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CHAPTER 1

INTRODUCTION

The theory of Backward Stochastic Differential Equations (BSDEs in short) is much studied
from the beginning of 1990. Motivated by the connection with different stochastic mathemati-
cal problems like mathematical finance problems, optimal control problems, differential games
problems, PDEs, etc, the interest of BSDEs studies has broadly increased. BSDEs with a linear
driver is firstly introduced by Bismut in 1973 [3] in studying the adjoint equations of stochastic
optimal control problems. Later, in 1990, Pardoux and Peng [52] considered more general BS-
DEs where the driver verifies mainly a non-linear Lipschitz condition.

BSDEs may also arise in combined financial and insurance applications. For example, El
Karoui et al. [24] introduced the connection between BSDEs and the theory of contingent claim
valuation in a complete market. Dos Reis [21] studied the insurance related derivatives on the
financial markets, which can be represented in terms of solutions of FBSDEs with quadratic
growth. Delong [16] represented the linear BSDEs arising in life insurance and non-life insur-
ance payment processes under systematic and unsystematic claims risk.

1.1 An overview of general results of BSDEs

Let T > 0 be a fixed real constant. Let (Ω,F , P) be a complete probability space which
carries a d-dimensional Brownian motion B = (Bt)t∈[0,T] whose natural filtration is F 0

t :=
σ{Bs, s ≤ t}0≤t≤T. We denote by F = (Ft)0≤t≤T the completed filtration of (F 0

t )0≤t≤T with the
P-null sets of F , then it satisfies the usual conditions, i.e., it is complete and right continuous.
On the other hand, we defineP as the σ-algebra on [0, T]×Ω of the F-progressively measurable
sets. Next, we define the following spaces:

• L2 = {FT-measurable random variable ξ s.t. E(|ξ|2) < ∞};

• S2 = {P-measurable continuous processes φ = (φt)t∈[0,T] s.t. E(supt∈[0,T] |φt|2) < ∞};

• A2 = { Non-decreasing, continuous, P-measurable processes K = (Kt)t≤T s.t. K0 = 0
and E[K2

T] < ∞ };



1.1. AN OVERVIEW OF GENERAL RESULTS OF BSDES

• For k ≥ 1, H2,k = {P-measurable, Rk-valued processes φ = (φt)t∈[0,T] s.t. E(
∫ T

0 |φt|2kdt) <
∞}.

1.1.1 Classical results on standard BSDEs

Given anFT-measurable random variable ξ valued in Rp and a driver or generator f (t, ω, y, z) :
[0, T]×Ω×Rp ×Rp×d → Rp,P ⊗B(Rp+p×d)/B(Rp)-measurable. A solution of the BSDE as-
sociated with ( f , ξ) is a pair (Yt, Zt)t≤T of P−measurable processes valued in Rp+p×d such that:

∀t ≤ T, Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
ZsdBs. (1.1)

Next let us consider the following assumptions.

Assumption 1.1.1.

1. ( f (t, ω, 0, 0))t≤T ∈ H2,p and ξ is square integrable;

2. The generator f satisfies the Lipschitz condition, i.e. there exists a constant C such that for any
t ∈ [0, T] and (y1, z1), (y2, z2) ∈ Rp+p×d we have,

P− a.s., | f (t, y1, z1)− f (t, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|). (1.2)

We then have the following result related to existence and uniqueness of the pair (Y, Z).

Theorem 1.1.2 (Pardoux-Peng [52]). Under Assumption 1.1.1, the p-dimensional BSDE (1.1) has a
unique solution (Yt, Zt)t≤T such that:

E

[
sup

0≤t≤T
|Yt|2 +

∫ T

0
|Zt|2

]
< ∞. (1.3)

Another useful result for solving different BSDEs with more general drivers is the compar-
ison theorem. Indeed, one can compare the solutions of two BSDEs by comparing the drivers
and the terminal conditions. This result is firstly introduced in one-dimensional case by El
Karoui et al. [24].

Theorem 1.1.3 (El Karoui-Peng-Quenez [24]). Assume p = 1. Let (Y1, Z1), (Y2, Z2) be two solu-
tions of BSDEs associated respectively with ( f1, ξ1) and ( f2, ξ2) which satisfy Assumption 1.1.1. We
also assume that for any t ∈ [0, T],

1. ξ1 ≤ ξ2, P− a.s.;

2. f1(t, Y2
t , Z2

t ) ≤ f2(t, Y2
t , Z2

t ), dP× dt− a.s.

7



CHAPTER 1. INTRODUCTION

Then P-a.s., for any t ∈ [0, T], Y1
t ≤ Y2

t .

Later, several works extend the classical results by relaxing the assumptions on the coef-
ficients of BSDEs. By the construction of monotonic convergent sequences, the existence and
eventually the uniqueness of the solution of BSDE are guaranteed:

• The coefficient f is locally Lipschitz and the terminal condition is bounded, Hamadène
[26] proved the existence of the solution of one-dimensional BSDEs;

• f is of linear growth, continuous in (y, z) and the terminal condition is square inte-
grable, Lepeltier and San Martin [47] proved the existence of a minimal solution of one-
dimensional BSDEs;

• f is continuous in (y, z) and has a quadratic growth in Z and the terminal condition is
also bounded, Kobylanski [44] proved the comparison result, as well as the existence and
a stability results for one-dimensional BSDEs.

1.1.2 BSDEs in the markovian framework

One of the important settings of BSDEs is constructed under the markovian framework, i.e.,
the randomness of the coefficient and the terminal value of the BSDE comes from a diffusion
process (Xt,x

s )s∈[t,T] which is the solution of a standard SDE:{
dXt,x

s = b(s, Xt,x
s )ds + σ(s, Xt,x

s )dBs, s ∈ [t, T];
Xt,x

t = x.
(1.4)

Next let the processes (Yt,x, Zt,x) solution of the following BSDE:

∀s ≤ T, Yt,x
s = h(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r )dr−
∫ T

s
Zt,x

r dr. (1.5)

The solution of (1.5) can be represented by a deterministic function u(t, x) and is called the
markovian solution. We now provide sufficient conditions on the data b, σ, f and h for which
this markovian representation holds:

Assumption 1.1.4.

1. The functions b and σ are continuous and uniformly Lipschitz with respect to x, i.e. there exists a
constant C that for any (t, x, x′) ∈ [0, T]×Rk+k,

|σ(t, x)− σ(t, x′)|+ |b(t, x)− b(t, x′)| ≤ C|x− x′|.

8



1.1. AN OVERVIEW OF GENERAL RESULTS OF BSDES

As a result b and σ are of linear growth with respect to (w.r.t. for short) x, i.e.

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|).

2. f is an Rp−valued continuous function defined by:

f :[0, T]×Rk ×Rp ×Rp×d → Rp

(t, x, y, z) 7→ f (t, x, y, z).

Moreover it is uniformly Lipschitz in (y, z), i.e., there exists a constant C such that

| f (t, x, y1, z1)− f (t, x, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|);

3. f (t, x, 0, 0) and h are of polynomial growth, i.e. there exist constants c and p such that

| f (t, x, 0, 0)|+ |h(x)| ≤ c(1 + |x|p).

Theorem 1.1.5 (El Karoui et al.[24]). Under Assumption 1.1.4, for any (t, x) ∈ [0, T] ×Rk there
exists two measurable deterministic functions u(t, x) and d(t, x) such that

P− a.s., ∀s ∈ [t, T], Yt,x
s = u(s, Xt,x

s ), Zt,x
s = σ(s, Xt,x

s )>d(s, Xt,x
s ).

In addition, if the coefficients b, σ, f , h are globally Lipschitz w.r.t (x, y, z), uniformly in t to
f , then u is locally Lipschitz in x and 1/2−Hölder continuous in t. Moreover if b, σ, f , h are
continuous differentiable with respect to (x, y, z) with bounded derivatives, then ∀0 ≤ t ≤ s ≤
T, x ∈k

R, Zt,x
s = σ(s, Xt,x

s )>∂xu(s, Xt,x
s ) dP× ds a.s. (see Corollary 4.1 in [24] for more details).

Now let us focus on the following quasilinear parabolic partial differential equation (PDE
in short): ∀(t, x) ∈ [0, T]×Rk,{

∂xu(t, x) + Lu(t, x) + f (t, x, u(t, x), σ(t, x)∂xu(t, x)) = 0;
u(T, x) = h(x)

(1.6)

where L is the second order differential operator defined by

L :=
1
2

d

∑
i,j=1

(σσ>)ij
∂2

∂xi∂xj
+ ∑

i=1

∂

∂xi
.

The link between the solution of one-dimensional BSDE in the markovian framework (1.5) and
the solution of the PDE (1.6) is the following:

9
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Proposition 1.1.6 (El Karoui et al. [24]). Under assumption 1.1.4, suppose that u ∈ C1,2 is the
solution of the PDE (1.6), then the following representation holds true:

∀s ∈ [t, T], u(s, Xt,x
s ) = Yt,x

s , σ(s, Xt,x
s )>∂xu(s, Xt,x

s ) = Zt,x
s ,

where (Yt,x, Zt,x) is the unique solution of BSDE (1.5).

The solution of the one-dimensional BSDE in the markovian framework (1.5) is also related
to the solution of the PDE (1.6) in viscosity sense which we recall the definition in the following.

Definition 1.1.7. Let p = 1. Suppose that u ∈ C([0, T] ×Rk) with u(T, x) = h(x), x ∈ Rk. The
function u is called a viscosity subsolution (resp. supersolution) of PDE 1.6 if for any (t, x) ∈ [0, T)×
Rd and φ ∈ C1,2([0, T] × Rk) such that φ(t, x) = u(t, x) and u(t, x) is a local maximum (resp.
minimum) of u− φ,

∂φ

∂t
+ Lφ(t, x) + f (t, x, u(t, x), σ(t, x)>∂xφ(t, x)) ≤ 0 (resp. ≥ 0).

Moreover, u is called a viscosity solution of PDE(1.6) if it is both a viscosity subsolution and a viscosity
supersolution of (1.6).

Theorem 1.1.8 (Pardoux-Peng [53]). Assume Assumption 1.1.4 fulfilled. Then u(t, x) := Yt,x
t is

continuous and of polynomial growth, i.e.

∀(t, x) ∈ [0, T]×Rk, |u(t, x)| ≤ C(1 + |x|p),

where C and p are two constants. Moreover it is the unique solution of PDE (1.6) in the viscosity sense.

1.1.3 BSDEs and zero-sum stochastic differential games

BSDEs are also connected to control and game problems. The solution of BSDEs associated to
optimal control problems is firstly introduced by Bismut in 1973, then generalized by Pardoux
and Peng [52]. Later on, the BSDEs theory was well developed in various directions. Hamadène
and Lepeltier [32] introduced the connection of BSDEs with zero-sum stochastic differential
games.

Definition 1.1.9.

1. χ := C([0, T]; Rp) the set of continuous functions from [0, T] into Rp and P the Wiener measure
on χ;

2. We define U, V two sets of progressive measurable processes with values in compact sets Ū and V̄
respectively; u is called an admissible control if u ∈ U; the same for v ∈ V;

10



1.1. AN OVERVIEW OF GENERAL RESULTS OF BSDES

3. For 1 ≤ i, j ≤ p, σij : (t, x) ∈ [0, T]× χ→ σij(t, x) ∈ R is progressively measurable; we denote
by σ := (σij)i,j=1,p and by a := σσ>. We assume that σ is: (i) Lipschitz in x and of linear growth;
(ii) is invertible and its inverse is bounded. Next let (xt)t≤T be the solution of the following SDE:

xt = x0 +
∫ t

0
σ(s, x)dBs, t ≤ T and x0 ∈ Rp,

where (Bs)s≤T is a Brownian motion on (χ, P).

4. f (t, x, ū, v̄) (resp. c(t, x, ū, v̄)) is a measurable bounded function with values in Rp (resp. R);

5. For any u ∈ U, v ∈ V, Pu,v is a probability defined on (χ,FT) by:

dPu,v

dP
= exp{

∫ T

0
σ−1(s, x) f (s, x, us, vs)dBs −

1
2

∫ T

0
|σ−1(s, x) f (s, x, us, vs)|2ds}.

Then the process (xt)t≤T is, under Pu,v, a weak solution of dxt = f (t, x, ut, vt)dt + σ(t, x)dWu,v
t

where (Wu,v
t )t≤T is a Brownian motion under Pu,v;

6. Let (ut)t≤T, (vt)t≤T be two admissible controls. The payoff between two players, a minimizer
(resp. maximizer) that acts with u (resp. v) is given by

J(u, v) = Eu,v
[

ξ +
∫ T

0
c(s, us, vs)ds

]
,

where Eu,v is the expectation w.r.t.Pu,v.

Next for any (t, x, p, ū, v̄) ∈ [0, T]× χ×Rp× Ū× V̄, we define the Hamiltonian of the game
by H(t, x, p, ū, v̄) := pσ−1(t, x) f (t, x, ū, v̄) + c(t, x, ū, v̄) and assume that the Isaacs condition is
satisfied, i.e., for any (t, x, p) ∈ [0, T]× χ×Rp,

max
v̄∈V̄

min
ū∈Ū

H(t, x, p, ū, v̄) = min
ū∈Ū

max
v̄∈V̄

H(t, x, p, ū, v̄).

Then, by Benes selection Theorem (see [2]), there exists two P ⊗ B(Rp)-measurable functions
u∗ : [0, T]× χ×Rp → Ū and v∗ : [0, T]× χ×Rp → V̄, such that for any t, x, ū ∈ Ū, v̄ ∈ V̄,

(H) H(t, x, p, u∗(t, x, p), v∗(t, x, p)) ≤ H(t, x, p, ū, v∗(t, x, p)),

H(t, x, p, u∗(t, x, p), v∗(t, x, p)) ≥ H(t, x, p, u∗(t, x, p), v̄).

Note that, conversely, (H) implies the Isaacs condition and then we have

H(t, x, p, u∗(t, x, p), v∗(t, x, p)) = max
v̄∈V̄

min
ū∈Ū

H(t, x, p, ū, v̄).

11
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Theorem 1.1.10 (Hamadène-Lepeltier [32]). Assume that (H) is satisfied. Then the game has a saddle
point (u∗, v∗) ∈ U ×V, i.e.,

∀u ∈ U, v ∈ V, J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗).

Moreover, Y0 = J(u∗, v∗), where (Y, z) is the unique solution of the following BSDE:

− dYt = H(t, x, zt, u∗(t, x, zt), v∗(t, x, zt))dt− z̃tdBt, t ≤ T;

YT = ξ

and (u∗, v∗) := (u∗(t, x, zt), v∗(t, x, zt))t≤T.

The zero-sum stochastic differential game problems and the associated BSDEs have been
well documented in several works, see for example [14, 19, 30, 32, 33, 35, 41].

1.2 RBSDEs and DRBSDEs with interconnected barriers

In this section we recall some results on Reflected BSDEs (RBSDEs in short) and Doubly
Reflected BSDEs (DRBSDEs in short), as well as the associated applications (see e.g.[11, 14, 18,
19, 20, 23, 27, 31, 37, 40, 41, 65]).

1.2.1 General results for reflected BSDEs in one-dimension

One-dimensional Reflected BSDE

Firstly let us recall some results of BSDEs with a reflecting obstacle. El karoui et al. [23]
studied the reflected solution of BSDEs with a random lower obstacle. More precisely let ξ ∈
L2, f is the generator defined from [0, T] ×R×Rd into R and L a continuous, progressively
measurable process satisfying E

[
sup0≤t≤T(L+

t )
2
]
< ∞. Then the triple (Y, Z, K) of processes is

called a solution of the reflected BSDE associated with ( f , ξ, L) if:

Y ∈ S2, Z ∈ H2,d, K ∈ A2;

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
ZsdBs + KT − Kt, t ∈ [0, T];

Yt ≥ Lt, t ∈ [0, T];∫ T

0
(Yt − Lt) dKt = 0.

(1.7)

Assumption 1.2.1.

1. ξ ∈ L2;

12



1.2. RBSDES AND DRBSDES WITH INTERCONNECTED BARRIERS

2. f (., 0, 0) ∈ H2,1, moreover there exists a constant C such that ∀t ∈ [0, T], y, y′ ∈ R, z, z′ ∈ Rd,

| f (t, y, z)− f (t, y′, z′)| ≤ C(|y− y′|+ |z− z′|);

3. E
[
supt∈[0,T](L+

t )
2
]
< ∞;

4. LT ≤ ξ.

Theorem 1.2.2 (El Karoui et al. [23]). Under Assumption 1.2.1, the following results hold true:

1. The RBSDE (1.7) associated with ( f , ξ, L) has a unique solution (Y, Z, K) = (Yt, Zt, Kt)t≤T in
S2 ×H2,d ×A2.

2. The following representation holds true: For any t ∈ [0, T],

Yt = ess sup
τ∈Tt

E

[
ξ1(τ=T) +

∫ τ

t
f (s, Ys, Zs)ds + Lτ1(τ<T)

∣∣∣∣Ft

]
; (1.8)

where T is the set of stopping time dominated by T, and Tt := {τ ∈ T ; t ≤ τ ≤ T};

3. E

(
sup

t∈[0,T]
Y2

t +
∫ T

0
|Zt|2dt + K2

T

)
≤ CE

(
ξ2 +

∫ T
0 f 2(t, 0, 0)dt + sup

t∈[0,T]
(L+

t )
2

)
;

4. Comparison result: Let (Y, Z, K) and (Y′, Z′, K′) be two solutions of (1.7) respectively asso-
ciated with (ξ, f , L) and (ξ ′, f ′, L′) which satisfy Assumptions (1.2.1). If ξ ≤ ξ ′, ∀(y, z) ∈
R × Rd, f (t, y, z) ≤ f ′(t, y, z) dP × dt and ∀t ∈ [0, T], Lt ≤ L′t a.s. then we have Yt ≤
Y′t , ∀t ∈ [0, T] a.s.;

One-dimensional DRBSDE and related Dynkin games

Consider now two reflecting processes (Lt)t∈[0,T] and (Ut)t∈[0,T] under which the BSDE
changes the direction once the solution touches either obstacle. This DRBSDEs is connected with
the so-called zero-sum Dynkin game [14]. To be more precise, the game involves two players
with antagonistic goals (one wishes to maximize his profit while another wishes to minimize
his lost). Before the end of the game, each of whom implements a strategy and the first who
decides to stop pays or earns a certain amount. When the game finishes, two players share the
same payoff. The main objective of this game problem is to find an optimal strategy (if it exists),
i.e., a strategy such that this game is fair for both players.

Definition 1.2.3. We say that (Y, Z, K+, K−) is a solution of Doubly Reflected BSDE associated with
two reflected obstacles L and U, terminal condition ξ and the generator f if the following system holds

13



CHAPTER 1. INTRODUCTION

true: 

Y ∈ S2, Z ∈ H2,d, K+, K− ∈ A2;

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
ZsdBs + K+

T − K+
t − (K−T − K−t ); ∀t ∈ [0, T];

Lt ≤ Yt ≤ Ut;∫ T

0
(Yt − Lt) dK+

t = 0 and
∫ T

0
(Yt −Ut) dK−t = 0.

(1.9)

Assumption 1.2.4.

1. ξ ∈ L2 and ( f (t, ω, 0, 0))t≤T ∈ H2,1;

2. There exists a constant C such that ∀t ∈ [0, T], y, y′ ∈ R, z, z′ ∈ Rd,

| f (t, y, z)− f (t, y′, z′)| ≤ C(|y− y′|+ |z− z′|);

3. L, U ∈ S2, ∀t ∈ [0, T], Lt < Ut and LT ≤ ξ ≤ UT;

4. (Mokobokzki’s condition) Let Lξ
t := Lt1(t<T) + ξ1(t=T), Uξ

t := Ut1(t<T) + ξ1(t=T). There exists
h and θ two continuous non-negative F−supermartingales satisfying E[supt∈[0,T] h2

t ] < ∞ and
E[supt∈[0,T] θ2

t ] < ∞ such that: ∀t ≤ T,

Lξ
t ≤ ht − θt + E[ ξ| Ft] ≤ Uξ

t .

Theorem 1.2.5 (Cvitanic-Karatzas [14]). Suppose that Assumption 1.2.4 holds true, then the DRB-
SDE (1.9) has a unique solution (Y, Z, K+, K−) ∈ S2 ×H2,d ×A2 ×A2.

Next let us consider the connection between the solution (Y, Z, K+, K−) and the stochas-
tic Dykin game. We denote by Mt,T the class of F−stopping time, for σ, τ in class Mt,T, we
consider the following payoff:

Rt(σ, τ) :=
∫ σ∧τ

t
f (r)dr + ξ1(σ∧τ=T) + Lτ1(τ<T,τ≤σ) + Uσ1(σ<τ). (1.10)

Proposition 1.2.6 (Cvitanic-Karatzas [14]). Under Assumption (1.2.4), the stochastic Dynkin game
has a value, noted Vt, given by the unique solution of DRBSDEs (1.9), i.e.

Vt = ess sup
τ∈Mt,T

ess inf
σ∈Mt,T

E[Rt(σ, τ)| Ft] = ess inf
σ∈Mt,T

ess sup
τ∈Mt,T

E[Rt(σ, τ)| Ft] = Yt.

Moreover there exists a saddle point of the game (τ∗, σ∗) ∈ (Mt,T)
2 given by:

σ∗ := inf{s ∈ [t, T]; Ys = Us} ∧ T;

14



1.2. RBSDES AND DRBSDES WITH INTERCONNECTED BARRIERS

τ∗ := inf{s ∈ [t, T]; Ys = Ls} ∧ T.

Note that the Mokobodzki condition plays a crucial role when proving the unique solution
of DRBSDEs. Since it is difficult to check the existence of a difference of non-negative super-
martingales between the two barriers ([14, 30]), Cvitanic and Karatzas [14] provided another
regularity condition on both of the obstacle processes which insures the existence and unique-
ness of the solution of (1.9). Later Lepeltier, Hamadène and Matoussi [31] relaxed this latter
condition by assuming it only on one of the obstacles:

Theorem 1.2.7 (Lepeltier et al. [31]). Assume that Assumptions 1.2.4-(1-3) are satisfied. If there exists
a sequence of process (Un)n≥0 such that for any t ≤ T, n ≥ 0,

1. Un
t ≥ Un+1

t and limn→∞ Un
t = Ut, P− a.s;

2. Un
t = Un

0 +
∫ t

0 un(s)ds +
∫ t

0 vn(s)dBs, where un, vn are Ft−adapted processes such that
supn≥0,t∈[0,T] |un

t | ≤ C∗ and E{
∫ T

0 |vn(s)|2ds]1/2} < ∞, where C∗ is a constant.

Then DRBSDE (1.9) has a unique solution.

Hamadène and Hassani [27] showed existence and uniqueness of the solution of the DRB-
SDEs (1.9) by only assuming that the two obstacles are totally separated, i.e., L < U. However
the processes K and Z are not necessarily integrable. Actually under this latter condition it is
only shown that P-a.s. KT(ω) < ∞ and

∫ T
0 |Zs(ω)|2ds < ∞.

1.2.2 Multidimensional RBSDEs with interconnected obstacle or oblique reflection

In recent years, the RBSDEs problems are also studied in higher dimensions. In connec-
tion with the switching problem, Hamadene and Jeanblanc [29] introduced those RBSDEs in
dimension 2. Later, Hu and Tang [40] considered the multi-dimensional framework where the
existence of the solution is obtained by penalization method, and the uniqueness of the solu-
tion derives from a verification theorem of the associated optimal switching problem. In the
same year Hamadène and Zhang [37] studied a similar system of RBSDEs where the com-
ponents of the driver depend on the solution. They showed that the unique solution of the
multi-dimensional RBSDEs is also related to the value of an optimal switching problem. In this
paper the monotonicity condition of the generator plays a key role while authors prove the
existence of the solution by the penalization approach.

So let us introduce the following conditions:

Assumption 1.2.8. For m ≥ 2, i = 1, ..., m,

1. E[
∫ T

0 | f
i(t, ω, 0, 0)|2dt + |ξ i|2] < ∞;

15
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2. f i(t,~y, z) := f i(t, y1, y2, ..., ym, z) is uniformly Lipschitz continuous in (yi, z) and is continuous
in yj for j 6= i and for i, j = 1, ..., m and j 6= i, hij(t, y) is continuous in (t, y);

3. Let Ai := {1, ..., m} − {i}, f i(t,~y, z) is increasing in yj for j 6= i, hij(t, y) is increasing in y for
j ∈ Ai;

4. For i ∈ Aj, hji(t, y) ≤ y, moreover there does not exist a sequence j2 ∈ Aj1 , ..., jk ∈ Ajk−1 , j1 ∈ Ajk

such that y1 = hj1 j2(t, y2), y2 = hj2 j3(t, y3), ..., yk = hjk j1(t, y1);

5. For i = 1, ..., m, ξ i ≥ maxj∈Ai hij(T, ξ).

Theorem 1.2.9 (Hamadène-Zhang [37]). If Assumption 1.2.8 is fulfilled, then the following system
of m-dimensional RBSDEs

Yi ∈ S2, Zi ∈ H2,d, Ki ∈ A2;

Yi
t = ξ i +

∫ T

t
f i(s,~Ys, Zi

s)ds−
∫ T

t
Zi

sdBs + Ki
T − Ki

t;

Yi
t ≥ max

j∈Ai
hij(t, Y j

t );
∫ T

0

[
Yi

t −max
j∈Ai

hij(t, Y j
t )

]
dKi

t = 0,

(1.11)

has a solution.

Uniqueness of the solution to the system of RBSDEs (1.11) is proved when for any i =

1, . . . , m, f i is Lipschitz w.r.t. (~y, z). Later this existence and uniqueness result is generalized by
Chassagneux et al. [11] to the framework where f i is no longer monotonic but only Lipschitz
w.r.t. its components (, z).

Besides, in the markovian framework, one can find the connection between the system of
multi-dimensional RBSDEs and a specific system of PDEs. Indeed, let (Xt,x

s )s∈[t,T] be the diffu-
sion process satisfying (1.4) and let us introduce the following items:

• Let Γ := {1, 2, ..., m} the set of available switching modes;

• ∀i, j ∈ Γ, i 6= j, gij : (t, x) ∈ [0, T] ×Rk 7→ gij(t, x) ∈ R+ represents the switching cost
function from mode i to mode j;

• ∀i ∈ Γ, hi : x ∈ Rd 7→ hi(x) ∈ R represents the terminal condition function;

• f i : (t, x,~y, z) ∈ [0, T]×Rk+m+d 7→ f i(t, x, y1, ..., ym, z) ∈ R is the generator of the system
of RBSDEs.

We denote by Γ−i := Γ− {i}.
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1.2. RBSDES AND DRBSDES WITH INTERCONNECTED BARRIERS

Definition 1.2.10. Let i ∈ Γ, t ∈ [0, T]. The following triples (Yi;t,x, Zi;t,x, Ki;t,x) ∈ R2 ×H2,d ×A2,
i = 1, . . . , m, are called solution of the m-dimensional RBSDEs with interconnected obstacles associated
with ( f i, hi, (gij)j∈Γ−i) if: For any i = 1, . . . , m, ∀s ∈ [t, T],



Yi;t,x
s = hi(Xt,x

T ) +
∫ T

s
f i
(

r, Xt,x
r , Y1;t,x

r , ..., Ym;t,x
r , Zi;t,x

r

)
dr−

∫ T

s
Zi;t,x

r dBr + Ki;t,x
T − Ki;t,x

s ;

Yi;t,x
s ≥ max

j∈Γ−i

[
Y j;t,x

s − gij(s, Xt,x
s )
]

;∫ T

t

{
Yi;t,x

s −max
j∈Γ−i

[
Y j;t,x

s − gij(s, Xt,x
s )
]}

dKi;t,x
s = 0.

(1.12)

Assumption 1.2.11.

1. b, σ are jointly continuous in (t, x) and Lipschitz w.r.t. x, i.e. there exists a constant C ≥ 0 such
that for any t ∈ [0, T], x, x′ ∈ Rk,

|σ(t, x)− σ(t, x′)|+ |b(t, x)− b(t, x′)| ≤ C|x− x′|.

As a result b and σ are of linear growth, i.e.

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|).

2. For any i ∈ Γ, f i(t, x,~y, z) is continuous in (t, x) uniformly w.r.t. (~y, z) and Lipschitz continuous
w.r.t. (~y, z), i.e. for some C ≥ 0, ∀(t, x) ∈ [0, T]×Rk,~y,~y′ ∈ R|Γ|, z, z′ ∈ Rd,

| f i(t, x, y1, ..., ym, z)− f i(t, x, y′1, ..., y′m, z′)| ≤ C
(
|y1 − y′1|+ ... + |ym − y′m|+ |z− z′|

)
;

3. Monotonicity: ∀j ∈ Γ−i, yj ∈ R 7→ f i(t, x,~y) is non-decreasing whenever the other components
(t, x, y1, ..., yj−1, yj+1, ..., ym) are fixed;

4. gij is jointly continuous in (t, x) and ∀(t, x) ∈ [0, T] ×Rk, gij(t, x) ≥ 0 and is of polynomial
growth;

5. The non-free loop property: For any (t, x) ∈ [0, T] × Rk and any sequence i1, ..., ip such that
i1 6= i2, i1 = ip and card{i1, ..., ip} = p− 1, we have

gi1i2(t, x) + gi2i3(t, x) + ... + gik−1ik(t, x) > 0, ∀(t, x) ∈ [0, T]×Rk.

By convention we set gii = 0, ∀i ∈ Γ;

17



CHAPTER 1. INTRODUCTION

6. ∀i ∈ Γ, hi(x) is of polynomial growth and satisfies the consistency condition, i.e., ∀x ∈ Rk,

hi(x) ≥ max
j∈Γ−i

(
hj(x)− gij(T, x)

)
.

Theorem 1.2.12 (Hamadène-Morlais [34]). Under Assumption 1.2.11, the system (1.12) has a unique
solution (Yi;t,x, Zi;t,x, Ki;t,x)i∈Γ. Moreover, there exists deterministic continuous functions (vi(t, x))i∈Γ

of polynomial growth such that

∀i ∈ Γ, s ∈ [t, T], Yi;t,x
s = vi(s, Xt,x

s ).

Moreover (vi(t, x))i∈Γ are the unique solution in viscosity sense of the following system of PDEs with
interconnected obstacles: ∀i ∈ Γ, t ∈ [0, T]

min{vi(t, x)−max
j∈Γ−i

(vj(t, x)− gij(t, x));−∂tvi(t, x)−Lvi(t, x)

− f i(t, x, v1(t, x), ..., vm(t, x), σ(t, x)>Dxvi(t, x))} = 0;
vi(T, x) = hi(x).

(1.13)

The multi-dimensional RBSDEs are connected to the multi-modes switching problems.
In applications, the study of the optimal strategy related to the investment of multi-portfolio
(e.g.[64, 34]), or even to find the optimal control in the natural resource industry (e.g.[20, 29]),
one can apply the multidimensional RBSDEs model where its unique solution is nothing but
the value function of the problem.

The stochastic switching problems

In accordance to the connection between multi-dimensional RBSDEs and the stochastic
switching problems, Hamadène and Jeanblanc [29] introduced the two-mode switching prob-
lem by investigating into the real options problem, called reversible investment problem. By means
of Snell envelop method, they showed that such a problem has an optimal strategy, under
which the value of the problem is related to the 2-dimensional RBSDEs. Later this problem
has been extended by a lot of researchers, for example, Hamadène and Hdhiri [28] studied the
two-mode switching problem when the corresponding processes are driven by both a general
Brownian filtration and an independent Poisson process; Porchet, Touzi and Warin [60] studied
this problem by assuming that the payoff function is given by an exponential utility function.

Later the multiple switching problems are also studied. Djehiche, Hamadène and Popier
[20] considered a real switching problem of a power plant. They show the existence of the
optimal strategy and the link with the unique solution of the system of RBSDEs. In this work
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1.2. RBSDES AND DRBSDES WITH INTERCONNECTED BARRIERS

the driver f is path-independent.

Some more general cases of f , for example, the driver and the obstacle are interconnected
to the solution of the RBSDEs, are also studied under different conditions (e.g.[40, 37, 34, 19]).
Now we introduce some results on the multiple stochastic switching problems for later use. We
stick to the markovian framework as the extension to the general one is immediate.

Definition 1.2.13.

• We define a strategy (δ, ξ) := ((τn)n≥0, (ξn)n≥0) as

1. (τn)n≥1 is a non-decreasing sequence of F−stopping times; we set τ0 = 0;

2. (ξn)n≥0 the Γ−valued and Fτn−measurable random variable, and ξ0 represents the initial
state of the switching problem.

• we say that (δ, ξ) := ((τn)n≥0, (ξn)n≥0) is admissible if P[τn < T, ∀n ≥ 0] = 0;

• (αt)t≤T the indicator process defined by

∀t ∈ [0, T], αt = 1[0,τ1)(t) + ∑
n≥1

ξn1[τn−1,τn)(t);

• (Aα
s )s≤T the cumulative cost function given by

∀s < T, Aα
s := ∑

n≥1
gξn−1,ξn(τn, Xt,x

τn
)1τn≤s, Aα

T = lim
s→T

Aα
s ;

• Di
s := {α = ((τn)n≥0, (ξn)n≥0) ∈ D, ξ0 = i, τ0 = s, and E[Aα

T] < ∞} the set of admissible
strategies.

Theorem 1.2.14 (Hamadène-Morlais [34]). Assume that Assumption 1.2.11-(1-2,4-6) is satisfied,
then:

(i) the switching problem has an optimal strategy, denoted α∗ = (δ∗, ξ∗), i.e.,

sup
α∈Di

0

Jα = Jα∗ ,

where α = (δ, ξ) and Jα = E[
∫ T

0 f αs(s, Xt,x
s )ds− Aα

T].

(ii) For any i ∈ Γ, s ∈ [0, T]
Yi

s = ess sup
s∈Di

s

(Pα
s − Aα

s ),

19



CHAPTER 1. INTRODUCTION

where Pα is the solution of the following BSDE of non-standard type: Pα RCLL and E[sups≤T |Pα
s |2] < ∞, Qα ∈ H2,d;

Pα
s = hα(Xt,x

T ) +
∫ T

s
f α(r, Xt,x

r ,~vr, Qα
r )dr−

∫ T

s
Qα

r dBr − (Aα
T − Aα

s ), ∀s ≤ T.

Note that similar results are also shown in Hu and Tang [40].

1.3 Systems of reflected BSDEs with interconnected bilateral obsta-
cles: Existence, uniqueness and applications

Chapter 2 is a published co-work with Hamadène (ref.[35]).

1.3.1 Motivation

The main objective of this work is to study the system of multidimensional DRBSDEs with
doubly interconnected barriers, then we connect the unique solution of DRBSDEs to the sys-
tem of PDEs with doubly interconnected obstacles. The novelties of this work are: (i) firstly we
obtain the existence of the solution via the penalization method in the general framework and
not only the markovian one; (ii) secondly by relaxing the assumption of monotonicity on the
driver f ij and applying the results of the first part and the connection with switching game as
well, we obtain the existence and the uniqueness of the solution of the system of DRBSDEs; (iii)
thirdly we apply the unique solution of DRBSDEs in the second part to show the existence and
the uniqueness of the system of PDEs in the viscosity sense.

Preliminaries

Let Γ1, Γ2 be the finite sets of the whole switching modes available for the controllers or
players. Let Γ := Γ1 × Γ2 and we denote by Λ its cardinal, i.e., Λ := |Γ| = |Γ1| × |Γ2|. On the
other hand for (i, j) ∈ Γ1 × Γ2, we define (Γ1)−i := Γ1 − {i} and (Γ2)−j := Γ2 − {j}.

A function Ψ : (t, x) ∈ [0, T]×Rk 7→ Ψ(t, x) ∈ R` is called of polynomial growth if there
exists two non-negative real constants C and γ such that ∀(t, x) ∈ [0, T]×Rk,

|Ψ(t, x)|` ≤ C(1 + |x|γk ).

Hereafter this class of functions is denoted by Πg.
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1.3. SYSTEMS OF REFLECTED BSDES WITH INTERCONNECTED BILATERAL
OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS

Next let us denote by~y the generic element (yij)(i,j)∈Γ of RΛ and let us introduce the follow-
ing items: for any i, k ∈ Γ1 and j, l ∈ Γ2,

i) f ij: (t, ω,~y, z) ∈ [0, T]×Ω×RΛ ×Rd 7→ f ij(t, ω,~y, z) ∈ R ;

ii) g
ik

: (t, ω) ∈ [0, T]×Ω 7→ g
ik
(t, ω) ∈ R+ ;

iii) gjl : (t, ω) ∈ [0, T]×Ω 7→ gjl(t, ω) ∈ R+;

iv) ξ ij is a r.v. valued in R and FT-measurable.

Finally let us introduce the following assumptions on f ij, gik and g
jl

for i, k ∈ Γ1 and j, l ∈ Γ2.

Assumption 1.3.1.

1. For any (i, j) ∈ Γ1 × Γ2,

a) There exists a positive constant C and a non negative P-measurable process (ηt)t≤T which
satisfies E[sups≤T |ηs|2] < ∞ such that: P-a.s, ∀(~y, z) ∈ RΛ+d, t ∈ [0, T],

| f ij(t,~y, z)| ≤ C(1 + ηt + |~y|),

where |~y| refers to the standard Euclidean norm of ~y in RΛ (the same for |z| below). Note
that this implies that E[

∫ T
0 | f

ij(t, 0, 0)|2dt] < ∞;

b) f ij is Lipschitz continuous with respect to (w.r.t for short) (−→y , z) uniformly in (t, ω), i.e.
P-a.s., for any t ∈ [0, T], (−→y1 , z1) and (−→y2 , z2) elements of RΛ+d, we have

| f ij(t,−→y1 , z1)− f ij(t,−→y2 , z2)| ≤ C(|−→y1 −−→y2 |+ |z1 − z2|),

where C is a fixed constant.

2. For any (i, j) ∈ Γ,

a) E(|ξ ij|2) < ∞;

b) ξ ij, as the terminal condition at time T, satisfies the following consistency condition: P-a.s.,

max
k∈(Γ1)−i

(
ξkj − g

ik
(T)
)
≤ ξ ij ≤ min

l∈(Γ2)−j

(
ξ jl + gjl(T)

)
.

3. For all i1, i2 ∈ Γ1 (resp. j1, j2 ∈ Γ2) and t ∈ [0, T], the process g
i1i2

(resp. gj1 j2),

(i) is non-negative and continuous;
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(ii) For any k ∈ Γ1 (resp. ` ∈ Γ2) such that |{i1, i2, k}| = 3 (resp. |{j1, j2, `}| = 3), it holds:

P− a.s., ∀t ≤ T, g
i1i2

(t) < g
i1k
(t) + g

ki2
(t)

(
resp. gj1 j2(t) < gj1`(t) + g`j2(t)

)
;

(1.14)

4. For any (i, j), (k, `) ∈ Γ, g
ik

(resp. gj`) is an Itô process, i.e.,

 g
ik
(t) = g

ik
(0) +

∫ t

0
bik(s)ds +

∫ t

0
σik(s)dBs, t ≤ T,

with σik ∈ H2,d and bik, P-measurable and E[sups≤T |bik(s)|2] < ∞.

resp.

 gj`(t) = gj`(0) +
∫ t

0
bj`(s)ds +

∫ t

0
σj`(s)dBs, t ≤ T,

with σj` ∈ H2,d and bj`, P-measurable and E[sups≤T |bj`(s)|2] < ∞.

 .

5. Monotonicity:
For any (i, j) ∈ Γ and (k, l) ∈ Γ−ij := Γ − {(i, j)}, the mapping ykl 7→ f ij(t,−→y , z) is non-
decreasing when the other components (ypq)(p,q) 6=(k,l) and z are fixed.

Definition 1.3.2. A family (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ is said to be a solution of the system of reflected
BSDEs with doubly interconnected barriers associated with (( f ij)(i,j)∈Γ, (ξ ij)(i,j)∈Γ, (g

ik
)i,k∈Γ1 , (gj,`)j,`∈Γ2),

if it satisfies the followings: ∀(i, j) ∈ Γ,



Yij ∈ S2, Zij ∈ H2,d, Kij,± ∈ A2 ;
Yij

t = ξ ij +
∫ T

t f ij(s, ω, (Ykl
s )(k,l)∈Γ1×Γ2 , Zij

s )ds−∫ T
t Zij

s dBs + Kij,+
T − Kij,+

t − (Kij,−
T − Kij,−

t ), ∀t ≤ T;
Lij

t ≤ Yij
t ≤ Uij

t , ∀t ∈ [0, T];∫ T
0 (Yij

t − Lij
t )dKij,+

t = 0 and
∫ T

0 (Uij
t −Yij

t )dKij,−
t = 0,

(1.15)

where Lij
t := max

k∈(Γ1)−i
{Ykj

t − g
ik
(t)} and Uij

t := min
l∈(Γ2)−j

{Yil
t + gjl(t)}, ∀t ≤ T.

1.3.2 Main results of this paper

Existence of solution under monotonicity condition

In the first place we prove the existence of a solution of (1.15) under Assumption 1.3.1. For
this purpose we penalize both barriers in the following way: ∀m, n ∈N, (i, j) ∈ Γ,
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 Yij,m,n ∈ S2, Zij,m,n ∈ H2,d;

Yij,m,n
t = ξ ij +

∫ T

t
f ij,m,n

(
s, (Ykl,m,n

s )(k,l)∈Γ1×Γ2 , Zij,m,n
s

)
ds−

∫ T

t
Zij,m,n

s dBs, t ≤ T,
(1.16)

where

f ij,m,n
(

t, (ykl)(k,l)∈Γ1×Γ2 , z
)
= f ij (t,~y, z) + n

{
yij

t − max
k∈(Γ1)−i

[
ykj

t − g
ik
(t)
]}−

−m

{
yij

t − min
l∈(Γ2)−j

[
yil

t + gjl(t)
]}+

,

(x+ = x ∨ 0 and x− = (−x) ∨ 0, x ∈ R).
For all (i, j) ∈ Γ, the sequence (Yij,m,n)n≥0 increasingly converges to a process in S2, denoted

(Ȳij,m)m≥0. As the terminal condition of this sequence stays the same, the monotonic result
is obtained by simply comparing the generators ( f ij,m,n)n≥0. On the other hand, the process
(Zij,m,n)n≥0 →n→∞ Z̄ij,m in H2,d, the penalized part of the lower obstacle also converges in S2,
we denote by

K̄ij,m,+
t := lim

n→∞

∫ t

0
n
{

Yij,m,n
s −max

k∈Γ−i
[Ykj,m,n

s − g
ik
(s)]

}−
ds, t ≤ T,

thus the triple (Ȳij,m, Z̄ij,m, K̄ij,m)(i,j)∈Γ is the unique solution of RBSDEs associated with (ξ ij, f̄ ij,m,
(g

ik
)k∈Γ1)(i,j)∈Γ where

f̄ ij,m(s, (ykl)(k,l)∈Γ, z) := f ij(s, (ykl)(k,l)∈Γ, z)−m

(
yij − min

l∈(Γ2)−j
[yil + ḡjl(s)]

)+

.

The following step is to prove that the sequence (Ȳij,m)(i,j)∈Γ convergences to Yij in S2, ∀(i, j) ∈
Γ. Here the difficulty derives from the continuity of this limit process. In another word, if we
can prove the uniform convergence of (Ȳij,m)(i,j)∈Γ in S2, then Yij holds the continuity. How-

ever the penalized term m

(
yij − min

l∈(Γ2)−j
[yil + ḡjl(s)]

)+

is a little bit troublesome when making

calculus. Then we introduce the equivalent RBSDEs (Yij,m, Zij,m, Kij,m)(i,j)∈Γ where the driver is
the following:

f ij,m(t,~y, z) := f ij(t, (ykl)(k,l)∈Γ, z)−m

yij − ∑
l∈(Γ2)−j

[yil + ḡjl(t)]

+

.
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The equivalence (if one converges, the other one does so to the same limit) between (Yij,m, Zij,m,
Kij,m)(i,j)∈Γ and (Ȳij,m, Z̄ij,m, K̄ij,m)(i,j)∈Γ is proved by the comparison theorem.

In the following we need to prove the convergence of (Yij,m)(i,j)∈Γ. For this purpose we rely
on the link with switching problems and introduce the following definitions:

• (σn)n≥0: increasing sequence of stopping times s.t. P[σn < T, ∀n ≥ 0] = 0;

• δn : Γ1−valued and Fσn−measurable random variable;

• u := (σn, δn)n≥0 an admissible switching strategy;

• Au
t := ∑n≥1 gδn−1δn(σn)1(σn≤t) the cumulative switching cost and Au

T := limt→T Au
t ;

• at := δ01(σ0)(t) + ∑n≥1 δn−11(σn−1,σn](t);

• Ai
t := {u = (σn, δn)n≥0 admissible strategy such that σ0 = t, δ0 = i and E[(Au

T)
2] < ∞}

Thus there exists (Uaj,m, Vaj,m), ∀a ∈ Ai
t, j ∈ Γ2, the unique solution of a non-standard type

BSDE associated with (ξat j, fij,m, Aa):
Uaj,m is rcll, E

[
supt≤T |U

aj,m
t |2

]
< ∞ and Vaj,m ∈ H2,d;

Uaj,m
t = ξaT j +

∫ T

t
1(s≥σ0)f

aj,m
(

s, (Ykl,m
s )(k,l)∈Γ, Vaj,m

s

)
ds−

∫ T

t
Vaj,m

s dBs + Aa
T − Aa

t ,

where

faj,m(s, (Ykl,m
s )(k,l)∈Γ, z) = ∑

n≥1

 ∑
q∈Γ1

{
f qj(s, (Ykl,m

s )(k,l)∈Γ, z)

− m ∑
l∈(Γ2)−j

(Yqj,m
s −Yql,m

s − gjl(t))
+}1{δn−1=q}

 1{σn−1≤s<σn}.

(1.17)

Then we have:
Yij,m

t = ess sup
a∈Ai

t

{
Uaj,m

t − Aa
t

}
.

Afterwards by Itô’s calculus, we obtain the following estimate:

Proposition 1.3.3. For any(i, j) ∈ Γ, t ≤ T,

m2E

[
∑

l∈Γ2−{j}
{(Yij,m

t −Yil,m
t − gjl(t))

+}2

]
≤ C. (1.18)
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This estimate implies that the discontinuity points of Yij := limm→∞ Yij,m stem from the
discontinuities of limm→∞ Kij,m,+. But by the uniqueness of the solution (Yij,m, Zij,m, Kij,m)(i,j)∈Γ

of the system of RBSDEs associated with
(ξ ij, f ij,m, (g

ik
)k∈Γ1)(i,j)∈Γ, the estimates on f ij (Assumption 1.3.1, 1.a)) and the regularity of the

switching costs, as in Proposition 1.3.3, we show that Kij,m,+ has a density w.r.t. dt which uni-
formly bounded in H2,1. Therefore limm→∞ Kij,m,+ is a continuous non-decreasing process. It
implies that Yij is a continuous process and the convergence of (Yij,m, Zij,m, Kij,m)(i,j)∈Γ and
(Ȳij,m, Z̄ij,m, K̄ij,m)(i,j)∈Γ to (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ in the appropriate spaces holds (especially
the convergence of (Yij,m)m to Yij in S2). Finally we obtain:

Theorem 1.3.4. Under Assumption 1.3.1, the process (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ is a solution of the
system of reflected BSDEs (1.15).

Existence and Uniqueness without monotonicity

The results of this subsection are based on the existence of the value function of a zero-sum
stochastic differential game whose payoff is given by:

Jij
t (γ(u, v)) = E

[
ξπT +

∫ T

t
f π(s)ds− ∑

n≥1

(
g

γ
(1)
n−1γ

(1)
n
(ρn)− g

γ
(2)
n−1γ

(2)
n
(ρn)

)∣∣∣∣∣Ft

]
, (1.19)

where γ(u, v) is the coupling of (u, v). The construction of the model is well detailed in [33]
where the authors relate the solution Yij of the system of DRBSDEs (1.15) to this zero-sum
stochastic switching game, when the generators f ij do not depend neither on y nor on z. They
show that the value of the game is nothing but Yij, solution of the DRBSDEs, when the con-
trolled system under the switchings of the two players starts from (i, j).

For this purpose we introduce the following assumptions:

Assumption 1.3.5.

