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CONTEXTE ET ORGANISATION DE LA

THÈSE

Motivation

L’objectif de cette thèse est de développer des lois de commande pour les systèmes à retard avec
retards longs inconnus ou incertains. L’idée principale est d’estimer les retards et de stabiliser le
système avec une méthode de commande prédictive. Le retard est un phénomène largement présent
dans le monde physique, comme par exemple dans:

— systèmes hydrauliques (Fridman 2014a, Chapitre 1.1.1);
— systèmes biochimiques (Schell and Ross 1986);
— systèmes pneumatiques (F. Yang et al. 2017).

La deuxième source de retard est la transmission des données. Les systèmes commandés à distance
(remote control systems, Remote Control System (RCS)) et les systèmes commandés en réseau
(networked control systems, Networked Control System (NCS)) sont aujourd’hui de plus en plus
utilisés. Dans ces syst‘emes, les capteurs, les contrôleurs, et les actionneurs ne sont plus connectés
physiquement et des retards apparaissent à cause des canaux de transmission sans fil.
La troisième source de retard est le temps de calcul des systèmes complexes. Par exemple, le véhicule
autonome (Furgale et al. 2013) utilise les techniques de reconstruction 3D pour générer des cartes et
éviter les obstacles, mais la complexité de calcul de ces algorithmes est grande et nécessite beaucoup
de temps de calcul. Par conséquent, ce type de retard est généralement plus long que les deux autres
types des retards (de l’ordre de plusieurs dizaines de millisecondes).
De nombreux systèmes de commande contiennent plusieurs types de retards différents. Les travaux
de (Zhan, Du, and Fei 2017; Du, C. Zhang, et al. 2019) détaillés ci-dessous illustrent les différents
types de retards:
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Contexte et organisation de la thèse

Sur la platforme de (Zhan, Du, and Fei 2017; Du, Wangpei Li, et al. 2016), les mouvements
du pendule inverse et du chariot sont mesurés par une caméra industrielle Aca640-120gm, les
états du système sont estimés par l’algorithme de traitement d’image basé sur Microsoft Visual
Studio 2010 et OpenCV 2.4.11. Les informations sont transférées au contrôleur en réseau et
sont utilisées pour calculer la loi de commande. Finalement, le signal de commande est envoyé
à la carte de commande de mouvement GT-400-SV-PCI en réseau. Enfin, la commande est
appliquée à un driver MSDA023A1A qui actionne le chariot pour stabiliser le pendule.

Asservissement visuel d’un pendule inverse commandé en réseau

Les retards suivants apparaissent donc sur la platforme de (Zhan, Du, and Fei 2017; Du, C. Zhang,
et al. 2019):

1. Retards physiques: le temps d’exposition de la caméra industrielle et le temps d’actionnement
du driver du moteur (presque négligeable);

2. Retards de transmission: les retards introduits par le réseau entre le capteur, le contrôleur
et l’actionneur (quelques millisecondes);

3. Retards de calcul: le temps de calcul de l’algorithme de traitement d’image (environ 20
ms) et le temps de calcul du contrôleur (presque négligeable).

Les discussions ci-dessus expliquent que le retard est un phénomène commun dans les systèmes
réels. De plus, le retard peut affecter les performances du système, il est une source d’instabilité
qui doit être compensée (Fridman 2014a, p.vii). En outre, si les retards sont longs, les techniques
conventionnelles ne peuvent plus stabiliser les systèmes à retard. Par conséquent, le premier objectif
de la thèse est formulé ainsi:
Premier objectif de la thèse: Développer des lois de commande qui stabilise les systèmes
avec retards longs (retards constants ou variants dans le temps).
La commande prédictive est une solution qui compense les retards arbitrairement longs, mais les
valeurs des retards et des paramètres du système doivent être connues à priori. Dans les systèmes
réels, les retards sont souvent incertains ou inconnus ce qui rend la stratégie de commande plus
difficile. Pour résoudre ces problèmes, le deuxième objectif de la thèse est proposé ci-dessous:
Deuxième objectif de la thèse: Développer les techniques d’estimation du retard qui
peuvent estimer les retards constants ou variants.
En conclusion, après avoir considéré les deux objectifs mentionnés précédemment, l’objectif général
de la thèse est:
Objectif général de la thése: Construire les lois de commande pour les systèmes avec
retards longs, inconnus ou incertains en utilisant des techniques d’estimation du retard
et la commande prédictive.
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Selon les différents types des systèmes et de retards, les trois cas suivant seront analysés dans la
thèse:

— Systèmes continus avec retards inconnus et constants;
— Systèmes commandés à distance avec retards inconnus et variants;
— Systèmes commandés en réseau avec retards variants et incertains.

