common assumption for the KBs we consider [31, 19]. It has
been experimentally shown to be correct in a large number of cases [30].
Again, we need the PCA mainly for our model. Our experiments will show
that our method gracefully translates to scenarios where the PCA does not
hold for all properties. In particular, our method is robust enough to work
also with the inverses of properties, for which the PCA usually does not hold.
In the appendix, we prove:

Theorem 7.4.2 (Random sampling under PCA). Under Assumptions 3
and 4, for each property p with probability lp (as given by Assumption 3),

∀x : P(∃y : p(x, y)) =

{
lp, if x ∈ pW
0, otherwise

Theorem 7.4.2 tells us that the truth value of ∃y : p(x, y) ∈ K for an instance
x in a KB K can be seen as a random draw of a Bernoulli variable with a
parameter lp. This allows us to derive

|p ∩ C| ∼
∑

x∈c,x∈pW

Bernoulli(lp) = Binom(|pW ∩ C|, lp)

113

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

This allows for the following proposition.

Proposition 7.4.3 (Biased estimator). The confidence of a generalization
rule in Ω follows a binomial distribution divided by a constant:

conf(C ⊆ p) ∼ Binom(|C ∩ pW |, lp)
|C|

Hence, the expected confidence of the rule in Ω is a biased estimator for the
confidence of the rule in W :

E[conf(C ⊆ p)] = lp × conf(C ⊆ pW)

This proposition confirms that, in our model, the confidence of C ⊆ pW
cannot be estimated from the data in our KB alone, as long as lp remains
unknown. The proposition also allows us to predict the behavior of Baseline
2 with parameter θ (see again Section 7.4.1). For a predicate p, if θ > lp,
then the baseline is less likely to find all the correct classes for the predicate
p, but the classes it finds have a high probability of being correct. We show
in the appendix:

Proposition 7.4.4 (Unbiased estimator). Given two classes C,D and a
property p, the expected confidence of C ∩ p ⊆ D in Ω is an unbiased esti-
mator for the confidence in W :

E[conf(C ∩ p ⊆ D)] = conf(C ∩ pW ⊆ D)

This proposition finally establishes a link between the (expected) observed
confidence in our KB and the confidence in the real world.

7.5 Algorithm

In this section, we first define our main indicator score for obligatory at-
tributes. We then present our algorithm and propose some variations of this
algorithm.

7.5.1 Confidence Ratio

Our main indicator score for obligatory attributes is defined as follows:

Definition 7.5.1 (Confidence ratio). Given a KB K, a property p, and two
classes C and C ′ with |C ∩ C ′| 6= 0 and |C \ C ′| 6= 0, the confidence ratio is

sKp (C,C ′) =
conf(C \ C ′ ⊆ pK)

conf(C ∩ C ′ ⊆ pK)

114

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

This expression compares the ratio of instances with p in C ∩C ′ to the ratio
of instances with p in C \C ′. It represents the influence of being in the class
C ′ for the instances of a class C on p. This ratio is similar to the relative
risk that is used in clinical tests. We can now make the following observation
(which we prove in the appendix):

Proposition 7.5.2 (Main observation). If p is an obligatory attribute for
some class C, then for every class C ′ with |C ∩ C ′| 6= 0 and |C \ C ′| 6= 0,

E[sp(C,C
′)] = 1

Here, sp(C,C
′) is a random variable, and hence does not carry the K. The

observation tells us that the density of p in C should not be influenced by
C ′ if p is obligatory for C. The probability of a KB where C ′ influences p is
low in our probability space.

Measure instability. Our confidence ratio estimate will suffer from in-
stability when the expected number of instances with a property p in an
intersection is inferior to 1. In that case, there might be no instance with
the property p in the intersection, and the confidence ratio will be infinite.
In practice, this happens in small intersections for highly incomplete prop-
erties. Therefore, we decide to consider only stable classes. Given a class C
and a property p in a KB K, an intersecting class C ′ is stable if either the
expected number of instances (conf(C ⊆ pK)×|C∩C ′|) or the actual number
(|C ∩ C ′ ∩ pK |) is at least 1. The same has to hold for class differences.

7.5.2 Algorithm

Proposition 7.5.2 allows us to make statements about a generalization rule
C ⊆ pW in the real world purely by observing an incomplete knowledge
base K. All we have to do is to check the classes C ′ that intersect with the
class C. If the ratio of instances of pK in C ∩ C ′ is very different from the
ratio in C \ C ′, then it is very unlikely that C ⊆ pW holds. Furthermore, if
sKp (C ′, C) � 1, then p cannot be obligatory for C ∩ C ′. Thus, it cannot be
obligatory for C and C ′.

These considerations give us Algorithm 6. This algorithm takes as input
a KB K, a class C, and a property p. The algorithm also uses two thresholds:
θ is the margin that we allow sKp to deviate from 1. The larger the threshold,
the more obligatory attributes the algorithm will find – and the more likely it
is that some of them will be wrong. The threshold θ′ is the minimum support
allowed for the rule C ⊆ p to be considered. In practice, we set θ′ to 100, as
in AMIE [31]. Our algorithm returns false if the generalization rule C ⊆ pW

115

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

should be rejected – either because the support is too small (Lines 1-2), or
because there is a stable intersecting class C ′ with sKp (C,C ′) 6= 1 (Lines 4-5),
or sKp (C ′, C) � 1 (Lines 6-7). If neither is the case, the algorithm returns
true.

Caveat. Our algorithm will return true if it finds no reason to reject a class.
This, however, does not necessarily mean that the attribute is obligatory in
this class. In particular, our algorithm may perform poorly if there is no
class where the attribute is obligatory. However, our experiments show that
despite this caveat, the method works well in practice.

Algorithm 6: ObligatoryAttribute

Input: KB K, class C, property p, threshold θ,
threshold θ′ = 100

Output: true if C ⊆ pW is predicted
1 if |C ∩ pK | < θ′ then
2 return false

3 for stable class C ′ do
4 if |log(sKp (C,C ′))| > log(θ) then
5 return false

6 if log(sKp (C ′, C)) > log(θ) then
7 return false

8 return true

Example. Consider again the example in Figure 7.3. On this example, we
obtain:

smarriedTo(All ,Children) = +∞

Thus, our algorithm will reject the hypothesis that marriedTo is be obligatory
for the class Children or for the entire KB. Now consider the exemple in
Figure 7.2, we have:

smarriedTo(All ,Paris) = 0.8

Since this value is closer to 1, we understand that to be married hardly
depends on the fact of being Parisian or not. But when we compare the
inhabitants of Paris with the Adults:

smarriedTo(Paris ,Adult) = 0

116

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

We deduce that not all Parisians are married. We need to consider every
other intersection in order to conclude for the class Adult, for example we
have:

smarriedTo(Adult ,Paris) = 0.66

7.5.3 Variations

Relaxation. In practice, classes in a KB intersect only in small areas.
Thus, when sKφ (C,C ′) � 1, we decided to reject only C ′. In this relaxed
variant, the condition in Line 4 of Algorithm 6 becomes log(sKp (C,C ′)) <
−log(θ).

Fisher’s Exact Test. We also experimented the Fisher’s Exact Test [27]
instead of the confidence ratio. We replace the logarithm of the confidence
ratio s in Line 4 of Algorithm 6 by the probability that C ∩ C ′ has higher
values, and in Line 6 with the probability that it has lower values over the
set of possible contingency tables with fixed marginals.

7.6 Experiments

In this section, we evaluate our approach experimentally on large real-world
KBs. We first evaluate our approach on YAGO, a KB for which we know that
our Assumptions 1 and 2 hold by and large. Then, we submit our approach
to a stress test: We run it on Wikidata, where less is known about our
assumptions. Finally, we investigate how our approach could be generalized
to composite classes.

7.6.1 Datasets

YAGO. We chose the YAGO3 knowledge base [50] for our experiments,
because the data is of good quality (Assumption 1) and the taxonomy is ex-
tensive (Assumption 2). We use the facts of all instances, the full taxonomy,
and the transitive closure of types. With this, our dataset contains more
than 5 million instances and around 54,000 classes with more than 50 (direct
or indirect) instances.

Wikidata. As a stress-test, we also evaluated our approach in Wikidata,
where less is known about our Assumptions 1-4. We used the version from
2017-06-07, which contains more than 16,000 properties. This makes a man-
ual evaluation impractical. Hence, we reduced the dataset to only people.

117

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

However, all people are in only one class: Human. Therefore, we used the oc-
cupation property (P106) to define classes. For example, in Wikidata, Elvis
Presley (Q303) has the occupations FilmActor, Actor, Singer, Screenwriter,
Guitarist and Soldier. These occupations form their own hierarchy, which
we use as class hierarchy. For example, FilmActor is a sub-occupation of
Actor, and thus becomes a subclass of it. This subset of Wikidata contains
1023 classes, around 1.6 million instances, and 2569 properties.