1. The processes (g
ik
)i,k∈Γ1 and (gj,`)j,`∈Γ2 verify the non free loop property, that is to say, if (ik, jk)k=1,2,...,N

is a loop in Γ, i.e., (iN , jN) = (i1, j1), card {(ik, jk)k=1,2,...,N} = N− 1 and for any k = 1, 2, ..., N−
1, either ik+1 = ik (resp. jk+1 = jk), we have:

P− a.s., ∀t ≤ T,
N−1

∑
k=1

Gik jk(t) 6= 0, (1.20)

where ∀k = 1, ...N − 1, Gik jk(t) = −g
ikik+1

(t)1ik 6=ik+1 + gjk jk
(t)1jk 6=jk+1 . This assumption makes

sure that any instantaneous loop in the switching mode set Γ1 × Γ2, of the players (or deci-
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sion makers), is not free i.e. one of the controllers needs to pay something when the system is
switched and comes back instantaneously to the initial mode. Note that (1.20) also implies: for any

(i1, ..., iN) ∈ (Γ1)N such that iN = i1 and card{i1, i2, ..., iN} = N − 1,

P

[
N−1

∑
k=1

g
ikik+1

(t) = 0

]
= 0, ∀t ≤ T,

and for any (j1, ..., jN) ∈ (Γ2)N such that jN = j1 and card{j1, j2, ..., jN} = N − 1,

P

[
N−1

∑
k=1

gjk jk+1
(t) = 0

]
= 0, ∀t ≤ T.

2. For any (i, j) ∈ Γ, the function f ij does not depend on z.

Theorem 1.3.6. Assume that Assumption 1.3.1-(1.)-(4.) and Assumption 1.3.5 are fulfilled. Then sys-
tem of reflected BSDEs (1.15) has a solution (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ, i.e., for any (i, j) ∈ Γ and
t ≤ T,

Yij ∈ S2, Zij ∈ H2,d, Kij,± ∈ A2 ;

Yij
t = ξ ij +

∫ T

t
f ij
(

s, ω, (Ykl
s )(k,l)∈Γ1×Γ2

)
ds−

∫ T

t
Zij

s dBs + Kij,+
T − Kij,+

t − (Kij,−
T − Kij,−

t ) ;

Lij
t ≤ Yij

t ≤ Uij
t ;∫ T

0

(
Yij

t − Lij
t

)
dKij,+

t = 0 and
∫ T

0

(
Uij

t −Yij
t

)
dKij,−

t = 0

(1.21)
where Lij

t := max
k∈(Γ1)−i

{
Ykj

t − g
ik
(t)
}

and Uij
t := min

l∈(Γ2)−j

{
Yil

t + gjl(t)
}

. Moreover it is unique in the

following sense: if (Yij
, Zij, Kij,+, Kij,−

)(i,j)∈Γ1×Γ2 is another solution of (1.21), then for any (i, j) ∈ Γ,

Yij
= Yij, Zij

= Zij, Kij,+ − Kij,−
= Kij,+ − Kij,−.

The sketch of the proof is the following: We firstly define a mapping Φ from H2,Λ to itself
by Φ( ~φ) := (Yφ,ij)(i,j)∈Γ. Then we consider two different solutions (Yφ,ij)(i,j)∈Γ and (Yψ,ij)(i,j)∈Γ

of the systems of DRBSDEs (the existence of the solution is proved in the previous subsection).
When calculating the difference between (Yφ,ij)(i,j)∈Γ and (Yψ,ij)(i,j)∈Γ, we relate to the corre-
sponding values of the games whose payoffs are Jφ,ij and Jψ,ij to get rid of the switching cost.
Next using stantard Itô’s calculus we prove that Φ is a contraction mapping from H2,Λ into
itself under an appropriate norm, then the solutin of the DRBSDEs is the unique fixed point of
Φ.
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Connection with system of PDEs with bilateral interconnected obstacles

We are now going to decline Assumptions 1.3.1 and 1.3.5 in the markovian framework of
randomness. Let us introduce deterministic functions f ij(t, x,~y), hij(x), g

ik
(t, x) and ḡjl(t, x),

i, k ∈ Γ1, j, l ∈ Γ2 and t, x,~y in [0, T], Rk and RΛ respectively.

Assumption 1.3.7.

1. For any (i, j) ∈ Γ,

i) There exists non negative constants C and γ such that

| f ij(t, x,~y)| ≤ C(1 + |x|γ + |~y |).

ii) f ij is Lipschitz continuous w.r.t. ~y uniformly in (t, x), i.e. there exists a constant C such
that for any ~y1,~y2 ∈ RΛ,

| f ij(t, x,~y1)− f ij(t, x,~y2)| ≤ C|~y1 −~y2|.

2. For any (i, j) ∈ Γ, the function hij, which stands for the terminal condition, is continuous w.r.t.
x, belongs to class Πg and satisfies the following consistency condition: ∀(i, j) ∈ Γ and x ∈ Rk,

max
k∈(Γ1)−i

(hkj(x)− g
ik
(T, x)) ≤ hij(x) ≤ min

l∈(Γ2)−j
(hil(x) + gjl(T, x)). (1.22)

3. For all i1, i2 ∈ Γ1 (resp. j1, j2 ∈ Γ2), the function g
i1i2

(resp. gj1 j2)

i) is non-negative, continuous and belong to Πg ;

ii) For any k ∈ Γ1 (resp. ` ∈ Γ2) such that |{i1, i2, k}| = 3 (resp. |{j1, j2, `}| = 3) it holds:
∀(t, x) ∈ [0, T]×Rk,

g
i1i2

(t, x) < g
i1k
(t, x) + g

ki2
(t, x)

(
resp. gj1 j2(t, x) < gj1`(t, x) + g`j2(t, x)

)
; (1.23)

iii) The functions (g
ik
)i,k∈Γ1 and (gjl)j,l∈Γ2 verify the non free loop property, that is to say, if

(ik, jk)k=1,2,...,N is a loop in Γ, i.e., (iN , jN) = (i1, j1), card {(ik, jk)k=1,2,...,N} = N − 1 and
for any k = 1, 2, ..., N − 1, either ik+1 = ik or jk+1 = jk, we have:

∀t ≤ T,
N−1

∑
k=1

Gik jk(t, x) 6= 0, (1.24)

where ∀k = 1, ...N − 1, Gik jk(t, x) = −g
ikik+1

(t, x)1(ik 6=ik+1) + gjk jk
(t, x)1(jk 6=jk+1). This

assumption makes sure that any instantaneous loop in the switching mode set Γ1× Γ2 is not
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free, i.e. one of the controllers needs to pay something when the system is switched and comes
back instantaneously to the initial mode.

Note that (1.24) also implies: for any (i1, ..., iN) ∈ (Γ1)N such that iN = i1 and card{i1, i2, ..., iN} =
N − 1,

N−1

∑
k=1

g
ikik+1

(t, x) > 0, ∀(t, x) ∈ [0, T]×Rk,

and for any (j1, ..., jN) ∈ (Γ2)N such that jN = j1 and card{j1, j2, ..., jN} = N − 1,

N−1

∑
k=1

gjk jk+1
(t, x) > 0, ∀(t, x) ∈ [0, T]×Rk.

4. For any i, k ∈ Γ1 (resp. j, l ∈ Γ2), g
ik

(resp. gjl) is C1,2 and Dxg
ik

, D2
xxg

ik
(resp. Dxgjl , D2

xxgjl)
belong to Πg. Thus by Itô’s formula we have:

g
ik
(s, Xt,x

s ) = g
ik
(t, x) +

∫ s

t
LX(g

ik
)(r, Xt,x

r )dr

+
∫ s

t Dxg
ik
(r, Xt,x

r )σ(r, Xt,x
r )dBr, s ∈ [t, T];

g
ik
(s, Xt,x

s ) = g
ik
(s, x), s ≤ t.

resp.


gjl(s, Xt,x

s ) = gjl(t, x) +
∫ s

t
LX(gjl)(r, Xt,x

r )dr

+
∫ s

t Dxgjl(r, Xt,x
r )σ(r, Xt,x

r )dBr, s ∈ [t, T];

gjl(s, Xt,x
s ) = gjl(s, x), s ≤ t.


In this subsection, we study the existence of the unique solution of the following system of

PDEs in the viscosity sense: for any (i, j) ∈ Γ, t ∈ [0, T],
min

{
vij(t, x)−maxk∈(Γ1)−i [vkj(t, x)− g

ik
(t, x)]; max

[
vij(t, x)−minl∈(Γ2)−j [vil(t, x) + gjl(t, x)];

−∂tvij(t, x)−LX(vij)(t, x)− f ij(t, x, (vkl(t, x))(k,l)∈Γ)
]}

= 0;

vij(T, x) = hij(x).
(1.25)

The infinitesimal generator LX is given by: for any (t, x) ∈ [0, T]×Rk, φ ∈ C1,2 ((.)> is the
transpose),

LXφ(t, x) : =
1
2

k

∑
i,j=1

(σσ>(t, x))i,j∂
2
xixj

φ(t, x) +
k

∑
i=1

bi(t, x)∂xi φ(t, x). (1.26)

Before proving the existence of the unique solution of (1.25), we firstly show the connection
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between the unique solution (Yij;t,x)(i,j)∈Γ of DRBSDEs and a deterministic function (vij)(i,j)∈Γ,
the so-called Feynman-Kac formula:

Proposition 1.3.8. For any (i, j) ∈ Γ, (t, x) ∈ [0, T] × Rk, there exists deterministic continuous
functions (vij)(i,j)∈Γ such that

P− a.s. ∀s ∈ [t, T], Yij;t,x
s = vij(s, Xt,x

s ) (1.27)

where Yij;t,x
s is the unique solution of the following system of DRBSDEs with doubly interconnected

obstacles:

Yij;t,x ∈ S2, Zij;t,x ∈ H2,1, Kij,±;t,x ∈ A2 ;

Yij;t,x
s = hij(Xt,x

T ) +
∫ T

s
f ij
(

r, Xt,x
r , (Ykl;t,x

r )(k,l)∈Γ

)
dr−

∫ T

s
Zij;t,x

r dBr + Kij,+;t,x
T − Kij,+;t,x

s

−(Kij,−;t,x
T − Kij,−;t,x

s );
Lij;t,x

s ≤ Yij;t,x
s ≤ Uij;t,x

s ;∫ T

0
(Yij;t,x

s − Lij;t,x
s )dKij,+;t,x

s = 0 and
∫ T

0
(Yij;t,x

s −Uij;t,x
s )dKij,−;t,x

s = 0

(1.28)
where Lij;t,x

s := max
k∈(Γ1)−i

[
Ykj;t,x

s − g
ik
(s, Xt,x

s )
]

and Uij;t,x
s := min

l∈(Γ2)−j

[
Yil;t,x

s + gjl(s, Xt,x
s )
]

, s ∈ [0, T].

The proof is composed of two steps. Firstly we assume that the coefficients f ij(t, x, 0, 0) and
hij(x) are bounded. By constructing a Picard iterations process (Yij,n,t,x)(i,j)∈Γ = Φ((Yij,n−1,t,x)(i,j)∈Γ),
we prove the uniform convergence of (Yij,n,t,x)n≥0 in S2 and ∀s ∈ [t, T], Yij,n,t,x

s = vij,n(s, Xt,x
s )

with vij,n a continuous function. Then we show the uniform convergence of vij,n to vij which
implies that vij is continuous. In the second place, we relax the boundedness condition of
f ij(t, x, 0, 0) and hij(x), i.e. they are of polynomial growth. By applying Itô’s formula with
Ỹij := Yij;t,x

s (1 + |Xt,x
s |2)−γ, we fall in the previous framework. Therefore we deduce that Yij

has the previous representation (1.27) with vij continuous and of polynomial growth.

Then we prove the existence of the unique viscosity solution of (1.25).

Theorem 1.3.9. Assume that Assumptions 1.3.5-(2.) and 1.3.7 are fulfilled. Then the Λ-tuple of con-
tinuous functions (vij)(i,j)∈Γ of (1.27) is a viscosity solution of (1.25). Moreover it is unique in the class
of continuous functions which belong to Πg.

The proof is divided into two steps. Firstly thanks to Proposition (1.3.8) we show that
(vij)(i,j)∈Γ is a viscosity solution of (1.25) . Secondly we prove the uniqueness of this solution by
using the uniqueness of the solution (Yij;t,x)(i,j)∈Γ of the system (1.28).
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1.4 Zero-sum Switching Game, Systems of Reflected Backward SDEs
and Parabolic PDEs with bilateral interconnected obstacles

Chapter 3 is a preprint joint work with Hamadène (ref.[36]). In this work we study a specific
zero-sum switching game and its verification theorems expressed in terms of either a system
of RBSDEs with bilateral interconnected obstacles or a system of parabolic PDEs with bilateral
interconnected obstacles as well. The framework is markovian. We show that each one of the
systems has a unique solution. Then we show that the game has a value.

1.4.1 Framework setting

First let us additionally denote by:

- Aloc: the set of P-measurable continuous non-decreasing processes K = (Kt)t≤T with
K0 = 0 such that P− a.s., ,KT(ω) < ∞;

- H2,d
loc(d ≥ 1) : the set of P-measurable Rd-valued processes φ = (φt)t∈[0,T] such that

P− a.s.,
∫ T

0 |φt|2dt < ∞;

Next we define Γ := {1, 2, ..., p} and for any i ∈ Γ, let us set Γ−i := Γ−{i}. For~y := (yi)i∈Γ ∈ Rp

and ŷ ∈ R, we denote by (~y−i, ŷ) the element of Rp obtained in replacing the i-th component
of ~y with ŷ.

We now introduce the following deterministic functions: for any i ∈ Γ,

- f i: (t, x,~y, z) ∈ [0, T]×Rk+p+d 7→ f i(t, x,~y, z) ∈ R,

- g
i,i+1

: (t, x) ∈ [0, T]×Rk 7→ g
i,i+1

(t, x) ∈ R,

- gi,i+1: (t, x) ∈ [0, T]×Rk 7→ gi,i+1(t, x) ∈ R,

- hi : x ∈ Rk 7→ hi(x) ∈ R.

Next let us consider the following assumptions which, sometimes, we use only partly.

Assumption 1.4.1.
(H1) For any i ∈ Γ, f i does not depend on (~y, z), is continuous in (t, x) and
belongs to class Πg ;

(H2) For any i ∈ Γ, the function hi, which stands for the terminal payoff, is continuous w.r.t. x, belongs
to class Πg and satisfies the following consistency condition: ∀i ∈ Γ, ∀x ∈ Rk,

hi+1(x)− g
i,i+1

(T, x) ≤ hi(x) ≤ hi+1(x) + gi,i+1(T, x). (1.29)
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(H3) a) For all i ∈ Γ and (t, x) ∈ [0, T] × Rk, the functions g
i,i+1

and gi,i+1 are continuous, non-
negative, belong to Πg and verify:

g
i,i+1

(t, x) + gi,i+1(t, x) > 0.

b) They satisfy the non-free loop property, i.e., for any j ∈ Γ and (t, x) ∈ [0, T]×Rk,

ϕj,j+1(t, x) + ... + ϕp−1,p(t, x) + ϕp,1(t, x) + ... + ϕj−1,j(t, x) 6= 0, (1.30)

where ϕ`,`+1(t, x) is either −g
`,`+1

(t, x) or g`,`+1(t, x). Let us notice that (3.14) also implies:

gj,j+1(t, x) + ... + gp−1,p(t, x) + gp,1(t, x) + ... + gj−1,j(t, x) > 0, (1.31)

and
g

j,j+1
(t, x) + ... + g

p−1,p
(t, x) + g

p,1
(t, x) + ... + g

j−1,j
(t, x) > 0. (1.32)

(H5) For any i ∈ Γ,

a) f i is Lipschitz in (~y, z) uniformly in (t, x) i.e. for any ~y1,~y2 ∈ Rp, z1, z2 ∈ Rd and t ∈ [0, T],

| f i(t, x,~y1, z1)− f i(t, x,~y2, z2)| ≤ C(|~y1 −~y2|+ |z1 − z2|);

b) ∀j ∈ Γ−i, the mapping yj 7→ f i(t, x,~y, z) is non-decreasing when the other components (yk)k∈Γ−j ,
t, x, z are fixed.

c) f i is continuous in (t, x) uniformly in (~y, z) and f i(t, x, 0, 0) belongs to Πg.

1.4.2 Motivation

This paper is related to zero-sum switching games, systems of reflected backward differential
equations (RBSDEs) with bilateral interconnected obstacles and systems of variational inequal-
ities of min-max type with interconnected obstacles, namely the Hamilton-Jacobi-Bellman (HJB
for short) system associated with the game.

First let us describe the zero-sum switching game which we will consider in this paper. Let Γ
be the set {1, ..., p}. Assume we have a system which has p working modes indexed by Γ. This
system can be switched from one working mode to another one, e.g. due to economic, financial,
ecological reasons, etc, by two players or decision makers C1 and C2. The main feature of the
switching actions is that when the system is in mode i ∈ Γ, and one of the players decides to
switch it, then it is switched to mode i+ 1 (hereafter i+ 1 is 1 if i = p). It means that the decision
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makers do not have their proper modes to which they can switch the system when they decide
to switch (see e.g. [33] for more details on this model). Therefore a switching strategy for the
players are sequences of stopping times u = (σn)n≥0 for C1 and v = (τn)n≥0 for C2 such that
σn ≤ σn+1 and τn ≤ τn+1 for any n ≥ 0. On the other hand, the switching actions are not free
and generate expenditures for the players. Loosely speaking at time t ≤ T, they amount to Au

t

(resp. Bv
t ) given by:

Au
t = ∑

σn≤t
g

ζn,ζn+1
(σn) (resp. Bv

t = ∑
τn≤t

ḡθn,θn+1(τn)).

The process g
i,i+1

(s) (resp. ḡi,i+1(s)) is the switching cost payed by C1 (resp. C2) is she makes
the decision to switch the system from mode i to mode i + 1 at time s while ζn (resp. θn) is
the mode in which the system is at time σn (resp. τn). Next when the system is run under the
control u (resp. v) for C1 (resp. C2), there is a payoff J(u, v) which is a profit (resp. cost) for C1

(resp. C2) given by:

J(u, v) = E[
∫ T

0 f δs(s)ds− Au
T + Bv

T + ζδT ].

where δ := (δs)s≤T is the process valued in Γ which indicates the working modes of the system
along with time. If at time s the system is in mode i0, then δs = i0. It is bind to the controls u
and v implemented by both players. On the other hand, for i ∈ Γ, the process f i is the utility of
the system in mode i and finally ζδT is the terminal payoff or bequest.

The problem we are interested in is to know whether or not the game has a value, i.e.,
roughly speaking, if the following equality holds:

inf
v

sup
u

J(u, v) = sup
u

inf
v

J(u, v).

In case of equality we say that the game has a value. Finally we say that the game has a saddle-
point (u∗, v∗) if, for any u and v, controls of C1 and C2 respectively, we have:

J(u, v∗) ≤ J(u∗, v∗) ≤ J(u∗, v).

Note that in such a case, the game has a value.
From the probabilistic point of view, this zero-sum switching game problem turns into looking
for a solution of its associated system of reflected BSDEs with interconnected bilateral obstacles.
A solution for such a system are adapted processes (Yi, Zi, Ki,±)i∈Γ such that for any i ∈ Γ and
s ≤ T, 

Yi and Ki,± continuous; Ki,± increasing; (Zi(ω)t)t≤T is dt− square integrable;
Yi

s = ξ i +
∫ T

s f i(r)dr−
∫ T

s Zi
rdBr + Ki,+

T − Ki,+
s − (Ki,−

T − Ki,−
s );

Li(~Y)s ≤ Yi
s ≤ Ui(~Y)s;∫ T

0 (Yi
s − Li(~Y)s)dKi,+

s = 0 and
∫ T

0 (Yi
s −Ui(~Y)s)dKi,−

s = 0,

(1.33)

32
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where: a) B := (Bt)t≤T is a Brownian motion; b) ~Y := (Yi)i∈Γ; c) Li(~Y)s = Yi+1
s − g

i,i+1
(s) and

Ui(~Y)s = Yi+1
s + ḡi,i+1(s).

Actually the solution of the previous system provides the value of the zero-sum switching
game which is equal to Yi

0 if the starting mode of the system is i. Roughly speaking, system
(1.33) is the verification theorem for the zero-sum switching game problem. Usually it is shown
that the value functions of the game is the unique solution of (1.33).

In the Markovian framework, i.e., when randomness stems from a diffusion process Xt,x

((t, x) ∈ [0, T]×Rk) which satifies:

dXt,x
s = b(s, Xt,x

s )ds + σ(s, Xt,x
s )dBs, s ∈ [t, , T] and Xt,x

s = x, for s ≤ t, (1.34)

and the data of the game are deterministic functions of (s, Xt,x
s ), the Hamilon-Jacobi-Bellman

system associated with this switching game is the following system of partial differential equa-
tions (PDEs in short) with a bilateral interconnected obstacles: ∀i ∈ Γ, ∀(t, x) ∈ [0, T] ×Rk,


min{vi(t, x)− Li(~v)(t, x); max

[
vi(t, x)−Ui(~v)(t, x); −∂tvi(t, x)−LX(vi)(t, x)− f i(t, x)

]
} = 0;

vi(T, x) = hi(x).
(1.35)

where: a) ~v = (vi)i∈Γ; b) Li(~v)(t, x) := vi+1(t, x) − g
i,i+1

(t, x), Ui(~v)(t, x) := vi+1(t, x) +
gi,i+1(t, x); c) LX is the infinitesimal generator of X.

This work is originated by an article by N.Yamada [68] where the author deals with the
system of PDEs (1.35) in the case when the switching costs are constant and for bounded do-
mains Ω̄. By penalization method, the author proved existence and uniqueness of the solution
of (1.35) in a weak sense (actually in a Sobolev space). Then he gives an interpretation of the so-
lution of this system as a value function of the zero-sum switching game described previously.
A saddle-point of the game is also given. However neither this interpretation nor the existence
of the saddle-point are clear because the question of admissiblity of the controls which are
supposed to realize the saddle-point property is not addressed. In zero-sum switching games
this issue of admissibility of those controls, defined implicitely through (Yi)i∈Γ, is crucial (see
e.g. [33]). Note also that there is another paper by N.Yamada [67] where the solution of sys-
tem (1.35) is considered in viscosity sense. Once more by penalization, he shows existence and
uniqueness of the solution on bounded domains Ω̄.

Therefore the main objective of this paper is to show that:

i) the system of reflected BSDEs with interconnected obstacles (1.33) has a unique solution in
the Markovian framework.
ii) the zero-sum switching game described above has a value in different settings.
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iii) The system of PDEs (3.3) has a unique solution.

1.4.3 Main results

Actually under Assumptions 1.4.1, (H2), (H3) and (H5) we show that the following system has
a unique solution in the class Πg:


min{vi(t, x)− Li(~v)(t, x); max

[
vi(t, x)−Ui(~v)(t, x);

−∂tvi(t, x)−LX(vi)(t, x)− f i(t, x, (vl(t, x))l∈Γ, σ(t, x)>Dxvi(t, x)
]
} = 0;

vi(T, x) = hi(x),

(1.36)

where for any i ∈ Γ, Li(~v)(t, x) := vi+1(t, x) − g
i,i+1

(t, x) and Ui(~v)(t, x) := vi+1(t, x) +
gi,i+1(t, x). This system generalizes system (1.35).

The proof is based on Perron’s method and the construction of this solution (more or less
the same as in [19]) proceeds as follows: a) we first introduce the processes (Yi,m, Zi,m, K±,i,m)i∈Γ,
m ≥ 1, solution of the system of reflected BSDEs with interconnected lower barriers associated
with
{ f i(r, Xt,x

r ,~y, zi)−m(yi− yi+1− ḡi,i+1(r, Xt,x
r ))+, hi(Xt,x

T ), g
i,i+1

(r, Xt,x
r )}i∈Γ (see (3.57)). It is a de-

creasing penalization scheme. As the framework is Markovian then there exist deterministic
functions continuous and of polynomial growth (vi,m)i∈Γ such that the following Feynman-Kac
representation holds: For any i ∈ Γ, m ≥ 1 and s ∈ [t, T],

Yi,m
s = vi,m(s, Xt,x

s ).

As for any i ∈ Γ, m ≥ 1, Yi,m ≥ Yi,m+1 then we have also vi,m ≥ vi,m+1. Now if we define vi =

limm vi,m, then (vi)i∈Γ is a subsolution of (3.3) and for any fixed m0, (vi,m0)i∈Γ is a supersolution
of (3.3). Next it is enough to use Perron’s method to show that (3.3) has a unique solution since
comparison principle holds. Finally, by uniqueness this solution does not depend on m0 and is
(vi)i∈Γ. Additionally for any i ∈ Γ, vi is of polynomial growth and continuous.

Next for (t, x) ∈ [0, T]×Rk, i ∈ Γ and s ∈ [t, T], let us set:

Yi,t,x
s = vi(s, Xt,x

s ).

With the help of the previous result, mainly continuity of (vi)i∈Γ, we show the following theo-
rem:

Theorem 1.4.2. Assume that assumptions 1.4.1-(H2), (H3) and (H5) are fulfilled and that for any
i ∈ Γ, f i does not depend on z. Then for any (t, x) ∈ [0, T]×Rk, there exists adapted processes Ki,±,t,x
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and Zi,t,x valued respectively in R+ and Rd such that, in combination with Yi,t,x, verify: For any i ∈ Γ,

i) Ki,±,t,x are continuous non decreasing and P-a.s.
∫ T

0 |Z
i,t,x
s |2ds < ∞ ;

ii) ∀s ∈ [t, T],

Yi
s = hi(Xt,x

T ) +
∫ T

s f i(r, Xt,x
r , (Yl

r )l∈Γ)dr−
∫ T

s Zi,t,x
r dBr

+Ki,+,t,x
T − Ki,+,t,x

s − (Ki,−,t,x
T − Ki,−,t,x

s );

Li
s((Yl)l∈Γ) ≤ Yi

s ≤ Ui
s((Yl)l∈Γ);

∫ T
t (Yi

s − Li
s((Yl)l∈Γ))dKi,+

s = 0 and
∫ T

0 (Yi
s −Ui

s((Yl)l∈Γ))dKi,−
s = 0,

(1.37)

where for s ∈ t ≤ T, Li
s((Yl)l∈Γ) := Yi+1

s − g
i,i+1

(s, Xt,x
s ) and Ui

s((Yl)l∈Γ) := Yi+1
s + ḡi,i+1(s, Xt,x

s ).

The existence of the solution of (1.37) is proved by the penalization method combined with
the continuous solution of (1.36). Indeed, we introduce the following processes (Ȳi,m)m≥0 : ∀i ∈
Γ,

Yi,m ∈ S2, Zi,m ∈ H2, Ki,m,+ ∈ A2;

Yi,m
s = hi(Xt,x

T ) +
∫ T

s f
i,m

(r, Xt,x
r , (Yl,m

)l∈Γ)dr−
∫ T

s Zi,m
r dBr + Ki,m,+

T − Ki,m,+
s , s ≤ T;

Yi,m
s ≥ Li((Ȳl,m

s )ł∈Γ), s ≤ T;∫ T
0 (Yi,m

s − Li((Ȳl,m
s )ł∈Γ))dKi,m,+

s = 0,

(1.38)

where f
i,m

(s, Xt,x
s ,~y) = f i(s, Xt,x

s ,~y)−m(yi − [yi+1 + gi,i+1(s, Xt,x
s )])+ .

Then we have: For any i ∈ Γ and m ≥ 0, the processes Ȳi,m,t,x have the following represen-
tation (see e.g. A4 in [18] for more details): For any s ∈ [t, T],

Ȳi,m,t,x
s = ess sup

σ≥s
ess inf

τ≥s
E[hi(Xt,x

T )1(σ=τ=T) +
∫ σ∧τ

s
f i(r, Xt,x

r , (Ȳl,m,t,x
r )l∈Γ)dr

+ Li
σ((Ȳ

l,m,t,x)l∈Γ)1(σ<τ) + {Ui
τ((Ȳ

l,m)l∈Γ) ∨ Ȳi,m,t,x
τ }1(τ≤σ,τ<T)|Fs].

(1.39)

Moreover there exist deterministic continuous functions (v̄i,m)i∈Γ such that for any m ≥ 0, i ∈ Γ
and s ∈ [t, T] we have:

Ȳi,m,t,x
s = vi,m(s, Xt,x

s ).

But for any i ∈ Γ, vi,m ↘ vi which, by Dini’s Theorem, implies that this convergence holds
uniformly on compact subsets of [0, T]×Rk. Take now the limit w.r.t. m in (1.39) and use the
facts that Xt,x has moments of any order and that vi,m and vi have uniform polynomial growth
to obtain that:
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Yi,t,x
s = ess sup

σ≥s
ess inf

τ≥s
E[hi(Xt,x

T )1(σ=τ=T) +
∫ σ∧τ

s
f i(r, Xt,x

r , (Yl,t,x
r )l∈Γ)dr

+ Li
σ((Y

l,t,x)l∈Γ)1(σ<τ) + Ui
τ((Y

l,t,x)l∈Γ)1(τ≤σ,τ<T)|Fs].
(1.40)

But we have also the following inequalities: For any s ∈ [t, T] and i ∈ Γ,

Ui
s((Y

l)l∈Γ) ≥ Yi
s ≥ Li

s((Y
l)l∈Γ).

On the other hand by Assumption (H3)-a),

Ui
s((Y

l,t,x)l∈Γ)− Li
s((Y

l,t,x)l∈Γ) = ḡi,i+1(s, Xt,x
s ) + g

i,i+1
(s, Xt,x

s ) > 0,

which means that the obstacles Ui((Yl,t,x)l∈Γ) and Li((Yl,t,x)l∈Γ), for any i ∈ Γ, are completely
separated. Therefore by Theorem 3.7 in [27], there exist progressively measurable processes
Yi,t,x, Ki,±,t,x and Zi,t,x valued respectively in R, R+ and Rd such that:

i) Yi,t,x ∈ S2([t, T]), Ki,±,t,x are continuous non decreasing and Ki,±,t,x
t = 0 ; P-a.s.

∫ T
t |Z

i,t,x
s |2ds <

∞ ;
ii) The processes (Yi,t,x, Ki,±,t,x, Zi,t,x) verify: ∀s ∈ [t, T],

Yi,t,x
s = hi(Xt,x

T ) +
∫ T

s f i(r, Xt,x
r , (Yl,t,x

r )l∈Γ)dr−
∫ T

s Zi,t,x
r dBr

+Ki,+,t,x
T − Ki,+,t,x

s − (Ki,−,t,x
T − Ki,−,t,x

s );

Li
s((Yl,t,x)l∈Γ) ≤ Yi,t,x

s ≤ Ui
s((Yl,t,x)l∈Γ);

∫ T
t (Yi,t,x

s − Li
s((Yl,t,x)l∈Γ))dKi,+,t,x

s = 0 and
∫ T

0 (Yi,t,x
s −Ui

s((Yl,t,x)l∈Γ))dKi,−,t,x
s = 0.

(1.41)

Moreover Yi,t,x has the following representation: ∀s ∈ [t, T],

Yi,t,x
s = ess sup

σ≥s
ess inf

τ≥s
E[hi(Xt,x

T )1(σ=τ=T) +
∫ σ∧τ

s
f i(r, Xt,x

r , (Yl
r )l∈Γ)dr

+ Li
σ((Y

l,t,x)l∈Γ)1(σ<τ) + Ui
τ((Y

l,t,x)l∈Γ)1(τ≤σ,τ<T)|Fs].
(1.42)

Thus for any s ∈ [t, T], Yi,t,x = Yi,t,x and then by (1.41), (Yi,t,x, Ki,±,t,x, Zi,t,x) verifies (1.37)
for fixed i. Finally as i is arbitrary then (Yi,t,x, Ki,±,t,x, Zi,t,x)i∈Γ is a solution for the system of
reflected BSDEs with double obstacles (1.37). The proof of existence is then stated.

In the case when f i, i ∈ Γ, do not depend on ~y, the link with a specific zero-sum switching
game is the following:
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Theorem 1.4.3. Assume Assumption 1.4.1-(H1)-(H3). Then for any i = 1, ..., m, then as previously
one can show that for any (t, x) and s ∈ [t, T],

Yi,t,x
s = ess inf

v∈B(1)t

ess sup
u∈A(1)

t

Jt,x
i (θ(u, v))s = ess sup

u∈A(1)
t

ess inf
v∈B(1)i

Jt,x
i (θ(u, v))s,

where

Jt,x
i (θ(u, v))s := E{hθ(u,v)T (Xt,x

T ) +
∫ T

t f θ(u,v)r(r, Xt,x
r )dr− Cθ(u,v)

∞ |Fs},

andA(1)
t (resp. B(1)

t ) is the set of admissible integrable controls which start from i at t, and finally θ(u, v)
is the coupling of (u, v).

This theorem tells us also that the solution of (1.37) is unique when f i, i ∈ Γ, do not depend
on ~y. Next to show that the solution is unique in the general framework of Theorem 1.4.2 it is
enough to consider the mapping Φ fromH2,p into itself by Φ(~φ) := (Yφ,i)i∈Γ. Then we consider
two different solutions (Yφ,i)i∈Γ and (Yψ,i)i∈Γ of the systems of DRBSDEs (the existence of the
solution is already proved). When calculating the difference between (Yφ,i)i∈Γ and (Yψ,i)i∈Γ,
we relate to the relations of Theorem 1.4.3 to get rid of the switching cost. Next using standard
Itô’s calculus we prove that Φ is a contraction mapping from H2,p into itself, then the solution
of the DRBSDEs (1.37) is unique.

1.5 Mean-field Doubly Reflected backward stochastic differential equa-
tions

Chapter 4 is a preprint joint work with Chen and Hamadène (ref.[12]). In this work we
investigate into a Doubly reflected BSDE of Mean-field type (MF-DRBSDE in short). In two
different frameworks, we show the existence and uniqueness of the MF-DRBSDE where the
two barriers are interconnected to the solution .

1.5.1 Overview of Mean-field theories

Mean-field games and MF-BSDEs

Motivated by classical mean-field approaches in Statistical Mechanics and Physics, in par-
ticular the study of systems composed of a very large number of particles, Lasry and Lions
[45] introduced the so-called mean-field model. Later the mean-field game has attracted a sig-
nificant attentions in the last decades, in particular motivated by the linear McKean-Vlasov
PDE, Buckdahn et al. [7, 6, 5] introduced a new class of BSDEs of Mean-field type with the
driver f := f (ω′, ω, t, y′, z′, y, z) : Ω1+1 × [0, T] ×R1+1 ×Rd+d → R satisfying the following
conditions:
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Assumption 1.5.1.

1. For any t ∈ [0, T], y1, y2, y′1, y′2 ∈ R, z1, z2, z′1, z′2 ∈ Rd, there exists a constant C such that

| f (t, y′1, z′1, y1, z1)− f (t, y′2, z′2, y2, z2)| ≤ C(|y′1 − y′2|+ |z′1 − z′2|+ |y1 − y2|+ |z1 − z2|)

2. f (., 0, 0, 0, 0) ∈ H2,1
F⊗Ft

(0, T; R)

Theorem 1.5.2. [Buckdahn et al. [6], [7]] Under Assumptions 1.5.1 the following MF-BSDE has a
unique adapted solution: for any t ∈ [0, T], ξ ∈ L2(Ω,Ft, P), Y ∈ S2

F(0, T; R), Z ∈ H2,d
F (0, T; Rd);

Yt = ξ +
∫ T

t
E′[ f (s, Y′s , Z′s, Ys, Zs)]ds−

∫ T

t
ZsdBs

(1.43)

where E′ is an operator defined by E′(γ(., ω)) :=
∫

Ω γ(ω′, ω)P(dω′), ∀γ ∈ L1(Ω1+1,F ⊗ F , P⊗
P).

They also provided the corresponding comparison result and the converse comparison re-
sult for MF-BSDE, as well as the research to McKean-Vlasov PDE and related Dynamic Pro-
gramming Principle (DPP in short).

In this context, Li [50] introduced a class of MF-Reflected BSDEs which makes the con-
nection between the results of classical RBSDEs (e.g. [23]) and those of MF-FBSDEs (e.g. [7,
6]). Later after that, Djehiche, Elie and Hamadène [17] deepened the MF-RFBSDEs results by
adding the dependence on the distribution of the Y-component of the solution in the barrier.
The motivation comes from insurance problems. So let us consider the following system of
reflected MF-BSDEs:

Definition 1.5.3. [Djehiche et al. [17]]
The triple of progressively measurable processes (Yt, Zt, Kt)t∈[0,T] is called a solution of the MF-reflected
BSDE associated with ( f , ξ, h) if:
(1) When p > 1,

Y ∈ S p, Z ∈ Hp,d and K ∈ S p
i ;

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + KT − Kt −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

Yt ≥ h(t, Yt, E[Yt]), ∀t ∈ [0, T];∫ T

0
(Yt − h(t, Yt, E[Yt]))dKt = 0.

(1.44)
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(2) When p = 1,

Y ∈ D, Z ∈ ∪q∈(0,1)Mq and K ∈ S1
i ;

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + KT − Kt −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

Yt ≥ h(t, Yt, E[Yt]), ∀t ∈ [0, T];∫ T

0
(Yt − h(t, Yt, E[Yt]))dKt = 0,

(1.45)

where D is the class of adapted continuous of class [D] processes andMq is the set of P-
measurable processes (zt)t≤T such that E[(

∫ T
0 |zs|2ds)q/2] < ∞.

Next let us recall the following necessary conditions:

Assumption 1.5.4. [Djehiche et al. [17]]
The coefficients f , h and ξ satisfy:

1. f := f (t, y, z) : [0, T] ×R1+1 → R such that ( f (t, 0, 0))t∈[0,T] is P-measurable and belongs
to Hp,1, in addition f is Lipschitz continuous w.r.t (y, y′) uniformly in (t, ω), i.e. there exists a
positive constant C such that

∀t ∈ [0, T], y1, y′1, y2, y′2 ∈ R, | f (t, y1, y′1)− f (t, y2, y′2)| ≤ C(|y1 − y2|+ |y′1 − y′2|);

2. The mapping h := h(y, y′) : R1+1 → R is Lipschitz continuous w.r.t. (y, y′), i.e. there exists two
positive constants γ1 and γ2 such that

∀x, y, x′, y′ ∈ R, |h(x, x′)− h(y, y′)| ≤ γ1|x− y|+ γ2|x′ − y′|;

3. ξ is FT−measurable and R−valued random variable such that E[ξ p] < ∞ and ξ ≥ h(ξ, E[ξ]).

Theorem 1.5.5. [Djehiche et al. [17]] Suppose that Assumptions 1.5.4 is fulfilled,

1. for p > 1, the mean-field reflected BSDE (1.44) has a unique solution if the following condition
holds true:

(γ1 + γ2)

p− 1
p

[
(

p
p− 1

)pγ1 + γ2

] 1
p < 1;

2. for p = 1, the mean-field reflected BSDEs (1.45) has a unique solution if γ1 + γ2 < 1.

Based on the results of [17], we investigate into the mean-field doubly reflected BSDEs.
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1.5.2 Motivation and problem setting

Motivation

In this work we are concerned with the problem of existence and uniqueness of a solution
of the doubly reflected BSDE associated with the quadruple ( f , ξ, h, g):

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + K+

T − K+
t − K−T + K−t −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), ∀t ∈ [0, T];∫ T

0
(Ys − h(Ys, E[Ys]))dK+

s = 0,
∫ T

0
(Ys − g(Ys, E[Ys]))dK−s = 0.

(1.46)

Those BSDEs are of mean-field type because the generator f and the barriers depend on the
law of Yt through its expectation.

There have been several papers on mean-field BSDEs including ([7, 6, 4, 17, 50]). Those
equations are connected with several motivations of which the representation of a utility of an
agent inside an economy ([7, 6, 50]), the assesment of the risk of a financial position ([4]), the
representation of set of portfolios in life-insurance ([17]), etc.

As previously mentioned, in [17], the authors consider the case of one reflecting barrier of
(1.46). They prove existence and uniqueness of a solution via the fixed point method and the
penalization one as well. Those methods do not allow for the same framework. For example,
the fixed point method does not allow generators which depend on z while the penalization
does at the price of some additional regularity properties which are not required by the use of
the first method.

Notations

Let T be a fixed positive constant. Let (Ω,F , P) denote a complete probability space with B =

(Bt)t∈[0,T] a d-dimensional Brownian motion whose natural filtration is (F 0
t := σ{Bs, s ≤ t})0≤t≤T.

We denote by F = (Ft)0≤t≤T the completed filtration of (F 0
t )0≤t≤T with the P-null sets of F ,

then it satisfies the usual conditions. On the other hand, let P be the σ-algebra on [0, T]×Ω of
the F-progressively measurable sets.

For p ≥ 1 and 0 ≤ s0 < t0 ≤ T, we define the following spaces:

• Lp := {ξ : FT −measurable radom variable s.t. E[|ξ|p] < ∞};

• Hm
loc := {(zt)t∈[0,T] : P −measurable process and Rm−valued s.t. P− a.s.

∫ T
0 |zs(ω)|2ds <

∞};

• S p := {(yt)t∈[0,T] : continuous and P-measurable process s.t. E[supt∈[0,T] |yt|p] < ∞};
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• A := {(kt)t∈[0,T] : continuous, P-measurable and non-decreasing process s.t. k0 = 0};

• Tt := {τ, F− stopping time s.t. P− a.s.τ ≥ t};

• D := {(φ)t∈[0,T] : F− adapted, R−valued continuous process s.t. ‖φ‖1 = supτ∈T0
E[|yτ|] <

∞}. Note that the normed space (D, ‖.‖1) is complete.

We introduce the following assumptions on ( f , ξ, h, g):

Assumption 1.5.6.
(i) The coefficients f , h, g and ξ satisfy:

(a) the process ( f (t, 0, 0))t≤T is P- measurable and such that
∫ T

0 | f (t, 0, 0)|dt ∈ Lp(dP);

(b) f is Lipschitz w.r.t (y, y′) uniformly in(t, ω), i.e., there exists a positive constant C f such that
P- a.s. for all t ∈ [0, T], y1, y′1, y2 and y′2 elements of R,

| f (t, ω, y1, y′1)− f (t, ω, y2, y′2)| ≤ C f (|y1 − y′1|+ |y2 − y′2|). (1.47)

(ii) h and g are mappings from R2 into R which satisfy:

(a) h and g are Lipschitz w.r.t. (y, y′) i.e., there exist pairs of positive constants (γ1, γ2), (β1, β2)

such that for any x, x′, y and y′ ∈ R,

|h(x, x′)− h(y, y′)| ≤ γ1|x− y|+ γ2|x′ − y′|,

|g(x, x′)− g(y, y′)| ≤ β1|x− y|+ β2|x′ − y′|.
(1.48)

(b) h(x, x′) < g(x, x′), for any x, x′ ∈ R;

(iii) ξ is an FT- measurable, R-valued r.v., E[ξ p] < ∞ and satisfies h(ξ, E[ξ]) ≤ ξ ≤ g(ξ, E[ξ]).

Definition 1.5.7. We say that the quaternary of P-measurable processes (Yt, Zt, K+
t , K−t )t≤T is a solu-

tion of the mean-field reflected BSDE associated with ( f , ξ, h, g) if :

Case: p > 1

Y ∈ S p, Z ∈ Hd
loc and K+, K− ∈ A;

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + K+

T − K+
t − K−T + K−t −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), ∀t ∈ [0, T];∫ T

0
(Ys − h(Ys, E[Ys]))dK+

s = 0,
∫ T

0
(Ys − g(Ys, E[Ys]))dK−s = 0.

(1.49)
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Case: p = 1,

Y ∈ D, Z ∈ Hd
loc and K+, K− ∈ A;

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + K+

T − K+
t − K−T + K−t −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), ∀t ∈ [0, T];∫ T

0
(Ys − h(Ys, E[Ys]))dK+

s = 0,
∫ T

0
(Ys − g(Ys, E[Ys]))dK−s = 0.

(1.50)

1.5.3 Main results of this paper

This work is devoted to studying the solvability of MF-DRBSDE for the case p > 1 (1.49) and
for the case p = 1 (1.50). By means of the associated zero-sum stochastic switching games and
the Snell envelope argument, we prove the existence of the local fixed point Y over t ∈ [T −
δ, T] where δ is a parameter independent to the terminal condition ξ. Next by concatenating

of all small intervals [T − iδ, T − (i − 1)δ], ∀i = 1, ...,
T
δ

, we then obtain the global fixed point
Y on [0, T]. However some supplementary conditions on Lipschitz constants γ1, γ2, β1, β2 are
required.

Theorem 1.5.8. Assume that Assumption 1.5.6 holds for some p > 1. If γ1 and γ2 satisfy

(γ1 + γ2 + β1 + β2)
p−1

p

[(
p

p− 1

)p

(γ1 + β1) + (γ2 + β2)

] 1
p

< 1 (1.51)

then the mean-field doubly reflected BSDE (4.2) has a unique solution (Y, Z, K+, K−).

Theorem 1.5.9. Let f , h, g and ξ satisfy Assumption 1.5.6 for p = 1 and suppose that

γ1 + γ2 + β1 + β2 < 1. (1.52)

Then, there exists δ > 0 only depending on C f , γ1, γ1, β1 and β2 such that (1.50) has a unique solution
(Y, Z, K+, K−) ∈ D ×Hd

loc ×A×A.
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CHAPTER 2

PAPER 1: SYSTEM OF REFLECTED

BSDES WITH INTERCONNECTED

BILATERAL OBSTACLES: EXISTENCE,
UNIQUENESS AND APPLICATIONS

This chapter is a published joint work with Hamadène (ref.[35]).

2.1 Introduction

This paper is related to the study of systems of reflected backward stochastic differential equa-
tions (BSDEs in short) with interconnected bilateral obstacles. A solution for such a system is a
family of adapted processes (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ such that: For any (i, j) ∈ Γ and t ≤ T,

Yij
t = ξ ij +

∫ T

t
f ij
(

s, ω, (Ykl
s )(k,l)∈Γ1×Γ2 , Zij

s

)
ds−

∫ T

t
Zij

s dBs +
∫ T

t
(dKij,+

s − dKij,−
s ) ;

Lij
t ≤ Yij

t ≤ Uij
t ;

∫ T

0
(Yij

t − Lij
t )dKij,+

t = 0 and
∫ T

0
(Uij

t −Yij
t )dKij,−

t = 0,

(2.1)

where:
a) Γ := Γ1 × Γ2 = {1, ..., m1} × {1, ..., m2} ;
b) Lij

t := max
k∈Γ1−{i}

{Ykj
t − g

ik
(t)} and Uij

t := min
l∈Γ2−{j}

{Yil
t + gjl(t)};

c) f ij, ξ ij, g
ik

and gjl are given data of the problem which are described precisely later;

d) Kij,± are non-decreasing processes such that Kij,±
0 = 0.

This system introduced first in [41] is related to the zero-sum stochastic switching game, as
shown later in some papers including [19, 33]. On the other hand, note that the above BSDEs
have two reflecting barriers which depend on the solution (Yij)(i,j)∈Γ.
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A stochastic optimal switching control problem of a system (which can be a portfolio in
market, a power plant, etc.) is a discrete stochastic optimal control where a strategy σ is pair
of sequences ((τn)n≥0, (ζn)n≥0) such that for any n ≥ 0, τn is a stopping time such that τn ≤
τn+1 and ζn are random variables valued in the set of modes under which the system is run.
Roughly speaking at time τn the controller decides to switch the system from its current mode
to the new one denoted by ζn. The switching actions are not free and generate expenditures.
When a strategy σ is implemented, it induces a payoff which is equal to J(σ) and then the
problem is to find a strategy σ∗ which realizes supσ J(σ). This problem is related to systems of
reflected backward stochastic differential equations (RBSDEs in short) with interconnected one
lower obstacles to which reduces (2.1) in the case when gjl = +∞. There are several papers on
this topic including [11, 10, 20, 34, 29, 37, 40, 64, 66, 69, 43] (see also the references therein) in
connection with energy, finance, etc.

Next, one has a zero-sum switching game if there are two decision makers π1 and π2 which
intervene on the system by both choosing its joint working mode (i, j) ∈ Γ (π1 and π2 choose
i ∈ Γ1 and j ∈ Γ2 respectively). The interests of the decision makers are antagonistic, that
is to say, when π1 (resp. π2) implements the strategy σ1 (resp. σ2) there is in-between a payoff
J(σ1, σ2) which is a profit (resp. cost) for π1 (resp. π2). The zero-sum switching game (especially
issues of existence of the value, a saddle point, etc.) is connected with the solutions of systems
of reflected BSDEs of types (2.1) (see e.g. [19, 33]). This is the main motivation to study this
system (2.1).

