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par

Giao Ky DUONG

———————————————————————————————–
Formation de singularités en temps fini pour les équations aux dérivées
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beaucoup de disponibilité et de bienveillance. En plus de ça, il m’a beaucoup inspiré dans
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Monsieur Philippe Souplet qui me font l’honneur de siéger dans mon jury.
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Ensuite, je veux donner ma reconnaissance et mon affection à mes camarades de pro-
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À la mémoire de mon père
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Résumé

Formation de singularités en temps fini pour les équations aux dérivées

partielles non symétriques ou non variationnelles

Dans le cadre de cette thèse, nous nous intéresserons à la formation de singularités
en temps fini pour les équations d’évolution de type parabolique. En particulier, nous
nous concentrons sur l’étude des deux phénomènes principaux suivants : l’explosion et
l’extinction en temps fini. Dans cette thèse, nous considérons les équations suivantes :

∂tu = ∆u+ |u|p−1u lnα(2 + u2), p > 1, α ∈ R et u : (x, t) ∈ RN × [0, T )→ R, (1)

∂tu = ∆u+ up, p > 1 et u : (x, t) ∈ RN × [0, T )→ C, (2)

∂tu = ∆u+
λ

(1− u)2

(
1 + γ

∫
Ω

1

1− u
dx

)2 , u: (x, t) ∈ Ω× [0, T )→ [0, 1), (3)

où Ω est un domaine borné de classe C2 dans RN et λ, γ sont positifs.

Ces modèles se rapportent à plusieurs phénomènes naturels. En particulier, l’équation
(3) modélise un système micro électro-mécanique (MEMS).

Dans ce travail, nous avons construit des solutions explosives (pour (1) et des (2)) et
des solutions avec extinction pour (3). En plus de ça, nous décrivons le comportement
asymptotique des solutions autour du point singulier.

Comme cadre pour notre travail, nous utilisions celui des variables auto-similaires
qui a été introduit par Giga et Kohn dans CPAM 1985. Nous obtenons les résultats en
utilisant une réduction en dimension finie du problème et un argument topologique qui a
été notamment introduit par Bressan, Bricmont et Kupiainen ainsi que par Merle et Zaag.

Clairement, notre travail n’est pas une simple adaptation des travaux cités ci-haut.
En effet, nos modèles, par leur proximité avec les applications, sortent du cadre idéal
considéré dans les travaux pionniers. En particulier, l’équation (1) n’est pas invariante par
changement d’échelle, alors que (2) n’admet pas de structure variationelle. Quant à (3), la
présence du terme intégral (donc non-local) nous oblige à une manipulation plus délicate.
En fait, nous avons atteint nos objectifs grâce à quelques nouvelles idées. Plus précisément,
pour (2), nous effectuons un contrôle délicat de la solution afin qu’elle reste dans un domaine
où la nonlinéarité est défine sans ambigüıté. Pour (3), nous contrôlons l’oscillation du terme
non-local afin qu’il reste assez petit et nous en d’éduisons sa convergence.
——————————————————————————————————
Mots clés: équation de type parabolique, équation des MEMS, explosion en temps fini,
extinction en temps fini, profil à l’explosion, explosion de type I, comportement asympto-
tique.





Abstract

Finite time singularity formation for non symmetric or non variational

partial differential equations

In the context of this thesis, we are interested in finite time singularity formation for non
symmetric or non variational partial differential equations of parabolic type. In particular,
we mainly focus on the following two phenomena: blowup and quenching (touch-down) in
finite time. In this thesis, we aim at studying the following equations:

∂tu = ∆u+ |u|p−1u lnα(2 + u2), p > 1, α ∈ R et u : (x, t) ∈ RN × [0, T )→ R, (4)

∂tu = ∆u+ up, p > 1 et u : (x, t) ∈ RN × [0, T )→ C, (5)

∂tu = ∆u+
λ

(1− u)2

(
1 + γ

∫
Ω

1

1− u
dx

)2 , u: (x, t) ∈ Ω× [0, T )→ [0, 1), (6)

where Ω is a C2 bounded domain in RN and λ, γ are positive constants.

These models are closely related to many common phenomena in nature. In particular,
equation (6) is a model for Micro Electro Mechanical Systems (MEMS).

In this work, we construct blowup solutions to (4) and (5) and solutions with extinction
to (6). In addition to that, we describe the asymptotic behavior of these solutions around
the singular point.

We use in this thesis the framework of similarity variables, introduced by Giga and
Kohn in CPAM 1985. We finally derive the results by using a reduction to a finite dimen-
sional problem and a topological argument which was introduced in particular by Bressan,
Bricmont and Kupiainen, and also Merle and Zaag.

Clearly, our work is not a simple adaptation of the works cited above. Indeed, our
models, by their proximity to applications, are outside the ideal framework considered in
pioneering works. In particular, equation (4) is not scaling-invariant, whereas (5) does not
admit variational structure. As for (6), the presence of the integral term (non-local term)
requires us to treat this term more delicately. In fact, we have achieved our goals thanks
to some new ideas. More precisely, for (5), we carry out a delicate control of the solution
so that it always stays in the domain where the nonlinearity is defined with no ambiguity.
For (6), we control the oscillation of the non-local term to keep it small enough, and this
allows us to deduce its convergence.

——————————————————————————————————
Keywords: Parabolic equation, MEMS model, finite time blowup, touch-down phenomenon,
blowup profile, type I blowup, asymptotic behavior.
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Résumé ix

Abstract xi

Introduction 1
I. Modeling nature by parabolic PDE . . . . . . . . . . . . . . . . . . . . . . . . 1
II. Defining finite time singularity . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II.1. Mathematical treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 2
II.2. Blowup examples in ODE and PDE . . . . . . . . . . . . . . . . . . . . 3
II.3. Notion of “structure” in PDE . . . . . . . . . . . . . . . . . . . . . . . 4
II.4. Relevant questions for blowup . . . . . . . . . . . . . . . . . . . . . . . 4

III. Specific difficulties in this thesis: non symmetric or non variational PDE . . . 5
IV. Historical overview of some ideal standard case . . . . . . . . . . . . . . . . . 5

IV.1. The existence of the finite time blowup phenomenon . . . . . . . . . . 6
IV.2. Blowup asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . 7

V. Some related constructions of Type I blowup solution . . . . . . . . . . . . . 11
V.1. A formal approach to derive an approximate solution (i.e the blowup

profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
IV.2. The rigorous proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
IV.3. Construction of blowup solutions to other problems . . . . . . . . . . . 17

VI. Our main results in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 18
VI.1. Existence of a stable blowup solution with a prescribed behavior for

a non-scaling invariant semilinear heat equation . . . . . . . . . . . . 19
VI.2. Existence of a profile for the imaginary part of a blowup solution to

a complex-valued semilinear heat equation . . . . . . . . . . . . . . . 20
VI.3. Profile of touch-down solution to a nonlocal MEMS model . . . . . . 22

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1 Construction of a stable blowup solution with a prescribed behavior for
a non-scaling invariant semilinear heat equation 33
1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2 Formulation of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.2.1 A formal approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.2.2 Formulation of the problem. . . . . . . . . . . . . . . . . . . . . . . . 41

1.3 Proof of the existence assuming some technical results . . . . . . . . . . . . . 44

xiii



xiv

1.4 Proof of Proposition 1.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.4.1 A priori estimates on q(s) in SA(s). . . . . . . . . . . . . . . . . . . . 49
1.4.2 Conclusion of Proposition 1.12 . . . . . . . . . . . . . . . . . . . . . . 53

1.5 Some elementary lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2 Profile for the imaginary part of a blowup solution for a complex valued
semilinear heat equation 67
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2 Derivation of the profile (formal approach) . . . . . . . . . . . . . . . . . . . 76

2.2.1 Modeling the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2.2 Inner expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.2.3 Outer expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3 Existence of a blowup solution in Theorem 2.1 . . . . . . . . . . . . . . . . . 83
2.3.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . 83
2.3.2 The shrinking set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.3.3 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.3.4 The proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 92

2.4 The proof of Proposition 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.4.1 A priori estimates on (q1, q2) in VA(s). . . . . . . . . . . . . . . . . . 98
2.4.2 Conclusion of the proof of Proposition 2.11 . . . . . . . . . . . . . . 102

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 A blowup solution of a complex semilinear heat equation with an non
integer power 113
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.1.1 Earlier work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.1.2 Statement of the result . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.1.3 The strategy of the proof . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.2 Derivation of the profile (formal approach) . . . . . . . . . . . . . . . . . . . 120
3.2.1 Modeling the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.2.2 Inner expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.2.3 Outer expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.2.4 Matching asymptotic behaviors . . . . . . . . . . . . . . . . . . . . . 125

3.3 Existence of a blowup solution in Theorem 3.1 . . . . . . . . . . . . . . . . . 126
3.3.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . 126
3.3.2 The shrinking set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.3.3 Preparing initial data and the existence of a solution trapped in S(t) 134
3.3.4 The proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 140

3.4 The proof of Proposition 3.16 . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.4.1 A priori estimates in P1(t), P2(t) and P3(t) . . . . . . . . . . . . . . 147
3.4.2 The conclusion of Proposition 3.16 . . . . . . . . . . . . . . . . . . . 156

3.5 Cauchy problem for equation (3.1) . . . . . . . . . . . . . . . . . . . . . . . 158
3.6 Some Taylor expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.7 Preparation of initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



xv

4 Profile of a touch-down solution to a nonlocal MEMS Model 181
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.2 Setting of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.2.1 Our main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.2.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . 188

4.3 The proof of the existence result assuming technical details . . . . . . . . . . 194
4.3.1 Shrinking set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.3.2 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.3.3 Existence of a solution trapped in S∗(T ) . . . . . . . . . . . . . . . . 200
4.3.4 The conclusion of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . 206

4.4 Reduction to a finite dimensional problem . . . . . . . . . . . . . . . . . . . 210
4.4.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.4.2 The conclusion of the proof of Proposition 4.24 . . . . . . . . . . . . 216

4.5 Preparation of initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.6 A priori estimates in the intermediate region . . . . . . . . . . . . . . . . . 224
4.7 A priori estimate on P2(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.8 Some bounds on terms in equation (4.35) . . . . . . . . . . . . . . . . . . . 231
4.9 The Dirichlet heat semi-group on Ω . . . . . . . . . . . . . . . . . . . . . . 235
4.10 Some Parabolic estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243



xvi



1

Introduction

Science is a differential equation and religion is a boundary condition

Alan Turing

I. Modeling nature by parabolic PDE

In the age of science and technology, mathematics strongly shows us its influence in our
life. Particularly, there is a wide variety of phenomena which have been mathematically
modeled by partial differential equations (PDE) such as: heat transfer, propagation of
waves, electrodynamics, fluid dynamics, elasticity, quantum mechanics and so on. The more
we understand these equations, the better we know about the corresponding phenomena.

More specifically, the class of parabolic PDE is important in modeling nature. As many
authors did earlier, we are interested in this thesis in reaction-diffusion systems of the
following type

∂tu = D ·∆u+ F (u,∇u,
∫

Ω
g(u)dx) in Ω× [0, T ),

u = 0 on ∂Ω× [0, T ),

u(., 0) = u0 in Ω,

(7)

where u : (x, t) ∈ Ω × [0, T ) 7→ KM ; u0 : x ∈ Ω 7→ KM ; K is R or C; Ω is an open set of
RN ; g : KM → K is continuous and F : DF ⊂ KL → KM is continuous on its domain. In
addition to that, we note that ∇u = (∂x1u, ..., ∂xnu), ∆u =

∑N
j=1 ∂

2
x2
j
u and D = (Di,j)i,j≤N

is a diagonal matrix of diffusion coefficients. Note that when Ω = RN , there is no boundary
condition in (7).

Reaction-diffusion systems are mathematical models which correspond to many physi-
cal, chemical and biological phenomena. For more details about the applications of these
models, we kindly address the readers to some representative works:

- The combustion phenomenon: We have Bebernes and Eberly [3]; Bebernes and Kassoy
[4]; Galaktionov and Vázquez [30]; Kapila [49]; Kassoy and Poland [51]; [52]; Williams [85];
Zel’dovich, Barenblatt and Librovich in [87] and their references.

- Superconductivity phenomenon: This is described by a mathematical physical theory,
often called Ginzburg-Landau theory, named after Ginzburg and Landau, see the works
by Ginzburg and Landau [38]; Aranson and Kramer in [1]; Popp et al [74]; Cross and
Hohenberg [15].

- Fluid mechanics and optics derived from Ginzburg-Landau theory, see Levermore and
Oliver [54].

- Theory of Micro-electro-mechanical systems (MEMS) devices : We would like to adress
to Guo and Kavallaris [42]; Pelesko and Bernstein [48]; Kavallaris and Suzuki [53]; Pelesko
and Triolo [73] and references therein.
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- The physical mechanism of vortex stretching, turbulent flows : These theories have
a relation to the Constantin-Lax-Majda equation, as in the works of Constantin, Lax and
Majda [14]; Guo, Ninomiya, Shimojo and Yanagida [40]; Murthy [66] and references therein.

There are many other phenomena which are not presented in this text, because of lack
of time and space.

II. Defining finite time singularity

In this section, we are interested in introducing the notion of finite time singularity
formation in parabolic PDE. Then, we aim at considering some illustrating examples.

II.1. Mathematical treatment

When facing any submodel included in (7), we first address the issue of existence and
uniqueness of solutions, or the “Cauchy problem”. As a matter of fact, some of the submod-
els can be solved in a lot of classes of functional spaces such as: Lp(Ω), p ∈ [1,∞], Sobolev
spaces W 1,p(Ω) and so on. For more details on the Cauchy problem, we kindly refer the
readers to Friedman [24]; Henry [44]; Pazy [72]; Ladyženskaja, Solonnikov and Ural’ceva
[70]; Souplet and Quittner [75]. In this thesis, we mainly focus on L∞(Ω). Indeed, thanks
to the regularity of the semi-group et∆ (see its definition and its properties in [70] and
[75]), parabolic regularity and a fixed-point argument, the Cauchy problem is well-posed in
L∞(Ω) (also in W 1,∞(Ω)) under some reasonable conditions on F and g in (7). Roughly
speaking, we may define Tmax > 0 as the maximal existence time of the solution. Then,
one of the following statements holds:

(a) Either Tmax = +∞, which implies that the solution is global.

(b) Or Tmax < +∞, which implies that

‖u(., t)‖L∞(Ω) → +∞ (or ‖u(., t)‖W 1,∞(Ω) →∞) as t→ T.

We call the second case finite time blowup phenomenon and T is called the blowup time
of u. We may also introduce the definition of a Blowup point. Note that these notations
follow the introduction of Friedman and McLeod [25]:

Definition 0.1 (Blowup point). Let us consider u, a function on Ω× [0, T ), T > 0 which
blows up at time T . A point a ∈ Ω̄ is called a blowup point of u, if and only if there exist
{(xn, tn)}n≥1 ⊂ Ω× [0, T ), converging to (a, T ) as n→ +∞, such that the following holds

|u(xn, tn)| → +∞ as n→ +∞.

If we work in L∞(Ω) with Ω bounded, then we can prove that there exists at least a blowup
point. Following this, two interesting issues arise:

a) Existence: Does a blow up solution for system (7) exist?

b) Asymptotic behavior : Can we describe the asymptotic behavior of the solution near
the blowup point?

Thus, we aim in this thesis at studying the following two main issues:
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1) Construct blowup solutions to system (7) for some explicit cases.

2) Describe the asymptotic behavior of the constructed solutions near the blowup point.

II.2. Blowup examples in ODE and PDE

As we mentioned at the head of this section, we would like to take the following examples:

- Example 1: Let us consider (p, a0) ∈ R2, a0 > 0, p > 1 and the following Ordinary
Differential Equation (ODE) {

u′(t) = up(t), t > 0,
u(0) = a0.

Then, the solution is

u(t) = κ(T0 − t)−
1
p−1 ,

where κ = (p− 1)−
1
p−1 and T0 = 1

(p−1)ap−1
0

> 0. We observe more closely that the existence

time interval of that solution cannot cross T0, because of the following fact

u(t)→ +∞, as t→ T0.

We say that u(t) blows up at time T0.

- Example 2 (Osgood’s condition): More generally, we consider the following
ODE:

{
u′(t) = f(u(t)), t > 0,
u(0) = a0 > 0.

If f is a positive and continuous function which satisfies∫ ∞
0

dx

f(x)
< +∞,

then, the solution cannot be globally extended to infinity. This result was established in
[71] by Osgood, as the necessary and sufficient condition so that the solution of the above
equation blows up for any positive initial data.

- Example 3: We next consider the following PDE:

{
∂tu = ∆u+ up, (x, t) ∈ Ω× [0, T ),
u(0) = u0(x).

(8)

If u0 ∈ H1
0 (Ω), u0 6≡ 0, u0 ≥ 0,Ω is bounded and u0 satisfies the following condition:

E[u0] ≤ 0 where E[u] =
1

2

∫
Ω

|∇u|2dx− 1

p+ 1

∫
Ω

up+1dx, (9)

then, u blows up in finite time. This result was proved in [55] by Levine (see also Ball [2]).

The above-mentioned examples show us an important thing: Under some conditions and
even for a small and smooth initial data, the solution to some PDE may develop singularities
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in some finite time T > 0. In particular, they may become large in the functional spaces
where the PDE is considered: we say that they develop singularities in finite time. This
phenomenon occurs in a variety of PDEs, including those modeling the real world. For
more information on singularities phemomena, we kindly refer the readers to Horstmann
[47]; Martel, Merle and Raphaël [57], Galaktionov and Vázquez [30]; Aranson and Kramer
[1]; Bebernes and Eberly [3]; Bressan [6]; Constantin, Lax and Majda [14]; Cross and
Hohenberg [15]; Flores, Mercado, Pelesko and Smyth [23]; Ginzburg and Landau [38]; Guo
[41]; Guo and Kavallaris [42]; Pelesko and Bernstein [49]; Vázquez [77] and the references
therein.

II.3. Notion of “structure” in PDE

As illustrated in Example 3 above, many blowup results take advantage of the “struc-
ture” of the PDE. Indeed, we say for example that equation (8) has a variational structure,
which results in the existence of the Lyapunov functional E[u] defined as in (9), crucial in
deriving the above-mentioned blowup criterion.

It happens that other elements of “structure” are important in the literature, when it
comes to study PDE, in particular in the context of singularity formation.

Let us introduce in the following the definitions of symmetric and variational structures
in PDE, in the context of this thesis.

(i) Symmetric structure: A PDE is symmetric if for any solution u we have that u(t +
t0, x), u(t, x+ x0) or eiθu(t, x) are also solutions.

(ii) Variational structure: Let us consider the following parabolic equation

∂tu = ∆u+ F (u) , (10)

where u : (x, t) ∈ Ω× [0, T ) → RM . Then, problem (10) is variational if there exists
a function

G : RM → R such that F = ∇G.

In this case, equation (10) has the energy functional which is decreasing in time:

E [u] =
m∑
i=1

∫
Ω

|∇ui|2

2
dx−

∫
Ω

G (u)dx.

We say that E[u] is a Lyapunov functional for equation (10).

Note that the notion of “Symmetric structure” and “Variational structure” holds also
for other types of PDE, in particular, hyperbolic PDE. However, we don’t consider
them in this thesis.

II.4. Relevant questions for blowup

As in many mathematical areas, two major questions arise when we consider a given
PDE. The study of blowup is no exception to that.
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These are the questions one may ask when studying blowup for some given PDE:

- Classification of general solutions: Given a general blowup solution, can we give
a full classification of all possible asymptotic behaviors at blowup?

- Construction of examples of solutions: Can we find some examples of solutions
showing some specific blowup behaviors?

These two questions are related, in the sense that the “construction” may provide ex-
amples confirming some type of behavior available in the “classification”.

Sometimes, as this is the case in this thesis, the “classification” may be too hard to
obtain, because of the lack of structure in the PDE. In that case, the “construction” may
be of great help, in the sense that its products will be the only examples available.

In this thesis, we precisely consider PDE lacking “structure”, making the classification
question out of reach. Accordingly, we will only focus on the “construction” issue, providing
important examples of blowup solutions, presenting novel and unprecedented types
of behaviors.

III. Specific difficulties in this thesis: non symmetric or non variational PDE

As we mentioned before, we treated in this thesis models with non symmetric or non
variational structure. Let us explain in the following why we focus on such models in
our works. It happens in fact that most of the mathematical analysis of singularities was
done for “idealized” situations, where the models were simplified in order to be easily track
able in mathematical tools. Indeed, having a variational structure, satisfying a maximum
principle property, or enjoying a scaling invariance property do help a lot in understanding
finite time singularity occurrance in PDE.

However, when simplifying some model, we may loose essential physical features, making
the PDE behavior very far from reality. Therefore, this motivates us to study models that
are close to the realty and are either non-symmetric or non-variational or both. As a
matter of fact, we consider in this thesis some real-world situations which are far from the
“idealized” situations described earlier, and we try to built new tools on order to better
understand finite-time singularity formation via this modest dissertation.

As we pointed out earlier, the “classification” question is largely out of reach in this
thesis, because of the lack of structure. As a consequence, we focus on the question of
“construction” here.

For the sake of completeness, we will address in the following the two questions:

- The classification in the literature, for some ideal standard case
- The construction in the literature and in our work.

IV. The classification question in the literature for some ideal standard case

In this section, we address the “classification” question in the literature, for some ideal
standard case of system (7), studied by many authors:

∂tu = ∆u+ |u|p−1u, (11)
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where u : (x, t) ∈ Ω × [0, T ) → R,Ω is a open set of RN and p is assumed to satisfy the
following subcritical condition

p ∈ (1,+∞) if N ≤ 2 and p ∈
(

1,
N + 2

N − 2

)
if N ≥ 3. (12)

As one may think, this is an idealized case which is out of the scope of the thesis.
Nevertheless, we choose to include information on it for the sake of historical completeness.
Indeed, equation (11) is the simplest parabolic PDE showing blowup, and it has attracted
a lot of attention in the last 50 years.

IV.1. The existence of the finite time blowup phenomenon

In this part, we aim at introducing some results related to the existence of finite time
blowup and blowup points in particularlly. In fact, these problems have been studied by
many authors such as Ball [2]; Fujita [27] and [28]; Kaplan [50]; Levine [55]; Weissler [82].
For example, Levine [55] and Ball [2] have obtained an existence by using the following
Lyapunov functional defined as in (9):

E[u] =
1

2

∫
Ω

|∇u|2 dx− 1

p+ 1

∫
Ω

|u|p+1dx.

More precisely, this is the statement (see for example Theorem 3.2 in [2]):

Let us consider Ω a bounded open subset of RN with smooth boundary ∂Ω. If u0 ∈
H1

0 (Ω), u0 6≡ 0 and E[u0] ≤ 0, then there exists Tmax(u0) ∈ (0,+∞) such that u ∈
C([0, Tmax), H

1
0 (Ω)) and the following holds

‖u(t)‖Lp+1(Ω) → +∞ as t→ Tmax.

In this case, we say that u blows up in finite time.

Next, we would like to mention some results related to the existence of blowup points.
In order to get more information, we kindly refer the reader to Caffarelli and Friedman [11];
Chen and Suzuki [13]; Chen and Matano [12]; Friedman [26]; Friedman and McLeod [25];
Fujita and Chen [29] and so on. In particular, Giga and Kohn have established in [35] a
criterion which allows us to conclude whether a given point is singular or not. In fact, they
mainly used the following local energy functional:

Ea,t[u] = t
2
p−1
−N

2
+1

∫
Ω

(
1

2
|∇u|2 − 1

p+ 1
|u|p+1

)
e−
|x−a|2

4t dx (13)

+ t
2
p−1
−N

2

∫
Ω

1

2(p− 1)
|u|2e−

|x−a|2
4t dx,

where a ∈ Ω and t > 0. The following is their result (see Corollary 3.6 in [35]):

Let us consider Ω a domain which is strictly star-shaped about a ∈ Ω̄. Then, there exists
ε(Ω, p) > 0 such that the following holds: If u is a solution of (11) which blows up at time
T satisfying Ea,T (u0) < ε, then a cannot be a blowup point.



7

In addition to that, these authors have also proved in Corollary 4.3 in [35], another
important criterion which implies whether a given point is a blowup point or not.

Let us consider Ω a convex domain in R2 with C2 boundary. Then, a ∈ Ω is a blowup
point if and only if the following holds:

lim
t→T

(T − t)
1
p−1u(a+ y

√
T − t, t) = ±κ, where κ = (p− 1)−

1
p−1 , (14)

uniformly for y in compact sets.

In particular, in the case where Ω is bounded, the Dirichlet condition implies that
u(., t)|∂Ω = 0, for all t < T . Then, this rises the question whether u blows up at ∂Ω or not.
As a matter of fact, we don’t have the answer in the general case. However, the answer is
negative for some special cases. More precisely, we have the following result (see Theorem
5.3 in [35]):

We consider Ω a C2,α domain which is strictly star-shaped about a, where a ∈ ∂Ω.
Then, a cannot be a blowup point.

Furthermore, we have the situation where the solution blows up at many points in Ω.
In that case, the blowup set is an interesting object to study. For example, in Theorem 5.1
of [35], the authors proved the following:

If u0 ∈ H1(Rn) and u blows up in finite time, the blowup set is then compact.

On the other hand, there were also many authors who have constructed special initial
data u0 so that the blowup set is explicit. For example, Merle in [60] gave a construction
with k exactly given blowup points. Another example for dimension N ≥ 2: Giga and
Kohn gave the existence of a positive, radially symmetric initial data for which the blowup
set is some (N − 1)-dimensional sphere (see Corollary 5.7 in [35]).

Allowing the solution to be independent of some coordinate, we may obtain examples
where the blowup set is some infinite cylinder, or parallel hyperplanes or even concentric
spheres, which all come from the case of k given points or a sphere we have just mentioned
above.

Apart from these two cases, no other example of blowup sets in known. For example, the
question of constructing a solution for (11) blowing up on a ellipse in a 2 space dimensional
remains largely open.

IV.2. Blowup asymptotic behavior and blowup profile

In this paragraph, we aim at mentioning some results about the aysmptotic behavior of
the solution of equation (11) when the blowup phenomenon occurs. In order to study the
asymptotic behavior, we have many ways to approach this problem. One of them is to use
the so-called self-similar variables (note that this notation was initially used in the work
of Giga and Kohn [33]):

wa(y, s) = (T − t)
1
p−1u(x, t), y =

x− a√
T − t

and s = − ln(T − t). (15)

With this transformation, the study of the blowup behavior of u reduces to the study of
the asymptotic behavior of wa as s→ +∞.



8

From equation (11), we easily write the equation satisfied by w(y, s) as follows:

∂swa = ∆wa −
1

2
y · ∇wa −

wa
p− 1

+ |wa|p−1wa. (16)

Note that w is defined on {(y, s) ∈ Ωa,s = e
s
2 (Ω− a)× [− lnT,+∞)}.

From comparison techniques, we may show (at least when Ω = RN) that

‖u(., t)‖L∞(Ω) ≥ κ(T − t)−
1
p−1 ,∀t ∈ [0, T ),

(see Weissler [83], Friedman and McLeod [25], Giga and Kohn [35]). Following this fact,
two situations which identified in the literature named by Matano and Merle [59]:

The blowup solution u is of type I if there exists C > 0 such that

‖u(., t)‖L∞(Ω) ≤ Ch(t),∀t ∈ [0, T ),

where h(t) is the positive solution of the ODE, connected to (11). Namely, we can explicitly
write the formula of h(t):

h(t) = (T − t)−
1
p−1 .

Otherwise, the solution u is called of type II.

In the context of this thesis, we only focus on type I blowup (of course, for other
equations different from (11)). In other words, we are interested in the case where we may
find the lower and upper bounds for u. This means there exist C > 0 such that the following
holds

1

C
(T − t)−

1
p−1 ≤ ‖u(t)‖L∞(Ω) ≤ C(T − t)−

1
p−1 . (17)

This leads the following estimates:

1

C
≤ ‖wa(., s)‖L∞(Ωa,s) ≤ C. (18)

In fact, we call the above bounds the blowup rates. The upper bound in (17) has been
discovered by Mueller and Weissler [65], Weissler [82] and [84] under some conditions. In
particular, Giga and Kohn have established in [34] (see also [35]) the bounds of (17) in the
case where Ω is a bounded convex domain with the assumption that one of the following
conditions holds:

- Either initial data u0 is nonnegative or p satisfies furthermore the following condition

p > 1 if N = 1 and p ∈
(

1,
3N + 8

3N − 4

)
if N ≥ 2. (19)

Later, Giga, Matsui and Sasayama have removed condition (19) (see [36] for the case
Ω = RN , and then, [37] for a more general smooth convex domain Ω), extending the result
to all Sobolev subcritical exponent p > 1 as in (12). In order to overcome the challenges, the
authors used the arguments on the following Lyapunov functional associated to equation
(16):

E[wa](s) =

∫
Ωa,s

[
1

2
|∇wa|2 +

1

2(p− 1)
|wa|2 −

1

p+ 1
|wa|p+1

]
ρ(y)dy. (20)
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where

ρ(y) =
1

(4π)
N
2

e−
|y|2

4 . (21)

Finally, they have obtained the key integral estimate in the sense that for all q ≥ 2 and
a ∈ Ω, there exists R1(N, p, q,Ω) > 0, independent of a such that the following estimate
holds

sup
s≥− lnT

∫ s+1

s

‖wa(; s)‖(p+1)q

Lp+1(Ωa,s∩B(0,R1))ds ≤ Ĉ, (22)

where Ĉ depends only on N, p, q,Ω and a bound on E[wa](0) as well as some norms of w0
a,

where w0
a is initial data of wa. We kindly refer the reader to page 1774 in [35] for more

details.

On the other hand, Merle and Zaag obtained in [64] (see also [62]) the following optimal
blowup rates:

Let us consider Ω a convex bounded C2,α domain in RN and u a solution which blows
up at time T > 0. We assume furthermore that u0 ∈ H1(Ω). Then, the following limits
hold:

‖wa(., s)‖L∞(Ωa,s) → κ = (p− 1)−
1
p−1 , (23)

and

‖∇wa(., s)‖L∞(Ωa,s) + ‖∆wa(., s)‖L∞(Ωa,s) → 0,

as s→ +∞ and for any a ∈ Ω.

As a matter of fact, studying blowup rates is a fundamental step towards the study of
the asymptotic behavior of solutions to problem (16) as we will mention below.

We now assume that u blows up at time T and at some point a ∈ Ω. Firstly, we derive
from (14) the asymptotic behavior of wa on every compact set: for each K > 0

sup
|y|≤K

|wa(y, s)− κ∗| → 0, as s→ +∞, (24)

where κ∗ ∈ {−κ, κ} and κ is defined in (14). Note that κ,−κ, 0 are constant solutions of
(16). In particular, in the case where Ω = RN , they are the only stationnary solutions
under condition (12) (see Giga and Kohn [33]). Concerning the blowup behavior, we kindly
refer the readers to Filippas and Kohn [21]; Filippas and Liu [22]; Herrero and Velázquez
[45] and [46]; and Velázquez [78] and [81].

More precisely, Giga and Kohn used in [33] some analysis in Sobolev spaces with the
Gaussian weight ρ defined in (21) to derive (24), see also [21]; [22]; [33]; [45]; [46]; [78]
and [81]. More importantly, Velázquez established in [79] a classification of the asymptotic
behavior of solutions to problem (16) (although some of the above-mentioned authors may
have considered the nonlinearity up instead of |u|p−1u, all their results hold also for |u|p−1u
with the same proof). More precisely, this is the result in [79]:

There exist an orthogonal matrix O of order N and an integer number k ∈ {0, ..., N−1}
such that one of the following statements holds (up to replacing u by −u if necessary):
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a)- Exponential decay: There exists ν > 0 such that for all K > 0, we have

sup
|y|≤K

|wa(y, s)− κ| ≤ C(K)e−νs,∀s ≥ − lnT. (25)

b)-Non exponential decay: There exists µ > 1 such that for all K > 0, we have

sup
|y|≤K

∣∣∣∣wa(y, s)− [κ+
κ

2ps

[
(N − k)− 1

2
yTMky

]]∣∣∣∣ = O

(
1

sµ

)
, as s→ +∞, (26)

where

Mk = O−1




1 0 ... 0
0 1 ... 0
... 0

. . . 0
0 0 .... 1

 0

0 0

O, with N − k of 1′s digits. (27)

In this thesis, we are interested in case b), non exponential decay, of course, for other
equations more general than (11). Note that using (26), we have the behavior of w in the
set |y| ≤ K, for any K > 0. This fact is equivalent to the behavior of u in a small ball
|x − a| ≤ K

√
T − t → 0 as t → T . The more t approaches the blowup time, the less

we know about the behavior of wa. In fact, both for u and wa, we see that the solution
becomes flat approaching a constant, and no shape arises. This is disappointing from a
physical point of view.

Later, Herrero and Velázquez [45] (in the one dimensional case), Liu [56] (in the multi-
dimensional case) have dealt with this challenge. More precisely, they improved the estimate
in (27) by finding another expansion valid in larger domains of the form {|y| ≤ K

√
s} for

any K > 0. In addition to that, Merle and Zaag [63] have obtained later the same result
with a different proof based on some compacness properties of wa, uniformly with respect
to a ∈ RN . Note that this uniform property on a ∈ RN was not proven before. This result
helped Merle and Zaag to establish in [63] the following blowup profile with respect to the
variable

z =
y√
s
, (28)

which may be called the blowup variable. The following is their result:

There exist k ∈ {0, 1, ...., N} and an orthogonal matrix O such that for all K > 0, the
following holds:

sup
|z|≤K

∣∣wa(z√s, s)− fk(z)
∣∣→ 0 as s→ +∞, (29)

where

fk(z) =

(
p− 1 +

(p− 1)2

4p
zTMkz

)− 1
p−1

, (30)

with Mk defined as in (27). Note that when k = N in case b) mentioned aboved, this is
a degenerate case with MN = 0, and in fact, we are in case a). Note also that the profile
(30) is referred to as the “intermediate” blowup profile of w, since it is close to the solution
for s ∈ [s0,+∞) for some s0 (or t ∈ [T − e−s0 , T )) by (15). In fact, we will introduce later
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a notion of “final” blowup profile. In the case where k = 0, we would like to mention that
(29) was first found numerically by Berger and Kohn in [5].

Let us now introduce the notion of final profile where k = 0 in (27). In fact, Herrero and
Veláquez [45] (see also [78] and [80]) derived a final profile for the blowup solution. More
precisely, there exists u∗(x) such that u(x, t) → u∗(x) as t → T , for any x 6= a. Moreover,
we have the following

u∗(x) ∼
[

8p

(p− 1)2

| ln(x− a)|
|x− a|2

] 1
p−1

, as x→ a. (31)

V. The construction of Type I blowup solutions

In this section, we address the question of “construction” of examples of blowup solutions
for some PDE.

In fact, we rely here on some general method which we could adapt in our work to
various situations, after many nontrivial adaptations.

This method was introduced by various authors, and goes back to the works of Bressan
[6] and [7]; Bricmont and Kupiainen [8] and [9]; Merle and Zaag [61].

It relies on some two parts:

- The derivation of approximate solution, through a formal approach;

- The construction of an exact solution close to the approximate solution, through
a perturbative rigorous argument. This part relies on a good knowledge of the special
properties of the linearized operator around the approximate solution. It consists in 2
steps:

Step 1
Reduction to a finite dimensional problem, to control the negative directions of the

operator

Step 2
Topological argument based on index theory, to control the nonnegative directions of the

spectrum

In the context of this thesis, we call it the finite reduction method. As a matter of fact, this
method was introduced in Merle and Zaag [61] by improving of the proof given in Bricmont
and Kupiainen [9]. In particular, the finite reduction method can be resumed by two steps:

In some specific situations, the construction method provides the stability of the blowup
profile under perturbations of initial data by using the interpretation of the parameters of
the finite-dimensional problem in terms of the blowup time and the blowup point. In fact,
the construction in [61] corresponds to case (26) where k = 0.

To be more specific, we will present in the following the “construction” method as it is
available in the literature for the ideal case of equation (11).

The construction result is due to Bricmont and Kupiainen [8] who have constructed
a nonnegative blowup solution u(x, t) to (11) (see also Bricmont and Kupiainen [9], and
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Bricmont, Kupiainen and Lin [10]), satisfying the following L∞-estimate, after the change
of variables (15): ∥∥∥∥wa(., s)− f0

(
y√
s

)∥∥∥∥
L∞(RN )

→ 0 as s→ +∞, (32)

where

f0(z) =

(
p− 1 +

(p− 1)2

4p
|z|2
)− 1

p−1

. (33)

Estimate (32) yields in fact the following∥∥∥∥∥(T − t)
1
p−1u(., t)− f0

(
.− a√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

→ 0, (34)

where u is the constructed solution of equation (11), blowing up at time T and only at a.

V.1. A formal approach to derive an approximate solution (i.e the blowup
profile)

We aim at explaining in this part how the blowup profile (33) arises formally. In order
to get a simple situation, we suggest to take N = 1, and Ω = R and in the nonnegative
case.

In fact, in order to get a blowup solution to (11), we will in fact construct a bounded
solution to (16). Since (16) is of parabolic type, it is reasonable to work with the “blowup
variable”

z =
y√
s
,

as mentioned by Tayachi and Zaag in [76]. Following these authors and adpting an original
idea by Berger and Kohn in [5], we may try to find a solution w with the following form

wa(y, s) =
∞∑
j=0

wj(z)

sj
, (35)

where functions wj, j ≥ 0 are assumed to be smooth and bounded. In particular, w0 ≥ 0
because of the assumption that w is nonnegative.

Using equation (16), (35) and gathering terms of order 1
sj
, j = 0, 1, we derive the following

equations

−1

2
z.w′0(z)− w0(z)

p− 1
+ wp0(z) = 0,

and

−1

2
z.w′1(z)− w1(z)

p− 1
+ pwp−1

0 w1(z) + w′′0(z) +
z.w′0

2
= 0.

Following for example the justification in Berger and Kohn [5] and Duong [17], we get

w0(z) =
(
p− 1 + bz2

)− 1
p−1 , (36)

and

w1(z) =
(p− 1)

2p
(p− 1 + bz2)−

p
p−1 − (p− 1)

4p
z2 ln(p− 1 + bz2)

(
p− 1 + bz2

)− p
p−1 ,



13

where

b =
(p− 1)2

4p
.

Thus, from (36), we can formally derive f0 as the blowup profile in our construction. More
precisely, we can see that for all |y| ≤ K0

√
s for some K0 > 0, we have

wa(y, s) ∼ ϕ1(y, s) as s→ +∞, (37)

where

ϕ1(y, s) = w0(z) +
w1(0)

s
= f0

(
y√
s

)
+

κ

2ps
and f0 defined in (33). (38)

Note that for N ≥ 2, our profile will be the following

ϕN(y, s) = f0

(
y√
s

)
+
Nκ

2ps
. (39)

V.2. The rigorous proof

In this paragraph, we present the perturbative rigorous method which provides the
existence of a solution to equation (16) in RN satisfying

‖wa(., s)− ϕN(., s)‖L∞(RN ) → 0 as s→ +∞, (40)

where ϕN is defined as in (39).

Introducing
q(y, s) = wa(y, s)− ϕN(y, s),

we transform the PDE (11) into the following equation satisfied by q:

∂sq = [L + V (y, s)]q +B(q, y, s) +R(y, s), (41)

where

L = ∆− 1

2
∇ · y + Id, (42)

V (y, s) = p

[
ϕp−1
N (y, s)− 1

p− 1

]
, (43)

B(q, s) = |q + ϕN |p−1 (q + ϕN)− ϕpN − pϕ
p−1
N q, (44)

R(y, s) = ∆ϕN(y, s)− 1

2
∇ϕN(y, s) · y − ϕN(y, s)

p− 1
(45)

+ ϕpN(y, s)− ∂sϕN(y, s).

As a matter of fact, our problem is reduced to the construction of a solution for equation
(41) satisfying

‖q(., s)‖L∞(RN ) → 0 as s→ +∞. (46)

We first note the following fact

‖R(s)‖L∞(RN ) .
1

s
.

Moreover, once q is small enough in L∞, the term B is then formally “quadratic”. This
leads to the smallness of B. It remains to understand the effects of L and V .
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(i) Operator L: It is self-adjoint in D(L) ⊂ L2
ρ, where

L2
ρ(RN) = {f ∈ L∞loc(RN) such that

∫
RN
|f(y)|2ρ(y)dy < +∞} with ρ defined as in (21).

On the other hand, we have

SpecL =
{

1− n

2

∣∣∣n ∈ N} ,
Note that the largest eigenvalue is 1, and for every eigenvalue 1 − n

2
, we have the

associated eigenspace

En =

〈
Hα(y) = hα1(y1)...hαN (yN)

∣∣∣∣∣|α| =
N∑
i=1

αi = n and α = (α1, ..., αN) ∈ NN
〉
,

where function hαi(yj) is the rescaled Hermite polynomial of order αi (see [19] and
[61] for more details). In addition to that, the following set

B = {Hα(y) |α ∈ NN},

makes a basis of L2
ρ.

(ii) Potential V : In fact, the value of V depends on the time variable s and also on the
reduced variable

z =
y√
s
,

rather than on y itself. For that reason, its behavior will dramatically depend on the
size of z. More specifically, inside the blowup region {|y| ≤ K

√
s} for some K > 0,

we have the following estimate

V (s)→ 0 in L2
ρ(RN) as s→ +∞,

which shows that the effect of V will be a perturbation of the effect of L, except may
be on the null modes of L, on the one hand.

On the other hand, V significantly changes the effect of L outside the blowup region,
namely in the set {|y| ≥ K

√
s}. Indeed, for each ε > 0, there exist Kε > 0 and sε > 0

such that

sup
|y|√
s
≥Kε,s≥sε

∣∣∣∣V (y, s) +
p

p− 1

∣∣∣∣ ≤ ε.

Since − p
p−1

< −1 and bearing in mind that 1 is the largest eigenvalue of L, we can
see that L + V behaves as an operator with a fully negative spectrum.

From the above information about L and V , the behavior of L + V inside and outside
the blowup region is different. Hence, this motivates us to consider the dynamics of the
solution first on {|y| ≤ K

√
s}, then on {|y| ≥ K

√
s}. As the authors in [9] and [61] did,

we introduce the following cut-off function

χ(y, s) = χ0

(
|y|
K
√
s

)
,
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where χ0 ∈ C∞0 [0,+∞), ‖χ0‖L∞ ≤ 1 and

χ0(x) =

{
1 for x ≤ 1,
0 for x ≥ 2.

Then, we decompose q as the following

q = χq + (1− χ)q = qb + qe.

Note that supp(qb) ⊂ B(0, 2K
√
s) and supp(qe) ⊂ RN \ B(0, K

√
s). Moreover, if q ∈

L∞(RN), then we have the fact that qb, qe ∈ L∞(RN) ⊂ L2
ρ(RN). Accordingly, we may

expand q on the eigenfunctions of L as follows:

qb = q0 + q1 · y + yT · q2 · y − 2Tr(q2) + q−,

where

qm =

(
〈Hα, qb〉L2

ρ

〈Hα, Hα〉L2
ρ

)
|α|=m

,m ≥ 0.

Note that q0 is in R, q1 is a vector in RN and q2 is a square matrix of order N .

Finally, we write

q = qb + qe = q0 + q1 · y + yT · q2 · y − 2Tr(q2) + q− + qe. (47)

As a conclusion to this paragraph, we recall that our goal is to construct a solution q
to equation (41) satisfying (46), where q is decomposed as in (47), a decomposition well
adapted to the properties of L + V , the linearized operator of (41).

The control of q towards 0 in (46) will follow from the control of its components
q0, q1, q2, q− and qe shown in (47), two of them being infinite dimensional (q− and qe).

V.2.1 . Reduction to a finite dimensional problem

In this part, we show that the control of q towards 0 in (46) reduces in fact to the
control of q0 and q1. From the fact that (q0, q1)(s) ∈ R1+N , this makes a reduction to a
finite dimensional problem.

Indeed, from the definitions of q− and qe in (47), we get the following facts:

- For q−: This part corresponds to the eigenvectors Hα where |α| ≥ 3. Then, we may
derive from the properties of operator L+V that q− is associated to the negative eigenvalues
of L + V . Hence, it is easily controllable to 0.

- For qe: We have supp(qe) ⊂ {|y| ≥ K
√
s}, a region where L+V has a strictly negative

spectrum. Hence, qe is easily controllable to 0.

After this reduction, when q is small, we project equation (41) on Em, m = 0, 1 and 2,
then we obtain the following system:

q′0(s) ∼ q0(s), (48)

q′1(s) ∼ 1

2
q1(s), (49)

q′2(s) ∼ −2

s
q2(s), (50)
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as s→ +∞. From (50) and introducing τ = ln(s), we can write

∂τq2(τ) ∼ −2q2(τ) as τ → +∞,

where we still note q2(τ) = q2(s(τ)), This yields that q2(τ) is associated to a strictly negative
eigenvalue. Then, q2(τ) can be controlled to 0 and q2(s) too.

The problem remains to control two components: q0 and q1. As a matter of fact, we see
from (48) and (49) that these components are associated to strictly positive eigenvalues. So,
we cannot do as we did with the others components. Finally, we have reduced problem (46)
to a finite one on q0 and q1 for which we will find initial data (q0, q1)(s0) where s0 = − lnT
such that

(q0, q1)(s)→ 0 as s→ +∞.

V.2.2. A topological argument

In order to give a flavor of our argument, we will consider the following two-dimensional
model problem: {

q′0 = q0 + q2
1 + 1

s2
,

q′1 = 1
2
q1 − q0q1 − 2

s2
,

(51)

fitted with initial data

(q0, q1)(s0) = (d0, d1) ∈ R2,

where s0 will be taken large enough.

As mentioned in the previous part, we aim at constructing initial data (d0, d1) such that

(q0, q1)(s)→ 0 as s→ +∞.

More precisely, we prove that there exists (d0, d1) ∈ V(s0) such that

|qm(s)| ≤ A

s2
, ∀m = 0, 1 and ∀s ≥ s0, (52)

where

V(s) ≡
[
−A
s2
,
A

s2

]2

,

and A will be taken large enough.

Indeed, by a contradiction, we assume for all (d0, d1) ∈ V(s0) that (52) fails at time s,
for some s ∈ [s0,+∞). In that case, there exists s∗ = s∗(d0, d1) such that

|qm(s)| ≤ A

s2
∀s ∈ [s0, s∗] and ∀m ∈ {0, 1},

and

|q0(s∗)| =
A

s2
∗

or |q1(s∗)| =
A

s2
∗
.
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From the ODE system (51), we derive that the flow of |qm(s)| is transverse outgoing on
the curve

s 7→ A

s2
,

at the crossing time s = s∗. This implies that

(d0, d1) 7→ s∗(d0, d1)

is continuous.

Making the change of variables

(d0, d1) =
A

s2
0

(ν0, ν1) where (ν0, ν1) ∈ [−1, 1]2,

we can construct the following mapping

Γ : [−1, 1]2 → ∂[−1, 1]2,

(ν0, ν1) 7→ s2∗
A

(q0, q1)(s∗),

where s∗ = s∗(d0, d1) and (d0, d1) = A
s20

(ν0, ν1).

From the previous analysis, we derive that Γ has the following properties:

(i) Γ is continuous

(ii) The restriction Γ |∂V0 is equal to the identity.

Using a consequence of Brouwer’s lemma, Γ cannot exist. Thus, there is (d0, d1) ∈[
− A
s20
, A
s20

]2

such that

∀s ≥ s0,∀m ∈ {0, 1}, we have |qm(s)| ≤ A

s2
.

This was the solution for the model (51). In the PDE that we consider in this thesis,
we will handle other system similar to (51). We will use the same contradiction argument
and construct a similar mapping Γ which will be continuous but not necessarily equal to
the identity on the boundary. However, that property will be replaced by the following

deg
(
Γ
∣∣
∂[−1,1]2

)
6= 0

(in one dimension), which will lead to a contradiction from the degree theory.

IV.3. Construction of blowup solutions to other problems

In this paragraph, we would like to mention some constructions of blowup solutions, de-
rived by the above-mentioned construction method. In particular, we consider the following
parabolic equation

∂tu = ∆u+ F (u).

First, we mention the work of Bressan [6] (see also [7]) with the nonlinearity F (u) = eu.
Then, we also have the paper by Bricmont and Kupiainen [9] with the nonlinearity F (u) =
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up, u ∈ R+. Later, we have the construction of Merle and Zaag [61] with the nonlinearity
F (u) = |u|p−1u.

Next, we also mention the paper by Nguyen and Zaag [67], with a quasi-critical double
source

F (u) = |u|p−1u+
µ

lna(2 + u2)
|u|p−1u, a > 1 and µ ∈ R.

In addition to that, we also mention the cases where the nonlinearity contains gradient
terms such as in the work of Ebde and Zaag [20] with

F (u,∇u) = µ|∇u|q + |u|p−1u, where 0 ≤ q < qcri =
2p

p+ 1
and p > 1.

Later, Tayachi and Zaag have treated in [76] the critical case of the above problem where
q = qcri and p > 3. In addition to that, we also mention the work of Ghoul, Nguyen and
Zaag [32] with F (u,∇u) = α|∇u|2 + eu, α > −1.

Moreover, Ghoul, Nguyen and Zaag have considered some vector cases (i.e parabolic
systems). For example, there is the work by Ghoul, Nguyen and Zaag [31] who treated the
case of

F

(
u1

u2

)
=

(
|u2|p−1u2

|u1|q−1u1

)
, p, q > 1.

Next, we would like to mention some cases where the solution takes complex values such
as the Complex Ginzburg-Landau (CGL) equation

∂tu = (1 + iβ)∆u+ (1 + iδ)|u|p−1u, δ, β ∈ R.

There were some cases of CGL which have been considered earlier such as: Zaag [86] for
the case where β = 0 and δ ∈ (−δ0, δ0) for some small δ0 > 0; Masmoudi and Zaag [58] for
the following subcritical condition

p− (p+ 1)δβ − δ2 > 0.

Later, Nouaili and Zaag treated in [69] a critical case of the above-mentioned relation,
where β = 0 and δ = ±p. This leaves unanswered the case where

p− (p+ 1)δβ − δ2 = 0 and β 6= 0.

We also mention the following complex heat equation, where

F (u) = up, p > 1.

In fact, this model has an important role in the literature. More precisely, where p = 2, it
has been studied by many authors in the world (see [23], [39], [42] and their references). In
particular, Nouaili and Zaag have constructed a blowup solution in the case where p = 2.
Moreover, Harada obtained in [43] the same result by using another method. However,
they leaved the unanswered question for the general case where p > 1.

VI. Our main results in this thesis



19

In this section, we aim at introducing the main results in this thesis. In fact, our results
focus on the construction blowup solutions for a non-homogeneous PDE, a complex valued
equation, and a MEMS model of parabolic type.

VI.1. Existence of a stable blowup solution with a prescribed behavior for a
non-scaling invariant semilinear heat equation

We consider here the problem of the construction of a blowup solution to the following
semilinear heat equation:{

∂tu = ∆u+ |u|p−1u lnα(2 + u2),

u(0, x) = u0(x) ∈ L∞(RN),
(53)

where u : (x, t) ∈ RN × [0, T )→ R, p > 1 and α ∈ R. In particular, we aim at constructing
a blowup solution which blows up in finite time T , only at one blowup point a ∈ RN . From
the invariance of equation (53) under translations in space, a is always assumed to be the
origin. The following results follow [19] (this work is an collaboration with V. T. Nguyen
and H. Zaag):

Theorem 0.1 (See Theorem 1.1 in [19], page 16). There exist initial data u0 ∈ L∞(RN)
such that the corresponding solution to equation (53), blows up in finite time T = T (u0) > 0,
only at the origin. Moreover, we have

(i) For all t ∈ [0, T ), there exists a positive constant C0 such that∥∥∥∥∥ψ−1(t)u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C0√
| ln(T − t)|

, (54)

where ψ(t) is the unique positive solution of the following ODE

ψ′(t) = ψp(t) lnα(ψ2(t) + 2), lim
t→T

ψ(t) = +∞, (55)

and the profile f0 is defined by

f0(z) =

(
1 +

(p− 1)

4p
|z|2
)− 1

p−1

. (56)

(ii) There exits u∗(x) ∈ C2(RN\{0}) such that u(x, t) → u∗(x) as t → T uniformly on
compact sets of RN \ {0}, where

u∗(x) ∼
[

(p− 1)2|x|2

8p| ln |x||

]− 1
p−1
(

4

p− 1
| ln |x||

)− α
p−1

as x→ 0, (57)

Remark 0.2. We derive from (i) that u(0, t) ∼ ψ(t) → +∞ as t → T , which yields that
our solution blows up in finite time T at x = 0. In addition to that, (ii) gives us the fact
that the solution blows up only at the origin.
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Remark 0.3. When α = 0, (54) is the same as the standard power-like case treated in [9]
and [61]. It is different if α 6= 0. More precisely, the final profile u∗ has a difference coming
from the extra multiplication of the size by | ln |x||−

α
p−1 , which shows that the nonlinear

source in equation (53) has a strong effect on the dynamics of the solution in comparison
with the standard case α = 0.

Remark 0.4. Using the parabolic regularity, we can show that if the initial data u0 ∈
W 2,∞(Rn), then we have for i = 0, 1, 2,∥∥∥∥∥ψ−1(t)(T − t)

i
2∇i

xu(., t)− (T − t)
i
2∇i

xf0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞

≤ C√
| ln(T − t)|

,

where f0 is defined by (56).

Using the techniques given by Merle in [60], we can construct a blowup solution with
arbitrarily given points. We would like to refer the readers to Corollary 1.6 in [19].

Next, we use the techniques of the interpretation of the parameters of the finite dimen-
sional problem in terms of the blowup time and blowup point given in [61] to derive the
stability of the solution constructed in Theorem 1.

Theorem 0.5 (See Theorem 1.7 in [19]). Consider û the solution constructed in Theorem
0.1 and denote by T̂ its blowup time. Then, there exists U0 ⊂ L∞(RN) a neighborhood of
û(0) such that for all u0 ∈ U0, equation (53) with initial data u0 has a unique solution u(t)
blowing up in finite time T (u0) at a single point a(u0). Moreover, the statements (i) and
(ii) in Theorem 0.1 are satisfied by u(x− a(u0), t), and

(T (u0), a(u0))→ (T̂ , 0) as ‖u0 − û0‖L∞(RN ) → 0. (58)

VI.2. Existence of a profile for the imaginary part of a blowup solution to a
complex-valued semilinear heat equation

Let us consider here the following complex heat equation{
∂tu = ∆u+ up,

u(x, 0) = u0(x) ∈ L∞
(
RN ,C

)
,

(59)

where u : (x, t) ∈ RN × [0, T )→ C and p > 1.

Our goal is to construct a blowup solution to equation (59), and to describe its asymp-
totic behavior as we did with (53).

a) Integer case for p

Inspired by the works of Nouaili and Zaag in [68] (N dimensions) and Harada in [43] (1
dimension) who treated the case p = 2, we extended in [17] the results of [68] to arbitrary
p > 1 which takes an integer value. Moreover, we obtained a better result than the one in
[68], in the sense that we derived the profile of the imaginary part. More precisely, we have
the following result:
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Theorem 0.6 (See Theorem 1.1, page 6 in [17]). For each p ≥ 2, p ∈ N and p1 ∈ (0, 1),
there exists T1(p, p1) > 0 such that for all T ≤ T1, there exist initial data u0 = u0

1 + iu0
2,

such that equation (59) has a unique solution on [0, T ), satisfying the following:

i) The solution u blows up in finite time T only at the origin. Moreover, it satisfies the
following estimates∥∥∥∥∥(T − t)

1
p−1u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C√
| ln(T − t)|

, (60)

and∥∥∥∥∥(T − t)
1
p−1 | ln(T − t)|u2(., t)− g0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C

| ln(T − t)|
p1
2

,

(61)
where f0 is defined in (56) and g0(z) is defined as follows

g0(z) =
|z|2(

p− 1 + (p−1)2

4p
|z|2
) p
p−1

. (62)

ii) There exists a complex function u∗(x) ∈ C2(RN\{0}) such that u(t)→ u∗ = u∗1 + iu∗2
as t→ T uniformly on compact sets of RN\{0} and we have the following asymptotic
expansions:

u∗(x) ∼
[

(p− 1)2|x|2

8p| ln |x||

]− 1
p−1

, as x→ 0. (63)

and

u∗2(x) ∼ 2p

(p− 1)2

[
(p− 1)2|x|2

8p| ln |x||

]− 1
p−1 1

| ln |x||
, as x→ 0. (64)

Remark 0.7. We easily derive from (60) that u blows up only at 0 . Note that both the
real and the imaginary parts of u blow up. We also show that the singularity of u2 is softer

than u1 because of the quantity
1

| ln |x||
.

Remark 0.8. From the case where p = 2 treated by Nouaili and Zaag [68], we suspect the
behavior in Theorem 0.6 to be unstable. This is due to the number of parameters in initial
data. More precisely, the number of parameters used in the proof is higher than N+1 which
is contributed from N for the blowup point and 1 for the blowup time.

Let us mention that Theorem 0.6 naturally leaves a question: can we extend the result
to the general case where p > 1? This question will be treated in the next section.

b) General case for p

In this part, we handle the case where p is not an integer number in (59). It took a
long time to fine-tune and develop our method such that the result holds in general. The
following is our main result (this is in fact the same statement as Theorem 0.6, if one
replaces “For any integer p ≥ 2” by “For any p > 1”; of course, the proof is much harder
in the second case):
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Theorem 0.9 (See Theorem 1.1, page 3 in [16]). For each p > 1 and p1 ∈ (0, 1), there
exists T1(p, p1) > 0 such that for all T ≤ T1, there exist initial data u0 = u0

1 + iu0
2, such that

equation (59) has a unique solution u on [0, T ) satisfying the following:

i) The solution u blows up in finite time T only at the origin. Moreover, it satisfies the
following estimates∥∥∥∥∥(T − t)

1
p−1u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C√
| ln(T − t)|

, (65)

and∥∥∥∥∥(T − t)
1
p−1 | ln(T − t)|u2(., t)− g0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C

| ln(T − t)|
p1
2

,

(66)
where f0 and g0 are defined in (56) and (62), respectively.

ii) There exists a complex function u∗(x) ∈ C2(RN\{0}) such that u(t)→ u∗ = u∗1 + iu∗2
as t→ T uniformly on compact sets of RN\{0} and we have the following asymptotic
expansions:

u∗(x) ∼
[

(p− 1)2|x|2

8p| ln |x||

]− 1
p−1

, as x→ 0. (67)

and

u∗2(x) ∼ 2p

(p− 1)2

[
(p− 1)2|x|2

8p| ln |x||

]− 1
p−1 1

| ln |x||
, as x→ 0. (68)

VI.3. Profile of touch-down solution to a nonlocal MEMS model

In this part, we are interested in the quenching phenomenon with MEMS models. More
precisely, we consider the following equation

∂tu = ∆u+
λ

(1− u)2

(
1 + γ

∫
Ω

1

1− u
dx

)2 , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω.

(69)

We construct a solution to equation (69) such that u touches down in finite time T only
at one point a ∈ Ω (in the sense u(a, t) → 1 as t → T ). In addition to that, we also
aim at showing its asymptotic behavior in some neighborhood of the quenching point. The
following are our main statements:

Theorem 0.10 (Existence of a qenching solution, see Theorem 1.1 in [18]). Consider
λ > 0, γ > 0 and Ω a C2 bounded domain in RN containing the origin. Then, there exist
initial data u0 ∈ C∞(Ω̄) such that the solution of (69) quenches in finite time T = T (u0) > 0
only at the origin. In particular, the following holds:
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(i) The intermediate profile: For all t ∈ [0, T )∥∥∥∥∥∥ (T − t) 1
3

1− u(., t)
− θ∗

(
3 +

9

8

|.|2√
(T − t)| ln(T − t)|

)− 1
3

∥∥∥∥∥∥
L∞(Ω)

≤ C√
| ln(T − t)|

, (70)

for some θ∗ = θ∗(λ, γ,Ω, T ) > 0.

(ii) The final profile: There exists u∗ ∈ C2(Ω) ∩C(Ω̄) such that u uniformly converges to
u∗ as t→ T, and

1− u∗(x) ∼ θ∗
[

9

16

|x|2

| ln |x||

] 1
3

as x→ 0. (71)

In addition to that, we also proved the stability of the constructed quenching solution
in Theorem 0.10 under perturbations of initial data:

Theorem 0.11 (Stability of the constructed solution, see Theorem 1.12 in [18] ). Let us
consider û, the solution which we constructed in Theorem 0.10 and we also define T̂ as the
quenching time of the solution and θ̂∗ as the coefficient in front of the profiles (70) and

(71). Then, there exists a open subset Û0 in C0,+(Ω̄), containing û(0) such that for all

initial data u0 ∈ Û0, equation (69) has a unique solution u quenching in finite time T (u0)
at only one quenching point a(u0). Moreover, the asymptotic behaviors of (70) and (71)
hold by replacing u(x− a(u0), t), and θ̂∗ by some θ∗(u0) and

(a(u0), T (u0), θ∗(u0))→ (0, T̂ , θ̂), as ‖u0 − û0‖C(Ω̄) → 0.
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1998.

[87] Y. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze.
The mathematical theory of combustion and explosions. Consultants Bureau
[Plenum], New York, 1985. Translated from the Russian by Donald H. McNeill.



32



Chapter 1

Construction of a stable blowup
solution with a prescribed behavior
for a non-scaling invariant semilinear
heat equation 1

G. K. Duong, V. T. Nguyen and H. Zaag

Abstract: We consider the semilinear heat equation

∂tu = ∆u+ |u|p−1u lnα(u2 + 2),

in the whole space RN , where p > 1 and α ∈ R. Unlike the standard case α = 0, this
equation is not scaling invariant. We construct for this equation a solution which blows up
in finite time T only at one blowup point a, according to the following asymptotic dynamics:

u(x, t) ∼ ψ(t)

(
1 +

(p− 1)|x− a|2

4p(T − t)| ln(T − t)|

)− 1
p−1

as t→ T,

where ψ(t) is the unique positive solution of the ODE

ψ′ = ψp lnα(ψ2 + 2), lim
t→T

ψ(t) = +∞.

The construction relies on the reduction of the problem to a finite dimensional one and a
topological argument based on the index theory to get the conclusion. By the interpretation
of the parameters of the finite dimensional problem in terms of the blowup time and the
blowup point, we show the stability of the constructed solution with respect to perturbations
in initial data. To our knowledge, this is the first successful construction for a genuinely
non-scale invariant PDE of a stable blowup solution with the derivation of the blowup profile.
From this point of view, we consider our result as a breakthrough.

Mathematics Subject Classification: 35K50, 35B40 (Primary); 35K55, 35K57
(Secondary).

Keywords: Blowup solution, Blowup profile, Stability, Semilinear heat equation, non-
scaling invariant heat equation.

1 This work was published in Tunisian J. Math, vol. 1, no. 1, pp 13–45, 2019.
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1.1 Introduction.

We are interested in the semilinear heat equation{
∂tu = ∆u+ F (u),
u(0) = u0 ∈ L∞(RN),

(1.1)

where u(t) : RN → R, ∆ stands for the Laplacian in RN and

F (u) = |u|p−1u lnα(u2 + 2), p > 1, α ∈ R. (1.2)

By standard results, the model (1.1) is well-posed in L∞(RN) thanks to a fixed-point
argument. More precisely, there is a unique maximal solution on [0, T ), with T ≤ +∞. If
T < +∞, then the solution of (1.1) may develop singularities in finite time T , in the sense
that

‖u(., t)‖L∞(RN ) → +∞ as t→ T.

In this case, T is called the blowup time of u. A given point a ∈ RN , we say that a is
a blowup point of u if and only if there exists (aj, tj) → (a, T ) as j → +∞ such that
|u(aj, tj)| → +∞ as j → +∞.

In the special case where α = 0, equation (1.1) becomes the standard semilinear heat
equation

∂tu = ∆u+ |u|p−1u. (1.3)

As a matter of fact, equation (1.3) is invariant under the following scaling transformation

u 7→ uλ(x, t) := λ
2
p−1u(λx, λ2t). (1.4)

An extensive literature is devoted to equation (1.3) and no review can be exhaustive.
Given our interest in the construction question with a prescribed blowup behavior, we only
mention previous work in this direction.

In [2], Bricmont and Kupiainen showed the existence of a solution of (1.3) such that

‖(T − t)
1
p−1u(a+ .

√
(T − t)| ln(T − t)|, t)− ϕ0(.)‖L∞(RN ) → 0, as t→ T, (1.5)

where

ϕ0(z) =

(
p− 1 +

(p− 1)2

4p
z2

)− 1
p−1

,

(note that Herrero and Velázquez [9] proved the same result with a different method; note
also that Bressan [1] made a similar construction in the case of an exponential nonlinearity).

Later, Merle and Zaag [13] (see also the note [12]) simplified the proof of [2] and proved
the stability of the constructed solution verifying the behavior (1.5). Their method relies
on the linearization of the similarity variables version around the expected profile. In that
setting, the linearized operator has two positive eigenvalues, then a non-negative spectrum.
In fact, they proceed in two steps:

- Reduction of an infinite dimensional problem to finite dimensional one: they show
that controlling the similarity variable version around the profile reduces to the control
of the components corresponding to the two positive eigenvalues.
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- Then, they solve the finite dimensional problem thanks to a topological argument
based on index theory.

The method of Merle and Zaag [13] has been proved to be successful in various situations.
This was the case of the complex Ginzgburg-Landau equation by Masmoudi and Zaag [10]
(see also Zaag [19] for an ealier work) and also for the case of a complex semilinear heat
equation with no variational structure by Nouaili and Zaag [16]. We also mention the
work of Tayachi and Zaag [18] (see also [17]) and the work of Ghoul, Nguyen and Zaag
[6] dealing with a nonlinear heat equation with a double source depending on the solution
and its gradient in a critical way. In [5], Ghoul, Nguyen and Zaag successfully adapted
the method to construct a stable blowup solution for a non variational semilinear parabolic
system.

In other words, the method of [13] was proved to be efficient even for the case of systems
with non variational structure. However, all the previous examples enjoy a common scaling
invariant property like (1.4), which seemed at first to be a strong requirement for the
method. In fact, this was proved to be untrue.

In addition to that, Ebde and Zaag [3] were able to adapt the method to construct
blowup solutions for the following non scaling invariant equation

∂tu = ∆u+ |u|p−1u+ f(u,∇u), (1.6)

where

|f(u,∇u)| ≤ C(1 + |u|q + |∇u|q′), with q < p, q′ <
2p

p+ 1
.

These conditions ensure that the perturbation f(u,∇u) turns out to exponentially small
coefficients in the similarity variables. Later, Nguyen and Zaag [15] did a more spectacular
achievement by addressing the case of stronger perturbation of (1.3), namely

∂tu = ∆u+ |u|p−1u+
µ|u|p−1u

lna(2 + u2)
, (1.7)

where µ ∈ R and a > 0. When moving to the similarity variables, the perturbation turns
out to have a polynomial decay. Hence, when a > 0 is small, we are almost in the case of
a critical perturbation.

In both cases addressed in [3] and [15], the equations are indeed non-scaling invariant,
which shows the robustness of the method. However, since both papers proceed by per-
turbations around the standard case (1.3), it is as if we are still in the scaling invariant
case.

In this paper, we aim at trying the approach on a genuinely non-scaling invariant case,
namely equation (1.1). The following is our main result.

Theorem 1.1 (Blowup solution for equation (1.1) with a prescribed behavior). There exist
initial data u0 ∈ L∞(RN) such that the corresponding solution to equation (1.1) blows up
in finite time T = T (u0) > 0, only at the origin. Moreover, we have

(i) For all t ∈ [0, T ), there exists a positive constant C0 such that∥∥∥∥∥ψ−1(t)u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C0√
| ln(T − t)|

, (1.8)
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where ψ(t) is the unique positive solution of the following ODE

ψ′(t) = ψp(t) lnα(ψ2(t) + 2), lim
t→T

ψ(t) = +∞, (1.9)

(see Lemma 1.17 for the existence and uniqueness of ψ), and profile f0 is defined by

f0(z) =

(
1 +

(p− 1)

4p
|z|2
)− 1

p−1

. (1.10)

(ii) There exits u∗(x) ∈ C2(RN\{0}) such that u(x, t) → u∗(x) as t → T uniformly on
compact sets of RN \ {0}, where

u∗(x) ∼
[

(p− 1)2|x|2

8p| ln |x||

]− 1
p−1
(

4| ln |x||
p− 1

)− α
p−1

as x→ 0, (1.11)

Remark 1.2. From (i), we see that u(0, t) ∼ ψ(t)→ +∞ as t→ T , which means that the
solution blows up in finite time T at x = 0. From (ii), we deduce that the solution blows
up only at the origin.

Remark 1.3. Note that the behavior in (1.8) is almost the same as the standard case α = 0
treated in [2] and [13]. However, the final profile u∗ has a difference coming from the extra
multiplication of the size | ln |x||−

α
p−1 , which shows that the nonlinear source in equation

(1.1) has a strong effect to the dynamic of the solution in comparison with the standard
case α = 0.

Remark 1.4. Item (ii) is in fact a consequence of (1.8) and Lemma 1.20. Therefore, the
main goal of this paper is to construct for equation (1.1) a solution blowing up in finite time
and verifying the behavior (1.8).

Remark 1.5. By the parabolic regularity, one can show that if initial data u0 ∈ W 2,∞(RN),
then we have for i = 0, 1, 2,∥∥∥∥∥ψ−1(t)(T − t)

i
2∇i

xu(., t)− (T − t)
i
2∇i

xf0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C√
| ln(T − t)|

,

where f0 is defined by (1.10).

From the technique of Merle [11], we can prove the following result.

Corollary 1.6. For arbitrary given set of m points x1, ..., xm. There exists initial data u0

such that the solution u of (1.1) with initial data u0 blows up exactly at m points x1, ..., xm.
Moreover, the local behavior at each blowup point xi is also given as in (1.8) by replacing x
by x− xi and L∞(RN) by L∞(|x− xi| ≤ εi) for some εi > 0 small enough.

