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Résumé

Méthodes statistiques pour l’imagerie vasculaire par résonance
magnétique : application au cerveau épileptique

L’objectif de ce travail de thèse est l’exploration de l’imagerie par résonance magné-
tique (IRM) pour l’identification et la localisation des régions du cerveau impliquées dans
l’épilepsie mésio-temporale. Précisément, les travaux visent 1) à optimiser un protocole
d’IRM vasculaire sur un modèle animal d’épilepsie et 2) à concevoir une méthode de
quantification de cartes IRM vasculaires basée sur la modélisation de la relation entre
signaux IRM et paramètres biophysiques.

Les acquisitions IRM sur un modèle expérimental murin d’épilepsie mésio-temporale
avec sclérose de l’hippocampe ont été effectuées sur un scanner 9.4 T. Les données
collectées ont permis de quantifier sept cartes IRM cellulaires et vasculaires quelques
jours après l’état de mal épileptique puis plus tard, lorsque les crises spontanées sont
apparues. Ces paramètres ont été employés pour l’identification automatique des régions
épileptogènes et des régions de propagation des crises. Afin d’augmenter la détection de
petites variations des paramètres IRM chez les individus épileptiques, une méthode de
quantification basée sur la résonance magnétique fingerprinting est développée. Cette
méthode consiste à identifier, parmi un ensemble de signaux simulés, le plus proche
du signal IRM acquis et peut être vue comme un problème inverse qui présente les
difficultés suivantes : le modèle direct est non-linéaire et provient d’une série d’équations
sans expression analytique simple ; les signaux en entrée sont de grandes dimensions ;
les vecteurs des paramètres en sortie sont multidimensionnels. Pour ces raisons, nous
avons utilisé une méthode de régression inverse afin d’apprendre à partir de simulation la
relation entre l’espace des paramètres et celui des signaux. Dans un domaine largement
dominé par les approches d’apprentissage profond, la méthode proposée se révèle très
compétitive fournissant des résultats plus précis. De plus, la méthode permet pour
la première fois de produire un indice de confiance associé à chacune des estimations.
En particulier, cet indice permet de réduire l’erreur de quantification en rejetant les
estimations associées à une faible confiance.

Actuellement, aucun protocole clinique permettant de localiser avec précision le foyer
épileptique ne fait consensus. La possibilité d’une identification non-invasive de ces régions
est donc un premier pas vers un potentiel transfert clinique.





Abstract

Statistical methods for vascular magnetic resonance
fingerprinting: application to the epileptic brain

The objective of this thesis is the investigation of magnetic resonance imaging (MRI)
for the identification and localization of brain regions involved in mesio-temporal lobe
epilepsy (MTLE). Precisely, the work aims 1) at optimizing a vascular MRI protocol
on an animal model of epilepsy and 2) at designing a method to quantify vascular MRI
maps based on the modeling of the relationship between MRI signals and biophysical
parameters.

MRI acquisitions on an experimental mouse model of MTLE with hippocampal
sclerosis were performed on a 9.4 T scanner. The data collected allowed the quantification
of seven cellular and vascular MRI maps a few days after the epileptic condition and later
when the spontaneous seizures emerged. These parameters were used for the automatic
identification of epileptogenic regions and regions of seizure propagation. To enhance the
detection of small variations in MRI parameters in epileptic subjects, a quantification
method based on magnetic resonance fingerprinting has been developed. This method
consists in identifying, among a set of simulated signals, the closest one to the acquired
signal. It can be seen as an inverse problem that presents the following difficulties: the
direct model is non-linear, as a complex series of equations or simulation tools; the inputs
are high-dimensional signals; and the output is multidimensional. For these reasons, we
used an appropriate inverse regression approach to learn a mapping between signal and
biophysical parameter spaces. In a field widely dominated by deep learning approaches,
the proposed method is very competitive and provides more accurate results. Moreover,
the method allows for the first time to produce a confidence index associated with each
estimate. In particular, this index allows to reduce the quantification error by discarding
estimates associated with low confidence.

So far no clinical protocol emerges as a consensus to accurately localize epileptic foci.
The possibility of a non-invasive identification of these regions is therefore a first step
towards a potential clinical transfer.
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Chapter 1

Introduction

1.1 Context and objectives

There is not one but several epilepsies. Together, they are the third most common
neurological disease, after migraine and dementia. In the public mind, epilepsy is
associated with convulsive seizures, absences, muscular rigidity, etc. But each epileptic
syndrome can manifest itself through a wide variety of symptoms and be accompanied
by mood, cognitive and sleep disorders [1]. Each one is also associated with its own
specific evolution. It is estimated that about 500 000 persons suffer from epilepsy in
France. Nearly half of them are under 20 years old. Internationally, the disease affects
over 50 million people with an estimate of 10 to 200 cases per 100 000 people depending
on income level and the country’s healthcare system [1]. Treatments for epilepsy are
mostly drug-based. Their goal is to compensate alterations in the excitatory or inhibitory
synaptic transmission and to limit the spread of seizures. Thanks to these treatments, the
disease can be controlled, i.e. with absence of seizures in 60 to 70 % of cases [2]. When
the patient develops resistance to the treatment and when there is clear identification of
the area responsible for the seizures, surgery can be considered as long as the area is focal,
unique and sufficiently distant from highly functional regions (e.g. involved in language,
motor skills, etc). In this case, in-depth examinations are carried out to assess the benefit-
risk ratio of such a surgery. When it is curative, the operation consists in removing or
disconnecting the epileptogenic area. In practice, this is only possible in a minority of
patients suffering from drug-resistant partial epilepsy but surgery is widely accepted as
an effective therapy for refractory epilepsy [2]. For the others, palliative approaches using
neurostimulation or vagus nerve stimulation methods are good options [3]. The objective
is then to reduce the frequency of seizures. These approaches consist in acting directly
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on the neuronal network responsible for the seizures, or in modulating its excitability [4].
In all these cases, the localization of the epileptic area is necessary to perform medical
intervention, and the question of which method should be used to identify this area still
is an important part of epilepsy research. Indeed, current means to locate the epileptic
foci are invasive and not accurate. Another fundamental issue in epilepsy research is
understanding how recurrent seizures (or chronic epilepsy) emerge. It is suggested that
at least 10 % of the population experience at least one seizure during their life [5]. We
already know that factors such as a metabolic abnormality (alterations of metabolic
homeostasis, cerebral hypoxia, etc.), the use of drugs and toxic substances (alcohol,
neuroleptics, medications used to treat mental disorders, some antidepressants, some
analgesics, etc.), exposure to a toxic epileptogen (carbon monoxide, neurotoxic gases,
etc.) or brain injury (trauma, stroke, tumor, etc.) may explain the occurrence of a single
and unique epileptic seizure [6]. But when no such accidental cause is involved, it is not
always possible to identify the origin of epilepsy. The onset of an isolated seizure does
not necessarily lead to chronic epilepsy, which is the consequence of mechanisms leading
to the formation of a neuronal network favorable to the emergence of epileptic seizures.
From a research standpoint, the question is: what tool can be used to characterize the
evolution of biological changes resulting or not in a condition of recurrent seizures? From
a clinical standpoint, can these techniques be used as diagnostic tools to predict the
emergence of new seizures in patients who recently had a seizure?

Nowadays, among diagnostic techniques, the electroencephalogram (EEG) is the most
specific method for both diagnosis and monitoring of the disease in several epileptic
symptoms [7]. It consists in recording the electrical activity of the brain using electrodes
placed on the scalp. The behavior, frequency and topography of abnormalities recorded
during seizures (spikes or spike-waves) or interictally helps to characterize the epileptic
syndrome and/or to locate the brain area involved. However, a low-voltage discharge
may not appear on the scalp EEG recording during seizure, especially if it is located deep
in the brain. In such a case, particular attention is paid to a well-localized flattening of
the EEG trace, or to the disappearance of well-localized interictal EEG abnormalities,
which are both good indicators of the region of seizure origin [8]. Since the EEG is not
a modality with a high spatial resolution, it cannot account for the whole brain area
which is involved in the discharge but it can help for identifying the core region of the
future implantation of deep invasive electrodes. Invasive EEG studies are associated with
additional risks that are only justifiable if there is a good chance of obtaining essential
localizing information on a potentially resectable area [7]. One problem with the use
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of intracerebral EEG recordings is that the number of electrodes is limited (10-20) and
most of the brain volume is not covered by the recording. Among other diagnostic
techniques, magnetic resonance imaging (MRI) has an excellent spatial resolution and
is already used to eliminate the lesional cause (traumatic, vascular, tumoral, dysplasia,
inflammatory or infectious) in epilepsy. Patients can also exhibit sclerosis that results in
an abnormal structural MRI, and the seizure types are classified as MRI-positive partial
epilepsy. However, it is still unclear whether this method can be used to identify and
delineate epileptogenic zones in cases when large modifications did not occur, such as in
the presence of sclerosis.

This work, initiated in September 2017, therefore aims at answering some of these
previous questions. In particular, can a vascular MRI protocol and associated quantifica-
tion methods be designed to detect and characterize the evolution of a chronic epilepsy
condition in an experimental animal model? Because MRI is already a routine procedure
in epilepsy and because the number of MRI scanners is about a thousand in France, it
could be an entry point to develop a robust method of localization and characterization of
epileptic regions. In this context, the Grenoble Institute of Neurosciences (GIN) offers an
adequate environment in terms of infrastructure, since it has a clinical and a preclinical
MRI imaging platform, located close to the hospital, and in terms of expertise with the
functional neuroimaging and brain perfusion team led by Emmanuel Barbier and the
synchronization and modulation of neural networks in epilepsy team led by Antoine De-
paulis. These expertises are particularly suitable for a collaboration with Nicola Marchi’s
cerebrovascular and glia research team at the Institute of Functional Genomics (IGF)
in Montpellier. These collaborators designed the Epicyte (cerebrovascular dynamics in
epilepsy, endothelial-pericyte interface) project funded by the French national research
agency (ANR). The project targeted a clinical impact with the potential to deliver:
1) pericyte damage as a novel mechanism of disease; 2) pericyte signaling as a novel
pharmacological target; and 3) specific vascular MRI read-outs matching cellular changes
and of pre-operative diagnostic value.

During this work, I collected MRI data using an experimental murine model on the
preclinical IRMaGe platform with the support of the staff, in particular Nora Collomb
for animal preparation. This part was particularly challenging, requiring a training
in MRI physics and animal handling. I took the animal experimentation course and
obtained the related certification, which are skills somewhat distant from my initial
engineering training in signal processing and computing (see my resume in appendix A).
Histological imaging to assess cellular and vascular modifications and thereby validate
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changes observed with MRI were performed by Emma Zub (IGF, Montpellier). Data
processing and software development have also been an important part of the work, see
appendix E.2. They were integrated into the development of a collaborative tool within
the GIN team. The main line of research of this work is a methodological part on the
reconstruction of quantitative MRI images. It has been identified that this development
could be necessary for the MRI data analysis in order to be more sensitive to the small
cellular and cerebrovascular changes observed in epilepsy. Inspired by the promising
magnetic resonance fingerprinting (MRF) method, a quantitative MRI approach, Julyan
Arbel and Florence Forbes from the Statify team at Inria provided and helped to develop
innovative statistical approaches. It was thus possible to formalize the methodology and
to develop high-performance statistical analysis methods for MRI reconstruction. My
contributions were to overcome some of the limitations of this method and to contribute
to the improvement of this new approach.

The work, initiated in September 2017, mainly focuses on these two aspects: on one
hand, the collection of MRI data on the preclinical platform, and on the other hand,
the development of statistical methods for data processing. The data collection was
achieved at a frequency of about one week per month during the first two years, requiring
regular implementations of data processing tools and improvements of experimentation
protocols. However, the main part of data processing was completed during the third year
together with the interpretation of the results. The methodological development was more
extensive during the first two years but has continued uninterrupted since the beginning
of the work. I also had the opportunity to co-supervise a master’s student for a 6-month
internship, which aimed at improving the performance of the simulation tool used in my
work and to investigate the deployment of the tool on the university’s computing grids
to speed up simulations. This work is not presented in the manuscript but a summary
of the master student’s results is given in appendix B. Finally, I participated in several
national and international congresses and conferences [9–13].
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1.2 Manuscript organization

This manuscript is organized in 6 chapters including this introduction.

• Chapter 2: As the work has been conducted along two lines of research, the
objective of this chapter is to provide sufficient information so that scientists in
each field can appreciate the entire work. An effort has been made for clarity and
conciseness. When necessary, illustrations are provided. In particular, this chapter
covers the structures and functions of the brain through a neuropathological angle,
epilepsy and experimental murine models of epilepsy. It also covers the principles
of the MRI, quantitative MRI methods, in particular, cellular and vascular, and the
MRF. In the section dedicated to MRF, we present the basic principles of MRF,
the vascular MRF and the evolution of quantification methods. Finally, the chapter
ends with the objectives of the thesis.

• Chapter 3: The first contribution is a quantitative MRI method based on MRF
framework. We propose a dictionary-based learning approach for estimation split
into three steps: 1) a quasi-random sampling strategy to efficiently produce an
informative dictionary; 2) an inverse statistical regression model to learn from the
dictionary a correspondence between magnetic resonance signals and physiological
parameters; and 3) the use of this mapping to provide both parameter estimates
and their confidence indices. This study is realized for the vascular application.

• Chapter 4: The previous analysis is completed by a comparison between the
proposed method and a reference dictionary-based learning method using a neural
network. This study is extended to standard applications and not restricted to
vascular MRF. It involves addressing new specific issues including aliasing artifacts
resulting from highly undersampled data and complex-valued signal samples. We
discuss the differences between the two models and the strengths and weaknesses of
each. Finally, we conclude on a possible combination of the two models to provide
more accurate and robust methods.

• Chapter 5: The second contribution is an MRI analysis using data acquired with
a 9.4 T scanner, to quantify a suite of cellular (relaxation times and diffusion) and
cerebrovascular (blood volume, microvessel diameter, tissue oxygen saturation and
blood-brain barrier permeability) parameters. Acquisitions were performed both
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1) after status epilepticus and 2) at spontaneous seizure stage, in a mouse model
of mesial temporal lobe epilepsy induced by a unilateral injection of kainate. We
applied basic classification methods providing multi-parametric MRI scores to inte-
grate all MRI information for automatic identification of regions involved in seizures.

• Chapter 6: The manuscript closes with a general conclusion and a discussion of
possible perspectives.



Chapter 2

State of the art

2.1 Brain and epilepsy

This section is a compilation of epilepsy and MRI background information on both of
which we relied during the acquisition and processing of data and during the interpretation
of the results. This part is of particular interest for the understanding of chapter 5.

We first introduce the anatomical basis of the human and the mouse brains. This com-
parison is intended to highlight the important similarities between the two species, which
justify the choice of the mouse as a standard animal model for many neuropathologies
and epilepsy in particular. The objective is the presentation of the cellular environment
that is altered and damaged in epileptic patients. Several in vivo observations were
validated on the resected tissue using histology. However, this validation approach does
not allow an extrapolation beyond the resected tissue. Animal models are thus essential
for more extensive and detailed studies. There are indeed several animal models since
there is not an animal model that replicates all characteristics of mesial temporal lobe
epilepsy. We focus on the major murine models of mesio-temporal lobe epilepsy. In a
final section, we summarize the main observations made with MRI in these experimental
animal models.
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2.1.1 Brain structure and function

2.1.1.1 Anatomy of the brain

The brain is composed of three main structures: the cerebrum, cerebellum and brainstem,
see figure 2.1(a). The brainstem supports vital functions of the autonomic nervous system
such as breathing, heartbeat and salivation. The cerebellum is involved in fundamental
functions, sometimes referred to as reptilian, such as movement coordination, balance,
learning motor functions, and controlling circadian and heart rhythms. Discoveries have
also shown the involvement of this structure in higher level functions such as speech
production and speech perception [14]. The cerebrum is separated into two parts: the
right and left hemispheres that are connected by the corpus callosum, see figure 2.1(b).
Each hemisphere is divided into four areas called lobes, themselves divided into sub-areas
that serve specific functions, see figure 2.1(c).

Here some functions associated to each lobe in humans:
• Frontal lobe: control of voluntary movement (motor strip), attention, short term

memory tasks, motivation, planning, problem solving, speech: speaking and writing
(Broca’s area)

• Parietal lobe: proprioceptive and mechanoceptive stimuli (sensory strip), language
processing

• Occipital lobe: visual processing
• Temporal lobe: decoding sensory input into derived meanings for retention of visual

memory and language comprehension (Wernicke’s area).
Most of the functions involve different areas of the brain that can be located in different
lobes, and there are very complex relationships between all of these areas. Some of
them are better known than others e.g. Broca’s and Wernicke’s areas, represented in
figure 2.1(c). A damaged Broca’s area may result in a disability to speak and write but a
preserved ability to read and understand spoken language, a phenotype known as Broca’s
aphasia [18]. A damaged Wernicke’s area in the left temporal lobe can cause the person
to speak in long sentences that have no meaning; add unnecessary words or even create
new words. The person can speak but has difficulty in understanding speech and is
therefore unaware of their own mistakes, a phenotype known as Wernicke’s aphasia [19].
This is the typical areas avoided during surgery, especially in case of resection.

The brain, is crossed by four fluid-filled cavities called ventricles. Inside the ventricles
circulates the cerebrospinal fluid that also circulates around the brain. The skull and
cerebrospinal fluid help cushion the brain from injury, like a sponge in a jar full of water.
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(a) Brain structures (b) Hemispheres (c) Lobes and functional areas

(d) Equivalent in mice

Figure 2.1 – Biological and functional segmentation of the human brain organ, adapted
from [15], and equivalent areas in mice, adapted from [16, 17].
(a) The 3-structure brain. (b) The two hemispheres. (c) The lobes and brain areas in humans.
(d) The 3-structure and brain lobes in mice.

There are many similarities in the structure and functional areas of the brain in mice
(figure 2.1(d)). It should be noted that the images do not reflect the organs sizes: the
human brain weight is approximately 1 300 g while it is 0.4 g for mice, i.e. an odds ratio
of 3 000 [17]. This information is important for imaging since the proportion of brain
volumes imaged is far from being equivalent for an identical spatial resolution.

2.1.1.2 Brain cells

In our study, we see the brain as composed of two major types of cells: neurons and glial
cells. Neurons directly ensure the functional component of the brain through the transfer
of information. The transmission of information from one neuron to another is usually
done by the passage of the nervous message through the body of the first neuron called
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axon, via the activation of different ion channels (neurotransmitters) at the synapse,
the junction between neurons. These small molecules that ensure the transmission of
messages from one neuron to the other at synapses, enable the activation of different
receptors and ion channels located on the second neuron. A change in electrical activity
is then generated on the second neuron, leading to the transmission of the neural signal.
Figure 2.2 illustrates a neuron and the message delivery path.

Figure 2.2 – Neuron, adapted
from [15].
A neuron consists in a cell body, den-
drites and axon. Neurons communicate
with each other by exchanging neuro-
transmitters across synapses.

Glial cells provide neurons with support and
protection. In the central nervous system, glial
cells include oligodendrocytes, astrocytes, ependy-
mal cells and microglia. Oligodendrocytes provide
support and insulation to neuron’s axon by creat-
ing myelin sheath [20]. Astrocytes realize several
functions such as providing the neurons part of
the nutrients and chemicals required by trans-
porting certain molecules in and out of the fluid
between cells in the brain. Microglia are key cells
in overall brain maintenance. They are constantly
cleaning the central nervous system of damaged or
unnecessary neurons and synapses, and infectious
agents [21]. Finally, ependymal cells are involved
in the production of cerebrospinal fluid and stud-
ies show that these cells act as a reservoir of cells
in the forebrain, which can be activated after an
injury [22]. Overall, glial cells are very reactive
when an injury occurs.

Non-invasive in vivo imaging of these cells would be ideal for the diagnosis and
understanding of pathologies, but no such imaging is so far available. However, ex
vivo imaging of these cells is possible and allows to establish a link between in vivo
observations, with spatial resolution > 100 µm and ex vivo images, with spatial resolution
< 1 µm. After in vivo experiments, the animals may be euthanized and the imaged organs
fixed. Tissue sections are realized in the organ at the level of the imaged slices and
the cells are revealed by histological methods (figure 2.3). Specific antibodies are used
for binding to the specific markers, highlighting the cell properties of interest in the
histological section. These antibodies carry a visible or fluorescent probe to enable its
imaging using a confocal microscope, see [23] for details.
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Figure 2.3 – Ex vivo cellular imaging, adapted from [24].
Seven transverse (coronal) hematoxylin and eosin-stained sections corresponding to the following
anatomical landmarks: OB = olfactory bulb, OC = optic chiasm, IF = infundibulum (and/or
median eminence), CN V = cranial nerve V (trigeminal), and CP = cerebral peduncle.

2.1.1.3 Vascular system

The blood brings materials for the brain cells to function properly: oxygen, carbohydrates,
amino acids, fats, etc. The blood also removes materials from the brain: carbon dioxide,
ammonia, lactate, neurotransmitter, etc. The brain blood supply is realized by two sets of
branches: the vertebral arteries and the internal carotid arteries [25]. The internal carotid
arteries split in two arteries: the middle and the anterior cerebral arteries (figure 2.4(a)).
The vertebral arteries come together at the level of the brainstem to create the midline
basilar artery. Finally, the basilar artery joins the blood supply from the internal carotids
in a cerebral arterial circle named the circle of Willis that supplies blood to the brain
via a multitude of arteries, see illustration in figure 2.4(a) and equivalent for mice in
figure 2.4(b). Note that similarities are directly observable between the vascular trees.
Then, these arteries split up into a network of increasingly smaller vessels until they
reach few micrometers in diameter, the capillaries. The mean diameter is 6.47 µm in
human brain [26], and diameters range from 4.6 to 5 µm in different rat cortical areas [27].
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Capillaries are thus much smaller than imaging spatial resolution, both in human and in
animals. Blood then flows in venules and veins drain blood back to the heart.

(a) (b)

Figure 2.4 – Comparison of human and mouse brain arteries, adapted from [25] and [28].
Figures show the major arteries of the brain. (a) Human ventral view. The enlargement of the
boxed area shows the circle of Willis. (b) Mouse ventral view.

2.1.1.4 Blood-brain barrier and capillaries

Except for gaseous exchanges that can be achieved at large vessel interface, all exchanges
between the vascular system and the extravascular environment occur at capillary level.
The wall of these capillaries is composed of multiple layers that form the blood-brain
barrier (BBB). The total length of capillaries in the human brain is about 600 km and they
represent a surface area of about 12 m2 [29]. The BBB protects the brain from pathogens,
toxins and hormones circulating in the blood. It is an extremely selective filter through
which materials needed by the brain are transmitted and debris are removed. The first
layer is composed of the endothelial cells saddled together by tight junctions, surrounded
by the pericytes [30]. According to [31], these cells have contractile properties and play a
role in the regulation of circulatory flow and the permeability of BBB capillaries [32]. In
fact, the BBB is a several layers structure including endothelial and pericytes, but also a
basal lamina (collagen) and the astrocyte feet that cover about 90 % of the BBB surface.
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2.1.1.5 Neurogliovascular unit

The complex functional and anatomical structure of the endothelial cells, the basal lamina
covered with pericytes and astrocytes, the microglia, the neurons, the oligodendrocytes,
and the extracellular matrix, is known as the neuro-glio-vascular unit (figure 2.5), which
particularly regulates regional cerebral blood flow and permeability of the BBB [33].

Figure 2.5 – Neurogliovascular unit, adapted from [34].
The neurogliovascular unit at the level of brain capillary is composed of vascular cells (pericytes
and endothelial cells), glial (astrocytes, oligodendrocytes, and microglia), and neurons.

Most of the glial cells react to a large scope of injuries, which is known as gliosis. Gliosis
involves the activation of glial cells that may proliferate and/or become hypertrophic
to occupy the injured brain areas [35]. Once activated, reactive glial cells secrete
neurohibitory factors to prevent neuronal growth and can eventually form a glial scar in
lesional brain areas [36]. The series of morphological and functional changes of astrocytes
is known as the astrogliosis. According to [37], astrogliosis includes a lot of reactivity
including the upregulation of structural protein, hypertrophy of the cell body, elongation
around the lesion core and release of inflammatory signals. Astrocytes interact with
other cell types, in particular glial cells to form a complex glial scar. Activated microglia
change their morphology, release pro- and anti-inflammatory factors, and enhance their
mobility and phagocytic activity [38]. Pericytes have been shown to migrate away from
brain microvessels in rapid response to hypoxia [39] and traumatic brain injury [40];
both of these conditions are associated with increased BBB permeability. In addition,
the extracellular matrix also interacts with the cerebral microsvacular endothelium.
Disruption of the extracellular matrix is associated with increased BBB permeability
in pathological state [41]. Matrix proteins can influence expression of tight junction
proteins [42].
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2.1.2 Epilepsy

2.1.2.1 General overview

Epilepsy is the third most common neurological disease and despite the many findings in
the field, the understanding of epilepsy remains a very important subject of study (6 524
PubMed entries for epilepsy in 2019). If in the popular mind it is often limited to episodic
seizures, in reality it is a disease that includes various symptoms, the most spectacular
of which are indeed these well-known seizures. Epilepsy has a high risk of disability,
psychiatric comorbidity, social isolation and premature death [1]. Diseases associated
with a primary pathology are now an integral part of epilepsy. In this context, the seizure
would only be the visible part, with parallel neurobiological, cognitive, psychological
and social consequences. In [43], the authors enumerate about 50 epilepsy syndromes.
A few have a clear genetic background, but most are multifactorial in origin, linked to
hereditary, lesional and/or environmental components. However, they share a common
feature: a synchronized and abnormal excitation of a large neurons group in a particular
brain area, which can secondarily spread to other areas of the brain. It results in a sudden
and intense electrical activity which causes the symptoms during seizures (involuntary
movements, auditory or visual hallucinations, absences, etc). The expression of these
symptoms depends on the cerebral zones in which the neurons involved are located or
the role of these neural cells in the systems that manage our motor skills, cognition,
emotions or behaviors.

The most typical manifestation of epilepsy is thus the epileptic seizure. We can
distinguish two seizure types: generalized and (multi-)focal seizures [44]. Generalized
seizures are related to the excitation and synchronization of neurons originating from
several spread regions over both cerebral hemispheres. They generally associate a
transitory consciousness loss (absence of a few seconds to a few minutes) with tonic
(muscle contractions), myoclonic (muscle shakes) or atonic (without muscle contraction)
motor signs. Focal seizures originate from a specific area of the brain, referred to as the
epileptogenic zone (EZ). Depending on the area, multiple manifestations result. The
symptoms of a focal epileptic seizure are numerous: language disorders, emotional signs
(fear, laughter, ecstasy, etc.), pain, vegetative signs (salivation, apnea, tachycardia, etc.),
automatic gestures and often explosive motor behavior. A loss of consciousness (or
contact with the outside world) is also often observed. The hyperexcitation of the focal
seizure can spread and thus leads to a generalized seizure.
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2.1.2.2 Neuronal activity

Epileptic seizures result from a transient abnormal synchronization of a population
of neurons that disrupts normal brain activity. It is this disruption that causes the
symptoms described in the previous section. The synchronization of neurons additionally
produces a particular electrical activity that can be recorded by EEG, i.e. by a set of
electrodes placed on the scalp. Within the EZ, seizures were assumed to originate from
increased excitation or decreased inhibition based on a simplistic model that only involve
communication between two neurons [45]. It has been shown that during a seizure,
the level of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) at the
synaptic level is lower than usual [46, 47], while the level of the excitatory glutamate
neurotransmitter, most prevalent in the central nervous system is abnormally high [46].
Epilepsy was previously considered to be the result of an imbalance between these two
neurotransmitters [48]. Today, this hypothesis alone is no longer sufficient: other cellular
pathways are implicated in the genesis of seizures, described in the next section. The
simplistic two-neuron communication model can be expanded to account for the presence
of complex neuronal networks. These networks are interconnected allowing seizures to
spread and different networks can be involved in the initiation, spread, or termination
of seizures [49]. One can also observe in epileptic patients, brief synchronous activity
of a group of neurons (duration of less than 70 ms) leads to inter-ictal spikes, which is
distinct from a seizure [50]. Indeed, the site of inter-ictal spiking can be separate from
the EZ. Transition from normal to epileptiform behavior is probably caused by greater
spread and neuronal recruitment secondary to a combination of enhanced connectivity,
enhanced excitatory transmission, a failure of inhibitory mechanisms, and changes in
intrinsic neuronal properties [45].

The EEG is the key examination in epilepsy for both diagnosis and monitoring of the
disease. The appearance, frequency and topography of abnormalities recorded outside
of seizures (spikes, sharp waves and spike-wave discharges) help to characterize the
epileptic syndrome and/or to locate the brain area involved [51], see figure 2.6(a). In fact
during seizures, the synchronization of neurons result in a periodic signal characterized
by specific frequency bands, see figure 2.6(b-c). In general, the EEG recording is
decomposed using a time-frequency analysis in order to investigate the evolution of these
frequency bands during seizures. For example, it is commonly accepted that regions
showing transient fast oscillations (> 15 Hz) are related to the EZ [52]. In [53], authors
have shown that EEG signal power in range 60-100 Hz increases after seizure onset in
regions suspected of being part of the EZ. During focal seizures, it is suspected that
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high-frequency oscillations (> 100 Hz) are involved [54]. The same work has shown that
these high-frequency oscillations are preceded by low-frequency oscillations (< 20 Hz),
which illustrates the need to get a temporal evolution of the frequency bands for the
characterization of EEG recordings, see figure 2.6(c).

(a) (b)

(c)

Figure 2.6 – Typical electroencephalography (EEG) recordings in epilepsy and time-
frequency decomposition, adapted from [55] and [56].
(a) Interictal focal temporal discharges in left mesial temporal epilepsy. (b) Three per second
spike and wave discharge during typical absence seizure. (c) Stereo-EEG recording and
associated time-frequency decomposition.

The prolonged atypical electrical activity is associated with a neuronal loss [57],
especially in the syndrome of temporal lobe epilepsy (TLE) associated with hippocampal
sclerosis (figure 2.7).
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(a) (b)

(c) (d)

Figure 2.7 – Histopathologic subtypes of hippocampal sclerosis in patients with temporal
lobe epilepsy (TLE), adapted from [58].
(a) ILAE hippocampal sclerosis (HS) type 1: pronounced pyramidal cell loss in both CA4
and CA1, variable but frequently visible damage to CA3 and CA2, and variable cell loss in
the dentate gyrus. (b) ILAE HS type 2: CA1 predominant neuronal cell loss and gliosis. (c)
ILAE HS type 3: CA4 predominant neuronal cell loss and gliosis. (d) No HS, gliosis only.
All stainings represent NeuN immunohistochemistry with hematoxylin counterstaining using
4-µm–thin paraffin embedded sections. Scale bar in (a) = 1 000 µm (applies also to (b-d)).

2.1.2.3 Glial and microvascular modifications

A prominent feature of epileptic foci in patients is an abnormal glial environment including
chronically activated astrocytes and microglia, and glial scars [59], see figure 2.8(a). This
dysregulation of glial functions may cause seizures or promote epileptogenesis [60].
Indeed, perturbation in regulation of ions, water, and neurotransmitters can promote
hyperexcitability and hypersynchrony [59]. Activated astrocytes and microglia lead to the
release of pro-inflammatory mediators and could cause sustained inflammatory changes
that facilitate epileptogenesis [61]. Therefore, the main mechanisms by which glial cells
could facilitate the development of epilepsy and seizures include an increased excitability
and inflammation.

As introduced in section 2.1.1.5, glial cells are also related to the microvascularization
and contribute to BBB function. In TLE, a significant increase of vascular density in
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the hippocampus of patients has been reported [62], see figure 2.8(b). The occurrence of
an angiogenic process has been confirmed by high levels of vascular endothelial growth
factor. This vessel proliferation is correlated with seizure frequency and altered BBB [62].
The increased vascularization overlapped with the loss of tight junction proteins. In [63],
authors showed that BBB openings correlate to seizure development, see figure 2.8(c).
There is evidence that an increase in BBB permeability promotes seizures, contributes
to epileptogenesis, and favors seizure recurrence in epilepsy but whether this BBB
dysfunction is the result or the origin of the seizures remains an open question [64].

These modifications have mostly been shown on resected tissue (figure 2.8). The
challenge for diagnosis is to detect these changes in patients by imaging. To investigate
this issue, most studies use animal models that allow the correlation between in vivo
imaging and post-mortem analysis.

(a) Astrogliosis (b) Vascular density (c) BBB permeability

Figure 2.8 – Cellular and vascular changes in patients with temporal lobe epilepsy,
adapted from (a) [65], (b) [62], and (c) [66].
TLE = temporal lobe epilepsy, HS = hippocampal sclerosis, and BBB = blood-brain-barrier.
(a) Astrocytic reaction in (1st column) control and (2nd column) TLE patient with HS.
(b) Vascularization in (1st column) controls, (2nd column) TLE patients, and (3rd column) TLE
patients with HS.
(c) Albumin extravasation through the BBB: (1st row) controls, (2nd row) patients that died
during status epilepticus, (3rd row) TLE patients.



2.1 Brain and epilepsy 29

2.1.3 Experimental murine model

In the following section, it should be understood that several models for seizures, epilep-
togenesis and chronic epilepsy have been developed in several animal species. Most of
the time, each model allows a number of specific questions to be answered. Because
our work is intended to detect epileptogenic regions for mesial temporal lobe epilepsy in
an experimental murine model, a certain amount of works are omitted in the following.
Among the introduced works, it was decided to consider both mouse and rat models
because the rat was considerably more extensively used in MRI studies. However, we do
not claim that these models are equivalent and despite the similarities, features of these
two species are somewhat different (see [67]).

