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RÉSUMÉ EN FRANÇAIS

Introduction (français)

Par un matin ensoleillé d’avril, une vieille dame et son petit-fils plantent des graines de
courges dans le jardin. Lorsqu’il se rend compte qu’ils n’ont pas apporté d’arrosoir, le
petit-fils commence à retourner vers la maison.
“Pas la peine” lui dit sa grand-mère, “il va pleuvoir cet après-midi de toute façon.”
“Mais... ça fait trois jours qu’on a pas vu un nuage !”
“Il va pleuvoir, il pleut toujours quand le vent souffle dans cette direction.”

Les personnes qui ont vécu longtemps à un endroit donné prétendent souvent qu’elles
peuvent prédire la météo en se basant sur leurs observations passées. La méthode de
prévision par “analogues” est utilisée en météorologie depuis les années 1970, et repose sur
un principe similaire. Dans notre exemple, la grand-mère a déjà observé de nombreuses
situations météorologiques “analogues” à celle du matin, et pour toutes ces situations
passées le temps de l’après-midi (appelé “successeur”) était pluvieux. Par conséquent, la
grand-mère affirme que la probabilité d’une après-midi pluvieuse est élevée.

Les méthodes par analogues appartiennent à la catégorie des prévisions par les données,
contrairement aux prévisions par les modèles qui se basent sur une description physique
précise du système. Dans certains cas, une telle description physique est indisponible,
ou bien elle impliquerait des calculs numériques trop lourds (et donc trop lents) pour
des fins de prévision. Dans notre exemple, la grand-mère n’a pas eu besoin de décrire
avec précision les relations entre la pluie et le vent; elle n’a pas non plus eu besoin de
résoudre des équations compliquées à l’aide d’un ordinateur. Il lui a simplement suffit de
se souvenir de ses observations passées. Dans le Chapitre I, je donne une revue de certains
des avantages et inconvénients consubstantiels à l’utilisation de méthodes par analogues.

Durant cette thèse, j’ai tenté de répondre à la question suivante:
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Résumé en français

“Quand, et comment est-ce que les prévisions par analogues permettent
une estimation précise de l’évolution d’un système géophysique ?”

Pour répondre à cette question, j’ai utilisé des modèles mathématiques pour rendre
compte de certaines hypothèses sous-jacentes des méthodes par analogues.

Hypothèse n◦1: “Il est possible de trouver de bons analogues.”
Les méthodes par les données reposent sur la disponibilité d’une grande quantité de

données, mais combien de données sont effectivement nécessaires pour les méthodes par
analogues ? Dans notre exemple, la grand-mère semble avoir vécu assez longtemps pour
trouver de nombreux analogues de la situation météorologique du matin, mais ce n’est
pas le cas de son petit-fils. La question “combien de temps devons-nous attendre?” pour
trouver de bons analogues a été étudiée parVan Den Dool (1994) et Nicolis (1998), mon-
trant que les systèmes de grande complexité requièrent une grande base de données. Pour
être plus spécifique, la quantté de données nécessaire dépende de manière exponentielle de
la dimension du système. Par exemple, il est plus difficile de trouver des analogues de la
situation météorologique sur l’entièreté du globe terrestre que sur une zone plus restreinte
telle que la ville de Brest. Dans le chapitre II, j’étudie la question “ayant attendu un temps
donné, quelle qualité d’analogues peut-on espérer?”, qui est légèrement différente de la
question des études précédentes: “combien de temps doit-on attendre pour trouver un
bon analogue?”. J’ai fais le choix d’une question reliée plus directement à l’usage pratique
des analogues. En effet, il n’est en général pas possible “d’attendre plus longtemps”, et
une quantité finie de donnée est disponible. Par ailleurs, il est fréquent que l’application
nécessite non pas un, mais bien plusieurs analogues.

Hypothèse n◦2: “Le futur peut être estimé à partir des successeurs de bons
analogues.”

Cette hypothèse est reliée à l’idée que si deux états d’un système sont initialement
proches, ils le resteront pendant un certain temps. Dans le chapitre III, j’utilise une
description mathématique de la divergence entre les successeurs et le véritable état futur,
en supposant que les analogues sont proches de l’état présent. Cette description permet
de comparer les propriétés de méthodes existantes de prévision par analogues. Cet étude
permet de choisir quelle méthode de prévision par analogue utiliser pour un problème
donné. Elle garantit également le succès des prévisions par analogues dans le cadre général
considéré, et en supposant que l’on a “attendu assez longtemps”. D’autres études sur les
garanties pour les prévisions par analogues ont été effectuées par Farmer and Sidorowich
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Résumé en français

(1987), Zhao and Giannakis (2016) et Alexander and Giannakis (2020).
La prévision par analogue n’estime pas uniquement l’état futur, mais aussi les incer-

titudes associées à cette prévision. Dans notre exemple, la grand-mère est confiante sur
le fait qu’il va pleuvoir cet après-midi car elle a observé un grand nombre de situations
analogues, toutes suivies par de la pluie. À l’inverse, si l’on a observé de nombreuses sit-
uations météorologiques analogues à la situation actuelle, et que les successeurs associés
sont tous différents, la confiance associée à la prévision sera faible. Dans le chapitre III, je
relie la variabilité dans le jeu de successeurs aux propriétés intrinsèques du système. Cela
montre que l’estimation de l’incertitude de prévision par analogues est liée à la prévis-
ibilité intrinsèque du système. Ces résultats sont en accord avec ceux de Atencia and
Zawadzki (2017).

Hypothèse n◦3: “Les hypothèses n◦1 et n◦2 sont toujours valables pour les
évènements extrêmes.”

La prévision d’évènements extrêmes revêt une importance particulière en ce qu’elle
permet la mise en place de mesures de sécurité, permettant d’atténuer des effets poten-
tiellement importants. De tels évènements sont rares, rendant la prévision par analogues
délicate. Prenons l’exemple d’une vague océanique extrême, telle que décrite par Ernest
Shackleton (Müller et al., 2005) lors de la fameuse expédition de 1 300km à bord du James
Caird: “À minuit, j’étais à la barre lorsque j’ai aperçu une fraction de ciel clair au sud,
sud-ouest. J’ai prévenu l’équipage que le ciel se dégageait, puis soudain, j’ai réalisé que ce
que j’avais vu n’était pas une brèche dans les nuages mais la crête blanche d’une énorme
vague. En vingt-six ans de navigation parmi les océans dans tous leurs états, je n’avais
pas rencontré de vague aussi gigantesque.”

Il est évidemment plus difficile de trouver des analogues d’un évènement qui n’est
observé qu’une fois en 26 ans que d’évènements moins extrêmes. Ce raisonnement s’étend
à d’autres méthodes basées sur les données. Par conséquent, il pourrait être intéres-
sant d’utiliser des connaissances physiques pour prévoir de tels évènements. De nom-
breuses stratégies physiques ont été proposées pour la prévision de vagues océaniques
extrêmes appelées “vagues scélérates” (Slunyaev, 2017). Dans le chapitre IV, je propose
d’utiliser uniquement des mesures de vitesses de crêtes, plutôt que l’entièreté de la surface
océanique. Une telle simplification permettrait de simplifier le processus de prévision.

Cependant, il reste important de comprendre les limites de l’utilisation des analogues
pour la prévision des événements extrêmes. À quel moment les prévisions par analogues
vont-elles échouer ? Dans le chapitre V, je montre des expériences numériques de prévi-
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sions par analogues de variables aléatoires à queue lourde. Ces variables aléatoires sont
utilisées pour modéliser certaines variables géophysiques telles que les précipitations ho-
raires, qui ont une forte probabilité de s’écarter de leur valeur typique. Dans ces expéri-
ences, je montre que la taille des données nécessaire pour prévoir des événements extrêmes
à l’aide d’analogues est plus importante que pour d’autres événements ordinaires. Ce con-
stat justifie une adaptation des résultats théoriques du chapitre II au cas des événements
extrêmes.

Résumé du chapitre 1

Le premier chapitre introduit les notions mathématiques et physiques nécessaires à la
bonne compréhension de ce manuscrit. Elle est destinée aux lecteurs peu familiers avec la
théorie des systèmes dynamiques, les analogues, les problèmes de filtrage, la théorie des
valeurs extrêmes et les ondes de gravité à la surface de l’océan. Les références des livres
sont indiquées pour les lecteurs qui souhaitent obtenir plus de détails. Pour les systèmes
dynamiques, nous recommandons Katok and Hasselblatt (1997) et Cencini et al. (2010).
Concernant le filtre particulaire, le livre de Cappé et al. (2006) est une référence, et nous
conseillons Coles et al. (2001) pour une introduction à la théorie des valeurs extrêmes. De
manière générale, la théorie des vagues gravitaires à la surface de l’océan peut être abordée
à travers l’ouvrage de Kinsman (1965). Comme il n’existe pas, à notre connaissance, de
livre de ce type pour les analogues, nous fournissons une introduction plus approfondie
au sujet, ainsi qu’une revue de la littérature (non exhaustive). Nous en reprenons ici les
éléments principaux.

Introduction aux analogues

On parle d’“analogue” lorsqu’un état d’un système est similaire à un autre état du même
système. Cette similarité peut se caractériser par une faible distance au sens mathéma-
tique, ou par d’autres types de mesures de similarité. Dans la prévision par analogues,
nous utilisons également les successeurs temporels des analogues. Les analogues sont donc
des voisins dans l’espace des états, ou espace des phases, tandis que les “successeurs” sont
leurs voisins dans le temps. La base de donnée dans laquelle les analogues sont cherchés
est appelée “catalogue”.

Le choix de l’espace dans lequel sont cherchés les analogues, ou “espace objet” (feature
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space en anglais) est primordial. Il est le résultat d’un compromis entre la représentativité
de l’espace, et la complexité de cet espace. Comme nous le verrons dans le chapitre 2, une
trop forte complexité diminue les chances de trouver de bons analogues, tandis qu’une
trop faible complexité empêche de rendre compte des phénomènes en jeu. L’usage des
plongements temporels (“time-embeddings”) est fréquent et permet de représenter l’état
d’un système dans le cas d’observations partielles. Voir à ce sujet les études de Hamilton
et al. (2016), Alexander et al. (2017), et Zhen et al. (2020).

Le choix de la distance qui caractérise les analogues est également fondamental. La
distance Euclidienne étant très populaire et bien maîtrisée sur le plan théorique, de nom-
breux algorithmes (tels que les algorithmes en “arbres”) ont été écrits pour accélérer la
recherche d’analogues ou sayvoisins définis par cette distance. Après avoir effectué la
recherche d’analogues par distance Euclidienne, d’autres mesures peuvent être utilisées,
telles que la corrélation (Yiou et al., 2013) ou le score de Teweles-Wobus Blanchet et al.
(2018). La distance de Mahalanobis (1936) est dérivée de la distance Euclidienne et per-
met de normaliser les données par leur structure de covariance, au prix d’un coût de
calcul plus élevé. Fraedrich and Rückert (1998) et Wetterhall et al. (2005) adaptent des
ditances dérivées de la distance Euclidienne pour un but précis, en ajustant poids pour
optimiser la prévision ou la régionalisation (downscaling). La distance de Wasserstein
permet de détecter des changements dans la structure des attracteurs de systèmes dy-
namiques (Robin et al., 2017). Cependant, cette distance est coûteuse, et est conçue
à l’origine pour des distributions de probabilités, ce qui peut compliquer son utilisation
pour des champs vectoriels à valeurs réelles (Thorpe et al., 2017).

Applications des analogues

Les analogues ont de nombreuses applications. Les premières utilisent une composante
temporelle. Les analogues de circulation atmosphérique ont été introduits par Lorenz
(1969) pour étudier la prévisibilité atmosphérique. Plus récemment, les analogues ont
souvent été utilisés dans des schémas statistiques tels que le générateur stochastique de
temps de Yiou (2014). L’utilisation d’analogues pour générer des prévisions d’ensemble
a été comparée à d’autres techniques de génération d’ensembles par Delle Monache et al.
(2013) et Atencia and Zawadzki (2017). La prévision par analogues a été combinée
avec l’assimilation de données par Hamilton et al. (2016) et Lguensat et al. (2017), en
utilisant soit des ensembles soit des hypothèses gaussiennes pour estimer la distribution
des prévisions par analogues. Grooms (2020) a combiné la prévision par analogues avec
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l’assimilation de données et les auto-encodeurs pour compenser un éventuel manque de
données (lorsque le catalogue est trop petit). Sévellec and Drijfhout (2018) effectuent une
discrétisation des valeurs possibles de température moyenne globale de surface, perme-
ttant d’effectuer des prévisions rapides avec une matrice de transition et des analogues
des trajectoires CMIP5. En combinant les analogues, les noyaux gaussiens et les plonge-
ments temporels (“time-embeddings”), Alexander et al. (2017) effectue des prévisions des
oscillations intrasaisonnières tropicales, basées sur un cadre introduit par Zhao and Gian-
nakis (2016). Plus récemment, Wang et al. (2020) a utilisé des analogues dans un cadre
généralisé de théorie des opérateurs (détaillé par Alexander and Giannakis, 2020) pour
prévoir le phénomène d’oscillation El Niño.

De nombreuses applications des analogues n’impliquent pas d’évolution dans le temps
(c’est-à-dire qu’elles n’utilisent que des analogues et non leurs successeurs). La plus con-
nue est la régionalisation (downscaling) par analogues, qui consiste à estimer, à partir
d’informations à grande échelle, les états possibles d’une station météorologique (impli-
quant des processus locaux à petite échelle). Par exemple, Wetterhall et al. (2005) produit
des statistiques sur les précipitations dans des stations en Suède à partir d’analogues des
champs de pression au niveau de la mer à grande échelle et des valeurs de précipitations
locales associées. Les analogues permettent également d’effectuer l’opération inverse : à
partir d’informations locales, la probabilité de situations météorologiques à grande échelle
est estimée statistiquement de manière similaire. Cela permet de reconstruire des champs
à haute résolution à des dates pour lesquelles seules des observations locales erronées sont
disponibles (Schenk and Zorita, 2012; Yiou et al., 2013). De même, les analogues peuvent
être utilisés pour spécifier une variable donnée à partir des analogues d’une autre vari-
able (Tandeo et al., 2016). Enfin, le rôle de la circulation atmosphérique dans l’apparition
d’événements extrêmes peut être estimé à l’aide d’analogues. Lorsqu’on observe un événe-
ment tel qu’un hiver froid (Cattiaux et al., 2010), une augmentation de la fonte de la
surface de la calotte glaciaire (Fettweis et al., 2013), ou une vague de chaleur (Jézéquel
et al., 2018), on peut trouver des analogues des circulations atmosphériques respectives
et comparer les températures associées, ou la fonte de la glace. Cela permet d’estimer la
probabilité d’observer des événements extrêmes en supposant des schémas de circulation
similaires.
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Avantages et inconvénients

Un avantage évident de l’utilisation des analogues est qu’elle permet de contourner l’utilisation
d’un modèle physique. En particulier, les modèles physiques pour l’évolution temporelle
d’observables spécifiques (par exemple, l’indice ENSO) ne sont généralement pas fournis
ou sont difficiles à écrire. Enfin, même lorsqu’un modèle physique est disponible, sa réso-
lution numérique peut être coûteuse. En outre, dans de tels modèles, les processus non
linéaires impliquent des interactions entre toutes les échelles physiques, ce qui nécessite la
paramétrisation des processus non résolus à petite échelle (en raison de la discrétisation).
Il en résulte des incertitudes qui peuvent être difficiles à évaluer.

Les méthodes par analogues ont l’avantage d’être peu coûteuses en termes de calcul,
de sorte qu’il est facile d’effectuer des prévisions d’ensemble, ce qui permet d’évaluer les
incertitudes. Les librairies de calcul dédiées à l’apprentissage automatique permettent
une recherche rapide des analogues, avec des arbres calculés hors ligne (voir l’annexe de
Lguensat et al., 2017), et l’application des méthodes par analogues consiste généralement
en de simples combinaisons linéaires. Au contraire, lorsque l’on utilise des méthodes
basées sur des modèles issus de la connaissance physique, on ne peut espérer réaliser de
très grandes prévisions d’ensemble en raison du coût élevé du calcul.

Les méthodes par analogues ont l’avantage d’être non-paramétriques. Ce qui signi-
fie que seul un petit nombre de méta-paramètres doit être défini à l’avance (le nombre
d’analogues utilisés à chaque itération, le choix de la distance, ...etc.) D’autres techniques
doivent estimer les paramètres, en assumant une certaine forme ou un certain modèle fonc-
tionnel. En particulier, lorsqu’on utilise des analogues dans un cadre statistique, il n’y
a pas d’hypothèse sur la forme des distributions de probabilité. Il convient de noter que
les méthodes par analogues peuvent également être utilisées sous une forme paramétrique
lorsque cela est pertinent : voir la combinaison des analogues et du filtre de Kalman
de Lguensat et al. (2017) ou l’optimisation des poids susmentionnée de Fraedrich and
Rückert (1998) et Wetterhall et al. (2005).

Un autre point fort des méthodes par analogues est qu’elles préservent les carac-
téristiques du système par construction. Atencia and Zawadzki (2017) a noté que, con-
trairement aux autres méthodes de perturbation des conditions initiales, les prévisions
d’ensemble par analogues sont cohérentes avec la dimension fractale du système. Zhen
et al. (2020) note que la technique d’assimilation des données par analogues permet de
construire des cartes d’élévation de surface en mer avec un spectre temporel plus co-
hérent avec les spectres réels qu’une interpolation optimale. Le générateur stochastique

17



Résumé en français

de temps de Yiou (2014) préserve les contraintes spatiales par construction, contrairement
aux autres générateurs stochastiques de temps.

La simplicité des méthodes par analogues les rend facilement interprétables, tandis que
d’autres méthodes basées sur des données peuvent être considérées comme des “boîtes
noires” où il est difficile de comprendre pourquoi et quand la méthode réussit ou échoue.
Dans le cas de la prévision par analogues, la convergence vers une prévision optimale dans
la limite de grandes données est prouvée par Zhao and Giannakis (2016) pour la prévision
par analogues avec des noyaux adaptés à la dynamique. Dans le troisième chapitre de
cette thèse et dans Platzer et al. (2019), nous développons des preuves similaires pour la
prévision par analogues dans l’espace des phases. Enfin, Alexander and Giannakis (2020)
établit des résultats généraux pour la prévision par analogues combinée avec des méthodes
de projection de noyaux, faisant appel à la théorie des opérateurs de Koopman.

L’une des faiblesses des méthodes par analogues est qu’elles sont soumises à la malé-
diction de la dimension : le nombre de données nécessaires pour que les méthodes soient
efficaces croît de manière exponentielle avec la dimension. Cette question est étudiée
en détail dans le chapitre II, et les conséquences pour les prévisions par analogues sont
examinées dans le chapitre III. Cependant, la malédiction de la dimension est une préoc-
cupation générique pour les méthodes basées sur les données. En outre, comme indiqué
précédemment, il s’agit maintenant de choisir correctement l’espace objet (feature space)
afin de contourner ce problème.

Résumé du chapitre 2

Le chapitre II porte sur les distances entre les analogues et les états cibles. Il donne
une description quantitative de l’hypothèse selon laquelle il est possible de trouver des
analogues qui sont “proches” d’un état cible donné. Par rapport aux travaux précédents
sur le sujet, le point de vue est modifié, passant de statistiques de temps de retour à des
statistiques de distances d’analogues.

Nous donnons de nouvelles distributions de probabilité qui sont applicables au-delà du
premier ou “meilleur” analogue. Celles-ci permettent d’estimer la probabilité de trouver de
bons analogues d’un état donné, pour un système dynamique donné. La méthode proposée
est basée sur la dimension locale et la taille du catalogue dans lequel les analogues sont
recherchés. J’ai montré comment ces distributions de probabilité peuvent être utiles pour
tout type de méthode par analogues, y compris la prévision. En particulier, la variabilité
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des distances analogiques par rapport à la cible semble être une fonction décroissante de
la dimension. Par conséquent, dans les problèmes de dimensions élevées, les meilleurs
analogues d’un point donné sont "tous aussi bons les uns que les autres", alors que dans
les dimensions basses, le premier meilleur analogue est susceptible d’être beaucoup plus
"meilleur" que le 30ème meilleur analogue, par exemple.

Ces résultats sont la conséquence directe de travaux récents combinant des systèmes
dynamiques et la théorie des valeurs extrêmes. Des tests sur des simulations numériques
du système tridimensionnel de Lorenz et sur des cartes de vent issues d’un modèle physique
confirment l’applicabilité de nos distributions de probabilité analytiques à des données
géophysiques réelles.

Résumé du chapitre 3

Le chapitre III soutient l’utilisation des analogues à des fins de prévision et compare
différentes stratégies de prévision par analogues, s’appuyant sur des arguments théoriques
et des simulations numériques. Il peut être considéré comme un effort d’interprétation
de méthodes existantes de prévision par analogues. Il est en cours de révision pour être
publié dans le Journal of Atmospheric Sciences, et comprend des éléments d’un article
tiré des actes de la conférence Climate Informatics de 2019.

Dans ce chapitre, j’ai donné une interprétation des erreurs de prévision par analogues
en utilisant le flot du système. Cette interprétation vise à établir un lien entre les prévi-
sions par analogues, basées sur des données, et les prévisions basées sur des modèles.
Nous avons démontré que les erreurs moyennes de prévision par analogues dépendent
linéairement de la distance entre l’état analogue et l’état initial, et quadratiques pour
les méthodes par analogues qui utilisent des régressions linéaires locales (c’est-à-dire qui
utilisent un opérateur localement linéaire). Il a été démontré que ces régressions linéaires
permettent en fait d’estimer la matrice jacobienne du flot du système réel. J’ai interprété
les opérateurs “locally-constant” et “locally-incremental” (LI) comme des cas particuliers
de l’opérateur “locally-linear”, lorsque le flot est soit constant dans l’espace des phases,
soit égal à la matrice identité. Cela explique la précision de l’opérateur LI dans des délais
courts. Ces résultats analytiques ont été confirmés par des expériences numériques de
systèmes dynamiques chaotiques connus. La robustesse de ces résultats au bruit additif a
également été examinée théoriquement et numériquement, justifiant l’utilisation d’un plus
grand nombre d’analogues pour atténuer l’influence du bruit. Enfin, l’avantage éventuel
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de diviser une prévision en plusieurs prévisions par analogues a été examiné, montrant
des résultats préliminaires prometteurs lorsque les analogues sont combinés avec une ré-
gression linéaire.

Résumé du chapitre 4

Le chapitre IV ouvre une nouvelle perspective pour la prévision des vagues océaniques
extrêmes : la focalisation des groupes de vagues individuels est prédite en utilisant unique-
ment les vitesses de crête. Cette nouvelle méthodologie est basée sur des démonstrations
analytiques pour des groupes de vagues unidirectionnels, gaussiens et linéaires. Elle est
testée sur des simulations numériques de vagues linéaires et de l’équation de Schrödinger
non linéaire. Ce travail a été publié dans Natural Hazards.

Dans ce chapitre, je me suis concentré sur les vagues océaniques de grande amplitude
appelées “vagues scélérates” qui constituent une menace pour les navires et les structures
offshore. Une méthode basée sur un modèle pour la prévision de telles vagues a été
présentée. J’ai montré que les futures plus hautes vagues pouvaient être prévues en
utilisant les vitesses de crête plutôt que des champs de vagues entiers. Cela donnerait un
avantage en termes de temps de calcul, en se concentrant uniquement sur les plus grandes
vagues. Cependant, l’estimation des vitesses de crête à partir des techniques récentes de
mesure des vagues reste un défi. Nos démonstrations analytiques établissent des profils
de vitesses de crête en supposant une surface océanique linéaires, des spectres de vagues à
bande étroite et des groupes de vagues gaussiens. Ces résultats ont été confirmés par des
expériences numériques de vagues linéaires, et une méthode de prévision de la position et
de l’amplitude du paquet de vagues focalisé a été testée. Les limites dues aux interactions
non-linéaires des vagues ont été examinées dans des simulations numériques de l’équation
non linéaire de Schrödinger.

Résumé du chapitre 5

Le chapitre V présente des études préliminaires sur l’utilisation d’analogues et de filtres
particulaires pour la prévision de variables aléatoires à queue lourde. Un modèle jouet
unidimensionnel avec des variables aléatoires à forte queue a été construit, sur lequel
des méthodes analogiques ont été testées en combinaison avec des techniques de filtrage
particulaire. Pour les variables aléatoires avec un indice de queue modéré, les prévisions
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par analogues atteingnent l’efficacité des prévisions basées sur un modèle. La taille du
catalogue nécessaire pour trouver des analogues d’événements extrêmes est apparue plus
importante que ce qui était attendu d’après les résultats du chapitre II. Cela nécessite
une adaptation de la théorie du chapitre II pour les distances d’analogues aux événements
extrêmes, en tenant compte des paramètres de queue de la distribution.

21





INTRODUCTION

On a sunny morning of April, an old lady and her grand son are planting squash seeds in
the backyard. When he realizes that they haven’t brought a watering can, the grand son
starts going back to the house.
“Don’t bother” says his grand mother, “it’s going to rain this afternoon anyway.”
“But... it’s been all sunny for three days now!”
“It will rain, it always does when the wind is blowing from this direction.”

People who have lived for a long time at a given place commonly claim that they can
predict the weather based on what they have already observed. A forecasting method
called “analogs” have been used in meteorology since the 1970s, and is based on a similar
principle. In our example, the grand mother has seen numerous “analog” situation that
resemble this morning’s weather, and for all these past situations, the afternoon weather
or “successor” was rainy. Therefore, she claims that the probability to have rain in the
afternoon is high.

Analog methods belong to the general class of data-based forecasts, in opposition to
model-based forecasts which rely on a thorough physical description of the system. In
some situations, such a physical description is either not available, or involves numerical
computations that are too slow for forecast purposes. In our example, the grand mother
did not have to describe precisely the relationship between wind and rain, nor did she
have to solve complicated equations with the aid of a computer. It was enough for her to
simply recall what she had observed in the past. In Chapter I, I give a review of some of
the advantages and drawbacks of using analog methods.

In this thesis, I focused on the following question:

“How and when do simple forecasts based on analogs accurately estimate
the evolution of a geophysical system?”

To answer this question, I used mathematical models to describe some of the under-
lying assumptions of analog methods.

Assumption n◦1: “Good analogs can be found.”
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Data-based methods rely on the availability a large amount of data, but how large? In
the example above, the grand mother seems to have lived long enough to find numerous
analogs of today’s weather, but that was not the case of her grand son. The question
of “how long must we wait?” when searching for analogs has been treated by Van Den
Dool (1994) and Nicolis (1998), showing that systems of high complexity demand a very
large database. To be more precise, the number of data that is needed to find one good
analog depends exponentially on the dimension of the system. For instance, it is harder
to find analog situations of the weather on the entire globe than analogs of the weather
on a smaller area (say, the city of Brest). In Chapter II, I tackle the question “if we
have waited a given time, how good will the best analogs be?”, which is different from
the question of previous studies “how long must we wait to find one good analog?”. The
question I chose is more closely related to the practical use of analogs. Indeed, one is
generally provided with a given amount of data and cannot hope to “wait longer”. Also,
one generally needs more than just one analog.

Assumption n◦2: “The future can be estimated from the successors of good
analogs.”

This assumption is related to the notion that if two states of a system are initially
close, they will remain so for a given amount of time. In Chapter III, I use a mathemat-
ical description of how successors diverge from the real future state, assuming that the
analogs are close to the present state, which allows to compare the properties of some
existing analog forecasting strategies. This could help to choose which analog method is
appropriate to a given problem. It also guarantees that analog forecasts will suceed in the
cases considered here, and “if we have waited long enough”. Other studies on guarantees
for analogs-like forecast strategies include the ones of Farmer and Sidorowich (1987), Zhao
and Giannakis (2016) and Alexander and Giannakis (2020).

Analog forecasting not only estimates the future state, but also the uncertainties
associated with such a forecast. In our example, the grand mother is confident that rain
will fall in the afternoon because she can remember a large number of analog situations, all
of which were followed by rainfall. Conversely, if one remembers many analog situations
of the present weather, but if the associated successors are all different, one will not be
confident in the estimation of the future weather. In Chapter III, I relate the variability
in the set of successors to properties of the system. It shows that the uncertainty estimate
of analog forecasting is related to the intrinsic predictability of the system. These findings
are in agreement with another study by Atencia and Zawadzki (2017).
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Assumption n◦3: “Assumptions n◦1 and n◦2 hold for extreme events.”
The forecast of extreme events is of particular importance because it can allow to take

safety measures, mitigating potentially large impacts. Such events are usually rare, such
that analogs may not succeed to forecast them. Let us take the example of an extreme
ocean wave, as recounted by Ernest Shackleton (Müller et al., 2005) during the epic 1 300
km-long journey of the James Caird:
“At midnight, I was at the tiller and suddenly noticed a line of clear sky between the south
and south-west. I called to the other men that the sky was clearing, and then a moment
later I realized that what I had seen was not a rift in the clouds but the white crest of an
enormous wave. During twenty-six years’ experience of the ocean in all its moods I had
not encountered a wave so gigantic.”

Searching for analogs of an event that is observed only once every twenty-six years
might be more difficult than for other, less extreme events. This reasoning applies to other
data-based methods as well. Therefore, it might be interesting to use physical knowledge
for such events. Many strategies based on physical models have been proposed for the
forecast of extreme ocean waves called “rogue waves” (Slunyaev, 2017). In Chapter IV,
I propose to use only measurements of wave crest velocities, rather than the whole sea
surface. This could be an advantage as it would simplify the forecasting process.

However, it is important to understand the limitations of using analogs for the forecast
of extreme events. At which point are analog forecasts going to fail? In Chapter V, I give
numerical experiments of analog forecasts of heavy-tailed random variables. These random
variables are used to model some geophysical variables such as hourly rainfall, which have
a high probability of deviating far from their typical value. In these experiments, I show
that the expected size of data that is needed to forecast extreme events using analogs
is larger than for other “regular” events. This calls for an adaptation of the theoretical
results of Chapter II to the case of extreme events.

Chapter-by-chapter content description

Chapter I introduces mathematical and physical notions on which the thesis is based.
It is intended for readers unfamiliar with dynamical systems theory, analogs, filtering
problems, extreme value theory, and ocean surface gravity waves. Books references are
indicated to readers seeking for more details. As there is, to our knowledge, no such
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book for analogs, we provide a more thorough introduction to the topic, along with a
(non-comprehensive) litterature review.

Chapters II, III, IV, and V show analyses in the form of journal articles, and can
be treated as independent research pieces. For each of these chapters, the first section
outlines the scientific questions that are adressed, and the methods that are used. The
main findings are summarized in each chapter’s last section.

Chapter II focuses on the distances between analogs and target states. It gives a
quantitative description of the assumption that one can find analogs that are “close”
to a given target state. Compared to previous works on the matter, the point of view
is changed from return time statistics to analog distance statistics. We give new, full
probability distributions that are not limited to the first or “best” analog, but applicable
to a finite number of analogs. These distributions can be used to estimate the accuracy
of analog methods, including analog forecasting. Our results are examined in numerical
simulations and on environmental datasets.

Chapter III supports the use of analogs for forecasting purposes and compares different
analog forecasting strategies based on theoretical arguments and numerical simulations.
It can be seen as an interpretation effort of some existing analog methods. It is under
revision for publication in the Journal of Atmospheric Sciences, and includes elements of
an article from the proceedings of the 2019 Climate Informatics conference.

Chapter IV opens a new perspective for the forecasting of extreme ocean waves:
the focusing of individual wave packets is predicted using only crest velocities. This
new methodology is based on analytical derivations for unidirectional, Gaussian, linear
wave packets. It is tested on numerical simulations of linear waves and of the non-linear
Shcrödinger equation. This work has been published in Natural Hazards.

Chapter V presents preliminary investigations on the use of analogs and particle fil-
ters for the forecast of heavy-tailed random variables. Numerical experiments of one-
dimensional state-space models with heavy-tailed variables show that the number of data
necessary for analog methods to recover model-based forecasts must be increased beyond
the predictions of Chapter II.

The conclusion chapter recalls the main results of the thesis and draws perspectives
for further research.
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Chapter I

MATHEMATICAL AND PHYSICAL

FRAMEWORKS

Preamble

The work presented here is multidisciplinary. Notions from various mathematical areas
such as dynamical systems, statistics, and extreme value theory are used to study different
physical variables such as wind and ocean waves. To better understand each chapter of
this thesis, a reminder of key notions is necessary. The reader may skip this introductory
chapter if already familiar with these notions.

The first section is devoted to dynamical systems. We first introduce the concept of
flow, which is central to the study of analog forecasts presented in Chapter III. Then,
since the divergence of trajectories from chaotic dynamical systems is an important issue
for their forecast, we give a succinct introduction to Lyapunov exponents (the later are
invoked several times in Chapter III). We then briefly recall theoretical results on the
recurrence of chaotic dynamical systems that motivate the search for analogs. Finally,
the ergodic, probabilistic description of chaotic dynamical systems is presented. This
framework allows us to study the probability to find good analogs in Chapter II.

The second section is a general introduction to analog methods. We outline the vo-
cabulary of analogs, always referring to practical aspects of using of analog methods. We
then give a quick literature review of the many geophysical applications of analogs. To
place analog methods in a wider context of statistical methods, some of their strength
and weaknesses are reminded.

The third and fourth sections may help the novice reader to understand Chapter V. In
this last chapter, we use a data assimilation technique called “particle filtering”, of which
we recall the principles here. Also, as this last chapter is concerned with the forecast of
extreme events, it is necessary to introduce the framework of extreme value theory.

Finally, the fifth section outlines important aspects of the physics of ocean waves. In

27



Chapter I – Mathematical and physical frameworks

Chapter IV, we explore the possibility to forecast large ocean waves from measurements
of crest velocities, assuming that these waves originate from the focusing of linear, uni-
directional, Gaussian wave packets. The physical foundations of these assumptions are
recalled here for the novice reader.

1 Dynamical systems

For a more detailed introduction to dynamical systems theory, the reader is referred to the
books of Katok and Hasselblatt (1997) and Cencini et al. (2010).

Note that a rigorous description of dynamical systems theory is out of the scope of this
thesis. Therefore, concepts will be introduced intuitively, simplest case scenarios will be
assumed, and thorough descriptions of the underlying mathematical assumptions will be
eluded.

1.1 Flow

In many geophysical applications, the time-evolution of the system can be described by
an equation of the type:

dx
dt = f(x)

where t is time, the state x is a vector of phase-space P , and f is a map P 7→ P that defines
the dynamical system. The phase-space is such that a point x ∈ P fully characterizes the
state of the system1. Although more general types of manifold could be examined, we
study here the simple case of n-dimensional Euclidean spaces P = Rn. We assume that
f is both deterministic and independent of time. When considered, stochasticity will be
expressed separately.

Integrating this differential equation from time t to time t+ l defines the map Φl

Φl(xt) = xt+l

that depends both on l and xt. More generally, one defines the flow Φ : R × P 7→
P ; (l,xt) 7→ xt+l of the dynamical system. The latter can be studied through either f or

1. For instance, in the case of an oscillating pendulum, a point of phase-space is a two-dimensional
vector whose coordinates are the position and velocity of the pendulum. In physical space, Newton’s law
involves a second-order time-derivative, but the latter becomes first-order once expressed in phase-space.
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Φ. Both approaches are used in Chapter III.
In geophysical applications, the state xt is a high-dimensional2 vector containing the

values of many variables (e.g. temperature, pressure, wind, humidity) at every point
of a discretized time-space grid. These variables obey physical laws that are expressed
in the form of partial differential equations such as the Navier-Stokes equation of fluid
flows, equations of heat transfer, phase change... These equations define the map f , which
further defines Φ through time-integration.

