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Summary (English)

Over the last decades, the ever increase in the amount of collected data has motivated
data driven approaches. However, the majority of available data are unlabelled, noisy and
may be partial. Furthermore, a lot of them are time series, i.e. data that have a sequential
nature. This thesis work focuses on a class of unsupervised, probabilistic deep learning
methods that use variational inference to create high capacity, scalable models for this
type of data. We present two classes of variational deep learning, then apply them to two
specific problems: learning dynamical systems and maritime traffic surveillance.

The first application is the identification of dynamical systems from noisy and partially
observed data. We introduce a framework that merges classical data assimilation and
modern deep learning to retrieve the differential equations that control the dynamics of
the system. The role of the assimilation part in the proposed framework is to reconstruct
the true states of the system from series of imperfect observations. Given those states, we
then apply neural networks to identify the underlying dynamics. Using a state space for-
mulation, the proposed framework embeds stochastic components to account for stochastic
variabilities, model errors and reconstruction uncertainties. Experiments on chaotic and
stochastic dynamical systems show that the proposed framework can remarkably improve
the performance of state-of-the-art learning models on noisy and partial observations.

The second application is maritime traffic surveillance using AIS data. AIS is an
automatic tracking system designed for vessels. The information richness of AIS has made
it quickly become one of the most important sources of data in the maritime domain.
However, AIS data are noisy, and usually irregularly sampled. We propose a multitask
probabilistic deep learning architecture that can overcome these difficulties. Our model
can achieve state-of-the-art performance in different maritime traffic surveillance related
tasks, such as trajectory reconstruction, vessel type identification and anomaly detection,
while reducing significantly the amount data to be stored and the calculation time. For
the most important task—anomaly detection, we introduce a geospatial detector that uses
variational deep learning to builds a probabilistic representation of AIS trajectories, then
detect anomalies by judging how likely this trajectory is. This detector takes into account
the fact that AIS data are geographically heterogeneous, hence the performance of the
learnt probabilistic distribution is also geospatially dependent. Experiments on real data
assert the relevance of the proposed method.

Key words: deep learning, variational inference, time series, state space model, recur-
rent neural network, dynamical system identification, anomaly detection, AIS, maritime
traffic surveillance.





Résumé (Français)

Au cours des dernières décennies, l’augmentation de la quantité de données collectées a
motivé l’utilisation d’approches basées sur les données. Cependant, la majorité des données
disponibles sont non étiquetées, bruitées et peuvent être partiellement observées. De plus,
beaucoup d’entre elles sont des séries temporelles, c’est-à-dire des données de nature
séquentielle. Ce travail de thèse se focalise sur une classe de méthodes d’apprentissage
profond, probabilistes et non-supervisées qui utilisent l’inférence variationnelle pour créer
des modèles évolutifs de grande capacité pour ce type de données. Nous présentons deux
classes d’apprentissage variationnel profond, puis nous les appliquons à deux problèmes
spécifiques: l’apprentissage de systèmes dynamiques et la surveillance du trafic maritime.

La première application est l’identification de systèmes dynamiques à partir de données
bruitées et partiellement observées. Nous introduisons un cadre qui fusionne l’assimilation
de données classique et l’apprentissage profond moderne pour retrouver les équations
différentielles qui contrôlent la dynamique du système. Le rôle de la partie d’assimilation,
dans le cadre proposé, est de reconstruire les vrais états du système à partir des séries
d’observations imparfaites. Étant donné ces états, nous appliquons ensuite des réseaux de
neurones pour identifier la dynamique sous-jacente. En utilisant une formulation d’espace
d’états, le cadre proposé intègre des composantes stochastiques pour tenir compte des
variabilités stochastiques, des erreurs de modèle et des incertitudes de reconstruction. Des
expériences sur des systèmes dynamiques chaotiques et stochastiques montrent que le cadre
proposé peut améliorer remarquablement les performances des modèles d’apprentissage de
pointe sur des observations bruitées et partielles.

La deuxième application est la surveillance du trafic maritime à l’aide des données
AIS. L’AIS est un système de suivi automatique conçu pour les navires. La richesse
d’informations de l’AIS en a rapidement fait l’une des sources de données les plus impor-
tantes dans le domaine maritime. Cependant, les données AIS sont bruitées et généralement
échantillonnées de manière irrégulière. Nous proposons une architecture d’apprentissage
profond probabiliste multitâche capable de surmonter ces difficultés. Notre modèle peut
atteindre des performances très prometteuses dans différentes tâches liées à la surveillance
du trafic maritime, telles que la reconstruction de trajectoire, l’identification du type
de navire et la détection d’anomalie, tout en réduisant considérablement la quantité de
données à stocker et le temps de calcul. Pour la tâche la plus importante - la détection
d’anomalie, nous introduisons un détecteur géospatialisé qui utilise l’apprentissage profond
variationnel pour construire une représentation probabiliste des trajectoires AIS, puis
détecter les anomalies en jugeant la probabilité de cette trajectoire. Ce détecteur prend



en compte le fait que les données AIS sont géographiquement hétérogènes, ce qui, par
conséquet fait varier la qualité de la distribution probabiliste apprise. Des expériences sur
des données réelles affirment la pertinence de la méthode proposée.

Mots clés: apprentissage profond, inférence variationnelle, séries temporelles, modèle
espace d’états, réseau de neurones récurrents, identification de systèmes dynamiques,
détection d’anomalies, AIS, surveillance de trafic maritime.
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A PhD is a great time in one’s life to go for a
big goal, an even small steps towards that will be
valued.

Yoshua Bengio

Chapter 1

General Introduction

1.1 Motivation

The term “deep learning” (DL) was first introduced by Rina Dechter in 1986 (Dechter
1986). Nowaday, DL is usually understood as a family of machine learing (ML) methods
that use artificial neural networks (ANNs) to learn features of data with multiple
levels of abstraction (LeCun et al. 2015). Over the last decade, the world has witnessed an
incredible development of DL. Machine learning in general, and deep learning in particular,
have recently revolutionised many fields of research and application. In computer vision, DL
has surpassed human-level performance for image classification, object detection, etc. (He
et al. 2015; Russakovsky et al. 2015). Many tasks that are hard to mathematically defined
such as mimicking an artistic style, generating artificial human-lookalike images, etc. have
been achieved by neural-network-based (NN-based) models (I. Goodfellow, Pouget-Abadie,
et al. 2014; Zhu et al. 2017; Karras et al. 2019). In natural language processing (NLP),
the introduction of embedding models such as Word2Vec (Mikolov et al. 2013) and Glove
(Pennington et al. 2014), ELMo (Peters et al. 2018) and BERT (Devlin et al. 2018)
has significantly boosted the fields. NNs have helped create better machine translation
(Sutskever et al. 2014; Y. Wu et al. 2016), human-like chatbots (of which Apple’s Siri,
Google Assistant, and Amazon Alexa are great examples), fake news detection models
(Shu et al. 2017). From medicine, healthcare (Ravì et al. 2017; Esteva et al. 2019) to
bioinformatics (Min et al. 2017), from chemistry (Goh et al. 2017) to agriculture (Kamilaris
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et al. 2018), DL has yielded numerous state-of-the-art results and has been leveraged to
obtain better solutions for complex tasks.

Among many others, two main components that build the success of deep learning
are rapid advances in computational power and the ever-increasing availability of data.
New hardware technologies dedicated for parallel computing such as GPUs or TPUs allow
training big deep neural networks within a reasonable time. Some models might take
months to train in the past now can be trained in a few hours. Alongside with those
hardware accelerators, open-source libraries such as Tensorflow (Abadi et al. 2016), Pytorch
(Paszke et al. 2017), MXnet (T. Chen et al. 2015), etc. have made DL more accessible.
Thanks to those libraries, students, researchers and deep learning practitioners can spend
more time on ideas and algorithms instead of on implementation aspects. With the growing
popularity of the Internet, the development of sensor technologies as well as the Internet
of things (IoT), more and more data are collected. As a data-driven approach, DL models
require representative data, both in quality and in volume to be effective. For example,
the launch of the ImageNet challenge (Russakovsky et al. 2015) is one of the main factors
that evoke the rebirth of deep learning, marked by the victory of AlexNet (Krizhevsky
et al. 2012). On the other hand, the success of DL encourages the collection of large data
sets, because we now can extract and exploit valuable information from data.

Although the above-mentioned results are fascinating and their potential are appealing,
deep learning still has many drawbacks (Marcus 2018):

— Most of the successful NN-based practical applications use supervised learning
methods. Supervised learning is a branch of machine learning where the data are
labelled, the models aim to find a mapping that predicts the labels given the data
as the input. However, unlike unlabelled data, which are highly available, labelled
data are expensive to obtain. For this reason, DL community has recently focused
more on unsupervised and semi-supervised learning (Diederik P. Kingma and
Welling 2013; Durk P. Kingma et al. 2014; Rezende, Mohamed, and Wierstra 2014;
Locatello et al. 2019; Yin et al. 2018; Zhou et al. 2017; Metz et al. 2018; Vacar et al.
2019). In unsupervised learning, the data are not labelled, the models aim to uncover
the structures, the patterns, the correlations existing in data. Those discoveries can
be used for semi-supervised learning, where the models aim to do supervised tasks
with only a small part of the data is labelled.

— Neural networks naturally do not deal well with noisy and irregularly-sampled
data. The lack of explicit mathematical models makes standard neural networks
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such as multilayer perceptrons (MLPs), recurrent neural networks (RNNs),
convolutional neural networks (CNNs), etc. unable to distinguish noise from
data. They blindly apply a series of calculations on a set of numbers (the inputs)
to provide another set of numbers (the outputs). Those may cause the models to
overfit the training data, or to create unexpected effects such as the adversarial
examples (I. Goodfellow, Pouget-Abadie, et al. 2014; I. J. Goodfellow et al. 2014;
Szegedy et al. 2014; Pajot et al. 2018). Because the calculations of DL models are
performed on computational graphs, they do not accept NaN (not a number) as an
input. Hence, we usually have to perform a preprocessing interpolation to fill the
missing data. This step prevents DL from achieving its own end-to-end learning
goal. Almost all DL models thus far suppose that the data are sampled regularly. In
the real-world, it is rarely the case for numerous applications.

— It is difficult to embed prior knowledge into neural networks. One of the ultimate
goals of DL is to perform an end-to-end learning, which means to minimise the
number of hand-engineering steps and to relax as much as possible weak hypotheses.
However, for tasks that DL is still not doing well, one may not want to throw away
domain expertise that has been studied and verified for decades. For example, it has
been well known that many atmospheric processes are chaotic (Lorenz 1963; Lorenz
1996), yet embedding this knowledge into a neural network is not trivial.

In the last few years, variational deep learning (VDL)—a branch of deep learning,
has arisen as a very promising candidate to overcome those difficulties (Diederik P.
Kingma and Welling 2013; Rezende, Mohamed, and Wierstra 2014). Broadly speaking,
VDL combines probabilistic modelling and deep learning to create flexible, high-capacity,
expressive generative models that can scale easily. In this thesis, we focus on the sequential
setting of VDL, applied to a type temporally-correlated data, called time series. We
introduce two different classes of sequential VDL, then apply them to two different types of
highly nonlinear, noisy and irregularly sampled time series data: observations of dynamical
systems and maritime traffic data.

Three-quarter’s of the Earth’s surface is covered by water. Since the dawn of life, the
ocean has evolved and interacted tightly with the planet and its climate. For humankind,
the ocean has provided rich physical and biological resources, as well as a major transport
medium. Nowadays, with the rising concern of climate change as well as the rapid growth
of globalisation and global trade, the studies of oceanography and maritime traffic are
attracting a lot of attention. Understanding the dynamics of the ocean helps forecast
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weather condition, simulate climate change, evaluate the impact of waves and tides to the
coastal areas, etc. Monitoring, analysing and modelling maritime traffic play an important
role in maritime safety and security. Maritime traffic surveillance also contributes to
maritime domain awareness (MDA), fishing control and smuggling detection. To meet
the needs for oceanography and maritime traffic surveillance, maritime data are more and
more collected. More sensors are placed in the ocean, on the surface (Sendra et al. 2015),
along the coastline (Bresnahan et al. 2020) and especially in the sky (Biancamaria et al.
2016) to measure the ocean. For maritime traffic, the automatic identification system
(AIS) provide a fine-grained, rich information source of data. Everyday, on a global scale
there are hundreds of millions of AIS messages transmitted (Perobelli 2016). The huge
amount of available data makes deep learning a plausible approach.

However, there are still many problems to tackle. Usually we do not have direct access
to the true states of the ocean dynamics. Instead, we observe a series of damaged and
potentially incomplete measurements. As mentioned above, DL does not deal well with this
type of data. Nevertheless, the hidden processes of oceanographic data obey fundamental
physical laws. This is again a drawback of deep learning. Similarly, AIS trajectories are just
noisy, potentially irregularly-sampled observations of the underlying movement patterns of
vessels. Without prior knowledge integrated, DL can hardly capture those patterns.

Conducted within the framework of ANR (French Agence Nationale de la Recherche)
AI Chair OceaniX, this thesis aims to exploit deep learning for ocean sciences. Because
maritime data are usually sequential, noisy and irregularly sampled, we focus on a family
of sequential models which use variational inference to uncover the hidden dynamics of
the learning data. We combine deep learning architectures with probabilistic models for
time series, and integrate prior knowledge of the domain to create a novel framework
for learning dynamical systems 1 (Part II) and a novel deep learning model for maritime
surveillance using AIS data (Part III). The details will be presented in the next sections.

This thesis work is supported by public funds (Ministère de l’Education Nationale, de
l’Enseignement Supérieur et de la Recherche, FEDER, Région Bretagne, Conseil Général
du Finistère, Brest Métropole); by ANR (French Agence Nationale de la Recherche), under
grants Melody and OceaniX; and by Institut Mines Télécom, received in the framework
of the VIGISAT program managed by “Groupement Bretagne Télédétection” (BreTel).
It benefits from HPC and GPU resources from Azure (Microsoft EU Ocean awards) and

1. In this thesis we introduce this framework for the identification of general dynamical systems, some
specific applications of this framework in geophysical oceanography are presented in our related work in
(Ouala, Duong Nguyen, Herzet, et al. 2019) and (Ouala, Duong Nguyen, Drumetz, et al. 2020).
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from GENCI-IDRIS (Grant 2020-101030). The work in Part III is supported by DGA
(Direction Générale de l’Armement) and by ANR under reference ANR-16-ASTR-0026
(SESAME initiative).

The primary target audience of this thesis is DL practitioners whose research interests
focus on geoscience, marine science and maritime traffic. We suppose that readers have
enough background on dynamical system, AIS, probabilistic and deep learning.

1.2 Outline and contributions

This thesis contains three main parts. In the first part, we provide the motivation,
the formulation and the construction of general variational deep learning (VDL)
frameworks for time series analysis. This part aims to provide the “big picture” of different
deep learning models for sequential data, how they are constructed and the relations
between them. In the next parts, we present our models specifically designed for domain
applications: dynamical system identification (Part II) and maritime traffic surveillance
using AIS data (Part III). The details are as follows:

— In Part I (Chapter 2) we introduce two classes of deep latent variable models for
sequential data: deep state space models (DSSMs) andsequential variational
autoencoders (SVAEs). We present the derivations of these models, starting from
latent variable models (LVMs)—which are the bricks to build all the models in
this thesis—to their two sequential extensions: state space models (SSMs) and
recurrent neural networks (RNNs). DSSMs and SVAEs are then obtained by
combining them with variational deep learning, to help these models become more
expressive and scalable.

— Part II (Chapter 3 and Chapter 4) contains paper (Duong Nguyen, Ouala, et al.
2020b) in which we present a DSSM, called data-assimilation-based ordinary
differential equation network (DAODEN), specifically designed for learning dy-
namical system. DAODEN uses state-of-the-art neural network architectures to model
the dynamics of ordinary differential equations (ODEs) systems and possibly of
stochastic differential equations (SDEs) systems. DAODEN contains two key
components: an inference model that mimics classical data assimilation methods
to reconstruct the true hidden states of the systems from noisy and potentially
partial observations, and a generative model that use state-of-the-art neural networks
representation of dynamical systems to retrieve the underlying dynamics of these
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states. Therefore, by construction, DAODEN can obtain comparable performance
with the one of models trained on ideal observations, even when DAODEN is trained
on highly damaged data.

— Part III (Chapters 5, 6 and 7 ) contains papers (Duong Nguyen, Vadaine, et al.
2018; Duong Nguyen, Vadaine, et al. 2019; Duong Nguyen, Simonin, et al. 2020), in
which we present MultitaskAIS and GeoTrackNet. MultitaskAIS is a multitask
deep learning architecture for maritime traffic surveillance using AIS data (Chapter
6). The core of this architecture is an SVAE, which converts noisy and irregularly
sampled AIS messages into series of clean and regularly sampled hidden states of
the vessel’s trajectory. These states then can be used for task-specific sub-models
(such as trajectory reconstruction, vessel type identification, anomaly detection).
Experiments show that MultitaskAIS can achieve state-of-the-art performance on
those takes, while requiring a significantly smaller storage and computational need.
GeoTrackNet is the anomaly detection submodel of MultitaskAIS. This model takes
into account the fact that the performance of a model that represents AIS trajectories
are location-dependant to create a geospatially-sensitive detector that can effectively
detect anomalies in vessels’ behaviour.

— Part IV (Chapter 7) finally summarises the contributions of this thesis, discusses the
remain challenges and some directions for future work.

— The Appendix A is an application our idea for anomaly detection using VDL to
acoustic anomaly detection in the appendix.
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You never really understand a person until you
consider things from his point of view... Until you
climb inside of his skin and walk around in it.

Harper Lee

Chapter 2

Variational Deep Learning for
Time Series Modelling and Analysis

When we monitor or track a process, the sequences of the obtained observations are
usually temporally correlated. This type of data is called time series. Modelling time series
is a challenging task, because most of the time we do not know the governing laws that
define the dynamics of the considered process. These laws can be highly nonlinear, chaotic
and/or stochastic. Moreover, the data that we obtain may not be the true states of the
process, but rather the noisy and partial observations/measurements. Over the last few
years, sequential variational deep learning has emerged as a very promising approach for
time series modelling and time series analysis (R. G. Krishnan et al. 2017; J. Chung et al.
2015; Fraccaro et al. 2016). This approach combines probabilistic modelling and deep
learning (usually RNN-based networks) to create high capacity, expressive models that
can capture the stochasticities, variations, uncertainties and long-term correlations in the
data. In this chapter, we will present the motivation, the formulation and the applications
of this approach. The content presented here is the theory part of the applications in Part
II and Part III.
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2.1 Latent variable models (LVMs)

2.1.1 Motivation

Given a set of possibly high-dimensional observations X = {x(1), ..x(N)}, the goal
of probabilistic unsupervised learning models is to learn a probability distribution p(x)
that well describes X. Latent variable models (LVMs) introduce an unobserved latent
variable z that helps model p(x). The joint distribution p(x, z) is then computed as:

p(x, z) = p(x|z)p(z), (2.1)

where p(z) is the prior distribution over z and conditional distribution p(x|z) is the
emission distribution over x, given z. The posterior distribution p(z|x) can be
computed using the Bayesian formula:

p(z|x) = p(x|z)p(z)
p(x) . (2.2)

If z is continuous, p(x) can be obtained by marginalising over z:

p(x) =
∫
p(x, z)dz =

∫
p(x|z)p(z)dz. (2.3)

For discrete variables, we replace the integration above by the sum over all possible value of
z. In this paper, we present only the formula for continuous variables, however, most of the
ideas also apply to the discrete case. We may also use discrete z for some demonstrating
examples.

The underlying hypothesis of VLMs is in order to generate an observation x(s), we
first draw a sample z(s) from p(z), then use it to draw a new sample from the emission
distribution p(x|z(s)). There are different ways to interpret the latent variable z. For some
applications, z is considered as the true physical event, of which x is just a corrupted
observation. An example of this interpretation is the famous Kalman filter that was used
in the Apollo project (Kalman 1960). Another way of interpreting z is that the latent
variable allows us to factor the complex and possibly intractable distribution p(x) into
more tractable distributions p(z) and p(x|z). For example, to generate a human portrait
image x, the latent variable z may contain the gender, age, race of that human.

Latent variables have been widely used in statistics and in machine learning. Among
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many famous others, we may name principal component analysis (PCA), mixture
models, hidden Markov models (HHMs), state space models (SSMs) (Bishop 2006),
variational auto-encoders (VAEs) (Diederik P. Kingma and Welling 2013; Rezende and
Mohamed 2015). We will go through some of those models later in this thesis.

2.1.2 Variational inference (VI)

One of the main task in LVMS is to calculate the posterior distribution p(z|x). However,
apart from a small set of simple cases, this distribution is intractable because the integral
in Eq. (2.3) does not have an analytic solution. In such situations, we have to approximate
p(z|x). There are two classes of techniques for this approximation:

— Stochastic techniques: this class uses sampling techniques to generate an ensemble
of points that represent the distribution to estimate. If the number of points is
large enough, the approximations converge to the exact results. An example of the
methods in this class is Gibbs sampling (Geman et al. 1984; Barbos et al. 2017;
Féron et al. 2016). However, those methods are computationally expensive and do
not scale well to large data sets.

— Deterministic approximation techniques: this class uses analytical approximations
to p(z|x). They impose the assumption that the posterior comes from a particular
parametric family of distributions or that it factorises in a certain way. These methods
scale very well, however, they never generate the exact results. An example of the
methods in this class is variational inference (Blei et al. 2017), which is the topic of
this section.

Recall that the objective is to find the distributions of two variables x and z that
maximise the likelihood of the set of observations X. In practice, we usually use log pθ(X)
instead of pθ(X) to leverage some nice properties of the log function and to avoid problems
with very small numbers in numerical implementation. We focus on a family of distribution
pθ parameterised by a set of parameters θ. For any arbitrary distribution q, we can

11



Part I, Chapter 2 – Variational Deep Learning for Time Series Modelling and Analysis

decompose log pθ(x) as follows:

log pθ(x) =
∫
q(z) log pθ(x)dz (2.4)

=
∫
q(z) log pθ(x, z)

pθ(z|x) dz (2.5)

=
∫
q(z) log pθ(x, z)q(z)

pθ(z|x)q(z) dz (2.6)

=
∫
q(z) log pθ(x, z)

q(z) dz +
∫
q(z) log q(z)

pθ(z|x)dz (2.7)

= Eq(z)

[
pθ(x, z)
q(z)

]
+ KL [q(z)||pθ(z|x)] , (2.8)

with KL [q||p] denotes the Kullback–Leibler divergence between two distributions q and p.
Because the KL divergence is a non-negative quantity, the first term in the right hand

side of Eq. (2.8), denoted as L(x, pθ, q), is a lower bound of log pθ(x). L(x, pθ, q) is called the
evidence lower bound (ELBO). Variational inference (VI) suggests approximating
the intractable quantity log pθ(x) by L(x, pθ, q). The error of this approximation, i.e. the
difference between log pθ(x) and L(x, pθ, q) is KL [q(z)||pθ(z|x)]. Hence, to find log pθ(x),
we minimise KL [q(z)||pθ(z|x)] w.r.t. q(z). Because L(x, pθ, q) = log pθ(x) if and only
if q(z) = pθ(z|x), a natural choice for q is q(z) = q(z|x). In other words, VI converts
an intractable inference problem to an optimisation problem by approximating the true
posterior distribution pθ(z|x) by the variational distribution q(z|x).

Note that those above are correct for any arbitrary q. Hence to make a good approxi-
mation, we should choose q(z|x) high capacity enough, as long as the ELBO is tractable.
In this thesis, we focus on a family of distributions qφ that can be parameterised by a set
of parameters φ.

2.1.3 Objective functions

The goal of probabilistic unsupervised learning is to maximise log pθ(X). In Section
2.1.2 we introduced the ELBO, which is an lower bound of log pθ(X), as an objective
function for the learning. Many efforts have been conducted to tighten this bound. Among
them, we might cite the importance weighted auto-encoder (IWAE) bound (Burda
et al. 2016) and the fitering variational objective (FIVO) (Maddison et al. 2017),
which is used for sequential data. The idea is instead of drawing only one sample from
qφ(z|x), we draw N samples then average the importance-weighted results. These methods
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guarantee that the bounds are tighter than the ELBO. However, on one hand, they use
more computational resources. On the other hand, tighter variational bounds are not
necessarily better (Rainforth et al. 2018). For the applications in this thesis, we empirically
observed that the trade-off is not worth, hence we do not present IWAE and FIVO here.

Another example of using loose lower bounds is maximum a posteriori (MAP)
inference. Instead of estimating a distribution for the latent variable z, MAP inference
computes only the single most likely value:

z∗ = argmax
z

qφ(z|x). (2.9)

In the context of VI, the MAP solution can be explained as the case where q is parameterised
by Dirac delta functions. Although the MAP bound is infinitely loose, MAP inference is
still very common (Bishop 2006).

2.1.4 Optimisation methods

Given an objective function L(x,θ,φ) (ELBO, IWAE, FIVO, MAP solution, etc.) as
presented in Section 2.1.3, the next step is to optimise this quantity over the observations
w.r.t. θ and φ. In this section, we present two strategies to perform this optimisation:
i) alternatively optimise L over θ and φ using the expectation-maximisation (EM)
algorithm and ii) simultaneously update θ and φ using the gradient of L.

Expectation–maximisation (EM) algorithm

The expectation-maximisation algorithm is an iterative optimisation technique for
LVMs (Dempster et al. 1977; C. J. Wu 1983; Neal et al. 1998). Starting from the initial
condition θ(0) and φ(0), each iteration i in EM contains two steps:

— In the E step, φ is updated to maximise L: φ(i) = argmax
φ
L(θ(i−1),φ). This step

corresponds to finding the true posterior distribution pθ(z|x) (because L is maximised
when qφ(z|x) = pθ(z|x)).

— In the M step, θ is updated, while φ is held fixed: θ(i) = argmax
θ
L(θ,φ(i)). This

step corresponds to increasing the objective function L.

EM has some nice properties, such as the convergence is fast and guaranteed 1 (Ghahra-
mani and Roweis 1999). However, EM may not apply for very general configurations,

1. EM is guaranteed to converge to a point with zero gradient.
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because the inference problem may not be tractable when considering complex dependence
structure.

Gradient-based techniques

Another strategy to optimise L is to update θ and φ simultaneously using the gradient
of L. This approach is widely used for neural networks. For example, in the current context,
we can update {θ(i),φ(i)} using a gradient ascent technique:

{θ(i),φ(i)} = {θ(i−1),φ(i−1)}+ η∇{θ,φ}L(x,θ,φ). (2.10)

with η is the learning rate.
Because maximising L is equal to minimising −L, we can re-write Eq. (2.11) as follows:

{θ(i),φ(i)} = {θ(i−1),φ(i−1)} − η∇{θ,φ}(−L(x,θ,φ)). (2.11)

The second notation, called gradient descent, is more common.
In deep learning, we usually use a “stochastic version” of Eq. (2.11). In each iteration,

instead of evaluating ∇{θ,φ}−L(x,θ,φ) on the whole observation set X, we calculate this
quantity on just a subset of X, called mini-batch. This technique is known as stochastic
gradient descent (SGD) (Bottou et al. 2018). SGD is the basic form of gradient-based
optimisation techniques used in DL, many variants and extensions of SGD, such as
AdaGrad (Duchi et al. 2011), RMSprop (G. Hinton 2012), Adam (Diederik P. Kingma and
Ba 2015), have been proposed to improve the performance of the learning. These methods
have been widely available in open-source DL frameworks such as Tensorflow (Abadi et al.
2016), Pytorch (Paszke et al. 2017).

2.1.5 Variational Auto-Encoders (VAEs)

So far we have reviewed LVMs and how to overcome the intractable inference problem
in LVMs using VI. In this section, we present a class of LVMs that is extremely popular
in probabilistic DL: the variational auto-encoders (VAEs) (Diederik P. Kingma and
Welling 2013; Rezende, Mohamed, and Wierstra 2014). VAEs are used as bricks to build
many generative models.

The architecture of VAEs is the basic form of VLMs, as show in Fig. 2.1. We have
the observed variable x, the latent variable z, the emission distribution pθ(x|z) and the
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Figure 2.1 – Graphical model of a VAE. x is the observed variable, z is the latent variable.
In this thesis, we use circle-shaped units for random variables, blue colour for observed
variables, yellow colour for latent variables, red arrows for emission models and blue arrows
for inference models.

variational distribution qφ(z|x) that approximates the true posterior distribution. Again,
in this thesis we focus on parametric models.

To build a VAE, there are three problems to deal with: i) how to define x and z, ii) how
to define the emission model pθ(x|z) and iii) how to define the inference model qφ(x|z).

Most of the time we x is what we observe. e.g. the value of the pixels in an digital image,
the temperature indicated by a thermometer in the room, etc. However, in some cases, we
can use prior knowledge to convert observed data into another domain that is believed
to be more suitable for the considered problem. For example, we can convert an audio
record to a spectrogram to highlight some important features in the frequency domain.
In this case, x is the spectrogram of the audio signal. The “four-hot vector” presented in
Chapter 6 and Chapter 7 of this thesis is a specific representation we designed for AIS.
As presented in Section 2.1.1, the interpretation of z is heavily context-dependent. For
example, to generate an human portrait image, z can be the distance between two eyes,
the colour of the skin, the ratio of the width to the length of the face, etc. If we do not
have any prior knowledge of z, we usually model z as a continuous variable, whose prior is
an isotropic multivariate Gaussian with mean 0 and covariance matrix I.

pθ(z) = N (0, I). (2.12)

Other distributions can also be used. However, unless we have prior knowledge of z,
we should avoid multimodal distributions whose modes are sufficiently widely separated.
To understand the reason behind it, let’s rewrite the ELBO as follows:

L(x, pθ, qφ) = Eqφ(z|x) [pθ(x|z)]−KL [qφ(z|x)||pθ(z)] . (2.13)
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Figure 2.2 – The over concentration problem of minimising KL(q||p). When p is a multi-
modal distribution, the optimisation might result in a distribution q that corresponds to
only one mode of p.

Hence, to maximise L(x, pθ, qφ), we have to simultaneously maximise Eqφ(z|x) [pθ(x|z)]
and minimise KL [qφ(z|x)||pθ(z)] w.r.t. qφ. Minimising KL [qφ(z|x)||pθ(z)] means choosing
qφ(z|x) that has low probability wherever pθ(z) is small. If pθ(z) is a multimodal distribution
that has sufficiently widely separated modes, qφ(z|x) might just choose one of those modes,
as shown in Fig. 2.2

Given this distribution, we define a sufficiently complicated function that maps z to x.
This mapping is called the decoder. In DL, the emission distribution pθ(x|z) is usually
modeled by a Gaussian distribution (for real-valued x) or a Bernoulli distribution (for
binary z), whose parameters are computed by a neural network. For example:

pθ(x|z) = N (µx|z,Σx|z). (2.14)

with
µx|z,Σx|z = NNdecoder(z). (2.15)

Because we can not find the inverse function of the neural network NNdecoder, the
inference pθ(z|x) is intractable. As presented in Section 2.1.2, we will approximate this
posterior distribution by a variational distribution q, using some hypotheses, such as qφ is
a factorial distribution:

qφ(z|x) =
∏
i

qφ(zi|x). (2.16)
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2.2. State space models (SSMs)

Figure 2.3 – Graphical model of an SSM. We use black arrows for transition models.

This technique—called the mean field technique, is widely used to simplify the behavior of
high-dimensional stochastic models (Landau 1937; Flory 1942; Huggins 1941).

In DL, we usually use another network to model the mapping from x to z, called the
encoder:

qφ(z|x) = N (µz|x,Σz|x). (2.17)

with
µz|x,Σz|x = NNencoder(x). (2.18)

The parameters of the encoder and the decoder are then optimised using gradient-based
techniques with an objective function presented in Section 2.1.2.

2.2 State space models (SSMs)

In the previous section, we assume that the observations are independent and
identically distributed (i.i.d). However, in the real world, there are many situations
where there is a temporal correlation in the data, for example, the measurements of the
temperature at a particular place in two days, or two words in a sentence, are related.
Such data are called time series. In this section, we introduce a way to model this type
of data, especially how to model the temporal correlation in time series.

2.2.1 Formulation

A regularly-sampled time series x0:T is a sequence of T+1 observations: x0:T
∆=

{xt0 , ..,xtT }, where tk refers to the time sampling. We consider cases where the sam-
pling is regular: tk = t0 + k.δ with δ is the sampling resolution. For the sake of simplicity,
from now on in this thesis, unless specified otherwise we use the notation xk for xtk and
xt+n for xtk+n.δ. An irregularly sampled time series is a time series where some components
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of xk, or entire xk may be missing.

Given an observed time series of observations x0:T , we aim to find a model that
maximise the likelihood:

pθ(x0:T ) = pθ(x0)
N∏
k=1

pθ(xk|x0:k−1). (2.19)

If we assume that:
pθ(xk|x0:k−1) = pθ(xk|xk−1) (2.20)

then we have a first-order Markov model. In other words, in a first-order Markov model,
the future states depend only on the present state. Generally, an nth-order Markov
model assumes pθ(xk|x0:k−1) = pθ(xk|xk−n:k−1). At first glance, Eq. (2.20) looks like a
strong assumption, however, any nth-order Markov model can be converted to a first-order
Markov model by using an augmented state: xaugk = {xk,xk−1, ..,xk−n+1}.

Although Markov models may look appealing, they are not really useful to directly
model x0:T because the process of {xk} may not follow the Markov assumption to any order.
With the spirit of LVMs, we suppose that the data generating process of x0:T depends on a
series of latent variables z0:T . For example, let xk be the values of a thermometer measuring
the temperature in a room, these values maybe effected by the errors in the sensor of the
thermometer, hence we can not find the direct relation between two consecutive values
xk,xk+1. In this case, z can be the true temperature of the room, and there is a direct
relation, which is the heat equation, between two consecutive values of zk, zk+1.

The joint distribution can be factorised as:

pθ(x0:T , z0:T ) = pθ(x0:T |z0:T )pθ(z0:T ). (2.21)

The likelihood of the observation can be obtained by marginalising the latent variables:

pθ(x0:T ) =
∫
pθ(x0:T , z0:T )dz0:T . (2.22)

Again, in general this integral is intractable. To compute pθ(x0:T ), we have to impose
some hypotheses and some assumptions on the relation of x0:T and z0:T . One way of doing
so is using state space models (SSMs). The general form of an SSM is expressed as
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follow 2:

zk ∼ pθ(zk|zk−1) (2.23)
xk ∼ pθ(xk|zk) (2.24)

with pθ(zk|zk−1) is the transition distribution (or prior distribution), models the
temporal evolution of zk, and pθ(xk|zk) is the emission distribution (or the observation
distribution), models the observation operator. The graphical model of an SSM is shown
in Fig. 2.3. Note that the distributions in Eqs. (B.6) and (B.7) are general, they include
Dirac delta functions that model cases where zk is deterministic.

In order to determine pθ, SSMs use some characteristics presented in the following
sections.

2.2.2 Properties

Using the d-separation criterion, we derive some important properties of SSMs are as
follows:

— The process of {zk} is Markovian, i.e. the future states depend only on the current
state zk.

— Given zk, xk does not depend on other states or observations: pθ(xk|x0:k−1,xk+1:T , z0:T ) =
pθ(xk|zk).

— The process of {xk} is not Markovian, i.e. the future observation xk+1 depends on
the present and all the past observations x0:k.

Hence, the joint distribution in SSMs can then be factorised as:

pθ(x0:T , z0:T ) = pθ(z0:T )pθ(x0:T |z0:T ) = pθ(z0)
T∏
k=1

pθ(zk|zk−1)
T∏
k=0

pθ(xk|zk). (2.25)

Depending on the form of the transition and the emission distributions, a particular
SMM may have other properties, which could be used to design particular models. For
examples, if the latent variables zk are discrete, we can use hidden Markov models
(HMMs) (Rabiner 1989), Kalman filters (Kalman 1960) are designed for SSMs whose
the transition and the emission distributions are Gaussian.

2. In this thesis, we focus on SSMs that do not have control input.
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2.2.3 Posterior inference for SSMs

According to the Bayesian rule, given the whole sequence, the form of the posterior
inference for SSMs is expressed as follows:

pθ(z0:T |x0:T ) = pθ(x0:T |z0:T )pθ(z0:T )
pθ(x0:T ) . (2.26)

In practice, we are usually interested in the following three inference problems:

— Filtering: zk is inferred using the all the present and the past observations; i.e., to
we compute pθ(zk|x0:k).

— Smoothing: using the d-separation criterion, zk depends not only on the current
and the past observations but also on the future observations, hence we compute
pθ(zk|x0:T ). Because smoothing uses more information from data than filtering, it
should provide a better inference. However, smoothing requires information from the
future, hence there is always a lag. On the other hand, filtering can be computed
online.

— Prediction: we use the current and the past information to predict the future states,
i.e. to compute pθ(zk+1|x0:k).

When the transition and the emission are linear and Gaussian, the Kalman filter
(Kalman 1960) provides a mathematically elegant solution for the inference problem.
However, when the transition and/or the emission are not linear and Gaussian anymore, the
posterior becomes intractable. We have to perform some approximations. For cases where
the transition and the emission can be described by differentiable functions, the extended
Kalman filter (EKF) (Smith et al. 1962) approximates the posterior by a linearisation
of pθ(zk|zk−1) and pθ(xk|zk). The particle filter (Doucet et al. 2009) has a different
approach. This method uses sequential important sampling to recursively approximate
pθ(z0:k|x0:k) given pθ(z0:k−1|x0:k−1). In particle filters, a distribution is represented by a
set of particles. The ensemble Kalman filter (EnKF) (Evensen 2003) bridges the idea
of the Kalman filter and the particle filter by supposing that the distributions represented
by the particles are Gaussian. Each of those methods also has a corresponding smoothing
version.
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2.2.4 Example: linear Gaussian SSMs (LGSSMs)

To better understand SSMs, let’s revisit one of the most classic SSMs: the Kalman
filter (Kalman 1960).

Consider a system governed by the following equations:

zk = Akzk−1 + ωk, (2.27)
xk = Hkzk + υk. (2.28)

where Ak is a matrix, defines the transition of the hidden state zk; Hk is an invertible
matrix, defines the observation operator which maps the state zk to the observation xk
at each timestep k. ωk is the process noise, follows a zero-mean multivariate Gaussian
N (0,Qk) and υk is the observation noise, follows another zero-mean multivariate Gaussian
N (0,Rk). All ωk and υk are mutually independent. The covariance matrices Qk and
Rk are called the model error and the observation error, respectively. Using the linear
transformation properties of Gaussian random variables, we can re-write Eqs. (2.27) and
(2.28) as:

zk ∼ pθ(zk|zk−1) = N (Akzk−1,Qk), (2.29)
xk ∼ pθ(xk|zk) = N (Hkzk,Rk). (2.30)

here θ is the set {Ak,Hk,Qk,Rk}. Because the relationships between zk and zk−1, between
xk and zk are linear, and the two distributions pθ(zk|zk−1), pθ(xk|zk) are Gaussian, this
model is called a linear Gaussian SSM (LGSSM).