There are only very few papers which deal with the problem of existence of a solution for
system (2.1). The question of uniqueness is even less studied. According to our best knowl-
edge, system (2.1) is studied in two papers only which are [41] and [19]. In [41], the authors
have shown existence of a solution for this system (2.1) when the switching costs g

ik
and gjl are

constant. The question of uniqueness is not addressed and remained open. On the other hand,
in [19], Djehiche et al. have considered system (2.1) in the markovian framework of random-
ness. By using tools which combine results on partial differential equations (PDEs for short)
with results on BSDEs, the authors have shown existence and uniqueness of the solution of
system (2.1). The switching costs g

ik
and gjl are not constant.

Therefore the main objective of this work is to complete the existing literature on the prob-
lem of existence and uniqueness of a solution for the system of RBSDEs with bilateral intercon-
nected obstacles (2.1) and to provide an application in the field of PDEs. Actually the novelties
of this paper are the following:

i) We show that system (2.1) has a solution in the case when the processes g
ik

and gjl are of
Itô type and under the monotonicity assumption of the functions f ij (see [H5] below) ;

ii) We show that system (2.1) has a unique solution in the case when the processes g
ik

and gjl

are Itô processes and the functions f ij do no depend on z. We do not require the monotonicity

44



2.2. STATEMENTS, ASSUMPTIONS AND PRELIMINARIES

assumption on these latter functions ;
iii) When randomness is Markovian and comes from a diffusion process Xt,x, we show

that the Feynman-Kac representation formula holds for (Yij)(i,j)∈Γ, the first component of the
solution of system (2.1), i.e., there exist deterministic continuous functions (vij)(i,j)∈Γ such that
for any (i, j) ∈ Γ, s ∈ [t, T], Yij;t,x

s = vij(s, Xt,x
s ). Moreover the functions (vij)(i,j)∈Γ are the unique

solution of the following system of PDEs with bilateral interconnected obstacles: ∀(i, j) ∈ Γ,
min{vij(t, x)− max

k∈Γ1−{i}
[vkj(t, x)− g

ik
(t, x)]; max[vij(t, x)− min

l∈Γ2−{j}
[vil(t, x) + gjl(t, x)];

−∂tvij(t, x)−LX(vij)(t, x)− f ij(t, x, (vkl(t, x))(k,l)∈Γ)
]
} = 0;

vij(T, x) = hij(x).
(2.2)

The monotonicity assumption of the functions ( f ij)(i,j)∈Γ is no longer required as in [18, 19, 42,
68], etc. This result on PDEs improves also substantially the existing literature in this domain
(see the previous references). System (2.2) can be seen as the Hamilton-Jacobi-Bellman-Isaacs
system associated with the zero-sum switching game when utilities are implicit or depend on
the values.

The chapter is organized as follows: In Section 2.2, we give some statements and assumptions.
In Section 2.3 we introduce and analyse, under the monotonicity assumption on the func-
tions ( f ij)(i,j)∈Γ, the approximating schemes of (2.1) obtained by penalization. We show that
the penalization terms are bounded in appropriate space. We then show that the penalization
schemes converge and their limits provide solutions for (2.1). In Section 2.4, by the zero-sum
stochastic representation, we show that, the system (2.1) has a unique solution when ( f ij)(i,j)∈Γ

does not depend on z. Finally in Section 2.5, we deal with application of the result of Section
2.4 in the field of PDEs. We first show that the processes (Yij)(i,j)∈Γ enjoy the Feynman-Kac
representation through deterministic continuous with polynomial growth functions (vij)(i,j)∈Γ.
Moreover the functions (vij)(i,j)∈Γ are the unique solution in viscosity of system of PDEs with
obstacles (2.2) of min-max type. They are also the unique solution of the dual system to (2.2)
which is of max-min type.

2.2 Statements, assumptions and preliminaries

Let T > 0 be a fixed real constant. Let (Ω,F , P) be a complete probability space which carries a
d-dimensional Brownian motion B = (Bt)t∈[0,T] whose natural filtration isF 0

t := σ{Bs, s ≤ t}0≤t≤T.
We denote by F = (Ft)0≤t≤T the completed filtration of (F 0

t )0≤t≤T with the P-null sets of F ,
then it satisfies the usual conditions, i.e., it is complete and right continuous. On the other
hand, we define P as the σ-algebra on [0, T]×Ω of the F-progressively measurable sets. Next,
we denote by:
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- S2: the set ofP-measurable continuous processes φ = (φt)t∈[0,T] such that E(supt∈[0,T] |φt|2) <
∞;

- A2 : the subset of S2 of non-decreasing processes K = (Kt)t≤T such that K0 = 0;

- H2,k(k ≥ 1): the set of P-measurable, Rk-valued processes φ = (φt)t∈[0,T] such that
E(
∫ T

0 |φt|2kdt) < ∞.

To proceed, let Γ1, Γ2 be the finite sets of the whole switching modes available for the con-
trollers or players. As mentioned previously Γ := Γ1 × Γ2 and denote by Λ its cardinal, i.e.,
Λ := |Γ| = |Γ1| × |Γ2|. On the other hand for (i, j) ∈ Γ1 × Γ2, we define (Γ1)−i := Γ1 − {i} and
(Γ2)−j := Γ2 − {j}.

Next let us denote by~y the generic element (yij)(i,j)∈Γ of RΛ and let us introduce the follow-
ing items: For any i, k ∈ Γ1 and j, l ∈ Γ2,

i) f ij: (t, ω,~y, z) ∈ [0, T]×Ω×RΛ ×Rd 7→ f ij(t, ω,~y, z) ∈ R ;

ii) g
ik

: (t, ω) ∈ [0, T]×Ω 7→ g
ik
(t, ω) ∈ R+ ;

iii) gjl : (t, ω) ∈ [0, T]×Ω 7→ gjl(t, ω) ∈ R+.

iv) ξ ij is a r.v. valued in R and FT-measurable.

Finally let us introduce the following assumptions on f ij, gik and g
jl

for i, k ∈ Γ1 and j, l ∈ Γ2:

[H1] For any (i, j) ∈ Γ1 × Γ2,

a) There exists a positive constant C and a non negative P-measurable process (ηt)t≤T

which satisfies E[sups≤T |ηs|2] < ∞ and such that: P-a.s, ∀(~y, z) ∈ RΛ+d, t ∈ [0, T],

| f ij(t,~y, z)| ≤ C(1 + ηt + |~y|),

where |~y| refers to the standard Euclidean norm of ~y in RΛ (the same for |z| below).
Note that this implies that E[

∫ T
0 | f

ij(t, 0, 0)|2dt] < ∞;

b) f ij is Lipschitz continuous with respect to (w.r.t for short) (−→y , z) uniformly in (t, ω),
i.e. P-a.s., for any t ∈ [0, T], (−→y1 , z1) and (−→y2 , z2) elements of RΛ+d, we have

| f ij(t,−→y1 , z1)− f ij(t,−→y2 , z2)| ≤ C(|−→y1 −−→y2 |+ |z1 − z2|)

where C is a fixed constant.

[H2] For any (i, j) ∈ Γ,
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a) E(|ξ ij|2) < ∞;

b) ξ ij, as the terminal condition at time T of system (2.1), satisfies the following consis-
tency condition: P-a.s.,

max
k∈(Γ1)−i

(
ξkj − g

ik
(T)
)
≤ ξ ij ≤ min

l∈(Γ2)−j

(
ξ jl + gjl(T)

)
.

[H3] a) For all i1, i2 ∈ Γ1 (resp. j1, j2 ∈ Γ2) and t ∈ [0, T], the process g
i1i2

(resp. gj1 j2),

(i) is non-negative and continuous;

(ii) For any k ∈ Γ1 (resp. ` ∈ Γ2) such that |{i1, i2, k}| = 3 (resp. |{j1, j2, `}| = 3) it holds:

P− a.s., ∀t ≤ T, g
i1i2

(t) < g
i1k
(t) + g

ki2
(t)

(
resp. gj1 j2(t) < gj1`(t) + g`j2(t)

)
;
(2.3)

iii) By convention we set ∀(i, j) ∈ Γ, g
ii
= 0 and ḡjj = 0. Note that this convention

implies the so-called non loop free property (see (2.39) and (2.40)).

[H4] For any (i, j), (k, `) ∈ Γ, g
ik

(resp. gj`) is an Itô process, i.e.,

 g
ik
(t) = g

ik
(0) +

∫ t

0
bik(s)ds +

∫ t

0
σik(s)dBs, t ≤ T,

with σik ∈ H2,d and bik, P-measurable and E[sups≤T |bik(s)|2] < ∞.

resp.

 gj`(t) = gj`(0) +
∫ t

0
bj`(s)ds +

∫ t

0
σj`(s)dBs, t ≤ T,

with σj` ∈ H2,d and bj`, P-measurable and E[sups≤T |bj`(s)|2] < ∞.

 .

[H5] Monotonicity:

For any (i, j) ∈ Γ and (k, l) ∈ Γ−ij := Γ − {(i, j)}, the mapping ykl 7→ f ij(t,−→y , z) is
non-decreasing when the other components (ypq)(p,q) 6=(k,l) and z are fixed.

Definition 2.2.1. A family (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ is said to be a solution of the system of reflected
BSDEs with doubly interconnected barriers associated with
(( f ij)(i,j)∈Γ, (ξ ij)(i,j)∈Γ, (g

ik
)i,k∈Γ1 , (gj,`)j,`∈Γ2), if it satisfies the followings: ∀(i, j) ∈ Γ,

Yij ∈ S2, Zij ∈ H2,d, Kij,± ∈ A2 ;
Yij

t = ξ ij +
∫ T

t f ij(s, ω, (Ykl
s )(k,l)∈Γ1×Γ2 , Zij

s )ds−∫ T
t Zij

s dBs + Kij,+
T − Kij,+

t − (Kij,−
T − Kij,−

t ), ∀t ≤ T;
Lij

t ≤ Yij
t ≤ Uij

t , ∀t ∈ [0, T];∫ T
0 (Yij

t − Lij
t )dKij,+

t = 0 and
∫ T

0 (Uij
t −Yij

t )dKij,−
t = 0,

(2.4)
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where Lij
t := max

k∈(Γ1)−i
{Ykj

t − g
ik
(t)} and Uij

t := min
l∈(Γ2)−j

{Yil
t + gjl(t)}, ∀t ≤ T.

2.3 Existence under the monotonicity condition [H5]

In this part we prove the existence of a solution for the system of reflected BSDEs (2.4) under
Assumptions [H1]-[H5]. For this we first introduce penalization schemes which we analyse
and show properties of the penalizing terms. Then by using the monotonicity assumption of
the generator f ij(s,~y, z), namely [H5], and comparison of the solutions we prove that the ap-
proximating schemes converge and their limits provide solutions of the system of reflected
BSDEs with bilateral interconnected obstacles (2.4).

So let us consider the following sequence of BSDEs : ∀m, n ∈N, (i, j) ∈ Γ,

 Yij,m,n ∈ S2, Zij,m,n ∈ H2,d;

Yij,m,n
t = ξ ij +

∫ T

t
f ij,m,n

(
s, (Ykl,m,n

s )(k,l)∈Γ1×Γ2 , Zij,m,n
s

)
ds−

∫ T

t
Zij,m,n

s dBs, t ≤ T,
(2.5)

where

f ij,m,n
(

t, (ykl)(k,l)∈Γ1×Γ2 , z
)
= f ij (t,~y, z) + n

{
yij

t − max
k∈(Γ1)−i

[
ykj

t − g
ik
(t)
]}−

−m

{
yij

t − min
l∈(Γ2)−j

[
yil

t + gjl(t)
]}+

(x+ = x ∨ 0 and x− = (−x) ∨ 0, ∀x ∈ R).

Since (2.5) is a standard BSDE without obstacles, thanks to the results by Pardoux-Peng [52],
the solution exists and is unique. Moreover we have the following comparison result based on
a paper by Hu-Peng [39] related to comparison of solutions of multi-dimensional BSDEs.

Proposition 2.3.1 ([18], pp.143). For any (i, j) ∈ Γ, f ij satisfies [H1] and [H5], ξ ij satisfies [H2] and
(g

ik
)i,k∈Γ1 , (ḡjl)j,l∈Γ2 satisfy [H3]-a), then for m, n ≥ 0, we have

P− a.s. Yij,m+1,n ≤ Yij,m,n ≤ Yij,m,n+1. (2.6)

Next we are interested in discussing the limit of Yij,m,n in S2 when n goes to +∞ for fixed m.
Some similar results are already discussed in [37], [34], [18], [40], etc. Here we apply the same
method as in Hamadène et al. [18] to prove the convergence of Yij,m,n in S2 as n→ ∞ and then
we have:
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Lemma 2.3.2. a) For any (i, j) ∈ Γ1 × Γ2, the sequence (Yij,m,n, Zij,m,n)n≥0 converges, as n tends to
infinity, to (Ȳij,m, Z̄ij,m) in S2 ×H2,d ;

b) For any (i, j) ∈ Γ1 × Γ2 and m ≥ 0, let K̄ij,m,+ be the following limit in S2 (which exists, one can
see [18] for more details):

∀t ≤ T, Kij,m,+
t := lim

n→∞

∫ t

0
n
{

Yij,m,n
s − max

k∈(Γ1)−i

[
Ykj,m,n

s − g
ik
(s)
]}−

ds

Then the triples (Ȳij,m, Z̄ij,m, K̄ij,m,+)(i,j)∈Γ is the unique solution of the following system of RBSDEs
with lower interconnected obstacles: For any (i, j) ∈ Γ and t ≤ T,

Yij,m ∈ S2, Zij,m ∈ H2, Kij,m,+ ∈ A2;

Yij,m
t = ξ ij +

∫ T

t
f

ij,m
(

s, (Ykl,m
s )(k,l)∈Γ, Zij,m

s

)
ds−

∫ T

t
Zij,m

s dBs + Kij,m,+
T − Kij,m,+

t ;

Yij,m
t ≥ max

k∈(Γ1)−i

[
Ykj,m

t − g
ik
(t)
]

;∫ T

0

{
Yij,m

t − max
k∈(Γ1)−i

[Ykj,m
t − g

ik
(t)]
}

dKij,m,+
t = 0

(2.7)

where f
ij,m

(s, (ykl)(k,l)∈Γ, z) = f ij
(

s, (ykl)(k,l)∈Γ, z
)
−m

(
yij − min

l∈(Γ2)−j

[
yil + gjl(s)

])+

.

c) For any m ≥ 0 and (i, j) ∈ Γ, Yij,m ≥ Yij,m+1.

Let us just point out that the function (t, ω, (ykl)(k,l)∈Γ) 7→ −m
{

yij −minl∈(Γ2)−j [yil + gjl(t)]
}+

enjoys the same properties as f ij w.r.t ~y, hence f
ij,m

keeps the same monotonicity properties
as f ij displayed in [H1] and [H5]. Therefore to prove that (Yij,m

, Zij,m, Kij,m,+
)(i,j)∈Γ1×Γ2 is the

unique solution of the RBSDEs (2.7) can be performed in the same way as in Hamadène and
Zhang [37], we then omit the proof.

Next, we introduce another equivalent approximating scheme defined as follows : for m ≥
0, let (Yij,m, Zij,m, Kij,m,+)(i,j)∈Γ be the unique solution of the following system of RBSDEs with
lower interconnected obstacle: ∀(i, j) ∈ Γ,

Yij,m ∈ S2, Zij,m ∈ H2, Kij,m,+ ∈ A2;

Yij,m
t = ξ ij +

∫ T

t
f ij,m(s, (Ykl,m

s )(k,l)∈Γ, Zij,m
s )ds−

∫ T

t
Zij,m

s dBs + Kij,m,+
T − Kij,m,+

t , t ≤ T;

Yij,m
t ≥ max

k∈(Γ1)−i

(
Ykj,m

t − g
ik
(t)
)

, t ≤ T;∫ T

0

[
Yij,m

t − max
k∈(Γ1)−i

(Ykj,m
t − g

ik
(t))

]
dKij,m,+

t = 0

(2.8)
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where f ij,m(t,−→y , z) := f ij(t,−→y , z)−m ∑l∈(Γ2)−j

(
yij − yil − gil(t)

)+.

To proceed we are going to analyse the properties of this scheme (2.8) and its relationship with
system (2.7) as well.

First note that for any (i, j) ∈ Γ, the sequence ( f ij,m)m≥0 is non decreasing w.r.t. m, since for
all m ≥ 0,

f ij,m(t,~y, z)− f ij,m+1(t,~y, z) = ∑
l∈(Γ2)−j

(
yij − yil − gil(.)

)+
≥ 0.

Therefore by applying comparison theorem of systems of reflected BSDEs (see [34]) we obtain

∀m ≥ 0, (i, j) ∈ Γ1 × Γ2, Yij,m ≥ Yij,m+1 (2.9)

i.e. (Yij,m)m≥0 is a non increasing sequence. Besides the following inequalities hold:

f
ij,|Γ2|m

= f ij(t,−→y , z)− |Γ2|m
{

yij − min
l∈(Γ2)−j

[yil + gjl(t)]

}+

≤ f ij,m ≤ f
ij,m

where |Γ2| is the cardinal of Γ2. Therefore once more by the comparison result of solutions of
systems we have

∀m ≥ 0, (i, j) ∈ Γ1 × Γ2, Yij,|Γ2|m ≤ Yij,m ≤ Yij,m
. (2.10)

Consequently, as the sequences (Yij,m)m≥0 and (Yij,m
)m≥0 are decreasing then if one of them

converges then is so the other one to the same limit.

Finally we have the following estimate of the penalization term in (2.8). This estimate plays
a crucial role in the proof of existence of the solution of (2.4).

Proposition 2.3.3. For any (i, j) ∈ Γ, ∀t ≤ T,

m2E

[
∑

l∈Γ2−{j}
{(Yij,m

t −Yil,m
t − gjl(t))

+}2

]
≤ C (2.11)

where the constant C is independent of m.

Proof. First let us show that there exists a constant C independent of m such that for any (i, j) ∈
Γ,

E

[
sup
s≤T
|Yij,m

s |2
]
≤ C. (2.12)

Actually taking into account of (2.10), it is enough to show that Ȳij,m satisfies the same estimate.
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But from (2.6) we have

P− a.s. Ỹij ≤ Yij,m,0 ≤ Yij,m,n (2.13)

and the sequences (Yij,m,0)m≥0, (i, j) ∈ Γ, converge in S2 respectively to Ỹij (one can see [18],
Prop.3.3, pp.149, for more details) where (Ỹij, Z̃ij, K̃ij)(i,j)∈Γ is the unique solution of the system
of reflected BSDEs wih interconnected upper obstacles associated with(
( f ij)(i,j)∈Γ, (ξ ij)(i,j)∈Γ, (ḡjl)j,l∈Γ2

)
. Now the claim follows since Ȳij,m S2

= limn Yij,m,n and Ȳij,m+1 ≤
Ȳij,m.

Next in order to prove the boundedness of the penalized part of (2.8), we rely on the link
between solutions of systems of reflected BSDEs with lower interconnected obstacles and op-
timal stochastic switching, which is well studied in the literature (see e.g. [11, 29, 34, 37, 40]
etc). For this purpose, we set u := (σn, δn)n≥0 an admissible strategy of switching, i.e., (σn)n≥0

is an increasing sequence of stopping times such that P[σn < T, ∀n ≥ 0] = 0, δn is Γ1−valued
and Fσn−measurable random variable. Next when u is implemented, we set the cumulative
switching cost Au

t := ∑
n≥1

g
δn−1δn

(σn)1(σn≤t) for t < T and Au
T := lim

t→T
Au

t . On the other hand, for

t ≤ T, we set at := δ01(σ0)(t) + ∑
n≥1

δn−11(σn−1,σn](t) which stands for the indicator of the mode

in which the system under switching is at time t. Note that a is in bijection with the strategy u.
Finally denote by Ai

t (t ∈ [0, T] and i ∈ Γ) the following set:

Ai
t := {u = (σn, δn)n≥0 admissible strategy such that σ0 = t, δ0 = i and E

[
(Au

T)
2] < ∞}.

Next for j ∈ Γ2 and a ∈ Ai
t, let (Uaj,m, Vaj,m) be the unique solution of the following BSDE

which is not of standard form since Aa is only rcll: ∀t ≤ T,
Uaj,m is rcll, E

[
supt≤T |U

aj,m
t |2

]
< ∞ and Vaj,m ∈ H2,d;

Uaj,m
t = ξaT j +

∫ T

t
1(s≥σ0)f

aj,m
(

s, (Ykl,m
s )(k,l)∈Γ, Vaj,m

s

)
ds−

∫ T

t
Vaj,m

s dBs + Aa
T − Aa

t .

(2.14)

where for any s ≤ T, faj,m is defined by:

faj,m(s, (Ykl,m
s )(k,l)∈Γ, z) = ∑

n≥1

 ∑
q∈Γ1

{
f qj(s, (Ykl,m

s )(k,l)∈Γ, z)

− m ∑
l∈(Γ2)−j

(Yqj,m
s −Yql,m

s − gjl(t))
+}1{δn−1=q}

 1{σn−1≤s<σn}

(2.15)
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i.e. faj,m(s, (Ykl,m
s )(k,l)∈Γ, z) = f qj,m(s, (Ykl,m

s )(k,l)∈Γ, z) if at time s, a(s) = q. Let us notice that
the arguments of faj,m are s, ω and z since (Ykl,m

s )(k,l)∈Γ is already fixed. Then the following
representation holds true (see e.g.[34]): ∀t ∈ [0, T],

Yij,m
t = ess sup

a∈Ai
t

(
Uaj,m

t − Aa
t

)
(2.16)

since, mainly, the switching costs verify the non free loop property (2.39).
Indeed let (Yij,m, Zij,m, Kij,m)(i,j)∈Γ be the unique solution of the following system:

Yij,m ∈ S2, Zij,m ∈ H2, Kij,m,+ ∈ A2;

Yij,m
t = ξ ij +

∫ T

t

 f ij(s, (Ykl,m
s )(k,l)∈Γ, Zij,m

s )−m ∑
l∈(Γ2)−j

(Yij,m
s −Yil,m

s − gil(s))
+

 ds

−
∫ T

t
Zij,m

s dBs + Kij,m,+
T − Kij,m,+

t , t ≤ T;

Yij,m
t ≥ max

k∈(Γ1)−i

(
Ykj,m

t − g
ik
(t)
)

, t ≤ T;∫ T

0

[
Yij,m

t − max
k∈(Γ1)−i

(
Ykj,m

t − g
ik
(t)
)]

dKij,m,+
t = 0.

(2.17)

Therefore (see e.g.[34]): ∀t ∈ [0, T],

Yij,m
t = ess sup

a∈Ai
t

(Uaj,m
t − Aa

t ). (2.18)

But (Yij,m, Zij,m, Kij,m)(i,j)∈Γ is also solution of (2.17), then by uniqueness of the solution of sys-
tem (2.17) we have Yij,m = Yij,m which combined with (2.18) implies (2.16).
Next as a consequence of (2.16) we have: For any t ∈ [0, T], i ∈ Γ1 and j, l ∈ Γ2,(

Yij,m
t −Yil,m

t − gjl(t)
)+
≤ ess sup

a∈Ai
t

(
Uaj,m

t −Ual,m
t − gjl(t)

)+
. (2.19)

Now for t ≤ T, let us set Wa,jl,m
t := Uaj,m

t −Ual,m
t − gjl(t), Wa,jl,m,+

t := (Uaj,m
t −Ual,m

t − gjl(t))
+

and let θ be a real constant which will be chosen appropriately later. Then applying Itô-Tanaka’s
formula with e−θtWa,jl,m,+

t yields (note that Wa,jl,m,+
T = 0 by [H2]): ∀t ≤ T,

e−θtWa,jl,m,+
t +

1
2

∫ T

t
e−θsdLw

s

= θ
∫ T

t
e−θsWa,jl,m,+

s ds

+
∫ T

t
1
(Wa,jl,m

s >0)
e−θs

{
faj(s, (Ykl,m

s )(k,l)∈Γ, Vaj,m
s )− fal(s, (Ykl,m

s )(k,l)∈Γ, Val,m
s ) + bjl(s)

}
ds
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−
∫ T

t
1
(Wa,jl,m

s >0)
e−θs

(
Vaj,m

s −Val,m
s − σjl(s)

)
dBs

−m
∫ T

t
1
(Wa,jl,m

s >0)
e−θs

 ∑
k∈(Γ2)−j

Wa,jk,m,+
s − ∑

k∈(Γ2)−l

Wa,lk,m,+
s

 ds (2.20)

where Lw is the local time of Wa,jl,m,+ at 0 and faj(s, (Ykl,m
s )(k,l)∈Γ, z) := faj,0(s, (Ykl,m

s )(k,l)∈Γ, z)
(see (2.15)). Next let us focus on the last term of the right side of (2.20): ∀t ≤ T

−m
∫ T

t
1
(Wa,jl,m

s >0)
e−θs

 ∑
k∈(Γ2)−j

Wa,jk,m,+
s − ∑

k∈Γ2−{l}
Wa,lk,m,+

s

 ds

= m
∫ T

t
1
(Wa,jl,m

s >0)
e−θs

Wa,l j,m,+
s −Wa,jl,m,+

s + ∑
k∈Γ2−{j,l}

(Wa,lk,m,+
s −Wa,jk,m,+

s )

 ds.

(2.21)

Note that 1
(Wa,jl,m

s >0)
Wa,l j,m,+

s = 0 since {Wa,jl,m
s > 0} ∩ {Wa,l j,m

s > 0} = ∅ as ḡjl ≥ 0. Next by
applying the inequality a+ − b+ ≤ (a− b)+ we have: ∀s ≤ T

1
(Wa,jl,m

s >0) ∑
k∈Γ2−{j,l}

(
Wa,lk,m,+

s −Wa,jk,m,+
s

)
≤ 1

(Wa,jl,m
s >0) ∑

k∈Γ2−{j,l}

(
Ual,m

s − glk(s)−Uaj,m
s + gjk(s)

)+
.

Using the fact that gjl(s) + glk(s) > gjk(s), by Assumption [H3]-(a),(ii), we deduce that

Wa,jl,m
s < Uaj,m

s −Ual,m
s + glk(s)− gjk(s)

and then

0 ≤ 1
(Wa,jl,m

s >0) ∑
k∈Γ2−{j,l}

(Ual,m
s − glk(s)−Uaj,m

s + gjk(s))
+

≤ ∑
k∈Γ2−{j,l}

1
(Uaj,m

s −Ual,m
s +glk(s)−gjk(s)>0)

(Ual,m
s − glk(s)−Uaj,m

s + gjk(s))
+

= 0.

Now going back to (2.21) we obtain: ∀t ≤ T,

−m
∫ T

t
1
(Wa,jl,m

s >0)
e−θs

 ∑
k∈(Γ2)−j

Wa,jk,m,+
s − ∑

k∈(Γ2)−l

Wa,lk,m,+
s

 ds

≤ −m
∫ T

t
1
(Wa,jl,m

s >0)
e−θsWa,jl,m,+

s ds (2.22)
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and consequently from (2.20) we have: ∀t ≤ T,

e−θtWa,jl,m,+
t + m

∫ T

t
1
(Wa,jl,m

s >0)
e−θsWa,jl,m,+

s ds +
1
2

∫ T

t
e−θsdLw

s

≤ −
∫ T

t
1
(Wa,jl,m

s >0)
e−θs(Vaj,m

s −Val,m
s − σjl(s))dBs + θ

∫ T

t
1
(Wa,jl,m

s >0)
e−θsWa,jl,m,+

s ds

+
∫ T

t
1
(Wa,jl,m

s >0)
e−θs

{
faj(s, (Ykl,m

s )(k,l)∈Γ, Vaj,m
s )− fal(s, (Ykl,m

s )(k,l)∈Γ, Val,m
s ) + bjl(s)

}
ds.

(2.23)

Next by taking θ = m, recall that [H1] implies the boundedness of ( f ij(t,~y, z))(i,j)∈Γ by |~y| and
[H4] represents (ḡjl)jl∈Γ2 as Itô process, hence by taking the conditional expectation we deduce:
∀t ≤ T,

Wa,jl,m,+
t ≤ E

[∫ T

t
e−m(s−t)|faj(s, (Ykl,m

s )(k,l)∈Γ, Vaj,m
s )− fal(s, (Ykl,m

s )(k,l)∈Γ, Val,m
s ) + bjl(s)|ds

∣∣∣∣Ft

]
≤ E

[
C

{
1 + sup

s≤T
|ηs|+ ∑

(k,l)∈Γ
sup
s≤T
|Ykl,m

s |+ sup
s≤T
|bjl(s)|

} ∫ T

t
e−m(s−t)ds

∣∣∣∣∣Ft

]

=
1
m
(1− e−m(T−t))E

[
C

{
1 + sup

s≤T
|ηs|+ ∑

(k,l)∈Γ
sup
s≤T
|Ykl,m

s |+ sup
s≤T
|bjl(s)|

}∣∣∣∣∣Ft

]
.

Now by (2.19), we get

∀t ≤ T, m(Yij,m
t −Yil,m

t − gjl(t))
+ ≤ CE

[{
1 + sup

s≤T
|ηs|+ ∑

(k,l)∈Γ
sup
s≤T
|Ykl,m

s |+ sup
s≤T
|bjl(s)|

}∣∣∣∣∣Ft

]

and then squaring, using conditional Jensen’s inequality and finally taking expectation to ob-
tain: ∀t ≤ T,

m2E

[{
(Yij,m

t −Yil,m
t − gjl(t))

+
}2
]
≤ CE

[
1 + sup

s≤T
|ηs|2 + ∑

(k,l)∈Γ
sup
s≤T
|Ykl,m

s |2 + sup
s≤T
|bjl(s)|2

]

which implies the desired result since the processes η and bjl are uniformly square integrable
and by estimate (2.12).

Next we are going to show that Kij,m,+ is absolutely continuous w.r.t time and its density

(
dKij,m,+

s

ds
)s≤T belongs toH2,1 uniformly in m.

Proposition 2.3.4. For any m ≥ 0 and (i, j) ∈ Γ, there exists a P-measurable process (αij,m
t )t≤T such
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that for any t ≤ T,

Kij,m,+
t =

∫ t
0 α

ij,m
s ds.

Moreover there exists a constant C independent of m such that E

[∫ T

0
|αij,m

s |2ds
]
≤ C.

Proof. Let us consider the following system of BSDEs: for any (i, j) ∈ Γ,
Ỹij,m,n ∈ S2, Z̃ij,m,n ∈ H2,d ;

Ỹij,m,n
s = ξ ij +

∫ T

t

{
f ij(s, (Ykl,m

s )(k,l)∈Γ, Zij,m
s )−m ∑

l 6=j
(Yij,m

s −Yil,m
s − gjl(s))

+

+ n ∑k∈(Γ1)−i(Ỹij,m,n
s − Ỹkj,m,n

s + g
ik
(s))−

}
ds−

∫ T
t Z̃ij,m,n

s dBs, t ≤ T.

(2.24)

For (i, j) ∈ Γ, m ≥ 0 and s ≤ T let us set:

Φij,m(s) = f ij(s, (Ykl,m
s )(k,l)∈Γ, Zij,m

s )−m ∑
l 6=j

(Yij,m
s −Yil,m

s − gjl(s))
+.

First note that by [H1], (2.11) and (2.12), there exists a constant C independent of m such that

E

[∫ T

0
|Φij,m(s)|2ds

]
≤ C. (2.25)

On the other hand the sequences
(

Ỹij,m,n, Z̃ij,m,n, n
∫ .

0 ∑k∈(Γ1)−i(Ỹij,m,n
s − Ỹkj,m,n

s + g
ik
(s))−}ds

)
n≥0

,

(i, j) ∈ Γ, converge when n goes to +∞ in S2 ×H2,d × S2 to (Ỹij,m, Z̃ij,m, K̃ij,m,+), (i, j) ∈ Γ, re-
spectively. Moreover (Ỹij,m, Z̃ij,m, K̃ij,m,+)(i,j)∈Γ (see e.g. [18] for more details) is solution of the
following system: ∀t ≤ T,

Ỹij,m
t = ξ ij +

∫ T

t
f ij,m(s, (Ykl,m

s )(k,l)∈Γ, Zij,m
s )ds−

∫ T

t
Z̃ij,m

s dBs + K̃ij,m,+
T − K̃ij,m,+

t ;

Ỹij,m
t ≥ max

k∈(Γ1)−i

(
Ỹkj,m

t − g
ik
(t)
)

;∫ T

0

[
Ỹij,m

t − max
k∈(Γ1)−i

(Ỹkj,m
t − g

ik
(t))

]
dK̃ij,m,+

t = 0.

(2.26)

As the solution of this latter is unique and by (2.8), (Yij,m, Zij,m, Kij,m,+)(i,j)∈Γ is also a solution
then, Ỹij,m = Yij,m, Z̃ij,m = Zij,m and K̃ij,m,+ = Kij,m,+ for any (i, j) ∈ Γ.

Next for s ≤ T, i, k ∈ Γ1 and j ∈ Γ2, let us set

ρ
ikj,m,n
s := (Ỹij,m,n

s − Ỹkj,m,n
s + g

ik
(s))−.

Note that by Assumption [H2], ρ
ikj,m,n
T = 0. Now if (Xs)s≤T is a continuous semimartingale
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then by the use of Itô-Tanaka formula (see e.g. [61], pp.231) we have that: ∀t ≤ T,

(X−t )
2 +

∫ T

t
1{Xs<0}d〈X〉s = (X−T )

2 + 2
∫ T

t
X−s dXs.

Therefore for any t ≤ T,

(ρ
ikj,m,n
t )2 +

∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0}

(
Z̃ij,m,n

s − Z̃kj,m,n
s + σik(s)

)2
ds

= −2
∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0}ρ

ikj,m,n
s

{
Φij,m(s)−Φkj,m(s)− bik(s)

}
ds

+ 2
∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0}ρ

ikj,m,n
s

(
Zij,m,n

s − Zkj,m,n
s + σik(s)

)
dBs

− 2n
∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0}ρ

ikj,m,n
s

 ∑
l∈(Γ1)−i

ρ
il j,m,n
s − ∑

l∈(Γ1)−k

ρ
klj,m,n
s

 ds.

(2.27)

We now focus on the last term of (2.27).

− 2n
∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0}ρ

ikj,m,n
s

 ∑
l∈(Γ1)−i

ρ
il j,m,n
s − ∑

l∈(Γ1)−k

ρ
klj,m,n
s

 ds

= −2n
∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0}(ρ

ikj,m,n
s )2ds + 2n

∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0} ρ

ikj,m,n
s ρ

kij,m,n
s︸ ︷︷ ︸

=0

ds

+ 2n
∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0}ρ

ikj,m,n
s ∑

l∈Γ1−{i,k}

(
−ρ

il j,m,n
s + ρ

klj,m,n
s

)
ds

(2.28)

since by positiveness of g
ki

and g
ik

, {Ỹij,m,n
s − Ỹkj,m,n

s + g
ik
(s) < 0} ∩ {Ỹkj,m,n

s − Ỹij,m,n
s + g

ki
(s) <

0} = ∅. Next by applying the inequality a− − b− ≤ (a− b)− we have

ρ
ikj,m,n
s ∑

l∈Γ1−{i,k}

(
ρ

klj,m,n
s − ρ

il j,m,n
s

)
= ρ

ikj,m,n
s ∑

l∈Γ1−{i,k}

{
Ỹkj,m,n

s − Ỹl j,m,n
s + g

kl
(s))− − (Ỹij,m,n

s − Ỹl j,m,n
s + g

il
(s))−

}
≤ ρ

ikj,m,n
s ∑

l∈Γ1−{i,k}

(
Ỹkj,m,n

s − Ỹij,m,n
s + g

kl
(s)− g

il
(s)
)−

= 1{Ỹij,m,n
s −Ỹkj,m,n

s +g
ik
(s)<0}ρ

ikj,m,n
s ∑

l∈Γ1−{i,k}

(
Ỹkj,m,n

s − Ỹij,m,n
s + g

kl
(s)− g

il
(s)
)−

= 0

since by Assumption [H3]-(a),(ii), for any l ∈ Γ1−{i, k}, 1{Ỹij,m,n
s −Ỹkj,m,n

s +g
ik
(s)<0}(Ỹ

kj,m,n
s − Ỹij,m,n

s +
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g
kl
(s)− g

il
(s))− = 0. We then deduce from (2.27) that, after taking expectation,

2nE

[∫ T

t
1{Ỹij,m,n

s −Ỹkj,m,n
s +g

ik
(s)<0}(ρ

ikj,m,n
s )2ds

]
= 2nE

[∫ T

t
(ρ

ikj,m,n
s )2ds

]
≤ 2E

[∫ T

t
ρ

ikj,m,n
s |Φij,m(s)−Φkj,m(s)− bik(s)|ds

]
≤ nE

[∫ T

t
(ρ

ikj,m,n
s )2ds

]
+

1
n

E

[∫ T

t
|Φij,m(s)−Φkj,m(s)− bik(s)|2ds

]
(2.29)

which implies that

n2E

[∫ T

t
(ρ

ikj,m,n
s )2ds

]
≤ CE

[∫ T

t

{
|Φij,m(s)|2 + |Φkj,m(s)|2 + |bik(s)|2

}
ds
]

. (2.30)

Then by (2.25) and Assumption [H4] on bik we obtain:

n2E

[∫ T

0
(ρ

ikj,m,n
s )2ds

]
≤ C and n2E

[∫ T

0
(∑

k 6=i
ρ

ikj,m,n
s )2ds

]
≤ C

for some constant C independent of n, m. It implies that for any (i, j) ∈ Γ, the sequence ((αij,m,n
s :=

n ∑k∈Γ1−{i} ρ
ikj,m,n
s )s≤T)n≥0 is bounded in H2,1. Thus one can extract a subsequence (still de-

noted by n) such that for any (i, j) ∈ Γ, ((αij,m,n
s )s≤T)n≥0 converges weakly in H2,1 to some

P-measurable process (αij,m
t )t≤T which moreover satisfy: For any (i, j) ∈ Γ and m ≥ 0,

E

[∫ T

0
(α

ij,m
s )2ds

]
≤ C. (2.31)

Additionally for any (i, j) ∈ Γ and any stopping time τ it holds:

Kij,m,+
τ =

∫ τ

0
αij,m(s)ds. (2.32)

Actually this is due to the fact that the sequence (
∫ τ

0 α
ij,m,n
s ds)n≥0 is also weakly convergent in

L2
R(Ω,FT, dP) and since, as pointed out previously, Kij,m,+ S2

= limn→∞
∫ .

0 α
ij,m,n
s ds.

Indeed let us show the weak convergence of (
∫ τ

0 α
ij,m,n
s ds)n≥0. Let ζ be a random variable of

L2
R(Ω,FT, dP). By the representation property there exists a P-measurable process (η̄t)t≤T of
H2,d such that:

∀t ≤ T, E[ζ|Ft] = E[ζ] +
∫ t

0
η̄sdBs.

Next by Itô’s formula we have

E

[
ζ
∫ τ

0
α

ij,m,n
s ds

]
= E

[
E[ζ|Fτ]

∫ τ

0
α

ij,m,n
s ds

]
= E

[∫ τ

0
E[ζ|Fs]α

ij,m,n
s ds

]
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since by Burkholder et al.’s inequality ([62], pp.160) (
∫ t

0 (
∫ s

0 α
ij,m,n
r dr)η̄sdBs)t≤T is a martingale

due to E[{
∫ T

0 (
∫ s

0 α
ij,m,n
r dr)2|η̄s|2ds} 1

2 ] < ∞. As the sequence ((α
ij,m,n
s )s≤T)n≥0 converges weakly

inH2,1 to αij,m then

E

[∫ τ

0
E[ζ|Fs]α

ij,m,n
s ds

]
−→n→∞ E

[∫ τ

0
E[ζ|Fs]α

ij,m
s ds

]
= E

[
ζ
∫ τ

0
α

ij,m
s ds

]
which is the claim.

Proposition 2.3.5. There exist continuous adapted processes (Yij)(i,j)∈Γ and P-measurable processes
(Zij)(i,j)∈Γ, such that for (i, j) ∈ Γ1 × Γ2:

i) (Yij,m)m≥0 uniformly converges to Yij in S2.
ii) (Zij,m)m≥0 converges to Zij inH2,d.

Proof. First let us recall the process (Yij,m)(i,j)∈Γ in (2.8). Next fix (i, j) ∈ Γ and let Yij be the
optional process such that

P-a.s, ∀t ≤ T, Yij
t = lim

m→∞
Yij,m

t

which exists since the sequence (Yij,m)m≥0 is decreasing (see (2.9)). On the other hand for any
m ≥ 0 we have: ∀t ≤ T,

Yij,m
t = ξ ij +

∫ T

t
f ij,m(s, (Ykl,m

s )(k,l)∈Γ, Zij,m
s )ds +

∫ T

t
αij,m(s)ds−

∫ T

t
Zij,m

s dBs.

Then using Itô formula with (Yij,m)2 and taking into account of (2.25)-(2.31), one deduces the
existence of a constant C independent of m such that

E

[∫ T

0

∣∣∣Zij,m
s

∣∣∣2 ds
]
≤ C. (2.33)

Next, let {m} be a sequence such that:

i)
(

f ij(s, (Ykl,m
s )(k,l)∈Γ, Zij,m

s ))s≤T

)
m≥0

converges weakly inH2,1 to Φij ;

ii)
(

m ∑l∈Γ2−{j}

(
Yij,m

s −Yil,m
s − ḡjl(s))+

)
s≤T

)
m≥0

converges weakly to θij isH2,1 ;

iii)
(
αij,m)

m≥0 converges weakly to αij isH2,1 ;
iv)
(
Zij,m)

m≥0 converges weakly to Zij isH2,d.

This sequence exists thanks to Assumption [H1] on f ij and (2.12), (2.11), (2.31) and finally (2.33).
Next let τ be a stopping time. Then as in the proof of Proposition 2.3.4, the following weak
convergences in L2(dP), as m→ ∞, hold true:

a)
∫ τ

0
f ij(s, (Ykl,m

s )(k,l)∈Γ, Zij,m
s )ds ⇀

∫ τ

0
Φij(s)ds,
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b)
∫ τ

0
m ∑

l∈Γ2−{j}
(Yij,m

s −Yil,m
s − ḡjl(s))+ds ⇀

∫ τ

0
θij(s)ds,

c)
∫ τ

0
αij,m(s)ds ⇀

∫ τ

0
αij(s)ds,

d)
∫ τ

0
Zij,m

s dBs ⇀
∫ τ

0
Zij

s dBs.

Therefore for any stopping time τ, we have:

Yij
τ = Yij

0 −
∫ τ

0
Φij(s)ds +

∫ τ

0
θij(s)ds−

∫ τ

0
αij(s)ds−

∫ τ

0
Zij

s dBs.

As Yij is an optional process and this equality holds for any stopping time then the processes
of the left and right-hand side are indistinguishable which means that P− a.s., ∀t ≤ T,

Yij
t = Yij

0 −
∫ t

0
Φij(s)ds +

∫ t

0
θij(s)ds−

∫ t

0
αij(s)ds−

∫ t

0
Zij

s dBs (2.34)

and the process Yij is continuous. Thus by Dini’s Theorem the convergence of the sequence of
(Yij,m)m≥0 to Yij holds in S2 i.e. limm→∞ E

[
supt≤T |Y

ij,m
t −Yij

t |2
]
= 0.

Next once more by the use of Itô’s formula with (Yij,m − Yij,n)2 and taking into account
of (2.25)-(2.31) one deduces that (Zij,m)m≥0 is a Cauchy sequence in H2,d and then (Zij,m)m≥0

converges strongly to Zij isH2,d.

To proceed let us define for any (i, j) ∈ Γ, t ≤ T,

Kij,−
t =

∫ t

0
θ

ij
s ds and Kij,+

t =
∫ t

0
α

ij
s ds.

We then give the main result of this section:

Theorem 2.3.6. The process (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ is a solution of the system of reflected BSDEs
(2.4).

Proof. First note that by (2.34) and since Yij
T = ξ ij then for any (i, j) ∈ Γ,

Yij
τ = ξ ij +

∫ T

τ
Φij(s)ds−

∫ T

τ
θij(s)ds +

∫ T

τ
αij(s)ds−

∫ T

τ
Zij

s dBs

Now recall the definition of Φij and since the convergences of (Yij,m)m≥0 and (Zij,m)m≥0 hold in
strong sense then

Φij(s) = f ij
(

s, (Ykl
s )(k,l)∈Γ, Zij

s

)
, ds⊗ dP
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which implies that for any (i, j) ∈ Γ, P-a.s. for any t ≤ T,

Yij
t = ξ ij +

∫ T

t
f ij
(

s, (Ykl
s )(k,l)∈Γ, Zij

s

)
ds + (Kij,+

T − Kij,+
t )− (Kij,−

T − Kij,−
t )−

∫ T

t
Zij

s dBs.

Next from (2.8) we have

Yij,m
t = ξ ij +

∫ T

t
f ij,m(s, (Ykl,m

s )(k,l)∈Γ, Zij,m
s )ds−

∫ T

t
Zij,m

s dBs + Kij,m,+
T − Kij,m,+

t

which implies in taking expectation

mE

[∫ T

0
∑

`∈Γ−{i}
(Yij,m

s −Yi`,m
s − ḡj`(s))+

]

= E

[
−Yij,m

0 + ξ ij +
∫ T

0
f ij(s, (Ykl,m

s )(k,l)∈Γ, Zij,m
s )ds + Kij,m,+

T

]
. (2.35)

Then by Assumption [H1], (2.12),(2.31) and (2.32), there exists a constant C such that

E

∫ T

0
∑

`∈Γ2−{j}
(Yij,m

s −Yi`,m
s − ḡj`(s))+

 ≤ Cm−1 (2.36)

which implies that, in taking the limit as m → ∞, for any (i, j) ∈ Γ and s ≤ T, Yij
s ≤ Yi`

s +

ḡj`(s) for any ` ∈ Γ2 − {j}. Then

P− a.s., ∀s ≤ T, Yij
s ≤ min

`∈Γ2−{j}
(Yi`

s + ḡj`(s)).

Next

E

[∫ T

0

(
Yij

s − min
`∈Γ2−{j}

(Yi`
s + ḡj`(s))

)
dKij,−

s

]
= −E

[∫ T

0

(
Yij

s − min
`∈Γ2−{j}

(Yi`
s + ḡj`(s))

)−
α

ij
s ds

]
(2.37)

= lim
m→∞

E

[∫ T

0

(
Yij,m

s − min
`∈Γ2−{j}

(Yi`,m
s + ḡj`(s))

)−
α

ij,m
s ds

]
= 0

since (αij,m)m is weakly convergent to αij and (Yij,m − min`∈Γ2−{j}(Yi`,m + ḡj`))m converges
strongly in S2 to Yij −min`∈Γ2−{j}(Yi` + ḡj`))

−. As
∫ T

0 (Yij
s −min`∈Γ2−{j}(Yi`

s + ḡj`(s)))dKij,−
s ≤

0 then
P− a.s.,

∫ T

0

(
Yij

s − min
`∈Γ2−{j}

(Yi`
s + ḡj`(s))

)
dKij,−

s = 0.
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In the same way one can show that

P− a.s.,
∫ T

0

(
Yij

s − max
k∈Γ1−{i}

(Ykj
s − g

kj
(s))

)
dKij,+

s = 0.

Thus the processes (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ is a solution of the system of reflected BSDEs (2.4).

Remark 2.3.7.

(i) The constant C such that for any (i, j) ∈ Γ,

E

[∫ T

0
(|αij

s |2 + |θ
ij
s |2)ds

]
≤ C

depends only on ( f ij)(i,j)∈Γ, (ξ ij)(i,j)∈Γ, (g
ik
)i,k∈Γ1 and (ḡjl)j,l∈Γ2 .

(ii) In our construction of the solution of (2.4) through the penalization scheme (2.8), we have penalized
the upper barriers. Had we taken the dual scheme of (2.8) where, instead, the lower barriers are penalized,
we would have obtained another solution (Y̌ij, Žij, Ǩij,±)(i,j)∈Γ of system (2.4). Additionally we have
Y̌ij ≤ Yij for any (i, j) ∈ Γ.

