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Abstract

In this thesis, we are concerned with the stochastic gradient descent (SGD) algorithm,

which has been widely used in machine learning due to its computational efficiency

and favorable generalization properties. Specifically, we perform theoretical and em-

pirical analysis of the behavior of the stochastic gradient noise (GN) in deep neural

networks, which is defined as the difference between the true gradient and the stochas-

tic gradient. Based on these results, we bring an alternative perspective to the existing

approaches for investigating SGD. The GN in SGD is often considered to be Gaus-

sian for mathematical convenience. This assumption enables SGD to be studied as a

stochastic differential equation (SDE) driven by a Brownian motion. We argue that the

Gaussianity assumption might fail to hold in deep learning settings and hence render

the Brownian motion-based analyses inappropriate. Inspired by non-Gaussian natural

phenomena, we consider the GN in a more general context that suggests that the GN is

better approximated by a heavy-tailed α-stable random vector, where tail-index α de-

cides the heavy-tailedness of the distribution. Accordingly, we propose to analyze SGD

as a discretization of an SDE driven by a Lévy motion. Firstly, to justify the α-stable

assumption, we conduct experiments on common deep learning scenarios and show that

in all settings, the GN is highly non-Gaussian and exhibits heavy-tails. We investigate

the tail behavior in various network architectures and sizes, loss functions, and datasets.

Secondly, under the heavy-tailed GN assumption, we provide a non-asymptotic analysis

for the discrete-time dynamics to converge to the global minimum in terms of subopti-

mality. This finite-time guarantee is then extended to application in posterior sampling.

Finally, we investigate the metastability nature of the SDE driven by Lévy motion that

can then be exploited for clarifying the behavior of SGD, especially in terms of ‘pre-

ferring wide minima’. More precisely, we provide formal theoretical analysis where we

derive explicit conditions for the step-size such that the metastability behavior of SGD,

viewed as a discrete-time SDE, is similar to its continuous-time limit. We show that

the behaviors of the two systems are indeed similar for small step-sizes and we describe

how the error depends on the algorithm and problem parameters. We illustrate our

metastability results with simulations on a synthetic model and neural networks. Our

results open up a different perspective and shed more light on the view that SGD prefers

wide minima.
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Résumé

Dans cette thèse, nous nous intéressons à l’algorithme du gradient stochastique (SGD),

qui est largement utilisé en apprentissage automatique en raison de son efficacité de

calcul et de ses propriétés de généralisation. SGD est applicable à un large ensemble

de problèmes d’optimisation convexe et non convexe survenant dans l’apprentissage au-

tomatique, y compris l’apprentissage profond où ils sont particulièrement réussis. Dans

cette étude, nous effectuons une analyse théorique et empirique du comportement du

bruit de gradient stochastique (GN), qui est défini comme la différence entre le gradient

réel et le gradient stochastique, dans les réseaux de neurones profonds. Sur la base

de ces résultats, nous apportons une perspective alternative aux approches existantes

pour étudier SGD. Le bruit de gradient stochastique dans SGD est souvent considéré

comme gaussien dans le régime des données volumineuses en supposant que le théorème

limite central classique (CLT) entre en jeu. Cette hypothèse est souvent faite pour

des raisons de commodité mathématique, car elle permet d’étudier SGD comme une

équation différentielle stochastique (SDE) pilotée par un mouvement brownien. Nous

soutenons que l’hypothèse de la gaussianité pourrait ne pas tenir dans les contextes

d’apprentissage profond et donc rendre inappropriées les analyses basées sur le mouve-

ment brownien. Inspiré de phénomènes naturels non gaussiens, nous considérons le bruit

de gradient stochastique dans un contexte plus général et invoquons le théorème limite

central généralisé, qui suggère que le bruit de gradient stochastique est mieux approché

par un vecteur aléatoire à queue lourde α-stable, où l’indice de queue α décide de la

lourdeur de la distribution. En conséquence, nous proposons d’analyser SGD comme une

discrétisation d’une équation différentielle stochastique pilotée par un mouvement Lévy.

Cette équation différentielle stochastique peut subir des ”sauts”, qui obligent l’équation

différentielle stochastique et son transition de discrétisation de minima étroits vers des

minima plus larges, comme le prouve la théorie existante de la métastabilité.

Premièrement, pour justifier l’hypothèse α-stable, nous menons des expériences sur

des scénarios communs d’apprentissage en profondeur et montrons que dans tous les

contextes, le bruit de gradient stochastique est hautement non gaussien et présente des

queues lourdes. Nous étudions le comportement de la queue dans diverses architectures

et tailles de réseau, fonctions de perte et ensembles de données.

Deuxièmement, sous l’hypothèse du bruit de gradient stochastique à queue lourde,

nous fournissons une analyse non asymptotique pour que la dynamique en temps discret

SGD converge vers le minimum global en termes de sous-optimalité. Nos résultats

montrent que l’erreur faible sous notre hypothèse augmente plus rapidement que sous

l’hypothèse du bruit gaussien, ce qui suggère d’utiliser des tailles de pas plus petits dans

notre cas. Cette garantie à temps fini est ensuite étendue à l’application en postérieur

échantillonnage.

Enfin, nous étudions la nature de métastabilité de l’équation différentielle stochas-

tique pilotée par le mouvement de Lévy qui peut ensuite être exploitée pour clarifier le
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comportement de SGD, notamment en termes de ”préférence de larges minima”. Bien

que notre approche apporte une nouvelle perspective pour l’analyse de SGD, elle est

limitée en ce sens qu’en raison de la discrétisation temporelle, SGD peut admettre un

comportement sensiblement différent de sa limite de temps continu. Dans ce sujet,

nous fournissons une analyse théorique formelle où nous dérivons des conditions ex-

plicites pour la taille de pas de sorte que le comportement de métastabilité de SGD,

considéré comme une équation différentielle stochastique en temps discret, est similaire

à sa limite de temps continu. Nous montrons que les comportements des deux systèmes

sont en effet similaires pour les petits tailles de pas et nous décrivons comment l’erreur

dépend de l’algorithme et des paramètres du problème. Nous illustrons nos résultats

de métastabilité par des simulations sur un modèle synthétique et des réseaux de neu-

rones. Nos résultats ouvrent une perspective différente et éclairent davantage l’idée selon

laquelle SGD préfère les minima larges.
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Chapter 1

Introduction

Machine learning is the study of computer algorithms that instruct a system how to im-

prove from experience. The primary goal is to allow the system to learn automatically

to perform predictions, decisions or classifications without being explicitly programmed.

In order to carry out these assigned tasks, machine learning algorithms construct math-

ematical models using sample data. The more complex the tasks are, the more data is

needed for a good performance of the learning process. With the accessibility of large

amounts of data (images, speech, video) in recent years, the interest in machine learning

has been increasing rapidly. Another even more important reason that makes machine

learning successful nowadays is the availability of modern technologies such as parallel-

processing power, high-performance graphics processing units, which can be combined

in clusters to significantly reduce the training time for a learning model.

Machine learning systems are present all around us. They are exploited in a broad

variety of applications, for example: computer vision Khan and Al-Habsi [2020], audio

recognition Purwins et al. [2019], Cunningham et al. [2020], speech recognition Pad-

manabhan and Johnson Premkumar [2015], natural language processing Shetty [2018],

machine translation Popel et al. [2020], bioinformatics Larranaga et al. [2006], material

inspection Sacco et al. [2020], medical image analysis Lundervold and Lundervold [2019],

drug design Vamathevan et al. [2019] or board game programs Xenou et al. [2018]. In

some cases, they have achieved outcomes as good as and in some circumstances surpass-

ing human expert performance.

Deep learning is a machine learning technique that employs neural networks with a

large number of layers for training, using huge amounts of data. Deep neural networks

have revolutionized machine learning and have ubiquitous use in many application do-

mains [LeCun et al., 2015, Krizhevsky et al., 2012, Hinton et al., 2012a]. There are

different types of neural networks that are suitable for different tasks: convolutional

neural networks (CNNs) are appropriate for image recognition, while recurrent neural

networks (RNNs) are suited for language processing and speech recognition due to their
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better capabilities to model time series. The architecture of neural networks is also

developing through time: researchers design a more efficient type of RNN model called

long short-term memory (LSTM), making it run fast enough to be applied in on-demand

applications like Google Translate.

In full generality, many key tasks in deep learning reduce to solving the following

optimization problem:

w? = arg min
w∈Rd

{
f(w) ,

1

n

n∑
i=1

f (i)(w)
}

(1.1)

where w ∈ Rd denotes the weights of the neural network, f : Rd → R denotes the

loss function that is typically non-convex in w, each f (i) denotes the (instantaneous)

loss function that is contributed by the data point i ∈ {1, . . . , n}, and n denotes the

total number of data points. Stochastic gradient descent (SGD) is one the most popular

approaches for attacking this problem in practice and is based on the following iterative

updates:

wk+1 = wk − η∇f̃k(wk) (1.2)

where k ∈ {1, . . . ,K} denotes the iteration number, η is the step-size (or the learning

rate), and ∇f̃k denotes the stochastic gradient at iteration k, that is defined as follows:

∇f̃k(w) , ∇f̃Ωk(w) ,
1

b

∑
i∈Ωk

∇f (i)(w). (1.3)

Here, Ωk ⊂ {1, . . . , n} is a random subset that is drawn with or without replacement at

iteration k, and b = |Ωk| denotes the number of elements in Ωk.

SGD is widely used in deep learning with a great success in its computational effi-

ciency [Bottou, 2010, Bottou and Bousquet, 2008, Daneshmand et al., 2018]. Beyond

efficiency, understanding how SGD performs better than its full batch counterpart in

terms of test accuracy remains a major challenge. Even though SGD seems to find

perfect training performance at (near-) zero loss solutions on the training landscape (at

least in certain regimes [Zhang et al., 2017a, Sagun et al., 2015, Keskar et al., 2016,

Geiger et al., 2018]), it appears that the algorithm finds solutions with different proper-

ties depending on how it is tuned [Sutskever et al., 2013, Keskar et al., 2016, Jastrzebski

et al., 2017, Hoffer et al., 2017, Masters and Luschi, 2018, Smith et al., 2017]. Despite

the fact that the impact of SGD on generalization has been studied [Advani and Saxe,

2017, Wu et al., 2018, Neyshabur et al., 2017], a satisfactory theory that can explain its

success in a way that encompasses such peculiar empirical properties is still lacking.

A popular approach for investigating the behavior of SGD is based on considering

SGD as a discretization of a continuous-time process [Mandt et al., 2016, Jastrzebski

et al., 2017, Li et al., 2017, Hu et al., 2017, Zhu et al., 2018, Chaudhari and Soatto, 2018].

This approach models the stochastic gradient noise, i.e., ∇f̃k(w)−∇f(w) as a Gaussian

12



distribution. From this perspective, the SGD recursion can be seen as a first-order Euler-

Maruyama discretization of the Langevin dynamics [Li et al., 2017, Jastrzebski et al.,

2017, Hu et al., 2017], which is often referred to as the Unadjusted Langevin Algorithm

(ULA) [Roberts and Stramer, 2002, Lamberton and Pages, 2003, Durmus and Moulines,

2015, Durmus et al., 2016]. Based on this observation, Jastrzebski et al. [2017] focus

on the relation between this invariant measure and the algorithm parameters, namely

the step-size η and minibatch size. They conclude that the ratio of step-size divided by

the batch size is the control parameter that determines the width of the minima found

by SGD. Furthermore, they revisit the famous wide minima folklore [Hochreiter and

Schmidhuber, 1997]: Among the minima found by SGD, the wider it is, the better it

performs on the test set.

However, we will identify several fundamental issues with this approach Şimşekli et al.

[2019], which show that the gradient noise in SGD can be highly non-Gaussian. Inspired

by non-Gaussian natural phenomena, our main approach will be to model the gradient

noise by using a more general family of heavy-tailed distributions, which contains the

Gaussian distribution as a special case.

This thesis aims to investigate the behavior of SGD by inheriting the idea of stochas-

tic differential equations (SDE). Our general approach can be summarized by the fol-

lowing points:

• By assuming the gradient noise to be Gaussian, SGD is often studied as an approx-

imation of an SDE driven by a Brownian motion. However, by providing empirical

evidence on deep learning settings, we show that the gradient noise is highly non-

Gaussian. Also according to these experiments, we come up with a better-suited

hypothesis for the gradient noise - the α-stable noise. This noise assumption will

enable us to use a Lévy-driven SDE as a proxy to SGD.

• Next, we investigate the global convergence of SGD by using our new hypothesis. In

particular, by using heavy-tailed assumption, we establish a non-asymptotic guarantee

for SGD to converge to the global optimum.

• We conclude the thesis by studying the metastable behavior of SGD, which is of-

ten considered as an aspect for explaining its generalization property in deep learn-

ing settings. Especially, we derive explicit conditions for the step-size such that the

metastability of discrete-time SGD is similar to its continuous-time limit.

1.1 Summary of the thesis

The main contributions of this thesis are twofold: (i) we perform theoretical and em-

pirical analysis of the tail-index of the stochastic gradient noise in deep neural networks

and (ii) based on these results, we bring an alternative perspective to the existing ap-

proaches for analyzing SGD and shed more light on the folklore that SGD prefers wide

minima by establishing a bridge between SGD and the related theoretical results from
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statistical physics and stochastic analysis.

The thesis is organized as follows. In Chapter 2 we provide the technical background

for Brownian motions, the α-stable distributions as well as the Lévy motions. We briefly

introduce the notion of stochastic differential equations (SDEs) and the basic tools such

as Wasserstein distance and total variation, which are needed for the theoretical analysis

of Fractional Langevin Monte Carlo methods and the metastability analysis.

In Chapter 3, we present the related work that concerns some important aspects in

deep learning and diffusion-based Markov chain Monte Carlo.

In Chapter 4 we first formalize the framework in which we analyze SGD by using

such SDEs as a proxy. We then describe in Section 4.4 the metastability and first exit

time properties of such SDEs and their discretization, and discuss their connection with

the wide minima phenomenon. In Section 4.5 we describe our experimental method-

ology. In Section 4.6 we provide our empirical results which validate our theory. We

conduct experiments on the most common deep learning architectures. In particular,

we investigate the tail behavior under fully-connected and convolutional models using

negative log likelihood (NLL) and linear hinge loss functions on MNIST, CIFAR10, and

CIFAR100 datasets. For each configuration, we scale the size of the network and batch

size used in SGD and monitor the effect of each of these settings on the tail index α.

In particular, we present results on stability tests (Section 4.6.1), finer-grained layer-

wise tail-index estimation (sections 4.6.2 and 4.6.3), and an investigation of the relation

between the tail-index and the generalization properties of the network (4.6.4).

In Chapter 5, we investigate the global convergence property of SGD for non-convex

optimization via a stochastic process, which can be seen as a perturbed version of the

gradient descent algorithm with heavy-tailed α-stable noise. In Section 5.2, we state the

assumptions that imply the main result presented in Theorem 7, which provides a finite-

time guarantee for the discrete-time dynamics of SGD, in terms of suboptimality with

respect to the global minimum, as a function of the step-size and the scale parameter. We

then describe in Section 5.3 the proof strategy of Theorem 7. Finally in Section 5.5, we

extend our results to the case where exact gradients are replaced by stochastic gradients

and show that similar results hold in this setting as well. All the proofs of the results

in the chapter are given in appendix.

In Chapter 6, we derive explicit conditions for the step-size such that the discrete-

time SGD (6.3) can inherit the metastability behavior of its continuous-time limit (6.2).

In sections 6.2 and 6.3, we in turn present the main theorem of the chapter and describe

the proof overview of the theorem. Our theoretical result is illustrated by numerical

experiments on a synthetic model and neural networks in Section 6.4.

Our experiments in Chapter 4 reveal several remarkable results:

• In all our configurations, the stochastic gradient noise turns out to be highly non-

Gaussian and possesses a heavy-tailed behavior.

• There is a strong interaction between the network architecture, network size, dataset,
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and the tail-index, which ultimately determine the dynamics of SGD on the training

surface. This observation supports the view that, the geometry of the problem and

the dynamics induced by the algorithm cannot be separated from each other.

• In almost all configurations, we observe two distinct phases of SGD throughout iter-

ations. During the first phase, the tail-index rapidly decreases and SGD possesses a

clear jump when the tail-index is at its lowest value and causes a sudden jump in the

accuracy. This behavior strengthens the view that SGD crosses barriers at the very

initial phase.

Our approach also opens up several interesting future directions and open questions,

as we discuss in Chapter 7.

1.2 List of publications

In this section, we present the list of works that have been realized during this PhD

thesis. First, we specify the publications associated directly to the central topic of this

document:

• Şimşekli, U., Gürbüzbalaban, M., Nguyen, T. H., Richard, G., & Sagun, L. On the

Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks. Sub-

mitted to Journal of Machine Learning Research, 2019. Under revision.

This work is mainly presented in Chapter 4 of this document.

• Nguyen, T. H., Şimşekli, U., & Richard, G. Non-Asymptotic Analysis of Fractional

Langevin Monte Carlo for Non-Convex Optimization. International Conference on

Machine Learning, 2019.

This work is mainly presented in Chapter 5 of this document.

• Nguyen, T. H., Şimşekli, U., Gürbüzbalaban, M., & Richard, G. First Exit Time

Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise. Neural

Information Processing Systems, 2019.

This work is mainly presented in Chapter 6 of this document.

Some other problems have also been dealt with within the time frame of the PhD how-

ever they are not included in this document in order to maintain a coherent manuscript.

These works are listed below.

• Nguyen, T. H., Şimşekli, U., Richard, G., & Cemgil, A. T. Efficient Bayesian Model

Selection in PARAFAC via Stochastic Thermodynamic Integration. IEEE Signal Pro-

cessing Letters, 2018.

In this work, we develop a novel parallel and distributed Bayesian model selection

technique for rank estimation in a large-scale tensor factorization model, called the

Parallel factor analysis (PARAFAC). The proposed approach integrates ideas from

stochastic gradient MCMC, statistical physics, and distributed stochastic optimiza-

tion. Our method has a clear mathematical interpretation, and has significantly lower

computational requirements, thanks to data sub-sampling and parallelization.
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• Şimşekli, U., Yıldız, C., Nguyen, T. H., Richard, G., & Cemgil, A. T. Asynchronous

Stochastic Quasi-Newton MCMC for Non-Convex Optimization. International Con-

ference on Machine Learning, 2018.

In this work, we develop an asynchronous-parallel stochastic L-BFGS algorithm for

non-convex optimization. The proposed algorithm is suitable for both distributed

and shared-memory settings. We provide formal theoretical analysis and show that

the proposed algorithm provides a significant speedup over the recently proposed

synchronous distributed L-BFGS algorithm.

16



Chapter 2

Elements of notations and

definitions

In this chapter, we introduce basic notations and the definitions of the Wasserstein

distance and the total variation. Then, we provide some technical backgrounds for

stochastic differential equations driven by Brownian motions as well as by the Lévy

motions.

2.1 Basic notations

For z > 0, we denote Γ(z) as the gamma function at z:

Γ(z) ,
∫ ∞

0

xz−1e−xdx.

For any Borel probability measures µ and ν with domain Ω, their total variation (TV)

distance is defined as follows:

‖µ− ν‖TV , 2 supA∈B(Ω) |µ(A)− ν(A)|,

where B(Ω) denotes the Borel subsets of Ω.

We use < ·, · > to denote the inner product between two vectors, ‖ · ‖ denotes the

Euclidean norm, Eω[·] denotes the expectation with respect to the random variable ω,

and E[·] denotes the expectation with respect to all the random sources. We will use

the Wasserstein metric to quantify the distance between two probability measures.

Definition 1 (Wasserstein distance). Let µ and ν be two probability measures. For

λ ≥ 1, we define the λ-Wasserstein distance between µ and ν as follows:

Wλ(µ, ν) , (inf{E‖V −W‖λ : V ∼ µ,W ∼ ν})1/λ,

where the infimum is taken over all the couplings of µ and ν (i.e. the joint probability

distributions whose marginal distributions are µ and ν).

17



Notational convenience: In this thesis, depending on certain circumstances, we use

f(t) (variable t is in parentheses) as well as ft (variable t is a subscript) to denote a

function of t. Accordingly, we use Z(t) as well as Zt to denote a stochastic process.

2.2 Stochastic differential equations

Stochastic differential equations (SDEs) play an important role in modeling various

phenomena in physics, biology and finance, such as thermal fluctuations, fluid flow or

stock prices. An SDE is a differential equation in which one or more coefficients are

stochastic processes or stochastic functions of stochastic processes.

2.2.1 SDEs driven by Brownian motions

Consider a (real) differential equation of the form:

dx(t)

dt
= a(t)x(t), x(0) = x0. (2.1)

Suppose that a(t) is a stochastic function and is given as:

a(t) = f(t) + h(t)Z(t),

where f(t) and h(t) are some deterministic functions and Z(t) denotes some stochastic

process. Then, equation (2.1) can be written as follows:

dx(t) = f(t)x(t)dt+ h(t)x(t)Z(t)dt.

If we further assume that Z(t)dt is in fact the differential form of a Brownian motion,

then we obtain the following stochastic differential equation:

dx(t) = f(t)x(t)dt+ h(t)x(t)dB(t),

where B(t) denotes the Brownian motion (or Wiener process), which is defined as:

Definition 2 (Brownian motion). A Brownian motion B(t) is a stochastic process sat-

isfying the following properties:

(i) B(0) = 0.

(ii) Independent increments: for every t > 0, s ≥ 0, u ≥ 0 with s ≤ t, the random

variables B(t+ u)− B(t), B(s) are independent.

(iii) Gaussian increments: for all 0 ≤ u ≤ t, the random variable B(t+ u)− B(t) has

the same distribution as Gaussian random variable N (0, u).

(iv) Continuous paths: B(t) is continuous in t.

Notational convenience: In this thesis, we also use Bt to denote the Brownian motion.

More generally, an SDE is given as:

dX(t) = f(t,X(t))dt+ h(t,X(t))dB(t). (2.2)
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Figure 2.1: Illustration of SαS (a), Lαt (b). As α gets smaller, SαS becomes heavier-

tailed and consequently, Lα(t) incurs larger jumps.

In the following, we consider examples of SDEs driven by Brownian motions.

Examples:

1. Ornstein–Uhlenbeck process. It is defined by the following SDE:

dX(t) = −θX(t)dt+ σdB(t),

where θ, σ > 0. The solution of this SDE can be written as follows.

X(t) = X(0) exp(−θt) +

∫ t

0

σ exp(−θ(t− s))dB(s).

2. Langevin equation. The Langevin diffusion is described by the following SDE:

dX(t) = −∇f(X(t))dt+
√

2dB(t),

where f is a smooth function. The above Langevin diffusion possesses an invariant

measure π, whose density is proportional to exp(−f(x)).

In order to illustrate the random behaviors of different phenomena, it is possible to

use other types of stochastic processes, such as jump processes like Lévy process, instead

of Brownian motion. In the next section, we introduce the notion of stable distributions

and the SDEs driven by Lévy motions.

2.2.2 Stable distributions and Lévy motions

The central limit theorem (CLT) states that the sum of i.i.d. random variables with

a finite second moment converges to a normal distribution if the number of summands

grows. However, if the variables have heavy-tails, the second moment may not exist. For

instance, if their density p(x) has a power-law tail decreasing as 1/|x|α+1 (Figure 2.1)

where 0 < α < 2; only r-th moment exists with r < α. In this case, the generalized

central limit theorem (GCLT) says that the sum of such variables will converge to a

distribution called the α-stable distribution instead as the number of summands grows

(see e.g. [Fischer, 2010]). In this work, we focus on the centered symmetric α-stable

(SαS) distribution, which is a special case of α-stable distributions that are symmetric

around the origin.

We can view the SαS distribution as a heavy-tailed generalization of a centered

Gaussian distribution. The SαS distributions are defined through their characteristic
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function:

Definition 3 (Symmetric α-stable random variables). The α-stable distribution appears

as the limiting distribution in the generalized CLT Samorodnitsky and Taqqu [1994]. A

scalar random variable X ∈ R is called symmetric α-stable if its characteristic function

has the following form:

E[eiωX ] = exp(−σ|ω|α)

where α ∈ (0, 2] and σ > 0. We denote X ∼ SαS(σ).

Even though their probability density function does not admit a closed-form formula

in general except in special cases, their density decays with a power law tail like 1/|x|α+1

where α ∈ (0, 2] is called the tail-index which determines the behavior of the distribution:

as α gets smaller, the distribution has a heavier tail. In fact, the parameter α also

determines the moments: when α < 2, E[|X|r] < ∞ if and only if r < α; implying X

has infinite variance when α 6= 2. The parameter σ ∈ R+ is the scale parameter and

controls the spread of X around 0. We recover the Gaussian distribution N (0, 2σ2) as

a special case when α = 2 and the Cauchy distribution when α = 1.

For the scalar case, α-stable Lévy motion is defined as follows for α ∈ (0, 2] (Duan

[2015]):

Definition 4 (Symmetric α-stable Lévy motion). A scalar symmetric α-stable Lévy

motion Lα(t), with 0 < α ≤ 2, is a stochastic process satisfying the following properties:

(i) Lα(0) = 0, almost surely.

(ii) Independent increments: for 0 ≤ t1 < . . . < tn, the random variables Lα(t2) −
Lα(t1),..., Lα(tn)− Lα(tn−1) are independent.

(iii) Stationary increments: for all 0 ≤ s < t, the random variables Lα(t)−Lα(s) and

Lα(t− s) have the same distribution as SαS((t− s)1/α).

(iv) Continuity in probability: for any δ > 0 and s ≥ 0, P(|Lα(s) − Lα(t)| > δ) → 0,

as t→ s.

Notational convenience: In this thesis, we also use Lt to denote the Lévy motion.

By using this definition, one can define the Lévy-driven SDEs by replacing the Brow-

nian motion in SDE (2.2) by a Lévy motion:

dX(t) = f(t,X(t))dt+ h(t,X(t))dL(t). (2.3)

To conclude this chapter, let us define the notion of invariant measure for equa-

tion (2.3).

Definition 5. Let q(X, t) be the probability density function of X(t). Then q(X, t) is

called invariant measure for (2.3) if ∂tq(X, t) = 0.

In the next chapter, we will give an example of Lévy-driven SDE, which is called the

Fractional Langevin Monte Carlo, along with its invariant measure.
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Chapter 3

Related work

In this chapter, we present some lines of works and contributions that have connections

with our work: Important aspects of deep learning theory and diffusion-based Markov

Chain Monte Carlo algorithms.

3.1 Deep learning theory

Despite the success of deep neural networks in many important machine learning ap-

plications Carleo et al. [2019], Barbier et al. [2019], Decelle et al. [2011], a satisfactory

theory of deep learning is still lacking. The theoretical understanding of deep learn-

ing includes the following areas Poggio et al. [2019]: 1) representation power of deep

networks, 2) optimization of the empirical risk, 3) generalization properties of gradient

descent techniques.

3.1.1 Representation power of deep networks

We start with the representation power of deep networks. Even though both deep

and shallow networks have a universal property Poggio et al. [2019], that is, they can

approximate any continuous function of finite variables on a compact domain, using

deep networks for approximation can achieve much better performance than using shal-

low networks. In contrast to shallow networks, deep networks can avoid the curse of

dimensionality on certain classes of problems. For instance, with the same degree of

approximation, one can represent compositional functions with much smaller number

of parameters for the deep networks than for the shallow networks Poggio et al. [2019].

That is to say, the expressive power of deep neural networks can be considered from the

view of the depth of a network. Recent works Cohen et al. [2016], Telgarsky [2016] show

the depth-efficiency of deep neural networks by proving that there exist classes of deep

networks that cannot be approximated by any shallow network whose width is smaller

than or equal to an exponential bound. In Lu et al. [2017], the authors deal with the

21



dual problem on the width-efficiency of neural networks. By using width-bounded ReLU

(rectified linear unit) networks, they show that there exist classes of wide networks that

cannot be represented by any narrow network whose depth is smaller than or equal to

an polynomial bound. These results suggest that increasing the depth may be more

effective than the width for increasing expressive power of neural networks.

Recently, several new approaches are proposed to understand the representation

power of deep neural networks. In Raghu et al. [2017], the authors introduce a set

of measures of expressivity, which determines how the output of a network changes as

the input moves along an one-dimensional trajectory. By using these measures, they

prove that the complexity of the computed function grows exponentially with depth.

Furthermore, they find that the weights of trained networks are not equal in the sense

that the networks tend to be more sensitive to the weights in initial layers. This result

suggests that optimizing these weights is particularly important. Another approach to

investigate the representation problem is based on the mathematical theory of quiver

representation Armenta and Jodoin [2020], which is used for exploring the combinatorial

and algebraic nature of neural networks. In Armenta and Jodoin [2020], the authors

establish an explicit connection between neural networks and quiver representations and

show that quiver representations are able to adapt common concepts of neural networks

such as fully-connected layers, convolution operations, residual connections, batch nor-

malization and pooling operations. The quiver representations also help understand how

neural networks create representations from the data. The representation power alters

when dealing with different types of neural networks. In Dehmamy et al. [2019], the

authors study the expressiveness of graph convolutional networks (GCNs), which are

capable of distinguishing graphs from different graph generation models. They conclude

that GCNs with different propagation rules could improve the representation power

significantly.