Organisation de la thèse

Dans les Chapitres 1-3, les lois de commande des trois types de systèmes sont analysées,
l’organisation de chaque chapitre est détaillée ci-dessous:

— Chapitre 1 propose un nouvel algorithme d’estimation du retard pour des systèmes avec
retards constants et inconnus. L’algorithme utilise l’historique du signal de commande pour
estimer les retards, il est toujours croissant et inférieur au retard constant inconnu (la condi-
tion initiale est plus petite que le retard). Lorsque l’erreur est suffisamment petite, la stabilité
en boucle fermée est assurée. Dans les sous-sections 1.2.2-1.2.4, trois estimateurs de retard
basés sur cette idée sont introduits pour stabiliser le système avec un seul retard sur l’entrée.
Un observateur de Luenberger est utilisé dans sous-section 1.2.5 pour la commande des sys-
tèmes avec retards sur l’entrée et la sortie et pour lesquels tout l’état n’est pas mesuré. Enfin,
des simulations illustrent les performances des méthodes proposées et il est montré que les
estimateurs de retard proposés sont robustes par rapport aux incertitudes du modèle.

— Dans le Chapitre 2, l’estimation de retard et la commande prédictive pour les systèmes com-
mandés à distance sont développées. Les retards variants sont estimés de manière pratique:
une boucle de communication spécifique est utilisée pour estimer le retard, et le système est
stabilisé par une commande prédictive. L’algorithme d’estimation de retard est basé sur les
méthodes de mode glissants d’ordres 1 et 2, et la convergence en temps fini est assurée. Il
a été montré que les retards variants sont correctement estimés expérimentalement sur un
réseau WiFi et que la méthode est robuste par rapport aux bruits et aux cyber-attaques
notamment. Enfin, les preuves démontrent que la combinaison de la commande prédictive et
l’estimation du retard pratique peuvent stabiliser le système. Les contraintes sur la variation
du retard de sortie sont assez faibles et la stabilité est préservée si le retard d’entrée varie
suffisamment lentement.

— L’objectif du Chapitre 3 est la commande prédictive basée sur la méthode discrète pour les
systèmes commandés en réseau. Dans ce type de système, le retard capteur-contrôleur peut
être directement mesuré à l’aide de la synchronisation d’horloge, et le retard contrôleur-
actionneur est considéré incertain. En effet, grâce à la modélisation discrète, la méthode
proposée peut compenser les retards longs et variants, et compenser les ré-ordonnancements
de paquets dans le canal capteur-contrôleur. Un autre avantage de cette méthode est la
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possibilité d’avoir une période d’échantillonnage plus longue. Finalement, cette méthode est
validée sur une maquette asservissement visuel de pendule inverse commandée en réseau
(Zhan, Du, and Fei 2017; Du, C. Zhang, et al. 2019). Les performances sont meilleures que
les méthodes de commande non-prédictives.
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Motivation

This thesis is devoted to the predictor-based control and delay estimation of time-delay sys-
tems (Time-delay System (TDS)). Time-delay is a widely-found physical phenomenon in many real
systems, including but not limited to:

— hydraulic systems (Fridman 2014a, Chapter 1.1.1);
— bio-chemical systems (Schell and Ross 1986);
— pneumatic systems (F. Yang et al. 2017).