7.6.2 Gold Standard

Since our problem is novel, there is no previously published gold standard for
it. Therefore, we had to construct a gold standard manually. For YAGO, we
considered 68 properties (37 properties and their inverses), we determined
the classes where more than 100 instances have the property, and we manu-
ally evaluated whether the attribute is obligatory or not. For Wikidata, we
randomly selected 100 properties, and evaluated the output of each method
manually. Our manual evaluation gives us an estimate for precision. Since
Baseline 3 has a recall of 100% at maximal θ, we can use it to estimate our
recall.

It is not always easy to determine manually whether an attribute is oblig-
atory. For example, consider the attribute isAffiliatedTo. Is it obligatory for
an artist to be affiliated to a museum, for a football player to be affiliated to
a football club, or for people in general to be affiliated to their relatives? For
our gold standard, we restricted ourselves to cases where we could clearly
establish whether an attribute is obligatory or not, and removed all other
cases.

Another problem arises for classes where the huge majority of instances
have a particular attribute. For example, should we discard hasNationality
as an obligatory attribute for Person because there exist stateless people?
In such cases, we decided that the absence of the attribute is an excep-
tion to the rule that our method should not predict. Hence, we considered
hasNationality obligatory. A related problem is that an attribute may not
necessarily be obligatory for a class, but that de facto all instances have it.
For example, we expect all instances of the class RomanEmperor to be dead
by now, but what if a renewed Roman empire arises in the future? In such
cases, we considered an attribute obligatory if de facto all known instances
have it.

We constructed our gold standard according to these principles, and refer
the reader to [71] for a more detailed discussion of such evaluations. All our
datasets, as well as the gold standard and the evaluation results, are available
at https://suchanek.name/work/publications/www-2018-data.

118

https://suchanek.name/work/publications/www-2018-data

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

7.6.3 Evaluation Metric

The most intuitive way to evaluate the prediction of obligatory attributes
would be to consider each predicted pair of a class and an attribute, and to
compare this set to the gold standard. However, this comparison would not
take into account the size of the class. For example, it is more important
to predict that all organizations have a headquarters than that all Qatari
ski champions have a gender, because there are many more of the former
than of the latter. However, weighting each class by the number of instances
causes another problem. Consider, e.g., the classes Man and Woman, which
partition the class Person in our data2. If we predict that an attribute is
obligatory for Man and for Woman, but not for Person, we would obtain a
recall of only 50% – even though we predicted the attribute correctly for all
instances.

To mitigate this problem, we compare, for each class C and for each
property p, the actual set of predicted instances with the instances in the
gold standard, i.e., we compare

Pp = {x ∈ c|c ⊆ pW predicted by our algorithm}

with

Gp = {x ∈ c|c ⊆ pW in the gold standard}

The true positives are the instances in the intersection of these sets. Then
we compute the precision and recall as follows:

precision =

∑
p |Pp ∩Gp|∑

p |Pp|

recall =

∑
p |Pp ∩Gp|∑

p |Gp|

The F1-measure is computed as the harmonic mean of these.

7.6.4 YAGO Experiment

We ran all three baselines (Section 7.4) as well as our approaches (Section 7.5)
on our YAGO dataset. Figure 7.4 shows the recall over the precision for each
approach, with varying threshold θ.

2We are talking about a property of our data, not about genders in the real world.

119

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Baseline 1. Recall that this baseline (inspired by [83]) labels an attribute
as obligatory in a class, if all instances of the class have this attribute in the
KB. This baseline performs like Baseline 2 at θ = 1. Unsurprisingly, it has
a very good precision, but a very bad recall: Only very few attributes (such
as label) appear on all instances.

Baseline 2. This baseline relaxes Baseline 1 by labeling an attribute as
obligatory if it is very prevalent in the class. For smaller θ, this method has
a better recall than Baseline 1. However, it cannot exceed an F1 value of
45%. This is because there is no global threshold θ that would work well for
all attributes. The baseline will work better if the KB is more complete. At
the same time, the more complete the KB is, the less novel information there
is to predict.

Baseline 3. This baseline (inspired by [6]) considers an attribute obliga-
tory for a class if the vast majority of instances with that attribute fall in
that class. The somewhat unusual curve comes from the fact that the base-
line chooses the deepest class in the taxonomy where the target rule holds.
While the method achieves slightly better F1 values (55%), its precision never
exceeds 42%.

Confidence Ratio (Strict). This is our approach, based on the ratio of an
attribute in a class and its intersections with the other classes (Algorithm 6).
Different from Baseline 2, it delivers a very high precision (always > 80%) –
at the expense of somewhat lower recall. The best F1 measure is 37%.

Confidence Ratio (Relaxed). The relaxed variant of our method is less
conservative. It trades off precision for higher recall. Indeed, we see that
recall increases steadily with growing θ, while precision decreases gently.
This allows for very good trade-offs between the two, with the maximum F1
value easily surpassing 55%. It is thus our method of choice.

Fisher’s Test. This variation of our approach aims to make the Confidence
Ratio less vulnerable to small data sizes. This is indeed what happens.
However, the method errs on the side of caution: it has a very good precision
(always > 90%), but a mediocre recall. Hence, the best F1 value is quite
low (12%). To increase this recall, the significance level of this test would
have to be increased by a factor of several orders of magnitude, which would
defy its purpose. The method should thus be seen as a stable, but inherently
precision-oriented method.

120

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Comparison. Figure 7.5 plots precision and recall for each of the methods
across the spectrum of parameter values.3 Baseline 3 achieves the highest
recall. However, its precision never exceeds 42%, which makes the method
unusable in practice. On the other side of the spectrum, Baseline 2 offers very
good precision – but it cannot achieve good recall. Our relaxed confidence
ratio occupies a sweet spot between the two: a precision between 75% and
95%, at a recall of 45% and 10%, respectively. It thus dominates the other
methods in the mid-range between good recall and good precision.

Completeness of the attributes. By identifying classes in which an at-
tribute is obligatory, our method identifies the entities that should have this
attribute. If we compute the proportion of these entities that actually have
the attribute in the data, we get an approximation of the completeness of
the data. Table 7.1 shows the estimated completeness of the data according
to different methods: the gold standard, Baseline 2 at different thresholds,
and our method at different thresholds. We show 3 attributes that are oblig-
atory in certain classes, and the deviation from the gold standard across all
attributes. The small deviation for our method shows that we can approxi-
mate the real completeness quite well.

We can now also algorithmically answer the question raised in the intro-
duction of our approach: No, not all people are married (in the real world).
Our method finds that isMarriedTo is an optional attribute for the class
Person. However, marriage is obligatory for the classes Spouse and Royal-
Consort.

Table 7.1 – Approximation of completeness of attributes

Baseline 2 CR (Relaxed)
Attribute Gold Standard 0.5 0.9 1.5 3

hasGender 0.58 0.51 0.91 0.79 0.58
wasBornIn 0.14 0.47 0.93 0.46 0.25
isMarriedTo 0.57 0.51 0.93 0.59 0.23
Avg-Squared error to GS (all p) 0.21 0.59 0.17 0.08

7.6.5 Wikidata Experiment

As a stress test, we also evaluated our method on Wikidata, where less is
known about our assumptions. Figure 7.6 shows our results. We first note

3Different values for θ can give the same combination of precision and recall, whence
the “loop” of Baseline 3.

121

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

that all methods exhibit a similar behavior to the YAGO experiment. Base-
line 3 has high recall, low precision (< 55%) and remains unstable. Base-
line 2 performs well, with a precision of 97% and a recall of 33% for threshold
θ = 0.7. This indicates that some of the properties in our data are already
highly complete. Our method performs similarly to Baseline 2 in the preci-
sion range of 97%. However, in precision range of 93%, it has a higher recall
than Baseline 2.

7.6.6 Artificial Classes

In the following two experiments, we investigate how our algorithm performs
on artificially constructed classes. For this purpose, we constructed classes
that depend on the facts in our KB. Since the facts are incomplete, these
classes are incomplete, too, and Assumption 2 no longer holds.

Life Expectancy. We construct artificial classes for all people born before
a certain decade t:

Ct = {x|∃y : birthDate(x, y) ∧ y < t}

These classes form a taxonomy:

Ct ⊆ Ct+10

In this way, we generated the classes Ct for t = 1700, 1710, ..., 2020 in YAGO.
We can now mine obligatory attributes also on these artificial classes. In
particular we mine the generalization rule

Ct ⊆ deathDateW

Table 7.2 shows the t for which the rule holds, according to our relaxed algo-
rithm. We see that for a conservative θ < 3 (which delivered high precision
also in the previous experiments), we get again very good estimates for t. As
θ increases, our method starts to believe that all people (even younger ones)
should have a death date – as expected. This experiment shows that our ap-
proach has the potential to mine obligatory attributes even on intensionally
defined classes.

