Impact du magnétisme et de la rotation différentielle sur les marées dans les étoiles de faible masse et les planètes géantes gazeuses - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Impact of magnetism and differential rotation on tides in low-mass stars and giant gaseous planets

Impact du magnétisme et de la rotation différentielle sur les marées dans les étoiles de faible masse et les planètes géantes gazeuses

Aurélie Astoul
  • Fonction : Auteur

Résumé

More than 4000 exoplanets have been discovered in the last 25 years, most of them around low-massstars. In close planetary systems, star-planet tidal interactions are known to govern the late evolution of the systems’ orbital architecture and the rotation of their host star, as is also the case in the tight planet-satellite systems of our solar system such as the Jovian and Saturnian systems. The characteristic times of variation of orbital parameters and bodies’ rotation are dictated by the magnitude of tidal dissipation, which varies considerably with the mass, rotation and metallicity of stars and with the structure and internal dynamics of stars and planets.In order to model and realistically characterise the tidal dissipation in the convective envelopes of these astrophysical objects, two key physical mechanisms are studied in this thesis : differential rotation and magnetism, through their influence on tidal flows in convective regions. These two aspects are explored using semi-analytical and numerical approaches, while applying our results inside stars during their evolution, and gas giant planets such as Jupiter and Saturn.First of all, we have been interested in the impact of magnetism on the excitation and dissipation of tidal magneto-inertial waves along the evolution of low-mass stars of spectral type M to F, by examining the limits of their convective envelope, i.e. the interface between the radiative and convective zones and the regions close to their surface. To do so, we have used in synergy tidal wave physics, the scaling laws from dynamo theory that allow us to estimate the amplitude of a large-scale magnetic field, and the grids of numerical models of stellar evolution taking into account rotation. We thus show that the contribution of magnetism on tidal forcing, i.e. on wave excitation, remains negligible compared to the hydrodynamic contribution classically used, whatever the position in the convective envelope, the mass, or the age of the studied low mass star. On the other hand, the Ohmic dissipation mechanism of magneto-inertial waves is a very efficient mechanism, even preponderant in front of the viscous dissipation, for M to F type stars, from the pre-main sequence to the end of the main sequence, in all their convective envelope. These results also apply in the case of Jupiter and its Galilean satellites.In parallel to this work, we have developed a local shear-box model, inclined with respect to the axis ofrotation of the studied body, in order to understand the complex interaction between tidal inertial waves and zonal flows in the vicinity of critical layers, and in particular at the corotation resonance, which are regions where the tidal wave frequency vanishes or is commensurable with the local rotation frequency of the considered body. This model has allowed us to study the impact of different realistic rotation profiles, such as those observed in solar-type stars, or in giant planets such as Jupiter and Saturn. Thanks to this work, we have identified different transmission regimes of the wave energy flux, for which the wave can, in the vicinity of a critical layer, either deposit energy and be damped, or extract energy from the mean flow and thus be amplified. These different transmission regimes exist for each of the examined conical and cylindrical rotational profiles, and depend on the critical level encountered, the wave properties and the mean flow profile.
Plus de 4000 exoplanètes ont été découvertes au cours de ces 25 dernières années, pour la plupart en orbite autour d’étoiles de faible masse. Dans les systèmes planétaires à très courte période orbitale, les interactions de marée étoile-planète sont connues pour gouverner l’évolution tardive de l’architecture orbitale des systèmes et de la rotation de leur étoile hôte, comme c’est aussi le cas dans les systèmes serrés planète-satellite(s) de notre système solaire tels que les systèmes jovien et saturnien. Les temps caractéristiques de variation des paramètres orbitaux et de rotation des corps, sont dictés par l’amplitude de la dissipation des marées qui varie considérablement avec la masse, la rotation et la métallicité des étoiles ainsi qu’avec la structure et la dynamique internes des étoiles et des planètes. Pour modéliser et caractériser de manière réaliste la dissipation de marée dans les enveloppes convectives de ces objets astrophysiques, deux mécanismes physiques clés sont étudiés dans cette thèse: la rotation différentielle et le magnétisme, au travers de leur influence sur les flots de marées en milieu convectif. Ces deux aspects sont explorés à l’aide d’approches semi-analytiques et numériques, tout en appliquant nos résultats à l’intérieur des étoiles au cours de leur évolution, et des planètes géantes gazeuses telles que Jupiter et Saturne. Tout d’abord, nous nous sommes intéressés à l’impact du magnétisme sur l’excitation et la dissipation des ondes magnéto-inertielles de marée, le long de l’évolution des étoiles de faible masse, de type spectral M à F, en examinant les limites de leur enveloppe convective, à savoir l’interface entre la zone radiative et convective et les régions proches de leur surface. Pour ce faire, nous avons utilisé en synergie la physique des ondes de marée, les lois d’échelle issues de la théorie dynamo qui nous permettent d’estimer l’amplitude d’un champ magnétique à grande échelle, et les grilles de modèles numériques d’évolution stellaire prenant en compte la rotation. On montre ainsi que la contribution du magnétisme sur le forçage de marée, c’est-à-dire sur l’excitation des ondes, reste négligeable devant la contribution hydrodynamique classiquement utilisée, et ce quelle que soit la position dans l’enveloppe convective, la masse, ou l’âge de l’étoile de faible masse étudiée. A contrario, le mécanisme de dissipation Ohmique des ondes magnéto-inertielles est un mécanisme très efficace, voire prépondérant devant la dissipation visqueuse, pour des étoiles de type M à F, de la pré-séquence principale à la fin de la séquence principale, dans toute leur enveloppe convective. Ces résultats s’appliquent aussi dans le cas de Jupiter et de ses satellites galiléens. Parallèlement à ce travail, nous avons développé un modèle local de boîte cisaillée, incliné par rapport à l’axe de rotation du corps étudié, afin de comprendre l’interaction complexe entre les ondes inertielles de marée et les flots zonaux au voisinage des couches critiques, et en particulier à la résonance de corotation, qui sont des régions où la fréquence des ondes de marée est nulle ou commensurable avec la fréquence de rotation locale du corps considéré. Ce modèle nous a permis d’étudier l’impact de différents profils de rotation réalistes, comme ceux que l’on peut observer dans les étoiles de type solaire, ou dans les planètes géantes telles que Jupiter et Saturne. Grâce à ce travail, nous avons identifié différents régimes de transmission du flux d’énergie transporté par les ondes, pour lesquels l’onde peut, au voisinage d’une couche critique, soit déposer de l’énergie et être amortie, soit extraire de l’énergie du flot moyen et ainsi être amplifiée. Ces différents régimes de transmission existent pour chacun des profils de rotation examinés, coniques et cylindriques, et dépendent du niveau critique rencontré, des propriétés des ondes et du profil de l’écoulement moyen
Fichier principal
Vignette du fichier
Astoul_Aurelie_va2.pdf (26.35 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03223074 , version 1 (10-05-2021)

Identifiants

  • HAL Id : tel-03223074 , version 1

Citer

Aurélie Astoul. Impact du magnétisme et de la rotation différentielle sur les marées dans les étoiles de faible masse et les planètes géantes gazeuses. Astrophysique [astro-ph]. Université Paris Cité, 2020. Français. ⟨NNT : 2020UNIP7073⟩. ⟨tel-03223074⟩

Collections

STAR
122 Consultations
33 Téléchargements

Partager

Gmail Facebook X LinkedIn More