3.1.2 Optimization techniques

Deep neural networks have proven successful in a wide variety of applications. However,

as neural networks grow deeper and datasets become bigger, training these networks

becomes more difficult. Therefore, a large number of optimization techniques have

been developed over the past years to improve the training performance of these net-

works.

Although traditional gradient-based methods using a full-gradient approach may

be effective for small-scale learning problems, stochastic-gradient-based methods (SG),

first proposed by Robbins and Monro [1951], are the dominant techniques for large-scale

learning problems. Stochastic gradient methods gain a great success in the study of

perceptual tasks such as speech or image recognition Bottou et al. [2018], in which,

due to the use of deep neural networks, highly nonlinear and non-convex problems are

involved. Over the years, a large variety of stochastic-gradient-based algorithms have
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been proposed. These algorithms can be classified into two categories: noise reduction

methods and second-order methods.

In optimization problems, methods with noise reduction capabilities have been devel-

oped to improve the accuracy of the outcomes as well as the convergence performance.

The first type of noise reduction is dynamic sampling Bottou et al. [2018], in which one

attempts to reduce the stochastic gradient noise by gradually increasing the mini-batch

size, thus improving the accuracy of the gradient estimates as the algorithm proceeds.

On the other hand, gradient aggregation methods, such as stochastic variance reduced

gradient (SVRG), stochastic average gradient (SAG) and SAGA (Defazio et al. [2014]),

achieve the noise reduction by improving the quality of the search directions using the

information from computed gradient estimates in previous iterations Bottou et al. [2018].

These noise reduction techniques allow the optimization process to attain a linear con-

vergence rate to the optimal value using constant step-size Bottou et al. [2018].

Another important family of stochastic-gradient-based methods, known as second-

order methods, consists of algorithms that aim at addressing the negative effects of high

non-linearity and ill-conditioning of the objective function with the help of second-order

information Bottou et al. [2018] such as second derivative, Hessian matrix, second-order

Taylor series, Fisher information matrix, etc. Popular representatives of these meth-

ods are inexact Newton and quasi-Newton methods, (generalized) Gauss-Newton meth-

ods Bertsekas [1996], Schraudolph [2002], the natural gradient method Amari [1998],

and scaled gradient iterations Duchi et al. [2011], Tieleman and Hinton [2017].

Some other well-known adaptive SG methods are not well classified within the two

categories: noise reduction and second-order methods, yet show great potential in the-

oretical and/or practical problems. We start with SG methods with momentum, which

aim at improving learning performance by solving the problem of poor conditioning

on the Hessian matrix and the variance in stochastic gradient Soydaner [2020]. The

idea is to take a moving average between the stochastic gradient of the current and

previous iterations according to a momentum parameter Alpaydin [2020]. A variant of

the standard momentum is Nesterov momentum Sutskever et al. [2013], in which the

gradient of the objective function is measured slightly ahead of the current update, in

the direction of the momentum. Next, we move to AdaGrad Duchi et al. [2011], which

is an optimization algorithm that adapts the learning rates of the model parameters,

namely, at each iteration the parameters with larger (smaller) partial derivative are as-

signed with larger (smaller) learning rates. The learning rates are computed using all

the squared values of the gradient from the previous iteration. One drawback of Ada-

Grad is that the continual decay of learning rates may cause the algorithm to stop too

early when training neural networks, as the learning rates may become infinitesimally

small. Therefore, AdaDelta Zeiler [2012] is proposed to address this issue. By using the

window of fixed size w of past gradients instead of the full-gradients, AdaDelta is able

to continue running even after many iterations have been progressed. Another modified
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version of AdaGrad is root mean square propagation (RMSProp) Hinton et al. [2012b],

which is designed to perform better in non-convex setting. In RMSProp, the gradient

accumulation is replaced by an exponentially weighted moving average, which removes

the excessive decay of learning rates of AdaGrad and makes the algorithm converge

quickly after finding a convex bowl Goodfellow et al. [2016]. One of the most popular

optimization algorithm in deep learning is Adam, which incorporate the advantages of

AdaGrad and RMSProp Kingma and Ba [2014]. The algorithm adapts learning rates

for model parameters from the information of the first and second moments of the gradi-

ents Soydaner [2020]. Besides computational efficiency and small-memory requirement,

Adam is known to be suitable for non-stationary objectives and systems with highly

noisy and sparse gradients Kingma and Ba [2014]. Some well-known modified/improved

algorithm based on Adam are AdaMax, Nadam Dozat [2016] and AMSGrad Reddi et al.

[2019], which are proposed to improve the speed of convergence while maintaining the

benefits of Adam. While having great advantages in terms of computation efficiency

and convergence speed, Adam and its modified algorithms have been found to gener-

alize poorly compared to SGD Keskar and Socher [2017], that suggests using a hybrid

strategy that combines an adaptive method and SGD Keskar and Socher [2017].

3.1.3 Generalization and SGD

Besides representation and optimization problems of neural networks, understanding

generalization in deep learning becomes more and more important. Despite training

a complex, non-convex objective function, simple methods such as stochastic gradient

descent (SGD) are capable of finding solutions that have good generalization property,

even when the model is over-parameterized Neyshabur et al. [2014], Zhang et al. [2017a].

In such non-convex setting, the objective function may have multiple local minima,

however not all of them are able to generalize well: bad local minima can lead to poor

generalization performance. Different algorithms such as SGD, Adam, and different

parameter settings such as initialization, learning rate, batch-size, may lead to local

minima with different generalization performance Chaudhari et al. [2016], Keskar et al.

[2016], Neyshabur et al. [2015].

In recent years, a considerable number of approaches have been suggested to explain

why deep learning can generalize well and how to improve generalization behavior. Even

though over-parameterized neural networks can perfectly fit data labels without gener-

alizing Zhang et al. [2017a], the improvement in generalization error as the number of

hidden units increases cannot be explained in terms of number of parameters Neyshabur

et al. [2014]. On the other hand, generalization behavior can be controlled by dif-

ferent norms of network parameters Bartlett et al. [2017], which are independent of

number of parameters. In terms of various norms such as square norm and spectral

norm, Neyshabur et al. [2017] provide the bounds for the number of data samples re-

quired to ensure generalization. In another line of work, Keskar et al. [2016] introduce
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the notion of ‘sharpness’ of local minima to investigate the generalization behavior,

based on a well-known hypothesis Keskar et al. [2016], Chaudhari et al. [2016] that flat

minima tend to generalize better than sharp minima. Later, Neyshabur et al. [2017] im-

prove this approach by viewing the notion of sharpness in the context of PAC-Bayesian

framework. In different aspects, Xiao et al. provide necessary conditions for general-

ization of neural networks by analyzing the spectrum of neural tangent kernel and Li

et al. [2020] advance the understanding of the relations between the compressibility

and generalization of neural networks by using tensor analysis. Remarkably, Şimşekli

et al. [2020] study generalization properties of SGD via stochastic differential equations

(SDEs). The authors show that the generalization error can be estimated by a peculiar

characteristic of SDEs under heavy-tailed gradient noise - the Hausdorff dimension.

3.2 Diffusion-based Markov Chain Monte Carlo

Diffusion-based Markov Chain Monte Carlo (MCMC) algorithms aim at generating sam-

ples from a distribution that is only accessible by its unnormalized density function.

Recently, they have become increasingly popular due to their nice scalability properties

and theoretical guarantees Ma et al. [2015], Chen et al. [2015], Şimşekli et al. [2016],

Durmus et al. [2016]. In addition to their success in Bayesian machine learning, they

have also been used for analyzing large-scale non-convex optimization algorithms Ra-

ginsky et al. [2017], Xu et al. [2018], Şimşekli et al. [2018], Birdal et al. [2018], Birdal

and Şimşekli [2019] and understanding the behavior of stochastic gradient descent in

deep learning settings Jastrzebski et al. [2017], Şimşekli et al. [2019].

One of the most popular approaches in this field is based on the so-called Langevin

diffusion, which is described by the following stochastic differential equation (SDE):

dwt = −∇f(wt)dt+
√

2/β dBt, t ≥ 0, (3.1)

where wt ∈ Rd, f is a smooth function which is often non-convex, β ∈ R+ is called the

‘inverse temperature’ parameter, and Bt is the standard Brownian motion in Rd.
Under some regularity conditions on f , one can show that the Markov process

(wt)t≥0, i.e. the solution of the SDE (3.1), is ergodic with its unique invariant mea-

sure π, whose density is proportional to exp(−βf(w)) Roberts and Stramer [2002]. An

important feature of this measure is that, when β goes to infinity, its density concen-

trates around the global minimum w? , arg minw∈Rd f(w) Hwang [1980], Gelfand and

Mitter [1991]. This property implies that, if we could simulate (3.1) for large enough β

and t, the simulated state xt would be close to w?.

This connection between diffusions and optimization, motivates simulating (3.1) in

discrete-time in order to obtain ‘almost global optimizers’. If we use a first-order Euler-

Maruyama discretization, we obtain a ‘tempered’ version of the well-known Unadjusted
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Langevin Algorithm (ULA) Roberts and Stramer [2002]:

wk+1
ULA = wk

ULA − η∇f(wk
ULA) +

√
2η

β
Zk+1, (3.2)

where k ∈ N+ denotes the iterations, η denotes the step-size, and (Zn)n is a sequence

of independent and identically-distributed (i.i.d.) standard Gaussian random variables.

When β = 1, we obtain the classical ULA, which is mainly used for Bayesian posterior

sampling. Theoretical properties of the classical ULA have been extensively studied

Roberts and Stramer [2002], Lamberton and Pages [2003], Durmus and Moulines [2015,

2016], Dalalyan [2017b].

When β � 1, the algorithm is called tempered and becomes more suitable for opti-

mization. Indeed, one can observe that the noise term Zk in (3.2) becomes less dominant,

and the overall algorithm can be seen as a ‘perturbed’ version of the gradient descent

(GD) algorithm. The connection between ULA and GD has been recently established

in Dalalyan [2017a] for strongly convex f . Moreover, Raginsky et al. [2017] and Xu

et al. [2018] proved non-asymptotic guarantees for this perturbed scheme1. Their results

showed that, even in non-convex settings, the algorithm is guaranteed to escape from

local minima and converge near the global minimizer. These results were extended in

Zhang et al. [2017b] and Tzen et al. [2018], which showed that the iterates converge near

a local minimum in polynomial time and stay there for an exponential time. Recently,

the guarantees for ULA were further extended to second-order Langevin dynamics Gao

et al. [2018b,a].

Fractional Langevin Monte Carlo

Another line of research has extended Langevin Monte Carlo by replacing the Brownian

motion with a motion which can incur ‘jumps’ (i.e. discontinuities), such as the α-

stable Lévy Motion (see Figure 2.1) Şimşekli [2017], Ye and Zhu [2018]. Coined under

the name of Fractional Langevin Monte Carlo (FLMC) methods, these approaches are

motivated by the statistical physics origins of the Langevin equation (3.1). In such a

context, the Langevin equation aims to model the position of a small particle that is

under the influence of a force, which has a deterministic and a stochastic part. If we

assume that the stochastic part of this force is a sum of many i.i.d. random variables

with finite variance, then by the central limit theorem (CLT), we can assume that their

sum follows a Gaussian distribution, which justifies the Brownian motion in (3.1).

The main idea in FLMC is to relax the finite variance assumption and allow the

random pulses to have infinite variance. In such a case, the classical CLT will not hold;

however, the extended CLT Lévy [1937] will still be valid: the law of the sum of the

pulses converges to an α-stable distribution, a family of ‘heavy-tailed’ distributions that

1The results given in Raginsky et al. [2017] are more general in the sense that they are proved

for the Stochastic Gradient Langevin Dynamics (SGLD) algorithm Welling and Teh [2011], which is

obtained by replacing the gradients in (3.2) with stochastic gradients.
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contains the Gaussian distribution as a special case. Then, by using a similar argument

to the previous case, we can replace the Brownian motion with the α-stable Lévy Motion

Yanovsky et al. [2000], whose increments are α-stable distributed.

Based on an SDE driven by an α-stable Lévy Motion, Şimşekli [2017] proposed the

following iterative scheme that is referred to as Fractional Langevin Algorithm (FLA):

wk+1
FLA = wk

FLA − ηcα∇f(wk
FLA) +

( η
β

) 1
α

Sk+1, (3.3)

where α ∈ (1, 2] is called the characteristic index, cα is a known constant, and {Sk}k∈N+

is a sequence of α-stable distributed random variables. Recently, Ye and Zhu [2018]

extended FLA to Hamiltonian dynamics. The experimental results in Şimşekli [2017]

and Ye and Zhu [2018] showed that the use of the heavy-tailed increments can provide

advantages in multi-modal settings, robustness to algorithm parameters. Ye and Zhu

[2018] further illustrated that in an optimization context their algorithm achieves better

generalization in deep neural networks.

The FLA algorithm is based on a Lévy-driven SDE, that is defined as follows:

dwt = Ψ(wt−, α)dt+ (1/β)1/αdLαt (3.4)

where wt− denotes the left limit of the process at time t and Lαt denotes the d-

dimensional Lévy motion whose components are independent α-stable Lévy motions

in R.

We have the following result for FLMC:

Theorem 1 (Şimşekli [2017]). Consider the SDE (3.4) in the case d = 1, β = 1, and

α ∈ (1, 2], where the drift Ψ is defined as follows:

Ψ(x, α) , −
Dα−2

(
φ(x)∂f(x)

∂x

)
φ(x)

. (3.5)

where φ(x) , exp(−βf(x)) and D denotes the fractional Riesz derivative and is defined

as follows for a function u:

Dγu(x) , F−1{|ω|γ û(ω)}.

Here, F denotes the Fourier transform and û , F(u).

Let π be a random measure whose density is φ(x) (up to a multiplicative factor).

Then, π is an invariant measure of the Markov process (wt)t≥0 that is a solution of the

SDE given by (3.4).

This theorem states that if the drift (3.5) can be computed, then the sample paths

of (3.4) can be considered as samples drawn from π. However, computing (3.5) is in

general not tractable, therefore one needs to approximate it for computational purposes.

27



If we use the alternative definition of the Riesz derivative given by Ortigueira [2006], we

can approximate the drift as follows Şimşekli [2017], Ye and Zhu [2018]:

−
Dα−2

(
φ(x)∂f(x)

∂x

)
φ(x)

≈ −cα
∂f(x)

∂x
,

where cα , Γ(α − 1)/Γ(α/2)2 and Γ denotes the Gamma function. With this choice

of approximation, in the d-dimensional case we obtain FLA, as given in (3.3). We can

observe that, when α = 2, (3.4) becomes the Langevin equation (3.1) and FLA becomes

ULA.

28



Chapter 4

Heavy-tailed behavior in

stochastic gradient descent

The gradient noise in SGD is often considered to be Gaussian for mathematical conve-

nience. This assumption enables SGD to be studied as a stochastic differential equation

(SDE) driven by a Brownian motion. However, the Gaussianity assumption might fail to

hold in deep learning settings and hence render the Brownian motion-based analyses in-

appropriate. Inspired by non-Gaussian natural phenomena, we consider a better-suited

hypothesis for the stochastic gradient noise that has more pertinent theoretical implica-

tions for the phenomena associated with SGD. Accordingly, we propose to analyze SGD

as a discretization of an SDE driven by a Lévy motion.

This chapter is based on the article [Şimşekli et al., 2019].

4.1 Overview

A popular approach for investigating the behavior of SGD is based on considering SGD

as a discretization of a continuous-time process [Mandt et al., 2016, Jastrzebski et al.,

2017, Li et al., 2017, Hu et al., 2017, Zhu et al., 2018, Chaudhari and Soatto, 2018]. This

approach models the stochastic gradient noise as a Gaussian distribution, i.e. Uk(w) ,

∇f̃k(w)−∇f(w) satisfies

Uk(w) ∼ N (0, σ2I), (4.1)

where N denotes the multivariate (Gaussian) normal distribution and I denotes the

identity matrix of appropriate size.1 The rationale behind this assumption is that, if the

size of the minibatch b is large enough, then we can invoke the Central Limit Theorem

1We note that more sophisticated assumptions than (4.1) have been made in terms of the covari-

ance matrix of the Gaussian distribution (e.g. state dependent, anisotropic). However, in all these

cases, the resulting distribution is still a Gaussian, therefore the same criticism holds.
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(CLT) and assume that the distribution of Uk is approximately Gaussian. Then, under

this assumption, SGD (1.2) can be written as follows:

wk+1 = wk − η∇f(wk) +
√
η
√
ησ2Zk, (4.2)

where Zk denotes a standard normal random vector in Rd. If we further assume that η

is small enough, then the continuous-time analogue of the discrete-time process (4.2) is

the following stochastic differential equation (SDE):

dwt = −∇f(wt)dt+
√
ησ2dBt, (4.3)

where Bt denotes the standard Brownian motion. This SDE is a variant of the well-

known Langevin diffusion and under mild regularity assumptions on f , one can show

that the Markov process (wt)t≥0 is ergodic with its unique invariant measure, whose

density is proportional to exp(−f(w)/(ησ2)) for any η > 0 [Roberts and Stramer, 2002].

From this perspective, the SGD recursion in (4.2) can be seen as a first-order Euler-

Maruyama discretization of the Langevin dynamics (see also [Li et al., 2017, Jastrzebski

et al., 2017, Hu et al., 2017]), which is often referred to as the Unadjusted Langevin

Algorithm (ULA) [Roberts and Stramer, 2002, Lamberton and Pages, 2003, Durmus

and Moulines, 2015, Durmus et al., 2016].

Figure 4.1: A function with a narrow minimum of width m1 and a wide minimum of

width m2.

Based on this observation, Jastrzebski et al. [2017] focused on the relation between

this invariant measure and the algorithm parameters, namely the step-size η and mini-

batch size, as a function of σ2. They concluded that the ratio of step-size divided by

the batch size is the control parameter that determines the width of the minima found

by SGD. Furthermore, they revisit the famous wide minima folklore [Hochreiter and

Schmidhuber, 1997]: Among the minima found by SGD, the wider it is, the better it

performs on the test set. This is visualized in Figure 4.1, where the local minimum

on the right lies on a wider valley with width m2 compared to the local minimum on

the left with width m1 lying in a sharp valley of depth H. However, there are several

fundamental issues with this approach, which we will explain below.
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Figure 4.2: A mismatch between the Gaussianity assumption and the empirical be-

havior of the stochastic gradient noise. (a) and (b) The histogram of the norms of

the gradient noises after the first and the last iterations, respectively (computed with

AlexNet on CIFAR10). (c) and (d) the histograms of the norms of (scaled) Gaussian

and α-stable random vectors, respectively.

We first illustrate a typical mismatch between the Gaussianity assumption and the

empirical behavior of the stochastic gradient noise in terms of the long term behavior.

In Figure 4.2, we plot the histogram of the norms of the stochastic gradient noise at

the first and the last iterations that are computed using a convolutional neural network

(AlexNet) in an image classification problem on the CIFAR10 dataset and compare it

to the histogram of the norms of Gaussian random vectors. It can be clearly observed

that, even though the shape of the histogram corresponding to gradients resembles the

one of the Gaussian vectors at the first iteration, throughout training, it drifts apart

from the Gaussian and exhibits a heavy-tailed behavior.

In addition to the empirical observations, the Gaussianity assumption also yields

some theoretical issues. The first issue with this assumption is that the current SDE

analyses of SGD are based on the invariant measure of the SDE, which implicitly as-

sumes that sufficiently many iterations have been taken to converge to that measure.

Recent results on ULA [Raginsky et al., 2017, Xu et al., 2018] have shown that, the re-

quired number of iterations to achieve the invariant measure often grows exponentially

with the dimension d. This result contradicts with the current practice: considering

the large size of the neural networks and limited computational budget, only a limited
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number of iterations – which is much smaller than exp(O(d)) – can be taken. This

conflict becomes clearer in the light of the recent works that studied the local behavior

of ULA [Tzen et al., 2018, Zhang et al., 2017b]. These studies showed that ULA will get

close to the nearest local optimum in polynomial time; however, the required amount of

time for escaping from that local optimum increases exponentially with the dimension.

Therefore, the phenomenon that SGD prefers wide minima within a considerably small

number of iterations cannot be explained using the asymptotic distribution of the SDE

given in (4.3).

The second issue is related to the local behavior of the process and becomes clear

when we consider the metastability analysis of Brownian motion-driven SDEs. These

studies [Freidlin and Wentzell, 1998, Bovier et al., 2004, Imkeller et al., 2010b] consider

the case where w0 is initialized in a quadratic basin and then analyze the minimum

time t such that wt is outside that basin. They show that this so-called first exit time

depends exponentially on the height of the basin; however, this dependency is only

polynomial with the width of the basin. These theoretical results directly contradict

with the wide minima phenomenon: even if the height of a basin is slightly larger,

the exit-time from this basin will be dominated by its height, which implies that the

process would stay longer in (or in other words, ‘prefer’) deeper minima as opposed to

wider minima. The reason why the exit-time is dominated by the height is due to the

continuity of the Brownian motion, which is in fact a direct consequence of the Gaussian

noise assumption.

A final remark on the issues of this approach is the observation that landscape is

flat at the bottom regardless of the batch size used in SGD [Sagun et al., 2017]. In

particular, the spectrum of the Hessian at a near critical point with close to zero loss

value has many near zero eigenvalues. Therefore, local curvature measures that are

used as a proxy for measuring the width of a basin can be misleading. Such measures

usually correlate with the magnitudes of large eigenvalues of the Hessian which are few

[Keskar et al., 2016, Jastrzebski et al., 2017]. Besides, during the dynamics of SGD it

has been observed that the algorithm does not cross barriers except perhaps at the very

initial phase [Xing et al., 2018, Baity-Jesi et al., 2018]. Such dependence of width on an

essentially-flat landscape combined with the lack of explicit barrier crossing during the

SGD descent forces us to rethink the analysis of basin hopping under a noisy dynamics.

In this study, we aim at addressing these contradictions and come up with an ar-

guably better-suited hypothesis for the stochastic gradient noise that has more pertinent

theoretical implications for the phenomena associated with SGD.

4.2 Proposed framework

We go back to (1.3) and (4.1) and reconsider the application of CLT. This classical

CLT assumes that Uk is a sum of many independent and identically distributed (i.i.d.)
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random vectors, whose covariance matrix exists and is invertible, and then it states

that the law of Uk converges to a Gaussian distribution, which then paves the way for

(4.2). Even though the finite-variance assumption seems natural and intuitive at the

first sight, it turns out that in many domains, such as turbulent motions (Weeks et al.

[1995]), oceanic fluid flows (Woyczyński [2001]), finance (Mandelbrot [2013]), biological

evolution (Jourdain et al. [2012]), audio signals (Liutkus and Badeau [2015], Şimşekli

et al. [2015], Leglaive et al. [2017], Şimşekli et al. [2018]), brain signals (Jas et al. [2017]),

the assumption might fail to hold (see [Duan, 2015] for more examples). In such cases,

the classical CLT along with the Gaussian approximation will no longer hold. While

this might seem daunting, fortunately, one can prove a generalized CLT and show that

the law of the sum of these i.i.d. variables with infinite variance still converges to a

family of heavy-tailed distributions that is called the α-stable distribution [Lévy, 1937].

As we detailed in Section 2.2.2, these distributions are parametrized by their tail-index

α ∈ (0, 2] and they coincide with the Gaussian distribution when α = 2.

In this study, we relax the finite-variance assumption on the stochastic gradient noise

and by invoking the generalized CLT: we assume that Uk follows an α-stable distribu-

tion, as hinted in Figure 4.2(d). By following a similar rationale to (4.2) and (4.3), we

reformulate SGD with this new assumption and consider its continuous-time limit for

small step-sizes. Since the noise might not be Gaussian anymore (i.e. when α 6= 2),

the use of the Brownian motion would not be appropriate in this case and we need to

replace it with the α-stable Lévy motion, whose increments have an α-stable distribu-

tion (Yanovsky et al. [2000]). Due to the heavy-tailed nature of α-stable distribution,

the Lévy motion might incur large discontinuous jumps and therefore exhibits a funda-

mentally different behavior than the Brownian motion, whose paths are on the contrary

almost surely continuous. The discontinuities also reflect in the metastability properties

of Lévy-driven SDEs, which indicate that, as soon as α < 2, the first exit time from a

basin does not depend on its height; on the contrary, it directly depends on its width and

the tail-index α Imkeller and Pavlyukevich [2006], Imkeller et al. [2010b,a]. Informally,

this implies that the process will escape from narrow minima – no matter how deep

they are – and stay longer in wide minima. Besides, as α gets smaller, the probability

for the dynamic to jump into a wide basin will increase. Therefore, if the α-stable as-

sumption on the stochastic gradient noise holds, then the existing metastability results

automatically provide strong theoretical insights for illuminating the behavior of SGD.

4.3 SGD as a Lévy-driven SDEs

Following the above argument, a more general assumption on the stochastic gradient

noise (cf. (4.1)) can be given by:

[Uk(w)]i ∼ SαSi(σi(w)), ∀i = 1, . . . , n (4.4)
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where [v]i denotes the i’th component of a vector v, and SαSi distributed with αi(w).

Clearly, this assumption is way too general to offer reasonable theoretical treatment.

We will resort to several simplifications: (1) We assume that each coordinate of Uk is

SαS distributed with the same σ which depends on the state w. Here, this dependency

is not crucial since we are mainly interested in the tail-index α, which can be estimated

independently from the scale parameter (Section 4.5.1). Therefore, we will simply de-

note σ(w) as σ for clarity. (2) We further assume that each coordinate of Uk is SαS
distributed with the same α independent of the state w. We will demonstrate the state

independence at later stages of SGD experimentally in Section 4.6.3, however, imposing

the coordinate dependence is a much harder challenge which will be addressed in the

section devoted for open problems (Chapter 7).

By using the assumption (4.4), we can rewrite the SGD recursion as follows [Şimşekli,

2017]:

wk+1 = wk − η∇f(wk) + η1/α
(
η
α−1
α σ

)
Sk, (4.5)

where Sk ∈ Rd is a random vector such that [Sk]i ∼ SαS(1). If the step-size η is small

enough, then we can consider the continuous-time limit of this discrete-time process,

which is expressed in the following SDE driven by an α-stable Lévy process:

dwt = −∇f(wt)dt+ η(α−1)/ασ dLαt , (4.6)

where Lαt denotes the d-dimensional α-stable Lévy motion with independent components.

In other words, each component of Lαt is an independent α-stable Lévy motion in R.

It is easy to check that the noise term in (4.5) is obtained by integrating dLαt from

kη to (k + 1)η. When α = 2, Lαt coincides with a scaled version of Brownian motion,
√

2Bt. SαS and Lαt are illustrated in Figure 2.1.

Stochastic processes based on Lévy motion such as (4.6) and their mathematical

properties have also been studied in the literature, we refer the reader to Tankov [2003],

Øksendal and Sulem [2005] for details.

4.4 First exit time and metastability properties

Consider a basin in which a particle is initialized and undergoes fluctuations continually,

the particle persists in the basin for a long time before exiting it by the influence of fluc-

tuations. This relative instability phenomenon is described by the term ‘metastability’.

More formally, the metastability studies consider the case where w0 is initialized in a

basin and analyze the minimum time t such that wt exits that basin.

We start by reviewing known metastability properties of the α-stable Lévy process

(4.6) from the literature. We will also focus on the first exit time which is, roughly

speaking, the average time it takes for the process to exit a neighborhood of a local

minima (a quantity we define formally later in (4.12)).
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For clarity of the presentation and notational simplicity we focus on the scalar case

and consider the SDE (4.6) in R (i.e. d = 1). Multidimensional generalizations of the

metastability results presented in this work can be found in [Imkeller et al., 2010a] and

will be summarized at the end of this section. We rewrite (4.6) as follows:

dwεt = −f ′(wεt )dt+ εdLαt (4.7)

for t ≥ 0, started from the initial point w0 ∈ R, where Lαt is the α-stable Lévy process,

ε ≥ 0 is the noise level and f is a non-convex objective with r ≥ 2 local minima.

We denote the derivative of f by f ′. When ε = 0, we recover the gradient descent

dynamics in continuous time: dw0
t = −f ′(w0

t )dt, where the local minima are the stable

points of this differential equation. However, as soon as ε > 0, these states become

‘metastable’, meaning that there is a positive probability for wεt to transition from one

basin to another. However, the time required for transitioning to another basin strongly

depends on the characteristics of the injected noise. The two most important cases are

α = 2 and α < 2. When α = 2, (i.e. the Gaussianity assumption) the process (wεt )t≥0 is

continuous, which requires it to ‘climb’ the basin all the way up, in order to be able to

transition to another basin. This fact makes the transition-time depend on the height

of the basin. On the contrary, when α < 2, the process can incur discontinuities and

does not need to cross the boundaries of the basin in order to transition to another one,

since it can directly jump. This property is called the ‘transition phenomenon’ [Duan,

2015] and makes the transition-time mostly depend on the width of the basin. In the

rest of the section, we will formalize these explanations.