Cardinality experiment. To expand even more on the effect of using
intensionally defined classes, we ran our algorithm while considering every
star pattern of the form {pn} as a class. We use the fact that {pn+1} ⇒ {pn}
to define an induced taxonomy.

122

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table 7.2 – Some results of the Life expectancy experiment

θ up to: 1.3 2.5 5.0 9.5 10 20 30

t mined: 1920 1930 1940 1950 1960 1970 1980

Table 7.3 – Results of the Cardinality experiment

Attribute is obligatory for . . .

wasBornIn
created80

playsFor14

isMarriedTo
hasChild8

actedIn49

hasChild
isMarriedTo3

actedIn24

We added these classes to YAGO and we ran our algorithm with a small
modification: for an attribute p, we never considered any class pn for the
intersections. In the end, our algorithm with threshold θ = log(3) outputs
248 rules with those items.

As a result, the additional classes exacerbated the tendency our approach
has to overfit (exemplified in Table 7.3). Some examples look reasonable, for
example someone married thrice can be expected to have a child (compared
to newly weds for example) but other results look odd, for example someone
should be born if he created at least 80 items. This is because, to output this
rule, our algorithm have rejected the rule that every person that created less
than 79 items must have been born as well. Overfitting is a double-edged
sword, allowing our algorithm to be precise, but at the expense of the recall
when the classes are too specific.

7.7 Conclusion

In this chapter, we have introduced the general problem of mining obligatory
attributes from knowledge bases. This is the problem of determining whether
all instances of a given class have a given attribute in the real world – while
all we have at our disposal is an incomplete KB. We have developed a new
way to model the incompleteness of a KB statistically. From this model, we
were able to derive the necessary conditions for obligatory attributes. Based
on this, we have proposed an algorithm that can mine such attributes with
a precision of up to 92%.

123

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parameter

Baseline 2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parameter

Baseline 3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.5 2.0 3.0 5.0 10.0
Parameter

Confidence Ratio (Strict)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.5 2.0 3.0 5.0 10.0
Parameter

Confidence Ratio (Relaxed)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.001 0.01 0.05 0.1
Parameter

Fisher test

Measure
Precision
Recall
F1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parameter

Baseline 2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parameter

Baseline 3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.5 2.0 3.0 5.0 10.0
Parameter

Confidence Ratio (Strict)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.5 2.0 3.0 5.0 10.0
Parameter

Confidence Ratio (Relaxed)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.001 0.01 0.05 0.1
Parameter

Fisher test

Measure
Precision
Recall
F1

Figure 7.4 – Influence of θ on precision, recall and F1 for the different clas-
sifiers. Baseline 1 is Baseline 2 for parameter θ = 1.

124

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision

R
ec

al
l

Classifier
Confidence Ratio (Relaxed)
Baseline 2
Baseline 3
Confidence Ratio (Strict)
Fisher test

Figure 7.5 – Precision and Recall on YAGO

125

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision

R
ec

al
l

Classifier
Confidence Ratio (Relaxed)
Baseline 2
Baseline 3
Confidence Ratio (Strict)
Fisher test

Figure 7.6 – Stress test: Precision and Recall on Wikidata

126

Chapter 8

Conclusion

8.1 Summary

In this thesis, we introduced novel approaches and optimizations designed
to speed up the process of rule mining on large Knowledge Bases. We de-
veloped and presented two algorithms to demonstrate the efficiency of those
optimizations on real datasets: the AMIE 3 algorithm (the successor of the
exact rule mining algorithm AMIE+) and the Pathfinder algorithm, a novel
algorithm specialized in mining path rules. These two algorithms are exhaus-
tive with regard to the parameters provided by the user, compute the quality
measures of each rule exactly and scale to large KB and longer rules.

Rule Mining. In Chapter 2 we presented the task of rule mining as an
Inductive Logic Programming problem and described multiple rule mining
algorithms that apply on Knowledge Bases. Among them was the exact rule
mining algorithm AMIE+, which use a pruning heuristic to speed up the
processing of large KBs at the cost of the completeness of the result.

In Chapter 3, we improved the method that AMIE uses to compute the
quality metrics of the rules. We introduced the lazy strategy, some query
optimizations and more efficient data structures. These optimizations make
the pruning heuristic obsolete and make AMIE 3 exhaustive once again. In
our experiments, AMIE 3 is around 50× faster than its predecessor AMIE+
on some datasets (Yago2s or DBPedia 3.8) and scales to large KBs that were
previously beyond reach.

Pruning the search space. In Chapter 4, we decomposed the rules into
star patterns and outlined that every star pattern of a rule must be satisfiable
for the rule to be satisfiable. We discussed how to extract all satisfiable star

127

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

patterns of a KB and introduced the compatibility condition that decides if
a set of star patterns can be combined into a rule. However, we also showed
that the combinatorial problem of enumerating every compatible set of star
patterns can be seen as a zero sum subset problem, which is NP-complete.

Path Rule Mining. In Chapters 5 and 6, we aimed to mine every closed
path rule from a KB. We introduced two increasingly refined algorithms
to solve this problem: the Pathfinder Vanilla algorithm and the (Full)
Pathfinder algorithm.

In Chapter 5, we showed that the shape of the path rules and of the
of star patterns (introduced in Chapter 4) allows us to design a refinement
operator for both algorithms that does not produce any duplicate rule and
that efficiently prunes unsatisfiable rules early.

In Chapter 6, we discussed how data can be reused between a rule and
its refinements to speed up the computation of the quality measures or avoid
unnecessary computations. In particular, the Pathfinder algorithm main-
tains the set of possible values of the variables of a rule and the bounds on
the iterated provenance1 between a rule and its refinements. In our experi-
ments, we showed that the overhead of computing the additional information
is usually compensated by the efficient pruning of the propagated bounds and
the improved computation of the quality measures, making the Pathfinder
algorithm faster than AMIE on most datasets. This is particularly notice-
able when mining longer rules: the Pathfinder algorithm is capable of mining
every rule of length 4 within one hour on datasets where this task was pre-
viously intractable, and it can scale even further and mine even longer rules
at incredible speed.

Mining rules about the real world. In Chapter 7, we presented a novel
approach to mine rules about the real world from an incomplete KB. In par-
ticular, we addressed the problem of mining automatically which attribute
should be obligatory for a class, such as “every singer should sing”. We in-
troduced a statistical model of incompleteness, the random sampling model
and presented two signals in this model: the “spread” and the “amplifica-
tion”. We translated these signals in a new metric, the confidence ratio, used
to discriminate if an attribute is obligatory in a class or not. In our exper-
iments, the confidence ratio is capable of identifying obligatory attributes
with a precision of up to 90% in Yago and Wikidata.

1or the iterated provenance itself depending on the strategy used

128

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

8.2 Outlook

We describe here an outlook of broader directions in continuation of this
thesis.

Query optimization. Most of the optimizations on the computation of
the quality measures we proposed in this thesis rely on some particularities
of the rule mining process (laziness, data reusage between multiple rules).
However, it would be interesting to study how the optimizations and sub-
tleties introduced in this thesis can carry over to other databases, other
systems or more generally to the field of query optimization.

Rule and Oracle. In Section 3.2.3, we described a limitation of the PCA
Confidence when it comes to make prediction with a rule having a functional
head relation. For example, the rule:

hasChild(z, x) ∧ politicianOf(z, y)⇒ politicianOf(x, y)

would predict that every child of a politician is a politician. A solution of this
problem would be to make a prediction only when we know that the child
of a politician is also politician. We model this using an oracle capable of
deciding whether any child x should have the attribute politicianOf or not,
i.e an oracle deciding for every entity E of the KB if this entity E has the
attribute politicianOf in the real world or not.

Using this oracle, we would be able to use the rules to make predictions
only on incomplete portions of the KB and as such this approach solves the
problem of the PCA confidence. However, the problem is now on how to
design such an oracle. In an unpublished experiment, we built an oracle
using the obligatory attributes mined in Chapter 7, but the results where
inconclusive as the the obligatory condition is too restrictive for the task.

The completeness information mined in [29, 81, 54, 69] or a model based
on KB embeddings could be used to built such an oracle. Note that the
idea of using completeness information to reduce the scope of the predictions
is already used in [29] and introduced in [81]. However, it has never been
properly formalized, as we propose here, using two distinct objects: a rule
and an oracle. We believe that this representation is clearer and more flexible.