As a consequence of our technique, we prove the stability of the solution constructed in
Theorem 1.1 under the perturbations of initial data. In particular, we have the following
result.
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Theorem 1.7 (Stability of the solution constructed in Theorem 1.1). Consider û the so-
lution constructed in Theorem 1.1 and denote by T̂ its blowup time. Then there exists
U0 ⊂ L∞(RN) a neighborhood of û(0) such that for all u0 ∈ U0, equation (1.1) with initial
data u0 has a unique solution u(t) blowing up in finite time T (u0) at a single point a(u0).
Moreover, the statements (i) and (ii) in Theorem 1.1 are satisfied by u(x− a(u0), t), and

(T (u0), a(u0))→ (T̂ , 0) as ‖u0 − û0‖L∞(RN ) → 0. (1.12)

Remark 1.8. We will not give the proof of Theorem 1.7 because the stability result follows
from the reduction to a finite-dimensional case as in [13] with the same proof. Here we only
prove the existence and refer to [13] for the stability.

1.2 Formulation of the problem.

In this section, we first use the matched asymptotic technique to formally derive the be-
havior (1.8). Then, we give the formulation of the problem in order to justify the formal
result.

1.2.1 A formal approach.

In this part, we follow the approach of Tayachi and Zaag [18] to formally explain how to
derive the asymptotic behavior (1.8). In fact, we introduce the following self-similarity
variables

u(x, t) = ψ(t)w(y, s), y =
x√
T − t

, s = − ln(T − t), (1.13)

where ψ(t) is the unique positive solution of equation (1.9) and ψ(t)→ +∞ as t→ T . Then,
we see from (1.1) that w(y, s) solves the following equation: for all (y, s) ∈ RN×[− lnT,+∞)

∂sw = ∆w − 1

2
y.∇w − h(s)w + h(s)|w|p−1w

lnα(ψ2
1w

2 + 2)

lnα(ψ2
1 + 2)

, (1.14)

where
h(s) = e−sψp−1

1 (s) lnα(ψ2
1(s) + 2), (1.15)

and
ψ1(s) = ψ(T − e−s). (1.16)

Note that h(s) admits the following asymptotic behavior as s→ +∞,

h(s) =
1

p− 1

(
1− α

s
− α2 ln s

s2

)
+O

(
1

s2

)
, (1.17)

(see item ii) in Lemma 1.21 for the proof of (1.17)). From (1.13), we see that the study
of the asymptotic behavior of u(x, t) as t → T is equivalent to the study of the long time
behavior of w(y, s) as s → +∞. In other words, the construction of the solution u(x, t),
which blows up in finite time T and verifies the behavior (1.8), reduces to the construction
of a global solution w(y, s) for equation (1.14) satisfying

0 < ε0 ≤ lim sup
s→+∞

‖w(s)‖L∞(RN ) ≤
1

ε0
for some ε0 > 0, (1.18)
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and ∥∥∥∥∥w(y, s)−
(

1 +
(p− 1)y2

4ps

)− 1
p−1

∥∥∥∥∥
L∞(RN )

→ 0 as s→ +∞. (1.19)

In the following, we will formally explain how to derive the behavior (1.19).

Inner expansion

We remark that 0,±1 are the trivial constant solutions to equation (1.14). Since we are
looking for a non zero solution, let us consider the case when w → 1 as s → +∞ (up to
replacing w by −w if necessary). We now introduce

w = 1 + w̄, (1.20)

then from equation (1.14), we see that w̄ satisfies

∂sw̄ = L(w̄) +N(w̄, s), (1.21)

where

L = ∆− 1

2
y.∇+ Id, (1.22)

and

N(w̄, s) = h(s)|w̄ + 1|p−1(w̄ + 1)
lnα(ψ2

1(w̄ + 1)2 + 2)

lnα(ψ2
1 + 2)

− h(s)(w̄ + 1)− w̄, (1.23)

with ψ1(s) and h(s) are defined in (1.16) and (1.15), respectively. Note that N admits the
following asymptotic behavior (see Lemma 1.22 for the proof of this one):

N(w̄, s) =
pw̄2

2
+O

(
|w̄| ln s
s2

)
+O

(
|w̄|2

s

)
+O(|w̄|3) as (w̄, s)→ (0,+∞). (1.24)

Since w̄(s)→ 0 as s→ +∞ and N is formally “quadratic” in w̄, we see from equation
(1.21) that the linear part will play the main role in the analysis of our solution. Let us
recall some properties of L. In fact, L is self-adjoint in D(L) ⊂ L2

ρ(RN), where L2
ρ(RN) is

the weighted space associated with the weight ρ defined by

ρ(y) =
e−
|y|2

4

(4π)
N
2

,

and

SpecL =
{

1− m

2
,m ∈ N

}
.

More precisely, we have
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• When N = 1, all the eigenvalues of L are simple and the eigenfunction corresponding
to the eigenvalue 1− m

2
is the Hermite polynomial defined by

hm(y) =

[m2 ]∑
j=0

(−1)jm!ym−2j

j!(m− 2j)!
. (1.25)

In particular, we have the following orthogonality∫
R
hihjρdy = i!2iδi,j, ∀(i, j) ∈ N2.

• When N ≥ 2, the eigenspace corresponding to the eigenvalue 1 − m
2

is defined as
follows

Em =
〈
hβ = hβ1 · · ·hβN , for all β ∈ NN , |β| = m, |β| = β1 + · · ·+ βN

〉
. (1.26)

Since the eigenfunctions of L is a basic of L2
ρ, we can expand w̄ in this basic as follows

w̄(y, s) =
∑
β∈NN

w̄β(s)hβ(y).

For simplicity, let us assume that w̄ is radially symmetric in y. Since hβ with |β| ≥ 3
corresponds to negative eigenvalues of L, we may consider the solution w̄ taking the form

w̄ = w̄0 + w̄2(s)(|y|2 − 2N), (1.27)

where |w̄0(s)| and |w̄2(s)| go to 0 as s→ +∞. Injecting (1.27) and (1.24) into (1.21), then
projecting equation (1.21) on the eigenspace Em with m = 0 and m = 2,

w̄′0 = w̄0 +
p

2

(
w̄2

0 + 8nw̄2
2

)
+O

(
(|w̄0|+ |w̄2|) ln s

s2

)
+O

(
|w̄0|2 + |w̄2|2

s

)
+O

(
|w̄0|3 + |w̄2|3

)
,

w̄′2 = 4pw̄2
2 + pw̄0w̄2 +O

(
(|w̄0|+ |w̄2|) ln s

s2

)
+O

(
|w̄0|2 + |w̄2|2

s

)
+O

(
|w̄0|3 + |w̄2|3

)
,

(1.28)

as s→ +∞. In addition to that, we now assume that |w̄0(s)| � |w̄2(s)| as s→ +∞, then
(1.29) becomes the following

w̄′0 = w̄0 +O(|w̄2|2) +O
(
|w̄2| ln s
s2

)
,

w̄′2 = 4pw̄2
2 + o(|w̄2|2) +O

(
|w̄2| ln s
s2

)
,

as s→ +∞. (1.29)

Let us consider the following cases:

- Case 1: Either |w̄2| = O
(

ln s
s2

)
or |w̄2| � ln s

s
as s→ +∞, then the second equation in

(1.29) becomes

w̄′2 = O

(
|w̄2| ln s
s2

)
as s→ +∞,
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which yields

ln |w̄2| = O

(
ln s

s

)
as s→ +∞,

this contradicts the assumption that w̄2(s)→ 0 as s→ +∞.

- Case 2: |w̄2| � ln s
s2

as s→ +∞, then (1.29) becomes{
w̄′0 = w̄0 +O(|w̄2|2),

w̄′2 = 4pw̄2
2 + o(|w̄2|2),

as s→ +∞.

This yields {
w̄0 = O

(
1
s2

)
,

w̄2 = − 1
4ps

+ o(1
s
),

as s→ +∞. (1.30)

Substituting (1.30) into (1.29) yields{
w̄′0 = O

(
1
s2

)
,

w̄′2 = 4pw̄2
2 +O

(
ln s
s3

)
,

as s→ +∞,

from which we improve the error for w̄2 as follows
w̄0 = O

(
1

s2

)
,

w̄2 = − 1

4ps
+O

(
ln2 s

s2

)
,

as s→ +∞. (1.31)

Thus, from (1.20), (1.27) and (1.31), we derive

w(y, s) = 1− y2

4ps
+

N

2ps
+O

(
ln2 s

s2

)
in L2

ρ(RN), (1.32)

as s→ +∞. Note that the asymptotic expansion (1.32) also holds for all |y| ≤ K for some
K > 0.

Outer expansion

The asymptotic behavior of (1.32) suggests that the blowup profile may be depend on
the following variable

z =
y√
s
,

From (1.32), let us try to search a regular solution of equation (1.14) of the form

w(y, s) = φ0(z) +
N

2ps
+ o

(
1

s

)
in L∞loc(RN) as s→ +∞, (1.33)

where φ0 is a bounded, smooth function to be determined. From (1.32), we impose the
following condition

φ0(0) = 1 and φ0(z) ≥ 0. (1.34)
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Since w(y, s) is supposed to be bounded, we obtain from Lemma 1.23 that∣∣∣∣h(s)|w|p−1w
lnα(ψ2

1w
2 + 2)

lnα(ψ2
1 + 2)

− |w|
p−1w

p− 1

∣∣∣∣ ≤ C

s
,

Note also from (1.33) that

∣∣|w|p−1w − |φ0(z)|p−1φ0(z)
∣∣ = O

(
1

s

)
in L∞loc(RN) as s→ +∞

Injecting (1.33) into equation (1.14) and comparing terms of order O (1), we derive the
following equation

− 1

2
z.∇φ0(z)− φ0(z)

p− 1
+
|φ0|p−1φ0(z)

p− 1
= 0, ∀z ∈ RN . (1.35)

Solving (1.35) with condition (1.34), we obtain

φ0(z) =
(
1 + c0|z|2

)− 1
p−1 , (1.36)

for some constant c0 ≥ 0 (since we want φ0 to be bounded for all z ∈ RN). From (1.33),
(1.36) and a Taylor expansion, we obtain

w(y, s) = 1− c0y
2

(p− 1)s
+

N

2ps
+ o

(
1

s

)
, ∀|y| ≤ K as s→ +∞,

from which and the asymptotic behavior (1.32), we find that

c0 =
p− 1

4p
.

In conclusion, we have just derived the following asymptotic profile

w(y, s) ∼ ϕ(y, s) as s→ +∞, (1.37)

where

ϕ(y, s) =

(
1 +

(p− 1)y2

4ps

)− 1
p−1

+
N

2ps
. (1.38)

1.2.2 Formulation of the problem.

In this subsection, we set up the problem in order to justify the formal approach presented
in the Section 1.2.1. In particular, we give a formulation to prove item (i) of Theorem
1.1. We aim at constructing for equation (1.1) a solution blowing up in finite time T only
at the origin and verifying the behavior (1.8). In comparison with (1.13), our problem is
reduced to the construction of a solution w(y, s) for equation (1.14) defined for all (y, s) ∈
RN × [s0,+∞), s0 = − lnT and satisfying (1.19). The formal approach given in Subsection
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1.2.1 (see (1.37)), we are interested in the linearization w around profile ϕ, defined by
(1.38). Let us introduce

q(y, s) = w(y, s)− ϕ(y, s), (1.39)

where ϕ is defined in (1.38). From (1.14), we see that q satisfies the following equation

∂sq = Lq + V q +B(q) +R(y, s) +D(q, s), (1.40)

where L is the linear operator defined in (1.22), and

V =
p

p− 1

[
ϕp−1 − 1

]
, (1.41)

B(q) =
|q + ϕ|p−1(q + ϕ)− ϕp − pϕp−1q

p− 1
, (1.42)

R(y, s) = ∆ϕ− 1

2
y∇ϕ− ϕ

p− 1
+

ϕp

p− 1
− ∂sϕ, (1.43)

and D is defined as follows

D(q, s) = (q + ϕ)

((
h(s)− 1

p− 1

)(
|q + ϕ|p−1− 1

)
+h(s)|q + ϕ|p−1(q + ϕ)L(q + ϕ, s)

)
,

(1.44)
where

L(v, s) =
2αψ2

1

ln(ψ2
1 + 2)(ψ2

1 + 2)
(v − 1) +

1

lnα(ψ2
1 + 2)

∫ v

1

f ′′(u)(v − u)du, (1.45)

and h, ψ1(s) and ϕ being defined by (1.15), (1.16) and (1.38) respectively, and

f(z) = lnα(ψ2
1z

2 + 2), z ∈ R.

Thus, problem (1.8) is reduced to construct for equation (1.40) a solution q such that

‖q(., s)‖L∞(RN ) → 0 as s→ +∞.

Since we construct for equation (1.40) a solution q verifying ‖q(s)‖L∞ → 0 as s→ +∞,
and the fact that

|B(q)| ≤ C|q|min (2,p), ‖R(s)‖L∞(RN ) + ‖D(q, s)‖L∞(RN ) ≤
C

s
,

(see Lemmas 1.24, 1.25 and 1.26 for these estimates), we see that the linear part of equation
(1.40) will play an important role in the analysis of the solution. The property of the linear
operator L has been studied in previous section (see page 39), and the potential V has the
following properties:

i) Perturbation of effect of L inside the blowup region {|y| ≤ K
√
s}:

‖V (s)‖L2
ρ
→ 0 as s→ +∞.

ii) For each ε > 0, there exist Kε > 0 and sε > 0 such that

sup
y√
s
≥Kε,s≥sε

∣∣∣∣V (y, s) +
p

p− 1

∣∣∣∣ ≤ ε.
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Since 1 is the biggest eigenvalue of L, the operator L + V behaves as one with a fully
negative spectrum outside blowup region {|y| ≥ K

√
s}, which makes the control of the

solution in this region easily.

Since the behavior of the potential V inside and outside the blowup region is different,
we will consider the dynamics of the solution for |y| ≤ 2K

√
s and for |y| ≥ K

√
s separately

for some K to be fixed large. We introduce the following function

χ(y, s) = χ0

(
|y|
K
√
s

)
, (1.46)

where χ0 ∈ C∞0 [0,+∞), ‖χ0‖L∞(RN ) ≤ 1 and

χ0(x) =

{
1 for x ≤ 1,
0 for x ≥ 2,

and K is a positive constant to be fixed large later. We now decompose q by

q = χq + (1− χ)q = qb + qe. (1.47)

(Note that supp(qb) ⊂ {|y| ≤ 2K
√
s} and supp(qe) ⊂ {|y| ≥ K

√
s}). Since the eigenfunc-

tions of L span the whole space L2
ρ(RN), let us write

qb(y, s) = q0(s) + q1(s) · y + yT · q2(s) · y − 2Tr(q2(s)) + q−(y, s), (1.48)

where qm(s) =
(
qβ(s)

)
β∈NN ,|β|=m and

∀β ∈ NN , qβ(s) =

∫
RN
qb(y, s)h̃β(y)ρdy, h̃β =

hβ
‖hβ‖2

L2
β

, (1.49)

and

q−(y, s) =
∑

β∈NN ,|β|≥3

qβ(s)hβ(y). (1.50)

In particular, we denote q1 = (q1,i)1≤i≤N and q2(s) is a N × N symmetric matrix defined
explicitly by

q2(s) =

∫
qbM(y)ρdy = (q2,i,j)1≤i,j≤N , (1.51)

with

M(y) =

{
1

8
yiyj −

δi,j
4

}
1≤i,j≤N

. (1.52)

Thus, by (1.47) and (1.48), we can write

q(y, s) = q0(s) + q1(s) · y + yT · q2(s) · y − 2Tr(q2(s)) + q−(y, s) + qe(y, s). (1.53)

Note that qm(m = 0, 1, 2) and q− are the components of qb, and not those of q.
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1.3 Proof of the existence assuming some technical

results

In this section, we shall describe the main argument behind the proof of Theorem 1.1. In
order to avoid winding up with details, we shall postpone most of the technicalities involved
to the next section.

According to transformations (1.13) and (1.39), the proof of item (i) of Theorem 1.1
is equivalent to showing that there exists initial data q0(y) at the time s0 such that the
corresponding solution q of equation (1.40) satisfies

‖q(s)‖L∞(RN ) → 0 as s→ +∞.

In particular, we consider the following function

ψd0,d1(y) =
A

s2
0

(d0 + d1.y)χ(2y, s0), (1.54)

as initial data for equation (1.40), where (d0, d1) ∈ R1+N are the parameters to be deter-
mined, s0 > 1 and A > 1 are constants to be fixed large enough, and χ is the function
defined by (1.46).

We aim at proving that there exists (d0, d1) ∈ R× RN such that the solution q(y, s) =
qd0,d1(y, s) of (1.40) with initial data ψd0,d1(y) satisfies

‖qd0,d1(s)‖L∞(RN ) → 0 as s→ +∞.

More precisely, we will show that there exists (d0, d1) ∈ R×RN such that solution qd0,d1(y, s)
belongs to the shrinking set SA defined as follows:

Definition 1.1 (A shrinking set to zero). For all A ≥ 1, s ≥ 1 we define SA(s) being the
set of all functions q ∈ L∞(RN) such that

|q0| ≤
A

s2
, |q1,i| ≤

A

s2
, |q2,i,j| ≤

A2 ln2 s

s2
, ∀1 ≤ i, j ≤ N,∥∥∥∥ q−(y)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

s2
, ‖qe(y)‖L∞(RN ) ≤

A2

√
s
,

where q0, q1 =
(
q1,i

)
1≤i≤N , q2 =

(
q2,i,j

)
1≤i,j≤N , q− and qe are defined as in (1.53).

We also denote by ŜA(s) being the set

Remark 1.9. For each A ≥ 1, s ≥ 1, we have the following estimates for all q(s) ∈ SA(s):

|q(y, s)| ≤ CA2 ln2 s

s2
(1 + |y|3), ∀y ∈ RN , (1.55)

‖q(s)‖L∞({|y|≤2K
√
s}) ≤

CA√
s
, (1.56)

‖q(s)‖L∞(RN ) ≤
CA2

√
s
. (1.57)
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In fact, we aim at proving the following central proposition which implies Theorem 1.1:

Proposition 1.10 (Existence of a solution trapped in SA(s)). There exists A1 ≥ 1 such
that for all A ≥ A1, there exists s1(A) ≥ 1 such that for all s0 ≥ s1(A), there exists
(d0, d1) ∈ R1+N such that the solution q(y, s) = qd0,d1(y, s) of (1.40) with initial data
q(y, s0) = ψd0,d1(y) defined in (1.54), satisfies

q(s) ∈ SA(s), ∀s ∈ [s0,+∞).

From (1.57), we see that once Proposition 1.10 is proved, item (i) of Theorem 1.1
directly follows. In the following, we shall give all the main arguments for the proof of this
proposition assuming some technical results which are left to the next section.

As for initial data at time s0 defined as in (1.54), we have the following properties:

Proposition 1.11 (Properties of initial data (1.54)). For each A ≥ 1, there exists s2(A) > 1
such that for all s0 ≥ s2(A) we have the following properties:

i) There exists DA,s0 ⊂ [−2; 2]× [−2; 2]N such that the mapping

Φ1 : R1+N → R1+N ,

(d0, d1) 7→
(
ψ0, ψ1

)
is linear, one to one from DA,s0 onto ŜA(s0). Moreover, we have

Φ1 (∂DA,s0) ⊂ ∂ŜA(s0),

where ŜA(s) is defined as follows:

ŜA(s) =

[
−A
s2
,
A

s2

]
×
[
−A
s2
,
A

s2

]N
. (1.58)

ii) For all (d0, d1) ∈ DA,s0, we have ψd0,d1 ∈ SA(s0) with strict inequalities in the sense
that

|ψ0| ≤
A

s2
0

, |ψ1,i| ≤
A

s2
0

, |ψ2,i,j| <
A ln2 s0

s2
0

, ∀1 ≤ i, j ≤ N,∥∥∥∥ ψ−
1 + |y|3

∥∥∥∥
L∞(RN )(R)

<
A

s2
0

, ψe ≡ 0.

where χ(y, s0) is defined in (1.46), ψ0, (ψ1,i)1≤i≤N , (ψ2,i,j)1≤i,j≤N , ψ−, ψe are the components
of ψd0,d1 defined as in (1.53), ψd0,d1 is defined by (1.54).

Proof. See Propositon 4.5 in Tayachi and Zaag [18] for a similar proof to this proposition.

From now on, we denote by C as the universal constant which only depends on K,
where K is introduced in (1.46). Let us now give the proof of Proposition 1.10 to complete
the proof of item (i) of Theorem 1.1.
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Proof of Proposition 1.10. We proceed into two steps to prove Proposition 1.10:

- In the first step, we reduce the problem of controlling q(s) in SA(s) to the control of
(q0, q1)(s) in ŜA(s), where q0 and q1 are the component of q corresponding to the positive
modes defined as in (1.53) and ŜA is defined by (1.58). This means that we reduce the
problem to a finite dimensional one.

- In the second step, we argue by contradiction to solve the finite dimensional problem
thanks to a topological argument.

Step 1: Reduction to a finite dimensional problem

In this step, we show through a priori estimate that the control of q(s) in SA(s) reduces
to the control of (q0, q1)(s) in ŜA(s). This mainly follows from a good understanding of the
properties of the linear part L+V of equation (1.40). In particular, we claim the following
which is the heart of our analysis.

Proposition 1.12 (Control of q(s) in SA(s) by (q0, q1)(s) in ŜA(s)). There exists A3 ≥ 1
such that for all A ≥ A3, there exists s3(A) ≥ 1 such that for all s0 ≥ s3(A), the following
holds: If q(y, s) is the solution of equation (1.40) with initial data at time s0, given by
(1.54) with (d0, d1) ∈ DA,s0, and q(s) ∈ SA(s) for all s ∈ [s0, s1] for some s1 ≥ s0 and
q(s1) ∈ ∂SA(s1), then:
(i) (Reduction to a finite dimensional problem): We have (q0, q1)(s1) ∈ ∂ŜA(s1).
(ii) (Transverse outgoing crossing): There exists δ0 > 0 such that

∀δ ∈ (0, δ0), (q0, q1)(s1 + δ) 6∈ ŜA(s1 + δ).

Hence, q(s1 + δ) 6∈ SA(s1 + δ), where ŜA is defined in (1.58) and DA,s0 is introduced in
Proposition 1.11.

Let us suppose for the moment that Proposition 1.12 holds. Then, we can take advantage
of a topological argument quite similar to that already used in Merle and Zaag [13].

Step 2: A basic topological argument

From Proposition 1.12, we claim that there exists (d0, d1) ∈ DA,s0 such that equation
(1.40) with initial data given as in (1.54), has a solution

qd0,d1(s) ∈ SA(s), ∀s ∈ [s0,+∞),

for suitable choice of the parameters A,K and s0. Since, the argument is analogous as in
[13], we only give the main ideas.

In fact, let us consider K,A and s0 such that Propositions 1.11 and 1.12 hold. From
Proposition 1.11, we have

∀(d0, d1) ∈ DA,s0 , qd0,d1(y, s0) := ψd0,d1 ∈ SA(s0),
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where ψd0,d1 is defined by (1.54). As a matter of fact, ψd0,d1 ∈ L∞(RN) for all (d0, d1) ∈
DA,s0 , we then deduce from the local existence theory in L∞(RN) that we can define for
each (d0, d1) ∈ DA,s0 , a maximum time s∗(d0, d1) ∈ [s0,+∞) such that

qd0,d1(s) ∈ SA(s), ∀s ∈ [s0, s∗(d0, d1)).

If s∗(d0, d1) = +∞ for some (d0, d1) ∈ DA,s0 , then we have the conclusion of Proposition
1.10.

Otherwise, we argue by contradiction and assume that s∗(d0, d1) < +∞ for all (d0, d1) ∈
DA,s0 . By continuity and the definition of s∗, we deduce that qd0,d1(s∗) is on the boundary
of SA(s∗). Using item (i) in Proposition 1.12, we derive the following

(q0, q1)(s∗) ∈ ∂ŜA(s∗).

Hence, we may define the rescaled function

Γ : DA,s0 7→ ∂
(
[−1, 1]1+N

)
(d0, d1)→ s2

∗
A

(q0, q1)(s∗).

From item (i) of Proposition 1.11, we see that if (d0, d1) ∈ ∂DA,s0 , then

q(s0) ∈ SA(s0), (q0, q1)(s0) ∈ ∂ŜA(s0).

From item (ii) of Proposition 1.12, we see that q(s) must leave SA(s) at s = s0, this yields
that s∗(d0, d1) = s0. Therefore, the restriction of Γ to ∂DA,s0 is homeomorphic to the
identity mapping, which is impossible thanks to index theorem, and the contradiction is
obtained. This concludes the proof of Proposition 1.10 as well as item (i) of Theorem 1.1,
assuming that Proposition 1.12 holds.

The proof of Theorem 1.1

As we mentioned in the above, item (i) of Theorem 1.1 follows from Proposition 1.10
and the proof of item (ii) is the following:

Proof of item (ii) of Theorem 1.1. The existence of u∗ ∈ C2(RN \ {0}) follows from the
technique of Merle [4]. Here, we want to find an equivalent formation for u∗ near the
blowup point x = 0. The case α = 0 was treated in [19]. When α 6= 0, we follow the
method of [19], and no new idea is needed. Therefore, we just sketch the main steps for
the sake of completeness.

We consider K0 > 0, a constant to be fixed large enough, and |x0| 6= 0 small enough.
Then, we introduce the following function

υ(x0, ξ, τ) = ψ−1(t0(x0))u(x, t), (1.59)

where (ξ, τ) ∈ RN ×
[
− t0(x0)
T−t0(x0)

, 1
)

, and

(x, t) =
(
x0 + ξ

√
T − t0(x0), t0(x0) + τ(T − t0(x0))

)
, (1.60)
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with t0(x0) being uniquely determined by

|x0| = K0

√
(T − t0(x0))| ln(T − t0(x0))|. (1.61)

From (1.8), (1.59), (1.60) and (1.61), we derive that

sup
|ξ|<2| ln(T−t0(x0))|

1
4

|v(x0, ξ, 0)− ϕ0(K0)| ≤ C

1 + (| ln(T − t0(x0))| 14 )
→ 0 as x0 → 0,

where ϕ0(x) =
(

1 + (p−1)
4p
|x|2
) 1
p−1

. As in [19], we use the continuity with respect to initial

data for equation (1.1) associated to a space-localization in the ball B(0, |ξ| < | ln(T −
t0(x0))| 14 ) to derive

sup
|ξ|<| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|v(x0, ξ, τ)− v̂K0(τ)| ≤ ε(x0)→ 0, as x0 → 0, (1.62)

where v̂K0(τ) =
(

(1− τ) +
(p−1)K2

0

4p

)− 1
p−1

.

From (1.60) and (1.62), we deduce

u∗(x0) = lim
t→T

u(x0, t) = ψ(t0(x0)) lim
τ→1

v(x0, 0, τ) ∼ ψ(t0(x0))

(
p− 1

4p

)− 1
p−1

. (1.63)

Using the relation (1.61), we find that

T − t0(x0) ∼ |x0|2

2K0| ln |x0||
and ln(T − t0(x0)) ∼ 2 ln(|x0|), as x0 → 0, (1.64)

The formula (1.11) then follows from Lemma 1.17, (1.63) and (1.64). This concludes
the proof of Theorem 1.1, assuming that Proposition 1.12 holds.

1.4 Proof of Proposition 1.12.

This section is devoted to the proof of Proposition 1.12, which is the heart of our analysis.
We proceed into two parts. In the first part, we derive a priori estimates on q(s) in SA(s).
In the second part, we show that the new bounds are better than those defined in SA(s),
except for the first two components (q0, q1). This means that the problem is reduced to
the control of a finite dimensional function (q0, q1), which is the conclusion of item (i) of
Proposition 1.12. Item (ii) of Proposition 1.12 is just direct consequence of the dynamics
of q0 and q1. Let us start the first part.
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1.4.1 A priori estimates on q(s) in SA(s).

In this part we derive the a priori estimates on the components q2, q−, qe which implies the
conclusion of Proposition 1.12. Firstly, let us give some dynamics of q0, q1 = (q1,i)1≤i≤N and
q2 = (q2,i,j)1≤i,j≤N . More precisely, we claim the following.

Proposition 1.13 (Dynamics of equation (1.40)). There exists A4 ≥ 1, such that ∀A ≥ A4

there exists s4(A) ≥ 1, such that the following holds for all s0 ≥ s4(A): Assume that for all
s ∈ [s0, s1] for some s1 ≥ s0, q(s) ∈ SA(s), then, we have for all s ∈ [s0, s1]:

(i) (ODE satisfied by the positive and null modes)∣∣∣q′m(s)−
(

1− m

2

)
qm(s)

∣∣∣ ≤ C

s2
, ∀m = 0, 1, (1.65)

and ∣∣∣∣q′2(s) +
2

s
q2(s)

∣∣∣∣ ≤ C ln s

s3
. (1.66)

(ii) (Control of the negative and outer parts)∥∥∥∥q−(y, s)

1 + |y|3

∥∥∥∥
L∞
≤ C

s2

(
(s− σ) + e−

s−σ
2 A+ e−(s−σ)2

A2
)
, (1.67)

‖qe(s)‖L∞ ≤
C√
s

(
(s− σ) + A2e−

s−σ
p + Aes−σ

)
. (1.68)

Proof. We proceed in two steps:

- In the first step we project equation (1.40) to write ODEs satisfied by qm for m = 0, 1, 2.

- In the second step we use the integral form of equation (1.40) and the dynamics of the
linear operator L + V to derive a priori estimates on q− and qe.

Part 1: ODEs satisfying by the positive and null modes

We give the proof of (1.65) and (1.66) in this step. However, we only deal with the
proof of (1.66) because the other one is the same the proof (1.65).

In fact, by formula (1.51) and equation (1.40), we write for each 1 ≤ i, j ≤ N ,∣∣∣∣q′2,i,j(s)− ∫
RN

[Lq + V q +B(q) +R(y, s) +D(q, s)]χ

(
yiyj

8
− δi,j

4

)
ρdy

∣∣∣∣ ≤ Ce−s. (1.69)

Using the assumption q(s) ∈ SA(s) for all s ∈ [s0, s1], we derive the following estimates
for all s ∈ [s0, s1]: ∣∣∣∣∫ L(q)χ

(
yiyj

8
− δi,j

4

)
ρdy

∣∣∣∣ ≤ C

s3
.
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On the other hand, from Lemmas 1.24, 1.25 and 1.26, we have∣∣∣∣∫ V qχ

(
yiyj

8
− δi,j

4

)
ρdy +

2

s
q2,i,j(s)

∣∣∣∣ ≤ CA

s3
,∣∣∣∣∫ B(q)χ

(
yiyj

8
− δi,j

4

)
ρdy

∣∣∣∣ ≤ C

s3
,∣∣∣∣∫ Rχ

(
yiyj

8
− δi,j

4

)
ρdy

∣∣∣∣ ≤ C

s3
,∣∣∣∣∫ D(q, s)χ

(
yiyj

8
− δi,j

4

)
ρdy

∣∣∣∣ ≤ C ln s

s3
.

Gathering all these above estimates to (1.69) yields∣∣∣∣q′2,i,j +
2

s
q2,i,j

∣∣∣∣ ≤ C ln s

s3
.

This concludes the proof of (1.66).

Part 2: Control of the negative and outer parts

We give the proof of (1.67) and (1.68) in this part. In fact, the control of q− and qe
mainly bases on the dynamics of the linear operator L + V . In particular, we use the
following integral form of equation (1.40): for each s ≥ σ ≥ s0,

q(s) = K(s, σ)q(σ) +

∫ s

σ

K(s, τ) [B(q)(τ) +R(τ) +D(q, τ)] dτ =
4∑
i=1

ϑi(s, σ), (1.70)

where {K(s, σ)}s≥σ is defined by{
∂sK(s, σ) = (L + V )K(s, σ), s > σ,
K(σ, σ) = Id,

(1.71)

and

ϑ1(s, σ) = K(s, σ)q(σ), ϑ2(s, σ) =

∫ s

σ

K(s, τ)B(q)(τ)dτ,

ϑ3(s, σ) =

∫ s

σ

K(s, τ)R(., τ)dτ, ϑ4(s, σ) =

∫ s

σ

K(s, τ)D(q, τ)dτ.

As a matter of fact, in (1.70), it is clear to see the strong influence of the kernel K. It is
therefore convenient to recall the following result which the dynamics of the linear operator
K = L + V .

Lemme 1.14 (A priori estimates of the linearized operator in the decomposition in (1.53)).
For all ρ∗ ≥ 0, there exists s5(ρ∗) ≥ 1, such that the following holds: If σ ≥ s5(ρ∗) and
v ∈ L2

ρ(RN) satisfying

2∑
m=0

|vm|+
∥∥∥∥ v−

1 + |y|3

∥∥∥∥
L∞(RN )

+ ‖ve‖L∞(RN ) <∞, (1.72)
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then, ∀s ∈ [σ, σ + ρ∗], the function θ(s) = K(s, σ)v satisfies∥∥∥ θ−(y,s)
1+|y|3

∥∥∥
L∞(RN )

≤ Ces−σ((s−σ)2+1)
s

(|v0|+ |v1|+
√
s|v2|)

+Ce−
(s−σ)

2

∥∥∥ v−
1+|y|3

∥∥∥
L∞(RN )

+ C e−(s−σ)2

s
3
2
‖ve‖L∞(RN ),

(1.73)

and

‖θe(y, s)‖L∞(RN ) ≤ Ces−σ

(
2∑
l=0

s
l
2 |vl|+ s

3
2

∥∥∥∥ v−
1 + |y|3

∥∥∥∥
L∞(RN )

)
+Ce−

s−σ
p ‖ve‖L∞(RN ). (1.74)

Proof. The proof of this result was given by Bricmont and Kupiainen [2] in one dimensional
case. It was then extended in higher dimensional case in Nguyen and Zaag [14]. We kindly
refer interested readers to Lemma 2.9 in [14] for a detail of the proof.

In view of formula (1.70), we see that Lemma 1.14 plays an important role in deriving
the new bounds on the components q− and qe. Indeed, given bounds on the components
of q, B(q), D(q) and R, we directly apply Lemma 1.14 with K(s, σ) replaced by K(s, τ)
and then integrating over τ to obtain estimates on q− and qe. In particular, we claim the
following which immediately follows (1.67) and (1.68) by addition.

Lemme 1.15. For all Ã ≥ 1, A ≥ 1, ρ∗ ≥ 0, there exists s6(A, ρ∗) ≥ 1 such that ∀s0 ≥
s6(A, ρ∗) and q(s) ∈ SA(s),∀s ∈ [σ, σ + ρ∗] where σ ≥ s0, we have the following properties:

a) Case σ ≥ s0: for all s ∈ [σ, σ + ρ∗],

i) The linear term ϑ1(s, σ)

∥∥∥∥(ϑ1(s, σ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C

(
1 + e−

s−σ
2 A+ e−(s−σ)2

A2
)

s2
,

‖(ϑ1(s, σ))e‖L∞(RN ) ≤ C
A2e−

s−σ
p + Aes−σ

s
1
2

.

ii) The quadratic term ϑ2(s, σ)∥∥∥∥(ϑ2(s, σ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− σ)

s2+ε
, ‖(ϑ2(s, σ))e‖L∞(RN ) ≤

C(s− σ)

s
1
2

+ε
.

where ε = ε(p) > 0.

iii) The correction term ϑ3(s, σ)∥∥∥∥(ϑ3(s, σ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− σ)

s2
, ‖(ϑ3(s, σ))e‖L∞(RN ) ≤

C(s− σ)

s
3
4

.

iv) The nonlinear term ϑ4(s, σ)∥∥∥∥(ϑ4(s, σ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− σ)

s2
, ‖(ϑ4(s, σ))e‖L∞(RN ) ≤

C(s− σ)

s
3
4

.
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b) Case σ = s0, we assume in addition

|qm(s0)| ≤ Ã

s2
0

, |q2(s0)| ≤ Ã ln2 s0

s2
0

,∥∥∥∥q−(y, s0)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ Ã

s2
0

, ‖qe(s0)‖L∞(RN ) ≤
Ã
√
s0

.

Then, for all s ∈ [s0, s0 + ρ∗] we have a) and the following properties:∥∥∥∥(ϑ1(s, s0))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ CÃ

s2
, ‖(ϑ1(s, s0))e‖L∞(RN ) ≤

CÃ(1 + es−s0)√
s

.

Proof. The proof simply follows from the definition of SA and Lemma 1.14.

In fact, from the fact that q ∈ SA(s), we derive that Lemmas 1.24 , 1.25 and 1.26 hold.
Then, we obtain the following:

2∑
m∈Nn,|m|=0

|B(q)m(s)| ≤ C

s3
,

∥∥∥∥B(q)−(s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ C

s2+ε
, ‖B(q)e(s)‖L∞(RN ) ≤

C

s
1
2

+ε
,

and

2∑
m∈Nn,|m|=0

|Rm(s)| ≤ C

s2
,

∥∥∥∥ R−(s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ C

s2+ 1
2

, ‖Re(s)‖L∞(RN ) ≤
C

s
3
4

,

and

2∑
m∈Nn,|m|=0

|D(q)m(s)|+
∥∥∥∥D(q)−(s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ C ln s

s3
, ‖D(q)e(s)‖L∞(RN ) ≤

C

s
3
4

,

where ε = ε(p) > 0.

We simply inject these bounds to the a priori estimates given in Lemma 1.14 to obtain
the bounds on

(
ϑm)− and

(
ϑm
)
e

for m = 2, 3, 4.

On the other hand, the estimates on ϑ1 directly follow from Lemma 1.14 and the fact
that q(s) ∈ SA(s).

Thus, we get the conclusion the proof of Lemma 1.15.

Bearing in mind that we are in the proof of Proposition 1.13. Indded, from formula
(1.70) and Lemma 1.15, estimates in (1.67) and (1.68) simply follow by addition. Thus,
conclusion of Proposition 1.13 follows.
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1.4.2 Conclusion of Proposition 1.12

In this part, we give the proof of Proposition 1.12 which is considered as a consequence of
the dynamics of equation (1.40) given in Proposition 1.13. Indeed, item (i) of Proposition
1.12 directly follows from the following result:

Proposition 1.16 (Control of q(s) by (q0, q1)(s) in SA(s)). There exists A7 ≥ 1 such that
∀A ≥ A7, there exists s7(A) ≥ 1 such that for all s0 ≥ s7(A), the following holds: If we
have

a) q(s0) = ψd0,d1(y), where (d0, d1) ∈ DA,s0,

b) For all s ∈ [s0, s1], q(s) ∈ SA(s).

Then, for all s ∈ [s0, s1], we have

∀i, j ∈ {1, · · · , N}, |q2,i,j(s)| <
A2 ln2 s

s2
, (1.75)∥∥∥∥q−(y, s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

2s2
, ‖qe(s)‖L∞(RN ) ≤

A2

2
√
s
, (1.76)

where DA,s0 is introduced in Proposition 1.11 and ψd0,d1 is defined as in (1.54).

Proof. Since the proof of (1.76) is similar to the one written in [13], we only deal with the
proof of (1.75) and refer the readers to Proposition 3.7 in [13] for the proof of (1.76). We
argue by contradiction to prove (1.75).

Indeed, let i, j ∈ {1, · · · , N} and assume that there is s∗ ∈ [s0, s1] such that

∀s ∈ [s0, s∗), |q2,i,j(s)| <
A2 ln2(s)

s2
and |q2,i,j(s∗)| =

A2 ln2(s∗)

s2
∗

.

In addition to that, we assume that q2,i,j(s∗) > 0 (the negative case is the same), then,
we have on the one hand

q′2,i,j(s∗) ≥
d

ds

(
A2 ln2 s

s2

)
s=s∗

=
2A2 ln s∗

s3
∗

− 2A2 ln2 s∗
s3
∗

.

On the other hand, we have from (1.66),

q′2,i,j(s∗) ≤ −
2A2 ln2 s∗

s3
∗

+
C ln s∗
s3
∗

.

The contradiction then follows if 2A2 > C. This concludes the proof of Proposition 1.16.

We now come back to the proof of item (i) of Proposition 1.12. Indeed, from Proposition
1.16, we see that if q(s) ∈ ∂SA(s1), then, the first two components (q0, q1)(s1) must be in
∂ŜA(s1), which is the conclusion of item (i).
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The proof of item (ii): Indeed, it is easy to deduce from (1.65) the following property:

If q0(s1) = ε0
A

s2
1

for some ε0 ∈ {−1, 1}, then, the sign of
d

ds
q0 (s1) is opposite to the sign of

d

ds

(
ε0A

s2

)
(s1)

Moreover, q1,i has the same property as q0, for all i ∈ {1, ..., N}.

Hence, (q0, q1)(s) will actually leave ŜA(s) at s1 ≥ s0 for s0 large enough. Thus concludes
the proof of Proposition 1.12.

1.5 Some elementary lemmas.

In this appendix, we state and prove several technical and and straightforward results need
in our paper.

Lemme 1.17. For each T > 0, there exists only one positive solution of equation (1.9).
Moreover, the solution ψ satisfies the following asymptotic:

ψ(t) ∼ κα(T − t)−
1
p−1 | ln(T − t)|−

α
p−1 , as t→ T, (1.77)

where κα = (p− 1)−
1
p−1
(
p−1

2

) α
p−1 .

Proof. Let us consider the following ODE

ψ′ = ψp lnα(ψ2 + 2), ψ(0) > 0. (1.78)

In fact, the uniqueness and local existence are derived by the Cauchy-Lipschitz property.

Let Tmax, Tmin be the maximum and minimum time of the existence of the positive
solution, i.e. ψ(t) exists for all t ∈ (Tmin, Tmax). We now prove that Tmax < +∞ and
Tmin = −∞. By contradiction, we suppose that the solution exists on [0,+∞), we have

lim
t1→+∞

∫ t1

0

ψ′

ψp lnα(ψ2 + 2)
dt = lim

t1→+∞

∫ t1

0

dt = +∞.

However, we can prove that
∫ t1

0
ψ′

ψp lnα(ψ2+2)
dt is bounded by using the fact that∫ +∞

0

1

tp lnα(t2 + 2)
dt < +∞, for all α ∈ R and p > 1.

The contradiction then follows. In particular, we can prove Tmin = −∞ by using a similar
argument.

Thus, we have proved that for every solution ψ of (1.78), there exists a maximal time
Tmax ∈ (0,+∞) such that ψ exists on (−∞, Tmax) and

ψ(t)→ +∞ as t→ Tmax.

In addition to that, if ψ1, a solution of (1.78) which blows up at T1, then,

ψ(t+ T1 − T2) blows up at T2.
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Then, we can derive that for every T > 0, there exists ψT a solution of (1.78) such that

ψT (t)→ +∞ as t→ T.

We now aim at proving the uniqueness. Indeed, we suppose that ψ1, ψ2 satisfy equation
(1.78) and blow up a the same time T > 0. If there exists t∗ < T such that

ψ1(t∗) 6= ψ2(t∗).

By using the following fact

T − t =

∫ +∞

ψ(t)

du

up lnα(u2 + 2)
, (1.79)

we deduce that ∫ ψ2(t∗)

ψ1(t∗)

du

up lnα(u2 + 2)
= 0.

This is impossible and we obtain the uniqueness.

Let us now prove (1.77). Using (1.79), we deduce that for all δ ∈ (0, p− 1), there exists
tδ such that for all t ∈ (tδ, T ), we have∫ +∞

ψ(t)

du

up+δ
≤ T − t ≤

∫ +∞

ψ(t)

du

up−δ
.

This follows for all t ∈ (tδ, T ):

(p− 1 + δ)−
1

p−1+δ (T − t)−
1

p−1+δ ≤ ψ(t) ≤ (p− 1− δ)−
1

p−1−δ (T − t)−
1

p−1−δ ,

from which we have

lnψ(t) ∼ − 1

p− 1
ln(T − t) as t→ T.

So, we have

ln(ψ2(t) + 2) ∼ − 2

p− 1
ln(T − t) as t→ T.

Hence, we obtain

ψ′(t) = ψp(t) lnα(ψ2(t) + 2) ∼ ψp
[
− 2

p− 1
ln(T − t)

]α
as t→ T, (1.80)

which yields
ψ′

ψp
∼
(

2

p− 1

)α
| ln(T − t)|α as t→ T.

This implies

1

p− 1
ψ1−p(t) ∼

(
2

p− 1

)α ∫ T

t

| ln(T − v)|αdv ∼
(

2

p− 1

)α
(T − t)| ln(T − t)|α as t→ T,

which concludes the proof of (1.77).
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Lemme 1.18. Let us consider α ∈ (0, 1), θ > 0 and 0 < h < 1. Then, the following integral

I(h) =

∫ 1

h

(s− h)−αs−θds

satisfies:

i) if α + θ > 1, then

I(h) ≤
(

1

1− α
+

1

α + θ − 1

)
h1−α−θ.

ii) If α + θ = 1, then

I(h) ≤ 1

1− α
+ | lnh|.

iii) If α + θ < 1, then

I(h) ≤ 1

1− α− θ
.

Proof. See Lemma 2.2 of Giga and Kohn [8].

Lemme 1.19 (A version of Gronwall Lemma). If y(t), r(t) and q(t) are continuous func-
tions defined on [t0, t1] such that

y(t) ≤ y0 +

∫ t

t0

y(s)r(s)ds+ +

∫ t

t0

h(s)ds,∀t ∈ [t0, t1].

Then,

y(t) ≤ e

∫ t

t0

r(s)ds
y0 +

∫ t

t0

h(s)e
−

∫ s

t0

r(τ)dτ
ds

 .
Proof. See Lemma 2.3 of Giga and Kohn [8].

Lemme 1.20. For each T2 < T, δ > 0. There exists ε = ε(T, T2, δ, n, p) > 0 such that for
each v(x, t) satisfying

|∂tv −∆v| ≤ C|v|p lnα(v2 + 2), ∀|x| ≤ δ, t ∈ (T2, T ), δ > 0, (1.81)

and
|v(x, t)| ≤ εψ(t), ∀|x| ≤ δ, t ∈ (T2, T ), (1.82)

where ψ(t) is the unique positive solution of (1.9). Then, v(x, t) does not blow up at (0, T ).

Proof. Since the argument is almost the same as in [8] treated for the case α = 0, we only
sketch the main step for the sake of completeness. Let φ ∈ C∞(RN), φ = 1 if |x| ≤ δ

2
, φ =

0 if |x| ≥ δ, and consider ω = φv satisfying

∂tω −∆ω = fφ+ g, (1.83)
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where
f = ∂tv −∆v and g = v∆φ− 2∇.(v∇φ).

By using the Duhamel’s formula, we write

ω(t) = e(t−T2)∆(ω(T2)) +

∫ t

T2

(
e(t−τ)∆(φf) + e(t−τ)∆(g)

)
dτ, ∀t ∈ [T2, T ), (1.84)

where et∆ is the heat semigroup satisfying the following properties: for all h ∈ L∞,

‖et∆h‖L∞(RN ) ≤ ‖h‖L∞(RN ) and ‖et∆∇h‖L∞(RN ) ≤ Ct−
1
2‖h‖L∞(RN ),∀t > 0.

The formula (1.84) then yields

‖ω(t)‖L∞(RN ) ≤ C + C

∫ t

T2

‖ω(τ)‖L∞(RN )‖|v|p−1 lnα(v2 + 2)(τ)‖L∞(|x|≤δ)

+ C

∫ t

T2

(t− τ)−
1
2‖v(τ)‖L∞(|x|≤δ)dτ, (1.85)

for some constant C = C(n, p, φ, T, T2, δ) > 0.

From (1.81), (1.82) and Lemma (1.17), we find that for all |x| ≤ δ, and τ ∈ [T2, T ),

|v(τ)|p−1 lnα(v2(τ) + 2) ≤ Cψp−1(τ) lnα(ψ2(τ) + 2) ≤ C(T − τ)−1,

and
|v(τ)| ≤ C(T − τ)−

1
p−1 | ln(T − τ)|−

α
p−1 .

The estimate (1.85) becomes

‖ω(t)‖L∞(RN ) ≤ C + Cεp−1

∫ t

T2

(T − τ)−1‖ω(τ)‖L∞(RN )dτ

+ Cε

∫ t

T2

(t− τ)−
1
2 (T − τ)−

1
p−1 | ln(T − τ)|−

α
p−1dτ. (1.86)

In particular, we now consider 0 < λ� 1
2

fixed, then we have:

(T − τ)−
1
p−1 | ln(T − τ)|−

α
p−1 ≤ C(α, λ)(T − τ)−( 1

p−1
+λ),∀τ ∈ (T2, T ).

Hence, we rewrite (1.86) as follows

‖ω(t)‖L∞(RN ) ≤ C + Cεp−1

∫ t

T2

(T − τ)−1‖ω(τ)‖L∞(RN )dτ

+ Cε

∫ t

T2

(t− τ)−
1
2 (T − τ)−( 1

p−1
+λ)dτ, (1.87)

where C(n, p, φ, α, ε, λ, p). Beside that, by changing variables s = T − τ, h = T − t we have∫ t

T2

(t− τ)−
1
2 (T − τ)−θ(p,λ)dτ =

∫ T−T2

h

(s− h)−
1
2 (s)−θ(p,λ)ds, (1.88)
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where θ(p, λ) =
(

1
p−1

+ λ
)

.

Case 1: If θ(p, λ) < 1
2
, by using iii) of Lemma 1.18, we deduce from (1.87) and (1.88)

that

‖ω(t)‖L∞(RN ) ≤ C + Cεp−1

∫ t

T2

(T − s)−1‖ω(s)‖L∞(RN )ds,

Therefore, by Lemma 1.19,

‖ω(t)‖L∞(RN ) ≤ C(T − t)−Cεp−1

, (1.89)

Choosing ε small enough such that Cεp−1 ≤ 1
2(p−1)

. Then, we conclude from (1.89) that

|v(x, t)| ≤ C(T − t)−
1

2(p−1) , for |x| ≤ 1

2
, t ≤ T. (1.90)

By using parabolic regularity theory and the same argument as in Lemma 3.3 of [7], we
can prove that (1.90) actually prevents blowup.

Case 2: θ(λ, p) = 1
2
, it is similar to the first case, by using ii) of Lemma 1.18, (1.87)

and (1.88) we yield

‖ω(t)‖L∞(RN ) ≤ C(1 + | ln(T − t)|) + Cεp−1

∫ t

T2

(T − s)−1‖ω(s)‖L∞(RN )ds.

However, we derive from Lemma 1.19 that

‖ω(t)‖L∞(RN ) ≤ C(T − t)−Kεp−1

, (1.91)

where C = C(n, p, φ, T, T2, δ). We now take ε is small enough such that Cεp−1 ≤ 1
2(p−1)

,

which follows (1.90).

Case 3: θ(λ, p) > 1
2
, by using Lemmas 1.18 1.19 and arguments similar to obtain

|v(x, t)| ≤ C(T − t)
1
2
−θ(p,λ), ∀|x| ≤ δ, t ∈ [T2, T ).

Repeating the step in finite steps would end up with (1.90). This concludes the proof of
Lemma 1.20.

The following lemma gives the asymptotic behaviors of h(s) ans ψ1(s) defined in (1.15)
and (1.16), respectively.

Lemme 1.21. Let h(s) and ψ1(s) be defined as in (1.15) and (1.16), respectively. Then
we have

i)
1

ln(ψ2
1(s) + 2)

=
p− 1

2s
+
α(p− 1) ln s

2s2
+O

(
1

s2

)
, as s→ +∞. (1.92)

ii)

h(s) =
1

p− 1

[
1− α

s
− α2 ln s

s2

]
+O

(
1

s2

)
, as s→ +∞. (1.93)
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Proof. i) Consider ψ(t) the unique positive solution of (1.9). We have

T − t =

∫ +∞

ψ(t)

dx

xp lnα(x2 + 2)
. (1.94)

An integration by parts yields

T − t =
1

ψp−1(t) lnα(ψ2(t) + 2)

[
1

p− 1
− 2α

(p− 1)2 ln(ψ2(t) + 2)
+O

(
1

(ln2(ψ2(t) + 2))

)]
.

(1.95)
Let us write ψ(t) = ψ1(s) where s = − log(T − t), then we have

ln(ψ1(s)) =
s

p− 1
− α

(p− 1)
ln (ln(ψ1(s))) +O (1) , as s→ +∞, (1.96)

from which, we deduce that

ln(ψ1(s)) =
s

p− 1
− α ln (s)

p− 1
+O(1), as s→ +∞, (1.97)

which is the conclusion of item i).

ii) From (1.15) and (1.95), we have

h(s) =
1

p− 1
− 2α

(p− 1)2 ln(ψ2
1(s) + 2)

+O

(
1

ln2(ψ2
1(s) + 2)

)
. (1.98)

Using (1.92) we conclude the proof of (1.93) as well as Lemma (1.21).

Lemme 1.22. Let N be defined as in (1.23), we have

N(w̄, s) =
pw̄2

2
+O

(
|w̄| ln s
s2

)
+O

(
|w̄|2

s

)
+O(|w̄|3) as (w̄, s)→ (0,+∞). (1.99)

Proof. From the definition (1.23) of N , let us write

N(w̄, s) = N1(w̄, s) +N2(w̄, s),

where

N1(w̄, s) = h(s)
(
|w̄ + 1|p−1(w̄ + 1)− (w̄ + 1)

)
− w̄,

N2(w̄, s) = h(s)|w̄ + 1|p−1(w̄ + 1)

(
lnα(ψ2

1(w̄ + 1)2 + 2)

lnα(ψ2
1 + 2)

− 1

)
.

From (1.93) and a Taylor expansion, we find that

N1(w̄, s) =
pw̄2

2
− αw̄

s
+O

(
|w̄| ln s
s2

)
+O

(
|w̄|2

s

)
+O(|w̄|3) as (w̄, s)→ (0,+∞).

We now claim the following

N2(w̄, s) =
αw̄

s
+O

(
|w̄| ln s
s2

)
+O

(
|w̄|2

s

)
as (w̄, s)→ (0,+∞), (1.100)
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then, the proof of (1.99) simply follows by addition.
Let us now give the proof of (1.100) to complete the proof of Lemma 1.22 . We set

f(w̄) = lnα(ψ2
1(w̄ + 1)2 + 2), |w̄| ≤ 1

2
.

We apply Taylor expansion to f(w̄) at w̄ = 0 to find that

f(w̄) = lnα(ψ2
1 + 2) + 2α lnα−1(ψ2

1 + 2)
ψ2

1

ψ2
1 + 2

w̄ +
f ′′(θ)

2
(w̄)2,

where θ is between 0 and w̄, and

f ′′(θ) = α(α− 1) lnα−2(ψ2
1(θ + 1)2 + 2)

(
2(θ + 1)ψ2

1

ψ2
1(θ + 1)2 + 2

)2

+ α lnα−1(ψ2
1(θ + 1)2 + 2)

(4ψ1 − 2ψ4
1(θ + 1)2)

(ψ2
1(θ + 1)2 + 2)2

.

Since |θ| ≤ 1
2
, one can show that

|f ′′(θ)| ≤ C lnα−1(ψ2
1 + 2), ∀|θ| ≤ 1

2
.

Thus, we have

f(w̄) = lnα(ψ2
1 + 2) + 2α lnα−1(ψ2

1 + 2)w̄+O
(
|w̄|2 lnα−1(ψ2

1 + 2)
)

+O

(
|w̄| lnα−1(ψ2

1 + 2)

ψ2
1

)
,

as s→ +∞. This yields

lnα(ψ2
1(w̄ + 1)2 + 2)

lnα(ψ2
1 + 2)

= 1 +
2αw̄

ln(ψ2
1 + 2)

+O

(
|w̄|2

ln(ψ2
1 + 2)

)
+O

(
|w̄|

ln(ψ2
1 + 2)ψ2

1

)
,

as (w̄, s)→ (0,+∞), from which and (1.92) we derive

lnα(ψ2
1(w̄ + 1)2 + 2)

lnα(ψ2
1(s) + 2)

− 1 =
α(p− 1)w̄

s
+O

(
ln s|w̄|
s2

)
+O

(
|w̄|2

s

)
. (1.101)

From the definition of N2, (1.93), (1.101) and the fact that

|w̄ + 1|p−1(w̄ + 1) = 1 + pw̄ +O(|w̄|2) as w̄ → 0,

we conclude the proof of (1.100) as well as Lemma 1.22.

Lemme 1.23. For all |z| ≤ K1, then there exists C(K1) such that ∀s ≥ 1, we have∣∣∣∣h(s)|z|p−1z
lnα(ψ2

1z
2 + 2)

lnα(ψ2
1 + 2)

− |z|
p−1z

p− 1

∣∣∣∣ ≤ C(K1)

s
, (1.102)

where h(s) and ψ1(s) are defined in (1.15) and (1.16), respectively.
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Proof. We consider f(z) = lnα(ψ2
1z

2 + 2),∀z ∈ R, then we write

lnα(ψ2
1z

2 + 2) = lnα(ψ2
1 + 2) +

∫ |z|
1

f ′(v)dv.

Recall from (1.17) that h(s) = 1
p−1

+O(1
s
), we have then∣∣∣∣h(s)|z|p−1z

lnα(ψ2
1z

2 + 2)

lnα(ψ2
1 + 2)

− |z|
p−1z

p− 1

∣∣∣∣ ≤ C|z|p

lnα(ψ2
1 + 2)

∫ |z|
1

|f ′(v)|dv +
C|z|p

s
. (1.103)

From item i) of Lemma 1.21 that shows 1
ln(ψ2

1+2)
≤ C

s
. Hence, it is sufficient to prove

the following

A(z) :=
|z|p

lnα−1(ψ2
1 + 2)

∫ |z|
1

|f ′(v)|dv ≤ C(K1), ∀|z| ≤ K1,

where

f ′(v) = α lnα−1(ψ2
1v

2 + 2)
2vψ2

1

ψ2
1v

2 + 2
.

For 1 ≤ |z| ≤ K1, it is trivial to see that |A(z)| ≤ C(K1). For |z| < 1, we consider two
cases:

- Case 1: α− 1 ≥ 0, then

A(z) ≤ 2|α||z|p
∫ 1

|z|

1

v
dv ≤ C(K1).

- Case 2: α− 1 < 0, then

A(z) ≤ 2|α||z|p lnα−1(ψ2
1z

2 + 2)

lnα−1(ψ1 + 2)

∫ 1

|z|

1

v
dv.

+ If ψ1z
2 ≥ 1 then

A(z) ≤ 2|α| ln
1−α(ψ2

1 + 2)

ln1−α(ψ1 + 2)
|z|p

∫ 1

|z|

1

v
dv ≤ C(K1).

+ If ψ1z
2 ≤ 1 then |z| ≤ v ≤ ψ

− 1
2

1 we deduce that

|A(z)| ≤ 2|α|ψ
1−p

2
1

ln1−α(ψ2
1 + 2)

ln1−α(2)
|z|
∫ 1

|z|
≤ C(K1).

This concludes the proof of Lemma 1.23.

Lemme 1.24 (Control of the nonlinear term D in SA(s)). For all A ≥ 1, there exists
σ3(A) ≥ 1 such that for all s ≥ σ3(A), q(s) ∈ SA(s) implies

∀|y| ≤ 2K
√
s, |D(q, s)| ≤ C(K)

ln s(1 + |y|)4

s3
, (1.104)

and

‖D(q, s)‖L∞(RN ) ≤
C

s
. (1.105)
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Proof. From the definition (1.44) of D, let us decompose

D(q, s) = D1(q, s) +D2(q, s),

where

D1(q, s) =

(
h(s)− 1

p− 1

)(
|q + ϕ|p−1(q + ϕ)− (q + ϕ)

)
,

D2(q, s) = h(s)|q + ϕ|p−1(q + ϕ)L(q + ϕ, s),

and h(s) admits the asymptotic behavior (1.93), L is defined in (1.45). The proof of (1.104)
will follow once the following is proved: for all |y| ≤ 2K

√
s∣∣∣∣D1 −

(
α(|y|2 − 2N)

4ps2
− α

s
q

)∣∣∣∣ ≤ C
(1 + |y|4) ln s

s3
, (1.106)

and ∣∣∣∣D2 +

(
α(|y|2 − 2N)

4ps2
− α

s
q

)∣∣∣∣ ≤ C
(1 + |y|4) ln s

s3
. (1.107)

Let us give a proof of (1.106). From the definition of SA(s), we note that if q(s) ∈ SA(s),
then

∀y ∈ RN , |q(y, s)| ≤ CA2 ln2 s(1 + |y|3)

s2
, (1.108)

‖q(s)‖L∞(RN ) ≤
CA2

√
s
. (1.109)

From the definition (1.38) of ϕ and (1.109), we see that for all |y| ≤ 2K
√
s, there exists a

positive constant C(K) such that

0 <
1

C(K)
≤ (q + ϕ)(y, s) ≤ C(K). (1.110)

Using Taylor expansion and the asymptotic (1.93), we write

D1(q, s) =

(
− α

(p− 1)s
+O

(
ln s

s2

))(
ϕp − ϕ+

(
pϕp−1 − 1

)
q
)

+O
(
q2
)
. (1.111)

Using again the definition of ϕ and a Taylor expansion, we derive

ϕp = 1− (|y|2 − 2N)

4s
+O

(
1 + |y|4

s2

)
,

ϕ = 1− (|y|2 − 2N)

4ps
+O

(
1 + |y|4

s2

)
,

pϕp−1 − 1 = p− 1− (p− 1)(|y|2 − 2N)

4ps
+O

(
1 + |y|4

s2

)
,

as s→ +∞. Inserting (1.108) and these estimates into (1.111) yields (1.106).

We now turn to the proof of (1.107). Recall from (1.45) the definition of L,

L(q + ϕ, s) =
2αψ2

1

ln(ψ2
1 + 2)(ψ2

1 + 2)
(q + ϕ− 1) +

1

lnα(ψ2
1 + 2)

∫ q+ϕ

1

f ′′(v)(q + ϕ− v)dt,
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where f(v) = lnα(ψ2
1v

2 + 2), v ∈ R. From (1.110) and a direct computation, we estimate∣∣∣∣ 1

lnα(ψ2
1 + 2)

∫ q+ϕ

1

f ′′(v)(q + ϕ− v)dv

∣∣∣∣ ≤ C(K)
|q + ϕ− 1|2

s
,

which yields ∣∣∣∣L(q + ϕ, s)− 2αψ2
1(q + ϕ− 1)

ln(ψ2
1 + 2)(ψ2

1 + 2)

∣∣∣∣ ≤ C(K)
|q + ϕ− 1|2

s
. (1.112)

From (1.92) and (1.112), we then have∣∣∣∣L(q + ϕ, s)− α(p− 1)(q + ϕ− 1)

s

∣∣∣∣ ≤ C(K)

(
|q + ϕ− 1|2

s
+

ln s|q + ϕ− 1|
s2

)
,

and beside that we have

|q + ϕ− 1| ≤ C(1 + |y|2

s
,

imply that ∣∣∣∣L(q + ϕ, s)− α(p− 1)(q + ϕ− 1)

s

∣∣∣∣ ≤ C(K)
ln s(1 + |y|4)

s3
, (1.113)

Moreover, from definition of D2 and (1.113) we deduce that∣∣∣D2(q, s)− α

s

(
ϕp+1 − ϕp + ((p+ 1)ϕp − pϕp−1)q

)∣∣∣ ≤ C
(1 + |y|4) ln s

s3
,

and

ϕp+1 − ϕp = −(|y|2 − 2N)

4ps
+O

(
1 + |y|4

s2

)
, as ,

(p+ 1)ϕp − pϕp−1 = 1− (|y|2 − 2N)

2s
+O

(
1 + |y|4

s2

)
, as ,

as s→ +∞ which yield (1.107).

We now give a proof to (1.105). From (1.93) and the boundedness of q and ϕ, we have

|D1(q, s)| ≤ C

s
.

In fact, it is sufficient to prove that for all y ∈ RN ,

|D2(q, s)| ≤ C(K)

s
,

Using the definition of L in (1.45), we deduce that

D2(q, s) = h(s)|q + ϕ|p−1(q + ϕ)
lnα(ψ2

1z
2 + 2)

lnα(ψ2 + 2)
− h(s)|q + ϕ|p−1(q + ϕ).

Using Lemma 1.23, we obtain the following

|D2(q, s)| ≤ C(K)

s
.

This completes the proof of Lemma 1.24.
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Lemme 1.25. When s large enough, then we have for all y ∈ RN :

i) Estimates on V :

|V (y, s)| ≤ C(1 + |y|2)

s
, ∀y ∈ RN ,

and

V = −(|y|2 − 2N)

4s
+ Ṽ with Ṽ = O

(
1 + |y|4

s2

)
,∀|y| ≤ K

√
s.

ii) Estimates on R

|R(y, s)| ≤ C

s
,∀y ∈ Rn,

and

R(y, s) =
cp
s2

+ R̃(y, s) with R̃ = O

(
1 + |y|4

s3

)
,∀|y| ≤ K

√
s.

Proof. The proof simply follows from Taylor expansion. We refer to Lemmas B.1 and B.5
in [19] for a similar proof.

Lemme 1.26 (Estimates on B(q)). For all A > 0 there exists σ5(A) > 0 such that for all
s ≥ σ5(A), q(s) ∈ SA(s) implies

|B(q)| ≤ C|q|2,∀|y| ≤ 2K
√
s, (1.114)

and
‖B(q)‖L∞(RN ) ≤ C|q|p̄, (1.115)

with p̄ = min(p, 2).

Proof. See Lemma 3.6 in [13] for a same proof of this lemma.
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Chapter 2

Profile for the imaginary part of a
blowup solution for a complex valued
semilinear heat equation1

G. K. Duong

Abstract: In this paper, we consider the following complex-valued semilinear heat
equation

∂tu = ∆u+ up, u ∈ C,

in the whole space RN , where p ∈ N, p ≥ 2. We aim at constructing for this equation a
complex solution u = u1 + iu2, which blows up in finite time T and only at one blowup point
a, with the following asymptotic behaviors

u(x, T ) ∼
[

(p− 1)2|x− a|2

8p| ln |x− a||

]− 1
p−1

,

u2(x, T ) ∼ 2p

(p− 1)2

[
(p− 1)2|x− a|2

8p| ln |x− a||

]− 1
p−1 1

| ln |x− a||
, as x→ a.

Note that the imaginary part is non-zero and that it blows up also at point a. Our method
relies on two main arguments: the reduction of the problem to a finite dimensional one and
a topological argument based on the index theory to get the conclusion.
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variation heat equation.
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2.1 Introduction

In this work, we are interested in the following complex-valued semilinear heat equation{
∂tu = ∆u+ F (u), t ∈ [0, T ),

u(0) = u0 ∈ L∞,
(2.1)

where F (u) = up, and u(t) : RN → C, L∞ := L∞(RN ,C) and p > 1. Though our results
hold only when p ∈ N (see Theorem 2.1 below), we keep p ∈ R in the introduction, in order
to broaden the discussion.

In particular, when p = 2, model (2.1) evidently becomes{
∂tu = ∆u+ u2, t ∈ [0, T ),

u(0) = u0 ∈ L∞.
(2.2)

We remark that equation (2.2) is rigidly related to the viscous Constantin-Lax-Majda equa-
tion with a viscosity term, which is a one dimensional model for the vorticity equation in
fluids. The readers can see more in some of the typical works: Constantin, Lax, Majda [2];
Guo, Ninomiya, Shimojo and Yanagida [7]; Okamoto, Sakajo and Wunsch [20]; Sakajo [21]
and [22]; Schochet [23] and their references.

The local Cauchy problem for model (2.1) can be well solved (locally in time) in L∞(RN)
in the case where p is integer, by using a fixed-point argument. However, when p is not
integer, the local Cauchy problem has not been sloven yet, up to our knowledge. This
probably comes from the discontinuity of F (u) on {u ∈ R∗−}.

In addition to that, let us remark that equation (2.1) has the following family of space
independent solutions:

uk(t) = κei
2kπ
p−1 (T − t)−

1
p−1 , for any k ∈ Z, (2.3)

where κ = (p− 1)−
1
p−1 . In particular, we have two situations:

+ If p ∈ Q, this makes then a finite number of solutions.

+ If p /∈ Q, then, the following set{
uk(t)

(T − t)
1
p−1

κ
| k ∈ Z

}
, (2.4)

is countable and dense in the unit circle of C.

This latter case (p /∈ Q), is somehow intermediate between the case (p ∈ Q) and the case
of the twin PDE

∂tu = ∆u+ |u|p−1u, (2.5)

which admits the following family of space independent solutions

uθ(t) = κeiθ(T − t)−
1
p−1 ,

for any θ ∈ R, which turns to be infinite and covers all the unit circle, after rescaling as in
(2.4). In fact, equation (2.5) is certainly much easier than equation (2.1). As a mater of
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fact, it reduces to the scalar case thanks to a modulation technique, as Filippas and Merle
did in [5].

Since the Cauchy problem for equation (2.1) is already hard when p /∈ N, and given that
we are more interested in the asymptotic blowup behavior, rather than the well-posedness
issue, we will focus in our paper on the case p ∈ N. In this case, from the Cauchy theory,
the solution of equation (2.1) either exists globally or blows up in finite time. Let us recall
that the solution u(t) = u1(t) + iu2(t) blows up in finite time T < +∞ if and only if it
exists for all t ∈ [0, T ) and

lim sup
t→T

{‖u1(t)‖L∞(RN ) + ‖u2(t)‖L∞(RN )} → +∞.

If u blows up in finite time T , a point a ∈ RN is called a blowup point if and only if there
exists a sequence {(aj, tj)} → (a, T ) as j → +∞ such that

|u1(aj, tj)|+ |u2(aj, tj)| → +∞ as j → +∞.

The blowup phenomena occur for evolution equations in general, and in semilinear
heat equations in particular. Accordingly, an interesting question is to construct for those
equations a solution which blows up in finite time and to describe its blowup behavior.
These questions are being studied by many authors in the world. Let us recall some blowup
results connected to our equation:

(i) The real case: Bricmont and Kupiainen [1] constructed a real positive solution to
(2.1) for all p > 1, which blows up in finite time T , only at the origin and they also gave
the profile of the solution such that∥∥∥∥∥(T − t)

1
p−1u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C

1 +
√
| ln(T − t)|

,

where the profile f0 is defined as follows

f0(z) =

(
p− 1 +

(p− 1)2

4p
|z|2
)− 1

p−1

. (2.6)

In addition to that, with a different method, Herrero and Velázquez in [12] obtained the
same result. Later, in [15] Merle and Zaag simplified the proof of [1] and proposed the
following two-step method (see also the note [14]):

- Reduction of the infinite dimensional problem to a finite dimensional one.

- Solution of the finite dimensional problem thanks to a topological argument based on
Index theory.

