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Chapter 1

Introduction

1.1 Climate change and renewable energy development

In most industrialized countries, there is a rising concern about climate change and strong supports to solutions
allowing to reduce greenhouse gas emissions. Substantial efforts are planned to limit the temperature increase
well below 2� C by 2100, as targeted by the 2015 Paris agreement. Conventional energy production units such as
coal, oil, and gas power plants are considered to be one the main sources of greenhouse gas emissions. Some
studies show that they correspond to as much as 25% of the worldwide CO2 emissions, see [Cha+14]. To reduce
the carbon footprint of electricity production, renewable energy sources, such as solar panels and wind turbines,
are deemed viable solution. Recently, the European Commission has set an objective of a share 32%for renewable
energy sources in the energy mix by 2030 [Com19]. Research on these energy sources has allowed to drastically
reduce their production costs. For instance, the price of Photovoltaic cells dropped by 99.6 % from 1976 to 2018,
from $79.3/W to $0.3/W, see [WB19]. However, the aforementioned renewable energy sources suffer from major
drawbacks which require particular care for their integration in the energy mix. They are non-dispatchable (i.e., non-
controllable) intermittent sources [Suc+20] and the amount of energy they produce is random, due to the inaccuracy
of weather forecasts. These issues raise challenging problems in the �eld of energy management. To understand
the impact of the rise of renewable energy on energy management, we �rst need to brie�y outline the historical
context of this �eld.

1.2 Historical context in energy management

1.2.1 Historical features of electricity production, consumption and transmission

The majority of electricity production is done centrally by dispatchable power plants, which include coal, fuel, gas or
nuclear power plants. The electricity produced is sent to the end users by electricity wires through the transmission
then the distribution networks. The transmission network is a high voltage network (225 to 400 kV) with meshed
architecture (i.e., with cycles), with a single phase. It is operated by Réseau de Transport d'Electricité (RTE) in
France, which is a regulated monopoly. The distribution network is a low (from 220 to 430 V) to medium voltage
(1 kV to 52 kV) network. It is traditionally operated radially (i.e., without cycles) by Enedis in France, which is a
regulated monopoly as well. The global historical architecture of power networks allowing to deliver power from
power plants to consumers is represented in Figure 1.11.

1Icons made by Freepik and Smashicons from www.�aticon.com
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Figure 1.1: Historical structure of electricity networks

1.2.2 Supply-demand balance

Generalities

A particularity of electricity is that, unlike many other goods, it can only be stored marginally, due to the high storage
costs. In France, the Pumped Hydroelectric Energy Storage systems are the main tool to store energy. Due to their
installation costs and requirements, they can only absorb 3% of the yearly consumption and allow to move around
1:5% of the nationwide yearly consumption.

For this reason, supply-demand balance for electrical energy has to be ensured at all time. Many actors are
responsible for the balance of the network: energy suppliers, traders, aggregators, producers. All these actors
need to ensure that, on their perimeters, production and consumption are equal. For instance, EDF, as electricity
producer and supplier is responsible for the balance between its production (which includes electricity generation
by its power plants, energy bought on markets...) and the consumption of its customers. EDF plans its production
to match the forecast consumption of its customers (up to margins). In other words, power balance is traditionally
done by adjusting the production to the forecast consumption.

Demand forecast

Demand on a speci�c day depend on several factors, like the type of day (week day, public holiday, strike day),
speci�c events (sport competitions) and meteorological conditions, like the temperature. Temperature is one of the
biggest explanatory factor for consumption differences between days [PMV02], due to heating and cooling. However,
buildings have thermal inertia, and users are usually indifferent with respect to small temperature variations. For
this reason, it is mostly an averaged over time version of the temperature which is important to forecast accurately
power demand [Jov+15]. Therefore, instantaneous weather conditions play a smaller role than their average over
time, which can be more accurately forecast than real-time conditions. This explains why demand can be forecast
accurately at short term, in a context of low renewable energy penetration. Although weather forecasts can exhibit

12
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errors, the weather trends (average over a time window for instance) can be predicted rather accurately at short
term.

Production management

To lower production costs and penalties due to imbalance between their production and the consumption of their
customers, producers need to adjust their production to the demand forecasts. This is done from the long term to
the short term before the period considered:

ˆ From 20 to 5 years ahead, decisions to build new power plants, to establish strategic partnerships, or to extend
existing networks are taken.

ˆ From 3 years to 2 weeks ahead, the maintenance planning of nuclear power plants, hydro power plants are
designed. Resources are optimized, like Uranium reserves or water in hydro-reservoirs.

ˆ From 2 weeks to 1 day ahead, more accurate forecasts of the demand are available, and adjustments in
plannings of �exible production units are made.

ˆ One day ahead, the forecast of aggregated demand and the production plannings are transmitted to Balancing
Authority (RTE in France).

ˆ During the day, some last-minute adjustments are made, by activating bilateral contracts with third parties or
modifying the operating point of some �exible power plants.

ˆ In real time, power-balance is ensured by RTE at the scale of the transmission network by activating some
reserve mechanisms.

Energy is bought throughout the process (long term to intra-day). The degree of uncertainty taken into account
as well as the physical accuracy of models required in energy management problems, depending on the planning
horizon, is represented in Figure 1.22.

Real-time adjustment mechanisms

In real-time, unforeseen events may happen, and corrections need to be made to ensure power balance. In France,
these real-time adjustments are ensured by RTE (Réseau de Transport d'Electricité), the regulated monopoly in
charge of regulating the Transmission Network. The real-time adjustments are based on 3 control layers called
Frequency reserves.

1. The Primary reserve (which can be activated from 1 second after a speci�c event until 30 seconds after)
aims at stopping deviation of the frequency of the network from its nominal value (50 Hz in Europe). It is
automatically deployed.

2. The Secondary reserve (activated 30 seconds to 30 minutes after an event) aims at restoring the frequency
at the scale of the network. It is automatic, just like the Primary reserve.

3. The tertiary reserve (activated 30 minutes after an event or later) aims at adjusting the production unit set-
points to restore margins for reserves. It is activated manually.

Frequency reserves are activated by RTE and currently, they are supplied mainly by generators, and to a lesser
extent by load-shedding. When participating to the capacity mechanisms, generators allocate part of their capacities
to primary and secondary reserves.

2Icons made by Freepik and Smashicons from www.�aticon.com
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Figure 1.2: Historical structure of decision-making models for energy management

1.2.3 Electricity networks

Network values (voltage magnitude, intensity magnitude) have to be maintained in certain operational ranges. As
power �ows traditionally from large centralized power plants towards the loads (consumers), the power �ow is
traditionally unidirectional for distribution networks, which are operated radially. Therefore, voltage magnitude at the
buses of the network is traditionally monotone decreasing from the root (substation) to the leaves of the tree formed
by the distribution network. Hence, to provide corrective voltage control, it is traditionally enough to measure and
modify the voltage at the root, using a transformer. This is similar to traf�c regulating: for one-way streets, to remove
congestion in a line, it suf�ces to modulate vehicles arrivals at the root. This metaphor is represented in Figure 1.3 3.

1.3 Change of paradigm due to the rising share of renewable energy sources

1.3.1 Supply-demand balance

Generalities

The intermittency of renewable energy sources like solar panels and wind turbines can create rapid power gener-
ation variations on the network [Suc+20]. It makes supply-demand balance more challenging as it requires more
frequency reserves, with increased ramping capabilities, de�ned as the ability to follow steep variations in global
supply-demand balance. On the other hand, the uncertainty of production can create errors in the data of problems
allowing to design operation plannings, if we use traditional deterministic models.

3Icons made by Freepik and Smashicons from www.�aticon.com
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Figure 1.3: Historical network regulation - Comparison with traf�c routing

Demand and production forecast

Due to their very nature, solar and wind power production depend on instantaneous meteorological conditions,
which exhibit temporal and geographical correlations [ADS99; ZDK16]. Therefore, the higher the share of renew-
able energy sources, the more the production depends on real-time weather conditions. With this respect, stochastic
models of solar [Bad+18; SG16] and wind production [Pin+09; ADS99] can bring signi�cant value [MA+16] by de-
creasing electricity generation costs. They can be used as inputs of stochastic models used in energy management.

Production management

Production planning needs to take the uncertainty induced by renewable energy sources into account: stochastic
models need to be used. For instance, short-term decision problems which are traditionally formulated in a deter-
ministic framework need to be extended to the stochastic case, see Figure 1.44, like the Unit Commitment problem
[Håb19; Ack+18] for instance.

Adjustment mechanisms

In a context of high penetration of renewable energy sources, the intermittency of these sources induces high
forecast errors for the production, and therefore, more ancillary services are required. Power plants could provide
these additional reserves, but this solution would be costly, as they would not work at their full capacity. Besides,
operational constraints on power plants can prevent them to follow high ramps generated by the intermittent energy
sources. Other mechanisms, like Demand Response or combined operation of multi-energy networks (presented
later) seem like viable alternatives, provided some optimization and control tools are developed.

1.3.2 Network management

Traditionally, production was centralized, but it becomes more and more distributed: many consumers are now
equipped with solar panels, and small wind/solar plants are now directly connected to distribution networks. Dis-
tributed generation can create local physical violations in the network. On the other hand, renewable energy sources

4Icons made by Freepik and Smashicons from www.�aticon.com

15



CHAPTER 1. INTRODUCTION

Figure 1.4: Structure of decision-making models for energy management with high renewable energy penetration

often exhibit a stochastic behavior. As a consequence, the network operating point is subject to uncertainty as well,
which is problematic for network operation planning [ST14].

Besides, distributed generation creates two potential problems: reverse power �ows and non-monotony of volt-
age along lines with respect to the distance to the substation [NT15]. The �rst issue relates to the fact that, with
high renewable penetration, speci�c weather conditions may cause local production to exceed local consumption.
This can cause power to �ow from distribution networks to transmission networks, which were not designed for this
purpose. The non-monotony of voltage along the tree formed by the distribution network makes voltage regulation
more complex than before, as is illustrated in Figure 1.55. We can go on with the metaphor of traf�c regulation,
and imagine a situation where we go from a situation with one-way streets with traf�c control at a toll, to a situation
where the streets become two-way. One can easily imagine that, for two-way streets, controlling the traf�c only at
the toll may be insuf�cient.

1.4 New opportunities and challenges

1.4.1 Decentralized energy storage systems

Ancillary services could be supplied by energy storage systems located at various points of electricity networks.
Such projects already exist, such as the McHenry installation in Illinois, with total installed capacity of 20 MW,
operational since 2015. This type of solution may be expensive, as it requires installation of power systems only for
the purpose of integrating renewable sources. Other solutions could be found by leveraging already existing energy
�exibilities: demand response, which aims at leveraging the diffuse �exibility of a large number of consumers, and
combined operations of multi-energy networks.

5Icons made by Freepik and Smashicons from www.�aticon.com
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Figure 1.5: Network operation with high renewable penetration - Comparison with traf�c routing

1.4.2 Demand response

Demand response can be de�ned as the set of techniques allowing to modify the electricity consumption pattern of
end users [AES08]. It can be done using price signals, or load-shedding signals in case a (usually large) consumer
has a speci�c contract with a regulating authority. Several electricity markets have created programs to use loads
to provide ancillary services, which usually focus on large industrial sites. The aggregated �exibility brought by
the simultaneous control of small residential loads could however become more valuable [Cal11], but the small
amount of �exible consumption in residential households usually does not justify a direct participation in electricity
reserves markets. However, new actors are emerging. Among them, aggregators aim at gathering a large number
of small �exible loads offered by consumers and value the obtained aggregated �exibility on a speci�c market, to
provide ancillary services for instance [CH10; Mat+12]. Virtual energy storage systems which can be leveraged
to provide ancillary services can be obtained by controlling a �eet of electrical vehicles [TRY16], whose share is
expected to increase signi�cantly in the next few years [Gna+18]. It has also been demonstrated that controlling an
aggregation of Thermostatically Controlled Loads (TCLs), which include fridges, Air Conditioning (AC), heat pumps,
water heaters, pool pumps,... may have signi�cant value [Mat+12] to contribute to frequency reserves mechanisms.
The speci�city of these devices is that they aim at maintaining a certain temperature within an acceptable range,
and due to thermal inertia, their consumption can be modulated without jeopardizing quality of service. It is shown
in [Cam+18b] that the control of a large number of TCLs allows to replicate a large virtual battery, but at lower cost.

1.4.3 Leverage �exibility from multi-generation and combined operation of multi-energy
networks

Other energy networks, like gas networks [Koc+15] or heat/cold networks could be leveraged in order to bring ad-
ditional �exibilities to electricity networks, required in a context of uncertain renewable production. See for instance
[Ord+17] for a combined market design for electricity and gas. Optimal planning of energy networks expansion is
studied in [UV+10] for electricity and gas, [VBGS15; VB+17] for general multi-energy networks, to decide when to
expand existing networks, when to install conversion devices (power-to-gas and power-to-heat) or storage systems.
Combined operation of distributed multi-generation units, such as co-generation units, is also a promising lead
[CM09a; CM09b] to bring additional recourse to uncertain systems. Other references and approaches are further
discussed in the subsequent Section 1.5.
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1.4.4 Local controls for network operation

Distribution Network Operators are installing local control loops and power electronics to deal with network con-
straints violations. They include components able to help maintain voltage stability, such as voltage regulation
transformers (VRT), static var compensators (SVC), static synchronous compensators (STATCOM), and shunt ca-
pacitor banks [Liu+17]. Energy storage systems can be used to avoid line congestion phenomenon or backward
�ows from distribution network to transmission networks, and therefore help renewable energy sources integration
[Das+18]. The comparison of network regulation with traf�c regulation can be further developed by comparing these
local control loops to signalization or traf�c lights, see Figure 1.6 6.

Figure 1.6: Smart network operation with high renewable penetration - Comparison with traf�c routing

1.5 Challenges in energy management

Integration of renewable energy sources can be enhanced using market designs, which give incentives to micro-
grids to reduce the impact of their renewable production units by controlling storage devices. The optimization of
such micro-grids amounts to control in an optimal way one or several storage systems in an uncertain environment,
brought by the stochastic renewable production and the random market behavior. For optimal control problems of
many distributed storage systems providing ancillary services (Demand response), a curse of dimensionality phe-
nomenon may rapidly occur, when the number of state variables grows. Besides, some particular requirements are
needed for practical implementation. First, the privacy of data of individual consumers need to be guaranteed. Sec-
ond, energy storage systems controllers should be local, to maintain quality of service in case of telecommunication
disruption. Third, due to bandwidth and privacy constraints, optimization should be done with limited communication
between agents.

The intermittent energy sources and their stochastic behaviors can also create physical problems for energy
networks. Taking into account physical constraints of energy networks makes the related optimization problems
non-convex. Besides, multi-stage stochastic versions of the problems are necessary to account for stochastic
production of renewable energy sources and dynamical constraints of storage systems, as they guarantee that
decisions are not taken according to yet unobserved data. Such models are therefore dif�cult for two reasons:
they are large-scale (as they are based on a scenario tree which is required to grow exponentially fast with the
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time horizon to properly model the �ltration [Sha06; HRS06; PP14]) and non-convex. Adequate approximations
(linearizations) and/or convexi�cation methods or local search methods can be used to deal with the non-convexity
of such problems.

As combined optimal control of multi-energy networks is not further developed in this thesis (only electricity
networks will be considered), we now focus on the challenges, as well promising modeling and solution approaches
for this type of problems. A general framework for optimization of operations of multi-energy networks taking into
account the physical laws of such networks (Optimal Power Flow) has been introduced in [GA05; GA07]. An inherent
dif�culty for such problems is that they physical laws of energy networks typically yield non-convex feasible regions.
Combined with a stochastic framework, this yields dif�cult optimization problems. To solve such problems, non-linear
programming approaches can be used. For instance, Chance-Constraints Programming models for optimization of
gas networks are considered in [GHH17; Hei19], solved with descent methods. Chance-Constraints models for
combined gas and electricity networks have also been considered [Ode+18]. Another category of approaches
are convexi�cation methods, which can provide optimality certi�cates, unlike non-linear programming approaches,
and which are more precise than linearizations, taking into account non-linear effects such as pressure drops,
thermal losses in pipelines (which are impacted by the mass �ow). Convexi�cation methods �rst appeared in the
framework of electricity networks [LL11; Low14a; Low14b; MH+19], but recent works focus on such methods for
other energy networks. With this respect, polynomial optimization (exploiting sparsity structure of networks), �rst
used in the context of electricity networks [MH14; Mol+15; Jos16; Mol+16], has recently been employed to control
other energy networks in the PhD dissertation [Hoh18]. These methods allow to consider Semi-De�nite relaxations
of the problems, which can be solved using interior points methods and are suf�ciently tractable (using the sparsity
pattern of such networks) to consider stochastic variants of the problems. For instance, a two-stage stochastic
framework is considered to control a district heating network in [HWL19], solved using polynomial optimization.

1.6 Objectives and contents of the thesis

In this PhD thesis, we focus on the impact of the uncertainty of the production of renewable energy sources on
two problems in energy management. First, we focus on the optimal control of single and multiple micro-grids
in interaction to reduce the impact of uncertainty of renewable production (without taking into account network
constraints). Second, we consider the optimal planning and control of an electricity network in a stochastic context
(taking into account the non-linear Kirchhoff's circuit laws). This PhD dissertation introduces modeling, algorithmic
and theoretical contributions to tackle these two issues. Let us give more details regarding the two parts of this PhD
dissertation.

ˆ Part I introduces two control frameworks which allow to reduce the impact of the uncertainty of renewable
production on electricity networks, without taking into account the non-linear laws of physics of electricity
networks. The mathematical models proposed lie in the �eld of stochastic optimal control, with a mean-�eld
component. We also introduce two numerical methods based on the stochastic Pontryagin principle in order
to solve non linear-quadratic problems. In Chapter 3, we focus on a single micro-grid and assume that it
commits to a consumption pro�le on the network, say, for the next day, and controls an energy storage system
to track this commitment in real-time, in order to reduce the volatility of its consumption on the network. The
problem of optimal choice for the commitment pro�le (chosen before realization of randomness) and the control
policy of the energy storage system in real-time is formulated as a McKean-Vlasov (MFV) stochastic control
(also called Mean-Field Control (MFC)) problem, for which necessary and suf�cient optimality conditions are
derived, and numerical methods are designed to solve the problem. A decentralized control mechanism
of a large population of Thermostatically Controlled Loads (TCLs) is introduced in 4 where many consumers
control their individual storage systems in a cooperative way so as to provide ancillary services. An appropriate
decomposition of the optimality system as well as a mean-�eld approximation are designed in order to tackle
the curse of dimensionality issue and to obtain a decentralized control architecture ensuring privacy of the
agents and minimal information sharing. Extending this framework to non-linear quadratic setting motivates
a new theoretical and numerical method for solving stochastic control problems, which is a Newton method
adapted to this setting, presented in Chapter 5. In particular, we show that the computation of the Newton step
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reduces to solving Backward Stochastic Differential Equations, we design an appropriate line-search method
and prove global convergence of the resulting Newton method with line-search in an appropriate space of
stochastic processes. We illustrate the performance of this algorithm on a non-linear quadratic version of
the problem presented in Chapter 4. In particular, we propose a fully implementable algorithm, based on
regression techniques.

ˆ Part II focuses on the optimal planning and operations of electricity network operations in a random envi-
ronment. Chapter 6 gives an introduction to the Optimal Power Flow (OPF) problem, which models the
optimization of electricity network operations taking into account the physical laws of such systems. It lists
state-of-the-art results in the literature for this problem. In Chapter 7, we formulate a multi-stage stochastic
extension of the Alternating Current Optimal Power Flow problem. This multi-stage setting is necessary to
account for the uncertain production of renewable energy sources, temporal correlations in their production
levels and the dynamical constraints of energy storage systems. We also consider conic relaxations [Low14a;
Low14b; MH+19] of this non-convex problem (shown to be strongly NP-hard in [BV19]) which allow a good
trade-off between tractability and accuracy. We give tractable and realistic a priori conditions ensuring a van-
ishing relaxation gap for the OPF problem in the multi-stage stochastic setting. We also provide an easily
computable a posteriori bound on the relaxation gap of the multi-stage OPF problem. This yields theoretical
insight on the conditions under which convex relaxations of the non-convex AC OPF problem are reliable.
The proof of these results relies on primal reconstruction arguments inspired by [Hua+16], i.e., an algorithm
which takes a solution of a convex relaxation as input and returns a solution of the non-convex problem. Using
Shapley-Folkman-type results, we also obtain explicit bounds on the duality gap of adequate formulations of
multi-stage stochastic non-convex problems in energy management. This shows that energy storage sys-
tems not only allow to reduce costs, but, in some cases, can also enhance the numerical tractability of such
non-convex multi-stage stochastic problems.

1.7 Contributions of the chapters

We now give more details on the contributions of the individual chapters of this PhD dissertation.

1. Chapter 3 introduces a control problem for a single micro-grid, where a consumer possibly equipped with
photo-voltaic panels, a storage system and connected to the grid aims at reducing the day-ahead uncertainty
of its consumption on the network, by committing in advance to a consumption pro�le. The consumer then
controls its energy storage system in real time to minimize deviations of its consumption from its commitment
and operational costs, see Figure 1.77. We model this situation by a Mean-Field Control problem, with scalar
interactions and in general �ltrations. This allows the joint optimization of decisions taken at different times:
the commitment pro�le is chosen initially and impacts the system on the whole time horizon, whereas the
energy storage unit is controlled according to random data revealed along time. Necessary and suf�cient op-
timality conditions are derived in the form of a Mean-Field Forward-Backward Stochastic Differential Equation
(MF-FBSDE) see Theorems 3.2.3 and 3.2.10, and we study of solvability of the optimality system obtained.
A numerical method to approximately solve problems which do not have the classical Linear-Quadratic struc-
ture is proposed, based on perturbation theory, see Theorem 3.3.7. Extensive numerical illustrations of the
mechanism are provided.

2. In Chapter 4 , motivated by the huge potential of Thermostatically Controlled Loads (TCLs) to provide ancillary
services [Mat+12; Cam+18b], we propose a stochastic control problem to control cooperatively such devices
to promote power balance. We develop a method to solve this stochastic control problem with a decentralized
architecture, in order to respect privacy of individual users and to reduce both the telecommunications and the
computational burden compared to the setting of an omniscient central planner, see Figure 1.88. The optimality
conditions are expressed in the form of a high-dimensional Forward-Backward Stochastic Differential Equation
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Figure 1.7: Day-ahead commitment with real-time tracking of the commitment pro�le

(FBSDE) (Theorem 4.2.1), which is decomposed into a coordination problem, which is a low-dimensional
FBSDE modeling the optimal behaviors of the aggregate population of TCLs, and individual problems which
are one-dimensional FBSDEs modeling the optimal control of individual devices. Existence and uniqueness
results are derived for the solutions of these FBSDEs. We also show that these FBSDEs fully characterize the
(unique) Nash equilibrium of a stochastic Stackelberg differential game. In this game, a coordinator (the leader)
aims at controlling the aggregate behavior of the population, by sending appropriate signals, and agents
(the followers) respond to this signal by optimizing their storage system locally. This allows a decentralized
implementation of the optimal control from the point of view of the omniscient social planner. This is the
reverse perspective of potential Mean-Field Games [FMHL19], which aim to �nd (convex) control problems
with optimality system coinciding with the Nash system of a given Stochastic Differential game. A mean-
�eld-type approximation of the coordination problem is proposed in which parameters do not depend on the
real-time aggregated behaviors of the agents, so that the approximate problem can be solved observing only
the common noise, see Theorem 4.4.5. This allows to circumvent telecommunication constraints and privacy
issues. This approximation is based on the conditional Law of Large Numbers. Convergence results and error
bounds are obtained for this approximation depending on the size of the population of TCLs, see Theorem
4.4.12. A numerical illustration is provided to show the interest of the control scheme and to exhibit the
convergence of the approximation. An implementation which answers practical industrial challenges to deploy
such a scheme is presented and discussed, see Algorithm 4.1.

3. In chapitre 5 , we develop a new (theoretical and numerical) method based on stochastic Pontryagin princi-
ple to solve stochastic control problems. This method is nothing else than the Newton method extended to
the framework of stochastic control in general �ltrations, where the state dynamics is given by an ODE with
stochastic coef�cients. In particular, we show that the Newton method amounts to solve successively Linear-
Quadratic approximations of the control problem, see Proposition 5.3.2, or equivalently, to perform successive
linearizations from the optimality conditions obtained by the stochastic Pontryagin principle, see Proposition
5.3.3. A full methodology is proposed to compute theoretically the Newton step, which can be obtained by
solving an af�ne-linear FBSDE with random coef�cients see Theorem 5.2.9 and De�nition 5.3.1. We then
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Figure 1.8: Decentralized control mechanism

show that solving such an FBSDE reduces to solving a Riccati Backward Stochastic Differential Equation
(BSDE) and an af�ne-linear BSDE in Theorem 5.3.7, as expected in the framework of linear FBSDEs [Yon06]
or Linear-Quadratic stochastic control problems [Bis76]. We then focus on convergence results for the Newton
method. We show by a counter-example (Example 5.3.9) that suf�cient regularity conditions ensuring con-
vergence of the Newton method (like a Lipschitz-continuous second-order derivative [Kan48; NW06]) of the
problem may not hold in our in�nite-dimensional setting. To alleviate this issue, the problem is restricted to
essentially bounded processes. We give another counter-example (Example 5.3.12) which shows that even
for strongly convex problems with high regularity, global convergence of the method may fail. Then an adapted
backtracking line-search method (different from the standard backtracking line-search presented in [NW06;
BV04]) is developed to �t our in�nite-dimensional setting and to obtain a proof of global convergence with
asymptotic quadratic convergence of the Newton method with the line-search, see Theorem 5.3.15. An im-
plementation with regression techniques to solve BSDEs arising in the computation of the Newton step is
developed and applied to the control problem of a large number of batteries providing ancillary services to the
grid.

4. Chapter 6 presents a general introduction to an important problem in energy management, the Optimal Power
Flow problem, which aims at controlling optimally an electricity network taking into account the non-linear
Kirchhoff's circuit laws in the context of oscillating regimes (Alternating Current). The most common formula-
tions of this problem as well as formulations used in the following chapter are given. Very little prior knowledge
from the reader is assumed and this chapter aims to be as pedagogical as possible while giving pointers to
recent state-of-the-art techniques, approximations, relaxations and extensions of the OPF problem available
in the literature.

5. Chapter 7 builds on the previous chapter. We formulate a multi-stage stochastic extension of the Alternating
Current Optimal Power Flow problem, accounting for the random production of renewable energy sources and
the dynamic constraints of storage system. We also give a conic relaxation of this non-convex problem. We
then focus on developing estimates on duality gaps of the multi-stage stochastic Optimal Power Flow problem
with storage, and more generally to other non-convex problems in energy management (like Unit Commit-
ment). We �rst argue that a priori conditions guaranteeing no duality gap for the Alternating Current Optimal
Power Flow (AC OPF) problem, see for instance [SL12; Gan+14; Hua+16], usually proved in a static and de-
terministic setting, can be extended to a multi-stage stochastic setting. In particular, we provide realistic and
tractable a priori conditions guaranteeing a vanishing relaxation gap in the multi-stage stochastic framework,
extending the results in [Hua+16]. We also give an easily computable a posteriori bound on the relaxation
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gap of the multistage AC OPF problem. Using a different approach, we then derive a priori bounds on the
duality gaps of multi-stage non-convex problems in energy management, where energy storage systems play
a particular role, see Proposition 7.5.9 and Corollary 7.5.10. Such results are related to the Shapley-Folkman
theorem, which gives a bound on the distance between the Minkowski sum of non-convex compact sets, and
its convex envelop.

1.8 State-of-the-art

To compare our results with existing ones, we give an overview of methods in the literature for the two parts of this
PhD dissertation.

1.8.1 Stochastic control of micro-grids (without network constraints modeling)

Optimization of a single micro-grid has been the focus of many recent works using very diverse approaches. Let
us mention that the model presented in Chapter 3 lies in this stream of research, though taking into account a
particularity: the joint optimization of a decision taken initially and impacting the system on the whole time horizon
(consumption commitment) and of the control policy of a storage system in real-time.

ˆ A popular approach for the control of energy storage systems in an uncertain setting is the Model Predictive
Control. It amounts to treat stochastic optimization problems as deterministic ones, with the random param-
eters of the problem replaced by their forecasts. A detailed physical model of a battery and of Photo-Voltaic
panels is considered in [SSM16] and a Model Predictive Control architecture is developed. However, the
Model Predictive Control is a heuristic, and its performance can only be validated by simulation. This lack
of optimality guarantee is investigated in [Pac+18], where Stochastic Dual Dynamic Programming and Model
Predictive Control are used and compared to solve an optimization problem modeling the optimal control of a
micro-grid. The �exibilities considered are a battery, a water heater, and the heating systems of a building.

ˆ Considering a Markovian Decision Process setting and using Stochastic Dynamic Programming is also a
popular approach when the dimension of the state variable is low, as is done in the case of optimal control of
an electrical vehicle in a random environment [IMM14; Wu+16].

ˆ Aging of a battery which help renewable energy sources integration is considered in [Hae14] and in [Car+19a].
The latter reference designs a speci�c temporal decomposition (dynamic programming) on two-different time
scales to control a battery on a micro-grid while taking into account long-term aging.

ˆ Deterministic and stochastic control problems in continuous time focusing on a single micro-grid are consid-
ered in [Hey+15; Hey+16], where the controller aims at optimizing simultaneously the operation of a diesel
engine and a battery, in a deterministic [Hey+15] or stochastic [Hey+16] setting.

Decomposition methods have also been developed to handle several interacting micro-grids. A combined spatial
and temporal decomposition of multistage stochastic problem is proposed in [Car+19b] and [Car+20], taking as
application the optimal control of several individual micro-grids equipped with storage systems which can exchange
energy through a power network. In particular, the method developed allows to consider problems for which the state
dimension is much higher than what can be handled with standard methods like Stochastic Dynamic Programming
or Stochastic Dual Dynamic Programming. The decomposition method relies on the formulation of sub-problems
associated to the network nodes, each of them solved using dynamic programming. Note that in this application,
a simple network �ow model for the power network is considered. In particular, it does not take into account the
oscillating nature of physical quantities on such networks, non-linear effects, such as thermal losses and reactive
power. These physical characteristics of electricity networks are considered in the multistage stochastic Optimal
Power Flow model of Chapter 7.

From the operational point of view, it is desirable to develop methods which do not suffer from the curse of
dimensionality and allow to control many energy storage systems. Indeed, the large number of energy storage
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systems, including batteries, batteries of Electric Vehicles, Thermostatically Controlled Loads (TCLs) (such as water
heaters, heat pumps, air conditioners...) present on electricity networks can help provide the necessary ancillary
services to integrated renewable energy sources. TCLs have been identi�ed as particularly promising with this
respect [Mat+12; Cam+18b]. However, optimal control problems of large numbers of such devices are challenging
for several reasons:

1. The dimension of the state space corresponds to the number of controlled devices, which can be very large.
Therefore, curse of dimensionality may rapidly occur when using methods such as Stochastic Dynamic Pro-
gramming, Stochastic Dual Dynamic Programming,...

2. The controllers of individual energy storage systems should be situated locally. Indeed, a centralized control
architecture would require a heavy telecommunication infrastructure, in order for the central planner to gather
data of the individual agents and send control signals. Besides, the quality of service (i.e., the fact that
temperature of the devices should lie in an admissible range) should be guaranteed but may not be ensured
in case of loss of communication, if the controller is not local.

3. A particular focus should be made on the respect of privacy of individual data of the consumers, when imple-
menting such control schemes.

Let us mention that the model proposed in Chapter 4 and the application illustrating the numerical method
introduced in Chapter 5 answer these speci�c issues. Let us give an overview of methods used in the literature for
the decentralized management of many local energy �exibilities.

A �rst stream of research includes cooperative control architectures which focus on practical implementation
given the speci�c constraints we listed above, without a priori optimality guarantees. Local controllers which respond
to a coordination signal designed using Partial Differential Equations-based models are considered in [TTS15;
Tro+16]. A mean-�eld approximation of the large number of individual TCLs is considered in [BM16; Cam+18a] and
local control loops are implemented so that the aggregated �exibility of the TCLs behaves like a virtual battery. For
those reference, the (random) switching rate of individual devices plays the role of control variable, and no a priori
optimality guarantee can be established.

Game-theoretic approaches are also considered as a convenient way to obtain a decentralized control archi-
tecture, with self-interested agents responding to price incentives. An hourly billing mechanism is considered in
[Jac+18] to account for the fact that a high aggregated demand may have a negative impact on electricity networks.
A game theoretic setting with heterogeneous players is considered in [JW18]. A cryptography technique is used
in [Jac+19] to account for the privacy requirements for individual data when an aggregator only needs to estimate
aggregated energy �exibility of several users.

Mean-�eld approximations are very appealing as they become more precise when the number of agents grows.
Mean-Field Game models have recently drawn a lot of interest to model energy management problems [DP+19;
ATM20; MMS19; KM13; KM16]. In [DP+19], individual TCLs respond to price signals determined by solving a Unit-
Commitment problem to optimally allocate their �exible consumption and their participation to frequency reserves
mechanisms. The problem is solved using a �xed-point method based on the Hamilton-Jacobi-Bellman and the
Fokker-Plank equation, a coupled PDE system modeling the dynamics of the value function and of the probability
measure of the states of the population. No a priori convergence guarantee for this method is given. In [ATM20],
consumers use batteries to reduce their electricity bills, the spot price of electricity being determined by the aggre-
gated demands of all consumers. The Nash equilibrium of this Mean-Field Game with common noise (representing
geographical correlations of the weather, inducing correlations in renewable production) is found using Pontryagin
principle, which yields explicit feedback formulas in the linear-quadratic case. The model of [ATM20], which consid-
ers only Brownian �ltrations, is extended to a setting with jump processes in [MMS19]. A Mean-Field Game model
without common noise is proposed in [KM13], where the mean temperature of a large number of TCLs is required to
follow a speci�c pro�le. The model is Linear-Quadratic Gaussian, so that explicit feedback formulas are available for
the solution of the Nash equilibrium. This model is extended to Markovian jump processes in [KM16], considering
�ner models of individual water heaters: the strati�cation phenomenon (i.e., non-uniformity of the temperature within
a water heater) is taken into account. Note that Game-theoretic and Mean-Field Games models provide a practical
way to obtain a decentralized control architecture, but yield a Nash equilibrium which may be sub-optimal from a
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collective point of view. Bounds on the price of Anarchy can be derived [Jac+18]. In Linear-Quadratic frameworks
and under some particular assumptions, Mean-Field Control problems (resp. Mean Field Games) have a unique
optimum (resp. Nash equilibrium), which can be computed analytically. This gives as a by-product the price of an-
archy. A Mean-Field type approximation combined with price (Lagrangian) decomposition techniques is proposed
in the recent work [Seg+20] to solve stochastic control problems modeling aggregation problems arising in energy
management.

1.8.2 State-of-the-art for optimal control of electricity networks with network constraints
modeling

The problem of optimal control of an electricity network taking into account the non-linear Kirchhoff's circuit laws
is called Optimal Power Flow. This problem is at the boundary between mathematical optimization, physics and
electrical engineering. For this reason, we dedicate a speci�c chapter to properly introduce the OPF problem, see
Chapter 6. We also give many pointers in the literature regarding theoretical results, mathematical formulations,
approximations, convex relaxations, optimization methods, stochastic and dynamic extensions related to the OPF
problem. We only summarize the main results in the literature regarding the OPF problem here.

De�nition

The so-called Optimal Power Flow (OPF) problem is a mathematical optimization problem aiming at �nding an
operating point of a power network (taking into account the Kirchhoff's circuit laws, which yield the so-called load-
�ow equations) that minimizes a given objective function, such as generation costs, active power losses, subject to
constraints on power injections and losses, voltage magnitudes and intensities in the lines. It has been introduced
by Carpentier in 1962 ([Car62]) and has drawn a lot of attention since then thanks to its versatility.

Physically, the most accurate formulation of this problem is the so-called Alternating Current Optimal Power Flow
(AC OPF). It is a non-convex quadratically constrained problem which has a natural formulation in complex variables.
The complex variables allow a compact representation of oscillating signals, in the Alternating Current framework,
which is the type of current used for most networks.

Single phase vs. multi-phase, radial vs. meshed networks

Note that there are three common types of networks: single phase, balanced three-phase and unbalanced three-
phase networks. Single phase networks are composed of lines with two wires: a ground wire, and a wire where
power can �ow. The three-phase balanced and unbalanced networks are composed of four wires: a ground wire,
and three wires carrying power and associated to a phase. In the case of balanced networks, the sizes of all phases
are the same and they are differ from each other by 120 °, which is not the case for unbalanced networks. The
AC OPF problem for three-phase balanced networks reduces to the AC OPF problem with single phase. Besides,
networks can be either radial (acyclic) or meshed. Typically, transmission networks are meshed and operated with a
single phase. Medium-voltage distribution networks are typically radial and balanced three-phase, hence the prob-
lem for such networks reduces to the case of single phase radial networks. Low-voltage distribution networks are
typically operated radially and unbalanced three-phase. We shall focus on the case of single phase networks ,
which allows to consider balanced three phase networks. Some results for unbalanced multi-phase networks can
be found in Chapter 6.

Methods to solve the AC-OPF problem for single phase networks in a static deterministic setting

The AC OPF problem has been recently shown to be strongly NP-hard [BV19]. To handle this dif�culty, several
methods can be considered, like Non-Linear Programming methods, linearizations of the problem or convex relax-
ations.

Non-Linear Programming methods include Newton Raphson [IS87], Sequential Quadratic Programming, steep-
est descent methods [For+10]. These optimization techniques and many more can be found in the very complete
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surveys [FSR12a; FSR12b]. These methods are often sensitive to the initial point and may fail to converge to a
global optimum, which can create substantial costs for network operators.

Linear approximations are often used in practice due to their tractability for many applications. However, when
the share of renewable energy sources increases, they may neglect important phenomena, like variations of voltage
magnitude [NT15]. Among the existing linear models, the most famous one is the Direct Current Optimal Power
Flow (DC OPF) formulation, which assumes �xed voltage magnitudes, neglects power losses and reactive power
�ows. Methodologies to obtain error bounds between DC and AC OPF have been developed in [SJA09; DM16].
There exists many other linearizations, like the Linearized Dist�ow model, especially adapted for radial (i.e, acyclic)
networks, or linearizations of the AC OPF model around a nominal setpoint.

Convex (conic) relaxations of the AC OPF problem can be ef�ciently solved using interior point methods and
provide a certi�cate of optimality when they �nd an optimal solution which is feasible for the original non-convex
problem. Among them, the Semi-De�nite relaxation, Second-Order Cone relaxation and the chordal relaxation are
the most famous ones. They are presented in [Low14a; Low14b; MH+19]. These relaxations exhibit low or no relax-
ation gap for many practical instances [LL11]. Conditions ensuring exactness of these relaxations have also been
established in [LL11; SL12; FL13; Gan+14; Hua+16] but a gap remains between the theoretical conditions ensuring
zero-duality gap and reality, as many instances of realistic problems have zero-duality gap without �tting assump-
tions of these works. The Semi-De�nite (SD) relaxation typically has a lower relaxation gap than Second-Order
Cone (SOC) relaxation in meshed network (i.e., with cycles) but at the expenses of higher computational burden,
as it requires to work with matrices with number of entries growing quadratically with the number of buses of the
network. For radial networks, both SD and SOC relaxations have the same relaxation gap, so that one should use
the SOC relaxation due to its better numerical performance. Intermediate relaxations have been proposed to solve
with good precision and reasonable computational burden large-scale instances of AC OPF with meshed networks,
such as ”partial” Semi-De�nite Relaxations [BAD18], strong Second-Order relaxations [KDS16]. In case the Semi-
De�nite relaxation is not exact, penalization methods [MAL15] and sparse polynomial optimization methods [MH14]
or combinations of both methods [Mol+15; Mol+16; Jos16] can be applied in order to solve large-scale instances for
which the SD relaxation is inexact.

Extensions to dynamic and stochastic settings

A dynamic AC OPF model with energy storage system is formulated in [GKA13], using only the non-convex formula-
tion and without considering uncertainty. The SOC relaxation is used in a dynamical setting in [GSGK18] in order to
optimally size distribution networks. Conditions found in [LL11] under which the SD relaxation is exact are extended
in [GT12] to the deterministic multi-period case with storage. A survey of OPF methods and tools with application to
distribution networks with energy storage systems can be found in [SM16].

The most common stochastic models are the probabilistic OPF problems. A survey on such models can be found
in [BCH14]. Some recent works propose a probabilistic version of the DC OPF model [Roa+13; Roa+16], while
other focus on probabilistic versions of the linearized AC OPF model around a reference scenario [RMT17; RA17].
Other works consider the robust counterpart of the SD relaxation restricted to af�ne-linear decision-rules [Vra+13].
A Semi-De�nite convex relaxation of the chance-constrained AC OPF problem is proposed in [Ven+17] using a
scenario-based approach and assuming piece-wise linear decision rules, or assuming Gaussian uncertainty. A
Second-Order Cone approximation of the chance constrained AC OPF, combined with a feasibility recovery method,
is proposed in [HPC18], which allows good numerical performances. Another class of stochastic models are the
multistage models, for which it is required that decision variables remain non-anticipative, i.e., do not depend on
yet unobserved random data. References [Swa17; NCP14] consider the simpli�ed case where decision are non-
anticipative for the initial time steps only, as they consider a scenario tree with a comb structure (two-stage). Non-
anticipativity is guaranteed in [JKK14] using af�ne-linear policies but with a DC OPF problem, hence inheriting the
limitations of such approximate models. Non-anticipativity of the decisions is also guaranteed in [Sun+16] which
considers an iterative heuristic procedure to optimize a decision policy.
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Chapter 2

Introduction (en français)

2.1 Changement climatique et d éveloppement des énergies renouvelables

La majorité des pays industrialisés prennent de plus en plus conscience du changement climatique et soutiennent
de mani �ere active des solutions visant �a réduire les émissions de gaz �a effet de serre. Des efforts importants sont
prévus a�n de limiter la hausse de temp érature �a 2� C d'ici 2100, en accord avec la cible des accords de Paris
de 2015. Les moyens de production d'électricité conventionnels comme les centrales �a charbon, au fuel ou au
gaz comptent parmi les principales sources de gaz �a effet de serre. Certaines études montrent qu'ils représentent
environ 25%des émissions de CO2 mondiale [Cha+14].

A�n de r éduire l'empreinte carbone de la production électrique, les sources d'énergie renouvelable, tels les pan-
neaux solaires et les éoliennes, constituent des solutions viables. Récemment, la Commission Européenne a établi
un objectif de 32% des sources d'énergie renouvelable dans le mix énergétique d'ici 2030 [Com19]. Les activités
de recherche sur ces moyens de production ont permis de réduire considérablement leurs coûts de production. Par
exemple, le prix des cellules photovolta�̈ques a baissé de 99.6 % entre 1976 et 2018, passant de $79.3/W �a $0.3/W
[WB19]. Cependant, les sources d'énergie renouvelable précédemment mentionnées présentent des inconvénients
majeurs qui nécessitent un traitement particulier lors de leur intégration dans le mix énergétique. Elles ne sont pas
contrôlables, elles sont intermittentes [Suc+20] et leur niveau production est aléatoire, du fait d'erreurs possibles
dans les prévisions météorologiques. Cela pose des problématiques complexes en termes de gestion de l'énergie.
Pour les comprendre, nous présentons tout d'abord le contexte historique de la gestion de l'énergie.

2.2 Contexte historique en gestion de l' énergie

2.2.1 Spéci�cit és historiques de la production, de la consommation et du transport de
l' électricit é

Aujourd'hui encore, la majorité de la production électrique est réalisée de mani �ere centralisée par des centrales
conventionnelles et pilotables, comme des centrales �a charbon, au gaz, au fuel ou nucléaires.

L'électricité produite par ces centrales est envoyée aux consommateurs �naux par des c âbles électriques du
réseau de transport puis de réseaux de distributions. Le réseau de transport est un réseau opéré �a haute tension
(225 �a 400 kV) avec une architecture maillée (i.e., avec des cycles), avec une seule phase. Ce réseau est opéré
par Réseau de Transport d'Électricité (RTE) en France, qui est un monopole régulé. Les réseaux de distribution
sont quant �a eux des réseaux opérés �a basse (de 220 �a 430 V) ou moyenne tension (1 kV �a 52 kV). Ils sont le
plus souvent radiaux (i.e., sans cycles) triphasés et pilotés par Enedis en France, qui est un autre monopole régulé.
L'architecture historique des réseaux électriques est représentée sur la Figure 2.11.

1Les icônes sont produits par Freepik et Smashicons et disponibles sur www.�aticon.com
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Figure 2.1: Structure historique des réseaux électriques

2.2.2 Équilibre offre-demande

Généralit és

Une particularité de l'électricité est que, contrairement �a d'autres biens, elle ne peut être stockée que marginale-
ment, du fait des coûts élevés du stockage. En France, les Stations de Transfert d'Énergie par Pompage (STEP)
constituent le principal levier de stockage de l'énergie actuellement. A cause de leurs coûts d'installation élevés et
de leurs besoins, les STEPs ne peuvent absorber que 3% de la consommation électrique annuelle et permettent de
déplacer environ 1:5% de la demande nationale annuelle.

Pour cette raison, l'équilibre offre-demande pour la puissance électrique doit être garanti �a chaque instant.
De nombreux acteurs en sont responsables: fournisseurs, producteurs, traders, agrégateurs. Tous ces acteurs
doivent s'assurer de l'équilibre entre offre et demande au niveau de leur périm�etre. Par exemple, EDF, en tant
que producteur et fournisseur d'électricité, est responsable de l'équilibre entre sa production (incluant la production
par ses centrales et ses achats sur les marchés) et la consommation de ses clients. EDF construit les plannings
de production de ses centrales et ach�ete ou vend de l'énergie sur les marchés a�n de garantir l' équilibre entre la
production prévue et la demande prévisionnelle. En d'autres termes, l'équilibre offre-demande est traditionnellement
obtenu par pilotage de la production.

Prévision de la demande

La consommation quotidienne d'électricité dépend de plusieurs facteurs, comme le type de jour (semaine, week-
end, férié), des év �enements spéci�ques (comp étitions sportives) et les conditions météorologiques, comme la
température ou l'ensoleillement. La température est l'un des principaux facteurs explicatifs de la consommation
[PMV02], car la demande dépend fortement du chauffage et de la climatisation des consommateurs. Cependant,
les bâtiments ont une inertie thermique et les consommateurs sont indifférents aux petites variations de température
de leur environnement. Pour cette raison, la demande peut être prévue de mani �ere assez précise en utilisant une
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version lissée de la température (moyenne temporelle) [Jov+15]. Ainsi, les variations �a court-terme des conditions
météorologiques jouent un rôle moins important que leurs moyennes temporelles (sur quelques heures ou jours), et
ces derni �eres peuvent être prévues avec davantage de précision que les conditions instantanées. Ceci explique que
la demande peut être prévue de mani �ere relativement précise �a court-terme, dans un contexte de faible pénétration
des énergies renouvelables.

Gestion de la production

A�n de r éduire les coûts de production et les pénalités dues au déséquilibre offre-demande possible au niveau de
leur périm�etre, les producteurs doivent ajuster leur planning de production �a la demande prévue. Ceci est fait �a
plusieurs échelle de temps.

ˆ De 20 �a 5 ans avant l'échéance, les décisions d'investissement dans de nouveaux moyens de production ainsi
que dans les réseaux sont prises, et des partenariats stratégiques sont élaborés.

ˆ De 5 ans �a deux semaines avant l'échéance, les plannings de maintenance et de fonctionnement des centrales
nucléaires et de barrages hydrauliques sont conçus. Les ressources (comme l'uranium dans les centrales
nucléaires ou l'eau dans les barrages) sont allouées de mani �ere optimale.

ˆ De 2 semaines �a un jour avant l'échéance, des prévisions plus précises de la demande sont disponibles, et
les plannings des unités de production les plus �exibles sont ajust és.

ˆ Un jour avant l'échéance, les prévisions de demande des clients et les plannings de production sont commu-
niqués au régulateur (RTE en France).

ˆ Le jour de l'échéance, des ajustements de derni �ere minute sont effectués, en recourant �a des contrats bi-
latéraux ou en modi�ant le point de fonctionnement d'unit és de production �exibles.

ˆ En temps réel, l'équilibre offre-demande est assuré par RTE �a l'échelle du réseau de transport en activant des
mécanismes de réserve.

De l'énergie est achetée ou vendue sur les marchés �a toutes les échéances. Le niveau d'incertitude pris en compte
ainsi que le réalisme physique de ces mod�eles est représenté en fonction de l'horizon de plani�cation sur la Figure
2.22.

Mécanismes de r éserve

Des év �enements imprévus ou des erreurs de prévisions peuvent survenir et impacter l'offre ou la demande, ce qui
peut perturber l'équilibre offre-demande. Des corrections en temps réel doivent donc être réalisées. En France, ces
ajustements sont réalisés par RTE et sont basés sur 3 mécanismes de contrôles appelés réserves de fréquence.

1. La réserve primaire (activée automatiquement 1 seconde apr �es un év �enement spéci�que et maintenue jusqu' �a
30 secondes) a pour but de stopper la déviation de la fréquence du réseau de sa valeur nominale (50 Hz en
Europe).

2. La réserve secondaire (activée automatiquement 30 secondes apr �es un év �enement et maintenue jusqu' �a 30
minutes) permet de faire revenir la fréquence �a sa valeur nominale.

3. La réserve tertiaire (activée manuellement �a partir de 30 minutes apr �es un év �enement) consiste �a modi�er
le point de fonctionnement de certaines unités de production a�n de restaurer les capacit és du syst �eme
électrique �a fournir des services de réserve primaire ou secondaire.

Les mécanismes de réserve sont �a la main de RTE et sont principalement fournis par les unités de production,
et dans une moindre mesure par de l'effacement de charge.

2Les icônes sont produits par Freepik et Smashicons et disponibles sur www.�aticon.com
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Figure 2.2: Structure historique des mod�eles de décision pour la gestion de l'énergie

2.2.3 Réseaux d' électricit é

Les grandeurs physiques caractérisant l'état d'un réseau (amplitude de la tension aux nœuds ou de l'intensité dans
les lignes du réseau) doivent être maintenues dans des plages opérationnelles acceptables. La puissance circule
traditionnellement de grosses unités de production centralisées vers les consommateurs et est donc historiquement
unidirectionnelle dans les réseaux de distribution (qui sont opérés radialement). Par conséquent, la tension aux
nœuds du réseau est décroissante par rapport �a la distance �a la sous-station (point de connexion entre le réseau
de distribution et le réseau de transport). Ainsi, un moyen simple de corriger la tension dans le réseau est de
modi�er la tension �a la sous-station, qui est la racine de l'arbre formée par le réseau, par l'intermédiaire d'un
transformateur. On peut effectuer un parall �ele avec la régulation du tra�c routier: lorsque toutes les routes sont en
sens unique dans un réseau routier avec une structure d'arbre, il suf�t de contr ôler les arrivées de véhicules �a la
racine pour décongestionner les lignes du réseau. Cette métaphore est représentée Figure 2.33.

2.3 Changement de paradigme li é �a l'essor des renouvelables

2.3.1 Équilibre offre-demande

Généralit és

L'intermittence des sources d'énergie renouvelable comme les panneaux solaires ou les éoliennes peut provoquer
des variations rapides de puissance dans le réseau [Suc+20]. Cela rend l'équilibre offre-demande plus complexe,
car davantage de capacités doivent être allouées aux mécanismes de réserve, qui doivent en outre suivre des

3Les icônes sont produits par Freepik et Smashicons et disponibles sur www.�aticon.com
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Figure 2.3: Régulation historique du réseau - Comparaison avec le tra�c routier

variations de charges rapides. D'autre part, l'incertitude de production de ces moyens peut générer des erreurs
dans les données des probl �emes permettant de plani�er la production, si l'on utilise des mod �eles déterministes.

Prévision de la demande et de la production renouvelable

La production d'électricité par des panneaux solaires ou des éoliennes dépend des conditions météorologiques
instantanées, qui peuvent avoir de fortes corrélations temporelles ou spatiales [ADS99; ZDK16]. Par conséquent,
plus la part des renouvelables est importante, plus la production dépend de la météo. Des mod�eles stochastiques
pour la production solaire [Bad+18; SG16] ou éolienne [Pin+09; ADS99] peuvent apporter une plus-value non
négligeable en permettant de diminuer les coûts de production et en étant utilisés comme données d'entrée de
probl �emes d'optimisation en gestion de l'énergie.

Gestion de la production

Les plannings de production doivent prendre en compte l'incertitude créée par les sources intermittentes: des
mod�eles stochastiques doivent être employés, même �a court-terme, voir la Figure 2.44, comme pour le probl �eme
de Unit Commitment [Håb19; Ack+18] par exemple.

Mécanismes d'ajustement

Dans un contexte de forte pénétration des renouvelables, l'intermittence de ces sources implique de fortes erreurs
de prévision de la production. Par conséquent, les besoins en termes de réserves sont plus importants. Les cen-
trales conventionnelles pourraient répondre �a ces besoins supplémentaires, mais cette solution serait coûteuse,
car les centrales ne fonctionneraient alors pas �a pleine capacité. De plus, des contraintes opérationnelles (dy-
namiques par exemple) peuvent empêcher les variations de la production nécessaires pour suivre celles de la
demande résiduelle (dé�nie comme la demande moins la production renouvelable). D'autres m écanismes comme
le Demand Response (pilotage de la demande) ou le pilotage conjoint de réseaux multi-énergies sont envisagées
comme des alternatives prometteuses, mais nécessitent le développement de méthodes spéci�ques d'optimisation
et de contrôle.

4Les icônes sont produits par Freepik et Smashicons et disponibles sur www.�aticon.com
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Figure 2.4: Structure des mod�eles d'aide �a la décision pour la gestion de l'énergie avec une forte pénétration des
renouvelables

2.3.2 Gestion des r éseaux

Traditionnellement, la production d'électricité se faisait de façon centralisée, mais elle devient de plus en plus dis-
tribuée: de nombreux consommateurs sont maintenant équipés de panneaux solaires et de petites fermes solaires
ou éoliennes sont connectées au réseau de distribution. Cette production distribuée peut contribuer �a créer lo-
calement des violations de contraintes physiques sur le réseau. Par ailleurs, les sources renouvelables produisent
de l'énergie sujette �a de fortes erreurs de prédiction et ont donc un comportement aléatoire. Par conséquent, le
point de fonctionnement du réseau est sujet �a de l'incertitude également, ce qui peut être problématique pour la
plani�cation op érationnelle du réseau [ST14].

De plus, la production décentralisée pose deux probl �emes potentiels: la non-monotonie des amplitudes de
tension et des �ux de puissance r étrograde (i.e., remontant dans le réseau) [NT15]. La production décentralisée
peut dépasser la demande locale, ce qui peut provoquer une hausse du niveau de tension et des re�ux de puissance
du réseau de distribution vers le réseau de transport, qui n'a pas été conçu pour cela. La non-monotonie de la
tension dans le réseau de distribution rend la régulation de tension plus complexe qu'auparavant, comme illustré
dans la Figure 2.55. Nous pouvons ainsi poursuivre la comparaison entre la gestion du réseau électrique et celle
d'un réseau routier avec des routes �a double sens.

5Les icônes sont produits par Freepik et Smashicons et disponibles sur www.�aticon.com
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Figure 2.5: Pilotage de réseau avec des renouvelables - Comparaison avec la régulation de tra�c routier

2.4 Nouvelles opportunit és et nouveaux d é�s

2.4.1 Syst �emes de stockage d écentralis és

Des services syst �eme (réserve...) peuvent être fournis par des moyens de stockage situés en différents points du
réseau. De tels projets existent déj �a, comme les batteries �a McHenry dans l'Illinois aux Etats-Unis, terminées en
2015, avec une capacité installée de 20 MW. Ce type de solution peut toutefois s'avérer coûteux. D'autres solutions
peuvent être envisagées en utilisant des �exibilit és énergétiques déj �a existantes. C'est le cas du demand response
(pilotage de la demande), qui a pour but de contrôler les �exibilit és énergétiques présentes chez un grand nombre
de consommateurs, ou la gestion conjointe de réseaux multi-énergies.

2.4.2 Demand response

Le pilotage de la demande peut être dé�ni comme l'ensemble des techniques visant �a modi�er la consomma-
tion électrique des consommateurs �naux [AES08]. Cela peut être réalisé par le biais de signaux de prix ou
d'effacement. Au niveau mondial, plusieurs marchés de l'électricité ont créé des programmes spéci�ques per-
mettant d'utiliser les charges pour fournir des services syst �eme (comme participer �a des mécanismes de réserve,
ou réduire un pic de consommation), qui se focalisent souvent sur les gros consommateurs industriels. La �exi-
bilité agrégée obtenue par le contrôle simultané de plusieurs charges résidentielles pourrait s'avérer plus pro�table
[Cal11], mais la faible consommation de consommateurs résidentiels ne justi�e pas leur participation directe aux
marchés de capacité (réserve de fréquence). Cependant, de nouveaux acteurs émergent, avec parmi eux, les
agrégateurs, dont le but est de se positionner en intermédiaires entre un grand nombre de consommateurs et les
marchés de services syst �eme [CH10; Mat+12].

Des batteries virtuelles fournissant des services syst �eme peuvent être obtenues en contrôlant la charge d'une
�otte de v éhicules électriques [TRY16], dont la part de marché devrait monter signi�cativement dans les prochaines
années [Gna+18]. Les syst �emes de stockage thermique (comme les réfrigérateurs, climatisations, pompes �a
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chaleur, chauffe-eaux, pompes de piscines...) peuvent également être pilotés pour participer aux mécanismes
de réserves [Mat+12]. Ces appareils sont opérés de mani �eres �a maintenir la température d'un certain milieu dans
une plage acceptable. L'inertie thermique de ces équipement en fait des candidats naturels pour fournir des services
de �exibilit é énergétique. Contrôler un grand nombre de tels appareils peut s'avérer moins coûteux que l'installation
de batteries pour fournir des services syst �eme, avec des performances similaires [Cam+18b].

2.4.3 Multi-g énération et pilotage conjoint de r éseaux multi- énergies

Les réseaux de gaz [Koc+15] ou de chaud/froid peuvent être utilisés pour répondre aux besoins des réseaux
électriques en termes de �exibilit és énergétiques, grâce �a des moyens de conversion énergétiques. Voir par exem-
ple [Ord+17] pour un marché joint pour l'électricité et le gaz. La plani�cation d'extension de r éseaux est étudiée
dans [UV+10] pour l'électricité et le gaz, dans [VBGS15; VB+17] pour des réseaux multi-énergies généraux. La ges-
tion optimisée d'unité de multi-génération (cogénération par exemple) constitue également une piste prometteuse
[CM09a; CM09b]. D'autres références et approches sont présentées dans la Section 2.5.

2.4.4 Moyens de contr ôle locaux pour piloter les r éseaux

Les gestionnaires de réseaux de distribution installent des moyens de contrôle locaux ainsi que de l'électronique
de puissance a�n de r égler les violations de contraintes physiques des réseaux. Des composants permettent de
maintenir la stabilité de la tension, comme les transformateurs, les compensateurs synchrones et les bancs de
condensateurs [Liu+17]. Les syst �emes de stockage d'énergie peuvent être employés pour éviter des phénom�enes
de congestion de lignes électriques ou des �ux de puissance remontant dans le r éseau de transport, et ainsi
aider �a l'insertion des renouvelables dans le mix énergétique [Das+18]. La comparaison entre pilotage de réseau
électrique et gestion du tra�c routier peut être développée en comparant les moyens de contrôle locaux pour les
réseaux électriques �a de la signalisation routi �ere, voir la Figure 2.66.

Figure 2.6: Pilotage intelligent de réseau électrique avec des renouvelables - Comparaison avec le tra�c routier

6Les icônes sont produits par Freepik et Smashicons et disponibles sur www.�aticon.com
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2.5 Dé�s en gestion de l' énergie

L'insertion des renouvelables peut être améliorée par des adaptations de la structure des marchés, contribuant
�a inciter les acteurs �a réduire l'impact de leurs moyens de production intermittents en utilisant par exemple des
syst �emes de stockage. Le pilotage optimisé de micro-grid consiste �a contrôler des moyens de stockage dans un
contexte de production et de consommation incertain. Pour le contrôle simultané d'un grand nombre de moyens de
stockage fournissant des services syst �eme, un phénom�ene de � éau de la dimension peut rapidement appara�̂tre,
quand le nombre de variables d'état (stock) augmente. De plus, l'implémentation de ces moyens de contrôle exige
de répondre �a plusieurs problématiques. Premi �erement, la con�dentialit é des données des consommateurs doit être
respectée. Deuxi �emement, les syst �emes de contrôles de �exibilit és locales doivent être locaux eux aussi, a�n de
garantir la qualité de service en cas d'interruption des télécommunications. Troisi �emement, l'optimisation doit être
réalisée en limitant les communications entre agents, du fait de contraintes de bande passante et de con�dentialit é
des données.