Comparative Rule Mining. In order to mine obligatory attributes in a
KB, we used in Chapter 7 a comparative approach that can be described
as: “what characterizes best people who sing: being a singer or being a gui-
tarist?”. This comparative analysis allows to discriminate mere correlations

129

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

(the guitarist who sings because he is also a singer) from interesting rules.
We investigated, during this thesis, how to push this analysis further, using
more complex tools such as decision trees. This approach was not conclusive
as the more selective the approach was, the harder it became to distinguish
the features from the noise.

An approach to overcome this obstacle would be to construct some sort
of “null model” of the KB to compare to. In other words, to generate a
random KB that shares some statistical properties with the original KB.
These statistical properties are yet to be defined, but we believe that the
study of KB sampling techniques might provide some directions.

8.3 Conclusion

The Semantic Web has quickly become a constellation of large and intercon-
nected entity-centric Knowledge Bases. These KBs contain domain-specific
knowledge that can be used for multiple applications such as question an-
swering or automatic reasoning. But in order to take full advantage of this
data, it is essential to understand the schema and the patterns of the KB. A
simple and expressive manner to describe the dependencies in a KB is to use
rules. Thus it is crucial to be able to perform rule mining at scale.

With this thesis, we have made a step towards this objective. We pro-
posed novel approaches to improve rule mining and new algorithms that
efficiently process large KBs without resorting to sampling or approxima-
tions. With this, we provide tools for data scientists to understand, exploit
and complete this interconnected knowledge. We hope this work will help
analyze complex and momentous datasets, such as KG-Covid19, carry over
to connected fields such as query optimization, and give rise to new prospects
in the study of Knowledge Bases and their completion.

130

Appendix A

Computation of Support and
Confidence

Notation. Given a logical formula φ with some free variables x1, . . . , xn,
all other variables being by default existentially quantified, we define:

#(x1, . . . , xn) : φ := |{(x1, . . . , xn) : φ(x1, . . . , xn) is true}|

We remind the reader of the two following definitions:

Definition 2.3.4 (Prediction of a rule). The predictions P of a rule ~B ⇒ h
in a KB K are the head atoms of all instantiations of the rule where the body
atoms appear in K. We write K ∧ (~B ⇒ h) |= P .

Definition 2.3.9 (Support). The support of a rule in a KB is the number
of positive examples predicted by the rule.

A prediction of a rule is a positive example if and only if it is in the KB.
This observation gives rise to the following property:

Proposition A.1 (Support in practice). The support of a rule ~B ⇒ h is the

number of instantiations of the head variables that satisfy the query ~B ∧ h.
This value can be written as:

support(~B ⇒ h(x, y)) = #(x, y) : ~B ∧ h(x, y)

Definition 2.3.10 (Confidence). The confidence of a rule is the number of
positive examples predicted by the rule (the support of the rule), divided by
the number of examples predicted by the rule.

Under the CWA, all the predicted examples are either positive examples
or negative examples. Thus, the standard confidence of a rule is the support

131

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

of the rule divided by the number of prediction of the rule, written:

std-conf(~B ⇒ h(x, y)) =
#(x, y) : ~B ∧ h(x, y)

#(x, y) : ~B
(A.1)

Assume h is more functional than inverse functional. Under the PCA, a
predicted negative example is a prediction h(x, y) that is not in the KB, such
that, for this x there exists another entity y′ such that h(x, y′) is in the KB.
When we add the predicted positive examples, the denominator of the PCA
confidence becomes:

#(x, y) : (~B ∧ h(x, y)) ∨ (~B ∧ ¬h(x, y) ∧ ∃y′.h(x, y′))

We can simplify this logical formula to deduce the following formula for
computing the PCA confidence:

pca-conf(~B ⇒ h(x, y)) =
#(x, y) : ~B ∧ h(x, y)

#(x, y) : ~B ∧ ∃y′.h(x, y′)
(A.2)

132

Appendix B

Number of items per relation

133

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table B.1 – Maximal multiplicity of relations in Yago2

Relation Star1(K) Star10(K) Star50(K)

actedIn 246 116 62
actedIn−1 22 18 14
created 325 196 101
created−1 22 14 9
dealsWith 12 8 6
dealsWith−1 67 19 2
diedIn 1 1 1
diedIn−1 951 227 59
graduatedFrom 1 1 1
graduatedFrom−1 372 110 42
hasAcademicAdvisor 2 2 2
hasAcademicAdvisor−1 15 10 5
hasMusicalRole 11 9 6
hasMusicalRole−1 2 646 251 12
isAffiliatedTo 3 1 0
isAffiliatedTo−1 6 1 0
isLocatedIn 2 2 2
isLocatedIn−1 8 652 1 074 476
isMarriedTo 7 5 3
isMarriedTo−1 9 5 3
livesIn 7 5 4
livesIn−1 297 135 40
· · · · · · · · · · · ·
Number of multiplicity items 23 969 4 410 1 388

134

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Table B.2 – Number of instantiated items per relation in Yago2

Relation Star1(K) Star10(K) Star50(K)

actedIn 33 844 530 0
actedIn−1 22 984 2 720 94
created 156 244 44 0
created−1 46 156 4 757 283
dealsWith 107 17 1
dealsWith−1 122 4 0
diedIn 3 234 366 66
diedIn−1 22 156 0 0
graduatedFrom 1 717 274 36
graduatedFrom−1 11 875 0 0
hasAcademicAdvisor 1 118 10 0
hasAcademicAdvisor−1 1 881 0 0
hasMusicalRole 151 53 27
hasMusicalRole−1 5 667 5 0
isAffiliatedTo 15 0 0
isAffiliatedTo−1 20 0 0
isLocatedIn 46 142 1941 549
isLocatedIn−1 211 178 0 0
isMarriedTo 11 004 0 0
isMarriedTo−1 10 547 0 0
livesIn 4 409 240 31
livesIn−1 10 930 0 0
rdf:type 280 979 92 697 22 208
rdf:type−1 2 467 341 1 270 526 1 024
· · · · · · · · · · · ·
Number of instantiated items 3 838 590 1 377 867 24 806

135

Appendix C

Compatibility of a set of star
patterns: Algorithm

We recall the compatibility condition:

Definition 4.4.2 (Multiplicity of a signed relation in a star pattern). Given
a star pattern σ, the multiplicity of the signed relation p in σ is defined as:

mult(p, σ) =

{
0 if ∀n > 0 pn /∈ σ
max(n > 0 : pn ∈ σ) otherwise.

Proposition 4.4.3 (Compatibility condition). A multiset of star patterns
L = {σ1, . . . , σn} is compatible if and only if for every signed relation p, there
is a mapping Mp : L→ L such that:

• ∀i ∈ {1, n}, σi has exactly mult(p, σi) images by Mp.

• ∀i ∈ {1, n}, σi has exactly mult(p−1, σi) antecedents by Mp.

Such a mapping defines exactly the atoms with the p relation of the generated
rule. More precisely, if (σi, σj) ∈ Mp then the atom p(ρ(σi), ρ(σj))

1 will be
in the constructed rule.

Using Proposition 4.4.3, this problem can be seen as finding a directed
graph (L,E) given some conditions on the input and output degrees (δin and
δout) of each vertices as represented in Figure C.1. An equivalent problem is
to find a bipartite graph given those restrictions as represented in Figure C.2.

Algorithm 7 is a greedy algorithm that decides the existence of such
bipartite graph for a relation p and a list L of star patterns.

136

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

L Constraints

σ1 •
{
δout(σ1) = mult(p, σ1)
δin(σ1) = mult(p−1, σ1)

σ2 •
{
δout(σ2) = mult(p, σ2)
δin(σ2) = mult(p−1, σ2)

· · · · · ·

σn •
{
δout(σn) = mult(p, σn)
δin(σn) = mult(p−1, σn)

Figure C.1 – Deciding compatibility as a graph existence problem

Constraint L+ L− Constraint

δout(σ
+
1) = mult(p, σ1)

σ+
1

•
σ−1
• δin(σ−1) = mult(p−1, σ1)

δout(σ
+
2) = mult(p, σ2)

σ+
2

•
σ−2
• δin(σ−2) = mult(p−1, σ2)

· · ·

δout(σ
+
n) = mult(p, σn)

σ+
n

•
σ−n
• δin(σ−n) = mult(p−1, σn)

Figure C.2 – Deciding compatibility as a bipartite graph existence problem

Correctness and completeness of algorithm 7. Algorithm 7 returns
True if and only if L is compatible for the relation p.

