Etude des voies de signalisations impliquées dans la régulation des transporteurs de NO₃- aux niveaux transcriptionnel et post-traductionnel chez Arabidopsis thaliana
Valentin Chaput

To cite this version:

HAL Id: tel-03210960
https://tel.archives-ouvertes.fr/tel-03210960
Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Étude des voies de signalisations impliquées dans la régulation des transporteurs de \(\text{NO}_3^- \) au niveau transcriptionnel et post-traductionnel chez *Arabidopsis Thaliana*
Sommaire

SOMMAIRE

<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. LA NUTRITION AZOTEE DES PLANTES</td>
<td>7</td>
</tr>
<tr>
<td>I.1. Contexte socio-économique et socio-écologique de l’azote</td>
<td>8</td>
</tr>
<tr>
<td>I.2. Utilisation de NO₃ par les plantes</td>
<td>9</td>
</tr>
<tr>
<td>II. CARACTERISATION MOLECULAIRE DES SYSTEMES DE TRANSPORT DE NO₃</td>
<td>11</td>
</tr>
<tr>
<td>II.1. La famille NRT1/PTR/NPF</td>
<td>11</td>
</tr>
<tr>
<td>II.2. La famille NRT2/NPR</td>
<td>14</td>
</tr>
<tr>
<td>III. REGULATION DE L’ABSORPTION RACIAIRE DE NO₃</td>
<td>17</td>
</tr>
<tr>
<td>III.1. Régulation par NO₃</td>
<td>17</td>
</tr>
<tr>
<td>III.2. Régulation par le statut N de la plante</td>
<td>20</td>
</tr>
<tr>
<td>III.3. Régulation par le statut C de la plante</td>
<td>24</td>
</tr>
<tr>
<td>III.4 Régulation du développement racinaire</td>
<td>26</td>
</tr>
<tr>
<td>IV. REGULATION DES TRANSPORTEURS DE NO₃ AU NIVEAU PROTEIQUE</td>
<td>29</td>
</tr>
<tr>
<td>V. OBJECTIFS DE LA THESE</td>
<td>31</td>
</tr>
</tbody>
</table>

CHAPITRE 2

<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. MATERIEL VEGETAL ET CULTURES DES PLANTES</td>
<td>32</td>
</tr>
<tr>
<td>I.1. Cultures en serre</td>
<td>33</td>
</tr>
<tr>
<td>I.2. Cultures hydroponiques</td>
<td>33</td>
</tr>
<tr>
<td>I.3. Cultures « in vitro »</td>
<td>35</td>
</tr>
<tr>
<td>II. MEASURE D’INFLUX DE ¹⁵NO₃</td>
<td>35</td>
</tr>
<tr>
<td>II.1. Protocole d’influx</td>
<td>35</td>
</tr>
<tr>
<td>II.2. Dosage isotopique du ¹⁵N</td>
<td>36</td>
</tr>
<tr>
<td>III. MEASURE D’ACTIVITE ENZYMATIQUE</td>
<td>37</td>
</tr>
<tr>
<td>IV. ANALYSE D’EXPRESSION DE GENES ET BIOLOGIE MOLECULAIRE</td>
<td>37</td>
</tr>
<tr>
<td>IV.1. Extraction et purification d’ARN totaux</td>
<td>37</td>
</tr>
<tr>
<td>IV.2. Synthèse des ADNc</td>
<td>38</td>
</tr>
<tr>
<td>IV.3. Quantification des ADNc par PCR en temps réel (qPCR)</td>
<td>38</td>
</tr>
<tr>
<td>IV.4. Immuno-précipitation de la chromatine (ChIP)</td>
<td>39</td>
</tr>
<tr>
<td>V. CLONAGE, TRANSFORMATION ET SELECTION DES PLANTES</td>
<td>41</td>
</tr>
<tr>
<td>V.1. Construction et Clonage des précurseurs des microARNs artificiels</td>
<td>41</td>
</tr>
<tr>
<td>V.2. Extraction d’ADNg pour séquençage et génotypage</td>
<td>42</td>
</tr>
<tr>
<td>V.3. Sélection du potentiel d’induction des lignées amiARNs</td>
<td>43</td>
</tr>
<tr>
<td>V.4. Induction amiARNs en culture hydroponique</td>
<td>43</td>
</tr>
<tr>
<td>VI. IMAGERIES</td>
<td>44</td>
</tr>
<tr>
<td>VI.1. Analyse de la densité en primordia racinaire</td>
<td>44</td>
</tr>
<tr>
<td>VI.2. Analyse qualitative de la localisation cellulare de bHLH093</td>
<td>44</td>
</tr>
</tbody>
</table>
Sommaire

VII. ÉTUDES BIOCHIMIQUES ... 45

VII.1. Extraction de protéines totales .. 45
VII.2. Western-Blot .. 45
VII.3. Hybridation anticorps et révélation ... 46
VII.4. Révélation peptidique par Dot Blot ... 47
VII.5. Séparation par taille protéique ... 47

CHAPITRE 3... 48

I. INTRODUCTION .. 50

II. RESULTATS ... 52

II.1. Interaction de TGA3, MYC1 et bHLH093 avec les promoteurs des transporteurs NRT2s 52
II.2. Caractérisation du rôle de la sur-expression constitutive de bHLH093 sur la régulation des NRT2s 54
II.3. Impact fonctionnel de la mutation des FTs sur le transport de NO₃ à forte affinité 55
II.4. Lien entre bHLH093 et HY5 ? ... 55

III. DISCUSSION ... 56

III.1. Rôle de bHLH093, MYC1 et TGA3, dans la régulation de l’expression des gènes NRT2s et du transport racinaire de NO₃ ... 56
III.2. bHLH093, un régulateur dans la signalisation en aval de la photosynthèse 58

CHAPITRE 4... 61

I. INTRODUCTION .. 63

II. RESULTATS ... 65

II.1. Caractérisation de l’impact de la mutation de l’enzyme 6PGL3 sur l’expression des transporteurs NRT2.1, NRT2.4 et NRT1.1/NPF6.3 .. 65
II.2. Rôle de la G6PD dans la régulation des transporteurs de NO₃ par la lumière et les sucres. 66
II.3. Étude des mécanismes de signalisation liés à l’OPPP .. 68
II.4. Recherche d’éléments moléculaires impliqués dans la voie de signalisation OPPP 71

III. DISCUSSION ... 72

III.1. Localisation du signal sucre impliqué dans la régulation des transporteurs de NO₃ par la voie OPPP72
III.2. Étude de la voie de signalisation dépendante de l’OPPP impliquée dans la régulation des transporteurs NRTs .. 74

CHAPITRE 5... 78

I. INTRODUCTION .. 79

II. RESULTATS ... 80

II.1. Régulation de NRT2.4 et NRT2.5 par le statut N de la plante ... 80
II.2. Régulation de NRT2.4 et NRT2.5 par le NO₃ ? .. 81
II.3. Recherche des éléments moléculaires impliqués dans la répression de NRT2.4 et NRT2.5 par le NO₃ 82
II.4. Régulation du HATS chez le riz en réponse au NO₃ ... 85

III. DISCUSSION ... 86

III.1. NRT2.4 et NRT2.5 ne semblent pas régulés par le statut N de la plante 86
III.2. La répression de NRT2.4 et NRT2.5 par le NO₃ implique des membres des familles NIGT1s et LBDS - 89
III.3. La régulation des transporteurs NRT2s par NO₃ est différente entre le riz et A. thaliana 92
Sommaire

CHAPITRE 6 —— 94

I. INTRODUCTION —— 96

II. RESULTATS —— 97
 II.1. Étude de la dynamique de phosphorylation de la sérine S501 chez des plantes sauvages ———— 97
 II.2. Impact de la phosphorylation Ser501 sur le développement racinaire ———— 98
 II.3. Test du rôle du clivage de la partie C-terminale de NRT2.1 dans la signalisation NOJ ———— 99

III. DISCUSSION —— 100
 III.1. Importance de la phosphorylation de la sérine S501 dans la régulation de l’activité de la protéine NRT2.1 ———— 100
 III.2. Rôle de la phosphorylation de S501 dans l’activité de senseur de NRT2.1 ———— 102

CHAPITRE 7 —— 106

CONCLUSIONS GENERALES ——————————————————————————————————————— 107

BIBLIOGRAPHIE —— 109
Remerciements

Outre le fait que la thèse soit une formation de recherche, par la recherche, ces trois années d'études supplémentaires restent avant tout une aventure humaine. Par humain, j'entends que j'ai pu côtoyer de près, comme de plus loin, un grand nombre de personnes durant ces quelques années, et je souhaiterais en premier lieu, faire un remerciement général à toutes ces personnes qui pourront se reconnaître dans ces mots.

Bien sûr, comme pour tout projet, des personnes prédominantes ont été particulièrement importantes, c'est pourquoi je fais un remerciement singulier aux personnes qui suivront :

À mon équipe « Intégration » dans laquelle je pense m'être particulièrement bien intégré « sans mauvais jeu de mot ». Je remercie son chef, Alain GOJON, ayant également la chance d'être le D.U. de BPMP (par « chance » Alain, il n'y a bien sûr aucun jeu de mots non plus...) et je le remercie donc de m'avoir accueilli pour travailler dans son laboratoire et son équipe.

Je tiens à remercier ma Chef, Laurence Lejay, pour m'avoir donné l'opportunité de réaliser une thèse à ses côtés, m'avoir permis de contribuer à sa recherche de façon dynamique, m'ayant notamment permis d'illustrer mon travail au travers de congrès et de publications. Bien sûr en échange, Laurence peut me remercier : de ma gentillesse, de ma bonté, de mon humilité et de mes conseils parfois avisés (BMW série 1, 118D...). Elle a effectivement beaucoup mûri à mes côtés (par mûrir, je n'entends pas forcément qu'elle a vieilli... enfin...bref.... Mais elle sait maintenant dire : « Pardon j'ai eu tort Valentin, tu as raison... tout ça, tout ça... »

Je remercie l'ensemble des membres de mon équipe, Liên Bach (reine de la microscopie), Sandra Cortijo (reine de la variabilité génétique), Antoine Martin (roi de la chromatine qui n'aime pas faire du VTT... avec Yann...), Cécile Fizame (reine de la commande R) et ma Jossia Boucherez (Jojo, technicienne de rang supérieur, que dis-je, exceptionnelle !!!), évidement Pascal Tillard (qui je le pense, coule des jours heureux pour sa retraite...), remplacé au pied levé par Benoit Lacombe que je remercie également, Léa-Lou Pimpare et Océane Cassan à qui je souhaite de réussir dans la suite de leur projet.

Je remercie également particulièrement mes compatriotes de galère, David Sere (que dire de cet homme...flemme) et Amel Maghiaoui (reine de la mécanique), sans qui cette thèse n'aurait pas eu le même goût... Issus de la même promos BFP (avec Marija Smokva... enfin bref...), nous ne pouvions que passer une très bonne thèse ensemble et je vous dis donc un grand merci mes Ami(e)s.

Je remercie évidemment mes collègues ++++. Merci à toi, Sandrine Chay, mon père adoptif Stéphane Mari (Qui est la projection de ma personne, en moins bien, dans 20 ans), l’équipe administrative (Perrine, Jorge...), l’équipe technique (tout particulièrement Hugues), les non-permanents, etc... et une nouvelle fois merci à toutes les équipes de mon laboratoire.
D’un point de vue personnel, il est souvent oublié le fait, qu’une thèse sans des proches omniprésents ne peut pas se passer dans les meilleures conditions.

Je remercie donc mes ami(e)s en particulier mes « frères » François Echavidre et Bastien Frayssinet. Je remercie également la moitié de mon François, Océane Gillon, pour avoir pris le temps de relire cette thèse... Je remercie par la même occasion ma famille, mes beaux-parents (Amar et Yamina) ainsi que Youri et Luce.

(Et bien sûr, pour que tu sois heureux : MERCI Smain Bendjemla)

Pour terminer, je remercie les deux femmes de ma vie :

Toi, ma maman bien sûr, qui a fait d’énormes sacrifices pour que j’aillle le plus loin possible dans mes études, qui a été à l’écoute et m’a toujours poussé à dépasser mes limites.

Et toi, le meilleur pour la fin, Anissa, la femme de ma vie avec qui je partage mon quotidien, avec qui j’ai évolué, et qui me fait évoluer chaque jour. Sans toi, je ne serais pas ce que je suis aujourd’hui....

Je vous dédis donc à toutes les deux ce texte de ces trois années de ma vie
Abréviations

6-AN : 6-Aminonicotinamide
ADN : Acide désoxyribonucléique
ARN : Acide ribonucléique
CBL : Calcineurin B-like protein
CDPK : Calcium-dependent protein kinase
CEP : C-terminally encode peptide
CEPD : CEP-downstream
cHATS : Constitutive HATS
cLATS : Constitutive LATS
Chip : Chromatin immunoprecipitation
chi1 : mutant NRT1.1/NPF6.3
CIPK : CBL-Interacting protein kinase
CK : Cytokinine
CLC : Chloride channel
ClO₃⁻ : Chlorate
CO₂ : Dioxyde de carbone
Col-0 : Ecotype sauvage Columbia
FT : Facteur de transcription
G₄.3 : Double mutant Nia1 / Nia2
G6P : Glucose-6-phosphate
GFP : Green fluorescence protein
Gln : Glutamine
Glu : Glutamate
GOGAT : Glutamate synthase (Glutamine oxoglutarate amino transférase)
GS : Glutamine synthétase
GUS : β-glucuronidase
G6PD : Glucose 6 phosphate déshydrogénase
6PGL : 6-phosphogluconolactonase
6PGD : 6-phosphogluconate déshydrogénase
H⁺ : Proton
HATS : High affinity transport systems
HXK : HexoKinase
HYS : Elongated hypocotyl 5
iHATS : Inducible HATS
iLATS : Inducible LATS
kDA : KiloDalton
KO : Knock-out
KD : Knock-down
LATS : Low affinity transport system
mM : Millimolaires
N : Azote
N₂O : Protéxide d’azote
NAXT : Nitrate Excretion Transporter
NADPH : Nicotinamide adenine dinucleotide phosphate
NH₄⁺ : Ammonium
NiR : Nitrite reductase
NLP7 : Nin like protein 7
NO₂⁻ : Nitrite
NO₃⁻ : Nitrate
NR : Nitrate reductase
NRT : Nitrate root transporter
OPPP : Oxidative pentose phosphate pathway
PNR : Primary nitrate response
qPCR : PCR quantitative
RL : Racine latérales
ROS : Reactive oxygen species
Ser : Sérine
SLAC : Slow anion channel
Thr : Thréonine
μM : Micromolaire
CHAPITRE 1

Introduction Bibliographique
I. La nutrition azotée des plantes

I.1. Contexte socio-économique et socio-écologique de l’azote

Pour leur croissance, les plantes ont besoin de macro- et micronutriments essentiels à leur bon développement. Parmi les macronutriments se trouve l’azote (N). Ce composant de la biomasse végétale représente à lui seul entre 1 et 5% de la matière sèche de la plante. Il entre dans la composition de nombreuses macromolécules biologiques telles que les protéines, les acides aminés, les acides nucléiques et la chlorophylle (Frink et al., 1999 ; Crawford & Forde, 2002). Bien que N représente 78% de la composition de l’atmosphère, cette ressource n’est malheureusement disponible que pour les plantes vivant en symbiose avec des bactéries fixatrices de N, qui convertissent le diazote (N₂) en ammonium (NH₄⁺). Par ailleurs, le N₂ atmosphérique est également utilisé pour la production d’engrais via le processus industriel Haber-Bosch. Dans les sols, la plupart du N disponible pour les plantes (>90%) provient de la décomposition de la matière organique (Haynes, 1986). Les formes de N disponibles dans le sol sont essentiellement les acides aminés, le nitrate (NO₃⁻) et NH₄⁺. Les acides aminés et NH₄⁺ s’accumulent dans les terres inondées (Sahrawat, 2005 ; Ishii et al., 2009), les sols acides rencontrés dans les forêts (Schimel & Chapin, 1996 ; Hofmockel et al., 2010 ; Metcalfe et al., 2011) et les sols froids de l’Arctique (Nadelhofer et al., 1992 ; Henry & Jefferies, 2002). Par contre, dans la plupart des sols cultivés des pays tempérés, le NO₃⁻ est la forme majoritaire car NH₄⁺ qui provient notamment des engrais, est rapidement oxydé en NO₃⁻ par la nitrification bactérienne (Glass et al., 1999).

L’importance de N pour la croissance et le développement des plantes amène en agriculture à une utilisation massive d’engrais N qui ne cesse de croître au fur et à mesure des années. En quarante ans, au niveau mondial, la quantité d’engrais N apportée a été multipliée par 7,4 et on estime que 236 Mt/an pourraient être répandus d’ici l’an 2050 (Tilman et al., 2011). Malheureusement, plus de 50% du NO₃⁻ apporté est perdu parce qu’il n’est pas absorbé par la plante (Hodge et al., 2000). En effet, les ions NO₃⁻ ne sont pas bien retenus par les particules du sol du fait de leur charge négative et sont donc très facilement lessivés par les eaux de pluie. Ce lessivage entraîne une pollution des nappes phréatiques ainsi que l’eutrophisation des systèmes aquatiques (Dion & Le Bozec, 1996 ; Hirel et al., 2007, 2011 ;
Figure 1 : Cinétique d’absorption de NO$_3^-$ en fonction de la concentration dans le milieu extérieur chez Arabidopsis thaliana. Transport à forte affinité (HATS) et transport à faible affinité (LATS). Figure adaptée de Siddiqi & Glass, 1993.
Galloway et al., 2008). À cela s’ajoutent des pertes non négligeables de N sous forme gazeuse, notamment de protoxyde d’azote (N₂O), qui est libéré dans l’atmosphère, augmentant considérablement l’effet de serre et réduisant la concentration d’ozone stratosphérique (Gruber & Galloway, 2008). Enfin, les engrais N coûtent cher économiquement et écologiquement car leur production, par le procédé Haber-Bosh nécessite beaucoup d’énergie (sous forme essentiellement de gaz naturel) (Masclaux-Daubresse et al., 2010). Dans ce contexte, il est donc impératif d’optimiser l’utilisation de N, en particulier de NO₃⁻ par les plantes afin de poursuivre l’amélioration des rendements agricoles tout en préservant l’environnement (Kant et al., 2011).

1.2. Utilisation de NO₃⁻ par les plantes

La répartition de NO₃⁻ dans le sol est très hétérogène et varie énormément suivant les saisons en lien avec des facteurs biotiques et abiotiques. L’étude de 77 sols agricoles à travers le monde a révélé que la concentration de NO₃⁻ dans les sols peut aller du micromolaire (µM) à plus de 50 millimolaires (mM) (Wolt, 1994). Pour s’adapter à ces variations de disponibilité en NO₃⁻ les plantes ont développé différents systèmes de transport racinaire. L’utilisation de l’isotope stable ¹⁵N, radioactif ¹³N ou d’un analogue radiomarqué de NO₃⁻ (³⁶ClO₃⁻) a montré que le prélèvement net de NO₃⁻ par les cellules racinaires est la résultante de deux flux unidirectionnels simultanés : un influx entrant et un efflux sortant (Morgan et al., 1973 ; Siddiqi & Glass, 1993).

Concernant l’influx de NO₃⁻, des études de cinétique ont révélé un profil d’absorption biphasique suggérant qu’il existe au moins deux systèmes d’absorption en fonction de la concentration externe de l’ion (Siddiqi et al., 1990) (Figure 1). Lorsque la concentration de NO₃⁻ dans le milieu extérieur est faible (< 0,5 mM), l’influx de NO₃⁻ dans la racine est essentiellement médié par des systèmes saturables définis comme systèmes de transport à forte affinité (High Affinity Transport Systems ou HATS). Lorsque la concentration de NO₃⁻ dans le sol dépasse 1 mM, l’influx augmente de manière linéaire et correspond à l’activité des systèmes de transport à faible affinité (Low Affinity Transport System ou LATS) (Crawford & Glass, 1998 ; Forde, 2000 ; Wang et al., 2012). Chez la plante modèle Arabidopsis thaliana, il a été montré que le LATS présente deux composantes : une constitutive (cLATS) et une
inducible (iLATS) (Tsay et al., 1993 ; Huang et al., 1999). De même pour le HATS, des études physiologiques ont mis en évidence : un système inducible par le NO$_3^-$ (iHATS) et un système constitutif (cHATS) qui est actif en l’absence de toute fourniture préalable de NO$_3^-$ à la plante (Glass & Siddiqi, 1995 ; Crawford & Glass, 1998 ; Wang et al., 2012). Dans tous les cas, le prélèvement de NO$_3^-$ par les racines se fait contre le gradient de potentiel électrochimique de cet ion et requiert de l’énergie, même lorsque la concentration dans le milieu extérieur est de l’ordre du mM (Crawford & Glass, 1998). Des mesures électrophysiologiques ont mis en évidence une dépolarisation transitoire de la membrane plasmique en réponse au NO$_3^-$. Ceci indique, que le mécanisme d’énératisation de l’absorption de NO$_3^-$ correspond à un symport dans lequel deux protons (H$^+$) et une molécule de NO$_3^-$ sont transportés à travers la membrane (Crawford & Glass, 1998). Ce résultat est également supporté par le fait que le transport de NO$_3^-$ est plus rapide en conditions acides et qu’il conduit à une alcalinisation du milieu extérieur (Dijkstra, 1962 ; McClure et al., 1990a, 1990b).

Une fois le NO$_3^-$ absorbé, il peut : (i) être réduit en nitrite (NO$_2^-$) par la Nitrate Réductase (NR) dans le cytoplasme des cellules racinaires, (ii) être excrété de la membrane plasmique vers l’apoplaste, (iii) être stocké dans le compartiment vacuolaire, ou (iv) être transloqué dans le xylème pour être distribué dans les tissus aériens (Crawford & Glass, 1998).

La réduction du NO$_3^-$ est un processus en deux étapes. Premièrement, le NO$_3^-$ est pris en charge dans le cytoplasme par la NR pour y être réduit en NO$_2^-$. Deuxièmement, le NO$_2^-$ est transporté dans les chloroplastes foliaires ou les plastes racinaires pour y être réduit en NH$_4^+$ via la Nitrite Réductase (NiR) (Bevers & Hageman, 1980). Dans de nombreuses plantes, lorsque les racines reçoivent de petites quantités de NO$_3^-$, ce NO$_3^-$ est principalement réduit dans les tissus racinaires. À mesure que la concentration en NO$_3^-$ augmente, une grande partie du NO$_3^-$ absorbé est transférée dans les parties foliaires où il est assimilé (Marschner, 1995).

Le NH$_4^+$ produit lors de l’assimilation de NO$_3^-$ est un composé toxique à faible concentration qui ne peut pas s’accumuler dans les cellules végétales. Son assimilation ou sa ré-assimilation sont donc des nécessités vitales pour les cellules. Deux enzymes, la glutamine synthétase (GS) et la glutamate synthase (GOGAT) catalysent le transfert de NH$_4^+$ dans une molécule organique. Le NH$_4^+$ est incorporé au glutamate (Glu) par la GS pour former la glutamine (Gln). Le groupement amine de la Gln est ensuite transféré à un acide cétonique, l’α-cétoglutarate par la GOGAT. Deux molécules de Glu sont ainsi formées, l’une est utilisée comme substrat de la GS pour la formation de Gln, l’autre est une source de N organique pour
Figure 2 : Localisation tissulaire des différents transporteurs de NO3 caractérisés chez la plante modèle Arabidopsis thaliana.
les réactions de transamination qui aboutissent à la synthèse de l’ensemble des acides aminés (Coruzzi & Last, 2000 ; Loqué et al., 2005).

II. Caractérisation moléculaire des systèmes de transport de NO$_3^-$

Au niveau moléculaire, quatre familles multigéniques impliquées dans le transport de NO$_3^-$ ont été identifiées : (i) la famille NRT1/PTR (Nitrate Root Transporter 1/ Peptide Root Transporter) dont la nomenclature a récemment été modifiée en NPF (NRT1/PTR Family) (Léran et al., 2014), (ii) la famille NRT2/NNP (Nitrate Root Transporter 2/ Nitrate Nitrite Porter), (iii) la famille CLC (Chloride Channel), et (iv) la famille SLAC1/SLAH (Slow Anion Channel 1 et Associated Homolog) (Negi et al., 2008 ; Barbier-Brygoo et al., 2011 ; Wang et al., 2012 ; Krapp et al., 2014).

Contrairement aux familles NRT1/PTR/NPF et NRT2/NNP, les membres des familles CLC et SCLAC1/SLAH sont actifs seulement dans les parties aériennes de la plante et ne participent donc pas au prélèvement de NO$_3^-$ depuis la solution du sol.

Mon travail de thèse étant axé sur le prélèvement de NO$_3^-$ par les racines, j’ai choisi de porter un accent particulier sur les membres composant les familles NRT1/NPF/PTR et NRT2/NNP dans le cadre de cette introduction (Figure 2).

Les analyses comparatives des séquences protéiques NRT1/NPF/PTR et NRT2/NNP montrent une structure similaire, à savoir 12 domaines transmembranaires. Ces 12 domaines sont subdivisés en deux groupes de 6 domaines reliés entre eux par une boucle cytosolique. Cependant, il n’y a aucune homologie de séquence entre ces deux familles de transporteurs (Orsel et al., 2002 ; Okamoto et al., 2003 ; Von Wittgenstein et al., 2014).

II.1. La famille NRT1/PTR/NPF

La famille NRT1/PTR/NPF comporte 53 gènes chez A. thaliana dont seulement 13 ont pour le moment une fonction identifiée (Buchner & Hawkesford, 2014 ; O’Brien et al., 2016). Ces gènes codent pour des transporteurs de NO$_3^-$ et/ou d’autres molécules tels que des peptides (Komarova et al., 2008), des acides aminés (Zhou et al., 1998), du NO$_2^-$ (Sugiura et al., 2007), des glucosinolates (Nour-Eldin et al., 2012) ou des hormones (Krouk et al., 2010b ;
Kanno et al., 2012 ; Chiba et al., 2015 ; Tal et al., 2016 ; Corratgé-Faillie & Lacombe, 2017). Ces transporteurs sont présents chez de nombreuses espèces de bactéries, de champignons, d’animaux ou de plantes supérieures (Von Wittgenstein et al., 2014). Parmi les 13 membres caractérisés et identifiés comme transportant le NO3⁻ chez A. thaliana seuls NRT1.1/NPF6.3 et NRT1.2/NPF4.6 sont connus pour être impliqués dans l’absorption racinaire de NO3⁻ (Wang et al., 2018).

NRT1.1/NPF6.3 est le premier transporteur racinaire de NO3⁻ identifié grâce à un crible génétique utilisant des plantes cultivées sur un milieu contenant du chlorate (ClO₃⁻). Le ClO₃⁻ est un analogue de NO₃⁻, qui, lorsqu’il est réduit par la NR, se transforme en chlorite (ClO₂⁻), une molécule toxique pour les cellules végétales. Par conséquent, seules les plantes mutantes pour NRT1.1/NPF6.3 (mutant chl1) ou pour la Nitrate Réductase (mutant g’4.3) sont capables d’être sélectionnées sur ce type de milieu (Tsay et al., 1993). La caractérisation de NRT1.1/NPF6.3 montre que ce transporteur est exprimé à la fois dans les racines (Huang et al., 1996 ; Remans et al., 2006) et les tissus aériens (Guo et al., 2001, 2003). Contrairement à tous les transporteurs de la famille NRT1/PTR/NPF d’A. thaliana caractérisés à ce jour (appartenant aux LATS), NRT1.1/NPF6.3 est un transporteur de NO₃⁻ à double affinité avec un Km d’environ 50 μM pour le HATS et 5 mM pour le LATS (Liu et al., 1999 ; Wang et al., 1998). Cette dualité de compétences lui permettant d’être un HATS sur faible NO₃⁻ et un LATS sur fort NO₃⁻ est due à la phosphorylation du résidu Thr101 situé dans la partie 5’ de la protéine. Lorsque la concentration en NO₃⁻ dans le milieu extérieur diminue, ce résidu, est phosphorylé par la protéine kinase CIPK23 ce qui conduit à un « switch » de l’affinité, transformant NRT1.1/NPF6.3 en transporteur de type HATS (Ho et al., 2009). La cristallographie de la protéine NRT1.1/NPF6.3 a montré que l’état de phosphorylation de Thr101 engendrait un état monomérique ou homodimérique de la protéine influençant directement son affinité pour le NO₃⁻ (Sun et al., 2015). Cette particularité confère aux plantes une adaptabilité accrue à l’évolution des concentrations externes en NO₃⁻ (Liu et al., 1999 ; Tsay et al., 2003).

La protéine NRT1.2/NPF4.6 comme NRT1.1/NPF6.3 est exprimée dans les cellules racinaires de l’épiderme et est impliquée dans le prélèvement de NO₃⁻ à faible affinité avec un Km d’environ 5,9 mM (Huang et al., 1999). À la différence de NRT1.1/NPF6.3, NRT1.2/NPF4.6 n’est pas sujet à des variations d’expression en fonction des conditions environnementales. Du fait de cette caractéristique, ce transporteur est alors considéré comme constitutif et est
le seul cLATS connu pour le moment (Huang et al., 1999 ; Krouk et al., 2006 ; Tsay et al., 2007 ; Wang et al., 2012).

Enfin, la protéine NAXT1/NPF2.7 a été identifiée comme un transporteur d’efflux de NO₃⁻. Le rôle de cette fonction d’excrétion de NO₃⁻, de la plante vers le sol, n’est pour le moment pas encore bien comprise d’un point de vue physiologique (Segonzac et al., 2007 ; Wang et al., 2012). Toutefois, le gène est exprimé dans la graine où il semble contrôler la teneur en NO₃⁻ et la dormance.

Parmi les autres membres de cette famille identifiés comme transportant le NO₃⁻, la protéine NRT1.4/NPF6.2 est située dans les membranes des pétioles des feuilles. Ce transporteur permet la distribution de NO₃⁻ dans les tissus aériens (Chiu et al., 2004 ; Wang et al., 2012). La protéine NRT1.5/NPF7.3 est localisée au niveau du péricycle. Ce transporteur bidirectionnel de NO₃⁻ (Influx/Efflux) est impliqué dans la charge du xylème permettant la translocation du NO₃⁻ des racines vers les parties aériennes (Lin et al., 2008 ; Wang et al., 2012 ; Chen et al., 2012). Une fonction similaire est attribuée à NRT1.8/NPF7.2 et NRT1.9/NPF2.9, qui sont respectivement localisés dans la membrane plasmique des cellules parenchymateuses du xylème et des cellules compagnes du phloème (Li et al., 2010 ; Wang et al., 2012). Comme NRT1.5/NPF7.3, les transporteurs NRT1.8/NPF7.2, NRT1.9/NPF2.9 ainsi que NPF2.3 sont impliqués dans la distribution du NO₃⁻ à travers la plante. NRT1.8/NPF7.2 décharge le NO₃⁻ du xylème au niveau des racines, contrairement à NRT1.9/NPF2.9 qui lui a un rôle dans la charge du phloème au niveau des parties aériennes. NPF2.3, quant à lui, est exprimé dans les cellules du péricycle racinaire où il se charge de la translocation du NO₃⁻ des racines vers les feuilles dans le cadre d’une réponse au stress salin (Tauchy et al., 2015).

La protéine NRT1.6/NPF2.12 est localisée dans la membrane plasmique des siliques et du funicule de l’ovule. L’utilisation de mutants du transporteur NRT1.6/NPF2.12 a montré une réduction significative de la quantité de NO₃⁻ interne à la graine mature et un taux d’avortement augmenté (Almagro et al., 2008). Ces observations ont conduit les auteurs de ce travail à définir ce transporteur comme impliqué dans le chargement des graines en N. En complément, il a été montré très récemment que NRT1.6/NPF2.12 était également important dans la remobilisation du NO₃⁻ au sein des tissus végétatifs (Babst et al., 2019). Ce travail s’est accompagné de la caractérisation d’un nouveau membre de la famille NRT1/PTR/NPF, à savoir NPF7.1, semblant jouer un rôle similaire de remobilisation de NO₃⁻ des tissus âgés vers les tissus plus jeunes.
Pour finir, les protéines NRT1.7/NPF2.13, NRT1.11/NPF1.2 et NRT1.12/NPF1.1 sont également localisées au niveau des parties aériennes. Comme NPF7.1, le rôle qui leur a été attribué est une remobilisation du NO₃⁻ des tissus âgés vers les jeunes feuilles (Fan et al., 2009 ; Wang et al., 2012 ; Hsu & Tsay, 2013).

Dans l’ensemble, la plupart de ces transporteurs à faible affinité pour le NO₃⁻ ont montré en système hétérologue qu’en plus du NO₃⁻, ils pouvaient transporter également différentes hormones telles que l’auxine, l’acide abscissique ou les gibbérellines pour ne citer qu’elles (Corratgé-Faillie & Lacombe, 2017).

II.2. La famille NRT2/NNP

Concernant la famille NRT2/NNP, le premier membre cloné a été le gène CRNA d’*Aspergillus nidulans* identifié comme étant un transporteur fonctionnel de NO₃⁻/NO₂⁻ lorsqu’il est exprimé en système hétérologue d’ovocytes de *Xénopo*pe, avec un Km d’environ 20 μM (Zhou et al., 2000). Le mutant crna a été isolé, comme le mutant *chl1 (nrt1.1)* d’*A. thaliana*, sur la base de sa résistance au ClO₃⁻ (Brownlee & Arst, 1983 ; Unkles et al., 1991). Par la suite, le premier gène impliqué dans le transport de NO₃⁻/NO₂⁻ chez les algues *Chlamydomonas reinhardtii, CrNRT2.1*, a été identifié par complémentation d’un mutant de délétion (Quesada et al., 1994). La comparaison des séquences d’acides aminés entre CRNA et CrNRT2.1 a révélé des régions hautement conservées inter-espèce. Cette caractéristique a été exploitée pour identifier et cloner les gènes NRT2s dans différentes espèces de plantes terrestres et de microalgues (Cai et al., 2008 ; He et al., 2004 ; Krapp et al., 1998 ; Orsel et al., 2002).

Le clonage de gènes NRT2s dans une plante supérieure a été réalisé pour la première fois chez l’orge (Trueman et al., 1996). Le nombre de transporteurs de NO₃⁻/NO₂⁻ de haute affinité varie entre les espèces, de deux gènes chez *Nicotiana plumbaginifolia* à de grandes familles multigéniques, comme par exemple chez l’orge (Trueman et al., 1996).

Concernant *A. thaliana*, 7 membres ont été décrits dans la famille NRT2 (Krapp et al., 2014 ; Wang et al., 2018). Parmi eux, 4 membres à savoir NRT2.1, NRT2.2, NRT2.4 et NRT2.5 ont été identifiés comme ayant une fonction de transporteur racinaire de NO₃⁻.

NRT2.1 est considérée comme le transporteur majoritaire du iHATS. La mutation perte de fonction du gène NRT2.1 engendre sur faible N une réduction allant jusqu’à 75% du
prélèvement de NO$_3^-$ démontrant l’importance de cet acteur moléculaire (Cerezo et al., 2001; Filleur et al., 2001 ; Li et al., 2007; Little et al., 2005). Ceci a pour conséquence de limiter fortement la croissance du mutant nrt2.1 sur de faibles concentrations de NO$_3^-$ (Li et al., 2007; Orsel et al., 2004). La protéine NRT2.1 est localisée dans les cellules corticales et épidermiques, en accord avec un rôle dans le transport de NO$_3^-$ du sol vers la racine (Wirth et al., 2007).

Le transporteur NRT2.2 est également exprimé dans les tissus racinaires mais beaucoup plus faiblement que NRT2.1. Il semble ne jouer qu’un rôle mineur mais complémentaire à NRT2.1 dans le transport racinaire de NO$_3^-$. L’emploi d’un double-mutant pour ces deux gènes indique un faible effet additif de la mutation nrt2.2 par rapport au simple mutant nrt2.1, se traduisant par une baisse de l’influx de NO$_3^-$ autour de 80% (Filleur et al., 2001 ; Li et al., 2007).

Plus récemment, NRT2.4 et NRT2.5 ont été également impliqués dans le transport racinaire de NO$_3^-$. NRT2.4 se révèle être, par comparaison à NRT2.1, un transporteur à très forte affinité car le prélèvement de NO$_3^-$ à de très faible concentration (25 μM) est diminué dans le mutant nrt2.4 (Kiba et al., 2012). NRT2.4 est exprimé au niveau des cellules épidermiques et des cellules à proximité du phloème (Orsel et al., 2002 ; Kiba et al., 2012). NRT2.5, quant à lui, pourrait correspondre au cHATS décrit ci-dessus puisqu’il devient le transporteur HATS majoritaire après une longue période de carence en N qui supprime l’expression des iHATS (Lezhneva et al., 2014). Initialement identifiées dans les parties aériennes (Mantelin et al., 2006 ; Wu et al., 2012), des lignées rapportrices GUS (β-glucuronidase) ont montré non seulement une expression dans les tissus vasculaires aériens, mais également dans les cellules épidermiques et corticales de la racine (Lezhneva et al., 2014).

Les trois autres membres de la famille NRT2s ne sont pas localisés dans la racine. NRT2.6 est localisé au niveau des parties aériennes (Okamoto et al., 2003 ; Kotur et al., 2012). Le seul rôle attribué à NRT2.6 semble, pour le moment, être dans la réponse aux pathogènes (Dechorgnat et al., 2012 ; Kechid et al., 2013). NRT2.3 est lui, exprimé dans les feuilles à un stade reproducteur de la plante mais son rôle n’a pas encore été défini (Orsel et al., 2002). Enfin, NRT2.7 est présent au niveau des feuilles et des membranes du tonoplaste dans la graine. Il semble contribuer à leur chargement en NO$_3^-$ (Orsel et al., 2002 ; Chopin et al., 2007 ;
David et al., 2014). L’expression de NRT2.6 et NRT2.7 semble être constitutive (chATS) (Loqué et al., 2003).

En plus des NRT2/NNP décrit chez A. thaliana, une analyse fonctionnelle utilisant des ovocytes de Xénépe a révélé que, à l’exception de la levure Hansenula polymorpha et des champignons filamentés, l’activité des transporteurs NRT2s dépend largement d’une protéine partenaire, NAR2 (NRT3) (Orsel et al., 2006 ; Tong et al., 2005 ; Zhou et al., 2000). Cette protéine a été découverte initialement chez C. reinhardtii où les transporteurs CrNRT2.1 et CrNRT2.2 nécessitent CrNAR2 pour transporter le NO₃⁻ (Quesada et al., 1994 ; Zhou et al., 2000). Chez A. thaliana, 2 gènes NAR2/NRT3 ont été identifiés (Okamoto et al., 2006 ; Orsel et al., 2006). Des expériences de double-hybride en levure et une étude de complémentation de fluorescence biomoléculaire (BiFC) ont montré que 6 protéines NRT2/NNP d’A. thaliana (à l’exception de NRT2.7) interagissent avec NAR2.1/NRT3.1 dans la membrane plasmique (Kotur et al., 2012). De plus, lorsque NAR2.1/NRT3.1 est co-exprimée en système hétérologue, les activités de transport de NO₃⁻ de NRT2.1, NRT2.2 et NRT2.5 sont considérablement améliorées (Kotur et al., 2012).

Il a été démontré que l’interaction NRT2.1-NAR2.1/NRT3.1 entraîne la formation d’un complexe d’environ 150 kDA. Il est suggéré que ce complexe regroupe deux sous-unités de NRT2.1 et NAR2.1/NRT3.1 (Yong et al., 2010). Un complexe de taille similaire a été décrit pour NRT2.5 (Kotur et al., 2012 ; Kotur & Glass, 2015). Cette interaction protéine-protéine entre les transporteurs NRT2s et NAR2 a également été identifiée chez de nombreuses espèces d’intérêt agronomique comme le riz (Feng et al., 2011 ; Yan et al., 2011 ; Liu et al., 2014 ; Chen et al., 2016 ; Chen et al., 2017), le blé (Orsel et al., 2006 ; Bajgain et al., 2018 ; Wang et al., 2020), l’orge (Tong et al., 2005 ; Bajgain et al., 2018) ou le maïs (Sorgonà et al., 2011 ; Lupini et al., 2016 ; Pii et al., 2016) ainsi que des espèces d’intérêt économique comme la chrysanthème (Gu et al., 2014).

Dans l’ensemble, la concentration de NO₃⁻ dans les sols cultivés étant faible, il est généralement admis que la majorité du prélèvement de NO₃⁻ réalisé par la plante fait intervenir les transporteurs à forte affinité de la famille NRT2s. Ce rôle prépondérant du HATS a orienté l’ensemble de mon travail de thèse.
Figure 3 : Représentation schématique des régulations connues du transport racinaire de NO$_3$.
III. Régulation de l’absorption racinaire de NO$_3^-$

En raison de l’importance de N pour leur croissance et leur développement, les plantes ont évolué pour s’adapter aux variations de la disponibilité externe et interne en N. Ainsi, l’absorption racinaire de NO$_3^-$ est modulée à la fois par les besoins physiologiques de la plante en N, mais également par les variations de concentration de NO$_3^-$ du sol.

On distingue classiquement trois grands types de régulation du prélèvement de NO$_3^-$: (i) l’induction par le NO$_3^-$ lui-même, (ii) la répression par le statut N de la plante et (iii) l’induction par les sucres produits par la photosynthèse qui permet : l’intégration de l’acquisition de N par les racines, et la production de C par les parties aériennes pour la synthèse des acides aminés composés à la fois de C et N (Figure 3) (Crawford & Glass, 1998 ; Gojon et al., 2009 ; Ruffel et al., 2014).

III.1. Régulation par NO$_3^-$

La régulation des systèmes de transport par le NO$_3^-$ a été l’objet d’un grand nombre de recherches au cours des vingt dernières années. Elle se traduit par une augmentation rapide de l’activité du iHATS lorsque les plantes perçoivent du NO$_3^-$ pour la première fois (Glass et al., 2002). Cette régulation à court terme, est communément appelée PNR pour « Primary NO$_3^-$ Response » (Medici & Krouk, 2014). La PNR est le mécanisme de régulation le plus documenté dans la littérature. Le rôle spécifique du NO$_3^-$ dans cette régulation a été démontré grâce à l’utilisation du double mutant nia1-nia2 (g’4.3) d’A. thaliana, dans lequel, il n’y a plus ou peu d’assimilation de NO$_3^-$ dans ces plantes, l’induction des transporteurs par le NO$_3^-$ est toujours observée, ce qui démontre l’existence d’une régulation indépendante des produits issus de l’assimilation de NO$_3^-$ (Tsay et al., 1993 ; Wang et al., 2000 ; Krouk et al., 2010).

Parmi les gènes induits par le NO$_3^-$, on retrouve entre autres les transporteurs de NO$_3^-$ NRT2.1, NRT1.1/NPF6.3 et le partenaire protéique NAR2.1/NRT3.1 ainsi que les gènes impliqués dans l’assimilation de NO$_3^-$ (Nia1, Nia2, Nir) (Crawford & Glass, 1998 ; Lejay et al., 1999 ; Wang et al., 2004). Un ensemble d’études transcriptomiques a également montré que cette régulation transcriptionnelle par le NO$_3^-$ implique plus de 2000 gènes soit environ 10% du génome d’A. thaliana (Gutierrez et al., 2007 ; Krouk et al., 2010 ; Scheible et al., 2014 ;
Wang et al., 2000). En plus des gènes liés à l’absorption et l’assimilation de NO₃⁻, on retrouve plusieurs acteurs impliqués dans diverses voies métaboliques, dans la transcription et la maturation d’ARNm, ou encore dans la synthèse d’hormones démontrant une reprogrammation globale à l’échelle du génome (Castaing et al., 2011 ; Krouk et al., 2010).

Les recherches pour comprendre les mécanismes associés à la PNR ont montré que la perception de NO₃⁻ par la plante dépend du transporteur NRT1.1/NPF6.3. Il a, en effet, été montré que la mutation perte de fonction du gène NRT1.1/NPF6.3 (mutant chl1.5) engendre une perte importante de l’induction des gènes en réponse au NO₃⁻ et en particulier du transporteur NRT2.1 (Ho et al., 2009). Il a de plus été montré, à l’aide d’un mutant de substitution de NRT1.1/NPF6.3 appelé P492L (ou chl1.9), que ce n’était pas le transport de NO₃⁻ par NRT1.1/NPF6.3 qui était à l’origine du signal impliqué dans la PNR. En effet, la mutation chl1.9 engendre la séquestration de NRT1.1/NPF6.3 au niveau des membranes du Rétilcum Endoplasmique (RE), inhibant ainsi son activité de transporteur de NO₃⁻ (Bouguyon et al., 2015). Cependant, cette séquestration n’empêche pas la régulation transcriptionnelle des gènes cibles de la PNR suite à l’ajout de NO₃⁻, indiquant que la plante continue de percevoir le NO₃⁻ externe. Ceci a valu à NRT1.1/NPF6.3 d’être dénommé « transceptror » de NO₃⁻ pour sa capacité à la fois de transporter le NO₃⁻ et de jouer un rôle de récepteur impliqué dans la voie de signalisation lié à la PNR (Gojon et al., 2011). Comme pour l’activité de transport, cette fonction de senseur est modulée par la phosphorylation du résidu Thr101 par la protéine kinase CIPK23 (Bouguyon et al., 2012, 2015).

Toutefois, les études menées, en particulier sur la régulation de NRT2.1 par le NO₃⁻ révèlent que cette voie de signalisation est particulièrement complexe. En effet, NRT1.1/NPF6.3 peut à la fois induire l’expression de NRT2.1 à travers la PNR mais il peut également engendrer la répression de NRT2.1 quand le NO₃⁻ est fourni à forte concentration pendant plusieurs jours (Ho et al., 2009 ; Krouk et al., 2006 ; Munos et al., 2004). La seule différence constatée est que la répression de NRT2.1 par le NO₃⁻ requiert la forme phosphorylée de NRT1.1/NPF6.3 (Bouguyon et al., 2015). Comme pour l’activité de transport de NRT1.1/NPF6.3, l’induction de NRT2.1 en réponse à la PNR comporte deux phases : une phase à forte affinité (faible concentration en NO₃⁻) qui conduit à une induction limitée de NRT2.1 et une phase à faible affinité (forte concentration en NO₃⁻) qui aboutit à l’induction maximale de NRT2.1 (Ho et al., 2009). Une autre protéine kinase, CIPK8, qui est induite au niveau transcriptionnel en réponse au NO₃⁻ participe à l’induction de NRT2.1 par le NO₃⁻ quand
Figure 4 : Représentation schématique du mécanisme de signalisation et des acteurs moléculaires identifiés dans la réponse primaire au NO$_3$ (PNR).
NRT1.1/NPF6.3 n’est pas phosphorylé. Toutefois, les cibles de CIPK8 ne sont pas encore connues (Hu et al., 2009).

La recherche des acteurs moléculaires en aval de la perception de NO\textsubscript{3}− via NRT1.1/NPF6.3 a permis d’identifier de nombreux élément participant à la PNR. Parmi ces découvertes, la plus marquante est celle d’un facteur de transcription (FT) appelé NLP7 (Nin Like Protein 7) qui a été identifié chez *A. thaliana* par homologie avec NIT2 chez *Chlamydomonas* (Schnell & Lefebvre, 1993 ; Camargo et al., 2007). La mutation perte de fonction de NLP7 entraîne l’arrêt de l’induction des gènes associés à la PNR (Castaing et al., 2009 ; Wang et al., 2009). Ce qui fait la particularité du mécanisme impliqué dans cette réponse, est, que l’ajout de NO\textsubscript{3}− n’influence pas la transcription de NLP7 mais agit sur sa localisation cellulaire (Figure 4). L’emploi de lignées rapportrices GFP (*Green Fluorescence Protein*) a montré qu’en l’absence de NO\textsubscript{3}−, NLP7 est exclu du noyau et se retrouve dans le cytosol, inhbitant ainsi sa fonction. Au contraire, la présence de NO\textsubscript{3}− induit la translocation de la protéine NLP7 dans le noyau ce qui induit la transcription de l’ensemble des gènes régulés par le NO\textsubscript{3}− (Marchive et al., 2013). Des études d’Immunoprécipitation de la Chromatine couplée à un séquençage (Chip-Seq) ont renforcé ce modèle en montrant une interaction directe de NLP7 et de son homologue NLP6 avec le promoteur de plusieurs gènes sensibles au NO\textsubscript{3}−, dont NRT2.1 (Konishi & Yanagisawa, 2013 ; Marchive et al., 2013). La translocation de NLP7 dans le noyau est associée à la phosphorylation du résidu Ser205 par les kinases CDPK10, CDPK30 et CDPK32 (*Calcium-Dependent Protein Kinase 10/30/32*) (Figure 4) (Marchive et al., 2013 ; Liu et al., 2017). Cette phosphorylation intervient quelques minutes après le transfert des plantes sur une solution contenant du NO\textsubscript{3}− (Liu et al., 2017). De manière intéressante, la famille CDPKs est une famille de kinase connue pour être activée par le calcium (*Ca2+* et Riveras et al., 2015) ont montré l’apparition de vague calcique dépendante de NRT1.1/NPF6.3 en réponse au NO\textsubscript{3}− (Cheng et al., 2002 ; Hrabak et al., 2003). Ces résultats permettent de faire l’hypothèse que l’activation des CDPKs qui régulent NLP7, pourrait être liée à une signalisation calcique dépendante de NRT1.1/NPF6.3 en réponse à NO\textsubscript{3}− (Figure 4). Cependant, cette hypothèse reste encore à démontrer.

En ce qui concerne la régulation des transporteurs de NO\textsubscript{3}− un autre composant de la PNR appelé NRG2 (*Nitrate Regulatory Gene 2*) a été identifié grâce à une approche de génétique inverse (Xu et al., 2016). Les analyses génétiques et moléculaires ont révélé que
NRG2 module l’expression de \textit{NRT1.1/NPF6.3} en réponse à l’ajout de \textit{NO$_3^-$} et qu’il agit donc en amont de \textit{NRT1.1/NPF6.3} pour la régulation de \textit{NRT2.1} (Xu \textit{et al.}, 2016).

\textbf{III.2. Régulation par le statut N de la plante}

Les données physiologiques indiquent que la modulation du statut/métabolsme \textit{N} de la plante impacte le prélèvement racinaire de \textit{NO$_3^-$}. En effet, après l’induction rapide des systèmes de transport suite à l’exposition des plantes au \textit{NO$_3^-$} décrite dans la partie précédente, il existe une répression de ces mêmes systèmes de transport après une exposition prolongée au \textit{NO$_3^-$}. Cette régulation a été observée chez de nombreuses espèces de plantes et a été attribuée à une répression des systèmes de transport de \textit{NO$_3^-$} par les métabolites \textit{N} issus de l’assimilation de \textit{NO$_3^-$} (Muller \& Touraine, 1992 ; Lee \textit{et al.}, 1992 ; King \textit{et al.}, 1993 ; Lejay \textit{et al.}, 1999). Chez \textit{A. thaliana} ce mécanisme réprime les transporteurs \textit{NRT2.1}, \textit{NRT2.2}, \textit{NRT2.4} et \textit{NRT2.5} dans des conditions de fort \textit{N} (Kiba \textit{et al.}, 2012 ; Lejay \textit{et al.}, 1999 ; Lezhneva \textit{et al.}, 2014 ; Zhuo \textit{et al.}, 1999). Cette répression est levée lorsque les plantes subissent une carence en \textit{N}, entrainant une forte augmentation de la capacité du HATS qui améliore l’efficacité d’absorption de \textit{NO$_3^-$}.

Pour \textit{NRT2.1}, différentes expériences ont permis de montrer que la répression observée en conditions de fort \textit{N} dépend du statut \textit{N} de la plante. Tout d’abord, l’utilisation du double-mutant d’\textit{A. thaliana} pour les deux isoformes de NRs (g’4.3), dans lequel il n’y a pratiquement plus d’assimilation de \textit{NO$_3^-$}, a montré une levée de la répression de \textit{NRT2.1} dans ce mutant par rapport à des plantes sauvages lorsqu’elles sont transférées sur un milieu contenant uniquement du \textit{NO$_3^-$}. Cette réponse au niveau moléculaire est corrélée à une augmentation de l’influx de \textit{NO$_3^-$} (Lejay \textit{et al.}, 1999). De plus, l’apport exogène de différents acides aminés dont la Gln, qui est la forme majeure de stockage de \textit{N} organique dans la plante, réprime l’expression de \textit{NRT2.1} (Krapp \textit{et al.}, 1998 ; Zhuo \textit{et al.}, 1999). Ces expériences supportent l’hypothèse d’une régulation du HATS par le statut \textit{N} via l’augmentation des produits d’assimilation de \textit{N}. Par la suite, des expériences de « split-root » ont montré qu’il s’agissait d’une régulation systémique. En effet, lorsqu’une partie du système racinaire est soumis à une carence en \textit{N} alors que l’autre partie reste alimentée en \textit{NO$_3^-$}, l’expression de \textit{NRT2.1} est
Figure 5 : Représentation schématique des mécanismes de régulation connus pour NRT2.1 en réponse au statut N de la plante et à la quantité de NO₃⁻ dans le milieu extérieur. (A), Signalisation réprimant l’expression de NRT2.1 sur une condition riche en NO₃⁻ (en bleu). (B), Régulation systémique de NRT2.1 identifié dans le cadre d’un apport hétérogène en NO₃⁻ (culture en « split-root »). (C), Signalisation stimulant l’expression de NRT2.1 sur une condition pauvre en NO₃⁻. Les flèches bleues représentent un signal inductif tandis que les traits rouges représentent un signal répressif.
spécifiquement induite dans la partie du système racinaire qui reste en présence de NO$_3^-$ (Gansel et al., 2001).

Un ensemble de résultats indique que les cytokinines (CK) pourraient jouer un rôle central dans cette régulation systémique (Ruffel et al., 2011, 2016 ; Sasaki et al., 2014 ; Guan, 2017 ; Poitout et al., 2018). En effet, dans le triple mutant *ipt3, 5, 7* (IsoPentenylTransferase) la synthèse des CKs est diminuée ce qui affecte la signalisation systémique (Miyawaki et al., 2006 ; Ruffel et al., 2011). Ces études suggèrent que le NO$_3^-$ stimule la synthèse des CKs en régulant à la hausse le gène *IPT3*, gène codant pour une enzyme clé de la biosynthèse des CKs (Sakakibara et al., 2006). En « *split-root* », les conditions hétérogènes d’apport de NO$_3^-$ entraînent une baisse de l’accumulation de CKs dans les feuilles, ce qui déclenche une reprogrammation génique qui induirait un signal systémique (Poitout et al., 2018). Ce signal pourrait être lié à la concentration en acides aminés puisque les CKs dans les feuilles induisent la synthèse de Gln et de Glu (Poitout et al., 2018) (Figure 5). Malgré tout, le signal systémique régulateur dérivant des CKs reste à déterminer.

Des études récentes ont également révélé l’existence d’un autre mécanisme de régulation systémique faisant intervenir différents acteurs de type CEP (C-terminally Encode Peptide) (Okamoto et al., 2016). Contrairement à la signalisation liée aux CKs, les CEPs en « *split-root* » sont synthétisés dans la partie du système racinaire qui est carencée en N (Figure 5). Ces peptides sont ensuite transportés dans les feuilles où ils sont reconnus comme signal par un récepteur CEPR1 type LRR (*CEP-Recepter kinase CEP1*) (Tabata et al., 2014). Ceci conduit à la production de deux polypeptides CEPD1 et CEPD2 (respectivement *CEP-Downstream 1* et *2*) qui sont membres de la famille CC-Type Glutaredoxin (ROXY) (Ohkubo et al., 2017). Ces deux polypeptides sont transportés dans les racines où ils activent l’expression de *NRT2.1* dans la partie du système racinaire approvisionnée en NO$_3^-$ dans le cas, la source du signal systémique est liée à l’absence localisée de NO$_3^-$ au niveau du système racinaire et n’a pas de lien direct avec le statut N général de la plante. Cependant, des résultats récents attestent que la baisse du statut N stimule également l’expression dans les parties foliaires et la relocalisation dans les parties racinaires d’un autre petit peptide appelé CEPD2-Like (*CEP-Downstream-Like 2*) (Ota et al., 2020). CEPD2-Like stimule l’expression de plusieurs gènes en lien avec l’absorption de NO$_3^-$ dont *NRT2.1, NRT2.2, NRT1.1/NPF6.3, NAR2.1/NRT3.1*, ainsi que la distribution de NO$_3^-$ dans la plante via la régulation de *NRT1.5/NPF7.3*. L’emploi d’un triple mutant *cep1-cep2-cep3-like* a montré une réduction accrue de la biomasse par
comparaison à des plantes sauvages ou double-mutantes pour CEPD1 et CEPD2. La complémentation de ce triple mutant avec CEPD2-Like permet la restauration phénotypique de la biomasse initialement observée dans le double-mutant cepd1-cepd2 indiquant l’existence de deux voies de régulation distinctes (Ota et al., 2020).

L’ensemble de ces données indique donc une diversité des voies de régulation, par le métabolisme N, des transporteurs de NO₃⁻ avec : i) une régulation systémique liée à CEPD1 et CEPD2 qui dépend de l’absence de N dans le milieu extérieur et ii) une régulation dépendante du statut N de la plante et qui fait intervenir potentiellement CEPD2-Like et/ou les CKs (Figure 5).

De plus, comme indiqué en amont (partie III.1.), ces deux voies de signalisation viennent s’ajouter à la répression par le transfert prolongé des plantes sur fort NO₃⁻ et liée à l’activité de senseur de NRT1.1/NPF6.3. L’existence de cette régulation a été mise en évidence chez le mutant chl1.5 (nrt1.1) dans lequel l’expression de NRT2.1 n’est plus réprimée en condition de fort N (Munos et al., 2004). Par la suite, d’autres travaux ont révélé que cette régulation intervient chez des plantes sauvages lorsqu’elles sont transférées sur des milieux dans lesquels la concentration de NO₃⁻ varie en présence de 1 mM de NH₄⁺. Dans ces conditions, qui sont normalement répressives pour l’expression de NRT2.1, il est possible d’induire son expression en diminuant spécifiquement la concentration de NO₃⁻ dans le milieu extérieur (Krouk et al., 2006). Cela montre qu’il existe une voie de signalisation dépendante de NRT1.1/NPF6.3 capable de réprimer le HATS après un transfert prolongé sur de fortes concentrations en NO₃⁻.

La complexité des mécanismes de régulation en réponse aux fortes concentrations en N, mise en évidence par les travaux précédemment décrits, explique sans doute pourquoi jusqu’à maintenant peu d’acteurs moléculaires impliqués dans ces voies de signalisations ont été identifiés. Historiquement, l’étude du promoteur de NRT2.1, grâce à des lignées transgéniques exprimant le gène rapporteur GUS sous contrôle du promoteur délété de NRT2.1, avait permis d’identifier une région en aval de la TATA box d’environ 150pb indispensable à la régulation transcriptionnelle du gène NRT2.1 par le statut N (Girin et al., 2007). Par la suite, un criblé génétique effectué avec une lignée rapportrice pNRT2.1::LUC a permis d’identifier le gène HNI9 (High Nitrogen Insensitive 9) qui est un allèle du gène IWS1 (Interact With SPT6) qui code pour un composant du complexe ARN Polymerase II. Sur fort N, condition répressive pour l’expression de NRT2.1, la mutation de HNI9 entraîne un niveau de
transcrits de \textit{NRT2.1} nettement supérieur à celui observé chez des plantes sauvages (Girin \textit{et al.}, 2010). Cette dé-répression de \textit{NRT2.1} observée sur fort N dans le mutant \textit{hnii9} est corrigée à une diminution de l’enrichissement en marques chromatiniennes répressives H3K27me3 au locus de \textit{NRT2.1} (Widiez \textit{et al.}, 2011). Cependant, la poursuite de ce travail pour comprendre la spécificité du rôle de \textit{HNI9} dans la régulation de \textit{NRT2.1} et en réponse au fort N, a révélé que \textit{HNI9} était en fait impliqué dans l’homéostasie des espèces réactives de l’oxygène (ROS) qui affectent également la régulation transcriptionnelle du gène \textit{NRT2.1} (Bellegarde \textit{et al.}, 2019). Ces résultats montrent que, sur fort N, les plantes expriment des gènes impliqués dans la détoxification des ROS ce qui maintient les ROS à des niveaux physiologiques et limiterait le niveau d’expression de \textit{NRT2.1}. Lorsque \textit{HNI9} est muté, ces gènes de réponse aux ROS ne sont plus induits, ce qui entraîne l’augmentation des ROS dans la plante et l’induction de l’expression de \textit{NRT2.1}. Ainsi, \textit{HNI9} ne serait pas impliqué dans la régulation de \textit{NRT2.1} par les métabolites N mais par le statut redox de la plante.

