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Abstract

Among the diverse vector data that are collected in many di�erent sectors, from
medicine to industry or social networks, an important number of them are observed
over a network structure. These data, referred as graph vectors or graph signals, have the
particularity to associate each dimension of a vector to a speci�c node of a graph. This
type of data can be observed in particular when the vectors arise directly from networks
(e.g. telecommunication, sensor or social networks), but more generally for any vector
admitting an underlying graph structure linking its variables.

This thesis addresses di�erent problems around the analysis and the modeling of this
type of vectors, using several di�erent mathematical tools and techniques. In particular, we
are interested in two tasks. The �rst one is the problem of event detection, i.e. anomaly or
change-point detection, in a set of graph signals. The second task concerns the inference of
the graph structure underlying the observed graph vectors that are contained in a data set.

At �rst, our work takes an application-oriented aspect in which we propose a method for
detecting antenna failures or breakdowns in a telecommunication network. The proposed
approach is designed to be e�ective for communication networks in a broad sense. It relies
on the idea that some signi�cant values recorded at a node (e.g. an antenna) are predictable
knowing the values observed at the other nodes. Given this intuition, an anomaly will
be detected whenever a node’s value is far from the prediction that is made for it. With
such formulation, we therefore understand that the method implicitly takes into account
the underlying graph structure of the data, a node’s value being predicted using with the
others.

In a second time, the thesis takes a slightly more theoretical aspect. First, a new
method for graph structure inference within the framework of Graph Signal Processing is
investigated. In this problem, notions of both local and global smoothness, with respect to
the underlying graph, are imposed to the vectors. These notions are the basic hypotheses of
many algorithms treating with graph signals. In a �nal contribution, the graph learning task
is combined with the change-point detection problem. This time, a probabilistic framework
is considered to model the vectors, assumed to be distributed from a speci�c Markov Random
Field. In the considered modeling, the graph underlying the data is allowed to evolve in
time and a change-point is actually detected whenever this graph changes signi�cantly.





Notations

Sets, matrix and vectors

[n] Set of integers {1, . . . , n}
S S ′ Set S minus the subset S ′ ⊂ S
xT,MT Transpose of vector x, matrix M
x j Vector x deprived of its j-th coordinate
xI Value of the vector x for the subset of indices I
Mi,j , Mi,: and M:,j (i, j)-entry, i-th row and j-th column of a matrix M
In Identity matrix in Rn×n

0n Vector of size n containing only zeros
1n Vector of size n containing only ones

Graphs

G = (V, E) A graph with set of nodes V and edges E
p or N Number of nodes in the graph
W Positive weight matrix
L Laplacian matrix
N (u) Neighborhood of the node u ∈ V

Functions and norms

|x| or |S| Absolute value of the scalar x or the size of the set S
1A(·) The indicator function over the set A
〈·, ·〉 Inner product function
‖x‖0 The number of non-zero elements of a vector x
‖ · ‖F The Frobenius norm
‖ · ‖2,0 The number of non-zero rows of a vector M
‖ · ‖2,1 The `2,1-norm, with ‖M‖2,1 =

∑
i=1‖Mi,:‖2
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1 Context of the thesis

1.1 General context

Over the past decades, the signi�cant increase of the amount of multivariate data available
in all sectors, from medicine to industry or social networks, has created urgent needs for
data analysis and modeling in order to accomplish various tasks. Among them, the tasks of
anomaly, or change-point, detection (called event detection when referring to both of them)
in massive amounts of data are of major importance. In a nutshell, anomaly detection refers
to the task of �nding, in a data set, a small amount of vector data that deviates from the
normal behavior of the vast majority. This task can be applied to any data set and in many
real-world applications. For example, it can be used to discover dysfunctional elements
in a company’s production line. On the other hand, the theoretical basis of change-point
detection relies on the vast area of time-series analysis, and it seeks to �nd time-instances
at which there is a change in the regime underlying the data (Figure 1.1). In life science
and biology applications, it can for example correspond to the moments when there is a
change in the state of the of the monitored system (e.g. an individual sleeping or not via
electroencephalogram analysis, the beginning of puberty via the hormone secretion study
etc.).



16 CHAPTER 1. INTRODUCTION

Figure 1.1: Simple illustration of a change-point detection task [157]. In this example,
the signal is univariate, 4 change-points are detected, resulting in 5 regimes of di�erent
behavior.

New challenges to these problems have been posed by data that appear naturally over
a network structure, which interconnects the observations or the variables representing
them. This is particularly the case for data coming from social, communication, transport
or sensor networks, where the data collection takes place at the level of nodes in a graph.
In the social network example, the nodes may refer to users and an edge indicates the
social link between two of them; in a sensor network, an edge may simply correspond
to the spatial distance between two sensors. Usually, the graph brings knowledge on the
process that generates the data (e.g. two linked nodes are highly correlated or has very
close values), and being able to build models or learning algorithms – including anomaly
or change-point detection methods – from these data, while considering their network
structure, is of major concerns to improve learning performances.

This type of collected data are referred as graph data, graph vectors or graph signals. As
stated earlier, they simply refer to vector data for which each component is associated to a
node in a graph. While in some cases the graph is naturally given and therefore known a
priori (e.g. the social network or the sensor network example given above), there are many
cases where the data admit an underlying graph structure that is not available and needs
to be learned from them. This is notably the case in biology, where we are interested in
knowing which genes (or proteins) are expressed with each other [62, 94]. More generally,
this need for graph inference can appear in any type of data for which one wishes to know
which variables are linked with which others, in the sense that they behave in a similar way
statistically. This task can have strong impact on the visualization and the understanding
of the data being processed, but also, as said before, on the ability to build more e�cient
learning algorithms.

This thesis work is deeply rooted in the various topics mentioned above. In particular,
it focuses on event detection in graph data, whether the graph is known or not. It also
focus on the inference of the graph itself, and on the detection of changes in the graph
structure underlying the data. Among the notable achievements of this thesis are the
methods developed, but also the fact that for the purpose of their development, several
mathematical tools and techniques were employed.
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1.2 Industrial context

This doctoral thesis was carried out thanks to CIFRE (Convention Individuelle de Formation
par la Recherche) and commissioned by the ANRT (Agence Nationale de la Recherche et
de la Technologie). It was sponsored by Sigfox, a world-wide telecommunication network
operator dedicated to the Internet-Of-Things (IoT). Speci�cally, Sigfox owns antennas,
referred as Base Stations (BSs) that are set up on towers (like a cell phone company), and
receives data transmissions from devices like parking sensors, �re detector, water meters,
etc. The devices are held by customers, and the role of Sigfox is essentially to collect the
(encrypted) data transmitted by the devices, via the BSs, and send them to a cloud to which
the customer has access. The particularity of Sigfox is its simple protocol, which is suitable
for the devices to send small amounts of data (12 bytes per sent "messages") but received
at a long-range and in a very low-power consuming way. Without going into much more
detail, let us brie�y describe the process of sending a message in the Sigfox protocol.

Let a device that needs to transmit a small amount of data (e.g. temperature, binary
information, etc.) to its owner. The information is encoded in a signal that is sent three
times, at three di�erent frequency levels, for robustness. The signals are sent without any
selection protocol on the Base Stations, they are simply sent "in the air" (broadcast), hoping
that they will be received by at least one nearby BS (thanks to a vast coverage, the signals
are usually received by many of them). Once at least one BS receives one of the three
repeated signals, it is decoded and sent to the cloud using standard internet protocol such
as 3G. A scheme of Sigfox network’s architecture is provided by �gure 1.3. For a more
complete description on Sigfox technology and Low-Power Wide-Area Network (LPWAN)
in general, we invite the reader to look at [29].

Initially, the principal objective of the collaboration with Sigfox was to propose and
develop data-based methods to detect anomalies at the level of a Base Station (e.g. caused
by a breakdown). This was a new subject, poorly dealt by the company’s researchers and
engineers, but the need for it became more and more important due to the signi�cant
expansion of the network. Until then, very little use was made of the collected data for this

Figure 1.2: Example of signals recorded over a graph structure. (Left) Sensors measuring
brain activity over time via electroencephalogram (EEG) are placed on a human head. Their
positions over the head induce a graph structure that captures their proximity. A graph
signal corresponds to a vector of size equal to the number of sensors (i.e nodes) containing
the EEG values at a speci�c timestamp. In this scenario, it is generally expected that nearby
nodes in the graph will have similar values. (Right) Time-series of observations recorded at
a single node, pointed by the dotted line.
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Figure 1.3: Summary of Sigfox’s architecture.

purpose and only simple methods, based on threshold exceedances, has been employed.
The thresholds were set a priori by �eld experts and led to a very high false positive rate.

Various data are collected at the level of each BS, from hardware (e.g. temperature of
the engine) to software information (e.g. the OS version used). According to the experts,
the important features to detect anomalies are those linked with the spectrum of the signals
captured by the BSs. Unfortunately, the whole spectrum is not collected but only few
statistics summarizing it are computed instead every second. These includes essentially
some quantile information on the intensities recorded all over the spectrum. After few
weeks of data analysis made at the beginning of this research, it has been �nally decided
that only the "reception" information about each BS would be kept. In other words, this
corresponds the information on the activity of the network: for each message broadcasted,
which BS has received it or not. This decision was essentially motivated by the fact that
this kind of data are raw (contrarily to the spectrum data that are already processed) and
with a priori few errors in it. Moreover, it is intuitively expected that a failure at the level
of a BS will directly impact its level of activity, and most probably with a decrease in its
total number of received signals.

An interesting property of the reception data is that they appear naturally over a graph
structure induced by the spatial distribution of the BSs. Taking for example the vector
that indicates, for a �xed sent signal, which BS has received it or not, it is empirically
observed that nearby BSs will have more chance to be ‘activated’ (in the sense of reception)
together, and conversely. Another example includes the vector that speci�es the number of
signals received by each BS over a certain period of time, where close BSs will have highly
correlated values (see Figure 1.4).

Under these observations, we made the conclusion that the studied vector data can be
considered as graph vectors, making the thesis move towards the task of event detection in
a set of graph signals. Nevertheless, quickly, and as explained in detail in the following
section, it was realized that the induced spatial graph was not all the time adapted to
the data, leading to the second axis of the thesis related to the inference of the network
structure itself.
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Figure 1.4: (Left) A subset of Base Stations (BSs) located near Toulouse, France. (Right) A
naive graph representation that connects two nodes if the BSs are located less than 2km
away from each other. The subplots indicates the number of messages received daily over
one month by 3 nodes. Clearly, the two linked nodes (purple curves) are also closer to each
other in terms of received network tra�c, in both scale and correlation, compared to the
isolated one (red curve).

2 Objectives and Motivations

In the following, we describe the di�erent objectives that will be at the core of this document.

Detecting behavioral changes or anomalies at node-level in communication net-
works. This �rst objective is applied and essentially motivated by the industrial problem
raised by the collaboration with Sigfox. However, this detection task can arise in many
communication network-related settings (e.g. in social or computer networks), and in order
for this work to be more generally applicable, we will seek to propose methods for event
detection in a large spectrum of communications networks, including Sigfox. If, in the
context of the industrial collaboration, such a task could boil down to the detection of a
BS failure, in a sensor network for example [174] it can characterize the detection of an
issue at the level of a sensor or the value it quanti�es. In a computer or a social network,
such detection problem can arise, for example, in network security where the anomaly can
come from an attack (e.g. hacking, identity fraud, etc.) [6]. Previous examples illustrate
well the importance of such a task: non-detected anomalies can have signi�cant impacts
in the performances of the considered network. To sum up, our objectives will be to, �rst,
give a simple de�nition of a communication network which corresponds to a wide range
of real-life deployed networks. Similarly, we will consider simple notions of anomalies
that can be observed in various types of networks. Then, we will propose a way to detect
anomalies. And in order to remain close to our industrial application, we will restrict
ourselves to node-level detection, i.e. the event detection at the level of a single entity (e.g.
a base station, a computer, etc.).

Detecting change-points or anomalies in a set of graph signals. This more general
task was initially motivated by the conclusion we made in the previous section, namely
the fact that the data of interest are graph vectors. But of course, as explained in the
previous section, these types of signals are frequently observed in real-world applications,
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Figure 1.5: Illustration of the change-point detection task combined with graph inference.
Each dimension of the time-series corresponds to a node in the corresponding graph [73].

and building new algorithms for detecting anomalies or change-points which are adapted
to them is important. When the graph is known, it constitutes a prior knowledge about
the model that generates the data. It is therefore conceivable that the performance of
the algorithms can be improved by using this additional information [55]. It allows the
construction of new features or embeddings based on the information brought by the graph,
and thus, allows to discover more complex types of events [31]. Typically, an anomaly
detected at the level of one node can come from a value which is abnormal, with respect
to istself and with respect to its neighbors. When the graph is unknown, no much things
can be done. However, knowing that there exists an underlying graph structure tells an
important thing: if one wants to detect an anomaly or a change-point at the level of a
speci�c dimension (i.e a speci�c node), the values observed at the other nodes should
be considered as well since they are linked through graph edges [102]. Despite this, an
unknown graph suggests a �rst step that would learn the graph itself, in order to understand
better the data and apply more adapted event detection algorithms. This learning problem
constitutes our third objective.

Learning the graph structure underlying vector data. This objective is met in many
�elds and can be applied to any kind of vector data. In an extension of the notion of graph
signals previously mentioned, here the objective is to infer the underlying structure of the
data. In other words, the goal is to learn notions of relationships between variables, i.e. with
which other variables, a variable of interest is more similar or related with (e.g. in term of
correlation, conditional independence, scale, values etc.). Such learning procedure is done
using a set of vectors assumed to admit the same underlying graph. During the learning
process, structural penalties can be imposed, such as sparsity of the graph [50, 61, 132],
and in the present work, we will study some of them. Inferring such a graph structure has
several applications. First of all, it helps to understand the considered vector data with a
simple visualization brought by the graph. Moreover, such a learning task is often linked
with a model. This is particularly the case with Markov Random Fields [97], which in many
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situations assume a linear relationship between the variables, a relationship determined
by the graph itself [79, 132]. With such a modeling, we can imagine that one could try to
predict the value of a node as a function of the other node values and the graph weights.
This illustrates well the applicability of the learned graph. It can also be used in many
machine learning algorithms that require a graph, typically the spectral clustering algorithm
[123], semi-supervised algorithms [17], in the framework of the Graph Signal Processing
[124], etc. One of the most famous real-world application of graph learning is in biology,
with genes interaction network emphasizing genes that are most of the time expressed
together. At Sigfox, we could think that the graph is directly given by the spatial position of
the BSs (Figure 1.4), assuming that nearby BS will receive a lot of messages in common. In
practice this is not always true, two BSs located at a small distance from each other can be
separated by a wall or be at di�erent altitudes, making them quite di�erent in their ability
to receive a same signal. This observation made us conclude that the graph learning task
could also be interesting with Sigfox reception data.

Detecting changes in the underlying structure of vector data. This objective can
be seen as a combination of graph learning and change-point detection. In fact, contrarily
to the vast majority of change-point detection techniques that look for a signi�cant change
in the mean of a time-series, the task here is to detect a change in the underlying graph
structure itself. Thus the objective is twofold, �nding time-instances between which all
the observed vector data has the same underlying graph structure as well as learning
these graphs. An illustration of such a task is provided by Figure 1.5 for a real-valued
time-series with 3 dimensions. In addition to determining instances of time at which the
system has undergone some changes, methods that meet this objective also take advantage
of the bene�ts that can be brought by the graph inference (see the previous paragraph), i.e.
modeling, applicability of machine learning algorithms, etc. In particular, the visualization
aspect mentioned above allows a strong understanding and interpretability of the found
change-points [104].

Dealing with binary graph signals. This last objective is essentially motivated by the
fact that the considered vector data are binary. Indeed let us recall that in our application
setting, a raw data is a vector corresponding to a message broadcasted by a device in Sigfox
network. This vector encodes which BS have received the signal of the message or not.
Nevertheless, this problem remains important in many other contexts [5], particularly due
to the fact that it is often less studied than real-valued vector data or time-series.

3 Background

In this section, we propose to brie�y recall some fundamentals on event detection, namely
anomaly and change-point detection, on graph theory, and on vectors observed over graphs.
The objective is to provide some basic de�nitions, notions, and algorithms that will be
useful in the rest of the manuscript.

3.1 Anomaly detection

In its most classical version, anomaly detection refers to the task of �nding in a data set
a small amount of vector data that has been generated by a di�erent distribution model
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Figure 1.6: An illustrative example of anomalies in a two-dimensional data set.

than the majority of them. This simple formulation has motivated many statistical anomaly
detection methods which assume that anomalies stand in regions of low density. Among
them, the one of [58] assumes that the normal data are generated by a known in advance
probability distribution and considers abnormal the data that stands in a region of low
probability.

While being the most generic, the previous formulation actually corresponds to a
particular framework of anomaly detection. In fact, depending on the labels available,
anomaly detection tasks can be divided in three types. The supervised anomaly detection
consists in training the algorithm based on a labeled (normal/abnormal) data set including
both normal and abnormal observations. This type of detection is therefore highly related
to the problem of classifying imbalanced data [151]. The second scenario is the novelty
detection framework, also referred as one-class classi�cation or semi-supervised anomaly
detection. In this setting, only normal data are available for the learning phase. This is the
case in applications where normal behaviors are known but e.g. intrusion or attacks induce
an unknown behavior and must be detected. This scenario is the one considered in Chapter
2. Finally, the unsupervised setup refers to the one presented in the previous paragraph:
the learning data set contains both normal and abnormal data but no labels are available.

Usually, most anomaly detection algorithms do not simply map the input vector to a
binary value (indicating an anomaly or not). Instead, they return a real-valued function,
referred as scoring function, that outputs, for a given input vector, a real value as score of
abnormality. The advantage of using such a scoring function is that it allows to rank the
samples from the less to the most abnormal. This is very important when one has a lot of
data to deal with and wants to prioritize some anomalies. Moreover, if one wants a binary
output, it su�ces to �x a threshold above which the score will be considered abnormal.

There exists a wide variety of anomaly detection algorithms, from those based on density
learning [25, 140, 141, 165], like previously explained, to those based on, e.g. decision trees
[111]. This great variety of algorithms is accentuated by the kind of available labels, as
explained earlier, but also by the type of the analyzed data. Here we focus on classical
vector data, but these can be temporal or even text data. It would therefore be impossible
to make an exhaustive list of these methods here, and for complete surveys one may refer
to [28, 127]. In the following, we present an e�cient anomaly detection algorithm, for
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standard vector data, that performs well on both the unsupervised and the semi-supervised
labeling scenarios.

3.1.1 One-class SVM

The One-class Support Vector Machine (SVM), �rst introduced in [140], extends the standard
SVM for classi�cation with two classes to the problem of novelty detection. Indeed, rather
than having access to a labeled data set with both positive and negative labels, it assumes
that all the input data belong to class 1 (the normal class). Then, instead of constructing a
hyperplane separating two classes, it constructs a hyperplane separating the mapped input
points from the origin of the mapped space, treated here as the only point of the second
class.

Formally, in its soft-margin version, the One-class SVM works as follows.

Let x(1), . . . , x(n) ∈ Rd be n observations and Φ : Rd → H be a feature map in a
Reproducing Kernel Hilbert Space [13] H with kernel k (usually the Gaussian kernel).
To separate the data from the origin, the one-class SVM solves the following quadratic
program:

min
ω∈Rd,ξ∈Rn,ρ∈R

1

2
‖ω‖2 +

1

n

n∑
i=1

ξi − νρ

s.t 〈w,Φ(x(i))〉 ≥ ρ− ξi, i = 1, . . . , n

ξi ≥ 0,

where ν ∈ (0, 1) is a hyperparameter that prevents over�tting and allows the training data
set to contain outliers. In fact, it can be showed that ν corresponds to an upper bound on
the fraction of anomalies that are allowed in the learning set. The decision function used
to detect anomalies is given by:

f(x) = sign(〈w,Φ(x(i))〉 − ρ),

which will, as required, be positive for most of the learning vectors.
From the previous de�nition, the One-class SVM can be seen as the estimation of a

space having minimum volume while containing almost all the input data. In fact, it is
linked with the estimation of a Minimum Volume set [141] with mass 1− ν, i.e. the set of
minimum volume with respect to the Lebesgue measure but having a mass of 1− ν with
respect to the probability measure of the normal data.

3.1.2 Quality measures

Like any other learning method, being able to evaluate the quality of anomaly detection
algorithms is very important. When labels are available, every quality measure used for
binary classi�er and scoring functions can also be employed in this case. These include,
for example, the analysis of the Receiver Operating Characteristic (ROC) curve and the
associated Area Under the Curve (AUC). One of the drawbacks of using such measures is
that they are not particularly adapted for imbalanced classes. For this reason, measures
related to the normal class, such as the false positive rate, may be preferred.
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When few or no labels are available, the question of evaluating the quality of the
algorithms remains an open question. Some tracks, seeking to extend the notion of ROC
curves to the no label scenario, have notably been studied in [67] and are related to Excess-
Mass and Mass-Volume curves. However, these methods will not be considered in the
present manuscript and, when necessary, labels will be available.

3.2 Change-point detection

Change-point detection is a particular task of time-series analysis. Its objective is to �nd
time-instances at which signi�cant changes occur in the underlying model of a given
time-series. A stated in Section 1.1, this task has many applications, whether it is in speech
processing [76], climatology [134], network tra�c data analysis [108], etc. An illustration
of this segmentation problem is provided in Figure 1.1.

The change-point detection task can be divided in two main categories: o�ine and
online detection. In the o�ine scenario, the segmentation is performed after the signal
has been observed entirely, it is also referred as a posteriori detection. On the contrary,
in the online scenario we aim at �nding the change-points in real time, while the vector
data are being observed. This task is also referred as sequential change-point detection.
In the present section we focus on the o�ine scenario, which is considered in Chapter 4.
This o�ine task can again be split in two subcategories: the case where the number of
change-points to discover is known and the situation when it is unknown. Most of the time,
the di�erence between the resolution of the two problems lies in the addition of a term
penalizing the number of estimated change-points in the optimization program. Before
going further, let us describe the problem more formally.

We consider the statistical framework described in the review of [157]. Let {x(i)}ni=1 be
a time series in Rd assumed to be piecewise stationary, meaning that there exist instances
T ? = {t?1, . . . , t?K?} ⊂ {1 . . . , n} at which the model underlying the time-series changes.
The objective of change-point detection is to recover the indexes T ?, and therefore the
number of change-points when it is unknown. To do this, most of the methods found in the
literature seek a set of indexes T = {tk}Kk=1 ⊂ {1 . . . , n}, estimating T ?, that minimizes a
function of the form

K∑
k=0

c({x(i)}tk+1

i=tk+1), (1.1)

with t0 = 0, tK+1 = n and c(·) is a cost function that evaluates the quality of each learned
segment. When the number of change-points is known, K = K?, otherwise, a term
penalizing the size of T is added.

All change-point detection methods then di�er in two main aspects: either on the cost
function that is used, usually linked to the model underlying the data (e.g. parametric or
not), or on the method used to solve the minimization problem stated above. The problem
being combinatorial, many solutions have been proposed (greedy resolution, dynamic
programming, heuristics, etc.). The wide variety of cost functions and minimization methods
does not allow us to be exhaustive and we invite the reader to see the review of [157] for
examples and in-depth discussion. Nevertheless, we give below an example of a model and
an associated cost function that we think are important to know.
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Example 1.1. The maximum likelihood approach.
In this example, the samples of the time-series are assumed independent and identically
distributed (iid) piece-wise constantly. In other words, for a given family of parametric
distribution densities {f(·|θ)}, we have ∀i = 1 . . . , n:

x(i) ∼
K?∑
k=1

f(·|θk)1{t?k ≤ k < t?k+1}.

One way to learn the parameters of such model, and thus �nd the change-point, is to
perform maximum likelihood. This is equivalent to taking the following cost function:

c({x(i)}tk+1

i=tk+1) = − sup
θ

tk+1∑
i=tk+1

log f(x(i)|θ).

The previous example is probably one of the most considered frameworks for change-
point detection [60, 101, 144]. The piece-wise i.i.d. framework is actually considered in
Chapter 4, but with a slightly di�erent cost function.

3.2.1 Quality measures

Here again, assuming the access to the true change-points, many metrics has been proposed
to evaluate the quality of segmentation algorithms. Among them, metrics based on those of
binary prediction (change-point or not) such as the F1-score. However, these do not take
into account the temporal aspect of the problem and one should therefore prefer Hausdor�’s
metric. The latter de�nes the error h(T ?, T ) of the set of estimated change-points from
the real ones as the greatest temporal distance between a change-point and its prediction:

h(T ?, T ) , max

{
max
t?∈T ?

min
t∈T
|t− t?|, max

t∈T
min
t?∈T ?

|t− t?|
}
.

Such metric has the advantage to penalize both over-segmentation and under-segmentation.

While the previous metric evaluates the quality of an algorithm empirically, it is also
important to evaluate the quality from a theoretical point of view. This is done with the
notion of consistency [157] which states that as soon as the number of samples in each
segment tends to in�nity, we must have P(K = K?) → 0 and n−1h(T ?, T ) → 0 in
probability.

3.3 Graph theory and models for graph vectors

3.3.1 Basic de�nitions

Graphs are mathematical objects describing potentially complex systems via a set of in-
terconnected entities, referred as nodes. They appear in many �elds and applications,
particularly those involving the notion of networks, such as biological networks, neural
networks, sensor networks, computer networks, telecommunication networks, social net-
works, transportation networks... Graphs are then the most widely used tool to describe
and model these networks. In the following, we give basic de�nitions and concepts of
graph theory.
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Figure 1.7: Exemples of directed, undirected and weighted graphs with four nodes.

De�nition 1.1. (Directed graph.) A directed graph G = (V, E) is de�ned via a �nite set of
nodes (or vertices) V = {v1, . . . , vp} and a set of edges E ⊂ V × V , i.e. pairs of nodes that
are considered neighbors. In particular, if (u, v) ∈ E , we say that u is a parent of v and v is a
child of u.

In the following we do not consider self-edges, meaning that for any node u in V ,
(u, u) /∈ E . Moreover, we may refer to a node vi ∈ V simply by its index i.

De�nition 1.2. (Undirected graph.) An undirected graph G = (V, E) is a directed graph
whose edge set E is symmetric i.e. ∀(u, v) ∈ E , (v, u) ∈ E . In this context, there is no notion
of parent nor children and connected nodes are simply referred as neighbors.

De�nition 1.3. (Weighted graph.) A weighted graph G = (V, E) is a graph whose edge set
E = {(u, v, wuv), u, v ∈ V} associates to each edge (u, v) ∈ E a weight wuv ∈ R+. If the
graph is undirected, we have ∀(u, v) ∈ E , wuv = wvu.

Remark 1.1. Although largely assumed, the positive assumptions of the weights is not
mandatory. When this is not supposed, it will be speci�ed.

In the following, unless speci�ed, the graphs are assumed undirected.

De�nition 1.4. (Adjacency matrix.) Let G = (V, E) be a graph of size p. Its adjacency
matrix A ∈ {0, 1}p×p is a binary matrix whose entries indicate the presence or absence of
edge. ∀i, j ∈ {1, . . . , p}:

Aij =

{
1 if (vi, vj) ∈ E
0 otherwise.

The adjacency matrix entirely describes its corresponding graph, allowing mathematical
manipulations and the formulation of some graph characteristics. For example, the total
number of edges of a graph simply corresponds to ||A||1 and the degree of a node i is∑

j Aij . A is always symmetric for undirected graphs and its generalization to weighted
graphs is the weight matrix W whose entries corresponds to the edges weights. In the
following, the graphs are assumed weighted.

De�nition 1.5. (Degree and degree matrix.) Let G = (V, E) be a weighted graph of size
p with weight matrixW . ∀i ∈ {1, . . . , p}, the degree of the node vi is di =

∑
jWij . The

degree matrix D of the graph is the diagonal matrix that contains all the nodes degrees.

De�nition 1.6. (Combinatorial graph Laplacian.) The combinatorial graph Laplacian of a
graph G with weight matrixW and degree matrix D is the matrix L = D −W .
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Figure 1.8: Some examples of important graph topologies. The last one (e) admits two
connected components.

In the same way as the adjacency matrix, a Laplacian matrix describes entirely its
associated graph. In particular, it is known to carry important topological characteristics
of the graph and to be linked with spectral graph theory. For example, the number of
eigenvalues of L that are equal to zero corresponds to the number of connected components
of the graph. A connected component being a subset of nodes for which there always exist
a path between them, and there exist no path with any other node. An illustration of a
graph with two connected components is given in Figure 1.8e.

De�nition 1.7. (Graph vector.) A graph vector, also referred as graph signal or graph
function, is a function x : V → R that assigns a real value to all nodes of a graphG = (V, E).
This function can be represented by a simple vector x ∈ Rp with xi the value of x at node vi.

This last object allows to de�ne vector data that are observed over a network structure,
which is a fundamental aspect of the data that we consider throughout the thesis. Never-
theless, a question remains: what the graph bring to the modeling of this type of vectors.
Indeed, taken like that, a graph vector remains a simple vector. In the next sections, we
present two di�erent points of view that answer this question. These two frameworks are
both considered in the rest of the thesis.

3.3.2 The Graph Signal Processing framework

Graph Signal Processing (GSP) [124, 147] is a relatively recent �eld. Its aim is to extend
most of the tools developed in the �eld of signal and image processing to graph signals.
Thus, notions such as smoothness, sampling or spectral representation of a signal has
been extended to cover this type of data. In fact, temporal signal and images are seen as
special cases of graph signals where the associated graph corresponds to either a line for
a temporal signal or a grid for an image (see Figure 1.8). Within the context of GSP, the
graph can now be arbitrary.

In this framework, and similarly to temporal signals or images, the value recorded at
a speci�c node is seen as a shifted version of the values recorded at its neighbors. In the
following, we recall some basic notions of GSP and properties assumed to be shared by
most of the graph vectors.

De�nition 1.8. (Smoothness.) LetG = (V, E) be a graph of size p with weight matrixW , L
be its Laplacian matrix, and y ∈ Rp be a graph signal seen over it. We say that y is s-smooth
with respect to the graph G if

yTLy =
1

2

∑
i,j∈[p]

wij (yi − yj)2 ≤ s . (1.2)
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The previous de�nition provides a notion of smoothness for graph signals. Intuitively, a
graph signal y is s-smooth with respect toG if adjacent nodes of the graph carry su�ciently
similar signal values. The smaller s is, the smoother the graph signal is. In the GSP
framework, graph signals are most of the time assumed smooth with respect to their
associated graphs, i.e. with small s values.

Remark 1.2. The particular case where s = 0 implies that all neighboring nodes have the
same value.

De�nition 1.9. (Graph Fourier Transform.) Let G = (V, E) be an undirected graph with
no self-loops, and L = XΛXT be the eigenvalue decomposition of its Laplacian matrix. Then,
the Graph Fourier Transform (GFT) of a graph signal y ∈ Rp is given by

h = XTy,

where the components of h are interpreted as Fourier coe�cients, the eigenvalues Λ as distinct
frequencies, and the eigenvectors X as a decomposition basis.

This de�nition was initially motivated by the fact that, applied to temporal signals
or images, it was recovering the classical Fourier transform. Moreover, it is empirically
observed that eigenvectors of X associated to the smallest eigenvalues in Λ are showing
less variability across neighboring nodes values than those associated with the biggest,
motivating as well the comparison with Fourier analysis.

De�nition 1.10. (Spectral sparsity.) Let k ∈ N+, we say that a graph signal y admits a
k-sparse spectral representation (equivalently that y is k-bandlimited) with respect to a graph
G, if for h = XTy we have

‖h‖0 ≤ k , (1.3)

where ‖h‖0 stands for the number of non-zero elements of h.

Regarding this de�nition, y admits k-sparse spectral representation if the number of
non-zero elements in its Fourier coe�cients vector is less or equal to k. k-bandlimitedness
is the second property assumed to be shared by most graph vectors of the GSP framework.
When k is small, this implies that the entire signal can be recovered from a small number of
nodes values. Finally, note that if the smoothness property is also assumed, zero-coe�cient
will have more chance to be associated with large eigenvalues (i.e. high frequencies). This is
in accordance with the spectral domain analysis of standard signals where high variability
across neighboring nodes values is mostly explained by noise.

3.3.3 A probabilistic framework

In the previous part, graph functions and their corresponding graph was linked together via
properties coming from classical signal processing, namely smoothness and bandlimitedness.
In the framework presented here, graph vectors are seen as random vectors drawn from a
probability distribution known as Markov Random Fields (MRF). For this type of probability
distribution, the graph encodes a particular dependency structure that is explained in the
following.
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De�nition 1.11. (Conditional independence.) LetX , Y and Z be three real-valued random
variables and denote by FX|Z=z(x) (respectively FY |Z=z(y)) the cumulative distribution
function (cdf) of X (respectively Y ) knowing Z = z. We say that X and Y are conditionally
independent on Z , denoted X ⊥⊥ Y |Z if and only if, ∀x, y, z we have:

FX,Y |Z=z(x, y) = FX|Z=z(x)FY |Z=z(y).

To some extent, the fact that X and Y are conditionally independent with respect to Z
tells us that given Z , then knowing X does not bring any information on the likelihood of
Y and conversely.

Remark 1.3. Two conditionally independent variables can be dependent and conversely.

De�nition 1.12. (Markov Random Field.) Let G = (V, E) be an undirected graph and
X = (Xi)i∈V be a random vector whose entries are indexed by the vertices V . We say that X
is drawn from a MRF associated to G if the following properties hold:

(a) Xu ⊥⊥ Xv | XV {u,v}, for any edge (u, v) /∈ E .

(b) Xu ⊥⊥ XV N (u) | XN (u), ∀u ∈ V and where N (u) = {v ∈ V : (u, v) ∈ E} is the
neighborhood of u.

(c) XA ⊥⊥ XB | XS , for any disjoint subset A,B, S ⊂ V such that S separates A and B
i.e. any path from A to B (and conversely) passes through S.

Remark 1.4. It can be showed [100] that (c)⇒ (b)⇒ (a). For certain probability distribu-
tion, the reverse is true as well, its notably the case of variables admitting a positive density
function.

Given the previous de�nition, we understand that building MRFs is not straightforward.
For this reason, MRFs are often reduced to the class of probability distribution that factorizes,
a class of probability distribution that has been shown to validate the three properties
required to be an MRF.

De�nition 1.13. (Factorization.) LetG = (V, E) be an undirected graph andX be a random
vector indexed by V with probability distribution PX(·). Recall that a clique is a subset of
nodes that are all connected together, we say that PX(·) factorizes in G if it is of the form:

PX(x) =
1

Z

∏
C∈C

ψC(xC), (1.4)

where C is the set of all cliques of G, ψC(·) are non-negative potential functions and Z is the
normalizing constant.

The potential functions can be arbitrary and, for a given probability distribution that
factorizes, are not necessarily de�ned uniquely. Famous examples of distributions that
factorize, and are therefore MRFs, are the Gaussian Graphical Models and Ising models.
The �rst one is easy to characterize: for any graph G with weight matrix W , the vector
X ∼ N (·,W−1) factorizes in G. Ising models are considered in Chapter 4 and reminders
are made in it.
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4 Organization of the thesis

The thesis is organized as follows. Note that each chapter can be read independently.

• Chapter 2: Anomaly detection in communication networks: applications to Sigfox.
This chapter is essentially dedicated to the resolution of the �rst objective described in
Section 2. The anomaly detection task is taken from the angle of activity monitoring
in a communication network. In other words, anomalies are spotted based on e.g.
an abnormal number of interactions, amount of exchanged information, number of
received signals, etc. This very general framework allows it to be applicable to a
large class of communication networks, including Sigfox.
In the chapter, we �rst brie�y overview the literature on anomaly detection in
networks, emphasizing on the graph representation aspects behind it. We also
present a simple novelty detection algorithm that aims to detect abnormal levels of
communication activity at the level of a node. This algorithm relies on the intuition
that the level of activity of a node can be determined or predicted by looking at the
level of activity recorded at its neighboring nodes. Thanks to having access to a
‘normal’ data set and conventional supervised learning methods, the relationship
between nodes activity can be learned. Afterwards, an anomaly is detected when the
predicted level of activity is far from the real one.
This method is showed to perform well on both synthetic data and data coming from
Sigfox network, which allows us to conclude to the resolution of the �rst objective. In
addition we will see that the presented approach is linked with some other objectives,
particularly with the task of graph-based event detection and graph inference that
are core-subjects of the thesis and are investigated in the remaining chapters.

• Chapter 3: Structure inference from smooth and bandlimited graph signals.
In this chapter we consider the problem of learning the underlying structure of a set
of graph vectors, i.e. the graph on which they are observed . This chapter is thus
linked with the third objective described in Section 2. The graph vectors are assumed
to enjoy a sparse representation in the graph spectral domain, a feature which is
known to carry information related to the cluster structure of a graph. The signals
are also assumed to behave smoothly with respect to the underlying graph structure.
For the graph learning problem, we propose a new optimization program to learn the
Laplacian of this graph and provide two algorithms to solve it, called IGL-3SR and
FGL-3SR. Based on a 3-steps alternating procedure, both algorithms rely on standard
minimization methods –such as manifold gradient descent or linear programming–
and have lower complexity compared to state-of-the-art algorithms. While IGL-3SR
ensures convergence, FGL-3SR acts as a relaxation and is signi�cantly faster since
its alternating process relies on multiple closed-form solutions. Both algorithms are
evaluated on synthetic and real data.

• Chapter 4: Detecting changes in the graph structure of a varying Ising model.
This last chapter addresses the demands of the last two objectives de�ned above. It
adopts the probabilistic framework for the modeling of graph vectors and assumes
them to be drawn from an Ising model. In particular, the chapter focuses on the



5. PUBLICATIONS 31

estimation of multiple change-points in a time-varying Ising model that evolves piece-
wise constantly. The aim is to identify both the moments at which signi�cant changes
occur in the Ising model, as well as the underlying graph structure of each segment
of the signal i.e. the part between two change-points. For this purpose, we propose
to estimate the neighborhood of each node by maximizing a penalized version of its
conditional log-likelihood. The objective of the penalization is twofold: it imposes
sparsity in the learned graphs and, thanks to a fused-type penalty, it also enforces
them to evolve piece-wise constantly. Using few assumptions, we provide two change-
points consistency theorems. Those are the �rst in the context of unknown number
of change-points detection in time-varying Ising model. Finally, experimental results
on several synthetic data sets and real-world examples demonstrate the performance
of our method.

5 Publications

The work presented in this manuscript has resulted in publications and submissions in
international conferences and journals:

• B. Le Bars and A. Kalogeratos, A Probabilistic Framework to Node-level Anomaly
Detection in Communication Networks, In IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, pp. 2188-2196, 2019

• B. Le Bars1, P. Humbert1, L. Oudre and A. Kalogeratos, Learning Laplacian Matrix
from Bandlimited Graph Signals, In ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2937-2941, 2019

• P. Humbert1 , B. Le Bars1 , L. Oudre, A. Kalogeratos and N. Vayatis, Learning Laplacian
Matrix from Graph Signals with Sparse Spectral Representation, Submitted to JMLR,
2020

• B. Le Bars, P. Humbert, A. Kalogeratos and N. Vayatis, Learning the piece-wise con-
stant graph structure of a varying Ising model, In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020

• P. Humbert1, B. Le Bars1, L. Minvielle1 and N. Vayatis, Robust Kernel Density Esti-
mation with Median-of-Means principle, To be submitted, arxiv, 2020
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Abstract

Monitoring the activity in communication networks has become a popular area of
research and particular attention has been paid to detection tasks such as spotting
anomalies. In this chapter, we brie�y overview the literature on this subject, empha-
sizing on the graph representation aspects behind it. We present a simple supervised
learning-based algorithm that aims to detect abnormal level of communication ac-
tivity in networks like Sigfox. This approach is showed to be linked with the task of
graph-based event detection and graph inference, subjects at the core of the thesis in
the following chapters.

Associated publication:
A Probabilistic Framework to Node-level Anomaly Detection in Communication Networks
[102], Le Bars, Batiste and Kalogeratos, Argyris
Appeared in IEEE Conference on Computer Communications (INFOCOM), 2019.
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1 Detecting anomalies in networks: a graph perspective

1.1 Introduction

Over the past years, thanks to an increasing availability of data and tools to analyze them,
detecting anomalies in communication networks has become an important area of research.
This task, which looks for events that deviates from the normal network behavior, arises in
many network related problems such as monitoring and security [6, 155].