Gradient-like flows driven by Brownian motion and weak error for their discretization

are well studied from a theoretical standpoint (see e.g. [Li et al., 2017, Mertikopoulos

and Staudigl, 2018]), however their Lévy-driven analogue (4.7) and the discrete-time

versions [Burghoff and Pavlyukevich, 2015] are relatively less studied. Under some

assumptions on the objective f , it is known that the process (4.7) admits a stationary

density [Samorodnitsky and Grigoriu, 2003]. For a general f , an explicit formula for the

equilibrium distribution is not known, however when the noise level ε is small enough,

finer characterizations of the structure of the equilibrium density in dimension one is

known. We next summarize known results in this area, which show that Lévy-driven

dynamics spend more time in ‘wide valleys’ in the sense of [Chaudhari et al., 2016] when

ε goes to zero.

Assume that f is smooth with r local minima {mi}ri=1 separated by r − 1 local

maxima {si}r−1
i=1 , i.e.

−∞ := s0 < m1 < s1 < · · · < sr−1 < mr < sr :=∞.

Furthermore, assume that the local minima and maxima are not degenerate, i.e. f ′′(mi) >

0 and f ′′(si) < 0 for every i. We also assume the objective gradient has a growth con-

dition f ′(w) > |w|1+c for some constant c > 0 and when |w| is large enough. Each local
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minima mi lies in the (interval) valley Si = (si−1, si) of (width) length Li = |si − si−1|.
Consider also a δ-neighborhood Bi := {|x −mi| ≤ δ} around the local minimum with

δ > 0 small enough so that the neighborhood is contained in the valley Si for every i.

We are interested in the first exit time from Bi starting from a point w0 ∈ Bi and the

transition time T iw0
(ε) := inf{t ≥ 0 : wεt ∈ ∪j 6=iBj} to a neighborhood of another local

minimum, we will remove the dependency to w0 of the transition time in our discussions

as it is clear from the context. The following result shows that the transition times are

asymptotically exponentially distributed in the limit of small noise and scales like 1/εα

with ε.

Theorem 2 (Pavlyukevich [2007]). For an initial point w0 ∈ Bi, in the limit ε → 0,

the following statements hold regarding the transition time:

Pw0
(wεT i(ε) ∈ Bj) → qijq

−1
i if i 6= j,

εαT i(ε)
d−→ E(qi),

E[εαT i(ε)] → q−1
i .

where E denotes the exponential distribution,
d−→ denotes convergence in distribution and

qij =
1

α

∣∣∣∣ 1

|sj−1 −mi|α
− 1

|sj −mi|α

∣∣∣∣ , i 6= j, (4.8)

qi =
∑
j 6=i

qij . (4.9)

If the SDE (4.7) would be driven by the Brownian motion instead, then an analo-

gous theorem to Theorem 2 holds saying that the transition times are still exponentially

distributed but the scaling εα needs to be replaced by e2H/ε2 where H is the maximal

depth of the basins to be traversed between the two local minima [Day, 1983, Bovier

et al., 2005]. This means that in the small noise limit, Brownian-motion driven gra-

dient descent dynamics need exponential time to transit to another minimum whereas

Lévy-driven gradient descent dynamics need only polynomial time. We also note from

Theorem 2 that the mean transition time between valleys for Lévy SDE does not depend

on the depth H of the valleys they reside in which is an advantage over Brownian motion

driven SDE in the existence of deep valleys. Informally, this difference is due to the fact

that Brownian motion driven SDE has to typically climb up a valley to exit it, whereas

Lévy-driven SDE could jump out.

The following theorem says that as ε→ 0, up to a normalization in time, the process

wεt behaves like a finite state-space Markov process that has support over the set of

local minima {mi}ri=1 admitting a stationary density π = (πi)
r
i=1 with an infinitesimal

generator Q. The process jumps between the valleys Si, spending time proportional to

probability πi amount of time in each valley in the equilibrium where the probabilities

π = (πi)
r
i=1 are given by the solution to the linear system Qπ = 0.

36



Theorem 3 (Pavlyukevich [2007]). Let w0 ∈ Si, for some 1 ≤ i ≤ r. For t ≥ 0,

wεtε−α → Ymi(t), as ε → 0, in the sense of finite-dimensional distributions, where Y =

(Yy(t))t≥0 is a continuous-time Markov chain on a state space {m1,m2, . . . ,mr} with

the infinitesimal generator Q = (qij)
r
i,j=1 with

qij =
1

α

∣∣∣∣ 1

|sj−1 −mi|α
− 1

|sj −mi|α

∣∣∣∣ , (4.10)

qii = −
∑
j 6=i

qij . (4.11)

This process admits a density π satisfying QTπ = 0.

A consequence of this theorem is that equilibrium probabilities πi are typically larger

for ”wide valleys”. To see this consider the special case illustrated in Figure 4.1 with

r = 2 local minima m1 < s1 = 0 < m2 separated by a local maximum at s1 = 0. For

this example, m2 > |m1|, and the second local minimum lies in a wider valley. A simple

computation reveals

π1 =
|m1|α

|m1|α +mα
2

, π2 =
|m2|α

|m1|α + |m2|α
.

We see that π2 > π1, that is in the equilibrium the process spends more time on the

wider valley. In particular, the ratio π2

π1
=
(
m2

|m1|

)α
grows with an exponent α when

the ratio m2

|m1| of the width of the valleys grows. Consequently, if the gradient noise is

indeed α-stable distributed, these results directly provide theoretical evidence for the

wide-minima behavior of SGD assuming the loss landscape is not degenerate.

In addition to the transition time between the basins of attraction of two local

minima, understanding how long it takes for the continuous-time process wt given by

(4.6) to exit a neighborhood of a local minimum w̄ (given that it is started in that

neighborhood) is also relevant. We formally define the first exit time of the stochastic

process (4.6) as follows:

τa(ε) , inf{t ≥ 0 : |wt − w̄| 6∈ [0, a]}. (4.12)

The following result characterizes the first exit time in dimension one.

Theorem 4 (Imkeller and Pavlyukevich [2006]). Consider the SDE (4.6) in dimension

d = 1 and assume that it has a unique strong solution. Assume further that the objective

f has a global minimum at zero, satisfying the conditions f ′(x)x ≥ 0 for every x ∈ R,

f(0) = 0, f ′(x) = 0 if and only if x = 0, and f ′′(0) > 0. Then, there exist positive

constants ε0, γ, δ, and C > 0 such that for 0 < ε ≤ ε0, the following holds:

e−uε
α θ
α (1+Cεδ)(1− Cεδ) ≤ P(τa(ε) > u) ≤ e−uε

α θ
α (1−Cεδ)(1 + Cεδ) (4.13)

for all initialization w0∈ [−a+ εγ , a− εγ ] and u ≥ 0, where θ = 2
aα . Consequently,

E[τa(ε)] =
α

2

aα

εα
(1 +O(εδ)), for all w0 ∈ [−a+ εγ , a− εγ ]. (4.14)
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Extension of Theorem 4 to Rd. The exit behavior of the SDE (4.6) from an arbitrary

domain in Rd has also been studied in the literature. Imkeller et al. [2010a] generalizes

Theorem 4 from dimension d = 1 to arbitrary dimensions and shows that in the small

noise limit the exit time from a domain is exponentially distributed with a parameter

that depends on the tail-index α. In case the components of the Lévy motion in (4.6)

is replaced by a process that consists of the sum of finitely many one-dimensional Lévy

processes with different tail-indices αi, it is also shown that the first exit time from a

domain is determined by the smallest αi when the noise level ε is small enough.

4.5 Experimental methodology

In this section, we describe our experimental methodology regarding how we estimate

the heavy-tailedness of the stochastic gradients. First, we discuss how we can compute

the tail-index α based on a recent estimator proposed in Mohammadi et al. [2015].

Second, we describe the procedure proposed in [Brcich et al., 2005] for testing whether

stochastic gradients follow a symmetric α-stable distribution. Our experimental results

will be presented in Section 4.6.

4.5.1 Tail index estimation

Estimating the tail-index of an extreme-value distribution is a long-standing topic. Some

of the well-known estimators for this task are [Hill, 1975, Pickands, 1975, Dekkers

et al., 1989, De Haan and Peng, 1998]. Despite their popularity, these methods are

not specifically developed for α-stable distributions and it has been shown that they

might fail for estimating the tail-index for α-stable distributions [Mittnik and Rachev,

1996, Paulauskas and Vaičiulis, 2011].

In this section, we use a relatively recent estimator proposed in [Mohammadi et al.,

2015] for α-stable distributions. It is given in the following theorem.

Theorem 5 (Mohammadi et al. [2015]). Let {Xi}Ki=1 be a collection of random variables

with Xi ∼ SαS(σ) and K = K1 ×K2. Define Yi ,
∑K1

j=1Xj+(i−1)K1
for i ∈ J1,K2K.

Then, the estimator

1̂

α
,

1

logK1

( 1

K2

K2∑
i=1

log |Yi| −
1

K

K∑
i=1

log |Xi|
)
. (4.15)

converges to 1/α almost surely, as K2 →∞.

As shown in Theorem 2.3 of [Mohammadi et al., 2015], this estimator admits a faster

convergence rate and smaller asymptotic variance than all the aforementioned methods.

In order to verify the accuracy of this estimator, we conduct a preliminary experi-

ment, where we first generate K = K1×K2 many SαS(1) distributed random variables

with K1 = 100, K2 = 1000 for 100 different values of α. Then, we estimate α by using
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Figure 4.3: Illustration of the tail-index estimator α̂.

α̂ , ( 1̂
α )−1. We repeat this experiment 100 times for each α. As shown in Figure 4.3,

the estimator is very accurate for a large range of α. Due to its favorable theoretical

properties such as independence of the scale parameter σ, combined with its empirical

stability, we choose this estimator in our experiments.

In order to estimate the tail-index α at iteration k, we first partition the set of data

points D , {1, . . . , n} into many disjoint sets Ωik ⊂ D of size b, such that the union

of these subsets gives all the data points. Formally, for all i, j = 1, . . . , n/b, |Ωik| = b,

∪iΩik = D, and Ωik ∩ Ωjk = ∅ for i 6= j. This approach is similar to sampling without

replacement. We then compute the full gradient ∇f(wk) and the stochastic gradients

∇f̃Ωik
(wk) for each minibatch Ωik. We finally compute the stochastic gradient noises

U ik(wk) = ∇f̃Ωik
(wk)−∇f(wk), vectorize each U ik(wk) and concatenate them to obtain

a single vector, and compute the reciprocal of (4.15). In this case, we have K = dn/b

and we set K1 to the divisor of K that is the closest to
√
K.

4.5.2 Stability test

Besides estimating the tail-index of a random process, it is also important to verify

whether the process is symmetric α-stable. In this section, we describe a procedure

(Brcich et al. [2005]) for obtaining a confidence level for the stability of a random process,

based on the following property:

Theorem 6 (Brcich et al. [2005]). A necessary and sufficient condition for a random

variable X to have an SαS distribution is

X1 +X2 ∼ C1X (4.16)

X1 +X2 +X3 ∼ C2X (4.17)

where C1, C2 > 0 and X1, X2 and X3 are independent copies of X.

Here we adopt the stability test presented in [Brcich et al., 2005]. To obtain a

statistical test from (4.16), we first separate the observations into three equal-size subsets

X, X1 and X2, which are considered as independent copies of the observations. We then
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assign the first subset X to the right side of (4.16) and estimate the tail index αX of

this subset using the idea of the previous section. For the left side of (4.16), we sum X1

and X2 term by term, and estimate α12 of the resulting sum. Similarly, by separating

the observations into four equal-size subsets X ′, X ′1, X ′2 and X ′3, then repeating these

above steps, we get αX′ from X ′ and α123 from X ′1 + X ′2 + X ′3, for a statistical test of

(4.17). In the end, the process is considered to be α-stable if the tail indices estimated

from the left and the right sides of (4.16) (as well as of (4.17)) are relatively close to

each other, i.e. if the ‘condition number’ cst , max{|αX −α12|, |αX′ −α123|} is smaller

than some threshold.

4.6 Numerical results

We investigate the tail behavior of the stochastic gradient noise in a variety of scenar-

ios. We first consider a fully-connected network (FCN) on the MNIST and CIFAR10

datasets. For this model, we vary the depth (i.e. the total number of layers) in the

set {2, 3, . . . , 10}, the width (i.e. the number of neurons per hidden layer) in the set

{2, 4, 8, . . . , 1024}, and the minibatch size ranging from 1 to full batch.

We then consider a convolutional neural network (CNN) architecture (AlexNet) on

the CIFAR10 and CIFAR100 datasets. We scale the number of filters in each convolu-

tional layer in range {2, 4, . . . , 512}. We use the existing random split of the MNIST

dataset into train and test parts of sizes 60K and 10K, and CIFAR10 and CIFAR100

datasets into train and test parts of sizes 50K and 10K, respectively. The order of the

total number of parameters d range from several thousands to tens of millions.

For both FCN and CNN, we run each configuration with the negative-log-likelihood

(i.e. cross entropy) and with the linear hinge loss, and we repeat each experiment with

three different random seeds (see [Geiger et al., 2018] for details on the choice of the

hinge loss). The training algorithm is SGD with no explicit modification such as mo-

mentum or weight decay. The training runs for a fixed number of iterations unless it

hits 100% training accuracy first. At every 100th iteration, we log the full training

and test accuracies, and the tail estimate of the gradients that are sampled using the

corresponding minibatch size. The codebase is implemented in python using pytorch 2.

Below, we present the most relevant and representative results. We have observed

that, in all configurations, the three different initializations yielded no significant differ-

ence. Therefore, the effects of the randomness in initialization (under a given scheme)

do not appear to affect the gradient noise. Similarly, the choice of the loss function do

not yield different behaviors in terms of the tail index. Even though the heavy tailed

nature remains the same, the choice of the loss function results in a different way of

dependence to the hyperparameters of the system, which we discuss in Section 4.6.4 and

leave the investigation to a further study.

2The codebase can be found at https://github.com/umutsimsekli/sgd_tail_index.
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Figure 4.4: Stability confidence results for each layer as well as for whole network (in-

dicated by layer index at 0). From left to right: depth 3, depth 5, depth 7.

4.6.1 Stability test results

We first start by investigating the stability of the stochastic gradient noises under the

datasets that we use for our estimation experiments. We will first focus on the later

iterations of SGD, where the tail-index becomes stationary. Using an FCN on the

MNIST and CIFAR10 datasets, we estimate the condition number cst (as described in

Section 4.5.2) at every 50th iteration of the training stage, then take its average over

the last 10K iterations to get the final result. Here, we consider cst ≈ 0.05 to be an

acceptable level for the test since it is a quite small number with respect to estimated

α in our experiments.

The results using the MNIST dataset are illustrated by Figure 4.4(a), in which layer

index at 0 corresponds to the whole network while the indices 1, 2, . . . , 7 represent the

hidden layers of the network. Our experiments show that the condition number cst for

the whole network are always smaller than the threshold 0.05, which means the gradient

noise of the network satisfies our required stability criterion, even when we change the

number of layers (depths) and the number of neurons per layer (widths). The same

conclusion on the stability test is true when we investigate each of the hidden layers of

the network.

Figure 4.4(b) shows the results of the stability test for CIFAR10. As can be seen from

the figure, the condition cst of the network fails to be smaller than our required criterion

in some cases. However, the gap from this number to the criterion is quite small that

we can consider that it does not violate the α-stable assumption on the gradient noise

of the network. Unlike the MNIST dataset, we observe that for the networks with 256

neurons per layer, even though the overall gradient noise strongly exhibits an α-stable

behavior, some of the hidden layers are very far from being α-stable, suggesting that the

characteristics of the first layer dominate the overall structure. In contrast, the gradient

41



noise with respect to the parameters of the hidden layers becomes more α-stable with a

very high number (512) of neurons per layer.

By these experiments, we observe that the structure of the dataset has a strong

impact on the statistical properties of the gradient noise, especially for the layers with

smaller number of parameters. When this number of parameters is large (which is usually

the case in practice), the gradient noise corresponding to these parameters becomes more

α-stable. In short, this means increasing the size of the network (the number of the

network parameters) tends to make the gradient noise behave similarly to an α-stable

noise.

4.6.2 Effect of varying network size

(a) MNIST

(b) CIFAR10

Figure 4.5: Estimation of α for varying widths and depths in FCN. The curves in the

left figures correspond to different depths, and the ones on the right figures correspond

to widths.

We measure the tail-index for varying the widths and depths for the FCN, and varying

widths (i.e. the number of filters) for the CNN. For very small sizes, the networks

perform poorly; therefore, we only illustrate sufficiently large network sizes, which yield

similar accuracies. For these experiments, we compute the average of the tail-index

measurements for the last 10K iterations (i.e. when α̂ becomes stationary) to focus on

the late stage dynamics.

Figure 4.5 shows the results for the FCN. The first striking observation is that in

all the cases, the estimated tail-index is far from 2, meaning that the distribution of

42



the gradient noise is highly non-Gaussian. For the MNIST dataset, we observe that α

systematically decreases for increasing network size, where this behavior becomes more

prominent with the depth. This result shows that, for MNIST, increasing the dimension

of the network results in a gradient noise with heavier tails and therefore increases the

probability of ending up in a wider basin. For the CIFAR10 dataset, we still observe

that α is far from 2; however, in this case, increasing the network size does not have a

clear effect on α. In all cases, we observe that α is in the range 1.1–1.2.
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Figure 4.6: Estimation of α for varying widths and depths in FCN, dataset MNIST.

From left to right: depth 3, depth 5, depth 7. Different lines correspond to different

widths.

In Figure 4.6, we plot estimated α for each layer of FCNs, using MNIST dataset

where the minibatch is of size 100. The resulting α is obtained by averaging α over the

last 10K iterations. The layer index ‘0’ corresponds to the estimated α of the whole

network. In this experiment, we observe that α becomes smaller (heavier-tailed) for the

deeper layers. In addition, the value of the tail-index for the whole network has a strong

connection with the first layers: the α for the whole network is closer to that of the first

layers than of the last layers.
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(a) CIFAR10

(b) CIFAR100

Figure 4.7: The accuracy and α̂ of the CNN for varying widths.

Figure 4.7 shows the results for the CNN. In this figure, we also depict the train and

test accuracy, as well as the tail-index that is estimated on the test set. These results

show that, for both CIFAR10 and CIFAR100, the tail-index is extremely low for the

under-parametrized regime (e.g. the case when the width is 2, 4, or 8 for CIFAR10). As

we increase the size of the network the value of α increases until the network performs

reasonably well and stabilizes in the range 1.0–1.1. We also observe that α behaves

similarly for both train and test sets3.

These results show that there is strong interplay between the network architecture,

dataset, and the algorithm dynamics: (i) we see that the size of the network can strongly

influence α, (ii) for the exact same network architecture, the choice of the dataset

has a significant impact on not only the landscape of the problem, but also the noise

characteristics, hence on the algorithm dynamics.

3We observed a similar behavior in under-parametrized FCN; however, did not plot those results

to avoid clutter.
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4.6.3 Tail behavior throughout the iterations

(a) MNIST

(b) CIFAR10

Figure 4.8: The iteration-wise behavior of of α for the FCN.

So far, we have focused on the late stages of SGD, where α is in a rather stationary

regime. In this set of experiments, we shift our focus on the first iterations and report an

intriguing behavior that we observed in almost all our experiments. As a representative,

in Figure 4.8, we show the temporal evolution of SGD for the FCN with 9 layers and

512 neurons/layer.

The results clearly show that there are two distinct phases of SGD (in this configu-

ration before and after iteration 1000). In the first phase, the loss decreases very slowly,

the accuracy slightly increases, and more interestingly α rapidly decreases. When α

reaches its lowest level, the process possesses a jump, which causes a sudden decrease

in the accuracy. After this point the process recovers again and we see a stationary

behavior in α and an increasing behavior in the accuracy.
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Figure 4.9: Estimation of α with an FCN on MNIST.

We also investigate this behavior for each layer of an FCN with depth 7 and width

512 in Figure 4.9. The estimated tail-index for each layer has a clear phase change

at earlier iterations, where we observe that this jump is more prominent in the deeper

layers where the tail-index is smaller. On the other hand, unlike the whole network,

the tail-index of each layer undergoes a fluctuation period before becoming stationary

at the last 2000 iterations. However, this observation might be due to the measurement

error since the size of the sample that is used in the estimator (4.15) gets smaller when

we make layer-wise measurements.

The fact that the process has a jump when α is at its smallest value provides a

strong support to our assumptions and the metastability theory that we discussed in

the previous section. Furthermore, these results also strengthen the view that SGD

crosses barriers at the very initial phase and continues searching until it reaches a “wide

and flat enough” region of a local optimum. On the other hand, our current analysis is

not able to determine whether the process jumps in a different basin or a ‘better’ part

of the same basin and we leave it as a future work.

4.6.4 A note on generalization

In this section, we investigate the connection between the tail-index and the general-

ization performance. In particular, we consider the relation between α and the ratio of

the step-size to the batch size η/b which is proportional to the noise scale of SGD when

there is no momentum [Park et al., 2019]. It has been empirically demonstrated that

this ratio correlates with performance of the model [Jastrzebski et al., 2017], hence the

higher the noise scale, the better the generalization performance until a certain level.

Clearly, when the noise is too high, training may diverge, however, proper level of noise

leads to better solutions.

In this section, we will investigate how the tail index of the gradient noise is affected

for different noise scales. We reproduce and follow the initialization convention and

the hyper-parameter scale that is studied in [Park et al., 2019, Appendix G]: A fully

connected model with 3 hidden layers, each hidden layer has 512 nodes. Weights are

initialized ∼ N (0, 1), bias terms are set to zero at the initial point. Each layer is then
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passed through ReLU non-linearity, and multiplied by the inverse of the width of the

previous layer. As usual, the network is trained with SGD without momentum; the

dataset is the standard MNIST. Minibatch size ranges in the set [24, 48, 96, 192] and

step-size ranged from the set [0.9375, 1.875, 3.75, 7.5, 15]4.
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Figure 4.10: Test error and tail-index in accordance with the change of η/b ratio.

Figure 4.10(a) and Figure 4.10(b) visualize the results. The estimated α and the test

error are averaged among the candidates with the same η/b, at the last iteration of the

training process. We ignore the particular values of test error but rather focus on the

way certain choices affect the trends in the system and the behavior of SGD dynamics.
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Figure 4.11: Test error, estimated α in accordance with the change of η/b ratio.

In both choices of loss functions, hinge and NLL, the behavior of the test error with

respect to the noise scale is consistent with previous observations. Similarly, in both

4Note that this particular scaling is introduced in Jacot-Guillarmod et al. [2018] and it admits

slightly larger values of learning rates compared to standard initialization schemes
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cases, the estimated α remains within a narrow band of 1, indicating the heavy tail

behavior. However, the trends in estimated α are different depending on the choice of

the loss. Therefore, we cannot attribute the improvement in performance to lower α

when increasing the noise scale. To better emphasize this point, we plot the correlation

of estimated α and test error in Figure 4.11 where the positive and negative correlations

are clearly visible depending on the choice of the loss function. This contrasting behavior

is another hint that there exists a connection between α and the test performance (since

they are correlated in both cases) and suggests us to examine this connection in order

to understand when exactly the dynamics falls into basins with better performance.
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Chapter 5

Global convergence analysis

In this chapter, we investigate the global convergence property of stochastic gradient

descent (SGD) for non-convex optimization by using a stochastic process driven by α-

stable distribution. Our results show that the weak-error by SGD analyzed by this

method increases faster than when analyzed using a stochastic process driven by Gaus-

sian distribution, which suggests using smaller step-sizes.

This chapter is based on the article [Nguyen et al., 2019b].

5.1 Summary of the main result

So far, we have illustrated that stochastic processes driven by α-stable noise can be

used as a proxy for understanding the dynamics of stochastic gradient descent in deep

learning. Therefore, to understand the behaviors of SGD, we will provide an analysis of

the non-asymptotic behavior of the following algorithm for non-convex optimization:

wk+1 = wk − ηcα∇f(wk) +
( η
β

) 1
α

Sk+1, (5.1)

where α ∈ (1, 2], cα is a known constant, β ∈ R+ is called the ‘inverse temperature’

parameter and {Sk}k∈N+
is a sequence of α-stable distributed random variables.

Even though asymptotic convergence properties of (5.1) were established for de-

creasing step-sizes in Şimşekli [2017], Panloup [2008], these results do not explain the

behavior of SGD algorithm for finite number of iterations. Besides, in practice, using a

constant step-size often yields better performance Baker et al. [2017], a situation which

cannot be handled by the existing theory.

In particular, we analyze the expected suboptimality E[f(wk) − f?], where f? ,

f(w?) = minw∈Rd f(w). As we will describe in detail in Section 5.3, we decompose this

suboptimality into four different terms, and we bound each of those terms one by one.

Due to the choice of the α-stable Lévy motion, the standard tools for analyzing SDEs

driven by a Brownian motion are not available for our use, and therefore, we cannot use

49



the proof strategies developed for ULA (3.2) as they are (such as Raginsky et al. [2017],

Xu et al. [2018], Erdogdu et al. [2018]). Instead, we follow an alternative path, where we

first relate the expected discrepancies to Wasserstein distance of fractional orders, and

then, inspired by Gairing et al. [2018], we prove a result that expresses the Wasserstein

distance (Definition 1) between the laws of two SDEs (driven by α-stable Lévy motion)

in terms of their drift functions.

Informally, we show that the expected suboptimality E[f(wk)− f?] is bounded by a

sum of four terms, summarized as follows:

E[f(wk)− f?] ≤ A1 +A2 +A3 +A4,

where

A1 = O
(
k1+max{ 1

q ,γ+ γ
q }η

1
q

)
,

A2 = O
(k1+max{ 1

q ,γ+ γ
q }η

1
q+ γ

αq d

β
(q−1)γ
αq

)
,

A3 = O
(
β + d

)
exp
(
−λ∗kη

β

)
,

A4 = O
( 1

βγ+1
+
d

β
log(β + 1)

)
.

Here γ ∈ (0, 1) is the Hölder exponent of the gradients of f , and q ∈ (1, α), λ∗ > 0 are

some constants. This result has the following implications. For any ε > 0,

1. If 1
q > γ + γ

q and k ' ε−1 and η < ε2q+1, then A1 scales as Cε and A2 scales as

εPoly(β, d).

2. If 1
q ≤ γ + γ

q and k ' ε−1 and η < ε2q+γ+γq, then A1 scales as Cε and A2 scales

as εPoly(β, d).

3. If we choose kη > β
λ∗

log
(

1
ε

)
, then A3 scales as εPoly(β, d).

where Poly(. . .) denotes a formal polynomial, i.e., an expression containing the real-

ordered exponents of the variables, coefficients, and only the operations of addition,

subtraction, and multiplication.

In Section 5.5, we extend our results in two directions: (i) obtaining guarantees

for Bayesian posterior sampling and (ii) non-convex optimization where exact gradients

are replaced with stochastic gradients. Our results imply that, in the context of global

optimization, the error induced by (5.1) has a worse dependency on k and η, as compared

to ULA. This suggests that one should use smaller step-sizes in (5.1).

5.2 Assumptions and the main result

We start by defining three different stochastic processes x1(t), x2(t), and x3(t), which

will be the main constructs in our analysis. We first informally define these processes

as follows: x2 is a continuous-time process that interpolates wk in time and it will let
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us avoid dealing with the discrete-time process wk directly. x1 is the limiting process

of wk when the step-size goes to zero. Finally, x3 is a process whose law converges to

the Gibbs measure π, whose density is exp(−βf(w)) (up to a multiplicative factor).

In our approach, we will first relate x2 to its limiting process x1. Since it is more

challenging to relate x1 to w?, we will then relate x1 to x3, and x3 to π. By following

a similar approach to Raginsky et al. [2017], we will finally relate π to f?. Formally, we

decompose the expected suboptimality in the following manner:

Ef(wk)− f∗ =
(
Ef(x2(kη))− Ef(x1(kη))

)
+
(
Ef(x1(kη))− Ef(x3(kη))

)
+
(
Ef(x3(kη))− Ef(ŵ)

)
+
(
Ef(ŵ)− f∗

)
, (5.2)

where xi(kη) with i = 1, 2, 3 denotes the state reached by the three stochastic processes

at time kη, and ŵ is a random variable drawn from π. We will now formally define the

processes x1, x2, and x3.

The first SDE is the continuous-time limit of the algorithm given in (5.1) and defined

as follows for t ≥ 0:

dx1(t) = b1(x1(t−), α)dt+ β−1/αdLαt , (5.3)

where the drift function has the following form:

b1(x, α) , −cα∇f(x).

The second SDE is a linearly interpolated version of the discrete-time process {wk}k∈N+
,

defined as follows:

dx2(t) = b2(x2, α)dt+ β−1/αdLαt , (5.4)

where x2 ≡ {x2(t)}t≥0 denotes the whole process and the drift function is chosen as

follows:

b2(x2, α) , −cα
∞∑
k=0

∇f(x2(kη))I[kη,(k+1)η[(t).