(iii) The solutions of systems (2.4) which we have constructed are comparable. Actually let us consider
( f 1,ij)(i,j)∈Γ, (ξ1,ij)(i,j)∈Γ, (g1

ik
)i,k∈Γ1 and (ḡ1

jl)j,l∈Γ2 items which satisfy the same assumptions [H1]-[H5]
receptively as ( f ij)(i,j)∈Γ, (ξ ij)(i,j)∈Γ, (gik)i,k∈Γ1 and (ḡjl)j,l∈Γ1 . Let us denote by (Y1,ij, Z1,ij, K1,ij,+, K1,ij,−)(i,j)∈Γ

the solution of system (2.4) associated with {( f 1,ij)(i,j)∈Γ, (ξ1,ij)(i,j)∈Γ, (g1
ik
)i,k∈Γ1 , (ḡ1

jl)j,l∈Γ2} (which ex-
ists by Theorem 2.3.6). Assume that for any:

a) (i, j) ∈ Γ, f ij ≤ f 1,ij and ξ ij ≤ ξ1,ij ;

b) i, k ∈ Γ1, g
ik
≥ g1

ik
;

c) j, l ∈ Γ2, ḡik ≤ ḡ1
ik.

Then we have: For any (i, j) ∈ Γ,
P− a.s., Yij ≤ Y1,ij.

This is actually a direct consequence of the constructions of Yij and Y1,ij since for any (i, j) ∈ Γ,

Yij = lim
m→∞

Yij,m and Y1,ij = lim
m→∞

Y1,ij,m

where (Y1,ij,m)(i,j)∈Γ are defined in the same way as (Yij,m)(i,j)∈Γ in (2.7) but with the items {( f 1,ij)(i,j)∈Γ, (ξ1,ij)(i,j)∈Γ, (g1
ik
)i,k∈Γ1 , (ḡ1

jl)j,l∈Γ2}.
But by comparison ([34], pp.190 for more details) we have for any (i, j) ∈ Γ, Yij,m ≤ Y1,ij,m which im-
plies the result in taking the limit as m→ ∞.
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2.4 Existence and uniqueness without monotonicity

In this section, we focus on the second main result of this paper. Actually we are going to
show that system of reflected BSDEs with inter-connected obstacles (2.4) has a unique solution
without assuming the monotonicity Assumption [H5] on the functions ( f ij)(i,j)∈Γ. Meanwhile
in this section we shall need the following assumptions:

[H3] b) The processes (g
ik
)i,k∈Γ1 and (gj,`)j,`∈Γ2 verify the non free loop property, that is to say, if

(ik, jk)k=1,2,...,N is a loop in Γ, i.e., (iN , jN) = (i1, j1), card {(ik, jk)k=1,2,...,N} = N − 1 and for
any k = 1, 2, ..., N − 1, either ik+1 = ik (resp. jk+1 = jk), we have:

P− a.s., ∀t ≤ T,
N−1

∑
k=1

Gik jk(t) 6= 0 (2.38)

where ∀k = 1, ...N − 1, Gik jk(t) = −g
ikik+1

(t)1ik 6=ik+1 + gjk jk
(t)1jk 6=jk+1 . This assumption

makes sure that any instantaneous loop in the switching mode set Γ1 × Γ2, of the players
(or decision makers), is not free i.e. one of the controllers needs to pay something when
the system is switched and comes back instantaneously to the initial mode. Note that

(2.38) also implies: For any (i1, ..., iN) ∈ (Γ1)N such that iN = i1 and card{i1, i2, ..., iN} =
N − 1,

P

[
N−1

∑
k=1

g
ikik+1

(t) = 0

]
= 0, ∀t ≤ T, (2.39)

and for any (j1, ..., jN) ∈ (Γ2)N such that jN = j1 and card{j1, j2, ..., jN} = N − 1,

P

[
N−1

∑
k=1

gjk jk+1
(t) = 0

]
= 0, ∀t ≤ T. (2.40)

[H6] For any (i, j) ∈ Γ, the function f ij does not depend on z.

We highlight that in this section, the generator ( f ij)(i,j)∈Γ is not monotonic any more, i.e. it does
not verify [H5].

First let us temporarily assume that for any (i, j) ∈ Γ, the function f ij does not depend
on (~y, z). Therefore by Theorem 2.3.6, there is a solution (Yij, Zij, Kij,±)(i,j)∈Γ of the following
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system: ∀(i, j) ∈ Γ,

Yij ∈ S2, Zij ∈ H2,d, Kij,+ ∈ A2, Kij,− ∈ A2;

Yij
t = ξ ij +

∫ T

t
f ij(s)ds−

∫ T

t
Zij

s dBs + Kij,+
T −Kij,+

t − (Kij,−
T −Kij,−

t ), ∀t ≤ T;

Lij
t ≤ Yij

t ≤ Uij
t , ∀t ∈ [0, T];∫ T

0

(
Yij

t − Lij
t

)
dKij,+

t = 0 and
∫ T

0

(
Uij

t − Yij
t

)
dKij,−

t = 0.

(2.41)

where Lij
t := max

k∈(Γ1)−i

{
Ykj

t − g
ik
(t)
}

and Uij
t := min

l∈(Γ2)−j

{
Yil

t + gjl(t)
}

, t ≤ T.

As pointed out previously we are going to represent the process Yij as the value function of
a zero-sum switching game which we describe briefly now.

Let us consider a system which has Λ = |Γ1 × Γ2| working modes indexed by Γ1 × Γ2. It
means that a working mode is a pair (i, j) such that i ∈ Γ1 and j ∈ Γ2. This system is controlled
by two agents or players P1 and P2 by choosing their own appropriate working mode of the
system and switch to another one when they make the decision to do so (e.g. according to
profitability, etc.). The player P1 (resp. P2) chooses her modes in Γ1 (resp. Γ2). The features of
the system is that when it works in mode (i, j) from time t to t + dt, it comes with a payoff
which amounts to f ij(t)dt and which is a profit (resp. cost) for P1 (resp. P2). On the other hand
when the player P1 (resp. P2) makes the decision at time t to switch from mode i (resp. j) to
k ∈ Γ1 − {i} (resp. l ∈ Γ2 − {j}), she pays an amount which equals to g

ik
(t) (resp. ḡjl(t)).

Therefore a switching control for P1 (resp. P2), denoted by u (resp. v) is a sequence of pairs
u := (σn, δn)n≥0 (resp. v := (τn, ζn)n≥0) such that: ∀n ≥ 0,

i) σn is an F-stopping time such that σn ≤ σn+1 and δn is a r.v. with values in Γ1 and Fσn -
measurable (resp. τn is an F-stopping time such that τn ≤ τn+1 and ζn is a r.v. with values in Γ2

and Fτn -measurable) ;
ii) P[σn < T, ∀n ≥ 0] = 0 (resp. P[τn < T, ∀n ≥ 0] = 0) ;
iii) Let us define the process Au (resp. Bv) by

Au
t := ∑

n≥1
g

δn−1δn
(σn)1(σn≤t) for t < T and Au

T := lim
t→T

Au
t

(resp. Bv
t := ∑

n≥1
gζn−1ζn

(τn)1(ζn≤t) for t < T and Bv
T := lim

t→T
Bv

t )

then E[|Au
T|2] < ∞ ( resp. E[|Bv

T|2] < ∞).

A control which satisfies the properties i)-iii) is called admissible.

Next letAi
t (resp.B j

t) be the set of admissible controls u := (σn, δn)n≥0 (resp. v := (τn, ζn)n≥0)
for P1 (resp. P2) satisfying σ0 = t, δ0 = i (resp. τ0 = t, ξ0 = j).

To proceed let (u, v) ∈ Ai
t × B

j
t be a pair of switching controls of the players. We define
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the coupling of (u, v) by γ(u, v) = (ρn, γn)n≥0 as the modes under which the system is run
along with time after t when P1 (resp. P2) implements u (resp. v). In our definition we give the
priority of switching to player P1 in the case when both players make the decision to switch at
the same time.

Precisely let:

i) r0 = s0 = 1, r1 = s1 = 1 and for n ≥ 2,

rn = rn−1 + 1(σrn−1≤τsn−1 )
, sn = sn−1 + 1(τsn−1<σrn−1 )

;

ii)
∀n ≥ 0, ρn = σrn ∧ τsn ;

iii) (γn := (γ
(1)
n , γ

(2)
n ))n≥0 is a sequence of Γ−valued random variables defined as follows:

γ0 = (δ0, ζ0) and for all n ≥ 1,

γn =


(δrn , γ

(2)
n−1) if σrn ≤ τsn and σrn < T;

(γ
(1)
n−1, ζsn) if τsn < σrn ;

γn−1 if τsn = σrn = T.

We associate with γ(u, v)t the following process (πs)s∈[t,T] which indicates in which pair of
modes the system is along with time: ∀s ∈ [t, T],

πs = γ01[ρ0,ρ1](s) + ∑
n≥1

γn1(ρn,ρn+1](s)

where (ρn, ρn+1] = ∅ on {ρn = ρn+1}.
Finally when the player P1 (resp. P2) implements the control u ∈ Ai

t (resp. v ∈ B j
t), the

payoff in-between, which is a reward for P1 and a cost for P2, is given by:

Jij
t (γ(u, v)) = E

[
ξπT +

∫ T

t
f π(s)ds− ∑

n≥1

(
g

γ
(1)
n−1γ

(1)
n
(ρn)− g

γ
(2)
n−1γ

(2)
n
(ρn)

)∣∣∣∣∣Ft

]
(2.42)

where ξπT = ξ ij if at time T, πT = (i, j) and f π(s) = f ij if at time s, π(s) = (i, j), for any s ≤ T.

The following result is stated in [33]:

Theorem 2.4.1. ([33], Theorem 3.1) For any t ∈ [0, T] and (i, j) ∈ Γ,

Yij
t = ess sup

u∈Ai
t

ess inf
v∈B j

t

Jij
t (γ(u, v)) = ess inf

v∈B j
t

ess sup
u∈Ai

t

Jij
t (γ(u, v)).

As a by-product of this result we have the following one related to uniqueness of the solu-
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tion of system (2.41) which stems from the above characterization of the component Yij as the
value function of the zero-sum switching game.

Corollary 2.4.2. Let (Yij
1 , Zij

1 , Kij,±
1 )(i,j)∈Γ be another solution of system (2.41), then for any (i, j) ∈ Γ,

Yij = Yij
1 , Zij = Zij

1 and Kij,+
1 − Kij,−

1 = Kij,+ − Kij,−.

Finally thanks to Theorems 2.3.6 and 2.4.1, we will prove the existence and uniqueness
of the solution for the system of reflected BSDEs with bilateral interconnected obstacles (2.4)
without assuming Assumption [H5] on monotonicity and we instead assume [H6].

Theorem 2.4.3. Assume that [H1]-[H4] and [H6] are fulfilled. Then system of reflected BSDEs (2.4)
has a solution (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ, i.e., for any (i, j) ∈ Γ and t ≤ T,



Yij ∈ S2, Zij ∈ H2,d, Kij,± ∈ A2 ;

Yij
t = ξ ij +

∫ T

t
f ij
(

s, ω, (Ykl
s )(k,l)∈Γ1×Γ2

)
ds−

∫ T

t
Zij

s dBs + Kij,+
T − Kij,+

t − (Kij,−
T − Kij,−

t ) ;

Lij
t ≤ Yij

t ≤ Uij
t ;∫ T

0

(
Yij

t − Lij
t

)
dKij,+

t = 0 and
∫ T

0

(
Uij

t −Yij
t

)
dKij,−

t = 0,

(2.43)
where Lij

t := max
k∈(Γ1)−i

{
Ykj

t − g
ik
(t)
}

and Uij
t := min

l∈(Γ2)−j

{
Yil

t + gjl(t)
}

. Moreover it is unique in the

following sense: If (Yij
, Zij, Kij,+, Kij,−

)(i,j)∈Γ1×Γ2 is another solution of (2.43), then for any (i, j) ∈ Γ,

Yij
= Yij, Zij

= Zij, Kij,+ − Kij,−
= Kij,+ − Kij,−.

Proof. First let us define the following operator:

Φ : H2,Λ → H2,Λ

~φ := (φij)(i,j)∈Γ 7→ Φ(~φ) :=
(

Yφ,ij
)
(i,j)∈Γ

(2.44)

where (Yφ,ij, Zφ,ij, Kφ,ij,±)(i,j)∈Γ is the solution of the following system (this solution exists and
is unique by Theorem 2.3.6 and Corollary 2.4.2): ∀(i, j) ∈ Γ,

Yφ,ij ∈ S2, Zφ,ij ∈ H2,d, Kφ,ij,± ∈ A2;

Yφ,ij
t = ξ ij +

∫ T

t
f ij(s,~φ(s))ds−

∫ T

t
Zφ,ij

s dBs + Kφ,ij,+
T − Kφ,ij,+

t − (Kφ,ij,−
T − Kφ,ij,−

t ), ∀t ≤ T;

Lφ,ij
t ≤ Yφ,ij

t ≤ Uφ,ij
t , ∀t ∈ [0, T];∫ T

0

(
Yφ,ij

t − Lφ,ij
t

)
dKφ,ij,+

t = 0 and
∫ T

0

(
Uφ,ij

t −Yφ,ij
t

)
dKφ,ij,−

t = 0

(2.45)
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where Lφ,ij and Uφ,ij are defined as previously but with the processes (Yφ,ij)(i,j)∈Γ. Let ~ψ :=
(ψij)(i,j)∈Γ be another element of H2,Λ and let (Yψ,ij, Zψ,ij, Kψ,ij,±)(i,j)∈Γ be defined as in (2.45)
but where ~φ is replaced with ~ψ.

Next let us introduce the following norm onH2,Λ, denoted by ‖ . ‖2,α, and defined by

‖ y ‖2,α:=
[

E

(∫ T

0
eαt|yt|2dt

)]1
2 .

The space (H2,Λ, ‖ . ‖2,α) is of Banach type. If the map Φ is a contraction on (H2,Λ, ‖ . ‖2,α), then
it has a fixed point which is the unique solution of (2.43). So let us show that Φ is a contraction.
By Theorem 2.4.1, the following representation holds true: ∀(i, j) ∈ Γ and t ≤ T,

Yφ,ij
t = ess sup

u∈Ai
t

ess inf
v∈B j

t

Jφ,ij
t (γ(u, v)) = ess inf

v∈B j
t

ess sup
u∈Ai

t

Jφ,ij
t (γ(u, v))

where

Jφ,ij
t (γ(u, v)) = E

[
ξπT +

∫ T

t
f π(s,~φ(s))ds− ∑

n≥1
(g

γ
(1)
n−1γ

(1)
n
(ρn)− g

γ
(2)
n−1γ

(2)
n
(ρn))

∣∣∣∣∣Ft

]
. (2.46)

Next let ~ψ := (ψij)(i,j)∈Γ be another element ofH2,Λ. Once again, for any (i, j) ∈ Γ and t ≤ T,

Yψ,ij
t = ess sup

u∈Ai
t

ess inf
v∈B j

t

Jψ,ij
t (γ(u, v)) = ess inf

v∈B j
t

ess sup
u∈Ai

t

Jψ,ij
t (γ(u, v))

where Jψ,ij
t is defined similarly as Jφ,ij

t but with ~ψ instead of ~φ. Therefore

∀t ≤ T, |Yψ,ij
t −Yφ,ij

t | ≤ ess sup
u∈Ai

t

ess sup
v∈B j

t

∣∣∣Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))
∣∣∣ . (2.47)

First, by the martingale representation theorem, there exists a predictable process ∆Zψ,φ,π ∈
H2,d (π depends on (i, j)) which is adapted with respect to (Ft)t≤T such that: ∀t ≤ T,

Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v)) = E

[∫ T

t
( f π(s, ~ψ(s))− f π(s,~φ(s)))ds

∣∣∣∣Ft

]
= E

[∫ T

0
( f π(s, ~ψ(s))− f π(s,~φ(s)))ds

∣∣∣∣Ft

]
−
∫ t

0
( f π(s, ~ψ(s))− f π(s,~φ(s)))ds

= Cψ,φ,π +
∫ t

0
∆Zψ,φ,π

s dBs −
∫ t

0
( f π(s, ~ψ(s))− f π(s,~φ(s)))ds. (2.48)
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where Cψ,φ,π := E
[∫ T

0 ( f π(s, ~ψ(s))− f π(s,~φ(s)))ds
]
. Thus ∀t ≤ T,

d(Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))) = −( f π(t, ~ψ(t))− f π(t,~φ(t)))dt + ∆Zψ,φ,π
t dBt. (2.49)

Next by applying Itô’s formula, one has: ∀t ≤ T,

d
[

eαt
(

Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))
)2
]
= αeαt

(
Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))
)2

dt

+ 2
(

Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))
) {
−
(

f π(t, ~ψ(t))− f π(t,~φ(t))
)

dt + ∆Zψ,φ,π
t dBt

}
.

(2.50)

Now let t ∈ [0, T] fixed. By integrating in (2.50) from t to T we obtain:

eαt
(

Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))
)2

+
∫ T

t
eαs|∆Zψ,φ,π

s |2ds = −α
∫ T

t
eαs
(

Jψ,ij
s (γ(u, v))− Jφ,ij

s (γ(u, v))
)2

ds

+ 2
∫ T

t
eαs
(

Jψ,ij
s (γ(u, v))− Jφ,ij

s (γ(u, v))
) (

f π(s, ~ψ(s))− f π(s,~φ(s))
)

ds

− 2
∫ T

t
eαs
(

Jψ,ij
s (γ(u, v))− Jφ,ij

s (γ(u, v))
)

∆Zψ,φ,π
s dBs. (2.51)

Now let us apply the inequality 2ab ≤ αa2 + α−1b2, ∀α > 0, a, b ∈ R, then (2.51) yields

eαt
(

Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))
)2

+
∫ T

t
eαs|∆Zψ,φ,π

s |2ds

≤ 1
α

∫ T

t
eαs ( f π(s, ~ψ(s))− f π(s,~φ(s))

)2
ds− 2

∫ T

t
eαs
(

Jψ,ij
s (γ(u, v))− Jφ,ij

s (γ(u, v))
)

∆Zψ,φ,π
s dBs.

Then by Lipschitz condition of f we have

eαt
(

Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))
)2
≤ C2( f )

α

∫ T

t
eαs|~ψ(s)− ~φ(s)|2ds

− 2
∫ T

t
eαs
(

Jψ,ij
s (γ(u, v))− Jφ,ij

s (γ(u, v))
)

∆Zψ,φ,π
s dBs

(2.52)

where C( f ) = ∑(i,j)∈Γ Cij with Cij is the Lipschitz constant w.r.t. f ij. Next
(
∫ s

t eαr(Jψ,ij
r (γ(u, v))− Jφ,ij

r (γ(u, v)))∆Zψ,φ,π
r dBr)s∈[t,T] is a martingale. Then by taking the con-

ditional expectation on both sides of (2.52) we obtain

E

[
eαs
(

Jψ,ij
s (γ(u, v))− Jφ,ij

s (γ(u, v))
)2
∣∣∣∣Ft

]
≤ C2( f )

α
E

[∫ T

s
eαr|~ψ(r)− ~φ(r)|2dr

∣∣∣∣Ft

]
. (2.53)
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Take now the limit as s→ t in (2.53) yields

eαt
(

Jψ,ij
t (γ(u, v))− Jφ,ij

t (γ(u, v))
)2
≤ C2( f )

α
E

[∫ T

t
eαr|~ψ(r)− ~φ(r)|2dr

∣∣∣∣Ft

]
, ∀t ≤ T. (2.54)

Let us recall now (2.47), then (2.54) implies that: ∀t ≤ T,

eαt
(

Yψ,ij
t −Yφ,ij

t

)2
≤ C2( f )

α
E

[∫ T

t
eαs|~ψ(s)− ~φ(s)|2ds

∣∣∣∣Ft

]
(2.55)

Next take the expectation in both hand-sides of (2.56) (and replace t with 0 in the right one) to
obtain:

E

[
eαt
(

Yψ,ij
t −Yφ,ij

t

)2
]
≤ C2( f )

α
E

[∫ T

0
eαs|~ψ(s)− ~φ(s)|2ds

]
. (2.56)

Finally by integrating (2.55) from 0 to T and summing over (i, j) ∈ Γ we get

∫ T

0
∑

(i,j)∈Γ
eαt
(

Yψ,ij
t −Yφ,ij

t

)2
dt ≤ C2( f )TΛ

α
E

[∫ T

0
eαs|~ψ(s)− ~φ(s)|2ds

]
(2.57)

Now if we take α > C2( f )TΛ then
C2( f )TΛ

α
< 1. This implies that Φ is a contraction from

H2,Λ into itself, and then it has a fixed point which is the unique solution of (2.43). The proof is
complete.

As a by-product of the above result we also have:

Corollary 2.4.4. The Λ-tuple of processes (Yij)(i,j)∈Γ is the unique fixed point of the mapping Φ on
H2,Λ.

Remark 2.4.5. Assume that for any (i, j) ∈ Γ, the function f ij does not depend on z and verify the
monotonicity Assumption [H5], then the solution constructed in Section 3, Theorem 2.3.6, is unique.

2.5 Connection with systems of PDEs with bilateral interconnected
obstacles

It is well-known that BSDEs, through the Feynman-Kac representation of solutions in the Marko-
vian framework of randomness, provide solutions for partial differential equations. Similarly,
in this section we are going to show that, in this very Markovian framework, the component
(Yij)ij∈Γ of the solution of system (2.43), has a Feynman-Kac representation which, besides,
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provides a unique solution in viscosity sense of the following system of PDEs with bilateral
interconnected obstacles: For any (i, j) ∈ Γ,

min
{

vij(t, x)−maxk∈(Γ1)−i [vkj(t, x)− g
ik
(t, x)]; max

[
vij(t, x)−minl∈(Γ2)−j [vil(t, x) + gjl(t, x)];

−∂tvij(t, x)−LX(vij)(t, x)− f ij(t, x, (vkl(t, x))(k,l)∈Γ)
]}

= 0;

vij(T, x) = hij(x).
(2.58)

So first let us fix the framework:

i) A function $ : (t, x) ∈ [0, T] 7→ $(t, x) ∈ Rm (m ≥ 1) has of polynomial growth if there exist
two non-negative real constants C and γ such that ∀(t, x) ∈ [0, T]×Rk,

|$(t, x)| ≤ C(1 + |x|γ).

Hereafter this class of functions is denoted by Πg.

ii) Let C1,2([0, T] × Rk)(or C1,2 for short) denote the set of real-valued functions defined on
[0, T]×Rk which are respectively once and twice differentiable w.r.t. t and x, with continuous
derivatives.

iii) Let b(t, x) and σ(t, x) be two functions from [0, T]×Rk into Rk jointly continuous and Lip-
schitz w.r.t x, i.e., for any (t, x, x′) ∈ [0, T]×Rk+k, there exists a non-negative constant C such
that

|σ(t, x)− σ(t, x′)|+ |b(t, x)− b(t, x′)| ≤ C|x− x′|. (2.59)

Therefore b and σ are of linear growth w.r.t x, i.e.,

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|). (2.60)

Under (2.59)-(2.60), for any (t, x) ∈ [0, T]×Rk, there exists a unique process Xt,x solution of the
following standard SDE:

dXt,x
s = b(s, Xt,x

s )ds + σ(s, Xt,x
s )dBs, s ∈ [t, T];

Xt,x
s = x, ∀s ≤ t.

(2.61)

Besides, Xt,x satisfies the following estimates: ∀γ ≥ 1,

E

[
sup
s≤T
|Xt,x

s |γ
]
≤ C(1 + |x|γ) (2.62)

and its infinitesimal generator LX is given by: for any (t, x) ∈ [0, T]×Rk, φ ∈ C1,2 ((.)> is the
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transpose),

LXφ(t, x) : =
1
2

k

∑
i,j=1

(σσ>(t, x))i,j∂
2
xixj

φ(t, x) +
k

∑
i=1

bi(t, x)∂xi φ(t, x). (2.63)

We are now going to decline the assumptions [H1]-[H4] of Section 2.2 in this markovian
framework of randomness. So let us introduce deterministic functions f ij(t, x,~y), hij(x), g

ik
(t, x)

and ḡjl(t, x), i, k ∈ Γ1, j, l ∈ Γ2 and t, x,~y in [0, T], Rk and RΛ respectively.

[H1b]: For any (i, j) ∈ Γ,

i) There exist non negative constants C and γ such that

| f ij(t, x,~y)| ≤ C(1 + |x|γ + |~y |).

ii) f ij is Lipschitz continuous w.r.t. ~y uniformly in (t, x), i.e. there exists a constant C such
that for any ~y1,~y2 ∈ RΛ,

| f ij(t, x,~y1)− f ij(t, x,~y2)| ≤ C|~y1 −~y2|.

[H2b]: For any (i, j) ∈ Γ, the function hij, which stands for the terminal condition, is continuous
w.r.t. x, belongs to class Πg and satisfies the following consistency condition: ∀(i, j) ∈ Γ and
x ∈ Rk,

max
k∈(Γ1)−i

(hkj(x)− g
ik
(T, x)) ≤ hij(x) ≤ min

l∈(Γ2)−j
(hil(x) + gjl(T, x)). (2.64)

[H3b]: For all i1, i2 ∈ Γ1 (resp. j1, j2 ∈ Γ2), the function g
i1i2

(resp. gj1 j2)

iii) is non-negative, continuous and belong to Πg ;

iv) For any k ∈ Γ1 (resp. ` ∈ Γ2) such that |{i1, i2, k}| = 3 (resp. |{j1, j2, `}| = 3) it holds:
∀(t, x) ∈ [0, T]×Rk,

g
i1i2

(t, x) < g
i1k
(t, x) + g

ki2
(t, x)

(
resp. gj1 j2(t, x) < gj1`(t, x) + g`j2(t, x)

)
; (2.65)

v) The functions (g
ik
)i,k∈Γ1 and (gjl)j,l∈Γ2 verify the non free loop property, that is to say, if

(ik, jk)k=1,2,...,N is a loop in Γ, i.e., (iN , jN) = (i1, j1), card {(ik, jk)k=1,2,...,N} = N − 1 and for
any k = 1, 2, ..., N − 1, either ik+1 = ik or jk+1 = jk, we have:

∀t ≤ T,
N−1

∑
k=1

Gik jk(t, x) 6= 0 (2.66)
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where ∀k = 1, ...N − 1, Gik jk(t, x) = −g
ikik+1

(t, x)1(ik 6=ik+1) + gjk jk
(t, x)1(jk 6=jk+1). This as-

sumption makes sure that any instantaneous loop in the switching mode set Γ1 × Γ2 is
not free, i.e. one of the controllers needs to pay something when the system is switched
and comes back instantaneously to the initial mode.

Note that (2.66) also implies: For any (i1, ..., iN) ∈ (Γ1)N such that iN = i1 and card{i1, i2, ..., iN} =
N − 1,

N−1

∑
k=1

g
ikik+1

(t, x) > 0, ∀(t, x) ∈ [0, T]×Rk

and for any (j1, ..., jN) ∈ (Γ2)N such that jN = j1 and card{j1, j2, ..., jN} = N − 1,

N−1

∑
k=1

gjk jk+1
(t, x) > 0, ∀(t, x) ∈ [0, T]×Rk.

[H4b] For any i, k ∈ Γ1 (resp. j, l ∈ Γ2), g
ik

(resp. gjl) is C1,2 and Dxg
ik

, D2
xxg

ik
(resp. Dxgjl , D2

xxgjl)
belong to Πg. Thus by Itô’s formula we have: g

ik
(s, Xt,x

s ) = g
ik
(t, x) +

∫ s

t
LX(g

ik
)(r, Xt,x

r )dr +
∫ s

t
Dxg

ik
(r, Xt,x

r )σ(r, Xt,x
r )dBr, s ∈ [t, T];

g
ik
(s, Xt,x

s ) = g
ik
(s, x), s ≤ t.

resp.

 gjl(s, Xt,x
s ) = gjl(t, x) +

∫ s

t
LX(gjl)(r, Xt,x

r )dr
∫ s

t
Dxgjl(r, Xt,x

r )σ(r, Xt,x
r )dBr, s ∈ [t, T];

gjl(s, Xt,x
s ) = gjl(s, x), s ≤ t.

 .

Remark 2.5.1. Since Dxg
ik

, D2
xxg

ik
(resp. Dxgjl , D2

xxgjl) belong to Πg, taking into account of assump-
tions (2.60) on linear growth of b and σ and finally estimate (2.62), one gets that sups≤T |Dxg

ik
(s, Xt,x

s )|
(resp. sups≤T |Dxgjl(s, Xt,x

s )|) belongs to L2(dP).

To begin with we first give the following result which stems from Theorem 2.4.3 under
assumptions [H1b]-[H4b].

Proposition 2.5.2. Assume that Assumptions [H1b]-[H4b] are fulfilled. Then for any (t, x) ∈ [0, T]×
Rk, there exist processes (Yij;t,x, Zij;t,x, Kij,+;t,x, Kij,−;t,x)(i,j)∈Γ unique solution of system of reflected
BSDEs with bilateral interconnected obstacles associated with ( f ij, hij, gik, ḡjl), i.e., for any (i, j) ∈ Γ
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and s ∈ [0, T],

Yij;t,x ∈ S2, Zij;t,x ∈ H2,1, Kij,±;t,x ∈ A2 ;

Yij;t,x
s = hij(Xt,x

T ) +
∫ T

s
f ij
(

r, Xt,x
r , (Ykl;t,x

r )(k,l)∈Γ

)
dr−

∫ T

s
Zij;t,x

r dBr + Kij,+;t,x
T − Kij,+;t,x

s

−(Kij,−;t,x
T − Kij,−;t,x

s );
Lij;t,x

s ≤ Yij;t,x
s ≤ Uij;t,x

s ;∫ T

0
(Yij;t,x

s − Lij;t,x
s )dKij,+;t,x

s = 0 and
∫ T

0
(Yij;t,x

s −Uij;t,x
s )dKij,−;t,x

s = 0

(2.67)
where Lij;t,x

s := max
k∈(Γ1)−i

[
Ykj;t,x

s − g
ik
(s, Xt,x

s )
]

and Uij;t,x
s := min

l∈(Γ2)−j

[
Yil;t,x

s + gjl(s, Xt,x
s )
]

, s ∈ [0, T].

We are now going to focus on the properties of (Yij;t,x)(i,j)∈Γ. For simplicity reasons the
quadruple of processes (Yij;t,x, Zij;t,x, Kij,+;t,x, Kij,−;t,x) will be sometimes simply denoted by
(Yij, Zij, Kij,+, Kij,−).

Theorem 2.5.3. Assume that Assumptions [H1b]-[H4b] are fulfilled. Then there exist deterministic
continuous functions (vij)(i,j)∈Γ of polynomial growth, defined on [0, T]×Rk such that for any (i, j) ∈
Γ, (t, x) ∈ [0, T]×Rk,

P− a.s., ∀s ∈ [t, T], Yij;t,x
s = vij(s, Xt,x

s ). (2.68)

Proof. The proof is given in several steps.

A) We first assume that ∀(i, j) ∈ Γ, (t, x) ∈ [0, T]×Rk, f ij(t, x, 0, 0) and hij(x) are bounded.

We will prove that for any (i, j) ∈ Γ, for a fixed δ1 there exists a bounded continuous deter-
ministic function vij defined on [T − δ1, T]×Rk such that for any (t, x) ∈ [T − δ1, T]×Rk we
have:

P− a.s. for any s ∈ [t, T], Yij
s = vij(s, Xt,x

s ).

Let us recall the system (2.67) and let (Ȳ, Z̄) be the unique solution in S2×H2,d of the following
BSDE (it depends on t, x which we omit as there is no confusion):

Ȳs = h̄(Xt,x
T ) +

∫ T

s
Ψ(Ȳr)dr−

∫ T

s
Z̄rdBr, s ≤ T,

where h̄(x) = ∑(i,j)∈Γ |hij(x)| and Ψ(y) := Λ2C](1 + |y|) where C] = max{C( f ), C} with C is
a uniform constant of boundedness of | f ij(t, x, 0)|. It is well-known that there exists a bounded
deterministic continuous function v̄ such that P-a.s., ∀s ∈ [t, T], Ȳs = v̄(s, Xt,x

s ) (see e.g. [24]).
Finally note that Ȳ ≥ 0 and then v̄ ≥ 0.

Now for any (i, j) ∈ Γ, we set (Ŷij, Ẑij, K̂ij,+, K̂ij,−) := (Ȳ, Z̄, 0, 0). Therefore (Ŷij, Ẑij, K̂ij,+,
K̂ij,−) is the unique solution of doubly reflected BSDEs associated with (h̄ij, Ψ̂, (g

ik
)k∈(Γ1)−i ,
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(ḡjl)l∈(Γ2)−j) where Ψ̂(y) := Λ2C](1 + (y)+). This actually holds in taking into account of: i)
the backward equation satisfied by (Ȳ, Z̄) ; ii) the fact that g

ik
and gjl are non-negative ; iii) the

fact that Ȳ ≥ 0 and then |Ȳ| = Ȳ+. Lastly let us notice that by Theorem 2.4.3, the solution of this
system exists and is unique and then it is equal to (Ȳ, Z̄, 0, 0)(i,j)∈Γ. Hence we also have P-a.s.,
for any s ∈ [t, T], Ŷij

s = v̄(s, Xt,x
s ).

In the same way, setting (Ỹij, Z̃ij, K̃ij,+, K̃ij,−) = (−Ȳ,−Z̄, 0, 0) for any (i, j) ∈ Γ, we obtain
that the family (Ỹij, Z̃ij, K̃ij,+, K̃ij,−)(i,j)∈Γ is the unique solution of reflected BSDEs associated
with (−h̄ij, Ψ̂2, (g

ik
)k∈(Γ1)−i , (ḡjl)l∈(Γ2)−j) where Ψ̂2(y) = −C]Λ2(1 + (y)−). Next let us consider

the following Picard iterations: for any (i, j) ∈ Γ, Yij,0;t,x = 0 and for all n ≥ 1, (Yij,n;t,x)(i,j)∈Γ =

Φ((Yij,n−1;t,x)(i,j)∈Γ), where Φ is defined in (2.44). In other words the family (Yij,n;t,x, Zij,n;t,x, Kij,n,+;t,x,
Kij,n,−;t,x)(i,j)∈Γ (which sometimes is simply denoted by (Yij,n, Zij,n, Kij,n,+, Kij,n,−)(i,j)∈Γ as no
confusion is possible) is the unique solution of the following system of BSDEs: ∀(i, j) ∈ Γ and
s ∈ [0, T],

Yij,n;t,x
s = hij(Xt,x

T ) +
∫ T

s
f ij(r, Xt,x

r , (Ykl,n−1;t,x
r )(k,l)∈Γ)dr−

∫ T

s
Zij,n;t,x

r dBr

+Kij,n,+;t,x
T − Kij,n,+;t,x

s − (Kij,n,−;t,x
T − Kij,n,−;t,x

s );

max
k∈(Γ1)−i

[
Ykj,n;t,x

s − g
ik
(s, Xt,x

s )
]
≤ Yij,n;t,x

s ≤ min
l∈(Γ2)−j

[
Yil,n;t,x

s + gjl(s, Xt,x
s )
]

;∫ T

0

{
Yij,n;t,x

s − max
k∈(Γ1)−i

[
Ykj,n;t,x

s − g
ik
(s, Xt,x

s )
]}

dKij,n,+;t,x
s = 0;∫ T

0

{
Yij,n;t,x

s − min
l∈(Γ2)−j

[
Yil,n;t,x

s + gjl(s, Xt,x
s )
]}

dKij,n,−;t,x
s = 0.

(2.69)

Then we have the following inequalities: for any n ≥ 0, (i, j) ∈ Γ,

−Ȳ ≤ Yij,n ≤ Ȳ (2.70)

Indeed when n = 0, (2.70) holds true since for any (i, j) ∈ Γ, (t, x) ∈ [0, T]×Rk,−Ȳ ≤ 0 ≤ Ȳ.
Next we assume that (2.70) holds for some n− 1, i.e. for any (i, j) ∈ Γ, Ỹij = −Ȳ ≤ Yij,n−1 ≤
Ŷij = Ȳ. Then by [H1b]-ii), the boundedness of f ij(t, x,~0) and the induction hypothesis we
have:

f ij(s, Xt,x
s , (Ykl,n−1

s )(k,l)∈Γ)) ≤ C](1 + ∑
(k,l)∈Γ

|Ykl,n−1
s |) ≤ Ψ(Ŷij

s ).

As hij(x) ≤ h̄(x), then by the comparison result (Remark 2.3.7, iii)) between the solutions of
equations (Ŷij)ij and (2.69), one deduces that for any (i, j) ∈ Γ, Yij,n ≤ Ŷij. Similarly by the
induction steps, one deduces that for any (i, j) ∈ Γ, Yij,n ≥ Ỹij = −Ȳ. The proof of the claim
(2.70) is complete.
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Next once more by induction, using the result by Djehiche et al. [19] there exist deterministic
continuous functions (vij,n)(i,j)∈Γ, n ≥ 0, such that ∀(i, j) ∈ Γ, (t, x) ∈ [0, T]×Rk we have

P− a.s., ∀s ∈ [t, T], Yij,n
s = vij,n(s, Xt,x

s ). (2.71)

Therefore from (2.70), we deduce that for any (t, x) ∈ [0, T]×Rk,−v̄(t, x) ≤ vij,n(t, x) ≤ v̄(t, x),
for any (i, j) ∈ Γ. As a by-product the sequence (vij,n(t, x))n≥0 is uniformly bounded since v̄ is
so. Afterwards we just need to prove that ((vij,n)(i,j)∈Γ)n≥0 is a Cauchy sequence for the uniform
convergence norm.

Actually as shown in the proof of Theorem 2.4.3, the sequence ((Yij,n)(i,j)∈Γ)n≥0 converges in
H2,d

[0,T] to (Yij)(i,j)∈Γ since (Yij)(i,j)∈Γ is the fixed point in H2,Λ. On the other hand, for any t ∈
[0, T] and x ∈ Rk, by (2.55) we have:

eαt|vij,n(t, x)− vij,q(t, x)|2 ≤ C2( f )
α

E

∫ T

t
∑

(i,j)∈Γ
|Yij,n−1;t,x

s −Yij,q−1;t,x
s |2ds

 . (2.72)

But, as mentioned previously, the last term converges to 0 as n, q go to infinite. It follows that
for any (i, j) ∈ Γ, the sequence (vij,n)n≥0 is of Cauchy type point-wise on [0, T]×Rk. Therefore
there exists a function vij defined on [0, T]×Rk such that for any (t, x) ∈ [0, T]×Rk, vij(t, x) =
limn→∞ vij,n(t, x). Moreover, −v̄(t, x) ≤ vij(t, x) ≤ v̄(t, x) which implies that the function vij is
bounded. Finally we have

∀ (i, j) ∈ Γ, Yij;t,x
s = vij(s, Xt,x

s ), ds⊗ dP on [t, T]×Rk.

Next by the inequality (2.55) and taking expectation to obtain: For any (t, x) ∈ [0, T] × Rk,
(i, j) ∈ Γ and n, q ≥ 1,

|vij,n(t, x)− vij,q(t, x)|2 ≤ C2( f )
α

E

∫ T

t
eα(s−t) ∑

(i,j)∈Γ
|vij,n−1(s, Xt,x

s )− vij,q−1(s, Xt,x
s )|2ds

 .

(2.73)

Recall (2.73), for any (i, j) ∈ Γ and t ∈ [T − δ1, T] we have

∑
(i,j)∈Γ

‖vij,n − vij,q‖2
∞,δ1
≤ C2( f )Λ

α
eα(T−δ1)

∫ T

T−δ1

eαsds ∑
(i,j)∈Γ

‖vij,n−1(t, x)− vij,q−1(t, x)‖2
∞,δ1

=
C2( f )Λ(eαδ1 − 1)

α2 ∑
(i,j)∈Γ

‖vij,n−1 − vij,q−1‖2
∞,δ1

(2.74)
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Choose now δ1 such that
C2( f )Λ(eαδ1 − 1)

α2 =
3
4

, then, as a result, the sequence of continuous

functions (vij,n)(i,j)∈Γ is uniformly convergent on [T − δ1, T]×Rk which implies that (vij)(i,j)∈Γ

is continuous on [T − δ1, T]×Rk.

Next by (2.55) and since Yij,n
t is deterministic then for any t ∈ [0, T − δ1], x ∈ Rk, we have:

|vij,n(t, x)− vij,q(t, x)|2 = E[|Yij,n
t −Yij,q

t |2] (2.75)

≤ C2( f )
α

E

∫ T

t
eα(s−t) ∑

(i,j)∈Γ
|vij,n−1(s, Xt,x

s )− vij,q−1(s, Xt,x
s )|2ds


≤ C2( f )

α
E

∫ T−δ1

t
eα(s−t) ∑

(i,j)∈Γ
|vij,n−1(s, Xt,x

s )− vij,q−1(s, Xt,x
s )|2ds


+

3
4 ∑

(i,j)∈Γ
‖vij,n−1 − vij,q−1‖2

∞,δ1
(2.76)

The last inequality is valid thanks to (2.74). Now let (t, x) ∈ [T − 2δ1, T − δ1]×Rk. Taking the
supremum on (t, x) in (2.73) and summing over (i, j) ∈ Γ, yields:

∑
(i,j)∈Γ

‖vij,n − vij,q‖2
∞,2δ1

≤ 3
4 ∑

(i,j)∈Γ
‖vij,n − vij,q‖2

∞,δ1
+

3
4 ∑

(i,j)∈Γ
‖vij,n−1 − vij,q−1‖2

∞,2δ1
.

But we know that ∑(i,j)∈Γ ‖vij,n − vij,q‖∞,δ1 → 0 as n, q→ ∞, therefore we have also:

∑
(i,j)∈Γ

‖vij,n − vij,q‖∞,2δ1 → 0, as n, q→ ∞.

It follows that for any (i, j) ∈ Γ, the sequence (vij,n)n converges uniformly to vij in [T− 2δ1, T−
δ1]×Rk. Consequently vij is continuous in [T− 2δ1, T− δ1]×Rk and then also on [T− 2δ1, T]×
Rk since we have already shown that it continuous on [T − δ1, T] × Rk. Repeating now this
procedure as many times as necessary on [T − 3δ1, T − 2δ1]×Rk, [T − 4δ1, T − 3δ1]×Rk and
so on, we obtain that for any (i, j) ∈ Γ, vij is continuous on [0, T]×Rk and then the processes
(Yij;t,x

s )s∈[0,T] and (vij(s, Xt,x
s ))s∈[0,T] are indistinguishable, i.e.,

∀ (i, j) ∈ Γ, P− a.s., ∀s ∈ [0, T], Yij;t,x
s = vij(s, Xt,x

s ).

B) The general case: The functions f ij(t, x, 0) and hij(x), (i, j) ∈ Γ, are of polynomial growth.

Let γ be a positive constant such that for any (i, j) ∈ Γ,

| f ij(t, x, 0)|+ |hij(x)|+ |g
ij
(t, x)|+ |gij(t, x)| ≤ C(1 + |x|γ).
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Let ρ(x) := (1 + |x|2)−γ, x ∈ Rk, and for any (i, j) ∈ Γ, s ∈ [t, T], set

Ỹij
s := Yij

s ρ(Xt,x
s ). (2.77)

Then by Itô’s formula we have: ∀s ∈ [t, T],

dỸij
s = Yij

s dρ(Xt,x
s ) + ρ(Xt,x

s )dYij
s + d〈Yij, ρ(Xt,x)〉s

=
[
Yij

s Lρ(Xt,x
s )− ρ(Xt,x

s ) f ij(s, Xt,x
s , (Ykl

s )(k,l)∈Γ) + Dxρ(Xt,x
s )σ(s, Xt,x

s )Zij
s

]
ds

+
[
Yij

s Dxρ(Xt,x
s )σ(s, Xt,x

s ) + ρ(Xt,x
s )Zij

s

]
dBs − ρ(Xt,x

s )dKij,+
s + ρ(Xt,x

s )dKij,−
s .

(2.78)

Next for (i, j) ∈ Γ and s ∈ [t, T], let us set:

a) Z̃ij
s := Yij

s Dxρ(Xt,x
s )σ(s, Xt,x

s ) + ρ(Xt,x
s )Zij

s ;

b) dK̃ij,+
s := ρ(Xt,x

s )dKij,+
s and dK̃ij,−

s := ρ(Xt,x
s )dKij,−

s ;

c) f̃ ij(s, Xt,x
s ,−→y ) := ρ(Xt,x

s ) f ij(s, Xt,x
s , (ρ−1(Xt,x

s )ykl)(k,l)∈Γ)− ρ−1(Xt,x
s )yijLρ(Xt,x

s )

− Dxρ(Xt,x
s )σ(s, Xt,x

s )ρ−1(Xt,x
s )[Z̃ij

s − yijρ−1(Xt,x
s )Dxρ(Xt,x

s )σ(s, Xt,x
s )];

d) g̃
ij
(s, Xt,x

s ) := ρ(Xt,x
s )g

ij
(s, Xt,x

s ) and g̃ij(s, Xt,x
s ) := ρ(Xt,x

s )gij(s, Xt,x
s );

e) h̃ij(Xt,x
T ) := ρ(Xt,x

T )hij(Xt,x
T ).

Then the family (Ỹij, Z̃ij, K̃ij,+, K̃ij,−)(i,j)∈Γ is the unique solution of the system of reflected BS-
DEs associated with (( f̃ ij)ij, (h̃ij)ij, (g̃

ik
)i,k∈Γ1 , (g̃jl)j,l∈Γ2).

But for any (i, j) ∈ Γ, h̃ij, f̃ ij(t, x, 0), g̃
ik

, g̃jl are bounded. Then thanks to the previous step,
for any (i, j) ∈ Γ, one can find continuous bounded functions (ṽij)(i,j)∈Γ defined on [0, T] ×
Rk such that Ỹij,t,x

s = ṽij(s, Xt,x
s ), ∀s ∈ [t, T]. Therefore in setting, for (i, j) ∈ Γ and (t, x) ∈

[0, T]×Rk, vij(t, x) = ρ−1(x)ṽij(t, x) makes that (vij(t, x))(i,j)∈Γ is continuous on [0, T]×Rk, is
of polynomial growth and verifies for any (i, j) ∈ Γ, Yij;t,x

s = vij(s, Xt,x
s ), ∀s ∈ [t, T]. The proof is

now complete.

We are now ready to give the main result of this section.

Theorem 2.5.4. Assume that Assumptions [H1b]-[H4b] and [H6] are fulfilled. Then the Λ-tuple of
continuous functions (vij)(i,j)∈Γ is a viscosity solution (see Appendix for the definition) of the following
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system of variational inequalities with bilateral interconnected obstacles: For any (i, j) ∈ Γ,
min{vij(t, x)−maxk∈(Γ1)−i [vkj(t, x)− g

ik
(t, x)]; max

{
vij(t, x)−minl∈(Γ2)−j [vil(t, x) + gjl(t, x)];

−∂tvij(t, x)−LX(vij)(t, x)− f ij(t, x, (vkl(t, x))(k,l)∈Γ)
}
} = 0;

vij(T, x) = hij(x).
(2.79)

Moreover it is unique in the class of continuous functions which belong to Πg.

Proof. We first prove that (vij)(i,j)∈Γ is a viscosity solution, then we prove the uniqueness.

Step 1: (vij)(i,j)∈Γ is a viscosity solution of (2.79).
For convenience we recall the unique solution (Yij, Zij, Kij,+, Kij,−)(i,j)∈Γ of (2.67): For any (i, j) ∈
Γ and s ≤ T,

Yij
s = hij(Xt,x

T ) +
∫ T

s
f ij
(

r, Xt,x
r , (Ykl

r )(k,l)∈Γ

)
dr−

∫ T

s
Zij

r dBr +
∫ T

s
d(Kij,+

s − dKij,−
s );

Lij
s ≤ Yij

s ≤ Uij
s ;

∫ T

0

(
Yij

s − Lij
s

)
dKij,+

s = 0 and
∫ T

0

(
Yij

s −Uij
s

)
dKij,−

s = 0.

