N

N
N

HAL

open science

Privacy preserving post-quantum cryptography

Guilaume Kaim

» To cite this version:

Guilaume Kaim. Privacy preserving post-quantum cryptography. Cryptography and Security [cs.CR].

Université Rennes 1, 2020. English. NNT: 2020REN1S077 . tel-03224300

HAL Id: tel-03224300
https://theses.hal.science/tel-03224300

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03224300
https://hal.archives-ouvertes.fr

UNIVERSITE DE%

RENNES 1

E DOCTORAT DE

Rapporteurs avant soutenance :

Olivier Blazy Maitre de conférence, Université de Limoges
Fabien Laguillaumie Professeur, Université de Lyon 1

Composition du Jury :

Rapporteurs : Olivier Blazy Maitre de conférence, Université de Limoges
Fabien Laguillaumie Professeur, Université de Montpellier
Examinateurs : Véronique Cortier Directrice de Recherche CNRS, LORIA
Sylvain Duquesne Professeur, Université de Rennes 1
David Pointcheval Professeur, Laboratoire d’Informatique de 'ENS
Jacques Traoré Ingénieur, Orange Labs
Dir. de these : Sébastien Canard Ingénieur, Orange Labs

Adeline Roux-Langlois Chargée de Recherche CNRS, IRISA

TABLE OF CONTENTS

1 Introduction 7
1.1 Protection de la vie privée o 8
1.2 Cryptographie classique et post-quantique 9
1.3 Réseaux euclidiens 10
1.4 Contributions 11

1.4.1 Signatures de groupes Lo 12
1.4.2 Signature aveugle 13
1.4.3 Vote électroniqueo 14

2 Introduction in english 16
2.1 Cryptography for privacy 17
2.2 Classical and post-quantum Cryptography 18
2.3 Lattices e 19
2.4 Contributions 20

2.4.1 Group Signatures 20
2.4.2 Blind signature 21
2.4.3 E-voting protocol oo 23

3 Preliminaries 25

3.1 Mathematical definitions 26
3.1.1 Rings and notations Lo L 26
3.1.2 Probabilities definitionso 26

3.2 Lattices 27
3.2.1 Definition of a Lattice 27
3.2.2 Problems on lattices L 27
3.2.3 Mathematical tools for lattices 29

3.3 Cryptographic tools 30
3.3.1 Encryption and signature protocols 30
3.3.2 Identifications scheme and Fiat-Shamir signatures 32

3

TABLE OF CONTENTS

3.3.3 GPV-style signatures and trapdoors constructions 34

3.3.4 Hash function and Forking Lemma 37

3.3.5 Secret Key Encryption (SKE) from LWE. 38

3.3.6 One-Time Signature (OTS) scheme. 38

4 Forward Secure Group Signature in the standard Model 41
4.1 Definitions and constructions L. 42
4.1.1 Generic definition and basic properties 42

4.1.2 Classical constructions and history of lattice-based group signatures 45
4.1.3 Some useful tools for standard model construction 46

4.1.4 Group signature in the standard model, attribute-based signature

and forward secure framework 47

4.2 Ourscheme 51
4.2.1 A Forward Secure Attribute-based Signature on lattices 53
4.2.2 Our group signature scheme construction 59
4.2.3 Analysis and security L 63

5 Lattice-based blind signature without restarts 71
5.1 Blind signature definition 0oL 72
5.1.1 Generic definition and additional properties 72
5.1.2 Blind signature and lattices 0. 76
5.1.3 Technical details of the Riickert scheme 79

5.2 Our blind signature scheme L. 82
5.2.1 Our construction oo 82
5.2.2 Correctness and blindness 86

5.3 One-more unforgeability proof 88
5.3.1 Definition and first proof L. 89
5.3.2 Problems in early constructions and solutions 90
5.3.3 Ourproof 92

5.4 Partially blind variant00 104
5.4.1 Our Construction 104
5.4.2 Security 107

6 Practical Post-Quantum Resistant E-Voting Scheme 109
6.1 Definition and constructions 110

TABLE OF CONTENTS

6.2

6.1.1 Generic definition of an e-voting scheme 110
6.1.2 Security properties of an e-voting scheme 111
6.1.3 Post-quantum constructions L. 115
6.1.4 Framework of Fujioka et al. and adaptations 116
Our construction L 117
6.2.1 Cryptographic primitives L. 117
6.2.2 Ourscheme 122
6.2.3 Security of our scheme L. 125

CHAPTER 1

INTRODUCTION

Ces dernieres décennies ont vu ’émergence de nombreux moyens de communications
disponibles a un public de plus en plus large. Cet avenement de la libre circulation des
échanges numériques entraine la génération et le stockage d’un flux tres important de
données qui nécessite un controle d’acces selon différent degrés. C’est dans ce contexte
que la cryptographie trouve toute son utilité, en effet celle-ci étant par définition la science
de la sécurité de I'information, elle offre de nombreuses possibilités quant a la gestion de ces
données. Nous pouvons notamment citer la dissimulation de celles-ci pour toute personne
non autorisée, allant jusqu’a un acces différencié selon les droits de chaque utilisateur en
passant par la possibilité de s’authentifier aupres de n’importe quelle personne ou service.

Au sein de la cryptographie, il existe plusieurs familles cryptographiques, les deux prin-
cipales étant la cryptographie symétrique, dite a clé secrete et la cryptographie asymétrique,
dite a clé publique. Prenons ’exemple d’'un schéma de chiffrement, dans lequel un pre-
mier utilisateur veut envoyer un message a un second utilisateur mais sans qu’'une tierce
personne interceptant ce message ne puisse le lire. Concrétement, le premier utilisateur
va utiliser un algorithme de chiffrement pour rendre son message inintelligible, tandis
que le destinataire de ce message chiffré va utiliser un algorithme de déchiffrement pour
récupérer le message originel. Dans le cadre de la cryptographie symétrique, les 2 par-
ties utilisent une clé commune, qui sera utilisée dans ’algorithme de chiffrement et de
déchiffrement. A contrario, dans un scénario de cryptographie asymétrique, la clé utilisée
pour chiffrer le message est distincte de celle utilisée pour I'algorithme de déchiffrement,
ce qui permet de rendre la clé de chiffrement publique, puisqu’elle n’a d’autre utilité que
de transformer un message en chiffré inintelligible pour toute personne ne possédant pas
la clé secrete associée.

Avec la cryptographie asymétrique apparait la notion tres intéressante de sécurité
prouvée. En effet, historiquement pour prouver qu’un schéma est sfir, il est soumis a tous
les outils disponibles, du point de vue d’un attaquant. Cette variante de la cryptographie,

appelée cryptanalyse, a pour but d’essayer de casser les schémas cryptographiques. Cepen-

7

Introduction

dant ce type de sécurité n’est pas tres formel, puisque les outils composant la cryptanalyse
ne sont forcément, pas exhaustifs. C’est pourquoi des preuves de sécurité, reposant sur
une technique appelée réduction, ont été mises en place. Concretement supposons qu’il
existe un attaquant qui arrive a casser la sécurité du schéma considéré, et montrons qu’a
partir de cet attaquant il est possible d’en construire un second sur un autre probleme
dont la difficulté est prouvée. Ces preuves de sécurité sont quasiment devenues la norme
pour toutes les constructions s’appuyant sur la cryptographie asymétrique, mais peuvent
reposer sur des hypotheses tres diverses.

En pratique les schémas symétriques obtiennent généralement une meilleure efficac-
ité dans l'exécution des différents algorithmes qui les composent, tandis que les schémas
asymétriques autorisent plus de souplesse dans les diverses applications qui les emploient.
C’est d’ailleurs ces constructions asymétriques qui vont nous intéresser plus particuliere-

ment tout au long de cette these.

1.1 Protection de la vie privée

Comme évoqué précédemment, la sécurité de I'information est devenue un enjeu im-
portant dans notre société hyperconnectée. En effet, 'information circule plus activement
que jamais et la protection des données de chaque utilisateur est au cocur de nombreuses
préoccupations. Cela a entrainé nombre d’organisations et gouvernements a prendre en
considération ces enjeux, par exemple au travers du reglement général sur la protection
des données (RGPD ou GDPR en anglais), qui a défini de nombreuses régles a respecter
pour garantir cette protection de la vie privée au sein des pays de I’'Union Européenne.

Il existe aussi des primitives cryptographiques garantissant ce respect de la vie privée
des utilisateurs, pouvant se déployer dans des cas d’usages ou la manipulation de ces
données nécessite une vigilance accrue sur 'utilisation qui en est faite. Ces primitives ont
été continuellement introduites et améliorées au cours des 50 dernieres années, permettant
notamment a de nombreux utilisateurs d’échanger et de transmettre des données pouvant
étre a caractere personnel, et donc sensibles, sans pour autant craindre que celle-ci soient
accessibles a n’importe qui.

On retrouve parmi ces constructions, des schémas de chiffrement comme évoqués
précédemment, tel que le chiffrement homomorphe, qui permet d’effectuer n’importe quel
type de calcul sur des données chiffrées, mais également des schémas de signatures, per-

mettant a un utilisateur de s’authentifier par la génération d’une signature numérique sur

Introduction

un message donné d’une maniere anonyme. De la méme facon que pour le chiffrement, il
existe des schémas de signature plus complexes, dans le cadre de la protection de la vie
privée, par exemple les signatures de groupes, qui permettent a un utilisateur de générer
une signature au nom d’un groupe, sans pour autant divulguer son identité exacte au sein
de ce groupe.

A ce jour, il existe des constructions de telles primitives possédant une efficacité tout &
fait satisfaisante, mais ces constructions risquent d’étre menacées dans le futur. En effet,
ces schémas reposent sur des problémes mathématiques, qui sont tres difficiles & résoudre
pour les ordinateurs actuels, mais qui ne ne représenteront pas une telle barriere pour des
ordinateurs quantiques, comme démontré par Shor [Sho97]. En conséquence, des solutions

doivent étre envisagées pour pouvoir répondre a cette problématique.

1.2 Cryptographie classique et post-quantique

Ces nouvelles solutions doivent s’appuyer sur des problemes mathématiques qui ne
sont pas vulnérables a l'avantage qu’ont les ordinateurs quantiques sur les primitives
cryptographiques se basant sur des problemes mathématiques dits "standards". Ces outils
mathématiques "standards' se composent notamment du cryptosystéeme RSA [RSATS|
(du nom de ses auteurs Rivest, Shamir et Adleman) qui repose sur le probleme de la
factorisation, ou du cryptosysteme El-Gamal reposant sur le probleme du logarithme
discret.

Dans le cas des cryptosystemes de type RSA, la clé secrete est composée entre autre de
deux nombres premiers p et ¢ dont leur produit N = p x ¢ fait partie de la clé publique. Un
attaquant qui arriverait donc a factoriser le nombre N pour retrouver les deux nombres
premiers p et ¢, pourrait attaquer la sécurité des schémas de type RSA.

Concernant les cryptosystemes basés sur le logarithme discret, on considére un groupe
G bien choisi, le plus souvent d’ordre premier p. On va ensuite choisir aléatoirement un
entier a comme partie de la clé secrete et son pendant publique qui lui est associé est ¢®
avec g un élément choisi aléatoirement dans le groupe G. On définit alors le probleme du
logarithme discret, demandant de retrouver I'entier a a partie de 1’élément g* appartenant
au groupe G.

Ces deux types de problémes ont été a I’origine de nombreux schémas cryptographiques
stirs et proposant une efficacité tres attractive mais, comme énoncé précédemment, ils

seront vulnérables dans une ére post-quantique. En effet, conserver leur sécurité impli-

Introduction

querait d’augmenter considérablement leurs parametres afin de pouvoir résister a une at-
taque basée sur des ordinateurs quantiques. On leur préferera deés lors des cryptosystemes,
dits "résistants au post-quantique', pour lesquels nous n’avons a ce jour pas découvert
d’avantage pour un ordinateur quantique par rapport a un ordinateur classique.

Dans ce contexte, une compétition lancé par 'institut de standardisation américain
(NIST) a été lancé en 2016 afin de proposer de telles alternatives dans un monde ou
les ordinateurs quantiques seraient une réalité quotidienne. Cette compétition a créé une
effervescence dans le milieu de la recherche cryptographique, afin de proposer un cryp-
tosysteme proposant toutes les caractéristiques nécessaires pour devenir un standard de
la cryptographie post-quantique. Comme candidats proposés, nous pouvons citer les cryp-
tosystemes basés sur les codes correcteurs, sur les isogénies ou encore sur les polynomes
multivariés. Cependant ce sont les constructions basées sur les réseaux euclidiens (dits

lattices en anglais) qui vont nous intéresser plus particulierement ici.

1.3 Reéseaux euclidiens

Les réseaux euclidiens peuvent se décrire de facon simple, comme un ensemble infini
de points répartis de maniere ordonnée dans I’espace. D’un point de vue plus mathéma-
tiques, on peut le définir comme étant un sous-groupe discret engendré par une base de
vecteurs de 'espace. L'un des avantages considérable des réseaux euclidiens en cryptogra-
phie, vient du fait que les opérations effectuées se composent essentiellement de produits
matrices-vecteurs qui sont faciles a comprendre et a implémenter en pratique. Cependant
afin de garantir la sécurité des constructions, les matrices et vecteurs considérés doivent
étre composés de plusieurs milliers de lignes et/ou colonnes, ce qui affaiblit souvent leur
efficacité.

Concernant ’aspect sécurité, on peut noter que les problemes basés sur les réseaux
euclidiens se décomposent en 2 niveaux, qui n’auront certes pas la méme finalité mais qui
seront tout autant nécessaires pour prouver la sécurité des cryptosystemes. Le 1° niveau
se compose principalement du probleme SVP (Shortest Vector Problem) ou probleme du
vecteur le plus court, et du probleme CVP (Closest Vector Problem) ou probléme du
vecteur le plus proche. Concernant le probleme SVP, considérons une base aléatoire d'un
réseau euclidien, il demande alors d’en donner le vecteur le plus court, tandis que dans
le probleme CVP, étant donné un point quelconque de I'espace, il demande de trouver le

point du réseau euclidien qui en est le plus proche. Ces deux probleme ont été dérivés en

10

Introduction

diverses variantes, notamment en autorisant divers facteurs d’approximation.

Cependant ces problemes ne permettent pas de produire directement des construc-
tions cryptographiques, et sont plutot utilisés pour prouver la difficulté des problemes qui
composent le 2°™¢ niveau qui eux, seront utilisés comme base de cryptosystémes. Dans
cette famille, on distingue tout d’abord le probleme LWE (Learning With Errors), qui
étant donné un secret s € Z; et une matrice A € Z7"*" sur-déterminée, va ajouter une
petite erreur e au produit A -s afin de générer un échantillon LWE. Le probleme se dérive
en 2 variantes, la premiere demande de retrouver le secret s a partir d’'un échantillon
LWE b= A -s+e mod q et de la matrice A, tandis que la deuxiéme variante demande
de décider, étant donné A, si un élément b a été généré aléatoirement, ou sous la forme
d’un échantillon LWE. De plus on peut noter qu'un aspect particulierement intéressant
en cryptographie provient du fait que ces deux variantes sont de difficulté équivalente.
Le probleme LWE est principalement utilisé pour construire des schémas de chiffrement,
allant d’un chiffrement a clé publique tout a fait classique [Reg05] & un chiffrement ho-
momorphe bien plus complexe [Gen09].

Le deuxieme probléeme qui est utilisé pour construire des primitives cryptographiques
est le probleme SIS, qui étant donné une matrice A € Z;*™ sous-déterminée demande
de produire un petit vecteur v € Z7' vérifiant 'équation A - v = 0 mod g. Ce type
de probleme est majoritairement utilisé pour construire des schémas de signature, nous
pouvons d’ailleurs différencier 2 types de modeles de construction, le premier introduit un
systeme de trappe sur une fonction associée au probleme SIS, qui est fournie au signeur,
lui permettant ainsi d’effectuer des opérations qui lui seraient impossibles en son absence.
Tandis que le deuxieme modele appelé “signature Fiat-Shamir”transforme un schéma
interactif appelé schéma d’identification en remplagant une partie de l'interaction par
une fonction modélisée de telle sorte que sa sortie soit considérée aléatoire. Dans ces
deux modeles, la signature est un vecteur solution d’un probléeme SIS, ce dernier étant
public. C’est notamment a partir de ces constructions que seront articulées la majorité

des contributions qui sont présentées dans cette these.

1.4 Contributions

Dans la suite de cette introduction, je vais détailler les contributions que j’ai pu ap-
portées durant mes 3 années de theses, qui concernent principalement la conception de

schémas cryptographiques respectueux de la vie privée, ainsi que l'adaptation en cas

11

Introduction

d’usage de I'un d’entre eux. Toutes ces constructions s’appuient sur la cryptographie

basée sur les réseaux euclidiens décrite ci-dessus.

1.4.1 Signatures de groupes

Ma premiere contribution concerne la construction d’une signature de groupe sur les
réseaux euclidiens, a laquelle nous ajoutons quelques propriétés attractives. Par définition,
une signature de groupe est un schéma permettant a un groupe d’utilisateurs de signer au
nom de ce méme groupe, tout en restant anonyme parmi ses membres. Elles fournissent
une caractéristique supplémentaire qui est de permettre "'ouverture" d’une signature pour
en retrouver le membre du groupe qui en est a l'origine. Ces schémas ont de nombreuses
applications dans la vie courante. Prenons par exemple un cas ou une personne doit
prouver qu’elle a un certain dge (par exemple moins de 25 ans pour pouvoir prétendre
a une réduction), il suffirait qu’elle produise sa carte d’identité qui contient sa date de
naissance et donc son age. Cependant en produisant ainsi sa carte d’identité, elle fournit
par la méme occasion son nom, son adresse..., alors que seul le fait qu’elle appartient au
groupe des moins de 25 ans est nécessaire. Les signatures de groupes permettent donc
d’éviter de tels désagréments.

Il existe a ce jour de nombreux schémas de signature de groupe, mais les plus effi-
caces d’entre eux s’appuient sur des hypothéses qui ne résisteraient pas a un ordinateur
quantique, tels que le logarithme discret défini précédemment. C’est pourquoi depuis une
dizaine d’années, un grand nombre de constructions basées sur les réseaux euclidiens ont
été congues ([Gol+10; Lag+13; Lan+14; Lib+16b; Lin+17]...). Ces constructions doivent
cependant se plier a l'inefficacité, sur les réseaux, des preuves de connaissance a divulga-
tion nulle de connaissance nécessaires pour de telles constructions dans le modele habituel
de Bellare et al [BMWO03]. Cependant en 2019, un nouveau schéma publié a Eurocrypt par
Kastumata et Yamada [KY19] s’écarte de ce modele habituel. Leur construction s’appuie
sur des primitives plus récentes telles que les signatures basées sur les attributs pour
court-circuiter les problemes d’inefficacité, en plus de reposer sur un modele de sécurité
plus commun.

A partir de cette nouvelle construction nous proposons un schéma de signature de
groupe basé sur les réseaux qui bénéficie des mémes avantages que le schéma de [KY19] et
nous ajoutons en plus une nouvelle propriété appelée forward security. Celle-ci permet de
diviser le temps en plusieurs périodes, de sorte que les clés secrétes de tous les membres du

groupe sont mises a jour a chaque nouvelle période de temps sans possibilité de récupérer

12

Introduction

une clé secrete pour une période de temps passée. L’intérét majeur de cette propriété est
d’éviter que les signatures déja générées ne soient rendues invalides dans le cas ou la clé
secrete d’'un membre du groupe est volée. En effet dans un schéma de signature de groupe
classique, la clé secréte ne change pas au cours du temps, et dans le cas de figure o un
utilisateur se fait subtiliser sa clé secrete il devient alors impossible de s’assurer qu’'une
signature de groupe a bien été générée par un utilisateur certifié. La propriété de forward
security permet donc de palier a ce probleme. Nous développons ce travail dans le chapitre
4 de cette these.

— [CGKRT20] Sébastien Canard, Adela Georgescu, Guillaume Kaim, Adeline Roux-
Langlois and Jacques Traoré. Constant-size lattice-based group signature with for-

ward secrecy in the standard model. Published in PROVSEC 2020.

1.4.2 Signature aveugle

Les signatures aveugles ont été introduites en 1982 par Chaum [Cha82] pour le cas
d’usage précis de la monnaie électronique. L’idée d’une signature aveugle est la suivante:
un utilisateur veut générer une signature sur un message de son choix, cependant il ne
possede pas la clé secrete lui permettant de générer une telle signature. Pour palier ce
probleme, il a la possibilité d’interagir avec une autorité qui possede cette clé secrete et
qui est alors vu comme un signeur. Cependant I'utilisateur requiert que la signature qu’il
va sortir a la fin de l'interaction avec le signeur ne puisse pas étre tracée par ce dernier.
Pour en revenir au cas d’usage de la monnaie électronique, ce type de schéma permet donc
a un utilisateur de faire certifier de la monnaie électronique a une autorité (une banque
par exemple), sans que celle-ci puisse retrouver l'identité de l'utilisateur lorsque celui-ci
la dépense.

Concernant les constructions existantes, elles sont nombreuses et tres efficaces sur la
cryptographie "classique'. Nous pouvons notamment citer le schéma Blind RSA [Fer93|
qui se base sur le cryptosysteme RSA, tandis que I'histoire des signatures aveugles sur
les réseaux euclidiens est bien plus complexes. Tout d’abord il n’existe qu'un seul modele
de construction basé sur un schéma d’identification de Lyubashevsky [Lyu08]. Ce mod-
¢le requiert 3 échanges entre I'utilisateur et le signeur, comme d’autres schémas tel que
Okamoto-Schnorr [Oka92], a contrario d’autres constructions comme blind RSA qui n’en
demandent que 2.

De plus toutes les constructions sur les réseaux euclidiens ont vu leur preuve de sécurité

13

Introduction

invalidées par un papier de Hauck et al [Hau+20] publié & Crypto 2020. En effet pour
prouver qu’'un utilisateur malhonnéte ne peut pas générer plus de signatures qu’autorisées,
une propriété appelée one-more unforgeability est nécessaire. Une modele de preuve a été
proposé par Pointcheval et Stern [PS00] pour des constructions basées sur des groupes
finis, dans lesquels un élément secret était choisi aléatoirement dans tout le groupe. La
différence sur les réseaux euclidiens vient du fait qu’une clé secréte est habituellement
un petit élément de ’ensemble considéré, ce qui interdit toute adaptation directe sur les
réseaux euclidiens de la preuve de Pointcheval et Stern.

Dans notre construction, nous revenons sur cette preuve et sur la solution apportée par
Hauck et al. [Hau+4-20] qui souffre d’un manque d’efficacité. Concernant notre construction,
notre sécurité repose sur une conjecture qui n’a pas été prouvée. Tout d’abord, notre
solution gagne en efficacité en utilisant 'avantage de distributions gaussiennes sur des
distributions uniformes. De plus, nous utilisons des outils tels que les trappes sur les
réseaux euclidiens pour effacer toute trace d’abandon durant le protocole de signature
aveugle, notre construction étant la seule n’ayant pas recours aux abandons, qui est un
impact négatif sur 'efficacité. Finalement, nous proposons une variante appelée signature
partiellement aveugle, qui permet a l'utilisateur et au signeur d’inclure une information
publique, sur laquelle ils se sont mis d’accord en amont de la génération de la signature.
Notre construction n’entraine quasiment aucun coiit supplémentaire par rapport a la

signature aveugle. Ce travail est décrit dans le chapitre 5 de cette these.

— [BCEKRT20] Samuel Bouaziz-Ermann, Sébastien Canard, Gautier Eberhart, Guil-
laume Kaim, Adeline Roux-Langlois and Jacques Traoré. Lattice-based partially
blind signature without restart. Cryptology ePrint Archive, Report 2020/260, 2020.
https://eprint.iacr.org/2020/260.

1.4.3 Vote électronique

Finalement, nous avons aussi construit un schéma de vote a partir de notre signature
aveugle, en suivant le procédé de Fujioka et al. [FOO92]. Habituellement les schémas de
vote électronique utilisent a leur avantage les propriétés homomorphiques de certaines
primitives cryptographiques pour améliorer l'efficacité de certains aspects de leur schéma
de vote. Cependant ces primitives bénéficiant de propriétés homomorphiques sont aussi su-
jettes a des soucis d’inefficacité (tel que 'utilisation de preuves de connaissance, cotiteuses

sur les réseaux euclidiens). C’est pourquoi il est important de diversifier les modeles de

14

Introduction

constructions de tels schémas pour pouvoir adapter chaque construction a chaque besoin.

Sur les réseaux euclidiens, il existe actuellement 2 constructions de vote électronique
par Chilloti et al. [Chi+16] et del Pino et al. [Pin+17]. Ces constructions reposent sur
des outils utilisant des propriété homomorphiques (chiffrement complétement homomor-
phe pour la premiére et commitment homomorphe avec preuve de connaissance pour la
seconde), tandis que notre construction repose sur d’autres primitives.

Notre contribution est une adaptation du schéma de vote [FOO92] au post quantique.

1. Elle utilise comme base le schéma de signature aveugle que nous avons décrit juste

au-dessus.

2. Nous lui ajoutons un schéma de chiffrement qui viendra remplacer le schéma de
commitment utilisé initialement dans le modele de [FOO92], afin d’éviter que tout
les votants aient la nécessité d’étre en ligne a la fin de I’élection pour aider a ouvrir

leurs bulletins.

De plus nous adaptons nos primitives pour leur rajouter la propriété threshold (dit a
seuil), qui permet de distribuer les clés secrétes entre diverses autorités pour éviter le cas
problématique ot une autorité corrompue posseéde tous les pouvoirs pour pouvoir altérer
I’élection. Nous prouvons par ailleurs la sécurité de notre schéma de vote a partir de la
sécurité des primitives sous-jacentes qui la composent.

Les avantages de notre construction par rapport aux schémas existants reposent sur
le fait que certaines opérations (telle que la vérification qu’un bulletin de vote est bien
valide) sont plus rapides dans notre construction. De plus efficacité de notre construc-
tion ne s’affaiblit pas avec le nombre de candidats considérées, contrairement aux schémas
de vote basés sur des primitives bénéficiant de propriétés homomorphiques. Cependant
d’autres opérations (telle que la phase de comptage) sont plus rapides dans les construc-
tions mentionnées précédemment.

Ce travail disponibles dans le chapitre 6, n’a pas encore été rédigé sous forme d’article

et ne fait donc pas encore 1'objet d’une soumission.

15

CHAPTER 2

INTRODUCTION IN ENGLISH

Every year, the amount of communication all around of the world is growing and ac-
cessible to a larger public. However this emergence of digital exchanges leads to the birth
and storage of many data that can potentially be sensitive and then must be protected
from the potential abuse that can be done on them. In order to prevent such attacks,
cryptography is a good answer since by definition it is the science of the security of infor-
mation, then it produces tools that have been designed to protect such data at different
levels. These levels starts, from a simple encryption scheme, permiting to anyone to hide
a given message to everyone but those who owns the corresponding secret decryption
keys. A stronger level is the homomorphic schemes allowing to additionally perform some
operations on encrypted data, without decrypting them. We can also cite the signature
schemes, where the possessor of a secret key associated to a public key can authenticate
himself as the owner of this corresponding secret key.

Cryptography can be split in several families, with the two mains ones being the sym-
metric and asymmetric cryptography. The first one is also called secret key cryptography,
since if we consider an encryption scheme for example, the key used to encrypt a message
into a ciphertext and the key used to decrypt this same ciphertext to recover the message
are the same and must remain private. Concerning the asymmetric cryptography, that is
also called public key cryptography, considering the same example of encryption scheme,
the key used to encrypt and the key used to decrypt are not the same, the former is
called the public key, while the later is called the secret key. As their name mentioned
it, the public key can be revealed publicly to anyone, while the secret key must be kept
secret to everyone but those granted with the right to decrypt. The differences on these
two cryptography are numerous but in resume, the symmetric cryptography gets a better
efficiency, while the asymmetric cryptography offers more possibilities and applications in
general.

An important feature of the asymmetric cryptography, is the notion of provable secu-

rity that is now close to become a norm for every new designed scheme. Historically, the

16

Introduction in english

robustness of a cryptographic scheme was measured by its ability to resist to every known
attack. Indeed, the corresponding science, called cryptanalysis, was the only way to ensure
that a construction is safe or not. However, since the tools composing such cryptanalysis
are not exhaustive, the possibility that a new attack comes up within time still remain
possible. In public key cryptography, the way to prove the security of a construction is
different. This new way makes use of a specific type of proof called reduction. It means
that to prove that a given cryptographic scheme is secure, we assume the opposite, and
prove that it would imply a second attacker on another problem that has already been
assumed to be proven secure. We can then conclude that the former scheme is indeed

secure.

2.1 Cryptography for privacy

As already discussed, the security of the information has become a major challenge for
all governments and many industries. Indeed, the amount of communications leads to a
privacy concern about the data moving during these exchanges, this concern is shared by
every party included in these interactions. Concretely, some measures have already been
carried out, especially the General Data Protection Regulation set up by the European
countries to protect the privacy of every European citizen.

In this context of privacy, cryptography brings some very useful tools that can guar-
antee different variants of privacy depending on the needs. Indeed, several cryptographic
primitives especially designed to work in a privacy protection environment have been in-
troduced and improved over the last decades. These primitives allow the users to digitally
send sensitive data without be worried that anyone can get an access to them, this access
is limited to the authorized persons or services.

Examples of such primitives are numerous, the most famous being homomorphic en-
cryption. This primitive allows a user to encrypt some data, such that authorized entities
can perform some computation on them, while the data remains encrypted during all
the process, ensuring then the confidentiality of this same data. In this thesis we take
a closer look on digital signatures schemes, that allow the owner of a dedicated secret
key to be authenticated. The concept of digital signature can be derived in group signa-
ture for example, where a group of user gather, such that any member of this group can
anonymously sign on behalf of the group.

There exists efficient constructions that are built upon these theoretical primitives,

17

Introduction in english

relying on mathematic problems that are very hard to solve for the current computers.
However all these cryptosystems are harmed in the future with the rise of the quantum
computer, that profit of significant advantage compared to current one, These advantages
were revealed by Shor [Sho97].

2.2 Classical and post-quantum Cryptography

In response to this threat, new cryptosystems must be built upon mathematical prob-
lems not weakened by quantum computer. Indeed, the most famous cryptosystem, known
as RSA, is called from the name of its inventors (Rivest, Shamir, Adleman) and is based
on the factorization problem, we can also cite the El-Gamal cryptosystems based on the

discrete logarithm problem, that would also be harmed by quantum computers.

Concerning the RSA cryptosystem, the secret key includes two big primes p and g,
while the public key contains their product N = p - ¢q. Then if an attacker can factorize

N to recover p and ¢, it means that it would break the RSA cryptosystem.

For the El-Gamal cryptosystem, using a well chosen group G, the secret key is an
integer a € Z, such that for a random element g € G the public key component is g°.

Finally the discrete logarithm problem asks to find a from g¢°.

A lot of cryptographic schemes, that are very efficient and used in practice, are using
these two problems. However they can not resist to a quantum computer and would be
broken in a quantum era as shown by Shor [Sho97]. The question now is then, which cryp-
tosystems can replace them to produce the new standards when the quantum computers
will become a reality. Indeed, if we would like to keep these cryptosystems in practice, it
would imply to enlarge so much the parameters to remain secure. This is why it would
be better to find new mathematical problems for which the quantum computer will have

no more advantages compared to current ones.

To answer this question, the NIST has proposed a competition to find new standards
in a world, where the quantum computers are a reality. Taking a closer look into this
competition, we can shed light upon the lattices-based constructions that are the most
represented cryptosystem among others like the code-based or the isogeny-based cryptog-
raphy. Indeed, the lattices interest us specifically, as they compose the basis of the work
described in this thesis.

18

Introduction in english

2.3 Lattices

Lattices can simply be described as an infinite set of points well distributed in the
space, while in a more mathematical point of view the lattices are discrete sub groups
generated by a basis of vector. Lattices have numerous advantages, compared to others
post-quantum cryptosystems proposed, like the ease of use since the computations are
only composed of matrix vectors products or additions. It means that the understanding
of the operations composing all constructions are simple to understand, while the imple-
mentation of these same operations are easy to perform. The shortcoming being that the
size of these vectors and matrices are huge since composed of thousands elements, making

lattice-based cryptography suffering a lack of efficiency at first sight.

However if we consider the security aspect, the topic is more encouraging since there
exists very well understood reduction upon lattice problems. These lattice problems can
be categorized into two families. The first one is composed of problems that are directly
linked to the lattices and is composed of the SVP (for shortest vector problem) and CVP
(for closest vector problem) problems. The SVP problem asks, given a lattice, to find the
shortest vector composing this lattice, while the CVP problem asks, given any point in
the space, to find the point in the lattice that is the closest to this given point. Moreover
these two problems can be derived in several variants, asking for example to solve them

with an approximation factor.

However these problems cannot directly be used to build cryptographic primitives.
They are useful to prove the difficulty of a second family of problems. A first problem is
called LWE (Learning With Errors), that asks, given a matrix A € Z7"" and an element
b=A-s+ebeZ with s € Z; and e being a small error vector, to find the element
s. The aforementioned problem is called search LWE but it has another version called
decisional LWE which asks, given A € Z;”" and an element b € Zj to decide if b
is generated uniformly random or as an LWE sample. Whatever the variant, the LWE
problem is mainly used to build encryption schemes, and it is on this problem that the
first ever fully homomorphic encryption scheme has been built.

The second problem used to build cryptographic primitives on lattices is the SIS
(Shortest Integer Solution) one. In this problem, we get a randomly distributed matrix
A € Z;*™ and the problem is to find a short vector v € Z;" such that A -v = 0. There is
a variant called ISIS, where the element on the right of the equality is a public non zero

element x € Z such that we want to solve A - v = x. Contrary to the LWE problem, the

19

Introduction in english

SIS problem is mainly used to build digital signature schemes, for which we can describe
two types of such constructions. The first one is called Fiat-Shamir signatures and is
built from an identification scheme by replacing the interactive part with a hash function
modeled as a random oracle, as introduced by Fiat and Shamir [FS86]. The second type
of signature [GPV08] relies on a system of trapdoor. Indeed the signer owns a trapdoor as
a small basis of the lattice, allowing him to find short vector solutions of an ISIS equation.
Our contributions make use of these two types of signatures in their constructions.

As said above, the efficiency of the lattice-based cryptography is far from the one
obtained using "classical" cryptography, mainly because of the size of the matrices and
vectors that counts more than several thousands of elements. This is why new variants of
the LWE and SIS problems have been designed, replacing the integer ring that was initially
considered with polynomial rings that can save a factor n (1024 or 2048 in practice) in the
size of matrices and vectors. These variants are called Ring LWE and Ring SIS, while the
formulation of the problems remains as stated above the elements are not lying anymore

in Z, but in polynomial rings.

2.4 Contributions

Now, I am going to describe my contributions corresponding to the work I did during
my PhD. These contributions are centered around the concept of cryptography for privacy,
as we designed several primitives providing privacy, as well as a direct use-case which is

the electronic voting.