Here, I denotes the indicator function, i.e. for any set A ⊂ Rd, IA(x) = 1 if x ∈ A

and IA(x) = 0 if x /∈ A. It is easy to verify that x2(kη) = wk for all k ∈ N+ Dalalyan

[2017b], Raginsky et al. [2017].

The last SDE is designed in such a way that its solution has the Gibbs distribution

as the invariant distribution and is defined as follows:

dx3(t) = b(x3(t−), α)dt+ β−1/αdLαt , (5.5)

where the drift is a d-dimensional vector whose i-th component, i = 1, . . . , d, has the

following form:

(b(x, α))i , −
Dα−2
i

(
φ(x)∂if(x)

)
φ(x)

. (5.6)
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Here, Di denotes the Riesz derivative (defined in Theorem 1) along the direction i

Ortigueira et al. [2014] and ∂i denotes the derivative with respect to the i-th component.

With this definition for the drift, we have the following result for the invariant measure

of x3, which is an extension of Theorem 1 to general d and β.

Lemma 1. The SDE (5.5) with drift b defined by (5.6) admits π as an invariant dis-

tribution of its solution (x3(t))t≥0.

The process {x3(t)}t will play an important role in our analysis, since it will enable us

to relate xk to the Gibbs measure π, whose samples will be close to the global optimum

w? with high probability Pavlyukevich [2007].

We now state our assumptions that will be used to imply the main result of the

chapter.

A 1. There exists a constant B ≥ 0 such that

cα‖∇f(0)‖ ≤ B.

A 2. The gradient of f is Hölder continuous with constants M > 0, 0 ≤ γ < 1:

cα‖∇f(x)−∇f(y)‖ ≤M‖x− y‖γ , ∀x,y ∈ Rd.

A 3. For some m > 0 and b ≥ 0, f is (m, b, γ)-dissipative:

cα〈x,∇f(x)〉 ≥ m‖x‖1+γ − b, ∀x ∈ Rd.

The assumptions A1-3 are mild and when γ = 1, they become the standard Lipschitz

and dissipativity conditions that are often considered in diffusion-based non-convex op-

timization algorithms Raginsky et al. [2017], Xu et al. [2018], Erdogdu et al. [2018].

However, due to the choice of the α-stable Lévy motion with α ∈ (1, 2), we need to con-

sider a ‘fractional’ version of those assumptions and exclude the case where γ = 1, which

makes A3 weaker and A2 more restrictive than the case where γ = 1. Nevertheless, A2

can be weakened to local Hölder continuity by using the localization techniques given

in the proof of Proposition 4.2.2 of Kunze [2012]. This approach requires rewriting all

the expressions which employ A2 in our proofs, by using stopping-times in such a way

that we can adopt the local Hölder continuity in the same manner of Kunze [2012].

In our analysis, we will make a repeated use of the Hölder and Minkowski inequalities,

which require the following condition to hold:

A 4. There exist positive real numbers p, q, p1, q1 such that

1

p
+

1

q
=

1

p1
+

1

q1
= 1, and

q < α, γp < 1, γq1 < 1, (q − 1)p1 < 1.
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Even though this assumption looks rather technical, when combined with A2-3, it

will in fact impose smoothness constraints on f and restrict γ to be less than 1. We will

discuss this observation in more detail in Section 5.4.

Next, we require the drift b (presented in equation (5.5)) to be dissipative for large

distances and we assume a bounded moment condition, which will be used for estab-

lishing the ergodicity of x3.

A 5. 1) For all x,y ∈ Rd and for some constants γ̄ ∈ [0, 1], l0 ≥ 0, K1 > 0 and K2 > 0,

the following holds:

〈b(x)− b(y),x− y〉
‖x− y‖

≤

K1‖x− y‖γ̄ , ‖x− y‖ < l0,

−K2‖x− y‖, ‖x− y‖ ≥ l0.

2) For any t > 0, γ̂ ∈ (0, α), and for any coupling Pt of x3(t) and ŵ ∼ π, we have:∫
‖x3(t)− ŵ‖γ̂dPt < C∗,

for some constant C∗ > 0.

Remark The first part of assumption A5 can be satisfied under a set of (rather non-

trivial) assumptions (see appendix for more details). �

Proposition 1. Under assumptions A1-3 and A5, the distribution of x3(t) exponen-

tially converges to its unique invariant distribution π in the Wasserstein metric, i.e.,

for any λ ≥ 0 such that λ < α, there exist constants C > 0 and C1 > 0 such that

Wλ(µ3t, π) ≤ Ce−C1t, (5.7)

where µ3t denotes the probability measure of x3(t).

In the rest of the paper, we will assume that the constants C and C1 behave similarly

to the case of the unadjusted Langevin algorithm (α = 2). In particular, we assume

that C is proportional to β and C1 is proportional to β−1, so that we can rewrite (5.7)

as follows:

Wλ(µ3t, π) ≤ Cβe−λ∗t/β .

In the unadjusted Langevin algorithm, the constant λ∗ turns out to be the uniform

spectral gap associated with the Gibbs measure π and it has shown to scale exponentially

with respect to the dimension d in the worst case Raginsky et al. [2017]. We believe

that a similar property holds in our case as well.

Our next assumption is on the approximation quality of the function b by b1.
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A 6. There exists a constant L > 0 such that L < m and

sup
x∈Rd

‖cα∇f(x) + b(x, α)‖ ≤ L,

where the function b is defined in (5.6).

In Corollary 2 of Şimşekli [2017], it has been shown that A6 holds if the tails of π

vanish sufficiently quickly (cf. assumption H4 in Şimşekli [2017]). On the other hand,

the gap between functions b and b1 can be diminished even more if we consider a more so-

phisticated numerical approximation scheme, such as the one given in Çelik and Duman

[2012] (cf. Theorem 2 of Şimşekli [2017]).

In our final condition, we assume that the fractional moments of π is uniformly

bounded.

A 7. There exists a constant C > 0 such that∫
Rd
‖x‖rπ(dx) ≤ C b+ d/β

m

for all 0 ≤ r ≤ 2.

Now, we are ready to state the main result of this chapter.

Theorem 7. Under conditions A1-7 and for 0 < η < m
M2 , there exists a positive

constant C independent of k and η such that the following bound holds:

E[f(wk)]− f∗ ≤C

{
k1+max{ 1

q ,γ+ γ
q }η

1
q +

k1+max{ 1
q ,γ+ γ

q }η
1
q+ γ

αq d

β
(q−1)γ
αq

+
βb+ d

m
exp(−λ∗kη

β
)

}

+
Mc−1

α

βγ+1(1 + γ)
+

1

β
log

(2e(b+ d
β ))

d
2 Γ(d2 + 1)βd

(dm)
d
2

.

More details on constant C can be found in appendix.

Theorem 7 provides finite-time guarantees for discrete-time dynamics (4.5) in terms

of suboptimality with respect to the global minimum as a function of the step-size and

the scale parameter. In particular, it is shown that the heavy-tailed system has a worse

dependency on both K and η as compared to the Gaussian case. Besides, it is known

that if the scale parameter σ gets smaller, the dynamics admits a stationary distribution

that will concentrate more and more on the global minimizer although reaching out to

stationary would require an exponential number of steps in the dimension in the worst

case. Similar to ULA Raginsky et al. [2017], our bound grows with the number of

iterations k. We note that this result sheds light on the explicit dependency of the

error with respect to the algorithm parameters (e.g. step-size) for a fixed number of
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iterations, rather than explaining the asymptotic behavior when k goes to infinity. In

the next sections, we will provide an overview of the proof of this theorem along with

some remarks and comparisons to ULA.

5.3 Proof overview

Our proof strategy consists of bounding each of the four terms in (5.2) separately. Before

bounding these terms, we first start by relating the expected discrepancies to the Wasser-

stein distance between two random processes. The result is formally presented in the

following lemma and it extends the 2-Wasserstein continuity result given in Polyanskiy

and Wu [2016] to Wasserstein distance with fractional orders.

Lemma 2. Let v and w be two random variables on Rd which have µ and ν as the

probability measures and let g be a function in C1(Rd,R). Assume that for some c1 >

0, c2 ≥ 0 and 0 ≤ γ < 1,

‖∇g(x)‖ ≤ c1‖x‖γ + c2, ∀x ∈ Rd

and max
{(

E‖w‖γp
) 1
p

,
(
E‖v‖γp

) 1
p
}
<∞. Then, the following bound holds:∣∣∣ ∫ gdµ−
∫
gdν

∣∣∣ ≤CWq(µ, ν),

for some C > 0.

Lemma 2 lets us upperbound the first three terms of the right hand side of (5.2)

by the Wasserstein distance between the appropriate stochastic processes, respectively

Wq(µ1t, µ2t), Wq(µ1t, µ3t), and Wq(µ3t, π), where µit denotes the law of xi(t).

The term Wq(µ3t, π) is related to the ergodicity of the process (5.5) and it has

been shown that this distance diminishes exponentially for a considerably large class

of Lévy diffusions Masuda [2007], Xie and Zhang [2017]. On the other hand, the term

Wq(µ1t, µ3t) is related to the numerical approximation of the Riesz derivatives, which is

analyzed in Şimşekli [2017]. Therefore, in this study, we use the assumptions A5 and A6

for dealing with these terms, and focus on the termWq(µ1t, µ2t), which is related to the

so-called ‘weak-error’ of the Euler scheme for the SDE (5.3). The existing estimates for

such weak-errors are typically of order Cηa, where a < 1 and C is a constant that grows

exponentially with t Mikulevičius and Zhang [2011]. The exponential growth with t is

prohibitive in our case and one of our main technical contributions is that, in the sequel,

we will prove a bound that grows polynomially with t, which substantially improves over

the one with exponential growth.

We start by boundingWq(µ1t, µ2t) andWq(µ1t, µ3t). In order to do so, we prove the

following lemma, which will be the key for our analysis.
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Lemma 3. For λ ∈ (1,∞), i, j ∈ {1, 2, 3} and i 6= j, we have the following identity:

Wλ(µit, µjt) = inf
{(

E
[ ∫ t

0

λ ‖∆xij(s)‖λ−2〈∆xij(s),∆bij(s−)〉ds
])1/λ}

,

where the infimum is taken over the couplings whose marginals are µit and µjt and

∆xij(s) , xi(s)− xj(s),

∆bij(s−) , bi(xi(s−), α)− bj(xj(s−), α).

This result extends the recent study Gairing et al. [2018] and lets us relate the

Wasserstein distance between the distributions of the random processes to their drift

functions.

By using Lemma 3, we start by bounding the Wasserstein distance between µ1t and

µ2t. The result is summarized in the following theorem.

Theorem 8. Assume that the following condition holds: 0 < η ≤ m
M2 . Then, we have

Wq
q (µ1t, µ2t) ≤ Cq Poly(k, η, β, d),

for some C > 0.

The full statement of the proof and the explicit constants are provided in appendix.

By only considering the leading terms of the bound provided in Theorem 8, we obtain

the following corollary.

Corollary 1. Suppose that 0 < η < min
{

1, mM2

}
. Then, the bound for the Wasserstein

distance between the laws of x1(t) and x2(t) can be written as follows:

Wq
q (µ1t, µ2t) ≤C(k2η + k2η1+γ/αβ−(q−1)γ/αd).

By combining Corollary 1 with Lemma 2, we obtain the following result, which

provides an upperbound for the first term of the right hand side of (5.2).

Corollary 2. For 0 < η < m
M2 , there exists a constant C > 0 such that the following

bound holds:∣∣E[f(x1(kη))]− E[f(x2(kη))]
∣∣ ≤ C(k1+ 1

q η
1
q + k1+ 1

q η
1
q+ γ

αq β−
(q−1)γ
αq d

)
.

Remark For any ε > 0, if we choose k ' ε−1Poly(β, d) and η < ε2q+1Poly(β, d), then

the bound in Corollary 2 scales as εPoly(β, d). �
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Next, by using a similar approach, we bound the distance between µ1t and µ3t. In

the next theorem, we show that the error grows polynomially with the parameters.

Theorem 9. We have the following estimate:

Wq
q (µ1t, µ3t) ≤CqPoly(k, η, β, d)

By considering the leading terms of the bound in Theorem 9 and combining it with

Lemma 2, we obtain the following corollaries.

Corollary 3. There exists a constant C ≥ 0 such that the following bound holds:

Wq
q (µ1t, µ3t) ≤C(kq+γη + kq+γηqβ−

q−1
α d).

Corollary 4. There exists a constant C ≥ 0 such that the following inequality holds:

|E[f(x1(kη))]− E[f(x3(kη))]| ≤ C
(
kγ+ γ+q

q ηγ+ 1
q β−

γ
α d+ kγ+ γ+q

q η
1
q

)
.

Remark For any ε > 0, if we choose k ' ε−1Poly(β, d) and η < ε2q+γq+γPoly(β, d),

then the bound in Corollary 4 scales as εPoly(β, d). �

We now pass to the term Ef(x3(kη))−Ef(ŵ) of (5.2). Since we have that µ3t expo-

nentially converges to π in Wasserstein distance (Proposition 1), as a direct application

of Lemma 2, we obtain the following result.

Lemma 4. Let ŵ be a random variable drawn from the invariant measure π ∝ exp(−βf)

of (5.5). There exists a constant C ≥ 0 such that the following bound holds:

|E[f(x3(t))]− E[f(ŵ)]| ≤ C bβ + d

m
exp(−λ∗β−1t).

Remark For any ε > 0, if we take kη > β
λ∗

log
(

1
ε

)
, then the bound in Lemma 4 can

be scaled as εPoly(β, d). �

We finally bound the term Ef(ŵ) − f∗, which is the expected suboptimality of a

sample from π. By following a similar proof technique presented in Raginsky et al.

[2017], we obtain the following result.

Lemma 5. For β > 0, we have

E[f(ŵ)]− f? ≤β−1 log
( (2e(b+ d

β ))d/2Γ(d2 + 1)βd

(dm)d/2

)
+
β−γ−1Mc−1

α

1 + γ
.

Combining Corollary 2, Corollary 4, Lemma 4, and Lemma 5 proves Theorem 7.
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5.4 Additional remarks

In this part, we first compare our global convergence result with those for Unadjusted

Langevin Algorithm presented in Raginsky et al. [2017]. Then, we discuss the feasibility

of the smoothness assumption A4 and provide an explicit condition such that assumption

A4 holds.

5.4.1 Comparison with ULA

Let us compare this result with those for ULA presented in Raginsky et al. [2017], since

they use a similar decomposition (as opposed to Xu et al. [2018]). The last two terms of

the right hand side of the bound in Theorem 7 have less importance as they can be made

arbitrarily small by increasing β. Besides, for β large enough, the first two terms in our

bound can be combined in a single term that scales in the order of k1+max{ 1
q ,γ+ γ

q }η
1
q .

The corresponding term for ULA is given as follows: kη5/4, cf. Section 3.1 of Raginsky

et al. [2017]. This observation shows that (5.1) has a worse dependency both on k and

η, which is not surprising and indeed in-line with the existing literature Mikulevičius

and Zhang [2011].

5.4.2 Discussion on smoothness assumptions

In this section we will discuss assumption A4 and provide a condition on γ such that

A4 holds. Let us recall the four constraints given in A4:

(1/p+ 1/q) = (1/p1 + 1/q1) = 1

γp < 1, γq1 < 1, (q − 1)p1 < 1.

We will refer to these conditions as the first, second, third, and fourth conditions,

respectively. Our aim is to find a condition on γ (more precisely, the maximum value of

γ) such that there exist p, q, p1, q1 > 0 satisfying these four conditions.

First, suppose that p > q1. Then, the maximum value of γ is decided by the second

constraint. Since we want γ to be as large as possible, it is natural to choose a smaller

p. We observe that, as we decrease p, due to the first and the fourth constraints, the

value of q1 needs to be increased. If we continue decreasing p, then q1 continues to

be increased and soon becomes strictly greater than p. At this moment, the maximum

value of γ is decided by the third constraint, not by the second constraint anymore, and

from this point on, it is more plausible to decrease q1.

By this intuition, it is reasonable to choose p to be equal to q1, which implies that

p1 = q. Accordingly, the fourth constraint becomes: (q−1)q < 1. By noting that q > 1,

solving this constraint gives 1 < q < (1 +
√

5)/2. Then by the first constraint, we have

p > (3 +
√

5)/2, and the second constraint gives γ < 1/p < (3−
√

5)/2.
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This upper bound for γ is a number between 0.38 and 0.39 and tells us that there

exist p, q, p1, q1 satisfying the four constraints if and only if 0 ≤ γ < (3−
√

5)/2.

Let us take a closer look at Theorem 7. Since γ(q + 1) < (3 −
√

5)(3 +
√

5)/4 = 1,

we have γ + γ/q = γ(q + 1)/q < 1/q. Hence,

1 + max{1/q, γ + γ/q} = 1 + 1/q.

Let ε1 and ε2 be positive numbers such that

1/q − ε1 = 2/(1 +
√

5) = (
√

5− 1)/2,

γ + ε2 = (3−
√

5)/2.

then, if q = p1 is approximately equal to (1 +
√

5)/2 and γ is approximately equal to

(3−
√

5)/2, we imply that ε1 and ε2 become very small and

1/q ≈ (
√

5− 1)/2,

1/q + γ/(αq) ≈ (
√

5− 1)/2 + (
√

5− 2)/α,

(q − 1)γ/(qα) ≈ (7− 3
√

5)/(2α).

For example, the values α = 1.65, γ = 0.38, p = q1 = 2.63, q = p1 = q/(q−1) ≈ 1.613

satisfy assumption A4. Hence, the bound in Theorem 7 can be expressed as follows:

Corollary 5. Under conditions A1-7, for α = 1.65, γ = 0.38, p = q1 = 2.63, q = p1 =

q/(q − 1) ≈ 1.613 and for 0 < η < m
M2 , there exists a positive constant C independent

of k and η such that the following bound holds:

E[f(wk)]− f∗ ≤C

{
k1.62η0.61 +

k1.62η0.75d

β0.0875
+
βb+ d

m
exp(−λ∗kη

β
)

}
+

Mc−1
α

1.38β1.38

+
1

β
log

(2e(b+ d
β ))

d
2 Γ(d2 + 1)βd

(dm)
d
2

.

Proof. The result is a direct consequence of Theorem 7.

As a final remark on this smoothness condition, we note that similar constraints are

imposed on Lévy-driven SDEs in other studies as well Panloup [2008], Şimşekli [2017].

This is due to the fact that such SDEs often require better-behaved drifts in order to

be able to compensate the jumps incurred by the Lévy motion.

5.5 Extensions

In this section, we discuss the implications of our results in the classical Monte Carlo

sampling context. Then, we provide a similar global convergence result for the case

where the gradient is replaced by a stochastic gradient.
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5.5.1 Guarantees for posterior sampling

If our aim is only to draw samples from the distribution π, then, for a fixed k, we can

bound the Wasserstein distance between the law of wk and π. The result is stated as

follows:

Corollary 6. For 0 < η ≤ m
M2 , the following bound holds:

Wq(µ2t, π) ≤C
(
k

max{2,q+γ}
q η

1
q + k

max{2,q+γ}
q η

1
q+ γ

qα β−
γ(q−1)
qα d

1
q + βe−λ∗

kη
β

)
.

As a typical use case, we can consider Bayesian posterior sampling, where we choose

β = 1 and

f(X) = −(log P(Y |X) + log P(X)).

Here, Y denotes a dataset, P(Y |X) is the likelihood, P(X) denotes the prior density,

and the target distribution π becomes the posterior distribution with density P(X|Y ).

5.5.2 Extension to stochastic gradients

In many machine learning problems, the function f to be minimized has the following

form:

f(x) ,
1

n

n∑
i=1

f (i)(x),

where i denotes different data points and n is the total number of data points. In

large-scale applications, n can be very large, which renders the gradient computation

infeasible. Therefore, at iteration k, we often approximate ∇f by its stochastic version

that is defined as follows:

∇fk(x) ,
1

ns

∑
i∈Ωk

∇f (i)(x),

where Ωk is a random subset of {1, . . . , n} with |Ωk| = ns � n. The quantity ∇fk(x) is

often referred to as the ‘stochastic gradient’. If the stochastic gradients satisfy a moment

condition, then we have the following results:

Theorem 10. Assume that for each i, the function x 7→ f (i)(x) satisfies the conditions

A1-7. Let us replace ∇f by ∇fk in (5.1). If, in addition, there exists δ ∈ [0, 1) for any

k, such that

EΩk‖cα(∇f(x)−∇fk(x))‖q1 ≤δq1Mq1‖x‖γq1 ,

for x ∈ Rd, then we have the following bound:

Wq
q (µ1t, µ2t) ≤C(1 + δ)(k2η + k2η1+γ/αβ−γ(q−1)/αd).
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Similar to our previous bounds, we can use Theorem 10 for obtaining a bound for

the expected discrepancy, given as follows:

Corollary 7. Under the same assumptions as in Theorem 10, we have the following

bound:∣∣E[f(x1(kη))]− E[f(x2(kη))]
∣∣ ≤ C(1 + δ)

(
k1+ 1

q η
1
q + k1+ 1

q η
1
q+ γ

αq β−
(q−1)γ
αq d

)
.

These results show that the guarantees for (5.1) still hold even under the presence

of stochastic gradients.
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Chapter 6

First exit time analysis

While approximating SGD as a continuous-time SDE brings a new perspective for ana-

lyzing SGD, this approach might not be accurate for any step-size η, and some theoretical

concerns have already been raised for the validity of such approximations Yaida [2019].

Intuitively, one can expect that the metastable behavior of SGD would be similar to

the behavior of its continuous-time limit only when the discretization step-size is small

enough. Even though some theoretical results have been recently established for the

discretizations of SDEs driven by Brownian motion Tzen et al. [2018], it is not clear

that how the discretized Lévy SDEs behave in terms of metastability. In this chapter,

we provide a formal theoretical analysis where we derive explicit conditions for the step-

size such that the metastability behavior of the discrete-time system is guaranteed to

be close to its continuous-time limit.

This chapter is based on the article [Nguyen et al., 2019a].

6.1 First exit times of continuous-time Lévy stable

SDEs

Due to the discontinuities of the Lévy-driven SDEs, their metastability behaviors also

differ significantly from their Brownian counterparts. In this section, we will briefly

remind some important theoretical results, that we already mentioned in Section 4.4,

about the following SDE:

dwt = −∇f(wt)dt+ εdLαt (6.1)

For simplicity, let us consider this SDE in dimension one, i.e. d = 1. In a relatively

recent study Imkeller and Pavlyukevich [2006], the authors considered this SDE, where

the potential function f is required to have a non-degenerate global minimum at the

origin. Their result (Theorem 4) indicates that the first exit time of wt needs only

polynomial time with respect to the width of the basin and it does not depend on the
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depth of the basin, whereas Brownian systems need exponential time in the height of

the basin in order to exit from the basin Bovier et al. [2004], Imkeller et al. [2010b].

This difference is mainly due to the discontinuities of the Lévy motion, which enables

it to ‘jump out’ of the basin, whereas the Brownian SDEs need to ‘climb’ the basin due

to their continuity. Consequently, given that the gradient noise exhibits similar heavy-

tailed behavior to an α-stable distributed random variable, this result can be considered

as a proxy to understand the wide-minima behavior of SGD.

Let us remind that (see Section 4.4) this result has already been extended to Rd in

Imkeller et al. [2010a]. Extension to state dependent noise has also been obtained in

Pavlyukevich [2011]. We also note that the metastability phenomenon is closely related

to the spectral gap of the forward operator corresponding to the SDE dynamics (see e.g.

Bovier et al. [2004]) and it is known that this quantity scales like O(εα) for ε small which

determines the dependency to ε in the first term of the exit time (4.14) due to Kramer’s

Law Berglund [2011], Burghoff and Pavlyukevich [2015]. Burghoff and Pavlyukevich

[2015] showed that similar scaling in ε for the spectral gap would hold if we were to

restrict the SDE dynamics to a discrete grid with a small enough grid size.

6.2 The main result

In this chapter, we consider a stochastic differential equation with both a Brownian term

and a Lévy term, and its Euler discretization as follows Duan [2015]:

dwt = −∇f(wt)dt+ εσdBt + εdLαt (6.2)

wk+1 = wk − η∇f(wk) + εση1/2Zk+1 + εη1/αSk+1, (6.3)

with independent and identically distributed (i.i.d.) variables Zk ∼ N (0, I) where I is

the identity matrix, the components of Sk are i.i.d with SαS(1) distribution, and ε is

the amplitude of the noise. Here, we choose σ as a scalar for convenience. We also note

that the participation of the Brownian term in (6.2) enables the use of a Girsanov-like

change of measures, that is convenient for our analysis.

We formally define the first exit times, respectively for wt and wk as follows:

τξ,a(ε) , inf{t ≥ 0 : ‖wt − w̄‖ 6∈ [0, a+ ξ]}, (6.4)

τ̄ξ,a(ε) , inf{k ∈ N : ‖wk − w̄‖ 6∈ [0, a+ ξ]}. (6.5)

where w̄ is some local minimum and the processes are initialized at w0 ≡ w0 such that

‖w0 − w̄‖ ∈ [0, a].

Understanding the metastability behavior of SGD modeled by these dynamics re-

quires understanding the first exit times for the continuous-time process wt given by

(6.2) and its discretization wk (6.3). Similar to (4.12), we will study the first exit times

defined by (6.4) and (6.5). Note that in the special case ξ = 0, we recover τ0,a(ε) = τa(ε)

introduced previously in (4.12).
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Our main goal is to obtain an explicit condition on the step-size, such that the first

exit time of the continuous-time process τξ,a(ε) (6.4) would be similar to the first exit

time of its Euler discretization τ̄ξ,a(ε) (6.5). In equations (6.2) and (6.3), σ is chosen

as a scalar for convenience; however, we believe that this analysis can be extended to

the case where σ is a function of wt.

Let us now state the assumptions which will imply our result.

A 8. The SDE (6.2) admits a unique strong solution.

A 9. Consider the process dŵt = g(ŵ)dt+ εσdBt + εdLαt , where ŵ ≡ {ŵt}t≥0 denotes

the whole process and the drift g is defined as follows1:

g(ŵ) , −
∞∑
k=0

∇f(ŵkη)I[kη,(k+1)η)(t).

Here, I denotes the indicator function, i.e. IS(x) = 1 if x ∈ S and IS(x) = 0 if x /∈ S.

Then, the process φt , − g(ŵ)+∇f(ŵt)
εσ satisfies: E exp

(
1
2

∫ T
0
φ2
tdt
)
<∞.

A 10. The gradient of f is γ-Hölder continuous: There exists a constant M > 0 such

that

‖∇f(x)−∇f(y)‖ ≤M‖x− y‖γ , ∀x, y ∈ Rd.

A 11. The gradient of f satisfies the following assumption: ‖∇f(0)‖ ≤ B.

A 12. For some m > 0 and b ≥ 0, f is (m, b, γ)-dissipative:

〈x,∇f(x)〉 ≥ m‖x‖1+γ − b, ∀x ∈ Rd.

We note that, as opposed to the theory of SDEs driven by Brownian motion, the

theory of Lévy-driven SDEs is still an active research field where even the existence of

solutions with general drift functions is not well-established and the main contributions

have appeared in the last decade Priola et al. [2012], Kulik [2019]. For this reason, A8

has been a common assumption in stochastic analysis, e.g. Imkeller and Pavlyukevich

[2006], Imkeller et al. [2010a], Liang and Wang [2018]. Nevertheless, existence and

uniqueness results have been very recently established in Kulik [2019] for SDEs with

bounded Hölder drifts. Therefore A8 and A9 directly hold for bounded gradients and

extending this result to Hölder and dissipative drifts is out of the scope of this study.

On the other hand, the assumptions A10-A12 are standard conditions, which are often

considered in non-convex optimization algorithms that are based on discretization of

diffusions Raginsky et al. [2017], Xu et al. [2018], Erdogdu et al. [2018], Gao et al.

[2018b,a], Şimşekli et al. [2018], Liutkus et al. [2019].

The next assumption identifies an explicit condition for the step-size, which is re-

quired to make sure that the discrete process well-approximates the continuous one.

1It is easy to verify that ŵkη = wk for all k ∈ N+ [Raginsky et al., 2017].
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A 13. For a given δ > 0, t = Kη, and for some C > 0, the step-size satisfies the

following condition:

0 < η ≤ min
{

1,
m

M2
,
( δ2

2K1t2

) 1
γ2+2γ−1

,
( δ2

2K2t2

) 1
2γ

,
( δ2

2K3t2

) α
2γ

,
( δ2

2K4t2

) 1
γ
}
,

where ε is as in (6.3), the constants m,M, b are defined by A10– A12 and

K1 = O(dε2γ2−2), K2 = O(ε−2), K3 = O(d2γε2γ−2), K4 = O(d2γε2γ−2).

More explicit forms of the constants are provided in appendix.

The main result of this chapter is presented in the following theorem, its proof can

be found in appendix.