Plus récemment, d’autres régulateurs qui sont dans la plupart des cas des FTs, ont été impliqués dans la répression de \textit{NRT2.1} par le fort N. On retrouve, parmi eux des membres de la famille \textit{NIGT1} (\textit{HHO1/NIGT1.3} ; \textit{HRS1/NIGT1.4} ; \textit{HHO2/NIGT1.2} ; \textit{HHO3/NIGT1.1}) (Medici \textit{et al.}, 2015 ; Maeda \textit{et al.}, 2018 ; Kiba \textit{et al.}, 2018) et des membres de la famille \textit{LBDs} (\textit{LBD37} ; \textit{LBD38} et \textit{LBD39}) (Rubin \textit{et al.}, 2009). Il a été montré pour ces deux familles de FTs, que les mutations perte de fonction associées engendraient une sur-induction de \textit{NRT2.1} sur fort N. D’autres régulateurs de la famille \textit{BTBs} (BTB et TAZ Domain protein) correspondant à BT1 et BT2 ayant une fonction \textit{E3 ligase}, ont également été identifiés comme ayant un effet répressif sur l’expression de \textit{NRT2.1} mais également \textit{NRT2.4} en réponse au NO3 à la fois chez \textit{A. thaliana} et chez \textit{O. sativa} (Araus \textit{et al.}, 2016). De façon antagoniste, l’induction de \textit{NRT2.1} en réponse à la carence en N s’avère donc correspondre à une levée de la répression exercée par ces différents régulateurs. Cependant, il n’existe pour l’instant aucune véritable étude pour permettre de replacer ces régulateurs dans les différentes voies de signalisations impliquées dans la réponse au fort N.
III.3. Régulation par le statut C de la plante

De par le fait que les squelettes carbonés sont indispensables pour incorporer le N inorganique dans les acides aminés, la régulation du transport racinaire de NO$_3^-$ est liée également à la production de sucrés par la photosynthèse qui a lieu dans les feuilles (Dehlon et al., 1996 ; Lejay et al., 1999, 2003). Cette régulation se caractérise par un rythme jour/nuit du transport de NO$_3^-$ qui augmente pendant la journée et diminue pendant la nuit. Cependant, l’apport exogène de sucres dans le milieu de culture, lorsque les plantes sont à l’obscurité, peut restaurer le niveau d’influx de NO$_3^-$ observé pendant la journée (Dehlon et al., 1996 ; Lejay et al., 1999). De plus, l’induction du transport de NO$_3^-$ à la lumière nécessite la présence de CO$_2$. L’ensemble de ces résultats indique que la signalisation n’implique pas directement la lumière mais les sucres issus de la photosynthèse.

D’un point de vue moléculaire, la régulation de l’absorption de NO$_3^-$ racinaire par la lumière et les sucres est corrélée avec les changements d’expression de NRT2.1, NRT2.4 et NRT1.1/NPF6.3 (Lejay et al., 1999, 2003, 2008). De manière générale ces régulations permettent d’activer les gènes impliqués dans l’assimilation de N lorsque les squelettes carbonés sont abondants et les niveaux internes de N organique sont bas. A contrario, cela pourrait permettre d’inhiber l’assimilation de N quand les niveaux de sucre issus de la photosynthèse sont bas et les niveaux de N organique sont haut. Les sucres produits par la photosynthèse sont connus pour être d’importants signaux qui contrôlent différents aspects du métabolisme et du développement (Rolland et al., 2006 ; Eveland & Jackson, 2012). Chez les plantes le saccharose est la forme majoritaire de sucre transporté de manière systémique (Zhang et al., 2014). Cependant de nombreuse régulation ont pour origine le glucose qui agit en tant que molécule signal.

Au moins 3 voies de signalisation en réponse au glucose ont été identifiées :

(i) Une voie dépendante de l’hexokinase (HXK) dans laquelle la régulation de l’expression des gènes se fait grâce à la fonction de senseur de l’HXK indépendamment de son activité enzymatique (Moore et al., 2003 ; Cho et al., 2006 ; Granot et al., 2014). En effet, l’HXK a été le premier senseur intracellulaire de glucose décrit et son étude a révélé que le rôle de l’HXK dans le métabolisme du glucose pouvait être séparé de son rôle dans la signalisation liée au glucose. Par exemple, la sur-expression de l’HXK2 de levure chez A. thaliana entraîne un effet
dominant négatif qui augmente l’activité catalytique de l’HXK mais réduit la répression de l’expression des gènes en réponse au glucose (Jang et al., 1997). Cela montre que l’HXK possède une double fonction d’enzyme et de senseur qui n’est pas interchangeable entre les plantes et la levure.

(ii) Une voie indépendante de l’HXK dans laquelle l’induction ou la répression de l’expression des gènes par le glucose est observée indépendamment du métabolisme du glucose et n’est pas affectée par la sur-expression ou la mutation de l’HXK (Price et al., 2004 ; Rolland et al., 2006).

(iii) Une voie dépendante de la glycolyse qui cette fois dépend de l’activité enzymatique de l’HXK mais pas de sa fonction de senseur (Xiao et al., 2000).

Il existe également des preuves d’un rôle du saccharose comme molécule signal mais le mécanisme impliqué n’est pas encore connu (Vaughn et al., 2002).

En ce qui concerne la régulation du métabolisme des sucres, des études ont été menées chez Arabidopsis thaliana en utilisant NRT2.1 comme gène modèle (Lejay et al., 2003). L’utilisation combinée d’analogues de sucre, d’inhibiteur de l’HXK et de mutants, a permis de révéler que la régulation des transporteurs racinaires de NO3⁻ par la lumière et les sucres ne faisait appel à aucun des mécanismes connus et décrits ci-dessus. Cependant, l’absence d’induction de NRT2.1 par les sucres, observée dans une lignée mutante pour l’HXK ou après l’ajout d’inhibiteur de l’HXK (glucosamine) a suggéré que l’activité catalytique de l’HXK et que le métabolisme C en aval de l’HXK étaient indispensables pour la régulation de NRT2.1 par les sucres (Lejay et al., 2003). Par la suite, une autre étude a montré que l’induction de NRT2.1 et NRT1.1/NPF6.3 par les sucres était corrélée à la concentration de Glucose-6-Phosphate (G6P) dans les racines (Lejay et al., 2008). Le G6P alimente à la fois la glycolyse, la voie oxydative des pentoses phosphates (OPPP) et le métabolisme du tréhalose. L’utilisation entre autres d’un inhibiteur pharmacologique (6-Aminonicotinamide : 6-AN) de la voie OPPP ou d’intermédiaires de l’OPPP a permis d’identifier cette voie comme l’origine du signal sucre dans l’induction de NRT2.1, NRT2.4 et NRT1.1/NPF6.3 en réponse aux sucres (de Jong et al., 2014 ; Lejay et al., 2008). Il est intéressant de noter que cette même voie métabolique, l’OPPP, a été également décrite dans la régulation par les sucres des gènes impliqués dans l’assimilation de NO3⁻ (Bussell et al., 2013). De plus, le lien entre l’OPPP et le métabolisme N dans les racines est particulièrement fort puisque l’OPPP fournit le pouvoir réducteur nécessaire au fonctionnement du GOGAT dans les plastes racinaires sous forme de NADPH.
Figure 6 : Représentation schématique des régulations du métabolisme N en lien avec le métabolisme C.
Schématisation réalisée à partir des données bibliographiques présentées dans l’introduction (Chapitre I, partie III.3.).
(Bowsher et al., 1989, 1992 ; Oji et al., 1985). Cependant, l’origine du signal dérivant de l’OPPP et les acteurs moléculaires impliqués dans la voie de signalisation qui régulent l’expression des transporteurs racinaires de NO$_3^-$ en réponse à la lumière et aux sucres restent largement inconnus (Figure 6). Le seul acteur moléculaire identifié jusqu’à présent comme participant à l’induction de NRT2.1 par la lumière et les sucres est HY5 (Elongated Hypocotyl 5). HY5 est un FT de type bZIP impliqué à la fois dans l’induction de NRT2.1 et dans le développement racinaire en réponse à une signalisation systémique liée à la lumière (Chen et al., 2016). À l’origine, le mutant hy5 a été décrit comme un mutant photo-morphogénique (Ang & Deng, 1994 ; Chory, 1992 ; Oyama et al., 1997) mais plus récemment, Chen et al., (2016) ont révélé que HY5 était un FT mobile « feuilles-racines ». Dans cette étude, HY5 a été impliqué dans l’induction des transporteurs de sucre qui permettent le transfert des sucres des parties aérienne vers les parties racinaires. Ceci pourrait expliquer un rôle indirect de HY5 dans l’induction de NRT2.1 par les sucres. Toutefois, des expériences de ChIP ont démontré également l’existence d’une fixation in vivo de HY5 sur le promoteur de NRT2.1 en réponse à la lumière. Fait intéressant, cette liaison est également favorisée par l’augmentation des sucres issus de la photosynthèse dans les racines d’A. thaliana (Chen et al., 2016). Toutefois, il semble que HY5 a un effet répresseur sur l’expression de NRT1.1/NPF6.3 contrairement à son effet sur NRT2.1 en réponse à la lumière ce qui pourrait indiquer une diversité de voie liés au métabolisme C (Jonassen et al., 2009). Cependant, rien n’indique pour l’instant l’existence d’un lien entre HY5 et la voie OPPP qui a été impliquée dans la régulation des transporteurs racinaires de NO$_3^-$ par les sucres (Figure 6) (de Jong et al., 2014 ; Lejay et al., 2008).

III.4 Régulation du développement racinaire

Un autre facteur important impliqué dans la capacité de la plante à absorber les nutriments minéraux du sol est la taille et l’architecture de son système racinaire. Le développement du système racinaire est génétiquement déterminé mais aussi très plastique en fonction des contraintes biotiques et abiotiques du sol. Ainsi, en plus de la régulation des systèmes de transport racinaires, l’architecture du système racinaire (Root System Architecture : RSA) est également régulée pour moduler la surface d’échange racine/sol en fonction de la disponibilité en NO$_3^-$ et du statut N de la plante. Ces régulations conduisent à :
Figure 7 : Représentation schématique des régulations du développement racinaire dépendante de N. (A), Dans des conditions où le NO$_3^-$ est apporté de façon homogène dans le milieu de culture, l’émergence des racines latérales (RLs) est réprimée par un signal systémique en lien avec le métabolisme N. (B), En condition hétérogène de NO$_3^-$ dans le milieu de culture, le développement des RLs est favorisé dans les zones riches en NO$_3^-$ (zone 2) et réprimé dans les zones pauvres en NO$_3^-$ (zone 1). Cette régulation de la prolifération en RL dans la zone 1 est due à l’activité de transport d’auxine de NRT1.1/NPF6.3 (en vert) réduisant la concentration en auxine (en orange) à la pointe des primordia racinaire, inhibant leur développement. Au contraire dans la zone 2, la présence de NO$_3^-$ induit son transport par NRT1.1/NPF6.3 qui ne transporte donc plus l’auxine, induisant une augmentation de la concentration en auxine dans la pointe des RLs et donc leurs croissances (Krouk et al., 2010).
(i) une répression systémique de la croissance des racines latérales (RLs) par un statut N élevé (Figure 7A) et (ii) une stimulation locale de l’émergence des RLs par un apport exogène de NO$_3^-$ (Figure 7B) (Zhang et al., 1999).

La nature du signal impliqué dans la répression systémique de la croissance des RLs est inconnue, mais cette régulation semble impliquer à la fois la répression par les produits de l’assimilation de N et le NO$_3^-$ lui-même, comme pour les transporteurs racinaires de NO$_3^-$. En effet, un fort niveau de NO$_3^-$ dans les feuilles semble important pour la réponse inhibitrice car cet effet est accru chez un mutant g’4.3. Sachant que les plantes mutantes g’4.3 n’assimilent plus le NO$_3^-$, ceci suggère que l’accumulation de NO$_3^-$ dans les feuilles chez ces mutants entraîne une inhibition de la croissance des RLs (Zhang et al., 1999). De la même manière, les produits de l’assimilation de NO$_3^-$ peuvent également déclencher la répression de la croissance des RLs. En effet, cette répression peut être atténuée par l’inhibition de l’assimilation de NH$_4^+$ en Gln et restaurée lorsque de la Gln est ajoutée dans le milieu de culture (Gifford et al., 2008). Là encore, comme pour la régulation des transporteurs racinaires de NO$_3^-$, les CKs pourraient être impliquées dans cette signalisation systémique. En effet, lorsque les plantes sont cultivées en « split-root », les mutants ipt de synthèse de CKs ne montrent aucune prolifération des RLs dans la partie riche en NO$_3^-$ par comparaison à des plantes cultivées sur un milieu homogène en NO$_3^-$ (Ruffel et al., 2011, 2016). Malgré tout, la voie de signalisation associée à cette réponse hormonale reste à déterminer.

Contrairement à son effet inhibiteur au niveau systémique sur la croissance des RLs, le NO$_3^-$ externe favorise localement l’initiation et/ou l’allongement des RLs (Figure 7B). De nombreuses études ont indiqué au travers d’expérimentations en système « split-root » vertical (Drew, 1975 ; Zhang & Forde, 1998, 2000) ou horizontal (Tillard et al., 1998 ; Remans et al., 2006) avec un apport de NO$_3^-$ hétérogène, que le développement racinaire se trouvait stimulé dans les zones riches en NO$_3^-$ (Drew et al., 1973 ; Drew, 1975 ; Drew & Saker, 1975, 1978 ; Bloom et al., 1993 ; Leyser & Fitter, 1998 ; Zhang et al., 1999). Le NO$_3^-$, plutôt que les métabolites issus de son assimilation, semble être la molécule signal. En effet, dans ces conditions de culture, l’utilisation du mutant g’4.3 montre une réponse au NO$_3^-$ similaire à une plante sauvage pour le développement des racines latérales (Zhang & Forde, 1998). Linkohr et al., (2002) ont par ailleurs constaté qu’au sein d’une même plante, la répartition inégale des RLs entre les zones riches et pauvres en NO$_3^-$ est due à la répression de l’allongement des RLs dans la zone pauvre en NO$_3^-$ et non à l’induction dans les zones riches. Ce résultat a

27
récemment été confirmé par Krouk et al., (2010) qui ont montré que NRT1.1/NPF6.3 était à l’origine de cette régulation comme décrit pour les transporteurs de NO₃⁻ (Figure 7B). Cependant, dans le cas du développement racinaire, le mécanisme lié au rôle de senseur de NRT1.1/NPF6.3 a été identifié. En effet, krouk et al., (2010) et Bouguyon et al., (2016) ont montré que NRT1.1/NPF6.3 était capable de transporter l’auxine à la pointe des RLs lorsqu’il y avait peu de NO₃⁻ dans le milieu extérieur (Figure 7B). Ceci a pour conséquence d’empêcher l’accumulation d’auxine dans les pointes des RLs ce qui stoppe leur croissance lorsque la concentration en NO₃⁻ dans le milieu extérieur est faible ou nulle (Figure 7B). Cette capacité de transport de l’auxine par NRT1.1/NPF6.3, semble comme pour le changement d’affinité dépendre de la phosphorylation du site Thr101 par la kinase CIPK23. En effet, le transport d’auxine mesuré en système hétérologue d’ovocytes de Xénope est augmenté lorsque la phosphorylation du site Thr101 est mimée de manière constitutive en remplaçant la thréonine par un aspartate (Bouguyon et al., 2016). Cette observation est appuyée par une récente étude qui a montré que l’état de phosphorylation de Thr101 impactait la localisation spatiale de la protéine NRT1.1/NPF6.3 au niveau des primordia des RLs (Zhang et al., 2019). Enfin, si l’approvisionnement en NO₃⁻ est localisé sur une partie très restreinte du système racinaire total, la limitation en N qui en résulte atténue la répression systémique par le statut N, ce qui amplifie encore la réponse de prolifération locale des RLs (Nacry et al., 2013).

En ce qui concerne les acteurs moléculaires impliqués dans la régulation de la RSA par N, outre NRT1.1/NPF6.3, ANR1 (Arabidopsis Nitrate Regulated 1) a été le premier FT identifié grâce à un criblage pour les gènes inducibles par le NO₃⁻ dans les racines (Zhang & Forde, 1998). La mutation anr1 entraîne une altération de l’allongement des RLs dans les zones riches en NO₃⁻ (Zhang & Forde, 1998 ; Liu et al., 2006). Il a été découvert par la suite que la régulation de ANR1 est contrôlée par NRT1.1/NPF6.3 qui, dans ce cas aurait un rôle indépendant de sa capacité à transporter l’auxine et qui favoriserait la prolifération des RLs dans les zones riches en NO₃⁻ (Remans et al., 2006). NRT1.1/NPF6.3 a par ailleurs également été impliqué dans l’induction du récepteur d’auxine AFB3 et de sa cible le FT, NAC4, qui lorsqu’il est muté présente un défaut de densité des RLs en réponse à NO₃⁻ (Vidal et al., 2013, 2014). Plus récemment, deux autres FTs, TGA1 et TGA4 ont été identifiés dans une voie de signalisation en aval de NRT1.1/NPF6.3 (Alvarez et al., 2014). Ces FTs sont impliqués dans la croissance des RLs sur fort NO₃⁻. Par ailleurs, il a également été montré que TGA1 et TGA4 se fixent au promoteur de NRT2.1 et sont impliqués dans son induction par le NO₃⁻. Il se pourrait donc que...
l’impact de ces FTs sur la croissance des RLs passe par leur action sur l’expression de NRT2.1. En effet, les résultats obtenus par Little et al., (2005) et Remans et al., (2006) indiquent que NRT2.1 pourrait, tout comme NRT1.1/NPF6.3, jouer un rôle de senseur de NO$_3^-$ en plus de son rôle dans le transport de NO$_3^-$. Cependant, il n’y a pour l’instant aucun autre élément qui permet de valider cette hypothèse.

Outre le rôle direct ou indirect de NRT1.1/NPF6.3 dans la régulation de la RSA, le FT NLP7 joue également un rôle dans la croissance des RLs (Castaings et al., 2009). En effet, en « split-root », la mutation *nlp7* montre une croissance des RLs fortement réduite que ce soit sur de faible ou sur de forte concentration en NO$_3^-$. Ceci indique que la stimulation locale de la croissance racinaire par le NO$_3^-$ est perdue chez ce mutant (Guan et al., 2014). Enfin, le FT, TCP20 qui se fixe sur le promoteur de *NRT2.1* et *NRT1.1/NPF6.3* serait impliqué dans la réponse systémique au NO$_3^-$ réprimant la croissance des RLs dans les zones pauvres en NO$_3^-$.

IV. Régulation des transporteurs de NO$_3^-$ au niveau protéique

Comme l’indique les informations présentées en amont, la plupart des études réalisées jusqu’ici ont abordé la régulation du transport de NO$_3^-$ à travers les régulations transcriptionnelles de ses transporteurs racinaires. En effet, comme il existe une forte corrélation entre les variations de l’abondance des transcrits des transporteurs de NO$_3^-$ et de l’influx de NO$_3^-$, ce niveau de régulation a été considéré comme majeur. Cependant, de plus en plus d’études suggèrent que les régulations post-traductionnelles des transporteurs de NO$_3^-$ jouent également un rôle important dans le contrôle du prélèvement de NO$_3^-$. Par exemple, chez la levure *Hansenula polymorpha* l’activité du transporteur de NO$_3^-$ YNT1 diminue rapidement après transfert des cellules d’un milieu contenant du NO$_3^-$ vers un milieu contenant du Gln. Cette régulation est due à la phosphorylation du résidu Ser246 qui, en présence de Gln, est dé-phosphorylé ce qui entraîne l’adressage du transporteur à la vacuole pour être dégradé (Navarro et al., 2008). Un autre exemple concerne la régulation des transporteurs NRTA (LATS) impliqué dans l’absorption de NO$_3^-$ chez *Aspergillus nihibulans* (Unkles et al., 2001). Ce transporteur, comme YNT1, est régulé au niveau transcriptionnel par le NO$_3^-$ et le statut N de l’organisme. Malgré tout, l’utilisation du mutant *NRs* a montré que la baisse du transport de NO$_3^-$ observée chez ce mutant n’est associé, ni à une diminution du
niveau de transcrit de NRTA, ni à une diminution de la quantité de protéine. Ceci suggère que la protéine est présente sous une forme inactive (Wang et al., 2007).

Chez les plantes la majorité des études ont été réalisées chez A. thaliana et, là encore, il existe de plus en plus d’éléments qui indiquent l’importance des régulations post-traductionnelles dans le contrôle du transport de NO₃⁻. Tout d’abord, comme décrit précédemment la double affinité du transporteur NRT1.1/NPF6.3 est régulée par la phosphorylation du résidu Thr101 tout comme sa capacité à transporter l’auxine (Liu et al., 1999 ; Liu & Tsay, 2003 ; Bouguyon et al., 2016). Ensuite, concernant NRT2.1 son activité dépend de l’interaction avec la protéine NAR2.1/NRT3.1 comme décrit précédemment (Cf. partie II.2) (Okamoto et al., 2006 ; Orsel et al., 2006). De plus, des expériences de « Blue Native PAGE » ont montré que les protéines NRT2.1 et NAR2.1/NRT3.1 font partie d’un même complexe protéique (Yong et al., 2010). Par ailleurs, il a été montré que l’abondance de la protéine NRT2.1 dans la membrane plasmique varie lentement alors que les changements au niveau des ARNm et de l’activité de transport de NO₃⁻ sont beaucoup plus rapides en réponse aux facteurs environnementaux (Wirth et al., 2007). De plus, l’expression constitutive de NRT2.1 sous le contrôle du promoteur 35S n’empêche pas la répression de l’activité du HATS en réponse au fort N ou à l’obscurité (Laugier et al., 2012). Ces résultats suggèrent qu’il existe des mécanismes de régulation post-traductionnels qui contrôlent l’activité de NRT2.1. Cette hypothèse est supportée par deux études qui ont identifié trois sites de phosphorylation sur la protéine NRT2.1 : (i) le résidu Ser28 qui est phosphorylé lorsque les plantes sont carencées en N et rapidement dé-phosphorylé après transfert des plantes sur NO₃⁻ (Engelsberger & Schulze, 2012) et (ii) les résidus Ser11 et Thr521 qui sont respectivement dé-phosphorylés et phosphorylés lors d’une carence en NO₃⁻ (Menz et al., 2016). Cependant, aucun résultat n’indique pour l’instant le rôle fonctionnel in planta de ces phosphorylations sur l’activité du HATS.

Enfin, la protéolyse partielle de la queue C-terminale de la protéine NRT2.1 a été mise en évidence chez des plantes mutantes nrt2.1 complémentées avec la protéine NRT2.1 fusionnée à une GFP dans sa partie C-terminale (Wirth et al., 2007). Cependant, le rôle éventuel de ce clivage dans la régulation post-traductionnelle de NRT2.1 reste pour l’instant inconnu.
V. Objectifs de la thèse

L’ensemble des informations présentées ci-dessus montre qu’au cours des dernières années de nombreuses avancées ont été faites concernant la compréhension des mécanismes moléculaires impliqués dans la régulation du transport et des transporteurs de NO$_3^-$ au niveau transcriptionnel. La voie de signalisation impliquées dans la PNR a été particulièrement étudiées et de nombreux acteurs moléculaires ont pu être identifiés. Ceci est moins vrai pour les réponses systémiques au fort N ou au statut C de la plante pour lesquelles les voies de signalisation impliquées restent encore largement à découvrir. Par ailleurs, si l’importance des régulations post-traductionnelles commence à être mise en évidence c’est un domaine de recherche qui reste à explorer.

Dans ce contexte, mon travail de thèse s’est attaché principalement à l’étude des voies de signalisation impliquées dans la régulation transcriptionnelle des transporteurs de NO$_3^-$ à forte affinité de la famille NRT2s. Par ailleurs, j’ai également participé à l’étude des modifications post-traductionnelles de la protéine NRT2.1.

Dans l’ensemble, mon projet de thèse s’est articulé autour de 4 axes de travail :

i) La caractérisation de nouveaux FTs impliqués dans la régulation des transporteurs NRT2s en réponse à N et C. (Chapitre 3)

ii) La caractérisation de la voie de signalisation et du signal dérivant de la voie OPPP dans l’induction des transporteurs NRT2.1, NRT2.4 et NRT1.1/NPF6.3 en réponse à la lumière et aux sucres. (Chapitre 4)

iii) La caractérisation de la voie de signalisation impliquée dans la répression des transporteurs NRT2.4 et NRT2.5 en réponse au fort N. (Chapitre 5)

iv) L’étude des modifications post-traductionnelles de la protéine NRT2.1 à travers la caractérisation du rôle des sites de phosphorylation identifiés. (Chapitre 6)
CHAPITRE 2

Matériels et Méthodes
Tableau 1 : Récapitulatif des lignées d’Arabidopsis thaliana utilisées dans ce travail.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Fond génétique</th>
<th>Description</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plante Sauvage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Col-0</td>
<td>Columbia (Col-0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPITRE 3

- **myc-2**
 - Col-0
 - Mutant perte de fonction pour le gène MYC1 (Sak_057388)
 - (Ruffel et al.,)

- **myc-3**
 - Col-0
 - Mutant perte de fonction pour le gène MYC1 (Sak_006554)
 - (Ruffel et al.,)

- **pgpd-2**
 - Col-0
 - Mutant perte de fonction pour le gène MYC1 (Sak_061558)
 - (Ruffel et al.,)

- **myc2/pgpd**
 - Col-0
 - double mutant perte de fonction pour les gènes MYC1 et TGA3 (obtenu par croisement)
 - (Ruffel et al.,)

- **bkh09**
 - Col-0
 - Mutant perte de fonction pour le gène BHLH093 (insertion : Sak_121082)
 - (Ruffel et al.,)

- **bkh09-3**
 - Col-0
 - Mutant perte de fonction pour le gène BHLH093 (insertion : Sak_104582)
 - (Ruffel et al.,)

- **S5L-BHLH093-5**
 - Col-0
 - Surepresseur pour le gène BHLH093
 - (Ruffel et al.,)

- **pgpd**
 - Col-0
 - Mutant perte de fonction pour le gène HYS (substitution)
 - (Oyama et al.,)

CHAPITRE 4

- **amGFP0-PD-1-1**
 - Col-0
 - 1ère version amARIN inductible à l’œstradiol ciblant le gène GFP02 racinaire (lignées indépendantes)
 - Non publiée

- **amGFP0-PD-1-1**
 - Col-0
 - 1ère version amARIN inductible à l’œstradiol ciblant le gène GFP02 racinaire (lignées indépendantes)
 - Non publiée

- **amGFP0-PD-2-4**
 - Col-0
 - 2ème version amARIN inductible à l’œstradiol ciblant le gène GFP02 racinaire (lignées indépendantes)
 - Non publiée

- **amGFP0-PD-2-1b**
 - Col-0
 - 2ème version amARIN inductible à l’œstradiol ciblant le gène GFP02 racinaire (lignées indépendantes)
 - Non publiée

- **amGFP0-PD-2-1c**
 - Col-0
 - 2ème version amARIN inductible à l’œstradiol ciblant le gène GFP02 racinaire (lignées indépendantes)
 - Non publiée

- **amGFP0-PD-2-2b**
 - Col-0
 - 2ème version amARIN inductible à l’œstradiol ciblant le gène GFP02 racinaire (lignées indépendantes)
 - Non publiée

- **amGFP0-PD-3-1-8b**
 - Col-0
 - 1ère version amARIN inductible à l’œstradiol ciblant le gène GFP03 racinaire (lignées indépendantes)
 - Non publiée

- **amGFP0-PD-1-19b**
 - Col-0
 - 1ère version amARIN inductible à l’œstradiol ciblant le gène GFP03 racinaire (lignées indépendantes)
 - Non publiée

- **amGFP0-PD-1-2**
 - Col-0
 - Mutant perte de fonction pour le gène MYC1 (code GFP-1, galactose phosphorylase)
 - Non publiée

CHAPITRE 5

- **myc-1**
 - Col-0
 - Mutant perte de fonction pour le gène HH01 (NGT1.3) : SAK_28_0857
 - (Medici et al., 2015)

- **myc-1**
 - Col-0
 - Mutant perte de fonction pour le gène HH01 (NGT1.3) : SAK_28_0857
 - (Medici et al., 2015)

- **myc-1**
 - Col-0
 - Mutant perte de fonction pour le gène HH01 (NGT1.3) : SAK_062281
 - (Xia et al., 2017)

- **myc-1**
 - Col-0
 - Mutant perte de fonction pour le gène HH01 (NGT1.3) : SAK_062281
 - (Xia et al., 2017)

- **myc1**
 - Col-0
 - Double mutant perte de fonction pour les gènes HH01 (NGT1.3) / HH01 (NGT1.4) (appelé mhy)
 - (Medici et al., 2015)

- **myc1**
 - Col-0
 - Double mutant perte de fonction pour les gènes HH01 (NGT1.3) / HH01 (NGT1.4) (appelé mhy)
 - (Medici et al., 2015)

- **phbl1**
 - Col-0
 - Mutant perte de fonction pour le gène NR1.1 (Mhy01)
 - (MatsumOTO, 2004; Tsay et al., 1993)

- **phbl1**
 - Col-0
 - Mutant perte de fonction pour le gène NR1.1 (Mhy01)
 - (MatsumOTO, 2004; Tsay et al., 1993)

- **T101**
 - Col-0
 - Complémentation chlt.5 (substitution T101 par A sous contrôle du promoteur natif NR1.1)
 - (Houel et al., 2009; Bouguen et al., 2011)

- **T101**
 - Col-0
 - Complémentation chlt.5 (substitution T101 par A sous contrôle du promoteur natif NR1.1)
 - (Houel et al., 2009; Bouguen et al., 2011)

- **NRT2.1**
 - Col-0
 - Double mutant perte de fonction pour NIA1 et NIA2 (NIA1/NIA2; NIA1/NIA2)
 - (Wilkinson & Crawford, 1993; Leyh et al., 1999)

CHAPITRE 6

- **netr2.1**
 - Col-0
 - Mutant perte de fonction pour le gène NRT2.1 : SAKL_035429 (netr2.1-2)
 - (Little et al., 2005; Remans et al., 2006)

- **NRT2.1**
 - Col-0
 - Mutant perte de fonction pour le gène NRT2.1 : SAKL_035429 (netr2.1-2)
 - (Little et al., 2005; Remans et al., 2006)

- **NRT2.1**
 - Col-0
 - Complémentation netr2.1 (substitution S501 par A sous contrôle du promoteur natif)
 - (Jacquot et al., 2020)

- **NRT2.1**
 - Col-0
 - Complémentation netr2.1 (substitution S501 par A sous contrôle du promoteur natif)
 - (Jacquot et al., 2020)

- **NRT2.1**
 - Col-0
 - Complémentation netr2.1 (substitution S501 par A sous contrôle du promoteur natif)
 - (Jacquot et al., 2020)

- **NRT2.1**
 - Col-0
 - Complémentation netr2.1 (substitution S501 par A sous contrôle du promoteur natif)
 - (Jacquot et al., 2020)

Lignées en cours d’analyses
I. Matériel végétal et cultures des plantes

L’ensemble des expériences menées au cours de mon projet de thèse a été réalisé avec des génotypes dont le fond génétique provient de l’accession Col-0 (Columbia) d’Arabidopsis thaliana. L’ensemble des plantes utilisées est récapitulé dans le Tableau 1. Concernant les plants de riz utilisés dans le chapitre 5, les plantes sauvages proviennent d’un fond génétique Oryza sativa ssp Japonica cultivar Kitaaké. Ils nous ont été fournis par le Dr. Christophe Perin de l’équipe AGAP du CIRAD avec laquelle nous avons collaboré pendant ma thèse.

I.1. Cultures en serre

L’ensemble des graines utilisées pour les expériences a été amplifié en serre. Les plantes utilisées pour les croisements ont également été cultivées et croisées en serre. Les conditions de cultures en serre sont un cycle jour/nuit de 8 h/16 h avec une température de 23°C le jour et de 21°C la nuit. Une intensité lumineuse minimale de 150 µmol.photon.m\(^{-2}.s\(^{-1}\) est maintenue en l’absence d’éclairage naturel par un ensemble de lampes à sodium. L’hygrométrie moyenne de chaque compartiment est de 50%. L’arrosage est réalisé manuellement une à deux fois par semaine avec de l’eau du robinet.

I.2. Cultures hydroponiques

En hydroponie, les plantes d’A. thaliana sont cultivées en conditions non stériles, comme décrit dans Lejay et al., (1999) (Figure 1). Cette culture est réalisée dans une chambre climatisée avec : un cycle jour/nuit de 8 h/16 h, une température de 22°C le jour et de 20°C la nuit, une hygrométrie de 70% et une intensité lumineuse de 250 µmol photon.m\(^{-2}.s\(^{-1}\) pour les chambres équipées de lampe à sodium et une température de 25°C le jour et de 20°C la nuit, une hygrométrie de 65% et une intensité lumineuse de 150 µmol.photon.m\(^{-2}.s\(^{-1}\) pour les chambres équipées de lampe led. Les graines d’A. thaliana sont semées sur du sable siliceux contenu dans des eppendorfs de 1,5 mL dont la partie inférieure a été sectionnée et remplacée par une grille en inox permettant le développement des racines. Les tubes
Figure 1: Culture d’Arabidopsis thaliana en hydroponie. (A), les graines de A. thaliana sont semées sur du sable siliceux contenu dans des eppendorfs de 1,5 mL et dont la partie inférieure a été sectionnée et remplacée par une grille en inox pour laisser les racines se développer. Des plaques en polystyène noire servant de portoir flottant sont déposées sur des bassines de 10 L pour que les plantes puissent être cultivées en hydroponie. (B), Après 3 semaines de culture, les eppendorfs sont transférés (flèche grise) sur des disques de PVC laissant un espace supérieur entre les plantes pour qu’elles puissent se développer. (C), Après 5-6 semaines de culture, une partie des racines est récoltée pour en extraire les ARNm, pour la quantification des transcrits par RT-qPCR et une autre partie des racines est récoltée après la réalisation du protocole d’influx, pour la quantification en spectrométrie de masse du % de ^15^NO$_3^-$ absorbé par les racines.

Figure 2 : Culture de O. sativa japonica en hydroponie. (A), les graines de O. sativa sont semées sur des plaques de cône P1000 dont la partie inférieure est recouverte d’une grille en fibre de verre permettant le développement des racines. Les plaques sont déposées dans des bassines hydroponie de 2,5 L. (B), Le milieu de culture est renouvelé toutes les semaines et la durée de culture est de 3-4 semaines pour obtenir des plantes suffisamment grandes à l’état végétatif. (C), Après 3-4 semaines de culture, une partie des racines est récoltée pour en extraire les ARNm, pour la quantification des transcrits par RT-qPCR et une autre partie des racines est récoltée après la réalisation du protocole d’influx, pour la quantification en spectrométrie de masse du % de ^15^NO$_3^-$ absorbé par les racines.
CHAPITRE 2

Eppendorfs sont placés sur des plaques en polystyrène percées qui reposent sur des bassines contenant 10 L d’eau du robinet. Une fois disposées en chambre de culture, les bassines sont recouvertes par une plaque de plexiglass pour maintenir une forte hygrométrie et favoriser la germination. Une semaine après le semis, l’eau du robinet est remplacée par une solution nutritive contenant : KH₂PO₄ 1 mM, MgSO₄ 1 mM, NaFeEDTA 0,1 mM, KCl 50 µM, H₃BO₃ 30 µM, ZnSO₄ 5 µM, CuSO₄ 1 µM, (NH₄)₆Mo₇O₂₄ 0,1 µM. L’azote (N) est fourni soit sous forme nitrique (KNO₃ 0,5 mM et Ca(NO₃)₂ 0,25 mM) soit sous forme mixte (NH₄NO₃ 1 mM). Dans ce dernier cas, la solution contient en plus, CaCl₂ 0,25 mM et K₂SO₄ 0,25 mM de manière à obtenir les mêmes concentrations de Ca²⁺ et K⁺ dans les deux types de solution nutritive. Les bassines restent recouvertes par une plaque de plexiglass une semaine supplémentaire. Au cours de la troisième semaine, les plantes sont transférées sur des disques de PVC perforés reposant eux-mêmes sur un support en PVC. Ce dispositif est déposé sur la bassine contenant la solution nutritive. La durée de culture des plantes dure au total entre 5 et 6 semaines afin d’obtenir des plantes suffisamment grandes à l’état végétatif. La solution nutritive est renouvelée une fois par semaine.

Pour la culture du riz (O. sativa japonica) les paramètres de la chambre de culture sont : un cycle jour/nuit de 12 h/12 h, une température de 29°C le jour et de 25°C la nuit, une hygrométrie de 70% et une intensité lumineuse de 150 µmol.photon.m⁻².s⁻¹ (lampe led). Les graines de O. sativa sont déposées sur des plaques en plastique issues de boîte de cônes P1000 dont la partie inférieure a été recouverte d’une grille en fibre de verre permettant le développement des racines (Figure 2). Les plaques sont disposées sur des bassines contenant 2,5 L d’eau du robinet. Après une semaine de culture, l’eau du robinet est remplacée par une solution nutritive contenant : NH₄NO₃ 1 mM, KH₂PO₄ 1 mM, MgSO₄ 1 mM, NaFeEDTA 0,1 mM, du H₃BO₃ 45,2 µM, ZnSO₄ 1,4 µM, CuSO₄ 1,6 µM, (NH₄)₆Mo₇O₂₄ 0,32 µM, et NaCl 50 mM. Le pH est ensuite ajusté à 5,5 avec du H₂SO₄ à 10%. La durée de culture des plantes est de 3 à 4 semaines afin d’obtenir des plantes suffisamment grandes à l’état végétatif. La solution nutritive est renouvelée une fois par semaine.
CHAPITRE 2

I.3. Cultures « in vitro »

La culture « in vitro » est réalisée en conditions stériles soit dans des boîtes de pétri rondes pour la sélection des plantes transgéniques, soit dans des boîtes de pétri carrées 12 x 12 cms en culture verticale pour les expériences d’architecture racinaire. Le milieu nutritionnel standard utilisé contient : CaSO₄ 0,5 mM, MgCl₂ 0,5 mM, KH₂PO₄ 1 mM, MES 2,5 mM, NaFeEDTA 50 μM, H₃BO₃ 50 μM, MnCl₂ 12 μM, CuCl₂ 1 μM, ZnCl₂ 1 μM et NH₄MoO₄ 0,03 μM. Le N est fourni sous forme de KNO₃ dont la concentration dépend des expériences réalisées. Le pH de la solution finale est ajusté à 5.7 avec du KOH 1 M. Pour la réalisation de 1 L de milieu, 6 g d’agar type A 0,8% sont ajoutés pour la solidification du milieu de culture après autoclavage. La durée de culture des plantes est en moyenne de 12 jours pour l’obtention de plante suffisamment développé pour l’observation architecturale de la racine (Chapitre 6). Pour les plantes misent en culture pour sélection, cette durée peut être réduite à 8 jours, durée suffisante pour différencier les plantes résistante ou sensible à l’antibiotique utilisé. Dans tous les cas, les conditions de culture utilisée sont : un cycle jour/nuit de 16 h/8h, une température de 21,5°C constante et une intensité lumineuse par tube fluo de 140 μmol. photon.m⁻².s⁻¹.

II. Mesure d’influx de 15NO₃⁻

II.1. Protocole d’influx

Les plantes cultivées en hydroponie (Cf. partie I.2.) sont successivement transférées durant 1 min sur une solution de CaSO₄ 0,1 mM, 5 min sur une solution nutritive complète contenant le traceur K15NO₃ (soit à 200 μM, 50 μM, 10 μM ou 5 μM) (ICON Isotopes, 98,18 Atom%), puis 1 min sur une solution de CaSO₄ 0,1 mM. Les racines sont ensuite récoltées, transférées dans des cupules en étain et mises à sécher à l’étuve à 70°C pendant au minimum 48 h. La quantité totale de 15N incorporé dans les racines est ensuite analysée par spectrométrie de masse. Le résultat obtenu est considéré comme représentatif de l’influx unidirectionnel de 15NO₃⁻ (Lejay et al., 1999).
II.2. Dosage isotopique du 15N

Les échantillons sont analysés par spectrométrie de masse en flux continu (Analyseur Élémentaire vario-PYRO cube couplé à un spectromètre de masse IsoPrime Precision, Elementar, UK). Après combustion à 1000°C en présence de Cr$_2$O$_3$ et CuO, les molécules de gaz issues de l’échantillon (principalement H$_2$O, CO$_2$, N$_2$ et NOx) sont transportées par le flux de gaz vecteur (Helium) vers un four de réduction où les oxydes d’azote sont réduits en N$_2$ en présence de Cu à 570°C (réaction de Dumas). H$_2$O et CO$_2$ sont ensuite piégés par des colonnes de perchlorate de magnésium et de Carbosorb en série. Une partie de flux d’hélium contenant N$_2$ provenant de l’échantillon est alors injectée dans un spectromètre de masse (IsoPrime Precision, Elementar, UK) dans lequel les différentes molécules 14N14N, 14N15N, 15N15N, de rapport masse/charge (m/z) respectifs 28, 29, 30, sont séparées et leurs quantités analysées. La quantité de N total de l’échantillon est donnée par la somme des trois quantités isotopiques.

L’abondance isotopique en 15N (A%) est calculée par la formule :

$$ A\% = \frac{^{15}N \times 100}{^{14}N + ^{15}N} = \frac{30 + \frac{1}{2} \times 29}{28 + 29 + 30} \times 100 $$

Où 28, 29, 30 sont les intensités des signaux respectivement recueillis aux m/z 28, 29, 30.

L’enrichissement isotopique en 15N est caractérisé pas l’excès isotopique (E%), calculée par la différence entre l’abondance isotopique de l’échantillon (A%) et l’abondance isotopique naturelle (A%nat) :

$$ E\% = A\% - A\%nat $$

L’abondance naturelle (voisine de 0,367%) est mesurée sur des plantes récoltées avant l’apport de l’isotope lourd.
III. Mesure d’activité enzymatique

Les analyses d’activité G6PD racinaire ont été faites en microplaques à partir d’échantillons de racines conservés à -80°C. Dans chaque puit contenant 5 µL d’échantillons à tester est ajouté : 22,5 µL H₂O, 2,5 µL NADP⁺ 20 mM (-80°C), 20 µl de tampon de réaction (Tricine/KOH 0,5 M, pH 8.5 ; MgCl₂ 50 mM ; Triton 100, 0,25%). Il est ajouté au dernier moment et avant début de la réaction enzymatique 50 µL de Glucose-6-phosphate (G6P, 50 mM) (-80°C). Le mélange est ensuite homogénéisé et la DO est mesuré à 340 nm à 25°C. La stabilisation de la vitesse de réaction est observée 25 à 30 min après le début de la réaction.

IV. Analyse d’expression de gènes et biologie moléculaire

IV.1. Extraction et purification d’ARN totaux

Les racines récoltées sont congelées dans de l’azote liquide dans des tubes de 2 mL contenant une bille d’acier (2,5 mM de diamètre). Les tissus sont broyés deux fois (25 secousses.sec⁻¹, 1 min (broyeur Retsch® mixer mills MM200, Haan, Allemagne). La poudre obtenue est transférée dans 800 µL de TRIzol (Invitrogen, Carlsbad, CA, USA) puis incubés 5 min à température ambiante sous agitation. Un volume de 160 µL de chloroforme/alcоol isoamylique (24/1) est ensuite ajouté et les tubes sont vortexés 15 sec et mis à incuber 3 min sous agitation. Après centrifugation (10 min, 15 000 g à 4°C) les ARNs contenus dans la phase supérieure (environ 450 µL) sont transférés dans un tube eppendorf 1,5 mL puis précipités par ajout de 400 µL d’isopropanol. L’ensemble est centrifugé (10 min, 15 000 g à 4°C), le surnageant est éliminé et le culot est lavé avec 800 µL d’éthanol à 75% conservé à -20°C. Les tubes sont à nouveau centrifugés (10 min, 12 000 g à 4°C) et après élimination du surnageant les culots contenant les ARNs sont mis à sécher 5 à 10min avant d’être re-suspendus dans 20 µL d’H₂O. Les ARNs sont ensuite quantifiés à l’aide d’un Nanodrop Photometer® N60/N50 (Implen) pour en déterminer la quantité d’ARN/µL.
Tableau 2: Liste des amorces de qPCR utilisées dans notre travail.

<table>
<thead>
<tr>
<th>Nomenclature (gène)</th>
<th>AGI</th>
<th>Séquence Forward</th>
<th>Séquence Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrôle (gène mâle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clathrine</td>
<td>At4g24550</td>
<td>AGCATACACTTCGTCGCAAG</td>
<td>TCGCTTGTGTCACATATCTC</td>
</tr>
<tr>
<td>Transporteurs</td>
<td>At1g08090</td>
<td>AACAAGGGCTAAGCTTGTGATG</td>
<td>CGGCAATATGTAGTCTGTCG</td>
</tr>
<tr>
<td>NRT2.1</td>
<td>At1g08100</td>
<td>GCAAAGGAATGATCTTTTATT</td>
<td>ATATAGGAGGATGAGTG</td>
</tr>
<tr>
<td>NRT2.2</td>
<td>At1g06770</td>
<td>GAAAGGAGCTAAATGGGAGT</td>
<td>GTCTTCGTTGCCTTTGCAC</td>
</tr>
<tr>
<td>NRT2.5</td>
<td>At1g12240</td>
<td>TGAGGAACCTTCATCAAAAAA</td>
<td>TTTGAGAGATGAGATGAGG</td>
</tr>
<tr>
<td>NRT1.1/NPF6.3</td>
<td>At1g12110</td>
<td>GCAATGATCTAGAATGCTT</td>
<td>TCTGATCCCCATCTAGCTA</td>
</tr>
<tr>
<td>Facteurs de transcription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYC1</td>
<td>At1g00480</td>
<td>AACCTTAAAGCTCTCTGTG</td>
<td>CGGCAATATGTAGTCTGTCG</td>
</tr>
<tr>
<td>TGA3</td>
<td>At1g22070</td>
<td>CTCCTAGAAGATCTTTTGGC</td>
<td>CATACAGGAGGATGAGTG</td>
</tr>
<tr>
<td>BHLH93</td>
<td>At2g65640</td>
<td>AGCTTGAAGGCTACAAC</td>
<td>GCTCTTCATGTAAATCTGAG</td>
</tr>
<tr>
<td>H5</td>
<td>At3g12160</td>
<td>GAGGACACGCGTCTAGGAGT</td>
<td>TTGAGGAACCTTCATCAAAAAA</td>
</tr>
<tr>
<td>HHO1/Net1.3</td>
<td>At3g25790</td>
<td>GTAAGGAATTTGAGATAAGAT</td>
<td>ATATAGGAGGATGAGTG</td>
</tr>
<tr>
<td>HHO2/Net1.2</td>
<td>At3g36760</td>
<td>GCCGCTGCTATTAGATG</td>
<td>TTGAGGAACCTTCATCAAAAAA</td>
</tr>
<tr>
<td>HHO3/Net1.1</td>
<td>At3g25550</td>
<td>ACTAATAATTGGCTAGAGT</td>
<td>TTGAGGAACCTTCATCAAAAAA</td>
</tr>
<tr>
<td>HRS1/Net1.4</td>
<td>At1g13300</td>
<td>TTATAGACCTGCGATTATGGGGA</td>
<td>ATATAGGAGGATGAGTG</td>
</tr>
<tr>
<td>LBD37</td>
<td>At5g67420</td>
<td>AGACAAATAAGCGGTGCTG</td>
<td>ACTAGTATTCCTTACCG</td>
</tr>
<tr>
<td>LBD38</td>
<td>At3g49940</td>
<td>TCAATGCGCTGCTTTGCATGC</td>
<td>AACGCCGCGTGCAAAAAATC</td>
</tr>
<tr>
<td>LBD39</td>
<td>At4g37540</td>
<td>CCTGAACTCAGGCTCTGCTT</td>
<td>TTGAGGAACCTTCATCAAAAAA</td>
</tr>
<tr>
<td>Enzymes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6PD2</td>
<td>At5g13110</td>
<td>ACAAATGCAAATGCTTGACGCATCTG</td>
<td>ACTCAGGACCTTTATGCCTG</td>
</tr>
<tr>
<td>G6PD3</td>
<td>At5g24280</td>
<td>AAGCCAGAAATACCCAGCTTG</td>
<td>CGCGATGAGAATAGTCTG</td>
</tr>
<tr>
<td>G6PD6</td>
<td>At5g40760</td>
<td>CGGCGATGAGAATAGTCTG</td>
<td>CGCGATGAGAATAGTCTG</td>
</tr>
<tr>
<td>6PGL3</td>
<td>At5g24400</td>
<td>TCTCTGCTAGGAGGATGAC</td>
<td>CAGGAAACAAACAACTC</td>
</tr>
<tr>
<td>NUDX19</td>
<td>At5g20070</td>
<td>TTTGGGAGGAGGATGTTTGGC</td>
<td>TTTGGGAGGAGGATGTTTGGC</td>
</tr>
<tr>
<td>qPCR Riz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OsActin</td>
<td>Os03g071800</td>
<td>GCATCTCAGCAGCACATTCA</td>
<td>GCGATAAACAGCTCTTCTG</td>
</tr>
<tr>
<td>OsNRT1.1b</td>
<td>Os03g040600</td>
<td>CAAAGCAGAAATGACCAACAC</td>
<td>CACAGCTTCTTACCTG</td>
</tr>
<tr>
<td>OsNRT2.1</td>
<td>Os03g058200</td>
<td>CTGGTTGACAAATCTGTA</td>
<td>GCTCTTCTTATTAACCTG</td>
</tr>
<tr>
<td>OsNRT2.4</td>
<td>Os03g367200</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>OsNRT2.3</td>
<td>Os02g021700</td>
<td>GCAATCAGGCAAGCTCTGTTAG</td>
<td>TGTGAGGCTCTCCCAGT</td>
</tr>
<tr>
<td>OsNRT2.2</td>
<td>Os02g0112600</td>
<td>GCGGAGCACCGAGCTATTAGAAG</td>
<td>CTCCATGCAAGACATACTTCATAGA</td>
</tr>
<tr>
<td>OsNRT1.1</td>
<td>Os03g0325600</td>
<td>AGATGGAGACAGAAGGAG</td>
<td>CCATCCACCTTCTACTAGCTC</td>
</tr>
<tr>
<td>OsLBD37</td>
<td>Os03g0445700</td>
<td>GAGCCGAGGAGGCTCGTGGAG</td>
<td>AGCGGAGGAGGCTCGTGGAG</td>
</tr>
<tr>
<td>OsLBD38</td>
<td>Os04g0890000</td>
<td>GTCTCTGCTAGGAGGAGTCT</td>
<td>TTCCATGCAAGACATACTTCATAGA</td>
</tr>
<tr>
<td>OsLBD39</td>
<td>Os03g0609500</td>
<td>TCTCTGCTAGGAGGAGTCT</td>
<td>TTCCATGCAAGACATACTTCATAGA</td>
</tr>
</tbody>
</table>
IV.2. Synthèse des ADNc

Les ARNs sont dilués avec de l’H2O sans RNase de manière à obtenir 2 μg d’ARN totaux dans un volume final de 10 μL. Après ajout de 1 μL d’oligodT ancré à 10 μM et de 1 μL de dNTPs (10 mM), le mélange réactionnel est incubé pendant 5 min à 65°C avant d’être transféré dans de la glace. Un mélange de 4 μL de tampon 5X RT First-Strand (Kit Invitrogen™ M-MLV), 2 μL de DTT (0,1 M) et 1 μL de reverse transcriptase M-MLV (Kit Invitrogen™ M-MLV) est ajouté. Les échantillons sont alors incubés 50 min à 37°C puis 15 min à 70°C.

Toutes les incubations sont réalisées dans un thermocycleur « Applied Biosystems™ SimpliAmp™ Thermal Cycler ». Après la dernière incubation, 180 μL de TE (Tris HCL 1 M, EDTA 0,5 M, pH 8) sont ajoutés pour stopper la réaction. Les ADNc ainsi obtenus sont conservés à -20°C. La qualité des ADNc est vérifiée par PCR (SimpliAmp™ thermal cycler) en utilisant des amorces spécifiques couvrant un intron dans le gène APTR (At1g27450) (Forward 5’- CGCTTCTCTCGACACTGAG-3’ ; Reverse 5’-CAGGTAGCTTCTTGGCTTC-3’). Pour une réaction PCR, le mélange suivant est réalisé : 1 μL d’ADNc, 1 μL d’amorce APTR Forward, 1 μL d’amorce APTR Reverse, 9,5 μL H2O et 12,5 μL Taq Ozyme Mix (Ozyme). Le cycle PCR est le suivant : 2 min à 95°C ; 25-35 cycles (30 sec à 95°C, 30 sec à 55°C, 1 min à 72°C) ; 5 min à 72°C. Les produits PCR sont ensuite déposé sur gel (1%) pour en déterminer la taille et la présence ou non d’ADNg.

IV.3. Quantification des ADNc par PCR en temps réel (qPCR)

Pour les différents couples d’amorce utilisés (Tableau 2), les amplifications sont réalisées dans un volume total de 10 μL contenant : 1 μL d’ADNc, 5 μL de Master mix TAKARA SYBR Pre-mix Ex Taq (Tli RNase H Plus, Ozyme), 0,25 μL d’amorce à 10 μM et 3,75 μL H2O. Chacune des réactions est réalisée indépendamment dans des puits de plaque 384 (Hard Shell 384-Well skirted PCR plates, Roche, Mannheim, Allemagne) et analysée dans un LightCycler LC480 II (Roche, Mannheim, Allemagne) selon les instructions communiquées par le fournisseur. Les cycles qPCR réalisés correspondent à : pré-incubation (95°C pendant 30 sec avec une augmentation de 4,8°C/sec) ; 42 cycles d’amplification (95°C pendant 15 sec avec une augmentation de 4,8°C/sec ; 60°C pendant 10 sec avec une augmentation de 2,5°C/sec ;
72°C pendant 10 sec avec une augmentation de 4,8°C/sec suivi d’une acquisition de signal. À la fin des cycles une courbe de fusion est réalisée pour vérifier la spécificité des amorces (95°C pendant 5 sec avec une augmentation de 4,8°C/sec ; 65°C pendant 1 min avec une augmentation de 2,5°C/sec ; 97°C avec une augmentation de 0,11°C/sec constitué de 5 acquisitions de signal par °C) suivie d’une phase de refroidissement (40°C pendant 30 sec avec une baisse de 2,5°C/sec). La quantité relative d’ARNm est normalisée à l’aide du gène de ménage CLATHRINE (At4g24550) (Tableau 2).

IV.4. Immuno-précipitation de la chromatine (ChiP)

Les ChiPs ont été réalisées avec les plantes rapportrices pbHLH093::bHLH093-GFP (Chapitre 3), via le protocole de Gendrel et al., 2002 avec des modifications mineures apportées par l’équipe comme décrites dans la suite ou via le Kit Active Motif ChiP-IT® Express Enzyme (53009) suivant le protocole fourni par le fabricant.

Lors de la récolte des tissus racinaires, une étape de fixation avec du formaldéhyde est nécessaire pour le maintien des interactions Protéine-ADN. Chaque racine récoltée est incubée sous vide pendant 10 à 15 min dans une solution de formaldéhyde à 1% (crosslinking). La fixation est stoppée par ajout de Glycine 0,125 M sous vide pendant 5 min. Les échantillons sont ensuite mis dans l’azote liquide et sont conservé à -80°C. Après un broyage au mortier dans l’azote liquide, la poudre obtenue est transférée dans le tampon NIB (Nuclei Isolation Buffer) pour isoler les noyaux cellulaires (PIPEC-KOH 20 mM, pH 7,6, Hexylène glycol 1 M, MgCl₂ 10 mM, EGTA 0,1 mM, NaCl 15 mM, KCl 60 mM, Triton 0,5%, β-mercaptoéthanol 5 mM, Protease inhibitor (PI), H₂O). Après filtration des extraits avec des filtres de 70 μm puis 45 μm ainsi que différente étape de centrifugation, le culot correspondant aux noyaux cellulaires est re-suspendu dans le tampon NLB (Nuclei Lysis Buffer) permettant la lyse des membranes nucléaires (Tris-HCl 50 mM, pH 8, EDTA 10 mM, SDS 1%, Protease inhibitor (PI), H₂O). Les échantillons sont ensuite soniqués pour fractionner l’ADN (Bioruptor® Plus, Diagenode). Nous avons, à cette étape de sonication utilisé dans certain cas une autre méthode pour optimiser la fragmentation par découpage enzymatique avec la Benzonase® Nuclease (E1014, SIGMA). Le protocole utilisé est celui fourni par le fabricant.
Figure 3 : Schéma simplifié des zones couvertes par les différentes amorce dans les promoteurs de *NRT2.1* et *NRT2.4* (ChIP).
Après sonication ou fragmentation enzymatique, les échantillons sont dilués au 1/20 dans le tampon CDB (Chip Dilution Buffer) (Triton 1,1%, EDTA 1,2 mM, Tris-HCL 16,7 mM, NaCl 167 mM, H₂O). En parallèle, le tampon CDB est également utilisé pour prélever les billes (trois fois sur portoir magnétique) (Dynabeads™ Protein G, Invitrogen). Les billes sont ensuite apportées dans chacun des échantillons et le mélange est mis sur roue (agitation lente) à 4°C pendant 2 h. Cette étape permet de nettoyer les échantillons des éléments qui pourraient interférer avec les anticorps de façon aspécifique dans les étapes suivantes. Après cette étape de nettoyage, les billes sont retirées, « l’input » est prélevé (échantillon de référence pour la normalisation en PCR quantitative) et le reste de l’échantillon est mis à agiter 16 h à 4°C avec l’anticorps choisi (antiGFP, ab290, ABCAM) ou sans anticorps (Contrôle négatif). L’ensemble des échantillons est ensuite nettoyé dans différents tampons : 1) LSWB, (NaCl 150 mM, SDS 0,1%, Tritons 1%, EDTA 2 mM, Tris-HCL 20 mM pH8, H₂O) ; 2) HSWB, (NaCl 500 mM, SDS 0,1%, Tritons 1%, EDTA 2 mM, Tris-HCL 20 mM pH8, H₂O) ; 3) LiWB, (LiCl 0,25 M, NP40 1% (IGEPAL CA-630), Sodium deoxycholate 1%, EDTA 1 mM, Tris-HCL 10 mM pH8, H₂O) ; 4) TE Buffer, (EDTA 1 mM, Tris-HCL 10 mM pH8, H₂O). Les billes sont ensuite transférées dans le tampon EB (Elution Buffer) (SDS 1%, NaHCO₃ 0,1 M, H₂O). L’ADN récupéré ainsi que « l’input » sont ensuite « decrosslinké » pendant 16 h à 65°C. Pour finir, l’ADN est nettoyé (protéinase K ; Phenol-chloroform-alcool isoamylique), précipité (NaAc 3 M, glycogen azur, EtOH 100%) puis repris dans 40 µL d’H₂O ultra pure. Les échantillons sont conservés à -20°C. Les échantillons sont analysés par PCR quantitative (Cf. partie IV.3.). Les valeurs obtenues pour les échantillons traités avec anticorps ou sans anticorps sont normalisées avec la valeur de « Crossing point (Cp) » obtenue pour l’input correspondant à chaque échantillon. Une seconde normalisation est effectuée en prenant le gène de ménage LEAFY COTYLESON 2 (At1g28300) (Forward 5’-ACCCATCGGCGACTACTATG-3’ ; Reverse 5’-AACCTTGGGAACAGTGCC TTG-3’). Les amorces utilisées pour la PCR quantitative ont été réalisées pour couvrir les promoteurs des gènes NRT2.1 (At1g08090) et NRT2.4 (At5g60770) (Figure 3).
Figure 4 : Représentation schématique de la carte du plasmide pBSK possédant le vecteur RS300 (pRS300). Figure adapté de Schwab, 2005.
Figure 5 : Réalisation des amiARNs artificiels par PCR. (A), Schéma du Précurseur miARN319a du vecteur pRS300. Les amorces A et B sont des amorces universelles situées de chaque coté du amiARN sur le plasmide. Les amorces 1, 2, 3 et 4 sont spécifiques du amiARN désiré. (B), PCRs réalisées pour obtenir le amiARN désiré dans sont entièreté. Les trois premières PCR sont réalisées avec les couples A/4 ; 2/3 et 1/B (Amorces présentées dans le Tableau 3). Les produits PCR associés sont ensuite rassemblés et amplifiés avec les amorces A et B. Figure adaptée de Schwab, 2005.
Tableau 3 : Synthèse des différents amorces utilisées pour générer les amiARNs dans le plasmide pRS300 (Cf. figure 5).