2.4.1 Group Signatures

To begin with my contributions, I start by describing a lattice-based group signature
that adds some attractive properties. Group signatures is a very appealing primitive,
since it allows several users to gather into a group such that every member can sign on
behalf of this group with the additional property of traceability. Indeed, in case of abuse,
a signature generated by a group member can be opened by a manager to recover the
identity of the corresponding group member. Moreover the group signature must verify
the correctness property, meaning that a genuinely generated group signature must be
valid with at least an overwhelming probability. Finally, the group signature must verify

the anonymity property, such that anyone, but the group manager, can not recover the

20

Introduction in english

identity of the member that has generated a given signature.

Currently, there is a lot of group signatures scheme that has been designed in "classical"
cryptography. However as mentioned earlier these constructions will not remain secure
during a quantum era. This is why the topic of finding an efficient post-quantum group
signature attracts researchers. Indeed, they focus on designing such a scheme in the lattice
settings from a decade with the former work of Gordon et al. [GKV10]. An intense line of
research follows this work ([Lag+13; Lan+14; Lib+16a; San+18]...), with the efficiency
being improved in each new construction. However, they all face a limitation due to the
inefficiency of zero-knowledge proofs that are the building blocks of the general framework
of group signatures [BMWO03]. In light of this limitation, Katsumata and Yamada departed
from the traditional framework by publishing at Eurocrypt 2020 a new construction based
on a different framework [KY19]: their construction is based on a recent primitive called
attribute-based signature to cut off the aforementioned limitations.

Starting from this work, we build our own group signature scheme that enjoys the
attractive property of forward security. Concretely, this property cuts the time into periods
such that, when entering a new period, the group secret keys of every member will be
updated. In the same time, the secret keys of past periods will be erased by each group
member to forbid the generation of a group signature corresponding to a past period of
time. Indeed in a group signature not benefiting the forward security, in case of any group
secret key being stole, the whole group signature scheme has to be rebuilt. The reason
is that there is no way for a verifier to tell if a group signature has been generated with
a stolen secret key or the secret key of a certified group member. Thanks to the forward

security property, this problem does not apply.

— [CGKRT20] Sébastien Canard, Adela Georgescu, Guillaume Kaim, Adeline Roux-
Langlois and Jacques Traoré. Constant-size lattice-based group signature with for-
ward secrecy in the standard model. Published in PROVSEC 2020.

2.4.2 Blind signature

We now describe a blind signature that we designed in the lattice-based settings. Blind
signatures have been introduced by Chaum in 1982 [Cha82] to the concrete use case of
e-cash. In a nutshell, a blind signature scheme is an interactive protocol between a user
and a signer, where a user wants to obtain a signature on a message M of its choice,

but does not own the corresponding signing secret key. It means that he has to interact

21

Introduction in english

with an authority which possesses this signing key to generate and output the desired
signature. However coming back to the e-cash use-case, where the signing authority being
a bank for example, and the user being one of its customer, the blind signature process is
used to generate an electronic coin to be spent by the customer, but this latter does not
want his payment to be traced, this is why he wants the notion of blindness such that the
signing authority is not able to link a blind signature to its corresponding transcript. In
the same time, coming back to our example, the bank does not want the user to spent
more money that authorized. In order to ensure this property the blind signature must
verify the one-more unforgeability property guaranteeing that a user can not generate

more signatures than the number of interactions he had with the signing authority.

In practice there exists a lot of blind signature constructions, but most of them are built
upon classical cryptography. We can cite the most famous one as the Blind RSA scheme
[Fer93] that takes as a basis the RSA cryptosystem. Coming to the post-quantum setting,
the existing constructions are less numerous. For example in the lattice setting, all the
constructions take as a starting point the identification scheme of Lyubashevsky [Lyu08],
to get an interactive protocol with 3 exchanges, like the Okamoto-Schnorr construction on
the discrete logarithm problem, contrary to the aforementioned Blind RSA scheme that

includes only 2 exchanges.

Moreover, history of lattice-based blind signatures is complicated, since the recent
paper of Hauck et al. at Crypto 2020 [Hau+20] found a flaw in every previous lattice-
based blind signature scheme. This flaw appears in the one-more unforgeability proof, that
follows the seminal work of Pointcheval and Stern [PS00] in every known lattice-based
construction. Indeed, the [PS00] proof was originally designed for constructions in which
the secret key was picked randomly in a whole set, while in lattice cryptography, the secret
key is usually a short element of a given set. This difference incurs a correctness error in
the lattice-based constructions that is missing in their counterparts on finite group. Thus
a direct transformation into the lattice setting is forbidden and needs an adaptation as
developed by Hauck et al. [Hau+20].

Coming into our construction, we propose a new blind signature scheme, while our
security is only conjectured and not proved. Our scheme relies on the advantages given
by the gaussian distribution over the uniform one. Moreover, we succeed to get rid of the
restarts existing in all previous schemes by enabling the signer to possess a trapdoor to
prevent a signature generation to restart from scratch after a test fails. Finally we also

propose a partially blind variant, that allows the user and signer to agree on a common

22

Introduction in english

information that is made public, our construction comes with no more cost compared to
the blind signature scheme since there is no more element that are generated or exchanged

during the protocol execution.

— [BCEKRT20] Samuel Bouaziz-Ermann, Sébastien Canard, Gautier Eberhart, Guil-
laume Kaim, Adeline Roux-Langlois and Jacques Traoré. Lattice-based partially
blind signature without restart. Cryptology ePrint Archive, Report 2020/260, 2020.
https://eprint.iacr.org/2020/260.

2.4.3 E-voting protocol

We finally developed an electronic voting system that takes as a basis the blind sig-
nature described above within the framework of Fujioka et al. [FOO92]. Usually elec-
tronic voting schemes make use of cryptographic primitives with homomorphic proper-
ties to benefit a higher efficiency on some aspect of the voting protocol. However these
homomorphic-like constructions come at some cost on other aspects (as the efficiency of
the underlying homomorphic construction) and needs other primitives that remains in-
efficient in the lattice-based settings (like the zero-knowledge proofs). These limitations
show that it is important to diversify the considered framework to be adapted for every
needs of electronic voting protocols.

Our construction is built in the lattice setting, and prior to our contribution, 2 earlier
electronic voting protocols in the lattices were designed. The first one by Chilloti et al
[Chi+16] uses fully homomorphic encryption schemes to build their voting protocol. They
avoid to use the zero-knowledge proofs, but rely on a very heavy primitive as the fully
homomorphic encryption scheme. The second electronic voting scheme on lattices has
been designed by del Pino et al. [Pin+17] and mix the use of homomorphic commitment
schemes with approximate zero-knowledge proofs that benefit a better efficiency than
their exact counterparts, moreover they implemented their construction such that it is
possible to represent how their protocol could behave in a real election.

Taking a closer look on our construction, we already said that we follow the [FOO92]
framework, but we apply some modifications. Indeed, the original framework makes use
of a commitment scheme to hide the voting choice of every voter until the end of the
election, where they all open their commitment. However the fact that each voter needs
to open individually its commitment induces a lack of efficiency since they need to be

online at the end of the election to open its ballot and allow the tally of the election.

23

Introduction in english

We decide to use instead an encryption scheme such that a single secret key is needed to
open all the ballots, while the hiding of every voting choice is ensured until the end of
the election. We also modify the cryptographic primitive we make use to transform them
into threshold variants. Indeed when coming into such a sensitive topic that is the voting
protocol, we cannot allow a single authority to possess all the secret keys and then to
be able to affect the election freely. This is why we add a secret sharing mechanism such
that several authorities are mandatory to perform the signature generation protocol and
to rebuild the decryption key of the electronic voting protocol.

We finally mention that our work is still in progress and then has not yet been subject

to any submission.

24

CHAPTER 3

PRELIMINARIES

We define in this first chapter some basic definitions and tools we are using in the rest
of the thesis. We start by defining generic mathematics objects, like the set of elements
we work with as well as the basic mathematical tools that will serve all along the chap-
ters composing this thesis. We also define what is a lattice and what are the associated
hard problems, from which the lattice-based cryptography is built. We finally introduce
some basic cryptographic primitives that will be used as building blocks in the various

contributions presented in this thesis.

25

Preliminaries

3.1 Mathematical definitions

We define here the mathematical tools that we make use in the different works pre-

sented in the following chapters.

3.1.1 Rings and notations

We denote [a, b] the set of all integers between a and b, while [a] denotes the set of
all integers between 1 and a. We denote the integer rings Z, with ¢ a prime number, we
define as well its polynomial variant R = Z[z]/(f(x)) with f a polynomial of degree n
that will be used for efficiency reason with R, = R/¢R.

The vectors are written in bold lower-case letters a, and matrices in bold upper-case
letters A. The euclidean norm of a vector is denoted by ||b||, and the norm of a matrix
| T||= max;||t;||, which is the maximum norm of its column vectors. The infinite norm

||a||co= max;|a;| is the maximal value of its coefficients.

We denote by D a distribution over some countable support S and x <= D the choice
of x following the distribution D. Considering that D; and D, are two distributions over
a same countable support S, then we can define their statistical distance by A(Dy, Dy) =
3 Laes|Di(z) — Da(z)].

A function f(n) is said negligible if it exists Npoly, such that for all n > Nyqy, f(n) <

m for every positive polynomial poly(n).

3.1.2 Probabilities definitions

Let S be a set of size t, the uniform distribution on this set means that every element
s € S has the same probability % to be picked. We denote s <—g S to indicate that s is

uniformly picked in S.

Gaussian distribution. The Gaussian function of center ¢ € R™ and width parameter

o is defined as p,c(x) = exp(—wnxgigc“z), for all x € R™. A positive definite covariance

matrix is defined as ¥ = BB":p 5 . = exp(—7(x—¢)" S (x—¢)). The discrete Gaussian

distribution over a lattice A is defined as Dy ,c(x) = % where poc(A) = X cp Poc(X).

26

Preliminaries

3.2 Lattices

3.2.1 Definition of a Lattice

We define a n-dimensional full rank lattice A as a discrete additive subgroup of R™. A

lattice is the set of all integer combinations of some linearly independent basis vector
B = {bl, . ,bm} c Rnxm: A(B) = {Z Zibi, zZ; € Z}
i=1

We consider n a power of two, such that the polynomial ring R = Z[z]/(z™ + 1) is
isomorphic to the integer lattice Z". Then a polynomial f = >7°) f;z% in R corresponds to
the integer vector of its coefficients (fo, ..., fn—1) in Z"™. The notation norm of a polynomial
|| /|l means that we consider the norm of its coefficient vector, and as for the integer, the
norm of a vector of polynomial [|f||= max;||f;||. For the rest of this thesis we will work
with polynomials over R, or R, = R/¢R = Z,[z]/(2™ + 1), where ¢ is a prime verifying
g =1 (mod 2n).

Definition 1. The dual lattice of a given lattice A C R™ is:
A={xeR"VyelA (xy) €Z}.

We also define the minimum distance of a lattice denoted A;(A):

Definition 2. Let v € A non-zero such that for every x € A we have ||x||> ||v]| then
M (A) = ||v]], we have A\ (A) = minyepl||v]|.

We can also define the i-th minimal distance \;(A) such that, given a set of ¢ inde-
pendent vectors vy, ..., v; with A\j(A) = ||vy||,..., Ai=1(A) = ||vi_1|| and v; € A being the

shortest vector independent of vy, ..., v;_1, then \;(A) = ||v;_4]|.

3.2.2 Problems on lattices

Worst-case problems. We first describe some problems that can be immediately linked

to a given lattice A, with some basis B of A.

Definition 3 (Shortest Vector Problem). The SVP problem asks given an arbitrary basis
B of a lattice A, to find the shortest non-zero vector v € A such that |v||= A1 (A).

This problem can be derivate on several variants that are either decisional or allow an

approximation factor:

27

Preliminaries

Definition 4 (Approximate Shortest Vector Problem). Given an approximate factor ~y,
the SVP, problem asks given an arbitrary basis B of a lattice A, to find a non-zero vector
v € A such that ||[v][< v - A (A).

Definition 5 (Decisional Approximate Shortest Vector Problem). Given an approzimate
factor v and an integer d > 0, the GapSVP, problem asks given an arbitrary basis B of

a lattice A, to distinguish between the two following cases:
— (A <d
— M) >

Average-case problems. We now give some problems linked to a lattice A and an
associated basis A that is randomly distributed in a uniform way. These problems are
directly used to build the cryptographic primitives based on lattices and their security

relies on the problems defined above.

Definition 6 (SIS, 5m,). Given a uniformly chosen matriz A € Z;*™, find non-zero
integer vector s € Z™ such that ||s]|coc< S and A-s=0 mod q. SIS, ;5.m is hard if
for any adversary A, if the probability to solve SIS is negligible, i.e. it is bounded by
negl(X). SIS, 4 p.m is sub-exponentially hard if the probability to solve SIS is bounded by
2790) . negl(N) for some constant 0 < € < 1.

Definition 7 (LWE, , p, .,m)- Given a uniformly chosen matriz A € Z;*™ and a vector
b=A-s+e mod g, withs < Z; and € <= Dgm oy. The search LWE problem asks to
find s, while the decisional LWE problem asks to distinguish if a (A,b) € Z7*" x Zy* pair
has been generated from the uniform distribution on Zg"*" X Zg* or if it has been generated

as a LWE sample.

Worst-case average-case reductions. The two above problems have been proven se-
cure thanks to reductions called worst-case to average-case. Indeed the reduction starts
from a lattice with a randomly distributed basis A and the reduction proves that solving
SIS or LWE is as hard as solving a variant of the SVP problem in the worst case. Con-
cerning SIS, for any m = poly(n), 3 > 0 and ¢ < § - poly(n), then solving the SIS, ; 5.m
problem is at least as hard as solving the GapSVP,, problem, with v = 3-poly(n) [GPVO08].
As for the LWE problem, let m = poly(n), ¢ < 2P°¥(") and « - ¢ > 2y/n, then solving the
LWE, 4D, .,,m 15 at least as hard as quantumly solve GapSVP,, for an arbitrary lattice of

dimension n and some v = O(n/a) [Reg05].

28

Preliminaries

Structured variants. In order to benefit a better efficiency, some structures are added
into the lattices, the above problems are then reformulated according to these new struc-
tures:

We first define Ring-LWE that is similar to the LWE problem described above but on

a polynomial ring:

Definition 8 (Ring-LWE, p, .,.m). Given a uniformly chosen polynomial vector a € Ry
and a polynomial b = a - s +e mod ¢, with s <—¢ Ry and e < Dgm oy. The search
LWE problem asks to find s, while the decisional LWE problem asks to distinguish if a
(a,b) € Rj* x Ry pair has been generated from the uniform distribution on R;* x RI* or

if it has been generated as a LWE sample.

We consider Ring-SIS, a variant of SIS, proven to be at least as hard as the SIVP
problem on ideal lattices [LM06; PRO6].

Definition 9 (Ring-SIS, . 5). Given a = (a1,...,a,)" € Ry a vector of m uniformly
random polynomials, find a non-zero vector of small polynomials X = (z1,...,2,)T € R™
such that fa(x) =Y, a;.x; =0 mod ¢ and 0 < ||x||< 5.

In one of our scheme, we need an other variant called the k-SIS problem [BF11].

Definition 10 (Ring k-SIS, adapted from [BF11, definition 4.1]). For any integer k > 0,
an instance of the Ring k-SIS; 3, problem is a vector a € R™ and a set of k short
polynomials vectors eq,...e; € A;(a) that are gaussians vector of width o. A solution to
the problem is a non zero polynomial v.€ R™ such that ||v||< 8, fa(v) =0 mod q (i.e.,
vel;(a)), andv ¢ R —span(ey,...ey).

Hardness. Following the proof of [Lin+14] adapted to the ring setting, the hardness of
Ring k-SIS; 30 is insured for k£ = O(n) and k£ < dim(ker(a)) by a reduction from a
Ring-SIS, ;3 problem with 5" = O(f - k - poly(n)).

3.2.3 Mathematical tools for lattices

Smoothing parameter. The smoothing parameter of a lattice A has been introduced
by Micciancio and Regev [MRO07]. The idea of this value is to determine what is the
minimal value 7.(A) such that the discrete gaussian distribution with a o > 7, parameter

behaves like a continuous gaussian distribution.

29

Preliminaries

Definition 11 ([MRO07]). For a lattice A C R™ and a positive real € > 0, he smoothing
parameter ne(A\) is the smallest real 0 > 0 such that:

p1/o(A"\{0}) < e

The vectors sampled from D, , are short with overwhelming probability.

Lemma 1 ([Ban93]). For any lattice A C R", 0 > n.(A),c € R for some € € (0,1), we

have: Prycp, lIx —c[|> no] <27 <.

When sampling integers we have to tailcut the gaussian distribution. In order to
do this, we use the fact that Pre_p, [|z|< t- o] > erfe(t/v/2), where erfc(z) = 1 —
2/ | exp(—t?) dt. In practice, for A = 100 and ¢ = 12, a vector x <> Dzn , will verify
|x||< t- o - y/n with overwhelming probability.

We define the function ® as ®,.(B) = Prycp, , .[||x —c||< B], and we also define the
following quantity pycp(x) = %, Vx € S C R" and p,e(x) =0, Vx ¢ S, as a trun-
cated gaussian. Finally we denote Dy ¢, 5 as the truncated gaussian, where the elements

x € A, such that ||x||> B have a probability density equals to 0.

We then define a lemma that argue about the statistical distance between two gaussian

distributions.

Lemma 2 ([Gol+10, Lemma 3]). Let v € R be arbitrary. The statistical distance between

the distributions Dy , and Dg s, s at most @
We finally give below the leftover hash lemma:

Lemma 3 (Leftover Hash Lemma [Has+99]). Let m,n,q > 1 be integers such that m >
4nlog q and q prime. Let A & Zy<™, r & {0,1}™, then (A, Ar) is at negligible statistical

distance from uniform distribution on Zj'*" x Z.

3.3 Cryptographic tools

3.3.1 Encryption and signature protocols

Public key encryptions scheme. A public key encryption scheme is defined by the
algorithms KeyGen, Encrypt and Decrypt that we develop below.

30

Preliminaries

KeyGen: The KeyGen algorithm takes as input the security parameter A\ and outputs a
secret/public key pair (eg, my), such that my is used to encrypt while ey, is used to

decrypt.

Encrypt: The encryption algorithm takes as input the encryption key m; and a message

M to be encrypted, it outputs a ciphertext c.
Decrypt: The decryption algorithm takes as input the decryption key e, and a ciphertext

¢, it outputs a message M or an error L.

Signature scheme. A signature scheme is defined by the algorithms KeyGen, Sign and
Verify that we develop below.

KeyGen: The KeyGen algorithm takes as input the security parameter A and outputs a
secret/public key pair (sg, px), such that py is used to verify the signature (and sign

the message as well sometimes) while s; is used to sign a message.

Sign: The signing algorithm takes as input the secret/public key (si,pr) and a message

M to be signed, it outputs a signature v.

Verify: The decryption algorithm takes as input the verification key pp and a signature

v, it outputs 1 if the signature is valid and 0 otherwise.

Security. The basic security asked for the encryption schemes is the ciphertext IN-
Distinguishability under Chosen-Plaintext Attack (or IND-CPA), while the basic security
asked for a signature scheme is the FExistential UnForgeability against Chosen-Message
Attack (or EUF-CMA), these two security are depicted below:

ExplP-CPA()) ExplUF-CMA())
(ex,my.) <+ KeyGen(1%) (s, p) < KeyGen(1%)
My, My + D(my) (M*,v*) < Foiente) (p,)
b* 5 {0,1} d < Verify(py, M*, v*)
¢ < Encrypt(my, M) We denote (M, v1),. .., (Mys, v4s) the allowed queries of F
b+ D(c") to a Sign oracle.
Return 1 if b = b* Return d N (M™* # M;,Vi € [gs]).

The (IND-CPA) property asks that an attacker, providing two messages M, and M,

31

Preliminaries

can not distinguish which one of them has been encrypted in ¢*. This property can be
enforced into a (IND-CCA) property (for ciphertext INDistinguishability under Chosen-
Ciphertext Attack) in which case he is allowed to make decryption queries on ciphertext
of its choice different from the challenge c*.

Concerning the (EUF-CMA) property, an attacker is asked to output a valid signature
on a message on which he has not already queried such a signature. This property can as
well be enforced into a (SEUF-CMA) where the attacker is allowed to output a signature
on a message already queried to a signing oracle, but obviously the signature output by

the attacker must be different to the one output by the oracle.

Security model. It exists several security models that are considered in the various
security proofs. We mention here the two main ones which are the random oracle model
and the standard model that we make use in our works. The random oracle model (or
ROM) has been introduced by Bellare and Rogaway [BR93] and allows every party to
have access to a public random oracle, such that for every new input, it outputs a random
string. In a real use case such an ideal function does not exist, but we often make the
statement that a hash function is modeled as a random oracle. Concerning the standard
model, it does not use any kind of idealization and is what is closest to what happens in

practice.

3.3.2 Identifications scheme and Fiat-Shamir signatures

An identification scheme ZD is composed of the following algorithms.

— KeyGen: The key generation algorithm takes as input the security parameter A
and outputs a key pair (pk, sk), such that the prover algorithm P gets the secret
key sk and the verifier V algorithm the public key pk.

— P: The prover algorithm takes as input the secret key sk and the conversation

transcript, it outputs the next message to be sent to the verifier.

— V: The verifier algorithm, that is first probabilistic and outputs a challenge CHL.
At the end of the interactions it is deterministic, and takes as input the public key
pk and the transcript (CMT,CHL,RSP) of the interaction and it outputs 1 if the

transcript is valid and 0 otherwise.

From such an identification scheme, the Fiat-Shamir transformation [FS86], can turn

it into a digital signature scheme. We describe below this transformation.

32

Preliminaries

Fiat-Shamir transformation. Let ZD be an identification scheme, and

H:{0,1}* — {0,1}¢,¢ > 0 be an hash function modeled as a random oracle. From this
identification scheme ZD, we build a digital signature scheme S = (KeyGen, Sign, Verify).
This signature scheme is composed of the same KeyGen algorithm as the identification

scheme, while the Sign and Verify algorithms are described below:

Sign(sk, M) Verity(pk, M, o)
CMT « P(sk) parse o as (CMT,RSP)
CHL « H(CMT, M) CHL « H(CMT, M)
RSP <+ P(sk,CMT, CHL) Return V(pk, CMT, CHL, RSP)

Return ¢ = (CMT, RSP)

The digital signature built from this Fiat-Shamir transformation in the lattices, starts
from the identification scheme of Lyubashevsky [Lyu08] and makes use of a technique
called the rejection sampling. This technique introduced by Lyubashevsky in [Lyu08] and
improved in [Lyu09; Lyul2], is used in the case we have a distribution depending on a
secret we want to hide. The main idea is that the vector computed by the signer, in the
signing step, is rejected or accepted following a probability that prevents the secret key

to leak. The theorem below expresses this idea.

Theorem 1 ([Lyul2, theorem 4.6]). Let V' be a subset of Z" in which all elements have
norms less than T', o be some element in R such that o = w(T\/log(n)), and h:-V — R be a
probability distribution. Then, there exists a constant G = O(1) such that the distribution
of the following algorithm A:
1v<=gh 224 Dz, 3: output (z,v) with probability min(G.%ZZZ”:V, 1)
s within statistical distance 27“2;%") of the distribution of the following algorithm F:
l:véegh 2z+4>gDyn, 3:oulput (z,v) with probability 1/G.

w(logn)

. . . 1—2—
Moreover, the probability that A outputs something is at least ~——5——

More concretely, if o = 0T for any positive 9, then G = exp12/5+1/(252), the output o
Y Y
the algorithm A is within statistical distance % of the output of F, and the probability
. . 1_27100
that A outputs something is at least ~—5—.
We briefly describe below the Fiat-Shamir signature of Lyubashevsky [Lyu09] pub-

lished in Asiacrypt 2009.

33

Preliminaries

The KeyGen algorithm generates S < {—d,...,d}™* and A <« Zy*™ such that
T =A-S mod g € Z* and an hash function H:{0,1}* — {v: v € {0,1}*,|[v|1< s},
finally it outputs (sk = S, pk = (A, T, H)).

Sign(sk, M)
ly + Dga
2.c+ H(A -y, M)
3z y+8S-c
5.0utput (y,z) with probability min(el Dz:::sc, 1)

Verify (pk, M, o)
1.Parse o as (y, z)
2.c«+ HA -y, M)
I H(A -z—T: c,M)=cand ||z]|> ocv/m, output 1.
4.Else output 0.

The parameters are set such that the problem SIS, ; ., is hard with § = (20 4 2dk)/m.
Moreover the above scheme is proven to be EUF-CMA secure under the hardness of the

SIS problem.

3.3.3 GPV-style signatures and trapdoors constructions

As introduced in [Ajt96] and widespread in [GPVO08], a trapdoor for A € Z;*™ is
a short basis of the lattice Aj(A):= {v € Z™ such that Av = 0 mod ¢}. A trapdoor
allows to sample short Gaussian vectors solution of the ISIS problem: Av = x mod ¢ with
X € Ly

Trapdoors. For all v € Zy, A;()l (v) is the random variable with discrete gaussian
distribution Dzm ,, conditioned on A - AZ'(v) = v mod ¢. A yp-trapdoor for A allows
a procedure that can sample from AZ'(v) in time poly(n,m,logq) for any v € Z7. By

overloading notation we denote a 7y-trapdoor for A by Agol.

Lemma 4 (Trapdoor generation [Ajt96; MP12]). There exists an efficient procedure, that
we call TrapGen(1™, 1™, q), with an efficiently computable value mg = O(nlog q) such that

34

Preliminaries

for all m = mq outputs a pair (A,Agol), where A € Zy;*™ is at negligible distance from
uniform and AZ' is a yo-trapdoor for A with v = O(y/nlogqlogn).

We describe now the gadget-based trapdoor introduced in [MP12] in the ring

Zgy|x])/(x™ 4+ 1), that we use in some of our constructions in order to be more efficient.

Gadget-based trapdoor. In [MP12] trapdoors, the matrix a € Ry" is constructed by
picking a first part uniformly at random, and a second part almost uniformly at random by
including a gadget structure, to help the search of a solution for a Ring-SIS problem. The
trapdoor construction then uses a gadget vector g = (1,2,4,...,28 17T ¢ R’;, with k£ =

log, q] for which the inversion of the function f,r(z) = g’z € R, is easy to compute.
&2 g q

Construction. The construction of the gadget-based trapdoor takes as input the mod-
ulus ¢, the Gaussian parameter 7, an optional a’ € R;”_’“ and h € R,. If no a’ is given
it is chosen uniformly in Rg”"k and if no h is given, h = 1. The construction outputs a
matrix a = (a’7||hg — a’’T)T with T € RM~*)*k jts trapdoor associated to the tag h,

generated as a Gaussian of parameter 7.

m
q

a short vector solution v € R™ of a Ring-SIS problem f,(v) = X", a;.v; = 0 mod g,
available only thanks to a trapdoor T € Rém_k)Xk for a. The construction of [MP12]
enables the following algorithm PreSample(T,z € R, () for the preimage sampling x €
R™, with width parameter (, of fa(v) = z:

Preimage sampling. The preimage sampling, given a € R!*, is the computation of

1. Find z «+ Dﬁva, satisfying fg(z) = h™'(z — a’p), with p € R}" a perturbation

vector with covariance matrix X, = ¢*1,, — o (IT’“) (TT1L).

2. Compute v=p+ (ITk)Z with covariance matrix X, = 3, 4+ o (ITk) (T7T},), satisfying
alv=alp+ aT<IT’“)z =alp+hglz=a"p+ h.h 'z —alp)=u.

GPV signature scheme. This type of trapdoor is used to build digital signature
schemes, we describe above the construction of Gentry et al. [GPVO0S].

The KeyGen algorithm generates a pair (A, A,;Ol) thanks to the above trapdoor gener-
ation algorithm. It outputs (sk = Aqol, pk = A) as the secret/public key pair and selects
a hash function H: {0, 1}* — Zj modeled as a random oracle.

35

Preliminaries

Sign(sk, M)
1.If it exists (M, o)) in a local storage, outputs (M, o).
2.Else o) < PreSampIe(Afml7 H(M),~) for v > vy and outputs oy,.
Verity(pk, M, o)
1L.If Aoy =H(M) mod ¢ and 0 < |[oa]|< vv/m, outputs 1.
2.Else outputs 0.

The above scheme is proven to be EUF-CMA secure under the hardness of the SIS prob-
lem.
We describe now some additional tools on the trapdoors, allowing to delegate the

trapdoors.

Lemma 5 (Trapdoor extension [ABB10; MP12]). Let M € Z;*™ be a matriz with trap-
door M;l and N € Zy*? a matriz such that M = NS mod q where S € ZI*™ with
s1(S) its largest singular value. Then we can use (M;l, S) to sample from N;,l for any

vz s(S).

Lemma 6 ([Cas+10, Lemma 3.2]). There is a deterministic polynomial-time algorithm
ExtBasis with the following properties: given an arbitrary A € Zy*™ whose columns
generate the entire group Zy, an arbitrary basis S € Z™*™ of AL(A), and an arbitrary
A € 7™, ExtBasis(S,A’ = A||A) outputs a basis S' of A-(A') C Z™™ such that

|S’||= ||S||. Moreover the same holds even for any permutation of the columns of A’.

There exists a function RandBasis developed by [Cas+10], which verifies the following

lemma:

Lemma 7 ([Cas+10, Lemma 3.3)). Let S be a basis of a m-dimensional integer lattice A
and a parameter s > ||S||-w(v/Togn). The algorithm

RandBasis(S, s) outputs a new basis S’ of A such that, with overwhelming probability, S’
verifies ||S'||< s - v/m. Moreover, for any two basis So,S1 of the same lattice and any
s > max{||Sol|, [|S1||} - w(v/Iogn), the outputs of RandBasis(Sy, s) and RandBasis(Sy, s)

are within negl(n) statistical distance.

We further need an important property of lattice trapdoors ([ABB10],[MP12]):

36

Preliminaries

Lemma 8. For A € Z7*? and R € Zb*™ with m = n[logq|, one can compute
[AJAR + G]}' for v = O(y/mp [|R||c)-

3.3.4 Hash function and Forking Lemma

We make use of the hash function construction developed in [LMO06]. Let R, be a ring
and m > 1 a positive integer. The hash function ha:RZI" — R, for a € R;” is defined as:
x > (a,x) = 7! a;2;. This hash function family will be denoted H(R,, m). We define

the collision problem associated as follows.

Definition 12 (inspired by [Riicl0, definition 2.1]). Let D C R, the collision problem
Col(H(R,, m), D) asks to find a distinct pair (x,x') € D™ x D™ such that h(x) = h(x’)
for h < H(R,,m).

Lemma 9 ([BN06, Lemma 1]). Fiz an integer ¢ > 1 and a set H of size h > 2. Let A
be a randomized algorithm that on input x, hi, ..., hy returns a pair, the first element of
which is an integer in the range 0, ..., q and the second element of which we refer to as
a side output. Let TG be a randomized algorithm that we call the input generator. The
accepting probability of A, denoted acc, is defined as the probability that J > 1 in the
experiment:

x <43 ZGh, ... hy s H;(J,0) g Az, hi,... h,).

The forking algorithm F4 s the randomized algorithm that takes input x proceeds as

follows:

Algorithm F4(z)

Pick coins p for A at random
hi,... hg H
(I,0) < Az, h1,...,hg;p)
If I =0 then returns (0, ¢, ¢€)
Tooo by H
(I',0") = A(x, b, hy1, By, L)
If (I =1 and h; # b)) then return (1,0,0")

Else return (0, €, €).
Let frk = Pr[b = 1:x = 2G;(b,0,0") = Fa(z)]. Then: frk = acc.(** — +). Alternatively,

acc < % + Vq.frk.

37

Preliminaries

3.3.5 Secret Key Encryption (SKE) from LWE.

We present now the secret key encryption scheme from LWE defined by [KY19].
The SKE scheme described below is IND-CPA secure and has a decryption circuit with
O(log A)-depth. We need IND-CCA security which can be achieved from IND-CPA se-
curity and message authentication codes (MAC) scheme by a generic construction as
explained in [KY19].
The SKE scheme below is a secret key variant of the Regev’s scheme [Reg05]. The
parameters of the scheme are the following: X is the security parameter, [is the dimension
of the message space M = {0, 1}, n = poly()), ¢ is a prime polynomially bounded with
q > 24n + 2 and m = A\ + nllog q|
SKE.Setup(1*) Set the dimensions n and m of the matrix and the modulus ¢. Outputs
pp = (n,m, q).

SKE.Gen(pp) Sample two matrices Sy & Zy™ and S, & Zp*'. Output the secret key
K = (So,Sy)

SKE.Enc(K, M) Parse K as (Sp,S1). Sample a & Zy \ {0}, %o & Dym 3.m and x; &
Dy 3. m- Compute ¢g:=a’Sg+x] ¢f:=a'S;+x] +[q/2]-M, where M € {0, 1}
is considered as a row vector. Finally, output the ciphertext ct:= (a, ¢y, c;)

SKE.Dec(K,ct) Parse ciphertext as ct = (a, cg, ¢1) and check its validity.

Compute v:=cj —a'Sg and v]:=c] —a'S;. If vo & [-3n,3n]™, output Invalid.

Otherwise, recover M; € {0,1}! for i € [I] as follows: if the i-th coefficient of v is
in [—3n,3n| then M; is 0, otherwise, M; is 1.

Correctness. This follows since we have ||Xg||oo » ||X1|lcc < 3n with probability 1 and
q > 24n + 2.

3.3.6 One-Time Signature (OTS) scheme.

A one-time signature scheme is defined by the following algorithms:

OTS.KeyGen(1?) is a randomized algorithm taking as input a security parameter 1* and

outputs a verification key ovk and a signing key osk.

OTS.Sign(osk, M) takes as input a secret key osk and a message M and outputs a signa-

ture o.

38

Preliminaries

OTS.Verify(ovk, o, M) takes as input a verification public key ovk, a message M and a

signature o and outputs Valid or Invalid.

Correctness. For all)\, (ovk,osk) € OTS.KeyGen(1*), M in the message space and
o € OTS.Sign(osk, M), OTS.Verify(ovk, o, M) = Valid holds.

The security notion required for OTS scheme is the classical strong unforgeability
with the difference that the adversary is allowed to make a single signing query instead of
polynomially many. We define it using a game model between a challenger and an attacker

A to define this security notion.
Setup: At the beginning of the game, the challenger runs OTS.KeyGen(1") — (ovk, osk)
and gives 1* and ovk to A.

Signing Query: During the game A can perform a single signing query. When receiving
M, the challenger runs OTS.Sign(osk, M) — ¢ and returns (M, o) to A.

Forgery: Eventually A outputs (M*,c*) as a forgery. Then A wins the game if
OTS.Verify(ovk, o*, M*) = Valid and (M, o) # (M*,c*)

We then define the advantage of the attacker A as the probability that A wins the
above game.
We say that an OTS scheme is strongly unforgeable, if for all PPT adversary, the

advantage in the above game is negligible. .