2.1.3.1 Kindling and status epilepticus models of epilepsy

Taken together, the clinical findings presented in the previous section have to be replicated
in order to answer many unresolved questions. The identification of the seizure onset
is especially important for surgical treatment of MTLE. Another point is the under-
standing of the epileptogenesis for establishing the evolution of the epileptic disorder.
Models must therefore reproduce both the epileptogenesis period and the chronic period
histopathological, electroencephalographic and behavioral features encountered in focal
epilepsy.

Several experimental animal models provide high levels of similarity with human
epilepsy, but there is no experimental model that reproduces all features of MTLE. The
two most commonly used animal models of MTLE are kindling and status epilepticus
models. With the first one introduced in 1967 by Goddard [68], spontaneous seizures are
induced by repeated electrical simulations accompanied by stronger seizure responses until
the animal reached standard seizure response. At this point, the stimulation must continue
until the development of spontaneous crises (overkindling period in figure 2.9(a)). In the
status epilepticus model, a status epilepticus condition (continual seizures) is inducted by
chemical agents administration (among others, pilocarpine, kainate, pilocarpine-lithium,
flurothyl) that terminates within several hours. Then, spontaneous seizures emerge after
a latent period that lasts for weeks or months (figure 2.9(b)).

The advantages of the kindling model are the precise focal activation of brain sites, the
development of chronic epiletogenesis and the fact that the pattern of seizure propagation
and generalization is readily monitored [69]. In return, kindling experiments can be
relatively labor intensive because the electrodes are implanted into the brain and a large
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(a) Kindling model

(b) Status epilepticus models

Figure 2.9 – The development of epileptogenesis and emergence of recurrent spontaneous
seizures in (a) the kindling and (b) status epilepticus models, adapted from [69].
Arrows indicate electrical stimulation in the kindling model or the administration of chemical
agents (e.g. kainate and pilocarpine) in the status epilepticus model. (a) In the kindling
model, repeated stimulation triggers progressively stronger seizure responses. (b) In the status
epilepticus model, there is typically one bout of status epilepticus that terminates within several
hours. Spontaneous seizures appear after a latent (silent) period that lasts for weeks or months.

number of spaced simulations are required to develop spontaneous seizures. In contrast,
status epilepticus models (e.g. kainate [70] or pilocarpine [71]) are easier to produce
but more variable in their expression. The cytotoxic agents is usually administrated by
systemic injections. Many animals can be injected at a time and it does not require
to perform surgical procedures, which also means that surgical lesions are eliminated.
In addition, morphological changes are very similar to those observed in human TLE.
The disadvantages of status epilepticus models are that one has no control on the bio-
availability of agents in the brain and some animals require multiple injections before
status epilepticus and the mortality rate following systemic injections is high. However,
mortality can be reduced by multiple low dose injections until status epilepticus or by
stopping the status epilepticus by anesthetic substances administration [72].
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Figure 2.10 shows the research activities of these models since their emergence. We
observe that the pilocarpine and kainate (or kainic acid, KA) models have greatly
overcome the kindling model in the last 10 years.
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Figure 2.10 – Experimental rodent model of epilepsy research activities since their
emergence.

2.1.3.2 Status epilepticus models: general presentation and behavioral man-
ifestations

Status epilepticus models present a latent (or silent) period of weeks or months following
status epilepticus, i.e. absence of spontaneous seizures. However, during this period,
the presence of spikes and later spike clusters in EEG recordings, is associated with the
progressive development of chronic epilepsy [73]. Structural and functional modifications
occur leading to predisposition to synchronized neuron activity and thus contribute
to the emergence of spontaneous seizures. According to [74], the status epilepticus
models are usually used to study the transition of an episode of status epilepticus
into chronic epilepsy; the mechanisms of neuronal injury and susceptibility; synaptic
reorganization (sprouting); hippocampal sclerosis; seizure-changes in gene expression and
neurogenesis; and the development of new anticonvulsant drugs. Epilepsy may develop
because of an abnormality in brain wiring, an imbalance in inhibitory and excitatory
neurotransmitters, or some combination of these factors. Glutamate is the primary
excitatory neurotransmitter and GABA is the inhibitory neurotransmitter in the brain,
to name a few. Chemoconvulsants that enhance glutamatergic neurotransmission or block
GABAergic inhibition are then able to induce continuous seizures or status epilepticus
(e.g. kainate model), while enhancing cholinergic neurotransmission can also trigger
status epilepticus by cholinergic hyperactivation (e.g. pilocarpine model).
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The status epilepticus induced by pilocarpine and the one induced by kainic acid are
similar, leading to the development of spontaneous limbic motor seizures and mossy fiber
sprouting in the dentate gyrus [75]. The pattern of neuronal damage is similar to KA
model but pilocarpine induces greater neocortical damage, i.e. cell loss [76, 77]. One of
the drawback of the pilocarpine-systemic administrated model compared to kainate model
is the more extensive lesions observed [78], but systemic injections of KA also induce
large damage out of the hippocampal regions. The mortality rate following systemic
administration of KA in rats is between 5 and 30% [72], while the pilocarpine model
is known to be more reliable because almost all treated rats will develop spontaneous
seizures, independently of the duration of the status epilepticus. After the administration
of KA, animals show automatisms and a catatonic posture that often progresses to
myoclonic twitching of the head, forelimbs and rearlimbs. Typically, before and after the
administration, KA-treated rats also develop wet-dog shakes.

For both of these models, the cytotoxic agent can be delivered via systemic or
intracerebral administration (generally in the hippocampus [79, 80] and amygdala for
KA [81]). In fact, the behavioral, electrographic and neuropathological alterations that
follow intracerebral injection, are similar to those observed following systematic injection
and the mortality following injection is drastically reduced [72, 79]. More generally, the
variability of models is reduced. Using unilateral intrahippocampal KA administration,
we observe cell loss and complete degeneration of the hippocampus with enlargement
of the granule cell layer of the dentate gyrus weeks after injections. The intraamygdala
administration of KA could induce bilateral hippocampal lesions [82]. These lesions,
distant from the injection site, result from the propagation of the seizure activity. However,
these models require a surgery, which increases the labor required to produce animals.

2.1.3.3 Status epilepticus models: electroencephalographic features and neu-
ropathological changes

After injection and during status epilepticus typical EEG recordings are observed. Fig-
ure 2.11(a) shows the type of high amplitude, high frequency epileptiform EEG activity
that repeatedly occurs up to more than 100 times following KA and which is associ-
ated with either limbic or generalized convulsive seizures. The activity observed in
figure 2.11(b) can sometimes last for hours.

During the week that followed status epilepticus, spontaneous seizures are reported
and hippocampal EEG shows paroxysmal discharges, see figure 2.11(c-d). Note that
spontaneous focal and generalized convulsive seizures are very often indiscriminable
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Figure 2.11 – Electroencephalograms (EEG) of rats kainate model, adapted from [83].
(A) First typical EEG seizure determined 12 minutes after kainate injection. (B) Typical
epileptiform activity observed several hours after kainate. (C) Paroxysmal EEG activity
during a spontaneous focal seizure. (D) Paroxysmal EEG activity during a spontaneous
generalized convulsive seizure in an epileptic rat; (E) Atypical paroxysmal EEG activity during
a spontaneous nonconvulsive seizure in an epileptic rat. (F) Baseline EEG between seizures in
the chronic period of an epileptic rat.

in the EEG. Once spontaneous and recurrent seizures emerge, we observe around 6-7
generalizations per week [83]. Typically, the baseline EEG recordings of an epileptic rat
show interictal spikes (figure 2.11(f)).

A large loss of neurons is reported in the ipsilateral CA1, CA3 and the dentate
hilus, while the dentate gyrus is generally preserved. In the rat model, CA1 is less
damaged. However, a slight dispersion of the granule cells of the dentate gyrus has
already been reported, see figure 2.12. In the mouse model, proliferation and hypertrophy
of astrocytes and microglia has been shown [84]. Authors also reported the formation of a
pericyte-glial scar around hippocampus capillaries a few days after the status epilepticus,
which persists at spontaneous seizure period. Note that existence of epileptic discharges
has also been reported in contralateral hippocampus without cell loss [85]. According
to [67], the intrahippocampal kainate model in mice displays features of MTLE that
are somewhat different from those observed in rat using the same conditions but which
offers closer similarities with clinical features such as occurrences of focal seizures with
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Figure 2.12 – Thionin-stained sections of rats kainate model, adapted from [83].
Thionin-stained sections of (B, D) the ipsi- and (A, C) contralateral hippocampus of two
epileptic rats, which received intrahippocampal kainate injections into the right posterior CA3.
Sections (A, B) are from the same rat, whereas (C, D) are from another rat. In each figure, the
hippocampal formation is shown at ×25 magnification (scale bar = 1000 µm); inserts show the
hilus at higher magnification (×100; scale bar = 250 µm). Note the severe neuronal damage
in the ipsilateral CA3a and CA3c region and hilus (arrows) and dispersion of the ipsilateral
granule cell layer (D, arrow). The extensive neuronal loss of hilus neurons is associated with
reduced (shrunken) hilus volume. In (C, D), some neurodegeneration was also observed in
CA1 (average score 1.5). If at all, only very discrete changes (score 1) were observed in the
contralateral hippocampal formation.

mild behavioral component, EEG aspect of discharges and a characteristic pattern of
hippocampal sclerosis.

2.1.3.4 Status epilepticus models: imaging

In epilepsy, the role of imaging in the evaluation of accurate or onset seizure is critical to
exclude lesional causes, such as traumatic, vascular, tumoral, malformations, inflammatory
or infectious. In the absence of preceding events, there is supporting evidence for MRI
as the neuroimaging technique of choice due to better sensibility and specificity [86, 87].
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However, computerized tomography scan (CT) can be preferred due to more widespread
availability, rapidity of acquisition, and limited contraindications. In [86], authors
indicated, however, that 8-12 % of patients with initial negative CT scans, present positive
findings in MRI. Still, it is also possible for patients to have negative MRI. Classically,
MRI is used to qualitatively assess for an atrophic hippocampus with hyperintense T2

signals (described in the subsequent section 2.2.2.1), which is a defining trait of advanced
hippocampal sclerosis [88, 89]. Although qualitative imaging remains the gold standard
for diagnosis, there is a constant need to develop quantitative and automated methods
to identify hippocampal and extra-hippocampal damages. MRI can provide a precise
characterization of the internal architecture of the hippocampus, which allows better
detection of more subtle changes. One of the main targeted development is the detection
of the epileptogenic foci but one can also study the epileptic condition following the
status epilepticus in experimental model to identify biomarkers of the development of a
chronic condition. Of course, a robust method to reduce the number of negative MRI
scans is also very valuable.

A step forward is the use of more complex MRI acquisitions such as functional,
diffusion, perfusion with or without contrast agent administration among others. These
MRI techniques are described in section 2.3 but we propose to summarize here the
important findings associated with epilepsy. In fact, some parameters are very well
documented while others are sometimes completely absent from the picture. We propose to
report most of the last quantitative MRI findings in experimental status epilepticus models
summarized in table 2.1. We also propose to interpolate from few longitudinal studies,
the variations of the most documented MRI parameter values during the month following
the status epilepticus in figure 2.13. This duration includes the entire epileptogenesis
that ends with the establishment of a favorable environment for epileptic seizures. Note
that the graph was produced from several models/scanners.

Regarding cellular related MRI parameters, several works reported hyperintensity
in T2-weighted images after status epilepticus [90], which matches increased T2 values
reported in quantitative studies [91]. In this work, authors also reported increased T1

values. Usually, these parameters return to their initial values after 1-2 weeks [91].
Diffusion parameters are the most documented MRI parameters in epilepsy. Early
diffusion decreased first days after status epilepticus is followed by an increase in diffusion
at the chronic period [92–94]. Regarding vascular related MRI parameters, the blood
flow first increases and then, decreases at one week [91, 95]. Finally, several works have
shown a significant increase in BBB permeability [96–98].



36 State of the art

MRI
technique

Ref Experimental findings Models and
time after
induction

Matching
clinical
outcomes

Weighted
imaging

[90] - Hyperintensity in T2-weighted images Rats / KA
(in striatum)
1 day

[88]

[99] - Hyperintensity in T2-weighted images
(40-70% in ipsilateral hippocampus and
20-50% in ipsilateral amygdala) from first
hours to 7 days and reduced hyperinten-
sity (30% in hippocampus and 0-10% in
amygdala) at 21 to 120 days

Mice / KA
(intrahippocampal
injection)
1 h to 120 days

[88, 89]

Quantitative
relaxometry

[91] - Increase T1 (5-12% in hippocampus) at
1 to 3 days and normal after 2 weeks

Rats / pilocarpine
0 to 21 days

[100]

[91] - Increase T2 (15-20% in pyriform cortex,
20-35% in piriform cortex, 5-20% in hip-
pocampus) at 1 to 3 days and normal after
1 week

Diffusion
[92] - Decrease diffusion (ADC) (30% in piri-

form cortex and 7% in hippocampus)
Rats / KA
1 day

[89]

[93] - Early increase ADC (10-30% in pyriform
cortex, amygdala and hippocampus) at 3-5
minutes and decrease (9-30% in the same
regions) at 15 to 120 minutes

Rats / pilocarpine
3 to 120 minutes

[94] - Increase ADC (0-10%), at 4 days and
(10-15%) at 21-50 days

Rats / electrical
stimulation
1 to 250 days

[101]

Perfusion
[95] - Increase cerebral blood flow (CBF) at 14

days in amygdala, no changes before
Rats / pilocarpine
2 and 14 days

[102]

[91] - Increase CBF (45-65% in hippocampus),
at 1 to 2 days) and normal after
- Decrease CBF (15-25% in parietal cortex
and 5-30% in piriform cortex) at 3 to 14
days

Rats / pilocarpine
0 to 21 days

Susceptibility-
weighted

[103] - Increase cerebral blood volume (rCBV)
(100% in deep layers, to 200% in super-
ficial layers in cingulate/parietal cortex,
106% in hippocampus, 150-500% in cau-
doputamen and thalamic nuclei)

Rats / pilocarpine
12 hours

[104–106]

Dynamic
contrast-
enhanced

[98] - BBB breakdown only in the thalamus at
2 hours; it had disappeared by 6 hours. At
24 hours, edema was present in the amyg-
dala, the piriform and entorhinal cortices;
it disappeared over a 5-day period. In the
hippocampus, the T2-weighted signal un-
derscored the progressive constitution of
atrophy and sclerosis, starting at 2 days

Rats / pilocarpine
2 hours to 9 weeks

[107]
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MRI
technique

Ref Experimental findings Models and
time after
induction

Matching
clinical
outcomes

Dynamic
contrast-
enhanced
(continued)

[97] - Damaged BBB in piriform, enthorhi-
nal cortex, hippocampus and amygdala
(gadolinium leakage is 1.5-4 times higher
at 1 day than at 6 weeks)

Rats / KA
1 day to 6 weeks

[96] - Increase volume with damaged BBB at
2/7 days in amygdala, cortex and piriform
and reduction of the increase volume dam-
aged BBB at 1 month

Rats / paraoxon
2 days to 1 month

Table 2.1 – Overview of MRI findings in murine experimental models of epilepsy from
status epilepticus to the establishment of the chronic condition favorable to the occurrence
of spontaneous seizures .
When the injection site is not specified, the injection was not intracerebral. When the values
were not provided in the text, they were manually measured in figures.
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Figure 2.13 – Cellular and vascular MRI parameter evolutions after status epilepticus
until chronic period.
Curves represent the evolution of cellular and vascular MRI parameters induced by status epilep-
ticus: blue (T1), red (T2), yellow (apparent diffusion coefficient, ADC), purple (cerebral blood
flow, CBF), and green (damaged blood-brain-barrier, BBB). Four longitudinal/multiparametric
studies were used to interpolate these curves [91, 94, 95, 97] by modified Akima cubic Her-
mite interpolation after smoothing. Each marker represents a study: circle [91], triangle [94],
cross [95], and asterisk [97].
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2.2 Magnetic resonance imaging (MRI)

In this section, we briefly introduce how nuclear magnetic resonance (NMR) may be
used to form images with different contrasts between tissues placed into a magnetic
field. Different sources have been used to produce this section, in particular the two
websites [108, 109] and other works referenced throughout the text.

The introduced notions will help understand the stakes of quantitative MRI and
particularly magnetic resonance fingerprinting. First, the production of an MRI signal
relies on a multitude of phenomena, most of them interfering with others. Models used in
standard quantitative MRI are often based on many simplifying assumptions but complex
simulations can be performed for more accurate quantification. Second, quantitative MRI
is a time-consuming technique and is subject to many sources of image deterioration.
The robustness of quantification methods to these deteriorations is therefore required
and may eventually lead to accelerated acquisitions, detailed in a dedicated section.

2.2.1 Nuclear magnetic resonance

2.2.1.1 Magnetization

Placed into a magnetic field B0, some nuclei become comparable to magnets, with an
elementary magnetization. Under the action of a suitable radio-frequency (RF) pulse,
these nuclei can absorb a certain amount of energy: this occurs when the RF pulse and
elementary magnetization, are on resonance. In this work, the spin is assimilated to
a macroscopic magnetization that can be analyzed according to the laws of classical
electromagnetism rather than by those of quantum mechanics. For these nuclei, the
interaction of B0 with the spin generates a magnetic moment causing the spin to precess.

Exposed to a magnetic field B0, the magnetization adopts a precession movement
around the axis of the magnetic field characterized by a precession frequency ω0, known
as Larmor’s frequency, proportional to the value of the field:

ω0 = γB0, (2.1)

with γ the gyromagnetic ratio that is unique to each nucleus. In the following, we only
focus on hydrogen since water molecules is the main component of human tissues (65-70 %
in the body and 70-75 % in the brain [110]) and the target of standard clinical MRI. Note
that the gyromagnetic ratio for the hydrogen nucleus is γ = 2.67513 × 108 rad.s−1.T−1.
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At thermal equilibrium, the macroscopic magnetization M resulting from spins, has
a null transversal component since the phases of the spins are incoherent and a non-null
longitudinal component. The macroscopic magnetization is therefore colinear and in
addition, proportional to the magnetic field B0, see figure 2.14(a).

In this state, an RF pulse noted B1 applied perpendicular to B0 can affect the
equilibrium state of the spins. This phenomenon occurs if the frequency of B1 is identical
to the proton precession frequency, i.e. at resonance. Energy is thus delivered to the
system that moves away from its state of equilibrium during excitation. After the end
of B1 emission, the system returns toward its equilibrium position. This equilibrium
return period is called relaxation. The B1 pulse may be characterized by the angle it can
impose to the macroscopic magnetization. This angle depends on B1 amplitude and B1

application duration.
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Figure 2.14 – Excitation and relaxation, using a 90° B1 radio-frequency pulse in the
rotating frame.
(a) Protons are placed into a magnetic field B0 and (b) a 90° B1 RF pulse is applied. (c-e) After
the RF pulse ends, concomitant transverse and longitudinal relaxation processes. However,
the order chosen for the figures results from the fact that the transverse relaxation process is
shorter than the longitudinal relaxation process. Note that the blue disk represents the (xOy)
plane. (f) At the end of the relaxation process, protons return to the state of equilibrium (a).
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During an excitation with a 90° pulse, the magnetization flips to the plane orthogonal
to B0 (figure 2.14(b)). At the same time, the spins precess in phase and the transverse
component of the magnetization increases and reaches its maximum value. During
relaxation, the spin population returns to their thermal equilibrium level and spins
dephase. Figure 2.14 illustrates the different steps of the relaxation process after a 90°
excitation case.

2.2.1.2 Bloch equations

Felix Bloch introduced in 1946, a series of equations that describe the evolution over time
of magnetization [111]. Note for the record that Edward Mills Purcell also independently
described this same phenomenon of resonance and relaxation. They both obtained
the Nobel Prize in Physics in 1952 for their work. Thus, in the laboratory frame
where B0 is aligned with the axis z and B1 in the (xOy) plane, the magnetization
M(t) = (Mx(t), My(t), Mz(t)) is described by the following series of equations:

dMx(t)
dt

= γ
(

My(t)Bz(t) − Mz(t)By(t)
)

− Mx(t)
T2

, (2.2)

dMy(t)
dt

= γ
(

Mz(t)Bx(t) − Mx(t)Bz(t)
)

− My(t)
T2

, (2.3)

dMz(t)
dt

= γ
(

Mx(t)By(t) − My(t)Bx(t)
)

− Mz(t) − M0

T1
, (2.4)

where B(t) = (Bx(t), By(t), Bz(t)) is the total magnetic field, M0 = Mz(t = teq) is
the longitudinal magnetization at thermal equilibrium, and the parameters T1 and T2

represent the relaxation times of the system.

In a frame rotating at the Larmor’s frequency and after a 90° RF pulse, the solutions
of Bloch’s equations Mxy(t) and Mz(t) are:

Mxy(t) = M0 exp
(

− t

T2

)
, (2.5)

Mz(t) = M0

(
1 − exp

(
− t

T1

))
. (2.6)

We observe that:

• The transverse magnetization follows an exponential decreasing law of characteristic
time T2. This time corresponds to the duration necessary for the transverse
magnetization to reach 37 % of its initial value, i.e. Mxy(t = T2) = 0.37 × M0.
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• The longitudinal magnetization follows an exponential law characterized by relax-
ation time T1. T1 represents the time necessary for Mz(t) to reach 63 % of its
original value, i.e. Mz(t = T1) = 0.63 × M0.

Note that the T1 and T2 time values depend on the intensity of the magnetic field
B0, and that transverse relaxation occurs faster than longitudinal relaxation. Therefore,
T2 is less than T1 (can be equal e.g. in pure water).

2.2.1.3 Basic types of MR signals

The recorded MR signal S(t) corresponds to an electromotive force produced by the
precession of the magnetization M(t) during resonance. This is a manifestation of
Faraday’s law of induction, wherein a changing magnetic field induces a voltage in a
nearby conductor. In fact, only the transverse magnetization Mxy(t) generates the current
in the receiver coil.

After a 90° RF excitation, the resulting signal is called the free induction decay (FID),
a damped sine wave, see figure 2.15(a). In practice, we observe that the decay is faster
than expected by theory due to the inhomogeneities of the magnetic field. Therefore, the
exponential decays with time constant T∗

2 that reflects the combined effects of the T2

relaxation and of phase dispersion due to magnetic field inhomogeneities (T∗
2 ≤ T2). A

clever manipulation of the FID signal begins by applying an external dephasing gradient
field across the tissue. This gradient causes a calibrated change in local magnetic fields
and hence alters the resonance frequencies slightly across the tissue. This results in
accelerated dephasing of the FID. Then, the process is reversed by applying a rephasing
gradient with the same magnitude but with the opposite polarity to the dephasing
gradient. The resulting signal is called the gradient echo signal (GE), see figure 2.15(b).
This process affects neither T2 nor T∗

2. One can recover the level of the T2 relaxation.
For this, one adds a second excitation: a rephasing 180° pulse, after the 90°. This process
can refocus dephased components of the original FID into a spin echo (SE) at twice the
delay that separates RF pulses (figure 2.15(c)). We do not go into details on the spin
echo, additional information can be found in [112].

These basic sequences are at the origin of the two major MRI contrasts, depending on
the type of echo recorded: the SE sequences, characterized by the presence of a 180° RF
rephasing pulse and the GE sequences, more sensitive to magnetic field inhomogeneities.
Any other sequence is a sophisticated combination of RF pulses and gradients. The
objectives for any sequence are to enhance the signal of a particular tissue (contrast), as
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Figure 2.15 – Basic types of nuclear magnetic resonance signals.
(a) Free induction decay (FID) signal. (b) Gradient echo (GE) signal. (c) Spin echo (SE) signal.
Corresponding chronograms are reported below with the RF pulses (blue) and the gradients
(red).

fast as possible, while limiting artifacts and without altering the signal-to-noise ratio.
This subject is further discussed later.

2.2.2 Images and contrast

2.2.2.1 T1 and T2 contrasts

In first approximation, two acquisition parameters can be specified in MR imaging: the
echo time (TE) and the repetition time (TR) in order to generate a contrast between the
tissues. The TE corresponds to the delay between the excitation pulse and the acquisition
window, i.e. the transverse magnetization measurement time. The TR corresponds to
delay between two excitation pulses. Depending on these acquisition parameters values,
different magnetization values are obtained. As the magnetization is not the same for
the different tissues, one can obtain different contrasts. In particular, intermediate TR
(TR ≈ T1) and a short TE (TE ≪ T2) correspond to a T1-weighted image while a long
TR (TR > T1) and a long TE (TE > T2) correspond to a T2-weighted image (figure 2.16).
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Figure 2.16 – Magnetization evolutions, using spin-echo sequence.
White matter (WM) and grey matter (GM) transversal Mxy and longitudinal Mz magneti-
zations for (a) T1-weighted image, and (b) T2-weighted image acquired at echo time (TE).
T1/T2 = 600/80 ms for WM and 950/100 ms for GM. The smaller axes correspond to a zoom
in on the delay TE between excitation (solid line) and acquisition time (dashed line).

At this point, we only obtain contrasts between tissues. These contrasts are related
to the acquisition parameters and the quantification of T1 and T2 values (which are
independent of the acquisition parameters) is not available at this point. We see in
section 2.3.1 how to use the theory introduced in this section to quantify T1 and T2.

2.2.2.2 Spatial encoding

We have seen how to generate a signal/contrast using an RF excitation applied on protons
in a volume but the spatial coding has so far been omitted. A typical magnetic resonance
(MR) scan may contain million of voxels (generalization of the pixel in 3 dimensions),
each generating its own MR signal. The location of all MR signals is encoded following a
combination of different methods:

• Frequency encoding: magnetic field gradients are applied to locally modify the main
magnetic field, causing the resonance frequency to vary as a function of position.

• Phase encoding: a gradient is applied to provide a gain or loss in phase that persists
even after the gradient has been turned off.

We only describe 2D-multislice imaging, which consists in acquiring multiple Nx × Ny

resolution images of Nz slices of tissue. This acquisition results in Nx × Ny × Nz voxels.
The size of these voxels depends on the size of the volume imaged and the matrix, i.e.
the size of the organ imaged and the number of voxels. Typical fields of view (FOV) are
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25 × 25 cm2 for human brains and 2.5 × 2.5 cm2 for mouse brains, and a slice width of
1 mm for humans and 100 µm for mice (about 10 times smaller).

The first step in 2D-multislice imaging is to select the slice plane. Briefly, a slice-
selection gradient is applied along the direction perpendicular to the plane of the desired
slice. This gradient results in a linear variation of the resonance frequencies in that
direction. An RF pulse is simultaneously applied, whose frequency band matches the
range of frequencies contained in the desired slice. The combination of these two processes
insures that only protons located in the desired plane are excited. We will see how to
encode the localization according to the two directions of the plane.

The second step is to use a phase encoding gradient, let us say in the vertical direction.
The phase-encoding gradient modifies the precession frequencies of the spins, which
induces a phase shift. It persists when the gradient is stopped and until acquisition.
Thereby, protons on the same line precess at the same frequency but with modified phases
(figure 2.17(a)). To obtain an image, it is necessary to acquire multiple measurements
with different phase shifts, incremented regularly. For a SE sequence with Ny lines, Ny

acquisitions are realized, each with a different phase encoding gradient.
The last step in spatial encoding is to apply, during signal acquisition, a frequency

gradient in the last direction (horizontal in our example). It modifies the precession
frequencies in the horizontal direction throughout the duration of its application. It
creates columns of protons, which have an identical precession frequency (figure 2.17(a)).

(a) Phase and frequency encoding (b) Time and frequency domains

Figure 2.17 – Spatial encoding in MRI.
Figure (a) shows the phase and frequency encoding in 2D MRI. A(t), B(t), C(t) and D(t) are
MR signals of volumes delimited by white rectangles in 2D. Figure (b) shows these signals in
time and frequency domains during the two phase encoding steps.
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We present in figure 2.17, an illustration of the spatial encoding in a 2D slice. Note that
MR signals result from a population of protons contained in a volume. Figure 2.17(b)
shows that MR signals of a vertical line contribute to the corresponding frequency
magnitude. Considering a simple two-phase encoding: A(t) and B(t) for frequency ω1

and C(t) and D(t) for frequency ω2. In equation (2.7), we see that the combination of
the signal (A + B) results in a sine wave of the same base frequency ω1, but with an
averaged phase shift of (φ1 + φ2)/2.

S0(t) = A(t) + B(t)
= sin (ω1t + φ1) + sin (ω1t + φ2)

S0(t) = 2 sin
(

ω1t + φ1 + φ2

2

)
cos

(
φ1 − φ2

2

)
. (2.7)

From the single measurement S0(t), we cannot determine the phase contributions from
A(t) and B(t) individually. However, in this simple 2-line phase encoding, the individual
contribution can be obtained by performing a second acquisition S1(t):

S1(t) = A(t) − B(t), (2.8)

and it results that
S0(t) + S1(t)

2 = (A(t) + B(t)) + (A(t) − B(t))
2 = A(t), (2.9)

S0(t) − S1(t)
2 = (A(t) + B(t)) − (A(t) − B(t))

2 = B(t). (2.10)

This example is generalizable and it is therefore necessary to perform as many
acquisitions as the desired line number Ny. The duration of a 2D acquisition Tacq is
therefore:

Tacq = TR × Ny × NR, (2.11)

where NR is the number of repetitions.

2.2.2.3 k-space data

In MRI, instead of solving the equation system (2.9) for Ny acquisitions, we use the
Fourier transform (FT). The raw MR signal is acquired in the k-space (or Fourier plane,
frequency space) and its complex values are stored in a matrix. This matrix is then used
to form the 2D image using a 2D FT. Thus k-space holds raw data before reconstruction.
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The filling of the entire k-space cannot be achieved at once but it can be achieved in any
orders: popular methods include Cartesian (row-by-row), radial and spiral trajectories,
see figure 2.18(a, d, e). The Cartesian method was used nearly exclusively at the beginning
of MRI, but today all patterns are encountered. The major benefit of radial sampling
is a lower sensitivity to motion artifacts [113]. In radial acquisitions, the center of
k-space is oversampled and continuously updated due to the overlapping spokes that
repeatedly pass through this region. This redundancy can be exploited to detect and
correct for movement if the signal from the k-space center changes between views. In
return, the principal advantage of Cartesian sampling is that data elements are regularly
spaced and can be placed directly into standard array processors designed for efficient FT
computations. Radial methods generate data points that do not fall into a rectangular
matrix. To efficiently process such non-uniformly acquired data, these points must be
morphed into a Cartesian format.

Figure 2.18 – Examples of different k-space trajectories and their associated aliasing
artifacts, adapted from [114].
Acquired k-space data are indicated by solid lines, while missing data are depicted with dashed
lines. (a) Fully-sampled Cartesian data produces a full FOV image. (b) Uniformly undersampled
Cartesian k-space with an acceleration factor of R = 3 leads to coherent aliasing artifacts. (c)
With variable density sampling, a higher concentration of lines is acquired near the k-space
center, and the imaging artifacts are more diffuse. (d) Radial data can be undersampled by
skipping radial spokes at regular intervals, which leads to diffuse streaking artifacts. (e) Spiral
k-space can be undersampled by skipping spiral arms, which produces incoherent swirling
artifacts.

To shorten scan time, some works have proposed to sample a smaller number of phase
encoding lines in k-space; however, without further processing, the resulting images will
be degraded by aliasing artifacts, see figure 2.18(b-e). It is also demonstrated that scan
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time can be reduced using parallel imaging and simultaneous multislice. This subject is
not addressed in this work, details can be found in [114]. However, artifacts related to
spatial undersampling are of importance in magnetic resonance fingerprinting.

2.2.2.4 Noise in MRI

As opposed to acquisition artifacts, the noise is an unavoidable random signal that gets
added to all of our acquisitions [115]. It results from the thermal fluctuations of our
system: in the electronics and of the spins in the organ imaged. Johnson-Nyquist noise
or thermal noise of an electronic system is given by [116]:

σthermal =
√

4 kB R T ∆ν, (2.12)

where kB = 1.38.10−23J.K−1 is the Boltzmann’s constant, T is the temperature of the
system in K, R is the resistance in Ω, and ∆ν is the acquisition frequency band in s−1.

The reduction of noise in signals therefore involves the reduction of one or more of
these parameters e.g. MRI receivers can be cooled to cryogenic temperatures to reduce
the temperature and thus noise (as was done in this work). Concerning the resistance,
this value is the sum of the RF coils and associated electronic component resistances and
the patient resistance. The composition of biological tissues and in particular the presence
of ions causes the human body to act as a conductor. When a conductor is placed into
a magnetic field, it creates currents, which dissipate slowly. These currents induced in
the patient then induce currents in the coils that are picked up as noise [117]. This is
called patient loading and for large magnetic fields (higher than 1 T) it is significantly
larger than the intrinsic hardware noise. In fact, the patient loading is proportional to B2

0.
The acquisition frequency band is directly proportional to the FOV and depends on the
sequence gradient used. Finally, the MRI signal is measured in k-space and consequently
Fourier transform implies that every point in the original k-space affects every point
in the image. Without going into technical details and according to [117], the noise’s
standard deviation is increased by a factor

√
Nx Ny.

Because this noise is added to the MR signal of interest, to estimate the deterioration
of our signal by noise, the most meaningful measurement is the signal-to-noise ratio
(SNR), which is defined as the ratio between the signal magnitude Sm and the noise’s
standard deviation. Note that the repetition of acquisition and averaging of signals leads
to a reduction of noise’s standard deviation by a factor

√
NR. Overall and according

to [115], SNr is proportional to the volume voxel and the square root of the acquisition
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time:

SNR ∝ Vvoxel
√

Tacq , (2.13)

where ∝ means proportional to and Vvoxel is the volume of the voxel. In addition to the
noise, motion artifact and undersampling artifact can also contribute to increase the
apparent noise level.