1.2 Divergence of trajectories (chaos)

For chaotic dynamical systems, initially close states diverge exponentially in time under
the action of the flow3. This sensitivity to initial conditions can be studied through
Lyapunov exponents. A perturbation at time t = 0, noted δx0, grows exponentially at a
rate 1/λ where λ is a Lyapunov exponent:

‖δxt‖ ≈ eλt‖δx0‖ ,

where δxt = Φt(x0 + δx0)−Φt(x0). This scaling is valid for infinitesimally small ‖δx0‖.
The exponent λ depends on the position of x0, except for ergodic systems that will be
introduced in the next section. λ also depends on the direction of δx0, so that there are
as many exponents as the number of phase-space directions (a spectrum of Lyapunov
exponents).

As long as there exists one positive Lyapunov exponent, the system is unstable, and
any perturbation in the direction associated to that exponent will grow exponentially. In
this case, the Lyapunov time is defined as the inverse of the largest Lyapunov exponent,
and is the characteristic timescale at which perturbations in initial conditions grow. In
practice the initial perturbation is finite, and the error ‖δxt‖ grows exponentially for a
time of the order of the Lyapunov time before reaching a plateau, especially for bounded
nonlinear systems.

Chapter III is concerned with the forecast of analogs, and uses a linear approximation
for the growth of the analog-to-future state distance, which involves the Jacobian matrix
of the flow. There are strong connections between the Lyapunov exponents and the
Jacobian matrix of the flow, although these connections are not expressed in detail here.

2. Infinite-dimensional in theory, but finite-dimensional approximations are used in practice.
3. Note that other definitions of chaos may be used, but we only report this simple notion of sensitivity

to initial conditions.
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More generally, the concept of Lyapunov time is central in the field of dynamical systems
forecast, and will be invoked several times throughout Chapter III.

Systems that have a positive Lyapunov exponent are termed chaotic. A small misspec-
ification of initial condition leads to a large forecast error, which is one of the reasons why
systems like the atmosphere are hard to forecast. A famous quote on chaos attributed to
Edward Lorenz is the following: “the present determines the future, but the approximate
present does not approximately determine the future”. This apparent randomness moti-
vates the use of a probabilistic description of trajectories. In particular, their long-term
behaviour can be described using ergodic theory, of which we now recall a few important
results.

1.3 Recurrences and ergodicity

Poincaré’s recurrence theorem states that, under the action of the flow, almost all points
in any initial subset of the phase-space eventually revisit this subset (we will see later
what “almost” means). In particular, the system will come back infinitesimally close to
any initial point, and will do so an infinite number of times. This property of recur-
rence feeds the hope to find analogs of dynamical systems. The theorem was proven by
Poincaré (1890) under two main hypotheses: the system can only access a finite volume of
phase-space, and phase-space volumes are preserved under the action of the flow. These
hypotheses are related to the notions of attractor and measure.

For many systems, including geophysical systems such as the atmosphere, long-term
trajectories are organized to form a unique geometric object (which may be complex).
Long-term trajectories4 converge to a subset of phase-space A ⊂ P called the attractor5.
This has practical consequences for analog forecasting (see Chapter III). Otherwise stated,
for any starting point x0 ∈ P , there is a finite time τ after which all future states are in
the attractor: {Φt(x0) , t > τ} ⊂ A.

However, some regions of the attractor may be visited more often than others. This
motivates the definition of a measure µ on the subsets of P that characterizes how often
each region of phase-space is visited by long-term trajectories of the system. Such a
measure estimates the fraction of phase-space volume that is occupied by the attractor.
It is more general then a probability density function. In the following, we assume that

4. To be a little bit more precise: “almost all” trajectories from the “basin of attraction” of the
attractor converge to it.

5. Some systems may have more than one attractor. Here, we only deal with the simplest case.
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the system has an attractor that can be characterized by such a measure. As this measure
describes long-term trajectories, it must be invariant under the flow: for any t > 0 and
E ⊂ P , µ(Φt(E)) = µ(E). Therefore, it is called the invariant measure. In ergodic
theory, a property is said to be true for “almost all points” if the set of points that do not
verify the property has zero measure.

This framework allows to state the ergodic theorem of Birkhoff (1931). This theorem
shows that the statistics over all accessible states can be approximated by statistics over
a very long trajectory, whatever the starting point. It has very important practical conse-
quences in physics. Consider that we sample a trajectory of the system every ∆t, from a
starting point x0 ∈ P : {x0, x∆t, x2∆t, x3∆t, . . .} = {x0, Φ∆t(x0), Φ2∆tx0, Φ3∆tx0, . . .}.
The ergodic theorem states that the average over this trajectory of any real-valued func-
tion of phase-space g : P 7→ R (also called a real-valued observable) tends to the average
with respect to the invariant measure of the attractor:

∫
P
g dµ = lim

N→∞

1
N

N−1∑
k=0

g
(
Φk∆t(x0)

)
,

for almost all starting points x0. A consequence of this theorem is that the measure of a
given subset E ⊂ P can be approximated by the number of visits of this subset :

µ(E) ≈ 1
N

N−1∑
k=0

1
(
Φk∆t(x0) ∈ E

)
,

for any starting point x0 and a sufficiently large N , where 1 is the indicator function. This
is coherent with the intuitive definition of the invariant measure that we proposed. As
analogs can be seen as recurrences around a given point, it appears here that the number
of good analogs is highly linked to the invariant measure. This will be further discussed
in Chapter II.

2 Analogs

2.1 Motivation and definitions

Analogs An analog a of a state x is a state that is different but “close” to x. In the
following, x may be referred to as the target state. Defining what “close” means usually
involves the use of a metric or distance function in the mathematical sense, although other
types of measures of similarity could be used (this will be discussed next). The term
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“analog” is used in atmospheric applications, while “k nearest neighbours” (kNN) is used
in the machine-learning community. In analog forecasting —the principal analog method
used in this thesis— one also defines successors. The successor is the state that follows
the analog state. In this case, x is called the “present state”, and the time-successors of
x’s analogs are used to estimate the “future state”.

Catalog The catalog is the database in which the analogs are sought for. Analog meth-
ods are motivated by the ever-growing availability of geophysical datasets: observational
data, output of numerical physical model, or reanalysis (a combination of observations
and physical models through data assimilation). Those types of geophysical datasets
correspond to one long trajectory of the system of interest, or multiple smaller trajec-
tories. The aforementioned Poincaré theorem motivates the hope to find analogs of any
given state. Note that these datasets are not necessarily in phase-space P , especially for
observations. Furthermore, the original dataset is often transformed to fit the needs of
each application, such that the space in which the analogs lie (hereinafter referred to as
"feature-space") may be different from the original observation space.

Feature space The word “feature” is borrowed to the machine-learning community.
Before applying analog methods, geophysical datasets are likely to be modified. This
modification can be viewed as a mapping from observation-space to feature-space. A
relevant feature-space is the main ingredient of analog methods. In practice, it has to
informative and low-dimensional.

First, for a vector in feature-space to represent accurately the state of the system, the
mapping from phase-space to feature-space must be injective. Observations are usually
partial, such that the same observation can correspond to different states in phase-space.
In this case, the use of time-embeddings is popular and motivated by the theorem of
Takens (1981). It consists in concatenating the observation at time t and previous obser-
vations at times t−τ , t−2τ , etc., with fixed time-lag τ . Bounds for the minimum number
of time-lags that allow the embedded space to be one-to-one with phase-space are known
from theory (Sauer et al., 1991).

Second, analog methods are subject to the curse of dimensionality: the catalog size
needed to find analogs of a given precision grows exponentially with feature-space dimen-
sion (see Van Den Dool 1994, Nicolis 1998 and the analysis of Chapter II). Therefore,
dimension reduction techniques such as principal component analysis (also called em-
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pirical orthogonal function) are commonly used. The practical choice of the dimension
reduction technique is application-dependent, and this issue was not tackled during this
PhD.

Examples and discussions on dimension reduction and Takens embeddings for analog
forecasting can be found in Hamilton et al. (2016), Alexander et al. (2017), and Zhen et al.
(2020). In this feature space, one must find an adequate measure of similarity between
states.

Choice of distance The Euclidean distance is often used to characterize “closeness”.
The properties of this distance are well known, and its popularity is such that algorithms
for the search of nearest neighbours are often based on it. This allows for a simple, fast
practical search of analogs.
Then, one strategy is to take the best analogs found using the Euclidean distance, and to
measure their similarity with the target state x using other statistical quantities such as
correlation or p-value, which are not sensitive to issues of low signal-to-noise ratio (Yiou
et al., 2013). Similarly, Blanchet et al. (2018) use the Teweles-Wobus score to measure
similarity in the shape (rather than actual value) of geopotential height fields.
The Euclidean-like Mahalanobis (1936) distance normalizes the data by their spatial co-
variance structure, which might be interesting. But this involves products of large matrices
which also slows down the computation.
Fraedrich and Rückert (1998) use a Euclidean-like distance that adaptively gives more
weights to certain coordinates of phase-space. In this case, the feature-space is made of
time-embeddings of one coordinate of phase-space, and the weights are optimized for the
task of analog forecasting. A similar procedure was used by Wetterhall et al. (2005) to
select the best analogs of sea-level pressure fields projected on their first principal com-
ponents, this time for the task of downscaling.
The Wasserstein distance finds the smallest path from one distribution to another, and
is thus able to identify patterns that are similar up to a translation. This would allow to
account for advection, for instance in meteorology, especially if the field is not smooth,
in which case the Euclidean distance between a vector field and its advected counterpart
might be large although they display similar physical features. It was used to detect
changes in attractor structure of dynamical systems (Robin et al., 2017). However, this
distance is computationally expansive, and is originally designed for probability distribu-
tions, which can complicate its use for real-valued vector fields (Thorpe et al., 2017).
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Finally, additional conditions may be imposed for a state to be considered an analog of a
given target state. For instance, the stochastic weather generator of Yiou (2014) selects
analogs with a probability proportional to the calendar distance to the target state to
ensure an averaged seasonal cycle in the simulated time series. Similar conditions may be
imposed for the analogs to respect the seasonality or diurnal cycle of the target state.

2.2 Applications of analogs

Applications with a temporal component Analogs of atmospheric circulation were
introduced by Lorenz (1969) to study atmospheric predictability. Given a present state
of the atmosphere x and its best analog a, Lorenz (1969) uses the rate of divergence
between the future states of x and the successors of a to evaluate the predictability of
x. More recently, analogs were often used in statistical schemes such as the stochastic
weather generator of Yiou (2014) which produce several trajectories, allowing to asses the
probability to observe a given atmospheric state. The use of analogs to generate ensemble
forecasts was compared to other ensemble generating techniques by Delle Monache et al.
(2013) and Atencia and Zawadzki (2017). Analog ensemble reforecasts allow Hamill and
Whitaker (2006) to estimate rainfall cumulative probability distributions. Arroyo and
Maté (2009) produce histogram forecasts of monthly precipitation at Chinese stations,
using analogs of histograms based on the Wasserstein and Mallows distances to measure
similarity. Analog forecasting was combined with data assimilation by Hamilton et al.
(2016) and Lguensat et al. (2017), using either ensembles or Gaussian assumptions to
estimate the distribution of analog forecasts. A direct application of analog forecasting
with data assimilation is to fill gaps in observation maps, a method compared to opti-
mal interpolation by (Zhen et al., 2020). Grooms (2020) combined analog forecasting
with data assimilation and auto-encoders to compensate for an eventual lack of data (i.e.,
when the catalog is too small). Sévellec and Drijfhout (2018) discretize the possible values
of global mean surface temperatures, allowing to perform fast forecasts with a transition
matrix and analogs from CMIP5 trajectories. Combining analogs, Gaussian kernels and
time-embeddings, Alexander et al. (2017) perform forecasts of tropical intraseasonal oscil-
lations, based on a framework introduced by Zhao and Giannakis (2016). More recently,
Wang et al. (2020) used analogs in a generalized, operator-theoretic framework (detailed
by Alexander and Giannakis, 2020) to forecast the El Niño-Southern Oscillation.
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Other applications Many applications of analogs do not involve time-evolution in the
catalog (i.e., they use only analogs and not their successors). The most famous is analog
downscaling where, given large-scale information, the possible states at a meteorological
station (involving local, small-scale processes) are estimated. For instance, Wetterhall
et al. (2005) produce statistics of precipitation at stations in Sweden from analogs of
large-scale sea-level pressure fields and associated local precipitation values. Analogs also
allow upscaling: from local information, the probability of large-scale patterns is estimated
statistically in a similar fashion. This allows to reconstruct high-resolution fields at dates
for which only spurious local observations are available (Schenk and Zorita, 2012; Yiou
et al., 2013). Similarly, analogs can be used to specify a given variable from analogs of
another variable (Tandeo et al., 2016). Finally, the role of atmospheric circulation in
the occurrence of extreme events can be estimated using analogs. When observing an
event such as a cold winter (Cattiaux et al., 2010), an increase in ice-sheet surface melt
(Fettweis et al., 2013), or a heatwave (Jézéquel et al., 2018), one can find analogs of
the respective atmospheric circulations and compare the associated temperatures, or ice
melt. This allows to estimate the probability to observe extreme events assuming similar
circulation patterns.

kNN and analogs The principle of k-nearest neighbours (kNN) is identical to the one
of analogs. However, “kNN” usually refers to machine-learning applications for other
types of datasets such as photographs, emails, traffic... For such datasets, the notions of
dynamical systems, recurrences, and ergodicity are not necessary relevant, while they are
central to the study of geophysical analogs. Therefore, we do not review applications of
kNN here.

2.3 Strengths and weaknesses

An obvious advantage of using analogs is that it circumvents the use of a physical model.
In particular physical models for the time evolution of specific observables (e.g., the ENSO
index) are usually not provided or hard to write. Then, when a physical model is avail-
able, its numerical resolution might be numerically demanding. Furthermore, in such
models, non-linear processes imply interactions between physical scales, which calls for
the parametrization of unresolved processes at small scale (due to discretization). This
results in uncertainties which might be hard to evaluate.
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Analog methods have the advantage of being computationally cheap, such that it is
easy to perform ensemble forecasts, allowing to assess for uncertainties. Machine-learning
libraries allow for a fast search of analogs, with “trees” computed offline (see the ap-
pendix of Lguensat et al., 2017), and the application of analog methods usually consists
in simple linear combinations. Contrarily, when using model-based methods from physi-
cal knowledge, one cannot hope to perform very large ensemble forecasts due to the high
computational cost.

Analog methods have the advantage of being non-parametric. Which means that only
a low number of meta-parameters has to be set in advance (the number of analogs used
at each iteration, the choice of the distance, ...etc.). Other techniques have to estimate
parameters, assuming a certain functional form or model. In particular, when one uses
analogs in a statistical framework, there is no (necessary) assumption on the shape of
probability distributions. This property is similar to the one of particle filters which will
be introduced next. Note that analog methods can also be used in a parametric form when
relevant: see the combination of analogs and Kalman filter of Lguensat et al. (2017) or
the aforementioned weights optimization of Fraedrich and Rückert (1998) and Wetterhall
et al. (2005).

Another strength of analog methods is that they bear characteristics of the system by
construction. Atencia and Zawadzki (2017) noted that, contrarily to other initial con-
dition perturbation methods, analog ensemble forecasts are consistent with the system’s
fractal dimension. Zhen et al. (2020) note that the analog data assimilation technique
allows to build reconstructed sea-surface height maps with a temporal spectra that is
more consistent with the true spectra then optimal interpolation. The random weather
generator of Yiou (2014) preserves spatial constraints by construction, contrarily to other
weather generators.

The simple principle behind analog methods makes them easily interpretable, while
other data-based method might be seen as “black-boxes” where it is hard to understand
why and when the method succeeds or fails. In the case of analog forecast, results of
convergence in the limit of large data are reported in Zhao and Giannakis (2016) for
analog forecasting with dynamics-adapted kernels, in the third chapter of this thesis and
in Platzer et al. (2019) for analog forecasting in phase-space, and finally in Alexander and
Giannakis (2020) for analog forecasting combined with kernel projection methods that
are connected to Koopman operator theory.

Nowadays, numerical weather prediction is based on physical models combined with
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observations through data assimilation (Carrassi et al., 2018). Yet, there was a time when
analog forecasting was used for weather forecasting (Schuurmans and CJE, 1973). In a
way, one could think that physical models have “won the battle”. However, for the rea-
sons mentioned earlier, analog methods are now used for their ability to perform statistical
tasks such as downscaling, upscaling, event attribution, interpolation, or ensemble fore-
casts. Also, analog methods remain interesting for the forecast of specific observables (see
Xavier and Goswami, 2007; Alexander et al., 2017; Wang et al., 2020; Ayet and Tandeo,
2018).

One of the weaknesses of analog methods is that they are subject to the curse of
dimensionality: the number of data that is necessary for a given efficiency is an exponen-
tially growing function of the dimension. This issue is studied in details in Chapter II,
and consequences for analog forecasting are discussed in Chapter III. However, the curse
of dimensionality is a generic concern for data-based methods. Furthermore, as stated
before, it is now to adequately tune the feature-space in order to circumvent this issue.

A possible drawback of analog methods is that they are based on the hypothesis of
ergodicity, such that they may not be able to generalize out of the previously observed
states of the system. In particular, if the dynamics of the system change (e.g., due to
global warming, change in land use...), analog forecasts are likely to be biased. However,
as mentioned earlier, this drawback is turned into an advantage when concerned with
the attribution of a given event to climate change. Note also that the formulation of
Alexander and Giannakis (2020) remains well-posed in non-ergodic contexts.

3 Particle filtering

For an in-depth introduction to particle filters, the reader is referred to chapters on se-
quential Monte Carlo methods of the book by Cappé et al. (2006).

Particle filters belong to the field of data assimilation. Data assimilation techniques
allow to estimate the present and future states of a system from partial and noisy ob-
servations combined with a model for the time-evolution of the system state. Model
uncertainties are also taken into account.

The system state at (discrete) time t is modeled by a random variable Xt, from which
observations are taken, also modeled by a random variable Yt. Such a representation
is called a “state-space model”. The task of data assimilation (also called filtering) is
to evaluate the probability distribution of Xt given all previous observations Y1:t from
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time 1 to time t. Particle filters propose to estimate these probability distributions from
a finite, but large number of “particles” that sample these distributions. They can be
seen as ensemble methods, and are also called sequential Monte Carlo methods. Many
Monte-Carlo filtering techniques (e.g., bootstrap filter, auxiliary particle filters) exist and
their different flavours depend on the problem at hand (a priori knowledge, size of the
problem). As pointed out in the review paper of Fearnhead and Künsch (2018), “Particle
filters are completely general, but often suffer from sample depletion. Ensemble Kalman
filters are more robust, but rely on Gaussian assumptions.” In this PhD, we will leverage
the simplest version of particle filtering.

Assume that one can generate samples of the distribution dP(xt | xt−1) ofXt condition-
ally on Xt−1 (this is the “model”), and of the distribution dP(yt | xt) of Yt conditionally
on Xt (this is the “observation”). Also assume that one has access to t observations y1:t.
Then, a particle filter estimates the probability distribution of the state Xt from an en-
semble of n Dirac delta functions or “particles” x(1)

t , x
(2)
t , . . . , x

(n)
t . The simple particle

filtering algorithm used in Chapter V is as follows:

• Initialize the particles x(1)
1 , . . . , x

(n)
1 by taking n samples from an initial or “prior”

distribution dP(x1). The prior distribution is thus represented by a sum of dirac
delta functions with equal weights ω(k) = 1

n
(where ω(k) designates the weight asso-

ciated to the k-th particle).

• For each time j < t:

– Select the particles that fit the observation at time j. This is done through
an update of the particle weights according to Bayes’ rule6. The weight of the
k-th particle is multiplied by a factor dP(yj | xkj ):

ω(k) → ω(k) dP(yj | xkj )∑n
l=1 dP(yj | xlj)

Then a new set of n particles x̃1:n
j is drawn from the previous set of particles

with updated weights. Thus, the particles for which the observation yj is
“credible” are likely to be drawn multiple times, while other particles might
not be drawn. The resulting updated set of particles give an approximation of
the distribution of Xj conditionally on Y1:j = y1:j.

6. Here we show the most popular weight updating formula, called “sequential importance resampling”,
but there are other strategies.
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– Predict the future state by sampling each particle xkj+1 from the probability
distribution dP(xj+1 | x̃kj ). The set of particles x1:n

j+1 gives an approximation of
the distribution of Xj+1 given that Y1:j = y1:j.

One advantage of particle filters is that they are nonparametric: there is no assumption
on the shape of the distribution of Xt and Yt. Therefore, particle filters are able to model
any kind of distribution. Parametric data assimilation methods include Kalman filters,
which assume Gaussian random variables. A major drawback of particle filters is that in
high dimension, one needs a very large number of particles to sample whole probability
distributions.

4 Extreme value theory

For a general introduction to extreme value theory, the reader is referred to the book of
Coles et al. (2001).

Extreme value theory (EVT) is devoted to the study of the probability for a random
variable to reach high values. One important task of EVT is to extrapolate return levels
(quantiles) beyond the largest sample value, and to infer the confidence intervals of such
high quantile estimates. There are two main approaches in EVT: block-maxima and peak-
over-threshold (POT). The first one studies the limiting distribution for the maxima of
fixed-length samples of i.i.d. random variables, when the sample length goes to infinity.
The second one gives the limiting distribution of the probability for a random variable to
exceed a threshold when this threshold is infinitely large.

Let a real-valued random variable Y , from which are taken samples of length n. Denote
Mn the maximum of these samples. If, after rescaling with series an and bn, the cumulative
distribution function of (Mn− bn)/an converges to a non-degenerate distribution function
G when n→∞, then G has to belong to the family of generalized extreme value (GEV)
distributions :

G(y) = exp
{
−
[
1 + ξ

(
y − µ
σ

)]−1/ξ
}
,

where ξ ∈ R, µ ∈ R and σ > 0 are parameters that have to be estimated, and the function
G is defined where 1 + ξ

(
y−µ
σ

)
> 0. The values of σ, µ, and ξ respectively control the

scale, location and shape of the tail of the distribution of Y . Positive shape parameters
ξ correspond to functions of the Fréchet family. Weibull distributions are found fo ξ < 0.
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The case ξ = 0 is obtained by taking the limit ξ → 0 in the equation defining G, and
gives distributions of the Gumbel family.

This approach allows to determine the probability distribution of analog-to-target
distances in Chapter II. In particular, we use the fact that if the maximum sample of Y
is GEV-distributed as stated above, the k-th maxima follows the distribution Gk:

Gk(y) = exp {−τ(y)}
k−1∑
s=0

τ(y)s
s! ,

where s! is factorial s and τ(y) =
[
1 + ξ

(
y−µ
σ

)]−1/ξ
. Similar formulas for the joint prob-

ability distribution of the k first maxima are used to give the joint distirbution of the
k-best analog-to-target distances.

The POT approach looks at the distribution of threshold exceedances. If the sample
maxima of Y are GEV-distributed as above, then for large enough u:

P (Y − u > v |Y > u) ≈
(

1 + ξv

σ̃

)−1/ξ

,

where σ̃ = σ + ξ(uµ) and the function is defined for every v > 0 and 1 + ξv/σ̃ > 0. This
last distribution is called the generalized Pareto distribution (GPD), and is used to model
the behaviour of heavy-tailed random variables in Chapter V.

EVT is an active research field where statistical models dealing with non-stationarities
in space and time, as well as multivariate settings have been studied, see e.g. Davison
and Huser (2015). In this dissertation, we will mainly borrow univariate EVT tools and
concepts in an i.i.d. or stationary setup.

5 Ocean waves

For a deeper introduction to the physics of ocean surface gravity waves, the reader is
referred to the books of Kinsman (1965).

5.1 Generalities

The separation between the ocean and the atmosphere can be seen as a moving surface,
characterized by an elevation that depends on two horizontal coordinates and on time. In
the absence of perturbations such as wind stress, earthquakes, or the moon’s gravitational
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attraction, the surface at rest is flat (for small enough horizontal distances, i.e. neglecting
the curvature of the earth surface). Any perturbation of this flat surface is pulled back
by the gravity force or by capillary forces (surface tension), which are responsible for the
propagation of surface waves. Capillary waves or “ripples” are very small waves, and in
this thesis we focus on the larger, gravity waves.

A surface wave is characterized by its wavelength λ (the distance between two crests
or troughs), its wave period T (the time difference between two consecutive maxima at
a given space location), its height H (either crest height or crest-to-trough wave height),
and its direction.

In this thesis, we focus on wind-generated ocean waves. Other types of ocean waves
include tsunamis (displacements of large bodies of water due to a movement of the earth
surface), tides (due to gravitational forces of the moon and the sun), and slam waves (due
to the fall of a large object on the water surface).

The generation of ocean waves from the wind initially generates waves of very small
height and wavelength, and large waves are only generated if the wind blows strong
enough, for a long enough time, and over a large enough distance (called the “fetch”).
Such conditions are met in severe storms. These large amplitude waves then propagate due
to earth’s gravitational force, travelling over distances some times exceeding thousands of
kilometers.

Waves of large wavelength travel faster then waves of small wavelength. This dispersion
effect causes far-traveling waves of different wavelength to separate. Therefore, while the
waves that have been generated by local wind (called wind waves) can look disordered,
waves that have been generated far away (called swell) appear to be more regular and
smooth. A wind-wave sea-state displays a wide range of directions, wavelengths and
heights, while swell sea-states are generally organised around a given direction, wavelength
and height. For instance, the waves that are surfed at the beach are generally swell waves.

In chapter IV, we focus on swell-dominated sea-states. In the next sections, we intro-
duce the physics of ocean gravity waves propagation, and wave-wave interactions. We do
not tackle the issues of wave-current interactions, nor wave-wind interactions, nor wave
dissipation, nor the influence of sea-bottom on waves.

5.2 Linear waves and wave groups

The motion of gravity waves can be described assuming incompressible and inviscid water
and wind, irrotational water, and small steepness of the waves (i.e., H/λ � 1). From
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these physical assumptions, Navier-Stokes equations allow to derive the relation between
the wave period and wavelength of a sinusoidal gravity wave, called the dispersion relation
of linear gravity waves (we will come back to the term “linear” later). Expressed as a
function of wavenumber k = 2π/λ and pulse ω = 2π/T , where λ is the wavelength and T
the wave period, this dispersion relation reads:

ω2 = gk ,

where g is the earth’s gravitational acceleration at the ocean surface. The velocity of this
sinusoidal wave is given by the ratio ω/k, and is thus a growing function of λ as stated
earlier (∝

√
λ).

This description is valid at first order in wave steepness kH, where H is the wave
height. This approximation allows to describe the so-called linear waves, because the
equations of wave motion have been linearized in the limit kH → 0. Non-linear effects
arise from solutions to the same physical equations, but for higher orders of expansion in
wave steepness.

There is no interaction between linear waves of different wavelengths: they simply
“cross” each other, and the total surface elevation is the sum of the contributions of each
wave. Therefore, an ocean surface of sufficiently small steepness can be described as an
infinite (or large) sum of sinusoidal waves that propagate according to the dispersion
relation of linear gravity waves. From a statistical point of view, the probability distri-
bution of the elevation of such a sea-surface is Gaussian (see the classical monograph of
Longuet-Higgins, 1957). Therefore, this type of sea-surface is called a Gaussian sea.

This type of surface is therefore usually analyzed using Fourier decompositions. The
“wave spectrum” is obtained from the square amplitude of the elevation’s Fourier trans-
form. The integral of the wave spectrum gives the total wave energy. The latter remains
constant in the absence of energy input (from wind, or other sources listed above) and
wave energy dissipation. The range of frequencies (or wavenumbers) over which the spec-
trum is significantly high defines the spectral bandwidth. From the previous chapter, it
follows that swell seas are narrow-banded and wind seas are wide-banded.

The hypothesis of narrow spectrum allows for several approximations, including the
description of waves using wave groups or wave packets. It is well known that that the sum
of two sinusoïds with similar frequencies can be viewed as the product of a sinusoïd with
the same frequency as the original waves (called the carrier wave) and a low-frequency
amplitude or envelope. The same can be said of a large (or infinite) sum of sinusoïds with

42



5. Ocean waves

similar frequencies. Thus, swell seas are organized in groups, a phenomenon that surfers
know well: a large swell wave is usually followed by several other large swell waves.

5.3 Non-linear waves

Solving the same physical equations as for linear waves, but relaxing a little the hypothesis
of small steepness (i.e. kH → 0), one can find new solutions that correspond to expansions
with respect to the small parameter kH.

The solution including the next expansion term after linear waves is called second-order
non-linear waves. In this solution, two waves of wavenumbers k1 and k2 can interact to
create waves with wavenumbers equal to the sum and difference of original wavenumbers
k1 + k2 and |k1 − k2|. The first created wave has a high frequency and thus changes the
shape of waves, while the second has a low frequency and thus changes local mean levels
of sea-surface elevation (see, for instance, the figures of Forristall, 2000). In the case of an
initially individual, sinusoïdal, linear wave of wavenumber k, second-order non-linearities
add a high-frequency wave of wavenumber 2k, which travels at the same velocity as the
initial linear wave. The resulting wave is called the Stokes wave, and has sharper crests
and wider troughs than the linear wave. These added waves that are the consequence of
second-order, two-wave interactions, travel at the same velocity then the linear waves they
originate from, and are therefore termed bound waves. Consequently, the latter do not
respect the dispersion relation of linear waves. Another important aspect of second-order
wave physics is that, as in the linear case, there is no exchange of energy between waves
of different wavelengths. The wave-spectrum thus remains time-invariant, which is not
the case for higher-order non-linear ocean waves.

In the following, the term higher-order non-linear waves designates solutions of the
same wave-physics equations as above, but including terms in the wave-steepness expan-
sion that are higher than second-order terms. These include three-wave and four-wave
interactions. Such higher-order non-linear waves exhibit exchanges of energy between
different wavelengths, and therefore the spectrum of such waves varies in time, even
when there is no energy input or dissipation. A consequence of these interactions is the
Benjamin-Feir (1967) instability, which causes any individual linear wave solution to be
unstable to side-band perturbations. This mechanism may be responsible for the forma-
tion of waves of large height. The non-linear Schrödinger equation (NLSE) provides a
narrow-band approximation of the time evolution of the wave envelope. The NLSE is
valid at third order in wave steepness, and is therefore said to correspond to “weakly
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non-linear” ocean waves. This equation is used in Chapter IV to evaluate the effect of
higher-order non-linearities on our prediction method.

5.4 Rogue waves

In order to go beyond this brief introduction, the reader is referred to the numerous liter-
ature reviews on the topic of oceanic rogue waves (Kharif and Pelinovsky, 2003; Müller
et al., 2005; Dysthe et al., 2008; Adcock and Taylor, 2014; Slunyaev, 2017).

The concept of rogue wave emerges from sailors’ stories. From the “mythical” point of
view, a wave is rogue when it emerges from nowhere, disappears in the same fashion, and
is abnormally large compared to its neighbourgs7. Rogue waves were consider a sailors’
tale until scientific research revealed that waves with such properties can be measured in
the ocean, reproduced in laboratory and numerical experiments, and correspond to some
analytical solutions of physical equations.

Numerous offshore accidents have been attributed to rogue waves. The hazardous
potential of rogue waves is a motivation for research on this topic.

A quantitative definition has been retained by the scientific community, saying that a
wave is “rogue” if its crest-to-trough wave height is at least twice as large as the significant
wave height:

H > 2Hs , (I.1)

where the significant wave heightHs can be defined as four times the standard deviation of
the sea-surface elevation (statistics computed from samples which are assumed to originate
from a constant wave spectrum, which may involve practical issues). Note that the exact
threshold is arbitrary. It correspond to relatively rarely observed waves. Similar criteria
are based on crest height rather than crest-to-trough wave height. Assuming linear waves
with Gaussian probability distribution and a relatively narrow spectrum, one finds that
one wave out of 104 is rogue according to the definition of H > 2Hs. The average number
of encountered rogue waves varies when including other types of wave physics.

Several physical phenomenon are candidates to explain the occurrence of oceanic rogue
waves. They include the linear superposition of a large number of ocean waves or “lin-
ear focusing”, the crossing of sea-states from different directions, the aforementioned

7. We retain this description, although other the term “rogue wave” may refer to other wave-
phenomenon when used by non-physicists.
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Benjamin-Feir instability, wave-current interactions, wind blowing over high amplitude
waves, and the influence of bathymetry on waves.

In Chapter IV, we use the linear approximation of ocean waves. Due to the narrow-
banded character of swell waves, we assume that the surface can be studied from the
evolution of isolated wave packets. The effects of higher-order non-linearities are studied
through the non-linear-Schrödinger equation.
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Chapter II

HOW NEAR ARE THE BEST ANALOGS?

As around the sun the earth knows she’s revolving
And the rosebuds know to bloom in early May...

– Stevie Wonder, As

1 Introducting the article

How near are the nearest past states of today’s weather? This questions is not new, al-
though the formulation and the point of view taken in this study are different from past
research work on the matter. The distance between the target state (say, today’s weather)
and the best analogs taken from a catalog (say, a historical database) is a fundamental
quantity for any application of analog methods, including analog forecasting. An under-
lying hypothesis of analog methods is that the analogs are “good” in the sense that they
are close to their target. Knowing a priori how close the analogs will be allows one to
estimate the performances of a given method before using it. This chapter investigates
the following questions:

• Given a catalog size and a target point of a dynamical system, how far from this
target will the catalog’s best analogs be? What is the variability of analog-to-target
distances?

• What is the influence of catalog size and dimension on the nearness of analogs?

To answer these questions, the following strategies and tools are used:

∗ The analogs are viewed as minimizers of a distance map on the dynamical system’s
attractor. In the limit of large catalog size, the tools of extreme value theory can
be applied.
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∗ Analytical probability distributions for analog-to-target distances are derived based
on strong regularity hypothesis for the invariant measure of the flow. Those dis-
tributions yield a simple form. Their shape and scale are functions of the local
dimension and catalog size.

∗ It is the first time that these distributions are proposed to analyze the link between
analog performances, catalog size, and dimension. Previous studies focused on re-
turn times and were limited to the first analog. This change of point of view brings
new insights for applications of analog methods.

∗ The applicability of these distributions is examined in numerical experiments of the
Lorenz (1963) system, and using 10-m wind data from AROME model output.