In recent decades, with the development of telecommunication and network, remote control systems
(S.-H. Yang 2011) (RCS) and networked control systems (X.-M. Zhang, Han, and Yu 2015) (NCS)
have attracted the attention of the control community. In such systems, the components (sensors,
controllers, and actuators) are no longer directly connected to each other, they communicate through
wireless communication. As a result of data transmissions, communication protocols, and network
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congestions, RCS and NCS are subject to the communication latencies called “transmission delay”
or “network-induced delays”.
Computation time is another source of time-delay, since more and more control systems deal with
complex objectives (e.g. self-driving car (Furgale et al. 2013), networked visual servo robot (H.
Wu et al. 2012), networked visual servo inverted pendulum (Du, C. Zhang, et al. 2019)). In such
systems, the controller designs include complex computations (e.g. 3D reconstruction and online
map generation in (Furgale et al. 2013), image-processing algorithm in (H. Wu et al. 2012; Du, C.
Zhang, et al. 2019)), and the computation times of such algorithms are more than 10 milliseconds.
In such systems, one must consider the effects of the computation time since they are even longer
than the network-induced delays (Alasmary and Zhuang 2012, Fig. 9(b)).
Consider the networked inverted pendulum visual servo system (Networked Inverted Pendulum

Industrial Camera

 (Sensor)

Sampled 

Captured Images

Computer 

(Controller)

Image Processing

(with computation time)

Cart position a(k)

Cart velocity a(k)

Pendulum angle q(k)

Pendulum angular velocity q(k)

Control input 

u(t)

Data Transmission

(with transmission 

delay)

Data Transmission

(with transmission 

delay)

Exposure time 

(physical delay)

Control algorithm

(with computation time)

Dead time of actuator

(physical delay)

Figure 1 – Control framework of the NIPVSS (Du, C. Zhang, et al. 2019).

Visual Servo System (NIPVSS)) given in (Du, C. Zhang, et al. 2019) as an example (see Figure 1),
the movement of the inverted pendulum is captured by an Aca640-120gm monochrome industrial
camera, then the state information x(t) is obtained by the image processing algorithm (based on
Microsoft Visual Studio 2010 andOpenCV 2.4.11) on each frame. The computer receives the resolved
state information via a communication network and runs the control algorithm, then it sends the
control signal to a GT-400-SV-PCI movement control card via network. Finally, a MSDA023A1A
servo driver receives the control signal and drives the cart to move on the rail. The NIPVSS is
subject to the following time-delays: c The NIPVSS is subject to the combination of the 3 different
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types of time-delays (physical delay, transmission delay, computation time) mentioned before, and
some time-delays (time-delays 2, 3, 5) are non-ignorable and time-varying. Thus, these delays are
taken into account by the authors of (Du, C. Zhang, et al. 2019) in the modeling and controller
design (see (Du, C. Zhang, et al. 2019, Fig. 2)).
On the one hand, the above discussions on the NIPVSS (Du, C. Zhang, et al. 2019) explain that
time-delay is a widespread phenomenon in various control systems that should be considered. On the
other hand, time-delay is a source of instability (Fridman 2014a, p. vii) that must be compensated.
If one does not consider the time-delay in the controller design, the control performance will be
degraded (slower response, worse disturbance attenuation). Moreover, if the time-delay is long, the
conventional control techniques (i.e. memoryless control techniques) cannot be guarantee closed-
loop stability. Thus, the first objective of the thesis is clarified as follows:
The first objective of this thesis is to propose control solutions that can compensate
long time-delays of control systems.
Predictor-based controller (Karafyllis and Miroslav Krstic 2017) is one of the well-known controllers
that deals with long time-delays. If the system model and the delay value are known, one can
perfectly compensate the time-delay by predicting the future state of the system. However, the
time-delays of many real control systems are unknown or uncertain, that makes the controller
design more difficult. According to the previous discussion, the second objective of this thesis is
raised:
The second objective of this thesis is to develop delay estimation approaches that assist
the predictor-based controller in stabilizing the system.
Thus, the main objective of the thesis is summarized as:
The objective of this thesis is to build control law for systems with long, unknown or
uncertain time-delay by using predictor-based controller and delay estimation.
The objective of this thesis is challenging since the control strategies for different systems with
different time-delays are quite different. Thus, the following three objectives are investigated in this
thesis:

— predictor-based control of systems with unknown constant delays;
— predictor-based control of remote control systems with unknown time-varying delays;
— predictor-based control of networked control systems with time-varying delays.