2.2.2.5 Clinical application

The relevance of MRI for clinical applications depends on the following imaging charac-
teristics:

• Imaging resolution: the size of voxels must be at least of the order of the observed
anatomical structures.

• Quality of the signal: the noise and aliasing artifacts must be sufficiently small
so as not to affect the estimation of the parameters carried out on the signals, i.e.
smaller than the variations due to the physiological changes.

• Acquisition time: the image must be sufficiently fast to be considered for a routine
clinical application.

Most of the parameters that can be adjusted at acquisition (i.e. FOV, Nx, Ny, TR, NR),
affect several or all of these characteristics. The improvement of one property generally
leads to a deterioration of another and vice versa. For example, the reduction of the
voxel size for a given FOV implies an increased acquisition time (equation (2.11)) and/or
a decreased SNR (equation (2.13)). Most of the time, an MRI acquisition consists in
finding the appropriate compromise between these characteristics. In the next sections,
we describe how cellular and vascular biophysical properties can be quantified from
well-designed MR signals.
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2.3 Quantitative MRI

We saw in the previous section how to acquire MR images. These images are affected by
a combination of different factors, some intrinsic to the tissue (e.g. T1 or T2) and some
dependent on the specifics of the experiment (e.g. TR and TE). However, to compare
subjects with each other or to apply statistical methods on cohorts, it is necessary to
have access to quantified values. We regard an MRI study to be quantitative when we
obtain maps of meaningful physical or biological parameters that can be measured in
physical units and compared between tissue regions and among subjects. In this section,
we explain how to obtain these quantitative maps using MRI. We only describe the
sequences and parameters that have been investigated in the study of epilepsy. For
simplicity, in this work, we only consider two MRI parameter categories: cellular and
vascular. Even though it is not a perfect fit, we consider that the relaxation times are
into cellular parameters since these parameters are mainly defined by the extravascular
composition. Indeed, as the blood volume fraction is small (< 5 %; except when the voxel
corresponds to a large vessel), more than 95 % of the MRI signal originates from cells
(neurons, glia). We introduce these parameters in table 2.2.

Parameter Acronym Page

C
el

lu
la

r

Longitudinal relaxation time T1 50

Transverse relaxation time T2 50

Apparent diffusion coefficient ADC 51

Fractional anisotropy FA 51

V
as

cu
la

r

Cerebral blod flow CBF 54

Blood volume fraction BVf 57

Vessel size index VSI 57

Tissue oxygen saturation StO2 57

Signal enhancement ∆S 59

Time-to-peak TTP 59

Area under the curve AUC 59

Table 2.2 – Cellular and vascular parameters used for mesial temporal lobe epilepsy
model experiments and described in this section.
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For each parameter, we present the theory, the MR sequence acquisition used in this
work and then the associated standard quantification method (we do not consider here
more advanced quantification schemes). We propose a simple single line chronogram for
each MR sequence. For illustration, we provide a map of each parameter using the data
that we acquired on mice with a Bruker 9.4 T MRI scanner.

2.3.1 Relaxation times

In general, a known model of physical and physiological phenomena that describes the
evolution of the magnetic signal after specific RF pulses is used. For example, in the case
of the relaxation, we have seen that after a 90° pulse, the transverse magnetization Mxy(t)
and longitudinal magnetization Mz(t) follow the equations (2.5) and (2.6), respectively.
To obtain the temporal evolution, time-weighted images are acquired using a multi-echo
SE sequence (figure 2.19(a)) and an inversion recovery (IR) sequence (figure 2.19(b)),
which is the same sequence preceded by a 180° RF pulse. It is then sufficient to fit the
temporal evolution of the signals with the models S(t) to determine the T1 or T2 values,
respectively (figure 2.19(b, c)):

SIR(t) = CIR

(
1 − exp

(
− t

T1

))
, (2.14)

SMSE(t) = CMSE exp
(

− t

T2

)
, (2.15)

where CIR and CMSE are model constants.
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Figure 2.19 – Relaxation times MRI: T1 and T2.
(a) Inversion recovery (IR) and (b) multi-echo spin echo (SE) sequences, and (c, d) MR signals
associated, respectively. A Levenberg-Marquardt solver of non-linear least squares problems is
used on MR signals to fit (c) equation (2.14) and (d) equation (2.15). (e) T1 and (f) T2 maps.
Data were acquired at 9.4 T on an adult mouse, using a spatial resolution of 136 × 136 × 700 µm3.
Note that one can observe an up-down spatial bias on (f) the T2 map that suggests a proximity
effect at the receiving antenna.

Relaxation times (or relaxivities: R1 = 1/T1 and R2 = 1/T2) are certainly the most
used quantification and reflect tissue composition. Physiological parameters that can
influence T1 and T2 include cell type, tissue water content and myelin content. It
is also possible to perform more complex acquisitions or to inject contrast agents for
quantification of physiological parameters as presented in the following sections.

2.3.2 Water diffusion

The mechanical interaction of particles or molecules with each other under the effect of
thermal agitation produces pseudo-random movements at the microscopic level. The
trajectories are qualified of Brownian. In 1855, Adolf Fick established the law describing
the process of diffusion of molecules [118]. Fick’s law expresses a linear relationship
between the flow of a substance and the concentration gradient of this substance:

J = −D ∇C , (2.16)
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with J the flux of substance in mol.m−2.s−1, D the diffusion coefficient in m2.s−1 and ∇C

the gradient of the local concentration in mol.m−4. J measures the amount of substance
that will flow through a unit area during a unit time interval. The diffusion of the
molecules therefore occurs in the opposite direction of the concentration gradient, i.e. the
diffusion tends to homogenize the concentrations of the molecules in the environment.

The conservation law, also called Fick’s second law (in this case the equation (2.16)
is called Fick’s first law), describes the variation of concentration over time as a function
of the second space derivative:

∂C

∂t
= D ∇2C , (2.17)

with ∇2C the Laplacian of the local concentration in mol.m−5. To obtain an MRI signal
that is sensitive to the diffusion of water occurring in one direction of space, the pulsed
gradient spin-echo (PGSE) sequence, an MRI sequence of the classical SE type but with
diffusion gradients, was proposed in [119] and is still widely used today. Two magnetic
field gradients of equal intensity G and equal duration δ are applied on both sides of the
180° refocusing RF pulse (figure 2.20(a)). If there is a diffusion process in the direction
of these gradients during the period ∆ that separates the two gradients, then the second
phase shift does not fully compensate for the first and the attenuation of the signal may
be related to the diffusion D. Torrey modified the Bloch equations (2.2) to take into
account the diffusion process and solved these new Bloch-Torrey equations [120]:

SPGSE(b) = S0 exp (−bD) , (2.18)

with b = (γGδ)2
(

∆ − δ

3

)
, (2.19)

where S0 is the signal in the absence of diffusion gradients, G the gradient intensity in
T.m−1, δ the gradient duration and ∆ the time between gradients in second. The b-value
was introduced in [121] and represents the diffusion weighting. The equation (2.18)
assumes that the compartment is isotropic and therefore requires the same diffusion
coefficient in all directions.

The first and one of the most commonly used diffusion model is the diffusion tensor
imaging (DTI). The model substitutes the diffusion coefficient D by a symmetrical
positive-definite tensor D of order two. Thus to determine the tensor only 6 acquisitions
are necessary. The previous equation (2.18) becomes:

S(g, b) = S0 exp
(
−bgT Dg

)
, (2.20)
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where g is a gradient direction of norm 1 and gT is its transpose. For a given value of b,
6 acquisitions for 6 different values of g are enough to determine D. The diagonalization
of this tensor allows to express the diffusion in a new referential where the eigenvalues
(λ1, λ2 and λ3) represent the diffusion values in the 3 principal diffusion directions. From
this eigenvalue decomposition, different quantitative values can be calculated, such as
the apparent diffusion coefficient (ADC) and the fractional anisotropy (FA):

ADC = λ1 + λ2 + λ3

3 , (2.21)

FA =

√√√√(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2 (λ 2
1 + λ 2

2 + λ 2
3 ) . (2.22)

The apparent diffusion coefficient is usually given in µm2.s−1. This value is a good
indicator of the mobility of water molecules within a voxel. FA (between zero and one)
describes the degree of anisotropy of the diffusion process. A value of zero means that
diffusion is isotropic, i.e. it is equally restricted in all directions. A value of one means
that diffusion occurs only along one axis and is fully restricted along all other directions.

(a) PGSE sequence
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Figure 2.20 – Diffusion MRI.
(a) Diffusion MR sequence. (b) Apparent diffusion coefficient (ADC). (c) Fractional
anisotropy (FA). Data were acquired at 9.4 T on an adult mouse, using a spatial resolution of
136 × 136 × 700 µm3.
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Complex diffusion images that reflect various diffusion properties of a tissue can be
produced using the eigenvalues and eigenvectors. However, most of the time, we only
use the regular diffusion-weighted imaging to produce ADC images (figure 2.20(b)) but
FA images can also be computed (figure 2.20(c)). A more complex modeling of water
diffusion process exist but is beyond the scope of this thesis.

2.3.3 Perfusion using arterial spin labeling

Perfusion is the tissue irrigation by blood, at capillary levels. To measure the perfusion,
it is necessary to use tracers of blood circulation. These tracers can be of two natures:
endogenous or exogenous. In this part, we present the tracking of endogenous tracers in
the blood, i.e. hydrogen protons. This method, known as arterial spin labeling (ASL), is
particularly valuable for its non-invasive aspect compared to the contrast agent injection
perfusion methods described in the following sections.

In an ASL sequence, an RF pulse and a magnetic field gradient are used upstream of
the imaged volume. The idea is to « mark » the spins contained in the blood, which then
modify the magnetic signal when perfusing the imaged brain volume. The subtraction of
the images in the absence (called control images) and in the presence (called label images)
of labeled spin allows to remove the signal originating from the static tissues and to
reveal the changes caused by blood circulation. These changes depend on blood volume
and flow rate, which are the parameters known as cerebral blood volume or blood volume
fraction (BVf) and cerebral blood flow (CBF). In practice, ASL imaging produces a very
low signal close to the noise level and only the repetition of the acquisitions provides, by
averaging label-control image pairs, a correct signal-to-noise level.

Numerous ASL sequences have been proposed in recent years [122]. Among these
sequences, two main types of methods appear: pulsed ASL (PASL) and continuous ASL
(CASL). PASL sequences use very short RF pulses over large labeling areas, while CASL
sequences, initially proposed by [123], jointly implement continuous labeling using long
RF pulses located at the carotids (a few seconds) and a gradient in the direction of
flow. CASL sequences allow a higher perfusion contrast but have two major drawbacks:
magnetization transfer effects and high energy deposition in the tissues. The pseudo-
continuous ASL (pCASL) method, presented below, combines the advantages of both
CASL and PASL sequences.

Indeed, the works [124, 125] introduce the pCASL method using very short (≈ 400 µm)
repeated RF pulses as pseudo-continuous labeling. During the labeling period, positive
gradients are applied during the pulses and negative gradients between pulses such that
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the mean value corresponds to the gradient used in CASL. During the control period,
the average value of the magnetic field gradient is set to zero. As it induces limited
magnetization transfer effects, the pCASL sequence allows the acquisition of several
imaging slices (figure 2.21(a)).

The CBF can be computed using equation (2.23) and ∆M , the signal difference
between control and label acquisitions averaged over repetitions:

CBF =
λ∆M exp

(
ω

T1b

)
2 IE T1app M0t

(
1 − exp

(
−τ

T1app

)) , (2.23)

with IE =
∣∣∣∣MC − ML

2MC

∣∣∣∣ , (2.24)

where λ = 0.9 mL.g−1 is the blood-brain partition coefficient of water, τ is the labeling
duration, ω is the post-labeling delay, M0t is the equilibrium magnetization of arterial
blood, T1app is the apparent T1 of tissue and T1b is the T1 of blood. IE is the inversion
efficiency that is computed using control MC and label ML complex signals. These last
signals are measured in carotids using a specific sequence (figure 2.21(c)).
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Figure 2.21 – Perfusion MRI using arterial spin labeling.
(a) pCASL MR sequence, (b) label and control phase corrections, (c) inversion efficiency (IE),
and (d) cerebral blood flow (CBF). Data were acquired at 9.4 T on an adult mouse, using a
spatial resolution of 136 × 136 × 700 µm3.
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The pCASL sequence has its own limits, and in particular pCASL is very sensitive to
field inhomogeneities that are present at the labeling slice and this effect increases with
the magnetic field. In practice, at high fields, a correction is necessary in order to be able
to freely position the labeling slice [126]. Label and control interpulse phase increments
are optimized separately by means of two pre-scans. The mean perfusion is measured for
several phase combinations to determine the interpulse phase corrections (∆Φcorr,L and
∆Φcorr,C) that maximize the perfusion signal. This correction is then applied to acquire
the pCASL sequence (figure 2.21(b)).

2.3.4 Mapping vascular parameters using contrast agents

Exogenous contrast agents (CA) include intravenously administered substances that
modify the contrast of blood and organs. CA are not directly visible but are imaged
because they shorten the relaxation times T1 and T2 or because they increase the
magnetic susceptibility differences between blood vessels and surrounding tissues. In this
last case, the induced long-range magnetic field perturbations extend to adjacent tissues
and increase the transverse relaxation rates R2 and R∗

2. Therefore, a CA is characterized
by its magnetic susceptibility and its relaxivities (r1 and r2), i.e. its ability to locally
modify the magnetic field and the relaxation times of the molecule around, and also by
its size, charge, or hydrophilicity that determines the locations where it goes. We used
two main classes of CA (main characteristics given in Table 2.3):

• superparamagnetic iron oxide particles, used for their susceptibility effect and in
particular result in a decrease T∗

2-weighted signal.
• gadolinium chloride, paramagnetic, with the principal effect of signal enhancement

in T1-weighted imaging.
Currently, gadolinium-based CAs are the most commonly used in MRI and particularly
in clinical MRI, whereas ultrasmall superparamagnetic iron oxides (USPIO) are rather
limited to a pre-clinical application.

Contrast agent Relaxivities (s−1.mM−1) Hydrodynamic
r1 r2 size (nm)

Gd-Dota (Gadolinium) 3.3 4.1 1
P904 (USPIO) 4.0 92.0 25-30

Table 2.3 – Superparamagnetic iron oxide particle and gadolinium chloride contrast
agents characteristics. Given for 37 °C, 4 % human albumin serum and 4.7 T [127, 128].
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2.3.4.1 Ultrasmall superparamagnetic iron oxide

The first contrast agent presented induces magnetic susceptibility and relaxivity effects.
When such a CA is compartmentalized within a voxel, these effects result in a decrease of
the MR signal in an inhomogeneous magnetic field. This is what happens at vessel-tissue
interfaces, since CA is distributed only in the vascular compartment. This paramagnetic
substance acquires, in the magnetic field, a magnetization different from that of the
surrounding environment: on each vessel surface, and over few microns, a magnetic field
gradient appears [129]. This increase in the heterogeneity in the magnetic field of the
voxel yield a decrease in signal intensity due to an increased spin-spin dephasing (T2

relaxation). In a first approximation and when the blood volume fraction is small, the
decrease of the signal observed in a voxel depends on the concentration of the tracer
in vessels (i.e. the blood volume fraction), and on the fraction of blood in the volume.
Going a little further, we can also show that this signal decrease depends on the number
of vessels and their diameter [130]. Figures 2.22(b, c) show an example of T∗

2-weighted
images before and after the injection of USPIO. On these images, it is easy to distinguish
(in black because of signal decrease) the important vascular structures.

Using a multiple gradient echo sampling of the free induction decay and spin echo
(MGEFIDSE) sequence (cf. below), it is possible to directly evaluate two parameters: the
blood volume fraction (BVf) and the vessel size index (VSI), which are the proportion of
blood in the volume imaged in % and a weighted mean vessel radius [131], respectively.
VSI is computed as:

VSI =
∑R

i=1 r
4
3
i∑R

i=1 r2
i

− 3
2

, (2.25)

where ri is the radius of the ith vessel, and R the total number of vessels in the voxel.

MGEFIDSE sequence is composed of a first 90° RF pulse and then a 180° RF pulse.
Gradient echos collected after the first pulse capture information about the relaxation
rate R∗

2 (inverse of T∗
2) while the information acquired around twice the time between the

two pulses capture information about the relaxation rate R2 (inverse of T2). The theory
for determining BVf and VSI is presented in [132]. The changes in relaxation rates ∆R∗

2

and ∆R2 induced by the injection of USPIO are computed using gradient echo (GE) and
spin echo (SE) signal intensities, respectively. The pre- and post-injection relaxation
times T∗

2,pre and T∗
2,post are obtained by fitting the GE signal intensities to an exponential

function, see section 2.3.1. It allows to compute ∆R∗
2, while ∆R2 is directly calculated



58 State of the art

from the two SE signal intensities (pre-injection: SSE,pre; and post-injection: SSE,post):

∆R∗
2 = 1

T∗
2,post

− 1
T∗

2,pre
, (2.26)

∆R2 = 1
TE ln

(
SSE,pre

SSE,post

)
. (2.27)

Then, these changes in relaxation rates are used to compute BVf and VSI using the
following equations:

BVf = 3
4π γ B0 ∆χUSPIO

∆R∗
2, (2.28)

VSI = 0.424
(

ADC
γ B0 ∆χUSPIO

) 1
2
(

∆R∗
2

∆R2

) 3
2

, (2.29)

where ∆χUSPIO is the increase in blood susceptibility due to USPIO. Note that VSI
depends on the diffusion parameter ADC introduced in section 2.3.2.
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Figure 2.22 – Vascular structure MRI using USPIO.
Example of T∗

2-weighted images of a mouse brain (a) before and (b) 1 minute after the
200 µmol Fe.kg−1 body weight injection of USPIO. Data were acquired at 9.4 T on an adult
mouse: spatial resolution of 136 × 136 × 700 µm3 and spin echo at 50 ms. The average MR
signals for the 3 regions (rectangles) are provided in (c). Each point of the curves correspond
to one ‘Acq’ on the chronogram represented in (a) (the blank corresponds to the 180° pulse).

The tissue oxygen saturation (StO2) parameter is estimated using the quantitative
approach described in [133]. First, the relaxation time T2 is computed, see section 2.3.1.
Equation (2.30) is then fitted to the MR signal decay of the mutli gradient echo sequence
(MGE), which is given by:

SMGE(t) = S0 exp
(

− 1
T2

t − 4
3π γ B0 ∆χ0 Hct BVf (1 − StO2) t

)
, (2.30)

where ∆χ0 is the difference between the magnetic susceptibilities of fully oxygenated
and fully deoxygenated hemoglobin, which is set to 3.32 ppm (SI unit), and Hct is the
microvascular hematocrit, which is set to 0.357 (see [134]). S0 is a constant.

2.3.4.2 Gadolinium

Dynamic contrast enhanced (DCE) imaging measures changes in relaxation time T1

over time following an injection of Gadolinium. Immediately after the CA injection,
gadolinium circulates throughout organs and extravasates (i.e. leaks out of the vessels
into the surrounding area) in most of them with the exception of the healthy brain.
Indeed, Gadolinium does not cross the BBB except in pathological conditions where it
may be damaged. In this case, there is an extravasation of the CA, which reduces the T1

of tissues. In practice, acquisition starts before the injection in order to observe changes
induced by CA over time. The figure 2.23(a, b) shows T1-weighted images during the
acquisition and three examples of typical curves that can be observed.

There are two main groups of approaches to quantitatively analyze DCE MRI,
namely, parametric (analytical) techniques and nonparametric (model-free). Parametric
approaches aim to quantify kinetic parameters directly by fitting pharmacokinetic models
to the concentration curves. Pharmacokinetic models are based on different assumptions
and simplifications, see [135]. The advantage is that parameters are physiologically
interpretable but the underlying model assumptions may not be applicable to all tissues or
to damaged tissue. In addition, these approaches require the preliminary quantification of
the arterial input function and the conversion of signal evolution into the CA concentration
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evolution. Nonparametric approaches, on the other hand, derive empirical parameters
that characterize directly the shape of signal evolution. All these steps add noise and
can reduce reliability of the estimates. Empirical parameters correlate with physiological
pharmacokinetic parameters [136] but it is difficult to estimate the tissue’s physiological
quantities, such as vascular permeability. Examples of such parameters are shown in
figure 2.23(c) and computed from signal SDCE(t) by:

• Signal enhancement (∆S) is the difference between the maximum signal intensity
Smax and the baseline S0: ∆S = Smax − S0 .

• Time-to-peak (TTP) is the delay between the CA arrival and the peak, i.e. signal
intensity reaches its maximum value: SDCE(t = TTP) = Smax .

• Area-under-curve (AUCT ) for a time T in seconds (typically, 180):

AUCT =
∫ T

0
(SDCE(t) − S0) dt . (2.31)

In chapter 5, the term BBB permeability (BBBp) is used for AUC600, for sake of clarity.

Figure 2.23 – Dynamic contrast enhanced MRI using gadolinium injection.
(a) Example of T1-weighted images of a mouse brain at 5 different times after the beginning
of the acquisition. The gadolinium (200 µmol.kg−1) was injected at 60 seconds. Data were
acquired at 9.4 T on an adult mouse, using a spatial resolution of 136 × 136 × 700 µm3. The
average MR signals over time for the 3 regions (colored rectangles) are provided in (b). The
markers on curves indicate the values corresponding to the weighted images in (a). This mouse
presents an edema in the cortex (red rectangle). (c) Nonparametric parameters: time-to-peak
(TTP), signal enhancement (∆S) and area-under-curve (AUCT ).
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2.3.5 Conclusion

Conventional MRI, i.e. weighted imaging, is limited to reveal large morphological
abnormalities resulting in regional differences in signal intensities within an acquired
image. It means that MRI is intrinsically insensitive to subtle global changes that may
affect the entire brain. In this case, quantitative MRI that allows the comparison of
measurements in a single subject with normal values acquired in a healthy population
is required. Conventional MRI also depends on the clinician’s expertise in images
interpretation and the absence of quantities is not optimal for using mathematical
methods, e.g. classification.

However, most of quantitative MRI methods employed typically provide information
on a single parameter at a time. The acquisition of several quantitative parameters
thus require significant scan time. Moreover, these quantitative maps are often highly
sensitive to system imperfections [137]. Because of these scan time limits and a high
sensitivity to the measurement setup and experimental conditions, robust quantitative
multiparametric MRI remains an important research focus in MRI.
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2.4 Magnetic resonance fingerprinting (MRF)
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Figure 2.24 – PubMed entries for mag-
netic resonance fingerprinting from 2010
to 2020 (June).
The dashed line indicates the beginning of
the thesis.

In this section, we introduce the concept of
MRF and the sequences that were developed.
We then introduce vascular MRF and the sim-
ulation tool used in this study. We finally pro-
pose an overview of current quantification meth-
ods and current challenges. For more details,
two complete reviews have been proposed in
2017 [138] and 2019 [139]. Figure 2.24 illus-
trates the recent apparition of MRF and its
rapid development. The attractiveness of the
method derives from its flexibility to address a
wide range of MRI applications (e.g. vascular
in our case) and the resulting scientific activity
emerges from the multiple possible improve-
ments.

2.4.1 Basic principle

As explained in section 2.3, the standard quantification in MRI consists in fitting the
signal evolution acquired with biophysical models using minimization algorithms (e.g.
in this work, the Levenberg–Marquardt nonlinear least squares algorithm [140]). We
refer to this quantification method as the closed-form expression fitting (CEF) method.
The CEF method is often restricted to the measurement of a single parameter at a
time, using a time-consuming acquisition. Thus, the acquisition time of a large set
of parameters rapidly becomes impractical, particularly in clinical MRI. In 2013, Dan
Ma et al. introduced a new paradigm, called magnetic resonance fingerprinting (MRF)
that overcomes these constraints by taking a completely different approach to both
data acquisition and data quantification [137]. The standard MRF quantification was
introduced as an alternative to the least squares model fitting and thereby allows the use
of more sophisticated biophysical models.
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2.4.1.1 Acquisition sequences

Instead of using a repeated, serial acquisition of data for the characterization of individual
parameters of interest (here, T1 and T2), MRF uses pseudorandomized acquisition
parameters (here, TE, TR and flip angles), see figure 2.25 A-B. The term pseudorandom
refers to the reasonable flexibility in the choice of acquisition parameters since the
quantification is not driven by a biophysical model as with CEF, but by simulations.
However, for accurate quantification, one should limit the choice of acquisition parameters
to a range of values that allows the sequence to be sensitive to the biophysical parameters
under investigation. Then, the sampling of acquisition parameters can be randomly
generated [137] or based on other considerations, such as improving patient comfort by
encoding acquisition parameters from a music file in order to provide pleasing sounds
during acquisition [141]. Repeated acquisitions with variable acquisition parameters
cause the signals from a specific material or tissue to have a unique temporal evolution
or fingerprint from successively different system states. Note that the signal is called
fingerprint to refer to its uniqueness and this uniqueness of fingerprints seems to be
provided by a sufficiently large number of system states. In practice, a few minutes of
acquisition is enough to provide a sufficiently typical signal evolution to quantify several
parameters. However, to our knowledge, no theoretical framework has yet demonstrated
the uniqueness of fingerprints. In this work, we thus prefer to refer to a fingerprint simply
as an MRF signal. This signal, denoted by y, is a function of the multiple parameters
under investigation, denoted by x.

In the original work of [137], a major strength of MRF was that MRF acquisitions
were extremely spatially undersampled using a spiral trajectory (only 1/48th of full
k-space dataset was acquired for each time point). This contributed to the reduction of
acquisition time. In return, the undersampling results in severe artifacts in the image
associated to each individual time point (figure 2.25 C). Despite these spatial artifacts,
the signal evolution (figure 2.25 F) could still be used for MRF because high quality
individual time point images are not explicitly sought.

In the initial implementation, [137] proposed to used an inversion recovery–prepared
balanced steady-state free precession (IR-bSSFP) sequence. This sequence is known to be
sensitive to three parameters: T1, T2, and off-resonance frequency, which make IR-bSSFP
suitable to estimate relaxation times with MRF. However, MRF has been adapted for
other sequences in subsequent works, to overcome certain limitations, to confer additional
advantages or to measure additional tissue properties. For example, in [142], authors
utilized the SSFP sequence that is insensitive to B0 inhomogeneity, eliminates banding
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Figure 2.25 – Illustration of the MRF method, adapted from [138].
The flowchart shows an overview of the MRF framework as used for MR-True Fast Imaging
with Steady State Precession (TrueFISP) acquisition. (A) An example of variable flip angles
(FA) and repetition times (TR) used for this acquisition. (B) Sequence diagram showing the
excitation pulses, slice selection gradients, readout and k-space trajectory for each TR. (C)
Three undersampled images acquired in different TR. (D) Examples of four dictionary entries
representing four main tissues; cerebrospinal fluid (CSF) (T1 = 5 000 ms, T2 = 500 ms), fat
(T1 = 400 ms, T2 = 53 ms), white matter (T1 = 850 ms, T2 = 50 ms) and gray matter (T1 = 1 300
ms, T2 = 85 ms). (E) Pattern matching of the voxel fingerprint with the closest entry in the
dictionary, which allows to retrieve the tissue features represented by that voxel. (F) Intensity
variation of a voxel across the undersampled images. (G) Parameter maps obtained by repeating
the matching process for each voxel. M0 corresponds to the signal amplitude. B0 is the main
magnetic field intensity.

artifacts seen with bSSFP and can be readily adapted for body applications (i.e. large
FOV with high B0 inhomogeneities). In [143], authors adopted a pseudo steady-state
free precession (pSSFP) sequence to improve the spin-echo like signal properties of a
bSSFP based MRF acquisition and thereby reduce the effects of B0 inhomogeneity on
estimated tissue properties within a limited range of B0. Authors in [144] incorporated
an EPI based data acquisition approach into the MRF framework and a variation in TE
for simultaneously estimating T1 and T∗

2. A complete review of all MRF techniques can
be find in [145].

Other works focused on the method for other parameters, such as Su et al. [146] that
modified an ASL sequence (section 2.3.3) by using a variable labeling duration time for
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each TR, removing the post-labeling delay and ordering the labeling-control pairing in a
pseudorandom fashion. The MRF framework has also been extended to characterize the
properties associated with the microvascular network. In [147], the authors adapted the
MRF to measure BVf, mean vessel radius and StO2. We will return to this in a next
section.

2.4.1.2 Simulations

The original implementation of MRF used a simple Bloch simulation of a single isochromat
(i.e. spin) [137]. This approximation is very fast, but becomes inaccurate in the presence
of inhomogeneities of B0 inside the voxel that cause dephasing. To take this gradient
dephasing into consideration, the Bloch model can be extended by averaging over an
ensemble of spins, but this is computationally expensive and still an approximation. The
extended phase graph (EPG) model [148] is an alternative approach that has been used
previously in fast image with steady precession (FISP) signal simulations [142]. The
EPG method describes the spin system as several discrete configuration states using the
FT. This provides more accurate signal evolution compared to Bloch simulation when
the spin system is affected by inhomogeneous magnetic fields.

The challenge for simulation tools is generally the balance between complexity and
time, since in MRF, we observed that the number of simulations is of the order of 105-106

(10-100 values per parameters). For GPU implementation, the snapMRF tool (fully
parallel EPG) allows the simulation of 105 signals in less than 10 seconds [149]. In CPU
implementations, EPG-X [150] and PnP-MRF [151] tools allow the simulation of the
same 105 signals in 104 and 102 seconds [149].

2.4.1.3 Quantification

To estimate the parameters of interest, a large database, referred to as a dictionary, and
containing a large number of possible signal evolutions, is simulated using the introduced
biophysical model for a pseudorandomized acquisition (figure 2.25 D). The simulated
dictionary is noted Df , where f is the model. A search is performed by comparing one
acquired signal yobs and all the simulated signals y = f(x) in the dictionary to find
the best match according to an objective function d(·, ·), usually a standard distance
or dissimilarity measure (e.g. in MRF, the dot product). The tissue parameters are
then estimated as the combination of parameter values x that generated the best signal
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evolution match (figure 2.25 E), i.e. that minimizes the objective function:

x̂ = arg min
x ∈ Df

d(yobs, f(x)). (2.32)

Because, this data processing is particularly robust to high noise levels, its combination
with the highly spatially undersampled data acquisition enables the fast acquisition
of multiple parameters (figure 2.25 G) [137]. Additionally, the simulation can include
the contribution of system imperfections (e.g. B0 inhomogeneities) and thus overcome
this bias during quantification. Together, these aspects of MRF contributed to the
attractiveness of the framework for quantitative MRI and we will see how this framework
has evolved.

2.4.2 Vascular MRF

Christen et al. have shown the possibility of applying MRF to directly quantify BVf,
mean vessel radius and StO2 [147]. The authors called this framework vascular magnetic
resonance fingerprinting. We propose to reproduce the previous figure 2.25 for vascular
MRF in figure 2.26 in order to illustrate similarities and differences.

2.4.2.1 Acquisition sequence

In this work, the full MGEFIDSE signal samples were exploited compared to the classic
CEF approach introduced in section 2.3.4, which only used the samples before the 180°
RF pulse and the spin echo sample. Authors proposed to use the ratio of the pre- and
post-USPIO injection MGEFIDSE signal evolutions (section 2.3.4) as the fingerprint,
which reduced the effect of B0 inhomogeneities and T2’s effect on signals (figure 2.26 A).
For the moment, no other sequences have been used in vascular MRF.

The MRF implementation to vascular signals required more sophisticated simulation
tools than Bloch’s equations that are used for relaxation times related works.

2.4.2.2 Simulations

Using Bloch’s equations as a simulation model, the magnetization is homogeneous within
the voxel since the voxel itself is characterized by a single T1 and a single T2 values, and
placed into a constant magnetic field (figure 2.27(a)). For vascular MRF applications,
the voxel needs to be segmented into a vascular compartment and an extravascular
compartment, which results in an inhomogeneous magnetization through the voxel
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Figure 2.26 – Illustration of the vascular MRF method, inspired by [138] and composed
with images from [147].
The flowchart shows an overview of the vascular MRF framework as used for MGEFIDSE pre-
and post-USPIO contrast agent acquisitions. (A) MGEFIDSE sequence. (B) Three images
acquired in different TE and pre/post-USPIO injection. (C) Typical virtual voxel used for
simulation of the dictionary signals. (D) Pattern matching of the voxel fingerprint with the
closest entry in the dictionary, which allows to retrieve the tissue features represented by that
voxel. (E) Normalized intensity variation of two ROI across the images. (F) Parameter maps
obtained by repeating the matching process for each voxel.

(figure 2.27(b)). The complexity of the task calls for more sophisticated simulation tools
than those based on Bloch’s equations only.

Such a tool has been developed by Pannetier et al. [152]. This particularly complete
tool accounts for the intrinsic relaxations, the magnetic field perturbations induced by
susceptibility interfaces (vessels), the diffusion of the water protons and the compartmen-
talization of the contrast agent within the vessels (figure 2.27(c)). The resulting model
can be used to produce signals considering a large number of input parameters. Some of
the input parameters of the model are reported in figure 2.27(c). This simulation tool
opens the possibility of simultaneously quantifying T1, T2, ADC, BVf, VSI and StO2

but this would probably require the optimization of a new sequence sensitive to all these
parameters.



68 State of the art

(a)

(b)

(c)

Figure 2.27 – Sketch of the simulation algorithm, adapted from [152].
(a) Typical magnetization in a pixel using Bloch’s equations. (b) Typical magnetization in a
pixel using the vascular simulation tool. (c) Sketch of the simulation algorithm. In (c), only
the most important parameters have been represented. Data on the left of the gray boxes
are inputs to the model. Data on the right are outputs of the simulation. The simulation is
organized in three blocks. Geometry block initializes the geometry. Physiology block describes
the contrast agent behavior over time. NMR block estimates the MR signal.