Les sources d'énergie renouvelable et leur comportement aléatoire peuvent aussi créer des probl �emes physiques
locaux pour les réseaux électriques. Prendre en compte de mani �ere �ne les contraintes physiques des r éseaux
énergétiques est nécessaire pour cette raison mais cela rend les probl �emes d'optimisation associés non-convexes.
De plus, des formulations stochastiques multi-étapes sont nécessaires pour prendre en compte l'incertitude de la
production renouvelable et les contraintes dynamiques des moyens de stockage, ce qui permet de garantir que les
décisions n'anticipent pas des év �enements pas encore survenus (non-anticipativité). De tels mod�eles sont dif�-
ciles �a résoudre pour deux raisons: ce sont des probl �emes de grande taille (car ils sont basés sur des arbres de
scénarios qui doivent exploser en taille avec le nombre de pas de temps pour représenter de mani �ere adéquate la
�ltration [Sha06; HRS06; PP14]) et non-convexes. Des m éthodes d'approximation (linéarisations par exemple), de
convexi�cation ou de recherche locale peuvent être utilisées a�n de g érer la non-convexité de ces probl �emes.

Comme le contrôle joint de réseaux multi-énergies n'est pas développé davantage dans cette th �ese (seuls les
réseaux d'électricité seront considérés), nous présentons les dé�s et approches de mod élisation et de résolution
pour ce type de probl �emes. Un cadre général pour l'optimisation de réseaux multi-énergies prenant en compte
les contraintes physiques de ces réseaux (Optimal Power Flow) a été introduit dans les références [GA05; GA07].
Une dif�cult é de ces probl �emes est que les lois physiques des réseaux d'énergie rendent les domaines admissibles
non-convexes. Ajouté au comportement stochastique de la production renouvelable, cela rend ces probl �emes
particuli �erement dif�ciles. Pour les r ésoudre, des méthodes de programmation non-linéaires peuvent être employés.
Par exemple, des probl �emes avec contraintes en probabilité pour le pilotage de réseaux de gaz sont considérés dans
[GHH17; Hei19], et résolus �a l'aide de méthodes de descente. Des probl �emes avec contraintes en probabilité pour le
pilotage conjoint de réseaux de gaz et d'électricité sont proposés dans [Ode+18]. Les méthodes de convexi�cation
constituent un autre type d'approches, qui peuvent fournir des garanties d'optimalité globale et sont plus précises
que les approximations linéaires: elles prennent par exemple en compte des phénom�enes non-linéaires comme
les chutes de pressions et les pertes thermiques. Les premi �eres approches de convexi�cation pour les r éseaux
énergétiques sont apparues dans le contexte du pilotage de réseaux électriques [LL11; Low14a; Low14b; MH+19],
mais des travaux récents se concentrent sur d'autres types de réseaux. L'optimisation polynomiale (exploitant la
structure creuse des réseaux), utilisée dans un premier temps pour les réseaux électriques [MH14; Mol+15; Jos16;
Mol+16], a récemment été employée pour modéliser des probl �emes de contrôles de réseaux de chaleur dans la
th �ese de doctorat [Hoh18]. Cette méthode permet de considérer des relaxation Semi-Dé�nies (donc convexes) des
probl �emes non-convexes, qui peuvent être résolues par des méthodes de point intérieur, qui sont suf�samment
performantes pour considérer des probl �emes stochastiques. Ainsi, un cadre bi-étapes stochastique est considéré
pour contrôler un réseau de chaleur urbain dans [HWL19], et le probl �eme est résolu �a l'aide d'outils provenant de
la théorie de l'optimisation polynomiale.

2.6 Objectifs et contenu de la th �ese

Dans cette th �ese de doctorat, nous nous concentrons sur l'impact de l'incertitude de la production renouvelable
sur deux probl �emes de la gestion de l'énergie. Premi �erement, nous proposons des méthodes de pilotage d'un ou
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plusieurs micro-grids en interaction a�n de r éduire l'impact de l'incertitude des énergies renouvelables, sans prendre
en compte de mani �ere �ne les contraintes physiques du r éseau. Dans un second temps, nous considérons la plan-
i�cation op érationnelle et le contrôle d'un réseau électrique dans un contexte incertain, en prenant en compte les
lois de Kirchhoff, intrins �equement non-linéaires. Cette th �ese de doctorat introduit des contributions de modélisation,
algorithmiques et théoriques permettant de répondre �a ces deux problématiques.

ˆ Dans la partie I de cette th �ese, deux probl �emes de contrôle sont introduits a�n de r éduire l'impact de l'incertitude
de la production renouvelable sur les réseaux et les marchés de l'électricité, sans prendre en compte les con-
traintes non-linéaires des réseaux d'électricité. Ces deux probl �emes sont des probl �emes de contrôle optimal
stochastique avec une composante de type champ moyen. Nous introduisons également deux méthodes
numériques basées sur le principe d'optimalité de Pontriaguine a�n de r ésoudre des probl �emes sortant du
cadre des probl �emes linéaires-quadratiques, que l'on peut résoudre analytiquement. Dans le chapitre 3, nous
considérons le pilotage d'un micro-grid associée �a une consommation sur le réseau, qui est la différence
entre la consommation et la production renouvelable �a l'échelle de ce micro-grid. Celui-ci choisit un pro-
�l de consommation un jour �a l'avance, et pilote en temps réel ses moyens de stockage a�n de respecter
son engagement. Cela permet de réduire la volatilité de la consommation résiduelle du micro-grid sur le
réseau. Le probl �eme d'optimisation jointe de la trajectoire d'engagement (choisie avant de conna�̂tre les er-
reurs de prévision de production et de consommation) et du contrôle des moyens de stockage en temps réel
est formulé comme un probl �eme de contrôle stochastique McKean-Vlasov (ou probl �eme de contrôle �a champ
moyen). Pour ce type de probl �emes, nous donnons des conditions nécessaires et suf�santes d'optimalit é
ainsi qu'une méthode numérique (approximative) de résolution de probl �emes non linéaires-quadratiques. Un
mécanisme de contrôle décentralisé d'un grand nombre de �exibilit és thermostatiques est introduit dans le
chapitre 4: un grand nombre de consommateurs contrôlent leurs syst �emes de stockage thermiques individu-
els de mani �ere coopérative de façon �a fournir des services syst �eme. Une méthode de décomposition du
syst �eme d'optimalité ainsi qu'une approximation de type champ moyen sont conçues a�n de contourner le
� éau de la dimension et d'obtenir une architecture de contrôle décentralisée garantissant la con�dentialit é
des agents et un besoin réduit en télécommunications. Dans le chapitre 5, nous développons une méthode
de Newton dans le cadre in�ni-dimensionnel des probl �emes de contrôle stochastique. En particulier, nous
montrons comment calculer le pas de Newton, théoriquement et numériquement en nous ramenant �a des
Equations Différentielles Stochastiques Rétrogrades, et nous proposons une méthode de recherche linéaire
adaptée. Nous prouvons la convergence globale de la méthode de Newton combinée avec la procédure de
recherche linéaire dans un espace vectoriel de processus adapté. Nous illustrons les performances de la
méthode sur une version non-linéaire quadratique du probl �eme présenté dans le chapitre 4. En particulier,
nous proposons un algorithme compl �etement implémentable, basé sur des techniques de régression.

ˆ Dans la partie II de cette th �ese, nous nous intéressons �a la plani�cation et au pilotage optimal de r éseaux
d'électricité dans un contexte incertain. Nous introduisons le probl �eme Optimal Power Flow (OPF) dans le
chapitre 6, qui modélise le pilotage optimal de réseaux électriques, en prenant en compte les lois de la
physique de mani �ere �ne. Ce chapitre donne des r éférences et des résultats �a la pointe de l'état de l'art pour
le probl �eme OPF. Dans le chapitre 7, nous formulons une version stochastique multi-étapes du probl �eme Alter-
nating Current Optimal Power Flow. Le cadre multi-étapes stochastique est nécessaire pour tenir compte des
incertitudes de production renouvelable, de corrélations temporelles et des contraintes dynamiques pour les
syst �emes de stockage énergétique. Nous considérons des relaxations coniques [Low14a; Low14b; MH+19]
de ce probl �eme non-convexe (qui est fortement NP-dif�cile [BV19]) qui permettent un bon compromis entre
temps de calcul et précision. Nous donnons des conditions réalistes et véri�ables garantissant l'absence de
saut de dualité pour le probl �eme OPF stochastique multi-étapes. Nous fournissons également une borne a
posteriori sur le saut de dualité du probl �eme. Ces résultats apportent un éclairage théorique sur des con-
ditions sous lesquelles les relaxations convexes du probl �eme OPF sont �ables. Les preuves des r ésultats
sont basées sur des arguments de reconstruction primale (aussi appelés arguments d'arrondis) inspirés de
[Hua+16], i.e., sur un algorithme prenant en entrée une solution faisable de la relaxation convexe et retournant
une solution faisable du probl �eme original non-convexe. En nous basant sur des résultats liés au théor �eme de
Shapley-Folkman, nous obtenons par ailleurs des bornes sur le saut de dualité de probl �emes stochastiques
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multi-étapes et non-convexes en gestion de l'énergie. Cela montre que les syst �emes de stockage peuvent
améliorer les performances de résolution numérique de probl �emes non-convexes multi-étapes, en plus de
baisser les coûts de gestion.

2.7 Contributions des chapitres

Nous donnons davantage de détails sur les contributions associées �a chacun des chapitres de cette th �ese de
doctorat.

1. Le chapitre 3 introduit un probl �eme de contrôle d'un micro-grid, représentant un consommateur équipé de
panneaux solaires et d'un syst �eme de stockage, et connecté au réseau. Ce consommateur a pour objectif
de réduire l'incertitude de sa consommation résiduelle sur le réseau pour le jour suivant. Pour ce faire, il
choisit un jour �a l'avance un pro�l de consommation sur le r éseau, puis il pilote en temps réel son syst �eme
de stockage de mani �ere �a minimiser simultanément les coûts de gestion opérationnels et les déviations de
sa consommation réelle de son engagement, voir la Figure 2.77. Nous modélisons cette situation par un
probl �eme de contrôle �a champ moyen, avec des interactions scalaires et des �ltrations g énérales. Ceci per-
met une optimisation jointe de décisions avec des échéances temporelles différentes: l'engagement est pris
initialement mais impacte le syst �eme sur tout l'horizon de temps, tandis que le syst �eme de stockage est piloté
en réponse aux aléas survenus en temps réel. Nous établissons des conditions nécessaires et suf�santes
d'optimalité pour ce probl �eme sous la forme d'une équation différentielle stochastique progressive rétrograde
�a champ moyen, voir les Théor �emes 3.2.3 et 3.2.10. Nous étudions ensuite la solvabilité de ce syst �eme. Nous
proposons une méthode numérique d'approximation des solutions de probl �emes de contrôle �a champ moyen
non linéaires-quadratiques, basée sur la théorie des perturbations, voir le Théor �eme 3.3.7. Nous illustrons
ces résultats numériquement.

Figure 2.7: Engagement de consommation un jour �a l'avance avec suivi en temps-réel du pro�l d'engagement

7Les icônes sont produits par Freepik et Smashicons et disponibles sur www.�aticon.com
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2. Le chapitre 4 est motivé par le potentiel important des unités de stockage thermique pour fournir des services
syst �eme [Mat+12; Cam+18b]. Nous y proposons un probl �eme de contrôle stochastique visant �a contrôler de
mani �ere coopérative des charges thermostatiques pour assurer l'équilibre offre-demande. Nous développons
une méthode pour résoudre ce probl �eme de mani �ere décentralisée, de façon �a respecter la con�dentialit é
des consommateurs, �a réduire les télécommunications et les besoins en temps de calcul, comparé au cas
d'un plani�cateur central, voir la Figure 2.8 8. Les conditions d'optimalité de ce probl �eme sont données sont
la forme d'une équation différentielle stochastique progressive-rétrograde (Théor �eme 4.2.1). Ce syst �eme est
décomposé en un probl �eme de coordination, une équation différentielle stochastique progressive rétrograde
de faible dimension modélisant le comportement optimal des agrégats de population de charges thermo-
statiques, et des probl �emes individuels, qui sont des équations différentielles stochastiques progressives
rétrogrades de dimension 1 modélisant les comportements optimaux individuels. Des résultats d'existence
et d'unicité pour ces probl �emes sont obtenus. Nous montrons également que ces équations caractérisent
de façon unique l'équilibre de Nash d'un jeu différentiel stochastique de Stackelberg. Dans ce jeu, un coor-
dinateur (le meneur) a pour but de contrôler les comportements agrégés de la population en envoyant des
signaux de coordination, et chaque consommateur (suiveur) répond �a ce signal en optimisant son syst �eme de
stockage localement. Cela permet une implémentation décentralisée du contrôle optimal du point de vue d'un
plani�cateur central. Il s'agit de la perspective inverse de jeux �a champ moyen potentiel [FMHL19], qui ont pour
but de trouver des probl �emes de contrôle optimal (convexes) dont les conditions d'optimalité co�̈ncident avec
le syst �eme de Nash de jeux différentiels stochastiques. Nous proposons une approximation de type champ
moyen du probl �eme de coordination, dans laquelle les param�etres ne dépendent plus des comportements
agrégés en temps réels des agents, garantissant que le probl �eme peut être résolu en observant le bruit com-
mun uniquement, voir le Théor �eme 4.4.5. Cela permet de répondre aux contraintes de télécommunication et
de con�dentialit é. Cette approximation est basée sur la loi des grands nombres conditionnelle. Des résultats
de convergence et des bornes d'erreur sont obtenus pour cette approximation en fonction de la taille de la pop-
ulation, voir le Théor �eme 4.4.12. Nous illustrons numériquement l'intérêt de cette architecture de contrôle et la
convergence de l'approximation de type champ moyen. Nous proposons en�n une impl émentation répondant
�a des problématiques industrielles réelles, voir l'Algorithme 4.1.

Figure 2.8: Mécanisme de contrôle décentralisé

3. Dans le chapitre 5 , nous développons une nouvelle méthode (théorique et numérique) basée sur le principe
de Pontriaguine pour résoudre des probl �emes de contrôle stochastique. Il s'agit de la méthode de Newton
étendue au cadre des probl �emes de contrôle stochastique avec des �ltrations g énérales, o �u la dynamique de

8Les icônes sont produits par Freepik et Smashicons et disponibles sur www.�aticon.com
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l'état (contrôlé) du syst �eme est une équation différentielle ordinaire avec des coef�cients stochastiques. En
particulier, nous montrons que la méthode de Newton revient �a résoudre de mani �ere successive des approx-
imations linéaires quadratiques du probl �eme de contrôle stochastique (obtenues par développement limité),
voir la Proposition 5.3.2. De façon équivalente, la méthode de Newton est obtenue par linéarisations suc-
cessives du syst �eme d'optimalité établi en appliquant le principe de Pontriaguine, voir la Proposition 5.3.3.
Nous proposons une méthodologie compl �ete pour calculer théoriquement le pas de Newton, qui peut être cal-
culé en résolvant une équation différentielle stochastique progressive rétrograde af�ne avec des coef�cients
aléatoires, voir le Théor �eme 5.2.9 et la Dé�nition 5.3.1. Nous montrons ensuite que r ésoudre cette équation
est équivalent �a la résolution d'une Équation différentielle stochastique rétrogrades (EDSR) de type Riccati et
d'une EDSR af�ne, voir le Th éor �eme 5.3.7, comme attendu dans le cadre de telles équations linéaires [Yon06]
ou de probl �emes de contrôle stochastique linéaires-quadratiques [Bis76]. Nous étudions ensuite la conver-
gence de la méthode de Newton pour les probl �emes de contrôle stochastique. Nous montrons par un contre-
exemple (Exemple 5.3.9) que des conditions de régularité garantissant la convergence locale de la méthode
de Newton (comme une dérivée seconde Lipschitz-continue [Kan48; NW06]) ne sont pas nécessairement
véri� ées dans l'espace de processus considéré initialement. Ceci nous conduit �a nous restreindre �a des pro-
cessus essentiellement bornés. Nous donnons un autre contre-exemple (Exemple 5.3.12) qui montre que
même pour des probl �emes fortement convexes et tr �es réguliers, la méthode de Newton ne converge pas
nécessairement globalement. Nous développons une méthode de recherche linéaire adaptée (différente de
celle présentée dans [NW06; BV04]), ce qui nous permet de prouver la convergence globale de la méthode
de Newton avec cette recherche linéaire, voir le Théor �eme 5.3.15. Nous donnons une implémentation avec
des techniques de régression pour résoudre les EDSR intervenant dans le calcul du pas de Newton, que nous
appliquons �a un probl �eme de contrôle d'un grand nombre de batteries fournissant des services syst �eme.

4. Le chapitre 6 introduit le probl �eme Optimal Power Flow (OPF), qui modélise le contrôle optimal d'un réseau
électrique en prenant en compte les lois de Kirchhoff, non-linéaires, dans le contexte de courant alternatif.
Les formulations les plus courantes ainsi que celles utilisées dans le chapitre suivant y sont présentées.
Nous supposons que le lecteur n'a pas nécessairement une connaissance approfondie du probl �eme étudié et
nous cherchons �a avoir une approche la plus pédagogique possible, tout en donnant des pointeurs vers des
techniques de résolution, des approximations, des relaxations et des extensions récentes du probl �eme OPF.

5. Dans le chapitre 7 , nous formulons une version stochastique multi-étapes du probl �eme Alternating Current
Optimal Power Flow, ce qui permet de prendre en compte �a la fois l'incertitude des énergies renouvelables
et les contraintes dynamiques des syst �emes de stockage. Nous donnons également une relaxation conique
de ce probl �eme non-convexe. Nous développons ensuite des bornes sur le saut de dualité du probl �eme OPF
stochastique multi-étapes avec stockage. Nous donnons en particulier des conditions réalistes et facilement
véri�ables a priori garantissant l'absence de saut de dualit é pour le probl �eme OPF dans un cadre stochastique
multi-étapes, ce qui étend les résultats de [Hua+16]. Nous obtenons également une borne a posteriori facile-
ment calculable sur le saut de relaxation de ce probl �eme. En utilisant des outils différents, nous établissons
des bornes a priori sur des probl �emes stochastiques multi-étapes non-convexes en gestion de l'énergie, dans
lesquels le stockage joue un rôle important, voir la Proposition 7.5.9 et le Corollaire 7.5.10. Ces résultats sont
liés au Théor �eme de Shapley-Folkman, qui donne une borne sur la distance de Hausdorff entre la somme de
Minkowski d'ensembles compacts non-convexes et son enveloppe convexe.

2.8 État de l'art

Nous donnons un panorama des méthodes existantes dans la littérature en lien avec les deux parties de cette th �ese
de doctorat, a�n de comparer nos contributions �a l'existant.
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2.8.1 Contr ôle de micro-grids en contexte incertain (sans prise en compte des con-
traintes physiques du r éseau)

Différentes approches ont été récemment proposées pour contrôler un micro-grid. Le mod�ele proposé dans le
chapitre 3 s'inscrit dans cette thématique de recherche, mais en prenant en compte une particularité: l'optimisation
jointe d'une décision prise �a l'instant initial et impactant le syst �eme sur tout l'horizon de temps (engagement de
consommation) et du pilotage d'un syst �eme de stockage en temps réel.

ˆ Une approche relativement populaire pour contrôler des syst �emes de stockage énergétique en contexte in-
certain est l'approche Model Predictive Control. Celle-ci consiste �a ignorer l'incertitude dans le mod �ele et
�a remplacer les param�etres incertains par leurs meilleures prévisions. Un mod�ele physique détaillé d'une
batterie et de panneaux solaires est considéré dans [SSM16] et une architecture de type Model Predictive
Control est développée. Cependant, l'approche Model Predictive Control est une heuristique dont la perfor-
mance doit être validée par simulation. Ce manque de garantie d'optimalité est étudié dans [Pac+18], qui
compare cette approche avec la Programmation Stochastique Dynamique Duale pour résoudre un probl �eme
d'optimisation de micro-grid. Dans ce mod �ele sont considérés une batterie, un ballon d'eau chaude et le
syst �eme de chauffage d'un bâtiment.

ˆ Une autre approche fréquemment utilisée est la modélisation par un Processus de Décision Markovien et
une résolution du probl �eme d'optimisation par Programmation Dynamique Stochastique, comme pour des
probl �emes de charge de véhicules électriques en contexte incertain [IMM14; Wu+16]. Cette approche fonc-
tionne bien lorsque l'état du syst �eme peut être décrit par une variable de faible dimension.

ˆ Le vieillissement est pris en compte dans des mod�eles de pilotage de batterie visant �a aider �a l'insertion de
renouvelables dans [Hae14] et [Car+19a]. Cette derni �ere référence propose une méthode de décomposition
temporelle (programmation dynamique) �a deux échelles de temps pour contrôler la batterie �a court-terme tout
en prenant en compte son vieillissement sur le long terme.

ˆ Une modélisation en temps continu est considérée pour le contrôle optimal d'un micro-grid équipé d'un moteur
diesel et d'une batterie en contexte déterministe dans [Hey+15] et stochastique dans [Hey+16].

Des méthodes de décomposition ont par ailleurs été développées pour être capables de résoudre des probl �emes
de gestion de plusieurs micro-grids en interaction. Ainsi, une méthode de décomposition spatiale et temporelle
est proposée dans [Car+19b; Car+20] pour résoudre le probl �eme de micro-grids équipés de batterie et pouvant
échanger de l'énergie par le biais d'un réseau. En particulier, la méthode développée permet de considérer des
probl �emes pour lequel la dimension de l'état du syst �eme est beaucoup plus élevée que ce qui peut être résolu
par des méthodes standards comme la Programmation Dynamique Stochastique ou la Programmation Dynamique
Stochastique Duale. Cette méthode de décomposition repose sur la formulation de sous-probl �emes associés aux
nœuds du réseaux, chacun pouvant être résolu par programmation dynamique. Un mod�ele simpli� é et linéaire
du réseau électrique y est considéré. En particulier, le mod�ele ne prend pas en compte les phénom�enes liés au
courant alternatif, ni les pertes thermiques et la puissance réactive. Ces phénom�enes sont considérés de mani �ere
plus précise et réaliste dans le probl �eme Optimal Power Flow stochastique multi-étapes étudié dans le chapitre 7.
Par ailleurs, il est souhaitable de développer des méthodes ne souffrant pas du � éau de la dimension si l'on souhaite
contrôler un grand nombre de syst �emes de stockage. En effet, les réseaux électriques présentent déj �a un grand
nombre de syst �emes de stockage énergétique connectés comme des batteries, des charges thermostatiques (tels
les ballons d'eau chaude, des pompes �a chaleurs, des syst �emes de climatisation...) qui peuvent aider �a fournir
les services syst �eme requis pour l'essor des énergies renouvelables. Les syst �emes de stockage thermique ont
été identi� ées comme des leviers prometteurs pour ce faire [Mat+12; Cam+18b]. Cependant, contrôler de façon
optimale un grand nombre de ces appareils pose plusieurs dé�s:

1. La dimension de l'espace d'état correspond au nombre d'appareils contrôlés, qui peut être tr �es grand. Par
conséquent, un phénom�ene de � éau de la dimension peut rapidement appara�̂tre avec des méthodes comme
la programmation dynamique.
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2. Les syst �emes de contrôle de moyens de stockage doivent être locaux. En effet, une architecture centralisée
nécessiterait des infrastructures de télécommunication lourdes pour que le plani�cateur central puisse rassem-
bler les données des agents et envoyer des signaux de contrôle. De plus, la qualité de service (i.e., le maintien
de la température associée �a chacune des charges thermostatiques dans des plages admissibles) pourrait
être dégradée en cas de perte de communication avec le plani�cateur central.

3. La con�dentialit é des données individuelles des consommateurs doit être respectée.

Le mod�ele proposé dans le chapitre 4 et le cas d'application illustrant la méthode numérique introduite au
chapitre 5 répondent �a ces problématiques. Nous donnons un aperçu des méthodes utilisées dans la littérature
pour le contrôle décentralisé de nombreuse �exibilit és énergétiques. Un premi �ere catégorie de travaux de recherche
visant �a répondre �a ces problématiques est le développement d'architecture de contrôle pouvant être implémentées
et basées sur la coopération des usagers. Des contrôleurs locaux répondant �a un signal de coordination et basés
sur des mod�eles d'Équations aux Dérivées Partielles sont considérés dans [TTS15; Tro+16]. Une approximation
de type champ moyen d'un grand nombre de �exibilit és thermostatiques est utilisée dans [BM16; Cam+18a] et des
boucles de contrôle locales sont implémentées de mani �ere �a assurer que l'agrégation des �exibilit és se comporte
comme une batterie virtuelle. Pour ces références, le taux de commutation (aléatoire) des appareils joue le rôle de
la variable de contrôle. De plus, ces méthodes n'apportent pas de garantie théorique d'optimalité et sont avant tout
orientées vers l'implémentation.

Des approches basées sur la théorie des jeux constituent également un moyen pratique d'obtenir des architec-
tures de contrôle décentralisées, avec des agents cherchant �a satisfaire leurs propres intérêts et répondant �a des
signaux de prix. Un mécanisme de facturation horaire est proposé dans [Jac+18] pour inciter les consommateurs
�a consommer moins aux horaires de forte demande. Le cas des jeux avec des agents hétérog�enes est considéré
dans [JW18]. Une technique de cryptographie est employée dans [Jac+19] a�n qu'un agr égateur puisse observer
la �exibilit é énergétique agrégée d'un ensemble de consommateurs sans avoir acc �es �a leurs données individuelles.

Les approximations de type champ moyen sont par ailleurs particuli �erement indiquées car elles sont d'autant
plus précises que le nombre d'agents est important. Les mod �eles de jeux �a champ moyen ont ainsi attiré l'intérêt
de nombreux chercheurs pour modéliser des probl �emes en gestion de l'énergie [DP+19; ATM20; MMS19; KM13;
KM16]. Dans [DP+19], des syst �emes de stockage thermique répondent �a des signaux de prix déterminés par
un probl �eme de Unit-Commitment a�n d'allouer la part �exible de leur consommation et leur participation �a des
services syst �eme. Le probl �eme est résolu avec une méthode de point �xe visant �a résoudre le syst �eme formé
par les équations d'Hamilton-Jacobi-Bellman et de Fokker-Plank, qui est un syst �eme d'Équations aux Dérivées
Partielles couplées modélisant la dynamique de la fonction valeur et de la mesure de probabilité des états de la
population. Cette méthode ne présente pas de garantie de convergence. Dans [ATM20], des consommateurs
utilisent des batteries a�n de r éduire leurs factures d'électricité, le prix de marché de l'électricité étant déterminé
par la demande agrégée des consommateurs. L'équilibre de Nash de ce jeu �a champ moyen avec bruit commun
(représentant les corrélations géographiques dues �a la météo, qui impactent la production renouvelable locale) est
caractérisé en utilisant le principe de Pontriaguine, ce qui permet d'obtenir des formules sous forme de feedback
(boucle de rétro-action) explicites dans le cas linéaire-quadratique. Le mod�ele de l'article [ATM20], qui ne consid �ere
que des �ltrations Browniennes, est étendu au cas des processus �a sauts dans [MMS19]. Un mod�ele de jeu �a champ
moyen sans bruit commun est proposé dans [KM13], dans lequel la température moyenne associée �a un ensemble
de �exibilit és thermiques (comme des ballons d'eau chaude par exemple) doit suivre un pro�l sp éci�que, a�n de
fournir des services syst �eme. Le mod�ele considéré est linéaire-quadratique Gaussien, ce qui assure l'existence
de formules quasi-explicites pour l'équilibre de Nash. Le mod�ele est étendu aux processus Markoviens �a saut
dans [KM16], avec des mod�eles plus �ns des ballons d'eau chaude: le ph énom�ene de strati�cation (i.e., la non-
homogénéité de la température de l'eau contenue dans les ballons) y est pris en compte. Les mod �eles basés
sur la théorie des jeux et des jeux �a champ moyen fournissent un moyen pratique d'obtenir une architecture de
contrôle décentralisée, mais ils ne fournissent qu'un équilibre de Nash qui peut être sous-optimal d'un point de vue
collectif. Des bornes sur le prix de l'anarchie sont obtenues dans [Jac+18] pour de tels mod �eles de jeux appliqués
�a la gestion de l'énergie. Dans les mod�eles linéaires-quadratiques et sous certaines hypoth �eses, les mod�eles de
contrôle �a champ moyen (resp. de jeux �a champ moyen) ont un unique optimum (resp. équilibre de Nash) pouvant
être calculé analytiquement, ce qui permet d'obtenir le prix de l'anarchie, qui quanti�e la perte d'optimalit é entre le
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cadre coopératif (contrôle �a champ moyen) et compétitif (jeu �a champ moyen). Une approximation de type champ
moyen combinée avec une décomposition par les prix est également proposée dans le récent travail [Seg+20]
a�n de r ésoudre des probl �emes de contrôle stochastique modélisant des probl �emes d'agrégation de �exibilit és en
gestion de l'énergie.

2.8.2 État de l'art pour le contr ôle optimal de r éseaux électriques prenant en compte les
contraintes physiques

Le probl �eme de contrôle optimal d'un réseau électrique en prenant en compte les lois de Kirchhoff non-linéaires
est appelé le probl �eme Optimal Power Flow (OPF). Il est situé �a la fronti �ere entre l'optimisation mathématique,
la physique et le génie électrique. Pour cette raison, nous avons fait le choix d'introduire en détail le probl �eme
OPF dans le chapitre 6. Nous y donnons de nombreux pointeurs vers de la littérature récente donnant des résultats
théoriques, des formulations mathématiques, des approximations, des relaxations convexes et des méthodes d'optimisation
associées au probl �eme OPF. Dans la suite de ce paragraphe, nous ne faisons que résumer les principaux résultats,
de mani �ere plus succincte.

Dé�nition

Le probl �eme Optimal Power Flow (OPF) est un probl �eme d'optimisation mathématique visant �a trouver le point
de fonctionnement d'un réseau électrique (en prenant en compte les lois de Kirchhoff) qui minimise une certaine
fonction objectif, comme les coûts de production, les pertes thermiques dans les lignes, sous des contraintes
physiques, comme des niveaux maximums et minimums d'amplitude de tension, d'intensité ou de puissance en
certains points du réseau. Ce probl �eme a été formulé pour la premi �ere fois par Carpentier en 1962 [Car62] et il a
par la suite été beaucoup utilisé du fait de sa versatilité.

La formulation la plus précise de ce probl �eme est le probl �eme ”Alternating Current Optimal Power Flow” (AC
OPF). Il s'agit d'un probl �eme d'optimisation non-convexes avec des contraintes quadratiques égalité, qui se formule
naturellement avec des variables complexes. Celles-ci permettent en effet de représenter de mani �ere compacte
des signaux oscillants, que l'on retrouve dans les réseaux opérés en régime alternatif.

Réseaux �a une ou plusieurs phases, r éseaux radiaux ou maill és

Les réseaux les plus courants peuvent être �a monophasés ( �a une phase), triphasés équilibrés ou triphasés déséquilibrés.
Les réseaux monophasés sont constitués de lignes composées de deux câbles: un câble ”terre” et un câble pouvant
transporter de la puissance. Les réseaux triphasés équilibrés ou déséquilibrés comportent des lignes composées
de quatre câbles: un câble terre et trois câbles transportant les charges électriques. Dans le cas des réseaux
équilibrés, l'amplitude de la puissance circulant dans les trois câbles (appelés phases) est la même et les signaux
ne diff �erent que par un déphasage de 120° les uns par rapport aux autres, contrairement aux réseaux déséquilibrés.
Le probl �eme AC OPF pour des réseaux triphasés équilibrés peut être réduit au cas monophasé.

De plus, les réseaux peuvent avoir une architecture radiale (acyclique) ou maillée (avec des cycles). Les réseaux
de transport sont typiquement maillés et monophasés. Les réseaux de distribution de moyenne tension sont le plus
souvent radiaux et triphasés équilibrés, tandis que les réseaux de distribution de basse tension sont radiaux et
triphasés déséquilibrés. Nous nous concentrons sur le cas des réseaux monophasés, ce qui permet de con-
sidérer les réseaux triphasés équilibrés. Des résultats pour les réseaux triphasés déséquilibrés sont donnés dans
le chapitre 6.

Méthodes de r ésolution du probl �eme AC OPF pour des r éseaux monophas és dans un cadre d éterministe et
statique

Il a été montré récemment que le probl �eme AC OPF est fortement NP-dif�cile [BV19]. Pour le r ésoudre malgré
sa dif�cult é, plusieurs méthodes peuvent être appliquées, comme des méthodes basées sur la programmation
non-linéaire, des linéarisations ou des relaxations convexes.
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Les méthodes issues de la programmation non-linéaire incluent la méthode de Newton Raphson [IS87], la pro-
grammation quadratique séquentielle, les méthodes de plus forte descente [For+10]. Ces techniques d'optimisation
et beaucoup d'autres sont présentées dans [FSR12a; FSR12b]. Cependant, elles sont souvent sensibles aux
conditions initiales et ne convergent pas forcément vers un optimum global, ce qui peut s'avérer coûteux pour les
gestionnaires de réseaux.

Les approximations linéaires sont largement utilisées en pratique. Cependant, avec la part croissante des re-
nouvelables dans le mix énergétique, elles peuvent négliger des phénom�enes importants, comme des variations
d'amplitude de tension [NT15]. Parmi les linéarisations existantes, la plus connue est sans aucun doute la formu-
lation Direct Current Optimal Power Flow (DC OPF), qui suppose les amplitudes de tension �x ées, et néglige les
pertes et la puissance réactive. Des méthodologies pour obtenir des bornes d'erreurs entre les mod �eles DC et AC
OPF ont été développées [SJA09; DM16]. Il existe de nombreuses autres linéarisations, comme le mod�ele Lin-
earized Dist�ow, particuli �erement adapté aux réseaux radiaux (i.e., acycliques), ou les linéarisations du probl �eme
AC OPF autour d'un point de fonctionnement nominal.

Les relaxations convexes (coniques) du probl �eme AC OPF ont l'avantage de pouvoir être résolues ef�cacement
par des méthodes de point intérieur et fournissent une garantie d'optimalité globale quand leur optimum est faisable
pour le probl �eme original non-convexe. Parmi elles, les relaxations Semi-Dé�nie, conique quadratique et chordale
sont les plus connues et sont présentées dans [Low14a; Low14b; MH+19]. Le saut de relaxation associé est faible
ou nul pour de nombreuses instances réalistes [LL11]. Des conditions garantissant l'absence de saut de dualité
ont été démontrées [LL11; SL12; FL13; Gan+14; Hua+16] mais il reste un écart entre les conditions théoriques
garantissant l'absence de saut de dualité et la pratique. En effet, de nombreuses instances ont un saut de dualité
nul sans pour autant satisfaire les conditions théoriques trouvées dans la littérature. La relaxation semi-dé�nie a un
saut de relaxation plus faible que la relaxation conique quadratique, mais au prix d'un temps de calcul plus élevé,
car elle est formulée avec des matrices dont le nombre d'entrées cro�̂t avec le carré du nombre de nœuds du réseau.
Pour des réseaux radiaux, ces deux relaxations ont le même saut de relaxation, si bien que la relaxation conique
quadratique est toujours préférable du fait d'une complexité de résolution numérique moindre. Des relaxations
intermédiaires pour résoudre des instances de grande taille du probl �eme AC OPF avec une bonne précision et
en temps raisonnable ont également été proposées, comme les relaxations semi-dé�nies ”partielles” [BAD18], des
relaxations coniques quadratiques renforcées [KDS16]. Des méthodes de pénalisation [MAL15] ou provenant de
l'optimisation polynomiale parcimonieuses [MH14] ou des combinaisons de ces deux méthodes [Mol+15; Mol+16;
Jos16] peuvent être employées pour résoudre des instances de grande taille pour lesquelles la relaxation semi-
dé�nie a un saut de relaxation non nul.

Extensions au cas dynamique et/ou stochastique

Un mod�ele AC OPF dynamique avec syst �eme de stockage d'énergie est formulé dans [GKA13], basé sur la formu-
lation non-convexe des contraintes et sans prise en compte des incertitudes. La relaxation conique quadratique est
utilisée dans un cadre dynamique dans [GSGK18] pour dimensionner de mani �ere optimale des réseaux de distri-
bution. Des conditions trouvées dans [LL11] sous lesquelles la relaxation semi-dé�nie est exacte sont étendues au
cas dynamique avec stockage dans [GT12]. Une revue de la littérature pour les méthodes associées au probl �eme
OPF avec des application aux réseaux de distribution avec syst �emes de stockage est effectuée dans [SM16].

Les mod�eles stochastiques les plus utilisés sont les mod�eles OPF avec contraintes en probabilité. Une revue
de la littérature sur le sujet est effectuée dans [BCH14]. Des travaux récents proposent une version du probl �eme
DC OPF avec contraintes en probabilité [Roa+13; Roa+16], tandis que d'autres s'intéressent �a des versions proba-
bilistes du probl �eme AC OPF linéarisé autour d'un point de fonctionnement de référence [RMT17; RA17]. D'autres
travaux consid �erent la formulation robuste associée �a la relaxation semi-dé�nie et restreinte �a des r �egles de décision
af�nes [Vra+13]. Une relaxation semi-d é�nie du probl �eme AC OPF avec contraintes en probabilité est proposée
dans [Ven+17], se basant sur une approche par scénarios et avec des r �egles de décision af�nes, ou en faisant
l'hypoth �ese de bruit gaussien. La référence [HPC18] présente une relaxation conique quadratique du probl �eme
AC OPF avec contraintes en probabilité, combinée avec des méthodes de récupération de solution faisable. Une
autre classe de mod�eles stochastiques est celle des mod�eles multi-étapes, qui garantissent la non-anticipativité des
décisions: celles-ci ne doivent dépendre que des quantités aléatoires observées �a l'instant o �u elles sont prises, et

43



CHAPTER 2. INTRODUCTION (EN FRANÇAIS)

pas des aléas ultérieurs. Les références [Swa17; NCP14] consid �erent le cas simpli� é o �u les décisions sont non-
anticipatives pour les premiers pas de temps uniquement, les arbres de scénarios ayant une structure de peigne.
La non-anticipativité est garantie dans [JKK14] qui se restreint �a des r �egles de décision af�nes avec un mod �ele
DC OPF, et hérite donc des limites de ces mod�eles approximatifs. Elle est également assurée dans [Sun+16] qui
consid �ere une procédure heuristique itérative pour optimiser une politique de décision.
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Optimal control of micro-grid in a
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Chapter 3

Day-ahead Commitment

3.1 Introduction

General context in energy management. The energy sector is currently facing major changes because of the
raising concern about climate change, the search for energy-ef�ciency and the need to reduce carbon footprint. In
particular, the share of renewable energy (RE for short) production has increased in most industrialized countries
over the last few years, and further effort has to be done to limit the temperature increase well below 2� C by 2100,
as targeted by the 2015 Paris agreement. However, even if these renewable energies allow a huge reduction of
carbon footprint during the energy production phase, they raise a major issue: the amount of energy produced is
intermittent and uncertain, as a main difference with more conventional energy production units (coal/gas-�red units,
or nuclear power plants).

Reducing uncertainty of net residual consumption. Since the electricity production has to meet consumption
at all spatial and time scales, the load balancing operations become harder in this uncertain context, this leads to
higher operating costs for the whole electricity system; furthermore, it sometimes lead to ecologically catastrophic
solutions such as the use of coal units to compensate the de�cit of clean energy production. See [Mor+14] for
an overview on how to integrate renewables in electricity markets. Therefore, a major challenge is to smooth the
electricity consumption by better predicting RE production and better managing the energy system. We address the
latter in the context of a consumer equipped with its own RE production (e.g. PV panels), and formalize the problem
as a stochastic control problem of McKean-Vlasov (MKV for short) type that we solve theoretically and numerically.
More speci�cally, we study a decentralized mechanism aimed at reducing the variability of residual consumption on
the electricity network; thus, operating the network could be done at lower costs and with a lower carbon footprint.
This mechanism is a setting where a consumer has to commit in advance (say T=one day-ahead, to match the usual
working of day-ahead markets) to a prede�ned load pro�le and then, he has to command optimally and dynamically
his system according to his stochastic consumption/production. Both the optimal load pro�le and the optimal control
are the outputs of the stochastic control problem described below. The above model is a simpli�ed prototype of
smart grid (as de�ned by the European Commission 1): our so-called consumer is considered as an association
of small consumers, with possibly individual RE production and individual storage facilities, that we aggregate and
consider as a whole.

General setting and methodology. We take the point of view of a consumer supplied in energy by its own
intermittent sources (PV panels for instance) and by the electrical public grid. We consider the situation where
the non-�exible consumption and the intermittent production are exogenous and can not be predicted perfectly: a
stochastic model should be used for both of them. See [Bad+18] about a recent methodology for deriving a proba-
bilistic forecast for solar irradiance (and thus PV production). To smooth his residual consumption, the consumer can
take advantage of storage facilities (for instance conventional batteries, electrical vehicle batteries, heating network,

1http://www.ieadsm.org/publication/functionalities-of-smart-grid-and-smart-meters-eutf/
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�ywheel etc) which we consider as a whole. At time t, his control is denoted by ut , the level of storage is represented
by Xu

t , its net consumption on the electrical public grid is Pgrid ;u
t . The (deterministic) committed pro�le load is the

curve (Pgrid ;com:
t : 0 � t � T). Optimal control of a single micro-grid has already been considered in the literature,

without the optimal committed load pro�le. A popular yet without theoretical optimality guarantee is Model Predictive
Control [SSM16]. In discrete-time settings, Stochastic Dynamic Programming [IMM14; Wu+16] and Stochastic Dual
Dynamic Programming [Pac+18] are popular approaches to get theoretical optimality guarantees. Long-term aging
of the battery equipping a micro-grid is taken into account by two-time scales time decomposition in [Car+19a].
Continuous time optimal control problems are considered in [Hey+15] in a deterministic setting, and in [Hey+16] in a
stochastic environment. By jointly optimizing with the pro�le Pgrid ;com:, we change the nature of the stochastic control
problem, compared to these works. We shall consider general �ltrations with processes possibly exhibiting jumps,
to account for sudden variations of solar irradiance or consumption for instance.

In short, in a simpli�ed setting, the optimization criterion takes the form of the following cost functional
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minimized over admissible controls (ut)t . The �rst term in the above cost functional is the cost of buying electricity
to the electrical public grid, at a price Ct which can be random. The second term in the cost functional accounts
for a penalization of the use of the storage (e.g. aging cost in the case of a battery). The third and �fth terms are
penalization of the deviation from the desired state of charge of the storage, which we de�ne as 1

2 by convention.
The fourth term is a penalization (through a convex loss function l1) of the deviation of the power supplied by the
electrical public grid Pgrid ;u from the commitment pro�le Pgrid ;com:. If the later were exogenously given, it would take
the form of standard stochastic control problem. In our model, it is endogenous and we set

Pgrid ;com:
t = E

h
Pgrid ;u

t

i
: (3.1.1)

This choice is inspired by the quadratic case for l1: indeed, solving the optimal stochastic control for a given Pgrid ;com:,
and then minimizing the resulting cost functional over Pgrid ;com: would lead to (3.1.1), as the reader can easily check.
Doing so, we obtain a stochastic control problem of MKV type, see later.

Going back to the applications, once identi�ed the optimal control (ut : 0 � t � T), the consumer can commit
to the pro�le Pgrid ;com: as in (3.1.1) and then execute the optimal command, so that the variability of its residual
consumption on the electrical public grid is minimized in a consistent way. On the side of the electricity supplier on
the electrical public grid, since the consumption is smoothed, the operating costs are lower and the use of ”brown”
generation units can be likely avoided. We shall highlight that presumably, good loss functions l1 should penalize
more the consumption exceedance than the consumption de�cit: indeed, exceedance possibly requires the use of
extra production units with high carbon footprint, this is clearly to discard as often as possible. A typical example of
loss function would be:

l1(x) = � x2 + � + max(x;0)2; (3.1.2)

see Figure 3.1 for an example with � + = 1; � = 1. This choice is somehow related to generalized risk measures
accounting for both left and right tails of the distribution, such as expectiles [Bel+14]. Another point to stress is the
need to account for jumps in the production/consumption dynamics – i.e. the consumption might have discontinuities
as appliances/devices are switched-on/off, the power production by a solar panel might suddenly drop to zero if a
cloud hides the sun. To summarize, in order to �t application needs, we shall consider non quadratic loss functions
and a probabilistic setting of general �ltration (allowing jumps).

MKV stochastic control problems: background results. We embed the previous example in a more general
setting:

J (u) := E
�RT
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�
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: (3.1.3)
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Figure 3.1: Loss function l1 penalizing more the consumption exceedance

The functions l; g;  ; k; � depend on time, control, state variable and on the ambient randomness ! , precise as-
sumptions are given later. Note that the control only appears in the drift of the state variable: we could also have
considered a more general model Xu

t = x +
Rt

0
� (s; !; us;Xu

s )ds+ Zt where Z is c �adl �ag semi-martingale (independent

of u), but actually, this extended model is equivalent to the current one by setting fXu
t = Xu

t � Zt as a new state variable
and by adjusting the (already random) coef�cients. Besides, note that the above dynamics for Xu is compatible with
usual battery dynamics [Hus+07], like for example models of the form

d State of charge

dt
= constant � Battery power : (3.1.4)

The problem (3.1.3) is of McKean-Vlasov (MKV) type since the distribution of (u;Xu) enters into the functional
cost. But since this is through generalized moments via the functions g and k, the interactions are so-called scalar,
which avoids to use the notion of derivatives with respect to probability measures, while maintaining some interesting
�exibility. For a full account on control of Stochastic Differential Equations (SDE for short) of MKV type and the link
with Mean Field Games, see the recent books [CD18] and in particular Chapter 6 of Volume I. However, in the above
reference, only the distribution of SDE enters in the coef�cients, not that of the control as in our setting. We refer to
this more general setting as extended MKV stochastic optimal control.

Studies in such an extended framework are quite unusual in the literature. In [PW16], the general discrete case
is studied. In [Yon13] and very recently in [BP18], both the probability distributions of the state and control variables
appear in the dynamic of the state and the cost function, but only through their �rst and second order moments
(Linear-Quadratic problems, LQ for short). In [PW18], the cost functional and the dynamic depend both on the joint
probability distribution of the state and control variables, but the authors consider closed-loop controls, which allows
them to consider the probability distribution of the state variable only: in our setting, we do not make any Markovian
assumptions for the characterization of the optimal control. During the preparation of this work (started in 2016),
we have been aware of the recent preprint [ABVC19] which deals also with the extended MKV stochastic optimal
control, with fully non-linear interaction, Markovian dynamics, in the case of a Brownian �ltration.

Our contributions. As a difference with the previous references, we do not restrict ourselves to the LQ setting,
we deal with extended MKV stochastic optimal control, without Markovian assumptions, and we do not assume
that the underlying �ltration is Brownian (allowing jump processes). Besides, apart ”expected” results about ex-
istence/uniqueness, we provide some numerical approximations by using some perturbations analysis around the
LQ case. We shall insist that MKV stochastic control is a very recent �eld and numerical methods are still in their
infancy; see [Ang+19] for a scheme based on tree methods for solving some MKV Forward-Backward SDE (FBSDE
for short) that characterize optimal stochastic controls. Our perturbation approach is different from theirs. As a
consequence, we design an effective numerical scheme to address the problem raised by the optimal management
of storage facilities able to reduce the variability of residual electricity consumption on the electrical public grid, in
the context of uncertain production/consumption of an aggregated consumer. This presumably opens the door to a
wider use of these approaches in real smart grid applications.

Now let us go into the details of mathematical/computational arguments. For characterizing the optimal control,
we follow a quite standard methodology (see e.g.[CD15]), although details are quite different. This is made in three
steps: necessary �rst order conditions, which become suf�cient under additional convexity assumptions, existence
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of solutions to the �rst order equations. The derivation of the �rst order conditions follows the stochastic Pontryagin
principle, see for instance [Ben88; Pen90; CD15]. This is achieved for general running and terminal cost functions.
In particular, to account for jumps in the production/consumption dynamics, our mathematical analysis is performed
in the context of general �ltration. It gives rise to an optimality system (see Theorems 3.2.2 and 3.2.3), composed
of a forward degenerate SDE and of a backward SDE (the adjoint equation), with possibly discontinuous martingale
term, and an optimality condition linking the values and probability laws of the state and control variables with the
adjoint variable.

In Section 3.2.4, we establish that this system of equations has a unique solution under some regularity con-
ditions, an invertibility assumption and for small time horizon T (see Theorem 3.2.4). The condition on T is quite
explicit from the proof, which makes the veri�cation on practical examples easy. Here the proof has to be speci�c
and restricted to small time because of non-Brownian �ltration and of non-Markovian dynamics: indeed, we can not
invoke neither a drift-monotony condition, as in [PT99], nor a non-degeneracy condition as in [DG06]. In Section
3.2.5, we discuss how the unique solution to the �rst order condition may or may not be the optimal solution; we
provide a counter-example (Proposition 3.2.6), which is interesting for its own, we believe that this kind of situation
is already known but we could not �nd an appropriate reference.

Then we show in Section 3.2.7 that the necessary optimality conditions established in Theorem 3.2.3 become
suf�cient if we assume some convexity conditions on the Hamiltonian and the terminal cost. We shall highlight
that the usual Hamiltonian [CD15] (when the distribution of the control is not optimized) can not match with our
framework; alternatively, we de�ne a version in expectation (Lemma 3.2.9). The �nal optimality result is stated in
Theorem 3.2.10.

In Section 3.3, we exemplify our study to the toy model presented in introduction, motivated by practical appli-
cations to smart grid management. To get a tractable and effective solution, we perform a perturbation approach
around the LQ case. We establish error bounds and as an approximation, we select the expansion with the sec-
ond order error terms. Numerical experiments illustrate the performance and accuracy of the method, as well the
behavior on the optimally controlled system.

Long and technical proofs are postponed to Section 3.4 in order to smooth the reading.

Notations. We list the most common notations used in all this work.
� Numbers, vectors, matrices. R, N , N � denote respectively the set of real numbers, integers and positive integers.
The notation jxj stands for the Euclidean norm of a vector x, without further reference to its dimension. For a
given matrix A 2 Rp 
 Rd, A> refers to its transpose. Its norm is that induced by the Euclidean norm, i.e. jAj :=
supx2Rd;jxj=1 jAxj. Recall that jA> j = jAj. For p 2 N � , Idp stands for the identity matrix of size p � p.

� Functions, derivatives. When a function (or a process)  depends on time, we write indifferently  t(z) or  (t; z) for
the value of  at time t, where z represents all other arguments of  .
For a smooth function g : Rq 7! Rp, gx represents the Jacobian matrix of g with respect to x, i.e. the matrix
(@x j gi)i; j 2 Rp 
 Rq. However, a subscript xt refers to the value of a process x at time t (and not to a partial derivative
with respect to t). We also introduce r x f := f >

x .

� Probability. To model the random uncertainty on the time interval [0;T] (T > 0 �xed), we consider a complete
�ltered probability space (
 ; F ; fF tg0� t� T;P), we assume that the �ltration fF tg0� t� T is right-continuous, augmented
with the P-null sets. For a vector/matrix-valued random variable V, its conditional expectation with respect to the
sigma-�eld F t is denoted by E t [Z] = E [ZjF t ]. Denote by P the � -�eld of predictable sets of [0;T] � 
 .
All the quantities impacted by the control u are upper-indexed by u, like Zu for instance.
As usually, c �adl �ag processes stand for processes that are right continuous with left-hand limits. All the martingales
are considered with their c �adl �ag modi�cations.

� Spaces. Let k 2 N � . We de�ne L 2([0;T];Rk) (resp. L 1 ([0;T];Rk)) as the Banach space of deterministic functions

f on [0;T] with values in Rk such that
RT

0
j ft j2dt < +1 (resp. supt2[0;T] j f (t)j < +1 ). Since the arrival space Rk will be

unimportant, we will skip the reference to it in the notation and write the related norms as

kf kL 2
T

:=
� Z T

0
j f (t)j2dt

� 1
2

; kf kL 1
T

:= sup
t2[0;T]

j f (t)j:
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Let p � q � 1. The Banach space of Rk-valued random variables X such that E [jXjp] < +1 is denoted by L p(
 ;Rk),
or simply L p


 ; the associated norm is

kXkL p



:= E [jXjp]
1
p :

The Banach space H p;q([0;T] � 
 ;Rk) (resp. H p;q
P ([0;T] � 
 ;Rk)) is the set of all F-progressively measurable (resp.

F-predictable) processes  : [0;T] � 
 ! Rk such that
RT

0
E

�
j t jq

�p=qdt < +1 . Here again we will omit the reference
to Rk, which will be clear from the context. The associated norm is

k kH p;q :=

 Z T

0
E

�
j t jq

�p=qdt

! 1
p

:

The Banach space H 1 ;q
�
[0;T] � 
 ;Rk

�
stands for the elements of H p;q

�
[0;T] � 
 ;Rk

�
satisfying supt2[0;T] E

�
j t jq

�
<

+1 , and the related norm is

k kH 1 ;q([0;T]� 
 ;Rk) := sup
t2[0;T]

E
�
j t jq

� 1
q :

We shall most often consider p = q = 2.

3.2 Stochastic control and MKV-FBSDEs

The aim is to analyze the control problem, about minimizing (3.1.3). We �rst discuss the smart grid setting and the
class of admissible controls u; second we derive the �rst-order condition (Pontryagin principle) which writes as a
MKV-FBSDE; third we derive suf�cient conditions for the existence and uniqueness to the above; fourth in the ab-
sence of convexity conditions we provide a counter-example to optimality; last, with suitable convexity assumptions
we establish that the MKV-FBSDE solution characterizes the optimal control.

3.2.1 Stochastic model and smart grid framework

As explained in introduction, (3.1.3) may describe the optimal energy management of an aggregated consumer,
with storage facilities (e.g. battery), with his own RE production (e.g. building equipped with solar panel), with a
connection to the electrical public grid. The management horizon T is typically short, e.g. 24 hours for reasons
explained in introduction.

The control is made through a Rd-valued vector process u = (ut : 0 � t � T), d 2 N � . We consider u as a F t-
predictable process in H 2;2

P : the intuition behind it is that decisions occurring at time t have to be made in accordance
with the information available up to this time. This is coherent with the smart grid application. In particular, there
has to be a slight delay between sudden events and the decisions taken by the controller, whence the predictability
assumption.

The dynamics of the system are represented by a Rp-valued state variable, denoted by X, which satis�es the
following ODE

Xu
t = x0 +

Z t

0
� (s; !; us;Xu

s )ds: (3.2.1)

The state variable can include various information in the smart grid application, like for example the state of charge
of the battery (see (3.1.4)), the PV production, the building electricity consumption, etc. Moreover, the possible
dependence in time of � (�) is a degree of freedom suitable to account for energy losses over time or aging of the
battery, both impacting the state of charge of the battery.

The cost functional is described by J (u), given in (3.1.3). In the smart grid application, Markovian-type costs
would take the form, for instance, l(t; !; u; x; ḡ) = l̃(t; Zt(! ); u; x; ḡ) where Z would represent a multidimensional
stochastic factor modeling the evolution of the exogenous uncontrolled variables (weather, consumption. . . ), but we
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also allow non Markovian models. In the sequel, we omit ! when we write terms inside J (u) and Xu, since it is now
clear that we deal with random coef�cients. All in all, the optimal control problem we study is

J (u) := E
�RT

0
l
�
t; ut ;Xu

t ;E
h
g(t; ut ;Xu

t )
i�

dt +  
�
Xu

T;E
h
k(Xu

T)
i� �

s.t. Xu
t = x0 +

Rt

0
� (s; us;Xu

s )ds:

9
>>>=
>>>;

�! min
u2H 2;2

P

: (3.2.2)

Last, we summarize the coef�cients from the toy example described p.48.

Example 3.2.1 (Smart grid toy example). Let Pload be the difference between the instantaneous consumer local
consumption and his RE production: we assume this is a process in H 2;2([0;T] � 
 ;R). The control u 2 H 2;2

P ([0;T] �

 ;R) corresponds to the power supplied by the battery, while the state Xu corresponds to the normalized state of
charge of the battery which dynamics is linear with respect to the control u, see [Hey+15]:

Xu
t = x0 �

1
Emax

Z t

0
usds:

If Pgrid ;u is the power supplied by the electrical public grid, the power balance imposes that

Pload
t� = Pgrid ;u

t� + ut :

Then set d = p = 1 and

l(t; !; u; x; ḡ) := Ct� (! ) (Pload
t� (! ) � u) +

� t

2
u2 +

� t

2
(x �

1
2

)2 + l1(Pload
t� (! ) � u � ḡ);

g(t; !; u; x) := Pload
t� (! ) � u;

 (!; x; k̄) :=


2

(x �
1
2

)2;

k(!; x) := 0;

� (t; u; x) := �
u

Emax
:

(3.2.3)

The time-dependent coef�cients � t and � t give the �exibility to include hourly effect in the management. We recall
that the convex loss function l1 may take the form (3.1.2). Considering the left-hand limit t� in the above de�nitions
is a technicality to ful�ll the following assumptions.

3.2.2 Standing assumptions

From now on, we assume the following hypotheses hold. When we refer to a constant, we mean a �nite deterministic
constant.

(H.x) x0 2 L 2

 and is F0-measurable.

(H.l) l : (t; !; u; x; ḡ) 2 [0;T] � 
 � Rd � Rp � Rq 7! l(t; !; u; x; ḡ) 2 R is P 
 B (Rd) 
 B (Rp) 
 B (Rq)-measurable.
Furthermore, l(�; �; 0; 0; 0) 2 H 1;1, l is continuously differentiable in (u; x; ḡ) with the growth condition

jr ul(t; !; u; x; ḡ)j + jr xl(t; !; u; x; ḡ)j + jr ḡl(t; !; u; x; ḡ)j � C (juj + jxj + jḡj) + C(0)
l (t; ! )

for any (t; u; x; ḡ) 2 [0;T] � Rd � Rp � Rq a.s., for some constant C and some random process C(0)
l in H 2;2.

(H.g) g : (t; !; u; x) 2 [0;T] � 
 � Rd � Rp 7! g(t; !; u; x) 2 Rq is P 
 B (Rd) 
 B (Rp)-measurable. Furthermore,
g(�; �; 0; 0) 2 H 2;1, g is continuously differentiable in (u; x) and there exist constants Cg;u and Cg;x such that

jr xg(t; !; u; x)j � Cg;x and jr ug(t; !; u; x)j � Cg;u

for any (t; u; x) 2 [0;T] � Rd � Rp a.s. .
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(H. )  : (!; x; k̄) 2 
 � Rp � Rr 7!  (!; x; k̄) 2 R is FT 
 B (Rp) 
 B (Rr)-measurable. Furthermore,  (�; 0; 0) 2 L 1

 ,  

is continuously differentiable in (x; k̄) and the growth condition

jr x (!; x; k̄)j + jr k̄ (!; x; k̄)j � C (jxj + jk̄j) + C(0)
 (! )

holds for any (x; k̄) 2 Rp � Rr a.s., for some constant C and some random variable C(0)
 in L 2


 .

(H.k) k : (!; x) 2 
 � Rp 7! k(!; x) 2 Rr is FT 
 B (Rp)-measurable. Furthermore, k(�; 0) 2 L 1

 , k is continuously

differentiable in x and there exists a constant Ck;x such that

jr xk(!; x)j � Ck;x

holds for any x 2 Rp a.s..

(H.� ) � : (t; !; u; x) 2 [0;T] � 
 � Rd � Rp 7! � (t; !; u; x) 2 Rp is P 
 B (Rd) 
 B (Rp)-measurable. Furthermore,
� (�; �; 0; 0) 2 H 2;2, � is continuously differentiable in (u; x) and there exist constants C�; u and C�; x such that

jr u� (t; !; u; x)j � C�; u and jr x� (t; !; u; x)j � C�; x

hold for any (t; u; x) 2 [0;T] � Rd � Rp a.s..

It is easy to check these conditions in Example 3.2.1.

As a consequence of (H.� ), the dynamics of Xu in (3.2.1) writes as a ODE with Lipschitz-continuous stochastic
coef�cient: the uniqueness and existence stem from the Cauchy existence theorem for ODE, applied ! by ! . In
addition, we easily show

jXu
t j � j x0j +

Z t

0

�
j� (s; 0; 0)j + C�; ujusj + C�; xjXu

s j
�
ds � CT

 

jx0j +
Z t

0

�
j� (s; 0; 0)j + C�; ujusj

�
ds

!

where the second inequality comes from Gronwall's lemma. Then one directly shows that, since u and � (�; 0; 0) are
in H 2;2, Xu is in H 1 ;2 � H 2;2: Then, a careful inspection of the assumptions (H.l)-(H.g)-(H. )-(H.k) shows that it
implies that the cost J (u) is �nite.

3.2.3 Necessary condition for optimality

For admissible controls u and v, we now provide a representation of the derivative

�J (u; v) = @" J (u + " v)j"=0;

using an adjoint process Yu.

