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Introduction

Two weeks before the beginning of the Ph.D. project presently reported, a binary neut-
ron star merger was detected for the first time ever. The confirmation of this exceptional
event was based on compatible incoming directions (see figure 1 in reference [1]) and
almost equal arrival times (see figure 2 in [1]) of two different types of signals: a gravita-
tional wave labelled GW170817 [2] and a gamma-ray burst labelled GRB170817A [5, 6],
respectively detected by the gravitational wave observatories of the LIGO/Virgo collab-
oration [3, 4] and the gamma-ray space telescopes Fermi [7] and INTEGRAL [8]. Beside
the large amount of information carried by these two signals, this “multi-messenger” ob-
servation directly implied that the propagation speeds of these two signals, produced
by a 43 Mpc distant merger, had to be equal.

Of course, such an experimental fact must be explained in any theory whose applic-
ation scope includes gravitational and electromagnetic phenomena on supra-galactic
scales. Einstein’s general relativity (GR) is such a theory, and it does predict the
experimental equality of electromagnetic and gravitational waves propagation speeds.
Although more than a century old, GR not only solved observational issues at the time,
but it still provides the best framework and explanations to most of the astrophys-
ical and cosmological observations realised since then. More than that, GR predicted
the existence of new types of gravitational phenomena, which could be observationally
confirmed and tested [9, 10] several decades after they were first theoretically character-
ized. Among such remarkable phenomena, gravitational waves hold a central position,
together with black holes, which may form binary systems producing detectable grav-
itational waves before they merge, just like the binary neutron stars mentioned above.
These topics will of course be readdressed in the core of the manuscript.

Most of the experimental successes of GR only probed weak gravitational regimes
yet, i.e. phenomena in which gravitation is significantly less intense than in extreme
regions like black hole close environments [11]. This is why increasingly strong regimes
of gravity are tested by modern, highly accurate instruments. Over the last five years,
the interferometer GRAVITY [12] and the Event Horizon Telescope [13] have collected
data from objects involved in high energy gravitational processes: coalescing compact
objects [2, 4], stars and flares orbiting Sgr A* (the central supermassive black hole of
the Milky Way) [14, 15], accretion disks and shadows of supermassive black holes [16,
17]. So far, all these observations are consistent with the black hole models of GR. But
this observational chase will go on as long as technology and ideas offer new ways to
test these regimes.

The rationale motivation of this is that all known theories feature a limited applic-
ation scope: none of them should expect to be a “theory of everything”, and is called
instead an “effective” theory [18, 19]. Not only GR had originally no particular reason
not to be one of such effective theories but, since then, more precise theoretical argu-

7



8 CONTENTS

ments, rather than observational facts, have supported the case that the effectiveness
of GR should break down in the high energy or strong curvature regimes, mainly in
view of its inadequacy to unify with the other fundamental interactions [20, 21]. So
far, no observation confirmed these claims. Interestingly, it is instead in the very low
energy gravitational regimes that GR may already have revealed its limits. Although
one should remain cautious about such claims, GR does suffer from several shortcom-
ings or unresolved questions on galactic and cosmological scales: it does not yet provide
satisfactory explanations to the issues of dark matter and dark energy [22, 23].

This all further justifies why both the extremely low and high energy regimes should
keep being explored, since knowing the energy scales at which the predictions of GR
start failing, and the way they do, will provide precious hints as to how design an al-
ternative theory enjoying a much larger effective scope. Concretely, such a theory would
provide answers or alternative solutions to the various shortcomings of GR, while re-
maining compatible with all the existing observational constraints (such as the equality
between electromagnetic and gravitational waves propagation speeds, confirmed by the
event GW170817-GRB170817A). In addition, such a theory should fulfill some essential
theoretical requirements, such as being predictive (the theory must rely only on a finite
number of parameters that can be determined from experiment once and for all), well-
posed (knowing exactly the “initial” state of an isolated system “at a given time” must be
enough to predict its state at any “future time”, which should depend “continuously” on
the “initial” state1), stable (any physically relevant configuration of a system described
by the theory must admit arbitrarily close “perturbed” configurations). All these no-
tions, and terms in quotation marks, actually have precise, non-trivial mathematical
formulations, which will be rediscussed in the manuscript.

To realize such a theory, many alternatives to GR are being developed and thor-
oughly studied [23–27]. Structurally, some of them are slight modifications of GR
(called “modified” theories of gravity), while others are based on fundamentally differ-
ent paradigms (generically called “alternative” theories of gravity). Besides, GR and all
alternative theories are often collectively called “theories of gravitation”, but it should
be clear that most of them also describe other fundamental interactions like electro-
magnetism, and are for instance expected to recover classical Newtonian mechanics in
some consistent limit. Calling them “theories of gravitation” first reminds that they do
intend to offer a new consistent description of gravitation, fulfilling most of the theor-
etical and observational requirements mentioned above. This is indeed worth insisting
on, as many physical theories do not even address the challenge to incorporate this
problematic interaction. The second reason for this reductive designation is that only
the fundamental description of gravity varies between most of these theories. This then
has indirect consequences on non-gravitational physics in presence of gravitation, but
the theories are equivalent otherwise. “Theories of gravitation” thus not only deal with
gravitation, but it actually is their prime reason of existence.

The cubic Galileon theory, which is investigated in this manuscript, belongs to some
of the simplest modifications of GR, known as scalar-tensor theories. Although the
simplest modified theories, they may yield predictions very different from GR. This
is true to the extent that some of them, like Brans-Dicke theory, do not stand the
confrontation with observational data, and are thus ruled out for good [10, 28]. This

1This additional “continuity” condition makes well-posedness a stricter requirement than determin-
ism.
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fact actually provides one more reason to study alternative theories (beside finding
a description of the extreme regimes of gravity): within the intermediate regimes of
gravity, where GR is so successful, identifying all the modifications of GR that lead
to theoretical pathologies, or observational incompatibilies, is a relevant approach to
single out the fundamental reasons that explain the undeniable effectiveness of GR in
these regimes.

The cubic Galileon theory does yield different predictions than GR too, and the
present manuscript will highlight some of them in the case of rotating black holes (the
latter are harder to investigate than static black holes, but their observational import-
ance comes from the fact that astrophysical black holes are expected to be rotating).
Beforehand, the first part of the manuscript reviews the essential notions involved in
discussions on theories of gravitation. Although the latter offer competing descriptions
of gravity, most of them share common foundations, which are reviewed in the first two
chapters of part I: chapter 1 introduces generic definitions and properties of spacetime,
while chapter 2 discusses a few highly regarded principles, such as general covariance
and Lorentz invariance, which help refining the framework and tools common to all
theories of gravitation, and single out GR in some senses. The following two chapters
review some aspects of the latter: chapter 3 recalls the status of GR in regard of the
theoretical and observational requirements mentioned above, while chapter 4 introduces
two alternative formulations of GR, not to be confounded with alternative theories. In
contrast, the latter are addressed in the last two chapters of part I: chapter 5 introduces
a few classes of modified theories of gravity connected to topics mentioned in earlier
chapters, while chapter 6 makes the transition to part II in focusing on Horndeski
theories of gravitation, to which the cubic Galileon belongs. Thus, part I of the manu-
script might notably be helpful as an introductory guide through alternative theories,
extending a first course on GR.

In view of the program of investigation of all theories of gravitation outlined in the
previous paragraphs, part II of the manuscript focuses on the cubic Galileon theory,
with the purpose of identifying how it may deviate from GR in some of the strongest
possible types of regimes, namely the neighbourhood of (rotating) black holes. To this
end, the first three chapters of part II are devoted to the numerical construction of
rotating black holes in the cubic Galileon theory: chapter 7 explicitly introduces the
theory and derives the equations to be solved, while chapter 8 presents the numerical
method used to solve them, and discusses the validity of the numerical solutions, which
are finally exposed in chapter 9. Observable signatures of the cubic Galileon theory
are then investigated in the three following chapters: based on the numerical solutions
constructed in the previous chapters, chapters 10 and 11 compare geodesic motion
around black holes in GR and the cubic Galileon theory, while images, produced by an
accretion disk orbiting the Galileon black hole solutions, are numerically computed in
chapter 12.

The different chapters are unbalanced in terms of length and subsections. Rather
than troubling, it is hoped that this helps highlight the progression through distinct
notions. Besides, all along the manuscript, original papers on a given topic and hopefully
some of the best references presenting it are cited. References cited in a row usually
appear in chronological order, so that the last ones should provide the most recent
treatment of the topic, in the most modern and familiar language.
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Chapter 1

General framework of physical theories

Contents
1.1 Topology of spacetime . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Preferred frames and derivatives . . . . . . . . . . . . . . . . 15

1.3 Newtonian physics . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Special relativity . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . 25

In this introductory chapter, we will go over the elementary concepts involved in
the formulation of all theories of gravitation: section 1.1 and 1.2 respectively introduce
the spacetime manifold and how to define the variations of a physical quantity over it,
while sections 1.3, 1.4 and 1.5 respectively cover the specificities of these notions in the
example cases of Newtonian physics, special relativity and GR.

Although anachronous, old and recent physical theories are most often taught with
concepts that were not available at the time they were first devised. But such modern
concepts turned more appropriate to efficiently handle a theory without any former
superfluous complication. Expectedly, the present manuscript is no exception in sys-
tematically using the language of differential topology and geometry, even e.g. when
discussing Newtonian physics. Besides standard, purely mathematical textbooks such
as [29–31], the two volumes [32, 33] are a very rich and technical resource with rigorous
applications to mathematical physics.

1.1 Topology of spacetime

Eluding centuries of reflexions carried out by philosophers and scientists on the vari-
ous ways to define physical reality [34], let us here define it as the set of information
accessible to measurements made by anyone in the countable set of humans interested
in physics. Generally, a physical theory aims at predicting the output of a class of
measurements performed by a class of observers on a class of systems. The simplest
kind of measurement such a theory may be concerned with is that of the position of a
system at a certain time with respect to a given observer. It is performed by the various
observers by means of ideal clocks and rulers that were once confirmed to be identical
at the same place and date.

13



14 CHAPTER 1. GENERAL FRAMEWORK OF PHYSICAL THEORIES

Practically, any measurement corresponds to an interaction between the measuring
apparatus and the system2, e.g. a certain point of a ruler touches the system. Then,
the actual time t that the observer associates to this measurement is such that the
interaction is simultaneous with the ideal clock displaying the date t. However, the
clock, carried by the observer, may be far from the system, so that the non-trivial notion
of simultaneity at a distance requires a rigorous definition. As will be mentioned in the
sections below, such definition varies between theories, as it relies on the assumptions
that a given theory makes on the physical reality. Broadly speaking, the time t is always
a very complicated function of:

• the reception time t′ at which the observer first detects a signal generated by the
interaction with the system,

• the very nature of such signal,

• further essential information...

Often, the signal has been purposedly emitted by the observer at an earlier time t0
to be reflected back when interacting with the system. Then, t0 may be enough addi-
tional information to determine t, but this is not always possible, e.g. for astrophysical
observations. In the latter cases, additional information may be provided by the recep-
tion times of other signals, or those recorded by other observers3. Ultimately though,
all definitions of simultaneity must at the very least agree in the trivial limiting case of
a measurement made at zero distance from the observer, i.e. on the clock mechanism:
in this case, all these complicated functions must yield t = t′.

Independently of the definition chosen, consider two observers, each performing a
time-position measurement on a system. Call such measurements “equivalent” when
their respective interactions with the system happen at the same time for an observer
tied to the system. Each equivalence class of such {observer, time, position} meas-
urements is called an event (“the system was here at this time for this observer, or
equivalently there at that time for that observer”), and the set of all events is called
spacetime. The equivalence relation is indeed independent of the definition of simultan-
eity since it only relies on the trivial time measurements made by the observer at zero
distance to the system. This is a relief as otherwise the mere definition of what an event
is would be theory dependent. What the definition of simultaneity does determine is
e.g. the situations in which some of the three dates involved in the equivalence relation
are equal.

Empirically, any time-position measurement yields finite-accuracy rational numbers.
Yet, it is much more profitable to model such a measurement by real numbers in an
open set of R4 in order to benefit from the whole theory of differential calculus on
manifolds [39]4. Indeed, denote UO the set of all events accessible to an observer O.

2Classical physics assumes that the resulting disturbance on the system can be made arbitrarily
small, while this is fundamentally impossible for most measurements on a quantum system (reduction
of the wave packet [35–38]).

3The distance travelled by the signal is of course an essential information, but it also comes down
to chronometric measurements in the end, since using rulers is obviously unrealistic for astrophysical
observations.

4See section 3 of this reference for more on this point, and the rest of the article for further discussions
on the local and global requirements usually made on spacetime structures to model physical reality.
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Since the measurements are now real-valued, observerO defines a map φO from UO to an
open set of R4. By definition, each event E belongs to at least one set in the countable
family of UO, φO(E) then defines the coordinates of E with respect to observer O.
Furthermore, all maps φO are respectively made continuous on the sets UO by equipping
spacetime with the initial topology they induce, which fulfills the Hausdorff separation
condition. With such a structure, spacetime is a manifold. In addition, all observers
were once at the same place and date to take their own copy of the measuring apparatus,
or at least were they able to communicate the procedure to build such ideal devices.
Spacetime is thus path-connected.

1.2 Preferred frames and derivatives

As one would expect from the title, this section merely ends up with the standard
notions of covariant and Lie derivatives. Yet, rather than postulating their axioms, the
goal is to provide an empirical introduction to these two aspects of the same natural
method that defines variations on a manifold. This should highlight the underlying
“preferred” frames, which will be useful all along part I of the manuscript.

Broadly speaking, finding out the physical law ruling the outcome of a measurement,
or an intermediate physical quantity Q, amounts to identifying the sources that would
cause Q to vary over spacetime. In practice, the variations of a physical quantity Q are
evaluated in a given direction, i.e. along a vector tangent to the spacetime manifold S.
Recall that a tangent vector d at a spacetime event E actually corresponds to a particular
equivalence class of curves C through E5 (as usual, the set of all such classes, i.e. of all
tangent vectors at E , will be denoted TES). Measuring variations at E in the direction d
thus means recording values of Q along one of the curves C and differentiate them. But
such values, and hence their variations, depend on the way they are measured along C.
To illustrate this in less generic terms, figure Q as a n-dimensional vector field over
spacetime (in the general sense that, at each spacetime event E ′, there exists a n-
dimensional vector space VE ′ to which Q(E ′) belongs). Then, all the possible ways to
measure Q correspond to the various vector frames defined along C. Thus, a priori,
the explicit formulation of the law requires to specify with respect to what reference
apparatus, defined along C, it is expressed.

This is fine, but it would be very practical, e.g. to ease communications between
observers, to construct a universal notion of variation along C, i.e. on which all ob-
server would agree. The minimal and most natural way to define such a universal
derivative operator DC is to arbitrarily pick one, preferred, reference system among
all those defined along C. All observers should then convert and differentiate their
measures in terms of this preferred system. In the case of Q being a vector field, an
observer O measures the components Qα of Q along C with respect to her personal
frame {qα} (so that Q = Qαqα), before converting them to the preferred frame {q̃α}
according to Q̃α = [m−1]

α
β Qβ where m ∈ GLn(R) is the transition matrix defined

by q̃α = mβ
αqβ. Only then can she differentiate the components Q̃α along C, denoted ˙̃Qα.

Knowing the matrix m, the observer is finally free to convert the differentiated com-

5More precisely, once E and all such curves C are respectively identified with a point e and curves c
in R4 through any suitable chart, the curves c have the same tangent vector at e in R4, in which the
notion of tangent vector to a curve is already well-defined.
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ponents back to her personal frame, and hence define the components of the universal
derivative as

(DCQ)α = mα
β

˙̃Qβ = mα
β

([
ṁ−1

]β
γ
Qγ +

[
m−1

]β
γ
Q̇γ
)

= Q̇α +mα
β

[
ṁ−1

]β
γ
Qγ,

(1.2.1)

so that each observer manipulates a personal formulation of DC, but the final universal
derivative DC(Qαqα) is independent of the observer because, ultimately, it is always
the unambiguously defined vector ˙̃Qαq̃α. The operator DC thus defined is R-linear and
obeys the Leibniz rule DC(λQ) = λ̇Q+ λDCQ for any function λ along C.

Furthermore, note that the last expression of (1.2.1) is invariant under m 7→ m · p
if and only if (iff ) p is any matrix in GLn(R) constant along C. This means that one
could have converted to and back from another frame q̃′α ≡ pβαq̃β, which is thus as
a preferred frame as {q̃α}. Therefore, a preferred frame always comes with the whole
family of frames constantly related to it by the matrices of GLn(R)6.

Call “universally transported” along C the configurations of Q satisfying DCQ = 0
all along C. They form a vector subspace of all possible configurations of Q along C.
One easily sees from (1.2.1) that the preferred frames are precisely all the possible bases
of this subspace (which is why, following the Leibniz rule, only the components Q̃α of Q
have to be differentiated in such preferred frames, whereas the basis vectors of non-
preferred frames must also be differentiated).

Conversely, if all observers agree on a universal derivative DC with reasonable prop-
erties7, there will actually exist a corresponding preferred system. One should find it
by adjusting a measuring apparatus along C until it yields constant measurements on
all the universally transported configurations q̃ of Q along C (there surely exists several
such apparatus). This can be stated more precisely in the vector case: most reasonable
properties on DC are the R-linearity and Leibniz rule expressed above. The correspond-
ing universally transported configurations thus form a vector subspace of all possible
configurations of Q along C. Denote {q̃α} one of its bases. Given the first order nature
of the last expression in (1.2.1), for any E ′ on C, and any w ∈ VE ′ , there always exists a
universally transported configuration equal to w at E ′. This means that {q̃α(E ′)} forms
a basis of VE ′ , and hence {q̃α} is a vector frame along C. Since it is also universally
transported, it is a preferred frame according to the characterization given above.

Therefore, when Q is a vector quantity, picking a preferred frame along C is equi-
valent to constructing a universal R-linear derivative DC obeying the Leibniz rule.
Then, DC naturally extends to the fields of forms acting on the vector spaces VE ′ along C
by defining the dual frames {q̃α} as the preferred coframes along C. This finally ex-
tends to any tensor product of vectors and covectors by defining the corresponding
tensor product of preferred frames and coframes as the preferred tensor frames. Note
that the term “observer” has been generically used in the discussion above, but the

6In the language of principal and associated bundles [29, 31, 33], a frame {q̃α} along C defines a
lift γ of C in the (principal) frame bundle F . Choosing it as a preferred frame means that γ outlines the
first directions tangent to F that should be considered horizontal. Realizing that there is necessarily a
whole family of GLn(R)-related preferred frames is realizing the meaning of the GLn(R)-equivariance
that will be later demanded to define a principal connection over F .

7In vague terms, it should inherit the properties that hold for all observers when they differentiate
with respect to their personal frame.
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reasoning does not restrict to realistic observers worldlines8: it applies to any space-
time curve. In addition, when Q is actually a tangent vector field, it is absolutely not
necessary for the preferred frames to be coordinate frames.

Summing up generically, defining universal variations for Q amounts to systemat-
ically expressing it in terms of preferred configurations that were arbitrarily chosen
beforehand, in order to define what behaviours should be universally considered as con-
stant along C. From the mathematical point of view, no choice is better than another:
given a manifold and a set of fields over it, no universal derivative is more relevant than
the others. However, given a physical theory, a practical preferred system might be
suggested by a trusted physical law: one would pick a system with respect to which the
law takes a simple form (if such a system exists), so that the corresponding universal
derivative would be intrinsically adapted to the most essential physical effects.

1.2.1 Covariant derivatives

Based on the above procedure, constructing a covariant derivative ∇ (or “connection”)
on a set of vector fields over spacetime merely amounts to defining a universal deriv-
ative (i.e. a preferred family of frames constantly related by the matrices of GLn(R))
along any spacetime curve C, subject to the following consistency requirements. If two
curves C1 and C2 are representatives of the same tangent vector at a given event E
(see footnote 5), then they must satisfy DC1Q(E) = DC2Q(E) for any vector field Q.
This allows the covariant derivative ∇dQ(E) of Q at E in the direction d ∈ TES to be
well-defined as the universal derivative DCQ(E) where C is any representative of d. As
a result, for any curve C, DC = ∇Ċ. For a field Q, being universally transported along C
is thus equivalent to satisfy ∇ĊQ = 0 along C, and universal transport is now called
parallel transport in the context of connections. Secondly, ∇ is required to be C(S)-
linear with respect to the direction, where C(S) denotes the continuous functions over
spacetime. This completes the standard set of axioms defining covariant derivatives,
since the R-linearity and Leibniz rule with respect to the main argument are inherited
from the universal derivative9. Furthermore, ∇ naturally acts on any tensor product of
vectors and covectors according to the procedure given above for the universal derivat-
ive.

Curvature Let us introduce here curvature, gauge transformations and torsion from
the point of view developed so far, which will be useful in the rest of part I. Consider two
distinct curves C1 and C2 joining two distinct events E and E ′, and pick a basis {qEα} of VE .
As mentioned earlier, given the first order nature of the last expression in (1.2.1), there
exists a unique parallely transported frame {q(1)

α } (resp. {q(2)
α }) along C1 (resp. C2) equal

to {qEα} at E . Then, nothing in the axioms forbids the two bases {q(1)
α (E ′)} and {q(2)

α (E ′)}
of VE ′ to be different. This path-dependence (or “holonomy”) of parallel transport is
a defining characterization of what is called the curvature of ∇. The latter is entirely

8Realistic observer worldlines would correspond to timelike curves if a Lorentzian metric was defined
over spacetime, but such a metric is not required at all to define universal derivatives.

9In the frame bundle, defining a preferred family along all possible curves compliant with the
consistency requirements completed the construction of the horizontal bundle, and hence the principal
connection, which induces the covariant derivative on the configurations of Q.
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encoded in the Riemann tensor field, defined for instance by
∇Riem(Q, d1, d2) = ∇d1∇d2Q−∇d2∇d1Q−∇[d1,d2]Q (1.2.2)

for any configuration Q and tangent vector fields d1, d2 (and where [ · , · ] denotes the
Lie bracket).

When curvature vanishes over an open set U , one says that ∇ is flat. This means
that one finds the preferred frames by picking any basis {qEα} at any event E ∈ U and
then parallel transport it to any other event E ′ ∈ U . This uniquely defines a field of
preferred frames over U entirely, since parallel transport is now path-independent (all
other fields of preferred frames would be obtained with a constant transition matrices
over U). In other terms, vanishing curvature over an open set U is equivalent to saying
that the connection has been constructed in the following way: a frame was arbitrarily
chosen over U , and its restriction to any curve C lying in U defined the preferred frames
along C.

Gauge transformations Regarding gauge transformations, consider first an event E ,
an arbitrary frame {eρ} of tangent vector fields and an arbitrary frame {qα} of configur-
ations of Q, defined over a neighbourhood of E . The familiar Christoffel symbols ∇Γβαρ
of ∇ at E with respect to those frames are defined by

∇eρqα (E) = ∇Γβαρ (E) qβ (E) . (1.2.3)

Using relation (1.2.1), one sees that
∇Γβαρ (E) = mβ

γ (E)
[
ṁ−1

]γ
α

(E) , (1.2.4)

where the transition matrix m is differentiated along any representative C of eρ (E) (this
also corresponds to ∇eρ [m−1]

γ
α).

However, so far, the transition matrix m depends on C and hence on eρ. A priori,
one should thus use a different matrix to compute the Christoffel symbols for a different
index ρ. To avoid this, one should continue the preferred frame {q̃α} over a neighbour-
hood of E in the following way. Consider a family C of curves through E covering a
neighbourhood W of E without ever intersecting, and such that any d ∈ TES is tangent
to one and only one of these curves, up to rescaling (meaning that there exists only
one curve that can be reparametrized to be an actual representative of d)10. In partic-
ular, proportional tangent vectors at E are represented by the same curve of C, up to
reparametrization.

As a result, any event E ′ ∈ W is connected to E by only one curve of C. One may
then consider the continued frame {q̃α} (well-)defined over W as parallely transported
from {qα (E)} to any E ′ ∈ W along the only curve connecting to E . Thus, the matrix m
is also naturally continued over W and, for any tangent vector d at E , it provides the
transition to a preferred frame along the representative of d in C. In particular, it can
be used to compute the Christoffel symbols for any index ρ in relation (1.2.4). Besides,
denoting eµρ the transition matrix from a coordinate frame {∂µ} to eρ, one can now
replace differentiation along any representative of eρ (E) as[

ṁ−1
]γ
α

(E) = eµρ (E) ∂µ
[
m−1

]γ
α

(E) , (1.2.5)

10The easiest way to construct such a family is to consider a coordinate chart (U , φ) containing E ,
such that x0 ≡ φ(E), and define C as {s 7→ φ−1 (x0 + sd) , d unit vector of R4}.
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so that (1.2.4) finally rewrites as
∇Γβαρ (E) = mβ

γ (E) eµρ (E) ∂µ
[
m−1

]γ
α

(E) , (1.2.6)

which is valid for all indices α, β, ρ with the same matrix field m.
Now change from {qα} to another arbitrary frame {q′α = tβαqβ} according to a trans-

ition matrix t. Consider the new preferred frame {q̃′α} constructed over W according
to the previous procedure, i.e. {q′α (E)} is parallely transported along all the curves
of C. As explained earlier, two preferred frames along a curve are related by a constant
transition matrix, so that {q̃α} and {q̃′α} are related by a constant matrix along any
curve of C. Yet, all these curves contain E , where the preferred frames respectively
coincide with the arbitrary frame from which they were parallely transported:

q̃′α (E) = q′α (E) = tβα (E) qβ (E) = tβα (E) q̃β (E) , (1.2.7)

so that the constant matrix is tβα (E) for all curves, and hence on all W .
This allows to find the new transition matrix m′ from {q′α} to {q̃′α} on all W :

q̃′α = tεα (E) q̃ε = tεα (E)mγ
εqγ = tεα (E)mγ

ε

[
t−1
]β
γ
q′β, (1.2.8)

i.e., using matrix product, m′ = t−1mt (E), hence m′−1 = t−1 (E)m−1t, and

∂µm
′−1 = t−1 (E) ∂µ

(
m−1t

)
= t−1 (E)

(
∂µm

−1 t+m−1∂µt
)
. (1.2.9)

With an obvious matrix notation for the Christoffel symbols, identity (1.2.6) for the
new frame then rewrites

∇Γ′ρ (E) = eµρ(E)m′(E) ∂µm
′−1(E)

= eµρ(E) t−1(E)m(E)
(
∂µm

−1(E) t(E) +m−1(E) ∂µt(E)
)

= t−1(E)∇Γρ(E) t(E) + eµρ(E) t−1(E) ∂µt(E) , (1.2.10)

which is the standard formula of gauge transformations.
Therefore, when changing between two arbitrary frames, the matrix indices α, β of

the Christoffel symbols do not transform as tensor indices when the transition matrix t is
spacetime dependent (i.e. ∂µt 6= 0). Like changes of coordinates, gauge transformations
do not correspond to any modification of the physical situation They merely correspond
to a change of frame, so that all observables must be gauge invariant11.

On the contrary, the last index ρ of the Christoffel symbols is always a tensor index:
under a transformation from {eρ} to another arbitrary tagent frame {e′ρ = uσρeσ},
definition (1.2.3) becomes

∇Γ′βαρqβ = ∇e′ρqα = ∇uσρeσqα = uσρ∇eσqα = uσρ
∇Γβασqβ, (1.2.11)

i.e.
∇Γ′βαρ = uσρ

∇Γβασ (1.2.12)

even when u is spacetime dependent.
Note however that, when Q is actually a tangent vector field, it is customary that

all indices refer to the same frame, i.e. the frames denoted {eρ} and {qα} above are
the same. In such cases, both equations (1.2.10) and (1.2.12) are applied at once when
changing to another frame. The whole corresponding formula is still called a gauge
transformation.

11Expectedly, this principle was central in developing gauge theories such as Yang-Mills theories.



20 CHAPTER 1. GENERAL FRAMEWORK OF PHYSICAL THEORIES

Torsion Finally, still in the case of Q being a tangent vector field, consider the pre-
ferred frame {ẽρ} built by parallely transporting {eρ (E)} along all curves in C. Torsion,
defined for any two tangent vector fields d1, d2 as

∇T (d1, d2) = ∇d1d2 −∇d2d1 − [d1, d2], (1.2.13)

provides a necessary condition for the preferred frame {ẽρ} to be a coordinate frame.
By construction, all the frame vectors of {ẽρ} are parallely transported in all direc-

tions from E , so that ∇ẽρ ẽσ (E) = 0 for any two frame vectors, hence

∇T (ẽρ, ẽσ) (E) = −[ẽρ, ẽσ] (E) . (1.2.14)

As a tensor, ∇T vanishes at E iff it vanishes on the basis {ẽρ (E)}, i.e. iff any Lie
bracket of the frame vectors vanishes at E . Yet, vanishing Lie brackets is exactly the
integrability condition for a frame, i.e. {ẽρ} is a coordinate frame around E iff the
Lie bracket of any two frame vectors vanishes on a neighbourhood of E . Therefore, a
vanishing torsion at E is a necessary condition, though not sufficient since the Lie bracket
might become non-zero in any neighbourhood of E . Furthermore, even if torsion does
vanish on some neighbourhood of E , relation (1.2.14) only holds at E because, anywhere
away from E , the frame vectors are no longer parallely transported in all directions.

As mentioned earlier, this would actually be the case iff curvature vanished: the
bases are all parallely transported to each other independently of the path, hence in all
directions. In the flat case, vanishing torsion on some neighbourhood is thus equivalent
to the integrability of the preferred frames.