<table>
<thead>
<tr>
<th>amiARN</th>
<th>Amorce 1</th>
<th>Amorce 2</th>
<th>Amorce 3</th>
<th>Amorce 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>amiG6PD2-1</td>
<td>gATCATTAAGAGGACAGGACTtattacc</td>
<td>aactaatgga</td>
<td>cacaggctgtatatg</td>
<td>Ttcatacatatatcc</td>
</tr>
<tr>
<td>amiG6PD2-2</td>
<td>gTTAAAAAGGGACAGGCTCTtattacc</td>
<td>aactaatgga</td>
<td>ttcaggtctgtatatg</td>
<td>Gttacatacatatatcc</td>
</tr>
<tr>
<td>amiG6PD3-1</td>
<td>gtattagaggaaAGGGCGAATattacc</td>
<td>aactaatgga</td>
<td>ttcaggtctgtatatg</td>
<td>Ttcatacatatatcc</td>
</tr>
<tr>
<td>amiG6PD3-2</td>
<td>gTaggattacAAttacACACtattacc</td>
<td>aactaatgga</td>
<td>acaggtctgtatatg</td>
<td>Gttacatacatatatcc</td>
</tr>
<tr>
<td>amiG6PD2/PD3-1</td>
<td>gTTATTACCGTAAGTGCAGAATTcc</td>
<td>taacaattctga</td>
<td>ttcaggtctgtatatg</td>
<td>Gttacatacatatatcc</td>
</tr>
<tr>
<td>amiG6PD2/PD3-2</td>
<td>gTTATTACCGTAAGTGCAGAATTcc</td>
<td>taacaattctga</td>
<td>acaggtctgtatatg</td>
<td>Gttacatacatatatcc</td>
</tr>
<tr>
<td>amiG6PD6-1</td>
<td>gTTGCTAAGAGGATACCCCTCtattacc</td>
<td>aactaatgga</td>
<td>ttcaggtctgtatatg</td>
<td>Gttacatacatatatcc</td>
</tr>
<tr>
<td>amiG6PD6-2</td>
<td>gATGCGAATTTCGCGCTTTtattacc</td>
<td>aactaatgga</td>
<td>ttcaggtctgtatatg</td>
<td>Gttacatacatatatcc</td>
</tr>
</tbody>
</table>

Amorce A

CTGCAAGGCGATTAAAAGTGATACGCCGATAACAAATTCACACAGAAACAG

Amorce B

CTGCAAGGCGATTAAAAGTGATACGCCGATAACAAATTCACACAGAAACAG

L'ensemble des amorces présentées dans ce tableau ont été générées via l'outil Web microRNA Designer (WMD). La séquence en vert est spécifique de chaque amiARN et permet la synthèse artificielle du amiARN désiré à partir du précurseur miARN319a présenté dans la Figure 5.
Figure 6 : Carte du plasmide pER8 GW et schéma des composants de l’ADNt. (A), Représentation schématique du vecteur pER8 constitué de l’ADN de transfert (ADNt) composé du système inductible XVE. La résistance pour la sélection bactérienne est spectinomycine et la résistance pour la sélection in planta est hygromycine. (B), Représentation schématique des différents composants de la séquence d’ADNt. La séquence XVE code pour une protéine chimérique contenant le domaine de liaison à l’ADN de LexA, le domaine d’activation de la transcription de VP16 et la région régulatrice du récepteur aux œstrogènes humains (β œstradiol). L’ajout de β œstradiol permet le changement de conformation de la protéine XVE, rendant son interaction avec l’opérateur LexA possible et de fait l’activation du promoteur minimal 3SS en amont de la séquence amiARN. Cette séquence amiARN est spécifique de la cible choisie et permet la répression transcriptionnelle du gène ciblé. Pour finir, une séquence terminatrice T-Nos est ajouté en aval de l’insert amiARN. (Schéma adapté de Schlücking et al., 2013).
V. Clonage, transformation et sélection des plantes

V.1. Construction et Clonage des précurseurs des microARNs artificiels

Les microARNs artificiels (amiARNs) sont des petits ARNs de 21 nucléotides qui peuvent être génétiquement modifiés pour spécifiquement inhiber l’expression d’un ou plusieurs gènes d’intérêt. Les amiARNs utilisés dans notre étude sont amplifiés à partir du vecteur pRS300 qui contient le précurseur du miR319a dans le plasmide pBSK (Figure 4) (Schwab et al., 2006). Grâce à l’utilisation de PCR chevauchantes, nous avons échangé les séquences naturelles du miR319a avec celles de nos amiARNs pour qu’ils inhibent respectivement l’expression de G6PD2 (At5g13110) (amiG6PD2), G6PD3 (At1g24280) (amiG6PD3), G6PD6 (At5g40760) (amiG6PD6) et G6PD2/G6PD3 de façon concomitante (amiG6PD2/PD3) (Figure 5). Les amorces 1, 2, 3 et 4 utilisées pour réaliser les PCRs chevauchantes sont déterminées en utilisant l’outil Web MicroRNA Designer (WMD) (http://wmd3.weigelw.orl.org/cgi-bin/webapp.cgi) et la séquence des gènes cibles (Tableau 4). Les amorces A et B sont des amorces universels (Schwab et al., 2006) (Tableau 3). Deux séries de PCR sont réalisées. Dans la première série, trois réactions sont réalisées de manière simultanée en utilisant le plasmide pRS300 et les couples d’amorces : A et 4 ; 2 et 3 ; 1 et B. Dans la seconde série, les trois produits PCR ainsi obtenus sont mélangés et utilisés comme matrice pour amplifier l’ensemble du amiARN en utilisant les amorces A et B (Figure 5). Le produit PCR final est ensuite cloné dans le vecteur pENTR / D-TOPO Cloning (Invitrogen®) pour créer un vecteur d’entrée en suivant les instructions du fabricant. Après séquençage, le amiARN est transféré dans le vecteur de destination Gateway™pER8 (pER8-GW) grâce à une réaction de recombinaison LR (Figure 6) (Schlücking et al., 2013). Ce vecteur permet d’exprimer les amiARNs produits sous contrôle d’un promoteur inductible par le β-œstradiol. Ce vecteur contient un promoteur synthétique G10-90 (Ishige et al., 1999) contrôlant la séquence XVE (LexA-VP16-ER). La séquences d’ADN XVE code pour un facteur de transcription chimérique contenant le domaine de liaison à l’ADN de lexA (résidus 1–87), le domaine d’activation de la transcription de VP16 (résidus 403–479) et la région régulatrice du récepteur des œstrogènes humains (résidus 282–595) (Figure 6). Lors de l’application de β-estradiol, l’hormone se lie au domaine récepteur, conduisant à un changement de conformation de la
Tableau 4 : Récapitulatif des séquences amiG6PDs générées et les amorces associées à ce travail

<table>
<thead>
<tr>
<th>Génotype</th>
<th>Séquences amiARN</th>
<th>Amorces pour RT-PCR</th>
<th>Amorces pour qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>amiG6PD2-1</td>
<td>TCAAAAAAGGGCCACGCGT</td>
<td>GTCGTATCCAGTGCAAGGGTGCGAGGTATTCCGACTGGGATACGACACCGCCT</td>
<td>Fw: CCGCGGTCATTAAAAAGGGGCA</td>
</tr>
<tr>
<td>amiG6PD2-2</td>
<td>TTAAGGAGAGAGCGGGCTCC</td>
<td>GTCGTATCCAGTGCAAGGGTGCGAGGTATTCCGACTGGGATACGACACCGCCT</td>
<td>Fw: TCGGTTAACAGGACAGACAG</td>
</tr>
<tr>
<td>amiG6PD3-1</td>
<td>TATCGAGTCAAGACTGGCGAAC</td>
<td>GTCGTATCCAGTGCAAGGGTGCGAGGTATTCCGACTGGGATACGACACCGCCT</td>
<td>Fw: TCGGTTATGGGATAGAAACGC</td>
</tr>
<tr>
<td>amiG6PD3-2</td>
<td>TAGGAAATCCTTAAAGCCCTCTG</td>
<td>GTCGTATCCAGTGCAAGGGTGCGAGGTATTCCGACTGGGATACGACACCGCCT</td>
<td>Fw: TCGGTTAGGAATCTTAAACG</td>
</tr>
<tr>
<td>amiG6PD6-1</td>
<td>TGGTTGCTAGAGATTACACCGCTC</td>
<td>GTCGTATCCAGTGCAAGGGTGCGAGGTATTCCGACTGGGATACGACACCGCCT</td>
<td>Fw: CCGCGGCTGCGTCAGAGATAC</td>
</tr>
<tr>
<td>amiG6PD6-2</td>
<td>TATGGGAAATCCTTAAAGCCCTCTG</td>
<td>GTCGTATCCAGTGCAAGGGTGCGAGGTATTCCGACTGGGATACGACACCGCCT</td>
<td>Fw: TCGGTTATGGGATAGAAACGC</td>
</tr>
<tr>
<td>amiG6PD2/PD3-1</td>
<td>TTTATTCCGTAAGTGGCA</td>
<td>GTCGTATCCAGTGCAAGGGTGCGAGGTATTCCGACTGGGATACGACACCGCCT</td>
<td>Fw: GCGCGGCTTATGACCGCTAG</td>
</tr>
<tr>
<td>amiG6PD2/PD3-2</td>
<td>TCTTTATATTACTGCTTCCCTTA</td>
<td>GTCGTATCCAGTGCAAGGGTGCGAGGTATTCCGACTGGGATACGACACCGCCT</td>
<td>Fw: CCGCGGCTCCCTATATACCTGCT</td>
</tr>
</tbody>
</table>

Défavorisé

Deux séquences artificielles amiARNs différentes ciblant le même gène G6PD ont été générées pour chacun des G6PDs (G6PD2, G6PD3 et G6PD6) correspondant à la séquence présente dans la seconde colonne. La réalisation de la retro-transcription des amiARNs est faite avec des amorces possédant la séquence universelle (en noir, 3ème colonne) suivi d’un fragment de chaque amiARN correspondant au 6 derniers nucléotides de chaque séquence (en rouge). Pour les amorces utilisables pour la qPCR (dernière colonne), nous avons généré des amorces avec l’ensemble de la séquence correspondant au amiARN à amplifier en retirant les 6 derniers nucléotides et en les remplaçant par une série de C et G permettant d’augmenter la température d’hybridation (au minimum 5 et au maximum 7 nucléotides ajoutés). La séquence « Stem loop » de la dernière ligne est la séquence « reverse » universelle permettant la réalisation de la quantification par qPCR.
protéine XVE, permettant au domaine de liaison à l'ADN de se lier à l'opérateur LexA et activant ainsi le promoteur minimal 35S en amont de la séquence codant le amiARN (Benfey et al., 1990). Pour amplifier l'induction, 8 copies de la séquence d'opérateur lexA sont ajoutées en amont du promoteur minimal 35S. L'ensemble de ces séquences amiARNs est résumé dans le tableau 4.

Après la réaction LR, des bactéries E. coli thermocompétentes DH5α sont transformées et les clones positifs sont sélectionnés (résistance spéctinomycine). Après purification de l'ADN plasmidique avec le Kit PureYield™ plasmid miniprep system (Promega), les séquences ont été vérifiées par séquençage. Les constructions sont ensuite transférées dans la souche GV-3101 d' Agrobacterium tumefaciens par transformation (Choc thermique en présence de CaCl2 0,1 M). Les plantes sauvages d' A. thaliana (Col-0) sont ensuite transformées par une méthode de trempage des boutons floraux en présence de Silwet L77 selon le protocole de Clough & Bent (1998). Les transformant (génération F1) sont sélectionnés sur un milieu contenant 30 mg.L⁻¹ d'hygromycin. Les lignées homozygotes (avec une mono-insertion) sont sélectionnées dans les lignées F2 et F3. Les plantes F3 sont ensuite confirmées par séquençage (produit PCR réalisé avec 1 µl d'ADNg (Cf. partie IV.2.), 1 µl d'amorce SeqMir Forward 5'-ATATAAGGAAGTTCATTTCATTGTTG-3’, 1 µl d’amorce SeqMir Reverse 5’-CAATGAAACTGATGCA TTGAACCTTGA-3’, 9,5 µL H2O, 12,5 µL Taq Ozyme Mix (Ozyme)).

V.2. Extraction d'ADNg pour séquençage et génotypage

Les tissus (feuille ou racine) sont broyés une fois (30 secousses.sec⁻¹, 1 min ; broyeur Retsch® mixer mills MM200, Haan, Allemagne). La poudre obtenue est transférée dans 450 µL de tampon d’extraction (Tris-HCL pH 7.5, 200 mM ; EDTA pH 8, 250 mM ; NACL, 25 mM ; SDS 0,5% ; H2O). Les échantillons sont ensuite centrifugés pendant 10 min à 13300 rpm. Après centrifugation, le surnagent est transféré dans un nouveau tube (env. 450 µL) additionnée de 400 µL de Chloroforme/Iso-Amylique alcool (24/1) puis de nouveau centrifugé pendant 10 min à 13300 rpm. Après centrifugation, le surnagent est transféré dans un nouveau tube (env. 400 µL) additionnée de 400 µL d’isopropanol puis de nouveau centrifugé pendant 10 min à 13300 rpm. Après centrifugation, le surnagent est éliminé et le culot nettoyé avec une solution
Figure 7 : Schéma simplifié du principe du système Loop. (A), Une fois l’extraction d’ARN totaux réalisée, nous ajoutons dans chaque échantillon l’amorce associée au amiARN analysé pour la réalisation de la rétro-transcription (3ème colonne tableau 4). S’en suit la réalisation classique d’une RT-PCR comme présenté dans la partie IV.2. du chapitre 2. (B), la quantification relative des transcrits se fait par le biais d’amorces « forward » spécifiques au amiARN à quantifier et au « Reverse » universelle permettant l’amplification de la boucle synthétisée artificiellement durant la RT-PCR (A) (les amorces associées sont dans la dernière colonne du tableau 3). La réalisation de la PCR quantitative se fait classiquement comme présenté en partie IV.3. du chapitre 2. Les résultats obtenus sont normalisés avec le gène CLATHRINE (At4g24550). Schéma adapté de Varkony-Gasic et al., 2007.
d’EtOH à 70% et centrifugé 5 min à 13300 rpm. Pour finir, le surnagent est éliminé, le culot séché et re-suspendue dans 40 µL de H₂O ultra pure.

V.3. Sélection du potentiel d’induction des lignées amiARNs

Afin de sélectionner les lignées dans lesquelles l’expression des amiARNs est la plus forte, nous avons choisi une méthode par RT-qPCR à l’aide d’amorce « Loop » (Varkonyi-Gasic *et al.*, 2007) (Figure 7). Les amorces « Loop » sont spécifiques de chaque amiARNs exprimé dans les plantes transformées (Tableau 4). Les plantes sont cultivées en boîtes verticales (Cf. *partie I.3.*) sur un milieu contrôle contenant 1 mM de KNO₃ ou sur un milieu contenant 1 mM de KNO₃ additionné de 5 µM de β-œstradiol dilué dans du DMSO. Après 10 jours de culture, les boîtes contrôles sont pulvérisées en condition stérile avec une solution contenant 1 mM de KNO₃ additionnée de 100 µM de DMSO et les boîtes contenant du β-œstradiol avec une solution contenant 1 mM de KNO₃ additionné de 100 µM de β-œstradiol dilué dans du DMSO. Après deux jours de culture supplémentaire, les racines sont récoltées, transféré dans l’azote liquide et conservées à -50°C.

Après extraction des ARN et synthèse des ADNc (Cf. *parties IV.1 et IV.2*), les amplifications par PCR quantitative sont réalisées dans un volume réactionnel de 10 µL contenant : 1 µl d’ADNc, 0,25 µl d’amorce « Loop » spécifique au amiARN ciblé à 20 µM (Tableau 4), 3,75 µl d’H₂O et 5 µl de Master mix TAKARA SYBR Pre-mix Ex Taq (Tli RNAsé H Plus, Ozyme) (Cf. *partie IV.3*). La quantité relative d’amiARNs est normalisée par le gène de ménage *CLATHRINE* (At4g24550).

V.4. Induction amiARNs en culture hydroponique

La sélection des lignées amiARNs par la méthode « Loop » (Cf. *partie V.3*), est réalisée en culture in vitro verticale. Une procédure différente est utilisée pour l’induction des amiARNs en culture hydroponique. Suite à une culture de 5 semaines sur 1 mM de KNO₃ en bassine de 10 L (Cf. *partie I.2*), les plantes sont transférées sur une solution 1 mM de KNO₃ exclusive (plantes contrôles), additionnée d’une concentration de 25 µM de DMSO (plantes contrôles) ou additionnée de 25 µM de β-œstradiol pendant 72 h jusqu’à récolte. La
Figure 8 : Schéma simplifié du protocole de culture pour la comptabilisation de la densité en primordia de racine latérales (Chapitre 6). (A), Les graines ont été stérilisées puis semées sur des boîtes verticales 12x12 cm contenant un milieu de culture 1 mM de KNO₃. Suite à une stratification de 2 jours en condition d'obscurité à 4°C, les plantes ont été transférées en chambre de culture (cycle jour/nuit de 16 h/8 h, une température de 22°C le jour et de 20°C la nuit, une hygrométrie de 70% et une intensité lumineuse de 250 μmol. photon.m⁻².s⁻¹. (B), Après 5 jours de croissance, les plantules sont transférées sur le milieu désiré à savoir sans azote (0N), 0,3 mM de KNO₃ et 5 mM de KNO₃. La pointe de la racine primaire est matérialisée par un trait sur la boîte et chaque plantule se voit attribuer un numéro. Les plantes sont ensuite remises en croissance pendant 6 à 7 jours supplémentaires. (C), Au bout de 12 jours de culture, l'ensemble des plantes est récolté puis observé au microscope pour quantifier le nombre de primordia racinaire indépendamment du stade de développement (Cf. Chapitre 2, partie VI.1.).
réalisation de ce milieu de culture est faite par ajout de 250 µL d’une solution mère à 100 mM (β-œstradiol re-suspendue dans du DMSO) dans 10 L de milieu à 1 mM KN03.

VI. Imageries

VI.1. Analyse de la densité en primordia racinaire

Les plantes utilisées pour la quantification de la densité en primordia racinaires (Chapitre 6) sont cultivées de 10 à 12 jours sur boîtes verticales (Cf. partie I.3.). Au 5ème jour de culture, chaque plantule est transférée sur un milieu particulier (0 mM de KN03, 0,3 mM de KN03 ou 5 mM de KN03) (Figure 8). La taille de la racine primaire est matérialisée par un trait sur la boîte au jour du transfert, permettant de comptabiliser au 12ème jour, le développement des primordia postérieur au transfert sur le nouveau milieu. Chacune des plantules transférées est identifiée par un numéro. Au 12ème jour chacune des boîtes a été scannée (Epson perfection V850 pro, logiciel : epson scan, resolution 600ppp, 48 bit couleur) afin de quantifier la longueur de la racine primaire à l’aide du logiciel Fiji (Image J). Les racines sont ensuite récoltées individuellement (section de la racine au niveau de la marque de transfert) et transférées dans des plaques contenant de EtOH 20%. Les racines ont ensuite été analysées au microscope à lumière transmise (Olympus® BH2 série) pour dénombrer l’ensemble des primordia dans tous les stades de développement. La quantité de primordia est rapportée à la longueur de la racine primaire afin d’obtenir la densité en primordia pour chaque génotype en fonction de chaque condition de culture (Figure 8).

VI.2. Analyse qualitative de la localisation cellulaire de bHLH093

Les observations de la localisation cellulaire de bHLH093 sont réalisées à l’aide des lignées traditionnelles \textit{pbHLH093::bHLH093::GFP}. Les plantules ont été placées entre lame et lamelle dans une solution H2O. Ces observations sont faites au microscope confocal à balayage laser. L’outil utilisé est un microscope confocal inversé motorisé Leica SP8 (Leica-
microsystems, Wetzlar, Allemagne). Les images brutes obtenues sont ensuite traitées (résolution, qualité, échelle) in silico sur le logiciel Fiji.

VII. Études biochimiques

VII.1. Extraction de protéique totales

Après récolte de racines de plantes cultivées en hydroponie (Cf. partie I.2), les tissus racinaires ont été broyés en poudre fine de 1 à 3 µg (poids frais) à l’aide d’un mortier dans l’azote liquide. La poudre est ensuite transférée dans des tubes d’ultracentrifugation additionnés de 1 mL d’une solution Acétone/TCA/β-mercaptoéthanol (10% de TCA à 100% (w/v) et β-mercaptoéthanol 0,07% v/v). Après une incubation de 30 min à -20°C, l’ensemble des échantillons est centrifugé à 28000 rpm (Rotor TLA100, Beckman). Après centrifugation, le surnageant est retiré et la surface est nettoyée avec une solution d’acétone pure. Nous additionnons ensuite 1 mL d’une solution acétoné/β-mercaptoéthanol (v/v) et le mélange est vortexé. Chaque échantillon est ensuite centrifugé pendant 10 min à 28000 rpm (Rotor TLA100, Beckman). Après centrifugation, le surnageant est retiré et le culot est séché pendant 20 min (sous vide). Le culot est ensuite re-suspendu dans le tampon de solubilisation (Urée 9 M ; CHAPS 4% ; Tritons X-100 0,5% ; DTT 65 mM) et laissé sous agitation pendant 2 h à température ambiante. Après 2 h, les échantillons sont centrifugés à 10000 rpm à température ambiante pendant 10 min. Pour terminer, le surnageant est transféré dans un nouveau tube de 1,5 mL. Les protéines sont conservées à -80°C et leur concentration est déterminée par la technique de Bradford, avec de la BSA (Bovine Serum Albumin) comme standard.

VII.2. Western-Blot

L’étude protéique réalisé par western-blot est faite à partir de gel de 12% d’acrylamide/bisacrylamide. Les gels se composent : Acrylamide/bisacrylamide 37,5/1 14% ; Tris/HCL 0,36 M, pH 8.8 ; SDS 0,1% ; Ammonium persulfate (APS) 0,05%, N,N,N’,N’-Tetraméthylethylénediamine (Temed) 0,05% et H2O. Une fois ce mélange coulé entre plaque
Tableau 5 : Liste des anticorps utilisés dans notre travail (Chapitre 6).

<table>
<thead>
<tr>
<th>Anticorps</th>
<th>Séquence cible</th>
<th>Dilution d'utilisation</th>
<th>Référence et fournisseur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Actin</td>
<td>NC</td>
<td>1/5000</td>
<td>Agrisera</td>
</tr>
<tr>
<td>Anti-NRT2.1 (19)</td>
<td>TLEKAGEVAKD KFGK</td>
<td>1/2500</td>
<td>Wirth et al., 2007 / Eurogentec</td>
</tr>
<tr>
<td>Anti-NRT2.1 (20)</td>
<td>CKNMHQGSLRFAENAK</td>
<td>1/5000</td>
<td>Wirth et al., 2007 / Eurogentec</td>
</tr>
<tr>
<td>Anti-NRT2.1-S501P</td>
<td>KNMHQG(p)SLRFAENAK</td>
<td>1/500</td>
<td>Jacquot et al., 2020 / Eurogentec</td>
</tr>
<tr>
<td>Anti-NRT2.1-S501</td>
<td>KNMHQGSLRFAENAK</td>
<td>1/2500</td>
<td>Jacquot et al., 2020 / Eurogentec</td>
</tr>
<tr>
<td>Anti-NAR2.1</td>
<td>DVTTKPSREGPGVVL</td>
<td>1/5000</td>
<td>Jacquot et al., 2020 / Eurogentec</td>
</tr>
<tr>
<td>Anti NRT1.1</td>
<td>NC</td>
<td>1/5000</td>
<td>Medici et al., 2015 / Agrisera</td>
</tr>
</tbody>
</table>
(système Mini-Protean® Tetra système, BIORAD), il est ajouté sur la phase supérieure du butanol saturé en H₂O à 50% pour homogénéiser la phase supérieure du gel. Après 30 min de polymérisation, le « stacking » est ajouté sur la phase supérieure du gel (Acrylamide/bisacrylamide 4% ; Tris/HCL 0,144 M, pH 6.8 ; SDS 0,1% ; APS 0,1%, N,N,N’,N’-tetramethylthelylenediamine (Temed) 0,125% ; H₂O). Une fois le mélange déposé sur gel, le peigne, pour le moulage des puiss, est ajouté et la polymérisation s’effectue à température ambiante pendant environ 30 min. En parallèle, le tampon de migration est préparé (TG-SDS 1X fait à partir de Tris-glycine-SDS Buffer 10X) et conservé à 4°C. Après polymérisation de la phase de « stacking », l’ensemble des puiss est chargé avec les échantillons protéiques au préalable dilués avec du tampon de dénaturation (Laemli 4X) pendant 20 min. Le puit central du système ainsi que le fond de la cuve (Système Mini-PROTEAN® Tetra Cell, Bio-Rad) sont remplis avec le tampon de migration à 4°C. La migration est réalisée pendant environ 2 h à 20 mA à 4°C. Une fois la migration terminée, le système peut être remis à température ambiante. Au préalable, une membrane en polyvinylidène (Immobilon-P) et quatre papiers Whatman sont découpés aux dimensions du gel (8 x 6 cms). La membrane est prélevée dans du méthanol pendant 5 sec et lavée pendant 5 min avec H₂O (4 fois) et équilibrée dans le tampon de transfert (3-(Cyclohexylamino)-1-propanesulfonic (CAPS) 10 mM ; Méthanol 10% ; H₂O ; pH ajusté à 11 avec du NaOH). Le transfert est réalisé sur la nuit (16 h à 4 °C) à 35 V. Après 16 h, la membrane est extraite du système et rincée dans une solution PBS-1X (réalisée à partir d’une solution mère PBS-10X : KH₂PO₄ 40 mM ; Na₂HPO₄ 2H₂O 160 mM ; NaCl 1,15 M ; pH ajusté à 7,3 avec du NaOH). La membrane est ensuite conservée dans le tampon PBS-1 X à 4°C.

VII.3. Hybridation anticorps et révélation

Une fois nettoyées dans une solution PBS-1X, les membranes sont transférées dans le tampon de saturation PBS-TB pendant 1 h (PBS-1X ; Tween-20 0,1% ; Bovine Serum Albumin (BSA) 1% et H₂O). Après cette étape de saturation, la membrane est transférée dans une solution PBS-TB additionnée de l’anticorps primaire choisi (Tableau 5) pendant au minimum 2 h 30 min. La membrane est ensuite nettoyée dans une solution de PBS-TB (2 fois 10 min) puis transférée dans une solution PBS-TB additionnée de l’anticorps secondaire dilué 1/20000
(anti Lapin IgG, A6154, SIGMA) pendant au moins 1 h 30 min. La membrane est ensuite nettoyée (4 fois 10 min) avec une solution de PBS-1X avant traitement avec le révélateur (Pierce™ ECL Western Blotting Substrate 32106, Thermofischer) selon le protocole du fabriquant. Les membranes sont ensuite scannées au LAS3000 (Fujifilm) pour en déterminer les bandes correspondant aux protéines étudiées (révélation anticorps).

VII.4. Révélation peptidique par Dot Blot

La réalisation des Dot-Blot est faite à partir du protocole fourni par Agrisera (*Dot-Blot method description*) avec des modifications interne. Une membrane PVDF de transfert Hybond-P (taille de pore 0,45 μm, Amersham Biosciences) est pré-traitée pendant 2 min dans H₂O pour permettre l’activation de la membrane suivie d’un équilibrage de la membrane 5 min dans PBS-T (PBS-1X, Tween-20 0,1%, H₂O). Une fois la membrane active, celle-ci est transféré dans le boîtier de Dot-Blot pourvu d’ouverture pour permettre le dépôt des protéines. L’échantillon protéique utilisé est issue de la fraction soluble des protéines totales (Cf. *partie VII.1*). Après dépôt de 2 μL ou 1 μL d’extrait protéiques, le boîtier est mis sous vide pour permettre l’intégration des protéines dans la membrane PVDF. Après 1 h 30 min de séchage, la membrane est transférée dans une solution de PBS-1X pendant 1 h puis transférée 1 h supplémentaire dans le PBS-TB. La membrane suit ensuite les étapes d’ajout des anticorps et de révélation comme décrit dans la partie *VII.3*.

VII.5. Séparation par taille protéique

Pour optimiser la détection du peptide correspondant à la partie C-terminal de NRT2.1, nous avons séparé au sein de la fraction protéique soluble, les protéines en fonction de leur taille (>10 KD ou <10 KD). Pour cela nous avons utilisé des colonnes Amicon® Ultra-0.5 Centrifugal filter Devices (For volumes up to 500 uL, Merck KGaA, Darmstadt, Allemagne). Le protocole utilisé est celui fourni par le fabricant. Une fois la séparation effectuée, les protéines correspondant aux 2 fractions (respectivement >10 KD ou <10 KD) sont transférées sur membrane PVDF comme décrit dans la partie *VII.4* et révélé comme décrit dans la partie *VII.3*.

47
Découverte de nouveaux régulateurs transcriptionnels des transporteurs $NRT2s$ en réponse à des traitements combinés N/C
Découverte de nouveaux régulateurs transcriptionnels des transporteurs NRT2s en réponse à des traitements combinés N/C

Ce volet de ma thèse a donné lieu à une publication qui est actuellement soumise à Plant Physiology et dans laquelle je suis co-premier auteur avec le Dr. Sandrine Ruffel du laboratoire BPMP. Cet article est présenté en annexe à la fin de ce chapitre.
Dans ce contexte, l’introduction de ce chapitre présente de manière générale le projet et les résultats acquis avant le début de ma thèse. Elle présente également les interrogations qui ont fait l’objet de mon travail dans ce projet.

Figure 1 : Représentation schématique des régulations transcriptionnelles de NRT2.1 par le métabolisme N et C. Les Northern-blot sont extrait de la publication Lejay et al., 1999.
I. Introduction

Comme décrit dans le chapitre 1, d’importantes avancées ont été faites au cours des dernières années concernant l’identification des éléments moléculaires impliqués dans les voies de signalisations qui régulent les systèmes de transport de NO₃⁻. Cependant, de nombreuses études transcriptomiques ont, dans le même temps, révélé un fort niveau d’intégration entre les signalisations N et C. Ceci est cohérent avec la composition chimique globale des tissus végétaux et avec le fait que la plupart des nutriments contribuent à la synthèse de biomolécules, avec une stoechiométrie élémentaire relativement stricte, en particulier C et N pour les acides aminés. Ainsi, des études combinatoires ont démontré que la plupart des gènes régulés par la signalisation N sont également sous le contrôle des voies de signalisation C (Gutierrez et al., 2007 ; Krouk et al., 2009). Cette observation suggère que la façon dont les plantes réagissent aux changements de disponibilité, externe et interne en N, dépend fortement de la disponibilité en C et donc qu’il existe des interactions entre les voies de signalisation N et C (Coruzzi & Zhou, 2001 ; Nunes-Nesi et al., 2010 ; Ruffel et al., 2014). Cependant, les mécanismes moléculaires impliqués dans ces interactions restent encore largement inconnus et la régulation même des transporteurs de NO₃⁻ en réponse aux interactions entre les signalisations N et C n’est pour le moment pas identifié.

Pour aborder cette question, mon équipe d’accueil a développé une approche de biologie des systèmes en utilisant NRT2.1 comme gène cible pour modéliser un réseau de gènes en réponse aux signalisations N et C et trouver de nouveaux acteurs moléculaires impliqués dans ces signalisations (Figure 1). D’un point vue expérimental, ceci a consisté à : (i) déterminer si l’induction de NRT2.1 en réponse à la carence en N est observée quel que soit l’intensité lumineuse et (ii) déterminer, à l’inverse, si l’induction de NRT2.1 en réponse à la lumière est observée quel que soit la disponibilité en NO₃⁻ dans le milieu extérieur.

Pour le premier type d’expérience, les plantes ont été carencées en N pendant 24 h, 48 h et 72 h en étant, soit à l’obscurité, soit soumises à trois intensités lumineuses différentes, à savoir : 50 µmol.photon.m⁻².s⁻¹ (Low Light : LL), 250 µmol.photon.m⁻².s⁻¹ (Intermediate Light : IL) et 800 µmol.photon.m⁻².s⁻¹ (High Light : HL). Dans le deuxième type d’expérience, les plantes ont été traitées avec 10 mM de NO₃⁻, 1 mM de NO₃⁻ ou sans N (-N) et transférées pendant 8 h en conditions HL (Annexe). En résumé, ces expériences ont, tout
Figure 2 : Réseau de gènes issus de l’analyse des transcriptomes en réponse à la carence en N, à la lumière et au CO₂ présenté dans Ruffel et al. (Cf. Annexe Chapitre 3). L’ensemble des 174 gènes exprimés de manière différentielle a été structuré en un réseau de régulation génétique à l’aide de la base de données VirtualPlant et du logiciel Cytoscape (http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) (Katari et al., 2010). Le réseau comprend 124 nœuds (gènes) et 260 liens reliant les gènes co-régulés. Les nœuds ont été organisés en fonction de leur connexion aux trois facteurs de transcription MYC1, TGA3 et bHLH093 et sont détaillés dans la légende du réseau.
d’abord, permis de révéler l’impact des interactions entre les voies de signalisation N et C sur la régulation de NRT2.1. En effet, l’induction de NRT2.1 en réponse à la carence en N n’est pas observée à l’obscurité ou en conditions HL. De même, l’induction de NRT2.1 en réponse à la lumière est uniquement observée en présence de NO₃⁻. Par la suite, des puces Affymetrix ont été réalisées sur une sélection de traitements discriminants pour la régulation de NRT2.1 en réponse aux interactions entre les voies de signalisation N et C. L’analyse statistique des données a permis d’obtenir une liste de gènes co-régulés avec l’expression de NRT2.1 en réponse à la lumière et à la carence en N, utilisée pour construire un réseau de gènes grâce aux outils disponibles sur le site internet VirtualPlant (http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) (Annexe et Figure 2). Les résultats obtenus ont permis d’identifier trois facteurs de transcription (FTs) : MYC1, TGA3 et bHLH093. Tous, sont co-régulés avec NRT2.1 et prédits pour se fixer sur son promoteur qui contient les éléments cis correspondant à ces FTs (Figure 2). MYC1 et TGA3 ont été trouvés co-régulés avec NRT2.1 en réponse à la carence en N alors que bHLH093 a été trouvé co-régulé avec NRT2.1 en réponse à la lumière. De plus, l’induction par la lumière de bHLH093, tout comme celle de NRT2.1, est dépendante de la photosynthèse puisqu’elle nécessite la présence de CO₂ (Annexe). L’utilisation de mutants d’insertion pour ces FTs a montré un rôle de MYC1 et TGA3 dans la régulation de NRT2.4 et NRT2.5 en réponse à la carence en N et de bHLH093 principalement dans l’induction de NRT2.4 par la lumière (Annexe).

Pour finaliser et publier l’ensemble de ces résultats, j’ai, à ce stade, réalisé un certain nombre d’expériences qui visaient à :

i) Étudier l’interaction de TGA3, MCY1 et bHLH093 avec le promoteur des transporteurs NRT2s.

ii) Finaliser l’obtention et caractériser des mutants qui expriment bHLH093 de manière constitutive.

iii) Déterminer l’impact fonctionnel de la mutation de TGA3, MYC1 et bHLH093 sur le transport de NO₃⁻ à forte affinité.
Figure 3 : Analyse de l’interaction des facteurs de transcription MYC1 et TGA3 avec les promoteurs des gènes cibles NRT2.4 et NRT2.5. (A), Les promoteurs des gènes NRT2.2, NRT2.4 et NRT2.5 et NRT2.1 contiennent des éléments putatifs de liaison cis pour les facteurs de transcription, MYC1, TGA3 et BLH093 dans leur région promotrice. Le réseau de gènes a été réalisé à l’aide de la base de données VirtualPlant et du logiciel Cytoscape (http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) (Katari et al., 2010) (Cf. Annexe Chapitre 3). (B), Caractérisation de l’interaction des FTs, TGA3 et MYC1 avec les promoteurs NRT2.4 et NRT2.5 dans un test de simple hybride en levure. Les cellules de levure ont été cultivées sur un milieu minimal SD-HUT sans histidine (H), uracile (U), tryptophane (T) et contenant du 3- amino-1,2,4-triazole (3AT) à 0, 15, 30 et 50 mM. L’interaction entre les FTs et les promoteurs aboutit à l’activation du rapporteur HIS3 contrairement au vecteur vide qui n’interagit pas.
La plupart des résultats obtenus font partie de l’article dans lequel je suis co-premier auteur, soumis au journal « Plant Physiology ». Par ailleurs, dans le cadre de mon travail de thèse, j’ai également poursuivi plus spécifiquement l’étude du rôle de bHLH093 dans la régulation des transporteurs NRT2s par la lumière et les sucres. J’ai, pour cela, étudié si bHLH093 faisait partie de la même voie de signalisation que le FT HY5, qui a également été, impliqué dans la régulation de NRT2.1 par la lumière (Cf. chapitre 1, partie III.3.).

II. Résultats

II.1. Interaction de TGA3, MYC1 et bHLH093 avec les promoteurs des transporteurs NRT2s

Suite aux résultats obtenus dans l’équipe montrant l’impact des mutations de MYC1, TGA3 et bHLH093 sur la régulation de certains transporteurs NRT2s, il était important de déterminer si ces FTs étaient capables de réguler directement l’expression des NRT2s en se fixant sur leurs promoteurs. Le fait que ces trois FTs se retrouvent dans le réseau des gènes prédits pour réguler l’expression de NRT2.1 indique déjà que des séquences putatives de liaison cis pour MYC1, TGA3 et bHLh093 existent dans le promoteur de NRT2.1. Par ailleurs, l’analyse in silico des promoteurs des autres transporteurs racinaires NRT2s a également révélé la présence d’éléments cis pour MYC1 et TGA3 dans les promoteurs de NRT2.2, NRT2.4 et NRT2.5 (Figure 3A). L’utilisation de la base de données issues des expériences de séquençage de purification par affinité de l’ADN (DAP-seq) réalisées par O’Malley et al., (2016) indique également que, in vitro, TGA3 est capable de se lier aux promoteurs de NRT2.1, NRT2.2 et NRT2.4 (Annexe). Malheureusement, aucune information n’est disponible concernant MYC1 ou bHLH093 dans ce travail.

Pour confirmer ou infirmer ces interactions prédites, nous avons analysé l’interaction de ces FTs sur les cibles NRT2s déterminées lors de la caractérisation des lignées mutantes pour ces trois FTs. En outre, le choix de l’analyse de l’interaction avec MYC1 et TGA3 s’est orienté sur les promoteurs de NRT2.4 et NRT2.5. Pour cela, nos collaborateurs Chilien ont initié une approche simple hybride (Test Y1H) (Figure 3B). En l’absence d’interaction, les
Figure 4 : Caractérisation de la localisation tissulaire de bHLH093 dans la racine. (A), Observation confocale des lignées pbHLH093::bHLH093-GFP en réponse à la lumière. Les plantes ont été cultivées sur 1 mM KNO₃ en boîtes de pétri verticales pendant 12 jours. À l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées à la lumière pendant 2 h et 8 h avant d’être observées. (B), Vue orthogonale de la racine des plantes pbHLH093::bHLH093-GFP cultivées comme A, et observées après 8 h de lumière par imagerie confocale. Les racines ont été traitées pendant 5 min dans du iode de propidium pour observer la délimitation membranaire (canal rouge). (C), Représentation schématique simplifiée des différentes lignées cellulaires composant la racine et des noyaux dans lesquels on détecte la présence de la protéine bHLH093 (en vert). (Ep: Epiderme, Ct: Cortex, Ed: Endoderme, Per: Pericycle).
levures contrôles (Empty : contrôle négatif) ne pouvant pas exprimer le rapporteur Histidine3 (His3) en présence de 3-AT ne se développent pas (au-delà de 30 mM) démontrant l’absence d’induction du rapporteur His3 (Figure 3B). Concernant les levures transformées avec TGA3 ou MYC1 couplé à l’activateur du rapporteur His3, l’expérimentation montre un développement des levures au-delà de 15 mM de 3-AT indiquant une liaison directe de MYC1 et TGA3 avec la séquence d’ADNs des promoteurs NRT2.4 et NRT2.5 (Figure 3B).

Dans une démarche similaire à celle faite pour MYC1 et TGA3, l’étude de l’interaction directe de bHLH093 avec les promoteurs de ses cibles a également été réalisée. Cependant, l’équipe avait, avant mon arrivé dans ce projet, généré des lignées rapportrices couplant bHLH093 à une GFP qu’il restait, du moins, à sélectionner. L’intérêt de ces plantes était double car ces lignées permettent d’étudier : (i) la localisation de bHLH093 au niveau de la racine par microscopie et (ii) l’interaction de bHLH093 avec les promoteurs des NRT2s par immuno-précipitation de la chromatine (ChiP).

Dans un premier temps, une sélection a été faite pour discrimer les meilleures lignées fluorescentes pour travailler (Figure sup. 1). Une analyse de la fluorescence sur la racine entière a également été réalisée afin de déterminer la localisation tissulaire de bHLH093. Des noyaux marqués sont visualisés dans la pointe racinaire, dans la partie mature de la racine primaire et dans les racines latérales à différents stades de développement (Figure sup. 1). L’analyse de la dynamique de fluorescence en réponse à des traitements obscurité et lumière indique l’absence totale de marquage GFP à l’obscurité ou après 2 h de lumière (Figure 4A). Au contraire, des noyaux fluorescents apparaissent après 8 h d’éclairement. D’un point de vue tissulaire, la vue orthogonale obtenue en imagerie confocale permet de distinguer clairement une fluorescence des noyaux cellulaires dans la couche épidérmique de la racine (Figure 4B). La présence de noyaux marqués dans les cellules corticales a également été observée mais de façon plus réduite (Figures 4B, 4C). Fait intéressant, ces couches cellulaires (Épiderme et Cortex) correspondent aux zones d’expression connues des cibles NRT2s (Girin et al., 2007 ; Wirth et al., 2007 ; Kiba et al., 2012).

Dans un second temps et après avoir validé les lignées bHLH093-GFP, une approche de ChiP a été initiée pour analyser l’interaction de bHLH093 avec le promoteur des NRT2s (Figure 5). Étant donné que la mutation bhlh093 affecte plus particulièrement la régulation de NRT2.4 et NRT2.1 par la lumière, les expériences de ChiP ont été réalisées pour mesurer l’enrichissement des zones promotorices de ces deux gènes en utilisant une lignée bHLH093-
Figure 5 : Étude de l’interaction de bHLH093 avec le promoteur des gènes cibles NRT2.1 et NRT2.4. Caractérisation de l’interaction du facteur de transcription bHLH093 avec les promoteurs de NRT2.1 et NRT2.4 par immuno-précipitation de la chromatine (ChiP). Les plantes sauvages (Col-0) et rapportrices (pbHLH093::bHLH093-GFP) ont été cultivées sur 1 mM de KNO₃. En fin de cycle, les plantes ont été maintenues à l’obscurité pendant 40h avant d’être transférées à la lumière pendant 4 h. Les racines ont été fixées au formaldehyde pendant la récolte et la chromatine des échantillons est extraite (Cf. chapitre 2, partie IV.4.). Les échantillons sont traités sans (sans GFP) ou avec (anti-GFP) l’anticorps dirigé contre la GFP. L’ADN est ensuite élué et amplifié avec des couples d’amorces qui couvrent les régions promotorises de NRT2.1 et NRT2.4.
Figure 6 : Sélection et caractérisation des plantes 35S::bHLH093. (A), Les plantes sauvages Columbia (Col-0) et mutantes (35S::bHLH093) ont été cultivées en boîte verticale pendant 12 jours sur un milieu contenant 1 mM de KNO₃. Après récolte et congélation des racines, l’accumulation des transcrits bHLH093 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. (B et C), Les plantes sauvages Columbia (Col-0) et mutantes (bh/h093) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l’issue d’une nuit prolongée (40 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité ou à la lumière (intensité lumineuse intermédiaire (250 µmol.m⁻².s⁻¹; 1I) pendant 2 h, 4 h et 8 h. Après récolte et congélation des racines, l’accumulation des transcrits bHLH093 (B) et NRT2.1, NRT2.4 (C) a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’érat-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes mutantes par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
GFP traitée à l’obscurité ou après 4 h de lumière. Les résultats attendus étaient un faible enrichissement des zones promotrices NRT2.1 et NRT2.4 à l’obscurité et une augmentation d’enrichissement à la lumière après fixation de bHLH093 sur le promoteur de NRT2.4 et/ou de NRT2.1. Malheureusement, malgré plusieurs tentatives, le bruit de fond des données obtenues sans anticorps GFP n’ont pas permis de conclure sur la fixation du FT sur les promoteurs des gènes NRT2.1 ou NRT2.4 (Figure 5).

II.2. Caractérisation du rôle de la sur-expression constitutive de bHLH093 sur la régulation des NRT2s

Comme les expériences de ChIP n’ont pas permis de montrer que bHLH093 était un régulateur direct des transporteurs NRT2s, nous avons choisi de caractériser, en plus des mutants d’insertion bhlh093, des plantes qui sur-expriment ce FT afin de renforcer le rôle direct ou indirect de bHLH093 dans la régulation de NRT2.1 et NRT2.4 par la lumière. Pour cela, j’ai sélectionné les graines de plantes qui avaient déjà été préalablement transformées à partir d’un fond mutant bhlh093-1 par Sandrine Ruffel. Cela m’a permis d’obtenir sur les quatre lignées issues des étapes de sélection, une lignée dont l’expression de bHLH093 est restaurée de manière constitutive par rapport à des plantes sauvages (Figure 6A). De plus, l’analyse des transcrits bHLH093 dans les conditions d’induction du gène par la lumière indique une expression constitutive indépendamment des conditions lumineuses démontrant le bon fonctionnement de la lignée sélectionnée (Figure 6B). La lignée 355::bHLH093-3 ainsi que les deux mutants d’insertion ont été traitées pendant 2 h, 4 h et 8 h à la lumière afin de déterminer si la sur-expression de bHLH093 était capable de complémer le phénotype observé dans les mutants bhlh093 concernant l’expression des transporteurs NRT2.1 et NRT2.4 (Figure 6C). Comme attendu, l’induction par la lumière de NRT2.1 et NRT2.4 est restauré dans les plantes 355 et se trouve même à des niveaux d’induction plus élevés que chez les plantes sauvages (Figure 6C). Cependant, aucune sur-induction de NRT2.1 et NRT2.4 indépendamment des conditions lumineuses n’est observé semblant indiqué que la sur-expression de bHLH093 n’est pas suffisante à l’obscurité ou dans les premières heures à la lumière pour induire d’avantage l’expression des transporteurs NRT2.1 et NRT2.4.
Figure 7 : Caractérisation de l’impact fonctionnel des mutants pour les facteurs de transcription MYC1, TGA3 et bHLH093. (A), Les plantes sauvages Columbia (Col-0) et double mutants (tga3/myc1) ont été cultivées en hydroponie pendant 4 semaines sur une solution nutritive contenant 1 mM de KNO₃. A l’issue d’un traitement d’une semaine sur 10 mM de KNO₃, les plantes sont transférées pendant 24 h, 48 h et 72 h sur une solution sans N (-N). (B), Les plantes sauvages Columbia (Col-0) et mutants (bhlh093) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. A l’issue d’une nuit prolongée (40 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité ou à la lumière (intensité lumineuse intermédiaire (250 μmol.m⁻².s⁻¹; 6L) pendant 2 h, 4 h et 8 h. Influx racinaire de ¹⁵NO₃⁻ mesuré à la concentration externe de 5 μM de K¹⁵NO₃. Les résultats sont la moyenne de ± 12 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes mutantes par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
II.3. Impact fonctionnel de la mutation des FTs sur le transport de NO$_3^-$ à forte affinité

Pour renforcer l’impact des mutations de TGA3, MYC1 et bHLH093, il était important de vérifier que les variations de niveau de transcrits observées pour les NRT2s dans les mutants myc1/tga3 et bhlh093 ont un impact fonctionnel sur le transport de NO$_3^-$. Pour cela nous avons regardé l’impact des mutations sur l’influx de 15NO$_3^-$ à forte affinité chez le double mutant myc1/tga3, les deux mutants d’insertion bhlh093 et le mutant qui sur-exprime bHLH093 (Figure 7). Les résultats obtenus montrent que la double mutation myc1/tga3 entraîne effectivement une diminution de l’influx de 15NO$_3^-$ en réponse à la carence en N par rapport aux plantes sauvages (Figure 7A). Par contre, la mutation de bHLH093 ou sa sur-expression n’entraîne pas réellement de différences significatives pour l’induction de l’influx de 15NO$_3^-$ par la lumière par rapport à des plantes sauvages.

II.4. Lien entre bHLH093 et HY5 ?

Comme indiqué dans le chapitre 1 (Cf. partie III.3.), le seul acteur moléculaire identifié dans la régulation de NRT2.1 par la lumière est le FT, HY5 (Chen et al., 2016). Pour bHLH093, nos résultats indiquent également un rôle clé de ce FT dans la stimulation de l’expression des NRT2s en particulier NRT2.4 et dans une moindre mesure NRT2.1 en réponse à la lumière. Dans ce contexte, il nous semblait donc intéressant de déterminer si ces FTs font, ou non, partis de la même voie de signalisation.

Dans un premier temps, l’analyse de l’impact de la mutation hy5 (Figure sup. 2) sur la régulation de l’expression de bHLH093, NRT2.1 et NRT2.4 en réponse à la lumière a été réalisée dans nos conditions de culture (Figure 8A). Comme décrit précédemment, une induction de l’expression des transcrits bHLH093, NRT2.1 et NRT2.4 est observée après 4 h et 8 h de traitement à la lumière chez les plantes sauvages. Les résultats obtenus indiquent que, contrairement à ce qui a été obtenu par Chen et al., (2016), la mutation hy5 n’a pas d’impact sur la régulation de NRT2.1. Par contre, une baisse significative de l’expression de bHLH093 et de NRT2.4 est observée par rapport aux plantes sauvages que ce soit à l’obscurité ou à la lumière (Figure 8A). Sachant que HY5 a été décrit comme participant à la translocation des
Figure 8 : Régulation transcriptionnelle de *bHLH093*, *NRT2.1* et *NRT2.4* dans le mutant d’insertion *hy5*. Les plantes sauvages Columbia (*Col*) et mutantes (*hy5*) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃ (*A*), à l’issue d’une nuit prolongée (40 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité ou à la lumière pendant 2 h, 4 h et 8 h ou (*B*), à l’issue d’une nuit normale (16h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits *bHLH093*, *NRT2.1* et *NRT2.4* a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (*At4g24550*). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes mutantes par rapport aux sauvages sont indiquées par des étoiles (T-test : *p*<0,05; **: *p*<0,01; ***: *p*<0,001).
sucres des parties aériennes vers les parties racinaires (Chen et al., 2016), une autre expérience a été réalisée dans laquelle les plantes ont été transférées pendant 4 h : soit sur un milieu avec 1% de saccharose, soit à la lumière (Figure 8B). Dans ce cas, comme observé précédemment, la régulation de NRT2.1 n’est pas affectée par la mutation hy5 et l’expression de bHLH093 est, de nouveau, diminuée à l’obscurité et à la lumière mais pas en réponse au saccharose dans le mutant hy5 par rapport aux plantes sauvages (Figure 8B). Par contre, dans cette expérience l’induction de NRT2.4 par la lumière et les sucres est plus faible que dans l’expérience précédente chez les plantes sauvages et elle ne semble pas affectée par la mutation hy5.

III. Discussion

III.1. Rôle de bHLH093, MYC1 et TGA3, dans la régulation de l’expression des gènes NRT2s et du transport racinaire de NO₃⁻

L’approche de biologie des systèmes de ce projet, avait pour but l’étude de la régulation du transport de NO₃⁻ en réponse aux interactions entre les signalisations N et C. Pour cela, le gène NRT2.1 a été choisi comme cible car c’est le seul transporteur à être régulé par l’ensemble des signalisations qui affectent le transport de NO₃⁻ (Annexe). Cette approche a permis la découverte de trois FTs : TGA3 et MYC1 qui affectent la régulation de NRT2.4, NRT2.5 en réponse à la carence en N et bHLH093 qui affecte la régulation de NRT2.4 et, dans une moindre mesure, celle de NRT2.1 en réponse à la lumière (Annexe). Toutefois, la caractérisation du rôle de ces FTs avait été réalisée grâce à l’utilisation de mutants d’insertion, ce qui ne permet pas de déterminer s’ils ont un rôle, direct ou indirect, dans la régulation des transporteurs NRT2s. Les expériences de simple hybride réalisées en levure montrent que MYC1 et TGA3 sont effectivement capables de se fixer in silico sur les promoteurs des transporteurs NRT2.4 et NRT2.5 (Figure 3B). Ces résultats suggèrent que MYC1 et TGA3 sont bien des régulateurs directs de ces deux transporteurs ce qui fait écho aux résultats obtenus par O’Malley et al., (2016) identifiant l’existence d’une interaction entre TGA3 et le promoteur de NRT2.4. Par ailleurs, la localisation de ces FTs est également compatible avec l’hypothèse d’une interaction directe puisque TGA3 est exprimé dans le cortex et l’épiderme de la racine.
(Arabidopsis eFP http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) et MYC1 est exprimé préférentiellement dans l’épiderme et les poils racinaires (Bruex et al., 2012) ce qui correspond aux territoires d’expression de NRT2.4 et NRT2.5 (Kiba et al., 2012 ; Lezhneva et al., 2014).

Concernant bHLH093, les expériences de ChiP, réalisées grâce à des plantes transgéniques exprimant la protéine bHLH093 fusionné à une GFP, n’ont pas permis de mettre en évidence une interaction directe avec le promoteur de NRT2.4 ou NRT2.1 (Figure 5). Ceci suggère que bHLH093 est un régulateur indirect plutôt impliqué dans la voie de signalisation qui régule l’expression de NRT2.1 et NRT2.4 en réponse aux sucres produits par la photosynthèse. Pourtant, sa localisation au niveau du noyau des cellules de l’épiderme et du cortex correspond aux territoires d’expression de NRT2.1 et NRT2.4 (Figure 4) (Wirth et al., 2007 ; Kiba et al., 2012). De plus, le rôle de bHLH093 dans la régulation de NRT2.1 et NRT2.4 par la lumière est renforcé par le fait que la diminution de l’induction de ces transporteurs par la lumière est abolie dans des plantes qui expriment bHLH093 de manière constitutive (Figure 6C). Dans ce contexte, l’utilisation d’un anticorps anti-bHLH093 à la place d’un anticorps anti-GFP, dans l’approche de ChiP, pourrait augmenter la spécificité de la détection et permettre de conclure de manière plus définitive sur l’existence ou non d’une interaction directe entre bHLH093 et les promoteurs de NRT2.1 ou NRT2.4.

Globalement, l’intérêt de l’approche de biologie des systèmes développée dans ce projet et des FTs identifiés est renforcé par l’impact fonctionnel de la double mutation tga3/myc1 sur l’influx de NO³⁻ à très forte affinité (Figure 7A). En revanche, il ne semble pas que la mutation simple de bHLH093 impacte la régulation du transport de NO³⁻ par la lumière (Figure 7B). Cependant, il faut noter que MYC1 et TGA3 ciblent les deux transporteurs à très forte affinité, NRT2.4 et NRT2.5, alors que bHLH093 impacte principalement la régulation de NRT2.4. Dans ce cas, le fonctionnement du transporteur NRT2.5 dans le mutant bhlh093 pourrait expliquer pourquoi la simple mutation de ce FT ne suffit pas à déréguler le transport de NO³⁻ à très forte affinité.
III.2. *bHLH093*, un régulateur dans la signalisation en aval de la photosynthèse

Bien que HY5 ait été identifié par Chen *et al.*, (2016) comme un FT mobile impliqué dans la régulation de *NRT2.1* par la signalisation C, ce gène n’a pas été trouvé co-régulé avec *NRT2.1* dans les données transcriptionnelles obtenues dans le cadre de ce projet. En effet, il ressort de ce travail que HY5 est régulé directement par la lumière indépendamment de la présence de CO₂, alors que la régulation de *bHLH093*, comme celle de *NRT2.1*, dépend du fonctionnement de la photosynthèse et donc de la présence de CO₂ en plus de la lumière (Annexe) (Lejay *et al.*, 2008). Le rôle de HY5 dans la signalisation lumière a été également montré par d’autres auteurs qui ont identifié ce FT comme impliqué dans la voie de signalisation liée au phytochrome (Quail, 2002 ; Li *et al.*, 2010). Ces résultats suggèrent que HY5 et *bHLH093* font partis de deux voies de signalisation différentes. Cependant, les résultats obtenus avec le mutant *hy5* ne vont pas dans ce sens et montrent que *bHLH093* semble être induit par HY5 en réponse à la lumière. En effet, l’expression de *bHLH093*, tout comme celle de *NRT2.4*, est diminuée par la mutation de *hy5* (Figure 8A). L’ensemble de ces résultats suggèrent que *bHLH093* pourraient être régulé à la fois par la lumière à travers HY5 et par une signalisation C liée par exemple au fonctionnement de l’OPPP comme cela a été montré pour *NRT2.4* et *NRT2.1* (Lejay *et al.*, 2008 ; de Jong *et al.*, 2014 ; Chen *et al.*, 2016). Ceci pourrait expliquer : (i) pourquoi l’induction de *bHLH093* est généralement plus forte à la lumière qu’à l’obscurité après ajout de saccharose (Figure 8B) et (ii) pourquoi l’impact de la mutation *hy5* sur l’expression de *bHLH093* n’est pas observée en réponse au saccharose (Figure 8B). Toutefois, les résultats obtenus par Chen *et al.*, (2016) montrent également l’implication de HY5 dans la stimulation du transport des sucres des feuilles vers les parties racinaires. On ne peut donc pas écarter le fait que ce soit la relocalisation des sucres dans la racine dépendante de HY5 qui puisse avoir un effet sur la régulation de *bHLH093*. Un des moyens les plus simples pour déterminer si *bHLH093* et HY5 font, ou non, partie d’une seule et même voie de signalisation serait d’obtenir un double mutant *bhlh093/hy5* et de mesurer l’impact sur la régulation des transporteurs *NRT2.4* et *NRT2.1* par rapport aux simples mutants *hy5* et *bhlh093*. Dans ce cadre, j’ai obtenu par croisement et sélectionné ces doubles mutants mais n’ai pour le moment pas eu le temps de tester l’impact de cette double mutation dans nos conditions de culture.
Par ailleurs, dans nos conditions, la régulation de \textit{NRT2.1} ne semble pas affectée par la mutation \textit{hy5} contrairement à ce qui a été observé par Chen \textit{et al.}, (2016). Cette différence pourrait être expliquée par notre méthode de culture hydroponique qui diffère de la culture \textit{in vitro} réalisée par les auteurs de ce travail. En effet, dans nos conditions, les plantes ont été cultivées sur 1 mM de KNO$_3$ avec une intensité lumineuse de 150 µmol.photon.m$^{-2}$.s$^{-1}$. Par comparaison, le milieu \textit{in vitro} utilisé par Chen \textit{et al.}, (2016) est un milieu MS ½ classique contenant normalement du NH$_4$NO$_3$ et les plantes sont exposées à une intensité lumineuse de 100 µmol.photon.m$^{-2}$.s$^{-1}$. Pour finir, l’âge des plantes diffère également. Dans notre cas les plantes sont âgées de 5 semaines contrairement aux plantules de 7 jours utilisées dans le cadre de cette publication. Il n’est donc pas surprenant de ne pas obtenir le phénotype illustré par cette publication.
Figures supplémentaires
Figure supplémentaire 1 : Caractérisation du potentiel de fluorescence des lignées pBHLH093::BHLH093-GFP ainsi que la localisation tissulaire de la protéine. Observation confocale des lignées rapportrices (pBHLH093::bHLH093-GFP) en réponse à la lumière. Les plantes ont été cultivées sur 1 mM KNO₃ en boîtes de pétri verticales pendant 12 jours. À l'issue d'une nuit normale (16 h d'obscurité) les plantes sont transférées à la lumière pendant 8 h avant d'être observées.
Figure supplémentaire 2 : Vérification de la conformité du mutant Knock-out pour HYS dans nos expérimentations. Les plantes sauvages Columbia (Col-0) et mutantes (hy5) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. (A), À l’issue d’une nuit prolongée (40 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité ou à la lumière pendant 2 h, 4 h et 8 h ou (B), à l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits hy5 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes hy5 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Annexe

Short Title: Systems biology approach to study NRT2s regulation

Article title:
Genome-wide Analysis In Response to N and C Identifies New Regulators for root AtNRT2 Transporters ¹

Authors:
Sandrine Ruffel,² Valentin Chaput, Jonathan Przybyla-Toscano, Ian Fayos, Catalina Ibarra, Tomas Moyano, Cécile Fizames, Pascal Tillard, Jose Antonio O’Brien, Rodrigo A. Gutiérrez, Alain Gojon and Laurence Lejay,³,⁴

³BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France

⁴Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile

¹This work was supported by an international grant from the French Research Agency (ANR) and Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) (ModelN ANR-09-BLAN-0395).

²These authors contributed equally to this work

³Author for contact: laurence.lejay@inrae.fr

⁴Senior author.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Laurence Lejay (laurence.lejay@inrae.fr)

SR performed the transcriptomic experiments the analysis and the generation of the gene regulatory network. SR and VC obtained and performed the experiments to characterise the mutants along with JPT, IF, PT and LL. JAO’B with CI performed Y1H experiments. TM, CF and RG performed bioinformatics and statistical analysis for the gene regulatory network and the interaction of the transcription factors with the NRT2 promoters. LL, SR, AG and RG designed the experiments. LL, SR and AG wrote the manuscript.