2 Article in preparation for Entropy: “Probability
distributions for analog-to-target distances”

Paul Platzer1,2,3,4 • Pascal Yiou1,2 • Philippe Naveau1,2 • Pierre Tandeo3 •
Jean-François Filipot4

2.1 Abstract

Analogs are nearest neighbors of a target state. They are taken from a large database
called the catalog. Analogs have been used in many atmospheric applications including,
among others, forecasts, downscaling, and predictability estimation. The distances of
the analogs to the target state largely condition the performances of analog applications.
These distances are random variables, and their probability distributions can be related
to the catalog size and properties of the system at stake. At the moment, authors have
focused on the first moments of return time statistics for the best analog, fixing an ob-
jective distance from this analog to the target state. However, for practical use and to
reduce estimation variance, applications usually require not just one, but many analogs.
In this paper, we evaluate theoretically and with numerical experiments the probability

1. LSCE, CEA Saclay l’Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, U Paris-Saclay, IPSL,
Gif-sur-Yvette, France

2. ESTIMR - Extrèmes : Statistiques,Impacts et Régionalisation, LSCE, Gif-sur-Yvette, France
3. IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Plouzané, France
4. France Énergies Marines, Plouzané, France
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distributions of the K-best analog-to-target distances. We show that dimensionality plays
a role not only in the size of the catalog needed to find good analogs, but also in the rel-
ative means and variances of the K-best analogs. Our results are based on well-known
tools from dynamical systems theory. These findings are confirmed with numerical sim-
ulations of famous chaotic dynamical systems and on 10m-wind numerical model output
in north-west France.

2.2 Introduction

Atmospheric analogs have been introduced by Lorenz (1969) in a study on atmospheric
predictability. The faster one target state z and its best analog a0 diverge from one
another, the harder it is to predict the evolution of z. In Lorenz’s study, the state z was
characterized by height values of the 200-, 500- and 850-mb isobaric surfaces at a grid
of 1003 points over the Northern Hemisphere. The database of available analogs, called
the catalog, contained five years of twice daily values. In his abstract, Lorenz states that
there are “numerous mediocre analogues but no truly good ones”.

Since Lorenz’s work, analogs have been used in many applications such as weather
generators (Yiou, 2014), data assimilation (Hamilton et al., 2016; Lguensat et al., 2017),
kernel forecasting (Alexander et al., 2017), downscaling (Wetterhall et al., 2005) climate
reconstruction (Schenk and Zorita, 2012; Yiou et al., 2013) and extreme event attribution
(Cattiaux et al., 2010; Fettweis et al., 2013; Jézéquel et al., 2018).

The reason why Lorenz could not find any good analog was made clear later on by Van
Den Dool (1994). It was shown that for high-dimensional systems, the mean recurrence
time of a good analog (identified as a minimum catalog size) grows exponentially with
dimension. This result is a variant for analogs of the "curse of dimensionality", well
known in data-sciences. With three pressure levels over the whole Northern Hemisphere,
the dimension of Lorenz’s study was very high, and only five years of twice-daily data was
not enough to ever hope to find a good analog.

Nicolis (1998) added a dynamical system’s perspective to Van den Dool’s analysis. She
showed that studying mean recurrence times was not enough, as the relative standard
deviation of this recurrence time could be very high. Furthermore, it was shown that
recurrence time statistics exhibit strong local variations in phase-space, so that certain
target states may need a larger catalog size to find good analogs.

Accounting for Van den Dool’s findings, it is now usual to reduce as much as possible
the feature-space dimension before searching for analogs. Also, the last decades have
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witnessed a proliferation of data from in-situ and satellite observations, as well outputs
from numerical physics-based model. Such conditions allows one to find good analogs
in many situations, and it has become standard to use not just one, but many analogs
(usually a few tens). From a statistical perspective, using many analogs instead of one can
increase estimation bias, but it reduces estimation variance, so that the estimation is less
sensitive to noise. Using many analogs also allows to perform local regression techniques
on the analogs, such as local linear regression (Lguensat et al., 2017). This technique has
proven efficient in analog forecasting applications (Ayet and Tandeo, 2018), and it was
shown that local linear regression allows analog forecasting to capture the local Jacobian
of the dynamics of the real system (Platzer et al., 2020, under revision).

This new context suggests to focus not only on the best analog a0, but also the k-th
best analog, for k up to ∼40. Also, one can now reasonably hope to find good analogs
using dimension reduction and a large amount of data. Thus, one is less interested
in recurrence-times, but rather in analog performances. Performances of analog-based
methods are largely conditioned by analog-to-target distances. In this work we propose
to evaluate the probability distribution of these distances. Our analytical probability
distributions make the link between analog-to-target distances, catalog size and local
dimension. This brings new insight on the impact of dimensionality on analog forecasting
performances.

The first section outlines the theoretical framework and findings. The second section
interprets the findings and compares this analysis with past studies. The third section
shows results from numerical experiments of the Lorenz (1963) system and from 10-m
wind data from the numerical model AROME.

2.3 Theory

2.3.1 Analogs in dynamical systems and local dimensions

In ergodic systems, trajectories come back infinitely close to their initial condition after
a sufficiently long time (Poincaré, 1890). Furthermore, if the dynamical system has an
attractor set A, then all trajectories converge to this subset of the phase-space (Milnor,
1985). Analog methods are based on the idea that if one is provided with a long enough
trajectory of the system of interest, one will find analog states close to any point z of the
attractor A.

The trajectory from which the analogs are taken is called the “catalog” C, and can
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either come from numerical model output or reprocessed observational data. It can be
seen either as a trajectory from a discrete dynamical system, or as evenly-spaced time
samples from a continuous dynamical system. In any case, the catalog has a finite number
of elements noted L := card(C). This catalog size may be divided by a typical correlation
time-scale so that elements of the catalog can be considered independent (Van Den Dool,
1994). In fact, for the analogs of a given target z to be considered independent, it is
enough that the typical distance between two analogs of z be smaller than the typical
distance between an analog and its time-successor.

The structure of the attractor, expressed by the systems’ invariant measure µ, condi-
tions the structure of the catalog and the ability to find analogs. In particular, Van Den
Dool (1994) and Nicolis (1998) studied the role of the attractor’s dimension. Let Bz,r the
ball centered on z ∈ A and of radius r, then

dz,r := log µ(Bz,r)
log r , (II.1)

defines the finite-resolution (r-resolution) local dimension at point z. Note that for ergodic
measures, µ(Bz,r) can be approximated by counting the number of times a given trajectory
enters Bz,r (this is the consequence of the ergodic theorem of Birkhoff 1931).

If µ is ergodic and limr→0 dz,r exists, then µ is said to be exact dimensional and the
limit is independent of z (Young, 1982). This typical value of the local dimension is noted
D1.

D1 := lim
r→0

dz,r .

The finite-resolution local-dimension dz,r, however, can deviate from the typical value
D1. More precisely, dz,r exhibits large deviations from its limit value (for more details,
see Caby et al., 2019).

The distance from the k-th analog ak ∈ C to the target state z is noted rk := dist(ak, z).
Distances are sorted so that r1 < r2 < . . . < rK , and K is the total number of analogs
considered. Empirical methods usually set K to a fixed value, reaching for a bias-variance
trade-off. This amounts to looking at a lower quantile of the function x → dist(x, z).
Another possibility is to set a threshold R for the analog-to-target distances so that
rK < R < rK+1. In this case, K depends on z.

51



Chapter II – How near are the best analogs?

Figure II.1: Computing the finite-resolution local dimension dz,rK
at a point z of the

three-variable Lorenz (1963) system. Following from Caby et al. (2019), we evaluate d by
taking the mean of the empirical cumulative distribution function shown in left panel. For
this example, fitting the empirical CDF with an exponential exp(−s/σ) and taking the
inverse of σ would have given approximately the same value for d. The right panel shows
the target z as a black star, and (one in three) analogs as colored dots (colors match the
left panel). The trajectories from which the analogs are taken are in gray. In this example,
the typical analog-to-successor distance is much larger than the typical analog-to-target
distance.

2.3.2 Simple scaling of analog-to-target distance with dimension

Using extreme value theory and dynamical systems theory, Caby et al. (2019) showed
that dz,r can be estimated using the empirical distribution of points inside a ball of expo-
nentially decreasing radius. This empirical distribution is actually exactly the cumulative
distribution function of the best available analogs. It then follows from Caby et al. (2019)
that, for regular enough measures, we have the approximate scaling:

rk(z) ∼ k1/d, (II.2)

where d = dz,rK
is the local dimension at finite resolution rK (the largest analog-to-target

distance). An application of this method to the three-variable system of Lorenz (1963) is
given in Fig. II.1.

Eq. II.2 gives an important point of our analysis, which is the scaling of rk with k,
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and is approximately given by a power-law with exponent 1/d. However, this formula
comes from a work on local dimensions, not analog-to-target distances. It is therefore not
surprising that some of the elements required for our study are missing. In particular,
this scaling does not give the constant in front of k1/d, in which resides the relation to the
catalog size, a crucial point for analog applications. Also, it only gives a mean or typical
value of rk, while our objective is to evaluate the probability distribution of rk, or at least
the probability of departures from this mean scaling.

The next section gives theoretical elements to evaluate the full probability distribution
of rk(z) from the local dimension, the catalog size, and the analog number k.

2.3.3 Full probability distribution of analog-to-target distance

Poisson distribution of the number of analogs in a ball Haydn and Vaienti (2019)
have shown that, for dynamical systems having Rare Event Perron-Frobenius Operator
properties, and for non-periodic points z, the number of visits k(z, r) of a trajectory of
size L into the ball Bz,r follows a Poisson distribution with mean Lµ(Bz,r):

P (k(z, r) = k) = (Lµ(Bz,r))k

k! e−Lµ(Bz,r), (II.3)

where k! is k factorial. In the context of analogs, this is the probability to find k analogs
with distances to z below the radius r. In the following we write µz,r := µ(Bz,r).

Distribution of analogs close to the sphere This section aims at using µ to evaluate
P (rk ∈ [r, r + δr)), the probability that the k-th analog-to-target distance is between r

and r + δr, for fixed k and z and where δr is small compared to r.
The event “rk ∈ [r, r+ δr)” is the intersection of the event “there are k− 1 analogs in

the ball Bz,r” and the event “there is one analog in Bz,r+δr ∩ Bz,r”. For a Poisson point
process these two events are independent, so that:

P (rk ∈ [r, r + δr)) = P
(
k(z, r) = k − 1 ∧ ∃x ∈ C ∩Bz,r+δr ∩Bz,r

)
= P (k(z, r) = k − 1) P

(
∃x ∈ C ∩Bz,r+δr ∩Bz,r

)
= (Lµz,r)k−1

(k − 1)! e−Lµz,r P
(
∃x ∈ C ∩Bz,r+δr ∩Bz,r

)
.

(II.4)

Then, it follows from Haydn and Vaienti (2019) that the event that strictly one element
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of the catalog lies between Bz,r and Bz,r+δr has a probability of the same form as Eq. (II.3)
but replacing k by 1 and µz,r by δµz,r := µz,r+δr − µz,r

P
(
∃!x ∈ C ∩Bz,r+δr ∩Bz,r

)
= Lδµz,re

−Lδµz,r . (II.5)

If the invariant measure µ is regular enough so that limδr→0 δµz,r = 0 we then have
e−Lδµz,r ≈ 1. Also, the probability to find more than one element of the catalog be-
tween Bz,r and Bz,r+δr has a probability of O(δµz,r)2. This justifies the approximation
P
(
∃x ∈ C ∩Bz,r+δr ∩Bz,r

)
≈ P

(
∃!x ∈ C ∩Bz,r+δr ∩Bz,r

)
. Finally, combining Eq. (II.4)

and Eq. (II.5), one finds:

P (rk ∈ [r, r + δr)) = Lδµz,r
(Lµz,r)k−1

(k − 1)! e−Lµz,r . (II.6)

This last equation is a more general form of our main result which is given in the next
section. Here, the probability is expressed in terms of the invariant measure, which is
usually not known analytically. The next section expresses the same probability in terms
of the analog-to-target distance r.

Distribution of analogs-to-target distance The link between µz,r and r is given by
the definition of the finite-resolution local dimension in Eq. (II.1)

µz,r = rd , (II.7)

where d = dz,r. The link between δµz,r and δr involves variations of the local dimension
wih r. Let ∆ = dz,r+δr − dz,r, we have:

δµz,r
µz,r

=
(

1 + δr

r

)d+∆

e∆ log r − 1 . (II.8)

Using the regularity hypothesis ∆� d, and keeping only lower-order terms, we find:

δµz,r
µz,r

= d
δr

r
+ ∆ log r . (II.9)

The term d δr
r

represents an almost steady increase in µz,r when r grows. The term
∆ log r represents fluctuations in this increase given by the fluctuations in dz,r. In practice,
the method described in Sec. 2.3.2 to evaluate d should catch a mean local dimension
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over the analogs and not catch the fluctuations of dz,r with r at scales smaller than rK .
Thus, the approximation :

δµz,r
µz,r

≈ d
δr

r
, (II.10)

which is not valid in theory, should be relevant in practice for finite catalog size and
regular enough measures. For small enough δr, one can then define pk, the probability
density function of rk through the identity P (rk ∈ [r, r + δr)) = pk(r)δr. Combining Eq.
(II.6), Eq. (II.7) and Eq. (II.10), we find:

pk(r) = dL rd−1

(
L rd

)k−1

(k − 1)! e−Lr
d

. (II.11)

This last equation is our main result. An alternative proof for Eq. (II.11) using
Extreme Value Theory is given in Sec. 2.3.5. Eq. (II.11) then allows to compute the
mean and variance of rk for fixed k and d :

〈 rk 〉 =
Γ
(
k + 1

d

)
L1/d Γ(k) , (II.12a)

〈 r2
k 〉 − 〈 rk 〉2 = 1

L2/d Γ(k)2

{
Γ
(
k + 2

d

)
Γ(k)− Γ

(
k + 1

d

)2}
, (II.12b)

where Γ is Euler’s Gamma function. These identities can be simplified through scalings of
the Gamma function Γ(x + 1) =

∫+∞
0 uxe−udu for large x, using Laplace’s method up to

second order to evaluate the integral (the first order gives Stirling’s formula). This gives:

k ≥ 2 , 〈 rk 〉 ≈
(
k

L

)1/d

, (II.13a)

(〈 r2
k 〉 − 〈 rk 〉2)1/2

〈 rk 〉
≈ 1

dk1/2 , (II.13b)

where we find again the scaling rk ∼ k1/d of Eq. (II.2). These approximations will be
increasingly valid as k grows, but even for k = 2, Eqs. (II.13a,b) give a satisfactory
numerical approximation of Eqs. (II.12a,b).
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One can also compute r∗k, the value of r for which pk reaches a maximum:

r∗k = argmaxr {pk(r)} =
(
k − 1

d

L

)1/d

,

and when kd ≤ 1, r∗k = 0 and pk(0) = +∞. Note that the three quantities 〈rk〉,
(
k
L

)1/d

and r∗k are equivalent as k → +∞.

Fig. II.2 shows plots of pk(r) against r for varying values of d and k. As a consequence
of the scaling rk ∼ k1/d, we observe large variations of 〈rk〉 with k for small dimensions d,
and very small variations of 〈rk〉 with k for large dimensions d. Note that, in the limiting
case d → ∞, the random variables rk are degenerate and all equal L−1/d almost surely.
This can be witnessed through the different scales of the horizontal axis of the plots. Also,
as a consequence of Eqs. (II.13), we have that the standard deviation of rk is a growing
function of k for d < 2, while it is constant for d = 2 and decreasing for d > 2. However,
the relative standard deviation of rk is always a decreasing function of k and d according
to Eq. (II.13b).

2.3.4 Rescaling and convergence to the standard Normal distribution

Eqs. (II.13a,b) suggest the change of variables from r to u with

u = dk
1
2

(L
k

) 1
d

r − 1
 ,

so that the probability density function of uk, noted hk(u), is

hk(u) = kk−
1
2

(k − 1)!

(
1 + u

dk
1
2

)dk−1
exp

{
−k

(
1 + u

dk
1
2

)}
, (II.14)

and simple asymptotic analysis gives

lim
k→+∞

hk(u) = 1√
2π

exp
{
−u

2

2

}
,

which shows that the rescaled random variable uk converges in distribution to the standard
Normal distribution as k → +∞. Note, however, that this limit should be hard to observe
in practice, as the distribution of Eq. (II.11) is valid only in the limit of large catalog size
and with k � L.
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Figure II.2: Probability density functions of rk, the k-th analog-to-target distance, for
fixed values of k, and of the local dimension d, from Eq. (II.11). All densities pk are
normalized by their maximum value. From left to right and top to bottom: d = 1.4,
2, 5, and 10. The distances are normalized by L−1/d. Dashed vertical lines indicate
the exact mean value 〈rk〉 from Eq. (II.12a), while dotted vertical lines indicate the
approximate value (k/L)1/d from Eq. (II.13a). The argmax values of p1, p15 and p30 are
shown respectively with squares, circles and triangles.
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2.3.5 Alternative proof for pk(r) and joint probability distribution

Lucarini et al. (2016) give a detailed analysis of the map from A to R, x 7→ − log dist(z, x),
using tools from dynamical systems theory and extreme value theory (EVT). For our
purpose, it is interesting to look at the simpler distance map x 7→ dist(z, x).

The minimum of this map over the catalog is achieved for the best analog of z, a1. The
minimum is thus r1. EVT tells (see Coles et al., 2001) that in the limit of large catalog,
the minimum of this lower-bounded distance map on a finite sample of the attractor (a
catalog of size L) follows a Weibull distribution, after rescaling. The Poisson law from Eq.
(II.3) with k = 1 actually gives the scaling and the exact form of the Weibull distribution:

P(r1 > r) = e−Lr
d

,

for positive r, otherwise the probability is 1.
The K largest order statistics of this function then correspond to the K analogs of

the point z. Again, in the limit of large catalog and for small enough K, EVT provides
the limit law (see Coles et al., 2001) for the k-th minima of this distance function when
L→∞ :

P(rk > r) = e−Lr
d
k−1∑
s=0

(Lrd)s
s! .

Differentiating and with a bit of rearrangement, one finds back the formula of Eq.
(II.11).

pk(r) = − ∂

∂r
P(rk > r)

= dL rd−1

(
L rd

)k−1

(k − 1)! e−Lr
d

.

From a broader perspective, extremal process theory (Lamperti, 1964) gives the joint
distribution of analog-to-target distances p1:K in the limit L→∞:

p1:K(r1, . . . , rK) = (dL)K
(

K∏
k=1

rk

)d−1

e−Lr
d
K

where the function is non-zero only when 0 < r1 < r2 < . . . < rK . For notation con-
venience and only in this formula, the random variables rk are noted identically as the
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values they can possibly take.

2.4 Consequences for applications of analogs

2.4.1 Comparison with previous studies

The pioneering work of Van Den Dool (1994) focuses on the minimum length of catalog
needed to have a 95% chance to find at least one analog with a distance below a low
threshold ε. With our notations, this condition can be written

L | P(r1 < ε) > 0.95 . (II.15)

Van Den Dool (1994) uses a Gaussian approximation for the difference between two
states, which is reasonable in high dimensions. Then P(r1 < ε) = 1− (1− αD1)L, where
α is the probability that the distance between two arbitrarily chosen states is less then ε
and can be expressed as the integral of a Gaussian probability density function. For small
ε, α = O(ε) and αD1 � 1. This finally suggests

L >
log 0.05

log(1− αD1) ≈
− log 0.05
αD1

(II.16)

Similar results can be found from Eq. (II.11). Indeed, one has P(r1 < ε) =
∫ ε

0 p1(r)dr =
1−

(
exp(−εd)

)L
, so that α ≈ ε. Here, D1 is replaced by the local finite-resolution dimen-

sion d. Thus, our analysis encompasses the one of Van Den Dool (1994).
Nicolis (1998) extended the work of Van Den Dool (1994). Interpreting Eq. (II.16)

in terms of mean return times and using the formula from Kac (1959), she found an
expression of mean return times using the identity µz,r ≈ rD1 and a mean velocity. This
theoretical analysis includes neither variations in phase space of the return time, nor
variability of the return time due to the variability of the catalog for fixed L. However,
Nicolis (1998) performed empirical estimates of such variations of the return time, shading
light on the pitfalls of an analysis limited to mean return times.

In the present paper, the point of view switches from statistics of return times to
statistics of analog-to-target distance, and is extended to the K best analogs rather then
just the first one. The full probability distribution of Eq. (II.11) gives a detailed view of
the variability of the process of searching for analogs.
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2.4.2 Searching for analogs: consequences

The full probability distribution of Eq. (II.11) has many consequences for the practical
search of analogs.

For very low-dimensional systems (D1 < 2), the first analog-to-target distance has a
lower variability than the next ones, so that a given value of r1 will be more representative
of the next values of r1 than a given value of r10 would be of the next values of r10. The
inverse phenomenon happens for higher dimensional systems (D1 > 2). This can be taken
into account to evaluate the expected performances of analog methods.

Also, the scaling rk ∼ k1/d implies that the growth with k of the mean analog-to-target
distance is much faster for low-dimensional systems (D1 . 2), so that the 30-th analog
would be much farther from z than the first one. This would justify the use of a lower
number of analogs K in low-dimensional spaces, while high values of K would not have
a great impact on analog-to-target distances in high dimensions (see the abscissa of the
lower-left panel in Fig. II.2).

For instance, Lguensat et al. (2017) use analogs to produce forecasts of several well-
known dynamical systems, setting K = 40, while the use of Gaussian kernels with a
variable bandwidth equal to λz = mediankrk allows to discard analogs with rk > λz. One
might think that the filtering out of analogs with rk > λz make the forecast procedure
relatively insensitive to the choice of K. Conversely, assuming that λz ≈ 〈r[K/2]〉 where
[K/2] is the integer part of K/2, we have that λz grows with K as λz ∼ K1/d. Thus,
for low-dimensional systems such as the one of Lorenz (1963) for which D1 ≈ 2.06, our
results suggest that high values of K would have detrimental effects on the efficiency of
analog methods.

The joint distribution of analog-to-target distances from Sec. 2.3.5 theoretically allows
to express the probability distributions of any random variable of the form∑

k ωkr
p
k, where

{ωk}k are weights and p is a positive integer. Such quantities can give error bounds for
analog methods (see Chapter III for the case of analog forecasting). However, a closed
form for the distribution of such variables is yet to be derived.

2.5 Numerical experiments

2.5.1 Three-variable Lorenz system

Using the procedure of Caby et al. (2019), one estimates the local finite-resolution dimen-
sion d(z, rK) for any point z using the K-best analogs in the system of Lorenz (1963),
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Figure II.3: Analog-to-target distance rk, against analog number k at the same point z
than in figure II.1. Full circles are the empirical points given by the analogs. The dashed
dark line is the best fit from equation (II.17) where d is fixed (from Caby’s method) and C
is estimated with least-squares in log-scale. Assuming that this fit gives an estimation of
the mean, the dotted lines represent approximate standard-deviation around this mean.

hereafter noted L63. This procedure is illustrated in Fig. II.1. Then, the scaling of Eq.
(II.13a) is used to make a least-squares fit from the data

rk(z) ≈LS C(z)k1/d , (II.17)

where rk(z) is the observed k-th analog-to-target distance and ≈LS means that the con-
stant C(z) is evaluated with least-squares from Eq. (II.17). Fig. II.3 shows an application
of this procedure for a given z of the L63, plotting the real values of rk, and using C(z)k1/d

as an approximation for 〈rk〉 and dotted lines show the standard deviation around the
mean from the approximate Eq. (II.13b).

From Eq. (II.17) and Eq. (II.13) one expects to find:

C(z) ≈ L−1/d , (II.18)

however, as L takes large values (from 105 to 107 or more), a small estimation error for d
results in a large estimation error for L−1/d. Another way to look at this estimation issue
is that d is relatively insensitive to a rescaling of distances. Let:
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d′ = log µz,r
log(r/ρ) (II.19)

where ρ is a scalar value and r/ρ is a rescaled version of r. Then d′ ∼ d as long as
| log ρ| � | log r|. In particular, the method of Caby et al. (2019) is insensitive to a
rescaling, as it involves only ratios of distances (see the horizontal axis of Fig. II.1).
Thus, Eq. (II.18) does not hold when C and d are determined as explained above. This is
why C(z) is rather evaluated through Eq. (II.17), which allows one to find the rescaling:

C(z) = ρ(z)
L1/d . (II.20)

Note that similar issues are raised by Faranda et al. (2011) regarding the continuity
of µz,r with respect to r and its limiting behaviour for small r, which motivates Lucarini
et al. (2014) to postulate that µz,r is the product of rD1 and a slowly varying function of
r, which is in some sense equivalent to our hypothesis that C(z) has to be rescaled when
the local dimension is estimated from the method of Caby et al. (2019).

Those formulas are tested in numerical experiments using the system of Lorenz (1963),
with results reported in Fig. II.4. Analogs of a fixed target point z are sought for in
3 × 600 independent catalogs, with three different catalog sizes. Each catalog is built
from a random draw without replacement of L points inside a (common) trajectory of
109 points, generated using a Runge-Kutta numerical scheme with a time step of 0.01
in usual non-dimensional notations. The dimension is calculated using K = 150 points,
where this number is justified by a bias-variance trade-off: using this number and testing
the procedure on 100 points picked from the measure µ, one finds a mean dimension
between 2.03 and 2.04, which is coherent with reported values Caby et al. (2019), and a
standard deviation of ∼ 0.26. Using a lower value of K results in a higher variance, and
using higher values results in biases that are dependent on the value of L used in this
study.

The consistency of empirical densities of ρ across varying values of L validates the
scaling of C with L and d. Empirical probability densities of rescaled analog-to-target
distances, also consistent across varying catalog sizes, are coherent with the theoretical
probability densities from Eq. (II.11). The values of the rescaling parameter ρ are not
surprising, as typical values of distances between points in the attractor are ∼ 16 and
maximum distances are ∼ 28. Note that Nicolis (1998) uses a rescaling in her study
of analog return times with Lorenz’s three-variable system, dividing all distances by the
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Figure II.4: Numerical experiments of the system of Lorenz (1963), for a fixed target
point z, using catalogs of various sizes L, repeating the experiment 600 times for each
catalog to obtain empirical probability densities. Top-left: empirical density of the local
dimension d, obtained with the method of Fig II.1 and with 150 analogs. Top-right:
empirical density of ρ(z) obtained from Eq. (II.17) and Eq. (II.20), setting d to the mean
value of its empirical densities. Bottom: normalized empirical probability densities of
rescaled distances L1/d

ρ
r, setting ρ and d to the mean value of their empirical densities,

and normalized theoretical probability densities using the same value of d. The probability
densities are estimated using Gaussian kernels with bandwith of .15 (for d), 4 (for ρ), .3
(for rescaled r).
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maximum distance between two points on the attractor.
Repeating this experiment for different target points z gives similar results. Values of

ρ are of the same order of magnitude as the one reported in Fig. (II.4). The consistency
across varying values of L is almost always recovered, except for some points that have
slightly higher dimensions d & 2.15 (not shown here). The authors expect this to come
from a bad choice of K when estimating the dimension and the rescaling factor: the choice
of K = 150 is relevant for most points, but should be adapted to the local dimension.

2.5.2 Wind data from Iroise sea

To further appreciate the applicability of our results to high-dimensional, real geophysical
systems, the theoretical developments from Sec. 2.3 are tested on five years (2015-2019) of
hourly 10m-wind output from the physical model AROME (Ducrocq et al., 2005) coupled
with satellite, radar, and in-situ observations trough a variational data assimilation scheme
(similar to the one of Fischer et al., 2005). The spatial domain is an evenly spaced grid
above Britanny, with latitudes ranging from 47.075◦ to 49.3◦ and longitudes from -5.7◦

to -2.575◦, and the spacing is 0.025◦. To focus on wind at sea, land points are removed
from the data: this last step allows for comparison with ongoing work targeted at offshore
wind characterization and forecast.

From this data, one can compute local dimensions with the method of Caby et al.
(2019). As the data is limited (∼ 3 × 104 points), K is set to 40. Histograms of the
local dimensions are plotted in Fig II.5. These show that the system lives in an attractor
of dimension approximately between 7 and 15, with some states having local dimension
likely to exceed 20. Large variations of the local dimension are not surprising, in particular
Caby et al. (2019) also witness large maximum values of d when using a low number of
analogs to compute local dimensions of North-Atlantic circulation data. Histograms of
dimensions from winter, fall and spring are similar, while a more peaked and slightly
shifted distribution is seen in summer, indicating that the system’s attractor dimension
is slightly higher in summer. This means that one needs a slightly larger catalog in order
to find analogs of summer conditions.

An example of target state and analogs is shown in Fig. II.6. The chosen target state
is a classical winter situation in Britanny, with strong eastward wind coming from the
sea. Thus, good analogs are found in the catalog. It is hard to discriminate which analog
is best: for such a high-dimensional system, the first analog-to-target distances are very
similar.
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Figure II.5: Empirical probability density functions of local dimensions from 10m-wind
data in the Iroise sea. We use the method of Caby et al. (2019), just like in Fig. II.1.
The distributions of spring, fall (top panel) and winter (bottom panel) are similar. A
small difference is seen in summer (bottom panel) with a more peaked distribution of
dimensions, and a mean dimension slightly higher.
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Figure II.6: An example of target state z and first, second and eight analogs, using
10m-wind data off the coast of Britanny. Standard station model notations are used,
with wind speed in knots and point-centered flags.
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By rescaling the variable rk in the following way:

rk → dk1/2
(

rk
Ck1/d − 1

)
, (II.21)

where d(z) is determined through the method of Caby et al. (2019) and C(z) through
the least-squares approximation introduced in the previous section, one should find prob-
ability distributions approaching a standard Normal distribution, as shown in Sec. 2.3.4,
especially for large values of k. However, due to the small catalog size, only probability
densities up to k will be studied, otherwise the expressions obtained theoretically in the
limite L→∞ are likely not to hold.

To obtain these distributions, analogs of each hourly z ∈ C (C is the catalog) are
sought for in the catalog, omitting analogs that would be less then one and a half days
away. For each z, C(z) is computed from Eq. (II.17), and the distances are rescaled
following Eq. II.21 and then stored. Finally, the stored values of each rescaled rk are used
to estimate probability density functions using Gaussian kernels with a bandwidth of 0.1.
Fig. II.7 shows the outcome of this procedure. For comparison, a similar procedure is
applied on data from the model of Lorenz (1963), using a catalog of L = 106 points and
testing the procedure on 105 target points that are taken from a trajectory independent
from the catalog. Also, the theoretical density functions from Eq. (II.14) are shown for
similar (fixed) dimensions.

Note that nothing was made to remove the influence of diurnal or seasonal cycles when
searching for analogs. Although the latter can have effects on the estimation of dimension
(Faranda et al., 2019), this does not seem to impact the final probability distributions,
as results are similar for the wind data and for the Lorenz data. Forbidding the use of
analogs that are neighbors in time (if the wind at noon on the 5th of June is a good
analog of z, then the wind at 1pm is likely to be a good analog as well) reduces slightly
the variance of the so-found empirical density functions, and slightly shifts the empirical
mean of the rescaled distances towards zero, especially for small values of k (not shown).

Fig. II.7 shows a relatively good agreement between theoretical and empirical dis-
tributions, especially for the Lorenz data. However, the empirical rescaling seems to
overestimate the relative standard deviation (using dk1/2) especially for high values of
k and for the wind data. Also, the estimation for the mean using Ck1/d slightly biases
the mean of the distributions from wind data, especially for low values of k. Variations
of the parameter K did not yield better results. We also tried to remove the points for
which analog-to-target distances were too high (for instance, more than 30% of the root-
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Figure II.7: Probability densities of rescaled analog-to-target distances rk from wind data
of the Iroise sea, and from numerical experiments of the Lorenz system 1963, compared to
theoretical distributions from Eq. (II.14). Empirical probability densities are estimated
using Gaussian kernels with a bandwidth of 0.1.
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mean-squared distance between two points picked randomly in the whole dataset). This
filtering procedure probably removed some data for which the assumption L → ∞ was
not verified, but did not change the shape of the plot significantly. With no more available
data, the authors have no precise explanation for this variance estimation problem, except
that it should be related to finite small catalog size which hinders precise estimation of
C and d.

2.6 Conclusion

We combined extreme value theory and dynamical systems theory to derive analytical
joint probability distributions of analog-to-target distances in the limit of large catalogs.
Those distributions shed new light on the influence of dimension in practical use of analog.
In particular, we found that the number of analogs used in empirical methods induces
larger biases in low dimension than in high dimension. Contrarily to previous works on
the probability to find good analogs, this study focuses on distances rather than return
times, and gives whole probability distributions rather than first moments. Numerical
simulations of the three-variable Lorenz system confirm the theoretical findings. 10m-
wind data from the AROME physical model show that our analysis is also relevant for
real systems. Our investigation indicates that these wind maps lie in an attractor of
moderately high dimension ∼10, such that the analog-to-target distances of the first
analogs are all very similar and have a low variability.

3 Complementary analysis and perspectives

3.1 The case of partial and noisy observations

In this section the consequences of projection and additive noise are briefly examined.
Partial observations do not allow to observe the whole attractor in phase-space, but

rather a projection onto a lower subspace. For instance, the wind maps used in this
chapter are part of a higher-dimensional atmospheric attractor. We see no reason why
the proposed methodology could not be applied to projections onto a lower subspace inside
the original attractor. Numerical experiments of the system of Lorenz (1963) give results
similar to Fig. II.4 after projection on the first axis (not shown here). The measured
dimensions are close to 1, and theoretical curves still match using the same strategy for
the estimation of dimension d and rescaling ρ. More generally, the notions of analogs and
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Figure II.8: The effect of isotropic additive noise on the structure of Lorenz’s attractor
(1963). The percentages measure the ratio of noise standard deviation and root-mean-
squared distance between two points picked randomly on the attractor. Only a few
thousand points are shown for readability purposes.

dimension for an observable of a dynamical system were recently studied by Caby et al.
(2020).

Adding noise to observations changes the structure of the attractor. The way its
structure is modified depends on the structure of the noise itself. In particular, the
observed dimension is higher when adding noise in directions of phase-space that are
orthogonal to the directions spanned by the attractor. Isotropic additive noise makes
observations fill all directions, so that the observed dimension approaches the dimension
of the observation space. To test these hypotheses, we made experiments of the system of
Lorenz (1963), adding noise to the catalogs. Fig. II.8 shows the effect on the attractor’s
structure of various strengths of additive isotropic Gaussian noise.

Then, Fig. II.9 shows that the dimension of the noisy attractors is increased towards
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3, the dimension of phase-space. Our method of estimating probability distributions for
analog-to-target distances is still applicable with noisy catalogs. However, the impact
of noise will be felt if one uses analogs to perform forecasting, downscaling, or for other
purposes. The next chapter investigates partly the effect of noisy catalogs on analog
forecasting strategies.

3.2 From analog distances to analog forecasting: an illustration

Among all applications of analogs, this PhD thesis is mostly concerned with forecasting.
To illustrate the practical aspects of analog forecasting, Fig. II.10 and II.11 show the same
wind maps as in Fig. II.6 but 2 hours and 12 hours later. In Fig. II.6, the target winds
and the analog winds are all relatively homogeneous and coming from the west/south-
west (blowing towards the east/north-east). In Fig. II.10, 2 hours later, the future state
and the analogs’ successors are still all quite homogeneous, with only small changes in
amplitude and direction. In Fig. II.11, 12 hours later, the successors and the real future
state show very different wind maps. Although the direction is still quite homogeneous in
space, is varies strongly from one map to another. Also, the spatial distribution of wind
amplitude can be different from a map to another (most maps show stronger winds in
the north then in the south, but s8 shows an opposite behaviour). This illustrates how
analog forecasts may only be valid for small lead times, as time induces a divergence of
trajectories and thus a growth of successor-to-future state distance.