In this version of vascular MRF, a dictionary was designed based on relatively simplistic
models for blood vessels and oxygen distribution (figure 2.26 C). Specifically, the authors
modeled the blood vessels as straight cylinders, with no preferential directions, and
with uniform oxygenation across the network, similar to those used in classic approach’s
mathematical models. In addition, the image volume is reduced to a 2-dimensional plane.
A major improvement on vascular MRF can be to take greater heterogeneity into account
to increase the vascular characterization in a 3-dimensional volume. This process would
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certainly even overcome the proposed vascular MRF implementation as it has been shown
by [153]. In this work, authors used real mouse angiograms and physiological values as
the substrate for the MR simulations. However, the generation of a dictionary for each
mouse angiogram took 70 hours on a computer cluster [153].

The consequence of using this simulation tool is that the simulation times are
considerably increased compared to Bloch simulation. For vascular MRF, authors report
that a single signal simulation took about 2.5 seconds on a desktop computer and the
largest dictionary of the study, composed of about 1 150 000 entries, was generated on
a 30-node cluster in about 24 hours [154] (about 8-9 days with a 4-core computer).
Compared to the CPU implementation of the PnP-MRF tool on a desktop computer, it
took about 75 times longer on a cluster. The processing of this amount of data is already
almost impossible on a desktop computer and the addition of a single parameter would
make the study impossible even on high-performance hardware.

At this point, we understand that the simulation constraints are very different between
the two MRF applications. For simple simulations, the stakes of standard MRF only
consist in managing the large volume of data simulated during quantification (i.e. time
and memory), whereas in vascular MRF, the simulation time is already a concern.

2.4.2.3 Quantification

Concerning quantification, the procedure remains the same as the one of standard MRF.
The parameter values that generate the vascular signal that minimizes the equation (2.32)
is used as estimate (figure 2.26 D).

While it has not been clearly shown that the vascular MRF method can improve
estimates on BVf and mean radius, this is mainly due to the lack of a validation solution.
It is most likely that the use of all signal samples should provide this improvement. What
is certain is that the method allows, in addition to BVf and mean radius, the quantification
of StO2, which is achieved by acquiring other sequences using CEF method. This results
in a reduction of the scan time. The main limit to be addressed to extend the vascular
MRF and quantify more parameters and/or acquire longer sequences, is the extensive
simulation times. An acceleration of the simulation tool can be considered (out of the
scope of this work) but one could also investigate the optimization of the reconstruction
methods in order to reduce the need for dictionary entries, i.e. for simulations.
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2.4.3 Evolution of MRF quantification methods

In this section, we first summarize introduced quantitative MRI workflows. Then, we
briefly review the progress achieved in MRF quantification.

Prior to the voxel-by-voxel CEF quantification, data are derived from fully (or at
least sufficiently sampled) acquired k-space data. Then signal evolutions are fitted with
a biophysical model, see figure 2.28(a). The MRF quantification, was introduced as
an alternative to least squares fitting approach and thereby allows the use of more
sophisticated models via matching procedure. As CEF, the MRF quantification is a
voxel-by-voxel quantification performed after FT and considering complex-valued signals.
The MRF requires a dictionary to perform quantification, which is why we named the
MRF quantification methods dictionary-based methods. The dictionary Df is composed
of N entries of coupled S-sample fingerprint and P -dimensional parameters (x, y). The
{y1, . . . , yN} are generated by running a simulation model f for N different values of
the magnetic and physiological parameters {x1, . . . , xN}.

In the original dictionary-based matching (DBM) method, a grid is generated with
sampled values in a pre-set interval for each parameter. The dimension of the grid
corresponds to the number of parameters. Then, to invert an observed yobs, it is
compared with the signals in Df to find the best match according to the objective
function d(·, ·). With Df = {(xn, yn = f(xn)), n = 1:N}, x is thus estimated as the
argument of the minimization introduced in equation (2.32). Solutions are sought within
the discrete Df only, while in non-constrained optimization, the minimization is performed
by considering the whole continuous space of parameter values. This DBM method is
in particular suitable for highly noisy and artifacted data, which means that one can
undersample the k-space during the acquisition, see figure 2.28(b). The performance
of the DBM method directly depends on the space discretization, i.e. the choice of the
number of dictionary entries and the number of parameters. The larger the number N

of entry (xn, yn), the more accurate the estimates but the larger the simulation time to
produce the dictionary and the memory requirement to store the dictionary. Even for
a moderate number of parameters, the required number of elements in the dictionary
renders grid search intractable on a desktop computer.

Additionally, each new yobs requires the computation and comparison of N matching
scores d(yobs, yn). This can be costly if N is very large and if many inversions are desired
(e.g. many voxels). When the dictionary is large, this might be problematic for storage
and memory. Another issue is that the exhaustive matching process, when coupled with a
large dictionary, can take too much time to compute. However, as spatial undersampling
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artifacts from a highly accelerated MRF scan can be severe, it is advantageous to develop
methods that bypass these limitations, preserve the main advantages of MRF and handle
these artifacts without sacrificing acquisition speed. Different works proposed the use of
singular value decomposition (SVD) to compress the dictionary and thus reduce its size in
the time dimension of fingerprints [156]. It was also proposed to project the dictionary in
smaller subspaces mainly to speed-up quantification [157–159]. However, the calculation
of the SVD can be difficult on a desktop computer when the dictionary is very large. A
randomized SVD approach can be applied to approximate the singular vectors of the
dictionary in this case [160], but this decreases the accuracy of the estimates. Since the
pattern matching used to find the best dictionary match is exhaustive, a group matching
strategy was proposed in [161]. All these accelerated DBM methods, e.g. compressed
dictionary, group matching, etc., belong to the workflow (figure 2.28(b)). Iterative

(a) Closed-form expression fitting (CEF)

(b) (Iterative) Dictionary-based matching (DBM)

(c) Dictionary-based learning (DBL)

Figure 2.28 – Comparison of the different quantification methods in quantitative MRI,
freely adapted from [155].
(a) Closed-from expression fitting (CEF). (b) Dictionary-based matching (DBM). (c) Dictionary-
based learning (DBL).
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DBM methods have also been proposed [157, 162–164] to push toward the solving of the
optimization problem, which has improved estimation performance. Note that the first
iteration of these methods is strictly equivalent to the standard DBM [164].

Other works, including us, have decided to take an alternative strategy by directly
learning the mappings between the tissue property and the signal evolution. The compact
representation of the mapping and the quantification speed allow these methods to
overcome previous constraints associated with large dictionaries. In return, an additional
(exhaustive) procedure is required. However, the learning is done only once and the
mapping can be reused for each new inversion. Mappings were approximated by machine
learning approaches, usually neural networks. Different architectures have been proposed
using either fully connected [165] or convolutional networks [166, 167]. We refer to
these methods as dictionary-based learning (DBL) methods, see figure 2.28(c). A non-
exhaustive summary of different DBM and DBL methods for MRF can be found in
table 2.4. For each work, we first describe the experiment conditions, i.e. sequence,
parameters and the number of dictionary entries. Then, we report when possible the
performance gains in quantification time, storage memory and estimate accuracy. Note
that the parameter M0 (proton density) is not mentioned in the table because this
parameter is not obtained using a dictionary but by a simple computation of the signal
norm.

Beyond fast matching strategies, few works have focused on reducing the number
of dictionary entries required for accurate quantification of tissue properties. In DBM,
a coarse version of the dictionary in the tissue property dimension was used, meaning
that the step size in properties such as T1 and T2 is relatively large [160]. Pattern
matching was first performed using the coarse dictionary. The dictionary was projected
to a low-rank subspace where a polynomial interpolation was applied to determine more
accurate T1 and T2 values. By applying interpolation to the coarse dictionary, the
coarse discretization of the tissue properties can be circumvented. A similar idea was
proposed in [159], using linear interpolation between dictionary entries to overcome the
large dictionary step size during quantification. In DBL, models allow a continuous
representation of values by approximating the mapping between signal and the parameter
spaces. Yet, among DBL works, Cohen et al. [165] is the only one to investigate the
impact of the sampling density of the parameter space. We suspect that works to reduce
the number of dictionary entries have not yet emerged because the current performance
of simulation tools for the most commonly used sequences in MRF (bSSFP, FISP)
allows very fast dictionary generation. We understand that the numerical simulations in



2.4 Magnetic resonance fingerprinting (MRF) 73

Ref & Focus
Dictionary Performance gains

N S P Time Memory Accuracy

D
B

M

[161] Group matching for
accelerating quantification

196 000 1 000
(FISP)

3
(T1,T2,∆B0)

70 1 0.98

[156] Dictionary
compression to speed up
the pattern recognition
algorithm

363 624 1 000
(bSSFP)

3
(T1,T2,∆B0)

3.4 5 ≈ 0.99
≈ 0.78(n)

10 169 1 500
(FISP)

2 (T1,T2) 4.8 60 ≈1

[160] Tractable dictionary
compression in large scale
problems and polynomial
dictionary fitting for
increased accuracy

3 312
coarse:

119

500
(bSSFP)

3
(T1,T2,∆B0)

0.82

5 970
coarse:
1 585

3 000
(FISP)

2 (T1,T2) 0.97

[157] Low-rank alternating
directions method of multi-
pliers quantification

24 921 841
(pSSFP)

2 (T1,T2) 12

D
B

L

[165] Fully connected NN
for fast, accurate and
robust to noise
quantification

79 900 600
(FISP)

2 (T1,T2) 5 000 1 1.3(n)

1 150 600
(FISP)

2 (T1,T2) 3
1.1(n)

[168] Complex-valued NN
for more accuracy than real-
valued NN

100 000 500
(bSSFP)

3
(T1,T2,∆B0)

20 5.8
1.2(n)

2-channel real/imaginary 70 3.1
1.2(n)

[166] Convolutional NN to
overcome time and storage
limitations

8 750 3 000
(FISP)

2 (T1,T2) 30
GPU: 100

105

[169] Noise addition and
random parameter space
sampling for optimal NN
training in high parameter
dimension

396 550 1 000
(bSSFP B1)

4 (T1,T2,
∆B0,B+

1 )
40 5.2

164 475 1 000
(FISP B1)

3
(T1,T2,B+

1 )
11 4

Table 2.4 – Overview of MRF quantification methods.
The focus of each work is summarized and the dictionary design is then provided i.e. number of
dictionary entries N of S-sample signal and P -parameter combinations, and the MR sequence.
Performance gains are the quantification time acceleration, reduction of memory requirement
and estimation accuracy. ≈ indicate coarse approximations from figures, other values have been
extracted directly or computed from the results provided in papers. Note that gains > 1 (resp.
< 1) indicate increased (resp. reduced) performance. (n) indicates accuracy gains on noisy data.
Abbreviations: ∆B0: static field inhomogeneity, B+

1 : B1 excitation RF field.
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vascular MRF are specifically computationally expensive, but a compact and accurate
fingerprint representation is of key importance in MRF. In [165], authors reduced the
initial dictionary density (69 000 entries and 2 parameters) from 2 to 60 fold, see the
impact on estimate errors in figure 2.29. Using noiseless signals, the NN is more robust
to the decreased dictionary density than DBM, the ratio of root mean square errors
(RMSE) obtained using 1/2th and 1/60th of the dictionary entries, are 6 for T1 and 4.5
for T2, while for DBM the ratio are 14.6 for T1 and 11.3. Using 1 % noise level corrupted
signals, the NN ratio are 1.6 for T1 and 1.1 for T2 and the DBM ratio are 1.2 for T1 and
1.1 for T2. These results therefore suggest that DBL methods are more promising than
the standard DBM approach for reducing the size of the dictionary.

Figure 2.29 – Impact of dictionary reduction on T1 and T2 MRF estimation accuracy,
adapted from [165].
RMSE of the MRF dictionary matching (open circles) and NN quantification (closed circles) for
the different undersampling factors and noise levels tested. For the noiseless acquisition (blue
curves) the error in the NN quantification was 2 fold smaller for T1 and 4 fold smaller for T2 at
the largest undersampling factor tested. For the noisy acquisition (red curves) only tissues with
T2 > 11 ms were included in the error calculation for the MRF dictionary matching whereas
all tissues were included in the NN quantification error. Nevertheless, the NN quantification
error was still smaller or equal to the MRF error for all undersampling factors tested.

By considering the latest developments in MRF quantification, one can improve the
estimation relying on MRF quantification methods that require less dictionary entries
to perform accurate and fast estimation. Accuracy appears to be achievable through
continuous data representation, spatial considerations and complex-valued data processing.
Compression or learning of the dictionary seems to be the most effective approach to
limit extensive quantification time and excessive memory requirements. To optimize
and implement MRF in large scale or in time-consuming simulation (e.g. vascular), it is
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therefore required to design a method that maintains a good parameter quantification
accuracy but reduces significantly the number of dictionary entries. However, very few
works address this issue.
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2.5 Challenges and requirements

The main stake of this thesis is to develop an MRI acquisition and data processing
protocol for the identification and characterization of MRI changes induced by an
epileptic condition in an experimental animal model.

We decided to work with two kainate-induced status epilepticus models. The first
model, induced by intraperitoneal kainate injection, is easier to produce and allows the
imaging of animals early after status epilepticus. To investigate the early modifications,
the animals may be imaged over time (typically, from 24 hours to 1 week). The second
model, induced by intrahippocampal kainate injection, is less variable in its expression
and causes an hippocampal sclerosis, which allows the investigation of chronic condition,
after the emergence of spontaneous seizures. Again, animals may be imaged over time to
characterize the epileptogenesis period and, at least 4 weeks after injection, to characterize
the period when chronic seizure occurs. The validation of the epileptic condition can be
done early by identifying the symptoms (automatisms and a catatonic posture, myoclonic
twitching of the head, forelimbs and rearlimbs) a few hours after injection, i.e. during
status epilepticus. One can also identify specific EEG patterns or hippocampal sclerosis
on anatomical MRI images for the intrahippocampal injection model.

Both cellular and vascular MRI parameter changes have been reported, among these
parameters, relaxation times T1 and T2, diffusion, perfusion, vascular density, and BBB
leakage. However, most of the MRI vascular findings are related to large vessel while
changes at the capillary levels have only been reported using ex vivo imaging or resection
tissues in patients. One can add to the well-documented cellular protocols, acquisitions
with iron oxide based contrast agents to determine the fraction of blood volume as well as
the size of the capillaries, as observed using histology. Concerning the BBB integrity, MRI
findings were obtained after long gadolinium infusion. One can also investigate imaging
changes in BBB permeability by injecting a bolus of gadolinium to reduce acquisition
time and perform the acquisitions necessary for the quantification of all the parameters
in a time compatible with the duration of animal anesthesia, i.e. less than two hours.

As small variations of these parameters are expected, methodological developments for
the processing are conducted in parallel. The MRF approach promises to provide better
accuracy in estimating parameters and thus facilitate the detection of small changes and
this point has to be confirmed. The objective is to develop a method that allows the
accuracy of very fine grids to be achieved with no more than a few hours of simulations for
the dictionary, i.e. in vascular MRF, about 104 signals. To be viable, the method should
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provide a reconstruction of a multi-slice acquisition (about 106 voxels) in a few minutes
on a desktop computer. The method must preserve as much as possible the advantages
of MRF, i.e. robustness to thermal noise and undersampling artifacts, flexibility and
ease of use, etc.

With these objectives in mind, we therefore performed MRI experiments on epileptic
mouse models and develop MRF methods in parallel. MRI Data were analyzed using the
existing and the proposed methods, as developed in the next chapters.





Chapter 3

Bayesian inverse regression for
vascular MRF quantification

To reach a good accuracy, the matching MRF quantification requires an informative
dictionary whose cost, in terms of design, storage and exploration, is rapidly prohibitive
for even moderate numbers of parameters. In this study, we develop a robust and scalable
multi-parametric dictionary-based reconstruction to measure vascular parameters. Our
proposed method is compared to MRF matching on two types of synthetic signals:
scalable and vascular MRF signals. A manuscript has been submitted to the journal
IEEE Transactions on Medical Imaging [170]. Here the manuscript has been adapted.

3.1 Introduction

Magnetic resonance fingerprinting (MRF) is a novel approach to quantitative magnetic
resonance imaging that allows the estimation of multiple tissue properties in a single
acquisition [137, 171]. The acquisition, which consists in repeating measurements with
varying experimental conditions, generates a signal evolution (or fingerprint) that depends
on the parameters of the studied tissue. To estimate these parameters, a large database,
referred to as a dictionary and containing a large number of possible signal evolutions,
is simulated from biophysical models. A comparison is performed between an acquired
signal and the signals in the dictionary to find the best match according to an objective
function. The tissue parameters are then estimated to the values that generated the
best signal evolution match. In MRF, parameter estimation accuracy therefore depends
on the number of dictionary entries, which increases exponentially with the number of
parameters. For applications with many parameters such as vascular MRF [147], the
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required memory size and simulation time as well as the parameter estimation time (or
quantification time) quickly become a limit.

To compress the dictionary while limiting the loss of information, several authors have
used singular value decomposition to project the dictionary in a well-chosen subspace [156–
161]. However, this compression procedure generally decreases parameter accuracy. It
has also been proposed to directly find a mapping from the fingerprints to the parameter
space using kernel regression [172] or neural network approaches [165–169, 173–175]. The
resulting compact representation offers the advantage over the discrete MRF grid of
a continuous exploration of parameter values. These approaches significantly reduce
the quantification time, but not the simulation time due to the need to span a high
dimensional fingerprint space. To limit the simulation time, Cohen et al. [165] studied
a mapping obtained from a sparse set of dictionary entries. The study, carried out
with only two parameters, led to a modest reduction of dictionary entries (up to 60).
Consider a dictionary of 10 × 10 entries simulated in 1 hour. If the number of parameters
increases from 2 to 7 parameters, and always considering 10 values per parameter, then
the dictionary computation time increases from 1 hour to more than 11 years. In this
case, an approach that greatly reduces the need for simulation, continuously represents
the parameters without loss of precision, relies on an explainable model and reduces the
quantification time becomes highly desirable [9].

To reach this goal, we adopt in this work a mapping approach that circumvents the
difficulty of learning a high-to-low mapping from a high dimensional fingerprint space to a
low dimensional parameter space, learning instead the much less problematic low-to-high
reverse mapping from parameters to fingerprints. More specifically, we use the Gaussian
locally linear mapping (GLLiM) model [176], which allows both a tractable learning
of the low-to-high mapping and a subsequent analytical expression of the high-to-low
or signal-to-parameter mapping. Furthermore, unlike most other regression methods
that focus on pointwise predictions, GLLiM provides a full posterior distribution per
fingerprint. This distribution can then be used to compute an estimated value and a
confidence index for each parameter, using respectively the posterior expectation and
standard deviation.

In this vascular MRF study, the proposed dictionary-based learning (DBL) method
and the standard dictionary-based matching (DBM) method are compared. Synthetic
scalable signals are first used to assess quantitatively the methods’ performance while
increasing the number of parameters. Vascular MRF signals are then considered both
through simulations and real data acquired in tumor bearing rats.
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3.2 MRF as an inverse problem

In inverse problems, the overall issue is to provide information on some parameters of
interest x given an observed signal y, using a known direct or forward model that describes
how the parameters x translate into a signal y (figure 3.1). Among inverse problems,
MRF exhibits the following difficulties: 1) the direct model is (highly) non-linear, as a
(complex) series of equations or simulation tools; 2) the y’s are high-dimensional signals
and 3) many y’s need to be inverted (one for each voxel in an image); 4) the vector of
parameters x is multidimensional and predicting each component of x independently is
likely to be sub-optimal.

Parameters x Signal (or fingerprint) y

Forward: y = f(x)
Simulation

Inverse: x = f−1(y)
Quantification

Figure 3.1 – Magnetic resonance fingerprinting as an inverse problem.

To account for possible sources of uncertainty, we focus on a statistical modeling
assuming that the forward model is described by a likelihood and a prior distribution.
The likelihood function is linking parameter values x to a probability of observing signal
y, Lx(y) = p(y|x). A natural assumption is that Lx(y) is a Gaussian distribution
N (y; f(x), Σ) centered at f(x) where f is the known simulation function that links the
physical and physiological parameters to the fingerprint and Σ is a covariance matrix
accounting for measuring or modeling imperfections. The parameter prior distribution,
denoted by p(x), encodes in turns information on the possible parameter values. Standard
MRF uses a finite grid of values, which corresponds to a very particular discrete prior.
This probabilistic point of view allows, with the Bayesian framework, to derive a posterior
distribution p(x|y) = p(y|x)p(x)/p(y), which provides for any given y, a characterization
of x by a probability density function more informative than a single point prediction of
x. It corresponds to a richer inverse model but is not usually available in closed-form
and requires approximations to be usable in practice.

More generally, most methods to solve inverse problems can be classified into two
main categories, optimization-based and learning-based methods. In the next section,
we refer to standard MRF as a matching method. We show that it can be seen as a
penalized optimization, which does not require statistical modeling, while the method we
propose next belongs to statistical learning approaches.
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3.2.1 Dictionary-based matching (DBM) method

MRF requires a large database Df , referred to as a dictionary [137]. It is made of N

entries of coupled fingerprint and parameters (x, y). The S-dimensional fingerprints
{y1, . . . , yN} are generated by running the simulation model f for N different values of
the P -dimensional magnetic and physiological parameters {x1, . . . , xN}. In the DBM
method, a P -dimensional grid is generated with sampled values in a pre-set interval for
each parameter. Then, to invert an observed yobs, it is compared with the signals in
Df to find the best match according to an objective function d(·, ·), usually a standard
distance or dissimilarity measure (e.g. in MRF, the dot product). With Df = {(xn, yn =
f(xn)), n = 1:N}, x is thus estimated as the argument of the following minimization:

x̂ = arg min
x ∈ Df

d(yobs, f(x)) . (3.1)

Solutions are sought in Df only, while in a non-constrained optimization the minimization
is over the whole continuous space of parameter values. The performance of the method
depends directly on the space discretization, i.e. the choice of the number of dictionary
entries and the number of parameters. The larger the number N of entry (xn, yn), the
more accurate the estimates but the larger the simulation time and memory requirement.
Even for moderate number of parameters, the required number of elements in the
dictionary renders grid search intractable on a desktop computer. In addition, each new
yobs, requires the computation and comparison of N matching scores d(yobs, yn), which
can be costly if N is very large and if many inversions are desired. The regression or
learning method that we propose in the next section is more efficient with respect to
these aspects.

3.2.2 Proposed dictionary-based learning (DBL) method

In contrast to the DBM method, regression and learning methods can adapt to handle
massive inversions of high dimensional data. The main principle is to transfer the
computational cost, from 2-signal matchings to the learning of an inverse operator F−1.
Equivalently, the goal is to learn a mapping from the fingerprint space to the parameter
space, for any y, with cost-less evaluation of F−1(y). The dictionary Df can be used
to estimate F−1. Learning or regression methods adapted to high dimensions include
inverse regression methods, i.e. sliced inverse regression [177], partial least squares [178],
approaches based on mixtures of regressions with different variants, e.g. Gaussian locally
linear mapping (GLLiM) [176], mixtures of experts [179], cluster weighted models [180],
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and kernel methods [172]. Inverse regression methods are flexible in that they reduce the
dimension in a way optimal to the subsequent mapping estimation task that can itself be
carried out by any kind of standard regression tool. In that sense, the inverse regression
methods are said to be non-parametric or semi-parametric. Similarly, in [172], the authors
propose a regression with an appropriate kernel function to learn the non-linear mapping.
The procedure has the advantage to be semi-parametric but a serious limit is that the
components of f are optimized in each dimension separately. As regards application to
MRF, the learning strategy has also been proposed by several groups using deep learning
tools [165–169, 173–175]. A major limitation of these methods is that they require a
large number of training points to learn many model parameters without overfitting.

In the same vein as [172], and in contrast to deep learning approaches, we propose
to use the GLLiM method that exploits Gaussian mixture models [176]. Compared to
other regression methods that focus on providing point-wise estimates, GLLiM provides
a full probability distribution selected in a family of parametric models, e.g. mixture of
Gaussian distributions, where the parameters are denoted by θ. The inversion operator is
defined as F−1(y) = p(x|y; θ), where θ is estimated from the dictionary. More specifically,
GLLiM handles the modeling of non-linear relationships with a piecewise linear model.
Each y is seen as the noisy image of x obtained from a K-component mixture of affine
transformations. This is modeled by introducing a latent variable z ∈ {1, . . . , K} such
that

y =
K∑

k=1
δk(z) (Akx + bk + ϵk) , (3.2)

where δk(z) indicates membership in the region k of x, having the value 1 if it belongs
to the region and the value 0 otherwise. Ak is a P × S matrix and bk a vector in RP

that characterize an affine transformation. Variable ϵk corresponds to an error term in
RP which is assumed to be zero-mean and not correlated with x, capturing both the
modeling noise and the quantification error due to the affine approximations. In GLLiM,
ϵk follows a Gaussian distribution N (0, Σk) and x follows a mixture of K Gaussian
distributions defined by p(x|z = k) = N (x; ck, Γk), and p(z = k) = πk. It follows that

p(y|x; θ) =
K∑

k=1
wk(x) N (y;Akx + bk, Σk), (3.3)

with wk(x) = πk N (x; ck, Γk)∑K
j=1 πj N (x; cj, Γj)

,

and θ = {πk, ck, Γk,Ak, bk, Σk}k=1:K is the set of parameters defining the model. The
conditional probability distribution of interest can be derived as
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p(x|y; θ) =
K∑

k=1
w∗

k(y) N (x;A∗
ky + b∗

k, Σ∗
k) , (3.4)

with w∗
k(y) = πk N (y; c∗

k, Γ∗
k)∑K

j=1 π∗
j N (y; c∗

j , Γ∗
j)

,

and a new parameterization θ∗ = {c∗
k, Γ∗

k,A∗
k, b∗

k, Σ∗
k}k=1:K easily expressed as an analyt-

ical function of θ. The mixture setting provides some guaranties that when choosing K

large enough it is possible to approximate any reasonable relationship [179]. Automatic
model selection criteria can also be used to select K (see [176]).

The p(x|y; θ) distribution provides both estimates of the parameters x and information
about the confidence to be placed in these estimates. In this work, estimates are defined
through the expectation and the confidence indices as the square root of the covariance
matrix diagonal element vector:

x̂ = E [x|y; θ] , (3.5)

CI =
√

diag (Var [x|y; θ]) , (3.6)

with E [x|y; θ] = ∑K
k=1 w∗

k(y)(A∗
ky + b∗

k), and

Var [x|y; θ] =
K∑

k=1
w∗

k(y)
[
Σ∗

k + (A∗
ky + b∗

k)(A∗
ky + b∗

k)T
]

−
(

K∑
k=1

w∗
k(y)(A∗

ky + b∗
k)
)(

K∑
k=1

w∗
k(y)(A∗

ky + b∗
k)
)T

,

where diag(·) denotes the function returning the diagonal elements of a matrix. For
the CI, computed from the estimated posterior p(x|y; θ), to be a good indicator of the
parameter estimation error, it is required that the inverted y follows the same model
used to computed θ. The use of a unique θ parameter for all inversions provides a great
gain when massive inversions are required but it also assumes that the same model is
valid for all fingerprints and that the dictionary Df is a good representation of them.
In practice, acquired fingerprints may come with different noise levels. An interesting
feature of GLLiM is to adapt to this case at a very low cost. When the observed y comes
with some covariance matrix Ση corresponding to a centered Gaussian noise variable η,
the initial dictionary Df may not be fully adapted if it has not been generated with this
same additional measurement error. Another training set should be simulated and used
instead, with a corrected likelihood corresponding to N (y; f(x), Σ + Ση). Fortunately,
it is straightforward to check that the structure of the Gaussian mixture approximation
avoid the re-learning of the GLLiM model. Indeed, it suffices to change the estimated
Σk’s into Σk + Ση and to report this change when computing θ∗.
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Because S is much larger than P in MRF applications, it is important that the
model (3.3) involving θ is estimated first and then used to derive model (3.4) that has a
similar structure. The number of trainable coefficients θ can be drastically reduced by
choosing constraints on covariance matrices Σk without inducing oversimplifications on
the target model (3.4). In this work, equal diagonal covariance matrices are used as they
yield the best results: for 1 ≤ k ≤ K, Σk = DS, where DS ∈ RS×S is a diagonal matrix.
For example, with S = 100, P = 3 and K = 50, the number of trainable coefficients θ is
equal to 20 600 while a direct estimation of θ∗ would involve 272 703 trainable coefficients
(see [176] for more details).

3.2.3 Dictionary sampling strategy

The dictionary design depends on the sampling strategy of the parameter space. In
MRF, regular grids of P -dimensional parameter values are generally considered. In [169],
authors show that in a regression context, the random sampling strategy provides better
estimation of the parameters than the use of a regular grid. However, this strategy entails
a risk of imperfectly covering the parameter space coverage.
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Figure 3.2 – Illustrations of the sampling strategies.
Figure shows the 2-dimensional projection of N = 1 000 dictionary entries of the 3-dimensional
parameter space (P = 3) obtained from (a) a regular grid sampling, (b) a random sampling and
(c) a quasi-random sampling obtained from scrambled Sobol sequence.

Figure 3.2(a) shows a two-dimensional projection of N = 1 000 points from a uniform
grid in the 3D-hypercube (P = 3). Each parameter is described by 10 separate values.
Note that with 1 000 points in 3D, only 100 distinct combinations appear in the 2D
projection plane, each representing 10 different values of the third variable. This sampling
scheme is not optimal in terms of information content. A significant improvement over
the grid can be achieved by scrambled nets [181, 182]. In this paper, the Sobol sequence
is generated [183] and scrambled [184]. We show the projection of N = 1 000 points from
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the scrambled Sobol sequence (figure 3.2(c)) referred to as quasi-random in the remainder
of the manuscript.

3.3 Analysis framework

3.3.1 Signals

3.3.1.1 Synthetic scalable signals

The sensitivity of the MRF signals to each parameter is variable. In addition, parameters
cannot readily be added to the simulation tool that produces the MRF or the vascular
MRF signals. To produce signals that are equally sensitive to each parameter and
dependent on a variable number of parameters (i.e. P may be set to any value), scalable
signals that mimic MRF signals are introduced in equation (3.7). The parameters of the
synthetic scalable signal have physical units to help understand their structure but no
physical meaning,

y =
∣∣∣∣∣

P∑
i=1

sin (50 ϕi t) exp
(

− t

xi

)∣∣∣∣∣ , (3.7)

where xi are the elements of x, t varies from 10 to 1 000 ms in 10 ms steps (S = 100),
the ϕi values are between 0.1 and 1 and | · | is the absolute value function. The values
of parameters x are in the range of 10 to 1 000 ms. The vector ϕ is defined randomly
such that none of the terms are equal. This makes the parameters xi non-exchangeable:
permutations of the x elements cannot lead to the same signal y. Note that the
relationship between x and y is non-linear. Examples of synthetic scalable signals are
given in figure 3.3.

To create a noisy signal, a Gaussian zero-mean random variable with standard
deviation σnoise is added to the complex signal y. The absolute value of the noisy signal
is then considered. The signal-to-noise ratio is defined as: SNR = Imax/σnoise, where
Imax is the maximum signal intensity. The same procedure is used to add noise to the
following signals.

3.3.1.2 Synthetic vascular MRF signals

Vascular MRF signals are ratio of the gradient echo sampling of the free induction decay
and spin echo (MGESFIDSE) signals measured pre- and post-injection of ultrasmall
superparamagnetic iron oxide particles (USPIO) [147]. Eight sampled time points are
obtained after the 90-degree pulse and 24 sampled time points after the 180-degree pulse
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Figure 3.3 – Synthetic scalable signals for different number of parameters and SNR
levels.
Color curves represent synthetic scalable signals randomly generated with different number of
parameters (a) P = 3, (b) P = 4, (c) P = 5, and (d) P = 7. Black curves represent these signals
once noise has been added according to (a) SNR = 80, (b) SNR = 50, (c) SNR = 30, and (d)
SNR = 10.

(S = 32). These signals mainly depend on the vascular properties of the tissues, which
in our application are specified by three parameters (P = 3): blood volume fraction
(BVf), vessel size index (VSI) and tissue oxygen saturation (StO2). The simulation
tool [152] takes into account intrinsic relaxations, magnetic field perturbations induced
by susceptibility interfaces (vessels), water proton diffusion and compartmentalization
of the contrast agent in the vessels. Due to the complexity of the tool, simulations
are extremely time-consuming. Simulation of a single synthetic vascular MRF signal
takes about 10 seconds and a dictionary of 100 000 signals is generated on a 32-node
high-performance computer (Intel Xeon Gold 6130, 2.1 GHz) in about 67 hours.
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3.3.1.3 Acquired vascular MRF signals

Experimental data were acquired at 4.7 T (Bruker Biospin, Ettlingen, Germany) and
have been introduced in [154]. The field of view was 30 × 30 mm2 and the voxel size was
234 × 234 × 800 µm3. A turbo spin-echo sequence was acquired to identify anatomical
structures and tumor tissues. Then, two GESFIDSE sequences (S = 32) were acquired,
before and after injection of UPSIO. For details on the conditions of animal preparation
and data acquisition, see original data work [154].

3.3.2 Analysis pipeline

The simulated and acquired data are processed using custom code developed in the Matlab
environment (The MathWorks Inc., Natick, Ma, USA). This code and the numerical
experiment scripts are available1, see appendix E.1 for details. Data from tumor bearing
rats are processed using the Medical software for Processing multi-Parametric images
Pipelines2 [185], see appendices E.2 and E.3 for details.

