Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Theses

Nano-ions in interaction with non-ionic surfactant self-assemblies

Abstract : Nanometer-sized ions (nano-ions), such as ionic boron clusters, polyoxometalates (POMs) and large organic ions, have spawned remarkable interest in recent years due to their ability to adsorb or bind to electrically neutral chemical systems, such as macrocyclic host molecules, colloidal nano-particles, surfactants and polymers etc. The underlying adsorption or binding processes were shown to be driven by a solvent-mediated phenomenon, the chaotropic effect, which drives the nano-ion from the water bulk towards an interface. Thus, hydration water of the ion and the interface is released into the bulk resulting in a bulk water structure recovery. This effect is particularly strong for nano-ions. Therefore, they were termed superchaotropic or hydrophobic ions as an extension to classical (weakly) chaotropic ions such as SCN-. All commonly studied superchaotropes, though chemically diverse, share physical characteristics such as low charge density and high polarizability. Herein, the effects of nano-ions on ethoxylated non-ionic surfactant self-assemblies, micellar and bilayer phases, are elucidated to draw conclusions on their chaotropic and/or hydrophobic nature. By combining small angle scattering of neutrons and x-rays (SANS and SAXS), and phase diagrams, non-ionic surfactant/nano-ion systems are examined and compared, from the nanometer to the macroscopic scale. Thus, all studied nano-ions are found to induce a charging of the surfactant assemblies along with a dehydration of the non-ionic surfactant head groups. Furthermore, chaotropic and hydrophobic ions differ in their effects on the micellar shape. Superchaotropic ions drive the elongated non-ionic surfactant micelles towards spherical micelles (increase in curvature), whereas hydrophobic ions cause a transition towards bilayer phases (decrease in curvature). It is concluded that superchaotropic nano-ions act like ionic surfactants because their addition to non-ionic surfactant systems causes a charging effect. However, nano-ions and ionic surfactants are fundamentally different by their association with the non-ionic surfactant assembly. The nano-ion adsorbs to the non-ionic surfactant heads by the chaotropic effect, while the ionic surfactant anchors into the micelles between the non-ionic surfactant tails by the hydrophobic effect. The comparison of the effects of adding nano-ions or ionic surfactant to non-ionic surfactant was further investigated on foams. The foams were investigated regarding foam film thickness, drainage over time and stability, respectively using SANS, image analysis and conductometry. The tested superchaotropic POM (SiW12O404-, SiW) does not foam in water in contrast to the classical ionic surfactant SDS. Nevertheless, addition of small amounts of SiW or SDS to a non-ionic surfactant foaming solution resulted in wetter foams with longer lifetimes. Meanwhile, the foam film thickness (determined in SANS) is increased due to the electric charging of the non-ionic surfactant monolayers in the foam film. It is concluded that the remarkable behavior of nano-ions – herein on non-ionic surfactant systems – can be extended to colloidal systems, such as foams, polymers, proteins or nanoparticles. This thesis demonstrates that the superchaotropic behavior of nano-ions is a versatile tool to be used in novel formulations of soft matter materials and applications.
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-03173636
Contributor : ABES STAR :  Contact
Submitted on : Thursday, March 18, 2021 - 3:44:41 PM
Last modification on : Tuesday, July 5, 2022 - 10:32:28 AM
Long-term archiving on: : Monday, June 21, 2021 - 8:56:41 AM

File

HOHENSCHUTZ_2020_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-03173636, version 1

Citation

Max Hohenschutz. Nano-ions in interaction with non-ionic surfactant self-assemblies. Other. Université Montpellier, 2020. English. ⟨NNT : 2020MONTS064⟩. ⟨tel-03173636⟩

Share

Metrics

Record views

198

Files downloads

181