Auto-parallel curves For later use, recall that, for any connection ∇ on tangent
fields, a curve C is called an auto-parallel curve of ∇ iff

0 = ∇ĊĊ =
(
C̈ρ + ∇ΓρσµĊσĊµ

)
eρ (1.2.15)

all along C.
If {eρ} is a coordinate frame, definition (1.2.13) yields

∇T ρσµ = ∇Γρµσ − ∇Γρσµ = −2∇Γρ[σµ], (1.2.16)

so that, with respect to any coordinate frame, torsion is proportional to the antisym-
metric part of the Christoffel symbols with respect to their last two indices.

However, one sees from (1.2.15) that only the symmetric part of the Christoffel
symbols determines the auto-parallel curves: two connections have the same auto-
parallel curves iff their symmetric parts are equal in a coordinate frame. Thus the
auto-parallel curves are preserved when one modifies the connection by adding any
antisymmetric tensor Aρσµ = Aρ[σµ] to the Christoffel symbols, although the torsion of
the connection is modified.

1.2.2 Lie derivatives

Consider an event E , a basis {eEα} of TES and the unique integral curve C through E
of a tangent vector field d which is at least defined over a neighbourhood of E . Lie-
dragging the basis by d defines a frame along C, which can be chosen to be a preferred
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frame. This thus defines a universal derivative along C. The latter is called the Lie
derivative in the direction d, denoted Ld, and the corresponding universal transport is
the Lie-dragging by d.

This can only be done for the integral curves of d, so that the Lie derivative along d is
a kind of incomplete, specific covariant derivative. It is only specified in the direction d,
but it could be completed in possibly several ways into a connection ∇, which would
have the specific property that ∇d = Ld, i.e. parallel transport along integral curves
of d coincides with Lie-dragging by d. In particular, d is auto-parallel with respect to
any such connection, i.e. ∇dd = 0.

1.2.3 Realistic observer derivative

When discussing curvature and torsion, it was noted that any arbitrary frame defined
over an open set U defines a flat connection over U . In particular, one may use a
local tangent frame to define a (flat) local connection U∇ on tangent vector fields.
Moreover, U∇ has vanishing torsion iff the local frame is actually a coordinate frame.

This is exactly the type of derivative that a realistic observer uses: any observer con-
structs her proper coordinate system by making time-position measurements (sending
signals in all directions and recording reception times, as discussed in section 1.1), and
then differentiate tangent vector fields by differentiating their components with respect
to her coordinate frame. More precise examples of this kind will only be discussed in the
next three sections, devoted to concrete cases, as they may rely on structures specific to
a theory (e.g. the Fermi-Walker derivative requires the existence of a Lorentzian metric
over spacetime to construct an orthonormal frame along the observer worldline).

1.3 Newtonian physics
Topology In Newtonian physics (thoroughly covered in [40]-book 1), simultaneity is
trivially defined: it is assumed that the clocks of all the observers remain synchronized,
in the sense that the time measurements on a given event yield the same value for
all observers, independently of their state of motion or their place in the universe.
Equivalently, all the representatives {observer, time, position} of a given event have
the same time value. In particular, the times of the three observers involved in the
equivalence relation defining events are the same. With such a rigid postulate, time is
absolute as it is useless to specify with respect to which observer it is measured, and
two events are said simultaneous when they happen at the same absolute time.

Besides, absolute time is assumed to have no beginning nor end, while it is equally
assumed that no principle should forbid the rulers of any observer to extend up to
infinity. Newtonian spacetime is thus homeomorphic to the whole manifold R4, from
which it inherits e.g. the structure of an affine space (translations between events are
globally well-defined and form a vector space).

Preferred frames In Newtonian physics, preferred frames for tangent vector fields,
like velocities and accelerations, are suggested by Newton’s trusted second law, which
takes the simplest form in the inertial frames. The latter are defined by Newton’s first
law as the frames with respect to which isolated systems have constant velocity. As
a consequence, any two inertial frames are related by a matrix of GL4(R) constant
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over the spacetime R4. We know from section 1.2.1 that this uniquely defines a flat
connection ∇ on tangent fields. Besides, any inertial frame is associated with the global
coordinates of an inertial observer. Therefore, ∇ is an example of the flat torsionless
connections of realistic observers mentioned in section 1.2.3.

What were generically called essential effects in section 1.2, are thus the inertial
effects carried in the covariant derivative and uncovered as non-zero Christoffel symbols
in non-inertial frames: consider the respective coordinate frames {ẽρ} and {eρ} of an
inertial observer O and an arbitrary observer O′ (of course, {eρ} defines a flat torsionless
connection as well, but non-inertial). Since Newtonian time is absolute, O and O′ have
the same time coordinate, hence ẽ0 = e0. Furthermore, the remaining frame vectors {ẽi}
and {ei}12 correspond to the rulers carried by O and O′, so that their time components
are zero. To be more explicit, assume that both spatial frames {ẽi} and {ei} are
orthonormal with respect to the canonical metric on R3. Then, at any event E , the
transition matrix from {ei} to {ẽi} is a rotation matrix R (E) ∈ SO(3), which actually
only depends on the time coordinate t of E . The transition matrix m from {eρ} to {ẽρ}
thus writes as

m (E) =

(
1 01,3

03,1 R(t)

)
. (1.3.1)

Now consider a tangent vector field Q along a curve C naturally parametrized by ab-
solute time (for instance, the covariant derivative of Q along C would be the acceleration
of C if Q was the velocity of C). Denoting Q̃α and Qα the components of Q respectively
measured by O and O′, one already sees from (1.3.1) that Q̃0 = Q0, and hence ˙̃Q0 = Q̇0:
absoluteness of time implies absoluteness of the time components. To compute ∇ĊQ in
terms of quantities measured by O′, one can directly apply formula (1.2.1), which relies
on the matrix

mṁ−1 =

(
0 01,3

03,1 RṘT

)
. (1.3.2)

This means that the spatial part (which is the only important one, since the time
part is absolute and does not enter any Newtonian equation) obeys

(∇ĊQ)i = Q̇i + [RṘT ]ijQ
j. (1.3.3)

Since R is orthogonal, RRT = Id ⇒ RṘT = −ṘRT = −[RṘT ]T . Thus, the 3 × 3
matrix Ω(t) ≡ RṘT (t) being antisymmetric, there exists ~ω(t) ∈ R3 such that

Ωik(t) = εijkω
j(t), so that ∀~v ∈ R3, Ω(t)~v = ~ω(t)× ~v, (1.3.4)

where ε is the 3-dimensional Levi-Civita symbol.
Expectedly, ~ω(t) is the instantaneous rotation vector of O′ with respect to O, e.g.

for any function θ,

R(t) =

 1 0 0
0 cos θ(t) sin θ(t)
0 − sin θ(t) cos θ(t)

 =⇒ ω(t) =

 θ̇(t)
0
0

 . (1.3.5)

12As usual, latin indices are strictly positive integers.
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Denoting ~Q the spatial vector having components Qi, relations (1.3.3) and (1.3.4)
finally yield

(∇ĊQ)i (t) =
[
~̇Q(t) + ~ω(t)× ~̇Q(t)

]i
, (1.3.6)

which is the familiar formula for differentiating vectors in non-inertial frames. The iner-
tial effects were indeed all encoded in the transition matrix m and hence the Christoffel
symbols defined from it according to equation (1.2.6).

Further discussions on Newtonian spacetime and derivatives may be found in chapter 5
of [41], chapter 3 of [42] and part 1 of [40]-book 1.

1.4 Special relativity

Topology When gravitational effects have no measurable influence on the outcome
of an experiment, the correct predictions are provided by special relativity13 (see [48]
and [40]-book 2 for thorough introductions and advanced topics on this theory) rather
than Newtonian physics, although the errors of Newtonian predictions become signific-
ant only when very high velocities are involved in the experiment. In special relativity,
constancy of light speed in vacuum with respect to all inertial observers, experimentally
highlighted by the Michelson-Morley experiment, leads to a definition of simultaneity
different from Newton’s. In particular, the times of the three observers involved in the
equivalence relation defining events are not the same, which results in time dilation and
length contraction effects. All these effects are properly ruled by the fact that transition
maps between inertial observers are given by Lorentz transformations. As in Newtonian
physics, the clocks and rulers of the inertial observers cover the whole real line, so that
the whole spacetime still identifies with the affine space R4 (and thus inherits all its
topological properties). Yet, non-inertial observers may only perform experiments on a
subset of the whole spacetime.

Preferred frames Like Newtonian physics, special relativity postulates the existence
of global inertial frames, although the orthonormal ones are now related by Lorentz
transformations rather than Galilean transformations. The familiar formulations of the
laws of special relativity in inertial frames are thus transported to any frame with the
help of the Newtonian flat torsionless connection associated with the global coordinates
of inertial observers. This is indeed the same covariant derivative as in section 1.3,
but now the transition matrix to an arbitrary observer would be more complicated
than (1.3.1) because of the non-absoluteness of time and the resulting relativistic effects.

Soon after the first publications of Einstein on special relativity, Minkowski provided
an elegant framework to formulate the theory, based on a Lorentzian metric η defined on
the whole spacetime and everywhere equal to diag(−1, 1, 1, 1) with respect to a subclass
of inertial frames (hence called orthonormal inertial frames). Let us recall here that,

13Famously settled by Einstein from 1905, special relativity originally dealt with classical mechanics
and electromagnetism, but was successfully combined to quantum mechanics [35–38] later within the
framework of quantized Abelian and non-Abelian Yang-Mills theories [43–47].
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given a metric g on spacetime, any connection ∇ on tangent fields uniquely decomposes
as

∇ = g∇+ ∇M + ∇C, (1.4.1)

where the Levi-Civita connection g∇ associated with g is defined with respect to any
coordinate basis {∂µ} by the Christoffel symbols

gΓρσµ =
1

2
gρτ (∂σgµτ + ∂µgτσ − ∂τgσµ), (1.4.2)

the tensor ∇M is constructed from the non-metricity tensor ∇N (which is defined
by ∇Nλµν = ∇λgµν) according to

∇Mρ
σµ =

∇Nρ
σµ

2
− ∇N ρ

(σµ) , (1.4.3)

and the contorsion tensor ∇C is constructed from the torsion tensor ∇T (hence the
name) according to

∇Cρ
σµ = −

∇T ρσµ
2
− ∇T ρ

(σµ) , (1.4.4)

in which the positions of the indices crucially depend on the conventions used in the
definitions (1.2.3) and (1.2.13).

In particular, regarding the last two indices σ, µ when all quantities are expressed
with respect to a coordinate frame, torsion (and hence contorsion) contains the whole
antisymmetric part of the Christoffel symbols ∇Γρσµ. On the other hand, the Levi-Civita
Christoffel symbols, the tensor ∇M and the second term of (1.4.4) are all respectively
symmetric, and their sum corresponds to the whole symmetric part of the Christoffel
symbols ∇Γρσµ. Furthermore, adding any antisymmetric tensor Aρσµ = Aρ[σµ] to the
Christoffel symbols modifies torsion, and hence contorsion. But the symmetric part of
the Christoffel symbols, which determines the auto-parallel curves (see section 1.2.1),
does not change. This implies that the tensor ∇M , and hence non-metricity, changes to
compensate the modification in the symmetric part of contorsion, i.e. ∇M is necessarily
added the quantity 2A

ρ
(σµ) . A connection fulfilling ∇N = 0 is called metric-compatible.

Changing the torsion of a metric-compatible connection thus generically breaks metric-
compatibility.

In the case of special relativity,∇ is already known to be torsionless, so that ∇C = 0.
In addition, the Minkowski metric η everywhere writes diag(−1, 1, 1, 1) with respect to
any orthonormal inertial coordinate frame {∂µ}, so that ∇Nλµν = ∇∂ληµν = ∂ληµν = 0
and hence ∇M = 0. The covariant derivative associated with the inertial frames thus
reduces to the Levi-Civita connection η∇ of the Minkowski metric η.

Flat metric-compatible connections are called Weitzenböck connection. For such
connections, ∇ = g∇ ⇔ ∇T = 0 ⇔ preferred frames are coordinate frames. For
instance, η∇ is a torsionless Weitzenböck connection.

The other types of derivatives encountered in special relativity (e.g. concrete ex-
amples of the realistic observer derivatives mentioned in section 1.2.3) also appear in
the framework of GR, and are thus covered in section 1.5.

Topology, simultaneity and derivatives in special relativity are much further covered
in chapters 1 and 3 of [48] and sections 1 and 2 of [40]-book 2.
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1.5 General relativity

Topology Between 1907 and 1915, Einstein and collaborators developed GR, which
classically describes how gravitational effects are produced, and how they affect non-
gravitational phenomena. In particular, it was understood that the Minkowski formu-
lation of special relativity, based on a Lorentzian metric, was an essential step to realize
the transition from special relativity to GR: the metric alone was precisely the object
that could describe gravitational effects once it was rendered dynamical by appropriate
field equations. The proper meaning of “dynamical” and, more generally, the principles
invoked to postulate GR from special relativity is the topic of chapter 2.

An important feature of GR is that gravitation, embodied by the metric, is uni-
versally coupled to matter, meaning that all non-gravitational phenomena are altered
in presence of gravitation. In particular, this applies to the signals and interactions
defining time-position measurements, and two signals with different initial directions
may eventually cross because of gravitation, making time-position measurements de-
generate (a single event might be given two distinct coordinates). As a consequence, it
is no longer reasonable to assume that there always exist observers whose clocks and
rulers cover the whole real line. Instead, each observer has a restricted perception of
spacetime, covered by its bounded coordinate system, like the non-inertial observers in
special relativity. Generically, spacetime in GR thus no longer identifies with the affine
space R4 common to Newtonian physics and special relativity.

What can then be be said about the topology of a general relativistic spacetime?
The mere existence of a Lorentzian metric clarifies a bit more the structure of spacetime
because, although any manifold may be equipped with a Riemannian metric, the exist-
ence of a Lorentzian metric is conditioned e.g. by the existence of a nowhere vanishing
vector field [49]. Besides, the existence of a Lorentzian metric defines causality relations
between events based on the usual notions of spacelike, null and timelike curves. With
this causal structure, spacetime may be equipped with a particular topology14 with
respect to which it must be non-compact, as it would otherwise admit closed timelike
curves (proposition 4.33 of [50]). Such a topology is coarser than the original topology of
spacetime defined in section 1.1, so that the original topology must also be non-compact.
Therefore, to model a reasonable spacetime, a manifold must have a non-compact ori-
ginal topology to have a chance to admit a Lorentzian metric without closed timelike
curves. Actually, being non-compact (for at least one topology) is enough to admit a
Lorentzian metric (theorem 1.8 of [49]), but the latter might still contain closed timelike
curves. Finally, Hausdorff separation and existence of a Lorentzian metric imply that
spacetime is paracompact (section 3.1 of [51]).

Preferred frames The title of this paragraph must first be clarified in regard of the
fact that GR is often said not to feature any preferred frame. This is true and has to do
with the inherent absence of absolute objects in GR, as will be discussed in section 2.3.
Yet, GR makes use of a covariant derivative ∇ which integrates all the coordinate
dependencies of spacetime differentiations, and thus allows to write the equations of
the theory in the most general form (thus realizing general covariance, covered in sec-
tion 2.1). But, as mentioned in section 1.2.1, no connection is mathematically better

14The Alexandrov topology is generated by the sets < E , E ′ > of all events lying on a timelike curve
joining any two fixed events E and E ′ (see section 4 of [50] or section 6.4 of [51]).



26 CHAPTER 1. GENERAL FRAMEWORK OF PHYSICAL THEORIES

than any other: the theory could be written with any other connection ∇′, by adjusting
an ad hoc compensating tensor field (the difference between any two connections always
is a tensor since the second term in the last expression of (1.2.10) is the same for all
connections, while the first is a tensor). Therefore, the preferred frames are defined
by ∇, not the theory. Yet, the most elegant formulation of the theory uses the con-
nection that absorbs the ad hoc tensor. In GR, this connection still is the Levi-Civita
connection g∇ (the principles justifying this will be rediscussed in chapter 2).

To picture the preferred tangent frames corresponding to g∇, consider one of them,
denoted {ẽρ}, along a curve C (unless g = η, the Riemann tensor gRiem of the Levi-
Civita connection is non-zero, so that, unlike Newtonian physics and special relativ-
ity, the curve supporting a preferred frame must be specified). Because of metric-
compatibility, the components of g with respect to {ẽρ} are constant along C. Parallel
transport of g∇ thus preserves scalar products. This means that {ẽρ} can be assumed
to be orthonormal all along C whereas, for a non metric-compatible connection, a pre-
ferred frame orthonormal at a certain event would no longer be orthonormal at some
other event.

However, not all orthonormal frames along C are preferred frames: some of them
are related to {ẽρ} by a non-constant family of transition matrices of the Lorentz
group O(3, 1) along C. Any non-preferred orthonormal frame {eρ} thus has constant
norms and angles between the frame vectors, and yet is non-constant with respect to
any othonormal preferred frame: one is naturally tempted to say that it is 4-rotating
(the Lorentz group indeed is the generalization of the rotation group to Lorentzian sig-
nature). This is why, when {eρ} actually is an orthonormal frame defined on an open
set15 containing C, rather than on C only, the Christoffel symbols of g∇ with respect
to {eρ} are called Ricci rotation coefficients.

Let us come back to the general case such that {eρ} is only defined along C, and
denote u ≡ Ċ and a ≡ g∇uu. Since {eρ} is everywhere orthonormal along C, and g∇ is
metric-compatible, one has

0 = g∇u (eρ · eσ) = eρ · g∇ueσ + eσ · g∇ueρ, (1.5.1)

so that Ωρσ ≡ eρ · g∇ueσ is an antisymmetric tensor satisfying g∇ueρ = Ωσ
ρeσ, i.e. it is

exactly analogous to the matrix Ω involved in (1.3.4).
Furthermore, along C, Ω decomposes as16

Ωρσ = 2u[ρaσ] + uµεµρνσω
ν , (1.5.2)

where ε is the 4-dimensional Levi-Civita symbol, and ω is the rotation 4-vector of {eρ}.
Assume here that C is the worldline of a realistic observer O parametrized by her

proper time. Then {eρ} may be constructed by taking e0 as the 4-velocity u of O,
and {ei} as three orthonormal rulers carried by O. Thus constructed, {eρ} coincides
on C with the frame associated with O’s natural coordinate system, which is locally
(well-)defined by the following procedure: assign coordinates (xµ) = (τ, sdi) to the

15Such frames are called tetrad (or vierbein). They can always be constructed locally, by applying
either the Gram-Schmidt process to a coordinate frame, or the procedure described in section 1.2.1,
i.e. parallely transporting an orthonormal basis from a fixed event along all the curves of a set C,
constructed e.g. according to footnote 10.

16See section 3.5 of [48]
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event lying at distance s on the spatial geodesic17 starting from O at O’s proper time τ
in the direction diei for d in the unit sphere of R3. This coordinate system can only be
valid locally because, as mentioned earlier, gravitation (or O’s acceleration) will cause
geodesics to eventually cross. Note that, in general, the corresponding coordinate frame
is orthonormal only along C. The associated (flat torsionless) covariant derivative is a
general example of a realistic observer derivative.

In this realistic case, the time component of ω with respect to {eρ} vanishes, while
the spatial components are read from suitably arranged gyroscopes carried by O. It
is exactly analoguous to the vector ω involved in (1.3.4). Indeed, when rewriting the
spatial components of (1.5.2) with respect to {ei}, as is the case in (1.3.4), the spatial
components of u vanish, while u0 = 1. This yields

Ωik = ε0ijkω
j = εijkω

j, (1.5.3)

where the last ε is the 3-dimensional Levi-Civita symbol, hence recovering (1.3.4).
Therefore, {eρ} will be said to be 3-rotating when ω 6= 0. The decomposition (1.5.2)

shows that 4-rotation (i.e. non-parallel transport of an orthonormal frame) does not
imply 3-rotation, as 4-acceleration is a form of 4-rotation. When O indeed does not
3-rotate, but possibly accelerates, the corresponding coordinates constructed above are
called Fermi coordinates, and the associated (flat torsionless) covariant derivative is
called the Fermi-Walker derivative (and the corresponding parallel transport is called
Fermi-Walker transport). Let us finally use equation (1.5.2) to explicitly expand the
covariant derivatives of {eρ} along C:

g∇uu = aiei (1.5.4)
g∇uek = aku+ εijkω

jei, (1.5.5)

where, numerically, εijk = εijk because indices are raised and lowered with the metric
which equals diag(−1, 1, 1, 1) in {eρ} all along C.

Relation 1.5.4 restates the definition of 4-acceleration and hence the fact that the
natural coordinate frame of an accelerating observer cannot be a preferred frame along
its worldline. Yet, following a geodesic is not sufficient according to 1.5.5. The latter
shows that 3-rotation and 4-acceleration cannot compensate each other: if any of them
is present, no spatial frame vector {ek} is parallely transported. Therefore, only the
Fermi frame of a non-rotating non-accelerating observer O has zero 4-rotation along O’s
worldline, and hence is a preferred frame of g∇. In this case, the Fermi-Walker derivative
coincides with g∇ along the geodesic. When g = η, the Fermi coordinates of a non-
rotating non-accelerating observer are global orthonormal inertial coordinates.

As an additional remark, it is easy to note that, in the general case, Ω actually
identifies with the 0th Christoffel matrix gΓ0 along C of any frame coinciding with {eρ}
along C, because in such a case:

g∇ueρ = gΓσρ0eσ, i.e. gΓσρ0 = Ωσ
ρ. (1.5.6)

Relation (1.5.6) is for instance valid for O’s natural coordinate frame, or the or-
thonormal frame constructed by parallely transporting {eρ} along the spatial geodesics
defining O’s coordinate system (in which case the Christoffel symbols are a case of Ricci

17The distance s along a geodesic γ is given by s[γ] =
∫ ξf
ξi

√
|γ̇(ξ) · γ̇(ξ)|dξ.
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rotation coefficients). In addition, the Christoffel symbols of g∇ are symmetric with
respect to the last two indices according to relation (1.4.2), so that only the compon-
ents gΓσij depend on the exact frame. It is particularly easy to compute the latter with
respect to O’s coordinate frame because all spatial geodesics starting on O’s worldline
are represented by the curves γ : ξ 7→ (τ, ξdi) for all d in the unit sphere of R3. The
geodesics equation

0 = g∇γ̇ γ̇
σ = γ̈σ + gΓσij γ̇

iγ̇j = gΓσijd
idj (1.5.7)

thus holds for any 3-dimensional unit vector d, which requires all gΓσij to vanish.

Topology in GR is extensively covered in [49–51]. Section 13.6 of [52] or sec-
tion 24.5.1 of [53] may also be consulted for a thorough treatment of the natural
coordinate system of an arbitrary observer, together with chapters 3 and 13 of [48]
for a complete discussion of 4-rotation. The latter three references also cover the dif-
ferent types of derivatives involved in GR. Since this last section on GR closes the
introductory chapter, let us cite here standard and excellent textbooks not mentioned
yet: [54–57] for different expositions of GR, [58–60] devoted to cosmology, and [11, 61,
62] focusing on applications such as the physics of neutron stars and black holes. See
also [63] for a rich and original compilation of both historical and technical discussions
on GR.
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GR is a relativistic description of gravitation, but also of all classical non-gravitational
phenomena in presence of gravitation. This means that GR modifies special relativity to
integrate gravitation. Much effort, still ongoing today, has been made, by Einstein him-
self and many others, in formulating the most reasonable, physically well-founded ar-
guments leading from trusting special relativity to postulating GR. This usually brings
up concepts such as general covariance, dynamical fields, diffeomorphism invariance,
and equivalence principles. Based on rigorous definitions (which may unfortunately
vary between authors), these notions have more than a heuristic interest; they are often
invoked as guiding principles in the elaboration of modified theories. Before consulting
more complete, yet sometimes confusing, discussions in the literature, the sections be-
low should serve as a simple synthesis disentangling the notions at stake and providing
their sharpest definitions.

2.1 General covariance
In section 1.1, spacetime S was given a definition valid for all physical theories. Then,
the first purpose of any physical theory is to define all the sets Si of objects Oi, math-
ematically related to spacetime (often fields defined over spacetime), that are necessary
to predict all the observations lying in the application scope of the theory. Secondly,
the behaviours of those objects are described by physical laws which are mathematical
rules Rj({Oi}) (often field equations, which generally involve one of the types of de-
rivatives introduced in section 1.2). A family of objects satisfying all rules is called a
solution of the theory.

GR is often praised for being generally covariant, and requiring this property ori-
ginally stood as very valuable in grasping GR from special relativity. To assess the

29
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legitimacy of this, consider the following general definition of a covariance group.

Definition 2.1.1 (Covariance group). Denote G ⊂ Diff(S) a subgroup of spacetime
diffeomorphisms. The rules of a theory are called G-covariant when there exists a
faithful18 action Φi of G on each Si in such a way that

∀g ∈ G, ∀j, Rj({Oi}) ⇐⇒ Rj({Φi(g) ·Oi}). (2.1.1)

The rules are called generally covariant when G actually equals the whole of Diff(S).

Often, Si is a vector space (in which case the action Φi is sometimes called a real-
ization [41, 57]). However, Φi can be non-linear in the sense that it takes values in the
whole of Diff(Si), rather than only GL(Si) (in which case the realization is usually called
a representation). Generically, when the object Oi is a tensor field, the action Φi(g) is
the pull-back by the diffeomorphism g.

It must be stressed that definition 2.1.1 really characterizes the rulesRj({Oi}) rather
than the physical content of the theory. Indeed, a theory is properly defined as an equi-
valence class of objects and rules ultimately leading to the same exact predictions.
Then, covariance with respect to a given group is a possible property of some repres-
entative formulations of the theory, but not necessarily all of them. Therefore, general
covariance is only a property of the standard formulation of GR. This is why, as soon
as 1917, Kretschmann pointed to Einstein, who firmly defended the “heuristic force” of
general covariance, that any theory does admit a generally covariant formulation [64].
In vague terms, one should work out how non-generally covariant rules transform under
the action of a generic diffeomorphism g, and redefine objects, or introduce notations,
that integrate all possible terms generated from the action of g. In many cases, one
would look for geometric objects over spacetime like tensors, and would most probably
use covariant derivatives for terms involving differentiation.

This is how the familiar Galilean covariance of Newtonian physics, and Lorentz
covariance of special relativity (which characterize their respective formulations with
respect to inertial frames), can be promoted to general covariance. For instance, the
series of papers [65–68] illustrates the benefits of a generally covariant Newtonian for-
mulation to model neutron stars, while reference [69] develops a generally covariant
formulation for Newtonian and special relativistic fluid mechanics. As a side remark,
there exists a geometric (i.e. based on geodesic motion in curved spacetime instead of a
force in R4) generally covariant reformulation of Newtonian gravity, known as Newton-
Cartan formulation (see section III.5 of [42] or chapter 12 of [52]). The objects and
the formulation thus resemble GR even more, but such effort to reformulate Newton’s
gravitational force as a geometric effect is not necessary to realize general covariance of
Newtonian physics.

Going the opposite way, GR admits a non-generally covariant formulation which
is always valid19: harmonic coordinates (i.e. such that gσµ gΓρσµ = 0) always exist,
and the equations of GR formulated in such coordinates expectedly loose their general

18In particular, the trivial action is not allowed.
19Of course, in particular cases in which a solution is sought with a given symmetry, e.g. stationarity,

or homogeneity and isotropy, the equations of GR can be reformulated in coordinates adapted to the
symmetry, and thus loose their general covariance, but such equations are far from entirely representing
GR.
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covariance although they can still describe any physical situation. This seems to further
diminish the importance of general covariance in formulating GR.

Yet, retrospectively, it seems unlikely that GR could have been first formulated
in harmonic gauge, so that Einstein’s strategy to focus only on generally covariant
formulations was an efficient formal shortcut, rather than a complicating constraint.
Besides, there is no unique way to render a given theory generally covariant, i.e. not all
generally covariant generalizations of a theory are representatives of the same theory.
This procedure requires choices that can be confronted with experiments and hence
face experimental failure (see section 5.5 of [64]). Thus, requiring general covariance is
not devoid of physical implications. This then provides an investigation plan, as the
choices that it demands may be tested, and hence contribute to developing the theory.

In short, general covariance certainly was a relevant guide in shaping GR: though
general covariance in itself says nothing about the physical content of such a relativistic
theory including gravitation, the choices made to devise a generally covariant formula-
tion of such a theory from knowledge of special relativity, do fundamentally reveal the
essence of GR. These choices are now discussed.

2.2 Einstein’s equivalence principle

All observers in spacetime carry a proper time clock and three rulers that they arrange
in an orthonormal frame following the same procedure as in the absence of gravity. So
far, no metric is defined over spacetime, so that there would be no sense in assessing
the orthogonality of the rulers in terms of a such a metric; the latter will only emerge
later. No connection is defined either, so that 4-rotation of a frame cannot be defined
in any way, only 3-rotation is (as measured by gyroscopes carried by the observers). In
Newtonian physics and special relativity, the inertial observers are the non 3-rotating
observers who experience no force. Yet, once taken into account, gravitational effects
affect any observer (“universal coupling” of gravitation to matter mentioned in sec-
tion 1.5). Therefore, in this context, inertial observers can only be defined as the non
3-rotating observers experiencing no other influence than gravitation. This generaliza-
tion does coincide with the Newtonian definition in the absence of gravitation. Actually,
since GR will not describe gravitation as a force, the Newtonian definition will remain
valid. Furthermore, such generalized inertial observers will feature further common
properties with those of special relativity. Again, since no metric is defined yet, there
is no sense in trying to relate the worldlines of inertial observers with the geodesics a
such a metric; this will only come later.