The joint distribution of a LGSSM is factorised as:

pθ(x0:T , z0:T ) = pθ(z0)
T∏
t=1
N (zk; Akzk−1,Qk)

T∏
t=0
N (xk; Hkzk,Rk). (2.31)

To find the inference distribution pθ(z0:T |x0:T ), Kalman proposed a recursive algorithm
to compute the marginal posterior distribution pθ(zk|x0:k) at each timestep k, given the
pθ(zk|x0:k−1).
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Using Bayes’ rule and the independence properties of SSMs, we have:

pθ(zk|x0:k) = pθ(zk|xk,x0:k−1) (2.32)

= pθ(xk|zk,x0:k−1)pθ(zk|x0:k−1)
pθ(xk|x0:k−1) (2.33)

= pθ(zk|x0:k−1) pθ(xk|zk)
pθ(xk|x0:k−1) . (2.34)

Eq. (2.34) show that to calculate pθ(zk|x0:k), we first calculate pθ(zk|x0:k−1), i.e. to
predict zk using historical information in x0:k−1 (prediction step), then “correct” this
prediction using the information provided by xk (measurement step).

Suppose pθ(zk|x0:k) = N (µk,Σk) and pθ(zk|x0:k−1) = N (µk|k−1,Σk|k−1) . Lets compute
each component in Eq. (2.34) step by step.

We have:

pθ(zk|x0:k−1) ∆= N (µk|k−1,Σk|k−1) (2.35)

=
∫
pθ(zk|zk−1,x0:k−1)pθ(zk−1|x0:k−1)dzk−1 (2.36)

=
∫
pθ(zk|zk−1)pθ(zk−1|x0:k−1)dzk−1 (2.37)

=
∫
N (Akzk−1,Qk)N (µk−1,Σk−1)dzk−1 (2.38)

= N (Akµk−1,AkΣk−1AT
k + Qk). (2.39)

Note that (2.38) to (2.39) is possible because the model is linear and Gaussian.

Appling Bayes’ rule for the Gaussian pθ(xk|zk) = pθ(xk|zk,x0:k−1) (Murphy 2012), we
have:

Σ−1
k = Σ−1

k|k−1 + HTR−1H, (2.40)

µk = ΣkHR−1
k xk + ΣkΣ−1

k|k−1µk|k−1. (2.41)

Applying the matrix inversion lemma (Murphy 2012) for Σ−1
k , we have:

Σk = (I−KkHk)Σk|k−1, (2.42)

with Kk
∆= Σk|k−1HT

k (HkΣk|k−1HT
k + Rk)−1 is the Kalman gain matrix.
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Figure 2.4 – Graphical model of a RNN. We use diamond-shaped units for deterministic
variables, light yellow arrows for the recurrences.

Substituting Eq. (2.42) into Eq. (2.41), we have:

µk = µk|k−1 + Kk(xk −Hkµk|k−1). (2.43)

In conclusion, at each timestep k, the Kalman filter comprises two steps: i) the prediction
step uses Eq. (2.39) to predict zk given x1:k−1; ii) the measurement step uses Eqs. (2.42)
and (2.43) to update the prediction given the additional information in the observation xk.

The Kalman filter can compute the exact inference distribution because the system is
linear and Gaussian (Eqs. (2.39), (2.40), (2.41)). When these two conditions are not satisfied,
the exact inference distribution becomes intractable and we have to use approximate
inference.

2.3 Recurrent neural networks (RNNs)

In the previous section we introduced SSMs as a mean to model time series. The
underlying idea of SMMs is to convert a non-Markovian series x0:T to a Markovian series
z0:T and use some nice properties of Markov chains to factorise the transition, the emission
and the inference distributions to calculate the likelihood in Eq. (2.22). In this chapter
we present another way to model time series, using a type of deep neural networks called
recurrent neural networks (RNNs).

Given a series of observations x0:T , RNN supposes that at time k, all the historical
information can be encoded in a deterministic variable hk:

pθ(x0:T ) = pθ(x0)
T∏
k=1

pθ(xk|x0:k−1) =
T∏
k=0

pθ(xk|hk). (2.44)
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Figure 2.5 – Graphical model of a bidirectional RNN. hfk and hbk are the hidden states of
the RNNs that move forwards and backwards, respectively.

The graphical model of a RNN is depicted in Fig. 2.4. At each time step k, the state hk
of the network is updated using information from the previous state hk−1 and the previous
observation xk−1:

hk = hθ(hk−1,xk−1), (2.45)

with hθ is a differentiable non-linear updating formula of RNN, such as those in (Elman
1990). To be able to capture time correlations in data, function hθ must be high capacity.
Nowadays, we usually use gated extension versions of RNNs, such as LSTMs (Hochreiter
et al. 1997) or GRUs (Junyoung Chung et al. 2015).

Note that by definition, an RNN is not an SSM, because the transition of the hidden
state hk depends on the observation xk. However, we can transform an RNN to an SSM
by simply redefining the hidden state h̃k = {hk,xk}. In this thesis, we keep the original
definition of the hidden states of RNN. Another way to frame an RNN as an SSM is to
consider the previous observation as a control input for the next timestep. However this
modelling may cause some confusions with the definition of autonomous systems used in
Chapter 4. Further more, we call the process of updating the hidden states hk−1 −→ hk
the recurrence, to distinguish with the transition zk−1 −→ zk in SSMs.

In comparison with SSMs, we can loosely say that in order to model x0:T , RNNs use
a highly non-linear recurrent function to model the time correlation and a deterministic
hidden state to make the likelihood in Eq. (2.22) tractable. The trade-off is because hk is
deterministic, RNNs can not capture all the variation and uncertainty in data.

The basic form of RNNs is a filtering model. We can also condition the hidden states
of RNNs on future observations by using bidirectional RNNs to perform a smoothing
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inference. There are several ways to construct a bidirectional RNN, in Fig. 2.5 we depict
the graphical model of the most common one. A bidirectional RNN of this type can be
considered as a network of two RNNs, one moves forwards in time and the other one moves
backwards.

To find the parameters θ, RNNs use gradient-based optimisation techniques with
backpropagation.

2.4 Variational deep learning for noisy and irregu-
larly sampled time series modelling and analysis

In this section we present the main focus of the theory part of this thesis: the study
of variational deep learning for noisy and irregularly sampled time series modelling and
analysis. We have introduced latent variable models as a tool to model complex observations,
and how to use variational inference to approximate the likelihood of the observations when
the true posterior distribution is intractable. We have also presented state space models
and recurrent neural networks as two ways to extend LVMs for time series. However,
each of those models still contains some drawbacks. Although SSMs have some nice
factorisation properties, in general the posterior distribution is still intractable. Modelling
and propagating uncertainty in highly nonlinear SSMs are also still an open problem. On
the other hand, RNNs provide tractable solution for highly nonlinear processes, however,
because the hidden states hk are deterministic, they can hardly capture all the variations
and uncertainties in data.

To apply these models to stochastic non-linear time series, we have two options: either
to make SSMs tractable for non-linear systems, or to add stochastic factors to RNNs.
The former approach is called deep state space models (DSSMs), while the later one
is called sequential variational auto-encoders (SVAEs). We will go through each of
them in this section.

2.4.1 Deep state space models (DSSMs)

To overcome the difficulties of non-linearity, one can use neural networks to parameterise
all the unknown distributions in SSMs. This approach is hence called deep state space
models.
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If zk is real-valued, the transition distribution can be modelled by a Gaussian:

pθ(zk|zk−1) = N (µtransk ,Σtrans
k ), (2.46)

with µtransk and Σtrans
k are functions parameterised by a neural network:

µtransk ,Σtrans
k = NN trans

θ (zk−1). (2.47)

Σtrans
k is usually chosen to be a diagonal matrix. However, full matrices can can also be

used, as discussed in (Rezende, Mohamed, and Wierstra 2014), with the trade-off is the
computational cost. Although one can use a sophisticated architecture for NN trans

θ , such
as gated transition functions in (Rahul G. Krishnan et al. 2016), most of the time an MLP
would give a satisfied result with a reasonable calculation time.

As in VAEs, the choice of the form of the emission distribution pθ(xk|zk) is heavily
context dependent. In general, if xk is binary, pθ(xk|zk) is chosen to be a Bernoulli
distribution, if xk is real-valued, pθ(xk|zk) is chosen to be a Gaussian distribution. Again,
we parameterise pθ(xk|zk) by a neural network NN gen

θ (zk). The architecture of this network
depends on xk. For example, if xk is an image, NN gen

θ should contain convolutional units.

NN trans
θ and NN gen

θ together create an expressive and very high capacity model
for the data generating process in Eq. (2.1). However, because of the non-linearity, the
inference model becomes intractable. One may use one of the methods presented in Section
2.2.3 to approximate the true posterior distribution. In DSSMs, we usually approximate
pθ(z0:T |x0:T ) by another network to increase the modelling capacity as well as the scalability
of the model. Applying the d-separation criterion on the graphical model of SSMs in Fig.
2.3, we can factorise the true posterior distribution as follows:

pθ(z0:T |x0:T ) = pθ(z0|x0:T )
T∏
k=1

pθ(zk|zk−1,x0:T ) (2.48)

= pθ(z0|x0:T )
T∏
k=1

pθ(zk|zk−1,xk:T ). (2.49)

Eq. (2.49) means that given zk−1, the posterior of zk depends only on the present and
the future observations. All the relevant information from the past has been encoded in
zk−1. On the basis of this property, one may naturally choose the following variational
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Figure 2.6 – Graphical model of a DSSM. The generative model comprises the transition
(black arrows) and the emission (red arrows). The inference model contains the recurrence
(yellow arrows) and the inference (blue arrows). (Note that different settings may be used).

distribution:
qφ(z0:T |x0:T ) = qφ(z0|x0:T )

T∏
k=1

qφ(zk|zk−1,xk:T ). (2.50)

However, in practice we empirically observed that conditioning the posterior on the
whole observed sequence (Eq. (2.51)) gives a slightly better result. This is also in accordance
with the results in (R. G. Krishnan et al. 2017). This may come from the fact that
qφ(z0:T |x0:T ) is just an approximation, and not the true solution of pθ(z0:T |x0:T ).

qφ(z0:T |x0:T ) = qφ(z0|x0:T )
T∏
k=1

qφ(zk|zk−1,x0:T ). (2.51)

To encode the information contained in the observations x0:T , we can use a bidirectional
RNN. Furthermore, to encode the relation zk|zk−1, we can leverage the transition model
NN trans

θ . NN trans
θ will predict the current state zk given zk−1, and the inference model

will “correct” this prediction. For example, in Fig. 2.6 we depict the graphical model
of the DSSM used in Chapter 4. The data generating process comprises the transition
(black arrows), modelled by NN trans

θ , and the emission (red arrows), modelled by NN gen
θ .
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Formally, qφ(zk|zk−1,x0:T ) is a Gaussian N (µinfk ,Σinf
k ) parameterised by:

hfk = f fφ(hfk−1,xk−1), (2.52)
hbk = f bφ(hbk+1,xk), (2.53)

µinfk ,Σinf
k = NN inf

φ (µtransk ,hfk ,h
b
k). (2.54)

with f fφ , f bφ are the formulas of the RNN forward and the RNN backward, respectively.
f fφ , f bφ are usually modelled by LSTMs or GRUs. Similarly to NN trans

θ , NN inf
φ can be

modelled by an MLP.
Now we have the full architecture of the model, the rest of the work is to define a loss

function then optimise that loss w.r.t. θ and φ using a gradient-based technique. Similarly
to LVMs, we can use ELBO as the loss function. The ELBO for sequential data is defined
as follows:

L(x0:T , pθ, qφ) = Eqφ(z0:T |x0:T )

[
pθ(x0:T , z0:T )
qφ(z0:T )

]
. (2.55)

= Eqφ(z0:T |x0:T ) [log pθ(x0:T |z0:T )−KL [qφ(z0:T |x0:T )||pθ(z0:T )]] (2.56)

Applying the factorisation in Eqs. (2.25), (2.51), we have:

L(x0:T , pθ, qφ) = Eqφ(z0:T |x0:T )

[
T∑
k=0

(
log pθ(xk|zk)−KL

[
qφ(µtransk ,hfk ,h

b
k)||pθ(zk|zk−1)

])]
.

(2.57)
In Eq. (2.64), we denote qφ(z0|z−1,x0:T ) = qφ(z0|x0:T ) and pθ(z0|z−1) = pθ(z0) for

notational simplicity. This simplification is applied from now on for all equations in this
thesis.

To optimise L(x0:T , pθ, qφ) w.r.t. θ and φ, we use a Monte Carlo estimator of its
gradient, as presented in (Hoffman et al. 2012).

2.4.2 Sequential variational auto-encoders (SVAEs)

RNNs are highly non-linear models that can capture long-term dependencies in sequen-
tial data. However, because the hidden states hk of RNNs are deterministic, they can not
model stochasticity. To increase the modelling capacity of RNNs, one may augment RNNs
by adding stochastic components. In this section, we will go through some of those models.
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Figure 2.7 – Graphical model of a VRNN.

Variational recurrent neural networks (VRNNs)

The first architecture that we introduce first in this section is the variational recur-
rent neural networks (VRNNs) (J. Chung et al. 2015), whose the graphical model is
depicted in Fig. 2.7. In VRNNs, the data generating process of observation xk depends
not only on the deterministic hidden state hk (as in RNNs), but also on a stochastic latent
variable zk. zk on its own depends on hk.

The joint distribution is factorised as:

pθ(x0:T , z0:T ) = pθ(x0:T |z0:T )pθ(z0:T ) (2.58)

=
T∏
k=0

pθ(xk|zk,hk)pθ(zk|hk) (2.59)

The recurrence in VRNN is defined as follows:

hk = fθ(hk−1,xk−1, zk−1). (2.60)

with fθ is parameterised by an LSTM or a GRU. In comparison to the original recurrence
of RNNs, hk depends not only on the previous state hk−1 and the previous observation
xk−1, but also on a stochastic variable zk−1.

An elegant way to explain VRNN is to think of hk as a component that capture
the patterns, the structures in data, while the the stochastic component zk model the
variations and uncertainties around it. For example, to model the trajectory of a vessel, hk
encodes the common maritime route that vessels follow, while zk encode some deviations
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the vessel has to make to offset the effect of the wind, the sea current, etc.

We can use similar architecture of the transition model and the emission model in
DSSMs for VRNN. The only modification needed is the input of the transition model is
now the deterministic hidden state hk of the RNN and the input of the emission model is
now a concatenation of zk and hk.

In the original paper of VRNN (J. Chung et al. 2015), the inference model is a filter,
factorised as:

qφ(z0:T |x0:T ) =
T∏
k=0

qφ(zk|hk,xk). (2.61)

At each timestep, qφ(zk|hk,xk) can be modelled as a Gaussian with the mean and the
covariance matrix parameterised by a deep neural network:

qφ(zk|hk,xk) = N (µinfk ,Σinf
k ), (2.62)

µinfk ,Σinf
k = NN inf

φ (hk, xk). (2.63)

Follow the same procedure in Eqs. (2.64), the ELBO in VRNN is computed as:

L(x0:T , pθ, qφ) = Eqφ(z0:T |x0:T )

[
T∑
k=0

(log pθ(xk|hk, zk)−KL [qφ(xk,hk)||pθ(zk|hk)])
]
.

(2.64)

Stochastic recurrent neural networks (SRNNs)

In VRNNs, there is no direct transition between two consecutive stochastic latent
states zk−1 and zk. All the stochasticity has to pass through the deterministic state hk,
which may create a bottleneck in the stochastic flow. The stochastic recurrent neural
networks (SRNNs) (Fraccaro et al. 2016) suggest adding a direct link between zk−1 and
zk to allow the networks to temporal correlation in the space of zk. Furthermore, SRNNs
separate the deterministic process in the RNN from the stochasticity by removing the link
between zk−1 and hfk . The graphical model of a SRNN is depicted in Fig. 2.8. We can see
that SRNNs are a combination of RNNs and SSMs: a RNN run along the sequence to
capture the long-term dependencies, and a stochastic process to model the transition of
the uncertainty through time.
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Figure 2.8 – Graphical model of a SRNN.

The joint distribution of SRNNs is computed as:

pθ(z0:T ,x0:T ) =
T∏
k=0

pθ(xk|zk,hfk)pθ(zk|zk−1,hfk). (2.65)

The architectures of the emission model pθ(xk|zk,hfk) and the transition model pθ(zk|zk−1,hfk)
are similar to those in DSSMs and VRNNs, with the modification is the inputs.

SRNNs define the inference model as a smoother, and the variational distribution can
be factorised as:

qφ(z0:T |x0:T ) = qφ(zk|zk−1,hbk). (2.66)

The architecture of qφ(zk|zk−1,hbk) is similar to the inference network in VRNNs.
Although SRNNs may have better modelling capacity than VRNNs, VRNNs have been

used more commonly because they required less computational resources and can perform
the inference online (there is always a lag needed in the smoothing step in SRNNs).

2.4.3 Handling irregularly sampled data

DSSMs and SVAEs can naturally deal with noise in data. For example, in DSSMs, by
construction, noise in data is taken into account by the emission distribution pθ(xk|zk),
and is separated from the transition process pθ(zk|zk−1). This helps the model learn the
true hidden dynamics of the system that generates the observations (Chapter 4). However,
because DSSMs and SVAEs all use at least one RNN, they need regularly sampled input
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data. To create regularly sampled data from irregularly sampled data, there are two classes
of solutions:
— Interpolation: use an external interpolation method, such as optimal interpolation

(OI), linear interpolation, etc. to interpolate missing values. The interpolation is
calculated just once (in the preprocessing step). This approach is more suitable for
DSSMs, because DSSMs use the RNN only in the inference model, hence the effect
of the interpolation errors will be less important. See Chapter 4 for an example.

— Imputation: if the optimisation method is an iterative method (e.g. EM or gradient-
based), at iteration (i), we can used the current parameters {θ(i−1),φ(i−1)} to run
the generative model to generate the missing values, then used these values at the
inputs to run the whole model and update {θ(i),φ(i)}. We still need an interpolation
method to initiate the inputs at iteration (0), however the effects of the interpolation
will gradually faded after a few iterations. Because SVAEs models use RNNs in both
the generating model and the inference model, this approach is more suitable than
the interpolation approach. See Chapter 6 for an example.

For both approaches, the interpolated/imputed values should be used as inputs for the
model only, they should not be taken into account when calculating the objective function.

2.5 Summary and discussion

In this chapter we have introduced the theory part of this thesis. We started with the
basic form of LVMs, then led to their sequential versions: SSMs and RNNs. In general, to
build an LVM, we have to first define the latent variable and the joint distribution based
on prior knowledge of the considered problem, then design the corresponding generative
model and a suitable inference model such that the objective function (usually the ELBO)
is tractable. SSMs are structured stochastic models with some nice factorisation and
independence properties, however, the amount of problems that classical SSMs can cover
is quite limited because they rely on analytic solutions. RNNs are highly non-linear models
that can capture long-term dependencies in data, however, because their hidden states are
deterministic, RNNs can not model stochasticity. To remove the linearity bottleneck of
SSMs, DSSMs parameterise three distributions (the transition distribution, the emission
distribution and the inference distribution) by neural networks. On the other hand, SVAEs
helps RNNs capture variation and uncertainty in data by adding stochastic components to
the networks. In a layman’s term, DSSMs integrate deep neural networks into classic SSMs
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Table 2.1 – Comparison between a DSSM and an SVAE (SRNN).

DSSM SRNN

Base model SSM RNN

Transition distribution pθ(zk|zk−1) pθ(zk|zk−1,hfk)

Emission distribution pθ(xk|zk) pθ(xk|zk,hfk)

Inference distribution qφ(zk|zk−1,hfk ,h
b
k) qφ(zk|zk−1,hbk)

Recurrence hfk = f fφ(hfk−1,xk−1) hfk = f fφ(hfk−1,xk−1)
hbk = f bφ(hbk+1,xk) hbk = f bφ(hbk+1,xk)

and SVAEs modify RNNs to mimic SSMs. Table 2.1 shows the comparison between a
DSSM and an SVAE (here is an SRNN). The main difference between DSSMs and SVAEs
is the way we model the transition of the latent variable. In DSSMs, there is an autonomous
process of the latent variable, i.e. they do not depend on the observations. In SVAEs,
the next latent state depends not only the current state but also the current observation.
Because of this difference in the dependency, the factorisation in the two classes of model
are different. Depending on the application, one approach may perform better than the
other. For example, to retrieve a physical process given a series of noisy observations,
DSSMs are more suitable than SVAEs because true hidden process are autonomous, it
follows physic laws and does not interfered by the errors in the measurement. To predict
the position of a vessel, although the hidden states can model the moving patterns, the
actual trajectory may be effected by environmental context, such as a strong wind or dense
traffic, models that take into account the current position to predict be next position
(SVAEs) may be a better choice.

In theory, neural networks could automatically learn very complex tasks, however, in
practice they rarely do. Domain expertise, i.e. the understanding of the data and the
process that we are modelling is very important. It helps pose the right hypotheses, and
design the right network architecture. In the following parts of this thesis, we will present
some models that we have built based on the philosophy of DSSMs and SVAEs for specific
applications. In Chapter 4, we present a DSSM for learning dynamical systems from noisy
and partial observations. In Chapter 6 we introduce an SVAE specifically designed for
maritime traffic surveillance using AIS data. We also propose a novel methodology for
anomaly detection using SVAEs, applied to AIS trajectories in Chapter 7 and to audio
surveillance in Appendix A.
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Everything that happens once can never happen
again. But everything that happens twice will
surely happen a third time.

Paulo Coelho

Chapter 3

Introduction to Dynamical Systems
and Differential Equations

The first application of this thesis is the usage of VDL, and specifically DSSMs, for
the identification of dynamical systems. We start by presenting some basic concepts of
dynamical systems, from the notion of dynamics, differential equations, to some numerical
methods for differential equations. We also give a brief introduction to learning dynamical
system and current state-of-the-art methods for this topic. This chapter does not aim
to introduce dynamical systems theory, but rather aims to provide a background to the
content presented in Chapter 4. Readers who are interested in dynamical systems theory
are referred to (Arrowsmith et al. 1990; Brin et al. 2002; Hirsch et al. 2012).

3.1 Dynamical systems and differential equations

Dynamical systems theory is the study of the evolution, which involves describing the
processes in motion, predicting the states and understanding the limitations of systems
(Arrowsmith et al. 1990; Brin et al. 2002; Hirsch et al. 2012). It is the core of many
disciplines. For example, in geosciences, it provides the basis for the simulation of climate
dynamics, short-term and medium-range weather forecast, short-term prediction of ocean
and atmosphere dynamics, etc. In aerodynamics or in fluid dynamics, it is crucial for the
design of aircrafts and control systems, for the optimisation of energy consumption, etc.
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In medicine, it is used for disease modelling, or for understanding the mechanism of the
brain, etc.

Mathematically, a continuous dynamical system can be described by a set of differential
equations. Depending on the type and the stochastic nature of those equations, we may
classify them as ordinary differential equations (ODEs), stochastic differential
equations (SDEs) and partial differential equations (PDEs). In this thesis, we focus
only on the first two classes.

Ordinary differential equations (ODEs): an ODE dynamical system is governed
by an equation:

dzt
dt = f

(
zt, t,ut

)
(3.1)

where zt ∈ Rdz is the state of the system, f : Rdz −→ Rdz is a deterministic function,
called the dynamical model, t denotes time and ut ∈ Rdu is the control input. In this thesis,
we focus only on autonomous systems without control input, i.e. systems governed by the
following equation:

dzt
dt = f

(
zt
)
. (3.2)

Stochastic differential equations (SDEs): for a dynamical system governed by Eq.
(3.2), the future states are deterministic and depend solely on the current state. Given
zt, we can calculate the exact value of zt+∆t at any time t + ∆t in the future. In many
applications, however, the trajectories of the system do not in fact behave as predicted. It
is reasonable to modify ODE to include the possibility of random effects, which gives us
SDEs. An (Itô form) SDE can be written as follows:

dzt = f
(
zt
)
dt+ g(zt)dWt (3.3)

where f : Rdz −→ Rdz is a deterministic function, called the drift, g : Rdz −→ Rdzxdw

is another deterministic function, called the diffusion and dWt is a Wiener process.
Glossary of some terms in dynamical systems theory: we introduce here a brief

and simple description of some basic terms in dynamical systems theory. This list contains
only terms that are actively used in this thesis. The full glossary and the rigorous definition
of those terms can be found in textbooks in on dymanical systems theory (Arrowsmith

38



3.2. Examples of dynamical systems

et al. 1990; Brin et al. 2002; Zaslavsky et al. 2005; Hirsch et al. 2012; Lichtenberg et al.
2013)

— Chaos: a dynamical system is chaotic if it is highly sensitive to initial conditions,
i.e. a small change in the initial condition will results in a significant different in
future states.

— Phase space: The phase space is an dz-dimensional abstract space in which all
possible states of a system are represented.

— Attractor: an attractor of a dynamical system is a closed subset of the phase space
to which the system evolves after a long enough time.

— Lyapunov exponent: in a chaotic system, two trajectories starting from two close
initial conditions may diverge exponentially. The Lyapunov exponent is a measure
of mean velocity of exponential divergence of two initially close trajectories. A dz-
dimensional dynamical system has dz Lyapunov exponents. If a system is chaotic,
its largest Lyapunov exponent is positive.

— Lyapunov time: the Lyapunov time of a system is a characteristic timescale, defined
as the inverse of its largest Lyapunov exponent.

3.2 Examples of dynamical systems

Some of the most famous examples of dynamical systems are the Lorenz systems. In
this section, we present three of them: the Lorenz-63 (L63) system (Lorenz 1963), the
Lorenz-96 (L96) system (Lorenz 1996) and a stochastic Lorenz-63 (L63s) system (Chapron
et al. 2018).

3.2.1 The Lorenz-63 system

The Lorenz-63 system (L63), named after Edward Lorenz, is a 3-dimensional dynamical
system that model the atmospheric convection (Lorenz 1963). The L63 is governed by the
following ODE:

dzt,1
dt = σ (zt,2 − zt,1)

dzt,2
dt = (ρ− zt,3) zt,1 − zt,2

dzt,3
dt = zt,1zt,2 − βzt,3

(3.4)

39



Part II, Chapter 3 – Introduction to Dynamical Systems and Differential Equations

x1

15 10 5 0 5 10 15

x2

20
10

0
10

20

x 3

10

15

20

25

30

35

40

Figure 3.1 – The attractor of the Lorenz–63 system when σ = 10, ρ = 28 and β = 8/3.

When σ = 11, ρ = 28 and β = 8/3, this system has a chaotic behavior, with the Lorenz
attractor shown in Fig. 3.1.

Some characteristics of the L63 with the above set of parameters are as follows:

— The system is chaotic, a minor change in the initial condition will lead to a completely
different trajectory in long term.

— The attractor of the L63 has a “butterfly form”, the particles frequently change side
of the attractor. The density of the particles in two sides of the attractor is also
similar.

3.2.2 The Lorenz-96 system

The Lorenz-96 system (L96) (Lorenz 1996) is a periodic 40-dimensional dynamical
system governed by the following ODEs:

For i = 1, ..Nz:
dzt,i
dt = (zt,i+1 − zt,i−2)zt,i−1 − zt,i + F (3.5)

with Nz = 40, zt,−1 = zt,Nz−1, zt,0 = zt,Nz and zt,Nz+1 = zt,1.
We choose F = 8 to have chaotic system. The Hovmøller plot of one trajectory of this

system is shown in Fig. 3.2
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Figure 3.2 – Hovmøller plot of one trajectory of a L96.

3.2.3 The stochastic Lorenz-63 system

The stochastic Lorenz-63 system (L63s) is presented in (Chapron et al. 2018). It is a
modified version of the L63 to model situations where the large-scale characteristics of a
physical event may be changed because of accumulated perturbations in fine scales. The
governing equations of the L63s are as follows:

dzt,1 =
(
σ (zt,2 − zt,1)− 4

2γ zt,1
)

dt

dzt,2 =
(

(ρ− zt,3) zt,1 − zt,2 −
4

2γ zt,2
)

dt+ ρ− zt,3
γ0.5 dBt

dzt,3 =
(

zt,1zt,2 − βzt,3 −
8

2γ zt,3
)

dt+ zt,2
γ0.5 dBt

(3.6)

with Bt a Brownian motion.
In the L63s, the noise level is controlled by γ. For example, with σ = 11, ρ = 28 and

β = 8/3 and γ = 2, the particles are easily trapped in one side of the attractor, as shown
in Fig. 3.3.

3.3 Numerical methods for differential equations

Given the equations and the current state zt, solving a differential system means to
calculate value of the state zt+∆t of the system at time t + ∆t. For ODE systems (Eq.
(3.2)), this means to calculate the integral:

zt+∆t = zt +
∫ t+∆t

t
f
(
zu
)
du. (3.7)
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Figure 3.3 – Several attractors generated by the a L63s. These attractors are generated
from the same initial condition. Because the system is stochastic, each runtime we obtain
a different trajectory.

For SDE systems (Eq. (3.3)), this means to calculate the integral:

zt+∆t = zt +
∫ t+∆t

t
f
(
zu
)
du+

∫ t+∆t

t
g
(
zu
)
dWu. (3.8)

Apart from some simple cases, such as linear dynamical systems, those differential equations
do not have analytical solutions. We have to approximate the solutions using numerical
methods, called “numerical integration”. In this section, we present three examples of
those methods: the Euler method and the Runge-Kutta 4 method for ODEs, and
the Euler-Maruyama method for SDEs.

3.3.1 The Euler method

The simplest method for the numerical integration of ODEs is the Euler method (also
called the forward Euler method). This method uses the standard forward derivative
approximation as follows:

dzt
dt ≈

1
∆t [zt+∆t − zt] . (3.9)
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Applying this to Eq. (3.2) we obtain:

1
∆t [zt+∆t − zt] ≈ f(zt). (3.10)

For a small time step ∆t, the Euler method takes this to be exact (Shampine 2018):

zt+∆t = zt + ∆tf(zt). (3.11)

The Euler method is explicit and simple. It is a common choice for fast calculations of
ODEs. However, applying the Taylor expansion of zt+∆t around t:

zt+∆t = zt + ∆tdzt
dt + (∆t)2

2
d2zt
dt2 +O(∆t)3), (3.12)

we can see that the Euler method ignores the quadratic and higher-order terms. For more
accurate solutions, we can extend it to produce Runge-Kutta methods.

3.3.2 The Runge-Kutta 4 method

The Runge-Kutta 4 method (RK4) is the most common method of the Runge-Kutta
family. It is defined as follows (Shampine 2018):

zt+∆t = zt + 1
6∆t(k1 + 2k2 + 2k4 + k4), (3.13)

k1 = f(zt), (3.14)

k2 = f(zt + ∆tk1

2 ), (3.15)

k3 = f(zt + ∆tk2

2 ), (3.16)

k4 = f(zt + ∆tk3). (3.17)

Applying the Taylor expansion, we can see that the truncation error of the RK4 is on
the order of O((∆t)5). The RK4 is one of the the most common numerical integration
schemes for ODEs.
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3.3.3 The Euler–Maruyama method

The Euler–Maruyama method is a method that uses Itô calculus for the numerical
integration of SDEs. This method is defined as follows (Kloeden et al. 2013):

zt+∆t = zt + ∆tf(zt) + g(zt)∆Wt. (3.18)

where where ∆Wt is a Gaussian random variable with expected value zero and variance
∆t.

The Euler–Maruyama method can be roughly considered as the Euler method version
for SDEs.

3.4 Learning dynamical systems

Classically, the derivations of governing equations are based on some prior knowledge of
the intrinsic nature of the system (Lorenz 1963; Hilborn 2000; Sprott et al. 2003; Hirsch et
al. 2012). The derived models can then be combined with the measurements (observations)
to reduce errors, both in the model and in the measurements. This approach forms the
discipline of Data Assimilation (DA). However, in many cases, the underlying dynamics of
the system are unknown or only partially known, while a large number of observations
are available. This has motivated the development of learning-based approaches (Brunton
and Kutz 2019), where one aims at identifying the governing equations of a process from
time series of measurements. Recently, the ever increasing availability of data thanks to
developments in sensor technologies, together with advances in Machine learning (ML),
has made this issue a hot topic.

Mathematically, learning a dynamical system means to retrieve the dynamics of this
system from some observation datasets, that is to say identifying the governing equations
f (and g for SDEs), given a series of observations xtk :

xtk = Φtk

(
H
(
ztk
)

+ εtk
)

(3.19)

where H : Rdz −→ Rdx is the observation operator, usually known (dx is the dimension of
xtk), εt ∈ Rdx is a zero-mean additive noise and {tk}k refers to the time sampling, typically
regular such that tk = t0 + k.δ with respect to a fine time resolution δ and a starting
time t0. The masking operator Φtk accounts for the fact that observation xtk may not be
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available at all time steps tk (Φtk,j = 0 if the jth variable of xtk is missing). For the sake of
simplicity, from now on in this thesis, we use the notation xk for xtk and xk+n for xtk+n.δ .

One of the pioneering contributions in learning dynamical systems is the Sparse
Identification of Nonlinear Dynamics (SINDy) presented in (Brunton, Proctor, et al. 2016).
SINDy assumes that the governing equations of a dynamical model consist of only a few
basic functions such as polynomial functions, trigonometric functions, exponential functions,
etc. The method creates a dictionary of such candidates and uses sparse regression to
retrieve the corresponding coefficients of each basic function. Under ideal conditions, SINDy
can find the exact solution of Eq. (3.2). The key advantage of SINDy is the interpretability
of its solutions, i.e. the parametric form of the governing equations can be recovered.
Another advantage is that the solution comprises only a few terms, which improves the
generalisation properties of the learnt models. However, SINDy requires the time derivative
dxt
dt

to be observed. dxt
dt

might be highly corrupted by noise for noisy and partial observation
datasets, which may strongly effect the performance of SINDy. Besides, it requires some
prior knowledge about the considered system to create a suitable library of the basic
functions.

Analog methods (Nagarajan et al. 2015; McDermott et al. 2016; Z. Zhao et al. 2016),
including the Analog Data Assimilation (AnDA) presented in (Lguensat et al. 2017),
propose a non-parametric approach for data assimilation. AnDA implicitly learns Eqs.
(4.1) and (4.2) by remembering every seen pairs {state, successor} = {xk,xk+1} and
storing them in a catalog. To predict the evolution of a new query point xk, AnDA looks
for k similar states in the catalog, the prediction is then a weighted combination of the
corresponding successors of these states. The performance of this method heavily depends
on the quality of the catalog. If the catalog contains enough data and the data are clean,
AnDA provides a good and straightforward solution for data assimilation. However, since
AnDA relies on a k-Nearest Neighbor (k-NN) approach, it may be strongly affected by
noisy data especially when considering high-dimensional systems.

A number of neural-network-based (NN-based) methods have been introduced recently.
These methods leverage deep neural networks as universal function approximators. They
vary from direct applications of standard NN architectures, such as LSTMs in (Yeo et al.
2019), ResNets in (Qin et al. 2018), etc. to some more sophisticated designs, dedicated to
dynamical systems and often referred to as Neural ODE schemes (R. T. Q. Chen et al.
2018; Fablet, Ouala, et al. 2018; Raissi, Perdikaris, and George Em Karniadakis 2018;
Rubanova et al. 2019). The reservoir computing, whose idea is derived from Recurrent

45



Part II, Chapter 3 – Introduction to Dynamical Systems and Differential Equations

Neural Networks (RNNs), used in (Pathak, Lu, et al. 2017) and (Pathak, Hunt, et al. 2018)
can also be regarded as a NN-based model. As illustrated in (R. T. Q. Chen et al. 2018;
Fablet, Ouala, et al. 2018; Raissi, Perdikaris, and George Em Karniadakis 2018; Rubanova
et al. 2019), through the combination of a parametrisation for differential operator f and
some predefined integration schemes (e.g., explicit Runge-Kutta 4 scheme (RK4) in (Fablet,
Ouala, et al. 2018), black-box ODE solvers in (R. T. Q. Chen et al. 2018; Rubanova et al.
2019)), the Neural ODE schemes provides significantly better forecasting performance than
that of standard NN models, especially when dealing with chaotic dynamics. Powered by
deep learning, these methods can successfully capture the dynamics of the system under
ideal conditions (noise-free and regularly sampled with high frequency). However, they
have the following limitations: i) the network requires fully-sampled data 1 and ii) when
dealing with noisy observations, no regularisation techniques have been proved effective in
preventing overfitting in dynamical system identification.

In the next chapter, we will present a variational deep learning framework that deals
with those problems.

1. Latent ODE ((Rubanova et al. 2019) can apply to data sampled partially in time, however, data
may be sampled partially in space also.
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It has been said that something as small as the
flutter of a butterfly’s wing can ultimately cause
a typhoon halfway around the world.

Chaos Theory

Chapter 4

DAODEN

1 2 In the Chapter 2, we introduced two classes of variational deep learning models
for sequential data: DSSMs and SVAEs. In DSSMs, there is an independent process in
the latent space, the observations are considered as noisy and potentially partial samples
of this process. This modeling is very suitable for describing physical events, since the
true hidden processes follow physical laws, and are independent from the measurements,
which may be affected by errors in the sensors and/or by interference in the medium.
In this chapter, we present a DSSM framework specifically designed for the data-driven
recovery of the unknown governing equations of dynamical systems. This topic has recently
received an increasing interest. However, the identification of the governing equations
remains challenging when dealing with noisy and partial observations. Here, we address
this challenge by proposing a DSSM framework. Within the proposed framework, we
jointly learn an inference model to reconstruct the true states of the system the governing
laws of these states from series of noisy and partial data. In doing so, this framework
bridges classical data assimilation and state-of-the-art machine learning techniques. We also

1. This chapter is a modified version of paper (Duong Nguyen, Ouala, et al. 2020b)
2. This work was supported by public funds (Ministère de l’Education Nationale, de l’Enseignement

Supérieur et de la Recherche, FEDER, Région Bretagne, Conseil Général du Finistère, Brest Métropole),
Institut Mines Télécom, received in the framework of the VIGISAT program managed by “Groupement
Bretagne Télédétection” (BreTel), Labex Cominlabs (grant SEACS), CNES (grant OSTST-MANATEE),
Microsoft (AI EU Ocean awards) and by ANR (French Agence Nationale de la Recherche) under grants
Melody and OceaniX. It benefited from HPC and GPU resources from Azure (Microsoft EU Ocean awards)
and from GENCI-IDRIS (Grant 2020-101030).

We are thankful to Noura Dridi for helpful discussions and support.
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demonstrate that it generalises state-of-the-art methods. Importantly, both the inference
model and the governing model embed stochastic components to account for stochastic
variabilities, model errors and reconstruction uncertainties. Various experiments on chaotic
and stochastic dynamical systems support the relevance of our scheme w.r.t. state-of-the-art
approaches.

4.1 Introduction

Recently, numerous methods have successfully captured the hidden dynamics of systems
under ideal conditions, i.e. noise-free and high sampling frequency using a variety of data-
driven schemes, including analog methods (Lguensat et al. 2017), sparse regression schemes
(Brunton, Proctor, et al. 2016), reservoir computing (Pathak, Lu, et al. 2017; Pathak,
Hunt, et al. 2018) and neural approaches (Fablet, Ouala, et al. 2018; Raissi, Perdikaris,
and George Em Karniadakis 2018; Qin et al. 2018; Ayed et al. 2019; Vlachas et al. 2018).
However, real life data are often corrupted by noise and/or observed partially, as for
instance encountered in the monitoring of ocean and atmosphere dynamics from satellite-
derived observation data (Pierce 2001; Johnson et al. 2005; Isern-Fontanet et al. 2014).
In such situations, the above-mentioned approaches are most likely to fail to uncover
unknown governing equations.