We would like to mention that this method has been successful in various situations such
as the work of Tayachi and Zaag [24], and also the works of Ghoul, Nguyen and Zaag in [9],
[10] and [8]. In those papers, the considered equations were scale invariant; this property
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was believed to be essential for the construction. Fortunately, with the work of Ebde and
Zaag [4] for the following equation

∂tu = ∆u+ |u|p−1u+ f(u,∇u),

where

|f(u,∇u)| ≤ C(1 + |u|q + |∇u|q′) with q < p, q′ <
2p

p+ 1
,

that belief was proved to be wrong.

Going on the same direction as [4], Nguyen and Zaag in [18], have achieved the construction
with a stronger perturbation

∂tu = ∆u+ |u|p−1u+
µ|u|p−1u

lna(2 + u2)
,

where µ ∈ R, a > 0. Though the results of [4] and [18] show that the invariance under
dilations of the equation in not necessary in the construction method, we might think that
the construction of [4] and [18] works because the authors adopt a perturbative method
around the pure power case F (u) = |u|p−1u. If this is true with [4], it is not the case for [18].
In order to totally prove that the construction does not need the invariance by dilation,
Duong, Nguyen and Zaag considered in [3], the following equation

∂tu = ∆u+ |u|p−1u lnα(2 + u2),

for some where α ∈ R and p > 1, where we have no invariance under dilation, not even for
the main term on the nonlinearity. They were successful in constructing a stable blowup
solution for that equation. Following the above mentioned discussion, that work has to be
considered as a breakthrough.

Let us mention that a classification of the blowup behavior of (2.2) was made available
by many authors such as Herrero and Velázquez in [12] and Velázquez in [25], [26], [27]
(see also Zaag in [30] for some refinement). More precisely and just to stay in one space
dimension for simplicity, it is proven in [12] that if u a real solution of (2.1), which blows
up in finite time T and a is a given blowup point, then:

A. Either

sup
|x−a|≤K

√
(T−t)| ln(T−t)|

∣∣∣∣∣(T − t) 1
p−1 u(x, t)− f0

(
x− a√

(T − t)| ln(T − t)|

)∣∣∣∣∣→ 0 as t→ T,

for any K > 0 where f0(z) is defined in (2.6).

B. Or, there exist m ≥ 2,m ∈ N and Cm > 0 such that

sup
|x−a|≤K(T−t)

1
2m

∣∣∣∣∣(T − t) 1
p−1 u(x, t)− fm

(
Cm(x− a)

(T − t) 1
2m

)∣∣∣∣∣→ 0 as t→ T,

for any K > 0, where fm(z) = (p− 1 + |z|2m)−
1
p−1 .
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(ii) The complex case: The blowup question for the complex-valued parabolic equa-
tions has been studied intensively by many authors, in particular for the Complex Ginzburg
Landau (CGL) equation

∂tu = (1 + iβ)∆u+ (1 + iδ)|u|p−1u. (2.7)

This were some ealier works treated to CGL such as: Zaag [28] for the case where β = 0
and δ small enough; Masmoudi and Zaag [16] and Nouaili and Zaag [19]. More precisely,
the authors in [16], generalized the result of [28] and constructed a blowup solution for (2.7)
with p− δ2 − βδ − βδp > 0 such that the solution satisfies the following∥∥∥∥∥(T − t)

1+iδ
p−1 | ln(T − t)|−iµu(., t)−

(
p− 1 +

bsub|.|2

(T − t)| ln(T − t)|

)− 1+iδ
p−1

∥∥∥∥∥
L∞

≤ C

1 +
√
| ln(T − t)|

,

where

bsub =
(p− 1)2

4(p− δ2 − βδ − βδp)
> 0.

Then, Nouaili and Zaag in [19] has constructed for (2.7) (in case the critical where β = 0
and p = δ2) a blowup solution satisfying∥∥∥∥∥∥(T − t)

1+iδ
p−1 | ln(T − t)|−iµu(., t)− κ−iδ

(
p− 1 +

bcri|.|2

(T − t)| ln(T − t)| 12

)− 1+iδ
p−1

∥∥∥∥∥∥
L∞(RN )

≤ C

1 + | ln(T − t)| 14
,

with

bcri =
(p− 1)2

8
√
p(p+ 1)

, µ =
δ

8b
.

As for equation (2.2), there are many works done in dimension one, such as the work
of Guo, Ninomiya, Shimojo and Yanagida, who proved in [7] the following results (see
Theorems 1.2, 1.3 and 1.5 in that work):

(i) (A Fourier- based blowup criterion). We assume that the Fourier transform of
initial data of (2.2) is real and positive, then the solution blows up in finite time.

(ii) (A simultaneous blowup criterion in dimension one) If the initial data u0 = u0
1+iu0

2,
satisfies

u0
1 is even , u0

2 is odd with u0
2 > 0 for x > 0.

Then, the fact that the blowup set is compact implies that u0
1, u

0
2 blow up simultaneously.

(iii) Assume that u0 = u0
1 + iu0

2 satisfy

u0
1, u

0
2 ∈ C1(RN), 0 ≤ u0

1 ≤M,u0
1 6≡M, 0 < u0

2 ≤ L,
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lim
|x|→+∞

u0
1(x) = M and lim

|x|→+∞
u0

2 = 0,

for some constant L,M . Then, the solution u = u1 + iu2 of (2.2), with initial data u0,
blows up at time T (M), with u2(t) 6≡ 0. Moreover, the real part u1(t) blows up only at space
infinity and u2(t) remains bounded.

Still for equation (2.2), Nouaili and Zaag constructed in [17] a complex solution u = u1+iu2,
which blows up in finite time T only at the origin. Moreover, the solution satisfies the
following asymptotic behavior∥∥∥∥∥(T − t)u(., t)− f

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

→ 0 as t→ T,

where f(z) = 1
8+|z|2 and the imaginary part satisfies the following estimate for all K > 0

sup
|x|≤K

√
T−t

∣∣∣∣∣(T − t)u2(x, t)− 1

| ln(T − t)|2
n∑
j=1

Cj

(
x2
j

T − t
− 2

)∣∣∣∣∣ ≤ C(K)

| ln(T − t)|α
, (2.8)

for some (Ci)i 6= (0, ..., 0) and 2 < α < 2 + η, η small enough. Note that the real and the
imaginary parts blow up simultaneously at the origin. Note also that [17] leaves unanswered
the question of the derivation of the profile of the imaginary part, and this is precisely our
aim in this paper, not only for equation (2.2), but also for equation (2.1) with p ∈ N, p ≥ 2.

Before stating our result (see Theorem 2.1 below), we would like to mention some classi-
fication results by Harada for blowup solutions of (2.2). As a matter of fact, in [11], he
classified all blowup solutions of (2.2) in dimension one, under some reasonable assumption
(see (2.9), (2.10)), as follows (see Theorems 1.4, 1.5 and 1.6 in that work):

Consider u = u1 + iu2 a blowup solution of (2.2) in one dimension space with blowup time
T and blowup point ξ which satisfies

sup
0<t<T

(T − t)‖u(t)‖L∞(R) < +∞. (2.9)

Assume in addition that
lim

s→+∞
‖w2(s)‖L2

ρ(R) = 0, w2 6≡ 0, (2.10)

where ρ is defined as follows

ρ(y) =
e−

y2

4

√
4π
, (2.11)

and w2 is defined by the following change of variables (also called similarity variables):

w1(y, s) = (T − t)u1(ξ + e−
s
2y, t) and w2(y, s) = (T − t)u2(ξ + e−

s
2y, t), where t = T − e−s.

Then, one of the following cases occurs

(C1)


w1 = 1− c0

s
h2 +O( ln s

s2
) in L2

ρ(R),

w2 = c2s
−me−

(m−2)s
2 hm +O

(
s−(m+1)e−

(m−2)s
2 ln s

)
in L2

ρ(R),m ≥ 2.

(C2)

 u = 1− c1e
−(k−1)sh2k +O(e−

(2k−1)s
2 ) in L2

ρ(R),

v = c2e
− (m−2)s

2 hm +O
(
e−

(m−1)s
2

)
in L2

ρ(R), k ≥ 2,m ≥ 2k.
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where c0 = 1
8
, c1 > 0, c2 6= 0 and ρ(y) is defined in (2.11) and hj(y) is a rescaled version of

the Hermite polynomial of order mth defined as follows:

hm(y) =

[m2 ]∑
j=0

(−1)jm!ym−2j

j!(m− 2j)!
. (2.12)

Besides that, Harada has also given a profile to the solutions in similarity variables:

There exist κ, σ, c > 0 such that

(C1) ⇒
∣∣∣∣u− 1

1 + c0s−1h2

∣∣∣∣+

∣∣∣∣sm2 e (m−2)s
2 v − c2s

−m
2 hm

(1 + c0s−1h2)2

∣∣∣∣ < cs−κ, (2.13)

for |y| ≤ s(1+σ).

(C2) ⇒
∣∣∣∣u− 1

1 + c1e−(k−1)sh2k

∣∣∣∣+

∣∣∣∣∣e (m−2k)s
2k v − c2e

− (k−1)ms
2k hm

(1 + c1e−(k−1)sh2k)2

∣∣∣∣∣ , (2.14)

for |y| ≤ e
(k−1+σ)s

2k .

Furthermore, he also gave the final blowup profiles The blowup profile of u = u1 + iu2 is
given by

(C1) ⇒


u1(x, T ) = 2

c0

(
| ln |x||
x2

)
(1 + o(1)),

u2(x, T ) = c2
2m−2(c0)2

(
xm−4

| ln |x||m−2

)
(1 + o(1)),

(C2) ⇒


u(x, T ) = 1+ic1

(c1−ic2)
x−2k(1 + o(1)),

if m = 2k,

u1(x, T ) = (c1)−1x−2k(1 + o(1)) and u2(x, T ) = c2
(c1)2x

m−4k(1 + o(1)),

if m > 2k.

Then, from the work of Nouaili and Zaag in [17] and Harada in [11] for equation (2.2),
we derive that the imaginary part u2 also blows up under some conditions, however, none
of them was able to give a global profile (i.e. valid uniformly on RN , and not just on an
expanding ball as in (2.13) and (2.14)) for the imaginary part. For that reason, our main
motivation in this work is to give a sharp description for the profile of the imaginary part.
Our work is considered as an improvement of Nouaili and Zaag in [17] in dimension N ,
which is valid not only for p = 2, but also for any p ≥ 3, p ∈ N. In particular, this is the
first time we give the profile for the imaginary part when the solution blows up. Without
loss of generality, we assume that the blowup point, a = 0 and the following Theorem is
our result:

Theorem 2.1 (Existence of a blowup solution for (2.1) and a sharp discription of its
profile). For each p ≥ 2, p ∈ N and p1 ∈ (0, 1), there exists T1(p, p1) > 0 such that for all
T ≤ T1, there exist initial data u0 = u0

1 + iu0
2, such that equation (2.1) has a unique solution

u on [0, T ), satisfying the following:
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i) The solution u blows up in finite time T only at the origin. Moreover, it satisfies the
following estimates∥∥∥∥∥(T − t)

1
p−1u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C√
| ln(T − t)|

, (2.15)

and∥∥∥∥∥(T − t)
1
p−1 | ln(T − t)|u2(., t)− g0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C

| ln(T − t)|
p1
2

,

(2.16)
where f0 is defined in (2.6) and g0(z) is defined as follows

g0(z) =
|z|2(

p− 1 + (p−1)2

4p
|z|2
) p
p−1

. (2.17)

ii) There exists a complex function u∗(x) ∈ C2(RN\{0}) such that u(t)→ u∗ = u∗1 + iu∗2
as t→ T uniformly on compact sets of RN\{0} and we have the following asymptotic
expansions:

u∗(x) ∼
[

(p− 1)2|x|2

8p| ln |x||

]− 1
p−1

, as x→ 0. (2.18)

and

u∗2(x) ∼ 2p

(p− 1)2

[
(p− 1)2|x|2

8p| ln |x||

]− 1
p−1 1

| ln |x||
, as x→ 0. (2.19)

Remark 2.2. The initial data u0 is given exactly as follows

u0 = u0
1 + iu0

2,

where

u0
1 = T−

1
p−1

{(
p− 1 +

(p− 1)2|x|2

4pT | lnT |

)− 1
p−1

+
Nκ

2p| lnT |

+
A

| lnT |2
(d1,0 + d1,1 · y)χ0

(
2x

K
√
T | lnT |

)}
,

u0
2 = T−

1
p−1

{
|x|2

T | lnT |2

(
p− 1 +

(p− 1)2|x|2

4pT | lnT |

)− p
p−1

− 2Nκ

(p− 1)| lnT |2

+

[
A2

| lnT |p1+2
(d2,0 + d2,1 · y) +

A5 ln(| ln(T )|)
| lnT |p1+2

×(
1

2
yT · d2,2 · y − Tr(d2,2)

)]
χ0

(
2x

K
√
T | lnT |

)}
.

with κ = (p−1)−
1
p−1 , K,A are positive constants fixed large enough, d(1) = (d1,0, d1,1), d(2) =

(d2,0, d2,1, d2,2) are parameters we fine tune in our proof, and χ0 ∈ C∞0 [0,+∞), ‖χ0‖L∞(RN ) ≤
1, supp χ0 ⊂ [0, 2].
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Remark 2.3. We see below in (2.23) that the equation satisfied by of u2 is almost ’linear’ in
u2. Accordingly, we may change a little our proof to construct a solution uc0(t) = u1,c0+iu2,c0

with t ∈ [0, T ), c0 6= 0, which blows up in finite time T only at the origin such that (2.15)
and (2.18) hold and the following holds∥∥∥∥∥(T − t)

1
p−1 | ln(T − t)|u2,c0(., t)− c0g0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C

| ln(T − t)|
p1
2

,

(2.20)
and

u∗2(x) ∼ 2pc0

(p− 1)2

[
(p− 1)2|x|2

8p| ln |x||

]− 1
p−1 1

| ln |x||
, as x→ 0, (2.21)

Remark 2.4. We deduce from (ii) that u blows up only at 0. In particular, note that both
u1 and u2 blow up. However, the blowup speed of u2 is softer than u1 because of the quantity

1
| ln |x|| .

Remark 2.5. Nouaili and Zaag constructed a blowup solution of (2.2) with a less explicit
behavior for the imaginary part (see (2.8)). Here, we do better and we obtain the profile
for the imaginary part in (2.16) and we also describe the asymptotics of the solution in
the neighborhood of the blowup point in (2.19). In fact, this refined behavior comes from
a more involved formal approach (see Section 2.2 below), and more parameters to be fine
tuned in initial data (see Definition 2.2 where we need more parameters than in Nouaili and
Zaag [17], namely d2 ∈ RN

2
). Note also that our profile estimates in (2.15) and (2.16) are

better than the estimates (2.13) and (2.14) by Harada (m = 2), in the sense that we have
a uniform estimate for whole space RN , and not just for all |y| ≤ s1+σ for some σ > 0.
Another point: our result hold in N space dimensions, unlike the work of Harada in [11],
which holds only in one space dimension.

Remark 2.6. As in the case p = 2 treated by Nouaili and Zaag [17], we suspect this behavior
in Theorem 2.1 to be unstable. This is due to the fact that the number of parameters in the
initial data we consider below in Definition 2.2 is higher than the dimension of the blowup
parameters which is N + 1 (N for the blowup points and 1 for the blowup time).

Besides that, we can use the technique of Merle [13] to construct a solution which blows
up at arbitrary given points. More precisely, we have the following Corollary:

Corollary 2.7 (Blowing up at k distinct points). For any given points, x1, ..., xk, there
exists a solution of (2.1) which blows up exactly at x1, ..., xk. Moreover, the local behavior
at each blowup point xj is also given by (2.15), (2.16), (2.18), (2.19) by replacing x by x−xj
and L∞(RN) by L∞(|x− xj| ≤ ε0), for some ε0 > 0.

This paper is organized as follows:

- In Section 2.2, we adopt a formal approach to show how the profiles we have in Theorem
2.1 appear naturally.

- In Section 2.3, we give the rigorous proof for Theorem 2.1, assuming some technical
estimates.

- In Section 2.4, we prove the techical estimates assumed in Section 2.3.
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2.2 Derivation of the profile (formal approach)

In this section, we aim at giving a formal approach to our problem which helps us to
explain how we derive the profiles of solution of (2.1), given in Theorem (2.1), as well the
asymptotic behaviors of our solution.

2.2.1 Modeling the problem

In this part, we will give some important definitions and special symbols in our work and
explain then how functions f0 ans g0 arise as blowup profiles for equation (2.1) as stated
in (2.15) and (2.16). Our aim in this section is to give solid (though formal) hints for the
existence of a solution u(t) = u1(t) + iu2(t) to equation (2.1) such that

lim
t→T
‖u(t)‖L∞(RN ) = +∞, (2.22)

and u obeys the profiles in (2.15) and (2.16), for some T > 0. By using equation (2.1), we
deduce that u1 and u2 satisfy the following{

∂tu1 = ∆u1 + F1(u1, u2),

∂tu2 = ∆u2 + F2(u1, u2).
(2.23)

where  F1(u1, u2) = Re [(u1 + iu2)p] =
∑[ p2 ]

j=0C
2j
p (−1)jup−2j

1 u2j
2 ,

F2(u1, u2) = Im [(u1 + iu2)p] =
∑[ p−1

2 ]
j=0 C2j+1

p (−1)jup−2j−1
1 u2j+1

2 ,

(2.24)

with Re[z] and Im[z] being respectively the real and the imaginary part of z and Cm
p =

p!
m!(p−m)!

, for all m ≤ p.

Let us introduce the similarity-variables :

w(y, s) = (T − t)
1
p−1u(x, t), y =

x√
T − t

, s = − ln(T − t) and w = w1 + iw2. (2.25)

Thanks to (2.23), we derive the system satisfied by (w1, w2), for all y ∈ RN and s ≥ − lnT
as follows: {

∂sw1 = ∆w1 − 1
2
y · ∇w1 − w1

p−1
+ F1(w1, w2),

∂sw2 = ∆w2 − 1
2
y · ∇w2 − w2

p−1
+ F2(w1, w2).

(2.26)

Then note that studying the asymptotic of u as t → T is equivalent to studying the
asymptotic of w in long time. In particular, we are first interested in the set of constant
solutions of (2.26) (2.26), denoted by

S = {(0, 0)}∪
{(

κ cos

(
2kπ

p− 1

)
, κ sin

(
2kπ

p− 1

))
where κ = (p− 1)−

1
p−1 , k = 0, ..., p− 1

}
.

From transformation (2.25), we slightly precise our goal in (2.22) by requiring in addition
that

(w1, w2)→ (κ, 0) as s→ +∞.
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Introducing w1 = κ+ w̄1, our goal is to get

(w̄1, w2)→ (0, 0) as s→ +∞.

From (2.26), we deduce that w̄1, w2 satisfy the following system{
∂sw̄1 = Lw̄1 + B̄1(w̄1, w2),
∂sw2 = Lw2 + B̄2(w̄1, w2),

(2.27)

where

L = ∆− 1

2
y · ∇+ Id, (2.28)

B̄1(w̄1, w2) = F1(κ+ w̄1, w2)− κp − p

p− 1
w̄1, (2.29)

B̄2(w̄1, w2) = F2(κ+ w̄1, w2)− p

p− 1
w2, (2.30)

and the definitions of F1 and F2 are given in (2.24).

It is important to study the linear operator L and the asymptotic behaviors of B̄1, B̄2

as (w̄1, w2)→ (0, 0) which will appear as “quadratic” terms.

• The properties of L:

We observe that operator L plays an important role in our analysis. In fact, L is self-
adjoint in D ⊂ L2

ρ(RN), where L2
ρ is the weighted space associated with the weight ρ defined

by

ρ(y) =
e−
|y|2

4

(4π)
N
2

=
N∏
j=1

ρj(yj), with ρj(yj) =
e−
|yj |

2

4

(4π)
1
2

, (2.31)

and the spectrum set of L is given as follows

Spec(L) =
{

1− m

2
,m ∈ N

}
.

Moreover, we can find eigenfunctions which correspond to each eigenvalue 1− m
2
,m ∈ N:

- The one space dimensional case: the eigenfunction corresponding to the eigenvalue
1− m

2
is hm, the rescaled Hermite polynomial given in (2.12). In particular, we have

the following orthogonality property:∫
R
hihjρdy = i!2iδi,j, ∀(i, j) ∈ N2.

- The higher dimensional case: N ≥ 2, the eigenspace Em, corresponding to the eigen-
value 1− m

2
is defined as follows:

Em =

〈
hβ(y) = hβ1(y1)...hβN (yN)

∣∣∣∣∣|β| =
N∑
i=1

βi = m and β = (β1, ..., βN) ∈ NN
〉
.

(2.32)
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As a matter of fact, so we can represent an arbitrary function r ∈ L2
ρ as follows

r =
∑

β,β∈Nn
rβhβ(y),

where rβ is the projection of r on hβ for any β ∈ NN which is defined as follows:

rβ = Pβ(r) =

∫
rkβρdy,∀β ∈ Nn, (2.33)

with

kβ(y) =
hβ
‖hβ‖2

L2
ρ

. (2.34)

• The asymptotic behaviors of B̄1(w̄1, w2), B̄2(w̄1, w2): The following hold:

B̄1(w̄1, w2) =
p

2κ
w̄2

1 +O(|w̄1|3 + |w2|2), (2.35)

B̄2(w̄1, w2) =
p

κ
w̄1w2 +O

(
|w̄1|2|w2|

)
+O

(
|w2|3

)
, (2.36)

as (w̄1, w2)→ (0, 0) (see Lemma 2.17 below).

2.2.2 Inner expansion

In this part, we study the asymptotic behavior of the solution in L2
ρ(RN). Moreover, for

simplicity we suppose that N = 1, and we recall that we aim at constructing a solution
of (2.27) such that (w̄1, w2) → (0, 0). Note first that the spectrum of L contains two
positive eigenvalues 1, 1

2
, a neutral eigenvalue 0 and all the other ones are strictly negative.

So, in the representation of the solution in L2
ρ(R), it is reasonable to think that the part

corresponding to the negative spectrum is easily controlled. Imposing a symmetry condition
on the solution with respect of y, it is reasonable to look for a solution w̄1, w2 of the forms:

w̄1 = w̄1,0h0 + w̄1,2h2,

w2 = w2,0h0 + w2,2h2.

From the assumption that (w̄1, w2) → (0, 0), we see that w̄1,0, w̄1,2, w2,0, w2,2 → 0 as s →
+∞. We see also that we can understand the asymptotic behaviors of w̄1 and w2 in L2

ρ

from the study of the asymptotic behaviors of w̄1,0, w̄1,2, w2,0 and w2,2. We now project
equations (2.27) on h0 and h2. Using behaviors of B̄1, B̄2, given in (2.35) and (2.36), we get
the following ODEs for w̄1,0, w̄1,2, w2,0, w2,2 :

∂sw̄1,0 = w̄1,0 +
p

2κ

(
w̄2

1,0 + 8w̄2
1,2

)
+O(|w̄1,0|3 + |w̄1,2|3) +O(|w2,0|2 + |w2,2|2), (2.37)

∂sw̄1,2 =
p

κ

(
w̄1,0w̄1,2 + 4w̄2

1,2

)
+O(|w̄1,0|3 + |w̄1,2|3) +O(|w2,0|2 + |w2,2|2), (2.38)

∂sw2,0 = w2,0 +
p

κ
[w̄1,0w2,0 + 8w̄1,2w2,2] +O((|w̄1,0|2 + |w̄1,2|2)(|w2,0|+ |w2,2|)) (2.39)

+ O(|w2,0|3 + |w2,2|3),

∂sw2,2 =
p

κ
[w̄1,0w2,2 + w̄1,2w2,0 + 8w̄1,2w2,2] +O((|w̄1,0|2 + |w̄1,2|2)(|w2,0|+ |w2,2|))(2.40)

+ O(|w2,0|3 + |w2,2|3).
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Assuming that
w̄1,0, w2,0, w2,2 � w̄1,2 as s→ +∞, (2.41)

we may simplify the ODE system as follows:

• The asymptotic behavior of w̄1,2:

We deduce from (2.38) and (2.41) that

∂sw̄1,2 ∼
4p

κ
w̄2

1,2 as s→ +∞,

which yields

w̄1,2 = − κ

4ps
+ o

(
1

s

)
, as s→ +∞. (2.42)

Assuming futher that

w̄1,0, w2,0, w2,2 .
1

s2
, (2.43)

we see that

w̄1,2 = − κ

4ps
+O

(
ln s

s2

)
, as s→ +∞. (2.44)

• The asymptotic behavior of w̄1,0 :

By using (2.37), (2.41) and the asymptotic behaviors of w̄1,2 in (2.44), we see that

w̄1,0 = O

(
1

s2

)
as s→ +∞. (2.45)

• The asymptotics of w2,0 and w2,2: Bisides that, we derive from (2.39), (2.40) and
(2.43) that

∂sw2,2 =

(
−2

s
+O

(
ln s

s2

))
w2,2 + o

(
1

s3

)
, (2.46)

∂sw2,0 = w2,0 +O

(
1

s3

)
,

which yields

w2,2 = o

(
ln s

s2

)
,

w2,0 = O

(
1

s3

)
, (2.47)

as s→ +∞. This also yields a new ODE for w2,2 :

∂sw2,2 = −2

s
w2,2 + o

(
ln2 s

s4

)
,

which implies

w2,2 = O

(
1

s2

)
.
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Using again (2.46), we derive a new ODE for w2,2

∂sw2,2 = −2

s
w2,2 +O

(
ln s

s4

)
,

which yields

w2,2 =
c̃0

s2
+O

(
ln s

s3

)
, for some c̃0 ∈ R∗. (2.48)

Noting that our finding (2.44), (2.45), (2.47) and (2.48) are consistent with our hypotheses
in (2.41) and (2.43), we get the asymptotics of the solution w1 and w2 as follows:

w1 = κ− κ

4ps
(y2 − 2) +O

(
1

s2

)
, (2.49)

w2 =
c̃0

s2
(y2 − 2) +O

(
ln s

s3

)
, (2.50)

in L2
ρ(R) for some c̃0 in R∗. Using parabolic regularity, we note that the asymptotic behav-

iors (2.49) and (2.50) also hold for all |y| ≤ K, where K is an arbitrary positive constant.

2.2.3 Outer expansion

As Subsection 2.2.2 above, we assume that N = 1. We see that asymptotics (2.49) and
(2.50) can not give us a shape, since they hold uniformly on compact sets, and not in larger
sets. Fortunately, we observe from (2.49) and (2.50) that the profile may be based on the
following variable:

z =
y√
s
. (2.51)

This motivates us to look for solutions of the form:

w1(y, s) =
∞∑
j=0

R1,j(z)

sj
,

w2(y, s) =
∞∑
j=1

R2,j(z)

sj
.

Using system (2.26) and gathering terms of order 1
sj

for j = 0, ..., 2, we obtain

0 = −1

2
R′1,0(z) · z − R1,0(z)

p− 1
+Rp

1,0(z), (2.52)

0 = −1

2
zR′1,1 −

R1,1

p− 1
+ pRp−1

1,0 R1,1 +R′′1,0 +
zR′1,0

2
, (2.53)

0 = −1

2
R′2,1(z) · z − R2,1

p− 1
+ pRp−1

1,0 R2,1, (2.54)

0 = −1

2
R′2,2(z).z − R2,2

p− 1
+ pRp−1

1,0 R2,2 +R′′2,1 +R2,1 (2.55)

+
1

2
R′2,1 · z + p(p− 1)Rp−2

1,0 R1,1R2,1.
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We now solve the above equations:

• The solution R1,0: It is easy to solve (2.52)

R1,0(z) = (p− 1 + bz2)−
1
p−1 , (2.56)

where b is an unknown constant that will be selected accordingly to our purpose.

• The solution R1,1: We rewrite (2.53) under the following form:

1

2
z.R′1,1(z) =

(
(p− 1)2 − bz2

(p− 1)(p− 1 + bz2)

)
R1,1 + F1,1(z),

where

F1,1(z) = − 2b

p− 1
(p− 1 + bz2)−

p
p−1 +

4pb2z2

(p− 1)2
(p− 1 + bz2)−

(2p−1)
p−1

− bz2

p− 1
(p− 1 + bz2)−

p
p−1 .

Thanks to the variation of constant method, we see that

R1,1 = H−1(z)

(∫
2

z
H(z)F1,1(z)dz + C1

)
, (2.57)

where

H(z) =
(p− 1 + bz2)

p
p−1

z2
.

Besides that, we have:

2H

z
F1,1 = − 4b

(p− 1)z3
+

8pb2

(p− 1)2

(
1

z(p− 1 + bz2)

)
− 2b

(p− 1)z

= − 4b

(p− 1)z3
+

1

z

(
− 2b

p− 1
+

8pb2

(p− 1)3

)
+ (p− 1 + bz2)−1

(
− 8pb3z

(p− 1)3

)
.

We can see that if the coefficient of 1
z

is non zero, then we will have a “ln z” term in
the formula of R1,1 and this makes the fact that R1,1 would not be analytic, creating a
singularity in the solution. In order to avoid this singularity, we impose that

− 2b

p− 1
+

8pb2

(p− 1)3
= 0,

which yields

b =
(p− 1)2

4p
. (2.58)

Besides that, for simplicity, we assume that C1 = 0. Using (2.57), we see that

R1,1 =
(p− 1)

2p
(p− 1 + bz2)−

p
p−1 − p− 1

4p
z2 ln(p− 1 + bz2)(p− 1 + bz2)−

p
p−1 . (2.59)
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• The solution R2,1: It is easy to solve (2.54) as follows:

R2,1(z) =
z2

(p− 1 + bz2)
p
p−1

. (2.60)

• The solution R2,2: We rewrite (2.55) as follows

1

2
z ·R′2,2(z) =

(
(p− 1)2 − bz2

(p− 1)(p− 1 + bz2)

)
R2,2(z) + F2,2(z),

where

F2,2(z) = R′′2,1 +R2,1 +
1

2
R′2,1 · z + p(p− 1)Rp−2

1,0 R1,1R2,1

= 2(p− 1 + bz2)−
p
p−1

− 10pbz2

p− 1
(p− 1 + bz2)−

2p−1
p−1 + 2z2(p− 1 + bz2)−

p
p−1 +

(p− 1)2

2
z2(p− 1 + bz2)−

3p−2
p−1

+
4p(2p− 1)b2z4

(p− 1)2
(p− 1 + bz2)−

3p−2
p−1 − pbz4

p− 1
(p− 1 + bz2)−

2p−1
p−1

− (p− 1)2

4
z4 ln(p− 1 + bz2)(p− 1 + bz2)−

3p−2
p−1 .

By using the variation of constant method, we have

R2,2(z) =
z2

(p− 1 + bz2)−
p
p−1

(∫
2(p− 1 + bz2)−

p
p−1

z3
F2,2(z)dz + C2

)
, (2.61)

where

2(p− 1 + bz2)−
p
p−1

z3
F2,2(z) =

4

z3
+

[
5− 20pb

(p− 1)2

]
1

z
+

z

p− 1 + bz2

[
20pb

(p− 1)2
− b− 2pb

p− 1

]
+

[
8p(2p− 1)b2

(p− 1)2
− (p− 1)p

]
z

(p− 1 + bz2)2

− (p− 1)2

2
z ln(p− 1 + bz2)(p− 1 + bz2)−2.

We observe that

5− 20pb

(p− 1)2
= 0, because b =

(p− 1)2

4p
.

So, from (2.61) and assuming that C2 = 0, we have

R2,2(z) = −2(p− 1 + bz2)−
p
p−1 +H2,2(z), (2.62)

where

H2,2(z) = C2,1(p)z2(p− 1 + bz2)−
2p−1
p−1 + C2,3(p)z2 ln(p− 1 + bz2)(p− 1 + bz2)−

p
p−1

+ C2,3(p)z2 ln(p− 1 + bz2)(p− 1 + bz2)−
2p−1
p−1 .
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Matching asymptotic

Since the outer expansion has to match the inner expansion, we will fix several constants
and derive the following profiles for w1 and w2:

{
w1(y, s) ∼ Φ1(y, s),
w2(y, s) ∼ Φ2(y, s),

(2.63)

where

Φ1(y, s) =

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− 1
p−1

+
Nκ

2ps
, (2.64)

Φ2(y, s) =
|y|2

s2

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− p
p−1

− 2Nκ

(p− 1)s2
, (2.65)

for all (y, s) ∈ RN × (0,+∞).

2.3 Existence of a blowup solution in Theorem 2.1

In Section 2.2, we adopted a formal approach on order to justify how the profiles f0, g0 arise
as blowup profiles for equation (2.1). In this section, we give a rigorous proof to justify the
existence of a solution approaching those profiles.

2.3.1 Formulation of the problem

In this section, we aim at formulating our problem in order to justify the formal approach
which is given in the previous section. Introducing

{
w1 = Φ1 + q1,
w2 = Φ2 + q2,

(2.66)

where Φ1,Φ2 are defined in (2.64) and (2.65) respectively, then using (2.26), we see that
(q1, q2) satisfy

∂s

(
q1

q2

)
=

(
L + V 0

0 L + V

)(
q1

q2

)
+

(
V1,1 V1,2

V2,1 V2,2

)(
q1

q2

)
+

(
B1

B2

)(
q1

q2

)
+

(
R1(y, s)

R2(y, s)

)
, (2.67)

where linear operator L is defined in (2.28) and:
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- Potential functions V, V1,1, V1,2, V2,1, V2,2 are defined as follows

V (y, s) = p

(
Φp−1

1 − 1

p− 1

)
, (2.68)

V1,1(y, s) =

[ p2 ]∑
j=1

C2j
p (−1)j(p− 2j)Φp−2j−1

1 Φ2j
2 , (2.69)

V1,2(y, s) =

[ p2 ]∑
j=0

C2j
p (−1)j.(2j)Φp−2j

1 Φ2j−1
2 , (2.70)

V2,1(y, s) =

[ p−1
2 ]∑
j=0

C2j+1
p (−1)j(p− 2j − 1)Φp−2j−2

1 Φ2j+1
2 , (2.71)

V2,2(y, s) =

[ p−1
2 ]∑
j=1

C2j+1
p (−1)j(2j + 1)Φp−2j−1

1 Φ2j
2 . (2.72)

- Quadratic terms B1(q1, q2) and B2(q1, q2) are defined as follows:

B1(q1, q2) = F1 (Φ1 + q1,Φ2 + q2)− F1(Φ1,Φ2)−
[ p2 ]∑
j=0

C2j
p (−1)j(p− 2j)Φp−2j−1

1 Φ2j
2 q1 (2.73)

−
[ p2 ]∑
j=0

C2j
p (−1)j.(2j)Φp−2j

1 Φ2j−1
2 q2,

B2(q1, q2) = F2 (Φ1 + q1,Φ2 + q2)− F2(Φ1,Φ2)−
[ p−1

2 ]∑
j=0

C2j+1
p (−1)j(p− 2j − 1)Φp−2j−2

1 Φ2j+1
2 q1

−
[ p−1

2 ]∑
j=0

C2j+1
p (−1)j(2j + 1)Φp−2j−1

1 Φ2j
2 q2. (2.74)

- Rest terms R1(y, s), R2(y, s) are defined as follows:

R1(y, s) = ∆Φ1 −
1

2
y · ∇Φ1 −

Φ1

p− 1
+ F1(Φ1,Φ2)− ∂sΦ1, (2.75)

R2(y, s) = ∆Φ2 −
1

2
y · ∇Φ2 −

Φ2

p− 1
+ F2(Φ1,Φ2)− ∂sΦ2, (2.76)

where F1, F2 are defined in (2.24).

By the linearization around Φ1,Φ2, our problem is reduced to constructing a solution
(q1, q2) of system (2.67), satisfying

‖q1‖L∞(RN ) + ‖q2‖L∞(RN ) → 0 as s→ +∞.
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Concerning equation (2.67), we recall that we already know some main properties of linear
operator L (see page 77). As for potential functions Vj,k where j, k ∈ {1, 2}, they admit
the following asymptotic behaviors∑

j,k≤2

|Vj,k(y, s)| ≤
C

s
,∀y ∈ RN , s ≥ 1,

(see Lemma 2.18). Regarding the terms B1, B2, R1, R2, we see that whenever |q1|+ |q2| ≤ 2,
we have

|B1(q1, q2)| ≤ C(q2
1 + q2

2),

|B2(q1, q2)| ≤ C

(
|q1|2

s
+ |q1q2|+ |q2|2

)
,

‖R1(., s)‖L∞(RN ) ≤
C

s
,

‖R2(., s)‖L∞(RN ) ≤
C

s2
,

(see Lemmas 2.19 and 2.20).

In fact, the dynamics of equation (2.67) will mainly depend on the main linear operator(
L + V 0

0 L + V

)
,

and the effects of the other terms will be less important. For that reason, we need to un-
derstand the dynamics of L+V . Since the spectral properties of L were already introduced
in Section 2.2.1, we will focus here on the effect of V .

i) Effect of V inside the blowup region {|y| ≤ K
√
s} with K > 0 arbitrary, we have

V → 0 in L2
ρ(|y| ≤ K

√
s) as s→ +∞,

which means that the effect of V will be negligible with respect of the effect of L, except
perhaps on the null mode of L (see item (ii) of Proposition 2.13 below)

ii) Effect of V outside the blowup region: for each ε > 0, there exist Kε > 0 and sε > 0
such that

sup
y√
s
≥Kε,s≥sε

∣∣∣∣V (y, s)−
(
− p

p− 1

)∣∣∣∣ ≤ ε.

Since 1 is the biggest eigenvalue of L, the operator L+ V behaves as one with with a fully
negative spectrum outside blowup region {|y| ≥ Kε

√
s}, which makes the control of the

solution in this region easily.

Since the behavior of the potential V inside and outside the blowup region is different,
we will consider the dynamics of the solution for |y| ≤ 2K

√
s and for |y| ≥ K

√
s separately

for some K to be fixed large. For that purpose, we introduce the following cut-off function

χ(y, s) = χ0

(
|y|
K
√
s

)
, (2.77)
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where χ0 ∈ C∞0 [0,+∞), ‖χ0‖L∞(RN ) ≤ 1 and

χ0(x) =

{
1 for x ≤ 1,
0 for x ≥ 2,

and K is a positive constant to be fixed large later. Hence, it is reasonable to consider
separately the solution in the blowup region {|y| ≤ 2K

√
s} and in the regular region

{|y| ≥ K
√
s}. More precisely, let us define the following notation for all functions q in

L∞(RN):

q = qb + qe with qb = χq and qe = (1− χ)q, (2.78)

Note in particular that supp(qb) ⊂ B(0, 2K
√
s) and supp(qe) ⊂ RN \ B(0, K

√
s).

In addition to that, we also expand qb in L2
ρ, according to the spectrum of L (see Section

2.2.1 above):

qb(y) = q0 + q1 · y +
1

2
yT · q2 · y − Tr (q2) + q−(y), (2.79)

where

q0 =

∫
RN
qbρ(y)dy,

q1 =
1

2

∫
RN
qbyρ(y)dy,

q2 =

(∫
RN
qb

(
1

4
yjyk −

1

2
δj,k

)
ρ(y)dy

)
1≤j,k≤N

,

and Tr (q2) is the trace of the matrix q2. The reader should keep in mind that q0, q1, q2

are just coordinates of qb, not for q. Note that qm is the projection of qb as the eigenspace
of L corresponding to the eigenvalue λ = 1− m

2
. Accordingly, q− is the projection of qb on

the negative part of the spectrum of L. As a consequence of (2.78) and (2.79), we see that
every q ∈ L∞(RN) can be decomposed into 5 components as follows:

q = qb + qe = q0 + q1 · y +
1

2
yT · q2 · y − Tr(q2) + q− + qe. (2.80)

2.3.2 The shrinking set

In this part, we will construct a shrinking set, such that the control of (q1, q2)→ 0, will be
a consequence of the control of (q1, q2) in this set, where (q1, q2) is the solution of (2.67).
The following is our definition:

Definition 2.1 (Shrinking set). For all A ≥ 1, p1 ∈ (0, 1) and s ≥ 1, we introduce Vp1,A,(s),
denoted for simplicity by VA(s), as the set of all (q1, q2) ∈ (L∞(RN))2 satisfying the following
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conditions:

|q1,0| ≤
A

s2
and |q2,0| ≤

A2

sp1+2
,

|q1,j| ≤
A

s2
and |q2,j| ≤

A2

sp1+2
,∀1 ≤ j ≤ N,

|q1,j,k| ≤
A2 ln s

s2
and |q2,j,k| ≤

A5 ln s

sp1+2
,∀1 ≤ j, k ≤ N,∥∥∥∥ q1,−

1 + |y|3

∥∥∥∥
L∞
≤ A

s2
and

∥∥∥∥ q2,−

1 + |y|3

∥∥∥∥
L∞
≤ A2

s
p1+5

2

,

‖q1,e‖L∞ ≤
A2

√
s

and ‖q2,e‖L∞ ≤
A3

s
p1+2

2

,

where the above components are of q1,b and q2,b, respectively, decomposed as in (2.80).

In the following Lemma, we show that belonging to VA(s) implies the convergence to 0.
In fact, we have a more precise statement in the following:

Lemme 2.8. For all A ≥ 1, s ≥ 1, if we have (q1, q2) ∈ VA(s), then the following estimates
hold:

(i) Estimates in L∞(RN): ‖q1‖L∞(RN ) ≤ CA2
√
s

and ‖q2‖L∞(RN ) ≤ CA3

s
p1+2

2

.

(ii) For all y ∈ RN , we have

|q1,b(y)| ≤ CA2 ln s

s2
(1+ |y|3), |q1,e(y)| ≤ CA2

s2
(1+ |y|3) and |q1| ≤

CA2 ln s

s2
(1+ |y|3),

and

|q2,b(y)| ≤ CA3

s
p1+5

2

(1 + |y|3), |q2,e(y)| ≤ CA3

s
p1+5

2

(1 + |y|3) and |q2| ≤
CA3

s
p1+5

2

(1 + |y|3).

where C will henceforth be an universal constant in our proof which depends only on
K,N and p1.

Proof. We only prove the estimates of q2. Since, the other ones for q1 will similarly follow
and have already been proved in previous papers (see for intance Proposition 4.7 in [24]).

Let us consider A ≥ 1, s ≥ 1 and (q1, q2) ∈ VA(s) and y ∈ RN . We also recall from
(2.80) that

q2 = q2,b + q2,e,

where supp(q2,b) ⊂ B(0, 2K
√
s) and supp(q2,e) ⊂ RN \ B(0, K

√
s).

(i) From (2.79), we have

qb = q2,0 + q2,1 · y +
1

2
yT · q2,2 · y − Tr(q2,2) + q2,−.

Therefore,

|q2,b(y)| ≤ |q2,0|+ |q2,1||y|+ C max
1≤j,k≤N

|q2,j,k|(1 + |y|2) +

∥∥∥∥ q2,−

1 + |y|3

∥∥∥∥
L∞(RN )

(1 + |y|3).(2.81)
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Then, recalling that supp(q2,b) ⊂ B(0, 2K
√
s) and using Definition 2.1, we see that

|q2,b(y)| ≤ CA3

s
p1+2

2

.

On the other hand, we also have

|q2,e| ≤
A3

s
p1+2

2

.

So, we end-up with the following

‖q2‖L∞(RN ) ≤ ‖q2,b‖L∞(RN ) + ‖q2,e‖L∞(RN ) ≤
CA3

s
p1+2

2

.

Thus, this yields the conclusion.

(ii) Using (2.81) and Definition 2.1, we derive that

|q2,b(y)| ≤ CA3

s
p1+5

2

(1 + |y|3). (2.82)

We claim that q2,e satisfies a similar estimate:

|q2,e(y)| ≤ CA3

s
p1+5

2

(1 + |y|3). (2.83)

Indeed, since supp(q2,e) ⊂ RN \ B(0, K
√
s), we may assume that

|y|
K
√
s
≥ 1.

Hence, from Definition 2.1, we write

|q2,e(y)| ≤ A3

s
p1+2

2

.1 ≤ A3

s
p1+2

2

|y|3

K3s
3
2

≤ CA3

s
p1+5

2

(1 + |y|3),

and (2.83) follows. Using (2.82) and (2.83), we see that

|q2| ≤ |q2,b|+ |q2,e| ≤
CA3

s
p1+5

2

(1 + |y|3).

2.3.3 Initial data

In this paragraph, we suggest a class of initial data, depending on some parameters to be
fine-tuned in order to get a good solution for our problem. This is initial data:

Definition 2.2 (Initial data). For each A ≥ 1, s0 ≥ 1, d1 = (d1,0, d1,1) ∈ R × RN , d2 =
(d2,0, d2,1, d2,2) ∈ R× RN × RN2

, we introduce

φ1,A,d1,s0(y) =
A

s2
0

(d1,0 + d1,1 · y)χ(2y, s0),

φ2,A,d2,s0(y) =

(
A2

sp1+2
0

(d2,0 + d2,1 · y) +
A5 ln s0

sp1+2
0

(
1

2
yT · d2,2 · y − Tr(d2,2)

))
χ(2y, s0).
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Remark: Note that d1,0 and d2,0 are scalars, d1,1 and d2,1 are vectors, d2,2 is a square
matrix of order N . For simplicity, we may drop down the parameters expect s0 and write
φ1(y, s0) and φ2(y, s0).

We next claim that we can find a domain for (d1, d2) so that initial data belongs to
VA(s0) :

Lemme 2.9 (Control of initial data to be in VA(s0)). There exists A1 ≥ 1 such that for all
A ≥ A1, there exists s1(A) ≥ 1 such that for all s0 ≥ s1(A), if (q1, q2)(s0) = (φ1, φ2) (s0)
where (φ1, φ2)(s0) are defined in Definition 2.2, then, the following properties hold:

i) There exists a set DA,s0 ⊂ [−2, 2]N
2+2N+2 such that the mapping

Ψ1 : RN2+2N+2 → RN2+2N+2

(d1, d2) 7→ (q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s0)

is linear, one to one from DA,s0 to V̂A(s0), where

V̂A(s) =

[
−A
s2
,
A

s2

]1+N

×
[
− A2

sp1+2
,
A2

sp1+2

]1+N

×
[
−A

5 ln s

sp1+2
,
A5 ln s

sp1+2

]N2

. (2.84)

Moreover,
Ψ1(∂DA,s0) ⊂ ∂V̂A(s0) and deg (Ψ1

∣∣
∂DA,s0

) 6= 0. (2.85)

ii) In particular, we have (q1, q2)(s0) ∈ VA(s0), and

|q1,j,k(s0)| ≤ A2 ln s0

2s2
0

,∀1 ≤ j, k ≤ N,∥∥∥∥q1,−(., s0)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

2s2
0

and

∥∥∥∥q2,−(., s0)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A2

2s
p1+5

2
0

,

q1,e(., s0) = 0 and q2,e(., s0) = 0.

Proof. The proof is straightforword and a bit length. For that reason, the proof is omitted,
and we friendly refer the reader to Proposition 4.5 in [24] for a quite similar case.

Now, we give a key-proposition for our argument. More precisely, in the following
proposition, we prove an existence of a solution of equation (2.67) trapped in the shrinking
set:

Proposition 2.10 (Existence of a solution trapped in VA(s)). There exists A2 ≥ 1 such
that for all A ≥ A2 there exists s2(A) ≥ 1 such that for all s0 ≥ s2(A), there exists
(d1, d2) ∈ RN2+2N+2 such that the solution (q1, q2) of equation (2.67) with initial data at the
time s0, given by (q1, q2)(s0) = (φ1, φ2)(s0), where (φ1, φ2)(s0) depends on (d1, d2) and is
defined in Definition 2.2, we have then

(q1, q2) ∈ VA(s), ∀s ∈ [s0,+∞).

The proof is divided into 2 steps:
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• The first step: In this step, we reduce our problem to a finite dimensional one. In
other words, we aim at proving that the control of (q1, q2)(s) in the shrinking set
VA(s) reduces to the control of the following components:

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s)

in V̂A(s), defined as in (2.84).

• The second step: We get the conclusion of Proposition 2.10 by using a topological
argument in finite dimension.

Proof. We here give proof of Proposition 2.10:

- Step 1: Reduction to a finite dimensional problem: Using a priori estimates, our
problem will be reduced to the control of a finite number of components.

Proposition 2.11 (Reduction to a finite dimensional problem). There exists A3 ≥ 1 such
that for all A ≥ A3, there exists s3(A) ≥ 1 such that for all s0 ≥ s3(A), the following holds:
If the two following are satisfied:

(a) If (q1, q2)(s) a solution of equation (2.67) with initial data (q1, q2)(s0) = (φ1, φ2)(s0),
defined as in Definition 2.2 for some (d1, d2) ∈ DA,s0, introduced in Lemma 2.9

(b) If we furthemore assume that (q1, q2)(s) ∈ VA(s) for all s ∈ [s0, s1] for some s1 ≥ s0

and (q1, q2)(s1) ∈ ∂VA(s1).

Then, we have the following conclusions:

(i) (Reduction to finite dimensions): We have

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s1) ∈ ∂V̂A(s1)

(ii) (Transverse outgoing crossing): There exists δ0 > 0 such that

∀δ ∈ (0, δ0), (q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s1 + δ) /∈ V̂A(s1 + δ),
(2.86)

which implies that (q1, q2)(s1 + δ) /∈ VA(s1 + δ) for all δ ∈ (0, δ0).

This proposition makes the heart of the paper and needs many steps to be proved. For
that reason, we dedicate a whole section to its proof (Section 2.4 below). Let us admit it
here, and get to the conclusion of Proposition 2.10 in the second step.

- Step 2: Conclusion of Proposition 2.10 by a topological argument. In this step, we
finish the proof of Proposition 2.10. In fact, we aim at proving the existence of parame-
ters (d1, d2) ∈ DA,s0 such that the solution (q1, q2)(s) of equation (2.67) with initial data
(q1, q2)(s0) = (φ1, φ2)(s0), exists globally for all s ∈ [s0,+∞) and satisfies

(q1, q2)(s) ∈ VA(s),

where initial data (φ1, φ2)(s0) is introduced in Definition 2.2.

In fact, our argument is analogous to the argument of Merle and Zaag [15]. For that
reason, we only give a brief proof. Let us fix K,A and s0 such that Lemma 2.9 and
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Proposition 2.11 hold. We first consider (q1, q2)d1,d2(s), s ≥ s0 a solution of equation (2.67)
with initial data (q1, q2)(s0) which depends on (d1, d2) as follows

(q1, q2)d1,d2(s0) = (φ1, φ2)(s0).

From Lemma 2.9 and by construction of DA,s0 , we know that

(q1, q2)(s0) ∈ VA(s0). (2.87)

By contradiction, we assume that for all (d1, d2) ∈ DA,s0 , there exists s1 ∈ [s0,+∞)
such that

(q1, q2)d1,d2(s1) /∈ VA(s1).

Then, for each (d1, d2) ∈ DA,s0 , we can define

s∗(d1, d2) = inf{s1 ≥ s0 such that (q1, q2)d1,d2(s1) /∈ VA(s1)}.

From the fact that (q1, q2)(s1) /∈ VA(s1), we deduce that s∗(d1, d2) < +∞ for all (d1, d2) ∈
DA,s0 . Besides that, using (2.87), and the minimality of s∗(d1, d2), the continuity of (q1, q2)
in s and the closeness of VA(s) we derive that (q1, q2)(s∗(d1, d2)) ∈ ∂VA(s∗(d1, d2)) and for
all s ∈ [s0, s∗(d1, d2)],

(q1, q2)(s) ∈ VA(s).

Therefore, from item (i) of Proposition 2.11 we see that

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s∗(d1, d2)) ∈ V̂A(s∗(d1, d2)).

This means that following mapping Γ is well-defined:

Γ : DA,s0 → ∂
(

[−1, 1]N
2+2N+2

)
(d1, d1) 7→ Γ(d1, d2),

where(
s2
∗
A

(q1,0, (q1,j)1≤j≤N)(s∗),
sp1+2
∗
A2

(q2,0, (q2,j)1≤j≤N)(s∗),
sp1+2
∗

A5 ln s∗
(q2,j,k)1≤j,k≤N(s∗)

)
,

where s∗ = s∗(d1, d2). Moreover, it satisfies the two following properties:

(i) Γ is continuous from DA,s0 to ∂
(

[−1, 1]N
2+2N+2

)
. This is a consequence of item (ii)

in Proposition (2.11).

(ii) The degree of the restriction Γ |∂DA,s0 is non zero. Indeed, again by item (ii) in

Proposition 2.11, we have
s∗(d1, d2) = s0,

in this case. Applying (2.85), we get the conclusion.

In fact, such a mapping Γ can not exist by Index theorem, this is a contradiction. Thus,
Proposition 2.10 follows, assuming that Proposition 2.11 (see Section 2.4 for the proof of
latter)
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2.3.4 The proof of Theorem 2.1

In this section, we aim at giving the proof of Theorem 2.1.

Proof. Proof of Theorem 2.1 assuming that Proposition 2.11

+ The proof of item (i) of Theorem 2.1: Using Proposition 2.10, there exist initial data
(q1, q2)d1,d2(s0) = (φ1, φ2)(s0) such that the solution of equation (2.67), exists globally on
[s0,+∞) and satisfies:

(q1, q2)(s) ∈ VA(s),∀s ∈ [s0,+∞).

Thanks to similarity variables (2.25), (2.66) and item (i) in Lemma 2.8, we conclude that
there exist initial data u0 of the form given in Remark 2.2 with (d1, d2) given in Proposition
2.10 such that the solution u(t) of equation (2.1) exists on [0, T ), where T = e−s0 and
satisfies (2.15) and (2.16). Using these two estimates, we see that

u(0, t) ∼ κ(T − t)−
1
p−1 as t→ T,

which means that u blows up at time T and the origin is a blowup point. It remains to
prove that for all x 6= 0, x is not a blowup point of u. The following Lemma allows us to
conclude.

Lemme 2.12 (No blow up under some threshold). For all C0 > 0, 0 ≤ T1 < T and σ > 0
small enough, there exists ε0(C0, T, σ) > 0 such that the following holds: If u(ξ, τ) satisfies
the following estimates for all |ξ| ≤ σ, τ ∈ [T1, T ):

|∂τu−∆u| ≤ C0|u|p,

and

|u(ξ, τ)| ≤ ε0(1− τ)−
1
p−1 ,

then, u does not blow up at ξ = 0, τ = T .

Proof. The proof of this Lemma is processed similarly to Theorem 2.1 in [6]. Although the
proof of [6] was given in the real case, it extends naturally to the complex valued case.

We next use Lemma 2.12 to conclude that u does not blow up at x0 6= 0. Indeed, if x0 6= 0
we use (2.15) to deduce the following:

sup
|x−x0|≤ |x0|

2

(T − t)
1
p−1 |u(x, t)| ≤

∣∣∣∣∣f0

(
|x0|
2√

(T − t)| ln(T − t)|

)∣∣∣∣∣+ C√
| ln(T − t)|

→ 0, as t→ T.

(2.88)

Applying Lemma 2.12 to u(x− x0, t), with some σ small enough such that σ ≤ |x0|
2
, and T1

close enough to T, we see that u(x − x0, t) does not blow up at time T and x = 0. Hence
x0 is not a blow-up point of u. This concludes the proof of item (i) in Theorem 2.1.

+ The proof of item (ii) of Theorem 2.1: Here, we use the argument of Merle in [13] to
deduce the existence of u∗ = u∗1 + iu∗2 such that u(t)→ u∗ as t→ T uniformly on compact
sets of RN\{0}. In addition to that, we use the techniques in Zaag [29], Masmoudi and
Zaag [16], Tayachi and Zaag [24] for the proofs of (2.18) and (2.19).
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Indeed, for all x0 ∈ RN and x0 6= 0, we deduce from (2.15), (2.16) that not only (2.88)
holds but also the following is satisfied:

sup
|x−x0|≤ |x0|

2

(T − t)
1
p−1 | ln(T − t)||u2(x, t)| ≤

∣∣∣∣∣ 3|x0|2

2(T − t)| ln(T − t)|
fp0

(
|x0|
2√

(T − t)| ln(T − t)|

)∣∣∣∣∣
+

C

| ln(T − t)|
p1
2

→ 0, as t→ T. (2.89)

We now consider x0 such that |x0| is small enough, and K0 to be fixed later. We define
t0(x0) by

|x0| = K0

√
T − t0(x0)| ln(T − t0(x0))|. (2.90)

Note that t0(x0) is unique when |x0| is small enough and t0(x0) → T as x0 → 0. We
introduce the rescaled functions U(x0, ξ, τ) and V2(x0, ξ, τ) as follows:

U(x0, ξ, τ) = (T − t0(x0))
1
p−1 u(x, t). (2.91)

and

V2(x0, ξ, τ) = | ln(T − t0(x0))|U2(x0, ξ, τ), (2.92)

where U2(x0, ξ, τ) is defined by

U(x0, ξ, τ) = U1(x0, ξ, τ) + iU2(x0, ξ, τ),

and

(x, t) =
(
x0 + ξ

√
T − t0(x0), t0(x0) + τ(T − t0(x0))

)
, and (ξ, τ) ∈ RN ×

[
− t0(x0)

T − t0(x0)
, 1

)
.

(2.93)
We can see that with these notations, we derive from item (i) in Theorem 2.1 the following
estimates for initial data at τ = 0 of U and V2

sup
|ξ|≤| ln(T−t0(x0))|

1
4

|U(x0, ξ, 0)− f0(K0)| ≤ C

1 + (| ln(T − t0(x0))| 14 )
→ 0 as x0 → 0, (2.94)

sup
|ξ|≤| ln(T−t0(x0))|

1
4

|V2(x0, ξ, 0)− g0(K0)| ≤ C

1 + (| ln(T − t0(x0))|γ1)
→ 0 as x0 → 0.(2.95)

where f0 and g0 are defined as in (2.6) and (2.17) respectively and γ1 = min
(

1
4
, p1

2

)
.

Moreover, using equations (2.23), we derive the following equations for U, V2: for all
ξ ∈ RN , τ ∈ [0, 1)

∂τU = ∆ξU + Up, (2.96)

∂τV2 = ∆ξV2 + V2G2(U1, U2), (2.97)

where G is defined by

G(U1, U2)U2 = F2(U1, U2), (2.98)

and F2 is defined in (2.24). We note that G2, F2 are polynomials of U1, U2.
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Besides that, from (2.89) and (2.96), we can apply Lemma 2.12 to U when |ξ| ≤ | ln(T −
t0(x0))| 14 to get the following

sup
|ξ|≤ 1

2
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|U(x0, ξ, τ)| ≤ C. (2.99)

We aim at now proving the following

sup
|ξ|≤ 1

16
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2(x0, ξ, τ)| ≤ C. (2.100)

+ The proof for (2.100): We first use (2.99) to derive the following rough estimate:

sup
|ξ|≤ 1

2
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2(x0, ξ, τ)| ≤ C| ln(T − t0(x0))|. (2.101)

We first introduce ψ ∈ C∞0 (RN), 0 ≤ ψ ≤ 1, supp(ψ) ⊂ B(0, 1), ψ = 1 on B(0, 1
2
). We also

define

ψ1(ξ) = ψ

(
2ξ

| ln(T − t0(x0))| 14

)
and V2,1(x0, ξ, τ) = ψ1(ξ)V2(x0, ξ, τ). (2.102)

Then, we deduce from (2.97) an equation satisfied by V2,1

∂τV2,1 = ∆ξV2,1 − 2 div(V2∇ψ1) + V2∆ψ1 + V2,1G1(U1, U2). (2.103)

Hence, we can write V2,1 with a integral equation as follows

V2,1(τ) = e∆τ (V2,1(0)) +

∫ τ

0

e(τ−τ ′)∆ (−2 div (V2∇ψ1) + V2∆ψ1 + V2,1G(U1, U2)(τ ′)) dτ ′.

(2.104)
Besides that, using (2.99) and (2.101) and the fact that

|∇ψ1| ≤
C

| ln(T − t0(x0))| 14
, |∆ψ1| ≤

C

| ln(T − t0(x0))| 12
,

we deduce that∣∣∣∣∫ τ

0

e(τ−τ ′)∆ (−2 div (V2∇ψ1)) dτ ′
∣∣∣∣ ≤ C

∫ τ

0

‖V2∇ψ1‖L∞(τ ′)√
τ − τ ′

dτ ′ ≤ C| ln(T − t0(x0))|
3
4 ,∣∣∣∣∫ τ

0

e(τ−τ ′)∆ (V2(τ ′)∆ψ1) dτ ′
∣∣∣∣ ≤ C

∫ τ

0

‖V2∆ψ1‖∞(τ ′)dτ ′ ≤ C| ln(T − t0(x0))|
1
2 ,∣∣∣∣∫ τ

0

e(τ−τ ′)∆ (V2ψ1G(U1, U2)(τ ′)) dτ ′
∣∣∣∣ ≤ C

∫ τ

0

‖V2,1G2(U1, U2)‖L∞(τ ′)dτ ′.

Note that G2(U1, U2) in the last line is bounded on |ξ| ≤ | ln(T − t0)| 14 , τ ∈ [0, 1) because it
is a polynomial in U1, U2 and (2.99) holds, then, we derive

‖V2,1G2(U1, U2)‖L∞(τ ′) ≤ C‖V2,1‖L∞(τ ′).
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Hence, from (2.104) and the above estimates, we derive

‖V2,1(τ)‖L∞ ≤ C| ln(T − t0(x0))|
3
4 + C

∫ τ

0

‖V2,1(τ ′)‖L∞dτ ′.

Thanks to Gronwall Lemma, we deduce that

‖V2,1(τ)‖L∞ ≤ C| ln(T − t0(x0))|
3
4 ,∀τ ∈ [0, 1),

which yields

sup
|ξ|≤ 1

4
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2(x0, ξ, τ)| ≤ C| ln(T − t0(x0))|
3
4 . (2.105)

We apply iteratively for

V2,2(x0, ξ, τ) = ψ2(ξ)V2(x0, ξ, τ) where ψ2(ξ) = ψ

(
4ξ

| ln(T − t0(x0))| 14

)
.

Similarly, we deduce that

sup
|ξ|≤ 1

8
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2(x0, ξ, τ)| ≤ C| ln(T − t0(x0))|
1
2 .

We apply this process a finite number of steps to obtain (2.100). We now come back to our
problem, and aim at proving that:

sup
|ξ|≤ 1

16
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

∣∣∣U(x0, ξ, τ)− ÛK0(τ)
∣∣∣ ≤ C

1 + | ln(T − t0(x0))|γ2
, (2.106)

sup
|ξ|≤ 1

32
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

∣∣∣V2(x0, ξ, τ)− V̂2,K0(τ)
∣∣∣ ≤ C

1 + | ln(T − t0(x0))|γ3
, (2.107)

where γ2, γ3 are positive small enough and (ÛK0 , V̂2,K0)(τ) is the solution of the following
system:

∂τ ÛK0 = Ûp
K0
, (2.108)

∂τ V̂2,K0 = pÛp−1
K0

V̂2,K0 . (2.109)

with initial data at τ = 0

ÛK0(0) = f0(K0),

V̂2,K0(0) = g0(K0).

given by

ÛK0(τ) =

(
(p− 1)(1− τ) +

(p− 1)2K2
0

4p

)− 1
p−1

, (2.110)

V̂2,K0(τ) = K2
0

(
(p− 1)(1− τ) +

(p− 1)2K2
0

4p

)− p
p−1

. (2.111)
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for all τ ∈ [0, 1). The proof of (2.106) is cited to Section 5 of Tayachi and Zaag [24] and the
proof of (2.107) is similar. For the reader’s convenience, we give it here. Let us consider

V2 = V2 − V̂2,K0(τ). (2.112)

Then, V2 satisfies

sup
|ξ|≤ 1

16
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2| ≤ C. (2.113)

We use (2.97) to derive an equation on V2 as follows:

∂τV2 = ∆V2 + pÛp−1
K0

V2 + p(Up−1
1 − Ûp−1

K0
)V2 + G2(x0, ξ, τ), (2.114)

where

G2(x0, ξ, τ) = V2[G2(U1, U2)− pUp−1
1 ].

Note that, from definition of G2 and (2.99) we deduce that

sup
|ξ|≤ 1

2
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|G2(U1, U2)− pUp−1
1 | ≤ C|U2|.

Hence, using (2.92) and (2.100) and we derive

sup
|ξ|≤ 1

16
| ln(T−t0(0))|

1
4 ,τ∈[0,1)

|G2(x0, ξ, τ)| ≤ C

| ln(T − t0(x0))|
. (2.115)

We also define

V̄2 = ψ∗(ξ)V2,

where

ψ∗ = ψ

(
16ξ

| ln(T − t0(x0))| 14

)
,

and ψ is the cut-off function which has been introduced above. We also note that ∇ψ∗,∆ψ∗
satisfy the following estimates

‖∇ξψ∗‖L∞ ≤
C

| ln(T − t0(x0))| 14
and ‖∆ξψ∗‖L∞ ≤

C

| ln(T − t0(x0))| 12
. (2.116)

In particular, V̄2 satisfies

∂τ V̄2 = ∆V̄2 +pÛp−1
K0

(τ)V̄2−2 div (V2∇ψ∗)+V2∆ψ∗+p(U
p−1
1 −Ûp−1

K0
)ψ∗V2 +ψ∗G2, (2.117)

By Duhamel principal, we derive the following integral equation

V̄2(τ) = eτ∆(V̄2(τ)) +

∫ τ

0

e(τ−τ ′)∆
{
pÛp−1

K0
V̄2 − 2 div (V2∇ψ∗) (2.118)

+ V2∆ψ∗ + p(Up−1
1 − Ûp−1

K0
)ψ∗V2 + ψ∗G2

}
(τ ′)dτ ′. (2.119)
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Besides that, we use (2.106), (2.110), (2.113), (2.116), (2.115) to derive the following esti-
mates: for all τ ∈ [0, 1)

|ÛK0(τ)| ≤ C,

‖V2∇ψ∗‖L∞(τ) ≤ C

| ln(T − t0(x0))| 14
,

‖V2∆ψ∗‖L∞(τ) ≤ C

| ln(T − t0(x0))| 12
,∥∥∥(Up−1

1 − Ûp−1
K0

)
ψ∗

∥∥∥
L∞

(τ) ≤ C

| ln(T − t0(x0))|γ2
,

‖G2ψ∗‖L∞(RN ) ≤
C

| ln(T − t0(x0))|
.

where γ2 given in (2.106). Hence, we derive from the above estimates that: for all τ ∈ [0, 1)

|e(τ−τ ′)∆pÛp−1
K0

V̄2(τ ′)| ≤ C‖V̄2(τ ′)‖,

|e(τ−τ ′)∆(div(V2∇ψ∗))| ≤ C
1√
τ − τ ′

1

| ln(T − t0(x0))| 14
,

|e(τ−τ ′)∆(V2∆ψ∗)| ≤
C

| ln(T − t0(x0))| 12
,

|e(τ−τ ′)∆(p(Up−1
1 − Ûp−1

K0
)ψ∗V2)(τ ′)| ≤ C

| ln(T − t0(x0))|γ2
,

|e(τ−τ ′)∆(ψ∗G2)(τ ′)| ≤ C

| ln(T − t0(x0))|
.

Plugging into (2.118), we obtain

‖V̄2(τ)‖L∞ ≤
C

| ln(T − t0(x0))|γ3
+ C

∫ τ

0

‖V̄2(τ ′)‖L∞dτ ′,

where γ3 = min(1
4
, γ2). Then, thanks to Gronwall inequality, we get

‖V̄2‖L∞ ≤
C

| ln(T − t0(x0))|γ3
.

Hence, (2.107) follows . Finally, we easily find the asymptotics of u∗ and u∗2 as follows,
thanks to the definition of U and V2 and to estimates (2.106) and (2.107):

u∗(x0) = lim
t→T

u(x0, t) = (T−t0(x0))−
1
p−1 lim

τ→1
U(x0, 0, τ) ∼ (T−t0(x0))−

1
p−1

(
(p− 1)2

4p
K2

0

)− 1
p−1

,

(2.120)
and

u∗2(x0) = lim
t→T

u2(x0, t) =
(T − t0(x0))−

1
p−1

| ln(T − t0(x0))|
lim
τ→1

V2(x0, 0, τ)

∼ (T − t0(x0))−
1
p−1

| ln(T − t0(x0))|

(
(p− 1)2

4p

)− p
p−1

(K2
0)−

1
p−1 . (2.121)
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Using the relation (2.90), we find that

T − t0(x0) ∼ |x0|2

2K2
0 | ln |x0||

and ln(T − t0(x0)) ∼ 2 ln(|x0|), as x0 → 0. (2.122)

Plugging (2.122) into (2.120) and (2.121), we get the conclusion of item (ii) of Theorem 2.1.
This concludes the proof of Theorem 2.1 assuming that Proposition 2.11 holds. Naturally,
we need to prove this proposition on order to finish the argument. This will be done in the
next section.

2.4 The proof of Proposition 2.11

This section is devoted to the proof of Proposition 2.11, which is the heart of our analysis.
We proceed into two parts. In the first part, we derive a priori estimates on q(s) in
VA(s). In the second part, we show that the new bounds are better than those defined in
VA(s), except for the first components (q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s).
This means that the problem is reduced to the control of these components, which is the
conclusion of item (i) of Proposition 2.11. Item (ii) of Proposition 2.11 is just a direct
consequence of the dynamics of these modes. Let us start the first part.