All the systems, and hence fundamental fields, studied in special relativity are still
present over spacetime, and now influenced by gravitation in virtue of universal coup-
ling. Einstein’s equivalence principle (EEP) claims that fundamental non-gravitational
test20 physics is not locally affected by the presence of a gravitational field. More
concretely, consider an inertial observer O at any event E . The latter has coordin-
ates x = (τ, 0, 0, 0) in O’s coordinate system. Consider fundamental test fields in given
spatial configurations with respect to O, i.e. they are known at a fixed τ . Then, for any
finite accuracy δ, there exists a finite coordinate range Rδ = [τ, τ + Tδ] × [−Dδ, Dδ]

3

within which no measurement on the test fundamental fields features deviations greater

20The gravitational effects generated by the matter fields must be negligible.
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than δ with respect to any other inertial observer considering the same set up in her own
coordinate system. Since the latter observer may be chosen far from any graviational
influence, the measurements in the box Rδ are predicted by the special relativistic laws.

In EEP, the importance of restricting to fundamental fields, rather than including
any system, is clearly justified in [70]: “consider an experiment where the distance l
between two nearby freely-falling particles is measured, and consider the quantity l̈/l,
where a dot denotes the derivative with respect to proper time, or to a convenient
laboratory time. In an inhomogeneous gravitational field, this quantity does not vanish,
in general, even in the limit l→ 0, although it does vanish identically in the absence of
a gravitational field [...] in all such cases one is dealing with the behaviour of systems
that are not elementary, but composite. Hence, the need to restrict the statement of
EEP to fundamental physics”. Indeed, the experiment of the two particles, separated
by any fixed distance l at time τ , does not rule out EEP at all when the particles
are reconsidered as the macroscopic manifestation of a specific configuration of several
interacting fundamental fields, because then, the box Rδ does not have to contain the
two balls for all δ. Actually, EEP only indicates that Dδ is necessarily smaller than l
when δ is chosen smaller than l̈/l, so as to exclude the regions where the fields steeply
materialize the two particles, and hence where their configurations evolve differently
than in special relativity, since the latter predicts l̈ = 0.

For the box Rδ to exist for any δ, the expressions at x = (τ, 0, 0, 0), in O’s coordinate
system, of the general laws ruling the fundamental fields in presence of gravitation
must coincide with the expressions at x, in any (Newtonian) inertial coordinate system,
of the special relativistic laws ruling these fields. This holds true at any event, so
that the expressions of the fundamental laws are known everywhere, with respect to
inertial observers. However, for any event E ′, the expressions are only valid at the event
(actually at all the events on the worldline of a chosen inertial observer crossing E ′,
and with respect to who the laws are expressed). This makes it impossible to find
solutions of the laws, which are generally partial differential equations (PDEs), because
one needs to know the expressions of the PDEs on an open set to try integrating them.
Ignoring how the expressions change away from x on any open set exactly corresponds
to ignoring how gravitation really comes into play on finite scales.

The first and easier step to fix this is to rewrite those expressions in a generally
covariant way. This only requires a connection ∇ such that the coordinate frames
of the inertial observers are preferred frames along their worldlines. Such worldlines
will necessarily be auto-parallel curves of ∇ because the 0th frame vector is the 4-
velocity of the inertial observer, and it is parallely transported along the worldline, by
definition of ∇. Actually, all the inertial frame vectors are parallely transported along
the worldline by definition, so that the 0th Christoffel matrix ∇Γ0, expressed in the
coordinate frame of an inertial observer, vanish along her worldline.

One may then replace partial differentiation in O’s coordinate system with covariant
differentiation by∇ in the expressions at E . Actually, this procedure, known as minimal
coupling21, is a priori ill-defined for some special relativistic laws. For instance, laws
involving second-order crossed derivatives are ambiguous, because the commutator of
partial derivatives vanish, whereas that of covariant derivatives involves the Riemann
tensor. The same procedure thus yields two expressions differing by curvature-coupling

21Or “comma goes to semicolon rule”, as partial differentiation ∂µQ and covariant differentation∇∂µQ
are often respectively denoted Q,µ and Q;µ
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terms. Such factor-ordering ambiguities may be sorted out with cautious reasonings, or
comparison with experiment if need be: see section 16.3 of [52] and section 25.7 of [53]
for concrete examples and general rules to determine the right order. Reference [71]
should also be consulted for a detailed treatment of minimal coupling based on the
Lagrangian formalism.

When such precautions have been taken, one is left with expressions of the laws
valid with respect to any vector basis at E . These expressions will be the same at any
other event E ′, even away from O’s worldline, since the same procedure would have
been followed by another inertial observer crossing E ′. As a result, the expressions are
valid all over spacetime with respect to any frame, without need of introducing any
field that was not already present in special relativity. One may then reexpand the
generally covariant expressions with respect to O’s coordinate frame. The expressions
now involve the Christoffel symbols of ∇, but they take the form of PDEs on the whole
open set where O’s coordinate frame is defined. This is reassuring, but does not solve
the problem, because the Christoffel symbols are not known. They are merely a notation
for the ignorance of the expressions of the laws away from x (away from O’s worldline
more precisely). Actually, they do provide the information that gravitational effects are
fundamentally described by a connection22: what one really needs, as a second step,
are the equations determining the appropriate connection ∇ describing how gravitation
affects non-gravitational fields in a given physical situation. In practice, one would then
identify the inertial observers as the non 3-rotating observers whose worldlines are the
auto-parallel curves of ∇.

As mentioned above, deriving working expressions for the fundamental laws in pres-
ence of gravitation has been achieved with no further field introduced: the Christof-
fel symbols were already there in the special relativistic laws expressed in non-inertial
frames. Yet, as discussed in section 1.4, they were known to be the Levi-Civita Christof-
fel symbols of Minkowski metric. In presence of gravitation, one can again relate them to
a global Lorentzian metric over spacetime: define g as taking the form diag(−1, 1, 1, 1)
with respect to the coordinate frame of any inertial observer at any event E on her
worldline. This does cover the whole spacetime as there always exist inertial observers
crossing any event. But for this construction to be well-defined, any two inertial ob-
servers crossing the same event E must be defining the same metric at E . This is the
case iff changing from an inertial frame to the other preserves the above diagonal form,
i.e. iff the transition matrix at E is part of the Lorentz group. The EEP confirms that
it is the case. One can imagine e.g. that all the inertial observers maintain a certain
fundamental field in a predefined behaviour close to them, on which other inertial ob-
servers can make measurements to determine the transformations relating them. The
EEP concludes that those are the Lorentz transformations corresponding to the relative
velocity measured by the inertial observers at E .

Clearly, inertial observers’ worldlines are timelike with respect to g. And for any
unit timelike vector d at any event E , there always exists an inertial observer cross-
ing E with 4-velocity d. For any inertial observer O, the components of g are con-
stant along O’s worldline C with respect to O’s coordinate frame, which is a preferred
frame of ∇ along C. Therefore, ∇dg = 0 for any timelike vector. Yet, any vector
can be decomposed as the sum of two timelike vectors: any spacelike (resp. null)
vector has components (0, a, 0, 0) = (a, a/2, 0, 0) + (−a, a/2, 0, 0) (resp. (a, a, 0, 0) =

22As opposed to a metric (again, the latter will only emerge later).
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(3a, a, 0, 0) + (−2a, 0, 0, 0)) in some orthonormal frame such that the 0th frame vector
is the timelike one. Thus, ∇ is metric-compatible as it is linear with respect to the
direction (and thus admits othonormal preferred frames along any curve, as exposed
in 1.5). According to decomposition (1.4.1), the remaining difference between ∇ and
the Levi-Civita connection g∇ is a contorsion tensor C (and the orthonormal preferred
frames of ∇ 4-rotate with respect to those of g∇ iff C 6= 0).

The class of “metric theories”, to which GR belongs, then requires that freely-falling
test objects, like inertial observers, follow the geodesics of g. As a result, ∇ has the
same timelike auto-parallel curves as g∇. According to section 1.2.1, this requires them
to have same symmetric parts in coordinate frames, and hence ∇T ρ

(σµ)d
σdµ = 0 for all

timelike directions d. One can hardly make further exact statements about the relation
between ∇ and g∇. But the spirit of metric theories actually is to describe gravitation
only in terms of a metric, so that a connection that would not be entirely determined
by the metric is not allowed. This finally sets ∇ = g∇, and hence identifies the inertial
frames as the preferred frames of g∇ along the geodesics of g, i.e. the non-accelerating
non 3-rotating frames, as discussed in section 1.5. As a result, the equations on the
connection ∇ that had to be devised to describe gravitation on finite scales, must
actually rule the dynamics of a metric g, from which ∇ is constructed as g∇.

Reference [72] should be consulted for richer discussions on metric theories and
the EEP, together with [10, 28], which also covers experimental tests of EEP and
the alternative versions of the equivalence principle. There is indeed a great variety
of statements similar to EEP, but featuring either weaker, stronger, or simply different
implications. For instance, some of them are general enough to allow non-metricity [73].
References [70] and section 5.2 of [74] precisely examine the rigourous, or conjectured,
relations between numerous versions of equivalence principles. For instance, the weak
equivalence principle (WEP) states that the trajectory of any freely-falling test body
with negligible compactness23 is independent of its internal structure, i.e. only determ-
ined by its initial kinematic conditions24. It is clearly implied by EEP, but Schiff’s
conjecture claims that it is actually equivalent under reasonable assumptions (see e.g.
section 2.5 of [28] for details, and section 5.2 of [74] for cases in which Schiff’s conjecture
was proved or disproved, thus refining its assumptions).

Theoretical and experimental tests of the equivalence principles are still very lively
topics. For instance, reference [75] suggests a new criterion to test the gravitational
WEP (defined by no longer requiring a negligible compactness in the WEP) to handle
the fact that actual bodies always have non-zero compactness and hence do not ne-
cessarily follow exact geodesics. Besides, the WEP has recently been experimentally
confirmed down to a precision of 10−14 by the space mission MICROSCOPE [76–78]).
This means that we potentially have access to a priviledged family of curves over space-
time, which, in metric theories, are the geodesics of the metric. Yet, many metrics
share the same geodesics. For instance, two metrics related by a constant conformal
factor have the same Levi-Civita connection, and hence same geodesics. But is it the
only possibility? References [79–81] thus address implications of the WEP in classifying
most possibilities.

23Compactness is the dimensionless ratio of the mass to the characteristic size. A very light black
hole would be a test body, but would still have the greatest possible compactness.

24In Newtonian gravity, this is famously implied by the equality bewteen inertial and gravitational
masses.
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2.3 Absolute objects and invariance
Absolute and dynamical objects So far, discussing general covariance and EEP
missed the central point of any theory of gravitation, which is to describe gravitational
effects on finite scales. In section 2.2, it became clear that this would be achieved by
devising equations ruling the Christoffel symbols of a connection on a neighbourhood
of any event. In the framework of metric theories, these equations come down to
rule a metric, since the Christoffel symbols are required to be those of a Levi-Civita
connection. Unlike special relativity, such equations must intuitively render the metric
dynamical instead of a fixed absolute object.

However, ruling an object with a PDE is not sufficient to make it dynamical. For
instance, instead of postulating the existence of observers with respect to who physical
laws take their usual expressions in inertial coordinates, special relativity admits the
following equivalent (generally covariant) formulation: there exists a Lorentzian met-
ric g over spacetime ruled by gRiem = 0, and the physical laws are postulated in the
forms obtained by replacing partial derivatives with the Levi-Civita connection in their
usual “inertial” expressions. Yet, the solutions of the metric equation are known to be
all the expressions of the Minkowski metric η with respect to the frames defined on open
sets. Therefore, the object g of the above formulation of special relativity is qualified
as an absolute rather than dynamical object. In the general case, one thus relies on
the following equivalence class to disclose absolute objects hidden in “deceptive” PDEs
such as gRiem = 0.

Definition 2.3.1 (Equivalent objects). When the objects of a given set Si are fields, any
two of them O and O′ are said equivalent when, ∀E ∈ S, there exists a neighbourhood U
of E and a diffeomorphism g : U → U such that [Φi(g) ·O]|U = O′|U .

In practice, this equivalence relation can be adapted to any set Si, according to its
specificities: since any object is mathematically related to spacetime, restriction to a
given neighbourhood can always be given a sense.

One then naturally distinguishes absolute and dynamical objects as follows.

Definition 2.3.2 (Absolute and dynamical objects). For a given set Si, consider the
subset of all the objects Oi appearing in any solution of the theory. When all such
objects are equivalent, they are called absolute. Otherwise, they are called dynamical.

In the first formulation of special relativity above, one sticks to the inertial frames,
so that the metric is fixed: it is always numerically the same in all solutions although
other fields such as the electromagnetic tensor are not. Generically, absolute elements
of a theory often appear as fixed fields in some family of formulations. Conversely,
objects that appear fixed in a given formulation clearly are absolute objects and would
be unveiled in any other (possibly deceptive) formulation by the defining criteria 2.3.1
and 2.3.2. Yet, in the first (“inertial”) formulation of special relativity, the metric rather
is a practical tool than a proper object: one can forget it and consider the formulations
of the laws used before Minkowski introduced the metric. Thus, in the first formulation,
absoluteness actually resides in the inertial frames: all the inertial frames involved in
the solutions of this formulation are locally (actually globally) diffeomorphic, by means
of Lorentz transformations. Of course, all the theories relying on the rigid framework of
special relativity, such as quantum field theories or string theory, feature these absolute
objects.
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Invariance Identifying the absolute objects of a theory allows to properly distinguish
covariance (definition 2.1.1) and invariance, defined below. Indeed, since it was noted
that special relativity admits a generally covariant formulation, what is usually meant
by “Lorentz invariance of special relativity”? It is surely not only about the Lorentz
covariance of its “inertial” formulation: it has to do with the physical fact that the
same experiment conducted with respect to any two inertial frames yields the same
results in both frames. One can extract such physical invariances with the following
definition, which requires that the dynamical objects and absolute objects have already
been identified according to definitions 2.3.1 and 2.3.2.

Definition 2.3.3 (Invariance group). Consider a generally covariant formulation of
the rules of a theory. The invariance group of a family of objects F = {Ok}k∈K is the
set IF ⊂ Diff(S) such that

∀g ∈ IF , ∀j, Rj({Ok}k∈K ∪ {Ol}l /∈K) ⇐⇒ Rj({Φk(g) ·Ok}k∈K ∪ {Ol}l /∈K). (2.3.1)

It is called the invariance group of a given object Oi when F only contains Oi.
The invariance group I is the invariance group of the family containing all the

dynamical objects. The theory is called diffeomorphism-invariant when I actually equals
the whole of Diff(S).

There is indeed a physical content in the fact that any solution actually generates
a whole family of solutions by acting only on certain objects (the dynamical ones).
Besides, one sees that, when there are no absolute objects, the invariance group equals
the covariance group, so that the theory is automatically diffeomorphism-invariant.
Conversely, it is common to think that requiring diffeomorphism invariance is too con-
straining to allow any absolute object.

More generally, the general covariance relation (2.1.1) shows that I also equals
the invariance group of the family containing all the absolute objects. Besides, the
invariance group of any family clearly contains the intersection of the invariance groups
of each of its objects. Furthermore, given the wide variety of phenomena Rj that the
rules describe, they are often injective in the sense that, when F reduces to a single
object Ok, relation (2.3.1) implies Φk(g) ·Ok = Ok. The latter relation exactly defines
the elements of the stabilizer of Ok, which clearly is always included in the invariance
group of Ok. With injective rules, the invariance group of an object thus equals its
stabilizer. In special relativity for instance, the Minkowski metric is the only absolute
object and its stabilizer is the Lorentz group, hence the Lorentz invariance. In the
context of theories of gravitation, Lorentz invariance refers to the property that inertial
frames at an event are related by the Lorentz trasformation corresponding to the relative
velocity measured by the inertial observers, as claimed by EEP (this property is thus
rather called “local Lorentz invariance”). Indeed, when it is the case, one can construct
a Lorentzian metric over spacetime (as was done earlier) whose stabilizer at any event
is, by definition, the Lorentz group.

Background objects and action-reaction principle Based on the criteria 2.3.1
and 2.3.2, the metric equation to be devised should make the metric a dynamical ob-
ject. Together with the equations ruling the non-gravitational fields, obtained with
EEP, the theory will thus realize diffeomorphism invariance. Yet, this does not com-
pletely characterize the specifities of most theories of gravitation like GR. One further
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criterion should be imposed to forbid an unphysical metric equation such as the follow-
ing (diffeomorphism-invariant) model:

gRic = 0, (2.3.2)
g�φ = 0, (2.3.3)

where φ is a scalar field, and gRic and g� are respectively the Ricci tensor and the
d’Alembert operator associated with g.

The metric equation (2.3.2) clearly admits non-equivalent solutions in regard of cri-
terion 2.3.1, e.g. the whole Kerr-Newman family. Solving equation (2.3.3) then yields
non-equivalent scalar configurations as well. Hence all fields are dynamical. The is-
sue is that the metric can be completely determined first, independently of the scalar
field: g acts on φ through g�, but is not back-reacted upon by φ, as if all possible scalar
configurations were test fields to the metric, and the latter an independent background
to φ. Such “one-way coupling” is unphysical in view of a fundamental action-reaction
principle: a field A is involved in the equation of motion of a field B iff B is involved
in A’s equation of motion. Fields enforcing this principle could be called “proper dy-
namical objects”, or “acting-reacting objects”, as opposed to “background objects”, of
which absolute objects are the most rigid representatives. The example (2.3.2)-(2.3.3)
shows that the intersection between background objects and dynamical objects is not
empty; it contains the “dynamical backgrounds”.

Much more complete discussions on general covariance, invariance, and absolute,
dynamical and background objects are conducted in chapter 4 of [41], chapter II of [42],
part IV of [82], section 3.5 of [57] and the articles [83–85].

2.4 Lovelock theorem
After such discussions, the metric g is clearly identified as not only being dynamical, but
entirely determined by the back-reaction of the physical situation that it influences. Yet,
what PDE can be devised to rule such a proper dynamical metric? There are actually
not so many choices according to Lovelock’s theorem, originally established in [86, 87],
and extending former results exposed in [88, 89].

Theorem 2.4.1 (Lovelock). Given a metric g over a D-dimensional manifold (D ≥ 2),
any second-rank symmetric tensor Eµν that is divergence-free (g∇νE

µν = 0) and con-
structed only from the metric and its partial derivatives up to order 2 writes as

Eµ
ν =

bD−1
2
c∑

m=0

cmδ
µρ1σ1...ρmσm
να1β1...αmβm

m∏
i=1

gRiemαiβi
ρiσi

, (2.4.1)

where b · c denotes the integer part, δ is the generalized Kronecker delta, and the cm are
any constants (and, conventionally,

∏0
i=1 = 1).

Furthermore, this tensor actually corresponds to the Euler-Lagrange expressions of
the action

S[g] =

∫
dDx

√
|g|
bD−1

2
c∑

m=0

cmδ
ρ1σ1...ρmσm
α1β1...αmβm

m∏
i=1

gRiemαiβi
ρiσi

. (2.4.2)



38 CHAPTER 2. FROM SPECIAL RELATIVITY TO GENERAL RELATIVITY

The sums in (2.4.1) and (2.4.2) stop at bD−1
2
c because further analogous terms

beyond would vanish anyway. The m = 0 term is proportional to δµν in (2.4.1), and
is a constant in (2.4.2). The m = 1 term (for D ≥ 3) is proportional to the Ein-
stein tensor gGµ

ν ≡ gRicµν − gRδµν /2 (where gR is the Ricci scalar associated with g
through g∇) in (2.4.1), and is proportional to the latter in (2.4.2). Those are the only
terms for D = 3 and D = 4.

Such a theorem is particularly interesting because fundamental laws are expected
to be second-order PDEs (Newton’s second law being the prototypical example). In
particular, this guarantees the theory to be free of any unphysical Ostrogradsky instabil-
ity [90, 91]. Section 7.1 of [54] details further arguments allowing to guess the structure
of the metric equations from their expected weak-field approximation. In particular,
the metric equations should involve an energy-momentum tensor Tµν containing the
properties of matter that should generate gravitational effects. An energy-momentum
tensor, synthesizing the properties of matter fields, is already well-defined, symmetric
and divergence-free in the framework of special relativity (see e.g. section 2.8 of [54] or
chapters 19 and 20 of [48]). Expecting the same properties in presence of gravitation (in
agreement with EEP), one may first consider metric equations in the form Eµν = Tµν ,
where Eµν would gather all the terms involving only the metric and its partial deriv-
atives up to order 2, while Tµν would contain any term involving any other field of the
theory (hence possibly metric terms coupled to other fields). Then, Eµν is necessarily
symmetric and divergence-free, hence expressed by (2.4.1). In four dimensions, the
latter exactly reduces to the m = 0 and m = 1 terms detailed above, yielding metric
equations in the form

Gµν + Λgµν =
8πGN

c4
Tµν , (2.4.3)

where the constants c0 and c1 (with further numerical factors) are reinterpreted in
terms of the cosmological constant Λ, Newton’s constant GN and the speed of light in
vacuum c.

Besides, if the field equations of the theory are to be derived from an action principle,
the part of the action involving only the metric and its derivatives should be given by
expression (2.4.2). In four dimensions, the m = 0 and m = 1 terms yield the Einstein-
Hilbert action with the cosmological constant:

SEH [g] =
c4

16πGN

∫
d4x
√
|g| (gR− 2Λ) . (2.4.4)

The rest of the complete action would then describe matter fields: it should take a
form suggested by the minimal coupling procedure applied to the Minkowski action of
matter, up to factor-ordering ambiguities (although second-order derivatives are unusual
in Lagrangians to prevent from the Ostrogradsky instability ealier mentioned). This
will couple matter fields to metric terms emerging from the Christoffel symbols of the
Levi-Civita covariant derivative. The Euler-Lagrange expressions of these coupled terms
with respect to the metric then define the energy-momentum tensor Tµν .
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As stated in the introduction, the actual applicability of any theory is not only
assessed from compatibility with existing observational constraints, but also from purely
theoretical criteria. This chapter recaps the status of both kinds of viability conditions
in GR.

3.1 Theoretical viability
Predictivity The Einstein’s field equations (2.4.3) only involve three free paramet-
ers: Λ, GN and c, which are to be determined from experience once and for all before
making any prediction. With such a (small) finite number of parameters valid for the
whole application scope of the theory, GR is a priori predictive. Of course, the energy-
momentum tensor may also rely on free parameters describing the properties of matter,
but then, it will rather be a requirement on Tµν not to spoil predictivity to be considered
an admissible energy-momentum tensor. These are only straighforward considerations
(yet not holding for all physical models), but any prediction on a system not only is
a function of the free parameters but also requires sufficient knowledge of the state of
the system. Identifying precisely the amount of required knowledge, and whether it is
reasonable, defines the “well-posed” formulation of a problem.

Well-posedness Most of the time, the main rules of a theory are PDEs satisfied by
fields defined over spacetime. A realistic system is thus generically described by a set
of functions fk defined over a spacetime domain U , and solving a certain set of PDEs.
Finding solutions to the PDEs generally starts by prescribing restrictions fk|H which
seem to describe the system on a certain subset H ⊂ U . However, some restrictions are
inappropriate in that they do not yield a unique solution: they may either underde-
termine or overdetermine the system. In light of this, Hadamard formalized in 1907 [92]
the notion of well-posedness: a problem is well-posed when a subset H ⊂ U has been
identified such that prescribing the restrictions fk|H does yield a unique solution fk,
which smoothly depend on the fk|H .

39
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When one has interest in a stationary system, U may be reduced to a spatial domain.
In a laboratory experiment, the experimenter would most easily influence the system
defined over U by fixing its conditions at the boundaries of U . If the system always
adopt the same stationary behaviour for given boundary conditions, one would expect
the laws of the system to be well-posed with H identified as the boundary ∂U of U .
Yet, it is not forbidden for an experimenter to fix conditions on another domain H′
strictly inside U if she can, and then infer whether the corresponding mathematical
problem should be well-posed. For systems evolving in time, the experimenter prepares
the system in a known configuration at an inital time (“Cauchy data”). With the
same approach as for the boundary problem, she would then investigate the initial
value problem (“Cauchy problem”). Moreover, for spatially bounded systems, she may
again tune the conditions of the system on its spatial boundaries (“Cauchy-boundary
problem”). Beside any textbook on PDEs, reference [93] is a synthetic review of the
existing mathematical results on these subjects.

Trust in determinism, and continuity with respect to appropriate knowledge of any
system, requires physical theories to have well-posed Cauchy problems. This has been
investigated in GR for several systems. Let us briefly illustrates how this is formalized
in the vacuum case: Λ and Tµν are set to zero, so that the system reduces to the
spacetime metric g. Consider a coordinate system (t, xi) such that ∂t is timelike and
the ∂i are spacelike (this is always possible, since realistic observers’ coordinates fulfills
these conditions). Denote n the (unique timelike) unit future-oriented vector field
normal to the (spacelike) constant t hypersurfaces Ht. Then, a relevant family of
functions fk describing the system is formed by the spatial (Riemannian) metric γ
induced by g on the hypersurfaces Ht, the extrinsic curvature K = −Lnγ/2, the lapse
function N = (−g00)−

1
2 and the shift vector β = ∂t − Nn, from which the metric g is

reconstructed as

gµνdx
µdxν = −N2dt2 + γij(dx

i + βidt)(dxj + βjdt). (3.1.1)

Though one is a priori ready to prescribe the configurations of (N, β, γ,K) on a fixed
hypersurface H0 = Ht0 , analysis of the Einstein’s equations (2.4.3) actually shows that
these initial configurations cannot be freely chosen: they are themselves constrained
to solve the so-called Hamiltonian and momentum constraints, which are respectively
scalar and vector equations on H0 (reference [94] should be consulted for much more on
the “3+1” decomposition (3.1.1) and these constraints). Furthermore, the lapse N and
shift β turn out to carry information only about the coordinate system (t, xi) rather than
the physical degrees of freedom of the metric. Besides, causality requires that knowledge
of (N, β, γ,K) on H0 should only determine g on the set of events E such that either all
the future-directed, or all the past-directed causal curves from E intersect H0 exactly
once. If this set actually corresponded to the whole spacetime, such H0, uniquely
determining the metric everywhere, would be called a Cauchy hypersurface. To admit
such a Cauchy hypersurface is one among several equivalent definitions of the globally
hyperbolic spacetimes [49].

So far, the point of view based on the coordinate system (t, xi) could only be a
first step to figure out some necessary conditions for the existence and uniqueness
of a solution to the Einstein’s equations (2.4.3), because we assumed from the start
that the solution metric was already present on spacetime, for instance to consider
causality relations between events. Therefore, to properly formalize the problem, one
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must consider the hypersurface H0, and the corresponding restrictions of (N, β, γ,K),
independently of any embedding spacetime. The only properties to retain are that H0

is a D−1 dimensional manifold equipped with a Riemannian metric γ and a symmetric
second-rank tensor K fulfilling the Hamiltonian and momentum constraints on it. Such
a triple (H0, γ,K) thus constitutes a Cauchy data for the vacuum evolution problem.
The latter was shown to be locally and globally well-posed in the senses of theorems 3.1.2
and 3.1.3 below, which rely on the following two definitions.

Definition 3.1.1 (Developments and extensions). Call development of (H0, γ,K) a
Lorentzian spacetime (S, g) such that g satisfies the vacuum Einstein equation gRic = 0,
and there exists an embedding Θ : H0 → S such that:

• Σ ≡ Θ(H0) is a Cauchy hypersurface of S (which is hence globally hyperbolic),

• γ = Θ∗g,

• K = Θ∗ ΣK, where ΣK is the extrinsic curvature of Σ.

Call extension of (S, g) a development (S ′, g′) such that the corresponding embedding
satisfies Θ′ = ψ ◦Θ where ψ : S → S ′ is an embedding.

Theorem 3.1.2 (Local well-posedness). There always exist developments of a given
Cauchy data, and any two developments are extensions of a common development.

Theorem 3.1.3 (Global well-posedness). There always exists a maximal development
(in the sense that it is an extension of all developments), which is unique up to isomet-
ries.

Such result was established in 1969 by Choquet-Bruhat and Geroch [95]. For
more details on these subjects, one could first consult section 3.8 of [57], before go-
ing through [96] for a complete mathematical treatment (of non-vacuum cases as well).

Black hole solutions Proving the well-posedness of evolution problems in GR are
great mathematical achievements, and important criteria ensuring that the theory is
physically viable. However, this generally does not provide any method to actually
construct solutions of the theory. Actually, several solutions of GR were discovered
long before well-posedness was proved. Most known analytical solutions are exposed in
the different textbooks on GR cited so far. Of course, different solutions often apply to
different physical situations, from the neighbourhood of planets to cosmological scales.
Given the topic of part II of this manuscript, let us only recall a few important results
on black hole solutions in GR.

First of all, black holes are rigorously defined with the notion of conformal com-
pletion of a Lorentzian spacetime, which is properly defined in section 4.3.1 of [97].
In particular, a conformal completion provides a boundary I to spacetime. Then, the
black hole region of spacetime is defined as the set of events such that no future-directed
causal curve from them ever reaches I.

Despite this general definition, several results have tended to prove that the black
hole solutions of GR are very limited, and actually restrict to the explicitly known Kerr-
Newman family. Historically, the first striking results of this kind were obtained by
Israel, who demonstrated that the Schwarzschild [98] (resp. Reissner-Nordström [99])



42 CHAPTER 3. GENERAL RELATIVITY

metric was the unique asymptotically flat static solution under a few reasonable as-
sumptions. Then Carter [100], Hawking [101] and a final argument by Robinson [102],
established the uniqueness of the Kerr family, yet under the well-known unphysical
requirement of analyticity.