To address this challenge, we need to jointly solve the reconstruction of the hidden
dynamics and the identification of governing equations. This may be stated within a
data assimilation framework (Bocquet et al. 2019) using state-of-the-art assimilation
schemes such as the Ensemble Kalman Smoother (EnKS) (Evensen and Leeuwen 2000).
Deep learning approaches are also particularly appealing to benefit from their flexibility
and computational efficiency. Here, we investigate a variational deep learning framework.
More precisely, we state the considered issue as a variational inference problem with an
unknown transition distribution associated with the underlying dynamical model. The
proposed method generalises learning-based schemes such as (Fablet, Ouala, et al. 2018;
Duong Nguyen, Ouala, et al. 2019; Duong Nguyen, Ouala, et al. 2020a; Brajard et al.
2019; Bocquet et al. 2020) and also explicitly relates to data assimilation formulations.
Importantly, it can account for errors and uncertainties both within the dynamical prior
and the inference model. Overall, our key contributions are:

— a general deep learning framework which bridges classical data assimilation and
modern machine learning techniques for the identification of dynamical systems
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from noisy and partial observations. This framework use variational inference and
random-n-step-ahead forecasting, which can be considered as two complementary
regularisation strategies to improve the learning of governing equations of dynamical
systems;

— insights on the reason why many existing methods for learning dynamical systems
do not work when the available data are not perfect, i.e. noisy and/or partial;

— numerical experiments with chaotic systems which support the relevance of the
proposed framework to improve the learning of governing equations from noisy and
partial observation datasets compared to state-of-the-art schemes;

— numerical experiments which demonstrate that our method can also capture the
characteristics of dynamical systems where the stochastic factors are significant.

The chapter is organised as follows. In Section 4.2, we formulate the problem of
learning non-linear dynamical systems. We review state-of-the-art methods and analyze
their drawbacks in Section 4.3. Section 4.4 presents the details of the proposed framework,
followed by the experiments and results in Section 4.5. We close the paper with conclusions
and perspectives for future work in Section 4.6.

4.2 Problem formulation

Let us consider a dynamical system, described by an Ordinary Differential Equation
(ODE) in Eq. (3.2). From Eq. (3.2) and (3.19), we derive a state space formulation:

zk+n = Fn
(
zk
)

+ ωk+n (4.1)

xk = Φk

(
H
(
zk
)

+ εk
)

(4.2)

where zk+n results from an integration of operator f from state zk:

Fn
(
zk
)

= zk +
∫ k+n

k
f
(
zu
)
du. (4.3)

n is the number of timesteps ahead that Fn forecast, given the current state zk. Fn is
hence called the n-step-ahead model. ωk ∈ Rdz is a zero-mean noise process, called the
model error. ωk may come from the neglected physics, numerical approximations and/or
modelling errors. εk is the observation error (or measurement error). Note that f is
continuous, the discretisation only happens because we want to calculate the integral Fn
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over the interval [tk, tk+n]. Furthermore, as detailed later, the parametrisation of Fn may
explicitly depend on n or not. In this thesis, to simplify the notation, k + n includes both
k + 1 (i.e. n = 1) and k + n (i.e. n 6= 1). If we specify k + 1 and k + n in one sentence, it
means n 6= 1 in this context.

Within this general formulation, the identification of governing equations f amounts
to maximising the log likelihood ln p(x0:T ).

4.3 Related work

The identification of dynamical systems has attracted attention for several decades and
closely relates to data assimilation (DA) for applications to geoscience. Proposed approaches
typically consider some parametric model for operator Fn, for example, a linear function in
(Ghahramani and G. E. Hinton 1996) or Radial Basis Functions (RBFs) in (Ghahramani
and Roweis 1999). While data assimilation mostly focuses on the reconstruction of the
hidden dynamics given some observation series, a number of studies have investigated
the situation where the dynamical prior is unknown. They typically learn the unknown
parameters of the model using an iterative Expectation-Maximisation (EM) procedure.
The E-step involves a DA scheme (e.g. the Kalman filter (Welch et al. 1995), the Extended
Kalman filter (Hoshiya et al. 1984), the Ensemble Kalman filter (Evensen 2009), the particle
filter (Doucet et al. 2009), etc.) to reconstruct the true states {zk} from observations {xk},
whereas the M-step retrieves the parameters of F best describing the reconstructed state
dynamics. Such methods address the fact that the observations may not be ideal. They
may also account for model errors and uncertainties (ωk in Eq. (4.1)). However, since they
rely on analytic solutions, the choices of the candidates for F are generally limited. For a
comprehensive introduction as well as an analysis of the limitations of those methods, the
reader is referred to (Voss et al. 2004).

Recently, the domain of dynamical systems identification has received a new wave of
contributions. Advances in machine learning open new means for learning the unknown
dynamics. As introduced in Section 3.4, numerous learning-based methods have been able
to identify the governing laws of the systems, given noiseless and fully-observed data.
However, they may not apply or fail when the observations are noisy and/or partial. Their
learning step is stated as the minimisation of a short-term prediction error of the observed
variables:

loss =
∑

g(||xpredk+n − xk+n||2) (4.4)
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Figure 4.1 – Problems of learning dynamical systems from imperfect data. This figure
plots the first component of the Lorenz-63 system, when the observation operator is the
identity matrix. The observation is noisy, partial. If the learning algorithm is applied
directly on the observations (black dots), which are noisy and partially sampled, and a
linear interpolation is used to create regularly-sampled data, the dynamics seen by the
network are the blue curve (for 1-step-ahead forecasting models) or the green and the
yellow curves (for 2-step-ahead forecasting models, these two curves correspond to two
possible starting points of the sequence) instead of the true dynamics (the red curve).

where xpredk+n = Fn(xk) is the predicted observation at k + n given the current observation
xk, ||.||2 denotes the L2 norm, g is a function of ||xpredk+n−xk+n||2. As shown in Fig. 4.1, with
this family of cost functions, the model tends to overfit the observations (the blue curve or
the green and yellow curves), instead of learning the true dynamics of the system (the
red curve). Another reason why these methods fail is because they violate the Markovian
property of the system. Note that the process of the true states z0:T of the system is
Markovian (i.e., given zt, zk+1 does not depend on z0:k−1). However, when the data are
damaged by noise, the process of the observations x0:T is not Markovian. Given xt, we
still need the information contained in x0:k−1 to predict xk+1. For this reason, applying
Markovian architectures like SINDy (Brunton, Proctor, et al. 2016), AnDA (Lguensat et al.
2017), DenseNet (Raissi, Perdikaris, and George Em Karniadakis 2018) , BiNN (Fablet,
Ouala, et al. 2018), etc. directly on the observations x0:T would not succeed. Models with
memory like LSTMs (Yeo et al. 2019) may capture the non-Markovian dynamics in the
training phase, however, in the simulation phase, they still need the memory, which implies
that the learnt dynamics do not have the Markovian property of the true dynamics of the
system.

In this chapter, we consider a variational deep framework which derives from a varia-
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tional inference for state space formulation (Eqs. (4.1), (4.2)). This framework accounts
for uncertainty components in the dynamical prior as well as in the observation model.
Similarly to DA schemes (Bocquet et al. 2019; Duong Nguyen, Ouala, et al. 2019; Duong
Nguyen, Ouala, et al. 2020a; Brajard et al. 2019; Bocquet et al. 2020), it jointly solves for
the reconstruction of the hidden dynamics and the identification of the governing equations.
Importantly, it benefits from the computational efficiency and the modelling flexibility of
deep learning frameworks for the specification of the dynamical prior and the inference
model as well as for the use of a stochastic regularisation during the training phase through
a randomised n-step-ahead prediction loss. The proposed framework generalises our recent
works presented in (Duong Nguyen, Ouala, et al. 2019) and (Duong Nguyen, Ouala, et al.
2020a) and similar works, which have been developed concurrently in (Bocquet et al. 2019;
Brajard et al. 2019) and (Bocquet et al. 2020). As detailed in the next section, (Bocquet
et al. 2019; Brajard et al. 2019) and (Bocquet et al. 2020) may be regarded as specific
instances of the proposed framework with some specific settings, such as constant model
error covariance matrix (we relax this hypothesis), Ensemble Kalman Smoothers for the
inference scheme (we exploit both strategies: Ensemble Kalman Smoothers and NN-based
schemes), EM for the optimisation (we exploit both EM and gradient-based techniques).

4.4 Proposed framework

In this section, we detail the proposed variational deep learning framework for the
data-driven identification of the governing equations of dynamical systems from noisy
and partial observations. We first present the proposed framework based on variational
inference. We then introduce the considered NN-based parametrisations for the dynamical
prior and the inference model, along with the implemented learning scheme. We further
discuss how the proposed framework relates to previous work.

4.4.1 Variational inference for learning dynamical systems

Given a series of observations x0:T = {x0, ..,xk}, instead of looking for a model Fn

that minimises a loss function in a family of short-term prediction error functions as in Eq.
(4.4), we aim to learn operator Fn such that it maximises the log likelihood ln p(x0:T ) of
the observed data. We assume that x0:T are noisy and/or partial observations of the true
states z0:T , like in Eqs. (4.1) and (4.2). We can derive the log-likelihood ln p(x0:T ) from
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the marginalisation of ln p(x0:T , z0:T ) over z0:T :

ln p(x0:T ) = ln
∫
p(x0:T , z0:T )dz0:T (4.5)

As discussed in Chapter 2, with the exception of some simple cases, the integral in Eq.
(4.5) is intractable because the posterior distribution p(z0:T |x0:T ) is intractable. To address
this issue, Variational Inference (VI) approximates p(z0:T |x0:T ) by a distribution q which
maximises the Evidence Lower BOund (ELBO) L(x0:T , p, q) as in Eq. (2.56) in Chapter 2.

Based on the state space formulation in Eqs. (4.1) and (4.2), we consider the following
parametrisation for the joint likelihood p(x0:T , z0:T ):

pθ(x0:T , z0:T ) = pθ(z0:T )pθ(x0:T |z0:T ) (4.6)

pθ(z0:T ) = pθ(z0)
n−1∏
k=1

pθ(zk|zk−1)
T∏
k=n

pθ(zk|zk−n) (4.7)

pθ(x0:T |z0:T ) =
T∏
k=0

pθ(xk|zk) (4.8)

qφ(z0:T |x0:T ) =
T∏
k=0

qφ(zk|zfk ,x0:T ) (4.9)

with θ and φ are the sets of parameters of p and q, respectively; zfk is the state forecast
by F1 given zk−1 for k = 1..n− 1, and by Fn given zk−n. k = n..T .

The distributions in Eqs. (4.7), (4.8) and (4.9), are respectively the classic distributions
of a state space formulation: 1) the n-step ahead transition (or dynamic, or prior) distribu-
tion pθ(zk+n|zk) (including n = 1); 2) the emission (or observation) distribution pθ(xk|zk);
and 3) the inference (or posterior) distribution qφ(zk|zfk ,x0:T ). To better constrain the time
consistency of the learnt dynamics, the considered dynamical prior embeds a n-step-ahead
forecasting model. Given an initialisation z0, it first applies a one-step-ahead prior to
propagate the initial state to the first n time steps. The application of the n-step-ahead
prior then follows to derive the joint distribution over the entire time range {0, .., T}. This
n-step-ahead prior is regarded as a mean to further regularise the time consistency of the
learnt dynamical model.

By explicitly separating the transition, the inference and the generative processes,
the proposed framework is fully consistent with the underlying state space formulation
and the associated Markovian properties. Especially, the prior pθ(zk+n|zk) will embed a
Markovian architecture; by contrast, the posterior qφ(zk|zfk ,x0:T ) shall capture the non-
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Markovian characteristics of the observed data. Given the learnt model, the generation
of simulated dynamics only relies on the dynamical prior pθ(zk+1|zk) to simulate state
sequences, which conform to the Markovian property. Overall, for a given observation
dataset, the learning stage comes to maximising Eq. (2.56) w.r.t. both φ and θ, which
comprise all the parameters of the inference and generative models, i.e. the parameters of
F , H, ωk and εk.

So far we have introduced the general form of the proposed variational inference
framework for learning dynamical systems from noisy and potentially partial observations.
In the following sub-sections, we will analyse some specific instances of the proposed
framework and provide insights into the associated implicit hypotheses behind methods in
the literature.

4.4.2 Parametrisation of the generatvie model pθ

Model pθ involves two sets of parameters: (i) θz—the parameters of the transition
distributions pθ(zk+n|zk) and (ii) θx—the parameters of the emission distribution pθ(xk|zk).

Regarding the later, similarly to (Brajard et al. 2019) and (Bocquet et al. 2020), we
assume the observation noise to be a white noise process with a multivariate covariance R
such that pθ(xk|zk) is a conditional multivariate normal distribution:

pθ(xk|zk) = N (H(zk),R) (4.10)

We may consider different experimental settings: with known or unknown observation
operator H.

Regarding the n-step-ahead dynamical prior pθ(zk+n|zk) (including n = 1), we consider
a conditional Gaussian distribution where the mean path is driven by the the governing
equation Fn: zk+n = Fn(zk) and and the dispersion is represented by a covariance matrix
Qk (usually called the model error covariance in DA) (Evensen 2009). Any state-of-the-art
architecture for learning dynamical systems can be used to model F . Here, we consider
NN-based methods associated with explicit integration schemes. To account for second-
order polynomial model, as proposed in (Fablet, Ouala, et al. 2018), we consider a bilinear
architecture to model f in Eq. (3.2) and an NN implementation of the RK4 integration
scheme to derive the flow operator Eq. (4.1). Regarding the covariance dynamics, the
covariance matrix Qk+n is approximated by a diagonal matrix diagdfk , with dfk the output
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of a MultiLayer Perceptron (MLP):

dfk = MLP var_dyn(zk−n,Fn(zk−n)) (4.11)

4.4.3 Parametrisation of the inference model qφ

There is no restriction for the parametrisation of posterior qφ. However, the parametri-
sation clearly affects the performance of the overall optimisation. Here, we investigate two
strategies for qφ: 1) an Ensemble Kalman Smoother (EnKS) (Evensen and Leeuwen 2000)
and 2) an LSTM Variational Auto Encoder (LSTM-VAE).

The former is a classic DA scheme that is widely used in many domains in which
dynamical systems play an important role, for example in geosciences (Khare et al. 2008).
We use the implementation presented in (Evensen and Leeuwen 2000). The latter is a
modern NN architecture, which has been proven effective for modelling stochastic sequential
data (J. Chung et al. 2015) (Fraccaro et al. 2016). The backbone of the LSTM-VAE is
a bidirectional LSTM which captures the long-term correlations in data. Specifically, we
parameterise the inference scheme as follows: The forward LSTM is given by:

hfk = lstm(hfk−1,MLP enc(xfk−1)) (4.12)

and the backward LSTM is given by:

hbk = lstm(hbk+1,h
f
k ,MLP enc(xfk)) (4.13)

where hfk , hbk are the hidden states of the forward and the backward LSTM, respectively;
lstm is the recurrence formula of LSTM (Hochreiter et al. 1997); MLP enc is an encoder
parameterised by an MLP. We parameterise the posterior qφ by a conditional Gaussian
distribution with mean µqk and a diagonal covariance matrix diag(dqk):

qφ(zk) = N (µqk, diag(dqk)) (4.14)
µqk,d

q
k = MLP dec(Fn(zk−n),hfk ,hbk) (4.15)

with MLP dec is a decoder parameterised by an MLP. Note that in Eq. (4.15), qφ depends
on zfk = Fn(zk−n). This idea is inspired by DA, where Fn(zk−n) is analogous to the
forecasting step and qφ(zk|zfk ,x0:T ) is analogous to the analysis step, which depends on
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the forecasting step. The whole model, called Data-Assimilation-based ODE Network
(DAODEN) is illustrated in Fig. 4.2.

To our knowledge, DAODEN is the first stochastic end-to-end RNN-based model
introduced for the identification of dynamical systems from noisy and partial observations.
In this respect, the model used in (Yeo et al. 2019) is a purely deterministic RNN-based
network.

However, similar architectures have been used in Natural Language Processing (NLP)
such as the Variational Recurrent Neural Network (VRNN) presented in (J. Chung et al.
2015), the Sequential Recurrent Neural Network (SRNN) presented in (Fraccaro et al.
2016). Fig. 4.2 shows how DAODEN differs from those architectures. The main difference
is that the transition zk → zk+1 is independent of observation xk (i.e. the dynamic
is autonomous). Besides, the emission zk → xk is also independent of the historical
state z0, .., zk−1. These differences relate to domain-related priors. In dynamical systems’
theory and associated application domains such as geoscience, the underlying dynamics
follow physical principles. Therefore, they are autonomous and are not affected by the
measurements (the observations). As a consequence, zk+1 does not depend on x1:k−1

conditionally to zk. At a given time k, observation xk is a measurement of state zk of
the system, this measurement does not depend on any other state zk′ 6=k, i.e. given zk, xk
and zk′ are independent with any k′ 6= k. For this reason, architectures used in NLP like
VRNN, SRNN do not apply for dynamical system identification.

4.4.4 Objective functions

Following a variational Bayesian setting, the learning phase comes to minimising a loss
given the negative of ELBO:

lossELBO = −L(x0:T , pθ, qφ) (4.16)

Instead of solving Eq. (4.16), one can solve its Maximum A Posteriori (MAP) solution
by restricting qφ to Dirac distributions:

LMAP =
T∑
k=0

ln pθ(xk|z∗k) + ln pθ(z∗0) +
n−1∑
k=1

ln pθ(z∗k|z∗k−1) +
T∑
k=n

ln pθ(z∗k|z∗k−n) (4.17)

with z∗k = E
[
qφ(z|zfk ,x0:T )

]
if qφ is parameterised by an EnKS and z∗k = qφ(zk|zfk ,x0:T ) =
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Figure 4.2 – Architecture of VRNN, SRNN and DAODEN when n = 1. We denote as xk
the observations, zk the system’s states, hfk the latent states of the forward LSTM and hbk
the latent states of the backward LSTM. The black, red, blue and orange arrows denote
respectively the transition of the system’s states, the emission of the observations, the
inference of the system’s states and recurrence of the LSTMs, respectively. In VRNN (a)
and SRNN (b), the dynamic zk → zk+1 is not independent of the observation xk. The
generation of the observation is also entangled with the recurrence of the LSTMs.

57



Part II, Chapter 4 – DAODEN

δ(zk|zfk ,x0:T ) if qφ is parameterised by a neural network. If we remove the covariance part
in Eq. (4.15), the LSTM-VAE becomes an LSTM Auto Encoder (LSTM-AE):

z∗k = µqk = dec(Fn(zk−1),hfk ,hbk) (4.18)

The MAP loss function, which relates to the weak-constraint 4D-Var in DA (Courtier et al.
1994), is given by:

lossMAP = −LMAP (x0:T , pθ, qφ) (4.19)

This is the objective function used in (Bocquet et al. 2019; Brajard et al. 2019) and
(Bocquet et al. 2020), with the assumption that Qk is time invariant, i.e. Qk = Q.

One may further assume that the covariance matrices of the transition distribution
pθ(z∗k|z∗k−n) and the covariance matrices of the observation distribution pθ(xk|z∗k) are
diagonal and constant, both in time and in space, Eq. (4.17) then becomes 3:

Ldeterm = −λ
T∑
k=0
||φk(H(z∗k)) − xk||22 −

n−1∑
k=0
||F1(z∗k−1) − z∗k||22 −

T∑
k=0
||Fn(z∗k−n) − z∗k||22

(4.20)

The associated loss function is given by:

lossdeterm = −Ldeterm(x0:T , pθ, q) (4.21)

which is the objective function used in (Duong Nguyen, Ouala, et al. 2019) and (Duong
Nguyen, Ouala, et al. 2020a). We may note that if xk = zk, (4.21) becomes the short-term
prediction error widely used in the literature (Pathak, Lu, et al. 2017; Fablet, Ouala, et al.
2018; Qin et al. 2018; Pathak, Hunt, et al. 2018). In other words, (Pathak, Lu, et al. 2017;
Fablet, Ouala, et al. 2018; Qin et al. 2018; Pathak, Hunt, et al. 2018) implicitly suppose
that the observations are ideal.

4.4.5 Optimisation strategies

To learn parameters θ and φ (i.e. the parameters of the generative and the infer-
ence models), there are two optimisation strategies: 1) alternatively optimise θ then φ
(Expectation-Maximisation-like or EM-like) to minimise the loss function or 2) jointly

3. The derivation of (4.20) can be found in our previous paper (Duong Nguyen, Ouala, et al. 2019).
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optimise the loss function over θ and φ.
For models whose posterior qφ is implemented by an EnKS, since EnKS uses analytic

formulas and the NN-based parametrisation of pθ is usually optimised by Gradient Descent
(GD) techniques, we consider an alternated EM procedure as the optimisation strategy
for the whole model. In the E-step, the EnKS computes the posterior qφ, represented by
an ensemble of states z(i)

k . Given this ensemble of states, the M-step minimises the loss
function over θ using a stochastic gradient descent algorithm.

For DAODEN settings, we can fully benefit from the resulting end-to-end architecture,
as both the generative model pθ and the posterior qφ are parameterised by neural networks,
to jointly optimise all model parameters using a stochastic gradient descent technique. The
gradient descent technique may be regarded as a particular case of EM where the M-step
takes only one single gradient step. For NN-based models, gradient descent strategies
usually work better than EM (I. Goodfellow, Yoshua Bengio, et al. 2016).

4.4.6 Random-n-step-ahead training

Within the considered framework, we noted experimentally that the model may overfit
the data, when the number of the forecasting steps is fixed. For example, if the observation
operator H is an identity matrix, a possible overfitting situation is when the inference
scheme also becomes an identify operator: E [qφ(zk|x0:T )] → xk. In such situations, the
dynamics seen by the dynamical sub-modules would be the noisy dynamics.

To deal with these overfitting issues, we further exploit the flexibility of the proposed
n-step-ahead dynamical prior during the training phase. For each mini-batch iteration
in the training phase, we draw a random value of n between 1 and a predefined n-step-
ahead_max. We then apply a gradient descent step with the sampled value of n. The
resulting randomised training procedure is detailed in Alg. 1. This randomised procedure is
regarded as a regularisation procedure to fit a time-consistent dynamical operator Fn. We
noted in previous works that neural ODE schemes may not distinguish well the dynamical
operator from the integration scheme (Ouala, Pascual, et al. 2019). Here, through the
randomisation of parameter n, we constrain the end-to-end architecture by applying it for
different prediction horizons, which in turn constrains the identification of the dynamical
model f . Asymptotically, the proposed procedure would be similar to a weighted sum of
loss (4.16) computed for different values of n, which have been proposed for the data-driven
identification of governing equations in the noise-free case (Rubanova et al. 2019).
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Algorithm 1: Random-n-step-ahead training.
Result: The set of parameters {θ,φ} of the learnt model.
Inputs: x0:T , z0, R, the initial values of {θ,φ}, n-step-ahead_max,
n_iteration_max;
iter = 0;
while iter < n_iteration_max do

t = 0;
n-step-ahead = randint(1,n-step-ahead_max);
while t < k − n do

if t < n-step-ahead −2 then
n = 1;

else
n = n-step-ahead;

zfk+n = Fn(zk);
dfk+n = MLP var_dyn(zk,Fn(zk));
pθ(zk+n|zk) = N (zfk+n,d

f
k+n);

Calculate qφ(zk+n|zfk+n,x0:T );
Sample zk+n ∼ qφ(zk+n|zfk+n,x0:T );
pθ(xk+n|zk+n) = N (H(zk+n),R);

Calculate loss;
Optimise loss w.r.t. {θ,φ};
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Figure 4.3 – Initialisation by optimisation. An auxiliary network is added for the initialisa-
tion of x0 and h0.

4.4.7 Initialisation by optimisation

In this section, we present the initialisation technique used for in the experiments in
this chapter. Although this technique is not compulsory, it improve the stability of the
training.

To calculate the state of the system at any given time k, we need both the true dynamics
and the precise initial condition z0. If we use DAODEN, we also have to initialise hf0 and
hbT+1. The common approach is “wash out” (Jaeger 2002), i.e. to initialise hf0 and hbT+1 to
zeros or random values and run the LSTMs until the effect of the initial values disappears.
However, this initialisation technique may not be suitable for learning dynamical systems,
because during the wash out period, the network is not stable, especially when using an
explicit integration scheme (here is the RK4). These instabilities may make the training
fail. The value of the objective function also varies highly during this period, leading to an
unreliable outcome of the final loss.

Sharing a similar idea with (Mohajerin et al. 2019) and (Rubanova et al. 2019), we use
a different initialisation strategy. We add two auxiliary networks, a Forward Auxiliary Net
to provide h0 and z0, and an Backward Auxiliary Net to provide hk+1 for the main model.
Each auxiliary network is an LSTM. We use one segment at the beginning of the sequence
and one segment at the end of the sequence as the inputs of these networks.
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4.5 Experiments and results

In this section, we report numerical experiments to evaluate the proposed framework.
We include a comparison with respect to state-of-the-art methods. Beyond the application
to deterministic dynamics as considered in previous work (Duong Nguyen, Ouala, et al.
2019; Duong Nguyen, Ouala, et al. 2020a; Bocquet et al. 2019; Bocquet et al. 2020; Brajard
et al. 2019; Pathak, Hunt, et al. 2018; Pathak, Lu, et al. 2017; Qin et al. 2018), we also
investigate an application to stochastic dynamics and a reduced-order modelling, where
the observation operator H is unknown. As case-study models, we focus on Lorenz-63 and
Lorenz-96 dynamics, which provides a benchmarking basis w.r.t. previous work (Brunton
and Kutz 2019; Lguensat et al. 2017; Fablet, Ouala, et al. 2018; Champion et al. 2019).

4.5.1 Benchmarking dynamical models

We report numerical experiments for three chaotic dynamical systems: a Lorenz 63
(L63) systems (Lorenz 1963), a Lorenz 96 (L96) system (Lorenz 1996) and a stochastic
Lorenz 63 (L63s) system (Chapron et al. 2018).

Note that these models are chaotic, i.e. they are are highly sensitive to initial conditions
such that a small difference in a state may lead to significant changes in future. Because
of this chaotic nature, applying directly standard deep neural network architectures would
not be successful.

We chose the L63 as a benchmarking system because of its famous butterfly attractor.
The system involves 3-dimensional states, making it easy to visualise for a qualitative inter-
pretation. Experiments on the L96 provides a means to evaluate how the proposed schemes
can scale up to higher-dimensional systems. The last system—the L63s, is considered to
show the benefit of stochastic architectures over deterministic ones.

For each system, we generated 200 sequences of length of 150 using 200 different initial
conditions z0 with time step δ = 0.01, δ = 0.05 and δ = 0.01 for the L63, L96 and L63s,
respectively 4. In total, the training set of each system comprises 30000 points in total.
Those training sets are relatively small in comparison with those in (Champion et al.
2019) (512000 points) and (Brajard et al. 2019) (40000 points). Another setting when we
generated only one long sequence of length of 4000 from one initial condition z0, then split
it into smaller segments of length of 150 also gave similar results 5 (not reported in this

4. This is the setting used in (Champion et al. 2019)
5. This is the setting used in (Lguensat et al. 2017; Pathak, Hunt, et al. 2018), (Brajard et al. 2019)
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chapter).

For the test sets, we generated 50 sequences of length of 150 using 50 different initial
conditions z0 which are not observed in the training set. Let us recall that the true hidden
states z0:T of sequences are never used during the training phase, however, they are used
in the test phase to give a quantitative evaluation.

As in (Duong Nguyen, Ouala, et al. 2019; Duong Nguyen, Ouala, et al. 2020a; Bocquet
et al. 2019; Brajard et al. 2019; Bocquet et al. 2020), we first consider an experimental
setting where H is an identity operator, and εk a zero-mean Gaussian white noise. We
tested several signal-to-noise ratio values r = stdε

stdz
. Then we tested the proposed framework

on a setting where H is unknown, as in (Champion et al. 2019).

4.5.2 Baseline schemes

In the reported experiments, we considered different state-of-the-art schemes for bench-
marking purposes, namely the Analog Data Assimilation (AnDA) (Lguensat et al. 2017),
the Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton, Proctor, et al. 2016),
the Bilinear Neural Network (BiNN) (Fablet, Ouala, et al. 2018), and the Latent ODE
(Rubanova et al. 2019), the latter being among the state-of-the-art schemes in the deep
learning literature. As explained earlier in this chapter, regardless of the network archi-
tecture, as long as the objective function does not take into account the fact that the
observations are noisy and potentially partial, the method would not work. BiNN and
Latent ODE embed the true solution of the L63 and the L96. Under ideal conditions, they
should work as well as other NN-based ODE model, such as those in (Raissi, Perdikaris,
and George Em Karniadakis 2018; Qin et al. 2018; Yeo et al. 2019), etc. The difference
between BiNN and Latent ODE is BiNN uses an explicit integration scheme (the RK4),
while Latent ODE uses a black-box ODE solver. Latent ODE also uses an additional
network to infer the initial condition z0.

Since VRNN (J. Chung et al. 2015) and SRNN (Fraccaro et al. 2016) are not designed
for dynamical system identification (no autonomous dynamics in the hidden space), we do
not consider these architectures in this chapter.
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Table 4.1 – Implementations of the proposed framework.

Model name pθ(zk+n|zk) qφ(zk|zfk ,x0:T ) Objective Optimiserfunction

BINN_EnKS BiNN EnKS Eq. (4.21) EM
DAODEN_determ BiNN LSTM-AE Eq. (4.21) GD
DAODEN_MAP BiNN LSTM-AE Eq. (4.19) GD
DAODEN_full BiNN LSTM-VAE Eq. (4.16) GD

4.5.3 Instances of the proposed framework

We synthesise in Table. 4.1 the different configurations of the proposed framework
that we implemented in our numerical experiments. We may point out that BiNN_EnKS
configuration is similar to (Bocquet et al. 2020). All configurations use a BiNN with a fourth-
order Runge-Kutta scheme to parameterise F . As presented above, other architectures can
also be used to parameterise Fn, we choose BiNN to highlight the performance of learning
dynamical systems with and without inference schemes (by comparing the performance
of BiNN and that of models following the proposed framework). The parameters of each
model are presented in the Appendices. We provide the code that can reproduce the
result in this chapter: https://github.com/CIA-Oceanix/DAODEN. Interested users are
highly encouraged to try those models above on different dynamical systems or to replace
the dynamical sub-module by different learning methods to see the improvement of its
performance on noisy and partial observations.

In this chapter, unless specified otherwise the n-step-ahead_max parameter was set to
4 for DAODEN models and 1 for baseline models (1-step-ahead is the default setting in
the original papers of those methods). As in (Bocquet et al. 2020), for BiNN_EnKS, we
suppose that we know R. However, for DAODEN, we do not need the exact value of R,
when using a fixed value of R that was from 1 to 2 times larger than the true value of R,
the results were similar.

4.5.4 Evaluation metrics

We evaluate both the short-term and long-term performance of the learnt models using
the following metrics:

(Bocquet et al. 2020)
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— The Root Mean Square Error (RMSE) of the short-term forecast at tn = t0 + n.δ:

en =
√√√√ 1
n

n∑
k=1

(zpredk − ztruek )2 (4.22)

with zpredk
∆= Fk(z0) and z0 is the first state of each sequence in the test set.

— The reconstruction capacity given the observations, denoted as rec:

rec =

√√√√ 1
T

T∑
k=0

(z∗k − ztruek )2 (4.23)

with z∗k = E
[
qφ(zk|zfk ,x0:T )

]
.

— The first time (in Lyapunov unit) when the RMSE reaches half of the standard
deviation of the true system, denoted as π0.5.

— The capacity to maintain the long-term topology of the system, evaluated via the
first Lyapunov exponent λ1 calculated in a forecasting sequence of length of 20000
time steps, using the method presented in (Wolf et al. 1985). The true λ1 of the L63
is 0.91 and the true λ1 of the L96 is 1.67.

For each metric, we compute the average of the results on 50 sequences in the test set.
As Lorenz dynamics may interpreted in terms of geophysical dynamics, we may also

give some physical interpretation to the considered metrics. For example, in geosciences,
for experiments on the L96 system with δ=0.05 (correspond to 6 hours in real-world time),
e4 would relate to the precision of a weather forecast model for the next day, π0.5 indicates
how long the forecast is still meaningful, λ1 indicates whether a model can be used for
long-term forecast such as the simulation of climate change and rec indicates the ability
of a model to reconstruct the true states of a system when the observations are noisy and
partial, such as reconstructing the sea surface condition from satellite images.

4.5.5 L63 case-study

In this section we report the results for the L63 case-study. We first assess the identifi-
cation performance on noisy but complete observations (i.e. φk is an identity matrix at
all time steps) of the L63 system, then address cases where the observations are sampled
partially, both in time and in space.
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Table 4.2 shows the performance of the considered model on noisy L63 data. We
compare the performance of the 4 proposed models with the baselines’, w.r.t the short-
term prediction error and the capacity to maintain the long-term topology. All the models
based on the proposed framework outperform the baselines by a large margin. This asserts
the ability of the proposed framework to deal with noisy observations. In Fig. 4.4 we
show the first component of a L63 sequence in the test set reconstructed by the inference
scheme of DAODEN_determ. qφ is expected to infer a mapping that converts data from
the corrupted observation space (black dots) to the true space of the dynamics (the red
curve). In this space, data-driven methods can successfully learn the governing equations
of the system. The reconstructed sequence is very close to the true sequence.

At first glance, we can see that no model is better than all the others in all 4 criteria.
This is aligned with the findings in (Fablet, Drumetz, et al. 2020). BiNN_EnKS and
DAODEN_full have very good forecasting score, however, the performance of BiNN_EnKS
in reconstructing the true states is not as well as DAODEN models. The dynamics learnt
by DAODEN models are also more synchronised to the true dynamics (indicated by π0.5)
than those learnt by BiNN_EnKS. This might suggest that NN-based models (here are
LSTM-AE and LSTM-VAE) can be an alternative for classic inference schemes like EnKS,
which are among the state-of-the-art methods in data assimilation (Lahoz et al. 2010).

In Fig. 4.5, we show the attractors generated by the learnt models. AnDA is more
suitable for data assimilation than for forecasting. When the noise level is small (r=8.5%
and r=16.7%), SINDy and BiNN can still capture the dynamics of the system. When the
noise level is significant (r=33.3% and r=66.7%), the attactors generated by SINDy and
BiNN are distorted, which indicates that the learnt models are not valid for long-term
simulations. On the other hand, all the models of the proposed framework successfully
reconstructed the butterfly topology of the attractor, even when the noise level is high.

In real life applications, we cannot always measure a process regularly with a high
sampling frequency. Hence, we address here the problem of learning dynamical systems
from not only noisy but also partial observations 6. Specifically, we consider a case study
where the noisy L63 data are sampled partially, both in time and in space, with a missing
rate of 87.5% (see Fig. 4.6). For this configuration, baseline schemes do not apply. We
report in Table. 4.3 and Fig. 4.7 the performance of the different configurations of the

6. The term “partial” in this context means the observations are not complete at every time step. Some
components of the observations may be missing, in both spatial and temporal dimensions; however, all the
components of states of the system are seen at least once. For the cases where some components of the
systems are never observed, please refer to (Ayed et al. 2019; Ouala, Duong Nguyen, Drumetz, et al. 2020)
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Table 4.2 – Performance of models trained on noisy L63 data. For each index, the best
score is marked in bold and the second best score is marked in italic.

Model r
8.5% 16.7% 33.3% 66.7%

AnDA

e4 0.351±0.184 0.777±0.350 1.683±0.724 3.682±1.346
rec 0.416±0.019 0.941±0.037 2.134±0.076 4.876±0.168
π0.5 0.820±0.480 0.380±0.172 0.249±0.174 0.104±0.116
λ1 26.517±7.665 27.146±42.927 76.267±28.150 127.047±0.881

SINDy
e4 0.068±0.052 0.149±0.106 0.311±0.196 0.694±0.441
π0.5 0.490±0.261 0.165±0.085 0.077±0.049 0.034±0.034
λ1 0.898±0.008 0.840±0.035 0.840±0.035 nan±nan

BiNN
e4 0.045±0.030 0.119±0.085 0.283±0.185 0.684±0.408
π0.5 3.608±1.364 2.053±0.666 0.975±0.488 0.308±0.125
λ1 0.900±0.011 0.868±0.010 0.122±0.208 -0.422±0.047

Latent-ODE
e4 0.051±0.027 0.062±0.034 0.065±0.042 0.213±0.084
π0.5 2.504±1.332 2.336±1.472 2.852±1.352 2.118±1.129
λ1 0.892±0.018 0.877±0.018 0.885±0.015 0.675±0.027

BiNN_EnKS

e4 0.019±0.016 0.024±0.023 0.037±0.024 0.276±0.160
rec 0.323±0.024 0.431±0.042 0.598±0.093 1.531±0.332
π0.5 2.807±1.128 3.004±1.355 2.996±1.641 2.081±1.214
λ1 0.856±0.031 0.869±0.024 0.826±0.065 0.868±0.014

DAODEN_determ

e4 0.049±0.031 0.056±0.034 0.077±0.048 0.268±0.201
rec 0.216±0.125 0.269±0.110 0.448±0.199 0.873±0.216
π0.5 3.519±1.282 3.488±1.327 3.470±1.562 1.803±1.104
λ1 0.882±0.036 0.895±0.021 0.911±0.013 0.793±0.021

DAODEN_MAP

e4 0.038±0.027 0.038±0.038 0.101±0.070 0.233±0.088
rec 0.209±0.096 0.234±0.065 0.525±0.253 0.817±0.330
π0.5 3.271±1.270 3.219±1.260 2.993±1.413 2.650±1.382
λ1 0.860±0.047 0.876±0.029 0.916±0.012 0.920±0.008

DAODEN_full

e4 0.023±0.015 0.027±0.016 0.072±0.045 0.187±0.127
rec 0.178±0.050 0.258±0.066 0.469±0.168 1.003±0.380
π0.5 3.533±1.139 3.496±1.215 3.426±1.512 1.897±0.918
λ1 0.869±0.036 0.858±0.028 0.881±0.024 0.884±0.013
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Figure 4.4 – An example of the the first dimension of the L63 system reconstructed by
the inference module of DAODEN_determ, r = 33%. Given the noisy observations (black
dots), the inference module qφ(zk|zfk ,x0:T ) reconstructs a clean sequence of the hidden
state (blue curve), which is very close to the true unknown dynamic (red curve). Given
this sequence, the transition network (BiNN) can successfully learn the governing laws
of the system, as it can do under ideal conditions. The green dash shows the forecast
z∗k+1 = F1(z∗k) given the mean z∗k of qφ.

proposed framework. If the noise level is not significantly high (r=33.3% or r=66.7%),
all the models are able to capture the dynamical characteristics of the data. When the
noise level is small, BiNN_EnKS tends to perform better than DAODEN. However, when
the data are awash with noise, BiNN_EnKS does not work well anymore. On the other
hand, DAODEN models, especially DAODEN_full work well in these cases. This may
come from the capacity of LSTM architectures to capture long-term correlations in data.

4.5.6 L96 case-study

In this section we present experiments on a L96 system. The objective is to assess how
the proposed framework applies in higher-dimensional spaces. We choose the deterministic
and the full version of DAODEN as the candidate models. The results of models trained on
noisy observations are shown in Table. 4.4. DAODEN models outperforms state-of-the-art
methods both in terms of short-term prediction and long-term topology. In Fig. 4.8 we show
the error between the true sequence and the sequence generated by the DAODEN_determ
learnt on noisy observation with r = 19.4%. Both sequences have the same starting point.
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Table 4.3 – Performance of models trained on noisy and partial L63 data. The data are
observed partially, both in time and in space, with a missing rate of 87.5%. For each index,
the best score is marked in bold and the second best score is marked in italic.