One sentence summary:
Identification of three transcription factors involved in the regulation of NRT2s transporters using a systems biology approach and NRT2.1 as target gene in response to combinations of N/C treatments
Abstract

In *Arabidopsis thaliana*, the High-Affinity Transport System (HATS) for root NO$_3^-$ uptake depends mainly on four NRT2 transporters, namely NRT2.1, NRT2.2, NRT2.4 and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways have been shown to control gene expression of the *NRT2* transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of *NRT2* genes expression to the interaction of these signals has never been specifically investigated and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting *NRT2.1, NRT2.2, NRT2.4* and *NRT2.5* in response to N/C signals. Our systems analysis of the data highlighted the potential role of three putative transcription factors, TGA3, MYC1 and bHLH093. Functional analysis of mutants combined with yeast one hybrid experiments confirmed that all 3 transcription factors are regulators of *NRT2.4* or *NRT2.5* in response to N or C signals.
Introduction

As all living organisms, plants must integrate internal and external signals to adapt to fluctuating environmental conditions. This is particularly the case concerning mineral nutrition, because most nutrients display dramatic changes in external availability, whereas their internal concentrations must be kept within a limited range to be compatible with physiological processes. Accordingly, root nutrient uptake systems are finely tuned by regulatory mechanisms activated by local signaling of external nutrient availability and systemic signaling of the nutrient status of the whole plant (Schachtman and Shin, 2007). Furthermore, acquisition of the various nutrients has to be coordinated to remain consistent with the global chemical composition of plant tissues and with the fact that most nutrients contribute to the synthesis of biomolecules with a relatively strict elemental stoichiometry (e.g., C, N and S for amino acids). Therefore, the signaling pathways that are specific for the different nutrients must interact to ensure this coordination. Although coordinated regulation of uptake systems for different nutrients have been clearly demonstrated at the physiological level, the underlying molecular mechanisms remain largely obscure (Schachtman and Shin, 2007). The cross-talks between N and C signaling mechanisms are certainly those that have been most often investigated (Coruzzi and Zhou, 2001; Nunes-Nesi et al., 2010; Ruffel et al., 2014), first because N and C are the two mineral nutrients plants require in largest quantities, and also because they connect two key functions of plants as autotrophic organisms, i.e., photosynthesis and assimilation of inorganic nitrogen. Moreover, the importance of N/C signaling interaction is dramatically illustrated by the fact that most N-responsive genes in Arabidopsis are actually regulated by C/N interaction (Gutierrez et al., 2007).

The nitrogen nutrition of most herbaceous plants relies on the uptake of nitrate (NO$_3^-$), which is ensured in root cells by two classes of transport systems. The High-Affinity Transport System (HATS) is predominant in the low range of NO$_3^-$ concentrations (up to ~ca 1 mM), whereas the Low-Affinity Transport System (LATS) makes an increasing contribution to total NO$_3^-$ uptake with increasing external NO$_3^-$ concentration (Crawford and Glass, 1998). In all species investigated to date, genes encoding the various transporter proteins involved in either HATS or LATS have mostly been identified in the NRT2 and NPF (formerly NRT1/PTR) families, respectively (Nacry et al., 2013; O'Brien et al., 2016). The respective roles of HATS and LATS in the total NO$_3^-$ acquisition by the plant are still a matter of debate. However, field studies suggest that even in agricultural conditions, the HATS has a major contribution over the whole developmental cycle (Malagoli et al., 2004; Garnett et al., 2013). Both the structure and
regulation of the HATS have been extensively studied in *Arabidopsis thaliana*. In this species, almost all the HATS activity depends on four NRT2 transporters, namely NRT2.1, NRT2.2, NRT2.4 and NRT2.5 (Filleur et al., 2001; Kiba et al., 2012; Lezhneva et al., 2014), which all require an interaction with the NAR2.1 protein to be active in NO$_3^-$ transport (Kotur et al., 2012). Under most conditions, NRT2.1 is the main contributor to the HATS (Cerezo et al., 2001; Filleur et al., 2001). However, NRT2.4 and NRT2.5 display a very high-affinity for NO$_3^-$ and are important for taking up this nutrient when present at very low concentration (<50 µM) in the soil solution (Kiba et al., 2012; Lezhneva et al., 2014). Furthermore, unlike NRT2.1 and NRT2.4, NRT2.5 does not require the presence of NO$_3^-$ to be expressed, and is therefore considered crucial for ensuring the initial uptake of NO$_3^-$ as soon as it appears in the external medium (Kotur and Glass, 2015).

Most interestingly, the HATS has been shown to be the target of almost all regulations governing root NO$_3^-$ acquisition in *Arabidopsis* (Nacry et al., 2013), and this is associated with control of *NRT2.1, NRT2.2, NRT2.4* and *NRT2.5* expression at the mRNA level. In particular, previous reports have shown that *NRT2.1* is induced both by N starvation (Lejay et al., 1999; Cerezo et al., 2001; Gansel et al., 2001), and by light and sugars, indicating coordination with photosynthesis (Lejay et al., 1999; Lejay et al., 2003). This makes *NRT2.1* a very relevant model gene for investigating the interaction between N and C signalling networks in roots. This also holds true for *NRT2.4* (Lejay et al., 2008; Kiba et al., 2012), but not for *NRT2.5*, which until now has only been reported to be up-regulated by N starvation (Lezhneva et al., 2014). For these reasons, and also due to its high functional importance as the main component of the HATS, *NRT2.1* has been extensively investigated to unravel its regulatory mechanisms. Accordingly, a quite significant number of genes have been found to encode regulators of *NRT2.1* expression, such as *LBD37-39* (Rubin et al., 2009), *TGA1* and *TGA4* (Alvarez et al., 2014), *NLP6* and *NLP7* (Marchive et al., 2013; Guan et al., 2017), *NRG2* (Xu et al., 2016), *BT1-2* (Araus et al., 2016), *NRT1.1* (Munos et al., 2004), *CIPK8* (Hu et al., 2009), *HNI9/IWS1* (Widiez et al., 2011) and *HY5* (Chen et al., 2016). Most of these genes contribute to the regulation of *NRT2.1* expression in response to changes in N provision. The only exception is *HY5*, which encodes a transcription factor reported to ensure long-distance signalling of the stimulation of *NRT2.1* expression in roots by illumination of the shoot. Strikingly, none of the above regulators were shown to be involved in the cross-talk between N and C signalling pathways. Even more surprising, the response of *NRT2.1* expression itself (as well as those of the other *NRT2*s) to the interaction of N and C signals was not specifically investigated. As a
Figure 1. Interaction between Nitrogen and Light/Carbon provision modulates NRT2.1 mRNA accumulation in roots.

(A) Different light regimes modulate NRT2 regulation in roots of plants experiencing from high NO₃⁻ provision (10 mM) to N deprivation (-N). The light regimes encompass dark, low light intensity (50 µmol m⁻² s⁻¹; LL), intermediate light intensity (250 µmol m⁻² s⁻¹; IL) and high light intensity (800 µmol m⁻² s⁻¹; HL). Plants were supplied with NO₃⁻ 10 mM one week ahead the experiment and acclimated for 24 hour in the different light regimes before applying the N deprivation for 24, 48 or 72 hr. Means with different letters are significantly different determined by T-Test (P < 0.1).

(B) Different N provisions modulate NRT2 regulation in roots of plants experiencing a dark to light transition. The N provisions encompass 10mM NO₃⁻, 1mM NO₃⁻ (for 72 hr) and N deprivation for 48 hr (-N). Plants are kept in the dark (i.e., 40hr) before transition to high light intensity (800 µmol m⁻² s⁻¹; HL) and roots are collected at time 0 (Dark) and 1, 2, 4 and 8 hr after light transition. Means with different letters are significantly different determined by T-Test (P < 0.1).

(C) Regulation of NRT2 by photosynthesis activity. Plants are grown in regular NO₃⁻ regime (1mM) and intermediate light intensity until they are transferred for 4 hr in a CO₂-deprived atmosphere (0ppm) or in high CO₂-supplied atmosphere (600ppm), either in the dark or in the light. Means with different letters are significantly different determined by T-Test (P < 0.1).

In these 3 experimental conditions, roots have been collected to assess NRT2.1 mRNA accumulation by RT-QPCR (relative accumulation to Clathrin housekeeping gene). Expression pattern of NRT2.1 across the 35 conditions tested (16 in A, 15 in B and 4 in C) has driven the choice of 18 conditions to investigate gene reprogramming associated to the regulation of NO₃⁻ transport. These 18 conditions are indicated with arrows and numbers on the x-axis of the 3 NRT2.1 bar graphs (Each arrow corresponds to one condition with 2 independent biological repeats constituted of a pool of approx. 10 plants each).
consequence, the molecular mechanisms responsible for the coordinated regulation of the NO$_3^-$ HATS by N and C status of the plant are unknown. Our study aimed at filling this gap. Therefore, using NRT2.1 as a marker gene to identify relevant combinations of N/C treatments, we developed a systems biology approach based on genome-wide transcriptome analysis in roots of Arabidopsis plants to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4 and NRT2.5 in response to N/C signals. This highlighted the potential role of three putative transcription factors, TGA3, MYC1 and bHLH093 in controlling the expression of these transporter genes. Functional analysis of loss-of-function mutants confirmed that all 3 transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. Furthermore, yeast one hybrid experiments confirmed that at least TGA3 and MYC1 are able to bind NRT2.4 and NRT2.5 promoters.

Results

Regulation of root nitrate transporters by interaction between nitrogen and light provision

We wished to determine whether induction of NRT2.1 by N starvation is dependent on light, and conversely if NRT2.1 induction by light is dependent on the availability of NO$_3^-$ (Figure 1A and Figure 1B). In order to reveal possible interactions between C and N signalling pathways for the regulation of NRT2.1, we performed two different sets of experiments. In the first set of experiments, plants were starved for N for up to 72h either in the dark or at three different light intensities, 50 μmol m$^{-2}$s$^{-1}$ (LL), 250 μmol m$^{-2}$s$^{-1}$ (IL) and 800 μmol m$^{-2}$s$^{-1}$ (HL) (Figure 1A). In the second set of experiments, plants were treated with 10mM NO$_3^-$, 1mM NO$_3^-$ or no N and transferred during 8h from the dark to HL conditions (Figure 1B).

In LL and IL conditions, NRT2.1 expression was, as expected, induced when plants were starved for N even if both the kinetic and the level of induction were different depending on light intensity (Figure 1A). When plants were kept in the dark, NRT2.1 expression was not induced by N starvation but it remained very low both on 10mM NO$_3^-$ and on N free solution. More surprisingly, the induction of NRT2.1 expression by N starvation was also almost completely abolished when plants were treated in HL conditions. However, under HL NRT2.1 mRNA levels were always high, even under repressive conditions such as 10mM NO$_3^-$.

This unexpected result is specific of NRT2.1 since NRT2.2, NRT2.4 and NRT2.5, known to be also induced by N starvation in roots (Li et al., 2007; Kiba et al., 2012; Lezhneva et al., 2014), are still regulated by N starvation in HL (Supplemental Figure 1A). However, just like NRT2.1,
NRT2.2, NRT2.4 and NRT2.5 were not regulated by N starvation in the absence of light. These data confirm the need of light for the regulation by N starvation of root NO$_3^-$ transporters. It also suggests that the mechanisms involved in NRT2.1 regulation by N starvation are somewhat different from the mechanisms involved in the regulation of NRT2.2, NRT2.4 and NRT2.5.

The second set of experiments confirmed the strong interaction between C/N signals as it revealed that the level of N nutrition affects the regulation of NRT2.1 expression by light (Figure 1B). Indeed, when plants were starved for N during 48h, NRT2.1 expression was much less induced by light as compared to plants grown on 10 or 1mM NO$_3^-$ (Figure 1B). Among other root NO$_3^-$ transporters, only NRT2.2 and NRT2.4 were induced by light and their level of induction seemed to be also dependent on N nutrition (Supplemental Figure 1B). However, in contrast to NRT2.1, the level of expression of both NRT2.2 and NRT2.4 was high when plants were starved for N and low when plants were grown on 1 or 10mM NO$_3^-$ (Supplemental Figure 1B). For NRT2.4, it confirms that this transporter is more sensitive to high N repression than NRT2.1 (Kiba et al., 2012). The same result was obtained for NRT2.5, whose expression is barely detectable on either 10mM or 1mM NO$_3^-$ (Supplemental Figure 1B). However, concerning regulation by light, even when NRT2.5 expression was high in N starved plants, light did not induce but rather seemed to repress NRT2.5 mRNA accumulation after 8h in the light (Supplemental Figure 1B).

In a previous study, we showed that expression of NRT2.1 and NRT2.4 is induced by light only in the presence of CO$_2$ in the atmosphere, suggesting that light regulation of these genes corresponds to a control exerted by photosynthesis (Lejay et al., 2008). As in the rest of our study we used micro-array experiments to look for genes involved in the regulation of root NO$_3^-$ transporters by photosynthesis, it was important for us to be able to discriminate between genes regulated by light itself or by photosynthesis. To do so, we performed a third set of experiments where plants were transferred from dark to light for 4h in an atmosphere containing 0 or 600ppm CO$_2$. The results confirmed (i) that both NRT2.1 and NRT2.4 are only induced by light in the presence of CO$_2$ and (ii) that NRT2.5 is not induced by light or photosynthesis as suggested by our previous experiment (Figure 1C and Supplemental Figure 1C).

Gene network for the regulation of root nitrate transporters by light and N starvation

The experiments performed above allowed us to reveal interesting interactions between C and N regulation of root NRT2 NO$_3^-$ transporters. We took advantage of this experimental design to develop a systems biology approach aiming at inferring a gene regulatory network underlying the interactions between N and C signals in the regulation of root high affinity NO$_3^-$
Figure 2. Gene expression multi-analysis driven by NRT2.1 expression pattern combined to an integrative analysis identified a candidate gene regulatory network connected to the NO$_3^-$ transport system.

(A) Venn diagrams identifying common genes regulated by N provision on low light condition and dark to light transition (34 genes) or regulated by light/carbon (142 genes). The union of these gene lists defines a population of 174 genes, including 4 transcription factors.

(B) The core set of 174 genes differentially expressed has been structured into a Gene Regulatory Network using the Gene Networks analysis tool in VirtualPlant software (http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) (Katari et al., 2010). The network includes 124 nodes (genes) and 260 edges connecting genes. The nodes have been organized according to their connection to the 3 transcription factors MYC1, TGA3 and bHLH093 and are detailed in the Network Legend. ARR14 is excluded from the network due to its lack of connectivity to other nodes according to the edges selected to generate the network.
transporters. Due to the central position of \textit{NRT2.1} as regulatory target affecting N acquisition and the high and complex regulation of its level of expression in response to N and C, we used it as a focus gene around which to find associated gene networks.

We performed Affymetrix microarrays on selected combinations of light and N treatments, which were found discriminant for regulation of \textit{NRT2.1}. Altogether, we chose 18 treatments labelled with numbered arrows in Figure 1. These 18 treatments correspond to 3 sets of conditions representative of (i) the light-dependent induction of \textit{NRT2.1} expression in response to N starvation, (ii) the light induction of \textit{NRT2.1} on 10mM NO$_3^-$ and (iii) the specific regulation of \textit{NRT2.1} by photosynthesis and not by light itself. For each treatment, 2 independent biological replicates were generated and used for Affymetrix ATH1 microarray hybridization.

Regulation of \textit{NRT2.1}, \textit{NRT2.2}, \textit{NRT2.4} and \textit{NRT2.5} gene expression in response to N starvation and light/photosynthesis was similar on microarrays as compared to the results obtained by quantitative PCR in Figure 1 and Supplemental Figure 1 (Supplemental Figure 2). These results also confirmed that these four NO$_3^-$ transporters are the main \textit{NRT2}s expressed in roots. \textit{NRT2.3}, \textit{NRT2.6} and \textit{NRT2.7} showed very low expression levels on the microarrays under our experimental conditions. It is also noteworthy that \textit{NRT2.1} was the most highly expressed member of the family among the 7 \textit{NRT2}s (5 to 50 fold higher expression as compared to \textit{NRT2.2}, \textit{NRT2.4}, \textit{NRT2.5}) (Supplemental Figure 2).

To find gene regulatory networks that could integrate N and C signalling and thus control \textit{NRT2.1} expression, we defined 5 different subsets of conditions addressing the regulation by N on one side and by C on the other side, as described in Figure 2A. Genes defined as regulated by N-deprivation like \textit{NRT2.1} are differentially regulated by N provision in conditions 1 to 4 in experiment 1, where \textit{NRT2.4} is also found regulated and in conditions 7 to 14 in experiment 2, where \textit{NRT2.2} and \textit{NRT2.5} were also found regulated. To select the most robust genes regulated by N provision only the intersection between the 2 groups was isolated. In addition to \textit{NRT2.1}, the intersection defines a set of 33 genes including the 2 transcription factors \textit{TGA3} (At1g22070) and \textit{MYC1} (At4g00480). On another hand, genes considered as regulated by C provision like \textit{NRT2.1} are differentially regulated by light intensity in conditions 1, 3, 5, and 6 in experiment 1, by light time exposure in conditions 9, 11 and 13 in experiment 2 and by photosynthesis in conditions 15 to 18 in experiment 3. Similarly, to narrow down the specificity of gene regulation by C factor, only common genes to at least 2 experiments were isolated. This core set corresponds to 142 genes including \textit{NRT2.1} but also 2 others transcription factors \textit{bHLH093} (At5g65640) and \textit{ARR14} (At2g01760) (Figure 2A).
Figure 3. TGA3, MYC1 and bHLH093 are candidate transcription factors for the control of the expression of NRT2 gene family.

(A) Gene expression analysis of the 3 candidate transcription factors in the extended set of Nitrogen/Carbon combinations confirms correlation with NRT2.1 regulation. Expression patterns have been determined by RT-QPCR (relative accumulation to Clathrin housekeeping gene). Means with different letters are significantly different determined by T-Test (P < 0.1).

(B) NRT2.2, NRT2.4 and NRT2.5 as well as NRT2.1 display putative cis-binding elements for the 3 transcription factors in their promoter region. The gene network has been done using the Gene Networks analysis tool in VirtualPlant software (http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) (Katari et al., 2010); only Regulated Edges box and One Binding Site option has been selected in this case.

(C) TGA3 bounds in silico with the promoter of NRT2.1, NRT2.2 and NRT2.4. The analysis has been done using the Plant Cistrome Database (http://neomorph.salk.edu/PlantCistromeDB) (O’Malley et al., 2016).
Next, we only focused on the 174 genes that showed a response to N starvation (34 genes) and/or C provision (142 genes); $NRT2.1$ being the common gene between the 2 responsive gene lists together with a $Kinesin3$ gene (At5g54670-ATK3) coding for a microtubule motor protein. The possible connection of the 4 transcription factors with $NRT2.1$ and the other genes was determined by a Gene Networks analysis performed on the VirtualPlant platform (Katari et al., 2010). The generated network contains 124 gene nodes. These genes are connected to each other by 260 edges, representing regulatory relationships such as predicted transcription factor-target gene interactions (Figure 2B). Regulatory interactions were proposed based on detection of at least one predicted binding site for a given transcription factor within the promoter region of the target gene as done previously (Gutierrez et al., 2008). According to the parameters used, 50 genes out of the 174 are not connected to any other genes in the network (See Material and Methods for details about the parameters). Among these 50 genes, the transcription factor $ARR14$ was excluded due, for instance, to a low level of correlation between this gene and $NRT2.1$ expression patterns. However, TGA3, MYC1 and bHLH093 have all predicted regulatory interactions with $NRT2.1$ plus 40 other genes of the network (indicated in blue in Figure 2B). The network predicts also that only one or only two of these transcription factors putatively regulate the 79 remaining genes (one gene being connected to the network by predicted protein-protein interaction with 2 TGA3-targets). Nevertheless, almost all sub-networks are interconnected through protein-protein interaction prediction, suggesting possible coordination within the network at the whole.

Regulation of MYC1, TGA3 and bHLH093 in response to C and N

The gene regulatory network we obtained revealed 3 main transcription factors: MYC1 and TGA3 which were found to be co-regulated with $NRT2.1$ in response to N starvation and bHLH093 which was found to be co-regulated with $NRT2.1$ in response to light/photosynthesis. In order to validate their regulation, we measured gene expression by QPCR across all the conditions performed in experiment 1 and 2 (Figure 3A). The results confirmed that expression of $TGA3$ and $MYC1$ genes is induced 2- to 3-fold after transferring the plants to a N-free solution, especially under LL or HL conditions. Furthermore, similar to $NRT2.1$, the regulation of $TGA3$ and $MYC1$ expression by N requires the presence of light (Figure 3A and Supplemental Figure 3). The results also confirmed that $bHLH093$ gene expression is only induced by light (between 3- and 4-fold after 8h of HL), independent of N nutrition. This is supported by the fact that $bHLH093$ is not regulated by N starvation (Figure 3A and Supplemental Figure 3). On the contrary, $MYC1$ and $TGA3$ genes are not only regulated by N starvation, but their expression
Figure 4. Most of the genes previously determined as NRT2s regulators do not display expression patterns similar to the patterns of the 3 candidate transcription factors in the set of Nitrogen and Light/Carbon combinations.

Graphs display the expression pattern of the 16 genes extracted from the whole transcriptomic dataset. Data are organized according to the multi-analysis (i.e., S1 to S5, Figure 2). LBD37, LBD38, LBD39 repress the expression of genes involved in NO\textsubscript{3} uptake (NRT2.1 and NRT2.5) and assimilation, likely mimicking the effects of N organic compounds (Rubin et al., 2009). TGA1, TGA4, NLP6, NLP7, NRG2, NRT1.1, CIPK8, CIPK23 are required for the NO\textsubscript{3}-dependent induction of NRT2.1 (Munos et al., 2004; Castaings et al., 2009; Ho et al., 2009; Hu et al., 2009; Konishi and Yanagisawa, 2013; Marchive et al., 2013; Alvarez et al., 2014; Xu et al., 2016). TCP20 and HNI9/IWS1 are involved into NRT2.1 regulation controlled by systemic signaling (Widiez et al., 2011; Guan et al., 2014). BT2 represses expression of NRT2.1 and NRT2.4 genes owed nitrate availability (Araus et al., 2016). CBL7 regulates NRT2.4 and NRT2.5 expression under N-starvation conditions (Ma et al., 2015). Eventually, HY5 has been recently identified as a regulator of NRT2.1 by mediating light promotion of NO\textsubscript{3} uptake (Chen et al., 2016). HRS1, HHO1, HHO2 and HHO3 are repressors of NRT2.4 and NRT2.5 expression under high N conditions (Kiba et al., 2018; Safi et al., 2018).
is also induced by light, especially in plants starved for N (Figure 3A and Supplemental Figure 3). Like for NRT2.1, putative cis-binding elements for TGA3, MYC1 and bHLH093 were also found in the promoters of NRT2.2, NRT2.4 and NRT2.5 (Figure 3B). Furthermore, DNA affinity purification sequencing (DAP-seq) experiments performed by O’Malley et al. (2016) showed that TGA3 binds in silico to the promoter of NRT2.1, NRT2.2 and NRT2.4 (Figure 3C). Unfortunately, no data are available for MYC1 and bHLH093 in this work. Altogether, these results support the hypothesis that the transcription factors we identified are involved in the regulation of several root NRT2s.

To our knowledge, the transcription factors TGA3, MYC1 and bHLH093 have not been isolated in previous transcriptomic approach as candidates for regulation of root NO$_3^-$ transporters. In order to understand why they have not been found before we looked at the expression pattern of the known regulatory elements for NRT2.1 in our experimental set up. The results show that the known regulators for NRT2.1 were not co-regulated with NRT2.1 expression in our conditions (Figure 4). This was also the case for HY5, a transcription factor recently identified as involved in the regulation of NRT2.1 by light/photosynthesis (Chen et al., 2016). In our hands, this transcription factor was only induced by light independently of the presence of CO$_2$ and therefore not by photosynthesis like NRT2.1 (Figure 4). As most of the previous transcriptomic experiments were performed to study the signalling pathways involved in short-term induction by NO$_3^-$, we also looked at the regulation of TGA3, MYC1 and bHLH093 in those conditions (Supplemental Figure 4). We chose the transcriptomic experiments performed by Wang et al. (2004). In this study WT plants and the null mutant for nitrate reductase (NR) were treated with 5mM KNO$_3$ for 2h and compared to control plants treated with 5mM KCl for 2h. The data sets allowed the authors to determine the genes that respond specifically to NO$_3^-$ in both WT and NR-null plants. The results show that, as expected, NRT2.1, NRT2.2 and NRT2.4 are induced by NO$_3^-$ while NRT2.5 seems to be repressed (Supplemental Figure 4A). In the same time, most of the known regulators for NRT2.1 are also induced by NO$_3^-$ except NLP7 and TCP20, two transcription factors which have not been isolated using transcriptomic approaches (Supplemental Figure 4B). On the contrary, in the same conditions, our three transcription factors, TGA3, MYC1 and bHLH093 were not regulated by NO$_3^-$ supply neither in WT nor NR-null plants. All these results reinforced the originality of our experimental set up and explain why we found new candidates that have never been isolated in previous transcriptomic experiments.

Role of MYC1, TGA3 and bHLH093 in the regulation of NRT2s root nitrate transporters
Figure 5. TGA3 and MYC1 are required for NRT2.4, NRT2.5 and root NO\textsubscript{3} influx full induction during N-deprivation.

(A) Characterization of the knock-out mutants for TGA3 (tga3.2 and tga3.3), MYC1 (myc1.2 and myc1.3) and the TGA3/MYC1 double mutants (tga3.2 myc1.2). The plants were supplied with NO\textsubscript{3} 10 mM one week ahead the experiment and acclimated for 24 hr in high light conditions (800 µmol m-2 s-1) before applying the N deprivation for 24, 48 or 72 hr. Roots have been collected to assess NRT2.1, NRT2.2, NRT2.4 and NRT2.5 mRNA accumulation by RT-QPCR (relative accumulation to Clathrin housekeeping gene). Values are means of three biological replicates ± SD.

(B) Characterization of TGA3 and MYC1 interaction with NRT2.4 and NRT2.5 promoters in a Y1H assay. Yeast cells were grown on SD-H-U-T minimal media without histidine (H), uracil (U), tryptophan (T) and containing 3- amino-1,2,4-triazole (3AT) at 0, 15, 30 and 50 mM. Interaction between the transcription factors and the promoters results in HIS3 reporter activation in contrast to the empty vector that does not interact.

(C) Root NO\textsubscript{3} influx measured at the external concentration of 5 µM 15NO\textsubscript{3}. Plants were treated in the same conditions as for NRT2s mRNA level measurements. Values are means of 12 replicates ± SD.

Differences between WT (Col-0) and the KO mutants are significant at *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t test).
To determine if MYC1, TGA3 and bHLH093 are involved in regulation of NRT2 root NO$_3^-$ transporters we used two independent insertion mutants for each of the transcription factors: tga3.2, tga3.3 for TGA3, myc1.2, myc1.3 for MYC1 and bHLH093.1, bHLH093.5 for bHLH093. As both TGA3 and MYC1 were found to be regulated by N starvation, we also produced a double mutant, tga3.2/myc1.2, to test a potential additive effect of those transcription factors on the regulation of NRT2s. In addition, to reinforce our conclusions concerning the role of bHLH093, we also produced an overexpressing line by transforming the bhlh093.1 mutant with a 35S::bHLH093 construct. The measurement of MYC1, TGA3 and bHLH093 expression level confirmed an almost complete absence of their transcripts in their respective mutants and a strong overexpression of bHLH093 in the overexpressing line (Supplemental Figure 5A and B).

As expected for a role of TGA3 and MYC1 in the regulation of NRT2s by N starvation, the induction of both NRT2.4 and NRT2.5 is overall reduced in tga3 and myc1 mutants compared to wild type plants, especially after 72h of N starvation (Figure 5A). This lower induction in response to N starvation is stronger in the double mutant tga3.2/myc1.2 and is observed in that case consistently after 24h, 48h and 72h of N starvation for NRT2.4 and NRT2.5 and after 48h for NRT2.2. It suggests that TGA3 and MYC1 are not redundant and that both factors may function as transcriptional activators under low N conditions. This result is supported by the fact that neither the level of expression nor the regulation of MYC1 in tga3 mutants and of TGA3 in myc1 mutants are affected compared to wild type plants (Supplemental Figure 5A).

Interestingly, the role of MYC1 and TGA3 seems to depend on the amount of light since the effect on NRT2.4 and NRT2.5 induction by N starvation is preferentially observed in HL and not in LL conditions (Figure 5A and Supplemental Figure 6). However, these two transcription factors are specific to N regulation since none of them has a negative impact the induction of NRT2s expression by light in the double mutant tga3.2/myc1.2 (Supplemental Figure 7). Surprisingly, MYC1 and TGA3 never affect the regulation of NRT2.1 by N starvation (Figure 5A and Supplemental Figure 6). In agreement with a role of MYC1 and TGA3 in the regulation of NRT2.4 and NRT2.5, Y1H experiments show that both transcription factors are able to bind to the promoter of these two transporters (Figure 5B). Finally, the lower induction of NRT2.4 and NRT2.5 in response to N starvation in the double mutant tga3.2/myc1.2 has functional consequences. Indeed, the level of root NO$_3^-$ influx is decreased in the double mutant tga3.2/myc1.2 compared to wild type plants (Figure 5C).

Out of the three NRT2s, which are clearly induced by light, NRT2.4 and to a lower extent NRT2.1, have a significant lower induction after 4h and 8h of light in the bHLH093 mutants as
Figure 6. *bHLH093* is required for *NRT2.4* full induction by light.

(A) Characterization of the knock-out mutants for *bHLH093* (*bHLH093-1* and *bHLH093-5*) on 0N or 10mM NO$_3^-$: The plants were either starved for N for 48 hr (light gray bars) or supplied with NO$_3^-$ 10 mM one week ahead the experiment (black bars) and were kept in the dark 40 hr before transition to high light intensity (800 µmol m$^{-2}$ s$^{-1}$) during 1h, 2h, 4h and 8h. Roots have been collected to assess *NRT2.1*, *NRT2.2* and *NRT2.4* mRNA accumulation by RT-QPCR (relative accumulation to *Clathrin* housekeeping gene). Values are means of three biological replicates ± SD.

(B) Characterization of the knock-out (*bHLH093-1* and *bHLH093-5*) and the over-expressor (*35S::bHLH093*) mutants for *bHLH093* on 1mM NO$_3^-$: The plants were grown on 1mM NO$_3^-$ and were kept in the dark 40 hr before transition to intermediate light intensity (250 µmol m$^{-2}$ s$^{-1}$; IL) during 1h, 2h, 4h and 8h. Roots have been collected to assess *NRT2.1*, *NRT2.2* and *NRT2.4* mRNA accumulation by RT-QPCR (relative accumulation to *Clathrin* housekeeping gene). Values are means of three biological replicates ± SD.

(C) Root NO$_3^-$ influx measured at the external concentration of 5 µM 15NO$_3^-$. Plants were treated in the same conditions as for *NRT2s* mRNA level measurements and were transfer in the light during 2h, 4h and 8h. Values are means of 12 replicates ± SD.

Differences between WT (Col-0) and the mutants are significant at *$P < 0.05$, **$P < 0.01$, ***$P < 0.001* (Student’s *t* test).
compared to wild type plants (Figure 6A and 6B). Conversely, the induction by light of both
NRT2.1 and NRT2.4 is higher in the 35S::bHLH093 plants (Figure 6B). Interestingly, this
phenotype seems to depend on the amount of NO$_3^-$ in the nutritive solution since the effect of
bHLH093 is preferentially seen when plants are starved for N or on 1mM NO$_3^-$ and is almost
absent when plants are grown on 10mM NO$_3^-$ (Figure 6A and 6B). For NRT2.5, despite the fact
that its induction by light seems to be only transient, bHLH093 is also involved in its regulation,
at least on 1mM NO$_3^-$ (Figure 6A and 6B). However, contrary to TGA3 and MYC1, the effect
of bHLH093 mutation on NRT2s induction by light has no real impact on the level of root NO$_3^-$
influx compared to wild type plants, no matter how much NO$_3^-$ is in the nutritive solution
(Figure 6C).

Discussion

Interaction between nitrogen and light provision affect regulation of NRT2.1 expression

As part of its central physiological role, the root NO$_3^-$ HATS is a main target of the C/N
regulatory networks ensuring the necessary integration of both, N acquisition by roots and C
acquisition by shoots. The HATS regulation by N starvation has been well characterised in
previous studies, especially through the study of NRT2.1 expression. Split-root experiments
have demonstrated that this regulation relies on systemic signaling pathways (Gansel et al.,
2001), and underlying molecular mechanisms have recently been unraveled (Ohkubo et al.,
2017). On the other hand, NRT2.1 expression is also dramatically induced by light and sugars
through an Oxidative Pentose Phosphate Pathway (OPPP)-dependent signaling mechanism
(Lejay et al., 1999; Lejay et al., 2003; Lejay et al., 2008; de Jong et al., 2014). Over the past
decade, the importance of signal interaction for the regulation of gene expression has become
more and more obvious and especially for C/N regulation (Palenchar et al., 2004; Gutierrez et
al., 2007; Krouk et al., 2009). However, the details of how this interaction affects regulation of
NRT2.1 expression in response to combined N/C treatments were unknown. Our results clearly
show that the interplay of N and C signaling mechanisms has a major role as light conditions
can totally suppress N regulation of NRT2.1 expression, and vice versa (Figure 1A and 1B).
Similar to the case for inorganic N assimilation, it seems that low sugars inhibit NRT2.1
expression, overriding signals from N metabolism (Stitt et al., 2002; Nunes-Nesi et al., 2010).
Surprisingly, the regulation of NRT2.1 by N starvation is not only abolished when plants are
treated in the dark. It happens also under high light conditions (Figure 1A). However, in that
case, the level of NRT2.1 expression is always high, even on normally repressive conditions
Figure 7. Schematic representation of the known regulatory elements for the regulation of root high-affinity NO$_3^-$ transporters in response to external NO$_3^-$, the N status of the plant and light/photosynthesis.

Purple circles represent the transcription factors identified in previous studies while red circles represent the transcription factors identified in our study.
like 10 mM NO$_3^-$, while in the dark the level of NRT2.1 stays low, independently of the level of N. One model to explain these results is that enhancement of growth due to combination of high light and high NO$_3^-$ supply results in a sustained high N demand for growth, relieving the feedback repression normally associated with high NO$_3^-$ supply. This model is supported by a recent metabolomics analysis performed on Arabidopsis thaliana under diverse C and N nutrient conditions (Sato and Yanagisawa, 2014). Taken together, these results clearly support the idea that the control of NRT2.1 expression involves a complex network of interactions between signals emanating from N and C metabolisms. However, this level of complexity seems to be rather specific for NRT2.1. In contrast to NRT2.1, expression of NRT2.2, NRT2.4 and NRT2.5 is always repressed on 10 mM NO$_3^-$, independent of light levels (Supplemental Figure 1A). It should be noted that in the N starvation experiments plants are transferred on a media with no N. This leads to the variation of two factors, the N status of the plants, which decreases when plants are starved for N, and the presence of NO$_3^-$ in the nutritive solution, which is suppressed by the transfer to N-free solution. Concerning the regulation of NRT2.2, NRT2.4 and NRT2.5 it is not known which one of these two factors is predominant since their expression was only measured in N starvation experiments (Kiba et al., 2012; Lezhneva et al., 2014; Kotur and Glass, 2015). It is thus possible that NRT2.2, NRT2.4 and NRT2.5 are only regulated locally by NO$_3^-$ and not by systemic signals of N demand. This idea is supported by the work of (Ma et al., 2015) showing that the regulation of NRT2.4 and NRT2.5 by N starvation depends on CBL7, which is specifically induced by NO$_3^-$ deficiency. Moreover, NIGT/HRS1s have been shown to act as transcriptional repressor of NRT2.4 and NRT2.5 upon NO$_3^-$ treatment (Kiba et al., 2018; Safi et al. 2018). Local regulation by NO$_3^-$ would explain why these transporters, unlike NRT2.1, are always repressed when plants are on 10 mM NO$_3^-$, regardless of the light conditions (Supplemental Figure 1A).

Identification of three new candidates for regulation of NRT2 genes using a systems biology approach

Over the past few years, transcriptomic approach and systems biology have been powerful tools to identify new regulatory elements involved in N signaling (For review Medici and Krouk, 2014; Vidal et al., 2015). For root NRT2s genes and HATS activity in Arabidopsis, it enabled the identification of CIPK23 and CIPK8 in response to NO$_3^-$, LBDs transcription factors in response to high N and BT2, a negative regulator of NRT2.1 and NRT2.4 under low N conditions (Figure 7) (Ho et al., 2009; Hu et al., 2009; Rubin et al., 2009; Araus et al., 2016). For C and N signaling, previous microarray studies in response to transient treatments with
NO$_3^-$, sucrose or NO$_3^-$ plus sucrose have been used to reveal, at the level of the genome, the existence of interaction between C and N signaling (Wang et al., 2003; Price et al., 2004; Scheible et al., 2004; Wang et al., 2004; Gutierrez et al., 2007; Huang et al., 2016). In Arabidopsis, over 300 genes have been found differentially expressed by combined C:N treatments compared to C or N treatments (Palenchar et al., 2004). However, because of the number of genes affected by C and/or N regulation and the complex interactions between the signalling pathways, none of these studies have led so far to the identification and the validation of new regulatory elements. The unexpected regulations of root NRT2s and especially of NRT2.1 in our experimental set-up offer an interesting opportunity to find genes more specifically involved in the regulation of root NO$_3^-$ transporters by C and/or N, and to build a gene network model integrating regulators responding to N and/or C signals. As compared to previous transcriptomic approaches on N and C signaling in plants, we were able to narrow down the number of candidate genes by (i) using NRT2.1 as a specific target and (ii) integrating the data from several Affymetrix microarrays to find gene networks co-regulated with the expression of NRT2.1 in response to different combinations of light and N treatments. Therefore, the gene regulatory network includes only three transcription factors, bHLH093, MYC1 and TGA3 (Figure 2B). bHLH093 was found co-regulated with NRT2.1 in response to light through photosynthesis because, like NRT2.1, it is not induced by light in the absence of CO$_2$ (Supplemental Figure 3). MYC1 and TGA3 were found co-regulated with NRT2.1 in response to N starvation. The analysis of their level of expression across all the experiments revealed that TGA3 and MYC1 are induced by N starvation but especially in LL and HL conditions, while bHLH093 seems overall induced by light no matter what the level of N (Figure 3A). Furthermore, MYC1 is also clearly induced by light (Figure 3A and Supplemental Figure 3). Taken together these results support the validity of our approach to find regulatory elements affected by C and/or N signalling and which are thus candidates for the regulation by C/N interaction. Interestingly, none of these three transcription factors was found involved in the regulation of root NO$_3^-$ transporters by previous studies. One explanation to this relates to the fact that the expression of bHLH093, MYC1 and TGA3 is not responsive to the induction by NO$_3^-$, which was by far the major environmental change investigated by previous studies (Supplemental Figure 4A). Conversely, none of the regulatory genes identified in previous studies was found with our approach. Indeed, most of them are not affected by N starvation and/or by light (Figure 4). The only exception is HY5, which encodes a recently identified mobile transcription factor involved in the regulation of NRT2.1 by sugar signals (Chen et al., 2016) and that is not found co-regulated with NRT2.1 in our analysis. This is explained by the
fact that, unlike NRT2.1, we found HY5 induced by light even in the absence of CO₂ in our dataset (Figure 4). It indicates that expression of HY5 does not depend on the production of sugars through photosynthesis and is directly regulated by light. The role of HY5 in light signalling and not in C signalling is supported by previous studies showing that HY5 works downstream phytochrome signalling (Quail, 2002; Li et al., 2010). Taken together, these results suggest that NRT2.1 would be induced by both a light component dependent on HY5 and a C component dependent on the OPPP (Lejay et al., 2008; de Jong et al., 2014; Chen et al., 2016). Accordingly, both Lejay et al. (2008) and Chen et al. (2016) found that induction of NRT2.1 by light is higher as compared to the addition of sucrose in the dark. Furthermore, there is still an induction of NRT2.1 expression by increasing supply of sucrose in the mutant hy5 (Chen et al., 2016).

bHLH093, MYC1 and TGA3, three transcription factors involved in the regulation of NRT2.4 and NRT2.5 gene expression

The use of mutants validated our approach and showed that bHLH093 has mainly a role in the induction by light of NRT2.4, while MYC1 and TGA3 affect induction by N starvation of both NRT2.4 and NRT2.5 and in a more modest way NRT2.2 (Figure 5A and Figure 6). Furthermore, Y1H experiments support the fact that MYC1 and TGA3 are direct regulators of NRT2.4 and NRT2.5 as already suggested for TGA3 with NRT2.4 by the results obtained by O'Malley et al. (2016) (Figure 3 and Figure 5B). Conversely, Chromatin Immunoprecipitation (ChIP) experiments, using plants expressing bHLH093 fused to GFP, failed to reveal a robust interaction with the promoter of NRT2.4 (data not shown). It suggests that bHLH093 is an indirect regulator and that it is rather involved in the signalling pathway governing the regulation of NRT2.4 and in a lesser extent NRT2.1 and NRT2.5 by photosynthesis. The fact that bHLH093 mutation mainly affect the regulation of NRT2.4 and that NRT2.4 and NRT2.5 kinetics of regulation by light are different could also explain why it has no functional impact on HATS activity (Figure 6). Indeed, the activity of one of the transporter could compensate for the activity of the other one across the different timepoints. Furthermore, the induction of NRT2.1 expression by light could also participate to maintain HATS activity at the same level in the mutants compared to wild type plants (Figure 6). By comparison, MYC1 and TGA3 mutations in the double mutant tga3.2/myc1.2 affect both the induction of NRT2.4 and NRT2.5 by N starvation across all the time points (Figure 5A). And in that case, NRT2.1 expression is low in the plants starved for N (Figure 5A). It could explain why the mutation of TGA3 and MYC1 has a functional impact on HATS activity in those conditions (Figure 5C).
As represented in Figure 7, most of the regulatory elements identified to date concern the primary NO$_3^-$ response (PNR), with only three elements involved in the repression by high N or high NO$_3^-$ and one in the induction by light. Along with CBL7, MYC1 and TGA3 seem thus to be part of an independent signalling pathway involved in the induction of root NO$_3^-$ transporters in response to low N, while bHLH093 is, to our knowledge, the first element involved in a regulatory mechanism linked to photosynthesis (Ma et al., 2015). As discussed above, the role of these transcription factors in the regulatory mechanisms involved in C/N interactions is also supported by our results. Indeed the role of bHLH093 in the regulation by light seems to be dependent of the level of N and the role of MYC1 and TGA3 seems to be stronger in high light conditions (Figure 5A, Figure 6 and Supplemental Figure 6).

However, surprisingly, none of these 3 transcription factors affect strongly the regulation of NRT2.1, that we used as a target gene in our systems biology approach. This result could indicate that the regulatory mechanisms differ between the four NRT2 genes involved in the HATS. Indeed, NRT2.1 is regulated by at least 4 different mechanisms (local induction by NO$_3^-$ and repression by high NO$_3^-$, systemic repression by N metabolites and induction by C), while NRT2.4 is regulated by C and N starvation and NRT2.5 only by N starvation. Furthermore, our experimental setup revealed obvious complex interactions between N and C signalling for NRT2.1, which do not exist for NRT2.2, NRT2.4 and NRT2.5. As discussed above, if NRT2.2, NRT2.4 and NRT2.5 are only repressed by NO$_3^-$ and not by N metabolites, MYC1 and TGA3 could be involved in a NO$_3^-$-specific signalling pathway upregulating the very high-affinity transporters (NRT2.4 and NRT2.5) when the external NO$_3^-$ concentration becomes too low to be efficiently taken up by NRT2.1. Previous results support a role, for at least TGA3, in a NO$_3^-$-specific signalling pathway. Indeed, TGA3 is part of a family of 7 genes in Arabidopsis thaliana and two of them, TGA1 and TGA4, have already been involved in the induction of NRT2.1 and NRT2.2 in response to NO$_3^-$ (Alvarez et al., 2014). Taken together these results and our findings suggest that this family of transcription factors could participate in a more general way to the regulation of root NO$_3^-$ transporters by NO$_3^-$. Concerning MYC1 there is no direct evidence to support its role in a NO$_3^-$ signalling pathway (Bruex et al., 2012).

Since NRT2.1 and NRT2.4 are both regulated by C through OPPP, it was even more surprising to find that the absence of bHLH093 affects mainly the induction by light of NRT2.4 compared to NRT2.1 (Figure 6) (Lejay et al., 2008). However, the role of bHLH093 seems to be dependent on the level of N since it plays a significant role in the regulation of NRT2.4 only under low N conditions, whereas the induction of NRT2.1 by light is mostly seen in this experiment under high N conditions (10mM NO$_3^-$). It could explain why, in those conditions, bHLH093 mutation
does not affect the regulation of \textit{NRT2.1} by light, while in the second experiment, where plants were grown on a moderate level of NO$_3^-$ (1mM), \textit{NRT2.1} is well induced by light and the NO$_3^-$ concentration could be low enough to reveal the impact of bHLH093 on \textit{NRT2.1} regulation (Figure 6B). To our knowledge, the role of bHLH093 in the roots and in response to light has never been characterised before. The only information concerns a role in flowering promotion under non-inductive short-day conditions through the gibberellin pathway (Sharma et al., 2016).

\section*{Materials and Methods}

\subsection*{Plant Material}
\textit{Arabidopsis thaliana} genotypes used in this study were the wild-type Col-0 ecotype and mutants obtained from the Salk Institute: \textit{tga3.2} (Salk_081158), \textit{tga3.3} (Salk_088114), \textit{myc1.2} (Salk_057388), \textit{myc1.3} (Salk_006354), \textit{bHLH093.1} (Salk_121082) and \textit{bHLH093.5} (Salk_104582).

In all experiments plants were grown hydroponically under non sterile conditions as described by Lejay et al. (1999). Briefly, the seeds were germinated directly on top of modified Eppendorf tubes filled with pre-wetted sand. The tubes were then positioned on floating rafts and transferred to tap water in a growth chamber under the following environmental conditions: light/dark cycle of 8 h/16 h, light intensity of 250 μmol·m$^{-2}$·s$^{-1}$, temperature of 22/20°C, and RH of 70%. After 1 week, the tap water was replaced with a complete nutrient solution. The experiments were performed on plants grown on 1 mM NO$_3^-$ as N source. The other nutrients were added as described by Lejay et al. (1999). The plants were allowed to grow for 3 additional weeks before the experiments. Nutrient solutions were renewed weekly and on the day before the experiments.

\subsection*{Treatments}
Two different sets of experiments were performed to (i) study the impact of light on the regulation of NO$_3^-$ transporter genes in the roots by N starvation, and (ii) study the impact of the N status of the plants on the regulation of these genes by light.

In the first set of experiments 4 weeks old plants were transferred on a solution containing 10 mM NO$_3^-$. After one week the plants were transferred in the morning either in continuous dark or in a light/dark cycle at three different light intensities (50, 250 and 800 μmoles.h$^{-1}$·m$^{-2}$) and...
starved for N during 24h, 48h and 72h, by replacing NO\textsubscript{3}- with CaCl\textsubscript{2} 2.5 mM and K\textsubscript{2}SO\textsubscript{4} 2.5 mM.

In the second set of experiments 4 weeks old plants were transferred on a solution containing 10 mM NO\textsubscript{3}-. They were then pre-treated during 3 days on nutrient solution containing contrasted level of N: (i) no N, (ii) 1 mM NO\textsubscript{3}- or (iii) 10 mM NO\textsubscript{3}-. After 32h in the dark the plants were transferred to light for 1h, 2h, 4h and 8h under three different light intensities (50, 250 and 800 mmoles.h-1.m-2).

The dependence of the expression of NO\textsubscript{3}- transporter genes on photosynthesis was investigated by modifying the CO\textsubscript{2} concentration in the atmosphere. After a pretreatment of 40 h in the dark, plants grown on 1 mM NO\textsubscript{3}- were placed for 4 h in the light (\sim 150 \mu mol\cdot m-2\cdot s-1) or in the dark in a 240-L, airtight plexiglass chamber connected to a computerized device for controlling temperature, humidity, and CO\textsubscript{2} concentration in the atmosphere (Atelliance Instruments; see Delhon et al. (1996) for details). The CO\textsubscript{2} concentration in the atmosphere was held constant during the treatments at 0 or 600 \mu L L-1.

All experiments were repeated two or three times.

RNA Extraction and Gene Expression Analysis

Root samples were frozen in liquid N\textsubscript{2} in 2-mL tubes containing one steel bead (2.5 mm diameter). Tissues were disrupted for 1 min at 30 s-1 in a Retsch mixer mill MM301 homogenizer (Retsch, Haan, Germany). Total RNA was extracted from tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Subsequently 4 \mu g of RNA were treated with DNase (DNase I, SIGMA-ALDRICH, USA) following the manufacturer’s instructions. Reverse transcription was achieved in the presence of Moloney murine leukemia virus reverse transcriptase (Promega, Madison, WI, USA) after annealing with an anchored oligo(dT)	extsubscript{18} primer as described by Wirth et al. (2007). The quality of the cDNA was verified by PCR using specific primers spanning an intron in the gene APTR (At1g27450) forward 5’-CGCTTCTTCTCGACACTGAG-3’; reverse 5’-CAGGTAGCTTCTTTGGGCTTC-3’.

Gene expression was determined by quantitative real-time PCR (LightCycler; Roche Diagnostics, Basel, Switzerland) with the kit LightCycler FastStart DNA Master SYBR Green I (Roche Diagnostics, Basel, Switzerland) according to the manufacturer’s instructions with 1 \mu l of cDNA in a total volume of 10 \mu l. The amplifications were performed as described previously by Wirth et al. (2007). All the results presented were standardized using the housekeeping gene Clathrin (At4g24550). Gene-specific primer sequences were: NRT2.1 forward, 5’-AACAAGGGCTAACGTGGATG-3’; NRT2.1 reverse, 5’-
CTGCTTCTCTGCTCATTCC-3'; NRT2.2 forward, 5'-GCAGCAGATTGCGATGCTTGTTCC-3'; NRT2.4 forward, 5'-GAACAAGGCTGACATGGAT-3'; NRT2.4 reverse, 5'-GCTTCTCGGTCTGTTCAC-3'; NRT2.5 forward, 5'-TGTGGACCCTCTTAAAAA-3'; NRT2.5 reverse, 5'-TTTGGGATGAGTCGTATGTGG-3'; MYC1 forward, 5'-AACCTTAACGACTCTGTG-3'; MYC1 reverse, 5'-CCGCAACTATGTAGTCTCTG-3'; TGA3 forward, 5'-AGCATACACTGCGTGCAAAG-3'; TGA3 reverse, 5'-TCGCCTGTGTCACATATCTC-3'.

NO\textsubscript{3}^- influx studies

Root NO\textsubscript{3}^- influx was assayed as described by (Delhon et al., 1995). Briefly, the plants were sequentially transferred to 0.1 mM CaSO\textsubscript{4} for 1 min, to a complete nutrient solution, pH 5.8, containing 0.05 mM 15NO\textsubscript{3}^- (99 atom % excess15N) for 5 min, and finally to 0.1 mM CaSO\textsubscript{4} for 1 min. Roots were then separated from shoots, and the organs dried at 70 °C for 48 h. After determination of their dry weight, the samples were analyzed for total nitrogen and atom % 15N using a continuous flow isotope ratio mass spectrometer coupled with a C/N elemental analyzer (model Euroflash Eurovector, Pavia Italy) as described in Clarkson (1986).

Acquisition of Genome-Wide Expression and Statistical Analysis

Genome-wide expression was determined using Affymetrix ATH1 GeneChip expression microarrays according to manufacturer's instructions. To do so, biotinylated cRNA was synthesized from 200 ng of total RNA from *Arabidopsis* roots. Affymetrix data were normalized in R (http://www.r-project.org/) using MAS5. Then, normalized data were subjected to different statistical analyses, all centered on NRT2.1 expression pattern but including various sets of microarray data among the whole data set. As a first approach to build a gene network involved in the regulation of root NO\textsubscript{3}^- transporters, we examined genes displaying expression pattern correlated to NRT2.1 expression pattern across the entire dataset. A R2 coefficient cut-off above 0.8 or below -0.8 led to the identification of 79 AGIs displaying an expression pattern correlated to NRT2.1, including 77 genes positively correlated with NRT2.1 (Table S1). Among these 79 genes, none of them displays a function related to gene regulation but rather related to metabolic activity and more
precisely to carboxylic acid metabolic process as, for example, the Glutamate synthase 2 gene (Supplemental Figure 8A). Moreover, a hierarchical clustering of the treatments according to the expression pattern of these genes clearly revealed that their response is largely driven only by the light/carbon factor, putting aside any possible regulation by N provision (Supplemental Figure 8B). Therefore, we determined that a global analysis of the entire data set was not relevant to identify regulators of NO$_3^-$ transport integrating C and N availability and that a finest analysis of gene expression in different subsets of treatments will be more powerful. The list of genes regulated by N-deprivation specifically under low light regime was determined by a t.test analysis (p.value<0.05) between conditions 3 and 4. All genes also found regulated between conditions 1 and 2 based on the same analysis are removed from this list (Figure 1, Table S1). Genes regulated by N-deprivation during light induction are determined by a 2 ways ANOVA using Nitrogen as one factor (presence = conditions 7,9,11,13 / absence = conditions 8,10,12,14) and Light as the second factor (no Light = conditions 7,8 / 1hr-light = conditions 9,10 / 2hr-light = conditions 11,12 / 4hr-light = conditions 13,14). Genes of interest are regulated by the interaction of the 2 factors (p.value<0.05) and display a similar regulation by N from dark to 2hr-light as observed for NRT2.1 (Figure 1, Table S2). Genes regulated by light intensity under high N-provision and by light time exposure under high N-provision are both determined by a linear modeling of gene expression across light intensity (conditions 1,3,5,6) or time exposure (conditions 7,9,11,13) using a R2 above 0.9 (p.value is below 0.003) (Figure 1, Tables S3 and S4). Finally, genes regulated by photosynthesis activity are determined by a 2 ways ANOVA using CO$_2$ level as one factor (0ppm = conditions 15,17 / 600ppm = conditions 16,18) and Light as the second factor (Dark = conditions 15,16 / Light = conditions 17,18). To narrow down the list of NRT2.1-like genes, only those passing post-hoc Tukey tests comparing conditions 18 to all 3 others (p.value<0.05) and displaying a ratio >2 or <0.5 are selected (Figure 1, Table S5).

Visualization of gene connectivity by clustering and gene network analysis

Heat map hierarchical cluster of gene expression and samples was generated with the MeV software using Pearson correlation as distance metric and Average as linkage method (www.tm4.org) (Saeed et al., 2003). The Gene Network was generated with the VirtualPlant 1.3 software (http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) (Katari et al., 2010). The connectivity of the nodes is based on 5 categories corresponding to literature data, post-transcriptional regulation, protein:protein interactions, transcriptional regulation and regulated edges meaning transcription factor - target relationship based at least on one binding site in the
promoter of the target gene. Two nodes are linked by an edge if they fall in any of these
categories combined to an expression pattern correlated at a R^2 $>$ 0.7 or $<$ -0.7. Visualization of
the gene regulatory network has been performed with Cytoscape (http://www.cytoscape.org/) (Shannon et al., 2003). Node properties have been modified to reveal connectivity with the 3 transcription factors and highlight $NRT2.1$ position within the network.

Y1H Assays

For the generations of the plasmids for promoter analysis by Y1H, particular promoter
fragments of NRT2.4 (1968bp), NRT2.5 (1692bp) were first amplified by PCR with
overlapping ends as described by Gibson et al. (2009). For the bait, the pMW2 and pMW3
vectors were used (Deplancke et al., 2006). pMW vectors were amplified by PCR with
overlapping ends as a single sequence (pMW2) or as 2 independent sections (pMW2). Final
vectors were made as described by Gibson et al., 2009. The Y1H prey vectors for TGA3 and
MYC1 transcriptions factors were a kind gift from Franziska Turck (Castrillo et al., 2011). All
the fragments generated for all constructs were validated by DNA sequencing.

The Y1H assay was performed according to protocol described by Grefen (2014) with minor
modifications. Briefly, the vectors pMW2-NRT2.4, pMW3-NRT2.4, pMW2-NRT2.5, pMW3-
NRT2.5 were first linearized with restriction enzymes. For pMW2 vectors BamH1 (NEB) was
used and for pMW3 vectors Xho1 (NEB). The resulting linearized constructs were
subsequently co-integrated into the yeast strain: YM4271 as described by Grefen (2014). The
transformed yeast strains were tested for autoactivation and the selected colonies with the
higher sensitivity to 3-AT were then transformed with the construct pDEST-AD-TGA3 or
pDEST-AD-MYC1 or pDEST-AD (Empty vector). Empty vector was included as a negative
control. Resulting yeast were dropped on selection media (SD –His–Ura–Trp) supplemented
with increasing concentrations of 3-AT (0, 15, 30, 50, 80, 100 mM). Yeast growth was verified
after 48h.

Acknowledgments

We thank members of the lab in France and Chile for discussion.
Figure legends

Figure 1. Interaction between Nitrogen and Light/Carbon provision modulates NRT2.1 mRNA accumulation in roots. (A) Different light regimes modulate NRT2 regulation in roots of plants experiencing from high NO$_3^-$ provision (10 mM) to N deprivation (-N). The light regimes encompass dark, low light intensity (50 µmol m$^{-2}$ s$^{-1}$; LL), intermediate light intensity (250 µmol m$^{-2}$ s$^{-1}$; IL) and high light intensity (800 µmol m$^{-2}$ s$^{-1}$; HL). Plants were supplied with NO$_3^-$ 10 mM one week ahead the experiment and acclimated for 24 hours in the different light regimes before applying the N deprivation for 24, 48 or 72 hr. Means with different letters are significantly different determined by T-Test (P < 0.1). (B) Different N provisions modulate NRT2 regulation in roots of plants experiencing a dark to light transition. The N provisions encompass 10mM NO$_3^-$, 1mM NO$_3^-$ (for 72 hr) and N deprivation for 48 hr (-N). Plants are kept in the dark (i.e., 40hr) before transition to high light intensity (800 µmol m$^{-2}$ s$^{-1}$; HL) and roots are collected at time 0 (Dark) and 1, 2, 4 and 8 hr after light transition. Means with different letters are significantly different determined by T-Test (P < 0.1). (C) Regulation of NRT2 by photosynthesis activity. Plants are grown in regular NO$_3^-$ regime (1mM) and intermediate light intensity until they are transferred for 4 hr in a CO$_2$-deprived atmosphere (0ppm) or in high CO$_2$-supplied atmosphere (600ppm), either in the dark or in the light. Means with different letters are significantly different determined by T-Test (P < 0.1). In these 3 experimental conditions, roots have been collected to assess NRT2.1 mRNA accumulation by RT-QPCR (relative accumulation to Clathrin housekeeping gene). Expression pattern of NRT2.1 across the 35 conditions tested (16 in A, 15 in B and 4 in C) has driven the choice of 18 conditions to investigate gene reprogramming associated to the regulation of NO$_3^-$ transport. These 18 conditions are indicated with arrows and numbers on the x-axis of the 3 NRT2.1 bar graphs (Each arrow corresponds to one condition with 2 independent biological repeats constituted of a pool of approx. 10 plants each).

Figure 2. Gene expression multi-analysis driven by NRT2.1 expression pattern combined to an integrative analysis identified a candidate gene regulatory network connected to the NO$_3^-$ transport system. (A) Venn diagrams identifying common genes regulated by N provision on low light condition and dark to light transition (34 genes) or regulated by light/carbon (142 genes). The union of these gene lists defines a population of 174 genes, including 4 transcription factors. (B) The core set of 174 genes differentially expressed has been structured into a Gene Regulatory Network using the Gene Networks analysis tool in VirtualPlant software.
The network includes 124 nodes (genes) and 260 edges connecting genes. The nodes have been organized according to their connection to the 3 transcription factors \textit{MYC1}, \textit{TGA3} and \textit{bHLH093} and are detailed in the Network Legend. \textit{ARR14} is excluded from the network due to its lack of connectivity to other nodes according to the edges selected to generate the network.

Figure 3. \textit{TGA3}, \textit{MYC1} and \textit{bHLH093} are candidate transcription factors for the control of the expression of \textit{NRT2} gene family. (A) Gene expression analysis of the 3 candidate transcription factors in the extended set of Nitrogen/Carbon combinations confirms correlation with \textit{NRT2.1} regulation. Expression patterns have been determined by RT-QPCR (relative accumulation to \textit{Clathrin} housekeeping gene). Means with different letters are significantly different determined by T-Test (P < 0.1). (B) \textit{NRT2.2}, \textit{NRT2.4} and \textit{NRT2.5} as well as \textit{NRT2.1} display putative cis-binding elements for the 3 transcription factors in their promoter region. The gene network has been done using the Gene Networks analysis tool in VirtualPlant software (http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) (Katari et al., 2010); only Regulated Edges box and One Binding Site option has been selected in this case. (C) \textit{TGA3} bounds \textit{in silico} with the promoter of \textit{NRT2.1}, \textit{NRT2.2} and \textit{NRT2.4}. The analysis has been done using the Plant Cistrome Database (http://neomorph.salk.edu/PlantCistromeDB) (O'Malley et al., 2016).