(2.80)

By (2.68), the system (2.80) can be decoupled as follows: for any (i, j) ∈ Γ and s ∈ [t, T],

Yij
s = hij(Xt,x

T ) +
∫ T

s
f ij(r, Xt,x

r , (vkl(r, Xt,x
r ))(k,l)∈Γ)dr−

∫ T

s
Zij

r dBr +
∫ T

s
d(Kij,+

s − dKij,−
s );

max
k∈(Γ1)−i

[
vkj(s, Xt,x

s )− g
ik
(s, Xt,x

s )
]
≤ Yij

s ≤ min
l∈(Γ2)−j

[
vil(s, Xt,x

s ) + gjl(s, Xt,x
s )
]

;

∫ T

t

{
Yij

s − max
k∈(Γ1)−i

[vkj(s, Xt,x
s )− g

ik
(s, Xt,x

s )]

}
dKij,+

s = 0

∫ T

t

{
Yij

s − min
l∈(Γ2)−j

[vil(s, Xt,x
s ) + gjl(s, Xt,x

s )]

}
dKij,−

s = 0.

(2.81)
Applying Theorem 6.2 in [27] (see also Theorem A.3 in [19]), for any arbitrary (i, j) in Γ, vij is a
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viscosity solution of
min{vij(t, x)−maxk∈(Γ1)−i [vkj(t, x)− g

ik
(t, x)]; max

{
vij(t, x)−minl∈(Γ2)−j [vil(t, x) + gjl(t, x)];

−∂tvij(t, x)−LX(vij)(t, x)− f ij(t, x, (vkl(t, x))(k,l)∈Γ)
}
} = 0;

vij(T, x) = hij(x).

As (i, j) is arbitrary then (vij)(i,j)∈Γ is a viscosity solution of (2.79).

Step 2: Uniqueness

Firstly let us suppose the existence of another solution (ṽij)(i,j)∈Γ of system (2.79) which is con-
tinuous and of polynomial growth. Next let (ỹij)(i,j)∈Γ be the process of H2,Λ such that for any
(i, j) ∈ Γ and s ≤ T,

ỹij
s = ṽij(s, Xt,x

s ) (2.82)

We can now define another process (Ỹij)(i,j)∈Γ via the mapping Φ of (2.44) as follows:

(Ỹij)(i,j)∈Γ := Φ
(
(ỹij)(i,j)∈Γ

)
(2.83)

By the definition of Φ, (Ỹij)(i,j)∈Γ is the first component of the unique solution of following
doubly RBSDEs: For any (i, j) ∈ Γ and s ≤ T,

Ỹij
s = hij(Xt,x

T ) +
∫ T

s
f ij(r, Xt,x

r , (ṽkl
r (r, Xt,x

r ))(k,l)∈Γ)dr−
∫ T

s
Z̃ij

r dBr +
∫ T

s
d(K̃ij,+

s − K̃ij,−
s );

max
k∈(Γ1)−i

[
Ỹkj

s − g
ik
(s, Xt,x

s )
]
≤ Ỹij

s ≤ min
l∈(Γ2)−j

[
Ỹil

s + gjl(s, Xt,x
s )
]

;∫ T

0

{
Ỹij

s − max
k∈(Γ1)−i

[
Ỹkj

s − g
ik
(s, Xt,x

s )
]}

dK̃ij,+
s = 0;∫ T

0

{
Ỹij

s − min
l∈(Γ2)−j

[
Ỹil

s + gjl(s, Xt,x
s )
]}

dK̃ij,−
s = 0.

As a result, by Theorem 2.5.3, there exist deterministic functions of polynomial growth, denoted
(uij)(i,j)∈Γ, such that for any (t, x) ∈ [0, T]×Rk, (i, j) ∈ Γ and s ∈ [t, T],

Ỹij
s = uij(s, Xt,x

s ).

Moreover by the result of Step 1, (uij)(i,j)∈Γ is a viscosity solution of the following system of
variational inequalities with bilateral interconnected obstacles: ∀(i, j) ∈ Γ,

min{uij(t, x)− max
k∈(Γ1)−i

[ukj
t − g

ik
(t, x); max[ui(t, x)− min

l∈(Γ2)−j
[uil

t + gjl(t, x);

−∂tuij(t, x)−Luij(t, x)− f ij(t, x, (ṽkl(t, x))(k,l)∈Γ)]} = 0;
uij(T, x) = hij(x)

(2.84)
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since the generators f ij(t, x, (ṽkl(t, x))(k,l)∈Γ), (i, j) ∈ Γ, do not depend on the solution (uij)(i,j)∈Γ.
But the solution of system (2.84) is unique in the class of continuous functions of Πg (see The-
orem 3.2 in [18] for more details) and (ṽij)(i,j)∈Γ is a solution in this class. Therefore, for any
(i, j) ∈ Γ, uij = ṽij and then

P− a.s., ∀s ∈ [t, T], ỹij
s = Ỹij

s , ∀(i, j) ∈ Γ. (2.85)

Next by (2.83) we obtain on [t, T],

(ỹij)(i,j)∈Γ := Φ
(
(ỹij)(i,j)∈Γ

)
However, by Corollary 2.4.4, (Yij)(i,j)∈Γ is the only fixed point of Φ in (H2,Λ

[t,T], ‖.‖2). Therefore
for any (i, j) ∈ Γ, (t, x) ∈ [0, T]×Rk, P− a.s., ∀ s ∈ [t, T],

ṽij(s, Xt,x
s ) = ỹij

s = Yij
s = vij(s, Xt,x

s ). (2.86)

Take now s = t, leads to ṽij(t, x) = vij(t, x) for any (i, j) ∈ Γ which means that the solution is
unique.

Remark 2.5.5. The functions (vij)(i,j)∈Γ are also the unique solution in the class of continuous functions
which belong to Πg, of the following system which is of max-min type and dual to (2.79): ∀(i, j) ∈ Γ,

max{vij(t, x)− max
k∈(Γ1)−i

[vkj(t, x)− g
ik
(t, x)]; min[vij(t, x)− min

l∈(Γ2)−j
[vil(t, x) + gjl(t, x)];

−∂tvij(t, x)−LX(vij)(t, x)− f ij(t, x, (vkl(t, x))kl∈Γ)]} = 0;
vij(T, x) = hij(x).

(2.87)
This can be shown in considering (−Yij,−Zij, Kij,±)(i,j)∈Γ which is the solution of the system of reflected
BSDEs with inter-connected bilateral obstacles associated with ((− f ij(t, x,−~y))(i,j)∈Γ, (−hij(x))(i,j)∈Γ,
(gjl(t, x))j,l∈Γ2 , (g

ik
(t, x))i,k∈Γ1) and then use the result of the previous Theorem 2.5.4 with (−vij)(i,j)∈Γ

which implies that (vij)(i,j)∈Γ is also he unique solution of (2.87).

2.6 Appendix

The definition of the viscosity solution of system (2.79) is the following:

Definition 2.6.1. Let ~v := (vij)(i,j)∈Γ be a Λ-tuple of continuous functions on [0, T]×Rk.

A) We say that ~v is a viscosity supersolution (resp. subsolution) of (2.79) if for any fixed (i0, j0) in Γ,
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vi0 j0 is a viscosity supersolution (resp. subsolution) of the following PDE with bilateral obstacles:
min{vi0 j0(t, x)−maxk∈(Γ1)−i0 [vkj0(t, x)− g

i0k
(t, x)]; max

{
vi0 j0(t, x)−minl∈(Γ2)−j0 [vi0l(t, x) + gj0l(t, x)];

−∂tvi0 j0(t, x)−LX(vi0 j0)(t, x)− f i0 j0(t, x, (vkl(t, x))(k,l)∈Γ)
}
} = 0;

vi0 j0(T, x) = hi0 j0(x),
(2.88)

that is to say:

i) vi0 j0(T, x) ≥ hi0 j0(x) (resp. vi0 j0(T, x) ≤ hi0 j0(x)) ;
ii) if (t, x) ∈ [0, T)×Rk and φ ∈ C1,2([0, T]×Rk) such that (t, x) is a local minimum (resp. maxi-
mum) point of vi0 j0 − φ then min{vi0 j0(t, x)−maxk∈(Γ1)−i0 [vkj0(t, x)− g

i0k
(t, x)]; max

{
vi0 j0(t, x)−minl∈(Γ2)−j0 [vi0l(t, x) + gj0l(t, x)];

−∂tφ(t, x)−LX(φ)(t, x)− f i0 j0(t, x, (vkl(t, x))(k,l)∈Γ)
}
} ≥ 0 (resp. ≤ 0).

(2.89)
B) We say that ~v := (vij)(i,j)∈Γ is a viscosity solution of (2.79) if it is both a supersolution and subsolu-
tion of (2.79).
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CHAPTER 3

PAPER 2: ZERO-SUM SWITCHING

GAME, SYSTEMS OF REFLECTED

BACKWARD SDES AND PARABOLIC

PDES WITH BILATERAL

INTERCONNECTED OBSTACLES

This chapter is a preprint joint work with Hamadène (ref.[36]).

3.1 Introduction

This paper is related to zero-sum switching games, systems of reflected backward differential
equations (RBSDEs) with bilateral interconnected obstacles and systems of variational inequal-
ities of min-max type with interconnected obstacles, namely the Hamilton-Jacobi-Bellman (HJB
for short) system associated with the game.

First let us describe the zero-sum switching game which we will consider in this paper. Let Γ
be the set {1, ..., p}. Assume we have a system which has p working modes indexed by Γ. This
system can be switched from one working mode to another one, e.g. due to economic, financial,
ecological reasons, etc, by two players or decision makers C1 and C2. The main feature of the
switching actions is that when the system is in mode i ∈ Γ, and one of the players decides to
switch it, then it is switched to mode i+ 1 (hereafter i+ 1 is 1 if i = p). It means that the decision
makers do not have their proper modes to which they can switch the system when they decide
to switch (see e.g. [33] for more details on this model). Therefore a switching strategy for the
players are sequences of stopping times u = (σn)n≥0 for C1 and v = (τn)n≥0 for C2 such that
σn ≤ σn+1 and τn ≤ τn+1 for any n ≥ 0. On the other hand, the switching actions are not free
and generate expenditures for the players. Loosely speaking at time t ≤ T, they amount to Au
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(resp. Bv
t ) given by:

Au
t = ∑

σn≤t
g

ζn,ζn+1
(σn) (resp. Bv

t = ∑
τn≤t

ḡθn,θn+1(τn)).

The process g
i,i+1

(s) (resp. ḡi,i+1(s)) is the switching cost payed by C1 (resp. C2) is she makes
the decision to switch the system from mode i to mode i + 1 at time s while ζn (resp. θn) is
the mode in which the system is at time σn (resp. τn). Next when the system is run under the
control u (resp. v) for C1 (resp. C2), there is a payoff J(u, v) which is a profit (resp. cost) for C1

(resp. C2) given by:

J(u, v) = E[
∫ T

0 f δs(s)ds− Au
T + Bv

T + ζδT ].

where δ := (δs)s≤T is the process valued in Γ which indicates the working modes of the system
along with time. If at time s the system is in mode i0, then δs = i0. It is bind to the controls u
and v implemented by both players. On the other hand, for i ∈ Γ, the process f i is the utility of
the system in mode i and finally ζδT is the terminal payoff or bequest.

The problem we are interested in is to know whether or not the game has a value, i.e.,
roughly speaking, if the follwoing equality holds:

inf
v

sup
u

J(u, v) = sup
u

inf
v

J(u, v)

In case of equality we say that the game has a value. Finally we say that the game has a saddle-
point (u∗, v∗) if, for any u and v, controls of C1 and C2 respectively, we have:

J(u, v∗) ≤ J(u∗, v∗) ≤ J(u∗, v).

Note that in such a case, the game has a value.

From the probabilistic point of view, this zero-sum switching game problem turns into looking
for a solution of its associated system of reflected BSDEs with interconnected bilateral obstacles
(see e.g. [33] for the case of proper modes of players). A solution for such a system are adapted
processes (Yi, Zi, Ki,±)i∈Γ such that for any i ∈ Γ, and s ≤ T,

Yi and Ki,± continuous; Ki,± increasing; (Zi(ω)t)t≤T is dt− square integrable;
Yi

s = ζ i +
∫ T

s f i(r)dr−
∫ T

s Zi
rdBr + Ki,+

T − Ki,+
s − (Ki,−

T − Ki,−
s );

Li(~Y)s ≤ Yi
s ≤ Ui(~Y)s;∫ T

0 (Yi
s − Li(~Y)s)dKi,+

s = 0 and
∫ T

0 (Yi
s −Ui(~Y)s)dKi,−

s = 0

(3.1)

where: a) B := (Bt)t≤T is a Brownian motion; b) ~Y := (Yi)i∈Γ; c) Li(~Y)s = Yi+1
s − g

i,i+1
(s) and

Ui(~Y)s = Yi+1
s + ḡi,i+1(s).
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Actually the solution of the previous system provides the value of the zero-sum switching
game which is equal to Yi

0 if the starting mode of the system is i. Roughly speaking, system
(3.1) is the verification theorem for the zero-sum switching game problem.

In the Markovian framework, i.e., when randomness stems from a diffusion process Xt,x

((t, x) ∈ [0, T]×Rk) which satifies:

dXt,x
s = b(s, Xt,x

s )ds + σ(s, Xt,x
s )dBs, s ∈ [t, , T] and Xt,x

s = x for s ≤ t (3.2)

and the data of the game are deterministic functions of (s, Xt,x
s ), the Hamilon-Jacobi-Bellman

system associated with this switching game is the following system of partial differential equa-
tions (PDEs in short) with a bilateral interconnected obstacles: ∀i ∈ Γ, ∀(t, x) ∈ [0, T] ×Rk,


min{vi(t, x)− Li(~v)(t, x); max

[
vi(t, x)−Ui(~v)(t, x); −∂tvi(t, x)−LX(vi)(t, x)− f i(t, x)

]
} = 0;

vi(T, x) = hi(x).
(3.3)

where: a)~v = (vi)i∈Γ; b) Li(~v)(t, x) := vi+1(t, x)− g
i,i+1

(t, x), Ui(~v)(t, x) := vi+1(t, x)+ gi,i+1(t, x);
c) LX, the infinitesimal generator of X, is given by:

LXφ(t, x) :=
1
2

Tr[σσ>(t, x)D2
xxφ(t, x)] + b(t, x)>Dxφ(t, x).

Usually it is shown that the value functions of the game is a unique solution of (3.3).

This work is originated by an article by N.Yamada [68] where the author deals with the
system of PDEs (3.3) in the case when the switching costs are constant and for bounded do-
mains Ω̄. By penalization method, the author proved existence and uniqueness of the solution
of (1.35) in a weak sense (actually in a Sobolev space). Then he gives an interpretation of the so-
lution of this system as a value function of the zero-sum switching game described previously.
A saddle-point of the game is also given. However neither this interpretation nor the existence
of the saddle-point are clear because the question of admissiblity of the controls which are sup-
posed to realize the saddle-point property is not addressed. In zero-sum switching games this
issue of admissibility of those controls, defined implicitely through (Yi)i∈Γ, is crucial (see e.g.
[33]). Note also that there is another paper by N.Yamada [67] where the solution of system (3.3)
is considered in viscosity sense. Once more by penalization, he shows existence and uniqueness
of the solution on bounded domains Ω̄.

Therefore the main objectif of this work is to show that:

i) the system of reflected BSDEs with interconnected obstacles (3.1) has a unique solution in the
Markovian framework.
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ii) the zero-sum switching game described above has a value.
iii) The system of PDEs (3.3) has a unique solution.

Actually in this paper we show that system of PDEs (3.3) has a unique continuous with
polynomial growth solution (vi)i∈Γ in viscosity sense on [0, T] × Rk. Mainly this solution is
constructed by using Perron’s method in combination with systems of reflected BSDEs with
one lower interconnected obstacle and the Feynman-Kac representation of their solutions in
the Markovian framework. Then we show that the following system of RBSDEs with intercon-
nected bilateral obstacles has a unique solution: For any i ∈ Γ,

Yi and Ki,± are continuous; Ki,± are increasing; (Zi(ω)t)t≤T is dt− square integrable;
Yi

s = hi(Xt,x
T ) +

∫ T
s f i(r, Xt,x

r )dr−
∫ T

s Zi
rdBr + Ki,+

T − Ki,+
s − (Ki,−

T − Ki,−
s ), s ≤ T;

Li(~Y)s ≤ Yi
s ≤ Ui(~Y)s;∫ T

0 (Yi
s − Li(~Y)s)dKi,+

s = 0 and
∫ T

0 (Yi
s −Ui(~Y)s)dKi,−

s = 0
(3.4)

where X is the Markov process solution of (3.2), Li(~Y)s = Yi+1
s − g

i,i+1
(s, Xt,x

s ) and Ui(~Y)s =

Yi+1
s + ḡi,i+1(s, Xt,x

s ).

Finally we consider the zero-sum switching game and we show that when the processes Zi,
i ∈ Γ, of (3.4) are:

a) dt⊗ dP-square integrable then Yi
0 is the value of the game under square integrable controls,

i.e., E[(Au
T)

2 + (Bv
T)

2] < ∞.

b) only ω by ω, dt-square integrable then Yi
0 is the value of the game under integrable controls,

i.e., E[Au
T + Bv

T] < ∞.

The paper is organized as follows:

In Section 2, we introduce the zero-sum switching game and especially the notion of cou-
pling which is already used in several papers including [33, 63]. In Section 3, we show that
the solution of (3.4) is the value of the zero-sum switching game over square integrable con-
trols when Zi, i ∈ Γ, are dt ⊗ dP-square integrable. Without additional assumptions on the
data of the problem, this property is rather tough to check in practice because it depends on
the room between the barriers Li(~Y) and Ui(~Y) which depend on the solution ~Y. For exam-
ple, it is not clear how to assume an hypothesis like Mokobodski’s one (see e.g. [14, 30]) since
the barriers depend on the solution and this latter is not explicit. However by localiztion, we
can show that in some cases, e.g. when the switching costs are constant, Yi

0 is actually the
value function over square integrable controls even when we do not know that Zi, i ∈ Γ,
are dt ⊗ dP-square integrable. In the case when for any i ∈ Γ and P-a.s. (Zi

s(ω))s≤T is dt-
square integrable only, which is the minimum condition to define the stochastic integral, Yi

0

is the value function of the zero-sum switching game over integrable controls. To show this
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property we proceed by localization. Section 4 is devoted to existence and uniqueness of the
solution of system of PDEs (3.3) in a more general form. The result is given in Theorem 3.4.3,
but the main steps of its proof are postponed to Appendix. This proof is based on Perron’s
method and the construction of this solution (more or less the same as in [19]) proceeds as
follows: a) we first introduce the processes (Yi,m, Zi,m, K±,i,m)i∈Γ, m ≥ 1, solution of the sys-
tem of reflected BSDEs with interconnected lower barriers associated with { f i(r, Xt,x

r ,~y, zi) −
m(yi − yi+1 − ḡi,i+1(r, Xt,x

r ))+, hi(Xt,x
T ), g

i,i+1
(r, Xt,x

r )}i∈Γ (see (3.57)). It is a decreasing penaliza-
tion scheme. As the framework is Markovian then there exist deterministic functions continu-
ous and of polynomial growth (vi,m)i∈Γ such that the following Feynman-Kac representation
holds: For any i ∈ Γ, m ≥ 1 and s ∈ [t, T],

Yi,m
s = vi,m(s, Xt,x

s ).

As for any i ∈ Γ, m ≥ 1, Yi,m ≥ Yi,m+1 then we have also vi,m ≥ vi,m+1. Now if we define
vi = limm vi,m, then (vi)i∈Γ is a subsolution of (3.3) and for any fixed m0, (vi,m0)i∈Γ is a superso-
lution of (3.3). Next it is enough to use Perron’s method to show that (3.3) has a unique solution
since comparison principle holds. Finally, by uniqueness this solution does not depend on m0

and is (vi)i∈Γ. Additionally for any i ∈ Γ, vi is of polynomial growth and continuous. In Sec-
tion 5, we show existence and uniqueness of the solution of system of RBSDEs (3.1) and give
some extensions. This proof is based on results on zero-sum Dynkin games and standard two
barriers reflected BSDEs. The component Yi, i ∈ Γ, is just the limit of the processes (Yi,m)m.
We make use of the fact that, by Dini’s Theorem, (vi,m)m converges to vi uniformly on compact
sets since vi is continuous and then the sequence (Yi,m)m converges uniforly in L2(dP) to Yi,
i ∈ Γ. As mentionned previously, this latter property stems from the PDE part. Note also that
the following representation holds:

∀s ∈ [t, T], Yi
s = vi(s, Xt,x

s ).

Here we should point out that since the switching of the system is made from i to i + 1 and
the players do not have their proper sets of switching modes, then the method used e.g. in [33]
cannot be applied in our framework. As a consequence of this fact, the question of a solution of
(3.1) outside the Markovian framework still open. At the end of the paper there is the Appendix.

3.2 Preliminaries. Setting of the stochastic switching game

Let T be a fixed positive constant. Let (Ω,F , P) denote a complete probability space, B =

(Bt)t∈[0,T] a d-dimensional Brownian motion whose natural filtration is (F 0
t := σ{Bs, s ≤ t})0≤t≤T
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and we denote by F = (Ft)0≤t≤T the completed filtration of (F 0
t )0≤t≤T with the P-null sets of

F . Then it satisfies the usual conditions. On the other hand, let P be the σ-algebra on [0, T]×Ω
of the F-progressively measurable sets.

Next, we denote by:

- S2: the set ofP-measurable continuous processes φ = (φt)t∈[0,T] such that E(supt∈[0,T] |φt|2) <
∞;

- A2 : the subset of S2 with all non-decreasing processes K = (Kt)t≤T with K0 = 0;

- Aloc: the set of P-measurable continuous non-decreasing processes K = (Kt)t≤T with
K0 = 0 such that P− a.s. KT(ω) < ∞;

- H2,d
loc(d ≥ 1) : the set of P-measurable Rd-valued processes ψ = (ψt)t∈[0,T] such that

P− a.s.,
∫ T

0 |ψt|2dt < ∞.

- H2,d: the subset ofH2,d
loc(d ≥ 1) of processes ψ = (ψt)t∈[0,T] such that E(

∫ T
0 |ψt|2dt) < ∞.

- For s ≤ T, Ts is the set of stopping times ν such that P-a.s., s ≤ ν ≤ T.

Now for any (t, x) ∈ [0, T]×Rk, let us consider the process (Xt,x
s )s∈[t,T] solution of the following

standard SDEs: 
dXt,x

s = b(s, Xt,x
s )ds + σ(s, Xt,x

s )dBs, s ∈ [t, T];

Xt,x
s = x, s ≤ t

(3.5)

where, throughout this paper, b and σ satisfy the following conditions:

(H0) The functions b and σ are Lipschitz continuous w.r.t. x uniformly in t, i.e. for any (t, x, x′) ∈
[0, T]×Rk+k, there exists a non-negative constant C such that

|σ(t, x)− σ(t, x′)|+ |b(t, x)− b(t, x′)| ≤ C|x− x′|. (3.6)

Moreover we assume that they are jointly continuous in (t, x). The continuity of b and σ

imply their linear growth w.r.t. x, i.e. there exists a constant C such that for any (t, x) ∈
[0, T]×Rk,

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|). (3.7)

Therefore under assumption (H0), the SDE (3.5) has a unique solution Xt,x which satisfies the
following estimates: ∀γ ≥ 1,

E[sup
s≤T
|Xt,x

s |γ] ≤ C(1 + |x|γ). (3.8)
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Next a function Φ : (t, x) ∈ [0, T] ×Rk 7→ Φ(t, x) ∈ R is called of polynomial growth if
there exist two non-negative real constants C and γ such that

∀(t, x) ∈ [0, T]×Rk, |Φ(t, x)| ≤ C(1 + |x|γ).

Hereafter this class of functions is denoted by Πg.

3.2.1 Description of the zero-sum stochastic switching game

Let Γ := {1, 2, ..., p} and for i ∈ Γ, let us set Γ−i := Γ− {i}. For~y := (yi)i∈Γ ∈ Rp and ŷ ∈ R, we
denote by [~y−i, ŷ] or [(yk)k∈Γ−i , ŷ], the element of Rp obtained in replacing the i-th component
of ~y with ŷ.

We now introduce the following deterministic functions: for any i ∈ Γ,

- f i: (t, x,~y, z) ∈ [0, T]×Rk+p+d 7→ f i(t, x,~y, z) ∈ R

- g
i,i+1

: (t, x) ∈ [0, T]×Rk 7→ g
i,i+1

(t, x) ∈ R

- gi,i+1: (t, x) ∈ [0, T]×Rk 7→ gi,i+1(t, x) ∈ R

- hi : x ∈ Rk 7→ hi(x) ∈ R

Next let us consider a system with p working modes indexed by the set Γ. On the other hand,
there are two agents or controllers C1 and C2, whose interests are antagonistic and who act
on this system, along with time, by switching its working mode from the current one, say i0,
to the next one i0 + 1 if i0 ≤ p − 1 and 1 if i0 = p, whatever which agent decides to switch
first. Therefore a switching control for C1 (resp. C2) is u := (σn)n≥0 (resp. v := (τn)n≥0) an
increasing sequence of stopping times which correspond to the successive times where C1 (resp.
C2) decides to switch the system. The control u (resp. v) is called admissible if

P[σn < T, ∀n ≥ 0] = 0 (resp. P[τn < T, ∀n ≥ 0] = 0). (3.9)

The set of admissible controls of C1 (resp. C2) is denoted A (resp. B).

Now let u := (σn)n≥0 (resp. v := (τn)n≥0) be an admissible control of C1 (resp. C2). Let
(rn)n≥0 and (sn)n≥0 be the sequences defined by: r0 = s0 = 0, r1 = s1 = 1 and for n ≥ 2,

rn = rn−1 + 1{σrn−1≤τsn−1}
and sn = sn−1 + 1{τsn−1<σrn−1}

.

For n ≥ 0, let us set ρn = σrn ∧ τsn . It is a stopping time and it stands for the time when the
n-th switching of the system, by one of the players, occurs. On the other hand, the piecewise
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process (θ(u, v)s)s≤T which indicates in which mode the system is at time s is given by: ∀s ≤ T,

θ(u, v)s = θ01[ρ0,ρ1](s) + ∑
n≥1

θn1(ρn,ρn+1](s)

where:
i) (ρn, ρn+1] = ∅ on {ρn = ρn+1} ;
ii) θ0 = i if at t = 0, the system is in mode i ;
iii) For n ≥ 1, θn = θn−1 + 1 if θn−1 ≤ p− 1 and θn = 1 if θn−1 = p.

The sequence Θ(u, v) := (ρn, θn)n≥0, called the coupling of (u, v), indicates the successive times
and modes of switching of the system operated by the players.

When the players implement the pair of admissible controls (u, v), this incurs switching
costs which amount to Au

T and Bv
T, for C1 and C2 respectively, and given by:

∀s < T, Au
s = ∑

n≥1
g

θn−1θn
(ρn, X0,x

ρn
)1{ρn=σrn≤s} and Au

T = lim
s→T

Au
s ;

∀s < T, Bv
s = ∑

n≥1
gθn−1θn

(ρn, X0,x
ρn
)1{ρn=τsn≤s} and Bv

T = lim
s→T

Bv
s .

The admissible control u (resp. v) of C1 (resp. C2) is called square integrable if

E[(Au
T)

2] < ∞ (resp. E[(Bv
T)

2] < ∞).

The set of square integrable admissible controls of C1 (resp. C2) is denoted by A (resp. B).

The admissible control u (resp. v) of C1 (resp. C2) is called integrable if

E[Au
T] < ∞ (resp. E[Bv

T] < ∞).

The set of integrable admissible controls of C1 (resp. C2) is denoted by A(1) (resp. B(1)).

The coupling θ(u, v), of a pair (u, v) of admissible controls, is called square integrable (resp.
integrable) if

Cθ(u,v)
∞ := lim

n→∞
Cu,v

N ∈ L2(dP) (resp. ∈ L1(dP))

where for any N ≥ 1,

Cθ(u,v)
N := ∑

n=1,N
g

θn−1θn
(ρn, X0,x

ρn
)1{ρn=σrn<T} − ∑

n=1,N
gθn−1θn

(ρn, X0,x
ρn
)1{ρn=τsn<T}.

Note that Cθ(u,v)
∞ , defined as the pointwise limit of Cθ(u,v)

N , exists since the controls u and v are
admissible. On the other hand, the quantity Cθ(u,v)

N is nothing but the switching costs associated
with the N first switching actions of both players.
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Next when C1 (resp. C2) implements u ∈ A (resp. v ∈ B), there is a payoff which a is reward
for C1 and a cost for C2 which is given by (we suppose that θ0 = i):

Ji(θ(u, v)) = E

[
hθ(u,v)T (X0,x

T ) +
∫ T

0
f θ(u,v)r(r, X0,x

r )dr− Cθ(u,v)
∞

]
. (3.10)

It means that between C1 and C2 there is a game of zero-sum type. The main objective of this
section is to deal with the issue of existence of a value for this zero-sum switching game, i.e.,
whether or not it holds

inf
v∈B

sup
u∈A

Ji(θ(u, v)) = sup
u∈A

inf
v∈B

Ji(θ(u, v)) (3.11)

or
inf

v∈B(1)
sup

u∈A(1)

Ji(θ(u, v)) = sup
u∈A(1)

inf
v∈B(1)

Ji(θ(u, v)). (3.12)

Remark 3.2.1. In our framework when the players decide to switch at the same time, we give priority
to the maximizer C1. This appears through the definition of rn for n ≥ 2. On the other hand, for the
well-posedness of Ji(θ(u, v)), it is enough that the coupling θ(u, v) is integrable.

To proceed we are going to define the notion of admissible square integrable and integrable
strategies.

Definition 3.2.2 (Non-anticipative switching strategies). Let s ∈ [0, T] and ν a stopping time such
that P-a.s. ν ≥ s. Two controls u1 = (σ1

n)n≥0 and u2 = (σ2
n)n≥0 in A are said to be equivalent, denoting

this by u1 ≡ u2, on [s, ν] if we have P-a.s.,

1[σ1
0 ,σ1

1 ]
(r) + ∑

n≥1
1(σ1

n ,σ1
n+1]

(r) = 1[σ2
0 ,σ2

1 ]
(r) + ∑

n≥1
1(σ2

n ,σ2
n+1]

(r), s ≤ r ≤ ν.

A non-anticipative strategy for C1 is a mapping α : B → A such that for any s ∈ [0, T], ν ∈ Ts, and
v1, v2 ∈ B such that v1 ≡ v2 on [s, ν], we have α(v1) ≡ α(v2) on [s, ν].

The non-anticipative strategy α for C1 is called square− integrable (resp. integrable) if for any v ∈ B
we have α(v) ∈ A (resp. for any v ∈ B(1) we have α(v) ∈ A(1)).

In a similar manner we define non-anticipative strategies, square integrable and integrable strategies for
C2 denote by β.

We denote by A and B (resp. A(1) and B(1)) the set of non-anticipative square integrable (resp. inte-
grable) strategies for C1 and C2 respectively.
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3.3 Existence of a value of the zero-sum switching game. Link with
systems of reflected BSDEs

We are now going to deal with the issue of existence of a value for the zero-sum switching game
described previously. For that let us introduce the following assumptions on the functions f i,
hi, g

i,i+1
and gi,i+1. Some assumptions will be only applied in the next sections.

Assumptions (H):

(H1) For any i ∈ Γ, f i does not depend on (~y, z), is continuous in (t, x) and belongs to class Πg

;

(H2) For any i ∈ Γ, the function hi, which stands for the terminal payoff, is continuous w.r.t. x,
belongs to class Πg and satisfies the following consistency condition: ∀i ∈ Γ, ∀x ∈ Rk,

hi+1(x)− g
i,i+1

(T, x) ≤ hi(x) ≤ hi+1(x) + gi,i+1(T, x). (3.13)

(H3) a) For all i ∈ Γ and (t, x) ∈ [0, T] × Rk, the functions g
i,i+1

and gi,i+1 are continuous,
non-negative, belong to Πg and verify:

g
i,i+1

(t, x) + gi,i+1(t, x) > 0.

b) They satisfy the non-free loop property, i.e., for any j ∈ Γ and (t, x) ∈ [0, T]×Rk,

ϕj,j+1(t, x) + ... + ϕp−1,p(t, x) + ϕp,1(t, x) + ... + ϕj−1,j(t, x) 6= 0 (3.14)

where ϕ`,`+1(t, x) is either −g
`,`+1

(t, x) or g`,`+1(t, x). Let us notice that (3.14) also implies:

gj,j+1(t, x) + ... + gp−1,p(t, x) + gp,1(t, x) + ... + gj−1,j(t, x) > 0 (3.15)

and
g

j,j+1
(t, x) + ... + g

p−1,p
(t, x) + g

p,1
(t, x) + ... + g

j−1,j
(t, x) > 0. (3.16)

(H4) For any i = 1, ..., m, the processes (ḡi,i+1(s, X0,x
s ))s≤T and (g

i,i+1
(s, X0,x

s ))s≤T are non de-
creasing.

(H5) For any i ∈ Γ,

a) f i is Lipschitz continuous in (~y, z) uniformly in (t, x), i.e. for any ~y1,~y2 ∈ Rp, z1, z2 ∈ Rd,
(t, x) ∈ [0, T]×Rk,

| f i(t, x,~y1, z1)− f i(t, x,~y2, z2)| ≤ C(|~y1 −~y2|+ |z1 − z2|);
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b) ∀j ∈ Γ−i, the mapping ȳ 7→ f i(t, x, [(yk)k∈Γ−j , ȳ], z) is non-decreasing when the other
components t, x, (yk)k∈Γ−j and z are fixed.

c) f i is continuous in (t, x) uniformly in (~y, z) and f i(t, x, 0, 0) belongs to Πg.

In order to deal with the zero-sum switching game we rely on solutions of systems of re-
flected BSDEs with oblique reflection or inter-connected bilateral obstacles of type below. The
following result whose proof is given in Section 5 will allow us to show that the zero-sum
switching game has a value.

Theorem 3.3.1. Assume that assumptions (H1), (H2) and (H3) are fulfilled. Then there exist processes
(Yi, Zi, Ki,±)i∈Γ such that: For any i ∈ Γ and (t, x) ∈ [0, T]×Rk, ∀s ≤ T,

Yi ∈ S2; Ki,± ∈ Aloc and Zi ∈ H2,d
loc ;

Yi
s = hi(Xt,x

T ) +
∫ T

s f i(r, Xt,x
r )dr−

∫ T
s ZrdBr + Ki,+

T − Ki,+
s − (Ki,−

T − Ki,−
s );

Li(~Y)s ≤ Yi
s ≤ Ui(~Y)s;

∫ T
0 (Yi

s − Li(~Y)s)dKi,+
s = 0 and

∫ T
0 (Yi

s −Ui(~Y)s)dKi,−
s = 0;

(3.17)

where for any s ≤ T, Li(~Y)s := Yi+1
s − g

i,i+1
(s, Xt,x

s ) and Ui(~Y)s := Yi+1
s + ḡi,i+1(s, Xt,x

s ).

Note that obviously the solution (Yi, Zi, Ki,±)i∈Γ of (3.17) depends also on (t, x) which we omit
as there is no possible confusion.

To proceed let (Yi, Zi, Ki,±)i∈Γ be the solution of (3.17) when t = 0. We then have (see e.g.
[32], for more details):

Proposition 3.3.2. For all i ∈ Γ and s ≤ T,

(a)
Yi

0 = ess inf
τ∈T0

ess sup
σ∈T0

J i
0(σ, τ) = ess sup

σ∈T0

ess inf
τ∈T0

J i
0(σ, τ), (3.18)

where,

J i
s (σ, τ) = E

[∫ σ∧τ
s f i(r, X0,x

r )dr + 1{τ<σ}Ui
τ(Y) + 1{σ≤τ, σ<T}Li

σ(Y) + hi(X0,x
T )1{σ=τ=T}

∣∣ Fs
]
.

(3.19)
(b) We have Yi

s = J i
s (σ

i
s, τi

s) where σi
s ∈ Ts and τi

s ∈ Ts are stopping times defined by,σi
s = inf{s ≤ t ≤ T : Yi

t = Li
t(~Y)} ∧ T,

τi
s = inf{s ≤ t ≤ T : Yi

t = Ui
t(~Y)} ∧ T,

(3.20)
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and we use the convention that inf ∅ = +∞. Moreover,
(
σi

s, τi
s
)

is a saddle-point for the zero-sum
Dynkin game,

J i
s (σ, τi

s) ≤ J i
s (σ

i
s, τi

s) ≤ J i
s (σ

i
s, τ) ∀σ, τ ∈ Ts. (3.21)

Remark 3.3.3. For any s < T and i ∈ Γ, P[σi
s = τi

s < T] = 0 due to assumption [H3]-a) on g
i,i+1

and gi,i+1.

3.3.1 Value of the zero-sum switching game on square integrable admissible con-
trols

We are now going to focus on the link between Yi, i ∈ Γ, with the value function of the zero-
sum switching game over square integrable controls, namely the relation (3.11). For that we are
going to make another supplementary assumption on the solution (Yi, Zi, Ki,±)i∈Γ of system
(3.17) which is related to integrability of Zi, i ∈ Γ. Later on we will show that we have also
the relation (3.11) without this latter assumption, but at the price of some additional regularity
properties of the switching costs g

i,i+1
and ḡi,i+1 (see (H4)).

To proceed, consider the following sequence (ρn, θn)n≥0 defined as following: ρ0 = 0, θ0 = i
and for n ≥ 1,

ρn = σ
θn−1
ρn−1 ∧ τ

θn−1
ρn−1 and θn =

{
1 + θn−1 if θn−1 ≤ p− 1,
1 if θn−1 = p;

where σ
θn−1
ρn−1 and τ

θn−1
ρn−1 are defined using (3.20). Next let u(1) := (u(1)

s )s≤T (resp. u(2) := (u(2)
s )s≤T)

be the piecewise process defined by: u(1)
s = 0 for s < ρ1 and for n ≥ 1, s ∈ [ρn, ρn+1),

u(1)
s =

 1 + u(1)
ρn−if Yθn−1

ρn = Yθn
ρn − g

θn−1,θn
(ρn, X0,x

ρn ),

u(1)
ρn− if Yθn−1

ρn > Yθn
ρn − g

θn−1,θn
(ρn, X0,x

ρn )

where u(1)
ρn− is the left limit of u(1) at ρn (resp. u(2)

s = 0 for s < ρ1 and for n ≥ 1, s ∈ [ρn, ρn+1),

u(2)
s =

{
1 + u(2)

ρn−if Yθn−1
ρn = Yθn

ρn + gθn−1,θn
(ρn, X0,x

ρn ),

u(2)
ρn− if Yθn−1

ρn < Yθn
ρn + gθn−1,θn

(ρn, X0,x
ρn )

where u(2)
ρn− is the left limit of u(2) at ρn). Next let u∗ and v∗ be the following sequences of

stopping times: σ∗0 = τ∗0 = 0 and for n ≥ 1,

σ∗n = inf{s ≥ σ∗n−1, u(1)
s > u(1)

s−} ∧ T and τ∗n = inf{s ≥ τ∗n−1, u(2)
s > u(2)

s−} ∧ T.

We then have:
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Proposition 3.3.4. Assume that (H1), (H2), (H3) and (Zi)i∈Γ ∈ H2,d. Then the following properties
of u∗ = (σ∗n )n≥0 and v∗ = (τ∗n )n≥0 hold true:

i) u∗ and v∗ are admissible ;

ii) the coupling θ(u∗, v∗) is square integrable ;

iii)
Yi

0 = Ji(θ(u∗, v∗)).

Proof. i) Let us show that u∗ is admissible. Assume that P[σ∗n < T, ∀n ≥ 0] > 0. As the σ∗n ’s are
defined through the ρ′ns, then there exists a loop {j, j + 1, ..., p− 1, p, 1, ..., j− 1, j} such that

P[ω, ∃ a subsequence (n`)`≥0 such that Y j
ρn`

= Y j+1
ρn`

+ ϕj,j+1(ρn`
, X0,x

ρn`
), . . . ,

Y j−1
ρn`+p−1 = Y j

ρn`+p−1 + ϕj−1,j(ρn`+p−1, X0,x
ρn`+p−1), ∀` ≥ 0] > 0

where ϕi,i+1 is the same as in (3.14) and equal to either −g
i,i+1

or gi,i+1 depending on whether
C1 or C2 makes the decision to switch from the current state j0 to the next one. Next let us set
γ = lim`→∞ ρn`

. Take the limit w.r.t ` in the previous equalities to deduce that:

P[ϕj,j+1(γ, X0,x
γ ) + ... + ϕp−1,p(γ, X0,x

γ ) + ϕp,1(γ, X0,x
γ ) + ... + ϕj−1,j(γ, X0,x

γ ) = 0] > 0

which is contradictory with the non free loop property (3.14). By the same reasoning we obtain
the admissibility of v∗.

ii) Let us recall the definition of the square integrability for θ(u∗, v∗). As u∗ and v∗ are proved
admissible in i), then the coupling θ(u∗, v∗) exists. Next we will prove that limN→∞ Cu∗,v∗

N ∈
L2(dP).

For this recall that i is fixed, ρ0 = 0 and θ0 = i. Next let us consider the equation satisfied
by Yi on [0, ρ1]. We then have:

Yi
0 = hi(X0,x

T )1(ρ1=T) + Yi
ρ1

1(ρ1<T) +
∫ ρ1

0
f i (r, X0,x

r
)

dr−
∫ ρ1

0
Zi

rdBr +
∫ ρ1

0
dKi,+

r −
∫ ρ1

0
dKi,−

r

= hi(X0,x
T )1(ρ1=T) +

(
Yi+1

σi
0
− g

i,i+1
(σi

0, X0,x
σi

0
)
)

1(σi
0≤τi

0)
1(σi

0<T) +
(

Yi+1
τi

0
+ ḡi,i+1(τ

i
0, X0,x

τi
0
)
)

1(τi
0<σi

0)

+
∫ ρ1

0
f i (r, X0,x

r
)

dr−
∫ ρ1

0
Zi

rdBr

= hθ0(X0,x
T )1(ρ1=T) + Yθ1

ρ1
1(ρ1<T) −

[
g

θ0θ1,
(ρ1, X0,x

ρ1
)1

(ρ1=σ
θ0
0 )
− ḡθ0θ1(ρ1, X0,x

ρ1
)1

(ρ1=τ
θ0
0 )

]
1(ρ1<T)

+
∫ ρ1

0
f θ0
(
r, X0,x

r
)

dr−
∫ ρ1

0
Zθ0

r dBr (3.22)

Next we deal with Yθ1
ρ1 by considering the doubly RBSDEs (3.17) in the interval [ρ1, ρ2], i.e.

Yθ1
ρ1

= Yi+1
ρ1
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= hθ1(X0,x
T )1(ρ2=T) + Yθ2

ρ2
1(ρ2<T) −

[
g

θ1θ2
(ρ2, X0,x

ρ2
)1

(ρ2=σ
θ1
ρ1 )
− ḡθ1θ2(ρ2, X0,x

ρ2
)1

(ρ2=τ
θ1
ρ1 )

]
1(ρ2<T)

+
∫ ρ2

ρ1

f θ1
(
r, X0,x

r
)

dr−
∫ ρ2

ρ1

Zθ1
r dBr (3.23)

By replacing Yθ1
ρ1 in (3.22) with (3.23), then (3.22) yields

Yi
0 =

2

∑
n=1

hθn−1(X0,x
T )1(ρn=T)1(ρn−1<T) + Yθ2

ρ2
1(ρ2<T) +

∫ ρ2

0
f θ(u∗,v∗)r

(
r, X0,x

r
)

dr−
∫ 0

ρ1

Zθ(u∗,v∗)r
r dBr

−
2

∑
n=1

[
g

θn−1θn
(ρn, X0,x

ρn
)1

(ρn=σ
θn−1
ρn−1 ,ρn<T)

− ḡθn−1θn(ρn, X0,x
ρn
)1

(ρn=τ
θn−1
ρn−1 ,ρn<T)

]
(3.24)

Following (3.24) we replace iteratively Yθn
ρn for n = 1, 2, ..., N we deduce that

Yi
0 =

N

∑
n=1

hθn−1(X0,x
T )1(ρn=T)1(ρn−1<T) + YθN

ρN
1(ρN<T) − Cθ(u∗,v∗)

N +
∫ ρN

0
f θ(u∗,v∗)r(r, X0,x

r )dr

−
∫ ρN

0
Zθ(u∗,v∗)r

r dBr (3.25)

From (3.25) we obtain: ∀N ≥ 1,

|Cθ(u∗,v∗)
N | ≤

N

∑
n=1
|hθn−1(X0,x

T )|1(ρn=T)1(ρn−1<T) + |YθN
ρN

1(ρN<T)|+ |Yi
0|+ |

∫ ρN

0
f θ(u∗,v∗)r(r, X0,x

r )dr|

+ |
∫ ρN

0
Zθ(u∗,v∗)r

r dBr|

≤ max
i∈Γ

∣∣∣hi(X0,x
T )
∣∣∣+ 2 max

i∈Γ
sup

s∈[0,T]
|Yi

s |+
∫ T

0
| f θ(u∗,v∗)r(r, X0,x

r )|dr + sup
s∈[0,T]

|
∫ s

0
Zθ(u∗,v∗)r

r dBr|

Finally by taking the supremum over N we obtain:

sup
N≥1

∣∣∣Cθ(u∗,v∗)
N

∣∣∣ ≤ max
ß∈Γ

∣∣∣hi(X0,x
T )
∣∣∣+ 2 max

ß∈Γ
sup

s∈[0,T]
|Yi

s |

+
∫ T

0
| f θ(u∗,v∗)r(r, X0,x

r )|dr + sup
s∈[0,T]

|
∫ s

0
Zθ(u∗,v∗)r

r dBr︸ ︷︷ ︸
Mθ(u∗ ,v∗)s

s

|. (3.26)

As (Zi)i∈Γ are dt⊗ dP-square integrable, then

E[sup
s≤T
|Mθ(u∗,v∗)s

s |2] ≤ CE[ ∑
i=1,m

∫ T

0
|Zi

s|2ds] < ∞.

It implies that the right-hand side of (3.26) belongs to L2(dP) and then limN→∞ Cθ(u∗,v∗)
N is
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square integrable and then θ(u∗, v∗) is square integrable.

Finally for iii), by directly taking the expectation on both sides of (3.25) we obtain

Yi
0 = E

[
N

∑
n=1

hθn−1(X0,x
T )1(ρn=T)1(ρn−1<T) + YθN

ρN
1(ρN<T) − Cθ(u∗,v∗)

N +
∫ ρN

0
f θ(u∗,v∗)r(r, X0,x

r )dr

]
(3.27)

Now it is enough to take the limit w.r.t. N in (3.27) and to use the Lebesgue dominated conver-
gence theorem since limN→∞ ρN = T and considering (3.26), to deduce that

Yi
0 = E

[
hθ(u∗,v∗)T (X0,x

T ) +
∫ T

0
f θ(u∗,v∗)r(r, X0,x

r )dr− Cθ(u∗,v∗)
∞

]
= Ji(θ(u∗, v∗))

as limN→∞ Cθ(u∗,v∗)
N = Cθ(u∗,v∗)

∞ .

Let i be the starting mode of the system which is fixed. Let σ = (σn)n≥0 be an admissible
control of C1 (which then belongs to A) and v∗(σ) =: (τ̄n)n≥0 be the optimal response strategy
of C2 which we are going to define below. Indeed let (ρn, θn)n≥0 be the sequence defined as
follows: ρ0 = 0, θ0 = i and for n ≥ 1

ρ0 = 0, θ0 = i, and for n ≥ 1,

ρn = σřn ∧ τ̃n, θn =

{
1 + θn−1 if θn−1 ≤ p− 1
1 if θn−1 = p

(3.28)

where

τ̃n := τ
θn−1
ρn−1 := inf

{
s ≥ ρn−1, Yθn−1

s = Yθn
s + ḡθn−1θn(s)

}
∧ T (according to (3.20))

and řn is defined by ř0 = 0, ř1 = 1, for n ≥ 2,

řn = řn−1 + 1{σřn−1≤τ̃n−1}.

Next let v̌ be the piecewise process defined by: v̌s = 0 for s < ρ1 and for n ≥ 1, s ∈ [ρn, ρn+1),

v̌s =


1 + v̌ρn−if ρn = τ̃n < σřn

v̌ρn− if ρn = σřn ≤ τ̃n

95



CHAPTER 3. PAPER 2: ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED
BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED

OBSTACLES

where v̌ρn− = lims↗ρn v̌s. Now the stopping times τ̄n, n ≥ 0, are defined as follows:

τ̄0 = 0 and for n ≥ 1, τ̄n = inf{s ≥ τ̄n−1, v̌s > v̌s−} ∧ T (3.29)

where v̌s− = limr↗s v̌r.