Model r
8.5% 16.7% 33.3% 66.7%

BiNN_EnKS

e4 0.129±0.081 0.143±0.065 0.350±0.204 0.973±0.649
rec 0.721±0.204 1.062±0.401 2.342±1.622 6.675±1.410
π0.5 1.873±1.034 2.146±1.048 1.616±1.042 0.290±0.153
λ1 0.801±0.016 0.782±0.012 0.304±0.147 -1.588±0.009

DAODEN_determ

e4 0.135±0.082 0.170±0.105 0.290±0.202 25.034±19.821
rec 1.300±1.525 1.448±1.332 1.985±1.474 4.222±2.191
π0.5 2.399±1.360 2.140±1.110 1.441±0.823 0.022±0.087
λ1 0.905±0.014 0.888±0.013 0.809±0.018 -0.011±0.014

DAODEN_MAP

e4 0.175±0.119 0.325±0.235 0.459±0.343 9.105±7.136
rec 1.352±0.997 1.705±1.434 1.972±1.247 3.704±1.180
π0.5 2.628±1.448 1.706±1.125 1.505±0.949 0.064±0.216
λ1 0.894±0.010 0.844±0.016 0.736±0.017 0.453±0.030

DAODEN_full

e4 0.089±0.062 0.158±0.104 0.162±0.104 0.254±0.142
rec 1.052±0.612 1.268±0.718 1.685±0.928 2.725±1.356
π0.5 2.590±1.193 1.943±0.904 1.984±0.949 1.347±1.014
λ1 0.892±0.011 0.846±0.013 0.859±0.013 0.720±0.019

Table 4.4 – Performance of models trained on noisy L96 data. For each index, the best
score is marked in bold.

Model r
19.4% 38.8%

AnDA
e4 0.582±0.106 1.140±0.174
π0.5 1.491±0.481 0.768±0.281
λ1 53.362±0.734 92.733±0.883

SINDy
e4 0.309±0.048 0.767±0.117
π0.5 0.628±0.166 0.150±0.047
λ1 1.444±0.048 1.316±0.045

BiNN
e4 0.310±0.046 0.788±0.112
π0.5 2.503±0.565 1.111±0.274
λ1 1.409±0.019 1.041±0.016

DAODEN_determ
e4 0.048±0.006 0.157±0.022
π0.5 4.790±0.960 3.178±0.779
λ1 1.624±0.022 1.601±0.023

DAODEN_full
e4 0.067±0.014 0.145±0.030
π0.5 4.076±1.084 3.146±0.962
λ1 1.543±0.026 1.348±0.020
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Figure 4.5 – Attactors generated by models trained on noisy data.
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Figure 4.6 – An example of the the first dimension of the L63 system reconstructed by the
inference module of DAODEN_determ trained on noisy and partial data. The observations
are noisy (r = 33%) and observed partially with a missing rate of 87.5%.
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Figure 4.7 – Attractors generated by models trained on noisy and partially observed data.
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Figure 4.8 – The true L96 sequence (top), the sequence generated by the model trained on
noisy data with r = 19.4% (middle) and the error between the true and the generated
sequence (bot).

4.5.7 L63s case-study

Whereas most related work is designed for ODE only, (i.e. the governing equations are
deterministic), the proposed framework accounts for stochastic perturbations, hence it can
apply to Stochastic Differential Systems (SDEs). Using the stochastic Lorenz-63 system
(L63s) presented in (Chapron et al. 2018), we illustrate in this experiment the ability of
DAODEN_full scheme to infer stochastic governing equations from noisy observation data.
We may recall that DAODEN_full scheme embeds a parametric form of the covariance of
perturbation ωt given by ((4.1)). Note that this parametrisation is consistent with the
true parametrisation for L63s (Chapron et al. 2018).

Here, we ran experiments similar to those Section 4.5.5 using L63s datasets with
an additive Gaussian noise with r = 33.3%. We then run the identification of the gov-
erning equations using both a deterministic parametrisation (e.g., BiNN_EnKS and
DAODEN_determ) and the fully-stochastic scheme DAODEN_full. For weak stochastic
perturbations (typically, γ larger than 8.0 in Eq. (3.6) in Appendix 3.2.3), deterministic
models like BiNN_EnKS or DAODEN_determ can still be able to capture the dynamics
of the system (not reported in this chapter). However, when ωt plays in important role in
controlling the large-scale statistical characteristics of the system, deterministic models fail
as illustrated in Fig. 4.9 for L63s dynamics with γ = 5.0. By contrast, the fully-stochastic
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Figure 4.9 – Several attractors generated by the true L63s models (top), by DAO-
DEN_determ (middle) and by DAODEN_full (bottom). The true L63s and DAODEN_full
system are stochastic, hence each runtime we obtain a different sequence, even with the
same initial condition. The models were trained on noisy observations with r = 33.3%.

model successfully uncover the stochastic dynamics in both situations. In Fig. 4.9 top, we
depict four different L63s trajectories from the same initial conditions. Due to the stochastic
perturbation, the trajectories may strongly differ but all show a wide spreadout within the
attractor. When considering a deterministic model (Fig. 4.9 middle), the four trajectories
are strictly similar as there is no stochastic perturbation. Besides, the deterministic model
simulates trajectories trapped on one side of the attractor, which cannot reproduce the
spread of the true model. As illustrated in Fig. 4.9 bottom, DAODEN_full scheme succeed
in capturing this stochastic patterns by embedding the stochastic factors of the system
in the dispersion matrix Qt. Using a Monte Carlo technique, as presented in Alg. 2, to
forecast the state of the dynamics, we can obtain sequences with similar characteristics to
the true L63s system.

4.5.8 Dealing with an unkown observation operator

In previous experiments, the observation operator H was known. We may also address
the situation where it is unknown. It may for instance refer to reduced-order modelling
when one looks for a lower-dimensional representation of a higher-dimensional dynamical
system.
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Algorithm 2: Generate stochastic sequence
Result: A sequence S of length N , generated by the model {F ,MLP var_dyn},

starting form the initial condition x0.
Inputs: N , F , MLP var_dyn, x0;
x = x0;
S = list();
t = 0;
while t < N do

µ = F1(x);
ddyn = MLP var_dyn(x);
x ∼ N (µ,ddynI);
S.append(x);

As case-study, we consider an experimental setting with Lorenz-63 dynamics similar
to (Champion et al. 2019). The 128-dimensional observation space derives from a 3-
dimensional space, where the system is governed by L63 ODE, according to a polynomial
of zt and z3

t with six spatial modes of Legendre coefficients (for details, see (Champion
et al. 2019)). Whereas noise-free cases were considered in (Champion et al. 2019), we
report here experiments with a Gaussian additive noise with r=19.4%. Fig. 4.10 shows
the observations in a high-dimensional space. The inference scheme in (Champion et al.
2019) is an NN-based encoder, this architecture does not take into account the sequential
correlations in the data, hence when the observations are noisy, it can not apply (because
p(zt|xt) is intractable). Moreover, (Champion et al. 2019) supposes that the time derivative
dxt
dt

is observed. This assumption may not be true for many real-life systems. Our model,
on the other hand, uses a state space assimilation formulation. The inference scheme in our
model is a sequential model, and we do not need the time derivative of the data, though it
could be accounted for in the observation model.

The unknown observation operator H was parameterised by the same MLP architecture
as the one used in (Champion et al. 2019). We run this experiment with DAODEN_determ.
Fig. 4.11 shows that the proposed framework successfully captures the low-dimensional
attractor of the observed high-dimensional observation sequences. This is further supported
by the first Lyapunov exponent of the learnt model λ1 = 0.92, which is close to the true
value (0.91). Because there are several possible solutions for this problem (any affine
transformation of the original L63 is a solution), the coordinates of the learnt system are
different, however, the topology is well captured.
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Figure 4.10 – Higher-dimensional Legendre observations governed by lower-dimensional
L63 dynamics. Following (Champion et al. 2019), the observations (top right) are in a
128-dimensional space, while L63 dynamics (bottom left) are in a 3-dimensional space. The
observation operator involves a non-linear mapping according to Legendre polynomials
(Champion et al. 2019).
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Figure 4.11 – Low-dimensional attractor generated by the proposed model trained from
noisy higher-dimensional Legendre observations of L63 dynamics. This attractor recovers
the topology of L63 dynamics. We let the reader refer to the main text for details on this
experiment.
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4.6 Conclusions

This chapter introduces a novel deep learning scheme for the identification of governing
equations of a given system from noisy and partial observation series. We combine a
Bayesian formulation of the data assimilation with state-of-the-art deep learning architec-
tures. Compared with related work (Brajard et al. 2019; Bocquet et al. 2020), we account
for stochastic dynamics rather than only deterministic ones and derive an end-to-end
architecture using a variational deep learning model, which fully conforms to the state
space formulation considered in data assimilation. Through numerical experiments for
chaotic and stochastic dynamics, we have demonstrated that we can extend the obser-
vation configurations where we can recover hidden governing dynamics from noisy and
partial data w.r.t. the state-of-the-art, including for high-dimensional systems governed by
lower-dimensional dynamics.

Beyond the generalisation of previous work through a variational Bayesian formulation,
the proposed framework involves two key contributions w.r.t. state-of-the-art data assimi-
lation schemes. We first show that neural network architectures bring a new means for
the parametrisation of both the dynamical models and the inference scheme. Especially,
our experiments support the relevance of LSTM-based architectures as alternatives to
state-of-the-art data assimilation schemes such as Ensemble Kalman methods (Evensen
and Leeuwen 2000). Future work shall further explore these aspects and could benefit
from the resulting end-to-end architecture to improve reconstruction performance (Fablet,
Drumetz, et al. 2020).

For deep learning practitioners, our experiments point out that assimilation schemes
and random n-step-ahead forecasting can be considered as regularisation techniques to
prevent overfitting. We have also shown that the stochastic implementation of the proposed
framework can capture characteristics of stochastic dynamical systems from noisy data.
These results open new research avenues for dealing with real dynamical systems, for which
the stochastic perturbations often play a significant role in driving long-term patterns.

From a practical point of view, the results showed in this paper suggests that although
some models might be able to discover the governing equations of an unknown dynamical
system when the data are not corrupted, one should incorporate those models with data
assimilation schemes to account for that fact that the model may contain error, and the
data are not perfect. Other results also support the use of NN-based method for the
identification of dynamical systems.
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Oh, I’m sailing away, my own true love.
I’m sailing away in the morning.
Is there something I can send you from across the sea?
From the place where I’ll be landing?

Bob Dylan

Chapter 5

Introduction to
the Automatic Identification System

In the world of a globalised economy, maritime surveillance is a vital demand. Currently
being the most efficient long-distance transporting method, sea transport is carrying about
90% of the world trade (IMO 2020). With the persistent growth of maritime traffic, safety
and security are key issues. Besides, the real-time delivery of maritime situation maps is
also necessary for a variety of activities: fishing activities control, smuggling detection,
EEZ intrusion detection, transshipment detection,maritime pollution monitoring, etc.
Among many other technologies that have been developed, the automatic identification
system (AIS) is one of the most important sources on information. In this chapter, we
will introduce what AIS is, the potential of AIS for maritime domain awareness and
challenges working with AIS. This chapter provides the context for the work in Chapter 6
and Chapter 7.

5.1 The automatic identification system

The automatic identification system (AIS) is an identifying and locating system
installed on board of vessels to self-report the static information of the ship and the
dynamic information of the voyage. According the International Maritime Organisation’s
(IMO) International Convention for the Safety of Life at Sea (SOLAS), (SOLAS 1974), all
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international vessels with 300 or more gross tonnage, and all passenger ships regardless of
size have to equip AIS transceivers.

AIS transmits the following information:

— The static information of the vessel (sent every 6 minutes and on request):

+ The Maritime Mobile Service Identity (MMSI) number, which is a nine-digit
number for identifying a ship. All AIS electronic devices on board of a vessel
use one MMSI, this number is assigned by the appropriate authorities in the
country of registration, and can be recognised internationally. The format of
MMSI numbers is MIDXXXXXX, where the first three digits are the maritime
identification digits (MID), identifying the the nationality, and the last six
digits are the unique identification of the vessel;

+ The International Maritime Organisation (IMO) number, assigned by the to the
hull of each ship. The format of IMO numbers is three letters “IMO” followed by
a seven-digit unique number. While the MMSI of a vessel can be changed (when
the vessel is registered with another country for example), the IMO number
is permanent. However, AIS is using the MMSI, not the IMO number, as the
unique identification of a vessel;

+ The name and the call sign of the vessel;

+ The length and the beam;

+ The type of the vessels;

+ etc.

— The voyage related information (sent every 6 minutes, when data is changed, or
on request)

+ The vessel’s draught;

+ The type of cargo;

+ The destination and the estimated time of arrival (ETA);

+ etc.

— The dynamic information (every two seconds to a few minutes):

+ The precise current position (longitude, latitude) of the vessel;

+ The current speed over ground (SOG);

+ The current course over ground (COG) and the heading of the vessel.
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+ The rate of turn (ROT) (if available);

+ The navigation status;

+ etc.

— Short safety related messages: free format short text messages with important
navigational safety related information. are shown in an extra window.

The information above is broadcast in the very high frequency (VHF) mobile
maritime band. AIS allows vessels to detect and display other vessels in their vicinity
and helps maritime authorities to track vessel movements in order to monitor maritime
traffic. The system was developed in the 1990s, and was originally designed as a high
intensity, short-range network, meaning vessels send their AIS signal to other AIS receivers
within the VHF range (about 10–20 nautical miles). For this reason, it could be used
terrestrially only (called T-AIS). However, as maritime international transport and trading
has become more and more popular, AIS has evolved to be detected by satellites (since
2008). Satellite-based AIS, called S-AIS, uses time-division multiple access (TDMA)
radio access to transmit signal. S-AIS, in complement with T-AIS, provide relatively full
coverage of the globe, as shown in Figure 5.1.

5.2 AIS applications

The original purpose of AIS is collision avoidance. However, thanks to its information
richness, AIS has been exploited in a lot of applications (Iphar et al. 2019):

— Collision avoidance: at sea, information about the position and the movement of
others vessels in the vicinity is crucial for vessels to avoid collision. AIS can be used,
in complement with other sources of information such as visual observation, audio
exchanges or radar, to give a better real time picture of the sea situation. Moreover,
AIS has also integrated a collision alarm system that predicts the movements of
vessels based on the current positions and rises an alarm if there is possibly a collision
will happen.

— Fishing control: about 31 percent of the seafood flowing through the global market
is illegal, unreported or unregulated; and at least 50 percent of the amount of fish
being taken has been underestimated (Agnew et al. 2009). Fishing control, therefore,
becomes crucial. Many countries, including the United States, EU member, etc. have
used AIS to monitor fishing activities along their coast line. The positions of the
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Figure 5.1 – An AIS density map in a global scale (image from MarineTraffic).

ships are relayed back to the government agencies. Any suspicious behavior detected
such as the presence of a fishing ship in a non-fishing region, the discontinuation of
the AIS track of a vessel, etc. will raise an alarm then the law enforcement vessels
will examine those ships.

— Maritime security: the main strength of AIS in maritime domain awareness is the
capability of identifying a threat as early and as distant as possible. As AIS provides
the precise position of vessels, it can be used to detect exclusive economic zone (EEZ)
intrusion or potential dangerous actions at the beginning, gives the coast guards
enough time to find the optimal solution and to prevent the threat from happening.

— Fleet and cargo tracking, route planning: thanks to AIS, vessels now can know
exactly where they are, whap happen in the vicinity, what is the optimal energy
consumption rout, the estimated time of arrival.

— Aids to navigation: AIS aids to navigation stations, acting as a modern lighthouse,
can broadcast their positions and some additional information (weather, see state,
etc.) to help vessels navigate safely. This information is useful for safety navigation.
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5.3 Challenges working with AIS

Although in theory, AIS is a rich, fine-grained source of information of maritime traffic
in a global scale, exploiting AIS at its full potential is challenging:

— Every day, there are more than 500 millions AIS messages transmitted (Perobelli
2016). This amount of data quickly overwhelms human capacity to process AIS data
manually (see Chapter 6 and Chapter 7).

— AIS data are unreliable. Some attributes in AIS, such as the navigation status,
destination, etc. are set manually. Most of the time, they are (intentionally or
unintentionally) incorrect. Even the attributes that are measured automatically by
the sensors such as the positions (latitude, longitude), the SOG, the COG, etc. can
also be spoofed (Iphar et al. 2020).

— AIS data are noisy and are sampled irregularly. Noise may come from the errors in
the measurements of the sensors, or from interference in the transmitting channel,
or because the data are spoofed. Usually, the interval between two consecutive AIS
messages is irregular.

— AIS data can be interrupted, because the vessel enter a zone not covered by AIS, or
because the transponders are switched off intentionally.

— No metadata are available for AIS.

In the next chapter, we will present a model that tackles those problems. Specifically,
in Chapter 6, we introduce a multitask deep learning architecture that can handle massive,
noisy and irregularly sampled AIS data to perform important maritime traffic surveillance
tasks such as trajectory reconstruction, vessel type identification, anomaly detection, etc.
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So we beat on, boats against the current, borne
back ceaselessly into the past.

F. Scott Fitzgerald

Chapter 6

MultitaskAIS

1 2 As presented above, in a world of global trading, maritime safety, security and
efficiency are crucial issues. In this chapter, we present our work under the context of
SESAME initiative 3, which aims at developing new solutions for management and analysis
of maritime satellite data. Specifically, we propose a multi-task deep learning framework
for vessel monitoring using Automatic Identification System (AIS) data streams. We
combine recurrent neural networks with latent variable modelling and an embedding of
AIS messages to a new representation space to jointly address key issues to be dealt with
when considering AIS data streams: massive amount of streaming data, noisy data and
irregular time-sampling. We demonstrate the relevance of the proposed deep learning
framework on real AIS datasets for a three-task setting, namely trajectory reconstruction,
anomaly detection and vessel type identification.

1. This chapter is a modified version of paper (Duong Nguyen, Vadaine, et al. 2018)
2. This work was supported by public funds (Ministère de l’Education Nationale, de l’Enseignement

Supérieur et de la Recherche, FEDER, Région Bretagne, Conseil Général du Finistère, Brest Métropole) and
by Institut Mines Télécom, received in the framework of the VIGISAT program managed by “Groupement
Bretagne Télédétection” (BreTel). It benefited from HPC and GPU resources from Azure (Microsoft EU
Ocean awards) and from GENCI-IDRIS (Grant 2020-101030).

We acknowledge the support of DGA (Direction Générale de l’Armement) and ANR (French Agence
Nationale de la Recherche) under reference ANR-16-ASTR-0026 (SESAME initiative), grants Melody and
OceaniX.

We also would like to thank MarineCadastre for the Gulf of Mexico AIS dataset and Collecte
Localisation Satellites as well as Erwan Guegueniat for the Brittany AIS dataset.

3. http://recherche.imt-atlantique.fr/sesame
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6.1 Introduction

Over the last decades, the development of terrestrial networks and satellite constellations
of Automatic Identification System (AIS) has opened a new era in maritime traffic
surveillance. Every day, AIS provides on a global scale hundreds of millions of messages
(Perobelli 2016), which contain ships’ identifier, their Global Positioning System (GPS)
coordinates, their speed, course, etc. The potential of this massive amount of data is clearly
of interest if tools and models provide means to efficiently extract, detect and analyze
relevant information from these data streams. However, current operational systems, which
strongly rely on human experts, can only deal with a limited fraction of AIS data.

Thus, the development of AI-based systems is a critical challenge. Beyond the volume
of streaming data to be dealt with, there are two other key issues make it difficult to
design these types of systems: noise patterns exhibited by AIS data and the irregular
time-sampling.

Both are very common in AIS and make the direct application of state-of-the-art
supervised machine learning models, including deep learning ones poorly adapted. This
chapter addresses these issues and explores deep learning models and architectures, and
more specifically Recurrent Neural Networks (RNNs) to develop an automatic system that
can process and detect, extract and characterise useful information in AIS data streams
for maritime surveillance. More specifically, our key contributions are three-fold:

— The design of a novel big-data-compliant unsupervised architecture which automati-
cally learns and extracts useful information from noisy and partial AIS data streams
on a regional scale;

— The joint exploitation of this architecture as a basis for specific tasks using mathematically-
sound statistical models, namely trajectory reconstruction and forecasting, maritime
route estimation, vessel type identification, detection of abnormal vessel behaviours,
etc.;

— The demonstration of the proposed approach’s relevance on real regional datasets off
Brittany coast and in the Gulf of Mexico, significantly more complex than case-studies
addressed in previous work.

This chapter is organised as follows: in Section 6.2, we review the state-of-the-art
methods in AIS-based maritime surveillance. The proposed method is detailed in Section
6.3. We present experiments in Section 6.4, and further discuss the main features and
performance of our approach in Section 6.5. Finally, conclusions and perspectives for future
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work are presented in Section 6.6.

6.2 Related work

In this section, we review the related works in the field of AIS-based maritime traffic
surveillance, especially regarding trajectory reconstruction and forecasting and anomaly
detection.

Trajectory reconstruction and forecasting: For simplicity purpose, we use here
the term “trajectory reconstruction” to refer to both trajectory reconstruction and trajec-
tory forecasting. Early efforts for trajectory reconstruction include linear interpolation,
curvilinear interpolation (Best et al. 1997) and their improvements (Perera et al. 2012;
Schubert et al. 2008). They rely on a physical model of the movement xk+1 = xk + ∆t ∗x′

k

(where xk is the position of vessel at the time k, x′
k is the deviation of xk, usually the

SOG and the COG). More sophisticated methods suppose that vessel trajectories follow
a distribution and learn it from historical data (Millefiori et al. 2016; G. Pallotta et al.
2014). Currently, state-of-the-art methods for trajectory reconstruction (F. Mazzarella,
V. F. Arguedas, et al. 2015; Hexeberg et al. 2017; Coscia et al. 2018) use the following
typical three-step approach: i) the first step involves a clustering method, e.g. TRACLUS
(Lee et al. 2007) or TREAD (Giuliana Pallotta et al. 2013) to cluster historical motion
data into route patterns, ii) the second one assigns the vessel to be processed to one of
these clusters iii) the third one interpolates or predicts the vessel trajectory based on the
route pattern of the assigned cluster.

Anomaly detection: Some models detect abnormal behaviours by defining them
explicitly (Holst et al. 2016; Gaspar et al. 2016). These types of models are usually limited
themselves by their own definitions, and can not handle all the complex phenomenons
observed at sea. To overcome those drawbacks, other methods detect anomalies implicitly
by creating normalcy models, then consider trajectories or trajectory segments that do
not suit these models as abnormal. In (Rhodes et al. 2005), Rhodes divided the map
into small zones and used Normalcy Box to detect abnormal vessel speed in each zone.
gaussian mixture models (GMMs), kernel density estimation (KDE) were explored
in (Laxhammar 2008; Ristic et al. 2008). More sophisticated methods have used time series
analysis techniques, such as Gaussian process (Kowalska et al. 2012; Will et al. 2011),
or Bayesian networks (BNs) (Johansson et al. 2007; Mascaro et al. 2014) to capture
the sequential structure of AIS streams. All these models share the same basic idea: in a
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small region, vessels should perform similar behaviours.
All models and approaches reviewed for trajectory reconstruction and anomaly detection

present three main drawbacks:

— They depend on strong priors and can hardly capture all the heterogeneous charac-
teristics of AIS data as well as the varieties of vessels’ behaviours. Near-far, fast-slow,
etc. are relative definitions and are difficult to be implemented. Almost all current
models work only for cargo and tanker vessels on specific high-traffic maritime routes.
However, more sophisticated models and relaxed assumptions are required to address
the range of vessel types and vessel behaviours revealed by AIS streams on a regional
or global scale.

— Most if not all methods exploit at some point a clustering. They typically assume
that in specific areas, all vessels tend to perform similar behaviours, and then use
clustering methods (Kmeans, DBSCAN, etc.) to find those behaviours. For example,
for trajectory reconstruction issues, each cluster is a maritime route (Giuliana Pallotta
et al. 2013); in anomaly detection, each cluster is a speed mode (G. Pallotta et
al. 2014; Rhodes et al. 2005), etc. We believe that such clustering steps result in
information losses. By contrast, we argue that continuous latent states should be
preferred to address the complexity of AIS data streams.

— Current methods do not explicitly address the irregular time-sampling of AIS streams.
Non-sequential methods (Rhodes et al. 2005) do not take it into account and
sequential ones (F. Mazzarella, V. F. Arguedas, et al. 2015) assume they are provided
with regularly-sampled streams, which is not true or may result in the creation of
artificial, possibly erroneous AIS positions if interpolation techniques are used as a
pre-processing step.

As detailed hereafter, we develop a novel multi-task deep learning framework to address
these issues and demonstrate its relevance from experiments on a real AIS dataset on a
regional scale.

6.3 Proposed multi-task VRNN model for AIS data

As sketched in Fig. 6.1, we propose a general multi-task neural-network-based model
for the analysis of AIS data streams. Received AIS messages are regarded as irregular
noisy observations of the true hidden states - called regimes; these regimes themselves
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may correspond to specific activities (e.g. under way using engine, at anchor, fishing, etc.).
The key component of our model is the Embedding block, which converts noisy and
irregularly-sampled AIS data to consistent and regularly-sampled hidden regimes. This
Embedding block relies on a VRNN (J. Chung et al. 2015) and operates at a 10-minute time
scale. Higher-level blocks are task-specific submodels, addressing at different time-scales
(e.g. daily, monthly,...) the detection of abnormal behaviours, the automatic identification
of vessel types, vessel position prediction, the identification of maritime routes, etc.

6.3.1 A latent variable model for vessel behaviours

Through a VRNN architecture (see Section 2.4.2 for details), we introduce hidden
regimes (latent variables zk of the VRNN) as a data representation 4 that captures the true
maneuvers of vessels (natural clustering). Hidden regimes can be regarded as the “roots”
of AIS messages. They govern how the vessel moves. From the point of view of higher
levels (task-specific layers), hidden regimes provide the necessary information for their task
(hierarchical organisation of explanatory factors and shared factors across tasks). They
disentangle the underlying information of AIS data (simplicity of factors dependencies). For
example, saying “this vessel is performing a fishing maneuver” is much more informative
than saying “the speed of this vessel is high”.

It is important to note that the hidden regimes are not clusters of AIS messages,
because the act of assigning data to group would cause information loss. We share the same
idea with (Diederik P. Kingma and Welling 2013), that latent variables (hidden regimes in
this case) are continuous and there are no simple interpretations of these dimensions.

The introduction of hidden regimes brings us two key benefits: an efficient encoding
of AIS datasets and a regularly-sampled sequential representation. Regarding the first
aspect, state-of-the-art systems such as TREAD (Giuliana Pallotta et al. 2013) have to
store all the AIS messages in the training set, which is updated incrementally new AIS
messages. Therefore, data volume to be handled for the test phase increases rather linearly
with the area of the region of interest (ROI) and the duration of the considered time
period. This may prevent such systems from scaling up to regional or global scales. By
contrast, once the VRNN is trained, all the knowledge gained from a given AIS dataset is
encoded by the characteristics of the hidden regimes, more precisely the fitted conditional
distributions pθ(zk|x0:k−1, z0:k−1) and pθ(xk|x0:k−1, z0:k). Therefore, for the application of

4. Here we use the criteria defined in (Y. Bengio et al. 2013) to evaluate this representation, readers
are encouraged to read (Y. Bengio et al. 2013) for additional information.
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Figure 6.1 – Proposed VRNN architecture.

a trained model, there is no need to access the training dataset. This dataset may only be
of interest to retrain or fine-tune a given model. It may be noted that the complexity of
the representation of the hidden regimes (i.e., the associated number of parameters) does
not depend on the training data volume. For instance, in the considered experiments, for
a dataset of more than 2.108 AIS messages (each message contains several attributes), the
fitted hidden regime representation involves about 5.106 parameters. The second important
feature is the mapping of an input space consisting of a noisy irregularly-sampled time
series to a novel regularly-sampled sequential representation which naturally accounts
for the different sources of uncertainties exhibited by AIS datasets. Hence, the proposed
architecture embeds somehow a time regularisation of the input data and does not require
the definition of ad hoc denoising and interpolation pre-processing steps, which prove
difficult due to the variabilities to be dealt with (i.e., duration of the missing data segments,
noise patterns, inhomogeneous space-time variabilities, etc.). From a mathematical point of
view, the considered model naturally embeds these issues through the time propagation of
the approximate posterior distribution qφ(zk|x0:k, z0:k−1). Overall, this regularly-sampled
sequential representation makes feasible the design of classic architectures on top of the
embedding layer to deal with task-specific issues as detailed in Sections 6.3.4, 6.3.5 and
6.3.6.
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Figure 6.2 – “Four-hot” vector.

6.3.2 “Four-hot” representation of AIS messages

Instead of presenting AIS messages directly by their 4-D real-value vector: like methods
in the literature (G. Pallotta et al. 2014):

xk = [latk, lonk, SOGk, COGk]T , (6.1)

we apply a bucketing technique to introduce a novel representation of AIS data: the
“four-hot encoding” (Fig. 6.2). This representation, inspired by the one-hot encoding in
language modelling, is created by concatenating the one-hot vectors of 4 attributes in
AIS message: latitude coordinate, longitude coordinate, SOG and COG. To create the
one-hot vector of an attribute, we simply divide the entire value range of this attribute
into Nattribute_i equal-width bins.

The “four-hot encoding” not only brings us the benefits of bucketised representation
but also provides a more structured representation to learn trajectory spatial patterns
as illustrated in Section 6.5. Our four-hot representation shares similarities with (Jiang
et al. 2017). However, in (Jiang et al. 2017), the authors explained their representation
as a transformation from feature space to semantic space based on the smoothness prior
assumption. They argued that the continuous values of features did not matter, the
explanatory factors were the semantic interpretation presented in their discrete vector of
these values. We, on the other hand, consider the “four-hot encoding” as a presentation
that can i) accelerate the calculation of neural networks (similar to one-hot encoding), ii)
disentangle some explanatory factors of input features (see Section 6.5). The semantic
space in our architecture is the space of hidden regimes.

The implicit reduction of the precision of the AIS position and velocity features may
be regarded as a drawback of the four-hot representation. We however argue that for the
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targeted applications there is no need for the embedding block to provide precise numerical
features. For example, a speed of 12 knots and a speed of 12.1 knots do not mean any
difference in our context.

6.3.3 Embedding block

The embedding block is a VRNN (J. Chung et al. 2015), where xk is the “four-hot
encoding” of AIS message and zk is the concatenation of the hidden state of the network
and the latent variable at the time k. This layer works at a 10-minute time scale (i.e.
we downsample AIS data stream to a resolution of 10 minutes) and learns the distri-
bution pθ(x0:k) (via the prior distribution pθ(zk|x0:k−1, z0:k−1), the emission distribution
pθ(xk|x0:k−1, z0:k) and the approximate posterior distribution qφ(zk|x0:k, z0:k−1)).

After being trained, the embedding layer consistently generates regularly time-sampled
hidden regime series. This series is used as input to task-specific submodels as sketched in
Fig.6.1.

6.3.4 Trajectory reconstruction submodel

The Embedding block is naturally a generative model, so the construction of a vessel
trajectory estimator/predictor on top of this block is relatively direct. We follow the
philosophy of (F. Mazzarella, V. F. Arguedas, et al. 2015). In this approach, one infers
maritime contextual information, which is used to enhance the prediction/estimation. The
contextual information in (F. Mazzarella, V. F. Arguedas, et al. 2015) was inferred by
TREAD (Giuliana Pallotta et al. 2013), which means that each vessel would be assigned
to a predefined route. By contrast, we avoid such a hard assignment to a predefined
behavioural cluster. We benefit from the richer contextual representation inferred by the
Embedding block. Formally, the proposed trajectory reconstruction model is stated as
the inference of the posterior qφ(zk|x0:k, z0:k−1) and the sampling-resampling from the
distribution pθ(xk+1|x0:k, z0:k) =

∫
pθ(xk+1|x0:k, z0:k+1)pθ(zk+1|x0:k, z0:k)dzk+1 (all learnt

by the Embedding block) using a particle filter (Maddison et al. 2017).

6.3.5 Abnormal behaviour detection submodel

The second specific task on top of the Embedding block is the detection of abnormal
behaviours. It comes to define a normalcy model to detect the (unlikely) anomalies w.r.t.
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this model. As a direct by-product of the trained Embedding block, we can evaluate the
likelihood pθ(x0:k) of any input AIS sequence x0:k using a marginalisation w.r.t. the hidden
regimes. A series of AIS messages with a very low likelihood w.r.t. a given threshold may
be regarded as being unlikely for model pθ(x0:k) and hence as abnormal.

One may however consider context-aware detection rules. For example on maritime
routes, vessels’ behaviours are roughly identical, which leads to high values for the likelihood
pθ(x0:k). In other regions, the variety of vessel types and activities results in much more
complex mixtures of behaviours and much lower likelihood values for the normalcy model.
The selection of a global threshold over an entire region may not be as appropriate. To
address these issues, we introduce an a contrario detector (Ammar et al. 2013) 5. It works
at a 4-hour time scale and addresses the early detection of abnormal vessel behaviours. We
divide the map into small cells Ci. In each cell, we calculate the mean mi and the standard
deviation stdi of the log pθ(xk|x0:k−1, z0:k−1)|xk∈Ci using the tracks in the validation set.
Any evolution pθ(xk|x0:k−1, z0:k−1) at timestep k of an AIS track will be considered as
an abnormal evolution if its log-likelihood is much lower than the distribution of other
log-likelihoods in the same cell. The a contrario detection detects if an arbitrary segment
is abnormal based on the number of abnormal evolutions in this segment and its length.

6.3.6 Vessel type identification submodel

The third task addressed by our model is the identification of the vessel type from its
AIS-derived trajectory data. It may be noted that the vessel type should be one of the
attributes included in AIS messages. However, not all vessels send their static messages.
Some may even send on purpose a false vessel type in AIS messages. A Vessel type
identification submodel is then an important tool to detect suspicious behaviours.

Different types of vessels usually perform specific behaviours, which may differ among
others in terms of geographical zones, speed patterns, etc. For example, tankers normally
follow maritime routes (usually straight lines between two maritime waypoints (Giuliana
Pallotta et al. 2013)), their average speed is relatively low, about 12-15 knots, whereas
passenger ships have relatively high average speed, about 20-25 knots. If a vessel declares
itself as type “A” but performs a maneuver of type “B”, it is likely that it may carry out
illegal activities.

In this study, we design a Vessel type identification submodel at a 1-day time scale.

5. We let the reader refer to (Ammar et al. 2013) for a detailed description of the a contrario setting.
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This submodel explores a Convolutional Neural Network (CNN). The input of this CNN
is a HxD matrix, whose columns are the hidden regimes (dimension H), and D is the
number of timesteps in one day (144 in this case). Because the hidden regime is regularly
time-sampled, this configuration applies directly.

6.4 Experiments and Results

We implemented the proposed framework for a three-task model, addressing respectively
vessel trajectory reconstruction, abnormal behaviour detection and vessel type identification,
in the Gulf of Mexico and the abnormal behaviour detection off Brittany coast in the Ushant
zone 6. The Ushant water is the entrance to English channel, this region is interesting to
maritime surveillance because of its separation scheme and the heavy traffic there. The
Gulf of Mexico is relatively large compared to the case-study regions considered in previous
studies (Giuliana Pallotta et al. 2013; Laxhammar 2008; Kowalska et al. 2012). This region
involves multiple vessel types and activities of vessels. It comprises big ports, fishing zones,
oil platforms and dense maritime routes. Overall we considered AIS data from January
to March 2017 off Brittany coast in the Ushant zone (2,021,236 AIS messages) and from
January to March 2014 in the Gulf of Mexico (180,344,817 AIS messages).

6.4.1 Preprocessing

For the pre-processing step, first, infeasible speed or infeasible position messages were
removed from the set. To handle the problem of very long sequence when working with
RNNs, we split vessels’ tracks into subtracks of from 4 to 24 hours. From now on, in this
chapter, vessel tracks refer to such subtracks. We also removed tracks whose speed is
smaller than 0.1 knots for more than 80% of the time (at anchor or moored vessels).

One objective of the proposed architecture is to deal with irregularly-sampled data.
However, we need regularly sampled data to train the model first. In a layman’s term, the
Embedding block must see how regularly sampled AIS tracks should be and learn their
characteristics, after that (after being trained), it with generate regularly-sampled data
from irregularly-sampled ones. Therefore, for the training set, we only chose tracks whose
the maximum time interval between two successive received AIS messages is 1 hour, then
used constant velocity model to create regularly time-sampled AIS tracks at 10-minute

6. The Tensorflow code and the datasets are available at https://github.com/dnguyengithub/MultitaskAIS
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Table 6.1 – Log likelihoods of the Embedding block with different dimension settings (Gulf
of Mexico dataset).

Hidden regime Number of Log likelihood Log likelihood
dimension parameters on training set on test set

200 1 605 402 -7.592710 -7.678684
400 5 129 202 -6.557936 -7.520255
500 7 611 102 -6.130078 -7.690255

time scale. By doing this, the intervals between two successive AIS messages are small
enough that the errors in the estimation of the constant velocity model do not effect our
model too much.

6.4.2 Embedding block calibration

We implemented the Embedding block by a VRNN whose the RNN is a single-layer
LSTM, distributions pθ(xk|zk,hk), pθ(zk|hk), qφ(zk|xk,hk) are fully connected networks
with one hidden layer of the same size of the LSTM’s. pθ(xk|zk,hk) is binomial, pθ(zk|hk)
and qφ(zk|xk,hk) are Gaussians. The network was trained with stochastic gradient descent
using Adam optimiser (Diederik P. Kingma and Ba 2015), learning rate of 0.0003.

There is a trade-off between the resolutions of AIS features and the size of the network
when choosing the length of the “four-hot encoding”. If the resolutions are too high, the
“four-hot” vector will be too long, requires a big hardware memory and computational
power; if the resolutions are too low, we lose information. We set here the resolution of
the latitude and longitude coordinate at about 1 km, the resolution of SOG at 1 knot and
the resolution of COG at 5°. These resolutions are fine enough for almost all the maritime
safety, security and efficiency tasks. For example, with this setting, the uncertainty zone
of vessel’s position is about 1kmx1km, small enough for position-related tasks.

The choice of the dimension of hidden regime effects the modelling capacity of the
Embedding block. As shown in Table 6.1, if the latent size is too small, the model can not
capture all the variations of AIS data. In contrast, if the latent size is too big, the model
becomes too bulky and overfitting. For the rest of this chapter, we set the latent size at
400 for tests on the Gulf of Mexico dataset and at 100 for tests on the Brittany dataset
(Ushant water).
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Figure 6.3 – Trajectory reconstruction examples using the proposed model. Blue dots:
received AIS messages; red dots: missing AIS messages; red lines: trajectories reconstructed
by our model.

6.4.3 Vessel trajectory construction

We deleted a 2-hour segment from each AIS track then used the Vessel trajectory
construction layer to reconstruct this segment. The maritime contextual information
learnt by the Embedding block gave the model the ability to reconstruct some complex
trajectories like those on the top right and bottom left of Fig. 6.3. These constructions
can not be achieved by interpolation methods such as linear or spline interpolation.