39

CHAPTER 4

FORWARD SECURE GROUP SIGNATURE
IN THE STANDARD MODEL

We present in this chapter a forward-secure lattice-based group signature which is
secure in the standard model, and has a size of signature constant in the number of
group members. Our construction follows an intensive line of research on the subject of
lattice-based group signatures started in 2010 by Gordon et al. [GKV10]. The former
construction and most of the existing schemes are restrained by the lack of efficiency of
lattice-based zero-knowledge proofs of knowledge at that time, since the efficiency of the
generic framework [BMWO03] mainly relies on such constructions. This chapter is based

on the following publication:

— [CGKRT20] Sébastien Canard, Adela Georgescu, Guillaume Kaim, Adeline Roux-
Langlois and Jacques Traoré. Constant-size lattice-based group signature with for-
ward secrecy in the standard model. Published in PROVSEC 2020.

We begin by giving the definition of a group signature and what security properties, a
group signature must or can fulfill. Next, we give a short summary of the history of group
signatures with a focus on the lattice-based constructions. We then present in detail, two
recent constructions that we use to build our scheme: the group signature of [KY19] and
the attribute-based signature of [Tsal7], that are both secure in the standard model. We
develop as well the transformation of [Lin+419] that we apply on these schemes to get
the property of forward security that we are looking for. We end the chapter with the
description of our group signature, by presenting the different algorithms that compose

the construction and we finally prove the security of our scheme.

41

Forward Secure Group Signature in the standard Model

4.1 Definitions and constructions

Group signatures were introduced as a new type of signatures by Chaum and van
Heyst [CH91] in 1991 with the aim to rise in a context of privacy preserving cryptography.
Indeed, they allow dedicated members of a group to sign messages while the identity of
the signer remains hidden from the point of view of the verifier (anonymity). The latter
can only ensure that a member, who belongs to a given group, has signed the message.
Nevertheless, if necessary, the signature can be opened by an entity called group manager
who holds some secret information and has the ability to reveal the identity of the signer
(traceability). These features make group signatures very useful for real life applications
including e-commerce systems, anonymous online communications and trusted hardware

attestations.

4.1.1 Generic definition and basic properties
Considering a group of persons, a group signature verifies the following properties:

1. Only the members of the group can sign a message on behalf of this given group,

2. Anyone can check that someone who produced a signature actually belongs to the

group,

3. In case of dispute, a manager can open a signature and reveal the identity of the

group member who has generated it.

Concretely, to prove its membership, it means that every group member holds a cer-
tificate (which can take the form of a secret key, or a signature for example). The difficulty
then, is to anonymously prove that he owns such a certificate in a way that, in case of
dispute, an authority manages to open the signature and recovers the identity of the group
member who generated it.

Following the former paper of [CH91], a lot of constructions were proposed, for example
[Cam97; Pet97; AT99; Ate+00; BBS04], relying on classical assumptions such as the
factorization problem or the discrete logarithm one. Regarding the security properties
asked by such a primitive, for a long time there was no formal definition of security for
group signatures. Besides of the anonymity and traceability properties introduced with
the former paper of Chaum and van Heyst, some additional properties were defined such

as:

42

Forward Secure Group Signature in the standard Model

— Unlinkability: no one, but the opening manager, can tell that two group signatures

have been generated by the same group signer.

— Unforgeability: without the knowledge of a secret key, it is not possible to generate

a valid group signature.

— Collusion resistance: it is not possible for any subset of group members colluding
together, to output a valid signature that do not open on the identity of one member

of the collusion.

— Exculpability: any group member (even the group manager) cannot produce a group

signature that opens on the identity of another group member.

All these properties have been introduced in the subsequent papers, but without formal
definitions and discussions on how they interact from each other.

In 2003, Bellare, Micciancio and Warinschi [BMWO03] formalized the security require-
ments we can expect from a group signature scheme. More particularly, they gathered
the properties mentioned previously into (full-)anonymity and (full-)traceability security,
which encompassed every other security properties introduced in previous papers. More-
over, as in classical digital signature, the property of correctness is required. It demands
that a group signature that has been genuinely generated, passes the verification test
with, at least, an overwhelming probability.

Concerning the constructions, even if there exists several possible frameworks to build
a group signature, one has known a lot of success and is at the starting point of the most
efficient constructions. It is known as the “sign - then encrypt - then prove ”framework,
which has been developed by Bellare et al. [BMWO03], who were inspired from previous
works (e.g [Ate+00]). They based their constructions on the idea to give a certificate
of membership to every group member, allowing them to prove their ownership in an
anonymous way. This type of construction needs several building blocks, the first one is
a public key encryption scheme that is IND-CCA secure, the second one is an adaptive
simulation-sound NIZK proof for NP, finally the last primitive that is needed is a digital
signature scheme secure against chosen-message attacks.

Combining all these primitives, the idea of the construction of the group signature is

the following:

— In order to join the group, a member generates its own secret/public key pair and

authenticates it to the group manager.

— Then the signer encrypts its certificate, composed of the key pair that has been

43

Forward Secure Group Signature in the standard Model

authenticated by the group manager, together with its identity and the message,
finally it generates a zero-knowledge proof that all these elements are valid and

well-formed.

— To check the validity of the group signature, a verifier just needs to verify that the

zero-knowledge proofs are correct and include the elements claimed by the signer.

— In case of dispute, the opening manager, who owns the secret key of the encryption
scheme, can open any signature to retrieve the identity of the group member that

has output a given signature.

Group signatures, as defined above, are sometimes too limited for real use cases, and
some additional features can be brought on top of this classical definition. For example,
without any other mention, a group signature scheme is considered static. It means that
once the secret key of each member is generated and given to its corresponding group
member, no one can leave or join the group. In some scenarios this property narrows the
use case in which we want to use the group signature. To soften this limitation, we can
add some dynamic flavor. The most permissive is the fully dynamic property, giving the
ability to any group member to join or leave the group at any moment, but there is also
some schemes with mitigated dynamic properties, allowing member only to leave or join

the group (partial dynamicity), sometimes using tools (such as verifier-local revocation).

Besides the dynamic problematic, another nice property which interests us, is the
forward security. Coming back to the static group signatures, consider the case where
a secret key of a group member leaks, then all the previous group signatures have to
be invalidated and the whole group has to be generated again. To circumvent such a
disaster, we can split the time into periods. Given all the time periods, we can then
imagine a mechanism where all the secret keys of the group member are updated at the
end of each time period. By this mean, if a secret key is stolen, we just have to discard

this specific secret key for the current and next periods, instead of canceling everything.

Coming back to the group signatures on classical assumptions, we denote that the most
effective group signatures to date, are those built on pairings, coming from the work of
[BBS04; CL04] to most recent ones [Cam+20; CS18]. This efficiency is even more critical
concerning the schemes that are built on lattices, since the NIZK proofs efficiency is really
not closed compared to those on pairings. This problem induced a lot of research works

for having an efficient, or equipped with nice properties, group signature on lattices.

44

Forward Secure Group Signature in the standard Model

4.1.2 Classical constructions and history of lattice-based group

signatures

Group signatures have been the witnesses of an heavy history on lattices. From 2010
until today, at least 15 group signature schemes were born, with the question of finding
an efficient lattice-based group signature still being an open question. In fact the NIZK
proofs must be suitable with the others cryptographic primitives such as the encryption
or signature schemes. This problematic, that is important on lattices, made the subject
of obtaining an attractive post-quantum group signature on lattices, a challenging and

interesting problem to solve.

For a long time the problem of inefficiency of the lattice-based group signature con-
cerned the size of the output signature and/or public key. This is why, we make the
convention that when we talk about linear size or logarithmic size, we mean size depend-

ing on the number of group members.

Coming back to 2010, Gordon et al. [Gol+10] proposed the first construction of a
lattice-based group signature. Their construction encounters several limitations, such as
a signature size and public key size that are linear. This scheme was quickly followed by
a scheme from Camenisch et al. in 2012 who succeeds to lower the public key size from
linear to logarithmic, but remains with a signature size which is linear. Both of these
schemes used non-interactive zero-knowledge proof of [MV03] which limits the signature

size to linear.

The first scheme that enjoys a logarithmic size both in the public key size and in the
signature size was designed by Laguillaumie et al. [Lag+13] and relies on a new non-
interactive zero-knowledge proof obtained by transforming the identification scheme of
[Lyu08] into a non-interactive zero-knowledge proof using the Fiat-Shamir transforma-
tion [FS86]. Following this work, a lot of constructions in the logarithmic size [NZZ15]
were designed, achieving verifier-local revocation property [Lan+14], using non-interactive
zero-knowledge proofs d la Stern [Lin+13] to build their scheme [LNW15], using accumu-
lators [BM93] to get static group signature [Lib+16b] and fully dynamic group signature
[Lin+17], beneficing partial dynamicity [Lib+16a] or the property of message dependent
opening [LMN16]. Finally in 2018, Ling et al. [San+18] developed the first lattice-based
group signature with a signature size and a public key size independent of the number of

member.

In complement of all these works, at Eurocrypt 2019, Katsumata and Yamada [KY19]

45

Forward Secure Group Signature in the standard Model

designed a lattice-based group signature departing from the usual paradigm of [BMWO03]
by replacing the usual non-interactive zero-knowledge proof by an attribute-based signa-
ture, trying by this mean to get rid of the limitations imposed by the problem of NIZK
proofs on lattices. It is on this new model that we base our work and try to improve and
add some properties to their construction. We first explain in the next part what tools
are needed for this new model, then we develop the framework in detail before presenting

our own work.

4.1.3 Some useful tools for standard model construction

Since the framework of Katsumata and Yamada [KY19] does not make any use of
non-interactive zero-knowledge proofs, it has to replace them with other primitives. But
first, we need to introduce several tools that are needed in their construction.

The first of these tools is a hash function family, called admissible hash functions.
These hash functions are useful in scenarios in which we want to split the message space
into two subsets, a controlled subset and a challenge subset. Concretely in simulation-
based proofs, the simulator can then answer to queries asked by the attacker with the
first subset, while the second subset is expected to contain the attacker output, in order

for the simulator to complete the proof by solving a hard problem.

Admissible hash functions. Intuitively, WIdCmp is a string comparison function with
wildcards which takes as input three strings y, z, w and compares z and w only at those

points where y; = 1.

Definition 13 ([KY19, definition 1]). Let £:= ¢(X\) and ¢':= {'(\) be some polynomials.
We define the function WIdCmp:{0, 1}* x {0,1}¢ x {0,1}¢ — {0,1} as

WIdCmp(y, z,w) =0 < Vi € [¢], ((y; = 0) V (z; = wy;)),

where y;, z and w; denote the i-th bit of y, z and w respectively. Let {Hy:{0,1}¥X) —
{0,1YM Y \en be a family of admissible hash functions if there exists an efficient algo-
rithm AdmSmp that takes as input 1* and Q € N and outputs (y,z) € {0,1}* x {0,1}*
such that for every polynomial Q(N\) and all X*, XM ... X©@ ¢ {0, 1}*N with X* ¢
(XM o XY we have:

Pr(,..) [WIdCmp(y, 2, H(X*)) = 0 A (WIdCmp(y, 2, H(X7)) = 1 Vj € [Q])] = Ag(V),

46

Forward Secure Group Signature in the standard Model

for a noticeable function Ag(X), where the probability above is taken over the choice of

(y, 2) & AdmSmp(1*, Q).

Besides of the above hash function family, the framework of [KY19] makes also use of

evaluation functions.

Evaluation functions. In order to generate or check the validity of a signature, we
need to execute some evaluation of a function with a set of lattices as input. The output
of this evaluation is 1 if the function evaluated on an attribute x is not valid and 0 if
the evaluation is correct. We use the notations and definition of the evaluation functions

developed by Tsabary [Tsal7]. Moreover we denote [x1G| - |z,G] by x ® G with x =
(z1,--+,) € {0,1}~.

Theorem 2 ([Tsal7, Theorem 2.7]). There exist efficient deterministic algorithms EvalF
and EvalFX such that for all n,q,¢ € N, m = n[logq|, and for any sequence of ma-
trices A — (Ar,---,Ay) € (Z2™), for any depth d boolean circuit f{0,1}* — {0,1}
and for every x = (xy,---,x,) € {0,1}, the outputs H; = EvalF(f, X), and Hyyx =
EvalFX(f, x, X) are in ZU™>*™ and it holds that |Hy|| s, [|[Hfx|le< (2m)? and (X —xX®
G)-H;x= A -H; — f(x)G mod g.

4.1.4 Group signature in the standard model, attribute-based

signature and forward secure framework

We now describe three existing constructions, that are the building blocks of our
scheme: the group signature scheme of [KY19], the ABS proposed by Tsabary [Tsal7],

and finally, the forward-secure mechanism of the group signature construction of [Lin+19].

Group Signature Scheme without NIZK. The starting point of our work is the
recent lattice-based group signature scheme without NIZK in the standard model [KY19].
As stated previously, prior to the construction of [KY19], all works on group signatures on
lattices were relying on the Sign-Encrypt-Prove framework defined by Bellare, Micciancio
and Warinschi [BMWO03]. In this framework, to sign a message M, a user encrypts both
his certificate received from the group manager and a digital signature on M. Finally,
he proves in a non-interactive zero-knowledge way that every element is well formed.
Until recently (2019), constructing NIZK from lattices for any NP language was a long-
standing open problem and by that time Katsumata and Yamada [KY19] proposed a

47

Forward Secure Group Signature in the standard Model

group signature scheme that by-passed the utilization of NIZK by replacing it with indexed
attribute-based signature scheme (ABS). Their idea is based on the fact that for group
signatures the needed NIZK is in the common reference string (CRS) model and, in the
context of group signatures, it resembles to designated-prover NIZK (DP-NIZK) where
there is a proving key kp that needs to be kept secret (and thus is not known to the
verifier, assuring zero-knowledge) and a verification key ki which is public. Anyway,
simply replacing NIZK in the CRS model with DP-NIZK is not enough since it trivially
breaks anonymity. The breakthrough idea of Katsumata and Yamada was to view ABS as
DP-NIZK. In attribute-based signatures, a signer with an attribute x is provided a secret
key sk, from the authority and can anonymously sign a message associated with a policy
C' using his secret key, if and only if, his attribute satisfies the policy C'. In particular,
the signature hides the attribute (anonymity) and users can not collude to pull their
attributes together if none of the attributes satisfies the policy associated to the message
(unforgeability). Now, an ABS can be seen as a DP-NIZK by the following association:
the attribute x is seen as a witness w and the ABS signing key sk, can be set as the
proving key kp of the DP-NIZK. Thus proving that w is a valid witness to a statement s
i.e. (s,w) € R for the NP relation R resorts to, firstly prepare a circuit Cs(w) = R(s, w)
that has the statement s hard-wired into it, secondly sign a message associated with the
policy Cy using the proving key kp = sk, and finally output the signature as the NIZK
proof m. Anonymity and unforgeability of the ABS assure the zero-knowledge property

and soundness respectively.

Having shown a way of substituting the NIZK with ABS, it remains to indicate how
to use ABS to construct group signature. We briefly explain, in the following, the gen-
eral framework from [KY19|. The group manager issues for user i a key K; of a secret
key encryption (SKE) scheme and an ABS signing key sk;x, where i||K; is seen as an
attribute. To sign a message M, the group member i encrypts his identity under K; ob-
taining ct; = SKE.Enc(Kj,) and creates an attribute-based signature for some policy C,
which serves as a NIZK proof of the fact that ct; encrypts the identity. The circuit Cg,
has the statement ct; hardwired such that Ce, (i||K;):= (i = SKE.Dec(K;, ct;)). The trace-
ability property of the group signature holds from unforgeability of ABS and anonymity
holds from anonymity of the ABS and semantic security of the SKE.

As for the instantiation of the ABS from lattices, [KY19] gives two possible solutions:
the first one uses the ABS proposed by Tsabary [Tsal7] proven secure under the SIS

assumption and the second one is an indexed ABS designed by them, relying also on

48

Forward Secure Group Signature in the standard Model

the SIS assumption. The need for the second construction is explained by the problems
encountered when trying to plug the first construction into a group signature. Tsabary’s
scheme achieves selective unforgeability which is not enough for the security purposes of
group signatures. Adaptiveness is the required property and can be easily achieved via
complexity leveraging with the drawback that this approach requires a subexponential
security loss. The two different ABS constructions give two different group signature
schemes with the following properties:
(i) Tsabary’s ABS gives rise to a group signature scheme with public key and signature
size constant (independent) in the number of users and whose security relies on
the hardness of LWE with polynomial approximation factor and subexponential

hardness of SIS with polynomial approximation factor.

(ii) The second ABS gives rise to a group signature scheme with public key and signature
size linear in the number of users whose security relies on the hardness of LWE and

SIS with polynomial approximation factors.

Attributed Based Signature from Constrained Signature of Tsabary. The main
building block of our group signature is an Attribute Based Signature scheme. In the
following we briefly explain the ABS developped in Tsabary’s paper. Then we show how
to extend it to forward-secure ABS and use it as a building block for our signature scheme.
First of all, the construction in Tsabary’s paper is not really an attribute-based signature
but rather a key-policy constrained signature or simply constrained signature. We note
that the other flavour of constrained signatures, as defined in [Tsal7|, called message-
policy constrained signature is equivalent to attribute-based signatures. In constrained
signatures, a signing key sky is associated with a policy f:{0,1}* — {0,1}, called the
constraint, and a key skf can sign a message = € {0, 1}* only if the message satisfies the
policy i.e. f(z) = 0. In attribute-based signatures each key is associated with an attribute
z € {0,1}* and a key sk, can sign a policy f only if the attribute satisfies the policy
i.e. f(x) = 0. A constrained signature can be easily transformed into an attribute-based
signature using universal circuits (which we denote U,) as briefly explained in [KY19]
(but not done there), transformation that we sketch below.

The ABS scheme (as well as the original constrained signature of [Tsal7]) is built
from lattice trapdoors. The verification key vk consists of a uniformly sampled matrix
vector A = [AL]l...[|Ag] € Z2*™<0) (with ¢ the input size of the circuit C') and a close to

uniform matrix A € Z;*? while the master signing key msk is a trapdoor for A denoted

49

Forward Secure Group Signature in the standard Model

Agol. The signing key sk,, is associated to an user i (we prefer the simplified version of
this notation even though it would be clearer to use sky, as notation) and to an universal
circuit U,, (which has the attribute hard-wired and takes as input the policy (circuit) and
;1 where A, = X -H,, € ngm
is computed from X and U,, using the function EvalF. This function, associated with a
function EvalFX, allows to compute H,, = EvalF(x;, X), and H,, » = EvalFX(z;, x, X)
both in Z#™*™ and of bounded norm such that (K -x®G)-H,, x = X H, -U,(x)G

mod ¢, where G is the gadget matrix. Then, the manager can easily generate the secret

a message). The secret key sk,, is a trapdoor [A]A,]

key sk,, using it’s own trapdoor Av_ol. A valid signatlie for a message M, a circuit C'
and an attribute x; is a short vector ¢ such that [A||A —z; ® G] -0 = 0 mod ¢q. We
note that for every tuple (C, M, x;), a trapdoor [A||K> - ® G];,1 can be derived from
A& - U,,(C, M)GJ3! when U, (C, M) = C(z;) = 0.

We remark that, at this stage, the unforgeability of the ABS can easily be broken, as
explained in [KY19] because the message is not bounded to the signature (both signature
and verification just ignore the message) and a valid signature for a pair of policy and
message (C, M) is also valid for (C, M") for M # M’. Therefore, in the security game, we
can not allow signature queries and following the idea of [KY19], we use the fact that a
scheme that is unforgeable only when the adversary can not make signature queries can
be generically transformed into a scheme that is unforgeable even when the adversary is
allowed to make signature queries. In short, the idea in [KY19] is to answer the signing
queries using the secret key of a dummy user which does not exist in the real system. We
will need to partition the set of all possible message-policy pairs into a challenge set and
a controlled set (using admissible hash functions) with the hope that the adversary asks
queries that fall into the controlled set to which the challenger can answer with the help
of the dummy key. We also hope that the attacker outputs a forgery in the challenge set

to allow the simulator to solve a hard problem.

Forward Secure Group Signature of [Lin+19]. Recall that to achieve forward-
secure group signature, one needs a one-way key evolving mechanism for deriving secret
keys for every period of time. Let us now briefly explain this mechanism following the
idea of [Lin+19]. Let T' = 2¢ be the total number of time periods, the time periods are
represented in a binary tree, where each time period is a leaf of the tree. Each user secret
key for a time period t is then associated with a sub-tree of depth d which uniquely

defines the time period t. Let z be a binary string (corresponding to a time period) of

50

Forward Secure Group Signature in the standard Model

lenth d.. The set Nodes 1) contains nodes for which bases (trapdoors) are derived at

a current period of time ¢ and which allow to compute subsequent keys in the key update

algorithm using the bonsai tree technique [Cas+10]. Each user will have associated a

T T
1 d,

where the last d, matrices corresponding to the bits of d, are public. Therefore, the group

matrix corresponding to period time z € Nodesr_1): A, . = [A[|A,,

signing key of user ¢ at time ¢ is {S;)., 2 € Nodes(.r_1)} which satisfies A,, .- S;. =0
mod ¢. The user is then able to compute all possible S;; by employing S;|. if 2 is an
ancestor of ¢t where t is the binary representation of a period of time. The basis delegation
technique allows users to compute trapdoor matrices for all the descendent nodes in the
set Nodes(r_1) and therefore to compute all the subsequent signing keys.

We now have introduced all the building blocks that we use to construct our group

signature scheme.

4.2 Our scheme

In this section we describe our main contribution: a forward secure group signature
from lattices without NIZK secure in the standard model having public key and signature
size independent of the number of users for which we managed to prove forward-secure
traceability and CCA-selfless anonymity. At a high level, we start from the constrained
signature of Tsabary, we transform it into an ABS (according to [KY19] suggestion)
as previously explained, we equip it with forward-security (following the mechanism of
[Lin+19]), then plug it into the group signature of [KY19]. The drawback is that the
security assumption on which the GS scheme relies is SIS with subexponential hardness.

Our main building block is then a forward secure Attribute Based Signature which
is built using the idea from [Lin+19] having as starting point Tsabary’s constrained sig-
nature. As explained in [Lin+19], the advantage of this method is that it incurs only
logarithmic dependency on T. Therefore our construction achieves signature size and
public key size constant in N and logarithmic in 7. We note that [Lin+19] applied it
directly for building forward-secure group signature (FS-GS) while we need to apply it
first on our ABS to get forward-secure attribute-based signatures (FS-ABS). Indeed, in an
encrypt-then-prove paradigm for group signatures, the transformation of [Lin+19] into a
forward secure group signature is independent of the encryption scheme and of the NIZK
scheme used to prove the membership. This is because the group secret key of a user does

not appear as input in the NIZK proof but is embedded in a ciphertext on which the proof

o1

Forward Secure Group Signature in the standard Model

is performed. Instead, the paradigm on which we build our construction uses an ABS to
prove that the user belongs to the group, and the ABS secret key is a direct component
of the group secret key of a user. This means that if we want to update the group secret

key of a user, we need to update the ABS secret key as well.
From this observation and the fact that the ABS built by Tsabary [Tsal7] is based

on lattice trapdoors which fit perfectly with bonsai trees, we can then adapt the forward
security mechanism of [Lin+19] to the ABS derived from [Tsal7], and use the resulting
ABS to get forward-secure group signature scheme. We note that if we try to apply the
same technique for the second ABS from [KY19] (also built from lattice trapdoors) we
can not get forward-security. The problem is that the design of ABS forces us to keep the
initial secret key derived by the master authority for every user in order to be able to
compute all the other subsequent keys for the following periods of time. This means that
an adversary who gains access to a secret key for a certain period of time, would be able

to compute the secret keys for all periods of time (including previous ones).

The main difficulty encountered when trying to add forward security to the ABS
derived from [Tsal7] is then the way to deal with the trapdoors for each of the time
periods. This includes the trapdoors considered in the ABS construction as well as in the
simulation. Moreover this modification induces a new time parameter 7', that has to be
handled in the unforgeability proof. Indeed, the construction of [Tsal7] has been designed
to only consider a fixed matrix A and a vector of matrices X linked to the attribute
to generate and verify signatures. But now we add log 7" additional matrices in order to
integrate the time parameter, in a similar way to [Lin+19]. This transformation implies
that the secret keys have to be modified according to the time period considered. It means
that a trapdoor update mechanism needs to be built from the trapdoor construction of
Tsabary, using tools introduced in the bonsai tree mechanism [Cas+10], and the time

component has to be dealt with in the different queries from the simulation-based proof.

Finally, as we apply forward-secure property to an attribute-based construction in
our case, we also have to handle an additional component which is the attribute. A naive
adaptation from the transformation of [Lin+19] (on a group signature) to our construction
(an attribute based signature) would not be secure. Indeed, we have to deal with two types
of trapdoor: the trapdoor inherent to the ABS construction derived from [Tsal7], and the
trapdoors given by the matrices linked to the time parameter. In the security proof of the
ABS scheme, we need to simulate these two types of trapdoors according to each other,

and according to the time period considered, in order to be able to answer all the queries

92

Forward Secure Group Signature in the standard Model

of an attacker. At the same time, we expect all these trapdoors to vanish when the forgery
of the attacker is outputted, in order to be able to conclude the simulation and then to

argue about the security reduction getting a solution to a hard problem.

4.2.1 A Forward Secure Attribute-based Signature on lattices

As already explained above, we equip the ABS scheme in the general construction of
[KY19], which is the main component of their framework, with a forward-secure indexed
ABS. We start by giving the definition and the security requirements of a forward-secure
indexed attribute based signature. We note that the ABS scheme supports multiple users
since it is designed as a building block for group signature scheme.

The starting point of our scheme is the constrained signature of [Tsal7]. We first adapt
it into an indexed attribute-based signature, by including an index ¢ into the attribute z,
following the idea of [KY19]. Moreover we extend this construction to a forward-secure
attribute-based signature scheme, by applying a transformation similar to [Lin+19]. The
idea of this transformation is that we consider a pair of matrices T?, b € {0,1} for every
bit 7 of the time period ¢ considered. Then by concatenating these matrices T;’. to the
public key of [Tsal7], we can include a time period ¢ into the verification key and the
signatures. The technical difficulty that arises when using this transformation into the
Tsabary’s construction is simulating the secret keys for each period of time and for each
user, without possessing the master secret key. This can be done by using “dummy”
secret keys which vanish when the signature is made for an identity and a time period
chosen selectively by the adversary at the beginning of the game, allowing the simulator
to solve a hard problem (which is the SIS problem). We then get a new forward-secure
attribute-based signature scheme which is independent of the number of users N, and

only logarithmic on the total number of periods T

Framework and security properties. We denote {C)}ren the set of circuits with
domain {0, 1}** and range {0,1}. We bound the size of every circuit in {C,} by k. =
poly(A). We also denote the space of messages as { M }aen, for which we bound the size
elements by k,,, = poly()A). Usually we simplify notation and just denote these spaces C
and M. We then define the forward-secure indexed attribute-based signature scheme for

the circuit class C:

33

Forward Secure Group Signature in the standard Model

Definition 14. A forward-secure indexed attribute-based signature (FSI-ABS) scheme

consists of the following algorithms:

ABS.Setup(1*,1¥,1T) The setup algorithm takes as input X the security parameter, N
the size of the index space and T the number of time periods, given in unary form,

and it outputs a master public key mpk and a master secret key msk.

ABS.KeyGen(msk, i, x;) The key generation algorithm takes as input the master secret key
msk, an index i € [N]| and the attribute x; € {0,1}*. It outputs sk, o, the initial

secret key associated to x;.

ABS.KeyUpdate(mpk, i,sk,, ., t + 1) The key update algorithm takes as input the master
secret key msk, an index of an user i as well as its secret key for the time t, sk, ;.

It updates this key sk, for the next time period t + 1 and outputs sky, 141.

ABS.Sign(mpk, sk, ., C, M,t) The signing algorithm takes as input the master public key
mpk, a secret key sky, ; for the current period of time t, a circuit C € Cy, a message
M € My and a time period t and it outputs an attribute-based signature o if C(x;) =
0.

ABS.Verify(mpk, C, M, 0,t) The verification algorithm takes as input the master public
key mpk, the circuit C, the message M, the attribute-based signature o and the time
period t. This algorithm outputs Valid if the signature o is valid for the time period

t and Invalid otherwise.

For a FSI-ABS scheme, we require correctness and two security properties: perfect-
privacy and forward-secure policy-selective unforgeability. Perfect privacy captures the idea
that the attribute used to sign a message must remain anonymous. The unforgeability
property says that even if users collude they can not forge a signature on a message
associated with a policy if none of the attributes satisfies the policy. We next develop the
formal definitions of these three properties. We note that we can not achieve selective
unforgeability directly, but we start from no-signing-query and apply a transformation

usign admissible hash functions to obtain selective unforgeability.

Correctness. We require that for all A, N € poly()\),T € N, t € [T],

(mpk, msk) < ABS.Setup(1*, 1V, 17), i € [N], z; € {0,1}*,C € Cy such that C(z;) = 0,
M € M,y,sky, 0 < ABS.KeyGen(msk,i,x;), sky,+ < ABS.KeyUpdate(mpk,i,sky, :—1,%),
o < ABS.Sign(mpk, sk, ;, C, M, t), we have that ABS.Verify(mpk, C, M, o,t) = Valid.

o4

Forward Secure Group Signature in the standard Model

Perfect privacy. A FSI-ABS scheme provides perfect privacy if for all \, N € poly()),
T € N, (mpk, msk) < ABS.Setup(1*, 1V, 17), xg, 7, € {0,1}*, ig,4, € [N], C € Cy, t € [T],
C(zg) = C(x1) =0, M € M,,

sky, 0 <— ABS.KeyGen(msk, iy, ;) and sk, ; <— ABS.KeyUpdate(mpk, b, sk, ;—1,1), the
distributions ABS.Sign(mpk, sk, +, C, M,t) and ABS.Sign(mpk, sk, ¢, C, M,t) are

indistinguishable.

Forward-secure policy-selective unforgeability. We define the unforgeability prop-
erty for an indexed attribute-based signature scheme following the framework from [Yue+12].
We use a game model between a challenger and an attacker A to define this security no-

tion.

Setup: At the beginning of the game, the adversary A is given 1*, 1V, 17 as input. It
then sends to the challenger the tuple (C*, M*,t*) consisting of a circuit, a message
and a time period for which he is going to forge a signature. The challenger gets
(mpk, msk) < ABS.Setup(1*, 1V, 17). Tt gives mpk to A. At the start of each time
period ¢t € [T], the challenger announces the beginning of ¢ to .A. During current

time period t, the challenger responds to A’s queries as follows:
Key Queries: A sends (i, x;,t) to the challenger and gets back sk, +.

Signing Queries: A can perform some signing queries to the challenger during the game.
If A queries (C, M, t,i), with M € M,C € C,i € [N] and C(x;) = 0, the challenger
generates o <— ABS.Sign(mpk, sk, ¢, C, M, t) and sends it to A.

Forgery: Eventually A outputs (C*, M*, o*,t*) as a forgery. Then A wins the game if:

1. C* e,

2. (C*, M* t*,-) was not queried in a Signing query,

3. ABS.Verify(mpk, C*, M*, o* t*) = Valid,

4. C*(x;) = 1 for any key queried by A respective to t and x; where ¢ < t*.

We then define the advantage of the attacker A against forward-secure policy-selective
unforgeability as the probability that A wins the above game. We say that a scheme sat-
isfies the forward-secure policy-selective unforgeability property, if for all PPT adversary,
the advantage in the above game is negligible.

In our ABS construction, we additionally make use of two different flavours of un-
forgeability as in [KY19]:

95

Forward Secure Group Signature in the standard Model

— No-signing-query unforgeability: The game model of the no-signing-query un-
forgeability is the same as policy-selective unforgeability, but the attacker can not

perform signature queries.

— Adaptive unforgeability: The game model of the adaptive unforgeability is the
same as the policy-selective unforgeability, but the attacker is not asked anymore
to give the tuple (C*, M*,t*) at the beginning of the game, he can rather chooses
it adaptively during the game.

Construction of FSI-ABS scheme from lattices. We adapt the constrained signa-
ture developed by Tsabary [Tsal7] to a forward-secure attribute-based signature scheme.
As explained by Katsumata and Yamada [KY19], the signature scheme of Tsabary is not
an attribute-based signature but a constrained signature. It means that in the constrained
signature, a user does not sign a circuit but an attribute. Then the role of the attribute
and the circuit are exchanged compared to an actual attribute-based signature scheme.
However, as explained in [KY19], we can turn a constrained signature into an attribute-
based signature: we consider a constraint space composed of all d-depth bounded circuit
Fq = {f:{0,1}* — {0,1}}, with £ = poly()\), then a constraint f can be seen as a uni-
versal circuit U(-,-,z) (that we denote U,(+,)), which takes as input the circuit-message
pair (C, M) (seen as a string of size /).

Our contribution is to build a forward-secure attribute-based signature scheme mean-
ing that the lifetime of the scheme is divided into T' = 2¢ discrete periods. To represent
the time periods we use a binary tree, then each time period ¢ is associated with a leaf
Bin(¢). Following [Boy+06], for j € [d + 1], we define a time period’s “second sibling at
depth j7. Intuitively, it corresponds to the right neighbour at depth j of each node on the
path from the root of the tree to the leaf Bin(t).

(1) if j =1 and Bin(¢)[j] =0
Sibling(j. {) — (Bin(t)[1], ..., Bin(t)[j — 1],1) if 1 < j < d and Bin(t)[j] = 0
’ 1 if 1 <j <dand Bin(t)[j] = 1
Bin(t) ifj=d+1

We also define node set Nodes_,7—1) to be {Sibling(1,?), ..., Sibling(d+1,¢)}. The goal
of this set is to uniquely define the path to each leaf of the tree.
We consider also a function called bitstr which takes as input a message-circuit pair

(C, M) and which outputs its input seen as a string of bits. Then:

56

Forward Secure Group Signature in the standard Model

bitstr: {0, 1}% x {0, 1}*m s {0, 1}*, such that bitstr(C, M) = {C},- -+, Cy., My, -+, My, .}

ABS.Setup(1*,1¥,17) On input the security parameter 1*, 1V where N is the number
of indexes i € [N] and 17 where T is the number of time periods 7' = 2¢ for some
d € N, it sets the parameters n, m, p, q, 7o to be polynomial in A\. Then, it generates:
%
e uniform matrices A < ngem’
e (A A}) < TrapGen(1",17,q), with A € Z}*? and A_' its trapdoor,
e 2d matrices T? & Zy<® for all j € [d] and b € {0,1}.
%
It algorithm outputs: mpk = (A, A, {T%}ciabef01}) and msk = (AZ1).
ABS.KeyGen(msk,i,z;) On input the master secret key msk, the index i € [N] and
%
the attribute z; € {0, 1}*, it computes U,,, H,, = EvalF(U,,, A) € ZI™™ as defined
%
in Theorem 2 and A,, = A - H,, € Z}*™. Then, it uses AZ' to compute R,, =
[A||A,,]7. Then it determines the set Nodes(_7r—1y and for z € Nodesg_7_1):
o if 2 =1, set sk, [2] =L,
e clse it denotes d, as the bit-length of z, with d, < d, and computes the matrix:
Awi’z _ [AHAZ‘ZHTle(Z)[HH . ||T3;n(2’)[dz]] c Z(T]LX((dz+1)p+m)7 then it ComputeS:
R,, . < RandBasis(ExtBasis(R.,, Az, 2), s4.), and set sky,[2] = Ry, -,

Figure 4.1 — A binary tree with time periods T = 23. In order to fill the set Nodes;7_1)
we begin with the leaf Bin(#) that we add in the set Nodes(_,7_1), together with its sibling
(which is its right neighbour), if it exists. Then recursively, we go up in the tree to the
parent of the node considered (coloured in red), and we add its sibling (coloured in orange)
to the set Nodes(;_,7_1) (still if it exists). We keep going this way, until we reach the root
of the binary tree. We stop then and output the corresponding list Nodes_,7_1). On the
path from node € to the leaf node (001) we then have Nodes(;_,7) = {(1), (01), L, (001)}.

o7

Forward Secure Group Signature in the standard Model

Finally we get: sky, o = {ska,[2], 2 € Nodes(o_,r_1)}.
ABS.KeyUpdate(mpk,i,sk,, ;,t + 1) First parse the set sk, ; = {ska, [2], 2 € Nodes_,r_1)}
and determine the set Nodes(417_1).