Theorem 11. Under assumptions A8- A13, the following inequality holds:

P[τ−ξ,a(ε) > Kη]− CK,η,ε,d,ξ − δ ≤ P[τ̄0,a(ε) > K] ≤ P[τξ,a(ε) > Kη] + CK,η,ε,d,ξ + δ,

where,

CK,η,ε,d,ξ ,
C1(Kη(dε+ 1) + 1)γeMηMη

ξ
+ 1−

(
1− Cde−ξ

2e−2Mη(εσ)−2/(16dη)
)K

+ 1−
(

1− Cαd1+α/2ηeαMηεαξ−α
)K

,

for some constants C1, Cα and C that does not depend on η or ε; M is given by A10

and ε is as in (6.2)–(6.3).

Remark Our result (Theorem 11) shows that with sufficiently small discretization step

η (as in assumption A13), the probability to exit a given neighborhood of the local opti-

mum at a fixed time t of the discretization process approximates that of the continuous

process. This result also provides an explicit condition for the step-size, which explains

certain impacts of the other parameters of the problem, such as dimension d, noise

amplitude ε, variance of Gaussian noise σ, towards the similarity of the discretization

and continuous processes. Theorem 11 enables the use of the metastability results for

Lévy-driven SDEs for their discretized counterpart. �

Exit time versus problem parameters. In Theorem 11, if we let η go to zero

for any δ fixed, the constant CK,η,ε,d,ξ will also go to zero, and since δ can be chosen

arbitrarily small, this implies that the probability of the first exit time for the discrete

process and the continuous process will approach each other when the step-size gets

smaller, as expected. If instead, we decrease d or ε, the quantity CK,η,ε,d,ξ also decreases

monotonically, but it does not go to zero due to the first term in the expression of

CK,η,ε,d,ξ.

Exit time versus width of local minima. Popular activation functions used in deep

learning such as ReLU functions are almost everywhere differentiable and therefore the
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cost function has a well-defined Hessian almost everywhere (see e.g. Li and Yuan [2017]).

The eigenvalues of the Hessian of the objective near local minima have also been studied

in the literature (see e.g. Sagun et al. [2016], Papyan [2018]). If the Hessian around a

local minimum is positive definite, the conditions for the multi-dimensional version of

Theorem 4 in Imkeller et al. [2010a]) are satisfied locally around a local minimum. For

local minima lying in wider valleys, the parameter a can be taken to be larger; in which

case the expected exit time Eτ0,a(ε) ∼ O(aα) will be larger by the formula (4.14). In

other words, the SDE (4.6) spends more time to exit wider valleys. Theorem 11 shows

that SGD modeled by the discretization of this SDE will also inherit a similar behavior

if the step-size satisfies the conditions we provide (A13).

6.3 Proof overview

Relating the first exit times for wt (6.2) and wk (6.3) often requires obtaining bounds

on the distance between wkη and wk. For this purpose, for any given local minimum w̄

of f and a > 0, we define the following set

A ,
{

(w1, . . . ,wK) ∈ Rd × . . .× Rd : max
k≤K
‖wk − w̄‖ ≤ a

}
, (6.6)

which contains the sets of K points in Rd, each point at a distance of at most a from

the local minimum w̄. We also define the following set

Na ,
{

w ∈ Rd : ‖w − w̄‖ ≤ a
}
. (6.7)

If ‖wk − wkη‖ is small with high probability, then we expect that their first exit

times from the set Na will be close to each other as well with high probability. For

objective functions with bounded gradients, in order to relate τξ,a(ε) to τ̄ξ,a(ε), one can

attempt to use the strong convergence of the Euler scheme (cf. Mikulevičius and Xu

[2018] Proposition 1): limη→0 E‖wk − wkη‖ = 0. By using Markov’s inequality, this

result implies convergence in probability: for any δ > 0 and ε > 0, there exists η such

that P(‖wk − wkη‖ > ε) < δ/2. Then, if wkη ∈ Na one of the following events must

happen:

1. wk ∈ Na,

2. wk 6∈ Na and ‖wk −wkη‖ > ε (with probability less than δ/2),

3. wk /∈ Na and distance from wk to Na is at most ε (with probability less than δ/2).

By using this observation, we obtain: P[wkη ∈ Na] ≤ P[wk ∈ Na] + δ. Even though we

could use this result in order to relate τξ,a(ε) to τ̄ξ,a(ε), this approach would not yield

a meaningful condition for η since the bounds for the strong error E‖wk −wkη‖ often

grows exponentially in general with k, which means η should be chosen exponentially
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small for a given k. Therefore, in our strategy, we choose a different path where we do

not use the strong convergence of the Euler scheme.

Our proof strategy is inspired by the recent study Tzen et al. [2018], where the

authors analyze the empirical metastability of the Langevin equation which is driven

by a Brownian motion. However, unlike the Brownian case that Tzen et al. [2018] was

based on, some of the tools for analyzing Brownian SDEs do not exist for Lévy-driven

SDEs, which increases the difficulty of our task.

We first define a linearly interpolated version of the discrete-time process {wk}k∈N+
,

which will be useful in our analysis, given as follows:

dŵt = b(ŵ)dt+ εσdB(t) + εdLαt , (6.8)

where ŵ ≡ {ŵt}t≥0 denotes the whole process and the drift function b(ŵ) is chosen as

follows:

b(ŵ) , −
∞∑
k=0

∇f(ŵkη)I[kη,(k+1)η)(t).

Here, I denotes the indicator function, i.e. IS(x) = 1 if x ∈ S and IS(x) = 0 if x /∈ S. It

is easy to verify that ŵkη = wk for all k ∈ N+ Dalalyan [2017b], Raginsky et al. [2017].

In our approach, we start by developing a Girsanov-like change of measures Tankov

[2003] to express the Kullback-Leibler (KL) divergence between µt and µ̂t, which is

defined as follows:

KL(µ̂t, µt) ,
∫

log
dµ̂t
dµt

dµ̂t,

where µt denotes the law of {ws}s∈[0,t], µ̂t denotes the law of {ŵs}s∈[0,t], and dµt/dµ̂t

is the Radon–Nikodym derivative of µt with respect to µ̂t. Here, we require A9 for the

existence of a Girsanov transform between µ̂t and µt and for establishing an explicit

formula for the transform. In appendix, we show that the KL divergence between µt

and µ̂t can be written as:

KL(µ̂t, µt) =
1

2ε2σ2
E
[∫ t

0

‖b(ŵ) +∇f(ŵs)‖2ds

]
. (6.9)

While this result has been known for SDEs driven by Brownian motion Øksendal and

Sulem [2005], none of the references we are aware of expressed the KL divergence as

in (6.9). We also note that one of the key reasons that allows us to obtain (6.9) is

the presence of the Brownian motion in (6.2), i.e. σ > 0. For σ = 0 such a measure

transformation cannot be performed Debussche and Fournier [2013].

In the next result, we show that if the step-size is chosen sufficiently small, the KL

divergence between µt and µ̂t is bounded.

Theorem 12. Assume that the conditions A8-A13 hold. Then the following inequality

holds:

KL(µ̂t, µt) ≤ 2δ2.
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The proof technique is similar to the approach of Dalalyan [2017b], Raginsky et al.

[2017]: the idea is to divide the integral in (6.9) into smaller pieces and bounding each

piece separately. Once we obtain a bound on KL, by using an optimal coupling argument,

the data processing inequality, and Pinsker’s inequality, we obtain a bound for the total

variation (TV) distance between µt and µ̂t as follows:

PM[(wη, . . . ,wKη) 6= (ŵη, . . . , ŵKη)] ≤ ‖µKη − µ̂Kη‖TV ≤
(1

2
KL(µ̂Kη, µKη)

) 1
2

.

where M denotes the optimal coupling between {ws}s∈[0,Kη] and {ŵs}s∈[0,Kη], i.e., the

joint probability measure of {ws}s∈[0,Kη] and {ŵs}s∈[0,Kη], which satisfies the following

identity Lindvall [2002]:

PM[{ws}s∈[0,Kη] 6= {ŵs}s∈[0,Kη]] = ‖µKη − µ̂Kη‖TV .

Combined with Theorem 12, this inequality implies the following useful result:

P[(wη, . . . ,wKη) ∈ A]− δ ≤ P[τ̄0,a(ε) > K] ≤ P[(wη, . . . ,wKη) ∈ A] + δ (6.10)

where we used the fact that the event (ŵ(η), . . . , ŵ(Kη)) ∈ A is equivalent to the event

(τ̄0,a(ε) > K). The remaining task is to relate the probability P[(wη, . . . ,wKη) ∈ A]

to P[τξ,a(ε) > Kη]. The event (wη, . . . ,wKη) ∈ A ensures that the process wt does

not leave the set Na when t = η, . . . ,Kη; however, it does not indicate that the process

remains in Na when t ∈ (kη, (k+1)η). In order to have a control over the whole process,

we introduce the following event:

B ,
{

max
0≤k≤K−1

sup
t∈[kη,(k+1)η]

‖wt −wkη‖ ≤ ξ
}
,

such that the event [(wη, . . . ,wKη) ∈ A] ∩B ensures that the process stays close to Na

for the whole time. By using this event, we can obtain the following inequalities:

P[(wη, . . . ,wKη) ∈ A] ≤P[(wη, . . . ,wKη) ∈ A ∩B] + P[(wη, . . . ,wKη) ∈ Bc]

=P[τξ,a(ε) > Kη] + P[(wη, . . . ,wKη) ∈ Bc].

By using the same approach, we can obtain a lower bound on P[(wη, . . . ,wKη) ∈ A] as

well. Hence, our final task reduces to bounding the term P[(wη, . . . ,wKη) ∈ Bc], which

we perform by using the weak reflection principles of Lévy processes Bayraktar et al.

[2015]. This finally yields Theorem 11.

6.4 Numerical illustration

To illustrate our results, we perform the experiments on a synthetic setting and the

experiments on real data: a multi-layer fully connected neural network with ReLu acti-

vations on the MNIST dataset.
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Figure 6.1: Synthetic experiments. The vertical axis is the quantity |τ̄0,a − τ0,a|.

6.4.1 Synthetic data

We first conduct experiments on a synthetic problem, where the cost function is set to

f(x) = 1
2‖x‖

2. This corresponds to an Ornstein-Uhlenbeck-type process, which is com-

monly considered in metastability analyses Duan [2015]. This process locally satisfies

the conditions A8-A12.

Since we cannot directly simulate the continuous-time process, we consider the

stochastic process sampled from (6.3) with sufficiently small step-size as an approxi-

mation of the continuous scheme. Thus, we organize the experiments as follows. We

first choose a very small step-size, i.e. η = 10−10. Starting from an initial point w0

satisfying ‖w0‖ < a, we iterate (6.3) until we find the first K such that ‖wK‖ > a. We

repeat this experiment 100 times, then we take the average Kη as the ‘ground-truth’

first exit time. We continue the experiments by calculating the first exit times for larger

step-sizes (each repeated 100 times), and compute their distances to the ground truth.

The detailed settings of the parameters for this experiment (Figure 6.1) can be found

in appendix.

By Theorem 11, the distance between the first exit times of the discretization and

the continuous processes depends on two terms CK,η,ε,d,ε̄ and δ, which are used for
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explaining our experimental results.

We observe from Figure 6.1(a) that the error to the ground-truth first exit time is

an increasing function of η, which directly matches our theoretical result. Figure 6.1(b)

shows that, with small noise limit (e.g., in our settings, ε < 1 versus η ≈ 10−8), the error

decreases with the parameter ε. By A13, with increased ε, we have the term δ to be

reduced. On the other hand, CK,η,ε,d,ε̄ increases with ε. However, at small noise limit,

this effect is dominated by the decrease of δ, that makes the error decrease overall. The

decreasing speed then decelerates with larger ε, since, the product εη becomes so large

that the increase of CK,η,ε,d,ε̄ starts to dominate the decrease of δ. Thus, it suggests

that for a large ε, a very small step-size η would be required for reducing the distance

between the first exit times of the processes. In Figure 6.1(c), the error decreases when

the variance σ increases. The reason for the performance is the same as in (b), and

can be explained by considering the expression of δ and CK,η,ε,d,ε̄ in the conclusion of

Theorem 11.

In Figure 6.1(d), for small dimension, with the same exit time interval, when we

increase d, both processes escape the interval earlier, with smaller exit times. Hence,

the distance between their exit times becomes smaller. With larger d, the increasing

effect of δ and CK,η,ε,d,ε̄ starts to dominate the above ‘early-escape’ effect, thus, the

decreasing speed of the error diminish. We observe that the error even slightly increases

when α = 1.2 and d grows from 70 to 100.

6.4.2 Neural networks

0 0.02 0.04 0.06 0.08 0.1
0

40

80

120

160

200
Depth = 2

0 0.02 0.04 0.06 0.08 0.1
0

40

80

120

160

200
Width = 50

Figure 6.2: Results of the neural network experiments.

In our second set of experiments, we consider the real data setting used in Şimşekli

et al. [2019]: a multi-layer fully connected neural network with ReLu activations on the

MNIST dataset. We adapted the code provided in Şimşekli et al. [2019] and we provide

our version in https://github.com/umutsimsekli/sgd_first_exit_time. For this

model, we followed a similar methodology: we monitored the first exit time by varying

the η, the number of layers (depth), and the number of neurons per layer (width). Since
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a local minimum is not analytically available, we first trained the networks with SGD

until a vicinity of a local minimum is reached with at least 90% accuracy, then we

measured the first exit times with a = 1 and ε = 0.1. In order to have a prominent

level of gradient noise, we set the minibatch size b = 10 and we did not add explicit

Gaussian or Lévy noise. The result is given in Figure 6.2. We observe that, even with

pure gradient noise, the error in the exit time behaves very similarly to the one that we

observed in Figure 6.1(a), hence supporting our theory. We further observe that, the

error has a better dependency when the width and depth are relatively small, whereas

the slope of the error increases for larger width and depth. This result shows that,

to inherit the metastability properties of the continuous-time SDE, we need to use a

smaller η as we increase the size of the network. Note that this result does not conflict

with Figure 6.1(d), since changing the width and depth does not simply change d, it

also changes the landscape of the problem.
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Chapter 7

Conclusion and future work

In this thesis, we investigated the tail behavior of the gradient noise in deep neural

networks and empirically showed that the gradient noise is highly non-Gaussian. We

analyzed the global convergence property of SGD for non-convex optimization via a

stochastic process, which can be seen as a perturbed version of the gradient descent

algorithm with heavy-tailed α-stable noise, for non-convex optimization and proved

finite-time bounds for its expected suboptimality. Our results agreed with the existing

related work, and showed that the weak-error of this algorithm increases faster than

unadjusted Langevin algorithm (ULA), which suggests using smaller step-sizes.

In terms of metastability, we derived explicit conditions for the step-size such that the

discrete-time SGD can inherit the metastability behavior of its continuous-time limit.

These outcomes enabled us to analyze SGD as a stochastic differential equation

(SDE) driven by a Lévy motion and establish a bridge between SGD and existing theo-

retical results, which provides more insights on the behavior of SGD, especially in terms

of choosing wide minima.

Future directions

Our study also brings up the following questions:

1. We observe that the tail-index might depend on the current state wk, which suggests

analyzing SGD as a ‘stable-like process’ where the tail-index can depend on time

[Bass, 1988]. However, the metastability behavior of these processes are not clear

at the moment and its theory is still in an early phase [Kuhwald and Pavlyukevich,

2016].

2. At the initial point, in the over-parametrized regime with large batch sizes, the noise

can in fact be of Gaussian nature (Figure 4.2). However, this property is destroyed

quickly (see Neal [1996], Der and Lee [2006], Lee et al. [2018] for a discussion on the

infinite width networks, and Panigrahi et al. [2019] for a discussion on the early phases
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and large batches). We note that such Gaussianity heavily depends on the structure

of the data, initialization scheme, and the size of the network in a sensitive way

and may hold in only certain regimes or in specific cases. We think that identifying

the crossover between the Gaussian and non-Gaussian regimes depending on the

architecture and data is an important open problem.

3. Even though the general heavy-tailed behavior remains unchanged with the choice

of the loss function, we still observe different behaviors in terms of relation to gen-

eralization (see Figure 4.11). We note that our results are related to the findings

of [Martin and Mahoney, 2019], which modeled the weight matrices as heavy-tailed

random matrices and investigated the density of the singular values of those matrices.

Their empirical results on various different types of neural networks show that when

the batch size gets smaller, the training process is able to catch finer-scale correla-

tions from the data, leading to more strongly-correlated models between the layers

of the network and that the entries of the weight matrices and the density of its

singular values have heavier tails. Our results in Section 4.6.4 are partially consistent

with the findings of [Martin and Mahoney, 2019]. Their results combined with ours

would shed more light into the heavy-tailedness of the SGD iterates and generaliza-

tion properties of SGD algorithms. In the future, we would like to investigate the

underlying deeper connections between the heavy-tailed behavior and generalization

further from both a mathematical and experimental perspectives.

4. We have empirically observed a heavy-tailed behavior in the stochastic gradient noise;

however, it is still not (rigorously) clear what the underlying mechanism that drives

this heavy-tailed behavior is. One possible idea is to consider a deep network with

l layers f(w) , w(l)σl(w
(l−1)σl−1(...w(2)σ2(w(1)xi) . . .)) where we look for optimal

weights w by minimizing the associated loss function using SGD algorithm, and then

relate the stochastic gradient noise to a self-similar process which has a close connec-

tion with Lévy-driven SDE and α-stable distribution Pipiras and Taqqu [2017]. Addi-

tionally, there have been nice theoretical guarantees established for those self-similar

processes Pipiras and Taqqu [2017] which could be useful for building a theoreti-

cal analysis of the heavy-tailed behavior of the stochastic gradient noise. Therefore,

investigating this underlying mechanism would be a promising future direction.

5. Another interesting research direction concerns the multifractality, which is one of the

important aspects of stochastic processes such as fractional Brownian motion, Lévy

motion, etc. These processes are used for modeling phenomena in nature Bobrov et al.

[2005], Pavlov et al. [2018], Teotia and Kumar [2011], which are often very irregular.

Multifractal analysis consists of studying the set of the irregular points, characterized

by the Hölder exponent Yang et al. [2018], of a function f . Motivated by the first

exit time problem from local minima, it is also intriguing to study the connection

between FLA (3.3) and the (ir)regularity of function f by using multifractality: The
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probability that wk in (3.3) resides in a set of low regularity points of f and the role

of index α towards this probability.

6. Besides first exit time and metastability, studying the minimal time needed for a

stochastic optimization algorithm (e.g. equation (4.2)) to enter a region containing

a local minimum is important as well. Such minimal time is called hitting time

and has been studied in recent years Zhang et al. [2017b], Chen et al. [2020] for

Stochastic Gradient Langevin Dynamics, which is obtained by replacing the gradient

in ULA (3.2) by stochastic gradient. Thus, extending these results for FLA (3.3) is

a natural research direction and would provide a better understanding of the heavy-

tailed behavior in the stochastic gradient noise.
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Appendix

Supplementary materials for Chapter 5

Proof of Lemma 1

Proof. Let q(x, t) be the probability density of x(t). By Proposition 1 in Schertzer et al.

[2001] (see also Section 7 of the same study), the fractional Fokker-Planck equation

associated with (5.5) is given as follows:

∂tq(x, t) = −
d∑
i=1

∂i[(b(x, α))iq(x, t)]− β−1
d∑
i=1

Dαi q(x, t).

Using Definition (5.6) of b, we have

∂tq(x, t) =−
d∑
i=1

∂i

[β−1Dα−2
i (−βφ(x)∂if(x))

φ(x)
q(x, t)

]
− β−1

d∑
i=1

Dαi q(x, t)

=−
d∑
i=1

∂i

[β−1Dα−2
i (−βπ(x)∂if(x))

π(x)
q(x, t)

]
− β−1

d∑
i=1

Dαi q(x, t)

=−
d∑
i=1

∂i

[β−1Dα−2
i (∂iπ(x))

π(x)
q(x, t)

]
− β−1

d∑
i=1

Dαi q(x, t).

Here, we used π(x) = φ(x)/
∫
φ(x)dx in the second equality and−β∂if(x) = ∂i log π(x) =

∂iπ(x)
π(x) in the third equality. Next, by replacing q by π on the right hand side of the

above equality, we have:
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−
d∑
i=1

∂i

[β−1Dα−2
i (∂iπ(x))

π(x)
π(x, t)

]
− β−1

d∑
i=1

Dαi π(x, t) =

=−
d∑
i=1

∂i

[
β−1Dα−2

i (∂iπ(x))
]
− β−1

d∑
i=1

Dαi π(x, t)

=−
d∑
i=1

∂i∂i

[
β−1Dα−2

i (π(x))
]
− β−1

d∑
i=1

Dαi π(x, t)

=

d∑
i=1

D2
i [β
−1Dα−2

i (π(x))]− β−1
d∑
i=1

Dαi π(x, t)

=

d∑
i=1

Dαi [β−1π(x)]− β−1
d∑
i=1

Dαi π(x, t)

=0.

Here, we used Proposition 1 in Şimşekli [2017], D2u(x) = − ∂
∂x2u(x), and the semi-

group property of the Riesz derivation DaDbu(x) = Da+bu(x). This proves that π is an

invariant measure of the Markov process (x(t))t≥0.

Proof of Proposition 1

Proof. By Corollary 1.3 in Liang and Wang [2018], the assumptions imply that there

exist constants C̄ > 0 and C̄1 > 0 such that W1(µ3t, π) ≤ C̄βe−C̄1t.

Let P3t be the coupling of µ3t and π that such thatW1(µ3t, π) =
∫
‖x3(t)− ŵ‖dP3t.

For 0 < λ < 1, by Hölder inequality,

Wλ
λ (µ3t, π) ≤

∫
‖x3(t)− ŵ‖λdP3t

≤
(∫
‖x3(t)− ŵ‖dP3t

)λ
=Wλ

1 (µ3t, π)

For α > λ > 1,

Wλ
λ (µ3t, π) ≤

∫
‖x3(t)− ŵ‖λdP3t

≤
∫
‖x3(t)− ŵ‖δ‖x3(t)− ŵ‖λ−δdP3t

≤
(∫
‖x3(t)− ŵ‖dP3t

)δ(∫
‖x3(t)− ŵ‖(λ−δ)/(1−δ)dP3t

)1−δ

=Wδ
1 (µ3t, π)

(∫
‖x3(t)− ŵ‖(λ−δ)/(1−δ)dP3t

)1−δ
,

where we used Holder’s inequality for δ < 1 such that (λ−δ)/(1−δ) < α, and
∫
‖x3(t)−

ŵ‖(λ−δ)/(1−δ)dP3t is bounded by a constant, by assumption A5.
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Finally, we have

Wλ(µ3t, π) ≤Cβe−C1t,

for some constants C,C1 > 0 and for 0 < λ < α. This completes the proof.

Remark Let us consider the case where the dimension d is equal to 1 (the exten-

sion for d > 1 is similar). The first part of assumption A5 can be satisfied un-

der the following (rather non-trivial) assumptions. Assume that there exist constants

P,C1, C2, C3, C4, C5, C6 > 0 such that:

f ′(z) > 0 if z > P, (7.1)∫
|z|≤P

|φ(z)f ′(z)|dz = C1 > 0 (7.2)∫
z<−P

φ(z)|f ′(z)||z|1−αdz = C2 > 0 (7.3)∫
z>P

φ(z)f ′(z)|z|1−αdz = C3 > 0, (7.4)

if |z| ≤ P :
∣∣∣ 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

∣∣∣ ≤ C4|x− y| ∀x, y ∈ R, (7.5)

if z < −P :
∣∣∣ 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

∣∣∣ ≤ C5|x− y||z|1−α ∀x, y ∈ R, (7.6)

if z > P :
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
≤ C6|z|1−α(y − x) ∀x, y ∈ R s.t x > y,

(7.7)

C1C4 + C2C5 < C3C6. (7.8)

By definition of Riesz potential, we have:

b(x)− b(y) =

∫
R

φ(z)f ′(z)
φ(x)|x− z|α−1

dz −
∫
R

φ(z)f ′(z)
φ(y)|y − z|α−1

dz

=

∫
R
φ(z)f ′(z)

( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz

=

∫
|z|≤P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz

+

∫
z<−P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz

+

∫
z>P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz.

By these assumptions, we estimate the first term on the right hand side in the above
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expression of b(x)− b(y), for x > y, as follows:∣∣∣ ∫
|z|≤P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz
∣∣∣ ≤

≤
∫
|z|≤P

|φ(z)f ′(z)|
∣∣∣ 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

∣∣∣dz
≤
∫
|z|≤P

|φ(z)f ′(z)|C4|x− y|dz

=C1C4|x− y|

=C1C4(x− y).

For the remaining terms, we have:∣∣∣ ∫
z<−P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz
∣∣∣ ≤

≤
∫
z<−P

|φ(z)f ′(z)|
∣∣∣ 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

∣∣∣dz
≤
∫
z<−P

φ(z)|f ′(z)|C5|z|1−α|x− y|dz

=C2C5|x− y|

=C2C5(x− y),

and ∫
z>P

φ(z)f ′(z)
( 1

φ(x)|x− z|α−1
− 1

φ(y)|y − z|α−1

)
dz ≤

≤
∫
z>P

φ(z)f ′(z)C6|z|1−α(y − x)dz

=C3C6(y − x)

=− C3C6(x− y).

By combining these estimates, we get, for x > y:

b(x)− b(y) ≤ (C1C4 + C2C5 − C3C6)(x− y).

Thus, (b(x)− b(y))(x− y) ≤ (C1C4 +C2C5 −C3C6)(x− y)2. Since C1C4 +C2C5 −
C3C6 < 0, this inequality for drift b makes the first part of assumption A5 hold. �

Proof of Lemma 2 In this section, we precise the statement of Lemma 2 and provide

the proof.

Lemma 6. Let v and w be two random variables on Rd which have µ and ν as the

probability measures and let g be a function in C1(Rd,R). Assume that for some c1 >

0, c2 ≥ 0 and 0 ≤ γ < 1,

‖∇g(w)‖ ≤ c1‖w‖γ + c2, ∀w ∈ Rd

80



then the following bound holds:∣∣∣ ∫ gdµ−
∫
gdν

∣∣∣ ≤ (c1(E‖w‖γp) 1
p

+ c1

(
E‖v‖γp

) 1
p

+ c2

)
Wq(µ, ν).

Proof. We have

g(v)− g(w) =

∫ 1

0

〈w − v,∇g((1− t)v + tw)〉dt

≤
∫ 1

0

‖w − v‖‖∇g((1− t)v + tw)‖dt (by Cauchy-Schwarz)

≤
∫ 1

0

‖w − v‖(c1((1− t)‖v‖+ t‖w‖)γ + c2)dt (by the assumption on ∇g)

≤ ‖w − v‖
(
c1(‖v‖+ ‖w‖)γ + c2

)
≤ ‖w − v‖(c1‖v‖γ + c1‖w‖γ + c2). (by Lemma 16)

Now let P be a joint probability distribution of µ and ν that achievesWλ(µ, ν), that

is, P = L((w,v)) with µ = L(w) and ν = L(v). We have∫
gdµ−

∫
gdν = EP[g(w)− g(v)]

≤ [EP(c1‖w‖γ + c1‖v‖γ + c2)p]
1
p [EP‖w − v‖q]

1
q

≤
(
c1

(
EP‖w‖γp

) 1
p

+ c1

(
EP‖v‖γp

) 1
p

+ c2

)
Wq(µ, ν),

where we have used Holder’s inequality and Minkowski’s inequality.

Proof of Lemma 3

Proof. We define a real function Fλ as follows:

Fλ(y) , ‖y‖λ. (7.9)

It is clear that Fλ is a C1 function. Let y(t) , x1(t)− x2(t). By the chain rule,

dFλ(y(t)) = 〈∇Fλ(y(t)), b1(x1(t−), α)− b2(x2(t−), α)〉dt

= λ ‖x1(t)− x2(t))‖λ−2〈x1(t)− x2(t), b1(x1(t−), α)− b2(x2(t−), α)〉dt.
(7.10)

By integrating both sides of (7.10) with respect to t, we arrive at

Fλ(y(t)) =Fλ(y(0)) +

∫ t

0

λ ‖x1(t)− x2(t))‖λ−2〈x1(t)− x2(t), b1(x1(t−), α)− b2(x2(t−), α)〉ds

=

∫ t

0

λ ‖x1(t)− x2(t))‖λ−2〈x1(t)− x2(t), b1(x1(t−), α)− b2(x2(t−), α)〉ds.
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By definition of Wasserstein distance, we have

Wλ(µ1t, µ2t) = inf{(E[Fλ(y(t))])1/λ},

which is the desired result.

Proof of Theorem 8 In this section, we first precise the statement of Theorem 8 and

then provide the corresponding proof.