For this illustrative example, many pre-processing techniques that are common in
analog forecasting of atmospheric states were omitted (see for instance the algorithm of
Yiou, 2014). In particular, diurnal and seasonal cycles were not forced to be respected,
so that the first analog of z is a morning state while z is an evening state, and the eight
analog of z is a spring state while z is a winter state. Seasonal and diurnal differences in
sunlight energy forcing induce different dynamical behaviours, so that even a very good
analog of z that is not from the same season or time of day can have successors very far
from the actual future states of z.

However, this illustrative example shows two main aspects of analogs forecasting.
First, successors diverge from the future state even when the analogs are very close to the
target state. This is due to the chaotic nature of the atmosphere. Second, depending on
the initial analog, the successors diverge in different directions, so that the ensemble of
successors spreads out with time.

Fig. II.12 allows for further interpretation of this forecast example. The left panel
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Figure II.9: Applying the aforementioned metholodogy to noisy catalogs of Lorenz’s at-
tractor (1963).
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Figure II.10: Wind maps from Fig. II.6, two hours later. The target state is replaced by
a "future state". Analogs are replaced by "successors" that can help estimate the "future
state".
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Figure II.11: Wind maps from Fig. II.6, twelve hours later. The target state is replaced
by a "future state". Analogs are replaced by "successors" that can help estimate the "future
state".
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Figure II.12: All quantities plotted here correspond only to the example shown in Fig.
II.6, Fig. II.10 and Fig. II.11, and not to statistics over many points. Left: distance
from target wind map (respectively, future wind map) to analog wind map (respectively,
successor wind map) as a function of analog rank (ordered of analog-to-target initial
distances) for the lead times of two and twelve hours. Right: statistics of analog-to-
target and successor-to-future state distances (full), and statistics of analog-to-analog
and successor-to-successor distances (dashed).
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shows that the 8 first analog-to-target distances are all below 20% of the root-mean-
squared distance between two wind maps picked randomly in the whole dataset. As
expected for this relatively high-dimensional dataset, the analog-to-target distances are
all similar (low variance of rk and low growth of 〈rk〉 with k). However, the sucessors-to-
future state distances show a much more complicated behaviour, even only for a forecast
horizon of two hours. In particular, the successors-to-future state distance is not a growing
function of k. This shows that analog-to-target Euclidean distance is not the only element
that should be taken into account for forecast purposes. Other elements such as diurnal
or seasonal conditions should be taken into account. Also, the dynamics gradient may not
be isotropic, so that successor-to-future state distance also depends on the orientation of
ak − z in feature-space. Finally, one sees that after 12 hours, the information is almost
completely lost: the distance between the successors and the future state is of the order
of the RMS distance between two states picked randomly in the dataset. However, some
successors (the sixth one in particular) are still relatively close to the real future state,
but the analog-to-target distance alone does not indicate which successor will be closest
to the real future state. The right panel shows that both the mean successor-to-future
state distance and the standard deviation of successor-to-successor distance are growing
functions of time, at least for forecast times below 8 hours. However, it is likely that
the successor-to-successor distance is slightly underestimated due to the small number
of analogs considered (here, eight). On this example, the typical successor-to-successor
distance is correlated with the successor-to-future state distance. Lguensat et al. (2017)
use this behaviour to estimate analog forecasting errors from the covariance of successors.

To better understand these issues, the next chapter expresses successor-to-future state
distances as a function of local gradients of the flow map of the associated dynamical
system.

4 Summary

� Previous works on the chance to find analogs focused on the minimum catalog length
to find one analog with distance below a given threshold. These studies revealed the
exponential growth of catalog size with dimension. Here, full probability distribu-
tions of analog-to-target distances were derived, showing the influence of dimension
on the second, third and next analogs.

� The typical scale of analog-to-target distances is proportional to the catalog size to
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the power 1/d, where d is the attractor’s local dimension. The average k-th analog
distance grows as k1/d, so that the growth is faster in small dimension. The standard
deviation of k-th analog-to-target distance is a growing (respectively, decreasing)
function of k for d < 2 (respectively, d > 2), and a constant for d = 2.

� In applications of analog methods, the use of many analogs allows to decrease sta-
tistical variance at the cost of increased bias, due to increased analog-to-target
distance. Our study reveals that this increase is faster for small dimensions, so that
for medium dimensions d & 5 the bias induced by using a large number of analogs
(say, 50) should not be a concern.

� Agreement of our analytical probability distributions with numerical data from the
Lorenz (1963) model is satisfactory. Empirical probability distributions from the
10m-wind AROME model output show a relatively good agreement although our
analytical distributions seem to slightly overestimate the variability of analog-to-
target distances.
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Chapter III

HOW FAR FROM THE TRUTH ARE

ANALOG FORECASTS?

Just as time knew to move on since the beginning
And the seasons know exactly when to change

– Stevie Wonder, As

1 Introducing the article

The principle behind analog forecasting is very simple: if the present state of the atmo-
sphere resembles the state of the atmosphere on a past analog day (say 07:00pm, the 16th
of March, 1991), then the future state of the atmosphere should also resemble the succes-
sors of today’s analog (the weather in two hours should resemble the weather at 09:00pm,
the 16th of March, 1991). If this is true, then the successors of a present state’s analogs
can be used to estimate the future state. Generally speaking, analog forecasting assumes
that if two initial states of a dynamical system are close to each other, they will remain
so for a certain amount of time. In this chapter, these assumptions are expressed in a
simple mathematical framework, allowing to better interpret the behaviour of different
analog forecasting strategies. We investigate the following questions:

• It is assumed that, if an analog is “close” to the initial state of a system, then
its time-successors will remain “close” to the future state. Can we quantify how
“close” the successors and the future state are? How is this statement dependent of
the system’s dynamics?

• Can we explain the behaviours of the different analog forecasting strategies proposed
by Lguensat et al. (2017) based on such an analysis?

• Is it possible to predict analog forecasting errors?
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To answer these questions, the following strategies and tools are used:

∗ The time evolution of the successors and of the real system state are described using
the concept of “flow” from dynamical systems theory. In the limit of analogs being
“close” to the initial state, the divergence between the successors and the future state
can be described from a tangent linear model. In this framework, the successor-to-
future state distance is a linear function of analog-to-initial state distance, given by
the flow’s Jacobian matrix.

∗ This allows to compare the theoretical accuracy of mean forecasts for different analog
forecasting operators.

∗ The case of the linear regression between the analogs and the successors is examined,
showing that it theoretically allows to retrieve the Jacobian matrix of the flow. This
claim is investigated in numerical experiments of well-known dynamical systems.

∗ The link between the Jacobian matrix of the flow and the covariances of successors
and analogs is expressed theoretically.

∗ Limitations due to additive observational noise are explored theoretically and in
numerical experiments of well-known dynamical systems.
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2.1 Abstract

Analogs are nearest neighbors of the state of a system. By using analogs and their
successors in time, one is able to produce empirical forecasts. Several analog forecasting
methods have been used in atmospheric applications and tested on well-known dynamical
systems. Analog forecasting can be related to the dynamical equations of the system of
interest. This study investigates the properties of different analog forecasting strategies
by taking local approximations of the system’s dynamics. We find that analog forecasting
performances are highly linked to the local Jacobian matrix of the flow map, and that
analog forecasting combined with linear regression allows to capture projections of this
Jacobian matrix. The proposed methodology allows to estimate analog forecasting errors,
and to compare different analog methods. These results are derived analytically and
tested numerically on two simple chaotic dynamical systems.

2.2 Introduction

To evaluate the future state of a physical system, one strategy is to use physical knowl-
edge to build differential equations that emulate the dynamics of this system. Then,
measurements provide information on the initial state from which these equations must
be integrated. Data assimilation gives a framework to account for two main types of error
in this forecasting process. First, the aforementioned equations do not describe perfectly
the real dynamics of the system, and solving these equations often requires additional
approximations, such as numerical discretization. These first error sources refer to as
model error. Second, observations are usually partial and noisy, such that the initial state
from which the differential equations must be integrated is uncertain. Observation error
is especially important for chaotic dynamical systems as the latter are highly sensitive
to initial conditions. The quantification of model and observational uncertainties is an
important topic in data assimilation (Tandeo et al., 2018).

For complex, highly nonlinear systems such as the atmosphere, forecasts based on
physical equations are challenging. Indeed, the numerical integration of discretized physi-
cal equations can be greedy for high-resolution grids, and unresolved small-scale processes
must be parameterized. Therefore, many empirical methods have been used in atmo-
spheric sciences (see Van den Dool et al. 2007, and references therein). The last decades
have seen a proliferation of data from numerical model outputs, observations or the com-
bination of them (see for instance Saha et al. 2010; Hersbach et al. 2020), strengthening
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scientific interest for empirical methods. One of such methods is called analog forecasting
and is based on a notion originally introduced by Lorenz (1969) to estimate atmospheric
predictability. Analog forecasting has been used in meteorological applications and on fa-
mous low-dimensional dynamical systems. Yiou (2014) builds an analog-based stochastic
weather generator. Several authors (Tandeo et al., 2015; Hamilton et al., 2016; Lguensat
et al., 2017; Grooms, 2020) combined analog forecasting and data assimilation. More
generally, analog forecasting procedures are used in a large range of environmental ap-
plications, from well-known atmospheric oscillations (Alexander et al., 2017; Wang et al.,
2020) to surface wind velocity (Delle Monache et al., 2013) or solar irradiance (Ayet and
Tandeo, 2018).

Analog forecasting proposes to bypass physical equations and to use existing trajec-
tories of the system instead, drawing either from numerical model output, observation
data or reanalysis. Analog methods are based on the hypothesis that one is provided with
many (or one long) trajectories of the system of interest. This enables to find analog states
close to any initial state, and to use the time-successors of these analogs to evaluate the
future state of the system. The fluctuating quality and density of available trajectories
adds variability to this process. This leads to analog forecasting errors, which play the
same role as the previously described model errors. The present study focuses on analog
forecasting errors.

Data-based strategies have been used extensively for the forecast of dynamical systems,
some of which are similar to the analog methods studied here. Early approaches similar
to the locally-linear analog forecasting operator include the reconstruction of equations of
motion from Crutchfield and McNamara (1987) and the forecast strategy of Farmer and
Sidorowich (1987). In particular, the latter are able to estimate the scaling of forecast
errors with forecast time, number of data, and intrinsic properties of the system such as
Lyapunov exponents. Local approaches have also been combined with time-embeddings
for data-based forecasts of dynamical systems, a strategy that has grown popular since
the early works of Sauer (1994) and Sugihara (1994).

Theoretical arguments on the convergence of analog forecasts towards the real future
state can be found in Zhao and Giannakis (2016), who focus on specific kernels that allow
to enhance analog forecasting performances. More recently, Alexander and Giannakis
(2020) showed theoretical convergence towards optimal forecasts for an extended version
of conventional analog forecasting approaches, involving kernel principal component re-
gressions. Our objective here is to relate the errors of the analog forecasting operators
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of Lguensat et al. (2017) to local dynamical properties of the system. In the following,
“analog forecasting” refers to the specific type of methods studied by Lguensat et al.
(2017).

Preliminary results suggest that analog forecasting errors can be estimated empirically
using local approximations of the true dynamics (Platzer et al., 2019). The current paper
gives a more in-depth description of the theory that supports different analog forecasting
procedures, and allows to evaluate the evolution of analog covariance matrices. The
methodology is applied to two famous chaotic Lorenz systems. Our work has strong
connection with the work of Atencia and Zawadzki (2017) who focused on the growth
of analog forecasting errors to compare analogs ensembles with other ensemble forecast
methods.

A theoretical framework for analog forecasting is outlined in Sec. 2.3, and three
analog forecasting operators are recalled. In this framework, the successor-to-future state
distance is expressed in Sec. 2.4. Finally, Sec. 2.5 examines analog forecasting mean and
covariance, and investigates the link between linear regression in analog forecasting and
the Jacobian matrix of the real system’s flow map. The discussion section takes a broader
view, outlines limitations which provide opportunities for new research. The conclusion
emphasizes the major results of the paper.

2.3 Analog forecasting

2.3.1 Mathematical framework

Let a dynamical system be defined by the following time-differential equation:

dx
dt = f(x) , (III.1)

where x is a vector that fully characterizes the state of the system, and f is a deter-
ministic, vector-valued map. The space P in which x lives is called phase-space. For
real geophysical systems, P is an infinite-dimensional function space, as variables such as
pressure or temperature are continuous functions of space and time. In practice, satisfac-
tory finite-dimensional approximations of such functions can usually be obtained through
time-space discretizations. Therefore, throughout this study, P is a vector space of finite
dimension n. The system is supposed to be autonomous, such that f : P → P does not
depend on time.

Given an initial state x0, a forecast gives an estimation of the state of the system xt
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at a later time t. The true future state xt is given by the flow map Φ : P × R→ P such
that:

Φt : x0 → Φt(x0) = xt . (III.2)

For the dynamical system defined through Eq. (III.1), Φ represents the time-integration
of this equation. The theorem of Poincaré (1890) states that trajectories will come back
infinitely close to their initial condition after a sufficiently long time, and will do so an
infinite number of time. It is valid for many geophysical systems of interest, and based
on the hypothesis that the system can only access a finite volume of phase-space, and
that the flow “preserves” volumes in phase-space. Furthermore, if the dynamical system
has an attractor set A ∈ P , then almost all trajectories issued from a larger ensemble of
points in phase-space (called the “basin of attraction”) converge to this subset A (Milnor,
1985). In the following, we assume the simple case that the system has one attractor A,
and that all trajectories are in A.

Analog methods are based on the idea that if one is provided with a long enough
trajectory of the system of interest, one will find analog states close to any initial point x0

in the attractor A. The trajectory from which the analogs are taken is called the "catalog"
C, and can either come from numerical model output or reprocessed observational data.

Analog forecasting thus supposes that we know a finite number of initial states that are
close enough to x0 to be called "analogs", and that the flow map of the analogs resembles
Φ. Therefore, the time-successors of the analogs should allow to estimate the real future
state xt. In the following, the k-th analog and its successor are noted ak0 and akt . Note
that analog forecasting is intrinsically random as it depends on the catalog, which is one
out of many possible trajectories. The variability in the catalog influences the ability
of the analogs and successors to estimate the future state. This motivates the use of
probabilistic analog forecasting operators Θ such that:

Θt : x0 → Θt(x0)

where Θt(x0) is a distribution that gives information both about the estimation of the
future state xt and the variability of this estimation process.

Note that for chaotic dynamical systems, any small but finite perturbation in the initial
condition will grow exponentially in time. Therefore, however small the distance between
the analog ak0 and the initial state x0 may be, the distance between the successor akt and
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the future state xt will eventually be as large as the typical distance between two random
points on the attractor. The exact divergence time is a function of both the Lyapunov
time (the inverse of the larget Lyapunov exponent) and the initial distance between ak0 and
x0. After this divergence time, the analog forecast is not more informative then a simple
climatological forecast (i.e., a forecast based on average statistics on the attractor). This
study is devoted to the properties of analog forecasts before this exponential divergence
is complete, so that akt and xt are still close to each other. Hereinafter, we says that “the
exponential time-divergence is complete” when the distance between akt and xt is as large
as the typical distance between any two points on the attractor.

2.3.2 Analog forecasting operators

Here are recalled three analog forecasting operators originally introduced in Lguensat
et al. (2017). A finite number K of analogs (ak0)k∈[1,K] and successors (akt )k∈[1,K] are used,
and are assigned weights (ωk)k∈[1,K]. This allows to give more weight to the pairs of
analogs and successors that are best suited for the estimation of xt. For more details on
relevant kernels, see Zhao and Giannakis (2016). The present article studies the properties
of analog forecasting without restriction to any particular choice of weights and distance.

The distributions of each analog forecast Θt(x0) is multinomial, with each pair of
analog/successor defining an element of the empirical distribution.

The locally-constant operator (LC) uses only the successors to estimate xt.
Θt

LC(x0) ∼ ∑k ωkδak
t
(·) . The mean forecast is thus µLC = ∑

k ωkakt . The covariance
of the forecast is covωk

(akt ), the ω-weighted empirical covariance of the successors.

The locally-incremental operator (LI) uses x0, the analogs and the successors to
estimate xt.
Θt

LI(x0) ∼ ∑k ωkδx0+ak
t−ak

0
(·) . The mean forecast is µLI = x0 +∑k ωk(akt −ak0). The

covariance of the forecast is covωk
(akt − ak0), the ω-weighted empirical covariance of

the increments.

The locally-linear operator (LL) performs a weighted linear regression between the
analogs and the successors. The regression is applied between ak0 − µ0 and the
successors akt , where µ0 = ∑

k ωkak0 . This gives slope S, intercept c, and residuals
ξk = akt − S

(
ak0 − µ0

)
− c.

Θt
LL(x0) ∼ ∑

k ωkδµLL+ξk(·) . The mean forecast is µLL = S (x0 − µ0) + c. The
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Figure III.1: Analog forecasting operators presented in Sec. 2.3.2. The flow map Φt(x0)
has a simple polynomial form. Analogs are drawn from a normal distribution centered on
x0 and follow the same model as the real state x. The same analogs and flow maps are
used for the three operators and are represented on each panel. Weights ωk are computed
using Gaussian kernels. The real initial and future states x0 and xt are displayed in full
circles. On the left panel, analogs are in colored, right-pointing triangles, and successors
in left-pointing triangles with the same colors. The size of the k-th triangle is proportional
to the weight ωk. In the middle and right panels, the elements of the forecast distribution
at time t are also in colored, left-pointing triangles.

covariance of the forecast is covωk
(ξk), the ω-weighted empirical covariance of the

residuals.

The locally-constant (LC), locally-incremental (LI) and locally-linear (LL) analog fore-
casting operators are illustrated in Fig. III.1. The variance of the LC is similar around
t = 0 and for the final value of t. On the other hand, the variance of the LI goes to 0 as
t→ 0, but for large times the LI estimator has a larger variance compared to the LC. The
next sections provide some information that help interpreting this phenomenon. The LL
is able to catch the dynamics, and therefore shows a small variance and a good precision
at all times. This is due to the fact that, in this example, non-linear terms are small and
the flow map of the analogs matches exactly the real system’s flow map.

It is worth mentioning another kind of analog forecasting operator called "constructed
analogs" (CA). It is a particular case of the locally-constant operator where the weights
ωCA
k can have negative values and are such that the mean of the analogs µ0 is as close as

possible to the initial state:
{
ωCA
k

}
k

= argmin{ωk}k
|∑k ωkak0 − x0|. It was used by Van

Den Dool (1994) to create better analogs in the case of small catalogs. Later, Tipett and
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DelSole (2013) showed that CA are equivalent to the locally-linear operator with constant
weights. In the following and unless otherwise specified, it is assumed that the weights
ωk are positive and decreasing functions of the distance between ak0 and x0.

2.4 Successor-to-future state distance

2.4.1 Notations and hypotheses

This work assumes that the evolution dynamics of the analogs are similar to the evolution
dynamics of the system of interest, and that the system is deterministic. This can be
stated in a differential equation form:


dx
dt = f(x)

xt=0 = x0

, (III.3a)

∀k,


dak

dt = fa(ak)

akt=0 = ak0
, with fa = f + δf̃ , (III.3b)

or in an integrated form using flow maps:

xt = Φt(x0) , (III.4a)

∀k, akt = Φt
a(ak0) , with Φt

a = Φt + δΦ̃t
, (III.4b)

where Φa is the flow map of the analogs, and Φ̃ is the difference between the analog and
real flow maps normalized through the scalar value δ such that Φ, Φa and Φ̃ are of the
same order of magnitude. The maps f , fa and f̃ are defined accordingly.

In these formulations, the fundamental hypotheses of analog forecasting are the conti-
nuity of Φt (or f) with respect to the phase-space variable x, the density of the catalog C
(for all k, ak0 is close to x0 for a given metric) and the adequacy of the analogs’ dynamics
(δ is small, Φa ≈ Φ).

The next section will investigate the ability of analogs and successors to approximate
the real system state, provided that t is before the exponential time-divergence is complete,
and that the aforementioned hypotheses are verified.
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2.4.2 When analogs work : Taylor expansions of the dynamics

Distance between successor and real state Assuming different levels of smoothness
of the flow maps and using Taylor expansions, one can estimate the difference between
the real future state xt and any given successor akt at leading order:

akt − xt = δΦ̃t(x0) +
[
∇Φt|x0

]
· (ak0 − x0) +O

(
|ak0 − x0|2 , δ|ak0 − x0|

)
, (III.5a)

where ∇Φt|x0 is the Jacobian matrix (the matrix of partial derivatives in phase-space)
of Φt at x0, ’·’ is the matrix multiplication, and O

(
|ak0 − x0|2 , δ|ak0 − x0|

)
represents

higher-order terms. Neglecting these higher-order terms and lightening notations, this
equation can be rewritten:

akt − xt ≈ δΦ̃t + ∇Φt · (ak0 − x0) ,

where the evaluation of δΦ̃t and ∇Φt at x0 is implicit. The leading-order difference terms
explicitly described in the right hand-side of Eq. (III.5a) come from two sources. The
first source is the difference between the analog and true flow maps at point x0, which is
independent of ak0 . The second source of difference is the mismatch in the initial condition,
left-multiplied by the Jacobian matrix of the true flow map at point x0.

Eq. (III.5a) states that at first order, these two error terms are additive. This is not
true at higher orders. Higher-order terms include the bilinear product of ak0 − x0 with a
matrix of second derivatives of Φt called the Hessian, and the product of the Jacobian of
Φ̃t at x0 and ak0 − x0.

Fig. III.2 shows applications of Eq. (III.5a) to the three-variable system of Lorenz
(1963), hereafter noted L63. A real trajectory is compared with successor trajectories of
the 10th and 100th analogs. The L63 system is solved numerically using a fourth-order
Runge-Kutta finite-difference scheme, with numerical integration time step ∆t = 0.01 non-
dimensional time. For notation details, see Eq. (V.9) in appendix. The real trajectory
has parameters σ = 10, ρ = 28, β = 8/3, while the σ parameter for the analog dynamics
is slightly perturbed with σa = 9 = 0.9σ. The matrices δΦ̃t and ∇Φt are estimated
numerically using formulae given below and time step ∆t = 0.01. The 10-th analog stays
close enough to the real trajectory all the time (upper-left panel of Fig. III.2), therefore
Eq. (III.5a) gives a satisfactory approximation of |a10

t − xt| (upper-right panel). The
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100-th analog starts to be too far from the real trajectory around t ≈ 0.7 (upper-left and
right panels), and Eq. (III.5a) provides a poor approximation of |a100

t − xt| (upper-right
panel).

The different right-hand side-terms of Eq. (III.5a) are projected on the first axis of
phase-space and displayed in the lower-left panel of Fig. III.2. The "flow map" term δΦ̃t

is the same for both analogs, and comes from the misspecified σ parameter. The "initial
condition" term ∇Φt · (ak0−x0) is much larger for the 100-th analog, and one can see that
those terms are proportional, here negatively correlated.

Further assuming that t is small, one can express Eq. (III.5a) in the alternative
formulation:

akt − xt = tδf̃(x0) + [I + t∇f |x0 ] · (ak0 − x0) +O
(
t2 , |ak0 − x0|2 , δ|ak0 − x0|

)
,

(III.5b)
where I is the identity matrix. Using lighter notations, this becomes:

akt − xt ≈ tδf̃ + [I + t∇f ] · (ak0 − x0) ,

where the evaluation of δf̃ and ∇f at x0 is implicit. This last formulation is analogous to a
Euler scheme used in finite-difference numerical methods for solving differential equations,
it is therefore valid only for small times. In the lower-right panel of Fig. III.2, one can see
that the right-hand side terms of Eq. (III.5b) only approximate the terms of Eq. (III.5a)
for t . 0.1.

Link between the two formulations, f and Φt Eq. (III.5b) is a first-order expansion
in time of Eq. (III.5a) . The fundamental resolvent matrix M(t, t′) gives a more complete
relationship between the two representations. M(t, t′) is solution to the time-varying linear
system dM(t,t′)

dt = ∇f |xt ·M(t, t′) with M(t′, t′) = I. The fundamental resolvent matrix
can be approximated numerically as M(t, t′) ≈ exp(∆t∇ft)·exp(∆t∇ft−∆t) . . . exp(∆t∇ft′)
with numerical time-step ∆t and using the short notation ∇ft := ∇f |xt .

We have:

δΦ̃t(x0) ≈ δ
∫ t

0
M(t, t′) · f̃(xt′) dt′ , (III.6a)
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Figure III.2: Illustrating Eq. (III.5a,b) on the three-variable L63 system. Upper-left: A
real trajectory from x0 to xt and two analog trajectories, namely the 10-th best analog
a10

0 to a10
t and the 100-th best analog a100

0 to a100
t . The catalog is shown in white. Upper-

right: comparing the exact value of the norm of at − xt (full lines) and the sum of the
two terms on the right-hand side of Eq. (III.5a) (dashed lines). Lower-left: Contributions
of the first term (black squares) and the second term (brown circles and blue triangles)
of the right-hand side of equation (III.5a) projected on the first coordinate of the L63
system. Lower-right: Contributions of the first term (black squares) and the second term
(brown circles and blue triangles) of the right-hand side of equation (III.5b) projected on
the first coordinate of the L63 system.
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∇Φt|x0 = M(t, 0) , (III.6b)

where the "≈" sign is here to say that Eq. (III.6a) is valid only at first order in δ. This
first order is enough to compute the right-hand side terms of Eq. (III.5a), which is also
valid at first order in δ.

From Eq. (III.6b) one can use Taylor developments relating ∇f and ∇Φt, such as:

∇Φt = I + t∇f0 + t2
(

(∇f0)2 + d
dt∇f0

)
+O(t3) , (III.7)

where ∇Φt is implicitly evaluated at x0. The short notation ∇f0 is used for ∇fx0 , and
d
dt∇f0 is the time derivative along the trajectory xt of the Jacobian of f , at t = 0.
d
dt∇f |0 := limt→0 (∇ft −∇f0) /t. At first order in t, one recovers the result expressed in
Eq. (III.5b).

2.5 Consequences for analog forecasting operators

2.5.1 Mean error of analog forecasting operators

By multiplying equations (III.5a,b) by ωk and summing over k, one can compare the
distances from xt to the averages µLC, µLI and µLL of the different analog forecasting
operators of Sec. 2.3.2. Those averages depend on t, although only implicitly in the
notation. Letting µ0 = ∑

k ωkak0 the weighted mean of the analogs, we have the following
expressions.

Locally-constant mean error :

µLC−xt = δΦ̃t(x0)+
[
∇Φt|x0

]
·(µ0−x0)+O

(∑
k

ωk|ak0 − x0|2 , δ
∑
k

ωk|ak0 − x0|
)
,

(III.8a)

µLC−xt = tδf̃(x0)+[I + t∇f |x0 ]·(µ0−x0)+O
(
t2 ,

∑
k

ωk|ak0 − x0|2 , δ
∑
k

ωk|ak0 − x0|
)
.

(III.8b)

Locally-incremental mean error :

µLI−xt = δΦ̃t(x0)+
[
∇Φt|x0 − I

]
·(µ0−x0)+O

(∑
k

ωk|ak0 − x0|2 , δ
∑
k

ωk|ak0 − x0|
)
,

(III.9a)
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µLI−xt = tδf̃(x0)+[t∇f |x0 ]·(µ0−x0)+O
(
t2,
∑
k

ωk|ak0 − x0|2 , δ
∑
k

ωk|ak0 − x0|
)
.

(III.9b)

Using lighter notations with implicit evaluation at x0, this gives:

µLC − xt ≈ δΦ̃t + ∇Φt · (µ0 − x0) ≈ tδf̃ + [I + t∇f ] · (µ0 − x0) ,

µLI − xt ≈ δΦ̃t +
[
∇Φt − I

]
· (µ0 − x0) ≈ tδf̃ + t∇f · (µ0 − x0) .

The errors of the locally-constant and locally-incremental operators are both affected
by the difference between the analog and real flow maps. This source of error cannot
be circumvented unless provided with some information about δΦ̃. The other first-order
error term is linear in (µ0 − x0), but when t → 0, this term is of order t in the locally-
incremental case. Thus, for small lead-times, as both t → 0 and µ0 → x0 (i.e. dense
catalog), the mean of the locally-incremental provides a better estimate of xt. This is why
this operator is qualified by Lguensat et al. (2017) as more "physically-sound" than the
locally-constant: the locally-incremental takes advantage of the fact that limt→0 Φt = I,
just as any finite-difference numerical scheme does. Formulas similar to Eq. (III.8-III.9)
were used by Platzer et al. (2019) to predict analog forecasting errors with LC and LI
operators, on the famous three-variable L63 system, with δ = 0.

Another interesting property of the locally-incremental is that it can give estimates of
xt out of the convex hull of the catalog. This is related to what is called "novelty creation"
in the machine-learning terminology. Such a property is interesting, but it also enables
some inconsistent forecasts. Indeed, if t is not small enough, the locally-incremental
operator can produce forecasts that have a large error due to the −I term in Eq. (III.9a).
In Fig. III.1, one can see that the LI has a larger variance than the LC for large times.

Eq. (III.8) is also valid for constructed analogs (CA) introduced in section 2.3.2, where
the weights {ωCA

k } are chosen so that |∑k ω
CA
k ak0−x0| is as small as possible. This means

that the (µ0 − x0)-linear term of equation (III.8) is also small. As mentioned earlier,
Tipett and DelSole (2013) showed that this strategy is equivalent to making a linear
regression. This explains why the (µ0 − x0)-linear term is absent from Eqs. (III.10a,b).

92



2. Article under revision for the Journal of Atmospheric Sciences: “Using local dynamics to
explain analog forecasting of chaotic systems”

Locally-linear mean error :

µLL − xt = δΦ̃t(x0) +O
(∑

k

ωk|ak0 − x0|2 , δ
∑
k

ωk|ak0 − x0|
)
, (III.10a)

µLL − xt = tδf̃(x0) +O
(
t2 ,

∑
k

ωk|ak0 − x0|2 , δ
∑
k

ωk|ak0 − x0|
)
. (III.10b)

Another way to understand why the (µ0 − x0)-linear term should disappear when
using the LL is to see that the LL is estimating the local Jacobian of the flow map.
Indeed, the linear regression between the analogs and the successors gives an estimation
of ∇Φt|x0 , with an estimation error that is at least of order O(|µ0 − x0|, δ). Sec. 2.5.2
gives a detailed argumentation to support this claim and investigates limitations. The
estimation error between the linear regression matrix and the Jacobian thus adds higher-
order error terms to the right-hand side of Eqs. (III.10a,b), but these are already included
in the O(∑k ωk|ak0 − x0|2 , δ

∑
k ωk|ak0 − x0|).

We now make the explicit link between the three operators. Recall the notations of
Sec. 2.3.2: the locally-linear operator finds slope S and intercept c such that for all k,
akt = S(ak0−µ0)+c+ξk using weighted least-square estimates. This gives c = ∑

k ωkakt =
µLC, thus we have µLL = µLC + S(x0 − µ0) and the following relations hold:

µLC = µLL|S=0 ,

µLI = µLL|S=I ,

such that the locally-constant and locally-incremental operator are particular cases of
the locally-linear operator. We also have limt→0 S = I, because for all k, limt→0 akt = ak0 .
Thus, mean forecasts of the locally-linear and locally-incremental operators are equivalent
as t approaches 0:

µLL ∼t→0 µLI .

This analysis shows that, in terms of mean forecast error, the locally-linear operator is
more precise than the locally-incremental, and the latter is more precise than the locally-
constant. These findings are in agreement with the numerical experiments of Lguensat
et al. (2017).
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We now investigate the link between the local Jacobian of the flow ∇Φt|x0 , and the
linear regression matrix from the locally-linear operator S.

2.5.2 Ability of analogs to estimate local Jacobians

If analogs can estimate the Jacobian of the real system, it means that analog forecasting
provides a local approximation of the real dynamics, proving the relevance of analogs for
short-range forecasts. Furthermore, having an estimation of the local Jacobian can be
useful in some applications such as the Extend Kalman Filter, where the Jacobian allows
to estimate the evolution of the forecast covariance.

Derivation of the first order error in Jacobian estimation It is possible to find
an exact expression of the first-order error term in the estimation of the local Jacobian.
Let us start with the case of perfect agreement between the real and analog flow maps:
Φa = Φ, or δ = 0. Then, assume that in the neighborhood of x0 where the analogs lie,
the flow Φt(·) can be approximated by a quadratic function in phase-space. We then have
:

∀k , akt = ∇Φt(ak0 − µ0) + 1
2(ak0 − µ0)∇2Φt(ak0 − µ0)T + Cst , (III.11)

where "Cst" is a constant (independent of k), and the Jacobian and Hessian of Φt are
implicitly evaluated at x0 (see the appendix for notation of product of vectors and Hes-
sian). In the next equations, the t-superscript is dropped to lighten notations. Let X, the
matrix of the analogs minus their mean, so that the k-th row of X is ak0 − µ0. Similarly,
let Y be the matrix of the successors, with the k-th row of Y being akt . Eq. (III.11) thus
translates into Y = X∇ΦT + 1

2X∇2ΦXT, omitting the constant.
Now let Ω = diag(ω1, . . . , ωK), the (K ×K) diagonal matrix of the weights given to

each analog in the regression. Then S is the weighted least-squares solution of the linear
regression S = (XTΩX)−1XTΩY. With a bit of rewriting, this finally gives:

S−∇Φ = (XTΩX)−1XTΩ
[
X ∇2Φ

(1
2X + (µ0 − x0)T ⊗ JK,1

)T]
, (III.12)

where ⊗ is the Kronecker matrix product and JK,1 is the column vector with K elements
all equal to 1.
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Eq. (III.12) tells us that S is close to the Jacobian at x0 up to a factor that is linear
in the distance between the mean of the analogs µ0 and the analogs ak0 , and another
factor linear in the distance between µ0 and x0. These linear error term depend on the
second-order phase-space derivatives of Φ at the point x0 (the Hessian of Φ, noted ∇2Φ).

Conducting the same derivation but relaxing the hypothesis of δ = 0, one would find
the same result with an added linear error term involving the Jacobian of Φ̃. This analysis
allows us to say that, if the distance between the analogs and their mean is of same order
as the distance between their mean and x0, we have:

S = ∇Φt +O (|µ0 − x0|, δ) .

However, the claim that the linear regression matrix S is able to approximate the
Jacobian ∇Φt must be tempered by several facts. To illustrate these, the regular locally-
linear analog forecasting operator will now be compared with two other strategies aimed
at solving dimensionality issues.

Strategies for linear regression in high dimension Dimensionality can make analog
forecasting difficult, especially when using the locally linear analog forecasting operator.
Here are recalled two strategies that can be used to circumvent this issue.

The first approach uses empirical orthogonal functions (EOFs, also called principal
component analysis) at every forecast step. Dimension is reduced by keeping only the
first neof EOFs of the set of analogs (ak0)k∈[1,K], or keeping only the neof first principal
components of the matrix XTΩX.