Such uniqueness results have come to be named no-hair theorems as they picture
black holes as devoid of any distinctive character (other than a finite, actually very
small number of parameters). These results have since then pushed physicists to look
for reasonable conditions in which different black hole solutions could be obtained. Such
“hairy” black holes can indeed be found, either within the framework of GR, or that of
alternative theories, as will be discussed in section 6.2.

Reference [103] provides proofs of the no-hair theorems mentioned above (and his-
tory of the improvements made on their assumptions), while the review [104] covers
more uniqueness results. Much more on the Kerr solution and black holes in general is
to be found in references [105–111] and the textbooks and lecture notes [97, 112–115].

Stability One further important criterion for the viability of a theory is the stability of
its solutions, meaning the existence of “perturbed” configurations arbitrarily close to the
solutions. Firstly, the most trivial solution of GR is the Minkowski metric with vanishing
matter fields. Yet, demonstrating its global stability against all types of perturbations
(not only linear) was utterly non-trivial, as established by Christodoulou, Klainerman
and Nicolo in [116, 117]. Such a result actually considers perturbations of the metric
“only”, while all matter fields remain unperturbed. A first extension in this direction
has been achieved in [118, 119], where stability against all types of perturbations of the
metric and massive scalar fields is proved.

Regarding black hole solutions, the linear stability of the Schwarzschild solution
against metric perturbations has been discussed and obtained in several studies [120–
122]. Regarding the Kerr family, several restricted results exist [123, 124]. One may
also consult section 4.9 of [113] and section 10.2.5 of [115] for more details.

Well-defined physical quantities New theories often questioned and even disputed
concepts and representations of former well-established theories. In some cases though,
one may legitimately expect that some fundamental physical quantities should find
clear generalizations in all theories. In the case of GR, the very notions of mass and
angular momentum actually raise non-trivial issues and enjoy several definitions specific
to different situations. These are exposed in [125], and in [126] in even greater detail.

3.2 Observational tests
As mentioned in the introduction, GR passed many experimental tests, predicting e.g.
the correct perihelion precession of Mercury, deflection of light by the sun, Shapiro
time delay. These are thoroughly reviewed in [10, 127]. In particular, detection of
gravitational waves (GW) by the LIGO and Virgo observatories [3, 4] are among the
most recent tests of GR. These are highly difficult observations to realize due to the
very low amplitudes of GW signals. Extraction of GW patterns from brut data thus
demands several signal processing steps and notably to be able to generate a large
database of all possible patterns. The most common (and the only ones observed so
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far) sources of GW are mergers of compact objects. In this case, patterns are generated
with the help of different techniques, each one being appropriate for a specific phase
of the merger. The inspiralling phase is modelled with post-Newtonian [128, 129] and
effective-one-body [130] techniques, which rely on perturbative expansions in terms
of the velocities of the compact objects. The last merging orbits require numerical
approaches [131, 132]. Finally, the post-merger (or ringdown) phase, which is even
harder to extract from observations, requires investigation of the quasi-normal modes
of the final black hole [133, 134]. This is achieved by sudying pertubations around the
expected equilibrium metric. Up to now, all GW detections are consistent with GR
but better precision seems to be required to distinguish between patterns of GR and
alternative theories.

A second type of modern tests is the monitoring of supermassive black holes lying
at the center of galaxies. For instance, the interferometer GRAVITY [12] accurately
records the trajectories of stars orbiting the central supermassive black hole of the
Milky Way (Sgr A* ) [14]. It is also capable of following variable hot spots (“flares”),
suspected to originate from magnetic processes in the accretion disk of Sgr A*, over
time scales of an hour [15]. Both stars and flares are expected to follow geodesics, so
that the corresponding astrometric measurements provide precious information about
very strong-field regions. The Event Horizon Telescope [13] is a worldwide realization
of very-long baseline interferometry, which allowed to investigate the emision structure
of Sgr A* [16], or to reconstruct the image of the accretion disk of the supermassive
black hole M87* [17]. Such observational data is produced in strong gravitational fields
and carried by photons following null geodesics. It is thus another valuable source
to test strong gravity. Again, both types of observations are compatible with GR so
far, and improved accuracy would be required to set strong constraints on alternative
theories.

References [131, 132] and [11] respectively cover the possibilities offered by GW
astronomy and astrophysical black holes to test the strongest regimes of gravity.
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Alternative formulations
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Before turning to alternative theories of gravity, this chapter briefly introduces two
alternative frameworks classically25 equivalent to GR: the tetradic formulation, notably
in the case of teleparallelism, and the Palatini formulation.

4.1 Tetradic formulation
Consider an arbitrary frame {eρ} and a tetrad (see footnote 15)

{eα} = {eα = eραeρ} (4.1.1)

defined over an open set.
A tetrad is an orthonormal frame, so that gρσ eρα eσβ = ηαβ, where η merely denotes

the matrix diag(−1, 1, 1, 1). Denoting êαρ the inverse matrix of eρα, one recovers the
metric in the arbitrary frame as

gρσ = ηαβ ê
α
ρê
β
σ. (4.1.2)

One may actually use relation (4.1.2) as the definition of the metric, and instead
regard the tetrad transition matrix eρα as a more fundamental field: consider a space-
time, so far devoid of any metric, but equipped with an invertible second rank tensor e.
Then, construct a metric g[e] according to (4.1.2), where η merely is a notation for the
diagonal matrix diag(−1, 1, 1, 1), i.e. it should not be seen as a fundamental object of
the tetrad formulation (very much like the Minkowski metric in the “inertial” formula-
tion of special relativity, discussed in section 2.3). In particular, all the frames defined
by (4.1.1) will be orthonormal frames with respect to the newly defined metric g[e].
Furthermore, relation (4.1.2) yields det g = − det2 e, so that the Einstein-Hilbert ac-
tion (2.4.4) rewrites as

Stetrad[e] =
1

16πGN

∫
d4x|e|

(
g[e]R− 2Λ

)
, (4.1.3)

25Subtle differences may appear when trying to quantize these formulations: see e.g. sections 3.2.1
and 3.2.2 of [135], and [136, 137].
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where the speed of light c is set to 1 from now on.
Note that this formulation is more than a curiosity as it is very often used to

introduce spinor fields in the matter action (see e.g. section 9.1 of [135]). Yet, this
is not the only way to handle spinors over spacetime (see section 15.1 of [63]).

Teleparallelism Teleparallelism further reformulates action (4.1.3) based on the fol-
lowing approach. Consider the connection ∇ whose preferred frames are the tetrad
defined by (4.1.1) (in such a case, the tensor field e exactly corresponds to the trans-
ition matrix m used in section 1.2). Such a connection ∇, called a Lorentz connection,
is flat (see section 1.2.1), but may admit a non-trivial torsion ∇T . This would only
mean that the tetrad is not integrable. Furthermore, ∇ would be compatible with the
metric (4.1.2), as the latter takes the constant form diag(−1, 1, 1, 1) in the tetrad. It
would therefore be an example of a Weitzenböck connection (see the end of section 1.4).
Then, remarkably, it is possible to reformulate the Ricci scalar g[e]R of the Levi-Civita
connection g[e]∇ in terms of the torsion ∇T only, yielding the teleparallel action

Stele‖[e] =
1

16πGN

∫
d4x|e|

(
1

4
∇Tαβρ

∇Tαβρ +
1

2
∇Tαβρ

∇T βαρ − ∇Tα∇Tα
)
, (4.1.4)

where indices are raised and lowered with the metric (4.1.2), and the torsion vector ∇Tα
is the quantity ∇T βαβ.

Beside this reformulation, teleparallelism really uses the tensor e as the only fun-
damental field describing gravitation, in that it renounces to describe gravity with the
help of g[e]R. In particular, motion of free particles can no longer be described as
geodesics. Instead, the effect of gravity is equivalently described by a force term in the
action of free particles (analogous to the Lorentz term in presence of an electromagnetic
potential): teleparallelism is not a geometric description of gravity.

All the technical steps needed to realize this consistent reformulation of GR, and
much more on teleparallel gravity, are exposed in [138–140]. One may also consult the
technical exchanges between the articles [141–143].

4.2 Palatini formulation
The Palatini formulation is a first step towards metric-affine theories of gravity, which
will be introduced in section 5.1. The principle is to consider a situation such that
the connection ∇, from which the Ricci scalar is defined in the Einstein-Hilbert ac-
tion (2.4.4), is not necessarily the Levi-Civita connection, but still is torsionless. Ac-
cording to decomposition (1.4.1), ∇ is actually a sum g∇ + M , where M is a new
argument of the action, with componentsMρ

σµ symmetric in the last two indices. With
such a construction, the Ricci tensor of ∇ is a composite of the two arguments of the
action

SPalatini[g,M ] =
1

16πGN

∫
d4x
√
|g|
(∇R− 2Λ

)
. (4.2.1)

If the rest of the action does not involve ∇ (i.e. uses the Levi-Civita connection to
describe the dynamics of matter), then the Euler-Lagrange expressions with respect to
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the metric are structurally the same as Einstein’s field equations, yet the Ricci tensor
(and hence the Ricci scalar) are constructed from∇ = g∇+M rather than g∇. However,
it turns out that the Euler-Lagrange expressions with respect to the components ∇Mρ

σµ

ultimately amount to requiring ∇ = g∇ (i.e. equating the Christoffel symbols of ∇ to
the expressions (1.4.2)): metric-compatibilty ensues from the action principle.

Reference [144] discusses the Palatini approach in much more details and a more
general framework. Note also that the tetrad and Palatini formulations are very often
combined, although these two sections show that they are not entangled in principle.
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The number of alternative theories of gravity is considerable. It is only legitim-
ate here to introduce a few models which directly connect to topics mentioned in the
previous chapters and to part II.

5.1 Metric-affine gravity
Metric-affine gravity generalizes the approach of the Palatini formalism (section 4.2) in
allowing the connection ∇ to be arbitrary (i.e. non-metricity and torsion are allowed),
and to be used in the matter action (i.e. it is no longer constrained to be only involved
in the construction of the Ricci scalar ∇R). In particular, the Ricci tensor ∇Ric of ∇
is now completely independent from the metric, so that g only contracts with ∇Ric to
construct ∇R. As a result, no derivative of the metric is involved in the action, whereas
the Einstein-Hilbert action (2.4.4) contains second-order derivatives of g for sure. The
latter is thus known as a second-order formulation, while metric-affine models are called
first-order formulations. Actually, the gravitational part (which gathers all the terms
involving only the metric and the connection) of such theories is allowed to be much
more complex than a Ricci scalar, e.g. functions of it.

General discussions on this type of theories are provided in [145, 146].

Einstein-Cartan In section 2.2, EEP suggested that gravitational effects would be
described by a connection ∇. Before restricting to the framework of metric theories
and hence the Levi-Civita connection, ∇ had only been shown to be compatible with
the metric constructed by copying the Minkowski metric in the inertial coordinate
frames attached to inertial observers’ worldlines. According to decomposition (1.4.1),
a contorsion tensor ∇Cρ

σµ was still allowed. Einstein-Cartan theory precisely considers
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this possibility, while still using a Ricci scalar alone in the gravitational part of the
action. The structure of the action is thus the same as Palatani’s action (4.2.1), yet ∇
is constrained to be metric-compatible instead of torsionless.

More explicitly, the second argument of the action, which was made of a tensor ∇Mρ
σµ

symmetric in the last two indices, is replaced by a torsion tensor ∇T ρσµ, i.e. a third-rank
tensor with antisymmetric last two indices. Any occurence of ∇ in the matter action
actually denotes the sum g∇ + ∇C, where ∇C is the contorsion tensor of ∇T defined
by relation (1.4.4). Therefore, with such a construction of ∇, the Ricci tensor is a
composite of the two arguments of the action (g and ∇T ).

With respect to the metric, the Euler-Lagrange equations yield analogues of Ein-
stein’s field equations. With such connection and torsion, conservation laws still ensue
from Bianchi identities, but do not necessarily take the form of a divergence-free energy-
momentum tensor. With respect to torsion, the Euler-Lagrange equations establish a
direct algebraic equation giving the explicit form of the torsion in terms of a tensor in-
terpreted as the internal angular momentum density of matter (“spin density tensor”).

References [147, 148] review Einstein-Cartan theory.

5.2 Higher-dimensional models

Higher-dimensional models arise in many contexts. Below are introduced only three
standard examples.

Lanczos-Lovelock theories In the previous chapters, Lovelock theorem 2.4.1 was
another hint at alternative theories. It was indeed useful to guess the structure of
the left-hand side of Einstein’s equations (2.4.3), but it also suggested that, for every
dimension D, these equations have a natural generalization sharing same properties:
the left-hand side is given by the expression (2.4.1) while the energy-momentum tensor
has exactly the same form as in four dimensions.

These models are reviewed in [149].

Higher-dimensional GR Higher-dimensional GR truncates the Lanczos-Lovelock
expansion (2.4.1) at m = 1 for any dimension, so that the Einstein’s equations are con-
sidered in the exact same form (2.4.3) independently of the dimension. These models
have received a lot of attention, notably regarding black holes. In 1963 (same year as
the discovery of the Kerr solution [150]), Tangherlini obtained a generalization of the
Schwarzschild family for any higher dimension D [151]. Actually, by adding flat dimen-
sions to this solution, new black holes (usually known as “black branes”) with exotic
horizon topologies can also be constructed. However, such solutions are generically
unstable (“Gregory-Laflamme instability”). In 1986, Myers and Perry obtained a black
hole generalization of the Kerr family for any higher dimension [152]. Yet, unlike the
Kerr family, those generalizations are not subject to a general no-hair theorem.

Much more details on higher-dimensional black holes are exposed in references [153,
154].
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Kaluza-Klein models Kaluza-Klein models are characterized by the existence of
coordinate systems (x, y) with respect to which the metric takes the form

gMN(x, y) =

(
gµν(x) vν(x)
vµ(x) φ(x)

)
, (5.2.1)

where x denotes coordinates on a (D − 1)-dimensional spacetime, and y is one further
coordinate on a compact dimension from which all metric components are independent.

Then, consider the higher-dimensional Einstein-Hilbert action (2.4.4). One may
decompose the D-dimensional metric determinant and Ricci scalar in terms of the (D−
1)-dimensional analogue quantities constructed from the metric gµν , together with non-
trivial terms generated by the (D − 1)-vector vµ and the scalar field φ. One may then
integrate over the compact dimension of the action to recover a (D − 1)-dimensional
Einstein-Hilbert action added with vector and scalar actions (see e.g. section 10.2.1
of [155] for an explicit example of such “dimensional reduction”). In some 5-dimensional
cases considered in the original works of Kaluza [156] and Klein [157, 158], the final
vector action may be interpreted as Maxwell’s action, so that both 4-dimensional GR
and electromagnetism can be recovered from model (5.2.1).

The implications of Kaluza-Klein inspired models are covered in references [159–
161].

5.3 Massive gravity
It has been mentioned in the introduction that GR does not fit in the quantum formal-
ism of particle physics [20, 21]. In such a perspective, the metric would be the classical
manifestation of a quantum field whose perturbations are interpreted as fundamental
spin-2 particles called graviton. When one follows this approach, the gravitons turn
out to be massless particles: their Lagrangian lack a term analogue to the µφ2 or µvµvµ
terms of scalar and vector fields, where µ would be the mass of the corresponding
particles.

In view of this, it became interesting for several reasons to try to provide gravitons
a mass, one of them being related to the unexplained accelerated expansion of the
universe (“dark energy problem” [22, 23]): roughly speaking, massive particles mediate
interactions whose amplitude decreases as e−µr/r with distance r. The effective range
of the interaction is thus limited to scales below approximately 1/µ, which becomes
infinite in the limit of massless particles like gravitons. As a result, a small but non-
zero graviton mass would annihilate gravitational effects on very large scales, which
could provide a natural solution to the dark energy problem.

In 1939, Fierz and Pauli developed a simple (yet unique under a few consist-
ency requirements) theory of a non self-interacting (linear field equations) massive
spin-2 field [162, 163]: they expanded the Einstein-Hilbert action to quadratic or-
der in a perturbation h of the Minkowski metric η, and added a mass term in the
form µ2[hµνh

µν − (ηµνh
µν)2]. In 1970, it was shown, notably by van Damn, Veltman

and Zakharov, that the Fierz-Pauli theory could not reproduce solar system predic-
tions of GR in the limit µ→ 0 (a result known as the “vDVZ discontinuity”), and was
hence incompatible with observations [164–166]. In 1972, Vainshtein understood that
the vDVZ discontinuity was caused by the linear nature of Fierz-Pauli theory [167]: the
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latter can be appropriately completed in a non-linear theory free of vDVZ discontinuity,
which becomes strongly coupled in the vanishing mass limit, in the sense that it cannot
be consistently approximated by a truncated perturbative expansion like Fierz-Pauli
theory. As mentioned above, such massive theories modify GR on large scales, and
yet coincide with GR on solar system scales. This means that there exists a certain
radius, known as Vainshtein radius, where a transition operates. The property of these
non-linear completions of Fierz-Pauli theory (NLFP) to recover the predictions of GR
when r → 0 is known as the Vainshtein mechanism or Vainshtein screening26.

To construct the gravitational action of NLFP theories, it is clear that at least
one assumption of the Lovelock theorem 2.4.1 must be evaded, otherwise perturbations
around any background will describe a massless graviton. Yet, the assumption of less
than second-order derivatives is maintained, firstly to keep preventing the Ostrogradsky
instability, and secondly because mass terms are actually not expected to arise from
derivative terms. It is therefore required that the gravitational action involves another
field than the metric. The most studied situation is to use a second metric field f ,
although matter fields remain coupled only to the first metric g. Standard massive
gravities take f to be flat and non-dynamical (i.e. it is an absolute background accord-
ing to section 2.3), while bi-metric models take f to be properly dynamicals. Many
interaction terms between f and g are then allowed to realize NLFP theories.

Unfortunately, curing the vDVZ discontinuity with the Vainshtein mechanism char-
acterizing NLFP theories was followed by another issue, raised a few months later by
Boulware and Deser [168]: NLFP theories appeared to generically suffer from an in-
stability known as the Boulware-Deser ghost. This reduced interest for massive gravity
until the Dvali-Gabadadze-Porrati (DGP) model was developed in 2000 [169]. The DGP
model is a 5-dimensional theory of gravity such that all matter fields are restricted to
a 4-dimensional subspace H (the usual spacetime):

SDGP = M3

∫
d5X

√
|(5)g|(5)R +M2

P

∫
H
d4x
√
|g| [R + Lm] , (5.3.1)

where M and MP are constants (the 5 and 4-dimensional Planck masses), Lm is the
Lagrangian of matter fields and (5)R (resp. R) is the Ricci scalar constructed from the
5-dimensional (resp. 4-dimensional) metric (5)g (resp. g).

In this model, gravity induced on H is effectively mediated by a continuum of
massive gravitons [170] featuring a Vainshtein screening [171] and generically free of
ghost [172]. This suggested that ghost-free NLFP should actually exist in spite of the
arguments of Boulware and Deser, and realize well-behaved massive gravities simpler
than the DGP model. This was explicitly proved in 2011 by de Rham, Gabadadze and
Tolley (dRGT models, or “ghost-free massive gravity”) [173].

Motivations, issues and implications of massive gravity are covered in much greater
detail in the reviews [170, 174, 175]. More specifically, reference [175] reviews black holes
in (ghost-free) massive gravity. One may also be interested in the series of papers [176–
179] which numerically confirmed the recovery of GR below the Vainshtein radius in
different models of massive gravity. Reference [180] and section 2 of [181] may also be
consulted for more on the different types of screening mechanisms.

26This is notably named after the idea that three out of the five degrees of freedom enjoyed by
massive gravitons get hidden by non-linear effects below the Vainshtein radius, in order to explain the
manifest reduction to the two degrees of freedom of GR massless gravitons.
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5.4 Non-minimally coupled fields
Scalar-tensor theories As illustrated above with the NLFP, Lovelock theorem 2.4.1
provides a useful method to construct modified theories in an organized way. It suggests
that the only consistent approach to modify GR in four dimensions is to integrate
new fields into the gravitational action. Such gravitational fields should couple to the
metric in an essential way, i.e. such that they could not be equivalently interpreted as
matter fields. The minimal coupling procedure, discussed in section 2.2 as a (possibly
ambiguous) way to implement EEP, generates interaction terms between any matter
field χ and the metric from the covariant derivatives27 ∇χ of χ (which do involve the
metric within the Levi-Civita Christoffel symbols) or contractions of the metric with χ
or ∇χ. Gravitational fields should thus feature interaction terms with the metric that
not fall in these categories.

Of course, the simplest candidates to consider as a non-miminally coupled fields
are scalar fields. Actually, such reasoning based on Lovelock theorem is not the only
motivation encountered so far to consider gravitational scalar fields. As mentioned
in section 5.2, scalar terms may naturally emerge from dimensional reduction over
compact dimensions in higher dimensional models of gravity. This was the case for
the Kaluza-Klein example, but it is actually true for the DGP model too, as will be
recalled in chapter 6. One more motivation (actually also related to higher dimensions)
is the systematic appearence of a scalar field, known as the “dilaton”, in all string
theories [182].

A popular family of scalar-tensor theories (sometimes known as Bergmann-Wagoner
theories) is defined by the gravitational action

SS-T [g, φ] =

∫
d4x
√
|g|
[
φR− ω(φ)

φ
gµν∂µφ∂νφ− V (φ)

]
, (5.4.1)

where ω and V are arbitrary functions.
It actually is the most general gravitational action with one scalar field, which is at

most quadratic in derivatives of the fields [25]. The case of constant ω and V = 0 is
known as Brans-Dicke theory. The latter, and actually the whole family (5.4.1), will be
mentioned again in 6.2 as the subjects of important theorems.

Scalar-tensor theories are the subject of the textbook [183], but several reviews on
the topic will be cited in chapter 6, which focuses on a much larger class of scalar-
tensor theories, known as Horndeski theories. Actually, an even larger class known
as “degenerate higher-order scalar-tensor theories” has recently been developed and
studied [184], yet it will not be further mentioned.

Vector-tensor theories Expectedly, the next non-minimally coupled candidates are
vector fields. An important example of this kind is the Einstein-Æther theory, whose
gravitational action is

SÆther [g, v, λ] =

∫
d4x
√
|g|
[
R +Kαβ

µν∇αv
µ∇βv

ν + λ (vµvµ + 1)
]
, (5.4.2)

27From now on, the only connection considered will be the Levi-Civita connection, so that the pre-
exponent notations g are abandoned for all quantities constructed from the metric and the connection.
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where the field λ clearly is a Lagrange multiplier constraining the Æther vector v to be
timelike, and

Kαβ
µν = c1g

αβgµν + c2δ
α
µδ

β
ν + c3δ

α
ν δ

β
µ − c4v

αvβgµν , (5.4.3)

where the ci are any constants.
The founding article [185] of the theory very clearly states the purposes of the theory

and the choices required to achieve them. In particular, Einstein-Æther theory was
constructed as a model for Lorentz-violating theories: the Æther, though dynamical,
induces preferred frame28 effects spoiling Lorentz invariance.

Reference [186] reviewed this model, but it should be noted that it was proved to be
well-posed since then [187]. Observable signatures of the theory in gravitational waves
and quasi-normal modes are respectively studied in [188] and [189].

Tensor-vector-scalar theories Of course, non-minimally coupled scalar and vector
fields can be combined. Such models include the so-called TeVeS theory, developed
by Bekenstein in 2005 [190] as a relativistic generalization of the modified newtonian
dynamics (MoND) introduced by Milgrom in 1983 [191–193] to explain dark matter,
i.e. the large unobserved amount of matter required to explain several gravitational
phenomena [22, 23].

Observable signatures of such theories in gravitational waves are also studied in [188].

These different types of theories are subject to violate certain versions of the equi-
valence principle (see section 3.1.2 of [10]). Specific formalisms have been developed to
theoretically investigate this question for large classes of theories, e.g. the THεµ form-
alism (see section 2.2 of [10]). In the same spirit, the parametrized post-Newtonian
formalism uses ten constant coefficients, introduced in several places of post-Newtonian
expansions in a way that covers all possible deviations from GR of a large class of
theories up to fixed orders (see chapter 4 of [28] for a thorough exposition). These al-
low to quickly and clearly identify the differences between theories and interpret them
physically.

5.5 Approaches to quantum gravity
Such overview of modified theories of gravity should at least mention the most popular
attempts to describe gravity within a quantum formalism: string theory (which unifies
all the interactions, including gravity, in a quantum formalism) [182, 194–196], loop
quantum gravity (which primarily realizes a canonical quantization of GR) [135, 197,
198], the effective field theory treatment of GR [18, 199, 200], asymptotic safety [201],
causal set theory [202, 203], noncommutative geometry [204, 205], twistor theory [206].
Their large number indicates that none stood out in obtaining fully satisfactory results
so far.

Beside, one could note that the standard model of particle physics, which met great
success in describing the non-gravitional interactions within a quantum formalism, is

28Here, preferred frames are intrinsically singled out by the theory, independently of the connection
(which is still the Levi-Civita connection).
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not devoid of several defects either, e.g. the relatively large number of free parameters
(about twenty, which is seen as unphysical, compared e.g. to the three parameters of GR
discussed in section 3.1) or the assumption of zero neutrino masses which is in tension
with observations. Like GR, solutions are sought in modified theories, involving e.g.
supersymmetry [155, 207], which still has not found clear experimental confirmations.
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Chapter 6

Horndeski theories
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In 1974, Horndeski considered a general Lagrangian involving a metric tensor, a
scalar field and their derivatives up to an arbitrary order p over a 4-dimensional space-
time [208]. Requiring the corresponding Euler-Lagrange equations to be second-order,
he showed that these could be derived from a Lagrangian such that p = 2, which he
provided the explicit expression. In other terms, Horndeski theories are the most gen-
eral 4-dimensional scalar-tensor theories leading to second-order field equations. This
latter fact being a valuable property preventing from Ostrogradsky instability, these
theories received a renewed interest from 2012 [209].

6.1 Overview

Denoting φµ = ∂µφ, X = −1
2
φµφ

µ, and φµν = ∇ν∇µφ, Horndeski theories are all the
linear combinations of the Lagrangians

L2 = G2(φ,X), (6.1.1)
L3 = G3(φ,X)�φ, (6.1.2)
L4 = G4(φ,X)R +G4,X

(
(�φ)2 − φµνφνµ

)
, (6.1.3)

L5 = G5(φ,X)Gµνφ
µν − G5,X

6

(
(�φ)3 − 3φµνφ

νµ�φ+ 2φµνφ
νσφ µ

σ

)
, (6.1.4)

whereGµν is the Einstein tensor introduced in section 2.4, theGi are arbitrary functions,
and Gi,X denotes differentiation with respect to their second argument.

More recently, another large family of theories, known as (covariantized generalized)
Galileons, and defined in all dimensions, turned out to coincide with Horndeski theories
in four dimensions [210]. This family was constructed in several steps. First of all,
an effective formulation of the DGP model (5.3.1) on the 4-dimensional spacetime H
was shown to generate scalar terms in a physically consistent “decoupling” limit [211,
212]. Such a scalar thus reproduces the effects of massive gravity, inducing deviations
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from GR on cosmological scales, but recovering the latter on small scales through a
Vainshtein mechanism. Reference [213] then determined the most general scalar action
sharing such properties on a flat background. The resulting theories featured the so-
called Galilean symmetry

φ→ φ+ constant, ∇φ→ ∇φ+ constant vector (6.1.5)

and were hence named (flat) Galileons.
It was further argued that such theories were the most general theories on flat space-

time whose Euler-Lagrange equations only contained second-order derivatives. General-
ized (flat) Galileons were then constructed as the most general family on flat spacetime
whose Lagrangian and Euler-Lagrange equations contain derivatives of order two or
less. They were finally covariantized in the unique way that preserves such proper-
ties over any curved spacetime, which required the addition of non-minimally coupled
terms [214].

These steps and the equivalence with Horndeski theories in four dimensions are
clearly reviewed in [215].

6.2 No-scalar-hair theorems
The no-hair theorems mentioned in section 3.1 have aroused interest for black hole
solutions different than the Kerr family. To obtain such hairy solutions, one or several
assumptions from those theorems had to be evaded. A natural idea was to consider a
scalar field interacting with the metric. Yet, even in such contexts, so-called no-scalar-
hair theorems proved that the scalar field had to be trivial, so that the metric reduced
to the GR vacuum black holes.

Minimally coupled hair The first no-scalar-hair theorem was established by Chase
in 1970 [216], finding general conditions within which no static massless scalar field could
be coupled to a static asymptotically flat black hole metric. In a series of papers [217–
219], Bekenstein generalized this result to stationary massive scalar, vector and second-
rank fields, while the remaining possibilities are known to exist: the Maxwell field of
the Kerr-Newman family provides massless vector hair, and the perturbations of a Kerr
metric would constitute massless second-rank tensor hair. In 1997, Peña and Sudarsky
established one further no-scalar-hair theorem applying to spherically symmetric metric
coupled to a complex scalar field [220]:

S[g,Ψ] =

∫
d4x
√
|g|
(

R

16πGN

−∇µΨ∗∇µΨ∗ − µ2Ψ∗Ψ

)
, (6.2.1)

where µ is the scalar field mass.
Only recently, stationary, rotating, asymptotically flat black holes with non-trivial

scalar hair were numerically constructed in the model (6.2.1) by evading the assumption
that the complex scalar field should also be stationary [221, 222]. In a coordinate
system (t, r, θ, φ) adapted to stationarity and axisymmetry, the following scalar ansatz
was considered:

Ψ = φ(r, θ)ei(mφ−ωt) (6.2.2)
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where φ is a real function, m an integer and ω strictly positive.
It was then crucial to note that such ansatz remains compatible with the assump-

tion of a stationary metric. Indeed, the harmonic time-dependence of the scalar field
completely cancel out in the energy-momentum tensor of Ψ, so that the metric could
legitimately, and successfully, be constructed in a stationary form, yielding solutions
known as “Kerr black holes with scalar-hair” (although the metrics deviate from any
member of the Kerr family).