Next we are going to define the notion of optimal responce u∗(v) = (σ̄n)n≥0 of C1 to an
admissible control v = (τn)n≥0 of the second player C2. Indeed let (ρn, θn)n≥0 be the sequence
defined as follows: ρ0 = 0, θ0 = i and for n ≥ 1

ρ0 = 0, θ0 = i, and for n ≥ 1,

ρn = σ̃n ∧ τšn , θn =

{
1 + θn−1 if θn−1 ≤ p− 1
1 if θn−1 = p

(3.30)

where

σ̃n := σ
θn−1
ρn−1 := inf

{
s ≥ ρn−1, Yθn−1

s = Yθn
s − g

θn−1θn
(s)
}
∧ T (according to (3.20))

and šn is defined by š0 = 0, š1 = 1, for n ≥ 2,

šn = šn−1 + 1{σ̃n−1>τšn−1}
.

Next let ǔ be the piecewise process defined by: ǔs = 0 for s < ρ1 and for n ≥ 1, s ∈ [ρn, ρn+1),

ǔs =


1 + ǔρn−if ρn = σ̃n ≤ τšn

ǔρn− if ρn = τšn < σ̃n

where ǔρn− = lims↗ρn ǔs. Now the stopping times σ̄n, n ≥ 0, are defined as follows:

σ̄0 = 0 and for n ≥ 1, σ̄n = inf{s ≥ σ̄n−1, ǔs > šs−} ∧ T (3.31)

where ǔs− = limr↗s ǔr. We then have:

Proposition 3.3.5. Assume (H1), (H2), (H3) and (Zi)i∈Γ ∈ H2,d. Then for any u ∈ A and v ∈ B, we
have:
i) u∗(v) ∈ A, v∗(u) ∈ B;
ii)

Ji (θ(u, v∗(u))) ≤ Yi
0 ≤ Ji (θ(u∗(v), v)) . (3.32)
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Proof. i) In order to show u∗(v) ∈ A, when v = (τn)n≥0 ∈ B, we need to prove that u∗(v) =

(σ̄n)n≥0 is admissible and E
[
(Au∗(v)

T )2
]
< ∞.

Indeed if u∗(v) = (σ̄n)n≥0 is not admissible then there would exist a loop {j, j + 1, ..., p −
1, p, 1, ..., j− 1, j} which is visited infinitley many times, i.e.,

P[ω, ∃ a subsequence (n`)`≥0 such that Y j
σ̄n`

= Y j+1
σ̄n`
− g

j,j+1
(σ̄n`

, X0,x
σ̄n`

), . . . ,

Y j−1
σ̄n`+p−1

= Y j
σ̄n`+p−1

− g
j−1,j

(σ̄n`+p−1, X0,x
σ̄n`+p−1

), ∀` ≥ 0] > 0.

Next let us set η = lim`→∞ σ̄n`
. Take the limit in the previous equalities yield:

P[g
j,j+1

(η, X0,x
η ) + ... + g

p−1,p
(η, X0,x

η ) + g
p,1
(η, X0,x

η ) + ... + g
j−1,j

(η, X0,x
η ) = 0] > 0.

But this is contradictory with the non free loop property (3.16).

Next let us show that E
[
(Au∗(v)

T )2
]
< ∞. Proceeding similarly as in the proof of Proposition

3.3.4, in the interval [0, ρ1] we have

Yi
0 = hi(X0,x

T )1(ρ1=T) + Yρ11(ρ1<T) +
∫ ρ1

0
f i(r, X0,x

r )dr−
∫ ρ1

0
Zi

rdBr +
∫ ρ1

0
dKi,+

r −
∫ ρ1

0
dKi,−

r

(3.33)

Note that the minimizer C2’s control v = (τn)n≥0 is not necessarily optimal, then
∫ ρ1

0 dKi,−
r ≥ 0

and we know that for any s ∈ [0, T], Yi
s ≤ Yi+1

s + ḡi,i+1(s, X0,x
s ). On the other hand, since

ρ1 = σ̄1 ∧ τš1 then
∫ ρ1

0 dKi,+
r = 0. It follows that:

Yi
0 ≤ hi(X0,x

T )1(ρ1=T) + Yi
ρ1

1(ρ1<T) +
∫ ρ1

0
f i(r, X0,x

r )dr−
∫ ρ1

0
Zi

rdBr

≤ hi(X0,x
T )1(ρ1=T) + 1(ρ1<T)(Y

i
σ̄1

1{ρ1=σ̄1} + Yi
τš1

1{ρ1=τš1}
) +

∫ ρ1

0
f i(r, X0,x

r )dr−
∫ ρ1

0
Zi

rdBr

≤ hθ0(X0,x
T )1(ρ1=T) + Yθ1

ρ1
1(ρ1<T) −

[
g

θ0θ1
(ρ1, X0,x

ρ1
)1(ρ1=σ̄1<T) − ḡθ0θ1(ρ1, X0,x

ρ1
)1(ρ1=τš1<T)

]
+
∫ ρ1

0
f θ0(r, X0,x

r )dr−
∫ ρ1

0
Zθ0

r dBr (3.34)

Proceeding then iteratively for n = 1, 2, ..., N to obtain

Yi
0 ≤

N

∑
n=1

hθn−1(X0,x
T )1(ρn−1<T,ρn=T) + YθN

ρN
1(ρN<T) +

∫ ρN

0
f θ(u∗(v),v)r(r, X0,x

r )dr−
∫ ρN

0
Zθ(u∗(v),v)r

r dBr

−
N

∑
n=1

[
g

θn−1θn
(ρn, X0,x

ρn
)1(ρn=σ̄n<T) − ḡθn−1θn(ρn, X0,x

ρn
)1(ρn=τšn<T)

]
. (3.35)
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Then we have

Au∗(v)
ρN ≤

N

∑
n=1

hθn−1(X0,x
T )1(ρn−1<T,ρn=T) + YθN

ρN
1(ρN<T) +

∫ ρN

0
f θ(u∗(v),v)r(r, X0,x

r )dr

−
∫ ρN

0
Zθ(u∗(v),v)r

r dBr −Yi
0 + Bv

ρN
. (3.36)

Next as v ∈ B and since (Zi)i∈Γ ∈ H2,d, taking the squares of each hand-side of the previous
inequality to deduce that:

E[(Au∗(v)
ρN )2] ≤ C

for some real constant C. Finally to conclude it is enough to use Fatou’s Lemma since ρN → T
as N → ∞.

In the same way we show that v∗(u) belongs to B when u belongs to A.

iii) Let v ∈ B. Going back to (3.47), take expectation to obtain:

Yi
0 = E[Yi

0] ≤ E[
N

∑
n=1

hθn−1(X0,x
T )1(ρn−1<T,ρn=T)+Yθn

ρn
1(ρn<T)+

∫ ρN

0
f θ(u∗(v),v)r(r, X0,x

r )dr−Cθ(u∗(v),v)
N ]

As v ∈ B and u∗(v) ∈ A, then for any N ≥ 1, |Cθ(u∗(v),v)
N | ≤ Au∗(v)

T + Bv
T ∈ L2(dP). Take

now the limit w.r.t N in the right-hand side of the previous inequality and using dominated
convergence theorem to deduce that:

Yi
0 ≤ E[hθT(u∗(v),v)(X0,x

T ) +
∫ T

0
f θ(u∗(v),v)r(r, X0,x

r )dr− Cθ(u∗(v),v)
∞ ] = Ji(θ(u∗(v), v)), ∀v ∈ B.

The other inequality is shown in a similar fashion.

As a by-product we obtain the following result:

Theorem 3.3.6. Assume (H1), (H2), (H3) and (Zi)i∈Γ ∈ H2,d. Then for any i = 1, ..., m,

Yi
0 = sup

u∈A
inf
v∈B

Ji(θ(u, v)) = inf
v∈B

sup
u∈A

Ji(θ(u, v)).

Proof. By (3.32), we know that for any u ∈ A and v ∈ B,

Ji (θ(u, v∗(u))) ≤ Yi
0 ≤ Ji (θ(u∗(v), v)) .

Therefore
sup
u∈A

Ji (θ(u, v∗(u))) ≤ Yi
0 ≤ inf

v∈B
Ji (θ(u∗(v), v)) .
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As when u ∈ A (resp. v ∈ B), v∗(u) ∈ B (resp. u∗(v) ∈ A) then

inf
v∈B

sup
u∈A

Ji (θ(u, v))) ≤ sup
u∈A

Ji (θ(u, v∗(u))) ≤ Yi
0 ≤ inf

v∈B
Ji (θ(u∗(v), v)) ≤ sup

u∈A
inf
v∈B

Ji (θ(u, v)))

which implies the desired result since the right-hand side is smaller that the left-hand one.

Remark 3.3.7. Note that we have also the following equalities: For any i ∈ Γ,

Yi
0 = sup

u∈A
Ji (θ(u, v∗(u))) = inf

v∈B
Ji (θ(u∗(v), v))

= inf
v∈B

sup
u∈A

Ji (θ(u, v(u))) = sup
u∈A

inf
v∈B

Ji (θ(u(v), v)) .

Actually let us show the fourth equality. Let ũ(.) ∈ A. Then

inf
v∈B

Ji (θ(ũ(v), v)) ≤ inf
v∈B

sup
u∈A

Ji (θ(u, v)) = Yi
0 = inf

v∈B
Ji (θ(u∗(v), v))

which implies the fourth equality since u∗(.) ∈ A. The third one is proved similarly.

As mentioned before, the bottleneck for proving the existence of a value for the zero-sum
switching game over square integrable controls is the square integrability of (Zi)i∈Γ. The point
now is whether or not it is possible to characterize Yi as the value of the zero-sum switching
game without assuming the square integrability of (Zi)i∈Γ. At least at the cost of adding some
supplementary conditions on the data of the game. The answer is affirmative if we require
assumption (H4) on the switching costs. Finally note that this assumption (H4) is satisfied if
ḡi,i+1 and g

i,i+1
, i = 1, . . . , p, do not depend on x and are non decreasing w.r.t t (e.g. they are

constant).

We then have:

Theorem 3.3.8. Assume (H1), (H2) and (H3). Then for any i ∈ Γ,

Yi
0 = sup

u∈A
inf
v∈B

Ji(θ(u, v)) = inf
v∈B

sup
u∈A

Ji(θ(u, v)).

Proof. First recall the processes (Yi, Zi, Ki,±)i∈Γ that satisfy: For any i ∈ Γ and s ≤ T,

Yi ∈ S2; Ki,± ∈ Aloc and Zi ∈ H2,d
loc ;

Yi
s = hi(X0,x

T ) +
∫ T

s
f i(r, X0,x

r )dr−
∫ T

s
ZrdBr + Ki,+

T − Ki,+
s − (Ki,−

T − Ki,−
s );

Li(~Y)s ≤ Yi
s ≤ Ui(~Y)s;∫ T

0 (Yi
s − Li(~Y)s)dKi,+

s = 0 and
∫ T

0 (Yi
s −Ui(~Y)s)dKi,−

s = 0

(3.37)
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where for s ≤ T, Li(~Y)s := Yi+1
s − g

i,i+1
(s, X0,x

s ) and Ui(~Y)s := Yi+1
s + ḡi,i+1(s, X0,x

s ).

Next for any k ≥ 0, let us define the following stopping time:

γk := inf{s ≥ 0,
∫ s

0
{ ∑

i=1,m
|Zi

r|2}dr ≥ k} ∧ T. (3.38)

First note that the sequence (γk)k≥1 is increasing, of stationnary type and converges to T. Next
we have

∫ γk
0 |Z

i
r|2dr ≤ k, which means that the processes (Zi

s1{s≤γk})s≤T belong to H2,d. Let us
now define (Ȳi, Z̄i, K̄i,±)i∈Γ as follows: For all i ∈ Γ and s ≤ T,

Ȳi
s := Yi

s∧γk
, Z̄i

s = Zi
s1{s≤γk}, K̄i,+

s := Ki,+
s∧γk

and K̄i,−
s := Ki,−

s∧γk
. (3.39)

Thus the family
(
Ȳi, Z̄i, K̄i,+, K̄i,−)

i∈Γ is the solution of the following system: ∀i ∈ Γ,

i) Ȳi ∈ S2, Z̄i ∈ H2,d, K̄i,± ∈ Aloc;

ii) Ȳi
s = Yi

γk
+
∫ T

s
1(r≤γk) f i(r, X0,x

r )dr−
∫ T

s
Z̄i

rdBr + K̄i,+
T − K̄i,+

s − (K̄i,−
T − K̄i,−

s ), ∀s ≤ T;

iii) Ȳi+1
s − g

i,i+1
(s, X0,x

s ) ≤ Ȳi
s ≤ Ȳi+1

s + ḡi,i+1(s, X0,x
s ), ∀s ≤ T;

iv)
∫ T

0

(
Ȳi

s − Li(~̄Y)s

)
dK̄i,+

s = 0 and
∫ T

0

(
Ȳi

s −Ui(~̄Y)s

)
dK̄i,−

s = 0
(3.40)

where Ui(~̄Y) and Li(~̄Y) are defined as in (3.37). Let us amphazise that here we need the as-
sumption [H4] to show the inequalities in point iii) which actually hold true. Indeed for s ≤ γk,
the inequalities hold true by the definition of the processes

(
Ȳi, Z̄i, K̄i,+, K̄i,−)

i∈Γ and (3.37). If
s > γk, by (H4) we have,

Ȳi+1
s − g

i,i+1
(s, X0,x

s ) = Yi+1
γk
− g

i,i+1
(s, X0,x

s ) ≤ Yi+1
γk
− g

i,i+1
(γk, X0,x

γk
)

≤ Yi
γk

= Ȳi
s ≤ Yi+1

γk
+ ḡi,i+1(s, X0,x

s ) = Ȳi+1
s + ḡi,i+1(s, X0,x

s ).

On the other hand, by definition of K̄±,i and Ȳi, i ∈ Γ, we have∫ T
0

(
Ȳi

s − Li(~̄Y)s

)
dK̄i,+

s =
∫ γk

0 (Yi
s − Li(~Y)s)dKi,+

s = 0.

Similarly we have also
∫ T

0 (Ȳi
s −Ui(~̄Y)s)dK̄i,−

s = 0. Therefore the processes (Ȳi, Z̄i, K̄i,±)i∈Γ

verify (3.40).

Now using the result of Theorem 3.3.6, we obtain: For any i ∈ Γ,

Yi
0 = Ȳi

0 = sup
u∈A

inf
v∈B

Jk
i (θ(u, v)) = inf

v∈B
sup
u∈A

Jk
i (θ(u, v)).
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with
Jk
i (θ(u, v)) = E

[
Yθ(u,v)T

γk +
∫ T

0
1(r≤γk) f θ(u,v)r(r, X0,x

r )dr− Cθ(u,v)
∞

]
where θ(u, v) is the coupling of the pair (u, v) of controls and

Cθ(u,v)
∞ := lim

n→∞
Cu,v

N .

Next let
Y̆i

0 = sup
u∈A

inf
v∈B

Ji(θ(u, v)) and Ỹi
0 = inf

v∈B
sup
u∈A

Ji(θ(u, v)).

Therefore

|Y̆i
0 −Yi

0| =| sup
u∈A

inf
v∈B

Ji(θ(u, v))− sup
u∈A

inf
v∈B

Jk
i (θ(u, v))|

≤ sup
(u,v)∈A×B

E[|Yθ(u,v)T
γk − hθ(u,v)T (X0,x

T )|

+
∫ T

0
|1(r≤γk) f θ(u,v)r(r, X0,x

r )dr− f θ(u,v)r(r, X0,x
r )|dr]

≤ E[ ∑
i=1,m

|Yi
γk
− hi(X0,x

T )|+
∫ T

γk
∑

i=1,m
| f i(r, X0,x

r )|dr].

But the right-hand side converges to 0 as k→ ∞. Therefore

Y̆i
0 = Yi

0 = sup
u∈A

inf
v∈B

Ji(θ(u, v)).

In the same way we obtain also that

Ỹi
0 = Yi

0 = inf
v∈B

sup
u∈A

Ji(θ(u, v)).

It follows that
Yi

0 = sup
u∈A

inf
v∈B

Ji(θ(u, v)) = inf
v∈B

sup
u∈A

Ji(θ(u, v)).

Thus the zero-sum switching game has a value on square integrable controls which is equal to
Yi

0.

3.3.2 Value of the zerosum switching game on integrable admissible controls

In this part, we are not going to assume the square integrability of (Zi)i∈Γ neither (H4) and
show that the relation (3.12) holds true and this common value is equal to Yi

0, where (Yi, Zi, Ki,±)i∈Γ

is the solution of system (3.17). Actually we have the following result:
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Theorem 3.3.9. Assume (H1), (H2) and (H3). Then for any i ∈ Γ,

Yi
0 = inf

v∈B(1)
sup

u∈A(1)

Ji(θ(u, v)) = sup
u∈A(1)

inf
v∈B(1)

Ji(θ(u, v)). (3.41)

Proof. Let u = (σn)n≥0 and v = (τn)n≥0 be two admissible controls which belong to A(1) and
B(1) respectively. Next recall the optimal responses u∗(v) = (σ̄n)n≥0 and v∗(u) = (τ̄n)n≥0 de-
fined in (3.31) and (3.29) respectively. First note that, as shown in Proposition 3.3.5, the controls
u∗(v) and v∗(u) are admissible. Let us now show u∗(v) belongs to A(1). A similar procedure
will show that v∗(u) belongs to B(1).

Indeed for k ≥ 1, recall the stopping time γk defined in (3.38) and the sequences (ρn)n≥0

and (θn)n≥0 defined in (3.3.5). Next for k ≥ 1, let us define: ∀ n ≥ 0,

ρk
n = ρn1{ρn<γk} + T1{ρn≥γk} and θk

n = θn1{ρn<γk} + θnk 1{ρn≥γk}

where nk = inf{n ≥ 0, ρn ≥ γk} − 1. Note that ρk
n is a stopping time and {ρk

n < T} = {ρn <

γk}. The sequences (ρk
n)n≥0 and (θk

n)n≥0 constitute the fact that we freeze the actions of the
controllers when γk is reached. Next going back to the system of equations (3.17) satisfied by
the family

(
Yi, Zi, Ki,+, Ki,−)

i∈Γ and as in (3.45) we have:

Yi
0 = hi(X0,x

T )1(ρk
1=T) + Yi

ρk
1
1(ρk

1<T) +
∫ ρk

1

0
f i(r, X0,x

r )dr−
∫ ρk

1

0
Zi

rdBr +
∫ ρk

1

0
dKi,+

r︸ ︷︷ ︸
=0

−
∫ ρk

1

0
dKi,−

r

≤ hi(X0,x
T )1(ρk

1=T) + Yρk
1
1(ρk

1<T) +
∫ ρk

1

0
f i(r, X0,x

r )dr−
∫ ρk

1

0
Zi

rdBr (3.42)

But {ρk
1 < T} = {ρ1 < γk}. Therefore

Yi
ρk

1
1(ρk

1<T) = Yi
ρ1

1(ρ1<γk) = (Yi
σ̄1

1{ρ1=σ̄1} + Yi
τš1

1{ρ1=τš1}
)1(ρ1<γk)

and then

Yi
0 ≤ hi(X0,x

T )1(ρk
1=T) + (Yi

σ̄1
1{ρ1=σ̄1} + Yi

τš1
1{ρ1=τš1}

)1(ρ1<γk) +
∫ ρk

1

0
f i(r, X0,x

r )dr−
∫ ρk

1

0
Zi

rdBr

(3.43)

But for any s ∈ [0, T], Yi
s ≤ Yi+1

s + ḡi,i+1(s, X0,x
s ) and

Yi
σ̄1

1{ρ1=σ̄1}1(ρ1<γk) = (Yi+1
σ̄1
− g

i,i+1
(σ̄1, X0,x

σ̄1
))1{ρ1=σ̄1}1(ρ1<γk).
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Plug now this in (3.43) to obtain:

Yi
0 ≤ hi(X0,x

T )1(ρk
1=T) + (Yi+1

σ̄1
− g

i,i+1
(σ̄1, X0,x

σ̄1
))1{ρ1=σ̄1}1(ρ1<γk)

+ (Yi+1
τš1

+ ḡi,i+1(τš1 , X0,x
τš1
))1{ρ1=τš1}

1(ρ1<γk) +
∫ ρk

1

0
f θ0(r, X0,x

r )dr−
∫ ρk

1

0
Zθ0

r dBr. (3.44)

As
(Yi+1

σ̄1
1{ρ1=σ̄1} + Yi+1

τš1
1{ρ1=τš1}

)1(ρ1<γk) = Yθk
1

ρk
1
1(ρk

1<γk)

and

(−g
i,i+1

(σ̄1, X0,x
σ̄1
)1{ρ1=σ̄1} + ḡi,i+1(τš1 , X0,x

τš1
)1{ρ1=τš1}

)1(ρ1<γk)

= (−g
θ0,θk

1
(σ̄1, X0,x

σ̄1
)1{ρk

1=σ̄1} + ḡθ0,θk
1
(τš1 , X0,x

τš1
)1{ρk

1=τš1}
)1(ρk

1<γk)

then from (3.45), we obtain:

Yi
0 ≤ hθ0(X0,x

T )1(ρk
1=T) + Yθk

1
ρk

1
1(ρk

1<γk)
+ (−g

θ0,θk
1
(σ̄1, X0,x

σ̄1
)1{ρk

1=σ̄1} + ḡθ0,θk
1
(τš1 , X0,x

τš1
)1{ρk

1=τš1}
)1(ρk

1<γk)

+
∫ ρk

1

0
f θ0(r, X0,x

r )dr−
∫ ρk

1

0
Zθ0

r dBr. (3.45)

But we can do the same with Yθk
1

ρk
1
1(ρk

1<γk)
to obtain:

Yθk
1

ρk
1
1(ρk

1<γk)
≤ hθk

2(X0,x
T )1(ρk

1<γk ,ρk
2=T) + Yθk

2
ρk

2
1(ρk

2<γk)
+

(−g
θk

1,θk
2
(σ̄2, X0,x

σ̄2
)1{ρk

2=σ̄2} + ḡθk
1,θk

2
(τš2 , X0,x

τš2
)1{ρk

2=τš2}
)1(ρk

2<γk)

+
∫ ρk

2

ρk
1

f θk
2(r, X0,x

r )dr−
∫ ρk

2

ρk
1

Zθk
2

r dBr. (3.46)

Plug now (3.46) in (3.45) and repeat this procedure N times to obtain:

Yi
0 ≤

N

∑
n=1

hθk
n−1(X0,x

T )1(ρk
n−1<T,ρk

n=T) + Yθk
N

ρk
N

1(ρk
N<γk)

+
∫ ρk

N

0
f θ(u∗(v),v)r(r, X0,x

r )dr−
∫ ρk

N

0
Zθ(u∗(v),v)r

r dBr

−
N

∑
n=1

[
g

θk
n−1θk

n
(ρk

n, X0,x
ρk

n
)1(ρk

n=σ̄n<γk)
− ḡθk

n−1θk
n
(ρk

n, X0,x
ρk

n
)1(ρk

n=τšn<γk)

]
︸ ︷︷ ︸

Au∗(v)
ρk

N
−B̃v

ρk
N

(3.47)

where 0 ≤ B̃v
ρk

N
≤ Bv

ρk
N

, since C1 has priority when the two players decide to switch at the same

103



CHAPTER 3. PAPER 2: ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED
BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED

OBSTACLES

time. Then take expectation in both hand-sides to obtain:

E[Au∗(v)
ρk

N
] ≤−Yi

0 + E[
N

∑
n=1

hθk
n−1(X0,x

T )1(ρk
n−1<T,ρk

n=T) + Yθk
N

ρk
N

1(ρk
N<γk)

+
∫ ρk

N

0
f θ(u∗(v),v)r(r, X0,x

r )dr + Bv
ρk

N
].

(3.48)

As v ∈ B(1), then E[Bv
ρk

N
] ≤ E[Bv

T] and the right hand side of (3.47) is bounded. Then there exists
a constant C such that

E[Au∗(v)
ρk

N
] ≤ C + E[Bv

T].

Finally by using twice Fatou’s Lemma (w.r.t k then N) we deduce that E[Au∗(v)
T ] < ∞ which is

the claim.

iii) Let v ∈ B(1). Going back to (3.47), take expectation to obtain:

Yi
0 ≤ E{

N

∑
n=1

hθk
n−1(X0,x

T )1(ρk
n−1<T,ρk

n=T) + Yθk
N

ρk
N

1(ρk
N<γk)

+
∫ ρk

N

0
f θ(u∗(v),v)r(r, X0,x

r )dr

−
N

∑
n=1

[
g

θk
n−1θk

n
(ρk

n, X0,x
ρk

n
)1(ρk

n=σ̄n<γk)
− ḡθk

n−1θk
n
(ρk

n, X0,x
ρk

n
)1(ρk

n=τšn<γk)

]
}. (3.49)

By taking the limit w.r.t k then N we obtain that

Yi
0 ≤ Ji(u∗(v), v), ∀v ∈ B(1).

In the same way as previously, for any u ∈ A(1), v∗(u) belongs to B(1) and

Yi
0 ≥ Ji(u, v∗(u)).

It follows that for any u ∈ A(1) and v ∈ B(1),

Ji(u, v∗(u)) ≤ Yi
0 ≤ Ji(u∗(v), v).

Therefore
sup

u∈A(1)

Ji(u, v∗(u)) ≤ Yi
0 ≤ inf

v∈B(1)
Ji(u∗(v), v).

As u∗(v) (resp. v∗(u)) belongs to A(1) (resp. B(1)) when v ∈ B(1) (resp. u ∈ A(1)), then

inf
v∈B(1)

sup
u∈A(1)

Ji(u, v)︸ ︷︷ ︸
V+

≤ sup
u∈A(1)

Ji(u, v∗(u)) ≤ Yi
0 ≤ inf

v∈B(1)
Ji(u∗(v), v) ≤ sup

u∈A(1)

inf
v∈B(1)

Ji(u, v)︸ ︷︷ ︸
V−
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and the claim is proved since V+ ≥ V−.

Remark 3.3.10. a) As in Remark 3.3.7 we have also the following equalities: For any i ∈ Γ,

Yi
0 = inf

v∈B(1)
sup

u∈A(1)

Ji (θ(u, v(u))) = sup
u∈A(1)

inf
v∈B(1)

Ji (θ(u(v), v)) .

b) Let (Yi,t,x, Zi,t,x, Ki,±,t,x)i∈Γ be the measurable processes such that: For any i ∈ Γ,
i) Yi,t,x ∈ S2, Ki,±,t,x are continuous non decreasing and P-a.s.

∫ T
t |Z

i,t,x
s |2ds < ∞ ;

ii) ∀s ∈ [t, T],

Yi
s = hi(Xt,x

T ) +
∫ T

s f i(r, Xt,x
r )dr−

∫ T
s Zi,t,x

r dBr + Ki,+,t,x
T − Ki,+,t,x

s − (Ki,−,t,x
T − Ki,−,t,x

s );

Li
s((Yl)l∈Γ) ≤ Yi

s ≤ Ui
s((Yl)l∈Γ);

∫ T
t (Yi

s − Li
s((Yl)l∈Γ))dKi,+

s = 0 and
∫ T

0 (Yi
s −Ui

s((Yl)l∈Γ))dKi,−
s = 0.

(3.50)
These processes exist by Theorem 3.3.1. Then as previously one can show that for any (t, x) and s ∈
[t, T],

Yi,t,x
s = ess inf

v∈B(1)t

ess sup
u∈A(1)

t

Jt,x
i (θ(u, v))s = ess sup

u∈A(1)
t

ess inf
v∈B(1)i

Jt,x
i (θ(u, v))s

where

Jt,x
i (θ(u, v))s := E{hθ(u,v)T (Xt,x

T ) +
∫ T

t f θ(u,v)r(r, Xt,x
r )dr− Cθ(u,v)

∞ |Fs}

and A(1)
t (resp. B(1)

t ) is the set of admissible integrable controls which start from i at t.

3.4 System of PDEs of min-max type with interconnected obstacles

We are going now to deal with the problem of existence and uniqueness of a solution in vis-
cosity sense for the following system of PDEs of min-max type with interconnected obstacles:


min{vi(t, x)− Li(~v)(t, x); max

[
vi(t, x)−Ui(~v)(t, x);

−∂tvi(t, x)−LX(vi)(t, x)− f i(t, x, (vl(t, x))l∈Γ, σ(t, x)>Dxvi(t, x)
]
} = 0;

vi(T, x) = hi(x)

(3.51)

where for any i ∈ Γ, Li(~v)(t, x) := vi+1(t, x) − g
i,i+1

(t, x) and Ui(~v)(t, x) := vi+1(t, x) +

gi,i+1(t, x). Note that f i is more general w.r.t. the HJB system of (3.3) since it depends also on ~y
and zi.

The result is given in Theorem 3.4.3 but its proof, based on Perron’s method, is postponed to
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Appendix. Nonetheless in this section we will introduce some notions which we need also in
Section 5 when we deal with system of RBSDEs (3.1) or more generally (3.5.2).

For any locally bounded deterministic function u : [0, T]×Rk → R, we denote by u∗ (resp. u∗)
the lower semi-continuous (lsc) (resp. upper semi-continuous (usc)) envelope of u as follows:
∀(t, x) ∈ [0, T]×Rk,

u∗(t, x) = lim inf
(t′,x′) 7→(t,x),t′<T

u(t′, x′) and u∗(t, x) = lim sup
(t′,x′) 7→(t,x),t′<T

u(t′, x′).

Next for an lsc (resp. usc) function u we denote by J̄−u(t, x) (resp. J̄+u(t, x)), the parabolic
limiting subjet (resp. superjet) of u at (t, x) (see e.g. [13] for the definition and more details).

Definition 3.4.1. : Viscosity solution to (3.51)

Let ~v := (vi)i∈Γ be a p-tuple of R-valued, locally bounded functions defined on [0, T]×Rk.

A) We say that ~v is a viscosity supersolution (resp. subsolution) of (3.51) if for any i ∈ Γ:
(i) vi

∗(T, x) ≥ hi(x) (resp. vi∗(T, x) ≤ hi(x)), for any x ∈ Rk ;
(ii) For any (t, x) ∈ [0, T)×Rk and for any (p, q, M) ∈ J̄−vi

∗(t, x) (resp. J̄+vi∗(t, x)), we have:

min{vi
∗(t, x)− Li(~v∗)(t, x),

max{−p− b(t, x).q− 1
2

Tr[(σσ>)(t, x)M]− f i(t, x, ~v∗(t, x), σ>(t, x)q);

vi
∗(t, x)−Ui(~v∗)(t, x)}} ≥ 0

(3.52)

where ~v∗ = (vi
∗)i∈Γ (resp.

min{vi∗(t, x)− Li(~v∗)(t, x),

max{−p− b(t, x).q− 1
2

Tr[(σσ>)(t, x)M]− f i(t, x, ~v∗(t, x), σ>(t, x)q);

vi∗(t, x)−Ui(~v∗)(t, x)}} ≤ 0

(3.53)

where ~v∗ = (vi∗)i∈Γ).

B) A locally bounded function ~v = (vi)i∈Γ is called a viscosity solution of (3.51) if (vi
∗)i∈Γ and (vi∗)i∈Γ

are viscosity supersolution and viscosity subsolution of (3.51) respectively.

Next (t, x) be fixed and let us consider the following sequence of BSDEs: ∀m, n ∈N, ∀i ∈ Γ,


Yi,m,n ∈ S2, Zi,m,n ∈ H2,d;
Yi,m,n

s = hi(Xt,x
T ) +

∫ T
s f i,m,n(r, Xt,x

r , (Yl,m,n
r )l∈Γ, Zi,m,n

r )dr−
∫ T

s Zi,m,n
r dBr, s ≤ T;

Yi,m,n
T = hi(Xt,x

T )

(3.54)
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where

f i,m,n(s, Xt,x
s ,~y, z) = f i(s, Xt,x

s ,~y, z)+n
{

yi − [yi+1 − g
i,i+1

(s, Xt,x
s )]

}−
−m

{
yi − [yi+1 + gi,i+1(s, Xt,x

s )]
}+

.

As (3.54) is a classical BSDE without obstacle, thanks to the results by Pardoux-Peng [24], the
solution exists and is unique. In addition there exist deterministic functions (vi,m,n)i∈Γ (see The-
orem 4.1. in [24]) such that:

∀s ∈ [t, T], Yi,m,n
s = vi,m,n(s, Xt,x

s ). (3.55)

On the other hand, we have the following properties which we collect in the following propo-
sition.

Proposition 3.4.2 (see [34],[18]). Assume that (H2), (H3) and (H5) are fulfilled. Then we have:

a) P− a.s., ∀s ≤ T, Yi,m+1,n
s ≤ Yi,m,n

s ≤ Yi,m,n+1
s , ∀i ∈ Γ, n, m ≥ 0, which also implies the same

property for (vi,m,n)i∈Γ, i.e. for any (t, x) ∈ [0, T]×Rk, i ∈ Γ,

vi,m+1,n(t, x) ≤ vi,m,n(t, x) ≤ vi,m,n+1(t, x). (3.56)

b) The sequence ((Yi,m,n)i∈Γ)n≥0) (resp. ((Yi,m,n)i∈Γ)m≥0) converges in (S2)p to (Ȳi,m)i∈Γ (resp. (Yi,n)i∈Γ)
which verifies the following system of reflected RBSDEs:

Yi,m ∈ S2, Zi,m ∈ H2, Ki,m,+ ∈ A2;

Yi,m
s = hi(Xt,x

T ) +
∫ T

s f
i,m

(r, Xt,x
r , (Yl,m

r )l∈Γ, Zi,m
r )dr−

∫ T
s Zi,m

r dBr + Ki,m,+
T − Ki,m,+

s , s ≤ T;

Yi,m
s ≥ Li((Ȳl,m

s )ł∈Γ), s ≤ T;∫ T
0 (Yi,m

s − Li((Ȳl,m
s )ł∈Γ))dKi,m,+

s = 0
(3.57)

where
f

i,m
(s, Xt,x

s ,~y, zi) = f i(s, Xt,x
s ,~y, zi)−m(yi − [yi+1 + gi,i+1(s, Xt,x

s )])+.

(resp.
Yi,n ∈ S2, Zi,n ∈ H2, Ki,n,− ∈ A2;
Yi,n

s = hi(Xt,x
T ) +

∫ T
s f i,n(r, Xt,x

r , (Yl,n
r )l∈Γ, Zi,n

r )dr−
∫ T

s Zi,n
r dBr + Ki,n,−

T − Ki,n,−
s , s ≤ T;

Yi,n
s ≤ Ui((Yl,m

s )l∈Γ), s ≤ T;∫ T
0 (Yi,m

s −Ui((Yl,m
s )l∈Γ))dKi,n,−

s = 0
(3.58)

where
f i,n(s, Xt,x

s ,~y, zi) = f i(s, Xt,x
s ,~y, zi) + n(yi − [yi+1 − g

i,i+1
(s, Xt,x

s )])+.
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c) There exist deterministic continuous functions (vi,m)i∈Γ (resp. (vi,n)i∈Γ) such that for any (t, x) ∈
[0, T]×Rk, s ∈ [t, T],

Yi,m
s = vi,m(s, Xt,x

s ) (3.59)

(resp.
Yi,n

s = vi,n(s, Xt,x
s )) (3.60)

In addition the sequence ((vi,m)m≥0)i∈Γ(resp.((vi,n)n≥0)i∈Γ) are decreasing w.r.t. m (resp. increasing
w.r.t. n).

d) (vi,m)i∈Γ (resp. (vi,n)) belong to class Πg and is the unique viscosity solution of following system
of variational inequalities with a reflected obstacle:

min{vi,m(t, x)− Li((v̄l,m)l∈Γ)(t, x);
−∂xvi,m(t, x)−LX(vi,m)(t, x)− f i,m(t, x, (vl,m(t, x))l∈Γ, σ(t, x)>Dxvi,m(t, x))} = 0

vi,m(T, x) = hi(x).

(3.61)

(resp.
max{vi,n(t, x)−Ui((vl,m)l∈Γ)(t, x);
−∂xvi,n(t, x)−LX(vi,n)(t, x)− f i,n(t, x, (vl,n(t, x))l∈Γ, σ(t, x)>Dxvi,n(t, x))} = 0

vi,n(T, x) = hi(x)).

(3.62)

Proof. This proof can be found in [34] and [18] so we omit it.

Next for any i ∈ Γ and (t, x) ∈ [0, T]×Rk, we denote by

vi(t, x) := lim
m→∞

v̄i,m(t, x) and vi(t, x) := lim
n→∞

vi,n.

Then from (3.56) we deduce that for any (t, x) ∈ [0, T]×Rk

vi(t, x) ≤ vi(t, x).

Note that since for any i ∈ Γ,
vi,0 ≤ vi ≤ v̄i ≤ v̄i,0

then vi and v̄i belong to Πg. Additionnaly we have:
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Theorem 3.4.3. Assume (H2),(H3) and (H5). Then the p-tuple of functions (vi)i∈Γ are continuous, of
polynomial growth and unique viscosity solution, in the class Πg, of the following systems: ∀i ∈ Γ and
(t, x) ∈ [0, T]×Rk,

min{vi(t, x)− Li(~v)(t, x); max
[
vi(t, x)−Ui(~v)(t, x);

−∂tvi(t, x)−LX(vi)(t, x)− f i(t, x, (vl(t, x))l∈Γ, σ(t, x)>Dxvi(t, x)
]
} = 0;

vi(T, x) = hi(x).

(3.63)

Proof. It is rather long and then postponed to Appendix.

As a consequence we have the following result for the increasing scheme:

Corollary 3.4.4. The p-tuple of functions (vi)i∈Γ is also continuous and the unique viscosity solution,
in the class Πg, of the following system of max-min type: ∀i ∈ Γ and (t, x) ∈ [0, T]×Rk,

max{vi(t, x)−Ui(~v)(t, x); min
[
vi(t, x)− Li(~v)(t, x);

−∂tvi(t, x)−LX(vi)(t, x)− f i(t, x, (vl(t, x))l∈Γ, σ(t, x)>Dxvi(t, x)
]
} = 0;

vi(T, x) = hi(x).

(3.64)

To obtain the proof of this result it is enough to consider (−vi)i∈Γ which becomes a decreas-
ing scheme associated with ((− f i(t, x,−~y,−z))i∈Γ, (−hi)i∈Γ, (ḡi)i∈Γ, (g

i
)i∈Γ), to use the previ-

ous theorem and finally a result by G.Barles ([1], pp.18).

3.5 Systems of Reflected BSDEs with bilateral interconnected barri-
ers

First recall the system of RBSDEs (Ȳi,m,t,x, Z̄i,m,t,x, K̄i,m,+,t,x) in Proposition 3.4.2-b)-c) and the
representation (3.59). As the sequence ((v̄i,m)≥0)i∈Γ converges pointwise decreasingly to the
continuous functions (vi)i∈Γ. Then, by Dini’s theorem, this convergence is uniform on compact
sets of [0, T]×Rk. Next, the uniform polynomial growths of (vi)i∈Γ and ((v̄i,m)≥0)i∈Γ combined
with estimate (3.8) of Xt,x imply that for any i ∈ Γ,

E( sup
s∈[t,T]

|Ȳi,m,t,x
s −Yi,t,x

s |2)→m→∞ 0 (3.65)

where we set: For any s ≤ T and i ∈ Γ,

Yi,t,x
s = vi(s ∨ t, Xt,x

s∨t). (3.66)
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Proposition 3.5.1. For any (t, x) ∈ [0, T]×Rk, s ∈ [t, T], i ∈ Γ,

Yi
s ≤ Ui((Yl

s)l∈Γ) := Yi+1
s + gi,i+1(s, Xt,x

s ). (3.67)

Proof. According to (3.66), it is enough to show the following inequality: for any i ∈ Γ, (t, x) ∈
[0, T]×Rk,

vi(t, x) ≤ vi+1(t, x) + ḡi,i+1(t, x). (3.68)

Indeed, we assume by contradiction that there exists some (t0, x0) ∈ [0, T)×Rk and a strictly
positive ε > 0 such that

vi(t0, x0)− vi+1(t0, x0)− ḡi,i+1(t0, x0) ≥ ε > 0. (3.69)

By the uniform convergence of (v̄i,m)i∈Γ to the functions (vi)i∈Γ on compact subsets, we can
find some ρ > 0 and a ball defined by

B((t0, x0), ρ) := {(t, x) ∈ [0, T]×Rk, s.t. |t− t0| ≤ ρ and |x− x0| ≤ ρ}

and some m0 large enough such that for any m ≥ m0,

v̄i,m(t, x)− v̄i+1,m(t, x)− ḡi,i+1(t, x) ≥ ε

8
> 0, ∀(t, x) ∈ B((t0, x0), ρ). (3.70)

Next let us introduce the following stopping time

τt0,x0 ;= inf{s ≥ t0, Xt,x
s 6∈ B((t0, x0), ρ)} ∧ (t0 + ρ)

Notice that for any s ∈ [t0, τt0,x0 ],

Ȳi,m,t0,x0
s = v̄i,m(s, Xt0,x0

s )

> v̄i+1,m(s, Xt0,x0
s ) + ḡi,i+1(s, Xt0,x0

s )

> v̄i+1,m(s, Xt0,x0
s )− g

i,i+1
(s, Xt0,x0

s )

= Ȳi+1,m,t0,x0
s − g

i,i+1
(s, Xt0,x0

s )

As a result for s ∈ [t0, τt0,x0 ], dK̄i,m,+,t0,x0
s = 0 and then from (3.57) we deduce that: ∀ s ∈ [t0, τt0,x0 ],

Yi,m,t0,x0
s =Ȳi,m,t0,x0

τt0,x0
+
∫ τt0,x0

s
{ f i,m(r, Xt0,x0

r , (Yl,m,t0,x0
r )l∈Γ, Zi,m,t0,x0

r ) (3.71)

−m(Yi,m,t0,x0
r − [Yi+1,m,t0,x0

r + gi,i+1(r, Xt0,x0
r )])+}dr−

∫ τt0,x0

s
Zi,m,t0,x0

r dBr.

Next as in [23], since gi,i+1, v̄i,m and v̄i+1,m are of polynomial growth (uniformly for these latter)
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and by using (3.8) we deduce that:

m2E[{
∫ τt0,x0

t0

(Ȳi,m,t0,x0
s − Ȳi+1,m,t0,x0

s − ḡi,i+1(s, Xt0,x0
s ))+ds}2]

≤ CE[ sup
s∈[t0,τt0,x0 ],i∈Γ

|Ȳi,m,t0,x0
s |2] + CE[{

∫ τt0,x0

t0

f i(s, Xt0,x0
s , 0, 0)ds}2].

(3.72)

for some cosntant C which is independant of m. Therefore using (3.70) we have

m2 ε2

64
P[t0 < τt0,x0 ] ≤ CE[ sup

s∈[t0,τt0,x0 ],i∈Γ
|Ȳi,m,t0,x0

s |2] + CE[{
∫ τt0,x0

t0

f i(s, Xt,x
s , 0, 0)ds}2]. (3.73)

which implies, in sending m to +∞, P[t0 < τt0,x0 ] = 0, i.e. P[t0 = τt0,x0 ] = 1. But this is
contradictory since ρ > 0 and then (t0, x0) satisfying (3.69) does not exists. The proof of the
claim is complete.

We now give the main result of this section.

Theorem 3.5.2. Assume that the assumptions (H2),(H3) and (H5) are fulfilled and for any i ∈ Γ, f i

does not depend on zi. Then for any (t, x) ∈ [0, T]×Rk, there exist adapted processes Ki,±,t,x and Zi,t,x

valued respectively in R+ and Rd such that, in combination with Yi,t,x, verify: For any i ∈ Γ,

i) Ki,±,t,x are continuous, non decreasing and Ki,±,t,x
t = 0 ; P-a.s. Ki,±,t,x

T < ∞ and
∫ T

t |Z
i,t,x
s |2ds <

∞ ;

ii) ∀s ∈ [t, T],

Yi,t,x
s = hi(Xt,x

T ) +
∫ T

s f i(r, Xt,x
r , (Yl,t,x

r )l∈Γ)dr−
∫ T

s Zi,t,x
r dBr

+Ki,+,t,x
T − Ki,+,t,x

s − (Ki,−,t,x
T − Ki,−,t,x

s );

Li
s((Yl,t,x)l∈Γ) ≤ Yi,t,x

s ≤ Ui
s((Yl,t,x)l∈Γ);

∫ T
t (Yi,t,x

s − Li
s((Yl,t,x)l∈Γ))dKi,+,t,x

s = 0 and
∫ T

0 (Yi,t,x
s −Ui

s((Yl,t,x)l∈Γ))dKi,−,i,t,x
s = 0

(3.74)

where for s ∈ t ≤ T, Li
s((Yl,t,x)l∈Γ) := Yi+1,t,x

s − g
i,i+1

(s, Xt,x
s ) and Ui

s((Yl,t,x)l∈Γ) := Yi+1,t,x
s +

ḡi,i+1(s, Xt,x
s ).

Moreover if there exists another quadruple (Ȳi,t,x, Z̄i,t,x, K̄i,±,t,x) which satisfies (i)-(ii), then for any
s ∈ [t, T] and i ∈ Γ, Ȳi,t,x

s = Yi,t,x
s , K̄i,±,t,x

s = Ki,±,t,x
s and Z̄i,t,x = Zi,t,x

s , ds⊗ dP on [t, T]×Ω.

Proof. Existence
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For any i ∈ Γ and m ≥ 0, the processes Ȳi,m,t,x have the following representation (see e.g. A4 in
[18] for more details): For any s ∈ [t, T],

Ȳi,m,t,x
s = ess sup

σ≥s
ess inf

τ≥s
E[hi(Xt,x

T )1(σ=τ=T) +
∫ σ∧τ

s
f i(r, Xt,x

r , (Ȳl,m,t,x
r )l∈Γ)dr

+ Li
σ((Ȳ

l,m,t,x)l∈Γ)1(σ<τ) + {Ui
τ((Ȳ

l,m)l∈Γ) ∨ Ȳi,m,t,x
τ }1(τ≤σ,τ<T)|Fs].

(3.75)

Now the convergence of (Ȳi,m,t,x)m to Yi,,t,x in S2([t, T]) (by (3.65)) and the inequalities (3.67)
imply that, in taking the limits in both hand-sides of (3.75): ∀s ∈ [t, T],

Yi,t,x
s = ess sup

σ≥s
ess inf

τ≥s
E[hi(Xt,x

T )1(σ=τ=T) +
∫ σ∧τ

s
f i(r, Xt,x

r , (Yl,t,x
r )l∈Γ)dr

+ Li
σ((Y

l,t,x)l∈Γ)1(σ<τ) + Ui
τ((Y

l,t,x)l∈Γ)1(τ≤σ,τ<T)|Fs].
(3.76)

Next the third inequality in (3.57) and (3.67) imply that: For any s ∈ [t, T] and i ∈ Γ,

Ui
s((Y

l)l∈Γ) ≥ Yi
s ≥ Li

s((Y
l)l∈Γ).

On the other hand by Assumption (H3)-a),

Ui
s((Y

l,t,x)l∈Γ)− Li
s((Y

l,t,x)l∈Γ) = ḡi,i+1(s, Xt,x
s ) + g

i,i+1
(s, Xt,x

s ) > 0

which means that the obstacles Ui((Yl,t,x)l∈Γ) and Li((Yl,t,x)l∈Γ), for any i ∈ Γ, are completely
separated. Therefore by Theorem 3.7 in [27], there exist progressively measurable processes
Yi,t,x, Ki,±,t,x and Zi,t,x valued respectively in R, R+ and Rd such that:
i) Yi,t,x ∈ S2([t, T]), Ki,±,t,x are continuous non decreasing and Ki,±,t,x

t = 0 ; P-a.s.
∫ T

t |Z
i,t,x
s |2ds <

∞ ;
ii) The processes (Yi,t,x, Ki,±,t,x, Zi,t,x) verify: ∀s ∈ [t, T],

Yi,t,x
s = hi(Xt,x

T ) +
∫ T

s f i(r, Xt,x
r , (Yl,t,x

r )l∈Γ)dr−
∫ T

s Zi,t,x
r dBr

+Ki,+,t,x
T − Ki,+,t,x

s − (Ki,−,t,x
T − Ki,−,t,x

s );

Li
s((Yl,t,x)l∈Γ) ≤ Yi,t,x

s ≤ Ui
s((Yl,t,x)l∈Γ);

∫ T
t (Yi,t,x

s − Li
s((Yl,t,x)l∈Γ))dKi,+,t,x

s = 0 and
∫ T

0 (Yi,t,x
s −Ui

s((Yl,t,x)l∈Γ))dKi,−,t,x
s = 0.