Reducing dimension using EOFs

• Find analogs (ak0)k∈[1,K] of the initial state x0

• Compute the n EOFs of the weighted set of analogs (ak0)k∈[1,K]

• Keep the neof first EOFs up to 95% total variance

• Project x0, (ak0)k∈[1,K] and (akt )k∈[1,K] on the neof first EOFs

• Perform LL analog forecasting in this projected space

The second strategy is to perform n analog forecasts, one for each coordinate of the
phase-space P , and to assume that the future of a given coordinate only depends on the
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initial values of the neighboring coordinates and not on the whole initial vector x0. In
the model of Lorenz (1996) (hereafter noted L96), Eq. (V.10) in appendix motivates the
choice of keeping only the initial coordinates {i−2, i−1, i, i+1, i+2} to estimate the i-th
future coordinate. Thus we keep only ntrunc = 5 initial coordinates. Thus, the LL operator
performs n linear regressions with 5 coefficients at each forecast. By combining the results
of those linear regressions, one finds a n × n matrix that is sparse by construction: all
elements two cells away from the diagonal are equal to zero. This was introduced in
Lguensat et al. (2017) as "local analogs". In the present paper this strategy will rather be
termed as "coordinate-by-coordinate" analog forecasting.

Coordinate-by-coordinate forecast

• for i from 1 to n, forecast the i-th future coordinate xt,i :

– Condition the forecast Θt
LL,i on a few initial coordinates around x0,i.

Θt
LL,i(x0) = Θt

LL,i( x0,i−2 , x0,i−1 , x0,i , x0,i+1 , x0,i+2 )

– Find analogs of the truncated initial vector ( x0,i−2 , x0,i−1 , x0,i , x0,i+1 , x0,i+2 )

– Perform LL analog forecasting Θt
LL,i

– Store the coefficients of the linear regression ( Si,i−2 , Si,i−1 , Si,i , Si,i+1 , Si,i+2 )

• Aggregate the coefficients into the n× n matrix S

The next section investigates limitations to the claim that the matrix S from the LL
operator is able to approximate the Jacobian ∇Φt, and studies the impact of dimension
reduction techniques on this Jacobian estimation.

Effect of the number of analogs and the phase-space dimension First, to be
able to compute S, one must have enough analogs to perform the inversion of the matrix
XTΩX, where X is the matrix of the analogs and Ω the diagonal matrix of the weights.
This cannot be done unless K, the number of analogs used for the forecast, is superior
or equal to n, the phase-space dimension. Using the EOF or coordinate-by-coordinate
strategies from the previous section, one can reduce the dimension to neof or ntrunc, needing
only to satisfy K ≥ nEOF or K ≥ ntrunc.

To illustrate the practical consequences of these issues, numerical simulations of the
L96 system were performed with n = 8. The L96 is a famous chaotic dynamical system
with a flexible dimension, well suited to the purpose of this study. The governing equations
were solved using a fourth-order Runge-Kutta numerical scheme with an integration time
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step ∆t = 0.05. A catalog was built from one long trajectory (104 non-dimensional times)
using the real equations (δ = 0). Then, analog forecasting was performed at lead time
0.05, using the LL operator on 2 × 104 test points (103 non-dimensional times) taken
from another trajectory on the attractor (independent from the catalog). Setting the
number of analogs to the limiting case K = 9 implies that there are just enough analogs
to perform the linear regression (plus one extra analog). Even though n = 8 is not a
very large dimension, if one is provided only with 9 good analogs, one must consider
dimension reduction. Regular LL analog forecasting was compared with the combination
of analog forecasting with EOFs, keeping the EOFs up to 95% variance, and with the
coordinate-by-coordinate analog forecasting, with ntrunc = 5.

The EOF strategy ensures that the linear regression can be performed, as it projects
the phase-space P onto the EOFs that maximize the variance in the set of analogs.
Thus, the rank of the set of analogs is likely to be equal to neof in this reduced-space.
However, the EOF strategy necessarily misses some of the components of the full (n× n)
Jacobian matrix ∇Φt, as it gives only the estimation of a (neof × neof) matrix. The
coordinate-by-coordinate method also ensures that the linear regression can be performed
as long as ntrunc is low enough, but is also misses some of the elements of the Jacobian
matrix of the flow map. Indeed, even though the coefficients of ∇f are zero two cells
away from the diagonal, this is not the case of ∇Φt. Recall that, at second-order in
time, ∇Φt = I + t∇f + t2

(
(∇f)2 + d

dt∇f
)
. Thus, some coefficients of order t2 will

not be captured by the linear regression matrix S using coordinate-by-coordinate analog
forecasting with ntrunc = 5.

The linear regression matrix S is then compared with ∇Φt for the three methods. The
real value of ∇Φt is estimated with the second-order time-expansion of Eq. (III.7) that
can be computed directly from the model equations (V.10). An example is shown in Fig.
III.3. In this case, the regular analog forecasting misses the Jacobian with RMSE of 2.659,
because the rank of the set of analogs is too low and XTΩX is thus not invertible. Analog
forecasting combined with EOFs gives a better result as it circumvents this inversion
problem, with a total RMSE between S and ∇Φt of 0.193. The coordinate-by-coordinate
analog forecasting gives the best solution in this case, with a RMSE of 0.095. Note
that many coefficients of the matrix S are set to zero by construction when using the
coordinate-by-coordinate method.

Then, Fig. III.4 shows empirical probability density functions for the RMSE between
the elements of S and ∇Φt for each of the three methods. The low number of analogs
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Figure III.3: Flow map Jacobian matrix estimation with the model of Lorenz (1996).
Forecast lead time is t = 0.05 Lorenz time, catalog length is 104 Lorenz times, phase-space
dimension is n = 8. K = 9 analogs are used for the forecast and Gaussian kernels for
the weights ωk with shape parameter λ set to the median of analog-to-state distances
|ak0 − x0|. Upper-left: Jacobian matrix ∇Φt|x0 . Upper-middle: linear regression matrix
S using regular analogs. Upper-right: difference S −∇Φt|x0 with regular analogs, also
giving the value of RMSE below the plot. Middle panels: same but the linear regression
is performed in a lower-dimensional subspace spanned by the first EOFs of the set of the
K = 9 analogs. Lower panels: same but the linear regression is performed coordinate-by-
coordinate, and assuming that the coefficients are zero two cells away from the diagonal.
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Figure III.4: Empirical probability density function of RMSE in flow map Jacobian matrix
estimation, depending on the method used. We use the system of Lorenz (1996) with
phase-space dimension n = 8. K = 9 analogs are used for each forecast and the methods
are the same as in Fig. III.3.

implies large fluctuation of the regular LL analog forecasts, as the rank of the set of
analogs used can be below or close to the phase-space dimension, making the inversion of
XTΩX hazardous. This variability is noticeably reduced when the inversion is performed
in the neof-dimension reduced-space. The EOF strategy has the advantage of prevent-
ing large errors, but it does not allow very precise estimations of the Jacobian. Indeed,
when using EOFs the linear regression matrix has a rank necessarily lower than n, and
some information is missed. Finally, coordinate-by-coordinate analog forecasting is able
to perform better estimations of the Jacobian in average, and with a variability between
that of the regular analogs and that of the analogs combined with EOFs. However, the
probability to have very precise estimations of the Jacobian (log10(RMSE) < −2.3) is
lower with coordinate-by-coordinate analog forecasting than with regular analog forecast-
ing. This can be witnessed as the area under the graph for log10(RMSE) < −2.4 is
larger for regular analogs then for coordinate-by-coordinate analog forecasting. This is
due to the small (order t2) non-zero coefficients two cells away from the diagonal that the
coordinate-by-coordinate analog forecasting cannot estimate.

In some situations however, the number of analogs K is much larger than the phase-
space dimension n, and the linear regression matrix S is still unable to approximate the
Jacobian ∇Φt.
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Effect of the analogs rank and the attractor’s dimension As we have seen, to
calculate S and perform locally-linear analog forecasting, one must invert the matrix
XTΩX. This means that the set of analogs must be of rank n. Yet, in some situations,
the dimension of the attractor is lower than the full phase-space dimension n. Thus, if
the catalog is made of one trajectory inside the attractor, the set of analogs might not
be of rank n, however large K might be. In some cases, the dimension of the attractor is
between n− 1 and n, such that the matrix XTΩX is still invertible but very sensitive to
fluctuations in the rank of the set analogs.

Similar remarks can be made for the successors. If Y (the set of successors) is not of
rank n, then the matrix S, if it can be computed, is still not of rank n. Thus S will not
be able to estimate the Jacobian ∇Φt if the latter is of rank n. Note that the rank of the
successors (the rank of the matrix Y) is highly dependent on the rank of the analogs and
the Jacobian matrix as we have Y ≈ X∇ΦT at first order in X, such that if the analogs
are not of rank n, the successors are likely not to be of rank n either.

Thus, depending on the dimension of the attractor, the locally-linear analog forecasting
operator might not be able to estimate the local Jacobian of the real flow map, but only
a projection of this Jacobian matrix onto the local sets of analogs and successors. This
is a typical case where data-driven methods are not able to reveal the full physics of an
observed system unless provided with other sources of information or hypotheses, such as
a parametric law.

The three-variable L63 system is used to illustrate this fact. This system is known
to have a dimension of ≈ 2.06, with local variations around this value (Caby et al.,
2019). This is the perfect case study where the rank of the set of analogs will be close
to n− 1. Thus, the linear regression matrix S between the analogs and the successors is
not able to approximate the full (3 × 3) Jacobian matrix ∇Φt. Using restriction to the
vector subspace spanned by the two first EOFs of the analogs (ea1, ea2), one can understand
better the connection between the two matrices ∇Φt and S. In the following, subscript "r"
indicates restriction to (ea1, ea2). The choice of using only the two first EOFs is motivated
by the quasi-planar nature of the Lorenz attractor. In the next formulas the t-superscript
is dropped for the sake of readability.
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∇Φr = ∇Φ


ea1
ea2
0

 , Sr = S


ea1
ea2
0

 .

The condition number of the set of analogs gives a direct way to measure whether
the matrix XTΩX can be inverted, and whether S can approximate a full rank Jacobian
matrix. This number is the ratio of highest to lowest singular value. It has the advantage
of being a continuous function of the set of analogs, while the rank is a discontinuous
function that takes only integer values. If the condition number is large, the set of
analogs is almost contained in a plane, and the analogs might not be able to approximate
the full Jacobian Φ. Conversely, if the condition number is close to 1, then the rank of
the set of analogs is clearly 3, and analogs will be able to approximate the full Jacobian
matrix. Note that the condition number of the set of analogs is not directly linked to the
dimension of the attractor. One simply uses the fact that the attractor is locally close to
a plane, without referring further to the complex notion of attractor dimension.

This can be investigated through numerical simulations of the L63 system, using a
fourth-order Runge-Kutta numerical scheme and a time step of ∆t = 0.01 to solve the
governing equations. A catalog was generated from a trajectory of 105 non-dimensional
times, with the original equations (i.e. δ = 0). Locally-linear analog forecasting was
performed at horizon t = 0.01 with K = 40 analogs, on 104 points randomly selected
on the attractor. The linear regression matrix S was then compared with ∇Φt, with
or without restriction to (ea1, ea2). To estimate numerically the real value of ∇Φt, a
third-order time-expansion similar to Eq. (III.7) was computed directly from the model
equations.

Fig. III.5 shows that estimation of the Jacobian by the analogs improves as the catalog
size (and therefore the catalog density) grows. This validates that the analogs are able to
approximate precisely the Jacobian matrix of the flow map. The figure also shows that,
once restricted to the two-dimensional subspace spanned by the analogs, the estimation
of the Jacobian is much more precise and less fluctuating.

Fig. III.6 displays the RMSE of the full (3×3) matrix S − ∇Φ as a function of
the condition number of the set of analogs. We can see in this figure that large RMSE
values are highly correlated with high condition numbers, while low RMSE values can
only be achieved when the condition number of the analogs is close to 1. Some of the
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Figure III.5: RMSE in estimating with analogs the L63 Jacobian matrix, as a function
of catalog size. In brown circles, the median RMSE (with 10% and 90% quantiles) of the
total (3 × 3) Jacobian matrix. In violet squares, the median RMSE (with 10% and 90%
quantiles) of the (2 × 2) Jacobian matrix after projection on the two first EOFs of the
successors and restriction to the two first EOFs of the analogs. The number of test points
decreases with catalog size, as more test points are needed for small catalogs.

remaining variability can be explained by the median distance from the analogs ak0 to x0.
Higher RMSE values are witnessed for higher median analog-to-initial state distances.
This behaviour is expected: the analogs can only estimate the local Jacobian if they are
close to x0.

All these elements show that the estimation of the Jacobian matrix from analogs is
highly dependent on the number of analogs K, the condition number of the set analogs,
the attractor’s dimension, and the phase-space dimension n. However, the fact that the
matrix from the LL operator does not approximate the full Jacobian ∇Φt does not mean
that the analog forecast will poorly approximate the future state xt. For the LL forecast
to be efficient, one only needs a good approximation of the restricted Jacobian, and that
the inversion associated with the linear regression is not ill-conditioned.

2.5.3 Evolution of mean and covariance under Gaussian assumption

In this section, it is assumed that the weighted multinomial distribution of the analogs∑
k ωkδak

0
and of their successors∑k ωkδak

t
can be approximated by Gaussian distributions:

∑
k

ωkδak
0
≈ N (µ0,P0) ,
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Figure III.6: RMSE in analogs estimation of the full (3x3) Jacobian matrix ∇Φt as a
function of analog condition number and median analog distance, with the L63 system.
The catalog size is 105 non-dimensional times, δ = 0, and we use K = 40 analogs. Tests
are done at 104 points randomly selected on the attractor.
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∑
k

ωkδak
t
≈ N (µt,Pt) ,

where we have µt = µLC. Combining these hypotheses with Eq. (III.4b) and approxi-
mating Φt

a(·) by its tangent around µ0 we have the classic relationships:

µt = Φt
a(µ0) +O (TrP0) , (III.13a)

Pt = ∇Φt
a|µ0 P0 ∇Φt

a|Tµ0
+ O (TrP0) , (III.13b)

where Tr is the trace operator. Similar relations can be found using the differential
representation of Eq. (III.4b):

dµt

dt = fa(µt) +O (TrPt) , µt=0 = µ0 , (III.14a)

dPt

dt = ∇fa|µt
Pt + Pt ∇fa|Tµt

+O (TrPt) , Pt=0 = P0 . (III.14b)

Now, let us make the simplifying hypothesis that |x0 − µ0|2 . TrP0, which means
that the state x0 is not farther from the analogs’ mean µ0 than the standard deviation of
the analogs. Then, one evaluates Φt

a, fa and their derivatives at x0 and xt instead of µ0

and µt, giving additional terms:

µt = Φt(x0) + δΦ̃t(x0) + ∇Φt|x0(µ0 − x0) +O (TrP0 , δ|µ0 − x0|) , (III.15a)

Pt = ∇Φt|x0 P0 ∇Φt|Tx0 + δ
(
∇Φt|x0 P0 ∇Φt|Tx0 + ∇Φt|x0 P0 ∇Φt|Tx0

)
+
([

(µ0 − x0)∇2Φt|x0

]
P0∇Φt|Tx0 + ∇Φt|x0P0

[
(µ0 − x0)∇2Φt|x0

]T)
+O (TrP0 , δ|µ0 − x0|) ,

(III.15b)

where terms of order |µ0 − x0|2 are included in O (TrP0) and ∇2Φt|x0 is the Hessian of
Φt at x0. In the time-differential representation we have:

d(µt − xt)
dt = ∇f |xt(µt − xt) + δf̃(xt) +O (TrPt , δ|µt − xt|) , (III.16a)
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dPt

dt = ∇f |xt Pt + Pt ∇f |Txt
+ + δ

(
∇f̃ |xt Pt + Pt∇f̃ |Txt

)
+
([

(µt − xt)∇2f |xt

]
Pt + Pt

[
(µt − xt)∇2f |xt

]T)
+O (TrPt , δ|µt − xt|) . (III.16b)

Eq. (III.16a) is equivalent to Eq. (III.15a), which is also equivalent to Eq. (III.5a).
Eq. (III.16a) can be Taylor-expanded around t = 0 to find Eq. (III.8b). This analysis
recovers the results from Sec. 2.5.1 for the mean forecast of the locally-constant analog
forecasting operator.

Eq. (III.16b) and Eq. (III.15b) are two representations of the same phenomenon. They
show that at first order, the growth in covariance between the analogs and successors
is directly linked to the Jacobian matrix of Φt at x0. The covariance of the analog
forecast depends on the covariance of the analogs at t = 0, P0, and on the system’s local
Jacobian ∇Φt|x0 . This is another way to see that the analogs are highly linked to the
local dynamics of the system. If the local dynamics induce a large spread in the future
possible trajectories, it is captured in the successors’ covariance Pt. On the contrary, if
the local dynamics are flat (∇Φt|x0 ' I or ∇f |x0 ' 0) the successors’ covariance is equal
to the analogs’ covariance.

2.6 Discussion

This paper contributes to the interpretation of analog forecasting methods. Following
a similar objective but using different methodology, Zhao and Giannakis (2016) set a
mathematical framework for the convergence of analog forecasting operators to the flow
map of the real system, with a particular emphasis on the kernels used for the weights
ωk.

There are many natural extensions to the work presented here. The first one is non-
deterministic dynamics that can happen, for instance, when forecast is not performed in
phase-space but in a lower-dimensional space. One might be provided only with obser-
vations of a few variables of the whole system, and try to forecast those same variables.
The use of time-embeddings from Takens (1981) combined with analog forecasting is
promising (Alexander et al., 2017). Also, Chau et al. (2020) build a catalog of state-space
trajectories from a catalog of partial and noisy observations, using analog forecasting and
data assimilation. More recently, Alexander and Giannakis (2020) proposed to combine
conventional analog forecasting with projections onto a function space of observables, al-
lowing to optimally capture the evolution of a response variable under partially observed
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non-linear dynamics. The authors show the convergence of this methodology to optimal
predictions in the limit of large data, using an operator-theoretic framework.

The second natural extension is to account for observation error in the catalog of
analogs. As the flow map is assumed to be quasi-linear in phase-space in the neighborhood
of the analogs, one could conduct the same analysis including centered additive noise for
each analog and successor of the catalog, and find results similar to the ones outlined
here.

One must bear in mind that the use of analog forecasting in applications implies
issues such as the choice of the space in which forecasting is performed, the choice of
the right metric to compare analogs and initial state, and the combination of analogs
with other techniques. In data assimilation, one might want to convert the multinomial
distributions of Sec. 2.3.2 to Gaussian distributions to use Kalman filtering. Ridge and
Lasso regularizations could be used to ease the linear regression instead of the techniques
mentioned in Sec. 2.5.2. These operational choices must be made accounting for memory
use and computational time (see Lguensat et al. (2017) for differences between regular
and coordinate-by-coordinate analog forecasting).

2.7 Conclusion

Analog forecasting allows to avoid solving complex nonlinear equations by using existing
solutions starting from similar initial conditions. The accuracy of analog forecasting
depends on local dynamical properties of the system of interest. In particular, the quality
of analog forecasts is related to the Jacobian matrix of the real system’s flow map, and
the linear regression from analogs to successors is shown to provide an approximation
of this matrix. This allows to examine the mean accuracy of known analog forecasting
operators, and to compare different methods that evaluate this Jacobian matrix, using
numerical experiments of famous dynamical systems. The locally-linear operator is found
to give the best approximation of the future state, provided that the linear regression is
not ill-posed. The locally-incremental operator is shown to give more precise forecasts at
small lead times. The Jacobian matrix of the flow map is found to drive the growth of the
successors’ covariance matrix. Altogether, this brings theoretical evidence that analogs
can be used to emulate a real system, and gives quantitative expressions for the precision
of analog forecasting techniques.
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Figure III.7: RMSE associated with locally constant and locally incremental analog fore-
casting, normalized by the root mean squared distance between two points randomly
selected on the attractor. Black, full: LC, empirical. Black, dashed: LC, predicted. Red,
full: LI, empirical. Red, dashed: LI, predicted.

3 Complementary analysis

3.1 Supplementary material from conference paper

In this section are exposed supplementary results that were the topic of a peer-reviewed
conference paper (Platzer et al., 2019).

In this paper, the performances of the mean locally-constant and locally-incremental
operators were studied through Eq. (III.8a) and Eq. (III.9a) with δ = 0, omitting the
higher-order terms. The Jacobian was estimated using the second-order approximation
of Eq. (III.7). Using these formulas, one can relate the RMSE of the mean analog
forecasts with the root-mean-squared analog-to-target distance. This allows for an a
priori estimation of the amplitude of forecast errors. Tests were performed on the system
of Lorenz (1963), as reported in Fig. III.7. These show that, on average, the estimations
are in good agreement with the real forecast errors.

It was then tried to combine LC and LI forecasting operators with model-based in-
formation, assuming the local Jacobian was known from the L63 equations. This greatly
raised the forecast accuracy. This strategy is equivalent to using the locally-linear opera-
tor, replacing the estimated matrix S by the real Jacobian of the flow.
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3.2 Splitted analog forecasts and finite-differences

In this section, we study the splitting of long-term analog forecasts into multiple short-
term analog forecasts. To do so, we draw a parallel between analog forecasting and finite-
difference numerical schemes. Application to the Lorenz (1963) system is given at the end
of the section.

Finite-difference schemes numerically approach the solutions of partial differential
equations that cannot be solved explicitly. They involve a discretization of continuous
coordinates (time, space) and approximate the derivatives of functions along those dis-
cretized coordinates.

Let FDS a given finite-difference scheme that allows to compute x̃m, an approximation
of the exact solution x(tm) of Eq. (III.1) at time tm = m∆t, through the following formula:

x̃m+1 = x̃m + ∆tFDS(x̃m,∆t) .

An example of scheme is the explicit forward Euler one: FDSEuler(x̃m,∆t) = f̃(x̃m).
If no space-discretization is performed, f̃ = f . Otherwise f̃ is an approximation of f ,
discretized in space. Then, three criteria are important for finite-difference numerical
schemes: consistency, stability, and convergence.

Consistency (finite-differences)
The scheme must tend towards the real differential as the numerical
step tends to zero. The truncation error is defined as

em = x(tm+1)− x(tm)−∆tFDS(x(tm),∆t) ,

with p, the order of the numerical scheme, such that em = O(∆tp).

108



3. Complementary analysis

Stability (finite-differences)
Applying the numerical scheme many times must not lead to diver-
gence. In particular, fixing a time interval T over which a solution
of Eq. (III.1) is sought for, one must be able to reduce the time step
∆t as much as needed. For stable schemes, there exists a constant
C such that for every ∆t divisor of T :

max
m=0,1,...,T/∆t

‖FDSm( · ,∆t)‖∞ < C ,

Convergence (finite-differences)
The whole finite-difference approximation must tend to the exact
solution of Eq. (III.1), such that for every integer N > 0:

lim
∆t→0

max
m=0,1,...,N

‖x(tm)− x̃m‖ = 0 .

This last criterion encompasses the stability and consistency criteria. The theorem of
Lax and Richtmyer (1956) shows that if a finite-difference scheme is stable and consistent,
then it is also convergent.

Let us now make the parallel with analog forecasting. The work of this chapter shows
that mean forecasts of analog forecasting operators approach the solution of Eq. (III.1)
when using large catalogs, and when analogs and real state follow the same dynamics (i.e.
δ = 0). However, the rate of this convergence depends on the chosen analog forecasting
operator, on the lead time, and on the system’s dynamics. Improved performances of the
locally-incremental and locally-linear operator at small lead times motivates the splitting
into multiple, small lead-time forecasts, in order to approach a long solution of Eq. (III.1)
using analogs. The resulting time-discretized, approached solution will be noted x̂m (the
hat is justified by assuming that the mean of forecasting operators is taken):

x̂m+1 = Θ̂
∆t(x̂m, L) ,

where the dependency on the catalog size L was made explicit. Indeed, as finite-difference
schemes approach the exact solution when ∆t→ 0, analog forecasting operators approach
the exact solution when L→∞. For simplicity, δ is assumed to be zero.

109



Chapter III – How far from the truth are analog forecasts?

We will now define notions of consistency, order, stability and convergence for this
type of multiple, mean analog forecasts.

Consistency (analog forecasting)
The application of the mean analog forecasting operator must tend
towards the real future state, ∆t times ahead, in the limit of large
catalog. The truncation error is defined as

êm = x(tm+1)− Θ̂
∆t(x(tm), L) .

where the order p of the mean analog forecasting operator is defined
by êm = O(L−p).

Sec. 2.5.1 of this chapter showed that successor-to-future state distance is at most
linear in analog-to-target state distance (before ∆t is too large and the exponential time
divergence is complete). It was shown in Sec. 2.3 of the previous chapter, that analog-to-
target state distance is of the order of O(L−1/d), where d s the local dimension, assuming
that K1/d is not too large. It therefore follows that, in theory, mean analog forecasting

operators are of order 1/d and êm = O(L−1/d) . This order is less than one, and

can be relatively small even for low-dimensional systems of say, d ≈ 8. This is consistent
with the idea that very large catalogs are needed to have good analog performances in
high-dimensions. However, using the locally-incremental operator makes that êm is also of

order ∆t, giving êm = O(∆t L−1/d) . Furthermore, using the locally-linear operator

gives an approximation that is both quadratic in analog-to-target distance and in time.
In this case the mean locally-linear analog forecasting operator is of order 2/d and we

have êm = O(∆t2 L−2/d) . This proves that choosing efficient analog-forecasting

methods and splitting the forecast into multiple small-time-step forecasts can greatly
raise the efficiency of analog-based approximations of differential equations. Nonetheless,
this would be done at the expense of added computational time.
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Stability (analog forecasting)
Applying the mean analog forecasting operator many times must
not lead to divergence of the numerical approximation of the exact
solution. Thus, for stable mean analog forecasting operators, there
exists a constant C such that:

max
m>0
‖
(
Θ̂

∆t
)m

( · , L)‖∞ < C ,

where
(
Θ̂

∆t
)m

( · , L) is the m-times composition of Θ̂
∆t( · , L) with

itself. Note that it is different from Θ̂
m∆t( · , L) which corresponds

to applying only one forecast at lead time m∆t.

The locally-constant operator verifies this stability criterion, as mean analog fore-
casts µLC are always comprised in the convex hull of the catalog. However, the locally-
incremental and locally-linear could be unstable. Further investigations would have to be
taken in this direction.

It is important to notice that, in practice, analog forecasting may be used in a data
assimilation scheme, such that the forecast would be regularly drawn back to the real
state through the added information of observations, preventing divergence. In such a
context, the analog forecast would be used only for the time separating two observations.

Convergence (analog forecasting)
The maximum of the difference between the real and approximate
solutions must tend towards zero in the limit of large catalogs, such
that for every integer N > 0:

lim
L→∞

max
m=0,1,...,N

‖x(tm)− x̂m‖ = 0 .

Perhaps, a theorem comparable to the one of Lax and Richtmyer (1956) could be
established. Again, this demands further research.

Simple tests of applying
(
Θ̂

∆t
)m

on the system of Lorenz (1963) were tried. Fig.
III.8 shows the results of this small experiment for lead times up to 15 non-dimensional
times. The performances of direct (no splitting into multiple forecasts) locally-constant
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Figure III.8: Comparison between multiple forecasts
(
Θ̂

∆t
)m

and direct forecast Θ̂
t with

the locally-linear analog forecasting operator, on the system of Lorenz (1963), with K=20
analogs, a catalog size of L = 107 (105 non-dimensional times) and a time step dt = 0.01.
The direct locally-constant forecast and the slope corresponding to the maximal Lyua-
punov exponent are also shown. The median of errors |

(
Θ̂

∆t
)m

(x0)− xt| are computed
over 10 000 points x0 taken randomly on the attractor.
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and locally-linear operators are very different for small lead times but similar for large
lead times. Splitting the forecast in multiple analog forecasts remarkably improves the
performances of the mean locally-linear operator. For both direct- and multi- locally-
linear operator, errors increase exponentially for large lead-times, but with a lower slope
when using multiple forecasts. Using a smaller time step ∆t between the analog forecasts
allows to delay the beginning of the exponential error growth, such that the forecast error
reaches a plateau later in time.

The exponential divergence rate of multiple locally-linear forecasts and of direct locally-
constant forecasts is consistent with the inverse of the maximal Lyapunov exponent (taken
here as 0.9057, see Viswanath 1998). This indicates that the error at large lead times
is driven by the chaotic growth of initial truncation errors. Indeed, at each forecast
step, truncation errors are only added to previous errors (linear growth in time), while
the chaotic divergence induces multiplicative errors (exponential growth in time). Thus,
there is a characteristic time-scale at which the chaotic errors are more important then
the truncation errors. Note that finite-difference approximations of chaotic dynamical
systems suffer from the same exponential divergence at large lead times.

This example shows that the notions of consistency and order are interesting for the
interpretation of multiple, splitted analog forecasts. Further theoretical developments and
numerical experiments would help applying the notions of stability and convergence to
multiple, splitted analog forecasts.

3.3 The influence of additive noise

3.3.1 Influence on mean forecasts and Jacobian estimation

In this section, we use an error-in-variables model to evaluate the impact of additive
observational noise on mean analog forecast errors and Jacobian estimation. Theoretical
arguments are supported by numerical experiments of the Lorenz (1963) model.

As mentioned in the conclusion of this chapter, observations are in general both partial
and noisy. Here, we first tackle the issue of noisy observations.

For this preliminary investigation, it is assumed that every element of the catalog is
an observation of a state following the dynamical Eq. (III.3b) or (III.4b) with an added
Gaussian noise. It is assumed that the Gaussian noises are centered, independent and
identically distributed. The Gaussian noises are noted εk0 for the k-th analog and εkt for
the k-th successor at time t. No noise is added to the initial state x0 because this is taken
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into account separately when treating observational noise in data assimilation schemes.
From these hypothesis, Eq. (III.4) are modified to give:

xt = Φt(x0) , (III.17a)

∀k, akt − εkt = Φt
a(ak0 − εk0) , with Φt

a = Φt + δΦ̃t
, (III.17b)

and Eq. (III.5a) is changed to:

akt − xt ≈ εkt −∇Φt · εk0 + δΦ̃t + ∇Φt · (ak0 − x0) , (III.18)

using the same short notations as before. For the locally-constant, Eq. (III.8a) is modified
to give:

µLC − xt ≈
∑
k

ωkε
k
t −∇Φt ·

∑
k

ωkε
k
0 + δΦ̃t + ∇Φt · (µ0 − x0) . (III.19)

In this last equation, the noises εk0 and εkt are averaged with weights ωk. This averaging
procedure gives new centered Gaussian variables, with a variance divided by ≈ K (to be
more precise, the variance is divided by ≈ K/2 if one uses the procedure of Lguensat
et al. (2017)). This shows that there is a bias-variance trade-off: raising the value of K
lowers the variance and raises the bias of the estimator of xt. For the locally-incremental,
Eq. (III.9a) becomes:

µLI − xt ≈
∑
k

ωkε
k
t −∇Φt ·

∑
k

ωkε
k
0 + δΦ̃t +

(
∇Φt − I

)
· (µ0 − x0) . (III.20)

Similar equations can be derived using the description with f instead of Φ. For the
sake of brievety, these equations are not shown here.

For the locally-linear operator, it is not as straightforward to derive the modified
form of Eq. (III.10), because the linear regression between the analogs and successors
is modified due to the additive noises. The model equations (III.17a) and (III.17a) with
δ = 0 are known as error-in-variable models (Carroll et al., 2006). The locally-linear
operator described in this chapter only assumes noise in the dependent variables, while
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error-in-variable models assume noise in the independent variables, which is best suited
to measurement error purposes. The correct hypothesis for applying the locally-linear
operator would be recovered in the case εk0 = 0. Applying regular least-squares solution
for a linear regression, when the real context is the one of measurement errors in the
independent variables, is known to induce bias in the estimation of linear coefficients. In
the one-dimensional, linear case, the estimation of linear coefficient is biased towards zero,
but it is not so clear in the case of local-linear regression of a non-linear model (Griliches
and Ringstad, 1970). Total least squares (Markovsky and Van Huffel, 2007) could be
used to account for measurement errors in a more precise way then regular least-squares
do. However, for the time being, we consider only direct application of the locally-linear
operator, as presented before.

In the strong noise limit and if K is small, variations of akt (respectively ak0) with k

are dominated by variations of εkt (respectively εk0) and there is no correlation between
successors and analogs, such that the least-squares estimate of the linear relationship S
between the analogs and successors gives a matrix of zeros, and the locally-linear oper-
ator reduces to the locally-constant operator. However, if K is large enough the linear
relationship between the analogs and successors can be found through averaging in the
least-squares estimate.

Numerical experiments with the system of Lorenz (1963) were performed, identical
to those produced in Fig. III.6, but with additive noises ε ∼i.i.d. N (0, σ2I), and σ is a
given percentage (0.01 or 1) of the root-mean-squared distance between two points picked
randomly on the attractor, and with values of K equal either to 40 or 200. Results are
presented in Fig. III.9. For strong noise and low K, the regression between analogs
and successors is unable to capture the real flow’s Jacobian. Raising the value of K
makes the Jacobian estimation from analogs a little more accurate. In both cases (i.e.
K = 40 or 200), the estimation is independent from the condition number of analogs,
which is always low because the two-dimensional structure of the attractor is lost inside
the isotropic, three-dimensional noise. For weak noise, the dependency of the estimation
on the analogs’ condition number is recovered, especially when raising the value of K.
The poorest estimation of the Jacobian is thus witnessed for high condition numbers.
However, even for low condition numbers, the estimation error is much larger than in the
noise-free case of Fig. III.6.

Similar experiments are conducted on the same Lorenz system to produce forecasts
whose mean errors are averaged over 1 000 points on the attractor. Results are presented
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Figure III.9: Same as Fig. III.6 but with additive noise. The experiment was repeated
with low and high noises (0.01% and 1% of the RMS distance between two points on the
attractor), and high and medium values of the number of analogs K (200 and 40).

in Fig. III.10.
First, let us consider the case of high noise (1% of RMS distance in the attractor). In

this case, it can be seen that all methods (locally-constant, incremental and linear) give
the same results. First, notice that in the case of large noise, S ≈ 0 and the locally-linear
operator tends to the locally-constant operator. Then, for small lead times, the noise
terms of Eq. (III.19) and Eq. (III.19) are dominant. This explains why raising the value
of K diminishes the forecast error. Then, for large lead times, the terms proportional to
(µ0 − x0) in Eq. (III.19) and Eq. (III.19) are dominant. Therefore, raising the value of
K does not change much the accuracy of mean analog forecasting.

Then, consider the case of low noise (0.01% of RMS distance in the attractor). For
small lead times, there is no dominant term in Eq. (III.19) and Eq. (III.19). Thus, raising
the value of K diminishes the errors due to noise but also raises the errors proportional to
(µ0−x0), resulting in better performances for the locally-linear, but similar performances
for the locally-constant and locally-incremental. For large lead times, all methods are
equivalent (this property is independent of noise), and the terms proportional to (µ0−x0)
are dominant, such that raising the value of K increases bias and raises the mean analog
forecasting errors.

To complete this analysis, the analytical expression of mean locally-linear error µLL−xt
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Figure III.10: Influence of noise intensity σ and number of analogsK on analog forecasting
operators, using the Lorenz (1963) system, a catalog size of L = 107 and a time step
dt = 0.01 between elements of the catalog. Average errors of mean analog forecasting
operators < µL ·−xt > are computed over 1 000 points taken randomly on the attractor.

117



Chapter III – How far from the truth are analog forecasts?

is yet to be written in the case of additive noise.