Figure 4. Most of the genes previously determined as \textit{NRT2s} regulators do not display expression patterns similar to the patterns of the 3 candidate transcription factors in the set of Nitrogen and Light/Carbon combinations. Graphs display the expression pattern of the 20 genes extracted from the whole transcriptomic dataset. Data are organized according to the multi-analysis (\textit{i.e.}, S1 to S5, Figure 2). LBD37, LBD38, LBD39 repress the expression of genes involved in \textit{NO$_3^-$} uptake (\textit{NRT2.1} and \textit{NRT2.5}) and assimilation, likely mimicking the effects of N organic compounds (Rubin et al., 2009). TGA1, TGA4, NLP6, NLP7, NRG2, NRT1.1, CIPK8, CIPK23 are required for the \textit{NO$_3^-$}-dependent induction of \textit{NRT2.1} (Munos et al., 2004; Castaings et al., 2009; Ho et al., 2009; Hu et al., 2009; Konishi and Yanagisawa, 2013; Marchive et al., 2013; Alvarez et al., 2014; Xu et al., 2016). TCP20 and HN19/IWS1 are involved into \textit{NRT2.1} regulation controlled by systemic signaling (Widiez et al., 2011; Guan et al., 2014). BT2 represses expression of \textit{NRT2.1} and \textit{NRT2.4} genes under low \textit{NO$_3^-$} conditions (Araus et al., 2016). CBL7 regulates \textit{NRT2.4} and \textit{NRT2.5} expression under N-starvation conditions (Ma et al., 2015). HY5 has been recently identified as a regulator of \textit{NRT2.1} by mediating light promotion of \textit{NO$_3^-$} uptake (Chen et al., 2016). HRS1, HHO1, HHO2 and HHO3
are repressors of NRT2.4 and NRT2.5 expression under high N conditions (Kiba et al., 2018) Safi et al. 2018

Figure 5. TGA3 and MYC1 are required for NRT2.4 and NRT2.5 full induction during N-deprivation. (A) Characterization of the knock-out mutants for TGA3 (tga3.2 and tga3.3), MYC1 (myc1.2 and myc1.3) and the TGA3/MYC1 double mutants (tga3.2 myc1.2). The plants were supplied with NO$_3^-$ 10 mM one week ahead the experiment and acclimated for 24 hr in high light conditions (800 µmol m$^{-2}$ s$^{-1}$) before applying the N deprivation for 24, 48 or 72 hr. Roots have been collected to assess NRT2.1, NRT2.2, NRT2.4 and NRT2.5 mRNA accumulation by RT-QPCR (relative accumulation to Clathrin housekeeping gene). Values are means of three biological replicates ± SD. (B) Characterization of TGA3 and MYC1 interaction with NRT2.4 and NRT2.5 promoters in a Y1H assay. Yeast cells were grown on SD-H-U-T minimal media without histidine (H), uracil (U), tryptophan (T) and containing 3- amino-1,2,4-triazole (3AT) at 0, 15, 30 and 50 mM. Interaction between the transcription factors and the promoters results in HIS3 reporter activation in contrast to the empty vector that does not interact. (C) Root NO$_3^-$ influx measured at the external concentration of 5 µM 15NO$_3^-$. Plants were treated in the same conditions as for NRT2s mRNA level measurements. Values are means of 12 replicates ± SD. Differences between WT (Col-0) and the KO mutants are significant at *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t test).

Figure 6. bHLH093 is required for NRT2.4 full induction by light. (A) Characterization of the knock-out mutants for bHLH093 (bHLH093-1 and bHLH093-5) on 0N or 10mM NO$_3^-$. The plants were either starved for N for 48 hr (light gray bars) or supplied with NO$_3^-$ 10 mM one week ahead the experiment (black bars) and were kept in the dark 40 hr before transition to high light intensity (800 µmol m$^{-2}$ s$^{-1}$) during 1h, 2h, 4h and 8h. Roots have been collected to assess NRT2.1, NRT2.2 and NRT2.4 mRNA accumulation by RT-QPCR (relative accumulation to Clathrin housekeeping gene). Values are means of three biological replicates ± SD. (B) Characterization of the knock-out (bHLH093-1 and bHLH093-5) and the over-expressor (35S::bHLH093) mutants for bHLH093 on 1mM NO$_3^-$. The plants were grown on 1mM NO$_3^-$ and were kept in the dark 40 hr before transition to intermediate light intensity (250 µmol m$^{-2}$ s$^{-1}$; IL) during 1h, 2h, 4h and 8h. Roots have been collected to assess NRT2.1, NRT2.2 and NRT2.4 mRNA accumulation by RT-QPCR (relative accumulation to Clathrin housekeeping gene). Values are means of three biological replicates ± SD. (C) Root NO$_3^-$ influx measured at
the external concentration of 5 µM 15NO$_3^{-}$. Plants were treated in the same conditions as for
NRT2s mRNA level measurements and were transfer in the light during 2h, 4h and 8h. Values
are means of 12 replicates ± SD.
Differences between WT (Col-0) and the mutants are significant at *P < 0.05, **P < 0.01, ***P
< 0.001 (Student’s t test).

Figure 7. Schematic representation of the known regulatory elements for the regulation of root
high-affinity NO$_3^{-}$ transporters in response to external NO$_3^{-}$, the N status of the plant and
light/photosynthesis. Purple circles represent the transcription factors identified in previous
studies while red circles represent the transcription factors identified in our study.

Supplemental Figure 1. Interaction between Nitrogen and Light/Carbon provision modulates
mRNA accumulation in roots of most of the NRT2 family members.

Supplemental Figure 2. Expression pattern of NRT2 family genes in the set of Nitrogen and
Carbon/Light combinations as determined by Arabidopsis Affymetrix ATH1 microarray
hybridization.

Supplemental Figure 3. Expression pattern of TGA3, MYC1 and bHLH093 transcription
factors in the set of Nitrogen and Carbon/Light combination as determined by Arabidopsis
Affymetrix ATH1 microarrays hybridization.

Supplemental Figure 4. TGA3, MYC1 and bHLH093 display expression pattern different than
most of the known regulators of NRT2 genes in response to NO$_3^{-}$.

Supplemental Figure 5. Expression pattern of TGA3, MYC1 and bHLH093.

Supplemental Figure 6. TGA3 and MYC1 are not required for NRT2.1, NRT2.4 and NRT2.5
full induction during N-deprivation in low light conditions

Supplemental Figure 7. MYC1 and TGA3 are not required for NRT2s induction by light.

Supplemental Figure 8. Biomaps and hierarchical clustering of the 79 most correlated genes
to NRT2.1 expression across all experiments.
Supplemental Table 1. List of 430 probes regulated by N deprivation under low light regime only.

Supplemental Table 2. List of 573 probes regulated by the interaction between nitrogen and light.

Supplemental Table 3. List of 128 probes linearly regulated by light intensity.

Supplemental Table 4. List of 985 probes linearly regulated during light induction.

Supplemental Table 5. List of 509 probes regulated by the interaction between light and CO₂.

Supplemental Table 6. List of 80 probes coregulated based on NRT2.1 expression and pearson correlation.

Literature Cited

organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci U S A 105: 4939-4944

Kotur Z, Glass AD (2015) A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana. Plant Cell Environ 38: 1490-1502

Sharma N, Xin R, Kim DH, Sung S, Lange T, Huq E (2016) NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development 143: 682-690

CHAPITRE 4

Étude de la voie de signalisation impliquée dans la régulation des NRTs par les sucres et lumière
Étude de la voie de signalisation impliquée dans la régulation des NRTs par les sucres et lumière

L’étude bibliographique, correspondant à ce chapitre de ma thèse, a fait l’objet d’une revue dans laquelle je suis premier auteur. Cette revue est présentée en annexe à la fin de ce chapitre.

Figure 1: Représentation schématique de la voie oxydative des pentoses phosphates (OPPP). Représentation schématique de la voie OPPP avec : i) la phase dite oxydative (en bleu) et, ii) la phase non-oxydative (en gris). La phase oxydative transforme le glucose en pentose en produisant du pouvoir réducteur (deux molécules de NADPH à chaque cycle). La phase non-oxydative transforme le pentose produit lors de la phase oxydative en une molécule à 3, 4 ou 6 carbones pouvant être utilisée dans le cycle de la glycolyse.
I. Introduction

Les recherches entreprises pour comprendre la signalisation impliquée dans la régulation des transporteurs NRT2.1, NRT2.4 et NRT1.1/NPF6.3 par la lumière et les sucres indiquent un rôle de la voie oxydative des pentose phosphate (OPPP) (Lejay et al., 2008). La voie OPPP se découpe en deux fractions métaboliques plus communément appelées : (i) partie oxydante et (ii) partie non-oxidable (Figure 1) (Stincone et al., 2015). La partie oxydante de l’OPPP convertit le glucose 6-phosphate (G6P) en dioxyde de carbone (CO₂) et ribuloise 5-phosphate (R5P) et s’accompagne lors de cette synthèse de la production de pouvoir réducteur sous forme de NADPH issu de la réduction de NADP⁺. La branche non-oxidable métabolise à partir du R5P les intermédiaires pour la synthèse d’acides nucléiques et des précurseurs de phosphate de sucre pour la synthèse d’acides aminés (Stincone et al., 2015). Dans l’ensemble, la voie oxydante est particulièrement intéressante et en lien avec la nutrition N du fait que le NADPH produit, est utilisé comme pouvoir réducteur par la NR et le GOGAT, deux enzymes impliquées dans l’assimilation de N (Oji et al., 1985; Bowsher et al., 1989; Bowsher et al., 1992). Dans le détail, la partie oxydante se compose de trois enzymes : (i) la glucose 6-phosphate déshydrogénase (G6PD) produisant la 6-phosphogluconolactone s’accompagnant de la production de NADPH via la réduction du NADP⁺, (ii) la 6-phosphogluconolactonase (6PGL) qui hydrolyse le 6-phosphogluconolactone en acide 6-phosphogluconique et (iii) la 6-phosphoglucononate déshydrogénase (6PGD) qui détache une molécule de CO₂ de l’acide 6-phosphogluconique, réduisant un NADP⁺ en NADPH et formant du R5P (Esposito, 2016).

Pour démontrer l’importance de la voie OPPP pour la régulation des NRTs, Lejay et al., (2008) ont utilisé le 6-aminonicotinamide (6-AN) : un inhibiteur de l’OPPP. L’ajout de 6-AN empêche l’induction de l’expression de NRT2.1, NRT2.4 et NRT1.1/NPF6.3 par le saccharose à l’obscurité (Lejay et al., 2008) (Figure 2A). Cependant, comme le 6-AN est un analogue du NADP⁺ qui inhibe à la fois la première et la troisième étape de l’OPPP (Kohler et al., 1970) (Figure 2B), ce résultat ne permet pas de déterminer, pour le moment, l’étape de l’OPPP qui est à l’origine du signal sucre. De plus, l’utilisation par Bussell et al., (2013) d’un mutant « knock-down » pour la deuxième étape de l’OPPP (6pgl3) n’a pas permis de déterminer l’impact de la mutation 6pgl3 sur l’induction des transporteurs racinaires de NO₃⁻ par les
Figure 2 : Impact de l’inhibition de la voie OPPP par la 6-aminonicotinamide (6-AN) sur la régulation des transporteurs racinaires de NO₃ par le saccharose. (A), Effet du 6-AN sur l’induction transcriptionnelle de NRT2.1, NRT2.4 et NRT1.1 après 4 h de traitement avec du saccharose (+S) ou du saccharose et du 6-AN (+ S + 6AN). Ces données sont issues de la publication de Lejay et al. (2008). (B), Représentation schématique de l’effet du 6-AN sur la voie OPPP. Les trois enzymes de l’OPPP, respectivement la Glucose 6-Phosphate Déshydrogénase (G6PD), la 6-phosphogluconolactonase (6PGL) et la 6-phosphogluconate déshydrogénase (6PGD) sont représentées en violet. Les flèches grises représentent le sens de production et de consommation des co-facteurs pour chaque enzyme de la voie.
sucres. En effet, contrairement à ce qui a été observé par Lejay et al., (2003, 2008), l’induction par les sucres des transporteurs NRTs chez des plantes sauvages n’a pas été observée dans les expériences réalisées par les auteurs de ce travail. Par ailleurs, aucune information n’est actuellement disponible sur les mécanismes associés à un rôle de signalisation de la voie OPPP.

Dans ce contexte, les questions abordées dans ce chapitre concernent :

i) La caractérisation de l’origine du signal sucre, dérivant de la voie OPPP et impliqué dans la régulation des transporteurs de NO₃⁻.

ii) L’étude des mécanismes qui pourraient être impliqués dans le rôle de signalisation de la voie OPPP.

En plus de ces deux objectifs principaux, les données apportées par le chapitre 3 nous ont permis de révéler un nouveau régulateur transcriptionnel des transporteurs NRT2.4 et NRT2.1 dans le cadre de la réponse lumière/sucre. Les résultats obtenus concernant bHLH093 convergent vers un rôle de ce FT dans la signalisation dépendante de la photosynthèse (Cf. Annexe chapitre 3). Sachant que les données issues de la littérature s’accordent sur le fait que le transport de NO₃⁻ est dépendant d’un signal provenant de l’OPPP en aval de la photosynthèse, nous avons voulu tester si bHLH093 participait à cette voie de signalisation. Dans ce cadre, l’un de mes objectifs était également de déterminer :

iii) Est-ce que bHLH093 est un acteur moléculaire de la signalisation dépendante de l’OPPP ?
Figure 3 : Impact de la mutation du gène 6PGL-3 sur la régulation des transporteurs racinaires de NO₃ par le saccharose et la lumière. (A), Représentation schématique de l’impact de la mutation 6pgl3 sur la voie OPPP. (B), Les plantes sauvages Columbia (Col-0) et mutantes (6pgl3) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de Saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits NRT2.1, NRT2.4 et NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes 6pgl3 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Figure 4 : Impact de l’ajout de 6-AN sur la régulation des transporteurs racinaires de NO₃⁻ et l’activité G6PD en réponse au saccharose. (A), Les plantes sauvages Columbia (Col-0) et mutantes (6pgl3) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à l’obscurité avec 1% de saccharose et du 6-AN. Après récolte et congélation des racines, l’accumulation des transcrits NRT2.1, NRT2.4 et NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’activités sont significativement différents par rapport à la condition obscurité avec 1% de saccharose sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001). (B), Mesure de l’activité enzymatique de la G6PD chez des plantes sauvages (Col-0) et mutantes (6pgl3) cultivées dans les mêmes condition que A. Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’activités sont significativement différents par rapport à la condition Obscurité sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
II. Résultats

II.1. Caractérisation de l’impact de la mutation de l’enzyme 6PGL3 sur l’expression des transporteurs NRT2.1, NRT2.4 et NRT1.1/NPF6.3

Pour caractériser l’étape à l’origine du signal sucre dans la voie OPPP, nous avons utilisé le seul mutant disponible appelé 6pgl3 (Russel et al., 2013) (Figure sup. 1). C’est un mutant « knock-down » pour la seule forme plastidiale de la seconde enzyme de l’OPPP (Figure 3A). Lorsque des plantes à l’obscurité sont transférées pendant 4 h sur une solution contenant 1% de saccharose à l’obscurité ou pendant 4 h à lumière, la mutation de l’enzyme 6PGL3 n’entraîne pas de diminution de l’induction de l’expression des transporteurs NRT2.1 et NRT2.4 par rapport aux plantes sauvages. Au contraire, on observe plutôt une tendance à une sur-induction de ces transporteurs dans les plantes mutantes en réponse au saccharose et à la lumière (Figure 3B). Toutefois, il est intéressant de noter que la réponse de NRT1.1/NPF6.3 est différente. En effet dans ce cas, l’induction de NRT1.1/NPF6.3 par le saccharose est diminuée chez le mutant 6pgl3 par rapport aux plantes sauvages (Figure 3B). Ces résultats semblent donc indiquer : (i) que l’origine du signal sucre dans l’OPPP pour la régulation de NRT2.1 et NRT2.4 par la lumière et les sucres est situé en amont de l’étape liée au fonctionnement de l’enzyme 6PGL3, c’est à dire au niveau de la G6PD et (ii) qu’il existe une autre voie de signalisation pour la régulation de NRT1.1/NPF6.3 qui serait, elle, située, en aval de l’étape liée au fonctionnement de l’enzyme 6PGL3.

Pour renforcer l’hypothèse de l’existence d’une voie de signalisation liée à la première étape de l’OPPP, pour la régulation de NRT2.1 et NRT2.4, nous avons traité les plantes mutantes 6pgl3 et sauvages avec l’inhibiteur de la voie OPPP, le 6-AN, qui, comme indiqué dans l’introduction de ce chapitre, est capable d’inhiber le fonctionnement de la G6PD. Dans ces conditions, lorsque les plantes après 16 h d’obscurité sont transférées comme précédemment pendant 4 h sur un milieu contenant 1% de saccharose, l’ajout de 10 mM de 6-AN dans la solution nutritive diminue l’induction des transporteurs NRT2.1 et NRT2.4 par le saccharose, que ce soit chez des plantes sauvages ou chez le mutant 6pgl3 (Figure 4A). Ces résultats semblent donc indiquer que c’est bien l’étape liée au fonctionnement de la G6PD qui est à l’origine du signal sucre, dans la voie OPPP, pour la régulation de ces deux transporteurs. En revanche pour NRT1.1/NPF6.3, son expression est également diminuée par l’ajout de 6-AN.
Figure 5 : Régulation transcriptionnelle des isoformes racinaire de G6PDs en réponse au saccharose et à la lumière. Les plantes sauvages Columbia (Col-0) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits G6PD2, G6PD3 et G6PD6 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes à l’obscurité avec 1% de saccharose ou à la lumière par rapport à la condition obscurité sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
CHAPITRE 4

chez le mutant 6pgl3 (Figure 4A). Comme le 6-AN est également capable d’inhiber la troisième étape de l’OPPP (Figure 2B), ceci pourrait indiquer que la régulation de NRT1.1/NPF6.3 par l’OPPP dépend d’une étape située en aval de la troisième étape de l’OPPP. En effet, le mutant 6pgl3 est un mutant partiel dans lequel le fonctionnement de l’OPPP n’est pas totalement inhibé.

L’importance de la G6PD, dans la signalisation sucre liée à l’OPPP, est renforcée par les mesures de son activité enzymatique (Figure 4B). En effet, les variations de l’activité de la G6PD, dans les racines, sont corrélées à l’expression des transporteurs NRT2.1 et NRT2.4. Ainsi, l’activité G6PD chez le mutant 6pgl3 est légèrement induite en réponse au saccharose et l’activité G6PD mesurée chez des plantes sauvages est diminuée par le 6-AN (Figure 4B).

II.2. Rôle de la G6PD dans la régulation des transporteurs de NO₃⁻ par la lumière et les sucres.

Les différentes isoformes de G6PDs racinaires sont-elles régulées par la lumière et les sucres ?

Chez A. thaliana, il existe trois isoformes racinaires de la G6PD, dont une isoforme cytosolique, G6PD6, et deux isoformes plastidiales, G6PD2 et G6PD3 (Wakao & benning, 2005 ; Landi et al., 2016). L’analyse de l’expression de ces trois isoformes, montre, que ce sont principalement les deux formes plastidiales, G6PD2 et G6PD3, qui sont, comme les transporteurs racinaires de NO₃⁻, induites 4 h après l’ajout de saccharose à l’obscurité ou après transfert des plantes à la lumière (Figure 5). Par comparaison, aucune différence n’est observée pour l’expression de la forme cytosolique, G6PD6, dans ces conditions (Figure 5). Les mutations « knock-out » qui affectent l’activité de l’OPPP dans les plastes étant le plus souvent létales comme, par exemple, la mutation de 6PGL3 (Meinke et al., 2008), nous avons choisi de produire des lignées qui expriment un microARN artificiel inductible (amiARN) contre chacune des isoformes de G6PD plastidiales. Quatre types de lignées ont été produites, dont trois, exprimant des amiARNs dirigés respectivement contre la G6PD2, G6PD3 et G6PD6 et une lignée dont les amiARNs ciblent les deux formes exprimées dans les plastes, G6PD2 et G6PD3. L’ensemble de ces lignées a été généré, toutefois, dans le cadre de ma thèse, je n’ai eu le temps d’analyser que les plantes exprimant les amiARNs dirigés contre la G6PD2 et les deux isoformes G6PD2 et G6PD3.
Figure 6 : Impact de l’induction transitoire des \textit{amiG6PD2} et \textit{amiG6PD2/PD3} sur l’expression des \textit{G6PDs plastidial}. Les plantes sauvages Columbia (Col-0) et mutantes (\textit{amiG6PD2_1, amiG6PD2_2, amiG6PD2/PD3_1 et amiG6PD2/PD3_2}) ont été cultivées en boîtes verticales pendant 12 jours sur une solution nutritive contenant 1 mM de KNO\textsubscript{3}. Les plantes sont ou non traitées pendant 48 h avec 25 μM de β-oestradiol. Après récolte et congélation des racines, l’accumulation des transcrits \textit{amiG6PD2 et amiG6PD2/PD3 (A)} et des cibles \textit{G6PD2 et G6PD3 (B)} a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 2 répétitions (5 plantes/répétitions). Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes non traitées par rapport aux plantes traitées au β-oestradiol sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Figure 7 : Impact de la mutation transitoire de G6PD2 sur l’induction des transporteurs de NO₃ par le saccharose et la lumière. Les plantes sauvages Columbia (Col-0) et mutantes (amiG6PD2-1 (A)) et (amiG6PD2-2 (B)) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. Les plantes sont ou non traitées pendant 72 h avec 25 μM de β-oestradiol. Après 72 h de traitement et à l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité (Obs), à l’obscurité avec 1% de saccharose (Obs+S) ou à la lumière (L). Après récolte et congélation des racines, l’accumulation des transcrits NRT2.1, NRT2.4 et NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes amiG6PD2 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Impact des mutants amiG6PDs sur la régulation des transporteurs de NO₃ par la lumière et les sucres ?

Après obtention des lignées amiARNs, une vérification de l’induction du amiARN ainsi qu’une analyse de la répression du gène cible, suite à l’ajout de la molécule inductrice (β-oestradiol) ont été réalisées pour sélectionner les lignées les plus performantes (Figure 6). Pour ce faire, une méthode de détection d’amiARN par RT-qPCR « loop » a été employée (Varkonyi-Gasic et al., 2007) (Cf. Chapitre 2, partie V.3.).

Deux lignées indépendantes ont été sélectionnées exprimant un amiARN dirigé contre la G6PD2 (amiG6PD2_1 et amiG6PD2_2) ou ciblant à la fois la G6PD2 et la G6PD3 (amiG6PD2/PD3_1 et amiG6PD2/PD3_2) (Figure 6). Comme attendu, les transcrits correspondant aux amiARNs sont détectés uniquement après application de β-oestradiol dans l’ensemble de ces lignées (Figure 6A). Ceci entraîne une baisse spécifique de l’expression de G6PD2 dans les deux lignées amiG6PD2_1 et amiG6PD2_2 et des deux isoformes G6PD2 et G6PD3 dans les lignées amiG6PD2/PD3_1 et amiG6PD2/PD3_2 par rapport aux plantes sauvages (Figure 6B).

Pour déterminer l’impact de la baisse d’expression des isoformes plastidales de G6PDs sur la régulation des transporteurs racinaires de NO₃, les plantes sauvages et les lignées amiG6PDs sélectionnées, ont été prétraitées avec ou sans β-oestradiol pendant 72 h avant d’être transférées pendant 4 h à l’obscurité avec du saccharose ou 4 h à la lumière (Figures 7, 8). Dans ces conditions, l’induction de l’expression de NRT2.1, NRT2.4 et NRT1.1/NPF6.3 par le saccharose ou la lumière est peu affectée dans les plantes exprimant seulement les amiARNs dirigés contre la G6PD2 (Figure 7). En effet, l’ajout de β-oestradiol n’entraîne pas de réelle différence d’expression de NRT2.1 et NRT1.1/NPF6.3 chez les plantes amiG6PD2s par rapport aux plantes sauvages, quelles que soient les conditions. Pour NRT2.4, son expression semble parfois augmentée dans les plantes amiG6PD2s traitées avec du β-oestradiol par rapport aux plantes sauvages, mais cette induction n’est pas observée de manière cohérente entre les deux lignées indépendantes (Figure 7). Il est intéressant de noter que le β-oestradiol semble avoir un effet général sur l’expression de NRT2.4 et NRT1.1/NPF6.3. En effet, dans toutes les conditions étudiées l’expression de NRT2.4 semble induite par le β-oestradiol alors que l’expression de NRT1.1/NPF6.3 semble réprimée, que ce soit chez les plantes sauvages ou dans les deux lignées indépendantes amiG6PD2s (Figures 7, 8).
Figure 8 : Impact de la double mutation transitoire de G6PD2 et G6PD3 sur l’induction des transporteurs de NO₃ par le saccharose et la lumière. Les plantes sauvages Columbia (Col-0) et mutantes (amiG6PD2/PD3-1 (A)) et (amiG6PD2/PD3-2 (B)) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. Les plantes sont ou non traité pendant 72 h avec 25 μM de β.œstradiol. Après 72 h de traitement et à l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité (Obs), à l’obscurité avec 1% de saccharose (Obs +S) ou à la lumière (L). Après récolte et congélation des racines, l’accumulation des transcrits NRT2.1, NRT2.4 et NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes amiG6PD2/PD3 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Globalement, ces résultats n’indiquent pas d’effet majeur, de la répression de l’expression de l’isoforme G6PD2, sur la régulation par la lumière et les sucres des transporteurs de NO3. Par contre, une diminution significative de près de 50% de l’expression de NRT2.1 et NRT2.4 est observée chez les deux lignées indépendantes amiG6PD2/PD3s traitées avec du β-oestradiol par rapport aux plantes sauvages, principalement en réponse à la lumière (Figure 8). Toutefois, il faut noter que dans cette expérience, l’induction de l’expression de NRT2.1 par le saccharose en présence de β-oestradiol est faible ou absente ce qui ne permet pas, vraiment, de conclure sur l’effet de la diminution de l’expression de G6PD2 et G6PD3 dans ces conditions. Ces résultats semblent, cependant, confirmer l’importance de la première étape de l’OPPP pour la régulation de l’expression des transporteurs NRT2.1 et NRT2.4 et indiquent qu’il faut que l’expression des deux isoformes plastidiales de G6PDs soient réprimées pour révéler un phénotype. Par contre, de manière intéressante et comme décrit précédemment avec le mutant 6pgl3, la régulation de l’expression de NRT1.1/NPF6.3 n’est pas affectée dans les lignées amiG6PD2/PD3s (Figure 8). Ceci semble confirmer, également, que la régulation de l’expression de NRT2.1 et NRT2.4 par les sucres dépend de la première étape de l’OPPP alors que la régulation de NRT1.1/NPF6.3 est liée à une autre voie de signalisation qui ne dépend pas de la G6PD.

II.3. Étude des mécanismes de signalisation liés à l’OPPP

La G6PD est considérée comme l’étape limitante de l’OPPP qui détermine le niveau de NADPH produit, en contrôlant le métabolisme du glucose à travers l’OPPP. La quantité de NADPH ainsi produite est critique pour maintenir le statut redox de la plante en condition de stress (Annexe). La signalisation impliquée dans la régulation des transporteurs NRT2.1 et NRT2.4 par la première étape de la voie OPPP pourrait donc être liée : (i) soit à la signalisation redox, (ii) soit directement à la production de NADPH, ou (iii) soit au fonctionnement de l’enzyme G6PD, elle-même, à l’image de l’hexokinase (HXK) et de son rôle de senseur dans la signalisation liée au glucose (Cf. Chapitre 1, partie III.3.). Comme des résultats préalablement obtenus dans l’équipe indiquaient l’existence d’une régulation de NRT2.1 par le statut redox de la plante (Bellegarde et al., 2019), nous avons choisi, pour commencer, de tester les deux hypothèses liées à la signalisation redox et à la quantité de NADPH.
Figure 9 : Augmentation de la concentration en ROS par l’utilisation de menadione dans le milieu de culture hydroponique. (A), Représentation schématique de l’impact métabolique d’un traitement au menadione (ou Vitamine K) *in planta*. L’ajout exogène de menadione engendre une augmentation du rapport NADPH/NADP⁺ pour sa conversion en menadiol, suivi d’une augmentation de la concentration en ROS suite à la conversion du menadiol en menadione. L’ajout de menadione se traduit donc par une augmentation du niveau de ROS endogène(H₂O₂). (B), Représentation schématique de l’effet métabolique de la modulation de la concentration de menadione apportée dans le milieu de culture. Plus la concentration en menadione est élevée, plus la concentration en ROS se trouve augmentée. Dans le cadre de nos expérimentations, nous avons utilisé deux régimes de menadione 100 µM (Faible ROS) et 500 µM (Fort ROS).
Figure 10 : Impact de l'ajout de Menadione sur la régulation des transporteurs racinaires de NO₃⁻ par le saccharose et la lumière. Les plantes sauvages Columbia (Col-0) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l'issue d'une nuit normale (16 h d'obscurité) les plantes sont transférées pendant 4 h à l'obscurité, à l'obscurité avec 1% de saccharose ou à la lumière. Lors des transferts, une partie des plantes est traitée avec 100 µM de Menadione (A) ou 500 µM de menadione (B). Après récolte et congélation des racines, l'accumulation des transcrits NRT2.1, NRT2.4 et NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l'écart-type. Les conditions dans lesquelles les niveaux d'expression sont significativement différents dans les plantes sauvages non traitées au menadione par rapport aux sauvages traitées au menadione sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
CHAPITRE 4

Impact du statut redox sur la signalisation lumière/sucre ?

Pour faire varier le statut redox de la plante, nous avons utilisé de la ménadione qui est un puissant oxydant (Figures 9, 10) (Baxter *et al.*, 2007 ; Lehmann *et al.*, 2009 ; Li *et al.*, 2019). Les plantes ont été traitées, comme précédemment, à l’obscurité ou pendant 4 h à l’obscurité sur une solution contenant 1% de saccharose ou à la lumière, sur deux concentrations de ménadione différentes pour moduler le statut redox de la plante. Il a été choisi d’apporter soit, 100 μM de ménadione pour entraîner une augmentation modérée du statut redox, soit 500 μM de ménadione pour entraîner une forte augmentation du statut redox (Figure 9B).

L’ajout de 100 μM de ménadione augmente globalement l’expression de *NRT2.1* et *NRT2.4* ainsi que l’induction par le saccharose et la lumière comparées aux plantes non traitées (Figure 10A). Par contre, l’ajout de 500 μM de ménadione réprime totalement, l’induction de *NRT2.1* par le saccharose et la lumière (Figure 10B). Ce résultat suggère que l’induction observée en réponse à la lumière et au saccharose est, effectivement, liée au statut redox de la plante. Mais qu’au-delà d’un certain seuil de stress oxydatif, cela entraîne la répression de l’expression des transporteurs de NO₃⁻. Par contre, comme observé précédemment, *NRT1.1/NPF6.3* ne se comporte pas de la même manière puisque l’induction par le saccharose et la lumière est toujours réprimée par l’ajout de ménadione que ce soit à 100 μM ou à 500 μM (Figure 10). Ce résultat est intéressant car d’une part, il renforce l’existence d’une composante liée au statut redox de la plante pour la régulation de *NRT2.1* et *NRT2.4* et d’autre part, il confirme l’existence d’une voie de signalisation différente pour la régulation de *NRT1.1/NPF6.3* par la lumière et les sucres.

Parmi les voies de détoxicification des ROS, l’une des plus documentées est le cycle Glutathion-Ascorbate (Figure 11A). Cette voie consomme le NADPH produit par l’OPPP pour transformer l’H₂O₂, une forme de ROS, en H₂O (Foyer & Noctor, 2011). Pour confirmer l’importance du statut redox de la plante dans la régulation des transporteurs de NO₃⁻, nous avons testé si la régulation de *NRT2.1* et *NRT2.4* par la lumière et les sucres est modifiée chez un mutant de synthèse d’ascorbate (vtc2). En effet, vtc2 affecte le fonctionnement du cycle glutathion/ascorbate et augmente de manière constitutive le statut redox des plantes (Dowdle *et al.*, 2007 ; Yu *et al.*, 2019). Les résultats obtenus montrent que l’induction de *NRT2.1* et *NRT2.4* par le saccharose mais surtout par la lumière est significativement
Figure 11 : Impact de la mutation du gène VTC2 et de l’ajout d’ascorbate sur la régulation des transporteurs racinaires de NO₃ par le saccharose et la lumière. (A), Représentation schématique des principales étapes du cycle de détoxication glutathion/ascorbate. Les 4 enzymes (en violet) sont : la Glutation Réductase (GR), la Glutation Dehydroascorbate Réductase (DHAR), la Monodeshydroascorbate Réductase (MDAR) et l’Ascorbate Peroxydase (APX). Le NADPH issu en partie de la voie des pentoses phosphate (OPPP) (en orange) va être utilisé par la GR pour la production de Glutation (GSH) à partir de disulfure de glutathion (GSSG). Le GSH est utilisé par DHAR pour la conversion de dehydroascorbate (DHA) en ascorbate. L’ascorbate produit est finalement utilisé par l’APX pour dégrader le H₂O₂ en H₂O permettant de détoxifier les cellules. Schématisation réalisée à partir des données présentées dans : Begara-Morales et al., 2016. (B), Les plantes sauvages Columbia (Col-0) et mutantes (vtc2) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. A l’issue d’une nuit normale (16 h d’obscurité), les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Lors des transferts, une partie des plantes est traitée avec 400 μM d’ascorbate. Après récolte et congélation des racines, l’accumulation des transcrits NRT2.1, NRT2.4 et NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes vtc2 par rapport aux sauvages et traitées avec de l’ascorbate par rapport aux plantes non traitées sont indiquées par des étoiles (T-test * : p<0,05; ** : p<0,01; *** : p<0,001).
Figure 12 : Impact de la mutation du gène NUDX19 sur la régulation des transporteurs racinaires de NO₃⁻ par le saccharose et la lumière. (A), Représentation schématique du rôle métabolique de NUDX19 (NUDT19) *in planta*. (B), Les plantes sauvages Columbia (Col-0) et mutantes (nudx19) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits NRT2.1, NRT2.4 et NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes nudx19 par rapport aux sauvages sont indiquées par des étoiles (T-test * : p<0,05; ** : p<0,01; *** : p<0,001).
augmentée, chez le mutant vtc2, par rapport aux plantes sauvages (Figure 11B). A l’inverse, l’ajout d’ascorbate pendant les 4 h de lumière ou les 4 h d’obscurité en présence de saccharose entraîne une très forte diminution de l’induction de l’expression de NRT2.1 et NRT2.4 dans ces conditions que ce soit chez les plantes sauvages ou le mutant vtc2 (Figure 11B). Dans ce cas, il est intéressant de noter que l’induction de NRT1.1/NPF6.3 par le saccharose et la lumière est peu ou pas affectée chez le mutant vtc2, mais est, par contre, fortement diminuée lors du traitement ascorbate comme observé pour NRT2.1 et NRT2.4 chez les plantes sauvages ou le mutant vtc2.

Impact de la production de NADPH sur la signalisation lumière/sucre ?

Pour tester l’impact du NADPH sur la régulation des transporteurs de NO₃⁻ par la lumière et les sucres, nous avons utilisé le mutant nudx19 (Figure sup. 2). Les hydrolases Nudix (NUDX ou NUDT) sont une famille de protéines impliquées dans l’élimination des métabolites toxiques ou dans le contrôle de la disponibilité d’intermédiaires de voies métaboliques (Yoshimura & Shigeoka, 2015). Le génome d’*A. thaliana* comporte 28 gènes codant pour des NUDXs et parmi eux *NUDX19* est exprimé dans les racines et possède une préférence pour l’hydrolyse du NADPH en NADH (Figure 12A) (Ogawa *et al.*, 2008 ; Yoshimura & Shigeoka, 2015). Ainsi le mutant nudx19 accumule du NADPH, ce qui stimule les cycles enzymatiques de détoxification lui conférant une meilleure tolérance au stress oxydatif (Maruta *et al.*, 2016).

Une expérience préliminaire a été réalisée pour mesurer l’induction de l’expression des transporteurs NRT2.1 et NRT2.4 par le saccharose et la lumière chez des plantes sauvages et mutantes pour nudx19 (Figure 12B). Les résultats obtenus sont encourageants puisqu’ils montrent que l’induction de l’expression de NRT2.1 et NRT2.4 est fortement induite à l’obscurité et qu’une sur-induction de l’expression de NRT2.1 et, dans une moindre mesure de celle de NRT2.4 est également observée à la lumière (Figure 12B). Concernant NRT1.1/NPF6.3, les données obtenues dans cette expérience sur l’induction par les sucres et la lumière diffèrent de la réponse classiquement observée chez des plantes sauvages. En effet, aucune induction de NRT1.1/NPF6.3 n’est observée chez les plantes sauvages en réponse au saccharose et à la lumière à cause d’une expression anormalement élevée à l’obscurité. Il est donc difficile dans ces conditions d’analyser l’impact de la mutation nudx19 sur la régulation de l’expression de NRT1.1/NPF6.3. Cependant, les données obtenues, en réponse à l’ajout de saccharose et au transfert à la lumière, n’indiquent aucune différence entre les niveaux
Figure 13 : Impact de la mutation du gène NTRC sur la régulation des transporteurs racinaires de NO₃ par le saccharose et la lumière. (A), Représentation schématique du rôle métabolique de NTRC in planta (adaptée de Kirchsteiger et al., 2012). (B), Phénotypes de croissance du mutant ntrc1 (Les plantes sauvages Columbia (Col-0) et mutantes (ntrc-1) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃). (C), Les plantes sauvages Columbia (Col-0) et mutantes (ntrc-1) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. A l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits NRT2.1, NRT2.4 et NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes ntrc-1 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
d’expression de NRT1.1/NPF6.3 chez les plantes sauvages et mutantes (Figure 12B). Ceci laisse penser que la mutation nudx19 n’entraîne pas de modifications dans la régulation de NRT1.1/NPF6.3.

Dans l’ensemble ces données supportent l’hypothèse d’une signalisation dépendante du niveau de NADPH produit par l’OPPP pour la régulation de NRT2.1 et NRT2.4 par la lumière et les sucres.

II.4. Recherche d’éléments moléculaires impliqués dans la voie de signalisation OPPP

Impact de la mutation ntrc1 sur la signalisation lumière/sucré ?

Parmi les voies de régulation impliquant le NADPH dans la plante, une voie de signalisation dépendante de NTRC1 (NADPH-dependent Thioredoxine reductase 1) a été décrite. Elle relie directement le NADPH produit dans les amyloplastes racinaires par l’OPPP à l’oxydo-réduction de cibles impliquées dans les voies de signalisation redox (Figure 13A) (Kirchsteiger et al., 2012). NTRC1 est donc, un candidat particulièrement intéressant, suite aux résultats obtenus précédemment, et pourrait faire partie de la voie de signalisation impliquée dans la régulation de NRT2.1 et NRT2.4. Pour tester son rôle, nous avons mesuré l’induction de l’expression des transporteurs de NO₃⁻ par le saccharose et la lumière, chez un mutant d’insertion ntrc1. A l’inverse du mutant nudx19, ntrc1 est très fortement affecté dans sa capacité à répondre au stress oxydatif et présente un phénotype de retard de croissance et de chlorose important (Figure 13B). L’analyse de l’expression de NRT2.1 et NRT2.4 dans ce mutant par rapport aux plantes sauvages montre que la mutation ntrc1 entraîne une très forte diminution de l’induction par le saccharose et la lumière de l’ordre de 60% pour NRT2.1 et 90% pour NRT2.4 (Figure 13C). A l’inverse, aucune perte d’induction par le saccharose et la lumière n’est observée pour le transporteur NRT1.1/NPF6.3. Ces résultats supportent ainsi l’hypothèse que la réponse altérée de NRT2.1 et NRT2.4 en réponse au saccharose et à la lumière chez le mutant ntrc1 est liée spécifiquement à l’absence de cette protéine et non au statut redox élevé de manière constitutive chez le mutant ntrc1.
Figure 14 : Impact de la double mutation transitoire de G6PD2 et G6PD3 sur l'induction de BHLH093 et HYS par le saccharose et la lumière. Les plantes sauvages Columbia (Col-0) et mutantes (amiG6PD2/PD3-1 (A)) et (amiG6PD2/PD3-2 (B)) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. Les plantes sont ou non traitées pendant 72 h avec 25 μM de β-oestradiol. Après 72 h de traitement et à l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité (Obs), à l’obscurité avec 1% de saccharose (Obs +S) ou à la lumière (L). Après récolte et congélation des racines, l’accumulation des transcrits BHLH093 et HYS a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes amiG6PD2/PD3 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Figure 15 : Impact de la mutation du gène NUDX19 sur la régulation de BHLH093 et HYS par le saccharose et la lumière. Les plantes sauvages Columbia (Col-0) et mutantes (nudx19) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits BHLH093 et HYS a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes nudx19 par rapport aux sauvages sont indiquées par des étoiles (T-test * : p<0,05; ** : p<0,01; *** : p<0,001).
Figure 16 : Impact de la mutation du gène NTRC sur la régulation de BHLH093 et HYS par le saccharose et la lumière. Les plantes sauvages Columbia (Col-0) et mutantes (ntrc1) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. A l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits BHLH093 et HYS a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes nudx19 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
CHAPITRE 4

bHLH093 et HY5 sont-ils impliqués dans la voie de signalisation OPPP ?

Pour poursuivre notre recherche d’éléments moléculaires impliqués dans la voie de signalisation liée à l’OPPP, nous avons également mesuré l’expression des deux FTs, *HY5* et *bHLH093* décrits dans le chapitre 3, chez les deux lignées indépendantes *amiG6PD2/PD3s* que nous avons produites. Alors que l’induction de l’expression de *NRT2.1* et *NRT2.4* par le saccharose et la lumière est diminuée chez ces lignées après traitement au β-oestradiol comparée à des plantes sauvages, aucune différence n’est observée pour les niveaux de transcrits *bHLH093* et *HY5* (Figure 14). Ce résultat semble indiquer que *bHLH093* et *HY5* ne font pas partie de la voie de signalisation liée au fonctionnement de la G6PD. Il s’avère également que les mutations *nudx19* et *ntrc1* n’entraînent pas de modification dans l’induction de *bHLH093* et *HY5* en réponse aux sucres et à la lumière, renforçant leur indépendance avec la signalisation Redox (Figures 15, 16).

De plus, comme présenté dans le chapitre 3, l’ajout de saccharose à l’obscurité n’induit pas l’expression de *HY5*. Ce résultat confirme que la régulation transcriptionnelle de *HY5* est spécifiquement dépendante de la lumière contrairement à *bHLH093* et aux transporteurs racinaires de NO₃⁻ (Figures 14, 15, 16).

III. Discussion

III.1. Localisation du signal sucre impliqué dans la régulation des transporteurs de NO₃⁻ par la voie OPPP

Comme décrit dans l’introduction de ce chapitre et dans le chapitre 1 (Cf. partie III.3.), les résultats obtenus au cours de travaux antérieurs indiquaient que le signal sucre impliqué dans la régulation des transporteurs de NO₃⁻, *NRT2.1*, *NRT2.4* et *NRT1.1/NPF6.3*, est localisé dans la voie OPPP. Les résultats obtenus en particulier par Lejay *et al.*, (2008) lors de traitement 6-AN suggéraient que le signal sucre était localisé après la troisième étape de OPPP liée à l’activité de la 6-phosphogluconate déshydrogénase (6-PGD). En effet, le 6-AN semble inhiber de manière préférentielle l’activité de cette enzyme qui produit du NADPH à partir du NADP⁺ (Hothersall *et al.*, 1998). Les résultats obtenus dans le mutant 6pgl3 ne supportent pourtant pas cette hypothèse puisque l’induction de l’expression de *NRT2.1* et *NRT2.4*, par les
sucre et la lumière, est maintenue dans ce mutant qui sous-exprime le gène impliqué dans la deuxième étape de OPPP, juste avant celle liée à l’activité 6PGD (Figure 3). De plus, le 6-AN inhibe l’induction de l’expression de NRT2.1 et NRT2.4 par les sucre chez le mutant 6pgl3 comme chez les plantes sauvages, ce qui suggère dans ce cas que c’est la première étape de l’OPPP liée à l’activité de la G6PD qui est la cible de l’inhibiteur 6-AN (Figure 4). En effet, la G6PD produit du NADPH et est donc également inhibée par le 6-AN (Figure 2B), comme l’a montré le travail de Rawat et al., (2012) chez le rat, dans lequel le 6-AN diminue l’activité de la G6PD dans le cœur et régule l’activité des canaux calciques. Ce rôle de la G6PD dans la régulation des transporteurs NRT2.1 et NRT2.4 est renforcée par les mesures d’activité G6PD qui diminue chez les plantes sauvages en réponse au 6-AN et qui augmente en réponse au saccharose chez le mutant 6pgl3 par rapport aux plantes sauvages (Figure 4). Ceci correspond au niveau général des transcrits NRT2.1 et NRT2.4 qui est plus élevé chez le mutant que chez les plantes sauvages et qui est réprimé par l’ajout de 6-AN. L’augmentation de l’activité G6PD chez le mutant 6pgl3 a par ailleurs été également décrite par Xiong et al., (2009). Enfin, la relation entre la voie OPPP et la G6PD, en particulier, et le métabolisme N n’est pas nouvelle. En effet, il a été démontré que l’activité de la G6PD augmente en réponse à l’ajout de NO₃⁻ ou de NH₄⁺ dans les racines d’orge (Esposito et al., 2005) et que l’expression des deux formes plastidiales racinaires (G6PD2 et G6PD3) est induite par le NO₃⁻ chez A. thaliana (Wang et al., 2000, 2003). De plus, le gène G6PD3 est un marqueur de la réponse au NO₃⁻, car il fait notamment partie des gènes particulièrement induits lors de la PNR (Wang et al., 2003 ; Medici & Krouk, 2014). L’obtention de plantes transgéniques exprimant de manière inductible des amiARNs dirigés contre les isoformes racinaires de G6PDs semble confirmer l’implication de la G6PD dans l’induction de NRT2.1 et NRT2.4 par la lumière et les sucres. De plus, ces résultats indiquent que l’isoforme G6PD2 seule n’est pas à l’origine de la signalisation sucre et que seule la double répression de la G6PD2 et la G6PD3 aboutit à la dérégulation des transporteurs NRT2.1 et NRT2.4 (Figures 7, 8). Cependant, il reste à analyser les plantes exprimant seulement les amiARNs dirigés contre la G6PD3 pour affirmer que les deux isoformes plastidiales contribuent conjointement, ou non, à la signalisation sucre. Par ailleurs, il sera nécessaire de réaliser des mesures d’activité G6PD dans les lignées exprimant les amiARNs pour vérifier l’impact fonctionnel de la répression de la transcription des G6PD dans ces plantes.
L’ensemble de ces résultats ne correspond toutefois pas à ceux obtenus par Bussel et al., (2013) qui montrent que l’induction des gènes impliqués dans l’assimilation de N par le saccharose diminue chez le mutant 6pgl3. Ceci suggère que pour les gènes de l’assimilation de N, le signal qui dérive de la voie OPPP est indépendant de la G6PD et est localisé après l’étape liée au fonctionnement de l’enzyme 6PGL. De manière intéressante, cela semble également être le cas pour le transporteur NRT1.1/NPF6.3 dont l’induction par la lumière et les sucres est diminuée dans le mutant 6pgl3 contrairement à ce qui est observé pour NRT2.1 et NRT2.4 (Figures 3, 4). De plus, les plantes exprimant de manière inductive les amiARNs dirigés contre les isoformes racinaires de G6PDs semblent confirmer que cette étape n’est pas impliquée dans la régulation de NRT1.1/NPF6.3 (Figures 7, 8). Cela suggère qu’il existe plusieurs voies de signalisation qui dérivent de l’OPPP et que les transporteurs racinaires de NO3⁻ ne sont pas tous régulés par la même voie de signalisation sucre.

III.2. Étude de la voie de signalisation dépendante de l’OPPP impliquée dans la régulation des transporteurs NRTs

Comme indiqué dans ce chapitre, la G6PD est l’une des deux étapes de l’OPPP qui, en plus de son rôle métabolique, produit du NADPH (Figure 1). Dans les racines, la production de NADPH joue un rôle important pour la synthèse des nucléotides, des acides aminés et des acides gras. Cependant, il est aussi impliqué dans le système ascorbate-glutation-NADPH qui permet de transformer l’H₂O₂ en H₂O et d’éviter la toxicité cellulaire de l’accumulation d’H₂O₂ (Foyer & Noctor, 2011). Les « burst » oxydatifs dans la cellule s’accompagnent ainsi d’une augmentation de la quantité de NADP⁺ qui active les voies de signalisation redox via les thiorédoxines (TRX) et l’OPPP via la G6PD (Rolland et al., 2006 ; Dietz, 2008). Ainsi, l’augmentation du flux de C dans la voie OPPP augmente le rapport NADPH/NADP⁺ et la résistance au stress oxydatif (Ralsé et al., 2007). A l’inverse, l’inhibition de la G6PD entraîne une hypersensibilité au stress oxydatif chez de nombreux organismes (Juhnke et al., 1996 ; Ho et al., 2000). Les résultats que nous avons obtenus confirment ceux obtenus par Bellegarde et al., (2019) concernant le rôle du stress oxydatif dans la régulation de NRT2.1, et il montre l’existence d’une composante liée au statut redox spécifiquement pour la régulation de NRT2.1 et NRT2.4 par la lumière et les sucres. En effet, la ménadione, qui est un puissant
oxydant, augmente l’induction de NRT2.1 et NRT2.4 mais pas celle de NRT1.1/NPF6.3 qui, lui, est réprimé après ajout de 100 μM de ménadione (Figure 10A). Toutefois, cette induction des transporteurs NRT2s semble transitoire puisque l’expression de NRT2.1 est réprimée lorsque la concentration en ménadione augmente (Figure 10B). Ceci correspond à ce qui est connu de la signalisation redox qui est décrite comme agissant comme un signal régulateur lorsque le niveau des ROS est bas et comme un stress oxydatif entrainant des dommages cellulaires lorsque le niveau des ROS est élevé (Apel & Hirt, 2004). Cette implication de la signalisation redox dans la régulation par la lumière et les sucres des transporteurs NRT2s est renforcée par l’utilisation du mutant de synthèse d’ascorbate vtc2 pour lequel le niveau des ROS est augmenté (Yu et al., 2019) et chez lequel les transporteurs NRT2.1 et NRT2.4 tendent à être sur-induits en réponse à la lumière et au saccharose (Figure 11). A l’inverse, l’ajout d’ascorbate à la fois chez les plantes sauvages et le mutant vtc2 diminue le niveau des ROS (Colville & Smirnoff, 2008) et réprime l’expression de NRT2.1 et NRT2.4 (Figure 11). L’ensemble de ces résultats est cohérent avec un rôle de l’OPPP dans cette régulation. En effet, l’augmentation des ROS chez le mutant vtc2 pourrait entraîner, comme décrit ci-dessus, une activation de l’OPPP afin d’augmenter le rapport NADPH/NADP⁺ et la résistance au stress oxydatif. A l’inverse, l’ajout d’ascorbate, qui est un puissant anti-oxydant, pourrait ralentir le flux de C dans la voie et diminuer ainsi le rapport NADPH/NADP⁺ via le fonctionnement de la G6PD. Ceci pourrait également expliquer la répression de l’expression de NRT1.1/NPF6.3 par l’ajout d’ascorbate. En effet, si l’induction de NRT1.1/NPF6.3 par la lumière et les sucres dépend d’un signal localisé en aval de l’enzyme 6PGL, il est normal qu’elle soit diminuée si l’ascorbate ralentit le flux de C à travers l’OPPP. Concernant NRT2.1 et NRT2.4, dont la régulation semble dépendre du fonctionnement de la G6PD, le ratio NADPH/NADP⁺ pourrait donc être à l’origine de la signalisation. De plus en plus de rapports indiquent que le NADPH, en plus d’être une source de pouvoir réducteur impliqué dans la détoxification des ROS cellulaires, pourrait jouer le rôle de molécule signal notamment dans les réponses au stress biotique et abiotique (Agledal et al., 2010). Ainsi, l’augmentation du niveau de ce composé conduit à une croissance plus rapide et une résistance accrue à divers stress. A l’inverse, lorsque la synthèse de NADPH est réduite, le taux de croissance d’A. thaliana est fortement diminué en relation en particulier avec une forte baisse de la capacité à assimiler le N (Pétriacq et al., 2016 ; Gakière et al., 2018a, 2018b). La lumière et le traitement au saccharose, en augmentant le flux de C dans la voie de
CHAPITRE 4

OPPP, pourraient ainsi moduler la production de NADPH via le fonctionnement de la G6PD et entraîner l’induction de l’expression des transporteurs NRT2.1 et NRT2.4.

L’utilisation du mutant nudx19 dans lequel le niveau de NADPH et l’activité G6PD est augmenté semble confirmer cette hypothèse (Corpas et al., 2016). En effet, l’expression de NRT2.1 et NRT2.4 est légèrement sur-induite par la lumière et les sucres dans ce mutant par rapport aux plantes sauvages (Figure 12). A l’inverse, l’induction de l’expression de NRT2.1 et NRT2.4 par la lumière et le saccharose est fortement affectée chez le mutant ntrc1. NTRC est une enzyme qui catalyse directement la réduction de sa fonction TRX à partir du NADPH pour à son tour réduire d’autres protéines cibles. Sur la base des propriétés biochimiques de NTRC, y compris sa forte affinité pour le NADPH produit dans les plastes par l’OPPP et la présence d’un domaine TRX à son extrémité C-terminale, il a été proposé que NTRC, dans les racines, convertisse le pouvoir réducteur sous forme de NADPH en un signal redox à travers les groupes thiols de son domaine TRX (Kirchsteiger et al., 2012). Cette enzyme pourrait donc faire partie de la voie de signalisation impliquée dans la régulation de NRT2.1 et NRT2.4 et faire le lien avec le NADPH produit par l’OPPP. En effet, malgré le phénotype très marqué de ce mutant, il est difficile d’attribuer la baisse d’expression de NRT2.1 et NRT2.4 à une toxicité due à un niveau de stress oxydatif trop élevé dans ce mutant. En effet, alors que l’expression de NRT1.1/NPF6.3 est visiblement très affectée en réponse à l’ajout d’oxydant sous forme de ménadione (Figure 10), elle n’est pas modifiée par la mutation ntrc1 (Figure 13C). De manière intéressante, les deux seuls régulateurs identifiés précédemment que ce soit bHLH093 (Cf. chapitre 3) et HY5 (Huang et al., 2015 ; Chen et al., 2016) ne semblent pas faire partis de la voie de signalisation liée à l’OPPP et à la production de NADPH. En effet, leur régulation en réponse à la lumière et au saccharose n’est affectée : ni dans les plantes transgéniques amiG6PD2/PD3, ni dans les mutants nudx19 et ntrc1 (Figures 14, 15, 16). Ceci suggère l’existence d’un réseau de régulations complexes faisant intervenir plusieurs voies de signalisations pour la régulation des transporteurs racinaires de NO₃⁻ par la lumière et les sucres.
Figures supplémentaires
Figure supplémentaire 1 : Vérification de la conformité du mutant Knock-Down pour 6PGL3 dans nos expérimentations. Les plantes sauvages Columbia (Col-0) et mutantes (6pgl3) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits 6PGL3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes 6pgl3 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).

Figure supplémentaire 2 : Vérification de la conformité du mutant Knock-Down pour NUDX19 dans nos expérimentations. Les plantes sauvages Columbia (Col-0) et mutantes (nudx19) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. À l’issue d’une nuit normale (16 h d’obscurité) les plantes sont transférées pendant 4 h à l’obscurité, à l’obscurité avec 1% de saccharose ou à la lumière. Après récolte et congélation des racines, l’accumulation des transcrits NUDX19 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes nudx19 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Annexe

REVIEW PAPER

Redox metabolism: the hidden player in carbon and nitrogen signaling?

Valentin Chaput, Antoine Martin and Laurence Lejay*
BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France

* Correspondence: laurence.lejay@inrae.fr

Received 4 November 2019; Editorial decision 31 January 2020; Accepted 12 February 2020

Editor: Peter Doerner, University of Edinburgh, UK

Abstract

While decades of research have considered redox metabolism as purely defensive, recent results show that reactive oxygen species (ROS) are necessary for growth and development. Close relationships have been found between the regulation of nitrogen metabolism and ROS in response to both carbon and nitrogen availability. Root nitrate uptake and nitrogen metabolism have been shown to be regulated by a signal from the oxidative pentose phosphate pathway (OPPP) in response to carbon signaling. As a major source of NADP(H), the OPPP is critical to maintaining redox balance under stress situations. Furthermore, recent results suggest that at least part of the regulation of the root nitrate transporter by nitrogen signaling is also linked to the redox status of the plant. This leads to the question of whether there is a more general role of redox metabolism in the regulation of nitrogen metabolism by carbon and nitrogen. This review highlights the role of the OPPP in carbon signaling and redox metabolism, and the interaction between redox and nitrogen metabolism. We discuss how redox metabolism could be an important player in the regulation of nitrogen metabolism in response to carbon/nitrogen interaction and the implications for plant adaptation to extreme environments and future crop development.

Keywords: Carbon/nitrogen interaction, carbon signaling, nitrate uptake, nitrogen signaling, redox metabolism, ROS.

Introduction

Nitrogen (N) metabolism in plants is tightly regulated by N and carbon (C) signaling. These signaling pathways target many genes of N transport and metabolism, and account for (i) the modulation of N use efficiency by both changes in external N availability and variations of the organic N demand of the plant for growth (Crawford and Glass, 1998; Gojon et al., 2009), and (ii) the balance between photosynthetic supply with N uptake and assimilation to ensure the production of amino acids (Vincentz et al., 1993; Oliveira and Coruzzi, 1999; Stitt et al., 2002; Lejay et al., 2008). This interplay is nicely illustrated in the case of nitrate reductase (NR), the first step of the nitrate (NO$_3^-$) assimilation pathway, which catalyses the reduction of NO$_3^-$ to nitrite (NO$_2^-$). NR is considered to be a controlling step in NO$_3^-$ assimilation and is a complex enzyme that is regulated by a number of different processes. Its expression is induced by NO$_3^-$ and repressed by amino acids (Vincentz et al., 1993), and the inductive action of NO$_3^-$ is completely abolished during C starvation (Klein et al., 2000; Matt et al., 2002). The potential complexity underlying this scenario is illustrated by the fact that this enzyme is also subject to complex regulation at the level of translation, protein degradation, and protein phosphorylation (Lillo, 2008).

During the past decade, these regulatory mechanisms have been mainly studied at the level of root NO$_3^-$ transporters and they have been found to depend on both local and long-range signaling pathways. On one hand, NO$_3^-$ acts as a localized...
positive signal and relates to what is called the NO$_3^-$ primary response. This is characterized by a rapid induction of root NO$_3^-$ uptake and is associated with an increase in the expression of the root NO$_3^-$ transporters NRT2.1 and NPF6.3 shortly after NO$_3^-$ treatment (Medici and Krouk, 2014; Zhao et al., 2018). On the other hand, the metabolites resulting from NO$_3^-$ assimilation in leaves are involved in feedback repression that down-regulates root NO$_3^-$ uptake and the NO$_3^-$ transporters NRT2.1, NRT2.2, NRT2.4, and NRT2.5 under N satiety conditions (Lejay et al., 1999; Zhuo et al., 1999; Kiba et al., 2012; Lezhneva et al., 2014). This repression is relieved when plants experience N limitation. For NRT2.1, split-root experiments have demonstrated that this regulation relies on systemic signaling pathways (Gansel et al., 2001). Since C skeletons are essential for the incorporation of inorganic N into amino acids, the regulation of root NO$_3^-$ uptake is linked to the production of sugar through photosynthesis in the leaves (Delhun et al., 1996; Lejay et al., 1999, 2003). It is characterized by a diurnal rhythm of NO$_3^-$ uptake, with a peak during the light period and a minimum in the dark. However, the dark-dependent decrease in NO$_3^-$ uptake can be reversed by the addition of sucrose. Moreover, NO$_3^-$ uptake is enhanced by the level of CO$_2$. At the molecular level, the regulation of root NO$_3^-$ uptake by light and sugars has been correlated with changes in the expression of NRT2.1, NRT2.4, and NPF6.3 (Lejay et al., 2008). Altogether, these forms of regulation enable plants to activate genes involved in N assimilation when C skeletons are abundant and internal levels of organic N are low, or to inhibit N assimilation when levels of photosynthates are low or internal levels of organic N are high. These data emphasize the importance of C/N ratio signaling in the regulation of N metabolism.