Non-minimally coupled hair Given the strong results of Bekenstein in the frame-
work of GR, scalar hair was also sought within modified theories, i.e. as non-minimally
coupled scalar fields. Even in this case, several no-scalar-hair theorems were estab-
lished. One of the first was formulated by Hawking for stationary black holes in the
Brans-Dicke theory [223], earlier defined below equation (5.4.1). Since then, a profusion
of no-scalar-hair theorems have been demonstrated in different frameworks [224–227].
In particular, Hawking’s no-scalar-hair theorem for Brans-Dicke was extended to the
larger family of scalar-tensor theories (5.4.1) by Faraoni and Sotiriou in 2012 in the
asymptotically flat case [228, 229]. The reviews [230, 231] cover many of them and
techniques used to prove them.

What about the whole class of Horndeski theories (6.1.1)-(6.1.4) rather than the
subfamily (5.4.1) ? In 2013, Hui and Nicolis established a no-scalar-hair theorem [232]
applying to almost29 all shift-symmetric Horndeski theories, i.e. theories whose action
features the shift-symmetry30φ→ φ+constant. In such models, the scalar field equation
actually coincides with the current conservation associated with the shift-symmetry.
Contrary to the theorem by Faraoni and Sotiriou, this new theorem only applies to the
static and spherically symmetric case (see yet [236] for an extension to slow rotation
and [237] for stars).

The existence of such a theorem could have strongly reduced the interest for the black
holes of shift-symmetric theories because, ultimately, the attractive feature of hairy
solutions is to induce observable deviations from GR31. Instead, it was rapidly shown
that slightly violating one of the hypotheses of the no-hair theorem [232], namely the
stationarity of the scalar field [238], allowed to obtain static and spherically symmetric
black holes different from GR solutions [239]. This also suggested that rotating black
holes in shift-symmetric theories might significantly deviate from the Kerr solution,
which motivated the work reported in part II, the cubic Galileon being shift-symmetric.

More explicitly, the hairy solutions exhibited in [238, 239] showed that such de-
viations exist in shift-symmetric theory whenever the staticity of the scalar field is
replaced by a linear time-dependence:

φ = qt+ Ψ(R), (6.2.3)

where q is a non-zero constant, t a time coordinate and R a radial coordinate.
The structure (6.2.3) actually arises in a cosmological context from the assumption of

a slow cosmological dynamics [240], and it has been considered in several contexts [240–
29Important precisions mentioned below were given in [233–235].
30This symmetry actually is a remnant of the more general “Galilean” symmetry (6.1.5) enjoyed by

the flat Galileons discussed in section 6.
31Actually, one could have still been interested in the perturbations of such GR black holes within

these modified theories, as they would probably differ from GR despite a common background.
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244] due to the following interesting properties. Recall that the scalar field only con-
tributes to the action through its derivatives (hence the shift-symmetry). As a result,
the linear time-dependence of (6.2.3) does not bring any actual time-dependence into
the action nor the field equations, in which only the constant q appears. This explains
why Ansatz (6.2.3) is harmless in regard of instabilities that generically come with
ever-growing fields: the perpetual increase with time cannot appear in any physical
quantity. Moreover, it is thus rigorously possible for the metric to be static and spher-
ically symmetric, and yet dressed with a scalar field not sharing all these symmetries.
Furthermore, the ansatz (6.2.3) does not spoil the self-consistency of the field equations
in the static and spherically symmetric case; this means that one is left with as many
unknown functions as independent ordinary differential equations [239].

This is in some sort very similar to the trick used to evade Bekenstein’s no-scalar-
hair theorem mentioned in the beginning of the section, consisting in providing a clever
time-dependence to the scalar field, which cancel in the energy-momentum tensor in
order to construct stationary rotating black hole metrics. In this former case, the time-
dependence had to be harmonic rather than linear. Last but not least, it has been
shown for cases where analytical expressions are known [235, 238], that the linear time-
dependence (6.2.3) renders the scalar field regular at the event horizon by precisely
cancelling out the radial divergence in Ψ(R).

Finally, note that, besides the hairy solutions of references [238, 239], several other
cases, constructed by breaking one of the hypotheses of the no-hair theorem [232], were
found for different terms of Horndeski theories [233, 234, 245]. Although these hairy
solutions are obtained for different higher order Horndeski terms, they can be separated
in two generic classes: those in which spacetime is very close to that of GR, characterized
by an additional parity symmetry φ↔ −φ and often dubbed as stealth solutions; and
those with no parity symmetry and significant deviations from GR metrics. For the
former case, a rotating stealth black hole was recently analytically constructed [246],
making use of an analogy with geodesic congruences of Kerr spacetime [106]. In the
latter class, on the other hand, belong the Gauss-Bonnet black holes.

Actually, scalar-Gauss-Bonnet theories have been particularly investigated over the
last decades. Their action involve the Gauss-Bonnet scalar Ĝ, which is entirely built
from the metric and quadratic in the curvature scalars:

Ĝ = RiemαβµνRiemαβµν − 4RicµνRicµν +R2. (6.2.4)

In four dimensions, this term is a topological invariant, so that it must be coupled
to another field to yield non-trivial contributions to the equations of motion. This
is why scalar-Gauss-Bonnet theories consider couplings of the form f(φ)Ĝ, where f
is any non-trivial function of a scalar field. Such theories were shown to belong to
Horndeski family [210] and arise in some low-energy effective formulations of string
theories [195, 196]. In the latter case, the scalar field is usually called the “dilaton”,
and f(φ) = α exp(βφ) for some constants α, β. Exact static and spherically symmetric
hairy black hole solutions of the dilaton model were first studied numerically in [247,
248], and shown to be linearly stable [249, 250]. Rotating generalizations were later
constructed in [251, 252]. All these solutions are notably characterized by a minimal
mass and secondary hair, meaning that the scalar field is entirely determined by the
black hole charges such as mass and angular momentum.

The linear coupling f(φ) = αφ, for some constant α, is another interesting case.
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As Ĝ is a topological invariant in four dimensions, the model is shift-symmetric (and
comes as the first non-trivial term in the expansion of the dilaton coupling). Yet, the
no-hair theorem [232] does not apply to this specific type of shift-symmetric coupling, as
was first pointed out in [233]: static and spherically symmetric black holes different from
any GR black hole could be explicitly constructed in this shift-symmetric theory [234].
Their rotating generalizations were numerically constructed and studied in [253]. They
featured some common properties with the dilaton case, such as the mass gap with
respect to Minkowski spacetime.

Actually, the existence of hairy solutions for both the dilaton and shift-symmetric
couplings (despite the no-hair theorem in the latter case) is a consequence of the conclu-
sion drawn in reference [254]: under a simple condition on the derivative of the coupling
function f at the horizon, asymptotically flat hairy black holes always exist. This was
explicitly illustrated in reference [255] for different forms of f , while asymptotically
anti-de Sitter hairy solutions were constructed in [256].

6.3 Viability
Well-posedness Through the different works [257–259], Horndeski theories have very
recently been proved to admit a well-posed Cauchy problem in so-called modified har-
monic coordinates, and under the assumption of weak coupling. As explained in the last
article, the latter does not require the fields themselves to be weak, e.g. well-posedness
does apply to a large class of black hole formation problems.

Observational constraints As mentioned in the introduction, the gravitational
wave detection GW170817 and its electromagnetic counterpart GRB170817A set up-
tight constraints on the speed of gravitational waves. Consequently, it seems that only
restricted families of many modified theories of gravity are explicitly compatible with
these constraints, notably within Horndeski theories (it is the case e.g. of sectors (6.1.1)
and (6.1.2), whereas (6.1.3) and (6.1.4) would be ruled out) [260–263]. Yet the rigorous
interpretation of these constraints involves subtleties which might protect more models
from being ruled out than initially thought [264].
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The cubic Galileon theory is of particular interest among Horndeski theories dis-
cussed in chapter 6. For a start, it is the simplest of Galileons with higher order
derivatives. It is also well-known for being related to the DGP model (see section 5.3),
from which all (flat) Galileon theories originate (see section 6.1). Recall that the DGP
model is a 5-dimensional theory of gravity such that all non-gravitational fields are re-
stricted to a 4-dimensional subspace (the usual spacetime), on which gravity is induced
by a continuum of massive gravitons. In this framework, the decoupling limit of an
effective formulation of gravity on the 4-dimensional spacetime generates a scalar term
corresponding to the cubic Galileon action [211, 212]. Actually, this term also arises
from Kaluza-Klein compactification of higher dimensional metric theories of gravity
(see for example [265, 266]).

On the observational side, the cubic Galileon is compatible with the observed speed
of gravitational waves (see the references of section 6.3). Regarding cosmology, the
cubic Galileon enters the family of theories featuring “kinetic gravity braiding” [267],
which inherit infrared modifications of gravity from the DGP model. These provide
self-accelerating scenarios whose cosmological viability has been investigated in sev-
eral studies, either assuming convergence of the Galileon to a common “tracker” solu-
tion [268, 269] or more agnostic scenarios [270–272]. The latter references highlighted
strong tensions between the dark energy models of the cubic Galileon and observa-
tional data including e.g. the integrated Sachs-Wolfe effect32. Note though that the
standard ΛCDM model may be recovered in the cubic Galileon, in which case such
conclusions do not apply, in particular when the canonical kinetic term is not included.

On the theoretical side, various issues have been tackled within the framework of the
cubic Galileon theory or larger theories including it: accretion onto a black hole [241,

32This cosmological effect describes the overall redshift caused by large-scale variations of the grav-
itational potential along photon paths; it is introduced e.g. in chapter 6 of [60].
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273], types of coupling to matter [274], laboratory tests [275], cosmological dynam-
ics [242, 244], structure formation [276], stability of cosmological perturbations [277,
278], well-posedness [257–259, 279, 280].

In the present and next two chapters (which correspond to reference [281]), we
concentrate on the numerical construction of rotating33 black holes in the cubic Galileon
theory, finding significant deviations from the GR Kerr spacetime. First, the field
equations of the cubic Galileon theory are presented in section 7.1. Based on section 6.2,
the ansatz used for the scalar field in the rotating case is introduced in section 7.2
along with the circular ansatz used for the metric. The resulting expressions of the field
equations and the boundary conditions to impose are respectively exposed in sections 7.3
and 7.4. The numerical setup is presented in chapter 8, while the numerical solutions
are analysed in chapter 9.

7.1 Dynamics
The vacuum action of the cubic Galileon involves the Einstein-Hilbert term (with a
cosmological constant Λ) and the usual scalar kinetic term for the scalar field φ along
with an additional nonstandard term:

S [g, φ] =

∫
d4x
√
|g|
[
ζ(R− 2Λ)− η(∂φ)2 + γ(∂φ)2�φ

]
, (7.1.1)

where (∂φ)2 ≡ ∇µφ∇µφ, �φ = ∇µ∇µφ and ζ, η and γ are coupling constants.
The non-standard term (∂φ)2�φ realizes a non-minimal coupling with the metric

(and the adjective “cubic” comes from the three copies of φ present in this term). It is
actually known to emerge from the decoupling limit of an effective formulation of the
DGP model [211, 212]. As an additional legacy from the DGP model, the cubic Galileon
is subject to the Vainshtein mechanism [167, 282], like all Galileon models which were
originally designed to possess this property [213]. As mentioned in section 5.3, this
mechanism is based on nonlinear terms of the scalar Lagrangian that screen the non-GR
degrees of freedom on scales smaller than a certain Vainshtein radius around a spherical
matter source. It has been studied in different contexts such as massive gravity [178,
179] and Galileons [283, 284]. For instance in the cubic Galileon theory, the dimension
of the Solar System is smaller than the Vainshtein radius of the Sun, below which
GR is recovered. Hence in generic situations, local Solar System experiments and
PPN methods cannot set constraints on the parameters of the theory [285]. Yet, the
Vainshtein mechanism was shown not to hold for black holes [282, 286].

For the case of the cosmological Galileon however, note that there are some subtleties
due to kinetic gravity braiding, which is the fact that both scalar and metric equations
involve second-derivatives of both g and φ in any conformal frame (see for instance cubic
Galileon equations (7.1.2) and (7.1.4) below). More precisely, the higher order nature
of the Galileon operators, and in particular the presence of curvature in the scalar field
equation, can invoke local constraints as explained in the careful analysis of [242]. Yet
these are evaded in the framework in which the work exposed below is set, notably due
to asymptotic flatness (see sections 7.4 and 9.1.1).

33Besides the theoretical interest lying in generalizing the hairy static solutions introduced in sec-
tion 6.2, recall that the observational importance of rotating black holes comes from the fact that
astrophysical black holes are expected to be (rapidly) rotating.
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Explicitly, the metric equations in the cubic Galileon theory take the form

Gµν + Λgµν = 8πT (φ)
µν (7.1.2)

where

8πT (φ)
µν =

η

ζ

(
∂µφ∂νφ−

1

2
gµν(∂φ)2

)
+
γ

ζ

(
∂(µφ∂ν)(∂φ)2 −�φ∂µφ∂νφ−

1

2
gµν∂

ρφ∂ρ[(∂φ)2]

)
(7.1.3)

does contain second derivatives of φ.
As mentioned in section 6.2, the scalar field equation actually coincides with the cur-

rent conservation associated with the shift-symmetry φ→ φ+constant of action (7.1.1):

∇µJ
µ = 0, (7.1.4)

where

Jµ = ∂µφ (γ�φ− η)− γ

2
∂µ (∂φ)2 , (7.1.5)

which does generate second derivatives of the metric in (7.1.4).
One can see from the field equations (7.1.2) and (7.1.4) that any solution of va-

cuum GR along with a constant scalar field34 is a solution to the cubic Galileon theory
(see [287] for general results on the theories featuring this property and their relations
with other shift-symmetric theories). The no-scalar-hair theorem [232] introduced in
section 6.2 establishes the converse result in the case of an asymptotically flat, static,
spherically symmetric black hole metric and a scalar field featuring the same symmet-
ries and a standard kinetic term (i.e. η 6= 0 in (7.1.1)): under such hypotheses, the
solutions to the cubic Galileon theory can only be those of GR with a constant scalar
field. The proof, and an extension to the case η = 0 (relevant for the work presented
here, as detailed in section 7.4), are given in appendix A in the restricted case of the
cubic Galileon.

Yet, the attractiveness of a given modified theory is to feature deviations away from
GR at least in some circumstances, otherwise there would be no interest in studying its
black holes. As mentioned in section 6.2, the solutions exhibited in [239] showed that
such deviations exist in the cubic Galileon theory whenever the staticity of the scalar
field is replaced by a linear time-dependence (6.2.3). This motivated the scalar Ansatz
introduced in section 7.2.

7.2 Ansätze and assumptions

The goal is to construct stationary, rotating (i.e. axisymmetric with a non-zero an-
gular velocity), asymptotically flat black hole spacetimes. In addition, a simplifying
assumption is made: the spacetime geometric structure is assumed to be circular, or
“t, ϕ-orthogonal” (see [103, 108–110, 112, 288, 289] and references therein for further

34This is equivalent to cancel everywhere due to the shift-symmetry of the theory.
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details on the statements reported in this section). The accuracy of this hypothesis will
be evaluated in section 8.2.

Denoting ξ and χ the Killing vectors associated with stationarity and axisym-
metry respectively, circularity amounts to requiring that there exists a coordinate sys-
tem (t, x1, x2, ϕ) such that ξ = ∂t, χ = ∂ϕ and the transformation (t, ϕ) 7→ (−t,−ϕ)
leaves the metric unchanged. This is equivalent to complete integrability of the cod-
istribution (dt, dϕ), i.e. the existence of a foliation of spacetime by 2-surfaces (called
meridional surfaces) everywhere orthogonal to ξ and χ. Using Frobenius theorem, this
property takes the form

dξ ∧ ξ ∧ χ = dχ ∧ ξ ∧ χ = 0, (7.2.1)

where the vectors are identified with their corresponding 1-form by metric duality.
Since the surfaces of transitivity (i.e. the orbits of the combined actions of ξ and χ)

are orthogonal to the meridional surfaces, the metric components (tx1), (tx2), (ϕx1)
and (ϕx2) vanish in coordinate systems having the aforementioned properties. A judi-
cious choice of coordinates (x1, x2) within the meridional surfaces allows to cancel gx1x2
as well so that the metric reads35

ds2 = −N2dt2 + A2
(
dr2 + r2dθ2

)
+B2r2 sin2 θ (dϕ− ωdt)2 , (7.2.2)

where N , A, B and ω are only functions of the coordinates r and θ.
Such a coordinate system is naturally called quasi-isotropic. It can be global for

a starlike object, or cover the domain from the horizon to infinity for a black hole
spacetime. In the case of spherical symmetry, the four functions only depend on r,
while ω = 0 and A = B (so that the coordinates are merely called isotropic).

In a circular spacetime, Ricci-circularity holds, i.e.

Ric(ξ) ∧ ξ ∧ χ = Ric(χ) ∧ ξ ∧ χ = 0, (7.2.3)

where Ric is the Ricci tensor.
In stationary, axisymmetric, asymptotically flat spacetimes, the converse result is

true, i.e. (7.2.3)⇒ (7.2.1). Then, within GR, the Einstein equations allow to substitute
the Ricci tensor with the energy-momentum tensor T 36, so that an asymptotically flat
black hole is circular iff the following holds (generalized Papapetrou theorem):

T (ξ) ∧ ξ ∧ χ = T (χ) ∧ ξ ∧ χ = 0. (7.2.4)

This indicates that circularity may be interpreted in terms of the physical dynamics
of matter rather than purely geometric statements. More precisely, the relations (7.2.4)
indicate that the source of the gravitational field has purely rotational motion about the
symmetry axis and no momentum currents in the meridional planes. Hence assuming
circularity is very standard in numerical relativity to handle rapidly rotating stars since
such objects have negligible convective meridional flows compared to rotation-induced
circulation [290]. For instance, circularity allowed to model rotating proto-neutron
stars in GR [291]. In the case of a scalar field, circular rotating boson stars were also
constructed numerically [292]. Finally, circularity is very relevant to describe rotating

35When such a choice is made, x1 and x2 are rather denoted r and θ respectively.
36Because one always has g(ξ) ∧ ξ ∧ χ = g(χ) ∧ ξ ∧ χ = 0.
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black holes: the Kerr solution is circular37 and numerical metrics of rotating black holes
were successfully computed in Einstein-Yang-Mills theory [294, 295] and in the dilatonic
Einstein-Gauss-Bonnet theory [251, 252] based on circularity.

Regarding the scalar field, the successful ansatz (6.2.3) is rehashed, with a mere
additional angular dependence, in order to connect with the solutions of [239] in the
non-rotating limit:

φ = qt+ Ψ(r, θ). (7.2.5)

7.3 Equations in quasi-isotropic gauge
Injecting the ansätze (7.2.2) and (7.2.5) into the metric equations (7.1.2) yields eight
non-trivial equations rather than ten since the components (r, ϕ) and (θ, ϕ) of the three
tensors appearing in (7.1.2) all separately vanish. These eight metric equations are
combined to form four coupled, independent equations38 adding to the scalar equa-
tion (7.1.4) to solve for the four metric functions N , A, B, ω and the scalar function Ψ.

Every quantity is then made dimensionless using the free parameters of the theory,
which are the scalar velocity q, the cosmological constant Λ, the coupling constants ζ, η
and γ, and the event horizon radial coordinate rH (in quasi-isotropic coordinates, the
event horizon is always located at a constant radial coordinate):

Λ̄ ≡ Λr2
H, η̄ ≡ −q2r2

H
η

ζ
, γ̄ ≡ q3rH

γ

ζ
, (7.3.1)

r̄ ≡ r

rH
, ω̄ ≡ rHω, Ψ̄ ≡ Ψ

qrH
, (7.3.2)

and all the functions are manipulated as functions of r̄.
Using the notations

∆2 = ∂2
r̄r̄ +

1

r̄
∂r̄ +

1

r̄2
∂2
θθ, (7.3.3)

∆3 = ∂2
r̄r̄ +

2

r̄
∂r̄ +

1

r̄2
∂2
θθ +

1

r̄2 tan θ
∂θ, (7.3.4)

∆̃3 = ∆3 −
1

r̄2 sin2 θ
, (7.3.5)

the four metric equations eventually take the schematic form

N2∆3N = SN , (7.3.6)
N3∆2[NA] = SA, (7.3.7)

N2∆2[NBr̄ sin θ] = SB, (7.3.8)
N∆3[ω̄r̄ sin θ] = Sω̄, (7.3.9)

where the explicit expressions of the right-hand side terms and the steps to derive them
are presented in appendix B.

37The corresponding expressions of the metric functions N , A, B and ω (and the transformation
from the usual Boyer-Lindquist coordinates to quasi-isotropic coordinates) are given in appendix C;
reference [293] may also be consulted.

38These combinations of the equations (displayed below and in appendix B) are generically used in
GR as they feature classical elliptic operators, well-suited for iterative numerical methods.



70 CHAPTER 7. THE CUBIC GALILEON MODEL

Once again, recall that the cubic Galileon theory features the shift-symmetry φ →
φ + constant, meaning that only the first derivatives of φ are physically meaningful.
The numerical approach presented in section 8 below concretely makes use of this
fact: within the numerical code, the scalar field is only manipulated through its first
derivatives Ψ̄′ ≡ ∂r̄Ψ̄ and Ψ̄θ ≡ ∂θΨ̄. More precisely, Ψ̄′ and Ψ̄θ are first introduced as
independent functions, just like N , A, B and ω̄. The fact that these functions actually
arise from a common scalar field is then implemented through imposing ∂θΨ̄′ = ∂r̄Ψ̄θ

(symmetry of second-derivatives) in addition to the equations {(7.3.6)−(7.3.9), (7.1.4)}.
The complete set of equations to solve then is

N2∆3N = SN , (7.3.10)
N3∆2[NA] = SA, (7.3.11)

N2∆2[NBr̄ sin θ] = SB, (7.3.12)
N∆3[ω̄r̄ sin θ] = Sω̄, (7.3.13)

∂θΨ̄
′ = ∂r̄Ψ̄θ, (7.3.14)

∇µJ̄
µ = 0, (7.3.15)

where the explicit expression of the scalar equation (7.3.15) is also given in appendix B.
Of course, if a circular black hole exists in the cubic Galileon theory, then it satisfies

the system (7.3.10)-(7.3.15). But any solution to this system does not necessarily satisfy
all the metric equations of motion (7.1.2) since only four independent combinations of
the latter are solved instead of eight. Hence each numerical solution to (7.3.10)-(7.3.15)
was reinjected into the whole set of metric equations (7.1.2) to assess the relevance of
the circularity hypothesis a posteriori (see section 8.2).

7.4 Boundary conditions

Equations (7.3.10)-(7.3.15) form a system of first (equation (7.3.14)) and second order
coupled partial differential equations (PDE) involving the six functions N , A, B, ω̄, Ψ̄′

and Ψ̄θ. It must then be provided with boundary conditions suitable for the search for
black hole solutions with non-trivial scalar hair. More precisely, the system is defined
on a meridional surface (all of them are equivalent due to circularity) between the
intersections of the latter with the black hole event horizon and spacetime infinity. As
mentioned in section 7.3, the event horizon is located at r̄ = 1, while spacetime infinity
corresponds with the limit r̄ → ∞. Boundary conditions must then be prescribed for
both limits.

First, in quasi-isotropic coordinates, the functionN must vanish on the event horizon
(see for instance [293] for the case of Kerr). This induces an important alteration of
the nature of the equations (7.3.10)-(7.3.13) since all the second-order operators acting
on the metric functions thus cancel at r̄ = 1. This kind of degeneracy actually reduces
the required number of boundary conditions.

The other crucial condition at the horizon is the value of the function ω̄. The weak
rigidity theorem states the existence of a constant ΩH such that ξ + ΩHχ is (a Killing
vector field) normal to the horizon [103, 109, 110]. On the horizon, the function ω̄
necessarily equals the constant Ω̄H ≡ rHΩH, called the dimensionless angular velocity
of the horizon.
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Regarding conditions at infinity, the only case considered in the present work is
asymptotic flatness. This is not meant to fit with observations of the Universe based on
which a small positive value is credited to an effective cosmological constant, which is
usually modelled by asymptotically de Sitter models such as the dark energy scenarios
of the Galileons mentioned in the introduction. Rather, the prime objective here is to
construct the strong-field region of rotating black holes in the simplest Galileon with
higher-order derivatives. This actually prepares for the investigation of their geodesics
in chapter 11 and the imaging of an emitting accretion torus surrounding them in
chapter 12, which concerns scales much smaller than a potential cosmological horizon.
Furthermore, asymptotic flatness is a standard hypothesis made to study isolated black
holes and establish no-hair theorems [228]. In particular, it leads to construct hairy
black holes that escape the no-hair theorem of [232] in a minimal way.

Yet, in the cubic Galileon theory, imposing asymptotic flatness in static and spherical
symmetry is incompatible with Ansatz (6.2.3) unless η = Λ = 0. To picture this, it
is easier to consider the Schwarzschild-like coordinates (t, R, θ, ϕ) used in [239], with
respect to which the static and spherically symmetric line element takes the form

ds2 = −h(R)dt2 +
1

f(R)
dR2 +R2

(
dθ2 + sin2 θdϕ2

)
. (7.4.1)

Using the scalar ansatz (6.2.3), all the relevant equations are the following (the (tR)
equation39, a combination of the (tR) and (RR) equations, and a combination of
the (tR), (RR) and (tt) equations respectively):

γ(R4h)′fhΨ′2 − γq2R4h′ − 2ηR4h2Ψ′ = 0, (7.4.2)
η

2ζ
(fhΨ′2 − q2) +

fh′

R
+ h

(
f − 1

R2
+ Λ

)
= 0, (7.4.3)

fΨ′2

[
ηR2

√
h

f
− γ

(
R2
√
fhΨ′

)′]
= 2ζRh

(√
f

h

)′
, (7.4.4)

where a prime denotes differentiation with respect to the unique variable R.
As mentioned in section 6.2, one can note that the Schwarzschild-(Anti-)de Sitter

metric along with Ψ′ = 0 and q = 0 (i.e. φ = constant) must be a solution to the
system (7.4.2)-(7.4.4) since it is a static and spherically symmetric vacuum solution of
GR:

h(R) = f(R) = 1− µ

R
− Λ

3
R2, (7.4.5)

where µ appears as an integration constant
According to [239], injecting asymptotic expansions in powers of 1/R for h, f and Ψ

into (7.4.2)-(7.4.4) yields the following asymptotic behaviours if η 6= 0:

h(R) = −Λeff

3
R2 + 1 +O

(
1

R

)
, (7.4.6)

f(R) = −Λeff

3
R2 + c+O

(
1

R

)
, (7.4.7)

h(R)Ψ′(R) =
ηR

3γ
+
c′

R
+O

(
1

R2

)
, (7.4.8)

39In this context, the (tR) equation implies the scalar equation [239].
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where c and c′ are some fixed constants and Λeff is an effective cosmological constant
made from a combination of the bare cosmological constant Λ and the kinetic coupling η.

Therefore, if Λeff 6= 0, spacetime is asymptotically (anti-)de Sitter. Asymptotic flat-
ness thus requires Λeff = 0, which is impossible whenever η 6= 0 (see the relations (4.10)
of [239]). Then, setting η to 0 in (7.4.3) yields

f

(
h′

Rh
+

1

R2

)
=

1

R2
− Λ, (7.4.9)

while asymptotic flatness (i.e. vanishing Riemann tensor when R → ∞) requires the
following asymptotic behaviours:

h′

h
= o

(
1

R

)
, (7.4.10)

f −→ 1, (7.4.11)

so that Λ must be 0 as well as η.
As mentioned in section 6.2, it is shown in appendix A that, for the cubic Galileon,

the no-hair theorem still holds if η = 0. Therefore, the asymptotically flat, static,
spherically symmetric hairy solutions constructed in [239] with η = Λ = 0 evade the no-
hair theorem in a minimal fashion since only the staticity of the scalar field is abandoned.

It is reasonable to think that asymptotic flatness requires vanishing η and Λ even in
the rotating case, although there is no proof of such a claim. Regardless of the actual
answer, η and Λ are set to zero in the numerical work exposed here in order to connect
with the solutions of [239] in the non-rotating limit.
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This chapter briefly introduces the numerical method used to solve the PDE sys-
tem (7.3.10)-(7.3.15), and discusses the validity of the numerical solutions that will be
presented in chapter 9 in regard of the circularity assumption (7.2.1).

8.1 Spectral methods and Newton-Raphson algorithm
The numerical approach to solve the problem (7.3.10)-(7.3.15) comprises two steps im-
plemented within the library Kadath40 [296]. First, the system is discretized within the
framework of spectral methods. This amounts to projecting each functionN ,A,B, ω̄, Ψ̄′

and Ψ̄θ onto a set of basis functions defined as the products of (Legendre or Chebyshev)
polynomials Ti with trigonometric functions, e.g. for the function A:

A(r, θ) =
mr∑
i=0

mθ∑
j=0

ÃijTi(r) cos(2jθ), (8.1.1)

where mr and mθ are integers defining the resolution of the discretization41. All the
information about the unknown function A is then encoded into the spectral coeffi-
cients Ãij. Moreover, the projection of any of its partial derivative is also given in terms
of these coefficients. Applying this procedure to each unknown function N , A, B, ω̄, Ψ̄′

and Ψ̄θ in the system (7.3.10)-(7.3.15) transforms the latter into a nonlinear algeb-
raic system S, whose unknowns are suitable combinations of the spectral coefficients
ensuring regularity conditions [296].

