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INTRODUCTION

Stochastic geometry (SG) is a field of applied probability that aims to provide tractable 1

mathematical models and appropriate statistical methods to study and analyze random phe-

nomena on the plane R2 or in larger dimensions [1]. Its development was driven by applications

in several scientific areas such as forestry, image analysis, geophysics, neurophysiology, car-

diology, finance, and economics. In the context of communication networks, user equipment

(UE) and base stations (BSs) are treated a realization over an enormous number of possibil-

ities, where designing the system for every network realization would be time-consuming and

resource-intensive [2,3]. Instead, using tools from SG [1–8], the location of nodes is assessed sta-

tistically in order to evaluate spatial averages, which inherently considers all possible network

realizations and generally capture the main dependencies of the network performance connec-

tivity (capacity/throughput and reliability). This is broadly understood if we see the concept of

using a statistical distribution to abstract the variety of potential network topologies as actually

similar to the approach of considering a statistical distribution to model the infinite possibilities

of multipath fading and shadowing.

A Brief History of Stochastic Geometry

SG as a concept of geometric probability is a field that can be stretched back at least 300

years. Indeed, the bond between probability theory and geometry reverts back to the 18th cen-

tury when several challenging problems and imagined experiments raised by prominent mathe-

maticians, pondering about the impact of varying randomly geometric forms on the probability

of specific events. We quote particularly the Buffon’s needle problem 2 (1733), and afterwards

1. The term “tractable" is a key feature in stochastic geometry-based analytical models where it serves to
characterize the mathematical flexibility of the model and even its ability to produce closed-form analytical
expressions. In several cases of analysis, various assumptions are adopted to increase the tractability of the
modeling choices.

2. Buffon’s needle problem asks to find the probability that a needle of a given length will land on a line,
given a window with equally spaced parallel lines far apart by a given distance. It provides a theoretical scheme
to statistically determine the number π.
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questions related to Sylvester’s four-point problem 3 (1864) and Bertrand’s paradox 4 (1889). A

short historical outline of these early days of geometric probability may be found in [9].

Since the 1950s, the framework of geometric probability broadened substantially and framed

as an academic area. In particular, the focus mainly switched to models involving a typical

number of randomly selected geometric objects. As a consequence, the four distinguishable

mathematical strands of integral geometry theory [10], random set theory [11], random measures

theory [12], and point process (PP) theory [4–8] started to play a prominent role in the geometric

probability, which since then was called stochastic geometry. Integral geometry gives a unified

approach for defining integrands over curves, surfaces, volumes, and higher-dimensional mani-

folds by using tools from probability theory, group theory, and projective geometry. Random sets

generalizes the concept of random vectors, by addressing random entities whose number of com-

ponents is unknown. Random measures theory is focused on studying the properties of measures

established on random elements. In the special case where these measures are integer-valued,

random measures reduce to PPs considered as an important subclass of random measures.

Discussions on how early problems on geometrical probability have led to the construction of

primary results on these pillar theories of SG, can be found in [13]. Moreover, for the sake of

exploratory data analysis, parameter estimation, and model fitting, SG has been endowed with

a statistical theory in similarity with the traditional probability theory. More statistical analysis

and parameters estimation can be found in [14].

In the context of communication networks, the paper [15] is the first to consider tools from SG

to evaluate connectivity in a network of stations represented by a Poisson point process (PPP).

In particular, it was only by the late 1990s that important ideas from SG found their way to

modeling and analysis of communication networks [2, 3], where tools based on Poisson Voronoi

tesselations and Delaunay triangulations were proposed to derive geometric characteristics of

hierarchical links between stations. Interestingly, the seminal results were reported a decade

later, where the baseline mathematical framework was characterized in the case of a generative

downlink single-tier wireless network [16, 17]. Since then, generalizations to more advanced SG

models have been gradually adopted in subsequent works. For example, extensions to multi-

tier networks are reported in [18, 19] and to the uplink direction are analyzed in [20]. More

discussions about such early extensions can be found in [21–24].

3. Sylvester’s four-point problem asks for the probability that four points scattered randomly in a given
window region have a convex hull, i.e., it will be possible to connect any two points within the shape constructed
by the four points with a straight line that does not leave the shape.

4. The Bertrand paradox asks for the probability that the chord of a circle will be longer than the side of an
equilateral triangle inscribed in this circle.
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Table 1 – A proposed reading path to get started with SG in wireless networks

References Main topics
Suitability to researchers

A concept primer A technical primer Intermediate reader Advanced reader

[39, 40]
On the importance of using SG to grasp the implications of modern
networks tendency towards heterogeneity.

•

[24]
Generative analytical techniques to derive coverage probability under
the assumptions of Rayleigh fading and PPP distributed nodes.

•

[41]
Generative techniques used to derive the transmit-receive distance
distribution.

•
[21] SG models, up to 2008, in the study of communication networks. • •
[22]

Applications of SG, percolation theory, and random geometry in
interference characterization of ad hoc networks.

• • •

[23]
SG models, up to 2013, in the study of heterogeneous and cognitive
networks.

• •
[42, 43] Stochastic interference characterization in ad hoc networks. •
[44] Stochastic interference characterization in cellular networks. •
[1, 4–8, 10–12]

SG theory in conjunction with related mathematical strands, e.g.,
integral geometry theory, random set theory, and PP theory.

• •

Table 1 suggests some key references to help a non-specialist reader familiarize with the field

of using SG in wireless networks and keep the subsequently discussed concepts less arcane.

The Paradigm of Spatial Point Process

The PP theory plays an important role in SG, since i) the building blocks of many important

SG models are based on PPs inasmuch as points are the most elementary types of geometrical

objects; ii) it is common to parameterize geometric objects and map them with PPs in suitable

state spaces, e.g., a line process in R2 can be seen as a PP on a cylinder [10]. Next, we will address

the key properties of the PPP considered as the baseline and widely used PP, due to its practical

mathematical attributes, where some key results can produce surprising consequences [2–4,4–8].

In the context of communication networks, spatial PPs have become a burgeoning strand of

SG models to evaluate the following aspects [4–8]

— The statistical properties of a given set of points.

— The possibility of having a point at a specific location.

— How to build a model of points with minimal error assumptions based on an empirical

set of points.

— Describing more general random geometric objects made up of unit random elements.

In contrast to earlier applications in queuing theory, where time has a natural order in one-

dimensional PPs, the concept is quite different in higher dimensions (d ≥ 2), where there is no

natural order of points. Instead, the most common way is to consider the cumulative counting

process of a spatial PP Ψ, defined for each bounded set B ⊂ Rd as the number of points xi
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falling into B,

Ψ(B) =
∑

xi∈Ψ(B)

1B(xi). (1)

As illustrated in Fig. 1, a probability space (Ω,F ,P) is established to capture the uncertain

outcomes of a real-world experiment. In fact, the states ωi occur randomly depending on various

socioeconomic factors to give birth to the points xi. P is the probability function that associates

each event ωi with its probability, Ω is the sample space such that P(Ω) = 1 and F is its

σ-algebra. A random variable Xi maps each event ωi of Ω to an element xi from a separable

complete metric space Υ ⊆ R
d where B(Υ) its Borel σ− algebra 5. The locations (xi) of nodes in

a communication network are then generated by random variables (Xi) such that the probability

that a point is located in a given location xi is PXi
(xi) = P(X−1

i (xi)) = P(ωi). The PP Ψ is now

introduced as a random counting measure that describes the set of (xi) by counting their number

inside given bounded sets of Υ (sets A,B, and C in Fig. 1). Interestingly, Ψ can be observed as

a random set consisting of random variables (xi) as its elements. N(.) can be written for any

bounded B ∈ Rd as In a more general way, we consider the nth factorial moment measure given

Z+

0 nA nB nC

N(A)

N(B)
N(C)

A
B

C

Ψ(A)

Ψ(B)

Ψ(C)

N(A)

N(B)

N(C)

X1

Xm

ω1

ωm

x1

xm

X−1
1 (x1)

X−1
m (xm)

(Ω,F ,P) (Υ,B(Υ),PX) (MX ,B(MX))

Figure 1 – Point process representation. The random variables (Xi)i map each event ωi in the sample space Ω
into an element xi from Υ ⊂ Rd. The PP Ψ maps each bounded region B ∈ Υ with a measure n from MX that
counts the number of points (xi)i falling into B.

5. The smallest collection of sets A(k) of Borel subsets A of Ω [7].
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by

M
(n)(A1, · · · , An) = E

(
Ψ(n)(A1 × · · · ×An)

)

= E




6=∑

x1,··· ,xn∈Ψ

1A1×···×An(x1, · · · , xn)




=
∫

A1

· · ·
∫

An

̺(n)(x1, · · · , xn)dx1 · · · dxn, (2)

where 6= indicates the sum over pairwise distinct n-tuples and ̺(n)(.) : A1 × · · · × An → R+

is the product density function w.r.t. the Lebesgue measure. Without loss of generality and

for notation simplicity, we consider that when xi ∈ Ψ, xi will refer to a random variable that

captures the potential location of the point xi in Rd. However, when xi is used as a parameter

of a PDF (or more generally of a product density function) inside a given integral for example,

xi will refer to the integration variable over a bounded set covered by the PP Ψ.

The nearest neighbor distance and the contact distribution function

One important metric related to the cumulative counting process in (1), is the probability

mass function (PMF) of N(.) defined as the probability that there will be exactly n points inside

B, i.e., P(N(B) = n). A particular type is the void probability defined as void(B) = P(N(B) =

0). When B = b(y, r) is the ball 6 of radius r and centered at the typical 7 point y, void(b(y, r))

can be interestingly interpreted as the probability that the distance between y and the closest

point of Ψ is larger than r. That is, when y ∈ Ψ, we talk about the nearest neighbor distance

distribution Gy(.) defined as the distribution of the distance between y and the nearest point

of Ψ \ {y}. In simple probability terms,

Gy(r) = P(d(y,Ψ \ {y}) ≤ r|y ∈ Ψ) (3)

= P(N(b(y, r) \ {y}) > 0|y ∈ Ψ) = 1 − P(N(b(y, r)) = 1|y ∈ Ψ), (4)

where d(y,Ψ \ {y}) is the distance between the fixed location y and the nearest point of Ψ

except y.

6. A different shape may be taken instead of a ball depending on the dimension d of the Euclidean plane and
the isotropy of Ψ.

7. In PP theory, the typical point of a PP Ψ is often considered. In wireless network analysis, it is termed
as the typical UE for the downlink analysis and the typical BS for the uplink analysis. Formally, it is a point
that has been chosen by a selection procedure in which each point in the process has the same chance of being
selected [4, 6].
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When y /∈ Ψ, we consider the contact distribution function Fy(.) that represents the smallest

radius necessary for the ball centered at y to contact a point in Ψ. Formally,

Fy(r) = P(d(y,Ψ) ≤ r) = 1 − P(N(b(y, r)) = 0). (5)

Gy(.) and Fy(.) are important first-order summary characteristics of a given PP [14] enabling

to capture clustering or regularity in PPs. Typically, they are equal for the case of the totally

random PP, which is the PPP, while G > F for clustered PPs (Cox, Nymann-Scott, etc.), and

G < F for regular PPs (shifted regular lattices, hard-core, and soft-core repulsive PPs, etc.), as

illustrated in Fig. 2. More discussions about PPs comparison and classification will be brought

in the sequel.

The reduced Palm probability

We consider the typical point y from a stationary PP Ψ and we shift Ψ such as y lies at

the typical fixed location o (the origin). For a given set B ⊂ Rd, Gy(.) can be seen as the ratio

between the mean number of points except y in the ball of radius r and centered at o, and the

mean number of points inside B. Formally, it is the ratio between the reduced Campbell measure

expressed as E!
o (Ψ(B)) = E

(∑
y∈Ψ∩B 1A(Ψ−y \ {y})

)
, and the average number of points inside

B expressed as λ ν(B), where A is the event N(b(y, r) \ {y}) > 0, Ψ−y is the shifted PP Ψ such

as y lies at o, and ν(B) is the Lebesgue measure or the d-dimensional volume of the subset B.

The previous interpretation of the nearest neighbor distance Gy(.) is called the reduced Palm

probability measure denoted by P!
o as [1, 4, 6–8]

P
!
o(Ψ ∈ A) =

1
λ ν(B)

E


 ∑

y∈Ψ∩B
1A(Ψ−y \ {y})


 , (6)

where the index o is to mention the shifting of Ψ towards o, the superscript ! is to refer that

the typical point in the origin o is not counted, i.e., Po(Ψ \ {y} ∈ A) = P
!
o(Ψ ∈ A), and Ψ ∈ A

mentioning that Ψ has the property A.

The marked point process

A generalization of the PP Ψ is the concept of marked PP where each point xi ∈ Ψ is

assigned a further quantity mxi
, called marks, that provides extra information on the object

represented by xi. For example, when considering a PP incorporating BSs, marks can be the
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Increasing Gy

Increasing Fy
Gy = Fy

Repulsion and regularity Clustering

Regular lattices:
square, triangular. . .

Repulsive PPs:
hard and soft-core. . .

Zero interaction:
The PPP

Aggregative PPs:
Cox, Nymann-Scott..

Figure 2 – The tendency towards regularity or clustering of PPs. Typically, increasing regularity reduces Gy

and increases Fy simultaneousely, while increasing clustering have a dual impact on Gy and Fy .

coverage area of each BS xi [4], the fading gain between a BS xi and the typical UE [51,52], or

the BS tier in a multi-tier network [53].

Poisson Point Process Essentials

The PPP is considered as the most popular PP given its tractability and analytical flexibility

[4–8]. In the following, we will discuss key properties underlying such tractability.

In general, a PPP Ψ of density λ(.) and intensity measure Λ(.) such as for a given B ⊂ Rd,

Λ(B) =
∫
B λ(x)dx, is characterized by a PMF as

P {Ψ(B) = n} =
Λ(B)n

n!
e−Λ(B). (7)

Slivnyak-Mecke theorem

For a homogeneous PPP (HPPP) Ψ ⊂ R2 with density λ and shifted such as its typical point

y will be located at the origin of the ball b(o, ǫ) of radius ǫ ≪ 1, The number of points falling in

disjoint Borel sets are independent. The nearest neighbor distance Gy(.) can be expressed via
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the reduced Palm probability as

Gy(r) = P(d(y,Ψ \ {y}) ≤ r|y ∈ Ψ) (8)

= lim
ǫ→0

P
!
y (Ψ ∈ (N (b(o, r) \ b(o, ǫ)) 6= 0) |N(b(o, ǫ)) = 1) (9)

= 1 − exp
(
−πλr2

)
= 1 − P (N (b(y, r)) = 0) = Fy(r). (10)

Hence, the points modeled by PPP are totally independent, that is why the PPP is sometimes

referred to as a zero-interaction PP [6]. In a more general way, the previous similarity in (10),

between the nearest neighbor distance distribution and the contact distance distribution, may

be seen as the equivalence between the reduced Palm probability of Ψ in the typical point

y located at the origin o and its original distribution counting y. In other words, the spatial

averages observed at o /∈ Ψ, are equivalent in distribution to those observed at o of Ψ ∪ {o},

which means that conditioning on the typical point does not affect the distribution of the PPP.

This is the well-known Slivnyak-Mecke theorem [4–8], formally expressed as

P
!
y(Ψ ∈ .) = P(Ψ ∈ .). (11)

This theorem is extensively used in the literature. For instance, in a wireless network where the

typical UE is located at the origin o, the Slivnyak-Mecke theorem can be used to derive the mean

interference at o, conceiving that the serving BS x0 belongs to the PP of interferers, but however,

it does not contribute towards the interference [16–19, 54]. Another valuable application is the

transmit-receive distance distribution derived as in [4, Example 1.4.7] [41, 55–58].

Finite Poisson point process

For a fixed number n of nodes inside a given network area W , if k ≤ n nodes are located

in a certain subset B ⊂ W , the remaining area W \B contains necessarily n − k nodes, which

introduces dependence between points of W , and hence the PPP is not so accurate to model

such finite networks. Alternatively, the BPP is considered as the most relevant PP for such

scenarios [41, 59–62]. It is worth mentioning that according to (6), the probability that a point

x ∈ W belongs to B is proportional to the number of points falling inside B. Equivalently,

P (x ∈ B) =
Λ(B)
Λ(W )

, (12)
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and then the probability density function (PDF) of x ∈ B is

f(x|Ψ(W ) = n) =
λ(x)

Λ(W )
. (13)

In a more formal way, the conditional multivariate PDF f(x1, . . . , xn|Ψ(W ) = n) defined

w.r.t. the Lebesgue measure on (Rd)n is expressed as

f(x1, . . . , xn|Ψ(W ) = n) =
∏n
i=1 λ(xi)
Λ(W )k

. (14)

Interestingly, the concept of (14) is explored to capture the structure of point patterns

exhibiting inter-point interactions. That is, it is used in a more refined structure called the

Papangelou conditional intensity to construct the family of Gibbs PPs [14, 63–65] and fitting

statistical models to specific spatial point patterns via pseudolikelihood maximization [66]. More

generally, (14) is the building block in the definition of the reduced Palm distribution [8].

Simulation of Poisson point process

The equivalence property between a conditional PPP and a binomial distribution in a

bounded window W , is typically used in simulation studies to generate a stationary PPP of

density λ [14, 63]. Practically, we first generate a Poisson variate N with parameter λ ν(W )

and next we generate N independent and uniformly distributed (iud) points inside W . The

resulted PP inside W is equivalent to a PPP with density λ. Besides, (14) is considered as the

key to generate an inhomogeneous PPP (IPPP). For example, we consider the realization of a

2-dimensional IPPP with density λ(x, y) = 240(6x5 +4y3) on the window W = [0, 1]× [0, 1]. The

PDF of a given point located in (x, y) is f(x, y) = λ(x, y)/480 bounded by 5. Using the accept-

reject method N times, where N is generated by a Poisson variate with parameter λ̃ = 480,

we draw uniformly g on [0, 1] and accept (x, y) such as f(x, y)/5 ≤ g. Fig. 3 describes the

realization of the previous process in W . A valuable application of such technique in cellular

networks modeling and analysis can be found in [67, Section VI].

Campbell and probability generating functional theorems

In the previous analysis, the PPP were constructed based on the PMF in (7). In the following,

a PPP Ψ can be constructed through probability densities on bounded subsets and generalizing

the construction to the whole plane.
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Figure 3 – Realization of a non homogeneous PPP on the window W = [0, 1] × [0, 1] with density λ(x, y) =
240(6x5 + 4y3). Voronoi tesselation shows cells boundaries based on the spatially nearest points.

In fact, for any real positive function f defined over Rd, the probability generating functional

(PGFL) of a PPP Ψ, named equivalently the Laplace functional, is expressed as [4–7]

LΨ(f) = E



exp


−

∑

xi∈Ψ

f(xi)





 = E

{
exp

(
−
∫

Rd
f(x)Ψ(dx)

)}
(15)

(a)
= exp

(
−
∫

Rd
(1 − e−f(x))Λ(dx)

)
, (16)

where (a) follows by using the conditional PDF expression in (14) as in [4].

The expression (16) is considered to derive two fundamental results widely explored in SG-

based modeling and analysis of wireless networks, namely the Campbell and PGFL theorems.

In fact, by considering tf(x) → f(x) in (16) with t ≥ 0 and differentiating w.r.t. t at t = 0, we

obtain the Campbell theorem, as

E


∑

xi∈Ψ

f(xi)


 =

∫

Rd
f(x)Λ(dx). (17)

While by replacing e−f(x) → f(x) in (16), we obtain the PGFL theorem for the PPP Ψ, as

E


 ∏

xi∈Ψ

f(xi)


 = exp

(
−
∫

Rd
(1 − f(x)) Λ(x)

)
. (18)
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Preserving the Poisson law

Sometimes, it is necessary to consider some transformations on the PPP used to model node

locations in order to obtain more insightful and tractable results. In the following, we consider

popular operations preserving the Poisson law and extensively explored in the literature [4–8].

— Superposition: The union of independent PPPs (Ψk) with intensities (Λk) is a PPP

Ψ =
⋃
k Ψk with intensity measure Λ =

∑
k Λk. As an illustration, the superposition

of independent K-tier networks is investigated in [18,19,39,54,58,68]. The superposition

of two independent layers of line-of-sight (LOS) and non-line-of-sight (NLOS) BSs are

considered in [69–71]. The superposition of independent PPPs to abstract the network of

several competitive operators is considered in the context of infrastructure sharing [72],

spectrum sharing [73–75], or both [76–78].

— Independent thinning: is a selection process Ψp of specific points from the primary PPP

Ψ such that each point x is randomly and independently selected with a probability

p(x). Accordingly, Ψp yields a PPP of intensity measure equals to
∫
Rd p(x)Λ(dx) [4,

Proposition 1.3.5.]. Typically, independent thinning is used to generate the family of

Cox PP (e.g., Neymann-Scott, log-Gaussian) considered as a generalization of the PPP

and used to capture clustered point patterns [1,6,79]. Also, the nodes of a given network

can be thinned independently given their ability to be in LOS or NLOS transmissions

with the typical UE [69–71], to operate in half-duplex (HD) or IBFD mode [80], or to use

device-to-device (D2D) channels as in [81]. ALOHA, the popular algorithm used in the

medium access control (MAC) layer to track simultaneous packet transmissions in the

network, is considered in [4, 82] as an independent thinning of nodes willing to transmit

data.

— Displacement: is a random transformation of points of Ψ from Rd to some new location

in Ψp from Rd′
according to a probability p. The new PP inherits the Poisson law and its

intensity measure is Λ
′
(A) =

∫
Rd p(x ∈ A)Λ(dx), A ⊂ R

d′
, as given by the displacement

theorem [4, Theorem 1.3.9]. Valuable applications can be found in [4,51,83,84]. In some

settings, a given point x ∈ Ψ may be moved deterministically with probability 1 into

a function f(x) ∈ Ψf [56, 58], and hence the new PP remains a PPP with intensity

measure Λ
′
(A) = Λ(f−1(.)). This property is also known as the mapping theorem [6]. A

typical application is studied in [85,86], where the authors considered an arbitrary path

loss model and a generalized fading model, and next derived a sequence of equivalence

relations between the so-called shotgun cellular system and a stochastically equivalent

system, namely the canonical model.
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Stochastic Geometry in New Generation Wireless Net-

works

With exponential digitalization of modern society, 5G/B5G networks are envisioned to play a

major role in the process of achieving higher data rates, hyper-connectivity, and ultra-low latency

[25,26]. To achieve such requirements, future 5G/B5G wireless networks are expected to be more

heterogeneous due to various targeted verticals with specific demand, in addition to the use of

higher-frequency bands (e.g., millimeter-wave (mmWave) [27], teraHertz communications [28],

and visible light communications (VLC) [29]) enabling to build high-speed short-range networks.

Also, environmental objects will be coated with intelligent meta-surfaces that can reflect incident

signals in a customized way to optimise/recycle signal propagations in future networks [30]. The

use of unmanned aerial vehicles (UAVs) will be a common and mature technology, where they

can be used as flying-BSs to support terrestrial coverage in isolated regions, enhance capacity

in traffic overloaded user hotspots, and even used as flying-UEs for delivery or supervision

purposes [31]. Interestingly, end terminals will be gradually equipped with computing and/or

storage capabilities, in a fog radio access architecture (F-RAN) fashion [32], enabling to emerge

from the paradigm of ubiquitous connectivity to that of ubiquitous wireless intelligence.

Consequently, as the complexity and heterogeneity of modern wireless networks is contin-

uously increasing, tools from artificial intelligence and machine learning (ML) will be crucial

to learn static and dynamic components of the wireless environment and then help to make

optimal control decisions for system-level performance. Also, SG adopted as a powerful model-

driven tool for the evaluation of wireless networks during the last decade, is expected to remain

an effervescent area of research in the foreseeable future, due typically to the following reasons:

First, spatial arrangement of transmitters and receivers will continue to play a major role in the

prediction of performance metrics in 5G/B5G wireless networks, e.g., performance scaling laws

in ultra-dense networks (UDNs) [33, 34], impact of coupling UE and BS locations on system-

level performance (see Table 1). Second, a cross-fertilization between SG and ML can be made

to achieve better results in terms of accuracy and flexibility. Typically, SG can be integrated

as a hypothesis class in the learning process of ML to evaluate the family of subset selection

problems [35, 36]. Third, despite the ability to build a programmable and controlled wireless

environment in 5G/B5G networks, thanks to F-RAN and massive adoption of meta-surfaces,

it is actually impossible to control all facets of the environment, e.g., building sway generated

by winds and thermal expansion of materials [37] or beams misalignment in higher-frequency

communications [38]. Hence, the need to model such uncontrolled network aspects with random
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SINR

1

1

P (X ≥ .)

P (X ≥ .) X

U

log (1 +X)

∫∫

Potential throughput [162].

Conventional coverage

probability [17].

Meta-distribution [198].

Average ergodic rate

[17].

Finite blocklength ergodic

rate [201].

Area spectral efficiency

[202].

Paired coverage probability

[204]. U: signal strength.

Mobility-aware coverage

[185]. U: Handover event.

Joint uplink/downlink rate
[150]. U: Uplink/downlink.

Joint information and power

[206]. U: total received power.

Spectral efficiency [202].

Energy efficiency [51].

Mean rate utility [177].

U: Uplink/downlink.

Figure 4 – Main performance metrics used in the SG abstraction.

processes, and then the ubiquitous need for SG.

Key Performance Metrics

Since Shannon’s work [188], the received SINR has been considered as the first-order predic-

tor of link reliability and users QoE, where almost all performance metrics conceived to date are

closely related to it. For instance, the bit error rate depends on Q(a
√

SINR) and the data rate

follows log(1 + SINR), where Q(.) is the Q-function and a is a constant depending on modula-

tion and detection. A review of the largely fragmented literature of SG-based arts for modeling

and analysis of wireless networks reveals that almost all the adopted performance metrics are
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typically based on six key operations of SINR, as illustrated in Fig. 4. In the following, we will

consider the definition of key representative performance metrics.

Spectral efficiency

The spectral efficiency Se is conceived as the maximum information rate that can be trans-

mitted over a given bandwidth B. In the simplest case of AWGN and optimal theoretical link

performance, the Shannon-Hartley theorem defines Se in units of [nats/s] as

Se , B log (1 + SINR) . (19)

Energy efficiency (EE)

The EE E evaluates the number of bits that can be successfully transmitted with unit energy.

It is generally expressed under the form [51,138,197]

E =
Se

̟Ptx + α
, (20)

where Ptx is the BS transmit power and ̟ and α are some positive constants depending on the

power consumption model.

Mean rate utility

It is particularly defined in the context of a generic IBFD link [177], as

Ru(TDL,TUL) = P

(
S

DL
e ≥ TDL

)
S

DL
e + P

(
S

UL
e ≥ TUL

)
S

UL
e , (21)

where TDL and TUL are, respectively, the required spectral efficiency thresholds in the downlink

and the uplink.

Conventional coverage probability

The coverage probability Pc, as opposed to outage probability Po, is defined as the probability

that the typical user can reach a target SINR T [17]. It is expressed as

Pc(T) = 1 − Po(T) = P(SINR ≥ T), (22)

32



Introduction

which also can be interpreted as the success probability of the typical transmission/link averaged

over all spatial links [7, 42, 105]. Formally, we first condition on the BS process and the typical

UE is located at the origin o of the PP Ψ, and next average over all the spatial links, as

Pc(T) = E {Po(SINR ≥ T|Ψ)} . (23)

Meta-distribution

Expression (23) can be rephrased as the reduced Palm expectation over the PP realization,

which does not provide insights about how concentrated are the well covered areas or what are

the link success probabilities. The Meta-distribution concept is interestingly introduced in [198]

to obtain fine-grained information about the performance, as

F (T, u) = P {Po(SINR ≥ T|Ψ) > u} , u ∈ [0, 1] . (24)

The coverage probability in (23) becomes then Pc(T) =
∫ 1

0 F (T, u)du.

Average ergodic rate

Another quantity of interest is the average ergodic rate τ , also known as the Shannon

throughput, accounting for the mean data rate achievable over a cell. It is obtained in units of

[nats/s/Hz] as [17–19]

τ , E {log (1 + SINR)} . (25)

The average ergodic rate in (25) may actually require the preliminary calculation of Pc

[16, 17, 68], since

τ =
∫

t>0
P {log (1 + SINR) > t} dt =

∫

t>0
P

(
SINR > et − 1

)
dt =

∫

x>0

Pc (x)
x+ 1

dx. (26)

Finite blocklength ergodic rate

From an information-theoretic angle, (25) is a reasonable performance metric for modern

wireless networks supporting enhanced mobile broadband (eMBB) services where codewords

length is sufficiently large to maximize throughput and induce very small packet error proba-

bility. However, in the context of ultra-reliable and low latency communications (URLLC), the

throughput is not a key requirement of the system, and the trade-off between low latency and
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ultra-high reliability requires generally the use of short packets [199] [200]. In such a context,

the ergodic rate of communication is approximated as [201, Equation 296]

τ ∗(n, ǫ) ≈ E



C −

√
V

n
Q−1(ǫ) +

1
2n

log(n)



 , (27)

where n is the blocklength, ǫ is the error probability, C = log(1 + SINR) is the capacity of an

AWGN channel, and V is the channel dispersion approximated as a function of SINR in [201,

Equation 293].

Area spectral efficiency

The concept of area spectral efficiency (ASE) has been introduced for the first time in [202,

Equation (65)] to measure, for a partially loaded system, the maximum average data rate per

unit area per unit bandwidth supported by a cell. Formally,

ASE =
1

|A|
Ns∑

k=1

E {log(1 + SINRk)} , (28)

where |A| is the area of interest,Ns is the total number of active users inside |A|, and E [ln(1 + SINRk)]

is the ergodic rate of the kth user.

Under the SG abstraction, ASE in (28) can be simplified as

ASE = λE {log(1 + SINR)} , (29)

where the expectation averages over different network and fading realizations, and λ is the

density of active BSs [203].

In realistic scenarios, a minimum SINR constraint γ0 is required for the system operational

regime [70], which induces a constrained variant of the area spectral efficiency as

ASEc = λE {ln(1 + SINR)}1(SINR ≥ γ0). (30)
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Potential throughput

The potential throughput considered in [83,162,165], is another variant of the area spectral

efficiency. It is defined in units of [bps/Hz/m2] as

Pth(T) = λ log (1 + T)P {SINR ≥ T} . (31)

Interestingly, it has been demonstrated in [34] that (29), (30), and (31), are ordered as follows

Pth ≤ ASEc ≤ ASE.

Paired coverage probability

A new definition of coverage probability is considered in [204,205], such that the typical UE

is in coverage as well as, i) it receives a sufficiently good signal strength, i.e., the short-term

average signal-to-noise ratio SNR is greater than a certain threshold Ts, ii) it receives a good

signal quality, i.e., the SIR is greater than another threshold Tq. Formally,

Pc(Ts,Tq) = P

(
SNR ≥ Ts, SIR ≥ Tq

)
. (32)

(32) is shown to capture more system-level parameters than (22), and enables deriving tractable

closed-form expressions.

Mobility-aware coverage probability

In [185, 186], the authors introduced a mobility-aware coverage probability, where handoffs

may cost service delays or drops. (22) is updated as

Pc(T) = P(SINR ≥ T,H) + (1 − β)P(SINR ≥ T,H), (33)

where H is the handoff event, and β ∈ [0, 1] reflects system sensitivity to QoS impairment when

handoff occurs.
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Joint uplink and downlink rate coverage

It is defined as the fraction of users with sufficient spectral efficiency (or SINR) in the uplink

and downlink simultaneously [150]. It is expressed as

R(TDL,TUL) = P

(
S

DL
e ≥ TDL, S

UL
e ≥ TUL

)
. (34)

Joint information and power coverage

The joint information and power coverage P, is introduced in [206] to evaluate the per-

formance of simultaneous wireless information and power transfer (SWIPT). It is is expressed

as

P (Ti,Te) = P (Se ≥ Ti,E ≥ Te) , (35)

where E is the total received power at the energy harvester.

Scope and Contribution of the Thesis

In this thesis, I will use powerful analytical tools from stochastic geometry to model and

analyze the downlink and uplink of wireless networks. The results introduced in the present

thesis can be extended to a broad range of setups. In a nutshell, the contributions can be

summarized as follows

— We review the largely fragmented literature, up to 2020, in wireless applications lever-

aging PP models, and provide for the first time a comprehensive taxonomy of them. We

additionally review the key statistical methods used to compare between PPs and fit

some empirical data.

— We present in a refined tutorial fashion for non-specialists, the analytical techniques de-

veloped to date in the literature of SG-based modeling and analysis of wireless networks,

where we delve into their key mathematical sequence steps.

— We outline key modeling properties of new 5G/B5G technologies including emerging

RAN architectures and enabling technologies.

— We investigate the importance of introducing generalized shadowing and conventional

RNPO parameters into the cell-selection model. Using tools from SG, we derive the cov-

erage probability by considering an SINR distribution equivalence between a 3D network

with shadowing and RNPO parameters and a 2D network in which they are ignored. An
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intermediary result is a closed- form expression generator encompassing the Q-function

based- expression in [17].

— We investigate the impact of antenna elevation, resource capacity, and user scheduling

on the performance of ultra-dense networks (UDNs). Using tools from stochastic geome-

try (SG), we extend a recently introduced definition of coverage probability by inducing

a generic thinning that can capture BSs with available resource capacity to transmit

users data. Analytical results are then derived for the coverage probability and the av-

erage achievable rate, where we obtain closed-form expressions allowing to assess UDNs

performance in a more tractable and meaningful fashion compared to the conventional

definition of coverage probability. Besides, our results showed that BS height and user

density are so detrimental to coverage probability and average rate in UDNs, while in-

herent resource capacity and the transmit power have reduced impact as network density

increases, which suggests new insights into the role of these parameters in UDNs.

— We characterize, based on stochastic geometry, the uplink coverage probability with a

unified power control scheme built upon realistic path loss models and user equipment

(UE) constrained transmit power. To improve their uplink connectivity, active UEs are

next assumed to move in a random direction without prior knowledge of their nearest base

station location, namely the blind cell search (BCS) movement. A tractable expression

of the uplink handoff rate is then derived and the induced uplink coverage probability

following the BCS movement is evaluated. The results show different echoes of the uplink

coverage probability depending on the serving UE profile (stationary or mobile) and the

considered path loss model.

— Considering two classes of terrestrial and aerial users with distinctive characteristics in

terms of shadowing and system-level parameters (density, height, consumed power, and

power control factor), we evaluate the uplink energy efficiency (EE) distribution at the

typical ground base station. We first characterize the priority bias of each user layer to

assess its degree of penetration among the total population of active users. Next, tractable

approximations of the desired signal and the interference distribution are performed,

enabling to derive the uplink EE. Our results demonstrate that an aggregation of the

system-level parameters through the aerial priority bias needs to meet a given constraint

to mitigate interference from aerial users and enhance EE distribution.
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Chapter 1

DIVERSE POINT PROCESSES FOR DIVERSE

NETWORK CONFIGURATIONS

Although the PPP model provides tractable results and many useful closed-form expres-

sions, its accuracy has been recently questioned [65,67,87,88]. In fact, given the zero interaction

assumption of the PPP, it cannot capture the geometry of real networks, where nodes are

negatively correlated, i.e., spatial inhibition and repulsion, or positively correlated, i.e., spatial

aggregation and clustering. In realistic networks, radio planning engineers are generally inter-

ested to deploy BSs on theoretical points where there will be a sufficient traffic demand and

then an adequate return on investment (ROI). Hence, realistic deployments have commonly an

increasing tendency towards clustering in user hotspots (e.g., events, urban area) and a ten-

dency towards repulsion and regularity when users are equally likely scattered [89–91]. That is,

since the received SINR is sensitive to the interaction degree between nodes location, capturing

the geometry of such nodes through an appropriate PP, will directly impact the accuracy of

network performance evaluation [40, 67, 89–93].

In the following, we will review the alternative PPs used in the literature to model nodes

location that exhibit interaction, in addition to outline the key methods used to infer them.

Also, we will discuss the relevant literature works applying them in a variety of communication

scenarios. Finally, we will develop a comprehensive classification of these PPs according to

several attributes (e.g., the degree of interaction between points, the PP family, the ability to

characterize interference at an arbitrary point when transmitters are scattered according to this

PP, and the analytical tractability of such interference characterization).

1.1 Taxonomy of State-of-the-art Point Processes

A more universal way to classify PPs is by considering the interaction degree between points.

In fact, point locations can interact negatively with each other to build a well-crafted and regular

structure or even an intermediate repulsive structure that can be either hard-core or soft-core.
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Conversely, a decrease in repulsion may be equivalent to an increase in randomness and then

a tendency towards the paradigm of zero interaction PP, i.e., the PPP. Afterwards, a positive

interaction between points will induce clustered points (see Fig. 2).

1.1.1 Stationary Deterministic Lattices

Traditionally, deterministic lattices, e.g., regular hexagonal lattice, or perfect square lattice,

are often considered as an ubiquitous assumption in academia and research to model the location

of nodes in a wireless network [42]. Formally, a 2-dimensional stationary regular lattice can be

expressed under the form

Λgrid =
{
cG + U : c ∈ Z

2
}
, (38)

where G is the generator matrix of the grid and U is a uniformly distributed random vector over

the Voronoi cell of the origin to ensure the stationarity of lattices.

However, despite the main advantage of regular lattices, where it is generally more efficient to

design good channel access schemes as compared to networks where node locations are perceived

as random or in motion, tractable network performance evaluation is only possible for specific

user locations in the cell (cell edges, etc.), and a generalization over the entire cell requires

complex and time-consuming Monte Carlo simulations [16, 17]. Also, with the proliferation

of heterogeneous networks (HetNets 1) where cells radii vary considerably with differences in

transmission power, grid models are seen as very idealized, yielding very optimistic results of

performance evaluation [16, 17]. Typically, when comparing the results obtained from the PPP

and lattice models with real deployments, we observe that the PPP model provides a lower

bound of reality, while perfect lattices give an upper bound. An accurate PP lies then somewhere

between the two extremes. It is neither perfectly periodic, nor completely independent.

1.1.2 Hardcore Point Processes

In such a family of PPs, there are no points at a distance smaller than a specific minimum

threshold δ, also known as the hardcore distance. In the following, we will discuss the key

variants of hardcore PPs.

— Matérn hardcore point process (MHPP): There are generally two popular variants of

MHPP used in the literature of wireless networks modeling and analysis, namely MHPP

1. There is a slight abuse of meaning with the term of non homogeneous networks modeled by a PP with
location-dependent density.
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type I and MHPP type II [94]. MHPP I deletes all pairs of points with pairwise distance

less than δ such that the density of the resulting PP is λ = λp exp(−πλpδ
2), where λp

is the density of the parent PPP. In MHPP II, the process MHPP I is changed into a

dynamic scheme by considering the parent PPP as marked by the uniform speed arrival

times t ∈ [0, 1], which results on a density λ = [1 − exp(−λpπδ
2)] /πδ2. For λp → ∞,

we note that MHPP I suggests that no point could survive after the dependent thinning

process, while MHPP II predicts that the remaining points are correlated with 1/πδ2.

Performance analytical evaluation of networks modeled by the MHPP is generally chal-

lenging given the reduced tractability of the contact and nearest neighbor functions,

which enables to only derive approximations for the mean and the MGF of the interfer-

ence. For instance, tight bounds of the mean interference in MHPP I and MHPP II are

investigated in [95,96] and the contact distribution is evaluated in [97]. More theoretical

analysis of the MHPP can be found in [1, 94].

— Simple sequential inhibition (SSI): Another fashion to capture point patterns that ex-

hibit inhibition, is by exploring sequential PPs, in which points are added one by one

based on a given sequence. The most popular sequential process is the simple sequential

inhibition (SSI) process, where each point is generated uniformly in a given window and

independently from the previous points. The added point is rejected if it lies closer than

the hardcore distance from the previous accepted points, and retained otherwise. Next,

another point is generated and the process is ended if and only if we achieve the desired

number of points inside the window or no other point can be added. A representative

example is the art in [98], where the amount of regularity in MHPP I, MHPP II, and SSI

is evaluated through some regularity metrics.

— The family of Gibbs point process–Poisson hardcore process (PHCP): An alternative way

to capture point patterns that exhibit repulsion, is to proceed through the multivariate

PDF in (2), which renders the construction and interpretation of the PP simpler, in

addition to flexible simulations. Typically, the simulation of the multivariate PDF can

be approximated for example by considering the equilibrium distribution of a Markov

chain, also known as Markov Chain Monte Carlo (MCMC) algorithms, e.g., Métropolis-

Hastings algorithms [14, Page 149]. A representative family of PPs based on this approach

is the class of Gibbs PPs, also known as Markov PPs [99].