With regard to the molecular components of these signaling mechanisms, major breakthroughs have been made on local NO$_3^-$ sensing, and components of the long-distance signaling of N and C status have also been found during the past few years. Interestingly, for both C and N long-distance signaling, a possible close relationship with reactive oxygen species (ROS) and the oxidative status of the plant is starting to be revealed. In general, the implications of ROS on the cellular life cycle can typically be considered in two different ways. First, ROS can accumulate to such levels that they generate a highly imbalanced redox status, leading to oxidative stress due to molecular and cellular damage (Schieber and Chandel, 2014). Second, a more recent view of ROS homeostasis supports a major role for ROS in a large number of signaling pathways (Ncotor et al., 2018). However, these two aspects of ROS homeostasis, both leading to functional regulation of biological processes, may not be that easy to distinguish, especially in the case of the interaction with N metabolism or signaling pathways.

In this review, we highlight recent discoveries concerning the regulatory mechanism involved in long-distance signaling for the regulation of N metabolism by C and N in connection with redox-related mechanisms. We then discuss how the oxidative status of the plant could be an important player in explaining C/N signaling interactions and how it could help to explain the adaptation of plants to extreme environments.

Regulation of N metabolism by C signaling

Sugar sensing pathways for the regulation of N metabolism

Sugars produced from plant photosynthesis are important signals controlling many aspects of plant metabolism and development (Rolland et al., 2006; Eveland and Jackson, 2012). Although sucrose is the main sugar for systemic transport from source to sink in plants (Zhang et al., 2014), many of the sugar responses observed in plants are channeled through invertases or sucrose synthases (Barratt et al., 2009; Ruan, 2014) to generate glucose and other signaling sugars. These sugars then trigger signal transduction via direct perception by sensors or indirect signaling by energy and metabolite sensors. In plants, at least three different glucose signaling pathways have been documented:

(i) A hexokinase (HXK)-dependent pathway, in which the regulation of gene expression by glucose requires HXK signaling function independently of its enzymatic activity (Moore et al., 2003; Cho et al., 2006; Granot et al., 2014). Indeed, HXKs were the first demonstrated intracellular glucose sensors in plants and there is much available evidence that plant HXK-dependent glucose metabolism can be separated from HXK-dependent glucose signaling. For example, overexpression of yeast HKX2 in Arabidopsis causes a dominant negative effect by elevating HKX catalytic activity but reducing glucose repression of gene expression (Jang et al., 1997). This shows that HXK is a dual-function enzyme with a distinct regulatory function that is not interchangeable between plants and yeast.

(ii) A HXK-independent pathway, in which the induction and repression of genes by glucose is observed independently of glucose metabolism, that is, independently of sense and antisense overexpression of HXK (Price et al., 2004; Rolland et al., 2006). This pathway could be linked to RGS1 (regulator of G-protein signaling), a seven-transmembrane domain protein on the plasma membrane, which has been proposed to play a critical role as an external glucose sensor in plants (Grigston et al., 2008; Urano et al., 2012).

(iii) A glycolysis-dependent pathway, which is dependent on the enzymatic activity of HXK but not on its signaling function. This could involve one or more unknown metabolites downstream of HKX in the glycolytic pathway (Xiao et al., 2000).

Ample evidence indicates that in addition to glucose, sucrose is also perceived as a sugar signal, which cannot be substituted by glucose. The best-known example is the sucrose-specific down-regulation of bswUT1 (Beta vulgaris Sucrose Transporter 1), encoding the phloem-located proton-sucrose symporter, which is neither elicited by hexoses nor affected by mannohexulose, a HXK inhibitor (Vaughn et al., 2002). However, the mechanism of sucrose perception remains unknown.

Regarding the regulation of N metabolism, specific investigations of sugar sensing have been conducted at the level of root NO$_3^-$ transporters in Arabidopsis using NRT2.1 as a model
gene. These investigations revealed that the regulation of root NO₃⁻ transporters by light and sugar was not related to HXK sensing activity, but was dependent on a glycolysis-dependent pathway downstream of HXK, as described above (Lejay et al., 2003). To gain further insight into this sugar signaling pathway, NRT2.1 and NPF6.3 were used as model genes to look for possible correlations between the level of C metabolites downstream of the HXK step in glycolysis and gene expression across different treatments (Lejay et al., 2008). This work showed that up-regulation of the NO₃⁻ transporters NRT2.1 and NPF6.3 was related to the concentration in the roots of glucose 6-phosphate (G6P), a metabolite involved in the upper part of glycolysis. G6P is located at the crossroads between three metabolic pathways: glycolysis, the oxidative pentose phosphate pathway (OPPP), and trehalose metabolism (Fig. 1). Trehalose 6-phosphate levels have emerged as an essential signal metabolite in plants, linking growth and development to C availability (Lunn et al., 2014). However, the addition of trehalose to the nutrient solution was not able to mimic the inductive effect of sucrose in the dark, while 6-aminonicotinamide (6-AN), an inhibitor of the OPPP, had a strong inhibitory effect on NPF6.3 and NRT2.1 expression (Lejay et al., 2008). These results strongly suggested that trehalose 6-phosphate is not involved and that sustained C flow through the OPPP is required for sugar induction of both NRT genes. This result was confirmed by de Jong et al. (2014), and the role of OPPP in C signaling has been extended to the regulation of N metabolism. Indeed, the use of a knockdown mutant for PGL3, the plastid-localized OPPP enzyme 6-phosphogluconolactonase 3, revealed that the expression of the NR and NiR genes was not induced by sugar in this mutant to a greater level than in wild-type plants (Bussell et al., 2013). Interestingly, a link in roots was found between the OPPP and the regulation by sugars of transporters involved in N or S acquisition, two metabolisms that require the reducing power produced by the OPPP for nitrite reductase, glutamine oxoglutarate aminotransferase (GOGAT), and the assimilation of sulfate (SO₄²⁻) into cysteine (Oji et al., 1985; Bowsher et al., 1989, 1992; Neuhaus and Emes, 2000; Yonekura-Sakakibara et al., 2000; Kopriva and Rennenberg, 2004). As a consequence, the OPPP and N or S assimilation are tightly coordinated processes. In particular, genes encoding OPPP enzymes are among those most affected by NO₃⁻ signaling in Arabidopsis roots (Wang et al., 2000, 2003), and ammonium (NH₄⁺) can induce an isoform of G6P dehydrogenase in barley (Hordeum vulgare) roots (Esposito et al., 2001). Altogether, these results support the existence of a common OPPP-dependent sugar signaling mechanism for the regulation of N and S metabolism, which would coordinate the availability of all three amino acid components (C, N, and S) for adequate amino acid synthesis.

Candidate signaling mechanisms linked to the OPPP

The pentose phosphate pathway (PPP) is a ubiquitous pathway present in all eukaryotes and most bacteria (Kruger and van Schaewen, 2003). It is divided into an oxidative and a non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts G6P into carbon dioxide and ribulose-5-phosphate, and as a byproduct NADP⁺ is reduced to NADPH. The non-oxidative branch metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids (Stinccone et al., 2015) (Fig. 2). Whereas the oxidative branch is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. The initial reactions of the OPPP are carried out by glucose 6-phosphate dehydrogenase (G6PDH) producing 6-phosphogluconolactone, which is then hydrolyzed by 6-phosphogluconate dehydrogenase (6PGDH) to 6-phosphogluconic acid. Then, 6-phosphogluconate dehydrogenase (6PGDH) detaches a CO₂ molecule, reducing a NADP⁺ to NADPH and forming ribose 5-phosphate (Esposito, 2016). In plants, the subcellular localization of the OPPP suggests a complex network of coordination of C pathways in cells. Although the cytosolic OPPP cycle represents the major part of the measured activity, the existence of a complete OPPP confined to the plastidial compartment has been widely demonstrated (Esposito, 2016).

Regarding the signaling mechanism linked to the OPPP, three hypotheses can be made: (i) one of the C metabolites generated through the OPPP could act as a signal molecule; (ii) an enzyme of the OPPP could generate a signal, like HXK in glycolysis; and (iii) the reducing power produced by the OPPP could be involved in redox regulation of N metabolism via, for
example, a NADPH-dependent signaling pathway. The results obtained by de Jong et al. (2014), showing that OPPP metabolism is required for glucose-mediated NRT2.1 expression and can be rescued by OPPP-derived amino acid precursor metabolites, such as pyruvate, in a HXK mutant, suggest that C metabolites or an enzyme of the OPPP could be involved. However, more recently, NRT2.1 expression has been shown to be regulated by the redox status of the plant, suggesting that the production of reducing power by OPPP could be involved in the C signaling pathway (Bellegarde et al., 2019). This mechanism could ensure the coordination of root NO$_3^-$ uptake with the production of reducing equivalents required for the assimilation of N into amino acids. Interestingly, the tight relationship between the OPPP and N metabolism in plants has been found mainly at the level of G6PDH. Indeed, the promoter sequences of Nir and $G6PDH$ present the same NIT-2 motif, a N metabolism regulating factor (Neuhaus and Emes, 2000), while GOGAT activity in roots is clearly supported by plastidial G6PDH, which is able to satisfy the increased requirement for reducing power upon NH$_4^+$ assimilation (Bowsher et al., 1992; Esposito et al., 2001, 2003, 2005). G6PDH is considered to be the rate-limiting enzyme in the OPPP, and it determines the level of NADPH by controlling the metabolism of glucose via the OPPP. The NADPH-producing function of the OPPP is critical to maintaining redox balance under stress situations. As such, it has been suggested that this pathway represents a true metabolic sensor during the response to oxidative stress, and it has been implicated in several human diseases, such as neurodegeneration (Alzheimer’s disease) and cancer (Krüger et al., 2011; Stincone et al., 2015). In plants, the possible physiological and biochemical roles played by the OPPP and G6PDH in particular have been demonstrated upon cold (Van Heerden et al., 2003; Lin et al., 2013), heat (Gong et al., 2012), metal pollution (Xu et al., 2003; Devi et al., 2007; Pérez-Chaca...
et al., 2014; Corpus et al., 2016), drought (Liu et al., 2013; Landi et al., 2016), and salinity (Cardi et al., 2015) stress. In yeast, it has been shown that oxidative treatments induce OPPP enzymes at the transcript and protein levels (Godon et al., 1998; Shenton and Grant, 2003; Chechik et al., 2008). The benefits of this metabolic transition are explained by the production by the OPPP of NADPH, the primary redox cofactor for glutathione synthesis and for enzymes of the antioxidant machinery (Juhnke et al., 1996; Pollak et al., 2007; Grant, 2008). Cells with increased influx to the OPPP have a higher NADPH/NADP+ ratio and are more resistant to oxidants (Kalberer et al., 2007). On the other hand, the deletion of G6PDH causes hypersensitivity to multiple oxidants in various organisms (Juhnke et al., 1996; Ho et al., 2000).

Regarding the implication of the OPPP for the regulation of root NO3− uptake, the impact of 6-AN on NPF6.3 and NRT2.1 regulation could indicate a role of G6PDH, and thus of the redox status of the plant, in this regulatory mechanism (Lejay et al., 2008). Indeed, 6-AN is an inhibitor of both G6PDH and 6PGDH, the enzymes catalyzing the two steps producing NADPH in the OPPP (Köhler et al., 1970; Rawat et al., 2012). For the regulation of root NO3− transporters by C, the implication of the redox status of the plant is also supported by the recent discovery of the role of the transcription factor ELONGATED HYOCOTYL 5 (HY5) in the regulation of NRT2.1 expression. HY5 is a shoot-to-root signal that mediates the regulation of root growth and NO3− uptake by light (Chen et al., 2016). In the shoot, HY5 promotes C assimilation and translocation, whereas in the root it mediates the activation of NRT2.1 expression, supporting the fact that it coordinates plant nutrition and growth in response to fluctuating light environments. Furthermore, HY5 regulates the sucrose metabolism and sucrose movement into phloem cells for shoot-to-root translocation by increasing the expression levels of SWEET11 and SWEET12, two genes encoding sucrose efflux transporters required for sucrose phloem loading (Chen et al., 2012, 2016). The signaling pathways involving HY5 remain largely unknown, but it has been shown that HY5 can directly bind the G-box element present in the promoters of ROS-responsive genes to regulate de-etiolation in response to light and ROS (Chen et al., 2013). This work revealed that HY5 can mediate crosstalk between light and ROS signaling and thus could be involved in a crosstalk between sugar and ROS. The implication of the redox status of the plant for the regulation of NRT2.1 by C through the OPPP. However, the regulatory mechanisms involving the OPPP could be more complex. Indeed, Bussell et al. (2013) found that the induction of N assimilation genes by sucrose is affected when the step after G6PDH is mutated in the knockout mutant 6pgl3. Furthermore, G6PDH activity was found to be higher in 6pgl3 than in the wild type, and no significant differences were detected in the NADPH/NADP+ ratio (Xiong et al., 2009). Altogether, these results suggest that for N assimilation genes, the OPPP-derived signal is independent of both G6PDH and the production of reducing power. Unfortunately, the conditions used by Bussell et al. (2013) did not allow determination of the impact of the 6pgl3 mutation on the induction of root NO3− transporters by sugars. However, it cannot be excluded that several signaling pathways linked to the OPPP coexist in plants. Indeed, as demonstrated in yeast, the deletion of a non-oxidative PPP enzyme decreased oxidant sensitivity in a yeast strain that cannot use the PPP for NADP+ reduction. Conversely, increased flow into the non-oxidative PPP via transgenic expression of the enzyme sedoheptulokinase, which generates the PPP intermediate sedoheptulose 7-phosphate from the non-PPP metabolite sedoheptulose, increased the H2O2 tolerance of yeast (Krüger et al., 2011). Altogether, these results support the existence of a second, NADPH-independent function of the PPP in the stress response.

Regulation of N metabolism and signaling by redox-related mechanisms

N metabolism in plants is central and limiting for growth, biomass accumulation, and development. It is therefore connected to many facets of the primary and secondary metabolism in plants, and it is finely tuned by the N demand of the whole organism (Ruffel et al., 2014). Over the past few years, components of the systemic N signaling pathway involved in the regulation of root NO3− transporters have started to be identified and are related to redox signaling mechanisms.

A forward genetic screen identified HIGH NITROGEN INSSENSITIVE 9 (HIN9), a chromatin modifier, as a factor involved in the repression of NRT2.1 expression and NO3− uptake under high N provision (Widiez et al., 2011). Indeed, NRT2.1 expression is partly derepressed in a hin9 mutant background under high N supply. Interestingly, it has now been demonstrated that HIN9, in cooperation with the transcription factor HY5, positively regulates the expression of a set of detoxification genes induced under high N, which suggests that a high-N environment leads to an increase in ROS content. Indeed, ROS strongly accumulate in hin9 and hy5 mutants due to the misexpression of detoxification genes (Fig. 3A) (Bellegarde et al., 2019). Further experiments using ROS treatments or ROS scavenging molecules showed that the level of NRT2.1 expression is in fact correlated with a higher level of ROS (Jung et al., 2018).

It has been known for decades that N deprivation leads to the accumulation of ROS, especially in the roots (Shin et al., 2005; Kong et al., 2013). Indeed, starvation of most of the major nutrients induces an increase in the production of H2O2, but ROS accumulation might be highest in plants that are deprived of N (Shin et al., 2005). The accumulation of ROS in the roots of N-deprived plants occurs mainly in epidermal and cortical cells—which, interestingly, are the site of N uptake and assimilation in the root—and is observed from the elongation zone to more mature zones of the root. The origin and the function of this accumulation of ROS under N starvation are not clearly understood, although it may be tempting to make a link between the role of N in growth and development and the fact that ROS can mediate signaling events to regulate growth and development, especially in roots (Foreman et al., 2003).

More recently, several reports have linked ROS accumulation, as well as effectors of ROS metabolism, to downstream signaling events of the N starvation response. Indeed, treatment
of N-starved Arabidopsis plants with ROS-scavenging molecules inhibits the induction of NRT2.4 and NRT2.5, which are molecular markers of the N starvation response in plants and essential factors of plant survival under N starvation (Safi et al., 2018). ROS accumulation during the N starvation response in plants might be at least partly under the control of the HHO family of transcription factors, which induce the expression of a set of genes related to ROS homeostasis under N satiety. Another study revealed that shoot-derived polypeptides named CEPD1 and CEPD2 act as ascending long-distance mobile signals for the regulation of NRT2.1 (Okibou et al., 2017). They up-regulate the expression of the NO$_3^-$ transporter gene NRT2.1 in roots specifically when NO$_3^-$ is present in the rhizosphere, and Arabidopsis plants deficient in this pathway show impaired systemic N acquisition response along with symptoms of N deficiency. Interestingly, the genes coding for CEPD1 and CEPD2 are assigned to the plant-specific class III glutaredoxins (GRXs) family, which are involved in redox regulation (Roulhier et al., 2006). GRXs are small oxidoreductase enzymes that can reduce disulfite and cysteine-glutathione bonds within target proteins, and are thus potential actors in detoxification pathways due to their redox buffering capacities (Roulhier et al., 2008). The GRX isoforms belonging to class III are specific to land plants, and from genetic analyses it appears that class III GRX isoforms, also named CC-type GRXs or ROXYs, play a role in plant development and in pathogen defense mechanisms (Meyer et al., 2012; Couturier et al., 2013). Several class III GRXs are transcriptionally regulated by NO$_3^-$ variation, and several members of this family of 21 homologues emerged as important factors in the plant response to NO$_3^-$ variation. The expression of AtGRXS3/4/5/8 is induced in response to NO$_3^-$ resupply after starvation, and their induction leads to the repression of primary root growth, which corresponds to one of the developmental events aimed at reshaping root system architecture in NO$_3^-$-sufficient soil environments (Patterson et al., 2016). In addition, the expression of other AtGRXs, among them CEPD2 (also known as AtGRXC13 and ROXY9), is up-regulated by NO$_3^-$ starvation (Jung et al., 2018). Interestingly, the functions of CC-type GRXs have been related to their ability to interact with TGA transcription factors, likely regulating their redox states. In NO$_3^-$ metabolism, a functional connection between AtGRXS3/5/5/8 (ROXY11–ROXY15) and TGA1 and TGA4 seems likely to regulate primary root growth in response to NO$_3^-$ (Patterson et al., 2016). Furthermore, since TGA1 and TGA4 have been involved in the regulation of NRT2.1 in response to NO$_3^-$, TGAs and GRXs could be a module involved in both the regulation of root NO$_3^-$ transporters and root development in response to N availability (Alvarez et al., 2014). Collectively, these studies shed light on GRXs as small oxidoreductase enzymes acting in different facets of N signaling. Although the identification of a formal role involving their redox buffering properties is still required, the evidence to date supports a close interaction between the plant’s redox properties and the regulation of growth and development through N availability (Fig. 3B).

Therefore, the association between ROS and N metabolism appears under different physiological conditions, reinforcing the idea that N metabolism and ROS homeostasis are intrinsically linked, especially for the regulation of NO$_3^-$ uptake genes. A correlation between ROS levels and NO$_3^-$ assimilation has also been made, as ROS levels increase in an Arabidopsis nia1 nia2 mutant showing a complete absence of NO$_3^-$ reductase activity (Pan et al., 2019). Altogether, these observations tend to lead to the conclusion that ROS homeostasis is just as much affected by N metabolism as N metabolism is modulated by ROS levels or signaling. Indeed, N starvation and N excess both lead to ROS accumulation, and normal physiological conditions for cellular ROS levels occur in between, in intermediate nutritional conditions. This is in fact not restricted to plants, as in animals both limited and excessive nutrition generate abnormal ROS accumulation, which can be considered pathological in certain situations (Görlich et al., 2015).

ROS signaling at the nexus of C/N regulations

In plants, the C and N metabolism need to be tightly coordinated for the synthesis of C/N-containing metabolites at the biochemical level and for long-distance signaling for the C/N balance. Indeed, the process of N assimilation, especially when NO$_3^-$ is its main source, is energetically costly and requires large amounts of ATP and C skeletons produced from the C metabolic processes (Foyer et al., 2011). On the other hand, large amounts of N are essential for the plant photosynthetic machinery and for CO$_2$ assimilation. While the existence of
interactions between C and N signaling has been well described for the regulation of gene expression, the molecular mechanisms involved remain mostly unknown (Palenchar et al., 2004; Gutiérrez et al., 2007). Interestingly, the recent advances on long-distance signaling for C and N discussed above are providing more and more evidence that modulation of the redox status of the plant might be an important signaling mechanism for the coordination of C and N assimilation. Indeed, all the elements presented are involved in redox signaling, and HY5, beyond its role in C and redox signaling, has been found to regulate many N-related genes in a N concentration-dependent manner (Huang et al., 2015). These recent results build on several reports indicating that redox status plays an important role in the integration of C and N metabolism. For example, studies of the Nicotiana sylvestris CMSII mutant, which lacks complex I functionality, demonstrated that the adjustment of respiratory pathways was associated with alterations in foliar C/N balance as well as increases in NAD$^+$ and NADH levels. This indicates that NADH availability is a critical factor influencing NO$_3^-$ assimilation and coordinating ammonia assimilation with the production of C skeletons (Dutillieu et al., 2005). Another study, in which plants were subjected to different levels of N and varying atmospheric CO$_2$ concentrations, revealed that NAD$^+$ and NADH levels were highly correlated with those of glutamate, glutamine, asparagine, and arginine (all involved in N metabolism), suggesting a potential link between nutritional status and NAD$^+$-dependent signaling (Hager et al., 2010).

There is a longstanding recognition that in addition to being an intrinsic part of metabolism, redox status plays an active role in metabolic regulation (Geigenberger and Fernie, 2014). However, despite intense research activity, the exact mechanism underlying the signaling and its specificity is still unclear. ROS have received great attention, and increasing evidence suggests that H$_2$O$_2$ is an active signaling molecule and that its accumulation leads to variety of cellular responses through redox sensing (Bhattacharjee, 2005; del Río et al., 2006; Halliwell, 2006). However, if H$_2$O$_2$ accumulates at a high level it becomes toxic, and sensitive regulation of the H$_2$O$_2$ concentration is therefore important for its signaling function and its detoxification (Apel and Hirt, 2004). The ascorbate (Asc)/glutathione (GSH) cycle forms the main H$_2$O$_2$-detoxification system in plants; it uses NADPH produced in the roots by the OPPP to regenerate the oxidized form of GSH (Noctor and Foyer, 1998). Interestingly, increased levels of H$_2$O$_2$ have recently been associated with the induction of NRT2.1 in response to high N in the Arabidopsis hni9 mutant (Bellegarde et al., 2019). Furthermore, treatments with Asc cause a decrease in NRT2.1 expression, while H$_2$O$_2$ leads to an increase in the NRT2.1 transcript level, similar to what is observed in the Asc-deficient mutant vtc2 (Bellegarde et al., 2019). Altogether, these results could explain a potential link between the NADPH produced by the OPPP in the roots, which is regulated by both C and N levels (Esposito, 2016), and the H$_2$O$_2$-detoxification system for the regulation of NRT2.1 by C/N signaling and ROS production. Unfortunately, this potential “sensing” mechanism cannot explain the specificity of the regulation linked to C and N signaling. Indeed, GSH and Asc are considered to be non-specific reducer molecules because of their small molecular mass, and the Asc/GSH cycle is induced by all kinds of stresses affecting the ROS level.

However, plants also have complex enzymatic antioxidant systems composed of thioredoxins (TRXs) and GRXs, known collectively under the name redoxins (RXs) (Serrato et al., 2013). In contrast to GSH and Asc, the surface topology of RXs allows specific target interactions. The major function of RXs is to reduce disulfide bridges in target proteins so that their own active site is oxidized to a disulfide. For a new catalytic cycle, oxidized RXs are reduced in a reaction catalyzed by NADPH-dependent thioredoxin reductases (NTRs) for TRXs or NADPH-dependent glutathione reductases (GRs) for GRXs (Meyer et al., 2012). In non-green tissue, these reactions depend on the NADPH produced by the OPPP. TRXs and GRXs are able to reduce different types of oxidized thiols and generally use distinct reduction mechanisms. However, although certain targets are highly specific, the targets of TRXs and GRXs overlap, thereby enabling the development of interaction networks and strong buffering capacity. In Arabidopsis, the number of identified TRXs, TRX-like proteins, or proteins with TRX domains has risen to 44 (Meyer et al., 2012), many of them without any assigned function. TRXs are classified according to their subcellular location and sequence similarity into 15 subgroups (Meyer et al., 2012). The classification of vascular plant GRXs is more difficult to establish than that of the TRXs. In Arabidopsis, there are 31 genes encoding GRXs that can be classified into three distinct subgroups based on the amino acid sequences at their active sites: the CPYC, CGFS, and CC-type GRX classes (Meyer et al., 2012). Of the 31 GRXs identified in Arabidopsis, 21 belong to the CC-type, now named ROXY, which is specific for land plants, while the other two GRX classes, CPYC and CGFS, are common to eukaryotes and prokaryotes (Rouhier et al., 2006; Jung et al., 2018). Although the roles of GRXs have been associated mainly with oxidative stress, there is growing evidence that GRXs, especially CC-type GRXs, also play important roles in cell signaling and development. Interestingly, several CC-type GRXs (ROXYs) have already been identified as being involved in plant responses and signaling under NO$^-$ starvation, as described above (Ohkubo et al., 2017; Jung et al., 2018). Furthermore, H$_2$O$_2$ treatments have been shown to differentially regulate the expression of the ROXYs, suggesting the involvement of ROS in response to NO$^-$ deficiency, in agreement with what has been found for NRT2.1 regulation (Jung et al., 2018; Bellegarde et al., 2019). Interestingly, TRXs are also involved in the regulation of C allocation by C signaling through the redox regulation of AGPase, a key enzyme for starch synthesis. Indeed, the redox regulation of AGPase is mediated, in roots, by the bifunctional protein NADP-thioredoxin reductase C (NTRC) (Michalska et al., 2009). NTRC is a bimodal enzyme that directly catalyzes the transfer of reducing groups from NADPH to TRX and from TRX to target proteins. Based on the biochemical properties of NTRC, including its high affinity for NADPH produced from sugars by the OPPP and the presence of a TRX domain at the C terminus, it has been proposed that NTRC in roots act as a redox switch able to convert reducing power in the form of NADPH into a redox signal through the thiol
groups of its TRX domain (Kirchsteiger et al., 2012). Thus, NTRC may constitute a direct pathway for redox homeostasis in heterotrophic plastids, and is a very interesting candidate to explain the link between C/N signaling, the level of ROS, and NADPH produced by the OPPP for the regulation of root NO$_3^-$ transporters.

There is now a need for focused genetic studies to dissect the role of the different members of the TRX and GRX gene families in the regulation of C/N metabolism. In particular, the identification of specific targets of NTRC and the different TRXs of root plastids will help to establish the metabolic processes that depend on these enzymes. It is also interesting to note that transcription factors such as HY5 can induce different genes depending on the signal leading to ROS accumulation. Indeed, HY5 has been found to be involved in the control of ROS homeostasis in response to light and cold treatments, but the set of genes induced by HY5 to balance ROS levels seems to differ between different stimuli (Catalá et al., 2011; Chen et al., 2013; Chai et al., 2015).

Furthermore, Bellegarde et al. (2019) found that the expression of genes involved in the ROS detoxification network in response to high N was dependent on HY5 but independent of the presence of a HY5 binding site in their promoter. This suggests that HY5 may also function as an indirect regulator of other transcription factors, which could specify the response associated with the level of ROS according to the environmental signals.

Conclusions and perspectives

The recent developments we have discussed in this review show that redox status clearly plays a central role in the regulation of N metabolism and especially of root NO$_3^-$ transporters in response to C and N signaling. These results offer new hypotheses for a comprehensive understanding of the regulatory mechanisms associated with C/N interactions. Indeed, as summarized in Fig. 4, the level of ROS could be a way to integrate C/N levels and regulate root NO$_3^-$ transporters, through either (i) the activation of the OPPP and/or the production of NADPH, which could activate a signaling pathway linked to NTRC, or (ii) direct activation by other, as yet unknown, mechanisms involving transcription factors such as HY5 and/or GRXs such as the CEPDs. However, further work is required to resolve the network of redox signaling linked to C/N balance in order to gain a comprehensive understanding of both the control of redox metabolism by C and N and, conversely, the control of N metabolism by redox signaling. Another major question concerns the targets of candidate GRXs and TRXs for C and N signaling. Identifying these targets will require genetic and metabolomics approaches as well as the application of techniques to analyze redox states at the subcellular level.

The role of redox metabolism in the regulation of N metabolism has far-reaching implications in the context of climate change. Indeed, future crop plants will need to be better performing under increasingly frequent and severe growth conditions, which will likely impact the redox status of the plants.

![Fig. 4. Model for the regulation of root NO$_3^-$ transporters by C/N interactions through the level of ROS. Solid lines represent regulatory mechanisms that have already been described, and dashed lines represent hypotheses based on the analysis of published data. CC-GRXs, CC-glutaredoxins; NTRC, NADP-thioredoxin reductase C; OPPP, oxidative pentose phosphate pathway; ROS, reactive oxygen species; TFs, transcription factors; TRXs, thioredoxins.](https://www.mla.ca/research/Articles/Redox metabolism: the hidden player in C and N signaling?_3823)

Kirchsteiger K, Fernández J, Pascual MB, González M, Cejudo FJ. 2012. NADPH thoredoxin reductase C is localized in plastids of...
photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. The Plant Cell 24, 1534–1548.

Zhuo D, Okamoto M, Vidmar JJ, Glass AD. 1999. Regulation of a putative high-affinity nitrate transporter (NRT2;1At) in roots of Arabidopsis thaliana. The Plant Journal 17, 563–568.
CHAPITRE 5

Caractérisation de la voie de signalisation impliquée dans la régulation de NRT2.4 et NRT2.5 par la carence en N
Figure 1 : Représentation schématique du comportement transcriptionnel des NRT2s en réponse à la carence en N. Schéma adaptée de Lezhneva et al., 2014.
I. Introduction

Comme décrit dans le chapitre 1 (Cf. partie III), la plupart des recherches sur la régulation des transporteurs de NO$_3^-$, en réponse à la carence en N, ont été réalisées sur le transporteur NRT2.1. Ceci a permis de révéler l’existence de deux types de régulation expliquant l’augmentation du transport de NO$_3^-$ et de l’expression de NRT2.1 lorsque les plantes sont transférées sur un milieu sans N : (i) la levée de la répression de NRT2.1 exercée par les produits de l’assimilation de NO$_3^-$ (Statut N) (Lejay et al., 1999 ; Krapp et al., 1998 ; Zhuo et al., 1999) et (ii) la levée de la répression par le NO$_3^-$, lui-même, qui passe par une voie de signalisation liée à NRT1.1/NPF6.3 (Krouk et al., 2006). Plus récemment, deux autres transporteurs, NRT2.4 et NRT2.5, ont été impliqués dans le transport de NO$_3^-$ en condition de carence en N (Kiba et al., 2012 ; Lezhneva et al., 2014). Ces transporteurs, à très forte affinité, sont des marqueurs de la carence en N et sont induits de manière plus tardive par rapport à NRT2.1 (Figure 1). Cependant, contrairement à ce qui est connu pour NRT2.1, les données concernant la régulation de NRT2.4 et NRT2.5 en réponse à la carence en N ne permettent pas de déterminer si c’est le statut N et/ou le retrait de NO$_3^-$ qui est impliqué. En effet, les expériences réalisées, impliquant un transfert des plantes sur un milieu dépourvu de N ne permettent pas de conclure sur la nature des mécanismes responsables. Dans ce contexte, les objectifs de mon travail étaient :

i) De caractériser la ou les voies signalisations impliquées dans la régulation de NRT2.4 et NRT2.5 en réponse à la carence en N.

ii) De déterminer, parmi les régulateurs connus, lesquels sont impliqués dans la régulation de NRT2.4 et NRT2.5.

Ce projet a été développé en collaboration avec Jianfu Li, un étudiant en thèse chinois (Université de Shanghai Jiao Tong) qui est venu passer un an dans notre équipe et que j’ai encadré. De plus, ce projet s’inscrit dans le cadre du projet du Labex « Agro GeneRice » en collaboration avec l’équipe AGAP du Cirad. Dans ce contexte, notre travail sur la plante modèle A. thaliana et nos découvertes dans la régulation du HATS avaient pour objectif, in
Figure 2 : Impact de la double mutation des gènes NIA1 et NIA2 (g4.3) sur la régulation transcriptionnelle des NRT2s. (A), Représentation schématique du plan expérimental utilisé. Les plantes sauvages Columbia (Col-0) et mutantes (g4.3) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de NH4NO3 (flèche noire). Les plantes ont ensuite été transférées pendant 24 h et 72 h sur 1 mM de KNO3 (flèche rouge). (B), Après récolte et congélation des racines, l'accumulation des transcrits NRT2.1, NRT2.4 et NRT2.5 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l'écart-type. (C), Analyse de l'influx de 15NO₃⁻ sur une solution contenant 50 μM de 15NO₃⁻. Les résultats sont la moyenne de ± 12 répétitions. Les barres verticales représentent l'écart-type. Les conditions dans lesquelles les niveaux d'expression sont significativement différents dans les plantes g4.3 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
fine, d’être mis en relation avec les recherches, effectués par nos collègues du Cirad, sur le riz (Oryza sativa). Mon dernier objectif, dans le cadre de ce projet, était donc :

iii) Caractériser la ou les signalisations impliquées dans la régulation des OsNRT2s chez O. sativa.

II. Résultats

II.1. Régulation de NRT2.4 et NRT2.5 par le statut N de la plante

Pour déterminer si la régulation de NRT2.4 et NRT2.5 est dépendante du statut N de la plante, la stratégie choisie a été d’utiliser le double mutant g’4.3 d’A. thaliana déficient pour les deux isoformes NIA1 et NIA2, comme ce qui avait été fait précédemment pour étudier la régulation de NRT2.1 (Lejay et al., 1999). Ce mutant présente un déficit d’assimilation de NO$_3^-$ permettant d’étudier l’effet du statut N sans enlever le NO$_3^-$ de la solution nutritive. Les plantes sauvages et g’4.3 ont été cultivées en hydroponie sur une solution contenant du NH$_4$NO$_3$ permettant une croissance normale des deux génotypes avant d’être transférées sur une solution nutritive contenant 1 mM de KNO$_3$ comme seule source de N pendant 24 h et 72 h (Figure 2A). Comme observé précédemment, le niveau de transcrits NRT2.1 augmente dans les racines des deux génotypes après transfert sur NO$_3^-$ (Figure 2B) (Lejay et al., 1999), ce qui est également le cas pour NRT2.4 et NRT2.5. Cependant, pour NRT2.1 cette augmentation est plus forte chez le mutant g’4.3 que ce soit 24 h ou 72 h après le transfert des plantes sur NO$_3^-$. Au contraire, pour NRT2.4 et NRT2.5, aucune différence significative n’est observée entre les plantes sauvages et g’4.3. Ces résultats indiquent que, contrairement à NRT2.1, la régulation de NRT2.4 et NRT2.5 ne semble pas dépendre du statut N de la plante. Par ailleurs, l’influx de 15NO$_3^-$ mesuré à 50 µM est, comme l’expression de NRT2.1, plus fort chez le mutant g’4.3 après transfert des plantes sur NO$_3^-$, ce qui indique qu’à cette concentration c’est principalement l’activité du transporteur NRT2.1 qui est mesurée et non celle de NRT2.4 et NRT2.5 (Figure 2C).
B.

Figure 3 : Impact de la source N disponible sur la régulation transcriptionnelle des NRT2s. (A), Représentation schématique du plan expérimental utilisé. Les plantes sauvages Columbia (Col-0) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de \(\text{KNO}_3 \) (flèche rouge). Les plantes ont ensuite été transférées pendant 24 h, 48 h et 72 h sur 1mM de \(\text{NH}_4\text{Cl} \) (flèche bleue). (B), Après récolte et congélation des racines, l’accumulation des transcrits NRT2.1, NRT2.4 et NRT2.5 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. (C), Analyse de l’influx de \(^{15}\text{NO}_3 \) sur une solution contenant 5 µM de \(^{15}\text{NO}_3 \). Les résultats sont la moyenne de ± 12 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents entre les conditions \(\text{NH}_4\text{Cl} \) par rapport à la condition \(\text{KNO}_3 \) sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Figure 4 : Impact de la concentration de NO_3⁻ sur la régulation transcriptionnelle des NRT2s. (A), Représentation schématique du plan expérimental utilisé. Les plantes sauvages Columbia (Col-0) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de NH_4NO_3 (flèche noire). Les plantes ont ensuite été transférées pendant 24 h et 72 h sur 1 mM de NH_4Cl additionné de 0,1 mM (flèche verte), 1 mM (flèche bleue) ou 5 mM de KNO_3 (flèche orange). (B), Après récolte et congélation des racines, l'accumulation des transcrits NRT2.1, NRT2.4 et NRT2.5 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l'écart-type. (C), Analyse de l'influx de ³¹NO_3⁻ sur une solution contenant 10 μM de ³¹NO_3⁻. Les résultats sont la moyenne de ± 12 répétitions. Les barres verticales représentent l'écart-type. Les conditions dans lesquelles les niveaux d'expression sont significativement différents entre la condition avec 0,1 mM KNO_3 à 24 h ou 72 h et les autres conditions sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
II.2. Régulation de NRT2.4 et NRT2.5 par le NO₃⁻ ?

Pour tester l’hypothèse d’un effet direct du retrait de NO₃⁻ de la solution nutritive sur la régulation de NRT2.4 et NRT2.5, indépendamment du statut N, les plantes ont été cultivées sur 1 mM de KNO₃ puis transférées pendant 24 h, 48 h et 72 h sur une solution contenant 1 mM de NH₄Cl comme seule source de N (Figure 3A). Dans ces conditions, seule la présence de NO₃⁻ varie sans que les plantes soient carencées en N. Comme observé dans d’autres études, le transfert des plantes sur NH₄⁺ réprime fortement l’expression de NRT2.1 (Munos et al., 2004 ; Krouk et al., 2006) (Figure 3B). A l’inverse, la régulation de NRT2.4 et NRT2.5 est très différente. En effet, leur expression est faible lorsque les plantes sont sur NO₃⁻ et augmente très fortement dès 24 h après le transfert des plantes sur NH₄⁺ (Figure 3B). Ces résultats suggèrent que NRT2.4 et NRT2.5 soient régulés par le NO₃⁻ présent dans la solution nutritive et non par le statut N de la plante. Dans cette expérience, l’influx de ¹⁵NO₃⁻ a été mesuré à 5 µM et, s’il baisse significativement 24 h après le transfert des plantes sur NH₄⁺, sont niveau augmente progressivement après 72 h. Ce profil ne correspond pas du tout à celui observé pour la régulation de l’expression de NRT2.1. Cela suggère que cette concentration rend compte de l’activité des transporteurs NRT2.4 et NRT2.5, spécialement lorsque l’expression de NRT2.1 est la plus faible après 72 h sur 1 mM de NH₄Cl.

Pour confirmer ces observations, indiquant une répression de NRT2.4 et NRT2.5 dépendante du NO₃⁻ dans la solution nutritive, nous avons réalisé une expérience adaptée du travail de Krouk et al., (2006). Dans cette expérience, les plantes sont cultivées sur 1 mM de NH₄NO₃ puis transférées sur une solution contenant 1 mM de NH₄Cl, à laquelle, on ajoute différentes quantités de KNO₃ (0,1 mM, 1 mM ou 10 mM). Cette expérience avait révélé que même en présence de NH₄⁺, qui est une condition répressive pour l’expression de NRT2.1, les variations de concentration en NO₃⁻ sont capables de moduler l’expression de ce transporteur. Ainsi, NRT2.1 est induit lorsque la concentration en NO₃⁻ est faible (0,1 mM) et réprimé lorsque la concentration de NO₃⁻ augmente jusqu’à 5 mM (Figure 4B). Cette expérience permet donc de mettre en évidence une régulation spécifique par la concentration absolue en NO₃⁻ dans une solution mixte de NH₄NO₃. Dans ces conditions, la régulation de NRT2.4 et NRT2.5 est la même que celle observée pour NRT2.1, c’est à dire que ces deux transporteurs sont réprimés spécifiquement par l’augmentation de la concentration en NO₃⁻ (Figure 4B). Dans ces
Figure 5 : Impact de la mutation chl1.5 sur la régulation transcriptionnelle des NRT2s en réponse aux NO3⁻. (A), Les plantes sauvages Columbia (Col-0) et mutantes (chl1.5) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de NH4NO3. Les plantes ont ensuite été transférées pendant 24 h et 72 h sur 1 mM de NH₄Cl additionné de 0,1 mM, 1 mM ou 5 mM de KNO₃. Après récolte et congélation des racines, l'accumulation des transcrits NRT2.1, NRT2.4 et NRT2.5 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l'écart-type. (B), Analyse de l'influx de ¹⁵NO₃⁻ sur une solution contenant 10 µM de ¹⁵NO₃⁻. Les résultats sont la moyenne ± 2 répétitions. Les barres verticales représentent l'écart-type. Les conditions dans lesquelles les niveaux d'expression sont significativement différents entre le sauvage et le mutant chl1.5 sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
CHAPITRE 5

conditions, l’influx de 15NO$_3^-$ mesuré à 100 μM est, sans surprise, corrélé à l’expression des trois NRT2s (Figure 4C). À la différence de $NRT2.1$ qui est régulé à la fois par le statut N de la plante et les fortes concentrations en NO$_3^-$, l’ensemble de ces résultats suggère que $NRT2.4$ et $NRT2.5$ soient uniquement réprimés par le NO$_3^-$.

II.3. Recherche des éléments moléculaires impliqués dans la répression de $NRT2.4$ et $NRT2.5$ par le NO$_3^-$

En ce qui concerne $NRT2.1$, il a été montré que la voie de signalisation impliquée dans la répression de son expression par le NO$_3^-$ faisait intervenir NRT1.1/NPF6.3. En effet, Munos et al., (2004) et Krouk et al., (2006) ont démontré que l’absence de la protéine NRT1.1/NPF6.3 (mutant chl1.5) permettait de lever la répression de $NRT2.1$ exercée par le NO$_3^-$ dans une solution mixte de NH$_4$NO$_3$. Pour déterminer, si cette voie de signalisation dépendante de NRT1.1/NPF6.3 est également impliquée dans la régulation de $NRT2.4$ et $NRT2.5$, la répression par le NO$_3^-$ de l’expression de ces transporteurs a été mesurée chez le mutant chl1.5. Les résultats obtenus montrent que, comme pour $NRT2.1$, la mutation chl1.5 lève la répression de $NRT2.4$ et $NRT2.5$ exercée par le NO$_3^-$ par comparaison aux plantes sauvages (Figure 5A). Pour ces deux transporteurs, il est intéressant de souligner que la levée de la répression par le NO$_3^-$ chez le mutant chl1.5, par rapport aux plantes sauvages, est déjà très forte même lorsque la concentration en NO$_3^-$ est faible (0,1 mM), ce qui n’est pas le cas pour $NRT2.1$ même après 72 h de traitement (Figure 5A). L’impact de la mutation chl1.5 a, par ailleurs, des conséquences fonctionnelles puisque la répression de l’influx de 15NO$_3^-$ par le NO$_3^-$ est, comme l’expression des trois NRT2s, fortement diminuée chez le mutant chl1.5 par rapport aux plantes sauvages (Figure 5B). Ces résultats montrent que $NRT2.1$ et maintenant $NRT2.4$ et $NRT2.5$ sont tous réprimés par le NO$_3^-$ via une signalisation dépendante de NRT1.1/NPF6.3.

Pour aller plus loin dans la caractérisation de la voie de signalisation impliquée dans cette régulation, nous avons utilisé les données transcriptomiques issues du travail de Bouguyon et al., (2015). Dans cette étude, des plantes sauvages et plusieurs mutants de NRT1.1/NPF6.3 ont été cultivés « in vitro » sur 10 mM de NH$_4$NO$_3$ afin de révéler l’ensemble des gènes dont la régulation par les fortes concentrations en N est affectée par la mutation de NRT1.1/NPF6.3. L’analyse des données transcriptomiques a permis, entre autres, de mettre en évidence deux clusters particulièrement intéressants (Figure sup. 1).
Figure 6 : Impact de la double mutation des gènes NIA1 et NIA2 (g’4.3) sur la régulation transcriptionnelle des FTs NIGT1s et LBDs. Les plantes sauvages Columbia (Col-0) et mutantes (g’4.3) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de NH₄NO₃. Les plantes ont ensuite été transférées pendant 24 h, 48 h et 72 h sur 1 mM de KNO₃. Après récolte et congélation des racines, l’accumulation des transcrits HHO1/NIGT1.3, HHD2/NIGT1.2, HHO3/NIGT1.1, HRS1/NIGT1.4 et LBD37, LBD38, LBD39 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes g’4.3 par rapport aux sauvages sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Premièrement, un cluster de 155 gènes dont l’expression sur 10 mM de NH₄NO₃ est plus forte chez le mutant chl1.5 que chez des plantes sauvages et qui contient les transporteurs NRT2.1 et NRT2.4. Deuxièmement, un cluster de 55 gènes dont l’expression, à l’inverse, est plus faible chez le mutant chl1.5 que chez les plantes sauvages et qui contient, entre autres, trois membres de la famille NIGT1s (HHO1/NIGT1.3 ; HHO3/NIGT1.1 ; HRS1/NIGT1.4) et un membre de la famille LBDs (LBD39) (Figure sup. 1). De manière intéressante et comme décrit dans le chapitre 1 (Cf. partie III.2.), ces facteurs de transcription (FTs) ont été impliqués dans la répression des gènes et en particulier de NRT2.1 et NRT2.4 en réponse à N (Rubin et al., 2009 ; Medici et al., 2015 ; Maeda et al., 2018 ; Kiba et al., 2018). Toutefois, aucun des travaux réalisés jusqu’à présent n’a permis de déterminer si ces FTs étaient impliqués dans la répression par le statut N et/ou la répression par le NO₃⁻. La question pour nous était donc de savoir si ces différents FTs impliqués dans la répression des NRT2s sur fort N, sont impliqués dans la signalisation NO₃⁻ dépendante de NRT1.1/NPF6.3 comme suggéré par les résultats de Bouguyon et al., (2015).

Pour répondre à cette question, nous avons suivi la même démarche que pour la caractérisation de la régulation des transporteurs NRT2.4 et NRT2.5 en analysant : i) l’impact du statut N grâce à l’utilisation du mutant g’4.3, ii) l’impact du NO₃⁻ externe en transférant les plantes sur une solution contenant NH₄⁺ comme seule source de N et, iii) en testant l’impact de la mutation chl1.5 sur la régulation de ces FTs par le NO₃⁻ dans un milieu mixte contenant NH₄NO₃. De plus, nous avons inclus dans notre analyse les FTs : LBD37, LBD38 et HHO2/NIGT1.2 qui ont également été impliqués dans la régulation des transporteurs NRT2s (Rubin et al., 2009 ; Maeda et al., 2018 ; Kiba et al., 2018).

Premièrement, l’analyse du mutant g’4.3 indique que, parmi les membres de la famille NIGT1s que nous étudions, seul HHO1/NIGT1.3 semble régulé par le statut N de la plante. En effet, après transfert des plantes d’un milieu contenant NH₄NO₃ vers un milieu contenant seulement du KNO₃, l’expression de HHO1/NIGT1.3 est fortement induite chez le mutant g’4.3, dont le statut N diminue sur NO₃⁻, par rapport à des plantes sauvages (Figure 6). Ceci suggère que HHO1/NIGT1.3 est réprimé par le statut N de la plante. Ce n’est pas le cas pour les trois autres HHOs/NIGT1s (HHO2/NIGT1.2 ; HHO3/NIGT1.1 ; et HRS1/NIGT1.4) dont l’expression n’est pas ou peu affectée chez le mutant g’4.3 par rapport aux plantes sauvages. Concernant les gènes LBDs, l’expression de LBD38 et LBD39 est diminuée chez le mutant g’4.3 par rapport aux plantes sauvages après transfert sur KNO₃ mais pas celle de LBD37. Ceci
Figure 7 : Impact de la source N disponible sur la régulation transcriptionnelle des FTs NIGT1s et LBDs. Les plantes sauvages Columbia (Col-0) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃. Les plantes ont ensuite été transférées pendant 24 h, 48 h et 72 h sur 1 mM de NH₄Cl. Après récolte et congélation des racines, l’accumulation des transcrits HHO1/NIGT1.3, HHO2/NIGT1.2, HHO3/NIGT1.1, HRS1/NIGT1.4 et LBD37, LBD38, LBD39 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents entre les conditions NH₄Cl par rapport à la condition KNO₃ sont indiquées par des étoiles (T-test * : p<0,05; ** : p<0,01; *** : p<0,001).
Figure 8 : Impact la mutation chl1.5 sur la régulation transcriptionnelle des FTs (NIGT1s et LBDs) en réponse aux NO₃. Les plantes sauvages Columbia (Col-0) et mutantes (chl1.5) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de NH₄NO₃. Les plantes ont ensuite été transférées pendant 24 h et 72 h sur 1mM de NH₄Cl additionné de 0,1 mM, 1 mM ou 5 mM de KNO₃. Après récolte et congélation des racines, l'accumulation des transcrits HHO1/NIGT1.3, HHO2/NIGT1.2, HHO3/NIGT1.1, HRS1/NIGT1.4 et LBD37, LBD38, LBD39 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l'écart-type. Les conditions dans lesquelles les niveaux d'expression sont significativement différents entre le sauvage et le mutant chl1.5 sont indiquées par des étoiles (T-test * : p<0,05; ** : p<0,01; ***: p<0,001).
Figure 9 : Impact de la double mutation des gènes HHO1 et HRS1 (hho1/hrs1) sur la régulation transcriptionnelle des NRT2s en réponse aux NO3−.
(A), Les plantes sauvages Columbia (Col-0) et mutantes (hho1/hrs1) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de NH₄NO₃. Les plantes ont ensuite été transférées pendant 24 h et 72 h sur 1 mM de NH₄Cl additionné de 0,1 mM, 1 mM ou 5 mM de KNO₃. Après récolte et congélation des racines, l'accumulation des transcrits NRT2.1, NRT2.4 et NRT2.5 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. (B), Analyse de l’influx de 15NO₃− sur une solution contenant 5 μM de 15NO₃−. Les résultats sont la moyenne de ± 12 répétitions. Les barres verticales représentent l’écart type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents entre le sauvage et le double mutant hho1/hrs1 sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Figure 10 : Groupe de régulation issus de nos résultats pour les différents FTs impliqués dans la régulation des NRT2s. Les résultats obtenus au travers de nos expérimentations permettent de proposer au moins trois groupes de régulation : Groupe (i), les gènes induits par un statut N élevé ; Groupe (ii), les gènes réprimés par un statut N élevé ; Groupe (iii) les gènes induits ou réprimés par le NO₃⁻ dépendant de NRT1.1/NPF6.3.
suggère que \textit{LBD38} et \textit{LBD39} sont, à l’inverse de \textit{HHO1/NIGT1.3}, induit par le statut N de la plante (Figure 6).

Deuxièmement, lorsque le statut N des plantes est maintenu mais que le NO$_3^-$ est remplacé dans la solution nutritive par NH$_4^+$, \textit{HHO1/NIGT1.3} et \textit{HRS1/NIGT1.4} sont très fortement réprimés par rapport à \textit{HHO2/NIGT1.2} et \textit{HHO3/NIGT1.1} qui le sont beaucoup moins. De la même manière, \textit{LBD37} et \textit{LBD39} sont réprimés par le passage des plantes sur NH$_4^+$ alors que l’expression de \textit{LBD38} n’est pas du tout affectée (Figure 7). Ces résultats montrent que la régulation de certain de ces FTs semble être complexe et que des gènes comme \textit{HHO1/NIGT1.3} et \textit{LBD39} semblent être, à la fois régulés par le statut N et par le retrait de NO$_3^-$ de la solution nutritive, alors que \textit{HRS1/NIGT1.4} semble être principalement affecté par le retrait de NO$_3^-$ (Figure 7).

Troisièmement, comme attendu par rapport aux résultats précédents, les quatre gènes, les plus fortement réprimés en réponse au retrait de NO$_3^-$ de la solution nutritive, \textit{HHO1/NIGT1.3}, \textit{HRS1/NIGT1.4}, \textit{LBD37} et \textit{LBD39}, sont également ceux qui sont induits par des concentrations croissantes en NO$_3^-$ sur un milieu mixte contenant du NH$_4$NO$_3$ (Figure 8). Par ailleurs, cette régulation par le NO$_3^-$, est, comme pour les transporteurs \textit{NRT2s} dépendante de NRT1.1/NPF6.3 puisque l’induction de \textit{HHO1/NIGT1.3}, \textit{HRS1/NIGT1.4}, \textit{LBD37} et \textit{LBD39} est très fortement diminuée chez le mutant \textit{chl1.5} (Figure 8).

L’ensemble de ces résultats suggèrent que les FTs \textit{HHO1/NIGT1.3}, \textit{HRS1/NIGT1.4}, \textit{LBD37} et \textit{LBD39} agissent en aval de la signalisation liée à NRT1.1/NPF6.3 pour réprimer l’expression de \textit{NRT2.1}, \textit{NRT2.4} et \textit{NRT2.5} en réponse aux fortes concentrations en NO$_3^-$. Pour vérifier en partie cette hypothèse, nous avons réalisé des expériences préliminaires avec le double mutant \textit{hho1/hr51} qui était disponible au laboratoire (Fourni par Dr. Anna Médici et Dr. Gabriel Krouk). Les plantes ont été traitées comme le mutant \textit{chl1.5}, c’est à dire cultivées sur 1 mM de NH$_4$NO$_3$ puis transférées sur une solution contenant 1 mM de NH$_4$Cl à laquelle on ajoute différentes quantités de KNO$_3$ (0,1 mM, 1 mM ou 10 mM). Dans ces conditions, la double mutation \textit{hho1/hr51}, de la même manière que la mutation de \textit{chl1.5}, limite fortement la répression de \textit{NRT2.1}, \textit{NRT2.4} et \textit{NRT2.5} par le NO$_3^-$ par comparaison à des plantes sauvages (Figure 9). Ces résultats semblent donc confirmer notre hypothèse qu’au moins les FTs \textit{HHO1/NIGT1.3} et \textit{HRS1/NIGT1.4} fonctionnent en aval de NRT1.1/NPF6.3 dans la voie de signalisation impliquée dans la répression des \textit{NRT2s} par le NO$_3^-$ (Figure 10).
Figure 11 : Impact la concentration de NO₃⁻ sur la régulation transcriptionnelle des OsNRT2s. **A**, Les plantes sauvages *Oryza sativa* ont été cultivées en hydroponie pendant 4 semaines sur une solution nutritive contenant 1 mM de NH₄NO₃ à pH 5.5. Les plantes ont ensuite été transférées pendant 24 h sur 1 mM de NH₄Cl additionné de 0,1 mM, 1 mM ou 5 mM de KNO₃. Après récolte et congélation des racines, l’accumulation des transcrits OsNRT2.1, OsNRT2.2 et OsNRT2.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène *OsACTIN*. Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. **B**, Analyse de l’influx de ¹⁵NO₃⁻ sur une solution contenant 100 µM de ¹⁵NO₃⁻. Les résultats sont la moyenne de ± 12 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents entre la condition avec 0,1 mM KNO₃ et les autres conditions sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
Figure 12 : Impact de la concentration de NO₃⁻ sur la régulation transcriptionnelle des FTs OsNIGT1 et OsLBDs. (A), Représentation schématique de la phylogénie des NIGT1s et LBDs chez A. thaliana et O. sativa d’après les données issues de Albinsky et al., 2010 et Kiba et al., 2018. (B), Les plantes sauvages O. sativa ont été cultivées en hydroponie pendant 4 semaines sur une solution nutritive contenant 1 mM de NH₄NO₃ à pH 5,5. Les plantes ont ensuite été transférées pendant 24 h sur 1 mM de NH₄Cl additionné de 0,1 mM, 1 mM ou 5 mM de KNO₃. Après récolte et congélation des racines, l'accumulation des transcrits OsNIGT1, OsLBD37, OsLBD38 et OsLBD39 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène OsACTIN. Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents entre la condition avec 0,1 mM KNO₃ et les aux autres conditions sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
II.4. Régulation du HATS chez le riz en réponse au NO₃⁻

Dans le cadre de notre participation au projet GeneRice (Labex Agro), nous avons collaboré avec l’équipe du Dr. Christophe Pépin du Cirad pour étudier la régulation du HATS par le NO₃⁻. Le but, dans un premier temps, était de déterminer si la répression des NRT2s par le NO₃⁻ existe chez O. sativa et, à terme, si les voies de signalisation identifiées chez A. thaliana étaient conservées chez O. sativa grâce à des plantes modifiées par CRISPR-Cas9 sur en particulier le gène NRT1.1B, produites par cette équipe.

Les résultats préliminaires que nous avons obtenus concernent principalement la régulation de l’influx de ¹⁵NO₃⁻ et des OsNRT2s de O. sativa en réponse à un transfert pendant 24 h sur différentes concentrations de NO₃⁻ sur un milieu mixte contenant du NH₄NO₃. Chez O. sativa, le HATS se compose de quatre membres : OsNRT2.1, OsNRT2.2, OsNRT2.3 et OSNRT2.4 (Feng et al., 2011). Les résultats obtenus montrent que contrairement à ce qui est observé chez A. thaliana : (i) l’influx de ¹⁵NO₃⁻ ne semble pas réprimé par l’augmentation de la concentration en NO₃⁻ et (ii) OsNRT2.1, l’homologue de AtNRT2.1 n’est pas réprimé mais induit par l’augmentation de la concentration en NO₃⁻ en présence de NH₄⁺ (Figure 11). Dans ces conditions, seuls OsNRT2.2 et OsNRT2.3 semblent légèrement réprimés mais sans conséquence fonctionnelle sur la régulation du transport de NO₃⁻.

Concernant les régulateurs des familles NIGT1s et LBDs, les analyses phylogénétiques de A. thaliana et O. sativa indiquent que ces deux familles de régulateurs sont également représentées chez O. sativa (Albinsky et al., 2010 ; Sawaki et al., 2013 ; Maeda et al., 2018 ; Kiba et al., 2018). Concernant la famille NIGT1s, seul un homologue des AtNIGT1s est présent chez O. sativa (OsNIGT1). Au contraire, trois homologues sont retrouvés concernant la famille LBDs (OsLBD37, OsLBD38 et OsLBD39) (Figure 12A). Au vu de ces informations, nous avons également, de façon préliminaire, étudié la régulation transcriptionnelle de ces quatre gènes en réponse à NO₃⁻. Parmi ces gènes, il semble que seul OsLBD39 soit induit par l’augmentation de la concentration en NO₃⁻ à la différence d’A. thaliana dans laquelle à la fois LBD39 mais aussi LBD37 sont induits par l’augmentation de la concentration en NO₃⁻ en présence de NH₄⁺ (Figure 12B).
III. Discussion

III.1. NRT2.4 et NRT2.5 ne semblent pas régulés par le statut N de la plante

Les études, portant sur NRT2.4 et NRT2.5, ont montré qu’ils sont tous les deux régulés par la carence en N comme NRT2.1 (Lejay et al., 1999 ; Kiba et al., 2012 ; Lezhneva et al., 2014). Seul leur cinétique de réponse à la carence en N diffère puisque l’expression de NRT2.1 augmente de manière transitoire 24 h et 48 h après le transfert des plantes sur une solution sans N alors que l’expression de NRT2.4 et NRT2.5 augmente de manière plus tardive (Figure 1). Cependant, les expériences de carence en N consistent à transférer les plantes d’un milieu riche en NO$_3$ à un milieu sans N. C’est l’approche la plus simple pour révéler le contrôle des transporteurs par le statut nutritionnel de la plante mais, en contrepartie, cela fait varier à la fois la quantité de NO$_3$ dans le milieu extérieur et le statut N des plantes. L’interprétation de ces expériences reste donc ambiguë quant à la nature des signaux régulateurs. En effet, la répression observée lorsque les plantes sont sur NO$_3$ pourrait aussi bien être exercée par le NO$_3$ lui-même, que par les produits de l’assimilation de NO$_3$. Pour NRT2.1, les résultats obtenus précédemment ont permis de montrer que son expression est réprimée par deux facteurs : à la fois par les métabolites N issus de l’assimilation du NO$_3$ et par le NO$_3$ présent dans la solution nutritive (Lejay et al., 1999 ; Krouk et al., 2006). En effet, chez un mutant g’4.3 qui n’est plus capable d’assimiler le NO$_3$; l’expression de NRT2.1 est plus forte que chez des plantes sauvages après transfert sur un milieu contenant du NO$_3$ comme seule source de N (Lejay et al., 1999). Ceci montre que les signaux répresseurs sont issus des métabolites synthétisés après l’étape de réduction du NO$_3$. Cependant, dans le même temps, des expériences réalisées avec des ratios différents de NH$_4$ et de NO$_3$ ont permis de montrer qu’à teneur en NH$_4$ égale, la diminution spécifique de la quantité de NO$_3$ dans la solution nutritive était capable d’induire l’expression de NRT2.1 malgré la présence de NH$_4$ connu pour réprimer l’expression de NRT2.1 (Krouk et al., 2006). Ces expériences révèlent donc que pour le transporteur NRT2.1, la répression de son expression nécessite à la fois un statut N élevé et une forte concentration en NO$_3$ dans le milieu extérieur (Krouk et al., 2006). Concernant NRT2.4 et NRT2.5, les seules expériences réalisées mettent en œuvre le transfert des plantes d’un milieu riche en NO$_3$ à un milieu sans N (Kiba et al., 2012 ; Lezhneva et al., 2014). Ces
expériences ne permettent donc pas de savoir si NRT2.4 et NRT2.5 sont réprimés par le NO₃⁻ et/ou par le statut N de la plante.