For 2" € Nodes(1157-1):
o if 2/ =1, set sky,[2/] = L.

e Otherwise, there exists exactly one z € Nodes_,7—1) which is a prefix of 2’ i.e.

2" = z||ly. There are two possibilities here:

1. if 2/ = z then sk, [2] = sk, [2],

2. if 2/ = z||y for some non-empty y, then z is an ancestor of 2/, and from
sky;[2] = Ry, » it can delegate a basis
R, . + RandBasis(ExtBasis(R., ., A, /), 54,), and set
sky, [2'] = Ry, -

Finally output sky, ;11 = {sks,[2], 2" € Nodes(y17-1)}

ABS.Sign(mpk, sk, ;, C, M,t) First compute x = bitstr(C, M). If U,,(x) = C(x;) # 0
output L. Otherwise, first compute H,, x = EvalFX(U,,, x, X) € Zf;mxm, as defined
in Theorem 2, such that (K -x®G) -H;,x = X H, — U, (x)G = A,, as

i

U, (x) = 0.
= - in in
Compute B, = [A||A —x ® GHTlB (t)[l]H' .. HTS (t)[d}] c Z;zx((dJrl)erfm)7 and
_ L -
Hzi,x
S, = I, c Z((](d-‘rl)p-l-ﬂm)x((d—&-l)p-i—m)‘
I
= in in . .

We then have Bj - S; = [A]|A,, || T> (i - || T5 (t)[d]] = A,, ;. Since sk, ; contains
a trapdoor for A, ;, we can apply the trapdoor extension from Lemma 5 to obtain

= - in in _ —
B =B = [A| A —x@ G| Ty M| .. | T§" O -1 where A = A,,,, B =B,

and S = S; using sk,,; = [Ag, 4]
: = $!
Then the signer has a trapdoor for B; and he can compute oy, < B; (0).
ABS.Verify(mpk, C, M, 0x,t). First, compute x = bitstr(C', M) and then check that:

— in in
o [A|A —x@G|TE M) T§" M) .6, =0,

58

Forward Secure Group Signature in the standard Model

® [loxtllo< B.

If the verification passes, then output Valid, if not, output Invalid.

Selection of parameters for our FSI-ABS scheme. We end this part by giving a
selection of parameters that fit with the above construction and with the security require-
ment, that we expect to be fulfill.

Given the security parameter A, the parameters mg, p, 7o and 7, are chosen according
to TrapGen algorithm, 7" = 2% is chosen as a power of 2, for d € N, and is the number of
time periods considered, and / is the size of input of the circuit. We choose parameters 7,
and B by referring to Theorem 2. Finally s; is dictated also by Lemma 5. Then we set:

— m =4n[logq],

— mg = O(nlogq) = 4nloggq,

— p=max{my, (n + 1)[log q] + 2A},

— 70 = O(y/n[log q]logn),

— Ty =max{,/p- - 24m1-5td Aot

g, =7 VI - 2005t

— B:Tu\/(l—l—d)-p—l—f-m,

sy = O(y/adTog gy - w(/Iognp ™+ for j € [d)

4.2.2 QOur group signature scheme construction

In this section we present the construction of our forward-secure group signature (FS-
GS) scheme from lattices. We use the model of forward-secure group signature scheme
formalized in [NHF09] and [Lin+19]. We give the formal definition of FS-GS, correctness

and security properties - CCA-selfess anonymity and forward-secure traceability - below.

Definition 15. A forward-secure group signature scheme consists of the following algo-

rithms:

GS.KeyGen(1*, 1V, 17) is a randomized algorithm taking as input a security parameter \,
number of users N and number of time periods T. Its output consists of a group

public key gpk, an opening key gok and a set of initial user secret keys {gsk, o }ie[n]-
GS.KeyUpdate(gpk, gsk; , i, + 1) is a randomized algorithm that takes as input the group

public key gpk, the secret key gsk;, of user i at time t, a user i and a time period

t+1 and outputs gsk, ., the secret signing key of user i at time t + 1.

39

Forward Secure Group Signature in the standard Model

GS.Sign(gpk, gsk; ;, i, M, t) takes as input the group public key gpk, the ith user secret key
gsk,; at time t, the index i of the user, a message M € {0,1}* and the current time

interval t and outputs a group signature 3.

GS.Verify(gpk, M, >, t) takes as input the group public key gpk, a message M, a signature
> and the time period t. It outputs either Valid or Invalid. Valid indicates that X is

a valid signature on M at time period t w.r.t gpk.

GS.Open(gpk, gok, M, >, t) takes as input the group public key gpk, the opening key gok,
a message M, a signature X and time interval t and outputs an identity or Invalid

if it fails to identify the signer.

We require two security properties: forward-secure traceability and CCA-selfless anonymity

besides the correctness property.

Correctness. We require that for all A, N € poly(\),T € N,
(gpk, gok, {gsk; o }ieln]) < GS.KeyGen(1*, 1V, 17), Vi € [N], all M € {0,1}*, all
gsk;; < GS.KeyUpdate(gpk, gsk;, ,,4,t) and for all ¢ € [T, the following equations hold:

GS.Verify(gpk, M, GS.Sign(gpk, gsk, ;, i, M, t),t) = Valid, and
GS.Open(gpk, gok, M, GS.Sign(gpk, gsk; .4, M, 1), t) =1i.

CCA-selfless anonymity. We say that a forward-secure group signature scheme pro-
vides CCA-selfless anonymity if no PPT adversary A has non-negligible advantage in

the following game.

Setup: At the begining of the game, adversary A is given 1,1V, 17 as input and sends
i5,i7 € [N] to the challenger. The challenger runs GS.KeyGen(1*, 1%, 17) to produce
a public key gpk, a secret key gok and users secret keys gsk = {gsk; o }ic(v] and gives
(gpk, {gsk; o }icivi\fiziny) to A.

Queries: At the begining of each time period, the challenger increments a counter ¢ and
notifies A4 about it. During current time interval ¢, A can make the following queries

unbounded polynomially many times.

Signing: On input index b € {0,1} and message M, the challenger generates
and outputs a signature ¥ generated for member 7, and period t as > <+
GS.Sign(gpk, gskiz’t, i, M,t)

60

Forward Secure Group Signature in the standard Model

Opening: When receiving a query (M, X, t) from A, the challenger runs
GS.Open(gpk, gok, M, X, t) and returns the result to A.

Challenge phase: At some period t* € {1,..,T}, A chooses its target message M*. The
challenger then flips a coin d* & {0,1}, computes and returns
GS.Sign(gpk,gskiZ“t*,z'g*, M*,) to A.

Queries: After the challenge phase, A may continue to make signing and opening queries

unbounded polynomially many times. She may not make an open query for (M*, ¥* ¢*).

Guess: Eventually, A outputs d’ and wins if d' = d*.

We define the advantage of A as |Pr[d’ = d*] —1/2| where the probability is taken over
the randomness of the challenger and the adversary. A forward-secure group signature
scheme is said to be CCA-selfless anonymous if the advantage of any adversary A is

negligible in the above game.

Forward-secure traceability. A group signature scheme has the forward-secure
traceability property if no PPT adversary A has non-negligible advantage in the fol-
lowing game where he maintains a list CU which is set to be empty at the beginning of

the game.

Setup: At the beginning of the game, the challenger runs GS.KeyGen and obtains
(gpk, gok, {gsk; o }iciv])- The adversary A is given (gpk, gok).
Queries: During the game, A can make the following queries unbounded polynomially

many times.

Signing: On input index ¢ € {1,..,N}, a message M and a period time ¢, the
challenger generates and outputs a signature > generated for member ¢ and
period ¢ as ¥ < GS.Sign(gpk, gsk, ,,4, M, t) if (i,t) ¢ CU.

Corrupt: Given an index i and time moment ¢, the challenger returns gsk; ; to A
if (i,t) ¢ CU. The challenger adds (i,t) to CU.

Forgery: A eventually comes up with a signature ¥* on a message M™* and a time period

t*. We say that A wins the game if:

1. GS.Verify(gpk, M*, ¥* t*) — Valid.

2. Only one of the following two conditions is satisfied concerning the execution

of the opening algorithm where i* = GS.Open(gpk, gok, M*, ¥*, *):

61

Forward Secure Group Signature in the standard Model

(a) The opening algorithm fails i.e. i* = Invalid

(b) The message M* was not sent in a signing query before and one of the
following is true: (i*,t*) ¢ CU or (i*,t*) € CU but A did not obtain gsk;. ,
such that ¢ < ¢*.

We define the advantage of A as the probability that he wins the above game, where
the probability is taken over the randomness of the challenger and the adversary. A GS
scheme is said to satisfy forward-secure traceability if the advantage of any adversary A

is negligible in the above game.

Forward-secure group signature from lattices. We now describe our lattice-based
FS-GS scheme which employs the FSI-ABS scheme given in the previous section and which
satisfies CCA-selfless anonymity and traceability. As the ABS used is forward-secure, we
show that the group signature is also forward-secure, so we consider that the lifetime of
the scheme is divided into 7" time periods. When entering a new period of time, a new
secret key is computed from the current one and afterwards the current key is deleted

promptly.

GS.KeyGen(1*,17,17) On input security parameter), the number of group members
N and the total number of time periods T' = 2¢, the algorithms works as follows:
— sample pp < SKE.Setup(1*) and (mpk, msk) «— ABS.Setup(1*, 1V, 17),

— for i € [N], sample K; <— SKE.Gen(pp) and compute sk, ¢ as
sk k.0 < ABS.KeyGen(msk, 7, || K;)ic w1,

— output gpk = (pp, mpk), gok = { K }icn, g5k; o = (i, K, skijjx,.0)-

GS.KeyUpdate(gpk, gsk, ;,7,t + 1) It calls the key update algorithm of the ABS and
returns gsk, ;. = (i, K;, ABS.KeyUpdate(mpk, i, sky;,t + 1)).

GS.Sign(gpk, gsk; ;, 4, M,t) In order to sign a message, the user samples
(ovk, 0osk) <— OTS.KeyGen(1*) and computes the encryption of his identity under
the key K; as ct - SKE.Enc(Kj,i||ovk). Then, he computes

o < ABS.Sign(mpk, sk ., Clovk, ct], M, t),

where the circuit Covk, ct] is defined as follows:

62

Forward Secure Group Signature in the standard Model

C'lovk, ct](i|| K;)
Hardwired constants: a verification key ovk of OTS and
ciphertext ct of SKE
— Retrieve i € [N] and K; from the input. If this is impossible, return 1.
— Compute SKE.Dec(Kj;, ct) = #||ovk’. If i’ = i and ovk’ = ovk output 0.

Otherwise, output 1.
Finally run 7 < OTS.Sign(osk, M||o).

The signature consists of 3 = (ct, ovk, o, 7).

GS.Verify(gpk, M, %, t) On input gpk, a message M, a group signature ¥ on M and a
period time ¢, check that ABS.Verify(mpk, Clovk, ct|, M, o,t) = Valid and
OTS.Verify(ovk, 7, M||o) = Valid; if one of these verification condition does not hold,

return Invalid. Otherwise return Valid.

GS.Open(gpk, gok, M, 3, t) First run GS.Verify(gpk, M, 3, t) and return Invalid if the
verification result does not hold. Otherwise, parse ¥ — (ct,ovk,o, 7). Since the
manager does not know the identity of the user who produced the signature, he has
to find it by trial and error, i.e. he computes d; <— SKE.Dec(K;, ct) for i € [N] and
outputs the smallest index ¢ such that d; # Invalid. If there is no such 4, return

Invalid.

4.2.3 Analysis and security

Now we developed the construction of our group signature scheme as well as our
attribute-based signature scheme, we prove that they are both secure. Below we begin by

giving the proofs of correctness, privacy and unforgeability for the ABS scheme.

Correctness. We fix an attribute z; € {0,1}* for user i € [N], a circuit C' € C, such
that C'(z;) = 0, a time period t and a message M and let x = bitstr(C, M). Consider
(mpk, msk) < ABS.Setup(1*,1%,17) and

ox+ < ABS.Sign(mpk, ABS.KeyUpdate(mpk, i, sk, ;—1,t), C, M, t), since the signature o ¢ #L
because of C'(z;) = 0, we have that:

0w € B71(0) = [A| A —x @ GTF M| | T OM]-1(0) and

-~ in in .
A||A —x® G| T ® [v (t)[d]] -0xt = 0. Moreover, we know from lattice trapdoor

properties that samples from BT_ul(O) have discrete Gaussian distribution over Z{]’Mm*dp

63

Forward Secure Group Signature in the standard Model

with parameter 7, and, therefore, ||ox t]|co< Tu\/(l +d)-p+{-m= DB and
ABS .Verify(mpk, C, M, oy ,t) = Valid.

Lemma 10. Our FSI-ABS scheme is perfectly private.

Proof. We consider the perfect privacy game defined in Section 4.2.1. We change the way
each signature oy, is generated, with x = bitstr(C, M),b € {0,1}. We use the trapdoor
A to compute [A||K> -X® G||T?in(t)[1]||- - ||Tcl?in(t)[d]];u1 (we have 7, > 7). Then using
this trapdoor, we compite oy = [A[| A —x@ G| TE"OW||... T8 O)-1(0) p {0,1}.
This modification does not change the distribution for each oy 4,0 € {0, 1}, which means
that this change is statistically indistinguishable. Now the signature generation is totally
independent of the bit b. Then the ABS scheme is perfectly private.

]

Lemma 11. Our FSI-ABS satisfies forward-secure no-signing-query unforgeability as-
suming SIS, ¢ g/ m is hard, with B' = (((m +d) +1)B and m' = (d+ 1)p+ (- m.

Proof. To prove this lemma, we will show that for any PPT adversary A against the for-
ward secure no-signing-query unforgeability of the ABS scheme with advantage ¢, we can
build a PPT algorithm B that solves SIS with probability at least € — negl()). Therefore,
by assuming the hardness of the SIS problem, we conclude that € is negligible. The proof
is done in a sequence of games where the first game is identical to the forward-secure

no-signing-query unforgeability game.

Game 0: The first game is the forward-secure no-signing-query unforgeability game be-

tween adversary A and the challenger.

Game 1: In this game, we change the way the public matrices A and T (with b € {0,1}
and j € [d]) are generated. Upon receiving (M*, C*, t*), the challenger denotes
y* = bitstr(C*, M*) and does the following:

%
— Generates (A,Av_ol) as before and then samples R 4 & {0,1}P>™ and com-
— — —
putes A = AR 4 +y* ® G, the new distribution of A is at negligible distance
from the uniform distribution on Z"*“" thanks to Lemma 3 (as p > 4nlogq),
— Generates R}gi"(t*)m & {0,1}P*P and computes T?i"(t*)[j] = ARfi"(t*)m, using

Bin(t*)[J]

Lemma 3, the actual distribution of T is at negligible distance from the

uniform distribution on Zg*?,

64

Forward Secure Group Signature in the standard Model

— Generates T;_Bin(t*)m for all j € [d] via (T;_Bin(t*)m, S;) < TrapGen(1", 17, q),
the new distribution of T}fBi"(t*)m is at negligible distance from the uniform

distribution thanks to Lemma 4.

Finally, we can argue that the Game 0 and Game 1 are statistically indistin-

guishable.

Game 2: In this game, we change the way the challenger answers key queries. For a key

query (i, z;,t), there are two possibilities:

t < t*: In this case, from the conditions that A has to meet in order to win the
forward-secure no-signing-query selective unforgeability game after outputting
the forgery, the attacker can not query a key on an attribute x; such that
U, (y*) = C*(x;) = 0, then U, (y*) = 1.

By Theorem 2, we have (A —y* ® G) - H,,,- = A, — Uy, (y")G = A, — G.
Then, we have A,, = (A —y*®G)-H,,y- + G = A- R4 H,, - + G. This
A, - = [AJA- R, H, , +G

ﬁ
given A, R4 and H,, ,~. We remark that the parameters from Lemma 8 are

allows (by Lemma 8) to compute R, = [A] A
satisfied as:

Heyelloe < (2m)°

{ B RaAH, gl < /Pl - [Hyyellso< /B £20m! 5+ < 7,

Then, having R,,, the challenger can compute sk,,; using ABS.KeyGen and
ABS.KeyUpdate algorithms.

t > t*: In this case, the condition U,,(y*) = C*(z;) = 1 is not necessarily verified.
Indeed, because of the forward-security, an attacker can ask a key for (C*, M*),
for a time period ¢t > t*, and therefore C*(x;) = 0, in which case we can not
compute the keys as previously. Then, for each node z € Nodesy_,r_1), the
challenger first computes the smallest index d.; such that 1 < d,; < d and
Bin(t*)[d,+] # z[d.4).

Then he computes sk,,[2] = RandBasis(ExtBasis(Sq, ,, As, %), S4...). Finally, he

sets sky, + as in the ABS scheme and sends it to the adversary.

The distribution of sk, ; remains the same in both cases. Note that in the second
case, when ¢t > t*, RandBasis algorithm outputs bases that are statistically close
when taking as input two different bases of the same lattice. Thus, Game 1 and

Game 2 are statistically indistinguishable.

65

Forward Secure Group Signature in the standard Model

Game 3: Finally, we change the way the challenger samples A. Instead of sampling it
with a trapdoor as in ABS.Setup, he simply samples an uniform A & Zy*™, so that
the distribution is close to the one in the previous game and the two games are
statistically indistinguishable.

Then, we replace the challenger in Game 3 with an algorithm B for which we give
the description below and which solves the SIS problem using a forged signature

generated by the adversary.

Algorithm B is given A € Z7*™ uniform and then he plays the forward-secure
no-signing-query unforgeability game with A using matrix A.

Assume that A produces a valid forgery oy« + for (y* = bitstr(M*, C*), ¢*) given at
the beginning of the game. Then oy« 4+ # 0, ||y 1+||co< B and

AR —y* @ GTP")| TE W) 6y o 0, and

AJARAJART W | JARE) oy = AR AREOV RO
Oy = 0. Since IR AIRT™ VL REI] - oy | oo (Eme+d)+1) oy i o=
({(m+d)+1)B < B, it means that [I||f—{>A||RlBin(t*)[1]||...||R§in(t*)[d}] -y 4+ 18 a valid

solution for SIS, 4 B/ - O

We focus now on the security proofs of our forward secure group signature scheme,

including the correctness, the CCA-selfless anonymity and the traceability.

Correctness. The correctness of the GS scheme follows directly from the correctness
of OTS, ABS and SKE. We prove that a signature

¥ = (ct,ovk, 0,7) < GS.Sign(gpk, gsk, ;, 7, M, t) that was correctly generated passes the
verification. We have OTS.Verify(ovk, 7, M||o) = Valid by the correctness of OTS. Then,
by the correctness of SKE we have C|ovk, ct](i||K;) = 0 and therefore

ABS.Verify(mpk, Clovk, ct], o, M, t) = Valid.

Theorem 3 (CCA-selfless anonymity). If ABS is perfectly private and adaptive un-
forgeable, OTS 1is strongly unforgeable and SKE is IND-CCA secure and key-robust, then

GS constructed as above is CCA-selfless anonymous.

Theorem 4 (Traceability). If ABS is forward-secure (adaptively) unforgeable and SKE
has key-robustness then the group signature scheme constructed above has the forward-

secure traceability property.

Proof. We fix an adversary A and we consider the traceability game that he is playing
with a challenger. Let (M*, ¥* t*) be the forgery output by A which can be of either type:

66

Forward Secure Group Signature in the standard Model

— Type I forgeries are those for which the Open algorithm fails to identify the signer.
We define F; to be the event that A wins the game and
GS.Open(gpk, gok, M*, ¥* ¢*) = Invalid holds.

— Type II forgeries are those for which the Open algorithm traces to an uncorrupted
member or to a corrupted member that requested keys for time periods after ¢*. We
define Es to be the event that .4 wins the game and GS.Open(gpk, gok, M*, ¥* t*) =
i* such that i* ¢ CU or i* € CU but A did not query gsk,., for ¢ < t*.

We handle the two kind of forgeries in the following two lemmas.

Lemma 12. If ABS is forward-secure adaptively unforgeable then Pr[E;] = negl(\).

Proof. This is a proof by contradiction where we assume that E; happens with non-
negligible probability € and show how to construct an adversary B that breaks the adaptive
unforgeability of ABS with the same probability.

The game begins when the challenger sends B the security parameter A and public
key mpk. Then B samples pp & SKE.Setup(1), K; & SKE.Gen(pp) for i € [N] and sets
gpk = (pp.mpk), gok = {K;}icin) and gives (gpk, gok) to A. During the game, B answers

to the queries of A, for a certain period of time ¢, as follows:

— For a corrupt query for (i,t), B makes a key query (i, z; = i||K;,t) to its challenger

who returns sk;j x, ;. Then B returns gsk; , = (4, K, sky,+) to A.

— To a signing query (i, M,t), B answers as follows: B samples
(ovk,osk) & OTS.KeyGen(1%), computes ct & SKE.Enc(K;, i||ovk) and makes a sign-
ing query (Clovk, ct], M,t,1) to its challenger who replies with
o < ABS.Sign(mpk, sk, ¢, Clovk, ct], M, t) after verifying that C(i||K;) = 0. Then,
B runs 7 <— OTS.Sign(osk, M||o) and returns ¥ = (ovk,ct, o, 7) to A.

At the end, A will output a forgery (M*, ¥* = (ovk*,ct*, o*, 7*), t*). If GS.Verify(gpk,
M*,3*, t*) = Valid and GS.Open(gpk, gok, M*, ¥* ¢*) = Invalid do not hold then B aborts.
Otherwise, B outputs (M*, C[ovk*, ct*], o*,t*) as its forgery.

We show that B wins the game whenever E; happens. We note that
GS.Verify(gpk,M*,>*,t*) = Valid implies ABS.Verify(mpk,Clovk™, ct*],o*,¢t*) = Valid. We
need to show Clovk™, ct*](i||K;) = 1 for all i € N for which B has made a corrupt query
for time ¢ < t* . It is easy to see that since GS.Open(gpk, gok, M* ¥* t*) = Invalid
holds, there is no ¢« € [N] so that SKE.Dec(K;,ct*) # Invalid. We immediately have
that Clovk™, ct*](i||K;) = 1 for all i € N and any time ¢ of the corrupt query. Since B’s

67

Forward Secure Group Signature in the standard Model

simulation is perfect, we conclude that B wins the game with probability e. This concludes
the proof of the lemma.
O

Lemma 13. If ABS is forward-secure adaptively unforgeable and SKE has key-robustness
then Pr|Es] = negl()\).

This is a proof by contradiction where we assume that Ey happens with non-negligible
probability € and show how to construct an adversary B that breaks the forward-secure
unforgeability of ABS with non-negligible probability. We consider the following sequence
of games where F; represents the probability that Fy occurs and the challenger does not

abort in Game 1.

Game 0: The first game is the forward-secure traceability game between adversary A and

challenger. Assume that Pr[Fy| = e.

Game 1: In this game, the challenger makes a guess for ¢* as j* & [N] and for time t*
as 2* & [T] at the beginning of the game and aborts if j* # * and 2* # t* at
the end of the game. Note that the view of A is independent from j* and GS.Open
outputs only two possible symbols: an integer ¢ € [IN] and Invalid, therefore we have
Pr(Fy] =¢/(N xT).

Game 2: Here, the challenger aborts the game when his guess (j*, z*) turns out to be false
(meaning that j* # i* or z* # t*) . This can happen when 4 makes a corruption
query for j* at time ¢t < z* or i*, t* defined at the end of the game do not equal to
J%, z* respectively. This change does not have any effect on the probability, therefore
Pr[Fy] = Pr[F;].

Game 3: In this game, the challenger aborts at the end of the game if

|{i € [IV]: SKE.Dec(K;, ct*) # Invalid }|# 1 for the forgery

(M*,3* = (ovk®,ct*, 0", 7%),t") output by A at the end of the game. We show
that the probability to have Ey and [{i € [N]: SKE.Dec(K;,ct*) # Invalid }|# 1
happening at the same time is negligibly small. We note that F, implies that
SKE.Dec(K+,ct*) # Invalid for i* € [N] and together with the abort condition
results in |{i € [N]: SKE.Dec(K;,ct*) # Invalid }|> 2. Further we show that the
probability of having the last inequality is negligible.

68

Forward Secure Group Signature in the standard Model

Pr[|{i € [N]: SKE.Dec(K;, ct*) # Invalid }|> 2]

pp < SKE.Setup(1?), K; & SKE.Gen(pp) for j € [N]:
< Pr| Jet*,3i,i* € [N]
s.t.i # i*, SKE.Dec(K;, ct*) # Invalid, SKE.Dec(K;-, ct*) # Invalid

pp + SKE.Setup(1*), K;, Ki < SKE.Gen(pp):
< > Pr| Jct*, 36,4 € [N]s.ti # ¥,
nimE[N]s izt SKE.Dec(K;, ct*) # Invalid, SKE.Dec(K;-, ct*) # Valid

< N(N —1)/2 - negl(A) = negl()).
where the second inequality is by the union bound and the third one is by the
key-robustness of SKE. Therefore |Pr[Fy| — Pr[Fs]|= negl()).

We then replace the challenger in Game 3 with an adversary B against the forward-

secure unforgeability of ABS with advantage Pr[Es].

First, the challenger sends B the security parameter A and public key mpk. Then
B samples pp & SKE.Setup(1), K; & SKE.Gen(pp) for i € [N] and sets gpk =
(pp.mpk), gok = {K;}icin) and gives (gpk, gok) to A. During the game, B answers

to the queries of A as follows for a certain period of time t¢.

— For a corrupt query for (i,t): If i = j* and ¢ < z*, B aborts. Else, he makes a
key query (i,z; = i||K;,t) to its challenger who returns sk, ;. Then B returns
gsk; ; = (i, Ky, skq,) to A.

— To a signing query (i, M,t), B answers as follows: B samples (ovk,osk) &
OTS.KeyGen(1*), computes ct & SKE.Enc(K;, ||ovk) and makes a signing query
(Clovk,ct], M, t,4) to its challenger who replies with
o < ABS.Sign(mpk, sk, ., Clovk,ct], M, t) after verifying that C(i||K;) = 0.
Then, it runs 7 < OTS.Sign(osk, M||o) and returns ¥ = (ovk, ct, o, 7) to A.

At the end, A will output a forgery (M*, ¥* = (ovk™,ct*,o*, 7%),¢*). In this case,
there are two situations where B aborts: if either GS.Verify(gpk, M*, ¥* t*) = Valid
or i* = j* or t* = z* does not hold where i* = GS.Open(gpk, gok,M™*,>* t*). It
also aborts if |[{i € [N]: SKE.Dec(K;,ct*) # Invalid }|# 1. Otherwise, B outputs
(M*, Clovk*, ct™],0*) as its forgery.

69

Forward Secure Group Signature in the standard Model

In the following we show that B wins the game whenever event F3 occurs. We verify
that the conditions for the winner of the forward-secure unforgeability game are
satisfied. Since GS.Verify(gpk,M*, ¥* t*) = Valid we have

ABS . Verify(mpk, Covk*,ct*],o*, M,t*) = Valid. We then show that

Clovk*, ct*](i|| K;) = 1 for any key queried by B respective to x; with i € [N]\ {i*}
and t where t < t*. We note that Clovk*, ct™](i||K;) = 1 is true since
SKE.Dec(K}, ct*) # Invalid and [{i € [N]: SKE.Dec(K;,ct*) # Invalid }|= 1. More-
over, Clovk*, ct*](i|| K;) = 1 for any time period since the secret keys K; involved in
the circuit do not depend on the time period.

It remains to show that B has never made signing queries for (M*, Clovk*, ct™], t*).
Because A has won the game, we have M* £ M which implies

(M*, Clovk*, ct™], t*) # (M, C|ovk, ct], t). Therefore we have that the winning prob-
ability of B is exactly Pr[F3|. This concludes the proof of the lemma.

]

This concludes the proof of the theorem since it follows that the advantage of the

adversary A in the traceability game is negligible.
O

70

CHAPTER 5

LATTICE-BASED BLIND SIGNATURE
WITHOUT RESTARTS

We present in this chapter, a blind signature and its partially blind variant based on
lattices assumptions. In a nutshell, the blind signature scheme allows any user, who wants
to sign a message of its choice, to interact with a signer, who possesses the signing key.
Blind signature is a cornerstone in privacy-oriented cryptography and we propose here
the first lattice-based scheme without restart that is based on the former lattice-based
blind signature of Riickert [Riic10]. In 2020, Hauck et al. published a paper in this topic
at Crypto 2020 which raise a flaw in the security proof that appears in all previous paper
and they propose a construction that solves this problem but with a big efficiency cost.
In comparison our construction is more efficient to the one of [Hau+20], but our security
relies on a conjecture.

Compare to related work, the key idea of our construction is to provide a trapdoor to
the signer in order to let him perform some gaussian pre-sampling during the signature
generation process, preventing this way to restart from scratch the whole protocol. The
security of our scheme relies on the ring k-SIS assumption, in the random oracle model.
We also explain the security issue raised by [Hau+20] in lattice-based blind signature one-
more unforgeability proof and how we partially overcome it. In fact this issue is inherited
from the seminal work of Riickert [Riic10] and induced by a too direct adaptation of
the former one-more unforgeability proof from Pointcheval and Stern [PS00]. We finally
present a partially blind variant of our scheme, which is done with no supplementary cost,
as the number of elements generated and exchanged during the signing protocol is exactly
the same.

We start by giving the generic definition of a blind signature scheme and the various
properties, security included, that it must fulfil. We then explain the generic framework
from Rickert [Riic10] that is used by all constructions, including our, in the lattice set-

tings. We continue by developing our construction in detail, together with its partially

71

Lattice-based blind signature without restarts

blind variant. We end this chapter by proving the security of our scheme, especially the
one-more unforgability proof that is proved under some conjecture, in which we give a

complete analysis.

5.1 Blind signature definition

Blind signatures, introduced by Chaum in 1982 [Cha82|, permit a user to obtain a
signature on a chosen message by interacting with a signing authority. They have recently
been standardized at ISO/IEC 18370 and are deployed in e.g., the Microsoft U-Prove
technology. The main difference with a classical signature is that at the end of the signature
generation, the authority has never seen the message and is not able to later link the
signature output by the user to its corresponding view of the interactions. Thus, the user
is anonymous among the set of users having requesting a signature to this authority. Blind
signatures are then usually used to provide anonymity in practical services such as e-vote
or e-cash [Cha82]. In these cases, the authority provides the ability to vote or spend coins
to a user, but the latter does not want his vote or payment to be traced. Pointcheval
and Stern [PS96a], and then Juels et al. [JLO97], have proposed formal definitions for
the security of blind signatures, namely blindness (the authority cannot make the link
between a (message, signature) pair and its transcript of the signing protocol) and one-
more unforgeability (a user cannot output more valid (message, signature) pairs than the

number of times he has interacted with the authority).

5.1.1 Generic definition and additional properties

A blind signature scheme is an interactive protocol between two parts. The first part
is a common user, who wants to obtain a signature on a message of its choice, but with
no access to the signing key. Then he has to interact with an authority in possession of
this key to generate the signature, these interactions are composed of at least 2 exchanges
(for example blind RSA [Fer93]) between the user and the signer. The first interaction is
the sending of a challenge by the user and the second interaction is the answer with the
signature corresponding to the received challenge, from the signer. Indeed, to get a blind
signature, the user generates the challenge, that is included in the outputted signature,
he must blind it into before to send it to the signer. It means the signer computes a

signature on the challenge, that has been blinded, and sends it to the user, who modifies

72

Lattice-based blind signature without restarts

Signer User

Generate a commitment Generate the challenge

Blind the challenge

Compute the signature Unblind the signature

Figure 5.1 — 3-move blind signature.

the signature accordingly to fit with the outputted challenge. In the rest of this chapter,
we call this last step the "unblind" operation of the signature. Thus the signer has never
seen the genuine challenge and is unable to trace back the blind signatures.

In some situations, these 2 interactions are not enough to compose a blind signature
scheme and a third interaction, which appears at the beginning of the protocol, is neces-
sary. In fact this 3 exchanges scenario is copied from the zero-knowledge proofs. In this 3
exchange interaction, the signer starts the protocol by sending a commitment, that will
be used by the user to help him to generate its challenge and perform the rest of the
protocol.

Now, before to take a closer look to the formal definitions and security properties we
can expect from a blind signature, we define a variant of such tool. Coming back to the
e-voting and e-cash use cases, the basic blind signature is sometimes too restrained to be
used. Indeed considering an e-cash scenario, where a blind signature is associated to an
electronic coin, we would like to add a validity date or a monetary value that should be
made public. This is why we need a slightly modified version, where the message to be
signed can include some information, that the authority should know. This variant of blind
signatures, called partially blind signatures, has been introduced in [AF96]. Concretely,
it means that the two parties agree on a common and public information added to the
signed message during the blind signature process. Obviously, this common information
should not permit to break the security properties considered in a blind signature scheme,
that should be modified accordingly.

We now give more formal definitions for blind and partially blind signature. We develop
them on the protocol side as well as on the security side.

A (Partially) Blind Signature scheme (BS or PBS) consists of three algorithms (Keygen,
Sign, Verif), where Sign is an interactive protocol between a signer S and a user Y. There
are different ways to describe such an interactive protocol. In this work, we consider a

three-move protocol as in [Oka92; Riic10], as shown in Figure 5.1.

73

Lattice-based blind signature without restarts

S(sk) U (pr, M)

choose x X e = Challenge(M, pg, x)
e’ e* = blind(e)

z* = sign(e*, si) z z = unblind(z*)

Ouput(M, (z,¢))
Figure 5.2 — Signing protocol.

— Key Generation. Keygen(1™) given the security parameter n, outputs a private sign-

ing key s, and a public verification key py.

— Signature Protocol. The interaction between the signer S(sy) and the user U(py, M)
is described in Figure 5.2. The input of § is a secret key s; and the input of the
user is the public key p, and a message M € M, where M is the message space.
The output of S is a transcript (x,e*,z*), with the internal values, of the signature
generation and the output of U is a signature z on the message M, under s, with
respect to the challenge e.