The performance of this layer depends strongly on the maritime contextual information
extracted by the Embedding layer. If the extraction is good, the model can predict
complicated patterns like those shown in Fig. 6.3. However, in zones whose the vessel
density is low, or in zones where the behaviours of vessels are too complicated for the
Embedding layer to learn, the construction layer completely fails to estimate the positions
of vessels. In these cases, we use constant velocity method. The switch between particle
method and constant velocity method is automatic, because the model knows when the
Embedding layer can not extract the maritime contextual information (based on the value
of the probability pθ(xk|x0:k−1, z0:k−1)).

6.4.4 Abnormal behaviour detection

We divided each dataset into 3 sets: a training set to train the model, a validation
set to calculate the the mean and std of the log probability, and a test set to test the
anomaly detection. The proportion of the 3 sets was 60/30/10. Although the training sets
were used for learning the normalcy model, we did not do data cleaning, i.e. the training
sets themselves may contain abnormal trajectories. Our framework relies on probabilistic
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Figure 6.4 – Detection of abnormal behaviours using global thresholding (Gulf of Mexico
dataset). Blue: tracks in the training set (which itself may contain abnormal tracks); red:
abnormal tracks detected in the test set. We highlight four examples: a track with an
abnormal speed pattern (A) ii), two tracks with abnormal trajectory shapes from others’
in the same region (B,C) iii) a track in a low-density area (abnormal zone) (D).

models and implicitly assumes that abnormal trajectories are rare events, that is to say
that the probability mass at these trajectories would be very low.

We report the outcome of the anomaly detection submodel when using global threshold
detection on the Gulf of Mexico dataset in Fig. 6.4. A track will be detected as abnormal if
its shape is unusual, its speed pattern is rare, or it appears in an abnormal region, etc. Each
type of these anomalies corresponds to a signature of trajectory data, like geographical
pattern, geometric pattern, speed and course distribution, etc. These signatures will be
presented in Section 6.5.

For the a contrario detection, we split the ROI into small cells of 10kmx10km. The
maps of the mean and the standard deviation of the log-likelihood on the Ushant dataset
are shown in Fig. 6.5. We can see that the log-likelihood strongly depends on geographical
region, global thresholding would not work. On the mean map, there are some lines/curves
of high value, they are the maritime routes. On the maritime routes, the vessel density is
high, vessels performs simple and similar maneuvers, so the model can learn these patterns
easily. On the other hand, in regions where the vessel density is low, or the behaviours of
vessels are too complicated, the identification of abnormal behaviours appears more complex
and may require larger training datasets. Detection examples and their corresponding
interpretation are shown in Fig. 6.6.

To evaluate the consistency of the a contrario model, we tested this detector for
simulated abnormal examples. We translated a normal track out of maritime routes to
simulate the divergence from a given route (zone (A)) and translated circle-shaped tracks in
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(a) Mean of the log-likelihood in each cell (b) Std of log-likelihood in each cell

Figure 6.5 – Maps of the mean and the std of the log-likelihood of the trained model in
each cell (Brittany dataset).

zone (B) to zone (C) in Fig. 6.7 to verify that some specific patterns of vessels’ maneuvers
should appear in their specific zones. Experiment shows that the model can detect the
divergences if the distance to the maritime route is far enough (10km) and it detects 9
over 13 circle-shaped tracks in zone (C).

In comparison to methods in the literature, our method has several benefits:

— It can detect abnormal patterns that are detected in state-of-the-art methods, such
as the double-U-turn detection reported in Fig. 6.6f and also illustrated in (Giuliana
Pallotta et al. 2013).

— Methods like those in (Giuliana Pallotta et al. 2013) and (Mascaro et al. 2014) first
assign a track to a maritime route, then compare the similarity between this track
with the those in the corresponding route to decide whether this track is normal.
However, it is very difficult to link tracks like the one in Fig. 6.6d to a maritime route.
Therefore, our model which does not require the prior identification of maritime
routes appears more generic and robust.

— Our model relaxes strong assumptions. In (Giuliana Pallotta et al. 2013), the authors
assumed that the probability of observing a feature vector ([lonk, latk, SOGk, COGk]T

in their case) of a vessel at the time k, given its position and assigned route was
independent. This assumption neglects the fact that AIS streams provide sequential
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6 – Abnormal tracks detected by the proposed a contrario model (Brittany
dataset). (a) All tracks detected in the test set; blue: tracks in the training set; green:
normal tracks in the test set; other colors: abnormal tracks in the test set. (b) Abnormal
U-turn. (c-d) Divergences from maritime route. (e) Abnormal route change. (f) Abnormal
double-U-turn.
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Figure 6.7 – Example of the a contrario anomaly detection on simulated dataset (Gulf
of Mexico dataset). The circle-shaped tracks in zones (C) were simulated by translating
from (B); (A) is a detection of a divergence from maritime route.

data, feature vectors of a vessel’s track are related to this vessel and interdependent.
For instance, for such approaches the two branches of the “U” in Fig. 6.6b are normal.

— Methods in the literature do not deal with irregularly time-sampling problem. For
example, model in (Giuliana Pallotta et al. 2013) used sliding window to avoid
incomplete tracks, and processed only the most recent points of the partially observed
tracks. The vessel in Fig. 6.6b can outsmart this model by switching off its AIS
transponder when performing the U-turn (which lasts about 30 minutes).

— In a complicated region like the Gulf of Mexico, all the methods based on DBSCAN
(F. Mazzarella, V. F. Arguedas, et al. 2015; Giuliana Pallotta et al. 2013) cannot
apply since DBSCAN fails to extract effective waypoints. As shown in Fig. 6.7, in
this area, vessels do not enter or exit the ROI at some specific zones, in consequence,
DBSCAN can not detect entry and exist waypoints; beside that, a lot of vessels stop
at sea for purposes (fishing for example), leads to false stationary waypoint detection
by DBSCAN.

6.4.5 Vessel type identification

We tested the Vessel type identification submodel with a set of 1800 AIS tracks of 4
types of vessels: cargo, passenger, tanker and tug.

We compared the performance of our model with the one of other types of neural
networks: CNNs and LSTMs (which are currently the state-of-the-art for time series
classification). To simulate the missing data phenomenon in AIS streams, we deleted a
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Table 6.2 – Classification results.

Model Precision Recall F1-score
LSTM 47.51% 64.11% 52.08%
LSTM_4-hot 88.04% 87.16% 87.43%
CNN 83.83% 84.06% 83.75%
VRNN-CNN 88.00% 87.67% 87.72%

2-hours segment in each AIS track. Constant velocity model was used to fill the missing
points for CNN model. We tested the LSTM networks with and without the “four-hot
encoding” layer to show the benefit of this presentation. For each type of architecture we
tried several configurations and report the best result.

The results are shown in Table. 6.2. First, the poor performance of LSTMs without
the “four-hot encoding” layer shows the relevance of this presentation for disentangling
the explanatory information in continuous feature spaces of AIS messages’ attributes.
Second, we can see that the proposed model achieved comparable performances with those
of the state-of-the-art methods. It is because the embedding layer can provide a solid
regular series of hidden regimes despite irregular time sampling in AIS streams. In addition
to the slight improvement of the classification performance (from 87.43% to 87.72%),
the proposed model also significantly reduces storage redundancies and computational
requirements when doing each task separately, which is highly beneficial in an AIS big
data context.

6.5 Insights on the considered approach

In this section, we further discuss the key features of the considered approach with
respect to state-of-the-art approaches. Overall, AIS vessel tracks (and trajectory data in
general) may be characterised according to the following features:
— Time evolutions in terms of vessel position, speed and course;
— Geographical patterns (where is the vessel?);
— Geometric patterns (what is the shape of the track?);
— Speed and course distributions;
— Spatial-temporal patterns, called “phase patterns” (moves fast in specific zones and

slowly in other zones for example).
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Figure 6.8 – Geometric patterns appear by summing up one-hot vectors of latitude and
longitude coordinates.

We discuss below how our approach addresses the learning of these key features.
In time series, different features change at different temporal and spatial scales (Y.

Bengio et al. 2013). The proposed model learns these features from different points of
view at different scales. At micro-scales, it learns the evolutions of the trajectories, e.g.
with this historical information, in 10 minutes, vessel “V” seems to appear in zone “Z”,
maintain its speed around “S” knots. These evolutions are modelled by the distribution
pθ(xk|x0:k−1, z0:k−1). At macro-scales, the model tends to learn the patterns of the entire
AIS tracks.

Viewing the “four-hot” representation as an image-based representation of a track
seems relevant to understand how our model can learn complex space-time patterns. More
precisely, the one-hot vectors of the latitude/longitude coordinates of AIS messages indicate
the rows/columns of the pixels in the image, respectively. Hence, if we cumulate these two
one-hot vectors over a given time period, we build an image-based representation, which
describes the geometric pattern of the vessel track (Fig. 6.8).

The proposed model is not translation-invariant and can learn spatial patterns and
the geographical distributions of vessel tracks, i.e. a given type of tracks should appear in
zone “A” and not in an other zone “B”. The phase patterns, on the other hand, reflect the
correlations between temporal features and spatial ones. One typical example of phase
pattern in trajectory data is the speed-position correlation, e.g. the average speed of
vehicles on highway is higher than the one in urban area. Methods that use only the
positions (longitude and latitude coordinates) to model trajectory and consider the speed
as the first-order derivative of the positions can not capture this information. For example,
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Figure 6.9 – Illustration of phase patterns. We report the two examples of two AIS tracks
of the processed dataset (red and blue). The solid lines are 3D curves (latitude, longitude
and speed time series) reflect the phase pattern, whereas the dash curves (latitude and
longitude time series only) reflect the associated 2D geometric patterns, which can not
reveal the observed phase patterns.

the two tracks depicted in Fig. 6.9 are two examples from the processed dataset. They are
similar in terms of spatial patterns, but different in terms of phase patterns, space-speed
time series. Despite inter-individual variabilities, these two tracks exhibit in some regions
low vessel speed and high vessel speed in other regions.

These different aspects are similar to the wave-particle duality in physics, where the
patterns correspond to the wave properties and the evolutions correspond to the particle
properties.

6.6 Conclusions and perspectives

In this chapter, we proposed a novel deep-learning-based scheme for maritime traf-
fic surveillance from AIS data streams. Stated within a probabilistic framework using
Variational RNN, our approach overcomes strong limitations of state-of-the-art methods
to jointly address multi-task issues, namely abnormal behaviour detection, trajectory
reconstruction and vessel type identification, on a regional scale, that is to say for datasets
of spatially-heterogeneous datasets of tens or hundreds of millions of AIS data. More
precisely, we tackled three main drawbacks of state-of-the-art approaches:
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— First, we relax strong assumptions usually considered such as a finite number of
behavioural categories (or hidden regimes) (Holst et al. 2016; Gaspar et al. 2016).

— Second, by using VRNN, we can capture the maritime contextual information while
avoiding problems that may be encountered if doing clustering.

— Third, the Embedding block in our model can deal with noise and irregularly time-
sampling of AIS data streams. Besides, the Embedding block also results in an
efficient compression of the behavioural information conveyed in data, which avoids
making accessible the entire training dataset for the operational use of the trained
model. This appears critical for an operational big-data-compliant AIS system.

We also discussed the key aspects of the considered trajectory data representation, which
is embedded in the considered VRNN framework.

Beyond benchmarking issues for large-scale datasets, including the evaluation of the
ability of the proposed approach to scale up to global AIS data streams, the fusion with
other sources of information available in the maritime domain could be a promising solution.
Weather and ocean conditions, such as sea surface winds and currents, are two important
factors that effect the behaviours of vessels. The exploitation of such variables should
further constrain the considered VRNN framework and improve its representativity. The
inference of behavioural models in low-density areas might require specific investigations
in future studies, for instance some type of regularisation.
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There are three kinds of lies: lies, damned lies, and
statistics.

Mark Twain

Chapter 7

GeoTrackNet

1 2 In the previous chapter we presented MultitaskAIS—a multitask NN-based model for
maritime traffic surveillance using AIS data. We demonstrated the ability of MultitaskAIS
to handle noisy and irregularly sampled data as well as the computational benefit of this
architecture for multiple tasks in maritime surveillance. This chapter focuses on detailing
the most important task: anomaly detection. This task-specific submodel—referred to as
GeoTrackNet—exploits state-of-the-art neural network schemes to learn a probabilistic
representation of AIS tracks and a contrario detection to detect abnormal events. The
neural network provides a new means to capture complex and heterogeneous patterns in
vessels’ behaviours, while the a contrario detector takes into account the fact that the
learnt distribution may be location-dependent. Several experiments with different settings

1. This chapter is a modified version of papers (Duong Nguyen, Vadaine, et al. 2019) and (Duong
Nguyen, Simonin, et al. 2020)
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Bretagne Télédétection” (BreTel). It benefited from HPC and GPU resources from Azure (Microsoft
EU Ocean awards) and from GENCI-IDRIS (Grant 2020-101030). We acknowledge the support of DGA
(Direction Générale de l’Armement) and ANR (French Agence Nationale de la Recherche) under reference
ANR-16-ASTR-0026 (SESAME initiative), grants Melody and OceaniX. It benefited from HPC and GPU
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on a real AIS dataset demonstrate the relevance of the proposed method compared with
state-of-the-art schemes.

7.1 Introduction

In maritime domain awareness, anomaly detection is one of the most important tasks,
since anomalies usually involve accidents (loss of navigation, damages in engine, etc.) or
illegal activities (smuggling, illegal transshipment, etc.). Initially designed for collision
avoidance, the Automatic Identification System (AIS) has quickly become the main source
of information for maritime surveillance thanks to its information richness. Roughly
speaking, AIS messages contain the identity (the MMSI number), the GPS coordinates
(latitude, longitude), the current speed (Speed Over Ground–SOG) and course (Course Over
Ground–COG), as well as other information about the vessel and the voyage. A series of
AIS messages gives the trajectory of the vessel. The potential of AIS is enormous, however,
it is not fully utilised. AIS data are awash in noise, besides that, the massive amount
of data quickly overwhelms human processing capacity. This emphasises the need for a
system that can automatically analyse and arise an alarm whenever there is an abnormal
event. However, since AIS was originally created for collision avoidance only, no metadata
(quality, reliability, uncertainty, etc.) are available, making the detection of anomalies
from AIS a very difficult task. Morever, AIS data in particular, and trajectory data in
general, have some specific characteristics that other types of data do not: geographical
features, temporal correlations, geographical-temporal features. For these reasons, anomaly
detection methods used in other domains such as network traffic analysis or cybersecurity
(Nanduri et al. 2016; Radford et al. 2018) do not apply. We may also emphasise that
there are no representative groundtruth datasets for this task, hence, supervised learning
strategies for anomaly detection as in (Song et al. 2018; Bouritsas et al. 2019) do not apply
either.

Here, we present GeoTrackNet—a new approach for maritime trajectory-based anomaly
detection 3 using a probabilistic RNN-based (Recurrent Neural Network) representation of
AIS tracks and a contrario detection. this chapter is an extended version of our previous
work in (Duong Nguyen, Vadaine, et al. 2018). The first step in GeoTrackNet is to build
a normalcy model that represents the characteristics of AIS tracks. At sea, either being

3. The detection presented here is trajectory-based, i.e. we focus on the behaviours of vessels. Point-
based methods, where the detection is focused on AIS signal, are out of scope of this chapter.
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enforced by law or for optimisation issues (e.g. optimal fuel consumption, safety purposes,
optimal patterns for fishing, etc.), vessels follow some specific patterns, and we expect to
learn these patterns from data (F. Mazzarella, Vespe, et al. 2014; Bomberger et al. 2006;
Giuliana Pallotta et al. 2013; V. Fernandez Arguedas et al. 2018; Dobrkovic et al. 2018;
Duong Nguyen, Vadaine, et al. 2018). In this work, we exploit variational sequential latent
models, specifically the Variational Recurrent Neural Networks (VRNNs) (J. Chung et al.
2015) to create a probabilistic representation of vessels’ movement patterns. RNNs have
been famous for their ability to capture long-term correlation in time series (here AIS
tracks), VRNNs are an extension of RNNs where stochastic factors are added to improve
the networks’ capacity of modelling the data variations and uncertainties. This architecture
is one of the state-of-the-art methods for text, speech and music analysis and generation
(J. Chung et al. 2015; Fraccaro et al. 2016; Maddison et al. 2017). Besides the quality of
AIS signals, which may depend on the metocean conditions as well as interferences in dense
traffic areas, vessel trajectory data may also reflect sea surface and wind conditions. These
different sources of variations beyond the behavioural patterns of the vessels make anomaly
detection in AIS data streams a particularly challenging task. In this context, VRNNs
emerge as a promising candidate for AIS series modelling. In the proposed scheme, given
the learnt representation of the movement patterns of vessels, a “geospatial a contrario”
detector evaluates how likely an AIS track segment is to state the detection of abnormal
patterns. This detector exploits a geospatial prior depending on the location-dependent
complexity of the patterns observed in the considered dataset. This prior also accounts for
the strong geographical variations of vessels’ occurrences and movement patterns.

Our contributions are as follows:

— We propose a new representation of AIS messages for deep neural networks. This
representation aims to highlight the specific route-related characteristic of trajectory
data.

— We propose a new method to build a normalcy model for AIS trajectories. This
method relies on VRNNs, which can capture the variations and uncertainties in AIS
tracks to create a probabilistic representation of vessels’ trajectories. Concretely, this
method is the Embedding layer of MultitaskAIS presented in Chapter 6.

— We highlight the fact that vessels’ behaviours are geospatially-dependent, hence
the model representing AIS trajectories is also geographically-dependent, hence the
model representing AIS trajectories hall also be geospatially-dependent. We propose
a new anomaly detection method based on this argument.
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— We demonstrate the relevance of the proposed scheme with respect to state-of-the-art
approaches on a real dataset comprising more than 4.2 million AIS messages.

The paper is organised as follows. In Section 7.2, we give an overview of related
work, and analyze the drawbacks of those models. The details of the proposed approach
are presented in Section 7.3. Section 7.4 demonstrates the relevance of GeoTrackNet by
experiments on real-life data. Conclusions, remaining challenges and future lines of work
are discussed in Section 7.5.

7.2 Related work

Recently, there has been a large number of publications related to maritime anomaly
detection using AIS. Among them, we can cite (Rhodes et al. 2005; Bomberger et al.
2006; Laxhammar 2008; Ristic et al. 2008; Giuliana Pallotta et al. 2013; Mascaro et al.
2014; d’Afflisio et al. 2018; Kawaguchi 2018; Forti et al. 2019; Varlamis et al. 2019) and
references in (Tu et al. 2017; Riveiro et al. 2018). Those methods can be categorised into
two groups: rule-based anomaly detection and learning-based anomaly detection.

The former group defines the abnormal behaviours explicitly and uses a set of rules
to state the detection. A large list of such rules can be found in (Kazemi et al. 2013).
The advantage of this approach is its interpretability. However, it is difficult to define
an exhaustive list of abnormal behaviours, and some terminologies such as fast/slow
are relative and are hard to implement in operational systems, which may lower their
usefulness.

The latter group uses historical data to learn the implicit detection rules. Since no
representative groundtruth data are available for maritime anomaly detection, learning-
based anomaly detection schemes cannot apply supervised methods like in (Song et al.
2018; Bouritsas et al. 2019). Unsupervised learning methods are then preferred (Rhodes
et al. 2005; Bomberger et al. 2006; Giuliana Pallotta et al. 2013; V. Fernandez Arguedas
et al. 2018; Forti et al. 2019; Varlamis et al. 2019; L. Zhao et al. 2019). Learning frameworks
provide us means to overtake the limitations associated with the definition of an exhaustive
list of normal/abnormal behaviours. Given the lack of labeled data for the anomalous
class, unsupervised schemes naturally arise as the relevant learning strategies. Due to its
flexibility and its ability to apply on a large scale, this second category of approaches
has become the dominant approach in maritime anomaly detection (Laxhammar 2008;
Giuliana Pallotta et al. 2013; Varlamis et al. 2019; Forti et al. 2019).
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Learning-based methods consist of two main stages: i) learning a normalcy model, ii)
detecting deviations from the normalcy. In the first stage, density-based spatial clustering
techniques, especially DBSCAN (Ester et al. 1996), have been very popular (Giuliana
Pallotta et al. 2013; Coscia et al. 2018; d’Afflisio et al. 2018; Varlamis et al. 2019). Typically,
DBSCAN is applied to cluster the critical points of AIS tracks into so-called Waypoints
(WPs): ENs—where vessels enter the Region of Interest (ROI), EXs—where vessels exit
the ROI, and POs—where vessels stop. From these WPs, these approaches build a graph
whose nodes are the WPs and edges are the maritime routes. Using a probabilistic setting,
e.g., Kernel Density Estimation (KDE) (Giuliana Pallotta et al. 2013), Gaussian Mixture
Models (GMM) (Laxhammar 2008), multiple Ornstein-Uhlenbeck (OU) processes (Forti
et al. 2019), a normalcy model is fitted for each edge. The next stage aims to evaluate how
likely a new AIS track is in order to state the detection of abnormal tracks. This is typically
achieved by applying a threshold on the distance to the centroid feature vector representing
the route (Varlamis et al. 2019) or on the probability of the AIS track given the normalcy
model (Giuliana Pallotta et al. 2013), or through an adaptive hybrid Bernoulli filter (Forti
et al. 2019).

In all of the above mentioned methods, the extraction of WPs is critical. However, the
considered clustering techniques, such as DBSCAN, may be sensitive to hyper-parameters.
Different settings may lead to very different outcomes. Moreover, it is not always possible
to link a track to an edge of the normalcy graph, i.e. we can not assign the beginning point
and the end point of a track to any WP. This is a common problem of any method based
on a clustering step. Another important limitation of the above mentioned approaches is
that they apply to cargo and tanker vessels, and may not apply to other vessel types, for
instance, fishing vessels whose AIS patterns do not involve route-like patterns. As AIS
metadata may not be reliable, dealing with all vessel types in operational systems would
require additional preprocessing steps to filter out vessels’ types.

Although over the last decade, deep learning has achieved very impressive results in
many complicated tasks and has become the state-of-the-art approach in many domains
(LeCun et al. 2015), AIS-based maritime surveillance is not one of them. Popular network
architectures for time series modelling and analysis such as Recurrent Neural Network
(RNN), Long-Short Term Memory (LSTM), etc. may hardly model the dynamics of AIS
trajectories because the data are noisy and may be effected by external factors (e.g.
metocean conditions). Another issue is that those methods assume the performance of
the learnt normalcy model is geospatially-homogeneous. However, in some areas, there
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are a lot of vessels and their behaviours are similar, the maneuvering patterns in these
areas can be learnt easily. By contrast, other areas may involve much less training data
and/or highly-complex and multi-modal patterns, which result in poor performance of
clustering-based normalcy models and of the associated anomaly detection schemes. The
application of the same anomaly detection policy (threshold, filter) in these two types
of areas does not seem relevant. Another important limitation of the above mentioned
approaches is that they apply to cargo and tanker vessels but may not apply to other
vessel types, for instance, fishing vessels whose AIS patterns do not involve route-like
patterns. As AIS metadata may not be reliable, dealing with all vessel types in operational
systems would require additional preprocessing steps to filter out vessels’ types.

In this chapter, we present a new method, referred to as GeoTrackNet that tackles
those problems by exploiting advances in probabilistic neural network representations
for time series analysis and an a contrario detection framework for maritime anomaly
detection from AIS data streams. Our method provides a new means to address key issues
of state-of-the-art approaches, both in terms of the extraction and representation of the
normalcy and of the detection of deviations from the normalcy for all types of vessels.

7.3 Proposed Approach

In this section, we present the details of the proposed approach. GeoTrackNet relies
on the architecture of the Embedding layer we introduced for the MultitaskAIS network
presented in (Duong Nguyen, Vadaine, et al. 2018). We first introduce this architecture,
then detail the formulation of the proposed anomaly detection method.

7.3.1 Data representation

As discussed in the previous chapter, the most common way to represent an AIS
message is using a 4-D real-valued vector (two dimensions for the position and the other
two for the velocity, e.g. [lat, lon, SOG,COG]T ) (Giuliana Pallotta et al. 2013; d’Afflisio
et al. 2018; Forti et al. 2019; Üney et al. 2019). We argue that this representation is not
suitable for neural-network-based methods, because it is difficult for a neural network to
disentangle the underlying geospatial meaning of these numbers. Instead, we represent
each AIS point by a “four-hot” vector (Section 6.3.2). A “four-hot” representation is a
concatenated vector of the one-hot vectors of the latitude coordinate, longitude coordinate,
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SOG and COG.
In addition to the classically-expected benefits of bucketing representation (Y. Bengio

et al. 2013), the “four-hot” vectors help disentangle the geometric features as well as
the phase (time-space) patterns of AIS tracks. For example, Fig. 6.8 shows how this
representation accentuates the geometric feature of an AIS track. Similarly, the phase
feature appears when we sum up the one-hot vectors of the latitude, longitude coordinate
and the speed in the resulting 3-D space (see Section 6.3.2). We also expect that during
the learning process, the “four-hot” representation enforces route-related characteristics of
trajectory data in general, and of AIS data in particular. More precisely, the model shall
learn that some vessels should follow some specific routes, and hence detects as abnormal
any vessel deviating from the maritime route that it is on. As an illustration, Fig. 7.1
shows how the “four-hot” representation can help the model detect abnormal movements
deviating from maritime routes.

The hyper-parameters are the resolution of each bin in the one-hot vectors. If the reso-
lution is too high, the whole network becomes too bulky and requires a high computational
resource to run, and may also lead to overfitting. If the resolution is too low, we may lose
critical information. For anomaly detection, we may not need very accurate position and
velocity features. For example, a speed of 10 knots or 10.1 knots is not expected to make
any difference in the context of anomaly detection. Overall, our experiments suggest that
the resolutions of 0.01° for longitude and latitude, 1 knot for SOG and 5° for COG work
well most of the time.

7.3.2 Probabilistic Recurrent Neural Network Representation
of AIS Tracks

In this section we summary the probabilistic neural network representation of AIS
tracks presented in Section 6.3.1. However, we use a different derivation which would
clarify some terms used in the next sections of this chapter.

For any contiguous AIS track 4, we can always apply an interpolation and sampling
technique to create a sequence of T variables: x0:T = {xk},k=0:T , with xk is the “four-hot”
vector representation of AIS messages presented in Section 7.3.1. The objective is to learn

4. A contiguous AIS track is a track whose the time gap between any two successive messages is smaller
than a threshold, here 2h.
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Figure 7.1 – Continuous real-valued representation (left) vs. “four-hot” representation
(right) of AIS messages in the considered learning-based setting. For the sake of simplicity,
SOG and COG are not considered here. Assume that there is a maritime route (depicted
by blue lines), and at the junction, half of the vessels in the historical dataset turned left
(to position x1) and half turned right (to position x2), but none of them went straight
ahead (to position x3). Left: If vessel positions are represented by real-valued vectors and
the dynamics of vessels are modeled by Gaussian distributions, at the next timestep, the
abnormal position x3 would yield a better score than the actual normal positions x1 and
x2, because x3 is closer to the red dot—the center of the Gaussian distribution (depicted
by the yellow circle). Right: If vessels positions are represented by “four-hot” vectors and
the dynamics of vessels are modeled by multivariate Bernoulli distributions, at the next
timestep, the model would give higher probability values to the two blue “‘bins" only, and
position x3 would be very unlikely compared with positions x1 and x2.
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a distribution that maximise the log likelihood log pθ(x0:T ), which can factorise as:

log pθ(x0:T ) = log pθ(x0)
T∑
k=0

log pθ(xk|x0:k−1). (7.1)

Recently, time series modelling and analysis has experienced the emergence of Recurrent
Neural Networks (RNNs) as the state-of-the-art approach in many tasks (LeCun et al.
2015; I. Goodfellow, Yoshua Bengio, et al. 2016). RNNs assume that at a given time k,
the relevant historical information of x0:t−1 can be encoded in a deterministic hidden state
hk: pθ(xk|x0:t−1) = pθ(xk|hk). The dynamics of the series are modelled by a deterministic
differentiable function f : hk = f(xk−1,hk−1). f is usually parameterised by LSTMs
(Hochreiter et al. 1997) or GRUs (Junyoung Chung et al. 2015). The initial condition h0

is commonly set to 0. Eq. (7.1) becomes:

log pθ(x0:T ) =
T∑
k=0

log pθ(xk|hk). (7.2)

The fact that f is deterministic makes RNNs hardly capable of capturing all the
variabilities and uncertainties in data. In our context, f can be interpreted as a model
of the maneuvering patterns of vessels from AIS tracks. Associated uncertainties may
come from AIS data streams themselves as well as their discretisation using “four-hot”
vectors. Variations in AIS data streams may relate to vessel types, weather conditions,
AIS message corruption, etc.

To account for such uncertainties, probabilistic RNNs relate to the introduction of
latent stochastic variables, denoted as zk, which follow a prior distribution:

zk ∼ pθ(zk|hk). (7.3)

The dynamics and the emission distribution become:

hk = f(xk−1, zk−1,hk−1), (7.4)
xk ∼ pθ(xk|zk,hk). (7.5)

At each time step k, the joint probability of xk and zk can factorise as:

pθ(xk, zk|hk) = pθ(xk|zk,hk)pθ(zk|hk). (7.6)
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Hence, pθ(xk|hk) can be obtained by integrating out zk from Eq. (7.6):

pθ(xk|hk) = Epθ(zk|xk,hk) [pθ(xk|zk,hk)pθ(zk|hk)] . (7.7)

As discussed in Chapter 2, this integral is usually intractable. Variational approaches
propose that instead of maximising log pθ(xk|hk), we maximise a lower bound of this
distribution, called the Evidence Lower BOund (ELBO), by using an approximation
q(zk|xk,hk) of the true posterior distribution pθ(zk|xk,hk) (J. Chung et al. 2015; Bishop
2006):

L(xk|hk, pθ, qφ) = Eq(zk|xk,hk) [log pθ(xk|zk,hk)] − KL [q(zk|xk,hk)||pθ(zk|hk)] . (7.8)

Overall, given the neural network parametrisation for function f , the emission distri-
bution pθ(xk|zk,hk) and the approximated posterior distribution q(zk|xk,hk), the train-
ing step comes to maximise Eq. (7.2) where the term log pθ(xk|hk) is approximated by
L(xk|hk, pθ, qφ). This maximisation is implemented using a stochastic gradient ascent
technique. The details of the considered neural network parametrisations for the different
building blocks of the model (using LSTMs) are presented in Section 7.4.

7.3.3 A contrario detection

Once distribution pθ(x0:T ) is learnt, we can simply apply a “global thresholding” rule
to state the detection, i.e. AIS tracks whose log pθ(x0:T ) < ε are flagged as abnormal, like
in our work in Appendix A . However, as discussed in Section 6.3.5, vessels’ behaviours
vary significantly depending on the considered geographical areas. In some areas, AIS
tracks may involve multimodal but well-defined patterns and the learnt model can precisely
captures these patterns. As a result, normal AIS tracks shall be associated with high
probability values, whereas tracks will low probability values shall relate to unusual and
possibly abnormal ones. In other areas, because of the variabilities of vessels’ behaviours,
limited amount of AIS data and/or a lower capacity of the model to represent AIS tracks,
the learnt model may result in low probability values whatever the tracks. In such cases,
the use of a global thresholding approach might lead to poorly relevant detection results.

To address these issues, we introduce a new detection method, referred to as “geospatial
a contrario” detection. It takes into account the geospatially-heterogeneous performance of
the learnt model. We rely on the division of the ROI into a grid. Let us denote by lCixk the
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log probability log pθ(xk|hk) of AIS messages in a small geographical cell Ci (i.e., xk ∈ Ci)
and pCi the distribution of lCixk :

lCixk ∼ pCi . (7.9)

An AIS message in cell Ci is considered as abnormal if its log probability is smaller than
the lowest 1

p
-quantile of pCi .

xk is abnormal⇔ pCi(L < lCixk) < p. (7.10)

That means, if we randomly sample lCixk from pCi (note that pCi is the distribution of
variable lCixk , and not xk), the probability that “xk is abnormal” is p.

Assuming that the event “xk is abnormal” of each AIS message xk in an AIS track
x0:T is independent, the probability that “at least k out of n AIS messages in an AIS
segment of length n (denoted xk:k+n) of this track are abnormal” is a tail of a Binomial
distribution:

B(n, k, p) =
n∑
i=k

(
n

i

)
pi(1− p)n−i. (7.11)

The a contrario detection (Desolneux et al. 2008) detects whether such an AIS segment is
abnormal based on the Number of False Alarms (NFA), defined as:

NFA(n, k, p) = NsB(n, k, p), (7.12)

where Ns = T (T+1)
2 is the number of all possible segments. For example, if T = 3, there

are 6 possible segments: 3 segments of length 1, 2 segments of length 2 and 1 segment
of length 3. If the NFA of a track segment is smaller than a predefined threshold ε, this
segment will be considered as abnormal and an AIS track is abnormal if at least one of its
segment is abnormal.

x0:T is abnormal.⇔ ∃(n, k),NFA(n, k, p) < ε. (7.13)

The threshold ε is the allowed expectation of “false alarm”, that means, i.e., if we run
the detector on a series of random lCixk 1/ε times, there will be 1 segment flagged as
abnormal. Interested readers are referred to (Desolneux et al. 2008) for more details. To
implement this a contrario scheme, we use two approaches to model distribution pCi : i) a
simple Gaussian approximation and ii) a Kernel Density Estimation (KDE) (Rosenblatt
1956),(Parzen 1962).
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7.4 Experiments and results

7.4.1 Experimental set-up

Datasets: We tested our model on AIS data received by an AIS station located in
Ushant. The ROI was a rectangle from (47.5°N, 7.0°W) to (49.5°N, 4.0°W). The data
were collected from January to March 2017 and from July to September 2017. In each
period, there are more than 4.2 million AIS messages. For each period, we divided the
data into three sets: a training set, from the first day to the 10th of the last month of
this period (e.g. from January 1 to March 10); a validation set, from the 11th of the last
month to the 20th of the last month (e.g. from March 11 to March 20) and a test set, from
the 21st of the last month to the last day of this period (e.g. from March 20 to March
31). The basic idea behind this experimental setting is that for an operational application,
we use historical data to train the model (i.e. to learn p(x1:T )), then apply this model to
current data. The validation sets are used to check for overfitting and for the estimation
of distribution pCi . Fig. 7.2 shows an illustration of the training set, the validation set and
the test set of the period from January to March 2017.

Preprocessing: GeoTrackNet can process AIS streams in real-time. In real-time
operational applications, whenever an AIS message arrives, it will be grouped into a track
keyed by the MMSI. The detection starts if the track is long enough to be meaningful,
here greater or equal to 4 hours. The system incrementally updates the tracks by adding
arriving AIS messages and discarding old data. The implementation and the performance
of the online detection version of GeoTrackNet can be found in (Duong Nguyen, Simonin,
et al. 2020). Those technical details are out of scope of this chapter. Here, for the sake of
simplicity, we present the offline version of GeoTrackNet.

We removed erroneous position or speed messages in the considered AIS data streams.
The SOG was truncated to 30 knots. Discontiguous voyages (voyages that have the
maximum interval between two successive AIS messages longer than a threshold, here 2
hours) were split into contiguous ones. We re-sampled all voyages to a resolution of 10
minutes (i.e. , {k + 1} − {k} = 10mins) using a linear interpolation. Very long voyages
were split into smaller tracks from 4 to 24 hours each.

Neural Network architectures: for the model reported in this chapter, the resolu-
tions of the latitude, longitude, SOG and COG were set to 0.01°(about 1km), 0.01°, 1 knot
and 5°, respectively. We modelled f by a LSTM with one single hidden layer of size 100 for
datasets comprising only cargo and tanker vessels, and of size 120 for datasets comprising
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(a) (b)

(c)

Figure 7.2 – All AIS tracks in the dataset from January 1 to March 31, 2017. (a) training
set; (b) validation set; (c) test set.
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all types of vessels. zk was real-valued vectors of the same size of the hidden layer of the
LSTM. pθ(zk|hk) and q(zk|xk,hk) were two Gaussian distributions parameterised by two
fully connected networks with one hidden layer of size 100. pθ(xk|hk, zk) is a multivariate
Bernoulli distribution parameterised by a fully connected network with one hidden layer
of size 100. The network was trained using Adam optimiser (Diederik P. Kingma and Ba
2015) with a learning rate of 0.0003.

A contrario detection: for the a contrario detector, we chose p = 0.1. ε was initially
set at a high value (in order to flag many tracks as abnormal), then was gradually decreased
to reduce the number of false positives while keeping all the true detections.

The code, as well as the data that can replicate the results in this chapter are available
at: https://github.com/CIA-Oceanix/GeoTrackNet

Baseline: We used the Traffic Route Extraction and Anomaly Detection (TREAD)
method, presented in (Giuliana Pallotta et al. 2013; V. Fernandez Arguedas et al. 2018)
as the baseline. This model supposes that vessels following the same route have similar
velocity in each small area. The hyper-parameters were set at the values suggested by
(Giuliana Pallotta et al. 2013) and (Varlamis et al. 2019) (minPts = 10, eps = 2000,
the radius of each small area is 3km). We also included state-of-the-art NN models for
sequential data, namely LSTMs (Marchi, Vesperini, Eyben, et al. 2015; Marchi, Vesperini,
Weninger, et al. 2015) and VRNNs (D. Nguyen et al. 2019; Su et al. 2019)

Evaluation method: As no reference groundtruth dataset is available, a quantitative
benchmarking synthesis in terms of accuracy or false alarm rate is not feasible. We rather
analyse the different types of anomalies identified by different models. Besides, a more
thorough analysis has been performed for GeoTrackNet through an inspection of each
detected anomaly by AIS experts.

7.4.2 Experiments and results

Basic case study: For this test, we trained the model on the training set and evaluated
the performance on the corresponding test set of each period. The dataset comprises only
cargoes and tankers. Fig. 7.3 shows the mean and the standard deviation of distributions
pCi . As expected, in some regions, there are many vessels and the learnt model fits well the
data with a mono-modal or multimodal distribution, such that the values of log pθ(xk|hk)
are high. There are also regions where log pθ(xk|hk) is low on average. If an AIS track
results in a low log probability in these regions, we do not know whether this track is
unusual or the model does not fit well the data. Applying a “global thresholding” rule like

118



7.4. Experiments and results

(a) (b)

Figure 7.3 – The “geospatial performance” map displaying the mean (a) and the standard
deviation (b) of the Gaussian approximation of distributions pCi from AIS messages in the
validation set from January to March, 2017. On maritime routes, there are many vessels,
mainly cargoes and tankers, their movement patterns can be learnt easily, log pθ(xk|hk) is
usually high and its variation is small. On the other hand, some areas depict few vessels
or vessels’ behaviours are too complicated for the model to learn, log pθ(xk|hk) is usually
low and highly variable. Blank regions are regions where we do not apply the detection
(e.g., land areas or regions where we do not have enough data).

in (D. Nguyen et al. 2019) would lead to a bad outcome, as shown in Fig. 7.4d, where
all the detections are in low log likelihood regions. By contrast, the proposed a contrario
detector compares log pθ(xk|hk) of an AIS message xk with those in the same area, if it
is significantly smaller than the others, then xk is regarded as abnormal. The results are
shown in Fig. 7.4. Most of the time, the model using Gaussian distribution approximation
and the one using KDE gives similar outcomes. The proposed model can detect both: i)
space-wise (geometric and geographic) anomalies, when vessels deviate from maritime
routes, perform unusual turns, etc. and ii) phase-wise (kinetic) anomalies, when vessels
have abnormal evolution in speed and course (e.g. unusual slowing down, sudden changes
in speed, etc.). as shown in Fig. 7.5. Among those 25 tracks flagged as abnormal in Fig. 7.4f,
AIS experts reported only one (the dark yellow track turning north at (49°N, 5°W)) as a
false alarm. We suspect this detection relates to the low number of AIS tracks in this area
in the training set as this area is outside of the coverage zone of the terrestrial AIS station
located in Ushant. Additional experiments reported in (Duong Nguyen, Simonin, et al.
2020) support this statement as the model trained with a larger training set (comprising
both terrestrial AIS and satellite AIS) does not flag this AIS track as abnormal.