In the present chapter, we refer to communication network, or simply network, as a
set of entities that can interact or exchange information between each other. This simple
formulation allows to cover a large spectrum of networks such as computer networks
[82, 174], e-mail networks [167], telecommunication network [102] or social networks
[77, 87]. However, with such a wide range of networks types, notions of interaction and
anomaly may di�er a lot. For example, in computer or wireless networks, an interaction
refer to bits of information that pass from one node to another (possibly via other nodes) and
an anomaly can refer to a network attack. In an e-mail or a social network, the interaction
are directly node-to-node and an anomaly can refer to account hacks for example.

The standard way to detect anomalies in networks [6] is to, �rst, preprocess the available
data (data engineering step) and then apply standard anomaly detection techniques, such as
Local Outlier Factor [25] or One-Class SVM (see the background in Chapter 1), over those
preprocessed data. The way those two steps are performed may depend on the labeling
of the data (e.g. with or without labeled anomalies), the kind of available data (e.g. the
content of the exchanged information: images, text...), and for example, the ability or not
to build a statistical model from them. We can see from this simple procedure that the
most important part is the preprocessing step, which obviously depends heavily on the
type of considered network, the content of the exchanged information and the type of
anomalies we aim to discover. In the next section, we consider a framework to describe
and preprocess the data which is adapted to many di�erent situation and which requires
data usually available at low cost.

1.2 Representing the network activity via dynamic graphs

An intuitive way to represent a communication event involving a set of entities in a network
is via a graph. In such a graph, the nodes correspond to all the entities of the network
and the edges indicate the structure of the event i.e which node directly interacted with
which other node. Taking Sigfox network as an example, a message sent from a device to a
set of surrounding Base Station, can be represented by a graph with edges connecting the
involved BSs to the device, or simply connecting the BSs together if we omit the device (see
�gure 2.1). With this formulation, the stream of communication events generates a graph
evolving over time, with edges appearing and disappearing every time a communication
event begins or �nishes [99].

In practice, analyzing such a stream of interactions can be di�cult and a standard
approach is to analyze the network activity via a time-discretized series of graphs [38]. In
other words, the time is discretized (over a daily basis for example) and at each timestamp,
a graph aggregating all the interactions that occurred at the corresponding period of time
is built. Usually, the weights of the graph edges counts the number of interactions that
occurred (or the amount of data shared) between two nodes over the speci�c timestamp
(see Figure 2.2).
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Figure 2.1: A communication event at Sigfox and its graph representation. Only the Base
Stations (BSs) are considered in the graph.

In addition to being adapted to many communication networks, the use of this graph-
representation is motivated by the fact that, in reality, content-speci�c features of the
exchanged information are usually kept undisclosed so as to preserve privacy (e.g the
content of the e-mail). Furthermore, it captures the structure of the network such as
clusters or isolated nodes. Consequently, most studies on network anomaly detection
only deal with this time-series of graphs representation of their data to build the features
[38, 77, 130, 167] and can thus rely to the vast literature on dynamic graph anomaly
detection, brie�y recalled is the next section. Although adapted to many kinds of networks,
this simple data-representation has nevertheless some limitations. First, it does not allow to
recover every types of anomalies, but mostly those related to the communication activity
and the network structure. Furthermore, the aggregated representation loses information
about interactions involving more than two nodes (e.g. multiple receivers) since edges keep
in track only node-to-node interactions.

1.3 Recall on the anomaly detection for dynamic graphs

The task of anomaly detection in a time-series of graphs, referred as dynamic graph [131]
is closely related to the one of classical anomaly detection for temporal data. Similarly, the
goal is to �nd a subset of graphs that deviates from the majority. The standard approach
consists in computing several graph features (e.g. degree of a node, edges weights, centrality
measures, shortest path etc.) over each graph, and then apply classical anomaly detection
techniques on the derived set of vector data [28, 32, 72]. The methods we can �nd in the
literature di�er in the same way as in the classical case. They vary notably according to
the availability of the labels i.e supervised, semi-supervised (access to a dataset of normal
data) [46, 140, 141] or unsupervised (no label available) [25, 82], the type of used method
i.e probabilistic model-based [4, 38, 77, 121, 129, 130, 170], distance based [25] etc.

Apart from the graph-based feature engineering, the dynamic graph’s anomaly detection
also di�er from the classical case in the notion of scale of abnormality. In fact, the anomaly
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Figure 2.2: Aggregated representation of a stream of communication events over two time
intervals.

can be spotted at the level of a node [77, 87], a subgraph [121], or the whole graph-level
[38]. For a complete survey on dynamic graph’s anomaly detection, the reader should refer
to the survey of [131].

2 A regression-based novelty detector

In this section, we describe an intuitive way to detect abnormal level of communication
activity recorded at the level of a node. The proposed approach rely on the intuition that
networks often has an underlying structure with clusters and neighborhood, meaning that
a node usually communicates with a certain subset of other nodes. Based on this intuition,
the idea of the presented approach is to consider the communication activity recorded at a
node as abnormal by looking at its neighbors activity. More precisely, we assume that it is
possible to predict the activity of a node, based on the level of activity of the remaining
nodes. Before going into further details, let de�ne our model and the objectives of the
detection task.

2.1 Model description

We consider a communication network with N entities, referred as nodes, that can interact
between each other. In this network, we assume that a communication event can occur at
any moment, and can be shared by many nodes at the same time.

De�nition 2.1. (Communication event): A communication event is entirely described by
an N -dimensional binary vector X = (X1, . . . , XN ) ∈ {0, 1}N , referred as �ngerprint,
indicating which node took part in the event. Xj = 1 if node j is involved in the event, and 0
otherwise.

With such a de�nition of communication event, all the involved nodes are assumed to
communicate equally between each others, with no notion of roles (e.g. sender or receiver).
From a graph point of view, a communication event thus creates a clique containing all the
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involved nodes.

Since no notion of roles nor protocol are assumed, many examples of communication
networks would �t this simple setting. At Sigfox for example, each Base Station corresponds
to a node, a message corresponds to a communication event, where the �ngerprint X
indicates which BS has received the message (Xj = 1 means that the j-th BS has received
it). We can also think of an e-mail network, where each node corresponds to an e-mail
address, an e-mail corresponds to an event, where the corresponding �ngerprint indicates
which email addresses received it. Last but not least, the network can correspond to a
company where each node is an employee and a communication event corresponds to a
meeting.

Assumption 2.1. An event X corresponds to a random vector of size N with probability
distribution denoted PX . Given a set of communication events {X(1), . . . , X(n)}, we assume
that the communication events are all independent (but not necessarily identically distributed).

De�nition 2.2. (Conditional probability function): Let X j be the �ngerprint of the event X
that indicates the participation of all nodes except node j. Let x j be a realization of X j and
denote η∗j (x j) the probability that node j participates in the eventX , provided the �ngerprint
x j :

η∗j (x j) , P(Xj = 1|X j = x j) (2.1)
= E [Xj |X j = x j ] .

Knowing the �ngerprint over all the other nodes allows us to express the behavior of
node j as a Bernoulli random variable:

Xj ∼ B
(
η∗j (x j)

)
. (2.2)

Assumption 2.2. All the considered communication events have the same conditional
probability functions. In other word, let {X(1), . . . , X(n)} be any set of communication
event, then, for any node j and any �xed �ngerprint x j ∈ {0, 1}N−1, we have ∀i = [n],

X
(i)
j

iid∼ B
(
η∗j (x j)

)
.

The previous assumption states that even if the events are non identically distributed,
the conditional probability function, and thus the dependency structure between the nodes,
is the same for each event. The aforementioned assumption can be understood easily for
Sigfox. Since the network is constantly evolving, with the appearance of new devices, at
di�erent location, the joint probability distribution of an event can change easily. However,
the BS are spatially distributed on earth and the fact that a BS receives or not a message,
highly depends on the fact that its neighboring BS has received it or not. Since their posi-
tions are �xed, one can easily imagine that the dependency structure this spatial proximity
implies will not change.
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2.2 Objective and ideal scoring function

Let Dn = {X(i)}ni=1 be a set of n communication events. Let Mn
j =

∑n
i=1X

(i)
j be the

random variable of the number of events recorded at a node j ∈ [N ]. Our objective is,
for a �xed node j ∈ [N ], to determine if the observed volume of events in which that
node participates, denoted mn

j =
∑n

i=1 x
(i)
j , is abnormal. Assuming the access to all the

probability distributions, a way to perform this task is to provide con�dence levels for Mn
j

and look whenever mn
j stands in a region of low probability.

In the present approach, we propose to use the knowledge brought by the �ngerprints
of the other nodes and build these con�dence levels knowing them. Thus, an anomaly
will be detected if, regarding the communication activity recorded at every node but j, the
number of event the node j has participated in is too low are high. Below we de�ne our
ideal scoring function, assuming the access to the underlying probabilistic model.

De�nition 2.3. The conditional cumulative distribution function ofMn
j , knowing the �n-

gerprints {x(i)
j }ni=1 is denoted by:

FMn
j

(m) = P

(
Mn
j ≤ m

∣∣∣∣∣ ∀i = 1, . . . , n, X
(i)
j = x

(i)
j

)
(2.3)

Knowing the �ngerprints of the other nodes, Mn
j corresponds to a sum of n Bernoulli

random variables, with parameter p(i)
j , η∗j (x

(i)
j ) for i ∈ [n]. This distribution is called

Poisson Binomial [80, 152] and its cumulative distribution function (cdf) has a closed-form
solution given by:

FMn
j

(m) =
m∑
k=1

∑
A⊂[n],|A|=k

(∏
i∈A

p
(i)
j

∏
l∈Ac

(1− p(l)
j )

)
(2.4)

This function can be computed e�ciently via the method presented in [80], it is based
on the computation of the Discrete Fourier Transform of the characteristic function of the
Poisson Binomial distribution. We refer by PoiBin(m; p

(1)
j , . . . , p

(n)
j ) the computation

of such function using their algorithm. Assuming the knowledge of the parameters p(i)
j ,

we can propose the following anomaly scoring function.

De�nition 2.4. (Anomaly scoring function): Under the previous model, we de�ne the anomaly
scoring function of the volume of events recorded at node j by:

s(mn
j ) = max

{
FMn

j
(mn

j ), 1− FMn
j

(mn
j )
}

(2.5)

Such scoring function is in [0, 1] and the closer to 1 is s(mn
j ), the moremn

j is considered
abnormal. Indeed, when the �rst term in the max of equation 2.5 is close to one, it means
thatmn

j stands in the right-hand tail of the distribution ofMn
j , which encode an abnormally

high number of recorded events at node j. On the opposite, a high value of the second
term will encode an abnormally low number of observed communication events.
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2.3 A supervised learning framework

In practice, we do not have access to the true conditional probability function η∗j (·) and we
propose to estimate it in order to build a proper scoring function. To this end, we suppose
we have access to a training set of communication events Dtrain, assumed to have been
recorded at times of normal communication behavior. With our de�nition of η∗j (·) (De�ni-
tion 2.2), the estimation problem refers to the task of estimating a conditional probability
function. Under our speci�c modeling, η? corresponds to the conditional expectation of Xj ,
knowing the value of X j and thus can be seen as the function regressing Xj using X j .
This regression function can be learned using the healthy datasetDtrain and any regression
algorithm outputting values between 0 and 1 (e.g logistic regression, binary trees, random
forest etc.). Such regression algorithm is referred as Regressor in algorithm 2.1, it takes
as input a set of observed variables {x(i), y(i)} where x stands for the explanatory variable
and y for the target one and outputs the corresponding regression function.

Let η̂j(·) be our estimated regression function of Xj given X j . To build our anomaly
scoring function, we propose to simply replace p(i)

j by p̂(i)
j , η̂j(x

(i)
j ) in the conditional

cumulative distribution function (cdf) of Eq. 2.4 and replace this new version of conditional
cdf in Eq. 2.5. In practice, outputting a score is not enough to spot an anomaly, and one
has to �x a threshold s above which the score will be considered abnormal. While this
threshold is not always easy to �x in practice, the fact that our scoring function belongs
to [0, 1] and has a probabilistic interpretation allows us to �x it intuitively. Indeed, if the
conditional cdf is well estimated, our scoring function allows to control the false positive
rate: �xing the threshold to s ∈ [0, 1] will result in a false positive rate of 1 − s. Thus,
relying to the standard threshold of statistical test theory, it can �xed to e.g 0.95 or 0.99.

In practice, the η?j function may not be perfectly estimated. Another way to �x the
threshold and control the false positive rate is via cross-validation on the training set of
communication events. To do so, one has to �x an acceptable false positive rate (e.g 0.05 or
0.01), then via cross-validation �nd the value of threshold s that generates a false positive
rate close to that �xed value.

2.4 Summary

To sum up, we observe an healthy set of communication events Dtrain. For any �xed node
j, we learn the probability that this node will take part in an event, given the �ngerprint
of the other nodes. This is done using Dtrain and any regression algorithm. We observe
a new set of communication events, Dn, for which we want to know if the number of
events recorded at node j is abnormally low or high. We evaluate for each event in Dn the
probability that j will take part in the corresponding event and evaluate the anomaly score
as described upper. If the score is above a certain threshold, the anomaly is spotted. The
overall procedure is summarized in Algorithm 2.1.
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Algorithm 2.1 Node-wise network anomaly detection
Input: Dtrain, Dn, node j, threshold s
Regression algorithm: Regressor(·)
Output: 1 if anomaly, 0, otherwise

η̂ ←− Regressor
(
Dtrain = {x̃(i)

j , x̃
(i)
j }
)

for i = 1 . . . , n do
p̂i ←− η̂(x

(i)
j )

end for
F̂ ←−PoiBin

(∑
x

(i)
j ; p̂

(1)
j , . . . , p̂

(n)
j

)
- see Eq. 2.4

ŝ←− max(F̂ , 1− F̂ )
if ŝ > s then

Output 1: Abnormal node
else

Output 0: Normal node
end if

3 Applications

In the present section we propose to evaluate the performance of the regression-based
approach presented in the previous section. The evaluation is performed over two datasets.
The �rst one is simulated in order to imitate the communication activity recorded in network
like Sigfox and the second one is made of real-word communication events recorded at
Sigfox. These experiments aim to show the importance of considering the activity recorded
at other nodes while performing anomaly detection at a speci�c node. In addition, the
objective is to show the superiority of the regression-based approach compared to the
methods presented in the following paragraph.

Comparative methods We compare our regression-based approach with three other
methods related to the graph-based algorithms presented in Section 1. All three methods
split the training dataset in order to build a set of graphs on which features are engineered.
Each graph encodes the communication activity of the network over the di�erent sub-
dataset and are build in the same manner: the edges count the number of shared events
between two nodes and a node’s value captures the total number of events it has participated
in. Similarly, a unique graph is build over the dataset for which we want to known if it is
abnormal or not. In practice, the datasets used to build the graphs can be of di�erent sizes
and the di�erent values in the graphs are normalized by the number of events contained in
each dataset.

The comparative methods works the same way. A feature vector aiming to characterize
the behavior of the node of interest is build over each graph. Then, a One-class SVM [140]
(see chapter 1) builds an hyperplane separating normal feature vectors and abnormal ones
using the set of normal vectors build from the training set of graphs. The anomaly score
of the graph of interest simply corresponds to the distance of the corresponding feature
vector to the separating hyperplane.

The three methods only di�er in the feature vector build from each graph. The �rst one
only looks at the value of the node of interest i.e the number of events it has participated
in. The second one calculates the weighted degree of the node of interest. The last one
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evaluates the di�erence between the value of the node of interest and the value of its
nearest neighboring nodes. The latter is motivated by the intuition that some nodes will
have highly correlated variations of activity. It is actually the only multivariate feature
vector. The nearest neighbors are selected by looking at the nodes with whom the node of
interest shares more events in the training dataset.

Computational remarks All the following experiments has been implemented in Python
and performed on a personal laptop computer. The conditional probability functions de-
�ned in 2.1 are learned via a Random Forest Regressor [24], using the version implemented
in scikit-learn [128]. Same for the One-class SVM algorithm needed in the comparative
methods, also implemented in scikit-learn. For both algorithms, the scikit-learn’s by default
set of hyperparameters are used.

To build the scoring function of equation 2.5 we have to be able to compute the cu-
mulative distribution function of a Poisson Binomial distribution (equation 2.4). This can
be done e�ciently via the method presented in [80], implemented in the Python package
PoiBin1.

3.1 Simulated experiment

As stated upper, the goal of the following experiments is to apply the di�erent approaches
on datasets that simulate the communication activity of a network like Sigfox. We keep the
nodes two-dimensional spatial arrangement of Sigfox network and propose the following
simulation process.

3.1.1 Simulation process

Sampling the spatial network structure. Draw N node’s two-dimensional locations
(i.e. analogous to BSs) according to a mixture modelM of K bivariate Gaussian distri-
butions. The mixture model allows to simulate clusters of nodes, which is observed in
particular at Sigfox (e.g one city corresponds to a cluster of BS).

Sampling a communication event. First generate an event location ` (analogous to a
device’s location) drawn fromM, as in the previous step. Then for each node v ∈ [N ], let
its location xv and draw a Bernoulli with a parameter inversely proportional to the distance
d(xv, `). Here, the Bernoulli indicates if the node has participated or not in the event. In our
experiments, we set the Bernoulli parameters to be equal to exp(− 1

σv
d(xv, `)), where σv is

a node-dependent visibility parameter that controls how much the node v participates in the
di�erent events. With such modeling we can see that the closer the location of the event is
to a node, the higher is the chance for the node to participate in the event. Furthermore,
nearby nodes will have more chance to participates in the same events, which is often
observed at Sigfox.

Simulating a normal dataset. Draw n independent �ngerprints following the process
described in the previous paragraph.

1https://github.com/tsakim/poibin
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Simulating an abnormal dataset. One way to simulate an anomaly at the level of a
node v is to make this node participating in less (or more) events than usual. One way to
do it is by changing its visibility parameter σv . The more di�erent this parameter is from
the normal network behavior, the easier the anomaly will be spotted. Then, the dataset is
drawn the same way as a normal one.

3.1.2 Three levels of abnormality

In order to demonstrate the performance of our method, we apply the above generative
process in three di�erent situations with di�erent anomaly ‘complexity’, whereas sharing
the following properties:

• N = 100 communication nodes are drawn from a mixture of K = 10 bivariate
Gaussian variables with equal mixture’s weights. Each center are drawn uniformly
over the square [−5, 5]× [−5, 5] and the covariance matrices always correspond to
the identity matrix of size two.

• The training set contains 20000 communication events. It is equally split in 100
blocks of 200 events for the comparatives methods. The visibility parameters used
for each node is the same and is equal to 2.6.

• 200 testing dataset are sampled. Half of them are normal and sampled according to
the same process as the training dataset, the other half is abnormal. Each testing
dataset have di�erent size where the number of events is drawn from a uniform
distribution between 100 and 300.

• A single arbitrary node is chosen to be anomalous and it is the same for each abnormal
testing dataset. The anomaly is simulated by a decreasing in the visibility parameter.
This is in accordance with the idea that an anomaly at the level of a Base Station
implies a decreasing in the number of observed signals.

The three experiments thus only di�er in the decreasing of the visibility parameter. The
�rst experiment, referred as easy imposes a important decreasing and replace the visibility
parameter of the corresponding node by 1.3, the second one, referred as normal, replace it
by 1.62 and the last one, referred as hard replace it by 1.95.

3.1.3 Results

The empirical performances of the di�erent approaches is visualized on the ROC curves
of �gure 2.3. The regression-based approach is evaluated via two scoring functions: a
Bilateral and a Unilateral. The Bilateral corresponds to the one de�ned in the previous
section (equation 2.5). However, the Unilateral score only evaluates the right-hand element
in the maximum of equation 2.5. Thus, it only looks for abnormally low level of the node’s
events participation: the bigger the score is, the more the number of event the node has
participated in stands in the left-hand tail of the Poisson Binomial distribution. The use
of the Unilateral score is motivated by the fact that the anomalies we simulate imply a
decreasing in the number of event’s participation. Using it should improve the rate of false
positive. The number of neighbors necessary to compute the third SVM-based algorithm
has been selected to be the one with best performances and was �xed at 7.
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(a) Easy experiment

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Score Bilateral (AUC = 0.93)
Score Unilateral (AUC = 0.95)
SVM - Node (AUC = 0.80)
SVM - Weighted degree (AUC = 0.69)
SVM - Difference w. neighbors (AUC = 0.85)

(b) Normal experiment

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Score Bilateral (AUC = 0.81)
Score Unilateral (AUC = 0.85)
SVM - Node (AUC = 0.66)
SVM - Weighted degree (AUC = 0.63)
SVM - Difference w. neighbors (AUC = 0.72)
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Figure 2.3: ROC curves and their respective AUC obtained over the simulated experiments.
Each �gure corresponds to a di�erent level of complexity, from the simplest (a) to the
hardest (c).

Several conclusions can be made from the ROC curves. First of all, no matter the
complexity of the experiment, the regression-based method always outperforms the One-
class SVM-based approaches. Indeed, the ROC curves associated to the �rsts are always
above the latter, leading to better Area Under the Curve (AUC). Moreover, we must note
that as expected, the Unilateral score is slightly better than the Bilateral.

Among the three SVM-based approaches, several observation must also be made. The
method looking at the weighted degree appears to be the worst, being even inferior to the
simplest approach which is based on the node’s value. This illustrates an important point:
building naive features, even graph-based, won’t solve an anomaly detection problem like
this one if they are not adapted to it. On the contrary, the one with the most sophisticate
features, which looks at the di�erence between the node and its nearest neighbors, out-
performs the other two. This illustrates the fact that considering the other nodes values
is important while performing the detection task. Moreover, it shows that being able to
select only a subset of important nodes (here 7), referred as neighbors, improves again the
performance.

Finally, it appears that our method is slightly more robust to the increasing complexity
of the di�erent experiments. Indeed, we observe a decreasing of 0.04 (respectively 0.14)
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Figure 2.4: Positions of the 34 Base Stations. In red, the failing BS, in green, the one taken
as reference and in blue the others. Note that some BS have very close locations, making
them appear as a single one over the �gure.

between the AUC of the easy and the normal (respectively hard) experiments for the
Unilateral score. This decreasing is more important for the "di�erence with neighbors"’s
One-class SVM, with a decreasing of 0.12 (respectively 0.25) between the AUC of the easy
and the normal (respectively hard) experiments.

3.2 Sigfox application

We now propose to verify that the conclusions we made from the previous experiments
remain valid in a real-world application. In particular, we apply the di�erent methods to a
set of communication events recorded at Sigfox.

3.2.1 Dataset description

In the present experiment, we have access to a set of approximately 232000 Sigfox’s mes-
sages recorded at the level ofN = 34 Base Stations over a period of 5 months (from January
to June of 2017). Relying to the framework described in Section 2, each BS characterizes a
node and each message corresponds to a unique communication event, where the �nger-
print indicates which BS has received the message. All the BSs are located near Toulouse,
France and their positions can be found in Figure 2.4. Among those BSs, one has been
spotted as abnormal by Sigfox’s experts (in red on Figure 2.4), approximately from march,
while the others has been considered working well.

The objective of the experiment is to learn the normal behavior of the red BS over the
month of January (approx. 35000 messages) and then tell if its behavior is abnormal over
the remaining period. The same way it would be done in a realistic situation at Sigfox,
the prediction is made daily over the remaining 4 months, resulting in 120 test dataset
and therefore predictions. Over each day (i.e dataset) of the testing period, approximately
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Figure 2.5: ROC curves and their respective AUC obtained over the real-world experiment.

1600 messages are observed in average, but this number can highly vary from one day to
another.

As stated upper, the red BS is considered abnormal by the experts approximately from
March. This results in 90 abnormal testing dataset and 30 normal ones. To increase a bit
the size of the experiment and make the classes more balanced, we also apply the exact
same learning and testing process for a normal BS (in green on Figure 2.4). In the end, 240
test dataset are evaluated as abnormal or not, including 90 days considered abnormal and
150 normal ones.

Finally, to be able to apply the comparative methods, the learning dataset is split
according to the daily basis of the testing period. Hence, 31 graphs and consequently 31
feature vectors are build to learn the normal behavior of a node over a day. For each built
graph, the nodes carry the number of messages the associated BS has received during the
corresponding day and the edges encode the number of messages received in common
between two BSs.

3.2.2 Results

First results and comparison between the di�erent methods are evaluated via the ROC
curves in Figure 2.5. Several conclusions we made from the experiments on simulated
data can be made as well. First, the regression-based method with unilateral score clearly
outperforms the others, illustrating its superiority for this type of tasks. Moreover, among
the SVM-based approaches, the one that looks at the di�erence between the node and its
nearest neighbors (all the other BS were taken this time), clearly outperforms the other
two. We can even observe that this method is slightly better than the Bilateral score with
an AUC of 0.89 for itself and an AUC of 0.84 for the latter. According to the ROC curves,
this seems to come from the fact that the Bilateral method gives an important anomaly
score to high value of received messages.

To visualize a bit better the performance of the regression-based algorithm, we propose
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(c) Normal Base Station - Bilateral intervals
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(d) Normal Base Station - Unilateral intervals

Figure 2.6: Number of messages received by the corresponding BS, the con�dence intervals
for a �xed threshold and the timestamps detected to be anomalous.

to �x a threshold above which the score is considered abnormal, plot the "con�dence
intervals" associated to it and look whenever the number of messages received by the BS
of interest lays out of them (Figure 2.6). In other word, for each day of the testing period,
we look for the interval of values for which the score is not exceeded. If the number of
messages received by the antenna does not belong to these values, the anomaly is detected.
The threshold is �x via cross validation on the training dataset, in order to obtain a false
positive rate of 0.01 over it.

While the number of messages received by the green BS should never go out the
intervals, the red one should have an exceeding score for the abnormal days, indicated
between the two red lines of Figure 2.6a and 2.6b. Those �gures tells us several things. The
high amount of false positive appearing in the Bilateral method were essentially coming
from high values of received messages by the normal BS and are corrected by using the
Unilateral approach (Figure 2.6d). We also observe that the total number of messages
received by a BS, and therefore the total number of messages sent in the network, can
highly variate: this seems to be a reason of the high false positive rate of the Bilateral
method and may indicate that the learning phase was not including enough examples.
Finally, looking at how regularly the number of messages received by the abnormal BS goes
out the intervals, we could ask ourselves if the anomaly began a bit later, around March
the 15th.

Overall, we can conclude that the proposed regression-based method is adapted the
this kind of problem.
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4 Conclusion and discussion

In conclusion, this chapter has enabled us to propose a simple and e�ective method for
detecting anomalies in a communication network. The �rst objective we had set ourselves
has thus been ful�lled, and in particular the objective of the industrial collaboration with
Sigfox. Some links can also be made with the other objectives, i.e. the problem of detecting
events in a set of graph signals and the graph inference task. Indeed, for the �rst, charac-
terizing the anomaly of a node based on the values at the other nodes implies a notion of
structure underlying the data, implicitly used by the considered approach. Therefore, one
could imagine this type of anomaly detection for other types of graph vector data, other
than that of a communication network. Also, we have seen that the graph can be used
to determine the neighborhood of a node and thus improve the performance of certain
methods. This is notably the case of the last approach based on the one-class SVM, but also
ours. Indeed, the graph can be used for dimensionality reduction. Therefore, instead of
using all the other nodes during the learning phase, one could only use the neighbors of
the considered node.

Finally, a link can also be made with the task of graph inference. With an appropriate
regression algorithm, the learning step of the presented approach can be seen as the
inference of the underlying neighborhood of node j. Indeed, in some sense, we are looking
for the nodes that interacts often with j. In particular, a `1-regularized logistic regression
would perfectly match the Ising model structure inference presented by [132]. With such
approach, the probability function η?j is modeled via a sigmoid of a linear combination
of the other nodes �ngerprints. Thus, each weights is related to a node and the bigger a
weight is, the stronger the interaction between j and the corresponding node is (see chapter
4 for more details). The task of graph inference is properly investigated in the next chapter.
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Abstract

In this chapter, we consider the problem of learning a graph structure from
multivariate signals, known as graph signals. Such signals are multivariate observations
carrying measurements corresponding to the nodes of an unknown graph, which
we desire to infer. They are assumed to enjoy a sparse representation in the graph
spectral domain, a feature which is known to carry information related to the cluster
structure of a graph. The signals are also assumed to behave smoothly with respect to
the underlying graph structure. For the graph learning problem, we propose a new
optimization program to learn the Laplacian of this graph and provide two algorithms
to solve it, called IGL-3SR and FGL-3SR. Based on a 3-steps alternating procedure, both
algorithms rely on standard minimization methods –such as manifold gradient descent
or linear programming– and have lower complexity compared to state-of-the-art
algorithms. While IGL-3SR ensures convergence, FGL-3SR acts as a relaxation and is
signi�cantly faster since its alternating process relies on multiple closed-form solutions.
Both algorithms are evaluated on synthetic and real data. They are shown to perform
as good or better than their competitors in terms of both numerical performance
and scalability. Finally, we present a probabilistic interpretation of the optimization
program as a Factor Analysis Model.

Associated publications:
Learning Laplacian Matrix from Bandlimited Graph Signals [103],
Le Bars, Batiste?, Humbert, Pierre?, Oudre, Laurent and Kalogeratos, Argyris
Accepted in IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP).
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Learning Laplacian Matrix from Graph Signals with Sparse Spectral Representation [84],
Humbert, Pierre?, Le Bars, Batiste?, Oudre, Laurent, Kalogeratos, Argyris, and Vayatis
Nicolas
Submitted to The Journal of Machine Learning Research (JMLR).
? Authors with equal contribution to this work.

1 Introduction

Hidden structures in multivariate or multimodal signals can be captured through the notion
of graph. The availability of such a graph is a core assumption in many computational
tasks such as spectral clustering, semi-supervised learning, graph signal processing, etc.
However, in most situations, no natural graph can be derived or de�ned and the underlying
graph must be inferred from available data. This task, often referred to as graph learning,
has received signi�cant attention in �elds such as machine learning, signal processing,
biology , meteorology, and others [61, 78, 173].

Learning a graph is an ill-posed problem as several graphs can explain the same set
of observations. Previous works have been devoted to introducing underlying models or
constraints that would narrow down the range of possible solutions. For instance, physical
constraints can be imposed to suggest epidemic models or other information propagation
and interaction models [52, 69, 137]. From a statistical perspective, the graph learning task is
seen as the estimation of the parameters of a certain probability distribution parametrized
by the graph itself. Generally, the assumed class of distributions is either a Bayesian
Network in the case of directed graph, or a Markov Random Field for undirected graphs
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[97, 153, 171, 176]. Hence, the graph structure encompasses the conditional dependencies
between variables. Two variables will be connected in the graph if they are dependent
conditionally on all the other variables. In the particular case of Gaussian Random Fields,
the graph estimation consists in the estimation of the inverse covariance matrix, known
as the precision matrix [16, 61]. In the latter reference, the proposed estimation method
corresponds to the well-known Graph-Lasso algorithm, which relies on the assumption
that the precision matrix is subject to a sparsity constraint.

More recently, Graph Signal Processing (GSP) [49, 147], has generalized the standard
concepts and tools of signal processing to multivariate signals recorded over graph struc-
tures. Notions such as smoothness, sampling, �ltering, etc., have been adapted to this
framework, opening a new �eld that paves the way to further developments in graph
learning [126, 154]. In this framework, the smoothness of observations with respect to the
true underlying graph is a common assumption [33, 40, 51, 56, 89], which asks for graphs
on which signals have small local variations among adjacent nodes. Another naturally
arising property of real-world problems is the sparsity of the observations in the graph
spectral basis [139, 160]. In data clustering, for instance, the vector of labels seen as a signal
over the vertices of a graph, exhibits a sparse spectral representation. It is smooth within
each cluster and varies across di�erent clusters (Figure 3.1). Hence, building such graph is
relevant for graph-based clustering approaches, such as spectral clustering. Furthermore,
such sparsity assumption is also relevant for the sampling task. Indeed, by making use
of this property, it is possible under mild conditions to reconstruct the observations for
nodes that have not been sampled [30]. These properties, all borrowed from the GSP �eld,
can be seen as constraints or regularizations for the graph learning task, and o�er a new
perspective on the topic.

Aim and main contributions. In the present chapter, we introduce an optimization
problem to learn a graph from signals that are assumed to be smooth and admitting a
sparse representation in the spectral domain of the graph. The main contributions can be
summarized as follows:

• The graph learning task problem is cast as the optimization of a smooth nonconvex
objective function over a nonconvex set (Section 2). This challenging problem is
e�ciently solved by introducing a framework that combines barrier methods, alter-
nating minimization, and manifold optimization (Section 3). A relaxed algorithm is
also proposed, which allows to scale in time with the graph dimensions (Section 4).

• A factor analysis model for smooth graph signals with sparse spectral representation
is introduced (Section 5). This model provides a probabilistic interpretation of our
optimization program and links its objective function to a maximum a posteriori
estimation.

• The proposed algorithms are tested on several synthetic and real databases, and
compared to state-of-the-art approaches (Section 7). Experimental results show that
our approach allows to obtain similar or better performance than standard existing
methods while signi�cantly lowering the necessary computing resources.

Background and notations. Throughout all the chapter, we consider an undirected and
weighted graph G with no self-loops. It is de�ned as a pair G = (V, E) with vertices (or
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nodes) V = {1, . . . , N}, and set edges E = {(i, j, wij), i, j ∈ V } with weights wij ∈ R+

arranged in a weight matrix W ∈ RN×N+ . More particularly, we focus on its combinatorial
graph Laplacian matrix which entirely describes it and is given by L = D −W , where
D is the diagonal degree matrix and W the weight matrix. As G is undirected, L is a
symmetric positive semi-de�nite matrix. Its eigenvalue decomposition can be written as
L = XΛXT, with Λ = diag(λ1, . . . , λN ) a diagonal matrix containing the eigenvalues
and X = (x1, . . . , xN ) a matrix with the eigenvectors as columns. We also consider
graph signals (or graph functions) on this graph. A graph signal is de�ned as a function
y : V −→ RN that assigns a scalar value to each vertex. This function can be represented
as a vector y ∈ RN , with yj the function value at the j-th vertex. Also, with 1N we denote
the constant unitary vector of size N , and with 0N the vector containing only zeros. All
remaining notations are given throughout the chapter.

2 Problem Statement

This section describes the graph learning problem for smooth and sparse graph signals.

2.1 Setup and working assumptions

The general task of graph learning aims at building a graphG that best explains the structure
of n observed graph signals {y(i)}ni=1 of sizeN , composing a matrix Y = [y(1), · · · , y(n)] ∈
RN×n. The proposed graph learning framework takes as input the matrix Y and outputs
the Laplacian matrixL associated toG (note that both notions are equivalent). Our learning
process is based on the following assumptions:

Assumption 3.1. (Assumption on the graph G) – G is undirected, with no self-loops and
has a single connected component.

With Assumption 3.1, L is a symmetric positive semi-de�nite matrix with eigenvalue
decomposition L = XΛXT, where λ1 = 0 and x1 = 1√

N
1N [35].

Assumption 3.2. (Assumption on the signals Y ) – Graph signals Y de�ned over the true un-
derlying graphG are assumed s-smooth (Def. 1.8) and admit a k-sparse spectral representation
(Def. 1.10), with unknown values for s and k.

On the smoothness assumption. According to the De�nition 1.8 of chapter 1, low s
values tend to favor smooth signals for which adjacent nodes carry similar signal values.
This property has consequently been widely considered for the graph learning task [40, 50].

On the spectral sparsity assumption. This property is known as bandlimitedness in the
GSP �eld. In general, it assumes that the null components of h are those associated to
the largest eigenvalues (frequencies). Essentially, this additional hypothesis expresses a
fundamental principle of signal processing which suggests �ltering-out the high-frequency
band of a signal, as it carries mainly noise and little or no information.

The bandlimitedness property is very common for graph signals, especially in GSP
where it is the main hypothesis of several graph sampling methods [11, 30, 116, 120]. In a
word, graph sampling refers to task of recovering a whole graph signal from a subset of
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(a) (b)

Figure 3.1: Two graph signals observed on the same graph of 200 nodes. (a) The �rst signal
admits smoothness at the level of adjacent nodes, and a 100-sparse spectral representa-
tion. (b) The second signal admits also smoothness, but in this case it extends to larger
clusters of connected nodes. As a consequence, this graph signal enjoys a 3-sparse spectral
representation.

nodes values. The main property behind the bandlimitedness assumption is that a k-sparse
spectral representation implies that only k nodes values are necessary to recover the whole
graph signal.

Furthermore, such property is known to carry cluster information on the graph sig-
nal: a k-sparse spectral representation implies k clusters. We can visualize this with the
following trivial example. Let y = (1, 1,−1,−1) be a graph signal encoding labels of two
clusters. If we take the graph with two connected components, the �rst two nodes being
connected together, so as the last two, then the graph exactly matches the cluster structure
and the two columns of the spectral basis X associated to the smallest frequencies are
x1 = 2−

1
2 (1, 1, 0, 0) and x2 = 2−

1
2 (0, 0, 1, 1). Thus, y can be written as a linear combina-

tion of x1 and x2, making it orthogonal with the remaining columns of X and therefore
2-bandlimited..

Figure 3.1 shows visually an example of two graph signals that illustrate the intuition
behind our two core assumptions.

2.2 Graph Learning for Smooth and Sparse Spectral Representation

A general graph learning scheme consists in learning the adjacency or the Laplacian matrix.
However, since the constraint of Assumption 3.2 (sparsity of the graph signals over the
eigen-basis of the Laplacian matrix) is easier to be expressed in the spectral domain, in this
chapter we focus on learning the eigendecomposition of the Laplacian matrix L = XΛXT.
The optimization problem incorporates a linear least square regression term depending of Y ,
X , and H , which controls the distance of the new representation XH to the observations
Y . In addition, due to Assumption 3.2, we add two penalization terms: One to control the
smoothness of the new representation, depending on Λ and H ; the other one to control the
sparsity on the spectral domain, which only depends on H . Finally, as we want to learn a
Laplacian matrix satisfying Assumption 3.1, equality and inequality constraints relative to
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X and Λ are necessary. To that end, we introduce the following optimization problem:

min
H,X,Λ

‖Y −XH‖2F + α‖Λ1/2H‖2F + β‖H‖S , (3.1)

s.t.


XTX = IN , x1 = 1√

N
1N , (a)

(XΛXT)k,` ≤ 0 k 6= ` , (b)
Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ , (d)

where IN is the identity matrix of size N , tr(·) denotes the trace, and Λ � 0 indicates that
the matrix is semi-de�nite positive.

This problem aims at conjointly learning the Laplacian L (i.e. (X,Λ)) and a smooth
bandlimited approximation XH of the observed signals Y . Here, H is the same size as Y
and corresponds to the spectral representation of the graph signals through the GFT.

Interpretation of the terms. In the objective function (3.1), the �rst term corresponds
to the quadratic approximation error of Y by XH , where ‖ · ‖F is the Frobenius norm. The
second term is a smoothness regularization equally imposed to each column of XH . Indeed,
from Equation (1.8), we have

∑
i y

(i)TLy(i) = tr(YTLY ) = ‖L1/2Y ‖2F . Rewriting this for
the set of graph signals in XH , we obtain:

‖L1/2XH‖2F = ‖XΛ1/2XTXH‖2F = ‖Λ1/2H‖2F =

N∑
i=1

λi‖Hi,:‖22 ,

where Hi,: is the i-th row of the matrix H . This kind of regularization is very common in
graph learning [33, 89]. From its de�nition, we can see that it tends to be low when high
values of {λi}Ni=1 are associated to rows of H with low `2-norm. This corroborates the
idea that the {λi}Ni=1 can be interpreted as frequencies and the elements of H as Fourier
coe�cients.

The last term, β‖H‖S , is a sparsity regularization. In this work, we propose to either
use the `2,1 (sum of the `2-norm of each row of H) or `2,0 (number of rows with `2-norm
di�erent than 0) that induces a row-sparse solution Ĥ .

Remark on the choice of ‖ · ‖S – In the context of GSP, it is natural to assume that the
graph signals are bandlimited at the same dimensions. This property is enforced by ‖ · ‖S
and has two main advantages: it is a key assumption for sampling over a graph and this
particular structure is better for inferring graphs with clusters [139]. Therefore, in this
chapter, the use of the classical `0-norm and the `1-norm have not been investigated since
they would impose sparsity at every dimension of the matrix H ‘independently’, which
would consequently break the bandlimitedness assumption.

The hyperparameters, α, β > 0 are controlling respectively the smoothness of the approxi-
mated signals and the sparsity ofH . A discussion on the in�uence of these hyperparameters
and an e�cient way to �x them is provided in Section 7.3.1. Finally, the �rst three con-
straints (3.1a), (3.1b), (3.1c) enforceXΛXT to be a Laplacian matrix of a graph with a single
connected component (Assumption 3.1). More speci�cally, by de�nition, L = D −W with
W ∈ RN×N+ , thus we necessary have ∀k 6= `, Lk,` = (XΛXT)k,` ≤ 0 (constraint (3.1b)).
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Furthermore, asXΛXT is the eigendecomposition of the Laplacian matrix of an undirected
graph with a single connected component (Assumption 3.1), XTX = IN , x1 = 1√

N
1N

and λ1 = 0 < λ2 ≤ . . . ≤ λN (constraints (3.1a) and (3.1c)). The last constraint (3.1d) was
proposed in Dong et al. [50] to impose structure in the learned graph so that the trivial
solution Λ̂ = 0 is avoided. A discussion about values other than N is made in Kalofolias
[89].