In the case of partially blind signature, an additional information info is commonly
chosen by the signer and the user. This common information info is public and is

added to the message to be signed during the process.

— Signature Verification. The algorithm Verif(py, M, (z,¢e)) outputs 1 if z is a valid
signature on M under p; with respect to the challenge e, otherwise it outputs 0. In
the case of the partially blind signature, the common information info is also needed

as an input of the signature verification process.

Completeness. We define the completeness as in a digital signature scheme, i.e., for each
honestly created signature with honestly created keys and for any message M € M (and
info), the signature verification has to be valid under these elements.

The security of (partially) blind signature schemes is then composed of two properties:

(partial) blindness and one-more unforgeability, developed in the works of [JLO97; PS00].

(Partial) blindness. The first property a (partially) blind signature scheme must fulfil
is the (partial) blindness property. It informally means that the signer is unable to link a

valid (partially) blind signature (M, (z,e)) to the transcript (x,e*,z*) which generated it.

4

Lattice-based blind signature without restarts

Expg!ss(n) Expyps(n)
b+g{0,1} H ¢ H(1™)
(pk, sk) <—s BS.Keygen(1") (Prs sk) <5 BS.Keygen(1")
(My, My, infog, infoy, stateqnd) g S*(find, py, si) {(My, (z1,€1)), ..., (My, (2, €m) } ¢ LS (orinfo)) (),)
stateissue g S*<"u(pk”M’”i"f°”)>’<“u(p*"Ml*”’i”f°1*”)>(issue,stateﬁnd) Let [be the number of successful interaction
Let z, and z;_;, be the outputs of U (pg, My, infop) and between U* and the signer.
U (pr, M1—p,infor_p) , respectively. Return 1 iff
If zg # fail and z; # fail and infog = info; LM; # M;forall1<i<j<m
d g S*(guess, zg, z1, stateissue) 2.BS.Verif (px, M;, (zi,e;),info) =1 for alli =1,....,m
Else 3m=10+1.

d g S*(guess, fail, fail, statejssye)
Return 1 iff d = b

Figure 5.3 — Security experiments

Definition 16. (Partial) Blindness is formalized in the experiment Expgli?gs(n) in

Fig. 5.3. A BS scheme is (t,0)-blind, if there is no adversary 8*, running in time at most
t, that wins the blindness experiment with advantage at least &, where the advantage is

defined as Advgliflgs = \Prob[Expglif‘gS(n) = 1] - 1.

Concerning this experiment, we consider an adversary, acting as a signer &*, that
works in three modes. In mode find, the adversary chooses two messages My, M; (and
corresponding common informations infoy and info;). Then, in mode issue, he interacts
with two users. Each user gets the two messages My and M; that they divide between
them and, on a coin flip b, each user interacts with the adversary §*, as in the signing
protocol, to generate a blind signature z, (resp z;_;) for the message M, (resp. M;_).
After seeing both unblinded signatures zg, z; in the original order, with respect to My and
M, the signer enters the third mode guess and has to guess the bit b of the corresponding
signatures. If any of the signature process fails, the signer only gets a notification of failure.

The adversary is moreover allowed to keep a state that is fed back in subsequent calls.

The blindness experiment is available for both blind and partially blind signatures. The
only difference between the two cases is that we have to deal with the common information
info in the partially blind version. It means that, in this case we have infoy = info;(= 0).
One has just to remove the variables infoy and info; to obtain the exact experiment for

basic blind signatures.

75

Lattice-based blind signature without restarts

One-more unforgeability. The second security property is the one-more unforgeabil-
ity. Informally, it means that a user, given [valid signatures generated following [interac-
tions with a signer, can not output (I + 1) valid signatures. The one-more unforgeability
property ensures that each completed interaction between a signer and a user provides at
most one signature. In the corresponding experiment, an adversarial user tries to output

m valid signatures after [< m completed interactions with an honest signer.

Definition 17. One-more unforgeability is formalized in Fig. 5.3. A blind signature
scheme BS is (t, gsign, 0)-one-more unforgeable if there is no adversary A, running in time
at most t, making at most qsign signature queries, who wins the one-more unforgeability

experiment with probability at least §.

As for the blindness property, this experiment is available for both blind and partially
blind signatures. Indeed, one can adapt the given experiment to the case of basic blind
signatures by simply removing the variables info. The difference between the two variants
is that in the partially variant we also need to verify that the attacker can not forge a

signature on an information never appearing in the [previous interactions with the signer.

5.1.2 Blind signature and lattices

Now that we have defined what is a blind signature and what property we can expect
for such constructions, we will take a closer look on the particular case of lattice-based
blind signature and study how the line of research on the subject progressed from the
first scheme that has been designed by Riickert in 2010 [Riic10], upon the idea of the
Okamoto-Schnorr blind signature scheme [Oka92], to the very recent one by Hauck et al.
in 2020 [Hau+-20].

In fact, before the seminal paper of [Riic10] inspiring all its successor, the history
of lattice-based blind signature begins with the identification scheme of Lyubashevsky
[Lyu08]. Indeed, from an identification scheme there is a generic transformation to get
a blind signature, by using a transformation that follows the same spirit than the Fiat-
Shamir transformation [FS86] as originally applied on the Schnorr identification scheme
[Sch89] to get the Okamoto-Schnorr blind signature scheme [Oka92].

Identification scheme and blind signatures. In an identification scheme, a prover
and a verifier interact such that at the end of the protocol, the verifier is convinced of the

identity of the prover. In practice, the prover possesses a secret key corresponding to a

76

Lattice-based blind signature without restarts

S((r,s) € Zg) U(y=g "h™° mod p,m)
t,u g Zq
a <+ ¢'h" mod p a be,d g Zg

d = ag’h’y? mod p

e = H(m,a")

€ e+ e—d modgq
R+ t+er modgq
R,S

S+ u+es modq

If a = ¢"hy® mod p

Then p<+ R+b mod g
o+ S+c modg
Output (p, o)

Figure 5.4 — Okamoto-Schnorr blind signature scheme [Oka92]

public key that is known by the verifier. Then the prover tries to convince the verifier that
he knows the secret key in a zero-knowledge way, meaning that the verifier gets no other
information other than the fact that the prover is indeed, in possession of the claimed
secret key.

As a concrete example, we can cite the identification scheme of Schnorr [Sch89] that
was turned into a blind signature scheme by Okamoto [Oka92] to give birth to the
Okamoto-Schnorr blind signature scheme, described in Figure 5.4. The parameters are
two prime integers p and ¢ such that ¢|(p — 1), while g and h are elements of Zy of order q
and H is a hash function modeled as a random oracle.

The idea of the Schnorr identification scheme was applied on the identification scheme
of Lyubashevsky [Lyu08] that we recall below, the parameters are p = O(n?),m =
[4nlogn| and the SAFE set is equal to {1,...,5m — 1}™.

In the Lyubashevsky scheme (Figure 5.5), a prover succeeds to prove its identity if the
verifier is convinced that he owns a short vector w € {0, 1}" corresponding to a published
hash value w = A-w mod p. So now the prover wants the ability to prove to any verifier
that he is in possession of such a vector w verifying the above relation. An easy way

would be to reveal the value w such that anyone can compute the correct w and valid his

77

Lattice-based blind signature without restarts

S(W <5 {0,1}"") U(A g Z"", w < A-W mod p)

¥ 5 {0,1,...,5m — 1}

y<— Ay Yy

€ C<g {0,1}

Ifc=1andy+w¢ SAFE
z <1

else

If [|z]|< 5m'Pand A-z modp=y+c-w
d+1

else
d<+ 0

Figure 5.5 — Identification scheme of Lyubashevsky [Lyu08]

identification, but then everybody can steal its identity, and prove it in the same way.

In order to keep its vector w private, the idea is that the prover "masks" its secret
vector w, using the identification zero-knowledge property, with an ephemeral vector y
that is generated during the execution of the protocol, and which is different for each
iteration. Finally the prover reveals the vector z = y 4 ¢ - W to the verifier, who check the
relation A-z mod p = y+c-w to validate the identification. The problem now is that the
distribution of the vector z is not a leak-free distribution, indeed if the challenge is ¢ = 1,
then the vector z is centered on w and not on 0, giving by the way some informations

about the secret w.

Then to ensure that the vector z gives no information about the secret w, the protocol
accept it or reject it following the value it takes, using the well-known rejection sampling
technique, introduced in [Lyu08|. Concretely, a set labeled as "SAFE" is considered, such
that we know that if the vector z falls into that set, it means that it reveals no information
on the secret w. The protocol stops and is repeated each time the vector z is not in the
set "SAFE", while it reaches its end as soon as a vector z is generated by the prover and

belongs to the set "SAFE": here comes the name of rejection sampling.

78

Lattice-based blind signature without restarts

Starting from this identification scheme, the idea of Riickert [Riic10], was to apply
to the lattice settings a transformation equivalent to the one that Okamoto carried out
on the discrete-logarithm based Schnorr construction, creating the so-called Okamoto-
Schnorr scheme. According to the Fiat-Shamir transform, the idea is that the challenge is
not anymore a single bit compared to the identification scheme, but instead we consider
the output of a random oracle, that can take at least 2™ possible values. However, since
the challenge can not be sent in clear, to preserve the blindness, the output of the random
oracle must be blinded before to be sent to the signer. Using all these tricks, Riickert
[Riic10] managed to build the first lattice-based blind signature scheme, construction on

which we based our own work and that we explain further.

5.1.3 Technical details of the Riickert scheme

Ruckert scheme. We now describe the Riickert protocol, we start by defining some
elements that are inherent to its construction as well as our own construction. First the
scheme is built on the lattice polynomial variant R, to benefit of its efficiency compared
to Zg. On the R, ring, we can use the hash function family described in 3.3.4.

In fact, the reduction of the one-more unforgeability property is brought back to the
problem of finding a collision on a hash function that belongs to this family, and that can
be seen as a solution to the Ring-SIS problem. Concerning the function denoted H, it is
seen as a random oracle and can be the function SHA-256 for example.

We also note that the sets D,, D,, ... are some integers intervals on which the variables
are uniformly picked. We emphasize that this notation is restricted to the Riickert scheme
and denotes a gaussian distribution everywhere else. Finally two rejection sampling, one
on the signer side and one on the user side, are represented in the same way as in the
identification scheme of [Lyu08] with G?* and G™ that identifies in the same way as the
set "SAFE" in [Lyu08].

The general framework of the blind signature of [Riic10] (see Figure 5.6) is the same
as the one from the identification scheme of Lyubashevsky [Lyu08], with the initial com-
mitment as first step. At the same time, the signing step is very similar to the second
step of the prover in [Lyu08], with only the distributions differing. However the challenge
generation deeply differs to fit into the requirements of a blind signature as explained
previously. After its generation, the challenge is blinded by adding a "mask', seen as a
vector, on the original challenge, and by using the rejection sampling technique to erase

any information that could leak. Finally to retrieve the signature corresponding to the

79

Lattice-based blind signature without restarts

Signer(s) User(S,M)
y <s Dy’
y < ha(y) Y r<s{0,1}"
C < com(M,r)
t1 <$ Da
to <—$ Dgl
e < H(y — Stl — ha(tg), C)
ef—e—1
If €* ¢ D
z" < se*+y e’ Start over with fresh t;
Ifz* ¢ G
Trigger restart z' z+ 2" — 1t
Ifz ¢ G™
result <— (C,t1,ta,€)
Else
result

Verification

result < ok

Figure 5.6 — Riickert’s blind signature scheme [Lyu08|

Lattice-based blind signature without restarts

Signer User
Generate a commitment Generate the challenge
Signature generation Local restart

Restart from scratch (1)

Unblind the signature
Restart from scratch (2)

Figure 5.7 — Restarts in Riickert scheme.

original challenge, the user "unmasks" the signature with the second vector, by using once
again a rejection sampling to preserve the final distribution of the signature from any leak

of information.

Finally, we can see that Riickert introduces a final interaction between the signer and
the user, in case that the final rejection sampling fails. It comes from the fact that the
user can get an invalid blind signature, but then needs to notify it to the signer in order
to start over the whole protocol. But to prevent the user to cheat and trigger a restart
while he gets a valid blind signature, he needs to send all the elements that can prove to

the signer that the signature is indeed invalid and that a restart is mandatory.

We can then see that the main restriction of the Riickert scheme is the solution to
the correctness problems, solved by its restarts (see Figure 5.7). More precisely there is
one local restart on the user side in its first step that is not a main problem with respect
to efficiency. However the two restarts from scratch happening in the second step of the
signer and of the user side are a lot more bothering, since they imply a restart of the whole
protocol and not just the current step. These problems are incurred by the correctness
issue brought by the rejection sampling, since each time a test of rejection sampling fails,
it means that some elements need to be regenerated to give another chance to the rejection
sampling to succeed. While the efficiency is affected by those restarts in an evident way,
a more intricate issue appears in the security. We take a closer look into these issues in

what follows next.

For a long time, the only existing blind signature on lattices was the scheme of Riickert
[Riic10], but the 4 several years have seen some resurgence of interest for the subject
with the NIST competition started in 2016. Beginning with some improvements on the

distribution of the elements composing the protocol, by switching from uniform to gaussian

81

Lattice-based blind signature without restarts

distribution, done by Zhang et al [Zha+18]. Then, a new scheme called BLAZE [ABB19]
(soon followed by its new version BLAZE+ [ABB20]) has been published, improving the
user part of the original scheme of Riickert, by introducing a new and more efficient
technique to generate the challenge as well as a technique using a Merkle tree to reduce
the restarts. We can also denote two partially blind signatures, that has been designed by
Tian et al [TZW16], later followed by [Pap+19]. Both schemes follows the transformation
of Abe and Okamoto [AO00] to transform a blind signature into a partially blind variant.

More recently, a paper from Hauck et al. [Hau+20] revisited the lattice-based blind
signature constructions. Indeed, they found a flaw into the seminal paper of Riickert,
more precisely into its one-more unforgeability proof, that spreads and invalidates all
blind signature existing constructions [TZW16; Zha+18; Pap+19; ABB19; ABB20], since
they all rely on the Riickert proof for their one-more unforgeability security. The problem
comes from the fact that there are some tricky issues when transforming the proof that was
originally designed for schemes based on discrete logarithm or factorization into schemes
based on lattices. We develop extensively the issue and the solution brought by [Hau+20]

as well as the adaptation we brought into our solution in the section 5.3.

5.2 QOur blind signature scheme

The main goal of our construction is to be more efficient than previous constructions.
In order to achieve our goal, we get rid of these restarts, that can be restricting on the

efficiency side as well as on the security side.

5.2.1 Our construction

Our main objective is then to find more efficient alternatives to the problems such
restarts are solving. We then use several tricks to reach our goal and design a more

efficient blind signature scheme.

— Our first difference is to base our construction on Eurocrypt 2012 Lyubashevsky’s
signature scheme [Lyul2]. By replacing all the uniform sampling distributions by
gaussian ones, we benefit better parameters and a more efficient rejection sampling,
compared to the Riickert scheme. In particular, the local restart on the user side is

more efficient in our design.

— An other point that we introduce, is to give to the signer a trapdoor in order

82

Lattice-based blind signature without restarts

to let him perform some gaussian presampling, and by then to avoid the restart
triggered in the signing step. We then make use of the ring version of the efficient
trapdoor function due to [MP12; GM18], in order to sample preimages of the one-
way function defined in [LMO06] associated to a public vector a. Instead of generating
a new challenge or an ephemeral vector in case of error, as it is done in the restart
from scratch (1) of Rickert scheme (see Figure 5.7), the signer can execute some
gaussian pre-sampling by himself to efficiently output a signature where the secret

key is always sufficiently hidden.

— Using then a result due to Goldwasser et al. [Gol+10] on statistical distances be-
tween gaussian distribution centered on 0 and gaussian distribution centered on a
vector v, we hide the signature sent by the signer by adding an oversized vector,
which is generated by the user. This naturally hides the information that can later be
used by the signer to recognize the output blind signature, since the final signature
distribution does not depend on the signature output by the signer. The consequence
is that we do not need anymore the restart from scratch (2) in Figure 5.7, that has

exactly the same objective.

— We remark that the removal of the trigger restarts leads to the uselessness of a
commitment initially computed by the user during the challenge generation step.
However the use of the trapdoor carries a problem in the one-more unforgeability
proof, since the simulated signer needs to perform some gaussian pre-sampling but
has no access to the trapdoor on the matrix A. We address this problem using the
k-SIS problem introduced in [BF11], and improved in [Lin+14], which allows the
signer to get k short vectors of the kernel of A and asks him to output a (k + 1)-th

vector, linearly independent of the others.

We now detail the construction of our blind signature scheme BS = (KeyGen, Sign, Verif).

Setup. We consider the polynomial ring R, = Z,[X]/(X"™ + 1), where the parameters
q and n are expressed in Table 5.1. Two families of hash functions are necessary in the
protocol, firstly a generic hash function H <—g #(1"):{0, 1}* — Rs (modelled as a random
oracle), and a second one on the specific ring R,, typically h <—g H(R,, m) as defined in
the section 3.3.4 of the preliminaries.

The parameter table (Table 5.1) shows up the different sizes of the parameters involved
in our blind signature scheme. The parameter n is chosen as a power of 2, in order to have

the polynomial X™ + 1 irreducible and for efficiency reasons. The parameter m ensures

83

Lattice-based blind signature without restarts

Parameter Value Asymptotic
n power of 2 -
m [logg] +1 Q(logn)
gl na O(ny/n)
a w(kv/logn) O(yv/n)
B Qw(logn)o\/ﬁ o(n® Qw(logn))
o w((ny/na)y/logn) O(n?y/n)
D ty/n-m(B+ o) O(n3y/n 2+0osm)
q > 4mn/nlog(n)D.prime | ©(nb 2v0sn))

Table 5.1 — Parameters of our scheme.

the worst-case to average case reduction of our scheme. The others parameters are set

such that the different rejection sampling and security arguments work.

Key Generation. BS.Keygen(1") selects a secret key s € R and a vector of poly-

nomial a = (a”’||hg — a”"T,)" € R,

hash function h, € H(R,,m) is built with this polynomial vector a. Finally the public

along with a trapdoor T, on a, such that the

key p = ha(s) is computed and made public. BS.Keygen(1") outputs s = (s, Ta) and
pe = (p,a).

Signature. BS.Sign(Signer(s, Ta), User(p, M)) works as expressed in Figure 5.8. We
recall that writing v <— PreSample(T,,x,0) means that h,(v) = x mod ¢ and that v is
following a Gaussian distribution of parameter o. At the end of the protocol, the signer
outputs a transcript, and the user outputs the uplet (M, (z,e)) composed by the message
M € {0.1}*, the signature z € R™ and the challenge e € Ry to verify the signature.

84

Lattice-based blind signature without restarts

Signer(s,T,) User(p,M)
y & D{{ia
X < ha(y) x t1 <> DRr,a
t2 — D?{L’I@

If |[t2||> tv/n - m - 3 then
generate a fresh to

e<+ H(x —p-t1 — ha(ts), M)

ef—e—1t

Accept e* with probability

Otherwise start over with a

z' e sty ¢ fresh t; <= Dg o

Accept z* with probability
DR o
G2 ’ Dﬁl,o,e*-s

Otherwise :

min(1)

z* «+ PreSample(T,,e* - p+x,0)

If ||z*||> tv/n - m - o then

start over with a fresh

z* <+ PreSample(T,,e* - p+x,0) z z4 75—ty

Output (M, (z,e))

Figure 5.8 — BS protocol

Verification. The verification procedure BS.Verif(p, M, (z,¢e)) outputs 1
iff ||z||< D and H(ha(z) —p-e, M) = e.

Now that we have explained our construction of lattice-based blind signature, we move
into the security of our schemes. Firstly we investigate the property of blindness, that is
quite straightforward thanks to the rejection sampling and the noise flooding techniques.
We separate the one-more unforgeability in another section, since its history is really

complicated and has been subject to several questioning in the last year.

85

Lattice-based blind signature without restarts

5.2.2 Correctness and blindness

We start by proving the completeness property. It asks that for a genuinely generated
blind signature, the verification algorithm outputs 1 with probability 1

Theorem 5 (Completeness). The scheme BS is perfectly complete.

Proof. Let us assume that the protocol outputs a valid signature. Then, for all honestly
generated key pairs (s, p), all messages M € {0, 1}* and all signatures (M, (z,¢e)) we have
|1z][< [[z*[|+[[t=/|< D and:

ha(z) —p-e= ha(z* —t3) —p-e (5.1)
= ha(e*-s+y—t2) —p-e (5.2)
= ha((e —t1)-s+y—ts) —p-e (5.3)
= pre—p-ti+x—ha(ty) —p-e (5.4)
= X —p-ty — ha(ts). (5.5)

Therefore, we have H(ha(z) — p - e, M) = e and BS.Verif(p, M, (z,¢e)) = 1.

12/6+1/(26)2 repeti-

Moreover, each rejection sampling in step 2 succeeds after G = exp
tions, with ¢ calculated from n = w(7T'y/log(n)), T is the norm of the vector e in step 2,
we can rewrite 7 = 07 and then we have § > kv/logn.

]

The following lemma is a slightly modified version of the Lemma 2.

> > 1 1
Lemma 14. We have A(DRm’y’g’B, DRm,O,U,B) < 1—2-5(n) * gw(logn) *

Proof. This lemma argue about the statistical distribution of two gaussian distribution,
but in our case to enforce the perfect correctness, we have to deal with truncated gaussian.

The statistical distance between the truncated gaussian is

5 Z |P,8z ,D X - pBOD Z |P,8z ﬁB,O(X>|
xeRm ||x||<D

since if ||x||> D, pg o p(X) = pgo.p(x) = 0. By definition of pg,+ p, we have:

Z |p,8z x) Pﬁ,O(X)|

5 |P5z D —p OD .
5 > g B0 (D) Dyo(D)

IIXII<D ||X||<D

86

Lattice-based blind signature without restarts

By Lemma 1, we have ®5¢(D) = Pr,“_Dgﬁ[Hng D] >1—27%" since \/n.f < D
By the same argument, we have that ||x+z*||< [|x|[+||z*||< v/n.(8+0) < D for x <= Dg 4,
then we have ®g .+ (D) = Pryxcpp [|x[|< D] > 1 —279%Mm),

B,z*

Finally, we have:

5 Z |P8.2,0(X) = Po.0(X)| < ﬁ Z P8, (%X) — pgo(x)]
2 cemm llx||<D
€ et S [() — pp0l)
X T A _ o0 X
1—92- Qn) " 2 S P,z PB,0

1z

S 122" g
1 1

<

1 — 2-9(n) "Qw(logn)

]

We give now the blindness proof, the property is ensured thanks to the rejection

sampling technique as well as the above lemma.

Theorem 6 (Blindness). BS is statistically blind.

Proof. As per experiment Expgliflgs, the adversarial signer outputs two messages My, M;

and interacts with two users U(p, M), U(p, M1_) after a secret coin flip b < {0,1}. We
show that these users do not leak any information about their respective messages.

To prove that the adversary has no advantage to associate the signatures with the
messages, we prove that the distributions of the corresponding transcripts and signature
can not be linked to the messages to be signed by the attacker. During an iteration of
the blind signature issuing protocol, the transcript obtained by the malicious signer is a
commitment x, a blind challenge e* and a signature z* delivered to the user. The outputs
of the user are the message M, the challenge e and the blind signature z.

What we have to do is to analyze the distributions of each one of these elements and
prove that the two transcripts x;, €}, z; are independent of the signatures My, ey, zy, for
be{0,1}.

— The commitment x;: The commitment is generated at the beginning of the pro-
tocol, using a gaussian distribution centered on 0, and of variance v depending only
on the security parameter n. It is then easy to see that these elements do not give

any advantage to the attacker.

87

Lattice-based blind signature without restarts

— The blinded challenge e}: we have ej = e, — t&, here the element e, is part of
the signature, then the distribution of e must be independent of the distribution
of e,. To ensure this property, we use the Theorem 1 on the rejection sampling. It
means that after applying the rejection sampling on the element ej, its distribution

becomes independent of the element e, and then gives us the desired property.

— The blinded signature z;: The last element which composes the transcript is
the signature computed by the signer z; = z, + t5, depending on the actual blind
signature output by the user. In order to ensure the blindness of this element, we
use the Lemma 14. This lemma states that the statistical distance between the

blind signature z, and the polynomial vector tg is less than l_zlﬂ(n) .Qw(lﬁgn), which

is negligible. Since the vector t} is generated independently of the other elements of

the protocol, then it concludes on the blindness property of our protocol.

We have then proved that all the elements composing the transcripts follow distribu-
tions that are indeed independent of any signature issued by a user at the end of a blind
signature generation. We can conclude that our scheme is statistically blind since all the

arguments used in the proof are statistical. O]

What remains to prove is the one-more unforgeability security of the blind signature
scheme, that is only conjectured in our case. This property asks that a user, interacting
[times with an authority, is not able to output [4+ 1 blind signature. Considering the
complicated history of this property on lattices, we start by providing a complete analysis
of the issue emerging in the constructions preceding the scheme of [Hau+20], we then

develop our own proof with a complete description of its mechanisms.

5.3 One-more unforgeability proof

For a long time the unforgeability property considered for blind signatures was the
existential unforgeability. However Pointcheval and Stern [PS00] pointed out that this
security notion was far to be exhaustive for the case of blind signatures, since it does not
take into account the fact that the attacker is allowed to interact several times with the
signer before to output its forgery. This is why a new notion, called one-more unforge-
ability, has been introduced by Pointcheval and Stern [PS00] to encompass the different

scenarios that can be encountered in the real-world use-cases of blind signature schemes.

88

Lattice-based blind signature without restarts

5.3.1 Definition and first proof

The one-more unforgeability property has been introduced in 1996 with an article
from Pointcheval and stern [PS96a], they described then the first provably secure blind
signature scheme. This work combined to the Eurocrypt 1996 paper of the same authors
[PS96b] (that were regrouped into [PS00]) was groundbreaking in the world of provable
security for signature schemes, on top of blind signature schemes. Relying on the novel
model of random oracle by Bellare and Rogaway [BR93], Pointcheval and Stern introduced
a new tool, called forking lemma, that has been generalized by Bellare and Neven [BNOG|
to contexts other than signature schemes. This tool will be intensively used by almost all
signature schemes in the random oracle model for the following years.

The main goal of the proof, in the context of blind signatures, is to design a simulator
interacting with a successful one-more unforgeability attacker, and expecting thanks to
him, to solve a hard problem (such as the discrete logarithm of the factorization problem
in [PS00]). Their result needs to take as a basis a blind signature protocol that enjoys
the property of witness indistinguishability. This property means that for a randomly
chosen secret key associated to a given public key, it exists at least one other secret key
associated in the same way to the same public key. Moreover using one or another secret
key is indistinguishable for anyone that does not manipulate the secret key.

Concretely, thanks to this witness indistinguishability property, a simulator (imper-
sonating a real signer) can run an attacker, acting as a user, into a black-box simulation
and expect the attacker to output a one-more forgery. In order to not let the attacker no-
tice that he corresponds with a simulator instead of a true signer, the simulation needs to
be indistinguishable of an actual iteration of the signing protocol. Moreover, the reduction
makes use of the so-called forking lemma.

Intuitively, this lemma applied on blind signatures argues that if an attacker succeeds
in the one-more unforgeability game and outputs a “one-more” signature, he can then be
“rewinded” to the point where this forgery has been done, and by giving him different
oracle answers, expects that it output a second “one-more” signature different from the
first one. Thanks to those two different forgeries, the simulator can compute, with a
non-negligible probability, a solution to a hard problem (typically, the SIS problem on
lattices, or the discrete logarithm) using the properties inherited from the zero-knowledge
proofs. However to succeed the reduction, some variable x, depending on the transcripts
and signatures, must differ in each one of these forgeries, allowing the simulator to get a

solution to a hard problem thanks to these x variables.

89

Lattice-based blind signature without restarts

The argument used by [PS00] to evaluate the probability of the above event on the
variable x, mainly relies on the lemmas 8 and 9 of [PS00]. These lemmas build a function
¢ that takes as input a valid transcript of an interaction between a simulator and an
attacker, and outputs a different valid transcript corresponding to another interaction
with the same attacker and simulator, but which is indistinguishable to the first transcript
from the attacker’s point of view, thanks to the witness indistinguishable property of the
protocol.

Finally thanks to this ¢ function and by using well-chosen sets of events, it is possible
to evaluate the probability that the attacker outputs two one-more forgeries, such that the
knowledge of these forgeries allows the simulator to finalize the reduction with a solution
to the given hard problem. While this last part is generic and does not create difficulties
in the lattice setting, the ¢ function detailed before is a lot more problematic and need
some adaptations.

Coming to the topic of lattice-based blind signature, all existing schemes (as well as
our) make use of this framework of proof using the forking lemma to achieve the one-more

unforgeability property.

5.3.2 Problems in early constructions and solutions

The problem is that, Lemmas 8 and 9 developed in [PS00] are not immediately trans-
posable to lattice-based blind signatures, as pointed by [Hau+20]. The reason is firstly
linked to the fact that the elements are not chosen in the same set. Indeed the elements
of the Okamoto-Schnorr scheme are integers chosen in a finite group Z,, while in most
lattice-based schemes, elements are polynomial, or vector of polynomials chosen in the
polynomial ring R, = Z,[z]/(z™ + 1). Then as the [PS00] ¢ function has been designed
for the integer ring, it first has to be transposed to the case of polynomials.

But then arise the second and main problem of such a transposition into the lattice
settings. Concerning the Okamoto-Schnorr protocol, a secret key can be any element in
the finite group Z,, while in the lattices, a secret key is, most of the time, restricted to be
a short element s of the ring R;". The problem here is that, in the proof process, we have
to define and use a function ¢ which sends a valid secret key s into an element s’ which
also has to be short to be a valid secret key. The initial [PS00] ¢ function has not been
designed for that.

In order to overcome this problem, the authors of [Hau+20] defined the torsion free

element z*, which is a non zero element of the kernel of the public key a. Given this ele-

90

Lattice-based blind signature without restarts

ment, the image by ¢ of the secret key s is ¢(s) = s’ = s+z*. They then use a sort of noise
flooding to ensure that the new secret key s’ remains sufficiently short to be a valid secret
key. However the secret key s is not the only element modified by the function ¢. As in
[PS00] the commitment y also has an image by ¢ defined as ¢(y) =y’ =y —2z*-¢, so that
they have to use the same noise flooding argument to ensure that the new element y’ is
short enough. Indeed this sort of noise flooding is the main reason of the inefficiency of the
resulting scheme in [Hau+20], while they achieve a valid one-more unforgeability proof,
they need a global enlargement of their elements to be sure with overwhelming proba-

bility that the image of the function ¢ still corresponds to a valid execution of the protocol.

Concerning our own function ¢, instead of considering a generic non zero element z*
for any secret key s, we link the secret key s to the function ¢. Indeed for a given secret
key s, by the witness indistinguishability of the protocol, we know that it exists at least
one other element s” in the set of the secret key, such that p = ha(s) = ha(s’). Then we
can consider that z* = s’ — s, meaning that we ensure that the image s’ = s + z* of the
secret key s is still a valid secret key. We then denote ¢ as ¢ since the function ¢ differs

with the secret key s.

For the commitment y, we use the same transformation as the function ¢ from
[Hau+20] by sending y to y — z* - e, but in our case we do not have the problem with
the norm of the image as in [Hau+20]. In fact the uniform distribution does not allow the
elements to exceed the boundary of the set on which the elements are picked. However in
a gaussian distribution we do not have this bound restriction, since every element in the
ring R;" has a non zero probability to be picked. It means that regardless what value is
taken by y — z* - e it remains a possible candidate for the commitment generated by the

signer in the first move of the protocol.

However, even if we succeed to define a function ¢ that sends a valid transcript to an-
other valid transcript, the gaussian distribution induces a problem in the proof. Indeed,
in the proof of [PS00] appears an inequality between two probabilities that is correct con-
sidering an uniform distribution, but cannot be proved in the same way using a gaussian
one. The reason is that the probability inequality comes from a comparison in the number
of elements, that compose the events under which the probabilities are evaluated. Indeed
this size comparison can be transformed into a probability inequality only if the elements
are uniformly distributed. The gaussian distribution does not profit this property and

then the proof can not be achieved in the same way. This is why our one-more unforge-

91

Lattice-based blind signature without restarts

ability security rely on a conjecture that this probability inequality remains true even for
gaussian distributions.

Using this function ¢s we overcome the problem solved by the noise flooding technique
in the scheme of [Hau+20], while achieving a much better efficiency, since the elements
of our scheme do not have to be oversized. The details of this part of the proof are given
later in Definition 18 and Lemma 18. In our one-more unforgeability proof, the end of the

proof of [PS00] can be developed in the same way to get a valid proof for this security
property.

5.3.3 Our proof

One-more Unforgeability. The reduction in our scheme is done on the k-SIS problem,
unlike to others lattice-based blind signature schemes, which are based on the SIS problem.
In fact the addition of the trapdoor in our scheme removes the ability of the simulator to
sign the requests sent from the attacker during the one-more unforgeability experiment as
it is done in previous schemes. We then need to give him some SIS solutions to perform
some rejection sampling in the signing step. We expect at the end of the simulation that
the simulator is able to build a new SIS solution, linearly independent of those he gets
during the simulation.

To simulate blind signatures queries, we first need the help of a k-SIS oracle. Indeed,
this one provides us k short vectors in the kernel of a matrix a which we use to simulate
the signatures in relation with the rejection sampling, we claim that the environment of
the simulator is well simulated, since the probability that the simulator can answer all
the signing queries is (1 — (1 — G%)k)q“'g” which holds with overwhelming probability if
gsign = O(exp k), meaning that g4, = O(expn) since we can take k = O(n). We also

require that it exists at least two secret keys corresponding to a given public key p,.

Lemma 15 (Adapted from [Riicl0, lemma 3.6]). Let h € H(R,m). For every secret key
s <—g RY", there is a second s’ € RY*\{s} with h(s') = h(s) (with overwhelming probability).

We fit in the proof [Riic10, lemma 3.6] by replacing ds by 1.
In fact, the goal is to assume that the attacker A will provide a one-more signature on
a secret key s’ different from the real one s, used by our simulator. Moreover, to hide the

secret key the simulator is using, we need a witness indistinguishable signature protocol.

92

Lattice-based blind signature without restarts

Lemma 16 (Adapted from [Riic10, lemma 3.7]). Let h € H(R,m) and p € R. For any
message M and any two secret keys s,s’ € R with h(s) = p = h(s'), the resulting protocol

views (x1,€3,2z}) and (X2, €5, 23) are indistinguishable.

It means that the malicious verifier cannot distinguish whether the prover uses one of
at least two possible secret keys s,8" € h™!(p) N RE.

We expect that the attacker forges at least one signature that does not correspond
to a signer’s transcript. We then apply the Forking Lemma to extract knowledge about
the secret key corresponding to the one-more forgery. The reduction uses this knowledge

to solve the k-SIS problem, we show that the solution built by the k-SIS adversary is
dim(ker(a))—k
o5 €

independent of the k vectors given by the k-SIS oracle with probability dim(her(a))

O(1).