State feedback of systems with small delay

In this section, one presents the fact that the convential control strategies (e.g. state feedback)
can stabilize the systems with sufficiently small delay by using the results given in (Fridman 2014a,
Section 5.2.1). Consider the input-delay system

ẋ(t) = Ax(t) +Bu(t− τ(t)), t ≥ 0 (1)
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with x(t) ∈ Rn, u(t) ∈ Rm, the time-varying delay τ(t) satisfies τ(t) ∈ [0, h] and |τ̇(t)| ≤ d < 1.
The state feedback control u(t) = Kx(t) leads to the closed-loop system

ẋ(t) = Ax(t) +BKx(t− τ(t)), t ≥ 0. (2)

As stated in (Fridman 2014a, Section 5.2.1), in order to make the closed-loop system (1) uniformly
asymptotically stable, one must search for appropriate matrices P , Q, R, and S such that the
following linear matrix inequality (Linear Matrix Inequality (LMI)) is feasible:

ATP + PA+ S +Q−R 0 PBK +R hATR

∗ −S −R R 0
∗ ∗ −(1− d)Q− 2R hKTBTR

∗ ∗ ∗ −R

 < 0. (3)

Remind that the sufficient stability condition (3) is a “delay-dependent” condition to the uniform
asymptotic stability since the delay bound h appears in the LMI (3) and it can affect the feasibility
of (3). Indeed, it is impossible to find feasible solution P,Q,R, S,K for (3) if the bound (on the
time-varying delay τ(t)) h exceeds a certain value. In this case, one cannot find any stable state
feedback control solution via (3).
Thus, the discussions explain that the conventional control techniques are effective to the systems
with small enough delays, and the control law must be improved if the system is subject to long
time-delays.

Predictor-based control of systems with long time-delay

As stated in the previous section, the conventional control methods cannot effectively stabilize
the systems with arbitrarily-long time-delay. Predictor-based controller (Karafyllis and Miroslav
Krstic 2017) is a well-known solution to such problems, an overview of this method is given in the
sequel (according to different types of systems and time-delays):

— Continuous-time system, constant delay: Smith predictor (Smith 1959), Finite Spec-
trum Assignment (Manitius and Olbrot 1979), model reduction (Artstein 1982), predictor-
based controller with backstepping transformation (Bekiaris-Liberis and Miroslav Krstic
2013);

— Continuous-time system, time-varying delay: predictor-based controller with Partial
Differential Equation (PDE) transformation (Bekiaris-Liberis and Miroslav Krstic 2013,
Chapter 6), dynamic observation-predictor-based control (Léchappé, Moulay, and Plestan
2016; Weston, Malisoff, and Frédéric Mazenc 2017);

— Networked control system, constant delay: sampled predictor-based control (Seliv-
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anov and Fridman 2016b), discrete predictor-based controller (Lozano et al. 2004; Léchappé,
Moulay, Plestan, and Han 2019);

— Networked control system, time-varying delay: discrete predictor-based controller (Hu
and Zhu 2003; Cloosterman et al. 2009).

The cited references will be introduced in details in the sequel.

Predictor-based control of continuous-time systems with constant delays

In this part, the conventional predictor-based control techniques of systems with constant delay
are introduced. In the 1950’s, Smith predictor (Smith 1959) is firstly introduced to compensate the
dead time (input-delay) of control systems with the use of an inner loop that works as a “predictor”.
Consider a delay-free system H0(s) which is subject to a constant dead time h, then the open-loop
transfer function of the TDS reads as

H(s) = H0(s)e−hs = N(s)e−hs

D(s) (4)

where N(s) and D(s) are characteristic polynomials of the delay-free plant H0(s).
The control diagram of the Smith predictor presented in Figure 2, one firstly computes the transfer

K(s)

H0(s)-H(s)

H(s)

System PlantSmith Predictor Ksmith(s)
y(t)yr(t)

+ +- -

e(t) ep(t) u(t)

Figure 2 – Control diagram of the Smith predictor (Smith 1959).

function of the inner-loop system with

U(s)
E(s) = KSmith(s) = K(s)

1 +K(s)[H0(s)−H(s)] = K(s)D(s)
D(s) +K(s)N(s)(1− e−hs) . (5)

According to (5), the closed-loop transfer function is given as follows:

Y (s)
Yr(s)