Proof. If: We must prove that G is a bipartite graph satisfying the con-
straints on the input and output degrees of each nodes. First we prove the
following loop invariant:

Lemma C.1. At the beginning of the loop line 8, the priority p of every
node σ−j in L− is:

mult(p−1, σj)− δin(σ−j)

δin being here the incoming degree of the edges in G at the beginning of
the loop.

Proof of Lemma C.1. On the first execution of the loop, G is empty
(δin(σ−j) = 0) and the priority of each node is mult(p−1, σj).

Suppose the invariant verified at the beginning of the loop, Lines 14 and 15
we add a new edge (σ+

i , σ
−
j) for each node σ−j in t. Every σ−j considered in

137

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

the loop Line 11 are different (as they are pulled from the queue L−) and the
edges added in G are new as we consider a different σ+

i every loop iteration
(pulled from the queue L+). Thus, at the end of the loop Lines 11 to 15, t
contains all the elements σ−j for which we added exactly one new incoming
edge in G. At the end of the second loop, the priority of every element in
L− will be:

mult(p−1, σj)− δ̂in(σ−j)

with:

δ̂in(σ−j) =

{
δin(σ−j) + 1 if one edge towards σ−j was added to G
δin(σ−j) otherwise

�

Suppose our algorithm returned True. First, every node σ+
i in G has

exactly mult(p, σi) outgoing edge as each node is considered exactly once by
the loop Line 8 and the loop Line 11 added exactly m (different) outgoing
edges of σ+

i to G, m being the priority of σ+
i initialized to mult(p, σi) and

unchanged afterwards.

Second, the test Line 20 ensures that the maximal priority of the elements
in L− is 0 and the test Line 13 ensures that the priority of the elements in
L− remain non-negative. Thus, before returning True, the priority of every
node σ−j in L− is 0 and using the Lemma C.1 we have:

∀j ∈ {1, n}, δin(σ−j) = mult(p−1, σj)

Only if: We want to prove that our algorithm will answer True if a mapping
Mp satisfaying Proposition 4.4.3 exists. In order to prove the correctness of
our greedy approach, we need to prove an additional lemma:

Lemma C.2. If a (non-empty) mapping Mp satisfaying Proposition 4.4.3
exists, then there is mapping M ′

p satisfaying Proposition 4.4.3 that maps the
star pattern with maximal multiplicity in p to the star pattern of maximal
multiplicity in p−1.

Proof of Lemma C.2. Let σ+
i and σ−j be the star patterns with maximal mul-

tiplicity in p and p−1 respectively. Suppose there is a non-empty mapping
Mp satisfaying Proposition 4.4.3 such that (σ+

i , σ
−
j) /∈ Mp. σ

−
j has at least

one antecedent σ+
k by Mp. As σ+

i has the highest multiplicity in p, there is
an element σ−k′ in the image of σ+

i by Mp that is not in the image of σ+
k by

Mp. Written formally:

138

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

|Mp(σ

+
i)| ≥ |Mp(σ

+
k)|

(σ+
i , σ

−
j) /∈Mp

(σ+
k , σ

−
j) ∈Mp

⇒ 2 ∃σ−k′
{

(σ+
i , σ

−
k′) ∈Mp

(σ+
k , σ

−
k′) /∈Mp

Then we pose:

M ′
p = Mp \ {(σ+

k , σ
−
j), (σ+

i , σ
−
k′)} ∪ {(σ

+
i , σ

−
j), (σ+

k , σ
−
k′)}

M ′
p satisfies Proposition 4.4.3 as overall the number of images and an-

tecedents of each star pattern is unchanged compared to Mp and M ′
p maps

σ+
i to σ−j . �

Using the same reasoning, we can find a map M ′
p satisfaying Proposi-

tion 4.4.3 that maps σ+
i with the mult(p, σ) elements with maximal multi-

plicity in p−1. Once we have mapped σ+
i , we end up with the equivalent

problem of finding a mapping M ′
p : L \ {σ+

i } → L such that ∀i ∈ {1, n}, σi
has exactly mult(p−1, σi)− δin(σi) antecedents by M ′

p. We can use the same
strategy for this sub-problem.

2|A| ≥ |B| ∧ |B \A| > 0⇒ A 6⊆ B ⇒ |A \B| > 0

139

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Algorithm 7: isCompatible

Input: List L = {σ1, . . . , σn}, relation p
Output: True iff L is compatible for the relation p

1 L+ = MaxPriorityQueue()
2 L− = MaxPriorityQueue()
3 G = 〈〉
4 for i = 1 to n do
5 if mult(p, σi) > n or mult(p−1, σi) > n then return False;
6 L+.insert-with-priority(i, mult(p, σi))
7 L−.insert-with-priority(i, mult(p−1, σi))

8 while L+ 6= ∅ do
9 (i,m) = L+.pull()

10 t = List()
11 for k = 0 to m do
12 (j, p) = L−.pull()
13 if p = 0 then return False;
14 G.add((σ+

i , σ
−
j))

// The atom p(ρ(σi), ρ(σj)) is generated

15 t.add((j, p))

16 for k = 0 to m do
17 (j, p) = t.pop()
18 L−.insert-with-priority(j, p− 1)

19 (j, p) = L−.pull()
20 if p = 0 then
21 return True;
22 else
23 return False;

140

Appendix D

Résumé de la thèse en Français

D.1 Position du problème

Lorsqu’on effectue une recherche sur Google ou sur Bing, on obtient une liste
de sites webs en réponse. Mais dorénavant, dans certains cas, on obtient une
réponse structurée. Par exemple, lorqu’on pose la question “Quand est-ce
que Steve Jobs est né ?”, le moteur de recherche nous répond directement le
“24 février 1955”. Si on recherche seulement “Steve Jobs”, on obtient une
petite biographie, sa date de naissance, de mort, un lien vers son épouse et
sa famille. Tout cela est possible parce que le moteur de recherche dispose
de données spécifiques sur les personnes les plus connues. Ces données sont
notamment stockées dans des Bases de Connaissances.

Les bases de connaissances utilisées par les moteurs de recherche utilisent
un modèle entités/relations. Les individus (Steve Jobs), ou plus généralement
n’importe quel objet réel ou imaginable (les Etats-Unis, le Kilimanjaro,
Télécom Paris) sont représentés en tant qu’entités, et les relations entre
les différentes entités sont stockées sous la forme de “faits”. Ces faits sont
des déclarations sujet-verbe-complément simples (telles que : SteveJobs foun-
ded AppleInc, SteveJobs hasWonPrize NationalMedalOfTechnology, etc.).
Les entités sont aussi rangées dans différents catégories appelées “classes
sémantiques”. Par exemple on a les relations : SteveJobs is-a person, Steve-
Jobs is-a entrepreneur, etc.

Cette représentation des connaissances n’est pas nouvelle. Elle s’ins-
pire des avancées des années 80-90 dans le domaine de l’intelligence arti-
ficielle, plus particulièrement, le projet Cyc [47] ou le projet WordNet [24].
À l’époque, ces bases de connaissances étaient crées et maintenues manuel-
lement, mais durant la dernière décennie, de nouvelles bases de connais-
sances ont pu se développer grâce à l’extraction automatique de données.

141

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Des projets tels que KnowItAll [22], ConceptNet [49], DBPedia [46], NELL
[12], BabelNet [67], Wikidata [84] et YAGO [78] contiennent des connais-
sances diverses et variées, en libre accès, maintenus automatiquement ou de
manière collaborative. Les entreprises privées ont ensuite emboité le pas, avec
le développement du Google Knowledge Graph [19] (contenant Freebase [9]),
de Satori (Microsoft), Evi (Amazon), LinkedIn’s Knowledge Graph, et IBM
Watson [26]. Au total, ces bases de connaissances contiennent plusieurs mil-
lions d’entités, organisées dans des centaines de milliers de classes, et des
centaines de millions de faits reliant ces entités. De plus les données de mul-
tiples bases sont reliées entre elles, permettant le croisement d’informations,
et forment ainsi ce qu’on appelle le Web Sémantique [8].

Ces immenses rassemblements de connaissances inter-connectés peuvent
alors être eux-même analysés. Les motifs récurrents et corrélations peuvent
être représentées sous la forme de règles logiques simples. Par exemple, la
règle :

married(x, y) ∧ livesIn(x, z)⇒ livesIn(y, z)

se lisant “Si X et Y sont mariés, et que X vit dans un lieu Z, alors Y vit aussi
dans Z. En d’autres termes, cette règle exprime le fait que deux personnes
mariées vivent généralement au même endroit. À chaque règle est associé un
indice de confiance, un score, permettant de jauger la validité de cette règle.