Theorem 3.2.2 (Gâteaux derivatives). Let u 2 H 2;2
P and set ḡu

t := E
h
g(t; ut ;Xu

t )
i
. Let L̃u be the unique solution of

L̃u
0 = Idp;

dL̃u
t

dt
= L̃u

t r x� (t; ut ;Xu
t ):

Then L̃u is invertible and its inverse satis�es (see Lemma 3.4.1)

(L̃u
0)� 1 = Idp;

d(L̃u
t )� 1

dt
= �r x� (t; ut ;Xu

t )(L̃u
t )� 1:

De�ne also Lu := ((L̃u)� 1)> . The following Rp-valued process Yu is well de�ned as a c �adl �ag process in H 1 ;2:

Yu
t = E t

"

(L̃u
t )� 1L̃u

T

 

r x 
�
Xu

T;E
h
k(Xu

T)
i�

+ r xk(Xu
T)E

h
r k̄ 

�
Xu

T;E
h
k(Xu

T)
i�i !#

+ E t

"Z T

t
(L̃u

t )� 1L̃u
s

 

r xl(s; us;Xu
s ; ḡu

s) + r xg(s;us;Xu
s )E

h
r ḡl(s; us;Xu

s ; ḡu
s)

i !

ds

#

: (3.2.4)
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In particular, there exists a Rp-valued c�adl �ag martingale Mu in H 1 ;2, vanishing at time 0, such that (Yu;Mu) is the
unique solution in H 1 ;2 � H 1 ;2 of the following BSDE in (Y;M):

� dYt =
�
r x� (t; ut ;Xu

t )Yt + r xl(t; ut ;Xu
t ; ḡu

t ) + r xg(t; ut ;Xu
t )E

h
r ḡl(t; ut ;Xu

t ; ḡu
t )

i �
dt � dM t ;

YT = r x 
�
Xu

T;E
h
k(Xu

T)
i�

+ r xk(Xu
T)E

h
r k̄ 

�
Xu

T;E
h
k(Xu

T)
i�i

: (3.2.5)

Besides, for any u; v 2 H 2;2
P , the directional derivative �J (u; v) exists and is given by

�J (u; v) = E

"Z T

0

�
lu(t; ut ;Xu

t ; ḡu
t ) + E

h
l ḡ(t; ut ;Xu

t ; ḡu
t )

i
gu(t; ut ;Xu

t ) + (Yu
t� )> � u(t; ut ;Xu

t )
�
vtdt

#

:

The proof is postponed to Subsection 3.4.1. At the optimal control u (whenever it exists), the above derivative
�J (u; v) must be 0, in any direction v 2 H 2;2

P . Take for instance v given by:

8 2 [0;T]; vt := lu(t; ut ;Xu
t ; ḡu

t ) + E
h
l ḡ(t; ut ;Xu

t ; ḡu
t )

i
gu(t; ut ;Xu

t ) + (Yu
t� )> � u(t; ut ;Xu

t );

which ensures that v 2 H 2;2
P under our assumptions. This justi�es the following statement.

Theorem 3.2.3 (Necessary condition for optimality). Under the notations and assumptions of Theorem 3.2.2, if a
control u 2 H 2;2

P is optimal, then there exists a unique couple
�
Xu;Yu

�
2 H 1 ;2 � H 1 ;2 ful�lling (3.2.1) and (3.2.4) such

that

lu(t; ut ;Xu
t ; ḡu

t ) + E
h
l ḡ(t; ut ;Xu

t ; ḡu
t )

i
gu(t; ut ;Xu

t ) + (Yu
t� )> � u(t; ut ;Xu

t ) = 0 (3.2.6)

holds dt 
 dP-a.e.

3.2.4 Solvability of the MKV Forward-Backward SDE

Our aim is now to provide suf�cient conditions to ensure existence of solution to the system of forward-backward
equations (3.2.1)-(3.2.4)-(3.2.6), which we call MKV-FBSDE. For this, we strengthen previous assumptions.

(H.l.2) (H.l) holds and there exist constants Cl � ;? where � stands for x and ḡ, and ? stands for u; x or ḡ such that:

jr xl(t; !; u1; x1; ḡ1) � r xl(t; !; u2; x2; ḡ2)j � Clx;u ju1 � u2j + Clx;xjx1 � x2j + Clx;ḡjḡ1 � ḡ2j;

jr ḡl(t; !; u1; x1; ḡ1) � r ḡl(t; !; u2; x2; ḡ2)j � Cl ḡ;u ju1 � u2j + Cl ḡ;xjx1 � x2j + Cl ḡ;ḡjḡ1 � ḡ2j

holds for any (u1; u2; x1; x2; ḡ1; ḡ2) 2 Rd � Rd � Rp � Rp � Rq � Rq, dt � dP-a.e..

(H.g.2) (H.g) holds and g is af�ne-linear in x, of the form g(t; u; x) = a(g)
t x + b(g)(t; u).

(H. .2) (H. ) holds and there exist constants C � ;? where � and ? stand for x or k̄ such that:

jr x (x1; k̄1) � r x (x2; k̄2)j � C x;xjx1 � x2j + C x;k̄jk̄1 � k̄2j;

jr k̄ (x1; k̄1) � r k̄ (x2; k̄2)j � C k̄;xjx1 � x2j + C k̄;k̄
jk̄1 � k̄2j

holds for any (x1; x2; k̄1; k̄2) 2 Rp � Rp � Rr � Rr , dt � dP-a.e..

(H.k.2) (H.k) holds and k is af�ne-linear in x, of the form k(x) = a(k)x + b(k).

(H.� .2) (H.� ) holds and the dynamic of Xu is af�ne-linear in x, given by � (t; u; x) = a(� )
t x + b(� )(t; u).

Observe again that this set of conditions is consistent with Example 3.2.1. We now aim at establishing the solvability
of the system composed of (3.2.1), (3.2.5) and (3.2.6). We are going to show that this system has a unique solution
for a small enough time horizon T, hence the existence and uniqueness of a solution to the optimal control problem,
under the suf�cient conditions of Theorem 3.2.10.
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Theorem 3.2.4. Assume (H.l.2)-(H.g.2)-(H. .2)-(H.k.2)-(H.� .2) hold. Assume furthermore that there exists a P 

B(Rp) 
 B (Rp) 
 B (Rq) 
 B (Rq)-measurable function h : (t; !; x; y; ḡ; �̄ ) 7! h(t; !; x; y; ḡ; �̄ ) 2 Rd such that

lu(t; ut ;Xu
t ; ḡu

t ) + E
h
l ḡ(t; ut ;Xu

t ; ḡu
t )

i
gu(t; ut ;Xu

t ) + (Yu
t� )> � u(t; ut ;Xu

t ) = 0; dP 
 dt � a:e:

() ut = h
�
t;Xu

t ;Yu
t� ; ḡu

t ;E
h
r ḡl(t; !; ut ;Xu

t ; ḡu
t )

i�
; dP 
 dt � a:e:: (3.2.7)

If h is Lipschitz continuous in (x; y; ḡ; �̄ ), with Lipschitz constants denoted by Ch;x;Ch;y;Ch;ḡ;Ch;�̄ , and if
�
h(t; !; 0; 0; 0;0)

�

(t;! )2P
2

H 2;2
P ,

� :

8
>><
>>:

H 2;2
P ! H 2;2

P

u 7! ũ
;

where

� (u)t := ũt = h
�
t; !; Xu

t ;Yu
t� ; ḡu

t ;E
h
r ḡl(t; ut ;Xu

t ; ḡu
t )

i�
; dP 
 dt � a:e:;

is well de�ned and Lipschitz continuous. If moreover,

Ch;ḡCg;u + Ch;�̄

�
Cl ḡ;u + Cl ḡ;ḡCg;u

�
< 1; (3.2.8)

then for T small enough, � is a contraction and therefore has a unique �xed point u? . In that case, there exists a
unique u 2 H 2;2

P satisfying (3.2.1)-(3.2.5)-(3.2.6) and u = u? .

The proof is available in Subsection 3.4.2. Regarding the proof of a �xed point when the time interval [0;T]
is arbitrary large, observe that, as a difference with [PT99] and [DG06] for instance, in our setting we cannot rely
on a monotony condition of the drifts, nor a non-degeneracy condition. This is why we shall restrict to small time
condition.

Remark 3.2.5. If one can exhibit a P 
 B (Rp) 
 B (Rp) 
 B (Rq) 
 B (Rq)-measurable function h such that for all
(ũ; x; y; ḡ; �̄ ) 2 Rd � Rp � Rp � Rq � Rq:

dP 
 dt � a:e:; lu(t; !; ũ; x; ḡ) + �̄ > gu(t; !; ũ; x) + y> � u(t; !; ũ; x) = 0

() dP 
 dt � a:e:; ũ = h
�
t; !; x; y; ḡ; �̄

�
;

then (3.2.7) is satis�ed with the same function h.

3.2.5 Existence and uniqueness of critical point do not necessarily imply existence of a
minimum

If there exists a unique solution to the �rst order optimality condition (unique critical point), and under other as-
sumptions like continuity, growth properties, it is tempting to conclude that this point is a minimum. However, this
is not necessarily the case in in�nite dimension. This section aims at clarifying this fact by providing an example 2

where continuity, coercivity and unique critical point are ensured, but without existence of minimum. Therefore, extra
conditions are necessary to get the existence of a minimum, see later the discussion in Section 3.2.6.

Proposition 3.2.6. Set

F :

8
>>><
>>>:

L 2
1 := L 2([0; 1];R) 7! R

u 7! (kuk2
L 2

1

� 1)2 +
R1

0
tjut j2dt:

Then F satis�es the following properties:

2Such examples might exist in the literature, but we have not been able to �nd a reference for this.
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1. Continuity: F is continuous

2. Coercivity: F(u) tends to +1 when kukL 2
1

tends to +1

3. Existence and uniqueness of critical point: F is Gateaux-differentiable and has a unique critical point.

However, F does not have a minimum.

The proof is postponed to Subsection 3.4.3. The function F de�ned in this example cannot be quasi-convex (and
a fortiori F cannot be convex), since it would then have a minimum, as stated in the next section.

3.2.6 Existence of an optimal control

We now give suf�cient conditions for the existence of an optimal control, i.e. existence of a minimizer of J . In such
a favorable case, and if the necessary optimality conditions (3.2.1)-(3.2.4)-(3.2.6) have a unique solution u� , then u�

is the unique minimum of J . We start with a general result.

Theorem 3.2.7. Let E be a re�exive Banach space, let F : E ! R be a lower semi-continuous, quasi-convex function
which satis�es the coercivity condition lim kukE! +1 F(u) = + 1 : Then F has a minimum on E.

Proof. We adapt the arguments of [Bre10a, Corollary 3.23, pp. 71], where the operator considered is assumed to
be continuous and convex. However, the hypothesis can be relaxed to lower semi-continuity and quasi-convexity
of the function F, since we only need closedness and convexity of the sub-level sets � (F)

� := fu 2 EjF(u) � � gfor all
� 2 R. �

Let us add a few comments. In the �nite dimensional case, any lower semi-continuous and coercive function
has a minimum (since any closed and bounded set is compact). In the in�nite dimensional case, the example in
Subsection 3.2.5 illustrates that this may be not the case without the quasi-convexity assumption. Besides, note
that without the coercivity condition, the existence of minimum may not hold, even in �nite dimension (take E = R
and F(x) = exp(x)). Moreover, without the lower semi-continuity of F, the result may fail as well (take F : (�1 ; 0] 7! R
de�ned by F(x) = jxj1x<0 + 1x=0, which is coercive and convex).

Apply the previous result with E = H 2;2 and F = J : E is an Hilbert space, thus a re�exive Banach space. The
functional J is continuous, hence lower semi-continuous. Therefore, we have proved the following.

Corollary 3.2.8. Assume that J de�ned in (3.2.2) is quasi-convex and that lim kukH 2;2 ! +1 J (u) = + 1 : Then the
optimal control problem has a solution u� 2 H 2;2

P .

3.2.7 Suf�cient condition for optimality

Let us now give conditions under which the necessary optimality conditions are suf�cient. Additionally to ( H.x)-
(H.g)-(H.l)-(H.k)-(H. )-(H.� ), we assume the following conditions.

(Conv)

1. The mapping T :

8
>><
>>:

L 2

 ! R

X 7! E
�
 (X;E [k(X)])

� is convex.

2. The mapping I :

8
>><
>>:

H 2;2
P � H 1 ;2 ! R

(ũ;X) 7!
RT

0
E

�
l
�
t; ũt ;Xt ;E

�
g(t; ũt ;Xt)

���
dt

is convex.

3. The mapping: � :

8
>><
>>:

[0;T] � Rd � Rp ! Rp

(t; u;X) 7! � (t; u;X)
is af�ne-linear in (u;X).

Lemma 3.2.9. Under (Conv) , J is convex. If furthermore, I is strictly convex in ũ, or I is strictly convex in X and
� u has full column rank (which implies p � d) for almost every t in [0;T], then J is strictly convex.
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Proof. Under the assumption on � , u 7! Xu is af�ne-linear. This yields the �rst result using the fact that a compo-
sition of an af�ne-linear function by a convex function is convex. If I is strictly convex in u then so is J . If � u has
full column rank, u 7! Xu is an af�ne-linear injection and if besides I is strictly convex in X, we get that J is strictly
convex. �

Let us emphasize the difference with usual stochastic maximum principle (when distributions do not enter in the
cost functions). In that case, i.e. without the dependence w.r.t. E

�
g(t; ũt ;Xt)

�
of the running cost and w.r.t. E [k(X)]

of the terminal cost, the suf�cient optimality condition is the af�ne-linearity in (u;X) of � , the point-wise convexity in
(u; x) of

(t; u; x) 7! l(t; u; x);

for any t and the point-wise convexity of  in x.
In the current MKV setting, it would be tempting to require:

� : (t; u; x) 7! l(t; u; x;E
�
g(t; u; x)

�
)

to be convex in (u;X) 2 L 2

 � L 2


 for any t and

X 7!  (X;E [k(X)])

to be convex in X in L 2

 . However, even for the simple linear-quadratic case with d = p = q = 1, i.e.

l(t; u; x; ḡ) = (1 + � )u2 � � ḡ2; g(t; u; x) = u; � (t; u; x) = u;  = 0;

with parameter � > 0, this fails to be true. Indeed, denoting � (u) = � (t; u; x), we get:

�
� u1 + u2

2

�
�

1
2

(� (u1) + � (u2)) =
1
4

�
� (E [u1 � u2])2 � (1 + � )(u1 � u2)2

�
:

Now if u1 is a Bernoulli random variable with parameter 1
2, and u2 = � u1, then on the set f! : u1(! ) = u2(! ) = 0g

of positive probability, the above equals �
4 > 0, which violates the convexity condition for these ! . On the contrary,

E
h
� ( u1+u2

2 ) � � (u1)+� (u2)
2

i
� 0 for � � 0, and it is easy to see that E [� (u)] is convex in u, for such � . This discussion

clari�es better why the correct convexity condition for the integrated Hamiltonian I or the point-wise one H is in
expectation and not ! -wise, as stated in (Conv) .

We now summarize all the results for having existence and uniqueness of an optimal stochastic control. This is
one of the main results of this section.

Theorem 3.2.10. Assume (H.x)-(H.g)-(H.l)-(H.k)-(H. )-(H.� )-(Conv) hold.

1. If J de�ned in (3.2.2) satis�es the coercivity condition:

lim
kukH 2;2 ! +1

J (u) = + 1 ;

then there exists an optimal control u? 2 H 2;2
P , i.e. a minimum of J on H 2;2

P .

2. u? is an optimal control for the problem (3.2.2) if and only if there exists (X? ;Y? ) 2 H 1 ;2 � H 1 ;2 such that
(u? ;X? ;Y? ) ful�lls (3.2.1)-(3.2.5)-(3.2.6).

3. If J is strictly convex, then it admits at most one minimizer.

Proof. 1. This is a direct consequence of Theorem 3.2.8 and Lemma 3.2.9.
2. If (u? ;Xu?

;Yu?
) satis�es (3.2.1)-(3.2.5)-(3.2.6), then �J (u? ; v) = 0 for any v 2 H 2;2

P according to Theorem 3.2.2.

Besides, under our assumptions, J is convex and therefore, for all v 2 H 2;2
P and t 2 (0;1],

J (v) � J (u? ) �
J (u? + t(v � u? )) � J (u? )

t
:

By taking the limit when t ! 0, we obtain J (v) � J (u? ) � �J (u? ; v � u? ) = 0; hence the optimality of u? . The direct
implication ) has been established in Theorem 3.2.3. �
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3.3 Effective computation and approximation of battery control

3.3.1 Model/Context

For simplicity, we assume one-dimensional processes (p = q = r = 1), but the results can be easily extended to any
dimension, since the arguments are based on the solution of Linear-Quadratic FBSDE, which are well known (see
[Yon06]). Let us consider the following toy problem:

min
u2H 2;2

P

E

"Z T

0

(

Ct� Pgrid ;u
t� +

�

2
u2

t +
�
2

�
Xu

t �
1
2

� 2

+ l
�
Pgrid ;u

t� � E
h
Pgrid ;u

t�

i� )

dt +


2

�
Xu

T �
1
2

� 2#

s.t.

8
>><
>>:

Xu
t = x � 1

Emax

Rt

0
usds;

Pgrid ;u
t� = Pload

t� � ut :

This model is the same as the one presented in the introduction and has the same interpretation. We consider the
following hypothesis:

(Toy)

1. The parameters �; �; 
 are deterministic and satisfy � > 0, � � 0, 
 � 0.

2. The mapping l is deterministic, convex, continuously differentiable with the growth condition jl0(x)j � Cl;x(1+ jxj)
for all x, for some constant Cl;x > 0.

3. Pload 2 H 2;2, C 2 H 2;2 are F-adapted and c�adl �ag.

Under assumptions (Toy) , (H.x)-(H.g)-(H.l)-(H.k)-(H. )-(H.� )-(Conv) hold. Besides, one can show the strict con-
vexity of J . Then, it remains to apply Theorem 3.2.10 to conclude the following.

Proposition 3.3.1. Under assumptions (Toy) , there exists a unique optimal control u 2 H 2;2
P . Besides, there exist

unique processes Xu 2 H 1 ;2 and Yu 2 H 1 ;2 such that (u;Xu;Yu) satis�es the following McKean-Vlasov Forward
Backward SDE:

8
>>>>><
>>>>>:

Xu
t = x � 1

Emax

Rt

0
usds;

Yu
t = E t

�RT

t
� (Xu

s � 1
2)ds+ 


�
Xu

T � 1
2

� �
;

� ut � Ct� � l0
�
Pload

t� � ut � E
h
Pload

t� � ut

i�
+ E

h
l0

�
Pload

t� � ut � E
h
Pload

t� � ut

i�i
=

Yu
t�

Emax
:

(3.3.1)

Although we can derive speci�c results for the control problem under assumption ( Toy) (see Propositions 3.3.1
and 3.3.4), solving explicitly the system (3.3.1) remains dif�cult for general convex l. To get approximation results,
we consider a speci�c form of l.

(ToyBis) The mapping l is given by l(x) := �
2 x2 + " (� +� )

2 (x+ )2 with � � 0, j" j < 1.

From the application point of view, we remind that we want to penalize more consumption excess (compared to
the commitment) than consumption de�cit. The asymmetry parameter " should thus be taken non-negative. Under
assumptions (Toy) and (ToyBis) , the last equation in (3.3.1) writes:

(� + � )ut � � E [ut ] � Ct� � � (Pload
t� � E

h
Pload

t�

i
) � " (� + � )

�
Pload

t� � ut � E
h
Pload

t� � ut

i�

+

+ " (� + � )E
h�

Pload
t� � ut � E

h
Pload

t� � ut

i�

+

i
=

Yu
t�

Emax
:

We now provide a �rst order expansion of the solution of this problem with respect to the parameter " ! 0.
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3.3.2 Computation of �rst order expansion

Preliminary result

The computation of a �rst order expansion of the solution of the MKV FBSDE (3.3.1) will rely extensively on the
following result.

Proposition 3.3.2. Let a;b; c; e; f; g be deterministic real parameters with a > 0, g > 0, b � 0 and e� 0. Let (ht)t be a
stochastic process in H 2;2

P and x0 2 L 2(
 ) be F0-measurable. De�ne:

� t :=

8
>>><
>>>:

1
2

�
1 + e

q
ag
b

�
exp(

p
abg(T � t)) + 1

2

�
1 � e

q
ag
b

�
exp(

p
abg(t � T)) if b > 0;

eag(T � t) + 1 i f b = 0;
(3.3.2)

pt := �
d� t

dt
1

ag� t
; (3.3.3)

� t =
1
� t

 

f �
Z T

t
(apsE t [hs] � c)� sds

!

: (3.3.4)

De�ne x, y and v by:
8
>>>>><
>>>>>:

xt = x0
� t
� 0

�
Rt

0
(ag� s + ahs)

� t
� s

ds;

yt = ptxt + � t ;

vt = gptxt + g� t� + ht :

(3.3.5)

Then (x; y; v) is a solution in H 1 ;2 � H 1 ;2 � H 2;2
P of the Forward-Backward system:

8
>>>>><
>>>>>:

xt = x0 �
Rt

0
avsds;

yt = E t

�RT

t
(bxs + c)ds+ exT + f

�
;

vt = gyt� + ht :

(3.3.6)

Besides, for T small enough, this solution to (3.3.6) is the unique one in H 1 ;2 � H 1 ;2 � H 2;2
P .

The proof is postponed to Subsection 3.4.4.

Remark 3.3.3. Uniqueness of the solution of the FBSDE (3.3.6) could be proved for arbitrary time horizon T, using
the fact that (3.3.6) characterizes the solution of a (linear-quadratic) stochastic control which has a unique solution
(as the associated cost function is continuous, convex and coercive [Bre10a, Corollary 3.23, pp. 71]).

Average processes

We introduce the following notations for the average (in the sense of expectation) of the solutions of (3.3.1):

ū := E [u]; X̄ := E [Xu]; Ȳ := E [Yu]; C̄:= E [C]:

By taking the expectation in (3.3.1), we immediately get the following simple but remarkable result: the average
processes do not depend on l.

Proposition 3.3.4. Assume (Toy) , (ū; X̄; Ȳ) solves
8
>>>>><
>>>>>:

X̄t = E [x] � 1
Emax

Rt

0
ūsds;

Ȳt =
RT

t
� (X̄s � 1

2)ds+ 

�
X̄T � 1

2

�
;

ūt = Ȳt�
� Emax

+ C̄t�
� :

(3.3.7)

In particular, (ū; X̄; Ȳ) does not depend on l.

Note that the FBSDE (3.3.7) is explicitly solvable, as a particular case of Equation (3.3.6) with x0 := x, a = 1
Emax

,

b = � , c = � �
2, e= 
 , f = � 


2 , g = 1
� Emax

and ht = C̄t�
� .
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Notations

From now on, assume that (Toy) and (ToyBis) hold. From Proposition 3.3.4, (ū; X̄; Ȳ) does not depend on " . We
denote the processes u, Xu and Yu by u(" ), X(" ) and Y(" ) respectively to insist on the dependency w.r.t. the parameter
" . (u(" );X(" );Y(" )) satis�es (3.3.1) with l0(x) = � x + " (� + � )x+ .

For the ease of the proofs, let us de�ne the recentered processes

u� ;(" ) := u(" ) � ū; X � ;(" ) := X(" ) � X̄; Y� ;(" ) := Y(" ) � Ȳ;

Pload ;� := Pload � E
h
Pload

i
; C� := C� E [C]:

Then, (u� ;(" );X � ;(" );Y� ;(" )) satis�es:
8
>>>>>><
>>>>>>:

X � ;(" )
t = x � E [x] � 1

Emax

Rt

0
u� ;(" )

s ds;

Y� ;(" )
t = E t

�RT

t
� X � ;(" )

s ds+ 
 X � ;(" )
T

�
;

� u� ;(" )
t � C�

t� � �
�
Pload ;�

t� � u� ;(" )
t

�
� " (� + � )

�
Pload ;�

t� � u� ;(" )
t

�

+
+ " (� + � )E

h�
Pload ;�

t� � u� ;(" )
t

�

+

i
=

Y� ;(" )
t�

Emax
:

(3.3.8)

We now seek a �rst order expansion of the solution of (3.3.1) w.r.t. " , as " ! 0, and equivalently, as the average
processes do not depend on " (see Proposition 3.3.4), we will perform it for the recentered processes, by showing

u� ;(" ) = u� ;(0) + " �u + o(" ); X � ;(" ) = X � ;(0) + " �X + o(" ); Y� ;(" ) = Y� ;(0) + " �Y + o(" );

where �u, �X and �Y are suitable processes in H 2;2
P � H 2;2 � H 2;2 (independent of " ) and the convergence o(" )=" ! 0

as " ! 0 holds in H 2;2-norm.

Proposition 3.3.5. Assume (Toy) and (ToyBis) . Then (u� ;(0);X � ;(0);Y� ;(0)) satis�es:
8
>>>>>><
>>>>>>:

X � ;(0)
t = x � E [x] � 1

Emax

Rt

0
u� ;(0)

s ds;

Y� ;(0)
t = E t

�RT

t
� X � ;(0)

s ds+ 
 X � ;(0)
T

�
;

u� ;(0)
t =

Y� ;(0)
t�

(� +� )Emax
+

C�
t� +� Pload ;�

t�
� +� :

(3.3.9)

Observe that the FBSDE (3.3.9) is known in a closed form, as a particular case of Equation (3.3.6) with x0 :=

x � E [x], a = 1
Emax

, b = � , c = 0, e= 
 , f = 0, g = 1
(� +� )Emax

and ht =
C�

t� +� Pload ;�
t�

� +� .

Proposition 3.3.6. Assume (Toy) and (ToyBis) . De�ne the �nite differences

�u(" ) :=
u� ;(" ) � u� ;(0)

"
; �X(" ) :=

X � ;(" ) � X � ;(0)

"
; �Y(" ) :=

Y� ;(" ) � Y� ;(0)

"
;

which solve
8
>>>>>><
>>>>>>:

�X(" )
t = � 1

Emax

Rt

0
�u(" )
s ds;

�Y(" )
t = E t

�RT

t
� �X(" )

s ds+ 
 �X(" )
T

�
;

�u(" )
t =

�Y(" )
t�

(� +� )Emax
+

�
Pload ;�

t� � u� ;(" )
t

�

+
� E

h�
Pload ;�

t� � u� ;(" )
t

�

+

i
:

(3.3.10)

Besides, for small enough time horizon T, ( �u(" ); �X(" ); �Y(" )) is uniformly bounded in H 2;2
P � H 2;2 � H 2;2 as " ! 0.

De�ne ( �u; �X; �Y) as a solution (unique when T is small enough) to
8
>>>>>><
>>>>>>:

�Xt = � 1
Emax

Rt

0
�usds;

�Yt = E t

�RT

t
� �Xs + 
 �XTds

�
;

�ut =
�Yt�

(� +� )Emax
+

�
Pload ;�

t� � u� ;(0)
t

�

+
� E

h�
Pload ;�

t� � u� ;(0)
t

�

+

i
:

(3.3.11)

Then, for small enough time horizon T, the �nite differences ( �u(" ); �X(" ); �Y(" )) are close (at order 1 in " ) to ( �u; �X; �Y):

k �u(" ) � �ukH 2;2
P

+ k �X(" ) � �XkH 2;2 + k �Y(" ) � �YkH 2;2 = O(" ):
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The proof is postponed to Subsection 3.4.5. Note again that the FBSDE (3.3.11) is explicitly solvable, as a
particular case of Equation (3.3.6) with x0 := 0, a = 1

Emax
, b = � , c = 0, e = 
 , f = 0, g = 1

(� +� )Emax
and ht =

�
Pload ;�

t� � u� ;(0)
t

�

+
� E

h�
Pload ;�

t� � u� ;(0)
t

�

+

i
.

Collecting all the previous results, we get the following theorem, which fully characterizes the �rst order expansion
of the solution to the control problem.

Theorem 3.3.7. Assume (Toy) and (ToyBis) hold. For small enough time horizon T, the unique solution (u(" );X(" );Y(" ))
in H 2;2

P � H 2;2 � H 2;2 of (3.3.1) can be expanded at �rst order w.r.t. " (with error of second order as " ! 0):

u(" ) = ū + u� ;(0) + " �u + O(" 2); X(" ) = X̄ + X � ;(0) + " �X + O(" 2); Y(" ) = Ȳ + Y� ;(0) + " �Y + O(" 2);

where errors O(" 2) are measured in H 2;2-norm, with (ū; X̄; Ȳ) solution of (3.3.7), (u� ;(0);X � ;(0);Y� ;(0)) solution of (3.3.9)
and ( �u; �X; �Y) solution of (3.3.11).

We shall emphasize that all terms in these expansions are solutions of FBSDEs of the form (3.3.6) for different
input parameters (see Table 3.1) and thus they are explicitly solvable.

For other problems with more regularity (notice that x 7! (x+ )2 is not twice continuously differentiable), the
previous approach could actually be extended to a second order expansion or even higher order, but it would lead
to more and more nested FBSDEs: on the mathematical side, there is no hard obstacle to derive these equations
under appropriate regularity conditions. The concerns would be rather on the computational side since it would
require larger and larger computational time.

3.3.3 Effective simulation of �rst order expansion of optimal control

Models for random uncertainties

We assume the electricity price Cis constant (C̄= Cand C� = 0), and we suppose Pload is given by Pload = Pcons � Psun,
where Pcons and Psun are two independent scalar SDEs3, representing respectively the consumption and the photo-
voltaic power production. For the consumption Pcons, we use the jump process:

dPcons
t = � � cons(Pcons

t � pcons;ref
t )dt + hconsdNcons

t ; (3.3.12)

where Ncons is a compensated Poisson Process with intensity � cons. Regarding the PV production, we follow
[Bad+18] by setting Psun = Psun;maxXsun where Psun;max : [0;T] 7! R is a deterministic function (the clear sky model) and
Xsun solves a Fisher-Wright type SDE which dynamics is

dXsun
t = � � sun(Xsun

t � xsun;ref
t )dt + � sun(Xsun

t )� (1 � Xsun
t )� dWt ; (3.3.13)

with �; � � 1=2. As proved in [Bad+18], there is a strong solution to the above SDE and the solution Xsun takes values
in [0;1].

Since the drifts are af�ne-linear, the conditional expectation of the solution is known in closed forms (this property
is intensively used in [BSS05]):

E t
�
Psun

s
�

=

 
Psun

t

Psun;max
t

exp(� � sun(s � t)) +
Z s

t
� sunxsun;ref

� exp(� � sun(s � � ))d�

!

Psun;max
s ; (3.3.14)

E t
�
Pcons

s
�

= Pcons
t exp(� � cons(s � t)) +

Z s

t
� conspcons;ref

� exp(� � cons(s � � ))d�; (3.3.15)

for s � t. This will allow us to speed up computations of the conditional expectations E t

h
Pload

s

i
as required when

deriving the optimal control.
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Algorithm 3.1 Sample of a path of (x; y; v), solution of (3.3.6)

1: Inputs: x0 2 L 2

 ; a > 0;b � 0; c 2 R;e� 0; f 2 R; g > 0;h 2 H 2;2

P , NT > 0
2: Sample x0 and set X(0)  x0. Set � = T

NT
.

3: for n = 0; :::;NT � 1 do
4: Compute the conditional expectations (En� [hs])n� � s� T

5: Compute � (n� ) by numerical integration, as given in (3.3.4)
6: Compute p(n� ) as in (3.3.3)
7: v(n� )  gp(n� )X(n� ) + g� (n� ) + h(n� )
8: x((n + 1)� )  x(n� ) � av(n� )�
9: end for

10: return (x; y; v)

FBSDE Parameters

Proposition 3.3.2 is repeatedly used to solve the af�ne-linear FBSDEs ( ū; X̄; Ȳ),
(u� ;(0);X � ;(0);Y� ;(0)) and ( �u; �X; �Y) arising in the �rst order expansion of the optimal control w.r.t. " (see Theorem
3.3.7). In Algorithm 3.1 we give the pseudo-code of the scheme used to compute solutions of the FBSDE of the
form (3.3.6).

In Table 3.1, we give the correspondence between the input parameters (a;b; c; d; e; f; g; ht) for the generic FB-
SDE of Proposition 3.3.2 and the parameters de�ning the 3 FBSDEs. Merged columns indicate common values
of parameters. As the data involved in the system de�ning (ū; X̄; Ȳ) is deterministic, one only needs to perform

(ū; X̄; Ȳ) (u� ;(0);X � ;(0);Y� ;(0)) ( �u; �X; �Y)

a 1
Emax

b �

c � �
2 0

e 


f � 

2 0

g 1
� Emax

1
(� +� )Emax

ht
C̄t�
�

C�
t� +� Pload ;�

t�
� +�

�
Pload ;�

t� � u� ;(0)
t

�

+
� E

h�
Pload ;�

t� � u� ;(0)
t

�

+

i

Table 3.1: Table of parameters needed to compute the expansion terms

numerical integrations to compute � and therefore (ū; X̄; Ȳ). For (u� ;(0);X � ;(0);Y� ;(0)) and ( �u; �X; �Y), it becomes a bit
more involved. Let us provide some details on the implementation.

ˆ For the computation of (u� ;(0);X � ;(0);Y� ;(0)), the conditional expectations (En� [hs])n� � s� T are given by af�ne-linear
combinations of Pcons

n� and Psun
n� with deterministic coef�cients, depending on s and n, by assumption on our

models for Pcons and Psun (see (3.3.14)-(3.3.15)). Therefore, � (n� ) is also given by an af�ne-linear combination
of Pcons

n� and Psun
n� with deterministic coef�cients. This allows to speed up Steps 4 and 5 in Algorithm 3.1.

ˆ For the computation of ( �u; �X; �Y), the conditional expectations
�
En�

h�
Pload ;�

s � u� ;(0)
s

�

+

i�

n� � s� T
at Step 4 is esti-

mated by Monte-Carlo methods. The procedure for doing so is given in Algorithm 3.2. This Step 4 has a
complexity of order O((NT � n)M0), which is the most costly Step in the loop of Algorithm 3.1; hence sampling
( �u; �X; �Y) has a computational cost of order O(N2

TM0).

3we consider Brownian SDEs for simplicity, but note that the current setting allows more general processes.
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Algorithm 3.2 Evaluation of
�
En�

h�
Pload ;�

s � u� ;(0)
s

�

+

i�

s=n�;:::;NT �

1: Inputs: n < NT, X � ;(0)
n� , Psun

n� , Pload
n� , M0 > 0

2: Initialization: (R[n];R[n + 1]; :::;R[NT])  (0; 0; :::;0).
3: Compute u� ;(0)(n� ) using a similar procedure as in Algorithm 3.1.
4: R[n]  

�
Pload ;�

n� � u� ;(0)
n�

�

+
.

5: for m = 1; :::;M0 do
6: for k = n + 1; :::;NT do
7: Sample (Pcons

k� ;Psun
k� ) conditionally to (Pcons

(k� 1)� ;Psun
(k� 1)� ) using (3.3.12)-(3.3.13), independently from all other ran-

dom variables simulated so far.
8: Compute u� ;(0)

k� with Steps 5 to 8 of Algorithm 3.1 with the data of the FBSDE (3.3.9). Compute X � ;(0)
k� .

9: R[k]  R[k] + 1
M0

�
Pload ;�

k� � u� ;(0)
k�

�

+
10: end for
11: end for
12: return (R[n];R[n + 1]; :::;R[NT])

Numerical values of parameters

We report the values chosen for the next experiments.

Parameters for smart grid. We consider the following values for the time horizon, the size of the storage system and
the initial value of its normalized state of charge.

Parameter T Emax x0

Value 24 h 200kWh 0:5

Parameters for uncertain consumption/production. The following table gives the values of the parameters used in
the modeling of the underlying exogenous stochastic processes impacting the system.

Psun � sun 0:75h� 1

xsun;ref
t 0:5

� sun 0:8

� 0:8

� 0:7

Psun;max see Figure 3.2a

Pcons � cons 0:9h� 1

pcons;ref see Figure 3.2b

hcons 5 kW

� cons 0:5 h� 1

In Figure 3.2, we plot the time-evolution of the deterministic functions Psun;maxand pcons;ref , 10 independent sam-
ples of processes Psun and Pcons, and the time-evolution of quantiles (computed with M1 = 100000i.i.d. simulations).

Parameters of input data and optimization problem. The values of the parameters of the optimization problem are
chosen such that:

1. the state of charge of the battery remains close to a reference level, which we set to 0:5,

2. we observe a clear reduction of the random �uctuation of Pgrid on the time interval.
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(a) Time evolution of Psun;max, accounting for clear sky model (b) Time evolution of pcons;ref , accounting for intraday peaks

(c) Example trajectories of Psun (d) Example trajectories of Pcons

(e) Time evolution of quantiles of Psun (f) Time evolution of quantiles of Pcons

Figure 3.2: Graphical statistics of the evolution of Psun and Pcons

The following table gives the values of the parameters of the cost functional of the control problem.

Parameter " � � � 
 C

Value 0:2 0:49 0:01 0:1 500 0:27

Unit - euros.kW� 2.h� 1 euros.kW� 2.h� 1 euros.h� 1 euros euros.kW.h� 1

Time discretization. The average processes (ū; X̄) are computed explicitly (up to numerical integration), while the
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recentered processes (u� ;(0);X � ;(0)) and �rst order correction processes ( �u; �X) are computed using discretization
schemes (detailed in Algorithms 3.1 and 3.2) with time-step equal to 0:5h.

Monte-Carlo simulations. To compute the �rst order correction, we need Monte-Carlo estimations, as explained in
Algorithm 3.2. We choose M0 = 4000. For assessing the statistical performances of the optimal control associated
to a symmetric loss function (" = 0), we consider M1 = 100000macro-runs. Among those M1 trajectories, we only
consider the �rst M2 = 4000trajectories for the computation of the �rst order corrections associated to " = 0:2.

Results from the experiments

Computational time. The simulations have been performed on Python 3.7, with an Intel-Core i7 PC at 2.1 GHz with
16 Go memory. We have computed the optimal control associated to a symmetric penalization of deviations of Pgrid

from its average (" = 0) and for M1 = 100000i.i.d. simulations, which takes about 3 seconds. The computation of
the �rst order correction when " = 0:2 for M2 = 4000i.i.d. simulations takes about 80 minutes.

(a) Without �exibility

(b) With controlled �exibility ( " = 0) (c) With controlled �exibility ( " = 0:2)

Figure 3.3: Quantiles of Pgrid as a function of time

Reduction of �uctuations. We plot the time-evolution of quantiles (see Figure 3.3) of the power supplied by the
network in 3 cases: using no �exibility, with optimal control of the battery with " = 0, and with the approximated
optimal control associated to " = 0:2 respectively. The comparison of the �rst graph with the two others shows that
the quantiles are much closer to each other in the case of storage use, meaning that the variability of the power
supplied by the grid has been much reduced, as expected. However, the difference between the optimal control with
symmetric and asymmetric loss functions is not much visible on these plots.

65



CHAPTER 3. DAY-AHEAD COMMITMENT

Figure 3.4: Time evolution of quantiles of deviations Pgrid � E
h
Pgrid

i

Impact of �rst order correction. Overall, the effect of the �rst order correction �u (which has theoretically an average
value of 0), is to lower the probability of large upper deviations of Pgrid from its expectation. This is quite visible if
we plot the time-evolution of quantiles of the deviations Pgrid (t) � E

h
Pgrid (t)

i
for the case " = 0, in green in Figure

3.4, refered as ”LQ” and " = 0:2, in red, refered as ”First Order Correction”. In Figure 3.4, we have represented from
top to bottom, the quantiles of Pgrid (t) � E

h
Pgrid (t)

i
associated to levels 99%, 95%, 80%, 50%, 20%, 5% and 1%. We

observe that the empirical estimations of the lower quantiles are left unchanged, while the upper quantiles 99%and
95%have been notably decreased, which was the effect sought by the choice of this loss function. To have a even
more clear visualization of the change of distribution of the deviations Pgrid � E

h
Pgrid

i
, we have represented the

empirical histograms of Pgrid (T) � E
h
Pgrid (T)

i
for both cases " = 0 in Figure 3.5a (M1 = 100000i.i.d. simulations) and

" = 0:2 in Figure 3.5b (M2 = 4000i.i.d. simulations). Observe that the impact of the �rst order term is to break the
symmetry of the distribution around 0, and to reduce the probability of the highest values of Pgrid (T) � E

h
Pgrid (T)

i
.

These results suggest that we have reached our goal of reducing the probability of high upper deviations of Pgrid

from its average.

(a) Symmetric penalization (" = 0) (b) Asymmetric penalization (" = 0:2)

Figure 3.5: Empirical histograms of deviations Pgrid (T) � E
h
Pgrid (T)

i

Distribution of state of charge of the battery. As the �rst order correction term has only minor impact on the distribu-
tion of the state of charge of the storage system, we only consider the case with " = 0 in this paragraph. Figure 3.6
shows the time-evolution of the quantiles 95%, 50%, 5% of the state of charge of the battery with " = 0 (computed
using M1 = 100000i.i.d. simulations) for several initial conditions on the state of charge of the battery, namely
x0 = 0:75, x0 = 0:5 and x0 = 0:25. What we observe is that independently on the initial condition chosen, the state of
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charge remains between 0:15 and 0:75 with high probability. Besides, the terminal distribution of the state of charge
is quite independent from the initial condition: the terminal values of the quantiles (levels 95%, 50%, 5%) of the state
of charge are almost the same, for all initial conditions x0 = 0:75, x0 = 0:5 and x0 = 0:25. This is presumably due to
the term in the cost functional which penalizes the deviations of state of charge from a medium value (here 1=2).

Figure 3.6: Time evolution of the empirical quantiles 95%, 50%, 5% of the state of charge of the storage system

Simulation-based bound on approximation error of �rst order expansion. Following the proof of Proposition 3.3.6,
with our choice of parameters, we obtain an upper bound on the error in the approximation of the optimal control
u(" ):

ku(" ) � ū � u� ;(0) � " �ukH 2;2 = "k �u(" ) � �ukH 2;2

�
4" 2

(1 � � (T))(1 � � (T) � 2" )
k(Pload ;� � u� ;(0))+kH 2;2:

We would like to obtain a bound on the relative error committed
ku(" )� ū� u� ;(0)� " �ukH 2;2

ku(" )kH 2;2
. To do this, we have by triangular

inequality:

ku(" ) � ū � u� ;(0) � " �ukH 2;2

ku(" )kH 2;2
�

ku(" ) � ū � u� ;(0) � " �ukH 2;2
���kū + u� ;(0) + " �ukH 2;2 � k u(" ) � ū � u� ;(0) � " �ukH 2;2

���

�
4" 2

(1 � � (T))(1 � � (T) � 2" )
k(Pload ;� � u� ;(0))+kH 2;2

���kū + u� ;(0) + " �ukH 2;2 � k u(" ) � ū � u� ;(0) � " �ukH 2;2

���

�
4" 2k(Pload ;� � u� ;(0))+kH 2;2

(1 � � (T))(1 � � (T) � 2" )kū + u� ;(0) + " �ukH 2;2 � 4" 2k(Pload ;� � u� ;(0))+kH 2;2
:

In the last inequality, we used the fact that ku(" ) � ū � u� ;(0) � " �ukH 2;2 is asymptotically small compared to kū + u� ;(0) +
" �ukH 2;2 when " goes to 0, as well as the previous bound on ku(" ) � ū � u� ;(0) � " �ukH 2;2. Hence we obtain an upper bound
which depends only on quantities which can be estimated by simulations in the algorithm. This is very convenient
to assess the relative accuracy of our approximation. The left-hand-side in the last inequality is estimated using the
M2 = 4000simulations of the �rst order expansion and we �nd a value of 0:03. In other words, the relative error is
smaller than 3% when taking the �rst order expansion of the control instead of its true value. Note that we do not
take into account errors due to the time discretization or due to residual noise in the Monte-Carlo estimations.

3.4 Proofs

3.4.1 Proof of Theorem 3.2.2

a) Observe �rst that, in view of (H.� ) and Lemma 3.4.1, L̃u and (L̃u)� 1 are uniformly bounded by a constant dt � dP-
a.e (take A : (t; ! ) 7! r x� (t; !; ut ;Xu

t )). Therefore, and owing to (H.x)-(H.g)-(H.l)-(H.k)-(H. )-(H.� ), the random
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variable inside the conditional expectation de�ning Yu in (3.2.4) is bounded by

� T :=CT

�
C(0)

 + jXu
T j + E [jk(0)j] + E

h
jXu

T j
i�

+ CT

Z T

0

�
C(0)

l (s) + jXu
s j + jusj + E

�
jg(s; 0; 0)j

�
+ E [jusj] + E

�
jXu

s j
�

+ E
h
C(0)

l (s)
i�

ds

for some constant CT depending on the bounds in (H.x)-(H.g)-(H.l)-(H.k)-(H. )-(H.� ). Hence by the Cauchy Schwartz
inequality, for some other constant CT:

E
h
j� T j2

i
� CT

�
E

� �
C(0)

 

� 2
�

+ E
h
jXu

T j2
i

+ E [jk(0)j]2
�

+ CT

Z T

0

�
E

� �
C(0)

l (s)
� 2

�
+ E

�
jg(s; 0; 0)j

�2 + E
h
jusj2

i
+ E

h
jXu

s j2
i �

ds:

Note that this bound is �nite and independent from t (since C(0)
 2 L 2


 , Xu 2 H 1 ;2 � H 2;2, k(0) 2 L 1, C(0)
l 2 H 2;2,

g(�; 0; 0) 2 H 2;1 and u 2 H 2;2). Consequently Yu 2 H 1 ;2.
b) Now observe that, by de�nition of Yu,

Nu
t := L̃u

t Yu
t +

Z t

0
L̃u

s

�
r xl(s; us;Xu

s ; ḡu
s) + r xg(s;us;Xu

s )E
h
r ḡl(s; us;Xu

s ; ḡu
s)

i�
ds = E t

h
Nu

T

i
; (3.4.1)

with Nu
T square integrable (using the same arguments as before) and therefore, Nu is a c �adl �ag martingale in H 1 ;2.

As a by-product, we obtain that Yu is a semi-martingale, which dynamics has now to be identi�ed.
c) To justify that Yu de�ned in (3.2.4) solves the BSDE (3.2.5) for some Mu, left-multiply both sides of (3.4.1)

by (L̃u
t )� 1, then apply the integration by parts formula in [Pro03, Corollary 2, p. 68] to (L̃u)� 1Nu and use the fact

that (L̃u)� 1 is continuous with �nite variations. After reorganizing terms and using that Nu has countable jumps, we
retrieve (3.2.5) with Mu

t :=
Rt

0+ (L̃u
s)� 1dNu

s (which is also a c�adl �ag martingale in H 1 ;2, see [Pro03, Theorem 20 p.63,
Corollary 3 p.73, Theorem 29 p.75]).

d) We now claim that the solution (Y;M) to (3.2.5) is unique in H 1 ;2 � H 1 ;2, and thus given by (Yu;Mu). In fact,
the uniqueness is a classical result for linear BSDE, see for instance [EPQ97, Theorem 5.1 with p = 2] in our context
of general �ltration.

e) Let us now prove the last claim about �J (u; v). We �rst study the differentiability properties of Xu+"v with
respect to " . In the following computations we use different constants which we denote generically by C (although
their values may change from line to line), they do not depend on u; v; " , they only depend on T > 0 and on the
bounds from the assumptions (H.x)-(H.g)-(H.l)-(H.k)-(H. )-(H.� ). At this point of the proof, it is more convenient to
work with Jacobian matrices than with gradients (as in the statement). Only at the very end are we going to make
the link with Yu and go back to the gradient notation.
Set � u

t := (t; ut ;Xu
t ) and let �Xu;v

t be the solution to the following linear equation

�Xu;v
t :=

Z t

0

h
� u(� u

s)vs + � x(� u
s) �Xu;v

s

i
ds =

Z t

0
(Lu

t )� 1Lu
s � u(� u

s)vsds; (3.4.2)

since it can be noticed that Lu is the unique solution of

Lu
0 = Idp;

dLu
t

dt
= � Lu

t � x(� u
t );

using Lemma 3.4.1 and r x� = (� x)> . Note, whenever useful, that
RT

0
jvsj2ds < +1 a.s. since v 2 H 2;2.

For " , 0, set � Xu;v;"
t :=

Xu+" v
t � Xu

t
" and RXu;v;"

t := � Xu;v;"
t � �Xu;v

t : we claim that a.s. RXu;v;"
t ! 0 as " ! 0, i.e. �Xu;v

t is
the derivative of Xu+"v

t at " = 0. To justify this, we proceed in a few steps. First the Taylor formula equality gives, for
smooth ' ,

' (z; x0) � ' (z; x) =
� Z 1

0
' x(z; x + � (x0 � x))d�

�
(x0 � x) := ' x(z; [x; x0])(x0 � x);
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applying that to � x and � u, we obtain

� Xu;v;"
t =

Z t

0

h
� x(s; us + " vs; [Xu

s ;Xu+"v
s ])� Xu;v;"

s + � u(s; [us; us + " vs];Xu
s )vs

i
ds

= (Lu;v;"
t )� 1

Z t

0
Lu;v;"

s � u(s; [us; us + "vs];Xu
s )vsds (3.4.3)

where Lu;v;" is the unique solution of

Lu;v;"
0 = Idp;

dLu;v;"
t

dt
= � Lu;v;"

t

�
� x(t; ut + " vt ; [Xu

t ;Xu+"v
t ])

�
:

By hypothesis on � x, Lu and (Lu)� 1 are dt � dP-a.e. uniformly bounded by a constant. Besides, (t; ! ) 7!
� x(t; ut + " vt ; [Xu

t ;Xu+"v
t ]) satis�es the hypothesis of Lemma 3.4.1 with a constant C independent from " . Therefore

Lu;v;" is invertible and Lu;v;" and (Lu;v;" )� 1 are dt � dP-a.e. uniformly bounded by a constant independent from " . From
(3.4.2)-(3.4.3) and using the fact that � u and � u(�; [u; u+ "v];Xu) are dt � dP-a.e. bounded by a constant independent
from " (by hypothesis on � u), we derive

j� Xu;v;"
t j + j �Xu;v

t j � C
Z t

0
jvsjds; (3.4.4)

where C is a constant independent from " . With similar arguments, we can represent the residual error RXu;v;" as
follows:

RXu;v;"
t =

Z t

0

�
� u;v;"

s + � x(s; us;Xu
s )RXu;v;"

s

�
ds =

Z t

0
(Lu

t )� 1Lu
s � u;v;"

s ds;

with Lu as before and

� u;v;"
t := � u;v;"

t � Xu;v;"
t + � u;v;"

t vt ;

� u;v;"
t := � x(t; ut + "vt ; [Xu

t ;Xu+"v
t ]) � � x(t; ut ;Xu

t );

� u;v;"
t := � u(t; [ut ; ut + " vt ];Xu

t ) � � u(t; ut ;Xu
t ):

By boundedness of Lu and (Lu)� 1, and by (3.4.4), we have:

sup
t2[0;T]

jRXu;v;"
t j � C

 Z T

0
j� u;v;"

t jdt

!  Z T

0
jvt jdt

!

+ C
Z T

0
j� u;v;"

t jjvt jdt;

for some constant C > 0.
By continuity of the state with respect to the control and continuous differentiability of � with respect to (u; x),

� u;v;" and � u;v;" converge point-wise to 0 when " goes to 0 and are uniformly bounded by assumption on � . Therefore�RT

0
j� u;v;"

t jdt
�

converges to 0 as " goes to 0, by Lebesgue's domination theorem. Besides, j� u;v;" jjvj converges point-

wise to 0 since fs 2 [0;T] : jvsj < +1g has a full Lebesgue measure (recall that a.s.
RT

0
jvsj2ds < +1 ) and is

dominated by jvj, which is a.s. integrable. Applying again Lebesgue's domination theorem yields the convergence

of
RT

0
j� u;v;"

t jjvt jdt to 0 when " goes to 0.

Putting everything together, one gets that a.s. supt2[0;T] jRXu;v;"
t j ! 0 as " ! 0, i.e. @" Xu+"v

t

���
"=0

= �Xu;v
t a.s.

f) We now switch to the differentiability of J (u + " v) w.r.t. " at " = 0. Similar arguments as before yield

j@" Xu+"v
t j � C

Z t

0
jvsjds; (3.4.5)

and for " 2 [� 1; 1],

jXu+"v
t j � j Xu

t j + j" � Xu;v;"
t j � j Xu

t j + j� Xu;v;"
t j � j Xu

t j + C
Z t

0
jvsjds (3.4.6)
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dt � dP-a.e. for a constant C independent from " 2 [� 1; 1].
The above, combined with Xu 2 H 1 ;2, u 2 H 2;2, the smoothness of the functions l; g;  ; k with the bounds on their

derivatives (assumptions (H.l)-(H.g)-(H. )-(H.k)) allow to apply the Lebesgue differentiation theorem and to obtain

�J (u; v) = E

" Z T

0

 

lu(� u
t ; ḡu

t )vt + lx(� u
t ; ḡu

t ) �Xu;v
t + l ḡ(� u

t ; ḡu
t )E

h
gu(� u

t )vt + gx(� u
t ) �Xu;v

t

i !

dt

+  x

�
Xu

T;E
h
k(Xu

T)
i�

�Xu;v
T +  k̄

�
Xu

T;E
h
k(Xu

T)
i�

E
h
kx(Xu

T) �Xu;v
T

i #

:

Using Fubini's theorem and reorganizing terms, we get

�J (u; v) = E

" Z T

0

 �
lu(� u

t ; ḡu
t ) + E

h
l ḡ(� u

t ; ḡu
t )

i
gu(� u

t )
�
vt

+
�
lx(� u

t ; ḡu
t ) + E

h
l ḡ(� u

t ; ḡu
t )

i
gx(� u

t )
�

�Xu;v
t

!

dt

+
�
 x

�
Xu

T;E
h
k(Xu

T)
i�

+ E
h
 k̄

�
Xu

T;E
h
k(Xu

T)
i�i

kx(Xu
T)

�
�Xu;v

T

#

:

Apply now the Itô lemma to Yu
t � �Xu;v

t between t = 0 and t = T, with

Yu
T � �Xu;v

T =
�
 x

�
Xu

T;E
h
k(Xu

T)
i�

+ E
h
 k̄

�
Xu

T;E
h
k(Xu

T)
i�i

kx(Xu
T)

�
�Xu;v

T ; Yu
0 � �Xu;v

0 = 0;

note that �Xu;v has �nite variations, combine with (3.2.5) and (3.4.2), and take the expectation: it gives

�J (u; v) = E

"Z T

0

�
lu(� u

t ; ḡu
t ) + E

h
l ḡ(� u

t ; ḡu
t )

i
gu(� u

t ) + (Yu
t )> � u(� u

t )
�
vtdt

#

:

The formula is also valid for Yu
t� since the jumps of Yu are countable. Theorem 3.2.2 is proved. �

3.4.2 Proof of Theorem 3.2.4

In the proof, T � 1 and C denotes a generic (deterministic) constant which only depends on the bounds in the
hypothesis (and not on T). For u(1) and u(2) in H 2;2, if a process or variable Fu depends on u we write F(1) := Fu(1)

and
F(2) := Fu(2)

. Besides, for any function, operator or process F which depends on u, Xu,..., we write � F := F(2) � F(1):
The proof is decomposed into several steps.

1. First, notice that by our assumptions on � , Lu (resp. L̃u = ((Lu)� 1)> ) (de�ned in Theorem 3.2.2) is independent
from u, therefore, we simply write L (resp. L̃) instead. Using Lemma 3.4.1, L and L̃ are bounded by constants.

2. Consider the application

� (X) :

8
>><
>>:

H 2;2
P ! H 1 ;2

u 7! Xu
:

It is well-de�ned, since we have already seen that Xu 2 H 1 ;2 whenever u 2 H 2;2
P . We want to show that � (X) is

Lipschitz continuous and its Lipschitz constant is such that

C� (X);u(T) = O
� p

T
�

(T ! 0):

Using assumption (H.� .2) and computations as in (3.4.2):

� Xt =
Z t

0
� � sds =

Z t

0

�
a(� )

s � Xs + b(� )(s; u(2)
s ) � b(� )(s; u(1)

s )
�
ds
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=
Z t

0
(Lt)� 1Ls(b(� )(s; u(2)

s ) � b(� )(s; u(1)
s ))ds:

Therefore by assumption on � , we get

j� Xt j2 � C

 Z T

0
j� usjds

! 2

� CT
Z T

0
j� usj2ds;

whence, k� Xk2
H 1 ;2 � CTk� uk2

H 2;2 and the Lipschitz continuity of � (X) as announced.

3. Now consider

� (Y) :

8
>><
>>:

H 2;2
P ! H 1 ;2

u 7! Yu
;

with Yu as in (3.2.4). Theorem 3.2.2 guarantees that � (Y) is well de�ned. Let us prove that it is Lipschitz
continuous and its Lipschitz constant is such that

C� (Y);u(T) = O
� p

T
�

(T ! 0):

Using the hypothesis on � , g and k and the notation � u
s = (s;us;Xu

s ), we get dP 
 dt � a:e:

� Yt =E t

h
L̃� 1

t L̃T

�
r x (X(2)

T ;E
h
k(X(2)

T )
i
) � r x (X(1)

T ;E
h
k(X(1)

T )
i
)
�i

+ E t

h
L̃� 1

t L̃T(a(k))> E
h
r k̄ (X(2)

T ;E
h
k(X(2)

T )
i
) � r k̄ (X(1)

T ;E
h
k(X(1)

T )
i
)
ii

+ E t

"Z T

t
L̃� 1

t L̃s

�
r xl(� (2)

s ;E
h
g(� (2)

s )
i
) � r xl(� (1)

s ;E
h
g(� (1)

s )
i
)
�
ds

#

+ E t

"Z T

t
L̃� 1

t L̃s(a
(g)
s )> E

h
r ḡl(� (2)

s ;E
h
g(� (2)

s )
i
) � r ḡl(� (1)

s ;E
h
g(� (1)

s )
i
)
i
ds

#

:

Now, owing to assumptions, the Cauchy-Schwartz inequality, the previous estimate on L̃, on its inverse and
k� XkH 1 ;2, the inequality k � kH 2;2 �

p
Tk � kH 1 ;2, one gets:

k� Yk2
H 1 ;2 � C

�
E

h
j� XT j2

i
+ T

n
k� uk2

H 2;2 + k� Xk2
H 2;2

o�
� CTk� uk2

H 2;2:

This yields the Lipschitz continuity of � (Y) with C� (Y);u(T) = O
� p

T
�

(T ! 0):

4. Our goal is to prove that:

� :

8
>><
>>:

H 2;2
P ! H 2;2

P

u 7! ũ
;

with

ũt = h
�
t;Xu

t ;Yu
t� ; ḡu

t ;E
h
r ḡl(t; ut ;Xu

t ; ḡu
t )

i�
;

Xu = � (X)(u); Yu = � (Y)(u); ḡu
t = E

�
g(t; ut ;Xu

t )
�

is well de�ned, Lipschitz continuous and its Lipschitz constant satis�es:

C� ;u(T) = Ch;ḡCg;u + Ch;�̄

�
Cl ḡ;u + Cl ḡ;ḡCg;u

�
+ O(T) (T ! 0):

By construction, ũ is predictable. Besides, for u 2 H 2;2
P ,

E

"Z T

0
jũsj2ds

#

� E

" Z T

0

 

jh(s; 0; 0;0;0)j + (Ch;ḡ + Ch;�̄ Cl ḡ;ḡ)E
�
jg(s; 0; 0)j

�
+ Ch;xjXu

s j
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+ Ch;yjYu
s j +

�
Ch;ḡCg;u + Ch;�̄

�
Cl ḡ;u + Cl ḡ;ḡCg;u

��
E [jusj]

+
�
Ch;ḡCg;x + Ch;�̄

�
Cl ḡ;x + Cl ḡ;ḡCg;x

��
E

�
jXu

s j
�
! 2

ds

#

:

Using Minkowski's inequality, this shows that the right-hand side is �nite since g(�; 0; 0) 2 H 2;1, h(�; 0; 0; 0;0);Xu;Yu

and u are in H 2;2, whence the well-posedness of � . Similar computations give

k� ũkH 2;2 �

 

E

" Z T

0

 

Ch;xj� Xsj +
�
Ch;ḡCg;u + Ch;�̄

�
Cl ḡ;u + Cl ḡ;ḡCg;u

��
E [j� usj]

+ Ch;yj� Ysj +
�
Ch;ḡCg;x + Ch;�̄

�
Cl ḡ;x + Cl ḡ;ḡCg;x

��
E [j� Xsj]

! 2

ds

#!1=2

:

Again, from Minkowski's inequality it follows that

k� ũkH 2;2 �

 

Ch;ḡCg;u + Ch;�̄

�
Cl ḡ;u + Cl ḡ;ḡCg;u

� !

k� ukH 2;2 + C

 

k� XkH 2;2 + k� YkH 2;2

!

:

Using k�kH 2;2 �
p

Tk�kH 1 ;2 and our estimates on k� XkH 1 ;2 and k� YkH 1 ;2, we obtain that � is Lipschitz continuous
and its Lipschitz constant satis�es:

C� ;u(T) � Ch;ḡCg;u + Ch;�̄

�
Cl ḡ;u + Cl ḡ;ḡCg;u

�
+ O(T) (T ! 0):

5. Under assumption (3.2.8), for T small enough, � is a contraction in the complete space H 2;2
P and has therefore

a unique �xed point u in H 2;2
P .

6. To conclude, notice (3.2.1) - (3.2.4) - (3.2.6) are satis�ed by (u;Xu;Yu) with Xu = � (X)(u) and Yu = � (Y)(u) if
and only if u is a �xed point of � . �

3.4.3 Proof of Proposition 3.2.6

� The continuity and coercivity of F are obvious. Similar computations as in the proof of Theorem 3.2.2 show that F
is Gateaux-differentiable and that the Gateaux-derivative of F at u in direction v is given by:

�F(u; v) = 4(kuk2
L 2

1
� 1)

Z 1

0
utvtdt + 2

Z 1

0
tutvtdt :=

Z 1

0
F (u)tvtdt;

where F : L 2
1 7! L 2

1 is de�ned by F (u) : t 7!
�
4(kuk2

L 2
1

� 1) + 2t
�
ut .