Regarding LSTM and VRNN models (Fig. 7.4a and Fig. 7.4b, respectively), the
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performance does not appear very relevant. They flag many normal tracks as abnormal.
For example, in both figures, the tracks along the 6.0°W longitude line are usual tracks.
In Fig. 7.4b, the yellow, orange and red tracks departing from Brest (48.4°N, 4.5°W) are
normal tracks (except the red track in Fig. 7.5e).

When comparing our approach to TREAD (Giuliana Pallotta et al. 2013), we note that
some types of anomaly are detected by both approaches, like the double U-turn, abnormal
turns, or abnormal speeds, as shown in Fig. 7.4c and Fig. 7.4f. Since TREAD compares
the velocity of a vessel with the average of vessels on the same route to state the detection,
this method is sensitive to vessels’ speed. TREAD considers all vessels that move slower
or faster than others as abnormal. This may lead to some unwanted results, when the
statistical anomaly is not suspicious, like the one in Fig. 7.6a. This vessel was flagged by
TREAD because it moved too fast. However, it may not involve any suspicious activity.
On the other hand, GeoTrackNet focuses more on sudden changes in speed of vessels, see
Fig. 7.6d for an example. This detection is relevant because this vessel my encounter an
engine failure.

The detection of abnormal tracks which do not follow any maritime route like those in
Fig. 7.5a and Fig. 7.5e is a key advantage of GeoTrackNet over DBSCAN-based models.
Because those tracks can not be mapped to any maritime route, DBSCAN-based methods
have two options, either flag all of them as abnormal or do not monitor them. Since
the number of those tracks is high, typically from 10% to 60% of the total tracks in the
ROI, (Giuliana Pallotta et al. 2013) (see Fig. 7.7), neither of these options is relevant for
maritime surveillance.

Relevance of the “four-hot” representation: to demonstrate the relevance of the
“four-hot” representation, we tested the proposed model without the “four-hot” representa-
tion. The result is shown in Fig. 7.8a. The model fails to detect small, yet very unusual
deviations from the common behaviours, such as the double U-turn in Fig. 7.5d, or the
abnormal turns of the red track in Fig. 7.5b. We also tested GeoTrackNet with different
resolutions of the “four-hot vector". In general, GeoTrackNet is relatively robust to the
considered resolutions for the latitude, longitude, SOG and COG. The performance of the
model was consistent when we increased or decreased the resolutions of the latitude and
the longitude by a factor of 2. When we increased or reduced those resolutions by a factor
of 5, the detection started changing. The results with those settings are shown in Fig. 7.8b
and Fig. 7.8c. When the resolution is too fine, the amount of information that the model
has to learn is too much. For example, a spatial resolution of 0.002° means that the model
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4 – Abnormal tracks detected by different models (the dataset comprises only
cargo and tanker vessels, from January to March 2017). Blue: tracks in the training set;
other colors: abnormal tracks in the test set (the colors of abnormal tracks were chosen
randomly). (a) LSTM; (b) VRNN, (c) TREAD (a DBSCAN-based method introduced
in (Giuliana Pallotta et al. 2013));. (d) GeoTrackNet without the a contrario detector
(i.e. using a “global thresholding” rule); (e) GeoTrackNet, approximating each pCi by a
Gaussian distribution; and (f) GeoTrackNet, approximating each pCi by KDE.

121



Part III, Chapter 7 – GeoTrackNet

(a) (b)

(c) (d)

(e) (f)

Figure 7.5 – Examples of anomalies detected by KDE GeoTrackNet. (a) Vessels following
abnormal routes. DBSCAN-based methods can not apply to these tracks because they
can not be assigned to any common maritime route. (b) Geometrically or geographically
abnormal tracks (e.g., deviating from maritime routes, unusual turns, etc.). (c) Abnormal
speed tracks (e.g. suspiciously slowing down in a maritime route). (d) Double U-turns. (e)
A cargo vessel steamed to sea then went back to the departing port. (f) Each segment of
this track is normal, however, it is unusual that a vessel follows this path. GeoTrackNet
can detect this track because it has a memory (the memory of its LTSM).
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(a) (b)

(c) (d)

Figure 7.6 – Examples of tracks with abnormal speed patterns detected by TREAD and
GeoTrackNet. (a) An example of a track flagged as abnormal by TREAD and the associated
speed pattern (b). The speed of vessels along this route typically varies between 10 and
18 knots while this vessel was moving at around 19 to 20 knots. (c) An example of a
track flagged as abnormal by KDE GeoTrackNet and the associated speed pattern (d).
It involves a sudden slowing-down which may relate to engine problems or abnormal
sea/traffic conditions.
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Figure 7.7 – AIS tracks that cannot be mapped to maritime routes, hence cannot be
monitored by DBSCAN-based methods. In the test set that comprises only cargo and
tanker vessels (from March 21 to March 31, 2017), such tracks account for 13% of all AIS
tracks.

has to be able to predict the next position a vessel in 10 minutes (the time resolution of
the model) with a tolerance of only 200 meters. On the other hands, if the resolution is
too coarse, the information available to the model may not be enough to characterise the
movement patterns. For example, a spatial resolution of 0.05° means that two positions
within a radius of 5 kilometers are not distinguishable.

Vessel types: Another advantage ofGeoTrackNet is the possibility of applying to any
type of vessels. The first step of DBSCAN-based methods is to cluster AIS tracks into
maritime routes and learn the signature of each route. Hence, those methods can only
apply to vessels that follow maritime routes, i.e. cargo and tanker vessels. By contrast,
our method does not impose any hypothesis of this type, so it can apply to any type of
vessels. We tested our model on a dataset that comprises all kinds of vessels, the results
are shown in Fig. 7.10. Since the number of vessels of other types than cargo and tanker is
significant, applying the surveillance on all types of vessels is of interest. However, this
is a difficult task. Unlike cargo and tanker vessels, some other types, for example fishing
vessels, have very complicated moving patterns, the model can hardly learn all of them.
Even when the model is able to capture all the dynamics of AIS tracks, unexpected results
are still inevitable, when the statistical anomalies are actually not suspicious (see Fig.
7.10a). There is a trade-off between the monitoring capacity and the performance. When
monitoring all types of vessels, it is possible that in a small area, there are some patterns
that can be learnt and others that can not. The distribution pCi is not unimodal anymore.
Hence, it cannot be approximated by a Gaussian distribution (see Fig. 7.9). This explains
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(a) (b)

(c) (d)

Figure 7.8 – Illustration of the relevance of the “four-hot” representation. (a) Abnormal
tracks detected by a model without the “four-hot” representation; (b) Abnormal tracks
detected by a GeoTrackNet model with the resolutions of the latitude, longitude, SOG and
COG set to 0.002°(=0.2 times the reference setting), 0.002°, 1 knot and 5°, respectively;
(c) Abnormal tracks detected by a GeoTrackNet model with the resolutions of the latitude,
longitude, SOG and COG set to 0.05°(=5 times the reference setting), 0.05°, 1 knot and
5°, respectively. (d) The reference result, the resolutions of the latitude, longitude, SOG
and COG were set to 0.01°, 0.01°, 1 knot and 5°, respectively.
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(a) (b)

Figure 7.9 – Comparison between the Gaussian approximation and KDE for distribution pCi .
(a) a track detected as abnormal by KDE GeoTrackNet, and not by Gaussian GeoTrackNet
when the dataset comprises all types of vessels. (b) pCi of the area around the point “x”
in (a). pCiKDE(L < lCixk) = 0.128 while pCiGauss(L < lCixk) = 0.082. Overall, when the data
comprises all types of vessels, pCi is not unimodal and KDE shall be preferred.

why the non-parametric density estimation using KDE gives better outcomes in those
cases.

Hereafter in this chapter, unless specified otherwise, the reported results are the results
of KDE GeoTrackNet. Results similar to those reported above for a dataset from July to
September 2017 and from January to March 2018 can be found for models learnt for these
periods.

Seasonal effects: We conducted additional experiments to demonstrate the consistency
of GeoTrackNet. In this test, the models learnt from the training set of one period were
evaluated on the test set of another period 5. Table 7.1 shows the average log likelihood on
different test sets of models trained on data from January 1 to March 10, 2017. The test
sets are data from the 21st to the end of the corresponding month. Seasonal effects are
small for cargo and tanker vessels. Over seasons, most of the changes are in speed. While
for other types of vessels, especially for fishing vessels, the behaviours change completely.
That explains why the log likelihood of the model trained on all vessels, from January 1
to March 10, 2017 is considerably low on the test set of September 2017. As shown in Fig.
7.11, between winter and summer, the fishing patterns are very different. A model trained
on data in one season may not apply to data in another season. These experiments suggest
considering season-specific models and/or training a general model which also takes into

5. In real-life applications, we always train the model on recent data. This setting is just to test the
consistency of the model
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(a) (b)

Figure 7.10 – Anomaly detection examples of KDE GeoTrackNet with AIS data comprising
all vessel types from January to March 2017. (a) AIS tracks that are flagged as abnormal
by KDE GeoTrackNet. Some tracks are statistically abnormal, however, their behaviours
are not suspicious. For examples, the red tracks that steamed from land are fishing vessels
went fishing; they were detected as abnormal because there are not enough similar AIS
tracks in the training set. (b) AIS tracks of fishing vessels in the training set (about 13%
of tracks in the training set).

Table 7.1 – Average log likelihood of GeoTrackNet for different test sets when trained on
AIS data from Jan 1 to Mar 10, 2017.

Test set Cargoes and tankers All types
March 2017 -5.83 -6.53
September 2017 -5.93 -7.43
March 2018 -5.84 -6.76

account a seasonal information.

AIS memory requirements: In operational mode, one question arises is how long
we should keep the past data of each AIS track. In the offline version of GeoTrackNet, this
quantity is the maximum duration Lmax of each track. Fig. 7.12 shows the results of the
detection when we split long voyages into small tracks from 4h to: (a) 8h and (b) 16h.
Discarding old AIS messages may save memory resources of the system, however, in some
cases, we have to observe the track long enough to recognise the anomaly. For example,
the voyage of the cargo vessel in Fig. 7.5e was not detected if the maximum duration
of each track is 8h. This is because without knowing the other parts, each segment of
this voyage is normal. For dataset presented in this chapter, Lmax = 16h and Lmax = 24h
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(a) (b)

Figure 7.11 – Anomaly detection examples of the model trained on data from January
1 to March 20, 2017 and tested on data from July 21 to September 30, 2017. (a) When
the data comprise only cargo and tanker vessels. (b) When the data comprise all kind of
vessels.

give the same outcomes. We chose Lmax = 24h in our experiments as our computational
resources could store and process the resulting datasets.

7.5 Conclusions and future work

We introduced a new approach for maritime anomaly detection using AIS data. To
our knowledge, this is the first model which relies on a normalcy model of AIS tracks
using a deep learning generative scheme. The proposed model is novel, both in the way
the normalcy model is built and the way deviations from the normalcy are evaluated.
More precisely, we exploit Variational Recurrent Neural Networks to represent AIS tracks
probabilistically using an original four-hot encoding of AIS data. Once the approximate
distribution of the data is learnt, a geospatial a contrario detector is used to evaluate how
likely an AIS track is. This detector takes into account the fact that the performance of
the learning is geographically dependent. The general idea is that if an AIS message has
its log probability lower than other messages’ in the same region, it should be flagged as
abnormal. An AIS track is abnormal if there are many abnormal messages in this track.

The key features of the proposed approach are as follows:

— It requires a minimal prior knowledge about the data. The model can be applied in
different regions without major modifications.
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(a) (b)

Figure 7.12 – Effect of the size of the historical data. (a) The maximum duration of each
track is 8h; (b) The maximum duration of each track is 16h. If the system does not keep
the track long enough, some anomalies may be missed.

— It does not require important hyperparameters such as the number of points in a
cluster when using DBSCAN, the number of modes in mixture models, etc.

— We can control the percentage of the activities expected to be flagged as abnormal
by simply changing the value of ε in Eq. (7.13).

— DBSCAN-based models cannot monitor AIS tracks that do not follow maritime
routes. Fig. 7.7 and Fig. 7.10b show that the number of those tracks are significant 6.
Our method applies to all AIS tracks in the processed area.

— The proposed model can detect both geometric/geographic and speed-related anoma-
lies.

— The nature of VRNN provides an additional means to condition the output onto exter-
nal forcing variables or other sources of information. Hence, our model could further
benefit from complementary information such as weather conditions, ocean current
situations, etc. Mathematically, it comes to modelling pθ(xk|x1:t−1) = pθ(xk|hk,ut)
with ut the forcing variables and additional information.

— It is worth noting that anomaly detection is one task (and the most important one)
in maritime surveillance. A model that can be integrated into a bigger system would
optimise computational and storage resources. In the preliminary version of this work
(Duong Nguyen, Vadaine, et al. 2018), we showed the proposed NN architecture to

6. The original paper (Giuliana Pallotta et al. 2013) reported the fraction of processable AIS messages
varied from 40 to 95%
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be generic and relevant to address other tasks besides anomaly detection such as
vessel type recognition and trajectory interpolation. We let the reader to (Duong
Nguyen, Vadaine, et al. 2018) for additional information. Regarding computational
requirements, the resolution of GeoTrackNet is 10 minutes, i.e. the system keeps only
one AIS message each 10 minutes. This reduces significantly the amount of data to
process and store (by convention, the transmit rate of dynamic AIS message is from
every few seconds to every few minutes (IMO 2017)). Once the model is learnt, we
do not need to store the training dataset. For example, the training set used in this
chapter from January 1 to March 10, 2017 comprises about 3.3 million AIS messages,
which amounts to ∼450MB in *.csv format. The learnt model (i.e., VRNN weights)
can be embedded into ∼40MB in Tensorflow format, which is relatively small. We
may also point the development of a stream-based version GeoTrackNet (Duong
Nguyen, Simonin, et al. 2020) supports its relevance for a real-time implementation
within a big data and distributed system.

Although deep learning has recently grown extremely fast and has become the state-
of-the-art approach in many domains (LeCun et al. 2015), its achievements in MDA
are surprisingly limited. To the best of our knowledge, this work is the first one that
applies unsupervised deep neural networks to maritime anomaly detection. This work
opens new avenues to explore new research directions to complement and/or outperform
DBSCAN-based approaches.

As any unsupervised learning-based model, the proposed approach detects events
that are statistically unusual. These events may not involve suspicious actions. Ongoing
experiments involve analyses by experts to evaluate the consistency of the detections
w.r.t. operational requirements. In this respect, the creation of a reference groundtruth
dataset would be highly beneficial to advance the state-of-the-art and make benchmarking
experiments quantitative. This is however a complex task that would require a large
collaborative effort. A more thorough study of the relationship between the resolution
of the “four-hot” vector and the corresponding detection results could facilitate the
hyper-parameters selection process when applying the model in different zones. The
proposed neural network representation provides a flexible and powerful means to learn
the distribution of AIS tracks, yet uninterpretable. The model is more suitable for a
computer-assisted system (where the final decision is still on the human operator) than a
fully automatic system.

We may emphasise that this representation is also of interest for other tasks, e.g., AIS
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track interpolation, vessel type identification, as shown in Chapter 6. Future work might
benefit from such multi-task settings.
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Great men are not born great, they grow great.

Mario Puzo

Chapter 8

Conclusions

8.1 Conclusions

This thesis has studied advances in variational deep learning for time series modelling
and analysis. We have introduced the motivation,the formulation and presented different
VDL architectures. Variational inference frames the inference as an optimisation problem.
VDL leverages neural network and gradient-based optimisation to increase the capacity
of the model. Current state-of-the-art VDL methods for time series modelling can be
categorised into two classes: DSSM and SVAE. DSSM is an improved version of classical
SSM. By using neural networks to parameterise the distributions, DSSM overcomes the
difficulties of non-linearity. SVAE extends RNN by adding stochastic components to
overcome the limit of deterministic transitions. Both are powerful for capturing long-term
dependencies in highly-nonlinear, noisy and irregularly sampled time series. However,
depending on specific applications, one may be more suitable than the other.

We have proposed novel VDL methods for two specific applications: dynamical system
identification and maritime traffic surveillance. Specifically:

— We have proposed a general deep learning framework—called DAODEN—for learning
chaotic and potentially stochastic dynamical systems. This framework uses a deep
state space model formulation to retrieve the unknown differential equations that
govern the data in the training set. By bridging classical data assimilation and modern
machine learning techniques (deep learning), DAODEN can significantly improve the
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performance of current state-of-the-art learning models under imperfect conditions,
i.e. noisy and partial observation. Furthermore, because DAODEN embeds stochastic
components to account for stochastic variabilities, model errors and reconstruction
uncertainties, this framework can apply stochastic dynamical systems.

— We have proposed a deep learning architecture—called MultitaskAIS—for maritime
surveillance using AIS data. The key component of MultitaskAIS is a VRNN, which
embeds the information in the “four-hot” vectors of AIS trajectories in series of
regular latent states. Many task-specific submodels can be built on top of this layer.
We have demonstrated that MultitaskAIS could achieve state-of-the-art performance
on three tasks: trajectory reconstruction, vessel type identification anomaly detection,
while significantly reducing storage and computational needs. The most important
submodel in MultitaskAIS is the anomaly detection model—referred as GeoTrackNet.
This model leverages the probabilistic representation given by the VRNN, and uses
an geo-spatial a contrario detector to detect abnormal vessels’ behaviours. The a
contrario detector in GeoTrackNet takes into account the fact that AIS data are
location-dependent, hence the performance of the VRNN is also location-dependent.
GeoTrackNet is the first successful application of DL in maritime traffic anomaly
detection. The model is under consideration for deployment in a commercialised big
data platform.

Through the work done in this thesis, we have experienced that although in theory
big neural networks can archive any complex task, in reality it’s barely the case. Domain
expertise is crucial. We have to find a way to encode prior knowledge of the problem of
interest to the network to obtain the desired outcomes. For example, the prior knowledge
encoded in GeoTrackNet is the fact that AIS trajectory data are location-dependent.

8.2 Open questions and future work

Research is a long journey. The results presented in this thesis have set some steps
forward for the considered problems, however, they also raise a new set of open (and
probably more difficult) questions that remain for future explorers. We divide them in two
three topics: i) VDL for time series modelling and analysis in general; ii) VDL for learning
dynamical systems and iii) VDL for maritime surveillance using AIS.
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VDL for time series modelling and analysis:

— In DSSM and SVAE, the choice of the parameterisation (e.g. number of layers, the
type of activation function, etc.) for the transition, the emission and the approximate
inference distribution is crucial. Is there a way to quickly identify which setting is
suitable for a specific task?

— For time series analysis, understanding the stochasticity of the data is very important.
For a new problem, how can we verify which stochastic components come from the
observation operator (the emission distribution), and which come from the intrinsic
nature of the dynamics of the data (the transition distribution). In classical data
assimilation, this problem is stated as model errors and observation errors estimation
(Li et al. 2009; Gershgorin et al. 2010). Could we adapt those ideas to NN-based
models?

— The core of variational inference is to approximate the likelihood of the observed data
by an lower bound. How to know which lower bound is good? The work presented in
(Ma et al. 2019; L. Chen et al. 2018) can be considered for future investigation.

— In this thesis we focused on parametric distributions, non-parametric variational
inference (Gershman et al. 2012) could also be an alternative.

— Almost all of current VDL models approximate the inference distribution for real-
valued data by an Gaussian. This would not be efficient if the true prior distribution
is multimodal or does not have a “bell” shape. Hence, to model non-Gaussian
events (e.g. rainfall, extreme weather, etc.), we have to use non-Gaussian variational
inference, as in (Ma et al. 2019; Qiu et al. 2018).

— For the problems considered in this thesis, the states and the observations are
1-dimensional vectors. Passing to high dimensional space (for example, when the
observations are 2-D images) would required further studies to reduce the complexity
of the representation and the computation.

— In this thesis, we used LSTMs to capture long-term correlations in data. However, if
we have prior knowledge of the “length” of the temporal dependencies, parallel archi-
tectures such as transformer (Vaswani et al. 2017) will accelerate the computational
time.

VDL for learning dynamical systems:

— We tested DAODEN models on already-known dynamical systems. The character-
istics, the long-term topology of the benchmarked systems have been well studied.
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Although this information is not used in the training and the validation phases, it is
required to evaluate how good a learnt model is. For a completely unknown system,
how could we validate a learnt model? Especially when common criteria such as the
prediction error are not effective for stochastic systems.

— We have examined cases where the observations are partial in the sense that some
components of the observations may be missing, in both spatial and temporal
dimensions, however, all the components of the system’s states are seen at least once.
There are also situations where some components of the systems are never observed.
For those case, we have to exploit augmented states (Abarbanel et al. 1994; Robinson
2005; Ayed et al. 2019; Ouala, Duong Nguyen, Herzet, et al. 2019).

— The key idea of SINDy (Brunton, Proctor, et al. 2016) is the sparsity hypothesis.
Similarly to (Dremeau et al. 2012), we can incorporate this idea with with DL to
create a “sparse network” for the identification of dynamical systems.

— It is crucial to enforce physical constraints in order to obtain physically-meaningful
learnt model. Preliminary work in (Cockburn et al. 1990; Raissi, Perdikaris, and
George E. Karniadakis 2019; Bézenac et al. 2019) could be investigated in future
studies.

— The idea of presenting the dynamics of time series by ODEs or SDEs opens new
means to tackle the issue of irregular sampling: using continuous representation of
neural networks to handle sporadic observations (De Brouwer et al. 2019).

VDL for maritime surveillance using AIS:

— AIS is a self-reporting system. Although MultitaskAIS and GeoTrackNet could
handle missing data, if a vessel turns off its AIS signal for long period, AIS-based
models can not apply. AIS on-off detection models, such as those in (Fabio Mazzarella
et al. 2017; Kontopoulos et al. 2020) are required for maritime surveillance.

— Although the performance of GeoTrackNet is very impressive, the detected AIS
tracks were validated by independent AIS experts, however, we do not know what
the detector may miss. A labeled, well-prepared data would be highly beneficial for
the community to push forward recent advances.
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People generally see what they look for, and hear
what they listen for.

Harper Lee

Appendix A

Variational Deep Learning
for Acoustic Anomaly Detection

1 In this chapter, we adapt Recurrent Neural Networks with Stochastic Layers, which
are the state-of-the-art for generating text, music and speech, to the problem of acoustic
novelty detection. By integrating uncertainty into the hidden states, this type of network
is able to learn the distribution of complex sequences. Because the learnt distribution can
be calculated explicitly in terms of probability, we can evaluate how likely an observation
is then detect low-probability events as novel. The model is robust, highly unsupervised,
end-to-end and requires minimum preprocessing, feature engineering or hyperparameters
tuning. An experiment on a benchmark dataset shows that our model outperforms the
state-of-the-art acoustic novelty detectors.

A.1 Introduction

Audio processing in general, and acoustic novelty detection in particular has attracted
significant attention recently. A number of studies have used acoustic data to detect
abnormal events, mostly for surveillance purposes, such as human fall detection (Salman

1. This work was conducted during the stay of Duong Nguyen at the Institute for Big Data Analytics,
Dalhousie University, Canada. It was supported by the UBL Mobility Fund and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

The authors would like to thank A3Lab for the dataset.
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Khan et al. 2015), abnormal jet engine vibration detection (Clifton et al. 2015), hazardous
events detection (Ntalampiras et al. 2011).

The main challenge of novelty detection is we do not have a large amount of novel
events to learn their characteristics, while the normal set is usually very big and contains
a large amount of uncertainty. The common approach is to use unsupervised methods to
learn the normality model, then consider events that do not fit this model as abnormal
(novel). Most of these systems use Gaussian Mixture Model (GMM) or Hidden Markov
Model (HMM) (Kumar et al. 2005; Ntalampiras et al. 2011; Atrey et al. 2006). Bayesian
Networks have also been explored (Zajdel et al. 2007; Giannakopoulos et al. 2010). Recently,
advances in deep learning (LeCun et al. 2015), especially in Recurrent Neural Networks
(RNNs) and their extensions (Long Short-Term Memory — LSTM (Sak et al. 2014),
Gated Recurrent Unit — GRU (Junyoung Chung et al. 2015)) have opened new venues
for acoustic modelling. In (Marchi, Vesperini, Eyben, et al. 2015), the authors employed
LSTMs to create an AutoEncoder (AE) to model normal sounds and detect abnormal
sounds using the reconstruction errors. This idea has been extended in (Principi et al.
2017) by applying an adversarial training protocol.

However, acoustic signals are stochastic. RNN-based networks, whose hidden states are
deterministic, can hardly capture all the variations in the data. Recent efforts to improve
the modelling capacity of RNNs by including stochastic factors in their hidden states have
shown impressive results, especially for generating text, music and speech (Bayer et al.
2014; J. Chung et al. 2015; Fraccaro et al. 2016).

In this chapter, we adapt these models to create an unsupervised acoustic novelty
detector. Our approach performs an end-to-end learning of a probabilistic representation of
acoustic signals. Given this representation, we can evaluate how likely an observation and
state the detection of novel events as the detection of observations with a low probability.
We argue that this model is robust, highly unsupervised, end-to-end and requires minimum
preprocessing, feature engineering or hyperparameter tuning. Our empirical evaluation on a
dataset for novel event detection in audio data shows that the proposed model outperforms
the state-of-the-art.

The paper is organised as follows: in Section A.2, we present the details of the proposed
approach; we compare the model with state-of-the-art methods to point out its advantages
in Section A.3; the experiment and results are shown in Section A.4; finally in Section A.5
we give conclusions and some perspectives for future work.
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A.2 The proposed approach

A.2.1 Recurrent Neural Networks with Stochastic Layers (RNNSLs)

For time series modelling, the two most common approaches are State Space Models
(SSMs) and Recurrent Neural Networks (RNNs). SSMs such as Kalman filters (Brown
et al. n.d.) and particle filters (Doucet et al. 2009) have been explored for a long time and
are the state-of-the-art model-driven schemes thanks to their ability to model stochasticity.
However, these models are limited by their mathematical assumptions (for example,
Kalman filters assume the data generating process is Gaussian). RNNs, on the other
hand, have attracted a lot of attentions recently by their capacity to represent long-term
dependencies in time series (LeCun et al. 2015). The main drawback of RNNs is that
their hidden states are deterministic, making them unable to capture all the stochastic
components of the data. A number of efforts have been made to bring together the power
of SSMs and RNNs (Bayer et al. 2014; J. Chung et al. 2015; Fraccaro et al. 2016; R. G.
Krishnan et al. 2017): Recurrent Neural Networks with Stochastic Layers (RNNSLs).

RNNSLs aim to learn the distribution p, which can be factored through time, over a
sequence of T observed random variables {xt},t=1..T :

p(x1:T ) =
T∏
t=1

pt(xt|x<t), (A.1)

where x<t denotes x1:t−1.
Following an SSM formulation, we assume that the data generation process of x1:T

relies on a sequence of T latent random variables {zt},t=1..T . At each time step t, the joint
distribution pt(xt, zt|x<tz<t) can be factorised into:

pt(xt, zt|x<tz<t) = pt(xt|x<t, z≤t)pt(zt|x<t, z<t), (A.2)

where z≤t denotes z1:t. In other words, each time step of the network is an autoencoder,
conditionally to the historical information.

Depending on the stochastic nature of the considered data, the emission distribution
pt(xt|x<t, z≤t) may be highly nonlinear. However, this nonlinearity usually leads to the
intractability of the inference distribution pt(zt|x≤t, z<t). The most common solution
to overcome this obstacle is the variational approach (J. Chung et al. 2015; Fraccaro
et al. 2016), which introduces an approximation qt(zt|x≤t, z<t) of the posterior distribution

143



Part IV, Chapter A – Variational Deep Learning for Acoustic Anomaly Detection

pt(zt|x≤t, z<t) then estimates pt(xt|x<t) by the Evidence Lower BOund (ELBO) L(x, pt, qt):

log pt(xt|x<t) ≥ L(x, pt, qt) = Ezt∼qt

[
log pt(xt|x<t, z≤t)

]
−KL

[
qt(zt|x≤t, z<t)||pt(zt|x<t, z<t)

]
(A.3)

where KL
[
qt||pt

]
is the Kullback-Leibler divergence between two distributions qt and pt.

There are several types of RNNSLs, differing in the way that they model the structure
of the latent space. The most common types are Variational Recurrent Neural Networks
(VRNNs) (J. Chung et al. 2015), Stochastic Recurrent Neural Networks (SRNNs) (Fraccaro
et al. 2016) and Deep Kalman Filters (DKFs) (R. G. Krishnan et al. 2017). We experimented
most of these types, however, in this chapter, for simplicity purposes, we only report the
VRNNs, introduced by Chung et al. (J. Chung et al. 2015).

In VRNNs, the historical information (x<t, z<t) is encoded by the dynamics of the
hidden states of their RNN (LSTM) ht = h(xt−1, zt−1,ht−1). More precisely, it involves
the parameterisation of the following distributions, namely the emission distribution
pt(xt|x<t, z≤t) = p(xt|zt,ht), the prior distribution pt(zt|x<t, z<t) = p(zt|ht) and the
variational posterior distribution qt(zt|x≤t, z<t) = p(zt|xt,ht) as neural networks. Here, we
consider fully connected networks with Gaussian formulation of these three distributions.
For more details of VRNNs, please refer to (J. Chung et al. 2015).

A.2.2 RNNSLs for Acoustic Novelty Detection

RNNSLs were initially designed for generating text, music, speech. They are currently
the state-of-the-art in these domains (J. Chung et al. 2015; Fraccaro et al. 2016; Maddison
et al. 2017). The interesting point of this type of models in comparison to other state-
of-the-art methods like Wavenet (Oord et al. 2016) is that these models calculate the
distribution p(x1:T ) explicitly, so that after learning this distribution from the training
set, we can evaluate the probability for each new sequence. The idea of using RNNSLs for
novelty detection was first introduced in (Duong Nguyen, Vadaine, et al. 2018) for the
detection of abnormal behaviors of vessels, we adapt this model to novelty detection in
acoustic data.

Here, an acoustic signal is modelled as a time series {xt},t=1..T where xt can be a chunk
of n samples of the waveform, or n frequency bins in a spectrogram at a given time t. A
RNNSL first learns the distribution over x1:T in the training set, which may or may not
contain some abnormal sequences. Then, for any new acoustic signal, we can evaluate its
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Figure A.1 – Architecture of the proposed RNNSL-based novelty detector.

log-probability. If this log-probability is smaller than a threshold, the sequence will be
considered as abnormal (or novel), as illustrated in Fig. A.1.

To choose the threshold, we create a validation set, which again may or may not contain
some abnormal sequences and compute the mean µvalid and the standard deviation σvalid
of the log-probability of the sequences in this set. The value of the threshold is then chosen
as: θ = µvalid − α ∗ σvalid. α is usually chosen as 3.

The training set and the validation set may contain some abnormal sequences. However,
since RNNSLs are probabilistic models, they will eventually ignore these “outliers” (this
conjecture is confirmed experimentally). This property helps to reduce data cleaning
efforts.

A.3 Related work

A number of researches have explored deep neural networks to detect novelty in
acoustic surveillance. We point out here the advantages of our model over those used in
(Marchi, Vesperini, Eyben, et al. 2015) and (Principi et al. 2017), which are currently the
state-of-the-art methods.

Both (Marchi, Vesperini, Eyben, et al. 2015) and (Principi et al. 2017) used RNNs
(LSTMs in particular) as an AutoEncoder (AE) which can reconstruct the original signal
from a compressed representation (Compression AutoEncoders — CAEs) or from a
corrupted version of it (Denoising AutoEncoders — DAEs). However, as discussed in
(J. Chung et al. 2015; Fraccaro et al. 2016; R. G. Krishnan et al. 2017), the fact that
the hidden states of RNNs are deterministic reduces their capacity to capture all data
variations, especially for data that contain high levels of randomness.

Moreover, the detection criterion used in (Marchi, Vesperini, Eyben, et al. 2015) is
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Figure A.2 – Architecture and decision rule of the proposed model (VRNN) in compared
to previously proposed AE-based models. xt is the original signal at the given time step
t, ht is the hidden state of the RNN (LTSM), zt is the latent stochastic state, x′t is the
reconstructed output of the AE. The solid arrows denote the calculation processes, while
the dashed arrows show how the cost function is calculated. We use the same notation as
(Fraccaro et al. 2016), circles for stochastic factors, diamonds for deterministic factors.

the Euclidean distance between the original input and the reconstructed output of the
autoencoder. This criterion is very sensitive to noise. (Principi et al. 2017) addressed this
drawback by using an adversarial strategy, however, the ultimate idea is also to compare
the original input and the reconstructed output from the autoencoder. By contrast, our
method detects novel events by directly evaluating the probability of the received signal.
Besides the improved detection criterion, the architecture of our model is also more robust
to noise (Duong Nguyen, Vadaine, et al. 2018).

These differences are sketched in Fig. A.2. The hidden space of our model has stochastic
factors, which help to increase modelling capacity. The decision rule of our model is a
function of the distribution learnt by the network, making the model more robust to noise.

The selection of the thresholding value for novelty detection is another important
difference compared to previous work. The approach in (Marchi, Vesperini, Eyben, et al.
2015) is not fully unsupervised, because it needs some information about the proportion of
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abnormal events in the data. Our method, in contrast, only uses the information from the
training set and the validation set to chose the threshold, without any prior knowledge of
the annotations, based on a statistically-sound criterion, i.e. the false alarm rate.

A.4 Experiment and Result

A.4.1 Dataset

We tested our model 2 on the same dataset used in (Marchi, Vesperini, Eyben, et al.
2015) and (Principi et al. 2017), which is part of the PASCAL CHiME speech separation
and recognition challenge dataset (Barker et al. 2013). The original dataset contains 7
hours of in-home environment recordings with two children and two adults performing
common activities, such as talking, eating, playing and watching television. The author
of (Marchi, Vesperini, Eyben, et al. 2015) took a part of those recordings and created a
dataset for acoustic novelty detection (100 minutes for the training set and 70 minutes for
the test set). In the new dataset, the sounds of the PASCAL CHiME are considered as
background, the test set was generated by digitally adding abnormal sounds like alarms,
falls, fractures (breakages of objects), screams. The details of the dataset were presented
in (Marchi, Vesperini, Eyben, et al. 2015).

A.4.2 Experimental Setup

In order to use the models in (Marchi, Vesperini, Eyben, et al. 2015) and (Principi et al.
2017) as baselines, we set up our model to have the same evaluation metric that was used
in those papers. However, instead of transforming the data to mel spectrograms like in
(Marchi, Vesperini, Eyben, et al. 2015) and (Principi et al. 2017), we worked directly with
the waveform (end-to-end model). The dataset was recorded by a binaural microphone
at a sample rate of 16kHz. We converted each audio to 1 channel and then split it into
sequences of 160-dimensional frames, each frame corresponds to 0.01s, as in (Marchi,
Vesperini, Eyben, et al. 2015) and (Principi et al. 2017). (Marchi, Vesperini, Eyben, et al.
2015) and (Principi et al. 2017) evaluated the detection at each frame instead of at the
whole sequence, so we also applied the thresholding step to each log p(xt|x<t), instead of
log p(x1:T ).

2. The code is available at https://github.com/dnguyengithub/AudioNovelty
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Table A.1 – Detection result, in comparison with state-of-the-art methods.

Method
Online

Processing
Precision Recall F1 score

GMM Yes 99.1 87.8 89.4
HMM Yes 94.1 88.9 91.1

LSTM-CAE Yes 91.7 86.6 89.1
BLSTM-CAE No 93.6 89.2 91.3
LSTM-DAE Yes 94.2 90.6 92.4
BLSTM-DAE No 94.7 92.0 93.4
Adversarial AE ? ? ? 93.3

VRNN Yes 95.4 91.8 93.6
VRNN* Yes 95.4 92.8 94.1

We tested different topologies of VRNN, with the latent size of 64, 80, 160 and 200.
The models were trained using Adam optimiser (Diederik P. Kingma and Ba 2015), with
a learning rate of 3e− 5.

A.4.3 Results

Different configurations gave different log-likelihoods on the dataset, however the final
detection results were quite similar. We report here only one of the topologies, which gave
the best result: VRNN with 160 latent units (the models with 80 hidden units also gave
similar results). We compare the performance of our model with the result of GMM, HMM,
those in (Marchi, Vesperini, Eyben, et al. 2015) (LSTM-based CAE, LSTM-based DAE)
and in (Principi et al. 2017) (Adversarial AE). The result is shown in Table A.1. 3 Besides
choosing the threshold automatically as discussed in Section A.2, we also used the same
technique as in (Marchi, Vesperini, Eyben, et al. 2015) to chose the optimal threshold
value, denoted as VRNN*.

Our method not only outperformed the state-of-the-art methods, but also has the
ability to work online, which is highly beneficial for real-time surveillance. Models that
use bidirectional LSTM (BLSTM-CAEs, BLSTM-DAEs) can not reach online processing
the because a look-ahead buffer is required. The online processing ability of Adversarial
AEs depends on the structure that they use (LSTM or BLSTM).

3. The values in Table A.1 are from (Marchi, Vesperini, Eyben, et al. 2015) and (Principi et al. 2017;
Principi et al. 2017) did not show the precision and recall of their model
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Table A.2 – Robustness test.

SNR Precision Recall F1 score
5dB 96.0 91.2 93.6
10dB 96.1 91.9 94.0
15dB 96.1 92.1 94.0

When investigating the cases where the proposed model misdetected the novelty, we
found that actually the model could detect all the novel events, however, the way the
detection was evaluated reduced the accuracy. As in (Marchi, Vesperini, Eyben, et al.
2015) and (Principi et al. 2017), the detection was evaluated at each time step of 0.01s.
Our model has a memory effect (the memory of its LSTM cells), so it tends to merge the
abnormal events that are very close to each other, as shown in Fig. A.3. In other cases,
the model missed a part of the sound, especially for the tail of the fractures, as shown in
Fig. A.4. These sounds have a long tail which is gradually submerged in the background.
These misdetections are not detrimental in real life applications, because we are more
interested in whether or not there is a novel event than on how long the event is.

Figure A.3 – An example where the novelty events were merged. This figure shows the
waveform of two alarms, each alarm consists of there “beeps”, our model considered this
“beep beep beep” as one event, while the annotation made by the authors of (Marchi,
Vesperini, Eyben, et al. 2015) separates these “beeps”.

We also conducted a robustness test where we added Gaussian noise to the test set. The
additive noise is unknown by the model. This is a common scenario in audio surveillance,
when the background environment changes (e.g. because of winds) or when noise appears
in the electronic system. Table A.2 shows the performance of the proposed approach (with
optimal threshold) on the corrupted test sets with different level of Signal to Noise Ratio
(SNR). Thanks to the nature of VRNNs and the improved detection criterion, our model
is robust to noise.
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Figure A.4 – An example where the model missed a part of the novelty event. This figure
shows the waveform of the sound of a fracture of a dish. The tail of the sound is very mall
and gradually becomes submerged in the background.