3.3.2 Interpreting analog forecasting operators with an error-in-variables
model

In this section, analytical expressions for the probability distribution of the future state xt
are given, assuming the error-in-variables model (III.17), exact linearity of the flow, and
i.i.d. Gaussian observational noises. The Jacobian of the flow is seen as a model param-
eter, for which particular values allow to retrieve particular analog-forecasting operators.

Neglecting the difference between the analogs’ flow and the real flow, and omitting
the higher-order terms in Eq. (III.18), one finds:

akt − xt = εkt −∇Φt · εk0 + ∇Φt · (ak0 − x0) , (III.21)

where the initial state x0 is known almost surely, the Jacobian ∇Φt is assumed to be
fixed (we will see later that it can be viewed as a parameter of the analysis). Therefore,
the future state xt is a random variable that is linked to the random noises εk0, εkt . Let us
write x̂k := akt + ∇Φt · (x0 − ak0), then

dP(xt = x) =
∫ K∏

k=1

(
δ
[
xt − x̂k + εkt −∇Φt · εk0

]
dP(εk0) dP(εkt )

)
dx ,

where δ[·] is the Dirac delta function. The integral is taken over the values of the εk0 and
εkt for all k ≤ K, and it is assumed that the noises are independent. If one further assumes
that the noises are identically distributed and follow a centered Normal distribution with
covariance σ2I where σ > 0, I is the identity matrix of size n, and n is the dimension of
the space in which xt lives, then the integral can be evaluated analytically:

dP(xt = x) =
 1√

(2πσ2)n det J

K exp
{
− 1

2σ2

K∑
k=1

(
x− x̂k

)T
J−1

(
x− x̂k

)}
dx ,

which is the product of Gaussian probability density functions of mean x̃k and covariance
matrix σ2J where J = I+(∇Φt)(∇Φt)T. It follows that the future state xt is a Gaussian
random variable with mean µK and covariance ΣK :
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µK = 1
K

K∑
k=1

x̂k , ΣK = σ2

K
J .

Setting ∇Φt = 0 implies that x̂k = akt and J = I. In this case, one recovers the
expression for the mean of the locally-constant with uniform weights ωk = 1

K
. The

covariance matrix is σ2

K
I, such that the variability of the future state decreases when K

grows (more information is added). The locally-constant operator presented in Chapter II
estimates the covariance matrix of the random variable xt as the empirical covariance of
the successors, which should be ≈ σ2I if ∇Φt = 0, therefore, the locally-constant operator
might overestimate the covariance of xt. However, this must be tempered by the fact that
in practice, ∇Φt is not zero, which adds variability to the process of making a forecast
with a larger number of analogs K.

Setting ∇Φt = I implies that x̂k = xt + akt − ak0 and J = 2I. One then recovers the
mean of the locally-incremental with uniform weights ωk = 1

K
. The covariance matrix is

twice as large as in the case ∇Φt = 0. Same remarks can be given as to the difference
between the theoretical covariance matrix and the empirical covariance matrix from the
operator presented in this chapter.

This small calculation gives a new interpretation of the analog forecasting operators
which was not given before in the literature. It motivates the use of Gaussian random
variables to perform analog forecasting, as is done in Lguensat et al. (2017), combined with
ensemble Kalman filtering techniques. This analysis is reminiscent of extended Kalman
filtering techniques which deal with non-linear time-evolution models.

3.4 Analog short-term ocean wave forecasting from point-measurements

In this section, we show an application of analog forecasting to ocean wave time-series
using wave buoy data. Analog forecasting is compared with an auto-regressive model that
was reported as the most efficient method in another comparative study.

Wave energy converters (WEC) draw energy from wind-generated waves, i.e. the de-
formation of the ocean surface. To achieve optimal energy conversion, WEC are tuned
depending on the wave conditions from spectral forecasts, but short-term deterministic
forecasts (∼20 s ahead) can add an appreciable gain. Note that other offshore renewable
energy devices, such as offshore windmills, might also benefit from this forecast to optimize
wind energy intake. To do so, one can rely on the past measurements of sea-surface eleva-
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tion at the WEC location. Fusco and Ringwood (2010) review the forecasting strategies
for this purpose, with tests on data from wave buoys. The paper does not mention analogs,
and we show here how short-term wave forecast for energy converters might benefit from
analog forecasting methods. Leads for further research will be given to complement the
presented preliminary results.

Fusco and Ringwood (2010) report that auto-regressive (AR) models show the best
performances for the forecast of ocean waves, with lead times of less than 20 seconds, and
using only past wave records (tens of minutes) at the location where the future waves will
be forecasted. Therefore, analog methods will be compared to AR models. To test the
performances of analogs methods, point-wave measurements from a wave buoy installed
in the Iroise sea will be used. The wave buoy is located south-west off the Sein island, at
( 48◦00’20.5”N 4◦55’20.1”W ), where the water depth is ∼45 meters. Therefore, for small
wave heights of ∼ 4m or less, the deep-water criterion is met, and the approximation of
linear waves is justified. This is even more so true for forecast horizons below 20 seconds.
Fusco and Ringwood (2010) show that AR models are justified physically by linear wave
theory, such that the conditions for comparison between analog methods and AR methods
with our dataset are advantageous.

The data is a single 30 minutes-sample of sea-surface elevation measurement from the
buoy, with acquisition frequency fa =1.25Hz (every ∆t =0.8 s). The wave spectrum from
this sample is shown in the left panel of Fig. III.11. It corresponds to what is described
by Fusco and Ringwood as a wide-banded sample, for which AR performances are not
100% satisfying for lead times approaching 20 seconds. Indeed, for narrow-banded sea-
states, AR forecasts capture the future state with almost 100% accuracy for all lead times
below 20 seconds. To mimic the test conditions of Fusco and Ringwood, the sea-surface
elevation signal was low-pass filtered (see the right panel of Fig. III.11). Then, the sample
is divided into training and testing sets. The first 20 minutes will be used for analogs
and successors (training), and the last 10 minutes will be used to perform forecast and
compare with the truth (testing). The filtered sea-surface elevation at time t is noted ηt.

Time-embeddings (Takens, 1981) are used to define the state at time t, with a time lag
of 1 acquisition and n delayed-coordinates. Thus, analogs of the vector (ηt−(n−1)∆t, . . . , ηt−∆t, ηt)
are sought for, and successors ηtk+l are used to forecast ηt+l, where tk is the time of the
k-th analog’s last element. Results are shown in Fig. III.12. The locally-incremental
gave results similar to the locally-constant, and is therefore not shown. The locally-
constant (lower-left panel of Fig. III.12) is applied directly: the state at time t + l is
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Figure III.11: Left: wave spectrum from 30 minutes-sample buoy sea-surface elevation
data. Right: raw and low-pass filtered elevation, with a rough cutoff at frequency ∼1.1
rad/s.

forecasted from the state at time t (t is observation time and l is forecast horizon) us-
ing the locally-constant operator once (the forecast is not split into multiple forecasts).
The locally-linear, on the other hand, is applied both directly (lower-right panel of Fig.
III.12) and using multiple forecasts as explained in the Sec. ?? (middle-right panel of
Fig. III.12). In this multiple forecast version, the state at time t+ l is predicted from the
state at time t using the locally-linear operator l × fa times in a row. The AR method
performs a linear regression between the vectors (ηt−(p+n−1)∆t, . . . , ηt−(p+1)∆t, ηt−p∆t) and
ηt−(p−1)∆t, for p ∈ [1, N ], where N is the size of the training window for the AR method.
The number of analogs used is set to K = 200, and the size of the training window for the
AR model is also N = 200. Here, AR and multiple LL are very similar, only the training
dataset changes.

Results of these experiments are reported in Fig. III.12. From the example forecast
(top figure), one sees that although the performances of the locally-constant operator are
not as good as other techniques (but still not bad compared to other techniques from Fusco
and Ringwood 2010), this operator seems to be capturing some low-frequency tendencies.
The AR, direct LL and multiple LL have perfect performances for small lead times (or
forecast horizon). The multiple LL outperforms the AR for large lead times, and these
operators are both outperformed by the direct LL with n = 12. Similar plots with larger
values of n did not yield better results. In particular, the AR and multiple LL exhibit
instability for large n and large lead times (this can be witnessed at the end of the n = 10
curve for the AR).
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Looking now at statistical performances (bottom plots of Fig. III.12), the multiple LL
and AR methods are very similar, which explains that the curves for n = 6 and n = 8
are almost identical. The AR performs only one optimization of regression coefficients
on the N last observations, and uses these coefficients recursively for all forecasts. This
poses stability issues: if the optimized AR model has eigenvalues with modulus > 1, the
forecast will diverge after some time. Contrarily, the multiple LL performs a different
optimization for each forecast over the K analogs, such that instabilities will be damped
by the varying values of the regression coefficients. Also, the LL uses information of the
LC forecast as basis for the linear regression, which reduces slightly the forecast error.
Finally, the direct LL is even more stable as it performs only one linear forecast, such that
n can be raised to a higher value (here n =12), allowing for even better performances.

The fact that the LL forecasts are working using analogs of the past 30 minutes is
justified physically by the stability of sea-state conditions. An AR model is stable over a
few hours according to Fusco and Ringwood (2010), such that there is no need to compute
the regression coefficients over the last observations, and one can use observations further
in the past.

To go beyond this first investigation, these tests should be tried again on other buoy
data samples to check the consistency of the results. Also, information on the horizontal
position of the buoy (north-south and east-west) could be used to define analogs, possibly
raising accuracy. Then, one could try to use analogs from past sea-states (other days but
same buoy, for instance) and using a rescaling strategy. Perhaps, this would allow even
for the locally-constant to reach high accuracy, by raising the number of good analogs.
Finally, an interesting lead would be to test the performances of the schemes in the case
of extreme waves. Having a robust forecast scheme for extreme events may allow for the
WEC to go in safety mode and avoid getting damages from large waves.

An example forecast of a rogue wave from the method introduced earlier is shown in
Fig. III.13. The direct locally-linear forecast with n = 14 gives the best average per-
formances on this sample (based on a figure similar to Fig. III.12, not shown), and the
forecast of the rogue wave with this analog method is compared with the true sea-surface
elevation. The forecasts 10 seconds ahead and 5 seconds ahead of the rogue wave are
shown. With 10 seconds of lead time, the crest height of the wave is greatly underes-
timated, although the predicted wave is still moderately high (of probability inferior to
0.05). The rogue wave is not included in the 97.5% confidence interval of the analog
forecast. With 5 seconds of lead time, the rogue wave is well estimated, but the following
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3. Complementary analysis

Figure III.12: Results of different forecasting strategy on ocean wave point-measurements
from 30-minutes buoy sample described in Fig. III.11. The number of time-delays (or
length of time-window) is n.
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Figure III.13: Forecasting a rogue wave from the best (in terms of averaged error) analog
forecasting strategy, which here is the locally-linear with n = 14 time-delays. The average
forecast (gray, dashed) and 99.7% confidence intervals (green) assuming Gaussian margins
are shown. The rogue wave threshold for sea-surface elevation is five times the standard
deviation (red, dotted). A lower threshold of ± two standard deviations is shown (red,
full), which corresponds to an average probability of less than 0.05 assuming Gaussian
margins. The standard deviation is calculated from 20 minutes of observation preceding
the rogue wave.

wave heights are overestimated, although included in the (large) confidence interval. Note
that these accuracies are consistent with average statistics for the forecasting method: at
5s lead time, the goodness-of-fit is of ≈ 90%, and drops to ≈ 45% for lead times of 10s
(not shown). The fact that the proposed methodology is still working for this rogue wave
indicates that non-linear effects are negligible, although wave buoys are known to bias
observations of ocean waves towards linear waves. This observation is coherent with the
fact that this large wave has a profile reminiscent of Sleppian profiles: for linear waves, the
mean profile around a maxima is given by the auto-correlation function (Phillips et al.,
1993). Note that auto-regressive forecasts are based on auto-correlation too. If one is
concerned with the occurrence of very large waves, then estimating the probability of
very large events is crucial, and criterion based on average forecast error might not be
optimal. Here it is seen that the locally-linear operator, although efficient in terms of
average error, seems to struggle in estimating the probability of occurrence if this large
wave. To assess this more precisely, forecasts over a large number of rogue waves would
have to be performed. From a physical point of view, the theory of Phillips et al. (1993),
which gives the mean and variance of profiles around a maximum crest height, could be
used to produce statistical forecasts of rogue waves.

This last example motivates the design of forecasting strategies tailored to extreme
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4. Summary

waves. Taking a different point of view, the next chapter focuses on the forecast of
large amplitude ocean waves from one-dimensional space-time wave fields, while the last
examples used only time-samples. The possibility to measure the waves away from the
point of interest greatly increases the forecast efficiency for lead times way beyond the
ones considered here.

4 Summary

� The locally-constant and locally-linear operator (Lguensat et al., 2017) have a mean
forecast error that is linear in average analog-to-initial state distance. The locally-
incremental has the advantage that its forecast error tends to zero for small lead
times.

� The locally-linear operator has a mean forecast error that is quadratic in analog-
to-initial state distance. It is able to estimate a projection on the local attractor of
the flow’s Jacobian matrix.

� In terms of mean accuracy and for small lead times, the locally-linear is superior
to the locally-incremental, which is superior to the locally-constant. For large lead
times, the three operators have similar performances. Note that the locally-linear
has a higher numerical cost and requires a larger number of analogs because it
performs a linear regression.

� The locally-constant and locally-incremental can be seen as particular cases of the
locally-linear operator where the flow’s Jacobian matrix is replaced by the zero
matrix (i.e., the flow is constant) for the locally-constant and by the identity matrix
(i.e., the flow is a constant plus the identity map) for the locally-incremental.

� If there is a difference between the analogs’ flow and the real system’s flow (i.e., a
bias in observational dynamics), this difference increases the forecast error. At first
order (i.e., if the difference is small enough), this increase is additive.

� Analog forecasting performances are decreased by the presence of additive, cen-
tered observational noise in the catalog of analogs and successors. However, the
aforementioned results remain valid for noises of small amplitude. Our theoretical
arguments and numerical experiments indicate that the use of a larger number of
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analogs decreases the influence of centered additive noise, in particular for small
lead times.

� It can be interesting to split a forecast to a large lead time into multiple analog
forecasts of smaller individual lead times. This is particularly true when using the
locally-linear operator, for which our numerical experiments show that this splitting
procedure allows to gain of orders of magnitude in precision. The maximal lead time
at which the splitted forecasts remain consistent is twice as high as in the case of
direct forecast. However, our wave forecast experiments show that this splitting
procedure can also decrease stability. The applicability of this method appears to
be case-dependent.

� The process of splitting into multiple forecasts of smaller lead times motivates the
comparison between analog forecasting and finite-difference numerical schemes. The
latter approach the solution of differential equations in the limit of small time-step
(or equivalently, of large number of time-grid points), whereas analog forecasting
approaches the solution in the limit of large catalog size. Using this comparison and
results from the previous chapter, we link the convergence rate of analog forecasting
to the attractor dimension.

Further research would have to focus on the case of partial observations. A more
detailed investigation of successor spread would be interesting because the latter is im-
portant for ensemble analog forecasts.
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Chapter IV

FORECAST OF EXTREME OCEAN WAVES

FROM CREST VELOCITIES

Until the rainbow burns the stars out in the sky (always)
Until the ocean covers every mountain high (always)...

– Stevie Wonder, As

1 Introducing the article

In the previous chapter, the empirical short-term forecast of incoming ocean waves with
analogs for lead times up to 20 seconds was considered. This type of forecast can allow
to optimize energy intake from offshore renewable energy devices. However, one might
also be interested in forecasts of extreme events such as the so-called “rogue” waves.
Indeed, due to safety issues, the installation, maintenance and normal functioning of
offshore (including renewable energy) devices are all impossible when subject to extreme
waves, winds or rain. The present chapter focuses on the forecast of extreme waves from
crest velocities, which could be extracted from the measurement of wave fields through
X-band radars, possibly combined with stereo video cameras. The short-term forecast
of large waves could have two major consequences for offshore installations. First, the
applicability range of offshore operations could be raised. If the largest amplitude waves
can be predicted to turn on a “safety mode” before their arrival, then more severe sea
states can be considered for maintenance or installation. Second, the safety of structures
can be increased by the ability to turn on safety mode in the case of incoming large
amplitude waves, even when offshore operations are not considered. We investigate the
following question:

• Can high-amplitude “rogue” ocean waves be predicted from wave crest (and trough)
velocities?
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Chapter IV – Forecast of extreme ocean waves from crest velocities

To answer this question, the following strategies and tools are used:

∗ Large-amplitude ocean waves are assumed to arise from the linear focusing of
narrow-banded, unidirectional surface gravity waves. In this context, we identify
the largest future waves with the maximal focusing stage of wave packets.

∗ We derive analytical expressions for the crest velocities of Gaussian wave packets.
This allows to establish a simple relationship between spatial variations of crest
velocities and the focusing or defocusing nature of a given wave packet. In partic-
ular, the time evolution (or “profile”) of an approximate crest velocity “gradient”
is derived. Based on a fitting of crest velocity measurements to this profile, the
future position, horizontal width, and relative amplitude (with respect to present)
of a focusing Gaussian wave packet are estimated.

∗ We use numerical experiments of linear ocean waves to assess the validity of the
results and the applicability of the method to linear Gaussian wave packets.

∗ The validity of our method for second-order non-linear wave packets is discussed
using physical arguments.

∗ The robustness of our method to higher-order non-linear effects is gauged from
numerical experiments of the non-linear Schrödinger equation.

2 Article published in Natural Hazards: “Wave group
focusing in the ocean: estimations using crest ve-
locities and a Gaussian linear model”

Paul Platzer1 2 3 4 • Jean-François Filipot4 • Philippe Naveau1,2

Pierre Tandeo3 • Pascal Yiou1,2 doi:10.1007/s11069-020-04279-z

1. LSCE, CEA Saclay l’Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, U Paris-Saclay, IPSL,
Gif-sur-Yvette, France

2. ESTIMR - Extrèmes : Statistiques,Impacts et Régionalisation, LSCE, Gif-sur-Yvette, France
3. IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Plouzané, France
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2. Article published in Natural Hazards: “Wave group focusing in the ocean: estimations using
crest velocities and a Gaussian linear model”

2.1 Abstract

Wave group focusing gives rise to the formation of large gravity waves at the surface of
the ocean, some of which are called rogue waves and represent a natural hazard for ships
and offshore platforms. For safety purposes, it is crucial to predict when and where these
large waves will appear and how large they will be. This work focuses on crest velocities,
a quantity that is relatively easy to extract from sea-surface elevation fields. It is shown
that there is a direct link between crest velocity gradient and wave group linear dispersive
focusing. Studying analytically the focusing of one-dimensional Gaussian wave packets
under linear evolution makes it possible to derive estimates of quantities at focus, based
only on crest velocity measurements. In this way the focusing time, focusing size and
focusing amplitude (relative to instantaneous amplitude) of an isolated Gaussian wave
packet can be estimated. Our work is also applicable to second-order non-linear waves.
Limitations due to higher-order non-linear effects are studied in numerical simulations of
the non-linear Schrödinger equation.

2.2 Introduction

Human and material losses caused by large amplitude ocean surface waves are significant,
as reported by Kharif and Pelinovsky (2003). The term "rogue wave" refers to waves with
a crest-to-trough wave height larger than 2Hs, where Hs is the significant wave height
and is defined as four times the standard deviation of the sea surface elevation Dysthe
et al. (2008). The threshold of 2Hs is arbitrary, and in the following "rogue wave" might
simply refer to waves with a large height compared to local statistics. Many rogue waves
have been measured in the ocean, including the famous 26m-high Draupner wave (Haver,
2004). Even in moderate sea states, the occurrence of rogue waves can be problematic
for operations (e.g. cable layout from a ship) or for transferring staff from a ship to
an offshore platform or wind turbine. The harmful potential of rogue waves is a natural
motivation for the forecast of their position, amplitude and spatial width over time, based
on real-time measurements available from instruments that can be mounted on ships or
offshore platforms. The short-term forecast of high-amplitude ocean waves must neither
be confused with tsunami forecast (Titov et al., 2005), nor sea-state forecast (Niclasen
et al., 2010), nor short-term forecast of sea-surface elevation for wave energy converters
(Fusco and Ringwood, 2010).

Many physical processes could be involved in the formation and growth of oceanic
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rogue waves (Adcock and Taylor, 2014). In this paper, we focus on the formation of
large surface gravity waves in deep water due to dispersive focusing, a process that we
briefly describe here. In deep water, the sea surface elevation can be approximated by an
infinite sum of plane waves propagating at a velocity given by the dispersion relation of
ocean surface gravity waves (Longuet-Higgins, 1957). This approximation is based on the
linearization of the physical equations at the ocean surface, assuming small steepness of
the sea surface elevation. Dispersion causes waves of different wavelengths to propagate
at different velocities, which creates mixing. When this mixing results in the constructive
interference of a large number of waves (superposition of their crests, or troughs), this
leads to a wave of large amplitude, and we call this process dispersive focusing. Here, we
use a linear description of long-crested (one-dimensional in space) ocean waves, and we
tackle the issue of forecasting the dispersive focusing of ocean wave packets based on crest
velocities. Thus, the proposed methodology is not limited to waves exceeding the rogue
threshold of 2Hs, but aims at forecasting the maximum amplitude of any wave packet
under dispersive focusing.

Other processes can lead to the focusing of ocean waves, such as wave-current interac-
tions (Peregrine, 1976; Touboul and Kharif, 2016; Quilfen et al., 2018). Also, the focusing
of ocean waves can increase wave steepness, leading to second-order non-linear effects
that act on the shape and height of waves (Forristall, 2000), or even higher-order non-
linearities potentially leading to the instability of Benjamin and Feir (1967). However,
we ignore wave-current interactions, and first investigate linear dispersive focusing. The
latter appears to be a necessary first step in the formation of the largest ocean surface
gravity waves (Fedele, 2008) and is thought to be the main mechanism driving the forma-
tion and evolution of real-life rogue waves, along with second-order non-linearities (Fedele
et al., 2016). Although designed for linear waves, our work is applicable to second-order
non-linear waves, and we also examine the limitations of our study due to higher-order
non-linear effects.

A review of the possible strategies for rogue wave forecasting in the absence of currents
and based on only space-time measurements of the sea-surface elevation can be found in
Slunyaev (2017). For a review and comparison of numerical methods for deterministic
short-term prediction of water wave fields, the reader is referred to Klein et al. (2020),
which also lists commercial decision support systems based on X-band radar acquisition.
However, the forecast of high-amplitude waves does not require prediction of the whole
wave field, and forecast methods may be targeted only at high-amplitude waves. Slunyaev
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et al. (2005) developed the idea that rogue wave formation could be inferred from energy
flux convergence. A predictive scheme based on such a principle was developed by Guo and
Alam (2017). However, the method laid out in Guo and Alam (2017) requires knowledge
about the field of fluid velocity in the whole water column, a quantity that is difficult to
measure in real time. Slunyaev (2017) proposed that the energy transfer could be inferred
from the local group velocity, an idea which is closely related to what we propose here.

The envelope of the wave field is not well defined when the wave spectrum is not narrow
enough. For this reason, our method relies on the velocities of crests and troughs, which
are theoretically accessible from fields of sea-surface elevation. Today however, in-situ
ocean wave measurement technology needs to improve in order to achieve the forecasting
of large ocean waves a few minutes in advance, independently of the method that is to
be used. The combination of X-band radar images (Borge et al., 2013) with stereo video
cameras (Benetazzo et al., 2018; Filipot et al., 2019) is promising, and motivated us to
focus on crest velocities. For the same applications, the sea surface reconstruction using
lidar illumination is another encouraging alternative (Nouguier et al., 2013).

Fig. IV.1 shows the basic principle of the proposed methodology. A wave packet
under linear evolution in a dispersive medium (where the phase velocity is frequency-
dependent) is either in the stage of focusing (a, d), is focused (b, e), or is in the stage
of defocusing (c, f), and those three stages always take place in this order. When the
wave packet is focused, the velocities of the crests and troughs (maxima and minima) are
nearly homogeneous (e), and smaller than the phase velocity corresponding to the peak
frequency of the Gaussian Wave Packet (GWP). This slow-down effect is described in the
linear wave theory outlined by Fedele (2014). Conversely, when the wave packet is not
focused, crest and trough velocities are neither uniform in space, nor constant in time
(d, f): there is a strong gradient of crest velocity (or, to be more precise, a gradient of
specular velocity, see Sect. 2.3, subsection 2.3.3). The sign of this gradient reveals the
focusing or defocusing nature of the wave packet, while its absolute value is proportional
to the growth rate of the wave packet amplitude (for narrow-banded linear wave packets).
By tracking the evolution of this gradient over time, it is possible to predict the time
at which the GWP is focused, the size of the GWP at focus, and the ratio between the
amplitude at focus and the instantaneous amplitude.

Theoretical background and hypotheses are outlined in Sect. 2.3, with details of
derivations given in the appendix. The method is tested in numerical experiments of
linear waves in Sect. 2.4. In Sect. 2.5 we investigate the applicability of the method to
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weakly non-linear wave packets using numerical experiments of the non-linear Schrödinger
equation.

2.3 Theory for linear Gaussian wave packets

2.3.1 Definitions and hypotheses

We refer to Gaussian Wave Packets (GWP) as one-dimensional sea-surface elevation pro-
files ηG such that the modulus of the space Fourier transform of ηG is a Gaussian function
of wavenumber k. Such packets were widely used to generate water waves in laboratory
experiments (Clauss and Bergmann, 1986), and to study theoretically and numerically
the dispersive formation of large amplitude waves (for instance, see Pelinovsky et al.,
2011). The Gaussian shape assumption allows us to carry detailed calculations for the
crest velocities. We can write ηG as the real part of its complex analytic representation
ΨG with

ΨG(x, t) = AfLf√
2π

∫
exp

{
−L

2
f (k − k0)2

2 + i (kx− Ω(k)t+ Φ(k))
}

dk, (IV.1)

where x is position, t is time, Af is the amplitude of the GWP at focus, Lf is the spatial
extent of the GWP at focus (also further referred to as "group size"), k0 is the peak
wavenumber of the GWP, Ω(k) is the angular frequency given by the dispersion relation,
and Φ(k) is the phase of the GWP. All quantities are real unless otherwise stated.

We make the narrow-band approximation that Lfk0 is large, which induces relative
errors that are all proportional to a negative power of Lfk0. The effects of surface current,
wind input and wave dissipation are ignored. Non-linearities are first neglected, but their
effect is studied in the last section.

2.3.2 Approximation of ΨG

Let us write

Ω(k) = ω0+cg(k−k0)+ c∗

2k0
(k−k0)2+h.o.t., Φ(k) = φ0−x0(k−k0)+S

2 (k−k0)2+h.o.t. ,

where x0 = −dΦ
dk (k0) and S = d2Φ

dk2 (k0). We can then write ΨG as
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Figure IV.1: Crest and trough velocities of a Gaussian wave packet (GWP) at different
times under linear evolution. The GWP is moving from left to right, and we assume
the dispersion relation of deep-water gravity waves. The peak phase velocity is noted
c0. Extracted from the numerical experiments described in Sect. 2.4, with Lfk0 = 10.
Abscissa : position relative to the center of the GWP normalized by the peak wavelength
λ0 = 2π/k0. Black curves in (a− c) are a numerical approximation of ηG calculated using
Eq. (IV.1). Arrows in (a− c) have lengths proportional to ccr− c0, red when ccr > c0 and
blue when ccr < c0. Black dashed lines in (d − f) are a first-order approximation of the
analytical prediction ca

sp. Black curves in (d− f) are second-order approximation. Black
dots in (d − f) are crest velocities ccr extracted from numerical experiment. Shown are
the situations prior to focusing (a and d), nearly focused (b and e), after focusing (c and
f).
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ΨG = AfLf√
2π
ei(k0x−ω0t+φ0)

∫
exp (f(k − k0) + h.o.t.) d(k − k0) ,

where

∀K, f(K) = −0.5
[
L2

f + i
(
tc∗

k0
− S

)]
K2 + i [x− cgt− x0]K .

Since Lfk0 � 1 we can neglect higher-order terms in the exponential and integrate
with respect to k−k0. This is a specific case of Laplace’s method. Rearranging, this gives

Ψa
G(x, t) = A(t) exp

{
−(x− xc(t))2

2L(t)2 + i (k0x− ω0t+ φ(x, t))
}
, (IV.2)

where the a-superscript stands for "approximation" and with:

A4(t) = A4
f

1 + (c∗t/k0L2
f )2 ,

L2(t) = L2
f +

 c∗t
k0
− S
Lf

2

,

φ(x, t) = − arctan
 c∗t

k0
− S

2L2
f

+ (x− xc(t))2

2L2L2
f

(
c∗t

k0
− S

)
,

and xc(t) = x0 + cgt. Setting t→ t− Sk0/c
∗, and x→ x− x0 + Sk0cg/c

∗, we obtain the
simpler expressions :

A(t)
Af

=
(
1 + (t/τ)2

)−1/4
,

L(t)
Lf

=
(
1 + (t/τ)2

)1/2
, (IV.3)

φ(x, t) = φ0 − arctan (t/2τ) + (t/2τ) (x− xc)2

L(t)2 , (IV.4)

where xc = cgt is the center of the GWP, and τ = k0L
2
f /c
∗ is the group contraction time

scale (possibly negative). From our hypotheses we have |τ | � ω−1
0 so that A(t), L(t) and

φ(t) are slowly-varying compared to the carrier plane wave ei(k0x−ω0t). See Fig. IV.2 for
an illustration of these quantities.

Using the work of Olver (1968), one can show that Ψa
G gives an approximation of

ΨG/Af that is valid up to the second order in 1/(k0Lf ), the next order being the fourth
one. It is also clear from the work of Olver (1968) that obtaining higher-order approxi-
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Figure IV.2: A Gaussian wave packet a few periods before focusing, with related notations.
The approximation Φa

G and ΦG are almost identical, the largest discrepancies are found
at the tails of the GWP. This GWP has parameter Lfk0 = 5 and Af = 5.

mations of the right-hand side of Eq. (IV.1) would require information on the 3rd and
higher-order derivatives of Φ(k) at k0, that could not be set to zero by changing the origin
of the time and space axis.

The expression of Ψa
G was given by Kinsman (1965) for the case Φ(k) = 0. In Eq.

(IV.2), we generalize to the case where Φ(k) is a slowly varying function of k.

2.3.3 Crest velocity approximation

In one dimension, we can follow the trajectory of a crest xcr(t) by imposing

∂xxη (xcr(t0), 0) < 0 ,∀t > t0, ∂xη (xcr(t), t) = 0 ,

This implies that ccr(t) = csp(xcr(t), t) where csp = − ∂xtη
∂xxη

is the velocity of points
of constant slope called specular points (Longuet-Higgins, 1957). Specular points would
be indicated to a distant observer as the points where light was reflected from a distant
source. The velocity of specular points can be defined at every point of the surface and
contains the crest velocities. For identical reasons, trough velocities can also be calculated
using the velocity of specular points. Using Eq. (IV.2) we can express ca

sp (an approximate
form of csp based on Ψa

G) as a function of X ≡ k0(x− xc) and T ≡ t/τ :

ca
sp(X,T ) = C1(T )X4 + C2(T )X3 + C3(T )X2 + C4(T )X + C5(T )

C6(T )X3 + C7(T )X2 + C8(T )X + C9(T )

with the Ci(T ) being time-dependent coefficients which all have terms proportional to
the small parameter (L(t)k0)−2. For the sake of brevity, we do not give the expressions
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of those coefficients, but only the first terms of the Taylor expansion of ca
sp with respect

to (L(t)k0)−2. We also assume the dispersion relation of deep-water gravity waves (i.e.
Ω ∝

√
k)

ca
sp(X,T )
c0

= 1 + 5
8

[−1− 0.8XT ]
(L(t)k0)2 + 5

8
[1 +XT + (0.2 + T 2)X2]

(L(t)k0)4 +O
(

1
(L(t)k0)6

)
, (IV.5)

where c0 = ω0/k0. Neglected higher-order terms are of O ((Lk0)−6), and can only become
large when |x−xc| � L(t) or |t/τ | � 1, cases where the height of the waves is negligible.
As pointed out by one of the reviewers and as mentioned in the previous section, the
fourth-order terms in this expression have been derived from Ψa

G which is a second-order
approximation of ΨG. For this reason, they cannot be trusted in theory. However, the
numerical experiments shown in this paper suggests that they give a reasonable approxi-
mation of csp.

At zeroeth order ca
cr equals c0, which corresponds to the monochromatic case. At first

order it is a time-dependent linear function of X (see the dashed lines of Fig. IV.1(d−f)).
At second order it is a time-dependent second-order polynomial in X (see the full curves
of Fig. IV.1(d − f)). Good agreement is found between ca

cr which was derived from the
approximate Ψa

G, and ccr which is associated with ΨG (see the dots of Fig. IV.1(d− f)).
Other experiments with lower values of k0Lf also show a good agreement between ca

cr

from Eq. (IV.5) and ccr (not shown).
Note that Eq. (IV.5) is valid only for specular points of slope zero ∂xη = 0, which is

the case for crests and troughs. The general expression for casp is more complicated than
Eq. (IV.5), but by abuse of notation and for our purpose casp denotes the right-hand side
of Eq. (IV.5), which is a Eulerian quantity while ccr is Lagrangian. In particular, this
allows us to compute derivatives of the right-hand side of Eq. (IV.5).

2.4 Numerical experiments of linear waves

2.4.1 Numerical set-up

We performed simulations based on a numerical approximation of the integral in Eq.
(IV.1). All parameters were fixed except Lfk0. We assumed the dispersion relation of
deep-water gravity waves Ω(k) =

√
gk where g is the acceleration of gravity at the earth’s

surface, set to 9.81 ms−2. Φ was set to be a constant without loss of generality up to a
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change of reference frame, so that the GWP is focused at t = 0. Setting Af = 5 m and
k0 = 0.02 rad m−1 gives c0 ≈ 22.15 ms−1 and Tp = 2π/

√
gk0 ≈ 14s. Our choice for k0

corresponds to typical dominant surface gravity waves encountered in the ocean. We did
numerical experiments with three different values for Lfk0, either Lfk0 = 2.36 or Lfk0 = 5
or Lfk0 = 10.

In all experiments, the integral was approximated using 150 wavenumbers, ranging
from kmin = 0.001 rad m−1 to kmax = 0.05 rad m−1 when Lfk0 = 2.36; from kmin = 0.005
rad m−1 to kmax = 0.037 rad m−1 when Lfk0 = 5; and from 0.012 rad m−1 to 0.028 rad
m−1 when Lfk0 = 10. Further refinement in the wavenumber discretization did not yield
significant changes in the results. The integral defining ΨG(x, t) was evaluated over a
space-time grid with constant steps dx = 3.14 mm and dt = 1.17 s when Lfk0 = 2.36;
dx = 2.55 mm and dt = 1.36 s when Lfk0 = 5; dx = 3.37 mm and dt = 1.56 s when Lfk0 =
10. In all experiments, (x− xc) varies from −2λ0 to +2λ0. t varies from −4|τ | ≈ 14Tp to
0 when Lfk0 = 2.36; from −2|τ | ≈ 32Tp to 0 when Lfk0 = 5; and from −|τ | ≈ 64Tp to 0
when Lfk0 = 10. The time step was chosen to be comparable with X-band radar typical
measurement frequency, which are on the order of 1Hz. Note that high spatial resolutions
allow the precise measurement of small crest velocity variations (see the vertical axis
of Fig. IV.1(d − f)) for convenience in testing the method. In practice, time-averaging
techniques could be used to lower spatial resolution constraints. Each experiment was run
a thousand times for different values of the constant phase Φ, picked randomly between
-π and π.