3.3.2.1 Dictionary design

The dictionary is generated in two steps. First, combinations of parameter values in the
parameter space are sampled using one of the sampling strategies in section 3.2.3. Then,
for each combination of parameter values, the associated fingerprint is simulated using
either equation (3.7) for synthetic scalable signals or the simulation tool described in
section 3.3.1.2 for vascular MRF signals. For the DBL method, a low level, zero-mean
Gaussian noise (typically, SNR = 60) is added to the dictionary signals as this improved
our results (see section 3.4.1.2).

3.3.2.2 Dictionary-based analysis

The dictionary is fully stored for the DBM method or summarized by a parametric model
θ for the DBL method. To obtain this model, we use the GLLiM regression described in
section 3.2.2. The model learning, a potentially time-consuming step, is performed only
once, just after the production of the dictionary. The model requires only the setting of
the K calibration value. In practice, the precise K value is not critical and different K

values give similar results as long as they are sufficiently large compared to number of
dictionary entries (K ≥ 50 in our study).

1https://github.com/nifm-gin/DBL-qMRI
2https://github.com/nifm-gin/MP3

https://github.com/nifm-gin/DBL-qMRI
https://github.com/nifm-gin/MP3


3.3 Analysis framework 89

In DBM, given an observed signal yobs, an estimate x̂ of the true xobs is calculated as
the minimization argument of equation (3.1) among the couples (x, y) in the dictionary.
The observed signal and the signals in the dictionary are previously normalized to have
unit Euclidean norm. The parameters are normalized to have a mean of zero and unit
variance using scaling and translating factors that are then used to rescale the estimates.

In DBL, an estimate x̂ of xobs is computed using equation (3.5) and a confidence
index (CI) using equation (3.6). To obtain an accurate CI, an estimation of the signal
noise variance is required. This estimate can be derived from the data SNR and then
used as explained in section 3.2.2 to update θ adequately. We present in details, the
relation between the CI and the root mean square error in appendix C.1.

3.3.2.3 Closed-form expression fitting (CEF) analysis

Vascular MRF signals can also be analyzed by fitting of a non linear biophysical model [132,
147]. The closed-form expression fitting (CEF) analysis method refers to this multiple-
operation procedure. First, relaxation rates are extracted by fitting the intensities of
MRI signals (synthetic or acquired). Then, these relaxation rates are used to compute
the BVf and VSI parameters using equations (2.28) and (2.29).

3.3.2.4 Performance evaluation

To compare the method performance in parameter estimation, a set of M test signals is
generated in the same way as for the dictionaries. The parameters values are randomly
sampled in the parameter space and then the associated signals are computed. For each
parameter, we compute the root mean square error (RMSE) as the square root of the
quadratic mean of the differences between the estimated and the true parameter values.
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3.4 Results

3.4.1 Synthetic scalable signals

3.4.1.1 Effect of sampling strategy on parameter accuracy

We investigate the impact of three parameter sampling strategies, regular, random
and quasi-random, using synthetic scalable signals and the DBL method. We consider
successively P = 3, 5, and 7, for each sampling strategy, leading to a total of 9 conditions.
The numbers of entries in the dictionary are N = 216, 1 024, and 2 187, respectively. For
each value of P , M = 1 000 test signals are generated from parameters randomly sampled
in the parameter space. The RMSE between the estimated and the true parameter values
is then computed (see section 3.3.2.4) and divided by the number of parameters to obtain
the average RMSE. To characterize the distribution of the average RMSE, the whole
procedure was repeated 500 times (figure 3.4).
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Figure 3.4 – Effect of sampling strategy on the dictionary-based learning (DBL)
method, using synthetic scalable signals.
Figure shows the average RMSE (M = 1 000 test signals) on the parameter estimates obtained
using the DBL method for the three sampling strategies and (a) P = 3, (b) 5, and (c) 7
parameters. For each box, the red central mark indicates the median; the lower and upper
edges indicate the 25th and 75th percentiles, respectively. The whiskers extend to the minimum
and maximum values.

Regardless of the sampling strategy, the average RMSE increases with P , the number
of parameters. As reported previously, for the same number of signals in the dictionary,
random sampling gives a lower average RMSE than regular sampling, whatever the
number of parameters [169]. This observation is also valid for other conditions presented
in table 3.1. Note that when using the DBM approach instead of DBL, regular sampling
yields a lower average RMSE than the random or quasi-random sampling (table 3.1).
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Dictionaries DBM DBL

P N Regular Random qRandom Regular Random qRandom

3 512 36.9 ± 0.5 48.1 ± 1.0 43.0 ± 0.8 11.0 ± 0.8 11.0 ± 0.8 9.6 ± 0.6

3 1 728 24.9 ± 0.3 31.9 ± 0.6 28.8 ± 0.5 8.1 ± 0.4 8.7 ± 0.4 8.1 ± 0.4

3 4 096 18.7 ± 0.3 23.9 ± 0.4 21.5 ± 0.4 7.6 ± 0.3 8.1 ± 0.4 7.8 ± 0.3

5 1 024 74.8 ± 0.8 88.3 ± 1.2 84.3 ± 1.0 39.8 ± 2.3 27.1 ± 0.2 25.3 ± 0.7

5 3 125 60.6 ± 0.7 70.3 ± 0.9 68.0 ± 0.8 30.3 ± 1.2 22.5 ± 0.6 21.8 ± 0.6

5 7 776 51.0 ± 0.6 58.5 ± 0.7 56.6 ± 0.8 25.2 ± 0.7 21.0 ± 0.5 20.6 ± 0.5

7 2 187 98.6 ± 0.9 112.3 ± 1.2 111.3 ± 1.2 65.6 ± 2.9 39.0 ± 1.2 38.3 ± 1.0

7 16 384 75.1 ± 0.7 83.5 ± 0.8 82.1 ± 0.8 45.3 ± 1.8 31.1 ± 0.7 30.57 ± 0.7

Table 3.1 – Effect of parameter sampling strategies on the dictionary-based methods
(DBL and DBM), using synthetic scalable signals.
Average RMSE (M = 1 000 test signals) on the parameter estimates obtained using the DBM
and DBL methods for the three sampling strategies: grid (regular), random and quasi-random
(qRandom) obtained from scrambled Sobol sequence, and 8 combinations of P and N values.

The quasi-random sampling further reduces the average RMSE up to 12.4 %. Altogether,
there is a reduction of 12.3 %, 36.4 % and 41.7 % in average RMSE between regular
and quasi-random sampling for 3, 5, and 7 parameters, respectively. Therefore, in the
following, a regular sampling is used for the DBM method and a quasi-random sampling
is used for the DBL method.

3.4.1.2 Effect of noise addition on dictionary signals

To investigate the impact of noise addition on the DBL method robustness, we generate
four scalable signals dictionaries: N = 500 and 2 000 (for P = 3), and N = 2 000 and 10 000
(for P = 5). We consider three data augmentation approaches (or data improvement since
the amount of data is not necessarily increased), using various noise levels. We used
the initial matrix Ydico of dictionary signals to build the matrix Yaugmented used to train
mapping according to one of the three following data augmentation procedures [186]:

• The dictionary fingerprints Ydico is substituted by its noisy version Ynoisy,1 according
to SNRdico,1, see equation (3.8).

• Ydico is doubled in size with the noisy signals Ynoisy,1, see equation (3.9).
• Ydico is augmented twice in size by noisy signals Ynoisy,1 and Ynoisy,2 according to

SNRdico,1 and SNRdico,2, see equation (3.10).
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Y(1)
augmented = Ynoisy,1,

(3.8)

Y(2)
augmented =

 Ydico

Ynoisy,1

 ,

(3.9)

Y(3)
augmented =


Ydico

Ynoisy,1

Ynoisy,2

 .

(3.10)
Note that the size of Xdico is also increased by replicating the matrix one or two times
to match the length of Yaugmented. The noise on dictionary signals is added in the same
manner as the noise on the test signals.

We compare data augmentations (1-3) with SNRdico,1 = 60 and SNRdico,2 = 10. For
SNRtest between 3 and 100, we compute the RMSE gain (ratio between the RMSE in
absence of data augmentation and the RMSE obtained using the data augmentation
procedure for M = 10 000 test signals) in the 4 experiment conditions (figure 3.5(a)).
Then, to search the optimal SNRdico for the data augmentation (1), we evaluated values
of SNRdico between 10 and 250 for three SNRtest (15, 30 and 45), see figure 3.5(b).

All data augmentations increase the robustness of the method (gain > 1) for SNRtest

below a certain value and deteriorate it above, which is expected but is of minor
importance since the purpose of this section is to improve the noise robustness for low
and moderate SNRtest (i.e. about SNRtest ≤ 60). Data augmentations (1) and (2) provide
similar results, except for large SNRtest for which the data augmentation (2) provides
larger RMSE gains. Data augmentation (3) yields significantly higher RMSE gains for
SNRtest between 5 and 18 but in return significantly lower elsewhere.

For all SNRtest, the data augmentation (1) increases the robustness of the method for
SNRdico above a cut-off value and deteriorates it below. This cut-off value depends on
SNRdico, SNRtest, the number of parameters and the number dictionary entries. Cut-offs
(mean ± standard deviation) are: 11.7 ± 0 for SNRtest = 15, 15.4 ± 8.5 for SNRtest = 30
and 22.8 ± 11.0 for SNRtest = 45. RMSE gains after the cut-off are: 1.28 ± 0.04, 1.22 ± 0.05
and 1.26 ± 0.04, for SNRtest = 15, 30 and 45, respectively. For SNRdico = 60, the mean
RMSE gains is 1.34 ± 0.15 considering these three SNRtest values and using the four
dictionaries.

In the following, we use the data augmentation (1) since it provides increased
robustness method and does not increase the dictionary size and therefore the mapping
learning time. SNRdico is set to 60. An extended study of the effect of noise addition
in which we also investigate the benefit of modeling the noise during the learning is
proposed in appendix C.2.
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(a)

(b)

Figure 3.5 – RMSE gains for different data augmentations and noise levels on dictionary
signals.
(a) RMSE gains for three data augmentations and different noise levels on test signals. The
first two figures show the P = 3 parameter experiments (N = 500 and 2 000 signals) and next
figures show the P = 5 parameter experiments (N = 2 000 and 10 000 signals). (b) RMSE gains
for different noise levels on dictionary signals and three different noise levels on test signals: 15,
30 and 45. The first two figures show the P = 3 parameter experiments (N = 500 and 2 000)
and the next figures show the P = 5 parameter experiments (N = 2 000 and 10 000). RMSE is
computed for M = 10 000 test signals and then, the experiment is repeated 20 times. Markers
are the mean RMSE through these 20 repetitions and the area represents the standard deviation.
The dashed line represents the symbolic gain equal to 1, above the line the error is smaller than
without data augmentations and inversely below.

3.4.1.3 Impact of the dictionary size and SNR on parameter accuracy

To study this impact for DBM and DBL, we generate four scalable signals dictionaries for
P = 5 and 7 parameters (a total of 8 conditions). The number of dictionary entries N was
chosen so as to keep similar densities, i.e. a constant number of values per parameter (for
P = 5: N = 35, 45, 55, and 65 and for P = 7: N = 37, 47, 57, and 67). For each condition,
we evaluate the average RMSE, using M = 10 000 signals. To characterize the impact of
SNR, the procedure is repeated for test signals with SNR between 10 and 110 (figure 3.6).
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Figure 3.6 – Impact of dictionary size and SNR on DBM and DBL methods, using
synthetic scalable signals.
Average RMSE are given with respect to the SNR for different numbers of parameters and
dictionary entries. Average RMSE (M = 10 000 test signals) for the DBM (a, c) and DBL (b, d)
methods. The upper row (a, b) shows the results for P = 5 parameters, and the lower row (c,
d) for P = 7 parameters. The dashed lines represent the average RMSE in the absence of noise
on the test signals. The calibration value K (DBL method) is set to 50, except for N = 243
where K = 20.

As expected for the DBM method, the average RMSE decreases as the number
of entries N increases. The average RMSE decreases as the SNR increases to about
SNR = 60 and then plateaus near the value obtained in absence of noise. For the DBL
method, the average RMSE also decreases as the SNR increases but up to about SNR = 90.
Again, the highest SNR yields an average RMSE close to that obtained in the absence
of noise. For the DBM method, the average RMSE is comparable between 5 and 7
parameters. The average RMSE obtained with the DBL method are lower than those
obtained with the DBM method: 50.0 ± 10.0 % lower for P = 5 and 38.0 ± 12.3 % lower
for P = 7, whatever the number of dictionary entries. N has a lower impact for DBL
than for DBM. Between the smallest and the largest dictionary size, the average RMSE
decreases by 38.0 ± 9.5 % for the DBM method, while it decreases by only 18.3 ± 5.2 %
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for the DBL method. Moreover, the two highest N yield similar average RMSE for the
DBL method (difference smaller than 0.5 %), suggesting that an increase in the number
of entries would not further improve the average RMSE. Altogether, compared to the
DBM method, the DBL method reduces the average RMSE by 13.1 ± 5.2 % (12.3 ± 4.3 %,
respectively) while reducing the number of entries by a factor of 32 (respectively 128)
for 5 parameters (7 parameters, respectively). Same experiment for additional P and N

values have been performed (17 conditions in total). The average RMSE is always lower
for DBL than for DBM (39.2 ± 15.9 % lower).

Dictionaries DBM DBL

P N
Estimation

(s)
Memory

(Mo)
Learning

(s)
Estimation

(s)
Memory

(Mo)
4 625 0.10 ± 0.02 0.52 1.12 ± 0.26 1.59 ± 0.21 4.21
4 1 296 0.18 ± 0.02 1.08 4.26 ± 1.21 1.52 ± 0.20 4.21
5 1 024 0.15 ± 0.02 0.86 2.59 ± 0.76 1.80 ± 0.23 4.26
5 3 125 0.39 ± 0.03 2.63 22.55 ± 4.66 1.81 ± 0.29 4.26
5 7 776 0.92 ± 0.06 6.53 89.18 ± 26.50 1.86 ± 0.32 4.26
6 729 0.11 ± 0.02 0.62 1.21 ± 0.34 1.99 ± 0.25 4.30
6 4 096 0.50 ± 0.04 3.47 34.68 ± 8.14 1.94 ± 0.31 4.30
6 15 625 1.84 ± 0.17 13.25 361.16 ± 83.55 1.90 ± 0.35 4.30
6 46 656 5.49 ± 0.48 39.56 1 816.3 ± 259.15 1.84 ± 0.32 4.30
7 2 187 0.29 ± 0.04 1.87 10.70 ± 2.75 2.13 ± 0.29 4.35
7 16 384 2.01 ± 0.08 14.03 432.32 ± 88.30 2.17 ± 0.40 4.35
7 78 125 9.17 ± 0.63 66.88 4 283.80 ± 861.72 2.12 ± 0.37 4.35
7 279 936 28.60 ± 2.57 239.63 12 130.11 ± 2 018.90 2.04 ± 0.20 4.35
4 1 296 0.30 ± 0.07 1.08 7.85 ± 2.14 2.64 ± 0.46 4.21
5 7 776 1.40 ± 0.25 6.53 158.90 ± 42.84 2.83 ± 0.44 4.26
6 46 656 5.72 ± 0.04 39.56 1 766.90 ± 89.53 2.33 ± 0.14 4.30
7 279 936 - - - - -

Table 3.2 – Computational times and memory requirements of dictionary-based matching
(DBM) and dictionary-based learning (DBL) methods, using synthetic scalable signals.
Computational estimation times of M = 10 000 signals and learning times (DBL only: time to
generate the regression model) and memory requirements to store the dictionary (DBM) and to
store the model (DBL). Results are given for different combinations of number of parameters
(P between 4 and 7) and number of dictionary entries (N between 625 and 279 936). The first
part of the table (the first 13 lines) shows results for the processing of data on 32-core high
performance computer (Intel Xeon Gold 6130, 2.1 GHz, 384 Go system memory) and the second
part of the table (the last 4 lines) shows results for the processing on a 4-core desktop computer
(Intel Core i7-4770, 3.4 GHz, 32 Go system memory). The case P = 7 and N = 279 936 cannot
be computed on that computer because the dictionary uses more memory than available.

By eliminating the costly dictionary matching operation, DBL can greatly reduce
computation time when N increases. For 7 parameters and N = 78 125, inverting 10 000
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test signals takes 2.0 ± 0.1 seconds with DBM and 2.2 ± 0.4 seconds with DBL. When N

increases to 279 936, the estimation time increases to 28.6 ± 2.6 seconds for DBM while
it remains stable at 2.0 ± 0.2 seconds for DBL. In terms of memory, these dictionaries
require 66.9 (N = 78 125) and 239.6 Mo (N = 279 936) whereas A complete comparison of
the performance of the methods in terms of speed and memory is given in table 3.2. We
observe that the number of dictionary entries has no effect on the estimation time or on
the memory size once the model is learned.

3.4.1.4 Boundary behavior

The DBL method estimates parameter values using a continuous function that is not
limited to the parameter space covered by the dictionary entries. To investigate the
behavior of DBM and DBL methods outside the limits of this parameter space, we
define a dictionary (N = 10 000) composed of two disjoint patches in the parameter space,
generate M = 2 000 000 test signals and evaluate the average RMSE for each parameter
value.
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Figure 3.7 – Estimation accuracy outside the limits of the parameter space covered by
the dictionary, using synthetic scalable signals.
Average RMSE (M = 2 000 000 test signals) in the parameter space (P = 2) obtained (a) with
the DBM and (b) with the DBL method. The white dashed lines delimit the subspace covered
by the dictionary. The average RMSE is computed from signals in a 50 × 50 ms sliding window,
moving in 5 ms steps in the parameter space.

The two methods yield similar estimation accuracy in the subspace covered by the
dictionary entries (figure 3.7). Outside that subspace, the average RMSE obtained with
the DBM method increases with the distance to the subspace. For the DBL method, the
average RMSE remains below 100 ms, well beyond the limit of the dictionary subspace.



3.4 Results 97

3.4.1.5 Confidence index

We investigate the relationship between the CI, available with the DBL method, and
the RMSE. We generate N = 10 000 dictionary entries and M = 10 000 test signals. We
then add different noise levels to the test signals to obtain a SNR = 20, 30, 40, 60 and
100. A single initial regression model is computed. For each SNR, this model is then
updated based on the noise level (denoted by η) which corresponds to the SNR values of
the test signals (see section 3.2.2). We compute the RMSE and CI for the initial model
(i.e. without accounting for the noise level) and RMSEη and CIη using the updated
model. For each SNR value, the experiment is repeated 100 times. Figure 3.8(c), shows
that the non-updated CI is proportional to but not equal to the RMSE in the SNR value
range. Figure 3.8(c) also shows that the scaling factor between RMSE and non-updated
CI depends on the added noise level.

1 2 3 4

·10−2

2

4

·10−2

CIη (s)

R
M

SE
η

(s
)

(a)

α= 0.996
(R2 = 0.95)

0.02 0.04

RMSE (s)

(b)
SNR = 20
SNR = 30
SNR = 40
SNR = 60
SNR = 100

0 0.5 1 1.5

·10−2

2

4

·10−2

CI (s)

R
M

SE
(s

)
(c)

α= 3.17
(R2 = 0.96)
α= 2.15

(R2 = 0.97)
α= 1.68

(R2 = 0.94)
α= 1.26

(R2 = 0.83)
α= 0.99

(R2 = 0.62)

Figure 3.8 – Impact of model noise modelization on RMSE and confidence index (CI).
RMSEη (M = 10 000 test signals) versus (a) confidence index (CIη) and (b) RMSE (non-updated
model), using synthetic scalable signals. (c) RMSE as a function of the CI. SNR = 20, 30, 40,
60, and 100. (a,c) The black line represents the proportional regression coefficient α between
RMSEη and CIη for all SNR values. (b) The dashed black line is the identity function. R2 is
the coefficient of determination.

As expected, RMSEη and CIη increase as the SNR decreases (figure 3.8(a)). RMSEη

and CIη are proportional and comparable in the SNR value range (slope: 0.99, R2 = 0.95).
Note that CIη may slightly under or over-estimate the RMSEη (mean difference: 7.8 %).
Overall, CIη appears to be a good indicator of the RMSEη. Interestingly, the inclusion
of noise in the model slightly improves the estimation accuracy. On average, the RMSEη

is 4.11 % lower than the RMSE (figure 3.8(b)). In the following, for DBL, RMSE and CI
refer to RMSEη and CIη (updated model).
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3.4.2 Vascular MRF signals

3.4.2.1 Synthetic vascular MRF signals

We compare the two dictionary-based methods and the CEF method on synthetic vascular
MRF signals. The dictionaries (grid and quasi-random sampling) are simulated with a
BVf between 0.25 and 30 %, a VSI between 0.5 and 50 µm and a StO2 between 30 and 95 %.
Among the 170 100 combinations, some signals cannot be produced, due to simulation
constraints (e.g. a very large BVf cannot be produced with distant, small, vessels or
small BVf with large vessels). The obtained N values reduce then to N = 164 524 for the
grid and to N = 167 216 for quasi-random sampling.
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Figure 3.9 – Comparison of the RMSE on BVf and VSI obtained with the two
dictionary-based methods (DBM and DBL) and with the closed-form expression fitting
(CEF) method, using synthetic vascular MRF signals.
Figures (a, b, c) show RMSE (M = 100 000 test signals) on BVf for three ranges of VSI, and
figures (d, e, f) show the RMSE on VSI for three ranges of BVf. The dashed lines represent the
average confidence indices (CI) on BVf (first row) and VSI (second row) obtained with DBL.
The data are shown after 1D sliding window filtering (3 % for BVf and 5 µm for VSI). The
dictionary dimensions are P = 3, S = 32, and N = 164 524 for DBM and N = 167 216 for DBL.
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For each method, M = 100 000 test signals (SNR = 100) are generated. To analyze
the BVf RMSE, test signals are divided into three parts: small, medium and large vessel
sizes. To analyze the VSI RMSE, test signals are divided into three parts: low, medium
and large blood volumes.

For all vessel diameters, the RMSE on BVf tends to increase with BVf (figure 3.9).
The DBM and CEF methods yield similar RMSE for BVf values below 10 %. For medium
and large vessels and large BVf values, the CEF method yields the highest errors. The
DBL method always yields the lowest error with an RMSE of 2.38 % for CEF, 2.68 % for
DBM and 1.30 % for DBL.

For VSI values smaller than 15 µm, the behavior of the RMSE is similar in all three
methods for the three BVf ranges. Above 15 µm, the CEF method yields larger errors
than the two dictionary-based approaches and the RMSE obtained with CEF is linearly
correlated with the VSI value (R2 ≥ 0.99). This linear behavior has already been reported
in [187]. DBL yields a 25 % smaller RMSE than DBM, on average with an RMSE of
12.46 µm for CEF, 6.11 µm for DBM, and 4.50 µm for DBL. The CI appears again to
be a good indicator of the RMSE, with maximum differences between CI and RMSE of
1.07 % for BVf and 2.36 µm for VSI and average differences of 0.25 % and 0.75 µm.

3.4.2.2 Acquired vascular MRF signals

The DBL method is then applied to acquired vascular MRF signals collected from rats
bearing 9L and C6 tumors. We quantify BVf, VSI and StO2 with both dictionary-
based methods (DBM and DBL) and using two numbers of dictionary entries. The
large dictionary (N = 170 100) is the one used previously in section 3.4.2.1. The small
dictionary (N = 4 320) is simulated with BVf between 0.33 and 12 %, VSI between 1 and
20 µm and StO2 between 40 and 90 %.

All methods yield consistent estimates (figure 3.10), in which the tumor and the large
vessels can be easily depicted on BVf and VSI maps. StO2 appears constant in healthy
tissues. However, for DBM, there are many isolated high values, suggesting noisy maps.
In [154], the authors proposed to remove the last 8 signal samples and apply a spatial
Gaussian filtering to increase the SNR. Using the DBM method, these additional steps
allowed them to produce less noisy maps. Interestingly, with the DBL method, these
steps are no longer required. Our approach is therefore more likely to preserve small
structure information, which may be otherwise removed by an additional spatial filtering.

For the large dictionary, the mean BVf and VSI obtained in tumor with the DBM
and DBL methods are similar but with the DBL method, we can differentiate different
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Figure 3.10 – Maps of vascular parameter estimates of a 9L rat tumor model.
The first row shows the anatomical image and regions of interest (left) and the MGEFIDSE
pre and post USPIO injection (right) for the second echo time (6.3 ms). The tumor, cortex
and striatum are respectively delineated with green, yellow and blue lines. The arrows on the
post-USPIO injection image indicate large vessels. The estimated maps for BVf, VSI and StO2
are shown below, using DBM (first and fourth columns) and DBL (second and fifth columns).
The third and sixth columns show the DBL confidence index (CI) maps. In the color bars, the
black lines represent the parameter ranges covered by the two dictionaries: the short (resp.
long) line for the small (resp. large) dictionary. Large dictionary: N = 164 524 for DBM; 70
values for BVf between 0.25 and 30 %, 90 values for VSI between 0.5 and 50 µm and 27 values
for StO2 between 30 and 95 % and N = 167 216 for DBL. Small dictionary: N = 4 218 for DBM;
36 values for BVf between 0.33 and 12 %, 20 values for VSI between 1 and 20 µm and 6 values
for StO2 between 40 and 90 % and N = 4 119 for DBL.

subregions within the lesion. Mean values and standard deviations are 20.20 ± 6.14 %,
15.90 ± 7.79 µm for DBM and 18.22 ± 9.34 %, 19.91 ± 11.76 µm for DBL. For StO2, the
DBL method provides significantly larger values, closer to the expected values for healthy
tissue [188]. Values for striatum are 62.67 ± 21.73 % for DBM and 74.46 ± 18.96 % for
DBL. Overall, DBM and DBL yield comparable values. For the small dictionary, the
contrasts are similar. The estimates obtained by the DBM method are limited to the
space spanned by the dictionary, while the DBL method yields estimates outside this
range and closer to the parameter values obtained with the large dictionary. In the
tumor, the mean BVf is 13.66 % while the maximum dictionary value is 12 %.
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Figure 3.11 – Vascular parameter estimate maps of a C6 rat tumor model.
See figure 3.10 for caption.

A second example of a C6 rat tumor model is given in figure 3.11. The results
are similar to those observed for the 9L tumor. DBL and DBM produce comparable
physiological parameter values. With DBL, however, parameter maps are less noisy and
additional CI maps can be produced. Figure 3.12, shows an evaluation by region of
interest (ROI) (8 animals: 4 from each tumor model). The DBL method with a small
dictionary produces estimates similar to those obtained with a large dictionary, except
for the largest values which are underestimated. This results in a slight reduction in
mean ROI values. The average differences between the mean ROI values obtained by the
DBL method with the large and small dictionaries are 1.17 % for BVf, 3.50 µm for VSI
and 1.62 % for StO2.

The mean CIs in the tumor are 2.36 % for BVf, 4.90 µm for VSI and 12.22 % for StO2,
while in the cortex the mean CI are 0.81 % for BVf, 1.96 µm for VSI and 14.81 % for StO2.
These results are in agreement with previous results that pointed better estimates for
BVf than for VSI and low signal sensitivity to StO2 [154]. Confidence in the estimates is
therefore on average 5 to 6 times lower in the tumor than in the cortex for BVf and VSI
but is similar for StO2. This is an interesting contribution of our DBL method as to our
knowledge, it is the first time that such error maps are provided for BVf, VSI, and StO2.
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Figure 3.12 – Mean estimates by regions of interest of the vascular parameters.
(a) BVf, (b) VSI and (c) StO2 computed performing 3 methods: the closed-form expression
fitting (CEF), the dictionary-based matching (DBM) and the dictionary-based learning (DBL)
using 2 different numbers of dictionary entries. The colored bars are the average values of the
mean vascular parameters by regions of interest (9L and C6 lesions: 4 rats, cortex (Cort) and
striatum (Striat): 8 rats) and error bars are the standard deviations centered on the average
values.

3.5 Discussion, conclusion and perspectives

This work presents a method for estimating vascular MRF parameters based on dictionary
learning. It preserves the main advantages of the MRF method, i.e. robustness, speed
and flexibility, and meets the challenge of producing accurate estimates from a small
dictionary, even when the dimension of the parameters is large.

Regarding the design of the dictionary, we observe as [169] that random sampling
of the parameter space gives more accurate estimates than grid sampling, when an
inverse regression model is used. We further show that quasi-random sampling gives even
better estimates. However, when the DBM method is used, the grid remains the most
efficient sampling strategy. The appropriate dictionary design depends thus on the chosen
inversion approach (grid matching vs statistical learning). The results obtained with the
DBL method suggest that the simulation of a few patches (with quasi-random sampling)
in the parameter space could save even more time in the construction of the dictionary
(section 3.4.1.4). This result seems specific to the regression method. Indeed, a study
using neural networks [165] rather reported increased deviations from the true values at
the boundaries of the training dictionary. This is likely due to the vanishing gradient
of the activation function in these regions. This patch approach could be implemented
by combining a set of parameter values corresponding to healthy tissues and one or
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more sets corresponding to damaged tissues (e.g. tumorous tissues). If needed, a few
additional dictionary entries can be generated to fill gaps between patches (investigated
in the next chapter, section 4.3.1.4).

Regarding the quality of the inversion, the regression approach usually involves
calibration. In GLLiM, the number of Gaussian distributions K is the only calibration
value that needs to be adjusted. This can be done automatically using a standard
information criterion such as AIC or BIC [189, 190], as illustrated in [176], but this may
result in additional learning time. We have observed that our results have little dependence
on K. In contrast, neural networks [165–169, 173–175] used to solve similar inverse
problems are very sensitive to their many complex calibration settings: architecture,
batch sizes, learning rates, among others. The adjustment of all these calibration settings
is usually performed by learning the model for a large number of calibration value
combinations, which represents a higher computational cost than determining a single
calibration value as in GLLIM. This difference in calibration cost makes the DBL method
more flexible in case of change in dictionary design (extension of the parameter range,
additional parameters, etc.). In addition, GLLiM has the advantage of providing a richer
information. Here, we make use of the full posterior parameter distribution provided by
GLLiM to derive a CI for each estimate. We observe that this CI matches the RMSE in
cases where a ground truth is available (synthetic scalable; section 3.4.1.5 and synthetic
vascular MRF signals; section 3.4.2.1). Interestingly, this CI reports both signal and
model errors (derived from the dictionary) and thus reflects the whole DBL procedure.

Regarding the acquired vascular MRF signals, we observe that the number of dictionary
entries can be divided by about 40 using the DBL method and still lead to accurate
maps. The maps produced with the DBL method are significantly less noisy than those
obtained with the DBM method and some structures, not observed with DBM, appear in
the lesions. The additional tissue contrast provided by DBL could therefore contribute
to improved tumor characterization [191].

In conclusion, this first evaluation of the DBL method appears promising. It reduces
the simulation time and the memory required for dictionary storage, improves parameter
accuracy, reduces the estimation time, and provides a first confidence index on parameter
estimates. The DBL method could become even more efficient as the number of pa-
rameters to be estimated increases, which can happen when considering all the possible
contributions of the tissues and the scanner to the signal. In addition, the flexibility of
the proposed approach opens the door to further improvements. In particular, future
work should include the adaptation and optimization of the dictionary sampling strategy
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with respect to the targeted range of parameters to estimate. In addition, MRI produces
complex-valued data but machine learning methodologies are generally designed for
real-valued data. Dealing with complex-valued data could boost the performance of
DBL [168]. This requires an adjustment of the inverse regression method also left to
future work.



Chapter 4

Statistical learning vs deep learning
in generalized MRF applications

This study is in line with the previous one. The objective is to compare the performance
of the proposed dictionary-based learning method (chapter 3) with a DBL method using
a neural network. Part of this study was presented during the 2020 congress of the
International Society for Magnetic Resonance in Medicine (ISMRM) [13]. This section
also extends the previous study to further investigations using standard MRF signals
to estimate relaxation times T1 and T2, and off-resonance. This results in investigating
highly undersampled data issues and complex-valued signal considerations.

4.1 Introduction

A major reason for the popularity of the dictionary-based matching (DBM) method is
its flexibility since it does not require specific adjustment depending on the application
(e.g. signal length, number of parameters, complexity of the mapping...). Potentially, the
user may choose a different distance (or dissimilarity) function in equation (2.32) but in
practice the dot product works sufficiently well. Instead, when using a dictionary-based
learning (DBL) approach, a model is used to approximate the mapping between signal
and parameter spaces. The choice of the model is therefore critical. It must be able to
accurately approximate the mapping between these spaces and, if that relationship is
complex (i.e. highly non-linear), the model is required to have a very high modeling
power. Then, a larger model generally demands a greater number of dictionary entries in
order to be properly trained and therefore implies an increase in computational costs. The
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purpose of this study is to compare two different DBL methods to model the mapping: a
deep learning model (DB-DL), and a statistical model (DB-SL).

We compare the model size, learning and quantification times, estimation accuracy,
robustness to both thermal noise and spatial aliasing noise, number of dictionary entries
requirement, and model generalization ability for the DB-DL and the DB-SL methods.
The standard DBM method is also used to provide reference results obtained in the
absence of dictionary learning. Performances were compared on synthetic signals: scalable
signals that can scale across parameter dimensions and standard MRF signals. Finally,
we perform a last study in order to briefly investigate ensembles of DBL methods to
provide more accurate estimates.

4.2 Analysis framework

4.2.1 Model design

4.2.1.1 Neural network architecture and training

For the DB-DL method based on neural networks (NN), we use the architecture proposed
in [165], i.e. a fully-connected NN. The first and last layers are the S-node input and
P -node output layers which match the sizes of the input signal y and the output
parameters x, respectively. There are also H hidden layers of Z nodes. We present the
architecture in figure 4.1. In [165], authors used H = 2 hidden layers of Z = 300 nodes.
This implementation was not a very deep or large network. We therefore choose H = 6
and reduce Z to 100 in order to limit the number of trainable parameters and avoid
overfitting.