A.5 Conclusions and perspectives

We have presented a novel unsupervised end-to-end approach for acoustic novelty
detection. This approach exploits RNNs with stochastic layers, which are the state-of-the-
art frameworks for time series modelling. Given the learnt probabilistic representations,
novelty detection can be stated as a classic statistical test, which fully accounts for the
stochasticity of the considered acoustic datasets. Reported experiments on a benchmarked
dataset showed that the model outperforms the state-of-the-art detectors (Marchi, Vesperini,
Eyben, et al. 2015; Principi et al. 2017).

The dataset used in this chapter is quite simple, the novel events in it are quite easy
to be detected. Future work could involve applying this model to more complex signals,
e.g. underwater acoustic signals which depict even greater variabilities. The impact of the
threshold is also being studied to obtain better threshold selection rule.
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Appendix B

Extended Abstract/Résumé Étendu

1 Au cours de la dernière décennie, le monde a été témoin d’un développement incroyable
de l’apprentissage profond (LeCun et al. 2015). L’apprentissage automatique en général, et
l’apprentissage profond en particulier, ont récemment révolutionné de nombreux domaines
de recherche et d’application (I. Goodfellow, Yoshua Bengio, et al. 2016; He et al. 2015;
Mikolov et al. 2013; Ravì et al. 2017; Min et al. 2017; Goh et al. 2017; Kamilaris et al. 2018).
Cependant, la majorité des applications pratiques de l’apprentissage automatique utilisent
des méthodes d’apprentissage supervisées, qui apprennent un mappage d’une variable
d’entrée à une variable de sortie à l’aide d’un ensemble de données étiquetées. Les données
étiquetées sont rares et coûteuses à obtenir, contrairement à la grande quantité de données
non étiquetées qui peuvent être collectées à un coût relativement faible. Un axe majeur
de la recherche récente sur l’apprentissage automatique est donc le développement de
méthodes d’apprentissage non supervisé (Diederik P. Kingma and Welling 2013; Rezende
and Mohamed 2015; Vacar et al. 2019), qui utilisent les données disponibles non étiquetées.
Dans ce context, un modèle devrait pouvoir décrire la structure sous-jacente des données, e.g.
des motifs, des corrélations statistiques ou des structures causales. Cette thèse se concentre
sur l’étude d’apprentissage profond pour un type particulier de données qui évolue dans
le temps, appelées séries temporelles. Plus précisément, nous développons une famille de
modèles séquentiels qui utilise l’inférence variationnelle pour appendre la dynamique cachée

1. Ph.D. theses completed in a French institution written in another language are required to provide
an extended abstract in French/Les thèses de doctorat accomplies dans un établissement français mais
rédigées dans une autre langue devraient être accompagnées d’un résumé étendu en français.
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des données observée. Ces données peuvent être bruitées et échantillonnées de manière
irrégulière. Nous combinons des architectures d’apprentissage profond avec des modèles
classiques probabilistes de séries temporelles et intégrons les connaissances préalables du
domaine pour créer: i) un nouveau cadre d’apprentissage des systèmes dynamiques, et
ii) un nouveau modèle d’apprentissage profond pour la surveillance maritime à l’aide de
données AIS (système d’identification automatique-automatic identification system en
anlais).

Les contributions sont les suivantes:

— Nous introduisons deux classes de modèles à variables latentes profonds pour les
données séquentielles: les modèles d’espace d’état profond (DSSMs—deep state
space models en anglais) et les auto-encodeurs variationnels séquentiels (SVAEs—
sequential variational autoencoders en anglais). Nous présentons les dérivations de
ces modèles, à partir des des méthodes séquentielles classiques: les modèles espace
d’états (SSMs—state space models en anglais) et les réseaux de neurones récurrents
(RNNs—recurrent neural networks en anglais). Nous analysons les avantages et les
inconvénients de chaque méthode, puis montrons comment DSSMs et SVAEs aident
ces modèles à devenir plus expressifs et évolutifs en les combinant avec l’apprentissage
profound.

— Nous présentons un DSSM, appelé DAODEN (data-assimilation-based ordinary
differential equations network en anglais), spécialement conçu pour l’apprentissage
des systèmes dynamiques. Ce modèle utilise des architectures de réseau de neurones
pour modéliser la dynamique des systèmes d’équations différentielles ordinaires
(ODEs—ordinary differential equation en anglais) et éventuellement des systèmes
d’équations différentielles stochastiques (SDEs—stochastic differential equations
en anglais). DAODEN contient deux composants clés : un modèle d’inférence qui
imite les méthodes classiques d’assimilation de données pour reconstruire les vrais
états du système à partir d’observations bruitées et potentiellement partielles, et un
modèle génératif qui utilise la représentation des reseaux de neurones des systèmes
dynamiques pour récupérer la dynamique sous-jacente de ces états. Par conséquent,
par construction, DAODEN peut obtenir des performances comparables à celles des
modèles entraînés sur des observations idéales, même lorsque le modèle est entraîné
sur des données fortement endommagées.

— Nous présentons une architecture d’apprentissage profond, appelée MultitaskAIS,
pour la surveillance du trafic maritime à l’aide de données AIS. Le cœur de cette
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architecture est un SVAE, qui convertit les messages AIS bruités et irrégulièrement
échantillonnés en séries d’états cachés propres et régulièrement échantillonnés de la
trajectoire du navire. Ces états peuvent ensuite être utilisés pour des sous-modèles
spécifiques à une tâche (tels que la reconstruction de trajectoire, l’identification du
type de navire, la détection d’anomalies). Les expériences montrent que MultitaskAIS
peut atteindre des performances de pointe sur ces tâches, tout en utilisant un stockage
et des besoins de calcul nettement inférieurs. Parmi ces tâches, la plus importante est
la détection d’anomalies. Nous introduisons GeoTrackNet, un détecteur géospatialisé
qui utilise l’apprentissage profond variationnel pour construire une représentation
probabiliste des trajectoires AIS, puis détecter les anomalies en jugeant la probabilité
de cette trajectoire. Ce détecteur prend en compte le fait que les données AIS sont
géographiquement hétérogènes. Des expériences sur des données réelles affirment la
pertinence de la méthode proposée.

B.1 Apprentissage profond variationnel pour la mod-
élisation et l’analyse de séries temporelles

Lorsque nous surveillons ou suivons un processus, les séquences des observations
obtenues sont généralement corrélées dans le temps. Ce type de donnée est appelé série
temporelle. La modélisation des séries temporelles est une tâche difficile, parce que la
plupart du temps, nous ne connaissons pas les lois qui définissent la dynamique du
processus considéré. Ces lois peuvent être hautement non linéaires, chaotiques et/ou
stochastiques. De plus, les données que nous obtenons peuvent ne pas être les vrais états
du processus, mais plutôt les observations/mesures bruitées et partielles. Au cours des
dernières années, l’apprentissage profond variationnel séquentiel est apparu comme une
approche très prometteuse pour la modélisation et l’analyse de séries temporelles (LeCun
et al. 2015; R. G. Krishnan et al. 2017; J. Chung et al. 2015; Fraccaro et al. 2016). Cette
approche combine la modélisation probabiliste et l’apprentissage profond (généralement
des réseaux basés sur RNNs) pour construire des modèles expressifs de grande capacité qui
peuvent capturer les stochasticités, les variations, les incertitudes et les corrélations à long
terme dans les données. Dans ce chapitre, nous présenterons la motivation, la formulation
et les applications de cette approche. Le contenu présenté ici est la partie théorique des
applications dans les sections suivantes.
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B.1.1 Modèles de variable latente pour la modélisation et l’analyse
de séries temporelles

Etant donné une séries d’observations x0:T , l’objectif est d’apprendre un modèle pθ
paramètrisé par un ensemble de paramètres θ, qui maximise la vraisemblance pθ(x0:T ).
On suppose que le processus de génération de données de x0:T dépend d’une séquence de
variables latentes z0:T . La distribution conjointe pθ(z0:T ,x0:T ) peut être factorisée en:

pθ(x0:T , z0:T ) = pθ(x0:T |z0:T )pθ(z0:T ). (B.1)

La log vraisemblance de l’observation peut être obtenue en marginalisant les variables
latentes:

log pθ(x0:T ) = log
∫
pθ(x0:T , z0:T )dz0:T = log

∫
pθ(x0:T |z0:T )pθ(z0:T )dz0:T . (B.2)

En général on ne peut pas calculer cette intégrale. Les approches variationnelles
(Diederik P. Kingma and Welling 2013; J. Chung et al. 2015; Fraccaro 2018) proposent
au lieu de maximiser cette vraisemblance, on maximise une borne inférieure, appelée
ELBO (evidence lower bound en anglais), en approximant la vraie distribution postérieure
pθ(z0:T |x0:T ) par une distribution variationnella distribution à posteriorie q(z0:T |x0:T ):

L(x0:T , pθ, qφ) = Eqφ(z0:T |x0:T ) [pθ(x0:T |z0:T )]−KL [qφ(z0:T |x0:T )||pθ(z0:T )] ≤ log pθ(x0:T ).
(B.3)

Habituellement, on impose quelques hypothèses pour factoriser pθ(x0:T |z0:T ), qφ(z0:T |x0:T )
and pθ(z0:T ). En fonction de ces hypothèses et de la factorisation, on obtient différents
modèles pour la modélisation de séries temporelles. En général, ils peuvent être classés en
deux classes: modèle espace d’états (SSMs) et réseau neuronal récurrent (RNNs).

Modèles espace d’états (SSMs)

Dans SSMs, on suppose que i) le processus de zk est markovien, et ii) étant donné
zk, xk ne dépend pas d’autres états ou observations. Avec ces hypothèses, pθ(z0:T ) et
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pθ(x0:T |z0:T ) peuvent être factorisées comme suit:

pθ(z0:T ) = pθ(z0)
T∏
k=1

pθ(zk|zk−1), (B.4)

pθ(x0:T |z0:T ) =
T∏
k=0

pθ(xk|zk). (B.5)

On obtient la forme générale de SSM:

zk ∼ pθ(zk|zk−1) (B.6)
xk ∼ pθ(xk|zk) (B.7)

avec pθ(zk|zk−1) est la distribution de transition qui modélise l’évolution temporelle
de zk et pθ(xk|zk) est la distribution d’émission qui présente l’opérateur d’observation.

Lorsque la transition et l’émission sont linéaires et gaussiennes, le filtre de Kalman
(Kalman 1960) fournit une solution mathématiquement élégante pour le problème d’inférence.
Cependant, lorsque la transition et/ou l’émission n’est plus linéaire et gaussienne, la disti-
bution à posteriori ne peut plus être calculée. Nous devons effectuer des approximations.
Pour les cas où la transition et l’émission peuvent être décrites par des fonctions différen-
tiables, le filtre de Kalman étendu (EKF—extended Kalman filter en anglais) (Smith
et al. 1962) approche la distribution à posteriori par une linéarisation de pθ(zk|zk−1) et
pθ(xk|zk). Le filtre particulaire (PF—particle filter en anglais) (Doucet et al. 2009) a
une approche différente. Cette méthode utilise un “échantillonnage séquentiel important”
(important sampling en anglais) pour approximer récursivement pθ(z0:k|x0:k), étant donné
pθ(z0:k−1|x0:k−1). Dans le filtre particulaire, une distribution est représentée par un ensem-
ble de particules. Le filtre de Kalman d’ensemble (EnKF—ensemble Kalman filter en
anglais) (Evensen 2003) fait le lien entre l’idée du filtre de Kalman et du filtre particulaire
en supposant que les distributions représentées par les particules sont gaussiennes.

Réseaux de neurones récurrents (RNNs)

Au lieu d’imposer la propriété markovienne à pθ(z0:T ) et pθ(x0:T |z0:T ), les RNNs
supposent qu’au temps k, toutes les informations historiques peuvent être codées dans une
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variable déterministe hk:

pθ(x0:T ) = pθ(x0)
T∏
k=1

pθ(xk|x0:k−1) =
T∏
k=0

pθ(xk|hk). (B.8)

Et hk peut être mise à jour en utilisant les informations de l’état précédent hk−1 et de
l’observation précédente xk−1:

hk = hθ(hk−1,xk−1), (B.9)

avec hθ est une fonction non-linéaire différentiable, comme celles de (Elman 1990). Pour
pouvoir capturer les corrélations temporelles dans les données, la fonction hθ doit être de
grande capacité. De nos jours, on utilise généralement des extensions des RNNs, telles
que LSTMs (long short-term memory en anglais) (Hochreiter et al. 1997) et GRUs (gated
recurrent units en anglais) (Junyoung Chung et al. 2015). Comme hk est déterministe,
l’inférence pθ(h0:T |x0:T ) peut être calculée. Cependant, RNNs ne peuvent pas capturer
tous les variabilités et les incertitudes dans les données.

B.1.2 Modèles probabilistes séquentiels profonds

Les SSMs sont des modèles stochastiques structurés avec de belles propriétés de
factorisation et d’indépendance, cependant, le nombre de problèmes que les SSMs classiques
peuvent couvrir est assez limité, car ils reposent sur des solutions analytiques. Les RNNs
sont des modèles hautement non-linéaires qui peuvent capturer les dépendances à long
terme dans les données, toutefois, vu que leurs états cachés sont déterministes, les RNN ne
peuvent pas modéliser la stochasticité. Nous pouvons fusionner les idées des SSMs et des
RNNs pour construire de meilleurs modèles de séries temporelles, qui héritent des avantages
et surmontent les faiblesses des méthodes originales. On peut formuler deux approches : i)
DSSMs, qui sont des extensions de SSMs, et ii) SVAEs, qui sont des extensions de RNNs.

Pour construire un DSSM, on parametrise les trois distributions pθ(x0:T |z0:T ), pθ(z0:T )
et qφ(z0:T |x0:T ) dans SSMs par des réseaux de neurones. Sur la base de l’expertise du
domaine, on choisit les architectures adaptées. Il n’y a pas d’architectures universelles qui
fonctionnent bien dans tous les cas. Pour construire un SVAE, on augmente l’espace latent
en ajoutant une varibale aléatoire zk. La récurrence du modèle devient donc stochastique.
Deux exemples populaires de modèles de ce type sont VRNN (variational recurrent neural
network en anglais) (J. Chung et al. 2015) et SRNN (stochastic recurrent neural network
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en anglais) (Fraccaro et al. 2016). En termes simples, les DSSM intègrent des réseaux de
neurones profonds dans les SSMs classiques et les SVAEs modifient les RNNs pour imiter
les SSMs. La principale différence entre les DSSM et les SVAE est la façon dont nous
modélisons la transition de la variable latente. Dans les DSSMs, il existe un processus
autonome de la variable latente, i.e. ils ne dépendent pas des observations. Dans les
SVAEs, le prochain état latent dépend non seulement de l’état actuel, mais également de
l’observation actuelle. En raison de cette différence de dépendance, la factorisation dans les
deux classes de modèle est différente. Selon l’application, une approche peut fonctionner
mieux que l’autre. Par exemple, pour modéliser un processus physique à partir d’une série
d’observations bruitées, les DSSMs sont plus adaptés que les SVAEs, car les véritables
processus cachés sont autonomes, ils suivent des lois physiques et ne sont pas interférés
par les erreurs de mesure. Pour prédire la position d’un navire, bien que les états cachés
puissent modéliser les modèles de déplacement, la trajectoire réelle peut être affectée par le
contexte environnemental, tel qu’un vent fort ou un trafic dense, des modèles qui prennent
en compte la position actuelle pour prédire la prochaine positions (SVAEs), peut être un
meilleur choix.

Dans cette thèse, nous présenterons des modèles que nous avons construits sur la
base de la philosophie des DSSMs et SVAEs pour des applications spécifiques. Dans le
chapitre 4, nous présentons un DSSM pour l’apprentissage de systèmes dynamiques à
partir d’observations bruitées et partielles. Dans le chapitre 6, nous présentons un SVAE
spécialement conçu pour la surveillance du trafic maritime à l’aide des données AIS. Nous
proposons également une nouvelle méthode de détection d’anomalies à l’aide des SVAEs,
appliquée aux trajectoires AIS dans le chapitre 7 et à la surveillance audio dans l’annexe
A.

B.2 VDL pour l’identification de systèmes dynamiques

Les systèmes dynamiques sont un excellent moyen de décrire les systèmes physiques,
les systèmes biologiques, tout ce qui change dans le temps. Ils sont au cœur de nombreux
domaines, tels que les géosciences, la dynamique des fluide et la dynamique aérodynamique
(Arrowsmith et al. 1990; Brin et al. 2002; Hirsch et al. 2012).

Un système dynamique peut etre décrit par plusieurs types de représentations, on
peut citer par exemple les équations différentielles ordinaires (ODE—ordinary differential
equation en anglais), les équations différentielles stochastiques (SDE—stochastic differential
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Figure B.1 – Modèle graphique de DAODEN. Le modèle génératif comprend la transition
(flèches noires) et l’émission (flèches rouges). Le modèle d’inférence contient la récurrence
(flèches jaunes) et l’inférence (flèches bleues).

equation en anglais), ou les équation aux dérivées partielles (PDE—partial differential
equation en anglais) comme différents outilles mathématiques pouvant décrire un système
qui évolue dans le temps. Ici, on considère une ODE:

dzt
dt = f

(
zt
)

(B.10)

où zt ∈ Rdz est l’état du système, f : Rdz −→ Rdz est une fonction déterministe, appelée
le modèle dynamique et t désigne le temps.

L’objectif de l’identification des systèmes dynamiques est de récupérer la dynamique
de ce système à partir de certains jeux de données d’observation, c’est-à-dire d’identifier
les équations gouvernantes f , compte tenu d’une série d’observations x0:T :

xk = Φk

(
H
(
zk
)

+ εk
)

(B.11)

où H : Rdz −→ Rdx est l’opérateur d’observation, généralement connu, εk ∈ Rdx est un
bruit additif de moyenne nulle et k se réfère au temps échantillonnage, typiquement régulier
tel que k = t0 + k.δ par rapport à une résolution temporelle fine δ. L’opérateur Φk tient

158



B.2. VDL pour l’identification de systèmes dynamiques

compte du fait que l’observation xk peut être indisponible au pas de temps k (Φk,j = 0 si
la variable jth de xk est manquante).

En utilisant une formulation espace d’états, nous rencadrons le problème d’apprentissage
à partir de données bruitées et/ou partielles comme un problème d’assimilation de don-
nées, avec un modèle dynamique inconnu. Nous proposons un DSSM, appelé DAODEN,
spécialement conçu pour cette tâche. L’architecture de ce modèle est illustrée à la Fig.
B.1. Cette architecture comprend deux sous-modules: un module dynamique, désigné par
des flèches noires et un module d’inférence, désigné par les flèches bleues et oranges. Le
module d’inférence fonctionne comme un schéma d’assimilation de données. Il construit les
vrais états du système z0:T à partir de la série d’observations x0:T , qui peut être bruitées et
partielles. Etant donné ces états, le module dynamique exploite une architecture de pointe
de réseaux de neurones pour l’identification de systèmes dynamiques afin de récupérer les
équations gouvernantes. En utilisant une formulation d’espace d’états, le cadre proposé
intègre des composantes stochastiques pour tenir compte des variabilités stochastiques,
des erreurs de modèle et des incertitudes de reconstruction.

Nous avons testé nos modèles sur un système de Lorenz-63 (L63), un systèm de Lorenz-
96 (L96) et un système de Lorenz-63 stochastiques (L63s). Les observations sont bruitées
avec différent niveaux de bruit r = stdnoise/stdsignal. Nous comparons les performances des
4 modèles proposés avec celles des références: AnDA (analog data assimilation en anglais)
(Lguensat et al. 2017), SINDy (sparse identification of nonlinear dynamics en anglais)
(Brunton, Proctor, et al. 2016), BiNN (bi-linear neural network en anglais) (Fablet, Ouala,
et al. 2018) et Latent-ODE (Rubanova et al. 2019). Les résultats sont évalués selon quatre
critères: i) l’erreur de prédiction après 4 pas temps e4, ii) La première fois où l’erreur de
prédiction atteint la moitié de l’écart type du signal π0.5, iii) L’erreur de reconstruction
rec, et iv) la capacité à conserver la topologie à long terme du système décrite par le
premier exposant de Lyapunov λ1.

Tel que dans le Tableau. B.1, tous les modèles proposés surpassent largement les
méthodes de références. Cela affirme la capacité de la méthode proposée à traiter des
observations bruitées.

D’autres expériences sur des données L63 partiellement observées, sur des données
L96 bruitées et sur des données L63 bruitées démontrent que la méthode proposée peut
s’appliquer avec des données partielles, de grande dimension ou stochastiques.
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Table B.1 – Performances des modèles entraînés sur des données L63 bruitées. BiNN_EnKS,
DAODEN_determ, DAODEN_MAP et DAODEN_full sont des versions différents du
modèle proposé.

Model r
8.5% 16.7% 33.3% 66.7%

AnDA

e4 0.351±0.184 0.777±0.350 1.683±0.724 3.682±1.346
rec 0.416±0.019 0.941±0.037 2.134±0.076 4.876±0.168
π0.5 0.820±0.480 0.380±0.172 0.249±0.174 0.104±0.116
λ1 26.517±7.665 27.146±42.927 76.267±28.150 127.047±0.881

SINDy
e4 0.068±0.052 0.149±0.106 0.311±0.196 0.694±0.441
π0.5 0.490±0.261 0.165±0.085 0.077±0.049 0.034±0.034
λ1 0.898±0.008 0.840±0.035 0.840±0.035 nan±nan

BiNN
e4 0.045±0.030 0.119±0.085 0.283±0.185 0.684±0.408
π0.5 3.608±1.364 2.053±0.666 0.975±0.488 0.308±0.125
λ1 0.900±0.011 0.868±0.010 0.122±0.208 -0.422±0.047

Latent-ODE
e4 0.051±0.027 0.062±0.034 0.065±0.042 0.213±0.084
π0.5 2.504±1.332 2.336±1.472 2.852±1.352 2.118±1.129
λ1 0.892±0.018 0.877±0.018 0.885±0.015 0.675±0.027

BiNN_EnKS

e4 0.019±0.016 0.024±0.023 0.037±0.024 0.276±0.160
rec 0.323±0.024 0.431±0.042 0.598±0.093 1.531±0.332
π0.5 2.807±1.128 3.004±1.355 2.996±1.641 2.081±1.214
λ1 0.856±0.031 0.869±0.024 0.826±0.065 0.868±0.014

DAODEN_determ

e4 0.049±0.031 0.056±0.034 0.077±0.048 0.268±0.201
rec 0.216±0.125 0.269±0.110 0.448±0.199 0.873±0.216
π0.5 3.519±1.282 3.488±1.327 3.470±1.562 1.803±1.104
λ1 0.882±0.036 0.895±0.021 0.911±0.013 0.793±0.021

DAODEN_MAP

e4 0.038±0.027 0.038±0.038 0.101±0.070 0.233±0.088
rec 0.209±0.096 0.234±0.065 0.525±0.253 0.817±0.330
π0.5 3.271±1.270 3.219±1.260 2.993±1.413 2.650±1.382
λ1 0.860±0.047 0.876±0.029 0.916±0.012 0.920±0.008

DAODEN_full

e4 0.023±0.015 0.027±0.016 0.072±0.045 0.187±0.127
rec 0.178±0.050 0.258±0.066 0.469±0.168 1.003±0.380
π0.5 3.533±1.139 3.496±1.215 3.426±1.512 1.897±0.918
λ1 0.869±0.036 0.858±0.028 0.881±0.024 0.884±0.013
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B.3 VDL pour la surveillance du trafic maritime

Dans l’application précédente, nous avons utilisé des DSSMs. L’autre approche, les
SVAEs, sera exploitée dans la deuxième application: la surveillance du trafic maritime à
l’aide des données AIS.

L’AIS est un système de communication conçu pour les navires. L’objectif initial de
l’AIS est d’éviter les collisions. Cependant, grâce à sa richesse d’information, l’AIS est
rapidement devenu l’une des sources d’information les plus importantes dans le trafic
maritime. En gros, à partir des données AIS, nous pouvons obtenir l’identité du navire, la
position actuelle, la vitesse actuelle, le cap actuel et d’autres informations du navire ainsi
que du voyage. Les informations fournies par l’AIS sont utiles pour de nombreuses tâches de
surveillance maritime, telles que la prédiction de la trajectoire des navires, l’identification
des routes maritimes, l’identification du type de navire, la detection d’anomalies, etc.
Cependant, il est difficile d’exploiter efficacement les données AIS, car i) la quantité
de données est massive, nous ne pouvons pas traiter les données AIS manuellement, ii)
aucun jeu de données de vérité terrain n’est disponible, ce qui nous empêche d’utiliser
des méthodes supervisées, et iii) les données AIS sont inondées de bruit et peuvent être
échantillonnées irrégulièrement.

Dans ce travail de thèse, nous abordons ces problèmes en exploitant un SVAE pour
développer un système automatique qui peut traiter et détecter, extraire et caractériser
des informations utiles dans les données AIS pour la surveillance maritime.

L’architecture de MultitaskAIS présentée dans la Fig. B.2. Le noyau du modèle est
un VRNN, qui apprend une distribution probabiliste décrivant les trajectoires AIS dans
l’ensemble d’apprentissage. D’autres sous-modules spécifiques à une tâche telle que la
reconstruction de trajectoire, la détection d’anomalies, l’identification du type de navire,
etc. sont construits sur cette couche.

L’un des avantages de cette architecture est que la quantité massive de données AIS
peut être intégrée dans un nombre beaucoup plus restreint de paramètres du VRNN. Le
VRNN peut également prendre en compte les variations et les incertitudes des données AIS.
Ces informations sont utiles pour les sous-modules supérieurs. Nous avons testé le modèle
sur un véritable ensemble de données AIS contenant plus de 4,2 millions de messages AIS.
MultitaskAIS atteint des performances identiques ou meilleures que les méthodes de pointe
dans toutes les tâches.

Le sous-module de détection d’anomalies de MultitaskAIS s’appelle GeoTrackNet. Il
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Figure B.2 – Architecture de MultitaskAIS.

s’agit d’un détecteur “a contrario” qui prend en compte le fait que les données AIS sont
géospatialement dépendantes, de sorte que les performances de la distribution (apprise par
le VRNN) est géospatialement dépendantes aussi. GeoTrackNet divise la ROI (region of
interest en anglais) en petites cellules, et considère tout message AIS qui a une probabilité
relativement plus faible que les autres messages AIS dans la même cellule comme anormal.
Toute trajectoire comportant de nombreux messages AIS anormaux sera considérée comme
anormale.

La Fig. B.3 montre des trajectoires anormales détectées par GeoTrackNet autour
d’Ouessant, de janvier à mars 2017. Le modèle proposé peut détecter à la fois: i) des
anomalies spatiales (géométriques et géographiques), lorsque les navires dévient des routes
maritimes, effectuent des virages inhabituels, etc. et ii) des anomalies de phase (cinétiques),
lorsque les navires ont une évolution anormale de leur vitesse et de leur cap (par exemple,
ralentissement inhabituel, changements brusques de vitesse, etc.).
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Figure B.3 – Trajectoires anormales détectées par GeoTrackNet. Bleu: trajectoires dans la
base d’apprentissage; autres couleurs: trajectoires anormales dans la base de test.
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B.4 Conclusion et perspectives

B.4.1 Conclusion

Dans cette thèse on a étudié l’apprentissage profond variationnel (VDL) pour la
modélisation et l’analyse de séries temporelles. Les méthodes VDL de pointe actuelles
pour la modélisation de séries temporelles peuvent être classées en deux classes: DSSM
et SVAE. DSSM est une version améliorée du SSM classique. En utilisant des réseaux
de neurones pour paramétrer les distributions, le DSSM surmonte les difficultés de non-
linéarité. SVAE étend RNN en ajoutant des composants stochastiques pour surmonter la
limite des transitions déterministes. Les deux sont puissants pour capturer les dépendances
à long terme dans des séries temporelles hautement non linéaires, bruitées et échantillonnées
de manière irrégulière. Cependant, selon les applications spécifiques, l’une peut être plus
appropriée que l’autre.

Nous avons proposé de nouvelles méthodes VDL pour deux applications spécifiques
: l’identification dynamique des systèmes et la surveillance du trafic maritime. Plus
précisément :
— Nous avons proposé une méthode générale d’apprentissage profond—appelé DAODEN—

pour l’apprentissage de systèmes dynamiques chaotiques et potentiellement stochas-
tiques. Cette méthode utilise une formulation de modèle d’espace d’état profond pour
récupérer les équations différentielles inconnues qui régissent les données de l’ensemble
d’apprentissage. En combinant l’assimilation des données classiques et les techniques
modernes d’apprentissage automatique (apprentissage profond), DAODEN peut
considérablement améliorer les performances des modèles d’apprentissage de pointe
actuelle dans des conditions imparfaites, c’est-à-dire des observations bruitées et
partielles. De plus, étant donné que DAODEN intègre des composants stochastiques
pour tenir compte des erreurs modèle et des incertitudes de reconstruction, cette
méthode peut appliquer à des systèmes dynamiques stochastiques.

— Nous avons proposé une architecture d’apprentissage profond—appelée MultitaskAIS—
pour la surveillance maritime utilisant les données AIS. Le composant clé de Multi-
taskAIS est un VRNN. Ce modèle apprend une distribution probabiliste décrivant
les trajectoires AIS dans l’ensemble d’apprentissage. De nombreux sous-modèles
spécifiques aux tâches peuvent être construits au-dessus de cette couche. Nous avons
démontré que MultitaskAIS pouvait atteindre des performances de pointe sur trois
tâches: reconstruction de trajectoire, détection d’anomalies d’identification du type
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de navire, tout en réduisant considérablement les besoins de stockage et de cal-
cul. Le sous-modèle le plus important de MultitaskAIS est le modèle de détection
d’anomalies—appelé GeoTrackNet. Ce modèle exploite la représentation probabiliste
donnée par le VRNN et utilise un détecteur géospatial a contrario pour détecter
les comportements anormaux des navires. Le détecteur a contrario de GeoTrackNet
prend en compte le fait que les données AIS sont géospatialement dépendantes, de
sorte que les performances du VRNN dépendent également géospatialement. Geo-
TrackNet est la première application réussie de DL dans la détection d’anomalies du
trafic maritime.

B.4.2 Perspectives

Les résultats présentés dans cette thèse ont établi des avancées pour les problèmes
considérés, mais ils soulèvent également un nouvel ensemble de questions ouvertes (et
probablement plus difficiles) qui restent pour les futurs explorateurs. Concernant la partie
théorique :

— Pour les problèmes considérés dans cette thèse, les états et les observations sont
des vecteurs unidimensionnels. Le passage dans un espace dimensionnel élevé (par
exemple, lorsque les observations sont des images 2D) nécessiterait des études
complémentaires pour réduire la complexité de la représentation et du calcul.

— Dans cette thèse, nous avons utilisé les LSTMs pour capturer des corrélations à long
terme dans les données. Cependant, si nous avons une connaissance préalable de
la “longueur” des dépendances temporelles, des architectures parallèles telles que
transformer (Vaswani et al. 2017) accéléreront le temps de calcul.

Concernant la partie d’identification de systèmes dynamiques :

— Nous avons examiné des cas où les observations sont partielles en ce sens que certaines
composantes des observations peuvent manquer, tant dans les dimensions spatiales
que temporelles, cependant, toutes les composantes des états du système sont vues
au moins une fois. Il existe également des situations où certains composants des
systèmes ne sont jamais observés. Pour ces cas, nous devons exploiter des états
augmentés (Abarbanel et al. 1994; Robinson 2005; Ayed et al. 2019; Ouala, Duong
Nguyen, Herzet, et al. 2019).

— Il est crucial d’appliquer des contraintes physiques afin d’obtenir un modèle appris
physiquement significatif. Les travaux préliminaires dans (Cockburn et al. 1990;
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Raissi, Perdikaris, and George E. Karniadakis 2019; Bézenac et al. 2019) pourraient
être étudiés dans de futures études.

Concernant la partie de surveillance du trafic maritime:

— L’AIS est un système d’auto-déclaration. Bien que MultitaskAIS et GeoTrackNet
puissent gérer les données manquantes, si un navire coupe son signal AIS pendant
une longue période, les modèles basés sur l’AIS ne peuvent pas s’appliquer. Les
modèles de détection AIS on-off, tels que ceux de (Fabio Mazzarella et al. 2017;
Kontopoulos et al. 2020) sont nécessaires pour la surveillance maritime.

— Bien que les performances de GeoTrackNet soient prometteus et que les trajectoires
AIS détectées ont été validées par des experts AIS indépendants, nous ne savons pas
ce que le détecteur peut manquer. Des données étiquetées et bien préparées seraient
très utiles pour que la communauté fasse progresser les progrès récents.

166



Bibliography

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, and Michael Isard (2016), « Ten-
sorflow: A system for large-scale machine learning », 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), pp. 265–283.

Abarbanel, Henry DI, T. A. Carroll, L. M. Pecora, J. J. Sidorowich, and L. Sh Tsimring
(1994), « Predicting physical variables in time-delay embedding », Physical Review E
49.3, p. 1840.

Agnew, David J., John Pearce, Ganapathiraju Pramod, Tom Peatman, Reg Watson,
John R. Beddington, and Tony J. Pitcher (Feb. 2009), « Estimating the Worldwide
Extent of Illegal Fishing », PLOS ONE 4.2, Publisher: Public Library of Science, e4570.

Ammar, M. and S. Le Hegarat-Mascle (Dec. 2013), « An A-Contrario Approach for Object
Detection in Video Sequence », International Journal of Pure and Apllied Mathematics
89.2.

Arguedas, V. Fernandez, G. Pallotta, and M. Vespe (Mar. 2018), « Maritime Traffic Net-
works: From Historical Positioning Data to Unsupervised Maritime Traffic Monitoring »,
IEEE Transactions on Intelligent Transportation Systems 19.3, pp. 722–732.

Arrowsmith, David K., Colin M. Place, and C. H. Place (1990), An introduction to
dynamical systems, Cambridge university press.

Atrey, P.K., N.C. Maddage, and M.S. Kankanhalli (2006), « Audio Based Event Detection
for Multimedia Surveillance », 2006 IEEE International Conference on Acoustics Speed
and Signal Processing Proceedings, vol. 5, Toulouse, France: IEEE, pp. V–813–V–816.

167



Part IV, BIBLIOGRAPHY

Ayed, Ibrahim, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari
(Feb. 2019), « Learning Dynamical Systems from Partial Observations », arXiv:1902.11136
[physics], arXiv: 1902.11136.

Barbos, Andrei-Cristian, Francois Caron, Jean-François Giovannelli, and Arnaud Doucet
(2017), « Clone MCMC: Parallel High-Dimensional Gaussian Gibbs Sampling », Ad-
vances in Neural Information Processing Systems 30, ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Curran Associates,
Inc., pp. 5020–5028.

Barker, Jon, Emmanuel Vincent, Ning Ma, Heidi Christensen, and Phil Green (May 2013),
« The PASCAL CHiME speech separation and recognition challenge », Computer
Speech & Language, Special Issue on Speech Separation and Recognition in Multisource
Environments 27.3, pp. 621–633.

Bayer, Justin and Christian Osendorfer (Nov. 2014), « Learning Stochastic Recurrent
Networks », arXiv:1411.7610 [cs, stat], arXiv: 1411.7610.

Bengio, Y., A. Courville, and P. Vincent (Aug. 2013), « Representation Learning: A
Review and New Perspectives », IEEE Transactions on Pattern Analysis and Machine
Intelligence 35.8, pp. 1798–1828.

Best, R. A. and J. P. Norton (July 1997), « A new model and efficient tracker for a target
with curvilinear motion », IEEE Transactions on Aerospace and Electronic Systems
33.3, pp. 1030–1037.

Bézenac, Emmanuel de, Arthur Pajot, and Patrick Gallinari (Dec. 2019), « Deep learning
for physical processes: incorporating prior scientific knowledge », Journal of Statistical
Mechanics: Theory and Experiment 2019.12, p. 124009.

Biancamaria, Sylvain, Dennis P. Lettenmaier, and Tamlin M. Pavelsky (2016), « The
SWOT mission and its capabilities for land hydrology », Surveys in Geophysics 37.2,
pp. 307–337.

Bishop, Christopher (2006), Pattern Recognition and Machine Learning, Information
Science and Statistics, New York: Springer-Verlag.

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (2017), « Variational inference:
A review for statisticians », Journal of the American statistical Association 112.518,
pp. 859–877.

Bocquet, Marc, Julien Brajard, Alberto Carrassi, and Laurent Bertino (July 2019), « Data
assimilation as a learning tool to infer ordinary differential equation representations of
dynamical models », Nonlinear Processes in Geophysics 26.3, pp. 143–162.

168



BIBLIOGRAPHY

— (2020), « Bayesian inference of chaotic dynamics by merging data assimilation, machine
learning and expectation-maximization », Foundations of Data Science 2.1, arXiv:
2001.06270, pp. 55–80.

Bomberger, N. A., B. J. Rhodes, M. Seibert, and A. M. Waxman (July 2006), « Associative
Learning of Vessel Motion Patterns for Maritime Situation Awareness », 2006 9th
International Conference on Information Fusion, pp. 1–8.

Bottou, Léon, Frank E. Curtis, and Jorge Nocedal (2018), « Optimization methods for
large-scale machine learning », Siam Review 60.2, pp. 223–311.

Bouritsas, Giorgos, Stelios Daveas, Antonios Danelakis, and Stelios CA Thomopoulos
(2019), « Automated Real-time Anomaly Detection in Human Trajectories using Se-
quence to Sequence Networks », 2019 16th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), IEEE, pp. 1–8.

Brajard, J., A. Carrassi, M. Bocquet, and L. Bertino (2019), « Combining data assimilation
and machine learning to emulate a dynamical model from sparse and noisy observations:
a case study with the Lorenz 96 model », Geoscientific Model Development Discussions
2019, pp. 1–21.

Bresnahan, Philip J., Taylor Wirth, Todd Martz, Kenisha Shipley, Vicky Rowley, Clarissa
Anderson, and Thomas Grimm (2020), « Equipping smart coasts with marine water
quality IoT sensors », Results in Engineering 5, p. 100087.

Brin, Michael and Garrett Stuck (2002), Introduction to dynamical systems, Cambridge
university press.

Brown, Robert Grover and Patrick Y C Hwang (n.d.), « Introduction to Random Signals
and Applied Kalman Filtering » (), p. 3.

Brunton, Steven L. and J. Nathan Kutz (2019), Data-driven science and engineering:
Machine learning, dynamical systems, and control, Cambridge University Press.

Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz (Apr. 2016), « Discovering
governing equations from data by sparse identification of nonlinear dynamical systems »,
Proceedings of the National Academy of Sciences 113.15, pp. 3932–3937.

Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (Nov. 2016), « Importance Weighted
Autoencoders », arXiv:1509.00519 [cs, stat], arXiv: 1509.00519.

Champion, Kathleen, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton (Mar. 2019),
« Data-driven discovery of coordinates and governing equations », Proceedings of the
National Academy of Sciences 116, pp. 22445–22451.

169



Part IV, BIBLIOGRAPHY

Chapron, B., P. Dérian, E. Mémin, and V. Resseguier (2018), « Large-scale flows under
location uncertainty: a consistent stochastic framework », Quarterly Journal of the
Royal Meteorological Society 144.710, pp. 251–260.

Chen, Liqun, Chenyang Tao, Ruiyi Zhang, Ricardo Henao, and Lawrence Carin Duke
(2018), « Variational inference and model selection with generalized evidence bounds »,
International conference on machine learning, pp. 893–902.

Chen, Ricky T. Q., Yulia Rubanova, Jesse Bettencourt, and David Duvenaud (June
2018), « Neural Ordinary Differential Equations », arXiv:1806.07366 [cs, stat], arXiv:
1806.07366.