(3.77)
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Moreover Yi,t,x has the following representation: ∀s ∈ [t, T],

Yi,t,x
s = ess sup

σ≥s
ess inf

τ≥s
E[hi(Xt,x

T )1(σ=τ=T) +
∫ σ∧τ

s
f i(r, Xt,x

r , (Yl
r )l∈Γ)dr

+ Li
σ((Y

l,t,x)l∈Γ)1(σ<τ) + Ui
τ((Y

l,t,x)l∈Γ)1(τ≤σ,τ<T)|Fs].
(3.78)

Thus for any s ∈ [t, T], Yi,t,x = Yi,t,x and by (3.77), (Yi,tx, Ki,±,t,x, Zi,t,x) verify (3.74). Finally as
i is arbitrary then (Yi,t,x, Ki,±,t,x, Zi,t,x)i∈Γ is a solution for the system of reflected BSDEs with
double obstacles (3.74). The proof of existence is then stated. It remains to show uniqueness.

Uniqueness: In this part we apply the fixed point argument over the value of the stochastic game
representation (Theorem 3.3.9), and the proof is similar to [35]. In the following proof, the de-
fined processes (Yφ,i, Zφ,i, Kφ,i,±)i∈Γ and (Yψ,i, Zψ,i, Kψ,i,±)i∈Γ depend on (t, x), but for simplicity
of notations we omit it as there is no confusion.

Firstly let us define the following operator:

Φ : H2,p → H2,p

~φ := (φi)i∈Γ 7→ Φ(~φ) := (Yφ,i)i∈Γ

where (Yφ,i, Zφ,i, Kφ,i,±)i∈Γ is the unique solution of

Yφ,i ∈ S2([t, T]), P− a.s.
∫ T

t |Z
φ,i
s |2ds < ∞ and Kφ,i,+

T + Kφ,i,−
T < ∞ (Kφ,i,+

t + Kφ,i,−
t = 0);

Yφ,i
s = hi(Xt,x

T ) +
∫ T

s
f i(r, Xt,x

r ,~φ(r))dr−
∫ T

s
Zφ,i

r dBr + Kφ,i,+
T − Kφ,i,+

s − (Kφ,i,−
T − Kφ,i,−

s ), t ≤ s ≤ T;

Li
s((Yφ,l)l∈Γ) ≤ Yφ,i

s ≤ Ui
s((Yφ,l)l∈Γ), s ∈ [t, T];∫ T

t

(
Yφ,i

s − Li
s((Y

φ,l)l∈Γ)
)

dKφ,i,+
s = 0 and

∫ T

t

(
Yφ,i

s −Ui
s((Y

φ,l)l∈Γ)
)

dKφ,i,−
s = 0.

(3.79)

In the similar way we define another element ofH2,p by ~ψ := (ψi)i∈Γ and let (Yψ,i
s , Zψ,i

s , Kψ,i,±
s )s∈[t,T]

be a solution of (3.79) where its driver is replaced with f i(t, x, ~ψ(t)), ∀i ∈ Γ.

Next we set the following norm, denoted by ‖.‖2,β onH2,p:

‖y‖2,β := (E[
∫ T

t
eβs|ys|2ds])1/2.

The following calculus is dedicated to prove that Φ is a contraction on (H2,p, ‖.‖2,β) where the
appropriate value of β is determined in the following.

Let us recall Theorem 3.3.9 and Remark 3.3.10, for any (t, x) ∈ [0, T]×Rk and t ≤ s ≤ T,
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the following representation holds true:

Yφ,i
s = ess inf

v∈B(1)s

ess sup
u∈A(1)

s

Jφ
i (Θ(u, v))s = ess sup

u∈A(1)
s

ess inf
v∈B(1)s

Jφ
i (Θ(u, v))s. (3.80)

where Jφ
i (Θ(u, v))s = E

[
hθ(u,v)T (Xt,x

T ) +
∫ T

s
f θ(u,v)r(r, Xt,x

r ,~φ(r))− Cθ(u,v)
∞

∣∣∣∣Fs

]
.

In the same way Yψ,i has also the stochastic game representation by replacing φ to ψ.
Now we study the difference of |Yφ,i −Yψ,i|. Indeed, ∀i ∈ Γ, t ∈ [0, T], t ≤ s ≤ T,

|Yφ,i
s −Yψ,i

s | ≤ ess sup
u∈A(1)

s

ess sup
v∈B(1)s

|Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s| (3.81)

Thanks to the martingale representation theorem, there exists an (Fs)s≤T−adapted process
∆φ,ψ,θ(u,v) ∈ H2,d such that

Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s = E

[∫ T

s
f θ(u,v)r(r, Xt,x

r ,~φ(r))− f θ(u,v)r(r, Xt,x
r , ~ψ(r))dr

∣∣∣∣Fs

]
= E

[∫ T

0
f θ(u,v)r(r, Xt,x

r ,~φ(r))− f θ(u,v)r(r, Xt,x
r , ~ψ(r))dr

∣∣∣∣Fs

]
−
∫ s

0
f θ(u,v)r(r, Xt,x

r ,~φ(r))− f θ(u,v)r(r, Xt,x
r , ~ψ(r))dr

= E

[∫ T

0
f θ(u,v)r(r, Xt,x

r ,~φ(r))− f θ(u,v)r(r, Xt,x
r , ~ψ(r))dr

]
+
∫ s

0
∆φ,ψ,θ(u,v)

r dBr

−
∫ s

0
f θ(u,v)r(r, Xt,x

r ,~φ(r))− f θ(u,v)r(r, Xt,x
r , ~ψ(r))dr

Therefore we obtain the following differential form for the difference of the two value functions:

d(Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s) =
[

f θ(u,v)s(s, Xt,x
s ,~φ(s))− f θ(u,v)s(s, Xt,x

s , ~ψ(s))
]

ds + ∆φ,ψ,θ(u,v)
s dBs

Next for any s ∈ [t, T], we apply Itô’s formula on eβs
(

Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s

)2
yielding

d
[

eβs
(

Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s

)2
]
= βeβs

[
Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s

]2

+ 2eβs
(

Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s

) [
−
(

f θ(u,v)s(s, Xt,x
s ,~φ(s))− f θ(u,v)s(s, Xt,x

s , ~ψ(s))
)

∆φ,ψ,θ(u,v)
s dBs

]
+ eβs

(
∆φ,ψ,θ(u,v)

s

)2
ds (3.82)

By integrating (3.82) over [s, T] we obtain

eβs
(

Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s

)2
+
∫ T

s
eβr
(

∆φ,ψ,θ(u,v)
r

)2
dr
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= −β
∫ T

s
eβr
(

Jφ
i (Θ(u, v))r − Jψ

i (Θ(u, v))r

)2
dr

+ 2
∫ T

s
eβr
(

Jφ
i (Θ(u, v))r − Jψ

i (Θ(u, v))r

) (
f θ(u,v)r(r, Xt,x

r ,~φ(r))− f θ(u,v)r(r, Xt,x
r , ~ψ(r))

)
dr

− 2
∫ T

s

(
Jφ
i (Θ(u, v))r − Jψ

i (Θ(u, v))r

)
∆φ,ψ,θ(u,v)

r dBr (3.83)

By applying the inequality 2ab ≤ βa2 +
b2

β
, (3.83) yields

eβs
(

Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s

)2
+
∫ T

s
eβr
(

∆φ,ψ,θ(u,v)
r

)2
dr

≤ 1
β

∫ T

s
eβs
(

f θ(u,v)r(r, Xt,x
r ,~φ(r))− f θ(u,v)r(r, Xt,x

r , ~ψ(r))
)2

dr

− 2
∫ T

s

(
Jφ
i (Θ(u, v))r − Jψ

i (Θ(u, v))r

)
∆φ,ψ,θ(u,v)

r dBr

By the Lipschitz condition on the driver f θ(u,v), and using the fact that
∫ T

s
eβr
(

∆φ,ψ,θ(u,v)
r

)2
dr ≥

0, we then obtain

eβs
(

Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s

)2

≤ C2

β

∫ T

s
|~φ(r)− ~ψ(r)|2dr− 2

∫ T

s

(
Jφ
i (Θ(u, v))r − Jψ

i (Θ(u, v))r

)
∆φ,ψ,θ(u,v)

r dBr (3.84)

where C = ∑i∈Γ Ci with Ci the Lipschitz constant w.r.t. f i, ∀i ∈ Γ. On the other hand since

(2
∫ u

s

(
Jφ
i (Θ(u, v))r − Jψ

i (Θ(u, v))r

)
∆φ,ψ,θ(u,v)

r dBr)u∈[s,T] is a martingale, then taking the condi-

tional expectation w.r.t. Fs on both sides of (3.84) we have

eβs
(

Jφ
i (Θ(u, v))s − Jψ

i (Θ(u, v))s

)2
≤ C2

β
E

[∫ T

s
|~φ(r)− ~ψ(r)|2dr|Fs

]
(3.85)

Let us recall (3.81), then by taking the expectation on both sides of (3.85) we obtain: ∀ s ∈ [t, T],

E

[
eβs
(

Yφ,i
s −Yψ,i

s

)2
]
≤ C2

β
E

[∫ T

t
|~φ(r)− ~ψ(r)|2dr

]
(3.86)

The last step is integrating (3.86) over s ∈ [t, T] and then summing over all i ∈ Γ to obtain:

E

[∫ T

t
∑
i∈Γ

eβs
(

Yφ,i
s −Yψ,i

s

)2
ds

]
≤ C2TP

β
E

[∫ T

t
|~φ(r)− ~ψ(r)|2dr

]
(3.87)

Obviously it is enough to take β > C2TP (for example we can let β := 4C2TP) then the operator
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Φ is a contraction onH2,p to itself. As a consequence, there exists a fixed point which is nothing
but the unique solution of (3.74).

Next we suppose that there exists another solution (Ŷi, Ẑi, K̂i,±)i∈Γ of (3.74), i.e.

Ŷi
s = hi(Xt,x

T ) +
∫ T

s f i(r, Xt,x
r , (Ŷl

r )l∈Γ)dr−
∫ T

s Ẑi,t,x
r dBr

+K̂i,+,t,x
T − K̂i,+,t,x

s − (K̂i,−,t,x
T − K̂i,−,t,x

s ), s ∈ [t, T];

Li
s((Ŷl)l∈Γ) ≤ Yi

s ≤ Ui
s((Ŷl)l∈Γ), s ∈ [t, T];

∫ T
t (Ŷi

s − Li
s((Ŷl)l∈Γ))dK̂i,+

s = 0 and
∫ T

t (Ŷi
s −Ui

s((Ŷl)l∈Γ))dK̂i,−
s = 0

(3.88)

Thanks to the fixed point result (3.87) we have immediately Yi = Ŷi, ∀i ∈ Γ. By applying the
equivalence of Yi and Ŷi, we also have Zi = Ẑi since from the representation of (3.74) and
(3.88), their martingale parts should be equal, i.e. for any i ∈ Γ, s ∈ [t, T],

∫ T
s Zi

sdBs =
∫ T

s Ẑi
sdBs.

Moreover by (3.74) and (3.88) we have ∀s ∈ [t, T], i ∈ Γ, Ki,+
s − Ki,−

s = K̂i,+
s − K̂i,−

s . It remains us
now to prove the equivalence of the barriers processes.

For any s ∈ [t, T], i ∈ Γ we have∫ s

t

(
Yi

r − Li
r((Yl)l∈Γ)

)
(dKi,+

r − dKi,−
r ) =

∫ s

t

(
Yi

r − Li
r((Yl)l∈Γ)

)
(dK̂i,+

r − dK̂i,−
r ) (3.89)

On the other hand by the minimality conditions we have

∀s ∈ [t, T], i ∈ Γ,
∫ s

t

(
Yi

r − Li
r((Yl)l∈Γ)

)
(dKi,+

r − dKi,+
r ) = −

∫ s

t

(
Yi

r − Li
r((Yl)l∈Γ)

)
dKi,−

r

= −
∫ s

t

(
Ui

r((Yl)l∈Γ)− Li
r((Yl)l∈Γ)

)
dKi,−

r (3.90)

This last equality is due to the fact that ∀r ∈ [t, s], dKi,−
r 6= 0 only if Yi touches the upper

obstacle.

In the same way we have also the following condition for K̂i,− : ∀i ∈ Γ, s ∈ [t, T],∫ s

t

(
Yi

r − Li
r((Yl)l∈Γ)

)
(dK̂i,+

r − dK̂i,+
r ) = −

∫ s

t

(
Yi

r − Li
r((Yl)l∈Γ)

)
dK̂i,−

r

= −
∫ s

t

(
Ui

r((Yl)l∈Γ)− Li
r((Yl)l∈Γ)

)
dK̂i,−

r (3.91)

Combining (3.89)-(3.91) and (H3)-a)(the two obstacles are totally separated), we finally obtain

∀i ∈ Γ, s ∈ [t, T], Ki,−
s = K̂i,−

t
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since Ki,−
t = K̂i,−

t = 0. Finally the equality Ki,+
s − Ki,−

s = K̂i,+
s − K̂i,−

s , s ∈ [t, T], implies Ki,+ =

K̂i,+. The proof of uniqueness is now finished.

We now go back to systems (3.63) and (3.64) and the question is whether or not they have
the same solution. We have the following result:

Proposition 3.5.3. Assume that the assumptions (H2),(H3) and (H5) are fulfilled and for any i ∈ Γ, f i

does not depend on zi. Then for any i ∈ Γ, v̄i = vi.

Proof. : Actually (−vi)i∈Γ is the unique solution of the following system of PDEs with obstacles:


min{vi(t, x)− Ľi(~v)(t, x); max

[
vi(t, x)− Ǔi(~v)(t, x);

−∂tvi(t, x)−LX(vi)(t, x) + f i(t, x, (−vl(t, x))l∈Γ,−σ(t, x)>Dxvi(t, x)
]
} = 0;

vi(T, x) = −hi(x)

(3.92)

where Ľi(~v)(t, x) = vi(t, x)− ḡi,i+1(t, x) and Ǔi(~v)(t, x) = vi(t, x)− g
i,i+1

(t, x). Therefore −vi,

has accordingly, the representation (3.76), i. e. for any (t, x) and i ∈ Γ, setting Yi,t,x
s = vi(s ∨

t, Xt,x
s∨t) for s ∈ [t, T], we have:

−Yi,t,x
s = ess sup

σ≥s
ess inf

τ≥s
E[−hi(Xt,x

T )1(σ=τ=T) +
∫ σ∧τ

s
− f i(r, Xt,x

r , (−Yl,t,x
r )l∈Γ)dr

+ Ľi
σ((−Yl,t,x)l∈Γ)1(σ<τ) + Ǔi

τ((−Yl,t,x)l∈Γ)1(τ≤σ,τ<T)|Fs]

= ess inf
τ≥s

ess sup
σ≥s

E[−hi(Xt,x
T )1(σ=τ=T) +

∫ σ∧τ

s
− f i(r, Xt,x

r , (−Yl,t,x
r )l∈Γ)dr

+ Ľi
σ((−Yl,t,x)l∈Γ)1(σ<τ) + Ǔi

τ((−Yl,t,x)l∈Γ)1(τ≤σ,τ<T)|Fs]

(3.93)

since the barriers are completely separated (see e.g. [27]). Therefore

Yi,t,x
s = ess sup

σ≥s
ess inf

τ≥s
E[hi(Xt,x

T )1(σ=τ=T) +
∫ σ∧τ

s
f i(r, Xt,x

r , (Yl,t,x
r )l∈Γ)dr

+ Li
σ((Y

l,t,x)l∈Γ)1(σ<τ) + Ui
τ((Y

l,t,x)l∈Γ)1(τ≤σ,τ<T)|Fs]

(3.94)

Which means that ((Yi,t,x
s )s∈[t,T])i∈Γ verifes (3.74). As the solution of this latter is unique then

for any i ∈ Γ, Yi,t,x = Yi,t,x which means that for i ∈ Γ, v̄i = vi.

3.6 Appendix: Proof of Theorem 3.4.3

In this section, we prove that the system of (3.51) has a unique continuous solution in viscosity
sense in the class Πg. Indeed, we firstly provide a comparison result of subsolution and super-
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solution of (3.51) if they exist, then we show that (v̄i)i∈Γ is a solution by Perron’s method. We
recall once for all that the results in this section are constructed under (H2),(H3) and (H5).

3.6.1 A comparison result

Before investigating (3.51), we provide some a priori results and a comparison principle for
sub. and supersolutions of system (3.51). To begin with let us show the following:

Lemma 3.6.1. Let ~u := (ui)i∈Γ (resp.~̂u := (ûi)i∈Γ) be an usc subsolution (resp. sci supersolution) of
(3.51). For any (t, x) ∈ [0, T]×Rk, let Γ̂(t, x) be the following set:

Γ̂(t, x) := {i ∈ Γ, ui(t, x)− ûi(t, x) = max
l∈Γ

(ul(t, x)− ûl(t, x))}.

Then there exists i0 ∈ Γ̂(t, x) such that

ui0(t, x) > ui0+1(t, x)− g
i0,i0+1

(t, x) and ûi0(t, x) < ûi0+1(t, x) + gi0,i0+1(t, x).

Proof. Let (t, x) ∈ [0, T]×Rk be fixed. As Γ is a finite set then Γ̂ is not empty. To proceed, we
assume, by contradiction that for any i ∈ Γ̂(t, x), either

ui(t, x) ≤ ui+1(t, x)− g
i,i+1

(t, x) (3.95)

or
ûi(t, x) ≥ ûi+1(t, x) + gi,i+1(t, x) (3.96)

holds.

Assume first that (3.95) holds true i.e. ui(t, x) ≤ ui+1(t, x)− g
i,i+1

(t, x). As ~̂u is a supersolu-
tion of (3.51), we deduce that

ûi(t, x) ≥ ûi+1(t, x)− g
i,i+1

(t, x) (3.97)

By taking into account of (3.95) we have

ûi+1(t, x)− ûi(t, x) ≤ g
i,i+1

(t, x) ≤ ui+1(t, x)− ui(t, x)

which implies
ui(t, x)− ûi(t, x) ≤ ui+1(t, x)− ûi+1(t, x).

118



3.6. APPENDIX: PROOF OF THEOREM 3.4.3

However as i ∈ Γ̂(t, x), then the previous inequality is an equality and then

ûi+1(t, x)− ûi(t, x) = ui+1(t, x)− ui(t, x) = g
i,i+1

(t, x) (3.98)

and
ui(t, x)− ûi(t, x) = ui+1(t, x)− ûi+1(t, x).

As a result we deduce that (i + 1) ∈ Γ̂(t, x) and also the equality (3.98) holds.

Next if ui(t, x) ≤ ui+1(t, x)− g
i,i+1

(t, x) does not hold, then ui(t, x) > ui+1(t, x)− g
i,i+1

(t, x).

On the other hand, assume that (3.96) holds true, i.e., ûi(t, x) ≥ ûi+1(t, x) + gi,i+1(t, x). Since ui

is a subsolution of (3.51), we have

ui(t, x) ≤ ui+1(t, x) + gi,i+1(t, x)

which implies
ûi+1(t, x)− ûi(t, x) ≤ −gi,i+1(t, x) ≤ ui+1(t, x)− ui(t, x)

and then
ui(t, x)− ûi(t, x) ≤ ui+1(t, x)− ûi+1(t, x).

However as i ∈ Γ̂(t, x), then the last inequality is an equality and (i + 1) ∈ Γ̂(t, x). Moreover

ui+1(t, x)− ui(t, x) = −gi,i+1(t, x) = ûi+1(t, x)− ûi(t, x). (3.99)

It means that (3.95) or (3.96) imply that (i + 1) ∈ Γ̂(t, x) and one of the equalities (3.98), (3.99).
Repeat now this reasonning as many times as necessary (actually p times) to find a loop such
that ∑i∈Γ ϕi,i+1(t, x) = 0 (ϕi,i+1 is defined in (3.14)) and which is contradictory to assumption
(H3).

Next we give the comparison result.

Proposition 3.6.2. Let ~u := (ui)i∈Γ be an usc subsolution (resp. ~w := (wi)i∈Γ be a lsc supersolution)
of the system (3.51) and for any i ∈ Γ, both ui and wi belong to class Πg i.e. there exists two constants
γ and C such that

∀i ∈ Γ, (t, x) ∈ [0, T]×Rk, |ui(t, x)|+ |wi(t, x)| ≤ C(1 + |x|γ)

Then it holds true that

ui(t, x) ≤ wi(t, x), ∀i ∈ Γ, (t, x) ∈ [0, T]×Rk. (3.100)
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Proof. Let us show the result by contradiction, i.e. there exists ε0 > 0 and some (t0, x0) ∈
[0, T)×Rk such that

max
i∈Γ

(ui(t0, x0)− wi(t0, x0)) ≥ ε0 (3.101)

Next without loss of generality we assume that there exists R > 0 such that for t ∈ [0, T],
|x| ≥ R we have for any i ∈ Γ,

(ui − wi)(t, x) < 0. (3.102)

Actually if (3.102) does not hold, it is enough to consider the following functions wi,θ,µ defined
by

wi,θ,µ = wi(t, x) + θe−λ̄t(1 + |x|2γ+2), (t, x) ∈ [0, T]×Rk

which still a supersolution of (3.51) for any θ > 0 and λ̄ ≥ λ0 (λ0 is fixed). Then to show that
ui − wi,θ,µ ≤ 0 for any i ∈ Γ and finally to take the limit as θ → 0 to obtain (3.100). But for any
i ∈ Γ, ui −wi,θ,µ is negative uniformly in t when |x| is large enough since ui belongs to Πg with
polynomial exponent γ.

To proceed, let (3.101)-(3.102) be fulfilled. Then

max
(t,x)∈[0,T]×Rk

max
i∈Γ
{ui(t, x)− wi(t, x)} = max

(t,x)∈[0,T]×B(0,R)
max

i∈Γ
{ui(t, x)− wi(t, x)}

:= max
i∈Γ

(ui − wi)(t∗, x∗) ≤ ε0 > 0

where B(0, R) is the ball centered in the origin with radius R. Note that t∗ < T since ui(T, x) ≤
hi(x) ≤ wi(T, x).

Next the proof will be divided into two steps:

Step 1: To begin with, we introduce the following auxiliary condition: There exists λ > (p −
1)maxi∈Γ C f i such that for any i ∈ Γ, (t, x,~y, z) ∈ [0, T] ×Rk ×Rp+d, and (v1, v2) ∈ R2 such
that v1 ≥ v2 we have

f i(t, x, [~y−i, v1], z)− f i(t, x, [~y−i, v2], z) ≤ −λ(v1 − v2) (3.103)

and where C f i is the Lipschitz constant of f i w.r.t. ~y.

So let i0 be an element of Γ̂(t∗, x∗) such that

ui0(t∗, x∗) > ui0+1(t∗, x∗)− g
i0,i0+1

(t∗, x∗) (3.104)

and
wi0(t∗, x∗) < wi0+1(t∗, x∗) + gi0,i0+1(t

∗, x∗) (3.105)
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which exists by Lemma 3.6.1. Next we define the following function: For any n ≥ 1,

Φi0
n (t, x, y) := (ui0(t, x)− wi0(t, y))− φn(t, x, y), (t, x, y) ∈ [0, T]×Rk+k

where
φn(t, x, y) := n|x− y|2γ+2 + |x− x∗|2γ+2 + (t− t∗)2.

The function Φi0
n (t, x, y) is usc, then we can find a triple (tn, xn, yn) ∈ [0, T]× B̄(0, R)2 such that

Φi0
n (tn, xn, yn) = max

(t,x,y)∈[0,T]×B̄(0,R)2
Φi0

n (t, x, y)

(B̄(0, R) is the closure of B(0, R)). Then we have

Φi0
n (t
∗, x∗, x∗) ≤ Φi0

n (tn, xn, yn).

From which we deduce that

Φi0
n (t
∗, x∗, x∗) = ui0(t∗, x∗)− wi0(t∗, x∗)

≤ Φi0
n (tn, xn, yn)

= ui0(tn, xn)− wi0(tn, yn)− φn(tn, xn, yn)

≤ ui0(tn, xn)− wi0(tn, yn) ≤ CR

(3.106)

(CR is a constant which may depend on R) since the sequences (tn)n, (xn)n and (yn)n are
bounded and ui0 and wi0 are of polynomial growth. As a result (xn − yn)n≥0 converges to 0.
On the other hand, by boundedness of the sequences, we can find a subsequence, which we
still denote by (tn, xn, yn)n, converging to a point denoted (t̂, x̂, x̂). By (3.108) it satisfies:

ui0(t∗, x∗)− wi0(t∗, x∗) ≤ lim inf
n

(ui0(tn, xn)− wi0(tn, yn))

≤ lim sup
n

(ui0(tn, xn)− wi0(tn, yn))

≤ lim sup
n

ui0(tn, xn)− lim inf
n

wi0(tn, yn)

≤ ui0(t̂, x̂)− wi0(t̂, x̂) (3.107)

since ui0 (resp. wi0) is usc (resp. lsc). As the maximum of ui0 − wi0 on [0, T] × Rk is reached
in (t∗, x∗), then ui0(t̂, x̂) − wi0(t̂, x̂) = ui0(t∗, x∗) − wi0(t∗, x∗) and consequently the sequence
(ui0(tn, xn)− wi0(tn, yn))n converges to ui0(t∗, x∗)− wi0(t∗, x∗). Next as we have

Φi0
n (t
∗, x∗, x∗) = ui0(t∗, x∗)− wi0(t∗, x∗)

≤ Φi0
n (tn, xn, yn)
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= ui0(tn, xn)− wi0(tn, yn)− φn(tn, xn, yn) (3.108)

then (φn(tn, xn, yn))n converges to 0 as n → ∞ and then (tn)n, (xn)n and (yn) converge respec-
tively to t∗, x∗ and x∗. Finally

lim inf
n

ui0(tn, xn) = ui0(t∗, x∗)− wi0(t∗, x∗) + lim inf
n

wi0(tn, yn)

≥ ui0(t∗, x∗) ≥ lim sup
n

ui0(tn, xn)

which implies that the sequence (ui0(tn, xn))n converges to ui0(t∗, x∗) and then also the se-
quence (wi0(tn, yn))n converges to wi0(t∗, x∗).

Next, we recall the definition of i0 ∈ Γ̂(t∗, x∗). By (3.104)-(3.105), for n large enough we can
find a subsequence (tn, xn)n such that

ui0(tn, xn) > ui0+1(tn, xn)− g
i0i0+1

(tn, xn) (3.109)

and
wi0(tn, yn) < wi0+1(tn, yn) + gi0i0+1(tn, yn). (3.110)

Next we apply Crandall-Ishii-Lions’s Lemma (see e.g. [25], pp.216) and then there exist (pn
u, qn

n, Mn
u) ∈

J̄+(ui0)(tn, xn) and (pn
w, qn

w, Mn
w) ∈ J̄−(wi0)(tn, yn) such that

pn
u − pn

w = ∂tφn(tn, xn, yn) = 2(tn − t∗),
qn

u = ∂xφn(tn, xn, yn),
qn

w = −∂yφn(tn, xn, yn) and(
Mn

u 0
0 −Mn

w

)
≤ An +

1
2n

A2
n

(3.111)

where An = D2
xyφn(tn, xn, yn). Next by taking into account that (ui)i∈Γ and (wi)i∈Γ are respec-

tively subsolution and supersolution of (3.51) and the inequalities (3.109)-(3.110), we obtain

−pn
u− b(tn, xn)

>qn
u−

1
2

Tr[(σσ>(tn, xn))(tn, xn)Mn
u ]− f i0(tn, xn, (ul(tn, xn))l∈Γ, σ(tn, xn)

>qn
u) ≤ 0
(3.112)

and

−pn
w− b(tn, yn)

>qn
w−

1
2

Tr[(σσ>(tn, yn))(tn, yn)Mn
w]− f i0(tn, yn, (wl(tn, yn))l∈Γ, σ(tn, yn)

>qn
w) ≥ 0.

(3.113)
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By taking the difference of (3.112) and (3.113), one deduces that

−(pn
u − pn

w)− (b(tn, xn)
>qn

u − b(tn, yn)
>qn

w)−
1
2

Tr[{σσ>(tn, xn)Mn
u − σσ>(tn, yn)Mn

w}]

−{ f i0(tn, xn, (ul(tn, xn))l∈Γ, σ(tn, xn)
>qn

u)− f i0(tn, yn, (wl(tn, yn))l∈Γ, σ(tn, yn)
>qn

w)} ≤ 0.

Combining with (3.111), there exists some appropriate ρn with lim supn ρn ≤ 0 such that the
last inequality yields the following one:

−{ f i0(tn, xn, (ul(tn, xn))l∈Γ, σ(tn, xn)
>qn

u)− f i0(tn, xn, (wl(tn, yn))l∈Γ, σ(tn, xn)
>qn

u)} ≤ ρn

Next by linearising f i0 we obtain

λ(ui0(tn, xn)− wi0(tn, yn))− ∑
k∈Γ−i0

Θk
n(u

k(tn, xn)− wk(tn, yn)) ≤ ρn (3.114)

where Θk
n is the increment rate of f i0 w.r.t. yk, which is uniformly bounded w.r.t. n and is non

negative by the monotonicity assumption of f i. Therefore (3.114) becomes

λ(ui0(tn, xn)− wi0(tn, yn)) ≤ ∑
k∈Γ−i0

Θk
n(u

k(tn, xn)− wk(tn, yn)) + ρn

≤ C f i0 ∑
k∈Γ−i0

(uk(tn, xn)− wk(tn, yn))
+ + ρn.

Then by taking n→ ∞ the inequality yields

λ(ui0(t∗, x∗)− wi0(t∗, x∗)) ≤ lim sup
n

C f i0 [ ∑
k∈Γ−i0

(uk(tn, xn)− wk(tn, yn))
+]

≤ C f i0 [ ∑
k∈Γ−i0

(lim sup
n

(uk(tn, xn)− wk(tn, yn)))
+]

≤ C f i0 [ ∑
k∈Γ−i0

(uk(t∗, x∗)− wk(t∗, x∗)]

Next as i0 ∈ Γ̂(t∗, x∗), we deduce that

λ(ui0(t∗, x∗)− wi0(t∗, x∗)) ≤ C f i0 (p− 1)(ui0(t∗, x∗)− wi0(t∗, x∗)

which is contradictory with the definiton of λ given in (3.103). As a consequence for any
i ∈ Γ, ui ≤ wi.

Step 2: the general case
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For any arbitrary λ ∈ R, let us define

ûi(t, x) := eλtui(t, x) and ŵi(t, x) := eλtwi(t, x).

Note that (ûi)i∈Γ and (ŵi)i∈Γ is respectively the subsolution and the supersolution of the fol-
lowing system of PDEs: for any i ∈ Γ and (t, x) ∈ [0, T]×Rk,

min{vi(t, x)− vi+1(t, x) + eλtg
i,i+1

(t, x); max[vi(t, x)− vi+1(t, x)− eλtgi,i+1(t, x);

− ∂tvi(t, x)−LXvi(t, x) + λvi(t, x)− eλt f i(t, x, (e−λtvl(t, x))l∈Γ, e−λtσ>(t, x)Dxvi(t, x)]} = 0

and vi(T, x) = eλThi(x). For λ large enough, the condition (3.103) holds, then we go back to the
result in Step 1 and we obtain, for any i ∈ Γ, ûi ≤ ŵi, which also yields ui ≤ wi. The proof of
comparison is now complete.

3.6.2 Existence and uniqueness of viscosity solution of (3.51)

Let us recall (v̄i)i∈Γ and (v̄i,m)i∈Γ the functions defined in Proposition 3.4.2. We firstly prove that
(v̄i)i∈Γ is a subsolution of (3.51), then we show that for a fixed m0, (v̄i,m0)i∈Γ is a supersolution
of (3.51), finally by Perron’s method we show that (v̄i)i∈Γ is the unique solution of (3.51).

Proposition 3.6.3. The family (v̄i)i∈Γ is a viscosity subsolution of (3.51).

Proof. We first recall that ∀i ∈ Γ, v̄i := limm→∞ v̄i,m, is usc function since the sequence (v̄i,m)m≥0

is decreasing and (v̄i,m)i∈Γ is continuous. Then thanks to the definition we have v̄∗ = v̄i, hence
when t = T we have v̄i(T, x) = limm→∞ v̄i,m(T, x) = hi(x).
Next let us recall Definition 3.4.1, for any (t, x) ∈ [0, T)×Rk, i ∈ Γ, (p, q, M) ∈ J̄+v̄i(t, x), we
shall prove either

v̄i(t, x)− Li(~̄v)(t, x) ≤ 0 (3.115)

or

max[v̄i(t, x)−Ui(~̄v)(t, x);

−p− b>(t, x)q− 1
2

Tr(σσ>)(t, x)M)− f i(t, x, (v̄l(t, x))l∈Γ, σ>(t, x).q)] ≤ 0.
(3.116)

To proceed, we first assume that there exists ε0 > 0 such that

v̄i(t, x) ≥ v̄i+1(t, x)− g
i,i+1

(t, x) + ε0

then we need to prove (3.116).
As for any i ∈ Γ, (v̄i,m)m≥0 decreasingly converges to v̄i, then there exists m0 such that for any

124



3.6. APPENDIX: PROOF OF THEOREM 3.4.3

m ≥ m0 we have
v̄i,m(t, x) ≥ v̄i+1,m(t, x)− g

i,i+1
(t, x) +

ε0

2

By the continuity of (v̄i,m)i∈Γ and g
i,i+1

, we can find a neighbourhood Om of (t, x) such that

v̄i,m(t′, x′) ≥ v̄i+1,m(t′, x′)− g
i,i+1

(t′, x′) +
ε0

4
, ∀(t′, x′) ∈ Om. (3.117)

Next by Lemma 6.1 in [13] there exists a subsequence (tk, xk)k≥0 such that

(tk, xk)→k→∞ (t, x) and lim
k→∞

v̄i,k(tk, xk) = v̄i(t, x).

In addition we can also find a sequence which we still denote by (pk, qk, Mk) ∈ J̄+v̄i,k(tk, xk)

such that
lim
k→∞

(pk, qk, Mk) = (p, q, M)

As the sequence (tk, xk) can be chosen in the neighbourhood Ok, by applying the fact that
(v̄i,k)i∈Γ is the unique viscosity solution of the following system: For any i ∈ Γ,

min{v̄i,m(t, x)− Li((v̄l,m)l∈Γ)(t, x);

− ∂tv̄i,m(t, x)− b>(t, x)Dxv̄i,m(t, x)− f i,m(t, x, (v̄l,m(t, x))l∈Γ, σ>(t, x)Dxv̄i,m(t, x))} = 0

v̄i,m(T, x) = hi(x).

(3.118)

we obtain

−pk − b>(tk, xk).qk −
1
2

Tr(σσ>(tk, xk)Mk)− f i,k(t, x, (v̄l,k(tk, xk))l∈Γ, σ>(tk, xk)qk) ≤ 0 (3.119)

where f i,k(t, x, (vl(t, x))l∈Γ, z) := f i(t, x, (vl(t, x))l∈Γ, z)− k(vi(t, x)−Ui(~v)(t, x))+.
Moreover as the sequence (tk, xk, pk, qk, Mk)k is bounded and (v̄i,m)i∈Γ is uniformly of polyno-
mial growth, then we deduce from (3.119) that

εk := (v̄i,k(tk, xk)− v̄i+1,k(tk, xk)− ḡi,i+1(tk, xk))
+ →k→∞ 0

However for any fixed (t, x) and k0, (v̄i,k(t, x))k≥k0 is decreasing, then for k ≥ k0,

v̄i,k(tk, xk) ≤ v̄i+1,k(tk, xk) + ḡi,i+1(tk, xk) + εk

≤ v̄i+1,k0(tk, xk) + ḡi,i+1(tk, xk) + εk
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As v̄i,k0 is continuous, by taking k→ ∞ we obtain that

lim
k→∞

v̄i,k(tk, xk) = v̄i(t, x) ≤ v̄i+1,k0(t, x) + ḡi,i+1(t, x).

We then take k0 → ∞ yielding

v̄i(t, x) ≤ v̄i+1(t, x) + ḡi,i+1(t, x). (3.120)

In the second place we consider a subsequence (kl) of (k) such that for any a ∈ Γ, (v̄a,kl (tkl , xkl ))l

converges, then by taking l → ∞ in (3.119) we obtain

lim
l→∞
{−pkl − b(tkl , xkl )qkl −

1
2

Tr(σσ>(tkl , xkl )Mkl )− f i(tkl , xkl , (v̄
a,kl (tkl , xkl ))a∈Γ, σ>(tkl , xkl ).qkl )} ≤ 0.

Then we deduce that

− p− b>(t, x)q− 1
2

Tr(σσ>(t, x)M)

≤ lim
l→∞

f i(tkl , xkl , (v̄
a,kl (tkl , xkl ))a∈Γ, σ>(tkl , xkl )qkl )

= f i(t, x, lim
l→∞

(v̄a,kl (tkl , xkl ))a∈Γ, σ>(t, x)q)

≤ f i(t, x, (v̄a(t, x))a∈Γ, σ>(t, x)q).

(3.121)

The last inequality holds true by the monotonicity assumption (H5) of f i and the fact that for
any a ∈ Γ, v̄a verifies

v̄a(t, x) = v̄∗,a(t, x) = lim sup
(t′,x′)→(t,x),m→∞

v̄a,m(t′, x′), (t, x) ∈ [0, T]×Rk

Thus for any a ∈ Γ−i we have
v̄a(t, x) ≥ lim

l∈∞
v̄a,kl (tkl , xkl )

and
v̄i(t, x) = lim

l→∞
v̄i,kl (tkl , xkl ).

Thus (3.121) becomes

−p− b>(t, x)q− 1
2

Tr(σσ>(t, x)M) ≤ f i(t, x, (v̄a(t, x))a∈Γ, σ>(t, x).q). (3.122)

Hence under (3.120) and (3.122), (3.116) is satisfied, then (v̄i)i∈Γ is a viscosity subsolution of
(3.51).

Proposition 3.6.4. Let us fix m0 ∈N. Then the family (v̄i,m0)i∈Γ is a viscosity supersolution of (3.51).
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Proof. We first recall that the triple (Ȳi,m0 , Z̄i,m0 , K̄i,m0,+)i∈Γ is the unique solution of the system
of RBSDEs associated with ( f i,m0 , hi, g

i,i+1
)i∈Γ where

f i,m0(s, Xt,x
s ,~y, z) := f i(s, Xt,x

s ,~y, z)−m0(yi − yi+1 − ḡi,i+1(s, Xt,x
s ))+.

In addition there exist unique deterministic continuous functions with polynomial growth
(v̄i,m0)i∈Γ such that for any i ∈ Γ, s ∈ [t, T],

Ȳi,m0
s = v̄i,m0(s, Xt,x

s ) ((t, x) ∈ [0, T]×Rk is fixed).

Now let us define the following processes: ∀i ∈ Γ, s ∈ [t, T],

Ũi,m0
s := Yi,m

s ∨ (Yi+1,m0
s + gi,i+1(s, Xt,x

s ))

K̄i,m0,−
s := m0

∫ s

0
(Yi,m0

s −Yi+1,m0
s − ḡi,i+1(s, Xt,x

s ))+ds.

Then (Ȳi,m0 , Z̄i,m0 , K̄i,m0,+, K̄i,m0,−)i∈Γ solves the following doubly reflected BSDEs: for any i ∈ Γ,
s ∈ [t, T], 

Ȳi,m0
s = hi(Xt,x

T ) +
∫ T

s f i(r, Xt,x
r , (Ȳl,m0

r )l∈Γ, Z̄i,m0
r )dr−

∫ T
s Z̄i,m0

r dBr

+K̄i,m0,+
T − K̄i,m0,+

s − (K̄i,m0,−
T − K̄i,m0,−

s );

Li,m0
s ≤ Ȳi,m0

s ≤ Ũi,m0
s

∫ T
t (Ȳi,m0

s − Li,m0
s )dK̄i,m0,+

s = 0 and
∫ T

t (Ȳi,m0
s − Ũi,m0

s )dK̄i,m0,−
s = 0.

Accordingly by the results of [14] and [32], Ȳi,m0 is also associated with a zero-sum Dynkin
game as follow: For any s ∈ [t, T],

Ȳi,m0
s = ess sup

σ≥s
ess inf

τ≥s
E[ f σ∧τ

s f i(r, Xt,x
r , (Ȳl,m0

r )l∈Γ, Z̄i,m0
r )dr

+ Li,m0
σ 1(σ<τ) + Ũi,m0

τ 1(τ≤σ<T) + hi(Xt,x
T )1(τ=σ=T)|Fs]

Next following Theorem 3.7 and Theorem 6.2 in [27], v̄i,m0 is the unique solution in viscosity
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sense of the following PDE with obstacle:

min{w(t, x)− Li((v̄l,m0)l∈Γ)(t, x); max[w(t, x)− Ũ((v̄l,m0)l∈Γ)(t, x);

−∂tw(t, x)− b>(t, x)Dxw(t, x)− 1
2

Tr[(σσ>)(t, x)D2
xxw(t, x)]

− f i(t, x, (v̄l,m0)l∈Γ, σ>(t, x)Dxw(t, x))]} = 0;

w(T, x) = hi(Xt,x
T )

where Ũ((v̄l,m0)l∈Γ)(t, x) := v̄i,m0(t, x) ∨ (v̄i+1,m0 + ḡi,i+1)(t, x).
In other words, for any (t, x) ∈ [0, T)×Rk and for any (p, q, M) ∈ J̄−(v̄i,m0)(t, x), it still holds
that

v̄i,m0(t, x) ≥ Li((vl,m0)l∈Γ)(t, x) (3.123)

and

max[v̄i,m0(t, x)− Ũi((v̄l,m0)l∈Γ)(t, x);

− p− b>(t, x).q− 1
2

Tr(σσ>(t, x)M)− f i(t, x, (v̄l,m0)l∈Γ, σ>(t, x)q)] ≥ 0.
(3.124)

Next apply the inequality a− a ∨ b ≤ a− b, then (3.124) yields

max[v̄i,m0(t, x)− (v̄i+1,m0 + ḡi,i+1)(t, x);

− p− b>(t, x).q− 1
2

Tr(σσ>(t, x)M)− f i(t, x, (v̄l,m0)l∈Γ, σ>(t, x)q)] ≥ 0

Hence, with (3.123), this implies that (v̄i,m0)i∈Γ is a viscosity supersolution of (3.51).

We are now ready to use Perron’s method to provide a solution for (3.51). So let us consider
the following functions denoted by ( m0 vi)i∈Γ and defined as: Let

Um0 := {~u := (ui)i∈Γ,~u is a subsolution of (3.51) and for any i ∈ Γ, v̄i ≤ ui ≤ v̄i,m0}

Note that Um0 is not empty since (v̄i)i∈Γ ∈ Um0 . Next for i ∈ Γ, (t, x) ∈ [0, T]×Rk we set

m0 vi(t, x) := sup{ui(t, x), (ui)i∈Γ ∈ Um0}.

We then have:

Theorem 3.6.5. Assume (H2),(H3) and (H5) hold true, the functions ( m0 vi)i∈Γ is the unique viscosity
solution of (3.51). Moreover the solution does not depend on m0. Finally for any i ∈ Γ, m0 vi = v̄i.
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Proof. It is obvious that for any i ∈ Γ, the function m0 vi belongs to class Πg since (v̄i)i∈Γ and
(v̄i,m0)i∈Γ are functions of Πg.
To proceed, we divide the main proof into three steps. On the other hand, to simplify the nota-
tion, we replace ( m0 vi)i∈Γ with (vi)i∈Γ as there is no possible confusion.

Step 1: (vi)i∈Γ is a viscosity subsolution of (3.51).
For any i ∈ Γ, vi ∈ Um0 and then it satisfies:

v̄i ≤ vi ≤ v̄i,m0 .

The inequalities still valid for the upper semicontinuous envelops, i.e.,

v̄i ≤ vi,∗ ≤ v̄i,m0

since v̄i is usc and v̄i,m0 is continuous. Therefore we have

v̄i(T, x) = vi,∗(T, x) = v̄i,m0(T, x) = hi(x).

It means that (vi,∗)i∈Γ verify the subsolution property of system (3.63) at time T.

Next let (ṽk)k∈Γ be an arbitrary element of Um0 and let i ∈ Γ be fixed. Since (ṽk)k∈Γ is a
subsolution of (3.51), then for any (t, x) ∈ [0, T)×Rk and (p, q, M) ∈ J̄+ṽi,∗(t, x) we have

min{ṽi,∗(t, x)− Li((ṽl,∗)l∈Γ)(t, x); max[ṽi,∗(t, x)−Ui((ṽl,∗)l∈Γ)(t, x);

−p− b>(t, x)q− 1
2

Tr(σσ>(t, x)M)− f i(t, x, (ṽl,∗(t, x))l∈Γ, σ>(t, x)q)]} ≤ 0.
(3.125)

But for any k ∈ Γ, ṽk ≤ vk, then ṽk,∗ ≤ vk,∗. On the other hand, we notice that the opera-
tors (wl)l∈Γ 7→ ṽi,∗ − Li((wl)l∈Γ) and (wl)l∈Γ 7→ ṽi,∗ −Ui((wl)l∈Γ) are decreasing, then by the
monotonicity of f i ((H5)) and (3.125) we have

min{(ṽi,∗ − Li((vl,∗)ł∈Γ))(t, x); max[(ṽi,∗ −Ui((vl,∗)ł∈Γ))(t, x);

−p− b>(t, x)q− 1
2

Tr(σσ>(t, x)M)− f i(t, x, [(vl,∗(t, x))l∈Γ−i , ṽi,∗], σ>(t, x)q)]} ≤ 0.
(3.126)

It means that ṽi is a subsolution of the following PDE:
min{(w− Li((vl,∗)ł∈Γ))(t, x); max[(w−Ui((vl,∗)ł∈Γ))(t, x);

−p− b>(t, x)q− 1
2

Tr(σσ>(t, x)M)− f i(t, x, [(vl,∗(t, x))l∈Γ−i , w], σ>(t, x)q)]} = 0

w(T, x) = hi(x)

(3.127)
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In addition, the following function is lsc:

(t, x, w, p, q, M) ∈ [0, T]×Rk+1+1+k × Sk

7→ min{w− Li((vl,∗)l∈Γ)(t, x); max[w−Ui((vl,∗)l∈Γ)(t, x);

− p− b>(t, x)q− f i(t, x, [(vl,∗(t, x))l∈Γ−i , w], σ>(t, x).q)]}.

As vi is the supremum of ṽi, thanks to Lemma 4.2 in [13], vi is a viscosity subsolution of (3.127).
But i is arbitrary, then (vi)i∈Γ is a viscosity subsolution of system (3.51).

Step 2: (vi)i∈Γ is a viscosity supersolution of (3.51).

We first focus on the terminal condition. For any i ∈ Γ, vi
∗(T, x) = hi(x) from the inequality

vi = vi
∗ ≤ v̄i

∗ ≤ vi
∗ ≤ v̄i,m0

∗ = v̄i,m0 since vi is lsc and v̄i,m0 is continuous.

Next by contradiction we assume that (vi)i∈Γ is not a supersolution of (3.51), i.e. there exists
at least one i ∈ Γ and for some (t0, x0) ∈ [0, T)×Rk and (p, q, M) ∈ J−(vi

∗)(t, x) we have

min{vi
∗(t0, x0)− Li((vl

∗)l∈Γ)(t0, x0); max[vi
∗(t0, x0)−Ui((vl

∗)l∈Γ)(t0, x0);

− p− b>(t0, x0)q−
1
2

Tr(σσ>(t0, x0)M)− f i(t0, x0, (vl
∗(t0, x0))l∈Γ, σ>(t0, x0)q)]} < 0.