Secondly, the discretized system S is solved with a Newton-Raphson algorithm.
The vector X̃ gathering all the relevant combinations of the spectral coefficients should
satisfy

S(X̃) = 0. (8.1.2)

40https://kadath.obspm.fr/
41For class C∞ functions, the convergence of the spectral series towards the original function is

exponential in the resolution.
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Starting with an initial guess X̃(0) and denoting X̃(n) the vector gathering the coef-
ficients at step n, X̃(n+1) is built as the solution to

S(X̃(n)) + dSX̃(n)(X̃(n+1) − X̃(n)) = 0, (8.1.3)

which requires inverting the Jacobian matrix dSX̃(n) .
Under appropriate conditions, such an iterative process converges towards the exact

solution of S. In particular, a good initial guess is an important condition of success.
This merely means that the closest to the exact solution the process starts, the more
chance it has to converge to the solution (while starting too far away from it induces
risks to leave the neighbourhood of the solution after a few iterations and eventually
diverge). This is the reason why the existence of the static and spherically symmetric
black hole solutions of [239] is particularly useful since reconstructing these solutions
numerically (for a fixed choice of the coupling constants) provides ideal initial guesses
to reach slowly rotating solutions, which in turn serve as initial guesses to reach slighlty
more rapidly rotating solutions and so on.

Finally, let us mention that, in the rotating cases, an additional condition was
implemented in order to avoid a conical singularity [288]. It consists in imposing A = B
on the symmetry axis θ = 0, π/242, which guarantees that the metric could be regularly
well-defined on an open chart containing the axis. For instance, this condition was also
imposed in [251, 252] to construct rotating black holes in the dilatonic Einstein-Gauss-
Bonnet theory, but for rotating bosons stars [292], the field equations alone imply A = B
on the symmetry axis.

8.2 Accuracy of the code

As explained in section 7.3, all the numerical solutions to the system (7.3.10)-(7.3.15)
were reinjected into the whole set of metric equations (7.1.2) in order to assess the
validity of the code. Writing the metric equations (7.1.2) as Eµν = 0, the error on each
equation corresponds to its maximum spectral coefficent (in absolute value). Six out of
the eight non-trivial43 metric equations feature a fast decrease of the error as the res-
olution increases, which confirms that these equations are properly solved numerically.
Figure 8.1a illustrates this fact in the case of equation Erθ for various angular velocities
at fixed coupling γ̄ = 1.

On the other hand, the error on the two metric equations Etr and Etθ is independent
of the resolution, as illustrated on Fig 8.1b, revealing that there exists an actual violation
of non-numerical origin. The cause of this violation can be identified a bit more precisely.
In quasi-isotropic coordinates, the components (tr) and (tθ) of both the metric and
Ricci tensors are zero. As a result, the metric equations Etr = Etθ = 0 reduce to T (φ)

tr =

T
(φ)
tθ = 0. Actually, these last two equations coincide with the two non-trivial circularity

conditions provided by the generalized Papapetrou theorem (7.2.4). The latter can be
applied to T (φ) because the metric equations Eµν = 0 have an Einstein-like structure.

42In the static and spherically symmetric cases, A spontaneously equals to B everywhere (as it should
in spherical symmetry) through the numerical process without being imposed anywhere.

43See section 7.3.
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Figure 8.1: Errors on the metric equations with respect to the resolution mr = mθ.
The error is measured in horizon units (r̄ = 1).

This yields (
T (φ)(∂t) ∧ ∂t ∧ ∂ϕ

)
trϕ

= T
(φ)
t[t (∂t)r (∂ϕ)ϕ] ∝ T

(φ)
tr , (8.2.1)(

T (φ)(∂t) ∧ ∂t ∧ ∂ϕ
)
tθϕ

= T
(φ)
t[t (∂t)θ (∂ϕ)ϕ] ∝ T

(φ)
tθ . (8.2.2)

Therefore the errors on Etr and Etθ estimate the validity of the circularity hypothesis.
More precisely, in the expression (7.1.3) of T (φ)

tr (resp. T (φ)
tθ ), the only non-trivial terms

are those proportional to ∂tφ∂rφ (resp. ∂tφ∂θφ) and ∂(tφ∂r)(∂φ)2 (resp. ∂(tφ∂θ)(∂φ)2)
which are non-zero only if φ depends on both t and r (resp. t and θ). This means that
non-circularity is caused by combined time and radial, or time and angular, dependences
of the scalar field. Yet, the ansatz (6.2.3) used in [239] to derive static and spherically
symmetric solutions does feature both time and radial dependences. But these solutions
were obtained taking advantage of the fact that EtR (in the Schwarzschild-like coordin-
ates (7.4.1)) implies the scalar equation. Thus, solving EtR = 0 instead of the scalar
equation automatically fulfilled the circularity condition (8.2.1) since EtR ∝ T

(φ)
tR ∝ T

(φ)
tr

(where the last relation holds because the transformation (9.2.8) from Schwarzschild-
like coordinates to quasi-isotropic coordinates relates only the coordinates R and r in
spherical symmetry).

But as soon as one looks for rotating solutions and thus adds an angular depend-
ence to all functions, including the scalar field according to the ansatz (7.2.5), the
equations are too complex to benefit from a similar simplification. Therefore the sys-
tem (7.3.10)-(7.3.15) based on the circular metric (7.2.2) and the ansatz (7.2.5) is not
exactly self-consistent. Yet, the violation of circularity in the dimensionless setup is
less than 10−2, meaning that it is fairly small with respect to the scale given by the
radial coordinate rH of the event horizon in a dimensional physical configuration. In
addition, Fig 8.1b expectedly confirms that the violation continuously goes to zero with
the angular velocity (since in this limit the solutions are exactly circular), so that it
seems reasonable to believe that the solutions presented in the next sections still provide
precise approximations to rotating black hole solutions of the cubic Galileon theory.
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Chapter 9

Black hole solutions

Contents
9.1 Metric functions . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.2 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . 83

In this chapter, the numerical configurations of asymptotically flat rotating black
holes in the cubic Galileon theory are presented. These black holes are endowed with a
non-trivial scalar field and exhibit a non-Schwarzschild behaviour: faster than 1/r con-
vergence to Minkowski spacetime at spatial infinity and hence vanishing of the Komar
mass. The metrics are compared with the Kerr metric for various couplings and angular
velocities. Their physical properties are extracted and show significant deviations from
the Kerr case.

9.1 Metric functions

9.1.1 Static and spherically symmetric black holes

First, the existing static, spherically symmetric black hole solutions reported in [239]
have been reconstructed in the quasi-isotropic gauge (instead of the Schwarzschild-
like coordinates used in [239]) in order to later serve as initial guesses to compute
rotating solutions. As mentioned in 6.2, these solutions were obtained in [239] by nu-
merical integration of the ordinary differential equations (7.4.2)− (7.4.4). In addition,
the value of h′ was prescribed at the horizon in order to obtain the desired asymp-
totic behaviour (shooting method). In the present work, these solutions are generated
with the numerical treatment presented in section 8, i.e. as solutions to the PDE sys-
tem (7.3.10)-(7.3.15). In addition, boundary conditions are prescribed both at infinity
and at the horizon; in particular, staticity is imposed by setting the dimensionless an-
gular velocity Ω̄H to zero. The resulting numerical solutions feature spherical symmetry
(A = B, ω̄ = 0 everywhere, and no angular dependence) although such symmetry is
not imposed anywhere in the numerical process.

As explained in section 8, the numerical process requires initial guesses. Conveni-
ently, the test-field solution given in [239] (relations (4.12)-(4.13)) provides the very first
of them. This configuration merely comes out from solving the scalar equation (7.1.4)
on a Schwarzschild background metric with the scalar ansatz (6.2.3), which physically

77
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amounts to neglecting the back-reaction of the scalar field onto the metric, i.e. taking
the limit γ → 0 (η being already set to zero).

Actually, only the expression of Ψ′ is given for this test-field solution:

Ψ′(R) =
±q(

1− RH
R

)√
4R
RH
− 3

, (9.1.1)

where RH is the Schwarzschild radius. As stated earlier, this is sufficient because, due
to the shift-symmetry of the theory, only the first derivatives of φ are meaningful (and
hence only Ψ′ in static and spherical symmetry).

One can see from the action (7.1.1) that flipping the sign of both γ and φ of a
given solution provides another solution to the theory. This fact holds true in the
limit γ → 0, which is why equation (9.1.1) offers two test-field solutions with opposite
signs. Moreover, it is thus sufficient to seek solutions for positive γ only.

Once the Schwarzschild metric and the test scalar field (9.1.1) are reexpressed in
terms of the quasi-isotropic coordinates, the numerical process may converge to a solu-
tion of the system (7.3.10)-(7.3.15) in which the coupling γ̄ is set to a slightly non-zero
value. In turn, such solution serves as an initial guess to reach a solution with a slightly
greater coupling γ̄ and so on. Note that due to the Vainshtein mechanism (see sec-
tion 7.1) and the absence of kinetic term (see section 7.4), no constraint can be inferred
on the values of the parameters of the problem either from Solar System tests or cos-
mological arguments. Therefore the values of γ̄ picked for the graphs displayed in the
present and later sections are only chosen so as to highlight with sufficient clarity how
the results depend on γ̄.

The resulting solutions are displayed in figure 9.1. Due to spherical symmetry, one
has B = A, ω̄ = 0 and Ψ̄θ = 0 everywhere, so that only the radial profiles of N , A
and Ψ̄′ are non-trivial. Actually, Z ≡ NΨ̄′ is plotted instead of Ψ̄′ because the former
is finite on the horizon contrary to the latter.

For the function N (figure 9.1a), the boundary values N = 0 at the horizon and N =
1 at infinity are enforced according to section 7.4. On the contrary, the values of A
and Z on the horizon are not imposed due to the degeneracy of the equations. Yet,
it can be seen from the right-hand side (B.6) of equation (7.3.11) that this degeneracy
spontaneously imposes A2 = Z2 on the horizon, which is manifest on figures 9.1b
and 9.1c (and confirmed numerically).

One can also note that the greater the coupling γ̄ is, the faster the funtions N , A
and Z converge towards their respective limits which correspond to a flat spacetime.
Then, when travelling from the horizon towards infinity, spacetime looks flat more
rapidly for stronger coupling values γ̄. In other terms, the more the scalar field back-
reacts on the metric, the more it hides the deformations induced by the black hole.
This fact is further examined in section 9.2.1 below when discussing the extraction of
a mass for these black hole solutions.

9.1.2 Rotating black holes

The Kerr metric is usually parametrized by two parameters M (the mass) and a (the
reduced angular momentum). The radial coordinate rH of the event horizon may then
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Figure 9.1: Radial profiles in the static and spherically symmetric case (Ω̄H = 0) for
values of γ̄ ranging from 0 to 1. When it is not zero, the limit at infinity is represented
by a black, solid, horizontal asymptote.
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be expressed in terms of these two parameters:

rH =
M

2

√
1−

( a
M

)2

. (9.1.2)

Once rH is used to make all the quantities dimensionless and all the metric com-
ponents are expressed in terms of r̄ ≡ r/rH, the dimensionless Kerr solution is only
parametrized by one quantity, which can be chosen to be Ω̄H. Of course, one such
quantity might not be enough to parametrize the whole set of black hole solutions of
the cubic Galileon theory with a scalar field structured as (7.2.5). Yet, the numer-
ical approach employed here only reaches the solutions that continuously connect to
Schwarzschild, by increasing γ̄ first and then Ω̄H. This is why, once γ̄ is fixed, Ω̄H is
also the only quantity that parametrizes the solutions presented here.

Figure 9.2 displays the radial profiles of all six functions N , A, B, ω̄, Ψ̄′ and Ψ̄θ

at fixed γ̄ = 1 for various values of Ω̄H. For Ω̄H = 0 and 0.07, the corresponding
dimensionless Kerr solution is plotted for comparison: in the case of N , A and B, the
Kerr curve has the same color and linestyle as the Galileon curve corresponding to the
same parameter Ω̄H, and in the case of ω̄, it is the thick dotted curve having the same
value at the horizon with its Galileon analog. As for Z and Ψ̄θ, no Kerr analog is
displayed since no test-field solutions are known in the rotating case (i.e. solutions to
the scalar equation (7.1.4) on a Kerr background with the scalar ansatz (7.2.5)) and
such solutions could not be obtained numerically.

For the other values of Ω̄H (0.12 and 0.18), the Galileon solutions displayed in fig-
ure 9.2 do not admit a Kerr analog. The reason is that the cubic Galileon admits
solutions with dimensionless angular velocities greater than the maximum Ω̄H that can
be obtained from the Kerr metric. More precisely, at fixed mass M , the angular velo-
city ΩH of the Kerr black hole cancels at a/M = 0 and monotonically increases towards
a finite value at a/M = 1, while the radial quasi-isotropic coordinate rH of the event
horizon is finite at a/M = 0 and monotonically decreases towards 0 at a/M = 1 accord-
ing to equation (9.1.2). Then, Ω̄H = rHΩH is a positive function of the dimensionless
ratio a/M ∈ [0, 1] cancelling both at 0 and 1:

Ω̄H =
1

4

a
M

1 +
(

1−
(
a
M

)2
)− 1

2

, (9.1.3)

which is plotted on figure 9.3. In particular, this function has a maximum value Ω̄H,max '
0.075 at a/M ' 0.8, which actually turns out to be possible to exceed in the cubic
Galileon theory. This will appear clearly in section 9.2 when extracting the angular
momentum and the surface gravity of these black hole solutions.

Going back to figure 9.2, one first notes that, although the global behaviours are
the same, there are non-negligible gaps near the horizon between the Galileon solution
and Kerr for any fixed dimensionless angular velocity. Naturally, for both the Galileon
and Kerr, increasing Ω̄H tends to slow the convergence towards the asymptotic values
(at fixed radial coordinate, it is expected that spacetime looks less flat if the hole is
rotating). One last remark to make is that, although these solutions feature quite rapid
rotation (Ω̄H = 0.07 corresponds to a/M ' 0.65 for Kerr), the angular variations of the
various functions are quite moderate for both the Galileon and Kerr; this is manifest
on figure 9.4 which displays the angular profile of the function A on the horizon.
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Figure 9.2: Radial profiles at fixed coupling γ̄ = 1 and different Ω̄H. When it is not
zero, the limit at infinity is represented by a black, solid, horizontal asymptote.
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9.2 Physical properties

9.2.1 Mass

The general definition of the Komar mass of an asymptotically flat stationary spacetime,
equipped with a foliation (Σt)t∈R by spacelike hypersurfaces, is [94, 288]

MKomar ≡ −
1

8π

∫
S
∗dξ, (9.2.1)

where ξ is the stationary Killing vector here identified with its metric dual form, ∗ is
the Hodge star and S ⊂ Σt0 (for some t0 ∈ R) is a closed spacelike 2-surface containing
the intersection of Σt0 with the support of the energy-momentum tensor. In GR, the
Einstein equations guarantee that the Komar mass does not depend on the choice of
such 2-surface S.

In practice, one then usually uses a 2-surface S lying at spatial infinity. In particular,
in quasi-isotropic coordinates, the Komar mass may be computed from the following
integral:

MKomar =
1

2
lim
r→∞

∫ π

0

∂rN r2 sin θdθ. (9.2.2)

Therefore, if N has the following asymptotic behaviour:

N = 1 +
N1

r
+ o

(
1

r

)
, (9.2.3)

where N1 is a constant, then

MKomar = −N1. (9.2.4)

In the cubic Galileon theory, the contribution from the scalar field into equa-
tion (7.1.2) does not allow to guarantee that the expression (9.2.1) is independent
of the 2-surface S. Yet, as is usually done, one may try to extract a mass from the
relation (9.2.4). This can be done explicitly in the static and spherically symmetric
case.

To do so, it is simpler to first switch back to the Schwarzschild-like coordinates (7.4.1)
used in section 7.4 to extract the asymptotic behaviours (7.4.6)-(7.4.8) when η 6= 0. Re-
peating the same procedure in the case of asymptotic flatness, i.e. injecting expansions
in 1/R into (7.4.2)-(7.4.4) with η = Λ = 0, one finds the following asymptotic beha-
viours:

h(R)Ψ′(R) =
d

R2
+O

(
1

R5

)
, (9.2.5)

h(R) = 1− d2

q2R4
+O

(
1

R7

)
, (9.2.6)

f(R) = 1− 4d2

q2R4
+O

(
1

R7

)
, (9.2.7)

where d is some fixed constant. Note here that the test field approximation (9.1.1) gives
a wrong indication about the asymptotic behavior of Ψ′(R) since it behaves as 1/

√
R
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Figure 9.5: Asymptotic behaviours in the static and spherically symmetric case.

although, according to equation (9.2.5), it behaves as 1/R2 as soon as the coupling γ
is non-zero, no matter how small. Yet this did not prevent the test-field solution from
being useful as an initial guess in the numerical procedure.

Now, the change of coordinates from the Schwarzschild-like coordinates (t, R, θ, ϕ)
to the quasi-isotropic coordinates (t, r, θ, ϕ) is merely given by the positive function R(r)
defined on [rH,+∞) such that

rR′(r) = R(r)
√
f (R(r)). (9.2.8)

From this, one can infer the same types of asymptotic behaviours as (9.2.5)-(9.2.7)
for the functions Z, N and A:

Z(r) =
e

r2
+ o

(
1

r2

)
, (9.2.9)

N(r) = 1 +
e′

r4
+ o

(
1

r4

)
, (9.2.10)

A(r) = 1 +
e′′

r4
+ o

(
1

r4

)
, (9.2.11)

where e, e′ and e′′ are some fixed constants.
One concludes that there is no term to the first inverse power of r in the expan-

sion (9.2.10) ofN , meaning that the Komar mass is zero according to the relation (9.2.4).
This fact may be checked numerically by extracting the asymptotic slope of 1 − N in
a log-log graph (figure 9.5a), which corresponds to the asymptotically dominant power
of r; the resulting numerical value is perfectly consistent with −4. The function A− 1
does have a very similar log-log graph, and one may check on figure 9.5b that, for the
function Z, the asymptotic slope is numerically consistent with −2.

Such asymptotic behaviours seem to be maintained in the rotating case although
the dominant power for N might not be exactly −4, but still smaller than −3.5, hence
no mass term can be extracted either. One is thus led to conclude that the presence of
a scalar field with structure (7.2.5) in the cubic Galileon theory generically hides the
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mass of an asymptotically flat black hole from infinity. Note that this could not be
the case whenever asymptotic flatness is abandoned, i.e. non-zero Λ and/or η, since
the asymptotic expansions (4.17) of [239] require a standard mass term from the first
inverse power of r.

9.2.2 Angular momentum

Similarly to the definition (9.2.1), the Komar angular momentum of an asymptotically
flat axisymmetric spacetime is defined as

JKomar ≡
1

16π

∫
S
∗dχ, (9.2.12)

where ξ is the axisymmetric Killing vector.
Using the quasi-isotropic coordinates, the definition (9.2.12) reexpresses as

JKomar = −1

8
lim
r→∞

∫ π

0

∂rω r4 sin3 θdθ. (9.2.13)

Therefore, if ω has the following asymptotic behaviour:

ω =
ω1

r3
+ o

(
1

r3

)
, (9.2.14)

where ω1 is a constant, then

JKomar =
ω1

2
. (9.2.15)

Again, one may try to extract a Komar angular momentum from the asymptotic
expansion of ω although, in the cubic Galileon theory, such a value would have no
reason to be common to all other 2-surfaces S. Figure 9.6a confirms that ω̄ has the
asymptotic behaviour (9.2.14) (asymptotic slope equal to−3) so that the Komar angular
momentum is non-zero. Since only dimensionless quantities are processed numerically,
one has

ω̄ ≡ rHω ∼
2J̄Komar

r̄3
, (9.2.16)

where J̄ is the dimensionless Komar angular momentum:

J̄Komar =
JKomar

r2
H

. (9.2.17)

The values of J̄Komar extracted for all the Ω̄H that were reached for γ̄ = 10−2 and 1
are marked in figure 9.6b. The relation between Ω̄H and J̄Komar can be expressed
explicitly in the case of the Kerr family, and it is represented by the solid red curve to
highlight the deviations from GR.

As mentioned in section 9.1.2, rH tends to zero for the extremal Kerr solutions
while JKomar tends to the finite value M2. Therefore Ω̄H goes to zero while J̄Komar

diverges according to the relation (9.2.17). This is why the curve corresponding to Kerr
in figure 9.6b is defined all over R+ and converges to zero at infinity. Since Ω̄H = 0
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Figure 9.6: Angular momentum extracted from the asymptotic behaviour of ω̄.

for J̄Komar = 0 and Ω̄H is positive, it must also have a maximum which is reached
for J̄Komar ' 8 according to figure 9.6b. One can see that some cubic Galileon solutions
exceed this maximum value, which clearly shows why it was not possible to provide a
Kerr analog for the metric functions in figure 9.2 for γ̄ = 0.12 and 0.18.

Yet the existence of a maximum value for Ω̄H in the Kerr case reveals that this
quantity does not provide a bijective parametrization of the families of dimensionless
black hole solutions. This represents a numerical difficulty: the solutions are gradually
constructed by increasing the parameter Ω̄H starting from the static and spherically
symmetric solution (Ω̄H, J̄Komar) = (0, 0) (left part of the curve, i.e. located before the
maximum). The algorithm no longer converges when the maximum value is reached.
From then on, Ω̄H should be lowered to explore more and more rapidly rotating solutions
(right part of the curve). But numerically, using the “maximum” solution as initial guess
to reach a solution with a smaller value of Ω̄H will actually yield the less rapidly rotating
solution (i.e. going backward on the left part of the curve) rather than the more rapidly
rotating solution that has the same dimensionless angular velocity Ω̄H but located to
the right of the maximum.

Finding a way to “jump” over the maximum in order to explore the right part of the
curve is a non-trivial issue: one must use another quantity, easily handled numerically,
which does parametrize the black hole solutions in a bijective way at least in a neigh-
borhood of the maximum, unlike Ω̄H. Attempts using the dimensionless surface gravity
(discussed in the following section) and other parameters fulfilling this condition were
unsuccessful so far. This is why the highest points marked on figure 9.6b for γ̄ = 0.12
and 0.18 represent the last solutions that could be reached, beyond which the numerical
algorithm does not converge anymore, revealing the proximity of a maximum value.

Of course, other notions of mass and angular momentum than the Komar quantities
exist. In particular, some of them are more appropriate, but more technical, to take into
account contributions from the scalar field. Some of these quantities are for instance
introduced in [297] and the references cited therein.
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Figure 9.7: Angular velocity with respect to surface gravity.

9.2.3 Surface gravity

In a circular spacetime, the zeroth law of black hole mechanics holds [103, 110, 111], i.e.
the surface gravity is constant on the horizons of stationary black holes. To check this
for the solutions presented here, the dimensionless quantity κ̄ corresponding to surface
gravity κ was extracted according to the following formula:

κ̄ ≡ rHκ =
1

A
∂r̄N|1 . (9.2.18)

In all solutions, the relative variations of κ̄ on the horizon are smaller than 10−6,
confirming that the surface gravity is numerically homogeneous on the horizon.

The relation between κ̄ and Ω̄H is represented on figure 9.7. For each γ̄, the static and
spherically symmetric case corresponds to the only point such that Ω̄H = 0 but κ̄ 6= 0,
while the origin of the graph, i.e. (Ω̄H, κ̄) = (0, 0) corresponds to extremal cases. The
explicit case of Kerr is again represented by a solid red curve for comparison with GR.

9.2.4 Ergoregion

Recall that the ergoregion is the domain over which the pseudo-stationary Killing vec-
tor ∂t is non-timelike, i.e. N2 ≤ (ωBr sin θ)2. Thus, realistic observers can no longer
have constant spatial coordinates. Theoretically, this region allows to use particles to
extract rotational energy from a black hole, as described by the Penrose process. In
practice, the latter is not efficient enough to be significantly involved in astrophysical
processes such as the relativistic jets emerging e.g. from quasars, although this used
to be conjectured. Yet higher efficiencies might be reached around other objects, such
as naked singularities or wormholes, or through more elaborate avatars of the process,
such as the collisional Penrose process or superradiance. One may consult [298, 299]
and references therein for discussions of these topics.

Locating the ergoregions of the Galileon solutions provides another evidence of devi-
ations from GR. Figure 9.8a displays the ergoregions corresponding to various angular
velocities Ω̄H at fixed coupling γ̄ = 1 and figure 9.8b compares two of them with Kerr
(same color meaning same angular velocity). On both figures, the ergospheres are
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Figure 9.8: Location of the ergoregion.

plotted in terms of Cartesian-like coordinates yet based on the quasi-isotropic coordin-
ates: (x̄, z̄) = (r̄ sin θ, r̄ cos θ). This explains the irregularities observed at the poles even
in the case of Kerr, although none is observed in the familiar Boyer-Lindquist coordin-
ates: the change of coordinates from Boyer-Lindquist to quasi-isotropic coordinates is
not regular at the poles.

The ergoregions of the cubic Galileon solutions generically have the same shape as
Kerr: they coincide with the horizon at the poles and get thicker towards the equator.
They grow as Ω̄H increases, yet they are thinner than Kerr for a given angular velocity.
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Equatorial geodesics in circular
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Before investigating the geodesics of the black hole configurations constructed in
chapter 9, general results on equatorial geodesics are exposed in the present chapter.

One of the first reference works on equatorial geodesics date back to the investiga-
tions of Boyer and Price [300], who focused on the Kerr metric just before the seminal
articles of Carter on general Kerr geodesics [105–107]. Later on, Bardeen [301], Press
and Teukolsky [302] considered equatorial geodesics in circular spacetimes (7.2.2).

At the time, these authors were interested in the precession of the periapsis of
bounded orbits, stability of thin dust disks and other processes around rotating black
holes. In regard of the highly accurate observations realized by instruments like GRAV-
ITY and the Event Horizon Telescope (see section 3.2), such investigations are still
essential today e.g. to examine orbits of stars, accretion disks around massive black
holes and the images they produce. Contemporary discussions on these topics can be
found in references [288, 292, 303–305].

Beside circularity, the present chapter will further assume the equatorial reflection
symmetry

∀µ, ν, gµν(r, π/2− θ) = gµν(r, θ). (10.0.1)

Such metrics still include the Kerr family and the numerical black hole metrics [252,
253, 295], models of rotating neutron stars [291] and boson stars [292] earlier men-
tioned. Yet, note for instance that Kerr-Newman-Taub-NUT metric [306–308] does
not fall into this family as equatorial symmetry (10.0.1) cannot hold in presence of the
gravitomagnetic parameter.

In the sections below, the way the geodesic equation equivalently rewrites in terms
of an effective potential is explicitly recalled for circular and non-circular equatorial

89
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geodesics. This then provides a practical tool to discuss their stability. Statements are
illustrated in Kerr spacetime.

10.1 Conservation equations

This section recalls the elements relevant in investigating the existence and properties
of the trajectory of a free massive (resp. massless) particle in the equatorial plane of
a circular spacetime. To effectively search for such a trajectory, its parametrization is
set to be the only one whose corresponding tangent vector is the 4-momentum p of the
particle. More explicitly, one looks for a timelike (resp. null), future-oriented curve

C : λ 7→ (xµ(λ)) = (t(λ), r(λ), θ(λ), φ(λ)) (10.1.1)

such that the 4-momentum of the particle is pµ = ẋµ, where a dot denotes differentiation
with respect to the parameter λ. In addition, the particle is free iff its 4-momentum is
parallely transported along its trajectory C:

∇pp = 0, (10.1.2)

so that C is an affinely parametrized geodesic by definition.
The geodesic equation (10.1.2) implies that the mass

m =
√
−p2 is conserved along C. (10.1.3)

In particular, if m > 0, λ is necessarily the curvilinear abscissa (i.e. proper time) τ
along C divided by m.

In a stationary and axisymmetric spacetime such as (7.2.2), equation (10.1.2) also
implies conservation of the Killing energy and angular momentum:

E = −∂t · p is conserved along C, (10.1.4)
L = ∂φ · p is conserved along C. (10.1.5)

Such quantities are actual observables only if the particle ever reaches spacelike
infinity, where they are the energy and angular momentum effectively measured by a
zero angular momentum observer (ZAMO)44. In this case, E ≥ 0 necessarily.

Finally, the trajectory is requested to be equatorial:

θ = π/2 is conserved along C. (10.1.6)

This implies pθ = 0, which is equivalent to pθ = 0 in the quasi-isotropic coordin-
ates (7.2.2).

The conservation equations (10.1.3), (10.1.4), (10.1.5) and (10.1.6) are thus four
necessary conditions for a curve C to describe an equatorial trajectory of a free particle.