The objective function (3.1) is not jointly convex but when ‖·‖S is taken to be the
`2,1 norm, it is convex with respect to each of the block-variables H,X, or Λ, taken
independently. A natural approach to solve this problem is therefore to alternate between
the three variables, minimizing over one while keeping the others �xed. However, due to
the equality constraint (3.1a) and inequalities (3.1b), the feasible set is not convex with
respect to X . Hence, this approach raises several di�culties that will be discussed and
handled in the following section.

2.3 Reformulation of the problem

As stated in Section 2.2, problem (3.1) is not jointly convex and cannot be solved easily
with constraints (3.1a) and (3.1b). In this section, we propose to rewrite constraints (3.1a)
and (3.1b), in order to de�ne a new equivalent optimization problem that can be solved
with well-known techniques.

2.3.1 Reformulation of the constraint (3.1a)

In this section, we show that the constraints (3.1a) can be reformulated as a constraint over
the space of orthogonal matrices in R(N−1)×(N−1). Although such transformation does not
change the convexity of the feasible set, we will see in Section 3.3 that there exist e�cient
algorithms that perform optimization over such manifold.

De�nition 3.1. (Orthogonal group) – The space of orthogonal matrices in RN×N , called
orthogonal group, is the space:

Orth(N) = {X ∈ RN×N | XTX = IN} .
Lemma 3.1. – Given X,X0 ∈ RN×N two orthogonal matrices, both having their �rst
column equal to 1√

N
1N (constraint (3.1a)), we have the following equality

X = X0

[
1 0TN−1

0N−1 [XT
0X]2:,2:

]
,

with [XT
0X]2:,2: denoting the submatrix of XT

0X containing everything but the �rst row and
column of itself. Furthermore, [XT

0X]2:,2: is in Orth(N − 1).

The above lemma allows us to build an equivalent formulation of Problem (3.1) given
by the following proposition.

Proposition 3.1. – Given X0 ∈ RN×N an orthogonal matrix with �rst column being equal
to 1√

N
1N , an equivalent formulation of optimization problem (3.1) is given by

min
H,U,Λ

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+ α‖Λ1/2H‖2F + β‖H‖S , f(H,U,Λ) , (3.2)
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s.t.



UTU = IN−1 , (a’)(
X0

[
1 0TN−1

0N−1 U

]
Λ

[
1 0TN−1

0N−1 UT

]
XT

0

)
k,`

≤ 0 k 6= ` , (b’)

Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)

The latter proposition says that since the �rst column ofX is �xed and known, it is su�cient
to look for an optimal rotation of a valid matrix X0 that preserves the �rst column. Such a
rotation matrix is given above and is parametrized by a U in Orth(N − 1). Note that in
practice, to �nd a matrix X0 satisfying (3.1a), we build the Laplacian of any graph with a
single connected component and take its eigenvectors.

2.3.2 Log-barrier method for constraint (3.2b’)

In order to deal with constraint (3.2b′), we propose to use a log-barrier method. This barrier
function allows us to consider an approximation of problem (3.2) where the inequality
constraint (3.2b’) is made implicit in the objective function. Denoting by f(·) the objective
function of (3.2), we want to solve

min
H,U,Λ

f(H,U,Λ) +
1

t
φ(U,Λ) s.t. (3.2a’), (3.2c), (3.2d) , (3.3)

where t is a �xed positive constant and φ(·) is the log-barrier function associated to the
constraint (3.2b′).

De�nition 3.2. (Log-barrier function) – Let the following matrix in RN×N :

h(U,Λ) = X0

[
1 0TN−1

0N−1 U

]
Λ

[
1 0TN−1

0N−1 U

]T
XT

0 ,

involved in the constraint (3.2b′). The associated log-barrier function φ : R(N−1)×(N−1) ×
RN×N −−→ R is de�ned by:

φ(U,Λ) = −
N−1∑
k=1

N∑
`>k

log
(
− h(U,Λ)k,`

)
, (3.4)

with dom(φ) =
{

(U,Λ) ∈ R(N−1)×(N−1) × RN×N | ∀1 ≤ k < ` ≤ N,h(U,Λ)k,` < 0
}

,
i.e. its domain is the set of points that strictly satisfy the inequality constraints (3.2b’).

This barrier function allows us to perform block-coordinate descent on three easier to
solve subproblems, as we discuss in the next section.

3 Resolution of the problem: IGL-3SR

In this section, we describe our method, the Iterative Graph Learning for Smooth and Sparse
Spectral Representation (IGL-3SR), and its di�erent steps to solve Problem (3.3). Given a
�xed t > 0, we propose to use a block-coordinate descent on H , U , and Λ, which permits
to split the problem in three partial minimizations that we discuss in this section. One of
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the main advantages of IGL-3SR is that each subproblem can be solved e�ciently and as
the objective function is lower-bounded by 0, this procedure ensures convergence. The
summary of the method is presented in Algorithm 3.1.

3.1 Optimization with respect toH

For �xed U and Λ, the minimization Problem (3.3) with respect to H is:

min
H
‖Y −XH‖2F + α‖Λ1/2H‖2F+β‖H‖S , where X = X0

[
1 0TN−1

0N−1 U

]
. (3.5)

When ‖ · ‖S is set to ‖ · ‖2,0 (resp. ‖ · ‖2,1), this problem is a particular case of what is known
as Sparsify Transform Learning [133] (resp. is a particular case of the Group Lasso [178]
known as Multi-Task Feature Learning [12]). Moreover, as X is orthogonal, we are able to
�nd closed-form solutions (Proposition 3.2).

Proposition 3.2. (Closed-form solution for the `2,0 and `2,1-norms) – The solutions of
Problem (3.5) when ‖ · ‖S is set to ‖ · ‖2,0 or ‖ · ‖2,1, are given in the following.

• Using the `2,0-norm, the optimal solution of (3.5) is given by the matrix Ĥ ∈ RN×n
where for 1 ≤ i ≤ N,

Ĥi,: =

{
0 if 1

1+αλi
‖(XTY )i,:‖22 ≤ β ,

1
(1+αλi)

(XTY )i,: else . (3.6)

• Using the `2,1-norm, the optimal solution of (3.5) is given by the matrix Ĥ ∈ RN×n,
where for 1 ≤ i ≤ N,

Ĥi,: =
1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
+

(XTY )i,: , (3.7)

where (t)+ , max{0, t} is the positive part function.

3.2 Optimization with respect to Λ

For �xed H and U , the optimization Problem (3.3) with respect to Λ is:

min
Λ

α tr(HHTΛ)

‖Λ1/2H‖2F

+
1

t
φ(U,Λ) s.t.

{
Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)
(3.8)

This objective function is di�erentiable and convex with respect to Λ, and the constraints
de�ne a Simplex. Thus, several convex optimization solvers can be employed, such as those
implemented in CVXPY [47]. Popular algorithms are interior-point methods or projected
gradient descent methods [114]. Using one algorithm of the latter type, we compute the
gradient of 3.8 and project each iteration onto the Simplex [53].
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Figure 3.2: The principle of the manifold gradient descend given schematically. TXOrth(N)
is the tangent space of Orth(N) at X . The red line corresponds to a curve in Orth(N)
passing through the point X in the direction of the arrow. At each iteration, considering
that X is the point of the current solution, a search direction belonging to TXOrth(N) is
�rst de�ned, and then a descent along a curve of the manifold is performed (at the direction
of the black arrow along the red line).

3.3 Optimization with respect to U

For �xed H and Λ, the optimization Problem (3.3) with respect to U is:

min
U

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+
1

t
φ(U,Λ) s.t. UTU = I(N−1) . (a’) (3.9)

The objective function is not convex but twice di�erentiable and the constraint (a’) involves
the set of orthogonal matrices Orth(N − 1) which is not convex. Orthogonality constraint
is central to many machine learning optimization problems including Principal Component
Analysis (PCA), Sparse PCA, and Independent Component Analysis (ICA) [85, 146, 180].
Unfortunately, optimizing over this constraint is a major challenge since simple updates
such as matrix addition usually break orthonormality. One class of algorithms tackles
this issue by taking into account that the orthogonal group Orth(N) is a Riemannian
submanifold embedded in RN×N . In this chapter, we focus on manifold adaptation of
descent algorithms to solve Problem (3.9).

The generalization of gradient descent methods to a manifold consists in selecting, at
each iteration, a search direction belonging to the tangent space of the manifold de�ned at
the current point X , and then performing a descent along a curve of the manifold. Figure
3.2 provides pictures this principle.

De�nition 3.3. (Tangent space at a point of Orth(N)) – Let X ∈ Orth(N). The tangent
space of Orth(N) at point X , denoted by TXOrth(N) is a 1

2N(N − 1) dimensional vector
space de�ned by:

TXOrth(N) =
{
XΩ | Ω ∈ RN×N is skew-symmetric

}
.

When we endow each tangent space with the standard inner product, we are able to de�ne
a notion of Riemannian gradient that allows us to �nd the best direction for the descent.
For an objective function f̄ : RN×N→ R, the Riemannian gradient de�ned over Orth(N)
is given by:

gradf̄(X) = PX(∇X f̄(X)) , (3.10)
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where PX is the projection onto the tangent space at X , which is equal to PX(ξ) =
1
2X(XTξ − ξTX), and ∇X is the standard Euclidean gradient. At each iteration, the
manifold gradient descent computes the Riemannian gradient (3.10) that gives a direction
in the tangent space. Then the update is given by applying a retraction onto this direction,
up to a step-size. A retraction consists in an update mapping from the tangent space to
the manifold, and there are many possible ways to perform that [3, 14, 54, 118]. From the
last equation, we see that in order to solve problem (3.9) with this method, we need the
Euclidean gradient of the objective function, namely those of f(·) and φ(·). These are given
in the following proposition.

Proposition 3.3. (Euclidean gradient with respect to U ) – The Euclidean gradient of f(·)
and φ(·) with respect to U are:

∇Uf(H,U,Λ) = −2
[
(HYTX0)2:,2:

]T
+ 2U(HHT)2:,2: ,

∇Uφ(U,Λ) = −
N−1∑
k=1

N∑
`>k

(
Bk,` +BT

k,`

)
UΛ2:,2:

h(U,Λ)k,`
,

with ∀1 ≤ k, ` ≤ N,Bk,` =
(
XT

0 eke
T
`X0

)
2:,2:

, and h(·) from De�nition 3.2.

3.4 Log-barrier method and initialization

Choice of the t parameter. The quality of the approximation of Problem (3.2) by
Problem (3.3) improves as t > 0 grows. However, taking a too large t at the beginning may
lead to numerical issues. As a solution, we use the path-following method, which computes
the solution for a sequence of increasing values of t until the desired accuracy. This method
requires an initial value for t, denoted t(0), and a parameter µ such that t(`+1) = µt(`). For
an in-depth discussion we refer to Boyd and Vandenberghe [21].

Initialization. At the beginning, our IGL-3SR method requires a feasible solution to
initialize the algorithm. One possible choice is to take U as the identity matrix IN−1 and to
replace (X0,Λ) by the eigenvalue decomposition of the complete graph with trace equals
to N . Indeed, its eigenvalue decomposition will always satisfy the constraints and belong
to the domain of the barrier function. The initialization of H is not needed as we start
directly with the H-step.

IGL-3SR is summarized in Algorithm 3.1.

3.5 Computational complexity of IGL-3SR

Considering a graph with N nodes and n > N graph signals:

• H-step (non-iterative) – The closed-form solution requires to compute the matrix
product XTY , which is of complexity O(nN2).

• Λ-step (iterative) – When using a projected gradient descent method, the complexity
of each iteration is O(nN2) to compute the gradient and O(N log(N)) for the
projection [53]. Hence, denoting by τΛ the number of iterations in each Λ-step, the
complexity is O(τΛ · nN2)
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Algorithm 3.1 The IGL-3SR algorithm with `2,1-norm
Input: Y ∈ RN×n, α, β
Input of the barrier method: t(0), tmax, µ – see Section 3.4
Output: Ĥ , X̂ , Λ̂
Initialization: L0 (e.g. with a complete graph) – see Section 3.4

t←− t(0)

(X0,Λ)←− SVD(L0)
U ←− IN−1

while t ≤ tmax do
while not convergence do

B H-step: Compute the closed-form solution of Proposition (3.2)
for i = 1, . . . , N do

Hi,: ←−
1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
+

(XTY )i,:

end for

B Λ-step: Solve Problem (3.8)

Λ←− arg min
Λ
α tr(HHTΛ) +

1

t
φ(U,Λ) s.t.

{
Λ = diag(0, λ2, . . . , λN ) � 0 ,
tr(Λ) = N ∈ R+

∗

B U-step: Solve Problem (3.9)
while not convergence do

U ←− retraction(U(
[
(HY TX0)2:,2:

]
U − UT

[
(HY TX0)2:,2:

]T
))

end while

end while
t←− µt

end while

• X-step (iterative) – The complexity of each iteration is O(nN2) to compute the
Riemannian gradient and O(N3) when we use the QR factorization as retraction
[22]. Hence, denoting by τX the number of iterations in each X-step, the complexity
is O(τX · nN2).

Overall – The complexity to go through the big loop of IGL-3SR once (i.e. once through
each of the H , Λ, and X steps) is of order O(max(τΛ , τX ) · nN2). However, recall that τΛ

and τX can be large in practice for reaching a good solution. In the following, we propose
a relaxation for a faster resolution that relies on closed-form solutions.

4 A relaxation for a faster resolution: FGL-3SR

In this section, we propose another algorithm called Fast Graph Learning for Smooth
and Sparse Spectral Representation (FGL-3SR) to approximately solve the initial Problem
(3.1). FGL-3SR has a signi�cantly reduced computational complexity due to a well-chosen
relaxation. As in the previous section, we use a block-coordinate descent on H , X , and Λ,
which permits to decompose the problem in three partial minimizations. FGL-3SR relies
on a simpli�cation of the minimization step in X by removing the constraint (3.1b). This
simpli�cation allows us to compute a closed-form on this step which greatly accelerates the
minimization. However, the constraints (3.1a) and (3.1b) are equally important to obtain
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a valid Laplacian matrix at the end, and reducing the problem does not ensure that the
constraint (3.1b) will be satis�ed. The following proposition explains why we can get rid
of constraint (3.1b) at the X-step, while still being able to ensure that the matrix will be a
proper Laplacian at the end of the algorithm.

Proposition 3.4. (Feasible eigenvalues) – Given any X ∈ RN×N being an orthogonal
matrix with �rst column being equal to 1√

N
1N (constraint (3.1a)), there always exists a

matrix Λ ∈ RN×N such that the following constraints are satis�ed:
(XΛXT)i,j ≤ 0 i 6= j , (3.1b)
Λ = diag(0, λ2, . . . , λN ) � 0 , (3.1c)
tr(Λ) = c ∈ R+

∗ . (3.1d)

In Proposition 3.5 of the next section, we will see that, by ignoring constraint (3.1b) at
the X-step, we can compute a closed-form solution to the optimization problem. For this
reason, we propose to use the closed-form solution that we derive to learn X , and right
after always optimize with respect to Λ. Hence, we are sure that we will obtain a proper
Laplacian at the end of the process (Proposition 3.4). The initialization and the optimization
with respect to H are not concerned by this relaxation and can therefore be performed as
in IGL-3SR (see Sections 3.1 and 3.4).

4.1 Optimization with respect toX

As already explained, during the X-step, we solve the program

min
X
‖Y −XH‖2F s.t. XTX = IN , x1 =

1√
N

1N , (3.1a) (3.11)

where the constraint (3.1b) is missing. The closed-form solution is given next.

Proposition 3.5. (Closed-form solution of Problem (3.11)) – Let X0 be any matrix that
belongs to the constraints set (3.1a), and M = (XT

0 Y H
T)2:,2: the submatrix containing

everything but the input’s �rst row and �rst column. Finally, let PDQT be the SVD ofM .
Then, the problem admits the following closed form solution:

X̂ = X0

[
1 0TN−1

0N−1 PQT

]
. (3.12)

In practice, X0 can be �xed to the current value of X .

4.2 Optimization with respect to Λ

With respect to Λ, the optimization Problem (3.1) becomes:

min
Λ

α tr(HHTΛ)

‖Λ1/2H‖2F

s.t.


(XΛXT)i,j ≤ 0 i 6= j , (b)
Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ , (d)
(3.13)

which is a linear program that can be solved e�ciently using linear cone programs. Note
that this will involve an optimization over N parameters with 1

2N(N − 1) +N + 1 con-
straints.

FGL-3SR is summarized in Algorithm 3.2.
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Algorithm 3.2 The FGL-3SR algorithm with `2,1-norm
Input : Y ∈ RN×n, α, β
Output : Ĥ , X̂ , Λ̂
Initialization: L0 (e.g. with a complete graph) – see Section 3.4

(X,Λ)←− SVD(L0)
for t = 1, 2, . . . do

B H-step: Compute the closed-form solution of Proposition (3.2)
for i = 1, . . . , N do

Hi,: ←−
1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
+

(XTY )i,:

end for

B X-step: Compute the closed-form solution of Proposition (3.5)
M ←− (XTY HT)2:,2:

(P,D,QT)←− SVD(M)

X ←− X
[

1 0TN−1

0N−1 PQT

]
B Λ-step: Solve the linear Program (3.13)

Λ←− arg min
Λ
α tr(HHTΛ) s.t.

 (XΛXT)i,j ≤ 0 i 6= j
Λ = diag(0, λ2, . . . , λN ) � 0
tr(Λ) = N ∈ R+

∗

end for

4.3 Computational complexity of FGL-3SR

Considering a graph with N nodes and n graph signals:

• H-step – The closed-form solution requires to compute the matrix product XTY ,
which is of complexity O(nN2).

• X-step – The closed-form solution requires to compute the SVD of (XT
0 Y H

T)2:,2: ∈
R(N−1)×(N−1), which is of complexity O(N3) [37].

• Λ-step – Solving the LP can be done with interior-point methods or with the el-
lipsoid method [161]. For accuracy ε, the ellipsoid method yields a complexity of
O(max(m,N) ·N3 log (1/ε)), where m = 1

2N(N − 1) +N + 1 is the number of
constraints [26].

Overall – As m > N , the complexity for FGL-3SR is of order O(N5) when using the
ellipsoid method. In contrast, the most competitive related algorithm of the literature
(ESA-GL [139]) relies on a semi-de�nite program and is of order at leastO(N8) (see Section
6). As will be clearly demonstrated in Section 7, in practice the empirical execution time of
FGL-3SR is lower than IGL-3SR and ESA-GL.

4.4 Di�erences between IGL-3SR and FGL-3SR

The two proposed algorithms are based on a modi�cation of the initial optimization Problem
(3.1). Indeed, both of them relax the constraint (3.1b), ∀k 6= `, (XΛXT)k,` ≤ 0, but using
two di�erent approaches. IGL-3SR approximates the initial optimization problem through
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the use of a log-barrier function. The advantage of the barrier is twofold: �rst, it allows to
overcome the technical constraint (3.1b) and solve the program using a block-coordinate
descent algorithm; second, the use of the barrier makes the block-variables separable
over the constraint set, allowing the convergence of the objective function of IGL-3SR. In
addition, IGL-3SR always keeps the set of variables in the initial set of constraints, essential
for the matrix XΛXT to be a proper Laplacian.

On the other hand, FGL-3SR, instead of using a log-barrier function to relax the con-
straint (3.1b), it removes it from the X-step. Recall that we are perfectly able to do that
as we know from Proposition 3.4 that for any X returned by the X-step, there exist a Λ
making XΛXT a Laplacian. This relaxation speeds-up drastically the X-step while loosing
the convergence property and the decreasing over the initial constraints set.

5 A probabilistic interpretation

In this section, we introduce a representation model adapted to smooth graph signals
with sparse spectral representation. The goal of this model is to provide a probabilistic
interpretation of Problem (3.1) and link its objective function to a maximum a posteriori
estimation (Proposition 3.6).

Given a Laplacian matrix L = XΛXT, we propose the following Factor Analysis
Framework to model a graph signal y:

y = Xh+my + ε , (3.14)

where my ∈ RN is the mean of the graph signal y and ε is a Gaussian noise with zero
mean and covariance σ2IN . Here, the latent variable h = (h1, . . . , hN ) controls y through
the eigenvector matrix X of L. The choice of the representation matrix X is particularly
adapted since it re�ects the topology of the graph and provides a spectral embedding of
its vertices. Moreover, as seen in Section 2, X can be interpreted as a graph Fourier basis,
which makes it an intuitive choice for the representation matrix. In a noiseless scenario
with my = 0, h actually corresponds to the GFT of y.

To comply with the spectral sparsity assumption (Assumption 3.2), we now propose
a distribution that allows h to admit zero-valued components. To this end, we introduce
independent latent Bernoulli variables γi with success probability pi ∈ [0, 1]. Knowing
γ1, . . . , γN , the conditional distribution for h is:

h|γ ∼ N (0, Λ̃†) , (3.15)

where Λ̃† is the Moore-Penrose pseudo-inverse of the diagonal matrix containing the values
{λi1{γi = 1}}Ni=1. In this model, γi controls the sparsity of the i-th element of h. Indeed,
if γi = 0, then hi = 0 almost surely. In the other hand, if γi = 1 then hi follows a Gaussian
distribution with zero-mean and variance equal to 1/λi. This is adapted to the smoothness
hypothesis as for high value of λi (high frequency), the distribution of hi concentrates more
around 0, leading to small value of λih2

i . The associated probability of success pi can be
chosen a priori. One way to chose it is to take pi inversely proportional to λi. Indeed, this
would increase the probability to be sparse at dimensions where the associated eigenvalue
is high. Note that, since λ1 = 0, h1 follows a centered degenerate Gaussian, i.e h1 is equal
to 0 almost surely. Furthermore, if pi = 1 for all i, our model reduces to the one proposed
by Dong et al. [50], which was only focused on the smoothness assumption.
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De�nition 3.4. (Prior and conditional distributions) – The following equations summarize
the prior and important conditional distributions of our model:

p(hi|γi, λi) ∝ exp(−λih2
i )1{γi = 1}+ 1{hi = 0, γi = 0} , (3.16)

p(y|h,X) ∝ exp(− 1

σ2
‖y −Xh−my‖22) , (3.17)

p(γi) ∝ pγii (1− pi)1−γi . (3.18)

For simplicity, in the following we consider that my = 0 and p1 = 0.

Lemma 3.2. – Assume the proposed Model (3.14). If p1 = 0 and pi ∈ (0, 1), ∀i ≥ 2, then:

− log(p(h|y,X,Λ)) ∝ 1

σ2
‖y −Xh‖22 +

1

2
hTΛh

+
N∑
i=1

1{hi 6= 0}
(
pi log(

λi√
2π

)− log(pi)− log(
λi√
2π

)

)
.

De�nition 3.5. (Lambert W-Function) – The LambertW -Function, denoted byW (·), is the
inverse function of f : W 7−→WeW . In particular, we considerW to be the principal branch
of the Lambert function, de�ned over [−1/e,∞).

Proposition 3.6. (A posteriori distribution of h) – Let C > 0, and assume for all i ≥ 2 that
pi = e−C if λi =

√
2π, whereas pi = −W

(
− e−C log(λi/

√
2π)

λi/
√

2π

)
1

log(λi/
√

2π)
otherwise. Then,

pi ∈ (0, 1) and there exist constants α, β > 0 such that:

− log(p(h|y,X,Λ)) ∝ ‖y −Xh‖22 + αhTΛh+ β‖h‖0 .

This proposition tells us that: for a given Laplacian matrix, the maximum a posteriori estimate
of h would corresponds to the minimum of Problem (3.1).

6 Related work on GSP-based graph learning methods

Here we detail the two state-of-the-art methods for graph learning in the GSP context that
are closer to our work and that will be used for our experimental comparison in Section 7.

GL-SigRep [50]. This method supposes that the observed graph signals are smooth with
respect to the underlying graph, but do not consider the spectral sparsity assumption. To
learn the graph, they propose to solve the optimization problem:

min
L,Ỹ
‖Y − Ỹ ‖2F + α‖L1/2Ỹ ‖2F + β‖L‖2F s.t.


Lk,` = L`,k ≤ 0 k 6= ` ,
L1 = 0 ,
tr(L) = N ∈ R+

∗ .
(3.19)

Remark that since no constraints are imposed on the spectral representation of the signals,
the Laplacian matrix is directly learned. The optimization procedure to solve (3.19) con-
sists in an alternating minimization over L and Ỹ . With respect to Ỹ the problem has a
closed-form solution whereas for L, the authors propose to use a Quadratic Program solver
involving 1

2N(N − 1) parameters and 1
2N(N − 1) +N + 1 constraints.
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ESA-GL [139]. This is a two-step algorithm where the signals are supposed to admit a
sparse representation with respect to the learned graph. The di�erence to our method
is two-fold. First, ESA-GL does not include the smoothness assumption while learning
the Fourier basis X . This brings a di�erent two-step optimization program. Second, the
complexity of the ESA-GL algorithm (at least O(N8)) is much higher than ours (O(N5)
for FGL-3SR - see Section 4.3), and hence is prohibitive for large graphs. The �rst step
consists in �tting an orthonormal basis such that the observed graph signals Y admit a
sparse representation with respect to this basis. They consider the problem:

min
H,X
‖Y −XH‖2F s.t.

{
XTX = IN , x1 = 1√

N
1N ,

‖H‖2,0 ≤ K ∈ N ,
(3.20)

which is solved using an alternating minimization. Once estimates for H and X have been
computed, they solve a second optimization problem in order to learn the Laplacian L
associated to the learned basis X̂ . This is done by minimizing:

min
L∈RN×N , CK∈RK×K

tr(ĤT
KCKĤK) + µ‖L‖2F s.t.


Lk,` = L`,k ≤ 0 k 6= ` ,
L1N = 0N ,

LX̂K = X̂KCK , CK � 0 ,
tr(L) = N ∈ R+

∗ ,
(3.21)

where CK ∈ RK×K and X̂K corresponds to the columns of X̂ associated to the non-zero
rows of Ĥ denoted ĤK . Thus, the second step aims at estimating a Laplacian that enforces
the smoothness of the learned signal representation X̂Ĥ . This semi-de�nite program
requires the computation of over 1

2N(N − 1) + 1
2K(K − 1) parameters that, as we show

empirically in the next section, can be di�cult to compute for graphs with large number of
nodes. For more details on the optimization program and the additional matrix CK , the
readers shall refer to the aforementioned paper.

7 Experimental evaluation

The two proposed algorithms, IGL-3SR and FGL-3SR, are now evaluated and compared with
the two state-of-the-art methods presented earlier, GL-SigRep and ESA-GL. The results
of our empirical evaluation are organized in three subsections: Section 7.2 and 7.3 use
synthetic data for �rst comparing the di�erent methods and then study the in�uence of the
hyperparameters; Section 7.4 displays several examples on real-world data.

All experiments were conducted on a single personal computer: a personal laptop
with with 4-core 2.5GHz Intel CPUs and Linux/Ubuntu OS. For the Λ-step of both
algorithms, we use the Python’s CVXPY package [47]. For the X-step of IGL-3SR, we
use the conjugate gradient descent solver combined with an adaptive line search, both
provided by Pymanopt [156], a Python toolbox for optimization on manifolds. Note that
this package only requires the gradients given in Proposition 3.3. The source code of our
implementations is available online1.

1https://github.com/pierreHmbt/GL-3SR
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7.1 Evaluation metrics

We provide visual and quantitative comparisons of the learned Laplacian L̂ and its weight
matrix Ŵ using the performance measures: Recall, Precision, and F1-measure, which are
standard for this type of evaluation [126]. The F1-measure evaluates the quality of the
estimated support – the non-zero entries – of the graph and is given by:

F1 =
2× precision× recall
precision+ recall

.

As in [126], the F1-measure is computed on a thresholded version of the estimated weight
matrix Ŵ . This threshold is equal to the average value of the o�-diagonal entries of Ŵ
(same process as in [139]).

In addition, we compute the correlation coe�cient ρ(L, L̂) between the true Laplacian
entries Li,j and their estimates L̂i,j

ρ(L, L̂) =

∑
ij(Lij − Lm)(L̂ij − L̂m)√∑

ij(Lij − Lm)2
√∑

ij(L̂ij − L̂m)2
, (3.22)

where Lm and L̂m are the average values of the entries of the true and estimated Laplacian
matrices, respectively. This ρ coe�cient evaluates the quality of the weights distribution
over the edges.

7.2 Experiments on synthetic data

We now evaluate and compare all algorithms on several types of synthetic data. Details
about graphs, associated graph signals, and evaluation protocol used for the experiments,
are detailed in the sequel.

Graphs and signals. We carried out experiments on graphs with 20, 50, and 100 vertices,
following: i) a Random Geometric (RG) graph model with a 2-D uniform distribution for
the coordinates of the nodes and a truncated Gaussian kernel of width size 0.5 for the
edges, where weights smaller than 0.75 were set to 0; ii) an Erdős-Rényi (ER) model with
edge probability 0.2.

Given a graph, the sampling process was made according to Model (3.16) that we
presented in Section 5. The mean value of each signal was set to 0, the variance of the noise
was set to 0.5, and the sparsity was chosen to obtain observations with k-sparse spectral
representation, where k is equal to half the number of nodes (i.e 10, 20, 50).

For each type of graph, we ran 10 experiments with 1000 graph signals generated as
explained above. For all the methods, the hyperparameters α and β are set by maximizing
the F1-measure on the thresholded Ŵ , as explained in Section 7.1.

Choice of ‖ · ‖S . In the following we make all experiments for IGL-3SR and FGL-3SR with
the `2,1-norm. This is motivated by an important fact brought by the closed-form solutions
given in Proposition 3.2. Indeed, for `2,1-norm, the sparsity of Ĥ is only controlled by β
(Equation (3.7)). On the contrary, when using the `2,0-norm, the value of α also in�uences
the sparsity (Equation (3.6)). This is an important behavior, as the tuning of β and α
becomes independent – at least with respect to the H-step – and therefore, as we will see
in Section 7.3.1, easier to tune.
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RG graph model ER graph model

N Metrics IGL-3SR FGL-3SR ESA-GL GL-SigRep IGL-3SR FGL-3SR ESA-GL GL-SigRep

20

Precision 0.973 (±0.042) 0.952 (±0.042) 0.899 (±0.054) 0.929 (±0.068) 0.952 (±0.045) 0.819 (±0.080) 0.931 (±0.045) 0.704 (±0.125)

Recall 0.974 (±0.018) 0.985 (±0.023) 0.968 (±0.052) 0.967 (±0.028) 0.927 (±0.046) 0.824 (±0.105) 0.951 (±0.041) 0.899 (±0.075)

F1-measure 0.974 (±0.028) 0.968 (±0.027) 0.929 (±0.032) 0.947 (±0.040) 0.938 (±0.028) 0.816 (±0.068) 0.941 (±0.038) 0.779 (±0.071)

ρ(L, L̂) 0.938 (±0.052) 0.903 (±0.029) 0.925 (±0.050) 0.786 (±0.037) 0.917 (±0.035) 0.730 (±0.063) 0.897 (±0.045) 0.199 (±0.074)

Time < 1min < 10s < 5s < 5s < 1min < 10s < 5s < 5s

50

Precision 0.901 (±0.022) 0.817 (±0.041) 0.845 (±0.088) 0.791 (±0.055) 0.820 (±0.027) 0.791 (±0.047) 0.854 (±0.038) 0.476 (±0.037)

Recall 0.902 (±0.018) 0.807 (±0.036) 0.910 (±0.040) 0.720 (±0.059) 0.812 (±0.042) 0.740 (±0.049) 0.830 (±0.051) 0.856 (±0.023)

F1-measure 0.901 (±0.014) 0.812 (±0.017) 0.868 (±0.036) 0.750 (±0.001) 0.815 (±0.021) 0.761 (±0.031) 0.841 (±0.021) 0.610 (±0.026)

ρ(L, L̂) 0.863 (±0.020) 0.743 (±0.031) 0.832 (±0.033) 0.549 (±0.022) 0.783 (±0.026) 0.728 (±0.020) 0.816 (±0.058) 0.058 (±0.002)

Time < 17mins < 40s < 60s < 40s < 17mins < 40s < 60s < 40s

100

Precision 0.713 (±0.012) 0.711 (±0.029) 0.667 (±0.022) – 0.677 (±0.044) 0.640 (±0.033) 0.654 (±0.038) –
Recall 0.751 (±0.067) 0.584 (±0.011) 0.743 (±0.017) – 0.580 (±0.021) 0.543 (±0.027) 0.637 (±0.023) –

F1-measure 0.732 (±0.034) 0.641 (±0.010) 0.703 (±0.012) – 0.623 (±0.009) 0.586 (±0.016) 0.589 (±0.019) –
ρ(L, L̂) 0.612 (±0.045) 0.483 (±0.015) 0.596 (±0.033) – 0.551 (±0.016) 0.512 (±0.0223) 0.644 (±0.023) –
Time < 50mins < 2mins < 4mins – < 50mins < 2mins < 4mins –

Table 3.1: Comparison of the four methods on �ve quality metrics (avg ± std) for graphs of
N = {20, 50, 100} nodes, and for �xed number of n = 1000 graph signals.

Quantitative results. Average evaluation metrics and their standard deviation are
collected in Table 3.1. The results show that the use of the sparsity constraint improves the
quality of the learned graphs. Indeed, the two proposed methods IGL-3SR and FGL-3SR,
as well as ESA-GL, have better overall performance in all the metrics than GL-SigRep that
only considers the smoothness aspect. This had to be expected as our methods match
perfectly to the sparse (bandlimited) condition.

Comparing the results across the di�erent types of synthetic graphs, our methods are
robust while being more e�cient on RG graphs.

In general, IGL-3SR, and FGL-3SR present similar performance to ESA-GL. However
IGL-3SR seems preferable in the case of RG graphs. For 100 nodes, the computational
resources necessary for GL-SigRep was already too demanding, therefore only the results
for the rest three methods are reported. We can see that, while IGL-3SR has better results
than FGL-3SR, the time necessary to estimate the graph is much longer. In addition,
examples of learned graphs are displayed in Figure 3.3 with the ground-truth on the left
and the learned weighted adjacency matrices (after thresholding). The evolution of the
F1-measure regarding the value of the threshold is also displayed and shows that a large
range of threshold could have been used to obtain similar performance. All these results,
combined with those of Table 3.1, indicate that in this sampling process the proposed
FGL-3SR method managed to infer accurate graphs despite the relaxation.

Speed performance. Figure 3.4 displays the evolution of the empirical computation
time as the number of nodes increases. FGL-3SR appears to be much faster than the other
methods. Furthermore, we observe that our methods are scalable over a wider range of
graph sizes than the competitors. Indeed, even quite small graphs of 100 and 150 nodes,
respectively, were already too ‘large’ for the two competitors to be able to produce results,
and they even led to memory allocation errors.

7.3 In�uence of the hyperparameters

We now study how hyperparameters of IGL-3SR and FGL-3SR in�uence their overall
performance, with respect to the F1-measure. This study is made on a RG graph with
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(a) Graph learning on RG synthetic graphs.
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(b) Graph learning on ER synthetic graphs.

Figure 3.3: Graph learning results on random synthetic graphs of 20 nodes: (a) for a
RG graph, and (b) for an ER graph. Each of the two sub�gures presents: (top row) the
evolution of the F1-measure with respect to di�erent threshold values and the dashed line
indicates the chosen threshold value; (bottom row) shows as leftmost the ground truth
adjacency matrix, followed by the respective learned adjacency matrices (thresholded) by
the compared methods.
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(a) Standard scale. (b) Semi-log scale.

Figure 3.4: Average and standard deviation of the computation time over 10 trials for
IGL-3SR, FGL-3SR, ESA-GL, and GL-SigRep, as the number of nodes increases. GL-SigRep
and ESA-GL failed to produce a result for graphs with more than 100 and 150 nodes,
respectively. (a) The total computation times, and (b) the time needed for a single iteration
of each algorithm. For IGL-3SR and FLG-3SR, a single iteration means the computation of
the 3 steps one time.

N = 20 nodes and 10-bandlimited signals Y in R20×1000.

7.3.1 In�uence of α and β

We �rst highlight the in�uence of α and β on FGL-3SR. We run and collect the F1-measure
for 20 values of α (resp. β) in [10−5, 100] (resp. [10−5, 60]). The resulting heatmaps are
displayed in Figure 3.5. The most important observation is that the value of α does not seem
to impact the quality of the resulted graphs. Indeed, for a �xed value of β, the F1-measure
is stable when α varies. However, it is interesting that the convergence curve of FGL-3SR
(Figure 3.6) is directly impacted by α: large values for α tend to produce oscillations on
the convergence curves. Thus, setting to a small value α > 0 is suggested. Contrary to α,
tuning the parameter β is critical since high β values cause a drastic decrease in F1-measure.
This sharp decrease appears when the chosen β imposes too much sparsity for the learned
Ĥ . One may note that the best β corresponds to the value just before the sharp decrease,
and this is the value that should be chosen. Although the previous analysis has been done
on FGL-3SR, during our experimental studies, α and β in�uenced the F1-measure similarly
when using IGL-3SR.

7.3.2 In�uence of t

We now highlight the in�uence of t on IGL-3SR. Figure 3.7 shows the learned graphs for
several values of t ∈ [10, 104]. This experiment brings two main messages: �rst, when t is
too low, the learned graph is very close to the complete graph, whereas when t increases
the learned graph becomes more structured and tends to be sparse. This result was expected
since a larger t brings the barrier closer to the true constraint, i.e. we allow elements of
the resulting Laplacian matrix to be closer to 0. Second, it appears that α also in�uences
the �nal results in a similar way to t. Again, this was expected as the minimization of the
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Figure 3.5: Evolution of the average (a)(c) and standard deviation (b)(d) of the F1-measure
over 10 runs of FGL-3SR on RG graphs with 20 nodes. At the top �gure row β ∈ [0, 100],
and at the bottom row β ∈ [20, 70].

(a) Low α value. (b) Medium α value. (c) High α value.

Figure 3.6: Convergence curves of the objective function as the number of iterations
increases, using FGL-3SR with (a) α = 10−5, (b) α = 10−1, (c) α = 1.

objective function during the Λ-step of Problem (3.3) is equivalent to the minimization of
tr(HHTΛ) + 1

α tφ(U,Λ).
For a discussion on the initial value of t, t(0), and the step size µ such that t(`+1) = µt(`),

both relative to the barrier method, we refer the reader to [21]. However, recall that t is
not a hyperparameter to tune in practice, and should be taken as large as possible. The
mere goal is to prevent numerical issues. Fortunately, a wide range of values for t(0) and µ
achieves that goal [21].
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Figure 3.7: Learned graphs with increasing t values: (top row) α = 10−4, (bottom row)
α = 10−3.

Tuning the hyperparameters. The hyperparameter α does not seems to have a sub-
stantial impact on the F1-measure. However, a low value of it may be preferred in FGL-3SR
for convergence purpose (Figure 3.6). The parameter t always needs to be maximal pro-
vided that it does not cause numerical issues. Classical heuristics and methods, like the one
presented in Section 3.4, can be used to tune t [21]. Hence, according to our experiments,
it remains only β as a critical hyperparameter to tune for both these methods. Based on
Figure 3.5, one way to �x it is to �nd the largest β value that leads to satisfying results
in terms of signal reconstruction. Alternatively, if we have an idea about the number of
clusters k that resides on the graph, we could select a β value that produces a k-sparse
spectral representation. Bearing in mind that other related works require the tuning of two
hyperparameters, our approach turns out to be of higher value for practical application on
real data where these parameters are unknown and must be tuned.

7.4 Temperature data

We used hourly temperature (C◦) measurements on 32 weather stations in Brittany, France,
during a period of 31 days [33]. The dataset contains 24× 31 = 744 multivariate observa-
tions, i.e. Y ∈ R32×744, that are assumed to correspond to an unknown graph, which is
our objective to infer. For our two algorithms, we set α = 10−4, and β is chosen so that
we obtain a 2-sparse spectral representation, which this last assumes that there are two
clusters of weather stations.

The graphs obtained with each of the method are displayed in Figure 3.8 (a-b). They are
in accordance with the one found in [33] on the same dataset. Both the proposed methods
provide similar results, which shows that the relaxation used in FGL-3SR has a moderate
in�uence in practice in this real-world problem. Although ground-truth is not available for
this use-case, the quality of the learned graph can be assessed when using it as input in
standard tasks such as graph clustering or sampling. For instance, when applying spectral
clustering [123] with two clusters on the resulting Laplacian matrices, it can be seen that
both methods split the learned graph in two parts corresponding to the north and the south
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(a) Learned graph by IGL-3SR. (b) Learned graph by FGL-3SR.