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang (2015), « Mxnet: A flexible and effi-
cient machine learning library for heterogeneous distributed systems », arXiv preprint
arXiv:1512.01274.

Chung, J., K. Kastner, L. Dinh, K. Goel, A. Courville, and Y. Bengio (June 2015), « A
Recurrent Latent Variable Model for Sequential Data », Advances in neural information
processing systems, pp. 2980–2988.

Chung, Junyoung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio (2015), « Gated
Feedback Recurrent Neural Networks », International Conference on Machine Learning,
p. 9.

Clifton, D. A. and L. Tarassenko (Aug. 2015), « Novelty detection in jet engine vibration
spectra », International Journal of Condition Monitoring 5, pp. 2–7.

Cockburn, Bernardo, Suchung Hou, and Chi-Wang Shu (1990), « The Runge-Kutta local
projection discontinuous Galerkin finite element method for conservation laws. IV. The
multidimensional case », Mathematics of Computation 54.190, pp. 545–581.

Coscia, P., P. Braca, L. M. Millefiori, F. A. N. Palmieri, and P. Willett (2018), « Multiple
Ornstein-Uhlenbeck Processes for Maritime Traffic Graph Representation », IEEE
Transactions on Aerospace and Electronic Systems, pp. 1–1.

Courtier, P., J.-N. Thépaut, and A. Hollingsworth (1994), « A strategy for operational
implementation of 4D-Var, using an incremental approach », Quarterly Journal of the
Royal Meteorological Society 120.519, pp. 1367–1387.

d’Afflisio, E., P. Braca, L. M. Millefiori, and P. Willett (July 2018), « Maritime Anomaly
Detection Based on Mean-Reverting Stochastic Processes Applied to a Real-World
Scenario », 2018 21st International Conference on Information Fusion (FUSION),
pp. 1171–1177.

170



BIBLIOGRAPHY

d’Afflisio, E., P. Braca, L. M. Millefiori, and P. Willett (Dec. 2018), « Detecting Anomalous
Deviations From Standard Maritime Routes Using the Ornstein–Uhlenbeck Process »,
IEEE Transactions on Signal Processing 66.24, pp. 6474–6487.

De Brouwer, Edward, Jaak Simm, Adam Arany, and Yves Moreau (Nov. 2019), « GRU-
ODE-Bayes: Continuous modeling of sporadically-observed time series », Advances in
Neural Information Processing Systems, arXiv: 1905.12374.

Dechter, Rina (1986), « Learning while searching in constraint-satisfaction problems ».
Dempster, A. P., N. M. Laird, and D. B. Rubin (1977), « Maximum likelihood from

incomplete data via the EM algorithm », Journal of the Royal Statistical Society, Series
B 39.1, pp. 1–38.

Desolneux, Agnés, Lionel Moisan, and Jean-Michel Morel (2008), From Gestalt Theory
to Image Analysis: A Probabilistic Approach, ed. by S. S. Antman, L. Sirovich, J. E.
Marsden, and S. Wiggins, vol. 34, Interdisciplinary Applied Mathematics, New York,
NY: Springer New York.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018), « BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding », arXiv:1810.04805
[cs], arXiv: 1810.04805.

Dobrkovic, Andrej, Maria-Eugenia Iacob, and Jos van Hillegersberg (Mar. 2018), « Maritime
pattern extraction and route reconstruction from incomplete AIS data », International
Journal of Data Science and Analytics 5.2, pp. 111–136.

Doucet, Arnaud and Adam M Johansen (2009), « A tutorial on particle filtering and
smoothing: Fifteen years later », Handbook of nonlinear filtering 12.656-704, p. 3.

Dremeau, A., C. Herzet, and L. Daudet (July 2012), « Boltzmann Machine and Mean-Field
Approximation for Structured Sparse Decompositions », IEEE Transactions on Signal
Processing 60.7, pp. 3425–3438.

Duchi, John, Elad Hazan, and Yoram Singer (2011), « Adaptive subgradient methods for
online learning and stochastic optimization. », Journal of machine learning research
12.7.

Elman, Jeffrey L. (1990), « Finding structure in time », Cognitive science 14.2, pp. 179–211.
Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu (1996), « A Density-based

Algorithm for Discovering Clusters a Density-based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise », Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, Oregon:
AAAI Press, pp. 226–231.

171



Part IV, BIBLIOGRAPHY

Esteva, Andre, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark
DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean
(Jan. 2019), « A guide to deep learning in healthcare », Nature Medicine 25.1, pp. 24–29.

Evensen, Geir (Nov. 2003), « The Ensemble Kalman Filter: theoretical formulation and
practical implementation », Ocean Dynamics 53.4, pp. 343–367.

— (Aug. 2009), Data Assimilation: The Ensemble Kalman Filter, Google-Books-ID:
2_zaTb_O1AkC, Springer Science & Business Media.

Evensen, Geir and Peter Jan van Leeuwen (June 2000), « An Ensemble Kalman Smoother
for Nonlinear Dynamics », Monthly Weather Review 128.6, pp. 1852–1867.

Fablet, Ronan, Lucas Drumetz, and Francois Rousseau (June 2020), « Joint learning of
variational representations and solvers for inverse problems with partially-observed
data », arXiv:2006.03653 [cs, eess, stat], arXiv: 2006.03653.

Fablet, Ronan, Said Ouala, and Cédric Herzet (Sept. 2018), « Bilinear Residual Neural
Network for the Identification and Forecasting of Geophysical Dynamics », 2018 26th
European Signal Processing Conference (EUSIPCO), ISSN: 2219-5491, pp. 1477–1481.

Féron, Olivier, François Orieux, and Jean-François Giovannelli (Mar. 2016), « Gradient Scan
Gibbs Sampler: An Efficient Algorithm for High-Dimensional Gaussian Distributions »,
IEEE Journal of Selected Topics in Signal Processing 10.2, pp. 343–352.

Flory, Paul J. (1942), « Thermodynamics of high polymer solutions », The Journal of
chemical physics 10.1, pp. 51–61.

Forti, N., L. M. Millefiori, P. Braca, and P. Willett (May 2019), « Anomaly Detection and
Tracking Based on Mean–Reverting Processes with Unknown Parameters », ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8449–8453.

Fraccaro, Marco (2018), Deep Latent Variable Models for Sequential Data, DTU Compute.
Fraccaro, Marco, Sø ren Kaae Sø nderby, Ulrich Paquet, and Ole Winther (2016), « Se-

quential Neural Models with Stochastic Layers », Advances in Neural Information
Processing Systems, Curran Associates, Inc., pp. 2199–2207.

Gaspar, Philippe, Rémy Lopez, Marza Marzuki, Ronan Fablet, Philippe Gros, Jean-Michel
Zigna, and Gaetan Fabritius (July 2016), « Analysis of Vessel Trajectories for Maritime
Surveillance and Fisheries Management », Maritime Knowledge Discovery and Anomaly
Detection Workshop, Joint Research Centre, ISPRA, Italy.

172



BIBLIOGRAPHY

Geman, Stuart and Donald Geman (1984), « Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images », IEEE Transactions on pattern analysis and
machine intelligence 6, pp. 721–741.

Gershgorin, Boris, John Harlim, and Andrew J. Majda (2010), « Test models for improving
filtering with model errors through stochastic parameter estimation », Journal of
Computational Physics 229.1, pp. 1–31.

Gershman, Samuel, Matt Hoffman, and David Blei (2012), « Nonparametric variational
inference », arXiv preprint arXiv:1206.4665.

Ghahramani, Zoubin and Geoffrey E. Hinton (1996), Parameter estimation for linear
dynamical systems, tech. rep., Technical Report CRG-TR-96-2, University of Totronto,
Dept. of Computer Science.

Ghahramani, Zoubin and Sam T. Roweis (1999), « Learning Nonlinear Dynamical Systems
Using an EM Algorithm », Advances in Neural Information Processing Systems 11,
ed. by M. J. Kearns, S. A. Solla, and D. A. Cohn, MIT Press, pp. 431–437.

Giannakopoulos, Theodoros, Alexandros Makris, Dimitrios Kosmopoulos, Stavros Peran-
tonis, and Sergios Theodoridis (2010), « Audio-Visual Fusion for Detecting Violent
Scenes in Videos », Artificial Intelligence: Theories, Models and Applications, vol. 6040,
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 91–100.

Goh, Garrett B., Nathan O. Hodas, and Abhinav Vishnu (2017), « Deep learning for
computational chemistry », Journal of Computational Chemistry 38.16, pp. 1291–1307.

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy (2014), « Explaining and
harnessing adversarial examples », arXiv preprint arXiv:1412.6572.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016), Deep learning, MIT press.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio (2014), « Generative adversarial nets »,
Advances in neural information processing systems, pp. 2672–2680.

He, K., X. Zhang, S. Ren, and J. Sun (Dec. 2015), « Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification », 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 1026–1034.

Hexeberg, S., A. L. Flåten, B. O. H. Eriksen, and E. F. Brekke (July 2017), « AIS-based
vessel trajectory prediction », 2017 20th International Conference on Information
Fusion (Fusion), pp. 1–8.

Hilborn, Robert C (2000), Chaos and nonlinear dynamics: an introduction for scientists
and engineers, Oxford University Press on Demand.

173



Part IV, BIBLIOGRAPHY

Hinton, Geoffrey (2012), Lecture 6e rmsprop: Divide the gradient by a running average of
its recent magnitude.

Hirsch, Morris W, Stephen Smale, and Robert L Devaney (2012), Differential equations,
dynamical systems, and an introduction to chaos, Academic press.

Hochreiter, Sepp and Jürgen Schmidhuber (1997), « Long short-term memory », Neural
computation 9.8, pp. 1735–1780.

Hoffman, Matt, David M. Blei, Chong Wang, and John Paisley (June 2012), « Stochastic
Variational Inference », arXiv:1206.7051 [cs, stat], arXiv: 1206.7051.

Holst, Anders, Peter Ryman, and Anders Linse (July 2016), « Stattistical Anomaly
Detection for Maritime Surveillance and Monitoring », Maritime Knowledge Discovery
and Anomaly Detection Workshop, Joint Research Centre, ISPRA, Italy.

Hoshiya, Masaru and Etsuro Saito (1984), « Structural identification by extended Kalman
filter », Journal of engineering mechanics 110.12, pp. 1757–1770.

Huggins, Maurice L. (1941), « Solutions of long chain compounds », The Journal of
chemical physics 9.5, pp. 440–440.

IMO (2020), IMO profile.
— (2017), International Convention for the Safety of Life at Sea (SOLAS), 1974.
Iphar, Clément, Cyril Ray, and Aldo Napoli (June 2019), « Uses and Misuses of the

Automatic Identification System », OCEANS 2019 - Marseille, pp. 1–10.
— (June 2020), « Data integrity assessment for maritime anomaly detection », Expert

Systems with Applications 147, p. 113219.
Isern-Fontanet, J. and Erwan Hascoët (2014), « Diagnosis of high-resolution upper ocean

dynamics from noisy sea surface temperatures », Journal of Geophysical Research:
Oceans 119.1, pp. 121–132.

Jaeger, Herbert (2002), Tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the" echo state network" approach, vol. 5, GMD-Forschungszentrum
Informationstechnik Bonn.

Jiang, Xiang, Erico N. de Souza, Ahmad Pesaranghader, Baifan Hu, Daniel L. Sil-
ver, and Stan Matwin (May 2017), « TrajectoryNet: An Embedded GPS Trajectory
Representation for Point-based Classification Using Recurrent Neural Networks »,
arXiv:1705.02636 [cs], arXiv: 1705.02636.

Johansson, F. and G. Falkman (Dec. 2007), « Detection of vessel anomalies - a Bayesian net-
work approach », Sensor Networks and Information 2007 3rd International Conference
on Intelligent Sensors, pp. 395–400.

174



BIBLIOGRAPHY

Johnson, C., N. K. Nichols, and B. J. Hoskins (2005), « Very large inverse problems in
atmosphere and ocean modelling », International journal for numerical methods in
fluids 47.8-9, pp. 759–771.

Kalman, Rudolph Emil (1960), « A new approach to linear filtering and prediction
problems ».

Kamilaris, Andreas and Francesc X. Prenafeta-Boldú (Apr. 2018), « Deep learning in
agriculture: A survey », Computers and Electronics in Agriculture 147, pp. 70–90.

Karras, Tero, Samuli Laine, and Timo Aila (2019), « A style-based generator architecture
for generative adversarial networks », Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4401–4410.

Kawaguchi, Yohei (Sept. 2018), « Anomaly Detection Based on Feature Reconstruction
from Subsampled Audio Signals », 2018 26th European Signal Processing Conference
(EUSIPCO), Rome: IEEE, pp. 2524–2528.

Kazemi, Samira, Shahrooz Abghari, Niklas Lavesson, Henric Johnson, and Peter Ryman
(Oct. 2013), « Open data for anomaly detection in maritime surveillance », Expert
Systems with Applications 40.14, pp. 5719–5729.

Khare, Shree P., Jeffrey L. Anderson, Timothy J. Hoar, and Douglas Nychka (Jan. 2008),
« An investigation into the application of an ensemble Kalman smoother to high-
dimensional geophysical systems », Tellus A: Dynamic Meteorology and Oceanography
60.1, pp. 97–112.

Kingma, Diederik P. and Jimmy Ba (2015), « Adam: A Method for Stochastic Opti-
mization », Proceedings of the International Conference on Learning Representations
(ICLR).

Kingma, Diederik P. and Max Welling (Dec. 2013), « Auto-Encoding Variational Bayes »,
arXiv:1312.6114 [cs, stat], arXiv: 1312.6114.

Kingma, Durk P., Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling (2014),
« Semi-supervised learning with deep generative models », Advances in neural informa-
tion processing systems, pp. 3581–3589.

Kloeden, Peter E. and Eckhard Platen (2013), Numerical solution of stochastic differential
equations, vol. 23, Springer Science & Business Media.

Kontopoulos, Ioannis, Konstantinos Chatzikokolakis, Dimitris Zissis, Konstantinos Tserpes,
and Giannis Spiliopoulos (2020), « Real-time maritime anomaly detection: detecting
intentional AIS switch-off », International Journal of Big Data Intelligence 7.2, pp. 85–
96.

175



Part IV, BIBLIOGRAPHY

Kowalska, K. and L. Peel (July 2012), « Maritime anomaly detection using Gaussian
Process active learning », 2012 15th International Conference on Information Fusion,
pp. 1164–1171.

Krishnan, R. G., U. Shalit, and D. Sontag (Feb. 2017), « Deep Kalman Filters », AAAI
Conference on Artificial Intelligence.

Krishnan, Rahul G., Uri Shalit, and David Sontag (Sept. 2016), « Structured Inference
Networks for Nonlinear State Space Models », arXiv:1609.09869 [cs, stat], arXiv:
1609.09869.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012), « ImageNet Classification
with Deep Convolutional Neural Networks », Advances in Neural Information Processing
Systems 25, ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Curran Associates, Inc., pp. 1097–1105.

Kumar, P., A. Mittal, and P. Kumar (Dec. 2005), « A Multimodal Audio Visible and
Infrared Surveillance System (MAVISS) », 2005 3rd International Conference on
Intelligent Sensing and Information Processing, pp. 151–156.

Lahoz, Boris Khattatov William and Richard Menard (2010), Data assimilation, Springer.
Landau, Lev Davidovich (1937), « On the theory of phase transitions. I. », Zh. Eksp. Teor.

Fiz. 11, p. 19.
Laxhammar, R. (June 2008), « Anomaly detection for sea surveillance », 2008 11th

International Conference on Information Fusion, pp. 1–8.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (May 2015), « Deep learning », Nature

521.7553, pp. 436–444.
Lee, Jae-Gil, Jiawei Han, and Kyu-Young Whang (2007), « Trajectory Clustering: A

Partition-and-group Framework », Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’07, New York, NY, USA: ACM, pp. 593–
604.

Lguensat, Redouane, Pierre Tandeo, Pierre Ailliot, Manuel Pulido, and Ronan Fablet (Oct.
2017), « The Analog Data Assimilation », Monthly Weather Review 145.10, pp. 4093–
4107.

Li, Hong, Eugenia Kalnay, and Takemasa Miyoshi (2009), « Simultaneous estimation
of covariance inflation and observation errors within an ensemble Kalman filter »,
Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric
sciences, applied meteorology and physical oceanography 135.639, pp. 523–533.

176



BIBLIOGRAPHY

Lichtenberg, Allan J. and Michael A. Lieberman (2013), Regular and chaotic dynamics,
vol. 38, Springer Science & Business Media.

Locatello, Francesco, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem (2019), « Challenging common assumptions in the
unsupervised learning of disentangled representations », international conference on
machine learning, pp. 4114–4124.

Lorenz, Edward N. (Mar. 1963), « Deterministic Nonperiodic Flow », Journal of the
Atmospheric Sciences 20.2, pp. 130–141.

— (1996), « Predictability: A problem partly solved », Seminar on predictability, vol. 1.
Ma, Zhanyu, Jiyang Xie, Yuping Lai, Jalil Taghia, Jing-Hao Xue, and Jun Guo (2019),

« Insights into multiple/single lower bound approximation for extended variational
inference in non-Gaussian structured data modeling », IEEE Transactions on Neural
Networks and Learning Systems.

Maddison, Chris J., Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi,
Andriy Mnih, Arnaud Doucet, and Yee Whye Teh (May 2017), « Filtering Variational
Objectives », Advances in Neural Information Processing Systems, pp. 6576–6586.

Marchi, E., F. Vesperini, F. Eyben, S. Squartini, and B. Schuller (Apr. 2015), « A novel
approach for automatic acoustic novelty detection using a denoising autoencoder
with bidirectional LSTM neural networks », 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1996–2000.

Marchi, E., F. Vesperini, F. Weninger, F. Eyben, S. Squartini, and B. Schuller (July 2015),
« Non-linear prediction with LSTM recurrent neural networks for acoustic novelty
detection », 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–
7.

Marcus, Gary (Jan. 2018), « Deep Learning: A Critical Appraisal », arXiv:1801.00631 [cs,
stat], arXiv: 1801.00631.

Mascaro, Steven, Ann E. Nicholso, and Kevin B. Korb (Jan. 2014), « Anomaly detection
in vessel tracks using Bayesian networks », International Journal of Approximate
Reasoning, Applications of Bayesian Networks 55.1, Part 1, pp. 84–98.

Mazzarella, F., V. F. Arguedas, and M. Vespe (Oct. 2015), « Knowledge-based vessel
position prediction using historical AIS data », 2015 Sensor Data Fusion: Trends,
Solutions, Applications (SDF), pp. 1–6.

177



Part IV, BIBLIOGRAPHY

Mazzarella, F., M. Vespe, D. Damalas, and G. Osio (July 2014), « Discovering vessel
activities at sea using AIS data: Mapping of fishing footprints », 17th International
Conference on Information Fusion (FUSION), pp. 1–7.

Mazzarella, Fabio, Michele Vespe, Alfredo Alessandrini, Dario Tarchi, Giuseppe Auli-
cino, and Antonio Vollero (2017), « A novel anomaly detection approach to identify
intentional AIS on-off switching », Expert Systems with Applications 78, pp. 110–123.

McDermott, Patrick L. and Christopher K. Wikle (2016), « A model-based approach for
analog spatio-temporal dynamic forecasting », Environmetrics 27.2, pp. 70–82.

Metz, Luke, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein (2018),
« Meta-learning update rules for unsupervised representation learning », arXiv preprint
arXiv:1804.00222.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean (2013), « Dis-
tributed representations of words and phrases and their compositionality », Advances
in neural information processing systems, pp. 3111–3119.

Millefiori, L. M., P. Braca, K. Bryan, and P. Willett (Oct. 2016), « Modeling vessel
kinematics using a stochastic mean-reverting process for long-term prediction », IEEE
Transactions on Aerospace and Electronic Systems 52.5, pp. 2313–2330.

Min, Seonwoo, Byunghan Lee, and Sungroh Yoon (Sept. 2017), « Deep learning in bioin-
formatics », Briefings in Bioinformatics 18.5, pp. 851–869.

Mohajerin, Nima and Steven L. Waslander (Nov. 2019), « Multistep Prediction of Dynamic
Systems With Recurrent Neural Networks », IEEE Transactions on Neural Networks
and Learning Systems 30.11, pp. 3370–3383.

Murphy, Kevin P. (2012), Machine learning: a probabilistic perspective, MIT press.
Nagarajan, Badrinath, Luca Delle Monache, Joshua P. Hacker, Daran L. Rife, Keith

Searight, Jason C. Knievel, and Thomas N. Nipen (Dec. 2015), « An Evaluation of
Analog-Based Postprocessing Methods across Several Variables and Forecast Models »,
Weather and Forecasting 30.6, pp. 1623–1643.

Nanduri, Anvardh and Lance Sherry (2016), « Anomaly detection in aircraft data using
Recurrent Neural Networks (RNN) », Ieee, pp. 5C2–1.

Neal, Radford M. and Geoffrey E. Hinton (1998), « A View of the Em Algorithm that
Justifies Incremental, Sparse, and other Variants », Learning in Graphical Models, ed. by
Michael I. Jordan, NATO ASI Series, Dordrecht: Springer Netherlands, pp. 355–368.

Nguyen, D., O. S. Kirsebom, F. Frazão, R. Fablet, and S. Matwin (May 2019), « Recurrent
Neural Networks with Stochastic Layers for Acoustic Novelty Detection », ICASSP

178



BIBLIOGRAPHY

2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 765–769.

Nguyen, Duong, Said Ouala, Lucas Drumetz, and Ronan Fablet (Mar. 2019), « EM-like
Learning Chaotic Dynamics from Noisy and Partial Observations ».

— (May 2020a), « Assimilation-Based Learning of Chaotic Dynamical Systems from Noisy
and Partial Data », ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), ISSN: 2379-190X, pp. 3862–3866.

— (Sept. 2020b), « Variational Deep Learning for the Identification and Reconstruction
of Chaotic and Stochastic Dynamical Systems from Noisy and Partial Observations ».

Nguyen, Duong, Matthieu Simonin, Guillaume Hajduch, Rodolphe Vadaine, Cédric
Tedeschi, and Ronan Fablet (2020), « Detection of Abnormal Vessel Behaviors from AIS
data using GeoTrackNet: from the Laboratory to the Ocean », 21st IEEE International
Conference on Mobile Data Management (MDM).

Nguyen, Duong, Rodolphe Vadaine, Guillaume Hajduch, René Garello, and Ronan Fablet
(Oct. 2018), « A Multi-task Deep Learning Architecture for Maritime Surveillance
using AIS Data Streams », 2018 IEEE International Conference on Data Science and
Advanced Analytics (DSAA).

— (Dec. 2019), « GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural
Network Representation of AIS Tracks and A Contrario Detection », arXiv:1912.00682
[cs, stat], arXiv: 1912.00682.

Ntalampiras, S., I. Potamitis, and N. Fakotakis (Aug. 2011), « Probabilistic Novelty
Detection for Acoustic Surveillance Under Real-World Conditions », IEEE Transactions
on Multimedia 13.4, pp. 713–719.

Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu (Sept. 2016),
« WaveNet: A Generative Model for Raw Audio », arXiv:1609.03499 [cs], arXiv:
1609.03499.

Ouala, Said, Duong Nguyen, Lucas Drumetz, Bertrand Chapron, Ananda Pascual, Fabrice
Collard, Lucile Gaultier, and Ronan Fablet (2020), « Learning Latent Dynamics for
Partially-Observed Chaotic Systems », Chaos: An Interdisciplinary Journal of Nonlinear
Science 30.

Ouala, Said, Duong Nguyen, Cédric Herzet, Lucas Drumetz, Bertrand Chapron, Ananda
Pascual, Fabrice Collard, Lucile Gaultier, and Ronan Fablet (July 2019), « Learning
Ocean Dynamical Priors from Noisy Data Using Assimilation-Derived Neural Nets »,

179



Part IV, BIBLIOGRAPHY

IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium,
ISSN: 2153-7003, pp. 9451–9454.

Ouala, Said, Ananda Pascual, and Ronan Fablet (May 2019), « Residual Integration Neural
Network », ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), ISSN: 2379-190X, pp. 3622–3626.

Pajot, Arthur, Emmanuel de Bezenac, and Patrick Gallinari (Sept. 2018), « Unsupervised
Adversarial Image Reconstruction ».

Pallotta, G., S. Horn, P. Braca, and K. Bryan (July 2014), « Context-enhanced vessel
prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns:
Real-world experimental results », 17th International Conference on Information Fusion
(FUSION), pp. 1–7.

Pallotta, Giuliana, Michele Vespe, and Karna Bryan (June 2013), « Vessel Pattern Knowl-
edge Discovery from AIS Data: A Framework for Anomaly Detection and Route
Prediction », Entropy 15.6, pp. 2218–2245.

Parzen, Emanuel (1962), « On estimation of a probability density function and mode »,
The annals of mathematical statistics 33.3, pp. 1065–1076.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer (2017), « Automatic
differentiation in pytorch ».

Pathak, Jaideep, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott (Jan. 2018),
« Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A
Reservoir Computing Approach », Physical Review Letters 120.2, p. 024102.

Pathak, Jaideep, Zhixin Lu, Brian R. Hunt, Michelle Girvan, and Edward Ott (Dec. 2017),
« Using Machine Learning to Replicate Chaotic Attractors and Calculate Lyapunov
Exponents from Data », Chaos: An Interdisciplinary Journal of Nonlinear Science
27.12, arXiv: 1710.07313, p. 121102.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014), « Glove: Global
vectors for word representation », Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 1532–1543.

Perera, L. P., P. Oliveira, and C. Guedes Soares (Sept. 2012), « Maritime Traffic Monitoring
Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction »,
IEEE Transactions on Intelligent Transportation Systems 13.3, pp. 1188–1200.

Perobelli, Nicola (June 2016), MarineTraffic - A day in numbers.

180



BIBLIOGRAPHY

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer (2018), « Deep contextualized word representations »,
arXiv preprint arXiv:1802.05365.

Pierce, David W. (2001), « Distinguishing coupled ocean–atmosphere interactions from
background noise in the North Pacific », Progress in Oceanography 49.1-4, pp. 331–352.

Principi, E., F. Vesperini, S. Squartini, and F. Piazza (May 2017), « Acoustic novelty
detection with adversarial autoencoders », 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 3324–3330.

Qin, Tong, Kailiang Wu, and Dongbin Xiu (Nov. 2018), « Data Driven Governing Equations
Approximation Using Deep Neural Networks », arXiv:1811.05537 [cs, math, stat], arXiv:
1811.05537.

Qiu, Lin, Sheng Gao, Qinjie Lyu, Jun Guo, and Patrick Gallinari (Feb. 2018), « A novel
non-Gaussian embedding based model for recommender systems », Neurocomputing,
Recent Advances in Machine Learning for Non-Gaussian Data Processing 278, pp. 144–
152.

Rabiner, Lawrence R. (1989), « A tutorial on hidden Markov models and selected applica-
tions in speech recognition », Proceedings of the IEEE 77.2, pp. 257–286.

Radford, Benjamin J., Leonardo M. Apolonio, Antonio J. Trias, and Jim A. Simpson
(Mar. 2018), « Network Traffic Anomaly Detection Using Recurrent Neural Networks »,
arXiv:1803.10769 [cs], arXiv: 1803.10769.

Rainforth, Tom, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison, Maximilian Igl,
Frank Wood, and Yee Whye Teh (Feb. 2018), « Tighter Variational Bounds are Not
Necessarily Better », arXiv:1802.04537 [cs, stat], arXiv: 1802.04537.

Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis (2019), « Physics-informed
neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations », Journal of Computational Physics
378, pp. 686–707.

Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis (Jan. 2018), « Multi-
step Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems »,
arXiv:1801.01236 [nlin, physics:physics, stat], arXiv: 1801.01236.

Ravì, Daniele, Charence Wong, Fani Deligianni, Melissa Berthelot, Javier Andreu-Perez,
Benny Lo, and Guang-Zhong Yang (Jan. 2017), « Deep Learning for Health Informat-
ics », IEEE Journal of Biomedical and Health Informatics 21.1, pp. 4–21.

181



Part IV, BIBLIOGRAPHY

Rezende, Danilo Jimenez and Shakir Mohamed (2015), « Variational inference with
normalizing flows », arXiv preprint arXiv:1505.05770.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (June 2014), « Stochastic
Backpropagation and Approximate Inference in Deep Generative Models », Interna-
tional Conference on Machine Learning, PMLR, pp. 1278–1286.

Rhodes, B. J., N. A. Bomberger, M. Seibert, and A. M. Waxman (Oct. 2005), « Maritime
situation monitoring and awareness using learning mechanisms », MILCOM 2005 -
2005 IEEE Military Communications Conference, 646–652 Vol. 1.

Ristic, B., B. La Scala, M. Morelande, and N. Gordon (June 2008), « Statistical analysis
of motion patterns in AIS Data: Anomaly detection and motion prediction », 2008
11th International Conference on Information Fusion, pp. 1–7.

Riveiro, Maria, Giuliana Pallotta, and Michele Vespe (2018), « Maritime anomaly detection:
A review », Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8.

Robinson, James C. (2005), « A topological delay embedding theorem for infinite-dimensional
dynamical systems », Nonlinearity 18.5, p. 2135.

Rosenblatt, Murray (1956), « Remarks on some nonparametric estimates of a density
function », The Annals of Mathematical Statistics, pp. 832–837.

Rubanova, Yulia, Ricky T. Q. Chen, and David K Duvenaud (2019), « Latent Ordinary
Differential Equations for Irregularly-Sampled Time Series », Advances in Neural
Information Processing Systems 32, ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, Curran Associates, Inc.,
pp. 5320–5330.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, and Michael Bernstein (2015),
« Imagenet large scale visual recognition challenge », International journal of computer
vision 115.3, pp. 211–252.

Sak, Hasim, Andrew Senior, and Francoise Beaufays (2014), « Long Short-Term Memory
Recurrent Neural Network Architectures for Large Scale Acoustic Modeling », Fifteenth
annual conference of the international speech communication association, p. 5.

Salman Khan, Muhammad, Miao Yu, Pengming Feng, Liang Wang, and Jonathon Cham-
bers (May 2015), « An unsupervised acoustic fall detection system using source sepa-
ration for sound interference suppression », Signal Processing, Machine learning and
signal processing for human pose recovery and behavior analysis 110, pp. 199–210.

182



BIBLIOGRAPHY

Schubert, R., E. Richter, and G. Wanielik (June 2008), « Comparison and evaluation of
advanced motion models for vehicle tracking », 2008 11th International Conference on
Information Fusion, pp. 1–6.

Sendra, Sandra, Lorena Parra, Jaime Lloret, and José Miguel Jiménez (July 2015), Oceano-
graphic Multisensor Buoy Based on Low Cost Sensors for Posidonia Meadows Moni-
toring in Mediterranean Sea, Research Article.

Shampine, Lawrence F. (2018), Numerical solution of ordinary differential equations,
Routledge.

Shu, Kai, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu (2017), « Fake news
detection on social media: A data mining perspective », ACM SIGKDD explorations
newsletter 19.1, pp. 22–36.

Smith, Gerald L., Stanley F. Schmidt, and Leonard A. McGee (1962), Application of
statistical filter theory to the optimal estimation of position and velocity on board a
circumlunar vehicle, National Aeronautics and Space Administration.

SOLAS (1974), The International Convention for the Safety of Life at Sea (SOLAS).
Song, Li, Ruijia Wang, Ding Xiao, Xiaotian Han, Yanan Cai, and Chuan Shi (2018),

« Anomalous trajectory detection using recurrent neural network », International
Conference on Advanced Data Mining and Applications, Springer, pp. 263–277.

Sprott, Julien Clinton and Julien C Sprott (2003), Chaos and time-series analysis, vol. 69,
Citeseer.

Su, Ya, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei (July 2019),
« Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent
Neural Network », Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, New York, NY, USA: Association for
Computing Machinery, pp. 2828–2837.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014), « Sequence to sequence learning with
neural networks », Advances in neural information processing systems, pp. 3104–3112.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus (Feb. 2014), « Intriguing properties of neural networks »,
arXiv:1312.6199 [cs], arXiv: 1312.6199.

Tu, Enmei, Guanghao Zhang, Lily Rachmawati, Eshan Rajabally, and Guang-Bin Huang
(2017), « Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive
Survey », IEEE Transactions on Intelligent Transportation Systems.

183



Part IV, BIBLIOGRAPHY

Üney, M., L. M. Millefiori, and P. Braca (May 2019), « Data Driven Vessel Trajectory Fore-
casting Using Stochastic Generative Models », ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8459–8463.

Vacar, Cornelia and Jean-François Giovannelli (Mar. 2019), « Unsupervised joint decon-
volution and segmentation method for textured images: a Bayesian approach and an
advanced sampling algorithm », EURASIP Journal on Advances in Signal Processing
2019.1, p. 17.

Varlamis, Iraklis, Konstantinos Tserpes, Mohammad Etemad, Amílcar Soares Júnior, and
Stan Matwin (2019), « A Network Abstraction of Multi-vessel Trajectory Data for
Detecting Anomalies. », EDBT/ICDT Workshops.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin (2017), « Attention is All you Need »,
Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008.

Vlachas, Pantelis R., Wonmin Byeon, Zhong Y. Wan, Themistoklis P. Sapsis, and Petros
Koumoutsakos (May 2018), « Data-driven forecasting of high-dimensional chaotic
systems with long short-term memory networks », Proceedings. Mathematical, Physical,
and Engineering Sciences 474.2213.

Voss, Henning U., Jens Timmer, and Jürgen Kurths (June 2004), « Nonlinear dynamical
system identification from uncertain and indirect measurements », International Journal
of Bifurcation and Chaos 14.06, pp. 1905–1933.

Welch, Greg and Gary Bishop (1995), « An introduction to the Kalman filter ».
Will, J., L. Peel, and C. Claxton (2011), « Fast Maritime Anomaly Detection using KD

Tree Gaussian Processes », 2nd IMA Conference on Maths in Defence.
Wolf, Alan, Jack B. Swift, Harry L. Swinney, and John A. Vastano (July 1985), « Deter-

mining Lyapunov exponents from a time series », Physica D: Nonlinear Phenomena
16.3, pp. 285–317.

Wu, CF Jeff (1983), « On the convergence properties of the EM algorithm », The Annals
of statistics, pp. 95–103.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner,
Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo
Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei
Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean (Sept. 2016), « Google’s Neural Machine

184



BIBLIOGRAPHY

Translation System: Bridging the Gap between Human and Machine Translation »,
arXiv:1609.08144 [cs], arXiv: 1609.08144.

Yeo, Kyongmin and Igor Melnyk (Jan. 2019), « Deep learning algorithm for data-driven sim-
ulation of noisy dynamical system », Journal of Computational Physics 376, pp. 1212–
1231.

Yin, Zhichao and Jianping Shi (2018), « Geonet: Unsupervised learning of dense depth,
optical flow and camera pose », Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1983–1992.

Zajdel, W., J.D. Krijnders, T. Andringa, and D.M. Gavrila (Sept. 2007), « CASSANDRA:
audio-video sensor fusion for aggression detection », 2007 IEEE Conference on Advanced
Video and Signal Based Surveillance, London, UK: IEEE, pp. 200–205.

Zaslavsky, George M. and Georgij Moiseevič Zaslavskij (2005), Hamiltonian chaos and
fractional dynamics, Oxford University Press on Demand.

Zhao, Liangbin and Guoyou Shi (2019), « Maritime Anomaly Detection using Density-
based Clustering and Recurrent Neural Network », The Journal of Navigation 72.4,
pp. 894–916.

Zhao, Zhizhen and Dimitrios Giannakis (Aug. 2016), « Analog forecasting with dynamics-
adapted kernels », Nonlinearity 29.9, pp. 2888–2939.

Zhou, Tinghui, Matthew Brown, Noah Snavely, and David G. Lowe (2017), « Unsupervised
learning of depth and ego-motion from video », Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1851–1858.

Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros (2017), « Unpaired image-
to-image translation using cycle-consistent adversarial networks », Proceedings of the
IEEE international conference on computer vision, pp. 2223–2232.

185







Titre : Apprentissage Variationnel Profond pour la Modélisation et l’Analyse des Séries Tem-
porelles, Applications à l’Identification de Systèmes Dynamiques et à la Détection d’Anomalies
de Trafic Maritime.
Mot clés : apprentissage profond, inférence variationnelle, identification de systèmes dyna-

miques, détection d’anomalies, AIS, surveillance de trafic maritime.

Résumé : Ce travail de thèse se focalise
sur une classe de méthodes d’apprentissage
profond, probabilistes et non-supervisées qui
utilisent l’inférence variationnelle pour créer
des modèles évolutifs de grande capacité pour
les séries temporelles. Nous présentons deux
classes d’apprentissage variationnel profond,
puis nous les appliquons à deux problèmes
spécifiques liés au domaine maritime.

La première application est l’identification
de systèmes dynamiques à partir de données
bruitées et partiellement observées. Nous in-
troduisons un cadre qui fusionne l’assimilation
de données classique et l’apprentissage pro-
fond moderne pour retrouver les équations dif-
férentielles qui contrôlent la dynamique du sys-
tème. En utilisant une formulation d’espace
d’états, le cadre proposé intègre des compo-
santes stochastiques pour tenir compte des
variabilités stochastiques, des erreurs de mo-

dèle et des incertitudes de reconstruction.
La deuxième application est la surveillance

du trafic maritime à l’aide des données AIS.
Nous proposons une architecture d’apprentis-
sage profond probabiliste multitâche pouvant
atteindre des performances très prometteuses
dans différentes tâches liées à la surveillance
du trafic maritime, telles que la reconstruction
de trajectoire, l’identification du type de navire
et la détection d’anomalie, tout en réduisant
considérablement la quantité de données à
stocker et le temps de calcul. temps. Pour la
tâche la plus importante - la détection d’ano-
malie, nous introduisons un détecteur géospa-
tialisé qui utilise l’apprentissage profond varia-
tionnel pour construire une représentation pro-
babiliste des trajectoires AIS, puis détecter les
anomalies en jugeant la probabilité de cette
trajectoire.

Title: Variational Deep Learning for Time Series Modelling and Analysis, Applications to Dy-
namical System Identification and Maritime Traffic Anomaly Detection
Keywords: deep learning, variational inference, dynamical systems identification, anomaly

detection, AIS, maritime traffic surveillance

Abstract: This thesis work focuses on a class
of unsupervised, probabilistic deep learning
methods that use variational inference to cre-
ate high capacity, scalable models for time se-
ries modelling and analysis. We present two
classes of variational deep learning, then ap-
ply them to two specific problems related to the
maritime domain.

The first application is the identification of
dynamical systems from noisy and partially ob-
served data. We introduce a framework that
merges classical data assimilation and mod-
ern deep learning to retrieve the differential
equations that control the dynamics of the
system. Using a state space formulation, the
proposed framework embeds stochastic com-
ponents to account for stochastic variabilities,

model errors and reconstruction uncertainties.
The second application is maritime traffic

surveillance using AIS data. We propose a
multitask probabilistic deep learning architec-
ture can achieve state-of-the-art performance
in different maritime traffic surveillance related
tasks, such as trajectory reconstruction, ves-
sel type identification and anomaly detection,
while reducing significantly the amount data
to be stored and the calculation time. For the
most important task—anomaly detection, we
introduce a geospatial detector that uses vari-
ational deep learning to builds a probabilistic
representation of AIS trajectories, then detect
anomalies by judging how likely this trajectory
is.
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