2.4.1 A priori estimates on (q1, q2) in VA(s).

In this subsection, we aim at proving the following proposition:

Proposition 2.13. There exists A4 ≥ 1, such that for all A ≥ A4 there exists s4(A) ≥ 1
such that for all s0 ≥ s4(A) the following holds: If we assume that for all s ∈ [σ, s1], (q1, q2)(s) ∈
VA(s) for some s1 ≥ s0, then, for all s ∈ [s0, s1]:

(i) (ODE satisfied by the positive modes) For all j ∈ {1, ...?N}, we have∣∣q′1,0(s)− q1,0(s)
∣∣+

∣∣∣∣q′1,j(s)− 1

2
q1,j(s)

∣∣∣∣ ≤ C

s2
,∀1 ≤ j ≤ N, (2.123)

∣∣q′2,0(s)− q2,0(s)
∣∣+

∣∣∣∣q′2,j(s)− 1

2
q2,j(s)

∣∣∣∣ ≤ C

sp1+2
,∀1 ≤ j ≤ N. (2.124)

(ii) (ODE satisfied by the null modes) For all j, k ∈ {1, ..., N}, we have∣∣∣∣q′1,j,k(s) +
2

s
q1,j,k(s)

∣∣∣∣ ≤ CA

s3
, (2.125)∣∣∣∣q′2,j,k(s) +

2

s
q2,j,k(s)

∣∣∣∣ ≤ CA2 ln s

sp1+3
. (2.126)

(iii) (Control the negative part)∥∥∥∥q1,−(., s)

1 + |y|3

∥∥∥∥
L∞
≤ Ce−

s−τ
2

∥∥∥∥q1,−(., τ)

1 + |y|3

∥∥∥∥
L∞

+ C
e−(s−τ)2

s
3
2

‖q1,e(., τ)‖L∞ +
C(1 + s− τ)

s2
,

(2.127)∥∥∥∥q2,−(., s)

1 + |y|3

∥∥∥∥
L∞
≤ Ce−

s−τ
2

∥∥∥∥q2,−(., τ)

1 + |y|3

∥∥∥∥
L∞

+ C
e−(s−τ)2

s
3
2

‖q2,e(., τ)‖L∞ +
C(1 + s− τ)

s
p1+5

2

.

(2.128)
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(v) (Outer part)

‖q1,e(., s)‖L∞ ≤ Ce−
(s−τ)
p ‖q1,e(., τ)‖L∞ + Ces−τs

3
2

∥∥∥∥q1,−(., τ)

1 + |y|3

∥∥∥∥
L∞

+
C(1 + s− τ)es−τ√

s
,

(2.129)

‖q2,e(., s)‖L∞ ≤ Ce−
(s−τ)
p ‖q2,e(., τ)‖L∞ + Ces−τs

3
2

∥∥∥∥q2,−(., τ)

1 + |y|3

∥∥∥∥
L∞

+
C(1 + s− τ)es−τ

s
p1+2

2

.

(2.130)

Proof. The proof of this Proposition is given in two steps:

+ Step 1: We will give a proof to items (i) and (ii) by using the projection the
equations which are satisfied by q1 and q2.

+ Step 2: We will control the other components by studying the dynamics of the
linear operator L + V .

a) Step 1: We observe that the techniques of the proofs for (2.123), (2.124), (2.125) and
(2.126) are the same. So, we only deal with the proof of (2.125). For each j, k ∈ {1, ..., N}
by using the equation in (2.67) and the definition of q1,j,k we deduce that∣∣∣∣q′1,i,j(s)− ∫ [Lq1 + V q1 +B1(q1, q2) +R1(y, s)]χ(y, s)

(
yiyj

4
− δi,j

2

)
ρdy

∣∣∣∣ ≤ Ce−s,

(2.131)
if K is large enough. In addition to that, using the fact (q1, q2) ∈ VA(s) and Lemma 2.8,
Lemma 2.18, Lemma 2.19, Lemma 2.20 that∣∣∣∣∫ L(q)χ

(
yiyj

4
− δi,j

2

)
ρdy

∣∣∣∣ ≤ C

s3
,∣∣∣∣∫ V q1χ

(
yiyj

4
− δi,j

2

)
ρdy +

2

s
q1,i,j(s)

∣∣∣∣ ≤ CA

s3
,∣∣∣∣∫ B1(q1, q2)χ

(
yiyj

4
− δi,j

2

)
ρdy

∣∣∣∣ ≤ C

s3
,∣∣∣∣∫ R1(y, s)χ

(
yiyj

4
− δi,j

2

)
ρdy

∣∣∣∣ ≤ C

s3
,

provided that s ≥ s4(A). Then, (2.125) is derived by adding all the above estimates.

Step 2: In this part, we will concentrate on the proofs of items (iii) and (iv). We now
rewrite (2.67) in its integral form: for each s ≥ τ

q1(s) = K(s, τ)q1(τ) +
∫ s
τ
K(s, σ) [(V1,1q1)(σ) + (V1,2q2)(σ) +B1(q1, q2)(σ) +R1(σ)] dσ

=
∑5

i=1 ϑ1,i(s, τ),
q2(s) = K(s, τ)q2(τ) +

∫ s
τ
K(s, σ) [(V2,1q1)(σ) + (V2,2q2)(σ) +B2(q1, q2)(σ) +R2(σ)] dσ

=
∑5

i=1 ϑ2,i(s, τ),
(2.132)

where {K(s, τ)}s≥τ is the fundamental solution associated to L + V and defined by{
∂sK(s, τ) = (L + V )K(s, τ), ∀s > τ,
K(τ, τ) = Id.

(2.133)



100

Let us now introduce some notations:

ϑ1,1(s, τ) = K(s, τ)q1(τ), ϑ1,2(s, τ) =

∫ s

τ

K(s, σ)(V1,1q1)(σ)dσ,

ϑ1,3(s, τ) =

∫ s

τ

K(s, σ)(V1,2q2)(σ)dσ, ϑ1,4(s, τ) =

∫ s

τ

K(s, σ)(B1(q1, q2))(σ)dσ,

ϑ1,5(s, τ) =

∫ s

τ

K(s, σ)(R1(., σ))dσ,

and

ϑ2,1(s, τ) = K(s, τ)(q2(τ)), ϑ2,2(s, τ) =

∫ s

τ

K(s, σ)(V2,1q1)(σ)dσ,

ϑ2,3(s, τ) =

∫ s

τ

K(s, σ)(V2,2q2)(σ)dσ, ϑ2,4(s, τ) =

∫ s

τ

K(s, σ)(B2(q1, q2))(σ)dσ,

ϑ2,5(s, τ) =

∫ s

τ

K(s, σ)(R2(., σ))dσ.

From (2.132), we can see the strong influence of K. For that reason, we will study the
dynamics of that operator:

Lemme 2.14 (A priori estimates of the linearized operator). For all ρ∗ ≥ 0, there exists
s5(ρ∗) ≥ 1 such that σ ≥ s5(ρ∗) the following holds: If we have v ∈ L2

ρ(RN), satisfying

2∑
m=0

|vm|+
∥∥∥∥ v−

1 + |y|3

∥∥∥∥
L∞(RN )

+ ‖ve‖L∞(RN ) <∞, (2.134)

where the above components are introduced in (2.80), then, for all s ∈ [σ, σ+ρ∗], the function
θ(s) = K(s, σ)v satisfies∥∥∥ θ−(y,s)

1+|y|3

∥∥∥
L∞(RN )

≤ Ces−σ((s−σ)2+1)
s

(|v0|+ |v1|+
√
s|v2|)

+Ce−
(s−σ)

2

∥∥∥ v−
1+|y|3

∥∥∥
L∞(RN )

+ C e−(s−σ)2

s
3
2
‖ve‖L∞(RN ),

(2.135)

and

‖θe(y, s)‖L∞(RN ) ≤ Ces−σ

(
2∑
l=0

s
l
2 |vl|+ s

3
2

∥∥∥∥ v−
1 + |y|3

∥∥∥∥
L∞(RN )

)
+ Ce−

s−σ
p ‖ve‖L∞(RN ).

(2.136)

Proof. The proof of this result was given by Bricmont and Kupiainen [1] in the one dimen-
sional case. Later, it was extended to the higher dimensional case by Nguyen and Zaag
[18]. We kindly refer interested readers to Lemma 2.9 in [18] for details of the proof.

We now use Lemmas 2.14, 2.8, 2.18, 2.19 and 2.20 to deduce the following Lemma which
implies Proposition 2.13.

Lemme 2.15. For all A ≥ 1, ρ∗ ≥ 0, there exists s6(A, ρ∗) ≥ 1 such that ∀s0 ≥ s6(A, ρ∗)
and q(s) ∈ SA(s),∀s ∈ [τ, τ +ρ∗] where τ ≥ s0. Then, we have the following properties: for
all s ∈ [τ, τ + ρ∗],
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i) (The linear term ϑ1,1(s, τ) and ϑ2,1(s, τ))∥∥∥∥(ϑ1,1(s, τ))−
1 + |y|3

∥∥∥∥
L∞

≤ Ce−
s−τ

2

∥∥∥∥q1,−(., τ)

1 + |y|3

∥∥∥∥
L∞

+
Ce−(s−τ)2

s
3
2

‖q1,e(τ)‖L∞ +
C

s2
,

‖(ϑ1,1(s, τ))e‖L∞ ≤ Ce−
s−τ
p ‖q1,e(τ)‖L∞ + Ces−τs

3
2

∥∥∥∥q1,−(., τ)

1 + |y|3

∥∥∥∥
L∞
+

C√
s
,∥∥∥∥(ϑ2,1(s, τ))−

1 + |y|3

∥∥∥∥
L∞

≤ Ce−
s−τ

2

∥∥∥∥q2,−(., τ)

1 + |y|3

∥∥∥∥
L∞

+
Ce−(s−τ)2

s
3
2

‖q2,e(τ)‖L∞ +
C

s
p1+5

2

,

‖(ϑ2,1(s, τ))e‖L∞ ≤Ce−
s−τ
p ‖q2,e(τ)‖L∞ + Ces−τs

3
2

∥∥∥∥q2,−(., τ)

1 + |y|3

∥∥∥∥
L∞
+

C

s
p1+2

2

,

where L∞ = L∞(RN).

ii) The quadratic term ϑ1,2(s, τ) and ϑ2,2(s, τ)∥∥∥∥(ϑ1,2(s, τ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− τ)

s2
, ‖(ϑ1,2(s, τ))e‖L∞(RN ) ≤

C(s− τ)

s
1
2

,∥∥∥∥(ϑ2,2(s, τ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− τ)

s
p1+5

2

, ‖(ϑ2,2(s, τ))e‖L∞(RN ) ≤
C(s− τ)

s
p1+2

2

.

iii) The correction terms ϑ1,3(s, τ) and ϑ2,3(s, τ)∥∥∥∥(ϑ1,3(s, τ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− τ)

s2
, ‖(ϑ1,3(s, τ))e‖L∞(RN ) ≤

C(s− τ)

s
1
2

,∥∥∥∥(ϑ2,3(s, τ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− τ)

s
p1+5

2

, ‖(ϑ2,3(s, τ))e‖L∞(RN ) ≤
C(s− τ)

s
p1+2

2

.

iv) The correction terms ϑ1,4(s, τ) and ϑ2,4(s, τ)∥∥∥∥(ϑ1,3(s, τ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− τ)

s2
, ‖(ϑ1,3(s, τ))e‖L∞(RN ) ≤

C(s− τ)

s
1
2

,∥∥∥∥(ϑ2,3(s, τ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− τ)

s
p1+5

2

, ‖(ϑ2,3(s, τ))e‖L∞(RN ) ≤
C(s− τ)

s
p1+2

2

.

v) The correction terms ϑ1,5(s, τ) and ϑ2,5(s, τ)∥∥∥∥(ϑ1,3(s, τ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− τ)

s2
, ‖(ϑ1,3(s, τ))e‖L∞(RN ) ≤

C(s− τ)

s
1
2

,∥∥∥∥(ϑ2,3(s, τ))−
1 + |y|3

∥∥∥∥
L∞(RN )

≤ C(s− τ)

s
p1+5

2

, ‖(ϑ2,3(s, τ))e‖L∞(RN ) ≤
C(s− τ)

s
p1+2

2

.

Proof. The result is implied from the definition of the shrinking set VA(s) and Lemma 2.8
and the bounds for V, Vj,k, B1, B2, R1, R2 with j, k ∈ {1, 2} which are shown in Lemmas
2.18, 2.19 and 2.20. For details in a quite similar case, see Lemma 4.20 in Tayachi and Zaag
[24].

We now come back to the proof of Proposition (2.13): In fact, the conclusion of (iii) and
(iv) of Proposition 2.13 follows by using formula (2.132) and Lemma (2.15). This concludes
the proof of Proposition 2.13.
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2.4.2 Conclusion of the proof of Proposition 2.11

In this subsection, we will give prove a Proposition which implies Proposition 2.11 directly.
More precisely, this is our statement:

Proposition 2.16. There exists A7 ≥ 1 such that for all A ≥ A7, there exists s7(A) ≥ 1
such that for all s0 ≥ s7(A), we have the following properties: If the following conditions
hold:

a) (q1, q2)(s0) = (φ1, φ2) with (d0, d1) ∈ DA,s0,

b) For all s ∈ [s0, s1] we have (q1, q2)(s) ∈ VA(s).

Then, for all s ∈ [s0, s1], we have

∀i, j ∈ {1, · · · , N}, |q1,i,j(s)| ≤
A2 ln s

2s2
, (2.137)∥∥∥∥q1,−(y, s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

2s2
, ‖q1,e(s)‖L∞(RN ) ≤

A2

2
√
s
, (2.138)∥∥∥∥q2,−(y, s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A2

2s
p1+5

2

, ‖q2,e(s)‖L∞(RN ) ≤
A3

2s
p1+2

2

. (2.139)

Note that DA,s0 is introduced in Lemma 2.9 and (φ1, φ2) is defined as in Definition (2.2).

Proof. The proof relies on Propostion 2.13 and is quiet similar to Proposition 4.7 in Merle
and Zaag [15]. For that reason, we only give a short proof to (2.137).

We use (2.125) to deduce that∣∣∣∣∫ s

s0

(τ 2q1,j,k(τ))dτ

∣∣∣∣ ≤ CA(ln(s)− ln(s0)),∀j, k ∈ {1, ..., N},

this yields

|q1,j,k(s)| ≤ CAs−2 ln s ≤ A2 ln s

2s2
,

if A ≥ A7 large enough and s ≥ s7(A). Then, (2.137) follows. This also finishes the proof
of Proposition 2.16.

Conclusion of the proof of Proposition 2.11

Proof. From Proposition 2.16, if (q1, q2)(s1) ∈ ∂VA(s1) then:

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N) (s1) ∈ ∂V̂A(s1). (2.140)

This concludes item (i) of Proposition 2.11.

The proof of item (ii) of Proposition 2.11: In fact, thanks to (2.140), we derive the two
following situations:

+ The first situation: Either there exists ε0 ∈ {−1, 1} such that q1,0(s1) = ε0
A
s21

; or there

exist j0 ∈ {1, ..., N} and ε0 ∈ {−1, 1} such that q1,j0 = ε0
A
s21

; or exists ε0 ∈ {−1, 1} such that

q2,0 = ε0
A2

s
p1+2
1

; or there exist j0 ∈ {1, ..., N} and ε0 ∈ {−1, 1} such that q2,j0(s1) = ε0
A2

s
p1+2
1

.
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Without loss of generality, we can suppose that q1,0 = ε0
A
s21

(the other cases are quiet

similar). Then, by using (2.123), we can prove that the sign of q′1,0(s1) is oppsite to the

sign of
(
ε0

A
s21

)′
. In other words,

ε0

(
q1,0 − ε0

A

s2

)′
(s1) > 0.

+ The second situation: There exist j0, k0, ε0 ∈ −1, 1 and ε0 ∈ {−1, 1} such that
q2,j0,k0(s1) = ε0

A5 ln s

s
p1+2
1

, by using (2.126), we can prove that

ε0

(
q2,j0,k0(s)− ε0

A5 ln s

sp1+2

)′
(s1) > 0.

From two situations in the above, we deduce that there exists δ0 > 0 such that for all
δ ∈ (0, δ0)

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N) (s1 + δ) /∈ V̂A(s1 + δ).

provided that A ≥ A3 and s0 ≥ s3(A). Then, the item (ii) of Proposition follows. Thus,
we derive the conclusion of Proposition 2.11.

2.5 Appendix

In this appendix, we state and prove several technical and and straightforward results need
in our paper.

We first give a Taylor expansion of the quadratic terms defined in (2.29) and (2.30).

Lemme 2.17 (Asymptotics of B̄1 and B̄2). Let us consider B̄1(w̄1, w2) and B̄2(w̄1, w2),
defined in (2.29) and (2.30), respectively. Then, the following holds

B̄1(w̄1, w2) =
p

2κ
w̄2

1 +O(|w̄1|3 + |w2|2), (2.141)

B̄2(w̄1, w2) =
p

κ
w̄1w2 +O

(
|w̄1|2|w2|

)
+O

(
|w2|3

)
, (2.142)

as (w̄1, w2)→ (0, 0).

Proof. In fact, bearing in mind that p ∈ N. Then, by using the Newton binomial formula,
we derive the following:

(w̄1 + κ+ iw2)p = (w̄1 + κ)p + ip(w̄1 + κ)p−1w2 + p(p− 1)(w̄1 + κ)p−2w2
2 +G(w̄1, w2),

where
|G(w̄1, w2)| ≤ C|w2|3, ∀|w̄1|+ |w2| ≤ 1.

This gives us

Re ((w̄1 + κ+ iw2)p) = (w̄1 + κ)p + p(p− 1)(w̄1 + κ)p−2w2
2 + Re (G), (2.143)

Im ((w̄1 + κ+ iw2)p) = p(w̄1 + κ)p−1w2 + Im (G). (2.144)
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Moreover, we apply again the Newton binomial formula to (κ + w̄1)p, (κ + w̄1)p−1 and we
get

(κ+ w̄1)p = κp +
p

p− 1
w̄1 +

p

2κ
w̄2

1 +O(|w̄1|3), (2.145)

(κ+ w̄1)p−1 =
1

p− 1
+

1

κ
w̄1 +O(|w̄1|2). (2.146)

Thus, (2.141) follows by (2.143) and (2.145). Moreover, (2.142) follows by (2.144) and
(2.146).

Now, we give an expansion of the potentials defined in (2.68) and (2.69) - (2.72). The
following is our statement:

Lemme 2.18 (The potential functions V and Vj,k with j, k ∈ {1, 2}). We consider V, V1,1, V1,2, V2,1

and V2,2 as defined in (2.68) and (2.69) - (2.72). Then, the following holds:
(i) For all s ≥ 1 and y ∈ RN , we have |V (y, s)| ≤ C,

|V (y, s)| ≤ C(1 + |y|2)

s
, (2.147)

and

V (y, s) = −(|y|2 − 2N)

4s
+ Ṽ (y, s), (2.148)

where Ṽ satisfies

|Ṽ (y, s)| ≤ C
(1 + |y|4)

s2
,∀s ≥ 1, |y| ≤ 2K

√
s. (2.149)

(ii) For all s ≥ 1 and y ∈ RN , the potential functions Vj,k with j, k ∈ {1, 2} satisfy

|V1,1(y, s)|+ |V2,2(y, s)| ≤ C(1 + |y|4)

s4
,

|V1,2(y, s)|+ |V2,1(y, s)| ≤ C(1 + |y|2)

s2
.

In particular, we have

‖V1,1‖L∞(RN ) + ‖V2,2‖L∞(RN ) ≤
C

s2
,

‖V1,2‖L∞(RN ) + ‖V2,1‖L∞(RN ) ≤
C

s
.

Proof. We see that item (ii) is derived directly from the defintions of Vj,k, j, k ∈ {1, 2}. In
addition to that, the proof of (i) is quite similar to Lemma B.1, page 1270 in [18].

Now, we give some Taylor expansions of B1 and B2, introduced in (2.73) and (2.74),
respectively.

Lemme 2.19 (The quadratic termsB1(q1, q2) andB2(q1, q2)). Let us consider B1(q1, q2) and
B2(q1, q2), defined in (2.73) and (2.74) respectively. For all A ≥ 1, there exists s8(A) ≥ 1
such that for all s ≥ s8(A), if (q1, q2)(s) ∈ VA(s), then

|B1(q1, q2)| ≤ C
(
|q1|2 + |q2|2

)
, (2.150)

|B2(q1, q2)| ≤ C

(
|q1|2

s
+ |q1.q2|+ |q2|2

)
. (2.151)
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Proof. Let us recall the two functions F1(u1, u2) and F2(u1, u2) which are defined in (2.24).
As a matter of fact, they belong to C∞(R2). Then, by using Taylor expansion, we obtain

F1(Φ1 + q1,Φ2 + q2) =
∑
j,k≤p

1

j!k!
∂j+k
uj1u

k
2

F1(Φ1,Φ2)qj1q
k
2 ,

F2 (Φ1 + q1,Φ2 + q2) =
∑
j,k≤p

1

j!k!
∂j+k
uj1u

k
2

F2(Φ1,Φ2)qj1q
k
2 .

Thus, (2.150) and (2.151) follow by definitions of B1, B2 and the definition of VA(s).

In the following lemma, we give various estimates involving rest terms R1 and R2,
defined in (2.75) and (2.76), respectively.

Lemme 2.20 (Rest terms R1, R2). For all s ≥ 1, let us consider R1, R2 defined in (2.75)
and (2.76). Then,

(i) For all s ≥ 1 and y ∈ RN

R1(y, s) =
c1,p

s2
+ R̃1(y, s),

R2(y, s) =
c2,p

s3
+ R̃2(y, s),

where c1,pand c2,p are constants depended on p and R̃1, R̃2 satisfy: for all |y| ≤ 2K
√
s

|R̃1(y, s)| ≤ C(1 + |y|4)

s3
,

|R̃2(y, s)| ≤ C(1 + |y|6)

s4
.

(ii) Moreover, we have for all s ≥ 1

‖R1(., s)‖L∞(RN ) ≤
C

s
,

‖R2(., s)‖L∞(RN ) ≤
C

s2
.

Proof. The proofs for R1 and R2 are quite similar. For that reason, we only give the proof
of the estimates on R2. This means that we need to prove the following estimates:

R2(y, s) = −N(N + 4)κ

(p− 1)s3
+ R̃2(y, s), (2.152)

where

|R̃2(y, s)| ≤ C
(1 + |y|6)

s4
,∀|y| ≤ 2K

√
s,

and

‖R2(., s)‖L∞(RN ) ≤
C

s2
. (2.153)
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We recall the definition of R2(y, s) in (2.76) as follows

R2(y, s) = ∆Φ2 −
1

2
y · ∇Φ2 −

Φ2

p− 1
+ F2(Φ1,Φ2)− ∂sΦ2.

Then, we can rewrite R2

R2(y, s) = ∆Φ2 −
1

2
y · ∇Φ2 −

Φ2

p− 1
+ pΦp−1

1 Φ2 − ∂sΦ2 +R∗2(y, s),

where
R∗2(y, s) = F2(Φ1,Φ2)− pΦp−1

1 Φ2.

Using the definition of F2 in (2.24), and the defintions of Φ1,Φ2 in (2.64) and (2.65), we
derive that

|R∗2(y, s)| ≤ C(1 + |y|6)

s4
, ∀|y| ≤ 2K

√
s,

and

‖R∗2(., s)‖L∞(RN ) ≤
C

s2
.

In addition to that, we introduce R̄2 by

R̄2(y, s) = ∆Φ2 −
1

2
y · ∇Φ2 −

Φ2

p− 1
+ pΦp−1

1 Φ2 − ∂sΦ2.

Then, we may obtain the conclusion if the following two estimates hold:∣∣∣∣R̄2(y, s) +
N(N + 4)κ

(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, (2.154)

‖R̄2(., s)‖L∞(RN ) ≤
C

s2
. (2.155)

+ The proof of (2.154): We first aim at expanding ∆Φ2 in a polynomial in y of order less
than 4 via the Taylor expansion. Indeed, ∆Φ2 is given by

∆Φ2 =
2N

s2

(
p− 1 +

(p− 1)2|y|2

4ps

)− p
p−1

− (p− 1)|y|2

s3

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− 2p−1
p−1

− (N + 2)(p− 1)|y|2

2s3

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− 2p−1
p−1

+
(2p− 1)(p− 1)2|y|4

4ps4

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− 3p−2
p−1

.

Besides that, we use Taylor expansion in the variable z = |y|√
s

to function
(
p− 1 + (p−1)2

4p
|y|2
s

)− p
p−1

in the domain where |z| ≤ 2K and this yields the following:∣∣∣∣∣
(
p− 1 +

(p− 1)2|y|2

4ps

)− p
p−1

− κ

p− 1
+

κ

4(p− 1)

|y|2

s

∣∣∣∣∣ ≤ C(1 + |y|4)

s2
, ∀|y| ≤ 2K

√
s.
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which yields∣∣∣∣∣2Ns2

(
p− 1 +

(p− 1)2|y|2

4ps

)− p
p−1

− 2Nκ

(p− 1)s2
+

Nκ|y|2

2(p− 1)s3

∣∣∣∣∣ ≤ C(1 + |y|6)

s4
,

for all |y| ≤ 2K
√
s.

It is similar to estimate the other terms in the formula of ∆Φ2, defined in the above.
Therefore, we finally obtain∣∣∣∣∆Φ2 −

2Nκ

(p− 1)s2
+

Nκ|y|2

(p− 1)s3
+ 2

k|y|2

(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, ∀|y| ≤ 2K

√
s. (2.156)

As we did for ∆Φ2, we estimate similarly the other terms in formula of R̄2, for all |y| ≤
2K
√
s: ∣∣∣∣−1

2
y · ∇Φ2 +

κ|y|2

(p− 1)s2
− κ|y|4

4(p− 1)s3
− κ|y|4

4(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, (2.157)∣∣∣∣− Φ2

p− 1
+

κ|y|2

(p− 1)2s2
− κ|y|4

4(p− 1)2s3
− 2Nκ

(p− 1)2s2

∣∣∣∣ ≤ C(1 + |y|6)

s4
, (2.158)

∣∣pΦp−1
1 Φ2 + T (y, s)

∣∣ ≤ C(1 + |y|6)

s4
, (2.159)∣∣∣∣−∂sΦ2 −

2κ|y|2

(p− 1)s3
+

4Nκ

(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, (2.160)

where

T (y, s) = − pκ|y|2

(p− 1)2s2
+

(2p− 1)κ|y|4

4(p− 1)2s3
− Nκ|y|2

(p− 1)s3
+

2pNκ

(p− 1)2s2
+

N2κ

(p− 1)s3

Thus, by an addition (2.156), (2.157), (2.158), (2.159) and (2.160), we obtain the following∣∣∣∣R̄2(y, s) +
N(N + 4)κ

(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, ∀|y| ≤ 2K

√
s,

this concludes (2.154).
+ The proof (2.155): We rewrite Φ1,Φ2 as follows

Φ1(y, s) = R1,0(z) +
Nκ

2ps
and Φ2(y, s) =

1

s
R2,1(z)− 2Nκ

(p− 1)s2
where z =

y√
s
,

where R1,0 and R2,1 are defined in (2.56) and (2.60), respectively. In addition to that, we
rewrite R̄2 in terms of R1,0 and R2,1, and we note that R1,0 and R2,1 satisfy (2.52) and
(2.54). Then, it follows that

|R̄2(y, s)| ≤ C

s2
, ∀y ∈ RN .

Hence, (2.155) follows. This concludes the proof of this Lemma.
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Chapter 3

A blowup solution of a complex
semilinear heat equation with an non
integer power 1

G. K. Duong

Abstract: In this paper, we consider the following semi-linear complex heat equation

∂tu = ∆u+ up, u ∈ C

in RN , with an arbitrary power p, p > 1. We construct for this equation a complex solution
u = u1 + iu2, which blows up in finite time T and only at one blowup point a. Moreover,
we also describe the asymptotic behaviors of the solution by the following final profiles:

u(x, T ) ∼
[

(p− 1)2|x− a|2

8p| ln |x− a||

]− 1
p−1

,

u2(x, T ) ∼ 2p

(p− 1)2

[
(p− 1)2|x− a|2

8p| ln |x− a||

]− 1
p−1 1

| ln |x− a||
> 0, as x→ a.

In addition to that, since we also have u1(0, t) → +∞ and u2(0, t) → −∞ as t → T,
the blowup in the imaginary part shows a new phenomenon unknown for the standard heat
equation in the real case: a non constant sign near the singularity, with the existence of
a vanishing surface for the imaginary part, shrinking to the origin. In our work, we have
succeeded to extend for any power p where the non linear term up is not continuous if p is
irrational. In particular, the solution which we have constructed has a positive real part.
We study our equation as a system of the real part and the imaginary part u1 and u2. Our
work relies on two main arguments: the reduction of the problem to a finite dimensional
one and a topological argument based on the index theory to get the conclusion.

Mathematics Subject Classification: 35K55, 35K57 35K50, 35B44 (Primary);
35K50, 35B40 (Secondary).

Keywords: Blowup solution, Blowup profile, Semilinear complex heat equation, non
variation heat equation.
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3.1 Introduction

3.1.1 Earlier work

In this work, we are interested in the following complex-valued semilinear heat equation{
∂tu = ∆u+ F (u), t ∈ [0, T ),

u(0) = u0 ∈ L∞(RN),
(3.1)

where F (u) = up, and u(t) : RN → C, L∞(RN) := L∞(RN ,C) and p > 1.

Typically, when p = 2, model (3.1) becomes the following{
∂tu = ∆u+ u2, t ∈ [0, T ),

u(0) = u0 ∈ L∞(RN).
(3.2)

This model is connected to the viscous Constantin-Lax-Majda equation with a viscosity
term, which is a one dimensional model for the vorticity equation in fluids. For more
details, the readers are addressed to the following works: Constantin, Lax, Majda [2]; Guo,
Ninomiya, Shimojo and Yanagida [8]; Okamoto, Sakajo and Wunsch [24]; Sakajo [25] and
[26]; Schochet [27].

The local Cauchy problem for model (3.1) can be solved in L∞(RN) when p is integer,
thanks to a fixed-point argument. However, if p is an irrational number, then, the local
Cauchy problem has not been solved yet, up to our knowledge. In my point of view, this
probably comes from the discontinuity of F (u) on {u ∈ R∗−} and this challenge is also one
of the main difficulties of the paper. As a matter of fact, we solve the Cauchy problem in
Appendix 3.5 for data u0 ∈ L∞(RN), with Re(u0) ≥ λ, for some λ > 0. Accordingly, a
maximal solution may be global in time or may exist only for t ∈ [0, T ), for some T > 0.
In that case, we have to options:

(i) Either ‖u(., t)‖L∞(RN ) → +∞ as t→ T .

(ii) Or minx∈RN Re(u(x, t))→ 0 as t→ T .

In this paper, we are interested in case (i) which is referred to as finite-time blow-up in
the sequel.

In addition to that, a blowup solution u is called Type I if

lim sup
t→T

(T − t)
1
p−1‖u(., t)‖L∞(RN ) < +∞.

Otherwise, the solution u is called Type II.

In addition to that, T is called the blowup time of u and a point a ∈ RN is called a
blowup point if and only if there exist sequences {(aj, tj)} → (a, T ) as j → +∞ such that

|u1(aj, tj)|+ |u2(aj, tj)| → +∞ as j → +∞.

In our work, we are interested in constructing a blowup solution of (3.1) which is of Type I.
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Let us quickly mention some typical works for this situation (for more details, the readers
can see the introduction in Duong [5] where has treated for the integer case).

(i) For the real case: We first mention to Bricmont and Kupiainen [1], the authors
have constructed a real positive solution to the following equation

∂tu = ∆u+ |u|p−1u, p > 1, (3.3)

which blows up in finite time T , only at the origin and they have also derived the profile of
the solution such that∥∥∥∥∥(T − t)

1
p−1u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C

1 +
√
| ln(T − t)|

,

where f0 is defined by

f0(z) =

(
p− 1 +

(p− 1)2

4p
|z|2
)− 1

p−1

. (3.4)

In addition to that, Herrero and Velázquez derived in [13], the same result with a different
method. Particularly, Merle and Zaag gave in [17], a proof which is simpler than the one
in [1] and proposed the following two-step method (see also the note [15]):

- Reduction of the infinite dimensional problem to a finite dimensional one.

- Solution of the finite dimensional problem thanks to a topological argument based on
Index theory.

Moreover, they also proved the stability of the blowup profile for (3.3). In addition to
that, we would like to mention that this method has been successful in various situations
such as: Ebde and Zaag [6]; Tayachi and Zaag [28] and Ghoul; Nguyen and Zaag [9]; [10]
(with a gradient term) and [11]. We would like to mention Nguyen and Zaag [21] who have
considered the following quasi-critical double source equation

∂tu = ∆u+ |u|p−1u+
µ|u|p−1u

lna(2 + u2)
.

Besides that, we have Duong, Nguyen and Zaag [4], the authors have considered the fol-
lowing non scale invariant equation

∂tu = ∆u+ |u|p−1u lnα(2 + u2).

(ii) For the complex case: The blowup problem for the complex-valued parabolic
equations has been studied intensively by many authors, in particular for the Complex
Ginzburg Landau equation (CGL)

∂tu = (1 + iβ)∆u+ (1 + iδ)|u|p−1u. (3.5)

This is the case of an ealier work of Zaag in [29] for equation (3.5) when β = 0 and δ small
enough. Later, Masmoudi and Zaag generalized in [18] the result of [29] and constructed a
blowup solution for (3.5) with a super critical condition p− δ2 − βδ − βδp > 0.
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Recently, Nouaili and Zaag in [23] have constructed a blowup solution for equation (3.5),
for a critical case where β = 0 and p = δ2.

In addtiion to that, there are many works for equation (3.1), in particular for equation
(3.2). We mention Nouaili and Zaag [22], these authors have constructed for equation (3.2),
a complex solution u = u1 + iu2 which blows up in finite time T only at the origin. Note
that the real and the imaginary parts blow up simultaneously. In particular, [22] leaves
unanswered the question of the derivation of the profile of the imaginary part, and this is
precisely our aim in this paper, not only for equation (3.2), but also for equation (3.1) for
all p > 1.

Besides that, we would like to mention also some classification results, proven by Harada in
[12], for blowup solutions of (3.2) which satisfy some reasonable assumptions. In particular,
in that works, we are able to derive a sharp blowup profile for the imaginary part of the
solution. However, [12] is limited with p = 2.

Recently, we mention Duong [5], the author has treated for the cases where p takes an
arbitrary integer value.

3.1.2 Statement of the result

As we mentioned in the previous section, we only have treated in [5] the case where p ∈
N, p ≥ 2 which the handling of the nonlinear term is much easier. In this work, we do
better and give a proof which holds also for the cases where p /∈ N. We believe we made an
important achievement, we acknowledge that we left unanswered the case where p > 1 and
p /∈ N. From the limitation of the mentioned works in the previous section, it motivates us
to study model (3.1) in general even for an irrational number. More precisely, the following
theorem is our main result:

Theorem 3.1 (Existence of a blowup solution for (3.1) and a sharp discription of its
profile). For each p > 1 and p1 ∈

(
0,min

(
p−1

4
, 1

2

))
, there exists T1(p, p1) > 0 such that for

all T ≤ T1, there exist initial data u(0) = u1(0) + iu2(0) such that equation (3.1) has a
unique solution u on RN × [0, T ) satisfying the following:

i) The solution u blows up in finite time T only at the origin and Re(u) > 0 on RN ×
[0, T ). Moreover, it satisfies the following∥∥∥∥∥(T − t)

1
p−1u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C

1 +
√
| ln(T − t)|

, (3.6)

and ∥∥∥∥∥(T − t)
1
p−1 | ln(T − t)|u2(., t)− g0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

(3.7)

≤ C

1 + | ln(T − t)|
p1
2

,

where f0 is defined in (3.4) and g0 is defined as follows

g0(z) =
|z|2(

p− 1 + (p−1)2

4p
|z|2
) p
p−1

. (3.8)
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ii) There exists a complex function u∗ in C2(RN\{0}) such that u(t)→ u∗ = u∗1 + iu∗2 as
t → T, uniformly on compact sets of RN\{0}, and we have the following asymptotic
behaviors:

u∗(x) ∼
[

(p− 1)2|x|2

8p| ln |x||

]− 1
p−1

, as x→ 0, (3.9)

and

u∗2(x) ∼ 2p

(p− 1)2

[
(p− 1)2|x|2

8p| ln |x||

]− 1
p−1 1

| ln |x||
, as x→ 0. (3.10)

Remark 3.2. We remark that the condition on the parameter p1 < min
(
p−1

4
, 1

2

)
comes

from the definition of the set VA(s) (see in item (i) of Definition 3.1), Proposition 3.18
and Lemma 3.26. Indeed, this condition ensures that the projections of the quadratic term
B2(q2, q2) on the negative and outer parts are smaller than the conditions in VA(s). Then,
we can conclude (3.132) and (3.134) by using Lemma 3.26 and definition of VA(s).

Remark 3.3. We can show that the constructed solution in the above Theorem satisfies
the following asymptotic behaviors:

u(0, t) ∼ κ(T − t)−
1
p−1 , (3.11)

u2(0, t) ∼ − 2Nκ

(p− 1)

(T − t)−
1
p−1

| ln(T − t)|2
, (3.12)

as t → T , (see (3.91) and (3.92)). Therefore, we deduce that u blows up at time T only
at 0. Note that, the real and imaginary parts simultaneously blow up. Moreover, from item
(ii) of Theorem 3.1, the blowup speed of u2 is softer than u1 because of the quantity 1

| ln |x||
(see (3.9) and (3.10)).

Remark 3.4 (A strong singularity of the imaginary part). We observe from (3.10) and
(3.12) that there is a strong sigularity at the neighborhood of a as t → T ; when x close to
0, we have u2(x, t) which becomes large and positive as t → T , however, we always have
u2(0, t)→ −∞ as t→ T. Thus the imaginary part has no constant sign near the singularity.
In particular, if t is near T , there exists b(t) > 0 in RN and b(t) → 0 as t → T such that
at time t, u2(., t) vanishes on some surface close to the sphere of center 0 and radius b(t).
Therefore, we don’t have |u2(x, t)| → +∞ as (x, t)→ (0, T ). This non constant property for
the imaginary part is very surprising to us. In the frame work of semilinear heat equation,
such a property can be encountered for phase invariant complex equations, such as the
Complex Ginzburg-Landau (CGL) equation (see Zaag in [29], Masmoudi and Zaag in [18],
Nouaili-Zaag [23]). As for complex parabolic equation with no phase invariance, this is the
first time such a sign change in available, up to our knowledge. We would like to mention
that such a sign change near the singularity was already observed for the semilinear wave
equation non characteristic blowup point (see Merle and Zaag in [19], [20] and Côte and
Zaag in [3]).

Remark 3.5. For each a ∈ RN , by using the translation ua(., t) = u(.− a, t), we can prove
that ua also satisfies equation (3.1) and the solution blows up at time T only at the point
a. We can derive that ua satisfies all estimates (3.6) - (3.10) by replacing x by x− a.
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Remark 3.6. In Theorem (3.1), the initial data u(0) is given exactly as follows

u(0) = u1(0) + iu2(0),

where

u1(x, 0) = T−
1
p−1

{(
p− 1 +

(p− 1)2|x|2

4pT | lnT |

)− 1
p−1

+
Nκ

2p| lnT |

+
A

| lnT |2

(
d1,0 + d1,1 ·

x√
T

)
χ0

(
16|x|

K0

√
T | lnT |

)}
χ0

(
|x|√
T | lnT |

)
+ U∗(x)

(
1− χ0

(
|x|√
T | lnT |

))
+ 1,

u2(x, 0) = T−
1
p−1χ0

(
|x|√
T | lnT |

){
|x|2

T | lnT |2

(
p− 1 +

(p− 1)2|x|2

4pT | lnT |

)− p
p−1

− 2Nκ

(p− 1)| lnT |2

+

[
A2

| lnT |p1+2

(
d2,0 + d2,1 ·

x√
T

)
+
A5 ln(| ln(T )|)
| lnT |p1+2

(
1

2

xT√
T
· d2,2 ·

x√
T
− Tr(d2,2)

)]
× χ0

(
2|x|

K0

√
T | lnT |

)}
.

where κ = (p− 1)−
1
p−1 , K0 and A are positive constants fixed large enough; d1 = (d1,0, d1,1)

and d2 = (d2,0, d2,1, d2,2) are parameters which we fine tune in our proof; and χ0 ∈ C∞0 [0,+∞)
satisfies ‖χ0‖L∞(RN ) ≤ 1, suppχ0 ⊂ [0, 2] and χ0(x) = 1 for all |x| ≤ 1 and U∗ is given in
(3.86) which is related to the final profile, given in (3.9).

Note that when p ∈ N, we took in [5] a simpler expression for initial data, not in involving
the final profile U∗, nor the (+1) term in u1(0). In particular, adding this (+1) term in our
idea to ensure that the real part of the solution straps positive.

Remark 3.7. We see in (3.17) that the equation satisfied by of u2 is almost “linear” in u2.
Hence, given an arbitrary c0 6= 0, we can change a little in our proof to construct a solution
uc0 = u1,c0 + iu2,c0 in t ∈ [0, T ), which blows up in finite time T only at the origin such that
(3.6) and (3.9) hold and the following holds∥∥∥∥∥(T − t)

1
p−1 | ln(T − t)|u2,c0(., t)− c0g0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ C

| ln(T − t)|
p1
2

,

(3.13)
and

u∗2(x) ∼ 2pc0

(p− 1)2

[
(p− 1)2|x|2

8p| ln |x||

]− 1
p−1 1

| ln |x||
, as x→ 0, (3.14)

Remark 3.8. As in the case p = 2 treated by Nouaili and Zaag [22], and we also mentioned
we suspect the behavior in Theorem 3.1 to be unstable. This is due to the fact that the number
of parameters in the initial data we consider below in Definition 3.2 (see also Remark 3.6
above) is higher than the dimension of the blowup parameters which is N + 1 (N for the
blowup points and 1 for the blowup time).
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Besides that, we can use the technique of Merle [14] to construct a solution which blows
up at arbitrary given points. More precisely, we have the following Corollary:

Corollary 3.9 (Blowing up at k distinct points). For any given points, x1, ..., xk, there
exists a solution of (3.1) which blows up exactly at x1, ..., xk. Moreover, the local behavior
at each blowup point xj is also given by (3.6), (3.7), (3.9), (3.10) by replacing x by x− xj
and L∞(RN) by L∞(|x− xj| ≤ ε0), for some ε0 > 0.

3.1.3 The strategy of the proof

From the singularity of the nonlinear term F (u) = up when p is irrational, we can not apply
the techniques we used in [5] where p ∈ N (also used in [17], [?], ...). We need to modify this
method. We see that, although our nonlinear term in not continuous in C, it is continuous
in the following half plane

{z ∈ C |Re(z) > 0}.

Relying on this property, our problem will be derived by using the techniques which were
used in [5] and the fine control of the positivity of the real part. In fact, the control of
the positivity follows from ideas given in Merle and Zaag [16] (see also Ghoul, Nguyen and
Zaag in [10] where inherited ideas from [16]) which helps us to construct initial data.

In addition to that, we also define a shrinking set S(t) (see in Definition 3.1) which allows
a very fine control of the positivity of the real part. More precisely, it is proceed to control
our solution on three regions P1(t), P2(t) and P3(t) which are given in subsection 3.3.2 and
which we recall here:

- P1(t), called the blowup region, i.e |x| ≤ K0

√
(T − t)| ln(T − t)|: We control our

solution as a perturbation of the intermediate blowup profiles (for t ∈ [0, T )) f0 and g0

given in (3.6) and (3.7), respectively.

- P2(t), called the intermediate region, i.e K0

4

√
(T − t)| ln(T − t)| ≤ |x| ≤ ε0: In this

region, we will control our solution by control the rescaled function U of u (see more
(3.74)) to approach ÛK0(τ) (see in (3.79)), by using a classical parabolic estimates. Roughly
speaking, we control our solution as a perturbation of the final profiles for t = T given in
(3.9) and (3.10).

- P3(t), called the regular region, i.e |x| ≥ ε0
4

: In this region, we control the solution as a
perturbation of initial data (t = 0). Indeed, T will be chosen small by the end of the proof.

Fixing some constants involved in the definition S(t), we can prove that our problem
will be solved by the control of the solution in S(t). Moreover, we prove via a priori
estimates in the different regions P1, P2, P3 that the control is reduced to the control of a
finite dimensional components of the solution. Finally, we may apply the techniques in [5]
to get our conclusion.

We will organize our paper as follows:

- In Section 3.2: We give a formal approach to explain how the profiles given in Theorem
3.1, appear naturally. Moreover, we also approach our problem through two independent
directions: Inner expansion and Outer expansion, in order to show that our profiles are
reasonable.
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- In Section 3.3: We give a formulation for our problem (see equation (3.56)) and, step
by step we give the rigorous proof for Theorem 3.1, assuming some technical estimates.

- In Section 3.4, we prove the techical estimates assumed in Section 3.3.

3.2 Derivation of the profile (formal approach)

In this section, we would like to give a formal approach to our problem which explains
how we derive the profiles for the solution of equation (3.1), given in Theorem (3.1), as
well the asymptotic behaviors of the solution. In particular, we would like to mention that
the main difference between the case p ∈ N and p /∈ N resides in the way we handle the
nonlinear term up. For that reason, we will give a lot of care for the estimates involving
the nonlinear term, and go quickly while giving estimates related to other terms, kindly
refering the reader to [5] where the case p ∈ N was treated.

3.2.1 Modeling the problem

In this part, we will give definitions and special symbols important for our work and explain
how f0 and g0 arise as the blowup profiles for the solution of equation (3.1) as stated in (3.6)
and (3.7). Our aim in this section is to give solid (though formal) hints for the existence of
a solution u(t) = u1(t) + iu2(t) to equation (3.1) such that

lim
t→T
‖u(., t)‖L∞(RN ) = +∞, (3.15)

and u obeys the profiles in (3.6) and (3.7), for some T > 0. As we have pointed out in the
introduction, we are interested in the case where

p /∈ N,

noting that in this case, we already have a difficulty to properly define the nonlinear term
up as a continuous term. In order to overcome this difficulty, we will restrict ourselves to
the case where

Re(u) > 0. (3.16)

Our main challenge in this work will be to show that (3.16) is propagated by the flow, at
least for the initial data we are suggesting (see Definition 3.2 below). Therefore, under the
condition (3.16), by using equation (3.1), we deduce that u1, u2 solve:{

∂tu1 = ∆u1 + F1(u1, u2),
∂tu2 = ∆u2 + F2(u1, u2).

(3.17)

where F1(0, 0) = F2(0, 0) = 0 and for all (u1, u2) 6= 0 we have{
F1(u1, u2) = Re [(u1 + iu2)p] = |u|p cos [p Arg (u1, u2)] ,

F2(u1, u2) = Im [(u1 + iu2)p] = |u|p sin [p Arg (u1, u2)] ,
(3.18)

with |u| = (u2
1 + u2

2)
1
2 and Arg(u1, u2), u1 > 0 is defined as follows:

Arg(u1, u2) = arcsin

[
u2√
u2

1 + u2
2

]
. (3.19)
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Note that, in the case where p ∈ N, we had the following simple expressions for F1, F2 F1(u1, u2) = Re [(u1 + iu2)p] =
∑[ p2 ]

j=0C
2j
p (−1)jup−2j

1 u2j
2 ,

F2(u1, u2) = Im [(u1 + iu2)p] =
∑[ p−1

2 ]
j=0 C2j+1

p (−1)jup−2j−1
1 u2j+1

2 .

(3.20)

Of course, both expressions (3.18) and (3.20) coincide when p ∈ N. In fact, we will follow
our strategy in [5] for p ∈ N and focus mainly on how we handle the nonlinear terms, since
we have a different expression when p /∈ N.
Let us introduce the similarity-variables for u = u1 + iu2 as follows:

w(y, s) = (T − t)
1
p−1u(x, t), y =

x√
T − t

, s = − ln(T − t) and w = w1 + iw2. (3.21)

Then, w1 and w2 are real functions. Moreover, by using (3.17), we obtain a system satisfied
by (w1, w2), for all y ∈ RN and s ≥ − lnT as follows:{

∂sw1 = ∆w1 − 1
2
y · ∇w1 − w1

p−1
+ F1(w1, w2),

∂sw2 = ∆w2 − 1
2
y · ∇w2 − w2

p−1
+ F2(w1, w2).

(3.22)

Then note that studying the asymptotic behavior of u1 + iu2 as t → T is equivalent to
studying the asymptotic behavior of w1 + iw2 in long time. We are first interested in the
set of constant solutions of (3.22), denoted by

S = {(0, 0)} ∪
{
κ

(
cos

(
2kπ

p− 1

)
, sin

(
2kπ

p− 1

))
where κ = (p− 1)−

1
p−1 , and k ∈ N

}
.

We remark that S is infinity if p is irrational. However, from the transformation (3.21), we
slightly precise our goal in (3.15) by requiring in addition that

(w1, w2)→ (κ, 0) as s→ +∞.

Introducing w1 = κ+ w̄1, our goal because to get

(w̄1, w2)→ (0, 0) as s→ +∞.

From (3.22), we deduce that w̄1, w2 satisfy the following system{
∂sw̄1 = Lw̄1 + B̄1(w̄1, w2),
∂sw2 = Lw2 + B̄2(w̄1, w2),

(3.23)

where

L = ∆− 1

2
y · ∇+ Id, (3.24)

B̄1(w̄1, w2) = F1(κ+ w̄1, w2)− κp − p

p− 1
w̄1, (3.25)

B̄2(w̄1, w2) = F2(κ+ w̄1, w2)− p

p− 1
w2. (3.26)

It is important to study the linear operator L and the asymptotic behaviors of B̄1 and
B̄2 as (w̄1, w2)→ (0, 0) which will appear as “quadratic” terms.
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• The properties of L:

In fact, L plays an important role in our analysis. It is easy to find an analysis space such
that operator is self-adjoint. Indeed, L is self-adjoint in D(L) ⊂ L2

ρ(RN), where L2
ρ(RN) is

the weighted space associated to the weight ρ defined by

ρ(y) =
e−
|y|2

4

(4π)
N
2

=
N∏
j=1

ρ(yj), with ρ(ξ) =
e−
|ξ|2

4

(4π)
1
2

, (3.27)

and the spectrum set of L

spec(L) =
{

1− m

2
,m ∈ N

}
. (3.28)

Moreover, we can find eigenfunctions which correspond to each eigenvalue 1− m
2
,m ∈ N:

- The one space dimensional case: the eigenfunction corresponding to the eigenvalue
1− m

2
is hm, the rescaled Hermite polynomial given as follows

hm(y) =

[m2 ]∑
j=0

(−1)jm!ym−2j

j!(m− 2j)!
. (3.29)

In particular, we have the following orthogonality property:∫
R
hihjρdy = i!2iδi,j, ∀(i, j) ∈ N2.

- The higher dimensional case: N ≥ 2, the eigenspace Em, corresponding to the eigen-
value 1− m

2
is defined as follows:

Em =

〈
hβ(y) = hβ1(y1)...hβN (yN)

∣∣∣∣∣|β| =
N∑
i=1

βi = m and β = (β1, ..., βN) ∈ NN
〉
.

(3.30)

Accordingly, we can represent an arbitrary function r ∈ L2
ρ(RN) as follows:

r(y) =
∑

β,β∈NN
rβhβ(y),

where rβ is the projection of r on hβ for any β ∈ NN which is defined as follows:

rβ = Pβ(r) =

∫
rkβρdy,∀β ∈ Nn, (3.31)

with

kβ(y) =
hβ
‖hβ‖2

L2
ρ

. (3.32)

• The asymptotic behaviors of B̄1(w̄1, w2), B̄2(w̄1, w2): The following holds:

B̄1(w̄1, w2) =
p

2κ
w̄2

1 +O(|w̄1|3 + |w2|2), (3.33)

B̄2(w̄1, w2) =
p

κ
w̄1w2 +O

(
|w̄1|2|w2|

)
+O

(
|w2|3

)
, (3.34)

as (w̄1, w2) → (0, 0). Note that although we have here the expressions of nonlinear terms
F1 and F2 which are different from the case p ∈ N (see (3.18) and (3.20)), the expressions

coincide, since we have w ∼ κ = (p− 1)−
1
p−1 in all case (see Lemma 3.24 below).
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3.2.2 Inner expansion

In this part, we study the asymptotic behaviors of the solution in L2
ρ(RN). Moreover, for

simplicity we suppose that N = 1, and we recall that we aim at constructing a solution
of (3.23) such that (w̄1, w2) → (0, 0). Note first that the spectrum of L contains two
positive eigenvalues 1, 1

2
, a neutral eigenvalue 0 and all the other ones are strictly negative.

So, in the representation of the solution in L2
ρ(R), it is reasonable to think that the part

corresponding to the negative spectrum is easily controlled. Imposing a symmetry condition
on the solution with respect of y, it is reasonable to look for a solution w̄1, w2 of the form:

w̄1 = w̄1,0h0 + w̄1,2h2,

w2 = w2,0h0 + w2,2h2.

From the assumption that (w̄1, w2) → (0, 0), we see that w̄1,0, w̄1,2, w2,0, w2,2 → 0 as s →
+∞. We see also that we can understand the asymptotic behaviors of w̄1 and w2 in L2

ρ(RN)
from the study of the asymptotic behaviors of w̄1,0, w̄1,2, w2,0 and w2,2.

We now project equation (3.23) on h0 and h2. Using the asymptotic behaviors of B̄1 and
B̄2 in (3.33) and (3.34), we get the following ODEs for w̄1,0, w̄1,2, w2,0 and w2,2

∂sw̄1,0 = w̄1,0 +
p

2κ

(
w̄2

1,0 + 8w̄2
1,2

)
(3.35)

+ O(|w̄1,0|3 + |w̄1,2|3) +O(|w2,0|2 + |w2,2|2),

∂sw̄1,2 =
p

κ

(
w̄1,0w̄1,2 + 4w̄2

1,2

)
(3.36)

+ O(|w̄1,0|3 + |w̄1,2|3) +O(|w2,0|2 + |w2,2|2),

∂sw2,0 = w2,0 +
p

κ
[w̄1,0w2,0 + 8w̄1,2w2,2] (3.37)

+ +O((|w̄1,0|2 + |w̄1,2|2)(|w2,0|+ |w2,2|)) +O(|w2,0|3 + |w2,2|3),

∂sw2,2 =
p

κ
[w̄1,0w2,2 + w̄1,2w2,0 + 8w̄1,2w2,2] (3.38)

+ O((|w̄1,0|2 + |w̄1,2|2)(|w2,0|+ |w2,2|)) +O(|w2,0|3 + |w2,2|3).

Assuming that
w̄1,0, w2,0, w2,2 � w̄1,2, (3.39)

and

w̄1,0, w2,0, w2,2 .
1

s2
, (3.40)

as s→ +∞.
Similarly in Duong [5] where the author have treated for p ∈ N, we also obtain the

following asymptotic behaviors of w̄1,0, w̄1,2, w2,0 and w2,2

w̄1,0 = O

(
1

s2

)
,

w̄1,2 = − κ

4ps
+O

(
ln s

s2

)
,

w2,0 = O

(
1

s3

)
,

w2,2 =
c2,2

s2
+O

(
ln s

s3

)
for some c2,2 ∈ R,
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as s→ +∞ under the assumptions in (3.39) and (3.40).

Thus, we have

w1 = κ− κ

4ps
(y2 − 2) +O

(
1

s2

)
, (3.41)

w2 =
c2,2

s2
(y2 − 2) +O

(
ln s

s3

)
, (3.42)

in L2
ρ(R) for some c2,2 in R. Note that, by using parabolic regularity, we can derive that the

asymptotic behaviors (3.41) and (3.42) also hold for all |y| ≤ K, where K is an arbitrary
positive constant.

3.2.3 Outer expansion

As for the inner expansion, we here also assume that N = 1. We see that asymptotic
behaviors (3.41) and (3.42) can not give us a shape, since they hold uniformly on compact
sets (where we only see the constant solution (κ, 0)) and not in larger sets. Fortunately, we
observe from (3.41) and (3.42) that the profile may be based on the following variable:

z =
y√
s
. (3.43)

This motivates us to look for solutions of the form:

w1(y, s) =
∞∑
j=0

R1,j(z)

sj
,

w2(y, s) =
∞∑
j=1

R2,j(z)

sj
.

Note that, our purpose is to construct a solution where the real part is positive. So, it is
reasonable to assume that w1 > 0 and it follows that R1,0(z) > 0 for all z ∈ R. Besides
that, we also assume that R1,j, R2,j are smooth and have bounded derivatives. From the
definitions of F1 and F2, given in (3.18), we have the following

∣∣∣∣∣F1

(
∞∑
j=0

R1,j(z)

sj
,

∞∑
j=1

R2,j(z)

sj

)
−Rp

1,0(z)−
pRp−1

1,0 (z)R1,1(z)

s

∣∣∣∣∣ ≤ C(z)

s2
,∣∣∣∣∣F2

(
∞∑
j=0

R1,j(z)

sj
,
∞∑
j=1

R2,j(z)

sj

)
−
pRp−1

1,0 (z)R2,1(z)

s

− 1

s2

(
pRp−1

1,0 (z)R2,2 + p(p− 1)Rp−2
1,0 (z)R1,1(z)R2,1(z)

)∣∣∣∣ ≤ C(z)

s3
.
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Thus, for each z ∈ R, by using system (3.22), taking s → +∞, we obtain the following
system:

0 = −1

2
R′1,0(z) · z − R1,0(z)

p− 1
+Rp

1,0(z), (3.44)

0 = −1

2
zR′1,1(z)− R1,1

p− 1
(z) + pRp−1

1,0 (z)R1,1(z) +R′′1,0(z) +
zR′1,0(z)

2
, (3.45)

0 = −1

2
R′2,1(z) · z − R2,1

p− 1
(z) + pRp−1

1,0 (z)R2,1(z), (3.46)

0 = −1

2
R′2,2(z).z − R2,2(z)

p− 1
+ pRp−1

1,0 (z)R2,2(z) +R′′2,1(z) +R2,1(z) (3.47)

+
1

2
R′2,1(z) · z + p(p− 1)Rp−2

1,0 (z)R1,1(z)R2,1(z).

This system is quite similar to [5] (where p ∈ N), and we can find the formulas of
R1,0, R1,1, R2,1 and R2,2 as follows:

R1,0(z) =
(
p− 1 + b|z|2

)− 1
p−1 , (3.48)

R1,1(z) =
(p− 1)

2p
(p− 1 + bz2)−

p
p−1 (3.49)

− p− 1

4p
z2 ln(p− 1 + bz2)(p− 1 + bz2)−

p
p−1 ,

R2,1(z) =
z2

(p− 1 + bz2)
p
p−1

, (3.50)

R2,2(z) = −2(p− 1 + bz2)−
p
p−1 +H2,2(z), (3.51)

where b = (p−1)2

4p
and

H2,2(z) = C2,1(p)z2(p− 1 + bz2)−
2p−1
p−1 + C2,2(p)z2 ln(p− 1 + bz2)(p− 1 + bz2)−

p
p−1

+ C2,3(p)z2 ln(p− 1 + bz2)(p− 1 + bz2)−
2p−1
p−1 ,

for some C2,1, C2,2 and C2,3 in R.

3.2.4 Matching asymptotic behaviors

By comparing the inner expansion and the outer expansions and fixing several constants,
we then have the following profiles for w1 and w2{

w1(y, s) ∼ Φ1(y, s),
w2(y, s) ∼ Φ2(y, s),

(3.52)

where

Φ1(y, s) =

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− 1
p−1

+
Nκ

2ps
, (3.53)

Φ2(y, s) =
|y|2

s2

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− p
p−1

− 2Nκ

(p− 1)s2
, (3.54)

for all (y, s) ∈ RN × (0,+∞). In the next section, we will give a rigorous proof for the
existence of a solution (w1, w2) of equation (3.22) satisfying (3.52).
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3.3 Existence of a blowup solution in Theorem 3.1

In Section 3.2, we adopted a formal approach in order to justify how profiles f0 and g0 arise
as blowup profiles for the solution of equation (3.1), given in Theorem 3.1. In this section,
we give a rigorous proof to justify the existence of a solution approaching those profiles.

3.3.1 Formulation of the problem

In this subsection, we aim at giving a complete formulation of our problem in order to
justify the formal approach which is given in the previous section. We introduce{

w1 = Φ1 + q1,
w2 = Φ2 + q2,

(3.55)

where Φ1,Φ2 are defined in (3.53) and (3.54), respectively. Then, by using (3.22), we derive
the following system, satisfied by (q1, q2)

∂s

(
q1

q2

)
=

(
L + V 0

0 L + V

)(
q1

q2

)
+

(
V1,1 V1,2

V2,1 V2,2

)(
q1

q2

)
+

(
B1(q1, q2)

B2(q1, q2)

)
+

(
R1

R2

)
, (3.56)

where linear operator L is defined in (3.24) and:

- Potential functions V, V1,1, V1,2, V2,1 and V2,2 are defined as follows

V (y, s) = p

(
Φp−1

1 − 1

p− 1

)
, (3.57)

V1,1(y, s) = ∂u1F1(u1, u2)|(u1,u2)=(Φ1,Φ2) − pΦp−1
1 , (3.58)

V1,2(y, s) = ∂u2F1(u1, u2)|(u1,u2)=(Φ1,Φ2), (3.59)

V2,1(y, s) = ∂u1F2(u1, u2)|(u1,u2)=(Φ1,Φ2), (3.60)

V2,2(y, s) = ∂u2F2(u1, u2)|(u1,u2)=(Φ1,Φ2) − pΦp−1
1 . (3.61)

- Quadratic terms B1(q1, q2) and B2(q1, q2) are defined as follows:

B1(q1, q2) = F1 (Φ1 + q1,Φ2 + q2)− F1(Φ1,Φ2)− ∂u1F1(u1, u2)|(u1,u2)=(Φ1,Φ2)q1(3.62)

− ∂u2F1(u1, u2)|(u1,u2)=(Φ1,Φ2)q2,

B2(q1, q2) = F2 (Φ1 + q1,Φ2 + q2)− F2(Φ1,Φ2)− ∂u1F2(u1, u2)|(u1,u2)=(Φ1,Φ2)q1

− ∂u2F2(u1, u2)|(u1,u2)=(Φ1,Φ2)q2. (3.63)

- Rest terms R1(y, s) and R2(y, s) are defined as follows:

R1(y, s) = ∆Φ1 −
1

2
y · ∇Φ1 −

Φ1

p− 1
+ F1(Φ1,Φ2)− ∂sΦ1, (3.64)

R2(y, s) = ∆Φ2 −
1

2
y · ∇Φ2 −

Φ2

p− 1
+ F2(Φ1,Φ2)− ∂sΦ2, (3.65)

where F1, F2 are defined in (3.18).
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By the linearization around Φ1,Φ2, our problem is reduced to constructing a solution
(q1, q2) of system (3.56), satisfying

‖q1(., s)‖L∞(RN ) + ‖q2(., s)‖L∞(RN ) → 0 as s→ +∞.

Looking at system (3.56), we already know some of the main properties of L (see page 121).
As for potentials Vj,k where j, k ∈ {1, 2}, they admit the following asymptotic behaviors:

‖V1,1(., s)‖L∞(RN ) + ‖V2,2(., s)‖L∞(RN ) ≤
C

s2
,

‖V1,2(., s)‖L∞(RN ) + ‖V2,1(., s)‖L∞(RN ) ≤
C

s
,∀s ≥ 1,

(see Lemma 3.25 below).

Regarding B1 and B2 which are considered as “quadratic” terms, we have in fact the
following estimates

‖B1(q1, q2)‖L∞(RN ) ≤
CA4

s
min(2,p)

2

,

‖B2(q1, q2)‖L∞(RN ) ≤
CA2

s1+min( p−1
4
, 1
2)
,

provided that q1 and q2 are small in some senses (see Lemma 3.26 below).

In addition to that, we also mention R1 and R2 which are considered as rest terms, satisfying
in fact the following asymptotic behaviors

‖R1(., s)‖L∞(RN ) ≤
C

s
,

‖R2(., s)‖L∞(RN ) ≤
C

s2
,

(see Lemma 3.27 below).

As a matter of fact, the dynamic of equation (3.56) will mainly depends on the main linear
operator (

L + V 0
0 L + V

)
,

and the effects of the other terms will be less important except on the zero mode of this
equation. For that reason, we need to understand the dynamics of L+V . Since the spectral
properties of L were already introduced in Section 3.2.1, we will focus here on the effect of
V .

i) Effect of V inside the blowup region {|y| ≤ K0

√
s} with K0 > 0 : It satisfies the

following estimate:
V → 0 in L2

ρ(|y| ≤ K0

√
s) as s→ +∞,

which means that the effect of V will be negligible with respect of the effect of L, except
perhaps on the null mode of L (see item (ii) of Proposition 3.18 below).

ii) Effect of V outside the blowup region: For each ε > 0, there exist Kε > 0 and sε > 0
such that

sup
y√
s
≥Kε,s≥sε

∣∣∣∣V (y, s)−
(
− p

p− 1

)∣∣∣∣ ≤ ε.
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Since 1 is the biggest eigenvalue of L (see (3.28)), the operator L + V behaves as one
with with a fully negative spectrum outside blowup region {|y| ≥ Kε

√
s}, which makes the

control of the solution in this region easy.

Since the asymptotic behavior of potential V inside and outside the blowup region is
different, we will consider the dynamics of the solution for |y| ≤ 2K0

√
s and for |y| ≥ K0

√
s

separately for some K0 to be fixed large. For that purpose, we introduce the following
cut-off function

χ(y, s) = χ0

(
|y|

K0

√
s

)
, (3.66)

where χ0 is defined as a cut-off function

χ0 ∈ C∞0 [0,+∞), χ0(x) =

{
1 for x ≤ 1,
0 for x ≥ 2,

and ‖χ0‖L∞(RN ) ≤ 1. (3.67)

Hence, it is reasonable to consider separately the solution in the blowup region {|y| ≤
2K0

√
s} and in the regular region {|y| ≥ K0

√
s}. More precisely, let us define the following

notation for all functions r in L∞(RN) as follows

r = rb + re with rb = χr and re = (1− χ)r. (3.68)

Note in particular that supp(rb) ⊂ B(0, 2K0

√
s) and supp(re) ⊂ RN \B(0, K0

√
s). Besides

that, we also expand rb in L2
ρ(RN) according to the spectrum of L (see Section 3.2.1 above):

rb(y) = r0 + r1 · y +
1

2
yT · r2 · y − Tr (r2) + r−(y), (3.69)

where r0 is a scalar, r1 is a vector in RN and r2 is a N ×N matrix defined by

r0 =

∫
RN
rbρ(y)dy,

r1 =

∫
RN
rb
y

2
ρ(y)dy,

r2 =

(∫
RN
rb

(
1

4
yjyk −

1

2
δj,k

)
ρ(y)dy

)
1≤j,k≤N

,

with Tr(r2) being the trace of matrix r2. The reader should keep in mind that r0, r1, r2 are
only the coordinates of rb, not for r. Note that rm is the projection of rb on the eigenspace
of L corresponding to the eigenvalue λ = 1− m

2
. Accordingly, r− is the projection of rb on

the negative part of the spectrum of L. As a consequence of (3.68) and (3.69), we see that
every r ∈ L∞(RN) can be decomposed into 5 components as follows:

r = rb + re = r0 + r1 · y +
1

2
yT · r2 · y − Tr(r2) + r− + re. (3.70)

3.3.2 The shrinking set

According to (3.21) and (3.55), our goal is to construct a solution (q1, q2) of system (3.56)
such that they satisfy the following estimates:

‖q1(., s)‖L∞(RN ) + ‖q2(., s)‖L∞(RN ) → 0 as s→ +∞. (3.71)
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Here, we aim at constructing a shrinking set to 0. Then, the control of (q1, q2) → 0,
will be a consequence of the control of (q1, q2) in this shrinking set. In addition to that, we
have to control the solution q1 so that

w1 = q1 + Φ1 > 0, (3.72)

(this is equivalent to have u1 > 0) and it is one of the main difficults in our analysis. As
a matter of fact, the shrinking sets which were constructed in [17] by Merle and Zaag or
even in [5], are not sharp enough to ensure (3.72). In other words, our set has to shrink to
0 as s→ +∞ and ensure that the real part of the solution to (3.22) is always positive. In
fact, the positivity is the first thing to be solved. For the control of the positivity of the
real part, we rely on the ideas, given by Merle and Zaag [16] for the control of the solution
of the following equation:

∂tu = ∆u− η |∇u|
2

u
+ |u|p−1u, u ∈ R. (3.73)

In [16], the authors needed a sharp control of u and |∇u| near zero, in order to bound

the term |∇u|2
u
. Here, we will use their ideas in order to control u1 near zero and ensure

its positivity. As in [16], we will control the solution differently in 3 overlapping regions
defined as follows:

For K0 > 0, α0 > 0, ε0 > 0, t ∈ [0, T ) and s = − ln(T − t), we introduce a cover of RN as
follows

RN ⊂ P1(t) ∪ P2(t) ∪ P3(t),

where

P1(t) = {x| |x| ≤ K0

√
(T − t)| ln(T − t)|} = {x| |y| ≤ K0

√
s} = {x| |z| ≤ K0},

P2(t) =

{
x| K0

4

√
(T − t)| ln(T − t)| ≤ |x| ≤ ε0

}
=

{
x| K0

4

√
s ≤ |y| ≤ ε0e

s
2

}
=

{
x| K0

4
≤ |z| ≤ ε0√

s
e
s
2

}
,

P3(t) =
{
x| |x| ≥ ε0

4

}
=

{
x| |y| ≥ ε0e

s
2

4

}
=

{
x| |z| ≥ ε0

4
√
s
e
s
2

}
,

with

y =
x√
T − t

and z =
y√
s

=
x√

(T − t)| ln(T − t)|
.

In the following, let us explain how we derive the positivity condition from the various
estimate we impose on the solution in the 3 regions. Then

a) In P1(t), the blowup region: In this region, we control the positivity of u1 by controlling
the positivity of w1 (see the similarity variables given in (3.21)). More precisely, as
we mentioned in Subsection 3.1.3, w will be controlled as a pertubation of the profiles
Φ1,Φ2 ((3.53) and (3.54)). By using the positivity of Φ1 and a good estimate of the
distance of w1 to these profiles, we may deduce the positivity of w1, which leads to
the positivity of u1.
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b) In P2(t), the intermediate region: In this region, we control u via a rescaled function
U of u as follows:

U(x, ξ, τ) = (T − t(x))−
1
p−1u(x+ ξ

√
T − t(x), t(x) + τ(T − t(x))), (3.74)

where t(x) is uniquely defined for |x| small enough by

|x| = K0

4

√
(T − t(x)) |ln(T − t(x))|. (3.75)

We also introduce

θ(x) = T − t(x). (3.76)

We see that, on the domain (ξ, τ) ∈ RN ×
[
− t(x)
T−t(x)

, 1
)

, U satisfies the following

equation:

∂τU = ∆ξU + Up. (3.77)

By using classical parabolic estimates on U, we can prove the following the rescaled U
at time τ(x, t), has a behavior similar to ÛK0(τ(x, t)), for all |ξ| ≤ α0

√
| ln(T − t(x)|

where

τ(x, t) =
t− t(x)

T − t(x)
,

and ÛK0(τ) is unique solution of the following ODE ∂τ ÛK0 = Ûp
K0

(τ),

ÛK0(0) =
(
p− 1 +

(p−1)2K2
0

64p

)− 1
p−1

.
(3.78)

In particular, we can solve (3.78) with an explicit solution:

ÛK0(τ) =

(
(p− 1)(1− τ) +

(p− 1)2K2
0

64p

)− 1
p−1

,∀τ ∈ [0, 1). (3.79)

Then, by using the positivity of ÛK0 , we derive that u1 > 0, in this region.

c) In P3(t), the regular region: We control the solution in this region as a perturbation of
initial data, thanks to the well-posedness property of the Cauchy problem for equation
(3.1), to derive that our solution is close to initial data, (in fact, T will be taken small
enough). Therefore, if initial data is strictly larger than some constant, we will derive
the positivity of u1.