(c) Graph clustering on IGL-3SR’s result. (d) Graph clustering on FGL-3SR’s result.

Figure 3.8: (Top row) Learned graph with (a) IGL-3SR and (b) FGL-3SR. The node color
corresponds to the average temperature in C◦ during all the period of observation. (Bottom
row) Graph segmentation in two parts (red vs. green nodes) with spectral clustering using
the Laplacian matrix learned by (c) IGL-3SR and (d) FGL-3SR.

of the region of Britanny (Figure 3.8 (c-d)), which is an expected natural segmentation.
The learned graphs can be also employed in the graph sampling task. Indeed, due to

the constraints used in the optimization problem, the graph signals are bandlimited with
respect to learned graphs. For instance, in this example the graph signals are 2-bandlimited.
This property means that it is possible to select only 2 nodes and to reconstruct the graph
signal values of the 30 remaining nodes using linear interpolation. Figure 3.9 displays an
example of such reconstruction: thanks to the learned graph structure, the use of only 2
nodes allows to reconstruct su�ciently well the whole data matrix with a mean absolute
error of 0.614. Again, this is a very interesting result that indirectly shows the quality of
the learned graph.

7.5 Results on the ADHD dataset

In this third experiment, we consider the Attention De�cit Hyperactivity Disorder (ADHD)
dataset [18] composed of functional Magnetic Resonance Imaging (fMRI) data. ADHD is a
mental pathophysiology characterized by an excessive activity [23]. We study the resting-
state fMRI of 20 subjects with ADHD and 20 healthy subjects available from Nilearn
[1]. Each fMRI consists in a series of images measuring the brain activity. These images are
processed as follows. First we split the brain into 39 Regions Of Interest (ROIs) with the
Multi-Subject Dictionary Learning atlas [164] (see Figure 3.10a). Each ROI de�nes a node
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Figure 3.9: (a) The 2 nodes kept for the signal interpolation are shown in black. (b) The
true signal at the target node (in red) shown on the left and its reconstruction using only
the 2 selected nodes shown on the left (in black).

of our graph and the signal value at a certain node is an aggregation of the fMRI values
over the associated ROI. For each subject, we therefore obtain a matrix in Rn×39, where n
stands for the number of images in the fMRI for the subject.

We then estimate the graph of each subject using such preprocessed data. Examples
of learned graphs with FGL-3SR for an ADHD subject and a healthy subject are displayed
in Figure 3.10. Visually, they reveal strong symmetric links between the right and left
hemisphere of the brain. This phenomenon is common in resting-state fMRI where one
hemisphere tends to correlate highly with the homologous anatomical location in the
opposite hemisphere [41, 149]. Pointing out di�erences, though, the graph from the ADHD
subject seems less structured and contains several spurious links (diagonal and north-south
connections).

Aiming to better highlight the potential value of quality learned graphs for such studies,
we proceed and use the Laplacian matrices of the brain graphs to classify the subjects,
as proposed in several resting-state fMRI studies [2, 39]. First, we subtract the average
graph for all subjects, which in fact removes the symmetrical connections common to all
subjects), and then we use a 3-Nearest Neighbors classi�cation algorithm. We use the
correlation coe�cient of Equation (3.22) as distance metric between Laplacian matrices,
and a leave-one-out cross-validation strategy. The classi�cation accuracy of the described
approach reaches 65%. This level shall be compared with the performance obtained using
simple correlation graphs [2] that, on these 40 subjects, leads to an accuracy of 52.5%. It
appears that in this context the use of a more sophisticated graph learning process allows a
subject characterization that goes beyond considering basic statistical correlation e�ects.
Interestingly, this score is also comparable with state-of-the-art results reported in Sen
et al. [145] for the same task, but on a larger database (67.3% of accuracy), using more
sophisticated and specially-tailored processing steps, as well as carefully chosen classi�ers.

7.6 Sigfox application

For the sake of completeness, we �nally propose to apply our graph-learning method to the
Sigfox training dataset used in Section 3.2 of the previous chapter. Recall that it consists in
a set of approximately 35000 Sigfox messages recorded over one month at the level of 34
BSs and in this framework, one observation consists in a binary vector indicating which
BS has received the message. To improve the speed of convergence, only 5000 messages
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(a) Indicative Regions of Interest (ROIs) from Varoquaux et al. [164].
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Figure 3.10: (a) Indicative ROIs from the Multi-Subject Dictionary Learning atlas extracted
in Varoquaux et al. [164] with sparse dictionary learning. Results: Graphs returned by
FGL-3SR, separately for (b) an ADHD patient and (c) a healthy subject, where darker edges
indicate larger weights of connection.

are sampled randomly from this dataset. Before presenting the results, it should be taken
into consideration that the proposed method has not been designed for this type of binary
data. In particular, there is nothing here to suggest that smoothness can be characteristic
of the underlying graph. In fact, many BS may have the same value 0 (did not receive the
message), without being necessarily linked to each other. The learned graph is presented
in �gure 3.11.

We can observe that the spatial structure is globally preserved by the inferred graph,
a potential indicator of a well-learned graph. Only the group of BSs located in the lower
right corner (about 10 BSs at the same position) do not seem to respect this structure by
establishing connections with BSs far away from them. Although it is di�cult to explain
the reason of such an observation, it should be noted that this set of BSs is located at
Sigfox headquarters, a place where a very large number of messages are sent, and therefore
received, in order to perform tests. It is therefore conceivable that such bias could have
led to the observed results. Nevertheless, it remains very likely that the method presented
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Figure 3.11: Graph obtained with FGL-3SR over the Sigfox training dataset.

here is not adapted to this type of data, reason why the work presented in the following
chapter has been investigated.

8 Conclusions

This chapter presented a data-driven graph learning approach by employing a combination
of two assumptions that are well known in the Graph Signal Processing framework. The
�rst is the most standard in the literature of GSP and concerns the smoothness of the
graph signals with respect to the underlying graph structure. The second is the spectral
sparsity assumption, also referred as bandlimited property, which is notably known to
carry the presence of clusters in real-world graphs. We proposed two algorithms to solve
the corresponding optimization problem. The �rst one, IGL-3SR, e�ectively minimizes
the objective function and has the advantage to decrease at each iteration. To address its
low speed of convergence, we propose FGL-3SR that is a fast and scalable alternative. The
�ndings of our empirical evaluation on synthetic data showed that the proposed approaches
are as good or better performing than the reference state-of-the-art algorithms in term of
reconstructing the unknown underlying graph and of computational cost (running time).
Experiments on real-world benchmark use-cases suggest that our algorithms learn graphs
that are useful and promising for any graph-based machine learning methodology, such as
graph clustering, subsampling, etc.

The objective that was set in the introduction regarding the structural inference from
graph signals has thus been well addressed here. Nevertheless, several objectives remain.
We have seen that the proposed method was not necessarily well adapted to Sigfox data
and therefore learning a graph that is suited to binary data seems important. Moreover,
the task of event detection has been omitted in this chapter. For these reasons, the next
chapter will try to combine the two tasks by proposing a method to detect change-points
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in the underlying structure of binary graph vectors.

9 Technical proofs

This section provides the technical proofs of the di�erent propositions exposed in the
chapter.
Recall that lower case variables refer to vectors/scalars while upper case variables denote
matrices. The table below provides the main notations used in the technical discussion that
follows.

xT,MT Transpose of vector x, matrix M .
tr(M) Trace of matrix M .
diag(x) Diagonal matrix containing the vector x.
Mk,l (k, l)-th element of the matrix M .
Mk,: k-th row of M .
M:,l l-th column of M .
Mk:,l: Submatrix containing the elements of M from the k-th row to the last

row, and from the l-th column to the last column.
M � 0 M is a positive semi-de�nite matrix.
M† The Moore-Penrose pseudoinverse of M .
ek Vector containing zeros except a 1 at position k.
In Identity matrix of size n.
0n Vector of size n containing only zeros.
1n Vector of size n containing only ones.
1A(·) The indicator function over the set A.
‖x‖0 The number of non-zero elements of a vector x.
‖ · ‖F The Frobenius norm.
‖ · ‖2,0 The `2,0-norm, with ‖M‖2,0 =

∑
i=1 1{‖Mi,:‖2 6=0}.

‖ · ‖2,1 The `2,1-norm, with ‖M‖2,1 =
∑

i=1‖Mi,:‖2.
∇f Gradient of the function f .
〈·, ·〉 Inner product function.
Orth(N) The set of all orthogonal matrices of size N ×N .
O( · ) Order of magnitude (e.g. of computational complexity).
τ Number of iterations needed for an optimization procedure.

Table 3.2: Table of notations used throughout the chapter.

Lemma 3.1 – Given X,X0 ∈ RN×N two orthogonal matrices with �rst column equals to
1√
N

1N (constraint (3.1a)), we have the following equality:

X = X0

[
1 0TN−1

0N−1 [XT
0X]2:,2:

]
,

with [XT
0X]2:,2: denoting the submatrix of XT

0X containing everything but the �rst row and
column of itself. Furthermore, remark that [XT

0X]2:,2: is in Orth(N − 1).
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Proof. Let consider X,X0 ∈ RN×N two orthogonal matrix with �rst column equals to
1√
N

1N . We have the following equalities:

X0

[
1 0TN−1

0N−1 [XT
0X]2:,2:

]
=


...

...
X0(:,1) X0(:,2:)[X

T
0X]2:,2:

...
...

 =


...

...
1√
N

1N X:,2:

...
...

 = X .

Furthermore, thanks to the orthogonality of X and X0, we have

[XT
0X]2:,2:

[
[XT

0X]2:,2:

]T
= XT

0,(2:,:)X:,2:

[
XT

0,(2:,:)X:,2:

]T
= XT

0,(2:,:)X:,2:X
T
:,2:[X

T
0,(2:,:)]

T = IN−1.

By symmetry we conclude that [XT
0X]2:,2: ∈ Orth(N − 1).

Proposition 3.1 – Given X0 ∈ RN×N an orthogonal matrix with �rst column equals to
1√
N

1N , an equivalent formulation of optimization problem (3.1) is given by:

min
H,U,Λ

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+ α‖Λ1/2H‖2F + β‖H‖S , f(H,U,Λ) ,

s.t.



UTU = IN−1 , (a’)(
X0

[
1 0TN−1

0N−1 U

]
Λ

[
1 0TN−1

0N−1 UT

]
XT

0

)
k,`

≤ 0 k 6= ` , (b’)

Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)

Proof. From the previous lemma, we know that X can be decompose into two orthogonal
matrices X0 and U = [XT

0X]2:,2:. Hence, we can optimize with respect to U instead of
X and the second part of the constraint (3.1a) is automatically satis�ed. To make the

equivalence, we just replace X from the main optimization problem to X0

[
1 0TN−1

0N−1 U

]
where U is now imposed to be orthogonal.

Proposition 3.2 (Closed-form solution for the `2,0 and `2,1-norms) – The solutions of
problem (3.5) when ‖ · ‖S is set to ‖ · ‖2,0 or ‖ · ‖2,1 are given in the following.

• Using the `2,0-norm, the optimal solution of (3.5) is given by the matrix Ĥ ∈ RN×n
where for 1 ≤ i ≤ N,

Ĥi,: =

{
0 if ‖(XTY )i,:‖22/(1 + αλi) ≤ β ,
(XTY )i,:/(1 + αλi) else .

• Using the `2,1-norm, the optimal solution of (3.5) is given by the matrix Ĥ ∈ RN×n
where for 1 ≤ i ≤ N,

Ĥi,: =
1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
+

(XTY )i,: ,

where (t)+ , max{0, t} is the positive part function.
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Proof. In the following, we suppose that Y 6= 0 since in this trivial case, the solution is
simply given by Ĥ = 0.

Closed-form solution for the `2,0. Recall that ‖H‖2,0 =
∑

i=1 1{‖Hi,:‖2 6=0}, the objective
function can be written as:

f(X,Λ, H) = ‖XTY −H‖2F + α‖Λ1/2H‖2F + β‖H‖2,0

= ‖Y ‖2F +
N∑
i=1

(
n∑
j=1

(
H2
i,j − 2(XTY )i,jHi,j + αλiH

2
i,j

)
+ β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +

N∑
i=1

(
‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ αλi‖Hi,:‖22 + β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +

N∑
i=1

(
(1 + αλi)‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +
N∑
i=1

f̃i(X,Λ, Hi,:) .

Our objective function is written as a sum of independent objective functions, each associ-
ated with a di�erent Hi,:. Hence, we can optimize the problem for each i. Our problem for
a given i is:

min
Hi,:∈Rn

(1 + αλi)‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ β1{‖Hi,:‖2 6=0} .

When we restrict the minimization to ‖Hi,:‖2 = 0, the unique solution is Ĥi,: = 0n and
f̃i(X,Λ, Ĥi,:) = 0.

When ‖Hi,:‖2 6= 0, the objective function is convex and di�erentiable, thus it su�ce to
take the following derivative equal to 0:

∂

∂Hi,:
f̃i(Hi,:) = 2(1 + αλi)Hi,: − 2(XTY )i,: = 0 ,

Ĥi,: = (XTY )i,:/(1 + αλi) .

With this solution, the objective function f̃i is equal to:

f̃(X,Λ, Ĥi,:) = (1 + αλi)‖(XTY )i,:/(1 + αλi)‖22 − 2〈(XTY )i,:, (X
TY )i,:/(1 + αλi)〉+ β

=
1

1 + αλi
‖(XTY )i,:‖22 −

2

1 + αλi
‖(XTY )i,:‖22 + β

= β − 1

1 + αλi
‖(XTY )i,:‖22 .

Hence, whenever 1

1 + αλi
‖(XTY )i,:‖22 ≤ β, the objective function is positive, making

Ĥi,: = 0 a better choice for the minimization and conversely. In conclusion, for all
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1 ≤ i ≤ N, the solution is:

Ĥi,: =

{
0 if ‖(XTY )i,:‖22/(1 + αλi) ≤ β ,
(XTY )i,:/(1 + αλi) else .

Closed-form solution for the `2,1. Similarly to the `2,0 case, the objective function can be
decomposed by a sum of independent objectives functions.

f(X,Λ, H) = ‖XTY −H‖2F + α‖Λ1/2H‖2F + β‖H‖2,1

= ‖Y ‖2F +

N∑
i=1

(
n∑
j=1

(
H2
i,j − 2(XTY )i,jHi,j + αλiH

2
i,j

)
+ β

√∑
j=1

H2
i,j

)

= ‖Y ‖2F +

N∑
i=1

(
‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ αλi‖Hi,:‖22 + β‖Hi,:‖2

)

= ‖Y ‖2F +

N∑
i=1

(
(1 + αλi)‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ β‖Hi,:‖2

)

= ‖Y ‖2F +
N∑
i=1

f̃i(X,Λ, Hi,:) .

Again, we can optimize the problem for each row i of H independently. Our problem for a
given i is:

min
Hi,:∈Rn

(1 + αλi)‖Hi,:‖22 − 2〈(XTY )i,:, Hi,:〉+ β‖Hi,:‖2 . (3.23)

Although non-di�erentiable at Hi,: = 0n, this function is convex and we need to �nd Hi,:

such that the vector 0n belongs to the subdi�erential of f̃i denoted by ∂f̃i(Hi,:) and is
equal to:

∂f̃i(Hi,:) =

 B2

(
− 2(XTY )i,:, β

)
if Hi,: = 0n ,

2
(
1 + αλi +

β

2

1

‖Hi,:‖2
)
Hi,: − 2(XTY )i,: otherwise .

Where B2 stand for the `2-norm bowl.

Remark that when ‖(XTY )i,:‖2 ≤ β
2 , 0n ∈ B2

(
− 2(XTY )i,:, β

)
and thus in this case

Ĥi,: = 0n.

On the contrary, when ‖(XTY )i,:‖2 > β
2 , we must �nd Hi,: such that:

(
1 + αλi +

β

2

1

‖Hi,:‖2
)
Hi,: = (XTY )i,: .
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By tacking the norm of the previous equation, we obtain(
1 + αλi +

β

2

1

‖Hi,:‖2
)
‖Hi,:‖2 = ‖(XTY )i,:‖2

⇐⇒(1 + αλi)‖Hi,:‖2 +
β

2
= ‖(XTY )i,:‖2

⇐⇒‖Hi,:‖2 =
(
‖(XTY )i,:‖2 −

β

2

)
/(1 + αλi) > 0 .

We can now replace ‖Hi,:‖2 in the initial equation and get Hi,:.(
1 + αλi +

β(1 + αλi)

2‖(XTY )i,:‖2 − β
)
Hi,: =

(1 + αλi)‖(XTY )i,:‖2
‖(XTY )i,:‖2 − β/2

Hi,: = (XTY )i,:

⇐⇒Hi,: =
‖(XTY )i,:‖2 − β/2

(1 + αλi)‖(XTY )i,:‖2
(XTY )i,: =

1

1 + αλi

(
1− β

2

1

‖(XTY )i,:‖2

)
(XTY )i,: ,

which concludes the proof.

Proposition 3.3 (Euclidean gradient with respect to U ) – The Euclidean gradient of f
and φ with respect to U are

∇Uf(H,U,Λ) = −2
[
(HYTX0)2:,2:

]T
+ 2U(HHT)2:,2: ,

∇Uφ(U,Λ) = −
N−1∑
k=1

N∑
`>k

(
Bk,` +BT

k,`

)
UΛ2:,2:

h(U,Λ)k,`
.

with ∀1 ≤ k, ` ≤ N,Bk,` =
(
XT

0 eke
T
`X0

)
2:,2:

, and h(·) from De�nition 3.2.

Proof. We begin by computing the gradient of the main objective, with respect to U . Recall
the objective function with respect to U :

f(H,U,Λ) = −2tr(YTX0

[
1 0TN−1

0N−1 U

]
H) + tr(HT

[
1 0TN−1

0N−1 UTU

]
H) .

The corresponding gradient is the following.

∇Uf(H,U,Λ) = −2∇U tr(YTX0

[
1 0TN−1

0N−1 U

]
H) +∇U tr(HT

[
1 0TN−1

0N−1 UTU

]
H)

= −2∇U tr
(
HYTX0

[
1 0TN−1

0N−1 U

])
+∇U tr

(
HHT

[
1 0TN−1

0N−1 UTU

])

= −2∇U
(

(HYTX0)1,1 · 1 + tr
(

(HYTX0)2:,2:U
))

+∇U
(

(HHT)1,1 · 1 + tr
(
(HHT)2:,2:U

TU
))

= −2
[
(HYTX0)2:,2:

]T
+ 2U(HHT)2:,2: .
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We now derive the gradient of the barrier function φ(U,Λ) with respect to U :

∇Uφ(U,Λ) = −
N−1∑
k=1

N∑
`>k

∇U log
(
− h(U,Λ)k,`

)

= −
N−1∑
k=1

N∑
`>k

1

h(U,Λ)k,`
∇Uh(U,Λ)k,` .

We can write the h function as:

h(U,Λ)k,` =
〈
eke

T
` , h(U,Λ)

〉
=
〈
XT

0 eke
T
`X0,

[
1 0TN−1

0N−1 U

]
Λ

[
1 0TN−1

0N−1 U

]T 〉
=
〈
XT

0 eke
T
`X0,

[
λ1 0TN−1

0N−1 UΛ2:,2:U
T

]〉
= tr

(
XT

0 e`e
T
kX0

[
0 0TN−1

0N−1 UΛ2:,2:U
T

])
=
(
XT

0 e`e
T
kX0

)
1,1
· 0 + tr

((
XT

0 e`e
T
kX0

)
2:,2:

UΛ2:,2:U
T
)

= tr
(
BT
k,`UΛ2:,2:U

T
)
.

In conclusion we have∇Uh(U,Λ)k,` =
(
Bk,`+B

T
k,`

)
UΛ2:,2:, which �nishes the proof.

Proposition 3.4 (Feasible eigenvalues) – Given any X ∈ RN×N being an orthogonal
matrix with �rst column equals to 1/

√
N (constraint (3.1a)), there always exist a matrix

Λ ∈ RN×N such that the following constraints are satis�ed:
(XΛXT)i,j ≤ 0 i 6= j , (3b)
Λ = diag(0, λ2, . . . , λN ) � 0 , (3c)
tr(Λ) = c ∈ R+

∗ . (3d)

Proof. Let us consider a positive real value c > 0. Taking Λ = diag(0, c, . . . , c)/(N − 1)
leads to tr(Λ) = c and ∀i 6= j, (XΛXT)i,j = −c/N < 0. However, this solution with
constant eigenvalues actually corresponds to the complete graph. For our purpose, it is the
worst case scenario as it contains no structural information between the nodes.

Proposition 3.5 (Closed-form solution of problem (3.11)) – Consider the optimization
problem (3.11). Let X0 be any matrix that belongs to the constraints set (a), and M =
(XT

0 Y H
T)2:,2: the submatrix containing everything but the input’s �rst row and �rst column.

Finally, let PDQT be the SVD of M . Then, the problem admits the following closed form
solution

X̂ = X0

[
1 0TN−1

0N−1 PQT

]
.

Proof. One can observe that the relaxed optimization problem is equivalent to �nding:

Ĝ = argmin
G

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 G

]
, G̃

H

∥∥∥∥∥
2

F

, (3.24)
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s.t. GTG = IN−1. This is obtained by replacing X with X0G̃.

Solving the above Equation (3.24) is equivalent to �nding:

Ĝ = arg max
G

tr
(
HYTX0G̃

)
= arg max

G
tr
(
MTG

)
,

s.t. GTĜ = IN−1. Then, as proved in [180], we �nally have G∗ = PQT, which completes
the proof.

Lemma 3.2 – Assume the proposed Model (3.14). If p1 = 0 and pi ∈ (0, 1), ∀i ≥ 2, then,

− log(p(h|y,X,Λ)) ∝ 1

σ2
‖y −Xh‖22 +

1

2
hTΛh

+

N∑
i=1

1{hi 6=0}

(
pi log(

λi√
2π

)− log(pi)− log(
λi√
2π

)

)
.

Proof. Based on the Factor Analysis model and the independence of hi’s,

log(p(h|y,X,Λ)) ∝ log (p(y|h,X,Λ)) + log (p(h|X,Λ))

∝ − 1

2σ2
‖y −Xh‖22 +

N∑
i=1

log (p(hi|λi)) . (3.25)

Let us now focus on log (p(hi|λi)), for which we have:

log (p(hi|λi)) = log

 ∑
γi={0,1}

p(hi, γi|λi)


= log

 ∑
γi={0,1}

p(hi, γi|λi)
p(γi|hi, λi)
p(γi|hi, λi)


≥
(=)

∑
γi={0,1}

p(γi|hi, λi) log

(
p(hi, γi|λi)
p(γi|hi, λi)

)
.

The last equality is obtain using the concavity of the logarithm and Jensen inequality. For
this particular case, it correspond to an equality. Then we have:

log (p(hi|λi)) =
∑

γi={0,1}
p(γi|hi, λi) log (p(hi, γi|λi)) (?)

−
∑

γi={0,1}
p(γi|hi, λi) log (p(γi|hi, λi)) . (??)

Before computing the previous two sums, we need to observe that:

p(γi = 1|hi) =

{
1 if hi 6= 0 ,
pi if hi = 0 .
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We can now compute (?) and (??) as follows:

(?) =
∑

γi={0,1}
p(γi|hi, λi) [log (p(hi|γi, λi)) + log (p(γi|λi))]

=
(
1{hi 6=0} + pi1{hi=0}

) [
log

(
λi√
2π

)
− 1

2
λih

2
i + log (pi)

]
+
(
(1− pi)1{hi=0}

) [
log
(
1{hi=0}

)
+ log (1− pi)

]
(??) = [pi log(pi) + (1− pi) log(1− pi)]1{hi=0} .

Finally we can compute log (p(hi|λi)):

log (p(hi|λi)) = (?)− (??)

= 1{hi 6=0}

(
log

(
λi√
2π

)
− 1

2
λih

2
i + log (pi)

)
+ pi log

(
λi√
2π

)
1{hi=0}

= 1{hi 6=0}

(
log

(
λi√
2π

)
+ log (pi)− pi log

(
λi√
2π

))
+ pi log

(
λi√
2π

)
+−1

2
λih

2
i

∝ 1{hi 6=0}

(
log

(
λi√
2π

)
+ log (pi)− pi log

(
λi√
2π

))
− 1

2
λih

2
i .

Note that with our parametrization, the particular case i = 1 leads to log (p(h1|λ1)) = 0.
Now plugging our result in equation (3.25) and multiplying on both side by −1, we get our
�nal result.

Proposition 3.6 (A posteriori distribution of h) – Let C > 0, and assume for all i ≥ 2

that pi = e−C if λi =
√

2π and pi = −W
(
− e−C log(λi/

√
2π)

λi/
√

2π

)
/ log(λi/

√
2π) if not. Then,

pi ∈ (0, 1) and there exist constants α, β > 0 such that:

− log(p(h|y,X,Λ)) ∝ ‖y −Xh‖22 + αhTΛh+ β‖h‖0 .

Proof. To show that the pi’s are well-de�ned and belongs to (0, 1), it su�ces to apply
Lemma 3.3 with x = λi/

√
2π.

We now proof the main result of the proposition. If λi =
√

2π, then pi = e−C < 1 and

pi log(
λi√
2π

)− log(pi)− log(
λi√
2π

) = − log(pi) = C .
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If λi 6=
√

2π, then −pi log(λi/
√

2π) = W
(
− e−C log(λi/

√
2π)

λi/
√

2π

)
. Since W corresponds to

the inverse function of f(W ) = WeW , we have:

− pi log(λi/
√

2π)e−pi log(λi/
√

2π) = −e
−C log(λi/

√
2π)

λi/
√

2π

⇐⇒
∣∣∣−pi log(λi/

√
2π)e−pi log(λi/

√
2π)
∣∣∣ =

∣∣∣∣∣−e−C log(λi/
√

2π)

λi/
√

2π

∣∣∣∣∣
⇐⇒ log

(
pi

∣∣∣log(λi/
√

2π)
∣∣∣ e−pi log(λi/

√
2π)
)

= log

(
e−C

∣∣log(λi/
√

2π)
∣∣

λi/
√

2π

)
⇐⇒ log(pi) + log

(∣∣∣log(λi/
√

2π)
∣∣∣)− pi log(λi/

√
2π)

= −C + log
(∣∣∣log(λi/

√
2π)
∣∣∣)− log(λi/

√
2π) .

Same as the case where λi =
√

2π, the �nal equality gives us:

pi log(
λi√
2π

)− log(pi)− log(
λi√
2π

) = C . (3.26)

Plugging the equation (3.26) into the �nal result of proposition 1, we obtain:

− log(p(h|y,X,Λ)) ∝ 1

2σ2
‖y −Xh‖22 +

1

2
hTΛh+ C‖h‖0

∝ ‖y −Xh‖22 + αhTΛh+ β‖h‖0 ,

taking α = σ2 and β = 2Cσ2. This concludes the proof.

Lemma 3.3. Let C > 0. For any x > 0,

0 ≤ −W
(
−e
−C log(x)

x

)
/ log(x) ≤ 1 . (3.27)

Proof. First, we show that this function is decreasing for x > 0. The derivative of the
function is given by

∂

∂x
−W

(
−e
−C log(x)

x

)
/ log(x) =

W
(
− e−C log(x)

x

)(
W
(
− e−C log(x)

x

)
+ log(x)

)
x log2(x)

(
W
(
− e−C log(x)

x

)
+ 1
) .

(3.28)

For x > 0 and C > 0,

−1/e < −e−(C+1) = min
x>0
−e
−C log(x)

x
≤ −e

−C log(x)

x
. (3.29)

AsW (·) is strictly increasing for x > −1/e, we haveW
(
− e−C log(x)

x

)
> W (−1/e) = −1.

Hence, the bottom part of the previous equation is always positive.
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For 0 < x ≤ 1, W
(
− e−C log(x)

x

)
is positive. Furthermore,

−e−C log(x)

x
< − log(x)

x
⇐⇒W

(
−e−C log(x)

x

)
< W

(− log(x)

x

)
= − log(x)

(3.30)

⇐⇒W

(
−e−C log(x)

x

)
+ log(x) < 0 . (3.31)

Hence, when 0 < x ≤ 1, the upper part of the previous equation is negative.

For 1 < x ≤ e, W
(
− e−C log(x)

x

)
is negative. Furthermore,

−1

e
≤ − log(x)

x
< −e−C log(x)

x
⇐⇒W

(
− log(x)

x

)
= − log(x) < W

(
−e−C log(x)

x

)
(3.32)

⇐⇒W

(
−e−C log(x)

x

)
+ log(x) > 0 . (3.33)

Hence, when 1 < x ≤ e, the upper part of the previous equation is negative again.

For x > e, W
(
− e−C log(x)

x

)
is negative. Furthermore, W

(
− e−C log(x)

x

)
> −1 and

log(x) > 1. Hence, the addition is positive and the upper part of the previous equa-
tion is negative again.

We just have shown that the derivative is negative for x > 0. Hence, the initial function is
decreasing on this interval. We now go back to the initial inequality (3.27). The left part of
the inequality is straightforward as for x large enough, the function corresponds to the
product of two positive functions. The function being decreasing, the lower bound follows.
For the upper bound, let us remind that for y > e, we have the inequality W (y) < log(y)

[81]. Let f(x) = − e−C log(x)
x , for x small enough we have:

W (f(x)) < log(f(x)) ⇔ −W (f(x)) > − log(f(x))

⇔−W (f(x)) / log(x) < − log(f(x))/ log(x) .

Tacking the limit when x −→ 0+ conclude the proof,

lim
x→0+

− log(f(x))/ log(x) = lim
x→0+

− log(−e
−C log(x)

x
)/ log(x)

= lim
x→0+

−
(

log(e−C) + log(− log(x))− log(x)
)
/ log(x)

= lim
x→0+

C

log(x)
+

log(log(1/x))

log(1/x)
+ 1 = 1 .
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Abstract

This chapter is dedicated to the estimation of changes in the underlying structure of
a series of binary graph signals, assumed to be drawn from the probability distribution
known as Ising model. In particular, the present work focuses on the estimation
of multiple change-points in a time-varying Ising model that evolves piece-wise
constantly. The aim is to identify both the moments at which signi�cant changes occur
in the Ising model, as well as the underlying graph structures. For this purpose, we
propose to estimate the neighborhood of each node by maximizing a penalized version
of its conditional log-likelihood. The objective of the penalization is twofold: it imposes
sparsity in the learned graphs and, thanks to a fused-type penalty, it also enforces
them to evolve piece-wise constantly. Using few assumptions, we provide two change-
points consistency theorems. Those are the �rst in the context of unknown number
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of change-points detection in time-varying Ising model. Finally, experimental results
on several synthetic datasets and a real-world dataset demonstrate the performance
of our method.

Associated publication:
Learning the piece-wise constant graph structure of a varying Ising model [104],
Le Bars, Batiste, Humbert Pierre, Kalogeratos, Argyris and Vayatis, Nicolas
Accepted in Proceedings of the 37th International Conference on Machine Learning (ICML).

1 Introduction

Graphs are fundamental tools to model and study static or varying relationships between
variables of potentially high-dimensional vector data. They have many applications in
physics, computer vision and statistics [34, 115]. In the static scenario, learning relationships
between variables is referred to as graph inference and emerges in many �elds such as
in graph signal processing [50, 103], in probabilistic modeling, or in physics and biology
[52, 137]. In this work, we consider a probabilistic framework where the observed data are
drawn from an Ising model, a discrete Markov Random Field (MRF) with {−1, 1}-outputs.
MRF are undirected probabilistic graphical models [97] where a set of random variables
is represented as di�erent nodes of a graph. An edge between two nodes in this graph
indicates the conditional dependency between the two corresponding random variables,
given the other variables.

Learning the structure of an MRF using a set of observations has been widely investi-
gated [16, 117]. In particular for Gaussian graphical models [135, 179] with the well-known
graphical lasso [61]. The Ising model inference task has also been addressed in the past
[66, 79, 132, 166, 175]. However, previous methods do not consider the case where the
underlying structure is evolving through time.

Over the past years, there has been a burst of interest in learning the structure of time-
varying MRF [73, 177]. This task combined with the change-point detection, which is the
detection of the moments in time at which signi�cant changes in the graph structure occur, is
of particular interest. Those have been widely investigated for piece-wise constant Gaussian
graphical models [63, 113, 168], in all types of the change-point detection objectives: single
change-point [27], multiple change-points [64], o�ine detection [63, 95], online detection
[90], etc.

The advancements related to the time-varying Ising model are though limited. Espe-
cially, the combination of multiple change-points detection and structure inference has
not been studied properly in the past. In [5, 96], the authors learn the parameters of a
time-varying Ising model without looking for change-points since the network is allowed
to change at each timestamp. In [59], the authors assume that the change-point location is
known and only focus on the inference of the structural changes between Ising models.
More recently, the problem of detecting a single change-point has been studied in [138].

Contribution. This work focuses on the estimation of multiple change-points in a time-
varying Ising model that evolves piece-wise constantly. The aim is to identify both the
moments at which signi�cant changes occur in the Ising model, as well as the underlying
graph structure of the model among consecutive change-points. Our work extends the
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work in [63, 95] on Gaussian graphical models, to the case of an Ising model. We also
derive two change-points consistency theorems that, to our knowledge, we are the �rst
to demonstrate. More speci�cally, our method follows a “node-wise regression" approach
[132] and estimates the neighborhood of each node by maximizing a penalized version
of its conditional log-likelihood. The penalization allows us to e�ciently recover sparse
graphs and, thanks to the use of a group-fused penalty [19, 75, 95], as well to recover the
change-points. The proposed method is referred as TVI-FL, which stands for Time-Varying
Ising model identi�ed with Fused and Lasso penalties.

Organization. The chapter is organized as follows. First, we brie�y recall important
properties of the static Ising model and describe its piece-wise constant version. Second,
we present our methodology to infer the piece-wise constant graph structure over time
and the moments in time at which signi�cant changes occur. Next, we present our main
theoretical results which consist in two change-point consistency theorems. Finally, we
empirically demonstrate, on multiple synthetic datasets and a real-world problem, that our
method is the best suited to recover both structure and change-points.

2 The time-varying Ising model

The static Ising model is a discrete MRF with {−1, 1}-outputs. This model is de�ned by a
graph G = (V, E) where an edge between two nodes indicates that the two corresponding
random variables are dependent given the other ones. We associate this graph to a sym-
metric weight matrix Ω ∈ Rp×p whose non-zero elements correspond to the set of edges E .
Formally, we have ωab 6= 0 i� (a, b) ∈ E where ωab stands for the (a, b)-th element of Ω.
An Ising model is thus entirely described by its associated weight matrix Ω. Let X ∼ I(Ω)
be a random vector following an Ising model with weight matrix Ω. Let x ∈ {−1, 1}p be
a realization and xa, xb respectively its a-th and b-th coordinates. Then, its probability
function is given by:

PΩ(X = x) =
1

Z(Ω)
exp

{∑
a<b

xaxbωab

}
, (4.1)

where Z(Ω) =
∑

x∈{−1,1}p exp
{∑

a<b xaxbωab
}

is the normalizing constant. For clarity
in the following we denote PΩ(X = x) = PΩ(x).

A time-varying Ising model is de�ned by a set of n graphs G(i) = (V, E(i)), i ∈
{1, . . . , n} over a �xed set of nodes V through a time-varying set of edges {E(i)}ni=1.
Similarly to the static case, eachG(i) is associated to a symmetric weight matrix Ω(i) ∈ Rp×p
and a distribution PΩ(i) given by Eq. (4.1). A random variable associated to this model is a
set of n independent random vectors X(i) ∼ I(Ω(i)). A single realization is therefore a set
of n vectors, each denoted by x(i) ∈ {−1, 1}p.

In the sequel, we assume in addition that the model is piece-wise constant, i.e. there
exist a collection of D timestamps D , {T1, . . . , TD} ⊂ {2, . . . , n}, sorted in ascending
order, and a set of symmetric matrices {Θ(j)}D+1

j=1 such that ∀i ∈ {1, . . . , n}:

Ω(i) =
D∑
j=0

Θ(j+1)1{Tj ≤ i < Tj+1} , (4.2)
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where T0 = 1, TD+1 = n+1. D thus corresponds to the set of change-points. According to
Eq. (4.2), for a �xed j ∈ {0, . . . , D}, the set

{
x(i) : Tj ≤ i < Tj+1

}
contains i.i.d. vectors

drown from PΘ(j+1) .

3 Learning Methodology

Assuming the observation of a single realization {x(i)}ni=1 of the described time-varying
model at each timestamp, our objective is twofold. We want to recover the set of change-
points D, as well as the graph structure underlying the observed data vectors, i.e. which
edges are activated at each timestamp. In practice, we may observe multiple data vectors at
each timestamp. However, since this does not change our analysis, we leave the related
discussion for the experimental section. Next, we now describe our methodology to perform
the aforementioned tasks.

Neighborhood selection strategy. Due to the intractability of the normalizing constant
Z(·), classical maximum likelihood approaches are di�cult to apply in practice. Hence, an
intuitive approach is to extend the neighborhood selection strategy introduced for the static
setting in [132] to our time-varying setting. Instead of maximizing the global likelihood of
Eq. (4.1), this approach maximizes, for each node a ∈ V , the conditional likelihood of the
node knowing the other nodes in V a. The conditional probability of observing a node’s
value, knowing the others, when X ∼ I(Ω), is:

Pωa(xa|x a) =
exp

{
2xa

∑
b∈V a xbωab

}
exp

{
2xa

∑
b∈V a xbωab

}
+ 1

, (4.3)

where ωa denotes the a-th column (or row) of Ω that is used to parametrize the probability
function of Eq. (4.3). Here, x a denotes the vector x without the coordinate a.

For each node, we thus propose to maximize a penalized version of the conditional
likelihood of Eq. 4.3. The detailed procedure is explained below.

3.1 Optimization program

The neighborhood selection strategy works as follows. For each node a = 1, . . . , p, we
solve the regularized optimization program:

ω̂a = arg min
ω∈Rp−1×n

La(ω) + penλ1,λ2(ω). (4.4)

In this equation, La(ω) stands for the node-wise negative conditional log-likelihood of
node a, knowing x(i)

a :

La(ω) , −
n∑
i=1

log
(
Pω(i)(x(i)

a |x(i)
a )
)

(4.5)

=

n∑
i=1

log
{

exp
(
ω(i)>x(i)

a

)
+ exp

(
−ω(i)>x(i)

a

)}
−

n∑
i=1

x(i)
a ω

(i)>x(i)
a , (4.6)

where ω(i) is the i-th column of ω. The last line is obtained by plugging Eq. (4.3) in Eq. (4.5)
with ω(i) instead of ωa.

With such objective function, we learn at each timestamp i the neighborhood ω(i) of
node a via a penalized logistic regression method.
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Figure 4.1: Comparison of the learned parameter vectors when using either `2 or `1-norm
in the fused penalty. White squares indicates dimensions at which the two consecutive
parameter vectors are di�erent. Black squares where they are equal. The presence of at
least one white square indicates a change-point.

Penalty term. Provided two hyperparameters, λ1, λ2 > 0, we propose the following
penalty term for Eq. 4.4:

penλ1,λ2(ω) = λ1

n∑
i=2

∥∥∥ω(i) − ω(i−1)
∥∥∥

2
+ λ2

n∑
i=1

∥∥∥ω(i)
∥∥∥

1
.

The overall two-term penalty is necessary for recovering e�ciently the piece-wise constant
graph structure. The second term is quite standard: it allows the estimated parameter
vectors to be sparse and thus imposes structure in the learned graphs. On the other hand,
without the �rst term, we would �t for each timestamp i ∈ {1, . . . , n} a parameter vector
ω(i) that perfectly matches the observation x(i) (in terms of likelihood). In such a situation,
we would obtain as many di�erent parameter vectors ω as there is di�erent samples, making
the piece-wise constant assumption of Eq. 4.2 impossible to recover. This is why we propose
a group-fused penalty, consisting in the `2-norm of the di�erence between two consecutive
parameter vectors. The sum of the `2-norms acts as a group-lasso penalty on temporal
di�erence between consecutive parameter vectors, which encourages the two vectors to
be equal. This allows us to learn e�ciently an evolving piece-wise constant structure and
also to detect the change-points. In the past, the authors of [5] proposed to use a sum of
`1-norm in order to impose structure in the variation of the weight matrices. However, such
penalization does not allow to recover a piece-wise constantly evolving graph structure.
This problem is illustrated in �gure 4.1: by penalizing each dimension independently, the
`1-norm easily leads to consecutive parameter vectors having di�erent values, making the
piece-wise constant assumption more di�cult to recover.