The original activation functions were hyperbolic tangent functions for the hidden lay-
ers and sigmoid functions for the output layer. These activation functions are particularly
susceptible to the vanishing gradient problem [165], i.e. the hyperbolic tangent function
squishes a large input space into a small input space between -1 and 1. Therefore, a
large change in the input of the sigmoid function may result in a small change in the
output. Hence, the derivative becomes small. A small gradient means that the weights
and biases of the initial layers will not be updated effectively at each gradient descent
step. Since these initial layers are often crucial to recognizing the core elements of the
input data, it can lead to overall inaccuracy of the whole network despite the training
algorithm seemingly converging. Consequently, other activation functions such as ReLU,
more robust to this issue, are used instead of the original functions.
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Figure 4.1 – Fully-connected neural network architecture.
The circles represent the nodes and the arrows the connections between these nodes. ReLU
activation functions are displayed in circles. Input is the MR signal y = (y1, . . . , yS) ∈ RS and
output is the vector of parameters x = (x1, . . . , xP ) ∈ RP .

As previously exhibited with DB-SL method, Gaussian noise is added to dictionary
signals to promote robust learning. The network is trained by the ADAM stochastic
gradient descent algorithm, the learning rate is set to 0.001 and the loss function defined
as the mean square error. The maximum number of iterations is set to 2 000 to ensure
convergence and we use mini-batches of 16 dictionary entries at each epoch. The neural
network was designed and trained using the deep learning toolbox in Matlab environment
(The MathWorks Inc., Natick, Ma, USA).
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4.2.1.2 Calibration model parameter set and model sizes

An increase in model size is commonly combined with an increase in the number of
dictionary entries and computational cost. However, the model must maintain a good
expressivity to handle non-linear mappings. For example, linear and generalized linear
regressions (e.g. least-square affine regression, perceptron, etc.) have a small model size
O(SP ) but do not handle non-linear mappings1. In contrast, fully connected deep NN
exhibit very high modeling power but the model size is O(HS2) (considering Z = S).
This quadratic size is also observable with second order polynomial regressions that
have a model size in O(PS2). Note that nth order polynomial regressions have model
sizes in O(PSn). A reduction of the size of these models is possible by performing a
reduction/projection of the input signals. For example for NN, one can choose Z ≪ S to
reduce model size to O(ZS). However, this reduction leads to a loss of information (i.e.
reduction of explained variance). This loss is more or less important depending on the
complexity of the input data structure.

C is the set of model calibration variables. Using the NN method, we identify two
model calibration variables: C = {Z, H}. In this case, the model size is (H − 1)(Z2 +
Z) + Z(S + 1) + P (Z + 1) = O(HZ2). Using the GLLiM model, we identify one model
calibration variable: C = {K} and the model size is K(P + P 2 + 1 + SP + S) + S =
O(KSP ) with equal diagonal covariance matrices. Note that using the original DBM
method, C = ∅. One can roughly see the cardinal of C as an indication of model flexibility:
it represents the number of parameters to be tuned for a new sequence.

4.2.2 Signals and performance evaluation

4.2.2.1 Standard MRF signal

To evaluate the proposed reconstruction methods on a standard relaxometry application
of magnetic resonance fingerprinting (MRF) [137], we use an MRF acquisition scheme
based on an inversion-recovery balanced steady state free-precession sequence to generate
synthetic MRF signals. According to [137], after an initial inversion pulse, the flip angle
is a series of repeating sinusoidal curves with a period of 250 repetition times (TR)
and alternating maximum flip angles (FA). In the odd periods, the FA is calculated
as FAt = 10 + 50 × sin

(
2π
500t

)
+ rand(2), where t varies from 1 to 250 and rand(2)

is a function to generate normally distributed random numbers (mean is zero) with a
1O is a mathematical notation that describes the limiting behavior of a function, here, the model

size function.
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standard deviation of 2. In the even periods, we divide the previous period’s FA by two.
A 50-TR delay is added between each period. The TR pattern, between 10.5 and 14 ms, is
generated following a procedural noise. This procedure yields pseudorandom acquisition
parameters. We consider S = 1 000 samples. FA and TR patterns as well as example
magnitude synthetic MRF signals are shown in figure 4.6(a-c). The parameters of interest
(P = 3) are the relaxation times T1 (between 200 and 3 000 ms) and T2 (between 20 and
300 ms), and the off-resonance ∆f (between -200 and 200 Hz). Signals are generated using
the simulation tool2 described in [157].

Note that compared to the vascular MRF signals used in the previous study, standard
signals are vectors of complex-valued samples. For the DBM method, the scalar product
extends to complex data. However, to consider these complex samples using the two
DBL methods, signals are doubled in size and composed of the real and imaginary parts
of the initial signals [167, 168].

4.2.2.2 Aliasing noise as modulated Gaussian noise

In [192], authors introduce a tool to rapidly assess the efficiency of an MRF sequence in
the presence of both normal and aliasing noise. In MRI, the acquired signal contains
both Gaussian noise ηthermal as the result of thermal contributions (section 2.2.2.4), and
correlated aliasing noise ηaliasing due to spatial undersampling artifacts (section 2.2.2.3).
According to this work, the aliasing noise can be modeled as proportional to the signal at
each sample, with a coefficient of proportionality that is taken to be zero-mean Gaussian
noise. It results that a noisy signal ynoisy is computed from an original signal y as:

ynoisy = y + ηthermal + |y| ηaliasing . (4.1)

In our experiments on aliasing artifacts, we focus on the case where aliasing noise
is dominant so that ηthermal = 0. In addition, we have empirically determined the
relationship between the standard deviation σaliasing of ηaliasing and the undersampling
factor R (validity range 1-50) as σaliasing = (3R − 2)/100. This entire procedure provides
typical undersampled MRF signals, see examples in figure 4.7(d-f).

2https://bitbucket.org/asslaender/nyu_mrf_recon/src/master/

https://bitbucket.org/asslaender/nyu_mrf_recon/src/master/
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4.2.2.3 Analysis workflow

In this study, we repeat the framework described in section 3.3. We remind that:
1. N vectors x of P parameters are sampled according to a grid (for the DBM method)

or to a quasi-random sampling (for DB-SL and DB-DL methods) in the parameter
space.

2. S-sample signals y are simulated from x according to a simulation function f (i.e.
equation (3.7) for scalable signals and the simulation tool described in [157] for
standard MRF signals, see section 4.2.2.1) to build the dictionary Df .

3. For DB-SL and DB-DL methods only, Df is used to learn the model that maps the
relation between the signal and the parameter spaces, using the GLLiM model for
DB-SL and the NN for DB-DL. The learning is done according to C.

4. M vectors x of P parameters are sampled according to a random sampling in
the parameter space and then, S-sample signals are simulated using x and the
simulation function f .

5. Prior to parameters estimation and depending on the experiment, thermal or
aliasing noise at a specific level may be added using equation (4.1).

4.2.2.4 Bias-variance analysis

In [164], authors proposed to investigate the statistical properties of the reconstruction
methods using a bias-variance analysis. We propose to conduct a similar analysis here.
M test signals are simulated and for each signal, I = 100 random Gaussian noises are
applied, according to a fixed SNR. To compare the bias, variance and RMSE, the following
quantities are computed for the mth test signal ym:

Biasm = Ê [ym − ŷm] , (4.2)
Varm = Ê

[
(ŷm − Ê [ŷm])2

]
, (4.3)

where Ê [ · ] is the empirical mean for the 100 Monte Carlo simulations: we have Ê [ŷm] =∑I
i ym,i. Note that

RMSEm = Ê
[
(ym − ŷm)2

]
=
√

Bias2
m + Varm , (4.4)

is the error used in the previous study, chapter 3. We provide supplemental details about
bias-variance analysis in appendix C.1.
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4.3 Results

4.3.1 Synthetic scalable signals

4.3.1.1 Model size: memory and simulation requirement

We investigate the model size growth as a function of the experimental conditions and
model calibration. For different calibration variable values: Z = 100, 300, 500, and Z = S

and H = 2, 3, 5, and 10 for DB-DL and K = 50, 75, 100, and 200 for DB-SL. We present
the model sizes as a function of the signal length S up to 3 000 samples (figure 4.2(a-c)).
Then, the model sizes for the proposed implementation calibration variable values are
show in figure 4.2(d). For our applications, we have in vascular MRF S = 100, in standard
MRF S = 1 000, and S = 2 000 when concatenating the real and imaginary parts.
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Figure 4.2 – Relation between calibration variables and model sizes of GLLiM and NN
models.
Plots show the model sizes: Gaussian locally linear mapping (GLLiM) in red and neural network
(NN) in yellow as a function of the number of signal samples S. Plots (a) and (b) show the
NN model size depending on the number of nodes Z (H = 2) and depending on the number of
hidden layers H (Z = 300), respectively. Plot (c) shows the GLLiM model size depending on
the number of Gaussian distributions K. In (a-c), P is set to 3. Plot (d) shows the GLLiM and
NN model sizes for different number of parameters (3, 4, 5, and 7) with the implementations,
used in the following, i.e. K = 50 for DB-SL and H = 6 and Z = 100 for DB-DL.

For DB-DL, we observe that, when setting Z to a specific value, the model scales
when S increases, when S ≪ Z a dimension reduction is performed while Z = S leads
to a quadratic growth of the model size. H has a minor influence on the model size,
values in the range 1-6 are generally chosen. For DB-SL, the model size growth is linearly
dependent on K and P . As proposed (i.e. Z fixed), the DB-DL better scales when
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increasing the number of parameters, because the model size marginally depends on P

(figure 4.2(d)) while DB-SL model size does.
Once the model is learned, the memory required to store this model is fixed and

does not depend on the number of dictionary entries. For the proposed implementations,
S = 100 and P = 3, the methods require the storage of 60 903 and 20 750 coefficients for
DB-DL and DB-SL models, respectively. Numbers of model parameters are 150 903 for
DB-DL and 201 650 for DB-SL with S = 1 000.

4.3.1.2 Computational times

We investigate the impact of dictionary size (number of entries) on estimation time for
DBM and both DBL methods, and on learning time for DBL methods. We consider
successively P = 3, 4, 5, and 7 parameters and use synthetic scalable signals (S = 100).
The number of dictionary entries N vary between 102 and 106 (figure 4.3). The grid
sampling and the quasi-random sampling are used for DBM method and DBL method,
respectively. The quantification time is given for M = 10 000 test signals. Note that we
execute both CPU-based and GPU-based implementations for the DB-DL method.

Concerning quantification times, we observe that the DBM method quantification
time is proportional to N and independent of P . Linear regression provides a propor-
tionality coefficient of 15.40 × 106 s/dictionary entries (R2 = 0.998). Both DBL method
quantification times do not depend on N , but depend on P , especially for the DB-SL
method. For P = 3, the average reconstruction time is 670.4 ± 32.9 ms and 48.8 ± 12.0 ms
for DB-SL and DB-DL methods, respectively. Using a GPU-based implementation (not
available for DB-SL), the average reconstruction time decreases to 25.5 ± 0.5 ms for the
DB-DL method (about twice faster).

Concerning the dictionary learning times, for N ≤ 25 000 the DB-SL is faster than the
DB-DL (CPU-based implementations). Above this value, the DB-DL method learning
is the fastest and both methods learning times are proportional to N (R2 = 0.956 and
R2 = 0.995 for DB-SL and DB-DL, respectively). For N ≥ 25 000, the GPU-based
implementation provides a 4.17 ± 0.49 speed gain in our simulation conditions.
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Figure 4.3 – Estimation and learning computational times for DBM, DB-SL and DB-DL
methods.
Figure (a) shows S = 100-sample signal estimation times (in seconds for M = 10 000 test signals)
for the tree methods, and figure (b) shows learning times (in minutes) for DB-SL and DB-DL
methods only. Different values of P are used (3, 4, 5 and 7). Computer hardware is a 32-CPU
Intel Xeon Gold 6130, 2.1 GHz, 384 GB system memory with a GPU Nvidia RTX2080 Ti, 4352
CUDA cores, 11 GB memory.

4.3.1.3 Impact of the dictionary size and noise on parameter estimation
accuracy

We investigate the impact of dictionary size reduction and SNR on estimate accuracy,
using the same four previous conditions (on P and N) and synthetic scalable signals (see
section 3.3.1.2). For each condition, we compute the average RMSE, using M = 10 000
test signals. To characterize the effect of thermal noise, two noise levels (SNR = 20 and
SNR = 100) are added (figure 4.4).

As already shown in section 3.4.1.3, we observe that with the DBM method and with
low noise level (SNR = 100), the RMSE decreases as the dictionary size increases (linear
relations between log-values; R2 ≥ 0.994). While for DBL methods, the RMSE decreases
when increasing the number of dictionary entries and then plateaus. We observe that
RMSE are similar between the DB-SL and DB-DL methods with a slight improvement
for the DB-DL method (the mean RMSE decrease of DB-DL compared to DB-SL is
8.31 ± 4.62 % including all conditions). For SNR = 20, we observe that the errors of all
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Figure 4.4 – Impact of dictionary size and noise level on DBM, DB-SL and DB-DL
methods.
Average RMSE are given with respect to the number of dictionary entries N for two noise
levels: SNR = 20 (empty circle) and SNR = 100 (filled circle). Average RMSE (M = 10 000 test
signals) for (a) P = 3, (b) 4, (c) 5, and (d) 7 parameters.

methods are increased. The DB-SL method RMSE is always the smallest (the mean
RMSE increase of DB-DL compared to DB-SL is 15.11 ± 7.47 % including all conditions).

4.3.1.4 Boundary behavior

To investigate the behavior of methods outside the limits of the parameter space covered
by the dictionary, we define a dictionary (N = 10 000) composed of two disjoint patches
in the parameter space, generate M = 2 000 000 test signals in the entire parameter space
and evaluate the average RMSE for each parameter value (figure 4.5(a-c)). Then, we
repeat the experiment adding 3 more signals to the dictionary distant from the initial
patches in the parameter space (figure 4.5(d-f)).

Compared to the DBM method, DBL methods allow accurate estimates (RMSE
< 0.1 s) between patches. In addition for DB-SL method, estimates remain accurate
(RMSE < 0.1 s) in a large bands around patches. We refer to this model property as the
generalization, i.e. the ability of the model to react to new data outside the dictionary
space.
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Figure 4.5 – Estimation accuracy outside the limits of the parameter space covered by
the dictionary.
Average RMSE (M = 2 000 000 test signals) in the parameter space (P = 2) obtained (a, d) with
the DBM, (b, e) with the DB-SL, and (c, f) with the DB-DL. The white dashed lines delimit
the subspace covered by the dictionary. In figures (d-f), 3 additional signals (white marks)
are added to the dictionary in figures (a-c). Figures (g-i) show the difference between the
RMSE using additional entries in (d-f) and original RMSE in (a-c). Blue indicates decreased
RMSE while yellow indicate increased RMSE. Green corresponds to the absence of change.
The average RMSE is computed from signals in a 50 × 50 ms sliding window, moving in 5 ms
steps in the parameter space.

Few additional dictionary entries allow to extend the band space coverage for DB-SL
method, but not for the DB-DL method and even this leads rather to a deterioration of
the estimate accuracy in the space covered by the patches (yellow in RMSE difference
maps, figure 4.5(g-i). It demonstrates relative instability of the DB-DL quantification
compared to DBM and DB-SL methods that do not exhibit changes away from the new
entries.
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4.3.2 Standard MRF signals

4.3.2.1 Estimate accuracy and noise

To compare dictionary-based methods on synthetic standard MRF signals, without spatial
undersampling noise, we generate two dictionaries of N = 4 096 (small dictionary) and
N = 226 981 entries (large dictionary) according to properties given in section 4.2.2.1.
We evaluate the average RMSE on M = 10 000 test signals, for thermal noise and SNR
values between 10 and 110 (figure 4.6).
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Figure 4.6 – Comparison of dictionary-based matching (DBM) and learning (DB-SL
and DB-DL) methods for different noise levels, using synthetic MRF signals.
Figures (a, b) show the acquisition sequence settings: flip angles (FA) and repetition times (TR).
Figure (c) shows the signal evolution of four synthetic MRF signals (S = 1 000). Figures (d-f)
show the RMSE (M = 10 000 test signals) on relaxation times (T1 and T2) and off-resonance (∆f)
parameters (P = 3) using the DBM and the two DBL methods with N = 4 096 and N = 226 981
dictionary entries.

For SNR < 40 and all parameters, DB-SL method is always better than DB-DL
method, whatever the number of dictionary entries. For SNR > 70, DB-DL method
is better than DB-SL method for T1 and T2 estimates. Then, similarly for N = 4 096,
considering SNR ≤ 55, RMSE are T1: 216.3 ms, T2: 7.3 ms, ∆f: 22.6 Hz for DB-DL and
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T1: 93.6 ms, T2: 4.4 ms, ∆f: 9.0 Hz for DB-SL. For SNR > 55, RMSE become T1: 44.2 ms,
T2: 2.2 ms, ∆f: 8.4 Hz for DB-DL and T1: 66.1 ms, T2: 3.4 ms, ∆f: 7.6 Hz for DB-SL.

4.3.2.2 Highly undersampled data

To investigate the estimation accuracy of dictionary-based methods with highly under-
sampled data, we use the two previous dictionaries. A 4-region human brain phantom is
generated, resolution is 128 × 128 (figures 4.7(a-b)). In each region T1 and T2 values are
sampled according to a normal distribution around a central value (1 000, 1 400, 1 800 and
2 200 for T1 and 60, 120, 180 and 240 for T2). An off-resonance map (∆f) is generated
by linear increase following each direction, between -200 and 200 Hz, figure 4.7(c). This
phantom results in M = 7 622 test signals. Noise is added to test signals according to
equation (4.1), with undersampling factor between 1 and 50. Examples of resulting
signals for 3 undersampling factors (8, 16 and 48) are shown in figures 4.7(d-f).

We observe that the RMSE increases significantly with the undersampling factor. For
T1, RMSE remain below 300 ms (≈ 10 %) until undersampling factors of 10 for DB-DL
and 22 for DB-SL. For T2, RMSE remain below 30 ms (≈ 10 %) until undersampling
factors of 46 for DB-DL and 38 for DB-SL. Note that the impact of the number of entries
in the dictionary is no longer visible when the aliasing noise increases.

4.3.2.3 Model variance

To investigate the statistical properties of the methods, we conduct a bias-variance
analysis (section 4.2.2.4). The model used is the one computed using the N = 4 096
dictionary entries. 100 random noises are generated according to SNR = 40 for each value
of the previous brain phantom (M = 7 622). Bias, variance and RMSE are computed
according to equations (4.2), (4.3) and (4.4), respectively. Resulting maps are presented
in figure 4.8(a-c). Mean values for each map and those obtained with the N = 226 981
dictionary entries, are given in table 4.8(d).

For T1 and T2, we observe that the DB-DL method is the less biased method with a
mean bias about twice smaller than the one of the DB-SL method, but exhibits larger
variance. Consequently, DB-DL RMSE are higher for both T1 and T2 than DB-SL RMSE,
see table 4.8(d). We observe that compared to the DBM method, DBL methods provide
errors that depend on underlying parameter maps such that we can distinguish brain
structures in error maps.



118 Statistical learning vs deep learning in generalized MRF applications

For off-resonance ∆f, the DBM provides the smallest RMSE. We suppose that complex-
valued computation could be the reason of this better estimate accuracy compared to
DBL methods. Interestingly, the grid sampling of the dictionary can be visualized as
diagonal error lines. Black lines (corresponding to a small error) are located at the
dictionary values. DB-SL provides significantly larger error on ∆f.

4.3.3 Summary of results

We summarize results obtained in the previous sections in table 4.1. In this table, cells
are colored according to the performance of methods e.g. it is arbitrarily consider that
the estimation of an MRI image (about 106 voxels) should ideally be done in less than 5
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Figure 4.7 – Robustness to data undersampling of dictionary-based methods, using
synthetic MRF signals (on previous page).
Figures (a-c) show parameter maps (P = 3: T1, T2 and ∆f) used for simulating the M = 7 622
test signals. Figures (d-f) show an example of a signal altered by undersampling according
to factors 8, 16 and 48. Figures (g-i) show RMSE on estimated parameters for the three
dictionary-based methods using N = 4 096 and N = 226 981 dictionary entries. RMSE are given
as a function of the undersampling factor.
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DBM DB-DL DB-SL
T1 (ms)

|Bias| 27.56/3.60 11.52/22.83 22.60/26.24
Var

1
2 26.81/20.01 34.11/24.83 18.44/16.42

RMSE 66.74/43.24 74.65/58.37 48.07/46.03

T2 (ms)
|Bias| 3.69/0.23 0.46/0.24 0.87/0.31
Var

1
2 1.52/1.01 1.22/1.08 0.74/0.65

RMSE 5.72/2.18 2.67/2.33 1.90/1.47

∆f (Hz)
|Bias| 5.50/0.74 3.20/2.80 9.25/2.28
Var

1
2 1.00/0.97 3.56/1.98 4.21/1.48

RMSE 6.79/2.47 8.41/5.14 13.78/4.15

Figure 4.8 – Bias-variance analysis for dictionary-based methods, using synthetic MRF
signals.
Figures (a-c) show bias, variance and RMSE maps (M = 7 622) for the dictionary-based methods
on (a) T1, (b) T2 and (c) ∆f (P = 3), using N = 4 096 dictionary entries. Table (d) reports mean
values throughout the maps. In this table, values in red, were computed using the N = 226 981
dictionary.

minutes (yellow color, red above) and that a map generation in less than one minute
would be a very good performance (green color).



120 Statistical learning vs deep learning in generalized MRF applications

Small dictionary
(N ≈ 4 000)

Large dictionary
(N ≈ 200 000)

DBM DB-DL DB-SL DBM DB-DL DB-SL

Resources
(∗)Memory (.103 doubles) 412-428 60-62 20-43 20 600-

21 400
60-62 20-43

(∗)Estimation time (s)
for 106 acquisitions 9 4-11 67-114 391 5-7 66-116

Estimate accuracy (%)
Standard data
(SNR = 50-100) 2.2 1.7 1.8 0.8 1.0 1.1

Thermal noise
(SNR = 20-40) 3.0 5.7 2.4 2.0 3.7 2.0

Aliasing noise
(1/24th-1/48th) 8.9-

17.1
13.8-
36.4

5.6-
15.0

8.7-
17.0

12.4-
31.3

7.9-
22.1

Others
Bias-variance trade-off
(ratio bias/variance

1
2 )

3.0 0.5 1.5 0.4 0.8 1.2

Flexibility (Card (C)) 0 2 1 0 2 1
(∗)Generalization No Few Yes No Few Yes

Table 4.1 – Performance of the three dictionary-based methods: matching and learning.
(∗) indicate performance evaluated using synthetic scalable signals. The others were obtained
using MRF standard signals. For synthetic scalable signals, range of values represents the
performance for P = 3 to P = 7. Cells are colored according to the associated performance.
Green, yellow and red cells indicate very good, good/correct and bad performance, respectively.
Best results are highlighted in bold.



4.3 Results 121

We observe that each method has its own specific domains of application. Briefly,
DBM is very flexible and achieves very good performance with good noise robustness for
large dictionary entries but requires considerable resources (time and memory). DB-DL
is extremely fast but exhibits low performance with high noise levels both thermal and
aliasing. DB-SL provides good estimate accuracy even in noisy conditions and has the
ability to preserve good accuracy outside the space covered by the dictionary. It is
interesting to note that DB-SL is the best performing method for the small dictionary.

4.3.4 Ensemble learning

To produce more accurate estimates, we propose to combine the two DBL models to get
an ensemble model with better performances [193]. We investigate here two ensemble
learning approaches. The bagging learns models independently from each other in parallel
and combines them following a deterministic averaging process (figures 4.9(a)). The
boosting learns them sequentially, i.e. each model depends on the previous ones (here,
DB-SL then DB-DL, figure 4.9(b)). The way to combine models has to be adapted to
their types. Briefly, we can say that bagging will mainly focus at getting an ensemble
model with less variance than its model components whereas boosting will mainly try to
produce strong models less biased than their components (even if variance can also be
reduced).

For each combination, we try two strategies: a first, standard, using only estimates and
as the confidence index (CI) is correlated to the RMSE, we investigate its consideration
in combination in figure 4.10(a). For the bagging, first, we compute standard mean and
then, we compute a weighted mean using the CI, i.e. wDB-SL = (CImax − CI) /CImax and
wDB-DL = 1 − wDB-SL, where CImax is the maximum CI value. It results that the smaller
the CI, the more weight is given to the DB-SL method and the larger the CI, the more
weight is given to the DB-DL method. For the boosting, first, we use the DB-SL estimate
as the input of the DB-DL and them, we use both the estimate and CI as the inputs of
the DB-DL in figure 4.10(b).

We observe that when computing the mean estimates from DB-SL and DB-DL
estimates, the RMSE decreases so that the mean RMSE is better than both individual
RMSE. In particular, whatever the SNR, the combined RMSE is always smaller than the
DB-DL RMSE. Regarding the serial combination, the mean RMSE is also better than
individual RMSE and in particular, the RMSE of the ensemble mdoel is always better
than the DB-SL RMSE. Considering the CI does not improve much the results.
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(a) Bagging

(b) Boosting

Figure 4.9 – Illustrations of ensemble learning model combinations.
(a) Bagging ensemble learning. (b) Boosting ensemble learning.
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Figure 4.10 – Combination of statistical and deep learning methods, using synthetic
scalable signals.
Figure (a) shows RMSE (M = 10 000) obtained computing the mean estimates (Combined) and
the confidence index weighted mean estimates (with CI ) of DBL methods. Figure (b) shows
RMSE resulting from the use of DB-SL estimates as input of DB-DL (Combined) and the
estimates and confidence index as input of DB-DL (with CI ). In both figures, RMSE obtained
using only DB-SL and only DB-DL methods are plotted.
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4.4 Discussion, conclusion and perspectives

This study presents a comparison of three methods for estimating standard MRF param-
eters (T1, T2 and off-resonance) based on dictionary matching and dictionary learning
methods. We have shown that DBL methods provide scalability as compared to DBM
method, while preserving DBM accuracy on a standard application when using large
dictionaries and increasing accuracy when using small dictionaries (consistent with the
previous chapter). DBL methods produce parameter maps much faster with quantifi-
cation times not related to the size of the dictionary. In terms of speed, the DB-DL
is 10-100 times faster than DB-SL and even faster with GPU implementations. The
proposed DB-SL method is as robust as DBM to both thermal and aliasing noises while
the DB-DL method faces some difficulties with noisy data. In addition, the DB-SL
method exhibits good generalization performance as compared to DB-DL, i.e. DB-DL
biased towards the sample distribution, while DB-SL model is smoother. Moreover, few
additional distant entries in the dictionary allows a large improvement of the DB-SL
accuracy in the neighborhood of these new entries while it leads to a general degradation
in the whole space for the DB-DL. This behavior is not yet completely understood but
other works reported the fully-connected NN tendency to overfit due to the huge number
of parameters [167]. This could be a first clue.

Regarding the architecture of the neural network, further investigations could certainly
find a design that provides better results. However, compared to the initial implementation
proposed by Cohen et al. in [165], we have already modified both the number and
composition of hidden layers, and activation functions in order to increase performance.
Note that experiments on synthetic signals have first been realized with the initial
architecture of [165], resulting in almost as good performance (results not shown).
Additionally in both [173] and [174], authors reported that the fully connected NN
introduced by Cohen et al. is more accurate in terms of RMSE than the convolutional
NN introduced by Hoppe et al. [166] in both white matter and gray matter. Considering
that mainly convolutional networks have been proposed for MRF [166, 194, 195], this
is reassuring about the impact of choosing fully connected NN instead. However, other
networks have been proposed such as recurrent NN [167, 196] and are not presently
compared. In the last table, we reported the flexibility of the methods and consider only
the setting once the architecture has been fixed (i.e. fully-connected). We assume that a
constant number of nodes per layer is used. Considering all possible NN architectures
would result in an unreasonable number of possibilities and can be seen as a limitation
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of this approach. Although we cannot claim to have used the best possible design, the
time spent in tuning the NN parameters was considerably higher than the time spent
on tuning the DB-SL, which consisted only in the choice of the covariance matrices
constraints and the selection of the number of Gaussian distributions in the mixture
model.

In this study, we extended our approach to complex-valued signals by splitting the
real and imaginary parts resulting in twice larger input signals as proposed in other
works [167, 168]. However, such a representation could not respect the phase information
that is captured by complex algebra [168]. In this work, authors thus introduce a new
complex activation function for complex NN and showed that complex-valued NNs
outperform 2-channel NNs. An adaptation of GLLiM for complex-valued data, which is
possible, could improve the estimation of parameters from complex signals. Interestingly,
both 2-channel and complex-valued NNs do not reach the DBM accuracy in estimating
B0 as observed in this study and in agreement with other work [168]. This may still be a
limitation as compared to the initial DBM method.

An interesting point that, to the best of our knowledge, has not been discussed is
the structure of the error on maps found in the majority of DBL works, including ours,
see figure 4.8. Indeed, we observe that in RMSE maps using DBL methods, most of
the brain structures can be distinguished while it does not when using DBM. It may be
interesting to keep this in mind when interpreting the results since it means that we do
not have a constant error across the estimated maps (e.g. white noise). Interestingly,
using the DB-SL method, this information can be found in CI maps. We believe that
knowing the average performance of a method is very valuable, but being able to predict
it on new estimates has a totally different impact. Now that we have shown that it is
possible to have access to such information, an optimization in this direction could be an
opportunity for improvement.

In conclusion, this method irrefutably highlights the interest of learning methods
as compared to matching ones. This comparison of the DBL methods shows that the
proposed statistical learning method outperforms the fully-connected deep learning
approach in standard MRF conditions, i.e. thermal noise and highly spatial aliasing
noise. Nevertheless, there may still be a need to improve the DB-SL implementation in
order to accelerate quantification. The real and imaginary 2-channel DB-SL method can
handle complex-valued data but cannot directly capture complete complex algebra while
some DB-DL method can [168]. This requires an adjustment of the inverse regression
model, which is left as a short term future work.



Chapter 5

Murine model study of MTLE

To investigate the identification of the epileptogenic zone and associated seizure spreading
regions, we use a multi-parametric MRI analysis at 9.4 T. We examined, elaborated and
combined multiple cellular and neurovascular MRI parameters as imaging biomarkers of
the epileptogenic and seizure propagating regions. Analyses were performed longitudinally
in an experimental model of mesial temporal lobe epilepsy (MTLE). The previous proposed
quantitative DB-SL method is compared with the CEF method.

5.1 Introduction

Defining the epileptogenic zone and the anatomical boundaries of seizure spreading
networks in experimental or clinical focal epilepsies requires a complex clinical toolkit
that includes magnetic resonance imaging (MRI) [89, 101, 105, 107]. Novel imaging
approaches are based on the analysis of the multiple cellular and cerebrovascular dynamics
that unfold during seizures, particularly blood-brain barrier permeability [197–199],
perfusion modifications [200, 201], pathological neurovascular cell remodeling [84, 202],
angiogenesis [62], and glial cells inflammation [203]. Cellular changes can translate into
T1, T2, or diffusion modifications [91–93, 100], while cerebrovascular damage can be
examined using gadolinium-based MRI [96, 204], with an extension to hemodynamic
measurements such as cerebral blood flow or cerebral blood volume [105, 205], see
details in section 2.1.3.4. However, no clear consensus has emerged on a single clinically
applicable MRI parameter that would significantly improve the identification of the
epileptogenic zone and the associated seizure propagating regions.

Here, we developed a multi-parametric MRI approach based on the quantification
of four cerebrovascular (blood volume, microvessel diameter, tissue oxygen saturation
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and BBB permeability) and three cellular (T1, T2, and diffusion contrast) parameters,
allowing the acquisition of data within an examination session in each animal. Using a
model of mesio-temporal lobe epilepsy (MTLE) elicited by a unilateral intra-hippocampal
kainic acid (KA) injection [85, 206], we tracked the MRI modifications in the ipsilateral
epileptogenic [207] and in the contralateral seizure propagating hippocampi. We mapped
all MRI parameters with equal spatial resolution to obtain multiple values per image pixel.
To derive an integrated information, we used standard statistical approaches (nearest
neighbors, discriminant analysis, support vector machine, naive Bayes and decision tree)
to classify the multi-parametric pixels, with the goal of discriminating the ipsilateral
from the contralateral hippocampi, and comparing to sham animals.

5.2 Materials and methods

5.2.1 Animals

C57BL/6J male mice (8-10 weeks, Janvier LABS, Saint Berthevin, France), were housed
in individual cages after surgery with food and water ad libitum and maintained in
a 12-hour light-dark cycle (room temperature: 22 ± 1°C). All animal procedures were
performed in accordance with the European Committee Council Directive 2010/63/EU
after validation by our local ethical committee and authorization from the French Ministry
of Research (#8804-2014121714272897 v6).