44The ZAMO are characterized by a 4-velocity colinear to ∇t; as a result, one may check that the
ZAMO are not freely falling, yet they fulfill property (10.1.5) with L = 0, hence their name.
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10.2 Non circular geodesics
For non-circular orbits, i.e. for any trajectory such that pr 6= 0 (⇔ pr 6= 0 in coordin-
ates (7.2.2)) almost everywhere (pr may only cancel at periapsis and apoapsis, when
they exist), these four conservation equations are sufficient, i.e. they imply the geodesic
equation (10.1.2) for the following reasons. First, the Killing equation for ∂t

[∇µ∂t]ν + [∇ν∂t]µ = 0 (10.2.1)

and the Killing energy conservation (10.1.4) establish the covariant t component of the
geodesic equation:

[∇pp]t = ∂t · ∇pp = ∇p (∂t · p) = −∇pE = 0. (10.2.2)

The analogous argument for ∂φ and (10.1.5) yields [∇pp]φ = 0.
Besides, the covariant θ component of the geodesic equation also vanishes:

[∇pp]θ = A2r2 [∇pp]
θ = A2r2pµpνΓθµν = 0 (10.2.3)

since Γθrθ gets multiplied by pθ = 0, and all the other Christoffel symbols Γθµν vanish
in the equatorial plane as sums of terms that are proportional either to cos θ, or to
some angular derivative of the metric ∂θgµν , which is necessarily zero under the natural
assumption of equatorial symmetry (10.0.1). When the latter does not hold, e.g. in
Kerr-Newman-Taub-NUT spacetime, the covariant θ component of the geodesic equa-
tion might not come out so simply: it may require alternative constraints on the metric
components, or invoke some of the other conservation equations. It is indeed interesting
to note that each of the above three covariant components of the geodesic equation do
not require any of the two other conservation equations to be derived. As a result,
any trajectory satisfying conservation of E (resp. L, resp. θ = π/2 when equatorial
symmetry holds) always satisfies the covariant t (resp. φ, resp. θ) component of the
geodesic equation.

Finally, mass conservation (10.1.3) rewrites as

0 = ∇p (p · p) = pµ [∇pp]µ = pr [∇pp]r , (10.2.4)

which implies [∇pp]r = 0 since pr 6= 0 almost everywhere.
Before treating the circular case pr = 0, it is very useful to note that equations

(10.1.4), (10.1.5) and (10.1.6) allow to rewrite the mass conservation equation (10.1.3)
as a familiar first order ordinary differential equation on the radial coordinate function r:

ṙ2

2
+ V(r,m,E, L) = 0 (10.2.5)

where the effective potential V is defined as

V(r,m,E, L) =
1

2A2

[
m2 −

(
E − ωL
N

)2

+

(
L

Br

)2
]
. (10.2.6)

Since λ = τ/m for massive particles, note that (10.2.5) rewrites as

1

2

(
dr

dτ

)2

+ V(r, 1, Ē, L̄) = 0 (10.2.7)
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where Ē = E/m and L̄ = L/m, so that the trajectories of free massive particles only
depend on their Killing energy and angular momentum per unit mass.

Based on the explicit form (10.2.5) of the mass conservation equation, conditions
on V and its partial derivatives will also allow to characterize the circular geodesics (see
section 10.3) and study their stability (see section 10.4). So far, simply note that non-
circular geodesics necessarily have V < 0 almost everywhere, while circular geodesics
necessarily have V = 0 everywhere.

Finally, the procedure to explicitly construct all non-circular equatorial trajectories
of free particles is to first pick an initial radial coordinate r0, a Killing energy E, a Killing
angular momentum L and a mass m such that V(r0,m,E, L) < 0 and E − ω(r0)L > 0
to guarantee that the trajectory is initially causal future-oriented (see equation (10.2.9)
below); in particular, this necessarily requires E > 0 if r0 is outside the ergoregion.
Secondly, the right-hand side of

ṙ = ±
√
−2V(r,m,E, L) (10.2.8)

is sufficiently regular for equation (10.2.8) to admit a unique solution λ 7→ rs(λ) once
the ± sign is chosen (to determine whether the initial direction is ingoing or outgoing).
Conservation of E and L then provide the solutions for t and φ:

ts(λ) =

∫
E − ω(rs)L

N(rs)2
dλ, (10.2.9)

φs(λ) =

∫ [
L

(B(rs)rs)2
+ ω(rs)

E − ω(rs)L

N(rs)2

]
dλ, (10.2.10)

where the second argument θs = π/2 of the metric functions is omitted without loss of
clarity. Note that frame dragging can be read off from relation (10.2.10): radial free
fall from infinity (hence L = 0) does not remain radial in a rotating spacetime as φs
receives contribution from the non-vanishing metric function ω.

10.3 Circular geodesics
As mentioned earlier, pr = 0 (circular orbit) forbids to establish the radial geodesic
equation from mass conservation, which is then redundant as a linear combination of
the E and L conservation equations (i.e. the covariant t and φ geodesic equations).
Therefore, one additional equation is missing to realize a geodesic. Indeed, there are
so far multiple solutions to the problem {(10.1.4), (10.1.5), (10.1.6), pr = 0} (which
implies mass conservation): for any E, L and r0, the curve

λ 7→
(
E − ω0L

N2
0

λ, r0, π/2,

[
L

(B0r0)2
+ ω0

E − ω0L

N2
0

]
λ

)
(10.3.1)

is circular (an index 0 means that the metric function is evaluated at r0, in the equatorial
plane) with conserved Killing energy E and angular momentum L. Additionally, one
may simply require E ≥ ω0L + N0|L|/(B0r0) (which is always positive outside the
ergoregion) to describe a causal future-oriented trajectory; this amounts to requiring
that mass conservation V(r0,m,E, L) = 0 holds for a real constant m (i.e. m2 > 0).

All these circular orbits are distinct solutions to the same problem, but at most
one of them is a geodesic, sometimes none (intuitively, the other orbits are accelerated
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inward if they rotate “faster” than a geodesic to compensate for the centrifugal effect,
outward otherwise). To search for a geodesic among them, one obtains an additional
prescription from differentiating equation (10.2.5):

ṙ [r̈ + V ′(r,m,E, L)] = 0, (10.3.2)

where ′ denotes differentiation with respect to the first argument (the radial coordinate).
Of course, for any circular orbit (10.3.1), equation (10.3.2) holds because ṙ = 0,

while it implies

r̈ + V ′(r,m,E, L) = 0, (10.3.3)

for all non-circular geodesics. The missing condition to realize a circular geodesic at r0

is then obtained by requiring equation (10.3.3) to hold even in the circular limit, i.e.
when r̈ = 0, yielding

V ′(r0,m,E, L) = 0. (10.3.4)

On figure 10.1a for instance, circular geodesics exist at the zeros of the bottom
red and top blue curves since the latter cancel in a stationary way (the corresponding
geodesics are respectively represented by the red and blue dashed lines in figure 10.1b),
while the zeros of the two other curves can only correspond to accelerated circular orbits
or to the periapsis and apoapsis of a non-circular geodesic; more precisely, the smallest
(resp. greatest) zero of the top red curve is the unique apoapsis (resp. periapsis) of a
geodesic reaching the event horizon (resp. infinity, as represented by the red solid line
in figure 10.1b) while the smallest (resp. greatest) zero of the bottom blue curve is the
periapsis (resp. apoapsis) of a bounded geodesic (represented by the blue solid line in
figure 10.1b). Note here that, in the asymptotically flat case, N → 1, A → 1, B → 1
and ω → 0 at infinity, so that V(r,m,E, L) → (1 − E2)/2; therefore, a non-circular
unbounded geodesic (such as the one represented by the red solid line on figure 10.1b
ruled by the right negative branch of the top red curve of figure 10.1a) requires E > 1.

To show that the additional condition (10.3.4) allows to establish the r geodesic
equation, define

W(r,m,E, L) = m2 −
(
E − ωL
N

)2

+

(
L

Br

)2

(10.3.5)

so that V(r,m,E, L) =W(r,m,E, L)/(2A2), and hence

V ′(r0,m,E, L) =

(
1

2A2

)′
0

W(r0,m,E, L) +
W ′(r0,m,E, L)

2A2
0

(10.3.6)

=
W ′(r0,m,E, L)

2A2
0

(10.3.7)

since mass conservation V(r0,m,E, L) = 0 is equivalent to W(r0,m,E, L) = 0. There-
fore, condition (10.3.4) is equivalent to

0 =
W ′(r0,m,E, L)

2
(10.3.8)

=
E − ω0L

N2
0

[
(E − ω0L)

N ′0
N0

+ Lω′0

]
−
(

L

B0r0

)2(
B′0
B0

+
1

r0

)
. (10.3.9)
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Ē= 1.005Ē+(15)
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code GYOTO [309].

Figure 10.1: Potentials and spatial projections of timelike circular and non-circular
equatorial geodesics in a Kerr spacetime (a/M ' 0.52).
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Then, injecting the explicit expressions

L = B2
0r

2
0

(
pφ − ω0p

t
)
, (10.3.10)

E = N2
0p

t + ω0L, (10.3.11)

into (10.3.8) immediately yields

0 = pt
[
N0N

′
0p
t +B2

0r
2
0

(
pφ−ω0p

t
)
ω′0
]
−B2

0r
2
0

(
pφ−ω0p

t
)2
(
B′0
B0

+
1

r0

)
(10.3.12)

= A2
0

[
Γrtt(p

t)2 + 2Γrtφp
tpφ + Γrφφ(pφ)2

]
(10.3.13)

= A2
0Γrµνp

µpν = A2
0 [∇pp]

r = [∇pp]r . (10.3.14)

Therefore, circular geodesics are precisely the circular orbits (10.3.1) that continue
property (10.3.3) of non-circular geodesics. Gathered with the result of section 10.2, the
circular and non-circular free trajectories are characterized as follows. A curve C : λ 7→
(xµ(λ)) describes an equatorial free particle with 4-momentum pµ = ẋµ iff it satisfies
the three conservation equations {(10.1.4), (10.1.5), (10.1.6)} and either one of the two
following conditions:

• the fourth conservation equation (10.1.3) and V 6= 0 almost everywhere on C (in
this case, C is non-circular);

• V = 0 and V ′ = 0 everywhere on C (in this case, C is circular).

Finally, to explicitly construct all free circular equatorial trajectories, recall that
all the curves (10.3.1) with E ≥ ωL + N |L|/(Br) (the indices 0 are now removed
although all the statements in the remaining of the section will only apply to circu-
lar orbits) are very good candidates because they satisfy the three conservation equa-
tions {(10.1.4), (10.1.5), (10.1.6)} and V(r,m,E, L) = 0 as well since this relation is
the definition of m for a circular orbit at r. It thus only remains to derive which final
constraint emerges from requiring V ′(r,m,E, L) = 0 (in which m actually does not
appear because of V(r,m,E, L) = 0). This constraint will first be formulated in terms
of the “signed norm” V of the spatial velocity v measured by the ZAMO, defined below.
From V will then be deduced the values of E and L to be injected into (10.3.1) to define
a free circular trajectory at r.

For a particle with mass m, first denote E and v the energy and spatial velocity
measured by the ZAMO45, and n the 4-velocity of the latter, so that the 4-momentum
of the particle decomposes as

p = E(n+ v) with n · v = 0. (10.3.15)

One obtains

E =
E − ωL
N

(10.3.16)

and

v =
V

Br
∂φ (10.3.17)

45For a massive particle, E = Γm where Γ is the Lorentz factor of the particle with respect to the
ZAMO; for a massless particle, E = hν where ν is the frequency measured by the ZAMO.
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where

V =
L

BrE
(10.3.18)

Note that v2 = V 2, hence the name “signed norm” for V . Also recall here that a
trajectory is defined to be prograde (resp. retrograde) when ωL > 0 (resp. ωL < 0);
since ω does not generally cancel, the φ coordinate may be chosen so that ω > 0, which
then simplifies in the definition. Based on relations (10.3.17) and (10.3.18), and the
fact that ω(rH) equals the angular velocity ΩH of the event horizon, a prograde (resp.
retrograde) trajectory intuitively rotates in the same (resp. opposite) direction as the
black hole for the ZAMO. However, for an observer at infinity, the angular velocity pφ/pt
of a circular orbit (10.3.1) is

pφ

pt
= ω +

NL

Br
√

(mBr)2 + L2
, (10.3.19)

so that one of the retrograde orbit may appear prograde from infinity iff it is outside
the ergoregion and L > −mω(Br)2/

√
−N2 + (ωBr)2.

Note also that equation (10.3.8) (which is equivalent to V ′ = 0 as V = 0) is inde-
pendent of m and hence homogeneous with respect to E and L. Therefore, injecting
relations (10.3.16) and (10.3.18) into this expression allows to simplify all E , which
finally yields the following second order equation in V :(

B′

B
+

1

r

)
V 2 − Brω′

N
V − N ′

N
= 0. (10.3.20)

As announced, only the spatial velocity of the particle is constrained and not E ,
which means that, where a circular timelike geodesic exists, it can be the worldline
of any massive particle regardless of its mass provided it has the right velocity, and
where a circular null geodesic exists (i.e. a photon ring), it can be the worldline of
any photon regardless of its frequency (this all seems consistent with the equivalence
principle). For a timelike circular geodesic to exist at r, the values at r of the metric
functions involved in (10.3.20) need to be such that at least one of the roots, if any
exists, belongs to (−1, 1) (the ZAMO must measure subluminal velocities). In the
massless case, V = ±1 so that at any photon ring, if any exists, the metric functions
need to be such that 1 or −1 is a root of equation (10.3.20). One then only needs to
study the roots V± of equation (10.3.20) to conclude about existence and location of
timelike circular geodesics and photon rings. These roots exist iff the discriminant

D =

(
Brω′

N

)2

+
4N ′

N

(
B′

B
+

1

r

)
(10.3.21)

of equation (10.3.20) is non-negative, in which case one has

V±(r) =
Brω′

N
±
√
D

2
(
B′

B
+ 1

r

) . (10.3.22)

In Kerr, for any angular velocity ΩH, function D monotonically decreases from an
infinite value at the horizon down to a zero limit as r → +∞ (see figure 10.2a). There-
fore, each velocity function V± necessarily becomes luminal at some point corresponding
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Figure 10.2: Kinematic characteristics of circular geodesics in Kerr spacetime for dif-
ferent (dimensionless) angular velocities Ω̄H.
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to a photon ring (marked with a vertical line from 0 to 1 in figure 10.2b), beyond which
timelike circular geodesics exist everywhere.

Finally, relations (10.3.16) and (10.3.18) then yield

L± = EBrV±, (10.3.23)
E± = E(N +BrωV±), (10.3.24)

i.e. in the massive case,

L± = Γ±mBrV±, (10.3.25)
E± = Γ±m(N +BrωV±), (10.3.26)

with

Γ± = (1− V 2
±)−1/2, (10.3.27)

while in the massless case,

L± = ±hνBr, (10.3.28)
E± = hν(N ±Brω). (10.3.29)

These quantities are plotted on figure 10.2c, 10.2d and 10.2e in the massive case
for different angular velocities Ω̄H in Kerr spacetime. In particular, the “+” and “-”
quantities are no longer merely equal or opposite in the rotating cases and respectively
follow the evolution of the “+” and “-” photon rings in figure 10.2b: the “+” (resp. “-
”) Lorentz factor and Killing energy are for instance roughly shifted to the left (resp.
right) of the Schwarzschild profile.

10.4 Stability of circular geodesics
For circular geodesics, the radial equation (10.2.5) expectedly provides a stability cri-
terion based on convexity. A non-constant perturbation δ (a constant perturbation
would not threaten stability) to a circular geodesic at r allows to use equation (10.3.3)
instead:

δ̈ + V ′(r + δ,m,E + δE, L+ δL) = 0 (10.4.1)

in which Taylor expanding and invoking condition (10.3.4) yields

δ̈ + V ′′(r,m,E, L)δ = O(δE) +O(δL) +O(δ2 + δ2
E + δ2

L). (10.4.2)

If V ′′(r,m,E, L) < 0, then δ must be accelerating away from r to preserve the
asymptotic orders in the right-hand side. To guarantee that any δ is bounded in some
neighbourhood of r then requires positive V ′′(r,m,E, L).

Actually, the values of E and L for a circular geodesic at r are necessarily E±(r)
and L±(r), explicitly given by relations (10.3.23) and (10.3.24). In practice, one should
thus study the sign of the two functions

V ′′± : r 7→ V ′′ (r,m,E±(r), L±(r)) , (10.4.3)
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on the set on which the discriminant D is non-negative. Actually, the expressions
V ′′ (r,m,E±(r), L±(r)) are homogeneous with respect to E , so that their sign do not
depend on Γ±m in the massive case nor on hν in the massless case. Therefore,
the stability of causal circular geodesics only depends on the sign of the two func-
tions (10.4.3) and concerns massive particles where V±(r) ∈ (−1, 1) and massless ones
where V±(r) = ±1, regardless of whether the expressions used for E± and L± apply
to a massive or a massless particle.

Figures 10.3a and 10.3b illustrate all this in the Schwarzschild case: for each radii r0

marked with a dashed vertical line of a given colour in figure 10.3a, the potential
V( · ,m,E±(r0), L±(r0)), which corresponds to the geodesic at r0, is plotted with the
same colour, and thus cancels in a stationary way at r0. Then, for each r0, function V ′′±
in figure 10.3b extracts the convexity of V( · ,m,E±(r0), L±(r0)) at the correspond-
ing r0: the purple curve is concave at r0 = 5rH on figure 10.3a (hence unstable circular
geodesic), so that V ′′± is negative at 5rH on figure 10.3b, whereas the turquoise curve is
convex at r0 = 20rH, so that V ′′± is positive at 20rH. The limiting case (grey lines) such
that V( · ,m,E±(r0), L±(r0)) cancels as an inflection point at r0 ' 9.9rH (V ′′±(r0) = 0)
defines the innermost stable circular orbit (ISCO)46.

Finally, figure 10.3c gathers the functions V ′′± for different angular velocities; the
functions V ′′+ and V ′′− are no longer equal in the rotating case ( V ′′+ globally increases
with rotation while V ′′− globally decreases) and thus respectively define an ISCO. Based
on figure 10.2b, both ISCO are always located beyond the corresponding photon ring,
so that the latter are always unstable.

Note that for a stable circular geodesic (r0,m,E, L), the function V( · ,m,E, L)
realizes a local minimum (equal to zero) at r0, so that it is strictly positive in a neigh-
bourhood of r0 except at r0. Yet, one always has

∂EV(r0,m,E, L) = − E
N0A2

0

< 0 (10.4.4)

since E is always strictly positive for a causal future-oriented curve. Decreasing E
thus increases V locally47, so that V becomes strictly positive on a neighbourhood of r0.
But V is necessarily negative or zero on any orbit ruled by (10.2.5), which means that,m
and L being fixed, there can be no geodesic close to (r0,m,E, L) with smaller E: a
stable circular geodesic at r0 realizes a local minimum of E on the set of geodesics
having same m and L.

As an additional note, fixing m and L also provides other interesting criteria to
characterize circular geodesics among circular orbits (instead of V ′ = 0), and in-
vestigate their stability (instead of V ′′ > 0). For illustrative purposes, the function
V(m,L) : (r, E) 7→ V(r,m,E, L) is plotted for a Kerr spacetime in figure 10.4.

From this point of view, circular geodesics lie on the set of points (r, E) such
that V(m,L)(r, E) = 0 (black horizontal curve in figure 10.4): it is the intersection
of the image of V(m,L) (yellow surface) with the V = 0 plane (green horizontal plane).
For any of these points (r0, E0) to actually correspond to a circular geodesic (rather
than an accelerated circular orbit), condition (10.3.4) must hold, meaning that r0 must

46In Boyer-Lindquist coordinates, the ISCO radius R0 of Schwarzschild spacetime is known to
equal 6M ; injecting this value into equation (C.9) does yield r0 = (5 + 2

√
6)M/2 ' 9.9rH.

47This is illustrated on figure 10.1a: E is decreased to switch from the bottom curve to the top curve
of a given color.
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geodesics at various r0 in Schwarzschild spacetime.
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Figure 10.3: Positivity of V ′′± rules stability and hence location of ISCO.
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Figure 10.4: Effective potential V(L̄) (yellow surface) of massive particles at fixed L̄ in a
Kerr spacetime (a/M ' 0.52). Its zeros lie on the black curve E(L̄)

min. Its profile at fixed
Killing energy per unit mass e (resp. e′) is highlighted as a red (resp. blue) curve on
the blue (resp. red) vertical plane. L̄ being fixed, the only circular geodesics are marked
with the red and blue dots, where both the two curves to which they respectively belong
are stationary, and whose common convexity determines their stability.
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be a stationary point of V(m,L)( · , E0), whose graph is the intersection of the image
of V(m,L) (yellow surface) with the E = E0 plane (blue or red vertical plane).

However, the set of points (r, E) such that V(m,L)(r, E) = 0 (black horizontal curve)
is always the graph of a function well-defined with respect to r: r 7→ E(r). This comes
from the fact that V(m,L) is a second order polynomial with respect to E. For any r,
the function V(m,L)(r, · ) always admits two distinct roots

E
(m,L)
min (r) = ω(r)L+N(r)

√
m2 +

(
L

B(r)r

)2

, (10.4.5)

E(m,L)
neg (r) = −E(m,−L)

min (r). (10.4.6)

Since V(m,L)(r, · ) is a second order polynomial with negative dominant coefficient
with respect to E, and since E(m,L)

min is always the greatest root, one has

∂EV(m,L)
(
r, E

(m,L)
min (r)

)
< 0, (10.4.7)

∂EV(m,L)
(
r, E(m,L)

neg (r)
)
> 0. (10.4.8)

Based on equation (10.4.4), E(m,L)
neg can in no case correspond to a causal future-

oriented curve. Actually, it merely corresponds to all the causal past-oriented circular
and non-circular equatorial geodesics. This had to be expected since the effective po-
tential V and the three other conservation equations can as well be used to describe
them. More precisely, based on relations (10.2.6), (10.2.8), (10.2.9) and (10.2.10), the
past-oriented version of a future-oriented non-circular geodesic is obtained by switching
the sign of both E and L and taking the opposite sign in (10.2.8). This is even easier to
check in the circular case (10.3.1), and relation (10.4.6) confirms that E(m,L)

neg is merely
the Killing energy of the past-oriented version of the circular orbit having opposite
Killing angular momentum. One may thus focus on E

(m,L)
min alone, which can only be

negative for retrograde orbits inside the ergoregion.
By definition, one has

V(m,L)
(
r, E

(m,L)
min (r)

)
= 0, (10.4.9)

so that

E
(m,L)′

min (r) = −
V(m,L)′

(
r, E

(m,L)
min (r)

)
∂EV(m,L)

(
r, E

(m,L)
min (r)

) (10.4.10)

where division is allowed by (10.4.7). Therefore, the circular orbit (r,m,E
(m,L)
min (r), L)

is a geodesic iff E
(m,L)′

min (r) = 0 (instead of V ′(r,m,E(m,L)
min (r), L) = 0). Graphically, one

may check on figure 10.4 that at the circular geodesic marked with a red (resp. blue)
dot, both the red curve V(L̄)( · , e) (resp. blue curve V(L̄)( · , e′)) and function E(L̄)

min are
stationary.

The second derivative of relation (10.4.9) at a circular geodesic (r0,m,E
(m,L)
min (r0), L)

(to use E(m,L)′

min (r0) = 0) merely yields

E
(m,L)′′

min (r0) = −
V(m,L)′′

(
r0, E

(m,L)
min (r0)

)
∂EV(m,L)

(
r0, E

(m,L)
min (r0)

) (10.4.11)
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Figure 10.5: Function Ē(L̄)
min of massive particles for various positive L̄ in a Kerr space-

time (a/M ' 0.52).

which has the same sign has V(m,L)′′(r0, E
(m,L)
min (r0)) because of (10.4.7). Therefore, such

circular geodesic is stable iff E
(m,L)′′

min (r0) > 0 (instead of V ′′(r0,m,E
(m,L)
min (r0), L) > 0).

Graphically, one may check on figure 10.4 that at the stable (resp. unstable) circular
geodesic marked with a red (resp. blue) dot, both the red curve V(L̄)( · , e) (resp. blue
curve V(L̄)( · , e′)) and function E(L̄)

min are convex (resp. concave).
It is thus possible to determine the location and stability of circular geodesics at

fixed m and L from the function E(m,L)
min rather than V(m,L). In this case, one would then

study the dependence of E(m,L)
min on the parameter L (graphically, changing L deforms

the yellow surface in figure 10.4 and hence the black curve). Figure 10.5 illustrates this
for a Kerr spacetime. At fixed L = L0, circular geodesics correspond to the stationary
points. But then, for any stationary point (r0, E0), E0 is necessarily equal to E±(r0)
(the sign depending on whether the orbit is prograde or retrograde) which is why the
black dashed curve intersects each coloured curve at its stationary points.

Non circular geodesics with Killing energy E are possible where E > E
(m,L)
min . Graph-

ically, such a geodesic covers the region where the horizontal line E is above E(m,L)
min while

the abscissae of their intersections locate the periapsis and apoapsis of the geodesic.
Despite providing another interesting point of view on geodesics and stability cri-

teria, using E(m,L)
min to investigate stability is laborious since it requires to locate the

circular geodesics and evaluate convexity for each L. Instead, it is much more effi-
cient and exhaustive to focus on the sign of the two functions V ′′± given by (10.4.3), as
illustrated for Kerr with figure 10.3c above.

Finally, it is interesting for practical use to mention that the existence of a bounded
non-circular orbit strongly suggests the existence of a stable circular orbit at some radius
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between its apsides, as one would expect intuitively. Denote m, E and L the mass,
Killing energy and angular momentum of a particle following a bounded non-circular
orbit such as the solid blue line in figure 10.1b ruled by the right, negative, bounded
branch of the bottom blue curve of figure 10.1a. The argument is that V( · ,m,E, L))
necessarily admits a local minimum at some r0 between its apsides, i.e. such that

V(r0,m,E, L) < 0, (10.4.12)
V ′(r0,m,E, L) = 0, (10.4.13)
V ′′(r0,m,E, L) > 0. (10.4.14)

Since V(r,m, 0, 0) > 0 and V(r,m,E, L) < 0, there necessarily exists a strictly
positive factor α rescaling E and L in such a way that

V(r,m, αE, αL) = 0. (10.4.15)

Defining

X (r,m,E, L) =
1

2A2

[
−
(
E − ωL
N

)2

+

(
L

Br

)2
]

(10.4.16)

so that V = 1/(2A2) + X , one has, for any β,

V ′(r0,m, βE, βL) ≈ X ′(r0,m, βE, βL) = β2X ′(r0,m,E, L), (10.4.17)
V ′′(r0,m, βE, βL) ≈ X ′′(r0,m, βE, βL) = β2X ′′(r0,m,E, L) (10.4.18)

far from the strong-field region (so that A slowly varies) where most stars orbiting a cent-
ral object would be observed. The quantities (10.4.17) and (10.4.18) cancel for β = 1
according to (10.4.13) and (10.4.14), which implies the same for β = α. The paramet-
ers (r0,m, αE, αL) are thus close to define a stable circular orbit, and it should generally
be possible to finish tuning them to obtain an exact stable circular orbit. This makes
the previously discussed stability criteria for circular orbits relevant for observations
although no exactly circular orbit exists; this means for instance that observing a star
on a non-circular orbit around a black hole logically requires the ISCO to be located
below the apoapsis of the star orbit.



Chapter 11

Orbits in cubic Galileon black hole
spacetimes

Contents
11.1 Static and spherically symmetric case . . . . . . . . . . . . . 105

11.2 Rotating case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

As mentioned in section 3.2, trajectories of stars and images of accretion disks
orbiting black holes provide some of the main observables to test strong-field gravity.
For comparison, the theoretical predictions for these observables have been worked out
within various frameworks, starting with the Kerr black hole but also other, more or less
exotic objects like rotating black holes dressed with a complex scalar hair [310] (i.e. the
“Kerr black holes with scalar-hair” mentioned in section 6.2), boson stars [311], regular
black holes and wormholes [312]. In return, such analyses may constrain the nature
of the observed objects, but also the theory in which they are modelled. This thus
helps assessing the viability of modified theories of gravity. To this end, the present
chapter compares geodesic motion around black holes in GR and the cubic Galileon
theory, while chapter 12 will consider images produced by an accretion disk orbiting
these black holes.

11.1 Static and spherically symmetric case
To study the geodesics of the cubic Galileon static and spherically symmetric spacetimes
(ω = 0 and metric independent of θ) obtained in section 9, the procedure is to first
characterize the circular geodesics. As mentioned in section 10, regions of positive
discriminant (10.3.21) are first checked on figure 11.1a for different couplings (γ̄ = 0
corresponds to Schwarzschild). Function D appears positive everywhere down to the
horizon48, where it diverges because of division by the lapse N which cancels at the
horizon. Therefore, circular geodesics a priori exist everywhere for all couplings, but
they necessarily become superluminal near the horizon according to (10.3.22).

This is what figure 11.1b confirms: for each coupling, velocity diverge at the hori-
zon so that there exists a photon ring (marked with a vertical line from 0 to 1), only

48The fact that D and N ′ are positive everywhere implies that the denominator in (10.3.22) is
positive. Therefore, V+ > 0 (prograde orbit) and V− = −V+ < 0 (retrograde).

105
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(a) Radial profile of function D whose positivity al-
lows (possibly superluminal) circular geodesics.
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(b) Velocities and photon rings.

Figure 11.1: Radial profiles of D and the resulting velocities of circular geodesics in the
static, spherically symmetric case (i.e. vanishing dimensionless angular velocity of the
event horizon Ω̄H = rHΩH) for various couplings.

beyond which timelike circular geodesics exist. Although D does not vary much with
coupling on figure 11.1a, the velocities more strongly depend on γ̄ because function B
in the denominator does (see figure 9.1b, knowing that B = A everywhere in spher-
ical symmetry). More precisely, at fixed radius, the velocity of the circular geodesic
decreases with coupling. As a consequence, the photon ring gets closer to the horizon
as γ̄ increases.

These results are related to the following facts, detailed in section 9.2.1. The metric
functions N and A = B converge faster to Minkowski at infinity as γ̄ increases. There-
fore, at fixed radius away from the strong-field region, gravitation gets naively weaker
as γ̄ increases, so that the velocity of the circular geodesic must be smaller. In addition,
for any γ̄ 6= 0, convergence to Minkowski is always much faster than Schwarzschild: N
and A = B converge to 1 like 1/r4 rather than 1/r, yielding a vanishing Komar mass at
infinity. As a result, velocities given by (10.3.22) converge to zero like r−α/2 with α = 1
for Schwarzschild and α = 4 for the Galileon.