Les bases de connaissances peuvent donc être analysées pour trouver au-
tomatiquement l’ensemble des règles logiques s’appliquant à cette base. C’est
ce qu’on appelle l’extraction de règles. Plus précisément, les algorithmes d’ex-
traction de règles veulent extraire les règles de meilleure qualité, c’est-à-dire
les règles ayant un indice de confiance élevé, ou supérieur à une valeur définie
par l’utilisateur.

Les règles trouvées ont ensuite plusieurs utilités : Premièrement, elles
peuvent permettrent de compléter les données manquantes d’une base de
connaissances. Par exemple, si on ne connâıt le lieu de résidence d’une
personne, le lieu de résidence de son époux peut être une proposition
intéressante. Deuxièmement, elles peuvent permettre d’identifier des données
erronées ou incomplètes. Si deux époux vivent dans différentes villes, cela
peut indiquer un problème. Enfin, ces règles peuvent être utiles pour d’autres
tâches sous-jacentes, telles que la vérification de faits [2], l’alignement d’on-
tologies [28] ou pour déterminer si les données sont complètes ou non [29].

Néanmoins, la difficulté du problème d’extraction de règle réside dans la
taille exponentielle de l’espace de recherche : chaque relation peut être com-
binée avec n’importe quelle relation pour former une règle, de qualité variable.
C’est pourquoi les premières approches (par exemple AMIE [31]) étaient in-
capables d’analyser de grandes bases de connaissances telle que Wikidata

142

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

en moins d’une journée. Depuis, les bases de connaissances ont continuées à
s’agrandir, et les approches d’extraction de règles se sont multipliées. Cer-
taines approches utilisent l’échantillonnage ou diverses approximations pour
estimer la qualité d’une règle [30, 94, 63, 14]. Plus une approche approxime,
plus elle est rapide, mais moins précis sont ses résultats. Une autre stratégie
courament employée [63, 58, 94, 66] est de limiter la recherche à un sous-
ensemble de règles qui réussisent à prédire un ensemble de faits donné. Cela
permet aussi d’accélérer la recherche, mais ne permet pas de trouver toutes
les règles ayant un indice de confiance élevé de notre base de connaissances.

D.2 Contribution

L’objectif pricipal de cette thèse a été d’étudier et de développer de nou-
velles approches permettant d’extraire efficacement les règles de qualité de-
puis d’énormes bases de connaissances. En particulier, nous avons œuvré à
concevoir un algorithme d’extraction de règles qui calcule de manière exacte
la qualité d’une règle et qui soit exhaustif, c’est-à-dire qui soit capable d’ex-
traire toutes les règles de qualité de nos données. Un tel algorithme, générant
un ensemble complet et exact de règles, deviendrait alors un référentiel pour
d’autres algorithmes d’extraction de règles.

Préliminaires. Dans le chapitre 2 de cette thèse, nous définissons la no-
tion de base de connaissances et expliquons leur principales caractéristiques.
Ensuite, nous introduisons formellement le problème d’extraction de règles
et décrivons les différents algorithmes d’extractions s’appliquant aux bases
de connaissances. Ce chapitre se base notre article de présentation (“tutorial
paper”) :

- Fabian M Suchanek, Jonathan Lajus, Armand Boschin, and Gerhard Wei-
kum. Knowledge representation and rule mining in entity-centric know-
ledge bases. In Reasoning Web. Explainable Artificial Intelligence, pages
110–152. Springer, 2019

AMIE 3. Dans le chapitre 3, nous présentons AMIE 3, une version
améliorée de AMIE+ [30], un algorithme d’extraction de règles. Dans cette
version, nous introduisons de multiples améliorations dans la façon de cal-
culer la qualité d’une règle, permettant à AMIE de redevenir un algorithme
exact et exhaustif d’extractions de règles. Cette nouvelle version est aussi
plus rapide et peut maintenant analyser des bases de connaissances trente
fois plus grande. Ce chapitre est basé sur notre article de recherche :

143

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

- Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. Fast and exact
rule mining with AMIE 3. In European Semantic Web Conference, pages
36–52. Springer, 2020

Réduire l’espace de recherche. La taille exponentielle de l’espace de
recherche demeure un problème lorsque nous voulons utiliser AMIE pour ex-
traire des règles plus complexes, telle que des règles possédant 4 atomes. Dans
le chapitre 4, nous étudions comment la décomposition de règles complexes
en motifs simples pourrait nous permettre d’identifier et d’écarter des règles
impossibles sans avoir à effectuer de longs calculs.

Extraction de règles châınées. Dans le chapitre 5, nous nous concen-
trons sur l’extraction de règles d’une forme particulière, les règles châınées.
Nous montrons que ces règles peuvent être générées de manière unique via
une méthode particulière et que les motifs simples introduits au chapitre 4
peuvent être utilisés pour efficacement réduire l’espace de recherche des règles
châınées. Á partir de ses résultats, nous construisons l’algorithme “Pathfinder
Vanilla”, un algorithme, exact et exhaustif, d’extraction de règles châınées.

Cependant, ce nouvel algorithme calcule la qualité de chaque règle
indépendamment et la plupart des calculs sont donc redondants. Mais dans
un algorithme d’extraction de règles, chaque règle est dérivée d’une règle
parente et les données nécessaires au calcul de la qualité de la règle parente
peuvent être réutilisées pour le calcul d’une règle dérivée. Dans le chapitre 6,
nous utilisons cette stratégie pour accélérer le calcul des mesures de qualité
de toutes nos règles, ainsi que pour déterminer statistiquement des bornes
exactes permettant d’identifier et d’écarter précocément de mauvaises règles.
Enfin, nous présentons l’algorithme “Pathfinder”, une version améliorée de
l’algorithme Pathfinder Vanilla, qui extrait les règles châınées d’une base de
connaissances de manière exacte et exhaustive, plus efficacement que AMIE
sur la plupart des jeux de données. Notre algorithme est d’autant plus ef-
ficace que les règles à extraire sont longues. Ces chapitres sont des travaux
non publiés.

Au-delà des données... Les bases de connaissances représentent nos
connaissances du monde réel mais sont souvent incomplètes. Cela entrâıne
des biais conséquents lors de l’extraction de règles : il est difficile de sa-
voir si une règle extraite est tout le temps vraie ou s’il s’agit d’une simple
corrélation. Néanmoins, ces biais peuvent être analysés statistiquement. Dans
le chapitre 7, nous introduisons un modèle statistique, et un algorithme cor-
respondant, permettant de déterminer les relations obligatoires d’une classe.

144

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Par exemple, notre algorithme est capable de déterminer que tous les chan-
teurs doivent chanter, à partir de nos données, même si celles-ci sont très
incomplètes. Ce chapitre est basé sur notre article de recherche :

- Jonathan Lajus and Fabian M. Suchanek. Are all people married? deter-
mining obligatory attributes in knowledge bases. In WWW, pages 1115–
1124. International World Wide Web Conferences Steering Committee,
2018

D.3 Conclusion

Au fil des ans, le Web Sémantique s’est agrandi pour regrouper une constella-
tion d’énormes bases de connaissances interconnectées. Ces bases répertorient
nos connaissances du monde sous la forme de faits structurés et sont utilisées
pour la réponse automatique de questions ainsi que pour le raisonnement
automatique. Mais pour tirer pleinement avantage de ce vivier d’informa-
tions, il est essentiel de comprendre le schéma et les interdépendances in-
trinsèques à ces données. En particulier, les dépendances fonctionnelles entre
les différentes relations peuvent être représentées sous la forme de règles
simples. Il est donc crucial de pouvoir extraire ces règles efficacement à par-
tir de nos données.

Dans cette thèse, nous avons fait un pas de plus vers cet objectif. Nous
avons proposé des approches novatrices permettant d’améliorer l’extraction
de règles et des nouveaux algorithmes qui traitent efficacement de larges
quantités de données sans avoir recours à l’échantillonage ou l’approximation.
Ainsi, nous fournissons aux analystes des outils pour comprendre, exploiter
et compléter cette représentation structurée de nos connaissances actuelles.
Nous espérons que ces travaux aideront à l’analyse de jeux de données com-
plexes et actuels (tel que KG-Covid19, répertoriant nos connaissances liées à
l’épidémie de Covid-19), qu’ils permettront des avancées dans des domaines
de recherche voisins (tel que l’optimisation de requêtes), et ouvriront des
perspectives nouvelles dans l’étude des bases de connaissances et de leur
complétion.

145

Bibliography

[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for min-
ing association rules. In VLDB, volume 1215, 1994.

[2] Naser Ahmadi, Joohyung Lee, Paolo Papotti, and Mohammed Saeed.
Explainable fact checking with probabilistic answer set programming.
In Conference for Truth and Trust online, 2019.