In conclusion, the hyperparameter λ1 controls the number of estimated change-points
– the larger λ1 is, the fewer the estimated number of change-points will be. Similarly, when
λ2 increases, the sparsity of each parameter vector increases as well. A priori, choosing the
hyperparameters is not straightforward. However, since our objective function corresponds
to a penalized logistic regression problem, we can use existing model selection criteria. We
discuss further about this aspect in the experimental section.
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3.2 Change-point detection and structure estimation

Assume that the optimization program (4.4) is solved. The set of estimated change-points
D̂ is:

D̂ =

{
T̂j ∈ {2, . . . , n} :

∥∥∥∥ω̂(T̂j)
a − ω̂(T̂j−1)

a

∥∥∥∥
2

6= 0

}
.

Namely, this corresponds to the set of timestamps at which the estimated parameter vectors
have changed. For each submodel j = 1, . . . , |D̂|+ 1, the a-th column of Θ(j) is estimated
by θ̂(j)

a , ω̂
(T̂j−1)
a = . . . = ω̂

(T̂j−1)
a . The non-zero elements of θ̂(j)

a indicate the neighborhood
of a.

One should notice that this estimation leads to a non-symmetric weight matrix. To
overcome this problem, is was proposed in [95, 132] to either use the min or max operator.
In the present work, to estimate the structure of the j-th graph, we take:

Ê(j) = {(a, b) : max(|θ̂(j)
ab |, |θ̂

(j)
ba |) > 0},

where θ̂(j)
ab is the b-th element of θ̂(j)

a , and conversely for θ̂(j)
ba . In this case, there is an edge

between two nodes if at least one of them contains the other node in its neighborhood.

4 Theoretical analysis

In this section, we present two change-point consistency theorems for TVI-FL. The theorems
state that, as the number of samples n tends to in�nity, the change-points are estimated
more and more precisely.

4.1 Technical assumptions

We denote by D̂ = |D̂| (the set’s cardinality) the total number of detected change-points,
respectively for the real changes D = |D|, and by [D] the set of indices {1, . . . , D}. Let us
now de�ne two important quantities. The �rst is the minimal time di�erence between two
change-points:

∆min , min
j∈[D]

|Tj − Tj−1|.

The second quantity is the minimal variation in the model parameters between two change-
points, which is given by:

ξmin , min
a∈V,j∈[D]

‖θ(j+1)
a − θ(j)

a ‖2.

We now introduce three standard assumptions on the Ising model inference and change-
points detection. They are assumed to be true for each node a ∈ V .

(A1) There exist two constants φmin > 0 and φmax < ∞ such that ∀j ∈ [D + 1], φmin ≤
Λmin

(
EΘ(j) [X aX

>
a ]
)
and φmax ≥ Λmax

(
EΘ(j) [X aX

>
a ]
)
.

Here Λmin(·) and Λmax(·) denote, respectively, the smallest and largest eigenvalues of the
input matrix. (A1) is standard in such problems: it ensures that the covariates are not too
dependent, making the model identi�able [95, 132]. In fact, this assumption is always veri-
�ed if the support of the model is su�ciently large. Indeed, if at least p linearly independent
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vectors have a non-zero probability to be observed, then the matrix EΘ(j) [X aX
>
a ] will

have full rank.

(A2) There exists a constantM such that maxj∈[D+1]‖θ(j)
a ‖2 ≤M .

(A3) The sequence {Tj}Dj=1 satis�es, for each j, Tj = bnτjc , where bxc is the largest integer
smaller than or equal to x and {τj}Dj=1 is a �xed, unknown sequence of the change-point
fractions belonging to [0, 1].

This last assumption says that as n grows, the new observations are sampled uniformly
across all the D + 1 sub-models.

4.2 Main results

Next, we present our theoretical results on change-point consistency. The proofs are made
for one node, a, but generalize to all the other nodes. We �rst provide the optimality
conditions necessary to demonstrate the main results.

Lemma 4.1. (Optimality Conditions) A matrix ω̂ is optimal for our problem i� there exists
a collection of subgradient vectors {ẑ(i)}ni=2 and {ŷ(i)}ni=1, with ẑ

(i) ∈ ∂
∥∥ω̂(i) − ω̂(i−1)

∥∥
2

and ŷ(i) ∈ ∂
∥∥ω̂(i)

∥∥
1
, such that ∀k = 1, . . . , n we have:

n∑
i=k

x
(i)
a

{
tanh

(
ω̂(i)>x(i)

a )
)
− tanh

(
ω(i)>
a x

(i)
a )
)}

−
n∑
i=k

x
(i)
a

{
x(i)
a − EΩ(i)

[
Xa|X a = x

(i)
a

]}
+ λ1ẑ

(k) + λ2

n∑
i=k

ŷ(i) = 0p−1, (4.7)

where tanh is the hyperbolic tangent function, 0p−1 is the zero vector of size p−1, ẑ(1) = 0p−1,
and

ẑ(i) =

{
ω̂(i)−ω̂(i−1)

‖ω̂(i)−ω̂(i−1)‖
2

if ω̂(i) − ω̂(i−1) 6= 0,

∈ B2(0, 1) otherwise,

ŷ(i) =

{
sign(ω̂(i)) if x 6= 0,
∈ B1(0, 1) otherwise.

Proof. The proof is given in the Appendix. It consists in writing the sub-di�erential of the
objective function and say, thanks to the convexity, that 0 belongs to it.

Theorem 4.1. (Change-point consistency) Let {xi}ni=1 be a sequence of observations drawn
from the model presented in Sec. 2. Suppose (A1-A3) hold, and assume that λ1 � λ2 =
O(
√

log(n)/n). Let {δn}n≥1 be a non-increasing sequence that converges to 0, and such
that ∀n > 0, ∆min ≥ nδn, with nδn → +∞. Assume further that (i) λ1

nδnξmin
→ 0, (ii)

√
p−1λ2

ξmin
→ 0, and (iii)

√
p log(n)

ξmin

√
nδn
→ 0. Then, if the correct number of change-points are

estimated, we have D̂ = D and:

P( max
j=1,...,D

|T̂j − Tj | ≤ nδn) −→
n→∞

1. (4.8)
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Proof. We extend the proof given in [75, 95] to the particular case of the Ising model. While
the major steps are essentially the same, the Lemmas needed have been adapted to our
case. We give here the proof’s main steps.

Thanks to the union bound, the probability of the complementary in Eq. (4.8) can be
upper bounded by:

P( max
j=1,...,D

|T̂j − Tj | > nδn) ≤
D∑
j=1

P(|T̂j − Tj | > nδn).

To prove Eq. (4.8), it is now su�cient to show ∀j = 1, . . . , D that P(|T̂j − Tj | > nδn)→ 0.
Let us de�ne the event Cn = {|T̂j − Tj | < ∆min

2 } and its complementary Ccn. The
rest of the proof is divided in two parts: bounding the good scenario, i.e. show that
P({|T̂j−Tj | > nδn}∩Cn)→ 0, and doing the same for the bad scenario, i.e P({|T̂j−Tj | >
nδn} ∩ Ccn)→ 0.

To bound the good scenario, the proof applies Lemma 4.1 to bound the considered
probability by three others probabilities. These latter are then asymptotically bounded
by 0, thanks to a combination of Assumptions (A1-A3), assumptions of the theorem and
concentration inequalities related to the considered time-varying Ising model (given by the
Lemmas of the Appendix).

To bound the bad case scenario, the three following complementary events are de�ned:

D(l)
n ,

{
∃j ∈ [D], T̂j ≤ Tj−1

}
∩ Ccn,

D(m)
n ,

{
∀j ∈ [D], Tj−1 < T̂j < Tj+1

}
∩ Ccn,

D(r)
n ,

{
∃j ∈ [D], T̂j ≥ Tj+1

}
∩ Ccn.

Thus, it su�ces to prove that P({|T̂j − Tj | > nδn} ∩D(l)
n ), P({|T̂j − Tj | > nδn} ∩D(m)

n ),
and P({|T̂j − Tj | > nδn} ∩ D(r)

n ) → 0 as n → ∞. To prove this, similar arguments to
those used for the good case are employed.

Note that with δn = log(n)γ/n, for any γ > 1 and ξmin = Ω(
√

log(n)/ log(n)γ), the
conditions of the theorem are met. With this parameterization, we obtain a convergence
rate of order O(log(n)γ/n) for the estimation of the change-points. More precisely, for
any δ > 0 and su�ciently large n, we have with probability at least 1− δ that

1

n
max

j=1,...,D
|T̂j − Tj | ≤

1

n
log(n)γ .

In conclusion, we obtain the same rate of convergence to that of the single change-point
detection method given in [138]. It is almost optimal up to a logarithmic factor. The main
drawback of the previous theorem is that it assumes that the number of change-points
have been correctly estimated. In practice this is complicated to verify, while proving that
the right number of change-points are consistently estimated is also di�cult to get for this
type of methods [75]. Nevertheless, in practice we may have an idea about an upper bound
on the true number of change-points.

The next proposition provides a consistency result when the number of change-points
is overestimated. Let us �rst introduce the metric d(A‖B) de�ned as:

d(A‖B) = sup
b∈B

inf
a∈A
|b− a|. (4.9)
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Proposition 4.1. Let {xi}ni=1 be a sequence of observations drawn from the model presented
in Sec. 2. Assume the conditions of Theorem 4.1 are respected. Then, if for a �x Dmax <∞,
we have D ≤ D̂ ≤ Dmax then:

P(d(D̂‖D) ≤ nδn) −→
n→∞

1.

Proof. A detailed proof is provided in Appendix. The proof applies multiple times the
di�erent tricks used to prove Theorem 4.1 and the Lemmas also given in the Appendix.

Proposition 1 is of fundamental importance as it tells us that, even though the number
of change-points has been overestimated, asymptotically, all the true change-points belong
to the set of estimated change-points.

5 Experimental study

This section provides numerical arguments showing the empirical performance of TVI-FL.
All the experiments were implemented using Python and conducted on a personal laptop.
The code of TVI-FL is available online1, so as a Jupyter Notebook reproducing results and
�gures of the real-world example.

5.1 Optimization procedure

Despite being non-di�erentiable, the convexity of the objective function allows the use of
existing convex optimization algorithms of the literature. In this work, we use the python
package CVXPY [48] that allows us to solve our problem e�ciently. Note also that the
optimization for each node is independent to the other nodes, and hence the approach
allows e�cient parallel implementations.

In the situation where more than one data vector is observed at each timestamp, one
has simply to replace the node-wise negative log-likelihood in Eq. 4.5 with:

−
n∑
i=1

n(i)∑
l=1

log
(
Pω(i)(x(il)

a |x(il)
a )
)
, (4.10)

where n(i) stands for the number of data vectors observed at timestamp i, and x(il) for the
l-th observed vector at time i.

Tuning the hyperparameters λ1 and λ2. As stated in Sec. 3.1, it is possible to employ
any model selection technique suited for logistic regression. In the experiments, we use and
compare two techniques. The �rst is the Akaike Information Criterion (AIC) that computes
the average of the following quantity for all nodes:

AIC(ω̂a) , 2La(ω̂a) + 2 Dim(ω̂a) , (4.11)

where

Dim(ω̂a) =

n∑
i=1

(
1{ω̂(i)

a 6= ω̂(i−1)
a }

∑
b∈V a

1{sign(ω̂
(i)
ab ) 6= 0}

)
1https://github.com/BatisteLB/TVI-FL
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counts the number of parameters that are estimated. By convention, ω̂(0)
a = ω̂

(1)
a . In this

case, set of hyperparameters that minimize the AIC are �nally selected.
The second technique, based on cross-validation (CV), assumes that more than one

sample is observed at each moment in time i = 1, . . . , n. Thus, the time-series can be split
in a part for the learning phase and another part for the testing phase. In our experiments,
we selected the hyperparameters maximizing the AUC i.e. the area under the ROC-curve
associated to the classi�cation score (the probability to be equal to either 1 or −1).

For both model selection techniques, AIC and CV, the hyperparameters are found using
either the standard random-search or grid-search strategies.

5.2 Experimental setup

Baseline method. As mentioned in Sec. 1, no existing work in the literature deals prop-
erly with the considered multiple change-point detection task. Several methods deal with
varying Gaussian graphical models [95, 177], varying Ising models with smooth structural
changes over time [96], or the detection of a single change-point in the varying Ising model
[138]. The closest work we can compare with is the Tesla method [5, 96]. Its major di�er-
ence to our approach is the use of the `1-norm instead of the `2-norm as a fused-penalty.
This di�erence is very signi�cant, theoretically and practically.

Indeed, using an `1-norm fused-penalty does not encourage the recovery of a graphical
model that evolves piece-wise constantly as a whole, which makes it less adaptable to recover
change-points. More speci�cally, such a term does not encourage two consecutive parameter
vectors to be equal at every dimensions: the regularization only a�ects each dimension
independently. Thus, despite the edge weights may evolve independently in a piece-wise
constant fashion, those changes occur at arbitrary timestamps and does not aggregate to a
globally piece-wise constant behavior. An illustration of this phenomena and a comparison
with the `2-norm can be found in the Appendix. Nonetheless, the same way the standard
linear regression can be used to recover sparse parameters, Tesla can still be used to recover
change-points in practice. Hence, we choose this method as our baseline because, despite
the lack of any theoretical guarantee, it can still be applicable, provided a su�ciently large
sample size and appropriately tuned regularization.

Performance metrics. We use two suitable metrics to evaluate the quality of TVI-FL
on the learned graphs and change-points. The �rst one, very standard in change-point
detection tasks [157] and known as the Hausdor� metric, measures the longest temporal
distance between a change-point in D and its prediction in D̂:

h(D, D̂) ,
1

n
max

{
max
t∈D

min
t̂∈D̂
|t− t̂|, max

t̂∈D̂
min
t∈D
|t− t̂|

}
.

The lower this metric is, the better is the estimation. The second one, the F1-score, measures
the goodness of the learned graphs structures (high value is better) by the quantity:

F1 =
2× precision× recall
precision+ recall

,
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which combines the two following classic measures:

precision =
1

n

n∑
i=1

∑
a<b

1{(a, b) ∈ Êi ∧ (a, b) ∈ Ei}
1{(a, b) ∈ Êi}

,

recall =
1

n

n∑
i=1

∑
a<b

1{(a, b) ∈ Êi ∧ (a, b) ∈ Ei}
1{(a, b) ∈ Ei}

.

5.3 Application to synthetic data

Simulation design. We compare the performance of our method TVI-FL against Tesla
using several independent synthetic datasets. We �rst �x certain characteristics for all
generated datasets: each of them has n = 100 timestamps, |D| = 2 change-points at the
51-st and 81-st timestamps, hence resulting in 3 submodels being valid respectively for
50, 30, and 20 timestamps. We consider the graph structure of each submodel to be an
independent random d-regular graph of p = 20 nodes, where at each time the degree of
the all nodes can be d ∈ {2, 3, 4}.

To generate a piece-wise constant Ising model:
• We �rst pick a degree value d ∈ {2, 3, 4} and draw independently 3 random d-regular

graphs, one for each submodel. Same as in [5], the edge weights are drawn from a
uniform distribution taken over [−1,−0.5] ∪ [0.5, 1].

• For each submodel, we draw observations using Gibbs sampling with a burn-in period
of 1000 samples. Moreover, we collect one observation every 20 samples (lag) to avoid
dependencies between them. In fact, instead of a single observation, for each timestamp
i ∈ {1, . . . , n} we generate multiple observations n(i) in {4, 6, 8}, which requires to
use the likelihood of Eq. (4.10). Besides, to be able to perform CV, we also sample 5 more
observations per timestamp and use them only in the testing phase.

With the above procedure we generate 10 di�erent piece-wise constant Ising models for
each degree d, which makes 30 models to learn in total. In addition, for each model, we
generate 3 di�erent sets of observations, one for each n(i) ∈ {4, 6, 8}, that constitute the
individual learning problems of our evaluation. This results in 90 experiments in total.

For each experiment, we use a random-search strategy to �nd the best pair of hyperpa-
rameters (λ1, λ2) in [4, 15]× [30, 40]. This is done individually for the TVI-FL and Tesla
methods. The selected hyperparameters are those minimizing the AIC or maximizing the
AUC (see Sec. 5.1).

Results. The average value and standard deviation of the corresponding h-score and
F1-score over each group of 10 experiments are reported in Tab. 4.1. The results clearly
show that TVI-FL outperforms Tesla, regardless which model selection criterion we consult.
This was expected as Telsa is not designed to recover Ising models that are evolving piece-
wise constantly (see Sec. 5.2). Furthermore, while in some cases Tesla �nds a number of
change-points closer to the true number, the associated h-scores are still higher than those
of TVI-FL. Yet, Tesla is still not irrelevant to the task and in fact there are cases in which it
reaches competitive performance scores to those of TVI-FL. Another �nding is that AIC
seems to favor a low number of estimated changes-points. It achieves better h-scores for
this simulated process, while the AUC criterion seems to give priority to the recovery of
the graph structure, illustrated by higher F1-scores.
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Observations AIC AUC

Degree per timestamps Method h-score ↓ F1-score ↑ D̂ h-score ↓ F1-score ↑ D̂

d = 2 n(i) = 4
TVI-FL 0.046± (0.024) 0.694± (0.103) 7.400± (3.137) 0.221± (0.035) 0.876± (0.030) 26.100± (7.739)

Tesla 0.106± (0.087) 0.649± (0.190) 12.700± (7.682) 0.184± (0.051) 0.841± (0.041) 25.100± (4.784)

n(i) = 6
TVI-FL 0.129± (0.058) 0.816± (0.073) 9.700± (2.759) 0.147± (0.071) 0.875± (0.027) 15.300± (3.378)

Tesla 0.178± (0.130) 0.748± (0.167) 12.900± (5.540) 0.164± (0.062) 0.841± (0.048) 19.000± (2.530)

n(i) = 8
TVI-FL 0.082± (0.081) 0.833± (0.095) 7.400± (3.040) 0.099± (0.073) 0.891± (0.024) 11.000± (3.873)

Tesla 0.124± (0.071) 0.846± (0.047) 13.600± (2.010) 0.178± (0.066) 0.853± (0.039) 14.700± (3.348)

d = 3 n(i) = 4
TVI-FL 0.080± (0.069) 0.563± (0.089) 7.000± (2.683) 0.204± (0.035) 0.734± (0.024) 23.100± (6.715)

Tesla 0.278± (0.319) 0.353± (0.072) 3.200± (2.891) 0.208± (0.029) 0.611± (0.041) 29.200± (3.187)

n(i) = 6
TVI-FL 0.055± (0.064) 0.617± (0.161) 6.300± (3.494) 0.130± (0.051) 0.743± (0.034) 12.800± (2.821)

Tesla 0.302± (0.241) 0.346± (0.060) 2.000± (1.183) 0.173± (0.044) 0.616± (0.041) 22.600± (2.245)

n(i) = 8
TVI-FL 0.091± (0.073) 0.714± (0.130) 8.000± (2.530) 0.127± (0.073) 0.764± (0.032) 10.400± (2.154)

Tesla 0.311± (0.231) 0.361± (0.098) 2.600± (2.615) 0.162± (0.052) 0.633± (0.045) 18.700± (3.716)

d = 4 n(i) = 4
TVI-FL 0.101± (0.082) 0.453± (0.111) 6.500± (3.324) 0.232± (0.026) 0.644± (0.041) 29.400± (4.317)

Tesla 0.444± (0.273) 0.347± (0.044) 2.875± (1.900) 0.234± (0.017) 0.518± (0.046) 34.625± (1.654)

n(i) = 6
TVI-FL 0.099± (0.064) 0.501± (0.130) 5.667± (2.309) 0.183± (0.044) 0.664± (0.041) 16.778± (3.258)

Tesla 0.258± (0.236) 0.355± (0.035) 2.500± (1.118) 0.215± (0.032) 0.503± (0.040) 26.000± (4.472)

n(i) = 8
TVI-FL 0.077± (0.076) 0.528± (0.158) 5.556± (3.624) 0.169± (0.064) 0.678± (0.049) 12.444± (4.524)

Tesla 0.251± (0.230) 0.357± (0.044) 2.625± (0.696) 0.219± (0.027) 0.518± (0.054) 24.000± (2.398)

Table 4.1: Results for the model with the lowest AIC, and that with the highest AUC. The
average ± (std) of the metrics is reported.

We show that empirically it is possible to obtain both low h-score and high F1-score
via better hyperparameters tuning. Speci�cally, for each experiment and for each degree d,
we select the model with the highest F1-score when the associated h-score ≤ hmin, with
hmin ∈ {0, .01, .02, .03}. This allows, respectively at most 0 to 3 timestamps of o�set error
between an estimated and a real change-point. In the results of Figure 4.2 we observe that
even with very low h-score, high F1-score are reachable. Furthermore, the TVI-FL method
always provides better F1-score than Tesla, con�rming once again its superior performance.

5.4 Finding change-points in the real world: a voting dataset

Dataset and setup. In this section we evaluate the empirical performance of the TVI-FL
method in a real-world use case. In particular, we analyze the di�erent votes of the Illinois
House of Representatives during the period of the 114-th and 115-th US Congresses (2015-
2019), which are available at voteview.com [109]. The Illinois House of Representatives
has 18 seats (one per district), each one corresponds to a US Representative belonging to
the Democratic or the Republican parties. A Representative may or may not get reelected at
the end of a Congress, which a�ects if he/she will retain his/her seat in the new Congress.
The speci�c dataset we used contains 1264 votes, each of them represented by a vector of
size p = 18, where a dimension is equal to 1 if the respective Representative of that seat
has voted Yes, and −1 if it has voted No. When no information is provided about the vote
of a seat (e.g. due to an absence), we impute the majority vote of its party.

It is always di�cult to interpret a large number of change-points. For this reason, we
choose to use the AIC criterion, which was found in Sec. 5 to favor smaller number of
change-points. As for model tuning, we use a grid-search strategy to �nd the best values
for the hyperparameters.
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Figure 4.2: Average value of the best F1-score obtained when the h-score is below a certain
threshold. These thresholds are respectively (from top left to bottom right), 0.0, 0.01,
0.02, 0.03, i.e. at most 0, 1, 2, or 3 timestamps of o�set error between an estimated and
a real change-point. Each pairs of bars corresponds to di�erent d-regular graphs, with
d ∈ {2, 3, 4}. The error bars correspond to ± (std).

Results. Figure 4.3 (bottom) shows the cumulative function of the votes of each of the 18
seats, in temporal order, and the three change-points (dashed vertical line) detected by TVI-
FL. The �rst two change-points are di�cult to interpret; it seems though that the second
one corresponds to the pre-election period when a Congress comes to its end and votes
get usually less polarized. Nevertheless, it must be noted that the structural changes of the
�rst two change-points are signi�cantly lower compared to the third one. In fact, this last
estimated change-point corresponds exactly to the time at which the Congress has changed.
This signi�cant change-point seems due to the non-reelection of some Representatives.
More speci�cally, the Representative of 10-th seat was the only one who was not reelected
at the end of the 114-th Congress: the Republican Robert Dold, who was replaced by the
Democrat Brad Schneider. This switch apparently lead to a signi�cant variation in the
structure of the underlying graph. Figure 4.3 (top) shows the graphs of positive weights,
before and after this signi�cant change-point. As expected, two clusters appear, one with
the seats of Democrats and the other with those of the Republicans. Moreover, the 10-th
seat becomes more connected with the cluster of Democrats after the time of change: the
node loses 3 connections to the Republican cluster and gains 5 connections to Democrats
and gets connected with all of them. More generally, all its weights with the Republican
cluster decreases, contrarily to its weights with the Democratic cluster that do increase.
This observation explains the origins of the structural change. Finally, it is interesting
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Figure 4.3: (Top) The two graphs before and after the strongest estimated change-point:
the third one that indeed corresponds to the end of the 114-th Congress. (Bottom) The
cumulative functions of votes of the 18 seats over the two Congresses.

to observe that before and after the change-point, the 10-th seat is the only one well-
connected to both political groups. This makes us to conclude that this seat is represented
by a super-collaborator, a role that some Representatives get by acting more independently
and position themselves in the middle of the parties [10]. Similarly, it is not surprising for
Dan Lipinski, who had the 3-rd seat, to present in the learned graphs 2 connections with
Republicans, as he is known to be a conservative Democrat.

Overall, this experiment shows that TVI-FL is suited to �nd change-points in a real-
world binary dataset, while also to recover the underlying evolving graph structure. This
way, it increases the interpretability of the detected change-points. After applying the Telsa
method on the same problem, we observed similar results and for this reason we omit them
from the presentation.
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Figure 4.4: Learned graphs at two di�erent timestamps. Only the edges with positive
weights are represented and the abnormal BS is in red. (Left) A graph learned before the
BS failure, recorded on the 30th day. (Right) A graph learned after this day.

5.5 Application to Sigfox dataset

We �nally apply TVI-FL to the Sigfox dataset used in the previous chapters. Recall that in
consists in a set of Sigfox messages recorded over a period of �ve months at the level of 34
Base Stations. In this experiment, we propose to directly apply our algorithm to the 4 last
months, referred as the testing dataset in the experiment of chapter 2. Over this dataset,
the Sigfox messages are recorded daily, resulting in n = 120 days/timestamps over which
we select randomly ni = 200 messages per day. Around the 30th day, one BS has been
declared as working poorly. The goal of this experiment is therefore to see if we detect
such timestamp as a change-point and if the learned graphs are well-estimated.

Here again, we selected the two hyperparameters using the AIC selection strategy.
It resulted in the detection of 12 change-points for which most of them were di�cult to
interpret. However, only one change-point was detected in the neighborhood of the failing
BS, actually detected at the 30th day, beginning time of failure. Moreover, the change in the
neighborhood of this BS is characterized by a global decreasing in its associated weights.
Such decreasing seems to be characteristic of an anomaly since it somehow means that the
BS is sharing fewer messages with its neighbors than before. We illustrate such change in
the network structure by representing a graph learned before and a graph learned after the
30th day (�gure 4.4).

In the �gure, only the positive weights are represented and we clearly see a loss of
edges in the neighborhood of the red node. Moreover, we also see that the learned graphs
are in accordance with the spatial distribution of the di�erent BSs, an indicator of the
goodness of �t of the estimated graphs.

6 Conclusions

The aim of this chapter was to answer the last two objectives raised in the introduction of
this thesis. In other words, the detection of changes in the underlying structure of binary
vectors. We proposed TVI-FL, an e�cient way to learn a time-varying Ising model with
piece-wise constantly evolving structure. Our method is able to both detect the changepoints
at which the structure of the model changes and the structure themselves. Our work is
the �rst to provide change-point consistency theorems in this context. Those theoretical
guarantees are reinforced by an empirical study. Using two di�erent model selection criteria,
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the proposed method is showed to outperform the closest baseline algorithm. Moreover,
although not speci�cally designed to work on Sigfox network data, we illustrated the
applicability of TVI-FL to them in a promising last experiment.

Nevertheless, there are still few works to be addressed. These include for example
the proof of consistent graph structure recovery (sparsistency) or the use of the recent
Interaction Screening Objective [166] in place of the standard conditional likelihood.

7 Technical proofs

7.1 Main results

In the following, we recall and prove the main results given in the chapter. The proofs uses
in many situations the di�erent lemmas given next.

Lemma 4.1. (Optimality Conditions) A matrix ω̂ is optimal for our problem i� there exists
a collection of subgradient vectors {ẑ(i)}ni=2 and {ŷ(i)}ni=1, with ẑ

(i) ∈ ∂
∥∥ω̂(i) − ω̂(i−1)

∥∥
2

and ŷ(i) ∈ ∂
∥∥ω̂(i)

∥∥
1
, such that ∀k = 1, . . . , n we have:

n∑
i=k

x
(i)
a

{
tanh

(
ω̂(i)>x(i)

a )
)
− tanh

(
ω(i)>
a x

(i)
a )
)}

−
n∑
i=k

x
(i)
a

{
x(i)
a − EΩ(i)

[
Xa|X a = x

(i)
a

]}
+ λ1ẑ

(k) + λ2

n∑
i=k

ŷ(i) = 0p−1,

where tanh is the hyperbolic tangent function, 0p−1 is the zero vector of size p−1, ẑ(1) = 0p−1,
and

ẑ(i) =

{
ω̂(i)−ω̂(i−1)

‖ω̂(i)−ω̂(i−1)‖
2

if ω̂(i) − ω̂(i−1) 6= 0,

∈ B2(0, 1) otherwise,

ŷ(i) =

{
sign(ω̂(i)) if x 6= 0,
∈ B1(0, 1) otherwise.

Proof. The proof follows those of [75, 95] and [64]. We �rst introduce the following change
of variables:

γ(i) =

{
ω(i) if i = 1

ω(i) − ω(i−1) otherwise.

Thus ω(i) =
∑i

l=1 γ
(l), which leads to a change in the objective function 4.4 presented in

Section 3.1.

{γ̂(i)}ni=1 = arg min
γ∈Rp−1×n

n∑
i=1

log

{
exp

(
i∑
l=1

γ(l)>x(i)
a

)
+ exp

(
−

i∑
l=1

γ(l)>x(i)
a

)}

−
n∑
i=1

x(i)
a

i∑
l=1

γ(l)>x(i)
a + λ1

n∑
i=2

∥∥∥γ(i)
∥∥∥

2
+ λ2

n∑
i=1

∥∥∥∥∥
i∑
l=1

γ(l)

∥∥∥∥∥
1

. (4.12)

This problem is convex, thus a necessary and su�cient condition for {γ̂(i)}ni=1 to be a
solution is that for all k = 1, . . . , n, the (p− 1)-dimensional zero-vector 0, belongs to the
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subdi�erential of (4.12), taken with respect to γ(k):

0 ∈
n∑
i=k

x
(i)
a

(
tanh

(
i∑
l=1

γ̂(l)>x(i)
a

)
− x(i)

a

)
+ λ1∂

∥∥∥γ̂(k)
∥∥∥

2
+ λ2

n∑
i=k

∂

∥∥∥∥∥
i∑
l=1

γ̂(l)

∥∥∥∥∥
1

.

Recall that

∂ ‖x‖2 =

{ {
x
‖x‖2

}
if x 6= 0

B2(0, 1) otherwise

∂ ‖x‖1 =

{
{sign(x)} if x 6= 0
B1(0, 1) otherwise .

Reapplying the change of variable, we obtain:

0 =

n∑
i=k

x
(i)
a

(
tanh

(
ω̂(i)>x(i)

a

)
− x(i)

a

)
+ λ1ẑ

(k) + λ2

n∑
i=k

ŷ(i)

Noting that EΩ(i)

[
Xa|X a = x

(i)
a

]
= tanh

(
ω

(i)>
a x

(i)
a )
)

, we obtain the �nal result.

Theorem 4.1. (Change-point consistency) Let {xi}ni=1 be a sequence of observations drawn
from the piece-wise constant Ising model presented in Sec. 2. Suppose (A1-A3) hold, and
assume that λ1 � λ2 = O(

√
log(n)/n). Let {δn}n≥1 be a non-increasing sequence that

converges to 0, and such that ∀n > 0, ∆min ≥ nδn, with nδn → +∞. Assume further that

(i) λ1
nδnξmin

→ 0, (ii)
√
p−1λ2

ξmin
→ 0, and (iii)

√
p log(n)

ξmin

√
nδn
→ 0. Then, if the correct number of

change-points are estimated, we have D̂ = D and:

P( max
j=1,...,D

|T̂j − Tj | ≤ nδn) −→
n→∞

1.

Proof. The proof follows the steps given in [64, 75, 95]. First of all,Thanks to the union
bound,

P( max
j=1,...,D

|T̂j − Tj | > nδn) ≤
D∑
j=1

P(|T̂j − Tj | > nδn),

thus it su�ces to show for each j = 1, . . . , D, that P(|T̂j − Tj | > nδn)→ 0. We denote
by An,j the event

{
|T̂j − Tj | > nδn

}
.

Similarly to [95], we �rst consider the good case where we assume that the event Cn ={
|T̂j − Tj | < ∆min

2

}
occurs.

Bounding the good case

For each j = 1, . . . , D, we are going to show that P(An,j ∩ Cn) −→ 0. In particular,
we suppose that T̂j ≤ Tj as the proof for T̂j ≥ Tj will be the same by symmetry.
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Applying Lemma 4.1 with k = T̂j and k = Tj , subtracting one with the other and applying
the `2-norm, we obtain

0 =

∥∥∥∥∥
Tj−1∑
i=T̂j

x
(i)
a

{
tanh

(
ω̂(i)>x(i)

a )
)
− tanh

(
ω(i)>
a x

(i)
a )
)}

−
Tj−1∑
i=T̂j

x
(i)
a

{
x(i)
a − EΩ(i)

[
Xa|X a = x

(i)
a

]}
+ λ1(ẑ(T̂j) − ẑ(Tj)) + λ2

Tj−1∑
i=T̂j

ŷ(i)

∥∥∥∥∥
2

≥
∥∥∥∥∥
Tj−1∑
i=T̂j

x
(i)
a

{
tanh

(
ω̂(i)>x(i)

a )
)
− tanh

(
ω(i)>
a x

(i)
a )
)}

−
Tj−1∑
i=T̂j

x
(i)
a

{
x(i)
a − EΩ(i)

[
Xa|X a = x

(i)
a

]}∥∥∥∥∥
2

−
∥∥∥∥∥λ2

Tj−1∑
i=T̂j

ŷ(i)

∥∥∥∥∥
2

−
∥∥∥λ1(ẑ(T̂j) − ẑ(Tj))

∥∥∥
2

We have
∥∥∥λ1(ẑ(T̂j) − ẑ(Tj))

∥∥∥
2
≤ 2λ1 and

∥∥∥∥∥λ2
∑Tj−1

i=T̂j
ŷ(i)

∥∥∥∥∥
2

≤ (Tj − T̂j)
√
p− 1λ2. Fur-

thermore, one may notice that for all i ∈
{
T̂j , . . . , Tj − 1

}
, ω̂(i) = θ̂j+1

a and ω(i)
a = θja.

Adding and subtracting tanh
(

(θj+1
a )>x(i)

a )
)

, then applying again the triangle inequality
leads to the following result:

2λ1 + (Tj − T̂j)
√
p− 1λ2 ≥ ‖R1‖2 − ‖R2‖2 − ‖R3‖2 (4.13)

with

R1 =

Tj−1∑
i=T̂j

x
(i)
a

{
tanh

(
(θja)

>x(i)
a )
)
− tanh

(
(θj+1
a )>x(i)

a )
)}

(4.14)

R2 =

Tj−1∑
i=T̂j

x
(i)
a

{
tanh

(
(θ̂j+1
a )>x(i)

a )
)
− tanh

(
(θj+1
a )>x(i)

a )
)}

(4.15)

R3 =

Tj−1∑
i=T̂j

x
(i)
a

{
x(i)
a − EΘ(j)

[
Xa|X a = x

(i)
a

]}
(4.16)

The event (4.13) occurs with probability one and it can be showed that it is included in the
event:

{2λ1 + (Tj − T̂j)
√
p− 1λ2 ≥

1

3
‖R1‖2} ∪ {‖R2‖2 ≥

1

3
‖R1‖2} ∪ {‖R3‖2 ≥

1

3
‖R1‖2}

Thus, we have:

P(An,j ∩ Cn) ≤P(An,j ∩ Cn ∩ {2λ1 + (Tj − T̂j)
√
p− 1λ2 ≥

1

3
‖R1‖2})

+ P(An,j ∩ Cn ∩ {‖R2‖2 ≥
1

3
‖R1‖2})
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+ P(An,j ∩ Cn ∩ {‖R3‖2 ≥
1

3
‖R1‖2})

, P(An,j,1) + P(An,j,3) + P(An,j,3)

Now, We are going to show that each one of the three events has a probability that
converges to 0 as n grows. Let’s focus on An,j,1. Applying the mean-value theorem, we
have for all i = T̂j , . . . , Tj − 1:

tanh
(

(θja)
>x(i)

a )
)
− tanh

(
(θj+1
a )>x(i)

a )
)

= (1− tanh2 (θ̄iTx
(i)
a ))x

(i)>
a (θja − θj+1

a )

(4.17)

with θ̄i = αiθja+(1−αi)θj+1
a , for a certainαi ∈ [0, 1]. Combining (4.17) with the de�nition

of R1, we obtain:

‖R1‖2 =

∥∥∥∥∥
Tj−1∑
i=T̂j

x
(i)
a

{
tanh

(
(θja)

>x(i)
a )
)
− tanh

(
(θj+1
a )>x(i)

a )
)}∥∥∥∥∥

2

(4.18)

= (Tj − T̂j)
∥∥∥∥∥ 1

Tj − T̂j

Tj−1∑
i=T̂j

(1− tanh2 (θ̄iTx
(i)
a ))× x(i)

a x
(i)>
a (θja − θj+1

a )

∥∥∥∥∥
2

(4.19)

≥ (Tj − T̂j)× Λmin

 1

Tj − T̂j

Tj−1∑
i=T̂j

(1− tanh2 (θ̄iTx
(i)
a ))x

(i)
a x

(i)>
a

× ∥∥θja − θj+1
a

∥∥
2

(4.20)

Since, ∀j,
∥∥∥θja∥∥∥

2
≤M (A2), we have

∥∥θ̄i∥∥
2
≤M and |θ̄iTx(i)

a | ≤M ·
√
p− 1. Thus, there

exist a constant M̃ > 0 such that 1− tanh2 (θ̄iTx
(i)
a ) ≥ M̃ . Combining this with the fact

that each matrix x(i)
a x

(i)>
a are positive semide�nite, we have:

‖R1‖2 ≥ (Tj − T̂j)M̃Λmin

 1

Tj − T̂j

Tj−1∑
i=T̂j

x
(i)
a x

(i)>
a

 ξmin (4.21)

Thus, the event {2λ1 + (Tj − T̂j)
√
p− 1λ2 ≥ 1

3 ‖R1‖2} is included in the event

2λ1 + (Tj − T̂j)
√
p− 1λ2 ≥ (Tj − T̂j)M̃Λmin

 1

Tj − T̂j

Tj−1∑
i=T̂j

x
(i)
a x

(i)>
a

 ξmin (4.22)

Denoting by {4.22} the event of equation (4.22), we have:

P(An,j,1) ≤ P(An,j ∩ Cn ∩ {4.22})

≤ P

(
An,j ∩ Cn ∩ {4.22} ∩ {Λmin

 1

Tj − T̂j

Tj−1∑
i=T̂j

x
(i)
a x

(i)>
a

 >
φmin

2
}
)

+ P

(
An,j ∩ Cn ∩ {Λmin

 1

Tj − T̂j

Tj−1∑
i=T̂j

x
(i)
a x

(i)>
a

 ≤ φmin

2
}
)
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Using Lemma 4.3 with vn = nδn and ε = φmin
2 , we can bound the right-hand side of

the upper equation. We also re-write the �rst term so that we obtain:

P(An,j,1) ≤ P(An,j ∩ Cn ∩ {
2λ1

Tj − T̂j
+
√
p− 1λ2 >

M̃φmin

2
ξmin})

+ c1 exp

(
−ε

2nδn
2

+ 2 log(n)

)
≤ P(ξ−1

min

2λ1

nδn
+ ξ−1

min

√
p− 1λ2 >

M̃φmin

2
) + c1 exp

(
−ε

2nδn
2

+ 2 log(n)

)
(4.23)

Thanks to (iii), we have nδn that goes to in�nity faster than log(n), thus the second
term of the sum goes to 0 as n grows. Furthermore, using (i) and (ii) we have:

P(ξ−1
min

2λ1

nδn
+ξ−1

min

√
p− 1λ2 >

M̃φmin

2
) −→
n→0

P(0 + 0 >
M̃φmin

2
) = 0

Which concludes that P(An,j,1)→ 0.

We now focus on the event An,j,2. Let T̄j , b2−1(Tj + Tj+1)c and remark that
between Tj and T̄j , ω̂(i) = θ̂j+1. Now, using Lemma 4.1 with k = T̄j and k = Tj and
similar operation used to show equation (4.13), we have:

2λ1 + (T̄j − Tj)
√
p− 1λ2

≥
∥∥∥∥∥
T̄j−1∑
i=Tj

x
(i)
a

(
tanh

(
(θ̂j+1
a )>x(i)

a )
)
− tanh

(
(θj+1
a )>x(i)

a )

))∥∥∥∥∥
2

(4.24)

−

∥∥∥∥∥∥
T̄j−1∑
i=Tj

x
(i)
a

(
x(i)
a − EΘ(j+1)

[
Xa|X a = x

(i)
a

])∥∥∥∥∥∥
2

(4.25)

In the following we note εij+1 , x
(i)
a − EΘ(j+1)

[
Xa|X a = x

(i)
a

]
. Using the fact that∥∥∥θ̂j+1

a

∥∥∥
2

is necessarily bounded, Lemma 4.3 with ε = φmin/2 and similar arguments that
we used for An,j,1, we can write that the �rst term in the right-hand side of the previous
equation is lower-bounded by:

(Tj − T̄j) ˜̃M
φmin

2

∥∥∥θ̂j+1
a − θj+1

a

∥∥∥
2

with probability tending to one. Here, ˜̃M corresponds to a positive constant derived the
same way as M̃ in the previous part of the proof. In consequence, we can write

∥∥∥θ̂j+1
a − θj+1

a

∥∥∥
2
≤

8λ1 + 4(T̄j − Tj)
√
p− 1λ2 + 4

∥∥∥∑T̄j−1
i=Tj

x
(i)
a ε

i
j+1

∥∥∥
2

˜̃Mφmin(Tj+1 − Tj)
(4.26)
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which holds with probability tending to one.