Formally, for a given finite spatial point pattern u =
{
x1, . . . , xn(u)

}
, the multivariate

PDF of a finite Gibbs PP Ψ is expressed as
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̺(n)(u) = exp


V0 +

n(u)∑

i=1

V1(xi) +
∑

i<j≤n(u)

V2(xi, xj) + . . .


 , (39)

where exp(V0) is a normalizing factor ensuring that ̺(n)(.) is a PDF, and for k ≥ 1, Vk
is a function reflecting the interaction order between points.

It is worth mentionning that the exponential form in (39) is not arbitrary but driven by

the formulation of a maximization problem of the entropy in physics, expressed generally

on the basis of logarithmic functions. Typically, statistical analysis has shown that the

pairwise interaction is generally sufficient to model inter-points interaction [14]. That is,

the Gibbs PP is commonly known as pairwise interaction PP. The multivariate PDF of

a stationary Gibbs PP Ψ, i.e., V1(x) = log(β), ∀x ∈ u, is simplified as

̺(n)(u) = κβn(u)
∏

i<j≤n(u)

h(‖xi − xj‖), (40)

where ‖xi−xj‖ = d(xi, xj), κ = exp(V0), and h(.) is a function dependent on the mutual

distance between points.

The Poisson hardcore process (PHCP) is established as a special case of the Gibbs PP,

such that ∀ xi, xj ∈ u,

h(‖xi, xj‖) =





1 if ‖xi − xj‖ > δ

0 if ‖xi − xj‖ ≤ δ.
(41)

In wireless networks modeling and analysis, the PHCP was initially investigated via

simulations in pattern recognition of deployed nodes that exhibit repulsion [65]. Some

analytical investigations of the PHCP are next considered, to approximate for example

performance metrics of a two-tier HetNet as in [100].

— Poisson hole process (PHP): Another way to conceptualize hardcore repulsion between

points is to consider independent realizations of two HPPPs Ψ1 and Ψ2, with respective

densities λ1 and λ2. Next, A PHP Ψ is conceived by considering Ψ2 as a parent PP

depriving it of points located in holes (exclusion regions) of radius δ around the points

of Ψ1. The density of Ψ is then expressed as [6], λ = λ2 exp (−πλ1δ). PHP belongs to

the family of Cox PPs, i.e., doubly stochastic PPPs, where it is roughly considered as

capturing clustering rather than inhibition, this is well understood since creating holes
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in one region forces nodes to cluster in other regions.

Several valuable applications of the PHP are reported in the literature. For instance, in

cognitive networks [101], the holes are interpreted as the guard regions around primary

users, where the PHP models secondary users allowed to transmit as long as they are

located outside the holes, which reduces the detrimental effect of interference. In HetNets

[100, 102], the PHP is explored to capture dependence between tiers, where small cells

are not allowed to be deployed very close to macro cells. In [103], the authors proposed

the use of the PHP to model a multi-cell D2D underlaid cellular network. Generally,

despite the flexible construction of the PHP as compared to previous hardcore PPs,

a complete characterization of interference and then SINR distribution is unfeasible.

To overcome such limitation, two approaches are considered in the literature: i) Derive

relatively tight bounds and approximations of the MGF of the interference [101,103,104],

or ii) approximate the PHP realization with either a PPP or a tractable clustering PP

[6, 102].

1.1.3 Softcore Repulsive Point Processes

A smooth way to generate inhibition between points is to increase the tendency towards

repulsion and regularity without setting a deterministic restriction via hardcore distances. In

the following, we will outline the key softcore PPs used in the literature of wireless networks

modeling and analysis.

— The family of Gibbs point process–Strauss point process (SPP): It is a special case of

Gibbs PPs by defining for a constant 0 < γ < 1, the function h in (40), as

h(‖xi, xj‖) =





1 if ‖xi − xj‖ > δ

γ if ‖xi − xj‖ ≤ δ.
(42)

The multivariate PDF in (40) is then simplified as

̺(n)(u) = κβn(u)γsδ(u), (43)

where sδ(u) counts the number of unordered pairs of distinct points in u spaced apart

by less than δ.

When s(u) increases, the PDF in (43) is integrable and goes towards 0, which decreases

the tendency towards clustering. γ helps then to softly adjust the repulsiveness intensity,

where the SPP is typically reduced to a PPP when γ = 1 and to a PHCP when γ = 0.
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Practically, it is revealed in [64,65] that the SPP is an optimal candidate for point patterns

that exhibit a tendency towards repulsion. However, despite its easy interpretation and

construction, the finite SPP is geared towards time consuming simulations and does not

have closed-form expressions for the moments, while generalizations to infinite Gibbs PP

renders the analysis even more complicated.

— Determinantal point processes (DPPs): To overcome the previous limitations of SPP, a

DPP Ψ acting over a given Borel B ⊆ Cd is constructed in such a way that it preserves

the smart structure of Gibbs PPs in (40), but with a closed-form multivariate PDF w.r.t.

the Lebesgue measure on (C,B(C)) [105–111]. That is, for two functions h : Bn → R+

and C : B2 → C, we have

E





6=∑

x1,...,xn∈Ψ

h(x1, . . . , xn)



 =

∫

B
· · ·

∫

B
̺(n)(x1, . . . , xn)h(x1, . . . , xn)dx1 · · · dxn, (44)

and ̺(n)(x1, . . . , xn) = det (C(xi, xj))1≤i,j≤n , (45)

where 6= denotes that the finite points are pair-wise distinct, det(.) denotes the determi-

nant function, and the matrix C is called the kernel of the DPP.

The repulsiveness of the DPP Ψ stems from the observation that the determinant of a

complex covariance matrix can not be greater than the product of its eigenvalues [111],

and then ̺(n)(x1, · · · , xn) ≤ ∏n
i=1 ̺

(1)(xi), where equality holds in a PPP. Furthermore,

motion-invariance of Ψ implies that the kernel C0 is real depending only on the distance

between pairs of points. That is, its Fourier transform, i.e., spectral density, exists and

is defined as

ϕ(x) = F(C0)(x) =
∫

B
C0(y)e−2πjxydy, (46)

where the existence of the associated DPP Ψ to C0 is constrained by checking |ϕ| ≤ 1 [109,

Proposition 5.1].

Depending then on the formulation of the covariance function C0 or the spectral density

ϕ, several versions of motion-invariant DPPs are constructed with different levels of

repulsiveness and tractability [105,106,111]. For instance, Ψ is a Gauss DPP if for every

u ∈ R2, C0(u) = λ exp (−‖u/γ‖2), where λ is the spatial intensity of the Gauss DPP

and γ is a parameter to adjust the repulsiveness of the DPP, such as πλγ2 ≤ 1 for the
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Figure 5 – Two realizations of the square lattice with uniform perturbation on the disk b(0,R). The dotted
lines reflect borders of the Voronoi tesselation of the square lattice without perturbation (red triangles) and the
solid lines that of the Voronoi tesselation of the perturbed lattice (circles).

existence condition. The Cauchy DPP is obtained when C0(u) = λ/ (1 + ‖u/γ‖2)m+1 and

an existence condition such that πλγ2 ≤ m, where λ is the intensity of the process and

α and m, are shape parameters to tune repulsiveness. The generalized gamma DPP is

defined with a spectral density ϕ(u) = λ (mγ2/ (2πΓ(2/m))) exp (−‖uγ‖m), where the

existence condition is λmγ2 ≤ 2πΓ(2/m).

For more tractability and mathematical convenience, another form of motion-invariant

DPPs is introduced, namely the scaled Ginibre PP (β−GPP), by considering a kernel as

C(x, y) = cπ−1e− c
2β (|x|2+|y|2)e

c
β
xy, where the resulting density λ is scaling with c as λ =

c/π [107–110] and β to seamlessly adjust the repulsion intensity. It is worth mentioning

that in addition to the availability of closed-form moments of DPPs, a scaled β−GPP Ψ =

(Xi)i∈N
enhances mathematical tractability due to the fundamental property in which

(X2
i )i∈N

are mutually independent and follow a Γ(i, β/c), ∀i ∈ N [109, Proposition 1].

Relevant applications of the DPP have been reported in the literature. For instance, the

authors of [105] investigated the goodness-of-fit of a real deployment scenario of nodes

with three motion-invariant DPPs: the Gauss model, the Cauchy model, and the Gener-

alized gamma model, where it is revealed that the latter provides the best fit accuracy

at the expense of reduced tractability due to the spectral density based construction of

the model. Analytical investigation of the scaled β−GPP is explored in [107–110], where

tractable expressions of the contact distribution function and the Ripley’s K−function

(see next paragraphs) are derived; however, the distribution of SINR is yet of intractable

formulation.
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— Perturbed lattice (PL): At this stage, the above-discussed repulsive PPs differ in terms of

their construction approaches, tractability, and capability to fit real deployment scenarios.

However, one common shortcoming is their inability to softly capture point patterns

that exhibit perfect regularity. Accordingly, the perturbed lattice (PL) is adopted in the

literature of wireless network modeling and analysis, such that the degree of perturbation

allows to tune softly the process from a deterministic lattice (no perturbation) to highly

random deployments (i.e., PPP) [51, 64, 65, 112–116]. Formally, the construction of a

perturbed lattice Λpert is based on (38), as

Λpert = Λgrid +Xc =
{
cG + U +Xc : c ∈ Z

2
}
, (47)

where Xc, c ∈ Z
2, is a family of i.i.d. random variables, uniformly distributed on a disk

of radius R. In other words, R is a control knob to tune the degree of perturbation (see

Fig. 5). R needs generally to be upper-bounded to avoid collision between nodes after

perturbation, e.g., in the case of triangular lattice, R needs to verify 0 ≤ R < rs
√

3/2

where rs is the radius of the circumscribed circle of the perfect lattice.

Given its ability to capture wide range of point patterns between the PPP and deter-

ministic lattices, the PL is extensively investigated in the literature of wireless networks

modeling and analysis. For instance, analytical bounds of the average interference and

signal-to-interference ratio (SIR) distribution are studied in [112,113]. In [64,65,113,114],

the PL is used to model realistic node deployments that exhibit repulsion. Interestingly

and given the observation that the best SINR distribution is achievable under perfect

lattices [17], the authors of [115, 116], proposed to proceed on the basis of a novel algo-

rithm, namely the triangular lattice fit, to deactivate some empty BSs, i.e., BSs serving

no UE, in such a way to render the structure of activated BSs as regular as possible,

which will enable to maximize the overall performance.

Evaluating the amount of regularity in the location of transmitters and/or receivers is

typically an important metric to predict the performance of a given wireless network.

A review of the sparse literature shows that there are generally two judicious tools to

evaluate the amount of regularity in a point pattern. i) The coefficient of variation (CoV)

metrics, introduced for the first time in [117]. They are constructed based on specific

geometrical characteristics of point patterns, such as the area of Voronoi cells, the length

of Delaunay triangulation edges, and the nearest neighbor function. CoV metrics are

typically normalized by a given constant [118] such that their value in the context of
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the PPP equals 1. Valuable applications can be found in [98, 114–116]. ii) The average

deployment gain introduced in [65, Equation (11)] to measure the minimum horizontal

gap in terms of the mean square deviation between the two curves of the SIR distribution

under the PPP and the point pattern under investigation.

— Combination of PPP and stationary grid: Due to the observation that all the nodes of

a PL are subject to random perturbation, the authors of [64] confirmed via experiments

on realistic deployments that PLs cannot accurately capture spatial dependence between

nodes. Alternatively, the authors of [119] proposed a new approach to capture soft re-

pulsion between nodes as a combination of two extreme sub-structures, namely a totally

random PP (i.e., PPP) and a stationary deterministic lattice. That is, the repulsiveness

of the outcome PP is softly tuned based on the ratio between the densities of the PPP

and the stationary grid (see Fig. 6).

1.1.4 Aggregative Point Processes

There are several aspects exhibiting clustering in realistic wireless networks. For instance,

there will be a tendency towards clustering for indoor transmitters covering building’s interior,

or transmitters serving clustered users around hotspots, or even vehicles clustered due to traffic

and intersections. Also, UEs of a D2D communication network need to lie in close proximity

of each other, and sometimes, the clustering of nodes may be logically induced by some MAC

protocols [120–125]. In such circumstances of geometrically and logically induced clustering,

aggregative PPs are required for an accurate evaluation of networks performance. A common

way to capture the clustering of nodes is by considering a further generalization of the PPP via

the IPPP, where the distance-dependent density of the IPPP increases in regions of interest.

However, one main shortcoming of the IPPP is its non-stationarity, which limits the use of

tractable simplifications considered in the case of stationary PPs and also ceases the concept

of the typical user where the performance evaluation becomes dependent on the location of

the user under investigation. In the following, we review the key aggregative PPs used in the

literature to overcome such limitation.

— Cox cluster point process: A further generalization of the finite 2 IPPP is the stationary

finite Cox process constructed by randomizing the parameters of the IPPP model. Typ-

ically, the intensity of the IPPP becomes a random variable mapped with realizations of

2. Stationarity or homogeneity of a PP implies implicitly infinite point patterns. In other words, it is realistic
to consider large inhomogeneous point patterns as part of a stationary PP while IPPP is generally a finite
PP [14].
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Figure 6 – Two realizations of the proposed PP constructed as a superposition of a stationary perfect lattice
(red triangles) and a PPP (black circles).

a stationary random field with positive values (i.e., the intensity field). The Cox PP is

also known as a doubly stochastic PP since its construction is tracked on two steps: i)

Generate realizations of the random field {Λ(y)}, i.e., parent points. Next, ii) conditioned

on a realization Λ(y) of the random field, point pattern is generated with an IPPP of

density λ(y) = Λ(y), i.e., daughter points, where parent points are not observable and

do not form part of the resulted point pattern. Depending on the construction way of

the random field {Λ(y)}, several flexible families of the Cox PP may be established. For

instance, the log Gaussian Cox process (LGCP) is considered when the logarithm of the

random field is a real-valued Gaussian process. In other words, the clustering of point

patterns in LGCP may be smoothly adjusted by acting on the mean and variance of

the distribution, where a zero variance is equivalent to the PPP case, and an increasing

variance (with constant mean) is equivalent to an increasing tendency towards clustering.

Another interesting doubly stochastic PP is the α-stable Cox PP [126,127], in which the

random field follows the α-stable distribution. The shot-noise Cox PP [128] is obtained

by generating the random field by a general PP Ψp, where at each parent point x ∈ Ψp,

the daughter points Ψd are generated by an IPPP with density mxψ(y − x), where mx

is the average number of points clustered around x, and ψ(.) is the PDF of the distance

between a daughter point y of the cluster and x. The density of the outcome Cox PP is
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then expressed as

λ(y) =
∑

x∈Ψp

mxψ(y − x), ∀y ∈ Ψd. (48)

The Cox PP is typically investigated in vehicular ad hoc networks (VANETs) [?,79,130],

where a doubly stochastic process is useful to capture the randomness of roads (modeled

by a Poisson line process (PLP)) as well as that of nodes location (modeled by a 1D PPP)

(see Fig. 7). Alternatively, and based on empirical data of realistic networks, the authors

of [127] observed that user-centric capacity-driven behavior of modern BS deployments

is accurately captured by heavy-tailed distributions of the BS density, particularly the α-

stable distribution. In [126], analytical investigation in addition to empirical data fitting

is obtained by considering a generalized PPP setup with α-stable distributed BS density.

In [131], the spatial clustering degree of users (i.e., level of heterogeneity) is captured via

the LGCP, where it is observed that the network performance decreases when users are

clustered without being correlated to BSs location.

— Poisson cluster process (PCP): In Cox cluster PP, the number of parent points follows

a general PP while that of daughter points follows a PPP. The PCP, however, is based

on a reciprocal approach where the number of parent points follows a PPP while that

of daughter points follows a general PP. A representative family is the Gauss-Poisson

PP, in which daughter points are either no points, one, or two points, with respective

probabilities p0, p1, and p2 = 1 − p0 − p1 [6]. Another special case of the PCP is when

daughter points are scattered i.i.d. around the origin and their number is Poisson dis-

tributed, which yields the family of the Neyman-Scott PP, also considered as a special

case of the shot-noise Cox PP. That is, considering the parent PP as HPPP and based on

the expression of ψ(.) in (48), two important models of the Neyman-Scott PP are com-

monly constructed, namely the Matérn cluster processes (MCP), where daughter points

are i.u.d in a ball b(x, δ) centered at each parent point x ∈ R
d, and Thomas cluster

processes (TCP), where daughter points are symmetric normal distributed.

Based on simulations and model fitting, relevant works in the literature compared empir-

ical data of existing shared networks [132] and vehicular networks [133] with the accurate

PP from MCP, TCP, and LGCP. Results showed that the LGCP is the most suitable

PP to characterize point patterns that exhibit strong tendency towards clustering, while

analytical flexibility is in favour of the others, as performed in [120–125] for MCP and

TCP, and in [134,135] for the Gauss-Poisson PP.
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(a) (b)

Figure 7 – Two realizations of roads (solid lines) modeled by a Poisson line process (a) and by a deterministic
set of lines (b). Vehicles (dots) are modeled by a 1D PPP with similar densities in (a) and (b). Voronoi tessellation
(dotted lines) reflects the association region of each vehicle.

— The conditional thinning approach: A tractable generative approach to capture the ten-

dency of nodes towards clustering (i.e., reduced homogeneity) is by considering a specific

independent thinning. Typically, the authors of [136, 137] introduced a specific thinning

of retention probability p conditioned on the serving BS and complementarily dependent

on the empty probability of other BSs [138] (i.e., the probability that a BS does not

serve any user). A value of p = 1 is equivalent to a uniform distribution of users, while a

decreasing value of p is equivalent to clustering of users around the serving BS.

1.1.5 Wide Versatile Point Processes

Despite diversity of the previous discussed PPs, they are restricted to capture point patterns

that exhibit either repulsion or clustering. However, in realistic deployments, we usually find a

combination of repulsion and aggregation at different levels, and hence a compelling need for

more general PPs. In the following, we consider a third type of PPs, namely the wide versatile

PPs, that with regard to their typical construction may capture both repulsion and clustering.

— Geyer saturation point process (GSPP): The first PP is the GSPP seen as a natural

generalization of the SPP. Actually, when γ in (43) is below 1, the GSPP is equivalent to

an SPP and then captures repulsiveness. However, in the case of clustering (i.e., γ > 1),

the multivariate PDF in (43) is not integrable for s(u) → ∞. To overcome this, the
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Figure 8 – Taxonomy of PPs and frameworks used to model nodes in wireless communication networks.

GSPP is then saturated as

̺(n)(u) = κβn(u)γmin(s(u),t), (49)

where t is a constant to bound the trend of s(u). If t is large enough, the GSPP can

capture both repulsion and clustering depending on the fluctuation of γ. Moreover, if

t = 0 or γ = 1, the GSPP is equivalent to a PPP.

— The inhomogeneous double thinning (IDT) approach: The second PP is an analytical

framework, namely the inhomogeneous double thinning (IDT) approach, introduced

in [67] in such a way to capture the interaction degree between points based on the

superposition of two conditionally independent IPPPs. In fact, by conditioning on the

serving BS, the first IPPP captures the fluctuation degree of the distance between the

typical user and the serving BS (via the F -function), while the second IPPP captures

the fluctuation degree of the distance between the typical user and interfering BSs (via

Ripley’s K-function). Interestingly, based on two triplets of parameters (i.e., one triplet

for the F -function and the other triplet for the K-function), it is observed that the IDT

model can accurately fit the structure of a wide range of wireless networks, where nodes
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Table 1 – Taxonomy of PPs in terms of the ability to characterize the interference and analytical tractability.
Modeling use cases

Point process Regularity Repulsion Clustering Independence Interference characterisation References Analytical tractability Comments

Stationary regular lattice • Exact mean [42, 88] High

- More efficient to design good channel access schemes
as compared to networks where node locations are perceived
as random or in motion.
- System-level performance evaluation requires complex and
time-consuming Monte Carlo simulations.
- Do not capture the geometry of Hetnets.

PPP • Exact PGFL [17] High

- Enhanced tractability and mathematical convenience, more
simplifications compared to other PPs, captures randomness
of network geometry.
- Cannot capture the geometry of realistic scenarios, where
nodes are highly correlated (repulsion or clustering).

BPP • Exact PGFL [61] Medium
- The PPP version to model finite networks.
- Reduced tractability as compared to the PPP.

MHCPP • Approximate mean [95, 96] Low

- Capture the mutual repulsion between nodes.
- Underestimates the density of transmitters in high density
of the parent PPP points, which affects the interference
estimation.

SSI Unknown [98] Unknown
Overcomes the limitations of MHCPP in terms of
underestimating the density of transmitters in high
density of the parent PPP points.

PHCP • Exact PGFL [100] Low - Easy interpretation of the model and flexible simulations.
- GSPP: Suitable for a wide range of PPs ranging from the
aggregative family to the repulsion one.
- No closed form expressions for the moments.
- Can resort to time consuming simulations.

SPP • Unknown [64, 65] Unknown

GSPP • • • Unknown [64] Unknown

PHP • Approximate PGFL [101,102,104] Medium
Enables to conceptualize hard-core repulsion between points
based on the tractability of two independent HPPPs.

DPP • Exact PGFL, Exact mean [105–110] Low

- The moments are known as they are described by certain
determinants of matrices
- Involving analysis of the contact distribution function and
the SINR’s distribution

Perturbed lattice • • • Approximate mean [112,113] Medium

- Enables to softly capture point patterns that exhibit perfect
regularity.
- All nodes of a PL are subject to random perturbation, which
reduces the accuracy to capture spatial dependence between
nodes in realistic deployments.

Superposition of PPP
and Shifted lattice

• • • Approximate PGFL [119] Medium
- Overcomes the limitations of the perturbed PL.
- Involving analysis of the SINR’s distribution.

Alpha-stable Cox • Exact PGFL [126] Low

- Superior accuracy to statistically model the varying BS
density in different areas.
- Involving analysis of the SINR’s distribution inducing
reduced computational efficiency.

LGCP • • Unknown [131–133] Unknown

- Its construction is based on elegant simplicity as the random
field is a real-valued Gaussian process.
- Can serve as a universal model to fit realistic multi-network
empirical data

PCP • Exact PGFL [121–124,134,135] Medium
Enables to capture spatial coupling between user and BS
locations, which is in line with the 3GPP simulation models.

Conditional thinning
approach

• • Exact PGFL [136,137] High
Captures the tendency of users towards clustering
(i.e., reduced homogeneity) around the serving BS.

IDT approach • • • • Exact PGFL [67] Medium
Captures the interaction degree between points based on the
superposition of two conditionally independent IPPPs

location can exhibit spatial repulsion and/or clustering.

Fig. 8 illustrates a comprehensive taxonomy of the PPs used in the literature of wireless

networks modeling and analysis. Typically, the gray bar reflects the range of variation in the

degree of interaction of each PP family. For instance, hard-core PPs can only reflect structures

with hard-core repulsion distance, without being able to capture totally random structures (PPP

or BPP) or perfect lattices. DPPs which are part of soft-core PPs, can capture structures ranging

from the PPP to some repulsive structures below perfect lattices. However, other soft-core PPs

such as perturbed lattice and the combination of a PPP and a stationary grid can model more

point patterns ranging from PPP to perfect lattices. Interestingly, the IDT approach can model

structures ranging from the two extremes.

Table 1 classifies the PPs, used in the SG literature for modeling and analysis of wireless

networks, by various degrees of tractability and mathematical complexity. An important key

measure of interest is the ability of the PP to permit the derivation of the PGFL of the inter-

ference at a given arbitrary point, which in turn allows to derive various performance metrics

52



1.2. Stochastic Geometry Statistical Analysis

(e.g. coverage probability, ergodic rate). Three classes of PPs are identified; those enabling to

derive the interference’s PGFL, those failing to derive it so that an approximation of the PGFL

or of the interference mean value is made, and those with unknown PGFL and mean value of

the interference.

Since SG is also endowed with an important statistical theory [14], the PPP is typically

leveraged as a reference PP to build statistical tools that enable to characterize the class of

a given PP (totally random, clustered, or repulsive) or even to compare between PPs. Subse-

quently, we will review the key statistical methods used in the literature of wireless networks

modeling and analysis to characterize PPs or fit them to realistic empirical data.

1.2 Stochastic Geometry Statistical Analysis

Several tools are used in the theory of PPs and spatial statistics to detect deviations from

the PPP and characterize the interaction between points, particularly in terms of type, strength,

and range [1,6,14]. These tools are also used as fitting methodologies to identify an appropriate

PP model for some empirical data, [64, 65, 87, 109].

1.2.1 Comparison Between Point Processes

Using the observation that the contact function and the nearest neighbor function are iden-

tical in the PPP, the J-function is introduced in spatial statistics for r > 0 as

Jy(r) =
1 −Gy(r)
1 − Fy(r)

. (50)

That is, J(r) = 1 in the case of a PPP. In clustered PPs, an arbitrary point of the plane is

likely to be farther away from a given point of the PP rather than in the context of the PPP,

whereas in the other direction, clustered points tend to lie closer to their nearest neighbors,

hence Fy(r) < Gy(r) and then Jy(r) < 1. Similarly, Jy(r) is greater than 1 in the case of

repulsive PPs. However, it is possible to construct sometimes a non-Poisson PP that checks

J(r) = 1, which reduces the accuracy of the J-function in characterizing PPs [14].

An alternative approach is by considering second-order summary characteristics such as the

pair correlation function [119], defined for a PP Ψ ⊂ Rd, ∀x, y ∈ Ψ as

g(x, y) =
̺(2)(x, y)

̺(1)(x)̺(1)(y)
, (51)
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Figure 9 – Typical shape of pair correlation function for the three classes of PPs.

where ̺(1)(.) and ̺(2)(.) are, respectively, the first and second moment densities of Ψ.

When Ψ is isotropic, g(x, y) is only dependent on the distance r between points x and y but

not on their locations. That is, for a completely random PP (i.e., the PPP), x and y are totally

independent and then g(r) = 1. In clustered PPs, ̺(2)(x, y) is likely to overcome ̺(1)(x)̺(1)(y),

then g(r) > 1 for small r and converges to 1 as r increases. For hardcore repulsive PPs, where

inter-points distance is almost greater than a certain barrier distance δ, the pair correlation

function equals to 0 when r < δ. As r becomes greater than δ, g(r) can exceed 1 and fluctuates

around it with increasing r.

Fig. 9 describes the overall trend of g(r) as a function of the PP class. Typically, rcorr is the

distance describing the approximate size of clusters. r1 is the distance to the closest neighbors

with most frequent short inter-point distance. r2 is the distance at which g(r) contacts its first

minimum after r1, and can be interpreted as the distance to regions with a small number of

points beyond the nearest neighbors. r3 is the second maximum of g(r), interpreted as the

distance to the regions with further neighbors [14].

Other popular second-order summary statistics used to capture inter-points correlation are

Ripley’s K and L-functions defined for a stationary PP of density λ and r ≥ 0 as

K(r) =
E

!
o (Ψ(b(o, r)))

λ
and L(r) =

√
K(r)
π

. (52)

We note that K(r) = πr2 and L(r) = r in the case of a PPP. Repulsive and clustered PPs are

however, respectively, characterized by smaller and larger K and L-functions as compared to
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the PPP. More discussions about PPs statistics and nodes real deployment characterization can

be found in [14, 40, 64, 65, 67, 87, 88, 92, 93, 109].

Characterizing PPs based on their summary statistics is generally not sufficient to study the

impact of inter-point interaction on macroscopic properties [14,64,65]. Interestingly, the authors

of [142,143] developed PP ordering based on the directionally convex (dcx) order, where for two

given real-valued PPs Ψ and Φ of the same dimension, Ψ is said to be less than Φ in dcx, if

and only if for all directionally convex 3 function f on Rd, E {f(Ψ)} ≤ E {f(Φ)} < ∞ and we

denote Ψ(.) ≤dcx Φ(.). Typically, it has been shown in [142, Proposition 3.4 and Corollary 3.1]

that the dcx order cover PPs comparison based on the pair-correlation and K−functions, where

the largest PP in terms of dcx order is generally the one with the greatest pair-correlation and

K−function, assuming the same mean number of points in the observation window. That is, the

PPP is also taken as the reference PP on dcx-based comparison, where repulsive and clustered

PPs are, respectively, smaller and larger in dcx order as compared to the PPP. They are then

referred to as sub and super-Poisson, respectively.

In general, sub- and super-poissonianity can occur simultaneously but at different spatial

scales, e.g., clustering at large scales and regularity at small scales. As an illustration, using the

spatstat package in the R language, Fig. 10 shows the estimation of summary statistics J(r),

g(r), and K(r) of an homogeneous PPP generated in the window W = [0, 10] × [0, 10]. We can

see in particular the fluctuation of summary statistics with the range of observation.

1.2.2 Modeling Real Nodes Deployment

In the following, we will review the statistical methods used to fit several PP candidates to

empirical data of realistic networks. Next, we will investigate the various metrics explored in

the literature to select the best fitted PP model, i.e., the goodness-of-fit.

Fitting the structure of nodes

In classical statistics, the likelihood function describes the probability of observing data sam-

ples given some model parameter θ [14,66]. Similarly, in the context of SG, the parameters of the

PP model are approximated from existing point pattern x = {x1, . . . , xn}, where the likelihood

function is maximized, yielding to parameter estimation that best fits the data samples, e.g.,

the ratio between the number of point patterns and the window area is a natural estimator for

the parameter density of an HPPP, the hardcore distance in inhibitive PPs is simply estimated

3. For any x, y, z and u ∈ Rd, such as x ≤ y, z ≤ u and y + z = x + u, we have f(y) + f(z) ≤ f(x) + f(u).
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by the minimum inter-point distance in the empirical data, etc.. The general formulation for

the likelihood function of three classes of representative PPs, namely the HPPP, the IPPP,

and finite Gibbs PP, can be found in [66]. However, due to the lack of closed-form expres-

sions for the normalizing function rendering the likelihood function a PDF, the maximization

problem for the likelihood function when considering several PPs beyond the PPP, is generally

intractable [14, 66]. To overcome such limitation, the pseudolikelihood function of a given PP is

defined in terms of the conditional intensity at a given point of the sample pattern [66, Equa-

tions (6), (7)]. Also, when the conditional intensity is not available or parameter estimators

are of reduced accuracy, which is typically the case for aggregative PPs, the minimum contrast

method is proposed. That is, the key idea is to define PP parameters that minimize the gap

between the summary statistic of this PP and the estimated one from empirical data. This gap,

as a function of the PP model parameters θ, is typically expressed as

∆(θ) =
∫ s2

s1

|Ŝm(r) − Smθ (r)|ndr, (53)

where Ŝ(r) is the estimated summary statistic from empirical data over a range radius s1 ≤ r ≤
s2 and m,n > 0 are parameters in the method.

Metrics for the goodness-of-fit

After the fitting procedure of several PP candidate models to the empirical data, comes the

goodness-of-fit phase where the best fitted PP to empirical data is selected. In the following, we

outline the key techniques used in the literature for the goodness-of-fit procedure:

— Summary statistics simulated envelope test (3SET): The most common approach for

hypothesis testing is by evaluating the gap between summary statistics curves of the

empirical data and the fitted PP model. In fact, by simulating the summary statistics

of the fitted PP model, we end up getting the lower and upper envelopes that reflect

the confidence interval. Next, the fitted PP model is considered as a good model if the

curve of the estimated summary statistic of the empirical data, falls into the envelope

with increased probability. Otherwise, the PP model may be rejected based on the 3SET

method. Typically, the K and L-functions are the most popular summary statistics con-

sidered for the 3SET method [64,65,106,109]. However, other summary statistics such as

G, F , and J-functions are investigated in [106,109,144]. Besides, if the curve of the esti-

mated summary statistic of the empirical data lies within the envelope of several fitted

PP models, a specific quantity may be considered to select the most suitable PP model,
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namely the root mean square deviation (RMSD), defined from (53) as

RMSD =

√√√√ 1
N

N∑

k=1

(
Ŝ(ri) − Sθ(ri)

)2
, (54)

where N is the number of samples.

— SINR distribution: Since the SINR distribution is tightly related to the network geometry

(i.e., inter-points interaction), it is used as an evaluation metric to select the most suitable

PP model for empirical data. Given the typical user y located at the origin of the point

pattern Ψ and connected to the nearest point x0 ∈ Ψ, the downlink SINR is generally

evaluated as

SINR(x0; y) =
Ptx hx0 ℓ(‖x0‖)

σ2 +
∑
xi∈Φ\{x0} Ptx hxi

ℓ(‖xi‖)
, (55)

where Ptx is the BS transmit power, ℓ(.) is the path loss function, hx is a random variable

that captures multipath fading and/or shadowing between user y and BS x, and σ2 is

the variance of noise power.

Based mainly on simulations, the SINR distribution of the empirical data and the fitted

PP models are evaluated w.r.t. a threshold in dB, then the suitable model is selected

using envelope matching and eventually the RMSD method [64,65, 113, 145].

— Geometry-based evaluation metrics (GBEM): Two main geometry characteristics are con-

sidered in the literature as higher-order properties in PP model selection, namely the

Voronoi area distribution (VAD) [2, 64, 118, 146] and the Delaunay triangulation edges

length distribution (DTELD) [98, 114–116]. The use of VAD and its dual DTELD is ac-

tually justified given the observation that coverage regions of BSs in a cellular network

generally converge to Voronoi cells [4, Proposition 5.5.11], where the VAD is commonly

approximated in the case of a PPP by a generalized gamma function [118].

1.3 Chapter Summary

With a comprehensive exploration of all the above-mentioned references related to proposals

for modeling wireless networks with PPs beyond the PPP, it is almost straightforward to infer

that such PPs are more accurate than the PPP for modeling emerging wireless architectures.

However, they are mathematically less tractable to derive the contact distance function, the

nearest neighbor function, and hence we can only approximate the interference and performance

behavior. Also, modeling node locations with the previous PPs does not provide a significant
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change to system design insights as compared to the PPP case [6, 24, 42, 67]. Accordingly, in

some analytical contexts, it is generally more appropriate to favor mathematical tractability

with physically meaningful insights on system design, rather than increasing modeling accuracy

but with a huge loss on tractability and mathematical flexibility. In other words, the tractability

of the PPP sometimes justifies its possible inaccuracy. Subsequently, we consider four recent

results that endorse even the accuracy of the PPP relatively to other beyond-PPPs:

— In [51, Theorem 3], the authors support analytically the assumption that modeling node

locations through PPP is a realistic hypothesis since a given general model for a large

structure of node locations can be seen under the effect of sufficiently strong lognormal

shadowing, i.e., greater than approximately 10 dB, as equivalent to the PPP model. In

other words, instead of modeling node locations with a given general PP under lognormal

shadowing, we can equivalently consider a perturbation of node locations, which may lead

to a totally random structure depending on the intensity of shadowing.

— In [139–141], the authors showed that the slope of the SIR distribution is the same for

almost all motion-invariant PPs, i.e., the SIR distribution of a given network model is a

shifted version of the other network models. For example, the horizontal gap between the

PPP and the triangular lattice is approximately a constant of 3.4 dB for a wide range

of SIR regimes. Interestingly, instead of modeling point patterns of a given network by

a less-tractable but more accurate PP, one can use the PPP, i.e., the reference network

model, endowed with its enhanced tractability and add some weight to the outcome

network performance being evaluated under the PPP assumption.

— In [136,137], the authors explored the PPP under a tractable generative model, namely

the conditional thinning approach, which allows capturing smoothly a wide range of

clustered point patterns ordered from a totally random structure to a very clustered

one. Consequently, the PPP can be harnessed in a meaningful way to create new PPs

that are endowed with similar tractability as the PPP but can also capture inter-points

interactions.

— In [67], and since the IPPP is the most tractable alternative to the PPP, the authors

introduced the IDT approach that can be used as the most tractable version of the PPP,

and fully able to capture a wide range of network models from clustered PPs to stationary

deterministic lattices.

58



1.3. Chapter Summary

    

  

0
.2

0
.4

0
.6

  

0
.3

0
.5

0
.7

0
.9

1

Two HPPP realizations with λ = 0.3 and 0.7

The kernel density estimate of the two PPP’s realizations

0.0 0.1 0.2 0.3 0.4 0.5

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.5

1
.0

1
.5

2
.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

J
(r

)
g
(r

)
K

(r
)

distance r

Figure 10 – Estimation of summary statistics J(r), g(r), and K(r) of two HPPP realizations with increasing
density. The red bold line is for λ = 0.3, the green thin line is for λ = 0.7, and the dotted lines are the theoretical
values of the summary statistics assuming an infinite expansion of the window W .

59



Chapter 2

STOCHASTIC GEOMETRY BASED

MODELING AND ANALYSIS OF WIRELESS

NETWORKS

Modeling wireless networks is commonly considered as a set of conceptual choices to study

a real or an imaginary communication scenario. Such model preferences are typically related to

i) network elements, e.g., location model (deterministic, random, or mobile), node type (trans-

mitter, receiver, or both), ii) their attributes, e.g, transmit power and antenna types, iii) the

environment characteristics in which they operate, e.g, propagation effects, and iv) the interplay

properties between nodes, e.g., association policy, coordination, and spatial interaction. In some

cases, we can also include analytical and experimental tools used in the study, in addition to the

considered key performance metrics. In the following, we will review the plethora of modeling

choices made in the literature of SG-based modeling and analysis.

2.1 Modeling and Conceptual Choices

2.1.1 Network Elements

Based on the SG approach, elements of a wireless network are deemed to be hierarchically

modeled in such a way that subscribers are 0-level stations, BSs are 1-level stations directly

connected to 0-level stations, switching centers are 2-level stations directly connected to BSs,

and so on [2,138]. Besides, depending on the system model being considered, network elements

can be partially or entirely distributed according to particular PPs and receiver/transmitter

locations can be correlated 1 or not, e.g., coupling of users and BSs location in a user-centric

1. This term should not be confused with temporal and spatial correlation in BS activity factors where the
former is induced by the mobility of receivers across neighboring transmitters, while the latter is induced by
correlation through interference and load traffic between neighboring transmitters [147].
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Table 1 – Typical configuration of BSs and users in a stochastic geometry based modeling

Configuration of BSs Configuration of UEs UE-BS coupling?
Adopted PP

Comments
For BSs For UEs

Uniformly random Uniformly random No PPP PPP
Total independence between UEs and BSs
[17–19].

Uniformly random Uniformly random Yes PPP PPP

UE-BS coupling can be captured through
i) a specific dependent thinning as in [136]
[137], or via ii) a power control scheme
in uplink networks as in [20, 148–153].

Uniformly random Uniformly random Yes BPP BPP
Correlation between UEs and BSs is
introduced via the finite number of BSs
and UEs in a given area [59–62].

Uniformly random Clustered Yes PPP MCP, TCP
UEs are clustered around transmitters,
seen as the parent points [122–124].

Uniformly random Clustered No PPP MCP, TCP
The analysis is focused on the clustering
aspect of UEs [154–156].

Clustered Uniformly random No
MCP, TCP,

Gauss-Poisson PP.
PPP

The analysis is focused on the clustering
aspect of BSs [120,121,134,135].

Clustered Clustered Yes TCP TCP
UEs and BSs are clustered around the
same hotspots [125].

Uniformly random Repulsive Yes PPP PHP

A typical application is when some UEs
are allowed to transmit only if they are
outside exclusion regions around specific
UEs or BSs [101,103].

Repulsive Uniformly random No
Regular lattice,

Soft and hardcore
PPs.

PPP

Typical configuration in rural areas where
repulsion is required between BSs without
necessarily coupling with UE locations
[88, 95, 109, 119,157].

capacity-driven cell deployment. Table 1 summarizes the state-of-the-art main configurations

used for modeling the location of users and BSs.

2.1.2 Propagation Effects

In a wireless network composed of many spatially dispersed nodes, communication is typ-

ically impaired by various deficiencies like wireless propagation effects introduced by i) the

attenuation of radiated signals with blockages (shadowing), ii) receiving multiple copies of the

same transmitted signal (multipath fading), and iii) signal losses with distance (path loss). In

general, the received power at the typical receiver located at a distance r from the transmitter,

is expressed as

Prx = Ptx ℓ(r)
∏

k

Zk, (56)

where Ptx is the reference transmitted power, ℓ(.) is the path loss function, and {Zk} are inde-

pendent random variables accounting for propagation effects.