Theorem 13. Let E‖Lα(1)‖λ , lα,λ,d <∞. We also define the following quantities:

P1(η) ,
(
cη
( d

β1/α

)) 1
p1

+ (cη)
1
p1 + (2η(b+m))

(q−1)
2 + 2

(q−1)
2 (ηB)(q−1)

+
( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d
+ ηq−1Mq−1

(
(2η(b+m))

(q−1)γ
2 + 2

(q−1)γ
2 (ηB)(q−1)γ

+
( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

)
,

P2(η) ,M
((
cη
( d

β1/α

)) 1
q1

+ (cη)
1
q1 + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
,

Q1(η) , c
1
p1 + (E‖x2(0)‖(q−1)p1)

1
p1 + ηq−1

(
Mq−1(E‖x2(0)‖(q−1)p1γ)

1
p1 +B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d
,

Q2 ,M(E‖x2(0)‖γq1)
1
q1 +Mc

1
q1 .

Under additional assumption on the step-size: 0 < η ≤ m
M2 , we have

Wq
q (µ1t, µ2t) ≤ qη

(
k2P1(η)P2(η) + k1+1/p1P1(η)Q2 + k1+1/q1P2(η)Q1(η) + kQ1(η)Q2

)
.

Proof. From Lemma 3, we have

Wq
q (µ1t, µ2t) =

=E
[ ∫ t

0

q ‖x1(s)− x2(s))‖q−2〈x1(s)− x2(s), b1(x1(s−), α)− b2(x2(s−), α)〉ds
]

=

k−1∑
j=0

E
[ ∫ (j+1)η

jη

q ‖x1(s)− x2(s))‖q−2〈x1(s)− x2(s), b1(x1(s−), α)− b2(x2(s−), α)〉ds
]

≤
k−1∑
j=0

E
[ ∫ (j+1)η

jη

q ‖x1(s)− x2(s)‖q−1cα‖∇f(x1(s))−∇f(x2(jη))‖ds
]

=q

k−1∑
j=0

∫ (j+1)η

jη

E
[
‖x1(s)− x2(s)‖q−1cα‖∇f(x1(s))−∇f(x2(jη))‖

]
ds

≤q
k−1∑
j=0

∫ (j+1)η

jη

[
E‖x1(s)− x2(s)‖(q−1)p1

] 1
p1
[
E‖cα(∇f(x1(s))−∇f(x2(jη)))‖q1

] 1
q1

ds,

82



where we have used Cauchy-Schwarz inequality in the third line and Holder’s inequality

in the last line.

Since (q − 1)p1 < 1 by assumption A4, using Lemma 16 twice, we have:(
E‖x1(s)− x2(s)‖(q−1)p1

) 1
p1 ≤

(
E‖x1(s)‖(q−1)p1 + E‖x2(s)‖(q−1)p1

) 1
p1

≤
[
E
(
‖x1(s)‖(q−1)p1

)] 1
p1

+
[
E
(
‖x2(s)‖(q−1)p1

)] 1
p1
.

Then, by applying Lemma 9 and Lemma 12 for s ∈ [jη, (j + 1)η), we obtain:(
E‖x1(s)−x2(s)‖(q−1)p1

) 1
p1 ≤

≤
(
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

+
[
E‖x2(0)‖(q−1)p1 + j

(
(2η(b+m))

(q−1)p1
2

+ 2
(q−1)p1

2 (ηB)(q−1)p1 +
( η
β

) (q−1)p1
α

lα,(q−1)p1,d

)
+ (s− jη)(q−1)p1

(
M (q−1)p1

(
E‖x2(0)‖(q−1)p1γ + j

(
(2η(b+m))

(q−1)p1γ
2

+ 2
(q−1)p1γ

2 (ηB)(q−1)p1γ +
( η
β

) (q−1)p1γ
α

lα,(q−1)p1γ,d

))
+B(q−1)p1

)
+
(s− jη

β

) (q−1)p1
α

lα,(q−1)p1,d

] 1
p1
.

Next, using Lemma 16, the inequalities j < j+1 and s−jη ≤ η for s ∈ [jη, (j+1)η),

we get(
E‖x1(s)−x2(s)‖(q−1)p1

) 1
p1 ≤

≤
(
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

+ (E‖x2(0)‖(q−1)p1)
1
p1 + (j + 1)

1
p1

(
(2η(b+m))

(q−1)
2

+ 2
(q−1)

2 (ηB)(q−1) +
( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d

)
+ ηq−1

(
Mq−1

(
(E‖x2(0)‖(q−1)p1γ)

1
p1

+ (j + 1)
1
p1

(
(2η(b+m))

(q−1)γ
2 + 2

(q−1)γ
2 (ηB)(q−1)γ +

( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

))
+B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d
.

We note that s < (j + 1)η and q − 1 < 1
p1

(from the assumptions). Hence,

(
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

≤
(
c
(

(j + 1)η
( d

β1/α
+ 1
)

+ 1
)) 1

p1

≤(j + 1)
1
p1

(
cη
( d

β1/α
+ 1
)) 1

p1
+ c

1
p1 ,

where the last inequality is an application of Lemma 16. By replacing this inequality
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into the previous one and rearranging the terms, we have(
E‖x1(s)− x2(s)‖(q−1)p1

) 1
p1

≤c
1
p1 + (E‖x2(0)‖(q−1)p1)

1
p1 + ηq−1

(
Mq−1(E‖x2(0)‖(q−1)p1γ)

1
p1 +B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d
+ (j + 1)

1
p1

((
cη
( d

β1/α
+ 1
)) 1

p1
+ (2η(b+m))

(q−1)
2

+ 2
(q−1)

2 (ηB)(q−1) +
( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d
+ ηq−1Mq−1

(
(2η(b+m))

(q−1)γ
2

+ 2
(q−1)γ

2 (ηB)(q−1)γ +
( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

))
≤c

1
p1 + (E‖x2(0)‖(q−1)p1)

1
p1 + ηq−1

(
Mq−1(E‖x2(0)‖(q−1)p1γ)

1
p1 +B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d
+ (j + 1)

1
p1

((
cη
( d

β1/α

)) 1
p1

+ (cη)
1
p1 + (2η(b+m))

(q−1)
2

+ 2
(q−1)

2 (ηB)(q−1) +
( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d
+ ηq−1Mq−1

(
(2η(b+m))

(q−1)γ
2

+ 2
(q−1)γ

2 (ηB)(q−1)γ +
( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

))
=Q1(η) + (j + 1)

1
p1 P1(η).

Here, we have used Lemma 16 in the last inequality. Now, consider the following quantity[
E‖cα(∇f(x1(s))−∇f(x2(jη)))‖q1

] 1
q1 ≤

[
E
(
M‖x1(s)− x2(jη)‖γ

)q1] 1
q1

≤
[
E
(
M‖x1(s)‖γ +M‖x2(jη)‖γ

)q1] 1
q1

≤
[
E
(
Mq1‖x1(s)‖γq1

)] 1
q1

+
[
E
(
Mq1‖x2(jη)‖γq1

)] 1
q1
,

where we have used assumption A2, Lemma 16 and Minkowski’s inequality.

By Lemma 9 and Lemma 12, we have[
E‖cα∇f(x1(s))−cα∇f(x2(jη))‖q1

] 1
q1 ≤

≤M
(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ

+
[
Mq1(E‖x2(0)‖γq1)

+Mq1j
(

(2η(b+m))
γq1
2 + 2

γq1
2 (ηB)γq1 +

( η
β

) γq1
α

lα,γq1,d

)] 1
q1
.

By using Lemma 16 and the inequality j < j + 1, we have[
E‖cα∇f(x1(s))− cα∇f(x2(jη))‖q1

] 1
q1 ≤

≤M
(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ

+M(E‖x2(0)‖γq1)
1
q1

+M(j + 1)
1
q1

(
(2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
.
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We note that s < (j + 1)η and γ < 1
q1

(from the assumptions). Hence,(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ
≤
(
c
(

(j + 1)η
( d

β1/α
+ 1
)

+ 1
)) 1

q1

≤(j + 1)
1
q1

(
cη
( d

β1/α
+ 1
)) 1

q1
+ c

1
q1 ,

where the last inequality is an application of Lemma 16. By replacing this inequality

into the previous one and rearranging the terms, we have

[
E‖cα∇f(x1(s))− cα∇f(x2(jη))‖q1

] 1
q1 ≤

≤M(E‖x2(0)‖γq1)
1
q1 +Mc

1
q1 +M(j + 1)

1
q1

((
cη
( d

β1/α
+ 1
)) 1

q1

+ (2η(b+m))
γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
≤M(E‖x2(0)‖γq1)

1
q1 +Mc

1
q1 +M(j + 1)

1
q1

((
cη
( d

β1/α

)) 1
q1

+ (cη)
1
q1 + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
=Q2 + (j + 1)

1
q1 P2(η).

Here, we used Lemma 16 in the last inequality. By combining the above inequalities,

we get

E
[ ∫ t

0

q ‖x1(s)− x2(s))‖q−2〈x1(s)− x2(s), b1(x1(s−), α)− b2(x2(s−), α)〉ds
]
≤

≤
k−1∑
j=0

qη
(

(j + 1)P1(η)P2(η) + (j + 1)
1
p1 P1(η)Q2 + (j + 1)

1
q1 P2(η)Q1(η) +Q1(η)Q2

)
≤ qη

(
k2P1(η)P2(η) + k1+1/p1P1(η)Q2 + k1+1/q1P2(η)Q1(η) + kQ1(η)Q2

)
.

The final conclusion follows from this inequality.

Proof of Corollary 1

Proof. In order to get the results from the bound obtained by Theorem 13, we take the

max power of k and the min power of η among the terms containing k and η but not

containing β. For the terms containing β, we take the max power of k, min power of η,

min power of 1/β and max power of d. We get

Wq
q (µ1t, µ2t) ≤C(k2η + k2η1+min{γ,q−1}/αβ−(q−1)γ/αd).

Since γ < 1/p = (q − 1)/q < q − 1, we finally obtain

Wq
q (µ1t, µ2t) ≤C(k2η + k2η1+γ/αβ−(q−1)γ/αd).
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Proof of Corollary 2

Proof. The proof starts from the bound established in Corollary 8 then, follows the same

lines of the proof of Corollary 1.

Proof of Theorem 7

Proof. We have the decomposition:

E[f(wk)]− f∗ =E[f(x2(kη))]− f∗

=(E[f(x2(kη))]− E[f(x1(kη))]) + (E[f(x1(kη))]− E[f(x3(kη))])

+ (E[f(x3(kη))]− E[f(ŵ))]) + (E[f(ŵ))]− f∗).

By Corollary 2, Corollary 4, Lemma 4 and Lemma 5, there exists a constant C ′

independent of k, η and β such that

E[f(wk)]− f∗ ≤C ′
(
k1+ 1

q η
1
q + k1+ 1

q η
1
q+ γ

αq β−
(q−1)γ
αq d+ kγ+ γ+q

q ηγ+ 1
q β−

γ
α d

+ kγ+ γ+q
q η

1
q + β

b+ d/β

m
exp(−λ∗β−1t)

)
+
β−γ−1Mc−1

α

1 + γ

+ β−1 log
( (2e(b+ d/β))d/2Γ(d/2 + 1)βd

(dm)d/2

)
.

Here, we note that kη = t. then by taking the largest power of k, smallest powers of η

and β−1 among the terms containing all of three parameters k, η and β, there exist a

constant C satisfying the following inequality:

E[f(wk)]− f∗ ≤C
(
k1+max{ 1

q ,γ+ γ
q }η

1
q + k1+max{ 1

q ,γ+ γ
q }η

1
q+ γ

αq β−
(q−1)γ
αq d

+ β
b+ d/β

m
exp(−λ∗β−1kη)

)
+
β−γ−1Mc−1

α

1 + γ

+ β−1 log
( (2e(b+ d/β))d/2Γ(d/2 + 1)βd

(dm)d/2

)
.

Proof of Theorem 9 In this section, we precise the statement of Theorem 9 and

provide the full proof.

Theorem 14. We have the following estimate:

Wq
q (µ1t, µ3t) ≤qt

(
M(cq−1 + cq−1

b )(cγ + cγb )
(
t
( d

β1/α
+ 1
)

+ 1
)q−1+γ

+ L(cq−1 + cq−1
b )

(
t
( d

β1/α
+ 1
)

+ 1
)q−1)

,

where c and cb are constants defined in Lemma 9 and Lemma 10.
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Proof. From Lemma 3, we have

Wq
q (µ1t, µ3t) =E

[ ∫ t

0

q ‖x1(s)− x3(s))‖q−2〈x1(s)− x3(s), b1(x1(s−), α)− b(x3(s−), α)〉ds
]

=

∫ t

0

q ‖x1(s)− x3(s))‖q−2〈x1(s)− x3(s), b1(x1(s−), α)− b(x3(s−), α)〉ds

≤E
[ ∫ t

0

q ‖x1(s)− x3(s)‖q−1‖cα∇f(x1(s)) + b(x3(s), α)‖ds
]

=q

∫ t

0

E
[
‖x1(s)− x3(s)‖q−1‖cα∇f(x1(s)) + b(x3(s), α)‖

]
ds

≤q
∫ t

0

[
E‖x1(s)− x3(s)‖(q−1)p1

] 1
p1
[
E‖cα∇f(x1(s)) + b(x3(s), α)‖q1

] 1
q1

ds,

where we have used Cauchy-Schwarz inequality in the third line and Holder’s inequality

in the last line.

Since (q − 1)p1 < 1 by assumption A4, using Lemma 16 twice, we have:(
E‖x1(s)− x3(s)‖(q−1)p1

) 1
p1 ≤

(
E‖x1(s)|(q−1)p1 + E‖x3(s)‖(q−1)p1

) 1
p1

≤
[
E
(
‖x1(s)‖(q−1)p1

)] 1
p1

+
[
E
(
‖x3(s)‖(q−1)p1

)] 1
p1
.

Then, by applying Lemma 9 and Lemma 10 we obtain:(
E‖x1(s)−x3(s)‖(q−1)p1

) 1
p1 ≤

(
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

+
(
cb

(
s
( d

β1/α
+ 1
)

+ 1
))q−1

.

Now, consider the following quantity[
E‖cα∇f(x1(s)) + b(x3(s), α)‖q1

] 1
q1 ≤

≤
[
E
(
‖cα∇f(x1(s))− cα∇f(x3(s))‖+ ‖cα∇f(x3(s)) + b(x3(s), α)‖

)q1] 1
q1

≤
[
E
(
M‖x1(s)− x3(s)‖γ + L

)q1] 1
q1

≤
[
E
(
M‖x1(s)‖γ +M‖x3(s)‖γ + L

)q1] 1
q1

≤
[
E
(
Mq1‖x1(s)‖γq1

)] 1
q1

+
[
E
(
Mq1‖x3(s)‖γq1

)] 1
q1

+ L,

where we have used assumption A2, assumption A6, Lemma 16 and Minkowski’s in-

equality. By Lemma 9 and Lemma 10, we have[
E‖cα∇f(x1(s)) + b(x3(s), α)‖q1

] 1
q1 ≤

≤M
(
c
(
s
( d

β1/α
+ 1
)

+ 1
))γ

+M
(
cb

(
s
( d

β1/α
+ 1
)

+ 1
))γ

+ L.
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By combining the above inequalities, we get

E
[ ∫ t

0

q ‖x1(s)− x3(s))‖q−2〈x1(s)− x3(s), b1(x1(s−), α)− b(x3(s−), α)〉ds
]
≤

≤q
∫ t

0

((
c
(
s
( d

β1/α
+ 1
)

+ 1
))q−1

+
(
cb

(
s
( d

β1/α
+ 1
)

+ 1
))q−1)(

M
(
c
(
s
( d

β1/α
+

+ 1
)

+ 1
))γ

+M
(
cb

(
s
( d

β1/α
+ 1
)

+ 1
))γ

+ L
)

ds

=q

∫ t

0

(
M(cq−1 + cq−1

b )(cγ + cγb )
(
s
( d

β1/α
+ 1
)

+ 1
)q−1+γ

+ L(cq−1 + cq−1
b )

(
s
( d

β1/α
+

+ 1
)

+ 1
)q−1)

ds

≤qt
(
M(cq−1 + cq−1

b )(cγ + cγb )
(
t
( d

β1/α
+ 1
)

+ 1
)q−1+γ

+ L(cq−1 + cq−1
b )

(
t
( d

β1/α
+ 1
)

+

+ 1
)q−1)

.

The final conclusion follows from this inequality.

Proof of Corollary 3

Proof. First, we replace t by kη. Then, by following the same lines of the proof of

Corollary 1, we get

Wq
q (µ1t, µ3t) ≤C(kq+γη + kq+γηqβ−

q−1
α dq−1+γ).

By assumption A4, q−1 < 1/p1 and γ < 1/q1. It implies that dq−1+γ < d1/p1+1/q1 =

d. Hence, we have

Wq
q (µ1t, µ3t) ≤C(kq+γη + kq+γηqβ−

q−1
α d).

Proof of Corollary 4

Proof. By Lemma 2, Lemma 9 and Lemma 10, we have

cα|E[f(x1(t))]− E[f(x3(t))]| ≤

≤
(
M
(
E‖x1(t)‖γp

) 1
p +M

(
E‖x3(t)‖γp

) 1
p +B

)
Wq(µ1t, µ3t)

≤
(
M
(
c
(
t
( d

β1/α
+ 1
)

+ 1
))γ

+M
(
cb

(
t
( d

β1/α
+ 1
)

+ 1
))γ

+B
)
Wq(µ1t, µ3t).
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Then by Theorem 9, we have

cα|E[f(x1(t))]− E[f(x3(t))]|

≤
(
M
(
c
(
t
( d

β1/α
+ 1
)

+ 1
))γ

+M
(
cb

(
t
( d

β1/α
+ 1
)

+ 1
))γ

+

+B
)(

qt
(
M(cq−1 + cq−1

b )(cγ + cγb )
(
t
( d

β1/α
+ 1
)

+ 1
)q−1+γ

+

+ L(cq−1 + cq−1
b )

(
t
( d

β1/α
+ 1
)

+ 1
)q−1)) 1

q

.

Applying Lemma 16 twice, we get

cα|E[f(x1(t))]− E[f(x3(t))]| ≤

≤
(
M(cγ + cγb )

( tγdγ
βγ/α

+ tγ + 1
)

+B
)(

(qt)1/q
(
M1/q(cq−1 + cq−1

b )1/q(cγ + cγb )1/q

( td

β1/α
+ t+ 1

)(q−1+γ)/q

+ L1/q(cq−1 + cq−1
b )1/q

( td

β1/α
+ t+ 1

)(q−1)/q))

≤
(
M(cγ + cγb )

( tγdγ
βγ/α

+ tγ + 1
)

+B
)(

(qt)1/q
(
M1/q(cq−1 + cq−1

b )1/q(cγ + cγb )1/q

( (td)(q−1+γ)/q

β(q−1+γ)/(qα)
+ t(q−1+γ)/q + 1

)
+ L1/q(cq−1 + cq−1

b )1/q
( (td)(q−1)/q

β(q−1)/(qα)
+ t(q−1)/q + 1

)))
.

Now, by replacing t = kη we find that, among the terms containing β, the largest

power of d, the largest power of k and the smallest power of η are γ + q−1+γ
q , γ + γ+q

q

and γ+ 1
q , respectively. For the smallest power of β−1, we need to compare the following

quantities: γ/α, (q − 1 + γ)/(qα) and (q − 1)/(qα).

It is obvious that (q−1+γ)/(qα) > (q−1)/(qα). Next, from the relation γ < 1/p =

(q− 1)/q, we have γ/α < (q− 1)/(qα). Thus, the smallest power of β−1 is γ/α. Hence,

we have the following bound:

cα|E[f(x1(t))]− E[f(x3(t))]| ≤C
(
kγ+ γ+q

q ηγ+ 1
q β−

γ
α dγ+ q−1+γ

q + kγ+ γ+q
q η

1
q

)
,

for some constant C > 0. For the power of d, using that γ < 1/p, q − 1 < 1/p1 and

γ < 1/q1 we have

γ +
q − 1 + γ

q
≤1/p+

1/p1 + 1/q1

q
= 1/p+ 1/q = 1.

Finally, we have

cα|E[f(x1(t))]− E[f(x3(t))]| ≤C
(
kγ+ γ+q

q ηγ+ 1
q β−

γ
α d+ kγ+ γ+q

q η
1
q

)
.

Proof of Lemma 4
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Proof. By Lemma 2, we have

cα|E[f(x3(t))]− E[f(ŵ)]| ≤
(
M
(
E‖x3(t)‖γp

) 1
p +M

(
E‖ŵ‖γp

) 1
p +B

)
Wq(µ3t, π).

Assumption A7 says that E‖ŵ‖γp is bounded by a constant depending on b,m and

β. In addition, by Proposition 1, limt→∞Wγp(µ3t, π) = 0, and by Theorem 7.12 in

Villani [2003], it follows that

lim
t→∞

E‖x3(t)‖γp = E‖ŵ‖γp.

Thus, E‖x3(t)‖γp is bounded by a constant independent of t. Finally, since q < α,

by propostion 1 again, Wq(µ3t, π) ≤ Cβe−λ∗t/β . Hence, using the bound in assumption

A7, there exists constant C such that

|E[f(x3(t))]− E[f(ŵ)]| ≤ Cβ b+ d/β

m
exp(−λ∗β−1t).

Proof of Lemma 5

Proof. The proof is adapted from Raginsky et al. [2017], Section 3.5. First, we have the

decomposition:

E[f(ŵ)] =

∫
Rd
f(w)

exp(−βf(w))∫
Rd exp(−βf(v))dv

dw

=
1

β

(
−
∫
Rd

exp(−βf(w))∫
Rd exp(−βf(v))dv

log
exp(−βf(w))∫

Rd exp(−βf(v))dv
dw − log

∫
Rd

exp(−βf(v))dv
)
.

The first term in the parentheses is the differential entropy of the probability density

of ŵ, which has a finite second moment (due to assumption A7). Hence, it is upper-

bounded by the differential entropy of a Gaussian density with the same second moment:

−
∫
Rd

exp(−βf(w))∫
Rd exp(−βf(v))dv

log
exp(−βf(w))∫

Rd exp(−βf(v))dv
dw ≤ d

2
log
(2πe(b+ d/β)

dm

)
.

Here, π denotes the Archimedes’ constant. By Lemma 8, we have

− log

∫
Rd

exp(−βf(w))dw ≤ βf(w∗) +
β−γMc−1

α

1 + γ
− log

( πd/2β−d

Γ(d/2 + 1)

)
.

Then, it implies that

E[f(ŵ)] ≤dβ
−1

2
log
(2πe(b+ d/β)

dm

)
+ f(w∗) +

β−γ−1Mc−1
α

1 + γ
− β−1 log

( πd/2β−d

Γ(d/2 + 1)

)
=f(w∗) +

β−γ−1Mc−1
α

1 + γ
+ β−1 log

( (2e(b+ d/β))d/2Γ(d/2 + 1)βd

(dm)d/2

)
,

which leads to desired result.

Proof of Corollary 6
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Proof. By triangular inequality, we have

Wq(µ2t, π) ≤ Wq(µ2t, µ1t) +Wq(µ1t, µ3t) +Wq(µ3t, π).

Then, using Corollary 1, Corollary 3 and Proposition 1, we get

Wq(µ2t, π) ≤

≤C
(

(k2η + k2η1+γ/αβ−γ(q−1)/αd)1/q + (kq+γη + kq+γηqβ−(q−1)/αd)1/q + βe−λ∗kη/β
)

≤C
(
k2/qη1/q + k2/qη1/q+γ/(qα)β−γ(q−1)/(qα)d1/q + k1+γ/qη1/q + k1+γ/qηβ−(q−1)/(qα)d1/q

+ βe−λ∗kη/β
)
,

where, we used Lemma 16 for the second inequality. Then, similar to the proof of

Corollary 1, we obtain

Wq(µ2t,π) ≤

≤C
(
kmax{2,q+γ}/qη1/q + kmax{2,q+γ}/qη1/q+γ/(qα)β−γ(q−1)/(qα)d1/q + βe−λ∗kη/β

)
.

Proof of Theorem 10

Proof. Since each function x 7→ f (i)(x) satisfies assumptions A1-7, it is easy to check

that fk also satisfies these assumptions (with the same constants and the same param-

eters) for all k. Then by repeating exactly the same lines as in the proof of Lemma 12,

we obtain the same estimates for the moments of x2. Now by following the same steps

as in the proof of Theorem 13, we first have

Wq
q (µ1t, µ2t) ≤

≤q
k−1∑
j=0

∫ (j+1)η

jη

[
E‖x1(s)− x2(s)‖(q−1)p1

] 1
p1
[
E‖cα(∇f(x1(s))−∇fk(x2(jη)))‖q1

] 1
q1

ds,

then(
E‖x1(s)− x2(s)‖(q−1)p1

) 1
p1 ≤

≤c
1
p1 + (E‖x2(0)‖(q−1)p1)

1
p1 + ηq−1

(
Mq−1(E‖x2(0)‖(q−1)p1γ)

1
p1 +B(q−1)

)
+
( η
β

) q−1
α

l
1
p1

α,(q−1)p1,d
+ (j + 1)

1
p1

((
cη
( d

β1/α

)) 1
p1

+ (cη)
1
p1 + (2η(b+m))

(q−1)
2

+ 2
(q−1)

2 (ηB)(q−1) +
( η
β

) (q−1)
α

l
1
p1

α,(q−1)p1,d
+ ηq−1Mq−1

(
(2η(b+m))

(q−1)γ
2

+ 2
(q−1)γ

2 (ηB)(q−1)γ +
( η
β

) (q−1)γ
α

l
1
p1

α,(q−1)p1γ,d

))
=Q1(η) + (j + 1)

1
p1 P1(η),

91



where P1(η) and Q1(η) are defined in Theorem 13. Now, by Minkowski’s inequality, we

have[
E‖cα(∇f(x1(s))−∇fk(x2(jη)))‖q1

] 1
q1

=

=
[
E‖cα(∇f(x1(s))−∇f(x2(jη)) +∇f(x2(jη))

−∇fk(x2(jη)))‖q1
] 1
q1

≤
[
E‖cα(∇f(x1(s))−∇f(x2(jη)))‖q1

] 1
q1

+
[
E‖cα(∇f(x2(jη))

−∇fk(x2(jη)))‖q1
] 1
q1
.

As in the proof of Theorem 13, the following inequality holds:[
E‖cα∇f(x1(s))−cα∇f(x2(jη))‖q1

] 1
q1 ≤

≤M(E‖x2(0)‖γq1)
1
q1 +Mc

1
q1 +M(j + 1)

1
q1

((
cη
( d

β1/α

)) 1
q1

+ (cη)
1
q1 + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
q1

α,γq1,d

)
=Q2 + (j + 1)

1
q1 P2(η),

where P2(η) and Q2 are defined in theorem 13. Using the additional assumption,

lemma 12, and lemma 16, we get[
E‖cα(∇f(x2(jη))−∇fk(x2(jη)))‖q1

] 1
q1 ≤

≤δ
[
E
(
Mq1‖x2(jη)‖γq1

)] 1
q1

≤δ
[
Mq1(E‖x2(0)‖γq1) +Mq1j

(
(2η(b+m))

γq1
2 + 2

γq1
2 (ηB)γq1

+
( η
β

) γq1
α

lα,γq1,d

)] 1
q1

≤δM(E‖x2(0)‖γq1)
1
q1 + δM(j + 1)

1
q1

(
(2η(b+m))

γ
2 + 2

γ
2 (ηB)γ

+
( η
β

) γ
α

l
1
q1

α,γq1,d

)
.

By combining the two above inequalities, we obtain[
E‖cα∇f(x1(s))−cα∇f(x2(jη))‖q1

] 1
q1 ≤

≤(1 + δ)M(E‖x2(0)‖γq1)
1
q1 +Mc

1
q1 +M(j + 1)

1
q1

((
cη
( d

β1/α

)) 1
q1

+ (cη)
1
q1 + (1 + δ)(2η(b+m))

γ
2 + (1 + δ)2

γ
2 (ηB)γ

+ (1 + δ)
( η
β

) γ
α

l
1
q1

α,γq1,d

)
=Q′2 + (j + 1)

1
q1 P ′2(η).
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Finally, we have

Wq
q (µ1t, µ2t) ≤ qη

(
k2P1(η)P ′2(η) + k1+1/p1P1(η)Q′2 + k1+1/q1P ′2(η)Q1(η) + kQ1(η)Q′2

)
.

By considering the additional term δ, we arrive at the following bound:

Wq
q (µ1t, µ2t) ≤ C(1 + δ)(k2η + k2η1+γ/αβ−γ(q−1)/αd).

Proof of corollary 7

Proof. By lemma 2,

cα
∣∣E[f(x1(kη))]−E[f(x2(kη))]

∣∣ ≤
≤
(
M
(
E‖x1(kη)‖γp

) 1
p

+M
(
E‖x2(kη)‖γp

) 1
p

+B
)
Wq(µ1t, µ2t).

Then, by following the same proof as in corollary 8, corollary 1 and using theorem 10,

we get

cα
∣∣E[f(x1(kη))]− E[f(x2(kη))]

∣∣ ≤C(1 + δ)
(
k1+ 1

q η
1
q + k1+ 1

q η
1
q+ γ

αq β−
(q−1)γ
αq d

)
.