Such asymptotic behaviour are revealed in figures 11.2. In all cases, the Lorentz
factor displayed in figure 11.2a logically converges to 1. However, the Killing angular
momentum per unit mass L̄ displayed in figure 11.2b behaves like rV ' r1−α/2 according
to (10.3.23), hence the divergence for Schwarzschild and convergence to zero for any γ̄ 6=
0 (the numerical solutions contain information at infinity confirming this, even for small
couplings like γ̄ = 10−3 whose convergence to zero becomes apparent very far from the
horizon). Finally, function ω converges to 0 like 1/r3 regardless of whether γ̄ is zero or
not, so that Ē, given by (10.3.24), converges to 1 for all cases on figure 11.2c. At the
photon ring, all the kinematic quantities displayed in figure 11.2 naturally diverge.

Figure 11.3 assesses the stability of circular orbits based on function V ′′± given
by (10.4.3). As explained in section 10, its sign at a given radial coordinate r0 is the
same as the second radial derivative of the potential evaluated at r0 with the Killing
energy and angular momentum of the circular geodesic at r0. Figures 11.4a and 11.4b
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(b) Killing angular momentum.
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(c) Killing energy.

Figure 11.2: Radial profiles of kinematic quantities measured by the ZAMO for the
timelike circular geodesics in the static, spherically symmetric case for various couplings.
They all diverge at the photon ring (yet asymptotes are only plotted for the Lorentz
factor).
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Figure 11.3: Radial profile of V ′′±; positivity determines stability of the geodesics.

illustrate this for γ̄ = 10−2: for each radii r0 marked with a dashed vertical line of a
given colour, the potential V( · ,m,E±(r0), L±(r0)) ruling the circular geodesic at r0 is
plotted with the same colour, and thus cancels in a stationary way at r0. On figure 11.4c,
function V ′′± extracts the convexity of V( · ,m,E±(r0), L±(r0)) at the corresponding r0:
the purple curve is strongly concave at r0 = 5rH on figure 11.4b (hence unstable circular
geodesic), so that V ′′± is strongly negative at 5rH on figure 11.4c, whereas the brown
curve is convex at r0 = 20rH, so that V ′′± is positive at 20rH.

Figure 11.3 thus gathers all this information for various couplings. It appears that
for any non-zero γ, both an innermost and an outermost stable circular orbit (ISCO
and OSCO) exist (they respectively correspond to the smallest and greatest r0 such
that V ′′±(r0) ≥ 0). However, the existence of an OSCO strongly constrains the Galileon
model presently studied because of the mere observation of stars orbiting in a seemingly
stable way far from Sgr A* (yet still in its sphere of dominating influence, so that the
orbits are legitimately described by geodesics of an isolated black hole whose stability
does not depend on any other physical phenomenon). For instance, the well-known star
S2 has a non-circular orbit beyond 280rISCO.49 Although it is non-circular, such a far
stable orbit indicates that a stable circular orbit should also exist somewhere between
its apsides for some Ē and L̄. This strongly suggests that the OSCO should be beyond
the orbit of any star ruled by Sgr A* like S2, which requires γ̄ much smaller than 10−2.

In addition, V ′′± globally decreases as γ̄ increases. As a result, the ISCO radius
increases while the OSCO decreases from infinity (where it is formally located in
the Schwarzschild case γ̄ = 0), so that they eventually merge for a critical coup-
ling γ̄c ' 2.2 ×10−2, beyond which no stable circular orbit exists anywhere. Therefore,
the mere existence of stars orbiting black holes such as Sgr A* suggests that the Ga-
lileon models presently studied are constrained to γ̄ < γ̄c for viable static, spherically
symmetric black holes to exist. Finally, since the photon ring radius decreases (fig-
ure 11.1b) while the ISCO radius increases (figure 11.3) when γ̄ increases, the photon

49As the Galileon solutions have vanishing Komar mass at infinity and hence no reference gravita-
tional radius, the ISCO radius provides an unambiguous scale. Besides, the instrument GRAVITY,
which is capable of very high astrometric precision, observed flares [15] which are believed to material-
ize near the inner edge of the accretion disk of Sgr A* and hence close to the ISCO. Such observation
thus provides the ISCO scale for Sgr A*.
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ring always remains unstable as it is in Schwarzschild.

11.2 Rotating case
Rotation breaks spherical symmetry so that the “+” and “-” quantities are no longer
equal or opposite, as shown in figures 11.5 (in which solid lines correspond to the Kerr
counterparts). Yet, all these quantities have the same behaviour at the boundaries as
in the static, spherically symmetric case commented in section 11.1.

In the static, spherically symmetric case, the fact that V+ > 0 (see footnote 48)
means that B(r) > B(rH)/r. The latter relation most likely holds in the rotating
case50, which would explain why V+ > 0 and V− < 0 everywhere in the rotating case
as well, as is clear from figure 11.5a. However, contrary to the static, spherically
symmetric case (red curves), V+ 6= V−, so that there exist a prograde photon ring
and a distinct retrograde one for each angular velocity Ω̄H; as in Kerr, prograde and
retrograde velocities decrease as Ω̄H increases, so that the prograde (resp. retrograde)
ring radius decreases (resp. increases). The dependence on Ω̄H yet seems stronger for
Kerr, meaning e.g. that the prograde ring radius decreases faster than for the Galileon
solution. As a result, since the photon ring of the static, spherically symmetric Galileon
spacetime is below that of Schwarzschild, the relative position of the Kerr and Galileon
prograde rings is inverted at some Ω̄H (' 0.03 for γ̄ = 10−2). On the contrary, the
Kerr retrograde ring grows away from its Galileon counterpart.

The fact that the dependence on Ω̄H is qualitatively the same for Kerr and the Ga-
lileon, but stronger for Kerr, also applies to L (figure 11.5b), E (figures 11.5c and 11.5d)
and V ′′± (figures 11.5e and 11.5f). Besides, V ′′+ (resp. V ′′−) globally increases (resp. de-
creases) as Ω̄H increases; therefore, both the prograde ISCO and retrograde OSCO (resp.
prograde OSCO and retrograde ISCO) radii decrease (resp. increase). Interestingly, V ′′+
may thus become positive even for γ̄ greater than the critical coupling γ̄c ' 2.2 × 10−2

(beyond which function V ′′± is negative everywhere in the non-rotating case) provided
rotation is high enough, as illustrated in figure 11.6a for γ̄ = 1 > γ̄c. Therefore, for each
coupling γ̄ > γ̄c, there is a minimal angular velocitiy Ω̄min

H (γ̄) beyond which stable
orbits reappear, yet only prograde ones.

On the contrary, since function V ′′± is negative everywhere in the non-rotating
case, V ′′− gets even more negative with rotation. Therefore, the fact that stars stably
orbit Sgr A* in both directions (the spin direction of Sgr A* is unknown) suggests that
the present Galileon model is constrained to γ̄ < γ̄c for viable rotating black holes to
exist.

As final remarks, since the ISCO of the static, spherically symmetric Galileon
spacetime is beyond the Schwarzschild’s ISCO and Kerr’s retrograde ISCO increases
faster with Ω̄H, the Kerr and Galileon retrograde ISCO merge at some Ω̄H (' 0.06
for γ̄ = 10−2). As Ω̄H increases further, the Galileon retrograde ISCO and OSCO
eventually merge for a critical angular velocity Ω̄c

H (' 0.09 for γ̄ = 10−2), beyond
which no stable retrograde orbit exists anywhere. Therefore, even for γ̄ < γ̄c, there
exists a critical angular velocity Ω̄c

H(γ̄) beyond which the black hole solutions are not
viable.

50It is certain beyond r = B(rH) since B monotonically decreases to 1 in all solutions.
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Figure 11.5: Kinematic quantities measured by the ZAMO and stability of the timelike
circular geodesics for different angular velocities Ω̄H at fixed coupling γ̄ = 10−2 < γ̄c.
For comparison at fixed Ω̄H, the profile in Kerr is plotted as a solid line with the same
color.
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Figure 11.6: Rotation restores prograde stable orbits.
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Images of accretion flows in cubic
Galileon black hole spacetimes
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In the sections below, images of an accretion disk orbiting the black hole configur-
ations presented in section 9 are computed numerically with the software GYOTO.

12.1 Principle of ray-tracing
GYOTO is a free open-source C++ software [309]. It notably features an efficient
approach to integrate the geodesic equations from the knowledge of the 3+1 quant-
ities decomposing the metric according to (3.1.1). This method, exposed in [313],
is particularly well-suited for numerical metrics obtained within the 3+1 formalism,
which is the case here: the shift β and spatial metric γ corresponding to the space-
time foliation induced by the quasi-isotropic time coordinate t, and the adapted spatial
coordinates (r, θ, φ), are given by the relations (see e.g. section 2.2.3 of [288])

β = −ω∂φ, (12.1.1)
γ = diag(A2, A2r2, B2r2 sin2 θ). (12.1.2)

Images are computed in the following way. An explicit model of accretion flow is
set around the black hole51. A refracting telescope with a screen in its focal plane is
set at a certain point of the numerical metric. In both sections below, the orientation,
field of view and distance to the black hole of the telescope qualitatively reproduces the
situation of the Event Horizon Telescope with respect to M87*. Each pixel of the screen

51Rough estimates, confirmed by simple exact models of accretion disks coupled to a black hole, show
that the gravitational influence of an accretion disk is usually completely negligible with respect to the
black hole. Thus, the vacuum metrics computed in section 9 are still completely valid in presence of
an accretion disk. See section 6.5 of [11] for quantitative arguments.
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corresponds to a spatial direction: space is Euclidean close to the telescope, so that
parallel rays converge at the same point on the screen after crossing the converging lens
of the instrument. Any of these spatial directions uniquely defines the initial tangent
vector of a null affinely parametrized geodesic. The latter is integrated backward in
time until a stopping condition is reached, e.g. it falls into the black hole or definitely
leaves its neighbourhood. Yet, if the photon reaches the accretion disk at some point,
the radiative transfer equations ruling the specific intensity start being integrated as
well, as long as the geodesic lies inside the disk (which it can actually enter and leave
several times). The geodesic thus accumulates the intensity that will hit the same initial
pixel when going forward in time again.

12.2 Model of accretion flow

Determining the nature and properties of a compact object based on the image of its
accretion flow is a very degenerate inverse problem. This is for instance evidenced in
reference [311] in which the same model of accretion disk is set around either a boson star
or a black hole: the differences between the resulting images are very subtle although
the natures of the accreting objects are very different. Furthermore, the resolution of
present and future instruments like the Event Horizon Telescope is limited, making it
even harder to distinguish subtle features.

Then, the prime purpose of numerical images is not necessarily to check whether
the exact image constructed by the Event Horizon Telescope [17] can be reproduced for
different accreting compact objects. This would require full relativistic magnetohydro-
dynamics simulations, together with a model of the Event Horizon Telescope itself.
Instead, strong efforts are made to propose fairly simple and yet realistic models of
accretion disks [298, 314–316]. Comparing the resulting images for different compact
objects provides a more efficient, and still relevant, method to evaluate how degenerate
the problem is. The hope is that such an approach should help isolating the causes
of differences between images, e.g. being able to guess the nature and amplitudes of
the modifications that result from changing the accretion model or the theory used to
describe it.

As a result, a simple model of accretion disk, recently introduced in [316], is used
in the sections below. Like Sgr A*, supermassive black hole M87* features a very low-
luminosity accretion flow, revealing an inefficient radiative cooling and hence a high
temperature. It is consistently modelled as a low accretion rate, geometrically thick,
optically thin disk52 [317]. Besides these properties, only the thermal synchrotron emis-
sion is computed, following a method exposed in [318]. In the end, the complete model
is described by very few input parameters: the opening angle and inner edge of the
disk (which will be set at the ISCO in the next sections), the magnetization parameter
(which determines the ambient magnetic field strength), the electron density and tem-
perature at the inner edge (which determine the density and temperature profiles, since
these are assumed to scale as 1/r2 and 1/r respectively).

52An accretion disk is geometrically (resp. optically) thin when the opening angle (resp. optical
depth) is smaller than 1. It is geometrically (resp. optically) thick otherwise.



12.3. STATIC AND SPHERICALLY SYMMETRIC CASE 115

12.3 Static and spherically symmetric case
In the static and spherically symmetric case, the ISCO is read from figure 11.3 for each
coupling. The resulting images are presented in figure 12.1, from the Schwarzschild
limit γ̄ = 0 to the critical coupling γ̄c ' 2.2 × 10−2, beyond which no stable
accretion disk may exist. The effects of coupling are subtle though perceivable. Before
drawing conclusions about the implications and observability of such deviations, more
precise investigations must be done. In particular, more realistic models of disk such
as ion tori could be considered. These are still geometrically thick and optically thin
structures, yet featuring more complex density and temperature profiles derived from
first principles, as well as chaotic (i.e. isotropic) [314] or toroidal [315] magnetic fields.

12.4 Rotating case
Figure 12.2 compares the images obtained for rotating solutions in GR (i.e. Kerr black
holes) and in the cubic Galileon case γ̄ = 10−2 < γ̄c. For these rotating configurations,
the inner edge of the disk is set at the prograde ISCO, which is read from figure 11.5e for
each angular velocity Ω̄H. Again, the effects of rotation and coupling are perceivable,
but need further work. Furthermore, unsolved issues arose in trying to compute images
for higher Ω̄H, so that the effects of rotation are necessarily weak on figure 12.2. These
issues should be fixed soon, and more realistic accretion models should be considered
as well.
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(a) γ̄ = 0 (b) γ̄ = 0.001

(c) γ̄ = 0.01 (d) γ̄ = 0.022

Figure 12.1: Images produced by a thick accretion disk orbiting static and spherically
symmetric black holes for different couplings γ̄.
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(a) (γ̄, Ω̄H) = (0, 0) (b) (γ̄, Ω̄H) = (0.01, 0)

(c) (γ̄, Ω̄H) = (0, 0.02) (d) (γ̄, Ω̄H) = (0.01, 0.02)

(e) (γ̄, Ω̄H) = (0, 0.03) (f) (γ̄, Ω̄H) = (0.01, 0.03)

Figure 12.2: Images produced by a thick accretion disk orbiting Kerr black holes (left
images) and rotating black holes of the cubic Galileon theory (right images).



118CHAPTER 12. IMAGES OF ACCRETION FLOWS IN CUBIC GALILEON BLACK HOLE SPACETIMES



Conclusion

The results reported in this manuscript fall within the wide and long-term effort con-
ducted to constrain theories of gravitation, notably by modelling the physics of compact
objects and the different types of radiation they produce. To introduce this context,
the objects and principles common to most theories of gravitation have been exposed
and discussed, with the overall objective of sketching the arguments leading from these
foundations to the (organized) profusion of theories of gravitation.

The actual contribution of the present project has then been presented: investigat-
ing possible deviations of the cubic Galileon theory in the neighbourhood of rotating
black holes. Like most studies on strong-field phenomena, constructing such black hole
metrics required a dedicated numerical approach. Determining the right numerical for-
mulation of the problem (choice of unknown functions, boundary conditions, additional
equations) was not straightforward. The resulting numerical configurations are the first
ones that describe asymptotically flat hairy rotating black holes in the cubic Galileon
theory. They are based on a scalar ansatz involving a linear time-dependence and a
circular approximation of the metric. To realize asymptotic flatness, the bare cosmo-
logical constant Λ and kinetic coupling η must be set to zero. The solutions are thus
dominated by the DGP term (∂φ)2�φ. The remaining parameter γ̄ induces significant
deviations from the Kerr metric on different physical quantities such as surface grav-
ity and angular momentum. In addition, these asymptotically flat solutions feature
convergence towards Minkowski faster than the Schwarzschild solution, which can be
understood as a vanishing Komar mass at infinity.

Extreme angular velocities (and possibly extremal black holes) were not reached
numerically, but could be the goal of future work. For consistency, one should then
abandon the circular ansatz for the metric, as the corresponding approximation error
would become worse for rapidly rotating configurations. A second natural extension of
the work presented here would be the construction of asymptotically (anti-)de Sitter
solutions, i.e. solutions featuring non-zero cosmological constant or canonical kinetic
coupling.

Then, in searching for observable signatures of the cubic Galileon theory, stable
bounded timelike geodesics around the Galileon black holes turned out to exist for suf-
ficiently small coupling, in spite of the non-Schwarzschild asymptotics of these black
hole metrics. Yet, their existence regions are generically bounded, i.e. they feature an
outermost stable circular orbit in addition to the innermost stable circular orbit. Thus,
compatibility with observations of stable star orbits around Sgr A* clearly constrains
the dimensionless coupling γ̄. Finally, the astrophysical imaging of an emitting accre-
tion disk surrounding the Galileon black holes has been simulated, notably based on
numerical integration of null geodesics. Yet, further work is required before making
quantitative statements about the images produced by such accreting Galileon black
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holes. Both these investigations have today a clear astrophysical relevance in regards
of the observations realized by the instrument GRAVITY and the Event Horizon Tele-
scope, which test strong-field gravity by accurately monitoring supermassive black holes
and their close environment.

As a final remark, all solutions considered in this work were stationary solutions
of the cubic Galileon theory, in order to eventually derive predictions that could be
compared with supermassive black hole observations. However, regarding accretion flow
observations, constraining alternative theories is a highly degenerate problem given the
very large number of accretion models and theories, and the relatively low accuracy of
the Event Horizon Telescope. Furthermore, the Kerr metric is a solution not only of GR
but of many alternative theories as well, including the cubic Galileon. In particular,
accretion flows onto stationary supermassive black holes might still be described by
the Kerr metric, even if another theory than GR turns out more successful to describe
all classical gravitational phenomena. On the contrary, way less ambiguous tests of
gravity than accretion flow imaging are provided by perturbative phenomena such as
quasi-normal mode signatures in gravitational waves. Prior to such investigations in any
given theory, and as mentioned several times in the core of the manuscript, the viability
of a theory must notably be assessed from the stability of its stationary configurations.
Thus, numerical studies of perturbations around the black holes presented in this work,
in one dimension for a start (spherically symmetric perturbations of the static and
spherically symmetric solutions), constitute one further future axis of research, which
would complete existing analytical studies [242, 244].
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Appendix A

No-scalar-hair theorem for the cubic
Galileon

A static and spherically symmetric spacetime admits coordinates (t, R, θ, ϕ) with re-
spect to which the metric can be written as (7.4.1).

If the Galileon field features the same symmetries, it only depends on the radial
coordinate R, and the (tR) metric equation (i.e. equation (7.4.2) in which q is set to 0)
reads

φ′
[
fφ′
(
h′

h
+

4

R

)
− 2η

γ

]
= 0. (A.1)

The general no-hair theorem [232, 236] assumes the Galileon Lagrangian to contain
a standard kinetic term, i.e. η 6= 0. Yet, for the cubic Galileon, the case η = 0 can be
included in the theorem, or yields a non-trivial hairy solution if asymptotic flatness is
abandoned (see below).

Case η 6= 0 The metric equation (7.4.3) in which q is set to 0 gives

φ′2 = −2ζ

η

[
h′

Rh
+

1

f

(
f − 1

R2
+ Λ

)]
. (A.2)

Then, the asymptotic flatness requirements (7.4.10)-(7.4.11) imply that φ′2 −→
−2ζΛ/η. In particular, φ′ is bounded at infinity, so that

fφ′
(
h′

h
+

4

R

)
−→ 0. (A.3)

If the latter term was non-zero at some point, its absolute value would get smal-
ler than e.g. η/γ at some other point while remaining strictly positive, which would
require φ′ 6= 0. This would contradict (A.1), in which one could simplify the overall
factor φ′ while having no chance for fφ′(h′/h+ 4/R) = 2η/γ to hold.

Therefore, fφ′(h′/h + 4/R) must vanish everywhere and equation (A.1) finally im-
plies that φ is trivial (up to a meaningless constant shift).
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Case η = 0 A hairy solution would feature non-zero φ′ on some interval I, which can
be assumed to either extend to infinity, or to be such that φ′ is zero beyond some upper
bound. According to (A.1) with η = 0, one would have

h =
h1

R4
over I, (A.4)

where h1 is an integration constant (whose sign must be the same as f on I for the
metric to be Lorentzian). Yet, the expression (A.4) does not meet with the asymptotic
behaviour (7.4.10) so that I cannot extend to infinity. This can also be seen from the
metric equation (7.4.3) in which η is set to 0:

f =

(
1

R2
− Λ

)(
h′

Rh
+

1

R2

)−1

=
ΛR2 − 1

3
over I, (A.5)

which does not meet with the asymptotic behaviour (7.4.11) either.
Therefore φ′ should vanish at some point R0 and remain zero up to infinity; whether

this is possible to realize in a smooth way or not relies on the equation (A.10) which
provides the expression of φ′ on I. But anyway, beyond R0, h and f would become
Schwarzschild, with no chance to match (A.4) and (A.5) at R0 in a smooth way:

h = f = 1− 4R0

3R
, R ≥ R0, (A.6)

so that only the Schwarzschild behaviour outside the event horizon located at R =
4R0/3 and a trivial Galileon remain meaningful.

Solutions with η = 0 Abandoning asymptotic flatness allows us to use the ex-
pressions (A.4) and (A.5) everywhere up to infinity, and thus inject them into equa-
tion (7.4.4) in which q and η are set to 0. The resulting equation takes the form[(

R2
√
fhφ′

)3
]′

=
2ζ

γ
G′Λ, (A.7)

where

G′Λ =

(
2

R2
− 3Λ

)√
3h3

1

ΛR2 − 1
, (A.8)

which integrates into

GΛ=



√
3h3
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[
2
√

ΛR2−1
R

− 3
√

Λarcosh
(√

ΛR
)]

if Λ > 0, R > 1√
Λ
and hence h1 > 0,

−
√

3|h1|3
[

2
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1−ΛR2

R
+ 3
√

Λarcsin
(√

ΛR
)]

if Λ > 0, R < 1√
Λ
and hence h1 < 0,√

3|h1|3
[
−2
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1−ΛR2

R
+ 3
√
|Λ|arsinh

(√
|Λ|R

)]
if Λ ≤ 0 and hence h1 < 0.

(A.9)
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In any case, one finally has

φ′ =

√
3

h1 (ΛR2 − 1)

(
2γ

ζ
GΛ + α

)1/3

, (A.10)

where α is an integration constant.
If Λ ≤ 0, then t is a spacelike coordinate and R is timelike, so that the expres-

sions (A.4), (A.5) and (A.10) describe a time-dependent metric and a homogeneous,
time-dependent scalar field. It is also the case if Λ > 0 and R < 1/

√
Λ, so that the time

coordinate R is bounded, like the interior Schwarzschild solution. Finally, if Λ > 0, the
expressions (A.4), (A.5) and (A.10) describe the exterior domain of a hairy black hole
spacetime with an event horizon located at R = 1/

√
Λ. Asymptotically, φ′ converges

to zero as ln(R)/R.
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Appendix B

Source terms and scalar equation

The explicit expressions of the source terms and the scalar equation exposed below are
justified in a Jupyter notebook based on the free software SageMath53. The notebook
is available at the following url: https://share.cocalc.com/share/6cfa5f27-1564-
4bd8-9b0c-fcb3c7d0f325/2019-09-29-155358/metric_and_scalar_equations_cubic_
Galileon.ipynb?viewer=share (in which the equation numbers and references men-
tioned in the explanatory parts correspond to those of the article [281]). The steps are
also summarized below, where the following notations are used for any functions f , g
and h of r̄ and θ:

∂f∂g = ∂r̄f ∂r̄g +
1

r̄2
∂θf ∂θg, (B.1)

H(0)
f [g, h] =

(
∂r̄g
1
r̄
∂θg

)T (
∂2
r̄r̄f

1
r̄
∂2
r̄θf

1
r̄
∂2
r̄θf

1
r̄2
∂2
θθf

)(
∂r̄h
1
r̄
∂θh

)
, (B.2)

H(1)
f [g, h] =

(
1
r̄
∂θg
−∂r̄g

)T (
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1
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)(
1
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−∂r̄h

)
, (B.3)

H(2)
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1
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)T (
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2
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2
r̄
∂2
r̄θf

1
r̄2
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θθf

)(
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1
r̄
∂θh

)
. (B.4)

Then, the right-hand side terms of equations (7.3.10)-(7.3.13) read

SN =
N (Br̄ sin θ)2

2
∂ω̄∂ω̄ − N2

B
∂N∂B −NA2

(
η̄ + Λ̄N2

)
− γ̄

2

(
1 +

N2∂Ψ̄∂Ψ̄

A2

)(
N∆3Ψ̄ + ∂Ψ̄∂N +

N∂Ψ̄∂B

B

)
, (B.5)

SA =
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∂A∂A+ 2N3∂A∂N +

3A(NBr̄ sin θ)2

4
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+
η̄N2A

2

(
N2∂Ψ̄∂Ψ̄− A2
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A

[
N4H(0)

Ψ̄
[Ψ̄, Ψ̄]− N4∂rΨ̄

r̄3

(
∂θΨ̄

)2
])

, (B.6)

53https://www.sagemath.org, https://sagemanifolds.obspm.fr
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SB =−Br̄ sin θ
[
NA2

(
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)
+
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(
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)]
, (B.7)

Sω̄ =
Nω̄

r̄ sin θ
+ r̄ sin θ

(
∂ω̄∂N − 3N

B
∂ω̄∂B

)
(B.8)

and the scalar equation takes the form
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. (B.9)

The function N could be factored out in many places but instead it is explicitly left
everywhere it is needed to counterbalance divergences on the horizon. More precisely,
it appears as a factor in front of all the quantities that involve the radial derivative
of Ψ̄, in order to form terms that remain finite on the horizon.



Appendix C

Kerr metric in quasi-isotropic
coordinates

Denoting M the mass and a the spin parameter, the four metric functions involved in
the quasi-isotropic expression (7.2.2) of the Kerr metric explicitly write as

N2 =
Σ∆

Σ(R2 + a2) + 2a2MR sin2 θ
, (C.1)

A2 =
Σ

r2
, (C.2)

B2 =
1

r2

(
R2 + a2 +

2a2MR sin2 θ

Σ

)
, (C.3)

ω =
2aMR

Σ(R2 + a2) + 2a2MR sin2 θ
, (C.4)

(C.5)

where

R = r +
M2 − a2

4r
+M, (C.6)

Σ = R2 + a2 cos2 θ, (C.7)
∆ = R2 + a2 − 2MR. (C.8)

The function R defined by relation (C.6) actually corresponds to the radial coordin-
ate of the Boyer-Lindquist system (which is presented e.g. in section 33.2 of [52]). It is
inverted as

r =
1

2

(
R +
√
R2 − 2MR + a2 −M

)
. (C.9)

The remaining coordinates are identical in the quasi-isotropic and Boyer-Lindquist
systems.
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Abstract

The present project falls within the wide
effort conducted to study theories of grav-
itation, notably by modelling the physics
of compact objects like black holes. The
long-term objective of this approach is to
determine all theories that are either in-
compatible with observations, or theoret-
ically inconsistent. The first part of the
manuscript thus presents the essential con-
cepts and principles that are common to
all these theories, and introduces some of
these theories which connect to the project.
In the second part, the actual contribution
of the project is exposed: comparing rotat-
ing black holes of the cubic Galileon theory
with the Kerr family of the general theory
of relativity. The latter was developed by
Albert Einstein more than a century ago,
while the cubic Galileon is a much more
recent theory.

First, the rotating black holes are con-
structed numerically. Then, the proper-
ties of the orbits around them are invest-
igated, in particular their stability. Fi-
nally, the images of a simple model of ac-
cretion disk orbiting the black holes are
simulated. Such orbits and images dir-
ectly relate the observations realized by
instruments like GRAVITY or the Event
Horizon Telescope, which monitor super-
massive black holes. The present project
thus allows to identify possible tensions
between the predictions of the cubic Ga-
lileon theory and observational data on
black holes.

Keywords: modified gravity, cubic Ga-
lileon, hairy black hole, rotating black hole,
geodesics

Résumé

Ce projet de thèse s’inscrit dans un
large contexte : l’étude des théories de
la gravitation, notamment par la mod-
élisation d’objets compacts tels que les
trous noirs. Le but ultime de cette dé-
marche est de déterminer toutes les théor-
ies incompatibles avec les observations,
ou présentant des pathologies théoriques.
En conséquence, la première partie de ce
manuscrit présente les concepts et prin-
cipes essentiels communs à toutes ces
théories, et introduit certaines d’entre elles
entretenant un lien avec le projet. La deux-
ième partie expose les résultats propres au
projet : une comparaison entre une famille
de trous noirs en rotation issue de la théorie
du Galileon cubique, et les trous noirs de
Kerr de la théorie de la relativité générale.
Le Galileon cubique est une théorie bien
plus récente que la relativité générale, cette
dernière ayant été développée par Albert
Einstein il y a plus d’un siècle.

Tout d’abord, ces trous noirs sont con-
struits numériquement. Les orbites au-
tour de ces trous noirs, notamment leur
stabilité, sont ensuite étudiées. Enfin, les
images produites par un modèle simple
de disque d’accrétion en orbite autour de
ces trous noirs sont simulées numérique-
ment. Ces géodésiques et images sont dir-
ectement liées aux observations réalisées
par certains instruments en activité, tels
que GRAVITY ou l’Event Horizon Tele-
scope, qui sont dédiés à l’étude des trous
noirs supermassifs. Ce projet permet ainsi
d’identifier de possibles tensions entre les
prédictions de la théorie du Galileon cu-
bique et certaines observations liées aux
trous noirs.

Mots-clés: gravité modifiée, Galileon
cubique, trou noir chevelu, trou noir en ro-
tation, géodésiques
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