The above strategy makes the real part of our solution becomes positive. Therefore, it
remains to control the solution in order to get

‖q1(., s)‖L∞(RN ) + ‖q2(., s)‖L∞(RN ) → +∞,

(see (3.55)). This part is in fact quite similar to the integer case, done in [5].

From the above arguments, we give in the following our definition of the shrinking set.
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Definition 3.1 (A shrinking set to 0). For all T > 0, K0 > 0, α0 > 0, ε0 > 0, A > 0, δ0 >
0, η0 > 0, p1 ∈

(
0,min

(
p−1

4
, 1

2

))
and t ∈ [0, T ), we define the set S(T,K0, α0, ε0, A, δ0, η0, t) ⊂

C([0, t], L∞(RN)) (or S(t) for short) as follows: u = u1 + iu2 ∈ S(t) if the following condi-
tion hold:

(i) Control in the blowup region P1(t): We have (q1, q2)(s) ∈ Vp1,K0,A(s) where s =
− ln(T − t), (q1, q2) is defined as in (3.55) and Vp1,K0,A(s) = VA(s) ∈ (L∞(RN))2 is
the set of all function (q1, q2) ∈ (L∞(RN))2 such that the following holds:

|q1,0(s)| ≤ A

s2
and |q2,0(s)| ≤ A2

sp1+2
,

|q1,j(s)| ≤
A

s2
and |q2,j(s)| ≤

A2

sp1+2
, ∀1 ≤ j ≤ N,

|q1,j,k(s)| ≤
A2 ln s

s2
and |q2,j,k(s)| ≤

A5 ln s

sp1+2
,∀1 ≤ j, k ≤ N,∥∥∥∥q1,−(y, s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

s2
and

∥∥∥∥q2,−(y, s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A2

s
p1+5

2

,

‖q1,e(., s)‖L∞(RN ) ≤
A2

√
s

and ‖q2,e(., s)‖L∞(RN ) ≤
A3

s
p1+2

2

,

where the coordinates of q1 and q2 are introduced in (3.70) with r = q1 or r = q2.

(ii) Control in the intermediate region P2(t): For all |x| ∈
[
K0

4

√
(T − t)| ln(T − t)|, ε0

]
,

τ(x, t) = t−t(x)
T−t(x)

and |ξ| ≤ α0

√
| ln(T − t(x))|, we have∣∣∣U(x, ξ, τ(x, t))− ÛK0(τ(x, t))

∣∣∣ ≤ δ0,

where ÛK0 defined in (3.79).

iii Control in the regular region P3(t): For all |x| ≥ ε0
4

,

|u(x, t)− u(x, 0)| ≤ η0,∀i = 0, 1.

Finally, we also define the set S∗(T,K0, α0, ε0, A, δ0, η0) ⊂ C([0, T ), L∞(RN)) as the set of
all u ∈ C([0, T ), L∞(RN) such that

u ∈ S(T,K0, α0, ε0, A, δ0, η0, t),∀t ∈ [0, T ).

The following lemma, we show the estimates of the fuction being in VA(s) and this
lemma is given in [5]:

Lemme 3.10. For all A ≥ 1, s ≥ 1, if we have (q1, q2) ∈ VA(s), then the following estimates
hold:

(i) We have

‖q1‖L∞(RN ) ≤
CA2

√
s

and ‖q2‖L∞(RN ) ≤
CA3

s
p1+2

2

.
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(ii) For all y ∈ RN , we have

|q1,b(y)| ≤ CA2 ln s

s2
(1+ |y|3), |q1,e(y)| ≤ CA2

s2
(1+ |y|3) and |q1| ≤

CA2 ln s

s2
(1+ |y|3),

and

|q2,b(y)| ≤ CA

s
p1+5

2

(1 + |y|3), |q2,e(y)| ≤ CA3

s
p1+5

2

(1 + |y|3) and |q2| ≤
CA3

s
p1+5

2

(1 + |y|3).

and

where C will henceforth be an constant which depends only on K0.

Proof. See Lemma 3.2, given in [5].

As matter of fact, if u ∈ S(t) then, from item (i) of Lemma 3.10, the similarity variables
(3.21) and (3.55), we derive the following∥∥∥∥∥(T − t)

1
p−1u(., t)− f0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ CA2

1 +
√
| ln(T − t)|

,(3.80)

and∥∥∥∥∥(T − t)
1
p−1 | ln(T − t)|u2(., t)− g0

(
.√

(T − t)| ln(T − t)|

)∥∥∥∥∥
L∞(RN )

≤ CA3

1 + | ln(T − t)|
p1
2

.(3.81)

We see in the definition of S(t) that there are many parameters, so the dependence of
the constants on them is very important in our analysis. We would like to mention that,
we use the notation C for these constants which depend at most on K0. Otherwise, if the
constant depends on K0, A1, A2, ... we will write C(A1, A2, ...).

We now prove in the following lemma the positivity of Re(u) at time t if u belongs to
S(t) (this is a crucial estimate in our argument):

Lemme 3.11 (The positivity of the real part of functions trapped in S(t)). For all K0, A ≥
1 α0 > 0, δ0 <

Û(0)
2
, η0 <

1
2
, there exists ε1(K0) > 0 such that for all ε0 ≤ ε1 there exists

T1(A,K0, ε0) such that for all T ≤ T1 the following holds: if u ∈ S(T,K0, α0, ε0, A, δ0, η0, t)
for all t ∈ [0, t1] for some t1 ∈ [0, T ), and Re(u(0)) ≥ 1 for all |x| ≥ ε0

4
, then

Re(u(x, t)) ≥ 1

2
,∀(x, t) ∈ RN× ∈ [0, t1].

Proof. We write that u = u1 + iu2, with Re(u) = u1. Then, we estimate u1 on the 3 regions
P1(t), P2(t) and P3(t).

+ The estimate in P1(t): We use the fact that (q1, q2) ∈ VA(s) together with item (i)
in Lemma 3.10, and the definition (3.55) of q1 and the definition of Φ1 given in (3.53), to
derive the following: for all |y| ≤ K0

√
s,∣∣∣∣w1(y, s)− f0

(
y√
s

)∣∣∣∣ ≤ CA2

√
s
.
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Using the definition (3.53) of Φ1, we write for all |y| ≤ 2K0

√
s

w1(y, s) ≥ f0

(
y√
s

)
− CA2

√
s

≥
(
p− 1 +

(p− 1)2

4p
K2

0

)− 1
p−1

− CA2

√
s
,

By definition (3.21) of the similarity variables, we implies that

(T − t)
1
p−1u1(x, t) ≥

(
p− 1 +

(p− 1)2

4p
K2

0

)− 1
p−1

− CA2√
| ln(T − t)|

,

for all |x| ≤ K0

√
(T − t)| ln(T − t)|.

Therefore,

u1(x, t) ≥ (T − t)−
1
p−1

[(
p− 1 +

(p− 1)2

4p
K2

0

)− 1
p−1

− CA2√
| ln(T − t)|

]
≥ 1

2
,

provided that T ≤ T1,1(K0, A).

+ The estimate in P2(t): Since we have u ∈ S(t), using item (ii) in the Definition 3.1,

we derive that: for all x ∈
[
K0

4

√
(T − t)| ln(T − t)|, ε0

]
∣∣∣U(x, 0, τ(x, t))− ÛK0(τ(x, t))

∣∣∣ ≤ δ0,

where τ(x, t) = t−t(x)
T−t(x)

. In particular, by using the definition of t(x) given in (3.75) and the
fact that

|x| ≥ K0

4

√
(T − t)| ln(T − t)|,

we have τ(x, t) ∈ [0, 1). Therefore,

U1(x, 0, τ(x, t)) ≥ ÛK0(τ(x, t))− δ0

≥ ÛK0(0)− δ0

≥ 1

2
ÛK0(0) =

1

2

(
p− 1 +

(p− 1)2

4p

K2
0

16

)− 1
p−1

,

provided that δ0 ≤ 1
2
ÛK0(0). By definition (3.74) of U, this implies that

(T − t(x))
1
p−1u1(x, t) = U1(x, 0, τ(x, t)) ≥ 1

2

(
p− 1 +

(p− 1)2

4p

K2
0

16

)− 1
p−1

.

Using the definition of t(x) in (3.75) we write

T − t(x) ∼ 8

K2
0

|x|2

| ln |x||
, as |x| → 0.

Therefore, there exists ε1,1(K0) > 0 such that for all ε0 ≤ ε1,1, and for all |x| ≤ ε0, we have

(T − t(x))−
1
p−1

1

2

(
p− 1 +

(p− 1)2

4p

K2
0

16

)− 1
p−1

≥ 1

2
.
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Then, we conclude that for all |x| ∈
[
K0

4

√
(T − t)| ln(T − t)|, ε0

]
, we have

u1(x, t) ≥ 1

2
,

provided that T ≤ T2,1(ε0, K0).

+ The estimate in P3(t): It is very easy to control our solution in this region. Indeed,
item (iii) of Definition 3.1, we have for all |x| ≥ ε0

4

u1(x, t) ≥ Re(u)(x, 0)− η0 ≥ 1− 1

2
=

1

2
,

provided that η0 ≤ 1
2
. This concludes the proof of Lemma 3.11.

Thanks to Lemma 3.11, we can handle the singularity of the nonlinear term up when
our solution is in S(T,A, α0, ε0, A, δ0, η0). In addition to that, from item (i) of Lemma 3.11,
(3.80) and (3.81) our problem is reduced to finding parameters T,K0, α0, ε0, A, δ0, η0, and
constructing initial data u(0) ∈ L∞(RN) such that the solution u of equation (3.1), exists
on [0, T ) and satisfies

u ∈ S∗(T,K0, α0, ε0, A, δ0, η0). (3.82)

3.3.3 Preparing initial data and the existence of a solution trapped
in S(t)

In this subsection, we would like to define initial data u(0), which depend on some param-
eters to be fine-tuned in order to get a good solution. The following is our definition:

Definition 3.2 (Preparing of initial data). For each A ≥ 1, T > 0, d1 = (d1,0, d1,1) ∈
R1 × RN , and d2 = (d2,0, d2,1, d2,1) ∈ R × RN × RN2

, we introduce the following functions
defined at s0 = − lnT :

φ1,K0,A,d1(y, s0) =
A

s2
0

(d1,0 + d1,1 · y)χ0

(
16|y|
K0

√
s0

)
,

φ2,K0,A,d2(y, s0) =

(
A2

sp1+2
0

(d2,0 + d2,1 · y) +
A5 ln s0

sp1+2
0

(
1

2
yT · d2,2 · y − Tr (d2,2)

))
χ0

(
16|y|
K0

√
s0

)
.

We also define initial data uK0,A,d1,d2(0) = u1,K0,A,d1(0) + iu2,K0,A,d2(0) for equation (3.1) as
follows:

u1,K0,A,d1(x, 0) = T−
1
p−1

{
φ1,K0,A,d1

(
x√
T
,− lnT

)
+ Φ1

(
x√
T
,− lnT

)}
χ1 (x)(3.83)

+ U∗(x)(1− χ1(x)) + 1,

u2,K0,A,d2(x, 0) = T−
1
p−1

{
φ2,K0,A,d2

(
x√
T
,− lnT

)
+ Φ2

(
x√
T
,− lnT

)}
χ1(x),(3.84)

where Φ1 and Φ2 are defined in (3.53), (3.54) and χ1(x) is defined as follows

χ1(x) = χ0

(
|x|√
T | lnT |

)
, (3.85)
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with χ0 defined in (3.67), and U∗ ∈ C1(RN\{0},R) is defined for all x ∈ RN , x 6= 0

U∗(x) =


[

(p−1)2|x|2
8p| ln |x||

]− 1
p−1

if |x| ≤ C∗,

1
1+|x|2 if |x| ≥ 1,

U∗(x) > 0 for all x 6= 0,

(3.86)

where C∗ is a fixed constant strictly less than 1 enough, and U∗ satisfies the following
property: for each ε0 ≤ C∗

2
we have

U∗(x) ≤ U∗(ε0), for all |x| ≥ ε0. (3.87)

Remark 3.12. Roughly speaking, the critical data we done here are superposition of two
items:

- T−
1
p−1 {φ1 + Φ1} in P1(0)

- U∗ in P2(0).

The first form is well-known in previous construction problems. As for the second, we
borrowed it from Merle and Zaag in [16]. Note that U∗ is the candidate for the final profile
of the real part, as we can see from own main result in Theorem 3.1. More crucially,
we draw your attention to the fact that in comparision with [16], we add here +1 to the
expression in (3.83), and this term will allow us to have the initial condition

Re(u(0)) ≥ 1,

which is essential to make the nonlinear term up well-defined, and the Cauchy problem
solvable (see Appendix 3.5). This is an important idea of ours.

From the above definition, we show in the following lemma some rough properties of
the initial data.

Lemme 3.13. For all K0 ≥ 1, A ≥ 1, |d1|≤2, |d2| ≤ 2, and for all ε0 ≤ C∗

2
(where C∗ is

introduced in (3.87)), there exists T2(ε0, K0, A) > 0 such that for all T ≤ T2, if u(0) =
uK0,A,d1,d2(0) is defined as in Definition 3.2, then the following holds:

(i) The initial data belongs to L∞(RN) and satisfies the following

‖u(., 0)‖L∞(|x|≥ε0) ≤ 1 +

(
(p− 1)2|ε0|2

8p| ln ε0|

)− 1
p−1

.

(ii) The real part of the initial data, Re(u(0)) is positive. In particular,

Re(u(x, 0)) ≥ 1,∀x ∈ RN .

Proof.
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(i) It is obvious to see that the initial data belongs to L∞(RN) with the assumptions in this
Lemma. It remains to prove the estimate in item (i). We now take ε0 ≤ C∗

2
, and we use

definition of χ1 in (3.85) to deduce that supp(χ1) ⊂ {|x| ≤ 2
√
T | lnT |}. Moreover, we have

√
T | lnT | → 0 as T → 0.

Then, we have √
T | lnT | ≤ ε0

4
,

provided that T ≤ T2,1(ε0). Hence,

supp(χ1) ⊂ {|x| ≤ ε0
2
},

Hence, it follows the definition of u(0) that: for all |x| ≥ ε0, we have

u(x, 0) = U∗(x) + 1,

Using (3.87), our result follows.

(ii) We see in the definition of u(0) that we have supp(φ1,K0,A,d1) ⊂ {|y| ≤ K0

8

√
s0} and we

have the following

‖φ1,K0,A,d1

(
x√
T
,− lnT

)
‖L∞(RN ) ≤

CA

| lnT | 32
.

In addition to that, in the region {|x| ≤ K0

8

√
T | lnT |}, the function Φ1

(
x√
T
,− lnT

)
is

bounded from below by a positive constant which depends only on K0. Therefore, there
exists T2,2(A,K0) > 0 such that for all T ≤ T2,2 for all |x| ≤ K0

8

√
T | lnT | we have

φ1,K0,A,d1

(
x√
T
,− lnT

)
+ Φ1

(
x√
T
,− lnT

)
> 0.

Therefore: for all |x| ≤ K0

8

√
T | lnT |, we have

Re(u(x, 0)) ≥ 1.

Now, if |x| ≥ K0

8

√
T | lnT |, then we have φ1,K0,A,d1(y, s0) = 0. Since Φ1(y, s0) > 0 from

(3.53) and U∗(x) > 0 from (3.87), we directly see from the definition (3.83) for Re(u(0))
that

Re(u(x, 0)) ≥ 1.

This concludes the proof of Lemma 3.13.

Following the above lemma, we will prove that there exists a domain DK0,A,s0 , with
s0 = − lnT such that for all (d1, d2) ∈ DK0,A,s0 , the initial uK0,A,d1,d2(0) is trapped in

S(T,K0, α0, ε0, A, δ0, η0, 0) = S(0).

In particular, we show that the initial data strictly satisfies almost the conditions of S(0)
except a few of the conditions in item (i) of Definition 3.1. More precisely, these conditions
concern the following modes

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s0).

The following is our lemma:
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Lemme 3.14 (Control of initial data). There exists K3 ≥ 1 such that for all each K0 ≥
K3, A ≥ 1 and δ1 > 0, there exists α3(K0, δ1) such that for all α0 ≤ α3, there exists
ε3(K0, α0, δ1) > 0 such that for all ε0 ≤ ε3, η0 > 0, there exists T3(K0, α0, ε1, A, δ1, η0) > 0
such that for all T ≤ T3 and s0 = − lnT , there exists DK0,A,s0 ⊂ [−2, 2]N

2+2N+2 such that
the following holds: if u(0) = uK0,A0,d1,d2(0) (see Definition 3.2), then
(I) For all (d1, d2) ∈ DK0,A,s0 , we have u(0) ∈ S(T,K0, α0, ε0, A, δ1, η0, 0). In particular, we
have:

(i) Estimates in P1(0): We have (q1, q2)(s0) ∈ VA(s0) where (q1, q2)(s0) are defined in
(3.21) and (3.55). Moreover, we have also the following strictly estimates:

|q1,j,k(s0)| ≤ A2 ln s0

2s2
0

,∀1 ≤ j, k ≤ N∥∥∥∥q1,−(., s0)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

2s2
0

and

∥∥∥∥q2,−(., s0)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A2

2s
p1+5

2
0

,

‖q1,e(., s0)‖L∞(RN ) ≤
A2

2
√
s0

and ‖q2,e(., s0)‖L∞(RN ) ≤
A3

2s
p1+2

2
0

.

(ii) Estimates in P2(0): For all |x| ∈
[
K0

4

√
T | lnT |, ε0

]
, τ0(x) = −t(x)

θ(x)
with θ(x) = T−t(x)

and |ξ| ≤ α0

√
| ln(T − t(x))|, we have

|U(x, ξ, τ0(x))− ÛK0(τ0(x))| ≤ δ1,

where U(x, ξ, τ) is defined in (3.74) and ÛK0(τ) is defined in (3.79).

(II) There exists a mapping Ψ1 such that

Ψ1 : RN2+2N+2 → RN2+2N+2

(d1, d2) 7→ Ψ1(d1, d2),

where
Ψ1(d1, d2) = (q1,0, (q1,j)1j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s0),

and Ψ1 is linear, one to one from DK0,A,s0 to V̂A(s0), where

V̂A(s) =

[
−A
s2
,
A

s2

]1+N

×
[
− A2

sp1+2
,
A2

sp1+2

]1+N

×
[
−A

5 ln s

sp1+2
,
A5 ln s

sp1+2

]N2

. (3.88)

Moreover, we have
Ψ1(∂DK0,A,s0) ⊂ ∂V̂A(s0),

and
deg
(
Ψ1|DK0,A,s0

)
6= 0. (3.89)

Proof. If we forget about the terms involving U∗ and the +1 term in our definition (3.83)
- (3.84) of initial data, then we are exactly in the framework of the integer case, treated
in Duong [5] (see Lemma 3.4 in [5]). Therefore, when p is not integer, we only need to
understand the effect of U∗ and the +1 term in order to complete the proof. The argument
is only technical. For that reason, we leave it to Appendix 3.7.
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Now, we give a key-proposition for our argument. More precisely, in the following
proposition, we prove the existence of a solution of equation (3.56) trapped in the shrinking
set:

Proposition 3.15 (Existence of a solution trapped in S∗(T,K0, α0, ε0, A, δ0, η0)). We can
chose the parameters T,K0, α0, ε0, A, δ0 and η0 such that there exists (d1, d2) ∈ RN2+2N+2

such that the solution u of equation(3.1) with initial data given in Definition 3.2, exists on
[0, T ) and satisfies

u ∈ S∗,

where S∗ = S∗(T,K0, α0, ε0, A, δ0, η0) is defined in Definition 3.1.

Proof. The proof of this Proposition is given 2 steps:

• The first step: We reduce our problem to a finite dimensional one. In other words,
we aim at proving that the control of u(t) in the shrinking set S(t) reduces to the
control of the components

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s)

in V̂A(s), defined in (3.88).

• The second step: We get the conclusion of Proposition 3.15 by using a topological
argument in finite dimension.

- Step 1: Reduction to a finite dimensional problem: Using a priori estimates, our
problem will be reduced to the control of a finite number of components.

Proposition 3.16 (Reduction to a finite dimensional problem). There exist parameters
K0, α0, ε0, A, δ0, η0 and T > 0 such that the following holds:

(a) Assume that initial data u(0) = uK0,A,d1,d2(0) is given in Definition 3.2 with (d1, d2) ∈
DK0,A,s0

(b) Assume furthermore that the solution u of equation (3.1) satisfies:

u ∈ S(T,K0, α0, ε0, A, δ0, η0, t),

for all t ∈ [0, t∗], for some t∗ ∈ [0, T ) and

u ∈ ∂S(T,K0, α0, ε0, A, δ0, η0, t∗).

Then, we have:

(i) (Reduction to finite dimensions): It holds that

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s∗) ∈ ∂V̂A(s∗),

where the above components are of (q1, q2)(s), defined in (3.21), and (3.55), V̂A(s) is
defined as in (3.88) and s∗ = − ln(T − t∗).
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(ii) (Transverse outgoing crossing): There exists ν0 > 0 such that

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s∗ + ν) /∈ V̂A(s∗ + ν), (3.90)

for all ν ∈ (0, ν0). This implies that there exists ν1 > 0 such that u exists on [0, t∗+ν1)
and for all ν ∈ (0, ν1)

u(t∗ + ν) /∈ S(T,K0, α0, ε0, A, δ0, η0, t∗ + ν).

The proof of this Lemma uses techniques given in [16] which were developed from [1]
and [17] in the real case. However, it is true that our shrinking set involves more conditions
than the shrinking set used in [1], [5], [16] and [17]. In fact, the additional conditions
are useful to ensure that our solution always stays positive. In particular, the set VA(s)
plays an important role. Indeed, as for the integer case in [5], only the nonnegative modes
(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s∗) may touch the boundary of V̂A(s∗) and
leave in short time later. However, the control of the solution with the positive real part
is also our highlight and of course it is the main difficulty in our work. This proposition
makes the heart of the paper and needs many steps to be proved. For that reason, we
dedicate a whole section to its proof (Section 3.4 below). Let us admit it here, and get to
the conclusion of Proposition 3.15 in the second step.

- Step 2: Conclusion of Proposition 3.15 by a topological argument. In this step, we
give the proof of Proposition 3.15 assuming that Proposition 3.16 holds. In fact, we aim at
proving the existence of a parameter (d1, d2) ∈ DK0,A,s0 such that the solution u of equation
(3.1) with initial data uK0,A,d1,d2(0) (given in Definition 3.2), exists on [0, T ) and satisfies

u ∈ S∗(T,K0, α0, ε0, A, δ0, η0),

where the parameters will be suitably chosen. Our argument is analogous to the argu-
ment of Merle and Zaag [17]. For that reason, we only give a brief proof. Let us fix
T,K0, δ0, α0, ε0, A, α0, η0 such that Lemma 3.14, Proposition 3.16 and Lemma 3.11 hold.
Then, for all (d1, d2) ∈ DK0,A,s0 and from Lemma 3.14 we have the initial data

uK0,A,d1,d2(0) ∈ S(T,K0, α0, ε0, A, δ0, η0, 0).

Thanks to Lemmas 3.11 and 3.14, for each (d1, d2) ∈ DK0,A,s0 we can define t∗(d1, d2) ∈ [0, T )
as the maximum time such that the solution ud1,d2 of equation (3.1), with initial data
uK0,A,d1,d2(0) trapped in S(T,K0, α0, ε0, A, δ0, η0, t) for all t ∈ [0, t∗(d1, d2)). We have the
two following cases:
+ Case 1: If there exists (d1, d2) such that t∗(d1, d2) = T then our problem is solved
+ Case 2: For all (d1, d2) ∈ DK0,A,s0 , we have

t∗(d1, d2) < T.

By contradiction, we can prove that the second case can not occur. Indeed, if it is true, by
using the continuity of the solution u in time and the definition of t∗ = t∗(d1, d2), we can
deduce that u ∈ ∂S(t∗). Using item (i) of Proposition 3.16, we derive

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N)(s∗) ∈ ∂V̂A(s∗),
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where s∗ = − ln(T − t∗). Then, the following mapping Γ is well-defined

Γ : DK0,A,s0 → ∂
(

[−1, 1]N
2+2N+2

)
(d1, d1) 7→ Γ(d1, d2),

where

Γ(d1, d2) =

(
s2
∗
A

(q1,0, (q1,j)1≤j≤N)(s∗),
sp1+2
∗
A2

(q2,0, (q2,j)1≤j≤N)(s∗),
sp1+2
∗

A5 ln s∗
(q2,j,k)1≤j,k≤N(s∗)

)
,

and s∗ = s∗(d1, d2) = − ln(T − t∗(d1, d2)).

Moreover, it satisfies the two following properties:

(i) Γ is continuous from DK0,A,s0 to ∂
(

[−1, 1]N
2+2N+2

)
. This is a consequence of item

(ii) in Proposition (3.16).

(ii) The degree of the restriction Γ |∂DK0,A,s0
is non zero. Indeed, again by item (ii) in

Proposition 3.16, we have
s∗(d1, d2) = s0,

in this case. Applying (3.89), we get the conclusion.

In fact, such a mapping Γ can not exist by Index theorem and this is a contradiction. Thus,
Proposition 3.15 follows, assuming that Proposition 3.16 holds (see Section 3.4 for the proof
of latter).

3.3.4 The proof of Theorem 3.1

In this section, we aim at giving the proof of Theorem 3.1 by using Proposition 3.15.

The proof of Theorem 3.1: Except for the treatment of the nonlinear term, this part
is quite similar to what we did in [5] when p is integer. Nevertheless, for the reader’s
convenience, we give the proof here, insisting on the way we handle the nonlinear term.

+ The proof of item (i) of Theorem 3.1: Using Proposition 3.15, there exists (d1, d2) ∈
RN2+2N+2 such that the solution u of equation (3.1) with initial data uK0,A,d1,d2(0) (given
in Definition 3.2), exists on [0, T ) and satisfies:

u ∈ S∗(T,K0, α0, ε0, A, δ0, η0).

Thanks to item (i) in Definition 3.1, item (i) of Lemma 3.10, and definitions (3.21) and
(3.55) of (w1, w2) and (q1, q2), respectively, we conclude (3.6) and (3.7). In addition to that,
we have Re(u) > 0. Moreover, we use again the definition of VA(s) to conclude the following
asymptotic behaviors:

u(0, t) ∼ κ(T − t)−
1
p−1 , (3.91)

u2(0, t) ∼ − 2Nκ

(p− 1)

(T − t)−
1
p−1

| ln(T − t)|2
, (3.92)

as t → T , which means that u blows up at time T and the origin is a blowup point.
Moreover, the real and imaginary parts simultaneously blow up . It remains to prove that
for all x 6= 0, x is not a blowup point of u. The following Lemma allows us to conclude.
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Lemme 3.17 (No blow-up under some threshold; Giga and Kohn [7]). For all C0 > 0, 0 ≤
T1 < T and σ > 0 small enough, there exists ε0(C0, T, σ) > 0 such that if u(ξ, τ) satisfies
the following estimates for all |ξ| ≤ σ, τ ∈ [T1, T ):

|∂τu−∆u| ≤ C0|u|p,

and
|u(ξ, τ)| ≤ ε0(1− τ)−

1
p−1 .

Then, u does not blow up at ξ = 0, τ = T .

Proof. See Theorem 2.1 in Giga and Kohn [7]. Although the proof of [7] was given in the
real case, it extends naturally to the complex valued case.

We next use Lemma 3.17 to conclude that u does not blow up at x0 6= 0. Indeed, let us
consider x0 6= 0. Then, we use (3.6) to deduce the following:

sup
|x−x0|≤ |x0|

2

(T − t)
1
p−1 |u(x, t)| ≤

∣∣∣∣∣f0

(
|x0|
2√

(T − t)| ln(T − t)|

)∣∣∣∣∣+
C√

| ln(T − t)|
→ 0, (3.93)

as t → T . Applying Lemma 3.17 to u(x − x0, t), with some σ small enough such that

σ ≤ |x0|
2
, and T1 close enough to T, we see that u(x − x0, t) does not blow up at time T

and x = 0. Hence, x0 is not a blow-up point of u. This concludes the proof of item (i) in
Theorem 3.1.

+ The proof of item (ii) of Theorem 3.1: Here, we use the argument of Merle in [14] to
deduce the existence of u∗ = u∗1 + iu∗2 such that u(t)→ u∗ as t→ T uniformly on compact
sets of RN\{0}. In addition to that, we use the techniques in Zaag [30], Masmoudi and
Zaag [18], Tayachi and Zaag [28] for the proofs of (3.9) and (3.10).

Indeed, for all x0 ∈ RN , x0 6= 0, we deduce from (3.6), (3.7) that not only (3.93) holds but
also the following is satisfied

sup
|x−x0|≤ |x0|

2

(T − t)
1
p−1 | ln(T − t)||u2(x, t)| ≤

∣∣∣∣∣ 9|x0|2

4(T − t)| ln(T − t)|
fp0

(
|x0|
2√

(T − t)| ln(T − t)|

)∣∣∣∣∣
+

C

| ln(T − t)|
p1
2

→ 0, as t→ T. (3.94)

We now consider x0 such that |x0| is small enough, and K to be fixed later. We define
t0(x0) by

|x0| = K
√

(T − t0(x0))| ln(T − t0(x0))|. (3.95)

Note that t0(x0) is unique when |x0| is small enough and t0(x0)→ T as x0 → 0.

We introduce rescaled functions U(x0, ξ, τ) and V2(x0, ξ, τ) as follows:

U(x0, ξ, τ) = (T − t0(x0))
1
p−1 u(x, t). (3.96)

and
V2(x0, ξ, τ) = | ln(T − t0(x0))|U2(x0, ξ, τ), (3.97)
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where U2(x0, ξ, τ) is defined by

U(x0, ξ, τ) = U1(x0, ξ, τ) + iU2(x0, ξ, τ),

and

(x, t) =
(
x0 + ξ

√
T − t0(x0), t0(x0) + τ(T − t0(x0))

)
, and (ξ, τ) ∈ RN ×

[
− t0(x0)

T − t0(x0)
, 1

)
.

(3.98)
We can see that with these notations, we derive from item (i) in Theorem 3.1 the following
estimates for initial data at τ = 0 of U and V2

sup
|ξ|≤| ln(T−t0(x0))|

1
4

|U(x0, ξ, 0)− f0(K0)| ≤ C

1 + (| ln(T − t0(x0))| 14 )
→ 0, (3.99)

sup
|ξ|≤| ln(T−t0(x0))|

1
4

|V2(x0, ξ, 0)− g0(K0)| ≤ C

1 + (| ln(T − t0(x0))|γ1)
→ 0, (3.100)

as x0 → 0 and note that f0 and g0 are defined as in (3.4) and (3.8) respectively, and
γ1 = min

(
1
4
, p1

2

)
.

Moreover, using equations (3.17), we derive the following equations for U, V2: for all ξ ∈
RN , τ ∈ [0, 1)

∂τU = ∆ξU + Up, (3.101)

∂τV2 = ∆ξV2 + |ln(T − t0(x0))|F2(U1, U2), (3.102)

where F2 is defined in (3.18).

Besides that, from (3.93) and (3.101), we can apply Lemma 3.17 to U when |ξ| ≤ | ln(T −
t0(x0))| 14 and obtain:

sup
|ξ|≤ 1

2
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|U(x0, ξ, τ)| ≤ C. (3.103)

Then, we aim at proving for V2(x0, ξ, τ) that

sup
|ξ|≤ 1

16
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2(x0, ξ, τ)| ≤ C. (3.104)

+ The proof for (3.104): We first use (3.103) to derive the following rough estimate:

sup
|ξ|≤ 1

2
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2(x0, ξ, τ)| ≤ C| ln(T − t0(x0))|. (3.105)

We first introduce ψ a cut-off function ψ ∈ C∞0 (RN), 0 ≤ ψ ≤ 1, supp(ψ) ⊂ B(0, 1), ψ = 1
on B(0, 1

2
). Introducing

ψ1(ξ) = ψ

(
2ξ

| ln(T − t0(x0))| 14

)
and V2,1(x0, ξ, τ) = ψ1(ξ)V2(x0, ξ, τ). (3.106)
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Then, we deduce from (3.102) an equation satisfied by V2,1

∂τV2,1 = ∆ξV2,1 − 2 div(V2∇ψ1) + V2∆ψ1 + | ln(T − t0(x0))|ψ1F2(U1, U2). (3.107)

Hence, we can write V2,1 with an integral equation as follows

V2,1(τ) = e∆τ (V2,1(0)) +

∫ τ

0

e(τ−τ ′)∆ {−2 div (V2∇ψ1) + V2∆ψ1 (3.108)

+ | ln(T − t0(x0))|ψ1F2(U1, U2))(τ ′)} dτ ′.

Besides that, using (3.103) and (3.105) and the fact that

|∇ψ1| ≤
C

| ln(T − t0(x0))| 14
and |∆ψ1| ≤

C

| ln(T − t0(x0))| 12
,

we deduce that∣∣∣∣∫ τ

0

e(τ−τ ′)∆ (−2 div (V2∇ψ1)) dτ ′
∣∣∣∣ ≤ C

∫ τ

0

‖V2∇ψ1‖L∞(RN )(τ
′)

√
τ − τ ′

dτ ′ ≤ C| ln(T − t0(x0))|
3
4 ,∣∣∣∣∫ τ

0

e(τ−τ ′)∆ (V2(τ ′)∆ψ1) dτ ′
∣∣∣∣ ≤ C

∫ τ

0

‖V2∆ψ1‖∞(τ ′)dτ ′ ≤ C| ln(T − t0(x0))|
1
2 ,

and ∣∣∣∣∫ τ

0

e(τ−τ ′)∆ (ψ1| ln(T − t0(x0))|F2(U1, U2)(τ ′)) dτ ′
∣∣∣∣

≤ C

∫ τ

0

‖| ln(T − t0(x0))|ψ1F2(U1, U2)‖L∞(RN )(τ
′)dτ ′.

Since the last term in (3.108) involves the nonlinear term F2(U1, U2), we need to handle it
differently from the case where p is integer: using the definition (3.18) of F2, and (3.103)

and the fact that U1 is positive, we write from for all |ξ| ≤ 1
2
| ln(T − t0(x0))| 14 , τ ∈ [0, 1) we

have

|ψ1 ln(T − t0(x0))F2(U1, U2)(τ)| ≤ C
(
U2

1 + U2
2

) p−1
2 |ψ1 ln(T − t0(x0))U2(τ)|

≤ C‖V2,1(τ)‖L∞(RN ).

Hence, from (3.108) and the above estimates, we derive

‖V2,1(τ)‖L∞(RN ) ≤ C| ln(T − t0(x0))|
3
4 + C

∫ τ

0

‖V2,1(τ ′)‖L∞(RN )dτ
′.

Thanks to Gronwall Lemma, we deduce that

‖V2,1(τ)‖L∞(RN ) ≤ C| ln(T − t0(x0))|
3
4 , ∀τ ∈ [0, 1),

which yields

sup
|ξ|≤ 1

4
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2(x0, ξ, τ)| ≤ C| ln(T − t0(x0))|
3
4 . (3.109)
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We apply iteratively for

V2,2(x0, ξ, τ) = ψ2(ξ)V2(x0, ξ, τ) where ψ2(ξ) = ψ

(
4ξ

| ln(T − t0(x0))| 14

)
.

Similarly, we deduce that

sup
|ξ|≤ 1

8
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2(x0, ξ, τ)| ≤ C| ln(T − t0(x0))|
1
2 .

We apply this process a finite number of steps to obtain (3.104). We now come back to our
problem, and aim at proving that:

sup
|ξ|≤ 1

16
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

∣∣∣U(x0, ξ, τ)− ÛK0(τ)
∣∣∣ ≤ C

1 + | ln(T − t0(x0))|γ2
, (3.110)

sup
|ξ|≤ 1

32
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

∣∣∣V2(x0, ξ, τ)− V̂2,K0(τ)
∣∣∣ ≤ C

1 + | ln(T − t0(x0))|γ3
, (3.111)

where γ2, γ3 are positive small enough and (ÛK0 , V̂2,K0)(τ) is the solution of the following
system:

∂τ ÛK0 = Ûp
K0
, (3.112)

∂τ V̂2,K0 = pÛp−1
K0

V̂2,K0 . (3.113)

with initial data at τ = 0

ÛK0(0) = f0(K0),

V̂2,K0(0) = g0(K0).

given by

ÛK0(τ) =

(
(p− 1)(1− τ) +

(p− 1)2K2
0

4p

)− 1
p−1

, (3.114)

V̂2,K0(τ) = K2
0

(
(p− 1)(1− τ) +

(p− 1)2K2
0

4p

)− p
p−1

. (3.115)

for all τ ∈ [0, 1). The proof of is cited to Section 5 of Tayachi and Zaag [28] and here we will
use (3.110) to prove (3.111). For the reader’s convenience, we give it here. Let us consider

V2 = V2 − V̂2,K0(τ). (3.116)

Using (3.104), we deduce the following

sup
|ξ|≤ 1

16
| ln(T−t0(x0))|

1
4 ,τ∈[0,1)

|V2| ≤ C. (3.117)

In addition to that, from (3.102) we write an equation on V2 as follows:

∂τV2 = ∆V2 + pÛp−1
K0

V2 + p(Up−1
1 − Ûp−1

K0
)V2 + G2(x0, ξ, τ), (3.118)
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where

G2(x0, ξ, τ) = | ln(T − t0(x0))|
(
F2(U1, U2)− pUp−1

1 U2

)
.

As for the last term in (3.118), we need here to carefully handle this expression, sine it
involves a nonlinear term, which needs a treatment different from the case where p is
integer. From the definition (3.18) of F2, we have

∣∣F2(U1, U2)− pUp−1
1 U2

∣∣ ≤ ∣∣∣pU2

(
(U2

1 + U2
2 )

p−1
2 − Up−1

1

)∣∣∣
+

∣∣∣∣∣(U2
1 + U2

2 )
p
2

{
sin

(
p arcsin

(
U2√

U2
1 + U2

2

))
− pU2√

U2
1 + U2

2

}∣∣∣∣∣ .
And we deduce from (3.104) and (3.110) with ε0 > 0 small enough that∣∣F2(U1, U2)− pUp−1

1 U2

∣∣ ≤ C|U2|3,

Plugging the above estimate and using (3.97) and (3.104), we have the following

sup
|ξ|≤ 1

16
| ln(T−t0)|

1
4 ,τ∈[0,1)

|G2(x0, ξ, τ)| ≤ C

| ln(T − t0(x0))|2
. (3.119)

Introducing

V̄2 = ψ∗(ξ)V2,

where

ψ∗ = ψ

(
16ξ

| ln(T − t0(x0))| 14

)
,

and ψ is the cut-off function which has been introduced above. We also note that ∇ψ∗,∆ψ∗
satisfy the following estimates

‖∇ξψ∗‖L∞(RN ) ≤
C

| ln(T − t0(x0))| 14
and ‖∆ξψ∗‖L∞(RN ) ≤

C

| ln(T − t0(x0))| 12
. (3.120)

In particular, V̄2 satisfies

∂τ V̄2 = ∆V̄2 +pÛp−1
K0

(τ)V̄2−2 div (V2∇ψ∗)+V2∆ψ∗+p(U
p−1
1 −Ûp−1

K0
)ψ∗V2 +ψ∗G2, (3.121)

By Duhamel principal, we derive the following integral equation

V̄2(τ) = eτ∆(V̄2(τ)) +

∫ τ

0

e(τ−τ ′)∆
{
pÛp−1

K0
V̄2 − 2 div (V2∇ψ∗) + V2∆ψ∗ (3.122)

+ p(Up−1
1 − Ûp−1

K0
)ψ∗V2 + ψ∗G2

}
(τ ′)dτ ′.

Besides that, we use (3.110), (3.114), (3.117), (3.120), (3.119) to derive the following esti-
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mates: for all τ ∈ [0, 1)

|ÛK0(τ)| ≤ C,

‖V2∇ψ∗‖L∞(RN )(τ) ≤ C

| ln(T − t0(x0))| 14
,

‖V2∆ψ∗‖L∞(RN )(τ) ≤ C

| ln(T − t0(x0))| 12
,∥∥∥(Up−1

1 − Ûp−1
K0

)
ψ∗

∥∥∥
L∞(RN )

(τ) ≤ C

| ln(T − t0(x0))|γ2
,

‖G2ψ∗‖L∞(RN ) ≤
C

| ln(T − t0(x0))|2
.

where γ2 given in (3.110). Hence, we derive from the above estimates that: for all 0 ≤ τ ′ <
τ < 1

|e(τ−τ ′)∆pÛp−1
K0

V̄2(τ ′)| ≤ C‖V̄2(τ ′)‖,

|e(τ−τ ′)∆(div(V2∇ψ∗))| ≤ C
1√
τ − τ ′

1

| ln(T − t0(x0))| 14
,

|e(τ−τ ′)∆(V2∆ψ∗)| ≤
C

| ln(T − t0(x0))| 12
,

|e(τ−τ ′)∆(p(Up−1
1 − Ûp−1

K0
)ψ∗V2)(τ ′)| ≤ C

| ln(T − t0(x0))|γ2
,

|e(τ−τ ′)∆(ψ∗G2)(τ ′)| ≤ C

| ln(T − t0(x0))|
.

Plugging into (3.122), we obtain

‖V̄2(τ)‖L∞(RN ) ≤
C

| ln(T − t0(x0))|γ3
+ C

∫ τ

0

‖V̄2(τ ′)‖L∞(RN )dτ
′,

where γ3 = min(1
4
, γ2). Then, thanks to Gronwall inequality, we get

‖V̄2‖L∞(RN ) ≤
C

| ln(T − t0(x0))|γ3
.

Hence, (3.111) follows. Finally, we easily find the asymptotics of u∗ and u∗2 as follows,
thanks to the definition of U and V2 and to estimates (3.110) and (3.111):

u∗(x0) = lim
t→T

u(x0, t) = (T−t0(x0))−
1
p−1 lim

τ→1
U(x0, 0, τ) ∼ (T−t0(x0))−

1
p−1

(
(p− 1)2

4p
K2

0

)− 1
p−1

,

(3.123)

u∗(x0) = lim
t→T

u(x0, t) = (T − t0(x0))−
1
p−1 lim

τ→1
U(x0, 0, τ)

∼ (T − t0(x0))−
1
p−1

(
(p− 1)2

4p
K2

0

)− 1
p−1

, (3.124)
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and

u∗2(x0) = lim
t→T

u2(x0, t) =
(T − t0(x0))−

1
p−1

| ln(T − t0(x0))|
lim
τ→1

V2(x0, 0, τ)

∼ (T − t0(x0))−
1
p−1

| ln(T − t0(x0))|

(
(p− 1)2

4p

)− p
p−1

(K2
0)−

1
p−1 . (3.125)

Using the relation (3.95), we find that

T − t0(x0) ∼ |x0|2

2K2
0 | ln |x0||

and ln(T − t0(x0)) ∼ 2 ln(|x0|), as x0 → 0. (3.126)

Plugging (3.126) into (3.123) and (3.125), we get the conclusion of item (ii) of Theorem
3.1.

This concludes the proof of Theorem 3.1 assuming that Proposition 3.16 holds. Natu-
rally, we need to prove this proposition on order to finish the argument. This will be done
in the next section.

3.4 The proof of Proposition 3.16

This section is devoted to the proof of Proposition 3.16, which is considered as central in
our analysis. We would like to proceed into two parts:

+ In the first part, we derive a priori estimates on u in every component Pj(t) where
j = 1, 2 or 3.

+ In the second part, we use a priori estimates to derive new bounds which improve all
the bounds in Definition 3.1, except for the non-negative modes

(q1,0, (q1,j)1≤j≤N , q2,0, (q2,j)1≤j≤N , (q2,j,k)1≤j,k≤N).

This means that the problem is reduced to the control of these components, which is the
conclusion of item (i) of Proposition 3.16. As for item (ii) of Proposition 3.16 is just a
direct consequence of the dynamics of these modes.

3.4.1 A priori estimates in P1(t), P2(t) and P3(t)

In this section, we aim at giving a priori estimates to the solution u(t) on P1(t), P2(t) and
P3(t) which are important to get the conclusion of Proposition 3.16:

+ A priori estimates in P1(t): Here we give in the following proposition some estimates
relevant to the region P1(t) :

Proposition 3.18. For all A,K0 ≥ 1 and ε0 > 0, α0 > 0, δ0 > 0, η0 > 0, there exists
T4(K0, A, ε0) such that for all T ≤ T4, if u is a solution of equation (3.1) on [0, t1] for some
t1 ∈ [0, T ) and u ∈ S(T,K0, α0, ε0, A, δ0, η0, t) for all t ∈ [0, t1], then, the following holds:
for all s0 ≤ τ ≤ s ≤ s1 with s1 = ln(T − t1), we have:

(i) (ODE satisfied by the positive modes) For all j ∈ {1, ..., N}, we have∣∣q′1,0(s)− q1,0(s)
∣∣+

∣∣∣∣q′1,j(s)− 1

2
q1,j(s)

∣∣∣∣ ≤ C

s2
, ∀1 ≤ j ≤ N, (3.127)
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and ∣∣q′2,0(s)− q2,0(s)
∣∣+

∣∣∣∣q′2,j(s)− 1

2
q2,j(s)

∣∣∣∣ ≤ C

sp1+2
,∀1 ≤ j ≤ N. (3.128)

(ii) (ODE satisfied by the null modes) For all 1 ≤ j, k ≤ N , we have∣∣∣∣q′1,j,k(s) +
2

s
q1,j,k(s)

∣∣∣∣ ≤ CA

s3
, (3.129)

and ∣∣∣∣q′2,j,k(s) +
2

s
q2,j,k(s)

∣∣∣∣ ≤ CA2 ln s

sp1+3
. (3.130)

(iii) (Control of the negative part) We have the following estimates∥∥∥∥q1,−(., s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ Ce−
s−τ

2

∥∥∥∥q1,−(., τ)

1 + |y|3

∥∥∥∥
L∞(RN )

(3.131)

+ C
e−(s−τ)2

s
3
2

‖q1,e(., τ)‖L∞(RN ) +
C(1 + s− τ)

s2
,

and ∥∥∥∥q2,−(., s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ Ce−
s−τ

2

∥∥∥∥q2,−(., τ)

1 + |y|3

∥∥∥∥
L∞(RN )

(3.132)

+ C
e−(s−τ)2

s
3
2

‖q2,e(., τ)‖L∞(RN ) +
C(1 + s− τ)

s
p1+5

2

.

(v) (Control of the outer part) We have the following estimates

‖q1,e(., s)‖L∞(RN ) ≤ Ce−
(s−τ)
p ‖q1,e(., τ)‖L∞(RN ) (3.133)

+ Ces−τs
3
2

∥∥∥∥q1,−(., τ)

1 + |y|3

∥∥∥∥
L∞(RN )

+
C(1 + s− τ)es−τ√

s
,

and

‖q2,e(., s)‖L∞(RN ) ≤ Ce−
(s−τ)
p ‖q2,e(., τ)‖L∞(RN ) (3.134)

+ Ces−τs
3
2

∥∥∥∥q2,−(., τ)

1 + |y|3

∥∥∥∥
L∞(RN )

+
C(1 + s− τ)es−τ

s
p1+2

2

.

Proof. By using the fact that u(t) ∈ S(T,K0, α0, ε0, A, δ0, η0, t) for all t ∈ [0, t1] , we derive
that (q1, q2)(s) ∈ VA(s) for all s ∈ [s0, s1] and (q1, q2)(s) satisfies equation (3.56). In addition

to that, we deduce also the fact that q1(s) + Φ1(s) ≥ e
− s
p−1

2
for all s ∈ [s0, s1] (see Lemma

3.11). Although potential terms Vj,k, j, k ∈ {1, 2}, quadratic terms B1, B2 and rest terms
R1, R2 (see equation (3.56)) are different from the case where p is integer, they behavior
as in that case (see Lemmas 3.25, 3.26, 3.27 below). Thus, the result is derived from the
projection of equation (3.56) and the dynamics of the operator L+ V . For that reason, we
kindly refer the the reader to the proof of Lemma 4.2 given in [5] for the case where p is
integer.
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+ A priori estimates in P2(t):
In this step, we aim at proving the following lemma which gives a priori estimates on u

in P2(t). The following is our main result:

Lemme 3.19. For all K0 ≥ 1, δ1 ∈ (0, 1), ξ0 ≥ 1,Λ5 > 0, λ5 > 0, the following holds: If
U(ξ, τ) a solution of equation (3.101), for all ξ and τ ∈ [τ1, τ2] with 0 ≤ τ1 ≤ τ2 ≤ 1, such
that for all τ ∈ [τ1, τ2] and for all ξ ∈ [−2ξ0, 2ξ0], we have

|U(ξ, τ)| ≤ Λ5 and Re (U(ξ, τ)) ≥ λ5 and
∣∣∣U(ξ, τ1)− ÛK0(τ1)

∣∣∣ ≤ δ1, (3.135)

then, there exists ε = ε(K0,Λ5, λ5, δ1, ξ0) such that for all ξ ∈ [−ξ0, ξ0] and for all τ ∈ [τ1, τ2]
we have ∣∣∣U(ξ, τ)− Û(τ)

∣∣∣ ≤ ε,

where ÛK0(τ) is given (3.79). In particular, we have ε(K0,Λ5, λ5, δ1, ξ0) → 0 as (δ1, ξ0) →
(0,+∞).

Proof. We introduce ψ as a cut-off function in C∞0 (R) which satisfies the following:

ψ(x) = 0 if |x| ≥ 2, |ψ(x)| ≤ 1 for all x and ψ(x) = 1 for all |x| ≤ 1,

and we also define ψ1 as follows

ψ1(ξ) = ψ

(
|ξ|
ξ0

)
.

Then, we have ψ1 ∈ C∞0 (RN), and supp(ψ1) ⊂ {|ξ| such that |ξ| ≤ 2ξ0} and ψ1(ξ) = 1 for
all |ξ| ≤ ξ0. In addition to that, we let

V1(ξ, τ) = ψ1(ξ)
(
U(ξ, τ)− ÛK0(τ)

)
, ∀τ ∈ [τ1, τ2], ξ ∈ RN .

Thanks to equation (3.101), we derive that V1 satisfies the following equation:

∂τV1 = ∆ξV1 − 2 div (U∇ψ1) + U∆ψ1 + ψ1(ξ)
(
Up − Ûp

)
. (3.136)

Therefore, we can write V1(ξ, τ) under the following integral equation

V1(τ) = e(τ−τ1)∆(V1(τ1)) +

∫ τ

τ1

e(τ−τ ′)∆
(
−2 div (U∇ψ1) + U∆ψ1 + ψ1

(
Up − Ûp

))
(τ ′)dτ ′.

(3.137)
In addition to that, we have the following fact from (3.135) (in particular the estimate
Re(U(ξ, τ)) ≥ λ5 in (3.135) is crucial for the 4th term in (3.137)): for all τ ∈ [τ1, τ2]

‖V1(τ1)‖L∞(RN ) ≤ δ1,

‖U∇ψ1‖L∞(RN ) (τ) ≤ C(Λ5)

ξ0

,

‖U∆ψ1‖L∞(RN ) (τ) ≤ C(Λ5)

ξ2
0

,∥∥∥ψ1(Up − Ûp)
∥∥∥
L∞(RN )

(τ) ≤ C(K0,Λ5, λ5)‖V1‖L∞(RN )(τ),



150

which yields when τ1 ≤ τ ′ < τ ≤ τ2,∥∥e(τ−τ1)∆(V1(τ1))
∥∥ ≤ δ1,∥∥∥e(τ−τ ′)∆(div (U∇ψ1)(τ ′))

∥∥∥
L∞(RN )

≤ C(Λ5)

ξ0

1√
τ − τ ′

,∥∥∥e(τ−τ ′)∆(U∆ψ1(τ ′))
∥∥∥
L∞(RN )

≤ C(Λ5)

ξ2
0

,∥∥∥e(τ−τ ′)∆(ψ1(Up − Ûp)(τ ′))
∥∥∥
L∞(RN )

≤ C(K0,Λ5, λ5)‖V1‖L∞(RN )(τ
′).

Plugging into (3.137), we have for all τ ∈ [τ1, τ2]

‖V1(τ)‖L∞(RN ) ≤ C(K0,Λ5, λ5)

(
δ1 +

1

ξ0

)
+ C(K0,Λ5, λ5)

∫ τ

τ1

‖V1(τ ′)‖L∞(RN ) dτ
′.

Thanks to Gronwall lemma, we obtain the following

‖V1(τ)‖L∞(RN ) ≤ C(K0,Λ5, λ5)

(
δ1 +

1

ξ0

)
,∀τ ∈ [τ1, τ2].

Since V1(τ) = U(τ) − Û(τ) for all ξ ∈ [−ξ0, ξ0] and for all τ ∈ [τ1, τ2], this concludes our
lemma.

+ A proiori estimates in P3(t): We aim at proving the following lemma which gives a
priori estimates on u in P3(t).

Lemme 3.20 (A priori estimates in P3(t)). For all K0 ≥ 1, A ≥ 1, η > 0, ε0 > 0, σ ≥ 1 and
|d1| + |d2| ≤ 2, there exists T6(K0, A, ε0, η, σ) > 0, such that for all T ≤ T6 the following
holds: If u is a solution of equation (3.1) for all t ∈ [0, t∗] for some t∗ ∈ [0, T ) with initial
data u(0) = uK0,A,d1,d2(0) (see Definition 3.2) and

|u(x, t)| ≤ σ,∀|x| ∈
[ε0

8
,+∞

)
, t ∈ [0, t∗], (3.138)

then,

|u(x, t)− u(x, 0)| ≤ η,∀|x| ≥ ε0
4
, t ∈ [0, t∗].

Proof. We introduce ψ, a cut-off function in C∞(R) defined as follows

ψ(r) = 0 if |r| ≤ 1

2
, ψ(r) = 1 for all |r| ≥ 1 and |ψ(r)| ≤ 1 for all r,

and we also introduce ψε0 ∈ C∞(RN) as follows

ψε0(x) = ψ

(
4|x|
ε0

)
.

Then, ψε0 ∈ C∞(RN), and ψε0(x) = 1 for all |x| ≥ ε0
4

and ψε0 = 0 for all |x| ≤ ε0
8

. We define
as well

v = ψε0u.
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Thanks to equation (3.1), we derive an equation satisfied by v

∂tv = ∆v − 2 div(u∇ψε0) + u∆ψε0 + ψε0u
p = ∆v − 2div (u∇ψε0) +G(u), (3.139)

where
G(u) = u∆ψε0 + ψε0u

p.

Using (3.138), we get

‖G(t, u(t))‖L∞(RN ) ≤ C(σ, ε0),∀t ∈ [0, t∗].

By Duhamel formula, we derive

v(t) = et∆(v(0)) +

∫ t

0

e(t−s)∆(G(s, u(s)))ds, (3.140)

which yields

v(t)− v(0) = et∆(v(0))− v(0) +

∫ t

0

e(t−s)∆(G(s, u(s)))ds.

Thus,

‖v(t)− v(0)‖L∞(RN ) ≤ ‖et∆(v(0))− v(0)‖L∞(RN ) +

∥∥∥∥∫ t

0

e(t−s)∆(G(s, u(s)))ds

∥∥∥∥
L∞(RN )

.

In addition to that, if T ≤ T6,1(ε0), we have χ1(x) = 0, for all |x| ≥ ε0
8
, where χ1 defined

in (3.87) is involved in Definition 3.1 of initial data u(0). As a matter of fact, from the
definition of u(0), we deduce from this fact that

v(0) = ψε0 (U∗ + 1) .

Since ∆v(0) ∈ L∞(RN), it follows that∥∥et∆(v(0))− v(0)
∥∥
L∞(RN )

→ 0 as t→ 0.

Besides that, we have also∥∥∥∥∫ t

0

e(t−s)∆(G(s, u(s)))ds

∥∥∥∥
L∞(RN )

→ 0 as t→ 0.

Therefore, for all t ∈ [t0, t∗] we have

‖v(t)− v(0)‖L∞(RN ) ≤ η,

provided that T ≤ T6,2(K0, A, ε0, η, σ). This concludes our lemma.

Finally, we need the following Lemma to get the conclusion of our proof:

Lemme 3.21. There exists K7 ≥ 1 such that for all K0 ≥ K7, A ≥ 1, and δ1 > 0, there
exists α7(K0, A, δ1) > 0 such that for all α0 ≤ α7, there exists ε7(K0, α0, A, δ1) > 0 such
that for all ε0 ≤ ε7 there exist δ7(δ1) > 0, T7(K0, ε0, A, δ1) > 0, η7(K0, ε0, A) > 0 such that
for all δ0 ≤ δ7, η0 ≤ η7 and for all T ≤ T7 if u ∈ S(T,K0, α0, ε0, A, δ0, η0, t) for all t ∈ [0, t∗],
for some t∗ ∈ [0, T ), then the following holds:

whenever |x| ∈
[
K0

4

√
(T − t∗)| ln(T − t∗)|, ε0

]
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(i) For all |ξ| ≤ 2α0

√
| ln(T − t(x))| and for all

τ ∈
[
max

(
0,
−t(x)

T − t(x)

)
,
t∗ − t(x)

T − t(x)

]
,

if U(x, ξ, τ) satisfies equation (3.101), then

|U(x, ξ, τ)| ≤ C∗7(p) and Re (U(ξ, τ)) ≥ C∗∗7 (K0, p),

where U(ξ, τ) is defined as in (3.74), t(x) is defined in (3.75), and C∗7 depends only
on the parameter p and C∗∗7 (K0, p) depends on parameters K0 and p.

(ii) For all |ξ| ≤ 2α0

√
| ln(T − t(x))|, if we define

τ0(x) = max

(
0,
−t(x)

T − t(x)

)
, (3.141)

then, we have

|U(x, ξ, τ0)− ÛK0(τ0)| ≤ δ1.

Proof. The idea of the proof relies on the argument in Lemma 2.6, given in [16].

+ The proof of item (i): We aim at proving that for all |x| ∈
[
K0

4

√
(T − t∗)| ln(T − t∗)|, ε0

]
,

|ξ| ≤ 2α0

√
| ln(T − t(x))| and t ∈ [max(0, t(x)), t∗] , we have

|U(x, ξ, τ(x, t))| ≤ C∗7 , (3.142)

and

Re (U(ξ, τ)) ≥ C∗∗7 , (3.143)

where τ(x, t) = t−t(x)
T−t(x)

and C∗7 , C
∗∗
7 > 0. Let us introduce a parameter δ > 0 to be fixed

later in our proof, small enough (note that δ has nothing to do with the parameters δ0, δ1 in
the statement of our lemma). We observe that if we have α0 ≤ α1,7(K0, δ) for some α1,7 > 0

and small enough, then for all |ξ| ≤ 2α0

√
| ln(T − t(x))|, we have

(1− δ)|x| ≤ |x+ ξ
√
T − t(x)| ≤ (1 + δ)|x|. (3.144)

We also recall the definition of rescaled function U(x, ξ, τ(x, t)) as follows

U(x, ξ, τ) = (T − t(x))
1
p−1 u(x+ ξ

√
T − t(x), t(x) + τ(T − t(x))).

Introducing X = x+ ξ
√
T − t(x), we write

U(x, ξ, τ(x, t)) = (T − t(x))
1
p−1u(X, t).

We here consider 3 cases:
+ Case 1: We consider the case where

|X| ≤ K0

4

√
(T − t)| ln(T − t)|.
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Using the fact that u ∈ S(t), in particular item (i) of Definition 3.1, we see that Lemma
3.10 and (3.80) hold, hence∣∣∣∣∣(T − t) 1

p−1u(X, t)− f0

(
X√

(T − t)| ln(T − t)|

)∣∣∣∣∣ ≤ CA3√
1 + | ln(T − t)|

.

Then, we derive the following

|U(x, ξ, τ(x, t))| ≤
(

T − t
T − t(x)

)− 1
p−1

(
f0 (0) +

CA3√
1 + | ln(T − t)|

)

=

(
T − t

T − t(x)

)− 1
p−1

(
κ+

CA3√
1 + | ln(T − t)|

)
, (3.145)

Re(U(x, ξ, τ(x, t))) ≥
(

T − t
T − t(x)

)− 1
p−1

(
f0 (0)− CA3√

1 + | ln(T − t)|

)

=

(
T − t

T − t(x)

)− 1
p−1

(
κ− CA3√

1 + | ln(T − t)|

)
. (3.146)

Besides that, we deduce the following from (3.144) and the following fact

|X| ≤ K0

4

√
(T − t)| ln(T − t)|,

that

|x| ≤ K0

4(1− δ)
√

(T − t)| ln(T − t)|.

In addition to that, we have that the function T − t(x) is an increasing function if |x| small
enough. Therefore,

T − t(x) ≤ T − t
(

K0

4(1− δ)
√

(T − t)| ln(T − t)|
)
. (3.147)

As a matter of fact, we have the following asymptotic behavior of θ(x) = T − t(x)

ln θ(x) ∼ 2 ln |x| and θ(x) ∼ 8

K2
0

|x|2

| ln |x||
as |x| → 0. (3.148)

Plugging (3.148) in (3.147), we obtain the following

T − t(x) ≤ T − t
(

K0

4(1− δ)
√

(T − t)| ln(T − t)|
)
∼ 8K2

0(T − t)| ln(T − t)|
K2

016(1− δ)2 1
2
| ln(T − t)|

=
(T − t)
(1− δ)2

.

In particular, from t ∈ [max(0, t(x)), t∗], we have the following

T − t(x) ≥ T − t.

Plugging into (3.145) and (3.146), we obtain

|U(x, ξ, τ)| ≤ C∗1,7(p, δ),
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and
Re(U(x, ξ, τ(x, t))) ≥ C∗∗1,7(p, δ),

provided that δ is small enough, K0 ≥ K1,7(δ) which is large enough and T ≤ T1,7(K0, A).
Note that C∗1,7(p, δ) and C∗∗7 (p, δ) depend on δ and p, in particular, C∗1,7(δ, p) is bounded
when δ → 0.

+ The second case: We consider the case where

|X| ∈
[
K0

4

√
(T − t)| ln(T − t)|, ε0

]
.

By using the definition of U(x, ξ, τ(x, t)), we deduce that

U(x, ξ, τ(x, t)) =

(
T − t(x)

T − t(X)

) 1
p−1

U(X, 0, τ(X, t)).

However, using the fact that u ∈ S(t), in particular item (ii) of Definition 3.1, we have

|U(X, 0, τ(X, t))| ≤ δ0 + Û(1).

In addition to that, we use (3.144), the definition of t(x) and the fact that

|X| ≥ K0

4

√
(T − t)| ln(T − t)|

to derive the following

1 ≤ T − t(x)

T − t(X)
≤ 2,

provided that δ > 0, small enough. Therefore, we have

|U(x, ξ, τ(x, t))| ≤ 2
1
p−1

(
δ0 + ÛK0(1)

)
≤ 1

2
,

and

Re(U(x, ξ, τ(x, t))) ≥ ÛK0(0)− δ0 ≥
1

2
ÛK0(0),

provided that δ0 ≤ 1
2
ÛK0(0) and K0 ≥ K2,7.

+ The third case: We consider the case where |X| ≥ ε0. Using the fact that u ∈ S(t),
in particular item (iii) of Definition 3.1, we have

|U(x, ξ, τ(x, t))| = (T − t(x))
1
p−1 |u(X, t)| ≤ (T − t(x))

1
p−1 (|u(X, 0)|+ η0),

Re (U(x, ξ, τ(x, t))) = (T − t(x))
1
p−1 Re(u(X, t)) ≥ (T − t(x))

1
p−1 (Re(u(X, 0))− η0) .

Using the definition (3.83), we have for all |X| ≥ ε0

u(X, 0) = U∗(X) + 1,

provided that T ≤ T2,7(ε0). In addition to that, we have the following fact

T − t(x) ∼ 16|x|2

K2
0 | ln |x||

,

u(X, 0) ∼ U∗(X) =

[
(p− 1)2|x|2

8p| ln |x||

]− 1
p−1

,
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as (X, x)→ (0, 0), and in particular, from (3.144), we have

(1− δ)|x| ≤ |X| ≤ (1 + δ)|x|.

Therefore, we have

|U(x, ξ, τ(x, t))| ≤ C∗2,7(δ),

Re(U(x, ξ, τ(x, t))) ≥ C∗∗2,7(K0, δ),

provided that K0 ≥ K3,7, η0 ≤ η1,7(δ) and δ is small. We conclude item (i).

The proof of item (ii): We aim at proving that for all |ξ| ≤ 2α0

√
| ln θ(x)| and τ0(x) =

max
(

0,− t(x)
θ(x)

)
, we have ∣∣∣U(x, ξ, τ0(x))− ÛK0(τ0(x))

∣∣∣ ≤ δ1. (3.149)

Considering 2 cases for the proof of (3.149):
+ Case 1: We consider the case where

|x| ≤ K0

4

√
T | lnT |,

then, we deduce from the definition of t(x) given by (3.75) that t(x) ≤ 0. Thus, by definition
(3.141), we have

τ0(x) =
−t(x)

θ(x)
.

Therefore, (3.149) directly follows item (ii) of Lemma 3.14 with K0 ≥ K4,7, α0 ≤ α3,7, ε0 ≤
ε3,7 (see in Lemma 3.14)

+ Case 2: We consider the case where

|x| ≥ K0

4

√
T | lnT |,

which yields t(x) ≥ 0. Thus, by definition (3.141), we have

τ0(x) = 0.

We let X = x + ξ
√
θ(x). According to the definitions of U, ÛK0 which are given by (3.74)

and (3.79), we write

∣∣∣U(x, ξ, 0)− ÛK0(0)
∣∣∣ =

∣∣∣∣∣θ− 1
p−1 (x)u (X, t(x))−

(
(p− 1) +

(p− 1)2

4p

K2
0

16

)− 1
p−1

∣∣∣∣∣
=

∣∣∣∣∣θ− 1
p−1 (x)u (X, t(x))−

(
(p− 1) +

(p− 1)2

4p

|X|2

θ(x)| ln θ(x)|

)− 1
p−1

+

(
(p− 1) +

(p− 1)2

4p

|X|2

θ(x)| ln θ(x)|

)− 1
p−1

−
(

(p− 1) +
(p− 1)2

4p

K2
0

16

)− 1
p−1

∣∣∣∣∣
≤ (I) + (II),
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where θ(x) = T − t(x), and

(I) =

∣∣∣∣∣θ− 1
p−1 (x)u (X, t(x))−

(
(p− 1) +

(p− 1)2

4p

|X|2

θ(X)| ln θ(X)|

)− 1
p−1

∣∣∣∣∣ ,
(II) =

∣∣∣∣∣
(

(p− 1) +
(p− 1)2

4p

|X|2

θ(X)| ln θ(X)|

)− 1
p−1

−
(

(p− 1) +
(p− 1)2

4p

K2
0

16

)− 1
p−1

∣∣∣∣∣ .
Since

|X| ≤ (1 + δ)|x| ≤ (1 + δ)K0

4

√
(T − t(x))| ln(T − t(x))| ≤ K0

√
(T − t(x))| ln(T − t(x))|,

Using item (i) of Definition 3.1, taking t = t(x), we write

(I) ≤ C(K0)A2√
| ln(T − t(x))|

≤ C(K0)A2√
| lnT |

≤ δ1

2
,

provided that T ≤ T4,7(K0, A, δ1). Besides that, from (3.144) we have

(1− δ)2K
2
0

16
≤ |X|2

θ(X) |ln θ(X)|
≤ (1 + δ)2K

2
0

16
.

This yields

(II) ≤ δ1

2
,

provided that δ is small enough. Then, (3.149) follows. Finally, we fix δ > 0 small enough
and we conclude our lemma.

3.4.2 The conclusion of Proposition 3.16

It this subsection, we would like to conclude the proof of Proposition 3.16. As we mentioned
earlier, in the analysis of the shrinking set S(t), the heart is the set VA(s) (see item (i) of
Definition 3.1 of S(t)). So, let us first give an important argument related the analysis
of VA(s); the reduction to finite dimensions. More precisely, we prove that if the solution
(q1, q2) of equation (3.56) satisfies (q1, q2)(s) ∈ VA(s) for all s ∈ [s0, s∗] and (q1, q2)(s∗) ∈
∂VA(s∗) for some s∗ ∈ [s0,+∞) with s0 = − lnT, then, we can directly derive that

(q1,0, (q1,j)j≤n, q2,0, (q2,j)j≤n, (q2,j,k)j,k≤n)(s∗) ∈ ∂̂VA(s∗),

where V̂A(s∗) is defined in (3.88). After that, we will use the dynamic of these modes to
derive that they will leave V̂A after that. The following is our statement

Proposition 3.22 (A reduction to finite dimensional problem). There exists A8 ≥ 1, K8 ≥
1 such that for all A ≥ A8, K0 ≥ K8, there exists s8(A,K0) ≥ 1 such that for all s0 ≥
s8(A,K0), we have the following properties: If the following conditions hold:

a) We take the initial data (q1, q2)(s0) are defined by uA,K0,d1,d2(0) with s0 = − lnT (see
Definition 3.2, (3.21) and (3.55)) and (d0, d1) ∈ DK0,A,s0 (see in Lemma (3.14)).
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b) For all s ∈ [s0, s1], the solution (q1, q2) of equation (3.56) satisfies: (q1, q2)(s) ∈ VA(s)
and q1(s) + Φ1(s) ≥ 1

2
e−

s
p−1 .