� Let us identify the critical points u? 2 L 2
1: for such element, we must have �F(u? ; L (u? )) =

R1

0
jF (u? )t j2dt = 0; which

implies (4(ku? k2
L 2

1

� 1) + 2t)u?
t = 0 a.e. on [0;1]. Clearly, it leads to u?

t = 0 a.e. on [0;1] and therefore, 0 is the unique

critical point of F.
� Let us show that inf u2L 2

1
F(u) = 0. Since F takes values in R+ , it is enough to exhibit a sequence u(n) 2 L 2

1 s.t.

F(u(n)) ! 0 as n ! +1 . De�ne, 8n 2 N ,

u(n) : t 7!
p

n + 1I [0; 1
n+1 ] (t):

Then,
Z 1

0
ju(n)

t j2dt = 1;
Z 1

0
tju(n)

t j2dt =
Z 1=(n+1)

0
(n + 1)tdt =

1
2(n + 1)

;

therefore F(u(n)) = 1
2(n+1) ! 0, as it was sought.

� Last, we prove that the minimum is not achieved. Assume the contrary with the existence of u? 2 L 2
1 s.t. F(u? ) = 0.

We must have ku? kL 2
1

= 1 and tju?
t j2 = 0 a.e. on [0;1]: the second condition requires u? = 0 which is incompatible

with the �rst condition. We are done, F does not have a minimum. �
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3.4.4 Proof of Proposition 3.3.2

Usual results about the solution to af�ne-linear FBSDEs hold for Brownian �ltration, see [Yon06] for instance. Here,
we consider more general �ltrations, but the arguments are quite similar. For the sake of completeness, we give the
proof.

The function � is the unique solution of the following af�ne-linear second order ODE
8
>>>>><
>>>>>:

d2� t

dt2 � bag� t = 0 for t 2 [0;T];

� T = 1;
d� t
dt jt=T = � eag;

and does not vanish on [0;T] according to the sign conditions on the coef�cients. We can therefore de�ne p as in
(3.3.3). Besides, p and � are continuous and bounded on [0;T]. By standard arguments, one can check that p is
the unique solution of the following Riccati ODE:

8
>><
>>:

dpt

dt � agp2
t + b = 0;

pT = e:
(3.4.7)

De�ne the following BSDE:
8
>><
>>:

� d�̃ t = � (agpt �̃ t + aptht � c)dt � dM t ;

�̃ T = f;

which has a unique solution in H 1 ;2� H 1 ;2 (see [EPQ97, Theorem 5.1 with p = 2]) in our context of general �ltrations.

By the integration by parts formula applied to �̃ t exp
�RT

t
agpsds

�
(see [Pro03, Corollary 2, p.68]), we get that �̃ is

also given by:

�̃ t = E t

"

f exp

 

�
Z T

t
agp� d�

!

�
Z T

t
(apshs � c) exp

 

�
Z s

t
agp� d�

!

ds

#

= E t

"

f exp

 Z T

t

d� �

dt
1
� �

d�

!

�
Z T

t
(apshs � c) exp

 Z s

t

d� �

dt
1
� �

d�

!

ds

#

= E t

"

f
� T

� t
�

Z T

t
(apshs � c)

� s

� t
ds

#

=
1
� t

 

f �
Z T

t
(apsE t [hs] � c)� sds

!

= � t ;

where we used the de�nitions of p and � .
We deduce that the process � also has the following representation:

� t = E t

"

f �
Z T

t
(agps� s + apshs � c)ds

#

: (3.4.8)

Since � and p are bounded on [0;T], we easily prove that � 2 H 1 ;2. From that and our assumptions on the data of
the problem, it is clear that (x; y; v) as de�ned in (3.3.5) belong to H 1 ;2 � H 1 ;2 � H 2;2

P . In particular, v is predictable
since x is continuous by construction.

We now prove that (x; y; v) de�ned by (3.3.5) solves (3.3.6). By de�nition of y and v in (3.3.5), we can check that:

vt = gyt� + ht :

De�ne x̃ the unique solution of the following af�ne-linear ODE:

x̃t := x0 �
Z t

0
(agpsx̃s + ag� s + ahs)ds: (3.4.9)
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It is also given by:

x̃t = x0 exp

 

�
Z t

0
agp� d�

!

�
Z t

0

(

(ag� s + ahs) exp

 

�
Z t

s
agp� d�

!)

ds

= x0 exp

 Z t

0

d� �

dt
1
� �

d�

!

�
Z t

0

(

(ag� s + ahs) exp

 Z t

s

d� �

dt
1
� �

d�

!)

ds

= x0
� t

� 0
�

Z t

0
(ag� s + ahs)

� t

� s
ds

= xt ;

hence, x is the unique solution of (3.4.9). Since � has countably many jumps and changing the Lebesgue integral
is left unchanged by changing the integrand at countably many points, we then get by de�nition of v:

xt = x0 �
Z t

0
avsds:

It remains to show that the second equation in (3.3.6) is veri�ed. Using that p is solution of (3.4.7), � veri�es (3.4.8)
and x is solution of (3.4.9), we get:

yt = ptxt + � t

= E t

"

pTxT �
Z T

t

 
dps

ds
xs +

dxs

ds
ps

!

ds+ � T �
Z T

t
(agps� s + apshs � c)ds

#

= E t

"

exT + f +
Z T

t

n
� (agp2

s � b)xs + (agpsxs + ag� s + ahs)ps � (agps� s + apshs � c)
o
ds

#

= E t

"

exT + f +
Z T

t
(bxs + c) ds

#

:

This shows that (v; x; y) is a solution of (3.3.6) in H 1 ;2 � H 1 ;2 � H 2;2
P .

The uniqueness of the solution for small time T follows from a �xed point argument as in the proof of Theorem 3.2.4.
We do not repeat the arguments here. �

3.4.5 Proof of Proposition 3.3.6

� By de�nition of �u(" ), �X(" ) and �Y(" ), they are clearly solutions of (3.3.10). Let us turn to uniform boundedness. The
�rst two equations yield:

k �X(" )kH 2;2 �

p
T

Emax
k �u(" )kH 2;2; k �Y(" )kH 2;2 �

� T + 

p

T
Emax

k �u(" )kH 2;2:

This can be easily proved following the arguments given in the proof of Theorem 3.2.7, details are left to the reader.
From the last equation of (3.3.10) and the 1-Lipschitz continuity of x ! x+ , we get:

k �u(" )kH 2;2 �
1

(� + � )Emax
k �Y(" )kH 2;2 + 2k(Pload ;� � u� ;(" ))+kH 2;2

�
� T + 


p
T

(� + � )E2
max

k �u(" )kH 2;2 + 2k(Pload ;� � u� ;(0))+kH 2;2 + 2"k �u(" )kH 2;2:

When T and " are small, such that,

� (T) + 2" :=
� T + 


p
T

(� + � )E2
max

+ 2" < 1;

we obtain

k �u(" )kH 2;2 �
2k(Pload ;� � u� ;(0))+kH 2;2

1 � � (T) � 2"
;
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whence the uniform boundedness of �u(" ) as " ! 0, provided � (T) < 1.
� Now we prove the convergence of ( �u(" ); �X(" ); �Y(" )) to ( �u; �X; �Y) in H 2;2-norms as " ! 0. Similarly as before, we have:

k �X(" ) � �XkH 2;2 �

p
T

Emax
k �u(" ) � �ukH 2;2; k �Y(" ) � �YkH 2;2 �

� T + 

p

T
Emax

k �u(" ) � �ukH 2;2:

Besides, the last equations in (3.3.10) and (3.3.11) as well as the 1-Lipschitz continuity of x ! x+ give:

k �u(" ) � �ukH 2;2 �
1

(� + � )Emax
k �Y(" ) � �YkH 2;2 + 2ku� ;(" ) � u� ;(0)kH 2;2

�
� T + 


p
T

(� + � )E2
max

k �u(" ) � �ukH 2;2 + 2" k �u(" )kH 2;2

= � (T)k �u(" ) � �ukH 2;2 + 2" k �u(" )kH 2;2:

For T small enough s.t. � (T) < 1 and and for " < 1� � (T)
2 , we thus obtain:

k �u(" ) � �ukH 2;2 �
2"

1 � � (T)
k �u(" )kH 2;2 �

4"
(1 � � (T))(1 � � (T) � 2" )

k(Pload ;� � u� ;(0))+kH 2;2:

This completes the proof. �

3.4.6 Boundedness of solutions to linear ODE with bounded stochastic coef�cient

This following result is used in the proof of Theorems 3.2.2 and 3.2.4.

Lemma 3.4.1. Let A : [0;T] � 
 7! Rp � Rp be a random matrix-valued process. Suppose there exists a constant C
such that jA(t; ! )j � C; dt � dP-a.e. .
Let R and L be the unique (continuous) solutions of the following linear ODEs:

8
>><
>>:

dLt
dt = LtAt ;

L0 = Idp;
and

8
>><
>>:

dRt
dt = � AtRt ;

R0 = Idp:

Then, L and R are invertible with L� 1 = R. Besides, jLt j and jRt j are uniformly bounded on [0;T] by exp(CT).

Proof. A direct computation shows that

dt � dP-a.e.;
d(LtRt)

dt
= 0;

thus 8t 2 [0;T], LtRt = L0R0 = Idp. Therefore R and L are invertible with R = L� 1. Let us now turn to the uniform
boundedness. Let v 2 Rp, we have

djL>
t vj2

dt
= v> Lt(At + A>

t )L>
t v � j At + A>

t j jL>
t vj2� 2C jL>

t vj2; dt � dP-a.e.:

Therefore, by integration, jL>
t vj2 � j vj2 exp (2CT) for t 2 [0;T], which yields sup0� t� T jL>

t j2 � exp (2CT) : This proves

exp (CT) � sup0� t� T jL>
t j = sup0� t� T jLt j, whence the announced bound for L. For bounding jRj start from djRtvj2

dt and
proceed similarly. �

3.5 Conclusion

In this work, we have identi�ed the optimal control of storage facilities of a smart grid under uncertain consump-
tion/production, in order to reduce the stochastic �uctuations of the residual consumption on the electrical public grid.
It has been possible thanks to the resolution of a new extended McKean-Vlasov stochastic control problem, using
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Pontryagin principle and Forward Backward Stochastic Differential Equations. For situations where the costs are
close to quadratic functions, we have derived quasi-explicit formulas for the control, using perturbation arguments.

In further works, we will consider subsequent issues like more realistic dynamics of the battery �ow accounting
with aging/boundary effect, sizing of the smart grid and of the storage/production capacities, risk aggregation of
optimized smart grids with dependent solar productions, impact of model mis-speci�cation on the optimal solution
(risk model).
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Chapter 4

Decentralized control of heterogeneous
energy storage systems in a stochastic
environment

4.1 Introduction

Context. To meet the goal of low carbon footprint for mitigating the climate change, the energy sector is seek-
ing solutions for better energy-ef�ciency. Among them, the use of renewable energy (like solar or wind power) is
appealing but on the other hand, the intermittency of their production raises challenges to satisfy the power bal-
ance between production and consumption. In this work, we focus on demand-side �exibilities, more speci�cally,
Thermostatically Control Loads (TCLs) like for instance, fridges, air conditioners, hot water tanks, swimming pool
heaters... These devices aim at maintaining a set-point temperature, but the realized temperature X has an inertia
and tolerates a range of admissible values, which gives �exibility in controlling the appliances [BM16]. Leveraging
this �exibility to provide services to the grid has an enormous potential [Mat+12; Cam+18b].

Statement of the problem and objectives. In this chapter, we consider the problem of optimally controlling a
large population of N TCLs owned by individual consumers (also called agents), in a stochastic environment mod-
eled by a complete �ltered probability space (
 ; F ;F;P). From the application perspective, it corresponds to a
centralized control architecture, where an omniscient planner solves a high-dimensional control problem in order to
both minimize operational costs and promote energy balance.
The model will incorporate a common weather noise for all agents. This weather noise models the exogenous
conditions that impact both the solar production through the irradiance [Bad+18] and the household consumption
through non-constant lighting, heating, cooling, see [PMV02]. Conditionally to the common weather noise, the
net consumption (household consumption without �exible appliance minus solar production) of different agents will
be assumed independent. This allows us to account for spatial correlations of meteorological conditions [ADS99;
ZDK16] between different agent locations, for instance.
To allow for general and realistic situations, the agents will differ w.r.t. their �exibilities and their consumption/production
(difference of size and habits of the households, of renewable energy equipment, of appliances, etc). Additionally, we
will assume that the agents are split in M classes in which the agents' �exibilities share the same physical character-
istics (similar appliance), see Section 4.2 for the precise modeling. The net consumption of the i-th agent in the k-th
class is denoted by (Pload ;(k;i))k2[M];i2[Nk] using the notation [n] := f1; : : : ;ngfor any integer n � 1. The power consumed
by its �exible appliance is denoted by u(k;i;N); hence, its total consumption is Pload ;(k;i) + u(k;i;N). Given a average (per
agent) power Pprod available on the public grid, the average power imbalance is 1

N

P M
l=1

P N l

j=1(u(l;j;N) + Pload ;(l;j)) � Pprod .

Although not mathematically essential, Pprod is assumed deterministic for simplicity, which makes sense since it
comes from power demand forecast made by the planner (and usually supplied by conventional generation units).
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In addition, all the above quantities depend on time.
The optimization criterion will consist in minimizing the average power imbalance over a �nite interval [0;T] (T > 0
�xed), while maintaining each �exible power u(k;i;N) around a nominal value uref ;(k;i) and the temperature X(k;i;N)

around a set-point temperature xref ;(k;i). All in all, the controls are (u(k;i;N))k2[M];i2[Nk] , adapted to the ambient �ltration
F, and the cost functional takes the form

E

2
666664

1
N

MX

k=1

NkX

i=1

8
>><
>>:

Z T

0

0
BBBBB@
� (k)

t

2

�
u(k;i;N)

t � uref ;(k;i)
t

� 2
+

� (k)
t

2

�
X(k;i;N)

t � xref ;(k;i)
t

� 2
1
CCCCCAdt +

� (k)

2

�
X(k;i;N)

T � xf ;(k;i)
T

� 2

9
>>=
>>;

3
777775

+ E

2
6666664

Z T

0
L t

0
BBBBBB@

1
N

MX

l=1

N lX

j=1

(u(l;j;N)
t + Pload ;(l;j)

t ) � Pprod
t

1
CCCCCCAdt

3
7777775: (4.1.1)

The fact that the parameters � (k), � (k), � (k) may depend on the class of device allows to model heterogeneity among
the devices. For instance, a fridge may not have the same temperature dead-band tolerance as a heat pump, which
justi�es to consider different values of the parameter � (k) for these two classes of devices. Actually, we are looking
for a solution method where agents can keep their individual data private. This privacy preservation is nowadays a
major concern in grid management, see [AA19] for a recent overview and references therein. We are also interested
in deriving a practical implementation of the control where minimal communication between actors is required.

Methodology and main contributions. Mathematically speaking, our problem �ts the setting of stochastic control
problem in high dimension (the number N of agents). The dynamics for each state variable X(k;i;N) (modeling the
temperature inertia) is linear w.r.t. the control (appliance power): for each agent, it typically writes under the form1 2

dXt

dt
= ut=C

|{z}
appliance power consumption

� (Xt � Xout
t )=RC

|             {z             }
thermal losses

+ � t
|{z}

exogenous perturbations

: (4.1.2)

The �ltration can be quite general and allows, for instance, for jump processes in the net consumption. The stochas-
tic (Pontryagin) maximum principle enables us to characterize the optimal controls as solution to a coupled system
of Forward-Backward Stochastic Differential Equations (FBSDE), see Theorem 4.2.1. However, the FBSDE is a
high-dimensional coupled equation, and hence curse of dimensionality occurs.

To overcome this, we design a decoupled system, with a so-called coordination problem and individual prob-
lems associated to each agent. The coordination problem is a FBSDE which can be interpreted as the optimality
conditions of a (convex) optimal control problem that a coordinator has to solve to compute a coordination signal.
Each individual problem is an FBSDE which can be interpreted as the optimality conditions of the control problem
of a sel�sh agent controlling (with locally available information) its individual storage system to minimize operational
costs, while responding to the coordination signal. In other words, we show that the optimal solution of the control
problem of the central planner corresponds to the (unique) Nash equilibrium of a stochastic Stackelberg differential
game, which allows for possible decentralized control schemes. This is in some way the inverse perspective of
potential stochastic differential games [FMHL19], in which one seeks a stochastic control problem which optimality
conditions coincide with the Nash system of a given stochastic differential game. In order to avoid the need for real-
time communication from agents to the coordinator, we design a mean-�eld-type approximation of the decoupled
system: the approximation of the coordination problem mainly depends on the population statistics and not anymore
on the data of agents. Under the assumption that the size of each class of agents is large enough and under the
assumption that agents are conditionally independent in some sense, we prove that this new decoupled system
yields a control which preserves privacy and converges to the omniscient control in the limit of in�nite population
(see Theorem 4.4.12). Error bounds on performance loss are also derived. Besides, there again, we can interpret
the approximations of the coordination and individual problems as the system of FBSDE characterizing the (unique)

1the coef�cient C is the calori�c capacity of the system C, R is the thermal resistance of the system, Xout is the temperature of the environment,
and � models random perturbations like opening the fridge, using the hot water tank for a shower etc

2the af�ne-linear dynamic is in agreement with the ”leaky battery model” presented in [Hao+14; TTS16] and with the �rst-order dynamical
model used to model the temperature evolution of a TCL in [DP+19].
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equilibrium of a stochastic Stackelberg differential game with a leader, the coordinator, and many (non-symmetric)
followers, the agents. To get the convergence results and error bounds, we leverage the conditional Law of Large
Numbers, stability results for FBSDEs and probabilistic properties related to immersion of �ltration (to deal with the
common noise). The new control boils down to solving a system of M + 1 � N weakly coupled FBSDEs, and thus
one suffers much less from the curse of dimensionality than what may be expected. We illustrate these results
numerically on an example involving a large population of two types of devices (water heaters and heat pumps)
with realistic characteristics. In this chapter, we also discuss a practical online and decentralized implementation
of the privacy-preserving control, see Algorithm 4.1. It allows real-time computations of a coordination signal by a
coordinator. Broadcasting this signal allows each agent to compute its optimal response in real-time. In particular,
the coordination signal sent at each time t to all agents is a function of time measurable with respect to the informa-
tion available to the coordinator at time t. Besides, the problems solved online by the agents are easy to solve and
only require information available locally. This allows to preserve the privacy of individual consumers and maintain
quality of service if communication loss occurs.

Literature background. Stochastic control of large population of micro-grids has recently drawn signi�cant in-
terest, but standard methods like Stochastic Dynamic Programming, Stochastic Dual Dynamic Programming (in a
discrete-time setting) suffer rapidly from the curse of dimensionality, when considering more than a few tens of micro-
grids, even when considering spatial decomposition techniques [Car+19b; Car+20]. To tackle this issue, mean-�eld
approximations are particularly promising, as they become more accurate when the number of agents grows. There
is a recent and abundant literature about stochastic control with large population, commonly known as mean-�eld
games (MFG)/McKean-Vlasov (MKV) stochastic control problems, see [CDL13; CD18; BFY+13] among recent con-
tributions. Mean-Field Games models for control of large populations of micro-grids without common noise have
been proposed in [DP+19; KM13; KM16]. In [DP+19], self-interested consumers allocate their �exible consumption
and choose a level of participation to electricity reserves mechanisms according to price signals derived from a
Unit-Commitment problem solved by a coordinator. In [KM13], water heaters are controlled so that their average
pro�le tracks a speci�c pro�le sent by a coordinator. This model is enriched in [KM16] to consider Markovian jumps
dynamics for individual water heaters and non-uniformity of the temperature within water tanks.

In the literature of MFG and MKV control, agents are usually assumed to be symmetric. Let us mention however
[HMC+06; KM13; KM16; ATM20], [BFY+13, Chapter 8, pp. 67-72] which consider an heterogeneous population by
introducing user classes in the setting of Mean-Field Games.
Our model is de�ned with a common noise, which seemingly connects our contribution to the recent developments
of the theory of MFG/MKV with a common noise. In [ATM20], similarly as in our work, a setting with common and
individual noises is considered, heterogeneity among agents is introduced, and the structure of equations obtained
is similar. However, this work considers applications related to price-arbitrage and peak-shaving, and directly studies
the Mean-Field approximation. By contrast, our work focuses on tracking power imbalance from an application point
of view, and we are also interested in approximation and convergence results. The model of [ATM20] is extended
to the case with jumps in [MMS19]. These works mostly consider the case of an in�nite population, whereas we
consider a �nite number of agents.

Note that Mean-Field Games assume a competitive setting and seek for Nash equilibria, which may be far
from optimal from a collective point of view. This performance loss can easily be assessed in Linear-Quadratic
frameworks, as both MKV control and MFG admit explicit feedback formulas for the control, which allows to compute
the Price of Anarchy. In this chapter, by contrast to the MFG frameworks for the control of micro-grids [DP+19; KM13;
KM16; ATM20; MMS19], we assume a cooperative setting, so that our problem is closely related to the �eld of MKV
stochastic control problems. We show that the optimal solution of our control problem is also the (unique) Nash
equilibrium of a Stochastic Stackelberg Differential Game with a leader (the coordinator) and many heterogeneous
followers (the agents), whose decisions are impacted by the decisions of the leader. Hence, we follow the inverse
perspective of potential stochastic differential games [FMHL19], in which one seeks a stochastic control problem
whose optimality conditions coincide with the Nash system of a given stochastic game. See [ŞC14] or [CD18,
section 7.1, pp. 541-610, Volume II] for an introduction to Mean-Field Games with major and minor players.

We also mention other works presenting cooperative control architectures of TCLs, without a priori optimality
guarantees. [Hao+13; Hao+14] propose a control architecture based on priority queue to decide which device to
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control. A control architecture based on PDE models is proposed in [TTS15] to track a reference pro�le where each
device builds an ensemble model for the whole population and uses this model to compute an appropriate random
switching rate. Another control architecture is proposed in [Tro+16] which ensures that the aggregate consumption
of a large population of TCLs depends linearly on the frequency of the network (which is a good indicator for power
balance) and its rate of change. Our approach differs from these works since we use tools coming from stochastic
optimal control theory, which provides a priori optimality guarantee (up to model errors).

Organization of the chapter. The probabilistic model as well as �rst-order necessary and suf�cient optimality
conditions (Theorem 4.2.1) are given in Section 4.2. A decomposition method for the optimality system is obtained
in Section 4.3, with de�nitions of the coordination problem (Proposition 4.3.1) and individual problems (Proposition
4.3.3). Then approximations of these problems are given in Section 4.4. In particular, the solution of the approxima-
tion of the coordination problem is shown to be progressively measurable with respect to the common noise �ltration,
see Theorem 4.4.5, which is a desirable property in a decentralized control scheme. Indeed it allows a third party
(called coordinator) to solve the approximate coordination problem without having to observe the aggregated individ-
ual parameters, circumventing privacy and telecommunication issues. Error bounds between the privacy-preserving
control and the omniscient control are then presented, see Theorem 4.4.12. Section 4.5 collects a few numerical
illustrations in the case of agents equipped with heat pumps or water heaters. Practical interest of the approach is
demonstrated, as well as the convergence of the mean-�eld approximation in the limit of large populations. Then,
a decentralized online implementation with minimal information sharing of the approximate solution method for the
control problem is presented in Section 4.6. Some of the proofs are postponed to Section 4.7.

Most commonly used notations. We list the most common notations used in this chapter.
� Numbers, vectors, matrices. R, N , N � denote respectively the set of real numbers, integers and positive integers.
The notation jxj stands for the Euclidean norm of a vector x. For k 2 N , the notation [k] stands for the integer set
f1; :::;kg.

� Function derivatives. For a smooth function g : Rp 7! R, g0
x represents the partial derivative of g with respect to x.

However, the notation xt refers to the value of a process x at time t (and not to the partial derivative of x with respect
to t).

� Probability. The randomness on the interval [0;T] is modeled on a complete �ltered probability space (
 ; F ;F;P),
with a right-continuous �ltration F := fF tg0� t� T augmented with the P-null sets. We consider another �ltration G � F
(meaning Gt � F t for all t in [0;T]), assumed immersed in F (see [CD18, De�nition 1.2, p.5, Volume II]: all G
square integrable martingale are F-martingales): this �ltration will model the structure of information for the common
weather noise. The immersion property implies the independence of GT and F t conditionally on Gt , for any t 2 [0;T].
This assumption is equivalent to the fact that for any t 2 [0;T], for any random variable X 2 L 1(F t);E [XjGT] =
E [XjGt ] (see [CD18, Proposition 1.3, p. 6, Volume II]).

The set of square integrable variables is denoted by L 2. The notation L 2
T stands for the set of FT-measurable

square integrable variables.
� Stochastic processes. For a vector/matrix-valued random variable V, its conditional expectation with respect to
the sigma-�eld F t is denoted by E t [Z] = E [ZjF t ].
All the martingales are considered with their c �adl �ag modi�cations.
The space S (resp. H ) stands for the F-adapted c�adl �ag (resp. F-progressively measurable) processes (	 t : t 2

[0;T]) valued in an Euclidean space E such that
q

E
h
supt2[0;T] j	 t j2

i
=: k	 kS (resp.

r

E
�RT

0
j	 t j2dt

�
=: k	 kH ). Since

the space E will be clear from the context (typically R, RM or RN ), we will skip the reference to it in the notation. The
space H G (resp. SG) is the subspace of processes in H (resp. S) which are G-progressively measurable.

Remark 4.1.1. By comparison with Chapter 3 where we sought the control as a predictable process in order to ac-
count for latency in the application, here, by simplicity, we will consider controls which are progressively measurable.
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4.2 Model, assumptions and �rst properties

4.2.1 Assumptions

We follow the model presented in introduction with N =
P M

k=1 Nk agents split into M classes of Nk agents each (see
Fig. 4.1a3). The state variable (temperature) for the i-th agent of the k-th class is X(k;i;N) and satis�es to the dynamics

3Icons made by Freepik and Smashicons from www.�aticon.com

(a) Description of users in the classes

(b) Power balance

Figure 4.1: Heterogeneity of agents and power imbalance
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X(k;i;N)
t = x(k;i)

0 +
Z t

0

�
� (k)

s u(k;i;N)
s + � (k)

s X(k;i;N)
s + 
 (k;i)

s

�
ds; (4.2.1)

where u(k;i;N) is the control for the �exible appliance of agent (k; i). The above dynamics is consistent with the example
in (4.1.2), in particular the coef�cients � (k) and � (k) are the same within the class k (similar device). This allows to
incorporate heterogeneity for the devices, which do not have the same performances nor thermal behaviors. On the
mathematical side, we assume from now on that

(H-X) � (k); � (k) are measurable deterministic functions, uniformly bounded on [0;T]. Each process 
 (k;i) is in H . Each
x(k;i)

0 is deterministic.

Given the control u(N) := (u(k;i;N))k;i 2 H , the functional to minimize is

J (u) =E

2
666664
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>>:
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0
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� (k)
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t � uref ;(k;i)
t

� 2
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� (k)
t

2

�
X(k;i;N)

t � xref ;(k;i)
t

� 2
1
CCCCCAdt +

� (k)

2

�
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T � xf ;(k;i)
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� 2
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>>=
>>;
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777775

+ E

2
6666664

Z T

0
L t

0
BBBBBB@

1
N

MX

l=1

N lX

j=1

(u(l;j;N)
t + Pload ;(l;j)

t ) � Pprod
t

1
CCCCCCAdt

3
7777775; (4.2.2)

corresponding to an omniscient planner aiming to control TCLs to track the power imbalance signal, represented
in Figure 4.1b, while keeping each individual �exibility around a possibly stochastic nominal state (associated to
uref ;(k;i), xref ;(k;i), xf ;(k;i)

T ).

(H-J) Pprod is a measurable deterministic function, square integrable on [0;T].
All the processes uref ;(k;i); xref ;(k;i);Pload ;(k;i) are in H and xf ;(k;i)

T is in L 2
T.

The coef�cients � (k); � (k) are deterministic measurable functions, the � (k) are deterministic. They are all bounded.
In addition, for some " > 0, we have � (k)

t � " and � (k)
t for any t and k. The function L : (t; x) 2 [0;T] � R 7! R is

deterministic measurable. We assume that for any t 2 [0;T], x 7! L t(x) = L (t; x) is convex, twice continuously
differentiable, with uniformly bounded second order derivative.

4.2.2 Differentiability, convexity, characterization of optimality

We start with a somehow standard result. We show that, under our assumptions, J is strongly convex and admits a
unique minimizer which can be obtained by solving a Forward-Backward Stochastic Differential Equation, obtained
using the Stochastic Pontryagin Principle. The proof is postponed to Subsection 4.7.1.

Theorem 4.2.1. The function J : H 7! R is strongly convex. It admits a unique minimizer denoted u(N) :=
(u(k;i;N))k2[M];i2[Nk] 2 H . De�ne X(N) = (X(k;i;N))k2[M];i2[Nk] 2 S by (4.2.1) and Y(N) = (Y(k;i;N))k2[M];i2[Nk] 2 S by:

Y(k;i;N)
t = E t

"

� (k)(X(k;i;N)
T � xf ;(k;i)

T ) +
Z T

t

�
� (k)

s Y(k;i;N)
s + � (k)

s (X(k;i;N)
s � xref ;(k;i)

s )
�
ds

#

: (4.2.3)

Then (u(k;i;N);X(k;i;N);Y(k;i;N))k2[M];i2[Nk] 2 H � S � S is the unique solution in H � S � S of the coupled FBSDE with
unknowns (u(k;i);X(k;i);Y(k;i))k2[M];i2[Nk] 2 H � S � S :

8t 2 [0;T]; 8k 2 [M]; 8i 2 [Nk];
8
>>>>>><
>>>>>>:

X(k;i)
t = x(k;i)

0 +
Rt

0

�
� (k)

s u(k;i)
s + � (k)

s X(k;i)
s + 
 (k;i)

s

�
ds;

Y(k;i)
t = E t

�
� (k)

�
X(k;i)

T � xf ;(k;i)
T

�
+

RT

t

�
� (k)

s Y(k;i)
s + � (k)

s

�
X(k;i)

s � xref ;(k;i)
s

��
ds

�
;

� (k)
t

�
u(k;i)

t � uref ;(k;i)
t

�
+ L 0

x

�
t; 1

N

P M
l=1

P N l

j=1(u(l;j)
t + Pload ;(l;j)

t ) � Pprod
t

�
+ � (k)

t Y(k;i)
t = 0:

(4.2.4)

Our assumptions guarantee that the optimal control problem

min
u2H

J (u)
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s:t: (4.2.1)

has a unique solution u(N), which can be equivalently computed by solving (4.2.4). This system is a high-dimensional
coupled FBSDE, the dimension being the number N of agents. Hence, it suffers from the curse of dimensionality, as
the number of agents may be very large. To tackle this issue, we propose a decomposition method of the FBSDE
(4.2.4) in the next section.

4.3 Decomposition of the problem and equivalent representation as a
stochastic differential game

Notations

ˆ Empirical and statistical means: We introduce the notation P̄load ;(N) := 1
N

P M
l=1

P N l

j=1 Pload ;(l;j) for the empirical
mean process of net consumption of agents.

ˆ Empirical means over a class: We introduce the following notations for the empirical means: 
̄ (k;N) := 1
Nk

P Nk

j=1 
 (k;j),

ūref ;(k;N) := 1
Nk

P Nk

j=1 uref ;(k;j), x̄ref ;(k;N) := 1
Nk

P Nk

j=1 xref ;(k;j), x̄f ;(k;N)
T := 1

Nk

P Nk

j=1 xf ;(k;j)
T .

In this section, we show that the control problem is equivalent to two types of control problems arising in a
nested structure. We call the �rst problem the coordination problem, as it allows to compute a coordination signal.
Once the coordination signal has been computed, the control problem can be decomposed into N sub-problems,
the individual problems, each of them associated to an individual consumer/agent. The parameters of the individual
problem of each agent only involve the individual data of the corresponding agent (consumption and preferences),
the shared information G and the coordination signal. We also show that the coordination problem (resp. each
individual problem) can be interpreted as the optimality conditions of a control problem of the coordinator (resp.
of each agent). This shows that the optimal solution of the control problem corresponds to the (unique) Nash
equilibrium of a stochastic differential game, allowing for a decentralized implementation.

4.3.1 The coordination problem

Proposition 4.3.1. Consider the empirical mean processes for all k 2 [M]:

(ū(k;N); X̄(k;N); Ȳ(k;N)) :=

0
BBBBBB@

1
Nk

NkX

j=1

u(k;j;N);
1

Nk

NkX

j=1

X(k;j;N);
1

Nk

NkX

j=1

Y(k;j;N)

1
CCCCCCA2 H � S � S :

The empirical mean process (ū(k;N); X̄(k;N); Ȳ(k;N))k2[M] is the unique solution of the following FBSDE with unknowns
(u(k);X(k);Y(k))k2[M] 2 H � S � S , which we call the coordination problem:

8t 2 [0;T]; 8k 2 [M];
8
>>>>>><
>>>>>>:
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l=1 � (l)u(l)
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t � Pprod
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�
+ � (k)

t Y(k)
t = 0:

(4.3.1)

The proof of the above Proposition is postponed to Subsection 4.7.2. This proof shows that the FBSDE (4.3.1)
is the optimality system of the stochastic control problem (4.7.3), which can be interpreted as the control problem of
a coordinator aiming at controlling the aggregate behaviors of the agents within different classes.

De�nition 4.3.2. Let (ū(k;N); X̄(k;N); Ȳ(k;N))k2[M] 2 H �S �S be the unique solution of the coordination problem (4.3.1).
We de�ne the coordination signal v̄(N) 2 H by:

8t 2 [0;T]; v̄(N)
t := L 0

x

0
BBBBB@t;

MX

l=1

� (l)ū(l;N)
t + P̄load ;(N)

t � Pprod
t

1
CCCCCA: (4.3.2)
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4.3.2 The individual problems

Proposition 4.3.3. Let v̄(N) 2 H be the coordination signal de�ned in (4.3.2). For any k 2 [M]; i 2 [Nk], consider the
FBSDE with unknown (u;X;Y) 2 H � S � S , called individual problem of agent i of class k:
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8
>>>>><
>>>>>:
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t + � (k)
t Yt = 0:

(4.3.3)

Then (4.3.3) has a unique solution (u(k;i;N);X(k;i;N);Y(k;i;N)) 2 H � S � S . Besides (u(k;i;N);X(k;i;N);Y(k;i;N))k2[M];i2[Nk] is the
unique solution of the FBSDE (4.2.4) and (u(k;i;N))k2[M];i2[Nk] is the unique solution of control problem min u(N)2H J (u(N)).

Proof. The FBSDE (4.3.3) fully characterizes the solutions of the following stochastic control problem:
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s:t: Xt = x(k;i)
0 +

Z t

0

�
� (k)

s us + � (k)
s Xs + 
 (k;i)

s

�
ds:

This control problem (4.3.4) has a unique solution, by similar arguments as in the proof of Proposition 4.3.1, hence
so does the FBSDE (4.3.3). The fact that (u(k;i;N))k2[M];i2[Nk] is the unique minimizer of J is a consequence of
Proposition 4.3.1 and of the uniqueness of the solutions of (4.2.4), (4.3.1),(4.3.3). �

The stochastic control problem (4.3.4) can be interpreted as the control problem of agent i of class k interacting
with an aggregator which sends him a coordination signal. It can be interpreted as the agent aiming at minimizing
operational costs and a cost of contribution to global power imbalance, where the coordination signal v̄(N) plays the
role of a price signal cast by the coordinator. In particular, replacing v̄(N) by its expression, the above Proposition
shows that the optimal solution (u(N)) of the control problem corresponds to the (unique) Nash equilibrium of a
Stochastic differential game.

The following Proposition gives another way to compute the solution of the individual problems and allows to
focus on the �uctuations of the controls and states of individual players around the empirical means over classes.

Proposition 4.3.4. Let (u(k;i;N);X(k;i;N);Y(k;i;N)) 2 H � S � S be the unique solution of the individual problem of agent
i 2 [Nk] of class k 2 [M]. Let (ū(k;N); X̄(k;N); Ȳ(k;N))k2[M] 2 H � S � S be the unique solution of the coordination problem.
Then (u(k;i;N) � ū(k;N);X(k;i;N) � X̄(k;N);Y(k;i;N) � Ȳ(k;N)) 2 H � S � S is the unique solution of the following FBSDE with
unknowns (� u; � X; � Y) 2 H � S � S :
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(4.3.5)

We have developed a decomposition method of the N-dimensional FBSDE (4.2.4), which shows that it is equiv-
alent to solve one M-dimensional FBSDE, with M << N typically, the coordination problem, and N one-dimensional
FBSDE. However the parameters of the FBSDE depend on aggregate data of individual agents. In practical appli-
cations, the coordination problem shall be solved by a third party, called coordinator, which may not have access in
real time to the aggregate data of individual agents (namely P̄load ;(k;N), 
̄ (k;N), ūref ;(k;N), x̄ref ;(k;N), x̄f ;(k;N)

T ). The reason
for that is two-fold: a privacy concern, as agents may not wish to share their private data (namely Pload ;(k;i), 
 (k;i),
uref ;(k;i), xref ;(k;i), xf ;(k;i)

T ), and a technical reason, as heavy telecommunication infrastructures would be required to
allow individual agents to share their private data with the coordinator.
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4.4 Approximate decentralized control architecture preserving privacy

In this section, we present an approximation of the coordination problem which parameters only depend on the
statistical behaviors of the agents (namely the conditional means of their associated parameters), rather than the
actual realization of their individual data. In particular, this is a desirable feature in decentralized implementations
where the coordination problem is solved by a third party not observing in real-time the aggregate behaviors of
agents, for privacy reasons or in order to reduce real-time telecommunication requirements. Solving the approximate
coordination problem allows to compute an approximation of the coordination signal (4.3.2), which may be used to
decouple individual problems. This is done at the cost of a small performance loss, which can be estimated and
which vanishes asymptotically when the number of consumers/agents goes to in�nity.

Notations

ˆ Empirical conditional means: We introduce the notation P̄load
t := 1

N

P M
l=1

P N l

j=1 E
h
Pload ;(l;j)

t jGt

i
for the conditional

average of the empirical average consumption.

ˆ Empirical conditional means over a class: We introduce the following notations for the conditional means of
the empirical average over classes of individual parameters: for t 2 [0;T], 
̄ (k)

t := 1
Nk

P Nk

j=1 E
h

 (k;j)

t jGt

i
, ūref ;(k)
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1
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P Nk

j=1 E
h
uref ;(k;j)

t jGt

i
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j=1 E
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t jGt

i
, x̄f ;(k)

T := 1
Nk

P Nk

j=1 E
h
xf ;(k;j)

T jGT

i
.

Lemma 4.4.1. The processes (
̄ (k); ūref ;(k); x̄ref ;(k); x̄f ;(k)
T )k2[M] , P̄load are G-measurable and can be assumed progres-

sively measurable without loss of generality, and therefore in H G.

Proof. Let Z denote any of the processes (
̄ (k;N); ūref ;(k;N); x̄ref ;(k;N); x̄f ;(k;N)
T )k2[M] , P̄load ;(N). Then Z 2 H is F-progressively

measurable and since G is immersed in F:

8t 2 [0;T]; E [Zt jGt ] = E [Zt jGT]:

As in [CD18, Volume II, pp. 265-266], one can rede�ne t 7! E [Zt jGT] as a B([0;T]) 
 G-measurable process, up to
a dt 
 dP-null set. By [KS98, Proposition 1.12, p. 5], there exists a G-progressively measurable modi�cation of the
above process. �

Additional assumptions We assume that the coordinator does not observe the parameters resulting from the
aggregation of individual data (
̄ (k;N); ūref ;(k;N); x̄ref ;(k;N); x̄f ;(k;N)

T )k2[M] , P̄load ;(N) but can use statistical estimators of these
quantities, measurable with respect to the common noise information G. Similarly, the aggregator does not observe
the empirical mean of the initial states over classes ( 1

Nk

P Nk

j=1 x(k;j)
0 )k2[M] , but can use (statistical) approximations of

these parameters, denoted (x̄(k)
0 )k2[M] . This is realistic and desirable from the point of view of the application, as it

allows to consider a non-intrusive and non omniscient coordinator.

(H-lim) Assume (H-X), (H-J) and in addition, the following assumptions.
We denote � (k) := Nk

N , for all k 2 [M] and assume � (k) � � for all k 2 [M] for some � > 0. In particular, M � 1
� .

The meteorological conditions are represented by a stochastic process Xsun 2 H , assumed G = fGtg0� t� T-
progressively measurable, where G satis�es the usual conditions and is immersed in F.

We assume
����x̄

(k)
0 � 1

Nk

P Nk

j=1 x(k;j)
0

���� � Cp
Nk

= Cp
� kN

, for some constant C independent from N.

(uref ;(k;i))k;i (resp. xref ;(k;i), xf ;(k;i)
T ) are independent conditionally to GT.

Pload ;(k;i), 
 (k;i), uref ;(k;i) and xref ;(k;i) are uniformly bounded in H by a constant independent from N.
Similarly, xf ;(k;i)

T is bounded in L 2 by a constant independent from N.

The processes (Pload ;(k;i); 
 (k;i); uref ;(k;i); xref ;(k;i); xf ;(k;i)
T )k2[M];i2[Nk] are independent conditionally to GT.

Example 4.4.2. Let us illustrate the assumption of independence of (Pload ;(k;i))k;i , (uref ;(k;i))k;i , (xref ;(k;i))k;i and (
 k;i)k;i

conditionally to G. For this discussion, assume Pload ;(k;i) = Pcons;(k;i) � Psun;(k;i).
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One can consider that the power consumption Pcons by a household can be explained by the temperature (as
it impacts the heating and cooling), the solar irradiance (as it impacts the lighting) and other random individual
factors. Our assumption states that the random individual factors are independent for distinct households. It can be
interpreted as the consumers having independent behaviors, once the weather is known. Similarly, the exogenous
solicitations 
 of individual energy storage systems (thermal losses for instance), the target power and state of
charge pro�les uref and xref depend on meteorological conditions and individual factors. Our assumption states
that these individual factors are statistically independent.

Last, if the average solar irradiance Psun is known in a region, there remains some random local �uctuations of
solar irradiance, due to clouds passing by, for instance. Our assumption includes the case where these random local
�uctuations (speci�c to each agent) are independent conditionally to the average solar irradiance on the region.

4.4.1 Convergence of the coordination problem for large populations

When the number of agents becomes large enough, the input parameters of the coordination problem converge,
and their limits can be easily computed, based on the conditional law of large numbers, without having to observe
individual data.

Proposition 4.4.3. We have the following convergence properties:

kP̄load ;(N) � P̄load kH �
C

p
N

;

8k 2 [M]; kūref ;(k;N) � ūref ;(k)kH + kx̄ref ;(k;N) � x̄ref ;(k)kH + kx̄f ;(k;N)
T � x̄f ;(k)

T kH + k
̄ (k;N) � 
̄ (k)kH �
C

p
Nk

:

for some constant C > 0 independent from N.

The proof of the above Proposition is postponed to Subsection 4.7.3.
Replacing the coef�cients of the FBSDE (4.3.1) by their G-measurable approximations leads us to consider the

following FBSDE with unknown (u(k);X(k);Y(k))k2[M] 2 (H � S � S )M :

8k 2 [M];
8
>>>>><
>>>>>:

X(k)
t = x̄(k)

0 +
Rt

0

�
� (k)

s u(k)
s + � (k)

s X(k)
s + 
̄ (k)

s

�
ds;

Y(k)
t = E t

�
� (k)

�
X(k)

T � x̄f ;(k)
T

�
+

RT

t

�
� (k)

s Y(k)
s + � (k)

s

�
X(k)

s � x̄ref ;(k)
s

��
ds

�
;

� (k)
t

�
u(k)

t � ūref ;(k)
t

�
+ L 0

x

�
t;

P M
l=1 � (l)u(l)

t + P̄load
t � Pprod

t

�
+ � (k)

t Y(k)
t = 0:

(4.4.1)

This FBSDE is called the limiting coordination problem and has a unique solution denoted by (ū(k;1 ); X̄(k;1 ); Ȳ(k;1 ))1� k� M 2
H � S � S . Indeed, it is the optimality system of the stochastic control problem:

min
(u(k))2H M

E

2
666664

MX

k=1

� (k)

8
>><
>>:

Z T

0

0
BBBBB@
� (k)

t

2

�
u(k)

t � ūref ;(k)
t

� 2
+

� (k)
t

2

�
X(k)

t � x̄ref ;(k)
t

� 2
1
CCCCCAdt +

� (k)

2

�
X(k)

T � x̄f ;(k)
T

� 2

9
>>=
>>;

3
777775

+ E

2
666664

Z T

0
L t

0
BBBBB@

MX

l=1

� (l)u(l)
t + P̄load

t � Pprod
t

1
CCCCCAdt

3
777775; (4.4.2)

s:t: X(k)
t = x̄(k)

0 +
Z t

0

�
� (k)

s u(k)
s + � (k)

s X(k)
s + 
̄ (k)

s

�
ds; 8k 2 [M]:

This control problem can be interpreted as the problem of the coordinator (which plays the role of major player in
the stochastic differential game) aiming to control the aggregate behavior of the population by sending appropriate
signals, in the asymptotic regime of large populations. By our assumptions and using [Bre10b, Corollary 3.23,
pp.71], the above control can be shown to have a unique solution, which is fully characterized by the FBSDE (4.4.1),
by convexity of the stochastic control problem.
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De�nition 4.4.4. Let
�
ū(k;1 ); X̄(k;1 ); Ȳ(k;1 )

�
2 H � S � S be the unique solution of the limiting coordination problem

(4.4.1). We de�ne the limiting coordination signal v̄(1 ) 2 H by:

8t 2 [0;T]; v̄(1 )
t := L 0

x

0
BBBBB@t;

MX

l=1

� (l)ū(l;1 )
t + P̄load

t � Pprod
t

1
CCCCCA: (4.4.3)

The interest of considering the limiting coordination problem instead of the coordination problem is that it can be
solved in the �ltration G instead of the general �ltration F, allowing to consider a non-intrusive coordinator. This fact
is made clear by the following theorem.

Theorem 4.4.5. The unique solution (ū(k;1 ); X̄(k;1 ); Ȳ(k;1 ))k2[M] 2 H � S � S of the FBSDE (4.4.1) is G-progressively
measurable.

The proof of the above theorem is postponed to Subsection 4.7.4.

We then show the convergence of the solution of the coordination problem to the solution of limiting coordination
problem when N goes to in�nity at speed 1=

p
N, as expected. To do it, we prove stability of the solution of FBSDE

with similar structure as the one of (4.3.1) and (4.4.1) with respect to parameters of the FBSDE.

Proposition 4.4.6. Let � = (x; v;w;uref ; xref ; xf
T) with x = (x(k))k2[M] 2 RM , v 2 H , w = (w(k))k2[M] 2 H (RM ), uref =

(uref ;(k))k2[M] 2 H , xref = (xref ;(k))k2[M] 2 H , xf
T = (xf ;(k)

T )k2[M] 2 L 2
T.

Consider the FBSDE with unknowns (u(k);X(k);Y(k))k2[M] 2 H � S � S parameterized by :

8
>>>>><
>>>>>:

X(k)
t = x(k) +

Rt

0

�
� (k)

s u(k)
s + � (k)

s X(k)
s + w(k)

s

�
ds;

Y(k)
t = E t

�
� (k)

�
X(k)

T � xf ;(k)
T

�
+

RT

t

�
� (k)

s Y(k)
s + � (k)

s

�
X(k)

s � xref ;(k)
s

��
ds

�
;

� (k)
t

�
u(k)

t � uref ;(k)
t

�
+ L 0

x

�
t;

P M
l=1 � (l)u(l)

t + vt

�
+ � (k)

t Y(k)
t = 0:

This FBSDE has a unique solution (ū(k);� ; X̄(k);� ; Ȳ(k);� )k2[M] 2 H � S � S for any � = (x; v;w;uref ; xref ; xf
T) 2 RM � H �

H (RM ) � H (RM ) � L 2
T(RM ). Besides, for any � 1 = (x1; v1;w1; uref ;1; xref ;1; xf ;1

T ) 2 RM � H � H (RM ) � H (RM ) � L 2
T(RM )

and � 2 = (x2; v2;w2; uref ;2; xref ;2; xf ;2
T ) 2 RM � H � H (RM ) � H (RM ) � L 2

T(RM ), we have, for T small enough:

k(ū� 1
� ū� 2

; X̄ � 1
� X̄ � 2

; Ȳ� 1
� Ȳ� 2

)kH � CTk� 1 � � 2k:

The proof of the above Proposition is postponed to Subsection 4.7.5.

Remark 4.4.7. This stability result could be extended to arbitrary time horizon T, for instance by an adaptation of the
continuation method, presented for instance in [CD18, p. 560, Volume I], or maybe as a consequence of [Ma+15,
Theorem 8.1, p. 2203].

Corollary 4.4.8. Under our assumptions, we have:

MX

k=1

k(ū(k;1 ) � ū(k;N); X̄(k;1 ) � X̄(k;N); Ȳ(k;1 ) � Ȳ(k;N))kH �
CT
p

N
:

In particular, we have the following estimation of the error between the coordination signal and the limiting coordi-
nation signal:

kv̄(N) � v̄(1 )kH �
CT
p

N
:

The proof of the above Corollary is postponed to Subsection 4.7.6.
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4.4.2 Convergence of the individual problems for large populations

Proposition 4.4.9. For k 2 [M]; i 2 [Nk], consider the following FBSDE with unknown (u;X;Y) 2 H � S � S , called
the limiting individual problem of agent i of class k:

8
>>>>><
>>>>>:

Xt = x(k;i)
0 +

Rt

0

�
� (k)

s us + � (k)
s Xs + 
 (k;i)

s

�
ds

Yt = E t

�
� (k)

�
XT � xf ;(k;i)

T

�
+

RT

t

�
� (k)

s Ys + � (k)
s

�
Xs � xref ;(k;i)

s

��
ds

�

� (k)
t

�
ut � uref ;(k;i)

t

�
+ v̄(1 )

t + � (k)
t Yt = 0

(4.4.4)

This FBSDE has a unique solution (u(k;i;1 );X(k;i;1 );Y(k;i;1 )) 2 H � S � S .

Proof. We use similar arguments as in the proof of Theorem 4.2.1. The FBSDE (4.4.4) is the optimality system
associated to the stochastic control problem:

min
u2H

E

2
666664

Z T

0

0
BBBBB@
� (k)

t

2

�
ut � uref ;(k;i)

t

� 2
+

� (k)
t

2

�
Xt � xref ;(k;i)

t

� 2
+ v̄(1 )

t ut

1
CCCCCAdt +

� (k)

2

�
XT � xf ;(k;i)

T

� 2
3
777775; (4.4.5)

s:t: Xt = x(k;i)
0 +

Z t

0

�
� (k)

s us + � (k)
s Xs + 
 (k;i)

s

�
ds:

By [Bre10b, Corollary 3.23, pp.71], this stochastic control problem has a unique solution by our assumptions (en-
suring strong convexity, continuity and coercivity of the mapping minimized in problem (4.4.5)). �

The stochastic control problem (4.4.5) can be interpreted as the individual optimization problem of agent i of
class k, responding to the limiting coordination signal sent by the coordinator. Similarly as in Theorem 4.4.5, it could
be proved that the solution of the individual problem of a given agent (k; i) is progressively measurable with respect
to the completed �ltration generated by the processes xref ;(k;i), uref ;(k;i), xf ;(k;i)

T , 
 (k;i), v̄(1 ). This is of practical interest
as it ensures that individual decisions can be taken using only locally available information.

The following Proposition gives another way to compute the solution of the limiting individual problems and allows
to focus on the �uctuations of the controls and states of individual players around the empirical means over classes.

Proposition 4.4.10. Let (u(k;i;1 );X(k;i;1 );Y(k;i;1 )) 2 H � S � S be the unique solution of the limiting individual problem
(4.4.4) of agent i 2 [Nk] of class k 2 [M]. Let (ū(k;1 ); X̄(k;1 ); Ȳ(k;1 ))k2[M] 2 H � S � S be the unique solution of the
limiting coordination problem (4.4.1). Then (u(k;i;1 ) � ū(k;1 );X(k;i;1 ) � X̄(k;1 );Y(k;i;1 ) � Ȳ(k;1 )) 2 H � S � S is the unique
solution of the following FBSDE with unknowns (� u; � X; � Y) 2 H � S � S :

8t 2 [0;T];
8
>>>>><
>>>>>:

� Xt = x(k;i)
0 � x̄(k)

0 +
Rt

0

�
� (k)

s � us + � (k)
s � Xs + 
 (k;i)

s � 
̄ (k)
s

�
ds;

� Yt = E t

�
� (k)

�
� XT � xf ;(k;i)

T + x̄f ;(k)
T

�
+

RT

t

�
� (k)

s � Ys + � (k)
s

�
� Xs � xref ;(k;i)

s + x̄ref ;(k)
s

��
ds

�
;

� (k)
t

�
� ut � uref ;(k;i)

t + ūref ;(k)
t

�
+ � (k)

t � Yt = 0:

(4.4.6)

To show the convergence of the solutions of the individual problems to the solutions of the limiting individual
problems, we have to use the following stability result for a class of FBSDE with respect to its input parameters.

Proposition 4.4.11. Let v 2 H . For k 2 [M]; i 2 [Nk], consider the FBSDE with unknowns (u;X;Y) 2 H � S � S :

8
>>>>><
>>>>>:

Xt = x(k;i)
0 +

Rt

0

�
� (k)

s us + � (k)
s Xs + 
 (k;i)

s

�
ds;

Yt = E t

�
� (k)

�
XT � xf ;(k;i)

T

�
+

RT

t

�
� (k)

s Ys + � (k)
s

�
Xs � xref ;(k;i)

s

��
ds

�
;

� (k)
t

�
ut � uref ;(k;i)

t

�
+ vt + � (k)

t Yt = 0:

This FBSDE has a unique solution (u(k;i);v;X(k;i);v;Y(k;i);v) 2 H � S � S for any v 2 H . Besides, for T small enough, for
any v; v0 in H , for all k 2 [M]; i 2 [Nk]:

k(u(k;i);v � u(k;i);v0
;X(k;i);v � X(k;i);v0

;Y(k;i);v � Y(k;i);v0
)kH � CTkv � v0kH :
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The proof of the above Proposition is similar to the proof of Proposition 4.4.6.

Theorem 4.4.12. The solutions of the limiting individual problems are close to the solutions of the individual prob-
lems. In other words, for k 2 [M]; i 2 [Nk], for T small enough, for some constant C independent from N,

k(u(k;i;1 ) � u(k;i;N);X(k;i;1 ) � X(k;i;N);Y(k;i;1 ) � Y(k;i;N))kH �
C

p
N

;

and we have the following estimation on the sub-optimality of u(1 ) := (u(k;i;1 ))k2[M];i2[Nk] compared to the optimal
solution u(N) := (u(k;i;N))k2[M];i2[Nk] , for another constant C independent from N:

0 � J (u(1 )) � J (u(N)) = J (u(1 )) � min
v2H

J (v) �
C
N

:

The proof of the above Theorem is postponed to Subsection 4.7.7.
The above result shows that the (unique) Nash equilibrium a Stochastic Stackelberg Differential Game with

followers (the agents) and a leader (the aggregator) corresponds to a quasi-optimal solution of the centralized
control problem of many TCLs. In particular, no real-time communication from the agents to the aggregator is
required, and the problems of the agents and the coordinator can be solved using locally available data only.

4.5 Numerical experiments

4.5.1 The model

Models for exogenous random uncertainties

In the following, M = 2, W = (W(k;i))k2[2];i2[Nk] , W̃ and Ncons = (Ncons;(k;i)
k;i )k2[2];i2[Nk] denote respectively a N-dimensional

Brownian motion, a one-dimensional Brownian motion and a N independent compensated Poisson processes with
intensity � cons. These processes are assumed independent.

We assume Pload ;(k;i) = Pcons;(k;i) � Psun for all k 2 [2]; i 2 Nk. For the consumption process Pcons;(k;i), we assume the
following dynamic:

dPcons;(k;i)
t = � � cons(Pcons;(k;i)

t � pcons;ref
t )dt + � cons

t dW(k;i)
t + hconsdNcons;(k;i)

t : (4.5.1)

In practice, only conditional independence of the processes (Pcons;(k;i)) is necessary for our results to hold, but for
simplicity of our presentation, we assume that they are (unconditionally) independent identically distributed.

Regarding the PV production, we follow [Bad+18] by setting Psun = Psun;maxXsun where Psun;max : [0;T] 7! R is a
deterministic function (the clear sky model) and Xsun solves a Fisher-Wright type SDE which dynamics is

dXsun
t = � � sun(Xsun

t � xsun;ref
t )dt + � sun(Xsun

t )k1(1 � Xsun
t )k2dW̃t ; (4.5.2)

with k1; k2 � 1=2. As proved in [Bad+18], there is a strong solution to the above SDE and the solution Xsun takes
values in [0;1].

Since the drifts are af�ne-linear, the conditional expectations of the solutions are known in closed form (this
property is intensively used in [BSS05]):

E t
�
Psun

s
�

=

 
Psun

t

Psun;max
t

exp(� � sun(s � t)) +
Z s

t
� sunxsun;ref

� exp(� � sun(s � � ))d�

!

Psun;max
s ; (4.5.3)

E t

h
Pcons;(k;i)

s

i
= Pcons;(k;i)

t exp(� � cons(s � t)) +

 Z s

t
� conspcons;ref

� exp(� � cons(s � � ))d�

!

; (4.5.4)

for s � t. This will allow us to speed up computations of the conditional expectations E t

h
P̄load

s

i
and E t

h
P̄load ;(N)

s

i
as

required when deriving the optimal control. Moreover, throughout our application, we assume Pprod
t = E

h
P̄load ;(N)

t

i
,

which can be easily computed using the previous remark.
The values of the parameters used are given in the following table, while Psun;max and pcons;ref are plotted in

Figures 4.2a and 4.2b. Empirical quantile plot (obtained by simulation of 40000i.i.d. trajectories) as well as one
example trajectory of Psun and Pcons are given in Figures 4.2c and 4.2d. The simulations are performed using Euler
scheme on a time horizon T = 24 h with step length 1=16 h.
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Table 4.1: Parameter values for the simulation of input processes

� cons � cons � cons hcons � sun xsun;ref � sun k1 k2

0:9 h� 1 0:1(pcons;ref � 2:5) + 0:1 0:25 h� 1 0:25 kW 0:75 h� 1 0:5 0:8 0:8 0:7

(a) Time evolution of Psun;max (b) Time evolution of pcons;ref

(c) Quantile plot and one example trajectory of Psun (d) Quantile plot and one example trajectory of Pcons

Figure 4.2: Parameters and statistical evolution of Psun and Pcons

Models for Thermostatically Controlled Loads

We consider two classes (i.e., M = 2) of Thermostatically Controlled Loads: heat pumps and water heaters. We
control the power consumption of these devices around a nominal value de�ned such that thermal losses are exactly
compensated when their target temperature xf ;(k;i)

T = xref ;(k;i), assumed constant, is reached. We assume �rst order
models for the temperature, as in [Tro+16]. The dynamics of the temperature associated to individual devices is
given by:

dX(k;i)
t

dt
=

COP(k)

C(k)
u(k;i)

t �
1

R(k)C(k)
(X(k;i)

t � xref ;(k;i));

where COP(k) denotes the coef�cient of performance of devices of type k, C(k) denotes its thermal capacitance, R(k)

its thermal resistance, Xout;(k;i) the environment temperature of the device. This gives � (k) = COP(k)

C(k) , � (k) = � 1
R(k)C(k) and


 (k;i) = xref ;(k;i)

R(k)C(k) . Realistic parameter values for various types of TCLs (AC, refrigerators, water heaters, heat pumps)
can be found in [Mat+12]. We use these values to set the parameters of our models of devices.

The temperature deadband � (k) of a TCLs denotes admissible deviation of the temperature X(k;i) of a device
from its reference xref ;(k;i). We assume (x(k;i)

0 )k2[2];i2[Nk] = (xref ;(k;i))k2[2];i2[Nk] = (xf ;(k;i)
T )k2[2];i2[Nk] are independent and

xref ;(k;i) = x(k;i)
0 = xf ;(k;i)

T is drawn from a uniform distribution on the interval [x̄ref ;(k) � � (k); x̄ref ;(k) + � (k)].
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Table 4.2: Parameter values for the Thermostatically Control Loads

Class index k type of device R(k) C(k) COP(k) x̄ref ;(k) Deadband � (k)

1 Water heater 120(°C/kW) 0:4 (kWh/ °C) 1 48 (°C) 4 (°C)

2 Heat pump 2 (°C/kW) 2 (kWh/°C) 3:5 20 (°C) 1 (°C)

Cost parameters

In the case where L is not quadratic, the coordination problem is a low-dimensional control problem which does not
have explicit solutions in general, so that a numerical method is required to solve it. We assume in this chapter that
L is simply the quadratic function L : (t; x) 7! �

2 x2 for some deterministic constant � � 0. In this case, all the control
problems are Linear-quadratic, the associated FBSDEs are af�ne-linear, and therefore have quasi-explicit solutions.
Individual cost parameters are scaled according to the square of the temperature deadband of the type of device
considered, in order to guarantee proper scaling of the temperature range sizes.

Table 4.3: Parameter values for the cost functional

� (k)(� (k))2 � (k)(� (k))2 � (k)(� (k))2 �

4 (°C)2 kW� 2 h� 1 5 h� 1 0 30 kW� 2 h� 1

4.5.2 Solution method of af�ne-linear FBSDEs

The solution method for linear FBSDEs is standard, see for instance [Bis76; Yon99; Yon06].