5.2.2 MTLE model

A stereotaxic injection into the right dorsal hippocampus of 50 nL of a 20 mM solution
of KA (i.e. 1 nmol; Sigma, Lyon, France) was performed under general anesthesia (4 %
chloral hydrate), as previously described and used by different groups [84, 85, 206, 208],
while sham mice received 0.9 % NaCl. After KA injection, asymmetric clonic movements
of the forelimbs and head deviations, rotations, and periods of immobility were observed
for several hours [85]. After surgery, the mortality rate was 10.7 %. Animals that
did not exhibit any of these signs were excluded from the study. These archetypical
behavioural modifications lead to electrographic spontaneous seizures, as we and others
previously showed by using intrahippocampal recordings [84, 85, 206, 209] (see figure 5.1).
Furthermore, animals that did not present hippocampus sclerosis on the anatomical
image acquired during the MRI sessions at 4-6 weeks were excluded (see figure 5.2). The
experimental protocol and group sizes are summarized in figure 5.3.
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Figure 5.1 – Contra and ipsilateral electroencephalogram recordings performed 35 days
post-kainate.
In blue, ipsilateral hippocampus electroencephalogram (EEG) recordings and in red associated
contralateral EEG recordings in two mice examples.

Contra Ispi

2 mm

Contra Ispi Contra Ispi

Figure 5.2 – Hippocampal sclerosis on MRI images from 9 different animals, 4-6 weeks
after kainate.
Anatomical images were obtained from a T2-weigted MRI acquisition. Sclerosis are visible
in the ipsilateral hippocampus, i.e. the loss of hippocampal internal structure as described
in [210]. White dashed lines indicate the sclerotic hippocampus.
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Figure 5.3 – Experimental protocol.
(A) Workflow of the study. (B) Number of animals used at each step of the protocol. Among
the 40 sham animals, 11 had a complete MRI at 48-72 hours and 20 at 4-6 weeks. Animals for
which the contrast agent was not properly injected were discarded from the study. Moreover, 5
animals imaged at 48-72 hours were imaged again at 4-6 weeks. Histology was performed on 6
animals imaged at 4-6 weeks.
Among the 34 KA-MTLE animals, 10 had a complete MRI at 48-72 hours and 20 at 4-6 weeks.
Animals for which the contrast agent was not properly injected were discarded from the study.
Moreover, the 10 animals imaged at 48-72 hours were imaged again at 4-6 weeks. Histology
was performed on 6 animals imaged at 4-6 weeks.

5.2.3 MRI

5.2.3.1 Animal preparation

The mouse tail vein was equipped with a catheter to deliver contrast agents. Anaesthesia
was induced using 5 % isoflurane/air (IsoFlo, Abbot Laboratories Ltd, Berkshire, UK)
and maintained through a facial mask using 1.5-2.5 % isoflurane in a mixture 75 % Air:
25 % O2. Throughout all imaging procedures, the level of isoflurane was adjusted to
maintain respiration rate between 40-70 bpm. Animals were maintained at 37°C by using
a heating blanket.
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5.2.3.2 MRI acquisition

Experiments were performed using a 9.4 T Biospec animal imager (Paravision 6.0.1;
Bruker, Ettlingen, Germany) with an actively decoupled cross-coil setup: volume coil
transmit and surface, four-channels, cryo-cooled coil reception. The voxel size was
78 × 78 × 350 µm3 for the anatomical images and 136 × 136 × 700 µm3 for the quantita-
tive maps. The complete MRI session lasted approximately 2 hours including animal
preparation, acquisitions and contrast agent injections.

Anatomical T2-weighted (T2w) images were acquired using a turbo spin-echo MRI
sequence (TR/TE = 2 500/36 ms). The anatomical images were used to first visually
identify the hippocampus sclerosis and second, to delineate the following regions of
interest: contralateral and ipsilateral hippocampus, and contralateral cortex. These
regions were automatically obtained after a non-linear registration between the anatomical
images and the atlas described in [211], using a procedure described in [212]. Note that
the atlas was manually modified to separate the regions of interest between the two
hemispheres.

Relaxation times T1 and T2 were obtained using a flow-sensitive alternating inversion
recovery (FAIR) and multi-spin-multi-echo (MSME) MRI sequences, respectively: (T1:
TR/TE = 10 s/15 ms and T2: TR/∆TE = 2 s/6 ms). The apparent diffusion coefficient
(ADC) was derived from diffusion images, acquired using a diffusion-weighted, spin-
echo, single-shot, echo-planar imaging (TR/TE = 3 s/23.17 ms). Blood volume fraction
(BVf), vessel size index (VSI) and tissue oxygen saturation (StO2) were obtained from
a gradient echo sampling of the free induction decay and spin echo sequence and a
multi spin echo sequence (MGEFIDSE) [132, 187]. Relaxations ∆R2 and ∆R∗

2 images
were acquired using a gradient echo sampling of the free induction decay and spin echo
sequence: (TR/∆TE = 4 s/2.77 ms). Eight sampled time points were measured after
the 90° RF pulse and 24 sampled time points after the 180° RF pulse. Ultrasmall
superparamagnetic iron oxide (USPIO) particles (Guerbet, Aulnay-sous-Bois, France;
200 µµmol Fe.kg−1) were injected via the tail vein and the previous scan was repeated 1
minute after the injection. Using a dynamic contrast enhanced approach, T1-weighted
images were acquired during 15 minutes (one each 12 seconds) using multiple T1-weighted
images (total 75) acquired performing a rapid acquisition with relaxation enhancement
sequence (TR/TE = 800/5.05ms). A gadolinium bolus (200 µmol.kg−1) was injected
via the tail vein 1 minute after the beginning of the sequence acquisition. Note that
interactions between CAs has been studied by authors in [213].
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5.2.3.3 MRI quantification

Quantitative parameter maps were computed pixel-by-pixel using previously published
methods and the Medical software for Processing multi-Parametric images Pipelines tool1

in the Matlab environment (Mathworks, MA, USA), see appendix E.2. Seven parameter
maps were obtained: relaxation times T1 and T2, apparent diffusion coefficient (ADC),
blood volume fraction (BVf), vessel size index (VSI), tissue oxygen saturation (StO2)
and BBB permeability (BBBp).

T1 and T2 maps were derived from the FAIR and MSME data respectively, using
a non-linear fitting algorithm (section 2.3.1). ADC maps were computed as the mean
of the ADCs observed in each of three orthogonal directions (section 2.3.2). BVf, VSI
and StO2 maps were estimated using the vascular MRF approach proposed in chapter 3.
Combinations of parameters for simulation were obtained for BVf between 0.5 and 25 %,
VSI between 1 and 100 µm, and StO2 between 50 and 90 %. The susceptibility difference
between blood in the presence and absence of USPIO, was set to 0.14 × 10−6 (CGS) [214]
and hematocrit was set to 0.357. Other simulation settings (i.e. magnetic field, sequence
acquisition) matched experiment conditions. Finally, after spatial Gaussian filtering
(3 × 3), BBBp was estimated as the area under the curve over the 10 minutes following
the injection (AUC600, section 2.3.4.2). In the brain, an increase of this quantity indicates
an accumulation of the gadolinium in the extravascular compartment and therefore a
reduction in the BBB permeability [188].

To reduce the possible contribution of biases inherent to the acquisition set-up (e.g.
position of the receiver coil, dose of contrast agent), parameter maps were normalized by
a region where no significant MRI changes are observed in these experimental conditions,
e.g. the thalamus [211]. To allow a direct evaluation and graphical comparisons across
read-outs, all parameter ratios were centered using the mean normalized sham ratio as
reference. For each parameter and each animal, the following ratio R was calculated:

R = H

T
− 1

S

S∑
n=1

Hn

Sn

, (5.1)

where H and T are the mean parameter values in the hippocampus and thalamus of one
animal, respectively. S is the number of sham mice and ∑S

n=1 Hn/Sn is the sum of the
ratios of hippocampus and thalamus mean parameter values for all the sham mice. This
representation of the MRI parameters constitutes the normalized MRI parameter.

1https://github.com/nifm-gin/MP3

https://github.com/nifm-gin/MP3
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5.2.4 Brain immunohistochemistry and quantifications

Analyses were performed using sham (n = 6) and KA-MTLE (n = 6) mice after completion
of the 4-6 weeks MRI session. Immunohistochemistry was performed on frozen brain
slices as previously described by [84, 85].

After intracardiac perfusion with PBS, brains were dissected and fixed in PFA 4 %
solution. Fixed brains were immersed in sucrose 15 % for 24 hours followed by sucrose
30 %. Brains were then snap frozen and stored at -80°C. Slices (20 µm) were obtained
using a cryostat. Immunohistochemistry was performed after PBS washes. Slices were
added with blocking solution (PBS, triton 0.5 %, horse serum 20 %) at room temperature
for 1 hour. Primary antibodies (table 5.1) were diluted in blocking solution and slices
incubated overnight at 4°C. After PBS washes, secondary antibody (table 5.1) was added
in PBS for 2 hours at room temperature. Slices were then mounted using Vectashield
containing DAPI. 20× Z-stack images (12-15 planes of 1 µm) were analyzed using Fiji.
Two or three slices were examined for each mouse to quantify signals in constant regions
of interest CA1, CA2 and CA3 identified by DAPI maps. Prior to analysis, all Z-stacks
images were combined (Z-project, sum) using Fiji. GFAP quantification: images were
converted to RGB stack format. Signal threshold was adjusted to 200 units for each image.
Area of GFAP signal was calculated setting threshold sensitivity equal for each image.
GFAP data are expressed as a percentage of ROI total pixels. CD13 quantification: a
skeleton plug-in was used to track CD13 and CD31 signals. Branch length was calculated
as pixels from Fiji “branch length” after smoothing (< 10 pixels objects).

Primary
antibodies Host Vendor / Reference Dilution

Anti-GFAP Anti-chicken Abcam / Ab4674 1/300

Anti-CD13 Anti-rat Abcam 1/100

DAPI Vectashield: mountain medium for
fluorescence with DAPI

Vector Laboratories
H-1200

[DAPI] =
1.5 µg.ml−1

Anti-CD31 Anit-rat Abcam / Ab56299 1/400
Secondary
antibodies Host Vendor / Reference Dilution

IBA1 Donkey anti-rabbit Alexa Fluor 488 Jackson ImmunoResearch
711-545-152 1/500

GFAP Donkey anti-chicken Alexa Fluor Cy3 Jackson ImmunoResearch
703-165-155 1/500

CD13/CD31 Donkey anti-rat Cy3 Jackson ImmunoResearch
712-165-153 1/500

Table 5.1 – Antibodies used for immunohistochemistry imaging.
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5.2.5 Statistical analyses and classification

5.2.5.1 Statistical analyses

Histological data were analyzed using Prism 8.3.1. Depending on normality (Shapiro-
Wilk) data were analyzed using a two-tailed t-test or a non-parametric Mann-Whitney test.
Results are reported as violin box with single points and indicating median, interquartile
ranges and min-max range (figure 5.6). Significance threshold was set at p < 0.05.

MRI data were analyzed in the Matlab environment. Data were analyzed using a
non-parametric Mann-Whitney test. Results are reported as a box. On each box, the
central mark indicates the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. Whiskers extend to the most extreme data points.

5.2.5.2 Classification

We applied automatic classifications to MRI data considering 3 groups (sham, KA-MTLE
contralateral, and KA-MTLE ipsilateral). To evaluate the impact of the classification
method, different approaches are performed: k-nearest neighbors (kNN), linear and
quadratic discriminant analysis (LDA and QDA), support vector machine (SVM), Naïve
Bayes (NB), and Decision Tree (DT). Each approach was evaluated using a “leave-one-
out” cross-validation strategy, specifically each classification model was trained using all
animals except one. The omitted animal was then classified using the trained model. The
procedure was repeated for all animals and the mean classification accuracy was reported.
To examine whether it is more accurate to use one or several MRI parameters to classify
the experimental groups, we performed the classification procedure considering 1) each
MRI parameter individually, 2) all MRI parameters or 3) the subset of MRI parameters
that yields to the highest classification accuracy. All possible parameter combinations
were tested.

5.3 Results

5.3.1 Tracking hippocampal MRI changes post-KA and during
spontaneous seizures

Anatomical imaging performed after status epilepticus (48-72 hours post-KA) indicated
the unilateral cortical lesion and edema corresponding to the kainate injection route
(figure 5.4 A2-A4, D2 and H2).
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Unilateral hippocampal sclerosis was detected, consisting of a 16.22 % and 10.12 %
volume reduction as compared to contralateral (p = 0.007) and sham (p = 0.080) hip-
pocampi. Examination of the MRI data showed a T1 (+6.49 %, p < 0.001) and BBBp

(+12.28 %, p = 0.001) increase in the MTLE ipsilateral, epileptogenic, hippocampi after
status epilepticus as compared to sham (figure 5.5(a) A1-B1). Re-testing performed dur-
ing spontaneous seizures indicated the persistence of BBBp (+10.40 %, p < 0.001) along
with an increase of ADC (+9.99 %, p < 0.001) and BVf (+19.91 %, p = 0.001) as compared
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Figure 5.4 – Examples of MRI acquisitions (on previous page).
Anatomical images (A1-A4) with ROI overlaid and the seven quantitative parameter maps
(horizontal arrangement) for each mouse model and each time-point (vertical arrangement).
sham (A1-H1) at 48-72 hours and (A3-H3) at 4-6 weeks post-surgery; (A2-H2) epileptic
mouse at 48-72 hours post-KA; (A4-H4) KA-MTLE mice at 4-6 weeks. MRI data are: (A)
T2-weighted anatomical image (not quantitative), (B) T1 relaxation time, (C) T2 relaxation
time, (D) ADC: apparent diffusion coefficient, (E) BVf: blood volume fraction, (F) VSI: vessel
size index, (G) StO2: tissue oxygen saturation, and (H) BBBp: blood-brain-barrier permeability.
On the T2-weighted images, the neocortex is delineated in green. The hippocampi are delineated
in blue for sham mice and orange for epileptic mice (dashed lines for the contralateral and
solid lines for the ipsilateral hippocampus). The thalamus, used for data normalization, is
delineated in magenta. Yellow arrows indicate the lesions caused by the intra hippocampal
injection. Minimum (min) and maximum (max) values are reported on the left side of each per
row, except for the first row, which does not show quantitative image.

to sham, suggesting enduring cellular and vascular alterations (figure 5.5(a) B1-B2). The
MRI outcome was paralleled by significant cellular level modifications, as shown by the
increased hippocampal GFAP reactivity (figure 5.6 F), CD31 angiogenesis (figure 5.6 H,
D1-D2) and CD13 pericyte remodelling (figure 5.6 J, E1-E2), examined in the ipsilateral
epileptogenic hippocampi.

Subsequently, we studied the contralateral MTLE hippocampus, a non-lesional region
characterized by significant EEG seizure propagation [215] (see figure 5.1). 48-72 hours
post-KA, MRI changes consisted of increased T1 (+2.85 %, p = 0.032) and decreased
T2 (-2.06 %, p = 0.012; figure 5.5(b) A1, A2). 4-6 weeks post-KA, ADC (+1.99 %,
p = 0.029) and BVf (+13.14 %, p = 0.010) were increased in MTLE mice, as compared to
sham (figure 5.5(b) B1, B2). The contralateral cortex exhibited discrete modifications,
specifically ADC (-1.06 %, p = 0.037) and VSI (-4.82 %, p = 0.001; figure 5.5(c)).
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Figure 5.5 – Contralateral and ipsilateral hippocampus, and cortex MRI parameters.
Normalized MRI parameter values (equation (5.1)) obtained from the analysis of the ipsilateral
hippocampi 48-72 hours post-KA (sham n = 11; KA-MTLE n = 10) and at 4-6 weeks (sham
n = 21; KA-MTLE n = 21). Absolute MRI parameter values are reported in appendix figures D.1
and D.2. (A1, B1) correspond to 48-72 hours and (A2, B2) to 4-6 weeks post-KA mice. Top-
down: (A) T1 and T2: relaxation times, ADC: apparent diffusion coefficient; (B) BVf: blood
volume fraction, VSI: vessel size index, StO2: tissue oxygen saturation, BBBp: blood-brain-
barrier permeability. For each parameter, a Mann-Whitney test was performed between sham
and KA-MTLE mice. Significant p-values (p < 0.05) are reported.
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Figure 5.6 – Histological neurovascular changes in the ipsi and contralateral hippocampi
during chronic seizures.
(A1, A2) DAPI and CD13 pericyte maps of the whole dorsal hippocampi (ipsi and contra-
lateral) during chronic seizures (4-6 weeks). Arrowhead in A2 show gross pericyte abnormality
in the CA regions. (B1, B2) Examples of GFAP reactivity during SRS in the ipsilateral CA1
hippocampus as compared to sham. (C1, C3) Examples of astrocyte morphological changes
during chronic seizures (arrowhead, ipsi and contra-lateral) as compared to sham. (D1,D2)
Example of CD31 angiogenesis during chronic seizures. Arrowheads in D2 indicate large and
looping abnormal vessels. (E1, E2) Example of CD13 pericyte modification and hypertrophy
during chronic seizures (arrowheads in E2). (F, G) Quantification of sub-hippocampal GFAP
fluorescence, ipsi and contralateral. (H, I) Quantification of sub-hippocampal CD31 vessel
length, ipsi and contralateral. (J, K) Quantification of sub-hippocampal CD13 pericyte length,
ipsi and contralateral. Depending on normality (Shapiro-Wilk) data were analyzed using a
two-tailed t-test. Panel G CA2 contra, panel H CA3 ipsi, panel I CA2 contra, panel K CA1
contra that were instead analyzed using non-parametric Mann-Whitney. Data refers to n = 6
mice/group, 2-3 slices/mouse. * p < 0.05, ** p < 0.01, and *** p < 0.001.

Histological analysis of the contralateral hippocampi indicated distinct cellular level
changes, less apparent as compared to the lesional ipsilateral hippocampus (figure 5.6).
In particular, CD13 pericyte (figure 5.6 K) and CD31 capillary (figure 5.6 I) length
was trending or significantly increased as compared to sham, suggesting angiogenesis
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in this region. Total GFAP reactivity was unchanged (figure 5.6 G), although discrete
morphological modifications were observed (figure 5.6 C1-C3). We next correlated
MRI measures with the histological read-outs as measured in each animal (figure 5.7).
We report significant linear correlations between ADC and GFAP immunoreactivity
(r = 0.66), BVf and VSI correlated with CD31 vessel length (r = 0.61 and 0.65, respectively;
figure 5.7). Collectively, these results indicate specific MRI changes occurring in the
epileptogenic and seizure propagating hippocampi, with an extension and a link to cellular
histopathological modifications.
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Figure 5.7 – Relation between MRI normalized parameters and immunohistochemistry
parameters.
(A) Correlations between MRI parameters. (B) Correlations between MRI parameters and
immunohistochemistry parameters. White crosses correspond to non-significant correlations
(p > 0.05). (C) Apparent diffusion coefficient (ADC) vs. GFAP fluorescence. (D) Blood volume
fraction (BVf) vs. CD31 vessel length. (E) Vessel size index (VSI) vs. CD31 vessel length. The
Pearson correlation coefficient r is indicated in the top right corner.
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5.3.2 Multiparametric analysis for the identification of epilep-
togenic and seizure-spreading hippocampi

We initially tested whether redundancy existed among all MRI parameters examined.
Correlations below 0.5, except for BVf and VSI (r = 0.88; figure 5.7), ruled out inter-
dependence between the MRI parameters, indicating that MRI parameter variations
can be combined without redundant information. Furthermore, the correlation level
between MRI parameter values and hippocampal volumes was low or not significant,
indicating that quantitative MRI provides integrating data to hippocampus sclerosis
(figure 5.2). We then examined the effectiveness of multiparametric analyses to separate
our experimental groups. To this end, MRI data acquired from all animals underwent
six classification analyses (see section 5.2.5.2; figure 5.8 A1-A2, B1-B2). Initially, we clas-
sified two experimental conditions, specifically ipsilateral MTLE and sham hippocampi,
considering one MRI parameter at a time (figure 5.8 A1-A2). 48-72 hours post-KA, we
obtained the highest classification accuracies using T1, T2 and BBBp (93.0 %, 81.2 % and
89.2 %, respectively; MTLE: n = 10 and sham: n = 22). During spontaneous seizures (4-6
weeks), the best classification was obtained using ADC, BVf and BBBp (98.3 %, 83.3 %
and 89.2 %, respectively; MTLE: n = 20 and sham: n = 40). When we considered all seven
MRI parameters, the accuracy score was 92.5 % post-KA and 96.7 % during spontaneous
seizures. When screening and selecting the subset of MRI parameters that provides the
highest accuracy score, we found that the combination of T1, T2, ADC and BBBp delivers
an accuracy of 100 % post-KA, while the combination of ADC, BVf, VSI and BBBp

delivers an accuracy of 99.2 % during spontaneous seizures. These results were obtained
using QDA and SVM classification methods. The mean (across parameters) standard
deviation (across classification methods) of accuracy was 2.15 ± 1.46 %, suggesting that
the classification methods led to close results.

Next, we attempted classifying three experimental conditions, specifically MTLE
ipsilateral, MTLE contralateral, and sham hippocampi (figure 5.8 B1-B2). 48-72 hours
post-KA and considering one parameter at a time, the highest classification accuracies
were obtained using BBBp, T1, and T2 (74 %, 69 %, and 65.8 %, respectively). During
spontaneous seizures, accuracies based on ADC, BBBp, BVf were 77.6 %, 63.7 %, and
60 %, respectively. Combination of all MRI parameters did not improve the classification
accuracy. However, the multiparametric approach using the combination of T2, BVf,
VSI, StO2 and BBBp delivered a 90.5 % accuracy post-KA, while the combination of T1,
ADC and BVf lead to an 85 % accuracy in segregating the three experimental conditions
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Figure 5.8 – Classification accuracy scores using one, all, or the best parameter subset.
(A1, A2) show mean accuracy scores (obtained from 20 repetitions) for 2-class (sham and
KA-MTLE ipsilateral) classification by (top-down): kNN: k-nearest neighbors, LDA/QDA:
linear/quadratic discriminant analysis, SVM: support vector machines, NB: naive Bayes, and
DT: decision tree. These classifications are performed (left-right) using a single parameter
indicated at the top of the column, (All) using all seven parameters or (Subset) using the
optimal subset of parameters. (B1, B2) show accuracy scores 3-class classification: sham contra-
and ipsilateral hippocampi, KA-MTE contralateral hippocampus and KA-MTLE ipsilateral
hippocampus. (C1, C2) show 2D representations of classes. PC1 and PC2 correspond to the
two first principal components of the seven MRI normalized parameters assigned to each region
of interest. The variance explained by each component is mentioned between parentheses. In
(C1, C2), the orange area corresponds to the expected location of KA-MTLE ipsi, the blue
area to that of sham (ipsi and contra), and the white area to the KA-MTLE contra, using the
SVM classification. Note that in (C1), the white area is not visible on this 2D projection.
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during spontaneous seizures. These results were obtained using QDA and the variability
between the classification methods was low (3.13 ± 2.01 %). Furthermore, figure 5.8 C2
shows contralateral MTLE data (red triangles) positioned between sham (blue triangles
and circles) and ipsilateral MTLE data (red circles). Altogether, our neurovascular
multiparametric analysis fully defines the epileptogenic hippocampus and it provides
novel MRI identifiers for the contralateral hippocampi, a seizure spreading region in
experimental MTLE.

5.3.3 Dictionary-based learning vs. steady-state methods

This section is a parenthesis to compare the impact of the DB-SL quantification compared
to CEF quantification on vascular parameters estimation and resulting classification
accuracy. We compare values obtained in five different brain regions and both hemispheres
in figure 5.9. For VSI, we do not consider VSI values above 20 µm as it shown very high
estimate errors using CEF method (section 3.4.2.1).
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Figure 5.9 – Blood volume fractions and vessel size indexes in different brain regions,
using two different reconstruction methods.
(A1-A5) Blood volume fraction (BVf) and (B1-B5) vessels size index (VSI) in five different
brain regions, from (A1, B1) to (A5, B5): thalamus, striatum, hypothalamus, cortex and
dorsal hippocampus. Mean volumes and standard deviation of each regions (in pixels) is
reported above columns. Blue and yellow marks correspond to contralateral and ipsilateral
hippocampi, respectively. Pearson correlation coefficient r is indicated in the top left corner.
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Regarding BVf estimates, we observe correlation values between 0.768 and 0.903
indicating a high similarity of estimates. Regarding VSI estimates, correlation values are
smaller, between 0.199 and 0.532. These results are in agreement with section 3.4.2.1
indicating low BVf estimates error for both methods but larger VSI estimates error.

Considering the classifications, we do not observe significant classification changes
using CEF method. We interpret this minor difference by the fact that this method was
applied to only three of the seven MRI parameters and that among these parameters
one is not discriminant (StO2) and the two others (BVf and VSI) are strongly correlated.
Further investigations applying DBL analysis to quantify more parameters could have a
greater impact.

5.4 Discussion, conclusion and perspectives

Our study effectively identifies and mathematically elaborates a suite of MRI cellular
and cerebrovascular parameters over time and within a precise experimental MTLE
setting. We successfully applied a quantitative, multiparametric, MRI acquisition and
data processing pipeline to differentiate with high accuracy 1) epileptogenic hippocampi
from sham and 2) the epileptogenic from the contralateral seizure spreading region.
We confirmed coherence between neurovascular MRI identifiers and specific histological
outputs within the same regions of interest during spontaneous seizures, and we propose
this approach for a better identification of brain regions involved in seizure spreading.
Our method could be integrated in current clinical MRI pre-surgical examinations with
the goal of potentially improve mapping of the epileptic networks.

5.4.1 Multiparametric MRI to map the epileptic networks: clin-
ical and experimental evidence

Our pre-clinical study indicates QDA as the most efficient method for MRI data set clas-
sification. Furthermore, all multi-parametric methods outperformed the mono-parametric
analysis. Clinically, SVM was previously used to classify TLE patients by means of
T1-weighted [216] or diffusion images [217]. SVM achieved a prediction accuracy of 71 %
for whole-brain and 81 % when focusing on the hemisphere ipsilateral to the hippocampal
sclerosis [216]. A 69.4-77.8 % classification accuracy was also reported when using SVM
to analyse the individual parameters T1, T2, ADC and fractional anisotropy in 17 TLE
patients and 19 control volunteers [218]. When pre-processing the data (e.g. using feature
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selection, dimensionality reduction) prior to the classification, the accuracy increased
to 80.6 %. A focus on the ipsilateral hemisphere (2-class analysis) further improved
accuracies within 88.9-100 % [218]. To the best of our knowledge, our study is the
first one applying multi-parametric MRI analysis to a pre-clinical model of MTLE. The
epileptogenic hippocampi were identified and distinguished from sham with a 98.3 %
accuracy during spontaneous seizures and 100 % accuracy 48-72 hours post-KA. When
reapplying the analysis to classify sham, seizure spreading and epileptogenic hippocampi,
we maintained a high accuracy of 85 % and 90.5 % during spontaneous seizures and
post-KA, respectively (figure 5.8). These results are relevant offering a novel MRI
toolkit, based on neurovascular read out, to better outline the epileptic networks with
the inclusion of propagating regions, perhaps also applicable to cases of non-lesional
epilepsies.

5.4.2 Integrating imaging and histological evidence of neurovas-
cular damage in MTLE

Single analysis of specific MRI read outs have previously been described. For instance,
hyperintense T2-weighted signal 1 hour to 7 days post-KA were previously reported in the
MTLE model used herein [99] and in a pilocarpine-induced status epilepticus in rats [91].
In the latter study, T2 values return to baseline 1 week after status epilepticus [91]. The
T1 changes observed in our study are also consistent with the T1 increase 1 to 3 days
after pilocarpine-induced status epilepticus and the return to baseline 2 weeks after [91].
At 4-6 weeks post-KA, the observed increased ADC is in line with the increased ADC
observed 7 to 84 days after KA-induced status epilepticus in rats,while ADC remains
normal 1 to 3 days after KA [219] and 23 days after electrical stimulation [94]. In [95],
normal BVf was reported 2 days after status epilepticus and a trend increase in BVf
14 days after status epilepticus, although increased vessel density was reported by
immunohistochemistry [202].

Our BBB permeability findings are consistent with [97], although we here used
a clinically relevant contrast agent bolus injection followed by a 10 minutes tracking
acquisition in place of a long-lasting infusion. Clinically, calculating the differential
T1 relaxation pre- and post-interictally was successfully used to spatially localize the
epileptic foci in patients by detecting blood-brain barrier permeability [107]. Previously,
we showed histological BBB leakage by analysing parenchymal fluorescein in the ipsilateral
hippocampus in this MTLE model [84], an outcome consistent with the MRI data reported
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here. Here, we report histological evidence of glio-vascular modifications that echoes the
MRI data, specifically the ADC and BVf increase in the ipsilateral and contralateral
hippocampi. The histological analyses of the contralateral hippocampi in MTLE mice
reveals subtle cellular modifications possibly associated with seizures spreading [85, 207,
220]. Furthermore, some alterations were also observed by MRI in the cortex, but
minor as compared to the contralateral hippocampus. In summary, contralateral seizures
spreading regions could be further investigated for (sub)cellular or molecular changes
and our MRI and histological studies comfort this line of reasoning [215, 221].

5.4.3 Study limitations and conclusions

Our study has limitations. From a technical standpoint, we experienced a typical slight
signal decay from the cortex (located close the MRI coil, figure 5.4) towards the lower
part of the brain (away from the MRI coil), which can be observed on anatomical, T2 and
BBB permeability maps (figure 5.4 A1-A4, C4, H1-H4). However, these intrinsic patterns
were similar in all groups, not affecting our analyses. Our investigation did not include
functional MRI [222, 223] or MR spectroscopy (e.g. Glutamate, GABA), two important
technical approaches generating potentially complementary information. Furthermore,
the diffusion acquisition protocol used in this work could be refined to analyze fractional
anisotropy of diffusion kurtosis. In general, our multiparametric MRI analysis could be
extended to include additional imaging measures, thereby refining classification accuracy.
Here, we acknowledge that EEG recordings were not performed during MRI investigations
long-term. This technical pitfall has impeded an MRI read-out classification based on
quantifiable seizure activity in each mouse. By overcoming this technical challenge, we will
continue the research initiated here. We also recognize that performing the proposed MRI
protocol may be time consuming. Upon technical optimization, exploration in each mouse
required approximately 45 minutes. This time frame could be shortened by eliminating
specific sequences as, for example, we observed that StO2 mapping did not significantly
improve our results. We also acknowledge that, to define the epileptogenic and seizure
propagating hippocampi we used reference data obtained from sham animals. This
approach raises the significant issue of availability of reference data for humans. While
T1, T2, and diffusion data exist [224–226], reference perfusion and BBB permeability
data are not available. The latter represents a stumbling block, negatively impacting a
pre-clinical to clinical transition. Generating imaging templates for the healthy human
brain would be significant to develop statistical approach and to obtain maps of abnormal
tissues, as performed for example for tumour identification [191]. An alternative to atlases
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would searching for asymmetries in parameter maps between left and right hemispheres,
as typically performed in current neuroradiology.

In summary, a multi-parametric quantitative MRI acquisition combining an optimal
array of neurovascular read-outs may improve the identification of the epileptogenic
and seizures spreading regions. Further pre-clinical trials are required to validate next
application to specific clinical settings.



Chapter 6

Conclusion and perspectives

This thesis was articulated on three main topics: 1) methodological developments in
MRF and 2) pre-clinical MRI data acquisitions and processing on experimental models
of epilepsy. In parallel, to make full use of the first two contributions, 3) original software
solutions have been developed.

Regarding the methodological developments, it was shown that the dictionary-based
methods relying on more sophisticated biophysical models than the closed-form expression
fitting, could improve the estimation of parameters, in our case vascular parameters. In
particular, the simulation tools can take into account system imperfections, which are
often disregarded in expressions based on simplifying assumptions. However, dictionary-
based analysis requires by construction the management of a large dictionary that results
in extensive time and memory requirements.

Figure 6.1 – 3D vascular simulation.
Four examples of 3D voxel, spatial resolution is
136 × 136 × 800 µm3.

The MRF framework is particularly
suitable for vascular application because
simple models cannot take into account
static and dynamic interactions within a
pixel, as opposed to simulation tools. The
simulation of this complex vascular envi-
ronment results in extremely large simula-
tion times that also have to be managed,
especially as even more complex simula-
tions could further improve the quality of
the modeling. A realistic 3D voxel simu-
lation tool in development under an ANR project (see examples in figure 6.1), should
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provides signal highly sensitive to vascular parameters based on ex vivo angiogram
imaging and optimal signal patterns [227]. The tool exhibits a single signal simulation
times of approximately 15 minutes (about 10 seconds for current 2D tool). We can
also speculate that reducing a real vascular geometry to a few parameters would be too
simplistic and taking into account a larger number of parameters is necessary e.g. the
anisotropy, tortuosity, vessel orientations, etc. One may also want to simulate signals
several minutes after contrast agent injections such as in dynamic contrast enhancement.
In these cases, dictionary-based methods that allow a continuous representation of a
large set of parameters from a small number of dictionary entries are highly desirable to
limit simulation cost.

There has been several attempt to learn a continuous representation of the dictionary,
all based on neural networks. We propose a statistical method that provides an high
estimation accuracy compared to neural networks. Despite their high performance,
neural network methods have some weaknesses, including difficulties in generalizing
beyond the learning dictionary and potential instability in case of new dictionary entries
(section 4.3.1.4, page 114), low robustness to both thermal and aliasing high noise levels
(sections 4.3.2.1 and 4.3.2.2), and a significant interpretability of the estimates obtained.
Indeed, black box machine learning models, i.e. functions that are too complicated for
any human to comprehend, are currently being used for high stakes decision making
such as in healthcare. Eventually methods are applied to explain these black box models.
More complex models does not necessary mean more accurate, this is often not true,
particularly when the data are structured, with a good representation in terms of naturally
meaningful features [228].