Then, for all s ∈ [s0, s1], we have

∀i, j ∈ {1, · · · , n}, |q1,i,j(s)| ≤
A2 ln s

2s2
, (3.150)∥∥∥∥q1,−(., s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

2s2
, ‖q1,e(s)‖L∞(RN ) ≤

A2

2
√
s
, (3.151)∥∥∥∥q2,−(., s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A2

2s
p1+5

2

, ‖q2,e(s)‖L∞(RN ) ≤
A3

2s
p1+2

2

. (3.152)

Proof. The proof is quite similar to Proposition 4.4 in [5]. Indeed, the proof is a consequence
of Proposition 3.18, exactly as in [5]. Thus, we omit the proof and refer the reader to [5].

Here, we give the conclusion of the proof of Proposition 3.16:
Conclusion of the proof of Proposition 3.16: We first choose the parametersK0, A, α0, ε0,

δ0, δ1, η0, η and T > 0 such that all the above Lemmas and Propositions which are necessary
to the proof, are satisfied. In particular, we also note that the parameters δ1and η which are
introduced in Lemma 3.14 and Lemma 3.20, will be small enough ( δ1 � δ0 and η � η0).
Finally, we fix the constant T small enough, depending on all the above parameters, then
we conclude our Proposition. We now assume the solution u of equation (3.1) with initial
data uK0,A,d1,d2(0), defined in Definition 3.2, satisfies the following

u ∈ S(T,K0, α0, ε0, A, δ0, η0, t) = S(t),

for all t ∈ [0, t∗] for some t∗ ∈ [0, T ) and

u ∈ ∂S(t∗).

We aim at proving that
(q1, q2)(s∗) ∈ ∂VA(s∗), (3.153)

where s∗ = ln(T − t∗). Indeed, by contradiction, we suppose that (3.153) is not true, then,
by using Definition 3.1 of S(t), we derive the following:

(I) Either, there exist x∗, ξ∗ which satisfy

|x∗| ∈
[
K0

4

√
(T − t∗)| ln(T − t∗)|, ε0

]
,

|ξ∗| ≤ α0

√
| ln(T − t(x∗))|.

and
|U(x∗, ξ∗, τ(x∗, t∗))− Û(τ(x∗, τ∗))| = δ0.

(II) Or, there exists x∗ such that |x∗| ≥ ε0
4

and

|u(x∗, t∗)− u(x∗, 0)| = η0.

We would like to prove that (I) and (II) can not occur. Indeed, if the first case occurs,

then, letting τ0(x∗) = max
(
− t(x∗)
θ(x∗)

, 0
)

, it follows from Lemma 3.21 that: For all |ξ| ≤
2α0

√
| ln(T − t(x∗))|, we have∣∣∣U(x∗, ξ, τ0(x∗))− Û(τ0(x∗))

∣∣∣ ≤ δ1,
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and for all τ ∈
[
max

(
− t(x∗)
T−t(x∗) ,

t∗−t(x∗)
T−t(x∗)

)]
, we have

|U(x∗, ξ, τ(x∗))| ≤ C∗7 ,

Re(U(x∗, ξ, τ(x∗))) ≥ C∗∗7 ,

where C∗7 , C
∗∗
7 are given in Lemma 3.21.

Then, we apply Lemma 3.19, with ξ0 = α0

√
| ln(T − t(x∗))|, τ1 = τ0(x∗), τ2 = t∗−t(x∗)

T−t(x∗) , λ5 =

C∗∗7 and Λ5 = C∗7 , to derive that: for all ξ ∈ [−ξ0, ξ0]∣∣∣U(x∗, ξ, τ(x∗, t∗))− Û(τ(x∗, t∗))
∣∣∣ ≤ C(K0,Λ5λ5, δ1, ξ0),

where C(K0,Λ5, λ5, δ1, ξ0) → 0 as (δ1, ξ0) → (0,+∞). Taking (δ1, ξ0) → (0,+∞) and note
that ξ0 → +∞ as ε0 → 0, we write∣∣∣U(x∗, ξ∗, τ(x∗, t∗))− Û(τ(x∗, t∗))

∣∣∣ ≤ δ0

2
,

this is a contradiction.
If (II) occurs, we have for all |x| ∈

[
ε0
8
,+∞

)
|u(x, t)| ≤ C(ε0, A, δ0, η0),∀t ∈ [0, t∗].

Indeed, we consider the two following cases:
+ The case where |x| ≥ ε0

4
, using item (iii) if the definition of S(t), we derive the

following
|u(x, t)| ≤ |u(x, 0)|+ η0 ≤ C(A, η0),∀t ∈ [0, t∗].

+ The case where |x| ∈
[
ε0
8
, ε0

4

]
, using item (ii) in the definition of S(t), we have

|u(x, t)| ≤ C(δ0) (T − t(x))−
1
p−1 ≤ C(ε0, δ0),∀t ∈ [0, t∗].

Then, we apply Lemma 3.20 with η ≤ η0

2
and σ = C(ε0, A, δ0, η0), to derive the following

|u(x∗, t∗)− u(x∗, 0)| ≤ η0

2
.

Therefore, (II) can not occurs. Thus, (3.153) follows. In addition to that, from (3.153),
Proposition 3.18 and Lemma 3.22, we conclude the proof of item (i) of Proposition 3.16.
Since, item (ii) follows from item (i) (see for instance the proof of Proposition 3.6, given in
[5]). This concludes the proof of Proposition 3.16.

3.5 Cauchy problem for equation (3.1)

In this section, we give a proof to a local Cauchy problem in time.

Lemme 3.23 (A local Cauchy problem for a complex heat equation). Let u0 be any function
in L∞(RN)

(
RN ,C

)
such that

Re(u0(x)) ≥ λ,∀x ∈ RN , (3.154)

for some constant λ > 0. Then, there exists T1 > 0 such that equation (3.1) with initial
data u0, has a unique solution on (0, T1] . Moreover, u ∈ C

(
(0, T1] , L∞(RN)

)
and

Re(u(t)) ≥ λ

2
,∀(t, x) ∈ [0, T1]× RN .



159

Proof. The proof relies on a fixed-point argument. Indeed, we consider the space

X = C
(
(0, T1], L∞(RN)(RN ,C)

)
.

It is easy to check that X is an Banach space with the following norm

‖u‖X = sup
t∈(0,T1]

‖u(t)‖L∞(RN ),∀u = (u(t))t∈(0,T1] ∈ X.

We also introduce the closed set B+
λ

(
0, 2‖u0‖L∞(RN )

)
⊂ X defined as follows

B+
λ

(
0, 2‖u0‖L∞(RN )

)
=

{
u ∈ X such that ‖u‖X ≤ 2‖u0‖L∞(RN )

}
∩
{
u ∈ X|∀t ∈ (0, T1],Re(u(t, x)) ≥ λ

2
a. e

}
.

Let Y be the following mapping

Y : B+
λ

(
0, 2‖u0‖L∞(RN )

)
→ X,

where Y(u) = (Y(u)(t))t∈(0,T1] is defined by

Y(u)(t) = et∆(u0) +

∫ t

0

e(t−s)∆(up(s))ds. (3.155)

Note that, when u ∈ B+
λ

(
0, 2‖u0‖L∞(RN )

)
, up is well defined as in (3.18) and (3.19). We

claim that there exists T ∗ = T ∗(‖u0‖L∞(RN ), λ) > 0 such that for all 0 < T1 ≤ T ∗, the
following assertion hold:

(i) The mapping is reflexive on B+
λ

(
0, 2‖u0‖L∞(RN )

)
, meaning that

Y : B+
λ

(
0, 2‖u0‖L∞(RN )

)
→ B+

λ

(
0, 2‖u0‖L∞(RN )

)
.

(ii) The mapping Y is a contraction mapping on B+
λ

(
0, 2‖u0‖L∞(RN )

)
:

‖Y(u1)− Y(u2)‖X ≤
1

2
‖u1 − u2‖X ,

for all u1, u2 ∈ B+
λ

(
0, 2‖u0‖L∞(RN )

)
.

The proof for (i): By observe that, by using the regular property of operator et∆, we
conclude that Y(u) ∈ C

(
(0, T1], L∞(RN)(RN ,C) ∩ C(RN ,C)

)
. Besides that, for all u ∈

B+
λ

(
0, 2‖u0‖L∞(RN )

)
we derive from (3.155) that for all t ∈ (0, T1]

‖Y(u)(t)‖L∞(RN ) =

∥∥∥∥et∆(u0) +

∫ t

0

e(t−s)∆(up(s))ds

∥∥∥∥
L∞(RN )

≤
∥∥et∆(u0)

∥∥
L∞(RN )

+

∥∥∥∥∫ t

0

e(t−s)∆(up(s))ds

∥∥∥∥
L∞(RN )

≤ ‖u0‖L∞(RN ) + t2p‖u0‖pL∞(RN )
.
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Hence, if we take T1 ≤ 1

2p‖u0‖p−1

L∞(RN )

then we have

‖Y(u)‖X = sup
t∈(0,T1]

‖Y(u)‖L∞(RN ) ≤ 2‖u0‖L∞(RN ).

Now, let us note from (3.154) that

Re
(
et∆(u0)

)
= et∆ (Re(u0)) ≥ et∆ (λ) = λ.

Therefore, from (3.155) for all (t, x) ∈ (0, T1]× RN

Re(Y(u)(t, x)) ≥ λ−
∥∥∥∥∫ t

0

e(t−τ)∆(up)(τ)dτ

∥∥∥∥
L∞(RN )

.

Note that, ∥∥∥∥∫ t

0

e(t−τ)∆(up)(τ)dτ

∥∥∥∥
L∞(RN )

≤ t2p‖u0‖pL∞(RN )
.

So, if T1 ≤ λ
2p+1‖u0‖L∞(RN )

, then for all t ∈ (0, T1]× RN

Re(Y(u)(t, x)) ≥ λ

2
.

Therefore,
Y(u) ∈ B+

λ

(
0, 2‖u0‖L∞(RN )

)
.

The proof of (ii): We first recall that the function G(u) = up, u ∈ C is analytic on{
u ∈ C such that Re(u) ≥ λ

2

}
.

Then, there exists C2(‖u0‖L∞(RN ), λ) > 0 such that

‖Y(u1)− Y(u2)‖X = sup
t∈(0,T1]

∥∥∥∥∫ t

0

e(t−s)∆ (up1 − u
p
2) (s)ds

∥∥∥∥
L∞(RN )

≤ T1C2 sup
t∈(0,T1]

‖u1 − u2‖L∞(RN ).

Then, if we impose

T1 ≤
1

2C2

,

(ii) follows.

We now choose T ∗ = min

(
1

2p‖u0‖p−1

L∞(RN )

, λ
2p+1‖u0‖p

L∞(RN )

, 1
2C2

)
. Then, for all T1 ≤ T ∗, item

(i) and (ii) hold. Thanks to a Banach fixed-point argument, there exists a unique u ∈
B+
λ

(
0, 2‖u0‖L∞(RN )

)
such that

Y(u)(t) = u(t),∀t ∈ (0, T1],

and we easily check that u(t) satisfies equation (3.1) for all (0, T1] with u(0) = u0. Moreover,
from the definition of B+

λ

(
0, 2‖u0‖L∞(RN )

)
we have

Re(u)(t, x) ≥ λ

2
.

This concludes the proof of Lemma 3.23.
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3.6 Some Taylor expansions

In this section appendix, we state and prove several technical and straightforward results
needed in our paper.

Lemme 3.24 (Asymptotics of B̄1, B̄2). We consider B̄1(w̄1, w2) as in (3.25), (3.26). Then,
the following holds:

B̄1(w̄1, w2) =
p

2κ
w̄2

1 +O(|w̄1|3 + |w2|2), (3.156)

B̄2(w̄1, w2) =
p

κ
w̄1w2 +O

(
|w̄1|2|w2|

)
+O

(
|w2|3

)
. (3.157)

as (w̄1, w2)→ (0, 0).

Proof. The proof of (3.156) is quite the same as the proof of (3.157). So, we only prove
(3.157), hoping the reader will have no problem to check (3.156) if necessary. Since, κ =

(p − 1)−
1
p−1 > 0, we derive κ + w̄1 > 0 when w̄1 is near 0, so we can write B2(w̄1, w2) as

follows

B̄2(w̄1, w2) =
(
(κ+ w̄1)2 + w2

2

) p
2 sin

[
p arcsin

(
w2√

(κ+ w̄1)2 + w2
2

)]
− p

p− 1
w2,

as w̄1 → 0. Thus,

B2(w̄1, w2) =
(
(κ+ w̄1)2 + w2

2

) p
2

pw2√
(κ+ w̄1)2 + w2

2

− p

p− 1
w2

+
(
(κ+ w̄1)2 + w2

2

) p
2

{
sin

[
p arcsin

(
w2√

(κ+ w̄1)2 + w2
2

)]
− pw2√

(κ+ w̄1)2 + w2
2

}
=

(
(κ+ w̄1)2 + w2

2

) p−1
2 pw2 −

p

p− 1
w2

+
(
(κ+ w̄1)2 + w2

2

) p
2

{
sin

[
p arcsin

(
w2√

(κ+ w̄1)2 + w2
2

)]
− pw2√

(κ+ w̄1)2 + w2
2

}
= (I) + (II).

In addition to that, we have the fact

sin(px)− px = O(|x|3),
w2√

(κ+ w̄1)2 + w2
2

= O(|w2|),

as x→ 0 and (w̄1, w2)→ (0, 0). Plugging these estimates in (II), we obtain

(II) = O(|w2|3).

as (w̄1, w2) → (0, 0). For (I), we use a Taylor expansion for ((κ + w̄1)2 + w2
2), around

(w̄1, w2) = (0, 0) :

((κ+ w̄1)2 + w2
2)

p
2 =

1

p− 1
+

(p− 1)

κ(p− 1)
w̄1 +O(|w̄1|2) +O(|w2|2).
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Plugging this in (I), we derive the following:

(I) =
p

κ
w̄1w2 +O(|w̄1|2w2) +O(|w2|3),

as (w̄1, w2)→ (0, 0). From the estimates of (I) and (II), we conclude the Lemma.

In the following lemma, we aim at giving some bounds and expansions of V and
Vi,j, j, k ∈ {1, 2}

Lemme 3.25 (The potential functions V and Vj,k with j, k ∈ {1, n}). We consider V, V1,1, V1,2,
V2,1 and V2,2 defined in (3.57) and (3.58) - (3.61). Then, the following holds:

(i) For all s ≥ 1 and y ∈ RN , we have |V (y, s)| ≤ C,

|V (y, s)| ≤ C(1 + |y|2)

s
, (3.158)

and

V (y, s) = −(|y|2 − 2N)

4s
+ Ṽ (y, s), (3.159)

where Ṽ satisfies

|Ṽ (y, s)| ≤ C
(1 + |y|4)

s2
,∀s ≥ 1, |y| ≤ 2K0

√
s. (3.160)

(ii) Potential functions Vj,k with j, k ∈ {1, 2} satisfy the following estimates

‖V1,1‖L∞(RN ) + ‖V2,2‖L∞(RN ) ≤
C

s2
,

‖V1,2‖L∞(RN ) + ‖V2,1‖L∞(RN ) ≤
C

s
,

and

|V1,1(y, s)|+ |V2,2(y, s)| ≤ C(1 + |y|4)

s4
,

|V1,2(y, s)|+ |V2,1(y, s)| ≤ C(1 + |y|2)

s2
,

for all s ≥ 1 and y ∈ RN .

Proof. We note that the proof of (i) was given in Lemma B.1, page 1270 in [21]. So, it
remains to prove item (ii). Moreover, the technique for these estimates is the same, so we
only give the proof to the following estimates:

‖V1,1‖L∞(RN ) + ‖V2,2‖L∞(RN ) ≤
C

s2
, (3.161)

|V1,1(y, s)|+ |V2,2(y, s)| ≤ C(1 + |y|4)

s4
. (3.162)

+ The proof of (3.161): We recall the expressions of V1,1 and V2,2 :

V1,1 = ∂u1F1(u1, u2)|(u1,u2)=(Φ1,Φ2) − pΦp−1
1 ,

V2,2 = ∂u2F2(u1, u2)|(u1,u2)=(Φ1,Φ2) − pΦp−1
1 ,
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where Φ1,Φ2 are given by (3.58) and (3.61). Hence, we can rewrite V1,1 and V2,2 as follows

V1,1 = p(u2
1 + u2

2)
p−2

2

(
u1 cos

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
+ u2 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)])
− pΦp−1

1 ,

V2,2 = p(u2
1 + u2

2)
p−2

2

(
u1 cos

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)])
+ u2 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
− pΦp−1

1 ,

We first estimate to V1,1, from the above equalities, we decompose V1,1 into the following

V1,1 = V1,1,1 + V1,1,2 + V1,1,3, (3.163)

where

V1,1,1 = p
(
Φ2

1 + Φ2
2

) p−2
2 Φ1 − pΦp−1

1 ,

V1,1,2 = p
(
Φ2

1 + Φ2
2

) p−2
2 Φ1

(
cos

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
− 1

)
,

V1,1,3 = p(Φ2
1 + Φ2

2)
p−2

2 Φ2 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
.

As matter of fact, from the definitions of Φ1,Φ2, we have the following∥∥∥∥Φ2(., s)

Φ1(., s)

∥∥∥∥
L∞(RN )

≤ C

s
, (3.164)

‖Φ1(., s)‖L∞(RN ) ≤ C, (3.165)

‖Φ2(., s)‖L∞(RN ) ≤
C

s
, (3.166)

for all s ≥ 1 and

|cos(p arcsinx)− 1| ≤ C|x|2, (3.167)

|sin(p arcsinx)− px| ≤ C|x|3, (3.168)

for all |x| ≤ 1. By using (3.164), (3.165), (3.166), (3.167) and (3.168), we get the following
bound for V1,1,2 and V1,1,3

‖V1,1,2(., s)‖L∞(RN ) + ‖V1,1,3(., s)‖L∞(RN ) ≤
C

s2
. (3.169)

For V1,1,1, using (3.164), we derive

|V1,1,1| =

∣∣∣∣∣pΦp−1
1

((
1 +

Φ2
2

Φ2
1

) p−2
2

− 1

)∣∣∣∣∣ ≤ C

s2
.
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This gives the following

‖V1,1(., s)‖L∞(RN ) ≤
C

s2
.

We can apply the technique to V2,2 to get a similar estimate as follows

‖V2,2(., s)‖L∞(RN ) ≤
C

s2
.

Then, (3.161) follows.

+ The proof of (3.162): We can see that on the domain {|y| ≥ K0

√
s}, we have the

following fact
1 + |y|4

s4
≥ C

s2
,

and in particular, (3.161) holds. Thus, for all |y| ≥ K0

√
s, we have

|V1,1(y, s)|+ |V2,2(y, s)| ≤ C(|y|4 + 1)

s4
.

Therefore, it is sufficient to give the estimate on the domain {|y| ≤ 2K0

√
s}. In fact, on

this domain there exists C(K0) > 0 such that

1

C
≤ Φ1(y, s) ≤ C.

In addition to that, using the definition of Φ2 given by (3.53), we derive the following

|Φ2(y, s)| ≤ C
(|y|2 + 1)

s2
,∀(y, s) ∈ RN × [1,+∞). (3.170)

Then, from (3.163) we have

|V1,1,2(y, s)| ≤ |Φ2(y, s)|2 ≤ C
(1 + |y|4)

s4
,

|V1,1,3(y, s)| ≤ |Φ2(y, s)|2 ≤ C
(1 + |y|4)

s4
.

We now estimate V1,1,1, thanks to a Taylor expansion of (Φ2
1 + Φ2

2)
p−2

2 , around Φ2∣∣∣(Φ2
1 + Φ2

2)
p−2

2 − Φp−2
1

∣∣∣ ≤ C|Φ2|2.

This directly yields

|V1,1,1(y, s)| ≤ C(K0)|Φ2|2 ≤ C
(1 + |y|4)

s4
.

So,

|V1,1(y, s)| ≤ C
(1 + |y|4)

s4
,∀y ∈ RN .

Moreover, we can proceed similarly for V2,2, and get

|V2,2(y, s)| ≤ C
(1 + |y|4)

s4
,∀y ∈ RN .

Thus, (3.162) follows.
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Now, we give some estimates on quadratic terms B1(q1, q2) and B2(q1, q2)

Lemme 3.26 (The termsB1(q1, q2) andB2(q1, q2)). Let us consider B1(q1, q2) and B2(q1, q2),
defined in (3.62) and (3.63), respectively. For all A ≥ 1, there exists s9(A) ≥ 1 such that
for all s0 ≥ s9(A), if (q1, q2)(s) ∈ VA(s) and q1(s)+Φ1(s) ≥ 1

2
e−

s
p−1 for all s ∈ [s0, s1], then,

the following holds: for all s ∈ [s0, s1],

|χ(y, s)B1(q1, q2)| ≤ C
(
|q1|2 + |q2|2

)
, (3.171)

|χ(y, s)B2(q1, q2)| ≤ C

(
|q1|2

s
+ |q1||q2|+ |q2|2

)
, (3.172)

‖B1(q1, q2)‖L∞(RN ) ≤
CA4

min(2,p)
2

, (3.173)

‖B2(q1, q2)‖L∞(RN ) ≤
CA2

s1+min( p−1
4
, 1
2)
, (3.174)

where χ(y, s) is defined as in (3.66).

Proof. We first would like to note that the condition q1(s) + Φ1(s) ≥ 1
2
e−

s
p−1 is to ensure

that the real part w1 = q1(s) + Φ1(s) > 0. Then, (3.16) holds and functions F1 and F2

which are involved in the definitions of B1 and B2 are well-defined (see (3.18)). For the
proof of Lemma 3.26, we only prove for (3.172) and (3.174), because the other ones follow
similarly.

+ The proof for (3.172): Using the fact that the support of χ(y, s) is {|y| ≤ 2K0

√
s}, it

is enough to prove (3.172) for all {|y| ≤ 2K0

√
s}. Since we have (q1, q2) ∈ VA(s), we derive

from item (ii) of Lemma 3.10 and the definition of Φ1,Φ2 that

1

C
≤ q1 + Φ1 ≤ C, |q2 + Φ2| ≤

C

s
.

and

|q1| ≤
CA√
s
, |q2| ≤

CA2

s
p1+2

2

, ∀|y| ≤ 2K0

√
s. (3.175)

In addition to that, we write B2(q1, q2) as follows:

B2(q1, q2) = F2 (Φ1 + q1,Φ2 + q2)− F2(Φ1,Φ2)− ∂u1F2(q1 + Φ1, q2 + Φ2)q1

− ∂u2F2(q1 + Φ1, q2 + Φ2)q2.

where

F2(u1, u2) =
(
u2

1 + u2
2

) p
2 sin

[
p arcsin

(
u2√
u2

1 + u2
2

)]
.

Using a Taylor expansion for the function F2(q1 + Φ1, q2 + Φ2) at (q1, q2) = (0, 0), we derive
the following

F2(q1 + Φ1, q2 + Φ2) =
∑
j+k≤4

1

j!k!
∂j+k
qj1q

k
2

(F2(q1 + Φ1, q2 + Φ2))
∣∣
(q1,q2)=(0,0) q

j
1q
k
2 +

+
∑
j+k=5

Gj,k(q1, q2)qj1q
k
2 ,
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where

Gj,k(q1, q2) =
5

j!k!

∫ 1

0

(1− t)4∂5
qj1q

k
2
(F2(Φ1 + tq1,Φ2 + tq2))dt.

In particular, we have

|Gj,k(q1, q2)| ≤ C, ∀j + k = 5.

As a matter of fact, we have

∂j+k
qj1q

k
2

(F2(q1 + Φ1, q2 + Φ2))
∣∣
(q1,q2)=(0,0) = ∂j+k

uj1u
k
2

F2(u1, u2)
∣∣
(u1,u2)=(0,0) (3.176)

Therefore, from (3.175), we have∣∣∣∣∣F2(q1 + Φ1, q2 + Φ2)−
∑
j+k≤5

1

j!k!
∂j+k
uj1u

k
2

F2(u1, u2)
∣∣
(u1,u2)=(Φ1,Φ2) q

j
1q
k
2

∣∣∣∣∣
≤ C

5∑
j=0

|qj1q
5−j
2 | ≤ C

(
|q1|2

s
+ |q1||q2|+ |q2|2

)
.

In addition to that, we have the following fact,

|∂j+k
uj1u

k
2

F2(u1, u2)
∣∣
(u1,u2)=(Φ1,Φ2) | ≤ C, ∀j + k ≤ 4,

and for all 1 ≤ j ≤ 4, we have∣∣∣∂j
uj1
F2(u1, u2)

∣∣∣
(u1,u2)=(Φ1,Φ2)

≤ C

s
.

This concludes (3.172).

The proof of (3.174): We rewrite B2(q1, q2) explicitly as follows:

B2(q1, q2) =
(
(q1 + Φ1)2 + (q2 + Φ2)2

) p
2 sin

[
p arcsin

(
q2 + Φ2√

(q1 + Φ1)2 + (q2 + Φ2)2

)]

− (Φ2
1 + Φ2

2)
p
2 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]

− p
(
Φ2

1 + Φ2
2

) p−2
2

(
Φ1 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
− Φ2 cos

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)])
q1

− p
(
Φ2

1 + Φ2
2

) p−2
2

(
Φ2 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
+ Φ1 cos

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)])
q2.

Then, we decompose B2(q1, q2) as follows:

B2(q1, q2) = B2,1(q1, q2) +B2,2(q1, q2) +B2,3(q1, q2) +B2,4(q1, q2) +B2,5(q1, q2) +B2,6(q1, q2),
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where

B2,1(q1, q2) = p(q2 + Φ2)
(
(q1 + Φ1)2 + (q2 + Φ2)2

) p−1
2 − p(Φ2

1 + Φ2
2)

p−1
2 Φ2 (3.177)

− p
(
Φ2

1 + Φ2
2

) p−2
2 Φ1q2,

B2,2(q1, q2) = ((q1 + Φ1)2 + (q2 + Φ2)2)
p
2

{
sin

[
p arcsin

(
q2 + Φ2√

(q1 + Φ1)2 + (q2 + Φ2)2

)]

− p(q2 + Φ2)√
(q1 + Φ1)2 + (q2 + Φ2)2

}
, (3.178)

B2,3(q1, q2) =
(
Φ2

1 + Φ2
2

) p
2

(
pΦ2√

Φ2
1 + Φ2

2

− sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)])
, (3.179)

B2,4(q1, q2) = p(Φ2
1 + Φ2

2)
p−2

2 Φ1

(
1− cos

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)])
q2, (3.180)

B2,5(q1, q2) = p
(
Φ2

1 + Φ2
2

) p−2
2

{
Φ2 cos

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]

− Φ1 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]}
q1, (3.181)

B2,6(q1, q2) = −p(Φ2
1 + Φ2

2)
p−2

2 Φ2 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
q2. (3.182)

we prove that: for all y ∈ RN :

|B2,j(q1, q2)| ≤ CA2

s1+min( p−1
4
, 1
2)
,∀j = 1, ..., 6.

We now aim at an estimate on B2,1(q1, q2): We first need to prove the following:∣∣∣((Φ1 + q1)2 + (Φ2 + q2)2
) p−1

2 − (Φ2
1 + Φ2

2)
p−1

2

∣∣∣ ≤ C |Z|min( p−1
2
,1) , (3.183)

where
|Z| = 2q1Φ1 + 2q2Φ2 + q2

1 + q2
2.

Note that Z is bounded. On the other hand, we have (Φ1 + q1)2 + (Φ2 + q2)2)
p−1

2 = (Φ2
1 +

Φ2
2 + Z)

p−1
2 . Then, if p−1

2
≥ 1, using a Taylor expansion of the function (Φ2

1 + Φ2
2 + Z)

p−1
2

around Z0 = 0 (note that Φ2
1 + Φ2

2 is uniformly bounded), we obtain the following:∣∣∣((Φ1 + q1)2 + (Φ2 + q2)2
) p−1

2 − (Φ2
1 + Φ2

2)
p−1

2

∣∣∣ ≤ C |Z| ,

which yields (3.183). If p−1
2
< 1, then, we have∣∣∣((Φ1 + q1)2 + (Φ2 + q2)2
) p−1

2 − (Φ2
1 + Φ2

2)
p−1

2

∣∣∣ =
(
Φ2

1 + Φ2
2

) p−1
2

∣∣∣(1 + ξ)
p−1

2 − 1
∣∣∣ ,

where

ξ =
Z

Φ2
1 + Φ2

2

.
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In particular, we have ξ ≥ −1. In addition to that, we have the following fact: for all
ξ ≥ −1 ∣∣∣(1 + ξ)

p−1
2 − 1

∣∣∣ ≤ C |ξ|
p−1

2 (3.184)

Therefore, (3.184) gives the following

∣∣∣((Φ1 + q1)2 + (Φ2 + q2)2
) p−1

2 − (Φ2
1 + Φ2

2)
p−1

2

∣∣∣ ≤ C
(
Φ2

1 + Φ2
2

) p−1
2

∣∣∣∣ Z

Φ2
1 + Φ2

2

∣∣∣∣ p−1
2

≤ C |Z|
p−1

2 .

Then, (3.183) follows. Using (q1, q2)(s) ∈ VA(s) and Z = 2Φ1q1 + 2Φ2q2 + q2
1 + q2

2, we write

‖Z‖L∞(RN ) ≤
CA2

√
s
,∀s ≥ 1.

So, we deduce from (3.183) that

‖pΦ2

(
((Φ1 + q1)2 + (Φ2 + q2)2)

p−1
2

)
− pΦ2(Φ2

1 + Φ2
2)

p−1
2 ‖L∞(RN ) ≤

CA2

s1+min( p−1
4
, 1
2)
. (3.185)

Using (3.183), we have the following∥∥∥((Φ1 + q1)2 + (Φ2 + q2)2
) p−1

2 − (Φ2
1 + Φ2

2)
p−2

2 Φ1

∥∥∥
L∞(RN )

≤ CA2

smin( p−1
4
, 1
2)
. (3.186)

Indeed, we have ∣∣∣((Φ1 + q1)2 + (Φ2 + q2)2
) p−1

2 − (Φ2
1 + Φ2

2)
p−2

2 Φ1

∣∣∣
≤

∣∣∣((Φ1 + q1)2 + (Φ2 + q2)2
) p−1

2 − (Φ2
1 + Φ2

2)
p−1

2

∣∣∣
+

∣∣∣(Φ2
1 + Φ2

2)
p−1

2 − (Φ2
1 + Φ2

2)
p−2

2 Φ1

∣∣∣
≤ CA2

s
min( p−1

2 ,1)
2

+
C

s2
.

Then, (3.186) holds.
On the other hand, using (3.186) and the following

‖q2(., s)‖L∞(RN ) ≤
CA3

s
p1+2

2

, p1 > 0,

we conclude that∥∥∥pq2

(
(Φ1 + q1)2 + (Φ2 + q2)2

) p−1
2 − (Φ2

1 + Φ2
2)

p−2
2 Φ1

∥∥∥
L∞(RN )

≤ CA2

s1+min( p−1
4
, 1
2)
, (3.187)

provided that s ≥ s1,9(A). From (3.185) and (3.187), we have

‖B2,1(q1, q2)‖L∞(RN ) ≤
CA2

s1+min( p−1
4
, 1
2)
. (3.188)
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We next give a bound to B2,2(q1, q2) : Using the following fact

|sin(p arcsinx)− px| ≤ C|x|3,∀|x| ≤ 1,

we derive the following∣∣∣∣∣sin
[
p arcsin

(
q2 + Φ2√

(q1 + Φ1)2 + (q2 + Φ2)2

)]
− p(q2 + Φ2)√

(q1 + Φ1)2 + (q2 + Φ2)2

∣∣∣∣∣
≤ C

|(q2 + Φ2)|3

((q1 + Φ1)2 + (q2 + Φ2)2)
3
2

.

Plugging the above estimate into B2(q1, q2), we deduce the following

|B2,2(q1, q2)| ≤ C
(
(q1 + Φ1)2 + (Φ2 + q2)2

) p−3
2 |q2 + Φ2|3 ,

which yields

|B2,2(q1, q2)| ≤ C|q2 + Φ2|min(p,3),

Using (q1, q2) ∈ VA(s), it gives the following

|q2 + Φ2| ≤
C

s
,

provided that s ≥ s2,9(A). Then,

‖B2,2(q1, q2)‖L∞(RN ) ≤
C

smin(p,3)
. (3.189)

It is similar to estimate to B2,3(q1, q2)

‖B2,3(q1, q2)‖L∞(RN ) ≤
C

s3
. (3.190)

We estimate to B2,4(q1, q2), using the following

|1− cos(p arcsinx)| ≤ C|x|2,∀|x| ≤ 1,

we write

|B2,4(q1, q2)| ≤ C

∥∥∥∥Φ2

Φ1

∥∥∥∥2

L∞(RN )

‖q2‖L∞(RN ) ≤
CA3

s3
.

Then, we derive that

‖B2,4(q1, q2)‖L∞(RN ) ≤
CA3

s3
. (3.191)

We also estimate to B2,5, B2,6 as follows:

‖B2,5(q1, q2)‖L∞(RN ) ≤
CA2

s
3
2

, (3.192)

‖B2,6(q1, q2)‖L∞(RN ) ≤
CA3

s2
. (3.193)

Thus, from (3.188), (3.189), (3.190), (3.191), (3.192) and (3.193), we conlude (3.174), pro-
vided that s ≥ s3,9(A).
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In the following Lemma, we aim at giving estimates to the rest terms R1, R2 :

Lemme 3.27 (The rest terms R1, R2). For all s ≥ 1, let us consider R1 and R2 , defined
in (3.64) and (3.65), respectively. Then,

(i) For all s ≥ 1 and y ∈ RN , we have

R1(y, s) =
c1,p

s2
+ R̃1(y, s),

R2(y, s) =
c2,p

s3
+ R̃2(y, s),

where c1,pand c2,p are constants depended on p and R̃1, R̃2 satisfy

|R̃1(y, s)| ≤ C(1 + |y|4)

s3
,

|R̃2(y, s)| ≤ C(1 + |y|6)

s4
,

for all |y| ≤ 2K0

√
s.

(ii) Moreover, we have for all s ≥ 1

‖R1(., s)‖L∞(RN ) ≤
C

s
,

‖R2(., s)‖L∞(RN ) ≤
C

s2
.

Proof. The proof for R1 is quite the same as the proof for R2. For that reason, we only
give the proof of the estimates on R2. This means that, we need to prove the following
estimates:

R2(y, s) = −N(N + 4)κ

(p− 1)s3
+ R̃2(y, s), (3.194)

with

|R̃2(y, s)| ≤ C(1 + |y|6)

s4
,∀|y| ≤ 2K0

√
s.

and

‖R2(., s)‖L∞(RN ) ≤
C

s2
. (3.195)

We recall the definition of R2(y, s):

R2(y, s) = ∆Φ2 −
1

2
y · ∇Φ2 −

Φ2

p− 1
+ F2(Φ1,Φ2)− ∂sΦ2,

Then, we can rewrite R2 as follows

R2(y, s) = ∆Φ2 −
1

2
y · ∇Φ2 −

Φ2

p− 1
+ pΦp−1

1 Φ2 − ∂sΦ2 +R∗2(y, s),

where

R∗2(y, s) =
(
Φ2

1 + Φ2
2

) p
2 sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
− pΦp−1

1 Φ2.
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Using the defintions of Φ1,Φ2 given in (3.53) and (3.54), we obtain the following:

|R∗2(y, s)| ≤

∣∣∣∣∣(Φ2
1 + Φ2

2

) p
2

{
sin

[
p arcsin

(
Φ2√

Φ2
1 + Φ2

2

)]
− p Φ2√

Φ2
1 + Φ2

2

}∣∣∣∣∣
+

∣∣∣pΦ2((Φ2
1 + Φ2

2)
p−1

2 − Φp−1
1 )

∣∣∣ .
It is similar to the proofs of estimations given in the proof of Lemma 3.26, we can prove
the following

|R∗2(y, s)| ≤ C(1 + |y|6)

s4
, ∀|y| ≤ 2K0

√
s,

and

‖R∗2(., s)‖L∞(RN ) ≤ C

s2
.

In addition to that, we introduce R̄2 as follows:

R̄2(y, s) = ∆Φ2 −
1

2
y · ∇Φ2 −

Φ2

p− 1
+ pΦp−1

1 Φ2 − ∂sΦ2.

Then, we aim at proving the following:∣∣∣∣R̄2(y, s) +
N(N + 4)κ

(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, for all |y| ≤ 2K0

√
s, (3.196)

‖R̄2(., s)‖L∞(RN ) ≤
C

s2
. (3.197)

+ The proof of (3.196): We first aim at expanding ∆Φ2 in a polynomial in y of order less
than 4 via the Taylor expansion. Indeed, ∆Φ2 is given by

∆Φ2 =
2N

s2

(
p− 1 +

(p− 1)2|y|2

4ps

)− p
p−1

− (p− 1)|y|2

s3

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− 2p−1
p−1

− (N + 2)(p− 1)|y|2

2s3

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− 2p−1
p−1

+
(2p− 1)(p− 1)2|y|4

4ps4

(
p− 1 +

(p− 1)2

4p

|y|2

s

)− 3p−2
p−1

.

Besides that, we make a Taylor expansion in the variable z = |y|√
s

for
(
p− 1 + (p−1)2

4p
|y|2
s

)− p
p−1

when |z| ≤ 2K, and we get∣∣∣∣∣
(
p− 1 +

(p− 1)2|y|2

4ps

)− p
p−1

− κ

p− 1
+

κ

4(p− 1)

|y|2

s

∣∣∣∣∣ ≤ C(1 + |y|4)

s2
∀|y| ≤ 2K

√
s.

which yields∣∣∣∣∣2Ns2

(
p− 1 +

(p− 1)2|y|2

4ps

)− p
p−1

− 2Nκ

(p− 1)s2
+

Nκ|y|2

2(p− 1)s3

∣∣∣∣∣ ≤ C(1 + |y|6)

s4
, ∀|y| ≤ 2K

√
s.
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It is similar to estimate the other termes in ∆Φ2 as the above. Finally, we obtain∣∣∣∣∆Φ2 −
2Nκ

(p− 1)s2
+

Nκ|y|2

(p− 1)s3
+ 2

k|y|2

(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, ∀|y| ≤ 2K

√
s. (3.198)

As we did for ∆Φ2, we estimate similarly the other terms in R̄2: for all |y| ≤ 2K
√
s∣∣∣∣−1

2
y · ∇Φ2 +

κ|y|2

(p− 1)s2
− κ|y|4

4(p− 1)s3
− κ|y|4

4(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, (3.199)∣∣∣∣− Φ2

p− 1
+

κ|y|2

(p− 1)2s2
− κ|y|4

4(p− 1)2s3
− 2Nκ

(p− 1)2s2

∣∣∣∣ ≤ C(1 + |y|6)

s4
, (3.200)

∣∣pΦp−1
1 Φ2 + T (y)

∣∣ ≤ C(1 + |y|6)

s4
, (3.201)∣∣∣∣−∂sΦ2 −

2κ|y|2

(p− 1)s3
+

4Nκ

(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, (3.202)

where

T (y) = − pκ|y|2

(p− 1)2s2
+

(2p− 1)κ|y|4

4(p− 1)2s3
− Nκ|y|2

(p− 1)s3
+

2pNκ

(p− 1)2s2
+

N2κ

(p− 1)s3
.

Thus, we use (3.198), (3.199), (3.200), (3.201) and (3.202) to deduce the following∣∣∣∣R̄2(y, s) +
N(N + 4)κ

(p− 1)s3

∣∣∣∣ ≤ C(1 + |y|6)

s4
, ∀|y| ≤ 2K

√
s,

and (3.196) follows
+ The proof (3.197): We rewrite Φ1,Φ2 as follows

Φ1(y, s) = R1,0(z) +
Nκ

2ps
and Φ2(y, s) =

1

s
R2,1(z)− 2Nκ

(p− 1)s2
where z =

y√
s
,

where R1,0 and R2,1 are defined in (3.48) and (3.50), respectively. In addition to that, we
rewrite R̄2 in terms of R1,0 and R2,1, and we note that R1,0 and R2,1 satisfy (3.44) and
(3.46). Then, it follows that

|R̄2(y, s)| ≤ C

s2
,∀y ∈ RN .

Hence, (3.197) follows. This concludes the proof of this Lemma.

3.7 Preparation of initial data

Here, we here give the proof of Lemma 3.14. We can see that part (II) directly follows from
item (i) of part (II). The techniques of the proof are given in [16] and [28]. Although those
papers are written in the real-valued case, unlike ours, where we handle the complex-valued
case, we reduce in fact to the real case, for the real and the imaginary parts. In addition to
that, the set DK0,A,s0 is the product of two parts, the first one depends only on d1, and the
other one depends only on d2. Moreover, the real part is almost the same as initial data in
the Vortex model, treated in [16], except for the new term 1, but this term is very small
after changing to similarity variables: e−

s
p−1 . In fact, handling the imaginary part is easier
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than handling the real part. For those reasons, we kindly refer the reader to Lemma 2.4 in
[16] and Proposition 4.5 in [28] for the proof of item (i) of (I) and (II). So, we only prove
that our initial data satisfies item (ii) in definition of S(0) (item (iii) is obvious).

Let us consider T > 0, K0, α0, ε0 and δ1 which will be suitably chosen later. In fact, we aim

at proving the following: For all |x| ∈
[
K0

4

√
T | lnT |, ε0

]
, and |ξ| ≤ 2α0

√
| ln(T − t(x))| and

τ0(x) = − t(x)
T−t(x)

, we have ∣∣∣U(x, ξ, τ0(x))− Û(τ0(x))
∣∣∣ ≤ δ1. (3.203)

We now introduce some necessary notations for our proof,

θ0 = T, r(0) =
K0

4

√
θ0| ln(θ0)| and R(0) = θ

1
2
0 | ln θ0|

p
2 . (3.204)

Then, we have the following asymptotic behaviors:

θ(r(0)) ∼ θ0, θ (R(0)) ∼ 16

K2
0

θ0| ln θ0|, θ (2R(0)) ∼ 64

K2
0

θ0| ln θ0|p−1, (3.205)

ln θ(r(0)) ∼ ln θ(R(0)) ∼ ln θ(2R(T )). (3.206)

In addition to that, if α0 ≤ K0

16
and ε0 ≤ 2

3
C∗, where C∗ is introduced in (3.87), then,

from the definition (3.75) and |x| ∈ [r(0), ε0] , and for all |ξ| ≤ 2α0

√
| ln θ(x)|, with θ(x) =

T − t(x), we have ∣∣∣ξ√θ(x)
∣∣∣ ≤ 1

2
|x|,

which yields

r(0)

2
≤ |x|

2
= |x| − |x|

2
≤ |x+ ξ

√
θ(x)| ≤ 3

2
|x| ≤ 3

2
ε0 ≤ C∗. (3.207)

Hence, using (3.74), (3.2) and the definition of χ1 and the fact that |ξ| ≤ 2α0

√
| ln θ(x)|,

we can write

U(x, ξ, τ0) = U1(x, ξ, τ0) + iU2(x, ξ, τ0),

where

U1(x, ξ, τ0) = (I)χ1(x+ ξ
√
θ(x)) + (II)(1− χ1(x+ ξ

√
θ(x))) + (III),

(I) =

(
θ(x)

θ0

) 1
p−1

Φ1

(
x+ ξ

√
θ(x)√

T
, | ln(T )|

)
,

(II) = (θ(x))
1
p−1 U∗

(
x+ ξ

√
θ(x)

)
,

(III) = (θ(x))
1
p−1 ,

U2(x, τ, τ0) =

(
θ(x)

θ0

) 1
p−1

Φ2

(
x+ ξ

√
θ(x)√

T − t0
, | ln(T − t0)|

)
.
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Then, the conclusion of the proof of (3.203) will follow from the 4 following estimates:∣∣∣(I)− Û(τ0)
∣∣∣ ≤ δ1

4
, for all |x| ∈

[
r(0),

200

99
R(0)

]
and |ξ| ≤ 2α0

√
| ln θ(x)|,(3.208)

∣∣∣(II)− Û(τ0)
∣∣∣ ≤ δ1

4
, for all |x| ∈ [r(0), ε0] and |ξ| ≤ 2α0

√
| ln θ(x)|, (3.209)

|(III)| ≤ δ1

4
, for all |x| ∈ [r(0), ε0] and |ξ| ≤ 2α0

√
| ln θ(x)|, (3.210)

|U2(x, ξ, τ0)| ≤ δ1

4
, for all |x| ∈

[
r(0),

200

99
R(0)

]
and |ξ| ≤ 2α0

√
| ln θ(x)|.(3.211)

In fact, it is very easy to estimate for (3.210) for ε0 small enough.

We now estimate (3.211): We rewrite U2(x, ξ, τ0) by using (3.84) as follows:

|U2(x, ξ, τ0)| = U2

(
x, ξ,

−t(x)

T − t(x)

)

=

(
θ0

θ(x)

)− 1
p−1 |x+ ξ

√
θ(x)|2

T | lnT |

(
p− 1 +

|x+ ξ
√
θ(x)|2

T | lnT |

)− p
p−1

1

| lnT |

≤ C

| lnT |

(
(p− 1)

θ0

θ(x)
+

(p− 1)2

4p

|x+ ξ
√
x|2

θ(x)| ln(θ0)|

)− 1
p−1

.

In addition to that, for all |x| ∈
[
r(0), 200

99
R(0)

]
and |ξ| ≤ 2α0

√
| ln θ(x)|, we have

|x+ ξ
√
x|2

θ(x)| ln(θ0)|
≥ 1

CK2
0

,

which yields

|U2(x, ξ, τ0)| ≤ CK
2
p−1

0

| lnT |
≤ δ1

4
,

provided that T ≤ T1,3(K0, δ1, α0) and for all |x| ∈
[
r(0), 200

99
R(0)

]
.

Estimate of (3.208): We derive from the definition of Φ1 in (3.53) and the definition of
Û(τ) in (3.113) that

∣∣∣∣(I)− Û
(
−t(x)

θ(x)

)∣∣∣∣ =

∣∣∣∣∣∣∣∣
(p− 1)

(
θ0

θ(x)

)
+

(p− 1)2

4p

∣∣∣x+ ξ
√
θ(x)

∣∣∣2
θ(x)| ln θ0|


− 1
p−1

−
(

(p− 1)

(
θ0

θ(x)

)
+

(p− 1)2

4p

K2
0

16

)− 1
p−1

∣∣∣∣∣
In addition to that, from (3.75), we have

(1− 2α0)2K
2
0

16

| ln θ(x)|
| ln θ0|

≤

∣∣∣x+ ξ
√
θ(x)

∣∣∣2
θ(x)| ln θ0|

≤ (1 + 2α0)2K
2
0

16

| ln θ(x)|
| ln θ0|

, (3.212)
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for all |ξ| ≤ 2α0

√
| ln θ(x)|.

Using the monotonicity of θ(x), we have the fact that for all |x| ∈
[
r(0), 200

99
R(0)

]
| ln r(0)|
| ln θ0|

≤ | ln θ(x)|
| ln θ0|

≤ | lnR(0)|
| ln θ0|

.

Thanks to (3.205), we derive
| ln θ(x)|
| ln θ0|

∼ 1 as T → 0. (3.213)

This yields ∣∣∣∣(I)− Û
(
−t(x)

θ(x)

)∣∣∣∣ ≤ C(K0)

∣∣∣∣∣ |x+ ξ
√
θ(x)|2

θ(x)| ln θ0|
− K2

0

16

∣∣∣∣∣→ 0

uniformly for all |x| ∈
[
r(0), 200

99
R(0)

]
, |ξ| ≤ 2α0

√
| ln θ(x)| as α0 → 0 and T → 0. Hence,

there exists α2,3(K0, δ1) and T2,3(K0, δ1) such that∣∣∣∣(I)− Û
(
−t(x)

θ(x)

)∣∣∣∣ ≤ δ1

4
,∀|x| ∈

[
r(0),

200

99
R(0)

]
and |ξ| ≤ 2α0

√
| ln θ(x)|,

provided that α0 ≤ α2,3 and T ≤ T2,3. This concludes the proof of (3.208).

Estimate (3.209): Let |x| ∈
[

99
100
R(0), ε0

]
. We use the definition of U∗ to rewrite (II) as

follows

(II) =

(p− 1)2

8p

∣∣∣x+ ξ
√
θ(x)

∣∣∣2
θ(x)| ln(x+ ξ

√
θ(x))|


− 1
p−1

=

(p− 1)2

8p

∣∣∣K0

4

√
| ln θ(x)|+ ξ

∣∣∣2
| ln(x+ ξ

√
θ(x))|


− 1
p−1

=

(p− 1)2K2
0

64
+

(p− 1)2

8p


∣∣∣K0

4

√
| ln θ(x)|+ ξ

∣∣∣2
| ln(x+ ξ

√
θ(x))|

− K2
0

8



− 1
p−1

.

Then,

∣∣∣∣(II)− Û
(
t0 − t(x)

θ(x)

)∣∣∣∣ =

∣∣∣∣∣∣∣∣
(p− 1)2K2

0

64
+

(p− 1)2

8p


∣∣∣K0

4

√
| ln θ(x)|+ ξ

∣∣∣2
| ln(x+ ξ

√
θ(x))|

− K2
0

8



− 1
p−1

−
(

(p− 1)2K2
0

64p
+ (p− 1)

θ0

θ(x)

)− 1
p−1

∣∣∣∣∣
≤ C(K0)((II1) + (II2)),

where

(II1) =

∣∣∣∣∣∣∣
∣∣∣K0

4

√
| ln θ(x)|+ ξ

∣∣∣2
| ln(x+ ξ

√
θ(x))|

− K2
0

8

∣∣∣∣∣∣∣ ,
(II2) = (p− 1)

θ0

θ(x)
.
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Let us give a bound to (II1): Because |ξ| ≤ 2α0

√
| ln θ(x)|, we have

|(II1)| ≤

∣∣∣∣∣∣∣
∣∣∣K0

4

√
| ln θ(x)|+ 2α0

√
ln θ(x)

∣∣∣2
| ln |x+ 2α0

√
θ(x)| ln θ(x)|||

− K2
0

8

∣∣∣∣∣∣∣
=

∣∣∣∣∣ ln θ(x)

| ln |x+ α0K0|x|
2
||

(
K0

4
+ 2α0

)2

− K2
0

8

∣∣∣∣∣ .
Using the fact that

ln θ(x) = ln(T − t(x)) ∼ 2 ln |x|,

and

| ln(|x+ 2α0

√
θ(x) ln θ(x)|)| = | ln |x+

K0

2
|x||| ∼ | ln |x||,

as |x| → 0, we derive that, there exists α3,3(K0, δ1) such that for all α0 ≤ α3,3, there
exists ε3,3(K0, α0, δ1) such that for all ε0 ≤ ε3,3, for all x ∈

[
99
100
R(0), ε0

]
and for all |ξ| ≤

2α0

√
| ln θ(x)|, we obtain

|(II1)| ≤ δ1

2
.

It remains to give a bound for (II2). From (3.205), the fact that |x| ≥ 99
100
R(0) and the

monotonicity of θ(x), we have

|(II2)| ≤

∣∣∣∣∣ θ(0)

θ
(

99
100
R(0)

)∣∣∣∣∣ ≤ C| ln θ(0)|−(p−1) ≤ δ1

2
,

provided that T ≤ T4,3(K0, δ1). This gives (3.203), and concludes the proof of Lemma 3.14.
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Chapter 4

Profile of a touch-down solution to a
nonlocal MEMS Model

1.

G. K. Duong and H. Zaag

Abstract: In this paper, we are interested in the mathematical model of MEMS devices
which is presented by the following equation on (0, T )× Ω :

∂tu = ∆u+
λ

(1− u)2

(
1 + γ

∫
Ω

1

1− u
dx

)2 and 0 ≤ u < 1,

where Ω is a C2 bounded domain in RN and λ, γ > 0. In this work, we have succeeded to
construct a solution which quenches in finite time T only at one interior point a ∈ Ω. In
particular, we give a description of the quenching behavior according to the following final
profile

1− u(x, T ) ∼ θ∗
[
|x− a|2

| ln |x− a||

] 1
3

for some θ∗ > 0 as , x→ a.

The construction relies on some connection between the quenching phemonenon and the
blowup phenomenon. More precisely, we change our problem to the construction of a blowup
solution for a related PDE and describe its asymptotic behaviors. The method is inspired by
the work of Merle and Zaag [14] with a suitable modification. In addition to that, the proof
relies on two main steps: A reduction to a finite dimensional problem and a topological
argument based on Index theory. The main difficulty and novelty of this work is that we
handle the nonlocal integral term in the above equation. The interpretation of the finite
dimensional parameters in terms of the blowup point and the blowup time allows to derive
the stability of the constructed solution with respect to initial data.
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Keywords: Blowup solution, Blowup profile, MEMS model, touch-down phenomenon,
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4.1 Introduction.

We are interested in the motion of some elastic membranes which is usually found in Micro-
Electro Mechanical Systems (MEMS) devices, which are available in a variety of electronic
devices such as: microphones: transducers; sensors; actuators and so on. Described briefly,
MEMS devices contain an elastic membrane which is hanged above a rigid ground plate
connected in series with a fixed voltage source and a fixed capacitor. For more details on
the physical background and possible applications, we refer the reader to [4], [10], [18] and
[19].

For a MEMS device (in [9] and [10]), the distance between the rigid ground plate and
the elastic membrane changes with time. It is referred to as the deflection of the membrane.
Here, we assume that this distance is very small compared to the device. In fact, we can
fully describe the behavior of the deflection by the following hyperbolic equation

ε2∂ttu+ ∂tu = ∆u+
λf(x, t)

(1− u)2

(
1 + γ

∫
Ω

1

1− u
dx

)2 , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω̄.

(4.1)

where Ω is considered as the domain of the rigid plate, u is the deflection of the membrane
to the plate, λ > 0, γ > 0 and f is continuous. Here, the distance between the rest position
of the membrane and the rigid plate is normalized to 1. When the device is under voltage,
u will vary in the interval [0, 1). In addition to that, the parameter λ represents the ratio
of the reference electrostatic force to the reference elastic force and ε is the ratio of the
interaction of the inertial and damping terms in our model. Moreover, the function f
represents the varying dielectric properties of the membrane, see [7] for more details.

In fact, we are interested in a simpler case of (4.1) considered in the following parabolic
equation: 

∂tu = ∆u+
λ

(1− u)2

(
1 + γ

∫
Ω

1

1− u
dx

)2 , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω.

(4.2)

Moreover, we are also interested in the following generalization of problem (4.2):
∂tu = ∆u+

λ

(1− u)p
(

1 + γ

∫
Ω

1

1− u
dx

)q , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(4.3)

where p, q > 0. Introducing

QT = (0, T )× Ω, where T > 0, (4.4)
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we say that u is a classical solution of (4.2) (in the sense of Proposition 1.2.2 page 13 in
Kavallaris and Suzuki [11]) if u is a function in C2,1(QT ) ∩ C(Q̄T ) that satisfies (4.2) at
every point in QT as well as the boundary and initial conditions, with

u(x, t) ∈ [0, 1),∀x ∈ Ω, t ∈ (0, T ).

According to the above mentioned reference in [11], the local Cauchy problem of (4.2) is
solved. Then, either our solution is global in time or there exists T > 0 such that

lim inf
t→T

[
min
x∈Ω̄
{1− u(t, x)}

]
= 0. (4.5)

We can see that if the above condition occurs, the right-hand side of (4.2) may become
singular. This phenomenon is referred to as touch-down in finite time T in reference to
the physical phenomenon, where the membrane “touches” the rigid ground plate which is
placed below. In fact, in our setting, we follow the literature and place the regid plate at
u = 1, above the membrane which is located at u(x, t). Note that in case of touch-down,
the MEMS device breaks down.

Mathematically, we may refer to the behavior in (4.5) as finite-time quenching. More-
over, a ∈ Ω is a quenching point if and only if there exist sequences (an, tn) ∈ Ω × (0, T )
such that

u(an, tn)→ 1, as n→ +∞.

The touch-down phenomenon has been strongly studied in recent decades. In one space
dimension, we would like to mention the paper by Guo, Hu and Wang in [6] who gave a
sufficient condition for quenching, and also a lower bound on the quenching final profile (see
Remark 4.5 below). There is also the paper by Guo and Hu in [5] who find a constant limit
for the similarity variables version valid only on compact sets, and yielding the quenching
rate.

In higher dimensions, let us for example mention the following result by Guo and Kaval-
laris [7]:

Consider Ω such that |Ω| ≤ 1
2
. Then, for all λ > 0 fixed and γ > 0, there exist initial

data with a small energy such that problem (4.2) has a solution which quenches in finite
time.

In our paper, we are interested in proving a general quenching result with no restriction
on any λ > 0, γ > 0 and C2 bounded domain Ω. In fact, we do much better than [5] and [6],
and give a sharp description of the asymptotic behavior of the solution near the quenching
region. The following is the main result:

Theorem 4.1 (Existence of a touch-down solution). Let us consider λ > 0, γ > 0 and Ω a
C2 bounded domain in RN , containing the origin. Then, there exist initial data u0 ∈ C∞(Ω̄)
such that the solution of (4.2) quenches in finite time T = T (u0) > 0 only at the origin. In
particular, the following holds:

(i) The intermediate profile: For all t ∈ [0, T )∥∥∥∥∥∥ (T − t) 1
3

1− u(., t)
− θ∗

(
3 +

9

8

|.|2√
(T − t)| ln(T − t)|

)− 1
3

∥∥∥∥∥∥
L∞(Ω)

≤ C√
| ln(T − t)|

, (4.6)

for some θ∗ = θ∗(λ, γ,Ω, T ) > 0.
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(ii) The final profile: There exists u∗ ∈ C2(Ω) ∩C(Ω̄) such that u uniformly converges to
u∗ as t→ T, and

1− u∗(x) ∼ θ∗
[

9

16

|x|2

| ln |x||

] 1
3

as x→ 0. (4.7)

Remark 4.2. Note that when γ = 0, our problem coincides with the work of Filippas and
Guo [3] and also Merle and Zaag [14]. Our paper is then meaningful when γ 6= 0, and the
whole issue is how to control the non local term. Note that [3] derived the final quench-
ing profile, however, only in one space dimension, whereas [14] constructed a quenching
solution in higher dimensions, proved its stability with respect to initial data, and gave its
intermediate and final profiles.

Remark 4.3. For simplicity, we choose to write our result when the solution quenches at
the origin. Of course, we can make it quenches at any arbitrary a ∈ Ω, simply replace x by
x− a in the statement.

Remark 4.4. In Theorem 4.1, we can describe the evolution of our solution at x = 0 as
follows:

1− u(0, t) ∼
3
√

3

θ∗
(T − t)

1
3 , as t→ T.

Remark 4.5. From (4.7), we see that the final profile u∗ has a cusp at the origin which is
equivalent to

C0|x|
2
3

| ln |x|| 13
.

This description is in fact much better than the result of Guo, Hu and Wang in [6] who gave
some sufficient conditions for quenching in one space dimension, and proved the existence
of a cusp at the quenching point bounded from below by C(β)|x|β for any β ∈

(
2
3
, 1
)
, which

is less accurate than our estimate (4.7).

Remark 4.6. Note that we can explicitly write the formula of the initial data

u(x, 0) =
ū(x, 0)

ū(x, 0) + 1
, (4.8)

where

ū(x, 0) =
θ̄(0)

λ
1
3

U(x, 0),

with

U(x, 0) = T−
1
3

[
ϕ(

x√
T
,− lnT ) + (d0 + d1 · z)χ0

(
32|z|
K0

)]
χ1(x) + (1− χ1(x))H∗(x),

z =
x√

T | lnT |
,

χ1(x) = χ0

(
|x|√
T | lnT |

)
,



185

and θ̄(0) is the unique positive solution of the following equation

θ̄(0) =

(
1 + γ|Ω|+ γ

3
√
λ
θ̄(0)

∫
Ω

U(0)dx

) 2
3

,

and note that χ0, ϕ and H∗ are defined in (4.28), (4.33) and (4.62), respectively. Here, T is
small enough and parameters d0 and d1 are fine-tuned in order to get the desired behavior.

Remark 4.7 (An open question). How big can θ∗ be? This question is related to the work
of Merle and Zaag in [14] (see the Theorem on page 1499), which corresponds to the case
where γ = 0. For that case, the answer is θ∗ = 1

3√
λ

. It is very interesting to answer the

question in the general case. By a glance to (4.18), (4.86) and (4.87), we know that θ∗ is

strictly greater than (1+γ|Ω|)
2
3

3√
λ

. Let us define

Tmax =

(
(1 + γ|Ω|) 2

3

3
√
λ

,+∞

)
,

and

T = {θ∗ ∈ R such that (4.6) holds with u a positive solution to (4.2), for some T > 0} .

Then, by a fine modification in the proof, we can construct a solution such that θ∗ arbitrarily
takes large values in Tmax. In particular, we can prove that T is a dense subset of Tmax.
We would like to make the following conjecture

T = Tmax.

Now, we would like to mention that our proof of Theorem 4.1 holds in a more general
setting. More precisely, if we consider problem (4.3) in the following regime

N − 2

p+ 1
> 0, and q > 0 and N ≥ 1, (4.9)

then, Theorem 4.1 changes as follows:

Theorem 4.8 (Existence of a touch-down solution to (4.3)). Consider λ, γ > 0, and Ω
a C2 bounded domain in RN and condition (4.9) holds. Then, there exist initial data û0

in C∞(Ω̄) such that the solution of equation (4.3) touches down in finite time only at the
origin. In particular, the following holds:

(i) The intermediate profile, for all t ∈ [0, T )∥∥∥∥∥∥(T − t)
1
p+1

1− u(., t)
− θ̂∗

(
p+ 1 +

(p+ 1)2

4p

|.|2√
(T − t)| ln(T − t)|

)− 1
p+1

∥∥∥∥∥∥
L∞(Ω)

≤ C√
| ln(T − t)|

,

(4.10)
for some θ̂∗(λ, γ,Ω, p, q) > 0.
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(ii) The exists û∗ ∈ C2(Ω) ∩ C(Ω̄) such that u uniformly converges to û∗ as t→ T, and

1− û∗(x) ∼ θ̂∗
[

(p+ 1)2

8p

|x|2

| ln |x||

] 1
p+1

as x→ 0. (4.11)

Remark 4.9. We don’t give the proof of Theorem 4.8 here because the techniques are the
same as for Theorem 4.1. In fact, for simplicity, we will only give the proof for the MEMS
case

p = q = 2,

considered in equation (4.2) and Theorem 4.1. Of course, all our estimates can be carried
on for the general case.

In addition to that, we can apply the techniques of Merle in [12] to create a solution
which quenches at arbitrary given points.

Corollary 4.10. For any k points a1, a2, ...., ak in Ω, there exist initial data such that (4.3)
has a solution which quenches exactly at a1, ..., ak. Moreover, the local behavior at each ai
is also given by (4.10), (4.11) by replacing x by x − ai and L∞(Ω) by L∞(|x − ai| ≤ ω0),
for some ω0 > 0, small enough.

As a consequence of our techniques, we can derive the stability of the quenching solution
which we constructed in Theorem 4.8 under the perturbations of initial data.

Theorem 4.11 (Stability of the constructed solution). Let us consider û, the solution which
we constructed in Theorem 4.8 and we also define T̂ as the quenching time of the solution
and θ̂∗ as the coefficient in front of the profiles (4.10) and (4.11). Then, there exists an

open subset Û0 in C0,+(Ω̄), containing û(0) such that for all initial data u0 ∈ Û0, equation
(4.3) has a unique solution u quenching in finite time T (u0) at only one quenching point
a(u0). Moreover, the asymptotic behaviors (4.10) and (4.11) hold by replacing û(x, t) by
u(x− a(u0), t), and θ̂∗ by some θ∗(u0) . Note that, we have

(a(u0), T (u0), θ∗(u0))→ (0, T̂ , θ̂), as ‖u0 − û0‖C(Ω̄) → 0.

Let us now comment on the organization of the paper. As we have stated earlier,
Theorem 4.1 is a special case of Theorem 4.8. For simplicity in the notations, we only prove
Theorem 4.1. The interested reader may derive the general case by inspection. Moreover,
we don’t prove Corollary 4.10 and Theorem 4.11, since the former follows from Theorem
4.8 and the techniques of Merle in [12], and the latter follows also from Theorem 4.8 by the
method of Merle and Zaag in [15]. In conclusion, we only prove Theorem 4.1 in this paper.

The paper is organized as follows:

- In Section 2, we give a different formulation of the problem, and show how the profile
in (4.6) arises naturally.

- In Section 3, we give the proof without technical details.

- In Section 4, we prove the technical details.

Some appendices are added at the end.
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4.2 Setting of the problem

4.2.1 Our main idea

We aim in this subsection at explaining our key idea in this paper. The rigorous proof will
be given later. Introducing

α(t) =
λ(

1 + γ

∫
Ω

1

1− u(t)
dx

)2 , (4.12)

we rewrite (4.2) as the following

∂tu = ∆u+
α(t)

(1− u)2
. (4.13)

Under this general form, we see our equation (4.2) as a step by step generalization, starting
from a much simpler context:

- Problem 1: Case where α(t) ≡ α0. This case was considered by Merle and Zaag
in [14] where, the authors constructed a solution uα0 satisfying

uα0(x, t)→ 1 as (x, t)→ (x0, T ),

for some T > 0, and x0 ∈ Ω. In particular, they gave a sharp description for the quenching
profile. Technically, the authors in that work introduced

ū =
1

1− u
− 1 =

u

1− u
,

and constructed a blowup solution for the following equation derived from (4.13):

∂tū = ∆ū− 2
|∇ū|2

ū
+ α0ū

4, with α(t) ≡ α0, (4.14)

(see equation (III), page 1500 in [14] for more details).

- Problem 2: Case where 0 < α1 ≤ α(t) ≤ α2 for all t > 0 for some 0 < α1 < α2.
This case is indeed a reasonable generalization which follows with no difficulty from the
stategy of [14] for Problem 1.

- Problem 3: Equation (4.2). Our idea here is to see (4.2) as a coupled system
between Problem 2 and (4.12):

∂tu = ∆u+ α(t)
(1−u)2 ,

α(t) = λ

(1+γ
∫
Ω

1
1−udx)

2 .

A simple idea would be to try a kind of fixed-point argument starting from some solution
to Problem 1, then defining α(t) according to (4.12) defined with this solution, then solving
Problem 2 with this α(t), then defining a new α(t) with the new solution, and so forth.
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In order to make this method to work, one has to check whether the iterated α(t) stay
away from 0 and +∞, as requested in the context of Problem 2. We checked whether this
holds when u solves Problem 1. Fortunately, this was the case, and this gave us a serious
hint to treat our equation (4.2) as a perturbation of Problem 1.

In fact, our proof uses no interation, and we diredly apply the stategy of Merle and
Zaag in [14] to control the various terms (including the nonlocal term), in order to find a
solution which stays near the desired behavior.

4.2.2 Formulation of the problem

In this section, we aim at setting the mathematical framework of our problem. The rigorous
proof will be given later. Our aim is to construct a solution for equation (4.2), defined for
all (x, t) ∈ Ω× [0, T ), for some T > 0 with 0 ≤ u(x, t) < 1, and

u(x, t)→ 1 as (x, t)→ (x0, T ),

for some x0 ∈ Ω. Without loss of generality, we assume that

x0 = 0 ∈ Ω.

Introducing,

ū =
1

1− u
− 1 =

u

1− u
∈ [0,+∞), (4.15)

we derive from (4.2) the following equation on ū
∂tū = ∆ū− 2 |∇ū|

2

ū+1
+

λ(ū+ 1)4

(1 + γ|Ω|+ γ

∫
Ω

ūdx)2

, x ∈ Ω, t > 0,

ū(x, t) = 0, x ∈ ∂Ω, t > 0,

ū(x, 0) = ū0(x), x ∈ Ω̄.

(4.16)

Our aim becomes then to construct a blowup solution for equation (4.16) such that

ū(0, t)→ +∞ as t→ T.

In order to see our equation as a (not so small) perturbation of the standard case in (4.14),
we suggest to make one more scaling by introducing

U(x, t) =
λ

1
3

θ̄(t)
ū(x, t), U(x, t) ≥ 0, ∀(x, t) ∈ Ω× [0, T ), (4.17)

with

θ̄(t) =

(
1 + γ|Ω|+ γ

∫
Ω

ū(t)dx

) 2
3

. (4.18)

Then, thanks to equation (4.16), we deduce the following equation to be satisfied by U :
∂tU = ∆U − 2 |∇U |

2

U+ λ
1
3

θ̄(t)

+
(
U + λ

1
3

θ̄(t)

)4

− θ̄′(t)
θ̄(t)

U, x ∈ Ω, t > 0,

U(x, t) = 0, x ∈ ∂Ω, t > 0,

U(x, 0) = U0(x), x ∈ Ω̄.

(4.19)



189

Note that in the blowup regime, which is our focus, U is large and equation (4.19) appears
indeed as a perturbation of equation (4.14).
Introducing the following notation

µ̄(t) =

∫
Ω

U(t)dx, (4.20)

we may rewrite (4.18) as the following equation

θ̄(t) =

(
1 + γ|Ω|+ γ

λ
1
3

θ̄(t)µ̄(t)

) 2
3

. (4.21)

This implies that θ̄(t) solves the following cubic equation

θ3(t) =

(
1 + γ|Ω|+ γ

λ
1
3

θ̄(t)µ̄(t)

)2

= (A+B(t)θ̄(t))2 = A2 + 2AB(t)θ̄(t) +B2(t)θ̄2(t),

(4.22)
where

A = 1 + γ|Ω| and B(t) =
γ

λ
1
3

µ̄(t).

Since it happens that θ̄(t) is the unique positive solution of (4.22), we may solve (4.22) and
express θ̄(t) in terms of µ̄(t) as follows

θ̄(t) =

3

√
27A2 + 3 3

√
3
√

27A2 + 4A3B3(t) + 18AB3(t) + 2B6(t)

3 3
√

2
+
B3(t)

3
(4.23)

+
3
√

2(6AB(t) +B4(t))

3

√
27A2 + 3 3

√
3
√

27A2 + 4A3B3(t) + 18AB3(t) + 2B6(t)
.

Particularly, we show here the equivalence between equation (4.16) and (4.19).

Lemme 4.12 (Equivalence between (4.16) and (4.19)). Consider λ > 0, γ > 0 and Ω a
bounded domain in RN . Then, the following holds:

(i) We consider ū a solution of equation (4.16) on [0, T ), for some T > 0 and introduce

U(t) =
λ

1
3

θ̄(t)
ū(t),

where θ̄(t) =
(
1 + γ|Ω|+ γ

∫
Ω
ū(t)dx

) 2
3 . Then, U is a solution of equation (4.19) on [0, T ).