2.4.2 The choice of Lfk0

The typical spectral shape of individual wave packets in the ocean is unknown, and thus
our justification for the choices of values for Lfk0 will only be partial. Isolated wave
packets only exist conceptually, and in the ocean, one wave packet is always at least
partially merged with other neighboring packets. Ocean wave measurements allow for the
reliable estimation of the spectrum of a sample of the sea-surface. Such a sample is made
of many packets merged together. We will call such a spectrum a "total spectrum" to
make a clear distinction with the spectrum of one individual packet. To our knowledge,
there is no theory which gives the conditional probability that a measured wave packet
has a given spectrum (corresponding to Af , Lf and k0 in our case) assuming that the total
spectrum is known. Longuet-Higgins (1984) links the temporal width of wave packets
(linked to our L(t)k0) with the width of the total spectrum ν. But the probability of
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measuring a packet with an instantaneous size L(t)k0 is different from the probability
for a given packet to have a focusing size Lfk0. However, a wave packet that is far from
focusing will have a large spatial width but a small amplitude, and it will thus have a
lower probability of being measured at sea as it would be merged with other packets of
greater amplitude.

Cousins and Sapsis (2015b) performed numerical simulations of ocean waves with
Gaussian spectra and randomly drawn phases, coupled with an algorithm for the detection
of the spatial width and amplitude of individual wave packets. From those simulations,
the authors were able to compute probability distributions for a given wave packet to
be observed at any point in time, with a given spatial width and amplitude. In those
numerical simulations, the packets observed with an amplitude larger then the rogue
wave threshold A(t) > Hs had a spatial width L(t)k0 close to the inverse of the width
of the total spectrum. As those packets had large amplitudes, it is likely that they were
focused or close to focusing. This seems to indicate that for a given spectrum, the packets
which have a high amplitude are likely to have a spectral width comparable to that of the
total spectrum.

The case Lfk0 = 2.36 corresponds to a spectral width of 0.15, Lfk0 = 5 corresponds
to 0.071, and Lfk0 = 10 corresponds to 0.035. Recall that we use the definition of
spectral width through moments of the temporal frequency : ν2 = m0m2/m

2
1 − 1 and

mi ∝
∫
S(f)f idf for all i with f the temporal frequency and S(f) the frequency spec-

trum, i.e. the density of energy per frequency. In the ocean, the most dangerous waves
are due to large values of Hs, associated with storm seas. In these sea states, the largest
individual waves are the so-called dominant waves that contain the energy of a narrow
spectral band around the peak frequency, fp. Banner et al. (2000) suggested that this
spectral band ranges from 0.7fp to 1.3fp. Computing ν over this spectral band for storm
wave spectra computed at a deep water point in the North East Atlantic ([-4.5◦W, 46◦N])
during the entire 2013-14 winter and using the WaveWatchIII spectral wave model (Tol-
man et al., 2009) leads to values lying between 0.05 and 0.15. We also note that the
directional spreading for this particular spectral band is generally limited (about 20◦ us-
ing the same dataset). Our numerical experiments thus show how our method should
behave for dominant waves in typical storm conditions.
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Figure IV.3: Step-by-step methodology. (a) Crest detection and velocity estimation.
(b) Velocity gradient estimation. (c) Velocity gradient estimation over time, fitted and
extrapolated.

2.4.3 Validity of the narrow-band approximation for ca
sp

We know from our analytical derivations based on Ψa
G that the specular velocity gradient

at the center of the GWP contains information on the focusing properties of the packet,
and we also know that this gradient is almost homogeneous in the spatial dimension
x. Thus, we hope to estimate this gradient based on measurements of crest and trough
velocities around the center of the GWP. We start by measuring the crest velocities of
the three crests/troughs that are closest to the center of the GWP and the distances
between them, giving us three values of csp(·, t) (see Fig. IV.3(a)). We chose to use only
three values because we want this procedure to be applicable to any wave packet inside
a random unidimensional field (meaning one space dimension and one time dimension)
of linear surface gravity waves containing many different packets. In this case the crests
and troughs of a given wave packet that are far away from its center may be mixed up
with crests and troughs from other packets. In the case of a random unidimensional field
of linear surface gravity waves, our procedure would be equivalent to finding the largest
crest or trough in the packet and measuring its velocity and those of is two neighboring
troughs or crests, respectively.

Then, at any time t we make a polynomial fit of second order in space from our three
values of csp(·, t) (full curve of Fig. IV.3(b)), and we keep the linear part of this fit as our
approximation for ∂xcsp|x=xc (dashed curve of Fig. IV.3(b)).

We can compare the result of this procedure (Fig. IV.3(a, b)) to our approximate
analytical prediction ∂xc

a
sp|x=xc that we obtain from Eq. (IV.5) when neglecting terms

of O ((Lk0)−6). This is plotted in Fig. IV.4. In the case where Lfk0 = 2.36, it can be
seen that our procedure causes oscillations in the estimation of ∂xcsp|x=xc . This is due to
the fact that the phase velocity of surface gravity waves is twice as large as their group
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Figure IV.4: Normalized crest velocity gradient at the center of the GWP. The full curves
correspond to the second order analytical prediction of ∂xca

cr|x=xc from Eq. (IV.6). The
dots are approximations of ∂xccr from three crest/trough velocities around x = xc from the
numerical experiments. Green background is for −|τ | ≤ t ≤ 0, violet for −2|τ | ≤ t ≤ −|τ |,
and pink for −4|τ | ≤ t ≤ −2|τ |.

velocity, and thus crests move twice as fast as the center of the wave packet. Thus every
∆t ≈ 2Tp, the crest or trough in the front of the GWP that we use for our approximation
of ∂xcsp|x=xc is no longer one of the three closest crests or troughs from the center of
the GWP, and it is thus replaced by another trough or crest, respectively, coming from
the back of the GWP. These oscillations still exist for larger values of Lfk0, but they
appear faster at the time scale |τ |, since we have |τ |/Tp = 2(Lfk0)2/π from the definitions
in Sect. 2.3.2. As Lfk0 decreases, our approximations are less valid, especially around
t = −|τ |, but the behaviour of our measured ∂xcsp|x=xc is still coherent with ∂xc

a
sp|x=xc

and the approximations are relevant when t is far enough from −|τ |. It can be observed
that for Lfk0 = 5 and 10, the minimum of our approximation for ∂xca

sp|x=xc is achieved
close to t = −|τ |. This is because the term in parentheses in Eq. (IV.6) is close to 1. On
the other hand, for Lfk0 = 2.36, we can see that the minimum of ∂xca

sp|x=xc is achieved
slightly before t = −|τ |, and is of lower relative amplitude.

2.4.4 Estimation of focusing time, amplitude and width

Once we have an approximate measure of ∂xcsp|x=xc over time between tstart and tend, we
want to find relevant information related to the focusing of the wave packet, such as tf ,
Af/A(tend), and Lf . To do this, we fit our approximate measure of ∂xcsp|x=xc over time to
a known profile derived from Eq. (IV.5), which has the following form
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∂xc
a
sp|x=xc(t) ≈

2(t− tf)
τ 2 + (t− tf)2

(
1− 13/ω0|τ |

1 + ((t− tf)/τ)2

)
. (IV.6)

The fitting step corresponds to Fig. IV.3(c), and the right-hand side of Eq. (IV.6)
is plotted in Fig. IV.4. We assume that ω0 is known, thus the only parameters to be
estimated are |τ | and tf . These parameters can be read on the graph in Fig. IV.3(c) as tf
is at the crossing with the y = 0 horizontal line and τ is approximately at the minimum
of the curve. Then, using |τ |, tf and Eq. (IV.3), we can estimate Af/A(tend), and further
using ω0 we estimate Lf =

√
|τ |ω0/k0. In Fig. IV.5, we show the results of this procedure

for the estimation of tf/Tp, Af/A(tend) and Lfk0, for our three values of Lfk0 and for
tstart = −4|τ |; −2|τ |; −|τ | and tend going from tstart to tf = 0. When tend − tstart is small
compared to |τ |, large variations in the values of the fitting parameters are observed.
This variability is the consequence of variations in the estimation of ∂xcsp|x=xc which
happen at the small time scale Tp, such as the oscillations described in Fig. IV.4. When
tend − tstart is only a few Tp, those small-time-scale variations are incorrectly fitted, as if
they corresponded to the profile from Eq. (IV.6), which varies at the large time-scale
|τ |. This causes incorrect estimations of the parameters tf and τ . Systematic bias can
be observed when Lfk0 = 5 and 10, with an over-estimation of focusing amplitude and
group size, and underestimation of focusing time. This is consistent with the systematic
bias observed in Fig. IV.4. It might be argued that for warning purposes, an error of less
than 10% might not be critical, and thus that the systematic bias observed for Lfk0 = 5
and 10 should not be cause for concern. Estimations in the case where Lfk0 = 2.36 are
challenging, because deviations from the hypothesis on which our method relies start to
be large. However, our estimated values are still acceptable, which indicates a certain
robustness in our method. An interesting fact is that as Lfk0 decreases, relative errors
increase, but when coming back to the typical scales of ocean waves, these errors are of
comparable amplitude. See for instance the green curve in Fig. IV.5(h), with a systematic
bias of ≈ 2%, which gives an error of ≈ 0.1k−1

0 for Lf ; similarly the green curve in Fig.
IV.5(i), with a bias of ≈ 0.5%, gives an error of ≈ 0.05k−1

0 for Lf . Estimations of tf give
biases of the order of Tp, while those biases would seem much lower for Lfk0 = 10 if we
had plotted estimates of tf/τ rather than tf/Tp.

As the time of contraction scales with τ (and thus with L2
f ), focusing properties of large

groups (or groups of narrow spectra) can be predicted accurately a long time in advance,
but they also require that the group crest velocity gradient be tracked far in advance. We
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Figure IV.5: Estimation of focusing time tf (a − c), ratio of focusing amplitude and
instantaneous amplitude Af/A(tend) (d− f), and group focusing size Lf (g− i), following
the methodology described in Sect. 2.4.4. The objective (truth) is represented in each
subplot by a black line. Estimations are based on approximate measurements of ∂xcsp|x=xc

between tstart and tend, with tstart = −4|τ | (red) or tstart = −2|τ | (blue) or tstart = −|τ |
(green). Experiments are repeated with different values of the phase Φ drawn randomly
between −π and π. The medians of predictions are shown in full lines and points between
the 2.5 and 97.5 percentiles are shown in light shading. Lfk0 = 2.36 for (a), (d) and (g);
Lfk0 = 5 for (b), (e) and (h); and Lfk0 = 10 for (c), (f) and (i). Vertical scales of (g − i)
are proportional to the value of Lfk0.
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note that it is technically challenging to predict the focusing of a wave packet 60 Tp in
advance, because it requires having information on the wave field in a radius of about 10
km (for a typical peak period of 10 s) around the point of interest.

In our experiments we assumed that ω0 is known. If ω0 was unknown, we still could
have used the lower order approximation ∂xca

sp|x=xc(t) ≈ 2(t− tf)/(τ 2 + (t− tf)2), which
does not depend on ω0, and use it to evaluate tf and Af/A(tend). The impact of such an
approximation should not be strong in cases where Lfk0 = 5 and 10, as we showed that
including higher-order terms did not yield a significant change in the profile (Fig. IV.4).
Then, however, no estimation of Lf could have been done.

2.5 Non-linear effects

2.5.1 General statements

Our work is based on the assumption of linear waves corresponding to infinitely small
amplitudes k0Af → 0. Yet, real ocean waves have a finite amplitude and are thus non-
linear. We examine here the consequences of non-linear effects on the validity of our
method.

Second-order non-linearity
Second-order non-linearity affects the shape and amplitude of ocean waves. It makes crests
sharper and troughs shallower, and raises the heights of crests and troughs by a quantity
that is proportional to the product of the linear wave amplitude and the wave steepness
(Forristall, 2000). Second-order non-linear effects modify the wave spectrum, although
the latter is still time-independent. These effects modify neither the crest-to-trough wave
height, nor the position of crests and troughs.

Here we use crest and trough velocities to predict GWP focusing time, focusing am-
plitude and focusing width. All the quantities mentioned in the last sentence are identical
for linear and second-order non-linear waves. Therefore, our method is as valid for second-
order non-linear waves as for linear waves. This is important because, for linear waves,
the dispersion relation of surface gravity waves allows for very simple forecasting of the
whole sea-surface using Fourier transforms. But this forecasting strategy cannot be ap-
plied to second-order non-linear waves for which the dispersion relation does not hold.
The prevalence of second-order non-linear effects in the ocean thus further highlights the
relevance of our method for real ocean waves. Note however that, from a practical point of
view, the change in wave shape due to second-order non-linearity might make the accurate
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measurement of trough positions more challenging.

Higher-order non-linearity
Higher-order (third-order and above) non-linear effects induce changes in shape, ampli-
tude, and width of ocean wave packets. They make wave packet contraction stronger in
the principal direction of propagation and weaker in the orthogonal direction (Adcock
et al., 2012). Higher-order non-linearities can create surface gravity waves of very high
amplitudes compared to linear waves, and have thus been studied extensively in the lit-
erature on rogue ocean waves. The spectrum of higher-order non-linear ocean waves is
time-dependent, so the focusing time of higher-order non-linear wave packets is different
from that of linear ones.

All these elements indicate that our forecasting strategy based on the linear wave
hypothesis will fail to accurately forecast the focusing time, amplitude and width of
a higher-order non-linear wave packet. However, we expect the quantities we want to
predict to be continuous functions of the non-dimensional amplitude k0Af which controls
the degree of non-linearity of the wave packet. Therefore, our method should still provide
interesting results for finite but moderate values of k0Af .

Following this preliminary analysis, we investigate the effects of higher-order non-
linearities through numerical experiments of the one-dimensional non-linear Schrödinger
equation (NLSE).

2.5.2 Numerical resolution of the NLSE

The one-dimensional NLSE, first described by Zakharov (1968), is a simple model for
the evolution of the envelope of narrow-banded non-linear wave groups in deep water.
Although it can model non-linearities above the second order, it is only valid for waves
of moderate amplitude (called weakly non-linear waves). This is not a problem for us, as
our concern is investigating the effects of higher-order linearities of moderate strength on
our method. Comparison between solutions of the NLSE and fully non-linear simulations
of water waves can be found in Henderson et al. (1999). In the reference frame moving at
the group velocity, the NLSE can be written as follows:

i∂tu = ω0

8k2
0
∂2
xu+ 1

2ω0k
2
0|u|2u , (IV.7)

where u(x, t) is the envelope of the wave field at position x and time t, ω0 is the peak pulsa-
tion and k0 the peak wavenumber. In the reference frame moving at the group velocity, the
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envelope u and the wave field η are linked by the relation η(x, t) = Re
{
u(x, t) exp i

(
1
2ω0t− k0x

)}
where Re{z} denotes the real part of the complex number z.

We use a numerical set-up very similar to the one of Adcock and Taylor (2009). We
solve the NLSE using a fourth-order Runge-Kutta scheme in time and a pseudo-spectral
method in space. We set a peak period of 12 s and use a time step of 0.14 s. We use
212 Fourier modes and a spatial discretization of 10m. All the simulations described here
involve the following first steps:
- Take a linear GWP at focus with amplitude AL

f and width LL
f = 5/k0 (we now add the

L-superscript to discriminate linear and non-linear quantities).
- Back-propagate the GWP according to linear evolution for 65 time periods.
- Use this back-propagated GWP as an initialization and solve the NLSE numerically until
the GWP is focused. Identify the focusing time tf when the spatial maximum of wave
amplitude maxx(|u(x, t)|) reaches a maximum. Measure ANL

f and LNL
f , the amplitude and

width of the wave packet at focus, by fitting a Gaussian to the modulus of the envelope
|u(x, tf)|.
- Perform a cubic spline interpolation of u in space down to 3.3 cm resolution to allow for
a precise measurement of crest velocities.

2.5.3 Non-linear crest velocity profiles

From those simulations, we measure ∂xcsp|x=0 as in Sect. 2.4.3, with one modification to
the method. This time, we measure the gradient only when one crest or one trough is in
the middle of the wave packet such that |x| ≤ 4λ0dt/(2Tp), giving 4 measurements of the
gradient around the position x = 0 every time period. By averaging those 4 measurements
of ∂xcsp, we get a better estimate of ∂xcsp|x=0, and we avoid the oscillations observed on
the dotted lines in Fig. IV.4. Finally, to draw a complete profile of ∂xcsp|x=0 over time,
we repeat this procedure for different values of the constant and uniform phase.

Fig. IV.6 shows specular velocity gradient (approximated from crest and trough ve-
locity measurements) versus time for different degrees of non-linearity. Focusing is always
set at t = 0. Non-linear effects amplify the focusing, leading to a higher ratio ANL

f /AL
f

and thus a lower ratio LNL
f /LL

f . This strengthening of the spatial concentration of energy
is consistent with the higher values of ∂xcsp|x=0 measured in Fig. IV.6 for higher values
k0A

NL
f . The minimum of ∂xcsp|x=0 is reached at t = −|τ | in the linear case, and it is

reached for values of t closer to 0 for non-linear wave packets.
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Figure IV.6: Phase velocity gradient estimated from crest velocities of non-linear GWP,
as a function of time. The non-linear evolution of one-dimensional GWP is approximated
through numerical simulations of the NLSE.

Numerical experiments for k0L
L
f = 10 (not shown here) indicate that the shape of

the non-dimensional profile (k0LL
f )2

ω0
∂xcsp|x=0(t/|τ |) depends both on k0A

L
f and k0L

L
f when

higher-order non-linear effects are accounted for. As we have seen in Sect. 2.3, this profile
was independent of k0A

L
f and k0L

L
f in the linear, narrow-banded case (low enough k0A

L
f

and high enough k0L
L
f ).

We then evaluate the spatial profile of non-linear specular velocity at the time when
the measured gradient ∂xcsp|x=0 reaches a minimum value. This is plotted in Fig. IV.7.
We see that the quasi-quadratic spatial profile of specular velocity from Eq.(IV.6) is not
valid for non-linear wave packets. For weakly non-linear GWP (k0A

NL
f ≤ 0.16), we see

that the gradient at x = 0 is higher than in the linear case. For even higher values of
k0A

NL
f , the spatial scale of variations of csp is too small to estimate its spatial profile based

on measurements of crest velocities which are separated by one wavelength in space.
A theoretical study of phase velocities for weakly non-linear wave fields is given in

section VII of Yuen and Lake (1982). Figures 43, 44 and 45 show the departure from
the linear waves relation cp(k) ∝ k−1/2. For various spectra, the study shows that the
phase velocity ratio cp(k)/cp(k0) is augmented for wavenumbers both above and below the
peak. In our focusing GWP case, shorter waves are in the front (downstream) and longer
waves in the back (upstream), and both phase velocities will be augmented due to non-
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Figure IV.7: Crest velocity of non-linear one-dimensional GWP, as a function of the
space coordinate x. The profile is estimated at the time when the central gradient of
phase velocity is the lowest (see Fig. IV.6). The non-linear evolution of one-dimensional
GWP is approximated through numerical simulations of the NLSE.

linear terms. To conclude this analysis, one would have to use information on the spatial
distribution of wavenumbers in a weakly non-linear focusing wave packet. However, the
study of Yuen and Lake (1982) is a starting point for the theoretical evaluation of the
behaviour shown in Fig. IV.7.

2.5.4 Applying the linear method to weakly non-linear GWPs

Our method relies on fitting ∂xcsp|x=0 as measured with crest and trough velocities to
the simple profile of ∂xcsp|x=0 from Eq.(IV.6). In Sect. 2.5.3 showed that this profile is
modified by higher-order non-linear effects. To apply our method, we also need to be able
to measure ∂xcsp|x=0 based on crest velocity measurements, which can become impossible
for very high values of k0A

NL
f . However, our method should still be applicable to weakly

non-linear GWPs with a small enough amplitude. As we have seen in the previous section,
higher-order non-linear effects on crest velocities seem to be small enough that our method
is likely to provide consistent results when amplitudes are below the approximate threshold
k0A

NL
f ≤ 0.16.
Following this reasoning, we applied our method directly to estimate tf , ANL

f /ANL(t)
and k0L

NL
f over non-linear wave packets with parameters k0L

L
f = 5 and k0A

L
f = 0.13
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(which correspond to k0A
NL
f = 0.16 in our simulations of the NLSE). We repeated this

estimation procedure over several wave packets with different values of the constant and
uniform phase (40 values seemed enough to capture the variability of the results). We
added only a minor change to our method. As in the previous section, we measured
the specular velocity gradient only when a crest or trough was lying close enough to the
center (|x| ≤ 4λ0dt/(2Tp)). This provides fewer points for the estimation of the profile of
∂xcsp|x=0, but these points are of better quality, especially since the oscillations witnessed
in Fig. IV.4 are strengthened by higher-order non-linear effects.

The results of this test can be seen in Fig. IV.8. For values of tend ≤ −23Tp, despite
some variability in the results, most points converge to a satisfying estimation of tf and
very large overestimation of ANL

f /ANL(tend) and underestimation of k0L
NL
f . This inaccu-

racy is much larger than the errors witnessed in Fig. IV.5. This shows that more points
are needed for the linear method to provide acceptable results for weakly non-linear wave
packets than are needed for linear wave packets. For tend ≥ −23Tp, the method converges
to a fairly good estimation of ANL

f /ANL(tend) and k0L
NL
f , while tf is underestimated by a

few wave periods. These results indicate a certain stability of our method with respect to
higher-order non-linear effects, such that consistent results can still be achieved for weakly
non-linear wave packets if enough measurements of crest/trough velocities are provided.

However, as we have seen, our method is not applicable for higher-order non-linear
wave packets above a certain amplitude threshold. This threshold depends on k0L

L
f , and

our simulations show that for k0L
L
f = 5 it is around k0A

NL
f ≈ 0.16. Precise determination

of this threshold requires a more thorough examination. Note that the one-dimensional
NLSE overestimates the increase in amplitude due to non-linear effects compared to more
precise, higher-order evolution equations (Cousins and Sapsis, 2015a). Therefore, one
might underestimate the threshold above which our method is not valid when using nu-
merical simulations of the NLSE.

Above this threshold, generalization of our method is delicate and demands further
study. A natural path would be to use analytical solutions for weakly non-linear GWPs
such as those in Pizzo and Melville (2019). Another possibility would be to use a data-
driven approach to learn how our method should be modified to take into account higher-
order non-linear effects.

To investigate the consequences of such a threshold for real applications of our work in
the ocean, we used the data analysed in Ruju et al. (accepted) for several strong storms,
with Hs values ranging from 5 m to 20 m. With this data, we used the definition of design
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Figure IV.8: Estimation of tf , ANL
f /ANL(t) and k0L

NL
f for non-linear wave packets with

parameters k0A
L
f = 0.13 and k0L

L
f = 5 (k0L

NL
f ≈ 3.2). We use directly the method that

was designed for linear wave packets and we start observing crest velocities at tstart ≈ 30Tp.
True values (objectives) are in full black lines. Estimations are in black dots. Here we
present many estimations coming from simulations of GWPs with different values of the
constant phase. The non-linear evolution of one-dimensional GWPs is approximated
through numerical simulations of the NLSE.
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wave used for offshore structures. This design wave is the largest wave encountered out of
1000 waves, on average, and equals 1.86Hs for linear waves. While maintaining awareness
of the limitations of such an approximation, we use it to find an order of magnitude
of k0Amax, the largest adimensional wave amplitude one would be likely to face in such
storms. By doing so, we found values of k0Amax mostly between 0.1 and 0.22, with a peak
at 0.25. If the aforementioned threshold amounts to about 0.16, these values of k0Amax

indicate that our method could be used for many waves encountered in these storms, but
it would need some modifications to be applicable to the steepest storm waves.

2.6 Conclusion

We have shown that the focusing time, the ratio of amplitude at focus to instantaneous
amplitude, and the width at focus of an isolated GWP can be inferred from the measure-
ment of crest and trough velocities over time near the center of the GWP. Our analytical
derivations assume the linear dispersion of one-dimensional ocean surface gravity waves.
The proposed methodology has been successfully tested over numerically simulated linear
Gaussian wave packets with spectral widths of 0.15, 0.071 and 0.035, therefore proving
relevant in terms of spectral width for dominant waves in storm-like conditions.

The linear approximation breaks down for real surface waves of finite amplitude.
However, this work is still directly applicable to second-order non-linear wave packets.
Analysing the crest/trough velocities of higher-order non-linear GWPs simulated numer-
ically with the NLSE, we found that our method shows a certain stability to higher-order
non-linear effects, and that it becomes inapplicable above a certain amplitude threshold.
The evaluation of this threshold was not performed here and would require a thorough
investigation, as it depends on the spectral width of the GWP. Above this threshold, our
method could be generalized using either approximate analytical models for the evolution
of higher-order non-linear wave packets, or data-driven tools from the machine learning
community.

Still, in many situations the forecasting of rogue waves in moderate seas may be
helpful. This is the case for marine operations at sea or transfer of workers from a ship
to an offshore wind turbine.Our decision to rely solely on crest/trough velocities was
motivated by both the sea surface reconstruction technique using lidar illumination and
the combination of X-band radar images and stereo video cameras.

This study is a starting point to further investigate the applicability of our scheme
to realistic random ocean surface gravity wave fields. First, the interactions between
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different wave packets were not considered here. Such interactions typically happen on
larger time scales than wave packet contraction, and are therefore often put on the back
burner. Secondly, the corrections to be added when taking directionality into account
are an important concern. Directionality affects the higher-order non-linear changes to
wave group contraction, mitigating the amplitude increase and inducing strong changes
in the shape of the wave packet at focus (Adcock et al., 2012). Broadening the range of
application of our approach is vital, as the combination of wave group interactions and
directionality could be responsible for the formation of one of the largest waves measured
at sea (Adcock et al., 2011).

The measurement of crest/trough velocities in short-crested seas is also obviously
a technical challenge. However, to use our method on real wave fields from measure-
ments, one could filter out the high frequencies that contain both instrumental noise,
high frequency wind waves and second-order non-linearities. Since none of those are ei-
ther responsible for or interacting with the long-wave crest velocity behaviour described
in this study, the methodology should be applicable to the filtered measurements. Note
also that wavelength could be used in the same way as crest velocities, as wavelength
is proportional to the square of the velocity for long-crested waves, and wavelength can
be measured approximately from zero down- and up-crossings, which is less sensitive to
high-frequency noise. In this case, the analog of the gradient of crest velocity would be the
gradient of wavelength. This suggested counterpart methodology could be investigated in
further research, but is yet likely to yield other unexpected limitations.

Wave energy dissipation and wind energy input are usually considered negligible for
the forecast horizons considered here, which are inferior to approximately 60 Tp. In fact,
integrated parameters of the wave spectrum such as Hs are usually estimated from data
collected during approximately 100 Tp (e.g. Mitsuyasu et al., 1975). Forecast above this
threshold of ≈ 60Tp is not considered for two reasons. First, instrumental noise makes it
hard to forecast individual waves more than 100 Tp ahead (see the predictability horizon
introduced by Alam, 2014). Second, it is hard to imagine measuring waves more than
60 peak wavelength (≈10 km) away from a ship or an offshore platform using on-board
measurement devices. For now, the spatial horizon of X-band marine radars is limited to
≈2.5km and is even smaller for stereo-video cameras (Benetazzo et al., 2018).

Numerical and wave-tank experiments of Kharif et al. (2008) showed that for large
amplitude waves, wind-wave interactions can both weakly increase the maximum wave
amplitude and noticeably shift the focusing point downstream. This further influence of
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wind would have to be parameterized in addition to the proposed methodology.

Data accessibility

All the data and python scripts used to produce the figures of this article are publicly
available in the following GitHub repository:
https://github.com/PaulPlatzer/Wave_Focusing_Crest_Velocities

3 Summary

� We characterized the focusing or defocusing nature of narrow-banded, Gaussian,
linear ocean wave packets through crest and trough velocities. A focusing wave
packet has faster crests at its front (downstream) and slower crests at its back
(upstream).

� These spatial variations of crest velocity evolve in time according to a profile of which
we give an approximate analytical expression. Observations of crest velocities can
then be fitted to this profile to estimate the time, location, and amplitude of the
wave packet at focus.

� Numerical experiments of linear Gaussian wave packets confirm the applicability
of our methodology. Observing crest velocities during a few wave periods allows
us to estimate the focusing point, time, and relative amplitude within acceptable
confidence intervals.

� We provided analytical arguments for the applicability of our method to second-
order non-linear Gaussian wave packets.

� Numerical experiments of the non-linear Schrödinger equation show a certain ro-
bustness of our method to higher-order non-linear effects. For weakly non-linear
Gaussian wave packets, our methodology is still applicable, although a larger ob-
servation time-window is necessary to obtain acceptable estimations, and we still
witness higher errors than with linear Gaussian wave packets.

� For wave packets with steepness k0A & 0.16, our methodology is no longer appli-
cable, and higher-order non-linear effects must be accounted for. Nonetheless, our
methodology seems to be applicable to a large range of real-world sea-states.
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3. Summary

The influence of wave energy intake and dissipation, local wind, surface currents, wave
group interactions, and directionality was left for further research. A more thorough study
of higher-order non-linear wave effects is necessary. Finally, using a statistical framework
to associate confidence intervals to our estimations would be interesting, as our objective
is to assess the risk of encountering an extreme wave. Both observation and model error
would have to be accounted for.

The methodology described in this chapter is based on physical knowledge of the
motion of the ocean surface. One could also imagine to try to forecast extreme wave, wind
or rain events using statistical tools such as the one presented in Chapter III. However,
using empirical, data-based techniques to forecast extreme events requires to take some
precautions, as empirical methods might be biased in the case of extreme events. For
instance, it is natural to believe that using historical data to forecast future states might
induce a bias towards mean states, which are more represented than extreme events. Also,
when concerned with the forecast of extreme events, one must focus on distribution tails
rather then mean and variance. The next chapter examines the use analog forecasting
strategies for extreme events, gives limitations to the results of Chapter II and III, and
paves the way for future research.
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Chapter V

CAN ANALOGS FORECAST EXTREME

EVENTS?

As now can’t reveal the mystery of tomorrow
But in passing will grow older everyday
Just as all is born is new
Do know what I say is true...

– Stevie Wonder, As

1 Introduction

Heat waves, hurricanes, rogue waves... Extreme events of geophysical systems can have
dramatic consequences, and the motivation for their forecast is obvious. Forecast strate-
gies that are efficient on a regular basis may not succeed in the case of extreme events. In
some cases, one can use special knowledge of the system’s dynamics, such as a physical
description, to forecast especially those extreme events. This was the strategy presented
in Chapter IV. If one is not provided with such a physical model, one may use data-driven
methods such as analog forecasting. Still, mathematical concepts and assumptions are
needed to infer predictive probability distributions of extremal behaviours outside of the
range of observed time series. Special probability theory tools can help to model extreme
events.

Here, we consider heavy-tailed random variables, for which the probability to observe
an extreme event is higher than for light-tailed variables. For example, hourly heavy
rainfall are not normally distributed, and the probability of rare events decreases much
slower than exponential decay. We investigate the following questions:

• Analog forecasting has proven efficient for Gaussian-like random variables. Can it
be applied as it is for heavy-tailed random variables?
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Chapter V – Can analogs forecast extreme events?

• The works of Van Den Dool (1994), Nicolis (1998), and of the second chapter of
this thesis relate the typical analog-to-target distance, the size of the catalog (or
database), and the dimension of the system. Do these tools apply to heavy-tailed
random variables?

To answer these questions, the following strategies and tools are used:

∗ Trajectories of heavy-tailed random variables are generated from a one-dimensional
state-space model. Particle filters allow to estimate the future state and reconstruct
the hidden state. Forecasts from the model equations are compared with analog
forecasts using various catalog sizes.

∗ The numerical experiments of Chapter II are repeated for numerically-generated
samples of a one-dimensional heavy-tailed random variable.

2 Analog forecasting of heavy-tailed random vari-
ables

2.1 Context

There are several ways of defining heavy-tailed probability distributions. Both rigorous
and intuitive definitions can be found in the book of Resnick (2007). For our purpose,
it is enough to say that X is a heavy (right) tailed, positive random variable if its k-th
moment is infinite for some k > 0. Heavy-tailed probability distributions include the
inverse-gamma, Cauchy, Fréchet and Weibull distributions. These last three distributions
arise naturally when considering threshold exceedances of random variables. Also, some
physical quantities of interest have heavy-tailed probability distributions, such as rainfall
in south of France (Taillardat et al., 2019). A detailed Bayesian treatment of rainfall
extremes with a hierarchical spatio-temporal model can also be found in Bacro et al.
(2020). These authors did mainly focus on parameters estimation, but they did neither
investigate forecasting issues nor implement analogs techniques.

The third chapter gave a particular focus on first and second moments of analog fore-
casts. The underlined key assumption was the Gaussian nature of the studied quantities.
In this chapter, we move away from normality and consequently, from first and second
moments to the full analogs distributions. Still, analog forecasting operators may be able
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2. Analog forecasting of heavy-tailed random variables

to handle skewed distributions or multi-modality if they are viewed as empirical distri-
butions, i.e. Dirac sums. The next section presents numerical experiments where analog
forecasting operators are used to make predictions of heavy-tailed random variables.

2.2 One-dimensional toy model

To our knowledge, bridging extreme value theory and analog approaches has never be done
for heavy tailed distributions. In this context, our goal is to study univariate stationary
time series based on “simple” dynamical structures that insure Pareto-distributed obser-
vations. To go further, e.g. studying extreme compound events (see Zscheischler et al.,
2020), one will need to couple multivariate extreme value theory and analog techniques,
a challenging task left for future work.

We consider the following one-dimensional state-space model. Observations Yt are
taken from a latent state Xt. The time t takes integer values, and Xt and Yt are real-
valued one-dimensional random variables.

Xt =Mt(Xt−1) , (V.1a)

Yt = σ
Et

Xt

, (V.1b)

whereMt is a random mapping from Xt−1 to Xt that takes different shapes. In all the ap-
plications presented hereinafter, the observation equation is assumed to be known. For all
the modelsMt considered, the margins of Xt are gamma-distributed, Xt ∼ Ga(ξ−1, ξ−1)
with real-valued parameter ξ. Also, Xt has autocorrelation in time Corr(Xt,Xs) = ρ|s−t|,
with real-valued parameter ρ. All the models M used here are taken from the work of
Wolpert (2016).

From these latent gamma processes are drawn log-linear observations Yt. The latter
is obtained by drawing an independent unit exponential draw, Et ∼ exp(1), divided by
the gamma process. The real-valued parameter σ controls the noise amplitude. The
observation equation (V.1b) implies that Yt follows a generalized Pareto distribution
Yt ∼ GPD(σ, ξ). Large observation values happen for small values of the latent space
variable.

Latent AR1 gamma process :

MAR1
t (Xt−1) = ρXt−1 + ηt , (V.2)
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where ηt is iid and has characteristic function u 7→ Eeiuηt =
[

1−uξ
1−ρuξ

]ξ
. This model

belongs to the class of first-order auto-regressive models.