Furthermore, with probability also tending to one it can be shown using the same argu-
ments used to prove equation (4.21) that ‖R1‖2 ≥ (Tj − T̂j)M̃φminξmin/2 and ‖R2‖2 ≤∥∥∥θ̂j+1

a − θj+1
a

∥∥∥
2
φmax(Tj − T̂j)/2. Combining that with equation (4.31), we can write:

P(An,j,2) ≤ c1 exp (−c2nδn + 2 log(n)) + P

(
An,j ∩ Cn∩{

1

3
˜̃MM̃φ2

minφ
−1
maxξmin(Tj+1 − Tj) ≤ 8λ1 + 4(T̄j − Tj)

√
p− 1λ2 + 4

∥∥∥∥∥∥
T̄j−1∑
i=Tj

x
(i)
a ε

i
j+1

∥∥∥∥∥∥
2

})
≤ P(c3φ

2
minφ

−1
maxξmin∆min ≤ λ1) + P(c4φ

2
minφ

−1
maxξmin ≤

√
p− 1λ2)

+ P

c5φ
2
minφ

−1
maxξmin ≤ (T̄j − Tj)−1

∥∥∥∥∥∥
T̄j−1∑
i=Tj

x
(i)
a ε

i
j+1

∥∥∥∥∥∥
2

+ c1 exp (−c2nδn + 2 log(n))

With c1, . . . , c5 positive constants.

The �rst two terms tends to 0 as n goes to in�nity thanks to the hypothesis (i) and (ii) of
the theorem. Indeed, since ∆min > nδn and (nδnξmin)−1λ1 → 0 (i), the �rst term tends
to P(c3φ

2
minφ

−1
max ≤ 0) = 0 and the second term tends to 0 since ξ−1

min

√
p− 1λ2 → 0 (ii).

The fourth term directly tends to 0. Applying Lemma 4.4, we can upper bound the third
term by:

P
(
c5φ

2
minφ

−1
maxξmin ≤ (T̄j − Tj)−1/22

√
p log(n)

)
+ c6 exp(−2p log(n))

≤ P
(
c5φ

2
minφ

−1
maxξmin ≤ (nδn)−1/22

√
p log(n)

)
+ c6 exp(−2p log(n))

with c6 an other positive constant.

Since (ξmin

√
nδn)−1

√
p log(n) → 0 (iii), the previous equation tends to 0, which

make P(An,j,2) tends to 0 as well.

Finally, we upper bound the probability on the event An,j,3. As before, we know that
‖R1‖2 ≥ (Tj − T̂j)M̃φminξmin/2 with probability at least 1− c1 exp(−c2nδn + 2 log(n)),
thus we have:

P(An,j,3) ≤ P

(
M̃φminξmin

6
≤ ‖R3‖2
Tj − T̂j

)
+ c1 exp(−c2nδn + 2 log(n))

Using Lemma 4.5, we can upper bound the �rst term by:

P

(
M̃φminξmin

6
≤ 2

√
p log(n)

Tj − T̂j

)
+ c2 exp(−c3 log(n))

≤ P

M̃φminξmin

6
≤ 2

√
p log(n)

nδn

+ c2 exp(−c3 log(n))
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which tends to 0 thanks to (iii). Since the symmetric case follows exactly the same argu-
ments, we have shown that P(An,j∩Cn)→ 0. We now need to prove that P(An,j∩Ccn)→
0.

Bounding the bad case

Again, the proof follows the one of [64, 75, 95]. Let de�ne the following complementary
events:

D(l)
n ,

{
∃j ∈ [D], T̂j ≤ Tj−1

}
∩ Ccn (4.27)

D(m)
n ,

{
∀j ∈ [D], Tj−1 < T̂j < Tj+1

}
∩ Ccn (4.28)

D(r)
n ,

{
∃j ∈ [D], T̂j ≥ Tj+1

}
∩ Ccn. (4.29)

We can write P(An,j ∩Ccn) = P(An,j ∩D(l)
n ) + P(An,j ∩D(m)

n ) + P(An,j ∩D(r)
n ). Again,

the goal is to prove that the three terms tends to 0. We will assume that T̂j ≤ Tj as the
other case can be done by symmetry. Let’s �rst focus on the middle term, it has been shown
in [64, 75, 95] that it can be upper bounded in the following way:

P(An,j ∩D(m)
n )

≤ P(An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n ) + P({(Tj+1 − T̂j+1) ≥ ∆min

2
} ∩D(m)

n )

≤ P(An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n )

+

D∑
k=j+1

P({(T̂k+1 − Tk) ≥
∆min

2
} ∩ {(Tk − T̂k) ≥

∆min

2
} ∩D(m)

n ) (4.30)

Let’s bound the �rst term. Assuming the event An,j ∩ {(T̂j+1 − Tj) ≥ ∆min
2 } ∩D

(m)
n

and applying Lemma 4.1 with k = T̂j and k = Tj , we can prove similarly as equation (4.31)
that:

∥∥∥θ̂j+1
a − θja

∥∥∥
2
≤

4λ1 + 2(Tj − T̂j)
√
p− 1λ2 + 2

∥∥∥∑Tj−1

i=T̂j
x

(i)
a ε

i
j

∥∥∥
2

˜̃Mφmin(Tj − T̂j)

≤ c1φ
−1
min(nδn)−1λ1 + c2φ

−1
min

√
p− 1λ2 + c3φ

−1
min(Tj − T̂j)−1

∥∥∥∥∥∥
Tj−1∑
i=T̂j

x
(i)
a ε

i
j

∥∥∥∥∥∥
2

with probability tending to one. Using Lemma 4.5 we can bound the third term and obtain:

∥∥∥θ̂j+1
a − θja

∥∥∥
2
≤ c1φ

−1
min(nδn)−1λ1 + c2φ

−1
min

√
p− 1λ2 + c3φ

−1
min(

√
nδn)−1

√
p log(n)

with probability tending to one. Similarly, applying the same lemmas with k = Tj and
either k = T̂j+1, if T̂j+1 ≤ Tj+1 or k = Tj+1 otherwise, we have:
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∥∥∥θ̂j+1
a − θj+1

a

∥∥∥
2
≤ c4φ

−1
min(nδn)−1λ1 + c5φ

−1
min

√
p− 1λ2 + c6φ

−1
min(

√
nδn)−1

√
p log(n)

with probability tending to one.
Since ξmin ≤

∥∥∥θja − θj+1
a

∥∥∥
2
≤
∥∥∥θ̂j+1

a − θja
∥∥∥

2
+
∥∥∥θ̂j+1

a − θj+1
a

∥∥∥
2
, we �nally upper bound

the considered probability by:

P(An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n )

≤ P(ξmin ≤ c7φ
−1
min(nδn)−1λ1 + c8φ

−1
min

√
p− 1λ2 + c9φ

−1
min(

√
nδn)−1

√
p log(n))

Which tends to 0 thanks to the hypothesis (i), (ii) and (iii). The other probabilities in the
upper bound on P(An,j ∩D(m)

n ) also tends to 0. The proof follows exactly the previous
one. We proved that P(An,j ∩D(m)

n )→ 0, we will now show the same for P(An,j ∩D(l)
n ).

The proof exactly follows the one of [64] where it has been showed that:

P(D(l)
n ) ≤

D∑
j=1

2j−1P(max{l ∈ [D] : T̂l ≤ Tl−1})

≤ 2D−1
D∑
j=1

∑
l>j

P({Tl − T̂l ≥
∆min

2
} ∩ {T̂l+1 − Tl ≥

∆min

2
})

Now, as shown in [64] and with the same arguments used to bound the elements of
(4.30), we have P(D

(l)
n ) → 0. Similarly we can show P(D

(r)
n ) → 0 as n → 0. Finally we

have P(An,j ∩ Ccn)→ 0, which concludes the proof.

Proposition 4.1. Let {xi}ni=1 be a sequence of observation drawn from the model presented
in Sec. 2. Assume the condition of Theorem 1 are respected. Then, if for a �x Dmax we have
D ≤ D̂ ≤ Dmax then:

P(d(D̂‖D) ≤ nδn) −→
n→∞

1.

Proof. As stated upper, the proof, here again, follows the one of [75]. We are going to show
that:

P({d(D̂‖D) ≥ nδn} ∩ {D ≤ D̂ ≤ Dmax})

≤
Dmax∑
K=D

P({d(D̂‖D) ≥ nδn} ∩ {D̂ = K}) −→
n→∞

0.

First, we note that for K = D, we have
P({d(D̂‖D) ≥ nδn} ∩ {D̂ = K}) −→

n→∞
0 thanks to Theorem 1. Thus it su�ces to show

that:
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Dmax∑
K=D+1

P({d(D̂‖D) ≥ nδn} ∩ {D̂ = K})

≤
Dmax∑

K=D+1

D∑
k=1

P(∀1 ≤ l ≤ K, |T̂l − Tk| ≥ nδn) −→
n→∞

0.

Like in [75], we rewrite the event {∀1 ≤ l ≤ K, |T̂l − Tk| ≥ nδn} as the disjoint union of
the events:

En,k,1 = {∀1 ≤ l ≤ K, |T̂l − Tk| ≥ nδn and T̂l < Tk}
En,k,2 = {∀1 ≤ l ≤ K, |T̂l − Tk| ≥ nδn and T̂l > Tk}
En,k,3 = {∃1 ≤ l ≤ K − 1, |T̂l − Tk| ≥ nδn, |T̂l+1 − Tk| ≥ nδn and T̂l < Tk < T̂l+1}

and propose to show that the probability of each events tends to 0 as n grows. Let’s begin
with P(En,k,1) and note that it is equal to:

P(En,k,1 ∩ {T̂K > Tk−1}) + P(En,k,1 ∩ {T̂K ≤ Tk−1})

First, we are going to upper bound the left-hand element of the previous equation. Applying
Lemma 4.1 with t = T̂K and t = Tk, we can prove similarly to the equation (4.13) in the
good case scenario of the previous theorem that:

2λ1 + (Tk − T̂K)
√
p− 1λ2 ≥

∥∥R′1∥∥2
−
∥∥R′2∥∥2

−
∥∥R′3∥∥2

with

R′1 =

Tk−1∑
i=T̂K

x
(i)
a

{
tanh

(
(θka)Tx

(i)
a )
)
− tanh

(
(θk+1
a )Tx

(i)
a )
)}

R′2 =

Tk−1∑
i=T̂K

x
(i)
a

{
tanh

(
(θ̂K+1
a )Tx

(i)
a )
)
− tanh

(
(θk+1
a )Tx

(i)
a )
)}

R′3 =

Tk−1∑
i=T̂K

x
(i)
a

{
x(i)
a − EΘ(k)

[
Xa|X a = x

(i)
a

]}
.

Like in the previous theorem, we can upperbound P(En,k,1 ∩ {T̂k > Tk−1}) by:

P(E
(1)
n,k,1) + P(E

(2)
n,k,1) + P(E

(3)
n,k,1)

where

E
(1)
n,k,1 = {2λ1 + (Tk − T̂K)

√
p− 1λ2 ≥

1

3

∥∥R′1∥∥2
}
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E
(2)
n,k,1 = {

∥∥R′2∥∥2
≥ 1

3

∥∥R′1∥∥2
}

E
(3)
n,k,1 = {

∥∥R′3∥∥2
≥ 1

3

∥∥R′1∥∥2
}

To show that P(E
(1)
n,k,1) tends to 0 it su�ces to follow the proof used to show that P(An,j,1)

tends to 0 in the good scenario of the previous theorem.
Similarly, to show that P(E

(2)
n,k,1) tends to 0 it su�ces to follow the proof used for

P(An,j,2). Applying lemma 4.1 with t = Tk ans t = Tk+1 we can show that with probability
tending to one:

∥∥∥θ̂K+1
a − θk+1

a

∥∥∥
2
≤

4λ1 + 2(Tk+1 − Tk)
√
p− 1λ2 + 2

∥∥∥∑Tk+1

i=Tk
x

(i)
a ε

i
j+1

∥∥∥
2

˜̃Mφmin(Tk+1 − Tk)
(4.31)

The rest follows exactly the arguments used to show the limit of P(An,j,2).

Finally, P(E
(3)
n,k,1) tends to 0 the same way P(An,j,3) was tending to 0 in the previous proof.

The proof to show that P(En,k,1∩{T̂K ≤ Tk−1}) tends to 0 is the same. It su�ces to apply
lemma 4.1 with t = Tk−1 and t = Tk to split the event in 3 sub-events and follow the proof.
By symmetry, we also have P(En,k,2)→ 0.

Let’s now focus on En,k,3. Like in [75], the event is split is four independent events:

En,k,3 = E
(1)
n,k,3 ∪ E

(2)
n,k,3 ∪ E

(3)
n,k,3 ∪ E

(4)
n,k,3

with

E
(1)
n,k,3 = En,k,3 ∩ {Tk−1 < T̂l < T̂l+1 < Tk+1}

E
(2)
n,k,3 = En,k,3 ∩ {Tk−1 < T̂l < Tk+1, T̂l+1 > Tk+1}

E
(3)
n,k,3 = En,k,3 ∩ {T̂l < Tk−1, Tk−1 < T̂l+1 < Tk+1}

E
(4)
n,k,3 = En,k,3 ∩ {T̂l < Tk−1, T̂l+1 > Tk+1}

To prove that each one of the previous events have a probability that tends to 0 as n grows,
we invite the reader to read the proof of [75]. It consist in multiple applications of the
di�erent Lemmas, the same way we used them in the previous part. Only the time at which
lemma 4.1 is used changes and are given by [75]. This concludes the proof.

Supplementary Lemmas

Below, the di�erent lemmas necessary to prove the main results are given.

Lemma 4.2. Let {x(i)}ni=1 be a set of i.i.d observation sampled from an Ising model with
parameter Θ ∈ Rp×p and assume that assumption (A1) is satis�ed. Then, ∀r, l ∈ [n] such
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that l < r and r − l > vn with vn a positive serie, we have ∀ε > 0:

P

(
Λmin

(
1

r − l + 1

r∑
i=l

x
(i)
a x

(i)>
a

)
≤ φmin − ε

)
≤ 2(p− 1)2 exp

(
−ε

2vn
2

)
(4.32)

and

P

(
Λmax

(
1

r − l + 1

r∑
i=l

x
(i)
a x

(i)>
a

)
≥ φmax + ε

)
≤ 2(p− 1)2 exp

(
−ε

2vn
2

)
(4.33)

Proof. Let Σ̂ = 1
r−l+1

∑r
i=l x

(i)
a x

(i)>
a and Σ = E

[
X aX

>
a

]
.

We �rst proove the inequality (4.32). Recall that for a symmetric matrix M , we have
Λmax(M) ≤ ‖M‖F , the Frobenius norm of M . We have

Λmin(Σ̂) = min
‖v‖2=1

v>Σ̂v (4.34)

≥ min
‖v‖2=1

v>Σv − max
‖v‖2=1

v>(Σ̂− Σ)v (4.35)

≥ Λmin(Σ)− Λmax(Σ̂− Σ) (4.36)

≥ φmin −
∥∥∥Σ̂− Σ

∥∥∥
F

(4.37)

Let s(i)
mq be the (m, q)-th coordinate of x(i)

a x
(i)>
a −Σ and 1

r−l+1

∑r
i=l s

(i)
mq the one of Σ̂−

Σ. Note that E
[
s

(i)
mq

]
= 0 and |s(i)

mq| ≤ 2. Let’s analyze the quantity P
(∥∥∥Σ̂− Σ

∥∥∥
F
> ε
)

with ε > 0:

P
(∥∥∥Σ̂− Σ

∥∥∥
F
> ε
)

= P

(
(
∑
m,q

s2
mq)

1/2 > ε

)
(4.38)

= P

(∑
m,q

s2
mq > ε2

)
(4.39)

≤
∑
m,q

P
(
s2
mq > ε2

)
(4.40)

≤
∑
m,q

P (|smq| > ε) (4.41)

Thanks to Hoe�ding’s inequality, we have P (|smq| > ε) ≤ 2 exp
(
− ε2(r−l+1)

2

)
. Since

r − l > vn, we also have P (|smq| > ε) ≤ 2 exp
(
− ε2vn

2

)
. It follows from (4.41) that

P
(∥∥∥Σ̂− Σ

∥∥∥
F
> ε
)
≤ 2(p− 1)2 exp

(
− ε2vn

2

)
. We deduce that:

P
(
Λmin(Σ̂) ≥ φmin − ε

)
≥ 1− 2(p− 1)2 exp

(
−ε

2vn
2

)
, (4.42)

which concludes the proof for (4.32).

To prove (4.33) it su�ces to note that Λmax(Σ̂) ≤ φmax +
∥∥∥Σ̂− Σ

∥∥∥
F

and use the same
arguments.
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Lemma 4.3. Let {x(i)}ni=1 be a set of i.i.d observation sampled from an Ising model with
parameter Θ ∈ Rp×p and assume that assumption (A1) is satis�ed.
Let R and L be two random variable such that R,L ∈ [n], L < R and R− L > vn almost
surely, with vn a positive serie. For a �xed node a and any ε > 0, there exist a constant c1 > 0
such that:

P

(
Λmin

(
1

R− L+ 1

R∑
i=L

x
(i)
a x

(i)>
a

)
≤ φmin − ε

)
≤ c1 exp

(
−ε

2vn
2

+ 2 log(n)

)
(4.43)

and

P

(
Λmax

(
1

R− L+ 1

R∑
i=L

x
(i)
a x

(i)>
a

)
≥ φmax + ε

)
≤ c1 exp

(
−ε

2vn
2

+ 2 log(n)

)
(4.44)

Proof. We note Σ̂(L,R) = 1
R−L+1

∑R
i=L x

(i)
a x

(i)>
a and I ,

{
(l, r) ∈ [n]2 : r − l > vn

}
We �rst prove the inequality (4.43):

P
(

Λmax

(
Σ̂(L,R)

)
≥ φmax + ε

)
=
∑

(l,r)∈I
P
(

Λmax

(
Σ̂(L,R)

)
, L = l, R = r

)
(4.45)

≤
∑

(l,r)∈I
P
(

Λmax

(
Σ̂(L,R)

)∣∣∣L = l, R = r
)

(4.46)

Using Lemma 4.2 we can bound (4.46):

(4.46) ≤
∑

(l,r)∈I
2(p− 1)2 exp

(
−ε

2vn
2

)
(4.47)

≤ |I|c1 exp

(
−ε

2vn
2

)
(4.48)

≤ n2c1 exp

(
−ε

2vn
2

)
(4.49)

≤ c1 exp

(
−ε

2vn
2

+ 2 log(n)

)
(4.50)

with c1 = 2(p− 1). This concludes the proof for (4.43). Same arguments are used to prove
(4.44).

Lemma 4.4. Let {x(i)}ni=1 be a set of independent observation sampled from the time-varying
Ising model (Section 2). Then, ∀j ∈ [D] and ∀r, l ∈ {Tj , . . . , Tj+1 − 1} such that l < r, we
have:

P

(
1

r − l + 1
‖R3(l, r)‖2 ≤ 2

√
p log(n)

r − l + 1

)
≥ 1− 2(p− 1) exp (−2p log(n)) (4.51)

with R3(l, r) =
∑r

i=l x
(i)
a

{
x

(i)
a − EΘj

[
Xa|X a = x

(i)
a

]}
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Proof. Let Zij be the the j-th element of the vector
1

r−l+1x
(i)
a

{
x

(i)
a − EΘ

[
Xa|X a = x

(i)
a

]}
. Note that |Zij | ≤ 2

r−l+1 and E [Zij ] = 0. Let
ε > 0, we have:

P
(

1

r − l + 1
‖R3(l, r)‖2 ≥ ε

)
= P

√√√√∑
j 6=a

(
r∑
i=l

Zij)2 ≥ ε


= P

∑
j 6=a

(
r∑
i=l

Zij)
2 ≥ ε2


≤
∑
j 6=a

P

(
|
r∑
i=l

Zij | ≥ ε
)

≤ 2(p− 1) exp

(
−ε

2(r − l + 1)

2

)
Now, if we �x ε = 2

√
p log(n)
r−l+1 , we obtain:

P

(
1

r − l + 1
‖R3(l, r)‖2 ≤ 2

√
p log(n)

r − l + 1

)
≥ 1− 2(p− 1) exp (−2p log(n))

Lemma 4.5. Let {x(i)}ni=1 be a set of independent observation sampled from the time-varying
Ising model (Section 2). We have:

P

 ⋂
j∈[D]

⋂
l,r∈Ij

{
1

r − l + 1

∥∥∥Rj3(l, r)
∥∥∥

2
≤ 2

√
p log(n)

r − l + 1

} ≥ 1− c2 exp (−c3 log(n))

(4.52)

with Rj3(l, r) =
∑r

i=l x
(i)
a

{
x

(i)
a − EΘj

[
Xa|X a = x

(i)
a

]}
, c2, c3 some positive constants

and Ij ,
{

(l, r) ∈ {Tj , . . . , Tj+1 − 1}2 : r > l
}
.

Proof. The proof is a simple application of Lemma 4.4:

P

 ⋃
j∈[D]

⋃
l,r∈Ij

{
1

r − l + 1

∥∥∥Rj3(l, r)
∥∥∥

2
≥ 2

√
p log(n)

r − l + 1

}
≤
∑
j∈[D]

∑
l,r∈Ij

P

(
1

r − l + 1

∥∥∥Rj3(l, r)
∥∥∥

2
≥ 2

√
p log(n)

r − l + 1

)
≤ 2Dn2(p− 1) exp (−2p log(n))

≤ c2 exp (−2p log(n) + 2 log(n))

≤ c2 exp (−c3 log(n))

since p > 1. This concludes the proof.



Conclusion and perspectives

In this thesis, several contributions have been made in the context of vector data that are
observed on network structures. Such data, known as graph vectors or graph signals, are
recorded in many real-world scenarios and there is an increasing need to design learning
algorithms adapted to them. In this work, two a priori distinct tasks has been considered.
On one hand, the problem of event detection, which can be split in two di�erent problems
i.e. anomaly detection and change-point detection. On the other hand, the graph learning
problem that is useful in the most common scenario where the underlying network struc-
ture over which the vectors are observed is unknown. Although a priori distinct, these
two tasks were successfully linked in the �nal chapter, where the graph was allowed to
change in time. This thesis work also illustrated the idea that a concrete problem, in our
case the detection of a Sigfox Base Station failure, can lead to more general and theoretical
questions. Finally, the implementation of the di�erent algorithms that has been proposed
were made available online to allow and encourage the reproducibility of the results, which
was a commitment from the beginning of the thesis project.

Regarding the various contributions presented in the manuscript and the research
perspectives they suggest: In Chapter 2, we presented a simple novelty detection algorithm
aiming to detect abnormal level of communication activity at the level of a node in a
communication network. The algorithm relied on the intuition that the level of activity of a
node can be predicted by looking at the level of activity recorded at its neighboring nodes.
Thanks to an access to a normal data set and conventional supervised learning methods,
the relationship between nodes activity has been learned. Afterwards, an anomaly was
detected whenever the predicted level of activity was far from the real one. The method
was shown to perform well on both synthetic and real-world data. In particular, it was
shown to solve the problem raised by the industrial collaboration, i.e. the objective of
detecting BSs failures in Sigfox network.

There are still some research perspectives to investigate. This includes direct use, when
it is known, of the network structure on which the data are observed. For example at
Sigfox, the knowledge of the positions of the BSs allows us to reduce the dimension of the
learning problem by selecting only neighboring BSs. Can this knowledge have another use?
Moreover, one can think about inferring the graph structure during the learning phase.
This could be done with, for example, a logistic regression, in the manner of the Ising
models of Chapter 4. Finally, a proper theoretical investigation on prediction-error based
anomaly detection algorithms should be done in future works. In particular, this could be
made in the framework of [36] or [68] which characterize the quality of a scoring function
using notions related to the estimation of minimum volume sets.

In Chapter 3, we elaborated a new graph learning algorithm in the framework of GSP.
The graph vectors were assumed to enjoy a sparse representation in the graph spectral
domain, a feature which is known to carry information related to the cluster structure
of a graph and which is also a key hypothesis of sampling algorithms. The signals were
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as well assumed to behave smoothly with respect to the underlying graph structure. To
tackle the problem, we proposed a new optimization program that learns the Laplacian
of the graph and we provided two algorithms to solve it, called IGL-3SR and FGL-3SR.
Based on a 3-steps alternating procedure, both algorithms relied on standard minimization
methods such as manifold gradient descent or linear programming. While IGL-3SR ensures
convergence, FGL-3SR acts as a relaxation and is signi�cantly faster since its alternating
process relies on multiple closed-form solutions.

Some further investigation remains to be done. In particular, one could think of studying
the convergence properties of the FGL-3SR algorithm. Also, a statistical inference method
could be considered to learn the graph. The factor analysis model presented in Section 5
of Chapter 3 seems to be a good basic model for a statistical estimation of the parameters.
The latter could be learned using the EM algorithm or variational methods.

Finally, in Chapter 4, we combined the problems of event detection, in particular
change-point detection, with the task of graph inference. This time, the problem was
tackled by developing a probabilistic framework where the graph vectors were assumed to
be drawn from Ising models. We assumed that the graph structures, i.e the parameter of
the Ising models, were allowed to change over time, in a piece-wise constant fashion. Thus,
the objective was to identify both the moments at which signi�cant changes occurred in
the Ising model, as well as the underlying graph structure governing the signal behavior
segment-wise. For this purpose, we proposed to estimate the neighborhood of each node
by maximizing a penalized version of its conditional log-likelihood. The objective of the
penalization was twofold: it imposed sparsity in the learned graphs and, thanks to a fused-
type penalty, it also enforced them to evolve piece-wise constantly. In the end, we provided
two change-points consistency theorems and demonstrated the performance of our method
on several synthetic data sets and real-world examples.

Here again, some research perspectives remain. Among them, the investigation of
the sparsistency which corresponds to the consistency of the estimated graph structures:
when the number of sample grows in each segment, we must tend to recover the edges of
the underlying graph. Another track for further study is the use of a di�erent objective
function, e.g. the Interaction Screening Objective [166], which has been shown to be of
good quality from both a computational and a statistical point of view in the static scenario.

Overall, the objectives set at the beginning of the manuscript have been met and, as
stated above, there are still many directions to explore. In addition to these, a last track
was investigated at the end of the thesis, the problem of robustness in machine learning
and in particular for the task of non-parametric density estimation (see Chapter A in
appendix). This recent interest suggests that studying the robustness of the methods
proposed throughout the manuscript is also an interesting track of research that will be
investigated.
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Abstract

The work presented here is signi�cantly di�erent from that previously studied.
For the sake of consistency with the rest of the thesis, it is therefore placed here rather
than in the body of the document. In this additional chapter, we introduce a robust
nonparametric density estimator combining the popular Kernel Density Estimation
method and the Median-of-Means principle (MoM-KDE). This estimator is shown to
achieve robustness to any kind of anomalous data, even in the case of adversarial
contamination. In particular, while previous works only prove consistency results
under known contamination model, this work provides �nite-sample high-probability
error-bounds without a priori knowledge on the outliers. Finally, when compared
with other robust kernel estimators, we show that MoM-KDE achieves competitive
results while having signi�cant lower computational complexity.

Associated publication:
Robust Kernel Density Estimation with Median-of-Means principle,
Humbert, Pierre?, Le Bars, Batiste?, Minvielle, Ludovic?, and Vayatis, Nicolas
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1 Introduction

Over the past years, the task of learning in the presence of outliers has become an in-
creasingly important objective in both statistics and machine learning. Indeed, in many
situations, training data can be contaminated by undesired samples, which may badly
a�ect the resulting learning task, especially in adversarial settings. Building robust esti-
mators and algorithms that are resilient to outliers is therefore becoming crucial in many
learning procedures. In particular, the inference of a probability density function from a
contaminated random sample is of major concerns.

Density estimation methods are mostly divided into parametric and nonparametric
techniques. Among the nonparametric family, the Kernel Density Estimator (KDE) is
probably the most known and used for both univariate and multivariate densities [125, 142,
148], but it also known to be sensitive to dataset contaminated by outliers [92, 93, 163]. The
construction of robust KDE is therefore an important area of research, that can have useful
applications such as anomaly detection and resilience to adversarial data corruption. Yet,
only few works have proposed such robust estimators.

Kim and Scott [93] proposed to combine KDE with ideas from M-estimation to construct
the so-called Robust Kernel Density Estimator (RKDE). However, no consistency results
were provided and robustness was rather shown experimentally. Later, RKDE was proven to
converge to the true density, however at the condition that the dataset remains uncorrupted
[162]. More recently, Vandermeulen and Scott [163] proposed another robust estimator,
called Scaled and Projected KDE (SPKDE). Authors proved the L1-consistency of SPKDE
under a variant of the Huber’s ε-contamination model where two strong assumptions
are made [83]. First, the contamination parameter ε is known, and second, the outliers
are drawn from an uniform distribution when outside the support of the true density.
Unfortunately, as they did not provided rates of convergence, it still remains unclear at
which speed SPKDE converges to the true density. Finally, both RKDE and SPKDE require
iterative algorithms to compute their estimators, increasing the overall complexity of their
construction.

In statistical analysis, another idea to construct robust estimators is to use the Median-of-
Means principle (MoM). Introduced by Nemirovsky and Yudin [122], Jerrum et al. [86], and
Alon et al. [8], the MoM was �rst designed to estimate the mean of a real random variable.
It relies on the simple idea that rather than taking the average of all the observations,
the sample is split in several non-overlapping blocks over which the mean is computed.
The MoM estimator is then de�ned as the median of these means. Easy to compute, the
MoM properties have been studied by Minsker [119] and Devroye et al. [45] to estimate
the means of heavy-tailed distributions. Furthermore, due to its robustness to outliers,
MoM-based estimators have recently gained a renewed of interest in the machine learning
community [105, 106].

Contributions. In this work, we propose a new robust nonparametric density estimator
based on the combination of the Kernel Density Estimation method and the Median-of-
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Means principle (MoM-KDE). We place ourselves in a more general framework than the
classical Huber contamination model, calledO∪I , which gets rid of any assumption on the
outliers. We demonstrate the statistical performance of the estimator through �nite-sample
high-con�dence error bounds in the L∞-norm and show that MoM-KDE’s convergence
rate is the same as KDE without outliers. Additionally, we prove the consistency in the
L1-norm, which is known to re�ect the global performance of the estimate. To the best
of our knowledge, this is the �rst work that presents such results in the context of robust
kernel density estimation, especially under the O ∪ I framework. Finally, we demonstrate
the empirical performance of MoM-KDE on both synthetic and real data and show the
practical interest of such estimator as it has a lower complexity than the baseline RKDE
and SPKDE.

2 Median-of-Means Kernel Density Estimation

We �rst recall the classical kernel density estimator. Let X1, · · · , Xn be independent and
identically distributed (i.i.d.) random variables that have a probability density function
(pdf) f(·) with respect to the Lebesgue measure on Rd. The Kernel Density Estimate of f
(KDE), also called the Parzen–Rosenblatt estimator, is a nonparametric estimator given by

f̂n(x) =
1

nhd

n∑
i=1

K

(
Xi − x
h

)
, (A.1)

where h > 0 andK : Rd −→ R+ is an integrable function satisfying
∫
K(u)du = 1 [158].

Such a function K(·) is called a kernel and the parameter h is called the bandwidth of the
estimator. The bandwidth is a smoothing parameter that controls the bias-variance tradeo�
of f̂n(·) with respect to the input data.

While this estimator is central in statistic, a major drawback is its weakness against outliers
[91–93, 163]. Indeed, as it assigns uniform weights 1/n to every points regardless of
whether Xi is an outlier or not, inliers and outliers contribute equally in the construction
of the KDE, which results in undesired “bumps” over outlier locations in the �nal estimated
density (see Figure A.1). In the following, we propose a KDE-based density estimator robust
to the presence of outliers in the sample set. These outliers are considered in a general
framework described in the next section.

2.1 Outlier setup

Throughout the chapter, we consider theO∪I framework introduced by Lecué and Lerasle
[105]. This very general framework allows the presence of outliers in the dataset and
relax the standard i.i.d. assumption on each observation. We therefore assume that the n
random variables are partitioned into two (unknown) groups: a subset {Xi | i ∈ I} made
of inliers, and another subset {Xi | i ∈ O} made of outliers such that O ∩ I = ∅ and
O ∪ I = {1, . . . , n}. While we suppose the Xi∈I are i.i.d. from a distribution that admits
a density f with respect to the Lebesgue measure, no assumption is made on the outliers
Xi∈O . Hence, these outlying points can be dependent, adversarial, or not even drawn from
a proper probability distribution.
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The O ∪ I framework is related to the well-known Huber’s ε-contamination model [83]
where it is assumed that data are i.i.d. with distribution g = εfI+(1−ε)fO , and ε ∈ [0, 1);
the distribution fI being related to the inliers and fO to the outliers. However, there are
several important di�erences. First, in the O ∪ I the proportion of outliers is �xed and
equals to |O|/n, whereas it is random in the Huber’s ε-contamination model [107]. Second,
theO∪I is less restrictive. Indeed, contrary to Huber’s model which considers that inliers
and outliers are respectively i.i.d from the same distributions,O∪I does not make a single
assumption on the outliers.

2.2 MoM-KDE

We now present our main contribution, a robust kernel density estimator based on the
MoM. This estimator is essentially motivated by the fact that the classical kernel density
estimation at one point corresponds to an empirical average (see Equation (A.1)). Therefore,
the MoM principle appears to be an intuitive solution to build a robust version of the KDE.
A formal de�nition of MoM-KDE is given below.

De�nition A.1. (MoM Kernel Density Estimator) Let 1 ≤ S ≤ n, and let B1, · · · , BS be a
random partition of {1, · · · , n} into S non-overlapping blocks Bs of equal size ns , n/S.
The MoM Kernel Density Estimator (MoM-KDE) of f at x0 is given by

f̂MoM (x0) ∝ Median
(
f̂n1(x0), · · · , f̂nS (x0)

)
, (A.2)

where f̂ns(x0) is the value of the standard kernel density estimator at x0 obtained via the
samples of the s-th block Bs. Note that f̂MoM (·) is not necessarily a density as its integral
may not be equal to 1. When needed, we thus normalize it by its integral the same way it is
proposed by Devroye and Lugosi [44].

Broadly speaking, MoM estimators appear to be a good tradeo� between the unbiased
but non robust empirical mean and the robust but biased median [106]. A visual example
of the robustness of MoM-KDE is displayed in Figure A.1. We now give a simple example
highlighting the robustness of MoM-KDE.

Example A.1. (MoM-KDE v.s. Uniform KDE) Let the inliers be i.i.d. samples from a uniform
distribution on the interval [−1, 1] and the outliers be i.i.d. samples from another uniform
distribution on [−3, 3]. Let the kernel function be the uniform kernel, x0 = 2 and h ∈ (0, 1).
Then if S > 2|O|, we obtain

|f̂MoM (x0)− f(x0)| = 0 a.s. and P
(
|f̂n(x0)− f(x0)| = 0

)
= (1− h/3)|O| 6= 1 .

This result shows that the MoM-KDE makes (almost surely) no error at the point x0.
On the contrary, the KDE here has a non-negligible probability to make an error.

2.3 Time complexity

The complexity of MoM-KDE to evaluate one point is the same as the standard KDE, O(n);
O(S · nS ) for the block-wise evaluation and O(n) to compute the median with the median-
of-medians algorithm [20]. Since RKDE and SPKDE are KDEs with modi�ed weights, they
also perform the evaluation step in O(n) time. However, these weights need to be learnt,
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(a) One-dimensional

(b) Two-dimensional

Figure A.1: True density, outliers, KDE, and MoM-KDE. (a) Estimates from a 1-D true
density and outliers from a normal density centered in µO = 10 with variance σ2

O = 0.1.
(b) Estimates from a 2-D true density and outliers from a normal density centered in
µO = (3, 3) with variance σ2

O = 0.5I2.

Table A.1: Computational complexity

Method Learning Evaluation Iterative method

KDE [125] – O(n) no
RKDE [93] O(niter · n2) O(n) yes
SPKDE [163] O(niter · n2) O(n) yes
MoM-KDE – O(n) no

thus requiring an additional non-negligible computing capacity. Indeed, each one of them
rely on an iterative method – the iteratively reweighted least squares algorithm and the
projected gradient descent algorithm, that both have a complexity of O(niter · n2), where
niter is the number of needed iterations to reach a reasonable accuracy. MoM-KDE on the
other hand does not require any learning procedure. Note that the evaluation step can be
accelerated through several ways, hence potentially reducing computational time of all
these competing methods [7, 15, 71, 172]. Theoretical time complexities are gathered in
Table A.1.
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3 Theoretical analysis

In this section, we give a �nite-sample high-probability error bound in the L∞-norm for
MoM-KDE under the O ∪ I framework. To our knowledge, we are the �rst to provide
such error bounds in robust kernel density estimation under this framework. In particular,
our objective is to prove that even with a contaminated dataset, MoM-KDE achieves a
similar convergence rate than KDE without outliers [88, 150, 169]. In order to build this
high-probability error bound, it is assumed, among other standard hypotheses, that the
true density is Holder-continuous, a smoothness property usually considered in KDE
analysis [88, 158, 169]. In addition, we show the consistency in the L1-norm. In this last
result, we will see that the aforementioned assumptions are not necessary to obtain the
consistency. In the following, we give the necessary de�nitions and assumptions to perform
our non-asymptotic analysis.

3.1 Setup and assumptions

Let us �rst list the usual assumptions, notably on the considered kernel function, that will
allow us to derive our results. They are standard in KDE analysis, and are chosen for their
simplicity of comprehension [88, 158]. More general hypotheses could be made in order to
obtain the same results, notably assuming kernel of order ` (see for example the works of
Tsybakov [158] and Wang et al. [169]).

Assumption 1. (Bounded density) ‖f‖∞ <∞.

We make the following assumptions on the kernel K .

Assumption 2. (Density kernel) ∀u ∈ Rd,K(u) ≥ 0, and
∫
K(u)du = 1.

Assumption 3. (Spherically symmetric and non-increasing) There exists a non-increasing
function k : R+ −→ R+ such that K(u) = k(‖u‖) for all u ∈ Rd, where ‖ · ‖ is any
norm of Rd.

Assumption 4. (Exponentially decaying tail) There exists positive constants ρ, Cρ, t0 >
0 such that for all t > t0

k(t) ≤ Cρ · exp(−tρ) .

All the above assumptions are respected by most of the popular kernels, in particular
the Gaussian, Exponential, Uniform, Triangular, Cosine kernel, etc. Furthermore, the last
assumption implies that for any m > 0, we have

∫
‖u‖mK(u)du < ∞ (�nite norm mo-

ment) [88]. Finally, when taken together, these assumptions imply that the kernel satis�es
the VC property [169]. Theses are key properties to provide the bounds presented in the
next section.

Before stating our main results, we recall the de�nition of the Holder class of functions.

De�nition A.2. (Holder class) Let T be an interval of Rd, and 0 < α ≤ 1 and L > 0 be two
constants. We say that a function f : T → R belongs to the Holder class Σ(L,α) if it satis�es

∀x, x′ ∈ T, |f(x)− f(x′)| ≤ L‖x− x′‖α . (A.3)
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This de�nition implies a smoothness regularization on the function f , and is a conve-
nient property to bound the bias of KDE-based estimators.

3.2 L∞ and L1 consistencies of MoM-KDE

This section states our central �nding, a L∞ �nite-sample error bound for MoM-KDE that
proves its consistency and yields the same convergence rate as KDE with uncontaminated
data. The latter is given by the following Lemma partly proven by Sriperumbudur and
Steinwart [150] and veri�ed several times in the literature [65, 88, 169].