(ii) Otherwise, we consider U a solution of equation (4.19) on [0, T ), for some T > 0
and introduce

ū(t) =
θ̄(t)

λ
1
3

U(t),∀t ∈ [0, T ),

where θ̄(t) is defined as in relation (4.21), then ū is the solution of equation (4.16) on [0, T ).
In particular, the uniqueness of the solution is preserved.

Proof. The proof is easily deduced from the definition in this lemma. We kindly ask the
reader to self-check.
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Remark 4.13. From settings (4.15) and (4.17) and the local well-posedness of equation
(4.2) in the sense of classical solutions (see Proposition 1.2.2 at page 12 in Kavallaris
and Suzuki [11]), we can derive the local existence and uniqueness of classical solutions of
equations (4.16) and (4.19). Since the nonnegativity is preserved for these equations, we
will assume that ū and U are nonegative.

Thanks to Lemma 4.12, our problem is reduced to constructing a nonnegative solution
to (4.19), which blows up in finite time only at the origin. We also aim at describing its
asymptotic behaviors at the singularity.
Since we defined U in (4.17) on purpose so that (4.19) appears as a perturbation of equation
(4.14) for U large, it is reasonable to make the following hypotheses:

(i) 1 ≤ θ̄(t) ≤ C0 for some C0 > 0. Note that from (4.21), we have θ̄(t) ≥ 1.

(ii) |θ̄′(t)| � U3(t) when U large.

It is then reasonable to expect for equation (4.19) the same profile as the one constructed
in [14] for equation (4.14). So, it is natural to follow that work by introducing the following
Similarity-Variables :

W (y, s) = (T − t)
1
3U(x, t), and s = − ln(T − t) and y =

x√
T − t

. (4.24)

Using equation (4.19), we write the equation of W in (y, s) as follows
∂sW = ∆W − 1

2
y · ∇W − W

3
− 2 |∇W |2

W+λ
1
3 e
− s3

θ(s)

+
(
W + λ

1
3 e−

s
3

θ(s)

)4

− θ′(s)
θ(s)

W,

W (y, s) = 0, y ∈ ∂Ωs, s > − lnT,

W (y,− lnT ) = W0(y), y ∈ Ω̄s,

(4.25)
where

θ(s) = θ̄(t(s)) = θ̄(T − e−s), (4.26)

and
Ωs = e

s
2 Ω, (4.27)

with θ̄ satisfies (4.21) and (4.23).

We observe in equation (4.25) that Ωs changes as s → +∞. This is a major difficulty
in comparison with the situation where Ω = RN . In order to overcome this difficulty, we
intend to introduce some cut-off of the solution, so that we reduce to the case Ω = RN . Of
course, there is a price to pay, in the sense that we will need to handle some cut-off terms.
Our model for this will be the work made by Mahmoudi, Nouaili and Zaag in [13] for the
construction of a blowup solution to the semilinear heat equation defined on a certain circle.
Let us note that the situation with Ω bounded was already mentioned in [14]. However,
the authors in that work avoided the problem by giving the proof only in the case where
Ω = RN . In this work, we are happy to handle the case with a bounded Ω, following the
ideas of Mahmoudi, Nouaili and Zaag in [13]. Let us mention that Velázquez was also
faced in [22] by the question of reducing a problem defined on a bounded interval to a
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problem considered on the whole real line. He made the reduction thanks to the extension
of the solution defined on a interval to another solution defined on the whole line, thanks
to some truly 1-d techniques. In our case, given that we work in higher dimensions, we
use a different method, based on the localization of the equation, thanks to some cut-off
functions.

More precisely, we introduce the following cut-off function χ0 ∈ C∞0 ([0,+∞)), satisfying

supp(χ0) ⊂ [0, 2], 0 ≤ χ0(x) ≤ 1,∀x and χ0(x) = 1, ∀x ∈ [0, 1]. (4.28)

Then, we define the following function

ψM0(y, s) = χ0

(
M0ye

− s
2

)
, for some M0 > 0. (4.29)

Let us introduce

w(y, s) =

{
W (y, s)ψM0(y, s) if y ∈ Ωs,

0 otherwise.
(4.30)

We remark that w is defined on RN and s ≥ − lnT and w ≡ 0 whenever |y| ≥ 2
M0
e
s
2 . Note

that M0 will be fixed large enough together with others parameters at the end of our proof.

Using equation (4.25), we derive from (4.21) the equation satisfied by w as follows

∂sw = ∆w− 1

2
y · ∇w− 1

3
w− 2

|∇w|2

w + λ
1
2 e−

s
3

θ(s)

+

(
w +

λ
1
3 e−

s
3

θ(s)

)4

− θ′(s)

θ(s)
w+ F (w,W ), (4.31)

where F (w,W ) encapsulates the cut-off terms and is defined as follows

F (w,W ) =



W
[
∂sψM0 −∆ψM0 + 1

2
y · ∇ψM0

]
− 2∇ψM0 · ∇W

+2 |∇w|2

w+λ
1
2 e
− s3

θ(s)

− 2
|∇W |2ψM0

W+λ
1
2 e
− s3

θ(s)

+ ψM0

(
W + λ

1
3 e−

s
3

θ(s)

)4

−
(
w + λ

1
3 e−

s
3

θ(s)

)4

if y ∈ Ωe
s
2 ,

0 otherwise.

(4.32)
We remark that F ≡ 0 on the region {y ∈ RN | |y| ≤ 1

M0
e
s
2 or |y| ≥ 2

M0
e
s
2} and that we

have from the conditions (i) and (ii) on θ̄(t) on page 190 that

1 ≤ θ(s) ≤ C0, and |θ′(s)| � W 3(y, s).

Making the further assumption that

θ′(s)→ 0,

we see that equation (4.35) is almost the same as equation (15) at page 1502 in [14] at least

when |y| ≤ e
s
2

M0
. Hence, it is reasonable to expect for equation (4.31) the same profile as

the authors found in [14] for equation (15) in that work, namely

ϕ(y, s) =

(
3 +

9

8

|y|2

s

)− 1
3

+
(3)−

1
3N

4s
, (4.33)



192

(note that, this profile was also defined in [14] for a general p > 2, and that here we need

to take p = 4 and a = 2, hence κ = (3)−
1
3 ). In particular, we would like to construct w as

a perturbation of ϕ. So, we introduce the following function

q = w − ϕ. (4.34)

Using equation (4.25), we easily write the equation of q

∂sq = (L + V )q + T (q) +B(q) +N(q) +R(y, s) + F (w,W ), (4.35)

where

L = ∆− 1

2
y · ∇+ Id, (4.36)

V (y, s) = 4

(
ϕ3(y, s)− 1

3

)
, (4.37)

T (q, θ(s)) = −2
|∇q +∇ϕ|2

q + ϕ+ λ
1
3 e−

s
3

θ(s)

+ 2
|∇ϕ|2

ϕ+ λ
1
3 e−

s
3

θ(s)

, (4.38)

B(q) =

(
q + ϕ+

λ
1
3 e−

s
3

θ(s)

)4

− ϕ4 − 4ϕ3q, (4.39)

R(y, s) = −∂sϕ+ ∆ϕ− 1

2
y · ∇ϕ− ϕ

3
+ ϕ4 − 2

|∇ϕ|2

ϕ+ λ
1
3 e−

s
3

θ(s)

, (4.40)

N(q) = −θ
′(s)

θ(s)
(q + ϕ) , (4.41)

with θ(s) defined in (4.26) and F (w,W ) given in (4.32).

In particular, we assume that U and q have good conditions such that Lemmas 4.36,
4.37, 4.38, 4.39 and 4.40 hold. Then, it is easy to see that all terms in the right-hand side
of (4.35) become very small, except for (L + V )q. As a matter of fact, this term plays the
most important role in our analysis. Therefore, we show here some main properties on the
linear operator L and the potential V (see more details in [1], [2]):

- Operator L: This operator is self-adjoint in D(L) ⊂ L2
ρ(RN), where L2

ρ(RN) is defined
as follows

L2
ρ(RN) =

{
f ∈ L2

loc(RN) |
∫
RN
|f(y)|2ρ(y)dy < +∞

}
,

and

ρ(y) =
e−
|y|2

4

(4π)
N
2

.

This is the spectrum set of operator L

Spec(L) =
{

1− m

2
| m ∈ N

}
.

The eigenspace which corresponds to λm = 1− m
2

is given by

Em = 〈hm1(y1).hm2(y2)....hmN (yN) | m1 + ...+mN = m〉 ,

where hmi is the (rescaled ) Hermite polynomial in one dimension.

- Potential V : It has two important properties:
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(i) The potential V (., s) → 0 in L2
ρ(RN) as s → +∞: In particular, in the region |y| ≤

K0

√
s ( the singular domain), V has some weak perturbations on the effect of operator

L.

(ii) V (y, s) is almost a constant on the region |y| ≥ K0

√
s: For all ε > 0, there exists

Cε > 0 and sε such that

sup
s≥sε, |y|√s≥Cε

∣∣∣∣V (y, s)−
(
−4

3

)∣∣∣∣ ≤ ε.

Note that −4
3
< −1 and that the largest eigenvalue of L is 1. Hence, roughly speaking,

we may assume that L + V admits a strictly negative spectrum. Thus, we can easily
control our solution in the region {|y| ≥ K0

√
s} with K0 large enough.

From these properties, it appears that the behavior of L+V is not the same inside and
outside of the singular domain {|y| ≤ K0

√
s}. Therefore, it is natural to decompose every

r ∈ L∞(RN) as follows:

r(y) = rb(y) + re(y) ≡ χ(y, s)r(y) + (1− χ(y, s))r(y), (4.42)

where χ(y, s) is defined as follows

χ(y, s) = χ0

(
|y|

K0

√
s

)
, (4.43)

and χ0 is given in (4.28). From the above decomposition, we immediately have the following:

Supp (rb) ⊂ {|y| ≤ 2K0

√
s},

Supp (re) ⊂ {|y| ≥ K0

√
s}.

In addition to that, we are interested in expanding rb in L2
ρ

(
RN
)

according to the basis
which is created by the eigenfunctions of operator L:

rb(y) = r0 + r1 · y + yT · r2 · y − 2 Tr(r2) + r−(y),

or

rb(y) = r0 + r1 · y + r⊥(y),

where

ri = (Pβ(rb))β∈NN ,|β|=i , ∀i ≥ 0, (4.44)

with Pβ(rb) being the projection of rb on the eigenfunction hβ defined as follows:

Pβ(r) =

∫
RN
rb

hβ
‖hβ‖L2

ρ(RN )

ρdy,∀β ∈ NN , (4.45)

and

r⊥ = P⊥(r) =
∑

β∈NN ,|β|≥2

hβPβ(rb), (4.46)
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and
r− =

∑
β∈RN ,|β|≥3

hβPβ(rb). (4.47)

In other words, r⊥ is the part of rb which is orthogonal to the eigenfunctions corresponding to
eigenvalues 0 and 1 and r− is orthogonal to the eigenfunctions corresponding to eigenvalues
1, 1

2
and 0. We should note that r0 is a scalar, r1 is a vector and r2 is a square matrix of

order n and that they are the components of rb not r. Finally, we write r as follows

r(y) = r0 + r1 · y + yT · r2 · y − 2 Tr(r2) + r−(y) + re(y), (4.48)

or

r(y) = r0 + r1 · y + r⊥(y) + re(y). (4.49)

A summary of our problem: Even though we created many extra functions from
U to q, we always concentrate on solution U to equation (4.19). More precisely, we aim at
constructing U blowing up in finite time. Then, we will use equation (4.35) as a crucial
formulation in our proof. Indeed, in order to control U blowing up in finite time, it is
enough to control the transform function q of U (see definitions (4.24), (4.30) and (4.34))
satisfying

‖q(., s)‖L∞(RN ) → 0, as s→ +∞. (4.50)

4.3 The proof of the existence result assuming tech-

nical details

In this section, we aim at giving a proof without technical details to Theorem 4.1. We
would like to summarize the structure of this section as follows:

- Construction of a shrinking set: We rely here on the ideas of the Merle and Zaag’s
work in [14] to introduce a shrinking set that will guarantee the convergence to zero for
q defined in (4.34). This set will constrain our solution as we want. Once our solution
is trapped in, we may show the main asymptotic behavior of our solution. In particular,
(4.50) holds and our result follows.

- Preparation of initial data: We introduce a family of initial data to equation (4.19) de-
pending on some finite set parameters. As a matter of fact, we will choose these parameters
such that our solution belongs to the shrinking set for all t ∈ [0, T ).

- The existence of a trapped solution: Using a reduction to a finite dimensional problem
(corresponding to the finite parameters introduced in our initial data) and a topological
argument, we can derive the existence of a blowup solution in finite time, trapped in the
shrinking set. More precisely, we show in this part that there exist initial data in that
family of initial data such that our solution is completely confined in the shrinking set.

- The conclusion of Theorem 4.1: Finally, we rely on the existence of a blowup solution,
trapped in the shrinking set to get the conclusion of Theorem 4.1.

4.3.1 Shrinking set

In order to control the solution U blowing up in finite time and satisfying (4.50), we adopt
the general ideas given by Merle and Zaag in [14]. For each K0 > 0, ε0 > 0, α0 > 0 and
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t ∈ [0, T ) with T > 0, we define

P1(t) =
{
x ∈ RN | |x| ≤ K0

√
(T − t)| ln(T − t)|

}
, (4.51)

P2(t) =

{
x ∈ RN | K0

4

√
(T − t)| ln(T − t)| ≤ |x| ≤ ε0

}
, (4.52)

P3(t) =
{
x ∈ RN | |x| ≥ ε0

4

}
. (4.53)

As a matter of fact, we have

Ω ⊂ RN = P1(t) ∪ P2(t) ∪ P3(t), for all t ∈ [0, T ).

We aim at controlling our problem on P1(t), P2(t) and P3(t) as follows:
- On region P1(t)(blowup region): We control w (see (4.24)) instead of U . More precisely,

we show that w is a perturbation of the profile ϕ (the blowup profile, introduced in (4.33)).
Then, (4.50) will follow from the control of w.

- On region P2(t)(intermidiate region): We control a rescaled function U instead of U .

More precisely, U is defined as follows: For all x ∈ P2(t), ξ ∈ (T − t(x))−
1
2 (Ω̄ − x) and

τ ∈
[
− t(x)
T−t(x)

, 1
)
, we define

U(x, ξ, τ) = (T − t(x))
1
3 U
(
x+ ξ

√
T − t(x), (T − t(x))τ + t(x)

)
, (4.54)

where t(x) is defined as the solution of the following equation

|x| =
K0

4

√
(T − t(x))| ln(T − t(x))| and t(x) < T. (4.55)

We remark that if ε0 is small enough, then t(x) is well defined for all x in P2(t). In addition
to that, using (4.55), we have the following asymptotic

t(x)→ T, as x→ 0.

For convenience, we introduce
%(x) = T − t(x). (4.56)

Then, the following holds
%(x)→ 0 as x→ 0.

As a matter of fact, using (4.19), we write the equation satisfied by U in (ξ, τ) ∈ %− 1
2 (x)(Ω̄−

x)×
[
− t(x)
%(x)

, 1
)

as follows:

∂τU = ∆ξU− 2
|∇U|2

U + λ
1
3 %

1
3 (x)

θ̃(τ)

+

(
U +

λ
1
3%

1
3 (x)

θ̃(τ)

)4

− θ̃′τ (τ)

θ̃(τ)
U, (4.57)

where
θ̃(τ) = θ̄(τ%(x) + t(x)), (4.58)

with θ̄(t) defined in (4.56). We now consider the following domain

|ξ| ≤ α0

√
| ln(%(x))| and τ ∈

[
− t(x)

%(x)
, 1

)
.
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When τ = 0, we are in region P1(t(x)), in fact (note that P1(t(x)) and P2(t(x)) have some
overlapping by definition). From our constraints in P1(t(x)), we derive that U(x, ξ, 0) is flat
in the sense that

U(x, ξ, 0) ∼
(

3 +
9

8

K2
0

16

)− 1
3

.

Our idea is to show that this flatness will be conserved for all τ ∈ [0, 1) (that is for all
t ∈ [t(x), T )), in the sense that the solution will not depend that much on space. In one

word, U is regarded as a perturbation of Û(τ), where Û(τ) is defined as follows
∂τ Û(τ) = Û4(τ),

Û(0) =

(
3 +

9

8

K2
0

16

)− 1
3

.
(4.59)

Note that, we can give an explicit formula to the solution of equation (4.59)

Û(τ) =

(
3(1− τ) +

9

8

K2
0

16

)− 1
3

. (4.60)

- On region P3(t)(regular region): Thanks to the well-posedness property of the Cauchy
problem for equation (4.35), we control the solution U as a perturbation of initial data
U(0). Indeed, the blowup time T will be chosen small in our analysis.

Relying on those ideas, we give in the following the definition of our shrinking set:

Definition 4.1 (Definition of S(t)). Let us consider T > 0, K0 > 0, ε0 > 0, α0 > 0, A >
0, δ0 > 0, C0 > 0, η0 > 0 and t ∈ [0, T ). Then, we introduce the following set

S(T,K0, ε0, α0, A, δ0, C0, η0, t) (S(t) for short),

as a subset of C2,1 (Ω× (0, t)) ∩ C(Ω̄ × [0, t]), containing all functions U satisfying the
following conditions:

(i) Estimates in P1(t): We have q(s) ∈ VK0,A(s), where q(s) is introduced in (4.34),
s = − ln(T − t) and VK0,A(s) is a subset of all function r in L∞(RN), satisfying the
following estimates:

|ri| ≤
A

s2
, (i = 0, 1), and |r2| ≤

A2 ln s

s2
,

|r−(y)| ≤ A2

s2
(1 + |y|3), and ‖re‖L∞(RN ) ≤

A2

√
s
,

|(∇r)⊥| ≤
A

s2
(1 + |y|3),∀y ∈ RN ,

where the definitions of ri, r−, (∇r)⊥ are given in (4.44), (4.46) and (4.47), respec-
tively.

(ii) Estimates in P2(t): For all |x| ∈
[
K0

4

√
(T − t)| ln(T − t)|, ε0

]
, τ(x, t) = t−t(x)

%(x)
and

|ξ| ≤ α0

√
| ln %(x)|, we have the following∣∣∣U(x, ξ, τ(x, t))− Û(τ(x, t))

∣∣∣ ≤ δ0,

|∇ξU(x, ξ, τ(x, t))| ≤ C0√
| ln %(x)|

,
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where U, Û and %(x) are given (4.54), (4.56) and (4.60), respectively.

(iii) Estimates in P3(t): For all x ∈ {|x| ≥ ε0
4
} ∩ Ω, we have

|U(x, t)− U(x, 0)| ≤ η0,∣∣∇U(x, t)−∇et∆U(x, 0)
∣∣ ≤ η0.

In addition to that, we would like to introduce the set S∗(K0, ε0, α0, A, δ0, C0, η0, T ) as
follows:

Definition 4.2. For all T > 0, K0 > 0, ε0 > 0, α0 > 0, A > 0, δ0 > 0, C0 > 0, and η0 > 0,
we introduce S∗(T,K0, ε0, α0, A, δ0, C0, η0) (S∗(T ) for short) as the subset of all functions
U in C2,1(Ω× (0, T )) ∩ C(Ω̄× [0, T )), satisfying the following: for all t ∈ [0, T ), we have

U ∈ S(T,K0, ε0, α0, A, δ0, C0, η0, t).

Remark 4.14. The shrinking set S(t) is inspired by the work of Merle and Zaag in [14].
However, we’ve made two major changes:

- A simplification, by removing an unnecessary condition on the second derivative in
space in region P2(t).

- A smart change in region P3(t), by replacing ∇U by ∇et∆U(0). This change is crucial
since we are working on a bounded domain Ω.

Remark 4.15. The conditions in P2 and P3 in Definition 4.1 are designed to make our
solution more regular and these conditions help us to control U in P1 and q(s) ∈ VK0,A(s).
Finally, the main purpose is to satisfy (4.50). In other words, the control U in P1 is the
main issue.

Remark 4.16. In our paper, we use a lot of parameters to control our solution. However,
they will be fixed at the end of the proof. In addition to that, we would like to give some
conventions on the universal constant in our paper: We use C for universal constants which
depend only N,Ω, γ, λ and we write C(K0, ε0, ...) for constants which depend K0, ε0, ...,
respectively.

As we mentioned in Remark 4.15, we would like to show here some estimates of the
sizes of q and ∇q, where q is the transformed function of U when U ∈ S(t).

Lemme 4.17 (Sizes of q and ∇q). Let us consider K0 ≥ 1 and ε0 > 0. Then, there exist

T1(K0, ε0) and η1(ε0) such that for all α0 > 0, A > 0, δ0 ≤ 1
2
Û(0) (see (4.60)), C0 > 0, η0 ≤

η1, T ≤ T1 and t ∈ [0, T ): if U ∈ S(K0, ε0, α0, A, δ0, C0, η0, t), then, the following holds:

(i) The estimates on q: For all y ∈ RN and s = − ln(T − t), we have

|q(y, s)| ≤ C(K0)A2

√
s

and |q(y, s)| ≤ C(K0)A2 ln s

s2
(1 + |y|3).

(ii) The estimates on ∇q: For all y ∈ RN , we have

|∇q(y, s)| ≤ C(K0, C0)A2

√
s

, |∇q(y, s)| ≤ C(K0, C0)A2 ln s

s2
(1 + |y|3),

and

|(1− χ(y, s))∇q(y, s)| ≤ C(K0)√
s

.
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Proof. The conclusion directly follows from the definition of the shrinking set S(t) and
VK0,A(s). In addition to that, these definitions are almost the same as in [14]. Therefore,
we kindly refer the reader to see Lemma B.1 at page 1537 in [14].

4.3.2 Initial data

In this subsection, we will concentrate on introducing our initial data to equation (4.19)
so that it is trapped in S(0). In order to do that, we first introduce the following cut-off
function:

χ1(x) = χ0

(
|x|√
T | lnT |

)
, (4.61)

where χ0 is given in (4.28). In addition to that, we introduce H∗ as a function in C∞0 (RN \
{0}) satisfying

H∗(x) =



[
9

16

|x|2

| ln |x||

]− 1
3

, ∀|x| ≤ min
(

1
4
d(0, ∂Ω), 1

2

)
, x 6= 0,

0, ∀|x| ≥ 1
2
d(0, ∂Ω),

(4.62)

and for all x ∈ RN , x 6= 0, the following condition holds

0 ≤ H∗(x) ≤
[

9

16

|x|2

| ln |x||

]− 1
3

.

We now give the definition of our initial data corresponding to equation (4.19): For all

(d0, d1) ∈ R1+N , we define

Ud0,d1(x, 0) = T−
1
3

[
ϕ

(
x√
T
,− ln s0

)
+ (d0 + d1 · z)χ0

(
|z|
K0

32

)]
χ1(x) (4.63)

+ H∗(x) (1− χ1(x)) ,

where z =
x√

T | lnT |
and note that ϕ, χ0, χ1 and H∗ are defined as in (4.33), (4.28), (4.61)

and (4.62), respectively.

From (4.63), we would like to give the definition of initial data corresponding to equation
(4.35), qd0,d1(s0) with s0 = − lnT :

qd0,d1(y, s0) = e−
s0
3 Ud0,d1

(
ye−

s0
3 , 0
)
ψM0(y, s0)− ϕ(y, s0), (4.64)

where and ψM0 , ϕ and Ud0,d1 are introduced in (4.29), (4.33) and (4.63), respectively.
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Remark 4.18. We would like to explain in brief how our initial data Ud0,d1 has naturally
the form shown in (4.63). As we mentiond at the beginning of this section, our purpose is
to control initial data in S(0). More precisely, our inital data have to satisfy items (i) and
(ii) in Definition 4.1. As a matter of fact, when T is small enough, the second term in the
right hand side of (4.63) is zero on P1(0). Then, our initial data has only the first term
and we adopt the idea given in [15] (see also [14], [8]), we use d0, d1 in order to control
q(s0) in VK0,A(s0). In addition to that, we would like to mention that Proposition 4.24 below
states that when q is trapped in VK0,A(s), it has only two components (q0, q1)(s) which may
attain their upper bound, the others being strictly less than their upper bound specified in
the definition of VK0,A(s). This is indeed the reason to use (d0, d1) in our initial data. More
precisely, these 1 + n parameters allows us to a reduction to a finite dimensional problem.
We now mention the control in P2. In that region, |x| is small enough and we may consider
that U is near the final profile [

9

16

|x|2

| ln |x||

]− 1
3

.

As a matter of fact, it is reasonable to introduce H∗ as the main asymptotic of our initial
data in P2(0). Using some priori estimates, we can derive good estimates in P2(0). More
precisely, the following proposition is our statement:

Proposition 4.19 (Preparation of initial data). There exists K2 > 0 such that for all
K0 ≥ K2 and δ2 > 0, there exist α2(K0, δ2) > 0 and C2(K0) > 0 such that for every
α0 ∈ (0, α2], there exists ε2(K0, δ2, α0) > 0 such that for every ε0 ∈ (0, ε2] and A ≥ 1, there
exists T2(K0, δ2, ε0, A, C2) > 0 such that for all T ≤ T2 and s0 = − lnT . The following
holds:

(I) We can find a set DA ⊂ [−2, 2]×[−2, 2]N such that if we define the following mapping

Γ : R× RN → R× RN

(d0, d1) 7→ (q0, q1) (s0),

then, Γ is affine, one to one from DA to V̂A(s0), where V̂A(s) is defined as follows

V̂A(s) =

[
−A
s2
,
A

s2

]1+N

. (4.65)

Moreover, we have

Γ |∂DA ⊂ ∂V̂A(s0),

and

deg
(
Γ |∂DA

)
6= 0, (4.66)

where q0, q1 are defined as in (4.48), considered as the components of qd1,d1(s0), which is a
transform function of Ud0,d1(0), given in (4.34).

(II) We now consider (d0, d1) ∈ DA. Then, initial data Ud0,d1(0) belongs to

S(K0, ε0, α0, A, δ2, C2, 0, 0) = S(0),

where S(0) is defined in Definition 4.1. Moreover, the following estimates hold
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(i) Estimates in P1(0) : We have qd0,d1(s0) ∈ VK0,A(s0) and

|q0(s0)| ≤ A

s2
0

, |q1,j(s0)| ≤ A

s2
0

, |q2,i,j(s0)| ≤ ln s0

s2
0

,∀i, j ∈ {1, ..., N},

|q−(y, s0)| ≤ 1

s2
0

(|y|3 + 1), |∇q⊥(y, s0)| ≤ 1

s2
0

(|y|3 + 1),∀y ∈ RN ,

and
qe ≡ 0,

where the components of qd0,d1(s0) are defined in (4.46).

(ii) Estimates in P2(0): For every |x| ∈
[
K0

4

√
T | lnT |, ε0

]
, τ0(x) = − t(x)

%(x)
and |ξ| ≤

α0

√
| ln %(x)|, we have∣∣∣U(x, ξ, τ0(x))− Û(τ0(x))

∣∣∣ ≤ δ2 and |∇ξU(x, ξ, τ0(x))| ≤ C2√
| ln %(x)|

,

where U, Û, and %(x) are defined as in (4.54), (4.60) and (4.56), respectively.

Proof. The proof of Proposition 4.19 will be given in Appendix 4.5. We now assume that
this proposition holds and continue to get to the conclusion of Theorem 4.1.

4.3.3 Existence of a solution trapped in S∗(T )

In this subsection, we would like to derive the existence of a blowup solution U to equation
(4.19), trapped in S∗(T ). As we said earlier, our proof will be a (non trivial) adaptation of
the proof designed by Merle and Zaag in [14] for the more standard case (4.14). However,
in comparision with (4.14), we observe in equation (4.19) a new feature, the nonlocal term
involving θ̄(t). As a matter of fact, it is important to study this term and it derivative. In
particular, in the works which we used to make the main idea for our work (such as [14],
[15], [8]), the authors only studied for constant coefficients parabolic equations. Hence, it
makes a main highlight in our work. For that reason, we show here some estimates on θ̄(t)
(also on µ̄(t)). The following is our statement:

Proposition 4.20 (Some estimates of θ̄(t) and µ̄(t)). Let us consider λ > 0, γ > 0 and Ω
a C2 bounded domain. Then, there exists K3 > 0 such that for all K0 ≥ K3, δ0 > 0, there
exist α3(K0, δ0) > 0 such that for all α0 ≤ α3, there exists ε3(K0, δ0, α0) > 0 such that for all
ε0 ≤ ε3 and A ≥ 1, C0 > 0, η0 > 0, there exists T3 > 0 such that for all T ≤ T3 the following
holds: Assuming U is a non negative solution of equation (4.19) on [0, t1], for some t1 < T ,
U ∈ S(T,K0, ε0, α0, A, δ0, C0, η0, t) = S(t) for all t ∈ [0, t1] and U(0) = Ud0,d1(0), given in
(4.63) with some (d0, d1) ∈ R1+N satisfied that |d0|+ |d1| ≤ 2, the following statements hold:

(i) For all t ∈ [0, t1], µ̄(t) and θ̄(t) are positive and these estimates hold

0 ≤ µ̄(t) ≤ C, (4.67)

1 ≤ θ̄(t) ≤ C. (4.68)

Moreover, for all t ∈ (0, t1), we have

|µ̄′(t)| ≤ C(T − t)
3N−8

6 | ln(T − t)|N , (4.69)∣∣θ̄′(t)∣∣ ≤ C(T − t)
3N−8

6 | ln(T − t)|N . (4.70)



201

(ii) In particular, if U ∈ S(t) for all t ∈ [0, T ), then µ̄(t) and θ̄(t) converge respectively
to µ̄T and θ̄T ∈ R∗+ as t→ T .

Remark 4.21. Although we know from item (ii) that θ̄(t) converges to θ̄T , we don’t know
how big is θ̄T . In particular, the dependence of these constants on γ, λ,Ω and T, ε0, ..., is
not clear yet.

Proof. We can see that item (ii) is a direct consequence of (i). So, we give only the proof
of item (i). Using (4.20) and the fact that U(t) ≥ 0 for all t, we derive the following

µ̄(t) =

∫
Ω

U(t)dx ≥ 0.

In addition to that, we write

µ̄(t) ≤
∫

Ω

U(t)dx ≤
∫
P1(t)

U(t)dx+

∫
P2(t)

U(t)dx+

∫
P3(t)

U(t)dx, (4.71)

where P1(t), P2(t), P3(t) are given in (4.51), (4.52) and (4.53), respectively. Remembering
%(x), defined in (4.56), we see that the following holds

%(x) ∼ 8

K2
0

|x|2

| ln |x||
as x→ 0.

In particular, using Definition 4.1, we get the following estimates: for all t ∈ [0, t1]

On P1(t), |U(x, t)| ≤ (T − t)−
1
3

[
CA2√
| ln(T − t)|

+ |ϕ(0,− ln(T − t))|

]
≤ C(T − t)−

1
3 ,

On P2(t), |U(x, t)| ≤ %−
1
3 (x)

[
Û(τ(x, t)) + δ0

]
≤ C

[
|x|2

| ln |x||

]− 1
3

,

On P3(t), |U(x, t)| ≤ |U(x, 0)|+ η0 ≤ |U(x, 0)|+ 1,

provided that K0 ≥ K3,1 δ0 ≤ 1 and η0 ≤ 1. Integrating U on each Pi(t), i = 1, 2, 3, we
obtain the following∫

P1(t)

U(t)dx ≤ C(K0)(T − t)
N
2
− 1

3 | ln(T − t)|
N
2 ,∫

P2(t)

U(t)dx ≤ C

∫
|x|≤ε0

[
|x|2

| ln |x||

]− 1
3

dx ≤ Cε
N− 2

3
0 | ln ε0|

1
3 ,∫

P3(t)

U(t) ≤

[∫
ε0
4
≤|x|,x∈Ω

[H∗ + 1] dx

]
,

where H∗ is defined in (4.62). Using (4.71) and the above estimates, it is easy to obtain
the following estimate

µ(t) ≤ C, for all t ∈ [0, t1],

provided that K0 ≥ K3,2(λ, γ), ε0 ≤ ε3,1(λ, γ), η0 ≤ η3,1(λ, γ) and T ≤ T3,1(K0, λ, γ). This
yields (4.67) and (4.68) also follows by using (4.21) and (4.67). We now give a proof to
(4.69). Integrating two sides of equation (4.19), we get the following ODE

µ̄′(t) +
θ̄′(t)

θ̄(t)
µ̄(t) =

∫
Ω

∆U(t)dx+

∫
Ω

(U(t) +
λ

1
3

θ̄(t)

)4

− 2
|∇U(t)|2

U(t) + λ
1
3

θ̄(t)

 dx. (4.72)
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We aim at proving the following estimate∣∣∣∣∣∣
∫

Ω

(U(t) +
λ

1
3

θ̄(t)

)4

− 2
|∇U(t)|2

U(t) + λ
1
3

θ̄(t)

 dx

∣∣∣∣∣∣ ≤ C(T − t)
3n−8

6 | ln(T − t)|n. (4.73)

In order to do so, we first prove that∫
Ω

U4(t)dx ≤ C(T − t)
3N−8

6 | ln(T − t)|N , (4.74)∫
Ω

|∇U(t)|2

U(t) + λ
1
3

θ̄(t)

dx ≤ C(T − t)
3N−8

6 | ln(T − t)|N . (4.75)

The techniques of proofs (4.74) and (4.75) are the same. Therefore, we only give here the
proof of (4.75). Let us consider

I(x, t) =
|∇U(x, t)|2

U(x, t) + λ
1
3

θ̄(t)

.

Then, ∫
Ω

I(x, t)dx ≤
∫
P1(t)

I(x, t)dx+

∫
P2(t)

I(x, t)dx+

∫
P3(t)

I(x, t)dx.

Now we claim the following lemma:

Lemme 4.22. Under the hypothesis in Proposition 4.20, for all t ∈ (0, t1], the following
estimates hold:

On P1(t) : I(x, t) ≤ C(K0)(T − t)−
4
3 , (4.76)

On P2(t) : I(x, t) ≤ C(K0)%−
4
3 (x) ≤ C(K0)

[
|x|2

| ln |x||

]− 4
3

, (4.77)

On P3(t) : I(x, t) ≤ C
(
|∇U(x, 0)|2 + η2

0

)
= C(|∇H∗(x)|+ η2

0). (4.78)

Proof. From the definition of S(t), we easily derive (4.78). So, we only give here the proofs
of (4.76) and (4.77). We now start with (4.76). Let us consider x ∈ P1(t) and we use the
condition of U in P1(t) to get the following

1

C(K0)
(T − t)−

1
3 ≤ U(x, t) ≤ C(K0)(T − t)−

1
3 . (4.79)

In addition to that, thanks to item (ii) in Lemma 4.17, we get

|∇yW

(
x√
T − t

,− ln(T − t)
)
| ≤ C(K0)A2√

| ln(T − t)|
,

which yields
|∇U(x, t)| ≤ C(K0)(T − t)−

5
6 . (4.80)

Then, (4.76) follows by (4.79) and (4.80).
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We now consider x ∈ P2(t). It is easy to derive from item (ii) in Definition 4.1 that

1

C(K0)
%

1
3 (x) ≤ U(x, t) ≤ C(K0)%

1
3 (x),

|∇U(x, t)| ≤ C%−
5
6 (x),

provided that δ0 ≤ δ3,1 and ε0 ≤ ε3,2. This gives (4.77) and concludes the proof of Lemma
4.22.

We now continue the proof of Proposition 4.20. Considering t ∈ (0, t1) and taking the
integral on two sides of (4.76), we write∫

P1(t)

|I(x, t)|dx ≤ C(K0)

∫
|x|≤K0

√
(T−t)| ln(T−t)|

(T − t)−
4
3dx

≤ C(K0)(T − t)
N
2
− 4

3 |ln(T − t)|
N
2 .

Integrating the two sides of (4.77) and using the following fact

%(x) ∼ 8

K2
0

|x|2

| ln |x||
as x→ 0,

we obtain the following∫
P2(t)

|I(x, t)| ≤ C(K0)
[
ε
N− 8

3
0 | ln ε0|

4
3 − ((T − t)| ln(T − t)|)

3N−8
6 | ln((T − t)| ln(T − t)|)|

4
3

]
.

In addition to that, from (4.78), we have∫
P3(t)

|I(x, t)|dx ≤ C.

Hence, (4.75) holds.
In addition to that, using (4.163), we can derive that∫

Ω

∆U(t)dx <∞,∀t ∈ (0, t1).

Therefore, we have

lim
υ→0

∫
{x,d(x,∂Ω)>υ}

∆Udx =

∫
Ω

∆U(t)dx.

Moreover, for all υ > 0 small enough and from item (iii) of Definition (4.1), we have∣∣∣∣∫
{x,d(x,∂Ω)>υ}

∆Udx

∣∣∣∣ =

∣∣∣∣∫
∂{x,d(x,∂Ω)>υ}

ν(x) · ∇U(x, t)dS

∣∣∣∣ ≤ C. (4.81)

This implies that ∫
Ω

∆U(t)dx ≤ C. (4.82)
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Hence, from (4.72), (4.73) and (4.82), we derive the following∣∣∣∣µ̄′(t) +
θ̄′(t)

θ̄(t)
µ̄(t)

∣∣∣∣ ≤ C(T − t)
3N−8

6 | ln(T − t)|N . (4.83)

In addition to that, from the relation between µ̄ and θ̄ in (4.21), we write

θ̄′(t)

θ̄(t)
=

2γ

3λ
1
3

1−
2γ

3λ
1
3
µ̄(t)(

1 + γ|Ω|+ γ

λ
1
3
θ̄(t)µ̄(t)

) 1
3


−1(

1 + γ|Ω|+ γ

λ
1
3

θ̄(t)µ̄(t)

)− 1
3

µ′(t).

We also have the fact that √
θ̄(t) ≥ γ

λ
1
3

µ̄(t),

which yields that

1 ≤

1−
2γ

3λ
1
3
µ̄(t)(

1 + γ|Ω|+ γ

λ
1
3
θ̄(t)µ̄(t)

) 1
3


−1

≤ 3.

Hence, θ̄′(t) and µ̄′(t) have the same sign and we can use (4.83) to conclude that

|µ̄′(t)| ≤ C(T − t)
3N−8

6 | ln(T − t)|N . (4.84)

This yields (4.69) and (4.70). Thus, we get the conclusion of the proof of Proposition
4.20.

Proposition 4.23 (Existence of a solution to equation (4.19), confined in S∗). We can
find parameters T > 0, K0 > 0, ε0 > 0, α0 > 0, A > 0, δ0 > 0, C0 > 0, η0 > 0 such that there
exist (d0, d1) ∈ R×RN such that with initial data Ud0,d1(0)(given in (4.63)), the solution U
of equation (4.19) exists on Ω× [0, T ) and

U ∈ S∗(T ),

where S∗(T ) = S∗(T,K0, ε0, α0, A, δ0, C0, η0), given in (4.2).

Proof. As a matter of fact, this Proposition plays a central role in our problem. In other
words, it will imply Theorem 4.1 (see subsection 4.3.4 below). The proof of this Proposition
will be presented in two steps:

- First step: We use a reduction of our problem to a finite dimensional one. More
precisely, we prove that the control U in S(t) for all t ∈ [0, T ) is reduced to the control of

(q0, q1)(s) in V̂A(s) (see Proposition 4.24 below).
- Second step: In this step, we aim at proving that there exist (d0, d1) ∈ R1+N such

that U ∈ S∗(T,K0, ε0, α0, A, δ0, C0, η0, T ) with suitable parameters. Then, the conclusion
follows from a topological argument based on Index theory.

We now give two main steps with more technical details:

a) Reduction to a finite dimensional problem: In this step, we derive that the control of
U ∈ S(t) with t ∈ [0, T ) is reduced to the control of the transform function q(s) such that

two first components (q0, q1)(s) are trapped in V̂A(s) (see (4.65)), where s = − ln(T − t).
More precisely, the following proposition is our statement:
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Proposition 4.24 (Reduction to a finite dimensional problem). There exist T > 0, K0 >
0, ε0 > 0, α0 > 0, A > 0, δ0 > 0, C0 > 0 and η0 > 0 such that the following holds: We con-
sider U a solution of equation (4.19) that exists on [0, t1], for some t1 < T, with initial data
Ud0,d1(0) given in (4.63), for some (d0, d1) ∈ DA. We also assume that we have U ∈ S(t) for
all ∀t ∈ [0, t1] and U ∈ ∂S(t1) (see the definition of S(t) = S(T,K0, ε0, α0, A, δ0, C0, η0, t)
in Definition 4.1 and the set DA given in Proposition 4.19). Then, the following statements
hold:

(i) We have (q0, q1)(s1) ∈ ∂V̂A(s1), where (q0, q1)(s) are components of q(s) given in
(4.48) and q(s) is the transform function of U defined in (4.34) and s1 = ln(T − t1).

(ii) There exists ν0 > 0 such that for all ν ∈ (0, ν0), we have

(q0, q1)(s1 + ν) /∈ V̂A(s1 + ν).

Consequently, there exists ν1 > 0 such that

U /∈ S(t1 + ν),∀ν ∈ (0, ν1).

The idea of the proof is inspired (in a non trivial way) by the ideas given by Merle and
Zaag in [14]. Since the proof is long and technical, we leave it to Section 4.4. Therefore, we
assume here that Proposition 4.24 holds and go forward to the conclusion of Proposition
4.23.

b) Topological argument and the conclusion of Proposition 4.23: In this step, by using
Proposition 4.24 and a topological argument based on Index theory, we conclude Proposition
4.23. More precisely, we prove that there exist T,K0, ε0, α0, A, δ0, C0, η0 and (d0, d1) ∈ DA

such that with initial data Ud0,d1(0) (defined in (4.63)), the solution of equation (4.19)
exists on [0, T ) and belongs to S∗(T ) where S∗(T ) is defined in Definition 4.2. Indeed, let
us consider parameters T > 0, K0 > 0, ε0 > 0, α0 > 0, A > 0, δ0 > 0, C0 and η0 > 0 such
that Propositions 4.19 and 4.24 hold. Using Proposition 4.19, we have the following

∀(d0, d1) ∈ DA, Ud0,d1(0) ∈ S(0).

In particular, it follows from Proposition 1.2.2 page 12 in Kavallaris and Suzuki [11] together
with Lemma 4.12 that equation (4.19) is locally in time well-posed in C2,1(Ω × (0, T0)) ⊂
C(Ω̄ × [0, T0]), for some T0 > 0 . Therefore, for every (d0, d1) ∈ DA, we define t∗(d0, d1) ∈
[0, T ) as the maximum time, satisfying

Ud0,d1 ∈ S(t),∀t ∈ [0, t∗(d0, d1)),

where Ud0,d1 is the solution of (4.19) corresponding to initial data Ud0,d1(0), introduced in
(4.63). Then, we have two possible cases:

a) Either t∗(d0, d1) = T for some (d0, d1) ∈ DA, then, we get the conclusion of the proof.
b) Or t∗(d0, d1) < T, for all (d0, d1) ∈ DA. This case in fact never occurs, as we will

show in the following.

Indeed, assuming by contradiction that case b) hold and using the continuity of the
solution in time and the definition of the maximal time t∗(d0, d1), we have

Ud0,d1(t∗(d0, d1)) ∈ ∂S(t∗(d0, d1)).
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Thanks to the finite dimensional reduction property given in item (i) of Proposition 4.24,
we derive the following

(q0, q1) (s∗(d1, d2)) ∈ ∂V̂A(s∗(d0, d1)),

where q0, q1 are defined in (4.48) as the components of qd0,d1 , which is a transformed function
of Ud0,d1 (see (4.34)) and s∗(d0, d1) = − ln(T −t∗(d0, d1)). Then, we may define the following
mapping

Λ : DA →
(
[−1, 1]× [−1, 1]N

)
(d0, d1) 7→ s2

∗(d0, d1)

A
(q0, q1) (s∗(d0, d1)) .

From the definition of t∗(d1, d2), the components (q0, q1) and the transversal crossing prop-
erty given in item (ii) in Proposition 4.24, we see that Λ is continuous on DA. In addition
to that, from item (i) of Proposition 4.19, we can derive that for all (d0, d1) ∈ ∂DA

(q0, q1) (s0) ∈ ∂V̂A(s0), s0 = − lnT.

However, using item (ii) of Proposition 4.24 again and the definition of t∗(d0, d1) we deduce
that

t∗(d0, d1) = 0,

which yields

s∗(d0, d1) = s0 and Λ(d0, d1) =
s2

0

A
Γ(d0, d1),

where Γ is defined in item (I) of Proposition 4.19. Hence, thanks to (4.66), we conclude

deg
(
Λ |DA

)
6= 0.

In fact, such a mapping Λ can not exist by using Index theory. Hence, case b) doesn’t occur
only case a) occurs. Thus, the conclusion of Proposition 4.23 follows.

4.3.4 The conclusion of Theorem 4.1

In this subsection, we would like to give a complete proof of Theorem 4.1. We now consider
the solution U which has been constructed in Proposition 4.23. Then, U exists on [0, T )
and

U(t) ∈ S(t),∀t ∈ [0, T ).

Using item (i) in Definition 4.1, we have the following

q exists on [− lnT,+∞) and ‖q(., s)‖L∞(RN ) ≤
C√
s
,∀s ∈ [− lnT,+∞), (4.85)

for some constant C > 0. Thanks to (4.15), (4.17), (4.24) and (4.30), we have∥∥∥∥∥ (T − t) 1
3λ

1
3

θ̄(t)(1− u(., t))
−
(

3 +
9

8

|.|2

(T − t)| ln(T − t)|

)− 1
3

∥∥∥∥∥
L∞(Ω)

≤ C√
| ln(T − t)|

. (4.86)
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Using (4.68) and (4.70), we can derive that θ̄(t) converges to θT > 0 with∣∣θ̄(t)− θT ∣∣ ≤ C(T − t)
1
12 , ∀t ∈ [0, T ).

This implies that (4.6) hold with

θ∗ =
θT

λ
1
3

. (4.87)

Thus, item (i) of Theorem 4.1 follows.

We now prove that u quenches only at 0. Indeed, from the above estimate, we can derive
that 0 is a quenching point of u. Now, we aim at proving that x ∈ Ω\{0} are not quenching
points of u. In fact, relying on relations (4.15) and (4.17), it is enough to prove the following
Lemma:

Proposition 4.25. The solution U satisfies the following statements:

(i) For all x ∈ Ω \ {0}, there exits ν(x) > 0 such that

lim sup
t→T

sup
|x′−x|≤ν(x)

U(x′, t) < +∞. (4.88)

(ii) For all x ∈ Ω\{0}, limt→T U(x, t) exists. In particular, if we define for all x ∈ Ω�{0}

U∗(x) = lim
t→T

U(x, t),

then u∗ ∈ C(Ω̄ \ {0}), and U(t) uniformly converges to u∗ on every compact subset of
Ω̄ \ {0}. In particular, we have the following asymptotic behavior

U∗(x) ∼
[

9

32

|x|2

| ln |x||

]− 1
3

, as x→ 0. (4.89)

Proof. We consider U the solution constructed in Proposition 4.23. The proof will be given
in two parts:

- The proof of item (i): The proof follows from the definition of shrinking set S(t). Let
us consider two cases: |x| > ε0

4
, x ∈ Ω and |x| ≤ ε0

4
, x ∈ Ω.

+ The case where |x| > ε0
4
, x ∈ Ω: Using item (iii) of Definition 4.1, we conclude that

for all t ∈ [0, T ),
U(x, t) ≤ U(x, 0) + η0 < +∞.

Then, (4.88) follows.
+ The case where |x| ≤ ε0

4
, x ∈ Ω: For every x in that region, we can find tx close

to T such that |x| ∈
[
K0

4

√
(T − tx)| ln(T − tx)|, ε0

]
. Moreover, if we have t ∈ [tx, T ), we

derive then |x| ∈
[
K0

4

√
(T − t)| ln(T − t)|, ε0

]
. Considering t ∈ [tx, T ) and using item (ii)

in Definition 4.1, we derive the following

U(x+ ξ
√
%(x), t) ≤ %−

1
3 (x)

[
Û(τ(x, t)) + δ0

]
,∀|ξ| ≤ α0

√
| ln %(x)|.

This estimate directly implies (4.88).
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- The proof of item (ii): By using parabolic regularity and the technique given by Merle
in [12], item (i) and Lemma 4.42, we may derive that there exists a function U∗ ∈ C(Ω̄\{0})
such that U(x, t)→ U∗(x), as t→ T , for all x ∈ Ω̄, x 6= 0. Moreover, one can prove that the
convergence is uniform on every compact subset of Ω̄\{0}. It remains to give asymptotic
behavior (4.89). We consider x0 ∈ Ω such that |x0| is small enough. We first introduce the
following functions: U(x0, ξ, τ) is defined in (4.54) and

V(x0, ξ, τ) = ∇ξU(x0, ξ, τ), (4.90)

where ξ ∈ %− 1
3 (x0)(Ω− x0) ⊂ RN and τ ∈

[
− t(x0)
%(x0)

, 1
)

, where t(x0) and %(x0) are defined as

in (4.55) and (4.56), respectively. We aim at proving the following estimates:

sup
τ∈[0,1),|ξ|≤| ln(%(x0))|

1
4

∣∣∣U(x0, ξ, τ)− Û(τ)
∣∣∣ ≤ C

| ln(%(x0))| 14
, (4.91)

sup
τ∈[0,1),|ξ|≤2| ln(%(x0))|

1
4

|V(x0, ξ, τ)| ≤ C

| ln(%(x0))| 14
, (4.92)

and

sup
τ∈[τ0,1),|ξ|≤ 1

2
| ln(%(x0))|

1
4

|∂τU(x0, ξ, τ)| ≤ C(x0), (4.93)

for some τ0 ∈ (0, 1), fixed, and we also recall that Û(τ) is introduced in (4.60).

We see that (4.92) follows from the fact that U ∈ S(t),∀t ∈ [0, T ) and item (ii) of Definition
4.1. Thus, we only need to give the proofs of (4.91) and (4.93).

- The proof of (4.91): We write here the equation of U from (4.59)

∂τU = ∆ξU− 2
|∇ξU|2

U + λ
1
3 %

1
3 (x0)

θ̃(τ)

+

(
U +

λ
1
3%

1
3 (x0)

θ̃(τ)

)4

− θ̃′(τ)

θ̃(τ)
U, (4.94)

where θ̃(τ) = θ̄(τ%(x0) + t(x0)) is given in (4.58). From (4.86) with t = t(x0), we derive
that

sup
|ξ|≤6| ln(%(x0))|

1
4

∣∣∣U(x0, ξ, 0)− Û(0)
∣∣∣ ≤ C

| ln(%(x0))| 14
. (4.95)

In addition to that, from item (ii) of Definition 4.1, we have for all |ξ| ≤ 6| ln %(x0)| 14 and
τ ∈ [0, 1):

U(x0, ξ, τ) ≥ 1

2
Û(0), (4.96)

U(x0, ξ, τ) ≤ 3

2
Û(1), (4.97)

provided that δ0 ≤ 1
2
Û(0). We now consider U(ξ, τ) as follows

U(ξ, τ) = U(x0, ξ, τ)− Û(τ), where ξ ∈ %−
1
3 (x0)(Ω− x0) and τ ∈ [0, 1).
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We then derive an equation satisfied by U

∂τU = ∆ξU+G1 +G2, (4.98)

where G1, G2 are defined as follows

G1(ξ, τ) = −2
|∇U|2

U + λ
1
3 %

1
3 (x0)

θ̃(τ)

− θ̃′(τ)

θ̃(τ)
U,

G2(ξ, τ) =

(
U +

λ
1
3%

1
3 (x0)

θ̃(τ)

)4

− Û4(τ).

Next, we derive from the definition of θ̃(τ), Proposition 4.20 and the fact that for all
τ ∈ (0, 1), ∣∣∣θ̃′(τ)

∣∣∣ ≤ C%
1
12 (x0)(1− τ)−

11
12 ,

and
1 ≤ θ̃(τ) ≤ C.

Hence, from (4.92), (4.96) and (4.97), we deduce that for all τ ∈ [0, 1), |ξ| ≤ 2| ln %(x0)| 14

|G1(ξ, τ)| =

∣∣∣∣∣∣∣−2
|∇U(x0, ξ, τ)|2

U(x0, ξ, τ) + λ
1
3 %

1
3 (x0)

θ̃(τ)

− θ̃′(τ)

θ̃(τ)
(U(x0, ξ, τ))

∣∣∣∣∣∣∣
≤ C

| ln %(x0)| 14

(
(1− τ)−

11
12 + 1

)
.

In addition to that, we derive from (4.97) that

|G2(ξ, τ)| ≤ C|U(x0, ξ, τ)|+ C

| ln %(x0)| 14
.

We now recall the cut-off function χ0, defined as in (4.28) , then, we introduce

φ1(ξ) = χ0

(
|ξ|

|ln(%(x0))|
1
4

)
.

As a matter of fact, we have some rough estimates on φ1

‖∇ξφ1‖L∞(RN ) ≤
C

| ln(%(x0))| 14
and ‖∆ξφ1‖L∞(RN ) ≤

C

|ln(%(x0))|
1
2

. (4.99)

Let us define U1(ξ, τ) = φ1(ξ)U(ξ, τ), for all ξ ∈ RN and τ ∈ [0, 1). Then, U1 satisfies the
following equation

∂tU1 = ∆U1 − 2∇φ1 · ∇U−∆φ1U+ φ1G1(ξ, τ) + φ1G2(ξ, τ).

Using Duhamel principal, we write an integral equation satisfied by U1

U1(τ) = eτ∆U1(0) +

∫ τ

0

e(τ−σ)∆ [−2∇φ1 · ∇U−∆φ1U+ φ1G1 + φ1G2] (σ)dσ.
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This implies that for all τ ∈ [0, 1), we have

‖U1(., τ)‖L∞(RN ) ≤
C

| ln(%(x0))| 14
+ C

∫ τ

0

‖U1(., σ)‖L∞(RN )dσ.

Thanks to Granwall inequality, we get the following

‖U1(., τ)‖L∞(RN ) ≤
C

| ln(%(x0))| 14
, ∀τ ∈ [0, 1) ,

which yields (4.91).

Using (4.93), we can derive that the limit limτ→1 U(x0, 0, τ) exists. In addition to that,
we derive from (4.91) that

U∗(x0) = lim
τ→1

U(x0, 0, τ)

%
1
3 (x0)

∼
(

9

8

K2
0

16
%(x0)

)− 1
3

∼
[

9

16

|x0|2

| ln |x0||

]− 1
3

as x0 → 0.

This is the conclusion of (4.89). So, we get the proof in Proposition 4.25 and we also get
the complete conclusion of Theorem 4.1.

4.4 Reduction to a finite dimensional problem

This section plays a central role in our analysis. In fact, it is devoted to the proof of
Proposition 4.24. More precisely, this section has two parts:

- In the first subsection, we prove a priori estimates on U in P1(t), P2(t) and P3(t)
when U is trapped in S(t).

- The second subsection is devoted to the conclusion of Proposition 4.24. In fact, we use
the first subsection to derive that U satisfies almost all the conditions in S(t) with strict
bounds, except for the bounds on q0(s) and q1(s), with s = − ln(T − t). This means that in

order to control U in S(t), we need to control only (q0, q1)(s) in V̂A(s), defined in (4.65). In
addition to that, we also prove the outgoing transversal crossing property. It means that if
the solution U touches the boundary of S(t1) for some t1 ∈ (0, T ), then, U will be outside
S(t) for all t ∈ (t1, t1 +ν) with ν small enough. In one word, this is the reduction to a finite

dimensional problem: the control of two components (q0, q1)(s) in V̂A(s).

4.4.1 A priori estimates

We proceed in 3 steps: a, b and c), respectively devoted to parts P1(t), P2(t) and P3(t).

a) We aim in the following Proposition at proving a priori estimates for U in P1(t):

Lemme 4.26. There exists K4 > 0, A4 > 0 such that for all K0 ≥ K4, A ≥ A4 and l∗ > 0
there exists T4(K0, A, l

∗) such that for all ε0 > 0, α0 > 0, δ0 > 0, η0 > 0, C0 > 0, T ≤ T4 and
for all l ∈ [0, l∗], the following holds: Assume that we have the following conditions:

- We consider initial data U(0) = Ud0,d1(0), given in (4.63) and (d0, d1) ∈ DA, given

in Proposition 4.19 such that (q0, q1)(s0) belongs to V̂A(s0), where s0 = − lnT , V̂A(s)
is defined in (4.65) and q0, q1 are components of qd0,d1(s0), a transform function of U,
defined in (4.34).
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- We have U ∈ S(T,K0, ε0, α0, A, δ0, C0, η0, t) for all t ∈ [T −e−σ, T −e−(σ+l)], for some
σ ≥ s0 and l ∈ [0, l∗].

Then, the following estimates hold:

(i) For all s ∈ [σ, σ + l], we have

|q′0(s)− q0(s)|+
∣∣∣∣q′1,i(s)− 1

2
q1,i(s)

∣∣∣∣ ≤ C

s2
,∀i ∈ {1, ..., N}, (4.100)

and ∣∣∣∣q′2,i,j(s) +
2

s
q2,i,j(s)

∣∣∣∣ ≤ CA

s3
,∀i, j ∈ {1, ..., N}, (4.101)

where q1 = (q1,j)1≤i≤N , q2 = (q2,i,j)1≤i,j≤N and q1, q2 are defined in (4.44).

(ii) Control of q−(s): For all s ∈ [σ, σ + l] and y ∈ RN , we have the two following cases:

- The case where σ ≥ s0 :

|q−(y, s)| ≤ C
(
Ae−

s−σ
2 + A2e−(s−σ)2

+ (s− σ)
) (1 + |y|3)

s2
, (4.102)

- The case where σ = s0

|q−(y, s)| ≤ C(1 + (s− σ))
(1 + |y|3)

s2
. (4.103)

(iii) Control of the gradient term of q: For all s ∈ [σ, σ + l], y ∈ RN , we have the two
following cases:

- The case where σ ≥ s0 :

|(∇q)⊥(y, s)| ≤ C
(
Ae−

s−σ
2 + e−(s−σ)2

+ (s− σ) +
√
s− σ

) (1 + |y|3)

s2
,(4.104)

- The case where σ = s0

|(∇q)⊥(y, s)| ≤ C
(
1 + (s− σ) +

√
s− σ

) (1 + |y|3)

s2
. (4.105)

(iii) Control of the outside part qe: For all s ∈ [σ, σ + λ], we have the two following cases:

- The case where σ ≥ s0 :

‖qe(., s)‖L∞(RN ) ≤ C
(
A2e−

s−σ
2 + Ae(s−σ) + 1 + (s− σ)

) 1√
s
, (4.106)

- The case where σ = s0

‖qe(., s)‖L∞(RN ) ≤ C (1 + (s− σ))
1√
s
. (4.107)
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Proof. The proof of this proposition relies completely on techniques given by Merle and
Zaag in [14]. As a matter of fact, the equation (4.35) is quite the same as in that paper
if we ignore some perturbations which will be very small in our analysis. More precisely,
thanks to Lemmas 4.35, 4.36, 4.37, 4.38, 4.39 and 4.40, we assert that the techniques in
[14] hold in our case. Hence, we kindly refer the reader to Lemma 3.2 at page 1523 in [14]
for more details.

This implies a priori estimates in P1(t) as follows:

Proposition 4.27 (A priori estimates in P1(t)). There exist K5 ≥ 1 and A5 ≥ 1 such

that for all K0 ≥ K5, A ≥ A5, ε0 > 0, α0 > 0, δ0 ≤ 1
2
Û(0), C0 > 0, η0 > 0, there exists

T5(K0, ε0, α0, A, δ0, C0, η0) such that for all T ≤ T5, the following holds: If U a nonnegative
solution of equation (4.19) satisfying U ∈ S(T,K0, ε0, α0, A, δ0, C0, η0, t) for all t ∈ [0, t5]
for some t5 ∈ [0, T ), and initial data U(0) = Ud0,d1 given in (4.63) for some d0, d1 ∈ DA

given in Proposition 4.19, then, for all s ∈ [− lnT,− ln(T − t5)], we have the following:

∀i, j ∈ {1, · · · , n}, |q2,i,j(s)| ≤
A2 ln s

2s2
,∥∥∥∥q,−(., s)

1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

2s2
,

∥∥∥∥(∇q(., s))⊥
1 + |y|3

∥∥∥∥
L∞(RN )

≤ A

2s2
and ‖qe(s)‖L∞(RN ) ≤

A2

2
√
s
,

where q is a transformed function of U given in (4.34).

Proof. The proof is a consequence of Lemma 4.26. In particular, the proof is the same as
in the work of Merle and Zaag in [15]. Hence, we refer the reader to Proposition 3.7, page
157 in that work.

b) We now show a priori estimates on U in P2(t). We start with the following lemma:

Lemme 4.28 (A priori estimates in the intermediate region). There exists K6 and A6 > 0,
such that for all K0 ≥ K6, A ≥ A6, δ6 > 0, there exists α6(K0, δ6) > 0, C6(K0, A) > 0
such that for all α0 ≤ α6, C0 > 0, there exists ε6(α0, A, δ6, C0) such that for all ε0 ≤ ε6,
there exists T6(ε0, A, δ6, C0) and η6(ε0, A, δ0, C0) > 0 such that for all T ≤ T6, η0 ≤ η6, δ0 ≤
1
2

(
3 + 9

8

K2
0

16

)− 1
3
, the following holds: if U ∈ S(T,K0, ε0, α0, A, δ0, C0, η0, t) for all t ∈ [0, t∗],

for some t∗ ∈ [0, T ), then, for all |x| ∈
[
K0

4

√
(T − t∗)| ln(T − t∗)|, ε0

]
, we have:

(i) For all |ξ| ≤ 7
4
α0

√
| ln %(x)| and τ ∈

[
max

(
0,− t(x)

%(x)

)
, t∗−t(x)

%(x)

]
, the transformed func-

tion U(x, ξ, τ) defined in (4.54) satisfies the following:

|∇ξU(x, ξ, τ)| ≤ 2C0√
| ln %(x)|

, (4.108)

U(x, ξ, τ) ≥ 1

4

(
3 +

9

8

K2
0

16

)− 1
3

, (4.109)

|U(x, ξ, τ)| ≤ 4. (4.110)
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(ii) For all |ξ| ≤ 2α0

√
| ln %(x)| and τ0 = max

(
0,− t(x)

%(x)

)
: we have

∣∣∣U(x, ξ, τ0)− Û(τ0)
∣∣∣ ≤ δ6 and |∇ξU(x, ξ, τ0)| ≤ C6√

| ln %(x)|
.

Proof. We leave the proof to Appendix 4.6.

Using the above lemma, we now give a priori estimates in P2(t). The following is our
statement:

Proposition 4.29 (A priori estimates in P2(t)). There exists K7 > 0 and A7 > 0 such

that for all K0 ≥ K7, A ≥ A7, there exists δ7 ≤ 1
2
Û(0) and C7(K0, A) such that for all δ0 ≤

δ7, C0 ≥ C7 there exists α7(K0, δ0) such that for all α0 ≤ α7, there exist ε7(K0, δ0, C0) > 0
such that for all ε0 ≤ ε7, there exists T7(ε0, A, δ0, C0) > 0 such that for all T ≤ T7 the
following holds: We assume that we have U ∈ S(T,K0, ε0, α0, A, δ0, C0, t) for all t ∈ [0, t7]

for some t7 ∈ [0, T ), then, for all |x| ∈
[
K0

4

√
(T − t∗)| ln(T − t∗)|, ε0

]
, |ξ| ≤ α0

√
| ln %(x)|

and τ ∈
[
max

(
− t(x)
%(x)

, 0
)
, t7−t(x)

%(x)

]
, we have

∣∣∣U(x, ξ, τ∗)− Û(x, ξ, τ∗)
∣∣∣ ≤ δ0

2
and |∇U(x, ξ, τ)| ≤ C0

2
√
| ln %(x)|

,

where %(x) = T − t(x).

Proof. We leave the proof to Appendix 4.7.

Remark 4.30. Unlike what Merle and Zaag did in [14], we don’t require any condition in
∇2U in P2(t) (see Definition 4.1), as we have aldready stated in Remark 4.14. Accordingly,
our a priori estimates in P2(t) will be simpler than those of [14], as one may see from the
proof given in Appendix C.

c) We now give a priori estimates on U in P3(t):

Proposition 4.31 (A priori estimates in P3). Let us consider K0 > 0, ε0 > 0, α0 > 0, A >

0, δ0 ∈ [0, 1
2
Û(0)], C0 > 0, η0 > 0. Then, there exists T8(η0) > 0 such that for all T ≤ T8, the

following holds: We assume that U is a nonnegative solution of (4.19) on [0, t8] for some
t8 < T , and U ∈ S(K0, ε0, α0, A, δ0, C0, η0, t) for all t ∈ [0, t8] and initial data U(0) = Ud0,d1

given in (4.63) with |d0|, |d1| ≤ 2. Then, for all |x| ≥ ε0
4

and t ∈ (0, t8],

|U(x, t)− U(x, 0)| ≤ η0

2
, (4.111)∣∣∇U(x, t)−∇et∆U(x, 0)

∣∣ ≤ η0

2
. (4.112)

Remark 4.32. As we have mentioned in Remark 4.14, we draw the attention of the reader
to the change we have made with respect to the work of Merle and Zaag in [14]: We compare
∇U(t) to ∇et∆U(0) and not to ∇U(0) in [14] and this is crucial, since we are working on
a bounded domain.

Following the remark, we have just stated, we give in the following a crucial parabolic
estimate for the free Dirichlet heat semi-group in Ω:
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Lemme 4.33 (A parabolic regularity on the linear problem). Let us consider initial data
Ud0,d1 , given in (4.63), for some |d0|, |d1| ≤ 2. If we define

L(t) = et∆Ud0,d1 , t ∈ (0, T ].

Then, L(t) ∈ C(Ω̄× [0, T ]) ∩ C∞(Ω× (0, T ]). Moreover, the following holds

‖∇xL(t)‖L∞(RN )(|x|≥ ε08 ,x∈Ω) ≤ C(ε0),∀[0, T ], (4.113)

where ε0 introduced in the definition of Ud0,d1.

Proof. See Appendix 4.9

The proof of Proposition 4.31. We rewrite the equation satisfied by U as follows

∂tU = ∆U +G(U),

where

G(U) = −2
|∇U |2

U + λ
1
3

θ̄(t)

+

(
U +

λ
1
3

θ̄(t)

)4

− θ̄′(t)

θ̄(t)
U.

We remark that in order to get the conclusion, it is enough to prove that for all x ∈ Ω, |x| ≥
ε0
4

and t ∈ (0, t8], we have the following estimates

|U1(x, t)− U1(x, 0)| ≤ η0

2
, (4.114)∣∣∇U1(x, t)−∇et∆U1(x, 0)

∣∣ ≤ η0

2
, (4.115)

where U1(x, t) = exp

(∫ t

0

θ̄′(s)

θ̄(s)
ds

)
U(x, t). Using the equation satisfied by U , we may

derive an equation satisfied by U1 as follows:

∂tU1 = ∆U1 +G1, (4.116)

where G1(t) = exp

(∫ t

0

θ̄′(s)

θ̄(s)
ds

)[
−2 |∇U |

2

U+ λ
1
3

θ̄(t)

+
(
U + λ

1
3

θ̄(t)

)4
]

. In particular, from the fact

that U ∈ S(t) and Proposition 4.20, we can derive the following∣∣∣∣exp

(
±
∫ t

0

θ̄′(s)

θ̄(s)

)
ds

∣∣∣∣ ≤ 2.

Moreover, from item (iii) of Definition 4.1 and Lemma 4.33, we derive the following:

|G1(x, t)| ≤ C(K0, ε0, η0), ∀|x| ≥ ε0
8

and ∀t ∈ (0, t8].

In the following, we first prove (4.114) then (4.115).

+ The proof of (4.114): We consider a cut-off function χ2 ∈ C∞0 (Ω̄) such that χ2 = 1
for all |x| ≥ ε0

6
, x ∈ Ω̄ and χ2 = 0 for all |x| ≤ ε0

8
and |∇χ2| + |∆χ2| ≤ C(ε0). If we define

U2 = U1χ2, then U2 satisfies the following

∂tU2 = ∆U2 +G2,



215

where
G2(U) = −2∇U1 · ∇χ2 −∆χ2U1 − χ2G1.

Using the estimate of G1 and the following fact

|∇U1(x, t)|+ |U1(x, t)| ≤ C(K0, ε0, η0), ∀|x| ≥ ε0
8

and t ∈ [0, t8],

which is a consequence of the fact that U ∈ S(t) (particularly items (i) and (iii) in Definition
4.1), we conclude the following

‖G2(x, t)‖L∞(Ω) ≤ C(K0, ε0, C0, η0),∀|x| ≥ ε0
8

and ∀t ∈ [0, t8].

We now use a Duhamel formula to write U2 as follows

U2(t) = et∆U2(0) +

∫ t

0

e(t−τ)∆ (G2(U(τ))) dτ, (4.117)

where et∆ stands for the Dirichlet heat semi-group on Ω (see more in Appendix 4.9). In
particular, we have for all U0 ∈ L∞(Ω),∥∥et∆U0

∥∥
L∞(Ω)

≤ ‖U0‖L∞(Ω).

Therefore,

|U2(t)− U2(0)| ≤
∣∣U2(t)− et∆U2(0)

∣∣+
∣∣et∆U2(0)− U2(0)

∣∣
≤

∣∣∣∣∫ t

0

e(t−s)∆G2(s)ds

∣∣∣∣+
∣∣et∆U2(0)− U2(0)

∣∣
≤ C(K0, ε0, C0, η0)T +

∥∥et∆(U2(0))− U2(0)
∥∥
L∞(Ω)

.

In addition to that, because U2(0) is smooth and has a compact support in Ω, we can prove
that ∥∥et∆(U2(0))− U2(0)

∥∥
L∞(Ω)

→ 0 as t→ 0,

which yields the fact that

‖U2(t)− U2(0)‖L∞(Ω) ≤
η0

2
,

provided that T ≤ T8,1(K0, ε0, C0, η0). This concludes the proof of (4.114).

+ The proof of (4.115): We derive from (4.117) the following fact:

∇U2(t) = ∇et∆U2(0) +

∫ t

0

∇e(t−τ)∆G2(τ)dτ.