It is worth mentioning that the effect of shadowing is generally captured via log-normal

distributed random variables where key parameters are fitted from field measurements. However,

in view of the analytical intractability of such distribution PDF, a common approach in SG-
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based frameworks is to absorb shadowing model into the intensity function of a new PPP by

means of the displacement theorem. Representative examples can be found in [24,51,54,56,83,

85, 86, 158, 159]. Also, modeling shadowing via random variables fails to reflect the distance-

dependence of blockage effects given that shadowing intensity needs to naturally grow with

increased transmit-receive distance, particularly in higher-frequency bands where signals are

more vulnerable to blockages. That is, the authors of [160] proposed to capture blockages effect

via the product
∏M
i=1 γi, where 0 ≤ γi ≤ 1 is the ratio of power loss due to the ith blockage,

and M is the random number of blockages intersecting the transmit-receive link. Using tools

from random shape theory [160], M is shown to follow a Poisson distribution with parameter

dependent on the blockages density, the link distance, and the average dimensions of blockages.

Regarding path loss functions, Table 2 summarizes the key models used in the literature of

SG-based modeling and analysis. Typically, the great majority of works consider the simplistic

single slope unbounded path loss model (UPM) (model #1 in Table 2) given its ability to derive

reliable and tractable results especially for sparse networks wherein the average separation

distance between nodes is greater enough to ignore the effect of singularity at the model (when

r = 0). However, this effect cannot be ignored in environments with higher path loss exponent

[161] or networks with very high infrastructure density [33, 162, 163], where the single slope

UPM is deemed as inaccurate. In fact, the SINR-invariance property obtained under the single

slope UPM [17], such that the overall SINR is independent from infrastructure density in the

interference-limited regime, has reopened the discussion on the reliability of UPM since it is

not conceivable that splitting cells indefinitely through the addition of new BSs, will maintain

the same SINR distribution. A key aspect to overcome this limitation is to revisit the single

slope UPM. The authors of [33, 162] introduced the multi-slope UPM (model #2.1 in Table 2)

enabling to ascertain that the SINR-invariance property is no longer valid when the near-field

path loss exponent is surprisingly under the dimension of the network, which turns out to near-

universal outage as network density increases. A similar effect is assessed when considering the

bounded path loss model (BPM) in [164], the single slope UPM accounting for BSs antenna

elevation in [71], and the stretched exponential path loss model in [165].

Furthermore, based on extensive field measurements, it has been reported in [166] and the

references therein that mmWave signals are very sensitive to blockages as compared to sub-6

GHz. Hence, considering LOS and NLOS paths in such environment is of great importance.

That is, the authors of [69, 158] considered a revisited path loss model that incorporates LOS

and NLOS transmissions, as
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Table 2 – Key path loss models used in stochastic geometry abstraction
# Path loss function Parameters Comments References

1 ℓ(r) = Kr−α
K = ℓ(1) =

(
λ
4π

)2
, where λ is the

wavelength, α needs to be greater than
2 to bound the interference.

Popular model in the literature given its
tractability. However, it is innacurate in some
situations due to its singularity.

[17–19]

2
For n ∈ N,

ℓ(r)=





ℓ0(r), R0 ≤ r < R1

ℓ1(r), R1 ≤ r < R2

· · ·
ℓn−1(r),Rn−1 ≤ r < Rn

∀ 0 ≤ i ≤ n − 1, ℓi(r) = Kir
−αi,

αi ≤ αi+1, αn−1 > 2, K0 = 1,
and Ki =

∏i
k=1 R

αk−αk−1

k

Generalization of model #1 when αi = αi+1

∀ 0 ≤ i ≤ n− 1 and of model #3.3 when
α0 = 0.

[33, 162]

ℓi(r) = Ki (1 + rαi)−1,
αi ≤ αi+1, αn−1 > 2, K0 = 1,

and Ki=
∏i
k=1

(
1+R

αk
k

/
1+R

αk−1

k

)
Generalization of model #3.2 when αi = αi+1

∀ 0 ≤ i ≤ n− 1.
[170]

3
ℓ(r) = K (1 + r)−α,
ℓ(r) = K (1 + rα)−1,
ℓ(r) = K min (1, r−α)

K = ℓ(0) > 0, α > 2
Non-singular path loss models adopted especially
for dense urban scenarios.

[42, 164]

4 ℓ(r) = K (r2 + h2)−α/2
K = ℓ(1) > 0, α > 2, h > 0 Near-universal outage in high network density. [71]

5 ℓ(r) = Ke−αrβ
K = ℓ(0) > 0, α, β > 0

Accurate model for short to moderate distances,
i.e., 5m-300m, in UDNs.

[165]

6

mmWave communications:
plos(r) = 1r≤Rc(r), where Rc is a fixed radius
and pnlos(r) = 1 − plos(r).

[69, 158]

mmWave communications:
pnlos(r) = 1 − plos(r) − pout(r),
pout(r) = max(0, 1 − Aoute−aoutr)
plos(r) = (1 − pout(r)) e−alosr

where Aout, aout, and alos are fitting parameters.

[83, 159]

ℓ(r) = plosℓlos(r) + pnlosℓnlos(r) ℓlos(r) = Klosr
−αlos, and

ℓnlos(r) = Knlosr
−αnlos

where Klos and Knlos are, resp.,
intercepts of the LOS and NLOS
paths, while αlos and αnlos are, resp.,
LOS and NLOS path loss exponents.

Lower frequency bands (sub-6 GHz):
plos(r) = e−ar2

, where a is a parameter
to fit 3GPP models and pnlos(r) = 1 − plos(r).

[171]

Lower frequency bands (sub-6 GHz):
3GPP case1:

plos(r) =

{
1 − r

R1
, r ≤ R1,

0 , r > R1

3GPP case2:
plos(r) = 0.5 − min

{
0.5, 5 exp

(
−R1

r

)}

+ min
{
0.5, 5 exp

(
− r
R2

)}
.

[70]

UAV-aided communication networks:
plos(θ) = 1/ [1 + a exp (−b [θ − a])], where a
and b are fitting parameters and θ is the
elevation angle.

[167, 168]

ℓlos(r) = Klos(r2 + h2)− αlos
2 , and

ℓnlos(r) = Knlos(r2 + h2)− αnlos
2

Lower frequency bands (sub-6 GHz):
the same probability models as [70].

[172]

ℓlos(r) = Klos(1 + rαlos)−1, and
ℓnlos(r) = Knlos(1 + rαnlos)−1

Lower frequency bands (sub-6 GHz):
plos(r) = min

(
18
r
, 1
) (

1 − e− r
36

)
+ e− r

36 .
[173]
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ℓ(r) ≈



ℓlos(r) with probability plos

ℓnlos(r) with probability pnlos = 1 − plos.
(57)

In [83,159], the authors included an outage state in addition to LOS and NLOS states to accu-

rately capture the sensitivity of mmWave communications to blockages. Generally, the model

in (57) is a building block for other sophisticated models depending on the approximation of

the LOS probability plos and the preferences for ℓlos and ℓnlos. For instance, the authors of [70]

introduced a composite model of (57) and the multi-slope UPM wherein the LOS probability is

mapped with representative models adopted by the 3rd generation partnership project (3GPP).

The LOS probability in [167,168] is approximated with a modified sigmoid function to character-

ize the air-to-ground (AtG) channel in UAV aided communication networks. A comprehensive

survey of channel modeling for UAV communications can be found in [169].

2.1.3 Cell Association Strategies

In microwave (µWave) multi-tier wireless networks, various layers of BSs are deployed, where

BSs of the ith tier Ψi (i = 1, . . . , K) transmit data with a given transmit power pi. In such a

context, shadowing is a slowly varying effect and the typical UE located at y commonly selects

the serving BS x0 based on the strongest average received power strategy (without fading) [24,58],

as

x0 = arg max
x∈Ψi, ∀i=1,...,K

piℓ(‖x− y‖), (58)

where ℓ(.) is the path loss function (see Table 2).

Expression (58) induces then an exclusion region of radius δ0 around y wherein no interfering

BS to x0 exists. That is, δ0 is expressed as

δ0 = min
x0∈Ψi, ∀j=1,...,K

{
ℓ−1

(
pi
pj
ℓ (‖x0 − y‖)

)}
. (59)

However, the association criterion in (58) may sometimes lead to heavily loaded BSs es-

pecially those transmitting with the highest power, i.e., macro BSs, which reduces the average

achievable rate and the efficiency of deploying small cells. An alternative way is then to associate

users with BSs providing the highest data rate [39, 174], which can be captured via a measure

of BSs load. Accordingly, the authors of [19] endowed BSs of each tier i by some adjustable

bias Bi, where the typical UE y selects the serving BS as that providing the maximum average
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power weighted by its bias, namely the biased cell association. (58) becomes

x0 = arg max
x∈Ψi, ∀i=1,...,K

piBiℓ(‖x− y‖). (60)

Bias Bi can then improve the capacity of HetNets by offloading users from overloaded cells

to lighter ones, namely, load balancing, which is similar to cell breathing through cell range

expansion (CRE) [175,176].

In the single-tier case where BSs send data with the same transmit power, using the as-

sociation strategy in (58) turns into associating users with their spatially closest BS, which is

equivalently named the nearest-neighbor cell association [17,58,71,136], or extended to the nth

nearest serving BS policy as [41, 55–59, 61]. Furthermore, considering system models incorpo-

rating various propagation groups, with various path loss exponents (model #6 in Table 2),

the association policy in (58) is equivalently referred to as the smallest path loss cell associa-

tion [69, 70, 159].

Last but not least, in environments where shadowing is expected to be less slowly-varying,

e.g., sensitive transmissions to blockages, interferers may be closer to the typical UE than the

serving BS and then no exclusion region in (59) is considered. That is, we need to consider the

shadowing effect Zx, which renders that the typical UE connects to the strongest BS instan-

taneously, namely the maximum instantaneous power-based cell selection, or equivalently the

max-SINR association policy [18, 24, 54, 137], such that

x0 = arg max
x∈Ψi, ∀i=1,...,K

piZxℓ(‖x− y‖). (61)

It is worth mentioning that SG-based modeling and analysis of wireless networks under the

previous association policy has taken two directions: i) the first by resorting to the Campbell

theorem (17) as in [18, 24, 54, 85, 86, 137], ii) the second by absorbing the shadowing effect into

the intensity of a new PPP as in [51,54,83,85,158,159], and hence (61) will be consistent with

(58).

2.1.4 Transmitter-Receiver Direction of Analysis

In downlink wireless networks, the analysis is generally focused on the received SINR at

the level of the typical UE served by one or more BSs [17–19, 54]. However, with the growing

interest in symmetric traffic applications, e.g., cloud-storage, the uplink performance analysis is

becoming increasingly crucial [20, 148–153]. Typically, analytical evaluation of uplink wireless
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networks is generally involved as compared to the downlink, due to the following fundamental

changes in the system model: i) The use of location-dependent power control, where each user

smoothly adjusts its transmit power to partially/totally invert the effect of path loss [20, 148]

and/or lognormal shadowing [149], which mitigates the uplink interference and reduces the

user battery consumption, ii) the dependency in the location of concurrent uplink users, which

renders the approximation of the users PP more challenging [20, 153].

Interestingly, the authors of [150–152], considered the paradigm of decoupled uplink-downlink

access (DUDA), where different association policies are considered for uplink and downlink

inducing that the typical UE will not necessarily be prompted to access the same BS for

both directions. The DUDA capability is particularly relevant in the scenario of emerging Het-

Nets [18, 19, 24, 39, 54], wherein users quality of experience (QoE) is affected by non-uniformity

in transmit powers and traffic loads in both downlink and uplink. In such a context, DUDA

enables to reduce the transmit power of edge users, which obviously helps to reduce the average

uplink interference by about 2 − 3 dB (see [152] and references therein).

Last but not least, the arts in [48,177] considered the IBFD capability enabling to transmit

and receive data simultaneously over the same frequency band, which offers the opportunity to

double the spectral efficiency at the expense of extra self interference. More discussions about

the use of SG for modeling and analysis of IBFD approach as a potential enabler for 5G/B5G

networks will be presented in Chapter 3.

2.1.5 Nodes Mobility

The mobility of transmitters and receivers is a crucial component in the design and per-

formance evaluation of modern wireless networks since it can impinge on traffic load per cell,

signaling protocols, handoff algorithms, and location update mechanisms. However, modeling

human mobility is generally challenging given its very complex temporal and spatial correla-

tion [178]. A comprehensive survey of user mobility models can be found in [179].

SG as a powerful mathematical tool has been explored in mobility-aware performance anal-

ysis of wireless networks. Based on the formalization of the handoff rate, there are typically

two directions of analysis adopted in the literature: i) the trajectory-based handoff, in which the

handoff event occurs as well as the mobile UE crosses a cell border, and then the handoff rate

is defined as the average number of crossing cell boundaries of different cells by a moving UE.

Hence, the accuracy of such a concept is biased by the efficiency of quantifying the statistical

distribution of cells boundary, which is generally consistent with the Buffon’s needle problem.

The work in [3] is the first to consider this approach in an SG-based framework, where BSs are
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modeled as a 2D PPP, the road system as a PLP, and the location of users as a 1D PPP on

the road layout (see Fig. 7). In [180], the authors considered a tractable model for user’s mo-

bility, namely the random waypoint (RWP), where a detailed description can be found in [179].

Next, the authors derived the distribution of UE location during one movement period, the

handover rate, and the average time of being served by a given BS, also known as the sojourn

time. Other representative works using the same approach in the context of HetNets can be

found in [181–184]. ii) The second direction is based on the association-based handoff where

the handoff event occurs as long as another BS verifies the association criterion better than

the current serving BS. That is, the handoff rate is defined as the probability of inducing a

handoff for a user served by a given BS and moving a random distance in a unit time [185,186].

A comprehensive tutorial of mobility-aware performance analysis is given considering spatially

random and deterministic grid-based topologies in [187].

2.1.6 Spatio-temporal Traffic Modeling

Emerging new data-intensive applications, such as multi-party video conferencing or mul-

tiplayer online games, along with latency-critical applications such as smart manufacturing,

remote control, or autonomous driving, suggest that the integration of spatio-temporal traffic

dynamics in the analysis of 5G/B5G wireless networks will play an increasingly crucial role

in their design and deployment. Previous efforts have typically considered one aspect of traf-

fic: i) abstraction based on queuing theory, which primarily evaluates scheduling algorithms

and ignores the interaction of traffic with SINR statistics and hence with network geometry;

ii) SG-based analysis, which usually does not consider the temporal arrival process of packets

and focuses on reliability or throughput in fully buffered networks, i.e. each link always has a

packet to send. Interestingly, traffic has recently been abstracted by spatio-temporal modeling

that combines tools from SG and queuing theories. In particular, the spatial domain of traffic

is captured by modeling nodes via an appropriate PP, while the temporal variation of traf-

fic is captured by the temporal arrival of packets grasped tractably by independent Bernoulli

processes [189, 212].

A review of the literature shows that spatio-temporal traffic modeling has been particularly

exploited to evaluate two important metrics of interest. First, delay that refers to the end-to-end

duration from packet initiation at the transmitter to successful decoding at the receiver [191].

This includes the delay in generating a packet, the delay in queuing it, and then the time it takes

for the packet to be successfully transmitted within the wireless access network and backhaul

links (including the delay incurred in the retransmission mechanism). Delay analysis through
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spatio-temporal modeling is generally challenging due to the following major issues: i) The delay

is dependent on the system throughput determined by the SINR, which in turn relies on the

network geometry and the complex channel fluctuations in large-scale networks. ii) The delay

is a long-term measure in which the topology of nodes remains static but random for a fairly

long time, which induces a coupling of interference across various time slots. iii) As part of the

MAC, a scheduling policy is performed on many queuing nodes in a distributed manner. So, if

a queue is idle, the related transmitter does not interfere with the other links; as a result, the

service throughput of those links increases allowing their queues to drain faster. Such coupling

between each queue and the state of all the other queues renders delay analysis less tractable.

To make the analysis feasible, most of the literature focuses on the queuing delay based on

the scheduling scheme, and the transmission delay related to the number of transmission trials

required until a packet is successfully decoded, while the delay in backhaul links is generally

omitted (A comprehensive example of backhaul link delay analysis can be found in [192]). Next,

the mean delay is evaluated conditioning on a given realization of the PP, which resorts to a

formulation based on the meta-distribution metric that can be derived by applying the Gil-

Pelaez theorem or the k-moment inversion. More discussions about the meta-distribution and

the Gil-Pelaez technique are brought in the sequel.

Second, the emerging metric of age of information (AoI) that measures freshness (timely

updating) of the sensed data measurements of the IoT devices at the destination nodes. It is

typically defined as the time expired since the previous successfully received update packet at

the destination was generated at the source [193]. The requirement for timely updating actually

reflects a small average age of status update, i.e., minimizing time-average AoI, which can help in

the efficient design of freshness-aware IoT systems. It is worth mentioning that minimizing AoI

does not really correspond to maximizing the system throughput, nor guaranteeing a minimum

delay in receiving IoT measurements. Intuitively, throughput can be maximized by making

sensors send updates as quickly as possible, which can result in higher AoI because the status

messages will be pending in the communication system (overloading). In this way, reducing

AoI may improve the transmission delay. It is worth mentioning that optimal loading usually

requires a perfect balance between overloading the queue and keeping it idle.

Since characterizing the distribution of AoI based on spatio-temporal traffic modeling is

known to be notoriously difficult, efforts are mainly devoted to studying some of its easy-

constructed variants. For instance, i) work with a lower bound on the average AoI obtained

by ignoring the processing time at the source, which mean that a new update packet is in-

stantaneously generated by the source node [194], ii) consider the peak AoI that quantifies the
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maximum value of the AoI immediately before an update packet is delivered to the destination

node, thus yielding insights into the pessimistic values of the AoI [195, 196].

2.2 Stochastic Geometry Based Analytical Techniques

As discussed before, using non-PPPs helps to accurately capture the system behavior but

reduces tractability and mathematical flexibility, which requires resorting to efficient numerical

integration (e.g., Quasi Monte-Carlo integration method [106]), or even intractable approxima-

tions with limited impact on design insights [106, Equation (25)], [109, Equation (42)], [119,

Equation (22)]. Subsequently, we will focus on key approaches considered under the PPP seen as

the reference PP. We will also consider its finite version, the BPP. To the best of authors knowl-

edge, eleven techniques are reported in the literature, offering varying degrees of tractability,

accuracy, and mathematical flexibility.

To illustrate the key generative sequence steps of each technique, we consider the general

common definition of the received SINR at the level of the typical user located in y ∈ Rd from

a serving BS x0, as

SINR(x0; y) =
h/L(R0)
I +W

, (62)

where ℓ(.) = 1/L(.) is the path loss function (see Table 2). I is the power of the other-cell

interference normalized by the BS transmit power Ptx, and can be expressed as

I =
∑

k∈Ψ\{x0}
gk/L(Rk), (63)

where (xk) are BSs location modeled by a HPPP Ψ of density λ, x0 is the serving BS under a

given association strategy, Rk = ‖xk − y‖ is the Euclidean distance between the BS xk and the

typical user y, h and {gk}k are, respectively, fading coefficients of the serving BS and interferers,

and W is the noise power normalized by Ptx.

2.2.1 The Baseline Two-Step Approach

This is the most popular technique used in the literature to derive coverage probability in

(22). In fact, assuming Rayleigh 2 fading for the desired link, the approach consists on first com-

2. The Rayleigh assumption is generally supported by i) its better tractability and mathematical flexibility
incorporated into analysis [17–19,54], and ii) its ability to give a pessimistic version of the SINR distribution as
compared to more realistic fading models, e.g., Nakagami fading [143].
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puting the coverage probability by conditioning on R0 and next averaging w.r.t it. Accordingly,

for h ∼ exp(1), the coverage probability in (22) is simplified as

Pc(T) = P {h ≥ T L(R0)(I +W )} (64)

= ER0

{
P

(
h ≥ T L(R0)(I +W )

∣∣∣R0

) }
(65)

(a)
= ER0

{
LW (TL(R0))LI(TL(R0))

}
, (66)

where (a) follows from the Laplace transform definition and the independence between W and

I.

The expectation in (66) is generally expressed under the form ER0(ϕ(R0)) =
∫∞

0 ϕ(x)fR0(x)dx,

where the function fR0(.) reflects a unified framework of the BS association scheme [71]. Typ-

ically, when considering the nearest-neighbor cell association [17, 19, 58, 71, 136], fR0(.) is the

PDF of the random variable R0, as fR0(ξ) = 2πξe−πλξ2
. However, if the max-SINR association

is considered [18, 24, 54, 137], fR0(ξ) = 2πλξ. Besides, the Laplace transform of the interference

can be expressed via the PGFL theorem in (18) as [17, 71]

LI(TL(R0)) = exp

(
−πλEg

{∫ ∞

ϑ(R0)

(
1 − exp

(
−gTL(R0)

L(u)

))
udu

})
, (67)

where ϑ(.) captures the exclusion region of interferers. Typically, ϑ(x) = x in the nearest-

neighbor cell association, where interferers cannot be closer to the typical UE than the serving

BS. In the max-SINR association, no exclusion region is considered for interferers and ϑ(x) = 0.

Interestingly, (67) can be further simplified using variable changes as in [68, Equation (34)].

If interference signals are also experiencing Rayleigh fading, (67) will be simplified as

LI(TL(R0)) = exp


−πλ

∫ ∞

ϑ(R2
0)

dx

1 + L(
√
x)

TL(R0)


 . (68)

Despite the Rayleigh assumption on the intended signal and interferers, coverage probabil-

ity in (66) is generally expressed under an improper integral requiring a two-fold numerical

integration [17, Theorem 1]. Some efforts are made in the literature to derive closed-form ex-

pressions or approximations of the coverage probability. For instance, tractable expressions are

obtained in [17] by assuming the interference-limited regime or a path loss exponent equals to 4.

In [84], a more generalized closed-form expression is proposed assuming an integer value of the

path loss exponent. In [207], four approximation techniques are proposed based on the network
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operational regime. It has particularly shown that the optimal approximation is achieved by

combining the four techniques in accordance with their convergence properties.

2.2.2 Coverage Probability New Abstraction

To develop a closed-form expression of the coverage probability in (66), it has been proposed

in [204,205] to bound the upper endpoint of the integral in (66) by introducing the concept of

the paired coverage probability as in (32). That is, (32) is simplified as

Pc(Ts,Tq) = P

(
h1 {L(R0) ≤ 1/(WTs)}

IL(R0)
≥ Tq

)
=
∫ L−1(1/(WTs))

0
LI(TqL(ξ))fR0(ξ)dξ, (69)

which can be further simplified by considering common combinations of i) the standard path

loss function of path loss exponent α, ii) additive and constant thermal noise, and iii) the

nearest-neighbor cell association, as

Pc(Ts,Tq) =
1 − exp

{
−πλ

(
W
Ts

) 2
α F− 2

α
(Tq)

}

F− 2
α
(Tq)

. (70)

In [208], this technique has been considered to benchmark the performance of UDNs under three

representative scheduling schemes in terms of fairness and implementation complexity. Assuming

elevated BSs, closed-form expressions are obtained allowing to assess the network performance in

a more tractable and meaningful fashion as compared to the conventional definition of coverage

probability in (22).

2.2.3 The Relative Distance Process Based Approach

Based on the assumptions of: i) the standard path loss model with path loss exponent α, ii)

Rayleigh fading, iii) the nearest BS association policy, and iv) the interference-limited regime,

a new way is considered to derive the coverage probability in (64) via the RDP ΨR of the PPP

Ψ, defined as [198]

ΨR =

{
R0

Rk

∣∣∣∣∣xk ∈ Ψ \ {x0}
}

⊂ [0, 1] , (71)

where its intensity measure is derived based on (14), as in [141] : Λ(dr) = 2r−3dr.
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When ΨR is an IPPP, the PGFL can be expressed as

GIPPP
ΨR {f} = exp

(
−2

∫ 1

0

1 − f(r)
r3

dr

)
. (72)

In the general case, ΨR is not an IPPP, and then (64) is derived based on GIPPP
ΨR , as [141,

Lemma 1]

Pc(T) = E

{
P

(
SIR > T

∣∣∣∣∣Ψ
)}

(73)

= E

{
∏

y∈ΨR

f(y)

}
=

1

1 − log
(
GIPPP

ΨR {f}
) , (74)

where f(y) = 1/(1 + Tyα) due to the assumptions i)-iv) considered in this technique.

(73) is actually a special case of the k-th moment, since

Mk(T) = E

{[
P

(
SIR > T

∣∣∣Ψ
)]k} (a)

=
∫ 1

0
kuk−1F (T, u)du, (75)

where (a) comes from the meta-distribution expression in (24).

It is worth mentioning thatM1(T) is the coverage probability defined in (22). Moreover, using

similar steps from (73) to (74), the expression of the k-th moment Mk(T) in (75) can generally be

expressed under closed-form expression. However, reshaping the meta-distribution from Mk(T),

is an instance of the Hausdorff moment problem, which is to derive the inverse k-moment M−1
k .

For instance, in [198] two techniques have been considered. The first one is by inverting the

jω-moment via the Gil-Pelaez theorem [234], which resulted in less tractable expressions of the

meta-distribution requiring efficient numerical integration. The second technique is based on

approximating the meta-distribution with a beta distribution, where the design parameters are

fitted from the first and second moments. This approach has showed an impressive accuracy,

but remains relevant only for the measurements considered in study and may diverge for more

general setups. In [209], the authors proposed to reconstruct the PDF of the entire meta-

distribution defined over the interval [0, 1], by means of shifted Jacobi polynomials via Fourier-

Jacobi expansion. The obtained series expansion is infinite, where the coefficients are mapped

with the moments of P
(
SIR > T

∣∣∣Ψ
)

via the binomial expansion. The approach is promising, but

needs more investigation on the convergence conditions. In [210], the authors explored binomial

mixtures properties to obtain an approximation of the meta-distribution as a function of a finite

double sum of the moment sequence. That is, the accuracy of the approach increases with the
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length of the moment sequence, which requires however efficient numerical computation.

In [211], the meta-distribution analysis is generalized to PPs beyond the PPP, where the

k-th moment of the conditional success probability for a stationary PP can be inferred from

that of the PPP by using the same horizontal shift technique introduced in [139–141]. Further

extensions of the meta-distribution to other system setups may be found in [212–219].

2.2.4 Finite Networks Assumption

Following a review of the existing state-of-the-art works on modeling and analysis of finite

wireless networks, we can generally identify three streams of thoughts ordered in decreasing

tractability and mathematical flexibility. The first, considers a typical setup where the reference

receiver is located randomly in a compact C ⊂ R
2, while BSs are uniformly randomly distributed

in a disc [59] or a L-sided polygon [60] centered at the reference receiver. The second, extends

the first model by considering an arbitrarily-located reference receiver in the disc [220, 221] or

L-sided polygon of BSs [61]. The third setup considers an arbitrarily-located reference receiver

in an arbitrarily-shaped area that contains finite BSs [62].

As an illustration of the generative analytical background, we consider a typical scenario,

in which the reference receiver is arbitrarily located in a disk-shaped finite wireless network,

wherein N transmitting BSs are uniformly randomly distributed in a disc Cξ of radius ξ, i.e.,

Ψ is a BPP. The reference receiver is located at a distance 0 ≤ d ≤ ξ from the origin of Cξ and

interfering BSs are assumed to be exclusively located in an annular region A of inner radius rin

and outer radius rout from the reference receiver, such as 0 ≤ rin < rout < ξ. Fig. 11 illustrates

the typical realizations of Cξ and A. The density of the BPP is λ = N/πξ2, while the probability

of having k ≤ N interferers inside A is P {Ψ(A) = k} =
(
N
k

)
pk (1 − p)N−k, where p = |A∩Cξ|

πξ2 .

Given Rayleigh fading on the desired link, the coverage probability under such setup is

expressed as in (66), where R0 can be selected uniformly at random from the transmitting

BSs [59,222] (blue points in Fig. 11), or based on the nth nearest serving BS policy [59,61]. The

MGF of the interference can be expressed using similar sequence steps in [4, Page 9], as

LI(s)=
(

1 − p+ p
∫ rout

rin

fR(u)Eg
(
e−sg/L(u)

)
du
)N

, (76)

where s = TL(R0) and fR(.) is the PDF of the distance from the reference receiver to interferers,

73



Partie , Chapter 2 – Stochastic Geometry Based Modeling and Analysis of Wireless Networks

rout + d ≤ ξ d = 0

ξ < rin + d rin + d ≤ ξ < rout + d

Figure 11 – The typical realizations of Cξ and A where the square red points are interferers.

expressed as [222]

fR(u) =





2πu
|A∩Cξ| , rin ≤ u ≤ rmax

2u
|A∩Cξ | cos−1

(
u2+d2−ξ2

2du

)
, rmax ≤ u ≤ rout,

(77)

where rmax = max (rin, ξ − d).

2.2.5 Nakagami Fading on the Desired Signal

Capturing small-scale fading with Rayleigh distribution is particularly justified in NLOS

propagation environments. However, in the context of UDNs, where the transmitter-receiver

distance is reduced, the likelihood of specular LOS paths increases, and the Rayleigh assumption

is no longer realistic. Similar observation is considered in the context of higher-frequency bands

where signal propagations are generaly sensitive to LOS and NLOS paths [159, 166]. In such

scenarios, Rician fading is commonly accepted to capture fading in LOS propagations [223,224],

where it can be well approximated by means of a more tractable Nakagami-m distribution.

Also, the Nakagami assumption can actually be seen as a gamma distribution since X2 is

gamma distributed when X is Nakagami distributed, which improves analytical convenience.
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We now assume that the desired link h follows a gamma distribution with shape parameter

m and scale parameter θ, (64) simplifies then as

Pc(T) = ER0,I,W





Γ
(
m, T

θ
L(R0)(I +W )

)

Γ(m)



 (78)

(a)
= ER0





m−1∑

k=0

(−1)k

k!

[
sk

dkLI+W (s)
dsk

]

s= T
θ

L(R0)



 , (79)

where (a) follows from the expansion of the upper incomplete gamma function as Γ(m, x) =

Γ(m)e−x∑m−1
k=0

xk

k!
.

The computation of coverage probability in (79) requires then a prior evaluation of the kth

derivative of LI+W (s). Assuming the interference-limited regime, i.e., LI+W (s) ≃ LI(s), several

frameworks have been proposed in the literature to derive or approximate the kth derivative

of the Laplace transform of the interference. For instance, an approximation via Taylor expan-

sions is considered in [225]. In [226–228], The authors proposed the use of the Faà di Bruno’s

formula [229], where an alternative formulation under the Bell polynomials is used in [71]. Also,

a recursive-technique is proposed in [228, 230], where the expression of the kth derivative is

transformed to a lower triangular Toeplitz matrix with positive entries. However, reducing anal-

ysis to the interference-limited regime can be seen as less efficient in scenarios where thermal

noise is a key player in the network performance, e.g., higher-frequency bands. Interestingly, an

alternative framework based on the Alzer’s lemma is suggested in [69, 156], which enables to

derive a relatively tight approximation of coverage probability, as

Pc(T) ≈ ER0

{
m∑

k=1

(−1)k+1

(
m

k

)
LI (ks) LW (ks)

}
, (80)

where s = βT

θ
L(R0) and β = Γ(1 +m)

−1
m .

It should be noted that this framework is generally suitable whenever the desired link is

experiencing a fading model of the form [225, Theorem 1], P {h > u} =
∑
n∈N e−nu∑

k∈N anku
k.

2.2.6 The Factorial Moment Based Approach

Considering the max-SINR association policy, the authors of [52, 231–233], conceived the

coverage probability experienced by the typical UE y w.r.t. all BSs x ∈ Ψ, as the probability

that the kth smallest BS in terms of SINR meets the required target T. In other words, the

typical user is in coverage if at least k BSs meet the required SINR target. Formally,
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P
(k)
c (T) = P






∑

x∈Ψ

1

(
SINR(x; y) > T

)
 ≥ k



 . (81)

Let’s denote by n ≥ 1, the number of BSs with SINR greather than the required threshold.

Next, the authors introduced a key quantity of interest, namely the factorial moment measure

Sn(T) of the SINR process [50], defined as the average number of ways that the typical UE can

be associated to n different BSs. Formally, it can be expressed as

Sn(T) = E





6=∑

x1,...,xn∈Ψ

1

[
n⋂

i=1

SINR(xi; y) > T

∣∣∣∣∣xi ∈ Ψ

]
 . (82)

Interestingly, (81) can be simplified via the famous inclusion-exclusion principle [52, 231–233],

as

P
(k)
c (T) =

∞∑

n=k

(−1)n−k
(
n − 1
k − 1

)
Sn(T). (83)

The sum in (83) is actually finite since nT/(1 + T) needs to be lowered by 1 as demonstrated

in [4, Proposition 6.2]. That is, (83) is simplified as

P
(k)
c (T) =

⌈1/T⌉∑

n=k

(−1)n−k
(
n− 1
k − 1

)
Sn(T). (84)

The computation of the k-coverage probability in (84) requires then a prior evaluation of

Sn(T) for n ≥ k, which can be derived via higher order Campbell’s theorem as in [52, Theorem 6]

[233, Theorem 7]. It is worth mentioning that despite the analytical relevance of technique #6

and its ability to reflect several connectivity scenarios of the typical UE, it provides however

less-tractable expressions of coverage probability and requires generally a thorough in-depth

knowledge of the factorial moment measure and its higher order Campbell’s theorem.

2.2.7 The Plancherel-Parseval Approach

For the sake of further generalization, so that the performance evaluation would not be

limited to a particular fading distribution that is only valid in some operational regimes, the

authors of [4, 5, 16, 17] considered the Plancherel-Parseval theorem [4, Lemma 12.2.1] to derive

an exact expression of coverage probability regardless of the fading model. That is, assuming a
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generalized fading distribution on both the desired link and interferers, the coverage probability

in (65) becomes,

Pc(T) = ER0

{∫ ∞

−∞
LI(2jπL(R0)Ts)LW (2jπL(R0)Ts)

Lh(−2jπs) − 1
2jπs

ds

}
. (85)

2.2.8 The Gil-Pelaez Inversion Approach

An alternative way to incorporate generalized fading, is by using the Gil-Pelaez inversion

theorem [234], in which the cumulative distribution function (CDF) FX of a random variable

X can be expressed based on the characteristic function ΦX(ω), as

FX(x) =
1
2

− 1
π

∫ ∞

0

Im(e−jωxΦX(ω))
ω

dω. (86)

Relevant applications can be found in [83,159,198,235], where the coverage probability in (64)

is reformulated as

Pc(T) = ER0,h,W

{
PI

(
I ≤ h

TL(R0)
−W

∣∣∣∣∣R0, h,W

)}
(87)

=
1
2

− 1
π
ER0

{∫ ∞

0
Im

(
Φh(

−ω
TL(R0)

)ΦW (ω)ΦI(ω)

)
dω
ω

}
, (88)

where the characteristic function is obtained as

ΦI(ω) = exp

(
−2πλ

∫ ∞

ϑ(R0)

[
1 − Eg

{
exp

(
jωg

L(u)

)}]
udu

)
, (89)

such that ϑ(.) is the function considered in technique #1.

2.2.9 The Laplace Transform Inversion Approach

Another inversion technique to derive the PDF of a random variable X, is by considering

the Fourier inversion theorem, also known as the Laplace transform inversion [51, 59, 237, 290],

the characteristic function inversion [86, 238], or even the MGF inversion [224]. Generally, the

PDF fX(.) of X is obtained via the Bromwich contour inversion integral, as

fX(y) = L−1 {LX(s)} =
1

2πj

∫ γ+j∞

γ−j∞
LX(s) eysds, (90)
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where γ is a real constant such as the contour of integration runs from γ− j∞ to γ+ j∞ along

a straight line and lies to the right of all the singularities of LX(.).

As for the CDF of X, it can be derived equivalently as

FX(x) =
∫ x

0
fX(y)dy = L−1

{
LX(s)
s

}
(x). (91)

That is , the coverage probability in (87), simplifies then as

Pc(T) = ER0,h,W

{
L−1

{
LI(s)
s

}(
h

TL(R0)
−W

)}
. (92)

Similarly to previous inversion techniques, this approach derives exact expressions of coverage

probability under generalized fading distribution, but requires involved analysis with limited

design insights [233]. A more flexible version is to resort to the characteristic function inversion

enabling to avoid contour integration as illustrated in [86, 238].

2.2.10 The Interference Approximation Approach

An alternative way to derive the PDF of the interference without resorting to previous

less tractable inversion techniques, is to approximate the interference behavior [23]. Two main

approaches are considered in the literature. The first one, is by considering the interference

contribution from only some specific transmitters based on the adopted association policy. For

example, the k dominant interferers in terms of the recieved power are considered when assum-

ing max-SINR association criterion [43], while the k-nearest interferers are considered in the case

of the nearest [173] or the nth nearest neighbor association policy [220]. This approach enables

actually to derive an upper bound of coverage probability, where bound accuracy increases with

increasing path loss exponent to justify ignoring the contribution of distant interferers [23]. The

second approach is by approximating the distribution of the other-cell interference via well-

known distributions with parameters fitting the essential physical parameters that affect inter-

ference. Typically, the authors of [239] showed that the interference behavior can be captured

by the family of α-stable distributions, while in [240], interference distribution is approximated

via gamma distribution.
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2.2.11 MGF-based Average Rate

As has been discussed in (26), average ergodic rate is commonly mapped to coverage proba-

bility via integration over the positive real axis (Fig. 4). Such approach reduces the use of time-

consuming simulations, but requires however the computation of multi-fold numerical integral.

An alternative approach is proposed in [241] to derive the average ergodic rate by consider-

ing general fading distributions and without necessarily going through the coverage probability

expression. A qualitative and quantitative comparisons of the MGF-based framework with the

coverage-based conventional approach can be found in [68]. Typically, using [241, Lemma 1],

the average ergodic rate in (25) can be simplified as

τ = ER0,W



E



log


1 +

h
WL(R0)

1 + I
W



∣∣∣∣∣R0,W







 (93)

= ER0





∫ ∞

0
LW (s)

LI(s)
(
1 − Lh

(
s

L(R0)

))

s
ds



 . (94)

Next, the framework was widely adopted in the literature. For instance, the art in [242]

evaluated the uplink average ergodic rate when considering representative scheduling schemes

in terms of performance and implementation complexity. In [243], the downlink average ergodic

rate is investigated under the scenario of multiple cell association in UDNs environment.

2.3 Chapter Summary

Table 3 summarizes the eleven techniques commonly used in the literature to evaluate main

performance metrics of wireless networks under the PPP/BPP abstraction. We examined in

particular a mapping of these techniques with various association schemes considered in the

literature, as well as illustrated the required fading model for each technique.
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Table 3 – Key analytical techniques used in wireless networks performance evaluation under the PPP/BPP
abstraction.
Analytical
techniques

Analytical
accuracy

Analytical
complexity

Distribution
of fading power on

Cell association policies

Desired
link

Interferers
Strongest
average
received power

Nearest-
neighbor
association

Biased
cell
association

Max-SINR
cell association

The nth nearest-
neighbor
association

Smallest
path loss cell
association

Technique #1 Approximation Low Rayleigh Generalized [24, 58]
[17, 58]
[71, 136]

[19, 175]
[176]

[18, 24, 54]
[137]

[57, 58]
[69, 70]
[159]

Technique #2 Approximation Low Rayleigh Generalized -
[204, 205]

[208]
- - - -

Technique #3 Approximation Medium Rayleigh Generalized - [141, 198] - - - -

Technique #4 Approximation Medium
Rayleigh Generalized - - - - [59, 61] -
Nakagami Nakagami - [220] - - - [221]

Technique #5

Taylor: Approx.
Faà di Bruno: Exact
Bell polynomial: Exact
Toeplitz matrix: Exact
Alzer’s lemma: Approx.

Medium Nakagami Generalized [228]
[71, 156]

[230]
[226, 227]

[228]
- - [156]

Technique #6 Exact High
Rayleigh Generalized - - - [231, 232] - -
Generalized Generalized - - - [52, 233] - -

Technique #7 Exact High Generalized Generalized - [17] - - - -
Technique #8 Exact Medium Generalized Generalized - [198, 235] - [83, 159] - [159]
Technique #9 Exact High Generalized Generalized - [224] - [86, 237] - [238]

Technique #10 Approximation Low
Nakagami Nakagami - [173, 240] - - [220] -
Generalized Generalized - - - [239] - -

Technique #11 Exact Medium Generalized Generalized - [242] [68] - [243] -
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Chapter 3

STOCHASTIC GEOMETRY FOR 5G/B5G

WIRELESS NETWORKS

In this chapter, we will review key aspects and challenges of emerging RAN architectures for

5G/B5G, and subsequently outline major state-of-the-art contributions which, based on SG, can

evaluate the key properties of these promising RAN architectures. Also, we will review modeling

challenges to capture the properties of 5G/B5G key emerging technologies, and highlight the

penetration degree of SG in modeling and analysis of their fundamental attributes.

