Skip to Main content Skip to Navigation
Theses

A sharp interface method for low Mach two-phase flows with phase change

Abstract : A sharp interface approach is presented for computing two-phase flows with surface tension and phase change in low Mach regime. To develop such a model, where slight compressible effects are taken into account as well as correct thermodynamical closures, both the liquid and the gas are considered compressible and described by a precise compressible solver. This compressible solver adopt a splitting technique called "acoustic-transport splitting" which splits the Euler system into two parts: acoustic and transport. Based on the acoustic subsystem, an approximate Riemann solver that accounts for surface tension and phase change effects is developed. The interface between two-phase flows is captured by the Level Set method that is considered to be sharp. The interface capturing issue of the Level Set method within the Eulerian framework is the key point of the two-phase flow simulations, and in this work we propose and adopt high-order approaches for interface advection, redistancing and curvature estimation. In low Mach regime, conventional compressible solvers lose accuracy and a low Mach correction is then necessary to reduce the numerical dissipation. For a sharp interface method, the interface is treated as the shock-wave contact discontinuity via the Ghost Fluid method. Without a smooth region at the interface, such discontinuity existing at the interface presents a huge challenge to the design of a numerical scheme. The well-known low Mach fix in literature could lead to significant truncation error, especially for two-phase flows with large density and sound speed ratios. To recover a good asymptotic-preserving property, we propose a new low Mach correction with rigorous asymptotic analysis. Several numerical test cases have been employed to validate the present numerical approach and enlighten its good performance.
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-03178310
Contributor : Abes Star :  Contact
Submitted on : Tuesday, March 23, 2021 - 4:52:20 PM
Last modification on : Tuesday, January 4, 2022 - 6:04:10 AM

File

93308_ZOU_2020_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-03178310, version 1

Citation

Ziqiang Zou. A sharp interface method for low Mach two-phase flows with phase change. Fluid mechanics [physics.class-ph]. Université Paris-Saclay, 2020. English. ⟨NNT : 2020UPAST057⟩. ⟨tel-03178310⟩

Share

Metrics

Les métriques sont temporairement indisponibles