Since the function family H (R, m) compresses the domain R%", we have all the secret
keys which collide with at least one other secret key.

We finally apply the Forking Lemma to extract a “one-more” solution of the A-SIS
problem h,(v) = 0.

As mentioned before, we need the following conjecture to reach the one-more unforge-

ability security.

Conjecture 1. Let the uplet (s, = {yi,...,yi1},p,h) denotes a successful interac-
tions between an attacker on the one-more unforgeability and a simulator impersonating a
signer, with s € Ry the secret key, {y1,...,yi} € D! "o the commitments, p the attacker

random tape and h the random oracle answers. We then have:

Pr[3ie[l+1]:2z;—s-e#c¢)| 2Pr[Vie[l+1]:z;,—s-e,=c;NTFi € [+ 1]:z; — s -e; # ¢}

With z; the signature corresponding to the interaction (s,y;, p,h), e; the challenge of
the i-th interaction, s’ € RY" verifying ha(s) = ha(s') and ¢; = arg max. Pri[(s, Y, p,h') N
e; = h; Nz, —s-¢ = C’(hl, c. ,hj,l) = (hll, . 7h;71)].

Intuitively the inequality in the conjecture means that, the probability that it exists
at least one signature among the [+ 1 output by the adversary, such that the elements
z; — s - ¢; does not reach its most probable value, is bigger than the probability that these
same values z; — s - e; always reached their most probable value while, when applying the

function ¢ the uplet (s,)" = {y},..., ¥}, p,h) lies in the previous case.

93

Lattice-based blind signature without restarts

Theorem 7 (One-more unforgeability). Let Sig be the signature oracle. Let Ts;y and Ty
be the cost functions for simulating the oracles Sig and H. BS is (t, qsign, qu, 0)-one-more
unforgeable if Ring k-SISym.p is (t',0")-hard with ' = 2t and non-negligible &' if 0 is

non-negligible.

Proof. Towards contradiction, we assume that there exists a successful forger A against
one-more unforgeability of BS with non-negligible probability . Using A, we construct
an algorithm B solving the k-SIS problem on R,.

The idea is that the forger will forge a one-more signature twice, considering that in
the second forgery it uses the same random tape for the forger A but different answers to
the oracle queries compare to the first one. These hypothesis are essentials for the success
of the attack, since we assume that the new one-more forgery is done on the same oracle
query as in the first forgery, but the answers to these same queries are different, so we

can build, upon these different answers on a same query, the “one-more” solution.

Reduction.

Setup. B gets a matrix a and k short vectors vy, ... vy of its kernel from a k-SIS oracle.
B stores the values vq,... vy in a list L, and initializes a list Ly < @) of query-hash pairs
in (R, x {0,1}*,Ry). It chooses a secret key s <—¢ RZ" and sets p < ha(s). Furthermore,
it randomly pre-selects random oracle answers h = {h;,...,h,, } < Ry and a random

tape p. It runs A(p, p) in a black-box simulation.

Random Oracle Queries. On input (u, C'), B looks up (u,C) in Ly. If it finds correspond-
ing hash value e then it returns e. Otherwise, B selects the first unused e from the list
hy,..., h,,, stores ((u,C),e) in Ly, and returns e.

Blind Signatures Queries. B acts according to a modified version of the BS protocol, it
begins by sending a commitment x = h,(y) with a fresh element y <= D., for each signing
request. When B receives a blind challenge e*, it looks up for the first element v; in the
list Ly and compute z* = e* - s +y + vy, then he performs the rejection sampling test, if
the vector z* does not pass this test, B restarts this step with the next vector v € L, and
so on until a rejection sampling test passes, then he stops and outputs the corresponding
signature z*. When the attacker performs a new blind signature query, we assume that the
previous signature has been generated using a vector v; € L, then for this new signature

query, the simulator starts from the next vector v;,; € Ly, and restarts from v; when

94

Lattice-based blind signature without restarts

he has reached the end of the list L,. We avoid then to use the same vectors for each
signature queries, since in practice the rejection sampling passes with high probability
using one of the first vectors v; € L. The probability that B is able to output a valid
signature is 1 — (1 — 1/Go)".

Output. Eventually, A stops and outputs (M, (z1,e1)), ..., (Mm, (Zm,em)), L +1 =m
with | = ggign, for distinct messages.

Then the simulator B guesses the index of the one-more signature f <—g [m| such that
h; = es for some J € [gy], we will denote (uy,Cy) the corresponding query. Then, B
starts over, running A(p, p) with random oracle answers h' = hy, ..., hy_y, b, ... hi
for a fresh set b, ... ,hf]H +3 Rs. Both A and B are run with the same random tape as
in the first run. Among other values, A outputs (M}, (z},€})), with (v}, C}) the oracle
query for the answer €, and B returns (z; — ey - s) — (2} — € - s) if (u},C}) = (uy,Cy)
(or equivalently J' = J with h; = ey and hyy = ep) in an attempt to solve k-SIS on R,.
If (0}, C%) # (ug, Cf) (or J # J'), the reduction returns L.

Analysis.

The environment of the attacker is statistically indistinguishable from an actual it-
eration of the signing protocol, indeed the signatures sent by the simulator B are not
generated exactly as in the signing protocol, but in an indistinguishable way. They are
computed as z* = e* - s+ y + v, with v € L, instead of as the output of the func-
tion PreSample, but using Theorem 1, the statistical distance between a signature gen-
erated by the simulator and a signature generated by a genuine signer is %, with
G = O(1), then is negligible. Moreover at least one vector v € L, allows the simulator
to compute a signature, well-formed thanks to the rejection sampling, with probability
(1— (1 —1/Gy)¥)%ism then let be Sim the event that the simulation is well performed, we

have Pr[Sim] = 122+ (1 — (1 — 1/Gy)*)teion.
Lemma 17. If k = n, then k < dim(ker(a)) and gsign < O(exp(k)) = O(exp(n)), then
we have that the event Sim holds with overwhelming probability.

Proof. Letc:l—G%,k;:nand

= exp (10 (<10 (1= L)) = (10 (2)-+ k10w (0)) = O exp),

poly (n)

95

Lattice-based blind signature without restarts

then we have

1 1 1 1
—log(l — sanmy) _ —~loal — wag) _ ~ 1080 — ayay) _ os(l — sy

sign < X X S
Usig 2k - log (=) log(1 — c¥)
log(1— —~—
We then have ggq, < W, then ggign(log(l — ¢*)) > log(1 — m) and

(1 — F)sion > 1 — m. We can conclude that the event Sim holds with overwhelm-

ing probability. O

We assume that A breaks one-more unforgeability. So, at least one of the output
signatures is not obtained via an interaction. The probability that B guesses the index
f of this signature correctly is at least 1/(l 4 1). Since ef is a random oracle answer, we
have ey = ¢’ with probability 1/2", which is negligible.

Applying the forking lemma, we know that with probability o7, > €- (¢/qu — 1/27)
with e = § — 1/2™, A is again successful in the one-more unforgeability experiment and
outputs (M}, (2}, €})) using the same random oracle query as in the first run. Therefore,
we know that (ha(zy —p-ey), My) = (ha(2z; — p-€}), M}). Now, we turn to solving the
ring k-SIS problem.

We have to show that z; —es s — (2} — €} -s) # 0 with ha(zy —ef-s — (2} — ¢} -
s)) = 0. The last equality is verified from the previous paragraph. Concerning the first
inequality, it is important that the protocol is witness indistinguishable (Lemma 3), i.e.,
the adversary does not recognize whether the simulator used one of at least two possible
s,s’ (Lemma 2). We next introduce some notations that will be helpful to explain the
rest of the proof. We finally develop the proof in the same way as in the original one-more

unforgeability proof of [PS00].

Notations.

For the rest of the proof, we define the following elements: let the uplet (s,), p, h)
define a transcript between the simulator B and the attacker A. It is composed of the
secret key s, the [commitments generated during the signature queries Y = (y1,...,¥y1),
the random tape of the attacker p and the random oracle answers h € R3” with h; the
limitation of h to his j first elements h; = {h;,... h;}, then a given uplet (s,),p,h)
defines the whole interaction between the simulator and the attacker. We also define
W as the set of successful uplet in the one-more unfirgeability game, meaning that if

(s,V,p,h) € W then the attacker involved in the corresponding transcript succeeds to

96

Lattice-based blind signature without restarts

win the one-more unforgeability game, and for each uplet in the set W, we define the
variable xf(s, YV, p,h) = C(s, Y, p,h) that we denote x.

Finally we define a quantity which evaluates the probability for the rewinded forgery
on the transcript (s,), p,h’), that its variable y’ takes a given value ¢ and that all the
indexes are well formed to permit the success of the reduction. This quantity is necessary
to study the probability for the k-SIS attacker B to win his game. Let As;(s,), p,h,c) =
Prw[(s, Y, p,h") € WnN (Inds(s,V,p,h) = j) N x(s,V,p,h’) = c] and cs(s,V,p,h) =
argmaxe Az (s, Y, p, h, c), with J = Ind(s,), p, h) the index such that e; = h;. We also
define the variable C(s, Y, p,h) = ¢ 1nd;(sy,0n)(S; YV, p, h). These variables are going to
help us to study the probabilities of the two following subset of W : the subset G whose
elements satisfy x(s,),p,h) = C(s,V,p,h) for all f and the subset F which is the
complement of G in VW that are used to argue about the probability to get a collision.

We next define a function ¢ in the same way as the [[PS00], Lemma 8 and Lemma 9], to
argue that the variables x = xs(s,),p,h) = zy—es-sand X' = xs(s,V,p, h') = 2z}, — ¢} -s

will be sensitive to the modified random oracle answers for indexes > J.

New ¢ function.

We recall that the attacker B against the collision of the hash function h, wins his
game, if the attacker A against the one-more unforgeability of the blind signature succeeds
to output two one-more forgeries such that the variables x associated to these forgeries
are different. In order to quantify the probability to have these variables y taking different
values, we make use of the two subsets G and F and especially how they behave compared
to each other, then we define the following ¢s function in the way we discussed, in the
beginning of this section, with the interest to solve the security issues while achieving a

better efficiency:
Definition 18. We define the function ¢s, such that for a fired s € RY' we know that
there exists s' € RY', with p = ha(s) = ha(s’) by the witness indistinghuishability of the
protocol. Let t = s’ — s, then the function ¢g is
gbs" (Rgb7 (R;n)la Qv (R2)qH) _>(;’n’ (R;n)l) Q) (R2)qH)
(s, Y. p,h) —(s", ', p,h)

Where Y =Y —e-t = (y1—ei-t,...,yi—e;-t), withe = (eq,...,e) the set of challenges

generated during the signature queries.

97

Lattice-based blind signature without restarts

Lemma 18. The function ¢s fixes the whole interaction between the simulator and the
attacker, furthermore we have that for (s, Y, p,h) € W, then ¢s(s, Y, p,h) € W. Moreover,

this function is injective on the set W.

Proof. We have to verify that the values seen by the attacker are the same when using

the tuple (s, Y, p,h) or its image by ¢s.

1. The public key: the public key verifies p = ha(s) = ha(s) + ha(t) = ha(s’), since
ha(t) = 0. Then for each tuple, the attacker is provided with the same public key.

2. The commitment: During the first step of the blind signature protocol, the signer
generates a commitment and sends the hash of this commitment. Concretely, each
commitment y is sent on y' =y — e -t by ¢s, we then have that ha(y’) = ha(y) —
e - ha(t) = ha(y). Then the attacker does not notice the change of value on y.

3. The signature: The signatures z* are sent toe-s'+y' =e-(s+t)+y—e-t =

e-s+y = z*. Then the value of the signature z* are the same for each execution.

The function ¢g is injective. By contradiction suppose that it exists (s,), p,h) #
(s",), p/, ') such that ¢s(s,V, p,h) = ¢s(s',), o/, h’). This implies that (s +t,) —e -
t,p,h) = (s +t,) —¢€ -t,p,h'). We directly have that p = p’ and h = h’, concerning
the secret keys, we have s +t = s’ + t then s = s’ since t # 0. Moreover with the above
proof, we know that the function ¢ fix the same execution then we have that e = € and

Y =)', we then get a contradiction. []

Our function ¢s is very similar to the one from [Hau+20]. However we avoid the
need of the huge growth on the elements, induced by the fact that due to the imperfect
correctness, a valid secret key can be sent on an invalid one, and the same problem occurs
for the commitment.

We conclude here on the probability of the simulator to break the ring k-SIS problem
on the polynomial vector a.

Now we develop and use the following lemma that has been introduced in [PS00],
in order to study the relation between the ¢s and the sets G and F, which helps us to

evaluate how the variable y behaves.

Lemma 19. For fized (s,), p) we have the probability:

I+1

Pri(s,Y,ph) €GN gufs, YV, p.h) €G] < T

98

Lattice-based blind signature without restarts

Proof. To prove the above theorem, suppose that it exists a uplet (s,), p) such that the
probability:

I+1

P}?'[(S,y,p,h)eg N QSS(Svyvpv)Gg] q[;

Then there exists a [+ 1 uplet (Ji,...,J11) € {1,...,qu} "t and a l uplet é;,...,¢ €
R}, such that Vf € [I+1] and f € [I]:

1
ql+1 ’

P:lr[(s,y,p, h) € G N ¢s(s,V,p,h) € GN Indy(s,V,p,h) = Jp N (ef = éf)] >

From the above probability, it must exist two distinct oracles h, h’ € R5™! that verifies
the condition. Moreover since every term, besides those indexed by J;, f € [l + 1], is
fixed. It means that there is at least one index Jy € [l + 1] such that h;, # L), we
denote j the smallest of such indexes, then, h; ; = h’ , and h; # h. Then we have that

Ci(s,V,p,h) = Ci(s, Y, p,) and:

h;

J

Ct(s,Y,p,h) = z4(s,Y,p,h) —s -
#(@s(s, Y, p,h)) —
#(0s(s,Y,p,h)) —s-h;+t-h; —t-h;
=2z(¢s(s, Y, p,h)) — (s+t)-h; +t-hy
= Cy(¢s(s, Y, p,h)) +t - hy.

I
N

I
N

Using the same arguments, we have:

C’f(s,y,p, h/) = Cf(ng(S?yapa hl)) +t- h;

Finally we have:

Cr(ds(s, Y, p,0)) + -y = Cp(ds(s, YV, p,) + £ - 1.

However since C(s,), p,h) = Cy(s, ¥, p,h’) and t # 0, then we have h; = h’ which
contradicts the hypothesis h; # h’. O

What remains to prove, is that the probability for a given (s,), p,h) € W to verify

99

Lattice-based blind signature without restarts

(s,Y,p,h) € F is non negligible and to conclude on the probability to get a collision
on hy,.

We can decompose the set G into two subsets, firstly G9 composed of the elements
of G mapped to G by ¢s and secondly the subset G/ composed of the elements of G
mapped to F by ¢s. We then have that Pr[G] = Pr[GY] + Pr[G"], from Lemma 12, we have
Pr[g] < q%; + Pr[G/] < qi‘f% + Pr[F]. The last inequality stands using the conjecture 1.

Using the fact that W = G U F with Pr[IW] = ¢, the above probability becomes:

1 e
Pr[F] > 5(6 — %)

To conclude on the evaluation of success, we define the two types of events:

Fr={(s,Y,p,h) e FNCy # xy} and Fy; = {(s,V,p,h) € Fy N Ind; = j}.

Then we have the inequality Y77 Pr[Fy] > Pr[URY Fy] = Pr[F]. It means that there
exists at least one index f € [l + 1] such that Pr[F;| > Pr[F]/(l + 1). We now assume
that we have chosen such and index f.

We define the set J; = {j|Pr[Fy ;| F¢] = 2%}1}’ we then have:

1
Pr{Ujes, Fy ;| F] = Pr[Ind; € J¢|Fs] > 5

The above inequality is true, since Pr[Ind; € J¢|F¢] = 3 e, PrW;|W] with W; the
event W with Ind; = j. The above probability is equal to 1 — 3,4, Pr{W;|W], we have
that the complement of J; is composed of less than gy elements, then Pr[U;c; Fr ;| F] =
Prlind; € J}|Ff] 21 —qu - 5= > %

2qu
I+1

. . 1 q
We also have the probability Vj € Jy, Gij = Pr[Fy;] 2 g5 (e — “-).
Now that we have evaluated the probability for the variable x to take a value different
of the most likely one, we state a lemma equivalent to the the lemma 2 from [HKL19],
which gives the probability to obtain two different values x for the two runs of the attacker

A. We first recall the splitting lemma, which is used to prove the next lemma:

Lemma 20 (Splitting lemma from [PS00, Lemma 1}). Let A C X XY such that Pr[(z,y) €
Al > €. For any a < €, define

B={(z,y) € X xY| ,f;ry[(x,y’) cAl>e—a}and B= (X xY)\B,
Yy

100

Lattice-based blind signature without restarts

then the following statements hold:

1. Pr[B] > a.
2. V(z,y) € B,Prycyl(z,y) € A] 2 ¢ — a.

3. Pr[B|A] = a/e.

Lemma 21 (Adapted from [HKL19, Lemma 2)).

! ’ 1
spr)lilh/[XAS’y’p’ h) 7£ Xf(S,y>p,h)ﬂ]ndf(s,y,p, h) = [ndf(s,y’p7h) —]] gf](gfj_2n)

Proof. Our proof is directly adapted from the proof of [HKL19, Lemma 2], we rewrite it
here. We define the probability

ari(s,Y,p,h,d) = Prixs(s, ¥, p, W) # d 0 Inds (s, Y, p, W) = j] = py(s, Y, p, 1) /2,

with
pri(8, Y, p,0) =Pr(s, ¥, p,h) € Fp; N hj = hyl.

Let B(s) be equals to 1 if the statement s is true and 0 else.

Pr [Xf(Syp7)%Xf(sl}p’)mlndf(s7y7p7h):Indf(suy7p7h/):.]]

- zd: Prsypnwlxs(s; Y, p,h) = d0xs(s, Y, p, 1) # d 0 Inds(s, Y, p,h) = Indy(s, Y, p, i)
= § Esy,on[B(xs(s,Y,p,h) =d N Inds(s,Y,p.h) = j) - ap(s, Y, p,h,d)]

= 5 BB (5. Y. p.B) = A (5.9, p.) =) g 5,9,)

= EZPTSQJ“O’}],}]/[XJC(S, Y,p,h) =dnInds(s,Y,p,h) =jN(s,V,p,h) € Fp;Nh; = hy

Prsyphh’[jndf(s y P)_Jm<sayapah) fo7jmh;:hj]

1
ST

101

=Jl

Lattice-based blind signature without restarts

What remains to prove is that oy (s, YV, p,h,d) > us;(s,V, p,h). Let define

fyf,j(sayupu h7d> = E/I‘[Xf(SJJAp?h) =dn <S7y7p7h/) € ‘Ff,] Nh= hl]

Then we have two cases to consider:

Case 1 : Assume that:
1
7f7j(say7p7 h> d) = iy’f,j(S?yapahad)'

First we can assume d # C((s,), p, h) since if not, then: v¢,(s, Y, p,h,d) < Prw[x f(s, Y, p,h) =
Cr(s, Y, p,h)N (s, Y, p,h') € Fr,Nnh=h"]=0.

O(f,j(S,y,p,h,d) = E,I'[Xf(s7y7pah/> 7£ dm[ndf(s7y7p7hl> :j]

I'[Xf(S,y7p, h/) = Cf(S,y, P, h) N [ndf<s7yapa h/) =]]
r[Xf(Sayapahl) = dﬂ[ndf(sayapa h/) :j]

>P
>P

Using that (s, Y, p,h') € Fy; implies Inds(s, Y, p,h’) = j, then we have:

Pr[xf(s,y,p,h/) = dﬁ[ndf(s,y,p,h/) :]] > Pl”[Xf(S,y,p,h,) =dn (S,y,p,h/) €]:f,j]
=

Case 2: .
V1,4(8: Y, p,h,d) < §,Uf,j(S, Y,p,h,d).

102

Lattice-based blind signature without restarts

Olf,j(S,y,p,h,d) = Ef[Xf(S7y7p7h/) 7£ dm[ndf(s7y7p7h/> :j]

> Prx;(s, Y, p,h') #d N (s, Y, p,h') € Fr; Nh; = h]

= Pr[(s, Y, p, ') € Fy; N h; = h]

— Prlxs(s,Y,p,0') =d N (s, V,p,h') € Ff; Nh; = hl]

= pri(s, Vo, h,d) —yp5(s, Y, p,h,d) 2> py (s, Y, p, b, d) /2.

This concludes the proof.
O

From this lemma we can conclude on the probability to get a collision on the hash
function h,. Indeed the attacker B on the collision problem of the hash family H(R,, m)

wins if:

];:0)11‘1 h/[Xf(Sa ya P, h) 7£ Xf(sa y7p7 hl) N ha(Xf(S7y7p7 h)) = ha(Xf(S7y7/)7 hl))]

s,
- S)}PIl‘ih/[Xf(Svyapah)7éXf(sayapah,)m[ndf(sayapah):Indf(say7p7h/):j]
jelam) 7P
1
>7' P a77h 777hlﬂ]d 777h:Id 7a7h/:.
1 fgl[ﬁ(l]je[q}dS,yvpﬁlvh,[Xf(S Y, p,h) # x¢(s, Y, p,0') N Inds(s, YV, p,h) = Indg(s, Y, p, ') = j]
7 2,7 1
> max G (C—]——)
fil+1 ~4 20
I+1 I+1
> 1 _QH (1 _QH) 1)

dgg(l+1)2 ¢ q "16gy(1+1) (e q Con

Now from this collision we have, ||(e;—€})-(s'—s)||< 4n* < ¢/2 because [le;—¢}[|< 2¢/n
and [|s" — s||< 2y/n. Thus, (ey —€}) - (s" —s) = 0 over Z[X]/(X™ + 1), which is an
integral domain. Since ey — ¢/ # 0, we have the contradiction s’ = s and then a "one-
more" k-SIS solution z; — ey - s — (2} — €} - s), the probability this vector is linearly
independent of the k given by the k-SIS oracle is % since the k+1-th solution is

built independently of the k given to the simulator. The success probability is at least

1) 1o _ I+1 1+1 '
0 > (/TS (= (1= g)M)e e (€ = U0) (g (€ — #) = 55), which
is non-negligible if £ = O(log(¢siy)) and if ¢ is non-negligible.

103

Lattice-based blind signature without restarts

O

Corollary 1. BS is one-more unforgeable if solving Ring k-S1S, . p is hard for parameters
m = Qlogn),D = /nB + n*a = O(n3y/n 2¢0en) and q = 4mn/nlog(n)B.prime =

O(n® 2¢U°e™) in [attices that correspond to ideals in R.

As already mentioned in the beginning of this chapter, there is some use cases where the
classical blind signature is not enough, and we must add some properties, like a monetary

value or a date of validity, to the blind signature to fit in the real-world constraints.

5.4 Partially blind variant

We develop in the following a partially blind variant, which has a better efficiency than
the schemes using the generic transformation from Abe and Okamoto [AO00] depicted
in figure 5.9. This construction is very similar to the Okamoto-Schnorr blind signature
(Figure 5.4) using the same parameters with an additional hash function F modeled as
a random oracle. However, we can see that the elements generated in the first signer
step and first user step has been doubled as well as the elements sent in the first and
last exchange. In our construction there is no more elements generated and/or exchanged
compared to our blind signature scheme.

The main difference between a partially blind signature and a basic blind signature
is that the former necessitates to manage a common information info that is also signed
by the signer during the protocol. In our scheme, we also make use of an additional hash
function F:{0,1}* — R,, seen as a random oracle, such that the hash value F(info) is
integrated in the signature process. As usually done, we consider in our protocol that the
signer and the user agreed on the common information before playing the protocol to
generate the blind signature.

The key generation of the protocol is the same as in the blind version described in the
previous section. The main difference is on the signing protocol. The common information
is included by the signer on the generated signature z*, thanks to a lattice trapdoor that
permits to include it on a short solution of an ISIS problem. The user can easily verify

that the resulting signature really embed the right information.

5.4.1 Our Construction

The KeyGen part is the same as in the Blind Signature.

104

Lattice-based blind signature without restarts

S(m,g,info) U(yzgw,info, M)
U, s,d g Zg
z < F(info)
a+ g“ b« ¢g°z% modp a,b t1,to, 3, ta g Zqg
z + F(info)
a/ — agtlytz
Y = bg's 2"

e = H(d'[[t/||z, M)

e+ e—ty—ty modq

c+—e—d modgq

r+ u—cr modgq T, s, ¢ d

p 1+t modq

w < c+ta mod g

04+ s+t3 modgq

0+ d+ty modgq

It w+ 6 = H(gy®||g° |2, M)
Output (p,w,0,0)

Figure 5.9 — Abe Okamoto partially blind signature scheme [AOQ0]

105

Lattice-based blind signature without restarts

Setup. The parameters also remain the same. The only modification is the addition of
the hash function F:{0,1}* — R.

We recall that the algorithm PreSample allows to find short solutions of an ISIS prob-
lem, thanks to the trapdoor T, i.e., writing u <— PreSample(T,, F(info), o) means that

ha(u) = F(info) mod ¢ and that u is following a Gaussian distribution of parameter o.

Signing. The signing protocol is shown in Figure 5.10.

Signer(s,T,) User(p,M)
y <= D7’
X < ha(y) X t1 < D2
tQ <—’ Dl’,{iﬁ

If [|ta]|> tv/n - m - (3 then
generate a fresh to

e<+ H(x —p-t1 — ha(ta), M)

ef—e—1t

Accept e* with probability

. DRa
min(——=—, 1
(Gl : DR,Oc,e)

Otherwise start over with a
z* + PreSample(Ta,e* - p + x + F(info), o) ¢ fresh ty <= D[}

If ||z*||> tv/n - m - o then

start over with a fresh

z* + PreSample(Ta,e* - p + x + F(info), o) z z <+ 2" —ty

Output (M, (z,e))

Figure 5.10 — PBS protocol

Verification. The verification procedure BS.Verif(p, M, (z, e), info) outputs 1 iff ||z||<
D and H(ha(z) —e-p — F(info), M) = e.

We investigate now the security properties of our partially blind signature.

106

Lattice-based blind signature without restarts

5.4.2 Security

The security of our partially blind variant can quite easily be adapted from the one
of our “simple” blind signature scheme. We need to show that the common information
does not harm the security of the protocol.

Completeness. The completeness of the protocol remains the same as the blind variant,
except that the common information has been added. But this obviously does not change

the completeness, then we have the following theorem:
Theorem 8 (Completeness). The scheme PBS is perfectly complete.

Partial Blindness. The partial blindness is very similar to the blindness of the blind
variant, but we need to make sure that the common information does not enable the
signer to link a blind signature to its transcript.

In the partial blindness experiment, two blind signatures are generated on the same
common information. In our case it exactly gives the same proof as the blindness security
since the user part remains exactly the same. The only change in the protocol is the
addition of a pre-image in the computation of the signature by the signer, but this new
element does not change the actual distribution of the signature output by the signer,
then it gives him no more advantage. As this is quite obvious, we do not repeat again the

whole proof. We obtain the following theorem.
Theorem 9 (Blindness). PBS is statistically blind.

One-more Unforgeability. Regarding the one-more unforgeability, the adaptation of
the proof from our basic blind signature is not as straightforward. In fact we need to be
sure that the user cannot output a [+ 1-th partially blind signature after having obtained [
valid signatures. There are two cases to consider with the common information. In the first
case, the malicious user outputs a partially blind signature with a common information
which has not been output in any previous signature, and in the second case, the common
information linked to the signature has already been output.

Considering the two cases, we can use the proof built for our blind signature, since all
the elements linked to the common information info vanish when we construct the Ring
k-SIS solution and then the proof remains valid. The main problem to solve is in the
simulation, since the simulator has not the trapdoor but needs to compute a pre-image
sampling of the element u = F(info). In fact, this problem can be solved by programming

the answer of the hash function F. More precisely, we generate a small value u <—= D"

107

Lattice-based blind signature without restarts

and program F(info) = ha(u), then store the value u and use it again for each request of
partially blind signature with info as common information.
Applying these modifications we can now easily transpose the proof of the one-more

unforgeability of the blind signature to the partially blind variant.

Theorem 10 (One-more unforgeability). Let Sig be the signature oracle. Let Ty, Ty and
T be the cost functions for simulating the oracles Sig, H and F. PBS is (t, qsign, qu, 4r, 0)-
one-more unforgeable if Ring k-SISy ;. p is (t',0"/2)-hard witht' = t+(qu+qr)*9" (qsignTsign+
quThu + qrTF) and non-negligible 0’ if § is non-negligible.

108

CHAPTER 6

PRACTICAL POST-QUANTUM RESISTANT
E-VOTING SCHEME

The notion of on-line voting is appealing since the emergence of remote communi-
cations. However until now, there is no e-voting protocol that offers all the properties
(security, efficiency...) satisfactory for such a sensitive topic. Still there exists some inter-
esting constructions that have been used in real-world elections such as Votopia [CGT06]
or Helios [Adi0O8] which was trialed during student elections, for example in Princeton
and the Catholic University of Louvain. The International Association of Cryptographic
Researcher (IACR) also adopted Helios to elect its Board.

In this chapter we investigate the construction of a post-quantum e-voting system built
from a framework introduced by Fujioka et al. in 1992 [FOO92], which mainly relies on
the well-known cryptographic primitive called a blind signature scheme. This framework
contrasts from the current trend that makes use of homomorphic encryption, or mix-net
system [CRS05; CMM19] to improve the efficiency of the tallying phase in addition to
offer strong verifiability and privacy properties thanks to zero-knowledge proofs. However
in post-quantum setting, a lack of efficiency of some of the primitives used in the two
frameworks cited above leads us to investigate on new options for a practical e-voting
protocol.

It is in this context that we propose our new e-voting protocol. We start by introduc-
ing the definition and properties expected from an e-voting protocol. We then describe
the primitives that we use to build our protocol, they include the blind signature scheme
developed in the previous chapter, a public key encryption scheme, and a threshold trans-
formation to the two aforementioned cryptographic primitives. Finally we give a complete

description of our e-voting protocol alongside with the security proofs.

109

Practical Post-Quantum Resistant E-Voting Scheme

6.1 Definition and constructions

We start by giving a definition of such a protocol and describing the security properties
that an e-voting system should satisfy along with a discussion on what we expect for our
own construction. We then give a quick overview of the existing post-quantum e-voting

protocols and we finally introduce the framework on which we base our work

6.1.1 Generic definition of an e-voting scheme

We present now a definition of en e-voting protocol, including a description of the
different parts involved in such a scheme and the different algorithms composing the
protocol along with their behaviors.

An e-voting protocol needs several entities to work, we describe them in the following
list:

— First we get a set of N eligible voters V; for i € [N].

— We also need a set of p authorities A; for j € [p], that will share the private election
keys.

— Finally we need a bulletin board BB, that will collect the (valid) ballots cast by the
voters. At the end of the election, the valid ballots will be tallied.

We take as a basis the definition of an e-voting protocol of Cortier et al. [Cor+14].
However, we will voluntarily omit some of the algorithms they introduce and will modify
some of them to comply with our e-voting framework, which is interactive between the

voter and the authorities:

Setup (1", 17, 1) — (pk, {[sk|'},e)): The setup algorithm, takes as input the security
parameter n with the number of authorities p and the number of voter N. It generates a
couple of public/secret key (pk, sk), such that the secret key is generated and output in

a threshold manner, where each authority gets a share [sk}?,j € [p].

Vote(V;(v, pk), {A;([sk})}jer) — b: In the voting phase, each voter V;,i € [N] wants
to cast his voting choice v. This step includes an online phase between the voter and some
set of T C {1,..., N} authorities A; (at least a threshold ¢ of them) equipped with a
share [sk]’ of the secret key. The ballot b is then output and cast anonymously in the
bulletin board BB.

110

Practical Post-Quantum Resistant E-Voting Scheme

Validate(b, pk) — {0,1}: On input a ballot b, anyone can check its validity with the
help of the public key pk, this algorithm outputs 1 if the ballot is valid and 0 otherwise.

Box(BB, b) — BB: It takes as input the current state of the bulletin board BB, along
with a ballot b. It first checks the validity of b by performing the algorithm described
above: Validate(b, pk). It updates BB by adding b if Validate outputs 1 and remains
unchanged if it outputs 0.

Tally (BB, pk, {A’([sk]!)};er) — r: During the tallying phase a tallying authority
opens all the ballots thanks to the recovery of the secret key sk from a set of T au-

thorities. Finally it counts the valid votes and publishes the outcome r of the election.

Verify (BB, pk,sk,r) — {0,1}: The verify algorithm can be run by anyone to check
the validity of the tally result r, it outputs 1 is the tallying is correct and 0 otherwise.

In our definition of e-voting protocol, we omit the credential phase, that gives the
right to eligible voter to vote. Since we do not focus our work on this part, we consider
that our e-voting protocol can be equipped with a strong authentication mechanism that
allows every eligible voter to take part to the election, while protecting their integrity. We
also do not include an algorithm allowing each voter to check that his vote is included in
the bulletin board BB, since this later is made public, then anyone can have a reading

access on it.

6.1.2 Security properties of an e-voting scheme

Next, we discuss the security properties a secure e-voting protocol should fulfill. Ob-
viously, we want that the anonymity of each voter is granted. Indeed, some flavor of
anonymity has been considered in the past works, from the property of ballot privacy to
the voter privacy, we develop our own anonymity property. In the same time, we would
like that the scheme is verifiable, meaning that the result claimed by the voting authority
reflects the votes cast by honest voters. Finally we include a correctness property, ensuring

that for an honestly generated vote, the validation steps always outputs 1.

Attacker Model. Before formally presenting the different security properties, we dis-

cuss the model of the attacker. Indeed, we base our proofs on a game-based model, during

111

Practical Post-Quantum Resistant E-Voting Scheme

which the attacker has access to some oracles. We first present the oracles available to the
attacker, before defining the security properties.

The attacker can make use of the oracles that we list below, along with their behavior.

— OcorruptU(id): it checks that id corresponds to an eligible voter who is allowed to
take part to the election. If this is not the case it halts, else it gives the ability to

the attacker to vote in place of voter id.

— Ovote(id, v): it first checks whether voter id already voted or not. If this is the case
it halts else it returns b = Vote(Viq(v, pk), {47 ([sk]?) } ;eT) and adds BB:= BBUb.

Now, for the correctness and verifiability properties, we rely on the corresponding
definitions developed by Cortier et al. [Cor+14]. Concerning the anonymity, we develop
our own property that we call ballot anonymity, which is similar to the privacy notion
introduced by Kremer and Ryan [KRO5].

Correctness

Concerning the correctness, we fit in with the definition of [Cor+14]. The idea of
this property is that a genuinely generated ballot is always accepted into the bulletin
board, and for an election where all parts behaves honestly, the result of the tally always
corresponds to the votes cast by the voters. It means that for (pk, sk) = Setup(17, 17, 1V)

we need to have the two statements true
1. Validate(b, pk) = 1, for all b =Vote(V;(v, pk), {A;([sk]’) }jer)-
2. Verify(BB, pk, sk, r) = 1, for a bulletin board BB = {b;,---,bx}, k < N with each
b; verifying Validate(b;, pk) = 1.