3.1 Stochastic Geometry and Promising RAN Architec-

tures For 5G/B5G

3.1.1 Terrestrial Heterogeneous Networks

Adding new macro BSs in a homogeneous and regular fashion is typically constrained by

increased deployment costs, in addition to heterogeneity in site location availability and users

demand. An alternative strategy is to consider the deployment of HetNets, where several classes

of low-power and low-cost nodes are deployed in poorly covered small areas or traffic hotspots,

overlaid within macro BSs.

The key aspects of a generative SG model consists of K overlaid tiers of BSs, where the

BSs of each tier are characterized by some distinctive marks (e.g., transmit power, connectivity

threshold, BS density, backhaul type) and the locations of each tier nodes are modeled with

a specific PP. Typically, a regular or repulsive PP for macro BSs and clustering PPs for low-

power cells [64, 65]. For instance, the downlink SINR of HetNets is evaluated under various

BS association policies and fading models in [18, 19, 24, 54, 232, 243]. The uplink analysis of

HetNets is studied in [244–246]. Also, given the heterogeneous attributes of BS transmit power

in HetNets, the typical UE may be associated to different BSs in uplink and downlink, i.e.,

DUDA. Further analysis of DUDA in the context of HD HetNets can be found in [150–152],
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while DUDA in the context of IBFD HetNets is given in [177] and the references therein. One

important use case of small cells in HetNets is to support overloaded macro cells. That is, the

impact of CRE on the performance of HetNets is assessed in [137,175,176]. Last but not least,

the question of mobility is also crucial in HetNets where it is generally governed by several

tradeoffs. For example, a mobile UE in HetNets will suffer from frequent handovers, which may

increase call drop rate and service delays. However, adding more low-power cells increases the

average number of lightly loaded BSs and then reduces interference [247], which can reduce

handover failure rate. In all cases, incorporating mobility is very challenging given the complex

behavior of UEs movement [178, 179, 187]. Further analysis of mobility-aware HetNets can be

found in [181,182,184–186].

3.1.2 Non-Terrestrial Networks

A promising frontier for terrestrial HetNets is by extending their deployment to the sky

via UAVs [248, 249]. In fact, given their distinctive features, UAVs can be quickly deployed to

support coverage in isolated regions and capacity of terrestrial HetNets during flash crowded

events. Also, UAVs can even support lightly loaded networks, where the few active users can

be served instead by UAVs and then enable some terrestrial macro BSs to switch into idle

mode [136, 137, 247], which improves EE and interference mitigation. Sometimes and due to

their limited storage and processing capabilities, UAVs may be required to operate as mobile

aerial relay nodes (RNs) for ground UEs and BSs [250]. A comprehensive survey about UAV-

aided cellular networks can be found in [31]. However, despite the benefits of UAVs as flying

nodes, several new challenges are introduced. Among them, the AtG propagation model, which

is no longer similar to popular terrestrial models due to UAVs operational altitude and their 3D

mobility. The widely used AtG model is typically proposed in [167, 168], and a comprehensive

survey about channel modeling for UAV-assisted communications is brought in [169]. Also, given

their technical constraints combined with ground UEs QoS requirements, optimal placement of

UAVs is another chalenging task, which may include UAVs trajectory optimization [251], altitude

optimization [168,252], flight time optimization [253], and UAVs density optimization [254].

Based on SG and its inherent PP theory, spatial locations in UAV-aided wireless networks

are totally or partially modeled as randomly distributed according to a PP. This approach

is followed in [255], where a unique UAV is assumed to serve randomly scattered terrestrial

UEs, among them some random underlay D2D UEs. In [220], a finite network of UAVs whose

locations are modeled as a uniform BPP is considered. Assuming Nakagami-m fading for all

wireless links, a general expression of the downlink coverage probability is derived by using the
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analytical technique #4 and approximations were next made using the dominant interferer-based

approach in technique #10. In [256], UAVs and terrestrial BSs are distributed according to two

independent PPPs, while terrestrial UEs are modeled by a PCP around the vertical projections

of UAVs. In [257], UAVs are aimed to assist public safety networks, where the location of ground

BSs surviving after natural disasters are modeled as an independent thinned PPP, while UAVs

form a PCP around the locations of damaged BSs. Interestingly, the uplink of UAV-assisted

networks is studied in [258], the performance of a UAV backhaul link via ground BSs is evaluated

in [259], and the performance analysis of multiple-input and multiple-output (MIMO) combined

with NOMA in UAV-aided networks is brought in [260].

3.1.3 UDNs via Infrastructure Densification

Infrastructure densification is envisioned as the workhorse for ubiquitous coverage and ca-

pacity improvement in 5G/B5G networks [261–263]. It can be typically realized by adding new

transmitters in the area of interest, or by simply increasing the average number of antennas

per transmitter/receiver, i.e., MIMO transmissions. Many experts also consider some spatial

diversity technologies such as relays, meta-surfaces, and D2D communications, as a form of

densification since they allow decentralized opportunistic short-range communication [261]. In

the following, we will discuss the main technologies competing in terms of infrastructure densi-

fication in HetNets, as well as the key state-of-the-art contributions based on SG.

Small cells

Adding small cells is a common way to emerge from HetNets to UDNs. Several challenges

are, however, brought into analysis. For instance, the question of association policy is a key

concern, where UEs can access small cells without any logical restriction, namely open access,

and hence the need to judiciously adjust cells load via CRE [175, 176] and interference via

intercell interference coordination (ICIC) [264]. Also, access to small cells can exclusively be

given to some specific UEs belonging to a closed subscriber group (CSG), namly closed access,

or consider an hybrid access scheme, in which some additional UEs not registered in the CSG

can also access the cell along with registered UEs [267]. Typical challenges may also include, the

scaling law of network performance with infrastructure density [33,70,71,162,164,165,172,262]

and qualitative and quantitative comparison between adding new cells, using multi-antenna

transmissions, or increasing macro cells storage capacity [265, 266]. More discussions about

other representative challenges are given in [261–263].
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Infrastructure sharing

A new viable business model for infrastructure densification is by allowing concurrent op-

erators share their mutual infrastructure [268]. This paradigm is expected to lower the time to

market of each operator and reduce costs by an average of up to 40% and 15% in terms of capital

expenditure (CAPEX) and operational expenditure (OPEX) costs, respectively [269]. Questions

related to the optimal sharing strategy between operators, are actually the main concern of re-

search studies. Typically, two extreme variants of infrastructure sharing are considered: Passive

sharing, wherein operators can only share site location and common operation costs, while each

operator installs and maintains its own equipment, and active sharing wherein operators share

their network physical infrastructure and have access to it on the basis of an agreed resource

allocation strategy.

Based on the tractability of SG, several mathematical frameworks and PP models have been

investigated to quantify the benefits of infrastructure sharing. For instance, the authors of [132]

evaluated the goodness-of-fit of some realistic shared-infrastructure networks with various ag-

gregative PP models, where they revealed that LGCP can serve as a universal model to fit

realistic multi-network empirical data. In [72], infrastructure sharing is evaluated under a setup

of one buyer operator and multiple seller operators, where the aim of the study is to define an

optimal buying strategy to meet a target QoS requirement with reduced costs. In [73–75], spec-

trum sharing between several operators is studied, particularly at mmWave frequencies where

antenna beamforming, transmissions sensitivity to blockages, and operators cooperation, can

help to mitigate inter-operator interference [270]. In [76–78] both spectrum and infrastructure

sharing are investigated.

Multiple-input multiple-output systems

In conjunction with adding new cells and using higher frequency bands, MIMO technol-

ogy is considered as a key component in the race towards higher data rates in 5G/B5G net-

works [261–263]. MIMO is usually used to increase spatial diversity and combat channel fading,

which enhances the reliability of the reception. Alternatively, fading can be seen as a source of

increasing the degrees of freedom in MIMO systems. That is, the receiving antenna array can

retrieve independent information streams with sufficiently different spatial signatures, which

helps improve data rate. This technique is referred to as spatial multiplexing. The third popular

use case of MIMO is precoding or multi-flow beamforming, wherein the same information sym-

bol is sent by each of the transmitting antennas with appropriate phase and gain weighting, so
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that the signal power is maximized at the receiver by constructively adding signals emitted by

different antennas. Accordingly, channel estimation and symbol detection is a key challenge in

MIMO systems.

Benchmarking system-level performance of MIMO techniques with conventional single-antenna

channels is an another important concern in the state-of-the-art research works. For instance,

MIMO spatial multiplexing technique in the case of a single-tier network is studied in [275].

The analysis of MIMO in the context of HetNets can be found in [203,228,240,276,277]. MIMO

for uplink cellular networks is investigated in [245, 278]. The interpaly between cell selection

bias and MIMO in the context of load-aware networks is analyzed in [226,228,279]. Interference

mitigation in a co-channel deployment of small cells is studied in [280] through spatial blanking,

i.e., tuning the directionality of MIMO channel vectors. Interestingly, the contribution of com-

bining MIMO with the merits of other efficient technologies is investigated in [281] for IBFD

communications, in [282] for NOMA systems, and in [283] for mmWave cellular networks .

Multi-hop relays

One practical limitation of densifying HetNets via fully-functioning new cells is the com-

plexity of provisioning all new cells with a dedicated wired backhaul connection. One proposed

solution is to consider the deployment of RNs between BSs and cell-edge UEs [285]. That

is, several relaying protocols have been investigated by the research community. For instance,

amplify-and-forward (AF) RN, decode-and-forward (DF) RN, also known as L2 relay, and L3

RN, envisioned to support almost similar capabilities as small cells but without the need of a

wired backhaul connection. Several use cases of RNs are assessed in the literature. For instance,

RN with IBFD capability is surveyed in [286]. Cooperative RNs to create spatial diversity are

investigated in [287]. In [288], cooperative RNs can be equipped with buffers to store received

packets and resend them when optimal connectivity conditions are met.

Using methods from SG, several research works have considered analytical performance

evaluation of relay-aided wireless networks. For instance, a novel analytical framework for the

analysis of outage probability in the regime of high SNR and low BS density is proposed in [289].

The paradigm of SWIPT with cooperative relaying is investigated in [290,291]. Quantifiying the

performance gain acheived when using RNs in HetNets is studied in [292]. In [293], a flexible

cell association scheme is proposed, where some bias coefficients are introduced to prioritize the

association of the typical UE with single- or multi-hop links, and then optimize the overall end-

to-end coverage and rate. Interestingly, the performance of IBFD relay-aided cellular networks

where BSs and RNs are equipped with MIMO antennas, is investigated in [294].
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The promising approach of metasurfaces

Despite relatively lower costs and easy deployment of RNs as compared to macro and small

cells, extensive deployment of RNs in UDNs can increase costs in view of their inherent power

consumption and OPEX costs. Recently, a radically new wireless communication paradigm has

been proposed [30,295,296], wherein some software-controlled metalic reflectors made of low-cost

passive elements, i.e., metasurfaces, are judiciously placed in environment objects and controlled

in order to minimize the multi-path profile, and then enhance the performance of edge users.

Metasurfaces are actually equipped with atomic elements exhibiting a periodic texture, namely

meta-atom patterns, where the control of their geometrical characteristics allows re-engineering

the direction of impinging EM waves. In other words, the channel model is no longer treated

as a probabilistic process, but as a software-defined measure due to programmable wireless

environment via metasurfaces [296].

Quantifying the performance gain of a wireless network with software-driven metasurfaces

is particularly done through extensive simulations (see [296–298] and the references therein).

However, analytical evaluation based for example on SG and the theory of PPs is not available.

Some initial efforts are actually considered in the literature [298], where objects coated with

reconfigurable metasurfaces are uniformly and randomly scattered in the 2D plane. Next, the

probability that the typical object can act as a reflector is derived consistently with the Snell’s

law of reflection. The analytical framework is promising and may constitute the workhorse to

develop a more general tractable approach that enables to derive performance metrics (e.g.,

coverage probability, ergodic rate) of a metasurface-aware wireless network.

Device-to-device communications

Cooperative communications via fixed terminal relaying can bring substantial improvements

in wireless networks [287]. However, with the drastic growth in UE’s density and their un-

predictable complex movement [178], the paradigm of cooperative communications via D2D

communications is considered. Comprehensive surveys about D2D communications underlaying

cellular networks can be found in [299,300].

SG has been extensively explored in modeling and analysis of D2D communications. For

instance, the crucial question of spectrum sharing in D2D communications is investigated in

[301,302]. Also, since neighbor D2D UEs are more likely to be in prominent LOS transmissions,

the authors of [303] evaluated network performance under Rician small-scale fading. Due to many

technical challenges when deploying D2D communications in licensed bands, traffic offloading
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via D2D in unlicensed bands is considered in [304]. The tendency of D2D UEs towards clustering

is captured via PCP in [154, 155], where coverage probability and area spectral efficiency are

next derived under several content availability scenarios. Last but not least, uplink analysis of

D2D communications is provided in [305], the benefits of combining IBFD with the merit of

underlaid D2D communications are evaluated in [306], the impact of massive MIMO on reducing

D2D-to-cellular interference is studied in [284], and the performance of D2D communications

when considering aerial access points is available in [255].

3.1.4 Cloud Radio Access Networks

Albeit the expected benefits of infrastructure densification, there are still many notable lim-

itations. For instance, CAPEX and OPEX costs are steadily growing with densification [45].

Also, interference is expected to be more critical, which demands an aggressive frequency reuse.

The question of mobility is also crucial due to reduced cells size and heterogeneity in neighbor-

ing cells, which requires proper load balancing and smooth handover schemes. An innovative

paradigm to address such challenges, is to consider C-RAN architecture, in which the baseband

units (BBUs), responsible of scheduling and data processing, are separated from radio units,

and pooled farther away in a centralized data center equipped with the potential of cloud com-

puting. Remote radio heads (RRHs) are connected to BBUs via a dedicated high-speed and

low-latency links, e.g., radio over fiber, namely the fronthaul link. C-RAN can therefore man-

age simultaneously the BBU processing of a large geographical zone, which reduces costs (e.g.,

about 15% in CAPEX and 50% in OPEX [45]), facilitates load balancing, and enables the use

of ICIC techniques and coordinated multipoint (CoMP) transmission and reception, considered

as potential solutions in C-RAN [46]. One important variant of C-RAN is distributed antenna

system (DAS), in which BS antennas and inherent radio frequency (RF) components are de-

ployed far away from the BS to form a distributed antenna array, while the central intelligence

is kept at the BS level. A typical application of DAS is the reinforcement of indoor coverage as

aimed by the baseline work in [271].

Using tools from SG, the dynamics on the location of nodes in a C-RAN architecture, are

captured for analytical evaluation of network performance. For instance, a model of 4-layers

of nodes (UEs, RRHs, backhaul nodes, and data centers), modeled by independent PPPs is

considered in [307], where by assuming various representative costs (cost of nodes, processing,

and backhaul technology), the authors demonstrated that C-RAN based architectures can reduce

costs by at least 10%. In [308], the performance of a C-RAN with multiple antenna RRHs is

evaluated when assuming three degrees of collaboration between RRHs and their associated BS.
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In [309], the authors considered MHPP II to capture the repulsion behavior in RRHs location.

Interestingly, the contributions of some emerging techniques in the context of C-RAN is also

studied. Representative works can be found in [310] for C-RAN with ICIC techniques, in [311]

for C-RAN as an enabler for CoMP protocols, in [312] for IBFD transmissions, and in [313]

for NOMA-based communications. As for the DAS variant of C-RAN, outage probability is

investigated in [272], while spectral efficiency is studied in [273, 274].

3.1.5 Virtualized Radio Access Networks

Increased network densification, as well as the use of CoMP and ICIC techniques in a C-

RAN architecture, are expected to boost the overall network performance. However, they can

amplify the signaling and control overhead, which is expected to generate a critical burden at the

fronthaul level. One promising approach to alleviate the fronthaul bottleneck is by splitting the

control plane (C-plane) and the user plane (U-plane) of the radio link via RAN virtualization.

This capability is particularly supported by the software-defined networking (SDN) [314] where

U-plane (message forwarding) is deployed in a decentralized fashion, while C-plane (control and

radio resource management) is centralized in a controller. Typically, the C-plane can be provided

by high-power nodes operating at sub-6 GHz bands to guarantee large coverage and efficient

mobility schemes, while the U-plane can be provided by low-power nodes, namely phantom cells,

operating at higher-frequency bands [315,316]. Such low/high-frequency bands operation helps

actually to pave the way for joint URLLC and eMBB communications [317], which generally

requires a prior combining of the C-RAN paradigm with HetNets, also known as H-CRAN [318].

Based on the tractability of SG, several recent works have investigated the performance

gain under the setup of C-plane/U-plane split architecture. For instance, the authors of [319]

evaluated EE improvements under the phantom cell paradigm as compared to a macro-only

deployment. In [320], the authors studied offloading of the macrocellular layer through small

cells CoMP transmissions in a virtualized RAN architecture. In [321], a tractable mobility-

aware model is considered to quantify the expected performance gain with C-plane/U-plane

split. Further extensions of the analysis are considered in [322] by taking into account mmWave

sensitivity to LOS and NLOS transmissions, and in [323] by considering UAV-aided cellular

networks.
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3.1.6 Fog Radio Access Networks

Another promising paradigm to alleviate the fronthaul burden in H-CRAN is F-RAN ar-

chitecture, in which a considerable fraction of the cloud is deployed in close proximity to UEs,

which can be done through endowing edge terminals or third-party entities (e.g., parks, shopping

centers) with computing and storage capabilities [324]. There are generally two typical applica-

tions of such promising paradigm. i) Storing and computing capabilities, wherein computation-

intensive tasks are processed at the level of nearby fog servers and the result will be forwarded

back to end UEs, which enables using the released memory space at UEs to process other ser-

vices, and then enhance users QoE. ii) Content delivery and caching, wherein close fog servers,

also known in this context as helper nodes, are endowed with high capacity caches in order to

proactively cache popular internet content requested by end UEs [32].

Using tools from SG, most literature works on the analysis of F-RAN architectures, are

typically focused on quantifying the benefits of the caching capability of helper nodes when

assuming a network with limited backhaul [266] or fronthaul link capacity [325]. Typically, the

SG generative setup is to consider the location of helper nodes as modeled according to some

PP (e.g., PPP [266], β-GPP [325], MHPP II [326], PCP [155]), each node has a finite cache

capacity, wherein files are placed according to some popularity distribution function (e.g., Zipf),

and each cached file requires a minimum bitrate to meet the requirements of users QoE. That is,

the performance of a cache-enabled network is quantified by the average delivery rate, defined

as the probability that the typical UE can receive a downlink rate greater than the file bitrate

threshold, and also the requested file can be found in the local cache of the tagged helper node.

Otherwise, the file will be requested from the core network, and the average delivery rate of files

will be constrained by the backhaul/fronthaul link capacity.

Accordingly, two lines of research are adopted in the literature. The first, is related to the

content placement strategy, in which the problem can be stated as, how should we place the

files in the helper caches to optimize some performance metrics (e.g., the hit probability defined

as the probability that the typical UE may find the requested file at the tagged helper node)?

Representative works can be found in [327] for single-tier cellular networks, in [326] for D2D

communications, and in [328] for content placement policy in large-scale HetNets. The second

direction of research is related to the optimal delivery strategy, wherein the analysis is focused on

how to deliver the cache content at the user request in order to boost some performance metrics

(e.g., the average delivery rate). For instance, the average delivery rate is considered in [266]

to evaluate the question of adding more BSs or increasing the caching capability of already

deployed BSs. In [329], the content delivery protocol is studied in a HetNet scenario where the
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typical UE can request content from the nearest BS, RN, or cache-enabled UE. Interestingly,

the joint analysis of placement and delivery techniques is brought in [330, 331].

3.2 Stochastic Geometry in Higher-Frequency Bands

With the severe spectrum scarcity in commercial wireless networks running generally at sub-

6GHz frequency bands, researchers are steering new opportunities in higher frequency bands to

conceive a sufficiently higher bandwidth and hence meet the increased data rate requirements

for eMBB services [262]. In the following, we will outline the key aspects and challenges of using

SG to evaluate communications in typical higher frequency bands.

3.2.1 mmWave Communications

With wavelengths from 1 to 10 mm and frequency range from 30 to 300 GHz, mmWave

combined with advances in integrated circuit technologies enable to concentrate tens of minia-

turized and high gain antennas in small areas, which permits directional beamforming align-

ment [27,69,166]. That is, several changes need to be considered w.r.t. conventional mathemati-

cal SG frameworks available for modeling and analysis of µWave wireless networks. Typically, i)

nodes are equipped with directional antennas such that the antenna gain is maximized when the

steering angle is inside a given main lobe width [158,159], ii) the vulnerability of mmWaves to

blockages is captured by considering LOS and NLOS transmissions in addition eventually to an

outage state, in which the path loss is approximately infinite [83,159,332], and iii) the primacy

of the thermal noise w.r.t. the interference in mmWave communications [332], is captured by

assuming the noise-limited regime, i.e., SINR ≃ SNR.

Several representative research works are considered in the literature. For instance, coverage

probability and average rate in a single-tier mmWave network is studied in [69], where the block-

age effect is captured by a simplified LOS ball approximation (see Table 2). In [159], the previous

seminal work is further generalized by considering an outage state of the blockage model, with

emphasis on the noise-limited regime. The obtained theoretical results are also extended by

taking into account beamforming alignment errors and a multi-tier mmWave cellular deploy-

ment. In [38, 333], DUDA is investigated in the context of a HetNet where µWave macrocells

are overlaid by mmWave small cells. In [335], the feasibility of a backhaul based on multi-hop

mmWave transmissions in the context of UDNs is compared with other concurrent technologies

of wired and wireless backhauls. Also, the performance of a mmWave cellular network under
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various MIMO techniques is studied in [336].

3.2.2 TeraHertz Communications

Compared to mmWaves, directional beamforming alignment in teraHertz frequencies (from

300 GHz to 3 THz and wavelengths from 100 µm to 1 mm) is considerably more feasible

due to shorter wavelength, which suggests roughly the same system model changes as those

previously discussed in mmWave. One key exception is the increased propagation losses in the

teraHertz bands due to severe sensitivity to rain and resonant absorption in water molecules [28].

Accordingly, the path loss function in the case of a teraHertz propagation is generally revisited

by frequency-dependent molecular absorption effect with an emphasis on the LOS link as [160,

Theorem 4] [337]

ℓ(r) ≃
(

c

4πf

)2

r−αLOSe−k(f)r, (95)

where k(f) is the medium absorption coefficient at frequency f , αLOS is the path loss exponent

in the LOS region, and c is the speed of light.

Using tools from SG, couple of works are considered for modeling and analysis of systems

operating in teraHertz frequencies. For instance, the authors of [338, 339] studied the mean

interference and next the SINR by considering the key aspects that affect signal propagation in

teraHertz bands, e.g., high beamforming directivity and molecular absorption. In [340], coverage

probability and average rate are derived in a teraHertz-aided network, where it has been shown

the existence of a certain tradeoff between decreased coverage probability and improved average

rate.

3.2.3 Visible Light Communications

Using light-emitting diodes (LEDs) in license-free visible light spectrum from 400 to 800 THz

and wavelengths from 375 to 780 nm, VLC can offer simultaneous high brightness illumination

and high indoor data rate [29]. That is, information bits are modulated onto the intensity of

the emitted light, where the path loss function is expressed under the form #4 in Table 2,

such that the path loss exponent is mapped to the Lambertian emission order of the LED

light [341, Equation 11]. Also, given the reduced VLC wavelength combined with the vicinity

of receivers detection area, multipath fading is generally ignored in VLC networks.

Based on SG frameworks, we can discern three typical lines of research in the literature.
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i) Performance evaluation of multiuser VLC networks where the SINR statistics are evaluated

under the setup of a VLC-only system. For instance, the authors of [341] evaluated the down-

link performance of a VLC network under two extreme deployments of LED APs in the ceiling,

namely PPP and regular lattice. The analytical framework is promising but remains intractable

since the SINR distribution is expressed as a function of the Gram-Charlier series and Laguerre

polynomials requiring efficient numerical computation. In [342], a novel SG framework is devel-

oped by considering a 3D model and idle mode capability at VLC APs. Coverage probability

is next derived based on successive statistical equivalences of SINR, but the approach requires

fundamental revisions in the way to address the lack of a fading term in VLC networks. ii)

Optimizing hybrid VLC/RF networks such that a joint operation of both technologies is evalu-

ated. For instance, the authors of [343] considered a setup of several configurations of coexisting

RF/VLC networks to derive coverage probability based on techniques #5 and #8 in Tab 3.

In [344], the outage probability is first derived in a VLC/RF system by approximating the

interference as a sum of gamma distributions (technique #10 in Tab 3), and an optimization

problem is next formulated to optimize the density of VLC/RF nodes enabling higher EE under

an outage probability constraint. Furthermore, due to the inherent broadcast nature of VLC

networks, data transfer may be subject to fraudulent eavesdropping. Several arts have consid-

ered iii) secrecy enhancement in VLC networks, where the physical layer (PHY) is exploited to

prevent the information-theoretic security from interception [345–347].

3.2.4 Free-Space Optical Communications

Using signals with wavelength range in 785-1550 nm, free-space optical (FSO) communica-

tion is a laser beam communication technology for high data rate transmissions in a point-to-

point free space setup, where it can serve as a promising backhaul solution to avoid expensive

or not feasible deployments of wired connections [37, 348].

Despite the potential benefits of FSO communications, SG as a powerful analytical tool has

not been sufficiently leveraged in the evaluation of FSO networks due to several major modeling

challenges. To the authors’ knowledge, it is only recently that the first PPP abstraction model

has been leveraged in performance evaluation of FSO networks [349], where a scenario of SWIPT

through laser beams emitted from the ground to UAV-mounted BSs is considered. In fact, i)

FSO narrow beams require a perfect alignment of the LOS path, which can be problematic due

to building sway generated by some environmental factors. such feature needs to be captured

by a random process to be introduced into performance analysis [37]. ii) Urban FSO is very
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sensitive to weather conditions 1, which can be typically captured by an attenuation function

dependent on distance, rain, and snowfall rate [350,351]. iii) The FSO signal is also attenuated

by atmosphere molecular absorption dependent on the wavelength of the transmitted signal. iv)

Such signal can also be constrained by fluctuations in temperature and humidity gradients over

time, also known as scintillation or turbulence-induced fading. The universal model to capture

such turbulence conditions is to consider doubly stochastic fading models [37, 348, 352]. Last

but not least v) the FSO link is also subject to undesirable ambient noise caused by photons

radiations of sunlight [353].

3.3 Stochastic Geometry and 5G/B5G Enabling Tech-

nologies
3.3.1 Cognitive Wireless Networks

Cognitive radio (CR) is a promising technology to address the scarcity of the licensed spec-

trum. CR techniques ensure actually an opportunistic allocation of the available spectrum where

secondary users, also known as cognitive users, can scan and access the unused spectrum por-

tions at specific time or place without impairing existing primary users [354]. The literature is

rich in contributions dealing with the use of SG to evaluate the benefits of various spectrum

sharing schemes. The fundamental challenge actually is how to use SG tools to capture the

availability of unused licensed spectrum portions. One key approach is to consider geographical

regions where cognitive users are less likely to impair the performance of primary users.

The analysis of the literature shows that there are generally three generative ways to capture

such event: i) The guard zone approach [101, 355], in which the secondary user is allowed to

transmit as long as it is outside an exclusion region around primary users. The locations of

active cognitive users can be modeled for example by a PHP [101], or a MHP [355]. Such

coupling in the locations of active cognitive and primary users via exclusion regions renders the

analysis of interference very challenging as no tractable expression of the PGFL is available,

and then only some estimates of the aggregate interference are obtained. ii) The max-received

power approach [356], in which the process of active cognitive users is derived as an independent

thinning based on the probability that the maximum instantaneous signal power at the level of

a random secondary user and sent by active primary users is below a certain threshold. iii) The

outage probability approach [357], in which the location of active cognitive users follow a PPP

with a specific density in such a way to guarantee that the induced outage probability at the

1. Several techniques are considered to overcome such impairements, for example using a mmWave backup link
to supplement the FSO main link during adverse weather conditions [350], or using relay-assisted transmissions
where the overall FSO path is splitted into small paths with reduced losses [351].
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level of the primary network will not exceed a predefined threshold.

Furthermore, CR capability can be used beyond the conventional primary/secondary users

setup, typically as a promising technique for distributed interference mitigation in co-channel

deployments of HetNets [358]. That is, Femto BSs equipped with CR abilities, can sense the

spectrum usage in intra-tier and cross-tier layers and hence select the appropriate spectrum

sharing policy to avoid severe interference.

3.3.2 Non-Orthogonal Multiple Access Techniques

Compared to conventional orthogonal multiple access techniques where UEs are served in

orthogonal resource blocks, NOMA is introduced as an emerging technology enabling multiple

UEs to share the same time-frequency resource block [359]. One key variant is actually power-

domain NOMA [47], in which multiple UEs can use the same resource block but at different

power levels. That is, UEs are first ordered according to a measure of link quality. Next, the BS

superposes the UEs in the same resource block by allocating a fraction of the BS transmit power

to each UE so that the worst UE in terms of link quality is assigned the highest power coefficient.

In downlink 2 NOMA reception, successive interference cancellation (SIC) is implemented at each

UE in such a way that signals of weaker UEs are decoded and canceled from the observation,

while signals of stronger UEs are treated as noise.

Based on such key components of power-domain NOMA, several research works have lever-

aged SG for performance analysis of NOMA wireless networks. The key modeling choices are: i)

how to capture the cluster of UEs to be simultaneously served in the same resource block. Sev-

eral setups are considered in the literature, for example, consider only the case of two UEs,

typically two random UEs in the voronoi tesselation of the serving BS, i.e., random pair-

ing [361, 362, 364, 367], or selective pairing of a cell-center and a cell-edge UE [361–363, 368].

Some works assume a more general setup where the cluster is a constant number of UEs

(> 2) [370,371], a bounded random number of UEs modeled as PPP [365] or as PCP [360,369],

or even two layers of user group in a NOMA-based multicast setup [366]. ii) Which measure

of link quality to use in served UEs ordering. Due to its tractability, the common metric is to

classify UEs based on their distance to the serving transmitter [360, 361, 365, 370, 371]. Other

metrics is to consider the fading gain [362,368], the instantaneous signal power based on fading

and the path loss function [369], or the instantaneous signal power normalized by noise and

inter-cell interference power [369]. Also, iii) how to introduce the effect of SIC in the SINR for-

mulation. The generative approach is to introduce a fraction parameter (∈ [0, 1]) that reflects

2. In uplink NOMA, SIC is implemented at the level of the serving BS, where signals from strong UEs are
decoded and cancelled successively, while signals from weak UEs are considered as noise [47, 360].
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the accuracy of SIC [369].

3.3.3 In-Band Full-Duplex Technology

IBFD wireless nodes can transmit and receive data simultaneously at the same time/frequency

channel. Such capability is expected to double the spectrum efficiency at the expense of increased

residual self-interference (SI) between uplink and downlink [48]. SG has been extensively used

in the literature to quantify the performance gains achieved by IBFD capability [372–379]. The

key model change is actually to account for the SI power after performing cancellation, which

can be perfect, imperfect, or without prior knowledge of its effect.

Several models have been considered in the literature to capture such residual SI power gain.

The common practice is to consider a constant value dependent on the transmit power, which is

a typical scenario in digital cancellation techniques, where the SI intensity after cancellation can

be estimated [372–374,379]. However, in the context of other cancellation techniques where an

estimation of the risidual SI is not feasible, e.g., analog-domain or propagation-domain schemes

as pointed out in [372], the residual SI channel is generally modeled by a random variable,

e.g., Rician fading [377, 378], Nakagami-m fading [376]. For instance, modeling and analysis

of a wireless network with random combination of HD and IBFD nodes is studied in [373],

where it has been shown an enhanced success probability in HD-only networks, even under

perfect SI cancellation. However, IBFD-only networks, can outperform their HD peers in terms

of throughput due to higher resource utilization.

It is worth noting that the benefits of dense HetNets in terms of capacity improvements

are generally limited by the spectrum scarcity. Typically, IBFD as a frequency reuse technique

has been investigated in HetNets setup, where it has been reported that network throughput

can be maximized under HD-only or IBFD-only HetNets rather than using a combination of

them [372]. The problem of optimizing user association policy in IBFD HetNets with DUDA

scheme is evaluated in [376]. Also, due to less viable wired backhaul for small cells, IBFD is

investigated in [374,378] as a promising solution for wireless backhaul of small cells. Last but not

least, the potential of MIMO antennas to mitigate the extra interference introduced by IBFD

is analyzed in [377, 379], while the impact of equipping MIMO RNs with IBFD capability in a

cellular network with MIMO BSs is quantified in [375]. A common result is that BSs and IBFD

RNs need to be equipped with sufficiently large number of antennas to achieve the expected

benefits of IBFD capability.
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3.3.4 Physical Layer Security

The usual bit-level cryptographic protocols, requiring heavy overheads and intense coordi-

nation, can be generally compromised if eavesdroppers are equipped with convenient computing

capabilities. An alternative promising approach is to consider physical layer security besides the

conventional error correction mechanisms in such a way to impair the channel capacity of eaves-

droppers with limited impact on the QoS of legitimate users [49]. In fact, based on the Wyner’s

encoding scheme, a transmitter selects two rates, namely, the rate of codewords Rt and the rate

of confidential messages Rs, i.e., the secrecy rate. Reliable connection is actually achieved when

the instantaneous capacity at the intended receivers is greater than Rt, while a secrecy failure

event occurs when the instantaneous capacity at eavesdroppers is above Rt − Rs [380].

SG is typically harnessed to evaluate the impact of key system parameters on the physical

layer security of large-scale wireless networks. That is, the interplay between cell association

policy and the secrecy capability is investigated in [381–383]. Physical layer security in the con-

text of large-scale networks with NOMA is studied in [384], with MIMO in [385], and with D2D

communications in [386]. The sensitivity of mmWave communications to blockages is explored

in [387] to establish a trade-off between higher data rates and enhanced secrecy. The question of

secure communications in the context of a multiuser VLC network deployed in public areas under

a broadcast topology is investigated in [345–347]. There are generally four popular techniques

considered in the literature to enhance physical layer security. For instance, i) the artificial noise

approach in which some artificial noise is added to secret messages in order to make decoding

harder to eavesdroppers [385, 388]. ii) The secrecy guard zone approach in which confidential

messages are transmitted only if eavesdroppers are outside an exclusion region around legiti-

mate nodes [346,380,384]. iii) The friendly interference approach in which a friendly interference

is generated to jam the channel capacity of eavesdroppers with controlled impact on the QoS of

ligitimate users, e.g., exploit the generated interference by D2D communications [386] or by a

set of friendly jammers [389, 390]. iv) The sectorized transmission approach where confidential

messages are transmitted via directional antennas in order to reduce the likelihood of being

intercepted by eavesdroppers [380].

3.4 Chapter Summary

In this chapter, we outlined how SG has been considered to capture the properties of new

RANs and quantified the benefits of a number of 5G/B5G enabling technologies. The main

goal is to review the milestones established in the past decade in the usage of SG for wireless

networks and to predict the challenges in the upcoming decade in the light of 5G/B5G emerging
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paradigms.
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Chapter 4

A STOCHASTIC GEOMETRY BASED

APPROACH TO TRACTABLE 5G RNPO

We consider a 3D cellular network in which generalized shadowing and RNPO parameters

(antenna height, antenna tilt/azimuth, range expansion (RE)...) are incorporated into the cell-

selection model. Using tools from SG, we derive an equivalent 2D network in which no shadowing

and RNPO parameters are considered. Next, we derive coverage probability for a tractable

case-study network, and the regimes where coverage probability is maximized in addition to

the interference-limited one are investigated. An intermediary result is a closed-form expression

generator encompassing the Q-function based-expression in [17]. Numerical results confirm the

accuracy of our approximations.

4.1 Introduction

With the ongoing proliferation of data-hungry devices and applications, data traffic vol-

umes in the coming years are expected to be multi-fold higher compared to today’s levels. One

way to tackle this challenge is by deploying UDNs [261]. However, densification will result in

large coverage overlap areas, which increases the risk of other-cell interference and then reduces

the network performance and system capacity. Consequently, environment characteristics such

as shadowing, and RNPO parameters such as antenna height [71], antenna tilt/azimuth an-

gle [391]- [393] and transmit power biaising [19] are strongly required for the analysis of UDNs

performance since they affect directly the probability of LOS and NLOS connections and then

cells overlapping.

4.1.1 Related Works

Due to its tractability and ability to capture spatial averages, SG has emerged as a potential

mathematical tool for modeling cellular networks [17]. In fact, by ignoring shadowing and any
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RNPO parameter effect, the seminal work in [17] provides comprehensive understanding about

the behavior of UDNs performance. An important outcome is the SINR invariance property,

which states that the BS density increases to the point where the noise becomes negligible, after

which the SINR remains stable and independent of the BS density. However, using standard

path-loss model and ignoring RNPO parameters in more realistic scenarios has raised some

limitations [163], calling for an imperative revisitation of the model. Authors of [162] proved that

the SINR invariance property is no longer valid when using the dual-slope path-loss model. A

similar effect is reported in [71] for elevated BSs, and in [391] for a network using non-directional

antennas.

4.1.2 Motivation and Contribution

The motivation behind this analysis is then to find a tractable manner to study UDNs

performance when incorporating generalized shadowing and RNPO parameters into the cell-

selection model. Using tools from SG, we first i) develop a 3D-2D network equivalence where a

3D random cellular network with shadowing and RNPO parameters is stochastically equivalent

to a 2D network in which they are not considered. Next, for mathematical convenience, ii)

we focus on a case-study based on a H–LOS probability model. iii) The coverage probability is

then computed confirming that our expression is general enough to accomodate several previous

expressions. Next, iv) we investigate the scaling law of the optimal BS density that maximizes

the coverage probability. And finally, v) we develop a generator of closed-form expressions for

coverage probability under the standard path-loss model, encompassing the Q-function based

results in [17].

4.2 System Model and Assumptions

We consider a downlink cellular network, in which BSs are scattered randomly according to

a homogeneous PPP Φb ⊂ R
3 with density λb in [BSs/m2]. We assume that each BS is equipped

with directional antennas, has at least one connected user and transmits with a fixed power Ptx.

Denote σ2 the variance of the additive noise and SNR = Ptx/σ
2. We consider a realization of

RNPO parameters of interest: BS antenna elevation height measured in [m] and parametrized

by ξxh
, electrical/mechanical antenna tilt angle by ξxt, antenna azimut angle by ξxa and RE

by ξxb
. For each BS x ∈ Φb, we add independent 1 marks (hx, χx, ξx, αx, Tx), where for the link

1. We omit the dependence scenario here, e.g., ξx and αx may be correlated when a tuning of the RNPO
parameters ξx can impact αx by determining the link nature (LOS or NLOS) between a BS and the typical user.
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between x and the typical user located at O, hx denote the small scale fading assumed to be

exponentially distributed with unit mean, χx is the shadowing effect assumed to be arbitrarily

distributed, αx is the path-loss exponent, Tx is the SINR threshold of x, and ξx is the vector

ξx = (ξxh
, ξxt, ξxa, ξxb

) of RNPO parameters, such as the received power at O from the BS x ∈ Φb

is

Prx =
χxhxPtx

(Ψ (rx;αx; ξx))
αx
, (96)

where rx is the horizontal distance between x and O measured in [m], and Ψ(.) is a generalized

function to capture RNPO parameters combined with the path-loss function. If there is such a

function, it is reasonable to require of it the following properties: (i) monotonically increasing

such as Ψ(0, ., ξxh
= 0 2) = Ψ0 ≥ 1 at the origin O, this is in order to cover realistic bounded

path-loss models and ensure that the received power cannot exceed the transmitted one, (ii)

Ψ(rx; .; ξx) ≡ Ψ(r; .; ξ′
x) such as r =

√
r2
x + ξ2

xh
and ξ′

x is the vector ξ′
x = (ξxt , ξxa, ξxb

), (iii) the

mean value of the shot noise process is finite, i.e., from the Campbell’s theorem [4, Corollary

1.4.6.], we have

E




∑

x∈Φb

Prx



 = λbPtx

∫

R3

E {χx} dx
(Ψ(rx;αx; ξx))

αx
< ∞, (97)

The marked PPP, will be denoted, with a slight abuse of notation, also as Φb.