Lemma A.1. (L∞ error-bound of the KDE without anomalies) Suppose that f belongs to the
class of densities P(α,L) de�ned as

P(α,L) ,

{
f | f ≥ 0,

∫
f(x)dx = 1, and f ∈ Σ(α,L)

}
, (A.4)

where Σ(α,L) is the Holder class of function on Rd (De�nition A.2). Grant assumptions 1 to
4 and let n > 1, h ∈ (0, 1) and S ≥ 1 such that nhd ≥ S and nhd ≥ |log(h)|. Then with
probability at least 1− exp(−S), we have

‖f̂n − f‖∞ ≤ C1

√
S| log(h)|
nhd

+ C2h
α , (A.5)

where C2 = L

∫
‖u‖αK(u)du <∞ and C1 is a constant that only depends on ‖f‖∞, the

dimension d, and the kernel properties.

This Lemma comes from the well-known bias-variance decomposition, where we sepa-
rately bound the variance (see Theorem 3.1 of Sriperumbudur and Steinwart [150]) and
the bias (see e.g. [158] or [136]). It shows the consistency of KDE without anomalies, as
soon as h→ 0 and nhd →∞.

We now present our main result. Its objective is to show that even under the O ∪ I frame-
work, we do not need any additional hypothesis – besides the ones of the previous lemma
– to show that MoM-KDE achieves the same convergence rate as KDE when used with
uncontaminated data.

Proposition A.1. (`∞-error-bound of the MoM-KDE under theO∪I) Suppose that f belongs
to the class of densities P(α,L) and grant assumptions 1 to 4. Let S be the number of blocks,
δ > 0 such that S > (2 + δ)|O|, and ∆ = (1/(2 + δ)− |O|/S). Then, for any h ∈ (0, 1), δ
su�ciently small, and n ≥ 1 such that nhd ≥ S log(2(2 + δ)/δ), and nhd ≥ S| log(h)|, we
have with probability at least 1− exp(−2∆2S),

‖f̂MoM − f‖∞ ≤ C1

√√√√S log
(

2(2+δ)
δ

)
| log(h)|

nhd
+ C2h

α , (A.6)

where C2 = L

∫
‖u‖αK(u)du <∞ and C1 is a constant that only depends on ‖f‖∞, the

dimension d, and the kernel properties.
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The proof is given in the supplementary material. From equation (A.6), the opti-

mal choice of the bandwidth is h �
(
S log(n)

n

)1/(2α+d)

leading to the �nal rate of(
S log(n)

n

)α/(2α+d)

. This convergence rate is the same (up to a constant) to the one of

KDE without anomalies, with the same exponential control (Lemma A.1). Note that when
there is no outlier, i.e. |O| = 0, the bound holds for S = 1, and we recover the classical
KDE minimax optimal rate [169]. In addition, the previous proposition states that the
convergence of the MoM-KDE only depends on the number of outliers in the dataset, and
not on their “type”. This estimator is therefore robust in a wide range of scenarios, including
the adversarial one.

We now give a `1-consistency result under mild hypotheses, which is known to re�ect the
global performance of the estimate. Indeed, small `1 error leads to accurate probability
estimation [43].

Proposition A.2. (`1-consistency in probability) If n/S → ∞, h → 0, nhd → ∞, and
S > 2|O|, then

‖f̂MoM − f‖1 P−→
n→∞

0 . (A.7)

This result is obtained by bounding the left-hand part by the errors in the healthy blocks
only, i.e. those without anomalies. Under the hypothesis of the proposition, these errors are
known to converge to 0 in probability [169]. The complete proof is given in supplementary
material. Contrary to SPKDE [163], no assumption on the outliers generation process
is necessary to obtain this consistency result. Moreover, while we need to assume that
the proportion of outliers is perfectly known to prove the convergence of SPKDE, the
MoM-KDE converges whenever the number of outliers is overestimated.

3.3 In�uence function in the O ∪ I framework

As a measure of robustness, we now introduce an In�uence Function (IF) adapted to
the O ∪ I framework. It is inspired from the classical IF, �rst proposed by [74], which
measures how an estimator changes when the initial distribution is modi�ed by adding
a small amount of contamination at a point x′. Therefore, it provides a notion of stabil-
ity in the Huber model framework [9, 42]. We now de�ne a similar concept under theO∪I .

De�nition A.3. (IFO∪I ) Let Tn(x0; In) be a density estimator evaluated at x0 and learned
with an healthy data set In = {Xi}ni=1. Letm ∈ N and x′ ∈ Rd. The IFO∪I is de�ned as:

IFO∪I(x0, x
′,m; In, Tn) ,

∣∣Tn(x0; In)− Tn(x0; In ∪ {x′}mi=1)
∣∣ ,

where by healthy points we mean inliers i.e. samples that are independently drawn
from the true density function.

Given this de�nition, IFO∪I quanti�es how much the value at x0 of an estimated
density function changes whenever the healthy dataset is increased by m points located at
x′. Therefore, the link with the notion of stability is made obvious: the smaller IFO∪I is,
the more stable and thus robust the estimator is.
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In the next proposition, we provide a lower bound on the number of added samples
m over which the IFO∪I of the MoM-KDE is lower that the one of KDE with high probability.

Proposition A.3. Let x′, x0 ∈ Rd and In be an healthy data set. Grant assumptions 1 to 4
and denote

a ,
∑
i∈In

K

(
Xi − x0

h

)
, b , K

(
x′ − x0

h

)
.

Let S > 2m withm ∈ J0, n2 J the number of added samples and δ > 0 such that |b− a/n| >
Cρ
√

2δS/n.

Ifm ≥ Cρ
√

2nδS

|b−a/n|−Cρ
√

2δS/n
, then with probability higher than 1− 4 exp(−δ) we have:

IFO∪I(x0, x
′,m; In, f̂MoM ) ≤ IFO∪I(x0, x

′,m; In, f̂KDE) .

Given the previous proposition, the lower bound on m over which the MoM-KDE is
better than KDE is not necessarily easy to interpret. When everything is �xed except x0

and x′, we see that the bound is low whenever |b− a/n| = |K(x0−x′
h )− 1

n

∑
K(x0−Xi

h )|
is large. A su�cient condition for this is to take x′ far from the sampling set In, i.e take x′
as an outlier. Under this condition, the bound will get even lower whenever x0 gets closer
to x′.

4 Numerical experiments

In this section, we display numerical results supporting the relevance of MoM-KDE. All
experiences were run over a personal laptop computer using Python. The code of MoM-
KDE is made available online1.

Comparative methods. In the following experiments, we propose to compare MoM-
KDE to the classical KDE and two robust versions of KDE, called RKDE [93] and SPKDE
[163].

As previously explained, RKDE takes the ideas of robust M-estimation and translate
it to kernel density estimation. Authors point out that classical KDE estimator can be
seen as the minimizer of a squared error loss in the Reproducing Kernel Hilbert Space
H corresponding to the chosen kernel. Instead of minimizing this loss, they propose to
minimize a robust version of it,

∑
i ρ(‖φ(Xi) − g‖H), with respect to g ∈ H. Here φ is

the canonical feature map and ρ(·) is either the robust Huber or Hampel function. The
solution of the newly expressed problem is then found using the iteratively reweighted
least squares algorithm.

SPKDE proposes to scale the standard KDE in a way that it decontaminates the dataset.
This is done by minimizing the function ‖βf̂n − g‖2 with respect to g, belonging to the
convex hull of {kh(·, Xi)}ni=1. Here, β is an hyperparameter that controls the robustness
and f̂n is the KDE estimator. The minimization is shown to be equivalent to a quadratic
program over the simplex, solved via projected gradient descent.

1https://github.com/lminvielle/mom-kde. For the sake of comparison, we also implemented RKDE and
SPKDE.
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Metrics. The performance of the MoM-KDE is measured through three metrics, two
are used to measure the similarity between the estimated and the true density, and one
describes performances of an anomaly detector based on the estimated density. The �rst one
is the Kullback-Leibler divergence [98] which is the most used in robust KDE [91–93, 163].
Used to measure the similarity between distributions, it is de�ned as

DKL(f̂‖f) =

∫
f̂(x) log

(
f̂(x)

f(x)

)
dx .

As the Kullback-Leibler divergence is non-symmetric and may have in�nite values
when distributions do not share the same support, we also consider the Jensen-Shannon
divergence [57, 110]. It is a symmetrized version of DKL, with positive values, bounded by
1 (when the logarithm is used in base 2), and has found applications in many �elds, such as
deep learning [70] or transfer learning [143]. It is de�ned as

DJS(f̂‖f) =
1

2

(
DKL(f̂‖g) +DKL(f‖g)

)
, with g =

1

2
(f̂ + f) .

Motivated by real-world application, the third metric is not related to the true density,
which is usually not available in practical cases. Instead, we quantify the capacity of
the learnt density to detect anomalies using the well-known Area Under the ROC Curve
criterion (AUC). An input point x0 is considered abnormal whenever f̂(x0) is below a
given threshold.

Hyperparameters. All estimators are built using the Gaussian kernel. The number of
blocks in MoM-KDE is selected on a regular grid of 20 values between 1 and 2|O| + 1
in order to obtain the lowest DJS. The bandwidth h is chosen for KDE via the pseudo-
likelihood k-cross-validation method [159], and used for all estimators. The construction of
RKDE follows exactly the indications of its authors [93] and ρ(·) is taken to be the Hampel
function as they empirically showed that it is the most robust. For SPKDE, the true ratio of
anomalies is given as an input parameter.

4.1 Results on synthetic data.

To evaluate the e�ciency of the MoM-KDE against KDE and its robust competitors, we
set up several outlier situations. In all theses situations, we draw N = 1000 inliers from
an equally distributed mixture of two normal distribution N (µ1, σ1) and N (µ2, σ2) with
µ1 = 0, µ2 = 6, and σ1 = σ2 = 0.5. The outliers however are sampled through various
schemes:

(a) Uniform. A uniform distribution U([µ1 − 3, µ2 + 3]) which is the classical setting
used for outlier simulation.

(b) Regular Gaussian. A similar-variance normal distribution N (3, 0.5) located be-
tween the two inlier clusters.

(c) Thin Gaussian. A low-variance normal distribution N (3, 0.01) located between
the two inliers clusters.
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(a) Uniform (b) Regular Gaussian

(c) Thin Gaussian (d) Advsersarial Thin Gaussian

Figure A.2: Density estimation with synthetic data. The displayed metric is the Jensen-
Shannon divergence. A lower score means a better estimation of the true density.

(d) Adversarial Thin Gaussian. A low variance normal distribution N (0, 0.01) lo-
cated on one of the inliers’ Gaussian mode. This scenario can be seen as adversarial
as an ill-intentioned agent may hide wrong points in region of high density. It is the
most challenging setting for standard robust estimators as they are in general robust
to outliers located outside the support of the density we wish to estimate.

For all situations, we consider several ratios of contamination and set the number
of outliers |O| in order to obtain a ratio |O|/n ranging from 0.05 to 0.5 with 0.05-wide
steps. Finally, to evaluate the pertinence of our results, for each set of parameters, data are
generated 10 times.

We display in Figure A.2 the results over synthetic data using the DJS score. The average
scores and standard deviations over the 10 experiments are represented for each outlier
scheme and ratio. Overall, the results show the good performance of MoM-KDE in all the
considered situations. Furthermore, they highlight the dependency of the two competitors
to the type of outliers. Indeed, as SPKDE is designed to handle uniformly distributed outliers,
the algorithm struggles when confronted with di�erently distributed outliers (see Figure
A.2 b, c, d). RKDE performs generally better, but fails against adversarial contamination,
which may be explained by its tendency to down-weight points located in low-density
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regions, which for this particular case correspond to the inliers. Results over DKL and AUC
showing very similar results, they are not reported here.

4.2 Results on real data.

Experiments are also conducted over six classi�cation datasets: Banana, German, Titanic,
Breast-cancer, Iris, and Digits. They contain respectively n = 5300, 1000, 2201, 569, 150
and 1797 data points having d = 2, 20, 3, 30, 4 and 64 input dimensions. They are all
publicly available either from open repositories 2 (for the �rst three) or directly from Scikit-
learn package (for the last three) [128]. We follow the approach of Kim and Scott [93] that
consists in setting the class labeled 0 as outliers and the rest as inliers. To arti�cially control
the outlier proportion, we randomly downsample the abnormal class to reach a ratio |O|/n
ranging from 0.05 to 0.5 with 0.05-wide steps. When a dataset does not contain enough
outliers to reach a given ratio, we similarly downsample the inliers. For each dataset and
each ratio, the experiments are performed 50 times, the random downsampling resulting
in di�erent learning datasets. The empirical performance is evaluated through the capacity
of each estimator to detect anomalies, which we measure with the AUC.

Results are displayed in Figure A.3. With the Digits dataset, we also explore additional
scenarios with changing inlier and outlier classes (speci�ed in �gure titles). Overall, results
are in line with performances observed over synthetic experiments, achieving good results
in comparison to its competitors. Note that even in the highest dimensional scenarios, i.e.
Digits and Breast cancer (d = 64 and d = 30), MoM-KDE still behaves well, outperforming
its competitors.

2http://www.raetschlab.org/Members/raetsch/benchmark/
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(a) Banana (b) German

(c) Titanic (d) Breast cancer

(e) Iris (f) Digits (O: 0, I : all)

(g) Digits (O: 1, I : all) (h) Digits (O: 1, I : 0)

Figure A.3: Anomaly detection with real datasets, measured with AUC over varying outlier
proportion. A higher score means a better detection of the outliers. For Digits, we specify
which classes are chosen to be inliers (I) and outliers (O).
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5 Conclusion

This additional chapter introduced MoM-KDE, a new e�cient way to perform robust kernel
density estimation. The method has been shown to be consistent in both L∞ and L1

error-norm in presence of very generic outliers, enjoying a similar rate of convergence than
the KDE without outliers. MoM-KDE achieved good empirical results in various situations
while having a lower computational complexity than its competitors.

This work proposed to use the coordinate-wise median to construct its robust estimator.
Future works will investigate the use of other generalization of the median in high dimen-
sion, e.g. the geometric median. In addition, further investigation will include a deeper
statistical analysis under the hurdle contamination model in order to analyse the minimax
optimality [112] of MoM-KDE.
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6 Technical proofs

Lemma A.1. (L∞ error-bound of the KDE without anomalies) Suppose that f belongs to
the class of densities P(α,L) de�ned as

P(α,L) ,

{
f | f ≥ 0,

∫
f(x)dx = 1, and f ∈ Σ(α,L)

}
,

where Σ(α,L) is the Hölder class of function on Rd. Grant assumptions 1 to 4 and let n > 1,
h ∈ (0, 1) and S ≥ 1 such that nhd ≥ S and nhd ≥ |log(h)|. Then with probability at least
1− exp(−S), we have

‖f̂n − f‖∞ ≤ C1

√
S| log(h)|
nhd

+ C2h
α ,

where C2 = L

∫
‖u‖αK(u)du <∞ and C1 is a constant that only depends on ‖f‖∞, the

dimension d, and the kernel properties.

Proposition A.1. (L∞ error-bound of the MoM-KDE under the O ∪ I) Suppose that f
belongs to the class of densities P(α,L) and grant assumptions 1 to 4. Let S be the number
of blocks, δ > 0 such that S > (2 + δ)|O|, and ∆ = (1/(2 + δ) − |O|/S). Then, for
any h ∈ (0, 1), δ su�ciently small, and n ≥ 1 such that nhd ≥ S log(2(2 + δ)/δ), and
nhd ≥ S| log(h)|, we have with probability at least 1− exp(−2∆2S),

‖f̂MoM − f‖∞ ≤ C1

√√√√S log
(

2(2+δ)
δ

)
| log(h)|

nhd
+ C2h

α ,

where C2 = L

∫
‖u‖αK(u)du <∞ and C1 is a constant that only depends on ‖f‖∞, the

dimension d, and the kernel properties.

Proof. From the de�nition of the MoM-KDE, we have the following implication [106]{
sup
x

∣∣∣f̂MoM (x)− f(x)
∣∣∣ ≥ ε} =⇒

{
sup
x

S∑
k=1

I
(∣∣∣f̂ns(x)− f(x)

∣∣∣ > ε
)
≥ S/2

}
.

Thus to upper-bound the probability of the left-hand event, it su�ces to upper-bound the
probability of the right-hand event. Moreover, we have∣∣∣f̂ns(x)− f(x)

∣∣∣ ≤ sup
x

∣∣∣f̂ns(x)− f(x)
∣∣∣

=⇒ I
(∣∣∣f̂ns(x)− f(x)

∣∣∣ > ε
)
≤ I

(
sup
x

∣∣∣f̂ns(x)− f(x)
∣∣∣ > ε

)
=⇒

S∑
k=1

I
(∣∣∣f̂ns(x)− f(x)

∣∣∣ > ε
)
≤

S∑
s=1

I

(
sup
x

∣∣∣f̂ns(x)− f(x)
∣∣∣ > ε

)

=⇒ sup
x

S∑
s=1

I
(∣∣∣f̂ns(x)− f(x)

∣∣∣ > ε
)
≤

S∑
s=1

I

(
sup
x

∣∣∣f̂ns(x)− f(x)
∣∣∣ > ε

)
,
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which implies that

P

(
sup
x

S∑
s=1

I
(∣∣∣f̂ns(x)− f(x)

∣∣∣ > ε
)
≥ S/2

)

≤ P

(
S∑
s=1

I

(
sup
x

∣∣∣f̂ns(x)− f(x)
∣∣∣ > ε

)
≥ S/2

)
.

Let Zs = I
(

supx

∣∣∣f̂ns(x)− f(x)
∣∣∣ > ε

)
and let S =

{
s ∈ {1, · · · , S} | Bs ∩ O = ∅

}
i.e. the set of indices s such that the block Bs does not contain any outliers. Since

∑
s∈SC

I(·)

is bounded by |O|, almost surely, the following holds.

S∑
s=1

I

(
sup
x

∣∣∣f̂ns(x)− f(x)
∣∣∣ > ε

)
=

S∑
s=1

Zs =
∑
s∈S

Zs +
∑
s∈SC

Zs

≤
∑
s∈S

Zs + |O|

=
∑
s∈S

[Zk − E (Zs) + E (Zs)] + |O|

=
∑
s∈S

[Zs − E (Zs)] +
∑
s∈S

E (Zs) + |O|

≤
S∑
s=1

[Zs − E (Zs)] + S · E (Z1) + |O|

≤
S∑
s=1

[Zs − E (Zs)] + S · P
(

sup
x

∣∣∣f̂n1(x)− f(x)
∣∣∣ > ε

)
+ |O| , (A.8)

where Z1 is assumed, without loss of generality, to be associated to a block not containing
outliers. This block always exists thanks to the hypothesis S > (2 + δ)|O|.

Let ε = C1

√
S log(

2(2+δ)
δ

)| log(h)|
nhd

+ C2h
α, then using Lemma 1 with S = log(2(2+δ)

δ ),
we have

P
(

sup
x

∣∣∣f̂n1(x)− f(x)
∣∣∣ > ε

)
≤ δ

2(2 + δ)
.

Combining this last inequality with equation (A.8) leads to

P

(
S∑
s=1

I

(
sup
x

∣∣∣f̂ns(x)− f(x)
∣∣∣ > ε

)
≥ S/2

)

≤ P

(
S∑
s=1

[Zs − E (Zs)] + S · δ

2(2 + δ
+ |O| ≥ S/2

)
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≤ P

(
S∑
s=1

[Zs − E (Zs)] ≥ S
(

1

2
− δ

2(2 + δ)
− |O|

S

))

≤ P

(
S∑
s=1

[Zs − E (Zs)] ≥ S
(

1

2 + δ
− |O|

S

))

Tacking ∆ =
(

1
2+δ −

|O|
S

)
> 0 and applying Hoe�ding’s inequality to the right-hand

side of the previous equation gives

P

(
S∑
s=1

I

(
sup
x

∣∣∣f̂ns(x)− f(x)
∣∣∣ > ε

)
≥ S/2

)
≤ e−2S∆2

,

which concludes the proof.

Proposition A.2. (L1-consistency in probability) If n/S → ∞, h → 0, nhd → ∞, and
S > 2|O|, then

‖f̂MoM − f‖1 P−→
n→∞

0 .

Proof. We �rst rewrite the MoM-KDE as

f̂MoM (x) =

S∑
s=1

f̂ns(x)IAs(x) ,

where As =
{
x | f̂MoM (x) = f̂ns(x)

}
. Without loss of generality, we assume that

Ak
S∩
s 6=`

A` = ∅, S∪
s=1

As = Rd, and
S∑
s=1

IAs(x) = 1 .

∫ ∣∣∣f̂MoM (x)− f(x)
∣∣∣ dx =

∫ ∣∣∣∣∣
S∑
s=1

f̂ns(x)IAs(x)− f(x)

∣∣∣∣∣ dx
=

∫ ∣∣∣∣∣
S∑
s=1

(
f̂ns(x)− f(x)

)
IAs(x)

∣∣∣∣∣ dx
≤
∫ S∑

s=1

∣∣∣f̂ns(x)− f(x)
∣∣∣ IAs(x)dx

=
S∑
s=1

∫
As

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx

=
∑
s∈S

∫
As

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx+

∑
s∈SC

∫
As

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx .
(A.9)
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From the L1-consistency of the KDE in probability, if the number of anomalies grows at a
small enough speed [43], the left part is bounded, i.e.∑

s∈S

∫
As

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx ≤∑

s∈S

∫ ∣∣∣f̂ns(x)− f(x)
∣∣∣ dx P−→

n→∞
0 . (A.10)

We now upper-bound the right part of equation (A.9). Let consider a particular block
As where s ∈ SC . In this block, the estimator fns is selected and is calculated with samples
containing anomalies. As ∀x ∈ As, fns(x) is the median (by de�nition), if S > 2|O|, we
can always �nd a s′ ∈ S such that fns(x) ≤ fns′ (x) or fns(x) ≥ fns′ (x).
Now let denote A+

s =
{
x ∈ As | f̂ns(x) ≥ f(x)

}
and A−s =

{
x ∈ As | f̂ns(x) < f(x)

}
.

We have A+
s ∪A−s = As and each one of these blocks can be decomposed respectively into

|S| sub-blocks (not necessarily disjoint) {As′,+s }s′∈S and {As′,−s }s′∈S such that ∀s′ ∈ S ,
As′,+

s =
{
x ∈ As | f̂ns′ (x) ≥ f̂ns

(x) ≥ f(x)
}

andAs′,−
s =

{
x ∈ As | f̂ns′ (x) ≤ f̂ns

(x) < f(x)
}

.
Finally, the right-hand term of equation (A.9) can be upper-bounded by

∑
s∈SC

∫
As

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx ≤ ∑

s∈SC

∫
A+
s

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx+

∫
A−s

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx

≤
∑
s∈SC

∑
s′∈S

∫
As
′,+
s

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx+

∫
As
′,−
s

∣∣∣f̂ns(x)− f(x)
∣∣∣ dx

≤
∑
s∈SC

∑
s′∈S

∫
As
′,+
s

∣∣∣f̂ns′ (x)− f(x)
∣∣∣ dx+

∫
As
′,−
s

∣∣∣f̂ns′ (x)− f(x)
∣∣∣ dx

≤
∑
s∈SC

∑
s′∈S

∫ ∣∣∣f̂ns′ (x)− f(x)
∣∣∣ dx+

∫ ∣∣∣f̂ns′ (x)− f(x)
∣∣∣ dx

Since ∀s′ ∈ S we have
∫
|f̂ns′ (x) − f(x)|dx P−→

n→∞
0, we can conclude using similar

arguments as those used for (A.10) that
∑
s∈SC

∫
As

|f̂ns(x)−f(x)|dx P−→
n→∞

0, which concludes

the proof.

Proposition A.3. Let x′, x0 ∈ Rd and In be an healthy data set. Grant assumptions 1 to 4
and denote

a ,
∑
i∈I

K

(
Xi − x0

h

)
, b , K

(
x′ − x0

h

)
.

Let S > 2m withm ∈ J0, n2 J the number of added samples and δ > 0 such that |b− a/n| >
Cρ
√

2δS/n.

Ifm ≥ Cρ
√

2nδS

|b−a/n|−Cρ
√

2δS/n
, then with probability higher than 1− 4 exp(−δ) we have:

IFO∪I(x0, x
′,m; In, f̂MoM ) ≤ IFO∪I(x0, x

′,m; In, f̂KDE) .
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Proof.

– The IFO∪I for the KDE is

IFO∪I(x0, x
′,m, In; f̂KDE)

=

∣∣∣∣∣ 1

(n+m)hd

(
n∑
i=1

K

(
Xi − x0

h

)
+

m∑
i=1

K

(
x′ − x0

h

))
− 1

nhd

n∑
i=1

K

(
Xi − x0

h

)∣∣∣∣∣
=

1

hd

∣∣∣∣∣ 1

n+m

n∑
i=1

K

(
Xi − x0

h

)
− 1

n

n∑
i=1

K

(
Xi − x0

h

)
+

m

n+m
K

(
x′ − x0

h

)∣∣∣∣∣
=

1

hd

∣∣∣∣∣
(

1

n+m
− 1

n

) n∑
i=1

K

(
Xi − x0

h

)
+

m

n+m
K

(
x′ − x0

h

)∣∣∣∣∣
=

1

hd

∣∣∣∣( 1

n+m
− 1

n

)
a+

(
m

n+m

)
b

∣∣∣∣ =
1

hd

∣∣∣∣ nb− a
n2/m+ n

∣∣∣∣ ,
with a ,

n∑
i=1

K

(
Xi − x0

h

)
, and b , K

(
x′ − x0

h

)
.

– IFO∪I for the MoM-KDE

Let S > 2m be the number of blocks in the MoM-KDE, {Bs}Ss=1 and {B̃s′}Ss′=1 be
respectively the blocks of the contaminated data set In ∪ {x′}m and the healthy data set.
We have:

IFO∪I(x0, x
′,m, In; f̂MoM )

=
1

hd

∣∣∣∣∣Median
{

S

n+m

 ∑
i∈In∩Bs

K

(
Xi − x0

h

)
+

∑
i∈{x′}∩Bs

K

(
x′ − x0

h

)}S
s=1

−Median

Sn ∑
i∈B̃s′

K

(
Xi − x0

h

)
S

s′=1

∣∣∣∣∣
≤ 1

hd

∣∣∣∣∣ S

n+m

∑
i∈Bs

K

(
Xi − x0

h

)
− S

n

∑
i∈B̃s′

K

(
Xi − x0

h

) ∣∣∣∣∣ ,
where B̃s′ is the block selected by the median for the healthy MoM-KDE. The inequality
is obtained by noticing that, with S > 2m, there always exists an healthy block Bs that
makes it true.

Finally, denoting∣∣∣∣∣ ∑
i∈Bs

S

n+m
K

(
Xi − x0

h

)
−
∑
i∈B̃s′

S

n
K

(
Xi − x0

h

) ∣∣∣∣∣ =
∣∣∣Z(s) − Z(s′)

∣∣∣ ,
and using both the triangular and Hoe�ding inequalities, and the fact that E(Z(s)) =
E(Z(s′)), we have

hd · IFO∪I(x0, x
′,m, In; f̂MoM ) ≤

∣∣∣Z(s) − Z(s′) − E(Z(s)) + E(Z(s′))
∣∣∣
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≤
∣∣∣Z(s) − E(Z(s))

∣∣∣+
∣∣∣Z(s′) − E(Z(s′))

∣∣∣ ,
and for t > 0,

P
(∣∣∣Z(s) − E(Z(s))

∣∣∣ ≥ t) ≤ 2 exp

(
−2t2(n+m))

SC2
ρ

)
P
(∣∣∣Z(s′) − E(Z(s′))

∣∣∣ ≥ t) ≤ 2 exp

(
−2t2n

SC2
ρ

)
= 2 exp

(
−2nst

2

C2
ρ

)
,

where ns = n/S. Furthermore, given two real-valued random variables X,Y , we know
that for t > 0,

P (|X|+ |Y | ≥ 2t) ≤ P (|X| ≥ t) + P (|Y | ≥ t) .

Therefore, we have

P
(∣∣∣Z(s) − E(Z(s))

∣∣∣+
∣∣∣Z(s′) − E(Z(s′))

∣∣∣ ≥ t) ≤ 4 exp

(
−nst

2

2C2
ρ

)
.

Setting t =
Cρ
√

2δ√
ns

with δ > 0, �nally gives P
(∣∣∣Z(s) − Z(s′)

∣∣∣ < t
)
≥ 1− 4 exp(−δ). We

now know that with probability 1− 4 exp(−δ), IFO∪I(x0, x
′,m, In; f̂MoM ) <

1

hd
Cρ
√

2δ√
ns

and we seek for which value of m, this value is smaller than the IFO∪I of the KDE i.e.

Cρ
√

2δ√
ns
≤
∣∣∣∣ nb− a
n2/m+ n

∣∣∣∣⇐⇒ n2/m+ n ≤
√
ns|nb− a|
Cρ
√

2δ

⇐⇒ 1/m ≤
(√

ns|nb− a|
Cρ
√

2δ
− n

)
/n2

⇐⇒ m ≥ n2

√
ns|nb− a|
Cρ
√

2δ
− n

⇐⇒ m ≥ n2

√
n|nb− a|
Cρ
√

2δS
− n

⇐⇒ m ≥ n√
n|b− a/n|
Cρ
√

2δS
− 1

.
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1 Contexte de la thèse

1.1 Contexte general

Au cours des dernières décennies, la quantité croissante de données multivariées disponibles
dans tous les secteurs, de la médecine à l’industrie en passant par les réseaux sociaux, a
entraîné un besoin important d’analyse et de modélisation de ces données dans le but
d’accomplir diverses tâches. Parmi celles-ci, les tâches de détection d’anomalies et de
détection de ruptures (appelées détection d’événements lorsque l’on se réfère aux deux) au
sein de cette quantité massive de données sont d’une importance majeure. En quelques
mots, la détection d’anomalies cherche à trouver, dans un ensemble de données, une petite
quantité d’entre elles qui s’écarte du comportement normal de la grande majorité. Cette
tâche peut être appliquée à n’importe quel ensemble de données et, dans une application
réelle, elle peut par exemple caractériser la découverte d’un élément dysfonctionnel dans
la chaîne de production d’une entreprise. D’autre part, la détection de rupture est liée au
vaste domaine de l’analyse de séries temporelles. Ici, on cherche à déterminer des moments
où le modèle sous-jacent aux données a changé (Figure B.1). En sciences de la vie ou en
biologie, cette tâche peut par exemple correspondre à la détection d’un changement d’état
(e.g. un individu se réveillant, le début de la puberté etc.)



138 APPENDIX B. INTRODUCTION EN FRANÇAIS

Figure B.1: Illustration simple d’un problème de détection de rupture [157]. Dans cet
exemple, le signal est univarié, 4 points de rupture sont détectés, résultant en 5 sous-
modèles.

Parmi cette grande quantité de données, un certain nombre d’entre elles apparaissent
naturellement sur une structure en réseau, interconnectant les observations ou les variables
qui les caractérisent. C’est notamment le cas des données provenant de réseaux sociaux,
réseaux de communication, réseaux de transport ou de réseaux de capteurs, où elles sont
collectées au niveau des noeuds d’un graphe. Par exemple dans un réseau social, les noeuds
du graphe associé peuvent correspondre aux utilisateurs et une arête peut indiquer le
lien social qui réside entre deux d’entre eux. Dans un réseau de capteurs, une arête peut
simplement caractériser la distance spatiale entre deux capteurs. Généralement, le graphe
apporte des connaissances sur le processus qui génère les données (par exemple, les valeurs
observées à deux noeuds liés dans le graphe peuvent être fortement corrélés ou être très
proches), et construire des modèles ou des algorithmes d’apprentissage – y compris des
méthodes de détection d’anomalies ou de détection de ruptures – à partir de ce type de
données, tout en prenant en compte la structure de réseau associée, est important pour
améliorer les performances d’apprentissage.

Ce type de données est appelé vecteurs sur graphe ou signaux sur graphe. Comme
indiqué plus haut, elles se réfèrent simplement à des données vectorielles dont chaque
composante est associée à un unique noeud d’un même graphe. Alors que dans certains
cas, le graphe est naturellement donné et donc connu a priori (par exemple, dans le cas du
réseau social ou du réseau de capteurs donné ci-dessus), il existe de nombreux cas où les
données admettent une structure de graphe sous-jacente qui n’est pas disponible et que
l’on cherche à apprendre à partir de ces données. C’est par exemple le cas en biologie, où
l’on s’intéresse à savoir quels gènes (ou protéines) sont exprimés les uns avec les autres
[62, 94]. Plus généralement, ce besoin d’inférence de graphe peut apparaître pour tout type
de données pour lesquelles on souhaite savoir quelles variables sont liées à quelles autres.
Cette tâche peut avoir un fort impact sur la visualisation et la compréhension des données
traitées, mais aussi, comme dit précédemment, sur la capacité à construire des algorithmes
d’apprentissage plus e�caces.

Ce travail de thèse est profondément ancré dans les di�érents sujets mentionnés ci-
dessus. Il se concentre en particulier sur la détection d’événements dans un ensemble de
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vecteurs sur graphe, que le graphe soit connu ou non. Il se concentre également sur la
tâche d’inférence du graphe lui-même, et sur la détection de changement dans la structure
du graphe sous-jacente aux données.

1.2 Contexte industriel

Cette thèse de doctorat a été réalisée grâce au programme CIFRE (Convention Individuelle
de Formation par la Recherche) et l’ANRT (Agence Nationale de la Recherche et de la
Technologie). Elle a été sponsorisée par Sigfox, un opérateur mondial de télécommunication
dédié à l’Internet des objets (IoT). Plus précisément, Sigfox possède des antennes, appelées
stations de base (BS), qui sont installées sur des tours (de la même manière qu’un opérateur
de téléphonie mobile) et reçoivent des transmissions de données provenant d’objets tels que
des capteurs de stationnement, des alarmes à incendie, des compteurs d’eau ou d’électricité,
etc. Ces objets sont détenus par des clients, et le rôle de Sigfox est essentiellement de
collecter les données transmises par les objets, via les BS, et de les renvoyer sur un cloud
auquel le client a accès. La particularité de Sigfox est son protocole simple, qui permet
aux objets d’envoyer des petites quantités de données (12 bytes maximum par "message"),
de manière peu coûteuse en énergie et qui sont reçues e�cacement par les BS sur de très
longue distance. Sans entrer dans les détails, décrivons brièvement le processus d’envoi
d’un message dans le protocole Sigfox.

Soit un objet cherchant à transmettre une petite quantité de données (température,
préssion, informations binaires, etc.) à son propriétaire. L’information est encodée dans
un signal qui est envoyé trois fois, à trois niveaux de fréquence di�érents. Les signaux
sont envoyés sans aucun protocole de sélection de stations de base alentours, ils sont
simplement envoyés "dans l’air", en espérant qu’ils seront reçus par au moins une station
de base environnante (grâce à une vaste couverture, les signaux sont souvent reçus par un
grand nombre d’entre elles). Une fois que certaines des stations de base alentours ont reçu
au moins un des trois signaux, celui-ci est décodé et envoyé dans un cloud en utilisant un

Figure B.2: Exemple de signaux enregistrés sur une structure de graphe. À gauche, des
capteurs mesurant l’activité cérébrale dans le temps, représenté par un électroencéphalo-
gramme (EEG), sont placés sur une tête humaine. Leur position sur la tête induit une
structure graphique qui encode leur proximité. Dans cet éxemple, un signal sur graphe
correspond à un vecteur de taille égale au nombre de capteurs (c’est-à-dire de noeuds)
contenant les valeurs d’EEG à un moment précis. Dans ce scénario, on peut s’attendre à
ce que les noeuds proches dans le graphe aient des valeurs similaires. À droite, la série
temporelle d’observations enregistrées à un seul noeud.
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Figure B.3: Résumé de l’architecture de Sigfox.

protocole internet standard tel que la 3G. Un schéma de l’architecture du réseau Sigfox est
fourni par la �gure B.3. Pour une description plus complète de la technologie Sigfox et des
réseaux LPWAN en général, nous invitons le lecteur à consulter [29].

Au départ, l’objectif principal de la collaboration avec Sigfox était de proposer et de
développer des méthodes d’apprentissage pour la détection d’anomalies au niveau d’une
station de base (par exemple une panne). Il s’agissait d’un sujet nouveau, mal traité par
les chercheurs et les ingénieurs de l’entreprise, mais dont la nécessité se faisait de plus en
plus importante en raison de l’expansion signi�cative du réseau. Jusqu’alors, les données
collectées étaient très peu utilisées à cette �n et seules des méthodes simples, basées sur
des dépassements de seuils, étaient employées. Les seuils étaient alors �xés a priori par les
experts de terrain et conduisaient à un taux de faux positifs très élevé.

Les données collectées au niveau de chaque BS sont diverses, allant de données matérielles
(par exemple la température du moteur) aux informations logicielles (par exemple la version
du système d’exploitation utilisée). Toutefois selon les experts, les plus importantes pour
détecter les anomalies sont celles liées au spectre des signaux "observés" par la station
de base. Malheureusement, l’entiereté du spectre n’est pas collecté et seules quelques
statistiques qui le résument le sont. Ces dernières étant essentiellement quelques quantiles
des intensités enregistrées sur l’ensemble du spectre. Après plusieurs semaines d’analyse
de données, il a �nalement été décidé que seules les informations de "réception" de chaque
station de base seraient conservées. En d’autres termes, les informations sur l’activité
du réseau, c’est-à-dire pour chaque message envoyé dans le réseau, quelle BS l’a reçu ou
non. Cette décision est essentiellement motivée par le fait que ces données sont brutes
(contrairement aux données du spectre qui sont déjà traitées) et qu’elles comportent a
priori peu d’erreurs. En outre, on s’attend intuitivement à ce qu’une défaillance au niveau
d’une station de base ait un impact direct sur son niveau d’activité (par exemple, avec une
diminution du nombre total de signaux reçus).

Une propriété intéressante de ces données de réception est qu’elles apparaissent na-
turellement sur une structure de graphe, induite par la distribution spatiale des stations
de base. En prenant par exemple le vecteur qui indique, pour un certain message envoyé,
quelle station de base l’a reçu ou non, on observe empiriquement que des stations de base
proches ont plus de chances de recevoir un même signal, et inversement. Un autre exemple
est le vecteur qui spéci�e le nombre de signaux reçus par chaque station de base sur une
période donnée. Dans ce cas, les stations de base proches auront des valeurs fortement
corrélées (voir �gure B.4).
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Figure B.4: À gauche, un sous-ensemble de stations de base situées près de Toulouse, en
France. À droite, une représentation naïve du réseau sous forme de graphe, qui relie deux
noeuds si les stations de base sont situées à moins de 2km l’une de l’autre. Les di�érentes
courbes indiquent pour 3 des noeuds, le nombre de messages reçus quotidiennement sur un
mois. Il est clair que les deux noeuds reliés (avec des courbes violettes) sont plus similaire,
tant en termes d’échelle que de corrélation, que le noeud isolé (avec une courbe rouge).

Au vu de ces observations et de la structure en réseau inhérente aux données, nous
pouvons conclure qu’elles peuvent être considérées comme des vecteurs sur graphes, faisant
ainsi le lien vers le problème de détection d’événements dans un ensemble de signaux sur
graphes. De plus, rapidement, et comme expliqué en détail dans la section suivante, il a été
réalisé que le graphe spatial induit n’était pas toujours adapté aux données, ce qui a conduit
au deuxième axe de la thèse, à savoir l’inférence de la structure de graphe elle-même.

2 Objectifs et motivations

Dans ce qui suit, nous décrivons les di�érents objectifs qui seront au coeur de ce document.

Détecter des changements de comportement oudes anomalies auniveau des noeuds
d’un réseau de communication. Ce premier objectif est appliqué et essentiellement
motivé par le problème industriel soulevé par la collaboration avec Sigfox. Cependant, ce
problème peut se poser pour de nombreux autres type de réseaux de communication (e.g.
certain réseaux sociaux ou réseaux d’ordinateurs), et a�n que ce travail de thèse soit le plus
générale possible, nous chercherons à proposer une ou plusieurs méthodes de détection
d’événements applicable pour un large spectre de réseaux de communication, incluant
Sigfox. Si dans le cadre de notre collaboration industrielle, une telle tâche pourrait se
résumer à la détection d’une panne de station de base, dans un réseau de capteurs [174] elle
peut caractériser la détection d’un problème au niveau d’un capteur ou de la valeur qu’il
quanti�e. Dans un réseau d’ordinateurs ou un réseau social, un tel problème de détection
peut se poser, par exemple, pour des questions de sécurité du réseau où l’anomalie peut
provenir d’une attaque (piratage, fraude à l’identité, etc.) [6]. Les exemples précédents
illustrent bien l’importance d’une telle tâche : les anomalies non détectées peuvent avoir
des répercussions importantes sur les performances du réseau considéré. En résumé, nos ob-
jectifs seront, tout d’abord, de donner une dé�nition simple d’un réseau de communication,
qui puisse correspondre à un large éventail de réseaux. De même, nous examinerons des
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Figure B.5: Illustration de la tâche de détection de ruptures combinée à l’inférence de
graphes. Chaque dimension de la série temporelle correspond à un noeud du graphe [73].

notions simples d’anomalies qui peuvent être observées pour di�érents types de réseaux.
En�n, nous proposerons un moyen de détecter les anomalies. A�n de rester proche de
notre application industrielle, nous nous limiterons à la détection au niveau des noeuds,
c’est-à-dire à la détection d’événements au niveau d’une seule entité (par exemple une
station de base, un ordinateur, etc.).