Verifiability

The verifiability property is a fundamental security property needed in e-voting schemes
and it has been the subject of a several papers in the e-voting literature that have been
summarized in [Cor+16]. However, as for the above correctness, we rely on [Cor+14] to
define the verifiability property. Before to describe it, we specify that we only consider
partial tallying e-voting protocol, it means that the tallying phase is not performed in a
single computation, but each ballots is open separately, then the resulting tally is com-
puted step by step. Verifiability asks that the tallying result is consistent with the votes
cast by honest voters. More precisely the output of the algorithm Tally should actually

count :

112

Practical Post-Quantum Resistant E-Voting Scheme

1. The votes cast by honest voters, who checked that their ballot appeared in the

Bulletin Board (their votes are denoted v%), the set of their votes is denoted Event.

2. A subset of the votes cast by honest voters who did not check that their ballots

appeared in the Bulletin Board (their votes are denoted v4).

3. The votes cast by corrupted users, which are gathered in the set denoted CU. At
most ne such voters should have been tabulated, where neo denotes the number of

corrupted voters taking part to the election (their votes are denoted v®).

We also denote the set of votes cast by honest voters by Hvote. The verifiability
property is then translated into the corresponding experiment, where we consider classical

election with the result r being the sum of the votes cast for each candidates:

ver

Exp'*(n)

(pk, sk) < Setup(1",17,1Y)

(BB, 1) < A*OcomptU(),OVote() (p)
If Verify(BB, pk, sk, r) = 0, return 0
If 3{vf, .- vf } = {Event},

» Unpg
(vt ,U;?A} = {Hvote} - {Event},
{vf',++, 00} with 0 <o < [CU|

ng nA nc
Such that r = Z vF + Z le + Z UZC return 0 else return 1

i=1 =1 =1

Figure 6.1 — Verifiability experiment

The verifiability experiment considers an attacker, who first obtains the election public
key pk generated during the setup phase. Then he can make request to the corrupt oracle,
which on input an honest voter V4, gives to the attacker the ability to cast a vote on
behalf of the voter i¢d, and add this ¢d to the list of corrupted voters. He also gets access
to a voting oracle, which on input a valid id and a voting choice v, casts a valid ballot
b corresponding to the voting choice v for the identity id, only if this identity has not
already cast a vote.

The bulletin board will then contain the honest ballots generated by the voting oracle,
ballots cast by honest voters, and the ballots generated by corrupted users controlled by
the attacker. The attacker wins this experiment, if its claimed result of the election is

valid, and does not correspond to the sum of the votes cast by the set of the ng honest

113

Practical Post-Quantum Resistant E-Voting Scheme

Exp5d(n)

(pk, sk) < Setup(1™)

(vo, v1,14do, id1) < A*(find, pk, sk)

c <+ {0,1}

Statejssue <5 A" Vido (Pve)) (- Viey (Plovi=)) (issue, statefing)
Let b, and b;_. be the outputs of V4, (pk, v.) and

Vid, (Pk,v1_.) , respectively.

d A A* (guess, be, b1—c, Stateissue)
Return 1 iff d = ¢

Figure 6.2 — Ballot indistinguishability experiment

voters who checked that their ballots are included in the bulletin board, plus the votes of
a subset of the ns honest voters who did not checked whether their ballots appeared in
the bulletin board plus at most ne votes cast by corrupted voters.

Then a voting protocol is said to be verifiable if there is a negligible function p(n)
such that:

Succ’™(A") = Pr[Expyx(n) = 1] < p(n)

Ballot anonymity

Vote secrecy is another fundamental security property that any voting protocol should
fulfill. It asks that the voting choice of a voter remains private during and after the end of
the election. In this chapter we depart from the classical definition which is termed ballot
privacy, that has been the subject of an intensive research (resumed in [Ber+15]). Indeed
in our e-voting protocol, each ballot will be anonymous, that is, it does not identify the
voter who casts it. This departs from a lot of other voting protocols, where each ballot is
directly linked to the voter who casts it, leading to the fact that in the tally procedure
each individual ballot could not be open (or decrypt) otherwise this would leak for whom
a voter voted. Our case can be seen similar as the privacy property defined in [KR05].

We then consider a privacy property, where the attacker needs to link the identity of
the voter to his ballot. We define it below:

In the experiment in figure 6.2, an attacker A* simulates the elections authorities and

interacts with two voters V,4, and V4. The possible votes vy and v; are chosen by the

114

Practical Post-Quantum Resistant E-Voting Scheme

attacker in the mode find. Then it plays the role of the authorities, such that the two
voters Vy and V) generate their vote, with its help, in the mode issue. Finally after that
each voter outputs their respective ballots b. and b;_. in an anonymous way, the attacker
tries to guess the token c, i.e. he tries to link each ballot to each voter.

Then a voting protocol satisfies ballot anonymity if there is a negligible function u(n)
such that :

Succ”™(A) = Pr[Exp%™(n) = 1] < u(n).

6.1.3 Post-quantum constructions

To the best of our knowledge, there exists only 2 post-quantum constructions, both
built from lattice-based primitives. The first scheme is based on fully-homomorphic en-
cryption by Chillotti et al [Chi+16] and appears in 2016. The second one is using zero-
knowledge proofs on top of homomorphic commitments by del Pino et al. [Pin+17] the
next year.

Concerning the scheme of Chillotti et al. [Chi+16], the key idea is that they get rid of
the zero-knowledge proofs that are inefficient in lattice-based setting, as already discussed
in the group signature chapter. Indeed, their work is inspired by the e-voting protocol of
Helios [AdiO8] even if, contrary to their scheme, needs the use of zero-knowledge proofs.
These zero-knowledge proofs first allow the voters to prove that their ballots are correctly
formed, but also permit the tally authority to prove that the result of the election is
correct.

In a nutshell, [Chi+16] uses a fully-homomorphic encryption to replace the zero-
knowledge proofs on the voter’s side, while they use publicly verifiable ciphertext trap-
doors to overcome the absence of zero-knowledge proof on the authority side. However
using fully-homomorphic encryption makes the resulting voting scheme quite inefficient as
pointed by del Pino et al. [Pin+17]. Moreover this problem of efficiency may explains why
implementations for the [Chi+16] scheme are lacking, while the construction of [Pin+17]
is accompanied by such an implementation which allows anyone to represent how it can
behave for real-world elections.

Concerning the construction of del Pino et al. [Pin+17], the most important difference
is that they make use of the zero-knowledge proof contrary to [Chi+16]. In fact, the study
of lattice-based zero-knowledge proofs has been intensive in the past 5 years with several

advances in particular regarding their efficiency. This allows them to rely on a construction

115

Practical Post-Quantum Resistant E-Voting Scheme

that makes a trade-off between efficiency and security. In short, their construction focuses
on the Fiat-Shamir framework of [Lyul2], in order to prove the knowledge of the multiple
of a short element instead of the element itself.

In addition to the zero-knowledge primitive, they use the commitment scheme of
[Bau+16] that benefits of an additive homomorphic property, which is very appealing
in the e-voting context. Finally, as said above, they provided an implementation of their
voting scheme, that permits to analyze the efficiency of their construction in a real-world
scenario. Indeed, generating and casting ballot is about 8.5 ms, and the time needed in
the authority side as well as the verification step is 0.15 sec.

However, their implementation considers only two candidates, while if we want to add
more candidates, the efficiency weakens. Indeed, for 2¥ possible candidates, the number of
proofs needed is multiplied by a factor k, then the efficiency decrease from a logarithmic
factor in the number of candidates. Our own constructions does not suffer this drawback,

since the efficiency does not depend of the number of candidates considered.

6.1.4 Framework of Fujioka et al. and adaptations

We base our construction on the framework of Fujioka et al. [FO092]. In this frame-
work, the anonymity is granted by a cryptographic primitive, called blind signature, while
everyone can verify that the outcome of the election is correct, since all the elements that
are necessary to the tally will be made public at the end of the election.

Therefore, the main tool of the [FO0O92] framework is a blind signature scheme, since
it allows to preserve the anonymity of each participant, a requirement that is mandatory
for any election, while it forbids voters from voting twice. This blind signature primitive
combined to a commitment scheme, that prevents any partial result to leak before the
end of the election, are the two primitives that allow [FO092] to build a secure e-voting
scheme.

Concretely to generate his vote, any voter begins by computing a commitment of
its voting choice, in order to conceal it from other voters until the end of the election.
Then, he authenticates to the voting authority in order to obtain a blind signature on
the commitment of his vote. Both the commitment and the (blind) signature constitute
the voter’s ballot which is then (anonymously) sent to the Bulletin Board. This later only
stores signed ballots and discard invalid ones (i.e. either ballot that are not signed or
ballot with an invalid signature).

At the end of the election, all the voters have to anonymously open their commitment

116

Practical Post-Quantum Resistant E-Voting Scheme

(that is to reveal their vote and the random value used to generate the commitment), so
that anyone can see their voting choice. However thanks to the blindness property, the
anonymity is preserved since no one will be able to link a signed ballot to the voter who
requested the corresponding signature (and therefore no one will be able to link a voter
to his vote). Finally anyone can tally the result of the election, by counting the votes and
verifying the validity of the blind signatures associated to the opened commitment.

The FOO voting scheme [FO092] suffers from several major drawbacks. The main one
is that all voters have to participate to the ballot counting process, as they have to open
their commitment at the end of the election. Their scheme is not "vote and go" and would
be unsuitable for real-life elections. Worst, the private key of the blind signature scheme
is held by a single authority who could easily stuff the Bulletin Board by generating as
many blind signatures (meaning valid but illegitimate ballots) as he wishes.

In order to overcome these issues, we next introduce two functionalities, namely a
(post-quantum) threshold public-key encryption scheme as well as a threshold variant of

our blind signature scheme.

6.2 Our construction

6.2.1 Cryptographic primitives

In this context of electronic voting system, we need several cryptographic tools that are
the building blocks of our voting scheme. In this section, we first briefly mention the main
tool that we are using, which is the blind signature scheme developed in the previous
chapter. Secondly we also present an encryption scheme called dual Regev encryption
scheme, based on the Ring-LWE problem [Reg05], that we transform in a distributed
variant where the private key is shared among several authorities. Finally we present a
tool from Bendlin et al. [BKP13] that we make use for the threshold transformation we
mentioned above. The two threshold transformations are used to avoid the problem of a
single authority holding the election private keys and who could either stuff the Bulletin

Board with (valid but illegitimate) ballots or learn partial results of the election.

Blind signature

We make use the blind signature we introduced in the chapter 5 to equip our e-voting

protocol.

117

Practical Post-Quantum Resistant E-Voting Scheme

Encryption scheme

Now we introduce the dual-Regev encryption scheme first described in [GPV08], we
describe it on a polynomial ring R, defined above. Moreover, any public key encryption
post-quantum secure would fit into our e-voting protocol, then any NIST submission could

replace the following construction:
Construction We describe below the different algorithms of the encryption scheme :

PK.Setup. The setup algorithm chooses integers n, m, ¢ and two real «, 3 such that the

dual-Regev encryption scheme on the polynomial rings is deemed secure (see [LPR13]).

PK.KeyGen(1"). It start by sampling s <> Dgm, as the secret key and a < R}
uniformly at random as part of the public key. Finally it computes and reveals u = a’s €
R;". The secret key is then the element e, = s € R;" and the public key is composed of

the pair my, = (a,u) € RJ" x Ry, it outputs (ex,my) as the secret and public key pair.

PK.Encrypt(m,my;). Given a message m from the message space Rq, and a public key
my = (a,u), it chooses a vector v € R, uniformly at random, and output the ciphertext
(b=av+ec=u-v+e+[q/2/m) € RI* x R, where e <= Dgrm 3 and €’ <= Dgg. The
ciphertext is then composed of the pair (b, c) € Rj* X R,.

PK.Decrypt((b,c),e;). Given a ciphertext (b, c) € RJ" x R, and a private key s € R},
it computes = ¢ — b’s = e’ - s + ¢ + [¢/2]m. Finally to recover the message m, it
suffices to look after each coordinate of u, if the i-th coordinate is closer to 0 than to
|g/2]| then the i-th bit of m is equal to 0 and 1 otherwise.

Security proof. The dual Regev system is IND-CPA secure, assuming that Ring-
LWE, ¢,pg 5 is hard, see [LPR13].

However, concerning our use case of a voting system, the IND-CPA security is not
sufficient, since what we need is a non-malleability security property (at least NM-CPA).
The reason is that we do not want that a voter replays a ballot (or a variant) of an
other voter (i.e. duplicate the voting choice of this voter) without knowing what the

actual voting choice is. Concretely it means that for an encrypted vote ¢ = Encrypt(v),

118

Practical Post-Quantum Resistant E-Voting Scheme

which is published on a public board, a different voter must not be able to compute
¢ = Encrypt(v) with ¢ # ¢ without knowing v.

In order to extend the IND-CPA property into a NM-ATK property (where ATK
can be any attack type, such as CPA; CCA1 or CCA2), we use the well-known Fujisaki-
Okamoto transformation [FO99; HHK17] . This transformation starts from a scheme
which is IND-CPA secure and transforms it into a IND-CCA2 secure scheme. We note
that the IND-CCA2 security property is equivalent to the NM-CCA2 security property
[Bel+98] which is enough for our purpose.

However, for our purpose we will modify this public key encryption lightly, in order to
split the secret key between several entities, but the encryption and decryption protocols
remain the same, so this modification does not harm the security of the former encryption

scheme.

Threshold tools and variants

In the original version of our blind signature scheme, there is only one signer who could
easily, in the context of e-voting, stuff the Bulletin Board by adding as many valid (but
illegitimate) ballots as he wishes, we therefore transform it into a threshold one, using
the generic transformation of a trapdoor based signature scheme with strong trapdoor of
[MP12], into a threshold trapdoor based signature scheme by [BKP13]. We notice that

our transformation is applied on a blind signature scheme and not on a signature scheme.

However, we point out that the signer part of the blind signature is composed of two
steps, a first one which is a generation of a commitment, which can be transformed in a
threshold manner using Shamir secret sharing, and a trusted setup to share a gaussian
vector. Concerning the second step of the signer, it consists on a classic Fiat-Shamir
with abort signature, which can easily be transformed into a threshold one by means
homomorphic properties of the Shamir secret sharing. In case of abort, the signer performs
a GPV-like signature which is a generic signature scheme and can be transformed using
the generic transformation of [BKP13] into a threshold scheme.

We would like to emphasize that the construction of [BKP13] is built on the integer
ring Z, but our blind signature relies on polynomial ring R, = Z,[X]/f(X), with f a
polynomial of degree n. However the strong trapdoor construction can be adapted to this
ring setting [MP12], and the Shamir secret sharing [Sha79] still works on this type of ring.
Then the whole construction of [BKP13| can be adapted to the polynomial ring setting.

119

Practical Post-Quantum Resistant E-Voting Scheme

Threshold Functionalities. We notice that we consider the threshold transformation
of [BKP13], which makes use of a trusted setup. Indeed their variants that works with-
out trusted setup needs the use of multilinear maps that are a sensitive topic [GGH13;
Che+15; Cor+15]. In fact, in practice the settings without trusted setup are mandatory,
however the concrete parameters of the e-voting protocol can be generated long time
before the election day.

The proof of the various protocols from [BKP13] are realized in the UC model [Can01],
so that we just have to plug the threshold functionalities into our blind signature scheme,
to obtain, by composability, a secure threshold variant of our blind signature scheme.
Below we describe the two mains protocols, which are the KeyGen and the SampleZ
protocol. Moreover we choose to give an informal description of the functionalities involved
for these two protocols. The full construction can be found in the paper of [BKP13].

We consider p authorities, such that a threshold of ¢ authorities is mandatory to execute
the various functions developed below. Let a’ € Rg”_k be a uniformly distributed vector
of polynomial and T € R{™~#>** be a Gaussian-distributed matrix. Let {[T]};c, be the
shares of the polynomial matrix T. Let us denote by a; = a’” - T mod ¢ and a = [a’|a,].
In fact the key generation mechanism is the same as described in Lemma 4, but performed

on a polynomial ring as done on our blind signature scheme in the chapter 5.

Fgina : This functionality takes as input shares of an arbitrary value x and output fresh

shares [z]° of this same value.

Fsampz : This functionality takes as input dimensions h X d and a gaussian variance z.

It outputs shares [Z]* of a gaussian distributed matrix Z «+ D",

Threshold KeyGen protocol
The KeyGen protocol is realised in the Fpiing, Fsampz model.
On input the tuple (a’, h* € Ry, z € Z), each party ¢ does
1. Call Fsampz((m — k) x k, 2), then receive [T]".
2. Call Fpjina(—aT[T]") , then receive [a;]*.
3. Broadcast [a;]" and reconstruct a; = a7 - T mod ¢ from the other shares.
4. Output a = [a’|h* - g + a;] as the public key and [T]* as the private key of the
authority i.

120

Practical Post-Quantum Resistant E-Voting Scheme

FGadget @ This functionality takes as input a coset value v € R, and outputs shares

[u]’ € R* of a gaussian distributed polynomial vector such that g7 - u = v.

Feorrect : This functionality generates for each j € [k| and v € R, queues @)}, of at least
B values in each queue, that will allow the signer to perform at least B pre-image of each
vector v € Ry. Each queue @), is composed by using the gadget functionality developed

above and the shares [T]* of the trapdoor such that each authority gets a share of

T
Yie = | (e;®1z,,) for z;, € A (g”), with e; the vector composed of 0 elements except

the j-th coordinate equals to 1.
Then, in the sampling algorithm of [MP12], when we have to correct a perturbation

to get a correct sample for a given syndrom v € R, the authorities recover a value in the

corresponding queue @y, Q-

Fpertwrb : Lhe perturb algorithm in the threshold setting, is the same as in the standard
setting, but the perturbation vector is then shared between the p authorities using the
functionality Fsampz. then it takes as input a dimension i X d and a gaussian parameter z,
it outputs [P]" with P < D>,

SampleZ protocol. Using the functionalities Fpertwp and Feomeet defined above that
are the threshold counterparts of the steps composing the Preimage sampling protocol
described in the section 3.3.3, the SampleZ protocol generates a presample in the same
way as the standard algorithm developed in [MP12], but with the threshold variants of

the subalgorithms perturb and correct.

Threshold variants. Using the tools described above, we can transform our blind
signature primitive into a threshold variant. A similar modification will be applied on
the public key encryption scheme, but which is light since we do not need for our voting
scheme a full threshold transformation. Indeed, for our voting scheme we do not consider
a threshold decryption mechanism, meaning that we just have to modify the PK.KeyGen
algorithm accordingly to include a sharing mechanism of the decryption secret key.

We now develop the modifications that are brought to the two primitives of blind

signature and public key encryption:

— TBS.KeyGen(1",17). The threshold variant of the blind signature key generation

algorithm generates the same elements. Namely, a public polynomial vector a with a

121

Practical Post-Quantum Resistant E-Voting Scheme

trapdoor T using a trapdoor generation algorithm and a random polynomial vector
s € R} with its image by the hash function such that p = h,(s). All these elements
are generated in a distributed way by using the Threshold Keygen protocol described
above to generate the trapdoor along with the vector a used in the hash function.
Concerning the secret vector s, the algorithm Fg,mpz is executed by each authority,
in order to obtain [s|’,i € [p], they each then have to broadcast their public part
a-[s]’,i € [p] to recover and output the public key p. Finally the algorithm outputs
the public key pr = (p,a) and the private key share [s;]" = ([T’ [s]"),4 € [p] to each
authority A’ i € [p).

— TBS.Sign({(A"([sk]")) }ier, V(px, M)). Considering a set of T signing authorities
A’ i € [T], the signature algorithm is the same as the one depicted in figure 5.8 from
the user’s side. Concerning the signer view, firstly the commitment y is generated
in a distributed manner using the algorithm Fgumpz, such that the authorities get a
share [y]® and distributively output the corresponding element x = h,(y) in the same
way as it was done in the TBS.KeyGen algorithm for the pair (s, p). Concerning the
signing step, from the signer’s view, the first attempt of signature, which is a Fiat-
Shamir like signature [Lyul2|, is performed between the authorities thanks to the
homomorphic property of the Shamir secret sharing, while the GPV-like [GPVO0§]
signature generation is performed in a threshold manner using the SampZ protocol.

Finally, the algorithm outputs the signature o = (M, e, z).

— TPK.KeyGen(1", 17). It generates s <= Dgm , as the secret key in a distributed
way using the Fgampz algorithm, such that each authority A%, € [p] gets a share
[s]". Concerning the public key, it chooses a <—¢ R} uniformly at random. Finally
each authority computes and reveals [u]' = a”[s]" € R]",i € [p] such that u can be
recovered and output publicly. The secret keys are then the elements [e;]' = [s]* €
RY,i € [p] and the public key is composed of the pair m; = (a,u) € R* x Ry, it

outputs (ex, my) as the secret and public key pair.

6.2.2 Owur scheme

As explained above, we chose to modify the [FOO92] framework in order to let voters
"Vote and go" (i.e. they will not have to do any further action at the end of the election
once they have cast their ballot) and to prevent ballot stuffing by a malicious authority. We

start by replacing the commitment scheme with a public key encryption scheme, so that

122

Practical Post-Quantum Resistant E-Voting Scheme

the voting choices are encrypted instead of being committed. At the end of the election,
the decryption key will be disclosed so that anyone will be able to decrypt the ballots and
compute the result of the election. Moreover, thanks to the indistinguishability property

of the encryption scheme, the votes will remain hidden until the end of the election.

Another issue, more focused on the security aspect, is that the private key of the blind
signature scheme is given to a single authority in [FO092], the same problem would arise
for the encryption scheme if we give the private decryption key to a single authority. It
means that if the authority owning this private decryption key is corrupted, then he can
get partial results by decrypting the ciphertexts before the end of the election, which is
not desirable for most elections. Another concern is the fact that the private key of the
blind signature scheme is owned by a single authority in [FOO92], who could generate as
many ballots as he wants and stuff the Bulletin Board with them. An obvious solution
would be to transform these two primitives into threshold variants, so that these private

keys would be shared among several authorities and not a single one.

Concerning the encryption scheme, the transformation considered turns it into a slight
version of a threshold encryption scheme. Indeed, we just need to avoid that the secret
key is given to a single authority, then only the key generation mechanism is impacted,
while the encryption and decryption remains unchanged. The idea is that at the end of
the election, at least a threshold of T" authorities publish their shares, so that anyone can
reconstruct the whole private key and decrypt the ciphertexts of the valid ballots included

in the bulletin board and finally compute the outcome of the election.

The second transformation is heavier, since we need to transform a whole blind signa-
ture protocol into a threshold one. We start by the result of Bendlin et al. [BKP13] that
exhibits a generic transformation of a signature scheme making use of the trapdoors of
[MP12] into a threshold variant. Since the security of this transformation is proven on the
universally composable (UC) model [Can01], then by composability our threshold variant
remains secure. We finally get that the two operations composing the signer part (the
commitment and the signing step) are done in a threshold way by communicating with,

at least, t signing authorities.

Considering these modifications of the [FO0O92] framework, we next describe the com-
plete e-voting protocol that we build from the cryptographic primitives introduced above.
First, a setup phase generates the parameters of the protocol, including the private and
public keys of the cryptographic schemes. Next the voting phase is composed of two steps,

the voter first encrypts his voting option (using the public election key) and then interacts

123

Practical Post-Quantum Resistant E-Voting Scheme

with (at least) ¢ voting authorities to obtain a blind signature on his ciphertext. His ballot
b is composed of a ciphertext ¢ of his voting choice v along with a (blind) signature o on ¢
such that b = (c, o). The Bulletin Board only accepts a ballot if o is a valid signature on
c and discards it otherwise. Then, in the counting phase, the tallying authorities reveal
their share of the private encryption key, so that anyone can recover the corresponding
decryption key and decrypt the ballots (the ciphertexts c) to compute the result of the
election. Auditing the election is easy. For this purpose, an interested voter first have to
check that all the ballots collected by the Bulletin Board are valid (i.e. that the signatures
o are valid),that the decryption key published by the talliers is correct (i.e. corresponds
to the public election key). He then has to decrypt all the ballots using the decryption

key and computes the result of the election just as the talliers did.

Construction

We present now our e-voting construction:

Setup(17,17,1). The setup algorithm has to generate two pairs of secret/public keys,
one pair for the encryption scheme and another one for the blind signature scheme. More-
over these keys have to be generated in a threshold manner, for a number p of author-
ities, with a threshold number of t. Let us denote by (sg,pr) < BS.KeyGen(1") and
(er,my) <+ PK.KeyGen(1"), and by [s;]" (resp [ex]’) the shares of the private blind
signature key (resp encryption key). Then the setup algorithms outputs pk = (pg, my)
and sk = (1], [ex]")icp.

Vote(V;(v, pk), A ([sk]?)jer). The voting phase is split in two steps. In the first step, the
voter V; encrypts his vote v € {0,1}* in ¢ = PK.encrypt(v, my) in an offline phase. Then
in an online phase, he is first authenticated (to see whether he is an eligible voter who has
not yet requested a blind signature from the voting authorities). The protocol aborts if the
authentication failed or if the voter already requested a blind signature. He then interacts
with voting authorities A7 to get a blind signature o = BS.Sign ({47 ([sx)’) };er, Vi(p, €)),
with T a set of authorities of size at least ¢. Finally the voter outputs (o, c) as his ballot

and casts it, anonymously, into the bulletin board BB.

Validate(b, pk). On input a ballot b = (o, ¢), anyone can check its validity by perform-
ing the verification algorithm of the blind signature BS.Verify(py, c, o), it outputs 0 if

124

Practical Post-Quantum Resistant E-Voting Scheme

the blind signature verification fails and 1 otherwise.

Box(BB, b). It takes as input the current state of the bulletin board BB, along with
a ballot b. It first checks the validity of b by performing the algorithm described above:
Validate(b, pk). It updates BB < BBU{b} if Validate outputs 1 and remains unchanged
if it outputs 0.

Tally (BB, py, £ ([ex)?) je))- At the end of the election, at least a threshold of ¢ au-
thorities (€7);epy holding the shares of the decryption key e, reveal publicly their share
([ex])?)jet, such that anyone can rebuild the decryption key e,. Then for each ballot
(0,c) € BB, anyone can decrypt ¢ and retrieve the vote v = PK.decrypt(c, ex) of each
voter, after verifying that BS.Verify(o, pr) = 1. Then it can tally and outputs the result
r, which corresponds to the outcome of the election r = {v;};c, with & < N the number

of voter that output a valid ballot.

Verify(BB,r,e;). The algorithm verify is straightforward, since the decryption secret
key ey is public, then anyone can check the validity of the result by decrypting all the
ciphertexts ¢ contained in the ballots (o,c) € BB, with a valid blind signature o and

tally them to compare to the result r announced by the tallying authorities.

6.2.3 Security of our scheme
Correctness

Theorem 11 (Correctness). Since BS and PK are correct, then our e-voting scheme is

correct.

Proof. According to our definition of correctness, our e-voting protocol is correct if a
ballot generated by an honest voter is accepted with overwhelming probability by the
Bulletin Board, and if the result of an honest election, where every party behaves honestly,
corresponds to the votes casts by the voters.

Concerning the first condition, in our e-voting system a ballot is accepted by the
bulletin board if the blind signature that forms the ballot is valid. Then since the blind
signature scheme we consider satisfies the correctness requirement of a blind signature,

meaning that the verification step always outputs 1 for a truly generated blind signature,

125

Practical Post-Quantum Resistant E-Voting Scheme

then we obtain that the first condition for the correctness of our e-voting protocol, is
fulfilled.

The second condition asks that for an honest election (meaning that all parties involved
in the voting protocol behave honestly), the outcome of the election announced by the
authorities corresponds to the votes cast by eligible voters. It means that all the ballots
included in the bulletin board at the end of the election open to votes that were cast
by legitimate voters. Since the public key encryption we consider satisfies the correctness
requirement of a public key encryption scheme, then the second condition if fulfilled either,
because the decryption mechanism will recover the correct vote for each decryption.

Since our e-voting protocol satisfies both conditions it is therefore correct. O]

Verifiability

Theorem 12 (Verifiability). By using a strong authentication scheme, and since BS is

one-more unforgeable, then our e-voting scheme is verifiable.

Sketch of proof. The attacker in the experiment in figure 6.1 wins if he can output a
result that is valid and that does not correspond to the voting choices of honest voters
that checked their ballots, plus the voting choices of a subset of honest voters that did
not check their ballots, plus the voting choices of a subset of corrupted users.

At the end of the election the ballots stored in the bulletin board can no longer be
modified even if we consider a malicious bulletin board. The reason is that the bulletin
board is made public, then ballots can not be replaced nor new ones can be added without
being noticed. Then to win the game, the attacker has to act before the end of the election.
It means that he either (1) has to impersonate an honest voter or (2) casts more valid
votes (let say ne + 1) than the number (n¢) of corrupted users.

(1) is deemed infeasible since this would mean that he has successfully broken the
strong authentication scheme used by voters to authenticate themselves to the Voting
Authorities.

(2) is not possible either since this would mean that the attacker could generate more
valid blind signatures than requested (in other words, this would imply that he can break
the one-more unforgeability security of our threshold blind signature scheme) or that there
exists more than dishonest voting authorities (which could generate as many valid-but
illegitimate-ballots as they wish).

Furthermore, he can not cheat after the end of the election, since the ability to tally

126

Practical Post-Quantum Resistant E-Voting Scheme

the election is made public, then anyone can tally on his own and check the claimed result;
our voting protocol therefore satisfies the Verifiability requirement.

We further notice that, independently of the attacker behavior, the tally can not give
two different results for two iterations of the Tally algorithm. Indeed a valid ballot casts
by a honest voters could be opened on two different results or the blind signature could
be valid on the first iteration and invalid in the second one. However this scenario can not
happen since the decryption mechanism and the blind signature verification algorithm are

both deterministic.

Ballot anonymity

Theorem 13 (Ballot anonymity). If BS is blind, then our voting scheme satisfies ballot

anonymity requirement.

Sketch of proof. According to the experiment 6.2, an attacker .A* on the ballot anonymity
interacts with two valid voters with identities 7dy and ud;. He first selects two voting
choices vy and v; and sends them to the two considered voters V4, and V4. In the
mode issue, he interacts with these two voters, to help them generate their corresponding
ballots. Indeed, on a coin flip ¢ <—g€ {0,1}, the voters V4, and V4, outputs the bal-
lots (0i4,, Cia,) and (0iq,_., Cia,_,) respectively such that c;q, = PKE.encrypt(v., my) and
Ciq,_, = PKE.encrypt(vy_., my). Finally A* tries to guess the bit ¢ in the guess mode.

We then have to prove that the attacker 4* has a negligible advantage to win the above
game. According to the protocol, each ballot does not include any information about the
identity of each voter, since the encryption and blind signature schemes are performed only
on the voting choices vy and v, that are strictly independent of the identities idy and ¢d;. It
means that the only way to the attacker to win the game is to distinguish the ballots during
the interactive part of the voting algorithm performed by the voters and the attacker A*.
In fact this interactive part consists in the execution of the blind signature protocol,
therefore if the attacker succeeds in linking a ballot b. to the corresponding execution
of the blind signature protocol, then this would mean that he can break the blindness
requirement of the blind signature scheme. But since the blind signature scheme is blind
with overwhelming probability, then our e-voting scheme satisfies the ballot anonymity
requirement with the same probability.

We finally notice that, independently of the security properties considered above, the

encryption scheme prevents any partial result to leak. Indeed the secret key to decrypt

127

Practical Post-Quantum Resistant E-Voting Scheme

the votes included in the ballots is private and shared between several authorities, which
can not open the ballots without al least ¢ shares of the decryption key. Then as long as
a set of p —t 4+ 1 authorities remains honest, the ballots cannot be opened before the end

of the election.

128

CONCLUSION

In this thesis, we presented two new cryptographic constructions, which are a group
signature scheme and a blind signature scheme, along with an application to an electronic
voting system. Our constructions are built upon the lattice-based cryptography, which
is assumed to be post-quantum resistant and that have been appealing for its numerous
advantages. Indeed, since the call of the NIST competition in 2016, an effervescence around
the post-quantum cryptography has been observed, and among the different propositions
that are presented during this competition, the most represented candidate is lattice-based
cryptography.

The reason is that, firstly its security is based on very well understood worst-case
average-case reductions that give a concrete security for each construction. Secondly its
efficiency, which was very bad at the beginning, is currently reaching those of its coun-
terparts based on 'classical" cryptography. Finally some very interesting constructions,
who were only dreamed of several years ago, have been reached thanks to the lattice-
based cryptography, for example, to the best of our knowledge, there exists only one
fully-homomorphic encryption scheme based on lattices by Gentry [Gen09]. Moreover,
the lattices benefit a structure that allows them to build some primitives (like attribute-
based encryption, fully homomorphic encryption) that are currently not been developed in
the other post-quantum cryptosystems. This shows that the maturity of the lattice-based

cryptography is the most advanced among the post-quantum candidates.

Group signature scheme. Our first contribution is a lattice-based group signature
scheme with forward security and proven secure in the standard model. The group sig-
nature schemes are a very interesting cryptographic primitive, allowing anyone to anony-
mously prove that he belongs to a given group. Moreover group signatures on lattices is
a very intensive topic of research, since more than 15 constructions have been published
since the former proposition by Gordon et al. [GKV10]. The reason behind this attractive-
ness is that the efficiency of lattice-based group signature is far from their counterparts
on classical cryptography. In fact, the topic of group signature is closely related to the

topic of zero-knowledge proof, which is usually the main tool used in such constructions

129

and is also an intense subject of research.

This is why it is interesting to explore other ways to build a group signature scheme to
overcome these limitations. In this thesis, we took as a basis the Kastumata and Yamada
[KY19] construction, that departs of the usual framework by replacing the zero-knowledge
proofs with an attribute-based signatures. However it is hard to compare the efficiency of
the two frameworks, since there is no implementation of the second one. In addition to
this lack of implementation, it would be interesting to replace the complexity leveraging,
that we also make use, with an other method to prove the security of the scheme. The
attribute-based signature developed in [KY19] can be a good alternative but then it is
the size dependence in the number of group members that is limiting. Finally, beyond the
forward security property, that we integrate in our construction, other properties like the

dynamic one would be interesting to equip the [KY19] framework with.

Blind signature scheme. The second contribution we bring in this thesis, is a lattice-
based blind signature scheme. The idea of this primitive is to allow any user to generate
a signature on a message of its choice in an interactive way with a signer possessing the
signing secret key. Originally such tools were designed for the e-cash systems, where any
user can interact with an authority to generate digital money, but the user does not want
his payment to be traced went spending the electronic coin. Later the blind signature
were also used to design electronic vote as we have seen in the last chapter of this thesis.