Technical results

Corollary 8. Along with P1(η), P2(η), Q1(η), Q2 in Lemma 13, we define, in addition,

the following quantities:

P3(η) ,M
((
cη
( d

β1/α

)) 1
p

+ (cη)
1
p + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
p

α,γp,d

)
Q3 ,M(E‖X2(0)‖γp)

1
p +Mc

1
p +B.

For 0 < η < m
M2 , we have the following bound:

cα
∣∣E[f(x1(kη))]− E[f(x2(kη))]

∣∣ ≤
≤(qη)

1
q

(
k1+ 1

q (P1(η)P2(η))
1
qP3(η) + k1+ 1

qp1 (P1(η)Q2)
1
qP3(η) + k1+ 1

qq1 (P2(η)Q1(η))
1
qP3(η)

+ k(Q1(η)Q2)
1
qP3(η) + k

2
q (P1(η)P2(η))

1
qQ3 + k

1
q+ 1

qp1 (P1(η)Q2)
1
qQ3

+ k
1
q+ 1

qq1 (P2(η)Q1(η))
1
qQ3 + k

1
q (Q1(η)Q2)

1
qQ3

)
.
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Proof. By Lemma 2,

cα
∣∣E[f(x1(kη))]− E[f(x2(kη))]

∣∣ ≤
≤
(
M
(
E‖x1(kη)‖γp

) 1
p

+M
(
E‖x2(kη)‖γp

) 1
p

+B
)
Wq(µ1t, µ2t).

Using Lemma 9 and Lemma 13, we have(
M
(
E‖x1(kη)‖γp

) 1
p

+M
(
E‖x2(kη)‖γp

) 1
p

+B
)
≤

≤M
(
c
(
kη
( d

β1/α
+ 1
)

+ 1
))γ

+M
[
(E‖x2(0)‖γp)

+ k
(

(2η(b+m))
γp
2 + 2

γp
2 (ηB)γp +

( η
β

) γp
α

lα,γp,d

)] 1
p

+B.

By using Lemma 16, we obtain(
M
(
E‖x1(kη)‖γp

) 1
p

+M
(
E‖x2(kη)‖γp

) 1
p

+B
)
≤

≤M
(
c
(
kη
( d

β1/α
+ 1
)

+ 1
))γ

+M(E‖x2(0)‖γp)
1
p

+Mk
1
p

(
(2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
p

α,γp,d

)
+B.

We note that γ < 1
p . Hence,(

c
(
kη
( d

β1/α
+ 1
)

+ 1
))γ
≤
(
c
(
kη
( d

β1/α
+ 1
)

+ 1
)) 1

p

≤k
1
p

(
cη
( d

β1/α
+ 1
)) 1

p

+ c
1
p ,

where the last inequality is an application of Lemma 16. By replacing this inequality

into the previous one and rearranging the terms, we have

(
M
(
E‖x1(kη)‖γp

) 1
p

+M
(
E‖x2(kη)‖γp

) 1
p

+B
)
≤

≤M(E‖x2(0)‖γp)
1
p +Mc

1
p +B +Mk

1
p

((
cη
( d

β1/α
+ 1
)) 1

p

+ (2η(b+m))
γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
p

α,γp,d

)
≤M(E‖x2(0)‖γp)

1
p +Mc

1
p +B +Mk

1
p

((
cη
( d

β1/α

)) 1
p

+ (cη)
1
p + (2η(b+m))

γ
2 + 2

γ
2 (ηB)γ +

( η
β

) γ
α

l
1
p

α,γp,d

)
=Q3 + k

1
pP3(η).

Here, we have used lemma 16 in the last inequality. Next, by Lemma 13 and Lemma 16,

Wq(µ1t, µ2t) ≤(qη)
1
q

(
k2P1(η)P2(η) + k1+1/p1P1(η)Q2 + k1+1/q1P2(η)Q1(η) + kQ1(η)Q2

) 1
q

≤(qη)
1
q

(
k

2
q (P1(η)P2(η))

1
q + k

1
q+ 1

qp1 (P1(η)Q2)
1
q + k

1
q+ 1

qq1 (P2(η)Q1(η))
1
q +

+ k
1
q (Q1(η)Q2)

1
q

)
.
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By combining the above two inequalities, we get

cα
∣∣E[f(x1(kη))]− E[f(x2(kη))]

∣∣ ≤
≤(qη)

1
q

(
Q3 + k

1
pP3(η)

)(
k

2
q (P1(η)P2(η))

1
q + k

1
q+ 1

qp1 (P1(η)Q2)
1
q + k

1
q+ 1

qq1 (P2(η)Q1(η))
1
q +

+ k
1
q (Q1(η)Q2)

1
q

)
=(qη)

1
q

(
k1+ 1

q (P1(η)P2(η))
1
qP3(η) + k1+ 1

qp1 (P1(η)Q2)
1
qP3(η) + k1+ 1

qq1 (P2(η)Q1(η))
1
qP3(η)

+ k(Q1(η)Q2)
1
qP3(η) + k

2
q (P1(η)P2(η))

1
qQ3 + k

1
q+ 1

qp1 (P1(η)Q2)
1
qQ3+

+ k
1
q+ 1

qq1 (P2(η)Q1(η))
1
qQ3 + k

1
q (Q1(η)Q2)

1
qQ3

)
.

The following lemma is an extension of Lemma 1.2.3 in Nesterov [2013] to functions

with Hölder continuous gradients.

Lemma 7. Under assumption A2, the following inequality holds for any x,y ∈ Rd:

cα|f(x)− f(y)− 〈∇f(y),x− y〉| ≤ M

1 + γ
‖x− y‖1+γ .

Proof. Let g(t) , cαf(y + t(x − y)). Then, g′(t) = cα〈∇f(y + t(x − y)),x − y〉 and∫ 1

0
g′(t)dt = g(1)− g(0) = cα(f(x)− f(y)). We have

cα|f(x)− f(y)− 〈∇f(y),x− y〉| =
∣∣∣ ∫ 1

0

g′(t)dt− cα〈∇f(y),x− y〉
∣∣∣

=
∣∣∣ ∫ 1

0

cα〈∇f(y + t(x− y)),x− y〉dt− cα〈∇f(y),x− y〉
∣∣∣

=
∣∣∣ ∫ 1

0

cα〈∇f(y + t(x− y))−∇f(y),x− y〉dt
∣∣∣.

By Cauchy-Schwarz inequality and assumption A2, we have

cα|f(x)− f(y)− 〈∇f(y),x− y〉| ≤
∫ 1

0

cα‖∇f(y + t(x− y))−∇f(y)‖‖x− y‖dt

≤
∫ 1

0

Mtγ‖x− y‖γ‖x− y‖dt

=
M

1 + γ
‖x− y‖1+γ .

Lemma 8. The normalized factor of π is bounded below, i.e.,

log

∫
Rd

exp(−βf(w))dw ≥ −βf(w∗)− β−γMc−1
α

1 + γ
+ log

( πd/2β−d

Γ(d/2 + 1)

)
,

where π denotes the Archimedes’ constant.
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Proof. We start by writing:

log

∫
Rd

exp(−βf(w))dw =− βf(w∗) + log

∫
Rd

exp
(
− β(f(w)− f(w∗))

)
dw

≥− βf(w∗) + log

∫
Rd

exp
(
− βMc−1

α

1 + γ
‖w −w∗‖1+γ

)
dw.

Here, we used Lemma 7, with ∇f(w∗) = 0. For the second term on the right hand

side, we have∫
Rd

exp
(
− βMc−1

α

1 + γ
‖w −w∗‖1+γ

)
dw =

∫
‖w‖≤β−1

exp
(
− βMc−1

α

1 + γ
‖w‖1+γ

)
dw

+

∫
‖w‖≥β−1

exp
(
− βMc−1

α

1 + γ
‖w‖1+γ

)
dw

≥
∫
‖w‖≤β−1

exp
(
− βMc−1

α

1 + γ
β−1−γ

)
dw + 0

= exp
(
− β−γMc−1

α

1 + γ

)∫
‖w‖≤β−1

1dw

= exp
(
− β−γMc−1

α

1 + γ

) πd/2β−d

Γ(d/2 + 1)
,

where, Γ denotes the Gamma function and π denotes Archimedes’ constant (here, it is

not the invariant distribution). Hence,

log

∫
Rd

exp
(
− βMc−1

α

1 + γ
‖w −w∗‖1+γ

)
dw ≥− β−γMc−1

α

1 + γ
+ log

( πd/2β−d

Γ(d/2 + 1)

)
.

By combining the above inequalities, we have the desired result.

Lemma 9. For λ ∈ (0, 1), there exists a constant c depending on m, b, α, such that

E
(
‖x1(t)‖λ

) 1
λ ≤ c

(
t(dβ−1/α + 1) + 1

)
, ∀t > 0, β ≥ 1, 1 < α < 2.

Proof. We follow exactly the same proof as Lemma 7.1 in Xie and Zhang [2017], with

some modifications. Let h(x) , (1 + ‖x‖2)1/2. By Itô’s formula, we have

dh(x1(t)) =

(
〈b1(x1(t)),∇h(x1(t))〉+

∫
Rd

(
h(x1(t) + β−1/αx)− h(x1(t))

− I‖x‖<1〈β−1/αx,∇h(x1(t))〉
)
ν(dx)

)
dt+ dM(t), (7.11)
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where M(t) is a local martingale. Noticing that ∂ih(x) = xi(1 + ‖x‖2)−1/2/2 and using

assumption A3, we have

〈b1(x),∇h(x)〉 =〈b1(x), x〉(1 + ‖x‖2)−1/2/2

≤(−m‖x‖1+γ + b)(1 + ‖x‖2)−1/2/2

=(−m(‖x‖1+γ + 1) +m+ b)(1 + ‖x‖2)−1/2/2.

Since (‖x‖2 + 1)(1+γ)/2 ≤ (‖x‖1+γ + 1) by Lemma 16, it follows that

〈b1(x),∇h(x)〉 ≤(−m(‖x‖2 + 1)(1+γ)/2 +m+ b)(1 + ‖x‖2)−1/2/2

=(−m(‖x‖2 + 1)γ/2 + (m+ b)(1 + ‖x‖2)−1/2)/2

≤(−m(‖x‖2 + 1)γ/2 +m+ b)/2

=(−mh(x)γ +m+ b)/2.

On the other hand, observing that

|h(x+ y)− h(x)| ≤ ‖y‖
∫ 1

0

‖∇h(x+ sy)‖ds ≤ ‖y‖/2,

and

h(x+ y)− h(x)− 〈y,∇h(x)〉 ≤ ‖y‖2/2,

we have∫
Rd

(
h(x1(t) + x)− h(x1(t))−I‖x‖<1〈x,∇h(x1(t))〉

)
ν(dx) ≤

≤ 1

2β2/α

∫
‖x‖<1

‖x‖2ν(dx) +
1

2β1/α

∫
‖x‖≥1

‖x‖ν(dx)

≤C d

β1/α
,

where the last inequality is due to Lemma 15. By integrating (7.11) and combining the

above inequalities, we have

h(x1(t))− h(x1(0)) ≤
∫ t

0

(
(−mh(x1(s))γ +m+ b)/2 + C

d

β1/α

)
ds+M(t)

≤
∫ t

0

(
(m+ b)/2 + C

d

β1/α

)
ds+M(t).

By Lemma 3.8 in Xie and Zhang [2017], for λ ∈ (0, 1),

E
(

sup
s∈[0,t]

h(x1(s))λ
)
≤ cλ

(
Eh(x1(0)) + ((m+ b)/2 + C

d

β1/α
)t
)λ
.

This leads to the conclusion since h(x) ≥ ‖x‖.
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Lemma 10. For λ ∈ (0, 1), there exists a constant cb depending on L,m, b, α, such that

E
(
‖x3(t)‖λ

) 1
λ ≤ cb

(
t(dβ−1/α + 1) + 1

)
, ∀t > 0, β ≥ 1, 1 < α < 2.

Proof. The proof is similar to the proof of Lemma 9.

Lemma 11. Let X be a scalar symmetric α-stable distribution with α < 2, i.e. X ∼
SαS(1) (see Definition 3), then, for −1 < λ < α,

E(|X|λ) =
2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)
.

Proof. The proof follows from Theorem 3 in Shanbhag and Sreehari [1977] (see also

equation (13) in Matsui et al. [2016]).

Corollary 9. The quantity lα,λ,d , E‖Lα(1)‖λ is finite for 0 ≤ λ < α. For details, we

have

(a) If 1 < λ < α, then

E‖Lα(1)‖λ ≤ dλ
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
.

(b) If 0 ≤ λ ≤ 1, then

E‖Lα(1)‖λ ≤ d
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
.

Proof. Since Lα(1), by definition, is a d-dimensional vector whose components are i.i.d

symmetric α-stable distributions Lαi (1) for i ∈ {1, . . . , d}, we have

‖Lα(1)‖ ≤
d∑
i=1

|Lαi (1)|

(a) 1 < λ < α. By using Minkowski’s inequality and Lemma 11,

(E‖Lα(1)‖λ)1/λ ≤
(
E
[( d∑

i=1

|Lαi (1)|
)λ])1/λ

≤
d∑
i=1

(E|Lαi (1)|λ)1/λ

=d
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)1/λ

.
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Thus, we have

E‖Lα(1)‖λ ≤ dλ
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
.

(b) 0 ≤ λ ≤ 1. By using Lemma 16 and Lemma 11 ,

E‖Lα(1)‖λ ≤E
[( d∑

i=1

|Lαi (1)|
)λ]

≤
d∑
i=1

E|Lαi (1)|λ

=d
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
.

Lemma 12. Let us denote the value E‖Lα(1)‖λ by lα,λ,d < ∞. For 0 < η ≤ m
M2 and

s ∈ [jη, (j + 1)η), we have the following estimates:

(a) If 1 < λ < α and 1 < γλ < α then

E‖x2(jη)‖λ ≤ Bj,λ ,
((

E‖x2(0)‖λ
) 1
λ

+ j
(

(2η(b+m))
1
2 + 2

1
2 ηB +

( η
β

) 1
α

l
1
λ

α,λ,d

))λ
,

E‖x2(s)‖λ ≤
(
B

1
λ

j,λ + (s− jη)
(
MB

1
λ

j,γλ +B
)

+
(s− jη

β

) 1
α

l
1
λ

α,λ,d

)λ
.

(b) If 0 ≤ λ ≤ 1 then

E‖x2(jη)‖λ ≤ B̄j,λ , E‖x2(0)‖λ + j
(

(2η(b+m))
λ
2 + 2

λ
2 (ηB)λ +

( η
β

) λ
α

lα,λ,d

)
,

E‖x2(s)‖λ ≤ B̄j,λ + (s− jη)λ
(
MλB̄j,γλ +Bλ

)
+
(s− jη

β

) λ
α

lα,λ,d.

(c) If 1 < λ < α and 0 ≤ γλ ≤ 1 then

E‖x2(jη)‖λ ≤ Bj,λ,

E‖x2(s)‖λ ≤
(
B

1
λ

j,λ + (s− jη)
(
MB̄

1
λ

j,γλ +B
)

+
(s− jη

β

) 1
α

l
1
λ

α,λ,d

)λ
.

Proof. Starting from

x2((j + 1)η) = x2(jη)− ηcα∇f(x2(jη)) +
( η
β

) 1
α

Lα(1),

we have either (by Minkowski, if λ > 1)(
E‖x2((j + 1)η)‖λ

) 1
λ ≤

(
E‖x2(jη)− ηcα∇f(x2(jη))‖λ

) 1
λ

+
( η
β

) 1
α
(
E‖Lα(1)‖λ

) 1
λ

,

(7.12)
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or (by Lemma 16, if 0 ≤ λ ≤ 1)

E‖x2((j + 1)η)‖λ ≤ E‖x2(jη)− ηcα∇f(x2(jη))‖λ +
( η
β

) λ
αE‖Lα(1)‖λ. (7.13)

We have

‖x2(jη)− ηcα∇f(x2(jη))‖λ =

= ‖x2(jη)− ηcα∇f(x2(jη))‖2×λ2 (7.14)

=
(
‖x2(jη)‖2 − 2ηcα〈x2(jη),∇f(x2(jη)〉+ η2‖cα∇f(x2(jη)‖2

)λ
2

≤
(
‖x2(jη)‖2 − 2η(m‖x2(jη)‖1+γ − b) + η2(2M2‖x2(jη)‖2γ + 2B2)

)λ
2

,

(7.15)

where we used assumption A3 and Lemma 13. For 0 < η ≤ m
M2 ,

2ηm(‖X2(jη)‖1+γ + 1) ≥ 2η2M2‖X2(jη)‖2γ . (since 1 + γ > 2γ and ηm > η2M2)

Using this inequality we have

‖x2(jη)− ηcα∇f(x2(jη))‖λ ≤
(
‖x2(jη)‖2 + 2η(b+m) + 2η2B2

)λ
2

≤ ‖x2(jη)‖λ + (2η(b+m))
λ
2 + 2

λ
2 (ηB)λ. (by Lemma 16)

(7.16)

Consider the case where λ > 1. By (7.12) and (7.16),(
E‖x2((j + 1)η)‖λ

) 1
λ ≤

≤
(
E‖x2(jη)‖λ + (2η(b+m))

λ
2 + 2

λ
2 (ηB)λ

) 1
λ

+
( η
β

) 1
α
(
E‖Lα(1)‖λ

) 1
λ

≤
(
E‖x2(jη)‖λ

) 1
λ

+ (2η(b+m))
1
2 + 2

1
2 ηB +

( η
β

) 1
α

l
1
λ

α,λ,d (by Lemma 16)

≤
(
E‖x2(0)‖λ

) 1
λ

+ (j + 1)
(

(2η(b+m))
1
2 + 2

1
2 ηB +

( η
β

) 1
α

l
1
λ

α,λ,d

)
.

For the case where 0 ≤ λ ≤ 1, by (7.13) and (7.16),

E‖x2((j + 1)η)‖λ ≤ E‖x2(jη)‖λ + (2η(b+m))
λ
2 + 2

λ
2 (ηB)λ +

( η
β

) λ
α

lα,λ,d

≤ E‖x2(0)‖λ + (j + 1)
(

(2η(b+m))
λ
2 + 2

λ
2 (ηB)λ +

( η
β

) λ
α

lα,λ,d

)
.

Now, from the identification, for s ∈ [jη, (j + 1)η),

x2(s) = x2(jη) + (s− jη)cα∇f(x2(jη)) +
(s− jη

β

) 1
α

Lα(1),

we have

‖x2(s)‖ ≤ ‖x2(jη)‖+ (s− jη)cα‖∇f(x2(jη))‖+
(s− jη

β

) 1
α ‖Lα(1)‖

≤ ‖x2(jη)‖+ (s− jη)(M‖x2(jη)‖γ +B) +
(s− jη

β

) 1
α ‖Lα(1)‖.
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For λ > 1,(
E‖x2(s)‖λ

) 1
λ ≤

(
E‖x2(jη)‖λ

) 1
λ

+ (s− jη)
(
M
(
E‖x2(jη)‖γλ

) 1
λ

+B
)

+
(s− jη

β

) 1
α

l
1
λ

α,λ,d.

For λ ≤ 1,

E‖x2(s)‖λ ≤ E‖x2(jη)‖λ + (s− jη)λ
(
MλE‖x2(jη)‖γλ +Bλ

)
+
(s− jη

β

) λ
α

lα,λ,d.

By replacing the estimate of E‖x2(jη)‖λ, we obtain the desired result.

Lemma 13. Under assumptions A1 and A2 we have

cα‖∇f(w)‖ ≤M‖w‖γ +B, ∀w ∈ Rd.

Proof. By assumption A2 we have

cα‖∇f(w)−∇f(0)‖ ≤M‖w − 0‖γ .

Since cα‖∇f(0)‖ ≤ B by assumption A1, the conclusion follows.

Lemma 14. For the function b defined in Lemma 1, we have, for w ∈ Rd,

‖b(w)‖ ≤M‖w‖γ + (B + L),

〈w, b(w)〉 ≤ (L−m)‖w‖1+γ + (b+ L).

Proof. From assumption A6, it implies that

‖b(w)‖ ≤ cα‖∇f(w)‖+ L.

Then, by Lemma 13,

‖b(w)‖ ≤M‖w‖γ + (B + L).

Next, by Cauchy-Schwarz inequality and assumption A6, we have

〈w, b(w) + cα∇f(w)〉 ≤‖w‖L.

Then, by assumption A3,

〈w, b(w)〉 ≤ − cα〈w,∇f(w)〉+ ‖w‖L

≤−m‖w‖1+γ + b+ ‖w‖L

≤−m‖w‖1+γ + b+ (‖w‖1+γ + 1)L

=(L−m)‖w‖1+γ + (b+ L).

Here, we have used the inequality ‖w‖ ≤ ‖w‖1+γ + 1.
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Lemma 15. Let ν be the Lévy measure of a d-dimensional Lévy process Lα whose

components are independent scalar symmetric α-stable Lévy processes Lα1 , . . . , L
α
d . Then

there exists a constant C > 0 such that the following inequality holds with β ≥ 1 and

2 > α > 1:

1

β2/α

∫
‖x‖<1

‖x‖2ν(dx) +
1

β1/α

∫
‖x‖≥1

‖x‖ν(dx) ≤ C d

β1/α
.

Proof. Using Lemma 4.1 in Kallsen and Tankov [2006], we have∫
‖x‖<1

‖x‖2ν(dx) =

d∑
i=1

∫
|xi|<1

|xi|2
1

|xi|1+α
dxi

=

d∑
i=1

2

2− α

=
2d

2− α
.

Similarly, we have∫
‖x‖≥1

‖x‖ν(dx) =

d∑
i=1

∫
|xi|≥1

|xi|
1

|xi|1+α
dxi

=

d∑
i=1

2

α− 1

=
2d

α− 1
.

Combining these two equalities, we have the desired conclusion.

Lemma 16. For a, b ≥ 0 and 0 ≤ γ ≤ 1, we have the following inequality:

(a+ b)γ ≤ aγ + bγ .

Proof. If a = b = 0, the inequality is trivial. Hence, let us assume that a > b ≥ 0. We

have (
1 +

b

a

)γ
≤ 1 + γ

b

a
(by Bernoulli’s inequality)

≤ 1 +
b

a
(since 0 ≤ γ ≤ 1 and

b

a
≥ 0)

≤ 1 +
( b
a

)γ
. (since 0 ≤ γ ≤ 1 and 0 ≤ b

a
≤ 1)

By multiplying both sides by aγ > 0, we have the conclusion.
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Supplementary materials for Chapter 6

More details on assumption A 13

In this section, we provide the precise expressions of the constants given in Assump-

tion A13. For a given δ > 0, t = Kη, and for some C > 0, the step-size satisfies the

following condition:

0 < η ≤ min
{

1,
m

M2
,
( δ2

2K1t2

) 1
γ2+2γ−1

,
( δ2

2K2t2

) 1
2γ

,
( δ2

2K3t2

) α
2γ

,
( δ2

2K4t2

) 1
γ
}
,

where ε is as in (6.3), the constants m,M, b are defined by A10– A12 and

K1 ,
CM2+2γ3γ

ε2σ2
max

{
(2(b+m))γ

2

, 2γ
2

B2γ2

, dε2γ2

R1, dε
2γ2

R2

}
,

K2 ,
CM2+2γ3γ

2ε2σ2

(
E‖w0‖2γ

2

+B2/M2
)
,

K3 ,
M23γε2γ−2d2γ

2σ2

(22γΓ((1 + 2γ)/2)Γ(1− 2γ/α)

Γ(1/2)Γ(1− γ)

)
,

K4 ,
M23γε2γ−2d2γ

2σ2

(
2γΓ(

2γ + 1

2
)/
√
π
)
,

with

R1 ,
(22γ2

Γ((1 + 2γ2)/2)Γ(1− 2γ2/α)

Γ(1/2)Γ(1− γ2)

)
, R2 ,

(
2γ

2

Γ

(
2γ2 + 1

2

)
/
√
π
))
.

Proof of Theorem 11

Proof. Note that (w1, . . . ,wK) ∈ A is equivalent to τ̄0,a(ε) > K. Hence, from Lemma 20,

the remaining task is to upper-bound P[(wη, . . . ,wKη) ∈ A]:

P[(wη, . . . ,wKη) ∈ A] ≤P[(wη, . . . ,wKη) ∈ A ∩B] + P[(wη, . . . ,wKη) ∈ Bc]

≤P[τξ,a(ε) > Kη] + P[(wη, . . . ,wKη) ∈ Bc],

and to lower-bound it:

P[(wη, . . . ,wKη) ∈ A] ≥P[τ−ξ,a(ε) > Kη]− P[(wη, . . . ,wKη) ∈ Bc].

By Lemma 17, the final result follows.

Lemma 17. There exist constants C, C1 and Cα such that:

P[(wη, . . . ,wKη) ∈Bc] ≤

≤C1(Kη(dε+ 1) + 1)γeMηMη

ξ
+ 1−

(
1− Cde−ξ

2e−2Mη(εσ)−2/(16dη)
)K

+ 1−
(

1− Cαd1+α/2ηeαMηεαξ−α
)K

,
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Proof. We have for t ∈ [kη, (k + 1)η],

‖wt −wkη‖ ≤
∫ t

kη

‖∇f(ws)‖ds+ εσ‖B(t)− B(kη)‖+ ε‖Lα(t)− Lα(kη)‖

≤
∫ t

kη

‖∇f(ws)−∇f(wkη)‖ds+ η‖∇f(wkη)‖+ εσ‖B(t)− B(kη)‖

+ ε‖Lα(t)− Lα(kη)‖

≤
∫ t

kη

M‖ws −wkη‖γds+ η(M‖wkη‖γ +B) + εσ‖B(t)− B(kη)‖

+ ε‖Lα(t)− Lα(kη)‖.

For γ < 1, using that ‖ws −wkη‖γ ≤ ‖ws −wkη‖+ 1, we get:

‖wt −wkη‖ ≤
∫ t

kη

M‖ws −wkη‖ds+ η(M‖wkη‖γ +B +M)

+ εσ sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖+ ε sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖.

Then the Gronwall Lemma gives:

sup
t∈[kη,(k+1)η]

‖wt −wkη‖ ≤eMη
[
η(M‖wkη‖γ +B +M) + εσ sup

t∈[kη,(k+1)η]

‖B(t)− B(kη)‖

+ ε sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖
]
.

Hence,

max
0≤k≤K−1

sup
t∈[kη,(k+1)η]

‖wt −wkη‖ ≤eMη
[
η(M max

0≤k≤K−1
‖wkη‖γ +B +M)

+ εσ max
0≤k≤K

sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖

+ ε max
0≤k≤K−1

sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖
]
.

By Lemma 7.1 in Xie and Zhang [2017], Lemma 9 and Markov’s inequality, for any

u > 0, we have:

P[ max
0≤k≤K−1

‖wkη‖γ ≥ u] ≤ E[max0≤k≤K−1 ‖wkη‖γ ]

u
≤ C1(Kη(dε+ 1) + 1)γ

u
,

where C1 is a constant independent of K, η, ε and d. By Lemma 19, we have:

P[ max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ ≥ u] ≤ 1−
(

1− Cde−u
2/(dη)

)K
and

P[ max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖ ≥ u] ≤ 1−
(

1− Cαd1+α/2ηu−α
)K

.
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Finally, we get:

P[(wη, . . . ,wKη) ∈Bc] ≤

≤P[ max
0≤k≤K−1

sup
t∈[kη,(k+1)η]

‖wt −wkη‖ > ξ]

≤P[eMηηM max
0≤k≤K−1

‖wkη‖γ ≥ ξ/4] + P[eMηη(B +M) ≥ ξ/4]

+ P[eMη max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ ≥ (εσ)−1ξ/4]

+ P[eMη max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖ ≥ ε−1ξ/4]

≤C1(Kη(dε+ 1) + 1)γeMηMη

ξ
+ 1−

(
1− Cde−ξ

2e−2Mη(εσ)−2/(16dη)
)K

+ 1−
(

1− Cαd1+α/2ηeαMηεαξ−α
)K

.

Now we prove the following lemma.

Lemma 18. For any u > 0, η > 0 and K ∈ N∗, there exist constants C and Cα such

that:

max
k∈[0,...,K−1]

P[ sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ ≥ u] ≤ Cde−u
2/(dη).

max
k∈[0,...,K−1]

P[ sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖ ≥ u] ≤ Cαd1+α/2ηu−α.

Proof. To prove the results, we begin with the known results for Brownian motion and

α-stable Lévy motion:

P[|[B(1)]i| ≥ u] ≤ Ce−u
2

,

P[|[Lα(1)]i| ≥ u] ≤ Cαu−α,

where C and Cα are positive constants, [B(1)]i and [Lα(1)]i denote the i-th component

of the motions respectively, for i from 1 to d. By reflection principle for Brownian motion

and α-stable Lévy motion, we have

P[ sup
t∈[kη,(k+1)η]

|[B(t)− B(kη)]i| ≥ u] ≤ 2P[|[B(η)]i| ≥ u] = 2P[|[B(1)]i| ≥ u/η1/2],

P[ sup
t∈[kη,(k+1)η]

|[Lα(t)− Lα(kη)]i| ≥ u] ≤ 2P[|[Lα(η)]i| ≥ u] = 2P[|[Lα(1)]i| ≥ u/η1/α].