The proposed model is general enough to accommodate various choices of RNPO parameters

and path-loss models, e.g., if the power law path-loss is adopted and BS height is the only RNPO

parameter considered [71], ξx = ξxh
captures BSs height and Ψ(rx; .; ξx) =

√
r2
x + ξ2

x. When con-

sidering also tilt angle [392], azimuth angle [393] and RE bias [19], we have Ψ(rx, αx, ξx) =√
r2
x + ξ2

xh
[Gtilt (ξxt)Gazimut (ξxa)B (ξxb

)]
−1
αx , where Gtilt (.) is the antenna vertical radiation pat-

tern parametrized by ξxt , Gazimut (.) is the antenna horizontal radiation pattern parametrized

by ξxa and B (.) is the association bias parametrized by ξxb
.

2. ξx ≡ 0 is equivalent to no RNPO parameter considered on x, i.e., BS antenna is omnidirectional with 0
meter elevation and B(ξb) ≡ 1.
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4.2.1 Path Loss process with shadowing and RNPO parameters

We define the path-loss process with shadowing and RNPO parameters (PLPSR) of Φb, the

point process mapped from Φb on R+, as

Σ =
{
y = χ−1/αx

x Ψ(rx, αx, ξx), x ∈ Φb

}
. (98)

Moreover, in order to capture the SINR threshold distribution we consider the following inde-

pendently marked PLPSR

∆ = {(Σ, Tx), x ∈ Φb} . (99)

The following lemma gives the intensity measure of ∆, which generalizes several previous results

in [394] [86].

Lemma 1. The point process ∆ is a 1D independently marked PPP on R+ with intensity

measure

Λ∆(s, t) =
4πλb

3
E

{[
Ψ−1(sχ

1
αx
x ;αx; ξ′

x)
]3

1(Tx ≤ t)

}
, (100)

where Ψ−1 is the inverse function of Ψ w.r.t. the first argument.

Proof. By the displacement theorem [4, Theorem 1.3.9] and the Campbell’s theorem, ∆ is a

PPP with intensity measure

Λ∆(s, t) = λbE





∫

R3
1


Ψ(rx;αx; ξx)

χ
1

αx
x

≤ s, Tx ≤ t


 dx



 (101)

(a)
= 4πλbE





∫

R+
1


Ψ(r;αx; ξ′

x)

χ
1

αx
x

≤ s


1(Tx ≤ t)r2dr



 (102)

=
4πλb

3
E

{∫

R+

[
Ψ−1(su

1
αx ;αx; ξ′

x)
]3
1(Tx ≤ t)Pχx {du}

}
(103)

=
4πλb

3
E

{[
Ψ−1(sχ

1
αx
x ;αx; ξ′

x)
]3

1(Tx ≤ t)

}
, (104)

where (a) follows from the marks independence of the process ∆ and property (ii) of Ψ(.).

If we assume that Tx ≡ T is constant over all BSs of Φb. It is easy to mention from lemma 1

that for the defined RNPO parameters, ∆ is generally a homogeneous PPP with density

λ∆(s) = lim
t→∞

1
4πs2

∂Λ∆(s, t)
∂s

, (105)
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independent from s and proportionally related to E

{
χ3/αx
x

}
, e.g., when considering only height

(ξx ≡ ξxh
), we have λ∆ = λbE

{
χ3/αx
x

}
< ∞.

Definition 1. Similarly to [394, definition 1] and [86, definition 2], a 3D marked PPP Φb is

said to be equivalent in distribution to a 2D marked PPP Φ′
b if they generate the same 1D marked

PPP ∆ with the intensity measure Λ(s, t).

Proposition 1. The marked process Φb ∈ R3 is stochastically equivalent to a marked PPP

Φ′
b ∈ R

2 in which shadowing and RNPO parameters are not considered, i.e., χ′
x ≡ 1 and ξ′

x ≡ 0,

and endowed with marks T ′
x ≡ Tx whose distribution is

G′
s(t) =

1
4πs2λ∆(s)

∂Λ∆(s, t)
∂s

, (106)

and, the density of Φ′
b is expressed as

λ′
b(s) = 2sλ∆(s). (107)

Proof. The proof of proposition 1 is analogous to that of [394, proposition 4]. In fact, the

intensity measure of ∆′– the independently marked PLPSR of Φ′
b– when χ′

x ≡ 1 and ξ′
x ≡ 0 is

Λ∆′(v, t) = 2πE
{∫

R+
1(u ≤ v)1(T ′

x ≤ t)λ′
b(u)udu

}
= 2π

∫ v

0
G′
u(t)λ

′
b(u)udu

(a)
= Λ∆(v, t), (108)

where (a) holds if equations (106) and (107) are met.

If noise, small scale fading, and path-loss exponent are the same, we have then

SINR(x0) =

hx0χx0

(Ψ(‖x0‖,αx0 ,ξx0))αx0

∑
x∈Φb\{x0}

hxχx

(Ψ(‖x‖,αx,ξx))αx + ( 1
SNR

)

∣∣∣∣∣∣∣
λb

(d)
=

hy0y
−αy0
0∑

y∈Φ′
b
\{y0} hyy

−αy + 1
SNR

∣∣∣∣∣∣
λ′

b

= SINR(y0),

(109)

where
(d)
= denotes equivalence in distribution, x0 = arg maxx∈Φb

{
χx (Ψ(‖x‖, αx, ξx))−αx

}
and

y0 = arg maxy∈Φ′
b
{y−αy}.
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4.3 Coverage Probability Analysis

Now, for mathematical convenience and model tractability, we take a minor detour from

studying the stochastic equivalence between a 3D network with shadowing and RNPO param-

eters and a 2D network where they are absorbed into the model. In fact, we assume that the

equivalent PPP Φ′
b ∈ R2 is homogeneous λ′

b = λ, the SINR target is constant over all BSs T ′
x = T,

and the path-loss exponent α′
x is distance-dependent according to the transmission path (LOS

or NLOS) between BSs and the typical user, i.e., α′
x ∈ {αlos, αnlos} such as η = αnlos/αlos ≥ 1. We

consider that each BS x ∈ Φ′
b has a LOS path towards the typical user with a LOS probability

denoted by Plos.

4.3.1 Association Policy Under the H-LOS Probability Model

Since common LOS probability functions are build upon exponentially decreasing functions

[395] rendering analysis less tractable, we propose to approximate them by the following piece-

wise linear model, consistent with the models adopted by 3GPP [70] and dubbed here the

H–LOS model,

Plos(rx) =





1 if 0 ≤ rx ≤ Rlos

1 − rx−Rlos

Rnlos−Rlos
if Rlos ≤ rx ≤ Rnlos

0 if rx > Rnlos

, (110)

where Rlos is the maximum link distance between a LOS BS and the typical user such as there

are no nearer NLOS BS to the typical user, while Rnlos is the minimum link distance between a

NLOS BS and the typical user such as there are no farther LOS BS. Mathematically,

Rlos = max
x∈Φlos

{rx; rx < ry, ∀ y ∈ Φnlos} ,Rnlos = min
y∈Φnlos

{ry; rx < ry, ∀ x ∈ Φlos} , (111)

such as Φlos and Φnlos are the PPPs of LOS and NLOS BSs of Φ′
b respectively.

Fig. 18 shows the three regions of the network generated by the H–LOS probability model.

Note that Rlos and Rnlos are expanded by low shadowing effect and/or RNPO actions that expand

cells size (uptilt, increasing association biais, azimuth that avoid blockages...). Shadowing and

RNPO parameters are therefore absorbed into the 2D PPP but their effect is still captured via

the fluctuation of aggregated parameters Rlos and Rnlos.

The NLOS probability is obtained as Pnlos(rx) = 1 − Plos(rx), ∀x ∈ Φ′
b, and the path-loss
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Figure 12 – Slos and Snlos regions contain only LOS and NLOS BSs respectively, while Shlos contains a mixture
of the two with probability p(r) = 1 − r−Rlos

Rnlos−Rlos
for LOS BSs and 1 − p(r) = r−Rlos

Rnlos−Rlos
for NLOS BSs.

function as

ℓ(rx) =




r−αlos
x with probability Plos(rx)

Kr−αnlos
x with probability Pnlos(rx),

(112)

where K , R
αnlos−αlos

los is a parameter to ensure the continuity of the path-loss function as

in [162].

For positive reals m and R, we consider the following path-loss functions of interest 3

ℓ1(m; rx) = r−m
x and ℓ2(R; rx) =




r−αlos
x if rx ≤ R

Kr−αnlos
x if rx > R.

(113)

We consider the average power-based cell association policy. Since η = αnlos/αlos ≥ 1 and the

H–LOS probability model is adopted, the strongest BS is the nearest one in the regions Slos and

3. Note that ℓ(.) ≡ ℓ1(αlos; .) when αlos = αnlos, i.e., Rlos → ∞ or Rnlos → 0, and ℓ(.) ≡ ℓ2(Rlos; .) when
Rlos = Rnlos.
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Snlos, while it is not necessarily the case in the transitional region Shlos. To address this issue,

we then examine the distribution of distances between the typical user and the serving BS as

a result of two events: the transmission link type (LOS or NLOS), and the region to which the

serving BS belongs (Slos, Snlos or Shlos). For i ∈ {los, nlos}, denote by S1i the LOS and NLOS

BSs of the Shlos region, respectively, by Di the link distance from the typical user to Bi, the

nearest BS of LOS and NLOS BSs respectively, and by S the serving region, i.e., the region that

contains the serving BS. For BSs in Φi, the PDF of the horizontal distance Di is then expressed

as

fDi
(r) = 2πλrPi(r) exp

(
−2πλ

∫ r

0
uPi(u)du

)
(114)

Conditioned on Di = r and Bi belongs to the Shlos region, Bi is the serving BS if it verifies the

following constraints:





D−αlos
i > KD−αnlos

nlos ⇒ Dnlos > r0 ; for i = los

KD−αnlos
i > D−αlos

los ⇒ Dlos > r1 ; for i = nlos,
(115)

where r0 = R
1− 1

η

los r
1
η and r1 = Min(Rnlos, rη/R

η−1
los ) holds since Snlos contains no LOS BS.

Conditioned on Di = r, the probability that the typical user will be connected to Bi is then

given by

Πi(rx) =





1 if 0 ≤ r ≤ Rlos

P(Dnlos > r0) for i = los

P(Dlos > r1) for i = nlos





if Rlos ≤ r ≤ Rnlos

1 if r ≥ Rnlos

, (116)

while P(Dnlos>r0) and P(Dlos>r1) are computed using (191).

For j ∈ J = {los, 1los, 1nlos, nlos}, The association probability Aj = P(S = Sj) that the

typical user connects to a BS from Sj, can be computed by integrating Πi(r)fDi(r) over each

region radius interval. An interesting observation for the Slos region, is that for fixed parameter

Rlos, Alos = 1 − exp(−πλR2
los) increases with λ, while the average number of users connected

to Slos—expressed as Ñlos = (λu/λ)Alos, where λu is the density of the users PPP— decreases.

However, for fixed λ, expanding Rlos leads to an increase in Alos and Ñlos simultaneously. More

discussions are provided in the simulation section.
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4.3.2 Coverage probability

We define the coverage probability under the path-loss function defined in (112) , as the

probability PSINR
ℓ (.) that the received SINR is greater than the threshold T when the serving BS

belongs to one of the four sets Slos, S1los, S1nlos or Snlos.

Theorem 1. The coverage probability under the path-loss function (112) is given by

PSINR
ℓ (.) = PSINR

los + PSINR
1los + PSINR

1nlos + PSINR
nlos , (117)

where for j ∈ J = {los, 1los, 1nlos, nlos}, PSINR
j stands for the coverage probability when the serving

BS belongs to Sj and the supplementary equations are listed in the top of the next page such as

a = −1/(Rnlos − Rlos), b = −Rnlos/(Rnlos − Rlos), ρm = (Rnlos/Rlos)
m for m ∈ R, δp0 = p/αlos and

δp1 = p/αnlos for p = 2 or 3.

Proof. The sketch of the proof is as follows: The coverage probability is expressed as PSINR
ℓ (.) =

∑
j∈J PSINR

j (.) =
∑
j∈J AjP (SINR > T|S = Sj), and each component of PSINR

ℓ (.) will be computed
with the following similar steps

PSINR
los = Alos

∫ Rlos

0
P(SINR > T|u, S = Slos)fDlos

(u|S = Slos)du (122)

(a)
=

∫ Rlos

0
P(SINR) > T|u, Slos)Πlos(u)fDlos

(u)du (123)

(b)
= 2πλ

∫ Rlos

0
u exp

(
− T

SNR
uαlos − πλu2

)
LISlos\{Blos}

(s)LIS1los
(s)LIS1nlos

(s)LISnlos
(s)du, (124)

where s = Tuαlos, (a) follows from fDlos
(u|S = Slos) = d

du
P(Dlos≤u,S=Slos)

P(S=Slos)
=

Πlos(u)fDlos
(u)

Alos
, (b) holds

since hBlos
∼ exp(1) and the aggregated interference Iagg =

∑
x∈Φ′

b
\{Blos} hxℓ(rx) is seen as the sum-

mation of the interference power (normalized by Ptx) from each set U ∈ {Slos \ {Blos} , S1los, S1nlos, Snlos},
i.e.,

LIagg(s) = LISlos\{Blos}
(s)LIS1los

(s)LIS1nlos
(s)LISnlos

(s). (125)

We get the desired result for PSINR
los (.) in (118) by using the PGFL theorem to compute the

Laplace transforms LIU
(.) and some variable changes.

Although the expression of coverage probability under the H–LOS model is in complicated

form, it instigates an intuitive algorithmic development. Moreover, the expression is general

enough to accommodate several previous expressions. For example, it reflects the 3GPP case 1
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PSINR
los (T) = πλR

2
los

∫ 1

0

exp

(
−TR

αlos

los

SNR
x

αlos
2 − πλR

2
los

[
A

(1)
los (x) + ρ2A

(2)
los (x) +

2a

3
RlosA

(3)
los (x) + bA

(4)
los (x)

])
dx,

(118)

PSINR
1los (T) = 2πλ

∫ Rnlos

Rlos

(
ar2 + br

)
exp

(
− T

SNR
rαlos − πλ

[
r2

0A
(1)
1los(r) + R

2
nlosA

(2)
1los(r) +

2a

3
A

(3)
1los(r) + bA

(4)
1los(r)

])
dr,

(119)

PSINR
1nlos (T) = 2πλ

∫ Rnlos

Rlos

(
[1 − b] r − ar2

)
exp

(−Trαnlos

K SNR
− πλ

[
r2A

(1)
1nlos(r) + R

2
nlosA

(2)
1nlos(r) +

2a

3
A

(3)
1nlos(r) + bA

(4)
1nlos(r)

])
dr,

(120)

PSINR
nlos (T) = πλR

2
nlos

∫
∞

1

exp

(
−TR

αlos

los ραnlos

SNR
x

αnlos
2 − πλR

2
nlosxF−δ21 (T)

)
dx, (121)

A
(1)
los (x) = x

[
1−Fδ20

(
1

T

)]
+ ρ2 Fδ21

(
ραnlos

Tx
1

δ20

)
+

[
Fδ20

(
1

Tx
1

δ20

)
− Fδ21

(
1

Tx
1

δ20

)]
, A

(2)
los (x) = F−δ21

(
T

ραnlos

x
1

δ20

)
− 1,

A
(3)
los (x) = ρ3

[
Fδ30

(
ραlos

Tx
1

δ20

)
− Fδ31

(
ραnlos

Tx
1

δ20

)]
−
[
Fδ30

(
1

Tx
1

δ20

)
− Fδ31

(
1

Tx
1

δ20

)]
,

A
(4)
los (x) = ρ2

[
Fδ20

(
ραlos

Tx
1

δ20

)
− Fδ21

(
ραnlos

Tx
1

δ20

)]
−
[
Fδ20

(
1

Tx
1

δ20

)
− Fδ21

(
1

Tx
1

δ20

)]
,

A
(1)
1los(r) = 1 − Fδ21

(
1

T

)
, A

(2)
1los(r) = Fδ21

(
ραnlos

R
αlos

los

Trαlos

)
+ F−δ21

(
Trαlos

ραnlos
R

αlos

los

)
− 1,

A
(3)
1los(r) = r3

0

[
Fδ31

(
1

T

)
− 1

]
− r3

[
Fδ30

(
1

T

)
− 1

]
+ R

3
nlos

[
Fδ30

(
R

αlos

nlos

Trαlos

)
− Fδ31

(
ραnlos

R
αlos

los

Trαlos

)]
,

A
(4)
1los(r) = r2

0

[
Fδ21

(
1

T

)
− 1

]
− r2

[
Fδ20

(
1

T

)
− 1

]
+ R

2
nlos

[
Fδ20

(
R

αlos

nlos

Trαlos

)
− Fδ21

(
ραnlos

R
αlos

los

Trαlos

)]
,

A
(1)
1nlos(r) = 1 − Fδ21

(
1

T

)
, A

(2)
1nlos(r) = Fδ21

(
R

αnlos

nlos

Trαnlos

)
+ F−δ21

(
Trαnlos

R
αnlos

nlos

)
− 1,

A
(3)
1nlos(r) = r3

[
Fδ31

(
1

T

)
− 1

]
− r3

1

[
Fδ30

(
Krαlos

1

Trαnlos

)
− 1

]
+ R

3
nlos

[
Fδ30

(
ραlos

R
αnlos

los

Trαnlos

)
− Fδ31

(
R

αnlos

nlos

Trαnlos

)]
,

A
(4)
1nlos(r) = r2

[
Fδ21

(
1

T

)
− 1

]
− r2

1

[
Fδ20

(
Krαlos

1

Trαnlos

)
− 1

]
+ R

2
nlos

[
Fδ20

(
ραlos

R
αnlos

los

Trαnlos

)
− Fδ21

(
R

αnlos

nlos

Trαnlos

)]
.

study in [70] when Rlos → 0, and approximates the 3GPP case 2 study when Rlos → ǫd1 and

Rnlos → d1/ǫ where 0 < ǫ < 1 is to adjust the approximation’s error. More precisely, (117)

generally approximates the coverage analysis under the models in [395] by simply adjusting the

parameters a and b. Furthermore, when Rnlos ≃ Rlos, ℓ becomes a dual-slope path-loss model ℓ2

and (117) is simplified under the expression in [3, Th. 1]. If αnlos ≃ αlos, (117) will be the same

expression as [2, Th. 2].
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4.3.3 The Regime of UDNs

We consider the scenario of ultra-dense networks [261], where the interference Iagg dominates

the noise normalized by the transmit power (σ2/Ptx). SINR is then approximated by SIRℓ ,

SINRℓ| σ2

Ptx
=0

Remark 1. In the interference-limited regime, the coverage probability in (117) remains invari-

ant as long as λR2
los and λR2

nlos are invariant. In other words, the impact on coverage probability of

increasing/decreasing λ is analogous to increasing/decreasing (Rlos,Rnlos) simultaneously, which

is a generalization of [162, Fact 1].

In the following proposition, comparisons are made for PSIR under ℓ1, ℓ2 and ℓ.

Proposition 2. The following SIR coverage ordering holds for arbitrary 0 < αlos ≤ αnlos and

Rlos 6 Rnlos

(i) PSIR
ℓ(.) > PSIR

ℓ2(Rnlos;.)
> PSIR

ℓ1(αlos;.)
. (126)

(ii) PSIR
ℓ(.) < PSIR

ℓ2(Rlos;.)
< PSIR

ℓ1(αnlos;.)
. (127)

(iii) lim
λ→∞

PSINR
ℓ(.) = lim

λ→∞
PSIR
ℓ(.) = PSIR

ℓ1(αlos;.)
. (128)

(iv) lim
λ→∞

PSINR
ℓ(.) = lim

λ→∞
PSIR
ℓ(.) (.) = 0 when αlos ≤ 2. (129)

(v) lim
λ→0

PSIR
ℓ(.) = PSIR

ℓ1(αnlos;.)
. (130)

Proof. The proof of (i) and (ii) is similar to that of [162, Lemma 2], the main change is to proceed

by considering the two cases when the serving BS x0 ∈ (Slos∪Snlos) (where ℓ ≡ ℓ2) and x0 ∈ Shlos.

(iii) and (v) follows from the observation of Remark 1 where λ → ∞ ≡ (Rlos,Rnlos) → ∞
and λ → 0 ≡ (Rlos,Rnlos) → 0. Such scaling in the definition of ℓ(.) results in ℓ1(αlos; .) or

ℓ1(αnlos; .). (iv) follows from combining (ii) and [162, Proposition 1]. The proof is completed by

the observation that PSINR
ℓ(.) → PSIR

ℓ(.) as λ → ∞.

4.3.4 The Regime of Optimal Network Density

We define the optimal BS density λopt
ℓ as the specific λ that maximizes the coverage proba-

bility under the path-loss function ℓ. Mathematically,

λopt
ℓ (.) = arg

λ

(
∂PSINR

ℓ (.)
∂λ

= 0

)
. (131)
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Using a combination of proposition 2 and [162, lemma 4], PSINR
ℓ (λ) is a decreasing function

when λ > λopt
ℓ and SINR ≃ SIR. λopt

ℓ can then be seen as the BS density to enter the SIR regime.

We define the optimal regime under ℓ, the regime where the BS density λ ≃ λopt
ℓ . In this regime,

the noise normalized by the transmit power is small w.r.t. the aggregated interference but it is

non-zero. Consequently, (i)-(ii) of proposition 2 are at first stages to be met. We have then

PSINR
ℓ1(αlos;.)

< PSINR
ℓ(.) < PSINR

ℓ1(αnlos;.)
. (132)

λopt
ℓ2(Rnlos;.)

< λopt
ℓ < λopt

ℓ2(Rlos;.)
. (133)

Due to the lack of general closed-form expression for PSINR
ℓ1(α;.) that would avoid the computation

of a two-fold numerical integral in [17, theorem 1], almost all literature works focus on the Q-

function based expression when the path-loss exponent α = 4, which is only typical for terrestrial

propagation at moderate to large distances. The following proposition overcome this limitation

by developing closed-form expressions for PSINR
ℓ1(α;.) considering all integer α > 2 (not only α = 4)

and then conclude closed-form bounds for PSINR
ℓ(.) in the optimal regime.

Proposition 3. For integer path-loss exponents αlos and αnlos such as 2 < αlos < αnlos. PSINR
ℓ

is bounded in the optimal regime as follows PSINR
ℓ1(αlos;.)

< PSINR
ℓ(.) < PSINR

ℓ1(αnlos;.)
such as the lower and

upper bounds are achievable by respectively increasing Rlos and decreasing Rnlos, and where for

even and odd values of α, respectively

PSINR
ℓ1(α;.) =

2πλ

α (T/SNR)
2
α

α
2

−1∑

k=0

(−1)kκk

k!
Γ

(
2 + 2k
α

)

1Fα−2
2


 1

4+2k
α
, ..., α+2k

α

∣∣∣∣∣∣
(−κ)

α
2

(α
2
)

α
2


, (134)

PSINR
ℓ1(α;.) =

2πλ

α (T/SNR)
2
α

α−1∑

k=0

(−1)kκk

k!
Γ

(
2 + 2k
α

)

2Fα−1


 1, 1

2
+ k+1

α
2+k
α
, ..., α+k

α

∣∣∣∣∣∣
4(−κ)α

αα


, (135)

such as κ = πλF−δ(T)

(T/SNR)δ , δ = 2
α
, Γ(.) is the complete gamma function and pFq(.) is the generalized

hypergeometric function.

Proof. By the variable change (T/SNR)xα/2 → x, the expression of PSINR
ℓ1(α;.) in [17, Theorem 2]

can be rewritten as

PSINR
ℓ1(α;.) =

2πλ

α (T/SNR)
2
α

∫ ∞

0
x

2
α

−1e−xe−κx2/α

dx =
2πλ

α (T/SNR)
2
α

∫ ∞

0
x

2
α

−1e−x
0F0(.; .; −κx2/α)dx.
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Depending on the parity of α, we use [396, Eq. (43)] (with α/2 order for the even case and α

order for the odd one). Next, we explore the integral transformation of hypergeometric functions

in [397, (1.7.525)]. The proof is completed by combining (132) with Remark 1.

Based on proposition 3, the Q-function based expression for α = 4 in [17], can be rewritten

as

PSINR
ℓ1(4;.)=

π
3
2λ

2
√

T/SNR

[

0F0

(
−; −

∣∣∣
κ2

4

)
− κ√

π
1F1

(
1; 3

2

∣∣∣
κ2

4

)]
=

π
3
2λ√

T/SNR

Q
(
κ√
2

)
exp

(
κ2

4

)
.

While proposition 3 gives a complete characterization of Pℓ in the optimal regime. The following

proposition gives the scaling law of λopt
ℓ as Rlos → ∞ and Rnlos → 0.

Proposition 4. Under the H–LOS probability model such as 2 < αlos < αnlos, the optimal BS

density scales as follows

(i) λopt
ℓ = Ω



(

T

SNR

)δ20
1

πF−δ20(T)


 if Rlos → ∞. (136)

(ii) λopt
ℓ = O



(

T

SNR

)δ21
1

πF−δ21(T)


 if Rnlos → 0. (137)

Proof. Using [162, Theorem 1], PSINR
ℓ2(Rc;.) is expressed for a given radius Rc as

PSINR
ℓ2

= λπR2
c

∫ 1

0
e−If (x)−Wf (x)dx

︸ ︷︷ ︸
f(.)

+ λπR2
c

∫ ∞

1
e−Ig(x)−Wg(x)dx

︸ ︷︷ ︸
g(.)

, (138)

where If(x) = λπR2
c

(
Fδ20

(
1

Tx
1

δ20

)
+ F−δ20

(
Tx

1
δ20

))
+ λπR2

cx
(

1 − Fδ20

( 1
T

))
− λπR2

c ,

Wf (x) =
T

SNR
Rαlos
c x

αlos
2 , Ig(x) = πλR2

cxF−δ21(T), and Wg(x) =
T

SNR
Rαlos
c x

αnlos
2 .

We note that If and Ig are the terms reflecting interference while Wf and Wg are those

capturing noise. In the optimal regime under ℓ2, i.e., λ ≃ λopt
ℓ2(Rc;.), Wf and Wg are respectively

negligible w.r.t. If and Ig but non zero. We expand then the terms e−Wf (x) and e−Wg(x) as

e−µ =
∑n
k=0

(−µ)k

k!
+ En(µ), where En is the error of approximation such as En(µ) ≤ |µ|n+1

(n+1)!
. The
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error of approximation of PSINR
ℓ2

in the optimal regime is then upper bounded as

|En| ≤ λπR2
cA

n+1Un + λπR2
cB

n+1Vn, (139)

where A ≃ T

(λπF−δ20(T))
αlos

2 SNR

, B =
TRαlos

c

(λπR2
cF−δ21(T))

αnlos
2 SNR

, Un =
γ((n + 1)αlos

2 + 1, πλR2
cF−δ20(T))

(n + 1)!
,

and Vn =
Γ((n + 1)αnlos

2 + 1, πλR2
cF−δ21(T))

(n + 1)!
.

For any given error tolerance ǫ, the bound (139) gives

A ≤
(

ǫ

λπR2
c

1
2Un

) 1
n+1

, B ≤
(

ǫ

λπR2
c

1
2Vn

) 1
n+1

. (140)

If Rc → ∞ and since αlos > 2, Un → ∞ as n → ∞ and then
(

ǫ
λπR2

c

1
2Un

) 1
n+1→ 1 as n → ∞.

(140).1 simplifies as

λ ≥
(

T

SNR

)δ20 1

πF−δ20(T)
⇒ ∃ ωf ≥ 1 such as λopt

ℓ2(Rc;.) =

(
T

SNR

)δ20 ωf
πF−δ20(T)

. (141)

If Rc → 0 and since αnlos > 2, Vn → ∞ as n → ∞ and then
(

ǫ
λπR2

c

1
2Vn

) 1
n+1→ 1 as n → ∞.

(140).2 simplifies as

λ ≥
(

T

SNR

)δ21 1
πF−δ21(T)

,⇒ ∃ωg ≥ 1 such as λopt
ℓ2(Rc;.) =

(
T

SNR

)δ21 ωg
πF−δ21(T)

. (142)

The proof is completed by combining (141) and (142) with (133).

By varying one parameter and fixing the others in (136) and (137), λopt
ℓ is monotonically

increasing with the SINR target T, the noise variance σ2 and the path-loss exponents, while it

is decreasing with the transmit power Ptx (intuitively, the higher you increase Ptx the less you

will need more BSs). Besides, λopt
ℓ cannot be increased indefinitely with T. In fact, for a real

0 < m < 1, ψm : T → Tm/F−m(T) is an increasing function bounded as ψm(T) ≤ lim
T→∞

ψm(T) =
1

ϕ(m)
, where ϕ(m) =

∫∞
0

du

1+u
1
m

is finite (Riemann integral).

111



Partie , Chapter 4 – A Stochastic Geometry Based Approach to Tractable 5G RNPO

−20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Simulation
Theorem 1

λ = 1

λ = 0.1λ = 10

λ = 20

C
ov

er
ag

e
pr

ob
ab

ili
ty

T

Figure 13 – Coverage probability from both Theorem 1 and simulation results. αlos = 2, αnlos = 4, Rlos = 1
and Rnlos = 10.

4.4 Numerical Results

In this section, we present numerical results to assess our theoretical analysis. In the follow-

ing, SNR = 0 dB, integral expressions are evaluated using Matlab and Monte carlo simulations

are performed with 106 iterations.

4.4.1 Validation of the Model

The expression of coverage probability in (117) configured with path-loss exponents αlos =

2, αnlos = 4 and a given realization of BSs, shadowing and RNPO actions such as Rlos = 1

and Rnlos = 10, is plotted in Fig. 13. The plots show that the analytical expression match

the simulation results well, and hence the accuracy of our theoretical analysis is validated. In

particular, Fig. 13 shows that the coverage probability increases at first with network density λ

until achieving the optimal value λopt
ℓ , after that PSINR

ℓ shrinks down as densification continue.

4.4.2 Operational Regimes

A combination of Fig. 16 (a) and (b), reveals that when λ ≪ 1(λ < 0.002 BSs/m2), the

serving BS is potentially to be a BS from the Snlos set and the operational regime is the noise-

limited regime where Iagg ≪ (σ2/Ptx); this is due to the observation that the network will be

more sparse and the inter-distance between BSs is high enough such that Iagg can be ignored. As

λ slightly increases (λ → 0.002 BSs/m2), the typical user is more likely to connect unsteadily to
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Figure 14 – Association probability scaling with BS density λ for Rlos = 1 and Rnlos = 10.
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Figure 15 – Coverage probability scaling with λ under ℓ and ℓ2 path-loss models, Rlos = 1 and Rnlos = 10,
αlos = 2 and αnlos = 4.
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ℓ with Rlos and Rnlos variations, αlos = 2.03, αnlos = 4 and T = −10 dB.
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an NLOS BS from the hybrid region Shlos. By continuously adding more BSs (0.002 BSs/m2 <

λ < 0.2 BSs/m2), the serving BS crosses to be a LOS BS from Shlos. Once λ is large enough

(λ > 0.2 BSs/m2), the typical user is most likely to connect to a BS from Slos and thus the

coverage probability continues to increase until λ achieves a specific value λopt
ℓ ≃ 400 BSs/km2.

At that level, PSIR
ℓ3

achieves its maximum value and follows the regression driven by interference

Iagg as λ continue to increase.

4.4.3 Optimal Network Density

Fig. 16 (b) and (c) verifies Proposition 2 in the optimal regime as the coverage probability

PSINR
ℓ and optimal BS density λopt

ℓ remain bounded between those achieved under the standard

and dual-slope path-loss functions. Numerically, 0.12 < PSINR
ℓ < 0.9 and 0.1 BSs/m2 < λopt

ℓ <

1 BSs/m2 and in particular, the lower and upper bounds are achievable for sufficient expansion

and shrinking on Rlos and Rnlos respectively.

Fig. 17 is consistent with Proposition 3 and 4. In fact, for the purpose to assess the accuracy

of Pℓ bounds approximation in the optimal regime, we limit first the scaling of Pℓ with T into

this regime by considering the combinations (λ = λg; Rlos = 1; Rnlos = 2), (λ = λf +λg

2
; Rlos =

10; Rnlos = 20) and (λ = λf ; Rlos = 100; Rnlos = 200), where λf = Tδ20

πF−δ20
(T)

and λg = Tδ21

πF−δ21
(T)

.

As can be observed from Fig. 17 for αlos = 3 and αnlos = 4, λf and λg are increasing with the

SINR target T until a stage where they become stable and independent from T. Moreover, PSINR
ℓ

remains bounded by the hypergeometric closed-form expression of PSINR
ℓ1

(αlos; T) for λ = λf and

PSINR
ℓ1

(αnlos; T) for λ = λg.

4.5 Chapter Summary

In this chapter, we investigated the impact of conventional radio planning and optimization

actions on the network performance as BS density increases. An equivalent PPP that absorbs

the effect of actions has been derived, and a tractable LOS probability model was introduced

where the actions impact is translated by the fluctuation of aggregated parameters. Under these

assumptions, the coverage probability under our path loss model generalizes several previous

expressions, and it is bounded by the coverage probability under the single-slope and the dual-

slope path loss models.

Our results suggest that network performance will be maximized when implementing the

class of optimization actions that reduce the cells sizes. In addition, the critical network density

that maximizes the network performance has been approximated using Taylor series expansion.

The work gives practical guidelines for operators and vendors considering the deployment of
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ultra-dense 5G networks.
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Chapter 5

STOCHASTIC ANALYSIS OF UDNS WITH

RESOURCE CAPACITY AND USER

SCHEDULING

In this chapter we investigate the impact of antenna elevation, resource capacity and user

scheduling on the performance of UDNs. Using tools from SG, we extend a recently introduced

definition of coverage probability by inducing a generic thinning that can capture BSs with

available resource capacity to transmit users data. Analytical results are then derived for the

coverage probability and the average achievable rate, where we obtain closed-form expressions

allowing to assess UDNs performance in a more tractable and meaningful fashion compared to

the conventional definition of coverage probability. Moreover, we show that the average rate un-

der the new definition requires only the computation of a two-fold numerical integral rather than

a four-fold integral in the previous works, which is expected to significantly reduce computa-

tional complexity. Comparing the obtained results, we find that the impact of parameters, such

as resource capacity, BS transmit power as well as the implementation complexity of scheduling

schemes are irrelevant as network density increases, which suggests new insights into the role of

these parameters in UDNs.

5.1 Introduction

With the rapidly growing interest in smart-phones and their data-hungry applications, mod-

ern cellular networks are increasingly characterized by opportunistic deployment to address

end-user specific demands and improve QoS perceptions [39]. Particularly, UDNs based on huge

deployment of small-cell BSs are envisioned as the workhorse of capacity improvement in 5G

networks [262].

Accordingly, the analysis and modeling of UDNs require generally powerful mathematical

tools and new concepts in order to capture key system parameters that impact the equilibrium
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of the utility function incorporating users QoS and operators investment. The key challenge

in fact, is to develop sufficiently tractable models inducing physically meaningful performance

trends. Recently, SG has shown success as a powerful mathematical tool allowing to derive

spatial averages of network performance metrics (e.g. coverage probability, average rate,. . . ),

and thereby prevents the use of time-consuming computer simulations [4, 17].

5.1.1 Related Works

Almost all previous studies based on SG models considered the conventional received signal-

to-interference-plus-noise ratio (SINR) as the key driver for user’s QoE. Hence, the CCDF of

SINR, i.e., coverage probability, is in general expressed under an improper integral [4,17,18,162],

requiring efficient and arduous numerical integration [204], except for some special cases where

closed-form expressions can be obtained (e.g. path-loss exponent equals four, the interference-

limited regime,. . . ). Furthermore, almost all SG based studies derive the ergodic rate by in-

tegrating the coverage probability over the positive real axis, which resorts to a four-fold in-

tegral [17, Appendix C], except the Hamdi’s lemma based approach presented in [68], which

requires only the computation of a two-fold numerical integral but needs however the use of

Meijer G-function [68, Corollary 1].

To overcome the aforementioned shortcomings, authors of [204, 205] introduced a new defi-

nition of coverage probability, where the typical user is in coverage when, i) the user receives a

sufficiently good signal strength without any over-provision of the BS transmit power, i.e., the

short-term average Signal-to-Noise-Ratio (SNR) is greater than a certain threshold, ii) the user

receives a good signal quality, i.e., the Signal-to-Interference-Ratio (SIR) is greater than another

threshold. Interestingly, the new framework captures more system-level parameters than the

available definition, and enables deriving general closed-form expressions of coverage probabil-

ity, which is not allowed by the conventional definition.

However, in realistic networks, the user may experience voice/data drops due to congestion

at peak demand, regardless of the received signal strength or quality. The critical missing piece

in the framework introduced in [204, 205], is then a measure of physical and logical resource

capacity on active BSs (e.g., channel resource elements grouped into physical resource blocks

(PRB) in 5G New Radio (NR), or the common power channel resource like the P-CPICH

channels in UMTS,. . . ).
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5.1.2 Motivation and Contribution

In this chapter, we extend the framework of [204, 205] by tractably capturing BS resource

capacity. In this context, we introduce into analysis a generic thinning that can reflect BSs

with available capacity. Next, we address for the first time the analysis of UDNs under the new

revisited framework of [204, 205]. Typically, we incorporate into analysis three representative

scheduling schemes in terms of fairness and implementation complexity. The rationale is to

compare their performance in UDNs. We also incorporate the BS height since i) its effect

is critical in UDNs [398] and ii) to avoid the occurrence of the less-realistic SINR invariance

property [17, 162].

5.2 System Model and Assumptions

5.2.1 Cellular Network and Channel Model

We consider a downlink cellular network, in which the location of BSs and users is modeled

with two independent homogeneous PPPs Ψb and Ψu in the plane R
2, with respective densities

λb and λu measured in [BSs/m2] and [Users/m2], respectively. Without loss of generality, and

as permitted by the Slivnyak-Mecke’s theorem [4, vol. 1, Theorem 1.4.5], the typical user y0 at

the origin O, is taken as the object of the analysis.

We assume that all BSs transmit with the same transmit power Ptx, and that multipath

fading of the link between a BS located at xk ∈ Ψb and the typical user located at O, is

incorporated by a positive and i.i.d. exponential fading gk with unit mean, while rk , ‖xk‖
denotes the horizontal distance between xk and the typical user such that the subscript 0 and i

are used to identify the desired and interfering links, respectively. The radio channel attenuation

is dependent on a path-loss function ℓ(.), such that the received power at O from a BS xk is

Prx = Ptxgk/ℓ(xk). The path-loss function ℓ(.) is assumed to: i) accept an inverse function ℓ−1(.),

ii) validate the dependency condition of ℓ(
√
xy)/ℓ(

√
x) on x ∈ R for y ≥ 1 [162, Lemma 1],

assumed to avoid the scenario of the SINR invariance property, and iii) ℓ(.) is a monotonically

increasing function with distance from the origin, to ensure that the received power cannot

exceed the transmitted one. σ2 denote the variance of the additive noise such that SNR = Ptx/σ
2.

119



Partie , Chapter 5 – Stochastic Analysis of UDNs With Resource Capacity and User Scheduling

5.2.2 Cell Association Model

We assume the association criterion of the highest average received power, where the typical

user is assigned to a unique BS {x0} from Ψb such that

x0 = arg max
xk∈Ψb

{Ptx/ℓ(rk)}
(a)
= arg min

xk∈Ψb

{rk} . (143)

where (a) follows from the property (iii) of ℓ(.). The plane R2 seen from BSs is then divided

into cells corresponding to the spatially nearest points to each BS than to any other BSs of

Ψb, namely the Poisson Voronoi tessellation. We denote by C0, the Voronoi cell containing the

typical user and the intended BS x0, formally named, the 0-cell [204].

In realistic networks, x0 needs to be endowed with available resource capacity to carry the

typical user’s data. Actually, insufficient capacity is likely due to a bottleneck at the backhaul

level and/or the scarcity of traffic channels as a result of high data demand or as a result of

maintenance failures (e.g., some channel physical modules are down). At a given time, we denote

by pΘ the probability that the typical has sufficient resource capacity to carry the data of a user

requesting connection to the typical BS. By construction, pΘ should differ from the probability

p∆ of having no user associated to the typical BS, since the event of the former covers generally

that of the latter, and given pΘ also depends on a parameter η, correlated to the average inherent

resource capacity over all BSs when no user is served. However, both pΘ and p∆ need to increase

with BS density and shrink with users density. For tractability, we assume that the process Θb

of BSs with sufficient capacity, is an independent thinning of Ψb with density λΘ = pΘλb, where

pΘ will be approximated in the next section.