Pour répondre à cette question, nous avons réalisé une première série d’expériences avec le mutant g’4.3 transféré d’un milieu contenant 1 mM de NH₄NO₃ vers un milieu contenant uniquement du KNO₃. Dans ce cas, le statut N du mutant g’4.3 diminue après transfert sur NO₃⁻ mais sans enlever le NO₃⁻ de la solution nutritive. Dans ces conditions, l’expression de NRT2.4 et NRT2.5 est la même chez les plantes sauvages et le mutant g’4.3 alors que, comme décrit auparavant par Lejay et al., (1999), l’expression de NRT2.1 dans les mêmes conditions est plus forte chez le mutant g’4.3 que chez les plantes sauvages après transfert sur NO₃⁻ (Figure 2). Il semble donc que, contrairement à NRT2.1, les produits issus de l’assimilation de N n’influencent pas la régulation de ces deux transporteurs. Dans ce cas, cela signifierait que l’augmentation de l’expression de NRT2.4 et NRT2.5, observée lorsque les plantes sont transférées d’un milieu contenant du NO₃⁻ à un milieu sans N, est due au retrait de NO₃⁻ du milieu et non à la modification du statut N de la plante engendrée par la carence en N.

Pour confirmer cette hypothèse, nous avons réalisé une deuxième série d’expériences dans laquelle les plantes sont transférées d’un milieu contenant 1 mM de NO₃⁻ à un milieu contenant 1 mM de NH₄⁺. Dans ce cas et à l’inverse de la première série d’expérience, le NO₃⁻ est retiré du milieu extérieur sans que le statut N des plantes baisse. L’expression de NRT2.1 dans cette expérience est, comme attendu, réprimée par NH₄⁺ alors que l’expression de NRT2.4 et NRT2.5 augmente dans les mêmes conditions (Figure 3). Ces résultats confirment donc que l’expression de NRT2.4 et NRT2.5 n’est pas régulée par le statut N de la plante et qu’à la différence de NRT2.1, c’est le NO₃⁻ uniquement qui semble impliqué dans la répression de ces deux transporteurs. Les expériences réalisées en faisant varier le ratio de NH₄⁺ et de NO₃⁻ renforcent cette hypothèse puisque pour NRT2.4 et NRT2.5, tout comme ce qui avait été décrit pour NRT2.1, l’augmentation spécifique de la quantité de NO₃⁻ en présence d’une teneur égale en NH₄⁺ réprime leur expression (Figure 4) (Krouk et al., 2006). Par ailleurs, comme pour NRT2.1, cette répression de NRT2.4 et NRT2.5 par le NO₃⁻ est dépendante de NRT1.1/NPF6.3 (Figure 5). Les résultats obtenus par Bouguyon et al., (2015) indiquent que ce serait la forme phosphorylée sur le résidu Thr101 qui serait à l’origine de cette voie de signalisation. En effet, la répression de NRT2.1 et NRT2.4, observée sur 10 mM de NH₄NO₃ dans ces expériences, est levée spécifiquement dans les plantes exprimant une forme mutée.
de NRT1.1/NPF6.3 mimant la phosphorylation constitutive du résidu Thr101 (T101D). A l’inverse, la mutation T101A, inhibant la phosphorylation de ce résidu, empêche l’induction de NRT2.1 et NRT2.4 sur 10 mM de NH₄NO₃. Ceci indique, d’une part que la signalisation par NRT1.1/NPF6.3 n’est à priori pas due au transport de NO₃⁻ par NRT1.1/NPF6.3, puisque les deux formes mutées de NRT1.1/NPF6.3 T101A et T101D sont capables de transporter le NO₃⁻ (Liu et Tsay, 2003) et d’autre part que la signalisation NO₃⁻ serait une signalisation locale au niveau des racines. Toutefois, il n’est pas exclu que cette régulation par le NO₃⁻ fasse également appel à une signalisation systémique. En effet, l’expression de CEPD2-like, qui a été identifié comme un régulateur intégrant le statut N des feuilles pour réguler les transporteurs NRT2.1 et NRT2.4 dans les racines, est inversement proportionnelle à la quantité de NO₃⁻ dans les feuilles qui varie en fonction de la concentration en NO₃⁻ dans le milieu extérieur et du stade de développement de la plante (Ota et al., 2020). Dans ces conditions et au vu des résultats que nous avons obtenus, CEPD2-like pourrait donc, plus spécifiquement, réguler l’expression des transporteurs NRT2s en fonction de la concentration en NO₃⁻ dans les feuilles.

La question de l’existence d’une régulation de NRT2.4 et NRT2.5 dans certaines conditions par les produits issus de l’assimilation de NO₃⁻ reste toutefois en suspens. En effet, le retrait de NH₄⁺ de la solution nutritive dans les expériences réalisées avec le mutant g’4.3 entraîne, comme pour NRT2.1, une légère induction de l’expression de NRT2.4 et NRT2.5 que ce soit chez les plantes sauvages ou mutantes (Figure 2). Ceci indique, en accord avec les résultats obtenus par Kiba et al., (2012) pour NRT2.4, que le NH₄⁺ serait susceptible de réprimer l’expression de NRT2.4 et NRT2.5. Toutefois, cette hypothèse est en contradiction avec les résultats obtenus après transfert des plantes de NO₃⁻ vers du NH₄⁺ qui montrent, au contraire, une augmentation de l’expression de NRT2.4 et NRT2.5 même après 72 h de traitement sur une solution contenant 1 mM de NH₄Cl (Figure 3). La répression de ces deux transporteurs par le NH₄⁺ semble cependant observée : soit sur des plantes qui ont été cultivées en continu sur une solution contenant NH₄⁺ (Figure 2), soit sur des plantes transférées pendant trois jours sur de fortes concentrations en NH₄⁺ (5 mM de NH₄⁺ succinate dans l’étude de Kiba et al., (2012)). Il se pourrait donc que l’effet de NH₄⁺ sur les transporteurs NRT2.4 et NRT2.5, s’il existe, dépende de sa concentration et/ou des temps de traitement. Cependant, l’ensemble des données, que nous avons obtenu, indique que la répression par le NO₃⁻ de l’expression de NRT2.4 et NRT2.5 est une régulation clé qui a un rôle dans le transport de NO₃⁻ à très forte affinité. En effet, les mesures d’influx de ¹⁵NO₃⁻, réalisées à différentes
concentrations suivant les expériences, indiquent que lorsque NRT2.4 et NRT2.5 sont régulés de manière différente par rapport à NRT2.1, ils impactent l’influx de 15NO$_3^-$ mesuré à 5 μM (Figure 3). En revanche, lorsque l’influx est mesuré à 50 μM de 15NO$_3^-$, c’est majoritairement la fonction de NRT2.1 qui est détectée (Figure 2). Ceci correspond au rôle de transporteurs à très forte affinité pour le NO$_3^-$ qui a été attribué à NRT2.4 et NRT2.5 (Kiba et al., 2012, Lezhneva et al., 2014).

III.2. La répression de NRT2.4 et NRT2.5 par le NO$_3^-$ implique des membres des familles NIGT1s et LBDs

L’étude des voies de signalisation impliquées dans la réponse à la carence en N, a permis d’identifier un certain nombre d’éléments moléculaires comme des FTs de la famille NIGT1s (HHO1/NIGT1.3 ; HRS1/NIGT1.4 ; HHO2/NIGT1.2 ; HHO3/NIGT1.1) et de la famille LBDs (LBD37 ; LBD38 ; LBD39) (Cf. chapitre 1, *partie III.2*). Ces gènes sont : réprimés par la carence en N, induits par le fort N et ont été identifiés comme des répressseurs de l’expression de NRT2.1, NRT2.4 et NRT2.5 (Rubin et al., 2009 ; Kiba et al., 2018 ; Safi et al., 2018). L’analyse des données transcriptomiques obtenues par Bouguyon et al., (2015) a permis de révéler que, à l’inverse de NRT2.1 et NRT2.4, l’expression de HHO1/NIGT1.3, HRS1/NIGT1.4, HHO3/NIGT1.1 et LBD39 est réprimée dans le mutant chl1.5 par rapport à des plantes sauvages sur un milieu contenant 10 mM de NH$_4$NO$_3$ (Figure sup. 1). Ces FTs pourraient donc jouer un rôle dans la voie de signalisation impliquée dans la répression des transporteurs NRT2s par le NO$_3^-$ via NRT1.1/NPF6.3. Toutefois, l’étude de la régulation de ces FTs avait, jusqu’à présent, été réalisée dans des expériences de fort N qui ne permettaient pas de discriminer entre le rôle des produits issus de l’assimilation de N et le NO$_3^-$ lui-même. Comme pour les transporteurs NRT2.4 et NRT2.5, nous avons donc étudié la régulation de HHO1/NIGT1.3, HRS1/NIGT1.4, HHO2/NIGT1.2, HHO3/NIGT1.1 et LBD37, LBD38, LBD39 : (i) chez le mutant g’4.3, (ii) après transfert sur un milieu contenant du NH$_4$Cl et (iii) en réponse à l’augmentation de la concentration en NO$_3^-$ en présence de NH$_4^+$ chez des plantes sauvages et chez le mutant chl1.5.

Les résultats obtenus montrent que, parmi les sept FTs étudié, seul deux membres de la famille NIGT1s (HHO1/NIGT1.3 et HRS1/NIGT1.4) ainsi que deux membres de la famille LBDs
(LBD37 et LBD39) sont régulés par le NO$_3^-$ à travers la voie de signalisation qui implique NRT1.1/NPF6.3 (Figures 7, 8). Contrairement aux données transcriptomiques de Bouguyon et al., (2015), les résultats obtenus avec le mutant chl1.5 n’indiquent pas que HHO3/NIGT1.1 soit significativement induit par les fortes concentrations en NO$_3^-$ via NRT1.1/NPF6.3. A l’inverse, dans notre étude, LBD39, mais également LBD37, ont été identifié comme régulé par le NO$_3^-$ à travers la voie de signalisation qui implique NRT1.1/NPF6.3. Les conditions utilisées par Bouguyon et al., (2015) avec des plantes cultivées in vitro sur un milieu contenant 10 mM de NH$_4$NO$_3$ sont très différentes de celles utilisées dans notre étude qui concerne des plantes cultivées en hydroponie et traitées avec des concentrations plus faibles en N. HHO3/NIGT1.1 étant le gène le moins fortement réprimé par la mutation chl1.5 dans le travail de Bouguyon et al., (2015) par rapport à HHO1/NIGT1.3 et HRS1/NIGT1.4, il est possible que ce FT soit moins sensible à l’induction par le NO$_3^-$ et que nos conditions de concentration en N ne soient pas suffisantes pour voir sa régulation. C’est ce que semble indiquer également l’expérience dans laquelle les plantes sont transférées d’un milieu contenant 1 mM de NO$_3^-$ à un milieu contenant 1 mM de NH$_4^+$ (Figure 7). En effet, dans ces conditions, l’expression de HHO3/NIGT1.1 est beaucoup moins diminuée par le transfert sur NH$_4^+$ que celle de HHO1/NIGT1.3 et HRS1/NIGT1.4. Cela pourrait indiquer que la concentration en NO$_3^-$ que nous utilisons n’est pas suffisante pour induire fortement HHO3/NIGT1.1. Cette différence entre HHO1/NIGT1.3, HRS1/NIGT1.4 et HHO3/NIGT1.1 ne peut, en effet, pas s’expliquer par un effet de NH$_4^+$ puisqu’aucun des quatre FTs HHOs/NIGT1s étudiés ne sont affectés par le transfert des plantes sauvages d’un milieu contenant 1 mM de NH$_4$NO$_3$ vers un milieu contenant 1 mM de KNO$_3$ dans l’expérience visant à caractériser l’impact de la mutation g’4.3 (Figure 6).

La régulation de HHO1/NIGT1.3, HRS1/NIGT1.4, LBD37 et LBD39 en réponse au NO$_3^-$ chez les plantes sauvages et le mutant chl1.5 est, par ailleurs, en accord avec un rôle de répressseurs des NRT2s dans la voie de signalisation qui implique NRT1.1/NPF6.3. En effet, ces quatre FTs sont induits spécifiquement par l’augmentation de la quantité de NO$_3^-$, à l’inverse de ce qui est observé pour NRT2.1, NRT2.4 et NRT2.5 (Figure 8). Par ailleurs, la double mutation hho1/hrs1 entraîne une levée de la répression des NRT2s similaire à celle observé dans le mutant chl1.5 (Figure 9). Enfin, il a été montré que les FTs HHO1/NIGT1.3 et HRS1/NIGT1.4 sont capables de se fixer sur le promoteur de NRT2.4 et NRT2.5 (Kiba et al., 2018 ; Safi et al., 2018). L’ensemble de ces résultats indiquent, donc, que parmi les FTs
précedemment identifiés seuls *HRS1/NIGT1.4*, *HHO1/NIGT1.3*, *LBD37* et *LBD39* sont spécifiquement impliqués dans la voie de signalisation en aval de NRT1.1/NPF6.3 qui réprime les transporteurs *NRT2s* en réponse aux fortes concentrations en NO₃⁻. Une différence de régulation entre les HHOs/NIGT1s étudiés a également été décrite par Kiba *et al.*, (2018). En effet, cette étude montre que *HHO2/NIGT1.2* et *HHO3/NIGT1.1* contrairement à *HRS1/NIGT1.4* et *HHO1/NIGT1.3* sont induits par des formes réduites de N telles que la Gln et l’urée. Cela renforce l’hypothèse que *HRS1/NIGT1.4*, *HHO1/NIGT1.3* et *HHO2/NIGT1.2* *HHO3/NIGT1.1* ne font pas parti des mêmes voies de signalisation. Concernant les LBDs, l’étude de Rubin *et al.*, (2009) ne permet pas, contrairement à notre étude, d’identifier de rôles différents entre les trois FTs LBDs étudiés.

Enfin, comme *HRS1/NIGT1.4* et *HHO1/NIGT1.3* sont des régulateurs directs de *NRT2.4* et *NRT2.5*, l’hypothèse peut être faite que les LBDs interviennent en amont des NIGT1s dans cette voie de signalisation dépendante du NO₃⁻. Cependant, l’analyse transcriptomique de Rubin *et al.*, (2009) n’a pas permis de mettre en évidence une dérégulation des HHOs/NIGT1s par la mutation des LBDs. La possibilité d’une redondance fonctionnelle entre les différents LBDs ne peut toutefois pas être écartée et dans ce contexte seule l’étude de l’expression de *HRS1/NIGT1.4* et *HHO1/NIGT1.3* dans un double mutant *lbd37/lbd39* pourrait permettre de déterminer si l’expression *HRS1/NIGT1.4* et *HHO1/NIGT1.3* est sous le contrôle de *LBD37* et *LBD39* dans la voie de signalisation NO₃⁻ dépendante de NRT1.1/NPF6.3.

La complexité des voies de signalisation, dans lesquelles les FTs HHOs/NIGT1s et LBDs sont impliqués, est renforcée par les résultats que nous avons obtenus avec le mutant *g'4.3*. En effet, *LBD38*, qui n’est pas impliqué dans la voie NRT1.1/NPF6.3 dépendante en réponse au NO₃⁻, semble être induit par les produits issus de l’assimilation de N tout comme *LBD39* qui se retrouve impliqué dans deux voies de signalisation distinctes. Mais de manière encore plus surprenante, *HHO1/NIGT1.3* qui est induit par le NO₃⁻ est, par contre, réprimé par les métabolites issus de l’assimilation de NO₃⁻. Ce résultat est d’autant plus surprenant qu’il ne correspond pas à un rôle de répresseur des transporteurs *NRT2s*. En effet, *NRT2.1*, *NRT2.4* et *NRT2.5* sont également réprimés par le statut N. Cependant, les résultats obtenus par Kiba *et al.*, (2018) montrent également une induction de l’expression de *HHO1/NIGT1.3* en réponse à la carence en N contrairement à ce qui est observé pour les trois autres HHOs/NIGT1s. Là encore, l’étude de la régulation de *HHO1/NIGT1.3* dans un double mutant *lbd38lbd39* permettrait : (i) de déterminer si dans ces conditions *HHO1/NIGT1.3* est sous le contrôle de
LBD38 et LBD39 et (ii) de caractériser l’impact de cette régulation sur les gènes cibles et en particulier NRT2s dans les conditions utilisées pour caractériser le mutant g’4.3.

III.3. La régulation des transporteurs NRT2s par NO₃⁻ est différente entre le riz et A. thaliana

Les études réalisées sur le riz (O. sativa) ont récemment montré qu’une divergence de la séquence du gène OsNRT1.1B entre les sous espèces O. sativa indica et O. sativa japonica pouvait expliquer une augmentation du transport de NO₃⁻ et de la réponse des gènes régulés par le NO₃⁻ entre ces deux sous espèces (Hu et al., 2015). Dans ce contexte, il était intéressant de déterminer si la fonction de signalisation de AtNRT1.1/NPF6.3 était conservée chez O. sativa pour, à terme, essayer d’identifier les mécanismes moléculaires qui expliquent les différences phénotypiques liées à OsNRT1.1 entre indica et japonica. Cette question est d’autant plus intéressante qu’il existe chez O. sativa un homologue de la famille NIGT1s (OsNIGT1) et trois homologues de la famille LBDs (OsLBD37/38/39) (Figure 15A). Les données préliminaires obtenues montrent que contrairement à ce qui est observé chez A. thaliana, l’expression de OsNRT2.1 est induite par l’augmentation de la concentration de NO₃⁻ en présence de NH₄⁺. Seuls OsNRT2.2 et OsNRT2.3 semblent légèrement réprimés mais sans que cela soit significatif ou n’est d’impact sur le transport de NO₃⁻ (Figure 14). Ce résultat diffère de ceux obtenus par Yan et al., (2011) qui montrent que l’ensemble des OsNRT2s sont induits en réponse au NO₃⁻. Ces résultats suggèrent qu’il pourrait y avoir une différence pour les mécanismes de régulations des transporteurs NRT2s entre A. thaliana et O. sativa et/ou que les régulations diffèrent entre les cultivars de O. sativa. En effet, nous avons réalisés nos expériences avec des variétés O. sativa japonica cultivar Kitaaké alors que les données publiées ont, pour la plupart, était obtenues avec le cultivar Nipponbare. Ceci pourrait également expliquer pourquoi nous n’observons pas de régulation du FT OsNIGT1 en réponse à l’augmentation de la quantité de NO₃⁻ alors qu’il a été décrit comme transitoirement induit par le NO₃⁻ dans l’étude de Sawaki et al., (2013). Seule la régulation de OsLBD39 semble correspondre à celle observée chez A. thaliana en réponse à l’augmentation de la concentration en NO₃⁻ (Figure 15).
Les résultats obtenus sur *O. sativa* restent trop préliminaires pour pouvoir en tirer des conclusions quant au rôle de OsNRT1.1 dans la signalisation nitrate chez cette espèce. Toutefois, la poursuite de ce travail est un enjeu majeur pour comprendre les mécanismes liés à OsNRT1.1B et qui entraîne une différence majeure d’efficacité d’utilisation de N entre les variétés de riz *indica* et *japonica*.
Figures supplémentaires
Figure supplémentaire 1 : Analyse des gènes dérégulés dans le mutant chl1.5. Les plantes sauvages Columbia (Col-0) et mutantes (chl1.5) de ce travail publiées par Bouguyon et al, 2015 ont été cultivées en boîte verticale in vitro pendant 8 jours sur 10 mM de NH₄NO₃. Les racines ont ensuite été récoltées pour la réalisation d’une analyse transcriptomique par puce affymetrix ATH1. L’analyse des gènes induits (A), ou réprimés (B), significativement dans le mutant chl1.5 par comparaison avec les plantes sauvages, nous permet d’obtenir une liste de candidats potentiellement régulés au travers de la voie de signalisation NRT1.1/NPF6.3 dépendante. Parmi les gènes induits dans le mutant chl1.5 on retrouve NRT2.1 et NRT2.4. Parmi les gènes réprimés dans le mutant chl1.5 on retrouve des facteurs de transcription des familles NIGT1s et LBDs.
Étude des régulations post-traductionnelles de la protéine NRT2.1
Étude des régulations post-traductionnelles de la protéine NRT2.1

Ce volet de ma thèse a fait l’objet d’une publication dans laquelle je suis second auteur. Cet article est présenté en annexe à la fin de ce chapitre.

Figure 1 : Représentation schématique des zones mutées dans les plantes ΔC_{494-530}, ΔC_{514-530} et S501A, S501D et le phénotype associé aux mutations. (A), Topologie membranaire de NRT2.1 réalisé avec le logiciel Protter (https://wlab.ethz.ch/protter/start/) (Omasits et al., 2014). La protéine NRT2.1 se compose de 12 domaines transmembranaires. L’immuno-détection de la protéine est permise via deux anticorps dont les épitopes sont dans la partie centrale de la protéine (NRT2.1_19) et dans la partie C-terminale de la protéine (NRT2.1_20). La localisation des parties C-terminales de NRT2.1 retirées dans les plantes appelées ΔC_{494-530} (sans épitope 20) et ΔC_{514-530} (avec épitope 20) est indiquée par des ciseaux (––). Quatre sites de phosphorylation ont été identifiés dont deux en N-terminal (Ser11 et Ser28) et deux en C-terminal (Ser501 et Thr521). Concernant le site Ser501, des lignées imitant la phosphorylation constitutive (S501D) ou la non-phosphorylation (S501A) ont été générées dans le KO nrt2.1. (B), Phénotypes de croissance de plantes sauvages (Col-0) et mutantes (nrt2.1, ΔC_{494-530}, ΔC_{514-530}, S501A et S501D).
I. Introduction

Les études de protéomique réalisées, entre autres, dans l’équipe d’accueil, ont révélé l’existence de quatre sites de phosphorylation pour la protéine NRT2.1 : deux en queue N-terminale (Ser11 et Ser28) et deux en queue C-terminale (Ser501 et Thr521) (Figure 1A et Annexe). La caractérisation du rôle de ces sites de phosphorylation grâce à l’obtention de mutants a permis de révéler l’importance du site Ser501 pour l’activité du transporteur NRT2.1. En effet, dans le cas où la mutation de la protéine NRT2.1 mime une phosphorylation constitutive, en substituant la sérine S501 en acide aspartique (S501D), NRT2.1 est inactif et le transport de NO₃⁻ à forte affinité tout comme le phénotype des plantes est identique à ce qui est observé chez le mutant KO nrt2.1 (Figure 1B et Annexe). A l’inverse, lorsque la sérine S501 est remplacée par une alanine, un acide aminé non phosphorylable (S501A), l’activité de NRT2.1 tout comme le phénotype des plantes est identique à ce qui est observé chez des plantes sauvages (Figure 1B et Annexe). Par ailleurs, les mêmes phénotypes sont observés lorsque la partie C-terminale de la protéine NRT2.1 qui contient le site Ser501, est déletée (∆C₄₀₄-₅₃₀) par rapport à des plantes qui expriment une forme tronquée de NRT2.1 après le site Ser501 (∆C₅₁₄-₅₃₀) (Figure 1B). Dans ce contexte, un des objectifs de mon travail a été d’étudier chez des plantes sauvages les variations de phosphorylation du site Ser501 en réponse à un traitement qui réprime l’activité de NRT2.1. Par ailleurs, dans le cadre d’un rôle éventuel de NRT2.1 comme sensor de NO₃⁻, j’ai également réalisé des mesures d’architecture racinaire pour déterminer si la phosphorylation du site Ser501 et/ou le clivage de la partie C-terminale de NRT2.1 avait un impact. L’ensemble de ces résultats a été intégré dans la publication de Jacquot et al., (2020) (Annexe).

Au-delà de ces deux objectifs, des données obtenues par nos collaborateurs Chilien et Allemand ont révélé, en spectrométrie de masse, la présence dans la fraction soluble des protéines d’un peptide correspondant à la partie C-terminale de NRT2.1 contenant le site Ser501 phosphorylé. Ce résultat fait écho à ce qui avait été mis en évidence par Wirth et al., (2007) concernant un éventuel clivage de la partie C-terminale de NRT2.1 chez des plantes transgéniques complémentées avec la protéine NRT2.1 fusionnée à une GFP. Mais le rôle éventuel de ce clivage et du peptide observé dans la fraction soluble des protéines reste totalement inconnu. Dans ce cadre j’ai réalisé des études préliminaires visant à : (i) tester un
Figure 2 : Analyse de la spécificité de l’anticorps Anti-S501P par dot blot. Deux dilutions en série à partir de 3 μg de peptides synthétiques phosphorylés ou non sur Ser501 ont été transféré sur membrane. Les membranes ont été révélées soit avec l’anticorps spécifique de la phosphorylation Ser501 (Anti-S501P), soit avec l’anticorps non spécifique à la modification.
Figure 3 : Régulation de la phosphorylation Ser501 en réponse au NH₄NO₃ chez des plantes sauvages d'**A. thaliana**. Les plantes sauvages Columbia (Col-0) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃ suivi d'un transfert pendant 4 h, 7 h sur 10 mM de NH₄NO₃. Après récolte et congélation des racines, les microsomes ont été extrait pour la réalisation des différentes analyses. (A), Immunoblot pour le site de phosphorylation NRT2.1 Ser501 (Anti-S501-P) et NRT2.1 (Anti-NRT2.1-20). Les échantillons ont été séparés sur des gels 12% de SDS (20 ug de protéine / puit). (B), Quantification du phosphopéptide NRT2.1 S501 en utilisant une analyse LC-MS/MS. Les résultats sont la moyenne de 3 répétitions. (C), Analyse de l'influx de {superscript 15}NO₃⁻ sur une solution contenant 200 µM de {superscript 15}NO₃⁻. Les résultats sont la moyenne de ± 12 répétitions. Les barres verticales représentent l'écart-type. Les conditions dans lesquelles les niveaux d'expression sont significativement différents dans les plantes sauvages sur 10 mM de NH₄NO₃ par rapport aux sauvages sur 1 mM de KNO₃ sont indiquées par des étoiles (T-test : *: p<0,05; **: p<0,01; ***: p<0,001).
rôle éventuel du peptide clivé dans une signalisation NO$_3^-$ et (ii) tester des méthodes qui pourraient par la suite permettre de faciliter l’étude du rôle de ce clivage.

II. Résultats

II.1. Étude de la dynamique de phosphorylation de la sérine S501 chez des plantes sauvages

Le phénotype des plantes S501D suggère que la phosphorylation du résidu Ser501 correspond à un mécanisme de régulation majeur capable d’inactiver rapidement le système de transport NRT2.1-NAR2.1/NRT3.1. Cela a soulevé la question de savoir si cette phosphorylation se produit in vivo chez des plantes sauvages, en particulier lorsque l’activité HATS est réprimée en réponse aux conditions environnementales. Pour étudier cette dynamique de phosphorylation de Ser501 dans les plantes sauvages, un anticorps spécifique, appelé anti-S501P, a été généré. La réalisation de Dot blot nous a permis de confirmer que l’anticorps anti-S501P ne pouvait reconnaître que le peptide phosphorylé Ser501 (Figure 2). Pour suivre in vivo la phosphorylation de Ser501 pendant l’inactivation de NRT2.1, des plantes sauvages ont été cultivées sur 1 mM de NO$_3^-$ puis transférées pendant 1 h et 4 h sur 10 mM de NH$_4$NO$_3$ (Figure 3). Dans ces conditions, l’influx de NO$_3^-$ diminue de moitié après 4 h de traitement sur 10 mM de NH$_4$NO$_3$ (Figure 3C).

L’analyse par western-blot avec un anticorps dirigé contre la protéine NRT2.1 (Anti-NRT2.1-20) et l’anticorps spécifique de la forme Ser501 phosphorylée (Anti-S501P) montre que le niveau relatif de la forme phosphorylée de NRT2.1 par rapport au niveau de protéine totale est faible lorsque les plantes sont sur NO$_3^-$ et augmente lorsqu’elles sont transférées sur 10 mM de NH$_4$NO$_3$ (Figure 3A). Ce résultat est renforcé par la quantification du phospho-peptide NRT2.1 S501P en spectrométrie de masse qui montre que la diminution de l’influx de 15NO$_3^-$ après transfert des plantes sur 10 mM de NH$_4$NO$_3$ est associée à une augmentation de la quantité du phospho-peptide NRT2.1 S501P (Figures 3B, 3C). L’ensemble de ces résultats est cohérent avec un rôle de la phosphorylation du site Ser501 dans l’inactivation de NRT2.1 en réponse à des contraintes environnementales répressives.
Figure 4 : Impact des mutations S501A, S501D ou ΔC_{244-530} et ΔC_{514-530} de NRT2.1 sur la densité en racines latérales en réponse au NO$_3$.

Densité des racines latérales (LR) correspondant au nombre total de primordiums et de racines latérales normalisées par la longueur de la racine primaire de type sauvage (Col-0), mutant knockout nrt2.1 et (A) des lignées transgéniques S501A9 ou S501D2 ; (B) des lignées transgéniques ΔC_{514-530} ou ΔC_{504-530}. Après 5 jours de croissance sur 1 mM de NO$_3$, les plantes sont transférées sur un milieu sans azote (0N) ou à 0,3 et 5 mM de NO$_3$. Le nombre total de RL et de primordia RL visibles a été déterminé entre les jours 10 et 12. Les valeurs moyennes sont des moyennes d’au moins 20 répétitions ± ET.
II.2. Impact de la phosphorylation Ser501 sur le développement racinaire

Des études antérieures ont montré que, indépendamment de son rôle dans l’absorption de NO₃⁻ par les racines, la mutation KO nrt2.1 entraîne des défauts dans la croissance des racines latérales (RL) même en l’absence de NO₃⁻ dans le milieu nutritif (Little et al., 2005 ; Remans et al., 2006). Cela a conduit à l’hypothèse que comme NRT1.1/NPF6.3, NRT2.1 pourrait être un senseur de NO₃⁻ (Krouk et al., 2010). Cependant, les mécanismes sous-jacents restent totalement inconnus. Une preuve clé pour soutenir ce rôle de senseur de NRT2.1 serait de dissocier son activité de transporteur de NO₃⁻ racinaire de son rôle dans le développement des RLs. Comme la substitution S501D ou la délétion de la partie C-terminale contenant le site Ser501 (ΔC₄₉₄-₅₃₀) inactive la fonction de transport de NRT2.1, cela nous a incités à étudier l’impact de ces modifications sur le développement des RLs. Pour cela, le nombre total de primordia de RL initiés et de RL visibles a été quantifié dans la partie nouvellement formée de la racine primaire de plantes sauvages et mutantes (KO nrt2.1, NRT2.1-S501A, NRT2.1-S501D, ΔC₅₁₄-₅₃₀ et ΔC₄₉₄-₅₃₀) après transfert des plantes d’un milieu contenant 1 mM de NO₃⁻ vers un milieu sans N (0N), avec 0,3 mM ou avec 5 mM de NO₃⁻ (Figure 4) (Chapitre 2, partie VI.1.).

Comme décrit dans Remans et al., (2006), le mutant KO nrt2.1 montre une réduction de la densité en RLs après le transfert vers un milieu contenant 0N ou 0,3 mM de NO₃⁻ par rapport aux plantes sauvages (Figure 4). Cette différence entre les deux génotypes n’est pas observée après transfert vers un milieu riche en NO₃⁻ (5 mM), confirmant que la mutation KO nrt2.1 n’a pas de conséquence significative sur la croissance des RLs en conditions de fort NO₃⁻ (Orsel et al., 2004 ; Little et al., 2005 ; Remans et al., 2006). Fait intéressant, les plantes S501D ont un phénotype similaire à celui des plantes KO nrt2.1, avec une diminution de la densité en primordia de RL après transfert sur 0,3 mM de NO₃⁻ et aucune différence significative sur 5 mM de NO₃⁻ par rapport aux plantes sauvages (Figure 4A). Inversement, la densité en primordia de RL initiés dans les plantes S501A est similaire à celle observée chez des plantes sauvages dans toutes les conditions. Ces données indiquent que la substitution S501D est capable d’inactiver à la fois l’activité d’absorption de NO₃⁻ racinaire de NRT2.1 (Annexe) et son rôle dans le développement des RLs. Ces conclusions sont renforcées par celles acquises au travers de la quantification de la densité en RLs cette fois-ci dans les lignées dont la partie C-
Figure 5 : Détection par spectrométrie de masse, dans les protéines solubles, d’un peptide correspondant à la partie C-terminal de NRT2.1, phosphorylé sur Ser501, en réponse au NO3⁻. (A) Détection du peptide correspondant à la partie C-terminale de NRT2.1 dans la fraction soluble des protéines par spectrométrie de masse. (B) Représentation schématique de la zone correspondant au fragment peptidique retrouvé en réponse à un traitement NO3⁻.
terminale de NRT2.1 est tronquée (Figure 4B). En effet l’absence de la partie C-terminale qui contient le site Ser501 (ΔC_{494-530}), entraîne un phénotype de densité en RLS similaire à celui observé pour le KO nrt2.1 ou S501D sur 0N et 0,3 mM de NO₃⁻ (Figure 4). Au contraire, le retrait de la partie C-terminale de NRT2.1 après le site Ser501 (ΔC_{514-530}) entraîne une densité en primordia de RL similaire aux plantes S501A et sauvages (Figure 4B).

II.3. Test du rôle du clivage de la partie C-terminale de NRT2.1 dans la signalisation NO₃⁻

Lors d’une étude réalisée précédemment, Wirth *et al.*, (2007) ont formulé l’hypothèse selon laquelle la protéine NRT2.1 serait clivée dans sa partie C-terminale et que ce mécanisme pourrait correspondre à une régulation post-traductionnelle qui affecterait l’activité et/ou la régulation de NRT2.1. Plus récemment, cette hypothèse a été réactivée par deux approches de protéomique conduite par deux laboratoires avec lesquels nous collaborons, celui de Waltraud Schulze en Allemagne et celui de Rodrigo Gutierrez au Chili. En effet, en étudiant la fraction soluble des protéines chez des plantes sauvages induites en réponse à NO₃⁻, les deux équipes ont identifié un seul peptide correspondant à NRT2.1 et dont la séquence contient le résidu Ser501 phosphorylé (Figure 5). De plus, de manière intéressante, la quantité de ce peptide augmente après 15 ou 20 min de traitement sur 0,2 mM ou 5 mM de NO₃⁻. NRT2.1 ayant été par ailleurs identifié comme un senseur potentiels de NO₃⁻ (Little *et al.*, 2005 ; Remans *et al.*, 2006), l’ensemble de ces résultats nous amène à nous poser la question d’un rôle éventuel de ce peptide dans la signalisation et donc dans un mécanisme lié potentiellement au « sensing » de NO₃⁻ par NRT2.1. De manière très préliminaire, nous avons voulu commencer à tester cette hypothèse en mesurant l’induction de gènes connus pour être induits par le NO₃⁻ chez les plantes ΔC_{494-530} et ΔC_{514-530} qui ont été produites dans l’équipe. En effet dans les plantes ΔC_{494-530}, le peptide phosphorylé sur la Ser501 est absent alors qu’il est présent chez les plantes ΔC_{514-530}. Ainsi, si ce peptide a un rôle dans la signalisation NO₃⁻, les gènes régulés par le NO₃⁻ devraient être moins induits chez les plantes ΔC_{494-530} ainsi que chez des plantes KO nrt2.1 par rapport à des plantes sauvages et ΔC_{514-530}. Nous avons choisi de mesurer l’expression du gène NRT1.1/NPF6.3 (gène de réponse à NO₃⁻) soit chez des plantes qui sont cultivées sur 1 mM de NO₃⁻, soit sur des plantes carencées en N
Figure 6 : Impact des délétions ΔC_{404-530} et ΔC_{514-530} de la protéine NRT2.1 sur la régulation de NRT1.1/NPF6.3 en réponse à l’induction par le NO₃. Les plantes sauvages Columbia (Col-0) et mutantes (nrt2.1, ΔC_{404-530} et ΔC_{514-530}) ont été cultivées en hydroponie pendant 5 semaines sur une solution nutritive contenant 1 mM de KNO₃ (A), ou 4 semaines sur 1 mM de KNO₃ suivi d’un pré-traitement pendant 1 semaine sur un milieu sans N. Dans ce dernier cas, les plantes ont ensuite été transférées pendant 4 h, 7 h ou 1 mM de KNO₃ (B). Après récolte et congélation des racines, l’accumulation des transcrits NRT1.1/NPF6.3 a été mesurée par PCR quantitative en temps réel et normalisée avec le gène CLATHRINE (At4g24550). Les résultats sont la moyenne de 3 répétitions. Les barres verticales représentent l’écart-type. Les conditions dans lesquelles les niveaux d’expression sont significativement différents dans les plantes sauvages, ΔC_{404-530} et ΔC_{514-530} par rapport aux mutants nrt2.1 sont indiquées par des étoiles (T-test *: p<0,05; **: p<0,01; ***: p<0,001).
puis transférées pendant 4 h et 7 h sur une solution contenant 1 mM de NO₃⁻. De manière intéressante les résultats obtenus semblent effectivement indiquer que l’absence de la partie C-terminale de NRT2.1 qui contient le site Ser501 limite l’induction par le NO₃⁻ de l’expression de \textit{NRT1.1/NPF6.3} (Figure 6). En effet, que ce soit sur 1 mM de NO₃⁻ ou après 4 h ou 7 h de transfert sur NO₃⁻, l’induction de l’expression de \textit{NRT1.1/NPF6.3} est comme chez le mutant KO \textit{nrt2.1}, fortement diminuée chez les plantes $\Delta C_{494-530}$ par rapport aux plantes $\Delta C_{514-530}$ et sauvages (Figure 6). Malheureusement, par manque de temps je n’ai pas pu poursuivre cette approche.

III. Discussion

\textbf{III.1. Importance de la phosphorylation de la sérine S501 dans la régulation de l’activité de la protéine NRT2.1}

La découverte et la caractérisation du site de phosphorylation Ser501 de NRT2.1 a révélé que mimer la phosphorylation constitutive de ce site chez les plantes S501D entraîne la perte de son activité (Annexe). De plus, le fait que l’absence de phosphorylation chez les plantes S501A permet de restaurer des niveaux d’influx de NO₃⁻ semblables à ceux observés chez des plantes sauvages, indique un rôle de la phosphorylation du site Ser501 dans l’inactivation de NRT2.1. La quantification de la forme Ser501 phosphorylée de NRT2.1 chez des plantes sauvages supporte cette conclusion. En effet, la phosphorylation Ser501 est moins abondante quand les plantes sont transférées de NO₃⁻ vers NH₄NO₃ (Figure 3) et cette diminution est corrélée avec la répression de l’activité du transport racinaire de NO₃⁻ dans les mêmes conditions. Chez \textit{A. thaliana}, l’inactivation d’un transporteur par phosphorylation de la partie C-terminale de la protéine a déjà été démontrée pour le transporteur de NH₄⁺, AMT1.1 (Ammonium Transporer 1 ; 1) (Loque \textit{et al.}, 2007). En effet, AMT1.1 dans les plantes, comme MEP2 dans la levure, fonctionne comme un trimère, dont l’activité est contrôlée par le positionnement spatial de l’extrémité C-terminale. Lorsque du NH₄⁺ est ajouté dans le milieu de culture, il déclenche la phosphorylation rapide d’un résidu de thréonine conservé (Thr460) dans l’extrémité C-terminale de AMT1.1 de manière dépendante du temps et de la concentration (Loque \textit{et al.}, 2007 ; Lanquar \textit{et al.}, 2009). Cette phosphorylation de Thr460 en
réponse à une augmentation de NH₄⁺ externe est corrélée à une réduction de l'activité d'absorption NH₄⁺ dans les racines. Ces résultats conduisent à un modèle dans lequel la phosphorylation de Thr460 induit un changement de conformation et qu'un seul événement de phosphorylation dans l'extrémité C-terminale d'un monomère est suffisant pour la levée d’activité du trimère (Lanquar et al., 2009 ; Lanquar & Frommer, 2010). Concernant NRT2.1, la nécessité d’interaction protéine-protéine pour permettre son activité est un mécanisme connu puisqu’il nécessite la protéine NAR2.1/NRT3.1 (Okamoto et al., 2006 ; Orsel et al., 2006). Cette interaction génère un hétéro-oligomère qui pourrait être la forme active du transporteur NRT2.1 (Yong et al., 2010). Cependant, pour l’instant le mécanisme d’action de NAR2.1/NRT3.1 reste inconnu et une hypothèse est que la phosphorylation du site Ser501 pourrait agir sur l’activité de NRT2.1 en perturbant l’interaction en NRT2.1 et NAR2.1/NRT3.1. Toutefois, les données obtenues (Annexe), grâce à l’utilisation de la technique du BN-PAGE et d’expériences de rBiFC, ont permis de rejeter cette hypothèse puisque l’inactivation de NRT2.1 chez les plantes S501D n’est pas associée à une perte d’interaction avec NAR2.1/NRT3.1. Cela révèle que la partie C-terminale de NRT2.1 n’est vraisemblablement pas impliquée dans la fixation de NAR2.1/NRT3.1 sur la protéine NRT2.1. Cette hypothèse que la partie C-terminale de NRT2.1 n’est pas impliquée est soutenue par plusieurs études. Tout d’abord Ser501 est conservé chez les 7 membres de la famille NRT2s d’A. thaliana alors que NRT2.7 n’interagit pas avec NAR2.1/NRT3.1 (Okamoto et al., 2003 ; Kotur et al., 2012). De plus, il a été montré que chez des mutants nar2.1, la protéine NRT2.1 est absente alors que les ARNm sont présents (Wirth et al., 2007 ; Yong et al., 2010). Cela amène à penser que si NAR2.1/NRT3.1 n’est pas présent pour permettre l’existence du complexe NRT2.1-NAR2.1/NRT3.1, la protéine NRT2.1 est dégradée. Ainsi, si l’interaction entre NRT2.1 et NAR2.1/NRT3.1 était affectée chez les plantes S501D, la protéine NRT2.1 aurait dû être absente dans ces plantes. Cependant, on peut faire l’hypothèse que la phosphorylation de Ser501 perturbe l’interaction avec d’autres protéines partenaires impliquées dans l’activité de NRT2.1. En effet, le complexe protéique associé à la protéine NRT2.1 fait 480 kDa et pourrait contenir plusieurs sous-unités de NRT2.1-NAR2.1/NRT3.1 (de l’ordre de 80 kDa) associées à d’autres protéines.

Enfin, la kinase impliquée dans la phosphorylation du site Ser501 reste à découvrir. Pour l’instant, la seule protéine kinase impliquée dans la phosphorylation de transporteurs racinaires de N est CIPK23. Chez A. thaliana, CIPK23 a été montrée comme essentielle dans la
phosphorylation du résidu Thr101 qui modifie l’affinité du transporteur NRT1.1/NPF6.3 pour le \(\text{NO}_3^- \) (Liu & Tsay, 2003 ; Ho et al., 2009). De plus, CIPK23 a également été impliquée dans la régulation des transporteurs de \(\text{NH}_4^+ \), AMT1.1 et AMT1.2 démontrant ainsi le rôle central de cette kinase dans la nutrition N (Straub et al., 2017). Cependant, l’étude du transporteur NRT1.1/NPF6.3 a montré que CIPK23 joue un rôle en réponse à une faible concentration en \(\text{NO}_3^- \) qui sont des conditions qui induisent NRT2.1 (Ho et al., 2009). Il est donc très peu probable que CIPK23 soit impliquée dans la phosphorylation de Ser501, puisque celle-ci inactive NRT2.1 sur fort N. Cependant, la famille de gènes CIPK se compose de 26 membres, et nous ne pouvons pas exclure la possibilité que d'autres membres de cette famille puissent être impliqués dans la phosphorylation de Ser501 (Weinl & Kudla, 2009). Des travaux supplémentaires utilisant des approches transcriptomiques et protéomiques restent donc à faire pour identifier et caractériser les régulateurs impliqués dans la phosphorylation de NRT2.1.

III.2. Rôle de la phosphorylation de S501 dans l’activité de senseur de NRT2.1

Au-delà du rôle de NRT2.1 dans l’absorption de \(\text{NO}_3^- \) par les racines, plusieurs études indiquent qu’indépendamment de son rôle dans le transport de \(\text{NO}_3^- \), NRT2.1 est impliqué dans le développement des RLs (Little et al., 2005 ; Remans et al., 2006). Ainsi, le mutant \textit{lin1}, qui a été isolé à partir d’un crible génétique pour trouver des éléments impliqués dans la répression de l’initiation des RLs à un niveau élevé de saccharose, s’est avéré porteur d’une mutation dans \textit{NRT2.1} (Little et al., 2005). Cela indique que NRT2.1 agirait comme un répresseur de l’initiation de la RL en réponse à un apport élevé en saccharose et faible en \(\text{NO}_3^- \) (Little et al., 2005). Par ailleurs, Remans et al., (2006), ont également trouvé un phénomène d'initiation des RLs chez un mutant KO \textit{nrt2.1}. Cependant, dans cette étude, les plantes KO \textit{nrt2.1} ont initié moins de primordia de RLs que les plantes sauvages dans des conditions limitées en \(\text{NO}_3^- \), suggérant un rôle d'activateur pour NRT2.1 dans l'initiation des RLs. Malgré ces divergences, le rôle de NRT2.1 dans l'initiation des RLs a été observé dans ces deux études, même en l'absence de \(\text{NO}_3^- \) ajouté dans le milieu externe. L’ensemble de ces résultats a conduit à faire l’hypothèse que NRT2.1 pourrait comme NRT1.1/NPF6.3 être un senseur de \(\text{NO}_3^- \) (Lorenz & Heitman, 1998 ; Ho et al., 2009 ; Krouk et al., 2010). Cependant, les
mécanismes impliqués restent totalement inconnus, et l’un des éléments de preuve les plus convaincants qu’un transporteur membranaire joue un rôle de senseur est de parvenir à découpler son activité de transport de NO₃⁻ de son rôle dans le développement des RLs. C’est le cas, par exemple, pour NRT1.1/NPF6.3 dont la mutation ponctuelle, P492L (mutant chl1.9) décrite dans le chapitre 1 (Cf. **partie III.1.**) agit sur le transport de NO₃⁻ sans affecter une des voies de signalisation liées à NRT1.1/NPF6.3, et qui entre autres permet l’induction de l’expression de **NRT2.1** par le NO₃⁻ (Ho *et al.*, 2009). Toutefois, pour NRT2.1, les résultats que nous avons obtenus montrent qu’à chaque fois que l’activité de transport de NRT2.1 est affectée, que ce soit chez les mutants **S501D** ou ΔC₄₉₄₅₃₀, le développement des RLs est également impacté (Figure 3). Cela indique donc que la phosphorylation de Ser501 ne dirige pas l’action de NRT2.1 vers l’activation de la fonction de transport ou de signalisation. De plus, cela suggère que le mécanisme de signalisation dépendant de NRT2.1 n’implique pas la présence ou l’absence de la protéine, puisque la même diminution du développement des RLs est observée à la fois dans le mutant KO nrt2.1 et dans les plantes **S501D** ou ΔC₄₉₄₅₃₀ (Figure 2).

Un autre mécanisme qui pourrait expliquer un rôle de senseur de la protéine NRT2.1 concerne le clivage de sa partie C-terminale et l’apparition dans la fraction soluble des protéines du peptide Ser501 phosphorylé correspondant à la partie C-terminale de NRT2.1 (Figure 5). Cette hypothèse est supportée par une étude qui a montré que EIN2 (*Ethylene Insensitive 2*), une protéine membranaire de type NRAMP, est clivée dans sa partie C-terminale en réponse à l’éthylène. Le peptide clivé est ensuite adressé au noyau et active l’expression de plusieurs gènes impliqués dans la réponse à l’éthylène (Quiao *et al.*, 2012). Ce modèle de régulation n’a, à notre connaissance, jamais été démontré dans un contexte de nutrition minérale. Malgré tout, vu l’ensemble des résultats obtenus, on peut faire l’hypothèse que le clivage de la queue C-terminale de NRT2.1, dans les minutes qui suivent le transfert des plantes d’un milieu sans N sur NO₃⁻, libère un peptide contenant la forme phosphorylée de Ser501, dont le rôle serait d’activer l’expression d’un certain nombre de gènes dans le noyau. Ce serait un mécanisme élégant de réponse à l’induction par le NO₃⁻ et les résultats obtenus en mesurant l’expression du transporteur **NRT1.1/NPF6.3** sont plutôt encourageants au regard de ce modèle. En effet, comme attendu, l’absence du peptide contenant le site de phosphorylation Ser501 chez les plantes ΔC₄₉₄₅₃₀ entraîne une baisse de l’induction de l’expression de **NRT1.1/NPF6.3** par le NO₃⁻ par rapport aux plantes sauvages.
Ceci est moins le cas avec les plantes ΔC_{494-530} dans lesquelles la queue C-terminale de NRT2.1 est tronquée après la zone contenant le site de phosphorylation Ser501 (Figure 6). Toutefois, il est encore nécessaire de tester d'autres gènes sentinelle de réponse à NO_3^- pour renforcer ces résultats (Médici & Krouk, 2014). Mais surtout, il est important de parvenir à discriminer le rôle de NRT2.1 dans le transport de NO_3^- d'une éventuelle fonction de senseur de NO_3^- En effet, comme dans les plantes KO nrt2.1 et ΔC_{494-530} le transport de NO_3^- est affecté par rapport aux plantes sauvages et ΔC_{514-530}. Il n'est donc pas possible avec cette expérience de savoir si c'est la diminution du transport de NO_3^- ou l'absence du peptide Ser501 qui affecte l'induction de l'expression de NRT1.1/NPF6.3 en réponse au NO_3^-.
Annexe

NRT2.1 C-terminus phosphorylation prevents root high affinity nitrate uptake activity in Arabidopsis thaliana

Aurore Jacquot¹, Valentin Chaput¹, Adeline Mauries¹, Zhi Li², Pascal Tillard¹, Cécile Fizames¹, Pauline Bonillo¹, Fanny Bellegarde¹, Edith Laugier¹, Véronique Santoni¹, Sonia Hem¹, Antoine Martin¹, Alain Gojon¹, Waltraud Schulze² and Laurence Lejay¹

Summary

- In Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.1 plays an important role in the control of root nitrate uptake and that one mechanism could correspond to NRT2.1 C-terminus processing.
- To further investigate this hypothesis, we produced transgenic plants with truncated forms of NRT2.1. This revealed an essential sequence for NRT2.1 activity, located between the residues 494 and 513.
- Using a phospho-proteomic approach, we found that this sequence contains one phospho-acceptor site, at serine 501, which can inactivate NRT2.1 function when mimicking the constitutive phosphorylation of this residue in transgenic plants. This phenotype could neither be explained by changes in abundance of NRT2.1 and NAR2.1, a partner protein of NRT2.1, nor by a lack of interaction between these two proteins.
- Finally, the relative level of serine 501 phosphorylation was found to be increased by ammonium nitrate in wild-type plants, leading to the inactivation of NRT2.1 and to a decrease in high affinity nitrate transport into roots. Altogether, these observations reveal a new and essential mechanism for the regulation of NRT2.1 activity.

Introduction

Nitrogen (N) is an essential macronutrient for plants as it is a basic element for amino acid and protein synthesis. In most aerobic soils, nitrate (NO₃⁻) is the main N source and is often limiting for plant growth and development (von Wirén et al., 2000). The uptake of NO₃⁻ by plants from the soil solution is ensured by specific transport systems located at the plasma membrane (PM) of root cells (Krapp et al., 2014; O’Brien et al., 2016; Wang et al., 2018). In the model plant Arabidopsis, genes encoding root membrane NO₃⁻ transporters have been mainly found in two separate families, NRT1 (NPF) and NRT2. In general, NRT1 proteins are low-affinity transport systems (LATS), whereas NRT2 proteins correspond to high-affinity transport systems (HATS) (Miller et al., 2007; Tsay et al., 2007). To date, NRT1.1, NRT1.2, NRT2.1, NRT2.2, NRT2.4 and NRT2.5 have been shown to play key roles in root uptake of NO₃⁻ (Tsay et al., 1993; Huang et al., 1999; Filleul et al., 2001; Kiha et al., 2012; Lezhneva et al., 2014). However, it is clear that HATS activity is predominantly dependent on NRT2.1 protein. Indeed, null-mutants for NRT2.1 have lost up to 75% of HATS activity (Cerezo et al., 2001; Filleul et al., 2001; Li et al., 2007).

Regulation of NRT2.1 has mostly been studied at the mRNA level. It has been shown that NRT2.1 is induced upon initial NO₃⁻ supply (Lejay et al., 1999; Girin et al., 2007), repressed by nitrogen (N) metabolites or high NO₃⁻ provision (Lejay et al., 1999; Gansel et al., 2001; Munos et al., 2004; Krouk et al., 2006; Girin et al., 2007), and upregulated by light and sugars (Lejay et al., 1999, 2003, 2008). However, several elements also suggest that protein–protein interactions and posttranslational regulation of NRT2.1 might play an important role in modulating the activity of this NO₃⁻ transporter. First, despite its firmly established role in root NO₃⁻ uptake, NRT2.1 protein alone does not seem to display NO₃⁻ transport activity. To be functional, the Arabidopsis NRT2.1 transport system requires, like in Chlamydomonas reinhardtii and barley, an additional component called NAR2.1 (also called NRT3.1), a protein with a single trans-membrane domain (Quesada et al., 1994; Tong et al., 2005; Okamoto et al., 2006; Orsel et al., 2006). The precise function of NAR2.1 remains unclear, but it has been proposed that the active form of the transporter is in fact an NRT2.1/NAR2.1 hetero-oligomer (Yong et al., 2010). Second, abundance of NRT2.1 protein in the plasma membrane shows much slower changes than those of NO₃⁻ HATS activity in response to light,

Key words: Arabidopsis thaliana, nitrate transporter, NRT2.1, phosphorylation, posttranslational regulation, root nitrate uptake.

Introduction

Nitrogen (N) is an essential macronutrient for plants as it is a basic element for amino acid and protein synthesis. In most aerobic soils, nitrate (NO₃⁻) is the main N source and is often limiting for plant growth and development (von Wirén et al., 2000). The uptake of NO₃⁻ by plants from the soil solution is ensured by specific transport systems located at the plasma membrane (PM) of root cells (Krapp et al., 2014; O’Brien et al., 2016; Wang et al., 2018). In the model plant Arabidopsis, genes encoding root membrane NO₃⁻ transporters have been mainly found in two separate families, NRT1 (NPF) and NRT2. In general, NRT1 proteins are low-affinity transport systems (LATS), whereas NRT2 proteins correspond to high-affinity transport systems (HATS) (Miller et al., 2007; Tsay et al., 2007). To date, NRT1.1, NRT1.2, NRT2.1, NRT2.2, NRT2.4 and NRT2.5 have been shown to play key roles in root uptake of NO₃⁻ (Tsay et al., 1993; Huang et al., 1999; Filleul et al., 2001; Kiha et al., 2012; Lezhneva et al., 2014). However, it is clear that HATS activity is predominantly dependent on NRT2.1 protein. Indeed, null-mutants for NRT2.1 have lost up to 75% of HATS activity (Cerezo et al., 2001; Filleul et al., 2001; Li et al., 2007).

Regulation of NRT2.1 has mostly been studied at the mRNA level. It has been shown that NRT2.1 is induced upon initial NO₃⁻ supply (Lejay et al., 1999; Girin et al., 2007), repressed by nitrogen (N) metabolites or high NO₃⁻ provision (Lejay et al., 1999; Gansel et al., 2001; Munos et al., 2004; Krouk et al., 2006; Girin et al., 2007), and upregulated by light and sugars (Lejay et al., 1999, 2003, 2008). However, several elements also suggest that protein–protein interactions and posttranslational regulation of NRT2.1 might play an important role in modulating the activity of this NO₃⁻ transporter. First, despite its firmly established role in root NO₃⁻ uptake, NRT2.1 protein alone does not seem to display NO₃⁻ transport activity. To be functional, the Arabidopsis NRT2.1 transport system requires, like in Chlamydomonas reinhardtii and barley, an additional component called NAR2.1 (also called NRT3.1), a protein with a single trans-membrane domain (Quesada et al., 1994; Tong et al., 2005; Okamoto et al., 2006; Orsel et al., 2006). The precise function of NAR2.1 remains unclear, but it has been proposed that the active form of the transporter is in fact an NRT2.1/NAR2.1 hetero-oligomer (Yong et al., 2010). Second, abundance of NRT2.1 protein in the plasma membrane shows much slower changes than those of NO₃⁻ HATS activity in response to light,
sugars and high N supply, suggesting activation/inactivation of NRT2.1/NAR2.1 transport system at the plasma membrane (Wirth et al., 2007; Laugier et al., 2012).

In spite of this evidence in support of a possible posttranslational regulation of NRT2.1, the underlying mechanisms are unclear, and several hypotheses can be put forward. First, the association/dissociation dynamics of the NRT2.1/NAR2.1 hetero-dimer could correspond to such a mechanism. However, it has never been reported that this dynamic is regulated and that it actually modulates the activity of the NRT2.1/NAR2.1 transport system. Second, NRT2.1 seems to be subjected to partial proteolysis, as has been shown using NRT2.1-GFP plants (Wirth et al., 2007). The possible role of this partial proteolysis is still unknown; however, the fact that the NRT2.1 truncated part of NRT2.1-GFP that remains in the PM was still recognized by the anti-NRT2.1 20 antibody, which targets an epitope located 18 amino acids upstream of the NRT2.1 C-terminus, suggests that the cleavage site is located in or after this epitope. This highlights the role of the putative processing of the NRT2.1 C-terminal part as a mechanism for controlling its activity. Third, three phosphorylation sites have been found for NRT2.1 in two phospho-proteomic approaches in response to N (Engelsberger & Schulze, 2012; Menz et al., 2016). Among them, NRT2.1 seems to be phosphorylated at S28 when plants are starved of N and rapidly dephosphorylated upon resupply of NO₃⁻ (Engelsberger & Schulze, 2012). This suggests that, as for many membrane transport proteins, posttranslational modifications through phosphorylation are involved in controlling NRT2.1 activity in response to environmental cues.

Another aspect that could involve the occurrence of post-translational modifications concerns the role of NRT2.1 in the control of root development in a way that is independent from its transport activity (Little et al., 2005; Remans et al., 2006). This gave rise to the hypothesis that NRT2.1, like NRT1.1, may be an NO₃⁻ sensor, or a signal transducer, but the mechanisms involved are still not known (Little et al., 2005). Since the sensing function of NRT1.1 depends on NRT1.1 phosphorylation at T101 (Ho et al., 2009; Bougyon et al., 2015), the hypothesis can be made that post-translational modifications of NRT2.1 could also be involved in its sensing function.

To further explore and characterise the role of NRT2.1 posttranslational modifications, we identified NRT2.1 phosphorylation sites and produced transgenic plants with a truncated NRT2.1 C-terminus or carrying point mutations to mimic or prevent NRT2.1 phosphorylation. This allowed us to reveal the importance of the phosphorylation site S501 for NRT2.1 root NO₃⁻ uptake activity and to propose a model for a new and essential mechanism for NRT2.1 post-translational regulation.

Materials and Methods

Generation of transformant lines

All constructs were made using Gateway Technology (Invitrogen) according to the manufacturer’s instructions. For the truncated forms of NRT2.1, the NRT2.1 DNA sequence was amplified using the primers NRT2.1 GATE F/NRT2.1ΔC₄₉₄₋₅₃₀ or NRT2.1ΔC₅₁₄₋₅₃₀. For site directed mutagenesis, the NRT2.1 DNA sequence was amplified using the primers NRT2.1 GATE F/GATE NRT2.1R. Each amplification was cloned into a pENTR™/D-Topo vector (Invitrogen), and NRT2.1 mutations were introduced by PCR, with primer pairs containing the desired mutation. All primers used for these experiments are listed in Table 1. After transformation of MacCell™ DH5α 10⁹ thermocompetent Escherichia coli (iNiRON Biotechnology, Gyeonggi-do, South Korea), clones were fully sequenced before subsequent cloning in the binary Gateway destination vector pGWBS01, obtained from Tsuyoshi Nakagawa (Shimane University, Matsue, Japan). After transformation of Agrobacterium tumefaciens strain GV3101, the resulting bacterial culture was used to transform the atrnt2.1-2 mutant by the standard flower dip method (Clough & Bent, 1998). Transformants were selected on a medium containing hygromycin (25 µg ml⁻¹). For further analyses, T1 segregation ratios were analyzed to select transformants with one T-DNA insertion and to isolate T3-homozygous plants.