The limiting coordination problem

The optimality system of the limiting coordination problem is a linear FBSDE which writes, up to rescaling of the
optimality condition by � :

8
>>>>>>>><
>>>>>>>>:

X0 = x̄0;
dXt
dt = � ut + � Xt + 
̄;

Yt = E t

�
� (XT � x̄ref ) +

RT

t

�
� (Xs � x̄ref ) + � Ys

�
ds

�
;

�� ut + �� (� > ut + P̄load
t � Pprod

t ) + �� Yt = 0;

(4.5.5)

where:

� := diag(� (k))k=1;2; � := diag(� (k))k=1;2; � := diag(� (k))k=1;2; � := diag(� (k))k=1;2; � := diag(� (k))k=1;2;

� :=

 
� (1)

� (2)

!

; � := diag(� ); 
̄ = (
̄ (k))k=1;2; ū = (ū(k))k=1;2; X̄ = (X̄(k))k=1;2; Ȳ = (Ȳ(k))k=1;2:

The last equation allows to eliminate u, which writes:

ut = � (�� + ��� > )� 1
�
�� Yt + � (P̄load

t � Pprod
t )�

�
:

Therefore, we obtain the following FBSDE with unknowns (X;Y):

8
>>>>><
>>>>>:

X0 = x̄0;
dXt
dt = � Xt � � (�� + ��� > )� 1�� Yt + 
̄ + � � (�� + ��� > )� 1(Pprod

t � P̄load
t )�;

Yt = E t

�
� (XT � x̄ref ) +

RT

t

�
� (Xs � x̄ref ) + � Ys

�
ds

�
:

(4.5.6)
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Introduce the Matrix-valued Riccati ODE with unknown � :
8
>><
>>:

d� t

dt + � t � + � � t + �� � � t � (�� + ��� > )� 1� � t = 0;

� T = �� :

According to [Bis76, Theorem 6.1], this Riccati ODE has a unique bounded solution ¯� , since �� and �� + ��� > are
positive semi-de�nite matrices (the second matrix is even positive de�nite).

Introduce the linear BSDE in ( ; M) 2 S � S with M martingale vanishing at t = 0:
8
>><
>>:

� d t =
n�

� � ¯� t � (�� + ��� > )� 1�
�
 t � �� x̄ref + ¯� t 
̄ + � ¯� t � (�� + ��� > )� 1(Pprod

t � P̄load
t )�

o
dt � dM t ;

 T = � �� x̄ref :

This linear BSDE admits a unique solution ( ¯ ; M̄ ) 2 S � S with M̄ martingale vanishing at t = 0, according to
[EPQ97, Theorem 5.1]. Let X̄ be the unique solution of the af�ne-linear ODE:

8
>><
>>:

X0 = x̄0;
dXt
dt = � Xt � � (�� + ��� > )� 1� ( ¯� tXt + ¯ t) + 
̄ + � � (�� + ��� > )� 1(Pprod

t � P̄load
t )�:

Then, using Integration by Parts Formula in [Pro03, Corollary 2, p. 68], one can show that X̄ and Ȳ = � � 1
�

¯� X̄ + ¯ 
�

are solutions of the FBSDE (4.5.6). Therefore, (4.5.5) has a unique solution (ū; X̄; Ȳ) with the following feedback
expression for ū:

ūt = � (�� + ��� > )� 1� ( ¯� tX̄t + ¯ t) + � (�� + ��� > )� 1� (Pprod
t � P̄load

t ):

Besides, the limiting coordination signal is given by the feedback expression:

v̄(1 )
t = �

�
� > ūt + P̄load

t � Pprod
t

�

= �
�
� � > (�� + ��� > )� 1� ( ¯� tX̄t + ¯ t) + �� > (�� + ��� > )� 1� (Pprod

t � P̄load
t ) + P̄load

t � Pprod
t

�
:

The coordination problem

The coordination problem has the same structure as the limiting coordination problem with coef�cients x̄ref , x̄0, 
̄
and P̄load formally replaced respectively by x̄ref ;(N), x̄(N)

0 , 
̄ (N) and P̄load ;(N). Solving the coordination problem can
be done similarly as for the limiting coordination problem, by formally replacing parameters x̄ref , x̄0, 
̄ and P̄load by
x̄ref ;(N), x̄(N)

0 , 
̄ (N) and P̄load ;(N).

The individual and limiting individual problems

Once the solution of the coordination problem is computed, solving the individual and limiting individual problems
amounts to solve (4.3.5) and (4.4.6). By eliminating the (recentered) control using the last equation in both these
FBSDEs, one can show that the recentered individual problems and recentered limiting individual problems are both
equivalent to one-dimensional FBSDEs with the following structure:

8
>>><
>>>:

Xt = x0 +
Rt

0
(AX s + BYs + as)ds;

Yt = E t

�
� XT + f +

RT

t
(CXs + AYs + bs)ds

�
;

(4.5.7)

with A;B;C; � deterministic, B < 0, C; � � 0, a; b in H , f in L 2
FT

(
 ). The structure of the online limiting individual
problems is similar.

Lemma 4.5.1 (1-dimension Riccati ODE with constant coef�cients) . Consider the following Riccati ODE:
8
>><
>>:

d� t

dt + a� t + b� 2
t + c = 0;

� T = 
;
(4.5.8)
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with a;b; c; 
 deterministic, b < 0, c; 
 � 0. Then this equation admits a unique bounded solution on [0;T], denoted
by � . De�ne � as the unique solution of the second-order linear ODE:

8
>>>>><
>>>>>:

d2� t

dt2 + ad� t
dt + bc� t = 0;

d� T
dt = 
 b;

� T = 1:

(4.5.9)

Then � is positive and the unique solution � of (4.5.8) on [0;T] is given by:

8t 2 [0;T]; � t =
� d� t

dt

� 1
b� t

Proof. As x 7! � ax� bx2 � c is locally Lipschitz-continuous, (4.5.8) has a unique solution � on some maximal interval
(t0; t1) with t0 < T < t1 and t0 2 R̄ and t1 2 R̄ are unique. Consider the following Riccati ODE:

8
>><
>>:

dpt

dt + apt + bp2
t = 0;

pT = 0:
(4.5.10)

The null function is the unique solution of 4.5.10 on (�1 ;+1 ). Consider as well the following linear ODE:
8
>><
>>:

dpt

dt + apt + c = 0;

pT = 
:

It admits a unique solution � on (�1 ;+1 ). Besides, by comparison theorem for Ordinary differential equations, we
have :

8t 2 (t0; t1); 0 � � t � � t

which shows that � can not explode in �nite time, and hence t0 = �1 and t1 = + 1 . Hence � is well-de�ned and
bounded on [0;T]. Now, let us de�ne � as the unique solution of the following ODE:

8
>><
>>:

d� t
dt = b� t � t ;

� T = 1:
(4.5.11)

Then we immediately get that � is well-de�ned, and positive on R. Besides, � is C2 and:

d2� t

dt2
= b

d� t

dt
� t + b� t

d� t

dt
= b(� a� t � b� 2

t � c)� t + b2� 2
t � t

= � ab� t � t � bc� t

= � a
d� t

dt
� bc� t ;

where we used successively that � solves (4.5.8) and that � solves (4.5.11). In particular, this shows that � is also
the unique solution of (4.5.9). This completes the proof. �

Theorem 4.5.2 (Veri�cation theorem for af�ne-linear FBSDE with constant coef�cients) . Let A;B;C; � be determin-
istic constants, B < 0, C; � � 0, a; b in H , f in L 2

FT
(
 ). Let � be the unique solution of the following Riccati ODE:

8
>><
>>:

d� t

dt + 2A� t + B� 2
t + C = 0;

� T = � ;
(4.5.12)

and let ( ; M) 2 S � M 2
0 be the unique solution of the following BSDE:

8
>><
>>:

� d t =
�
(B� t + A) t + � tat + bt

�
dt � dM t ;

 T = f;
(4.5.13)
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where M 2
0 denotes the space of martingales in S vanishing at t = 0. Denoting � the unique (non-negative) solution

of:
8
>>>>><
>>>>>:

d2� t

dt2 + 2A d� t
dt + BC� t = 0;

d� T
dt = � B;

� T = 1;

(4.5.14)

we have the explicit formula for  :

 t = E t
�
f
� � � T

� t

�
exp(A(T � t)) + E t

"Z T

t
(as� s + bs)

� � s

� t

�
exp(A(s � t))ds

#

:

If � is the unique solution of (4.5.14), de�ne X by:

Xt = x0
� t

� 0
exp(At) +

Z t

0
(B s + as)

� t

� s
exp(A(t � s))ds: (4.5.15)

De�ne also Y := � X +  . Then (X;Y) 2 S � S is a solution of the following FBSDE:
8
>>><
>>>:

Xt = x0 +
Rt

0
(AX s + BYs + as)ds;

Yt = E t

�
� XT + f +

RT

t
(CXs + AYs + bs)ds

�
:

(4.5.16)

Proof. By Lemma 4.5.1, the Riccati ordinary differential equation (4.5.12) has a unique solution � . The uniqueness
of the solution ( ; M) 2 S � M 0 of (4.5.13) arises from an application of [EPQ97, Theorem 5.1, p. 54]. To obtain
the explicit expression of  , we use the Integration by Parts Formula in [Pro03, Corollary 2, p. 68] to the product

˜ de�ned by ˜ t :=  t exp
�
�

RT

t
(B� s + A)ds

�
between 0 and T, using the fact that the second term is bounded,

continuous with �nite variations. This shows:
8
>>><
>>>:

� d ˜ t = (� tat + bt) exp
�
�

RT

t
(B� s + A)ds

�
dt � exp

�
�

RT

t
(B� s + A)ds

�
dM t ;

˜ T = f:

In particular, using the boundedness of � , the last term in the above BSDE is a true martingale, so that:

˜ t = E t

"

f +
Z T

t
(� sas + bs) exp

 

�
Z T

s
(B� r + A)dr

!

ds

#

:

We obtain the explicit expression of  by using  t = ˜ t exp
�RT

t
(B� s + A)ds

�
and using the fact that � t = d� t

dt
1

B� t
,

which yields exp
�Rs

t
(B� r + A)dr

�
= � s

� t
exp(A(s � t)), since � is positive. Let X̂ be given by:

X̂t = x0 +
Z t

0
((A + B� s)X̂s + B s + as)ds: (4.5.17)

We want to show that X̂ = X given in (4.5.15). De�ne X̃ by X̃t = X̂t exp
�
�

Rt

0
(� sB + A)ds

�
. Then, by integration

by part, we obtain X̃t = x0 +
Rt

0
(B s + as) exp

�
�

Rs

0
(� rB + A)dr

�
ds. We can �nally show that X̂ = X using X̂t =

X̃t exp
�Rt

0
(� sB + A)ds

�
and exp

�Rt

s
(B� r + A)dr

�
= � t

� s
exp(A(t � s)) for any t and s in [0;T], using the form � = ��

B� given

by Lemma 4.5.1 (where �� is the derivative of t 7! � t). Then using the de�nition of Y := � X +  and by (4.5.17), we
get that X satis�es:

Xt = x0 +
Z t

0
(AX s + BYs + as)ds:

One can verify using Y = � X +  and an integration by parts that (Y;M) 2 S � M 2
0 is solution of the following BSDE:

8
>><
>>:

� dYt = (CXt + AYt + bt)dt � dM t ;

YT = � XT + f;

which yields the result. �

In the simulations, we rely heavily on Theorem 4.5.2 to solve the one-dimensional FBSDEs.

94



CHAPTER 4. DECENTRALIZED STOCHASTIC CONTROL OF ENERGY STORAGE SYSTEMS

4.5.3 Numerical simulations and results

The simulations have been performed on Python 3.7, with an Intel-Core i7 PC at 2.1 GHz with 16 Go memory. We
simulate one realization of the stochastic process Psun and N i.i.d scenarios of Pcons (N being the number of agents)
on [0;T] with T = 24 hours using Euler schemes with step length 1=16 h. The solutions of ordinary differential
equation and linear backward stochastic differential equations are computed using Euler scheme. For the solution
of linear BSDE, we rely heavily on the assumption of af�ne-linear processes given in Section 4.5.1.

Results with identical population sizes

We consider N = 40000users, with N1 = N2 = 20000users in each class (which yields the relative population
sizes � 1 = � 2 = 0:5). The results of the simulation for one weather scenario are given in Figure 4.3. In particular,
the �rst graph 4.3a shows that the power imbalance using the approximate control (obtained by solving the limiting
coordination and limiting individual problems) is closer to 0 than without control. This is done without violating
temperature bounds for the populations of water heaters and heat pumps (at least not often and with low probability),
see Figures 4.5c and 4.5d. This shows the interest of our approach: power imbalance may be reduced by distributed
TCLs while guaranteeing good quality of service, i.e., while maintaining the temperatures of the devices in their
admissible ranges.

(a) Time evolution of power imbalance (b) Time evolution of ū(k) for both types of devices

(c) Quantile plot of the temperature deviations of individual
water heaters

�
X (1;i;1 ) � xref ;(1;i)

�

1� i� N1

(d) Quantile plot of the temperature deviations of individual
heat pumps

�
X (2;i;1 ) � xref ;(2;i)

�

1� i� N2

Figure 4.3: Evolution of the system (1 scenario of solar irradiance, quantiles computed within each population class)
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Numerical illustration of the convergence of the coordination signal to the limiting coordination signal

We plot the error between the real and limiting coordination signals kv̄(N) � v̄(1 )kH as a function of the population
size N and conditionally to one scenario of Psun in Figure 4.4a and the rescaled error

p
Nkv̄(N) � v̄(1 )kH as a function

of the population size N (conditionally to one scenario of Psun) 4.4b, to empirically illustrate the convergence of v̄(N)

to v̄(1 ) at speed O
�

1p
N

�
when the population size N goes to in�nity. .

(a) Error kv̄(N) � v̄(1 )kH as a function of population size N
(conditionally to one scenario of Psun)

(b) Rescaled error
p

Nkv̄(N) � v̄(1 )kH as a function of popula-
tion size N (conditionally to one scenario of Psun)

Figure 4.4: Convergence of the coordination signal to the limiting coordination signal in the limit of large populations

Impact of relative population sizes

We consider the relative sizes of the population given in Table 4.4 without modifying other parameters of the problem.

Table 4.4: Relative sizes of populations of water heaters and heat pumps

Scenario Proportion of water heaters � 1 Proportion of heat pumps � 2

Case 1 50 % 50 %

Case 2 95 % 5 %

Case 3 5 % 95 %

The evolution of the controlled power imbalance in the three cases is represented in Figure 4.5e. We observe a
similar magnitude of this signal in the three cases considered. However, whenever the relative size of water heaters
population is small (5%), the magnitudes of average controls of both types of population increase (see Figures
4.5a and 4.5b). Besides, the temperature of both types of TCLs vary more, and in the case of water heaters, the
temperature may even go outside of the range de�ned by the deadband temperature (see Figures 4.5c and 4.5d).
This may be explained intuitively. Water heaters have more capabilities to provide power without violating their
operational constraints than heat pump do. As a result, water heater provide more power than heat pumps (see
Figures 4.5a and 4.5b). Hence, when the relative population size of water heaters is reduced, the overall system
has a smaller capability of providing and absorbing power. As a result, individual devices of both types are more
solicited. These experiments show that there is a trade-off between ensuring individual constraints (power levels,
temperature) and global power balance. Appropriate tuning of the parameters of the cost function is therefore
required.
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(a) Mean control of water heaters ū(1) (b) Mean control of heat pumps ū(2)

(c) Mean temperature of water heaters X̄ (1)
(d) Mean temperature of heat pumps X̄ (2)

(e) Power imbalance

Figure 4.5: Impact of relative sizes of populations of TCLs for 1 scenario of Psun (means computed over the popula-
tion)

4.6 Online decentralized control scheme with minimal telecommunication

We go back to the setting of Section 4.4, with time dependent coef�cients and with a non-quadratic loss function
L . We have developed a decomposition and a mean-�eld approximation which allow to solve approximately the
stochastic control with limited telecommunications. In the control architecture developed, a coordinator solves the
so-called limiting coordination problem (4.4.1) which allows him to compute the limiting coordination signal v̄(1 ) 2 H .
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This signal is sent to all agents and used as input parameter of the limiting individual problems 4.4.4. In particular,
the (conditional) distribution of the limiting coordination signal v̄(1 ) is required a priori by the agents to solve their
individual problems. This raises two issues: sending the distribution of the limiting coordination signal v̄(1 ) is costly
and conceptually complex from a telecommunication point of view, and this information needs to be stored locally by
agents, which requires heavy memory needs. To tackle these issues, we show that the af�ne-linear structure of the
limiting individual problems allows to compute the current value of the control using a simpler coordination signal.
This results in the same control as one would obtain by solving the limiting coordination and individual problems,
without additional error. We describe an online control scheme where, at each instant, a coordinator sends the
current best estimation (conditional expectation) of the limiting coordination signal on the remaining time horizon.
Replacing the distribution of the limiting coordination signal by its current best estimation in the limiting individual
problems allows to compute the current value of the control variables using a diagonal scheme. This allows a
decentralized architecture with one-way real-time communication of a simple and agent-independent coordination
signal from the coordinator to individual consumers, see Figure 4.64. Let us give more details.

Figure 4.6: Coordination mechanism

Let us adopt the point of view of agent i 2 [Nk] of class k 2 [M]. Consider its limiting individual problem:

8
>>>>><
>>>>>:

Xt = x(k;i)
0 +

Rt

0

�
� (k)

s us + � (k)
s Xs + 
 (k;i)

s

�
ds;

Yt = E t

�
� (k)

�
XT � xf ;(k)

T

�
+

RT

t

�
� (k)

s Ys + � (k)
s

�
Xs � xref ;(k)

s

��
ds

�
;

� (k)
t

�
ut � uref ;(k)

t

�
+ v̄(1 )

t + � (k)
t Yt = 0;

(4.6.1)

where the limiting coordination signal v̄(1 ) 2 H is de�ned in (4.4.3) and computed by the coordinator by solving the
limiting coordination problem (4.4.1). We recall that the solution of the individual problem of agent i of class k is
denoted by (u(k;i;1 );X(k;i;1 );Y(k;i;1 )).

Introduce for t 2 [0;T] the online coordination signal at time t, denoted by v̄(1 ;t) and de�ned by:

v̄(1 ;t)
� := E t

h
v̄(1 )

�

i
= E t

2
666664L

0
x

0
BBBBB@�;

MX

l=1

� (l)ū(l;1 )
� + P̄load

� � Pprod
�

1
CCCCCA

3
777775: (4.6.2)

4Icons made by Freepik and Smashicons from www.�aticon.com
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As v̄(1 ) is G-progressively measurable and as G is immersed in F, we also have:

v̄(1 ;t)
� = E

h
E

h
v̄(1 )

� jGT

i
jF t

i
= E

h
v̄(1 )

� jGt

i
:

In particular, v̄(1 ;t) is a Gt-measurable function of time which can be fully computed by the coordinator (which
observes Gt only at time t). Let us consider the point of view of the agent i of class k at a �xed time t 2
[0;T], which aims at computing the current value of its control u(k;i)

t . Informally, using the linearity of the condi-
tional expectation and of (4.6.1), replacing v̄(1 ) by its conditional expectation v̄(1 ;t), we can heuristically justify that
(E t

h
u(k;i;1 )

i
; E t

h
X(k;i;1 )

i
; E t

h
Y(k;i;1 )

i
) is solution of the following linear FBSDE with unknowns (u;X;Y) 2 H � S � S :

8
>>>>><
>>>>>:

X � = x(k;i)
0 +

R�

0

�
� (k)

s us + � (k)
s Xs + E t

h

 (k;i)

s

i�
ds

Y� = � (k)
�
XT � E t

h
xf ;(k)

T

i�
+

RT

�

�
� (k)

s Ys + � (k)
s

�
Xs � E t

h
xref ;(k)

s

i��
ds

� (k)
�

�
u� � E t

h
uref ;(k)

�

i�
+ v̄(1 ;t)

� + � (k)
� Y� = 0:

(4.6.3)

Using the ”diagonal” identity

(u(k;i;1 )
t ;X(k;i;1 )

t ;Y(k;i;1 )
t ) = (E t

h
u(k;i;1 )

t

i
; E t

h
X(k;i;1 )

t

i
; E t

h
Y(k;i;1 )

t

i
); (4.6.4)

we can recover the current value of the control u(k;i) of the agent at time t. This procedure can be repeated for
each time t: the coordinator solves the coordination problem, evaluates the online coordination signal v̄(1 ;t) on the
remaining time horizon and sends it to all agents. The agents can then compute the current value of their control
by solving a one-dimensional af�ne-linear FBSDE without additional approximation error. Such a problem is easy
to solve, see Theorem 4.5.2.

The above discussion justi�es the following decentralized control scheme 4.1.

Algorithm 4.1 Decentralized control scheme

1: Inputs: Time grid (� 0; :::; � NT ).
2: for j = 0; :::;NT do
3: Wait for t = � j .

4: Aggregator observes the common noise G� j , computes the online coordination signal at time � j (v̄
(1 ;� j )
� )� j � � � T

given in (4.6.2) and sends it to all agents. This coordination signal is a G� j measurable function of time.

5: Each agent solves its limiting online individual problem (4.6.3) to get its optimal control u(k;i;1 )
� j

= u
(k;i;1 ;� j )
� j

by
the diagonal identity (4.6.4).

6: Each agent implements control u(k;i;1 )
� j

for its storage system at time � j .
7: end for

4.6.1 Discussion on the decentralized control scheme

We can make the following remarks on this scheme.

1. Fast computation of the coordination signal is possible with reasonable computational resource. The
limiting coordination problem (4.4.1) is a M-dimensional FBSDE, equivalent to a M-dimensional control prob-
lem. The control problem is relatively easy to solve in a linear-quadratic setting, using similar arguments as in
Section 4.5.2, and it can be solved using numerical methods in other cases. Computation of the parameters
of this problem is easy as well, under some assumption like af�ne-linear stochastic processes.

2. Fast computation of the individual controls are possible by agents equipped with limited computa-
tional resources. The online limiting individual problems at time t (4.6.3) are linear one-dimensional FBS-
DEs, hence particularly easy to solve, see Section 4.5.2. Considering deterministic coef�cients or stochastic
processes with af�ne-linear drift can make computations even easier.
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3. The parameters of the problems solved by the agents and the coordinator are locally available. Indeed,
the parameters of the limiting coordination problem at time t can be computed by an aggregator only observing
the common information G. The parameters of the online limiting individual problems of agent (k; i) at time t
are all available locally for agent (k; i). This includes the shared information Gt , the online limiting coordination
signal received, and individual parameters of the energy storage system of agent (k; i). In particular, the
computation of conditional expectations of the parameters of individual energy storage systems is simpli�ed
by our assumption of conditional independence of these parameters.

4. Limited telecommunication is required. A single online coordination signal at time t (v̄(1 ;t)
� )� 2 [0;T] is

sent to agents by the coordinator, so that no speci�c routing is needed. This signal is a one dimensional
Gt-measurable function of time, hence it encoding is easy, for instance by discretization/interpolation or by
regression against a function basis (like Fourier). No real-time communication from agents to the coordinator
is required.

4.6.2 On the privacy of individual users habits

In order for an aggregator to come up with good stochastic models of the empirical averages of the class param-
eters (P̄load ;(k;N); 
̄ (k;N); ūref ;(k;N); x̄ref ;(k;N); x̄f ;(k;N)

T )k2[M] , one may imagine that the aggregator is given some historical
realization of these processes. As these processes are aggregates of individual data of consumers, which may be
subject to some privacy requirements, one can use the Secure Multiparty Computation (SMC) technique in [Yao86]
in order to deal with privacy concerns. Indeed, this technique would allow the coordinator to compute the empirical
averages of the class parameters, while guaranteeing that the values of the parameters of individual agents remain
unknown to him. This method has already been used in the context of energy management in [Jac+19].

4.7 Proofs

4.7.1 Proof of Theorem 4.2.1

The existence and uniqueness of an optimal control are proved using standard arguments of functional analysis.
We give main arguments and leave full details to the reader. The convexity directly stems from the linearity of the
dynamic and the quadratic/convex functions in the de�nition of J . In addition, the strong convexity of J comes
from the uniform lower bound on � . It directly yields the coercivity of J . As J is additionally continuous, we get the
existence of a minimizer of J from [Bre10b, Corollary 3.23, pp.71]. This minimizer is unique from the strict convexity
of J . We denote it by (u(k;i;N))k2[M];i2[Nk] 2 H .

The characterization of optimality is proved applying the stochastic Pontryagin principle. However, our setting of
optimal control of ODE with non-Markovian coef�cients in general �ltrations differs from standard references: see
[Yon99] for the case of Brownian �ltrations, see [CD18, pp. 543-552, Volume I] when incorporating McKean-Vlasov
terms. The closest reference to our setting is presumably [Cad02] in the (Markovian) SDE case with jumps, under
different integrability conditions. This motivates us to give a proof of our result in our speci�c setting.

Let u = (u(k;i))k2[M];i2[Nk] 2 H . By our integrability assumptions, there is existence and uniqueness of X =
(X(k;i))k2[M];i2[Nk] 2 S solution of the ODE:

8k 2 [M]; 8i 2 [Nk]; X(k;i)
t = x(k;i)

0 +
Z t

0

�
� (k)

s u(k;i)
s + � (k)

s X(k;i)
s + 
 (k;i)

s

�
ds: (4.7.1)

Now, let us consider the Backward Stochastic Differential Equation in (Y; M̃) := (Y(k;i); M̃ (k;i))k2[M];i2[Nk] 2 S � S with
M̃ a square integrable martingale vanishing at t = 0:

8k 2 [M]; 8i 2 [Nk];

8
>><
>>:

� dY(k;i)
t =

�
� (k)

t Y(k;i)
t + � (k)

t (X(k;i)
t � xref ;(k;i)

t )
�
dt � dM̃ (k;i)

t ;

Y(k;i)
T = � (k)

�
X(k;i)

T � xf ;(k;i)
T

�
:
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It is an af�ne-linear BSDE in a general �ltration, and our boundedness and integrability assumptions on its
coef�cients ensure existence and uniqueness of its solution, see [EPQ97, Theorem 5.1, p. 54].

Now, the arguments for proving the Gateaux-differentiability of J are standard and follow the ones in [CD18,
pp. 543-548, Volume I]: we show Gateaux-differentiability of the state variable and of the cost functional succes-
sively. De�ne the application � X : u := (u(k;i))k2[M];i2[Nk] 2 H 7! Xu := (X(k;i))k2[M];i2[Nk] 2 S by (4.7.1). Then � X is
Gateaux differentiable and its Gateaux derivative at u := (u(k;i))k2[M];i2[Nk] in direction v := (v(k;i))k2[M];i2[Nk] is given by�

d
d" Xu+"v

�

j" =0
= �Xv := ( �Xv;(k;i))k2[M];i2[Nk] with:

�Xv;(k;i)
t =

Z t

0

�
� (k)

s v(k;i)
s + � (k)

s
�Xv;(k;i)

s

�
ds:

This can be proved following arguments of the proof of [CD18, Lemma 6.10, pp.544-545, Volume I]. Now, following
arguments in [CD18, pp. 546-548, Volume I], we get that J is Gateaux-differentiable and its Gateaux derivative at
u in direction v is given by

�
d
d" J (u + " v)

�

j" =0
= �J (u; v) where:

�J (u; v) =E

2
666664

1
N

MX

k=1

NkX

i=1

Z T

0

�
� (k)

t

�
u(k;i)

t � uref ;(k;i)
t

�
v(k;i)

t + � (k)
t

�
X(k;i)

t � xref ;(k;i)
t

�
�Xv;(k;i)

t

�
dt

3
777775

+ E

2
6666664

1
N

MX

k=1

NkX

i=1

0
BBBBBB@� (k)

�
X(k;i)

T � xf ;(k;i)
T

�
�Xv;(k;i)

T +
Z T

0
L 0

x

0
BBBBBB@t;

1
N

MX

l=1

N lX

j=1

�
u(l;j)

t + Pload ;(l;j)
t

�
� Pprod

t

1
CCCCCCAv(k;i)

t dt

1
CCCCCCA

3
7777775:

Then, applying Integration by Parts Formula in [Pro03, Corollary 2, p. 68] to Y � �Xv :=
P M

k=1

P Nk

i=1 Y(k;i) �Xv;(k;i) between

t = 0 and t = T yields, using �Xv
0 = 0 and Y(k;i)

T = � (k)
�
X(k;i)

T � xf ;(k;i)
T

�
, we �nally obtain the following expression for the

Gateaux derivative of J at u in direction v:

�J (u; v) = E

2
6666664

1
N

MX

k=1

NkX

i=1

Z T

0

8
>>><
>>>:

� (k)
t

�
u(k;i)

t � uref ;(k;i)
t

�
+ L 0

x

0
BBBBBB@t;

1
N

MX

l=1

N lX

j=1

�
u(l;j)

t + Pload ;(l;j)
t

�
� Pprod

t

1
CCCCCCA+ � (k)

t Y(k;i)
t

9
>>>=
>>>;

v(k;i)
t dt

3
7777775:

(4.7.2)

By convexity and differentiability of J and by uniqueness of its minimizer, (u(k;i;N))k2[M];i2[Nk] 2 H is also the unique
critical point of J . Combining this with the expression of the Gateaux derivative of J , we get that the term inside
the brackets in (4.7.2) is 0 for all t. Therefore, (u(k;i;N);X(k;i;N);Y(k;i;N))k2[M];i2[Nk] 2 H � S � S is the unique solution of
the FBSDE (4.2.4). �

4.7.2 Proof of Proposition 4.3.1

Using Theorem 4.2.1 and the de�nition of the empirical mean processes, one can directly show that the empirical
mean processes are solution of (4.3.1). This FBSDE fully characterizes the solution in (u(k))k2[M] 2 H M of the
following stochastic control problem:

min
(u(k))k2[M]2H M

E

2
666664

MX

k=1

� (k)

8
>><
>>:

Z T

0

0
BBBBB@
� (k)

t

2

�
u(k)

t � ūref ;(k;N)
t

� 2
+

� (k)
t

2

�
X(k)

t � x̄ref ;(k;N)
t

� 2
1
CCCCCAdt +

� (k)

2

�
X(k)

T � x̄f ;(k;N)
T

� 2

9
>>=
>>;

3
777775

+ E

2
666664

Z T

0
L t

0
BBBBB@

MX

l=1

� (l)u(l)
t + P̄load ;(N)

t � Pprod
t

1
CCCCCAdt

3
777775; (4.7.3)

s:t: X(k)
t =

1
Nk

NkX

j=1

x(k;j)
0 +

Z t

0

�
� (k)

s u(k)
s + � (k)

s X(k)
s + 
̄ (k;N)

s

�
ds; 8k 2 [M]:

This results from applying Pontryagin's principle, up to scaling of the k-th adjoint variable by 1
� (k) , and by similar

arguments as the ones used in the proof of Theorem 4.2.1. The uniqueness of the solution of the control problem,
and hence of the solution of the FBSDE (4.3.1) from similar arguments as the ones used in the proof of Theorem
4.2.1. �
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4.7.3 Proof of Proposition 4.4.3

By independence of (Pload ;(l;j)
t )1� l� M;1� j� N l conditionally to GT:

V ar

2
6666664

1
N

MX

l=1

N lX

j=1

Pload ;(l;j)
t jGT

3
7777775=

1
N2

MX

l=1

N lX

j=1

V ar
h
Pload ;(l;j)

t jGT

i
;

E

2
6666664

1
N

MX

l=1

N lX

j=1

Pload ;(l;j)
t jGT

3
7777775= P̄load

t :

This yields:

E
h
(P̄load ;(N)

t � P̄load
t )2

i
= E

h
V ar

h
P̄load ;(N)

t jGT

ii
=

1
N2

MX

l=1

N lX

j=1

E
h
V ar

h
Pload ;(l;j)

t jGT

ii
�

1
N2

MX

l=1

N lX

j=1

E
� �

Pload ;(l;j)
t

� 2
�
:

This yields, integrating over time and using the fact that all Pload ;(l;j) are bounded in H by a constant independent
from N:

kP̄load ;(N) � P̄load k2
H �

C
N

Similarly, we obtain the convergence in H of 
̄ (k;N) (resp. ūref ;(k;N), resp. x̄ref ;(k;N)) to 
̄ (k) (resp. ūref ;(k), resp. x̄ref ;(k))
at speed 1p

Nk
, and the convergence in L 2 of x̄f ;(k)

T to x̄f ;(k)
T at speed 1p

Nk
. �

4.7.4 Proof of Theorem 4.4.5

Consider the following FBSDE with G-progressively measurable coef�cients:

8k 2 [M];
8
>>>>><
>>>>>:

X(k)
t = x̄(k)

0 +
Rt

0

�
� (k)

s u(k)
s + � (k)

s X(k)
s + 
̄ (k)

s

�
ds;

Y(k)
t = E

�
� (k)

�
X(k)

T � x̄f ;(k)
T

�
+

RT

t

�
� (k)

s Y(k)
s + � (k)

s

�
X(k)

s � x̄ref ;(k)
s

��
dsjGt

�
;

� (k)
t

�
u(k)

t � ūref ;(k)
t

�
+ L 0

x

�
t;

P M
l=1 � (l)u(l)

t + P̄load
t � Pprod

t

�
+ � (k)

t Y(k)
t = 0:

(4.7.4)

The above FBSDE is the optimality system associated to the following stochastic control problem considered in in
(
 ;GT;G;P):

min
(u(k))1� k� M 2H

E

2
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k=1

� (k)

8
>><
>>:

Z T

0

0
BBBBB@
� (k)

t

2

�
u(k)

t � ūref ;(k)
t

� 2
+

� (k)
t

2

�
X(k)

t � x̄ref ;(k)
t

� 2
1
CCCCCAdt +

� (k)

2

�
X(k)

T � x̄f ;(k)
T

� 2

9
>>=
>>;

3
777775

+ E

2
666664

Z T

0
L t

0
BBBBB@

MX

l=1

� (l)u(l)
t + P̄load

t � Pprod
t

1
CCCCCAdt

3
777775;

s:t: X(k)
t = x̄(k)

0 +
Z t

0

�
� (k)

s u(k)
s + � (k)

s X(k)
s + 
̄ (k)

s

�
ds; 8k 2 [M]:

Our assumptions and [Bre10b, Corollary 3.23, pp.71] show that the above problem has a unique solution ũ 2 H G

and therefore, the FBSDE (4.7.4) has a unique solution (ũ; X̃; Ỹ) 2 H G � S G � S G. Now consider the G-martingales:

M̃ (k)
t := E

"

� (k)
�
X̃(k)

T � x̄f ;(k)
T

�
+

Z T

0

�
� (k)

s Ỹ(k)
s + � (k)

s

�
X̃(k)

s � x̄ref ;(k)
s

��
dsjGt

#

:

Noting that G is immersed in F (see [CD18, De�nition 1.2, p. 5, Volume II]), for all k 2 [M], M̃ (k) is a G-square
integrable martingale and therefore, by de�nition, it is a F-square integrable martingale, so that:

M̃ (k)
t := E t

"

� (k)
�
X̃(k)

T � x̄f ;(k)
T

�
+

Z T

0

�
� (k)

s Ỹ(k)
s + � (k)

s

�
X̃(k)

s � x̄ref ;(k)
s

��
ds

#

:
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Therefore, we have for all k 2 [M], by the previous two expressions of M̃ (k) and using the fact that X̃(k), Ỹ(k) and
x̄ref ;(k) are G and F progressively measurable (as G is assumed immersed in F):

Ỹ(k)
t = E

"

� (k)
�
X̃(k)

T � x̄f ;(k)
T

�
+

Z T

t

�
� (k)

s Ỹ(k)
s + � (k)

s

�
X̃(k)

s � x̄ref ;(k)
s

��
dsjGt

#

= M̃ (k)
t �

Z t

0

�
� (k)

s Ỹ(k)
s + � (k)

s

�
X̃(k)

s � x̄ref ;(k)
s

��
ds

= E t

"

� (k)
�
X̃(k)

T � x̄f ;(k)
T

�
+

Z T

t

�
� (k)

s Ỹ(k)
s + � (k)

s

�
X̃(k)

s � x̄ref ;(k)
s

��
ds

#

:

Besides, ũ and X̃ are F-progressively measurable. Therefore, (ũ; X̃; Ỹ) is also solution of the optimality system of the
control problem considered with the �ltration F. By uniqueness of such a solution, we deduce that (ū; X̄; Ȳ) coincides
with (ũ; X̃; Ỹ) and therefore (ū; X̄; Ȳ) is G-progressively measurable. �

4.7.5 Proof of Proposition 4.4.6

The uniqueness of solution of the above FBSDE arises from similar arguments as in the proof of Theorem 4.2.1.
Consider the function � : [0;T] � RM � R � RM � RM 7! R:

� : (t; u; v; y; uref ) 7!
MX

k=1

 
� (k)� (k)

2
(uk � uref ;(k))2 + � (k)� (k)

t ykuk

!

+ L t

0
BBBBB@

MX

l=1

� (l)ui + v

1
CCCCCA:

It is straightforward to observe that � is twice continuously differentiable in (u; v; y; uref ).
For any (t; v; y; uref ) 2 [0;T] � R � RM � RM , u 7! � (t; u; v; y; uref ) is min kf� k� (k)g-strongly convex, and as such,

this function admits a unique minimizer and its Hessian is positive semi-de�nite. Besides, its Hessian is invertible
with inverse bounded by 1

min kf� k� (k)g.

By the implicit function theorem, this directly implies, for any (t; v; y; uref ) 2 [0;T] � R � RM � RM , the equation in
u 2 RM

r u� (t; u; v; y; uref ) = 0

has a unique solution u = ũ(t; v; y; uref ) with ũ continuously differentiable in (v; y; uref ). Besides, we have:

r vũ(t; v; y; uref ) = �
�
r 2

uu� (t; ũ(t; v; y; uref ); v; y; uref )
� � 1 �

r 2
u;v� (t; ũ(t; v; y; uref ); v; y; uref )

�
;

r yũ(t; v; y; uref ) = �
�
r 2

uu� (t; ũ(t; v; y; uref ); v; y; uref )
� � 1 �

r 2
u;y� (t; ũ(t; v; y; uref ); v; y; uref )

�
;

r uref ũ(t; v; y; uref ) = �
�
r 2

uu� (t; ũ(t; v; y; uref ); v; y; uref )
� � 1 �

r 2
u;uref � (t; ũ(t; v; y; uref ); v; y; uref )

�
:

Using the bound k
�
r 2

uu� (t; ũ(t; v; y; uref ); v; y; uref )
� � 1

k � 1
min kf� k� (k)g and as the second order derivative of L with

respect to x is uniformly bounded, we obtain:

kr vũ(t; v; y; uref )k + kr yũ(t; v; y; uref )k + kr uref ũ(t; v; y; uref )k �
C

min kf� k�
(k)
t g

:

Then there exists a constant C which grows like 1
min 1� k� M;t2[0;T] f� k�

(k)
t g

such that, for any y1; y2 2 RM , v1; v2 2 R and

uref ;1; uref ;2 2 RM , we have:

kũ(t; v1; y1; uref ;1) � ũ(t; v2; y2; uref ;2)kRM � C
�
jv1 � v2j + ky1 � y2kRM + kuref ;1 � uref ;2kRM

�
:

This implies, for � 1 = (x1; v1;w1; uref ;1; xref ;1; xf ;1
T ) and � 2 = (x2; v2;w2; uref ;2; xref ;2; xf ;2

T ) in RM � H � H (RM ) �
H (RM ) � L 2

T(RM ):

ku� 1
� u� 2

kH � C
�
kv1 � v2kH + kY� 1

� Y� 2
kH + kuref ;1 � uref ;2kH

�
:
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In the following, CT denotes a constant depending on the input parameters of the problem and depending con-
tinuously on T, with �nite limit when T ! 0.

Applying Gronwall's lemma to the state equations, we obtain:

kX � 1
� X � 2

kS � CT

�
kx1 � x2kRM + ku� 1

� u� 2
kH + kw1 � w2kH

�
:

Applying Gronwall's lemma and Cauchy-Schwartz inequality to the adjoint equations yields:

kY� 1
� Y� 2

kS � CT

�
kX � 1

� X � 2
kS + kxref ;1 � xref ;2kH + kxf ;1

T � xf ;2
T kL 2

�
:

Combining the previous inequalities, we get:

kY� 1
� Y� 2

kS � CT

�
kY� 1

� Y� 2
kH + k� 1 � � 2k

�

� CT

� p
TkY� 1

� Y� 2
kS + k� 1 � � 2k

�
:

Then, using the fact that CT is bounded for T small, we obtain, for any T small enough, so that CT

p
T < 1:

kY� 1
� Y� 2

kS � CTk� 1 � � 2k:

Combining with the above estimations, this �nally yields:

k(ū� 1
� ū� 2

; X̄ � 1
� X̄ � 2

; Ȳ� 1
� Ȳ� 2

)kH � CTk� 1 � � 2k:

�

4.7.6 Proof of Corollary 4.4.8

Apply Proposition 4.4.6 to x1 =
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(x̄ref ;(k;N))1� k� M , , xf ;1
T = (x̄f ;(k)
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T )1� k� M . Then use Proposition 4.4.3 and the assumption � (k) � � > 0
for all 1 � k � N to conclude. �

4.7.7 Proof of Theorem 4.4.12

By applying the previous proposition to v = v̄(N) = 1
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k(u(k;i;1 ) � u(k;i;N);X(k;i;1 ) � X(k;i;N);Y(k;i;1 ) � Y(k;i;N))kH � CTkv̄(1 ) � v̄(N)kH �
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+ � (k)

t � (Y(k;i;1 )
t � Y(k;i;N))

o
(u(k;i;1 )

t � u(k;i;N)
t )dt

3
777775d�

+
Z 1

0
E

2
666664

Z T

0

n
L 0

x

�
t; ū(� )

t + P̄load ;(N)
t � Pprod

t

�
� L 0

x

�
t; ū(0)

t + P̄load ;(N)
t � Pprod

t

� o
0
BBBBB@

1
N

MX

k=1

NkX

i=1

u� ;(k;i)
t

1
CCCCCAdt

3
777775d�;
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where we used the af�ne-linearity of the state and adjoint variables with respect to the control variable.
In what follows, C denotes a constant independent from N, which depends on data of the problem and may

change from one line to another.
We then use Cauchy-Schwartz inequality, Taylor formula applied to � 7! L 0

x

�
t; ū(� )

t + P̄load ;(N)
t � Pprod

t

�
as well as

ū(� ) = ū(0) + �
�

1
N

P M
k=1

P Nk

i=1 u� ;(k;i)
�

to obtain the following upper bound:

J (u(1 )) � J (u(N)) �
C
N

MX

k=1

NkX

i=1

�
kY(k;i;N) � Y(k;i;1 )kH + ku(k;i;N) � u(k;i;1 )kH

�
ku(k;i;N) � u(k;i;1 )kH

+
Z 1

0
E

2
6666664

Z T

0

Z �

0
L 00

xx

�
t; ū(r)

t + P̄load ;(N)
t � Pprod

t

�
0
BBBBB@

1
N

MX

k=1

NkX

i=1

u� ;(k;i)
t

1
CCCCCA

2

drdt

3
7777775d�:

Using the boundedness of the second-order derivative of (t; x) 7! L 00
xx(t; x) uniformly in t 2 [0;T] and x, we get:

J (u(1 )) � J (u(N)) �
C
N

MX

k=1

NkX

i=1

�
kY(k;i;N) � Y(k;i;1 )kH + ku(k;i;N) � u(k;i;1 )kH

�
ku(k;i;N) � u(k;i;1 )kH :

Combine this inequality with the previous bound:

k(u(k;i;1 ) � u(k;i;N);X(k;i;1 ) � X(k;i;N);Y(k;i;1 ) � Y(k;i;N))kH �
C

p
N

;

and the fact that u(N) minimizes J to get:

0 � J (u(1 )) � J (u(N)) �
C
N

:

4.8 Conclusion

We have formulated a control problem to model a cooperative setting where Thermostatically Controlled Loads
distributed among a large population of agents are used to balance power production and consumption in a con-
text of strong uncertainty created by renewable energy sources. Necessary and suf�cient optimality conditions are
given, in the form of a high-dimensional FBSDE. The curse of dimensionality one may expect can be dealt with
by an appropriate decomposition method, which shows that the high-dimensional FBSDE is equivalent to lower-
dimension FBSDEs: a coordination problem and individual problems. In particular, we show the optimal solution of
the (centralized) stochastic control problem can be obtained by computing the (unique) Nash equilibrium of an asso-
ciated Stochastic Stackelberg Differential Game, with a coordinator (leader) solving a control problem and sending
coordination signal to the agents (followers), solving their own individual problems. This allows a decentralized im-
plementation. Under a conditional independence-type assumption and in the limit of large population, we show a
mean-�eld type approximation of the problem of the coordinator, which does not require the aggregator to observe
the behaviors of the agents, in the framework of the associated Stochastic differential game. This is desirable for
both preserving privacy of consumers and reducing the need for real-time telecommunication between agents and
the coordinator. Numerical results show the performance of the approach and the quality of the mean-�eld approx-
imation. The experiments demonstrate the need to carefully tune the cost parameters of the problem in order to
maximize the contribution of the TCLs to power balancing while ensuring that individual constraints of the devices
are not violated. A decentralized and online implementation of the control mechanism with minimal one-way com-
munication from the aggregator to the agents is also proposed, allowing for the coordinator and the agents to solve
in real-time their respective problems.
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Chapter 5

Newton method for stochastic control
problems, with applications to the
management of energy storage systems

5.1 Introduction

In this chapter, we introduce a new method to solve stochastic control problems, which is a generalization of the
Newton method to the particular (in�nite-dimensional) setting of stochastic control problems. We consider problems
in general �ltrations with a linear dynamic. For the sake of simplicity, we restrict ourselves to the one-dimensional
setting (meaning the state and control variables are real-valued stochastic processes). The general form of problems
we consider is:

J (u) := E
�RT

0
l
�
t; !; ut;! ;Xu

t;!

�
dt + 	 (!; Xu

T;! )
�

s.t. Xu
t;! = x0 +

Rt

0
(� s;! us;! + � s;! Xu

s;! )ds+ M t;! :

9
>>>=
>>>;

�! min
u

: (5.1.1)

To properly introduce the Newton method for stochastic control problems, we give an overview of state-of-the-art
numerical methods for this class of problems, then a brief introduction to the Newton method for the optimization of
functions taking values in Rd with d 2 N .

State of the art of numerical methods for stochastic control problems Standard approaches to solve stochas-
tic control problems are based either on Bellman dynamic programming principle, either on Pontryagin's optimality
principle.

The dynamic programming principle gives rise to a non-linear Partial Differential Equation (PDE) called Bellman's
equation, which is satis�ed by the value function under reasonable conditions [Pha09; Kry08]. Finite-difference
methods to solve this type of PDE have been studied in [G �S09] and [BZ03] for instance, which allow to reduce
the problem to a high dimensional non-linear system of equations. Among other methods based on Bellman's
principle, the Howard's policy improvement algorithm is an iterative algorithm where a linearized version of the
Bellman's equation is solved at each step. This method has been introduced by Howard in [How60], in the context
of Markovian decision processes. A global convergence rate for Howard policy improvement algorithm (and a
variant) for stochastic control problems have been recently established in [K �SS20b]. Deep-learning methods have
also been applied to solve the non-linear Bellman PDE arising in this context [HJW18].

Another approach to solve stochastic optimal control is the Pontryagin principle, which gives rise to a Forward-
Backward Stochastic Differential Equation, see [Zha17]. Methods to solve this type of equations include �xed-point
methods such as Picard iterations or the method of Markovian iterations for coupled FBSDEs in [BZ+08]. They
converge for small time horizon under the assumption of Lipschitz coef�cients, but convergence can be proved
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for arbitrary time horizon under some monotony assumption [PT99], using norms with appropriate exponential
weights. Among methods related to �xed-point iteration, the Method of Successive Approximations is an iterative
method based on Pontryagin's principle, which was proposed in [CL82] for deterministic control problems. However,
convergence is not guaranteed in general. This method is re�ned in the yet to be published work [K �SS20a], for
stochastic control problems, using an a modi�cation of the Hamiltonian, called augmented Hamiltonian, which allows
to show global convergence, and even establish a convergence rate for particular structures of problems. Solvability
of FBSDEs for arbitrary time horizon under monotony conditions can be proved using the continuation method in
[HP95; Yon97; PW99]. This method is well developed theoretically to prove the existence of solutions of a FBSDE,
but rarely used to design algorithms to solve the problem numerically. Another method to solve FBSDEs is the
Four step scheme introduced in [MPY94] in the case of a non-degenerate diffusion term � , which allows to compute
a so-called decoupling �eld as solution of a quasi-linear PDE. This decoupling �eld allows to express the adjoint
variable as a feedback of the state variable. Some Deep-learning based algorithms have been recently proposed to
solve FBSDEs in [Ji+20] and [HL20].

The case of linear FBSDEs and of linear quadratic stochastic optimal control problems has been extensively
studied see for instance [Bis76; Yon99; Yon06]. Our result builds on these works, as our algorithm is based on
successive linearizations of non-linear FBSDEs obtained by a Taylor expansion.

Preliminary on the Newton method in Rd. Consider a twice-differentiable convex function f : x 2 Rd 7! R.
We wish to solve the minimization problem min x2Rd f (x) If f is strongly convex and its second-order derivative is
Lipschitz-continuous [Kan48; NW06; BV04] or if f is strictly convex and self-concordant [NN94; BV04] (meaning
that f is three times differentiable and d

d� r 2 f (x + � y)
���
� =0

� 2
p

yTr 2 f (x) y r 2 f (x), for all x; y in Rd), then the Newton
method gives a sequence of points which converges locally quadratically to the global minimizer of f . This means
that if the initial point is suf�ciently close to the optimum, the convergence of the sequence to this point is very fast.
The pseudo-code for the Newton method is given in Algorithm 5.1.

Algorithm 5.1 Newton's method

1: " > 0, k = 0, x(0) �xed
2: while jr f (x(k))j > " do
3: Compute Newton direction � x solution of the linear equation r 2 f (x(k))(� x) = �r f (x(k))
4: Compute new iterate x(k+1) = x(k) + � x.
5: k  k + 1
6: end while
7: return x(k)

To obtain global convergence of the Newton method (i.e., convergence to the optimum no matter the choice
of the initial point), a common procedure is to use line search methods, allowing to choose a step size � and to
de�ne new iterates by the formula x(k+1) = x(k) + � � x instead of the standard Newton method which considers the
case � = 1. Among them, given � 2 (0;1), the backtracking line search procedure allows to �nd the largest value
among f1; �; � 2; � 3; :::gwhich satis�es a suf�cient decrease condition. Its pseudo-code is given in Algorithm 5.2. The
combination of Newton method with backtracking line search gives a globally convergent method [BV04] in Rd.

Algorithm 5.2 Backtracking line search procedure

1: Inputs: Current point x 2 R, Current search direction � x, � 2 (0;1), 
 2 (0;1).
2: � = 1.
3: while f (x + � � x) > f (x) + 
� r f (x) � � x do
4: �  �� .
5: end while
6: return x + � � x.
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Our contributions. To solve numerically the problem proposed in (5.1.1), we extend the Newton method to the
in�nite-dimensional setting of convex stochastic control problems in general �ltrations, where the dynamics is an
af�ne-linear Ordinary Differential Equation (ODE). This iterative method generates a sequence of points which are
solution of successive Linear-Quadratic approximation of the stochastic control problem around a current estimate
of the solution, see Proposition 5.3.2. Equivalently, it can be interpreted as successive linearizations of the For-
ward Backward Stochastic Differential Equation (FBSDE) arising from the stochastic Pontryagin's principle around
a current estimate of the solution, see Proposition 5.3.3.

In section 5.3.2, a full methodology is proposed to solve af�ne-linear FBSDEs with random coef�cients in general
�ltrations, which arise when computing the Newton step. The methodology is quite standard, though the framework
is a bit unusual as we do not assume Brownian �ltrations. In particular, we show that solving the solution of linear
FBSDEs or the computation of the Newton step require solving a Riccati BSDE and an af�ne-linear BSDE, see
Theorem 5.3.7 and Corollary 5.3.8.

The convergence of Newton's method typically requires suf�cient regularity of the second-order derivative of
the cost functional, see [Kan48; NW06] for the case of a Lipschitz second order derivative and [NN94] for the self-
concordant case. Such regularity is not guaranteed in our case: a counter-example (Example 5.3.9) is given to show
that even under strong assumptions (namely, the regularity of the running and terminal costs), the second-order
derivative of the cost functional J may fail to be suf�ciently regular in the in�nite-dimensional space considered. To
tackle this issue, we show that an appropriate restriction of the problem to essentially bounded processes allows to
obtain the desired regularity of the second-order derivative of the cost function to minimize, see Theorem 5.3.11.
Local quadratic convergence can thus be expected in this framework [Kan48]-[NW06, Theorem 3.5, p. 44]. However,
as in the case of Newton's method in Rn, global convergence may fail in our in�nite-dimensional setting, even
when the function to minimize is strongly convex with Lipschitz-continuous bounded second-order derivative. We
give a counter-example (Example 5.3.12) to show that such pathological behaviors may occur in our setting. To
obtain global convergence, a new line-search method tailored to our in�nite-dimensional framework is proposed
(see Algorithm 5.4) and global convergence results are derived for the Newton method combined with this line-
search method (see Algorithm 5.5) under convexity assumptions, see Theorem 5.3.15.

We then apply our results to solve an energy management problem, which consists in a set of many weakly-
interacting symmetric batteries controlled to minimize the total operational costs and power imbalance. A Markovian
framework is assumed and regression techniques are used to compute ef�ciently all the conditional expectations
required for the computation of the Newton direction. This allows to obtain a fully implementable version of the
Newton method with Backtracking line search (see Algorithm 5.8).

Numerical results show the performance of the Newton method which of the proposed Backtracking line-search
procedure. On the other hand, we show numerically that the natural extension of the standard Backtracking line
search is not adapted to our in�nite-dimensional setting: the algorithm takes ridiculously small steps and the gradient
norm does not decrease after a few iterations, see Figures 5.6b and 5.6d. The numerical results are consistent with
what we expect, with the asymmetric loss function allowing to penalize more heavily positive than negative power
imbalance. We then discuss the choice of some hyper-parameters of the regression methods used to solve the
BSDEs.

Organization of the chapter. Section 5.2 introduces the general framework of stochastic control problems stud-
ied. Classical results under suitable assumptions are derived: well-posedness, existence and uniqueness of a
minimizer, Gateaux and Fréchet differentiability, as well as necessary and suf�cient optimality conditions 5.2.6. We
then prove the second-order differentiability of the problem (Proposition 5.2.8) and show that the second-order dif-
ferential is valued in the space of isomorphisms of the ambient process space (Corollary 5.3.8). Section 5.3 de�nes
the Newton step and its two equivalent interpretations (Propositions 5.3.2 and5.3.3). We show that the computation
of the Newton step amounts to solve an af�ne-linear FBSDE, for which we show existence and uniqueness of the
solutions, and we prove the computation of the Newton step reduces to solving a Backward Riccati Stochatic Differ-
ential equation and an af�ne-linear BSDE (Theorem 5.3.7 and Corollary 5.3.8). We then show Lipschitz-continuity
of the second-order derivative of the cost when considering bounded processes. An adapted line-search, called
Gradient Backtracking Line Search, as well as Newton's method with line search are given. We prove global con-
vergence for this method as well as quadratic convergence after �nitely many iterations (Theorem 5.3.15). Section
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5.4 provides a full implementation and the numerical results of the Newton method on the stochastic optimal control
problem of a large number of batteries tracking power imbalance. Some proofs are postponed in Section 5.5 to
ease the reading.

Notations. We list the most common notations used in all this work.

� Numbers, vectors, matrices. R, N , N � denote respectively the set of real numbers, integers, positive integers.
For n 2 N � , [n] denotes the set of integers f1; :::;ng, and for m;p 2 N with m � p, [m : p] denotes the set fm; :::;pg.The
notation jxj stands for the Euclidean norm of a vector x, without further reference to its dimension. For a given matrix
A 2 Rp 
 Rd, A> 2 Rd 
 Rp refers to its transpose. Its norm is that induced by the Euclidean norms in Rp and Rd, i.e.
jAj := supx2Rd;jxj=1 jAxj. Recall that jA> j = jAj. For p 2 N � , Idp stands for the identity matrix of size p � p.

� Functions, derivatives. When a function (or a process)  depends on time, we write indifferently  t(z) or  (t; z) for
the value of  at time t, where z represents all other arguments of  .

For a smooth function g : Rq 7! Rp, gx represents the partial derivative of g with respect to x. However, a subscript
xt refers to the value of a process x at time t (and not to a partial derivative with respect to t).

� Probability. To model the random uncertainty on the time interval [0;T] (T > 0 �xed), we consider a complete
�ltered probability space (
 ; F ;F;P). We assume that the �ltration F := fF tg0� t� T is right-continuous, augmented
with the P-null sets. For a vector/matrix-valued random variable V, its conditional expectation with respect to the
sigma-�eld F t is denoted by E t [Z] = E [ZjF t ]. Denote by P the � -�eld of predictable sets of [0;T] � 
 .

All the quantities impacted by the control u are upper-indexed by u, like Zu for instance.

As usually, c �adl �ag processes stand for processes that are right continuous with left-hand limits. All the martingales
are considered with their c �adl �ag modi�cations.

� Spaces. Let k 2 N � . We de�ne L 2([0;T];Rk) (resp. L 1 ([0;T];Rk)) as the Banach space of square integrable
(resp. bounded) deterministic functions f on [0;T] with values in Rk. Since the arrival space Rk will be unimportant,
we will skip the reference to it in the notation and write the related norms as

kf kL 2
T

:=
� Z T

0
j f (t)j2dt

� 1
2

; kf kL 1
T

:= sup
t2[0;T]

j f (t)j:

The Banach space of Rk-valued square integrable random variables X is denoted by L 2(
 ;Rk), or simply L 2

 . We

also de�ne the Banach space of Rk-valued essentially bounded random variables X, denoted by L 1 (
 ;Rk), or
simply L 1


 . The associated norms are

kXkL 2



:= E
h
jXj2

i 1
2 ; kXkL 1



:= essupjXj = inf

M
fM j P(jXj � M) = 1g:

The Banach space H 2;2([0;T] � 
 ;Rk) (resp. H 2;2
P ([0;T] � 
 ;Rk)) is the set of all F-adapted (resp. F-predictable)

processes  : [0;T] � 
 ! Rk such that E
�� RT

0
j t j2dt

��
< +1 . The Banach space H 1 ;2

�
[0;T] � 
 ;Rk

�
stands

for the elements of H 2;2
�
[0;T] � 
 ;Rk

�
satisfying E

h
supt2[0;T] j t j2

i
< +1 . The Banach space H 1 ;1

�
[0;T] � 
 ;Rk

�

(resp. H 1 ;1
P

�
[0;T] � 
 ;Rk

�
) stands for the space of essentially bounded processes in H 2;2

�
[0;T] � 
 ;Rk

�
(resp.

H 2;2
P

�
[0;T] � 
 ;Rk

�
). Here again we will omit the reference to Rk and [0;T] � 
 , which will be clear from the context.

The associated norms are:

k kH 2;2 := E

" Z T

0
j t j2dt

!#1
2

; k kH 1 ;2 := E

2
66664sup
t2[0;T]

j t j2
3
77775

1
2

; k kH 1 ;1 := essup sup
t2[0;T]

j t j:

The space of martingales in H 1 ;2 is denoted M 2 and the space of martingales vanishing at t = 0 is denoted M 2
0.
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5.2 Control problem: setting, assumptions and preliminary results

5.2.1 Setting and assumptions

We consider a stochastic control problem where the state dynamic is given by an ordinary differential equation,
which is relevant for applications such as control of energy storage/conversion systems. Problems with a more
general state dynamics, given by a stochastic differential equation with uncontrolled diffusion or jump terms can
also be embedded in this framework, see Remark 5.2.1. In the �eld of energy management, this can be used to
model water dams for instance, where the level of stored water depends on decisions (pumping, ...) and exogenous
random processes, like water in�ows arising from the rain or the ice melting in the mountains. More generally it
allows to model a problem of control of an energy storage system subject to an exogenous random environment,
which makes sense in a context of high renewable penetration.

We assume that the coef�cients of the control problem are random, without any Markovian assumption and we
do not suppose that the �ltration is Brownian. We do not consider control nor state constraints. For clarity of the
presentation, the results are established in the one dimensional-case, i.e., both the state and control variables are
real-valued processes. However, they could be established in a higher dimension setting.

J (u) := E
�RT

0
l
�
t; !; ut;! ;Xu

t;!

�
dt + 	 (!; Xu

T;! )
�

s.t. Xu
t;! = x0 +

Rt

0
� s;! us;! ds:

9
>>>=
>>>;

�! min
u2H 2;2

P

: (5.2.1)

We consider the following regularity assumptions on the problem:

(Reg-1) The function l : (t; !; u; x) 2 [0;T] � 
 � R � R 7! l(t; !; u; x) 2 R is P 
 B (R) 
 B (R)-measurable. The function
	 : (!; x) 2 
 � R 7!  (!; x) 2 R is FT 
 B (R)-measurable. Besides, l and 	 satisfy the growth conditions:

jl(t; !; u; x)j � C(l)
t;! + C

�
juj2 + jxj2

�
;

j	 (!; x)j � C(	 )
! + Cjxj2;

with C(l) 2 H 1;1, C(	 ) 2 L 1
T and C > 0 a deterministic constant. We assume besides x0 2 L 2


 .