5.2.3 Scheduling Modeling

BSs not serving any user are assumed to be in idle mode in order to mitigate the other-cell

interference and improve the energy efficiency. Let ∆b be the process of BSs in idle mode. The

density of ∆b is λ∆ = p∆λb where p∆ is approximated as [399, Proposition 1],

p∆ ≈
(

1 +
λu

3.5λb

)−3.5

. (144)

However, on the other hand, when multiple competing users simultaneously need to access the

same BS x0, three representative scheduling schemes will be considered and investigated to

assess the impact on performance in the context of sparse networks and UDNs. An important

quantity is the probability mass function (PMF) of the number of competing users inside C0.
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Let Nu be the random variable that denotes the number of users in C0 r {y0}. The PMF of Nu

is approximated as [399, Proposition 2],

P {Nu = n} ≈ 3.54.5 Γ(n+ 4.5)(λu/λb)n

Γ(4.5) Γ(n+ 1)(3.5 + λu/λb)n+4.5
. (145)

Hereafter, the three scheduling schemes considered:

Scheduling Model 1 (Non-orthogonal Scheduling): Each BS simultaneously serves

multiple users associated with it on the same resource block, this is feasible for example when

only the typical user that is associated to x0 (P {Nu = 0} = 1), or when using a NOMA technique

such as power-based NOMA, but at the cost of increased intra-cell interference that may be

mitigated by SIC at the receivers.

Scheduling Model 2 (Round-Robin (RR) Scheduling): Simultaneous users are sched-

uled with equal probability regardless of their channel qualities, which enhance temporal fairness

among users and reduce implementation complexity.

Scheduling Model 3 (Proportional Fair (PF) Scheduling): Users are scheduled by

leveraging their spatial diversity based on the channel quality indicators (CQI), which will

increase system throughput at the cost of fairness. For tractability, we assume that the selection

of users for downlink transmission based on maximum PF metric is closely reflected by the

largest fading gain gk, as was endorsed by [400].

5.3 Coverage Probability and Ergodic Rate Analysis

Following the limitations mentioned in [204] of the commonly available definition of coverage

probability Pcov, i.e., the SINR of the typical user is above a certain threshold, we consider

the new definition adopted in [204, 205], such that the typical user is in coverage when: (i) it

receives a sufficiently good signal strength from the nearest BS without any over-provision of

the transmitting power Ptx, i.e., the average SNR = Ptx/(σ2ℓ(r0)) = SNR/ℓ(r0) is greater than

a threshold Ts, ii) the SIR = g0Ptx/(ℓ(r0)I) = g0/
∑
i gi(ℓ(r0)/ℓ(ri)) is greater than a threshold

Tq, where I is the other-cell interference. The coverage probability will then be expressed as

P
(j)
cov (Tq, Ts) =

∞∑

n=0

P

{
SIR ≥ Tq, SNR ≥ Ts,Nu = n

}
, (146)

where the superscript j = 1, 2 or 3 indexes the adopted scheduling model, and we commonly

consider that P(1)
cov = P

{
SIR ≥ Tq, SNR ≥ Ts

}
, i.e., each BS serves one user.
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5.3.1 Approximation of the Process of BSs with Available Resource

Capacity

The resource capacity of the typical BS is closely dependent on the traffic demand from high

priority users, which may be the ones with greatest CQI or those privileged through system con-

figuration to access traffic channels (very important users or services). This observation makes

it less tractable to derive pΘ since we do not have a priori knowledge about the distribution of

traffic demand from high priority users. To overcome this limitation and approximate pΘ, we

assume that the high priority traffic demand is related to the number of users located inside

a disc Dc centered at x0 and containing: i) sufficiently closest users to x0, ii) the closest users

from other cells with high probability to make a handover towards x0, i.e., the nearest users

from the nearest neighboring cell.

Let ξM denote the random variable of the radius of the minimal disc DM centered at x0

and containing C0, and ξm as the radius of the maximal disc Dm centered at x0 and contained

by C0 (see Fig. 18). To the authors knowledge, the distribution of the former does not exist

except for some lower bounds as in [401, equation 10] or intractable mathematical expressions

as in [402], while the distribution of the latter is totally known as in [401, equation 9]. For

analytical tractability, we consider that the radius ξc of Dc is somewhere bounded between ξm

and ξM such that the disc of radius
√
ηξc and centered at x0 contains at most the nearest BS to

x0. Formally expressed, we have

P(ξc > r) = (1 + πλbηr
2)e−πλbηr

2

. (147)

The PDF of ξc is then derived as

fξc(r) = 2η2 (πλb)2 r3e−πλbηr
2

, (148)

and pΘ is approximated by averaging exp (−πλuξ
2
c ) over the distribution of ξc, as

pΘ ≈ Eξc

{
exp (−πλuξ

2
c )
}

=

(
1 +

λu

ηλb

)−2

. (149)

Remark 2. The expression of pΘ in (149) confirms our initial intuition in Section 7.2. In fact,

pΘ can be increased by acting on the network macroscopic resource capacity via densification with

new BSs, or by improving the average intrinsic resource capacity of existing BSs via η. Besides,

increasing users density, will decrease pΘ and then the availability of BSs to carry users traffic.
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Users

BSs

Disc Dc

Disc DM

Disc Dm

Figure 18 – A PPP realization of BSs and users (λu > λb) where the boundaries of DM, Dm and Dc are
illustrated.

For fixed densities λb and λu, it is obvious to mention from (149) and (144) that, if η becomes

greater than a threshold η0 = µ(λu/λb), where µ(x) = x/ [(1 + x)1.75 − 1], the tendency of having

more BSs with sufficient capacity increases at the expense of idle mode BSs, which sheds light

on the interplay between p∆ and pΘ. We note also that λb

λu
pΘ (1 − p∆) → 1 as λb ≫ λu, while

λb

λu
pΘ (1 − p∆) → 0 as λu ≫ λb.

The following lemma describes the scaling law with λb and λu of useful combinations of pΘ

and p∆.

Lemma 2. Under the previous approximations of pθ and p∆, we have the following properties:

i) λb

λu
pΘ(1 − p∆) scales with λb

λb+λu
exp

(
−θ(η)λu

λb+λu

)
, where θ(x) is a monotonically decreasing

function for x ≥ 1.

ii) For every reals M,N ≥ 0, 1−exp (−M [pΘ+N(1−p∆)])
pΘ+N(1−p∆)

scales with p−1
Θ exp(−βp−1

Θ ), where β is

a constant.

Proof. For a given users density λu ≥ 0 and a real q > 1, ∃ λ0
b = 1

q−1
λu such that: ∀λb > λ0

b,

p−1
Θ ≤

(
1 + qλu

η(λb+λu)

)2
. Using the observation that exp(−x) < (1 + x

y
)−y < exp(−xy

x+y
) for every

reals x, y > 0, we get

exp

(
−2qλu

η(λb + λu)

)
≤ pΘ ≤ exp

(
−2λu

max(1, η)(λb + λu)

)
, (150)

1 − exp

(
−λu

λb + λu

)
≤ 1 − p△ ≤ 1 − exp

(
−λu

λb

)
(151)
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Moreover, using the observation that ∃ 0 < m < 1 such that for every real x > 0

exp(−1
x

) <
x

x+ 1
< 1 − exp(−x) < exp(

−m
x

) <
x

m(x+ 1)
, (152)

we then get,

λu

2(λb + λu)
≤ 1 − p△ ≤ λu

m(λb + λu)
. (153)

The proof of i) is then completed by combining (150) and (153).

For every real M and N ≥ 0, we have pΘ ≤ pΘ + N(1 − p∆) ≤ N + (N + 1)pΘ, and by

applying (152), we can see that for a given users density λu, ∃λ1
b = λu/

(
η
[√

(N + 1)/N − 1
])

such that: ∀λb ≥ λ1
b, (1 − exp (−M [pΘ +N(1 − p∆)])) / [pΘ +N(1 − p∆)] is bounded between

1
2(N+1)

p−1
Θ exp (−p−1

Θ

M
) and p−1

Θ exp
(
−(mp−1

Θ / [2M(N + 1)])
)
, which completes the proof of (ii).

5.3.2 Coverage probability

The following lemma derives the coverage probability under the path-loss function ℓ(.) and

the scheduling model 1.

Lemma 3. The coverage probability under the scheduling model 1 and a path-loss function ℓ(.)

validating the dependency condition is expressed as

P
(1)
cov (Tq, Ts) ≈ πλbpΘ

∫ γ

0
exp



−πλbx


pΘ + (1 − p∆)

∫ ∞

1

dy

1 + ℓ(
√
xy)

Tqℓ(
√
x)





 dx, (154)

where γ = max
(
0, [ℓ−1 (SNR/Ts)]

2
)
.

Proof. The coverage probability in (146), is expressed under the scheduling model 1 as:

P
(1)
cov(Tq, Ts) = P

{
SIR ≥ Tq, SNR ≥ Ts,Nu = 0

}
(155)

≈ 2πλΘ

∫ ∞

0
e−πλΘr

2

EI

{
P

{
SIR ≥ Tq, SNR ≥ Ts|I, r

}}
rdr (156)

(a)
= 2πλΘ

∫ ∞

0
e−πλΘr

2

1

{
ℓ(r) ≤ SNR

Ts

}
EI {P {SIR ≥ Tq|I, r}} rdr (157)

= 2πλΘ

∫ √
γ

0
e−πλΘr

2

EI {P {SIR ≥ Tq|I, r}}︸ ︷︷ ︸
χ(Tq,Ts)

rdr, (158)
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and the expectation term, χ (Tq, Ts), in the integrand function, can be computed as follows:

χ (Tq, Ts) = LI

{
Tqℓ(r)
Ptx

}
= EΨb\∆,{gi}





∏

xi∈Ψb\∆

ℓ(ri)
ℓ(ri) + Tqℓ(r)



 (159)

(b)
= exp

(
−2π(λb − λ∆)

∫ ∞

r

Tqℓ(r)udu
ℓ(u) + Tqℓ(r)

)
(160)

(c)
= exp


−πλb(1 − p∆) r2

∫ ∞

1

du

1 + ℓ(r
√
u)

Tqℓ(r)


 , (161)

where (a) follows from the independence of SNR from the cumulative other-cell interference I.

(b) follows from the PGFL theorem and (c) from the variable change u2/r2 → u. Plugging (161)

into (158) with r2 → x gives the desired result.

For the remainder, we adopt the standard power-law path-loss model with elevated BSs of

height h ≥ 0 measured in [m], i.e., ℓ(rk) = (r2
k + h2)

α
2 for all xk ∈ Ψb, where α is the path-

loss exponent assumed to be α > 2, and let δ = 2/α. Generalizing our work to other relevant

path-loss models such that the dual-slope [162] and stretched path-loss models, is left to future

works.

The following theorem in the bottom of this page, gives the coverage probability under the

considered path-loss model and the three scheduling models.

Theorem 2. The coverage probability under the considered path-loss model and the three
scheduling models is expressed as

P
(1)
cov (Tq, Ts) ≈ pΘ

1 − exp (−πλbAQ(λu, λb, δ, Tq))
Q(λu, λb, δ, Tq)

exp
(
−πλbh

2(Q(λu, λb, δ, Tq) − pΘ)
)
, (162)

P
(2)
cov (Tq, Ts) ≈ λb

λu

(1 − p∆) P
(1)
cov (Tq, Ts) , (163)

P
(3)
cov (Tq, Ts) ≈

∞∑

n=0

P {Nu = n}
[
n+1∑

k=1

(
n + 1
k

)
(−1)k+1

P
(1)
cov (kTq, Ts)

]
(164)

where Q(λu, λb, m, Tq) = pΘ + (1 − p∆) (Fm(Tq) − 1) , and A = max


0,

(
SNR

Ts

)δ
− h2


.
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Proof. The proof of the expression of P(1)
cov in Theorem 2 follows directly from Lemma 3 where

γ = A2, and (161) is derived as

χ (Tq, Ts) = exp

(
−πλb(1 − p∆)(r2 + h2)T

2
α

q

∫ ∞

T
− 2

α
q

du
1 + u

α
2

)
, (165)

where T
2
α

q
∫∞
T

− 2
α

q

du

1+u
α
2

+ 1 = Fδ(Tq).

The coverage probability under the scheduling model 2, P(2)
cov, is expressed as

P
(2)
cov(Tq, Ts) =

∞∑

n=0

P

{
SIR ≥ Tq, SNR ≥ Ts,Nu = n

}
(166)

=
∞∑

n=0

P

{
SIR ≥ Tq, SNR ≥ Ts|Nu = n

}
P {Nu = k} (167)

(a)
= P

{
SIR ≥ Tq, SNR ≥ Ts

} ∞∑

k=0

P {Nu = n}
k + 1

(168)

(b)≈ λb

λu

(1 − p∆)P
{
SIR ≥ Tq, S̃NR ≥ Ts

}
, (169)

where (a) follows by assuming the independence of the events E = (SIR ≥ Tq, S̃NR ≥ Ts) and

Fn = {Nu = n} as in [204, 205], in addition to the properties of the RR scheduling where

each user is selected with the same probability. (b) follows from [399, Proposition 2] where
∑∞
n=0(n+ 1)−1

P(Nu = n) = (λb/λu)(1 − p∆).

The coverage probability under the scheduling model 3, P(3)
cov, is expressed from (167) as

P
(3)
cov(Tq, Ts) =

∞∑

n=0

P

{
max (g0, . . . , gn)Ptx

ℓ(r0)I
≥ Tq, SNR ≥ Ts

}

︸ ︷︷ ︸
ϕ(Tq,Ts)

P {Nu = n} , (170)

where the probability term, ϕ(Tq, Ts), is derived as

ϕ(Tq, Ts) = Er0,I

{
P

{
max (g0, . . . , gn) ≥ Tqℓ(r0)I

Ptx
, SNR ≥ Ts

∣∣∣∣I, r0

}}
(171)

(a)
= Er0,I

{
1

{
ℓ(r0) ≤ SNR

Ts

}[
1 −

(
1 − exp

(
−Tqℓ(r0)I

Ptx

))n+1
]}

(172)

(b)
=

n+1∑

k=1

(
n + 1

k

)
(−1)k+1

Er0

{
1

{
ℓ(r0) ≤ SNR

Ts

}
LI

{
−kTqℓ(r0)

Ptx

}}
, (173)
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where (a) holds since the random variables gk, k = 0, . . . , n are i.i.d. exponential RVs with mean

1, and the cumulative function (CDF) of max (g0, . . . , gn) is expressed as

P {max (g0, . . . , gn) ≤ u} =
(
1 − e−u

)n+1
, (174)

(b) follows from the binomial theorem. We get the desired result by combining the last expression

with (158).

Remark 3. The main strength of Theorem 2 is that the expressions of P(1)
cov and P(2)

cov are written

under closed-form expressions, which is very helpful for performance evaluation as it reduces

computational complexity and time-consuming processing. Moreover, the expression of P(3)
cov is

an infinite sum that can be further simplified by assuming that the cell has exactly n0 points,

where n0 = ⌈E {Nu}⌉ and E {Nu} ≈ 1 + 1.28(λu/λb) [403, Lemma 4]. The coverage probability

under the scheduling model 3 is then approximated as

P
(3)
cov (Tq, Ts) ≈

n0+1∑

k=1

(
n0 + 1
k

)
(−1)k+1

P
(1)
cov (kTq, Ts) . (175)

The accuracy of this approximation will be discussed in Section 5.4.

Remark 4. Theorem 2 reveals that the coverage probability under the scheduling models 2 and

3 is based on its computation under the scheduling model 1. In other words, P(2)
cov and P(3)

cov can be

expressed on the basis
(
P(1)

cov (kTq, Ts)
)
k=1,...,n+1

, where n is an integer ≥ 1. As a result, we can

focus the analysis on the building block component P
(1)
cov.

Remark 5. The scaling law of P(j)
cov with λb and λu is completely defined. In fact, Lemma 2 deter-

mines the scaling law of (λb/λu)pΘ (1 − p∆) and (1 − exp (−πλbAQ(λu, λb, δ, Tq)))/Q(λu, λb, δ, Tq),

while (153) confirms that exp (−πλbh
2(Q(λu, λb, δ, Tq) − pΘ)) scales with exp

(
−κh2(Fδ(Tq) − 1) λbλu

λb+λu

)
,

where κ is a constant.

We now investigate the asymptotic behavior of P(j)
cov, where the rationale is to understand

the interplay between coverage probability and the parameters Ptx, λb, λu and antennas height

h, assuming that when acting on specific parameters, the others are supposed to be constant.

The results are summarized in the following three propositions.

Proposition 5. The coverage probability under the considered path-loss function ℓ(.) and the

three scheduling models, tends towards a surely “universal outage" in the following asymptotic
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cases

lim
λu→∞

P
(j)
cov(Tq, Ts) = lim

A→0
P

(j)
cov(Tq, Ts) = 0. (176)

Proof. The proof follows by a direct inspection of Theorem 2.

Remark 6. Proposition 5 shows that the intended BS needs to check the primary constraint

Ptx > hαTsσ
2 in order to generate the earliest samples of users or areas with a correct coverage.

Moreover, it identifies the detrimental effect of increasing users density on BS resource capacity

(pΘ → 0) and then on the network overall coverage probability.

Proposition 6. The coverage probability under the PF and RR schedulers converges to that of

the non-orthogonal scheduler as λb → ∞ or λu → 0. Hence, P(j)
cov(Tq, Ts) tends towards a limit

conditioned on other parameters, as

i) lim
λb→∞

P
(j)
cov(Tq, Ts) = exp

(
−πλuh

2 (Fδ(Tq) − 1)
)
, (177)

ii) lim
λu→0

P
(j)
cov(Tq, Ts) = 1 − exp (−πλbA). (178)

Proof. The sketch of the proof stems from Remark 2, and the observation that

lim
λb→∞

P {Nu = n} = lim
λu→0

P {Nu = n} =





1 if n = 0

0 if n ≥ 1.
(179)

Remark 7. Several earlier works suggested that the tendency of coverage probability in UDNs

is either towards 0 [162] or 1 [404], which involves that the performance of different networks

will be the same in the regime of high BS density. However, we show in (177) a more precise

result, where the performance of several UDNs will be different as well as their respective users

density, average BS height, path-loss exponent and the threshold Tq are different. We note more-

over from Prop.6 that limλb→∞ P(j)
cov(Tq, Ts) is independent of Ts (more generally of SNR), while

limλu→0 P
(j)
cov(Tq, Ts) is independent of Tq, which is due to the idle mode capability that mitigates

interference as λb → ∞ and/or λu → 0.

Proposition 7. Considering the reduced height and high SNR scenarios, the coverage probability
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under the Non-orthogonal scheduling is expressed as

i) lim
h→0

P
(1)
cov(Tq, Ts) = pΘ

1 − e−πλb( SNR
Ts

)δQ(λu,λb,δ,Tq)

Q(λu, λb, δ, Tq)
(180)

ii) lim
SNR→∞

P
(1)
cov(Tq, Ts) = pΘ

e−πλbh
2(Q(λu,λb,δ,Tq)−pΘ)

Q(λu, λb, δ, Tq)
(181)

Proof. The sketch of the proof follows by a direct inspection of Theorem 2.

We now assume that we have previously identified the parameters Tq and Ts required to

access the system, the parameter α defined by the propagation environment, the parameter λu

expected from end-users behavior. The following proposition gives the correlation constraint that

needs to be established between the pre-defined parameters and the commonly used parameters

for cellular network optimization, namely λb, h and Ptx, in order to meet a given coverage

probability 0 < P (1) < 1 under the baseline scheduling model.

Corollary 1. For pre-defined parameters Tq, Ts, λu and δ, the following constraint needs to be

verified to meet a required coverage probability 0 < P (1) < 1 under the Non-orthogonal scheduling

model,

P (1) ≤ pΘ

Q(λu, λb, δ, Tq)
̺(λb, h, Ptx), (182)

where

̺(λb, h, Ptx) = min
(
e−πλbh

2(Q(λu,λb,δ,Tq)−pΘ); 1 − e−πλbAQ(λu,λb,δ,Tq)
)
. (183)

Proof. The skecth of the proof is as follows: For fixed parameters Tq, Ts, λu, δ and coverage prob-

ability P (1). Equation (162) can be expressed as P(1)
cov(Tq, Ts) = u(λb)e−v(λb ,h)(1 − e−w(λb,h,Ptx)),

where u(λb) = pΘ (Q(λu, λb, δ, Tq))−1, v(λb, h) = πλbh
2(Q(λu, λb, δ, Tq)−pΘ) and w(λb, h, Ptx) =

πλbAQ(λu, λb, δ, Tq). However, since A > 0 and Tq 7→ Fδ(Tq) is a monotonically increasing func-

tion with Tq ≥ 0 and 0 ≤ δ < 1, where Fδ(0) = F0(Tq) = 1; the functions u, v and w are then

positive for every parameters λb, h and Ptx. The constraint (182) is then true for P (1) chosen

such that 0 < e−v(λb ,h) < 1 and 0 < e−w(λb,h,Ptx) < 1 in (162), which completes the proof.

Remark 8. A direct inspection of (182) confirms that the achievable coverage probability will

be maximized if the following intuitive adjustments are established: On the one hand: increase

the ratio λb/λu ≫ 1, Ptx, and α. On the other hand, decrease h, σ2, Tq, and Ts.
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5.3.3 Average Achievable Rate

We also investigate the mean data rate achievable over a cell in units of nats/Hz, and verify

how it is impacted with network parameters when considering the three scheduling models.

Consistently with our adopted model of coverage probability (146) [204], we introduce the

following definition of the ergodic rate of the typical user associated to x0,

τ (j)
c (.) = E

{
1

{
ℓ(r0) ≤ SNR

Ts

}
ln (1 + SIR)

}
(a)
=
∫

t>0
P

(j)
cov

(
et − 1, Ts

)
dt, (184)

where j refers to the scheduling model, and (a) follows from similar steps in [17, Theorem 3].

We have then; from Theorem 2 and some variable changes,

τ (2)
c (.) ≈ λb

λu
(1 − p∆) τ (1)

c (.), (185)

τ (3)
c =

∞∑

n=0

P {Nu = n}
[
n+1∑

k=1

(
n + 1
k

)
(−1)k+1

∫

x>0

P(1)
cov (kx, Ts)
x+ 1

dx

]
. (186)

Note that the expression of ergodic rate in [17, Theorem 3], needs generally, the computation of

a four-fold numerical integral, whereas the expression in (184), requires only the computation

of a two-fold integral, which is expected to be more computationally efficient.

5.4 Numerical Results

In this section, we present numerical results to validate our theoretical analysis and assess the

network performance trend as a function of several key parameters adjustment. We consider in

the following, σ2 = 0 dB, α = 4, Ts is mapped with Tq by the expression Ts = Tq Γ(1+δ)−1/δ [205,

Eq. (5)], where Γ(.) denotes the complete gamma function. Integral expressions are evaluated

using Matlab, and Monte Carlo simulations are performed with 104 iterations.

Fig. 19 shows that the simulation results of coverage probability under the baseline scheduling

model, match perfectly with the analytical expression, which validates the accuracy of our

analytical model. Moreover, and consistently with previous results considering the conventional

definition of coverage probability [400], Fig. 19 shows that under the new coverage probability

framework [204], the PF scheduler is the model that best improves the coverage probability,

due to the multi-user diversity gain. However, the RR scheduler [399], reduces the coverage

probability due to the equal probability scheduling process, particularly for large users density.

Besides, Fig. 19 shows that the approximation expression (175), is generally a sufficient tight
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Figure 19 – The scaling of coverage probability P
(j)
cov with SIR target Tq, for λb = λu/4 = 0.25 BS/m2, η = 103,

h = 0.4m, and Ptx = 43 dBm.

upper-bound of P
(3)
cov, reflecting the main trends of P

(3)
cov.

Fig. 20 shows that for constant Ptx, Tq, η and h, the behavior of coverage probability in

UDNs scales with user and BS densities, λu and λb, respectively. More generally, for large

λb, the coverage probability under the three representative scheduling schemes scales with

exp (−πλuh
2 (Fδ(Tq) − 1)) consistently with Eq. (177).

Fig. 21 shows the scaling trend of P(j)
cov with BS density λb as a function of η, Ptx and h.

The figure confirms Proposition 6, where the three scheduling models are equivalent in UDNs.

Consequently, we recommend to deploy a scheduling strategy with the most reduced imple-

mentation complexity in UDNs. Moreover, we mention the limited impact of inherent resource

capacity η and the BS transmit power Ptx as network density increases. In other words, η and

Ptx need to scale with nearly a 1/λb rate to reduce infrastructure power consumption and the

cost of acquired resource capacity. In this context, investigating the optimum scaling law of Ptx

and η with λb as part of an energy efficiency setup, in addition to approximating the BS density

that maximizes the network performance will be left to future work.

Fig. 22 evaluates expression (184), where it confirms the detrimental effect of BS height h and

users density λu on the network average rate. In addition, and in agreement with our previous

results, we conclude the limited impact of inherent resource capacity η and the transmit power

Ptx as λb increases.
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Figure 20 – The scaling of coverage probability P
(j)
cov with network density λb and users density λu. The other

parameters are fixed as: Ptx = 43 dBm, Tq = 2 dB, η = 103, h = 1 m.

5.5 Chapter Summary

Considering a revisited version of the coverage probability recent definition, introduced in

[204], this chapter derived the coverage probability and the average data rate for a downlink

cellular network with elevated BSs and three representative scheduling models. The network

performance under a given scheduling model is shown to be expressed on the basis of that

under non-orthogonal scheduling, where competing users are served on the same resource block.

In addition, it is revealed that the PF scheduler gives the best network performance due to

multi-user diversity gain, while the RR scheduling is impaired by users density due to the

equal probability selection process. However, the three scheduling models are equivalent in the

context of UDNs, where we recommend to deploy the scheduling model with the most reduced

implementation complexity.

Besides, our results showed that BS height and user density are so detrimental to coverage

probability and average rate in UDNs, while inherent resource capacity and the transmit power

have reduced impact as network density increases, which suggests new insights into the role of

these parameters in UDNs.
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Figure 21 – For λu = 1 user/m2 and Tq = 2 dB , we plot the scaling of coverage probability P
(j)
cov with network

density λb as a function of: (a) The resource capacity η when Ptx = 43 dBm, h = 1 m, (b) The transmit power
Ptx when η = 103 and h = 1 m, (c) The BS height h when η = 103 and Ptx = 43 dBm.
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Figure 22 – The scaling of the average rate under the non-orthogonal scheduling, τ
(1)
c , with network density

λb, as a function of: (a) The resource capacity η and BS height h when λu = 1 user/m2 and Ptx = 43 dBm, (b)
The transmit power Ptx and BS height h when λu = 1 user/m2 and η = 103, (c) The user density λu and BS
height h when η = 103 and Ptx = 43 dBm.

133



Chapter 6

UPLINK COVERAGE AND HANDOFF RATE

WITH REALISTIC POWER CONTROL

MODELS

In this chapter, we characterize, based on stochastic geometry, the uplink coverage probabil-

ity with a unified power control scheme built upon realistic path loss models and UE constrained

transmit power. To improve their uplink connectivity, active UEs are next assumed to move in

a random direction without prior knowledge of their nearest base station location, namely the

BCS movement. A tractable expression of the uplink handoff rate is then derived and the in-

duced uplink coverage probability following the BCS movement is evaluated. The results show

different echoes of the uplink coverage probability depending on the serving UE profile (station-

ary or mobile) and the considered path loss model, which suggests new insights into the design

of uplink system parameters.

6.1 Introduction

With the exponential growth of mobile-broadband data usage, driven essentially by means of

enhanced device capabilities and emerging data-hungry applications, operators are in a steady

race to provide optimal QoE. One key measure to quantify the users’ QoE is the TTC metric,

defined as the period time from requesting to receiving online content on the UE display. Typ-

ically, it has been observed that users need generally to feel a TTC below 6 seconds to report

a positive QoE feedback [405]. Also, downlink performance is commonly known as the first fac-

tor affecting the overall TTC since most popular applications download more data than they

upload. However, recent measurements have shown that a reduced uplink speed of fewer than

300 kbps, may be systematically the bottleneck of a delayed TTC of more than 4 seconds [405].

Hence, the ever-increasing importance of improving uplink coverage.

One effective way for uplink coverage enhancement is by deploying UDNs, envisioned as
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the workhorse of ubiquitous coverage in 5G networks and B5G [263]. That is, real deployment

of nodes in the context of UDNs is opportunistic due to several socio-economic factors, and

analytical tools such as SG and the theory of point processes are more efficient to capture such

spatial variability of nodes [4, 24].

6.1.1 Related Works

To the authors’ knowledge, the work in [20] is the first to consider a tractable SG-based

model to evaluate the uplink coverage probability at the level of the typical BS, uniformly

and randomly deployed in the Voronoi cell of the serving UE. In [24], the previous work is

slightly extended, where the assumption of modelling the active uplink UEs with a PPP having

the same density as the PPP of BSs, is particularly validated via simulations. In [245], uplink

heterogeneous cellular networks based on fractional power control with maximum transmit

power at UEs are investigated. In [148], the UEs transmit power is conceived as a random

variable mapped via a truncated channel inversion power control to the distribution of the

desired link distance. However, the question of uplink UDNs has not been explicitly addressed

in the previous works, where all of them have considered the simplistic standard path loss

model that has demonstrated less-realistic performance trends in the context of downlink UDNs

[162,164]. Interestingly, the authors of [406] addressed such limitation and evaluated the uplink

coverage in UDNs with stationary UEs and a revisited path loss model related to a piecewise

function. However, incorporating UEs mobility in the context of UDNs is so crucial given the

reduced size of cells.

A review of SG mobility-aware models, shows that there are particularly two directions of

analysis: i) the trajectory-based handoff wherein the handoff event occurs as long as the receiver

crosses transmitters cell boundary, and hence, the handoff rate is biased by the efficiency of

quantifying the statistical distribution of cells boundaries. A representative uplink analysis using

such method is given in [148]. ii) The association-based handoff where the handoff event occurs as

long as another BS verifies the association criterion better than the current serving BS [185]. To

the authors’ knowledge, this paper is the first work that extends the association-based handoff

concept to the uplink analysis.

6.1.2 Motivation and Contribution

Typically, the contributions of this paper are threefold: i) We extend the frameworks in

[20, 24, 148, 245] by evaluating the uplink coverage probability under a unified power control
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scheme built upon realistic path loss models and constrained transmit power of UEs. ii) Inspired

from the the 3GPP simulation mobility model [408], active UEs are assumed to intuitively engage

in a linear movement with a random direction in order to improve their connectivity conditions.

In such a context, we derive the uplink handoff rate as an extension of the tractable downlink

analysis in [185]. iii) Using the obtained handoff rate, we also evaluate the induced uplink

coverage probability following such mobility model. The analytical accuracy of our results is

next validated via simulations and the interplay of system parameters with the uplink coverage

probability and the handoff rate is assessed.

6.2 System Model and Assumptions

6.2.1 Cellular Network Model and Association Scheme

We consider the uplink of a cellular network, wherein the location of BSs and users is

modeled with respective 2D homogeneous PPPs Ψb and Ψu, with respective densities λb and

λu measured in [BSs/m2] and [Users/m2]. Without loss of generality, and as permitted by the

Slivnyak-Mecke’s theorem [4, Th. 1.4.5], the typical BS at the origin O, is taken as the object

of the analysis.

We assume an orthogonal access scheme, e.g., OFDMA, where the typical BS schedules

randomly one UE per resource block from the UEs located inside its Voronoi cell. We focus on

the loaded regime where each BS is active in the uplink, i.e., λu ≫ λb. That is, the process of

active UEs (those scheduled to serve their own BS), denoted by Ψ ⊂ Ψu, is assumed to preserve

the Poisson law as was endorsed via simulations in [24, Fig. 5]. Hence, it is reasonable to assume

that the density of Ψ is λb due to the OFDMA property.

As illustrated in Fig. 28, the distance from each active UE x ∈ Ψ to its nearest BS y ∈ Ψb is

denoted by rx. Particularly, the distance from the typical BS y0 to its serving UE x0 is denoted

by r. Besides, the distance from y0 to the interfering UEs x ∈ Ψ \ {x0} is denoted by dx.

6.2.2 Channel Model and Power Control Scheme

Multipath fading of the link between the typical BS y0 and a UE x, is incorporated by a

positive and i.i.d. Rayleigh fading gx with unit mean, i.e., gx ∼ exp(1). We consider a more

realistic path loss model ℓ(.) that can i) avoid the singularity 1 at reduced transmit-receive

1. Holds when considering the standard path loss model of the form r−α.
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distances [164] and ii) capture the subduction 2 effect of the path loss exponent [162], as

ℓ(rx) =





(δ + rα0
x )−1 , rx ≤ Rb

Kr−α1
x , rx > Rb

, (187)

where δ ∈ {0, 1}, Rb is a baseline distance fitted from the propagation environment [162],

K = R
α1
b

/
(δ + R

α0
b ) to ensure the continuity of ℓ(.) in Rb, and α0, α1 are respectively the near-

and far-field path loss exponents, such as 0 < α0 ≤ α1.

(187) as defined above, is a unified framework that can capture several popular models of

the path loss. Typically,

— ℓ(.) is the standard UPM when δ = 0 and α0 = α1 > 2 [20, 24].

— ℓ(.) is the BPM when δ = 1 and α0 = α1 > 2 [164].

— ℓ(.) is the DSPM when δ = 0 and α0 < α1 [162].

Since UEs are battery-powered, each UE needs to tune its transmit power and compensate

for the path loss effect in accordance with the distance to its associated BS. Also, UE transmit

power cannot be increased indefinitely, but needs to be bounded by a maximum value Pmax. We

then introduce a specific power control scheme, namely the DSBPC function ψ(.), as

ψ(rx) =





min
{
P̂max; (δ + rα0

x )ǫ
}
, rx ≤ Rb

min
{
P̂max; (rα1

x /K)ǫ
}
, rx > Rb

, (188)

where ǫ ∈ [0, ǫd] is a parameter to tune the intensity of power control, such as ǫd ≥ 1 is a design

upper allowed value of ǫ. P̂max is the UE maximum transmit power, normalized by Pref (UE

reference transmit power when ǫ = 0 or rx = 1 − δ).

Since most UDNs are interference-limited, we focus our analysis on the uplink SIR at the

typical BS y0, expressed as

SIR(x0; y0) =
gx0ℓ(r)ψ(r)

Ix0

, (189)

where Ix0 is the other-UE interference conditioned on a serving UE located at x0, and expressed

as

Ix0 =
∑

x∈Ψ\{x0}
gxℓ(dx)ψ(rx). (190)

2. It is the variation of the path loss exponent in multi-breakpoint between the transmitter and the receiver.
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Figure 23 – The BS y0 is served by x0 and jammed by signals from the other active UEs. Rb is a parameter
of the path loss model.

6.2.3 Distribution of Link Distances and the Process of the Interfer-

ence Field

Approximating the distribution of key distances r and rx, and characterizing the process

of interfering UEs Ψ \ {x0}, is generally challenging in uplink networks. This is in particular

due to i) the coupling of active UEs location given the assumption of full-load uplink scenario

combined with the OFDMA property, and ii) the coupling of active UEs location with that of

BSs, due to the location dependent and power constrained DSBPC scheme.

A tight approximation of active UEs point process is proposed in [215], but with limited

change to system design insights. Hence, for tractability, we adopt similar generative assump-

tions as those considered in [20, 24], where the PDF of r is expressed from the void probability

as,

fr(ξ) = 2πλb exp (−πλbξ
2), (191)

and the distribution of rx conditioned on dx, expressed under a truncated version of (191), as

frx(u|dx) =
fr(u)

1 − exp (−πλbd2
x)
, 0 ≤ u ≤ dx. (192)

138



6.3. Uplink Coverage Probability Analysis

Furthermore, we model the location of interfering UEs by an inhomogeneous PPP outside an

exclusion region of radius r. Its density is obtained as [24]

λIx0
(dx) = λb

(
1 − exp (−πλbd

2
x)
)
, dx > r . (193)

6.2.4 Mobility Model

In realistic scenarios where users QoE is a crucial metric, active UEs are constantly on a

quest for more advantageous locations enabling optimal uplink SIR such as openings, windows,

and elevated points in obstructed areas. Accordingly, active UEs are assumed to simultaneously

engage in a random movement in R2 without prior knowledge of their nearest BS location,

namely the blind cell search (BCS) movement. For tractability, we adopt the 3GPP simulation

mobility model introduced in [408], wherein the UE moves in a straight line with velocity

v (distance per unit time), at angle θ w.r.t. the direction of connection. θ is randomly and

uniformly distributed in [0, π] due to symmetry.

6.3 Uplink Coverage Probability Analysis

In this section, we develop the baseline uplink framework under the DSBPC scheme (188).

Typically, we consider two cases of analysis, i) the case of stationary active UEs and ii) the case

of moving active UEs.

6.3.1 Case of Stationary Active UEs

When active UEs are randomly scattered but stationary, the uplink coverage probability is

defined as the probability that the SIR at the typical BS located at the origin, exceeds a target

T. Formally,

Pcov(λb,T) = P(SIR(x0; y0) ≥ T), (194)

The following theorem derives the uplink coverage probability under the DSBPC scheme.

Theorem 3. The uplink coverage probability under the DSBPC scheme is expressed as

Pcov (λb,T) ≈ 2πλb

∫ Rb

0
r exp

(
−πλbr

2
)
Ω(r)dr + 2πλb

∫ ∞

Rb

r exp
(
−πλbr

2
)
Θ(r)dr, (195)
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where the supplementary equations are listed in the top of the next page.

Proof. Given the formulation of SIR in (221), the definition of coverage probability in (194) is

simplified as

Pcov(λb,T) = Er

{
LIx0

(
T

ℓ(r)ψ(r)

∣∣∣∣∣r
)}

, (199)

where the inner conditional Laplace function is derived as

LIx0

(
T

ℓ(r)ψ(r)

∣∣∣∣∣r
)

= E





∏

x∈Ψ\{x0}
exp

(
− Tgxℓ(dx)ψ(rx)

ℓ(r)ψ(r)

)∣∣∣∣∣r



 (200)

(a)
= EΨ\{x0}





∏

x∈Ψ\{x0}
Erx





1

1 + Tℓ(dx)ψ(rx)
ℓ(r)ψ(r)

∣∣∣∣∣dx, r







 (201)

(b)
= exp


−2πλb

∫ ∞

r
Erx





1 − exp (−πλbu
2)

1 + ℓ(r)ψ(r)
Tℓ(u)ψ(rx)

∣∣∣∣∣r



udu


, (202)

where (a) holds since Ψ\{x0}, rx, and gx are independent, in addition to gx ∼ exp(1) , while (b)

follows from the PGFL theorem [4, Prop. 1.2.2] and the expression of the interference process

density in (193).

The remainder of the proof is obtained by first substituting (187) and (188) in (202), and

next using PDFs (191) and (192) to average over r and rx conditioned on dx.

Although the expression of the uplink coverage probability under the DSBPC scheme in

(195) is in complicated form, it is general enough to accommodate several previous expressions

in [20, 24, 245]. Developing special closed form expressions of (195) is deferred to the journal

version.

6.3.2 Case of Moving Active UEs

To quantify the contribution of the BCS mobility model on the statistics of the uplink

coverage probability at the level of the typical BS y0, we introduce the induced 3 uplink coverage

probability, defined as the resultant uplink coverage probability following the BCS mobility

3. A dualism premise can be thought with the induced current in a coil following a random movement of the
magnetic field inside it, i.e., the Faraday’s law of electromagnetic induction.
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Ω(w) = exp

(
− 4π2λ2

b

[∫ Rb

w
h1(u, w)udu+

∫ ∞

Rb

h2(u, w)udu+
∫ ∞

Rb

h3(u, w)udu

])
, (196)

Θ(w) = exp

(
− 4π2λ2

b

[∫ ∞

w
h4(u, w)udu+

∫ ∞

w
h5(u, w)udu

])
, (197)

h1(u, w) =
∫ u

0

z exp (−πλbz
2)

1 + 1
T
δ+uα0

δ+wα0

min{P̂max;(δ+wα0 )ǫ}
min{P̂max;(δ+zα0 )ǫ}

dz, h2(u, w) =
∫ Rb

0

z exp (−πλbz
2)

1 + 1
TK

uα1

δ+wα0

min {P̂max;(δ+wα0 )ǫ}
min {P̂max;(δ+zα0 )ǫ}

dz,

h3(u, w) =
∫ u

Rb

z exp (−πλbz
2)

1 + 1
TK

uα1

δ+wα0

min {P̂max;(δ+wα0 )ǫ}
min {P̂max;zǫα1/Kǫ}

dz, h4(u, w) =
∫ Rb

0

z exp (−πλbz
2)

1 + 1
T
uα1

wα1

min {P̂max;wǫα1/Kǫ}
min{P̂max;(δ+zα0 )ǫ}

dz,

h5(u, w) =
∫ u

Rb

z exp (−πλbz
2)

1 + 1
T
uα1

wα1

min{P̂max;wǫα1/Kǫ}
min {P̂max;zǫα1/Kǫ}

dz.