Latent thinned gamma process :

MTHIN
t (Xt−1) = Bt Xt−1 + ζt , (V.3)

where Bt and ζt are i.i.d. and follow respectively a Beta distribution Bt ∼ Be(ρ/ξ, ρ/ξ)
and a gamma distribution ζt ∼ Ga(ρ/ξ, 1/ξ) with ρ = 1− ρ (Wolpert, 2016).

Latent squared Ornstein-Uhlenbeck gamma diffusion :

MOU
t (Xt−1) = Xt−1 + λ

∫ t

t−1
(Xs − 1)ds+

√
2λξ

∫ t

t−1

√
XsdWs , (V.4)

where integrals are taken in the Itô sense and dW is a Wiener process or Brownian
motion. Here λ = − ln ρ and we have corrected for a forgotten ’1/2’ in Wolpert
(2016). Such integrals correspond to stochastic differential equations that have
unique strong solutions and can be solved numerically using, for instance, a Milstein
method.

Example time series and (t, t + 1) relationships from these models are shown in Fig.
V.1. It can be seen that although Yt and Yt+1 appear to be independent, there is a clear
relationship between Xt and Xt+1, with a different behaviour for each model.

From these models, one would like to estimate the following probability distributions:

dP(X1:t = x1:t |Y1:t = y1:t) , (V.5)

which is the probability density function of latent space reconstruction from past obser-
vations (from time 1 to t), and:

dP(Yt+1 = yt+1 |Y1:t = y1:t) , (V.6)

which is the probability density function for the forecast of the next observation knowing
all past observations. Other types of quantities could be estimated, such as the probability
of exceedance of a threshold for the next observation. However, for a first investigation,
it was chosen to focus on full probability density functions.
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2. Analog forecasting of heavy-tailed random variables

Figure V.1: Top panels: example time series generated from the models (V.2), (V.3)
and (V.4) and observation (V.1b). Middle panels: (t, t + 1) relationship in latent space.
Bottom panels: (t, t+ 1) relationship in observation space. Scale parameter σ = 1, shape
(tail) parameter ξ = 0.2, and correlation ρ = 0.9.
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2.3 Crude analog forecasting with particle filters

One way to estimate the probability distributions (V.5) and (V.6) is to use data assimila-
tion. As the system at hand clearly does not produce normally distributed solutions, the
classical Kalman filter equations cannot be applied. Different techniques to handle non-
Gaussian systems have been proposed (see, e.g., book by Cappé et al., 2006). Particle
filters (Van Leeuwen, 2009) are able to reconstruct probability distributions of any shape,
provided that the number of particles is large enough. Assuming that one knows the
model equation in latent space (V.1a) and the observation equation (V.1b), particle fil-
ters allow to estimate the quantity (V.5), and from samples of the probability distribution
of Xt one can draw samples of Yt+1 using the model state and observational equations.

This classical particle filter strategy can be compared with the same forecast scheme
where the model Mt is replaced by analog forecasting. If one is provided with samples
of latent space variables, i.e. a catalog of latent space C = {xi, i ∈ [1, L]} which follow
the random mapping Mt, then the model equations (V.1a) can be replaced by analog
forecasting operators presented in the third chapter, using the catalog C. One might
argue that assuming to have a catalog of latent-space variables rather than observations
is a strong and somewhat irrelevant hypothesis, but it is taken here as a first step. The
reader is further referred to Chau et al. (2020) for applications of analog forecasting
strategies using a catalog in observation space rather than latent space. In a lighted-tail
context, the authors were able to reconstruct a catalog of latent-space trajectories using
data assimilation schemes, and this catalog of reconstructed latent-space trajectories was
then used to emulateMt.

In our example, particle filters with 100 particles are used to reconstruct the probability
distribution of the latent space variable (V.5) and of the next observation (V.6), for a
sequence of latent space states and observations simulated from the AR1 model (V.2)
and the observation equation (V.1b) with parameters ξ = 0.2 (moderately heavy-tailed,
similar to rainfall variables, Naveau et al. 2016), σ = 1, and ρ = 0.9. Recall that the
observation equation is assumed to be known in all cases. The time-evolution in latent
space is either simulated directly from the “true model” (V.2), or from “misspecified model
1” (V.3) or “misspecified model 2” (V.4), or from analogs, using the locally-constant
operator presented in Chapter III. Each analog forecast is performed using 40 analogs,
drawn either from a “large catalog” of size L = 105, a “medium catalog” of size L = 103,
and a “small catalog” of size L = 40, all simulated from (V.2).

Example forecasts are shown in Fig. V.2. The particle filters with model equations and
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2. Analog forecasting of heavy-tailed random variables

with analogs (large and medium catalogs) seem to be able to trace some of the tendencies
in the observation given by the value of Xt, with quite similar forecast quantiles, both
in latent and observation space. However, due to the multiplicative observational noises,
the particle filters struggle to capture the real state. The analog particle filtering with a
very small catalog (only 40 possible analogs) is unable to reproduce the tendencies of Xt.
Since every analog is used at each forecast (K = L = 40), the variability of the latent
space is overestimated. For these medium values of 1/Xt, it is hard to predict the future
observation Yt, and all forecasts are quite similar.

To compare the efficiency of analog forecasting with model-based forecasting, one can
use the following score:

s (dP̃) = 1
t

t∑
k=1

log dP̃(yk+1) , (V.7)

where dP̃ is the estimated probability density functions implicitly conditional on the past
observations (y1, . . . , yk). A low score corresponds to a high log-likelihood and is therefore
better than a high score. For large t, the difference score between two different estimates
dP̃ converges to the Kullbak-Leibler divergence between the probability density functions
of these estimates.

Fig V.3 shows the behaviour for large t of the difference in forecast score between
the particle filters using either misspecified models or analogs and the reference particle
filter using the true model equations. All scores are close to ≈ 1.6 (not shown), such that
the values of the Kullback-Leibler divergences are quite small, meaning that the scores
are quite similar, using either the true or misspecified model equations, or large or small
catalogs. For small values of t, one of the misspecified models gives better scores than the
good model, and the analog method with medium catalog gives better results than with
a large catalog. However, this changes around t ≈ 20000 and again around t ≈ 95000,
where all scores jump.

These jumps are the result of very large values of Yt (due to large values of 1/Xt), as
can be witnessed in Fig. V.4. For such large values, only the true model equations or the
large catalog are able to trace the system state. Note that 1/Xt is slightly underestimated,
which might be a consequence of the fact that the particle filters track the state 1/Xt and
not its inverse. Performing particle filters using another representation, with state-space
1/Xt and observations log(Yt), might give different results.

It is worth noting that the simulation had to be performed for a very long time before
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Chapter V – Can analogs forecast extreme events?

Figure V.2: Applying the particle filter with 100 particles to reconstruct the latent space
and forecast the next observation. Comparison of the filtering with known model Eq.
(V.1a), or when this equation is replaced by the locally-constant analog forecasting op-
erator in latent space. Catalog sizes are L = 105, 103, 40. Upper panels: 1/Xt. Lower
panels: Yt.
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2. Analog forecasting of heavy-tailed random variables

Figure V.3: Difference of forecast score between several methods, all using particle filters,
and the reference classical particle filtering technique using the real model equation (V.2),
averaged over t forecasts.

reaching such a high value of 1/Xt, and that only then did the true model equations or
the large catalog reveal their usefulness in estimating the next observation. Also, this
experiment shows that these very high observations completely change the average score
of each method, although they are very rare. This behaviour is typical of heavy-tailed
random variables. It shows that one can design a method that seems efficient for “normal”
events and eventually fails when faced with an “extreme” event.

For the sake of brevity, only experiments using the AR1 model were shown, but one
could also have used the other models presented here which have different temporal be-
haviours, and our methodology is not restricted to this very specific AR1 case. Also, one
could have used locally-incremental or locally-linear analog forecasting operators. Numer-
ical experiments (not shown) indicate that these methods allow to increase the variability
of the forecasts compared to the locally-constant, but the forecasts are somewhat incon-
sistent and do not seem to emulate well the models Mt, such that the locally-constant
was the preferred choice in this case.

2.4 Analog-to-target distances

In Chapter II, the theoretical distribution of analog-to-target distances was given. This
theoretical result was based on dynamical systems theory and extreme value theory ap-

163



Chapter V – Can analogs forecast extreme events?

Figure V.4: Same as Fig. V.2 but for large values of the inverse latent state 1/Xt that
cause average scores of different methods to jump (see Fig. V.3 around t ≈ 95000).
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2. Analog forecasting of heavy-tailed random variables

plied to a specific distance observable. However, our result does not seem to be applicable
to the case where the target state is an extreme event.

In particular, we consider the inverse of the state-space variable 1/Xt introduced in
the previous section. As Xt is gamma-distributed with parameters α = β = 5, 1/Xt

follows the inverse-gamma distribution with same parameters, and is thus heavy-tailed.
Then, we search for analogs of a given value of 1/Xt, inside a catalog generated from the
same process.

If the target value is not too high, and one applies the methodology of Fig. II.3 in
Chapter II, one finds similar results, with estimated dimensions around ∼ 1, as shown in
Fig. V.5. The estimation of dimension is independent of the catalog size, and so is the
scaling factor ρ (not to be confused with the time-correlation introduced in this chapter).
The scaling of C ∼ L−1/d is recovered, and the distributions from Eq. (II.11) seem to
apply, even though not perfectly for the case of k = 30 and L = 102, but this can be
explained by the fact that the limit of large catalog is hardly achieved in this case.

Then, one can try to apply this methodology to an extreme event, i.e. a large value of
1/Xt, as shown in Fig. V.6. In this case, the estimation of dimension strongly depends on
catalog size, and so does the scaling factor ρ. For large catalog size L = 104, the estimated
dimension is close to the value of 1, which is consistent with the fact that we are searching
for analogs of a one-dimensional variable. However, estimated values of the scaling factor
are of the order of 200, which indicates that the scaling C ∼ L−1/d is not recovered. The
empirical probability distribution of 1st, 10th and 30th analog-to-target distances seem
to fit the theoretical distributions for d = 1.2, which is the mean of estimated dimensions.
For lower values of the catalog size L = 103, 102, the estimated dimensions are different
from the real dimension (=1), such that there is an “apparent” higher dimension around
such extreme events. The scaling factor exhibits lower values, indicating that the scaling
C ∼ L−1/d is valid if one uses this “apparent” dimension. The empirical probability
distribution of 1st, 10th and 30th analog-to-target distances show behaviours similar to
the theoretical distributions with mean values of estimated dimension and scaling factor,
although this would not be expected since this example is one-dimensional.

This small experiment clearly shows that the theory of Chapter II must be adapted for
probability distributions of analog-to-extreme-event distances. As the scaling C ∝ L−1/d

seems not to be valid for values in the tail of heavy-tailed random variables, the adapted
theory should be able to give the scaling of C with L, d, and possibly parameters of the
tail of the distribution. This adapted theory could build on the work of Holland et al.
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Figure V.5: Applying the methodology of Chapter II to heavy-tailed random variables.
When searching analogs of values that are not in the tail of the distribution, the method-
ology seems to be applicable. In this figure, ρ is the scaling factor introduced in Chapter
II, not the correlation parameter introduced in Chapter 5.
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Figure V.6: Applying the methodology of Chapter II to heavy-tailed random variables.
When searching analogs of values that are in the tail of the distribution, the methodology
seems to fail. In this figure, ρ is the scaling factor introduced in Chapter II, not the
correlation parameter introduced in Chapter 5.
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(2012) and Lucarini et al. (2014) on extreme value theory for “physical” observables of
dynamical systems. Also, the recent work of Caby et al. (2020) on the fractal structure
of extreme values for observables of dynamical systems might help understanding the
behaviour of “apparent” dimension reported in this last section.

2.5 Perspectives

The last section evaluated the performances of a classical analog forecasting operator, in
its simple empirical form, for the forecast of a one-dimensional heavy-tailed random vari-
able. Here, we draw perspectives on how analog forecasting strategies could be adapted
(i.e. building “non-classical” analog forecasting tools) to better estimate the probability
of extreme events.

The analog forecasting strategy used in the last section can be seen as a Monte-Carlo
sampling technique. It is known that the Monte-Carlo estimation of an infinitesimally
small probability demands an infinitely large number of samples (Morio et al., 2014),
which corresponds here to an infinitely large number of analogs. How could the sampling
efficiency of analog methods be improved for rare events?

In practice, one is provided with a limited catalog, such that one is not able to resample,
i.e. to produce new analogs. However, the way the analogs are sampled from the (fixed)
catalog is a matter of choice. Fig V.7 shows schematically, on a two-dimensional example,
how classical sampling based on analog-to-target distance is suboptimal in the context
of extreme events. For a more efficient sampling of analogs, one would like to select
the analogs that contribute to the small probability of encountering an extreme event.
Sampling techniques used to select weights in particle filtering could be tailored at extreme
analogs (see e.g. Toulemonde et al., 2013). However, in this case, the tuning of the weights
becomes very important. In the conventional analog forecasting strategies of Chapter III,
the weights ωk are usually simple decreasing functions of the analog-to-target distance,
that allow to discard analogs that are too far away from the target state. Conversely,
the probability of encountering an extreme event might be entirely determined by these
analogs, so that the precise estimation of the low weights ωk is crucial. It follows from
importance sampling techniques (L’Ecuyer et al., 2009) that these weights should be equal
to the original probability density function of the future state evaluated at the successor’s
position, divided by the number of analogs K. However, the original probability density
function is generally unknown. This indicates that further research is needed to sample
rare events from analogs.
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2. Analog forecasting of heavy-tailed random variables

Figure V.7: A situation where classical sampling of analogs (with respect to distance) is
suboptimal for the forecast of extremes. The two analogs circled in red are not taken into
account if K = 4, while they would have provided relevant information on the probability
of encountering an extreme event.
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Since analog resampling is limited, one can also consider parameterization techniques.
For instance, if the random variables are known to be Gaussian, then the parameters
can be estimated as in Lguensat et al. (2017), which allows to compute the tail of the
distribution. In a more general setting, the tail of the distribution could be estimated
using results from extreme value theory to generalize forecasts outside the catalog of
observed events.

3 Summary

� For heavy-tailed random variables with shape parameter ξ = 0.2, analog forecasting
with a large catalog seems to be able to reproduce model-based forecasts. This can
be attributed to the non-parametric nature of analog methods that allow to estimate
whole probability distributions.

� However, both model-based and analogs-based particle filtering fail in generalizing
above the highest observed state. Thus, more efforts are needed to couple extreme
value theory and particle filters.

� When considering heavy-tailed random variables, analog forecasting with medium-
sized and with large-sized catalogs give similar performances, except for some “out-
liers” (i.e. excursions of the system in the tail of the distribution). Despite the fact
that these outliers are rare, they are the main driver of the difference in average
score between analog forecasts with medium-sized and with large-sized catalogs.
Raising the catalog size allows to better approach these outliers and thus gives a
better averaged forecast score, although it gives similar forecasts most of the time.
This suggests that, to forecat extreme events of heavy-tailed random variables using
classical analog forecasting techniques, the catalog size must be increased beyond
typical values for light-tailed random variables.

� For the heavy (right) tailed, one-dimensional random variables considered here,
the probability distributions of Chapter II hold for moderate values of the random
variable. If one then searches for analogs of higher values of the random variable,
using the same catalog, the distributions no longer hold. In particular, the scaling of
analog-to-target distance with dimension and catalog size is not valid. Furthermore,
the estimated dimension is higher than the real space dimension. This suggests that
the theory of Van Den Dool (1994), Nicolis (1998), and of the second chapter of this
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thesis must be adapted to assess the probability of finding analogs of extreme events,
taking into account tail parameters.
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CONCLUSION AND PERSPECTIVES

Results summary

In this thesis, I contributed to the field of geophysical forecasting, using both data- and
model-based methods, with a particular focus on analogs and large amplitude ocean waves.

In Chapter II, I gave an analytical expression for the probability distributions of
analog-to-target distances. These allow to estimate the probability to find good analogs
of a given state for a given dynamical system. The proposed method is based on the local
dimension and the size of the catalog in which analogs are sought for. I showed how these
probability distributions can be useful to any analog method. In particular, the variability
of analog-to-target distances appears to be a decreasing function of the dimension. Con-
sequently, in high dimensional problems the best analogs of a given point are “all as good
as each other”, while in low dimensions the first-best analog is likely to be much “better”
than the, say, 30th-best analog. These results are a direct consequence of recent works
combining dynamical systems and extreme value theory. Tests on numerical simulations
of the three-dimensional Lorenz system and on wind maps from a physical model confirm
the applicability of our analytical probability distributions to real geophysical data.

In Chapter III, I gave an interpretation of analog forecasting errors using the flow of
the system. This interpretation aims at bridging data-based analog forecasting and model-
based forecasts. Mean analog forecasting errors were shown to be linear in the analog-
to-initial state distance, and quadratic for analog methods that make use of local linear
regressions (i.e., using a locally-linear operator). It was shown that these linear regressions
actually estimate the Jacobian matrix of the real system’s flow map. I interpreted the
locally-constant and locally-incremental operators as particular cases of the locally-linear
operator, when the flow at a given time is either constant in phase-space, or equal to the
identity flow. This explains the accuracy of the locally-incremental at small lead times.
These analytical results were confirmed by numerical experiments of well-known chaotic
dynamical systems. The robustness of such results to additive noise was also examined
theoretically and numerically, justifying the use of a larger number of analogs to mitigate
the influence of noise. The possible advantage of splitting a forecast into multiple analog
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forecasts was lastly examined, showing promising preliminary results when analogs are
combined with a linear regression.

In Chapter IV, I focused on large-amplitude ocean waves called “rogue waves” that
are a threat to ships and offshore structures. A model-based method for the forecast of
such waves was presented. I showed that the future highest waves could be forecasted
using crest velocities rather than entire wave fields. This would give an advantage in
terms of computation time, by focusing only on the largest waves. However, the esti-
mation of crest velocities from present state-of-the-art wave measurement techniques is
still a challenge. Our analytical derivations give profiles of crest velocities assuming linear
ocean waves, narrow-banded wave spectra and Gaussian wave packets. These results were
confirmed by numerical experiments of linear waves, and a method to forecast the posi-
tion and amplitude of the focused wave packet was tested. Limitations due to non-linear
wave interactions were examined in numerical simulations of the non-linear Schrödinger
equation.

In Chapter V, I tackled the issue of extreme events forecast from purely empirical
analog methods. A one-dimensional toy model with heavy-tailed random variables was
built, on which analog methods were tested in combination with particle filtering tech-
niques. For random variables with a moderately high tail index, analog forecasts reached
the efficiency of model-based forecasts. The size of the catalog needed to find analogs of
extreme events appeared to be higher than expected from the results of Chapter II. This
calls for an adaptation of the theory of Chapter II for analog-to-extreme event distances,
accounting for tail parameters of the distribution.

Perspectives

Analogs of extreme events
In Chapter V, I said that the theoretical description of Chapter II must be adapted to

account for rare events. I have derived such an adaptation for one-dimensional random
variables with continuous probability densities. In this case, the scale factor ρ of Chapter
II depends on the value of the probability density function evaluated at the target state.
For events in the tail of heavy-tailed random variables, this factor becomes large. Further
work is needed to confirm these results in numerical experiments. Moreover, it remains to
explain theoretically the effect of high apparent dimension in the case of extreme events
and small catalog size, that was reported in Chapter V.
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Analog forecasting uncertainties
In Chapter III, I focused more on average forecasts than forecast covariances, or in a

broader sense forecast uncertainty quantification. Yet, the latter is a fundamental aspect
of analog forecasting. As stated in Chapter I, analogs are commonly used to produce
ensemble forecasts. Even in the pioneering work of Lorenz (1969), analogs were not used
to produce forecasts, but to estimate predictability. Atencia and Zawadzki (2017) show
that analog ensembles have interesting dynamical properties.

In a formalism similar to the one of Chapter III, I would like to relate three types
of uncertainties. The first one is the forecast error, which is the difference between the
forecast given by analogs (i.e., for instance, an average over the successors) and the true
future state, assuming again that the flow is deterministic. The second type of uncertainty
is the empirical uncertainty estimate that is part of the forecast process (e.g., the covari-
ance of the sucessors). The third type of uncertainty is the variability of the forecasting
process, which, in the case of a deterministic flow, is a function of the realization of the
catalog. Assuming that the catalog is a fixed-length trajectory in phase-space, the catalog
is a random variable which depends on the initial point of this trajectory. A particular
realization of the catalog is then given by the choice of such an initial point, and this
determines the analogs of any given target point. For instance, this variability due to the
realization is expressed in the probability distributions of Chapter II.

Limiting behaviour of analog sampling of stochastic processes
In Chapter III, only deterministic dynamics were considered. On the other hand, in

Chapter V, analogs were used to emulate the stochastic model equation of the latent-space
variable, which was a Markov process. In this case, the objective of analog forecasting
is no longer to be as close as possible to the true future state, but to sample the future
state which is inherently a random variable. One can wonder if analog sampling converges
to optimal sampling of the initial process in the case of infinitely large catalog. Let us
consider the following example.

Assume that Xt is a stochastic Markov process defined by the following discrete-time
equation:

Xt+1 = φ (Xt) + ηt ,

where φ is a deterministic function, and ηt is an i.i.d. additive noise. Then, assume that
analogs Ak

t of Xt are taken from a catalog, and that the successors are defined by another
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discrete-time equation:

Ak
t+1 = φ̃

(
Ak
t − εkt

)
+ η̃kt + εkt+1 , (V.8)

where φ̃ is another deterministic function, and η̃t and εkt are i.i.d. additive noises. φ̃

represents a difference in dynamics between the analogs and the real process Xt. η̃t

represents a difference in stochasticity between the analogs and the real process Xt. εkt
represents an observational noise. Note that, as in Chapter III, I assume noisy but full
observations.

Then, assume that the analogs are chosen from the catalog such that

Ak+1
t = argminC\{A1

t , ...,Ak
t} (‖A− Xt‖) ,

where C is a catalog generated by iterative applications of Eq. (V.8) from a given initial
condition. Analogs are thus minimizers of the distance to Xt. Defining the random
variable rk = ‖Ak

t − Xt‖, the results of Chapter II allow to estimate the probability
distribution of this random variable (which have to be slightly modified for the case of
extreme events).

Then, the analog sampling X̃t of the real process Xt is given by applying iteratively
one of the analog forecasting operators of Chapter III in their multinomial form. Using
similar developments as in Chapter III, and under reasonable hypothesis, we should find
that:

lim
(φ̃,η̃,ε)→(φ,η,0)

dP(X̃t) = dP(Xt) ,

such that the analog sampling converges to the original sampling. It would be interesting
to study the rate of convergence, and to look at numerical examples. Also, the case of
finite, non-zero observational noise ε 6= 0 should be considered more precisely, to see if
analog sampling can still optimally reconstruct the original stochastic process in some
sense, and under which hypotheses.

Long-term properties of iterative stochastic analog forecasts
In Chapter III, I focused on what happens to iterative deterministic analog forecasts

of a deterministic system. In the previous paragraph, I focused on stochastic analog sam-
pling of a stochastic process. In another research project, I would like to study iterative
stochastic analog forecasts of a deterministic system. This is what is done by Yiou (2014)
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for atmospheric circulation. I would like to relate the long-term properties of iterative
stochastic analog forecasts of deterministic chaotic dynamical systems. The relationship
between these long-term analog-based stochastic trajectories and the properties of the
original deterministic system would allow to better understand how analog ensemble fore-
casts of deterministic systems work. The experiments of Yiou (2014) could be repeated
in a similar form, but this time on well-known dynamical systems.

Analogs for partial observations
A key aspect of analog forecasting that I did not tackle yet is the case of partial

observations. It is essential because it is a very common situation in real applications.
Indeed, partial observation data are usually not provided with a physical model for the
time evolution of the system state, and therefore analog methods can prove useful. Many
works cited in Chapter I make use of Takens embeddings to build an injective mapping
from feature space to phase-space, and then use analog forecasting techniques. In this
case, can the formalism of Chapter III be used? What would the Jacobian matrix look
like? I have no answer to these questions yet. It is likely that using another framework,
like the one of Alexander and Giannakis (2020), is the best solution in this case.

Applications
In my thesis, I applied analog forecasting mostly to numerical solutions of idealized

dynamical systems. I would like to further apply analog forecasting to real-world cases.
In particular, a project on the wind data used in Chapter II is under way. Also, the
preliminary results of analog forecasts of ocean waves from point-measurements shown
in Chapter III should be continued, with a deeper focus on rogue waves. To my knowl-
edge, the forecast of individual rogue waves from measurements using data assimilation
techniques has not been reported in the literature. Using data assimilation to combine
different sources of observations (e.g., X-band radar, wave buoys, stereo-video camera) to
perform forecasts of rogue waves, possibly combining the methods of Chapter IV and V
would be interesting. Finally, applying the methodology of Chapter V to real rain data is
a necessary step towards rain forecasts from analogs, since the study of Taillardat et al.
(2019) shows that there is room for improvement on the matter.
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APPENDIX

Lorenz systems

The three-variable "L63" Lorenz (1963) system of equations is:



dx1

dt = σ(x2 − x1) ,

dx2

dt = x1(ρ− x3)− x2 ,

dx3

dt = x1x2 − βx3 ,

(V.9)

with usual parameters σ = 10, β = 8/3 and ρ = 28.
The n-variable "L96" Lorenz (1996) system of equations is:

∀i ∈ [1, n] , dxi
dt = −(xi−2 + xi+1)xi−1 − xi + θ , (V.10)

where θ is the forcing parameter. We set n = 8, θ = 8, and use periodic boundary
conditions xi+n = xi.

Product of Hessian with vectors

Let g a vector-valued, phase-space-dependant function g : Rn → Rn such as Φt or f .
The Hessian of g at x is noted ∇2g|x. It is of dimension n3 and its (i, j, k)-th coefficient[

∇2g|x
]
i,j,k

equals ∂2gk
∂xi∂xj

(x). The product of a Hessian ∇2g|x with a n-dimensional

vector y is a matrix and its (i, k)-th coefficient
[
y∇2g|x

]
i,k

equals ∑j yj
∂2gk
∂xi∂xj

. The
double-product of a Hessian with two n-dimensional vectors y and z is a vector and its
k-th coefficient

[
y(∇2g|x)zT

]
k
equals ∑i,j yjzi

∂2gk
∂xi∂xj

. The double product of a Hessian

∇2g|x with two matrices X and Y of same shape K × n is a matrix of shape k × n and
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its (k, j)-th coefficient is ∑l,mXk,lYk,m
∂2gj

∂xl∂xm
.
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POSTFACE

Je voudrais qu’à ma mort, avant de dire “c’était un grand artiste”, les gens
disent “il nous a apporté telle chose, il a fait telle chose de bien”. Ça me paraît
beaucoup plus important que de dire “oh, qu’est-ce qu’il chantait bien!”.

– Kery James, Interview Street Press (Octobre 2019)

Au commencement de ma thèse, j’avais l’esprit plein d’idées reçues, de certitudes
plates mais rassurantes. Je voyais la recherche scientifique comme une entreprise désin-
téressée d’approfondissement de la connaissance, dont le but était d’apporter des outils
de compréhension et de maîtrise à l’humanité. Je ne vais pas retracer ici l’ensemble des
évènements personnels qui m’ont conduit à changer d’opinion. Je ne vais pas, non plus,
faire un exposé détaillé en faveur des positions que je défends aujourd’hui. Mais je tiens
à donner quelques pistes pour des personnes qui se trouveraient face aux mêmes types
de questionnements que ceux j’ai rencontré. Puisse une âme perdue (en plein doctorat?)
trouver ici des débuts de réponses à ses questions.

Les sciences des données vont-elles sauver la planète ? Jérémy et moi avons tenté de
donner notre opinion à ce sujet dans une tribune1. En allant plus loin, on peut même
se demander si les sciences du climat sauveront le climat ? Si la parole des scientifiques
du climat est importante, il est nécessaire de se détacher d’une vision simpliste dans
laquelle les scientifiques du climat seraient des lanceurs d’alertes, sauveurs de l’humanité.
Je recommande la lecture de “L’Évènement Anthropocène” de Christophe Bonneuil et
Jean-Baptiste Fressoz, qui permet de prendre du recul par rapport au discours des “an-
thropocénologues”. Comprendre l’histoire des alertes environnementales, de leur déni, et
des mécanismes sociaux, techniques, économiques et idéologiques qui nous ont amené où
nous sommes aujourd’hui, est une étape essentielle pour faire face aux ravages écologiques.

De manière plus générale, on peut s’interroger sur les sciences de la nature, et leur
prétendue neutralité. Un texte de l’hebdomadaire lundi matin2 y réfléchit. À la lecture

1. “Le big data ne sauvera pas la planète”, Libération, publié le 15 octobre 2019.
2. https://lundi.am/Scientifiques-de-la-nature-vous-etes-des-sujets-politiques
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d’une histoire des sciences et des savoirs3, l’idée d’une science neutre paraît naïve, tant
l’imbrication historique entre science, gouvernance, et guerre, y apparaît évidente. Dans
Les enjeux politiques de la science4, John Stewart montre que même la méthode scien-
tifique n’est pas neutre, en tant qu’elle répond d’abord à un recherche de puissance et
de maîtrise. La science s’accompagne également d’une idéologie, le scientisme, vivement
critiquée5.

Peut-on changer le monde de la recherche de l’intérieur ? S’il est toujours possible de se
battre pour de meilleures conditions de travail et moins de concurrence, de porter les voix
des travailleuses et travailleurs6, il semblerait qu’un changement en profondeur soit quasi
impossible. C’est pourquoi certains appellent à déserter la recherche scientifique7, comme
d’autres désertent le milieu bancaire8. La question de continuer, ou non, la recherche
scientifique, n’est pas nouvelle9 et continue de traverser le champ universitaire10.

Ma thèse est en lien, bien qu’assez indirect, avec le développement d’infrastructures de
captation d’énergies renouvelables. On peut également se demander si ces infrastructures
nous sauveront du problème climatique ? L’idée d’une transition énergétique, et même
l’idée d’une transition tout court11, pourraît bien être un piège dans lequel les écologistes
feraient mieux de ne pas tomber. De même, les énergies renouvelables ne doivent pas à
mon avis être vues comme une “solution”, mais comme de nouvelles technologies reposant
sur des infrastructures techniques, énergétiques, et sociales, qu’il s’agit d’analyser pour
comprendre leurs potentiels et leurs limites.

La lecture de ces quelques paragraphes pourraît donner une impression pessimiste,
voire défaitiste à l’égard de la science. Au contraire, toutes ces critiques de l’intérieur,
toutes ces réflexions sur les sciences et les techniques sont porteuses d’un autre regard

3. Histoire des sciences et des savoirs, sous la direction de Dominique Pestre. Bien qu’un peu hardus
pour des non-spécialistes, les trois tomes sont intéressants pour comprendre d’où l’on vient en tant que
scientifique.

4. Impascience, n◦1, disponible sur http://science-societe.fr/.
5. La Nouvelle Église Universelle, A. Grothendieck, Survivre & Vivre n◦9, dispo sur http://

science-societe.fr/
6. Voir Lucioles http://indiscipline.fr/lucioles-numero-2/.
7. https://lundi.am/Avis-aux-chercheurs-aux-professeurs-aux-ingenieurs
8. Faire sauter la banque, Jérémy Désir, éditions Divergences
9. https://www.cairn.info/revue-ecologie-et-politique-2016-1-page-159.htm

10. https://ecopolien.hypotheses.org/seminaires-debats/seminaire-debat-allons-nous-continuer-la-
recherche-scientifique
11. Voir le livre Écologie sans transition du collectif Désobéissance Écolo Paris, éditions Divergences.
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sur les savoirs, d’un autre rapport au monde qui constitue, à mon sens, le germe d’une
transformation nécessaire. Les initiatives telles que les ateliers d’écologie politique12

fleurissent partout. L’histoire de l’auto-critique de la science est riche (Survivre et Vivre,
Labo Contestation, Impascience). Le monde universitaire est aussi un espace de lutte,
d’organisation du rapport de force social, comme en témoignent les récentes mobilisations
contre la LPPR, et de nombreuses autre initiatives13. Les scientifiques peuvent tout à fait
aider l’humanité, tant qu’ils se posent les bonnes questions...

12. À Toulouse https://atecopol.hypotheses.org, à Paris https://ecopolien.hypotheses.
org, à Grenoble https://campus1point5grenoble.org/?page_id=132, à Rennes https://epolar.
hypotheses.org/, et bientôt à Brest ?
13. http://science-societe.fr/appel-a-une-occupation-numerique-dans-lenseignement-superieur-et-la-

recherche-les-1er-et-2-fevrier-2020, par exemple.
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Titre : Prévision par analogues de systèmes dynamiques : application à des variables géophy-
siques et aux vagues océaniques

Mot clés : prévision, analogues, systèmes dynamiques, geophysique, vagues, extrêmes

Résumé : La variété des méthodes de pré-
vision des variables géophysiques va crois-
sante. Il est donc essentiel de comprendre
les propriétés, les avantages et les limites de
chaque méthode. Nous étudions les “analo-
gues”, utilisés en météorologie depuis plus de
60 ans. La probabilité de trouver de bons ana-
logues est exprimée via des distributions de
probabilité de distances d’analogues, dont la
forme analytique est obtenue pour les sys-
tèmes dynamiques ergodiques. L’application
aux données de vent à dix mètres montre
que les premières distances d’analogues sont
très similaires, ce qui n’est pas le cas pour
les systèmes de faible dimension. Ensuite,
nous comparons l’efficacité de plusieurs mé-
thodes de prévision par analogues, en re-

liant les erreurs de prévision au flot du sys-
tème. L’influence du bruit d’observation sur les
prévisions par analogues est étudiée théori-
quement et numériquement, justifiant l’utilisa-
tion d’un grand nombre d’analogues pour at-
ténuer l’effet du bruit. L’applicabilité des prévi-
sions par analogues aux variables aléatoires
à queue lourde est testée numériquement
sur un modèle espace-état, montrant la né-
cessité de disposer d’un plus grand nombre
de données pour prévoir les événements ex-
trêmes. Enfin, un modèle physique de prévi-
sion des vagues océaniques extrêmes est pro-
posé. Celui-ci est basé uniquement sur des
mesures de vitesse de crête, afin de simplifier
la prévision.

Title: Forecasts of dynamical systems from analogs: applications to geophysical variables with
a focus on ocean waves

Keywords: forecast, analogs, dynamical systems, geophysical, ocean waves, extremes

Abstract: The variety of forecasting meth-
ods for geophysical variables is increasing.
Therefore, understanding the properties, ad-
vantages and limitations of each method is
crucial. We focus on “analogs” which have
been used in meteorology for more than 60
years. The probability to find good analogs
is expressed through closed-form probability
distributions of analog-to-target distances, de-
rived for ergodic dynamical systems. Ap-
plication to 10 m-wind data shows that the
first analog-to-target distances are very simi-
lar, which is not the case for low-dimensional
systems. Then, we compare the efficiency of
several analog forecasting methods, by link-

ing analog forecasting errors to the flow map
of the system. The influence of observational
noise on analog forecasts is studied theoret-
ically and numerically, justifying the use of a
large number of analogs to mitigate the effect
of noise. The applicability of analog forecasts
to heavy-tailed random variables is tested nu-
merically on a state-space model, witnessing
the need for a larger amount of data to fore-
cast extreme events. Finally, a physics-based
methodology is proposed to forecast extreme
ocean waves, using only crest velocity mea-
surements in order to simplify the forecasting
process.
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