(Reg-2) Assumption (Reg-1) holds and the function l is C1 with respect to (u; x) and 	 is C1 with respect to x with
derivatives satisfying:

jl0v(t; !; u; x)j � C(l0)
t;! + C0(juj + jxj) ; v 2 fu; xg;

j	 0
x(!; x)j � C(	 0)

! + C0jxj;

with C(l0) 2 H 2;2, C(	 0) 2 L 2

 and C0 > 0 a deterministic constant.

(Reg-3) Assumptions (Reg-1)-(Reg-2) hold and the functions l and 	 are C1 with respect to (u; x) with Lipschitz con-
tinuous derivatives.

(Reg-4) Assumptions (Reg-1)-(Reg-2)-(Reg-3) hold and the functions l and 	 are C2 with respect to (u; x) with bounded
second derivatives (uniformly in (t; !; u; x)).

(Reg-5) Assumptions (Reg-1)-(Reg-2)-(Reg-3)-(Reg-4) hold and the mappings l and 	 have lipschitz-continuous sec-
ond derivatives. Besides, the bounds C(l) and C(l0) introduced earlier are in H 1 ;1 , and the constants C(	 ) and
C(	 0) are in L 1


 . We assume besides x0 2 L 1

 .

We introduce the assumption of linearity of the dynamic:

(Lin-Dyn) The dynamic is af�ne-linear given by � : (t; !; u; x) 7! � t;! ut;! , with � 2 H 1 ;1
P .

We consider the following convexity assumptions on the problem:

(Conv-1) The mapping l is convex in (u; x) and 	 is convex in x.
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(Conv-2) Assumption (Conv-1) holds and the mapping l is � -strongly convex in u, with � > 0. In particular, under
Assumption (Reg-4), l00

uu is uniformly bounded from below by � .

Remark 5.2.1. The assumption (Lin-Dyn) is not restrictive and one could consider general af�ne-linear dynamics
of the form:

Xu
t;! = x0 +

Z t

0
(� s;! us;! + � s;! Xu

s;! )ds+ M t;! ;

with M an uncontrolled (F t)-adapted c�adl �ag uncontrolled process. Without loss of generality, we can assume M = 0,
as we can reformulate the obtained problem in terms of X̃u = Xu � M, up to minor modi�cations of l and 	 . In the
case M = 0, we can directly show for general � 2 H 1 ;1 :

Xu
t;! = exp

 Z t

0
� s;! ds

!  

x0 +
Z t

0
� s;! us;! exp

 

�
Z s

0
� r;! dr

!

us;! ds

!

and thus the problem is equivalent to:

J (u) := E
�RT

0
l̃
�
t; !; ut;! ; X̃u

t;!

�
dt + ˜	 (X̃u

T;! )
�

s.t. X̃u
t;! = x0 +

Rt

0
�̃ s;! us;! ds:

9
>>>=
>>>;

�! min
u2H 2;2

P

:

with:
8
>>>>><
>>>>>:

l̃(t; !; u; x) := l
�
(t; !; u; exp

�Rt

0
� s;! ds

�
x
�
;

�̃ t;! := � t;! exp
�
�

Rt

0
� s;! ds

�
;

˜	 (!; x) = 	
�
!; exp

�RT

0
� s;! ds

�
x
�
:

5.2.2 Well-posedness, existence and uniqueness of an optimal control

Proposition 5.2.2. Under Assumption (Reg-1) and (Lin-Dyn) , for any u 2 H 2;2
P , one can de�ne Xu 2 H 1 ;2 by:

Xu
t = x0 +

Z t

0
� susds: (5.2.2)

Besides, we have kXukH 1 ;2 �
p

Tk� kH 1 ;1 kukH 2;2 + kx0kL 2


, kXu � XvkH 1 ;2 �

p
Tk� kH 1 ;1 ku � vkH 2;2 and J (u) < +1 .

Proposition 5.2.3. Under Assumption (Reg-2)-(Lin-Dyn) -(Conv-2) , J is continuous and strongly convex, coercive
(i.e., lim

kukH 2;2

J (u) = + 1 ) and hence J has a unique minimizer in H 2;2
P .

Proof. The continuity of u 2 H 2;2
P 7! Xu 2 H 1 ;2 holds thanks to (Lin-Dyn) , by Lebesgue's continuity theorem. The

continuity of J stems from this fact, Lebesgue's continuity theorem and (Reg-2). Under assumption (Conv-2) , J is
� -strongly convex and coercive. Besides, H 2;2

P is re�exive, as it is a Hilbert space. Therefore, by [Bre10a, Corollary

3.23, pp.71], J has a unique minimizer u� 2 H 2;2
P . �

5.2.3 First-order necessary and suf�cient optimality conditions

We �rst prove �rst-order differentiability properties of the state variable and the cost function with respect to the
control variable under suitable assumptions.

Lemma 5.2.4. The application � X : u 2 H 2;2
P 7! Xu 2 H 1 ;2 is Fréchet-differentiable. Besides, for any (u; v) 2 (H 2;2

P )2,
the derivative of � X at point u in direction v is independent from u and given by:

�Xv :=
� d
d"

� X(u + " v)
�

j" =0
=

Z t

0
� svsds = Xv � x0: (5.2.3)

Besides, we have the following estimate:

k �XvkH 1 ;2 � CkvkH 2;2:
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Proof. The application u 2 H 2;2
P 7! Xu 2 H 1 ;2 is Gateaux-differentiable at u 2 H 2;2

P in direction v 2 H 2;2
P with derivative

�Xv := Xv � x0 2 H 1 ;2. In particular, � X is continuously differentiable and therefore Fréchet-differentiable. The bound
k �XvkH 1 ;2 � CkvkH 2;2 arises from Cauchy-Schwarz inequality and the assumption � 2 H 1 ;1 . �

Proposition 5.2.5. Suppose Assumptions (Reg-3) and (Lin-Dyn) hold. Then for any u 2 H 2;2
P , consider Xu 2 H 1 ;2

given in (5.2.2) and de�ne Yu by:

Yu
t = E t

"

	 0
x(Xu

T) +
Z T

t
l0x(s; us;Xu

s )ds

#

: (5.2.4)

Then, Yu is well-de�ned and in H 1 ;2. Besides, J is Fréchet-differentiable and admits a gradient at u denoted
rJ (u) 2 H 2;2

P given by:

8u 2 H 2;2
P ; dP 
 dt � a:e:; (rJ (u))t = l0u(t; ut ;Xu

t ) + � tYu
t� : (5.2.5)

Besides, we have the following estimates for a deterministic constant C independent of u and v:

8u 2 H 2;2
P ; kYukH 1 ;2 + krJ (u)kH 2;2 � C(1 + kukH 2;2 + kx0kL 2



);

8(u; v) 2 (H 2;2
P )2; kYu � YvkH 1 ;2 + krJ (u) � J (v)kH 2;2 � Cku � vkH 2;2:

Proof. The regularity assumptions combined with the estimation on kXukH 1 ;2 directly show that Yu 2 H 1 ;2 with:

kYukH 1 ;2 � C(1 + kukH 2;2 + kx0kL 2


)

kYu � YvkH 1 ;2 � Cku � vkH 2;2:

Admitting �rst the expression (5.2.5) for rJ (u), we can deduce from the regularity assumptions the bounds claimed.
Let us now prove that J is Fréchet-differentiable as well as the expression of rJ (u). By Lebesgue's differenti-

ation theorem and Lemma 5.2.4, the application J is Gateaux-differentiable at u in direction v with derivative given
by:

�J (u; v) :=
� d
d"

J (u + "v)
�

j" =0
= E

"

	 0
x(Xu

T) �Xv
T +

Z T

0

�
l0x(s; us;Xu

s ) �Xv
s + l0u(s; us;Xu

s )vs

�
ds

#

: (5.2.6)

De�ne the martingale Mu 2 H 1 ;2 by Mu
t := E t

�
 0

x(Xu
T) +

RT

0
l0x(s; us;Xu

s )ds
�
. Then Yu

t = Mu
t �

Rt

0
l0x(s; us;Xu

s )ds so

that (Yu;Mu) satis�es the following BSDE in (Y;M) 2 H 2;2 � M 2
0:

8
>><
>>:

� dYt = l0x(t; ut ;Xu
t )dt � dM t ;

YT = 	 0
x(Xu

T):

Then, applying Integration by Parts Formula in [Pro03, Corollary 2, p. 68] to the product Yu � �Xv between 0 and T
yields, using �Xv

0 = 0, Yu
T = 	 0

x(Xu
T), the fact that �Xv is continuous with �nite variations and the fact that

Rt

0+
�Xv

sdMu
s is

a c �adl �ag martingale in H 1 ;2, see [Pro03, Theorem 20 p.63, Corollary 3 p.73, Theorem 29 p.75]:

�J (u; v) = E

"

Yu
T

�Xv
T +

Z T

0

�
l0x(s; us;Xu

s ) �Xv
s + l0u(s; us;Xu

s )vs

�
ds

#

= E

"Z T

0

�
l0x(s; us;Xu

s ) �Xv
s + l0u(s; us;Xu

s )vs + Yu
s � svs � �Xv

sl0x(s; us;Xu
s )

�
ds

#

= E

"Z T

0

�
� sYu

s + l0u(s; us;Xu
s )

�
vsds

#

= E

"Z T

0

�
� sYu

s� + l0u(s; us;Xu
s )

�
vsds

#

:

In the last inequality, we used the fact that Yu has countably many jumps, and that the Lebesgue integral is left
unchanged by changing the integrand on a countable set of points. This yields the expression of rJ (u). In particular,
the previous estimates imply that J has a Lipschitz continuous gradient and is therefore Fréchet-differentiable.

�
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Theorem 5.2.6 (First order necessary and suf�cient optimality conditions) . 1. Suppose Assumptions (Reg-3) and
(Lin-Dyn) hold. Assume u 2 H 2;2

P is a minimizer of J . De�ne Xu 2 H 1 ;2 by (5.2.2) and Yu 2 H 1 ;2 by (5.2.4).
Then, necessarily,

l0u(t; ut ;Xu
t ) + � tYu

t� = 0; dP 
 dt � a:e: (5.2.7)

2. Under Assumptions (Reg-3), (Conv-1) and (Lin-Dyn) , if (u;Xu;Yu) 2 H 2;2
P � H 1 ;2 � H 1 ;2 satis�es (5.2.7) with

Xu given by (5.2.2) and Yu given by (5.2.4), then u is a solution of (5.2.1), i.e., a minimizer of J .

Proof. 1. Under (Reg-3), J is Gateaux-differentiable and an optimal control is necessary a critical point of J ,
hence rJ (u) = 0, which yields (5.2.7).

2. Under (Conv-1) and (Lin-Dyn) , J is convex and J is Gateaux-differentiable under (Reg-3), so that (5.2.7) is
a suf�cient optimality condition.

�

5.2.4 Second-order differentiability

We now turn to second-order differentiability of the cost functional, necessary for the Newton method. We then
prove a key result showing the invertibility of the second order derive of J , and the form of the inverse. This shows
the existence and provides a characterization of the Newton step.

Lemma 5.2.7. Suppose Assumptions (Reg-4) and (Lin-Dyn) hold. Then the mapping

� Y :

8
>><
>>:

H 2;2
P 7! H 1 ;2

u 7! Yu

is Gateaux-differentiable. Furthermore, for all u; v in H 2;2
P , D� Y(u)(v) = �Yu;v is de�ned by the following af�ne-linear

BSDE with Lipschitz coef�cients:

�Yu;v
t = E t

"

	 00
xx(Xu

T) �Xv
T +

Z T

t

�
l00
xu(s; us;Xu

s )vs + l00
xx(s; us;Xu

s ) �Xv
s

�
ds

#

: (5.2.8)

Besides, we have the following estimate:

k �Yu;vkH 1 ;2 � CkvkH 2;2:

Proof. By our assumptions, �Yu;v is well de�ned and by Lebesgue's differentiation theorem and Lemma 5.2.4, it is
straightforward that � Y is Gateau-differentiable and that: D� Y(u)(v) = �Yu;v. Applying Lebesgue's theorem and using
our estimation on k �XvkH 1 ;2, one gets k �Yu;vkH 1 ;2 � CkvkH 2;2. �

Proposition 5.2.8 (Second-order differentiability). Suppose Assumptions (Reg-4) and (Lin-Dyn) hold. Then the
mapping J is twice Gateaux differentiable and its second-order derivative r 2J : H 2;2

P 7! L (H 2;2
P ) is given by:

8v 2 H 2;2; dP 
 dt � a:e:;
�
r 2J (u)(v)

�

t
= l00

uu(t; ut ;Xu
t )vt + l00

ux(t; ut ;Xu
t ) �Xv

t + � t �Yu;v
t� : (5.2.9)

Besides, we have the following estimate:

kr 2J (u)(v)kH 2;2 � CkvkH 2;2;

where C is a constant independent of u. In other words, for any u 2 H 2;2
P , r 2J (u) is a continuous endomorphism of

H 2;2
P .

Proof. Applying Lebesgue's differentiation theorem to rJ (u) given by (5.2.5) yields (5.2.9), using Lemmas 5.2.4 and
5.2.7. The continuity of r 2J (u) for all u 2 H 2;2

P results from the previous estimates, our assumptions and Lebesgue's
differentiation theorem. �
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The computation of the Newton step � u amounts to solve the equation r 2J (u)(� u) = �rJ (u), as expected by
an in�nite-dimensional generalization of the Newton method in Rd. The following theorem is the key result which
guarantees that this in�nite dimensional equation has a unique solution, as we show invertibility of the second
order derivative of the cost function at any admissible point. This theorem also makes the connection between the
computation of the Newton step and the solution of an auxiliary Linear-Quadratic stochastic control problem, or
equivalently, with the solution of an af�ne-linear FBSDE with random coef�cients.

Theorem 5.2.9. Suppose Assumptions (Conv-2) , (Reg-4) and (Lin-Dyn) hold. Let (u;w) 2 H 2;2
P � H 2;2

P and de�ne
Xu 2 H 1 ;2 by (5.2.2). We introduce the following auxiliary (linear-quadratic) stochastic control problem:

min v2H 2;2
P

J̃ quad;u;w(v)

s.t. X̃t =
Rt

0
� svsds:

(5.2.10)

where J̃ quad;u;w(v) is de�ned by:

E

"Z T

0

� 1
2

l00
uu

�
t; ut ;Xu

t
�
v2

t +
1
2

l00
xx

�
t; ut ;Xu

t
�
X̃2

t + l00
ux

�
t; ut ;Xu

t
�
X̃tvt � wtvt

�
dt +

1
2

	 00
xx(Xu

T)X̃2
T

#

:

Then J̃ quad;u;w has a unique minimizer ũu;w 2 H 2;2
P de�ned by

l00
uu(t; ut ;Xu

t )ũu;w
t + l00

ux(t; ut ;Xu
t )X̃u;w

t + � tỸ
u;w
t� = wt ;

where (X̃u;w; Ỹu;w) 2 H 1 ;2 � H 1 ;2 are given by:
8
>>><
>>>:

X̃u;w
t =

Rt

0
� sũ

u;w
s ds;

Ỹu;w
t = E t

�
	 00

xx(Xu
T)X̃u;w

T +
RT

t

�
l00
xu(s; us;Xu

s )ũu;w
s + l00

xx(s; us;Xu
s )X̃u;w

s

�
ds

�
:

In particular, (ũu;w; X̃u;w; Ỹu;w) 2 H 2;2
P � H 1 ;2 � H 1 ;2 is the unique solution of an af�ne-linear FBSDE with random

coef�cients (which depend on the stochastic process u 2 H 2;2
P ). Besides, for any u 2 H 2;2

P , r 2J (u) 2 L (H 2;2
P ) is

invertible and for any w 2 H 2;2
P ,

�
r 2J (u)

� � 1
(w) = ũu;w.

Proof. Introduce the auxiliary running cost function l̃u;w : [0;T] � 
 � R � R 7! R de�ned by l̃u;w(t; !; ũ; x̃) =
1
2 l00

uu

�
t; ut ;Xu

t

�
ũ2

t + 1
2 l00

xx

�
t; ut ;Xu

t

�
x̃2

t + l00
ux

�
t; ut ;Xu

t

�
ũt x̃t � wt ũt , where we dropped the reference to ! for simplicity.

Introduce as well the auxiliary terminal cost function ˜	 u;w : 
 � R 7! R de�ned by ˜	 u;w(!; x̃) = 1
2 	 00

xx(Xu
T)x̃2. Then

Assumptions (Reg-4), (Lin-Dyn) and (Conv-2) are veri�ed for the auxiliary minimization problem of J̃ quad;u;w, with
l and 	 respectively replaced by l̃u;w and ˜	 u;w. Applying Proposition 5.2.3 to the auxiliary problem shows the ex-
istence and uniqueness of a minimizer, denoted ũu;w. Applying Theorem 5.2.6 to the auxiliary problem, we have
existence and uniqueness of (X̃u;w; Ỹu;w) 2 H 1 ;2 � H 1 ;2 such that (ũu;w; X̃u;w; Ỹu;w) 2 H 2;2

P � H 1 ;2 � H 1 ;2 is the (unique)
solution of the FBSDE:

8
>>>>><
>>>>>:

X̃u;w
t =

Rt

0
� sũ

u;w
s ds;

Ỹu;w
t = E t

�
	 00

xx(Xu
T)X̃u;w

T +
RT

t

�
l00
xu(s; us;Xu

s )ũu;w
s + l00

xx(s; us;Xu
s )X̃u;w

s

�
ds

�
;

l00
uu(t; ut ;Xu

t )ũu;w
t + l00

ux(t; ut ;Xu
t )X̃u;w

t + � tỸ
u;w
t� = wt :

In particular, one has X̃u;w = �X ũu;w
and Ỹu;w = �Yũu;w

. The last equation therefore writes l00
uu(t; ut ;Xu

t )ũu;w
t +l00

ux(t; ut ;Xu
t ) �X ũu;w

t +
� t �Yũu;w

t� = wt . Recognizing r 2J (u)(ũu;w) in the left-hand side (see (5.2.9)), we get in particular the existence and
uniqueness of ũu;w 2 H 2;2

P solution of the equation r 2J (u)(ũu;w) = w. This holds for all w 2 H 2;2
P . We thus obtain the

invertibility of r 2J (u) and the expression (r 2J (u))� 1(w) = ũu;w, for all u;w 2 H 2;2
P . �

5.3 The Newton method for stochastic control problems

5.3.1 De�nition and interpretation of the Newton step

De�nition 5.3.1. Suppose Assumptions (Conv-2) , (Reg-4) and (Lin-Dyn) hold. Let u 2 H 2;2
P and de�ne Xu 2 H 1 ;2

by (5.2.2). The Newton step � u of J at the point u 2 H 2;2
P is de�ned by � u = � (r 2J (u))� 1(rJ (u)) 2 H 2;2

P .
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The following Proposition shows that computation of the Newton step at point u, � (r 2J (u))� 1(rJ (u)) amounts
to solve a Linear-Quadratic approximation of the original problem around the current point u, based on a point-wise
second order expansion of the cost and a �rst order expansion of the dynamic.

Proposition 5.3.2. Suppose Assumptions (Conv-2) , (Reg-4) and (Lin-Dyn) hold. Let u 2 H 2;2
P and de�ne Xu 2 H 1 ;2

by (5.2.2). Denote by � u
t := (t; ut ;Xu

t ). The Newton step � u = � (r 2J (u))� 1(rJ (u)) 2 H 2;2
P of J at the point u is the

unique minimizer in H 2;2
P of the Linear-Quadratic approximation J LQ;u of J around u, de�ned by:

8v 2 H 2;2
P ; J LQ;u(v) :=E

"Z T

0

� 1
2

l00
uu

�
� u

t
�
v2

t +
1
2

l00
xx

�
� u

t
�
( �Xv

t )2 + l00
ux

�
� u

t
� �Xv

t vt + l0u
�
� u

t
�
vt + l0x

�
� u

t
� �Xv

t + l
�
� u

t
� �

dt

#

+ E
� 1
2

	 00
xx(Xu

T)( �Xv
T)2 + 	 0

x(Xu
T) �Xv

T + 	 (Xu
T)

�
;

where �Xv
t =

Rt

0
� svsds.

Proof. Introduce the auxiliary running cost function lLQ;u : [0;T]� 
 � R� R 7! R de�ned by lLQ;u(t; ũ; x̃) = 1
2 l00

uu

�
� u

t

�
ũ2

t +
1
2 l00

xx

�
� u

t

�
x̃2

t + l00
ux

�
� u

t

�
ũx̃ + l0u

�
� u

t

�
ũ + l0x

�
� u

t

�
x̃ + l

�
� u

t

�
, where we dropped the reference to ! for simplicity. Introduce as

well the auxiliary terminal cost function 	 LQ;u : 
 � R 7! R de�ned by 	 LQ;u(!; x̃) = 1
2 	 00

xx(Xu
T)x̃2 + 	 0

x(Xu
T)x̃ + 	 (Xu

T).
Then Assumptions (Reg-4), (Lin-Dyn) and (Conv-2) are veri�ed for the auxiliary minimization problem of J LQ;u,
with l and 	 respectively replaced by lLQ;u and 	 LQ;u. Applying Proposition 5.2.3 to the auxiliary problem shows the
existence and uniqueness of a minimizer of J LQ;u, denoted by û. We can then apply Theorem 5.2.6 to the auxiliary
problem and get existence and uniqueness of (X̂; Ŷ) 2 H 1 ;2 � H 1 ;2 such that (û; X̂; Ŷ) 2 H 2;2

P � H 1 ;2 � H 1 ;2 is the
(unique) triple satisfying:

8
>>>>><
>>>>>:

X̂t =
Rt

0
� sûsds;

Ŷt = E t

�
	 00

xx(Xu
T)X̂T + 	 0

x(Xu
T) +

RT

t

�
l00
xu(s; us;Xu

s )ûs + l00
xx(s; us;Xu

s )X̂s + l0x(s; us;Xu
s )

�
ds

�
;

l00
uu(t; ut ;Xu

t )ût + l00
ux(t; ut ;Xu

t )X̂t + l0u(t; ut ;Xu
t ) + � tŶt� = 0:

In particular, we have X̂ = �X û by (5.2.3), Ŷ = Yu + �Yu;û by (5.2.4) and(5.2.8). Besides, the last equation is equivalent
to rJ (u) + r 2J (u)(û) = 0 by (5.2.5) and (5.2.9). In particular, the minimizer û of J LQ;u is nothing else than the
Newton step of J at point u. �

Without surprises, solving such a linear-quadratic stochastic control problem is equivalent to solving an af�ne-
linear FBSDE. This gives a second interpretation of the Newton step as solution of the linearized �rst order optimality
conditions of the control problem, summed up in the following Proposition.

Proposition 5.3.3. Suppose Assumptions (Conv-2) , (Reg-4) and (Lin-Dyn) hold. Let u 2 H 2;2
P and de�ne Xu 2 H 1 ;2

by (5.2.2). Let � u 2 H 2;2
P be the Newton step of J at the point u 2 H 2;2

P . De�ne (Xu;Yu; �X � u ; �Y� u ) 2 H 1 ;2 � H 1 ;2 �
H 1 ;2 � H 1 ;2 by:

8
>>>>>>>>><
>>>>>>>>>:

Xu
t = x0 +

Rt

0
� susds;

Yu
t = E t

�
	 0

x(Xu
T) +

RT

t
l0x(s; us;Xu

s )ds
�
;

�X � u
t =

Rt

0
� s(� u)sds;

�Y� u
t = E t

�
	 00

x (Xu
T) �X � u

T +
RT

t

�
l00
xx(s; us;Xu

s ) �X � u
s + l00

xu(s; us;Xu
s )(� u)s

�
ds

�
:

Then Xu + �X � u is the �rst-order approximation of v 7! Xu+v evaluated at v = � u, Yu + �Y� u is the �rst-order ap-
proximation of v 7! Yu+v evaluated at v = � u and � u is the zero of the linearized gradient of J around u, i.e.,
rJ (u) + r 2J (u)(� u) = 0.

Proof. This is a direct consequence of Lemmas 5.2.4 and 5.2.7, as well as the de�nition of the Newton step 5.3.1.
�
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Remark 5.3.4. In Brownian �ltrations, one can derive similar results with more general dynamics of the state vari-
able. Consider the following dynamic (controlled diffusion):

Xt = x0 +
Z t

0
(� sus + � sXs + 
 s)ds+

Z t

0
(�̄ sus + �̄ sXs + 
̄ s)dWs:

We make the same assumptions on the cost functional. One can apply Pontryagin principle to show necessary
and suf�cient optimality condition of order 1. The computation of the second-order derivative can be adapted to
this particular case as well. Then, one can show that the Newton step can be de�ned in this setting, and that its
computation amounts to solve an af�ne-linear FBSDE with stochastic coef�cients. In this case, as the �ltration is
Brownian, the af�ne-linear FBSDE is computable using directly the results in [Yon06].

5.3.2 Solution of af�ne-linear FBSDEs and computation of the Newton step

Computing the Newton step is equivalent to compute the inverse of (r 2J (u))� 1(w) with w = �rJ (u). By Theorem
5.2.9, computing this quantity is equivalent to solving the following af�ne-linear FBSDE:

8
>>>>><
>>>>>:

X̃u;w
t =

Z t

0

(

�
� sl00

ux(s; us;Xu
s )

l00
uu(s; us;Xu

s )
X̃u;w

s �
� 2

s

l00
uu(s; us;Xu

s )
Ỹu;w

s +
� sws

l00
uu(s; us;Xu

s )

)

ds;

Ỹu;w
t = E t

"

	 00
xx(Xu

T)X̃u;w
T +

Z T

t

 
l00
uu(s; us;Xu

s )l00
xx(s; us;Xu

s ) � (l00
ux(s; us;Xu

s ))2

l00
uu(s; us;Xu

s )
X̃u;w

s �
l00
xu(s; us;Xu

s )� s

l00
uu(s; us;Xu

s )
Ỹu;w

s +
l00
xu(s; us;Xu

s )ws

l00
uu(s; us;Xu

s )

!

ds

#

;

(5.3.1)

and then (r 2J (u))� 1(w) is given by:

�
(r 2J (u))� 1(w)

�

t
= �

1
l00
uu(t; ut ;Xu

t )

�
l00
ux(t; ut ;Xu

t )X̃u;w
t + � tỸ

u;w
t� � wt

�
: (5.3.2)

Note that (X̃u;w; Ỹu;w) are solution of an af�ne-linear FBSDE with stochastic coef�cients which has the following
structure:

8
>>><
>>>:

Xt = x +
Rt

0
(AsXs + BsYs + as) ds;

Yt = E t

�
� XT + � +

RT

t
(CsXs + AsYs + bs) ds

� (5.3.3)

with C � 0 (convexity of l with respect to (u; x) and strong convexity of l with respect to u), � � 0, B � 0. A, B and C
are in H 1 ;1 , a and b are in H 2;2, � 2 L 1 (FT), � 2 L 2(FT) and x 2 L 2(F0).

Af�ne-linear FBSDEs have been studied in the literature, and a solution method is based on a so-called de-
coupling �eld, assumed af�ne-linear, by the structure of the equation. The assumption is that the solution veri�es
Y = PX + � for some P and � to determine. Standard results in the literature [Yon06] show that P solves a matrix
Riccati BSDE and � solves an af�ne-linear BSDE. However, we are outside of the scope of [Yon06], which assumes
a Brownian �ltration. The following Lemma gives some results on solutions of Riccati BSDEs in general �ltrations.

Lemma 5.3.5 (One-dimensional Riccati-BSDE under general �ltrations) . Let A;B;C be processes in H 1 ;1 and
� 2 L 1 (FT). Suppose additionally that � � 0 dP-a.e., Bt � 0 dP 
 dt-a.e., Ct � 0 dP 
 dt-a.e. Then the following
Riccati BSDE with unknown P and stochastic coef�cients:

Pt = E t

"

� +
Z T

t

�
2AsPs + BsP2

s + Cs

�
ds

#

(5.3.4)

has a unique solution in H 1 ;1 ([0;T]) and we have the estimation 0 � Pt � Pt dP 
 dt-a.e. with:

Pt = E t

"

� exp (2kAkH 1 ;1 (T � t)) +
Z T

t
Cs exp (2kAkH 1 ;1 (s � t)) ds

#

: (5.3.5)
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A general result of Bismut for existence and uniqueness of the solution of Riccati BSDE can be found in [Bis76,
Theorem 6.1]. In section 5.5.1, we provide our own proof in the one-dimensional case. It is based on the comparison
principle for BSDEs, and allows to prove that the solution of the Riccati BSDE coincides with the solution of a BSDE
with a truncated drift, globally Lipschitz continuous. As a limitation, the comparison principle applies only for one-
dimensional BSDEs. Therefore, our proof cannot be expected to be generalized to higher dimension, except if an
analogous comparison principle for BSDEs with square symmetric matrix unknown is developed, using the order
de�ned by the cone of positive semi-de�nite matrices.

We now give a result on the second ingredient allowing to solve coupled linear FBSDEs.

Lemma 5.3.6. [1-dimensional af�ne-linear BSDE in general �ltrations] Let A, B, C and P be as before. Suppose
a;b 2 H 2;2 and � 2 L 2(FT). De�ne � 2 H 1 ;2 by:

� t = E t

"

� exp

 Z T

t
(PsBs + As)ds

!

+
Z T

t
(asPs + bs) exp

 Z s

t
(PrBr + Ar)dr

!

ds

#

: (5.3.6)

Then � is the unique solution in H 1 ;2 of the BSDE:

� t = E t

"

� +
Z T

t
((PsBs + As)� s + asPs + bs) ds

#

: (5.3.7)

Additionally, we have the estimation:

k� kH 1 ;2 �
�
k� kL 2 +

p
TkakH 2;2kPkH 1 ;1 +

p
TkbkH 2;2

�
ekPB+AkH 1 ;1 T:

The proof is given in Section 5.5.2. We are now in position of deriving a veri�cation Theorem for the solution of
af�ne-linear FBSDEs, based on the two previous Lemmas.

Theorem 5.3.7. [Scalar af�ne-linear FBSDEs with exogenous noise under general �ltrations] Let A;B;C be pro-
cesses in H 1 ;1 and � 2 L 1 (FT). Let a;b 2 H 2;2, x 2 L 2(F0) and � 2 L 2(FT). Suppose additionally that � � 0 dP-a.e.,
Bt � 0 dP 
 dt-a.e., Ct � 0 dP 
 dt-a.e. Then:

1. The following FBSDE has a unique solution (X;Y) 2 (H 1 ;2)2:
8
>>><
>>>:

Xt = x +
Rt

0
(AsXs + BsYs + as) ds;

Yt = E t

�
� XT + � +

RT

t
(CsXs + AsYs + bs) ds

�
:

2. De�ne P 2 H 1 ;1 by (5.3.4) and � 2 H 1 ;2 by (5.3.6). De�ne as well X by:

Xt = x +
Z t

0
((As + BsPs)Xs + Bs� s + as) ds: (5.3.8)

and

Y = PX + � : (5.3.9)

The processes X and Y are well-de�ned and in H 1 ;2 with the estimates:

kXkH 1 ;2 �
�
kxkL 2



+ TkBkH 1 ;1 k� kH 1 ;2 +

p
TkakH 2;2

�
ekA+PBkH 1 ;1 T;

and

kYkH 1 ;2 � k PkH 1 ;1 kXkH 1 ;2 + k� kH 1 ;2:

Besides, (X;Y) 2 (H 1 ;2)2 is the unique solution of the FBSDE:
8
>>><
>>>:

Xt = x +
Rt

0
(AsXs + BsYs + as) ds;

Yt = E t

�
� XT + � +

RT

t
(CsXs + AsYs + bs) ds

�
:
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The proof of this Theorem is postponed to Section 5.5.3. Applying the above result to (5.3.1) and using (5.3.2),
we get the following Corollary.

Corollary 5.3.8 (Explicit computation of the inverse of r 2J (u)). Suppose assumptions (Reg-4), (Conv-2) and (Lin-
Dyn) hold. Let u;w 2 H 2;2

P and de�ne Xu and Yu in H 1 ;2 as in (5.2.2) and (5.2.4). De�ne as well:

8
>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

Au
t = �

� t l00
ux(t; ut ;Xu

t )

l00
uu(t; ut ;Xu

t )
;

Bu
t = �

� 2
t

l00
uu(t; ut ;Xu

t )
;

Cu
t =

l00
uu(t; ut ;Xu

t )l00
xx(t; ut ;Xu

t ) � (l00
ux(t; ut ;Xu

t ))2

l00
uu(t; ut ;Xu

t )
;

� u = 	 00
xx(Xu

T);

au;w
t =

� twt

l00
uu(t; ut ;Xu

t )
;

bu;w
t =

l00
ux(t; ut ;Xu

T)wt

l00
uu(t; ut ;Xu

t )
:

(5.3.10)

Then the following Riccati BSDE with unknown P:

Pt = E t

"

� u +
Z T

t

�
2Au

sPs + Bu
sP2

s + Cu
s

�
ds

#

(5.3.11)

has a unique solution in H 1 ;1 , denoted Pu and the following af�ne-linear BSDE with unknown � :

� t = E t

"Z T

t

�
(Pu

sBu
s + Au

s)� s + au;w
s Pu

s + bu;w
s

�
ds

#

: (5.3.12)

has a unique solution in H 1 ;2, which is denoted � u;w. De�ne X̃u;w 2 H 1 ;2 as the unique solution of the following
ordinary differential equation:

X̃t =
Z t

0

�
(Au

s + Bu
sPu

s)X̃s + Bu
s � u;w

s + au;w
s

�
ds: (5.3.13)

Then:

�
(r 2J (u))� 1(w)

�

t
= �

1
l00
uu(t; ut ;Xu

t )

� �
l00
ux(t; ut ;Xu

t ) + � tPu
t�

	
X̃u;w

t + � t �
u;w
t� � wt

�
: (5.3.14)

Besides, we have:

kPukH 1 ;1 � C;

k� u;wkH 1 ;2 � CkwkH 2;2;

k(r 2J (u))� 1(w)kH 2;2 � CkwkH 2;2;

for some constant C independent of u and w. In particular, r 2J (u) is a bi-continuous isomorphism of H 2;2
P for any

u 2 H 2;2
P .

The proof of this Corollary is postponed to Section 5.5.4.

5.3.3 Global convergence of Newton's method with an adapted line-search method

For linear-quadratic problems with random coef�cient, the Newton direction is equal to the optimal solution of the
problem minus the current point, so that the Newton method converges in one iteration.

In the �nite-dimensional case, the local quadratic convergence of Newton's method typically requires the function
to minimize to have a Lipschitz continuous second-order derivative, see [Kan48]-[NW06, Theorem 3.5, p. 44], or

119



CHAPTER 5. NEWTON METHOD FOR STOCHASTIC CONTROL PROBLEMS

to be self-concordant [NN94]. As self-concordance is not a notion well-de�ned in our setting, we focus on the �rst
assumption.

We provide next a -example of J : H 2;2
P 7! R to show that, even under assumption (Reg-5), J may have

a second-order derivative r 2J : H 2;2 7! L (H 2;2) which is not Lipschitz-continuous. This shows that the (local)
convergence of the Newton method should be established in a different space.

Example 5.3.9. Let us assume T = 1 and consider J given by:

8u 2 H 2;2
P ; J (u) := E

"Z 1

0
l(ut)dt

#

; (5.3.15)

s:t: Xu
t = 0;8t 2 [0;1]: (5.3.16)

where l is deterministic twice continuously differentiable with derivative given by the oscillating function represented
in Figure 5.1, which is Lipschitz-continuous, bounded and non-negative. In particular, Assumptions (Reg-5), (Lin-

Figure 5.1: Oscillating function l00

Dyn) and (Conv-2) , therefore, J is 1-strongly-convex, twice continuously differentiable, with second order-derivative
r 2J : H 2;2

P 7! L (H 2;2
P ) given by:

8(u; v) 2 H 2;2
P ; 8t 2 [0;1]; (r 2J (u)(v))t = l00(ut)vt :

This second-order derivative is bounded, and for all u 2 H 2;2, r 2J (u) : H 2;2
P 7! H 2;2

P is a bi-continuous endomorphism

of H 2;2
P , i.e., r 2J (u) is a continuous invertible endomorphism of H 2;2

P , and its inverse is bounded as well. We have:

8(u;w) 2 (H 2;2
P )2; 8t 2 [0;1]; ((r 2J (u))� 1(w))t =

wt

l00(ut)
:

In particular, Assumptions (Reg-4), (Lin-Dyn) and (Conv-2) are veri�ed. However, for n 2 N � , let us de�ne u(n) 2
H 2;2

P the constant process with value U (n) given by a Bernoulli random variable with parameter p(n) = 1=n, i.e.,

U (n) = 1 with probability 1=n and 0 else. Let v = 0 2 H 2;2
P . Then we have, using l00(1) = 1 and l00(0) = 0, E

h
(U (n))2

i
=

E
h
(U (n))4

i
= 1

n :

kr 2J (u(n)) � r 2J (v)kL (H 2;2)

ku(n) � vkH 2;2
�

kr 2J (u(n))(u(n)) � r 2J (v)(u(n))kH 2;2

ku(n)kH 2;2ku(n) � vkH 2;2

=
E

h
(l00(U (n)) � l00(0))2(U (n))2

i 1=2

E
�
(U (n))2

�

=
E

h
(U (n))4

i 1=2

E
�
(U (n))2

�

=
p

n �!
n�! +1

+1 :

In particular r 2J is not Lipschitz-continuous in H 2;2
P endowed with k:kH 2;2.
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Under additional uniform boundedness and regularity assumptions, one can actually show that J actually de-
�nes an operator from the space of uniformly bounded process in H 1 ;1 to reals, that r 2J send H 1 ;1 on L (H 1 ;1 )
and is Lipschitz-continuous.

Lemma 5.3.10. Let the conditions of Theorem 5.3.7 hold. De�ne P 2 H 1 ;1 as in (5.3.4), � 2 H 1 ;2 by (5.3.6),
X 2 H 1 ;2 as in (5.3.8), Y = PX + � 2 H 1 ;2. Suppose additionally that a;b 2 H 1 ;1 and x; � 2 L 1


 . Then � , X and Y
are in H 1 ;1 and we have the estimates:

k� kH 1 ;1 �
�
k� kL 1



+ TkakH 1 ;1 kPkH 1 ;1 + TkbkH 1 ;1

�
ekPB+AkH 1 ;1 T;

kXkH 1 ;1 �
�
kxkL 1



+ TkBkH 1 ;1 k� kH 1 ;1 + TkakH 1 ;1

�
ekA+PBkH 1 ;1 T;

kYkH 1 ;1 � k PkH 1 ;1 kXkH 1 ;1 + k� kH 1 ;1 :

Proof. The fact that � 2 H 1 ;1 and the estimate on � are immediate using formula (5.3.6). The fact that X 2 H 1 ;1

and the estimate on X are a consequence of this latter fact, from de�nition (5.3.8) and from Gronwall's lemma. The
fact that Y 2 H 1 ;1 and the estimate on Y directly come from the fact that P, X and � are in H 1 ;1 . �

Theorem 5.3.11 (Stability of H 1 ;1 ). Suppose assumptions (Reg-5), (Lin-Dyn) and (Conv-2) hold. Then, for all
(u; v) 2 H 1 ;1

P , Xu;Yu; rJ (u); �Xv; �Yu;v; r 2J (u)(v) and (r 2J (u))� 1(v) are all in H 1 ;1 and besides:

8(u; v;w) 2 (H 1 ;1
P )3;

kPukH 1 ;1 � C;

k� u;wkH 1 ;1 � CkwkH 1 ;1 ;

kXukH 1 ;1 + kYukH 1 ;1 + krJ (u)kH 1 ;1 � C(1 + kukH 1 ;1 );

kXu � XvkH 1 ;1 + kYu � YvkH 1 ;1 + krJ (u) � rJ (v)kH 1 ;1 � Cku � vkH 1 ;1 ;

k �XvkH 1 ;1 + k �Yu;vkH 1 ;1 + kr 2J (u)(v)kH 1 ;1 � CkvkH 1 ;1 ;

k �Yu;w � �Yv;wkH 1 ;1 + kr 2J (u)(w) � r 2J (v)(w)kH 1 ;1 � Cku � vkH 1 ;1 kwkH 1 ;1 ;

k(r 2J (u))� 1(w)kH 1 ;1 � CkwkH 1 ;1 ;

where the (generic) constant C > 0 is independent of u; v;w. Note that this implies that r 2J de�nes a Lipschitz-
continuous operator from H 1 ;1

P to the space of continuous endomorphisms of H 1 ;1
P , and that r 2J (u) and (r 2J (u))� 1

are bounded linear operators, uniformly in u. This also implies that for any u 2 H 1 ;1 , the Newton direction

�
�
r 2J (u)

� � 1
(rJ (u)) is also in H 1 ;1

P .

Proof. Note that for any (X;Y) 2 (H 1 ;1 )2, XY 2 H 1 ;1 and:

kXYkH 1 ;1 � k XkH 1 ;1 kYkH 1 ;1 :

Throughout the proof, C denotes a generic deterministic constant depending only on T and the bounds on the data
of the problem and their derivatives in H 1 ;1 . We have immediately for (u; v) 2 (H 1 ;1 )2:

kXukH 1 ;1 � C(1 + kukH 1 ;1 );

kXu � XvkH 1 ;1 � Cku � vkH 1 ;1 ;

k �XvkH 1 ;1 � CkvkH 1 ;1 :

We also have:

kYukH 1 ;1 � C(1 + kukH 1 ;1 + kXukH 1 ;1 );

kYu � YvkH 1 ;1 � C(ku � vkH 1 ;1 + kXu � XvkH 1 ;1 );

k �Yu;vkH 1 ;1 � C(kvkH 1 ;1 + k �XvkH 1 ;1 ):

Combining the �rst two upper bounds with the estimates on Xu yields the inequality on Yu. Combining the third
estimate with the bound on �Xv yields:

k �Yu;vkH 1 ;1 � CkvkH 1 ;1 :
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Using the Lipschitz-continuity of the second-order derivatives of l and 	 , one gets:

k �Yu;w � �Yv;wkH 1 ;1 � C(ku � vkH 1 ;1 + kXu � XvkH 1 ;1 )
�
kwkH 1 ;1 + k �XwkH 1 ;1

�
:

We can use all our previous estimates to get the claimed bound on k �Yu;w � �Yv;wkH 1 ;1 .
We have:

krJ (u)kH 1 ;1 � C(1 + kukH 1 ;1 + kXukH 1 ;1 + kYukH 1 ;1 );

krJ (u) � rJ (v)kH 1 ;1 � C(ku � vkH 1 ;1 + kXu � XvkH 1 ;1 + kYu � YvkH 1 ;1 ):

Combining this with the estimates on Xu and Yu yields the estimates on rJ (u). Using the expression of r 2J (u)(v)
derived earlier, we easily get the estimate:

kr 2J (u)(v)kH 1 ;1 � C(kvkH 1 ;1 + k �XvkH 1 ;1 + k �Yu;vkH 1 ;1 );

kr 2J (u)(w) � r 2J (v)(w)kH 1 ;1 � C(ku � vkH 1 ;1 + kXu � XvkH 1 ;1 )(kwkH 1 ;1 + k �XwkH 1 ;1 ) + Ck �Yu;w � �Yv;wkH 1 ;1 :

We get the claimed estimates on kr 2J (u)(v)kH 1 ;1 and kr 2J (u)(w) � J (v)(w)kH 1 ;1 using the previous bounds.
We have the bounds on parameters appearing in(5.3.10):

kAukH 1 ;1 + kBukH 1 ;1 + kCukH 1 ;1 + k� ukL 1



� C;

kau;wkH 1 ;1 + kbu;wkH 1 ;1 � CkwkH 1 ;1 :

Therefore, we are in the framework of application of Lemma 5.3.10 for � = � u;w, P = Pu and X = X̃u;w, which are
de�ned in (5.3.11), (5.3.12) and (5.3.13) (with � = 0 and x = 0). This yields:

kPukH 1 ;1 � C;

k� u;wkH 1 ;1 � C(1 + kPukH 1 ;1 )kwkH 1 ;1 ;

kX̃u;wkH 1 ;1 � C(kwkH 1 ;1 + k� u;wkH 1 ;1 ):

We have by (5.3.14):

k(r 2J (u))� 1(w)kH 1 ;1 � C(kwkH 1 ;1 + k� u;wkH 1 ;1 + (1 + kPukH 1 ;1 )kX̃u;wkH 1 ;1 );

which gives the estimate on k(r 2J (u))� 1(w)kH 1 ;1 . �

It is well known that, for strongly convex functions, with Lipschitz-continuous second order derivative, local con-
vergence can be shown for the Newton method, see for instance [Kan48] - [NW06, Theorem 3.5, p. 44]. However,
even under such demanding assumptions, it is well-known in a �nite-dimensional setting that Newton method is not
guaranteed to converge globally. We provide next a counter-example to the global convergence of Newton method
in our in�nite-dimensional framework.

Example 5.3.12 (Counter-example to global convergence of Newton method). We consider J : H 1 ;1 7! R given
by:

8u 2 H 1 ;1
P ; J (u) := E

"Z 1

0
F(ut)dt

#

; (5.3.17)

s:t: Xu
t = 0;8t 2 [0;1]; (5.3.18)

where F : x 7! R is de�ned by:

F(x) :=

8
>>>>><
>>>>>:

x2

4 + 4
3; if jxj > 4;

2jxj
3
2

3 ; if 1 � j xj � 4;
x2

2 + 1
6; if jxj < 1:
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(a) Graph of function F (b) Graph of the �rst derivative F0 (c) Graph of the second derivative F00

Figure 5.2: Graphs of F, its �rst and second derivatives

Then F is strongly convex, twice continuously differentiable with bounded second order derivative, see Figure 5.2.
Assumptions (Reg-5), (Lin-Dyn) and (Conv-2) hold. Let u(0) 2 H 1 ;1

P be any stochastic process such that

1 < ju(0)
t;! j < 4, dP 
 dt-a.e. Due to the particular structure of our problem, Newton's method reduces to the Newton

method applied to F : R 7! R applied ! by ! and t by t. For 1 < jx0j < 4, Newton's method (in R) applied to F
with initial guess x0 produces the sequence (xk)k2N with general term xk = (� 1)kx0. Indeed, for 1 � j xj � 4, we have
F0(x) = sign(x)

p
jxj and F00(x) = 1

2
p

jxj
, so that the Newton iteration is given by:

xk+1 = xk �
F0(xk)
F00(xk)

= � xk:

Therefore, Newton's method (in H 1 ;1 ) applied to J with initial guess u(0) produces the sequence (u(k))k2N with
general term u(k) = (� 1)ku(0), which does not converge.

The previous counter-example motivates globalization procedures. We consider Backtracking-line search meth-
ods, which are iterative procedures which allow to select appropriate step lengths such that the Goldstein conditions,
presented in [NW06, p. 36], hold.

The standard Backtracking line-search method is given in Algorithm 5.3. It is directly adapted from Backtracking
line-search method in Rn [NW06, Algorithm 3.1, p.37] or [BV04, Algorithm 9.2, p. 464]. Under the assumption
of a strongly convex function with bounded and Lipschitz second order derivative, it can be shown in the �nite
dimensional case that the Newton method with the Standard Backtracking line search converges globally, see
[BV04, Section 9.5.3, pp. 488-491].

Algorithm 5.3 Standard Backtracking line search (compact generic version)

1: Inputs: Current point u 2 H 1 ;1
P , Current search direction � u 2 H 1 ;1

P , � 2 (0;1), 
 2 (0;1).
2: � = 1.
3: while J (u + � � u) > J (u) + 
� hrJ (u); � ui H 2;2 do
4: �  �� .
5: end while
6: return u + � � u.

However, since we do not work in a �nite-dimensional setting, the global convergence of the method is not
guaranteed to our knowledge. This is due to the fact that J is a criteria in expectation, whereas we are working
with the norm in H 1 ;1 . We shall see in our numerical applications that the Standard Backtracking line-search may
prevent the Newton method to converge, see Figures 5.6b and 5.6d.

To alleviate this issue, we propose a new Backtracking line-search rule, based on the sup-essential norm of the
gradient, described in Algorithm 5.4. Hence, we are only working with the norm in H 1 ;1 , which makes more sense
as we are working with variables in H 1 ;1 .

We show that the Newton method combined with the Gradient Backtracking line search algorithm 5.4 ensures
global convergence of the method, and that after a �nite number of iterations, the algorithm takes full Newton steps,
which ensures quadratic convergence.
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Algorithm 5.4 Gradient Backtracking line search (compact generic version)

1: Inputs: Current point u 2 H 1 ;1
P , Current search direction � u 2 H 1 ;1

P , � 2 (0;1), 
 2 (0;1).
2: � = 1.
3: while krJ (u + � � u)kH 1 ;1 > (1 � 
� )krJ (u)kH 1 ;1 do
4: �  �� .
5: end while
6: return u + � � u.

Lemma 5.3.13. Suppose assumptions (Reg-5), (Lin-Dyn) and (Conv-2) hold. For any u 2 H 1 ;1
P , the Gradient

Backtracking line search terminates in �nitely many iterations for the Newton step � u := � (r 2J (u))� 1(rJ (u)) 2
H 1 ;1

P .
Besides, if the algorithm returns � = 1, then the new point u + � u satis�es:

krJ (u + � u)kH 1 ;1 � min(1 � 
; CkrJ (u)kH 1 ;1 )krJ (u)kH 1 ;1 ;

where C =
Lr 2J C2

(r 2J )� 1

2 with Lr 2J the Lipschitz constant of r 2J : H 1 ;1 7! L (H 1 ;1 ), and

C(r 2J )� 1 := sup
u2H 1 ;1

P

k(r 2J (u))� 1kL (H 1 ;1 );

which is �nite by Theorem 5.3.11). Conversely, if CkrJ (u)kH 1 ;1 � (1 � 
 ) then the algorithm returns � = 1. On the
other hand, if the algorithm returns � < 1, then the new iterate u + � � u satis�es:

krJ (u + � � u)kH 1 ;1 � krJ (u)kH 1 ;1 �
�
 (1 � 
 )

C
:

Proof. By Taylor-Lagrange formula, using � u = � (r 2J (u))� 1(rJ (u)), we have

rJ (u + � � u) = rJ (u) +
Z 1

0
r 2J (u + s� � u)(� � u)ds;

= (1 � � )rJ (u) + �
Z 1

0

�
r 2J (u + s� � u) � r 2J (u)

�
(� u)ds;

which yields by Lipschitz continuity of r 2J in L (H 1 ;1 ):

krJ (u + � � u)kH 1 ;1 � (1 � � )krJ (u)kH 1 ;1 + �
Z 1

0
kr 2J (u) � r 2J (u + s� � u)kL (H 1 ;1 )dsk� ukH 1 ;1

� (1 � � )krJ (u)kH 1 ;1 +
Lr 2J

2
� 2k� uk2

H 1 ;1

�

0
BBBBB@1 � � +

Lr 2J C2
(r 2J )� 1

2
krJ (u)kH 1 ;1 � 2

1
CCCCCAkrJ (u)kH 1 ;1 :

Notice that, since 0 < 
 < 1, for � > 0 small enough, we have:

1 � � + CkrJ (u)kH 1 ;1 � 2 � 1 � 
�: (5.3.19)

In particular, the Gradient Backtracking line search terminates after �nitely many iterations. Besides, if CkrJ (u)kH 1 ;1

1� 
 �
1 then the algorithm stops and returns � = 1.

Suppose that the algorithm stops with � = 1, then:

krJ (u + � u)kH 1 ;1 � min(1 � 
; CkrJ (u)kH 1 ;1 )krJ (u)kH 1 ;1 ;

by the termination criterion and the previous estimate.
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Suppose that the algorithm returns � < 1. Then by the termination criteria of the algorithm, (5.3.19) implies in
particular that:

� (�=� ) + CkrJ (u)kH 1 ;1 (�=� )2 > � 
 (�=� ):

This yields:

� (1 � 
 )

CkrJ (u):kH 1 ;1
< � < 1:

This yields, using the termination criterion of the algorithm, the fact that � , 
 and � are in (0;1) and the previous
inequality:

krJ (u + � � u)kH 1 ;1 �
�
1 � 
�

�
krJ (u)kH 1 ;1

�

 

1 �
�
 (1 � 
 )

CkrJ (u)kH 1 ;1

!

krJ (u)kH 1 ;1

� krJ (u)kH 1 ;1 �
�
 (1 � 
 )

C
:

�

Remark 5.3.14. Note that the properties of the backtracking line-search algorithm can be enforced for values of
parameters which are independent on the problem, and in particular, independent from a priori unknown constants
of the problem (bounds on derivatives, constant of strong convexity...). The properties of the problem (regularity,
convexity) only impact the number of iterations of the algorithm.

Algorithm 5.5 Newton's method with Backtracking line search (compact generic version)

1: Inputs: u(0) 2 H 1 ;1
P , 
 2 (0;1), � 2 (0;1), " > 0. k = 0

2: while krJ (u(k))kH 1 ;1 > " do
3: Compute Newton direction � (r 2J (u(k)))� 1(rJ (u(k))) 2 H 1 ;1

P
4: Compute new iterate using Backtracking line-search rule u(k+1) = u(k) � � (r 2J (u(k)))� 1(rJ (u(k))) 2 H 1 ;1

P
5: k  k + 1
6: end while
7: return u(k)

Theorem 5.3.15. Suppose assumptions (Reg-5), (Lin-Dyn) and (Conv-2) hold. Then J : H 1 ;1 7! R is twice
continuously differentiable, with Lipschitz continuous �rst and second derivatives. Besides r 2J is an invertible,

bi-continuous endomorphism of H 1 ;1 . Let u(0) 2 H 1 ;1 . Let 
 and � be parameters in (0;1). De�ne C =
Lr 2J C2

(r 2J )� 1

2
with Lr 2J the Lipschitz constant of r 2J : H 1 ;1

P 7! L (H 1 ;1
P ) and

C(r 2J )� 1 := sup
u2H 1 ;1

P

k(r 2J (u))� 1kL (H 1 ;1 ):

De�ne as well:

� =
�
 (1 � 
 )

C
;

k1 = inf

(

k 2 N j krJ (u(k))kH 1 ;1 �
1 � 


C

)

:

Then k1 is �nite. Besides, after k1 iterations, the step length is always 1 and Newton method with Gradient Back-
tracking line search converges quadratically, i.e.,

8k � k1; CkrJ (u(k+1))kH 1 ;1 �
�
CkrJ (u(k))kH 1 ;1

� 2
;
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8k � k1; krJ (u(k))kH 1 ;1 �
(1 � 
 )2k� k1

C
:

Besides, u(k) converges to u� 2 H 1 ;1 which is the minimizer of J , and the asymptotic convergence is quadratic, i.e.,

8k � k1; Cku(k+1) � u� kH 1 ;1 � C2ku(k) � u� k2
H 1 ;1 ;

8k � k1 + 1; ku(k) � u� kH 1 ;1 �
k(r 2J )� 1kL (H 1 ;1 )


 C
(1 � 
 )2k� k1 :

Proof. By the previous lemma, the sequence
�
krJ (u(k))kH 1 ;1

�

k2N
is monotone decreasing.

We �rst prove that k1 < +1 . Let k � k1. Then krJ (u(k))kH 1 ;1 > 1� 

C . If at iteration k, the gradient backtracking line

search returns a unit step length � = 1, then by Lemma 5.3.13:

krJ (u(k+1))kH 1 ;1 � (1 � 
 )krJ (u(k))kH 1 ;1

� krJ (u(k))kH 1 ;1 � �;

where we used the assumption krJ (u(k))kH 1 ;1 > 1� 

C and � 2 (0;1).

Else, at iteration k, the gradient backtracking line search returns a step length � < 1 and still by Lemma 5.3.13,

krJ (u(k+1))kH 1 ;1 � krJ (u(k))kH 1 ;1 � �:

This yields:

8k � k1; krJ (u(k))kH 1 ;1 � krJ (u(0))kH 1 ;1 � k�:

Since � > 0, this yields existence and �niteness of k1, which is bounded from above by krJ (u(0))kH 1 ;1

� + 1.

Besides, for all k � k1, we have krJ (u(k))kH 1 ;1 � 1� 

C since the sequence

�
krJ (u(k))kH 1 ;1

�

k2N
is monotone

decreasing. In that case, Lemma 5.3.13 shows that the algorithm takes unit step length and:

CkrJ (u(k+1))kH 1 ;1 � C2krJ (u(k+1))k2
H 1 ;1 :

This combined with CkrJ (u(k1))k � 1 � 
 yields:

8k � k1; CkrJ (u(k))kH 1 ;1 � (1 � 
 )2k� k1 :

From that and since the algorithm takes unit step length after iteration k1, we deduce:

8k � k1; ku(k+1) � u(k)kH 1 ;1 = k(r 2J (u(k)))� 1(rJ (u(k)))kH 1 ;1

� k (r 2J )� 1kL (H 1 ;1 )krJ (u(k))kH 1 ;1

� k (r 2J )� 1kL (H 1 ;1 )
(1 � 
 )2k� k1

C
:

In particular, this yields the absolute convergence of the series Sn =
P n

k=0 vn of general term v0 = u(0) and vk =
u(k) � u(k� 1) for k > 1. Hence (Sn)n2N converges in H 1 ;1 and so does (u(k))k2N . Denote u� 2 H 1 ;1 the limit point of
(u(k))k2N . By continuity of rJ : H 1 ;1 7! H 1 ;1 , u� is a critical point of J and hence, by strong convexity of J , u� is
the unique minimizer of J . Besides, as the algorithm takes unit step length � = 1 after k1 iterations,

8k � k1; ku(k+1) � u� kH 1 ;1 = ku(k) � (r 2J (u(k)))� 1(rJ (u(k))) � u� kH 1 ;1

= ku(k) � u� � (r 2J (u(k)))� 1(rJ (u(k)) � rJ (u� ))kH 1 ;1

� k (r 2J (u(k)))� 1kL (H 1 ;1 )krJ (u(k)) � rJ (u� ) � r 2J (u(k))(u(k) � u� )kH 1 ;1

�
k(r 2J (u(k)))� 1kL (H 1 ;1 )Lr 2J

2
ku(k) � u� k2

H 1 ;1 ;
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by Taylor-Lagrange's formula and Lipschitz continuity of r 2J : H 1 ;1 7! L (H 1 ;1 ).
Besides, for all k > k1,

ku(k) � u� kH 1 ;1 �
+1X

j=k

ku( j+1) � u( j)kH 1 ;1

�
k(r 2J )� 1kL (H 1 ;1 )

C

0
BBBBBB@

+1X

j=k

(1 � 
 )2j� k1

1
CCCCCCA

=
k(r 2J )� 1kL (H 1 ;1 )

C

0
BBBBBB@

+1X

j=0

(1 � 
 )2j+k� k1

1
CCCCCCA

�
k(r 2J )� 1kL (H 1 ;1 )

C
(1 � 
 )2k� k1

0
BBBBBB@1 +

+1X

j=0

(1 � 
 )2j

1
CCCCCCA

�
k(r 2J )� 1kL (H 1 ;1 )

C
(1 � 
 )2k� k1

0
BBBBBB@

+1X

j=0

(1 � 
 ) j

1
CCCCCCA

�
k(r 2J )� 1kL (H 1 ;1 )

C

(1 � 
 )2k� k1

where we used k > k1 and the fact that 2j+k� k1 � 2j + 2k� k1 for all j � 1. �

5.4 Application: energy storage system control for power balancing

5.4.1 Problem setting

We consider N identical batteries with energy capacity Emax operated in order to balance production and consump-
tion on an electricity network. Other types of energy storage systems could be considered. For instance, one
could replace batteries in this application by a large population of Thermostatically Controlled Loads (TCLs), which
include water heaters, Air Conditioners, Heat pumps,... provided a �rst order af�ne-linear model of their tempera-
ture dynamic is used. The global consumption on the network is given by a deterministic function NPcons, where
Pcons is the total consumption divided by the number of batteries. The assumption of a deterministic consumption
pro�le can be justi�ed by the fact that it is the aggregation of a large number of small independent consumption
pro�les, which allows to use the law of large numbers. We assume additionally a total solar power production NPsun,
i.e. Psun is the total solar production divided by the number of batteries on the network (we do not account for
wind power, although this could easily be included in the model). We follow [Bad+18] by setting Psun = Psun;maxXsun

where Psun;max : [0;T] 7! R is a deterministic function (the clear sky model) represented in 5.3a and Xsun solves a
Fisher-Wright type SDE which dynamics is

dXsun
t = � � sun(Xsun

t � xsun;ref
t )dt + � sun(Xsun

t )k1(1 � Xsun
t )k2dW̃t ; (5.4.1)

with k1; k2 � 1=2. As proved in [Bad+18], there is a strong solution to the above SDE and the solution Xsun takes
values in [0;1]. Since the drifts are af�ne-linear, the conditional expectation of the solution of (5.4.1) is known in
closed forms (this property is intensively used in [BSS05]):

E t
�
Psun

s
�

=

 
Psun

t

Psun;max
t

exp(� � sun(s � t)) +
Z s

t
� sunxsun;ref

� exp(� � sun(s � � ))d�

!