(198)

model. Formally,

Pind(λb,T, v) = Er,θ

(
P

(
SIR(x; y0) ≥ T, h̄|r, θ

))
(203)

= Er,θ

{
LIx

(
T

ℓ(ξ)ψ(ξ)

∣∣∣∣∣r, θ
)

Ph̄(λb, v|r, θ)
}
, (204)

where x is the new location of the serving UE after the BCS such that ξ = ‖x − y0‖ =√
r2 + v2 + 2rv cos(θ), h̄ denotes the event of no handover occurred where Ph̄(λb, v|r, θ) is the

probability that the handover does not occur given r and θ.

In the following, we will first evaluate the uplink handoff rate before deriving the induced

uplink coverage probability.

The handoff rate abstraction

OFDMA is very sensitive to uplink interference [409], where the SIR achieved by a given

UE may be severely limited by signals from closer UEs to the tagged BS. In such context, the

serving UE is more likely to trigger a handoff towards another BS. Accordingly, we consider

an association-based handoff rate as in [185], wherein the serving UE triggers immediately a

handoff event as soon as another active UE becomes more closer to the typical BS.

Proposition 8 in the top of the following page, derives the uplink handoff rate conceived as

the probability of generating a handoff event at the typical BS.
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Proposition 8. The uplink handoff rate for a serving UE moving according to the BCS mobility
model is expressed as

Ph(λb, v) = 1 − exp (−πλbv
2) + v

√
λb

∫ π

π/2
cos(θ)e−πλbv

2 sin2(θ)erf

(
v
√
πλb

cos(2θ)

2 cos(θ)

)
dθ

+ v
√
λb

∫ π/2

0
cos(θ)e−πλbv

2 sin2(θ)dθ − v
√
λb

∫ π

0
cos(θ)e−πλbv

2 sin2(θ)erf
(
v
√
πλb cos(θ)

)
dθ. (205)

Theorem 4. The induced uplink coverage probability at the typical BS following the BCS mo-
bility model of active UEs, is expressed when v < Rb, as

Pind(λb,T, v) = 2λb

[ ∫ π
2

0

∫ r0

0
e−πλbξ

2

Ω(ξ)rdrdθ +
∫ π

π
2

∫ r1

0
e−πλbξ

2

Ω(ξ)rdrdθ +
∫ π

π
2

∫ r2

−v
2 cos(θ)

e−πλbr
2

Ω(ξ)rdrdθ

+
∫ π

2

0

∫ ∞

r0

e−πλbξ
2

Θ(ξ)rdrdθ +
∫ π

π
2

∫ −v
2 cos(θ)

r1

e−πλbξ
2

Θ(ξ)rdrdθ +
∫ π

π
2

∫ ∞

r2

e−πλbr
2

Θ(ξ)rdrdθ

]
,

(206)

and when v ≥ Rb, as

Pind(λb,T, v) = 2λb

[∫ π
2

0

∫ ∞

0
e−πλbξ

2

Θ(ξ)rdrdθ +
∫ π

π
2

∫ −v
2 cos(θ)

0
e−πλbξ

2

Θ(ξ)rdrdθ +
∫ π

π
2

∫ ∞

−v
2 cos(θ)

e−πλbr
2

Θ(ξ)rdrdθ

]
,

(207)

where r0 = v

√
R2

b

v2 − sin2(θ) − v cos(θ), r1 = min
(
r0,

−v
2 cos(θ)

)
, and r2 = max

(
r0,

−v
2 cos(θ)

)
.

Proof. We will only give the outline of the proof. In fact, conditioned on r and θ, the probability

that no handover occurs is expressed via the void probability, as

Ph̄(λb, v|r, θ) =





e−πλb(ξ2−r2), 0 ≤ θ ≤ π
2

& r ≥ 0

1, π
2

≤ θ ≤ π & r ≥ −v
2 cos(θ)

e−πλb(ξ2−r2), π
2

≤ θ ≤ π & r ≤ −v
2 cos(θ)

.

(208)

Next Ph̄(λb, v) is derived by averaging over the distribution of r in (191) and the distribution

of θ, assumed to be uniformly distributed in [0, π] due to symmetry. We have then

Ph̄(λb, v) = Er,θ(Ph̄(λb, v|r, θ)) (209)

=
1

π

∫ π
2

0

∫ ∞

0
2πλbre

−πλbξ
2

drdθ +
1

π

∫ π

π
2

∫ ∞

−v
2 cos(θ)

2πλbre
−πλbr

2

drdθ

+
1

π

∫ π

π
2

∫ −v
2 cos(θ)

0
2πλbre

−πλbξ
2

drdθ. (210)
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Table 4 – Comparing ξ and Rb based on the intervals of v, r, and θ.

v < Rb v ≥ Rb

ξ ≤ Rb

0 ≤ θ ≤ π
2
, 0 ≤ r ≤ r0

π
2

≤ θ ≤ π, 0 ≤ r ≤ r1
π
2

≤ θ ≤ π, −v
2 cos(θ)

≤ r ≤ r2

−

ξ ≥ Rb

0 ≤ θ ≤ π
2
, r ≥ r0

π
2

≤ θ ≤ π, r1 ≤ r ≤ −v
2 cos(θ)

π
2

≤ θ ≤ π, r ≥ r2

0 ≤ θ ≤ π
2
, r ≥ 0

π
2

≤ θ ≤ π, 0 ≤ r ≤ −v
2 cos(θ)

π
2

≤ θ ≤ π, r ≥ −v
2 cos(θ)

The proof is finished by considering the definition of the error function erf(.) and deriving

the handoff probability as Ph(λb, v) = 1 − Ph̄(λb, v).

The induced coverage probability

Theorem 4 in the top of next page, derives the induced uplink coverage probability following

the BCS movement.

Proof. Given the properties of the BCS mobility model as described in Section II-D, it is quite

obvious to mention that the process of active UEs Ψ remains a PPP. Also, given the expression

of the induced uplink coverage probability in (204), we obtain

Pind(.) =
1

π

∫ π

0

∫ ∞

0
2πλbre

−πλbr
2

Ph̄(λb, v|r, θ)

× exp


−2πλb

∫ ∞

ξ
Erx





1−exp (−πλbu
2)

1 + ℓ(ξ)ψ(ξ)
Tℓ(u)ψ(rx)

∣∣∣∣∣r, θ



udu


drdθ. (211)

Next, given the distance-dependence of the path loss model in (187) and the DSBPC in (188),

splitting the expressions of ℓ(ξ) and ψ(ξ) in (211) requires to previously identify the intervals of r

and θ that yield a greater or lower ξ as compared to Rb, which comes to compare
(
r
v

+ cos(θ)
)2 −(

R2
b

v2 − sin2(θ)
)

with 0. Table 4 describes the effect of r, θ, and v intervals on the magnitude of

ξ w.r.t. Rb. We conclude the proof by combining Table. 4 and Eq. (211).

6.4 Numerical Results

In this section, we present numerical results to assess our theoretical findings and quantify

the interplay of system parameters. Numerical integration is evaluated using Matlab and Monte

Carlo simulations are performed with 105 iterations.

143



Partie , Chapter 6 – Uplink Coverage and Handoff Rate with Realistic Power Control Models

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Simulation

Target SIR, T

C
ov

er
ag

e
pr

ob
ab

ili
ty

P
co

v
(.

)

BPM
UPM
DSPM

Figure 24 – The scaling of coverage probability with SIR threshold T under the BPM (δ = 1, α0 = α1 = 4),
the UPM (δ = 0, α0 = α1 = 4), and the DSPM (δ = 0, Rb = 1, α0 = 2, α1 = 4). We use the following common
parameters, P̂max = 2, λb = 0.5, and ǫ = 0.7.

6.4.1 Validation of the Analytical results

Considering the three special cases of (187), namely the BPM, the UPM, and the DSPM,

Fig. 24 describes the scaling of the uplink coverage probability with the SIR threshold T. The

analytical curves (Theorem 3) match perfectly with the simulation results (eq. (194)), which

validates the accuracy of our theoretical analysis. Typically, the UPM gives optimistic results

of the uplink coverage probability as compared to BPM and DSPM, this is due in particular to

the observation that the UPM amplifies the desired signal as r ∈ [0, 1].

6.4.2 The DSBPC and the Uplink Performance of UDNs

Based on cells density λb, which implicitly reflects several loads of active uplink UEs, we

can distinguish from Fig. 25, four operating regimes of OFDMA uplink networks.

The lightly loaded network regime

In such regime, e.g., λb ≤ 10−2 BSs/m2 for P̂max = 2 in Figs. 25-(a), (b), and (c), the

uplink coverage for fixed P̂max, is i) similar under the three path loss models and ii) λb-invariant

regardless of ǫ (insensitive to power control). This is due to the observation that in such regime,

UEs are more likely to be far from their nearest BS, and hence, the three path loss models are
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Figure 25 – The scaling of the uplink coverage probability Pcov(.) as a function of BS density λb and i) the
power control exponent ǫ for P̂max = 2 in (a), (b) and (c). ii) the UE normalized maximum transmit power P̂max

for ǫ = 1 in (d), (e) and (f). Parameters for the UPM case in (a) and (d), are α0 = α1 = 4 and δ = 0, for the
BPM case in (b) and (e), are α0 = α1 = 4 and δ = 1, and for the DSPM case in (c) and (f), are α0 = 3, α1 = 4,
Rb = 1 and δ = 0.

equivalent due to large transmitter-receiver distance. Also, UEs are more unlikely to benefit

from the path loss compensation due to the P̂max constraint and hence the uplink interference

power is counter-balanced by the serving signal power. We denote by λ
(1)
b the width of this

regime. Interestingly, Figs. 25-(d), (e), and (f) show that λ(1)
b scales with 1/P̂max.

The affluent regime

As λb becomes greater than λ
(1)
b , we get into the affluent regime, wherein the uplink Pcov

increases almost linearly with λb until a maximum value Pmax
cov when λb achieves some λ(2)

b . This

Pcov trend is particularly due to the increasing amount of active UEs that succeed to invert the

path loss, while farther UEs (interferers) are still drastically constrained by P̂max. Interestingly,

we can sense the effect of ǫ in this regime and the gap between UPM, BPM, and DSPM begins

to emerge. Typically, Pcov remains almost unchanged from the previous regime if ǫ = 0 and an

increasing ǫ improves the rate of Pcov growth, until an optimum exponent ǫopt < 1, after which

the rate of Pcov growth shrinks down. Numerically, we obtain from Figs. 25-(a), (b), and (c),
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that ǫopt ≃ 0.6 under the UPM and DSPM, while ǫopt ≃ 0.2 under the BPM.

The decay regime

when λb > λ
(2)
b , the average transmitter-receiver distance decreases, and hence the amount

of farther (interfereing) UEs that succeed to invert the path loss increases, while close UEs are

increasingly reducing their transmit powers, particularly when ǫ ≥ ǫopt, which results on the

decay of the uplink coverage probability. However, when ǫ < ǫopt, the trend of uplink coverage

probability is dependent on the considered path loss model. In fact, under the UPM, an increase

in the interference power will be almost counter-balanced by an equivalent increase in the desired

signal power due to singularity of the model, and hence the SIR remains almost invariant from

the previous regime (Fig. 25-(a)). Conversly, the uplink coverage probability will decay under

the BPM and the DSPM where the interference will be more powerful than the desired signal

power given the non-singularity of the BPM, and the lower path loss exponent of the near-field

region under the DSPM [162].

The UDNs regime

when λb is getting sufficiently large, e.g., λb ≥ 1 BS/m2 for T = 0 dB in Fig. 25, i.e., the

context of UDNs, or heavily loaded OFDMA uplink networks. The gap between UPM, BPM

and DSPM becomes evident. Typically, the SIR becomes λb-invariant under the UPM, due to

the equilibrium between the interference and the desired signal powers. Conversely, the uplink

Pcov under the BPM goes towards the near-universal outage as λb −→ ∞, due to non-singularity

at the transmitter [164]. Also, the uplink Pcov under the DSPM, goes towards 0 as λb −→ ∞ if

α0 ≤ 2 (Fig. 25-(c)). Similar proof to [162, Prop. 1] is omitted here.

6.4.3 The Impact of Mobility on the Uplink Performance

Fig. 26 illustrates the scaling of the uplink handoff rate as a function of UE velocity v and

network density λb. The analytical expression in Prop. 8 exactly matches the simulation results,

which validate the accuracy of the theoretical analysis. Also, the curves in Fig. 26 show that

the uplink handoff rate increases naturally with UE velocity v and cells density λb.

In Fig. 27, we assess the induced uplink coverage probability of Theorem. 4 conditioned on

θ. Based on the parameter pair (v, θ), We can identify the following key cases.
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Figure 26 – The handoff rate as a function of the serving UE velocity v and the BS density λb.

A fleeing repulsive motion

it occurs when the serving UE moves away from y0 at the earliest stage of its random

movement, i.e., 0 ≤ θ ≤ π/2. That is, the serving UE movement is more likely to reduce the

uplink Pcov under the UPM and BPM since it widens the desired link distance. Conversely, the

DSPM enables to improve the induced coverage probability for low velocity of the serving UE,

i.e., 0 < v < Rb, due particularly to the observation that such random movement will reduce

the desired signal power for low v and also the average number of interfering active UEs inside

the near-field disk. However, when v is high enough, i.e., v > Rb, the uplink Pcov under DSPM

converges to that under the UPM with α1.

A fleeing clustering motion

it occurs when the serving UE moves towards y0 and next gets away from it given the

amplitude of v, i.e., π/2 < θ ≤ π. In such a context, the uplink coverage probability under the

UPM and the BPM, increases steadily with the serving UE mobility, until achieving the nearest

allowed point to the typical BS. Next, the uplink Pcov shrinks down until a handover occurs. A

different performance trend is reported under the DSPM, where the uplink coverage probability

significantly increases for low user velocity, due to the interplay between of the desired signal

and the interference powers with the near-field disk, next the Pcov curve converges to that under
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Figure 27 – The induced uplink coverage probability following the serving UE movement with velocity v, in
the direction θ w.r.t. the link to the tagged BS. We use the following parameters: λb = 10−3, T = −10 dB,
P̂max = 2, the BPM (δ = 1, α0 = α1 = 4), the UPM (δ = 0, α0 = α1 = 4), and the DSPM (δ = 0, Rb = 1,
α0 = 3, α1 = 4).

the UPM for sufficiently higher velocities

6.5 Chapter Summary

Considering a novel power control scheme built upon realistic path loss models and UEs

constrained transmit power, we first develop a unified mathematical framework of the uplink

coverage probability assuming a randomly but stationary active UEs. Next, and in order to

improve their connectivity conditions, active UEs are assumed to engage in a linear random

movement according to the 3GPP simulation mobility model. In such a context, we develop a

tractable expression of the uplink handoff rate, which is necessary to derive the induced uplink

coverage probability following mobility model. Analytical results are validated via simulations

where we have identified four operating regimes of OFDMA uplink networks depending on

system design parameters and the path loss model considered.

Typically, it has been shown that for sufficiently dense networks, the impact of power con-

trol on the uplink coverage is limited under the BPM, particularly for low SIR target, where

farther UEs are more likely to jam the desired signal regardless of the path loss compensation.

Conversely, the impact of power control is meaningful under the UPM and the DSPM due to
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singularity at very low distances.
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Chapter 7

UPLINK ENERGY EFFICIENCY

DISTRIBUTION WITH AERIAL USERS

The power consumption of future user equipments (UEs) will be affected by the projected

growth in their computing capacity, while data throughput may be affected by emerging aerial

UEs with specific radio propagation conditions compared to terrestrial UEs. In such a context,

this letter evaluates a key metric of interest, namely the probability that the uplink energy

efficiency (EE) at a typical ground base station will be higher than a predefined threshold. We

first characterize the priority bias of each UE layer as a function of shadowing and system-

level parameters to assess its penetration rate, i.e., the amount of active UEs from each tier

among the total population of active UEs. Next, tractable approximations of the desired signal

and the interference distribution are performed, enabling to derive the uplink EE. Our results

demonstrate that an aggregation of the system-level parameters through the aerial priority bias

needs to meet a given constraint to mitigate interference from aerial UEs and enhance the uplink

EE of ground UEs. Monte-Carlo simulations validate the accuracy of our analytical results.

7.1 Introduction

Given their agility and flexible deployment, interest in unmanned aerial vehicles (UAVs)

technology is rapidly growing, opening doors to various realms of application. The ongoing

technological advances and upcoming generations of wireless networks such as fifth generation

(5G) and beyond (B5G), will enable these equipments to be enhanced with many new sensors

and seamless connectivity, making them more robust and more useful than their older versions.

Despite their expected benefits, UAVs as aerial user equipment (UE) in communication

networks, can nevertheless have a detrimental impact on the performance of terrestrial UEs,

which are often assigned more critical tasks than UAVs (e.g., monetary transactions, health-

care services) [410]. The Third Generation Partnership Project (3GPP) has involved in Release

15 a technical study to assess the capability to serve aerial UEs through Long Term Evolution
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(LTE) deployments where base station (BS) antennas are targeting terrestrial UEs [408]. It is

particularly observed from simulations that an increased density 1 of aerial UEs will significantly

increase the uplink interference on ground BSs. This is due to the observation that a typical

aerial UE experiences line-of-sight propagation conditions with a higher probability to more

cells as compared to a typical terrestrial UE. This increase in uplink interference would require

a higher resource utilization level to maintain a similar level of throughput for ground UEs. On

the other hand, increasing the resource utilization level further magnifies the uplink interference

in the network, and hence further degrades the uplink throughput of both aerial and terrestrial

UEs.

7.1.1 Related Works

Considering deterministic locations and fixed number of ground BSs, terrestrial UEs, and

aerial UEs, most research efforts have generally leveraged field measurements and simula-

tions [411], algorithmic analysis [412], and optimization theory [413] to evaluate the impact

of aerial UEs on the performance of terrestrial LTE cellular networks. The above techniques

are typically time-consuming, require customized setups for each experiment, and need com-

plex and efficient algorithms. Hence, increasing need for tractable analytical models. To our

knowledge, there is no analytical model available in the literature to capture the impact of

UAVs system-level parameters (density, height, consumed power, and power control exponent)

on uplink performance metrics of cellular networks.

Stochastic geometry and its inherent point process theory is considered as a powerful math-

ematical tool for the system-level analysis of wireless networks [17]. However, uplink analysis

is highly challenging due to the coupling in active UEs locations following the use of orthogo-

nal multiple access schemes such as orthogonal frequency-division multiple access (OFDMA),

and also due to distance-dependent power control schemes inducing dependency between BSs

and UEs locations. Several generative models have been developed in the literature to assess

the uplink performance in terrestrial single-tier cellular networks [20], multi-tier wireless net-

works [414], and dense cellular networks [415]. Despite these analytical models, there are still

important unexplored leads that need to be addressed. For instance, i) considering heterogeneity

at the UE level (terrestrial and aerial UEs) as opposed to BS level (small cells, macro cells).

The uplink analysis under the latter is revealed to be statistically equivalent to that under the

single tier setup [414, Corollary 4]. Also, ii) previous works have only addressed typical perfor-

1. In this work, we consider an aggregated measure more general than aerial UE density, namely the aerial
priority bias that we will discuss later.
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mance metrics such as coverage probability and throughput. Adjusting system-level parameters

to improve these metrics would however have a detrimental impact on other important metrics

such as the power consumption at UEs interested in having longer battery autonomy.

7.1.2 Motivation and Contribution

In this chapter, our contributions can be summarized as follows:

— We consider two classes of terrestrial and aerial UEs with distinctive parameters in terms

of shadowing, and system-level parameters, and introduce a measure of priority between

UE tiers, namely the UE priority bias. The rationale is to evaluate the process of active

uplink UEs from each tier and then derive the distribution of the distance to the serving

UE in uplink.

— Deriving the process of interfering UEs is quite challenging in the uplink analysis. In

our setup, we approximate it with an inhomogeneous Poisson point process (PPP) over

an exclusion region defined by the tradeoff between interfering UEs and the serving UE

average received power at the typical BS.

— Finally, we derive the distribution of the uplink energy efficiency (EE), enabling us to

evaluate the amount of UEs with a good tradeoff between throughput and power con-

sumption. Next, we illustrate the detrimental effect of increasing aerial priority bias on

the EE. An analytical constraint based on the Lambert W function and mapping main

system-level parameters is identified for proper operational regime of cellular networks

with aerial UEs.

7.2 System Model

We consider the uplink of a cellular network made of terrestrial BSs modeled according

to a 2D homogeneous PPP Ψb , {yi} with density λb in the plane P ⊂ R2, and a vertical

set of heterogeneous UEs (having data to transmit in uplink), comprising two classes of UEs;

terrestrial UEs modeled according to a HPPP Ψt with density λt, and aerial UEs deployed at

an average altitude ha such that their projection in P is modeled according to a homogeneous

PPP Ψa with density λa. Without loss of generality, the typical BS y0 at the origin O, is the

object of the analysis.

We consider standard power-law path-loss between y0 and UEs from Ψt and Ψa as ℓt(r) =

Kr−α and ℓa(r) = K (h2
a + r2)

−α
2 , respectively, where r is the horizontal distance between the UE
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Figure 28 – PPP locations of BSs, terrestrial UEs, and aerial UEs. The BS y0 is served by UE
x0 and jammed by signals from the other active UEs.

of interest and y0, α > 2 is the path-loss exponent, and K =
(

3.108

4πf

)2
is the free-space path-loss

such that f is the transmission frequency. Multipath fading of the link between y0 and a UE x,

is incorporated by a positive independent and identically distributed (i.i.d.) exponential random

variable (RV) gx with unit average power, i.e., gx ∼ exp(1). Also, for i ∈ {t, a}, the link between

y0 and a UE from Ψi is subject to shadowing such that its power is modeled by log-normal RVs

χi with mean µi (in dB) and standard deviation σi (in dB). Based on the displacement theorem,

shadowing effect can be absorbed into the HPPP density. In this way, the displaced HPPP is

still noted Ψi with density λi = λiE
(
χ

2/α
i

)
< ∞, where E

(
χ

2/α
i

)
= exp

(
ln(10)

5
µi

α
+
(

ln(10)

5
√

2
σi

α

)2
)

.

The total power usage for the uplink transmission of a UE from Ψi is P i
usage = Ps,i+Pd,i, where

Ps,i and Pd,i are, respectively, the static power consumed in UE’s internal processes (e.g., signal

processing, computing tasks, battery backup) and the dynamic power for wireless transmissions

tuned in accordance with the distance to the associated BS since UEs are battery-powered. In

this paper, we consider the fractional power control (FPC) such that Pd,i = Pi (ℓi (r))
−ǫi, where

ǫi ∈ [0, 1] is the power control exponent and Pi is the UE transmit power when no power control

is considered, i.e., ǫi = 0. Pi can be seen as a selection bias to tune the uplink range of UEs.

In a given time/frequency resource, the typical BS randomly selects a single active uplink UE
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from all the UEs having a vertical projection inside its Voronoi cell 2, namely C0. We focus on

the loaded regime where each BS is active in the uplink. After associating only one UE per

each BS, we have a network with a mixture of active terrestrial and aerial UEs. The amount

of active UEs from each tier, i.e., the penetration rate, can be tuned by a knob of priority bias

that naturally has to be designed as a function of shadowing and all system parameters (e.g.,

UE density, power bias, power control exponent, and altitude). For instance, we can increase

the tendency of the typical BS to be connected to aerial UEs in uplink by lowering their altitude

and/or increasing their density.

For tractability, we consider the following assumptions.

Assumption 1. The class of UEs with higher priority bias is the one offering the best uplink

average received power.

Assumption 2. The process of active uplink UEs (those scheduled to serve their own BS) is

assumed to preserve the Poisson law as was endorsed by simulations in [24, Fig. 5].

Given Assumptions 1 and 2, the priority bias measure can be used to characterize the process

of active terrestrial and aerial UEs via independent thinning, respectively, denoted by Ψ̃t and

Ψ̃a with respective densities λ̃t = Atλb and λ̃a = Aaλb, where At and Aa are the priority bias

of terrestrial and aerial UEs, respectively. If terrestrial and aerial UEs are identical in terms of

shadowing and system-level parameters, we naturally need to get At = Aa = 0.5. The following

Lemma considers the general setup.

Lemma 4. The priority bias of terrestrial and aerial UEs is, respectively, expressed as

At = 1 − exp
(
−πλtδ

2
)

+ 2πλte
πλah2

a

∫ ∞

δ
r exp


−π


λtr

2 + λa

(
K
ǫt−ǫa

Pa

Pt

) 2
α(1−ǫa)

r
2(1−ǫt)

1−ǫa




 dr, (212)

Aa = 2πλa

∫ ∞

0
r exp


−π


λar

2 + λt

(
K
ǫa−ǫt

Pt

Pa

) 2
α(1−ǫt) (

r2 + h2
a

) 1−ǫa
1−ǫt




 dr, (213)

where δ = h
1−ǫa
1−ǫt
a

(
Kǫa−ǫt Pt

Pa

) 1
α(1−ǫt) .

Proof. For i ∈ {t, a}, the complementary cumulative distribution function (CCDF) of ri, the

smallest distance to contact a UE from Ψi, is obtained from the null probability of the PPP Ψi

2. Hence, intra-cell interference is ignored, while inter-cell interference is present due to universal frequency
reuse.
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as

Fri
(u) = P (ri > u) = exp

(
−πλiu2

)
. (214)

From the abstraction of At in Assumption 1, we get

At = P

(
K

1−ǫtPtrt
−α(1−ǫt) ≥ K

1−ǫaPa

(
ra

2 + h2
a

)− α(1−ǫa)
2

)
(215)

= Ert


P


ra

2 ≥
(

K
ǫt−ǫa

Pa

Pt

) 2
α(1−ǫa)

u
2(1−ǫt)

1−ǫa − h2
a

∣∣∣∣rt = u




 (216)

= −
∫ ∞

0
Fra




√√√√√max


0,

(
Kǫt−ǫa

Pa

Pt

) 2
α(1−ǫa)

u
2(1−ǫt)

1−ǫa − h2
a





 dFrt (u) . (217)

Exact expression of At is then obtained by using CCDFs in (214) and splitting the interval of

integration based on δ. A similar approach is followed to derive Aa.

Special cases: when ǫt = ǫa = ǫ, Lemma 4 can be simplified under a closed-form expression

as

Aa = 1 − At (218)

=
λaP

2
α(1−ǫ)

a

λtP
2

α(1−ǫ)

t + λaP
2

α(1−ǫ)
a

exp


−πλth

2
a

(
Pt

Pa

) 2
α(1−ǫ)


 . (219)

If we also have Pa = Pt, (219) can be further simplified as

Aa = 1 − At =
λa

λt + λa

exp
(
−πλth

2
a

)
. (220)

For i ∈ {t, a}, we denote by rix the horizontal distance between a given UE x ∈ Ψ̃i and its nearest

BS. Particularly, rt and ra are, respectively, the horizontal distance from y0 to its nearest UE

from Ψ̃t and Ψ̃a. Also, we denote by S the serving tier, i.e., S = Ψ̃t or S = Ψ̃a, and by r0 the

horizontal distance from y0 to its serving UE x0 ∈ S. The distance from y0 to an interfering UE

x from Ψ̃i \ {x0} is denoted by dix. Fig. 28 illustrates the setup of our system model.

For the sake of simplicity, we ignore thermal noise and focus our analysis on the interference-

limited regime [20, 414]. In such a context, the signal-to-interference ratio (SIR) at y0 is given
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by

SIR(x0 ∈ Ψ̃i; y0) =
gx0Pi (ℓi(r0))1−ǫi

It
x0,i + Ia

x0,i

, (221)

where for i, j ∈ {t, a}, Ijx0,i is the interference generated by UEs from Ψ̃j \ {x0} conditioned on

a serving UE x0 ∈ Ψ̃i. It is expressed as

Ijx0,i =
∑

x∈Ψ̃j\{x0∈Ψ̃i}
gxPjℓj(d

j
x)
(
ℓj(r

j
x)
)−ǫj

. (222)

7.3 Uplink Energy Efficiency Distribution

In this section, we provide the key analytical framework to derive the uplink EE distribution

under a setup with terrestrial and aerial UEs.

Definition 1. The uplink rate (in bps) at the typical BS y0 when it is served by x0 ∈ Ψ̃i

(i ∈ {t, a}) is

Ri =
B

N + 1
log2

(
1 + SIR(x0 ∈ Ψ̃i; y0)

)
, (223)

where B is the total effective uplink bandwidth in Hz and N is the total number of UEs from

Ψt ∪ Ψa \ {x0 ∈ Ψ̃i} with orthogonal projection inside C0.

Definition 2. (Energy efficiency coverage). EE coverage Ec is defined as the probability that

the uplink EE measured at the typical BS is higher than a predefined threshold T. Formally,

Ec =
∑

i∈{t,a}
P

(
Ri

Ps,i + Pd,i
≥ T,S = Ψ̃i

)
. (224)

The EE distribution is completely characterized by the EE coverage. Also, N is a RV de-

pending on the serving area of the typical BS y0, i.e., C0, and the priority bias that governs the

number of active terrestrial and aerial UEs in the uplink.

Assumption 3. Given the orthogonal allocation of channel resources, it is reasonable to con-

sider that the number N of competing UEs is uncorrelated with SIR at y0.

In this way, the EE coverage can be derived as
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Ec =
∑

i∈{t,a}
P




log2

(
1 + SIR(x0 ∈ Ψ̃i; y0)

)

Ps,i + Pd,i
≥ T (N + 1)

B
,S = Ψ̃i


 (225)

(a)
=
∑

m≥0

∑

i∈{t,a}
P (N = m)P

(
gx0 ≥ si (m, r0)

(
It
x0,i

+ Ia
x0,i

)
,S = Ψ̃i

)
(226)

(b)
=
∑

m≥0

∑

i∈{t,a}
P (N = m)Er0


LIt

x0,i

(
si (m, r0)

)
LIa

x0,i

(
si (m, r0)

)
, (227)

where (a) comes from the independence between the distribution of the number of competing

UEs to x0 and the received SIR from x0, (b) comes from gx ∼ exp(1) and the definition of the

Laplace functional, where for i ∈ {t, a}, si (m, r0) = 2
T(m+1)

B (Ps,i+Pi(ℓi(r0))−ǫi)−1
Pi(ℓi(r0))1−ǫi

, and the probability

mass function (PMF) of N is [403]

P (N = m) ≃ 3.53.5

Γ (3.5)

Γ (m+ 4.5)

m!

(
λt + λa

λb

)m (
3.5 +

λt + λa

λb

)−(m+4.5)

. (228)

We derive next the supplementary terms for the computation of the uplink EE coverage.

7.3.1 Distribution of the serving UE

After associating one UE per each BS, the probability density function (PDF) of the hori-

zontal distance between the typical BS y0 and its serving UE x0 from Ψ̃t is derived as

fr0(u,S = Ψ̃t) = frt (u)P

(
K

−ǫtPtu
−α(1−ǫt) > K

−ǫaPa

(
r2

a + h2
a

)− α(1−ǫa)
2

)
(229)

= 2πλ̃tu exp
(
−πλ̃tu

2
)

×





1 , u < δ

exp
(

−πλ̃a

((
Kǫt−ǫa Pa

Pt

) 2
α(1−ǫa) u

2(1−ǫt)
1−ǫa − h2

a

))
, otherwise.

(230)
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Similarly, the PDF of the horizontal distance between the typical BS y0 and its serving UE x0

from Ψ̃a is

fr0(u,S = Ψ̃a) = fra (u)P

(
K

−ǫaPa

(
u2 + h2

a

)− α(1−ǫa)
2 > K

−ǫtPtr
−α(1−ǫt)
t

)
(231)

= 2πλ̃au exp
(
−πλ̃au

2
)

exp


−πλ̃t



(

K
ǫa−ǫt

Pt

Pa

) 2
α(1−ǫt)(

u2 + h2
a

) 1−ǫa
1−ǫt




 . (232)

The above expressions of the serving distance PDF are different from those defined in [20, 414,

415], where only one homogeneous class of UEs is considered.

Approximating the process of interfering UEs is quite challenging due to coupling in UEs

locations. For tractability, we adopt a similar abstraction as in [24, 414], where for i ∈ {t, a},

Assumption 4. The process of interferers from Ψ̃i, conditioned on the serving UE, is modeled

by an inhomogeneous PPP of density λ̃i
(
1 − exp

(
−πλ̃iv2

))
, where v is the horizontal distance

to a given interferer.

Assumption 5. Conditioned on an interfering UE x ∈ Ψ̃i, the PDF of rix is expresssed under

a truncated version as

fri
x

(
w|dix = v

)
=

2πλ̃iw exp
(
−πλ̃iw2

)

1 − exp
(
−πλ̃iv2

) , ∀w ≤ v. (233)

The exclusion region of interfering UEs under our setup is defined by the observation that

the average received power from any interfering UE at y0 needs to be lower than that received

from the serving UE x0. Otherwise, the interfering UE will be associated to the typical BS y0.

Formally,

Piℓi(d
i
x)
(
ℓi(r

i
x)
)−ǫi ≤ Pj (ℓj(r0))1−ǫj , ∀i, j ∈ {t, a} . (234)
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7.3.2 Interference from active terrestrial users

For j ∈ {t, a}, the Laplace functional of the interference generated by UEs from Ψ̃t when

the serving UE belongs to Ψ̃j , is obtained as

LIt
x0,j

(s) = E


exp


−s

∑

x∈Ψ̃t\{x0∈Ψ̃j}
gxPtK

1−ǫt

(
dt
x

)−α (
rt
x

)αǫt





 (235)

= E




∏

x∈Ψ̃t\{x0∈Ψ̃j}
Ert

x

(
1

1 + sPtK
1−ǫt (dt

x)
−α (rt

x)
αǫt

)
 (236)

(a)
= exp


−4π2λ̃2

t

∫ ∞

0

∫ v

0

vwe−πλ̃tw2

1 + Kǫt−1

sPt

vα

wαǫt

dwdv


 , (237)

where (a) is by averaging first over the PDF of rt
x in Assumption 5. Next, we use the probability

generating functional (PGFL) theorem where the density of the interference field is defined in

Assumption 4. The integration range of dx = v starts from 0, since the closest interfering UE

can be closer to y0 than the desired UE x0. This is possible from (234) since, for an interferer

UE from Ψ̃t with a distance to its closest BS of rt
x = r0/n (n > 1), it can be closer to y0 by

r0/n
ǫt.

7.3.3 Interference from active aerial users

The Laplace functional of the interference generated by UEs from Ψ̃a when the serving UE

belongs to Ψ̃t and distant from y0 by r0 = u, is obtained as

LIa
x0,t

(s) = exp


−4π2λ̃2

a

∫ ∞

̟(u)

∫ v

0

vwe−πλ̃aw2

1 + Kǫa−1

sPa

(v2+h2
a)

α
2

(w2+h2
a)

αǫa
2

dwdv


 , (238)

where the starting point of the integration range with respect to dx = v is derived from (234)

as

̟ (u) =





0 , u < δ

ha

√
(
Pa

Pt
Kǫt−ǫa

) 2
α u2(1−ǫt)

h
2(1−ǫa)
a

− 1 , otherwise.
(239)
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Similarly, the Laplace functional of the interference generated by UEs from Ψ̃a when the serving

UE belongs to Ψ̃a and distant from y0 by r0 = u, is obtained as

LIa
x0,a

(s) = exp


−4π2λ̃2

a

∫ ∞

π(u)

∫ v

0

vwe−πλ̃aw2

1 + Kǫa−1

sPa

(v2+h2
a)

α
2

(w2+h2
a)

αǫa
2

dwdv


 , (240)

where π (u) = ha

√(
u2

h2
a

+ 1
)1−ǫa − 1.

7.4 Numerical Results

We consider a typical cellular network where each BS has an average of 80 smartphones and

20 quadcopter UAVs within its coverage area, i.e., λt = 80 λb and λa = 20 λb. We have the

following standard parameters: α = 4, f = 2.1 GHz, B = 5 MHz, µt = µa = 0 dB, Pt = 33

dBm, Pa = 36 dBm, Ps,t = 0.5 Watts, and Ps,a = 2.5 Watts.

We first need to validate the expression of priority bias derived in Lemma 4. Fig. 29 illustrat-

ing the simulated and analytical expression of the aerial priority bias shows that the analytical

expression in Lemma 4 is perfectly accurate.

In Fig. 30, we validate the analytical expression of the EE coverage under the mean load

setup, i.e., P
(
N = 1 + 1.28 λt+λa

λb

)
≃ 1 [403]. It has been shown that the EE coverage decays

when lowering UAVs height or increasing their density by making aerial shadowing more variable,

i.e., increasing σa. This is a similar result to [403], where shadowing is revealed to be a natural

load balancing bias between tiers of BSs in the downlink. Here, it plays the role of a natural

priority balancing between several classes of uplink UEs.

In Fig. 31, we illustrate the mean load terrestrial EE coverage, i.e., Ec

(
S = Ψ̃t

)
, and the

aerial priority bias Aa as a function of the power control exponent ǫ = ǫt = ǫa and UAVs height

ha. Ec

(
S = Ψ̃t

)
is typically monotonically decreasing with the aerial priority bias. Reducing

the latter can therefore reduce the detrimental effect of UAVs on the EE of terrestrial UEs. To

achieve this, we can act not only by reducing UAVs density (as mentioned in [408]), but also by

acting on other system parameters such as altitude and the power control exponent (see Fig. 29).

In the general case, assuming a properly operating LTE cellular network for Aa ≤ β < 1, we

get from (219)
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Figure 29 – Aerial priority bias as a function of terrestrial and aerial power control exponents
and UAVs altitude, when λb = 10−2, σt = 4 dB, and σa = 8 dB.
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Figure 30 – Mean load approximation of the uplink EE coverage when λb = 10−2, ǫt = ǫa = 0.5,
and σt = 0 dB.
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Figure 31 – Mean load approximation of the uplink terrestrial EE coverage Ec

(
S = Ψ̃t

)
(Solid

lines) and aerial priority bias Aa (Dashed lines) as a function of the power control exponent
ǫ = ǫt = ǫa and UAVs height ha (Arrow) when λb = 10−3, σt = 0 dB, σa = 10 dB, and T = 10
bps/W.
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πh2
a

(
λa + λt

(
Pt

Pa

) 2
α(1−ǫ)
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exp

(
πh2
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(
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(
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) 2
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))
≥ πλah2

a

β
exp

(
πλah2

a

)
. (241)

Since W0 is the inverse relation of f (w) = wew, we obtain from (241) a transcendental constraint
as

(
Pt

Pa

) 2
α(1−ǫ)

≥
W0

(
πλah2

a
β exp

(
πλah2

a

))
− πλah2

a

πλth2
a

. (242)

7.5 Chapter Summary

This chapter proposed a tractable analytical framework to derive the uplink EE coverage un-

der a setup where two classes of terrestrial and aerial UEs are considered. It has been particularly

shown that increased tendency of terrestrial BSs to be connected to aerial UEs, i.e., increased

aerial priority bias (not only UAVs density as reported in [408]), will have a detrimental effect

on the uplink EE of ground UEs. Assuming similar power control exponents for terrestrial and

aerial UEs, we have identified a compact analytical constraint for a proper operational regime

of the network in terms of EE coverage.