= KSmith(s)H(s)
1 +KSmith(s)H(s) = K(s)N(s)

D(s) +K(s)N(s)e
−hs. (6)
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As shown in (6), the delay term e−hs cannot affect the closed-loop stability, and K(s) can be
computed as if the open-loop system is delay-free. The Smith predictor is the first control solution
dealing with arbitrarily long time-delay, but it cannot deal with unstable plant. Several works
(Watanabe and Ito 1981; Furukawa and Shimemura 1983) have solved this problem, and these
results are called “modified Smith predictor”.
A few decades later, the Smith predictor is extended to the state-space representation with Finite
Spectrum Assignment (Finite Spectrum Assignment (FSA)) (Manitius and Olbrot 1979) and model
reduction (Artstein 1982), the time-domain control law is derived to stabilize unstable open-loop
systems. The control strategies of the two methods are similar, they predict the future state of
the system and transform the closed-loop system into a delay-free form, the predictive control law
is then obtained by using the prediction and the delay-free system. The FSA technique is firstly
introduced, consider the input-delay system

ẋ(t) = Ax(t) +Bu(t− h), t ≥ 0 (7)

where x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, and h > 0 is a known input-delay. Different
from the state feedback control given in the previous section, one chooses u(t) = Kx(t+ h) as the
control, then the closed-loop dynamics becomes to the following delay-free system:

ẋ(t) = Ax(t) +BKx(t+ h− h) = (A+BK)x(t) (8)

for all t ≥ h, and K can be calculated with pole placement techniques. By integrating (7) from t to
t+ h with initial condition x(t), the prediction x(t+ h) reads as

x(t+ h) = eAhx(t) +
∫ t

t−h
eA(t−s)Bu(s)ds. (9)

Consider (8)-(9), the closed-loop system satisfies that

ẋ(t) =

e
Atx(0) +

∫ t
0 e

A(t−s)Bu0(s)ds, 0 < t < h

(A+BK)x(t), t ≥ h
(10)

where u0(s) = u(s − h), 0 ≤ s ≤ h denotes the initial condition of the system (7). It is observed
that the closed-loop system (10) becomes to delay-free after a finite-time transient, and the input-
delay is perfectly compensated after this transient.
After introducing the main idea of FSA, the model reduction method (Artstein 1982) is introduced.
At this time, the auxiliary variable

z(t) = x(t) +
∫ t

t−h
eA(t−s−h)Bu(s)ds (11)
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is used to replace the explicit prediction (9). Differentiating (11) along the trajectories of (7) leads
to the following delay-free system

ż(t) = Az(t) + e−AhBu(t). (12)

Indeed, (11) transforms the original system into the delay-free system (12), then one can build a
state feedback control law based on the reduced model (12), and finally the original system (7) is
also stabilized. Comparing (9) and (11), it is easy to find that

x(t+ h) = eAhz(t) (13)

which explains the similarity of the FSA and model reduction: they are just two different solutions
based on the same concept.
The last part of this subsection is to introduce another representation of the predictor-based control
of (7) with backstepping transformation (Bekiaris-Liberis and Miroslav Krstic 2013, Chapter 2.1.2).
The control solution is shown in Figure 3, the main idea is to transform the infinite-dimensional

x(t)=Ax(t)+Bu(t-h)
.

u(p,t)=u(t+h-p)-

PDE Transformation

x(t)=Ax(t)+Bu(0,t)

up(p,t)=ut(p,t)

u(h,t)=u(t)

-

--

-

x(t)=Ax(t)+Bw(0,t)

wp(p,t)=wt(p,t)

w(h,t)=0Backstepping 

Transformation

w(p,t)=u(p,t)-Kx(p,t)
. .