Growth conditions

Plants were grown hydroponically using the experimental setup described in a previous study by Lejay et al. (1999). Nutrient solutions are those described by Gansel et al. (2001) and contain 1 mM NO₃⁻ or 10 mM NH₄NO₃ as nitrogen sources.

For root architecture analysis, plants were grown in vitro as described in Remans et al. (2006). After 6 d, seedlings were transferred to 0 mM NO₃⁻, 0.3 mM NO₃⁻ (LN) or 5 mM NO₃⁻ (HN) and harvested 7 d after transfer. Primary root length was measured with Fiji® software (https://imagej.net/Fiji). Quantification of primordia was performed using an Olympus BH2 microscope (Olympus, Tokyo, Japan).

RNA extraction and gene expression analysis

Root samples were frozen in liquid N₂ and total RNA was extracted as described by Laugier et al. (2012). Reverse transcription was achieved with 4 µg of RNAs as described by Wirth et al. (2007).

Gene expression was determined by quantitative real-time PCR (qRT-PCR; LightCycler 480, Roche Diagnostics, Rotkreuz, Switzerland) using SYBR Premix Ex Taq™ (TaKaRa, Kusatsu, Japan) according to the manufacturer’s instructions. Conditions of amplifications were performed as described by Wirth et al. (2007), except the first 10 min at 95°C was changed to 30 s. All

Table 1 Primers used for the generation of transformant lines.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence 5′–3′</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRT2.1 GATE F</td>
<td>CACCCACGTCAGCGAGATCTCCGGTTTGCCGAG</td>
</tr>
<tr>
<td>NRT2.1ΔC<sub>494-530</sub></td>
<td>TCACCTCTTCTCGTCATCTCCACTC</td>
</tr>
<tr>
<td>NRT2.1ΔC<sub>514-530</sub></td>
<td>TCAGCTCCACGCTTCTGATTCGGT</td>
</tr>
<tr>
<td>GATE NRT2.1R</td>
<td>TCAAAACAGTGGCAGTGCTT</td>
</tr>
<tr>
<td>NRT2.15501A Fw</td>
<td>GAAACTGCAATCAAGGGCTTCTCCGGAGTCGAG</td>
</tr>
<tr>
<td>NRT2.15501A Rev</td>
<td>CTCCGCGAACAGAACAGGACTTCTCAGTCGAG</td>
</tr>
<tr>
<td>NRT2.15501D Fw</td>
<td>GAAACTGCAATCAAGGGCTTCTCCGGAGTCGAG</td>
</tr>
<tr>
<td>NRT2.15501D Rev</td>
<td>CTCCGCGAACAGAACAGGACTTCTCAGTCGAG</td>
</tr>
</tbody>
</table>
results were standardized using the housekeeping gene Clathrin (At4g24550). All primers used are listed in Table 2.

Table 2 Primers used for PCR and quantitative real-time PCR.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTR forward</td>
<td>CGGCTCCTTCTCGAAGCTGAG</td>
</tr>
<tr>
<td>APTR reverse</td>
<td>CAGGTTAGCTCTTTGCGCTTC</td>
</tr>
<tr>
<td>NRT2.1 forward</td>
<td>AACAGGGTCTAAGCTGGAAGT</td>
</tr>
<tr>
<td>NRT2.1 reverse</td>
<td>CTGCCCTCCTGCTCTTCCCA</td>
</tr>
<tr>
<td>NAR2.1 forward</td>
<td>GGCCCGATGATGGCTCTATG</td>
</tr>
<tr>
<td>NAR2.1 reverse</td>
<td>TCTTGGGCTTCTCCTTCTTCAA</td>
</tr>
<tr>
<td>Clathrin forward</td>
<td>AGCATAACCTCCTGGCTAAAG</td>
</tr>
<tr>
<td>Clathrin reverse</td>
<td>TGGCCCTGTGTACCATATCTC</td>
</tr>
</tbody>
</table>

NO$_3^-$ influx studies

NO$_3^-$ influx was assayed as described by Delhon et al. (1995) using 0.2 mM 15NO$_3$ (99 atom% excess 15N). Roots were then dried at 70°C for 48 h, and samples were analyzed for total N and atom% 15N using a continuous flow isotope ratio mass spectrometer coupled with a C/N elemental analyzer (model Euroflash; Eurovector, Pavia, Italy) as described in a study by Clarkson (1986).

NRT2.1 immunodetection and membrane purification

Microsomes were prepared as described by Giannini et al. (1987), and plasma membrane vesicles were purified from microsomes by aqueous two-phase partitioning, as described by Santoni et al. (2003).

Western blots were performed as described by Wirth et al. (2007). NRT2.1 and NAR2.1 were detected using antisera (Eurogentec, Liège, Belgium) against the synthetic peptides described in Table 3.

For dot blot analysis, synthetic peptides used for the purification of the antibody anti-S501P and anti-S501 were spotted onto a PVDF membrane (0.45 µM, Hybond-P; Sigma, Amersham, Buckinghamshire, UK). The membrane was left to dry for 1.5 h at room temperature before being probed with anti-S501P or anti-S501 antibody.

The Blue Native–polyacrylamide gel electrophoresis (BN-PAGE) process was adapted from Peltier et al. (2001), Peltier et al. (2004) and Kotur & Glass (2015). A volume of microsome resuspension buffer containing 10% dodecyl β-D-maltoside (DDM) was added to the microsome suspension to leave 1.5% DDM in the final solution. After disruption of the samples with a potter and incubation at 4°C for 15 min, solubilized samples were combined with 1/10 volume of sample loading buffer (5% Serva Blue G in 50 mM BisTris/Tris/HCl (pH 7.2), 5 mM MgCl$_2$, 0.75 M 6-amino-N-caproic acid, 20% w/v glycerol, 10% v/v protease inhibitor cocktail). After a second incubation at 4°C for 15 min, samples were applied to 1.5 mm thick 16 x 24 cm native gradient gels (5–16% acrylamide) in a vertical electrophoresis unit operated at room temperature and then transferred onto a PVDF membrane (0.2 µM, Bio-Rad) for immunodetection.

Mass spectrometry for NRT2.1 phosphopeptide identification and quantification

Microsomes of wild-type (WT) Col-0 grown in hydroponics were used to determine NRT2.1 phosphorylation sites.

The filter-aided sample preparation protocol (Wisniewski et al., 2009) was used to perform in-solution reductions/alkylations. Proteins were then subsequently digested at 37°C with Lys-C (Roche Applied Science) for 4 h, then with trypsin (Sequencing Grade Modified; Promega, Madison, WI, USA) overnight. Peptides were eluted from a 75 x 50 cm analytical C$_{18}$ column (PepMap; Thermo Fisher Scientific, Walther, MA, USA) on a linear gradient running from 4% to 64% acetonitrile over 135 min.

Peptide mixtures were analyzed using a nanoflow EASY-nLC (Thermo Fisher Scientific) and an Orbitrap hybrid mass spectrometer (Q-exactive; Thermo Fisher Scientific). Proteins were identified based on the information-dependent acquisition of fragmentation spectra of multiple charged peptides. Up to 12 data-dependent tandem mass spectrometry (MS/MS) spectra were acquired in the linear ion trap for each full-scan spectrum acquired at 70 000 full-width half-maximum (FWHM) resolution.

Table 3 Synthetic peptides used for the production and purification of NRT2.1 and NAR2.1 anti-sera.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-NRT2.1 119</td>
<td>TLEKAGEVAKDKFC</td>
</tr>
<tr>
<td>anti-NRT2.1 20</td>
<td>CKWMHQGSLRFNAKEN</td>
</tr>
<tr>
<td>anti-S501P</td>
<td>KNNHQGIPSLRFNAKEN</td>
</tr>
<tr>
<td>anti-S501</td>
<td>KNNHQGSLRFNAKEN</td>
</tr>
<tr>
<td>anti-NAR2.1</td>
<td>DVTTPKSREGPGVV</td>
</tr>
</tbody>
</table>

dimension, gel lanes were placed onto a 12% acrylamide Tricine 16 x 24 cm gel of the same thickness in a vertical electrophoresis unit operated at room temperature and then transferred onto a PVDF membrane (0.2 µM, Bio-Rad).
rBiFC

Open reading frames of NRT2.1 and NAR2.1 were amplified with gene-specific primers that included Gateway attachment sites. Subsequent BP reactions in pDONR221-P3P2 and pDONR221-P1P4 (Invitrogen) yielded Entry clones that were verified via sequencing. Gateway Destination clones were generated using LR Clonase II (Invitrogen) by LR reaction, according to the manufacturer’s instructions. Point mutants were generated using a site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA, USA). All primers used are listed in Table 4.

Agrobacterium tumefaciens strain GV3101 was used to transiently transform leaves of 4-wk-old Nicotiana benthamiana as described previously (Schob et al., 1997; Sparkes et al., 2006; Blatt & Grefen, 2014). For rBiFC assays, confocal images were collected using a Zeiss (Oberkochen, Germany) LSM700 confocal microscope with ×20/0.75-NA objectives. Excitation intensities, filter settings, and photomultiplier gains were standardized, with YFP excitation at 514 nm and emission at 521–565 nm, and RFP excitation at 545 nm and emission at 560–615 nm. rBiFC fluorescence ratios were calculated as described previously by Grefen & Blatt (2012).

NRT2.1 C-terminus alignment

A list of putative orthologs of Arabidopsis NRT2.1 protein was retrieved by performing a homology search using BLASTP (Altschul et al., 1990) against the UniProtKB/Swiss-Prot and non-redundant protein sequences (nr) from the National Center for Biotechnology Information. The sequence of all NRT2.1 C-terminus sequence was then aligned using MUSCLE (Edgar, 2004), and alignments were viewed using SeaView v.4 (Galtier et al., 1996; Gouy et al., 2010).

Results

NRT2.1 C-terminal part is required for root NO3− uptake activity

Based on our previous study showing evidence for partial proteolysis of the NRT2.1 C-terminus (Wirth et al., 2007), we investigated a putative role for the NRT2.1 C-terminus in the activity of this transporter by generating transgenic plants expressing truncated forms of NRT2.1 in the nrt21-2 knockout mutant under the control of the NRT2.1 promoter. Two different forms of NRT2.1 were produced – truncated at the beginning (ΔC\textsubscript{494–530} plants) or at the end (ΔC\textsubscript{514–530} plants) of the epitope of the anti-NRT2.1 20 antibody (Fig. 1). For each construct, two independent transgenic lines (pΔC\textsubscript{494–530}, ΔC\textsubscript{494–530} and ΔC\textsubscript{514–530}, ΔC\textsubscript{514–530}) were selected based on the correct regulation of the transgenes in response to NO3− induction compared to WT plants (Fig. 2c). Strikingly, the ΔC\textsubscript{494–530} plants supplied with 1 mM NO3− displayed a dramatic growth deficiency phenotype, similar to the one observed in the nrt21-2 mutant (Fig. 2a). By contrast, the growth phenotype of the ΔC\textsubscript{514–530} plants was similar to the WT, suggesting efficient complementation of the nrt21-2 mutant by the pNRT2.1::NRT2.1 ΔC\textsubscript{514–530} transgene. This indicates that the C-terminal part, between residues 494 and 513, is strictly required for correct NRT2.1 function (Fig. 2a). To confirm this result, NO3− HATS activity was characterized in all lines in response to NO3− induction (Fig. 2b). In this experiment, plants were starved of N for 5 d and transferred for 4 and 7 h onto 1 mM NO3−. As expected, this treatment strongly stimulated both NO3− influx (between five- and six-fold after 4 and 7 h on 1 mM NO3−) and NRT2.1 expression in WT plants but not in the nrt21-2 mutant (Fig. 2b, c). Interestingly, and in agreement with the growth phenotypes, NO3− influx was induced by NO3− in ΔC\textsubscript{514–530} plants, almost as in WT, but not in ΔC\textsubscript{494–530} plants, where it remains at a concentration similar to that in WT and ΔC\textsubscript{514–530} plants (Fig. 2b, c). Moreover, in ΔC\textsubscript{494–530} plants both the repression of NO3− influx by provision of 10 mM NH\textsubscript{4+} and its induction by light or 1% sucrose were, as in the nrt21-2 mutant, almost abolished compared to WT and ΔC\textsubscript{514–530} plants (Supporting Information Fig. S1a,b). This confirms that the NRT2.1 C-terminal part corresponding to the 494–513 sequence is strictly required for correct NRT2.1 activity.

To further investigate the role of the NRT2.1 C-terminus in NRT2.1 and NAR2.1 protein levels were performed in response to NO3−. Indeed, it is possible that in addition to a specific effect on NRT2.1 activity, NRT2.1 truncation in ΔC\textsubscript{494–530} plants affects the activity and regulation of the NRT2.1/NAR2.1 complex through altered expression and/or stability in these plants. The results of qRT-PCR and Western blot analyses showed that neither NAR2.1 gene expression nor its protein level were affected in ΔC\textsubscript{494–530} plants compared to ΔC\textsubscript{514–530} and WT plants (Figs 2d, 3a,b). For NRT2.1, Western blots performed with anti-NRT2.1 20 antibody confirmed that the C-terminus part containing the epitope is absent in ΔC\textsubscript{494–530} plants but not in ΔC\textsubscript{514–530} plants (Fig. 3b). Moreover, the use of another antibody, anti-NRT2.1 19, targeting an epitope located in an internal loop (Fig. 1), revealed that NRT2.1 protein is present in all lines in the PM of ΔC\textsubscript{494–530} and WT plants, which could not explain the reduction of HATS activity observed in ΔC\textsubscript{494–530} plants (Fig. 3a). However, it is interesting to note that in ΔC\textsubscript{514–530} plants, the level of NRT2.1 seems to be

Table 4 Oligonucleotides used for rBiFC experiments.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’–3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>attB3-NAR2.1</td>
<td>ggggacaacttttataaaaaggtagtataATGGCGATCCA</td>
</tr>
<tr>
<td>attB2-NAR2.1</td>
<td>ggggacaactttagaacaagaagtcgtagTTTGGTTT</td>
</tr>
<tr>
<td>attB1-NRT2.1</td>
<td>ggggacaactttgataaaaaacggcttattATGGGTGAT</td>
</tr>
<tr>
<td>attB4-NRT2.1</td>
<td>ggggacaactttgatagaaaaagtcgtagACATTGTGT</td>
</tr>
<tr>
<td>SDM-S-NRT2.1</td>
<td>ggggacaactttgatagaaaaagtcgtagACATTGTGT</td>
</tr>
<tr>
<td>SDM-N-NRT2.1</td>
<td>ATCAAGAGCCCATCTCGGTTT</td>
</tr>
<tr>
<td>SDM-N-NRT2.1</td>
<td>AACCCGGAGCCGTCTCTTGAT</td>
</tr>
<tr>
<td>SDM-S-NRT2.1</td>
<td>ATCAAGAGCCCATCTCGGTTT</td>
</tr>
<tr>
<td>SDM-A-NRT2.1</td>
<td>AACCCGGAGCCGTCTCTTGAT</td>
</tr>
<tr>
<td>SDM-A-NRT2.1</td>
<td>AACCCGGAGCCGTCTCTTGAT</td>
</tr>
</tbody>
</table>
higher than in WT and ΔC494–530 plants (Fig. 3a,b). This suggests that the 514–530 C-terminal sequence is important for NRT2.1 stability in the PM and acts to downregulate NRT2.1 protein accumulation in the PM. However, this increase in NRT2.1 protein levels in ΔC494–530 plants did not lead to an increase in NO$_3^-$ influx compared to WT plants (Fig. 2b).

Finally, to make sure that the interaction between NAR2.1 and NRT2.1 is not affected in ΔC494–530 plants compared to ΔC514–530 or WT plants, BN-PAGE for NRT2.1 and NAR2.1 were performed using microsomes isolated from ΔC514–530 and ΔC494–530 plants induced by 1 mM NO$_3^-$ for 4 h. In WT plants grown on 1 mM NO$_3^-$ we found, as described previously (Yong et al., 2010), that NRT2.1 and NAR2.1 derived from the same protein complex (Fig. 3c). However, in our case, the protein complex was c. 400 kDa while the one described by Yong et al. (2010) was around 150 kDa. As expected in ΔC514–530 plants, where NRT2.1 is active, the same c. 400 kDa protein complex with NRT2.1 and NAR2.1 was found (Fig. 3d). More surprisingly, this complex was also present in ΔC494–530 plants, where the NRT2.1/NAR2.1 complex is not active, showing that the lack of activity is not due to a default in the interaction between NRT2.1 and NAR2.1 (Fig. 3e).

Role of NRT2.1 phosphorylation in root NO$_3^-$ uptake activity

The key role of the C-terminal 494–513 sequence for NRT2.1 activity indicated by these data prompted us to make a parallel with data obtained from another approach aiming to investigate the tentative role of phosphorylation in the post-translational regulation of NRT2.1. Indeed, a mass spectrometry phosphoproteomic approach was taken to identify residues phosphorylated in vivo. Microsomes were isolated from WT and NRT2.1-GFP plants (Wirth et al., 2007) grown on 1 mM NO$_3^-$ and harvested in the light. Phosphorylation sites were identified with high-accuracy mass spectrometric phosphopeptide detection (Fig. 4a). Using this strategy, four phosphopeptides were identified, with two serines phosphorylated in the NRT2.1 N-terminal part (S11 and S28) and one serine and one threonine phosphorylated in the NRT2.1 C-terminal part (S501 and T521) (Fig. 4a,b). Interestingly, one phosphorylation site, S501, is located in the C-terminal 494–513 sequence, and transgenic lines were generated by expressing point S501 mutants of NRT2.1 in nrt2.1-2 knockout mutants under the control of the NRT2.1 promoter. In the mutant versions, the S501 residue was replaced by either an alanine (A) to generate a constitutively nonphosphorylatable form, or with an aspartic acid (D) to mimic a constitutively phosphorylated form.

Like for ΔC514–530 and ΔC494–530 plants, two independent transgenic lines (S501A7, S501A9 and S501D1, S501D2) were selected for each construct, based on the correct regulation of the transgenes in response to NO$_3^-$ induction (Fig. 5c). Again, strikingly, the same growth deficiency phenotype as for ΔC494–530 plants was observed for S501D plants, while growth of S501A plants was similar to WT when plants were grown on 1 mM NO$_3^-$ (Fig. 5a). This suggests that mimicking the constitutive phosphorylation of the S501 residue could reduce the phenotype observed in ΔC494–530 plants. Accordingly, NO$_3^-$ HATS activity measurements confirmed that S501D substitution also prevents induction of NO$_3^-$ influx in response to NO$_3^-$, as observed in ΔC494–530 plants, while S501A substitution leads to the same degree of NO$_3^-$ influx as in WT plants (Fig. 5b). Since in all genotypes the level of NAR2.1 expression was the same as in WT, and NRT2.1 expression was normally induced by NO$_3^-$ in both S501A and S501D, the default HATS activity in S501D plants could not be explained by a default in the expression of NRT2.1 or NAR2.1 (Fig. 5c,d). Furthermore, as in ΔC494–530 plants, the lack of NO$_3^-$ influx due to S501D substitution was not specific to NO$_3^-$ regulation – it was also observed in response to high N, light and sugar (Fig. S1c,d). These results indicate that phosphorylation of S501 residue has a general impact on NRT2.1 activity.

Western blots and BN-PAGE were performed using, respectively, PM and microsomes isolated from plants starved of N for 5 d and induced by 1 mM NO$_3^-$ for 4 h. The results showed that both NAR2.1 and NRT2.1 proteins are present in all genotypes, even if the amount of NRT2.1 protein seems to be lower in S501D plants compared to S501A and WT plants (Fig. 6a,b).
Fig. 2 Characterization of Arabidopsis transgenic lines expressing truncated forms of NRT2.1 in the C-terminus of the protein. Wild-type (Col), nrt2.1-2 knockout mutant (nrt2.1) and transgenic lines expressing truncated forms of NRT2.1 without (Δ3C_{494–530} and Δ5C_{494–530}) or with epitope 20 (Δ3C_{514–530} and Δ6C_{514–530}). Plants were grown on 1 mM nitrate (NO₃⁻/C₀) for 5 wk and were starved of nitrogen for 5 d. Thereafter, the plants were re-supplied with 1 mM NO₃⁻ for 4 h or 7 h. (a) Phenotype of the plants grown on 1 mM NO₃⁻/C₀. (b) Root NO₃⁻ influx measured at the external concentration of 0.2 mM ¹⁵NO₃⁻/C₆. Values are means of 12 replicates ± SD. Means with different letters are significantly different, as determined by two-way ANOVA with Tukey’s post-test; P < 0.01. (c, d) Root NRT2.1 and NAR2.1 expression quantified by qPCR. Values are means of three replicates ± SD.
However, it cannot explain the total lack of NRT2.1 activity in S501D plants. Indeed, NO$_3^-$ still markedly increases the NRT2.1 protein level in those plants and should have led to an increase in NO$_3^-$ influx compared to nrt2-1 mutants. Furthermore, BN-PAGE indicates that S501D substitution has no impact on the NRT2.1/NAR2.1 protein complex (Fig. 6c,d). Normal interaction between NRT2.1 and NAR2.1 was also confirmed by rBiFC experiments performed on tobacco leaves (Figs 6c, S2). Quantification of the fluorescence signal shows that when leaves are transformed with WT forms of NAR2.1 and NRT2.1, YFP fluorescence is about 40% of the control RFP fluorescence, while in leaves transformed with both NAR2.1 and NRT2.1 S501A or S501D mutated forms, YFP fluorescence is slightly higher than for the WT form (Fig. 6e).

Fig. 3 NRT2.1 and NAR2.1 protein levels and protein complex in Arabidopsis transgenic lines expressing truncated forms of NRT2.1 in the C-terminus of the protein. (a, b) Immunoblot for NAR2.1 and NRT2.1 using plasma membranes extracted from roots of wild-type (Col) and transgenic lines expressing truncated forms of NRT2.1 with (∆3C$_{514-530}$) or without epitope 20 (∆5C$_{494-530}$). Plants were grown on 1 mM nitrate (NO$_3^-$) for 5 wk and were starved of nitrogen for 5 d. Thereafter, the plants were re-supplied with 1 mM NO$_3^-$ for 4 h. (a) Immunoblot for NRT2.1 using anti-NRT2.1(19) antibody. (b) Immunoblot for NRT2.1 using anti-NRT2.1 (20) antibody. Samples were separated using 12% SDS-Blue Native–polyacrylamide gel electrophoresis (SDS-BN-PAGE) (10 μg of protein/lane). (c–e) Blue-native PAGE (BN-PAGE) for NRT2.1 and NAR2.1 complex, using microsomes extracted from roots of wild-type (Col) grown on 1 mM NO$_3^-$ (c), ∆3C$_{514-530}$ (d), and ∆5C$_{494-530}$ (e) transgenic lines, after 4 h of NO$_3^-$ resupply. Membranes were probed with both anti-NRT2.1 20 and anti-NAR2.1 antibodies.
Fig. 4 Identification of NRT2.1 phosphorylation sites. (a) S11: tandem mass spectrometry (MS/MS) spectrum corresponding to a series of z ions resulting from ETD fragmentation of NRT2.1 peptide (ion score MASCOT 2.6: 67; site phosphorylation probability MASCOT 2.6: 96.42%). Data analysis led to the identification of the sequence GDSTGEPGSS*MHGVTGR, with phosphorylation of S11. S28 and S501: MS/MS spectrum corresponding to a series of c and z ions resulting from ETD fragmentation of NRT2.1 peptides: S28: ion score MASCOT 2.6: 80; site phosphorylation probability MASCOT 2.6: 99.66%; S501: ion score MASCOT 2.6: 54. Data analysis led to the identification of the sequence EQSFAFSVQS*PIVHTDK with phosphorylation of S28 and of the sequence NMHQGS*LRFAENAK with phosphorylation of S501. T521: MS/MS spectrum corresponding to a series of z ions resulting from CID fragmentation of NRT2.1-GFP peptide (ion score MASCOT 2.6: 50; site phosphorylation probability MASCOT 2.6: 92.69%). Data analysis led to identification of the sequence SAAT*PPENTPNNVK with phosphorylation of T521. (b) Membrane topology of NRT2.1 using PROTTER (Omasits et al., 2014), with the epitope corresponding to NRT2.1 antibody (20) and the localization of the phosphorylation sites identified by mass spectrometry.
Regulation of S501 phosphorylation in WT plants

The phenotype of S501D plants suggests that phosphorylation of the S501 residue may correspond to a major regulatory mechanism that is able to inactivate the NRT2.1/NAR2.1 transport system. This raised the question of whether this phosphorylation actually occurs in vivo, especially when HATS activity is repressed in response to environmental conditions. To monitor the degree of S501 phosphorylation in WT plants, specific polyclonal antibodies, called anti-S501P and anti-S501, were raised in rabbit against an NRT2.1 S501 phosphopeptide and its non-phosphorylated counterpart, respectively. Affinity-purified anti-NRT2.1 antibodies were tested with dot blots using the synthetic peptides produced to purify the antibodies. The test confirmed that the anti-S501P antibody could only recognize the S501 phosphorylated peptide, while the anti-S501 antibody recognized (b) 0 5 10 15 20 25 30

Fig. 5 Characterization of Arabidopsis transgenic lines expressing mutated forms of NRT2.1 on the phosphorylation site S501. Wild-type (Col), nrt2.1-2 knockout mutant (nrt2.1) and transgenic lines expressing mutated forms of NRT2.1, which either cannot be phosphorylated (S501A7 and S501A9) or mimic a constitutive phosphorylation of S501 (S501D1 and S501D2). Plants were grown on 1 mM nitrate (NO$_3^-$) for 5 wk and were starved of nitrogen for 5 d. Thereafter, the plants were resupplied with 1 mM NO$_3^-$ for 4 and 7 h. (a) Phenotype of the plants grown on 1 mM nitrate (NO$_3^-$) for 4 and 7 h. (b) Root NO$_3^-$ influx measured at the external concentration of 0.2 mM 15NO$_3^-$. Values are means of 12 replicates ± SD. Means with different letters are significantly different, as determined by two-way ANOVA with Tukey’s post-test; $P<0.01$. (c, d) Root NRT2.1 and NAR2.1 expression quantified by qPCR. Values are means of three replicates ± SD.
both S501 phosphorylated and non-phosphorylated peptides (Fig. S3). Furthermore, label-free quantification of S501 phosphatepeptide (NMHQG(pS)LR) was performed using liquid chromatography–mass spectrometry (LC-MS/MS).

To monitor the degree of S501 phosphorylation during NRT2.1 inactivation, WT plants were grown on 1 mM NO\textsubscript{3}– and transferred onto 10 mM NH\textsubscript{4}NO\textsubscript{3} for 1 or 4 h. In those conditions, NO\textsubscript{3}– influx was reduced more than two-fold after 4 h on 10 mM NH\textsubscript{4}NO\textsubscript{3} compared to plants on 1 mM NO\textsubscript{3}– (Figs 7c, S1b,d). In the meantime, label-free quantification of NRT2.1 S501 phosphorypeptide level revealed that the decrease of NO\textsubscript{3}– influx in response to NH\textsubscript{4}NO\textsubscript{3} in WT plants is associated with an increase in NRT2.1 S501 phosphorylation (Fig. 7b).

This result is supported by Western blot analysis using anti-S501P and anti-NRT2.1-20 antibodies, which showed that the level of NRT2.1 S501 phosphorylated protein is relatively low compared to that of NRT2.1 protein when plants are on NO\textsubscript{3}–, and increases when plants are transferred onto NH\textsubscript{4}NO\textsubscript{3} (Fig. 7a). Altogether, these results are consistent with the proposed role of S501 phosphorylation in NRT2.1 inactivation in response to repressive environmental conditions.

Impact of S501 mutation on root development

Previous studies have showed that, independent of its role in root NO\textsubscript{3}– uptake, NRT2.1 is involved in lateral root (LR) development (Little et al., 2005; Remans et al., 2006). This led to the hypothesis that, like NRT1.1, NRT2.1 could be an NO\textsubscript{3}– sensor (Krouk et al., 2010). However, the mechanisms involved remain completely unknown, and a key piece of evidence in support of a role for NRT2.1 in NO\textsubscript{3}– sensing would be to uncouple its activity as a root NO\textsubscript{3}– transporter from its role in LR development.

The fact that S501D substitution was able to inactivate NRT2.1 as an NO\textsubscript{3}– transporter prompted us to investigate its impact on lateral root development. The total number of initiated LR primordia and visible LRs were scored in the newly formed portion of primary root in WT, *atrr2.1-2*, S501A and S501D plants after transfer from 1 mM NO\textsubscript{3}– onto 0N, 0.3 mM NO\textsubscript{3}– or 5 mM NO\textsubscript{3}– (Fig. 8).

As described in Remans et al. (2006), knockout mutation of NRT2.1 resulted in a reduced LR initiation in the portion of primary root developing after transfer to an N-free medium or 0.3 mM NO\textsubscript{3}– medium, compared to WT plants (Fig. 8). This difference between the two genotypes was not observed after transfer to 5 mM NO\textsubscript{3}– medium, confirming that mutation of NRT2.1 has no significant effect on LR growth under nonlimiting N supply (Orsel et al., 2004; Little et al., 2005; Remans et al., 2006). S501D plants had a similar phenotype to *atrr2.1-2* knockout plants, with the same decrease in density of initiated LR primordia after transfer to 0.3 mM NO\textsubscript{3}– and no significant difference on 5 mM NO\textsubscript{3}– compared to WT plants (Fig. 8). Conversely, the density of initiated LR primordia in S501A plants was similar to WT in all conditions. These data clearly indicate that S501D substitution is able to inactivate both NRT2.1 root NO\textsubscript{3}– uptake activity and its role in LR development.

Discussion

S501 phosphorylation site is key for NRT2.1 activity

One of the hypotheses from our previous studies was that the NRT2.1 C-terminus was cleaved and that this mechanism could play a role in the regulation of NRT2.1 activity (Wirth et al., 2007; Laugier et al., 2012). The results obtained with truncated forms of NRT2.1 show that ΔC\textsubscript{494–530} plants have the same phenotype as nrt2.1-2 knockout mutants for growth and NO\textsubscript{3}– influx, while ΔC\textsubscript{514–530} plants resemble WT plants (Fig. 2). This thus seem to support the hypothesis that partial proteolysis of the NRT2.1 C-terminus plays a role in NRT2.1 activity. However, the characterization of NRT2.1 phosphorylation sites provides a different explanation for the phenotype observed in ΔC\textsubscript{494–530} plants. Indeed, the phenotype of the transgenic plants we produced with NRT2.1 S501 point mutants strikingly revealed that mimicking the constitutive phosphorylation in S501D plants is able to resume the phenotype observed in ΔC\textsubscript{494–530} plants (Fig. 5). This indicates that the impact of NRT2.1 ΔC\textsubscript{494–530} deletion on root NO\textsubscript{3}– uptake activity is likely due to the fact that the S501 phosphorylation site is removed in those plants, while it remains intact in ΔC\textsubscript{514–530} plants. Furthermore, the fact that S501A has the same growth phenotype as the WT plants indicates that S501 phosphorylation is likely involved in NRT2.1 inactivation, while S501 rephosphorylation enables NRT2.1 activation. The quantification of the NRT2.1 S501 phosphorylated form in the WT plants supports this conclusion. Indeed, S501 phosphorylation is more abundant when plants are transferred from NO\textsubscript{3}– to NH\textsubscript{4}NO\textsubscript{3} (Fig. 7a,b) and correlates with a repression of root NO\textsubscript{3}– uptake activity under the same conditions (Figs 7c, S1b,d). Finally, the loss of NRT2.1 activity in S501D and ΔC\textsubscript{494–530} plants in response to NO\textsubscript{3}– induction, as well as in response to induction by light and sugar and repression by 10 mM NH\textsubscript{4}NO\textsubscript{3} (Fig. S1) suggests that for NRT2.1 activity, S501 phosphorylation cannot be overcome by any other post-translational modifications that are potentially triggered by other environmental factors.

This major role of the S501 phosphorylation site for NRT2.1 activity is supported by the fact that this residue is very strongly conserved in all Arabidopsis ecotypes (data not shown) and in all plant species where a clear NRT2.1 homolog has been identified (Fig. 9). The alignment of the NRT2.1 C-terminus reveals that except in yeast and fungus, the serine corresponding to S501 in Arabidopsis is remarkably conserved across most algae, mosses, dicotyledons and monocotyledons. The fact that S501 does not align with NRT2.1 homologs from fungus and yeast is in agreement with previous models for the membrane topology of these polypeptides, showing that NRT2.1 C-terminal extension is a general feature of NRT2 transporters from algae and higher plants that is absent in yeast and fungus (Forde, 2000; Jacquot et al., 2017). However, more surprisingly, the serine corresponding to S501 in Arabidopsis is also noticeably replaced by a glycine in the three monocotyledons wheat (*Triticum aestivum*), barley (*Hordeum vulgare*) and Brachypodium distachyon, while it is conserved in rice (*Oryza sativa*). Though there may not currently be...
an explanation for this discrepancy, it is interesting to note that such specificity for barley has already been observed for another residue, Ser463. Indeed, this residue, located in the HvNRT2.1 C-terminus, has been shown to be required for HvNRT2.1/HvNAR2.1 interaction (Ishikawa et al., 2009). However, Ser463 is only conserved in NRT2.1 transporters from algae and monocotyledons, and not in dicotyledons (Jacquot et al., 2017). These discrepancies between essential amino acids for either NRT2.1 activity and/or interaction with partner proteins among different plant species, could reveal the existence of several molecular mechanisms for the regulation of NRT2.1 at the post-translational level.

Role of S501 phosphorylation in NRT2.1 NO$_3^-$ sensing activity

Beyond the role of NRT2.1 in root NO$_3^-$ uptake, there are some indications that it could also act as a NO$_3^-$ sensor to coordinate...
the development of the root system according to NO$_3^-$ availability. The first indication that this may be the case came from a genetic screen, which isolated the lin1 mutant that is resistant to the repressive effect of a high sucrose/NO$_3^-$ ratio on LR initiation (Malamy & Ryan, 2001). The lin1 mutant was found to carry a missense mutation in NRT2.1, which indicates that NRT2.1 acts as a repressor of LR initiation under high sucrose/low NO$_3^-$ supply (Little et al., 2005). The second indication comes from Remans et al. (2006), who also found an LR initiation phenotype for an nrt2.1 mutant. However, in this study, nrt2.1 plants initiated less LR primordia than WT under NO$_3^-$ limited conditions, suggesting an activator role for NRT2.1 in LR initiation. Despite these discrepancies, the LR initiation phenotype of nrt2.1 mutants was observed in both studies, even in the absence of added NO$_3^-$ in the external medium. Altogether, these data show that NRT2.1 seems to fulfill a dual transport/signaling role similar to the NO$_3^-$ transporter NRT1.1 in Arabidopsis (Lorenz & Heiman, 1998; Ho et al., 2009; Krouk et al., 2010).

One of the most convincing pieces of evidence that a membrane transporter may also act as a sensor is the genetic uncoupling of transport function and signaling effects. For NRT1.1, a point mutation, P492L, uncouples transport and sensing and in the corresponding mutant plant (cbl1-9), transport is impaired, while the sensing function, namely the induction of NRT2.1 expression, is still functional (Ho et al., 2009). For NRT2.1, our data show that S501D substitution does not allow the uncoupling of the transport function from the signaling effect (Fig. 8). This indicates that S501 phosphorylation does not direct the action of NRT2.1 towards the activation of either transport or signaling function. Furthermore, it suggests that the NRT2.1 signaling mechanism does not depend on the presence or absence of the protein, since the same decrease in LR initiation is observed in both the nrt2.1 mutant and S501D plants (Fig. 8).

Impact of S501 phosphorylation on the mechanisms involved in the regulation of NRT2.1 activity

Phosphorylation can induce changes in protein activity (Liu & Tsay, 2003), provide docking sites for protein–protein interaction (Pawson & Scott, 1997) and induce changes in subcellular localization (Navarro et al., 2008). In Arabidopsis, inactivation of a transporter through phosphorylation of the C-terminus part of the protein has already been demonstrated for the ammonium transporter AMT1.1 (Loque et al., 2007). Indeed, AMT1.1 works as a trimer, the activity of which is controlled by the spatial

Fig. 7 Regulation of NRT2.1 S501 phosphorylation in response to NH$_4$NO$_3$ in Arabidopsis wild-type plants. Wild-type plants were grown on 1 mM nitrate (NO$_3^-$) for 5 wk and were transferred onto a solution containing 10 mM NH$_4$NO$_3$ for 1 or 4 h. (a) Immunoblot for NRT2.1 S501 phosphorylation site (anti-S501-P) and NRT2.1 (anti-NRT2.1-20) using microsomes extracted from roots. Samples were separated using 12% SDS-Blue Native–polyacrylamide gel electrophoresis (SDS-BN-PAGE) gel (20 µg of protein/lane). (b) Label-free quantification of NRT2.1 S501 phosphopeptide using liquid chromatography–mass spectrometry (LC-MS/MS) analysis on microsomes extracted from roots. Values are means of three replicates ± SD. *, P < 0.05; **, P < 0.01; ***, P < 0.001, calculated by unpaired Student’s t-test. (c) Root NO$_3^-$ influx measured at the external concentration of 0.2 mM 15NO$_3^-$ after 1 or 4 h of treatment with 1 or 10 mM NH$_4$NO$_3$. Values are means of 12 replicates ± SD. *, P < 0.05; **, P < 0.01; ***, P < 0.001, calculated by unpaired Student’s t-test.
positioning of its C-terminus. When ammonium is added to the growth medium, it triggers rapid phosphorylation of a conserved threonine residue (T460) in the AMT1.1 C-terminus in a time- and concentration-dependent manner (Loque et al., 2007; Lanquar et al., 2009). This phosphorylation of T460 in response to an increase in external ammonium correlates with a reduction of ammonium uptake activity in roots. These results lead to a model in which T460 phosphorylation induces a conformational change, and in which a single phosphorylation event in the C-terminus of one monomer is sufficient for cooperative closure of the trimer (Lanquar et al., 2009; Lanquar & Frommer, 2010).

For NRT2.1, protein–protein interaction is a known mechanism since it requires a second protein, NAR2.1 (Okamoto et al., 2006; Orsel et al., 2006), to generate a heterooligomer that may be the active form of the transporter (Yong et al., 2010). However, to date, the mechanisms remain unknown, and S501 phosphorylation could prevent NRT2.1 transport activity by disrupting NRT2.1 and NAR2.1 interaction. Data obtained through BN-PAGE and BiFC experiments show that the inactivation of NRT2.1 observed in ΔC494–530 and S501D plants is associated with either modifications of the size of the protein complex at c. 480 kDa nor with modifications of the interaction with NAR2.1 inside this complex (Figs 3c–e, 6c–e). This confirms that neither the NRT2.1 C-terminus region, from at least the amino acids 493 to 530, nor the S501 phosphorylation state can provide a docking site for NAR2.1 interaction. The conclusion that the NRT2.1 C-terminus is not involved in the interaction with NAR2.1 is supported by a number of recent findings. First, in recent yeast two-hybrid (Y2H) experiments performed by Kotur et al. (2017), the authors identified a leucine residue located in the first putative trans-membrane region at position 85 of NRT2.1, which when mutated to glutamine resulted in disruption of the interaction between NAR2.1 and NRT2.1. Second, S501 is conserved among all seven NRT2s in Arabidopsis, even in NRT2.7, which does not interact with NAR2.1 (Okamoto et al., 2003; Kotur et al., 2012). Finally, it has been shown previously that in nrt2.1 mutants, NRT2.1 protein is absent, although mRNA encoding NRT2.1 is present (Wirth et al., 2007; Yong et al., 2010). This leads to the hypothesis that, unless NAR2.1 is available to generate the NAR2.1/NRT2.1 complex, NRT2.1 protein is degraded. Thus, if NRT2.1/ NAR2.1 interaction was affected in ΔC494–530 and S501D plants, we should have observed an absence of NRT2.1 protein in those plants.

If the disruption of protein–protein interaction between NRT2.1 and NAR2.1 cannot explain the phenotype of ΔC494–530 and S501D plants, it cannot be ruled out that removal of the NRT2.1 C-terminus containing S501 or S501D substitution is able to prevent interaction with other unknown partner proteins involved in NRT2.1 activity. Indeed, the protein complex we detected is very large (c. 480 kDa) and could contain several subunits of NRT2.1 and NAR2.1 associated with other proteins. In Yong et al. (2010), however, the authors found a protein complex of only c. 150 kDa, which they explained by the interaction of two subunits each of NRT2.1 and NAR2.1. Reasons for this discrepancy in the size of the protein complex between our results and theirs are not clear. Perhaps the buffers and/or conditions used for isolation of microsomes/plasma membranes and/or BN-PAGE differ slightly between our two laboratories, leading to the partial denaturation of a bigger NRT2.1/NAR2.1 protein complex under the conditions of Yong et al. (2010). More denaturing conditions could also explain why Yong et al. (2010) do not...
detect any anti-NRT2.1 reactive polypeptides at c. 75 and 120 kDa in regular Western blots, as found by Wirth et al. (2007). This would support the hypothesis of a core complex constituted of two or more subunits each of NRT2.1 and NAR2.1 associated with one or several proteins, which could be more sensitive to partial denaturation depending on the strength of their interactions with NRT2.1 and/or NAR2.1.

The fact that NRT2.1 is still detected in plasma membranes of ∆C494–530 or S501D plants also rules out the hypothesis that the complete lack of NRT2.1 activity in those plants is only due to changes in its subcellular location and/or degradation compared to WT plants (Figs 3c–e, 6c–e). This is in agreement with previous studies showing that in repressive conditions, NRT2.1 protein stability in plasma membranes of WT plants remains high (Wirth et al., 2007). However, it is interesting to note that, when removing the S501 phosphorylation site in ∆C494–530 plants or when mimicking the constitutive phosphorylation in S501D plants, NRT2.1 stability in plasma membranes seems to decrease (Figs 3a,b, 6a,b). In plants, the role of phosphorylation in plasma membrane trafficking has been shown for the Arabidopsis aquaporin PIP2;1. It was found to be phosphorylated at different positions in its C-terminal tail, and reduced phosphorylation on serine 283 seems to mediate the salt stress-induced accumulation of PIP2;1 in specific internal stores (Boursiac et al., 2008; Prak et al., 2008). The asymmetric distribution of PIN carriers, which mediate the efflux of the plant hormone auxin, also involves plasma membrane trafficking regulated by phosphorylation (Kleine-Vehn & Friml, 2008). Altogether, these studies reveal that in plants, as in animals, phosphorylation of plasma membrane proteins is a signal for the binding of regulatory proteins to sorting signals, either indirectly, by enhancing the exposure of these signals through conformational changes, or directly, by enhancing the binding of regulatory proteins to the phosphorylated sorting signal itself (Offringa & Huang, 2013). S501 phosphorylation could thus impact its interaction with regulatory proteins, leading to the inactivation of the NRT2.1 protein complex and to a decrease in its stability in root plasma membranes. In that case, S501 phosphorylation would not work as a switch to inactivate and reactivate NRT2.1, but as a mechanism to quickly inactivate NRT2.1 in response to repressive environmental conditions. Reactivation of NRT2.1 would then require newly synthetized form of unphosphorylated NRT2.1. This model is supported by the fact that induction of NRT2.1 activity after transfer of the plants from no N to NO3− requires a rather long time period (between 4 and 7 h) and is associated with an increase in NRT2.1 protein levels (Figs 3, 4), and that
repression of NRT2.1 activity by NH\textsubscript{4}+ is already strong after 4 h of treatment and is not associated with a large decrease in NRT2.1 protein levels (Fig. 7) (Wirth et al., 2007).

To date the only protein kinase that has been characterized for the phosphorylation of root N transporters in plants is CIPK23. In Arabidopsis, it has been involved in the functional switch of the NO3- transporter NRT1.1 between high-affinity and low affinity transport modes (Liu & Tsay, 2003) and in the repression of the ammonium transporter AMT1.1 (Straub et al., 2017). However, CIPK23 is involved in the response to low NO3- concentrations, which are inductive conditions for NRT2.1 (Ho et al., 2009). It is thus very unlikely that CIPK23 is involved in the phosphorylation of NRT2.1 S501, which inactivates NRT2.1. However, the CIPK gene family consists of 26 members, and we cannot rule out the possibility that other members of this family could be involved in the phosphorylation of S501 (Weinl & Kudla, 2009). Further work using transcriptomic and proteomic approaches should now allow us to identify NRT2.1 interaction partners and to characterize the regulators involved in NRT2.1 phosphorylation.

Acknowledgements
The work was supported by an international grant from the ANR in France and DFG in Germany (SIPHON ANR-13-ISV6-0002-01), by a national grant from the ANR (TransN ANR-BLAN-NT09_477214) and by post-doctoral funding from the CNRS (EL).

Author contributions
AJ performed most of the experiments, including the generation and the characterization of the transgenic plants, Western blots and BN-PAGE. VC and LL obtained and performed experiments with the antibody anti-S501P for the quantification of S501 phosphorylation, and participated to BN-PAGE experiments, VC, FB and A Martin performed root architecture experiments. A Mauries performed mass spectrometry experiments to find NRT2.1 phosphorylation sites, along with VS and SH. A Mauries and EL performed mass spectrometry experiments to find NRT2.1 phosphorylation sites, along with VS and SH. A Mauries and EL performed mass spectrometry experiments to find NRT2.1 phosphorylation sites, along with VS and SH.

ORCID
Fanny Bellegarde https://orcid.org/0000-0001-7221-5033
Cécile Fizames https://orcid.org/0000-0002-0551-8250
Alain Gojon https://orcid.org/0000-0001-5412-8606
Sonia Hem https://orcid.org/0000-0003-1903-0464
Laurence Lejay https://orcid.org/0000-0003-0785-3893
Antoine Martin https://orcid.org/0000-0002-6956-2904
Véronique Santoni https://orcid.org/0000-0002-1437-0921
Waltraud Schulze https://orcid.org/0000-0001-9957-7245

References

New Phytologist (2020) 228: 1038–1054
www.newphytologist.com © 2020 The Authors
New Phytologist © 2020 New Phytologist Trust

Supporting Information
Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Fig. S1 NO3− influx in response to sucrose, light and NH4NO3 in Arabidopsis transgenic lines ΔC494–530, ΔC514–530, S501A and S501D.

Fig. S2 rBiFC analysis for NRT2.1 and NAR2.1 interaction.

Fig. S3 Dot blot analysis for the specificity of the antibody anti-S501P.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.

See also the Commentary on this article by Rahikainen & Kangasjärvi (2020), 228: 802–804.
CHAPITRE 7

Conclusions générales
Conclusions générales

Un des objectifs majeurs de mon travail de thèse était d’étudier les voies de signalisation impliquées dans la régulation des transporteurs de NO₃⁻, NRT2s, par la lumière et les sucres. Ce travail reposait sur deux axes de recherche développés dans l’équipe : (i) l’étude croisé des régulations N et C qui avait permis, entre autres, d’identifier le facteur de transcription bHLH093 comme potentiellement impliqué dans la régulation des NRT2s par la lumière et les sucres et, (ii) la recherche de la voie de signalisation qui avait permis d’identifier la voie OPPP comme origine du signal sucre pour la régulation des transporteurs de NO₃⁻, NRT2.1, NRT2.4 et NRT1.1/NPF6.3.

Les données acquises ont permis d’approfondir ces deux axes et d’apporter de nouvelles hypothèses concernant les mécanismes de régulation mis en jeu. En particulier, j’ai pu identifier la première étape de l’OPPP, liée au fonctionnement de la G6PD, comme étant sans doute à l’origine de la signalisation C pour la régulation de NRT2.1 et NRT2.4. Ce résultat, nous a amené à faire l’hypothèse et à tester le rôle du stress oxydatif et de la signalisation redox dans ce mécanisme de régulation. En effet, l’OPPP et le fonctionnement de la G6PD en particulier produit dans les racines du pouvoir réducteur sous forme de NADPH. Celui-ci est utilisé pour assimiler le NO₃⁻ mais aussi dans un grand nombre de réactions d’oxydoréductions qui permettent la détoxification des ROS cellulaires. Les résultats obtenus ont permis de valider l’implication de la signalisation redox dans la régulation de NRT2.1 et NRT2.4, et d’identifier le NADPH comme une molécule signal potentielle. C’est un résultat qui fait écho à un nombre croissant d’études qui commencent à placer la signalisation redox et le NADPH, en particulier au cœur des voies de signalisation impliquées dans la régulation de la croissance et du développement des plantes. Dans ce contexte, la caractérisation moléculaire et métabolique des mutants conditionnels pour la G6PD produits au cours de ma thèse seront des outils importants pour approfondir notre connaissance des mécanismes mis en jeu. De manière inattendue, il ressort également de cette étude que la régulation de NRT1.1/NPF6.3, bien que dépendante de l’OPPP ne semble, ni impliquer la G6PD, ni la signalisation redox. Cette observation révèle que la signalétique du contrôle de l’expression des transporteurs racinaires de NO₃⁻ est sans doute plus complexe que nous l’imaginions. Cette conclusion est renforcée par les résultats obtenus en étudiant le rôle de bHLH093. En effet, bien que la mutation de ce facteur de transcription altère la régulation des NRT2s, la voie de signalisation
qui implique bHLH093 semble indépendante de l’OPPP et liée au fonctionnement du facteur de transcription HY5 qui est un régulateur connu des voies de signalisation lumière (Chen et al., 2016).

Un autre axe important de ma thèse a concerné l’étude de la régulation des transporteurs NRT2.4 et NRT2.5 par la carence en N. En effet, l’étude de la régulation de NRT2.1 avait démontré que deux mécanismes liés à la fois au statut N de la plante et à la présence de NO$_3^-$ dans le milieu extérieur étaient impliqués dans la répression de ce transporteur sur fort N et donc à sa dé-répression en carence en N. Pour NRT2.4 et NRT2.5, ce niveau de finesse n’était pas connu puisque la majorité des études avaient montré qu’ils étaient réprimés sur fort N et étaient induits en carence en N, sans déterminer si le NO$_3^-$ lui-même et/ou les produits issus de son assimilation étaient à l’origine de cette régulation (Kiba et al., 2012 ; Lehnneva et al., 2014). Les résultats obtenus ont permis de démontrer que pour NRT2.4 et NRT2.5 c’est principalement la répression par le NO$_3^-$ qui explique que leurs expressions augmentent lorsque les plantes sont placées sur un milieu sans N. Cette voie de signalisation implique, comme ce qui était connu pour NRT2.1, NRT1.1/NPF6.3, un autre transporteur de NO$_3^-$. Cette étude a également permis d’impliquer dans cette voie de signalisation des régulateurs qui jusqu’à présent avaient été identifiés comme réprimant l’expression des NRT2s en condition de fort N. Nous avons ainsi pu montrer que HHO1/NIGT1.3, HRS1/NIGT1.4, LBD37 et LBD39 étaient spécifiquement induits par le NO$_3^-$ en lien avec la voie de signalisation NRT1.1/NPF6.3. L’analyse d’un double-mutant pour hho1/hr1 a permis de confirmer le rôle de ces deux facteurs de transcription dans la répression des NRT2s en réponse à NO$_3^-$. Nous attendons maintenant les résultats avec le double mutant lbd37/lbd39 afin de publier l’ensemble de ces résultats.

Enfin, mon travail sur la régulation post-traductionnelle de la protéine NRT2.1, bien que plus limité, a participé à valider l’existence d’un nouveau mécanisme de régulation qui implique la phosphorylation de la sérine 501 située dans la partie C-terminale de NRT2.1. Cette phosphorylation est capable d’inactiver complètement NRT2.1 lorsque les conditions environnementales deviennent répressives pour le transport de NO$_3^-$. Les résultats préliminaires que j’ai obtenus indiquent également qu’un clivage de la partie C-terminale de NRT2.1 libérant le phospho-peptide S501 pourrait être à l’origine d’un mécanisme original de signalisation en réponse à NO$_3^-$.

108
Bibliographie

Bibliographie

Drew M, Saker L (1975) Nutrient supply and the growth of the seminal root system in barley: II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. Journal of experimental Botany 26: 79-90

Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. The Plant Journal 69: 978-995

Hothersall JS, Gordge M, Noronha-Dutra AA (1998) Inhibition of NADPH supply by 6-aminonicotinamide: effect on glutathione, nitric oxide and superoxide in J774 cells. FEBS letters 434: 97-100

Bibliographie
Hsu P-K, Tsay Y-F (2013) Two phloem nitrate transporters, NRT1. 11 and NRT1. 12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiology 163: 844-856

Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant Journal 57: 264-278

Jonassen EM, Sévin DC, Lillo C (2009) The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1. 1. Journal of plant physiology 166: 2071-2076

115

Kotur Z, Glass AD (2015) A 150 kDa plasma membrane complex of AtNRT 2.5 and AtNAR 2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana. Plant, cell & environment 38: 1490-1502

Bibliographie

Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2; 1 and AtTIP2; 3 facilitate NH3 transport into the vacuole. Plant physiology 137: 671-680

Menz J, Li Z, Schulze WX, Ludewig U (2016) Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. The Plant Journal 88: 717-734

Metcalfe R, Nault J, Hawkins B (2011) Adaptations to nitrogen form: comparing inorganic nitrogen and amino acid availability and uptake by four temperate forest plants. Canadian journal of forest research 41: 1626-1637

Morgan M, Volk RJ, Jackson W (1973) Simultaneous influx and efflux of nitrate during uptake by perennial ryegrass. Plant Physiology 51: 267-272

Bibliographie

Bibliographie

121

Bibliographie

123
Bibliographie

Wolt JD (1994) Soil solution chemistry: applications to environmental science and agriculture. John Wiley and Sons

Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant, Cell & Environment 34: 1360-1372

124

Zhuo D, Okamoto M, Vidmar JJ, Glass AD (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2; 1At) in roots of Arabidopsis thaliana. The Plant Journal 17: 563-568
Résumé

Le Nitrate (NO$_3^-$) est un ion minéral indispensable pour la croissance des plantes et constitue la principale source d’azote (N). Chez *A. thaliana*, le système de transport à forte affinité (HATS) pour l’absorption de NO$_3^-$ par les racines dépend principalement de trois transporteurs : NRT2.1, NRT2.4 et NRT2.5. Parmi eux, NRT2.1 constitue l’acteur majoritaire du HATS. NRT2.1 est la cible au niveau transcriptionnel de l’ensemble des régulations qui affectent le transport de NO$_3^-$: i) une induction par le NO$_3^-$, ii) une répression exercée par les produits issus de l’assimilation de NO$_3^-$ et iii) une induction par la lumière et les sucres. En plus de ces régulations transcriptionnelles, des approches récentes indiquent que NRT2.1 est également soumis à des régulations post-traductionnelles. Concernant les autres membres de la famille NRT2s, NRT2.4 et NRT2.5 ont été caractérisé comme des transporteurs à très forte affinité pour le NO$_3^-$ dont l’expression est induite par la carence en N et également par la lumière et les sucres pour NRT2.4. Malgré l’importance fonctionnelle de ces transporteurs pour la croissance des plantes, les mécanismes impliqués dans leur régulation restent encore mal connus, en particulier en ce qui concerne la régulation par la lumière et les sucres et les régulations post-traductionnelles de la protéine NRT2.1. Dans ce contexte les objectifs de ma thèse étaient : i) de caractériser la voie de signalisation lumière/sucré impliquée dans la régulation de NRT2.1 et NRT2.4, (ii) de caractériser le rôle de nouveaux régulateurs des voies de signalisation N et C identifiés dans mon équipe et (iii) de participer à l’étude des régulations post-traductionnelles de la protéine NRT2.1. Un des résultats majeurs de mon travail de thèse concerne la régulation des NRT2s par la lumière et les sucres. Les travaux réalisés dans l’équipe avaient pour objectifs de comprendre comment la signalisation sucré implique la voie oxydative des pentoses phosphates (OPPP). Les résultats que j’ai obtenus ont permis : (i) d’identifier que la première enzyme de la voie OPPP, la G6PD, semble être à l’origine du signal sucré et (ii) de faire l’hypothèse que le NADPH produit par cette enzyme ainsi que la signalisation redox sont impliquées dans cette régulation. En parallèle, la caractérisation du rôle de BHLH093, préalablement identifié dans l’équipe, a permis de démontrer le rôle de ce facteur de transcription dans la régulation de NRT2.4 par la lumière et les sucres et a mis en évidence l’existence d’une autre voie de signalisation sans doute indépendante de l’OPPP. Un deuxième volet important de mon travail de thèse a concerné l’étude de la régulation des transporteurs NRT2.4 et NRT2.5 par la carence en N. Ceci m’a permis de démontrer : (i) que le NO$_3^-$ est le signal impliqué dans la répression de ces deux transporteurs chez des plantes non carencées en N et (ii) que cette régulation dépend de la voie de signalisation liée à NRT1.1/NPF6.3. De plus, l’étude de régulateurs connus pour être impliqués dans la réponse au fort N m’a permis de replacer certains de ces facteurs de transcription dans la voie de signalisation qui régule NRT2.4 et NRT2.5 en réponse à la répression par le NO$_3^-$ en N. Enfin, l’étude de la régulation post-traductionnelle de la protéine NRT2.1 a permis de confirmer le rôle essentiel de la phosphorylation du résidu Ser501, située dans la partie C-terminale, pour désactiver l’activité de NRT2.1 en conditions répressives. L’hypothèse d’un clivage de la partie C-terminale de NRT2.1 m’a également amené à initier une approche visant à déterminer si le peptide libéré après clivage et qui contient le site Ser501 phosphorylé, pouvait avoir un rôle dans la signalisation NO$_3^-$.

Abstract

Nitrate (NO$_3^-$) is an essential mineral ion for plant growth and is the main source of nitrogen (N). In *A. thaliana*, NRT2.1, NRT2.4 and NRT2.5 are the three main transporters of the high affinity transport system (HATS) for the uptake of NO$_3^-$ by roots. Among them, NRT2.1 is the major player in HATS. NRT2.1 is transcriptionally controlled by all the regulations that affect the transport of NO$_3^-$: i) induction by NO$_3^-$, ii) repression by products resulting from the assimilation of NO$_3^-$ and iii) induction by light and sugars. In addition to these transcriptional regulations, recent approaches indicate that NRT2.1 is also subject to post-translational regulations. Concerning the other members of the NRT2s family, NRT2.4 and NRT2.5 have been characterized as transporters with very high affinity for NO$_3^-$ Their expression is induced by N deficiency, while light and sugars also induce NRT2.4. Despite the functional importance of these transporters for plant growth, the mechanisms involved in their regulation are still poorly understood, in particular for the regulation by light and sugars as well as post-translational regulations of NRT2.1. In this context, the objectives of my thesis were: i) to characterize the light/sugar signaling pathway involved in the regulation of NRT2.1 and NRT2.4, (ii) to characterize the role of new regulators of N signaling pathways and C identified in my team and (iii) to participate in the study of post-translational regulations of the NRT2.1 protein. One of the major results of my thesis work concerns the regulation of NRT2s by light and sugars. The work previously carried out by the team had made it possible to determine that sugar signaling involves the oxidative pathway of pentose phosphates (OPPP). The results that I obtained allowed: (i) to identify that G6PD, the first enzyme of the OPPP pathway, seems to be at the origin of the sugar signal and (ii) to hypothesize that NADPH produced by this enzyme as well as redox signaling are involved in this regulation. In parallel, I characterized the role of BHLH093 transcription factor, previously identified in the team. I demonstrated its role in the regulation of NRT2.4 by light and sugars and highlighted the existence of another signaling pathway that is probably independent of the OPPP. A second important part of my thesis work concerned the study of the regulation of NRT2.4 and NRT2.5 transporters by N deficiency. This allowed me to demonstrate: (i) that NO$_3^-$ is the signal involved in the repression of these two transporters in non-N-deficient plants and (ii) that this regulation depends on the signaling pathway linked to NRT1.1/NPF6.3. In addition, I was able to place known regulators of the response to high N into the signaling pathway that regulates NRT2.4 and NRT2.5 in response to repression by NO$_3^-$. Finally, I could confirm the essential role of the phosphorylation of the Ser501 residue, located in the C-terminal part, to repress the activity of NRT2.1 under repressive conditions, by studying its post-translational regulation. The hypothesis of a cleavage of the C-terminal part of NRT2.1 also led me to initiate an approach aiming to determine if the peptide released after cleavage and which contains the phosphorylated Ser501 site, could have a role in signaling NO$_3^-$.
Figure 9 : Augmentation de la concentration en ROS par l'utilisation de menadione dans le milieu de culture hydroponique. (A), Représentation schématique de l'impact métabolique d'un traitement au menadione (ou Vitamine K) in planta. L'ajout exogène de menadione engendre une augmentation du rapport NADPH/NADP⁺ pour sa conversion en menadiol, suivi d'une augmentation de la concentration en ROS suite à la conversion du menadiol en menadione. L'ajout de menadione se traduit donc par une augmentation du niveau de ROS endogène (H₂O₂). (B), Représentation schématique de l'effet métabolique de la modulation de la concentration de menadione apportée dans le milieu de culture. Plus la concentration en menadione est élevée, plus la concentration en ROS se trouve augmentée. Dans le cadre de nos expérimentations, nous avons utilisé deux régimes de menadione 100 µM (Faible ROS) et 500 µM (Fort ROS).