[3] Naser Ahmadi, Thi-Thuy-Duyen Truong, Le-Hong-Mai Dao, Stefano
Ortona, and Paolo Papotti. Rulehub: A public corpus of rules for
knowledge graphs. Journal of Data and Information Quality (JDIQ),
12(4):1–22, 2020.

[4] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2), 1972.

[5] Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu,
and Chengkai Li. Realistic re-evaluation of knowledge graph completion
methods: An experimental study. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data, pages 1995–
2010, 2020.

[6] Mehwish Alam, Aleksey Buzmakov, Victor Codocedo, and Amedeo
Napoli. Mining definitions from RDF annotations using formal concept
analysis. In IJCAI, 2015.

[7] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook.
Springer, 2003.

[8] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee.
Linked data on the Web. In WWW, 2008.

[9] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structur-
ing human knowledge. In SIGMOD. ACM, 2008.

146

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

[10] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. In Advances in neural information processing systems,
pages 2787–2795, 2013.

[11] Christian Borgelt. An implementation of the FP-growth algorithm. In
Proceedings of the 1st international workshop on open source data min-
ing: frequent pattern mining implementations, pages 1–5, 2005.

[12] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R Hruschka, and T. M
Mitchell. Toward an architecture for never-ending language learning. In
AAAI, 2010.

[13] Yang Chen, Sean Goldberg, Daisy Zhe Wang, and Soumitra Siddharth
Johri. Ontological Pathfinding. In SIGMOD, 2016.

[14] Yang Chen, Daisy Zhe Wang, and Sean Goldberg. ScaLeKB: Scalable
learning and inference over large knowledge bases. VLDB Journal, 25(6),
2016.

[15] F. Darari, S. Razniewski, R. Prasojo, and W. Nutt. Enabling fine-
grained RDF data completeness assessment. In ICWE, 2016.

[16] Luc De Raedt and Kristian Kersting. Probabilistic inductive logic
programming. In Probabilistic Inductive Logic Programming. Springer,
2008.

[17] Luc Dehaspe and Luc De Raedt. Mining association rules in multiple
relations. In International Conference on Inductive Logic Programming,
1997.

[18] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian
Riedel. Convolutional 2d knowledge graph embeddings. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[19] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In SIGKDD, 2014.

[20] Takuma Ebisu and Ryutaro Ichise. Graph pattern entity ranking model
for knowledge graph completion. In NAACL-HLT, 2019.

[21] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, and D. Vrandecic.
Introducing Wikidata to the linked data web. In ISWC, 2014.

147

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

[22] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria
Popescu, Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexan-
der Yates. Web-scale information extraction in knowitall: (preliminary
results). In WWW, 2004.

[23] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Ret-
tinger. Linked data quality of DBpedia, Freebase, Opencyc, Wikidata,
and Yago. Semantic Web, 2016.

[24] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT
Press, 1998.

[25] Javier D. Fernández, Miguel A. Mart́ınez-Prieto, Claudio Gutiérrez,
Axel Polleres, and Mario Arias. Binary RDF Representation (HDT).
Web Semantics, 19, 2013.

[26] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Ny-
berg, John Prager, et al. Building Watson: An overview of the DeepQA
project. AI magazine, 31(3), 2010.

[27] R. A. Fisher. On the interpretation of chi square from contingency
tables, and the calculation of p. Journal of the Royal Statistical Society,
85(1), Jan 1922.

[28] Luis Galárraga, Nicoleta Preda, and Fabian M Suchanek. Mining rules
to align knowledge bases. In AKBC, 2013.

[29] Luis Galárraga, Simon Razniewski, Antoine Amarilli, and Fabian M
Suchanek. Predicting completeness in knowledge bases. In Proceedings
of the Tenth ACM International Conference on Web Search and Data
Mining, pages 375–383, 2017.

[30] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M.
Suchanek. Fast rule mining in ontological knowledge bases with AMIE+.
In VLDBJ, 2015.

[31] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M.
Suchanek. AMIE: Association rule mining under incomplete evidence in
ontological knowledge bases. In WWW, 2013.

[32] Lise Getoor and Christopher P Diehl. Link mining: a survey. ACM
SIGKDD Explorations Newsletter, 7(2), 2005.

148

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

[33] François Goasdoué, Pawe l Guzewicz, and Ioana Manolescu. Incremental
structural summarization of RDF graphs. 2019.

[34] Bart Goethals and Jan Van den Bussche. Relational Association Rules:
Getting WARMER. In Pattern Detection and Discovery, volume 2447.
Springer Berlin / Heidelberg, 2002.

[35] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. ACM sigmod record, 29(2):1–12, 2000.

[36] James Hawthorne. Inductive logic. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stan-
ford University, 2018.

[37] Lars Heling and Maribel Acosta. Estimating characteristic sets for RDF
dataset profiles based on sampling. In European Semantic Web Confer-
ence, pages 157–175. Springer, 2020.

[38] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of OWL
class descriptions on very large knowledge bases. International Journal
on Semantic Web and Information Systems (IJSWIS), 5(2):25–48, 2009.

[39] Leah Henderson. The problem of induction. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, 2019.

[40] Katsumi Inoue. Induction as consequence finding. Machine Learning,
55(2), 2004.

[41] Tim Kimber, Krysia Broda, and Alessandra Russo. Induction on failure:
Learning connected horn theories. In International Conference on Logic
Programming and Nonmonotonic Reasoning. Springer, 2009.

[42] Holger Knublauch and Dimitris Kontokostas. Shapes constraint lan-
guage (SHACL). W3C recommendation, W3C, July 2017.

[43] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. Fast and exact
rule mining with AMIE 3. In European Semantic Web Conference, pages
36–52. Springer, 2020.

[44] Jonathan Lajus and Fabian M. Suchanek. Are all people married? de-
termining obligatory attributes in knowledge bases. In WWW, pages
1115–1124. International World Wide Web Conferences Steering Com-
mittee, 2018.

149

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

[45] Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference
and learning in a large scale knowledge base. In EMNLP, 2011.

[46] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey,
Patrick van Kleef, Sören Auer, and Christian Bizer. DBpedia - a large-
scale, multilingual knowledge base extracted from Wikipedia. Semantic
Web Journal, 6(2), 2015.

[47] Douglas B Lenat and Ramanathan V Guha. Building large knowledge-
based systems; representation and inference in the Cyc project. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[48] A. Y. Levy. Obtaining complete answers from incomplete databases. In
VLDB, 1996.

[49] Hugo Liu and Push Singh. ConceptNet—a practical commonsense rea-
soning tool-kit. BT technology journal, 22(4):211–226, 2004.

[50] Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek.
Yago3: A knowledge base from multilingual Wikipedias. In CIDR, 2015.

[51] Eric Margolis and Stephen Laurence. Concepts. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Stanford, 2014.

[52] Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer
Gemulla, and Heiner Stuckenschmidt. Fine-grained evaluation of rule-
and embedding-based systems for knowledge graph completion. In In-
ternational Semantic Web Conference, pages 3–20. Springer, 2018.

[53] Marios Meimaris, George Papastefanatos, Nikos Mamoulis, and Ioan-
nis Anagnostopoulos. Extended characteristic sets: graph indexing for
SPARQL query optimization. In 2017 IEEE 33rd International Confer-
ence on Data Engineering (ICDE), pages 497–508. IEEE, 2017.

[54] Paramita Mirza, Simon Razniewski, Fariz Darari, and Gerhard Weikum.
Enriching knowledge bases with counting quantifiers. In International
Semantic Web Conference, pages 179–197. Springer, 2018.

[55] Gabriela Montoya, Hala Skaf-Molli, and Katja Hose. The Odyssey ap-
proach for optimizing federated SPARQL queries. In International Se-
mantic Web Conference, pages 471–489. Springer, 2017.

[56] A. Motro. Integrity = Validity + Completeness. TODS, 1989.

150

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

[57] Stephen Muggleton. Inverse entailment and Progol. New generation
computing, 13(3-4), 1995.

[58] Stephen Muggleton. Learning from positive data. In ILP, 1997.

[59] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. The Journal of Logic Programming, 19, 1994.

[60] Stephen Muggleton and Cao Feng. Efficient induction of logic programs.
1990.

[61] Ndapandula Nakashole, Gerhard Weikum, and Fabian M. Suchanek.
PATTY: A taxonomy of relational patterns with semantic types. In
EMNLP, 2012.

[62] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In 2011
IEEE 27th International Conference on Data Engineering, pages 984–
994. IEEE, 2011.

[63] Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. Ro-
bust Discovery of Positive and Negative Rules in Knowledge Bases. In
ICDE, 2018.

[64] Heiko Paulheim and Christian Bizer. Type inference on noisy RDF data.
In ISWC, 2013.