Détecter des ruptures ou des anomalies dans un ensemble de signaux sur graphe.
Cette tâche plus générale a été initialement motivée par la conclusion que nous avons faite
dans la section précédente, à savoir le fait que nos données sont des vecteurs sur graphes.
De plus, comme expliqué dans la section précédente, ces types de signaux sont fréquemment
observés dans le monde réel, et il est donc important de construire des algorithmes de
détection d’anomalies ou de détection de ruptures qui leur soient adaptés. Lorsque le graphe
est connu, il constitue une connaissance a priori du modèle qui génère les données. Il est
donc concevable que les performances des algorithmes puissent être améliorées en utilisant
ces informations supplémentaires [55]. La connaissance du graphe permet notamment la
construction de nouvelles variables ou représentations basées sur celui-ci, et ainsi, permet
de découvrir des types d’événements plus complexes [31]. Typiquement, une anomalie
détectée au niveau d’un noeud peut provenir d’une valeur anormale, par rapport à elle-
même et par rapport à ses voisins. Lorsque le graphe est inconnu, peu de conclusions
supplémentaire peuvent être faite. Cependant, savoir qu’il existe une structure de graphe
sous-jacente indique une chose importante : si l’on veut détecter une anomalie ou un point
de rupture au niveau d’une dimension spéci�que (c’est-à-dire un noeud spéci�que), les
valeurs observées aux autres noeuds doivent être prises en compte également puisqu’elles
sont liées par les arêtes du graphe [102]. Un graphe inconnu suggère toutefois une première
étape d’apprentissage du graphe lui-même, a�n de mieux comprendre les données et
d’appliquer des algorithmes de détection d’événements plus adaptés. Cette procédure
d’apprentissage constitue notre troisième objectif.
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Apprendre la structure du graphe sous-jacente à des données vectorielles. Cet
objectif se pose dans de nombreux domaines et peut être appliqué à tout type de données
vectorielles. La tâche est ici d’inférer la structure de graphe sous-jacente, et bien sûr
inconnue, à des données. En d’autres termes, l’objectif est d’apprendre des relations entre
des variables, c’est-à-dire avec quelles autres variables, une variable d’intérêt est plus
similaire ou liée (en terme de corrélation, d’indépendance conditionnelle, d’échelle, de
valeurs, etc.). Cette procédure d’apprentissage se fait en utilisant un ensemble de vecteurs,
tous supposés admettre le même graphe sous-jacent. Au cours du processus d’apprentissage,
des pénalités structurelles peuvent être imposées, notamment sur la parcimonie du graphe
[50, 61, 132], et plusieurs d’entre elles seront étudiées dans cette thèse.

L’apprentissage d’une telle structure de graphe a de nombreuses applications di�érentes.
Tout d’abord, elle permet de comprendre et d’interpêter les données vectorielles consid-
érées grâce à la visualisation simple apportée par le graphe. De plus, une telle tâche
d’apprentissage relie souvent les données à un modèle. C’est par exemple le cas des champs
aléatoires de Markov [97], qui dans de nombreuses situations suppose une relation linéaire
entre les variables, relation déterminée par le graphe lui-même [79, 132]. Dans de tels cas,
on peut prédire la valeur d’un noeud en fonction des valeurs des autres noeud. Cela illustre
bien l’applicabilité du graphe appris. En�n, le graphe peut également être utilisé dans de
nombreux algorithmes d’apprentissage qui nécessitent un graphe, typiquement l’algorithme
du partitionnement spectral [123], certains algorithmes d’apprentissage semi-supervisés
[17], dans le cadre du traitement du signal sur graphe [124] etc.

L’une des applications les plus célèbres de l’apprentissage des graphes dans le monde
réel se trouve en biologie, avec les réseaux d’interaction des gènes. Ceux-ci mettent en
évidence les gènes qui sont la plupart du temps exprimés ensemble. À Sigfox, on pourrait
penser que le graphe est directement donné par la position spatiale des stations de base
(Figure B.4), vu que que des stations de base voisines recevront probablement beaucoup de
messages en commun. En pratique, ce n’est pas toujours vrai, deux stations de base situées
à une faible distance (à vol d’oiseau) l’une de l’autre peuvent être séparées par un mur
ou être à des altitudes di�érentes, ce qui les rend di�érentes dans leur capacité à recevoir
des signaux. Cette observation nous a permis de conclure que la tâche d’apprentissage de
graphe pouvait également être intéressante avec les données de réception Sigfox.

Détecter des changements dans la structure de graphe sous-jacente à des données
vectorielles. Cet objectif peut être considéré comme une combinaison de l’apprentissage
de graphe et de la détection de ruptures. En fait, contrairement à la grande majorité des
techniques de détection de ruptures qui recherchent un changement signi�catif dans la
moyenne d’une série temporelle, la tâche ici est de détecter un changement dans le graphe
sous-jacent aux données. L’objectif est donc double : trouver des moments entre lesquels
toutes les données vectorielles observées ont la même structure de graphe sous-jacente et
apprendre ces graphes. Une illustration de cette tâche est fournie par la Figure B.5 pour
une série temporelle à valeur réelle et à 3 dimensions. En plus de déterminer les moments
où le système a changé, les méthodes qui répondent à cet objectif tirent également parti
des avantages liés à l’inférence des graphes (voir le paragraphe précédent), c’est-à-dire la
modélisation, l’applicabilité de certains algorithmes d’apprentissage automatique, etc. En
particulier, la visualisation que cet apprentissage permet entraîne une forte compréhension
et une grande capacité d’interprétation des points de rupture trouvés [104].
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Travailler avec des signaux sur graphe binaires. Ce dernier objectif est essentielle-
ment motivé par le fait que les données vectorielles considérées sont binaires. En e�et,
rappelons que dans notre cadre d’application, une donnée brute est un vecteur, caractérisant
un message Sigfox, qui encode quelle BS a reçu le signal ou non. Néanmoins, ce problème
reste important dans de nombreux autres contextes [5], notamment parce qu’il est souvent
moins étudié que pour les données vectorielles ou les séries temporelles à valeur réelle.

3 Préliminaires

Dans cette section, nous proposons de rappeler brièvement quelques fondamentaux sur la
détection d’événements, à savoir la détection d’anomalies et la détection de ruptures, sur
la théorie des graphes et sur les vecteurs observés sur graphes. L’objectif est de fournir
quelques dé�nitions, propriétés et algorithmes de base qui seront utiles dans le reste du
manuscrit.

3.1 Détection d’anomalies

Dans sa version la plus classique, le problème de détection d’anomalies cherche à trouver
dans un ensemble de données, une petite quantité de vecteurs qui ont été générés par
une distribution de probabilité di�érente de celle générant la majorité des points. Cette
formulation simple a motivé de nombreuses méthodes statistiques de détection d’anomalies
qui supposent essentiellement que les anomalies se trouvent dans des régions de faible
densité. Parmi ces méthodes, celle de [58] qui suppose que les données normales sont
générées par une distribution de probabilité connue à l’avance et qui considère les points
se trouvant dans une région de faible probabilité comme anormaux.

Tout en étant la plus générale, la formulation précédente correspond en fait à un
cadre particulier de détection d’anomalies. En e�et, sur la base des étiquettes disponibles,
les tâches de détection d’anomalies peuvent être divisées en trois types. La détection
d’anomalie supervisée, qui consiste à entraîner l’algorithme sur la base d’un ensemble de
données étiquetées comprenant des observations normales et anormales. Ce cadre est donc
fortement lié à un problème de classi�cation supervisée [151]. Le second scénario est le

Normal data

Anomalies

Clusters

Figure B.6: Un exemple d’anomalies pour un ensemble de données bidimensionnelles.
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cadre dit de détection de nouveauté, également appelé classi�cation à une classe ou détection
d’anomalie semi-supervisée. Dans ce cadre, seules des données normales sont disponibles
pour la phase d’apprentissage. C’est le cas dans les applications où les comportements
normaux sont connus mais où, par exemple, les intrusions ou les attaques sont inconnues
et doivent être détecté. Ce scénario est celui considéré au chapitre 2. En�n, la détection
d’anomalie non supervisé, qui fait référence à celle présentée dans le paragraphe précédent :
aucune étiquette n’est disponible et l’ensemble des données d’apprentissage contient des
données normales et anormales.

La plupart des algorithmes de détection d’anomalies ne se contentent pas d’associé le
vecteur d’entrée à une valeur binaire, indiquant si celui-ci est normal ou non. Ils renvoient
plutôt une fonction à valeur réelle, appelée fonction de score, qui produit, pour un vecteur
d’entrée donné, un score d’anomalie à valeur réelle. La force de l’utilisation d’une telle
fonction de score est qu’elle permet de classer les échantillons du moins anormal au plus
anormal. Cette fonction est très puissante lorsque l’on a beaucoup de données à analyser et
que l’on veut classer certaines anomalies par ordre de priorité. De plus, si l’on veut une
sortie binaire, il su�t de �xer un seuil au-dessus duquel le score sera considéré comme
anormal.

Il existe une grande variété d’algorithmes de détection d’anomalies, de ceux basés sur
l’inférence de la densité des données [25, 140, 141, 165], à ceux basés par exemple sur les
arbres de décision [111]. Cette grande variété d’algorithme est accentuée par les di�érents
étiquetages expliqués plus haut, mais aussi par le type de données analysées. Nous nous
sommes ici concentrés sur les données vectorielles classiques, mais il pourrait s’agir de
données temporelles ou même textuelles. Il serait donc impossible de dresser ici une liste
exhaustive de ces méthodes, et pour des études complètes, on peut se référer à [28, 127].
Dans ce qui suit, nous présentons un algorithme e�cace de détection d’anomalies, pour des
données vectorielles standard, qui donne de bons résultats dans les scénarios d’étiquetage
non supervisé et semi-supervisé.

3.1.1 SVM à une classe

La machine à vecteurs de support (SVM) à une classe, introduite pour la première fois
dans [140], étend le SVM standard pour la classi�cation à deux classes au problème de
la détection de nouveauté. En e�et, plutôt que d’avoir accès à un ensemble de données
étiquetées avec des étiquettes positives et négatives, il suppose que les données d’entrée
appartiennent toutes à la classe 1 (la classe normale). Ensuite, au lieu de construire un
hyperplan séparant deux classes, il construit un hyperplan séparant les points d’entrée
(mappé dans un espace de redescription), de l’origine de l’espace, traité ici comme le seul
point de la seconde classe. Formellement, dans sa version à marge souple, le SVM à une
classe fonctionne comme suit.

Soient x(1), . . . , x(n) ∈ Rd, n observations et Φ : Rd → H une fonction a valeures
dansH, un espace de Hilbert à noyau reproduisant [13] associé au noyau k. Pour séparer
les données de l’origine, le SVM à une classe résout le programme quadratique suivant :

min
ω∈Rd,ξ∈Rn,ρ∈R

1

2
‖ω‖2 +

1

n

n∑
i=1

ξi − νρ

s.t 〈w,Φ(x(i))〉 ≥ ρ− ξi, i = 1, . . . , n
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ξi ≥ 0,

où ν ∈ (0, 1) est un hyperparamètre qui empêche le sur-apprentissage et permet à
l’ensemble des données d’entraînement de contenir des valeurs anormales. En fait, on peut
montrer que ν correspond à une borne supérieure sur la fraction d’anomalies qui peuvent
être présete dans l’ensemble d’apprentissage. La fonction de score utilisée pour détecter les
anomalies est donnée par

f(x) = sign(〈w,Φ(x(i))〉 − ρ),

qui, comme souhaité, sera positive pour la plupart des vecteurs d’apprentissage.
D’après la dé�nition précédente, le SVM à une classe peut être vu comme un algorithme

d’estimation d’un espace de volume minimum contenant presque toutes les données d’entrée.
Il est lié à l’estimation d’un ensemble de volume minimal [141] de masse 1− ν, c’est-à-dire
l’ensemble de volume minimal, par rapport à la mesure de Lebesgue, ayant une masse de
1− ν, par rapport à la mesure de probabilité des données normales.

3.1.2 Mesures de qualité

Pouvoir évaluer la qualité des algorithmes de détection d’anomalies est, comme pour toute
autre méthode d’apprentissage, très important. Lorsque des étiquettes sont disponibles,
toutes les mesures de qualité utilisées pour évaluer la qualité d’une fonction de score ou
d’un algorithme de classi�cation binaires peuvent également être utilisées. On pourra par
exemple analyser la courbe ROC et l’aire sous cette courbe (AUC). L’un des inconvénients
de l’utilisation de ces mesures est qu’elles ne sont pas particulièrement adaptées à des
classes déséquilibrées. Pour cette raison, des mesures liées à la classe normale, telles que le
taux de faux positifs, peuvent être préférées.

Lorsque peu ou pas de labels sont disponibles, la question de l’évaluation de la qualité
des algorithmes reste ouverte. Certaines pistes, cherchant à étendre la notion de courbes
ROC au scénario sans étiquette, ont notamment été étudiées dans [67] et sont liées aux
courbes d’excès de masse et Masse-Volume. Toutefois, ces méthodes ne seront pas prises
en compte dans le présent manuscrit et, le cas échéant, des étiquettes seront disponibles.

3.2 Détection de ruptures

La détection de ruptures est une tâche particulière de l’analyse des séries temporelles. Son
objectif est de trouver des moments où des changements signi�catifs se sont produits dans le
modèle sous-jacent à une série temporelle. Comme indiqué dans la Section 1.1, cette tâche a
de nombreuses applications, que ce soit dans le traitement de la parole [76], en climatologie
[134], dans l’analyse des données de tra�c d’un réseau [108] etc. Une illustration de ce
problème de segmentation est fournie dans la �gure B.1.

La tâche de détection de ruptures peut être divisée en deux grandes catégories : la
détection hors ligne dite a posteriori, et celle en ligne dite séquentielle. Dans le cadre hors
ligne, la segmentation est e�ectuée après que le signal ait été entièrement observé. Au
contraire, dans le scénario en ligne, on cherche à trouver les moments de rupture en temps
réel, au fur et à mesure que les vecteurs sont observées. Dans cette section, nous nous
concentrons sur le scénario hors ligne, lui-même considéré au chapitre 4. Ce problème de
détection de rupture hors ligne peut à nouveau être divisé en deux catégories, le cas où le
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nombre de rupture à retrouver est connu et lorsqu’il est inconnu. La plupart du temps, la
résolution des deux problèmes di�ère avec l’ajout, dans le programme d’optimisation, d’un
terme pénalisant le nombre de rupture estimé. Avant d’aller plus loin, décrivons maintenant
notre problème de manière plus formelle.

Nous considérons que le cadre statistique décrit dans [157]. Soit {x(i)}ni=1 une série
temporelle à valeurs dans Rd et supposée stationnaire par morceaux, ce qui signi�e qu’il
existe des instances de temps T ? = {t?1, . . . , t?K?}} ⊂ {1 . . . , n} auxquelles le modèle
sous-jacent à la série temporelle à changé. L’objectif de la détection de rupture est de
trouver les temps T ?, et donc le nombre de ruptures lorsque celui-ci est inconnu. Pour
cela, la plupart des méthodes que l’on trouve dans la littérature recherchent un ensemble
d’indices de temps T = {tk}Kk=1 ⊂ {1 . . . , n}, estimant T ? et tel qu’ils minimisent une
fonction de la forme

K∑
k=0

c({x(i)}tk+1

i=tk+1), (B.1)

où t0 = 0, tK+1 = n et c(·) est une fonction de coût qui évalue la qualité de la ségmentation.
Quand le nombre de ruptures est connu K = K?, sinon, un terme pénalisant la taille de T
est ajouté à la fonction objective.

Les méthodes de détection de ruptures di�èrent ensuite sur deux aspects principaux.
Soit sur la fonction de coût utilisée, généralement liée au modèle sous-jacent aux données
(e.g. paramétrique ou non), soit sur la méthode utilisée pour résoudre le problème de min-
imisation mentionné ci-dessus. Le problème étant combinatoire, de nombreuses solutions
ont été proposées (méthode gourmande, programmation dynamique etc.). La grande variété
des fonctions de coût et des méthodes de minimisation ne nous permet pas d’être exhaustifs
et nous invitons le lecteur à consulter la revue de [157] pour des exemples et des discussions
approfondies. Néanmoins, nous donnons ci-dessous un exemple de modèle et de fonction
de coût associée qu’il nous semble important de connaître.

Example B.1. L’approche du maximum de vraisemblance.
Dans cet exemple, les échantillions de la séries temporelle sont supposés indépendants et
identiquement distribués (iid) par morceaux. En d’autres termes, pour une famille de densités
paramétriques {f(·|θ)} donnée, nous avons ∀i = 1 . . . , n :

x(i) ∼
K?∑
k=1

f(·|θk)1{t?k ≤ k < t?k+1}.

Une façon d’apprendre les paramètres d’un tel modèle, et donc d’estimer les ruptures, est
de maximiser la vraisemblance. La fonction de coût correspondante est la suivante :

c({x(i)}tk+1

i=tk+1) = − sup
θ

tk+1∑
i=tk+1

log f(x(i)|θ).

Le cadre précédent est probablement l’un des plus considérés pour la détection de
rupture [60, 101, 144]. Le modèle i.i.d. par morceaux est par ailleurs celui considéré au
chapitre 4, mais avec une fonction de coût légèrement di�érente.
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3.2.1 Mesures de qualité

Là encore, en supposant l’accès aux véritables points de rupture, de nombreuses mesures
ont été proposées pour évaluer la qualité des algorithmes de segmentation. Parmi elles, des
métriques basées sur celles de la classi�cation binaire (rupture ou non) telles que le score F1.
Cependant, ces dernières ne prennent pas en compte l’aspect temporel du problème et on
préférera par exemple utiliser la métrique de Hausdor�. Celle-ci dé�nit l’erreur h(T ?, T )
de l’ensemble des points de rupture estimés par rapport aux points réels comme étant la
plus grande distance temporelle entre un point de changement réel et un estimé :

h(T ?, T ) , max

{
max
t?∈T ?

min
t∈T
|t− t?|, max

t∈T
min
t?∈T ?

|t− t?|
}
.

Une telle mesure a l’avantage de pénaliser à la fois une sur-segmentation et une sous-
segmentation.

Alors que les mesures précédente évaluent la qualité d’un algorithme de segmentation
de manière empirique, il est également important d’évaluer la qualité d’un algorithme d’un
point de vue théorique. Cela se concrétise avec démontrant la consistence des estimateurs
[157], qui précise que lorsque le nombre d’échantillons dans chaque segment tend vers
l’in�ni, on a P(K = K?)→ 0 et n−1h(T ?, T )→ 0 en probabilité.

3.3 Théorie des graphes et modèles pour les vecteurs sur graphes

3.3.1 Dé�nitions basiques

Les graphes sont des objets mathématiques décrivant des systèmes potentiellement com-
plexes via un ensemble d’entités interconnectées, appelées noeuds. Ils apparaissent dans
de nombreux domaines et applications, notamment ceux qui font intervenir la notion de
réseaux, tels que les réseaux biologiques, les réseaux de neurones, les réseaux de cap-
teurs, les réseaux informatiques, les réseaux de télécommunication, les réseaux sociaux, les
réseaux de transport etc. Les graphes sont alors les outils les plus utilisés pour décrire et
modéliser ces réseaux. Dans ce qui suit, nous donnons quelques dé�nitions et concepts de
base de la théorie des graphes.

De�nition B.1. (Graphe dirigé.) Un graphe dirigé G = (V, E) est dé�ni via un ensemble
�ni de noeuds V = {v1, . . . , vp} et un ensemble d’arêtes E ⊂ V × V , qui relient des paires de
noeuds entre eux. Si (u, v) ∈ E , on dit que u est un parent de v et que v est un enfant de u.

Dans ce qui suit, on considère que pour tout noeud u dans V , (u, u) /∈ E . De plus, on
peut se référer à un noeud vi ∈ V simplement par son indice i.

De�nition B.2. (Graph non dirigé.) Un graphe non dirigé G = (V, E) est un graphe dirigé
dont l’ensemble des arêtes E est symétrique. Autrement dit, ∀(u, v) ∈ E , (v, u) ∈ E . Dans
ce contexte il n’y a donc pas de notion de parent ou d’enfant et deux noeuds connectés sont
simplement appelés voisins.

De�nition B.3. (Graphe pondéré.) Un graphe pondéré G = (V, E) est un graphe dont
l’ensemble des arêtes E = {(u, v, wuv), u, v ∈ V} associe à chaque arête (u, v) ∈ E un poids
wuv ∈ R+. Si le graphe est en plus non orienté, on a ∀(u, v) ∈ E , wuv = wvu.
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(a) Dirigé (b) Non dirigé

1

0.5

0.2 1 0.8

(c) Pondéré

Figure B.7: Exemples de graphes dirigés, non dirigés et pondérés avec quatre nœuds.

(a) Complet (b) Grille (c) Cyclique (d) Ligne (e) Arbitraire

Figure B.8: Quelques exemples de graphes importants. Le dernier (e) admet deux com-
posantes connexes.

Remark B.1. Bien que largement supposée, l’hypothèse de positivité des poids n’est pas
obligatoire.

Dans ce qui suit, sauf indication contraire, les graphes sont supposés non dirigés.

De�nition B.4. (Matrice d’adjacence.) Soit G = (V, E) un graphe de taille p. Sa matrice
d’adjacence A ∈ {0, 1}p×p est une matrice binaire dont les entrées indiquent la présence ou
l’absence d’arête. ∀i, j ∈ {1, . . . , p}:

Aij =

{
1 if (vi, vj) ∈ E
0 otherwise.

La matrice d’adjacence décrit entièrement le graphe qui lui est associé, ce qui la rend
utile pour les manipulations mathématiques et la construction de certaines caractéristiques.
Par exemple, le nombre total d’arêtes d’un graphe correspond simplement à ||A||1 et le
degré d’un noeud i est

∑
j Aij . A est toujours symétrique pour les graphes non dirigés

et sa généralisation aux graphes pondérés est la matrice de poids W dont les entrées
correspondent aux poids des arêtes. Dans ce qui suit, les graphes sont supposés pondérés.

De�nition B.5. (Degré and matrice des degrés.) Soit G = (V, E) un graphe pondéré de
taille p avec une matrice de poidsW . ∀i ∈ {1, . . . , p}, le degré du noeud vi est di =

∑
jWij .

La matrice de degrés D du graphe est la matrice diagonale qui contient les degrés de tout les
noeuds.

De�nition B.6. (Matrice Laplacienne.) La matrice Laplacienne d’un graphe G avec matrice
de poidsW et matrice de degrés D est la matrice L = D −W .
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Tout comme la matrice d’adjacence, la matrice laplacienne décrit entièrement le graphe
qui lui est associé. En particulier, elle est connue pour contenir d’importantes caractéris-
tiques topologiques du graphe et pour être liée à la théorie spectrale des graphes. Par
exemple, le nombre de valeurs propres nulles de L correspond au nombre de composante
connexe du graphe. Une composante connexe étant un sous-ensemble de noeuds pour
lesquels il existe toujours un chemin entre eux, et pour lesquels il n’existe aucun chemin
avec un autre noeud. Une illustration d’un graphe avec deux composantes connexes est
donnée sur la �gure B.8e.

De�nition B.7. (Vecteur sur graphe.) Un vecteur sur graphe, également appelé signal sur
graphe ou fonction sur graphe, est une fonction x : V → R qui assigne une valeur réelle à
tous les noeuds d’un graphe G = (V, E). Cette fonction peut être représentée par un simple
vecteur x ∈ Rp avec xi la valeur de x au noeud i.

Ce dernier objet permet de dé�nir des données vectorielles qui sont observées sur
une structure en réseau, un aspect fondamental des données qui sont considérées tout au
long de ce travail de thèse. Néanmoins, une question demeure : qu’apporte le graphe à
la modélisation de ce type de vecteurs ? En e�et, pris comme cela un vecteur sur graphe
reste un simple vecteur. Dans les sections suivantes, nous présentons deux points de vue
di�érents qui répondent à cette question. Ces deux cadres sont tous deux considérés dans
des chapitres indépendant de la thèse.

3.3.2 Le cadre du traitement du signal sur graphe

Le traitement du signal sur graphe (Graph Signal Processing - GSP) [124, 147] est un
domaine relativement récent dont l’objectif est d’étendre la plupart des outils développés
dans le domaine du traitement du signal et des images au traitement de signaux sur graphes.
Ainsi, des notions telles que la régulariré des signaux, l’échantillonnage ou la représentation
spectrale d’un signal ont été développées pour ce type de données. En fait, les signaux
temporels et les images sont considérés comme des cas particuliers de signaux sur graphe
où le graphe associé correspond soit à une ligne pour un signal temporel, soit à une grille
pour une image (voir �gure B.8). Dans le contexte du GSP le graphe peut maintenant être
quelconque. En�n, dans ce cadre, et comme pour les signaux temporels ou les images, la
valeur enregistrée à un noeud est vue comme une version décalée des valeurs enregistrées
aux noeuds voisins.

Dans la suite nous rappelons quelques notions de base du GSP et les propriétés supposées
être partagées par la plupart des vecteurs sur graphes.

De�nition B.8. (Régularité.) Soit G = (V, E) un graphe de taille p avec une matrice de
poidsW , L sa matrice laplacienne, et y ∈ Rp un signal sur ce graphe. Nous disons que y a
une régularité de niveau s par rapport au graphe G si

yTLy =
1

2

∑
i,j∈[p]

wij (yi − yj)2 ≤ s .

La dé�nition précédente donne une notion de régularité pour les signaux sur graphes.
Intuitivement, un signal sur graphe y a une régularité de niveau s par rapport à G si les
noeuds adjacents du graphe ont des valeurs de signal su�samment proche. Plus s est petit,
plus le signal sur graphe est lisse. Dans le cadre du GSP, les signaux sur graphes sont la
plupart du temps supposés lisses par rapport à leurs graphes associés (s petit).
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Remark B.2. Le cas particulier où s = 0 implique que tous les noeuds voisins ont la même
valeur.

De�nition B.9. (Transformée de Fourier graphique.) Soit G = (V, E) un graphe non
orienté et L = XΛXT la décomposition en éléments propres de sa matrice laplacienne. La
transformée de Fourier graphique (GFT) d’un signal sur graphe y ∈ Rp est donnée par

h = XTy,

où les composantes de h sont interprétées comme des coe�cients de Fourier, les valeurs propres
Λ comme des fréquences et les vecteurs propres X comme une base de Fourier.

Cette dé�nition est initialement motivée par le fait qu’appliquée aux signaux temporels
ou aux images, on retrouve la transformée de Fourier classique. De plus, il est empiriquement
observé que les vecteurs propres de X associés aux plus petites valeurs propres de Λ
présentent moins de variabilité entre les valeurs des noeuds que ceux associés aux plus
grandes, ce qui motive également la comparaison avec l’analyse de Fourier.

De�nition B.10. (Parcimonie spectrale.) Soit k ∈ N+, on dit qu’un signal sur graphe y
admet une représentation spectrale k-parcimonieuse (ou bien que y est k-bandlimité) par
rapport à un graphe G, si pour h = XTy nous avons

‖h‖0 ≤ k , (B.2)

où ‖h‖0 correspond au nombre d’éléments non nuls de h.

Avec cette dé�nition, y admet une représentation spectrale k-parcimonieuse si le
nombre d’éléments non nuls dans son vecteur de coe�cients de Fourier est inférieur
ou égal à k. Dans le cadre du GSP, être k-bandlimité est la seconde propriété supposée
être partagée par la plupart des vecteurs sur graphes. Lorsque k est petit, cela indique
notamment que le signal peut être reconstruit à partir d’un petit nombre de valeurs de
noeuds. De plus, combiné à la notion de régularité, les coe�cients nuls auront plus de
chances d’être associés à des grandes valeurs propres (autrement dit des fréquences haute).
Cela est en général observé lors de l’analyse spectrale de signaux temporels standards où
la grande variabilité des valeurs observées à des noeuds voisins s’explique principalement
par la présence de bruit.

3.3.3 Un cadre probabiliste

Dans la partie précédente, les vecteurs et leur graphe associé étaient liés entre eux par des
propriétés issues du traitement du signal, à savoir la régularité ou lissité et la parcimonie
de la représentation spectrale. Dans le cadre présenté ici, les signaux sur graphes sont vu
comme des vecteurs aléatoires tirés selon une distribution de probabilité particulière : un
champ aléatoire de Markov (Markov Random Fields - MRF). Pour ce type de distribution, le
graphe encode une structure de dépendance particulière qui est expliquée dans ce qui suit.

De�nition B.11. (Indépendance conditionnelle.) Soit X , Y et Z trois variables aléatoires à
valeur réelle. On désigne parFX|Z=z(x) (respectivementFY |Z=z(y)) la fonction de répartition
(cdf) deX (respectivement Y ) sachantZ = z. On dit alors queX et Y sont conditionnellement
indépendantes sachant Z , dénoté X ⊥⊥ Y |Z si et seulement si ∀x, y, z nous avons :

FX,Y |Z=z(x, y) = FX|Z=z(x)FY |Z=z(y).
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Dans une certaine mesure, le fait que X et Y soient conditionnellement indépendants
par rapport àZ nous indique que, étant donnéZ , connaîtreX n’apporte aucune information
sur Y et inversement.

Remark B.3. Deux variables conditionnellement indépendantes peuvent être dépendantes et
inversement.

De�nition B.12. (Champ aléatoire de Markov.) Soit G = (V, E) un graphe non orienté et
X = (Xi)i∈V un vecteur aléatoire dont les entrées sont indexées par les noeuds V . Nous disons
que X est tiré d’un MRF associé à G si les propriétés suivantes sont respectées :

(a) Xu ⊥⊥ Xv | XV {u,v}, pour toute arête (u, v) /∈ E .

(b) Xu ⊥⊥ XV N (u) | XN (u), ∀u ∈ V où N (u) = {v ∈ V : (u, v) ∈ E} est le voisinage
de u.

(c) XA ⊥⊥ XB | XS , pour tout sous-ensembles disjoint A,B, S ⊂ V tels que S sépare A
et B i.e. tout chemin de A à B (et inversement) passe par S.

Remark B.4. On peut montrer [100] que (c)⇒ (b)⇒ (a). Pour certaines distributions de
probabilité, la réciproque est également vraie, c’est notamment le cas des variables admettant
une fonction de densité positive.

Compte tenu de la dé�nition précédente, nous comprenons que la construction de
MRF n’est pas évidente. Pour cette raison, les MRF sont souvent réduits à la classe des
distributions de probabilité qui se factorise, une classe de distribution qui a la particularité
de valider les trois propriétés requises pour être un MRF.

De�nition B.13. (Factorisation.) Soit G = (V, E) un graphe non orienté et X un vecteur
aléatoire indexé par V admettant une mesure de probabilité PX(·). Rappelons qu’une clique
est un sous-ensemble de noeuds qui sont tous reliés entre eux. On dit que PX(·) se factorise en
G si elle est de la forme :

PX(x) =
1

Z

∏
C∈C

ψC(xC), (B.3)

où C est l’ensemble de toutes les cliques de G, ψC(·) sont des fonctions de potentiel postitives
et Z est une constante de normalisation.

Les fonctions de potentiel peuvent être arbitraires et, pour une distribution de probabilité
donnée qui se factorise, ne sont pas nécessairement dé�nies de manière unique. Les modèles
graphiques gaussiens et les modèles d’Ising sont des exemples célèbres de distributions
qui factorisent, et qui sont donc des MRF. Le premier est facile à caractériser : pour tout
graphe G admettant une matrice de poids W , le vecteur X ∼ N (·,W−1) se factorise en
G. Quant aux modèles d’Ising, ils sont considérés au chapitre 4 dans lequel des rappels les
concernant y sont faits.
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4 Organisation du manuscrit

La thèse est organisée comme suit. Chaque chapitre peut être lu indépendamment.

• Chapitre 2: Détection d’anomalies dans des réseaux de communication : applications
à Sigfox.

Ce chapitre est essentiellement consacré à la résolution du premier objectif décrit
dans la section 2. La tâche de détection d’anomalies est prise sous l’angle de l’analyse
de l’activité d’un réseau de communication. En d’autres termes, les anomalies sont
détectées sur la base, par exemple, d’un nombre anormal d’interactions ou de quantité
d’informations échangées entre deux noeuds. Ce cadre très général nous permet de
considérer une large classe de réseaux de communication, qui inclue Sigfox.

Dans ce chapitre, nous commençons par un bref aperçu de la littérature sur la
détection d’anomalies dans les réseaux, en mettant l’accent sur les méthodes faisant
appel à des représentation graphique du reseau et de son activité. Nous présentons
également un algorithme simple de détection de nouveauté qui vise à détecter un
niveau anormal d’activité au niveau d’un noeud. Cet algorithme repose sur l’intuition
que le niveau d’activité d’un noeud peut être déterminé ou prédit en examinant le
niveau d’activité enregistré au niveau des noeuds voisins. En utilisant un ensemble
de données normales et des méthodes d’apprentissage supervisé conventionnelles,
on cherche alors à apprendre cette relation entre l’activité des noeuds. Ainsi, une
anomalie est détectée lorsqu’un niveau d’activité prédit est loin du niveau d’activité
réellement observé.

Cette méthode se montre performante aussi bien sur des données synthétiques que
sur des données provenant du réseau Sigfox, ce qui nous permet de conclure à la
résolution du premier objectif. De plus, l’approche présentée est liée à d’autres
objectifs présentés en section 2, en particulier à la tâche de détection d’événements
pour des vecteurs sur graphes et d’inférence de graphes, sujets au coeur de la thèse
dans les chapitres suivants.

• Chapitre 3: Inférence de structure à partir de signaux sur graphes réguliés et ban-
dlimités.

Dans ce chapitre, on étudie le problème de l’apprentissage de la structure sous-jacente
à un ensemble de vecteurs, c’est-à-dire le graphe sur lequel ils sont observés. Ce
chapitre est donc lié au troisième objectif décrit dans la section 2 et se place dans le
cadre du traitement du signal sur graphe. On suppose que les vecteurs sur graphe
admettent une représentation parcimonieuse dans le domaine spectral du graphe, une
propriété qui notamment caractérise des clusters dans un graphe. De plus, les signaux
sont supposés régulié par rapport au graphe sous-jacent. A�n d’inférer le graphe,
nous proposons un programme d’optimisation qui apprend la matrice Laplacienne
associée. Nous présentons deux algorithmes pour le résoudre, appelés IGL-3SR et
FGL-3SR. Basés sur une procédure de descente par block, les deux algorithmes
reposent sur des méthodes de minimisation standard – telles que de la descente de
gradient sur une variété ou de la programmation linéaire – et sont de compléxité
moins grande que les algorithmes de l’état de l’art. Alors que IGL-3SR est assuré de
converger, FGL-3SR procède à une relaxation qui lui permet d’être signi�cativement
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plus rapide. Les deux algorithmes sont évalués sur des données synthétiques et
réelles.

• Chapitre 4: Détecter des changements dans la structure de graphe d’un modèle Ising
qui évolue dans le temps.
Ce dernier chapitre aborde les deux derniers objectifs dé�nis en section 2. On se
place dans le cadre probabiliste dé�nie dans la section précedente et en particulier on
suppose que les vecteurs sur graphe sont tirés selon un modèle d’Ising. Le chapitre
se concentre sur la detection de plusieurs ruptures dans un modèle d’Ising qui évolue
dans le temps de manière constante par morceaux. L’objectif est d’identi�er à la fois
les moments où des changements signi�catifs se produisent dans le modèle d’Ising,
ainsi que d’éstimer les structures de graphe sous-jacentes. Pour cela, nous proposons
d’estimer le voisinage de chaque noeud en maximisant une version pénalisée de
sa log-vraisemblance conditionnelle. L’objectif de la pénalisation que l’on présente
est double : elle impose de la parcimonie dans les graphes que l’on apprend et elle
les oblige également à évoluer de manière constante par morceaux. En utilisant
peu d’hypothèses, nous fournissons deux théorèmes de consistence des ruptures
estimées. Ces théorèmes sont les premiers dans le contexte de détection d’un nombre
inconnu de rupture dans un modèle d’Ising. Pour �nir, des résultats expérimentaux
sur plusieurs ensembles de données synthétiques et réels démontrent la performance
de notre méthode.

5 Publications

Tous les travaux présentés dans ce manuscrit ont donné lieu à des publications dans des
conférences et des revues internationales.

• B. Le Bars and A. Kalogeratos, A Probabilistic Framework to Node-level Anomaly
Detection in Communication Networks, In IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, pp. 2188-2196, 2019

• B. Le Bars1, P. Humbert1, L. Oudre and A. Kalogeratos, Learning Laplacian Matrix
from Bandlimited Graph Signals, In ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2937-2941, 2019

• P. Humbert1 , B. Le Bars1 , L. Oudre, A. Kalogeratos and N. Vayatis, Learning Laplacian
Matrix from Graph Signals with Sparse Spectral Representation, Submitted to JMLR,
2020

• B. Le Bars, P. Humbert, A. Kalogeratos and N. Vayatis, Learning the piece-wise con-
stant graph structure of a varying Ising model, In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020

• P. Humbert1, B. Le Bars1, L. Minvielle1 and N. Vayatis, Robust Kernel Density Esti-
mation with Median-of-Means principle, To be submitted, 2020
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Titre: Détection d'événements et inférence de structure pour des vecteurs sur graphes

Mots clés: Graphes, Réseaux, Détection d'anomalies et de ruptures, Champs aléatoire de

Markov

Résumé: Cette thèse aborde di�érents prob-

lèmes autour de l'analyse et la modélisation de

signaux sur graphes, autrement dit des données

vectorielles observées sur des graphes. Nous

nous intéressons en particulier à deux tâches

spéci�que. La première est le problème de dé-

tection d'événements, c'est-à-dire la détection

d'anomalies ou de ruptures, dans un ensemble de

vecteurs sur graphes. La seconde tâche consiste

en l'inférence de la structure de graphe sous-

jacente aux vecteurs contenus dans un ensemble

de données.

Dans un premier temps notre travail est ori-

enté vers l'application. Nous proposons une

méthode pour détecter des pannes ou des défail-

lances d'antenne dans un réseau de télécommu-

nication. La méthodologie proposée est conçue

pour être e�cace pour des réseaux de commu-

nication au sens large et tient implicitement

compte de la structure sous-jacente des données.

Dans un deuxième temps, une nouvelle

méthode d'inférence de graphes dans le cadre

du Graph Signal Processing est étudiée. Dans

ce problème, des notions de régularité local et

global, par rapport au graphe sous-jacent, sont

imposées aux vecteurs.

En�n, nous proposons de combiner la tâche

d'apprentissage des graphes avec le problème

de détection de ruptures. Cette fois, un cadre

probabiliste est considéré pour modéliser les

vecteurs, supposés ainsi être distribués selon un

certain champ aléatoire de Markov. Dans notre

modélisation, le graphe sous-jacent aux don-

nées peut changer dans le temps et un point de

rupture est détecté chaque fois qu'il change de

manière signi�cative.

Title: Event detection and structure inference for graph vectors

Keywords: Graphs, Networks, Anomaly and change-point detection, Markov Random Fields

Abstract: This thesis addresses di�erent

problems around the analysis and the model-

ing of graph signals i.e. vector data that are

observed over graphs. In particular, we are in-

terested in two tasks. The �rst one is the prob-

lem of event detection, i.e. anomaly or change-

point detection, in a set of graph vectors. The

second task concerns the inference of the graph

structure underlying the observed graph vectors

contained in a data set.

At �rst, our work takes an application-

oriented aspect in which we propose a method

for detecting antenna failures or breakdowns in a

telecommunication network. The proposed ap-

proach is designed to be e�ective for commu-

nication networks in a broad sense and it im-

plicitly takes into account the underlying graph

structure of the data.

In a second time, a new method for graph

structure inference within the framework of

Graph Signal Processing is investigated. In

this problem, notions of both local and global

smoothness, with respect to the underlying

graph, are imposed to the vectors.

Finally, we propose to combine the graph

learning task with the change-point detection

problem. This time, a probabilistic framework

is considered to model the vectors, assumed to

be distributed from a speci�c Markov Random

Field. In the considered modeling, the graph

underlying the data is allowed to evolve in time

and a change-point is actually detected when-

ever this graph changes signi�cantly.
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