Psun;max
s ; (5.4.2)

for s � t. This will allow us to speed up computations of the conditional expectations E t
�
Psun

s
�

and E
�
Psun

s
�

as
required when deriving the optimal control. The value of the parameters used are given in the following table.
Empirical quantile plot (obtained by simulation of 10000i.i.d. trajectories) as well as one example trajectory of Psun

are given in Figure 5.3b.
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Table 5.1: Parameter values for the simulation of PV power production

� sun xsun;ref � sun k1 k2

0:75 h� 1 0:5 0:8 0:8 0:7

(a) Time evolution of Psun;max (b) Empirical quantiles of Psun, obtained with M = 10000sam-
ples, and one realization of Psun

Figure 5.3: Graphical statistics of the evolution of Psun

Our goal is to minimize global cost for the control of N batteries, which are composed of operational costs for
battery management and a penalization for power balance imbalance, represented in Figure 5.41.

We assume a production pro�le per battery Pprod
t = Pcons

t � E
h
Psun

t

i
, which can be easily computed using the

model on Psun.

Denoting by u(n) the power supplied by battery n 2 [N] and by X(n) its normalized state of charge, we wish to
solve the following stochastic control problem:

min
u2H 2;2

P

E

2
666664

Z T

0

8
>><
>>:

1
N

NX

n=1

�

2
(u(n)

t )2 +
1
N

NX

n=1

�
2

�
X(n)

t �
1
2

� 2

+ L

0
BBBBB@

1
N

NX

n=1

u(n)
t + Psun

t � E
�
Psun

t
�
1
CCCCCA

9
>>=
>>;

dt +
1
N

NX

n=1

�

2

�
X(n)

T �
1
2

� 2
3
777775;

(5.4.3)

s:t: X(n)
t = x(n)

0 �
Z t

0

u(n)
s

Emax
ds: (5.4.4)

The �rst two terms as well as the last term in the cost functional represent the sum of the operational costs for
individual batteries. We penalize quadratically power supplied or absorbed by the batteries (�rst term) and penalize
deviations of the normalized states of charge of the batteries from the reference value 1=2 (second and last term).
The third term represents a penalization term for the power imbalance 1

N

P N
n=1 u(n)

t + Psun
t � Pcons

t + Pprod
t = 1

N

P N
n=1 u(n)

t +

Psun
t � E

h
Psun

t

i
, using Pprod

t = Pcons
t � E

h
Psun

t

i
. The state variable X(n) represents the normalized state of charge

of battery n, i.e., the energy stored divided by the maximal capacity Emax = 150 kWh. In particular, the total
installed storage capacity corresponds to 5 hours of the PV panels production at full capacity, which is 30 kW,
which corresponds to about 300 squared meters of photo-voltaic panels, with the current technology. Equivalently,
assuming a availability rate of 12% for solar (accounting for seasonality, intermittency and unavailability at night),
about 40hours of the average solar production, where the availability rate is de�ned as the average power production
divided by the maximal power capacity. We consider simple ideal batteries with charging and discharging ef�ciencies
equal to 1. We do not enforce the state constraints X(n) 2 [0;1]. We will consider a non-quadratic loss function L

1Icons made by Freepik and Smashicons from www.�aticon.com
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Figure 5.4: Power imbalance on the network

given by:

L (x) =

8
>>>>><
>>>>>:

1
2 � x2 � �

6" x3 if � " � x � ";
1
2(� � � )x2 + �"

2 x � �
6" 2 if x � ";

1
2(� + � )x2 + �"

2 x + �
6" 2 if x � � ":

In this case, L is C2 with �
" -Lipschitz-continuous second order derivatives and is represented in Figure 5.5 for

� = 2; � = 1, " = 0:1.

The function L penalizes more energy production de�cit (as compared to its expected value). Indeed, such
situation possibly requires the use of extra production units with high carbon footprint, which is clearly to discard as
often as possible. We will use the following parameter values for the cost functional.

Table 5.2: Parameter values for the cost functional

� � � � � "

1 kW� 2 h� 1 5 h� 1 10000 10 kW� 2 h� 1 5 kW� 2 h� 1 1 kW
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Figure 5.5: Loss function L with � = 2; � = 1, " = 0:1

5.4.2 Solving the stochastic control problem

Applying a similar methodology as in Theorem 5.2.6, one can show that it is equivalent to solve the stochastic
control problem (5.4.3) and the following high-dimension coupled FBSDE:

8n 2 [N];

8
>>>>>><
>>>>>>:

X(n)
t = x(n)

0 �
Rt

0
u(n)

s
Emax

ds;

Y(n)
t = E t

�
� (X(n)

T � 1=2) +
RT

t
� (X(n)

s � 1=2)ds
�
;

� u(n)
t + L 0

�
1
N

P N
j=1 u( j)

t + Psun
t � E

h
Psun

t

i�
�

Y(n)
t�

Emax
= 0:

(5.4.5)

There exists a unique solution (u(n);X(n);Y(n))n2[N] 2 (H 2;2
P � H 1 ;2 � H 1 ;2)N of the above FBSDE, and (u(n))n2[N] is

the unique solution of the stochastic control problem (5.4.3). The above FBSDE (5.4.5) is a high-dimensional fully
coupled FBSDE. To solve it, introduce

(ū; X̄; Ȳ) :=

0
BBBBBB@

1
N

NX

j=1

u( j);
1
N

NX

j=1

X( j);
1
N

NX

j=1

Y( j)

1
CCCCCCA:

Introduce as well
�
u(n);� ;X(n);� ;Y(n);�

�

n2[N]
:=

�
u(n) � ū;X(n) � X̄;Y(n) � Ȳ

�
. Then for all n 2 [N],

�
u(n);� ;X(n);� ;Y(n);�

�
is a

solution of the linear FBSDE:

8
>>>>>><
>>>>>>:

X(n);�
t = x(n)

0 � x̄0 �
Rt

0
u(n);�

s
Emax

ds;

Y(n);�
t = E t

�
� X(n);�

T +
RT

t
� X(n);�

s ds
�
;

� u(n);�
t �

Y(n);�
t�

Emax
= 0:

(5.4.6)

To solve ef�ciently this linear FBSDE, we use Theorem 4.5.2. Let us turn to the computation of (ū; X̄; Ȳ). Notice that
(ū; X̄; Ȳ) is solution of the following FBSDE, where we denoted x̄0 = 1

N

P N
j=1 x( j)

0 :

8
>>>>><
>>>>>:

X̄t = x̄0 �
Rt

0
ūs

Emax
ds;

Ȳt = E t

�
� (X̄T � 1=2) +

RT

t
� (X̄s � 1=2)ds

�
;

� ūt + L 0
�
ūt + Psun

t � E
h
Psun

t

i�
� Ȳt

Emax
= 0:

(5.4.7)
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We will assume x̄0 = 0:5 in our case study. This FBSDE fully characterizes the solution of the following stochastic
control problem, called coordination problem:

min
ū2H 2;2

J̄ (ū) := E

"Z T

0

(
�

2
ū2

t +
�
2

�
X̄t �

1
2

� 2

+ L (ūt + Psun
t � E

�
Psun

t
�
)

)

dt +
�

2

�
X̄T �

1
2

� 2#

s:t: X̄t = x̄0 �
Z t

0

ūs

Emax
ds:

Proposition 5.2.3 shows that there exists a unique solution of the coordination problem. By applying Theorem
5.2.6, we deduce the existence and uniqueness of a solution (ū; X̄; Ȳ) 2 H 2;2

P � H 1 ;2 � H 1 ;2. To solve the non-
linear FBSDE (5.4.7), we use Newton's method globalized with (Gradient) Backtracking Line Search, noting that the
random parameters of the problem are uniformly bounded.

Let ū(k) be the (candidate) control variable at iteration k. We de�ne the associated state variable X̄(k) at iteration
k:

X̄(k)
t = x̄0 �

Z t

0

ū(k)
s

Emax
ds; (5.4.8)

the adjoint variable Ȳ(k) at iteration k:

Ȳ(k)
t = E t

"

� (X̄(k)
T � 1=2) +

Z T

t
� (X̄(k)

s � 1=2)ds

#

: (5.4.9)

Applying Proposition 5.2.5 to J̄ , the gradient of the cost at ū(k) is given by:

(r J̄ (ū(k)))t = � ū(k)
t + L 0

�
ū(k)

t + Psun
t � E

�
Psun

t
� �

�
Ȳ(k)

t�

Emax
: (5.4.10)

The Newton direction �u(k) = � (r 2J̄ (ū(k)))� 1(r J̄ (ū(k))) at the point ū(k) is given by:

�u(k)
t =

�Y(k)
t� + Ȳ(k)

t� �
n
� ū(k)

t + L 0
�
ū(k)

t + Psun
t � E

h
Psun

t

i� o
Emax

n
� + L 00

�
ū(k)

t + Psun
t � E

h
Psun

t

i� o
Emax

;

where ( �X(k); �Y(k)) satisfy:

8
>>><
>>>:

�X(k)
t = �

Rt

0
�u(k)
s

Emax
ds;

�Y(k)
t = E t

�
� �X(k)

T +
RT

t
� �X(k)

s ds
�
:

This comes from the application of Theorem 5.2.9 which gives the expression of the inverse of the second order
derivative at ū(k), applied to �r J̄ (ū(k)). Eliminating �u(k), we obtain the following af�ne-linear FBSDE for ( �X(k); �Y(k)):

8
>>>>>><
>>>>>>:

�X(k)
t =

Z t

0

� �Y(k)
s � Ȳ(k)

s +
n
� ū(k)

s + L 0
�
ū(k)

s + Psun
s � E

�
Psun

s
� � o

Emax
n
� + L 00

�
ū(k)

s + Psun
s � E [Psun

s ]
� o

E2
max

ds;

�Y(k)
t = E t

�
� �X(k)

T +
RT

t
� �X(k)

s ds
�
:

To solve this FBSDE arising at iteration k, we apply Theorem 5.3.7 in our particular framework, with the following
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values for the parameters:
8
>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

At = 0;

Bt =
� 1

n
� + L 00

�
ū(k)

t + Psun
t � E

h
Psun

t

i� o
E2

max

;

Ct = �;

� = �;

at =
� Ȳ(k)

t + � ū(k)
t Emax + L 0

�
ū(k)

t + Psun
t � E

h
Psun

t

i�
Emax

n
� + L 00

�
ū(k)

t + Psun
t � E

h
Psun

t

i� o
E2

max

;

bt = 0;

� = 0;

x = 0:

Introduce the Riccati BSDE with stochastic coef�cients:

P(k)
t = E t

2
6666664� +

Z T

t

0
BBBBBB@� �

1
n
� + L 00

�
ū(k)

s + Psun
s � E [Psun

s ]
� o

E2
max

(P(k)
s )2

1
CCCCCCAds

3
7777775; (5.4.11)

and the linear BSDE:

� (k)
t = E t

2
6666664

Z T

t

0
BBBBBB@

� P(k)
s

E2
max

�
� + L 00

�
ū(k)

s + Psun
s � E [Psun

s ]
�� � (k)

s +

�
� ū(k)

s + L 0
�
ū(k)

s + Psun
s � E

�
Psun

s
� ��

Emax � Ȳ(k)
s

E2
max

�
� + L 00

�
ū(k)

s + Psun
s � E [Psun

s ]
�� P(k)

s

1
CCCCCCAds

3
7777775:

(5.4.12)

Then, �u(k) is given by the following feedback expression:

�u(k)
t =

P(k)
t�

�X(k)
t + � (k)

t� + Ȳ(k)
t� �

n
� ū(k)

t + L 0
�
ū(k)

t + Psun
t � E

h
Psun

t

i� o
Emax

n
� + L 00

�
ū(k)

t + Psun
t � E

h
Psun

t

i� o
Emax

: (5.4.13)

The process �X(k) satis�es:

�X(k)
t =

Z t

0

� P(k)
s

�X(k)
s � � (k)

s � Ȳ(k)
s +

n
� ū(k)

s + L 0
�
ū(k)

s + Psun
s � E

�
Psun

s
� � o

Emax
n
� + L 00

�
ū(k)

s + Psun
s � E [Psun

s ]
� o

E2
max

ds;

and �Y(k) = P(k) �X(k) + � (k), according to Theorem 5.3.7.
To be able to practically implement the Newton method with (Gradient) Backtracking line search, the conditional

expectations in the equations or expressions of Ȳ(k), P(k), � (k) in (5.4.9), (5.4.11) and (5.4.12) need to be estimated.
We focus on these aspects in the next section.

5.4.3 Practical implementation

The simulations have been performed on Python 3.7, with an Intel-Core i7 PC at 2.1 GHz with 16 Go memory. The
process Xsun is simulated using an Euler scheme with time step h = T

NT
= 0:5 h, with T = 24 h and NT = 48. The

number of Monte-Carlo simulations is M = 10000.

Linear Least-Squares Regression

To provide an implementation to compute the conditional expectation in the expression of Ȳ(k), P(k), � (k) in (5.4.9),
(5.4.11) and (5.4.12), we take advantage on the Markovian framework and use Linear-Least Square regression
[GT16a]. We use this method to obtain closed-loop feedback expressions of the solutions of each BSDE, with
respect to the Markovian underlying extended state process (Xsun; X̄(k)).
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Notations To simplify the notations, we write (u(k);X(k);Y(k)) = (u(k)
� ;X(k)

� ;Y(k)
� )� 2[NT ] the discretized process asso-

ciated (ū(k); X̄(k); Ȳ(k)) in the following on the time grid (� h)� 2[NT ](not be be confused with (u(n);X(n);Y(n)) which is the
optimal control, state and adjoint variable of battery n). We also use the notation Xsun;h

�; m for values of the mth simulated
(discretized) approximation of Xsun at time � h.

De�nition 5.4.1 (Linear Least-Squares Regression (LLSR) [GT16a]). For l � 1 and for probability spaces (
 ; F ;P)
and (R l ;B(R l); � ), let Sbe a F 
B (R l)-measurable R-valued function such that S(!; �) 2 L 2(B(R l); � ) for P-a.e. ! 2 
 .
Let K := span(� f ) f =1;:::;N f be the vector space spanned by N f deterministic functions (� f ) f =1;:::;N f . The Least-Squares
approximation of S in the space K with respect to � is the dP 
 d� -a.e. unique F 
 B (R l)-measurable function S?

given by:

S? (!; �) = arg inf
� 2K

Z
j� (x) � S(!; x)j2� (dx):

We say that S? solves OLS(S;K ; � ).
In particular, if � M = 1

M

P M
m=1 � � (m) is a discrete probability measure on (R l ;B(R l)) where � (1); � (2); :::; � (M) : 
 !

R l are i.i.d. random variables with distribution � . For an F 
 B (R l)-measurable R-valued function S such that
jS(!; � (m)(! ))j < 1 for any m and P-a.e. ! 2 
 , the Least-Squares approximation of S in the space K with respect
to � M is the P � a:e: unique F 
 B (R l)-measurable function S? given by:

S? (!; �) = arg inf
� 2K

1
M

MX

m=1

j� (� (m)(! )) � S(!; � (m)(! ))j2:

Informally, relying on the Markovian framework, we wish to use LLSR to obtain approximations of the solutions
of the BSDE at time step � in the form of closed-loop feedback with respect to the current value of the extended
state variable (Xsun;h

� ;X(k)
� ), i.e., we wish to determine � (k)

Y;� , � (k)
P;� , � (k)

� ;� to obtain estimates of the form:

Y(k)
� ' � Y;� (X

sun;h
� ;X(k)

� ); P(k)
t ' � P;� (X

sun;h
� ;X(k)

t ); � (k)
� ' � � ;� (X

sun;h
� ;X(k)

� ):

We introduce the notation � (k)
�; [M] = 1

M

P M
m=1 � Xsun;h

[� :NT];m;u(k)
[� :NT];m;X(k)

[� :NT];m
for the empirical measure. We de�ne K � as the

3-dimensional vector space of functions spanned by (� �; 1; � �; 2; � �; 3) taking as arguments (z[� :NT ] ; v[� :NT ] ; x[� :NT ]) 2
R3(NT � � +1) and returning respectively 1, z� and x� . Hence � 1 spans the vector space of constant functions, while � 2

and � 3 span the vector space of linear functions depending only on the two state variables at time � .
We could consider more features in the function space K � to allow more accurate functional representation. This

is left for further investigation.

Ensuring the respect of a priori bounds for the solution of Riccati BSDE

In addition to this, we truncate P(k) at each iteration, using a priori upper and lower bounds. This helps to stabilize
the LLSR algorithm [GT16b]. Let us introduce PUB and PLB the unique solutions of the Riccati ordinary differential
equations:

d
dt

PUB
t =

(PUB
t )2

(� + � + � )E2
max

� �; PUB
T = �

d
dt

PLB
t =

(PLB
t )2

(� + � � � )E2
max

� �; PLB
T = �:

Note that both equations can be easily solved analytically and numerically using similar arguments as when com-
puting P� . Using the (uniform) bounds:

8x 2 R; � � � � L 00(x) � � + �;

it can be show by comparison principle for BSDEs in general �ltrations [ØZ12, Theorem 3.4, p. 710] that

PLB
t � P(k)

t � PUB
t ; (5.4.14)

for all t 2 [0;T], dP-a.e. We use this to truncate the numerical approximation of P(k).
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Other parameters and implementation details

We choose the parameter values 
 = � = 0:1. The parameter 
 is linked to the acceptance rate of the (possibly
reduced) Newton step, and 0:1 is a good trade-off between the need of suf�cient reduction and a high acceptance
rate. The choice � = 0:1 ensures that when suf�cient reduction is not achieved, the step is suf�ciently reduced to
provide an acceptable step length with high probability.

The algorithms considered

We implement and compare Newton's method combined with two backtracking line-search: the standard backtrack-
ing line-search Algorithm 5.3 and the Gradient Backtracking line-search 5.4 designed in this chapter. To estimate
the mean value of a random variable given an i.i.d. samples of this random variable, we use the empirical mean,
which is an unbiased estimator. To estimate kXkH 1 ;1 given i.i.d. sample trajectories (X �; m)� 2[NT ];m2[M] , we use the
estimator sup� 2[NT ];m2[M] X �; m, which is lower biased (neglecting the impact of time discretization on the bias). More
accurate estimators based on extreme-value theory could be used, see for instance [ANR17]. Practical implemen-
tations of Algorithms 5.3, 5.4 and 5.5 are respectively given by Algorithms 5.6, 5.7 and 5.8. We use the initial guess
u(0) = 0 for Newton method. However, using the easily computable solution of the linear quadratic problem obtained
by replacing the non-quadratic loss L by the quadratic loss function L quad : x 7! � x2

2 could allow to �nd a better initial
guess (warm start). Though we do not show the results of such a procedure, numerical experiments show that this
amounts to reduce by 1 the number of Newton iterations required to obtain a given accuracy.

On the stopping criteria of the Newton method

Ideally, the stopping criteria of the Newton method with Gradient Backtracking line-search should be kr J̄ (u(k))kH 1 ;1 �
" . However, the norm of the gradient as estimated is erroneous, due to discretization and regression errors, and
shold be estimated on a test set, distinct from the training set used in the algorithm. Hence, �nding a relevant
stopping criteria is a dif�cult task and left for further investigation. In practice, we shall replace the ”while” loop by a
”for” loop with a �xed number of iterations, and monitor the estimated norm of the gradient along iterations.
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Algorithm 5.6 Standard Backtracking line search with Linear Least Square Regression

1: Inputs: Current control: (u(k)
�; m)� 2[NT ];m2[M] , current state (X(k)

�; m)� 2[NT ];m2[M] , ( �u(k)
�; m)� 2[NT ];m2[M] Newton direction,

(Ŷ(k)
� )� 2[NT ] regression functions for adjoint variable Y(k), (�; 
 ) 2 (0;1)2, M trajectories of solar irradiance

(Xsun;h
�; m )� 2[NT ];m2[M] .

2: � = 1.
3: repeat
4: u(k+1) = u(k) + � �u(k).
5: Compute (X(k+1)

�; m )� 2[NT ];m2[M] by an Euler scheme. See (5.4.8).
6: �  �� .
7: fComputation of discretized gradient (5.4.10).g
8: rJ (k)

�; m = � u(k)
�; m + L 0

�
u(k)

�; m + Xsun;h
�; m Psun;max

� h � E
h
Psun

� h

i�
� 1

Emax
Ŷ(k)

� (Xsun;h
�; m ; u(k)

�; m;X(k)
�; m).

9: fComputation of cost function.g

10: J (k+1)
m =

P NT

� =1

�
�
2 (u(k+1)

�; m )2 + �
2

�
X(k+1)

�; m � 1
2

� 2
+ L

�
u(k+1)

�; m + Xsun;h
�; m Psun;max

� h � E
h
Psun

� h

i� �
h + �

2

�
X(k+1)

NT ;m � 1
2

� 2
.

11: J (k)
m =

P NT

� =1

�
�
2 (u(k)

�; m)2 + �
2

�
X(k)

�; m � 1
2

� 2
+ L

�
u(k)

�; m + Xsun;h
�; m Psun;max

� h � E
h
Psun

� h

i� �
h + �

2

�
X(k)

NT ;m � 1
2

� 2
.

12: until 1
M

P M
m=1 J (k+1)

m � 1
M

P M
m=1

�
J (k)

m + 
�
P NT

� =1 rJ (k)
�; m �u(k)

�; mh
�

fSuf�cient decrease of cost g
13: �  �=� fCorrection of � which has been reduced one too many times.g
14: for � = NT; ::;1 do
15: De�ne the empirical measure � (k+1)

�; [M] := 1
M

P M
m=1 � Xsun;h

[� :NT];m;u(k+1)
[� :NT];m;X(k+1)

[� :NT];m
.

16: fRegression of adjoint variable. See (5.4.9) and De�nition 5.4.1. g
17: Compute Ŷ(k+1)

� solution of OLS(SY� , K � , � (k+1)
�; [M]) with SY� (z[� :NT ] ; v[� :NT ] ; x[� :NT ]) = � (xNT � 1=2)+

P NT

j=� +1 � (x j � 1=2)h.
18: end for
19: return u(k+1) , X(k+1), Ŷ(k+1).

Algorithm 5.7 Gradient Backtracking line search with Linear Least Square Regression

1: Inputs: (u(k)
�; m)� 2[NT ];m2[M] , (X(k)

�; m)� 2[NT ];m2[M] , ( �u(k)
�; m)� 2[NT ];m2[M] , (Ŷ(k)

� )� 2[NT ] , (�; 
 ) 2 (0;1)2, M trajectories of solar
irradiance (Xsun;h

�; m )� 2[NT ];m2[M] .
2: � = 1.
3: repeat
4: u(k+1) = u(k) + � �u(k).
5: Compute (X(k+1)

�; m )� 2[NT ];m2[M] by an Euler scheme. See (5.4.8).
6: for � = NT; ::;1 do
7: De�ne the empirical measure � (k+1)

�; [M] := 1
M

P M
m=1 � Xsun;h

[� :NT];m;u(k+1)
[� :NT];m;X(k+1)

[� :NT];m
.

8: fAdjoint variable regression. See (5.4.9) and De�nition 5.4.1. g
9: Compute Ŷ(k+1)

� solution of OLS(SY� , K � , � (k+1)
�; [M]) with SY� (z[� :NT ] ; v[� :NT ] ; x[� :NT ]) = � (xNT � 1=2) +

P NT

j=� +1 � (x j �
1=2)h.

10: end for
11: �  ��
12: fComputation of discretized gradient (5.4.10).g
13: rJ (k+1)

�; m = � u(k+1)
�; m + L 0

�
u(k+1)

�; m + Xsun;h
�; m Psun;max

� h � E
h
Psun

� h

i�
� 1

Emax
Ŷ(k+1)

� (Xsun;h
�; m ; u(k+1)

�; m ;X(k+1)
�; m ).

14: rJ (k)
�; m = � u(k)

�; m + L 0
�
u(k)

�; m + Xsun;h
�; m Psun;max

� h � E
h
Psun

� h

i�
� 1

Emax
Ŷ(k)

� (Xsun;h
�; m ; u(k)

�; m;X(k)
�; m).

15: until max� 2[NT ];m2[M]

����rJ
(k+1)
�; m

���� � (1 � 
� )
���� max� 2[NT ];m2[M]

����rJ
(k)
�; m

���� fSuf�cient decrease condition g

16: �  �=� fCorrection of � which has been reduced one too many times.g
17: return u(k+1) , X(k+1), Ŷ(k+1).
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Algorithm 5.8 Newton method with Least-Square Regression and backtracking line search

1: Initialization: M trajectories of solar irradiance (Xsun;h
�; m )� 2[NT ];m2[M] .

2: Set k = 0.
3: Set (u(0)

�; m)� 2[NT ];m2[M] = 0.
4: Compute (X(0)

�; m)� 2[NT ];m2[M] by an Euler scheme. See (5.4.8).
5: for � = NT; ::;1 do
6: fRegression function of adjoint state variable, see (5.4.9) and De�nition 5.4.1. g
7: De�ne the empirical measure � (0)

�; [M] := 1
M

P M
m=1 � Xsun;h

[� :NT];m;u(0)
[� :NT];m;X(0)

[� :NT];m
.

8: Ŷ(0)
� solution of OLS(SY� , K � , � (0)

�; [M]) with SY� (z[� :NT ] ; v[� :NT ] ; x[� :NT ]) = � (xNT � 1=2) +
P NT

j=� +1 � (x j � 1=2)h.
9: end for

10: while Stopping criteria not met do
11: for � = NT; :::;1 do
12: fRegression functions for P(k) and � (k) solutions of (5.4.11) and (5.4.12). See De�nition 5.4.1. Truncation

of the estimator of P(k) to verify the a priori bounds (5.4.14).g
13: De�ne the empirical measure � (k)

�; [M] := 1
M

P M
m=1 � Xsun;h

[� :NT];m;u(k)
[� :NT];m;X(k)

[� :NT];m
.

14: P̂(k)
� as the projection on the convex set [PLB

� ;PUB
� ] of the solution of OLS(SP(k)

�
, K � , � (k)

�; [M]) with

SP(k)
�

(z[� :NT ] ; v[� :NT ] ; x[� :NT ]) = � +
NTX

j=� +1

0
BBBBBB@�

1

E2
max

n
� + l00

�
zj ; v j

� o
�
P̂(k)

j (zj ; x j)
� 2

+ �

1
CCCCCCAh:

15: ˆ� (k)
� solution of OLS(S� (k)

�
, K � , � (k)

�; [M]) with S� (k)
�

(z[� :NT ] ; v[� :NT ] ; x[� :NT ]) given by
NTX

j=� +1

0
BBBBBB@�

P̂(k)
j (zj ; x j)

E2
max

n
� + l00

j (zj ; v j)
o ˆ� (k)

j (zj ; x j) +

�
� v j + l0j(zj ; v j)

�
Emax � Ŷ(k)

j (zj ; x j)

E2
max

n
� + l00

j (zj ; v j)
o P̂(k)

j (zj ; x j)

1
CCCCCCAh;

where we used the notations l00
j (z; v) := L 00

�
v + zPsun;max

jh � E
�
Psun

jh

��
and l0j(z; v) := L 0

�
v + zPsun;max

jh � E
�
Psun

jh

��

16: end for
17: fComputation of Newton step by feedback expression (5.4.13).g
18: for m = 1 2 [M] do
19: �X(k)

1;m = 0.
20: for � = 1; ::NT do
21: Denote P̂(k)

�; m = P̂(k)
� (Xsun;h

�; m ;X(k)
�; m), ˆ� (k)

�; m = ˆ� (k)
� (Xsun;h

�; m ;X(k)
�; m) and Ŷ(k)

�; m = Ŷ(k)
� (Xsun;h

�; m ;X(k)
�; m).

22: �u(k)
�; m =

P̂(k)
�; m

�X(k)
�; m + ˆ� (k)

�; m + Ŷ(k)
�; m

Emax

n
� + L 00

�
u(k)

�; m + Xsun;h
�; m Psun;max

� h � E
h
Psun

� h

i� o �
� u(k)

�; m + L 0
�
u(k)

�; m + Xsun;h
�; m Psun;max

� h � E
h
Psun

� h

i�

� + L 00
�
u(k)

�; m + Xsun;h
�; m Psun;max

� h � E
h
Psun

� h

i�

23: �X(k)
� +1;m = �X(k)

�; m � 1
Emax

�u(k)
�; mh.

24: end for
25: end for
26: Backtracking line search to get u(k+1), X(k+1) and Ŷ(k+1).
27: k  k + 1.
28: end while
29: return (u? ;X? ; Ŷ? ):=(u(k);X(k); Ŷ(k)).
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5.4.4 Analysis of the numerical performance

Figure 5.6b shows that initially both backtracking line-search methods return full Newton steps, which suggests that
our initial guess u(0) is located in the quadratic convergence area for the Newton method. However, from iteration 3,
the standard Backtracking line-search takes ridiculously small step lengths, as � = � 13 = 10� 13. Hence, the method
fails to converge, as is suggest by Figures 5.6c and 5.6d which show that the H 1 ;1 and H 2;2 norm of the gradient is
stationary from iteration 3. This shows that the Standard Backtracking line-search is not adapted to our setting.

On the other hand, Figures 5.6c and 5.6d suggest that the Newton method with Gradient Backtracking line-
search converges, as the norm of the gradient (as considered in H 2;2 and H 1 ;1 ) decreases along iterations. Hence,
this shows that the Gradient Backtracking line-search procedure is better suited for our application than the (naive)
standard backtracking line-search method.

Moreover, we would expect theoretically that
�
kr J̄ (ū(k))kH 1 ;1

�

k2N
decreases quadratically fast. However, this is

not the case, see Figure 5.6c: after the third iteration, the convergence is not quadratic anymore, although the
algorithm takes full steps � = 1 at all iterations, see Figure 5.6b. We believe this comes from the regression steps,
which introduce some residual errors in the computations of Ȳ(k), P(k) and � (k).

The cost decreases quickly for the �rst iterations for the Newton method combined with both Backtracking line-
search procedures, see Figure 5.6e. From iteration 3, the Newton method with standard backtracking line-search
does not make any progress (the step size is ridiculously small), while it is no longer decreasing for the Gradient
Backtracking line-search, see Figure 5.6f. This is not surprising as our result states the convergence of the norm
of the gradient (in H 1 ;1 ) to 0, and not that the cost is decreasing along iterations. Besides, the number of samples
considered M = 10000may explain this non-monotonic behavior of the cost along iterations of the Newton method
gradient backtracking line-search.

(a) Running computation time (in sec-
onds)

(b) Number of step size reductions by
the backtracking line-search

(c) Numerical approximation of
krJ (u(k))kH 1 ;1 along iterations

//

(d) Numerical approximation of
krJ (u(k))kH 2;2 along iterations

(e) Cost along iterations
(f) Cost along iterations from iteration
3

Figure 5.6: Comparison of performances of Newton method with the two Backtracking line search methods

5.4.5 Over-�tting, under-�tting, and automatic tuning of regression parameters by cross-
validation

Over-�tting or under-�tting may occur in the regression steps and could be dealt with by introducing validation
steps (by splitting the sample into a training set and a validation set) allowing automatic parameter tuning at each
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step. As examples, one could consider introducing regularization or use other functional spaces. Fine-tuning of the
regression parameters by cross-validation would allow lower generalization errors, but at the expenses of a higher
computational cost. Moreover, there are many heterogeneous regression steps, each of them requiring a particular
treatment: good regression parameters have no reason to be the same for Y(k), P(k) and � (k) and may change
according to the time step considered and along the iterations. To give one example, one could consider regressing
against the state variable X̄(k) instead of (X̄(k);Xsun) for the regression steps of processes at time steps after the sun
set, because the solar irradiance does not play any role in the problem as it is canceled out by Psun;max which is
null after sunset. We do not focus on these over-�tting or under-�tting issues in this chapter, and simply consider
a general regression procedure with a functional space spanned by af�ne-linear functions of the extended state
(X̄(k);Xsun). Incorporating cross-validation steps for automatic parameter tuning (functional space, regularization) in
our algorithm is an interesting perspective of our work.

5.4.6 Analysis of the results from the application point of view

For completeness, we give some brief comments on the numerical results, from the point of view of the application.
Figure 5.7a represents the evolution of the power imbalance without the control mechanism. Figure 5.7b represents
the evolution of the power imbalance with a quadratic (symmetric) loss function L quad : x 7! � x2, which gives a
linear quadratic structure to the coordination sub-problem, which makes it particularly easy to solve. Figure 5.7c
represents the evolution of the power imbalance with the asymmetric loss function L . By comparing the uncontrolled
case with the two controlled case, we can see that the power imbalance range has been signi�cantly reduced
(noticing the change of scale of the graphs). This shows ef�ciency of the proposed control mechanism to reduce
the power imbalance. The asymmetric loss function L tends to penalize more heavily negative imbalance than
positive imbalance, which creates an asymmetry in the probability distribution of the power imbalance, see Figure
5.7c, to be compared with the symmetry of the probability distribution of the power imbalance in the case of a
symmetric loss function L quad , see Figure 5.7b. For all plots, we add the realization of the power imbalance for one
scenario of solar irradiance (the same scenario as the one plotted in Figure 5.3b). The power imbalance is null at
night in the uncontrolled case, as there is no solar production. There is no power imbalance in the controlled case
before sunrise in the controlled case. However, for some scenarios, there is a non-zero power imbalance in the
controlled case, which arises from the fact that the state of charge of the batteries at sunset might be far away from
its target terminal value 1=2. Hence, the batteries are used after sunset in this case in order to take into account the
target terminal value of the state of charge.

(a) Uncontrolled power imbalance
Psun � E [Psun]

(b) Controlled power imbalance ū +
Psun � E [Psun] - symmetric loss L quad

(c) Controlled power imbalance ū +
Psun � E [Psun] - asymmetric loss L

Figure 5.7: Power imbalance

One may wonder if the control mechanism proposed respects the constraint on the states of charge of the
batteries, which must lie in [0; 1], even for an initial state of charge close to 0 or 1. The quantiles of the state of
charge of one of the batteries participating to the control mechanism is plotted in Figure 5.8, depending on the initial
value of the state of charge. One can in particular see that, even for initial value of the state of charge close to 0 or
1, the state of charge of the battery remains between these two values with high probability. For all plots, we add the
realization of the state of charge of the battery considered for one scenario of solar irradiance (the same scenario
as the one plotted in Figure 5.3b).
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(a) x0 = 0:9 (b) x0 = 0:5 (c) x0 = 0:1

Figure 5.8: Percentiles of the state of charge of a battery participating to the control mechanism - Sensitivity to initial
condition

5.5 Proofs

5.5.1 Proof of Lemma 5.3.5

Proof. For M > 0 we introduce:
8
>>>>><
>>>>>:

f (t; p) := 2kAkH 1 ;1 jpj + Ct ;

f (M)(t; p) := CM

�
2Atp + Btp2 + Ct

�
;

f (t; p) := � 2kAkH 1 ;1 jpj � k BkH 1 ;1 p2;

where the clipping operator CM is de�ned by CM : x 2 R 7! min(max( x; � M);M) = max(min( x;M); � M) 2 [� M;M].
Notice that for any p 2 R and any M > 0, by our assumptions, we have dP 
 dt-a.e. on [0;T]:

f (t; p) = min( f (t; p);M) (M > 0; f (t; p) � 0)

� min(2Atp + Btp2 + Ct ;M) (Monotony of min)

� C M

�
2Atp + Btp2 + Ct

�
(8x 2 R;min( x;M) � C M (x))

= f (M)(t; p)

� max
�
� M;2Atp + Btp2 + Ct

�
(8x 2 R;CM (x) � max(� M;x))

� max
�
� M;2kAkH 1 ;1 jpj + Ct

�
(Monotony of max;B � 0)

= f (t; p) (� M � 0 � Ct � 2kAkH 1 ;1 jpj + Ct):

Consider the BSDEs:

Pt :=
Z T

t
f (s;Ps)ds; (5.5.1)

P(M)
t := E t

"

� +
Z T

t
f (M)(s;P(M)

s )ds

#

; (5.5.2)

Pt := E t

"

� +
Z T

t
f (s;Ps)ds

#

: (5.5.3)

First, the BSDE (5.5.1) is actually an ODE with locally Lipschitz-continuous driver, and therefore, by Cauchy-
Lipschitz theorem has a unique solution on some maximal interval (�; T]. The null function is clearly the unique
solution of (5.5.1) and � = �1 . This yields the well-posedness of P and the explicit expression Pt = 0;8t 2 [0;T].

Second, we notice that (5.5.2) and (5.5.3) are BSDE with Lipschitz drivers, so that they are well-de�ned on [0;T],
according to [EPQ97, Theorem 5.1] or [ØZ12, Theorem 3.1, p. 705]. Notice that dP 
 dt-a.e., for any p 2 R,

0 � � ; f (t; p) � f (M)(t; p) � f (t; p):
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By comparison theorem for BSDEs (see [ØZ12, Theorem 3.4, p. 710].), we get for all M > 0, dP 
 dt-a.e. on
[0;T]:

0 = Pt � P(M)
t � Pt :

Besides, P satis�es for some martingale M 2 M 0:

8
>><
>>:

� dPt =
�
2kAkH 1 ;1 Pt + Ct

�
dt � dM t ;

PT = � :
(5.5.4)

Using the Integration by Parts formula in [Pro03, Corollary 2, p. 68] to t 7! Pt exp (� 2kAkH 1 ;1 (T � t)) yields the explicit
expression (5.3.5) and the estimation on kPkH 1 ;1 . Now notice that for M > M0 := 2kAkH 1 ;1 kPkH 1 ;1 + kBkH 1 ;1 kPk2

H 1 ;1 +
kCkH 1 ;1 , we have:

8p 2 [0; kPkH 1 ;1 ]; dP 
 dt � a:e:; f (M)(t; p) = 2Atp + Btp2 + Ct : (5.5.5)

Since 0 � P(M)
t � Pt , dP 
 dt-a.e., we get, for M > M0:

P(M)
t = E t

"

� +
Z T

t

�
2AsP

(M)
s + Bs

�
P(M)

s

� 2
+ Cs

�
ds

#

:

This shows existence of solution of the Riccati BSDE (5.3.4).

Let us now turn to uniqueness. Consider two solutions P and Q of the Riccati BSDE (5.3.4). By application of
the comparison principle for BSDEs, we obtain with similar arguments as before:

dP 
 dt � a:e:; 0 � Pt � Pt ; 0 � Qt � Pt ;

and therefore, for M > M0, (5.5.5) shows that P and Q are both solutions of the BSDE (5.5.2), which has Lipschitz
driver, hence a unique solution, according to [EPQ97, Theorem 5.1] or [ØZ12, Theorem 3.1, p. 705]. In particular,
P = Q, which yields uniqueness of solutions of (5.3.4). �

5.5.2 Proof of Lemma 5.3.6

Proof. De�ne � by (5.3.6) and de�ne as well:

Rt := exp

 Z t

0
(PsBs + As)ds

!

� t +
Z t

0
(asPs + bs) exp

 Z s

0
(PrBr + Ar)dr

!

ds = E t [RT];

St := exp

 

�
Z t

0
(PsBs + As)ds

!

:

Then R 2 H 1 ;2 and R is an (F t)-adapted c�adl �ag martingale. Then, apply integration by parts formula [Pro03,
Corollary 2, p. 68] to the product SR, using the fact that S is continuous with �nite variations. After reorganizing
terms and using that R has countable jumps, we �nd:

8
>><
>>:

� d� t = ((PtBt + At)� t + atPt + bt) dt + StdRt ;

� T = �;

and
Rt

0+ SsdRs is a c �adl �ag martingale in H 1 ;2, see [Pro03, Theorem 20 p.63, Corollary 3 p.73, Theorem 29 p.75].
We then �nd that � solves (5.3.7) and it is the unique solution of this BSDE, as the BSDE has a Lipschitz driver,
according to [EPQ97, Theorem 5.1] or [ØZ12, Theorem 3.1, p. 705]. �
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5.5.3 Proof of Theorem 5.3.7

Proof. 1. FBSDEs have been studied in the general case in [Zha17] and [MY99]. In the af�ne-linear case, the
result is a consequence of [Yon06] and the Martingale Representation Theorem if the �ltration is Brownian.
However, for more general �ltrations, the result is outside the scope of [Yon06] and we provide a proof for this
case, restricting ourselves to one-dimensional control and state processes.

Consider the following auxiliary linear-quadratic stochastic control problem:

J quad(u) := E
�RT

0

�
1
2u2

t + 1
2CtX2

t + btXt

�
dt + 1

2 � X2
T + � XT

�

s.t. Xt = x +
Rt

0
(AsXs +

p
� Bsus + as)ds:

9
>>>=
>>>;

�! min
u2H 2;2

P

: (5.5.6)

Our assumptions show that J quad satis�es the hypothesis of Proposition 5.2.3 and therefore, it has a unique
minimizer u� 2 H 2;2.

The function J quad also satis�es the assumptions of �rst order suf�cient optimality conditions (see second
point of Theorem 5.2.6), so that, if we de�ne (X � ;Y� ) 2 H 1 ;2 � H 1 ;2 by:

8
>>><
>>>:

X �
t = x +

Rt

0
(AsX �

s +
p

� Bsu�
s + as)ds;

Y�
t = E t

�
� X �

T + � +
RT

t

�
CsX �

s + AsY�
s + bs

�
ds

�
;

we have

u�
t +

p
� BtY�

t� = 0:

By eliminating u� using the last equation and using the fact that the Lebesgue integral is left unchanged by
changing the value of the integrand on a countable set, this shows that (X � ;Y� ) satis�es the FBSDE:

8
>>><
>>>:

Xt = x +
Rt

0
(AsXs + BsYs + as) ds;

Yt = E t

�
� XT + � +

RT

t
(CsXs + AsYs + bs) ds

�
;

Let us turn to uniqueness. Consider two solutions (X1;Y1) and (X2;Y2) of the above FBSDE. Then (u1;X1;Y1)
and (u2;X2;Y2) with ui

t = �
p

� BYi
t� for i = 1;2 are both solutions of:

8
>>>>><
>>>>>:

Xt = x +
Rt

0
(AsXs +

p
� Bsus + as)ds;

Yt = E t

�
� XT + � +

RT

t
(CsXs + AsYs + bs) ds

�
;

ut +
p

� BtYt� = 0:

Hence u1 and u2 are both solutions of the �rst order conditions characterizing minimizers of J quad by Theorem
5.2.6 and by Proposition (5.2.3), u1 = u2. This shows X1 = X2, then Y1 = Y2, hence the existence and
uniqueness of a solution of the FBSDE.

2. By our previous results, P and � are well de�ned in H 1 ;1 and H 1 ;2 respectively. Then X given in (5.3.8)
solves an af�ne-linear ODE and the assumption on the coef�cients show that it is well-de�ned (non-explosion)
and given by:

8t 2 [0;T]; Xt = x exp

 Z t

0
(As + BsPs)ds

!

+
Z t

0
(Bs� s + as) exp

 Z t

s
(Ar + BrPr)dr

!

ds:

The estimates on X and Y = PX + � in the spaces H 1 ;2 come directly from that and Lemma 5.3.6. Let us now
prove that (X;Y) is a solution of the af�ne-linear FBSDE, which will conclude the proof, by uniqueness of the
solution of such FBSDE, by the previous point. Using Y = PX + � , it is easy to show that X satis�es:

Xt = x +
Z t

0
(AsXs + BsYs + as) ds:
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It remains to show that Y satis�es the BSDE:

Yt = E t

"

� XT + � +
Z T

t
(CsXs + AsYs + bs) ds

#

:

To do that, use the fact that Y = PX + � by de�nition so that YT = PTXT + � T = � XT + � so that the terminal
condition is veri�ed. Introduce M (P) in M 2

0 \ H 1 ;1 and M (� ) in M 2
0 such that:

8
>><
>>:

� dPt = (2AtPT + BtP2
t + CT)dt � dM (P)

t ;

PT = � ;

and:
8
>><
>>:

� d� t = ((PtBt + At)� t + atPt + bt) dt � dM (� )
t ;

PT = �:

Then, use the integration by parts formula in Protter [Pro03, Corollary 2, p. 68], combined with the fact that X
is continuous with �nite variations. We get:

� dYt = � (dPt)Xt � Pt(dXt) � d� t

= (2AtPT + BtP2
t + CT)Xtdt � XtdM (P)

t � Pt(AtXt + BtYt + at)dt + ((PtBt + At)� t + atPt + bt) dt � dM (� )
t

= (At(PtXt + � t) + BtPt(PtXt + � t � Yt) + CtXt + bt) dt � XtdM (P)
t � dM (� )

t

= (AtYt + CtXt + bt)dt � XtdM (P)
t � dM (� )

t :

Using the fact that the last two terms are the increments of true martingales in M 2
0 (as X 2 H 1 ;2 and M (P) 2

M 2
0 \ H 1 ;1 ), this concludes the proof.

�

5.5.4 Proof of Corollary 5.3.8

Proof. It just remains to prove the estimates:

kPukH 1 ;1 � C;

k� u;wkH 1 ;2 � CkwkH 2;2;

k(r 2J (u))� 1(w)kH 2;2 � CkwkH 2;2;

for some constant C independent of u and w. Using the assumption of bounded second-order derivative and the
fact that l is strongly convex in u (implying that l00

uu is uniformly bounded from below by a non-negative constant), we
get for a constant C independent from u and w:

kAukH 1 ;1 + kBukH 1 ;1 + kCukH 1 ;1 + k� ukL 1



� C;

kau;wkH 1 ;1 + kbu;wkH 1 ;1 � CkwkH 1 ;1 :

We get the bounds on kPukH 1 ;1 and k� u;wkH 1 ;2 by using the estimates on kPkH 1 ;1 and k� kH 1 ;2 obtained in Lemmas
4.5.1 and 5.3.6, with � = 0 and x = 0. The bound on k(r 2J (u))� 1(w)kH 2;2 is then obtained using the strong convexity
of l with respect to u and using the expression (5.3.2). �

5.6 Conclusion

In this chapter, we extend the Newton method to the framework of stochastic control problems, which amounts to
consider successive linearizations of the optimality system found by using the stochastic Pontryagin principle. We
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show that the computation of the Newton step amounts to solve a linear FBSDE with random coef�cients (with
some sign conditions), which in turn reduces to solving a Riccati BSDE and a linear BSDE. Then, an appropriate
restriction of the space of processes is considered to obtained desirable regularity for the control problem, allowing
to prove convergence results for the Newton method. To obtain a global convergence, an appropriate line-search
which �ts our in�nite-dimensional setting is proposed. Global convergence of the Newton method combined with
this adapted line-search is then proved theoretically. The Newton method is implemented on a problem of joint
control of many identical batteries in order to maintain power balance on a given network. In particular, regression
techniques are used in order to compute the solutions of the linear and non-linear BSDEs arising when computing
the Newton step. So far, we have considered low dimensional problems: the regression steps are performed in R2

and the control and state variables are one-dimensional. In higher dimension, we expect a curse of dimensionality
when solving the BSDEs using regression method. Other methods like Deep-learning could help solve the issue.
However, the Newton method is iterative and training a network at each iteration seems computationally expensive.
We also expect the Newton method to be applicable to other settings, like controlled diffusions for instance, which
would change the form of the Riccati BSDEs arising when solving the successive linearizations of the FBSDE
characterizing the optimal control. Other interesting perspectives to our work include designing appropriate stopping
criteria in the Newton method implemented using regression techniques, or incorporate automatic tuning procedures
for the hyper-parameters in regression steps in the algorithm.
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Part II

The Alternating Current Optimal Power
Flow problem and its extension to the

multi-stage stochastic setting
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Chapter 6

Introduction to the Optimal Power Flow
problem

6.1 General presentation of the OPF problem

The so-called Optimal Power Flow (OPF) problem is a mathematical optimization problem aiming at �nding an
operating point of a power network that minimizes a given objective function, such as generation costs, active power
losses, subject to constraints on power injections and losses, voltage magnitudes and intensities in the lines. It has
been introduced by Carpentier in 1962 [Car62] and has drawn a lot of attention since then thanks to its versatility.

Physically, the most accurate formulation of this problem is the so-called Alternating Current Optimal Power Flow
(AC OPF). There are three common types of networks: single phase, balanced three-phase and unbalanced three-
phase networks. Single phase networks are composed of lines with two wires: a ground wire, and a wire where
power can �ow. The balanced and unbalanced networks are composed of four wires: a ground wire, and three wires
carrying power and associated to a phase. In the case of balanced networks, the sizes of all phases are the same
and they are differ from each other by 120°, which is not the case for unbalanced networks. The AC OPF problem
for three-phase balanced networks reduces to the AC OPF problem with single phase. We focus on the case of
single phase networks. It can be formulated as an optimization problem with complex variables, in order to take into
account the oscillating behavior of the physical quantities in the network, operated in alternating current.

6.2 Surveys

Surveys on the OPF, related problems and perspectives can be found in [Cap+11; Cap16], while an overview of
optimization methods to tackle the OPF problem is available in [FSR12a; FSR12b]. See [BCH14] for a survey on
Chance-Constrained AC OPF, [MH+19] if one is interested in approximations and convex relaxations of AC OPF
while [Zoh+20] focuses more speci�cally on conic relaxations of the AC OPF problem. A series of video tutorials on
convex relaxations of AC OPF can be found in [CR18].

6.3 The Bus Injection Model (BIM): formulation and equivalence

There exist two main variants of the AC OPF problem for networks with a single phase: the Bus Injection Model
(BIM), and the Branch Flow Model (BFM), both presented in [Low14a]. The Bus Injection Model focuses on nodal
quantities, such as complex voltages and apparent power injections. The variables of the BIM models are given in
Table 6.1. The notation i denotes the imaginary number such that i2 = � 1.

Some useful physical quantities can be expressed in terms of complex voltages only, and these expressions are
given in Table 6.2. We use the notation z � C z0 which means Re(z) � Re(z0) and Im(z) � Im(z0). Each line (i; j) is
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Table 6.1: Decision variables for the Bus Injection Model

Variable Voltage at bus i Active/reactive power injection at bus i Power injection at bus i

Notation V i 2 C pi 2 R and qi 2 R si = pi + iqi 2 C

characterized by a complex admittance denoted by yi; j (or equivalently an impedance zi; j = 1=yi; j) which gives its
physical characteristics, i.e., the connection between current intensity in a line and voltage difference between its
extremities. The sending-end power in line (i; j) at bus i is de�ned as the complex power leaving bus i to go through
line (i; j). It is equal to the opposite of the sending-end power in (i; j) at bus j plus the power losses in line (i; j).

Table 6.2: Expression of some physical quantities in the Bus Injection Model

Physical quantities Expression in terms of complex voltage

Intensity in line (i; j) yi; j

�
V i � V j

�

Sending-in power in line (i; j) at bus i y�
i; j

�
jV i j2 � V iV �

j

�

Power losses in line (i; j) y�
i; j

�
jV i j2 + jV j j2 � 2Re(V iV �

j )
�

The usual constraints of the optimal power �ow problem, as well as their formulation in terms of complex voltages
are given in Table 6.3.

Table 6.3: Constraints for the Bus Injection Model

Constraint Expression

Voltage magnitude at bus i V i � j V i j � V i

Intensity magnitude in line i; j jyi; j jjV i � V j j � I i; j

Sending-in power magnitude in line i; j at bus i jyi; j jjV i(V i � V j)� j � Si; j

Power injection limits at bus i si � C si � C si

Complex power conservation at bus i y�
i;i jV i j2 +

P
(i;j)2L y�

i; j

�
jV i j2 � V iV �

j

�
= si

The cost for the problem usually depends on the power injections at the buses of the network as well as on
power losses in the network. There exists an equivalent reformulation of the BIM formulation [LL11, Theorem 1],
where the complex voltage variables are replaced by the lifting variables Wi; j := V iV �

j , for all buses i; j. Equivalently,
denoting V = (V i)i 2 Cn the vector of complex voltages at all n buses, the lifting variable W 2 Cn� n is de�ned
by W = (Wi; j)i; j = VV T. To obtain an equivalent reformulation of the problem in terms of the lifting variable W, all
constraints and terms in the cost should be reformulated in terms of variable W instead of V, and one should enforce
additional constraints: a positive semi-de�nite condition and a rank constraint. This follows from the following fact:

�
9V 2 Cn;W = VV > �

, (W < 0; rank(W) = 1) :

The notation W < 0 means that W is hermitian positive semi-de�nite, i.e., W = W� , where W� denotes the
transposition of the conjugate of W, and u> Wu 2 R+8u 2 Cn. The usual constraints for this reformulation of the
problem are given in Table 6.4. The set of all lines of the network is denoted L . With the exception of the rank
condition, all constraints are convex, either linear, convex quadratic or semi-de�nite constraints.

For radial networks, i.e., acyclic networks, it can be shown that an equivalent formulation of the BIM formulation
with lifting variable W can be obtained by replacing the constraints W < 0 and rank(W) = 1 by the following weaker
constraints Wi;iW j; j = jWi; j j2 and Wi; j = W�

j;i , for all lines (i; j) 2 L , see [SL12, Corollary 1] (z� denoting the complex
conjugate of z 2 C).
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Table 6.4: Constraints for the Bus Injection Model reformulated with lifting variables

Constraint Expression

Voltage magnitude at bus i V2
i � Wi;i � V

2
i

Intensity magnitude in line i; j jyi; j j2
�
Wi;i + W j; j � 2Re(Wi; j)

�
� I

2
i;j

Sending-in power magnitude in line i; j jyi; j jjWi;i � Wi; j j � Si; j

Power injection limits at bus i si � C si � C si

Complex power conservation at bus i y�
i;iWi;i +

P
(i;j)2L y�

i; j

�
Wi;i � Wi; j

�
= si

Positivity constraint W < 0

Rank constraint rank(W) = 1

6.4 The Branch Flow Model (BFM)

The Branch Flow Model is based on a description of intensity, apparent power �ows and losses in the lines of the
network. It is adapted for radial networks (i.e., without cycles), as opposed to the BIM, which is adapted for both
meshed and radial networks, see Figure 6.11.

(a) A meshed network

(b) A radial network

Figure 6.1: Meshed vs. radial networks

For the Branch Flow Model, we assume the lines of the network are oriented, from the leaves to the root of the
tree, which corresponds generally to a substation. With that convention, for each bus i except the root node, there
is exactly one edge with starting point i. This edge is directed towards the unique ancestor of i in the tree. Besides,
we assume edges are indexed according to their depths in the tree, see Figure 6.2 for an example.

The variables for the BFM formulation of the AC OPF problem are given in the Table 6.5.

With this model, the power losses in
��!
(i; j) can be expressed by zi; j I ��!

(i;j)
, with zi; j = 1

yi; j
the complex impedance of

line (i; j). The expression of the constraints of the OPF in the BFM formulation are given in the following table. The
set of directed edges (directed towards the root of the tree) is denoted by E.

1Icons made by Freepik and Smashicons from www.�aticon.com
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Figure 6.2: Meshed vs. radial networks

Table 6.5: Decision variables for the Branch Flow Model

Variable Notation

Voltage squared magnitude at bus i vi 2 R+

Intensity squared magnitude in edge
��!
(i; j) I ��!

(i;j)
2 R+

Sending-in power in edge
��!
(i; j) at i S��!

(i;j)
2 C

Active power injection at bus i pi 2 R

Reactive power injection at bus i qi 2 R

Power injection at bus i si = pi + iqi 2 C

Table 6.6: Constraints for the Branch Flow Model

Constraint Expression

Voltage magnitude at bus i V2
i � vi � V

2
i

Intensity magnitude in edge
��!
(i; j) 0 � I ��!

(i;j)
� I

2
��!
(i;j)

Sending-in power magnitude in line i; j
����S��!

(i;j)

���� � S��!
(i;j)

Power injection limits at bus i si � C si � C si

Complex power conservation at edge
��!
(i; j) S��!

(i;j)
=

P
��!
(k;i)2E

(S��!
(k;i)

� zk;i I ��!
(k;i)

) + si

Complex power conservation at root bus 0 0 =
P

���!
(k;0)2E

(S���!
(k;0)

� zk;0I ���!
(k;0)

) + s0

Voltage propagation vi � v j = 2Re(z�
i; jS��!

(i;j)
) � j zi; j j2I ��!

(i;j)

Link between intensity and sending-end power in
��!
(i; j) vi I ��!

(i;j)
= jS��!

(i;j)
j2
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6.5 Equivalence between BIM and BFM formulations

Actually, it has been proved that the BIM and BFM formulations are equivalent for radial connected networks with-
out lines with zero impedance: there exists a bijection between their feasible sets which preserves the cost, see
[Bos+14, Theorem 6] and [Din+19]. For meshed network, the BFM formulation does not account for all the physical
constraints of the problem and is equivalent to a relaxation of the BIM formulation. In the case of a radial con-
nected network, one can choose either the BIM or BFM formulation, and one formulation or the other may be more
adapted for the speci�c use. For instance, some algorithms exploit the recursive structure of the equations in the
BFM formulation to ef�ciently compute load �ows (in single phase, balanced or unbalanced three phase networks),
like Forward-Backward sweep methods [BS11; EH08]. These methods consist in applying repeatedly a Forward
sweep, starting from the leaves and going to the root, where power �ows (and sometimes intensities in the lines) are
updated followed by a backward sweep, where voltage magnitudes are updated (and sometimes intensities in the
lines). Some exactness conditions of conic relaxations which exploit the recursive structure of the equations in the
BFM formulation are given in [FL13; Gan+14; Hua+16]. Other exactness conditions are more easily proved using
the BIM formulation [LL11; SL12; Bos+15].

6.6 Dif�culty of AC OPF problem

The power �ow is governed by the non-convex Kirchhoff's circuit Laws, which are quadratic equality constraints.
Therefore, the AC OPF problem is a non-convex optimization problem, and is in general NP-hard even in the
deterministic static case for a tree network as shown in [LGVH15, Theorem 1, p.3]. The problem has also been
recently shown to be strongly NP-hard in a general setting in [BV19]. We can distinguish three approaches to deal
with the computational issue of NP-hardness of the AC OPF problem. The �rst one is to approximate the power �ow
equations (in order to make it linear for instance). The second is to look for a local optimum of the problem, using
heuristic methods or methods from non-linear programming. The third one is to consider convex relaxations of the
AC OPF problem.

6.7 Approximation/Linearization of the AC OPF problem

6.7.1 Single-phase networks

A popular linear approximation of the AC OPF problem is the so-called Direct Current Optimal Power Flow (DC
OPF), which is obtained by linearizing the power �ow equations in the BIM formulation. It is an approximation
neglecting power losses and reactive power �ows in the network, while assuming �xed voltage magnitude and
small phase angle differences between adjacent buses (which allows to linearize the trigonometric functions in
the polar representation of complex voltage). This approximation is successfully used in several works in many
contexts (deterministic, security constrained, stochastic, dynamic), and is widely used in the industry today. It is
an appropriate approximation for market-related applications which require the computation of reliable Locational
Marginal Prices, see [OCS04]. However, due to the change of paradigm in the energy sector, with the rising share
of distributed generation and more demand-side management, more reverse �ows in distribution networks are to
be expected, which may result in low voltage operations for distribution networks, [NT15]. Therefore, assumptions
justifying the use of the DC models may fail to hold in this new context. Besides, as the DC approximation assumes
�xed voltage magnitude and neglects losses, it is inappropriate for application such as voltage regulation and loss
minimization... Methodologies to obtain error bounds between DC and AC OPF have been developed in [SJA09;
DM16].

There exist other linearizations of the AC OPF problem, for instance, some authors linearize the power �ow
equations around a given set-point (sensitivity analysis) to account for small deviations of the power injections from
a nominal value. See [SJA09] for an overview of variants of the DC OPF formulation, as well as [MH+19, Chapter
5] and the references therein. The latter reference also presents other convex non-linear approximations of the AC
OPF problem, which range from second-order cone to convex quadratic approximations.
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We present more in details another linear model, which is a linearization of the BFM formulation of the AC OPF
problem, presented in [Low14a, Section VI.B], called Simpli�ed Dist�ow equations in [BW89] as it will be used in
Chapter 7. This model neglects losses and yields overestimation of voltage magnitudes. The variables for this
model are given in the following table.

Table 6.7: Decision variables for the Linear DistFlow model

Variable Notation

Linearized voltage squared magnitude at bus i vLin
i 2 R+

Linearized sending-in power in edge
��!
(i; j) at i SLin

��!
(i;j)

2 C

Active power injection at bus i pi 2 R

Reactive power injection at bus i qi 2 R

Power injection at bus i si = pi + iqi 2 C

In this model, the power losses are neglected, and there is no variable related to the square magnitude of
intensity in the lines. The expression of the constraints of the OPF in the BFM formulation are given in the following
table. We recall that the set of directed edges (directed towards the root of the tree) is denoted by E.

Table 6.8: Constraints for the Linear DistFlow model

Constraint Expression

Voltage magnitude at bus i V2
i � vLin

i � V
2
i

Sending-in power magnitude in line i; j
�����S

Lin
��!
(i;j)

����� � S��!
(i;j)

Power injection limits at bus i si � C si � C si

Complex power conservation at edge
��!
(i; j) SLin

��!
(i;j)

=
P

��!
(k;i)2E

SLin
��!
(k;i)

+ si

Complex power conservation at root bus 0 0 =
P

���!
(k;0)2E

SLin
���!
(k;0)

+ s0

Voltage propagation vLin
i � vLin

j = 2Re(z�
i; jS

Lin
��!
(i;j)

)

6.7.2 Unbalanced multi-phase networks

An extension of the Linearized DistFlow model to unbalanced multiphase networks has also been recently estab-
lished in [Arn+16], neglecting losses and assuming �xed ratio between voltage phasors of exp

�
� i 2�

3

�
. This model

is extended in [San+16] which proposes an iterative algorithm where at each iteration, a linearized OPF model is
solved with losses and ratio between voltage phasors �xed, then these parameters are updated using the solution of
the linearized OPF problem. This is of particular importance as most low voltage distribution networks are typically
unbalanced.