While the lattice-based blind signatures constructions were not a trending topic after
the former construction of Riickert [Riic10], later it found a renewal of attractiveness with
a lot of recent constructions [Pap+19; ABB19; ABB20; Hau+20]. However, the last paper
by Hauck et al. [Hau+20] found some serious issues in all the previous constructions,
that are related the one-more unforgeability security. While their result proposes to fix
this problem, their construction remains far from efficient. In our contribution we tried to
reconcile the efficiency aspect with the security one, indeed we propose a slightly different
approach, but we have to rely on a conjecture to prove the security of our scheme. Then
it would be nice to succeed in proving this conjecture or find another way to prove the
corresponding security. We can also denote that our construction needs to use the costly

noise flooding to ensure the blindness property, finding an alternative would also be great.

Electronic voting system. Our last contribution concerns an electronic voting scheme

that is based on the above blind signature scheme. It starts from the original framework

130

of Fujioka et al. [FO092], and integrates some modifications like the replacement of the
commitment scheme with an encryption scheme, or the transformation of the crypto-
graphic tools into threshold variants. This framework departs from the usual electronic
voting systems that make use of the advantage brought by homomorphic primitives. The
consequence of such a modification is that our system is more efficient in some way, like
the verification that a ballot is valid, while some other are less efficient, like the tally of
the election.

In our e-voting construction, the blind signature is the main component, meaning
that the features of our voting system are closely related on those of the blind signature,
meaning that the improvement of the electronic voting system implies the improvements of
the blind signature that have been listed above. Moreover the next task, that is currently
considered in this contribution, is to provide an implementation to clearly analyze how

this system can behave in a real-world election.

131

BIBLIOGRAPHY

[ABBI10]

[ABB19]

[ABB20]

[Adi0g]

[AF96]

[Agr+13]

[Ajt96]

[Alk+16]

[AO00]

Shweta Agrawal, Dan Boneh, and Xavier Boyen, « Lattice Basis Delegation in
Fixed Dimension and Shorter-Ciphertext Hierarchical IBE », in: CRYPTO,
vol. 6223, Lecture Notes in Computer Science, Springer, 2010, pp. 98-115.

Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann,
« BLAZE: Practical Lattice-Based Blind Signatures for Privacy-Preserving
Applications », in: TACR Cryptology ePrint Archive 2019 (2019), Version
20200207:124758, p. 1167.

Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann,
On Lattice-Based Interactive Protocols with Aborts, Cryptology ePrint Archive,
Report 2020/007, https://eprint.iacr.org/2020/007, 2020.

Ben Adida, « Helios: Web-based Open-Audit Voting », in: USENIX Security
Symposium, USENIX Association, 2008, pp. 335-348.

Masayuki Abe and Eiichiro Fujisaki, « How to Date Blind Signatures », in:
ASIACRYPT, vol. 1163, Lecture Notes in Computer Science, Springer, 1996,
pp. 244-251.

Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai, « Discrete Gaus-
sian Leftover Hash Lemma over Infinite Domains », in: ASIACRYPT (1),
vol. 8269, Lecture Notes in Computer Science, Springer, 2013, pp. 97-116.

Miklés Ajtai, « Generating Hard Instances of Lattice Problems (Extended
Abstract) », in: STOC, ACM, 1996, pp. 99-108.

Erdem Alkim, Léo Ducas, Thomas Péppelmann, and Peter Schwabe, « Post-
quantum Key Exchange - A New Hope », in: USENIX Security Symposium,
USENIX Association, 2016, pp. 327-343.

Masayuki Abe and Tatsuaki Okamoto, « Provably Secure Partially Blind
Signatures », in: CRYPTO, vol. 1880, Lecture Notes in Computer Science,
Springer, 2000, pp. 271-286.

132

https://eprint.iacr.org/2020/007

[APS15]

[AT99]

[Ate-+00]

[AW04]

[Ban93]

[Bau+16]

[BBO4]

[BBSO4]

[BCN18]

Martin R. Albrecht, Rachel Player, and Sam Scott, « On the concrete hard-
ness of Learning with Errors », in: J. Mathematical Cryptology 9.8 (2015),
pp. 169-203.

Giuseppe Ateniese and Gene Tsudik, « Group Signatures A la carte », in:
SODA, ACM/STAM, 1999, pp. 848-849.

Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik, « A Prac-
tical and Provably Secure Coalition-Resistant Group Signature Scheme », in:
CRYPTO, vol. 1880, Lecture Notes in Computer Science, Springer, 2000,
pp- 255-270.

Michel Abdalla and Bogdan Warinschi, « On the Minimal Assumptions of
Group Signature Schemes », in: Information and Communications Security,

vol. 3269, Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2004, pp. 1-13.

W. Banaszczyk, « New bounds in some transference theorems in the geometry
of numbers. », in: Mathematische Annalen 296.4 (1993), pp. 625636, URL:
http://eudml.org/doc/165105.

Carsten Baum, Ivan Damgard, Sabine Oechsner, and Chris Peikert, « Effi-
cient Commitments and Zero-Knowledge Protocols from Ring-SIS with Ap-
plications to Lattice-based Threshold Cryptosystems », in: TACR Cryptol.
ePrint Arch. 2016 (2016), p. 997.

Dan Boneh and Xavier Boyen, « Secure Identity Based Encryption With-
out Random Oracles », in: CRYPTO, vol. 3152, Lecture Notes in Computer
Science, Springer, 2004, pp. 443-459.

Dan Boneh, Xavier Boyen, and Hovav Shacham, « Short Group Signatures »,
in: CRYPTO, vol. 3152, Lecture Notes in Computer Science, Springer, 2004,
pp- 41-55.

Cecilia Boschini, Jan Camenisch, and Gregory Neven, « Floppy-Sized Group
Signatures from Lattices », in: ACNS, vol. 10892, Lecture Notes in Computer
Science, Springer, 2018, pp. 163-182.

133

http://eudml.org/doc/165105

[Bel4+98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway, « Re-
lations Among Notions of Security for Public-Key Encryption Schemes », in:
CRYPTO, vol. 1462, Lecture Notes in Computer Science, Springer, 1998,
pp- 26-45.

[Ber+15] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bog-
dan Warinschi, « SoK: A Comprehensive Analysis of Game-Based Ballot Pri-
vacy Definitions », in: IEEE Symposium on Security and Privacy, IEEE Com-
puter Society, 2015, pp. 499-516.

[Ber+19] Pauline Bert, Gautier Eberhart, Adeline Roux-Langlois, and Mohamed Sabt,
« Implementation of Lattice Trapdoors on Modules and Applications to Sig-

nature », in: Private communication between authors, 2019.

[BF11] Dan Boneh and David Mandell Freeman, « Linearly Homomorphic Signatures
over Binary Fields and New Tools for Lattice-Based Signatures », in: Public
Key Cryptography, vol. 6571, Lecture Notes in Computer Science, Springer,
2011, pp. 1-16.

[BKP13] Rikke Bendlin, Sara Krehbiel, and Chris Peikert, « How to Share a Lat-
tice Trapdoor: Threshold Protocols for Signatures and (H)IBE », in: ACNS,
vol. 7954, Lecture Notes in Computer Science, Springer, 2013, pp. 218-236.

[Bla+17] Olivier Blazy, Philippe Gaborit, Julien Schrek, and Nicolas Sendrier, « A
code-based blind signature », in: ISIT, IEEE, 2017, pp. 2718-2722.

[BM93] Josh Cohen Benaloh and Michael de Mare, « One-Way Accumulators: A De-
centralized Alternative to Digital Sinatures (Extended Abstract) », in: EU-
ROCRYPT, vol. 765, Lecture Notes in Computer Science, Springer, 1993,
pp. 274-285.

[BM99] Mihir Bellare and Sara K. Miner, « A Forward-Secure Digital Signature
Scheme », in: CRYPTO, vol. 1666, Lecture Notes in Computer Science, Springer,
1999, pp. 431-448.

[BMWO03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi, « Foundations of
Group Signatures: Formal Definitions, Simplified Requirements, and a Con-
struction Based on General Assumptions », in: FUROCRYPT, vol. 2656, Lec-
ture Notes in Computer Science, Springer, 2003, pp. 614—629.

134

[BNO6] Mihir Bellare and Gregory Neven, « Multi-signatures in the plain public-Key
model and a general forking lemma », in: ACM Conference on Computer and
Communications Security, ACM, 2006, pp. 390-399.

[Boy+06] Xavier Boyen, Hovav Shacham, Emily Shen, and Brent Waters, « Forward-
secure signatures with untrusted update », in: ACM Conference on Computer
and Communications Security, ACM, 2006, pp. 191-200.

[BR93] Mihir Bellare and Phillip Rogaway, « Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols », in: ACM Conference on Computer and
Communications Security, ACM, 1993, pp. 62-73.

[Bra93] Stefan Brands, « Untraceable Off-line Cash in Wallets with Observers (Ex-
tended Abstract) », in: CRYPTO, vol. 773, Lecture Notes in Computer Sci-
ence, Springer, 1993, pp. 302-318.

[BS04] Dan Boneh and Hovav Shacham, « Group signatures with verifier-local revo-
cation », in: ACM Conference on Computer and Communications Security,
ACM, 2004, pp. 168-177.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang, « Foundations of Group Signa-
tures: The Case of Dynamic Groups », in: CT-RSA, vol. 3376, Lecture Notes
in Computer Science, Springer, 2005, pp. 136—-153.

[BWO06] Xavier Boyen and Brent Waters, « Compact Group Signatures Without Ran-
dom Oracles », in: FUROCRYPT, vol. 4004, Lecture Notes in Computer Sci-
ence, Springer, 2006, pp. 427-444.

[BY03] Mihir Bellare and Bennet S. Yee, « Forward-Security in Private-Key Cryptog-
raphy », in: CT-RSA, vol. 2612, Lecture Notes in Computer Science, Springer,
2003, pp. 1-18.

[Cam+20] Jan Camenisch, Manu Drijvers, Anja Lehmann, Gregory Neven, and Patrick
Towa, « Short Threshold Dynamic Group Signatures », in: TACR Cryptol.
ePrint Arch. 2020 (2020), p. 16.

[Cam97] Jan Camenisch, « Efficient and Generalized Group Signatures », in: EU-
ROCRYPT, vol. 1233, Lecture Notes in Computer Science, Springer, 1997,
pp. 465-479.

135

[Can01]

[Cas+10]

[CGTO6]

[CHO1]

[Cha&2]

[Che+15]

[Chi+16]

[CHKO3]

[CLO4]

[CMM19]

Ran Canetti, « Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols », in: FOCS, IEEE Computer Society, 2001, pp. 136—
145.

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert, « Bonsai Trees,
or How to Delegate a Lattice Basis », in: FUROCRYPT, vol. 6110, Lecture
Notes in Computer Science, Springer, 2010, pp. 523-552.

Sébastien Canard, Matthieu Gaud, and Jacques Traoré, « Defeating Mali-
cious Servers in a Blind Signatures Based Voting System », in: Financial
Cryptography, vol. 4107, Lecture Notes in Computer Science, Springer, 2006,
pp. 148-153.

David Chaum and Eugene van Heyst, « Group Signatures », in: FURO-
CRYPT, vol. 547, Lecture Notes in Computer Science, Springer, 1991, pp. 257—
265.

David Chaum, « Blind Signatures for Untraceable Payments », in: CRYPTO,
Plenum Press, New York, 1982, pp. 199-203.

Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien
Stehlé, « Cryptanalysis of the Multilinear Map over the Integers », in: EURO-
CRYPT (1), vol. 9056, Lecture Notes in Computer Science, Springer, 2015,
pp. 3-12.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne,
« A Homomorphic LWE Based E-voting Scheme », in: PQCrypto, vol. 9606,
Lecture Notes in Computer Science, Springer, 2016, pp. 245-265.

Ran Canetti, Shai Halevi, and Jonathan Katz, « A Forward-Secure Public-
Key Encryption Scheme », in: FUROCRYPT, vol. 2656, Lecture Notes in
Computer Science, Springer, 2003, pp. 255-271.

Jan Camenisch and Anna Lysyanskaya, « Signature Schemes and Anonymous
Credentials from Bilinear Maps », in: CRYPTO, vol. 3152, Lecture Notes in
Computer Science, Springer, 2004, pp. 56-72.

Nuria Costa, Ramiro Martinez, and Paz Morillo, « Lattice-Based Proof of a
Shuffle », in: Financial Cryptography Workshops, vol. 11599, Lecture Notes
in Computer Science, Springer, 2019, pp. 330-346.

136

[CNR12]

[Cor+13]

[Cor+14]

[Cor+15]

[Cor+16]

[CRS05]

[CS1§]

[DOW92]

[Fer93|

[FO99]

Jan Camenisch, Gregory Neven, and Markus Riickert, « Fully Anonymous
Attribute Tokens from Lattices », in: SCN, vol. 7485, Lecture Notes in Com-
puter Science, Springer, 2012, pp. 57-75.

Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene,
« A generic construction for voting correctness at minimum cost - Application
to Helios », in: JACR Cryptol. ePrint Arch. 2013 (2013), p. 177.

Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabacheéne,
« Election Verifiability for Helios under Weaker Trust Assumptions », in: ES-
ORICS (2), vol. 8713, Lecture Notes in Computer Science, Springer, 2014,
pp. 327-344.

Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta
K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi,
« Zeroizing Without Low-Level Zeroes: New MMAP Attacks and their Lim-
itations », in: CRYPTO (1), vol. 9215, Lecture Notes in Computer Science,
Springer, 2015, pp. 247-266.

Véronique Cortier, David Galindo, Ralf Kiisters, Johannes Miiller, and Tomasz
Truderung, « SoK: Verifiability Notions for E-Voting Protocols », in: IEEE
Symposium on Security and Privacy, IEEE Computer Society, 2016, pp. 779—
798.

David Chaum, Peter Y. A. Ryan, and Steve A. Schneider, « A Practical
Voter-Verifiable Election Scheme », in: ESORICS, vol. 3679, Lecture Notes
in Computer Science, Springer, 2005, pp. 118-139.

Remi Clarisse and Olivier Sanders, « Short Group Signature in the Standard
Model », in: IACR Cryptol. ePrint Arch. 2018 (2018), p. 1115.

Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener, « Authen-
tication and Authenticated Key Exchanges », in: Des. Codes Cryptogr. 2.2
(1992), pp. 107-125.

Niels Ferguson, « Single Term Off-Line Coins », in: FUROCRYPT, vol. 765,
Lecture Notes in Computer Science, Springer, 1993, pp. 318-328.

Eiichiro Fujisaki and Tatsuaki Okamoto, « How to Enhance the Security of
Public-Key Encryption at Minimum Cost », in: Public Key Cryptography,
vol. 1560, Lecture Notes in Computer Science, Springer, 1999, pp. 53-68.

137

[FO092]

[FS36]

[Gen09]

[GGH13]

[GGHY7]

[GKV10]

[GM18]

[Gol+10]

[GPVOS]

[Gro07]

[GiingY]

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta, « A Practical Secret
Voting Scheme for Large Scale Elections », in: AUSCRYPT, vol. 718, Lecture
Notes in Computer Science, Springer, 1992, pp. 244-251.

Amos Fiat and Adi Shamir, « How to Prove Yourself: Practical Solutions
to Identification and Signature Problems », in: CRYPTO, vol. 263, Lecture
Notes in Computer Science, Springer, 1986, pp. 186-194.

Craig Gentry, « Fully homomorphic encryption using ideal lattices », in:
STOC, ACM, 2009, pp. 169-178.

Sanjam Garg, Craig Gentry, and Shai Halevi, « Candidate Multilinear Maps
from Ideal Lattices », in: FUROCRYPT, vol. 7881, Lecture Notes in Com-
puter Science, Springer, 2013, pp. 1-17.

Oded Goldreich, Shafi Goldwasser, and Shai Halevi, « Public-Key Cryptosys-
tems from Lattice Reduction Problems », in: CRYPTO, vol. 1294, Lecture
Notes in Computer Science, Springer, 1997, pp. 112-131.

S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan, « A Group Sig-
nature Scheme from Lattice Assumptions », in: ASTACRYPT, vol. 6477, Lec-
ture Notes in Computer Science, Springer, 2010, pp. 395-412.

Nicholas Genise and Daniele Micciancio, « Faster Gaussian Sampling for
Trapdoor Lattices with Arbitrary Modulus », in: EUROCRYPT (1), vol. 10820,
Lecture Notes in Computer Science, Springer, 2018, pp. 174-203.

Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan, « Robustness of the Learning with Errors Assumption », in: ICS,
Tsinghua University Press, 2010, pp. 230-240.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan, « Trapdoors for
hard lattices and new cryptographic constructions », in: STOC, ACM, 2008,
pp. 197-206.

Jens Groth, « Fully Anonymous Group Signatures Without Random Or-
acles », in: ASIACRYPT, vol. 4833, Lecture Notes in Computer Science,
Springer, 2007, pp. 164-180.

Christoph G. Ginther, « An Identity-Based Key-Exchange Protocol », in:
EUROCRYPT, vol. 434, Lecture Notes in Computer Science, Springer, 1989,
pp- 29-37.

138

[Has+99]

[Hau+-20]

[HHK17]

[HKL19]

[IRO1]

[JLO97]

[KRO5]

[KW20]

[KY19]

[Lag+13]

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby, « A
Pseudorandom Generator from any One-way Function », in: SIAM J. Com-
put. 28.4 (1999), pp. 1364-1396.

Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen, « Lattice-
Based Blind Signatures, Revisited », in: TACR Cryptol. ePrint Arch. 2020
(2020), p. 769.

Dennis Hofheinz, Kathrin Hévelmanns, and Eike Kiltz, « A Modular Analysis
of the Fujisaki-Okamoto Transformation », in: TCC' (1), vol. 10677, Lecture
Notes in Computer Science, Springer, 2017, pp. 341-371.

Eduard Hauck, Eike Kiltz, and Julian Loss, « A Modular Treatment of Blind
Signatures from Identification Schemes », in: EUROCRYPT (3), vol. 11478,
Lecture Notes in Computer Science, Springer, 2019, pp. 345-375.

Gene Itkis and Leonid Reyzin, « Forward-Secure Signatures with Optimal
Signing and Verifying », in: CRYPTO, vol. 2139, Lecture Notes in Computer
Science, Springer, 2001, pp. 332-354.

Ari Juels, Michael Luby, and Rafail Ostrovsky, « Security of Blind Digital
Signatures (Extended Abstract) », in: CRYPTO, vol. 1294, Lecture Notes in
Computer Science, Springer, 1997, pp. 150-164.

Steve Kremer and Mark Ryan, « Analysis of an Electronic Voting Protocol in
the Applied Pi Calculus », in: ESOP, vol. 3444, Lecture Notes in Computer
Science, Springer, 2005, pp. 186-200.

Sam Kim and David J. Wu, « Multi-theorem Preprocessing NIZKs from Lat-
tices », in: Journal of Cryptology 33.3 (2020), pp. 619-702.

Shuichi Katsumata and Shota Yamada, « Group Signatures Without NIZK:
From Lattices in the Standard Model », in: EUROCRYPT (8), vol. 11478,
Lecture Notes in Computer Science, Springer, 2019, pp. 312-344.

Fabien Laguillaumie, Adeline Langlois, Benoit Libert, and Damien Stehlé,
« Lattice-Based Group Signatures with Logarithmic Signature Size », in: ASI-
ACRYPT (2), vol. 8270, Lecture Notes in Computer Science, Springer, 2013,
pp. 41-61.

139

[Lan+14] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang, « Lattice-
Based Group Signature Scheme with Verifier-Local Revocation », in: Public
Key Cryptography, vol. 8383, Lecture Notes in Computer Science, Springer,
2014, pp. 345-361.

[Lib+16a] Benoit Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong
Wang, « Signature Schemes with Efficient Protocols and Dynamic Group
Signatures from Lattice Assumptions », in: ASIACRYPT (2), vol. 10032,
Lecture Notes in Computer Science, 2016, pp. 373-403.

[Lib+16b] Benoit Libert, San Ling, Khoa Nguyen, and Huaxiong Wang, « Zero-Knowledge
Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signa-

tures and Group Signatures Without Trapdoors », in: EUROCRYPT (2),
vol. 9666, Lecture Notes in Computer Science, Springer, 2016, pp. 1-31.

[Lin+13] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang, « Improved
Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applica-
tions », in: Public Key Cryptography, vol. 7778, Lecture Notes in Computer
Science, Springer, 2013, pp. 107-124.

[Lin+14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld, « Hardness
of k-LWE and Applications in Traitor Tracing », in: CRYPTO (1), vol. 8616,
Lecture Notes in Computer Science, Springer, 2014, pp. 315-334.

[Lin+17] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu, « Lattice-Based
Group Signatures: Achieving Full Dynamicity with Ease », in: ACNS, vol. 10355,
Lecture Notes in Computer Science, Springer, 2017, pp. 293-312.

[Lin+19] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu, « Forward-Secure
Group Signatures from Lattices », in: PQCrypto, vol. 11505, Lecture Notes
in Computer Science, Springer, 2019, pp. 44-64.

[LMO6] Vadim Lyubashevsky and Daniele Micciancio, « Generalized Compact Knap-
sacks Are Collision Resistant », in: ICALP (2), vol. 4052, Lecture Notes in
Computer Science, Springer, 2006, pp. 144-155.

[LMN16] Benoit Libert, Fabrice Mouhartem, and Khoa Nguyen, « A Lattice-Based
Group Signature Scheme with Message-Dependent Opening », in: ACNS,
vol. 9696, Lecture Notes in Computer Science, Springer, 2016, pp. 137-155.

140

[LNW15]

[LPR10]

[LPR13]

[LSS14]

[LV09)

[LY10]

[Lyu08]

[Lyu09]

[Lyul2]

[Moh10)]

IMP12]

San Ling, Khoa Nguyen, and Huaxiong Wang, « Group Signatures from Lat-
tices: Simpler, Tighter, Shorter, Ring-Based », in: Public Key Cryptography,
vol. 9020, Lecture Notes in Computer Science, Springer, 2015, pp. 427-449.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev, « On Ideal Lattices
and Learning with Errors over Rings », in: FUROCRYPT, vol. 6110, Lecture
Notes in Computer Science, Springer, 2010, pp. 1-23.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev, « A Toolkit for Ring-
LWE Cryptography », in: EUROCRYPT, vol. 7881, Lecture Notes in Com-
puter Science, Springer, 2013, pp. 35-54.

Adeline Langlois, Damien Stehlé, and Ron Steinfeld, « GGHLite: More Ef-
ficient Multilinear Maps from Ideal Lattices », in: EUROCRYPT, vol. 8441,
Lecture Notes in Computer Science, Springer, 2014, pp. 239-256.

Benoit Libert and Damien Vergnaud, « Group Signatures with Verifier-Local
Revocation and Backward Unlinkability in the Standard Model », in: CANS,
vol. 5888, Lecture Notes in Computer Science, Springer, 2009, pp. 498-517.

Benoit Libert and Moti Yung, « Dynamic fully forward-secure group signa-
tures », in: AsiaCCS, ACM, 2010, pp. 70-81.

Vadim Lyubashevsky, « Lattice-Based Identification Schemes Secure Under
Active Attacks », in: Public Key Cryptography, vol. 4939, Lecture Notes in
Computer Science, Springer, 2008, pp. 162-179.

Vadim Lyubashevsky, « Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures », in: ASITACRYPT, vol. 5912, Lecture Notes in
Computer Science, Springer, 2009, pp. 598-616.

Vadim Lyubashevsky, « Lattice Signatures without Trapdoors », in: EU-
ROCRYPT, vol. 7237, Lecture Notes in Computer Science, Springer, 2012,
pp. 738-755.

Payman Mohassel, « One-Time Signatures and Chameleon Hash Functions »,
in: Selected Areas in Cryptography, vol. 6544, Lecture Notes in Computer
Science, Springer, 2010, pp. 302-319.

Daniele Micciancio and Chris Peikert, « Trapdoors for Lattices: Simpler,
Tighter, Faster, Smaller », in: EFUROCRYPT, vol. 7237, Lecture Notes in
Computer Science, Springer, 2012, pp. 700-718.

141

[MRO7]

[MV03]

INFO5]

[NHFO09]

[NZZ15]

[Oht+09]

[Oka92]

[Pap+19]

[Pet97]

[Pin+417]

Daniele Micciancio and Oded Regev, « Worst-Case to Average-Case Reduc-
tions Based on Gaussian Measures », in: SIAM J. Comput. 37.1 (2007),
pp. 267-302.

Daniele Micciancio and Salil P. Vadhan, « Statistical Zero-Knowledge Proofs
with Efficient Provers: Lattice Problems and More », in: CRYPTO, vol. 2729,
Lecture Notes in Computer Science, Springer, 2003, pp. 282-298.

Toru Nakanishi and Nobuo Funabiki, « Verifier-Local Revocation Group Sig-
nature Schemes with Backward Unlinkability from Bilinear Maps », in: ASI-
ACRYPT, vol. 3788, Lecture Notes in Computer Science, Springer, 2005,
pp. 533-548.

Toru Nakanishi, Yuta Hira, and Nobuo Funabiki, « Forward-Secure Group
Signatures from Pairings », in: Pairing, vol. 5671, Lecture Notes in Computer
Science, Springer, 2009, pp. 171-186.

Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang, « Simpler Efficient
Group Signatures from Lattices », in: Public Key Cryptography, vol. 9020,
Lecture Notes in Computer Science, Springer, 2015, pp. 401-426.

Go Ohtake, Arisa Fujii, Goichiro Hanaoka, and Kazuto Ogawa, « On the
Theoretical Gap between Group Signatures with and without Unlinkability »,
in: AFRICACRYPT, vol. 5589, Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2009, pp. 149-166.

Tatsuaki Okamoto, « Provably Secure and Practical Identification Schemes
and Corresponding Signature Schemes », in: CRYPTO, vol. 740, Lecture
Notes in Computer Science, Springer, 1992, pp. 31-53.

Dimitrios Papachristoudis, Dimitrios Hristu Varsakelis, Foteini Baldimtsi,
and George Stephanides, « Leakage-resilient lattice-based partially blind sig-
natures », in: IET Information Security 13.6 (2019), pp. 670-684.

Holger Petersen, « How to Convert any Digital Signature Scheme into a Group
Signature Scheme », in: Security Protocols Workshop, vol. 1361, Lecture Notes
in Computer Science, Springer, 1997, pp. 177-190.

Rafaél del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler,
« Practical Quantum-Safe Voting from Lattices », in: ACM Conference on
Computer and Communications Security, ACM, 2017, pp. 1565-1581.

142

[PLS18] Rafaél del Pino, Vadim Lyubashevsky, and Gregor Seiler, « Lattice-Based
Group Signatures and Zero-Knowledge Proofs of Automorphism Stability »,
in: ACM Conference on Computer and Communications Security, ACM, 2018,
pp. 574-591.

[PRO6] Chris Peikert and Alon Rosen, « Efficient Collision-Resistant Hashing from
Worst-Case Assumptions on Cyclic Lattices », in: TCC, vol. 3876, Lecture
Notes in Computer Science, Springer, 2006, pp. 145-166.

[PS00] David Pointcheval and Jacques Stern, « Security Arguments for Digital Sig-
natures and Blind Signatures », in: J. Cryptology 13.3 (2000), pp. 361-396.

[PS19] Chris Peikert and Sina Shiehian, « Noninteractive Zero Knowledge for NP
from (Plain) Learning with Errors », in: CRYPTO (1), vol. 11692, Lecture
Notes in Computer Science, Springer, 2019, pp. 89-114.

[PS964a] David Pointcheval and Jacques Stern, « Provably Secure Blind Signature
Schemes », in: ASIACRYPT, vol. 1163, Lecture Notes in Computer Science,
Springer, 1996, pp. 252-265.

~

[PS96b] David Pointcheval and Jacques Stern, « Security Proofs for Signature Schemes »
in:. FUROCRYPT, vol. 1070, Lecture Notes in Computer Science, Springer,

1996, pp. 387-398.
[PSM17] Albrecht Petzoldt, Alan Szepieniec, and Mohamed Saied Emam Mohamed,

« A Practical Multivariate Blind Signature Scheme », in: Financial Cryp-
tography, vol. 10322, Lecture Notes in Computer Science, Springer, 2017,
pp. 437-454.

[Reg05] Oded Regev, « On lattices, learning with errors, random linear codes, and
cryptography », in: STOC, ACM, 2005, pp. 84-93.

[RSATS] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, « A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems », in: Commun.
ACM 21.2 (1978), pp. 120-126.

[Riic10] Markus Rickert, « Lattice-Based Blind Signatures », in: ASTACRYPT, vol. 6477,
Lecture Notes in Computer Science, Springer, 2010, pp. 413-430.

[San+18] San, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu, « Constant-Size Group
Signatures from Lattices », in: Public Key Cryptography (2), vol. 10770, Lec-
ture Notes in Computer Science, Springer, 2018, pp. 58-88.

143

[Sch&9]

[Sha79]

[Sho97]

[Son01]

[Ste+09]

[Tsal7]

[TZW16]

[Yue+12]

[Zha+18)]

[Zha+19]

Claus-Peter Schnorr, « Efficient Identification and Signatures for Smart Cards »,
in: CRYPTO, vol. 435, Lecture Notes in Computer Science, Springer, 1989,
pp. 239-252.

Adi Shamir, « How to Share a Secret », in: Commun. ACM 22.11 (1979),
pp. 612-613.

Peter W. Shor, « Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer », in: SIAM J. Comput. 26.5
(1997), pp. 1484-1509.

Dawn Xiaodong Song, « Practical forward secure group signature schemes »,
in: ACM Conference on Computer and Communications Security, ACM, 2001,
pp- 225-234.

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa, « Efficient
Public Key Encryption Based on Ideal Lattices », in: ASTACRYPT, vol. 5912,

Lecture Notes in Computer Science, Springer, 2009, pp. 617-635.

Rotem Tsabary, « An Equivalence Between Attribute-Based Signatures and
Homomorphic Signatures, and New Constructions for Both », in: TCC (2),
vol. 10678, Lecture Notes in Computer Science, Springer, 2017, pp. 489-518.

Haibo Tian, Fangguo Zhang, and Baodian Wei, « A lattice-based partially
blind signature », in: Security and Communication Networks 9.12 (2016),
pp. 1820-1828.

Tsz Hon Yuen, Joseph K. Liu, Xinyi Huang, Man Ho Au, Willy Susilo, and
Jianying Zhou, « Forward Secure Attribute-Based Signatures », in: ICICS,
vol. 7618, Lecture Notes in Computer Science, Springer, 2012, pp. 167-177.

Pingyuan Zhang, Han Jiang, Zhihua Zheng, Peichu Hu, and Qiuliang Xu, « A
New Post-Quantum Blind Signature From Lattice Assumptions », in: I[EEFE
Access 6 (2018), pp. 27251-27258.

Yanhua Zhang, Ximeng Liu, Yupu Hu, Qikun Zhang, and Huiwen Jia, « Lattice-
Based Group Signatures with Verifier-Local Revocation: Achieving Shorter
Key-Sizes and Explicit Traceability with Ease », in: CANS, vol. 11829, Lec-
ture Notes in Computer Science, Springer, 2019, pp. 120-140.

144

UNIVERSITE DE%

RENNES 1

Cryptographie post-quantique pour la protection de la vie privée

Mot clés : Cryptographie, Signatures, Réseaux euclidiens, Vote électronique

Résumé : Ces derniéres années la crypto-
graphie a été chamboulée par larrivée des
ordinateurs quantiques. En effet ceux-ci pos-
seédent un trés fort avantage pour casser
les schémas cryptographique utilisés actuel-
lement dans la quasi-totalité des communica-
tions séurisées.

Nous proposons dans cette thése plusieurs
constructions cryptographiques basées sur
des outils mathématiques résistants a ces or-
dinateurs quantique, que sont les réseaux eu-
clidiens.

Tout d’abord nous construisons une signature
de groupe, permettant a chaque membre com-
posant un groupe donné de signer au nom
du groupe tout en conservant son anynony-

Lattice-based cryptography for privacy

Keywords: Cryptography, Signatures, Lattices,

Abstract: The past few years have seen the
rising of the quantum computers, that are a
serious threat to nearly all the actual crypto-
graphic schemes used in practice.

In this thesis we propose some new construc-
tions to prevent this obsolescence by building
our schemes on the mathematical tool of lat-
tices that is assumed post-quantum resistant.
We firstly develop a group signature scheme,
allowing each member composing the group to
anonymously sign on the behalf of the group.
We add a supplementary property, which is the
froward secrecy. This property cut the time in

mat. Nous rajoutons une propriété supplémen-
taire qui est la forward secrecy qui sépare le
temps en périodes durant lesquelles les clés
secretes des utilisateurs sont mises a jour.
Nous proposons également un schéma de si-
gnature aveugle qui permet a un utilisateur de
générer une signature sur un message de son
choix de maniére interactive avec un signeur
qui posséde la clé de signature. Nous amé-
liorons I'état-de-I'art en proposant un schéma
sans abandon et avec une sécurité plus effi-
cace.

Enfin, comme cas d'usage de la signature
aveugle nous construisons un schéma de vote
électronique a partir de cette primitive.

Evote

periods, such that each secret key is updated
when entering a new period.

We also propose a blind signature scheme,
which is an interactive protocol between an
user, who wants to sign a message, with a
signer who possesses the signing secret key.
We improve the state-of-the art by proposing
a constructions without any restart and with a
more efficient security.

Finally as a use case of the blind signature,
we develop an evoting protocol that take as a
basis the construction described above.

	Introduction
	Protection de la vie privée
	Cryptographie classique et post-quantique
	Réseaux euclidiens
	Contributions
	Signatures de groupes
	Signature aveugle
	Vote électronique

	Introduction in english
	Cryptography for privacy
	Classical and post-quantum Cryptography
	Lattices
	Contributions
	Group Signatures
	Blind signature
	E-voting protocol

	Preliminaries
	Mathematical definitions
	Rings and notations
	Probabilities definitions

	Lattices
	Definition of a Lattice
	Problems on lattices
	Mathematical tools for lattices

	Cryptographic tools
	Encryption and signature protocols
	Identifications scheme and Fiat-Shamir signatures
	GPV-style signatures and trapdoors constructions
	Hash function and Forking Lemma
	Secret Key Encryption (SKE) from LWE.
	One-Time Signature (OTS) scheme.

	Forward Secure Group Signature in the standard Model
	Definitions and constructions
	Generic definition and basic properties
	Classical constructions and history of lattice-based group signatures
	Some useful tools for standard model construction
	Group signature in the standard model, attribute-based signature and forward secure framework

	Our scheme
	A Forward Secure Attribute-based Signature on lattices
	Our group signature scheme construction
	Analysis and security

	Lattice-based blind signature without restarts
	Blind signature definition
	Generic definition and additional properties
	Blind signature and lattices
	Technical details of the Rückert scheme

	Our blind signature scheme
	Our construction
	Correctness and blindness

	One-more unforgeability proof
	Definition and first proof
	Problems in early constructions and solutions
	Our proof

	Partially blind variant
	Our Construction
	Security

	Practical Post-Quantum Resistant E-Voting Scheme
	Definition and constructions
	Generic definition of an e-voting scheme
	Security properties of an e-voting scheme
	Post-quantum constructions
	Framework of Fujioka et al. and adaptations

	Our construction
	Cryptographic primitives
	Our scheme
	Security of our scheme