Instead of creating methods to explain black box models, creating models that are
inherently interpretable/explainable is an alternative way, as chosen in this work for DB-
SL method. We demonstrated that relying on our statistical method, the interpretability
of the model has resulted in the production of a confidence index. Other possibilities have
been explored such as, for example, the inclusion of spatial considerations to constrain the
model, which had previously been presented on hyper-spectral imaging [229]. This feature
is part of the software package. Further investigations would be necessary to produce
an effective spatially-constrained dictionary-based learning method in MRF. Among the
possible improvements, a method for complex-valued data could be an important step
forward. The benefits of a complex-valued neural network have been shown by [168] and
in particular, the benefit of the complex-valued framework over the split of the real and
imaginary parts into two channels, which is the usual technique. Finally, we saw that
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each method has its own strengths and weaknesses (table 4.1, page 120) and the specific
application will determine the use of one or the other, or even considering combining
them for better results.

Ensemble learning typically refers to methods that generate several models that are
combined to make a prediction, either in classification or regression problems [193]. In
this multi-model study, we therefore considered a combination of methods that would
improve accuracy. The preliminary results focused on dictionary-based learning methods
combination, clearly shown the increase of estimates accuracy (section 4.3.4). One can
also combine matching and the proposed learning method. The mean and standard
deviation of the estimated posterior distribution (used in the actual framework as estimate
and confidence index, respectively) could be used to compute the distance between them
and those of the dictionary signals, i.e. the summary statistics of an approximate Bayesian
computation (ABC, for more details, see [230]). This would provide a compression of the
dictionary signals to two values and then avoid extensive time and memory requirements.
In fact, ABC can be seen as a matching procedure, if we only consider the simulation
entry that provided the minimum distance and reject others. One can also imagine using
the entire posterior distribution and compute distance between distributions [231] to
further improve estimate accuracy.

Related findings have been presented in several conferences: in 2018 at the annual
congress of the International Society for Magnetic Resonance in Medicine (ISMRM) [9],
and in 2019 at the French national congress of life imaging [10] and at the annual congress
of the French Society of Magnetic Resonance in Biology and Medicine [11]. A comparison
of the proposed and neural network approaches has been performed at the ISMRM this
year [13] and a full paper is in revision [170].

Regarding the evaluation of epilepsy, the project was based on the use of experimental
models to investigate the localization of regions involved in the epilepsy network. In
Humans it may be difficult to identify these regions, both the epileptic foci and regions
of epileptic seizure spread. We explored two different models of MTLE, one induced by
intraperitoneal injection and the other one by intracerebral kainate injection. Results
concerning the first one are documented in appendix D but were not presented in this
thesis since we focused on the data corresponding to the second model (chapter 5). In
fact, intraperitoneal injection model exhibits greater extent of neuronal damage but does
not reproduce hippocampal sclerosis. Several practical issues were also addressed during
this thesis but are not reported in this manuscript e.g. catheter installation for injection
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of contrast agents into the scanner, stabilization of physiological parameters and scaling
of the protocol on mice at 9.4 T. Issues remain, in particular, the ASL acquisition of
blood flow in the absence of a dedicated labeling coil, remain. The MRI protocol could
thus be improved: it could be more complete. MRF could be further used to accelerate
acquisition and/or improve accuracy on the other vascular parameters evaluated in this
study.

The study on MTLE model induced by intraperitoneal kainate injection, showed
that a multi-parameter approach could improve the identification of epileptic zones but
also of the regions in which the seizures spread. Since the data have been acquired
and revealed a possible discrimination of epileptic hippocampus compared to healthy
hippocampus, it would be valuable to investigate methods allowing discrimination at the
voxel scale. As we have seen, depending on patient, areas within the hippocampus are
inhomogeneously affected in humans (figure 2.7, page 27) The proposed approach could
thus be used to refine the localization of altered tissues. Such methods have already
been used to characterize tumor tissues in rats [191] but in this pathology the cellular
and vascular changes induced are substantial and cover a large region. It is therefore
obvious to localize the tumor in an image, even for unexperimented eyes. In epilepsy,
these changes are small and are not detectable by eyes. An atlas of quantitative normal
values could help detect local anomalies. Alternatively, asymmetry ratios may be used, a
standard practice in radiology.

The protocol and analysis could be used with other experimental models of epilepsy
to identify eventually a shared signature of MRI changes (e.g. intraperitoneal injection
model). One could also investigate the impact of treatment on this MRI signature and
thus determine whether it would be possible to identify the regions involved in epilepsy
in treated patients. As it stands, the protocol is not compatible with a routine clinical
examination and adjustments would be necessary, mainly in reducing the acquisition
time. Findings are currently in preparation for submission.

An effort in this work has been made to provide a tool to easily apply the analysis methods
(ours and competitors’) to MRI data. Compare to standard MRF, dictionary-based learn-
ing methods can easily be computed on a desktop computer even for large dictionaries.
We showed that NN based methods are faster (section 4.3.1.2, page 112), speed mainly re-
lying on mini-batch algorithms combined to GPU implementation. The proposed method
could be greatly accelerated by using the same algorithms, mini-batch [232]. Currently,
the algorithm could already be optimized in its current implementation for moderate
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speed gain (e.g. parallelization of local Gaussian computation) and implementations
in other programming languages might be more suitable (e.g. in Python: GLLiM). I
actually had the opportunity to support two clinicians in the use of the tools during their
one-year research project.

We interfaced the proposed package with the medical software for processing multi-
parametric images pipelines for an extended use to an audience not necessarily familiar
with programming, accepted work [185]. With open science in mind, protocols, data and
code will be shared.

https://rdrr.io/cran/xLLiM/man/gllim.html
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Appendix B

Co-supervision of a master’s student
internship

B.1 Context

Aurélien Delphin, an engineering student at the Polytechnic Institute of Grenoble, realized
his 6-month internship in the laboratory. At this occasion, I co-supervised him on two
missions: 1) to implement additional features to the simulation tool initially developed in
the team by Pannetier et al. [152], and 2) to investigate the deployment of the simulation
tool on the university’s computing grids (CiGri).

In the remainder, we present a sample from his master’s internship report, which can
be consulted online [12]. Brackets indicate text added to the original report for clarity.

B.2 Abstract: validation of MRI simulations

This report addressed the improvement of an MR simulation tool intended to generate
large dictionaries of signals for microvascular characterization. Two main objectives
were at stake. The first one was to improve the quality of the simulations by allowing
a more realistic and flexible geometry generation. The [field of view (FOV)] of the
voxels simulated has been made constant, and the possibility to generate vessels with
normally distributed radii was added, which opens the way to new parameters explo-
ration [figure B.1]. In addition, error control options on the geometrical parameters were
implemented to ensure the user that the result he obtains matches his requirements.
This last addition yields a higher rate of fails when generating dictionaries of signals, but
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eventually ensures a better coverage of the parameter space. Dictionaries using these
new functionalities were generated to analyse data from mice brains. The results were
encouraging but improvements are yet to be made. In particular, the normal distribution
used for vessel generation is too limiting. A more realistic distribution should be imple-
mented to take the full advantage of variable radii on the cerebral parameter estimation.
The dictionaries generated contained about 105 signals, which is few compared to what
is used in the literature. Adding more varying parameters such as field inhomogeneities
could potentially lead to an improvement of the estimation. However this would result
in much larger dictionaries.

(a)

(b)

Figure B.1 – Geometry examples [using two vessel generation methods].
Four geometry obtained with (a) [the constant radii] method and (b) [the distributed radii]
method with an FOV of 150 µm for different (BVf (%), [mean radius] (µm)) couples. From left
to right: (5, 5), (10, 15), (10, 3), (2.5, 7). [For the second method, the variation coefficient that
indicates the variance of the vessel normal distribution, is set to 20 %].

Eventually, generating 3D geometries would be optimal for the realism of the sim-
ulations. Implementing such geometries is complex and would greatly increase the
computation time, but the team considers to put efforts towards this goal.

Comparing computational solutions to generate these dictionaries was the second
objective of the internship. The team acquired a high-end server, and has access to a
large number of computational cores on a grid provided by the Grenoble Alpes University.
Parallel computation implementations were made to take advantage of the local server.
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An unexpected behaviour was lately found in the solution proposed and a solution is
currently under development to fix the problem and use the full power of this machine.
All further developments of the tool will benefit from this finding. The computational
grid was much more complex to use due to its specific functioning and asked for a lot of
script writing. A satisfying workflow was developed and successfully tested [figure B.2].
However, limiting problems still exist in the use of compiled Matlab code, and in some
errors linked with the grid. Support engineers work with us to solve these problems.
Once it will be done the grid should be more powerful than the local server as more
cores are theoretically available. Nevertheless one must keep in mind that it is a shared
resource: performances largely depend on the number of people using it, and hence vary
in time.

Figure B.2 – Comparison of a local server [Banksy] vs. a computation grid [CiGri]
strategy.

Overall, this internship improved the tool by providing it with more possibilities, and
put in light the difficulties yet to overcome to take the full advantage of the simulations
in MRF. Future implementations are already planned to achieve this goal. Knowledge
on the computational grid was acquired and transmitted to the team, and a solution
to run efficiently MRVox2D on it was developed. The complete workflow was validated
and proved to work, however errors are still to be fixed before having a truly convenient
functioning.
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Supplementary material - chapter 3

C.1 Bias-variance analysis

C.1.1 Frequentist analysis

The goal is to investigate the statistical properties of a proposed approach or equivalently
of an estimator denoted by θ̂ of a quantity of interest θ. In statistics, an estimator is a
function of the observations and is therefore random as observations are usually assumed
random too. In practice however, the observations are only seen through a finite number
of realizations, say y1, . . . , yI .

For θ the true value of a parameter, we simulate I signals, using a given biophysical
model and the same parameter θ, say, for i = 1 : I, yi = f(θ) + ϵi, where ϵi is the
realization of a given noise variable usually a centered Gaussian variable. From each of
these I signals, we estimate the corresponding parameter value using the estimator θ̂,
which leads to I values to approximate the same true θ, denoted by θ̂i, for i = 1:I.

The bias of an estimator with respect to a target value θ is

Bias(θ̂) = (E[θ̂] − θ)

and usually appears squared as

Bias2(θ̂) = (E[θ̂] − θ)2 .

Note that it does not involve an absolute value. The bias measures the performance of
the estimator on average. Similarly the variance of an estimator is

V ar(θ̂) = E[(θ̂ − E[θ̂])2] .
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The variance measures the stability of the estimator or how much it moves around its
mean performance. The variance depends only on the estimator and is not per se a
measure of error as it does not involve the target θ. So in addition to the bias, another
important quantity to measure the performance of an estimator is the Mean Square
Error:

MSE(θ̂) = E[(θ − θ̂)2].

It measures the average square error made by the estimator.

An important relationship between these quantities is referred to as the bias-variance
trade-off or the bias-variance decomposition:

MSE(θ̂) = Bias2(θ̂) + V ar(θ̂).

In practice, the averages (E[·]) are computed empirically on a given number of yi for
i = 1:I. Denoting Ê the empirical mean evaluated for the I simulations, and denoting
θ̂i for θ̂(yi), we can therefore write ;

1
I

I∑
i=1

|θ − θ̂i|2 = |Ê[θ̂] − θ|2 + 1
I

I∑
i=1

|θ̂i − Ê[θ̂]|2

where
Ê[θ̂] = 1

I

I∑
i=1

θ̂i.

The first two terms are measures of the deviation from the true θ while the last term is a
constant intrinsic uncertainty due to the estimator. It depends on θ only through the yi.

Note that the MSE is also the square RMSE by definition. In addition, it is common
to use normalized quantities by dividing each term in the decomposition by θ2.

Remark: Note that denomination and notation are slightly wrong in the bias-variance
analysis of Zhao et al. [226]. What is called there the bias is in reality the so-called
MAD for mean absolute deviation and there is a typo in the variance term where the
first θn should be θ̂n. The square MAD is probably not too far from the square bias but
they differ due to the presence of the absolute value in the MAD. We are not aware of a
similar decomposition using the MAD instead of the bias. For the MAD, the median
should replace the mean.

MAD(θ̂) = E[|θ − θ̂|]
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while
Bias(θ̂) = (θ − E[θ̂]) = E[(θ − θ̂)] .

C.1.2 Bayesian analysis

In the previous section, the goal was to analyze the performance of an estimator θ̂(Y )
considering the observations Y as a random variable so that the averages are taken over
the observations, while the true θ to recover was considered as fixed. In this section, θ is
assumed to be a random variable and averages are first taken with respect to θ and then
with respect to both θ and Y .

Let p0 be the true distribution of (Y, θ) both considered as random variables. We use
a capital Y to denote the random Y while a small y denotes a realization of Y . The
same holds for θ except that the notation is the same (oops) but the context should
be clear...For a given y, then consider an estimator θ̂(y) of θ. We have the following
decomposition:

Ep0(θ|y)[(θ̂(y) − θ)2] = (θ̂(y) − Ep0(θ|y)[θ])2 + V ar(p0(θ|y))

Let us denote by pG,D(θ|y) the posterior provided by GLLiM which is hoped to be a
good approximation of the true p0(θ|y). Let also θ̂G,D(y) be the estimate of θ provided
by GLLiM, which in practice is set to the mean of the GLLiM posterior. It follows that

Ep0(θ|y)[(θ̂G,D(y) − θ)2] = (θ̂G,D(y) − Ep0(θ|y)[θ])2 + V ar(p0(θ|y)) . (C.1)

If we consider now that Y is random, we can take the expectation of equation (C.1)
with respect to Y . It comes:

Ep0(θ,y)[(θ̂G,D(Y ) − θ)2] = Ep0(y)[(θ̂G,D(Y ) − Ep0(θ|Y )[θ])2] + Ep0(y)[V ar(p0(θ|Y ))] .

The expectation in the left-hand side is now with respect to the joint p0(θ, y) while
the right-hand side was already independent of θ and just averaged over Y then. The
left-hand side cannot be computed exactly in general but can be approximated by
its empirical version using Monte Carlo simulations. Namely, consider i.i.d samples
{(θm, ym), m = 1 . . . M} distributed according to p0. Equivalently, one can simulate θm

according to some prior p0(θ) and then ym according to the physical model p0(y|θm).
From these samples, the left-hand side is approximated as

1
M

M∑
m=1

(θ̂G,D(ym) − θm)2,



188 Supplementary material - chapter 3

which is the usual empirical MSE of θ̂G,D.
Doing the same for the terms in the right-hand side, we get

1
M

M∑
m=1

(θ̂G,D(ym) − Ep0(θ|ym)[θ])2 + 1
M

M∑
m=1

V ar(p0(θ|ym)) .

Both Ep0(θ|ym)[θ] and V ar(p0(θ|ym)) in the last expression are unknown and cannot be
computed easily. It is actually the goal of methods like GLLiM to provide approximations
for these quantities. GLLiM does so through an approximation pG,D(θ|ym) of the whole
posterior p0(θ|ym).

If as expected, for all ym, EpG,D(θ|ym)[θ] = θ̂G,D(ym) and V ar(pG,D(θ|ym)) are respec-
tively good approximations of Ep0(θ|ym)[θ] and V ar(p0(θ|ym)), meaning that pG,D(θ|ym)
and p0(θ|ym) are close in terms of mean and variance, then the bias-variance decomposition
above leads to

1
M

M∑
m=1

(θ̂G,D(ym) − θm)2 ≈ 1
M

M∑
m=1

V ar(pG,D(θ|ym)) = 1
M

M∑
m=1

CI2
m .

Taking the square root, it comes

RMSE ≈

√√√√ 1
M

M∑
m=1

CI2
m .

This later relationship is the one illustrated in figure 3.8, page 97. The figure showing
a good relationship between both quantities indicates that the GLLiM approximation
provides good first and second posterior moments. The slight deviation from equality
when the SNR decreases is also consistent with the fact that the GLLiM performance
may decrease as the noise increases.

Note that in figure 3.8, for each SNR level, 100 different samples of {(θm, ym), m =
1 . . . M} with M = 10 000 are simulated to check the above relationship.

As a conclusion the CI is a good indicator of the RMSE only if the learned GLLiM
model is close to the true model in terms of mean and variance.

C.2 Data augmentation and noise modeling

This work has been submitted at the ISMRM congress 2020 but not accepted.
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Summary of Main Findings: Dictionary augmentation using Gaussian noise improves the reconstruction
accuracy of a dictionary-based learning approach by 50% without additional simulation or reconstruction
cost.

Abstract

The dictionary-based learning (DBL) method, i.e the learning of a relationship between fingerprints
and parameters spaces using an inverse regression, is faster, more accurate, and requires less simulations
than the conventional dictionary-matching method. However, the DBL method is less robust to the
noise level compared to the conventional dictionary-matching method. In this work, we investigate data
augmentations by adding Gaussian noise to the dictionary fingerprints. We show that, at low SNR, data
augmentation can increase estimates accuracy by more than 50%.

INTRODUCTION

To reduce simulation cost and reconstruction time, we recently proposed a dictionary-based learning (DBL)
approach [1, 2], which uses a probabilistic model to learn the mapping from the dictionary fingerprint space
to the parameters space. Interestingly, this approach also improves the accuracy on the final parameter esti-
mates, compared to the standard dictionary matching method (DBM) [3]. However, compared to DBM, DBL
appears to be less robust to fingerprints with low signal-to-noise ratio (SNR). To address this limitation, this
work evaluates data augmentations by noise addition: first, we consider three data augmentation approaches,
using various noise levels; second, we investigate the benefit of modeling the noise during the regression.

METHOD:

Experiments are designed as follows:

• Dictionary design: For P parameters and N entries, a matrix Xdico ∈ RN×P is sampled according
to a quasi-random strategy in the parameter space. Then, the matrix of fingerprints Ydico ∈ RN×S is
simulated according to the function:

ytoy (xtoy) =

∣∣∣∣∣
N∑

i=1

sin (φif0 t) exp

(
− t

xi

) ∣∣∣∣∣ ,

where xtoy = (x1, x2, . . . , xP ) ∈ RP is the parameter vector, f0 and φ ∈ RP are constants and t ∈ RS

is the sample vector. This choice of function allows the evaluation of various parameter dimensions.

• Data augmentation: The matrix Yaugmented is built from Ydico according to one of the three fol-
lowing data augmentation procedure [4]:

1



1. The dictionary fingerprints Ydico is substituted by its noisy version Ynoisy1 according to SNRdico1:

Yaugmented1 = Ynoisy1.

2. Ydico is doubled in size with the noisy fingerprints Ynoisy1:

Yaugmented2 =

(
Ydico

Ynoisy1

)
.

3. Ydico is augmented two times in size by noisy fingerprints Ynoisy1 and Ynoisy2 according to
SNRdico1 and SNRdico2:

Yaugmented3 =




Ydico

Ynoisy1

Ynoisy2


 .

Note that the size of Xdico is also augmented by replicating the matrix one or two times to match the
length of Yaugmented.

Noisy signals (ynoisy) were computed from y using:

ynoisy = |y + n|,
where n is a Gaussian noise. The dictionary signal SNR is SNRdico.

• Model learning: A regression is performed to learn, from the dictionary, a model that handles the
non-linear relationship between Xaugmented and Yaugmented with a piece-wise linear model [2, 5].

• Estimation: The model is applied on the fingerprints y to compute the parameter estimates x̂.

• Performance evaluation: The parameter space Xtest is sampled and corresponding signals Ytest are
simulated and used to compute X̂test. Gaussian noise is added on test signals according to SNRtest.
Then, the root-mean-squared-error (RMSE) is computed between Xtest and X̂test and averaged over
dimensions. For a given SNRdico, SNRtest, and data augmentation method, the RMSE gain is the ratio
between the RMSE obtained without and with data augmentation.

RESULTS:

Using data augmentation (1), three SNRdico (10, 60, and a random SNRdico vector between 10 and 60), and
SNRtest between 3 and 100, we evaluate the RMSE gain in 4 experiment conditions (i.e. 3 and 5 parameters,
2 different dictionary sizes). For all SNRdico, the data augmentation increases the robustness of the method
(gain¿1) for SNRtest above 5 and below a cut-off value and deteriorates above. This cut-off depends SNRdico,
SNRtest, the number of parameters and the dictionary size. Cuttoffs (mean ± standard deviation) are:
73.9±16.3 for SNRdico=60, 17.3±4.1 for SNRdico=10 and 43.2±11.2 for SNRdico ∈ [10, 60]. Accuracy gains
before the cut-off are: 1.28±0.04, 1.22±0.05 and 1.26±0.04.

To search the optimal SNRdico for the data augmentation (1), we evaluated values of SNRdico between 10
and 250 for three SNRtest (15, 30 and 45). Figure 2 represents RMSE gains for the same conditions as that of
Figure 1. As expected, gains are higher for noisy signals (low SNRtest); For high SNRdico, the gain converges
to 1. As RMSE gains depend on simulation conditions (i.e. dictionary design and SNRtest), there is no
optimal SNRdico. However, SNRdico=60 always yields RMSE gains above 1 and average RMSE gain is 1.43
for the lowest SNRtest.

We compared data augmentations (1-3) with SNRdico1=60 and SNRdico2=10 (Figure 3). Data augmentations
(1) and (2) provide similar results, except for large SNRtest for which the data augmentation (2) provides
larger RMSE gains. Data augmentation (3) yields higher RMSE gains for SNRtest between 5 and 15 but
lower elsewhere.

To model the noise, we incorporated SNRdico as a new parameter (Xdico ∈ RN×(P+1)); for simulations,
SNRdico values were randomly picked between 10 and 60. SNRtest are well evaluated only between 3 and
10 (Figure 4). The combination of data augmentation (1) and noise modelling does not provide any benefit,
however it reduces RMSE gains for low SNR (Figure 5).
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DISCUSSION

Data augmentations based on noise addition reduces the RMSE on parameter estimates by more than 50%,
in case of data with low SNRtest. Conversely, the accuracy on estimated parameters is decreased when using
a noisy dictionary with high SNRtest. [values here]. Learning the noise does not provide significant benefit
over adding noise to the dictionary. Several assumptions can be made regarding the mechanism behind noise
augmentation including limit the overfitting during the learning phase (similar to what has been reported
for deep learning) and produce fingerprints more similar to test signals (e.g. no true zero points). Further
experiments are required to clarify these mechanisms.

CONCLUSION

Data augmentation using noise can readily be used to improve DBL reconstruction accuracy by 50% without
additional simulation or reconstruction cost.
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Figure 1: RMSE gains for different noise levels on test signals and three noise levels on dictionary signals: 10, 60 and
random noise between these two values for each signal. The first row represents the 3 parameter experiments (500 and
2000 signals in the dictionary) and the second row represents the 5 parameter experiments (2000 and 10000 signals in
the dictionary). The RMSE is computed for 10000 test signals and then, the experiment is repeated 20 times. Markers
are the mean RMSE through these 20 repetitions and the area represents the standard deviation. The dashed line
represents the symbolic gain equal to 1, above the line the error is smaller than without data augmentations and
inversely below.
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Figure 2: RMSE gains for different noise levels on dictionary signals and three different noise levels on test signals:
15, 30 and 45. The first row represents the 3 parameter experiments (500 and 2000 dictionary signals) and the
second row represents the 5 parameter experiments (2000 and 10000 dictionary signals). RMSE are computed for
10000 test signals and 18 repetitions. Markers and areas are the mean and standard deviation of RMSE through these
repetitions. The dashed line represents the gain equal to 1, above the error is smaller than without data augmentations
and inversely below.
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Figure 3: RMSE gains for three data augmentations and different noise levels on test signals. The first row represents
the 3 parameter experiments (500 and 2000 dictionary signals) and the second row represents the 5 parameter exper-
iments (2000 and 10000 dictionary signals). RMSE are computed for 10000 test signals and 20 repetitions. Markers
and areas are the mean and standard deviation of RMSE through these repetitions. The dashed line represents the
gain equal to 1, above the error is smaller than without data augmentations and inversely below.
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Appendix D

Supplementary material - chapter 5

During this work, we acquired MRI data on two experimental models of mesio-temporal
lobe epilepsy (MTLE) in mice. The status epilepticus was induced by an administration
of kainic acid, either using an intraperitoneal injection (IP model) or an intrahippocampal
injection (IH model).

We are interested in 3 regions of interest: thalamus, hippocampus and cortex. For IH
model, we only consider the contralateral cortex because of the lesion resulting from the
cannula that passed through the cortex for intrahippocampal injection. For IH model,
we also distinguish the contralateral and ipsilateral hippocampus.

In figures D.1 and D.2, we present the mean value obtained in each region of interest,
for the eight following MRI parameters: relaxation times T1 and T2, diffusion (ADC),
blood volume fraction (BVf), vessel size index (VSI), tissue oxygen saturation (StO2),
blood-brain-barrier permeability (BBBp and cerebral blood flow (CBF).

Note that the data acquired with the IH model are those presented in chapter 5.
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Figure D.1 – Cellular MRI parameters.
(first row) Relaxation time T1, (second row) relaxation T2, and (last row) apparent diffusion
constant (ADC). Squares represent cortex values, triangles contralateral hippocampus, points
ipsilateral hippocampus, and asterisks cortex for the 2 MTLE models. Note that for the IP
model points represent the mean across the two hippomcapi. In total, 4 groups per model.
For IP: sham and IP MTLE mice at 24 hours (sham n = 11; MTLE n = 13) and at 72 hours
(sham n = 8; MTLE n = 9). For IH: sham and IH MTLE mice at 48-72 hours (sham n = 11;
MTLE n = 10) and at 4-6 weeks (sham n = 20; MTLE n = 20). Sham are represented in blue,
IP MTLE in yellow and IH MTLE in orange.
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Figure D.2 – Vascular MRI parameters.
(first row) blood volume fraction (BVf), (second row) vessel size index (VSI), (third row) tissue
oxygen saturation (StO2), (fourth row) BBB permeability (BBBp), and (last row) blood flow
(CBF). See figure D.1 caption, for group description.
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E.1 Magnetic resonance fingerprinting package

The package containing the three dictionary-based methods compared in this work
(i.e. the original dictionary-based matching [137], DBM; the dictionary-based deep
learning [165], DB-DL; and the proposed dictionary-based statistical learning, DB-SL),
can be found online: https://github.com/nifm-gin/DBL-qMRI. We provide an overview
of the documentation that explains how to use the package in figure E.1. Note that most
of the experiments realized in chapters 3 and 4 can be reproduced from associated scripts,
see complete documentation online.

Figure E.1 – GitHub Readme.
An overview of the complete documentation available online: GitHub.

https://github.com/nifm-gin/DBL-qMRI
https://github.com/nifm-gin/DBL-qMRI
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E.2 MP3: Medical software for Processing multi-
Parametric images Pipelines

This section introduces an open source software to convert, display and process medical
images [185]. This software called medical software for processing multi-parametric images
pipelines (MP3), is a collaborative development within the team initiated by Benjamin
Lemasson and mainly achieved by Clément Brossard. It differentiates itself from the
existing software by its ability to design complex processing pipelines and to wisely
execute them on a large database. An MP3 pipeline can contain unlimited homemade or
pre-existing processes called module, and can be carried out with a parallel execution
system. As a viewer, MP3 allows to display up to four images together and to draw regions
of interest (ROI), see figure E.2 B. MP3 is available at https://github.com/nifm-gin/MP3.

In this project, I was one of the principal developer and beta tester. Among others,
here are some of my contributions:

• Implementation of the modules of vascular magnetic resonance fingerprinting, see
section E.3.

• Implementation of a module running different scripts provided by Advanced Nor-
malization Tools (ANTs) [233] to perform a co-registration of an anatomical image
with a reference atlas image to automatically segment maps in different ROI. This
module is supplemented by another module allowing to compute several statistics
by ROI (e.g. mean, median, standard deviation,...).

• Design of a complete pipeline in mouse at 9.4 T, to generate maps, remove outliers,
match atlas and extract summary statistics per ROI. This pipeline has been
validated with a rat study at 4.7 T and the atlas matching procedure for human
study.

I have also been involved in introducing the tool and providing support to several hospital
clinicians and biologists. In particular, I have accompanied two hospital clinicians during
their medical thesis project, providing support on the tool: Pierre Fricault in a pre-
clinical MRI study on an experimental model of traumatic brain injury (part of the work
in [234]) and Sarah Sintzel Strippoli in a clinical MRI study on brain damages after
minor traumatic brain injury.

https://github.com/nifm-gin/MP3
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Figure E.2 – Overview of the main MP3 viewer.
(A) Database manager. (B) Images display. (C) Statistics display.

E.3 Vascular MRF module in MP3 software

The package introduced in section E.1 has been integrated into the MP3 software as a
module named Module_vascular_MRF, following the nomenclature of the software.

Once the module is selected in the appropriate drop-down menu (figure E.3(a)), proceed
as follows:

• Select in the database the MGEFIDSE acquisitions, i.e. pre- and post-USPIO
injection.

• Indicate the folder containing the dictionary. In this folder, the dictionary can be in
the form of two .json files containing the pre- and post-USPIO injection simulated
signals and the file names must start with ‘PRE_’ and ‘POST_’, respectively. An-
other possibility is to directly use a .mat file that contains the vascular fingerprints,
i.e. the pre-/post- ratio signal.

• Prefix option is used to name the output maps.
• Select parameters (at least one) you intend to estimate, see figure E.3(b).
• Select the method you intend to use, see figure E.3(c).
• Method option is used to apply a 3 × 3 spatial Gaussian filtering prior to the

estimation. For example, this procedure has been used in [154]. Authors also
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propose to remove the 8 last acquired echoes. Both these procedures aim at
increasing the signal-noise-ratio (SNR). It was therefore decided to integrate this
possibility into the module via the Remove last echoes option.

• If DB-SL or DB-DL methods are used, you can tune model properties (not recom-
mended).

(a)

(b) (c)

Figure E.3 – Procedure to configure the module Module_vascular_MRF in the MP3
pipeline manager.
(a) MP3 pipeline manager. (b,c) Two minimum steps required to configure the reconstruction.
(b) Tick the boxes of the parameters you intend to estimate (at least one) using the selected
dictionary based method in (c). Note that these parameters must be simulated in the dictionary.



Méthodes statistiques pour l’imagerie vasculaire par résonance magnétique :
application au cerveau épileptique

L’objectif de ce travail de thèse est l’exploration de l’imagerie par résonance magnétique (IRM)
pour l’identification et la localisation des régions du cerveau impliquées dans l’épilepsie mésio-temporale.
Précisément, les travaux visent 1) à optimiser un protocole d’IRM vasculaire sur un modèle animal d’épilepsie
et 2) à concevoir une méthode de quantification de cartes IRM vasculaires basée sur la modélisation de la
relation entre signaux IRM et paramètres biophysiques. Les acquisitions IRM sur un modèle expérimental
murin d’épilepsie mésio-temporale avec sclérose de l’hippocampe ont été effectuées sur un scanner 9.4 T. Les
données collectées ont permis de quantifier sept cartes IRM cellulaires et vasculaires quelques jours après
l’état de mal épileptique puis plus tard, lorsque les crises spontanées sont apparues. Ces paramètres ont été
employés pour l’identification automatique des régions épileptogènes et des régions de propagation des crises.
Afin d’augmenter la détection de petites variations des paramètres IRM chez les individus épileptiques, une
méthode de quantification basée sur la résonance magnétique fingerprinting est développée. Cette méthode
consiste à identifier, parmi un ensemble de signaux simulés, le plus proche du signal IRM acquis et peut
être vue comme un problème inverse qui présente les difficultés suivantes : le modèle direct est non-linéaire
et provient d’une série d’équations sans expression analytique simple; les signaux en entrée sont de grandes
dimensions; les vecteurs des paramètres en sortie sont multidimensionnels. Pour ces raisons, nous avons
utilisé une méthode de régression inverse afin d’apprendre à partir de simulation la relation entre l’espace
des paramètres et celui des signaux. Dans un domaine largement dominé par les approches d’apprentissage
profond, la méthode proposée se révèle très compétitive fournissant des résultats plus précis. De plus, la
méthode permet pour la première fois de produire un indice de confiance associé à chacune des estimations.
En particulier, cet indice permet de réduire l’erreur de quantification en rejetant les estimations associées à
une faible confiance. Actuellement, aucun protocole clinique permettant de localiser avec précision le foyer
épileptique ne fait consensus. La possibilité d’une identification non-invasive de ces régions est donc un
premier pas vers un potentiel transfert clinique.

Statistical methods for vascular magnetic resonance fingerprinting:
application to the epileptic brain

The objective of this thesis is the investigation of magnetic resonance imaging (MRI) for the identification
and localization of brain regions involved in mesio-temporal lobe epilepsy (MTLE). Precisely, the work
aims 1) at optimizing a vascular MRI protocol on an animal model of epilepsy and 2) at designing a
method to quantify vascular MRI maps based on the modeling of the relationship between MRI signals and
biophysical parameters. MRI acquisitions on an experimental mouse model of MTLE with hippocampal
sclerosis were performed on a 9.4 T scanner. The data collected allowed the quantification of seven cellular
and vascular MRI maps a few days after the epileptic condition and later when the spontaneous seizures
emerged. These parameters were used for the automatic identification of epileptogenic regions and regions
of seizure propagation. To enhance the detection of small variations in MRI parameters in epileptic subjects,
a quantification method based on magnetic resonance fingerprinting has been developed. This method
consists in identifying, among a set of simulated signals, the closest one to the acquired signal. It can be
seen as an inverse problem that presents the following difficulties: the direct model is non-linear, as a
complex series of equations or simulation tools; the inputs are high-dimensional signals; and the output
is multidimensional. For these reasons, we used an appropriate inverse regression approach to learn a
mapping between signal and biophysical parameter spaces. In a field widely dominated by deep learning
approaches, the proposed method is very competitive and provides more accurate results. Moreover, the
method allows for the first time to produce a confidence index associated with each estimate. In particular,
this index allows to reduce the quantification error by discarding estimates associated with low confidence.
So far no clinical protocol emerges as a consensus to accurately localize epileptic foci. The possibility of a
non-invasive identification of these regions is therefore a first step towards a potential clinical transfer.
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