This implies that∣∣∇U2(t)−∇et∆U1(0)
∣∣ ≤ ∣∣∇et∆U2(0)−∇et∆U1(0)

∣∣+

∣∣∣∣∫ t

0

∇e(t−τ)∆G2(τ)dτ

∣∣∣∣ .
Using (4.146) and Lemma (4.41) in the below, we derive that∣∣∣∣∫ t

0

∇e(t−τ)∆G2(τ)dτ

∣∣∣∣ ≤ C(K0, ε0, C0, η0)

∫ t

0

1√
t− τ

dτ ≤ C(K0, ε0, C0, η0)
√
T .
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In order to finish the proof, it is enough to prove that for all |x| ≥ ε0
4

, we have∣∣∇et∆U2(0)−∇et∆U1(0)
∣∣ ≤ η0

4
, (4.118)

provided that T ≤ T8,2. Indeed, using Dirichlet heat semi-group and Lemma 4.41 below,
we may write the following:

∣∣∇et∆U2(0)−∇et∆U1(0)
∣∣ =

∣∣∣∣∫
Ω

∇xG(x, y, t, 0)(1− χ2(y))Ud0,d1(y)dy

∣∣∣∣
≤ C

∫
|y|≤ ε0

6

exp
(
− |x−y|

2

t

)
t
N+1

2

|Ud0,d1(y)|dy

≤ C

∫
|y|≤ ε0

6

exp

(
−|x− y|

2

t

)(
|x− y|√

t

)N+2 √
t

|x− y|N+2
|Ud0,d1(y)|dy

≤ C(ε)
√
t

∫
|y|≤ ε0

6

|Ud0,d1(y)|dy

≤ C(ε0)
√
t‖Ud0,d1‖L1(Ω) ≤ C(ε0)

√
T .

This yields (4.118), provided that T ≤ T8,3(ε0). In particular, from the definitions of U1

and U2, we can derive (4.115). Finally, we get the conclusion of Proposition 4.31.

4.4.2 The conclusion of the proof of Proposition 4.24

It this part, we aim at giving a complete proof to Proposition 4.24:

The proof of Proposition 4.24 . We first choose parameters K0, ε0 > 0, α0 > 0, A > 0, δ0 >
0, δ1 > 0, C0 > 0, η0 > 0 and T > 0 such that Propositions 4.19, 4.27, 4.29 and 4.31 hold.
In particular, the constant T will be fixed small later. Then, the conclusion of the proof
follows as we will show in the following. We now consider U, a solution of equation (4.19),
with initial data Ud0,d1(0), defined in Definition 4.63 and satisfying the following:

U ∈ S(T,K0, α0, ε0, A, δ0, C0, η0, t) = S(t),

for all t ∈ [0, t∗] for some t∗ ∈ (0, T ) and

u ∈ ∂S(t∗).

(i) Using Propositions 4.27, 4.29 and 4.31, we can derive that

(q1, q2)(s∗) ∈ ∂V̂A(s∗), (4.119)

where s∗ = ln(T − t∗).

(ii) Using item (i), we derive that either

|q0(s∗)| =
A

s2
∗
,
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or there exists j0 ∈ {1, ..., N} such that

|q1,j0(s∗)| =
A

s2
∗
.

Then, without loss of generality, we can suppose that the first case occurs, because the
argument is the same for other cases. Hence, using (4.100) in Lemma 4.26, we see that

|q′0(s)− q0(s)| ≤ C

s2
.

Therefore, we obtain that the sign of q′0(s∗) is opposite to the sign of

d

ds

(
ε0
A

s2

)
(s∗),

provided that A ≥ 2C, where ε0 = ±1 and q0(s∗) = ε0
A
s2∗

. This means that the flow of q0 is
transverse outgoing on the bounds of the shrinking set

−A
s2
≤ q0(s) ≤ A

s2
.

It follows then that (q0, q1)(s) leaves V̂(s) at s∗. Thus, we conclude item (ii). Finally, we
get the conclusion of Proposition 4.24

4.5 Preparation of initial data

In this section, we give the proof of Proposition 4.19. More precisely, we aim at proving
the following lemma which directly implies Proposition 4.19:

Lemme 4.34. There exists K2 > 0 such that for all K0 ≥ K2, δ2 > 0, there exist
α2(K0, δ2) > 0, C2 > 0 such that for all α0 ∈ (0, α2] there exists ε2(K0, δ2, α0) > 0 such
that for all ε0 ∈ (0, ε2] and A ≥ 1, there exists T2(K0, δ2, ε0, A, C2) > 0 such that for all
T ∈ (0, T2], there exists a subset DA ⊂ [−2, 2]1+N such that the following properties hold:
Asumme that initial data Ud0,d1(0) is given as in (4.63), then:

A) For all (d0, d1) ∈ DA, we have initial data

U(0) = Ud0,d1(0) ∈ S(T,K0, ε0, α0, A, δ2, C2, 0, 0).

In particular, we have the following:

(i) Estimates in P1(0): we have the transformed function q(s0) of Ud0,d1(0), trapped in
VK0,A(s0), where s0 = − lnT and we have also the following estimates:∣∣∣∣q0(s0)− Ad0

s2
0

∣∣∣∣+

∣∣∣∣q1,j(s0)− Ad1,j

s2
0

∣∣∣∣ ≤ Ce−s0 , for all j ∈ {1, ..., n},

|q2,i,j(s0)| ≤ ln s0

s2
0

, for all i, j ∈ {1, ..., n},

|q−(y, s0)| ≤ 1

s2
0

(1 + |y|3), |(∇yq)⊥(y, s0)| ≤ 1

s2
0

(1 + |y|3), for all y ∈ RN ,

and
qe(s0) ≡ 0,

where the components of q are defined in (4.49).
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(ii) Estimates in P2(0): For all |x| ∈
[
K0

4

√
T | lnT |, ε0

]
and and |ξ| ≤ α0

√
| ln %(x)|, we

have ∣∣∣U(x, ξ, τ0(x))− Û(τ0(x))
∣∣∣ ≤ δ2, and |∇ξU(x, ξ, τ0(x))| ≤ C2√

| ln %(x)|
,

where τ0(x) = − t(x)
%(x)

and U, Û, t(x), %(x) are given in (4.54), (4.55), (4.56) and (4.60).

B) We have the following facts

(d0, d1) ∈ DA if and only if (q0, q1)(s0) ∈ V̂A(s0)

and
(d0, d1) ∈ ∂DA if and only if (q0, q1)(s0) ∈ ∂V̂A(s0),

where V̂A(s) given in (4.65).

Proof. We see that part B) directly follows from item (i) of part A). In addition to that,
our definition is almost the same as in [21] (see also Ghoul, Nguyen and Zaag [8]; Merle and
Zaag [14] and [15]). So, we kindly refer the reader to see the proofs of the existence of the set
DA, item i in A) and part B) in Proposition 4.5 in [21]. Here we only give the proof of item
(ii) in part A). We now consider T > 0, K0 > 0, ε0 > 0, α0 > 0, δ2 > 0, C2 > 0, η0 > 0. We

aim at proving that if these constants are suitably chosen, then for all x ∈
[
K0

4

√
T | lnT |, ε0

]
and |ξ| ≤ 2α0

√
| ln %(x)|, where %(x) given in (4.55), we have the following∣∣∣U(x, ξ, τ0(x))− Û(τ0(x))

∣∣∣ ≤ δ2, |∇ξU(x, ξ, τ0(x))| ≤ C2√
| ln %(x)|

.

We observe from the definition of t(x) given in (4.55) that if α0 ≤ α2,1 and ε0 ≤ ε2,1, then,

for all x ∈
[
K0

4

√
T lnT , ε0

]
and |ξ| ≤ 2α0

√
| ln %(x)|, we have

∣∣∣ξ√%(x)
∣∣∣ ≤ |x|

2
,

which yields

r0

2
≤ |x|

2
≤
∣∣∣x+ ξ

√
T (x)

∣∣∣ ≤ 3

2
|x|, with r0 =

K0

4

√
T | lnT |. (4.120)

Hence, for all x ∈
[
K0

4

√
T | lnT |, ε0

]
, we have

χ
(

16(x+ ξ
√
%(x))

√
T ,− lnT

)
χ1(x+ ξ

√
%(x)) = 0,

where χ and χ1 are defined in (4.43) and (4.61), respectively. Therefore, from (4.63)

and the definition of U in (4.54), we may derive that for all x ∈
[
K0

4

√
T | lnT |, ε0

]
and

|ξ| ≤ 2α0

√
| ln %(x)|,

U(x, ξ, τ0) = (I)χ1

(
x+ ξ

√
%(x)

)
+ (II)

(
1− χ1(x+ ξ

√
%(x))

)
,
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where

(I) =

(
%(x)

T

) 1
3

(
3 +

9

8

|x+ ξ
√
%(x)|2

T | lnT |

)− 1
3

,

and

(II) = %
1
3 (x)H∗(x+ ξ

√
%(x)),

with H∗(x) given in (4.62). In addition to that, from the definition of %(x), given in (4.56),
we obtain the following asymptotics

ln %(x) ∼ 2 ln |x| and %(x) ∼ 8

K2
0

|x|2

| ln |x||
as |x| → 0. (4.121)

Besides that, we introduce r0 = K0

4

√
T | lnT | and R0 =

√
T | lnT |. Then, the following holds

%(r0) ∼ T, and %(R0) ∼ 16

K2
0

T | lnT | and %(2R0) ∼ 64

K2
0

T | lnT | as T → 0. (4.122)

We aim in the following at giving some estimates on U(x, ξ, τ0(x)) and ∇ξU(x, ξ, τ0(x)).
- Estimate on U: From the definition of the cut-off function χ1 given in (4.61), it is

enough to prove that for all |x| ∈
[
r0, (2 + 1

100
)R0

]
and |ξ| ≤ 2α0

√
| ln %(x)|, we have∣∣∣I1 − Û(τ0)

∣∣∣ ≤ δ2

2
, (4.123)

on one hand and also that for all |x| ∈
[

99
100
R0, ε0

]
and |ξ| ≤ 2α0

√
| ln %(x)|, we have∣∣∣I2 − Û(τ0)

∣∣∣ ≤ δ2

2
, (4.124)

on the other hand. Indeed, let us start with the proof of (4.123): We consider |x| ∈[
r0, (2 + 1

100
)R0

]
and |ξ| ≤ 2α0

√
| ln %(x)|. Then, we write the following:

∣∣∣I1 − Û(τ0(x))
∣∣∣ =

∣∣∣∣∣∣
(

3
T

%(x)
+

9

8

|x+ ξ
√
%(x)|2

%(x)| lnT |

)− 1
3

−
(

3
T

%(x)
+

9

8

K2
0

16

)− 1
3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

3
T

%(x)
+

9

8

K2
0

16
+

9

8

[
|x+ ξ

√
%(x)|2

%(x)| lnT |
− K2

0

16

])− 1
3

−
(

3
T

%(x)
+

9

8

K2
0

16

)− 1
3

∣∣∣∣∣∣ .
In addition to that, we have

|x+ ξ
√
%(x)|2

%(x)| lnT |
− K2

0

16
=

|x|2

%(x)| lnT |

(
1 + 2

x · ξ
|x|2

√
%(x) +

|ξ|2%(x)

|x|2

)
− K2

0

16

=
K2

0

16

| ln %(x)|
| lnT |

(
1 + 2

x · ξ
|x|2

√
%(x) +

|ξ|2%(x)

|x|2

)
− K2

0

16
.

Besides that, we also have the following:∣∣∣∣x · ξ|x|2 |√%(x)|
∣∣∣∣ ≤ 4α0,∣∣∣∣ |ξ|2|x|2%(x)

∣∣∣∣ ≤ 4α2
0.
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Moreover, for all |x| ∈
[
r0,
(
2 + 1

100

)
R0

]
, we derive from (4.122) that

| ln %(x)|
| lnT |

∼ 1, as T → 0.

So, the following holds ∣∣∣∣∣ |x+ ξ
√
%(x)|2

%(x)| lnT |
− K2

0

16

∣∣∣∣∣→ 0,

as (α0, T )→ (0, 0). From this fact, we can derive that if T ≤ T2,1(K0, δ2), α0 ≤ α2,2(K0, δ2),
we have∣∣∣I1 − Û(τ0(x))

∣∣∣ =

∣∣∣∣∣∣
(

3
T

%(x)
+

9

8

|x+ ξ
√
%(x)|2

%(x)| lnT |

)− 1
3

−
(

3
T

%(x)
+

9

8

K2
0

16

)− 1
3

∣∣∣∣∣∣
≤ C(K0)

∣∣∣∣∣ |x+ ξ
√
T (x)|2

T (x)| lnT |
− K2

0

16

∣∣∣∣∣ ≤ δ1

2
.

This concludes the proof of (4.123).
We now aim at proving (4.124). We consider |x| ∈

[
99
100
R0, ε0

]
and |ξ| ≤ 2α0

√
| ln %(x)|.

Using the definition of (II), we write as follows

∣∣∣(II)− Û(τ0(x))
∣∣∣ =

∣∣∣∣∣∣∣∣
 9

16

∣∣∣x+ ξ
√
%(x)

∣∣∣2
%(x)| ln |x+ ξ

√
%(x)||


− 1

3

−
(

3
T

%(x)
+

9

8

K2
0

16

)− 1
3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
9

8

K2
0

16
+

9

16


∣∣∣x+ ξ

√
%(x)

∣∣∣2
%(x)| ln |x+ ξ

√
%(x)||

− K2
0

8



− 1

3

−
(

9

8

K2
0

16
+ 3

T

%(x)

)− 1
3

∣∣∣∣∣∣∣∣ .
Besides that, the function %(x) is radial in x, and increasing in |x| when |x| is small enough.
Then, for all ε0 ≤ ε2,1 and |x| ∈

[
99
100
R0, ε0

]
, we have∣∣∣∣ T%(x)

∣∣∣∣ ≤
∣∣∣∣∣ T

%
(

99
100
R0

)∣∣∣∣∣ ≤ C(K0)| lnT |−1 → 0 as T → 0. (4.125)

In addition to that, we have∣∣∣x+ ξ
√
%(x)

∣∣∣2
%(x)| ln |x+ ξ

√
%(x)||

− K2
0

8
=

1

%(x)| ln |x+ ξ
√
%(x)||

[
|x|2 + 2x · ξ

√
%(x) + |ξ|2%(x)

]
− K2

0

8

=
K2

0

16

[
| ln %(x)|

| ln |x+ ξ
√
%(x)||

− 2 + 4α0
| ln %(x)|

| ln |x+ ξ
√
%(x)||

+ 4α2
0

| ln %(x)|
| ln |x+ ξ

√
%(x)||

]
.
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In particular, we have the following fact

ln %(x) ∼ 2 ln |x|, as |x| ∼ 0,
1

| ln |x+ ξ
√
%(x)||

∼ 1

| ln |x||
, as α0 → 0.

This yields ∣∣∣∣∣∣∣
∣∣∣x+ ξ

√
%(x)

∣∣∣2
%(x)| ln |x+ ξ

√
%(x)||

− K2
0

8

∣∣∣∣∣∣∣→ 0 as (ε0, α0)→ (0, 0). (4.126)

From (4.125) and (4.126), we derive that

∣∣∣(II)− Û(τ0(x))
∣∣∣ ≤ C(K0)


∣∣∣∣∣∣∣

∣∣∣x+ ξ
√
%(x)

∣∣∣2
%(x)| ln |x+ ξ

√
%(x)||

− K2
0

8

∣∣∣∣∣∣∣+
T

%(x)

 ≤ δ2

2
,

provided that α ≤ α2,3(K0, δ2), ε0 ≤ α2,2(K0, δ2, α0) and T ≤ T2,3. Thus, (4.124) holds.

Finally, we get the conclusion that for all |x| ∈
[
K0

4

√
T | lnT |, ε0

]
and |ξ| ≤ 2α0

√
| ln %(x)|,

we have ∣∣∣U(x, ξ, τ0(x))− Û(τ0(x))
∣∣∣ ≤ δ2.

- Estimate on ∂ξU: From the definition of U(x, ξ, τ0(x)) = U
(
x, ξ,− t(x)

%(x)

)
given in

(4.54) and expression (4.63) of initial data, we decompose ∇ξU as follows

∂ξU(x, ξ, τ0(x)) = B1 +B2 +B3,

where

B1 =

−3

4

%
5
6 (x)

T
4
3 | lnT |

(x+ ξ
√
%(x))

3 +
9

8

∣∣∣x+ ξ
√
%(x)

∣∣∣2
T | lnT |


− 4

3

χ1(x+ ξ
√
%(x)),

B2 = %
5
6 (x)∇H∗(x+ ξ

√
%(x))

(
1− χ1(x+ ξ

√
%(x))

)
,

B3 =

(%(x)

T

) 1
3

(
3 +

9

8

|x+ ξ
√
%(x)|2

T | lnT |

)− 1
3

+
3−

1
3N

8| lnT |
%

1
3 (x)

T
1
3

− %
1
3 (x)H∗(x+ ξ

√
%(x))


×

√
%(x)∇χ1(x+ ξ

√
%(x)).

It is enough to prove the following estimates:
- Estimate of B1 : For all |x| ∈

[
r0; (2 + 1

100
)R0

]
and |ξ| ≤ 2α0

√
| ln %(x)| we have

|B1| ≤
C(K0)√
| ln %(x)|

. (4.127)
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- Estimate of B2 : For all |x| ∈
[

99
100
R0, ε0

]
and |ξ| ≤ 2α0

√
| ln %(x)|, we have

|B2| ≤
C(K0)√
| ln %(x)|

. (4.128)

- Estimate of B3 : For all |x| ∈
[

99
100
R0, (2 + 1

100
)R0

]
and |ξ| ≤ 2α0

√
| ln %(x)|, we have

|B3| ≤
C(K0)√
| ln %(x)|

. (4.129)

We now start the proof:
- Estimate of B1: We have the fact that for all |z| ≥ 1(

3 +
9

8
|z|2
)− 4

3

≤ C|z|−
8
3 .

Then,

|B1| ≤ C
%

5
6 (x)

T
4
3 | lnT |

T
4
3 | lnT | 43

|x+ ξ
√
%(x)| 53

≤ C
%

5
6 (x)| lnT | 13

|x+ ξ
√
%(x)| 53

.

Using (4.120), we obtain the following:

|B1| ≤ C
%

5
6 (x)| lnT | 13
|x| 53

.

In addition to that, for all |x| ∈
[
r0, (2 + 1

100
)R0

]
, we have

| ln %(x)| ∼ | lnT |, as T → 0.

Then, we have

|B1| ≤
C

K2
0

%
5
6 (x)| lnT | 13

%
5
6 (x)| ln %(x)| 56

≤ C√
| ln %(x)|

,

provided that K0 ≥ K2,3, T ≤ T2,4. This yields (4.127).
- Estimate of B2: From the definition of H∗(x), when |x| ≤ ε0, ε0 small enough, we have

H∗(x) =

[
9

16

|x|2

| ln |x||

]− 1
3

.

This implies

|∇H∗(x)| ≤ C
| ln |x|| 13
|x| 53

.

Hence,

|B2| ≤ C
%

5
6 (x)| ln |x|| 13
|x| 53

≤ C
| ln |x|| 13
| ln %(x)| 13

1√
| ln %(x)|

,
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on one hand. On the other hand, we have the following

| ln %(x)| ∼ 2| ln |x||, as x→ 0.

Thus, (4.128) holds provided that ε0 ≤ ε2,4(K0).
- Estimate of B3: We first use the definition of χ1 in (4.61) to write

|∇xχ1(x)| ≤ C√
T | lnT |

.

We now consider |x| ∈
[

99
100
R0, (2 + 1

100
)R0

]
and |ξ| ≤ 2α0

√
| ln %(x)|. We define

B4 =

(
3T +

9

8

|x+ ξ
√
%(x)|2

| lnT |

)− 1
3

+
3−

1
3N

8T
1
3 | lnT |

−H∗(x+ ξ
√
%(x)).

Then,

B3 = B4%
5
6 (x)∇χ1

(
x+ ξ

√
%(x)

)
.

Estimates on B4: Using the fact that |x| ∈
[

99
100
R0, (2 + 1

100
)R0

]
, |ξ| ≤ 2α0

√
| ln %(x)|

and (4.120), we can derive that

1

C
T | lnT | ≤

|x+ ξ
√
%(x)|2

| lnT |
≤ CT | lnT |,

1

C
T | lnT | ≤

|x+ ξ
√
%(x)|2

| ln |x+ ξ
√
%(x)||

≤ CT | lnT |.

This implies that
|B4| ≤ C(T | lnT |)−

1
3 .

Hence, we estimate B3:

|B3| ≤ C(T | lnT |)−
1
3%

5
6 (x)∇xχ1

(
x+ ξ

√
%(x)

)
≤ C

%
5
6 (x)

T
5
6

1

| lnT | 43

In addition to that, for all |x| ∈
[

99
100
R0, (2 + 1

100
)R0

]
, we use (4.122) to deduce that

|%(x)| ≤ CT | lnT |,

and we also have the following fact

| ln %(x)| ∼ | lnT |, as T → 0.

So, we conclude that

|B3| ≤
C√
| ln %(x)|

provided that K0 ≥ K2,4, ε0 ≤ ε2,5(K0, α0) and T ≤ T2,5(K0). Thus, we get the conclusion
of (4.129). Finally, the conclusion of Lemma 4.34 follows.
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4.6 A priori estimates in the intermediate region

In this section, we aim at giving the proof of Lemma 4.28. Because our definitions are
the same as in [14], estimates in this Proposition follow in the same way as in that work.
Hence, we kindly refer the reader to Lemma 2.6 in page 1515 in that work for the proof of
(4.108) and item (ii). It happens that, although the authors in [14] gave a statement which
is similar to (4.109), they did not gave the proof. For that reason, we give here the proof
of (4.109) and (4.110).

- The proof of (4.109): Let us consider |x| ∈
[
K0

4

√
(T − t∗)| ln(T − t∗)|, ε0

]
,|ξ| ≤

7
4
α0

√
| ln %(x)| and τ ∈

[
max

(
0,− t(x)

%(x)

)
, t∗−t(x)

%(x)

]
. As a matter of fact, there exists t ∈ [0, t∗]

such that

τ =
t− t(x)

%(x)
.

Let us define
X = x+ ξ

√
%(x).

We aim at considering the three following cases:

+ The case where |X| ≤ K0

4

√
(T − t)| ln(T − t)|. We write

U(x, ξ, τ) = %
1
3 (x)U(X, t).

We have the fact that X ∈ P1(t). Then, using item (i) in Definition 4.1 together with item
(i) in Lemma 4.17, we get

(T − t)−
1
3U(X, t) = W (Y, s), where Y =

X√
T − t

, s = − ln(T − t)

≥
(

3 +
|X|2

(T − t)| ln(T − t)|

)− 1
3

− CA2

√
s

≥ 1

2

(
3 +

9

8

K2
0

16

)− 1
3

,

provided that T ≤ T6,1(K0, A). This yields

U(x, ξ, τ) ≥
(
%(x)

T − t

)− 1
3 1

2

(
3 +

9

8

K2
0

16

)− 1
3

.

In addition to that, the function |x| 7→ %(x) is increasing when |x| is small enough. This
implies that

%(x) ≤ %

(
K0

4(1− 7
4
α0)

√
(T − t)| ln(T − t)|

)
.

From (4.55), (4.56) and (4.121), we derive that

%

(
K0

4(1− 7
4
α0)

√
(T − t)| ln(T − t)|

)
∼ 8

K2
0

K2
0

16(1− 7
4
α0)2

2(T − t)| ln(T − t)|
| ln(T − t)|

=
(T − t)

(1− 7
4
α0)2

,

as T → 0. Hence, we have
%(x)

T − t
≤ 4,
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provided that α0 ≤ 2
7
, T ≤ T6,2. Finally, we get

U(x, ξ, τ) ≥ 1

4

(
3 +

8

9

K2
0

16

)− 1
3

.

+ The case where |X| ∈
[
K0

4

√
(T − t)| ln(T − t)|, ε0

]
. In other words, we have X ∈ P2(t).

We write as follows
U(x, ξ, τ) = %(x)U(X, t).

In addition to that, using item (ii) in the definition of S(t) (see Definition 4.1), we get the
following:

U(X, t) = %−
1
3 (X)U(X, 0,

t− t(X)

%(X)
) ≥ %−

1
3 (X)

1

2

(
3 +

9

8

K2
0

16

)− 1
3

,

provided that δ0 ≤ 1
2

(
3 + 9

8

K2
0

16

)− 1
3
. In particular, using the fact that

(1− 7

4
α0)|x| ≤ |X| ≤ (1 +

7

4
α0)|x|. (4.130)

Then, we get (
%(x)

%(X)

) 1
3

≥ 1

2
,

provided that α0 ≤ α7,2(K0) and |x| ≤ ε7,2(K0, α0). This yields that

U(x, ξ, τ) ≥ 1

4

(
3 +

9

8

K2
0

16

)− 1
3

.

+ The case where |X| ≥ ε0. This means X ∈ P3(t). We first have the following fact

U(x, ξ, τ) = %
1
3 (x)U(X, t) ≥ 1

2
%

1
3 (x)U(X, 0),

provided that η0 ≤ 1
2

and ε0 ≤ ε6,3. We remark also that |X| ≤ (1+ 7
4
α0)|x| ≤ (1+ 7

4
α0)ε0 ≤

3
2
ε0. Then,

U(X, 0) =

[
9

16

|X|2

| ln |X||

]− 1
3

.

Moreover, using (4.121) and (4.130), we get

%
1
3 (x)U(X, 0) ≥ 1

3
√

2

[
9

8

K2
0

16

]− 1
3

≥ 1

2

(
3 +

9

8

K2
0

16

)− 1
3

,

provided that α0 ≤ α6,4, ε0 ≤ ε6,3.
As a matter of fact, we obtain the following

U(x, ξ, τ) ≥ 1

4

(
3 +

9

8

K2
0

16

)− 1
3

.
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This completely concludes the proof of (4.109).

- The proof of (4.110): The idea of the proof is similar to the first one. We also consider
three cases

+ The case where |X| ≤ K0

4

√
(T − t)| ln(T − t)|. This implies that X ∈ P1(t). We write

here

U(x, ξ, τ) = %
1
3 (x)U(X, t).

Using item (i) in the definition of S(t)(see Definition 4.1), together with item (i) in Lemma
4.17, we derive that

|U(X, t)| ≤ (T − t)−
1
3

[(
3 +

9

8

|X|2

(T − t)| ln(T − t)|

)− 1
3

+
CA2√
| ln(T − t)|

]
≤ 2(T − t)−

1
3 ,

provided that T ≤ T6,5. In addition to that, from the following fact

K0

4

√
%(X)| ln %(X)| = |X| ≤ K0

4

√
(T − t)| ln(T − t)|,

this yields that

%(X) ≤ T − t.

Then,

U(x, ξ, τ) ≤ 2

(
%(x)

%(X)

) 1
3

.

On the other hand, using (4.130), we can derive

%(x)

%(X)
≤ 2, (4.131)

provided that α0 ≤ α6,4. This also yields that

U(x, ξ, τ) ≤ 4.

+ The case where |X| ∈
[
K0

4

√
(T − t)| ln(T − t)|, ε0

]
. This means X ∈ P2(t). We write

U(x, ξ, τ) = %
1
3 (x)%−

1
3 (X)U(X, 0,

t− t(X)

%(X)
).

Hence, we derive from item (ii) of Definition 4.1, the fact that U ∈ S(t) and (4.130) that

U(x, ξ, τ) ≤
(
%(x)

%(X)

) 1
3

U(X, 0,
t− t(X)

%(X)
) ≤ 4,

provided that K0 ≥ K6,2, α0 ≤ α6,4(K0), δ0 ≤ δ6,1.

+ The case where |X| ≥ ε0. The result follows from item (iii) of Definition 4.1.

Hence, (4.110) follows. Finally, we get the conclusion of Lemma 4.28.
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4.7 A priori estimate on P2(t)

In this section, we aim at giving the proof of Proposition 4.29

The proof of Proposition 4.29 . We first choose parameters K0, ε0, α0, A, δ0, C0, η0, δ6 such
that Lemma 4.28 holds. Then, items (i) and (ii) in that Lemma hold. We would like to
prove that: for all

|x| ∈
[
K0

4

√
(T − t7)| ln(T − t7)|, ε0

]
, |ξ| ≤ α0

√
| ln %(x)|,

and

τ ∈
[
max

(
0,− t(x)

%(x)

)
,
t7 − t(x)

%(x)

]
= [τ0, τ7],

the following holds ∣∣∣U(x, ξ, τ)− Û(τ)
∣∣∣ ≤ δ0

2
, (4.132)

|∇ξU(x, ξ, τ)| ≤ C0

2
√
| ln %(x)|

. (4.133)

We first recall equation (4.57)

∂τU = ∆ξU− 2
|∇U|2

U + λ
1
3 %

1
3 (x)

θ̃(τ)

+

(
U +

λ
1
3%

1
3 (x)

θ̃(τ)

)4

− θ̃′τ (τ)

θ̃(τ)
U.

- The proof of (4.132): We first introduce the following function

Z(ξ, τ) = U(x, ξ, τ)− Û(τ).

Using (4.57), we write the following equation

∂τZ = ∆Z +

(
U +

θ̃(τ)%
1
3 (x)

λ
1
3

)4

− Û4(τ) +G(ξ, τ),

where

G(ξ, τ) = −2
|∇U|2

U + λ
1
3 %

1
3 (x)

θ̃(τ)

− θ̃′τ (τ)

θ̃(τ)
U.

Using Proposition 4.20 and the definition of θ̃(τ) in (4.58), we derive that∣∣∣θ̃′(τ)
∣∣∣ ≤ C%

1
12 (x)(1− τ)−

11
12 . (4.134)

Hence, from Lemma 4.29, we derive the following: for all |ξ| ≤ 7
4
α0

√
| ln %(x)| and τ ∈

[τ0, τ7],

|G(ξ, τ)| ≤ C

| ln %(x)| 12

(
(1− τ)−

11
12 + 1

)
,
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provided that |x| ≤ ε7,2(K0, δ0). In particular,∣∣∣∣∣∣
(
U +

θ̃(τ)%
1
3 (x)

λ
1
3

)4

− Û4(τ)

∣∣∣∣∣∣ ≤ C
(
|Z|+ %

1
3 (x)

)
.

We here define χ1(ξ) = χ0

(
|ξ|√
| ln %(x)|

)
, where χ0 ∈ C∞0 (R), χ0(x) = 1,∀|x| ≤ 5

4
,χ0(x) =

0,∀|x| ≥ 7
4
, and 0 ≤ χ0 ≤ 1. As a matter of fact, we have the following estimates

|∇χ1| ≤
C√
| ln %(x)|

and
∣∣∇2χ1

∣∣ ≤ C

| ln %(x)|
. (4.135)

Introducing
Z1(ξ, τ) = χ2(ξ)Z(ξ, τ),

we then write an equation satisfied by Z1

∂τZ1 = ∆Z1 +G1(ξ, τ),

where G1 satisfies the following: for all |ξ| ≤ 7
4
α0

√
| ln %(x)|

|G1(x, ξ, τ)| ≤ C(|Z1|+
1

| ln %(x)| 12

(
(1− τ)−

11
12 + 1

)
,

Using Duhamel’s principal, we derive the following

‖Z1(τ)‖L∞(RN ) ≤

(
δ6 +

C

| ln %(x)| 12

)
+ C

∫ τ

τ0

‖Z1(s)‖L∞(RN )ds

≤ 2δ6 + C

∫ τ

0

‖Z1(s)‖L∞(RN )ds.

Using Gronwall’s inequality, we get the following

‖Z1‖L∞(RN )(RN) ≤ 2Cδ6.

In particular, if we choose C0 ≥ 4Cδ6, then (4.132) follows.
- The proof of (4.133): We rely on the idea as for the proof of (4.132). We consider

Z2(ξ, τ) = χ1U(x, ξ, τ) exp
(∫ τ

τ0

θ̃′(s)

θ̃(s)
ds
)

, where χ1 given in the proof of (4.132). Then, we

can derive an equation satisfied by Z2 as follows

∂τZ2 = ∆Z2 + χ1U
4 exp

(∫ τ

τ0

θ̃′(s)

θ̃(s)
ds

)
+G2(ξ, τ), (4.136)

where G2 defined by

G2(ξ, τ) = exp

(∫ τ

τ0

θ̃′(s)

θ̃(s)
ds

)−2∇χ1 · ∇U−∆χ1U −
χ1|∇U|2

U + λ
1
3 %

1
3 (x)

θ̃(τ)

+ χ1

(
U +

λ
1
3%

1
3 (x)

θ̃(τ)

)4

− χ1U
4

 .
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In particular, from (4.134), we can get the following fact∣∣∣∣∣exp

(
±
∫ τ

τ0

θ̃′(s)

θ̃(s)
ds

)∣∣∣∣∣ ≤ 2,∀τ ∈ [τ0, τ7], (4.137)

as |x| ≤ ε8,1. Then, using the results in Lemma 4.28, we can deduce the following

‖G2(., τ)‖L∞(RN ) ≤
C

| ln %(x)|
,∀τ ∈ [τ0, τ7],

provided that |x| ≤ ε8,2(K0). We write Z2 in the following integral equation

Z2(τ) = e(τ−τ0)∆Z2(τ0) +

∫ τ

τ0

e(τ−s)∆

[
χ1U

4(σ) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
+G2(s)

]
ds. (4.138)

We now aim at proving the following estimates:∥∥∇e(τ−τ0)∆Z2(τ0)
∥∥
L∞(RN )

≤ C6 + C√
| ln %(x)|

, (4.139)∥∥∥∥∥∇e(τ−s)∆

(
χ1U

4(s) exp

(∫ s

0

θ̃′(σ)

θ̃(σ)
dσ

))∥∥∥∥∥
L∞(RN )

≤ C‖∇Z2‖L∞(RN ) (4.140)

+
C√
| ln %(x)|

.

+ The proof of (4.139): We write e(τ−τ0)∆Z2(τ0) as follows

e(τ−τ0)∆Z2(τ0)(ξ, τ) =

∫
RN

e

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

χ1(ξ′)U(x, ξ′, τ0(x)) exp

(∫ s

0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′.

This yields

∣∣∇ξe
(τ−τ0)∆Z2(τ0)(ξ, τ)

∣∣ =

∣∣∣∣∣∣∣
∫
RN

∇ξe

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

χ1(ξ′)U(x, ξ′, τ0) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
RN

∇ξ′e

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

χ1(ξ′)U(x, ξ′, τ0) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
RN

e

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

∇ξ′χ1(ξ′)U(x, ξ′, τ0) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫
RN

e

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

χ1(ξ′)∇ξ′U(x, ξ′, τ0) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′

∣∣∣∣∣∣∣ .
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Thus, using the above estimate, the result of item (ii) in Lemma 4.28 and (4.135), we can
conclude (4.139).

+ The proof of (4.140):∣∣∣∣∣∇e(τ−s)∆

(
χ1U

4(s) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

))
(ξ, s)

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
RN

∇ξe

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

χ1(ξ′)U4(x, ξ′, τ) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
RN

∇ξ′e

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

χ1(ξ′)U4(x, ξ′, τ) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
RN

e

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

∇ξ′χ1(ξ′)U4(x, ξ′, τ) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫
RN

e

(
− |ξ−ξ

′|2
4(τ−s)

)
(4π(τ − s))n2

χ1(ξ′)4U3(x, ξ′, τ)∇ξ′U(x, ξ′, s) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
dξ′

∣∣∣∣∣∣∣ .
In particular, we have the following fact

∇ξ′(Z2)(ξ′, s) = ∇ξ′

(
χ1(ξ′)U(x, ξ′, s) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

))

= ∇ξ′χ(ξ′)U(x, ξ′, s) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
+ χ(ξ′)∇ξ′U(x, ξ′, s) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
.

Then, using (4.110), (4.135) and the definition of Z2(s), we get the following∣∣∣∣∣∇e(τ−s)∆

(
χ1U

4(s) exp

(∫ s

τ0

θ̃′(σ)

θ̃(σ)
dσ

))
(ξ, s)

∣∣∣∣∣ ≤ C‖∇Z2(s)‖L∞(RN ) +
C√
| ln %(x)|

,

which yields (4.140).
We now come back to the proof of (4.133). We use (4.138), (4.139) and (4.140) to obtain

the following

‖∇Z2(τ)‖L∞(RN ) ≤
C6 + C√
| ln %(x)|

+ C

∫ τ

τ0

‖∇Z2(s)‖L∞(RN ).

Thanks to Gronwall’s inequality, we derive the following

‖∇Z2(τ)‖L∞(RN ) ≤
C(C6)√
| ln %(x)|

.

In addition to that, from the definition of Z2, we deduce that for all |ξ| ≤ α0

√
| ln %(x)|,

Z2(ξ, τ) = U(x, ξ, τ) exp

(∫ τ

τ0

θ̃′(σ)

θ̃(σ)
dσ

)
.



231

This implies that

|∇ξU(x, ξ, τ)| ≤ 2C(C6)√
| ln %(x)|

.

Finally, if we take C0 ≥ 4C(C6), then

|∇ξU(x, ξ, τ)| ≤ C0

2
√
| ln %(x)|

,

which implies (4.133).

4.8 Some bounds on terms in equation (4.35)

In this section, we give essential ingredients for the proof of Lemma 4.26. More precisely,
we will estimate some functions involved in equation (4.35): V, J,B,R,N and F . In fact, as
we explained in the proof Section right after Lemma 4.26, we choose not to prove Lemma
4.26, in order to avoid lenghy estimates aldready mentioned by Merle and Zaag in [14]. The
interested reader may use our estimates in this section and follow the proof of Lemma 3.2
on page 1523 in [14] in order to check the argument.

Let us first give some estimates on V (y, s):

Lemme 4.35 (Expansion and bounds on the potential V ). We consider V defined in
(4.37). Then, the following holds: V is bounded on RN × [1,+∞) and for all s ≥ 1

|V (y, s)| ≤ C
(1 + |y|2)

s
,∀y ∈ RN ,

and

V (y, s) = −(|y|2 − 2N)

4s
+ Ṽ (y, s),

where Ṽ satisfies the following∣∣∣Ṽ (y, s)
∣∣∣ ≤ C(K0)

(1 + |y|4)

s2
,∀|y| ≤ K0

√
s.

Proof. The proof is easily derived from the explicit formula of V . We kindly refer the
readers to self-chek or see Lemma B.1, page 1270 in [16] with p = 4.

We now give a bound on the quadratic term B(q).

Lemme 4.36 (A bound on B(q)). Let us consider B(q) defined in (4.39). If θ(s) ≥ 1, for
all s and |q| ≤ 1, then, the following holds

|B(q)| ≤ C(K0)
(
|q|2 + e−

s
3

)
.

Proof. By using Newton binomial formula, the conclusion directly follows.

Next, we aim at giving some bounds on J(q, θ(s)). The following is our statement:
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Lemme 4.37 (Bound on J(q, θ(s))). For all K0 > 0, A ≥ 1 and ε0 > 0, there exist η9(ε0)

and T9(K0, ε0, A) such that for all α0 > 0, C0 > 0 and T ≤ T9, δ0 ≤ 1
2
Û(0) and η0 ≤ η9,

the following holds: If U ∈ S(T,K0, ε0, α0, A, δ0, C0, η0, t) for some t ∈ [0, T ), then, for all
|y| ≤ 2K0

√
s, s = − ln(T − t), we have the following estimates:∣∣∣∣∣∣

T (q, θ(s)) + 4
∇ϕ · ∇q

ϕ+ λ
1
3 e−

s
3

θ(s)

∣∣∣∣∣∣ ≤ C(K0, A)

(
|y|2

s2
|q|+ s−1|q|2 + |∇q|2

)
, (4.141)

|T (q, θ(s))| ≤ C(K0, A)

(
|q|
s

+
|∇q|√
s

)
, (4.142)

where q is a transformed function of U given in (4.34) and T (q, θ(s)) is defined in (4.38).
In particular, for all y ∈ RN , we have

|(1− χ(y, s))T (q, θ(s))| ≤ C(K0, C0) min

(
1

s
,
|y|3

s
5
2

)
. (4.143)

Proof. The techniques of the proof of estimates (4.141), (4.142) and (4.143) are the same.
Although, function J(q, θ) is our work has some differences from the work of Merle and
Zaag in [14], we assert that the proof still holds with our model. In order to show this
argument, we kindly ask to refer the reader to check Lemma B.4 in that work. For that
reason, we only give the proof of (4.141) and (4.142) here, and we leave the proof of (4.143)
for the reader to be done similarly as for comparison Lemma B.4 in [14]. We now consider

|y| ≤ 2K0

√
s, and introduce G(h) = −2 |∇ϕ+h∇q|2

ϕ+λ
1
3 e
− s3

θ(s)
+hq

+ 2 |∇ϕ|2

ϕ+λ
1
3 e
− s3

θ(s)

, h ∈ [0, 1]. Then, we have

the following:

G′h(h) =
2q |∇ϕ+ h∇q|2(
ϕ+ λ

1
3 e−

s
3

θ(s)
+ hq

)2 − 4
∇q(∇ϕ+ h∇q)

ϕ+ λ
1
3 e−

s
3

θ(s)
+ hq

,

G′′h(h) = −4q2 |∇ϕ+ h∇q|2(
ϕ+ λ

1
3 e−

s
3

θ(s)
+ hq

)3 + 8q
∇q(∇ϕ+ h∇q)(
ϕ+ λ

1
3 e−

s
3

θ(s)
+ hq

)2 − 4
|∇q|2

ϕ+ λ
1
3 e−

s
3

θ(s)
+ hq

.

Using a Taylor expansion of G(h) on [0, 1], at h = 0, we get the following:

G(1) = G(0) +G′(0) +

∫ 1

0

(1− h)G′′(h)dh.

Using the following facts
G(1) = J(q, θ(s)), G(0) = 0,

we write the following

T (q, θ(s)) =

 2q|∇ϕ|2(
ϕ+ λ

1
3 e−

s
3

θ(s)

)2 −
4∇ϕ · ∇q

ϕ+ λ
1
3 e−

s
3

θ(s)

+

∫ 1

0

(1− h)G′′h(h)dh.

From the definition of ϕ given in (4.33), we can derive that for all s ≥ 1 and y ∈ RN , we
have

|∇ϕ(y, s)|2

ϕ2(y, s)
≤ C
|y|2

s
and |∇ϕ(y, s)| ≤ Cs−

1
2 .
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In addition to that, using Lemma 4.17, we can prove that there exists s9(A,K0) such that
for all s ≥ s0 ≥ s9, h ∈ [0, 1] and |y| ≤ 2K0

√
s, we have the following

|F ′′(h)(y, s)| ≤ C(A,K0)

(
|q|2

s
+ |∇q|2

)
≤ C(A,K0)

(
|q|
s

+
|∇q|√
s

)
.

Thus, (4.141) and (4.142) follow.

We now aim at giving some estimates on R. The following is our statement:

Lemme 4.38 (Bounds on R). Let us consider R defined in (4.40). We assume that θ(s) ≥
1, for all s ≥ 1. Then, for all s ≥ 1 and y ∈ RN , the following holds:∣∣∣R(y, s)− c1

s2

∣∣∣ ≤ C
(1 + |y|3)

s3
,

and

|∇R(y, s)| ≤ C
(1 + |y|3)

s3
.

In particular,

‖R(., s)‖L∞(RN ) ≤
C

s
.

Proof. The function R, in our work is different from the definiton in [14] (up to a very small
difference). Hence, the proof of [14] holds in our case with minor adaptation. Accordingly,
we kindly refer the reader to check Lemma B.5 page 1541 in that work.

We now give some estimates on N . The control of this term is a new contributation of
our study. In addition to that, it is a direct consequence of Proposition 4.20 on the control
θ̄(t). The following is our statement:

Lemme 4.39 (Bound on N(q, θ(s))). There exists K10 > 0 such that for all K0 ≥ K10, A >

0 and δ0 ≤ 1
2

(
3 + 9

8

K2
0

16

)− 1
3
, there exist α10(K0, δ0) > 0 and C10(K0) > 0 such that for every

α0 ∈ (0, α10] we can find ε10(K0, δ0, α0) > 0 such that for every α0 ∈ (0, ε10], η0 ≤ 1, there
exists T10(K0) > 0 such that all for all T ≤ T10, the following holds: Assume that U is
a nonnegative solution of equation (4.19) on [0, t10] for some t10 ≤ T10, and initial data
U(0) = Ud0,d1 given in (4.63) for some (d0, d1) ∈ R × RN , satisfying |d0|, |d1| ≤ 2, and
U ∈ S(T,K0, ε0, α0, A, δ0, C0, η0, t) for all t ∈ [0, t10]. Then, for all s = − ln(T − t) with
t ∈ [0, t10], the following estimate holds:

‖N(q, θ(s))‖L∞(RN ) ≤
1

s2019
,

where N(q, θ(s)) is defined in (4.41).

Proof. Using the fact that U is in S(t), item (i) in Definition 4.1 and item (i) of Lemma
4.17, we derive that

‖(q + ϕ)(., s)‖L∞(RN ) ≤ C.

Hence, it is enough to find a bound on the following quanlity

θ′(s)

θ(s)
.
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(see in definition (4.41)). As a matter of fact, using Proposition 4.20, it is clear to have the
following ∣∣∣∣θ′(s)θ(s)

∣∣∣∣ =

∣∣∣∣ θ̄′(t)θ̄(t)

∣∣∣∣ ∣∣∣∣ dtds
∣∣∣∣ ≤ Ce

8−3N−6
6

s|sN |.

Hence, there exists s10 large enough such that for all s ≥ s0 ≥ s10, we can write

‖N(q, θ(s))‖L∞(RN ) ≤ Ce−
s
6 |s|N ≤ 1

s2019
,

which yields the conclusion of the proof.

Finally, we give a bound on F (w,W ). As a matter of fact, this is an important bridge
that connects the problems in RN and in a bounded domain. In other words, it is created
by the localization around blowup region. Fortunately, this term is controled as a small
perturbation in our analysis. More precisely, the following is our statement:

Lemme 4.40 (Bound on F (w,W )). Let us consider F (w,W ), defiend in (4.32). Then,
there exists ε11 > 0 such that K0 > 0, ε0 ≤ ε11, α0 > 0, A > 0, δ0 > 0, C0 > 0, η0 > 0,
there exists T11 > 0 such that for all T ≤ T11, the following holds: Assuming that U ∈
S(T,K0, ε0, α0, A, δ0, C0, η0, t), for all t ∈ [0, t11], for some t11 ∈ [0, T ), then, we have

‖F (w,W )‖L∞(RN ) ≤
1

s2019
,

where s = − ln(T − t).

Proof. From the definition of F, it is enough to consider |y| ∈
[
e
s
2

M0
e
s
2 , 2e

s
2

M0

]
. We now take

ε0 ≤ 1
2M0

, then, this domain corresponds to the region P3(t) where our solution U is regared
as a perturbation of initial data. Using the fac that U is in S(t), then, we can derive from
item (iii) in Definition 4.1 that

|W (y, s)| ≤ C(K0)e−
s
3 ,

|∇yW (y, s)| ≤ C(K0)e−
s
3 .

In addition to that, from definition (4.30), we deduce that

|w(y, s)| ≤ C(K0,M0)e−
s
3 ,

|∇w(y, s)| ≤ C(K0,M0)e−
s
3 .

On the other hand, using the definition of ψM0 given in (4.29), we get the following∣∣∣∣∂sψM0 −∆ψM0 +
1

2
y · ∇ψM0

∣∣∣∣ ≤ C(M0).

In fact, using the above estimate, we can get the conclusion if s ≥ s0(K0).
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4.9 The Dirichlet heat semi-group on Ω

In this section, we aim at giving some main properties of the Dirichlet heat semi-group(
et∆
)
t>0

(see more details in [20] or chapter 16 in [17]). In particular, we prove the parabolic
regularity estimate of Lemma 4.33. We consider the following equation

∂tU −∆U = 0 in Ω× (0, T ),
U = 0 in ∂Ω× (0, T ),

U(x, 0) = U0(x) in Ω̄.
(4.144)

In particular, one can prove that there exists G(x, y, t, τ), t ≥ τ nonnegative, symemtric in
x, y, i.e G(x, y, t, τ) = G(y, x, t, τ) and defined in Ω×Ω× (0, T )× [0, T ) with the following
condition {

(∂t −∆)G(x, y, t, τ) = δ(x− y)δ(t− τ),
G(x, y, τ, τ) = 0 and G(x, y, t, τ) = 0 if x ∈ ∂Ω.

(4.145)

Moreover, for all f ∈ L∞(Ω), we have

(et∆f)(x) =

∫
Ω

G(x, y, t, 0)f(y)dy. (4.146)

Hence, we can write the solution of equation (4.144) as follows

U(t) = et∆(U0).

We now consider furthermore the following non-homogeneous equation
∂tU −∆U = F in Ω× (0, T ),

U = 0 in ∂Ω× (0, T ),
U(x, 0) = U0(x) in Ω̄.

(4.147)

If F ∈ C(Ω× (0, T )), u0 ∈ C(Ω) and Ω is C2, bounded domain in RN . Then, we can prove
that there locally exists a classical solution of problem (4.147). Then, by using Duhamel
principal, the solution satisfies the following integral equation

U(t) = et∆(U0) +

∫ t

0

e(t−s)∆F (s)ds.

Sometimes, we also call G(x, y, t, τ) the Green function. Let us give in the following the
main properties of the Green function:

Lemme 4.41. Let us consider the Green function called G(x, y, t, τ) above. Then, the
following holds: for all (x, y, t, τ) ∈ Ω × Ω × (0, T ) × [0, T ) and integer numbers r, s, we
have ∣∣∣∂rt ∂sxs11 ...x

sN
N
G(x, y, t, τ)

∣∣∣ ≤ C(t− τ)−
N+2r+s

2 exp

(
−c(Ω)

|x− y|2

t− τ

)
.

Proof. We kindly refer the reader to see Theorem 16.3, page 413 in [17].

We now prove in the following Lemma 4.33
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The proof of Lemma 4.33. From the defintion of the semigroup et∆, it is easy to derive that
L(t) ∈ C(Ω̄ × [0, T ]) ∩ C∞(Ω × (0, T ]). Hence, it is enough to give the proof of (4.113).
Indeed, we first derive the support of Ud0,d1 = {|x| ≤ 1

2
d(0, ∂Ω)}. We now consider two

following regions:

Ω1 = {ε0
8
≤ |x| ≤ 7

8
d(0, ∂Ω)},

Ω2 = {|x| > 3

4
d(0, ∂Ω)} ∩ Ω.

In addition to that, we can write L1(t) as follows

L(x, t) =

∫
Ω

G(x, y, t, 0)Ud0,d1(y)dy =

∫
{|y|≤ 1

2
d(0,∂Ω)}

GΩ(x, y, t, 0)Ud0,d1(y)dy, (4.148)

which yields

∇L(x, t) =

∫
{|y|≤ 1

2
d(0,∂Ω)}

∇xG(x, y, t, 0)Ud0,d1(y)dy. (4.149)

- We consider the case where x ∈ Ω2 : Thanks to Lemma 4.41 and (4.149), we have

|∇L(x, t)| ≤
∫
{|y|≤ 1

2
d(0,∂Ω)}

|∇xG(x, y, t, 0)||Ud0,d1(y)|dy

≤
∫
{|y|≤ 1

2
d(0,∂Ω)}

C exp
(
−cΩ

|x−y|2
t

)
t
N+1

2

|Ud0,d1(y)|dy

≤ C

∫
{|y|≤ 1

2
d(0,∂Ω)}

exp

(
−cΩ
|x− y|2

t

)
|x− y|N+1

t
N+1

2

|Ud0,d1(y)|
|x− y|N+1

dy

≤ C

∫
{|y|≤ 1

2
d(0,∂Ω)}

|Ud0,d1(y)|
|x− y|N+1

dy

Because x ∈ Ω2, we have the following fact

1

|x− y|N+1
≤ C.

This yields the following

|∇L(x, t)| ≤ C

∫
{|y|≤ 1

4
d(0,∂Ω)}

|Ud0,d1(y)| dy.

In addition to that, using (4.63), we have the following∫
|y|≤ 1

2
d(0,∂Ω)

|Ud0,d1(y)|dy =

∫
|y|≤2

√
T | lnT |

|Ud0,d1(y)|dy +

∫
2
√
T | lnT |≤|y|≤ 1

2
d(0,∂Ω)

|Ud0,d1(y)|dy

=

∫
|y|≤2

√
T | lnT |

T−
1
3

∣∣∣∣∣ϕ
(

y√
T
,− ln s0

)
+ (d0 + d1 ·

y√
T | lnT |

)χ0

(
|y|√

T | lnT |K0

32

)∣∣∣∣∣χ1(y)dy

+

∫
2
√
T | lnT |≤|y|≤ 1

2
d(0,∂Ω)

|(1− χ1(y))H∗(y)|dy ≤ C,
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which yields
|∇L(x, t)| ≤ C, for all in Ω2, (4.150)

It is similar to prove the following estimate

|∇2L(x, t)| ≤ C, for all in Ω2. (4.151)

- We consider the case where x ∈ Ω1: Let us define φ(x) as a function in C∞0
(
RN
)

and
satisfying the following conditions

φ(x) = 0 if |x| ≥ 11

12
d(0, ∂Ω),

φ(x) = 1 if |x| ≤ 7

8
d(0, ∂Ω).

Then, we also introduce the following function

L1(x, t) = φ(x)∇L(x, t).

We now write an equation satisfied by L1
∂tL1 −∆L1 = −2∇φ · ∇2L−∆φ∇L in Ω× (0, T ),

L1 = 0 in ∂Ω× (0, T ),
L1(x, 0) = φ∇L(0) = φ∇Ud0,d1 in Ω̄.

(4.152)

Using Duhamel’s formula, we get

L1(t) = et∆L1(0) +

∫ t

0

e(t−s)∆ [−2∇φ · ∇2L−∆φ∇L
]

(s)ds. (4.153)

We now aim at proving the following fact

‖e(t−s)∆(∆φ∇L)(s)‖L∞(Ω) ≤ C‖L1(s)‖L∞(Ω) + C, , (4.154)

‖e(t−s)∆(∇φ · ∇2L)(s)‖L∞(Ω) ≤
C‖L1(s)‖L∞(Ω)√

t− s
+ C

(
1 +

1√
t− s

)
, . (4.155)

- The proof of (4.154): We have the following fact

|∆φ∇L| = |I{|x|≤ 7
8
d(0,∂Ω)}∆φ∇L|+ |I{|x|> 7

8
d(0,∂Ω)}∆φ∇L|

≤ C|φ∇L|+ C = C|L1|+ C.

Then, by using the monotonicity of the operator e(t−s)∆, we derive directly (4.154).
- The proof of (4.155): From the definition of operator e(t−s)∆, we can write the

following

e(t−s)∆(∇φ · ∇2L(s)) =

∫
Ω

G(x, y, t, s)∇φ(y) · ∇2L(y, s)dy.

We consider j ∈ {1, ..., n}, and integrate by part, we get the following∫
Ω

n∑
i=1

G(x, y, t, s)∂yiφ(y)∂2
yiyj

Ldy

= −
∫

Ω

(∇yG(x, y, t, s) · ∇φ+G(x, y, t, s)∆φ)∂yjL(y, s)dy

= −
∫

Ω

∇yG(x, y, t, s) · ∇φ∂yjL(y, s)dy

−
∫

Ω

G(x, y, t, s)∆φ∂yjL(y, s)dy.
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Using the defintion of φ in the above and (4.150), we have the following fact:

|∇L| = |I{|x|≤ 7
8
d(0,∂Ω)}∇L|+ |I{|x|> 7

8
d(0,∂Ω)}∇L|

= |I{|x|≤ 7
8
d(0,∂Ω)}φ(x)∇L|+ |I{|x|> 7

8
d(0,∂Ω)}∇L|

≤ |L1|+ C.

Then,∣∣∣∣∣
∫

Ω

n∑
i=1

G(x, y, t, s)∂yiφ(y)∂2
yiyj

L(y)dy

∣∣∣∣∣ ≤ (‖L1(s)‖L∞(Ω) + C)

∣∣∣∣∫
Ω

∇yG(x, y, t, s) · ∇φdy
∣∣∣∣

+ (‖L1(s)‖L∞(Ω) + C)

∣∣∣∣∫
Ω

G(x, y, t, s)∆φdy

∣∣∣∣
≤ (‖L1(s)‖L∞(Ω) + C)

[
C√
t− s

+ C

]
,

which implies (4.155). We now use (4.153), (4.154) and (4.155) to deduce the following

‖L1(t)‖L∞(Ω) ≤ C‖∇Ud0,d1‖L1(Ω) (4.156)

+

∫ t

0

[
C

(
1 +

1√
t− s

)
‖L1(s)‖L∞(Ω) + C

(
1 +

1√
t− s

)]
ds.

Using Gronwall’s lemma, we obtain the following estimate

‖L1(t)‖L∞(Ω) ≤ C‖∇Ud0,d1‖L1(Ω).

We admit the following fact which we will be proved at the end:

‖∇Ud0,d1‖L1(Ω) ≤ CT−
1
2 + C(ε0). (4.157)

This estimate gives a rough estimation on L1 as follows

‖L1(t)‖L∞(Ω) ≤ CT−
1
2 + C(ε0). (4.158)

Let us improve this estimate. We come back to identity (4.153) and consider the set of all
x ∈ Ω such that |x| ≥ ε0

8
. By using the definition of Ud0,d1 in (4.63), we first prove the

following fact
‖et∆ (∇Ud0,d1) ‖L∞(|x|≥ ε0

8
,x∈Ω) ≤ C(ε0). (4.159)

Indeed, we write et∆ (∇Ud0,d1) as follows

et∆ (∇Ud0,d1) =

∫
Ω

G(x, y, t, 0)∇yUd0,d1(y)dy =

∫
|y|≤ 1

2
d(0,∂Ω)

G(x, y, t, 0)∇yUd0,d1(y)dy

=

∫
|y|≤ ε0

16

G(x, y, t, 0)∇yUd0,d1(y)dy +

∫
ε0
16
≤|y|≤ 1

2
d(0,∂Ω)

G(x, y, t, 0)∇yUd0,d1(y)dy

= I1 + I2.

+ Bound on I1: Using integration by parts, we get the following:

I1 = −
∫
|y|≤ ε0

16

∇yG(x, y, t, 0)Ud0,d1(y)dy +

∫
|y|= ε0

16

G(x, y, t, 0)Ud0,d1(y)η(y)dS.
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From Lemma 4.41, we derive that

|I1(x, t)| ≤
∫
|y|≤ ε0

16

exp
(
−cΩ

|x−y|2
t

)
t
N+1

2

|Ud0,d1(y)|dy + C(ε0)

≤
∫
|y|≤ ε0

16

exp

(
−cΩ
|x− y|2

t

)
|x− y|N+1

t
N+1

2

1

|x− y|N+1
|Ud0,d1(y)|dy + C(ε0)

≤ C(ε0)‖Ud0,d1‖L1(Ω) + C(ε0) ≤ C1(ε0).

+ Bound on I2: It is easy to prove that

‖∇Ud0,d1(.)‖L∞(
ε0
16
≤|y|≤ 1

2
d(0,∂Ω)) ≤ C(ε0).

This yields directly that

|I2(x, t)| ≤ C(ε0)

∫
ε0
16
≤|y|≤ 1

2
d(0,∂Ω)

G(x, y, t, 0)dy ≤ C(ε0).

Hence, we get the conclusion the proof of (4.159). Using (4.156), (4.158) and (4.159), we
get the following: for all |x| ≥ ε0

8
, x ∈ Ω

|L1(x, t)| ≤ C(ε0) + C

∫ t

0

(
1 +

1√
t− s

)
T−

1
2ds ≤ C(ε0),

provided that T < 1. This yields that for all x ∈ Ω1

|∇L(x, t)| ≤ C(ε0). (4.160)

Finally, (4.113) follows from (4.150) and (4.160), which will conclude the proof of Lemma
4.33. However, in order to finish the proof we need to prove (4.157): Indeed, from the
definition of Ud0,d1 given in (4.63), we write

∇xUd0,d1(x) = I1(x) + I2(x) + I3(x) + I4(x),

where

I1 = T−
1
3

[
−3

4

(
3 +

9

8

|x|2

T | lnT |

)− 4
3 x

T | lnT |
+

d1√
T | lnT |

χ0

(
x√

T | lnT |

)

+
d1 · x√
T | lnT |

χ′0

(
x√

T | lnT |

)
x

|x|
√
T | lnT |

]
χ0

(
|x|√
T | lnT |

)
,

I2 = T−
1
3

[(
3 +

9

8

|x|2

T | lnT |

)− 1
3

+

(
d0 +

d1 · x√
T | lnT |

)
χ0

(
|x|√
T | lnT |

)]

× χ′0

(
|x|√
T | lnT |

)
x

|x|
√
T | lnT |

,

I3 =

(
1− χ0

(
x√

T | lnT |

))
∇H∗(x),

I4 = −χ′0
(

x√
T | lnT |

)
x

|x|
√
T | lnT |

H∗(x).



240

As a matter of fact, we have the following

‖∇Ud0,d1‖L1 ≤
∫

Ω

|I1(x)|dx+

∫
Ω

|I2(x)|dx+

∫
Ω

|I3(x)|dx+

∫
Ω

|I4(x)|dx.

In particular, we have

Supp(I1) ⊂ {|x| ≤ 2
√
T | lnT |},

Supp(I2) ⊂ {
√
T | lnT | ≤ |x| ≤ 2

√
T | lnT |},

Supp(I3) ⊂ {
√
T | lnT | ≤ |x| ≤ 1

2
d(0, ∂Ω)},

Supp(I4) ⊂ {
√
T | lnT | ≤ |x| ≤ 2

√
T | lnT |}.

By some simple upper bounds on I1 and I2, we can derive that∫
Ω

|I1(x)|dx ≤ CT−
1
2 + C and

∫
Ω

|I2(x)|dx ≤ CT−
1
2 + C.

We now aim at estimating I3 and I4.
+ Estimate on I3: We write as follows∫

Ω

|I3|(x)dx =

∫
√
T | lnT |≤|x|≤min( 1

2
, 1
4
d(0,∂Ω))

|I3(x)|dx+

∫
min( 1

2
, 1
4
d(0,∂Ω))≤|x|≤ 1

2
d(0,∂Ω)

|I3(x)|dx

≤
∫
√
T | lnT |≤|x|≤min( 1

2
, 1
4
d(0,∂Ω))

|I3(x)|dx+ C.

In addition to that,∫
√
T | lnT |≤|x|≤min( 1

2
, 1
4
d(0,∂Ω))

|I3(x)|dx ≤ C

∫
√
T | lnT |≤|x|≤min( 1

2
, 1
4
d(0,∂Ω))

|x|−
4
3 | ln |x||

1
3dx

≤ CT−
1
2 + C.

This implies that ∫
Ω

|I3(x)|dx ≤ CT−
1
2 + C.

+ Estimate on I4: We have∫
√
T | lnT |≤|x|≤2

√
T | lnT |

|I4(x)|dx ≤ C√
T | lnT |

∫
√
T | lnT |≤|x|≤2

√
T | lnT |

| ln |x||
1
3 |x|−

2
3dx ≤ CT−

1
2 .

From the above estimates, we can conclude (4.157). We also finish the proof of Lemma
4.33.

4.10 Some Parabolic estimates

In this section, we aim at giving some estimates on U,∇U and ∇2U . More precisely, the
following is our statement:
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Lemme 4.42 (Parabolic estimates on U). We consider U a solution to equation (4.19) and
U ∈ S(T,K0, ε0, α0, A, δ0, C0, η0, t), for all t ∈ [0, t1] for some t1 ≤ T . Then, the following
estimates follows: for all t ∈ [0, t1)

‖U(., t)‖L∞(Ω) ≤ C(K0, A)(T − t)−
1
3 , (4.161)

‖∇U(., t)‖L∞(Ω) ≤ C(K0, A)
(T − t)− 5

6

| ln(T − t)| 12
, (4.162)

‖∇2U(., t)‖L∞(Ω) ≤ C(K0, A)(T − t)−c, (4.163)

for some constant c = c(K0, A) > 0.

In particular, we have the following local convergence: We assume furthermore that
U ∈ S(t), for all t < T . Then, for all x ∈ Ω there exist Rx > 0, tx ∈ [0, T ) such that the
following holds

‖∂tU(., t)‖L∞(B(x,Rx)) ≤ C(K0, A, T, x),∀t ∈ [tx, T ). (4.164)

Remark 4.43. We would like to remark that from (4.164) and the definition of the shrink-
ing set S(t) (see Definition 4.1), we ensure for all x0 ∈ Ω\{0}, U(x0, t) is convergent as
t→ T .

Proof. We see that estimates (4.161) and (4.162) directly follow from the definition of the
shrinking set and Lemma 4.17. For that reason, we only give here the proofs of (4.163) and
(4.164).

- The proof of (4.163): From (4.15), (4.17), we consider u defined as follows:

u(x, t) = 1− 1

1 + λ
1
3U(x,t)

θ̄(t)

. (4.165)

Then, u satisfies (4.2) and u(0) is in C∞0 (Ω). We now derive an equation satisfied by ∇2u
as follows:

∂t∇2u = ∆(∇2u) +H1∇2u+H2, (4.166)

where H1 = 2λ
θ̄3(t)

1
(1−u)3 and H2 = (H2,i,j)1≤i,j≤N is a square matrix with

H2,i,j = 6
∂yiu∂yju

(1− u)4
.

Using the definition of u, (4.68) and two estimates (4.161) and (4.162), we can derive the
following fact: for all t ∈ [0, T ),

‖H1(t)‖L∞(Ω) ≤ C(K0, A)(T − t)−1,

‖H2(t)‖L∞(Ω) ≤ C(K0, A)(T − t)−
5
3 .

We write ∇2u under the integral equation following

∇2u(t) = et∆(∇2u(0)) +

∫ t

0

e(t−s)∆ [H1(s)∇2u+H2(s)
]

(s)ds.

This implies that

‖∇2u(t)‖L∞(Ω) ≤ ‖et∆(∇2u(0))‖L∞(Ω)+C(K0, A)

∫ t

0

(
1

T − s
‖∇2u(s)‖L∞(Ω) + (T − s)−

5
3

)
ds.
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Besides that, we can prove that there exists c1 > 0 such that

‖et∆(∇2u(0))‖L∞(Ω) ≤ C(T − t)−c1 .

Thanks to Growall’s lemma, we get the following

‖∇2u‖L∞(Ω) ≤ C(K0, A)(T − t)−c2 , with some constant c2 > 0.

Finally, from the relation between u and U , we can get the conclusion of (4.163).
- The proof of (4.164): By using the definitions (4.52) and (4.52) of P2(t) and P3(t),

respectively, if we consider an arbitrary x ∈ Ω \ {0}, then, there exist tx, rx such that

the ball of radius rx, centred x B(x, rx) ∈ P2(t) ∪ P3(t),∀t ∈ [tx, T ).

Then, using the definition of the shrinking set S(t), given in Definition 4.1 and the fact that
u ∈ S(t) for all t ∈ [tx, T ), we derive that there exists C(K0, x) such that for all t ∈ [tx, T ),
we have

‖U(., t)‖L∞(RN )(B(x,rx)) ≤ C(K0, x). (4.167)

In addition to that, we derive from Proposition 4.20, we have

1 ≤ θ̄(t) ≤ C, and |θ̄′(t)| ≤ C(T − t)
3n−8

6 | ln(T − t)|n ≤ (T − t)−
11
12 , (4.168)

for all t ∈ [tx, T ).

We recall u, defined in (4.165). We now derive an equation satisfied by ∂tu

∂t(∂u) = ∆∂tu+H1∂tu+H3(t), (4.169)

where

H1(t) =
2λ

θ̄3(t)

1

(1− u)3
,

H3(t) = − 3λ

(1− u)2

θ̄′(t)

θ̄4(t)
.

We then introduce the following cut-off function : φ ∈ C∞0 (RN) which satisfying

φ(z) = 1 if |z − x| ≤ rx
2
, and φ(z) = 0 if |z − x| ≥ 3

4
rx and 0 ≤ φ(z) ≤ 1,∀z ∈ RN .

Particularly, we also define

v(z, t) = φ(z)∂tu(z, t) for all z ∈ RN .

Using (4.169), we can derive an equation satisfied by v(t) as follows

∂tv = ∆v − 2div(∇φ∂tu) + ∆φ∂tu+H1v(t), (4.170)

Using (4.163), (4.165) (4.167) and the fact that U is nonnegative solution, we can deduce
that

‖∇φ∂tu(t)‖L∞(RN ) ≤ C(K0, A, x)(T − t)−c,
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and
‖∆φ∂tu(t)‖L∞(RN ) ≤ C(K0, A, x)(T − t)−c.

Moreover, we canderive from (4.167) and (4.168) that

‖I{|z−x|≤rx}H1(t)‖L∞(RN ) ≤ C(K0, A, x),

and
‖H3(t)‖L∞(RN ) ≤ C(K0, x)(T − t)−

11
12 .

We now deduce from (4.170) that v satisfies the following integral equation

v(t) = e(t−tx)∆v(tx) +

∫ t

tx

e(t−s)∆ [−2div(∇φ∂tu) + ∆φ∂tu+H1v(s)] ds,

where et∆ stands for the heat semigroup on RN . Then, we get the following

|v(t)| ≤ C(K0, A, x)(1 + (T − t)−c+1) + 2

∣∣∣∣∫ t

tx

e(t−s)∆div(∇φ∂tu)ds

∣∣∣∣ .
In particular, we have

∣∣e(t−s)∆div(∇φ∂tu)
∣∣ ≤ C√

t− s
‖∇φ∂tu‖L∞(RN ) ≤ C(K0, x)

(T − t)−c√
t− s

.

This implies that

|v(t)| ≤ C(K0, A, x)(1 + (T − t)−c+1) + C(K0, A, x)

∫ t

tx

(T − s)−c

(t− s) 1
2

ds.

+ If −c+ 1
4
≥ 0. This give us that

|v(t)| ≤ C(K0, A, x),

which yields the conclusion of our proof.
+ Otherwise, we use the above estimate to derive that

|v(t)| ≤ C(K0, A, T, x)(T − tx)−c+
1
4 .

We can see that by using a parabolic estimate as we have done. We can improve our
estimate on |v(t)| from C(K0, A, x)(T − t)−c to C(K0, A, x)(T − t)−c+

1
4 . Hence, we can

repeat with a finite steps to get the conclusion of the proof. We kindly refer the reader to
check this argument.
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