-
Original System

PDE System Target System

-

Figure 3 – Mathematical transformations of the predictor-based controller given in (Bekiaris-Liberis
and Miroslav Krstic 2013, Chapter 2.1.2).

term ut(θ), θ ∈ [−h, 0] into a partial differential equation (PDE) form by using the following
transformation:

ū(p, t) = u(t− h+ p), p ∈ [0, h]. (14)

With the help of the PDE transformation (14), the future state of the system reads as

x̄(p, t) = x(t+ p) = eApx(t) +
∫ p

0
eA(p−y)Bū(y, t)dy, p ∈ [0, h]. (15)

Thus, the predictor-based control law is computed with

u(t) = ū(h, t) = Kx̄(h, t) (16)

where K makes A+BK Hurwitz.
Remind that last system of Figure 3 is the target system of the backstepping transformation, and
the term Bw(0, t) is a “disturbance term” of the nominal target system ẋ(t) = (A+BK)x(t) that
vanishes in finite time. Finally, the exponential stability of the backstepping target system ensures
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the exponential stability of the original system. Consider the control laws (16) and (9), it is evident
that they are equivalent. Indeed, as stated in (Bekiaris-Liberis and Miroslav Krstic 2013, Chapter
2.1.3), the backstepping transformation allows for the construction of a Lyapunov functional for the
target system, which is simpler than the FSA technique .

Consider the system

ẋ(t) =
[

0 1
0.1 0.1

]
︸ ︷︷ ︸

A

x(t) +
[
0
1

]
︸︷︷︸
B

u(t− h) (17)

with h = 0.5, it is controlled by the conventional state feedback u(t) = Kx(t) and the predictor-
based controller

u(t) = K

[
eAhx(t) +

∫ t

t−h
eA(t−s)Bu(s)ds

]
. (18)

In order to fairly compare the two controller, the matrix K is set to K =
[
−2.1 −3.1

]
for both

of them (the eigenvalues of A+BK are set to −1 and −2).
Figure 4 claims that the conventional state feedback control fails to stabilize the system, since
the time-delay is longer than the allowable value of this controller. However, the predictor-based
control is effective, which implies that the predictor-based control deals with longer time-delays
than the conventional state feedback control.

Example: Conventional state feedback and predictor-based control

Remark 1. As stated in (Van Assche et al. 1999), some numerical problems can arise from the
calculation of the integral term of (9) since it is an infinite-dimensional term, inappropriate imple-
mentation can lead to unstable closed-loop system. To overcome this problem, some techniques are
available:

— a safety implementation technique given in (Mondié and Michiels 2003) is proposed to over-
come the instability, the control law is modified with the help of a low-pass filter;

— in (Zhou 2014b; Zhou, Q. Liu, and Frédéric Mazenc 2017), an artificial finite-dimensional
system that predicts the future state is used to replace the infinite-dimensional predictor;

— the work of (Bresch-Pietri, Chauvin, and Petit 2012, p.1548) indicated that a trapezoidal
discretization method and a periodic reset can be used to overcome the numerical issues.

In this subsection, four predictor-based control solutions of systems with arbitrarily long constant
delay are introduced, although they are computed in different ways, they stand on the same concept:

24



General Introduction

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

2

4

6

8
S

e
c
o
n
d
s
 (

s
)

 

Figure 4 – State evolution of system (17) with state feedback control and predictor-based control.

transforming the original time-delay system to a delay-free form via predictive techniques, then
designing the controller based on the delay-free system. The following table gives an overview of
these predictive approaches:

Methods System type Open-loop system type
Smith predictor (Smith 1959) Transfer function Stable

FSA (Manitius and Olbrot 1979) State space Stable, unstable
Model reduction (Artstein 1982) State space Stable, unstable

Backstepping (Bekiaris-Liberis and Miroslav Krstic 2013) State space, PDE Stable, unstable

Table 1 – Overview of the predictor-based control techniques.

Predictor-based control of continuous-time systems with time-varying delays

Various of real control systems are subject to time-varying delays (e.g. remote servo motor
control (Lai and Hsu 2010), visual servo control (Chakraborty et al. 2017), NIPVSS (Du, C. Zhang,
et al. 2019)) due to transmission delays and computation times, then the predictor-based control of
such system has application prospects. In this subsection, two types of predictor-based controllers
are introduced, the first one (Bekiaris-Liberis and Miroslav Krstic 2013, Chapter 6) is based on the
backstepping method, and the second one (Weston, Malisoff, and Frédéric Mazenc 2017; Léchappé,
Moulay, and Plestan 2016) uses observation dynamics to calculate the prediction.
One firstly introduce the predictor-based control with backstepping transformation (Bekiaris-Liberis
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and Miroslav Krstic 2013, Chapter 6), and one considers the system