Since supt∈[kη,(k+1)η] ‖B(t) − B(kη)‖2 ≤
∑d
i=1 supt∈[kη,(k+1)η] |[B(t) − B(kη)]i|2, we
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have

P[ sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ ≥ u] =P[ sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖2 ≥ u2]

≤
d∑
i=1

P[ sup
t∈[kη,(k+1)η]

|[B(t)− B(kη)]i|2 ≥ u2/d]

≤
d∑
i=1

P[|[B(1)]i| ≥ u/(dη)1/2]

≤Cde−u
2/(dη).

Similarly, we have

P[ sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖ ≥ u] ≤
d∑
i=1

P[|[Lα(1)]i| ≥ u/(d1/2η1/α)]

≤Cαd1+α/2ηu−α.

The constants C and Cα do not depend on k, hence we have the conclusion.

Lemma 19. The following estimates hold:

P[ max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ ≥ u] ≤ 1−
(

1− Cde−u
2/(dη)

)K
,

P[ max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖ ≥ u] ≤ 1−
(

1− Cαd1+α/2ηu−α
)K

.

Proof. We have

P[ max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ ≥ u] =

=1− P[ max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ < u]

=1−
K−1∏
k=0

P[ sup
t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ < u]

=1−
K−1∏
k=0

(
1− P[ sup

t∈[kη,(k+1)η]

‖B(t)− B(kη)‖ ≥ u]
)

≤1−
K−1∏
k=0

(
1− Cde−u

2/(dη)
)

=1−
(

1− Cde−u
2/(dη)

)K
.

Similarly, we have

P[ max
k∈[0,...,K−1]

sup
t∈[kη,(k+1)η]

‖Lα(t)− Lα(kη)‖ ≥ u] ≤1−
(

1− Cαd1+α/2ηu−α
)K

.
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Lemma 20. Suppose that assumptions A10 and A11 hold. Then, for any δ > 0, we

have:

P[(wη, . . . ,wKη) ∈ A]− δ ≤ P[(ŵη, . . . , ŵKη) ∈ A] ≤ P[(wη, . . . ,wKη) ∈ A] + δ,

provided that

0 < η ≤ min
{

1,
m

M2
,
( δ2

2K1t2

) 1
γ2+2γ−1

,
( δ2

2K2t2

) 1
2γ

,
( δ2

2K3t2

) α
2γ

,
( δ2

2K4t2

) 1
γ
}
,

Proof. By optimal coupling between two probability measure (Lindvall [2002], Theorem

5.2), there exists a coupling M of (ws)0≤s≤Kη and (ŵs)0≤s≤Kη such that

PM[(ws)0≤s≤Kη 6= (ŵs)0≤s≤Kη] = ‖µKη − µ̂Kη‖TV ,

where TV denotes the total variation distance. By Pinsker’s inequality, we also have

‖µKη − µ̂Kη‖2TV ≤
1

2
KL(µ̂Kη, µKη).

Then,

PM[(wη, . . . ,wKη) 6= (ŵη, . . . , ŵKη)] ≤PM[(ws)0≤s≤Kη 6= (ŵs)0≤s≤Kη]

≤
(1

2
KL(µ̂Kη, µKη)

)1/2

.

From the following inequalities

PM[(wη, . . . ,wKη) ∈ A]− PM[(wη, . . . ,wKη) 6= (ŵη, . . . , ŵKη)] ≤ PM[(ŵη, . . . , ŵKη) ∈ A]

PM[(ŵη, . . . , ŵKη) ∈ A] ≤ PM[(wη, . . . ,wKη) ∈ A] + PM[(wη, . . . ,wKη) 6= (ŵη, . . . , ŵKη)],

we arrive at

P[(wη, . . . ,wKη) ∈ A]−
(1

2
KL(µ̂Kη, µKη)

)1/2

≤ P[(ŵη, . . . , ŵKη) ∈ A]

P[(ŵη, . . . , ŵKη) ∈ A] ≤ P[(wη, . . . ,wKη) ∈ A] +
(1

2
KL(µ̂Kη, µKη)

)1/2

.

By Theorem 12, we have the desired inequalities.

Proof of Theorem 12

First, we derive a Girsanov-type change of measure Øksendal and Sulem [2005],

Tankov [2003] for the SDE considered in (6.2). Let P denote the law of wt and Q be an

equivalent measure defined by

dQ
dP

∣∣∣
FT

= exp

(∫ T

0

φtdBt −
1

2

∫ T

0

φ2
tdt

)
, (7.17)

where FT denotes the filtration up to time T . Then the process Bφ defined by Bφ(t) =

B(t)−
∫ t

0
φsds is a Q-Brownian motion. With the choice of φt given in A9, we see that
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w satisfies dwt = b(w)dt+εσdBφ(t)+εdLα(t). Since this equation has a unique solution

(constructed explicitly with the Euler scheme), we conclude that w has the same law

under Q as ŵ under P.

We thus have:

KL(µ̂t, µt) = KL(Pt,Qt) = EP
[
log

dP
dQ

∣∣∣
Ft

]
=

1

2ε2σ2
EP
[∫ t

0

‖b(ŵ) +∇f(ŵs)‖2ds

]
(7.18)

By using the same steps of the proof of Raginsky et al. [2017][Lemma 3.6], we obtain

KL(µ̂t, µt) =
1

2ε2σ2

k−1∑
j=0

∫ (j+1)η

jη

E‖∇f(ŵs)−∇f(ŵ(jη))‖2 ds (7.19)

≤ M2

2ε2σ2

k−1∑
j=0

∫ (j+1)η

jη

E‖ŵs − ŵjη‖2γ ds. (7.20)

Next, we prove the following theorem.

Theorem 15. Under assumptions A10 and A11 we have, for 0 < η ≤ min{1, mM2 },

KL(µ̂t, µt) ≤

≤M
23γ

2ε2σ2
kη

(
CM2γη2γ

(
E‖ŵ0‖2γ

2

+
k − 1

2

(
(2η(b+m))γ

2

+ 2γ
2

(ηB)2γ2

+ ε2γ2

η
2γ2

α d
(22γ2

Γ((1 + 2γ2)/2)Γ(1− 2γ2/α)

Γ(1/2)Γ(1− γ2)

)
+ ε2γ2

ηγ
2

d
(

2γ
2

Γ
(

2γ2+1
2

)
√
π

))
+
B2

M2

)
+ (εη1/α)2γd2γ

(22γΓ((1 + 2γ)/2)Γ(1− 2γ/α)

Γ(1/2)Γ(1− γ)

)
+ (εη1/2)2γd2γ

(
2γ

Γ
(

2γ+1
2

)
√
π

))
≤K1k

2η1+2γ+γ2

+K2kη
1+2γ +K3kη

1+ 2γ
α +K4kη

1+γ ,

where

K1 ,
CM2+2γ3γ

ε2σ2
max

{
(2(b+m))γ

2

, 2γ
2

B2γ2

, ε2γ2

d
(22γ2

Γ((1 + 2γ2)/2)Γ(1− 2γ2/α)

Γ(1/2)Γ(1− γ2)

)
,

ε2γ2

d
(

2γ
2

Γ
(

2γ2+1
2

)
√
π

))}
,

K2 ,
CM2+2γ3γ

2ε2σ2

(
E‖ŵ0‖2γ

2

+
B2

M2

)
,

K3 ,
M23γε2γ−2d2γ

2σ2

(22γΓ((1 + 2γ)/2)Γ(1− 2γ/α)

Γ(1/2)Γ(1− γ)

)
,

K4 ,
M23γε2γ−2d2γ

2σ2

(
2γ

Γ
(

2γ+1
2

)
√
π

)
.
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Proof. Let us consider the term ŵs − ŵjη, for s ∈ [jη, (j + 1)η]:

ŵs − ŵjη = −(s− jη)∇f(ŵjη) + ε(Ls − Ljη) + ε(Bs −Bjη) (7.21)

, T1 + T2 + T3 (7.22)

Using this equation and (7.20), we obtain:

KL(µ̂t, µt) ≤
M2

2ε2σ2

k−1∑
j=0

∫ (j+1)η

jη

E‖T1 + T2 + T3‖2γ ds (7.23)

≤ M2

2ε2σ2

k−1∑
j=0

∫ (j+1)η

jη

E
(
‖T1 + T2 + T3‖2

)γ
ds (7.24)

≤ M2

2ε2σ2

k−1∑
j=0

∫ (j+1)η

jη

E
(

3‖T1‖2 + 3‖T2‖2 + 3‖T3‖2
)γ

ds (7.25)

≤ M23γ

2ε2σ2

k−1∑
j=0

∫ (j+1)η

jη

E
(
‖T1‖2γ + ‖T2‖2γ + ‖T3‖2γ

)
ds (7.26)

where (7.25) is obtained from (a+ b)γ ≤ aγ + bγ since γ ∈ (0, 1) and a, b ≥ 0.

Since 2γ > 1, we have by Corollary 9

E‖T2‖2γ =E‖ε(s− jη)1/αLα(1))‖2γ

≤(εη1/α)2γE‖Lα(1)‖2γ

≤(εη1/α)2γd2γ
(22γΓ((1 + 2γ)/2)Γ(1− 2γ/α)

Γ(1/2)Γ(1− γ)

)
,

and by Corollary 10,

E‖T3‖2γ =E‖ε(s− jη)1/2B(1))‖2γ

≤(εη1/2)2γE‖B(1)‖2γ

≤(εη1/2)2γd2γ

(
2γ

Γ
(

2γ+1
2

)
√
π

)
,

By definition, we have

E‖T1‖2γ = E‖(s− jη)∇f(ŵjη)‖2γ (7.27)

≤ η2γE‖∇f(ŵjη)‖2γ (7.28)

≤ η2γE(M‖ŵjη‖γ +B)2γ (7.29)

≤ CM2γη2γE

(
‖ŵjη‖γγ +

( B1/γ

M1/γ

)γ)2γ

(7.30)

≤ CM2γη2γE

(
‖ŵ′jη‖γγ

)2γ

(7.31)
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where we used the equivalence of `p-norms and ŵ′jη is the concatenation of ŵjη and
B1/γ

M1/γ . We then obtain

E‖T1‖2γ ≤ CM2γη2γE‖ŵ′ −jη ‖2γ
2

γ (7.32)

≤ CM2γη2γE‖ŵ′jη‖
2γ2

2γ2 (7.33)

= CM2γη2γE
(
‖ŵjη‖2γ

2

2γ2 +
B2

M2

)
(7.34)

≤ CM2γη2γ
(
E‖ŵjη‖2γ

2

+
B2

M2

)
. (7.35)

By combining the above inequalities and Lemma 23, we obtain

KL(µ̂t, µt) ≤

≤M
23γ

2ε2σ2

k−1∑
j=0

∫ (j+1)η

jη

E
(
‖T1‖2γ + ‖T2‖2γ + ‖T3‖2γ

)
ds

≤M
23γ

2ε2σ2

k−1∑
j=0

∫ (j+1)η

jη

(
CM2γη2γ

(
E‖ŵ0‖2γ

2

+ j
(

(2η(b+m))γ
2

+ 2γ
2

(ηB)2γ2

+ ε2γ2

η
2γ2

α d
(22γ2

Γ((1 + 2γ2)/2)Γ(1− 2γ2/α)

Γ(1/2)Γ(1− γ2)

)
+ ε2γ2

ηγ
2

d
(

2γ
2

Γ
(

2γ2+1
2

)
√
π

))
+
B2

M2

)
+ (εη1/α)2γd2γ

(22γΓ((1 + 2γ)/2)Γ(1− 2γ/α)

Γ(1/2)Γ(1− γ)

)
+ (εη1/2)2γd2γ

(
2γ

Γ
(

2γ+1
2

)
√
π

))
ds

=
M23γ

2ε2σ2
kη

(
CM2γη2γ

(
E‖ŵ0‖2γ

2

+
k − 1

2

(
(2η(b+m))γ

2

+ 2γ
2

(ηB)2γ2

+ ε2γ2

η
2γ2

α d
(22γ2

Γ((1 + 2γ2)/2)Γ(1− 2γ2/α)

Γ(1/2)Γ(1− γ2)

)
+ ε2γ2

ηγ
2

d
(

2γ
2

Γ
(

2γ2+1
2

)
√
π

))
+
B2

M2

)
+ (εη1/α)2γd2γ

(22γΓ((1 + 2γ)/2)Γ(1− 2γ/α)

Γ(1/2)Γ(1− γ)

)
+ (εη1/2)2γd2γ

(
2γ

Γ
(

2γ+1
2

)
√
π

))
.

By defining the constants K1,K2,K3 and K4 as in the statement of the theorem, we

directly have the conclusion.

The proof of Theorem 12 is given bellow.

Proof. By Theorem 15, we have

KL(µ̂t, µt) ≤K1k
2η1+2γ+γ2

+K2kη
1+2γ +K3kη

1+ 2γ
α +K4kη

1+γ .
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We can easily check that, for example, if 0 < η ≤
(

δ2

2K1t2

) 1
γ2+2γ−1

, thenK1k
2η1+2γ+γ2 ≤

δ2

2 . By the same arguments, we finally have

KL(µ̂t, µt) ≤
δ2

2
+
δ2

2
+
δ2

2
+
δ2

2

=2δ2.

This finalizes the proof.

Technical results

Lemma 21. Under assumptions A10 and A11 we have

‖∇f(w)‖ ≤M‖w‖γ +B, ∀w ∈ Rd.

Proof. By assumption A10 we have

‖∇f(w)−∇f(0)‖ ≤M‖w − 0‖γ .

Since ‖∇f(0)‖ ≤ B by assumption A11, the conclusion follows.

For the moments of the noise B(1), we have the following corollary.

Lemma 22. Let X be a scalar standard Gaussian random variable. Then, for λ > −1,

we have

E(|X|λ) = 2λ/2
Γ
(
λ+1

2

)
√
π

,

where Γ denotes the Gamma function.

Proof. The result is a direct consequence of equation (17) in Winkelbauer [2012].

Corollary 10. Let B(1) be a d-dimensional vector whose components are i.i.d standard

Gaussian random variable. The quantity E‖B(1)‖λ is finite for λ > −1. For details, we

have

(a) If 1 < λ < α, then

E‖B(1)‖λ ≤ dλ
(

2λ/2
Γ
(
λ+1

2

)
√
π

)
.

(b) If 0 ≤ λ ≤ 1, then

E‖B(1)‖λ ≤ d

(
2λ/2

Γ
(
λ+1

2

)
√
π

)
.
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Proof. Since B(1), by definition, is a d-dimensional vector whose components are i.i.d

standard Gaussian random variable Bi(1) for i ∈ {1, . . . , d}, we have

‖B(1)‖ ≤
d∑
i=1

|Bi(1)|.

(a) 1 < λ < α. By using Minkowski’s inequality and Lemma 22,

(E‖B(1)‖λ)1/λ ≤
(
E
[( d∑

i=1

|Bi(1)|
)λ])1/λ

≤
d∑
i=1

(E|Bi(1)|λ)1/λ = d

(
2λ/2

Γ
(
λ+1

2

)
√
π

)1/λ

.

Thus, we have

E‖B(1)‖λ ≤ dλ
(

2λ/2
Γ
(
λ+1

2

)
√
π

)
.

(b) 0 ≤ λ ≤ 1.

E‖B(1)‖λ ≤E
[( d∑

i=1

|Bi(1)|
)λ]
≤

d∑
i=1

E|Bi(1)|λ = d

(
2λ/2

Γ
(
λ+1

2

)
√
π

)
.

Lemma 23. For 0 < η ≤ m
M2 and s ∈ [jη, (j + 1)η), we have the following estimates:

(a) If 1 < λ < α then

E‖ŵjη‖λ ≤

((
E‖ŵ0‖λ

) 1
λ

+ j
(

(2η(b+m))
1
2 + 2

1
2 ηB + εη

1
α d
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

) 1
λ

+ εη
1
2 d
(

2λ/2
Γ
(
λ+1

2

)
√
π

) 1
λ
))λ

.

(b) If 0 ≤ λ ≤ 1 then

E‖ŵjη‖λ ≤E‖ŵ0‖λ + j
(

(2η(b+m))
λ
2 + 2

λ
2 (ηB)λ + ελη

λ
α d
(2λΓ((1 + λ)/2)Γ(1− λ/α)

Γ(1/2)Γ(1− λ/2)

)
+ ελη

λ
2 d
(

2λ/2
Γ
(
λ+1

2

)
√
π

))
.

Proof. Let us denote the value E‖Lα(1)‖λ by lα,λ,d < ∞ and the value E‖B(1)‖λ by

bλ,d <∞. Starting from

ŵ(j+1)η = ŵjη − η∇f(ŵjη) + εη
1
αLα(1) + εη

1
2 B(1),

we have either, by Minkowski, for λ > 1,(
E‖ŵ(j+1)η‖λ

) 1
λ ≤

(
E‖ŵjη − η∇f(ŵjη)‖λ

) 1
λ

+ εη
1
α

(
E‖Lα(1)‖λ

) 1
λ

+ εη
1
2

(
E‖B(1)‖λ

) 1
λ

,

(7.36)
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or for 0 ≤ λ ≤ 1),

E‖ŵ(j+1)η‖λ ≤ E‖ŵjη − η∇f(ŵjη)‖λ + ελη
λ
αE‖Lα(1)‖λ + ελη

λ
2 E‖B(1)‖λ. (7.37)

Consider the first term on the right side:

‖ŵjη − η∇f(ŵjη)‖λ = ‖ŵjη − η∇f(ŵjη)‖2×λ2

=
(
‖ŵjη‖2 − 2η〈ŵjη,∇f(ŵjη〉+ η2‖∇f(ŵjη‖2

)λ
2

≤
(
‖ŵjη‖2 − 2η(m‖ŵjη‖1+γ − b) + η2(2M2‖ŵjη‖2γ + 2B2)

)λ
2

,

(7.38)

where we used assumption A12 and Lemma 21. For 0 < η ≤ m
M2 ,

2ηm(‖ŵjη‖1+γ + 1) ≥ 2η2M2‖ŵjη‖2γ . (since 1 + γ > 2γ and ηm > η2M2)

Using this inequality we have

‖ŵjη − η∇f(ŵjη)‖λ ≤
(
‖ŵjη‖2 + 2η(b+m) + 2η2B2

)λ
2

≤ ‖ŵjη‖λ + (2η(b+m))
λ
2 + 2

λ
2 (ηB)λ. (7.39)

Consider the case where λ > 1. By (7.36) and (7.39),(
E‖ŵ(j+1)η‖λ

) 1
λ ≤

≤
(
E‖ŵjη‖λ + (2η(b+m))

λ
2 + 2

λ
2 (ηB)λ

) 1
λ

+ εη
1
α

(
E‖Lα(1)‖λ

) 1
λ

+ εη
1
2

(
E‖B(1)‖λ

) 1
λ

≤
(
E‖ŵjη‖λ

) 1
λ

+ (2η(b+m))
1
2 + 2

1
2 ηB + εη

1
α l

1
λ

α,λ,d + εη
1
2 b

1
λ

λ,d

≤
(
E‖ŵ0‖λ

) 1
λ

+ (j + 1)
(

(2η(b+m))
1
2 + 2

1
2 ηB + εη

1
α l

1
λ

α,λ,d + εη
1
2 b

1
λ

λ,d

)
.

For the case where 0 ≤ λ ≤ 1, by (7.37) and (7.39),

E‖ŵ(j+1)η‖λ ≤ E‖ŵjη‖λ + (2η(b+m))
λ
2 + 2

λ
2 (ηB)λ + ελη

λ
α lα,λ,d + ελη

λ
2 bλ,d

≤ E‖ŵ0‖λ + (j + 1)
(

(2η(b+m))
λ
2 + 2

λ
2 (ηB)λ + ελη

λ
α lα,λ,d + ελη

λ
2 bλ,d

)
.

By using Corollary 9 and Corollary 10, we have the desired results.

Details of the simulations in Section 6.4

The detailed settings of the parameters for the synthetic experiment (Figure 6.1) are

as follows.

Figure 6.1(a) d = 10, α ∈ {1.2, 1.4, 1.6, 1.8}, ε = 0.1, σ = 1, a = 4× 10−4.

Figure 6.1(b) d = 10, α ∈ {1.2, 1.4, 1.6, 1.8}, ε ∈ {10−3, 10−2, 10−1, 10}, σ = 1, a =

4× 10−6.

Figure 6.1(c) d = 10, α ∈ {1.2, 1.4, 1.6, 1.8}, ε = 0.1, σ ∈ {10−2, 10−1, 1, 10}, a =

4× 10−5.

Figure 6.1(d) d ∈ {10, 40, 70, 100}, α ∈ {1.2, 1.4, 1.6, 1.8}, ε = 0.1, σ = 1, a = 4× 10−4.
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T. Birdal, U. Şimşekli, M. O. Eken, and S. Ilic. Bayesian pose graph optimization

via Bingham distributions and tempered geodesic MCMC. In Advances in Neural

Information Processing Systems, pages 308–319, 2018.

N. Y. Bobrov, N. A. Smirnova, F. Vallianatos, and J. P. Makris. Multifractal analysis: a

method to investigate non-stationary properties of geophysical processes. In Proceed-

ing of the 2005 WSEAS International Conference on ENGINEERING EDUCATION

(Eds: D. Triantis & F. Vallianatos), pages paper–507, 2005.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings

of COMPSTAT’2010, pages 177–186. Physica-Verlag HD, 2010.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural

Information Processing Systems, pages 161–168, 2008.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine

learning. Siam Review, 60(2):223–311, 2018.

A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion

processes i: Sharp asymptotics for capacities and exit times. Journal of the European

Mathematical Society, 6(4):399–424, 2004.

A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes

ii: Precise asymptotics for small eigenvalues. Journal of the European Mathematical

Society, 7(1):69–99, 2005.

R. F. Brcich, D. R. Iskander, and A. M. Zoubir. The stability test for symmetric alpha-

stable distributions. IEEE Transactions on Signal Processing, 53(3):977–986, 2005.

T. Burghoff and I. Pavlyukevich. Spectral analysis for a discrete metastable system
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U. Şimşekli, C. Yildiz, T. H. Nguyen, A. T. Cemgil, and G. Richard. Asynchronous

stochastic quasi-Newton MCMC for non-convex optimization. In ICML, pages 4674–

4683, 2018.

U. Şimşekli, L. Sagun, and Gürbüzbalaban. A tail-index analysis of stochastic gradient

noise in deep neural networks. In ICML, 2019.

S. Cunningham, H. Ridley, J. Weinel, and R. Picking. Supervised machine learning

for audio emotion recognition: Enhancing film sound design using audio features,

regression models and artificial neural networks. Personal and Ubiquitous Computing,

pages 1–14, 2020.

A. S. Dalalyan. Further and stronger analogy between sampling and optimization:

Langevin Monte Carlo and gradient descent. Proceedings of the 2017 Conference on

Learning Theory, 2017a.

A. S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and

log-concave densities. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 79(3):651–676, 2017b.

H. Daneshmand, J. Kohler, A. Lucchi, and T. Hofmann. Escaping saddles with stochas-

tic gradients. In ICML, pages 1155–1164, 2018.

M. V. Day. On the exponential exit law in the small parameter exit problem. Stochastics,

8(4):297–323, 1983.

117



L. De Haan and L. Peng. Comparison of tail index estimators. Statistica Neerlandica,

52(1):60–70, 1998.

A. Debussche and N. Fournier. Existence of densities for stable-like driven SDE’s with

Hölder continuous coefficients. Journal of Functional Analysis, 264(8):1757–1778,

2013.

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the
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tivity of multiplicative Lévy SDE with applications. Stochastic Processes and their

Applications, 128(7):2153–2178, 2018.
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equation driven by a Lévy process. The Annals of Applied Probability, 18(2):379–426,

2008.

123



Vardan Papyan. The full spectrum of deep net Hessians at scale: Dynamics with sample

size. arXiv preprint arXiv:1811.07062, 2018.

D. S. Park, J. Sohl-Dickstein, Q. V Le, and S. L. Smith. The effect of network width

on stochastic gradient descent and generalization: an empirical study. arXiv preprint

arXiv:1905.03776, 2019.
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ential equations for Markov chain Monte Carlo. In ICML, pages 3200–3209, 2017.
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Titre : Heavy-tailed Nature of Stochastic Gradient Descent in Deep Learning: Theoretical and Empirical Ana-
lysis

Mots clés : Algorithme du gradient stochastique, apprentissage profond, distribution α-stable

Résumé : Dans cette thèse, nous nous intéressons
à l’algorithme du gradient stochastique (SGD). Plus
précisément, nous effectuons une analyse théorique
et empirique du comportement du bruit de gradient
stochastique (GN), qui est défini comme la différence
entre le gradient réel et le gradient stochastique, dans
les réseaux de neurones profonds. Sur la base de
ces résultats, nous apportons une perspective alter-
native aux approches existantes pour étudier SGD.
Le GN dans SGD est souvent considéré comme
gaussien pour des raisons mathématiques. Cette hy-
pothèse permet d’étudier SGD comme une équation
différentielle stochastique (SDE) pilotée par un mou-
vement brownien. Nous soutenons que l’hypothèse
de la gaussianité pourrait ne pas tenir dans les
contextes d’apprentissage profond et donc rendre in-
appropriées les analyses basées sur le mouvement
brownien. Inspiré de phénomènes naturels non gaus-
siens, nous considérons le GN dans un contexte
plus général qui suggère que le GN est mieux ap-
proché par un vecteur aléatoire à queue lourde α-
stable. En conséquence, nous proposons d’analyser
SGD comme une discrétisation d’une SDE pilotée

par un mouvement Lévy. Premièrement, pour justifier
l’hypothèse α-stable, nous menons des expériences
sur des scénarios communs d’apprentissage en pro-
fondeur et montrons que dans tous les contextes,
le GN est hautement non gaussien et présente des
queues lourdes. Deuxièmement, sous l’hypothèse du
GN à queue lourde, nous fournissons une analyse
non asymptotique pour que la dynamique en temps
discret SGD converge vers le minimum global en
termes de sous-optimalité. Enfin, nous étudions la na-
ture de métastabilité de la SDE pilotée par le mouve-
ment de Lévy qui peut ensuite être exploitée pour cla-
rifier le comportement de SGD, notamment en termes
de ”préférence de larges minima”. Plus précisément,
nous fournissons une analyse théorique formelle où
nous dérivons des conditions explicites pour la taille
de pas de sorte que le comportement de métastabilité
de SGD, considéré comme une SDE en temps dis-
cret, est similaire à sa limite de temps continu.
Nos résultats ouvrent une perspective différente et
éclairent davantage l’idée selon laquelle SGD préfère
les minima larges.

Title : Heavy-tailed Nature of Stochastic Gradient Descent in Deep Learning: Theoretical and Empirical Ana-
lysis

Keywords : Stochastic Gradient Descent, deep learning, α-stable distribution

Abstract : In this thesis, we are concerned with the
Stochastic Gradient Descent (SGD) algorithm. Speci-
fically, we perform theoretical and empirical analysis
of the behavior of the stochastic gradient noise (GN),
which is defined as the difference between the true
gradient and the stochastic gradient, in deep neural
networks. Based on these results, we bring an alter-
native perspective to the existing approaches for in-
vestigating SGD. The GN in SGD is often conside-
red to be Gaussian for mathematical convenience.
This assumption enables SGD to be studied as a sto-
chastic differential equation (SDE) driven by a Brow-
nian motion. We argue that the Gaussianity assump-
tion might fail to hold in deep learning settings and
hence render the Brownian motion-based analyses in-
appropriate. Inspired by non-Gaussian natural pheno-
mena, we consider the GN in a more general context
that suggests that the GN is better approximated by
a heavy-tailed α-stable random vector. Accordingly,
we propose to analyze SGD as a discretization of
an SDE driven by a Lévy motion. Firstly, to justify
the α-stable assumption, we conduct experiments on

common deep learning scenarios and show that in all
settings, the GN is highly non-Gaussian and exhibits
heavy-tails. Secondly, under the heavy-tailed GN as-
sumption, we provide a non-asymptotic analysis for
the discrete-time dynamics SGD to converge to the
global minimum in terms of suboptimality. Finally, we
investigate the metastability nature of the SDE driven
by Lévy motion that can then be exploited for clarifying
the behavior of SGD, especially in terms of ‘preferring
wide minima’. More precisely, we provide formal theo-
retical analysis where we derive explicit conditions for
the step-size such that the metastability behavior of
SGD, viewed as a discrete-time SDE, is similar to its
continuous-time limit. We show that the behaviors of
the two systems are indeed similar for small step-
sizes and we describe how the error depends on the
algorithm and problem parameters. We illustrate our
metastability results with simulations on a synthetic
model and neural networks. Our results open up a dif-
ferent perspective and shed more light on the view
that SGD prefers wide minima.
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