6.8 Non-linear programming

There are several methods used to look for local minimizers of the OPF problem. Among them, the methods
which perform probably the best are based on the Newton-Raphson method [IS87]. Alternative approaches include
Sequential Quadratic Programming, steepest descent methods [For+10]. These optimization techniques and many
more can be found in the very complete surveys [FSR12a; FSR12b]. However, these approaches do not offer any
theoretical guarantees regarding the optimality of the solution they return and may exhibit a strong sensitivity to the
initial point.
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6.9 Convex relaxations of the OPF problem

A very extensive overview on relaxations and approximations of AC Power �ow equations can be found in the book
[MH+19]. A particular focus on conic relaxations, related literature and results is given in [Zoh+20]. A series of
video tutorials can be found in [CR18]. We give a more in-depth overview of the literature in this �eld, as it is closely
related to the results developed in Chapter 7.

6.9.1 Semi-de�nite, chordal and second-order cone relaxations

We focus here on results on the conic relaxations of AC OPF problems for monophase radial networks. These
models allow to treat the case with balanced three-phase radial networks by a simple transformation the problem.
The most famous conic relaxation of the AC OPF Problem are the Second-Order Cone (SOC), �rst introduced
in [Jab06], the Semi-De�nite (SD) in [Bai+08] and the Chordal relaxations. All three are presented in details in
[Low14a; BAD18]. For the BFM formulation, the SD and Chordal relaxation do not exist. The SOC relaxation for the
BFM formulation is obtained by relaxing the non-linear equality constraints:

vi I ��!
(i;j)

= jS��!
(i;j)

j2

and replacing them by the rotated Second-order cone constraints (which can be expressed as standard second-
order cone constraints by an appropriate change of variable):

vi I ��!
(i;j)

� j S��!
(i;j)

j2:

For the BIM formulation, we only give the construction for the SD and SOC relaxations, and refer to previously
mentioned references for the Chordal relaxation. The SD relaxation of the BIM formulation is obtained by considering
its reformulation with lifting variables W and removing the rank constraint rank(W) = 1. Similarly, the SOC relaxation
of the BIM formulation is obtained by considering its reformulation with lifting variables W, by removing the rank
constraint rank(W) = 1 and by replacing the positivity constraint W < 0 by the weaker constraint (positivity of 2 by 2
principal sub-matrices associated to the lines of the network):

8(i; j) 2 L ; Wi;iW j; j � j Wi; j j2;

which are rotated second-order cone constraints. The Chordal and SD relaxations are equivalent in terms of pre-
cision but the Chordal relaxation exhibits better numerical performance and is therefore always preferable to the
SD relaxation (see [Low14a]). The SOC relaxation achieves better computational cost than the SD relaxation at
the expenses of an a priori higher relaxation gap: depending on the application, one may prefer one relaxation or
the other. However, for radial networks, the SOC, chordal and SD relaxations are equivalent, and thus, the SOC is
preferable for such topologies. Similarly as the original non-convex BIM and BFM formulations are equivalent for ra-
dial connected networks (without line with zero impedance), the SOC relaxations for the BIM and BFM formulations
are equivalent, i.e., there exists a bijection between their feasibility sets, under the same assumptions [Bos+14, The-
orem 6]. Conic relaxations are often used in the literature due to their enhanced numerical performance, compared
to the non-convex formulation, see for instance [Swa17; Vra+13] and they are exact (no relaxation gap) for many
practical instances of OPF problem, as pointed out in [LL11]. For this reason, it comes at no surprise that many
authors have studied exactness conditions for these convex relaxations.

6.9.2 Exactness conditions of convex relaxations of OPF problem

A posteriori conditions on the solution of the convex dual problem of the Bus Injection Model (BIM) formulation
of the OPF problem (a Semi-De�nite optimization problem) under which the SD relaxation is exact are given in
[LL11]. These conditions are extended in [GT12] to the deterministic multi-period case with storage. A priori
exactness conditions of the SD and SOC relaxations are �rst given in [SL11; SL12], under an assumption called
over-generation, which amounts to relaxing the power balance equality constraint and replacing it by an inequality
constraint. Using the BFM formulation, these results are extended in [FL13], using a related condition, called load
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over-satisfaction. Weaker conditions are obtained in [ZT11; ZT12; Bos+15]: not all power injections are assumed
unbounded from below. Another a priori exactness condition is the absence of upper bounds on voltage magnitude,
see [Gan+12]. Let us mention [Low14a; Low14b] which give a general overview of standard convex relaxation of
AC OPF and some conditions under which they are exact.

The assumption of in�nite lower bounds on power injections or in�nite upper bounds on voltage magnitude at
buses of the network are typically not veri�ed for OPF instances. For this reason, other authors have obtained
more realistic a priori exactness conditions, see [Gan+14; Hua+16]. It is typically required that the upper bounds
on apparent power injections in the network to be small enough, which ensures the absence of big reverse active
and reactive power �ows. For pedagogical reasons, we introduce more in details the main result of [Hua+16], as
it will be generalized in Chapter 7. For all bus i, de�ne Ei as the set of directed edges belonging to the sub-tree

starting from i, as shown in Figure 6.3. In this example, we have E2 =
� ���!
(5; 2);

���!
(6; 2);

���!
(7; 5);

���!
(8; 5)

�
, E5 =

� ���!
(7; 5);

���!
(8; 5)

�
,

E1 =
� ���!
(3; 1);

���!
(4; 1)

�
.

Figure 6.3: Example of sub-tree E1

Consider the following modi�ed BFM model, denoted (P), where the cost functional only depends on active
power injections at the buses.

min
s;S;I ;v

f (Re(s)) (6.9.1)

s:t: V2
i � vi � V

2
i ; 8i 2 B; (6.9.2)

0 � I ��!
(i;j)

� I
2
��!
(i;j); 8

��!
(i; j) 2 E; (6.9.3)

����S��!
(i;j)

���� � S��!
(i;j)

; 8
��!
(i; j) 2 E; (6.9.4)

si � C si � C si ; 8i 2 B n f0g; (6.9.5)

S��!
(i;j)

=
X

��!
(k;i)2E

(S��!
(k;i)

� zk;i I ��!
(k;i)

) + si ; 8
��!
(i; j) 2 E; (6.9.6)

0 =
X

���!
(k;0)2E

(S���!
(k;0)

� zk;0I ���!
(k;0)

) + s0; (6.9.7)

vi � v j = 2Re(z�
i; jS��!

(i;j)
) � j zi; j j2I ��!

(i;j)
; 8

��!
(i; j) 2 E; (6.9.8)

vi I ��!
(i;j)

= jS��!
(i;j)

j2; 8
��!
(i; j) 2 E: (6.9.9)

The SOC relaxation of this model, denoted (PSOC), is obtained by replacing constraint (6.9.9) by the rotated
second-order cone:

vi I ��!
(i;j)

� j S��!
(i;j)

j2;8
��!
(i; j) 2 E; (6.9.10)
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Reference [Hua+16] considers the following condition.

(C1) Assume that for any x := (s;S; I ; v) feasible for the problem (P), the following holds:

vLin
i � V

2
i ; 8i 2 B; (6.9.11)

SLin
��!
(i;j)

=
X

��!
(k;i)2E

SLin
��!
(k;i)

+ si ; 8
��!
(i; j) 2 E; (6.9.12)

0 =
X

���!
(k;0)2E

SLin
���!
(k;0)

+ s0 (6.9.13)

vLin
i � vLin

j = 2Re(z�
i; jS

Lin
��!
(i;j)

); 8
��!
(i; j) 2 E; (6.9.14)

Re(z�
k;lS

Lin
��!
(i;j)

) � 0; 8
��!
(i; j) 2 E;8

���!
(k; l) 2 Ei : (6.9.15)

The linear inequalities (6.9.11)-(6.9.12)-(6.9.13)-(6.9.14) come from the simpli�ed Dist�ow equations introduced
earlier and mean feasibility of the linearized power �ow equations. The inequality (6.9.15) has a simple interpreta-
tion: active (resp. reactive) backward �ows in the network are suf�ciently compensated by forward (resp. active)
forward power �ows for any feasible point. The following result is proved in [Hua+16].

Theorem 6.9.1. [Hua+16, Proposition 3] Consider the above BIM model, under the following assumptions.

1. The cost function f is monotone non-decreasing in Re(s0).

2. The network is radial, connected and passive (i.e., line resistances and reactances are non-negative).

3. Condition (C1) holds.

Then the SOC relaxation is exact: val(P) = val(PSOC).

Many of the previously mentioned works focus on exactness conditions for formulations in a deterministic and
static setting, with the exception of [GT12], which extends the results of [LL11] to the dynamic case with energy
storage systems. This will motivate the subsequent Chapter 7.

6.9.3 Advanced convex relaxations of the OPF problem

Some authors have exhibited some limitations of the SDP and SOC relaxations (namely a non-vanishing relaxation
gap or a high computational burden for large-scale networks in the case of the SD relaxation) and proposed cor-
rective approaches. Both [KDS15; KDS16] focus on tightening the SOC relaxation in a meshed network, whereas
[BAD18] develops a SD relaxation which is a trade-off between the precision of the standard SD relaxation and
the low computational cost of the SOC relaxation. When the standard SD relaxation fails to be exact, some recent
works focus on Moment Relaxations and polynomial optimization [Mol+15; Jos16] in order to ensure feasibility of the
power �ow. This approach is based on a hierarchy of Semi-De�nite optimization problems which can be made more
accurate at the expense of a higher computational cost. There exist asymptotic results showing the convergence of
the moment relaxations towards the value of the problem, when the order of the hierarchy goes to in�nity [KL19].
It is however more dif�cult to obtain a priori conditions under which moment relaxations of �xed order are exact.
Some methods allow to retrieve feasible solutions of the non-convex problem using convex relaxations, like penal-
ization methods. Reference [Mol+15] combines the moment relaxation approach with a penalization of reactive
power injections at some nodes. References [MAL15; Mol+16] consider the SD relaxation and use a penalization of
losses in problematic lines. Such problematic lines are detected by a graph theoretical algorithm in [MAL15] and by
studying power mismatch between the current solution of the penalized relaxation and a close rank one solution in
[Mol+16]. Those works propose iterative methods to update the cost functional in order to encourage the solution to
be feasible for the original non-convex problem. This enlarges the usability of convex optimization methods to non-
convex problems, at the expense of potential sub-optimality. Reference [VCM20] investigates the best AC feasibility
recovery methods for instances for which the convex relaxation of the AC OPF problem is inexact. It also develops
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two metrics to quantify AC infeasibility of an optimal solution of the convex relaxation of the AC OPF problem. Let
us mention that even in the presence of a relaxation gap (preventing the possibility to retrieve a feasible solution of
the original problem given an optimal solution of the relaxed problem), solving a convex relaxation still yields useful
information, such as a lower bound on the optimal cost, which can be used to evaluate a feasible point of the non-
convex problem, or provide a certi�cate of infeasibility of the original problem if the relaxed problem is infeasible.
Last but not least, solving a convex relaxation is generally less challenging than solving the original non-convex
problem.

6.9.4 Unbalanced multiphase networks

For completeness, let us mention [DZG13; GL14] which consider semi-de�nite relaxations of AC OPF problem in
the case of unbalanced multiphase radial networks, which represent most of the low voltage distribution networks.
In particular, [GL14] presents two SD relaxations, which can be interpreted as the natural extensions of the standard
BIM and BFM conic relaxations in the multiphase unbalanced setting. It then proves equivalence between these two
relaxations. References [Liu+17; LLW18] propose to map the structure of the unbalanced network into a chordal
graph, which allows to propose a SD chordal relaxation for this particular setting.

6.10 Optimal Power Flow in dynamic setting

A dynamic AC OPF model with energy storage system is formulated in [GKA13], using only the non-convex formula-
tion and without considering uncertainty. The SOC relaxation is used in a dynamical setting in [GSGK18] in order to
optimally size distribution networks. Conditions found in [LL11] under which the SD relaxation is exact are extended
in [GT12] to the deterministic multi-period case with storage. A survey of OPF methods and tools with application to
distribution networks with energy storage systems can be found in [SM16].

6.11 Optimal Power Flow in stochastic environment

With the increasing share of intermittent energy sources and demanding loads, like electrical vehicles, forecast
errors for power demands are expected to become higher and jeopardize network operations security. Introducing
uncertainty in the OPF model allows to account for these forecasting errors.

6.11.1 Chance-Constraints OPF

The most common stochastic models are the probabilistic OPF problems. A survey on the �eld of Chance-
Constrained OPF can be found in [BCH14]. Some recent research proposes a probabilistic version of the DC OPF
model [Roa+13; Roa+16], which are approximations neglecting losses and voltage magnitude variations. A simi-
lar but more physically accurate methodology is to consider probabilistic versions of the linearized AC OPF model
around a reference scenario [RMT17; RA17]. Other works consider the robust counterpart of the SD relaxation
restricted to af�ne-linear decision-rules [Vra+13]. A Semi-De�nite convex relaxation of the chance-constrained AC
OPF problem is proposed in [Ven+17] using a scenario based-approach and assuming piece-wise linear decision
rules or Gaussian uncertainty. A Second-Order Cone approximation of the chance-constrained AC OPF is proposed
in [HPC18] which allows good numerical performances, combined with a feasibility recovery method. These works
approximate the impact of uncertainty by a linearization step combined either with the assumption of a known dis-
tribution (usually Gaussian) of the noise or with a scenario-based approach, which allows a deterministic analytical
reformulations of the chance constraints. All these aforementioned works related to the probabilistic OPF do not
consider �exibility brought by storage and do not take into account the dynamical aspects associated to such storage
systems in a completely satisfactory way. Other authors consider distributionally robust OPF [ZSM16], accounting
for mis-speci�cation of the probability distribution of the random data impacting the problem.
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6.11.2 Multistage stochastic OPF

To the best of our knowledge, there are very few works focusing on the combined dif�culties of a stochastic and
dynamic model of the AC OPF. Three elements seem essential to us in order to obtain relevant results: the AC OPF
or a conic relaxation is necessary in order to obtain suf�cient accuracy of the physics of the network, a dynamical
model is necessary when considering small storage systems studied in the short run, a stochastic model is neces-
sary with high renewable integration. In particular, a consistent stochastic multi-period model should guarantee that
decisions are non-anticipative, i.e., are not taken with respect to yet unobserved stochastic quantities.

A dynamic stochastic AC OPF model solved through an SOC relaxation is considered in [NCP14]. However, the
scenario tree considered is a comb, as opposed to a branching tree. In particular, the approximation of the under-
lying process is not consistent, as the structure of information (the �ltration) is not discretized, as recommended by
[HRS06; Sha06; PP12; PP14; PP15]. As a consequence, decisions after the �rst stage are anticipative, thus un-
derestimating the real cost due to over-�tting. The work [LS17] considers a two-stage adaptative robust multi-period
version of the OPF problem: the �rst stage corresponds to the �rst time period, while in the second stage, decisions
in a multi-period setting are taken according to a worst case scenario. The non-convexity of the problem is dealt with
using the SOC relaxation of the problem. Though the model considered allows good physical accuracy due to the
use of SOC relaxations, and good robustness properties, solution of this problem remain anticipative. This yields
an underestimation of the cost of the worst case scenario, which is counterbalanced by the adaptative robust model
chosen. Hence, the cost may be under-estimated or over-estimated depending on the scenarios considered. In the
PhD thesis [Swa17], the author uses the SOC relaxation of the BFM formulation in a two-stage setting in order to
optimally control energy �exibilities on a distribution network, with a very detailed model. This amounts to consider
the simpli�ed case where decisions are non-anticipative only for the initial time steps. In [JKK14], the author cir-
cumvents the dif�culties of multistage stochastic programming by considering af�nely adjustable robust counterpart
(AARC) of the multi-period DC OPF problem, hence in particular, it inherits the limitations of DC OPF model. This
methodology has been extended to SOC relaxations of AC OPF in the case of 2-stage stochastic optimization in
[BQQ15]. However, the uncertainty only impacts the decision rules on active power generation: the model does
not account for the impact of uncertainty on other variables, like voltage or reactive power injections. An iterative
scheme adjusting parameters of the optimization problem is proposed in [Sun+16]. Each iteration consists in three
steps. First, a dynamic AC OPF problem is solved in order to optimize a control policy. Second, the probability of
violation of the constraints is estimated by simulation. Last, the bounds on some decision variables are adjusted if
this estimated violation probability is too high, otherwise, the algorithm stops. This method is interesting but offers
no theoretical guarantee of optimality.
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Chapter 7

Bounding the duality gap of the
multi-stage stochastic Alternating Current
Optimal Power Flow problem with storage

We propose a generic multistage stochastic model for the Alternating Current Optimal Power Flow (AC OPF) prob-
lem, to account for the randomness of the electricity production by decentralized renewable energy sources and
the dynamic constraints of storage systems. The multi-stage stochastic framework allows to account for non-
anticipativity of decisions and requires, in practice, the formulation of a scenario tree, whose size typically has
to grow exponentially with the number of time stages. This induces a large scale optimization problem, which,
combined with the non-convex nature of the AC OPF, makes it a priori extremely challenging to solve to global
optimality. We derive easy to check and realistic a priori conditions guaranteeing a vanishing relaxation gap for
the multi-stage AC OPF problem, which can thus be solved using convex optimization algorithms. We also give an
easily computable a posteriori upper bound on the relaxation gap. In particular, we show that a null or low relaxation
gap may be expected for applications with light reverse power �ows (low installed decentralized production capacity
for instance) or if suf�cient storage capacities with low cost are available. We then show that bounds on duality
gaps of multi-stage stochastic problems arising in energy management can be obtained, where storage devices
can be used in a limited way. Such results are based on the node formulation of multi-stage problems and on
Shapley-Folkman-type results.

Nomenclature

Complex numbers

i Imaginary number with i2 = � 1.
Re(z) For z = a+ ib 2 C, with a;b 2 R;Re(z) = a denotes its real part.
Im(z) For z = a+ ib 2 C, with a;b 2 R; Im(z) = b denotes its imaginary part.
z � C z0 Re(z) � Re(z0) and Im(z) � Im(z0).
z� For z 2 C, z� denotes its complex conjugate.

Sets and indices

B Set of buses, indexed by i, with 0 reference bus and root of the tree.
E Set of (directed) lines, directed towards the substation 0.
Ei Set of (directed) lines of the sub-tree starting from i (i: root of Ei).
T Set of time steps, indexed by t, T = 0;1;2; :::T.

 Discrete probability space, indexed by ! .
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Decision Variables

s = (si;t;! )i2B;t2T ;! 2
 Complex power injections (generator convention).
s0 = (s0;t;! )t2T ;! 2
 Complex power injections (generator convention) at the slack bus 0.
pin j = (pin j

i;t;! )i2Bnf0g;t2T ;! 2
 Active power injections by batteries.
pabs= (pabs

i;t;! )i2Bnf0g;t2T ;! 2
 Active power absorbed by batteries.
q = (qi;t;! )i2Bnf0g;t2T ;! 2
 Flexible reactive power injections.
qsol = (qsol

i;t;! )i2Bnf0g;t2T ;! 2
 Flexible reactive power injections by solar panels.
v = (vi;t;! )i2B;t2T ;! 2
 Squared voltage magnitude.

I =
�
I ��!

(i;j);t;!

�

��!
(i;j)2E;t2T ;! 2


Squared magnitude of intensity.

S =
�
S��!

(i;j);t;!

�

��!
(i;j)2E;t2T ;! 2


Complex sending-end complex power in the lines.

X = (X i;t;! )i2B;t2T ;! 2
 States of charge of storage systems.
y Collection of all decision variables of the problem considered.
sLin
0 = (sLin

0;t;! )t2T ;! 2
 Linearized power injections at bus 0.
vLin = (vLin

i;t;! )i2B;t2T ;! 2
 Squared linearized voltage magnitude.

SLin =
�
SLin

��!
(i;j);t;!

�

��!
(i;j)2E;t2T ;! 2


Sending-end complex power.

Input Parameters

zi; j = r i; j + ixi; j Impedance of
��!
(i; j) 2 E.

vi=vi Maximum/Minimum squared voltage magnitude at bus i.

S��!
(i;j)

Maximal magnitude of sending-in power in
��!
(i; j) 2 E

I ��!
(i;j)

Maximal squared magnitude of intensity in
��!
(i; j) 2 E

pin j
i =pabs

i Maximum active power injected/absorbed by battery at bus i.
X i=X i Maximum/minimum state of charge of battery at bus i.
x0;i Initial value of level of battery at bus i.
� abs

i =� in j
i Charging/discharging ef�ciency parameter of battery at i.

sd
i;t;! Exogenous residual complex power demand.

psol
i;t;! Exogenous active power production by solar panels.

Isol Exogenous solar irradiance.
xsol;norm Normalized envelop of solar production.
psol;tot Total installed solar capacity on the network.
psol

i Installed solar capacity at bus i.
scons
i;t;! Exogenous complex consumption.

Si Peak demand at bus i / Size of bus i.

scons;re f
t Normalized consumption at time t.

� t Time corresponding to time index t 2 T \ f T + 1g.
� t Length of time step t 2 T , given by � t+1 � � t .

7.1 Introduction

Distribution networks are currently facing a major change due to the increasing share of decentralized Renewable
Energy Sources (RES). They can create local physical violations and induce uncertainty on the network operating
point: their production levels are random, as a result of the weather. To alleviate these issues, many Distribution
Network Operators (DNOs) are required to become able to respond locally to unforeseen events. This can be done
by the means of energy �exibilities located at the nodes of the network, such as demand-response, energy storage
systems, energy conversion systems, power electronics... The dynamical and sometimes uncertain nature of these
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subsystems as well as the uncertainty brought by RES should be taken into account in the operation planning tools
used by DNOs. For instance, electrical vehicles providing ancillary services have random and dynamical availability.

One of these relevant tools for network operation planning is the so-called Optimal Power Flow (OPF) problem. It
is a mathematical optimization problem which aims at �nding an operating point of a power network that minimizes
a given objective function, such as generation costs, active power losses, subject to constraints on power injections
and losses, voltage magnitudes and intensities in the lines. Recent surveys can be found in [Cap+11; Cap16].
We are interested in the Alternating Current Optimal Power Flow (AC OPF) problem which is an accurate physical
model of the operating point of a network. It is non-convex and traditionally used in a static deterministic framework.
However, as argued before, a stochastic dynamic framework with storage systems and RES is more reasonable for
the future, which is the focus of this chapter.

7.1.1 Optimal Power Flow Problem

There exist two main declinations of the AC OPF problem: the Bus Injection Model (BIM), and the Branch Flow
Model (BFM), both presented in [Low14a]. Both formulations are equivalent for radial connected networks without
lines with zero impedance [Din+19]. We choose the BFM formulation in this paper, since the proofs and arguments
are easier to present in this context. The AC OPF problem is a non-convex optimization problem, and is in general
NP-hard even in the deterministic static case for a tree network as shown in [LGVH15], and it has been recently
shown to be strongly NP-hard in a general setting in [BV19]. Several optimization techniques from non-linear
programming and heuristic methods have been proposed to solve the problem, see [FSR12a; FSR12b]. However,
descent and heuristic methods to solve such non-convex problems may fail to converge to a global optimum and
can be sensitive to the initial starting point. On the other hand, some recent works have shown that many real-world
instances can be solved to global optimality using convex relaxations of the original non-convex AC OPF problem
[LL11].

Let us mention another popular formulation of the OPF problem, the so-called Direct Current Optimal Power Flow
(DC OPF). This model is an approximation, as opposed to a relaxation of the AC OPF problem. This approximation
neglects non-linear effects, such as power losses through the network, reactive power �ows and voltage variations.
In particular, decentralized production can induce low voltage operations for distribution networks [NT15], which
cannot be modeled in the DC formulation. Methodologies to obtain error bounds between DC and AC OPF have
been developed in [SJA09; DM16]. Another popular approximation is the Linearized DistFlow model which is nothing
else than a linear approximation of the BFM formulation [BW89] which neglects losses and provides overestimation
of voltage magnitudes (see Lemma 7.3.7). We only focus on the AC OPF formulation.

7.1.2 Existing work on convex relaxations of AC OPF

A very extensive overview on relaxations and approximations of AC Power �ow equations can be found in the book
[MH+19], while a particular focus on conic relaxations, related literature and results is given in [Zoh+20]. A series of
video tutorials on this topic can be found in [CR18]. We focus here on results on the conic relaxations of AC OPF
problems for single phase radial networks. These models allow to treat the case of balanced three-phase radial
networks, which reduces to the former case. The most famous conic relaxations of the AC OPF Problem are the
Second-Order Cone (SOC) relaxation, �rst introduced in [Jab06] and the Semi-De�nite (SD) relaxation, introduced
in [Bai+08]. Both are presented in details in [Low14a; BAD18]. For radial networks, the SOC and SD relaxations
are equivalent, but the SOC relaxation exhibits better numerical performance, and is preferable for such topologies.
Conic relaxations are often used in the literature due to their enhanced numerical performance and for the certi�cate
of optimality they may provide, compared to the non-convex formulation, see for instance [Swa17; Vra+13]. They are
exact (no relaxation gap) for many practical instances of OPF problem, as pointed out in [LL11]. For this reason, it
comes at no surprise that many authors have studied exactness conditions for these convex relaxations. A posteriori
conditions on the solution of the dual problem are given in [LL11], which are then extended to the deterministic multi-
period case with storage in [GT12]. It has also been proved that the relaxation is exact for radial connected network
under an assumption like over-generation [SL12] and load over-satisfaction [FL13; ZT11; ZT12; Bos+15]. Another a
priori exactness condition is the absence of upper bounds on voltage magnitude [Gan+12]. As these conditions are
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not veri�ed by practical instances, other authors [Gan+14; Hua+16] have obtained more realistic a priori exactness
conditions. It is typically required that the upper bounds on apparent power injections in the network be small
enough, which ensures the absence of big reverse active and reactive power �ows.

7.1.3 Our contributions

In this chapter, we develop a generic model for the multi-stage stochastic version of the AC Optimal Power Flow prob-
lem with storage systems and intermittent RES. Multistage stochastic models allow to ensure the non-anticipativity
of decision variables and are a pre-requisite in order to avoid the modeling issue of decisions taken according to
realization of yet unknown data. To ensure this property, these models require the formulation of a scenario tree,
the size of which, has to grow exponentially with the number of time stages, see for instance [Sha06; PP14]. The
dif�culty of solving a multistage stochastic AC OPF problem is therefore two-fold: it is non-convex and large-scale.
To alleviate the non-convexity issue, we consider the SOC relaxation of the problem.

Our main contribution is to show that approaches guaranteeing the absence of relaxation gap for the AC OPF
problem, originally developed in a static deterministic setting, can be extended to the multi-stage stochastic setting.
Inspired by the approach of [Hua+16] in the deterministic case, we propose to restrict the feasible set of the problem
by adding a �nite number of linear constraints, which ensures a conservative behavior with respect to some physical
limits (namely feasibility of a linearized power �ow), and impose compensations for active or reactive reverse power
�ows in the network. We show that the restricted problem has the same optimal value as the original one under
realistic assumptions which can easily be checked a priori, see Proposition 7.3.1. The restricted problem has no
relaxation gap, and hence its optimal value is easily computable, see Theorem 7.3.10. This allows us to easily com-
pute a feasible solution of the original problem and an a posteriori upper bound on its relaxation gap, see Theorem
7.3.11. Besides, the result provides realistic and tractable a priori conditions guaranteeing that the relaxation gap of
the original problem is zero, see Theorem 7.3.12. The interest of the result is numerically illustrated on two realistic
distribution networks with respectively 56 and 47 buses found in [Far+12] and [Far+11], equipped with distributed
storage and solar panels.

Using a different approach, we then derive explicit bounds on duality gaps of appropriate formulations of dy-
namic or multi-stage stochastic non-convex problems in energy management can be obtained. Such estimates are
connected to the Shapley-Folkman theorem, which provides bounds on the distance between a Minkowski sum of
non-convex sets and its convex envelop.

7.1.4 Related work

By comparison with other works guaranteeing zero relaxation gap for the static deterministic AC OPF problem [LL11;
SL12; FL13; ZT12; Bos+15; Gan+14; Hua+16], we consider a multistage stochastic setting. The conditions given in
this chapter extend to the stochastic case the realistic zero relaxation gap conditions given in [Hua+16]. Moreover,
we use this approach to provide a posteriori bounds on the relaxation gap. We also allow a more general cost
functional, which may depend on power �ows and losses in the network and voltage magnitude.

Several works consider a deterministic dynamic AC OPF model, like [GKA13], which uses the non-convex for-
mulation or [GSGK18], which considers the SOC relaxation.

Some recent research proposes probabilistic (indifferently called Chance-Constraints) versions of the OPF prob-
lem. A probabilistic DC OPF problem is tackled in [Roa+13; Roa+16], whereas a probabilistic AC OPF model
linearized around a reference scenario is suggested in [RMT17; RA17]. Other works consider the robust counter-
part of the SD relaxation restricted to af�ne-linear decision-rules [Vra+13]. A Semi-De�nite convex relaxation of
the chance-constrained AC OPF problem is proposed in [Ven+17] using a scenario based-approach and assuming
piece-wise linear decision rules, or assuming Gaussian uncertainty. A Second-Order Cone approximation of the
chance-constrained AC OPF is proposed in [HPC18] which allows good numerical performances, combined with a
feasibility recovery method. None of these references account for storage systems, nor do they consider dynamical
aspects of the problem.

Several other works deal with dynamic stochastic models. In particular, an important requirement for such prob-
lems is to ensure that decision variables remain non-anticipative, i.e., do not depend on yet unobserved random
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data. References [Swa17; NCP14] consider the simpli�ed case where decision are non-anticipative for the initial
time steps only, as they consider a scenario tree with a comb structure (two-stage). Non-anticipativity is guaran-
teed in [JKK14] using af�ne-linear policies but with a DC OPF problem, hence inheriting the limitations of such
approximate models. Non-anticipativity of the decisions is also guaranteed in [Sun+16] which considers an itera-
tive heuristic procedure to optimize a decision policy. By comparison, the approach by scenario trees used here
accounts for the non-anticipativity and bene�ts from theoretical convergence guarantees: scenario tree methods
provide an approximation of the value of the original problem with continuous distribution of the random data, and
this approximation converges to this value when the number of scenarios goes to in�nity [Sha06; PP14].

7.1.5 Outline of the chapter

In Section 7.2, we introduce the multi-stage stochastic AC-OPF problem and its convex relaxation. In particular, we
give a brief recall on the formulation of non-anticipativity constraints in the case of the scenario formulation of multi-
stage stochastic problems in 7.2.2. Then, in Section 7.3, we present a modi�ed version of the original non-convex
problem, obtained by restricting the feasible set. We show that the value of the restricted and original problems are
equal under realistic a priori veri�able assumptions, see section 7.3.3 and Proposition 7.3.1. We then prove that the
second order cone relaxation of the restricted problem is exact under some mild assumptions, see Theorem 7.3.10.
This provides a convenient way to compute an a posteriori bound on the relaxation gap of the original problem, see
Theorem 7.3.11. This also gives a tractable and realistic a priori condition ensuring a vanishing relaxation gap of the
original problem, see Theorem 7.3.12. We illustrate numerically these results on two realistic distribution networks
with respectively 56 and 47 buses in Section 7.4. Then, in Section 7.5, we focus on obtaining explicit a priori bounds
on duality gaps of multi-stage stochastic problems in energy management, using Shapley-Folkman type of results,
recalled in Subsection 7.5.1. In particular, we show how the node formulation of multi-stage stochastic problems
(see Subsection 7.5.2 for a recall on this type of formulation of multistage stochastic problems) is appropriate to
obtain explicit bounds on the duality gap of the problem, when storage devices can be used in a limited way, see
Proposition 7.5.9 and Corollary 7.5.10.

7.2 The multistage stochastic AC OPF model

7.2.1 Formulation of the problem

Throughout the chapter, we will make the assumption that the network is radial, connected and passive, i.e.,

Re(z��!
(i;j)

) � 0 and Im(z��!
(i;j)

) � 0 for all lines
��!
(i; j) 2 E of the network. We formulate a multi-stage stochastic AC

OPF problem with a battery storage system at each bus of the network (except for the reference bus 0) using the
Branch Flow Model. We next describe the multistage stochastic AC OPF problem in Branch Flow Model formulation.
We impose the following constraints. First, we consider the constraints on voltage squared magnitudes v:

v0;t;! = 1; t 2 T ; ! 2 
 ; (7.2.1)

vi � vi;t;! � vi ; i 2 B n f0g; t 2 T ; ! 2 
 : (7.2.2)

We also incorporate bounds on intensity squared magnitude I :

0 � I ��!
(i;j);t;!

� I ��!
(i;j)

;
��!
(i; j) 2 E; t 2 T ; ! 2 
 : (7.2.3)

We consider bounds on sending-end power �ow Smagnitudes in the lines of the network, which is a convex quadratic
constraint:

����S��!
(i;j);t;!

���� � S��!
(i;j)

;
��!
(i; j) 2 E; t 2 T ; ! 2 
 : (7.2.4)

We consider bound constraints on active power injected pin j , absorbed pabs by batteries and �exible reactive power
injected q:

0 � pin j
i;t;! � pin j

i ; i 2 B n f0g; t 2 T ; ! 2 
 ; (7.2.5)
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0 � pabs
i;t;! � pabs

i ; i 2 B n f0g; t 2 T ; ! 2 
 ; (7.2.6)

q
i
� qi;t;! � qi ; i 2 B n f0g; t 2 T ; ! 2 
 : (7.2.7)

We introduce the constraints on the states of charge of the batteries X, which represent respectively their dynamics,
their initial values and their physical bounds:

X i;t+1;! = X i;t;! + � abs
i pabs

i;t;! � t � � in j
i pin j

i;t;! � t ; i 2 B n f0g; t 2 T n fTg; ! 2 
 ; (7.2.8)

X i;0;! = x0;i ; i 2 B n f0g; t 2 T n fTg; ! 2 
 ; (7.2.9)

X i � X i;t;! � X i ; i 2 B n f0g; t 2 T ; ! 2 
 : (7.2.10)

Then we consider the expression of the complex power injections s at the buses of the network (except at the slack
bus):

si;t;! = pin j
i;t;! � pabs

i;t;! + iqi;t;! � sd
i;t;! ; i 2 B n f0g; t 2 T ; ! 2 
 : (7.2.11)

This allows to formulate the power balance equations at the non-slack buses and the slack bus 0:

S��!
(i;j);t;!

=
X

��!
(k;i)2E

(S��!
(k;i);t;!

� zk;i I ��!
(k;i);t;!

) + si;t;! ;
��!
(i; j) 2 E; t 2 T ; ! 2 
 ; (7.2.12)

0 =
X

���!
(k;0)2E

(S���!
(k;0);t;!

� zk;0I ���!
(k;0);t;!

) + s0;t;! ; t 2 T ; ! 2 
 : (7.2.13)

We consider also the voltage propagation constraint and the constraint making the link between voltage v, intensity
I and power �ow S in the network:

vi;t;! � v j;t;! = 2Re(z�
i; jS��!

(i;j);t;!
) � j zi; j j2I ��!

(i;j);t;!
;

��!
(i; j) 2 E; t 2 T ; ! 2 
 ; (7.2.14)

vi;t;! I ��!
(i;j);t;!

= jS��!
(i;j);t;!

j2;
��!
(i; j) 2 E; t 2 T ; ! 2 
 : (7.2.15)

Constraint (7.2.15) is a non-convex quadratic equality constraint. Last, we consider the non-anticipativity constraint,
which encodes the fact that decision variables y should not depend on yet unknown realization of random data of
the problem:

y is non anticipative: (7.2.16)

When the random processes (and their probability distributions) impacting the system are discretized and repre-
sented as a scenario tree, the non-anticipativity constraints can be represented as a set of linear equality con-
straints [SDR14]. More details shall be given later on their formulation. We consider a general (possibly random,
progressively-measurable) convex cost function C depending on all decision variables of the problem. We can now
formulate the multi-stage stochastic AC-OPF problem:

min
y=(s0;s;pin j ;pabs;q;X;S;I ;v)

E
h
C(s0; pin j ; pabs; q;S; I ;X)

i
(7.2.17)

s:t: (7.2.1) � (7.2.16): (7.2.18)

We denote this optimization problem by (P). This problem is non-convex because of constraint (7.2.15).

7.2.2 On the formulation of the non-anticipativity constraints

To formulate the non-anticipativity constraints, we de�ne a scenario tree, which allows to formulate a problem with
a �nite number of scenarios while accounting for the �ltration structure. Each scenario ! 2 
 is associated with a
trajectory � ! = (� t;! )t2T of the exogenous random process impacting the system and can be visualized as a path
from the root to the leaves of the scenario tree. To give a concrete example, we consider the symmetric random
walk on Z with steps � 1 or +1, with T = 2. We give the corresponding scenario tree in Figure 7.1. Nodes of the
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Figure 7.1: The random walk on Z

tree are labeled with a time and an associated value of the process at this time. Edges in this tree are labeled
with a transition probability. For instance, for scenario ! 1 has probability 1=8, and the values of the process for this
scenario are � 0;! 1 = 0; � 1;! 2 = 1; � 2;! 1 = 2:

Scenarios ! and ! 0 are said to be indistinguishable up to time t if � �;! = � �;! 0 for any � � t. Indistinguishability up
to time t de�nes an equivalence relationship for scenarios. We use the notation ! � t ! 0 for the fact that ! and ! 0 are
indistinguishable scenarios up to time t. For instance, for the example of the symmetric random walk, ! 1 and ! 2 are
indistinguishable up to time 1, and so are ! 3 and ! 4. For any time step t 2 T and any scenario ! , rept(! ) denotes a
�xed representative of the equivalence class of ! with respect to � t , which means that ! � t ! 0 , rept(! ) = rept(! 0).
The choice of such a representative is not unique in general. In the example of the symmetric random walk on Z , a
possible choice for the representatives is given in Table 7.1.

Table 7.1: Representative scenarios

time step t rept(! 1) rept(! 2) rept(! 3) rept(! 2)

t = 0 1 1 1 1

t = 1 1 1 3 3

t = 2 1 2 3 4

If x = (xt;! )t2T ;! 2
 denotes the decision variable of a multi-stage stochastic problem, and xt;! denotes the decision
taken at time t for scenario ! , non-anticipativity (i.e., the fact that for all time steps t and all scenarios ! , xt;! should
depend only on the values (� �;! )� � t) can be expressed by the following constraint:

8t 2 T ; ! 2 
 ; xt;! = xt;rept (! ): (7.2.19)

According to standard works on multi-stage stochastic programming where measurability constraints are ex-
pressed using linear equality constraints, good scenario trees should be branching. In other words, in order to
correctly approximate both the (typically continuous) distribution of the random input data and the information struc-
ture, equivalence classes with respect to � t for t < T should typically not be singletons, see for instance [Sha06;
HRS06; PP12; PP14; PP15].

Remark 7.2.1. Getting back to problem (P), non-anticipativity constraints can be forgotten for variables which are
measurable with respect to other non-anticipative variables. For instance, if we enforce non-anticipativity of pin j

and pabs, X is also non-anticipative, as Xt is measurable with respect to (pin j
� ; pabs

� )� � t . Therefore, we do not need to
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add explicitly a non-anticipativity constraint on X. Besides, non-anticipativity constraints do not need to be explicitly
incorporated for variables s0, v, I and S, by measurable selection arguments.

7.2.3 Second-Order Cone relaxation of the problem

As we already observed, constraint (7.2.15) is non-convex. Relaxing it into an inequality constraint:

vi;t;! I ��!
(i;j);t;!

� j S��!
(i;j);t;!

j2;
��!
(i; j) 2 E; t 2 T ; ! 2 
 ; (7.2.20)

yields a convex problem, denoted (PSOC). This problem is called the Second-Order Cone Relaxation of the problem,
and it is given by:

min
y=(s0;s;pin j ;pabs;q;X;S;I ;v)

E
h
C(s0; pin j ; pabs; q;S; I ;X)

i
(7.2.21)

s:t: (7.2.1) � (7.2.14); (7.2.16); (7.2.20): (7.2.22)

Indeed, (7.2.20) has the structure of a rotated second-order cone constraint x1x2 � x2
3 + x2

4. It can be equivalently
reformulated as the SOC constraint:

�
2jzi; j jjS��!

(i;j);t;!
j
� 2

+ (jzi; j j2I ��!
(i;j);t;!

� vi;t;! )2 � (jzi; j j2I ��!
(i;j);t;!

+ vi;t;! )2;
��!
(i; j) 2 E; t 2 T ; ! 2 
 :

The (non-zero) factors jzi; j j are introduced in order to ensure physical homogeneity. As (PSOC) is a relaxation of (P),
we immediately deduce that the value of the relaxation is a lower bound of the value of the original problem, i.e.,
val(PSOC) � val(P). Besides, (PSOC) is a Second-Order Cone problem, and as such, can be solved ef�ciently, using
for instance interior point methods.

7.3 Restriction of the feasible set ensuring a vanishing relaxation gap

We propose to show a condition ensuring a vanishing relaxation gap for the multi-stage stochastic AC OPF problem.

7.3.1 Presentation of the problem with restricted feasible set

We present a variant of Problems (P) and (PSOC), obtained by adding a �nite number of linear inequalities, which,
in many cases, do not modify fundamentally the feasible set. Consider additional variables vLin = (vLin

i;t;! )i2B;t2T ;! 2
 ,
which play the role of the square voltage magnitude variable, SLin = (SLin

��!
(i;j);t;!

)��!
(i;j)2E;t2T ;! 2


, which play the role of the

sending-end power �ow variable, and sLin
0 = (sLin

0;t;! )t2T ;! 2
 , which play the role of the power injections at the slack
bus 0. We �rst consider the constraints of the Linearized DistFlow model [BW89], which neglects thermal losses,
without considering lower bounds on the linear model of squared voltage magnitudes:

vLin
0;t;! = 1; ; t 2 T ; ! 2 
 ; (7.3.1)

vLin
i;t;! � vi ; i 2 B; t 2 T ; ! 2 
 ; (7.3.2)

SLin
��!
(i;j);t;!

=
X

��!
(k;i)2E

SLin
��!
(k;i);t;!

+ si;t;! ;
��!
(i; j) 2 E; t 2 T ; ! 2 
 ; (7.3.3)

0 =
X

���!
(k;0)2E

SLin
���!
(k;0);t;!

+ sLin
0;t;! ; t 2 T ; ! 2 
 ; (7.3.4)

vLin
i;t;! � vLin

j;t;! = 2Re(z�
i; jS

Lin
��!
(i;j);t;!

);
��!
(i; j) 2 E; t 2 T ; ! 2 
 : (7.3.5)

For all buses i, de�ne Ei as the set of directed edges belonging to the sub-tree starting from i, as shown in Figure

7.2. In this example, we have E2 =
� ���!
(5; 2);

���!
(6; 2);

���!
(7; 5);

���!
(8; 5)

�
, E5 =

� ���!
(7; 5);

���!
(8; 5)

�
, E1 =

� ���!
(3; 1);

���!
(4; 1)

�
.
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Figure 7.2: Example of sub-tree E1

Consider the additional constraint:

Re(z�
k;lS

Lin
��!
(i;j);t;!

) � 0;
��!
(i; j) 2 E;

���!
(k; l) 2 Ei ; t 2 T ; ! 2 
 : (7.3.6)

This constraint imposes compensation of active (resp. reactive) reverse power �ows in the lines of the network by
forward reactive (resp. active) power �ow along the same lines.

We can now introduce the problem (P0):

min
y=(s0;s;pin j ;pabs;q;X;S;I ;v;SLin ;vLin ;sLin

0 )
E

h
C(s0; pin j ; pabs; q;S; I ;X)

i
(7.3.7)

s:t: (7.2.1) � (7.2.16); (7.3.1) � (7.3.6): (7.3.8)

This problem is similar to (P) but with additional constraints, which amounts to restricting the feasible set to the
region of feasible linearized �ow and of light reverse power �ows. In particular, the value of (P0) is an upper bound
on the value of (P), i.e., val(P) � val(P0).

7.3.2 Second-order cone relaxation of the problem with restricted feasible set

Similarly as before, we can introduce the second-order cone relaxation of the new problem (P0) by replacing the non-
convex quadratic equality constraints (7.2.15) by the rotated second-order cone constraints (7.2.20). This convex
relaxation is denoted (P0

SOC), and given by:

min
y=(s0;s;pin j ;pabs;q;X;S;I ;v;SLin ;vLin ;sLin

0 )
E

h
C(s0; pin j ; pabs; q;S; I ;X)

i
(7.3.9)

s:t: (7.2.1) � (7.2.14); (7.2.20); (7.2.16); (7.3.1) � (7.3.6): (7.3.10)

As (P0
SOC) is a relaxation of (P0),(P0

SOC) yields a lower bound on the optimal value of (P0), i.e., val(P0
SOC) � val(P0).

As the feasible set of (PSOC) is included in the feasible set of (P0
SOC), val(PSOC) � val(P0

SOC). Besides, just as (PSOC),
(P0

SOC) is a Second-Order Cone problem, and as such, can be solved ef�ciently using for instance interior point
methods.

7.3.3 Conditions ensuring equality of the feasible sets of the original and restricted prob-
lems

The de�nition of the restricted problem (P0) and its relaxation (P0
SOC) might seem a bit arti�cial. We show that,

for some realistic instances, the feasible sets of (P0) and (P) coincide, which shows that the additional constraints
introduced in (P0) are valid on the feasible set of (P).
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Denote si;t;! = pin j
i + iqi � sd

i;t;! an upper bound on total power injections at bus i at time t for scenario 
 , obtained
for instance using Constraints (7.2.5)-(7.2.6)-(7.2.7)-(7.2.11). De�ne v̄Lin and S̄Lin by:

8
>>>>>><
>>>>>>:

S̄Lin
��!
(i;j);t;!

=
P

��!
(k;i)2E

S̄Lin
��!
(k;i);t;!

+ si;t;! ;
��!
(i; j) 2 E; t 2 T ; ! 2 
 ;

v̄Lin
0;t;! = 1; t 2 T ; ! 2 
 ;

v̄Lin
i;t;! � v̄Lin

j;t;! = 2Re(z�
i; jS̄

Lin
��!
(i;j);t;!

);
��!
(i; j) 2 E; t 2 T ; ! 2 
 :

(7.3.11)

The quantities v̄Lin and S̄Lin are easily computable and depend only on bounds son sand impedances of the network
lines.

Proposition 7.3.1. De�ne (v̄Lin ; S̄Lin) as the unique solution of the system (7.3.11). Assume the network is radial,
connected and passive (i.e., for all lines (i; j) 2 E, we have zi; j � C 0) and moreover suppose that it holds that:

8
>>><
>>>:

v̄Lin
i;t;! � vi ; i 2 B; t 2 T ; ! 2 
 ;

Re(z�
k;lS̄

Lin
��!
(i;j);t;!

) � 0;
��!
(i; j) 2 E;

���!
(k; l) 2 Ei ; t 2 T ; ! 2 
 :

(7.3.12)

For any feasible point y of (P) (resp. (PSOC)), de�ne (sLin
0 ; vLin ;SLin) as the unique solution of the linear system

de�ned by (7.3.1)-(7.3.3)-(7.3.4)-(7.3.5). Then y0 := (y; sLin
0 ; vLin ;SLin) is feasible with respect to (P0) (resp. (P0

SOC)).
In particular, val(P) = val(P0) and val(PSOC) = val(P0

SOC).

Proof. Consider a feasible point y := (s; v;S; I ) of (P) (resp. (PSOC)). Then, we have si;t;! � C si;t;! for all i 2 B n f0g,
t 2 T , ! 2 
 . De�ne (sLin

0 ; vLin ;SLin ) by (7.3.1)-(7.3.3)-(7.3.4)-(7.3.5). In particular, we have:

SLin
��!
(i;j);t;!

� S̄Lin
��!
(i;j);t;!

��!
(i; j) 2 E; t 2 T ; ! 2 
 :

Using the above, the assumption of a passive network and (7.3.12), we have for all
��!
(i; j) 2 E,

���!
(k; l) 2 Ei , t 2 T , ! 2 
 :

Re(z�
k;lS

Lin
��!
(i;j);t;!

) � Re(z�
k;lS̄

Lin
��!
(i;j);t;!

) � 0;

which shows that (7.3.6) holds. We also get for all
��!
(i; j) 2 E, t 2 T , ! 2 
 :

vLin
i;t;! � vLin

j;t;! = 2Re(z�
i; jS

Lin
��!
(i;j);t;!

) � 2Re(z�
i; jS̄

Lin
��!
(i;j);t;!

) = v̄Lin
i;t;! � v̄Lin

j;t;! ;

which implies for all i 2 B, using (7.2.1), (7.3.1) and the orientations of the edges towards the slack bus 0:

vLin
i;t;! � v̄Lin

i;t;! � vi :

This shows that y0 := (y; sLin
0 ; vLin ;SLin ) is feasible for (P0) (resp (P0

SOC)). �

The above Proposition provides a simple condition which can be veri�ed a priori guaranteeing that the optimal
values of (P) and (P0) coincide. This condition can be interpreted as the feasibility of the linearized model, and light
reverse power �ows in the network.

Remark 7.3.2. The above Proposition implies condition C1 in [Hua+16], which is an abstract assumption on the
feasible set of the problem (recalled in Chapter 6, condition (C1)), but it is easier to check. We simply give sign
conditions on the unique solution of a linear system, which input parameters are bounds on power injections and
impedances of network lines.

The following Proposition gives an interpretable suf�cient condition under which (7.3.12) holds, namely the
absence of reverse power �ows in the network.

Proposition 7.3.3. De�ne (v̄Lin ; S̄Lin) as the unique solution of the system (7.3.11). Assume the network is radial,
connected and passive, that vi � 1 for all buses i 2 B and the following condition holds:

S̄Lin
��!
(i;j);t;!

� C 0;
��!
(i; j) 2 E; t 2 T ; ! 2 
 : (7.3.13)

Then (7.3.12) holds, and therefore val(P) = val(P0) and val(PSOC) = val(P0
SOC).
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Proof. Under (7.3.13) and the assumption of a passive network, we have for all
��!
(i; j) 2 E, t 2 T , ! 2 
 :

v̄Lin
i;t;! � v̄Lin

j;t;! = 2Re(z�
i; jS̄

Lin
��!
(i;j);t;!

) � 0;

which implies for all i 2 B, using (7.3.1) and the orientations of the edges towards the slack bus 0:

v̄Lin
i;t;! � v̄Lin

0;t;! = 1 � vi :

One can then easily show that (7.3.12) holds. �

Remark 7.3.4. The assumption of a passive network holds in practice for most real-world networks. The assumption
on the upper bounds on voltage magnitude also holds since one typically aims to maintain the voltage magnitudes
of the buses around the value 1 p.u., up to some tolerance threshold. The assumption of absence of reverse power
�ows holds for some realistic instances, for instance when demand exceeds local generation.

For applications where the demand exceeds local power generation and injections by the battery, the following
corollary shows that the values of (P) (resp. (PSOC)) and (P0) (resp. (P0

SOC)) coincide.

Corollary 7.3.5. De�ne (v̄Lin ; S̄Lin) as the unique solution of the system (7.3.11). Assume the network is radial,
connected and passive, that vi � 1 for all buses i 2 B and the following condition holds:

si;t;! � C 0; i 2 B n f0g; t 2 T ; ! 2 
 : (7.3.14)

Then (7.3.12) holds, and therefore val(P) = val(P0) and val(PSOC) = val(P0
SOC).

Proof. Under (7.3.14) and using (7.3.3), we can show that (7.3.13) holds. We conclude using Proposition 7.3.3. �

7.3.4 Vanishing relaxation gap for the problem with restricted feasible set

We now prove that the problem with restricted feasible set has no relaxation gap, i.e., val(P0
SOC) = val(P0). The

interest of this result is the following: the value of the non-convex problem (P0) can be computed ef�ciently and is an
upper bound on the value of the original problem (P) (as the feasible set of (P0) is included in the feasible set of (P)).
It also provides a practical way to compute an upper bound on the relaxation gap of (P), given by the inequality:

val(P) � val(PSOC) � val(P0) � val(PSOC)

= val(P0
SOC) � val(PSOC):

As (PSOC) and (P0
SOC) are both Second-Order Cone problems, the bound above can be ef�ciently computed.

The idea of the proof of a vanishing relaxation gap for (P0) relies on an appropriate relabeling of the buses,
then an iterative scheme inspired by [Hua+16]. By comparison to the latter reference, we consider a multi-stage
stochastic setting and allow more general cost functions. We make the following assumption, which can be ensured
by appropriately re-indexing the buses:

(H.Lab) The buses are labeled in non-decreasing order according to their depths in the tree, see Figure 7.2.

Then, the iterative scheme we consider takes as input a feasible point y(0) of (P0
SOC), and at every iteration,

construct a new feasible point of (P0
SOC) using a Forward-Backward Sweep method, see Algorithm 7.1. We shall see

that the repeated applications of the Forward-Backward Sweep method 7.1 generates a convergent sequence of
feasible points (y(k))k2N of (P0

SOC), and that the limit satis�es the constraints of the non-convex problem (P0). The proof
of convergence relies on the boundedness of the sequence generated and the monotone convergence theorem.
The limit of this sequence is also feasible for (P0

SOC) and is a �xed point of the Forward Backward Sweep method,
which is designed in such a way that a �xed point satis�es the non-convex constraint (7.2.15), see the key step at
line 7 of Algorithm 7.1. Hence it is feasible for (P0).

Remark 7.3.6. There exists other Forward-Backward Sweep methods with similar structure as Algorithm 7.1, which
aim at solving ef�ciently load-�ow problems on single phase, balanced or unbalanced three-phase radial network,
using the radial structure of the network [BS11; EH08].
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Algorithm 7.1 Forward-Backward sweep method

1: Inputs: (s0;S; I ; v).
2: for ! 2 
 , t 2 T do
3: fForward passg
4: for i = n;n � 1; :::;1 do
5: Let j be the unique node in B such that

��!
(i; j) 2 E with the new labels.

6: S0
��!
(i;j);t;!

 si;t;! +
P

��!
(k;i)2E

(S0
��!
(k;i);t;!

� zk;i I 0
��!
(k;i);t;!

).

7: I 0
��!
(i;j);t;!

 
jS0

��!
(i;j);t;!

j2

vi;t;!
.

8: end for
9: fRoot nodeg

10: s0
0;t;!  �

P
���!
(k;0)2E

(S0
���!
(k;0);t;!

� zk;0I 0
b;0;t;! ).

11: v0
0;t;!  1.

12: fBackward passg
13: for i = 1;2; :::;n do
14: Let j be the unique node in B such that

��!
(i; j) 2 E with the new labels.

15: v0
i;t;!  v0

j;t;! + 2Re(z�
i; jS

0
��!
(i;j);t;!

) � j zi; j j2I 0
��!
(i;j);t;!

.

16: end for
17: end for

18: Outputs: (s0
0;S

0; I 0; v0).

The following Lemma shows some a priori bounds on some variables of any feasible point of (P0
SOC), which will

be useful to apply the monotone convergence theorem.

Lemma 7.3.7. Assume that y := (s0; s; pin j ; pabs;X;S; I ; v; vLin ;SLin ; sLin
0 ) is a feasible solution of (P0

SOC). Then we have
the following:

S��!
(i;j);t;!

� C SLin
��!
(i;j);t;!

; 8
��!
(i; j) 2 E; t 2 T ; ! 2 
 ;

s0;t;! � C sLin
0;t;! ; 8t 2 T ; ! 2 
 ;

vi;t;! � vLin
i;t;! ; 8i 2 B; t 2 T ; ! 2 
 :

Proof. The claimed inequalities are established t by t and ! by ! . Throughout the proof, we consider �xed values of
t 2 T and ! 2 
 , and we drop these indices for simplicity of the notations. The inequalities on S and SLin arise from
(7.2.3) which implies that I is non-negative component-wise, from passivity of the network and from constraints
(7.2.12) and (7.3.3). The inequalities on s0 and sLin

0 can then be deduced by the inequality between S and SLin

and constraints (7.2.13) and (7.3.4). Comparing (7.2.14) and (7.3.5), using the passivity of the network and the

inequalities between S and SLin , one gets for all
��!
(i; j) in E:

vi � v j � vLin
i � vLin

j :

We can then show the inequalities on v and vLin using the fact that vLin
0 = 1 = v0, by (7.2.1) and (7.3.1), and using

the fact that edges are directed towards the root indexed by 0. �

The following Lemma shows some monotonic properties of the sequence generated by repeated application of
the Forward-Backward sweep method 7.1.

Lemma 7.3.8. Algorithm 7.1 is well-de�ned. Consider a feasible solution y := (s0; s; pin j ; pabs;X;S; I ; v; vLin ;SLin ; sLin
0 )

of (P0
SOC). Apply Algorithm 7.1 once to (s0;S; I ; v) and denote by (s0

0;S0; I 0; v0) its output. Then we have:

S��!
(i;j);t;!

� C S0
��!
(i;j);t;!

; 8
��!
(i; j) 2 E; t 2 T ; ! 2 
 ;

����S��!
(i;j);t;!

���� �
�����S

0
��!
(i;j);t;!

����� ; 8
��!
(i; j) 2 E; t 2 T ; ! 2 
 ;
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I ��!
(i;j);t;!

� I 0
��!
(i;j);t;!

; 8
��!
(i; j) 2 E; t 2 T ; ! 2 
 ;

s0;t;! � C s0
0;t;! ; 8t 2 T ; ! 2 
 ;

vi;t;! � v0
i;t;! ; 8i 2 B; t 2 T ; ! 2 
 :

Moreover, y0 := (s0; s; pin j ; pabs;X;S; I ; v; vLin ;SLin ; sLin
0 ) is feasible for (P0

SOC).

Proof. The claimed inequalities are established t by t and ! by ! . Throughout the proof, we consider �xed values
of t 2 T and ! 2 
 , and we drop these indices for simplicity of the notations. The de�nition of S for leaves of the
tree in the forward pass is well-de�ned as the sum in the LHS is empty in this case by our labels. The labels chosen
ensure that the forward pass always explores leaves before their ancestors, which ensures that the forward pass is
well-de�ned. Therefore, the whole algorithm is well-posed. Consider the forward pass, with i = n, n being the index
of the last bus after setting the new labels (see Assumption (H.Lab)). In particular, the bus i = n is a leaf. Denoting
j its unique ancestor, we have S���!

(n;j)
= sn = S0

���!
(n;j)

by construction. We then obtain, using the fact that y is feasible for

(P0
SOC) and thus satis�es (7.2.20):

I 0
���!
(n;j)

=
jS0

���!
(n;j)

j2

vn
=

jS���!
(n;j)

j2

vn
� I ���!

(n;j)
:

Let us now assume i < n, and we assume the inequalities for S, S0, I and I 0 have been proved for all k = i+1; :::;n.
If i is a leaf, we can prove the inequalities similarly as for i = n. Consider the case where i < n is not a leaf. Let j be
its unique ancestor. Then, by passivity of the network and since the inequalities S��!

(k;i)
� C S0

��!
(k;i)

and I ��!
(k;i)

� I 0
��!
(k;i)

have

been established for all k such that
���!
(k; i) 2 E (by our choice of bus labels):

S0
��!
(i;j)

= si +
X

��!
(k;i)2E

(S0
��!
(k;i)

� zk;i I0
��!
(k;i)

)

� C si +
X

��!
(k;i)2E

(S��!
(k;i)

� zk;i I ��!
(k;i)

)

= S��!
(i;j)

:

Besides, denoting P := Re(S), Q := Im(S), PLin := Re(SLin ) and QLin := Im(SLin ):

jS0
��!
(i;j)

j2 � j S��!
(i;j)

j2 = (P0
��!
(i;j)

� P��!
(i;j)

)(P0
��!
(i;j)

+ P��!
(i;j)

) + (Q0
��!
(i;j)

� Q��!
(i;j)

)(Q0
��!
(i;j)

+ Q��!
(i;j)

)

� 2(P0
��!
(i;j)

� P��!
(i;j)

)PLin
��!
(i;j)

+ 2(Q0
��!
(i;j)

� Q��!
(i;j)

)QLin
��!
(i;j)

= � 2

0
BBBBBB@

X

(k;l)2Ei

rk;l(I 0
��!
(k;l)

� I ��!
(k;l)

)

1
CCCCCCAPLin

��!
(i;j)

� 2

0
BBBBBBBB@

X

��!
(k;l)2Ei

xk;l(I 0
��!
(k;l)

� I ��!
(k;l)

)

1
CCCCCCCCA

QLin
��!
(i;j)

= � 2
X

��!
(k;l)2Ei

Re(z�
k;lS

Lin
��!
(k;l)

)(I 0
��!
(k;l)

� I ��!
(k;l)

)

� 0:

In the inequality in the third line, we used Lemma 7.3.7, then we use the de�nition of S0 and the fact that S satis�es

(7.2.12) to obtain the following equality. The last inequality is obtained using I 0
��!
(k;l)

� I ��!
(k;l)

for all
���!
(k; l) 2 Ei and the fact

that SLin satis�es (7.3.6). We then obtain, using the inequalities jS0
��!
(i;j)

j2 � j S��!
(i;j)

j2 and the fact that y satis�es (7.2.20):

I 0
��!
(i;j)

=
jS0

��!
(i;j)

j2

vi
�

jS��!
(i;j)

j2

vi
� I ��!

(i;j)
:

This ends the proof of the inequalities:

S��!
(i;j)

� C S0
��!
(i;j)

; 8
��!
(i; j) 2 E;
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