ẋ(t) = Ax(t) +Bu(t− h(t)), t ≥ 0 (19)

with x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, and h(t) > 0.
Since the time-delay is no longer constant, the control scheme of this case (see Figure 5) is more

f(t)=t-h(t)s(t)=f -1(t)

Delayed instant Instant of prediction
Inverse function

u(f(t+p(s(t)-t))) u(p,t)
PDE 

Transformation

x(t)=Ax(t)+Bu(t-h(t))

u(p,t)=u(f(t+p(s(t)-t)))-

PDE Transformation

x(t)=Ax(t)+Bu(0,t)

ut(p,t)=p(p,t)up(p,t)

u(1,t)=u(t)

-

--

-

x(t)=Ax(t)+Bw(0,t)

wt(p,t)=p(p,t)wp(p,t)

w(1,t)=0Backstepping 

Transformation

w(p,t)=u(p,t)-Kx(p,t)
. .-Original System

PDE System

-

-

Target System

Figure 5 – Mathematical transformations of the predictor-based controller given in (Bekiaris-Liberis
and Miroslav Krstic 2013, Chapter 6).

complicated than the one of Figure 3, and the functions φ(t) = t − h(t), σ(t) are necessary to the
following PDE transformation:

ū(p, t) = u
(
φ(t+ p(φ−1(t)− t))

)
. (20)

After a careful calculation, system (19) is transformed into the PDE system given in Figure 5 with:

π(p, t) =
1 + p

(
d(φ−1(t))

dt − 1
)

φ−1(t)− t . (21)

Next, the future state of the system reads as

x̄(p, t) = eAp(σ(t)−t)x(t) + (σ(t)− t)
∫ p

0
eA(p−y)(σ(t)−t)Bū(y, t)dy (22)

and the control law satisfies
u(t) = ū(1, t) = Kx̄(1, t) (23)

with A+BK Hurwitz. Thus, by virtue of the backstepping transformation

w(p, t) = ū(p, t)−Kx̄(p, t), (24)

the target system is obtained, as shown in Figure 5.
Finally, the exponential stabilities of the target system and the original system are guaranteed by the
Lyapunov-Krasovskii analysis, the details of the proof are given in (Bekiaris-Liberis and Miroslav
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Krstic 2013, p.122-127). Remind that the predictor (15) for constant delay is a particular case of the
predictor (22). The fact h(t) = h implies σ(t) = t+h, then one has π(p, t) = 1/h, and consequently
the PDE and target systems displayed in Figure 5 are reduced to the simplified versions presented
in Figure 3.
The drawback of the conventional predictor (22) is twofold:

— in real applications, the numerical computation of the infinite-dimensional term (i.e. the
integral term) may lead to unstable closed-loop system (Van Assche et al. 1999);

— the inverse function σ(t) cannot be easily computed in real control systems with explicit form,
it can only be estimated by an adaptation law (Witrant et al. 2007), which may degrade the
performance of the control system.

To handle the issues mentioned above, the dynamic observation-predictor-based control (Weston,
Malisoff, and Frédéric Mazenc 2017; Léchappé, Moulay, and Plestan 2016) is proposed. With this
technique, the infinite-dimensional term and the inverse function σ(t) are no longer required, and
an observer-like dynamic is used to approximately estimate the prediction (15). The main results
of (Léchappé, Moulay, and Plestan 2016) are used to introduce the main idea of the dynamic
observation-prediction. Consider the system with time-varying input-delay and partial state knowl-
edge: ẋ(t) = Ax(t) +Bu(t− h(t))

y(t) = Cx(t)
(25)

with x(t) ∈ R2, u(t) ∈ Rm, y(t) ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and h(t) > 0. Firstly,
suppose that delay-free system can be stabilized by a globally Lipschitz controller u : Rn 7→ Rm. In
a similar way, one supposes that there exists a globally Lipschitz function g : Rp 7→ Rn such that
the Luenberger observer