Future generalization of this work will consider constrained transmit power at the level of

each UE class, in addition to multi-tier BSs. The rationale is to investigate the impact of a

decoupled uplink and downlink association scheme on EE.
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RÉSUMÉ LONG EN FRANÇAIS

La géométrie stochastique (SG) est un champ de la probabilité appliquée qui vise à proposer

des modèles mathématiques tractables et des méthodes statistiques appropriées pour étudier et

analyser des phénomènes aléatoires sur le plan R2 ou dans des dimensions supérieurs [1]. Son

développement a été motivé par des applications dans divers domaines scientifiques tels que la

foresterie, l’analyse d’images, la géophysique, la neurophysiologie, la cardiologie, la finance et

l’économie. Dans le contexte des réseaux de communication, l’emplacement des équipements

utilisateurs et des stations de base sont considérés comme des réalisations parmi un nombre

énorme de possibilités, où concevoir le système pour chaque réalisation de réseau serait la-

borieux et exigerait beaucoup de ressources [2, 3]. Au lieu de cela, en utilisant les outils de la

SG [1–8], l’emplacement des nœuds est évalué statistiquement afin de quantifier les moyennes

spatiales, ce qui permet de prendre en compte toutes les réalisations possibles du réseau et de

cerner généralement les dépendances fondamentales relatives à la performance du réseau (e.g.,

capacité/débit et fiabilité). Le travail [15] est le premier à considérer des outils de la SG pour

évaluer la connectivité dans un réseau de stations représenté par un processus ponctuel de Pois-

son (PPP). En particulier, il a fallu attendre la fin des années 90 pour que des idées importantes

de la SG trouvent leur chemin vers la modélisation et l’analyse des réseaux de communica-

tion [2, 3]. Ainsi, des outils basés sur les tessellations de Poisson-Voronoi et la triangulation de

Delaunay ont été proposés pour dériver les caractéristiques géométriques des liens hiérarchiques

entre les stations. Des résultats clés ont été rapportés une décennie plus tard, où la technique

mathématique de base a été définie pour un réseau sans fil mono-niveau [16, 17, 56]. Ensuite,

des généralisations à des modèles de SG plus avancés ont été progressivement adoptées pour

des applications aux réseaux sans fil finis [59], aux réseaux multi-niveaux [18,19], et à la liaison

montante [20]. Pour plus de discussions sur ces premières extensions, veuillez consulter [21–24].

La digitalisation croissante de la société moderne fait que les réseaux de cinquième généra-

tion et au-delà (5G/B5G) sont appelés à jouer un rôle primordial dans le développement des

débits de données, de l’hyper-connectivité et de la latence ultra-faible. Pour répondre à ces

exigences, les futurs réseaux sans fil 5G/B5G devraient être plus hétérogènes en raison de di-

verses applications ciblées, en plus de l’utilisation de bandes de fréquences élevées (e.g., ondes

millimétriques (mmWave) [27], communications teraHertz [28], et communications en lumière
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visible (VLC) [29]) permettant la mise en place de réseaux à haut débit et à courte portée.

En outre, les objets de l’environnement seront recouverts de méta-surfaces intelligentes capa-

bles de réfléchir les signaux incidents d’une manière personnalisée afin d’optimiser/recycler la

propagation des signaux dans les réseaux du futur [30]. L’utilisation de systèmes aériens sans

pilote (UAV) sera une technologie répandue et mature, où ils pourront être utilisés comme des

stations de base volantes pour assurer la couverture terrestre dans des régions isolées, améliorer

la capacité dans des zones fortement surchargées par le trafic, et même être utilisés comme

UAV volants à des fins de livraison ou de supervision [31]. Il est intéressant de constater que les

terminaux utilisateurs seront progressivement équipés de capacités de calcul et/ou de stockage

permettant de passer du paradigme de la connectivité omniprésente à celui de l’intelligence sans

fil omniprésente [32].

Ainsi, au fur et à mesure que la complexité et l’hétérogénéité des réseaux sans fil modernes

augmenteront, les outils de l’intelligence artificielle et de l’apprentissage machine (ML) seront

indispensables pour appréhender les aspects statiques et dynamiques de l’environnement sans

fil, puis aider à prendre des décisions de contrôle optimales pour les performances du système.

Dans ce contexte, la SG considérée comme un outil puissant de modélisation et d’évaluation

des réseaux sans fil au cours de la dernière décennie, devrait rester un domaine de recherche

effervescent dans l’avenir prévisible, pour les raisons suivantes : Premièrement, la configuration

spatiale des émetteurs et des récepteurs continuera à jouer un rôle essentiel dans la prédiction

des indicateurs de performance dans les réseaux sans fil 5G/B5G. Deuxièmement, une synergie

entre la SG et ML peut être établie pour obtenir de meilleurs résultats en termes de précision

et de flexibilité. Généralement, la SG peut être intégrée comme une classe d’hypothèses dans

le processus d’apprentissage de ML pour évaluer la famille de problèmes de sélection des sous-

ensembles [35,36]. Troisièmement, malgré la possibilité de construire un environnement sans fil

programmable et commandé dans les réseaux 5G/B5G, grâce à l’intelligence omniprésente et à

l’adoption massive de méta-surfaces, il est en fait impossible de contrôler toutes les facettes de

l’environnement, par exemple le mouvement des bâtiments généré par les vents et la dilatation

thermique des matériaux [37] ou le mauvais alignement des faisceaux dans les communications

à haute fréquence [38]. D’où la nécessité de modéliser ces aspects non maîtrisés du réseau par

des processus aléatoires, et donc le besoin omniprésent de la SG.

Dans ce travail de thèse, j’utiliserai des outils analytiques de la SG pour modéliser et analyser

la liaison descendante et montante des réseaux sans fil. Les résultats obtenus dans le cadre de

la présente thèse peuvent être étendus à un large éventail de configurations. Pour résumer, les

contributions peuvent être présentées comme suit
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— Chapitre 1 : Nous proposons une revue de la littérature jusqu’en 2020, sur les applications

des modèles de de la SG dans la modélisation et l’analyse des communications sans fil.

En particulier, nous élaborons pour la première fois une taxonomie complète de ces pro-

cessus ponctuels (PPs) (voir Fig. 8). En effet, les PPs hard-core ne peuvent refléter que

des structures ayant une distance de répulsion hard-core entre les points, sans pouvoir

capturer des structures totalement aléatoires (PPP ou BPP) ou des maillages parfaits

(perfect lattice). Les DPP qui font partie des PP soft-core peuvent capturer des struc-

tures allant du PPP à certaines structures répulsives en dessous des maillages parfaits.

Toutefois, d’autres PP soft-core, tels que les maillages perturbés (perturbed lattices) et

la combinaison d’un PPP et d’un maillage stationnaire, peuvent modéliser plus de struc-

tures ponctuelles allant du PPP aux maillages parfaits. Il est intéressant de noter que

l’approche IDT permet de modéliser des structures ponctuels comprises entre les deux

extrêmes (entre les PPs de clustering et les maillages stationnaires). Une étude détaillée

des propositions de modélisation des réseaux sans fil avec des PPs au-delà du PPP per-

met de constater que ces PPs sont bien plus précis que le PPP pour la modélisation des

architectures sans fil émergentes. Toutefois, ils sont mathématiquement moins tractables

permettant que d’approximer le comportement de l’interférence et de la performance.

Par conséquent, dans certains scénarios d’analyse, il est généralement plus judicieux de

privilégier la souplesse mathématique offrant des informations pratiques sur la concep-

tion du système, plutôt que d’accroître la précision de la modélisation, mais avec une

perte considérable de la flexibilité mathématique. En d’autres termes, la tractabilité du

PPP justifie parfois son éventuelle manque de précision. Le tableau 1 classe ces PPs selon

divers degrés de tractabilité et de complexité mathématique. Une mesure importante est

la capacité du PP à permettre la dérivation de la transformée de Laplace (PGFL) de

l’interférence à un point arbitraire donné, ce qui permettera par la suite de dériver di-

verses mesures de performance comme la probabilité de couverture et le débit érgodique.

Ainsi, trois classes de PPs sont identifiées : ceux qui permettent de dériver la PGFL de

l’interférence, ceux qui ne permettent pas de la dériver d’où une approximation de la

PGFL ou de la valeur moyenne de l’interférence est établie, et ceux dont la PGFL et la

valeur moyenne de l’interférence sont inconnues.

— Chapitre 2 : Nous examinons dans ce chapitre les nombreux choix de modélisation clés

couramment utilisés dans la littérature basée sur la SG. Ainsi, nous passons en revue

les préférences conceptuelles relatives i) aux éléments du réseau, par exemple le modèle

de localisation (déterministe, aléatoire, stationnaire ou mobile), le type de nœud (émet-
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teur, récepteur ou les deux), ii) leurs attributs, par exemple la puissance d’émission

et les types d’antenne (omni, directionnelle, antennes multiples, etc), iii) les caractéris-

tiques de l’environnement dans lequel ils opèrent, telles que les effets de propagation, et

iv) les propriétés d’interaction entre les nœuds comme la stratégie d’association émet-

teur/récepteur, la coordination entre les noeuds du réseau et l’interaction spatiale en-

tre eux (repulsion, attraction, ou zero interaction). Nous présentons également quelques

mesures de performance fondamentales et nous exposons, de manière plus raffinée pour les

non-spécialistes, les techniques d’analyse développées à ce jour dans la littérature relative

à la modélisation et à l’analyse des réseaux sans fil basées sur la SG. Le tableau 3 résume

les onze techniques utilisées dans la littérature pour évaluer les principales métriques

de performance des réseaux sans fil sous l’abstraction PPP/BPP. Ces techniques sont

classées en fonction de leur degré de précision analytique (approximation ou exacte) et

de leur flexibilité mathématique. Nous avons également examiné le mapping de ces tech-

niques avec les divers stratégies d’association émetteur/récepteur, de même qu’illustré

les modèles d’évanouissement requis pour chaque technique.

— Chapitre 3: Dans ce chapitre, nous avons identifié et examiné les principaux aspects et

défis relatifs à la modélisation et l’analyse des architectures RAN émergentes telles que les

réseaux hétérogènes terrestres, les architectures denses (par les petites cellules, le partage

des infrastructures, les relais à plusieurs hubs, et les communications D2D), réseaux non

terrestres, RAN en cloud, RAN virtualisé, fog RAN. De même, nous avons investigué les

caractéristiques et les défis de modélisation des technologies habilitantes pour la 5G/B5G

telles que l’utilisation des bandes de fréquences élevées, la radio cognitive, les systèmes

MIMO, les métasurfaces pilotées par logiciel, les communications IBFD, le schéma d’accès

NOMA, et la sécurité de la couche physique, et ensuite décrire comment des travaux

pertinents dans la littérature ont entrepris d’intégrer la SG dans l’évaluation de ces

technologies.

— Chapitre 4: Avec la croissance rapide des applications et des appareils à forte consomma-

tion de données, le volume du trafic de données dans les années à venir devrait atteindre

des niveaux beaucoup plus élevés que ceux d’aujourd’hui. Une façon de relever ce défi est

de déployer des réseaux très denses (UDNs) [261]. Cependant, la densification entraînera

divers zones de chevauchement de la couverture, ce qui augmente le risque d’interférence

et entraîne une dégradation de la performance du réseau. Dans ce sens, les caractéristiques

de l’environnement telles que le shadowing, et les paramètres RNPO (e.g., la hauteur de

l’antenne [71], l’angle d’inclinaison/azimut de l’antenne [391, 393] et le biais de la puis-
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sance d’émission [19]) sont fortement requis pour l’analyse des performances des UDNs

puisqu’ils affectent directement la probabilité de connexions LOS et NLOS, et donc le

chevauchement des cellules.

En ignorant l’effet du shadowing et de tout paramètre RNPO, le travail pionnier de [17]

fournit une compréhension globale du comportement des performances des UDNs à base

de la SG. Un résultat important est la propriété d’invariance du SINR, qui indique que la

densité des stations de base augmente au point où le bruit devient négligeable, ensuite le

SINR reste stable et indépendant de cette densité due à un équilibre entre la puissance de

transmission du signal désiré et celle de l’interference. Cependant, l’utilisation du modèle

standard de perte de trajet et le fait d’ignorer les paramètres RNPO pour des scénarios

de communication réalistes conduisent à des conclusions qui ne collent pas aux limites

physiques [163], ce qui nécessite une révision impérative de ce modèle de perte de trajet.

Ainsi, les auteurs de [162] ont établi que la propriété d’invariance du SINR n’est plus

valable lorsqu’on utilise le modèle de perte de trajet à double pente. Un effet similaire

est signalé dans [71] pour les stations de base avec antennes élevées, et dans [391] pour

un réseau utilisant des antennes directionnelles.

La motivation derrière ce chapitre est donc de trouver une approche analytique adaptée

pour étudier les performances des UDNs en incorporant des paramètres généralisés de

shadowing et des paramètres RNPO dans le modèle de sélection des cellules. En se bas-

ant sur des outils de la SG, nous commençons par développer une équivalence 3D-2D où

un réseau cellulaire tridimensionnel avec des paramètres de shadowing et de RNPO est

statistiquement équivalent à un réseau 2D dans lequel ils ne sont pas pris en compte. En-

suite, pour des raisons de commodité mathématique, nous nous penchons sur une étude

de cas basée sur un modèle de probabilité H–LOS. Ainsi, la probabilité de couverture est

calculée, confirmant que notre formule est suffisamment générale pour englober plusieurs

formules déjà adoptées par la communauté de recherche. Nous étudions ensuite la loi

d’échelle de la densité optimale des stations de base permettant de maximiser la prob-

abilité de couverture. Enfin, nous développons un générateur d’expressions analytiques

robustes pour la probabilité de couverture dans le cadre du modèle standard de perte de

trajet, ce qui généralisera la fameuse expression basée sur la fonction Q dans [17].

— Chapitre 5: Les UDNs basés sur le déploiement massif de petites stations de base cel-

lulaires sont considérés comme un outil essentiel pour améliorer la capacité des réseaux

5G/B5G [262]. L’analyse et la modélisation des UDNs nécessitent des outils mathéma-

tiques généralement puissants et des concepts nouveaux afin de saisir les paramètres
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clés du système qui influent sur la fonction d’utilité intégrant la QoS des utilisateurs et

l’investissement des opérateurs.

Une grande partie des études précédentes basées sur des modèles de la SG considéraient

le (SINR) comme le facteur clé de la qualité d’expérience de l’utilisateur. Par conséquent,

la probabilité de couverture (CCDF de SINR), est en général exprimée sous une intégrale

impropre [4, 17, 18, 162], nécessitant une intégration numérique efficiente et laborieuse

[204], à l’exception de quelques cas particuliers où des expressions simplifiées peuvent être

obtenues (e.g., l’exposant de perte de trajet égal à 4, négliger le bruit, évanouissement

de Rayleigh). En outre, la quasi-totalité des études basées sur la SG dérivent le débit

ergodique en intégrant la probabilité de couverture sur l’axe réel positif, ce qui aboutit

à une intégrale à quatre temps [17, Appendix C], à l’exception de l’approche basée sur

le lemme de Hamdi présentée dans [68], qui ne nécessite que le calcul d’une intégrale

numérique à deux temps mais qui demande cependant l’utilisation de la fonction G de

Meijer [68, Corollary 1].

Pour surmonter les limites susmentionnées, les auteurs de [204, 205] ont introduit une

nouvelle définition de la probabilité de couverture, selon laquelle l’utilisateur typique

est en couverture lorsque, i) celui-ci reçoit un signal suffisamment puissant sans que la

puissance d’émission de la station de base ne soit surdimensionnée, c’est-à-dire le SNR

à long terme est supérieur à un certain seuil, ii) l’utilisateur reçoit un signal de bonne

qualité, c’est-à-dire que le SIR est supérieur à un seuil donné. Il est à noter que cette

nouvelle définition permet de saisir davantage de paramètres au niveau du système et

de générer des expressions de probabilité de couverture simplifiées, que la définition

convetionnelle ne permet pas [17].

D’un autre coté, l’utilisateur dans les réseaux réalistes, peut subir des interruptions de la

voix et des données en raison de la congestion lors des périodes de pointe, indépendam-

ment de l’intensité ou de la qualité du signal reçu. La composante essentielle manquante

dans la nouvelle définition de la probabilité de couverture présentée dans [204, 205], est

donc une mesure de la capacité des ressources physiques et logiques sur les stations de

base actives (e.g., les éléments de ressources des canaux regroupés en blocs de ressources

physiques (PRB) dans la 5G New Radio (NR), ou la ressource commune des canaux de

puissance comme les canaux P-CPICH dans l’UMTS).

Dans ce chapitre, nous élargissons le concept de la probabilité de couverture introduit

dans [204, 205] en saisissant de façon tractable la capacité des ressources des stations de

base actives. Dans ce sens, nous introduisons dans l’analyse une nouvelle mesure flexible
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permettant de représenter les stations de base ayant une capacité de ressources suffisante.

Ensuite, nous abordons pour la première fois l’analyse de la performance des UDNs

sous ce nouveau modèle de la probabilité de couverture. Pour ce faire, nous incorporons

dans l’analyse trois schémas d’ordonnancement représentatifs en termes d’équité d’accès

des utilisateurs et de la complexité de mise en œuvre. Le but est de comparer leurs

performances dans le cadre des UDNs. Nous considérons également la hauteur des stations

de base puisque i) son effet est critique dans le contexte des UDNs [398] et ii) pour

permettre d’éviter la propriété peu réaliste d’invariance du SINR [17, 162].

Il a été établi que la performance du réseau dans le cadre d’un modèle d’ordonnancement

donné est exprimée en fonction de celle obtenue au moyen d’un ordonnancement non

orthogonal où les utilisateurs concurrents sont desservis via le même bloc de ressources.

En outre, il est révélé que l’ordonnanceur PF fournit la meilleure performance de réseau en

raison du gain de diversité multi-utilisateurs, tandis que la performance sous l’ordonnanceur

RR est altéré par la densité des utilisateurs et leur processus de sélection à probabilité

égale. Cependant, les trois modèles d’ordonnancement sont équivalents dans le contexte

des UDNs, où il est recommandé de déployer le modèle d’ordonnancement ayant la com-

plexité de déploiement la plus réduite.

De plus, nos résultats ont montré que la hauteur des stations de base et la densité

d’utilisateurs sont si préjudiciables à la probabilité de couverture et au débit moyen dans

les UDNs, tandis que la capacité inhérente des ressources et la puissance d’émission ont

un impact réduit au fur et à mesure que la densité des stations de base augmente, ce qui

permet de mieux cerner le rôle de ces paramètres dans le cadre des UDNs.

— Chapitre 5: Un moyen efficace d’améliorer le débit de la liaison montante est le dé-

ploiement des UDNs, considérés comme la clé de la continuité de service dans les réseaux

5G/B5G [263]. De plus, le déploiement concret de nœuds dans le contexte des UDNs

est opportun en raison de plusieurs facteurs socio-économiques, ce qui fait que des outils

analytiques tels que la SG et la théorie des processus ponctuels sont plus efficaces pour

saisir cette variabilité spatiale des nœuds [4, 24].

Le travail de [20] est le premier à considérer un modèle tractable basé sur la SG pour

évaluer la probabilité de couverture de la liaison montante au niveau de la station de

base typique, déployée de manière uniforme et aléatoire dans la cellule Voronoï de l’UE

qui la dessert. Dans [24], le travail précédent a été légèrement étendu, où le postulat

de modélisation des utilisateurs actifs en liaison montante au moyen d’un PPP ayant

la même densité que le PPP des stations de base, est particulièrement validé par des
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simulations. Dans [245], les auteurs ont examiné la performance de la liaison montante

des réseaux cellulaires hétérogènes basés sur un contrôle de puissance fractionné avec

une puissance d’émission des utilisateurs bornée. Dans [148], la puissance d’émission

des utilisateurs est conçue comme une variable aléatoire mappée à la distance du lien

désiré par le biais d’un contrôle de puissance d’inversion de canal tronqué. Cependant, la

question de la liaison montante dans le cadre des UDNs n’a pas été explicitement abordée

dans les travaux précédents, où ils ont tous considéré le modèle standard d’affaiblissement

du trajet qui a démontré des tendances de performance peu réalistes dans le contexte

de la liaison descendante des UDNs [162, 164]. Les auteurs de [406] ont abordé cette

limitation et ont évalué la couverture de la liaison montante dans les UDNs avec des

utilisateurs fixes et un modèle d’affaiblissement de trajet revisité lié à une fonction par

morceaux. Cependant, il est crucial d’incorporer la mobilité des utilisateurs étant donné

la taille réduite des cellules dans le contexte des UDNs.

Un examen des modèles SG tenant compte de la mobilité, indique qu’il y a partic-

ulièrement deux directions d’analyse : i) Le handoff basé sur la trajectoire dans lequel

l’événement de handoff se produit tant que le récepteur franchit la bordure de la cellule

de l’émetteur, et donc, le taux de handoff est dépendant à l’efficacité de quantification

de la distribution statistique des frontières des cellules. Un exemple d’analyse de la li-

aison montante utilisant une telle méthode est présenté dans [148]. ii) Le handoff basé

sur la stratégie d’association dans lequel l’événement de handoff se produit tant qu’une

autre station de base vérifie le critère d’association mieux que la station de base actuelle

desservant l’utilisateur [185]. Ainsi, ce chapitre est censé être le premier travail qui étend

ce concept de handoff basé sur l’association à l’analyse de la liaison montante.

En général, les contributions de ce travail comportent trois volets : i) Nous étendons

les modèles de [20, 24, 148, 245] en évaluant la probabilité de couverture de la liaison

montante dans le cadre d’un schéma de contrôle de puissance unifié basé sur des modèles

réalistes de perte de trajet et de puissance d’émission des utilisateurs limitée. ii) Inspiré

du modèle de mobilité utilisé dans des simulations 3GPP [408], les utilisateurs actifs sont

considérés comme effectuant intuitivement un mouvement linéaire avec une direction

aléatoire afin d’améliorer leurs conditions de connectivité. Dans un tel contexte, nous

dérivons le taux de handoff de la liaison montante comme une extension de l’analyse

tractable de la liaison descendante dans [185]. iii) En utilisant le taux de handoff obtenu,

nous évaluons également la probabilité de couverture de la liaison montante induite par

ce modèle de mobilité. La validité analytique de nos résultats est ensuite validée par
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des simulations où nous avons identifié quatre régimes de fonctionnement des réseaux

OFDMA en liaison montante en fonction des paramètres de design du système et du

modèle d’affaiblissement du trajet considéré.

En général, il a été démontré que dans le cas de réseaux suffisamment denses, l’impact

du contrôle de la puissance sur la couverture de la liaison montante est limité dans

le cadre du BPM, en particulier pour des niveaux de SIR faibles, où les utilisateurs

plus éloignés sont plus susceptibles de brouiller le signal souhaité, indépendamment de

la compensation de l’affaiblissement du trajet. Inversement, l’impact du contrôle de la

puissance est significatif sous l’UPM et le DSPM en raison de la singularité à très faible

distance.

— Chapitre 7:

Bien qu’ils présentent divers avantages, les drones (véhicules aériens sans pilote), en tant

qu’équipement utilisateur aérien dans les réseaux de communication, peuvent néanmoins

avoir un impact négatif sur les performances des équipements utilisateurs terrestres, qui se

voient confier des missions plus critiques que les drones (e.g., les transactions monétaires,

les prestations de santé) [410]. Le 3GPP (Third Generation Partnership Project) a inclus

dans la version 15 une étude technique pour évaluer la capacité à desservir des utilisateurs

aériens par le biais de déploiements LTE (Long Term Evolution) dans lesquels les antennes

des stations de base (BS) ciblent les utilisateurs terrestres [408]. Les simulations montrent

en particulier qu’une densité accrue des utilisateurs aériens augmentera considérablement

les interférences sur la liaison montante des stations de base terrestres. Ceci est dû au

fait qu’un utilisateur aérien typique connaît des conditions de propagation à visibilité

directe avec une probabilité plus élevée vers davantage de cellules par rapport à un

utilisateur terrestre typique. Cette augmentation des interférences sur la liaison montante

nécessiterait un niveau d’utilisation des ressources plus élevé pour maintenir un niveau

de débit similaire pour les utilisateurs terrestres. D’autre part, l’augmentation du niveau

d’utilisation des ressources amplifie encore l’interférence sur la liaison montante du réseau,

et donc dégrade davantage le débit de la liaison montante des utilisateurs aériens et

terrestres.

Considérant des emplacements déterministes et un nombre fixe de stations de base ter-

restres, d’utilisateurs terrestres et d’utilisateurs aériens, la plupart des efforts de recherche

ont généralement exploité des mesures de terrain ou des simulations [411], des analyses

algorithmiques [412] et la théorie de l’optimisation [413] pour évaluer l’impact des utilisa-

teurs aériens sur la performance des réseaux cellulaires LTE terrestres. Les précédentes
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techniques sont généralement laborieuses, nécessitent des configurations personnalisées

pour chaque expérience et des algorithmes complexes et puissants. Dans ce sens, il est

de plus en plus nécessaire de disposer de modèles analytiques tractables. À notre con-

naissance, il n’existe pas de modèle analytique dans la littérature pour saisir l’impact

en liaison montante des paramètres système des UAV (e.g., densité, hauteur, puissance

consommée et exposant de contrôle de la puissance) sur les métriques de performance

des réseaux cellulaires.

La SG et sa propre théorie des processus ponctuels est considérée comme un outil math-

ématique puissant pour l’analyse des réseaux sans fil au niveau système. Cependant,

l’analyse de la liaison montante est très exigeante en raison du couplage des emplace-

ments des utilisateurs actifs suite à l’utilisation d’un schéma d’accès orthogonal tel que

OFDMA, et également en raison des mécanismes de contrôle de la puissance dépen-

dant à la distance, ce qui induit une dépendance entre les emplacements des BS et ceux

des utilisateurs. Plusieurs modèles clés ont été développés dans la littérature pour éval-

uer la performance de la liaison montante dans les réseaux cellulaires terrestres à un

seul niveau [20], les réseaux sans fil à plusieurs niveaux [414], et les réseaux cellulaires

denses [415]. Cependant, il reste d’importantes axes d’analyse inexplorées. Par exemple, i)

considérer l’hétérogénéité au niveau des utilisateurs (terrestres et aériennes) plutôt qu’au

niveau des BS (petites cellules, macrocellules). L’analyse de la liaison montante dans

ce dernier cas se révèle statistiquement équivalente à celle de la configuration à un seul

niveau [414, Corollaire 4]. En outre, ii) les travaux précédents ont uniquement porté sur

des mesures de performance typiques telles que la probabilité de couverture et le débit,

alors qu’ajuster les paramètres système pour améliorer ces métriques aurait cependant

un impact négatif sur d’autres métriques aussi importantes telles que la consommation

d’énergie des utilisateurs souhaitant avoir une plus grande autonomie de batterie.

Dans ce chapitre, nos contributions peuvent être résumées comme suit : i) nous consid-

érons deux classes d’UE terrestres et aériennes avec des paramètres distinctifs en termes

de shadowing, et des paramètres système. Ainsi, nous introduisons une mesure de prior-

ité entre les niveaux d’UE, à savoir le biais de priorité de l’UE. Le but est d’évaluer le

processus des utilisateurs actifs en liaison montante de chaque niveau et d’en déduire la

distribution de la distance à l’UE desservant la station de base typique. ii) Déterminer le

processus des utilisateurs interférents est assez difficile dans l’analyse de la liaison mon-

tante. Dans notre configuration, nous l’estimons par un processus ponctuel de Poisson

(PPP) non homogène sur une région d’exclusion définie par le compromis entre les util-
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isateurs interférents et la puissance moyenne reçue par l’UE desservant la station de base

typique. iii) Enfin, nous dérivons la distribution de l’efficacité énergétique (EE) de la

liaison montante, ce qui nous permet d’évaluer la quantité d’UE avec un bon compromis

entre le débit et la consommation énergétique. Ainsi, nous illustrons l’effet préjudicia-

ble sur l’EE de l’augmentation de la priorité de connexion aux utilisateurs aériens. Une

contrainte analytique basée sur la fonction Lambert W liant les principaux paramètres

système est identifiée permettant un fonctionnement approprié des réseaux cellulaires

avec des utilisateurs aériens.
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CONCLUSION

The insights presented in this thesis illustrate the flexibility of SG and its ability to capture

the analysis of the rather unconventional scenarios; these features of SG will likely enable it to

remain as an essential tool in modeling and analysis of future wireless networks.

However, after intensive use of SG in modeling and analysis of communication networks,

notably during the last decade of the seminal work [17], research community begins to experience

some congestion on applications of SG and some degree of duplication in the literature. This is

in particular due to the following reasons: i) SG is very rich in theory but only few results are

used practically in modeling and analysis of wireless networks, including Campbell’s and PGFL

theorems, as well as constructing properties that may preserve the Poisson law (superposition,

displacement, mapping, independent thinning). ii) Given some modeling and design challenges,

SG has not been sufficiently explored in the analysis of new research areas (networks with

metasurfaces, molecular communication (MC), ML, FSO communications,...). iii) No bridges of

interaction are created between SG and other emerging mathematical theories, which can give

rise to new practical results of SG. In the following, we will outline some emerging research

avenues that can revitalize the use of SG during this new decade.

7.5.1 Stochastic Geometry and Molecular Communications

One promising frontier of conventional EM communication systems is the ability to share,

manipulate and control information on a very small scale in such a way to connect swarms of

intelligent autonomous nano-devices, i.e., devices in a scale ranging from 1 to 100 nanometers,

e.g., nano-robots, nano-processors, nano-clocks. Based on biological communication in nature

where molecules are the basic carriers of information, MC is expected to be one of the next

big 3 ideas of communication due to its inherent biocompatibility and enhanced EE at the cost

of slow propagation speed as compared to EM wave based communications [416, 417].

The vision of molecular nanonetworks is actually fraught with many challenges, among

them, how information can be encoded in molecules and how such molecules are supposed to

propagate from a transmitter to a receiver. Several MC propagation schemes are considered

3. As was first pointed out conceptually by the 1965 nobel laureate physicist Richard Feynman in his famous
speech entitled “There’s Plenty of Room at the Bottom" in Dec. 1959.
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in the literature such as diffusion-based propagation, flow assisted propagation and bacteria

chemotaxis. The most common approach is the free diffusion of particles where molecules can

propagate from one point to another in a random Brownian motion via inherent thermal energy,

which does not require any external source of energy and may induce confusion in molecules

detection at the receiver, also known as inter-symbol-interference. Several ways are considered

to encode information in such diffusing particles, for example encoding information according

to the time of arrival of molecules at the receiver, according to molecular composition or to the

variations on molecules concentration in the space.

Another major constraint in MC systems is the laborious and expensive nature of laboratory

experimentation which justifies the wide use of simulation environments for MC analysis [418].

Interestingly, the authors of [419] presented a first attempt to provide some appropriate analyt-

ical tools via SG in such context of miniaturization in MC. The work proposed a mathematical

framework for performance evaluation of a 3D diffusion-based large-scale MC system. The av-

erage number of sensed particles and the bit error probability at a receiver located at the origin

are next characterized over many spatial realizations of a swarm of point transmitters scattered

in space according to some PPP and emitting the same bit sequence (the same type of molecule)

simultaneously, i.e., co-channel transmitters. Analytical evaluation of MC as a serious alterna-

tive to EM wave based systems, particularly in strong attenuation regimes of EM waves, is

relatively new and several fundamental questions need actually years and years to be answered

and agreed about [420]. However, many advances are expected in the near future due especially

to recent development in inexpensive testbed for MC systems capable of transmitting short text

messages via chemical signals [418].

7.5.2 Stochastic Geometry in the Era of Machine Learning

SG and ML have recently been considered as the most popular methods with renewed and

widespread interest in the design and analysis of wireless networks [2, 17, 421, 422]. The former

is actually a powerful model-driven approach aimed to enhance the tractability and accuracy

of conventional probabilistic models, e.g., channel, interference, scheduling, by considering the

randomness on the locations of the transmitters and the receivers, so that one can derive av-

erage performance metrics of a generative network upon several realizations of network geome-

try [2, 17]. The latter is however, a data-driven simulation-based approach, which by collecting

sufficient amount of realistic data, i.e., the training set, can feed a supervised and/or unsuper-

vised learning process deployed at the cloud components of the network, to enable the prediction

of the desired result, e.g., performance metrics [421, 422].

175



To the best of authors knowledge, there are fundamentally two lines of thought in the

literature regarding the mode of interaction that should prevail between ML and SG. The first

vision is based on an evolutionary interaction [421, 423, 424], in which ML is conceived as a

separate evolved alternative to SG enabling to overcome the shortcomings of the latter and

provide more accurate representation of reality. In fact, SG model-driven approach is generally

governed by a trade-off between tractability and accuracy, where tractable models are simply

so superficial to reflect realistic scenarios, while accurate models are hard to derive and their

resulting algorithms are too complex to implement. However, with the unprecedented availability

of data, inducing the need for software-controlled and optimized operations, in addition to

recent developments in smart radio environments via the use of metasurfaces [30, 298], it is

almost unfeasible to develop accurate SG models that can capture such complex scenarios of

analysis due to the unlimited degrees of freedom and system constraints. The second vision is

based on a collaborative interaction [35, 36]; in which a common ground and potential cross-

fertilization between SG and ML is created such that the strength of both approaches will be

jointly harnessed to tackle the same issue. Typically, SG models will be integrated as a hypothesis

class in the learning process of ML. One representative example is the class of problems known

as the subset selection problems, where an optimal subset needs to be selected from a ground

set. In such context, SG probabilistic models constructed by finite DPPs are used to feed ML

data-driven supervised learning frameworks.

7.5.3 Stochastic Geometry as a Multi-objective Analytical Tool

From the previous discussions, it is evident that future 5G/B5G wireless networks are going

to be highly heterogeneous, multi-layered, with embedded intelligence at both the core and

the edge of the network, where ML is expected to play a crucial role in link and system-level

decisions. In such a context, future performance metrics need to be carefully tailored to ensure

the joint evaluation of throughput, latency, and reliability, which ultimately leads to the joint

optimization of communication, control, localization, sensing, energy consumption, and many

other parameters and resources. Interestingly, SG can be envisioned as a potential analytical

candidate in this way.

For instance, Fig. 4 presents some scenarios where the SINR can be combined with useful

utility functions to enable the joint analysis of communication and other related attributes,

e.g., DUDA, SWIPT. Also, SG is increasingly adopted in studying the joint localization and

communication of users in a given propagation environment. In particular, the authors of [425,

426] use tools from SG and its inherent PP theory to evaluate the statistics of the number of

176



BSs that can participate in the localization procedure of users as a function of system-level

parameters and channel impairments. Typically, there is a tradeoff, known as the hearability

problem, that needs to be considered between communication requirements that ask for a strong

signal from the desired BS and a poor one from interferers, versus localization that requires a

good signal from most BSs.

Furthermore, SG and its inherent random set theory are increasingly being adopted for the

analysis of combined recognition, data manipulation, and movement in real-world environments.

Typically, SG is used to study uncertainty in geometric objects in order to build models from

IoT measurements [427,428]. The physical environment landmarks are actually abstracted into

parametric representations such as points, lines, and edges. These features are next handled as

realizations of random variables modeled as a finite random set, which based on the Bayesian

estimation paradigm, can allow to jointly estimate the number of objects and their states. This

is relevant for example to detect and locate objects from surveillance images [427]. Besides,

random set theory is gaining increased importance for providing a theoretical estimation for

the famous simultaneous localization and map building (SLAM) problem that asks for the

ability to place an autonomous robot at an undefined location in an undefined environment and

construct a map, based only on relative ambient observations, and subsequently use this map

for spatial mobility of this robot [428]. Using random finite set theory, SLAM is then presented

as a Bayesian filtering problem in which the joint recursive estimation of the robot route and

set-valued map are spatially distributed over time as measurements are acquired.

Future research efforts are therefore expected to identify attractive applications of SG in

multi-objective optimization.

7.5.4 Grothendieck Toposes as Mathematical Bridges for Stochastic

Geometry

One effective way to deal with the embarrassing trade-off between tractability and accuracy

that governs SG models, is to investigate how to build more advanced and accurate SG models

from tractable and easy-to-interpret models conceived by other mathematical fields. Our vision

therefore is to create some abstract bridges of interaction between SG and other mathematical

fields where we have reached some remarkable degree of specialization and proficiency. The ra-

tionale is to create meaningful and powerful analogies that may illuminate concepts and suggest

new practical results in SG. A promising approach to meet such aims is through the concept of

topos introduced by Alexandre Grothendieck during his Seminar on Algebraic Geometry in the
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early sixties.

“It is the notion of topos that is this “bed" where come to be married geometry and algebra,

topology and arithmetic, mathematical logic and category theory, the world of the continuous

and that of discontinuous or discrete structures. It is the most vast thing I have conceived,

to grasp with finesse, through the same language rich in geometric resonances, an “essence"

common to situations most distant from each other, coming from one region or another of the

vast universe of mathematical things."—Alexandre Grothendieck commented in his famous text

of autobiographical reflections “Récoltes et Semailles" [429].

Recently, new perspectives on the notion of topos have emerged. According to Olivia Caramello

[430], Grothendieck toposes can be used as unifying spaces that can serve as bridges for transfer-

ring properties, ideas, and results between distinct mathematical theories. In our case, between

SG and other mathematical fields, so that long-standing problems formulated in SG can be

solved using techniques from a different field, and results in a well known area can be appropri-

ately transferred to results in SG.
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Titre : Applications de la Géométrie Stochastique pour l’Analyse et la Modélisation des Réseaux

sans Fil
Mot clés : Réseaux de 5ème génération (5G) et au-delà (B5G), rapport signal sur interférence

plus bruit, géométrie stochastique

Résumé : Les réseaux sans fil de la cinquième
génération (5G) et au-delà (B5G), devraient être
très hétérogènes, multicouches, et dotés d’une
intelligence intégrée à la fois au cœur et à la pé-
riphérie du réseau. Dans un tel contexte, l’éva-
luation des performances au niveau du système
revêtira une importance cruciale pour formuler
des enseignements judicieux sur les compromis
qui régissent un tel système complexe et ainsi
prévenir le besoin de simulations logicielles coû-
teuses et fastidieuses. Au cours de la dernière
décennie, la géométrie stochastique est consi-
dérée comme un puissant outil d’analyse per-
mettant d’évaluer les performances des réseaux
sans fil au niveau du système et de cerner leur
tendance à l’hétérogénéité. Cette thèse exa-
mine les nouveaux modèles et techniques de la
géométrie stochastique développés au cours de
la précédente décennie en matière de modéli-
sation et d’analyse des réseaux sans fil du fu-
tur. Les discussions sont suffisamment affinées

pour être accessibles aux lecteurs peu spéciali-
sés et faire en sorte que les lecteurs débutants,
intermédiaires ou avancés puissent se familiari-
ser rapidement avec ce domaine de recherche.
Ensuite, nous nous appuyons sur la géométrie
stochastique pour examiner plusieurs aspects
des réseaux sans fil 5G et B5G, afin d’illustrer sa
flexibilité mathématique et sa capacité à saisir
l’analyse de scénarii peu conventionnels. Nous
discutons également de nouvelles perspectives
qui apporteront un nouveau souffle à l’utilisa-
tion de la géométrie stochastique au cours de
cette décennie cruciale. En bref, les discussions
furent étendues à des thématiques plus larges
telles que les communications optiques en es-
pace libre (FSO), les communications en lu-
mière visible, les systèmes de drones, l’archi-
tecture d’accès radio en brouillard (F-RAN), l’in-
telligence artificielle et l’apprentissage machine,
ainsi que les communications moléculaires.

Title: Applications of Stochastic Geometry in the Modeling and Analysis of Wireless Networks
Keywords: Fifth-generation (5G) and beyond fifth-generation (B5G) networks, signal-to-interfe-

rence-and-noise-ratio, stochastic geometry

Abstract: Next generation wireless networks,
i.e., fifth generation (5G) and beyond (B5G),
are expected to be highly heterogeneous, multi-
layered, with embedded intelligence at both the
core and edge of the network. In such a con-
text, system-level performance evaluation will be
very important to formulate relevant insights into
tradeoffs that govern such a complex system
and then prevent the need for onerous and time-
consuming computer simulations. Over the past
decade, stochastic geometry has emerged as a
powerful analytical tool to evaluate system-level
performance of wireless networks and capture
their tendency towards heterogeneity. This dis-
sertation reviews first novel stochastic geome-
try models and techniques developed during the
last decade in modeling and analysis of modern
wireless networks. The discussions are refined

enough to be accessible for non-specialist read-
ers and help new, intermediate, or advanced
readers familiarize quickly with this field of re-
search. Next, we leverage stochastic geometry
frameworks to investigate several aspects of 5G
and B5G wireless networks and then illustrate its
mathematical flexibility and ability to capture the
analysis of the rather unconventional scenarios.
Also, new perspectives that will breathe new life
into the use of stochastic geometry during this
crucial decade are discussed. In a nutshell, ex-
tensive discussions were held on broader top-
ics such as free space (FSO) optical communi-
cations, visible light communications, unmanned
aerial vehicle systems, fog radio access archi-
tecture (F-RAN) , artificial intelligence and ma-
chine learning, and molecular communications.
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