(3.128)

Next for any positive constants δ, γ and r let us define:

uδ,γ(t, x) := vi
∗(t0, x0) + δ+ < q, x− x0 > +p(t− t0) +

1
2
< (M− 2γ)(x− x0), (x− x0) >

and Br := {(t, x) ∈ [0, T]×Rk such that |t− t0|+ |x− x0| < r}.
(3.129)

By choosing δ and γ small enough, we deduce from (3.128) that

min{vi
∗(t0, x0)− Li((vl

∗)l∈Γ)(t0, x0) + δ; max[vi
∗(t0, x0)−Ui((vl

∗)l∈Γ)(t0, x0) + δ;

− p− b>(t0, x0)q−
1
2

Tr(σσ>(t0, x0)(M− 2γ))

− f i(t0, x0, [(vl
∗(t0, x0))l∈Γ−i , vi

∗(t0, x0) + δ], σ>(t0, x0)q)]} < 0

(3.130)

Next let us define the following function:

Θ(t, x) :=min{uδ,γ(t, x)− Li((vl
∗)l∈Γ)(t, x); max[uδ,γ(t, x)−Ui((vl

∗)l∈Γ)(t, x);

− p− b>(t, x).q− 1
2

Tr(σσ>(t, x))(M− 2γ)
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− f i(t, x, [(vl
∗(t, x))l∈Γ−i , uδ,γ(t, x)], σ>(t, x)q)]}

According to (3.130) we have Θ(t0, x0) < 0. On the other hand, Θ is usc since the functions vi
∗,

i ∈ Γ, are lsc, uδ,γ is continuous and f i is continuous and verifies the monotonicity property.
Therefore for any ε > 0, there is some η > 0 such that for any (t, x) ∈ Bη we have

Θ(t, x) ≤ Θ(t0, x0) + ε

Next as Θ(t0, x0) < 0, we can choose ε small enough to obtain Θ(t, x) ≤ 0 for any (t, x) ∈ Bη .
Thus for any (t, x) ∈ Bη , uδ,γ is nothing but a viscosity subsolution of the following PDE(on
Bη):

min{w(t, x)− Li((vl
∗)l∈Γ)(t, x); max[w(t, x)−Ui((vl

∗)l∈Γ)(t, x);

− ∂tw(t, x)− b>(t, x)Dxw(t, x)− 1
2

Tr(σσ>(t, x)D2
xxw(t, x))

− f i(t, x, [(vl
∗(t, x))l∈Γ−i , w(t, x)], σ>(t, x)Dxw(t, x))]} = 0.

(3.131)

As for any i ∈ Γ, vi
∗ ≤ vi,∗, then uδ,γ is also a viscosity subsolution of (3.131) by replacing (vi

∗)i∈Γ

with (vi,∗)i∈Γ, i.e.

min{w(t, x)− Li((vl,∗)l∈Γ)(t, x); max[w(t, x)−Ui((vl,∗)l∈Γ)(t, x);

− ∂tw(t, x)− b>(t, x)Dxw(t, x)− 1
2

Tr(σσ>(t, x)D2
xxw(t, x))

− f i(t, x, [(vl,∗(t, x))l∈Γ−i , w(t, x)], σ>(t, x)Dxw(t, x))]} = 0.

On the other hand since (p, q, M) ∈ J−(vi
∗(t0, x0)), by the definition of the subjet ([13]) we have:

∀i ∈ Γ,

vi(t, x) ≥ vi
∗(t, x)

≥ vi
∗(t0, x0) + p(t− t0)+ < q, x− x0 > +

1
2
< M(x− x0), (x− x0) >

+ o(|t− t0|) + o(|x− x0|2).

Next let us set δ = r2

8 γ and let us go back to the definition of uδ,γ yielding

vi(t, x) > uδ,γ(t, x) = vi
∗(t0, x0) +

r2

8
γ+ < q, x− x0 > +p(t− t0) +

1
2
< M(x− x0), (x− x0) >

− < γ(x− x0), (x− x0) >

when r√
2
< |x− x0| ≤ r and r small enough.
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Next let us take r ≤ η and let us define the function ũi by:

ũi(t, x) =

{
max(vi(t, x), uδ,γ(t, x)), if (t, x) ∈ Br;
vi(t, x) otherwise.

Then according to (3.131) and Lemma 1.2 in [13], ũi is also a subsolution of the following PDE:

min{w(t, x)− Li((vl,∗)l∈Γ)(t, x); max[w(t, x)−Ui((vl,∗)l∈Γ)(t, x);

−p− b>(t, x)q− 1
2 Tr(σσ>(t, x)M)

− f i(t, x, [(vl,∗(t, x))l∈Γ−i , w(t, x)], σ>(t, x)q)]} = 0

w(T, x) = hi(x).

Once more by the monotonicity of f i and the fact that ũi ≥ vi, [(vl)l∈Γ−i , ũi] is also a subsolution
of (3.51) which belongs to Πg. Then by comparison we obtain that [(vl)l∈Γ−i , ũi] belongs to Um0 .
Next by the definition of vi

∗, we can find a sequence (tn, xn, vi(tn, xn))n≥1 which converges to
(t0, x0, vi

∗(t0, x0)), then we have

lim
n→∞

(ũi − vi)(tn, xn) = lim
n→∞

(uδ,γ − vi
∗)(tn, xn)

= vi
∗(t0, x0) + δ− vi

∗(t0, x0) > 0

This result implies that we can find some points (tn, xn) such that ũi(tn, xn) > vi(tn, xn), which
is contradictory against the fact that [(vl)l∈Γ−i , ũi] belongs to Um0 and (vi)i∈Γ is the supremum
element in the latter set. Hence (vi)i∈Γ is a supersolution of (3.51).

Step 3: Continuity and uniqueness of (vi)i∈Γ.
Following the definition of usc envelop (vi,∗)i∈Γ (resp. lsc envelop (vi

∗)i∈Γ) and Remark 4.2.2
in [58], (vi,∗)i∈Γ (resp.(vi

∗)i∈Γ) is a usc subsolution (resp. lsc supersolution) of (3.51), then by
Proposition 3.6.2 we obtain ∀i ∈ Γ,

vi,∗ ≤ vi
∗

Meanwhile it holds true that vi
∗ ≤ vi ≤ vi,∗ then vi

∗ = vi,∗, which implies the continuity of vi.

Next we assume that there exists another solution (v̂i)i∈Γ of (3.51) which belongs to class Πg.
As (vi)i∈Γ and (v̂i)i∈Γ are both subsolutions and supersolutions, by the comparison result we
obtain both vi ≤ v̂i and vi ≥ v̂i with al i ∈ Γ, as a result the solution is unique. The uniqueness
of solution leads us directly to the fact that the solution (vi)i∈Γ does not depend on m0. Finally
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for any i ∈ Γ and m0 we have
v̄i ≤ vi ≤ vi,m0 .

Just send m0 to +∞ to obtain that for any i ∈ Γ, v̄i = vi.
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CHAPTER 4

PAPER 3: MEAN-FIELD DOUBLY

REFLECTED BACKWARD STOCHASTIC

DIFFERENTIAL EQUATIONS

This chapter is a preprint joint work with Chen and Hamadène (ref.[12]).

4.1 Introduction

In this paper we are concerned with the problem of existence and uniqueness of a solution of
the doubly reflected BSDE of the following type:

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + K+

T − K+
t − K−T + K−t −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), ∀t ∈ [0, T];∫ T

0
(Ys − h(Ys, E[Ys]))dK+

s =
∫ T

0
(Ys − g(Ys, E[Ys]))dK−s = 0 (K± are increasing processes ).

(4.1)
It is said associated with the quadruple ( f , ξ, h, g). Those BSDEs are of mean-field type because
the generator f and the barriers h and g depend on the law of Yt through its expectation. For
simplicity reasons we stick to this framework, however it can be generalized (see Remark 4.3.5).

Since the introduction by Lasry and Lions [45] of the general mathematical modeling ap-
proach for high-dimensional systems of evolution equations corresponding to a large number
of "agents" (the mean-field model), the interest to the mean-field models grows steadily in con-
nection with several applications. Later standard mean-field BSDEs have been introduced in
[6]. Since then, there have been several papers on mean-field BSDEs including ([7, 8, 4, 17, 50, 9,
59, 51], etc) in relation with several fields and motivations in mathematics and economics, such
stochastic control, games, mathematical finance, utility of an agent inside an economy, PDEs,
actuaries, etc.

Mean-field one barrier reflected BSDEs have been considered first in the paper [50]. This
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latter generalizes the work in [7] to the reflected framework. Later Briand et al. [4] have consid-
ered another type of one barrier mean-field reflected BSDEs. Actually in [4], the reflection of the
component Y of the solution holds in expectation. They show existence and uniqueness of the
solution when the increasing process, which makes the constraint on Y satisfied, is determinis-
tic. Otherwise the solution is not necessarily unique. The main motivation is the assessment of
the risk of a position in a financial market.

In [17], Djehiche et al. consider the above problem (4.1) when there is only one reflecting
barrier (e.g. take g ≡ +∞). The authors show existence and uniqueness of the solution in
several contexts of integrability of the data ( f , ξ, h). The methods are the usual ones: Fixed
point and penalization. Those methods do not allow for the same framework. For example, the
fixed point method does not allow generators which depend on z while the penalization does
at the price of some additional regularity properties which are not required by the use of the
first method. The main motivation for considering such a problem comes from the assessment
of the prospective reserve of a representative contract in life-insurance.

In this paper we consider the extension of the framework of [17] to the case of two reflecting
barriers. We show existence and uniqueness of a solution of (4.1), by the fixed point method.
We deal with the case when the data of the problem are only integrable or p-integrable with
p > 1. Those cases are treated separalety because one cannot deduce one of them from the
other one.

The paper is organized as follows: In Section 2, we fix the notations and the frameworks. In
Section 3, we deal with the case when p > 1 and finally with the case p = 1.

4.2 Notations and formulation of the problems

4.2.1 Notations

Let T be a fixed positive constant. Let (Ω,F , P) denote a complete probability space with B =

(Bt)t∈[0,T] a d-dimensional Brownian motion whose natural filtration is (F 0
t := σ{Bs, s ≤ t})0≤t≤T.

We denote by F = (Ft)0≤t≤T the completed filtration of (F 0
t )0≤t≤T with the P-null sets of F ,

then it satisfies the usual conditions. On the other hand, let P be the σ-algebra on [0, T]×Ω of
the F-progressively measurable sets.

For p ≥ 1 and 0 ≤ s0 < t0 ≤ T, we define the following spaces:

• Lp := {ξ : FT −measurable radom variable s.t. E[|ξ|p] < ∞};

• Hm
loc := {(zt)t∈[0,T] : P −measurable process and Rm−valued s.t. P− a.s.

∫ T
0 |zs(ω)|2ds <

∞}; z̄ ∈ Hm
loc([s0, t0]) if z̄r = zr1[s0,t0](r), dr⊗ dP-a.e. with z ∈ Hm

loc.
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• S p := {(yt)t∈[0,T] : continuous and P-measurable process s.t. E[supt∈[0,T] |yt|p] < ∞};
S p([s0, t0]) is the space S p reduced to the interval [s0, t0]. If y ∈ S p([s0, t0]), we denote by
‖y‖S p

c ([s0,t0])
:= {E[sups0≤u≤t0

|yu|p]}1/p.

• A := {(kt)t∈[0,T] : continuous, P-measurable and non-decreasing process s.t. k0 = 0};
A([s0, t0]) is the space A reduced to the interval [s0, t0] (with ks0 = 0);

• Tt := {τ, F− stopping time s.t. P− a.s.τ ≥ t};

• D := {(φ)t∈[0,T] : F− adapted, R−valued continuous process s.t. ‖φ‖1 = supτ∈T0
E[|yτ|] <

∞}. Note that the normed space (D, ‖.‖1) is complete (e.g. [15], pp.90). We denote by
(D([s0, t0]), ‖.‖1), the restriction of D to the time interval [s0, t0]. It is a complete metric
space when endowed with the norm ‖.‖1 on [s0, t0], i.e.,

‖X‖1,[s,t] := sup
τ∈T0, s0≤τ≤t0

E[|Xτ|] < ∞.

4.2.2 The class of doubly reflected BSDEs

In this paper we aim at finding P-measurable processes (Y, Z, K+, K−) solution of the doubly
reflected BSDE of mean-field type associated with the generator f (t, ω, y, y′), the terminal con-
dition ξ, the lower barrier h(y, y′), and the upper barrier g(y, y′), in the cases p > 1 and p = 1
respectively. The two cases should be considered separately since one cannot deduce one case
from another one. So to begin with let us make precise the definitions:

Definition 4.2.1. We say that the quaternary of P-measurable processes (Yt, Zt, K+
t , K−t )t≤T is a solu-

tion of the mean-field reflected BSDE associated with ( f , ξ, h, g) if :

Case: p > 1

Y ∈ S p
c , Z ∈ Hd

loc and K+, K− ∈ A;

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + K+

T − K+
t − K−T + K−t −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), ∀t ∈ [0, T];∫ T

0
(Ys − h(Ys, E[Ys]))dK+

s =
∫ T

0
(Ys − g(Ys, E[Ys]))dK−s = 0.

(4.2)
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Case: p = 1,

Y ∈ D, Z ∈ Hd
loc and K+, K− ∈ A;

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + K+

T − K+
t − K−T + K−t −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), ∀t ∈ [0, T];∫ T

0
(Ys − h(Ys, E[Ys]))dK+

s =
∫ T

0
(Ys − g(Ys, E[Ys]))dK−s = 0.

(4.3)

4.2.3 Assumptions on ( f , ξ, h, g)

We now make precise the requirements on the items ( f , ξ, h, g) which define the two reflecting
barriers backward stochastic differential equation of mean-field type.
Assumption (A1):

(i) The coefficients f , h, g and ξ satisfy:

(a) the process ( f (t, 0, 0))t≤T is P- measurable and such that
∫ T

0 | f (t, 0, 0)|dt ∈ Lp(dP);

(b) f is Lipschitz w.r.t (y, y′) uniformly in(t, ω), i.e., there exists a positive constant C f

such that P- a.s. for all t ∈ [0, T], y1, y′1, y2 and y′2 elements of R,

| f (t, ω, y1, y′1)− f (t, ω, y2, y′2)| ≤ C f (|y1 − y′1|+ |y2 − y′2|). (4.4)

(ii) h and g are mappings from R2 into R which satisfy:

(a) h and g are Lipschitz w.r.t. (y, y′) i.e., there exist pairs of positive constants (γ1, γ2),
(β1, β2) such that for any x, x′, y and y′ ∈ R,

|h(x, x′)− h(y, y′)| ≤ γ1|x− y|+ γ2|x′ − y′|,

|g(x, x′)− g(y, y′)| ≤ β1|x− y|+ β2|x′ − y′|.
(4.5)

(b) h(x, x′) < g(x, x′), for any x, x′ ∈ R;

(iii) ξ is an FT- measurable, R-valued r.v., E[ξ p] < ∞ and satisfies h(ξ, E[ξ]) ≤ ξ ≤ g(ξ, E[ξ]).
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4.3 Existence and Uniqueness of a Solution of the Doubly Reflected
BSDE of Mean-Field type

Let Y = (Yt)t≤T be an R-valued, P-measurable process and Φ the mapping that associates to
Y the following process (Φ(Y)t)t≤T: ∀t ≤ T,

Φ(Y)t : = ess sup
τ≥t

ess inf
σ≥t

E{
∫ σ∧τ

t
f (s, Ys, E[Ys])ds + g(Yσ, E[Yt]t=σ)1{σ<τ}

+ h(Yτ, E[Yt]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}|Ft}.

For the well-posedness of Φ(Y) one can see e.g. [49], Theorem 7.

The following result is related to some properties of Φ(Y).

Lemma 4.3.1. Assume that assumptions (A1) are satisfied for p = 1 and Y ∈ D. Then the process
Φ(Y) belongs to D. Moreover there exist processes (Zt)t≤T and (A±t )t≤T such that:

Z ∈ Hm
loc; A± ∈ A;

Φ(Y)t = ξ +
∫ T

t f (s, Ys, E[Ys])ds + A+
T −A+

t −A−T + A−t −
∫ T

t ZsdBs, t ≤ T;

h(Yt, E[Yt]) ≤ Φ(Y)t ≤ g(Yt, E[Yt]), t ≤ T;

∫ T
0 (Φ(Y)t − h(Yt, E[Yt])dA+

t =
∫ T

0 (Φ(Y)t − g(Yt, E[Yt])dA−t = 0.

(4.6)

Proof. First note that since Y ∈ D and g, h are Lipschitz then the processes (h(Yt, E[Yt]))t≤T and
(g(Yt, E[Yt]))t≤T belong also to D. Next as h < g then, using a result by [38], Theorem 4.1 or
[65], Theorem 3.1, there exist P-measurable processes (Yt)t≤T, (Zt)t≤T and (A±t )t≤T such that:

Y ∈ D; Z ∈ Hm
loc; A± ∈ A;

Yt = ξ +
∫ T

t f (s, Ys, E[Ys])ds + A+
T −A+

t −A−T + A−t −
∫ T

t ZsdBs, t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), t ≤ T;

∫ T
0 (Yt − h(Yt, E[Yt])dA+

t =
∫ T

0 (Yt − g(Yt, E[Yt])dA−t = 0.

Let us point out that in [65], Theorem 3.1, the result is obtained in the discontinuous framework,
namely the obstacles are right continuous with left limits processes. However since in our sit-
uation the processes (h(Yt, E[Yt]))t≤T and (g(Yt, E[Yt]))t≤T are continuous then Y and A± are
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continuous, and the frameworks of [38] and [65] are the same (one can see e.g. [46], pp.60).
Finally the process Y has the following representation as the value of a zero-sum Dynkin game:
∀t ≤ T,

Yt : = ess sup
τ≥t

ess inf
σ≥t

E{
∫ σ∧τ

t
f (s, Ys, E[Ys])ds + g(Yσ, E[Yt]t=σ)1{σ<τ}

+ h(Yτ, E[Yt]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}|Ft}.
(4.7)

Therefore Y = Φ(Y) and the claim is proved.

4.3.1 The case p > 1

We will first show that Φ is well defined from S p to S p.

Lemma 4.3.2. Let f , h, g and ξ satisfy Assumption (A1) for some p > 1. If Y ∈ S p then Φ(Y) ∈ S p.

Proof. Let Y ∈ S p. For σ and τ two stopping times, let us define:

L(τ, σ) =
∫ τ∧σ

0
f (r, Yr, E[Yr])dr + g(Yσ, E[Yt]t=σ)1{σ<τ} + h(Yτ, E[Yt]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}.

Then for any t ≤ T,

Φ(Y)t +
∫ t

0
f (s, Ys, E[Ys])ds = ess sup

τ≥t
ess inf

σ≥t
E[L(τ, σ)|Ft] = ess inf

σ≥t
ess sup

τ≥t
E[L(τ, σ)|Ft].

(4.8)
As pointed out previously when Y belongs to S p with p > 1, then it belongs to D. There-
fore, under assumptions (A1), the process Φ(Y) is continuous. On the other hand, the second
equality in (4.8) is valid since by (A1)-(ii), (a)-(b), h < g and the processes (h(Ys, E[Ys]))s≤T and
(g(Ys, E[Ys]))s≤T belongs to S p since Y belongs to S p (see e.g. [22] for more details).

Next let us define the martingale M := (Mt)0≤t≤T as follows:

Mt : = E

{∫ T

0

[
| f (s, 0, 0)|+ C f (|Ys|+ E|Ys|)

]
ds + |g(0, 0)|+ β1 sup

s≤T
|Ys|+ β2 sup

s≤T
E|Ys|

+|h(0, 0)|+ γ1 sup
s≤T
|Ys|+ γ2 sup

s≤T
E|Ys|+ |ξ|

∣∣Ft

}
.

(4.9)

As Y belongs to S p and by (A1)-(1)(a), the term inside the conditional expectation belongs to
Lp(dP). As the filtration F is Brownian then M is continuous and by Doob’s inequality with
p > 1 one deduces that M belongs also to S p. Next as f , g and h are Lipschitz, then by a
linearization proccedure of those functions one deduces that:

|E[L(τ, σ)|Ft]| ≤ Mt
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for any t ≤ T and any stopping times σ, τ ∈ Tt. Then we obtain

∀t ≤ T,
∣∣∣∣Φ(Y)t +

∫ t

0
f (s, Ys, E[Ys])ds

∣∣∣∣ ≤ Mt.

Therefore,

E{sup
t≤T
|Φ(Y)t|p} ≤ Cp

{
E

(∫ T

0
| f (s, Ys, E[Ys])|ds

)p

+ E[sup
t≤T
|Mt|p]

}

where Cp is a positive constant that only depends on p and T. It holds that Φ(Y) ∈ S p
c since

Y ∈ S p
c and f is Lipschitz.

Next we have the following result.

Proposition 4.3.3. Let Assumption (A1) holds for some p > 1. If γ1, γ2, β1 and β2 satify

(γ1 + γ2 + β1 + β2)
p−1

p

[(
p

p− 1

)p

(γ1 + β1) + (γ2 + β2)

] 1
p

< 1 (4.10)

then there exists δ > 0 depending only on p, C f , γ1, γ2, β1 and β2 such that Φ is a contraction on the
time interval [T − δ, T].

Proof. Let Y, Y′ ∈ S p
c . Then, for any t ≤ T, we have,

|Φ(Y)t −Φ(Y′)t|

= | ess sup
τ≥t

ess inf
σ≥t
{E
[∫ σ∧τ

t
f (s, Ys, E[Ys])ds + g(Yσ, E[Yt]t=σ)1{σ<τ}

+h(Yτ, E[Yt]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}|Ft
]
} − ess sup

τ≤t
ess inf

σ≤t
{E
[∫ σ∧τ

t
f (s, Y′s , E[Y′s ])ds

+ g(Y′σ, E[Y′t ]t=σ)1{σ<τ} +h(Y′τ, E[Y′t ]t=τ)1{τ≤σ<T} + ξ1{τ=σ=T}|Ft
]
}|

≤ ess sup
τ≥t, σ≥t

E

{∫ σ∧τ

t
| f (s, Ys, E[Ys])− f (s, Y′s , E[Y′s ])|ds + |g(Yσ, E[Yt]t=σ)

−g(Y′σ, E[Y′t ]t=σ)|1{σ<τ} + |h(Yτ, E[Yt]t=τ)− h(Y′τ, E[Y′t ]t=τ)|1{τ≤σ,τ<T}|Ft
}

≤ E

{∫ T

t
| f (s, Ys, E[Ys])− f (s, Y′s , E[Y′s ])|ds + (β1 + γ1) sup

t≤s≤T
|Ys −Y′s ||Ft

}
+ (β2 + γ2) sup

t≤s≤T
E[|Ys −Y′s |].

(4.11)
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Fix now δ > 0 and let t ∈ [T − δ, T]. By the Lipschitz condition of f , (4.11) implies that

|Φ(Y)t −Φ(Y′)t|

≤ E

[
δC f { sup

T−δ≤s≤T
|Ys −Y′s |+ sup

T−δ≤s≤T
E[|Ys −Y′s |]} + (β1 + γ1) sup

T−δ≤s≤T
|Ys −Y′s |

+(β2 + γ2) sup
T−δ≤s≤T

E[|Ys −Y′s |]
∣∣Ft

]

= (δC f + γ1 + β1)E

[
sup

T−δ≤s≤T
|Ys −Y′s |

∣∣Ft

]
+ (δC f + γ2 + β2) sup

T−δ≤s≤T
E{|Ys −Y′s |}.

(4.12)

As p > 1, thanks to the convexity inequality (ax1 + bx2)p ≤ (a + b)p−1(axp
1 + bxp

2 ) holding for
any non-negative real constants a, b, x1 and x2, (4.12) yields

|Φ(Y)t −Φ(Y′)t|p ≤ (2δC f + γ1 + γ2 + β1 + β2)
p−1 {(δC f + γ1 + β1)(

E[ sup
T−δ≤s≤T

|Ys −Y′s |
∣∣Ft]

)p

+ (δC f + γ2 + β2)

(
E[ sup

T−δ≤s≤T
|Ys −Y′s |]

)p}
.

(4.13)
Next, by taking expectation of the supremum over t ∈ [T − δ, T] on the both hand-sides of
(4.13), we have

E

[
sup

T−δ≤s≤T
|Φ(Y)s −Φ(Y′)s|p

]

≤ (2δC f + γ1 + γ2 + β1 + β2)
p−1 {(δC f + γ1 + β1) E[

(
sup

T−δ≤t≤T

{
E[ sup

T−δ≤s≤T
|Ys −Y′s ||Ft]

})p

]

+(δC f + γ2 + β2)

{
E[ sup

T−δ≤s≤T
|Ys −Y′s |]

}p}
.

(4.14)
By applying Doob’s inequality we have:

E[

(
sup

T−δ≤t≤T

{
E[ sup

T−δ≤s≤T
|Ys −Y′s ||Ft]

})p

] ≤ (
p

p− 1
)pE

[
sup

T−δ≤s≤T
|Ys −Y′s |p

]
(4.15)

and by Jensen’s one we have also{
E[ sup

T−δ≤s≤T
|Ys −Y′s |]

}p

≤ E[ sup
T−δ≤s≤T

|Ys −Y′s |p]. (4.16)
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Plug now (4.15) and (4.16) in (4.14) to obtain:

‖Φ(Y)−Φ(Y′)‖S p([T−δ,T]) ≤ Λ(C f , p, γ1, γ2, β1, β2)(δ)‖Y−Y′‖S p([T−δ,T])

where

Λ(C f , p, γ1, γ2, β1, β2)(δ) = (2δC f + γ1 + γ2 + β1 + β2)
p−1

p

[(
p

p− 1

)p

(δC f + γ1 + β1)

+(δC f + γ2 + β2)
] 1

p .

Note that (4.10) is just Λ(C f , p, γ1, γ2, β1, β2)(0) < 1. As
limδ→0 Λ(C f , p, γ1, γ2, β1, β2)(δ) = Λ(C f , p, γ1, γ2, β1, β2)(0) < 1. Then there exists δ small
enough which depends only on C f , p, γ1, γ2, β1, β2 and not on ξ nor T such that Λ(C f , p, γ1, γ2, β1, β2)(δ) <

1. It implies that Φ is a contraction on S p
c ([T − δ, T]). Then there exists a process which belongs

to S p
c ([T − δ, T]) such that

Yt = Φ(Y)t, ∀t ∈ [T − δ, T].

We now show that the mean-field reflected BSDE (4.2) has a unique solution.

Theorem 4.3.4. Assume that Assumption (A1) holds for some p > 1. If γ1 and γ2 satisfy

(γ1 + γ2 + β1 + β2)
p−1

p

[(
p

p− 1

)p

(γ1 + β1) + (γ2 + β2)

] 1
p

< 1 (4.17)

then the mean-field doubly reflected BSDE (4.2) has a unique solution (Y, Z, K+, K−).

Proof. Let δ be as in Proposition 4.3.3. Then there exists a process Y ∈ S p([T − δ, T]), which is
the fixed point of Φ in this latter space and verifies: For any t ∈ [T − δ, T],

Yt = ess sup
τ≥t

ess inf
σ≥t

E

{∫ σ∧τ

t
f (s, Ys, E[Ys])ds + g(Yσ, E[Yt]t=σ)1{σ<τ}

+h(Yτ, E[Yt]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}|Ft
}

.

Next since ξ ∈ Lp(dP), E[(
∫ T

0 | f (s, ω, Ys, E[Ys])|ds)p] < ∞, the processes (h(Yt, E[Yt]))T−δ≤t≤T

and (g(Yt, E[Yt]))T−δ≤t≤T belong to S p([T − δ, T]) since Y is so, and finally since h < g, then
there exist processes Ȳ ∈ S p([T − δ, T]), Z̄ ∈ Hd

loc([T − δ, T]) and K̄± ∈ A([T − δ, T]) (see e.g.
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[22] for more details) such that for any t ∈ [T − δ, T], it holds:
Ȳt = ξ +

∫ T

t
f (s, Ys, E[Ys])ds + K̄+

T − K̄+
t − K̄−T + K̄−t −

∫ T

t
Z̄sdBs;

h(Yt, E[Yt]) ≤ Ȳt ≤ g(Yt, E[Yt]);∫ T

T−δ
(Ȳs − h(Ys, E[Ys]))dK̄+

s = 0,
∫ T

T−δ
(Ȳs − g(Ys, E[Ys]))dK̄−s = 0.

(4.18)

Therefore the process Ȳ has the following representation: ∀t ∈ [T − δ, T],

Ȳt = ess sup
τ≥t

ess inf
σ≥t

E

{∫ σ∧τ

t
f (s, Ys, E[Ys])ds + g(Yσ, E[Yt]t=σ)1{σ<τ}

+h(Yτ, E[Yt]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}|Ft}
}

.
(4.19)

It follows that for any t ∈ [T − δ, T], Yt = Ȳt. Thus (Y, Z̄, K̄±) verifies (4.2) and (4.18) on [T −
δ, T], i.e., for t ∈ [T − δ, T]

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + K̄+

T − K̄+
t − K̄−T + K̄−t −

∫ T

t
Z̄sdBs;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]);∫ T

T−δ
(Ys − h(Ys, E[Ys]))dK̄+

s = 0,
∫ T

T−δ
(Ys − g(Ys, E[Ys]))dK̄−s = 0.

(4.20)

But δ of Proposition 4.3.3 does not depend on the terminal condition ξ nor on T, therefore
there exists another process Y1 which is a fixed point of Φ in S p([T − 2δ, T − δ]) with terminal
condition YT−δ, i.e., for any t ∈ [T − 2δ, T − δ],

Y1
t = ess sup

τ∈[t,T−δ]

ess inf
σ∈∈[t,T−δ]

E

{∫ σ∧τ

t
f (s, Y1

s , E[Y1
s ])ds + g(Y1

σ , E[Y1
t ]t=σ)1{σ<τ}

+h(Y1
τ , E[Y1

t ]t=τ)1{τ≤σ,τ<T−δ} + YT−δ1{τ=σ=T−δ}|Ft}
}

.

(4.21)

Then as previously, there exist processes (Z̄1, K̄1,±) (K̄1,± ∈ A([T− 2δ, T− δ])) suh that (Y1, Z̄1, K̄1,±)

verify: For any t ∈ [T − 2δ, T − δ],
Y1

t = YT−δ +
∫ T−δ

t
f (s, Y1

s , E[Y1
s ])ds + K̄1,+

T−δ − K̄1,+
t − K̄1,−

T−δ + K̄1,−
t −

∫ T−δ

t
Z̄1

s dBs;

h(Y1
t , E[Y1

t ]) ≤ Y1
t ≤ g(Y1

t , E[Y1
t ]);∫ T−δ

T−2δ
(Y1

s − h(Y1
s , E[Y1

s ]))dK̄1,+
s = 0,

∫ T−δ

T−2δ
(Y1

s − g(Y1
s , E[Y1

s ]))dK̄1,−
s = 0.

(4.22)

Concatenating now the solutions (Y, Z̄, K̄±) and (Y1, Z̄1, K̄1,±) we obtain a solution of (4.2) on
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[T − 2δ, T]. Actually for t ∈ [T − 2δ, T], let us set:

Ỹt = Yt1[T−δ,T](t) + Y1
t 1[T−2δ,T−δ)(t),

Z̃t = Z̄t1[T−δ,T](t) + Z̄1
t 1[T−2δ,T−δ)(t),∫ t

T−2δ
dK̃1,±

t =
∫ t

T−2δ
{1[T−δ,T](s)dK̄0,±

s + 1[T−2δ,T−δ](s)dK̄1,±
s }.

Then Ỹ ∈ S p([T − 2δ, T], Z̃ ∈ Hd
loc([T − 2δ, T]) and K̃± ∈ A([T − 2δ, T]) and they verify: For

any t ∈ [T − 2δ, T],
Ỹt = ξ +

∫ T

t
f (s, Ỹs, E[Ỹs])ds + K̃+

T − K̃+
t − K̃−T + K̃−t −

∫ T

t
Z̃sdBs;

h(Ỹt, E[Ỹt]) ≤ Ỹt ≤ g(Ỹt, E[Ỹt]);

and
∫ T

T−2δ
(Ỹs − h(Ỹs, E[Ỹs]))dK̃+

s = 0,
∫ T

T−2δ
(Ỹs − g(Ỹs, E[Ỹs]))dK̃−s = 0.

(4.23)

But we can do the same on [T− 3δ, T− 2δ], [T− 4δ, T− 3δ], etc. and at the end, by concatenation
of those solutions, we obtain a solution (Y, Z, K±) which satisfy (4.2).

Let us now focus on uniqueness. Assume there is another solution (Y, Z, K±) of (4.2). It
means that Y is a fixed point of Φ on S p([T − δ, T]), therefore for any t ∈ [T − δ, T], Yt =

Yt. Next writing equation (4.2) for Y and Y on [T − 2δ, T − δ], using the link with zeros-
sum Dynkin games (see Lemma 4.3.1) and finally the uniqueness of the fixed point of Φ on
S p([T − 2δ, T − δ]) to obtain that for any t ∈ [T − 2δ, T − δ], Yt = Yt. By continuig this proce-
dure on [T − 3δ, T − 2δ], [T − 4δ, T − 3δ], etc. we obtain that Y = Y. The equality between the
stochastic integrales imply that Z = Z. Finally as h < g and since Y = Y, then K+ = K+ and
K− = K− (see e.g. [22]) for more details. Thus the solution is unique. The proof is complete.

Remark 4.3.5. i) We have the same result if we replace the function h (resp. g) with h(t, ω, y, y′) (resp.
g(t, ω, y, y′)) with (h(t, ω, 0, 0))t≤T (resp. (g(t, ω, 0, 0))t≤T) is a process of S p.

ii) There is no specific difficulty to consider the following more general framework of equations (4.2) and
(4.3). 

Yt = ξ +
∫ T

t
f (s, Ys, PYs)ds + K+

T − K+
t − K−T + K−t −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

h(Yt, PYs) ≤ Yt ≤ g(Yt, PYs), ∀t ∈ [0, T];

and
∫ T

0
(Ys − h(Ys, PYs))dK+

s = 0,
∫ T

0
(Ys − g(Ys, PYs))dK−s = 0

where the Lipschitz property of f , h and g w.r.t. PYt should be read as: for Ψ ∈ { f , g, h} for any ν, ν′
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probabilities
|Ψ(ν)−Ψ(ν′)| ≤ Cdp(ν, ν′)

where dp(., .) is the p-Wasserstein distance on the subset Pp(R) of probability measures with finite p-th
moment, formulated in terms of a coupling between two random variables X and Y defined on the same
probability space:

dp(µ, ν) := inf
{
(E [|X−Y|p])1/p , law(X) = µ, law(Y) = ν

}
.

4.3.2 The case p=1

We proceed as we did in the case when p > 1. We have the following result.

Proposition 4.3.6. Let Assumptions (A1) hold for some p = 1. If γ1, γ2, β1 and β2 satify

γ1 + γ2 + β1 + β2 < 1 (4.24)

then there exists δ > 0 depending only on C f , γ1, γ2, β1, β2 such that Φ is a contraction on the space
D([T − δ, T]).

Proof. Let δ be a positive constant and θ a stopping time which belongs to [T − δ, T]. Therefore

|Φ(Y)θ −Φ(Y′)θ | = | ess sup
τ≥θ

ess inf
σ≥θ
{E
[∫ σ∧τ

θ
f (s, Ys, E[Ys])ds + g(Yσ, E[Yt]t=σ)1{σ<τ}

+h(Yτ, E[Yt]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}|Ft
]
} − ess sup

τ≥θ

ess inf
σ≥θ
{E
[∫ σ∧τ

t
f (s, Y′s , E[Y′s ])ds

+ g(Y′σ, E[Y′t ]t=σ)1{σ<τ} +h(Y′τ, E[Y′t ]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}|Fθ

]
}|

≤ ess sup
τ≥θ

ess sup
σ≥θ

E

{∫ σ∧τ

θ
| f (s, Ys, E[Ys])− f (s, Y′s , E[Y′s ])|ds + |g(Yσ, E[Yt]t=σ)

−g(Y′σ, E[Y′t ]t=σ)|1{σ<τ} + |h(Yτ, E[Yt]t=τ)− h(Y′τ, E[Y′t ]t=τ)|1{τ≤σ,τ<T}|Fθ

}
≤ E

{∫ T

T−δ
| f (s, Ys, E[Ys])− f (s, Y′s , E[Y′s ])|ds|Fθ

}
+ ess sup

σ≥θ

E{|g(Yσ, E[Yt]t=σ)− g(Y′σ, E[Y′t ]t=σ)||Fθ}

+ ess sup
τ≥θ

E{|h(Yτ, E[Yt]t=τ)− h(Y′τ, E[Y′t ]t=τ)||Fθ}.
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Take now expectation in both hand-sides to obtain:

E[|Φ(Y)θ −Φ(Y′)θ |] ≤2δC f sup
τ∈[T−δ,T]

E[|Yτ −Y′τ] + sup
σ≥θ

E{|g(Yσ, E[Yt]t=σ)− g(Y′σ, E[Y′t ]t=σ)|}

+ sup
τ≥θ

E{|h(Yτ, E[Yt]t=τ)− h(Y′τ, E[Y′t ]t=τ)|}

≤ 2δC f sup
τ∈[T−δ,T]

E[|Yτ −Y′τ] + sup
σ≥θ

E{|g(Yσ, E[Yt]t=σ)− g(Y′σ, E[Y′t ]t=σ)|}

+ sup
τ≥θ

E{|h(Yτ, E[Yt]t=τ)− h(Y′τ, E[Y′t ]t=τ)|}.

Then for any θ a stopping time valued in [T − δ, T], we have:

E[|Φ(Y)θ −Φ(Y′)θ |] ≤ (2δC f + β1 + β2 + γ1 + γ2)︸ ︷︷ ︸
Σ(δ)

sup
τ∈[T−δ,T]

E[|Yτ −Y′τ|].

Next since β1 + β2 + γ1 + γ2 < 1, then for δ small enough we have Σ(δ) < 1 (δ does not
depend neither on ξ nor on T) and Φ is a contraction on the space D([T − δ, T]). Therefore it
has a fixed point Y, which then verifies:

Y ∈ D([T − δ, T]) and ∀t ∈ [T − δ, T],

Yt = ess sup
τ≥t

ess inf
σ≥t
{E{

∫ σ∧τ

t
f (s, Ys, E[Ys])ds + g(Yσ, E[Yt]t=σ)1{σ<τ}

+ h(Yτ, E[Yt]t=τ)1{τ≤σ,τ<T} + ξ1{τ=σ=T}|Ft}}.

(4.25)

As a by-product we have the following result which stems from the link between the value
of a zero-sum Dynkin game and doubly reflected BSDE given in (4.6).

Corollary 4.3.7. Let Assumption (A1) hold for some p = 1. If γ1, γ2, β1 and β2 satisfy (4.24) then there
exists δ > 0, depending only on C f , γ1, γ2, β1, β2, and P-measurable processes Z0, K0,± such that:



P− a.s.,
∫ T

T−δ |Z
0
s |2ds < ∞; K0,± ∈ A and K0,±

T−δ = 0;

Yt = ξ +
∫ T

t f (s, Ys, E[Ys])ds + K0,+
T − K0,+

t − K0,−
T + K0,−

t −
∫ T

t Z0
s dBs, T − δ ≤ t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), T − δ ≤ t ≤ T;

∫ T
T−δ(Yt − h(Yt, E[Yt]))dK0,+

t =
∫ T

T−δ(Yt − g(Yt, E[Yt]))dK0,−
t = 0.

(4.26)
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We now give the main result of this subsection.

Theorem 4.3.8. Let f , h, g and ξ satisfying Assumption (A1) for p = 1. Suppose that

γ1 + γ2 + β1 + β2 < 1. (4.27)

Then, there exist P-mesurable processes (Y, Z, K±) unique solution of the mean-field reflected BSDE
(4.3), i.e.,

Y ∈ D, Z ∈ Hd
loc and K+, K− ∈ A;

Yt = ξ +
∫ T

t
f (s, Ys, E[Ys])ds + K+

T − K+
t − K−T + K−t −

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

h(Yt, E[Yt]) ≤ Yt ≤ g(Yt, E[Yt]), ∀t ∈ [0, T];

and
∫ T

0
(Ys − h(Ys, E[Ys]))dK+

s = 0,
∫ T

0
(Ys − g(Ys, E[Ys]))dK−s = 0.

(4.28)

Proof. Let δ be as in Proposition 4.3.6 and Y the fixed point of Φ on D([T − δ, T]) which exists
since (4.24) is satisfied. Next let Y1 be the fixed point of Φ on D([T − 2δ, T − δ]) with terminal
condition YT−δ, i.e., for any t ∈ [T − 2δ, T − δ],

Y1
t = ess sup

τ∈[t,T−δ]

ess inf
σ∈∈[t,T−δ]

E

{∫ σ∧τ

t
f (s, Y1

s , E[Y1
s ])ds + g(Y1

σ , E[Y1
t ]t=σ)1{σ<τ}

+h(Y1
τ , E[Y1

t ]t=τ)1{τ≤σ,τ<T−δ} + YT−δ1{τ=σ=T−δ}|Ft}
}

.

(4.29)

The process Y1 exists since condition (4.24) is satisfied and δ does not depend neither on T nor
on the terminal condition. Once more the link between reflected backward equations and zero-
sum Dynkin games (see Lemma 4.3.1) implies the existence of P-measurable processes Z1, K1,±

such that:

P− a.s.,
∫ T−δ

T−2δ |Z
1
s |2ds < ∞; K1,± ∈ A and K1,±

T−2δ = 0;

Y1
t = YT−δ +

∫ T−δ
t f (s, Y1

s , E[Y1
s ])ds + K1,+

T−δ − K1,+
t − K1,−

T−δ + K1,−
t −

∫ T−δ
t Z1

s dBs, t ∈ [T − 2δ, T − δ];

h(Y1
t , E[Y1

t ]) ≤ Y1
t ≤ g(Y1

t , E[Y1
t ]), t ∈ [T − 2δ, T − δ];

∫ T−δ
T−2δ(Y

1
t − h(Y1

t , E[Y1
t ]))dK1,+

t =
∫ T−δ

T−2δ(Y
1
t − g(Y1

t , E[Y1
t ]))dK1,−

t = 0.
(4.30)

Concatenating now the solutions (Y, Z0, K0,±) of (4.26) and (Y1, Z1, K1,±) we obtain a solution
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of (4.3) on [T − 2δ, T]. Actually for t ∈ [T − 2δ, T], let us set:

Ỹt = Yt1[T−δ,T](t) + Y1
t 1[T−2δ,T−δ)(t),

Z̃t = Z0
t 1[T−δ,T](t) + Z1

t 1[T−2δ,T−δ)(t),∫ t

T−2δ
dK̃1,±

t =
∫ t

T−2δ
{1[T−δ,T](s)dK0,±

s + 1[T−2δ,T−δ](s)dK1,±
s }.

Then Ỹ ∈ D([T − 2δ, T], Z̃ ∈ Hd
loc([T − 2δ, T]) and K̃± ∈ A([T − 2δ, T]) and they verify: For

any t ∈ [T − 2δ, T],
Ỹt = ξ +

∫ T

t
f (s, Ỹs, E[Ỹs])ds + K̃+

T − K̃+
t − K̃−T + K̃−t −

∫ T

t
Z̃sdBs;

h(Ỹt, E[Ỹt]) ≤ Ỹt ≤ g(Ỹt, E[Ỹt]);

and
∫ T

T−2δ
(Ỹs − h(Ỹs, E[Ỹs]))dK̃+

s = 0,
∫ T

T−2δ
(Ỹs − g(Ỹs, E[Ỹs]))dK̃−s = 0.

(4.31)

But we can do the same on [T− 3δ, T− 2δ], [T− 4δ, T− 3δ], etc. and at the end, by concatenation
of those solutions, we obtain a solution (Y, Z, K±) which satisfy (4.2).

Let us now focus on uniqueness. Assume there is another solution (Y, Z, K±) of (4.2). It
means that Y is a fixed point of Φ on D([T − δ, T]), therefore for any t ∈ [T − δ, T], Yt = Yt.
Next writing equation (4.2) for Y and Y on [T− 2δ, T− δ], using the link with zeros-sum Dynkin
games (Lemma 4.3.1) and finally the uniqueness of the fixed point of Φ onD([T − 2δ, T − δ]) to
obtain that for any t ∈ [T− 2δ, T− δ], Yt = Yt. By continuing this procedure on [T− 3δ, T− 2δ],
[T− 4δ, T− 3δ], etc. we obtain that Y = Y. The equality between the stochastic integrals imply
that Z = Z. Finally as h < g and since Y = Y, then K+ = K+ and K− = K− (see e.g. [22]) for
more details. Thus the solution is unique. The proof is complete.

Finally let us notice that the same Remark 4.3.5 is valid for this case p = 1.
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Titre : Équations différentielles stochastiques rétrogrades et applications : switching optimal, jeux 
stochastiques, EDP et mean-field 
 
Mots clés : EDSRs, jeux stochastiques de somme nulle, EDSR réfléchie à deux obstacles 
interconnectés, EDPs, Méthode de pénalisation, méthode de point-fixe, switching optimal 
stochastique. 
 
Résumé :  Cette thèse est relative aux Equations 

Différentielles Stochastique Rétrogrades (EDSRs) 
réfléchies avec deux obstacles et leurs applications 
aux jeux de switching de somme nulle, aux 
systèmes d’équations aux dérivées partielles, aux 
problèmes de mean-field. Il y a deux parties dans 
cette thèse. La première partie porte sur le 
switching optimal stochastique et est composée de 
deux travaux. Dans le premier travail, nous 
montrons l’existence de la solution d’un système 
d’EDSR réfléchies à obstacles bilatéraux 
interconnectés dans le cadre probabiliste général. 
Ce problème est lié à un jeu de switching de somme 
nulle. Ensuite nous abordons la question de l’unicité 
de la solution. Et enfin nous appliquons les résultats 
obtenus pour montrer que le système d’EDP 
associé à une unique solution au sens viscosité, 
sans la condition de monotonie habituelle. Dans le 
second travail, nous considérons aussi un système 
d’EDSRs réfléchies à obstacles bilatéraux 
interconnectés dans 

le cadre markovien. La différence avec le premier 
travail réside dans le fait que le switching ne s’opère 
pas de la même manière. Cette fois-ci quand le 
switching est opéré, le système est mis dans l’état 
suivant importe peu lequel des joueurs décide de 
switcher. Cette différence est fondamentale et 
complique singulièrement le problème de l’existence 
de la solution du système. Néanmoins, dans le 
cadre markovien nous montrons cette existence et 
donnons un résultat d’unicité en utilisant 
principalement la méthode de Perron. Ensuite, le 
lien avec un jeu de switching spécifique est établi 
dans deux cadres. 
Dans la seconde partie nous étudions les EDSR 
réfléchies unidimensionnelles à deux obstacles de 
type mean-field. Par la méthode du point fixe, nous 
montrons l’existence et l’unicité de la solution dans 
deux cadres, en fonction de l’intégrabilité des 
données. 

 

Title :  Backward Stochastic Differential Equations and applications: optimal switching, stochastic 
games, partial differential equations and mean-field 
 
Keywords : BSDEs, zero-sum stochastic games, DRBSDEs with doubly interconnected barriers, 
PDEs, penalization method, fixed point method, stochastic optimal switching. 
 
Abstract :  This thesis is related to Doubly 

Reflected Backward Stochastic Differential 
Equations (DRBSDEs) with two obstacles and their 
applications in zero-sum stochastic switching 
games, systems of partial differential equations, 
mean-field problems. There are two parts in this 
thesis. The first part deals with optimal stochastic 
switching and is composed of two works. In the first 
work we prove the existence of the solution of a 
system of DRBSDEs with bilateral interconnected 
obstacles in a probabilistic framework. This problem 
is related to a zero-sum switching game. Then we 
tackle the problem of the uniqueness of the solution. 
Finally, we apply the obtained results and prove 
that, without the usual monotonicity condition, the 
associated PDE system has a unique solution in 
viscosity sense. In the second work, we also 
consider a system of DRBSDEs with bilateral 

interconnected obstacles in the markovian 
framework. The difference between this work and 
the first one lies in the fact that switching does not 
work in the same way. In this second framework, 
when switching is operated, the system is put in the 
following state regardless of which player decides to 
switch. This difference is fundamental and largely 
complicates the problem of the existence of the 
solution of the system. Nevertheless, in the 
Markovian framework we show this existence and 
give a uniqueness result by the Perron’s method. 
Later on, two particular switching games are 
analyzed. In the second part we study a 
onedimensional Reflected BSDE with two obstacles 
of mean-field type. By the fixed point method, we 
show the existence and uniqueness of the solution 
in connection with the integrality of the data. 
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