[65] Gordon Plotkin. Automatic methods of inductive inference. 1972.

[66] J. R. Quinlan. Learning logical definitions from relations. Machine
Learning, 5(3), Aug 1990.

[67] S. Ponzetto R. Navigli. BabelNet: The automatic construction, evalua-
tion and application of a wide-coverage multilingual semantic network.
Artificial Intelligence, 193, 2012.

[68] Oliver Ray, Krysia Broda, and Alessandra Russo. Hybrid abductive in-
ductive learning: A generalisation of Progol. In International Conference
on Inductive Logic Programming. Springer, 2003.

[69] Simon Razniewski, Nitisha Jain, Paramita Mirza, and Gerhard Weikum.
Coverage of information extraction from sentences and paragraphs. In
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), pages 5775–5780, 2019.

151

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

[70] Simon Razniewski, Flip Korn, Werner Nutt, and Divesh Srivastava.
Identifying the extent of completeness of query answers over partially
complete databases. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, pages 561–576, 2015.

[71] Simon Razniewski, Fabian M. Suchanek, and Werner Nutt. But what
do we actually know? In AKBC workshop, 2016.

[72] Bertrand Russell. The Problems of Philosophy. Barnes & Noble, 1912.

[73] S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach.
Prentice Hall, 2002.

[74] Ehud Y Shapiro. Inductive inference of theories from facts. Yale Uni-
versity, Department of Computer Science, 1981.

[75] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations. Brooks/Cole, 2000.

[76] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. Inter-
national Handbooks on Information Systems. Springer, 2004.

[77] F. M. Suchanek, D. Gross-Amblard, and S. Abiteboul. Watermarking
for Ontologies. In ISWC, 2011.

[78] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In WWW, 2007.

[79] Fabian M Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS:
Probabilistic alignment of relations, instances, and schema. Proceedings
of the VLDB Endowment, 5(3), 2011.

[80] Fabian M Suchanek, Jonathan Lajus, Armand Boschin, and Gerhard
Weikum. Knowledge representation and rule mining in entity-centric
knowledge bases. In Reasoning Web. Explainable Artificial Intelligence,
pages 110–152. Springer, 2019.

[81] Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. Completeness-aware rule learning from
knowledge graphs. In International Semantic Web Conference, pages
507–525. Springer, 2017.

[82] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Complex embeddings for simple link prediction.
International Conference on Machine Learning (ICML), 2016.

152

Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

[83] Johanna Völker and Mathias Niepert. Statistical schema induction. In
ESWC, 2011.

[84] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative
knowledgebase. Communications of the ACM, 57(10), 2014.

[85] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transac-
tions on Knowledge and Data Engineering, 29(12):2724–2743, 2017.

[86] Alfred North Whitehead and Bertrand Russell. Principia mathematica.
1913.

[87] Word Wide Web Consortium. RDF Primer, 2004.

[88] Word Wide Web Consortium. RDF Vocabulary Description Language
1.0: RDF Schema, 2004.

[89] Word Wide Web Consortium. SKOS Simple Knowledge Organization
System, 2009.

[90] Word Wide Web Consortium. OWL 2 Web Ontology Language, 2012.

[91] Word Wide Web Consortium. SPARQL 1.1 Query Language, 2013.

[92] Akihiro Yamamoto. Hypothesis finding based on upward refinement of
residue hypotheses. Theoretical Computer Science, 298(1), 2003.

[93] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowledge
bases. 2015.

[94] Qiang Zeng, Jignesh M. Patel, and David Page. QuickFOIL: Scalable
Inductive Logic Programming. VLDB, 8(3), November 2014.

[95] Kaja Zupanc and Jesse Davis. Estimating rule quality for knowledge
base completion with the relationship between coverage assumption. In
WWW, 2018.

153

Titre : Extraction de Règles Rapide, Exact et Exhaustif dans de Larges Bases de Connais-
sances

Mots clés : Bases de Connaissances, Web Sémantique, Ontologie, Extraction de Règles

Résumé : Au fil des ans, le Web Sémantique
s’est agrandi pour regrouper une constel-
lation d’énormes Bases de Connaissances
interconnectées. Ces bases répertorient
nos connaissances du monde sous la
forme de faits structurés et sont utilisées
pour la réponse automatique de questions
ainsi que pour le raisonnement automa-
tique. Mais pour tirer pleinement avan-
tage de ce vivier d’informations, il est
essentiel de comprendre le schéma et
les interdépendances intrinsèques à ces
données. En particulier, les dépendances
fonctionnelles entre les différentes relations
peuvent être représentées sous la forme de
règles simples. Il est donc crucial de pouvoir

extraire ces règles efficacement à partir de
nos données.
Dans cette thèse, on introduit de nouvelles
approches et optimisations pour accélérer
l’extraction de règles dans de larges Bases
de Connaissances. On présente deux nou-
veaux algorithmes implémentant ces optimi-
sations: AMIE 3 (le successeur de l’algo-
rithme exact AMIE+) et Pathfinder, un nou-
vel algorithme spécialisé dans l’extraction de
règles chaı̂nées. Ces deux algorithmes sont
exhaustifs, ils calculent la qualité des règles
de manière exacte et passent à l’échelle de
manière efficace sur un plus grand volume
de données et sur des règles plus com-
plexes.

Title : Fast, Exact, and Exhaustive Rule Mining in Large Knowledge Bases

Keywords : Knowledge Bases, Semantic Web, Ontology, Rule Mining

Abstract : The Semantic Web has quickly
become a constellation of large and inter-
connected entity-centric Knowledge Bases.
These KBs contain domain-specific know-
ledge that can be used for multiple applica-
tion such as question answering or automatic
reasoning. But in order to take full advantage
of this data, it is essential to understand the
schema and the patterns of the KB. A simple
and expressive manner to describe the de-
pendencies in a KB is to use rules. Thus it
is crucial to be able to perform rule mining at
scale.

In this thesis, we introduce novel approaches
and optimizations designed to speed up the
process of rule mining on large Knowledge
Bases. We present two algorithms that im-
plements these optimizations: the AMIE 3 al-
gorithm (the successor of the exact rule mi-
ning algorithm AMIE+) and the Pathfinder al-
gorithm, a novel algorithm specialized in mi-
ning path rules. These two algorithms are ex-
haustive with regard to the parameters pro-
vided by the user, they compute the quality
measures of each rule exactly and efficiently
scale to large KB and longer rules.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Motivation
	Contribution

	Introduction to Knowledge Bases and Rule Mining
	Introduction
	Knowledge Representation
	Entities
	Classes
	Relations
	Completeness and Correctness
	The Semantic Web

	Rule Mining
	Rules
	Rule Mining
	Rule Mining Approaches
	Related Approaches

	Conclusion

	AMIE 3: Fast Computation of Quality Measures
	Introduction
	AMIE 3
	The AMIE Approach
	AMIE 3
	Quality Metrics

	Experiments
	Experimental Setup
	Effect of our optimizations
	Comparative Experiments

	Conclusion

	Star patterns: Reducing the Search Space
	Introduction
	Star patterns
	Patterns
	Star patterns
	Related work
	Languages of star patterns

	Mining star patterns
	Combining the star patterns into rules
	Compatibility of the star patterns
	Selection of compatible star patterns

	Conclusion

	Star patterns and path rules
	Introduction
	Path rules
	Path queries
	Path rules
	Other path rules

	Pruning the search space
	Star patterns and path rules
	Generating all path rules
	Incremental generation of candidates

	The bipattern graph and other rules
	Conclusion

	Pathfinder: Efficient Path Rule Mining
	Introduction
	Heritable information
	Notation
	The sets of possible values
	The iterated provenance
	Backtracking the iterated provenance
	Measure computation strategies

	The bounds on the iterated provenance
	Computing the lower bounds
	Bounding the value of the quality measures

	The complete Pathfinder algorithm
	Experiments
	Experimental Setup
	Pathfinder generation methods
	Pathfinder measure computation strategies
	Scaling experiments

	Conclusion

	Identifying obligatory attributes in a KB
	Introduction
	Related Work
	Preliminaries
	Model
	Problem Definition
	Our Approach
	Assumptions
	Random sampling model

	Algorithm
	Confidence Ratio
	Algorithm
	Variations

	Experiments
	Datasets
	Gold Standard
	Evaluation Metric
	YAGO Experiment
	Wikidata Experiment
	Artificial Classes

	Conclusion

	Conclusion
	Summary
	Outlook
	Conclusion

	Computation of Support and Confidence
	Number of items per relation
	Compatibility of a set of star patterns: Algorithm
	Résumé de la thèse en Français
	Position du problème
	Contribution
	Conclusion