˙̂x(t) = Ax̂(t) +Bu(t− h(t)) + g(Cx̂(t)− y(t)) (26)

exponentially converges to x(t). After stating the necessary assumptions, the observation-predictor-
based controller ż(t) = Az(t) +Bu(t) + g [Cz(t− h(t))− y(t)]

u(t) = u(z(t))
(27)

stabilizes the system (25) if the time-varying delay h(t) satisfies

h(t) ≤ h∗, |ḣ(t)| ≤ δ∗ (28)

with sufficiently small positive constants h∗, δ∗ (i.e. the time-varying delay h(t) and its derivative
are sufficiently small). Indeed, the “dynamic observation” z(t) is an approximation of the future
state x(σ(t)), and the observation is established without using σ(t) explicitly, this is the reason why
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this technique is called “observation-prediction”. However, according to (28), this method only deals
with small and slow-varying delays. Thus, the following sub-predictors are proposed:

ż1(t) = Az1(t) +Bu(t− (r − 1)h̄(t)) + g1
[
Cz1(t− h̄(t))− Cx(t)

]
ż2(t) = Az2(t) +Bu(t− (r − 2)h̄(t)) + g2

[
Cz2(t− h̄(t))− Cz1(t)

]
...

żi(t) = Azi(t) +Bu(t− (r − i)h̄(t)) + gi
[
Czi(t− h̄(t))− Czi−1(t)

]
...

żr(t) = Azr(t) +Bu(t) + gr
[
Czr(t− h̄(t))− Czr−1(t)

]
(29)

with a sufficiently large integer r. Then the system (25) can be stabilized with control law u(zr(t)).
The main concept of the sub-predictors (29) is that, although h(t) and ḣ(t) can be large, there
always exists a sufficiently large r, such that h̄(t) = h(t)/r and ˙̄h(t) = ḣ(t)/r are sufficiently small
for the controller design. Thus, each dynamic given in (29) can successfully converge the true state
predictions, and then the constraints (28) is relaxed.
To well explain how this technique works, Figure 6 is provided. Assume that the time-varying

y(t) z1(t)~x(t+h(t)/r) zi(t)~x(t+ih(t)/r) zr(t)~x(t+h(t))...

Observer 1 Observer 2

...

Observer i Observer i+1 Observer r

Figure 6 – Estimation chain of the observer-based sub-predictors (29).

delay h(t) and its derivative ḣ(t) are large, then one use r sub-predictors to stabilize the system.
One inserts the system output y(t) = Cx(t) into the first predictor of (29) in order to make z1(t)
converges to x(t + h̄(t)) = x(t + h(t)/r), and z1(t) is applied in the second predictor to estimate
the future state x(t + 2h̄(t)). Recursively, the rth observer converges to the expected future state
x(t + h(t)), and it is used to stabilize the system (25). With the observation chain displayed in
Figure (6), larger bounds on the delay value and delay derivative is endured for the control law
design.
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Consider the system (17) with partial state knowledge y(t) = Cx(t) =
[
1 0

]
x(t), and time-

varying delay h(t) = 0.9 + 0.5 sin 0.8·. It is controlled by the observation-predictor-based con-
troller (27) and the sub-predictors technique (29). The functions g(·) and u(·) are set to
u(z) =

[
−2.1 −3.1

]
· z and g(e) =

[
−1.6 −0.76

]T
· e, respectively.

See Figure 7, the controller (27) is a special case of the other one (29) with r = 1. It shows that
the system is stabilized only with the case r = 2 which highlights the use of the sub-predictors,
this technique can increase the allowable bounds on the delay value and the delay derivative.

Example: Comparison between 1-sub predictor and 2-sub predictor
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(a) State evolution of the two observation-based con-
trollers for system (17).
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(b) Time-varying delay h(t) = 0.9+0.5 sin 0.8· versus
time.

Figure 7 – Comparison of the observation-predictor-based controller (27) and the sub-predictors
technique (29).

The above discussed methods given in (Bekiaris-Liberis and Miroslav Krstic 2013; Léchappé, Moulay,
and Plestan 2016; Weston, Malisoff, and Frédéric Mazenc 2017) require the value of the time-varying
delay h(t), so they may not be easily applied on real control systems. In the sequel, another control
solution named “interval prediction” (Polyakov et al. 2013) is introduced, and only the bounds on
the time-varying delay h(t)( upper bound h̄, lower bound h) are used to compute the approximated
prediction. Firstly, the componentwise bounds of signal B′u(t) on interval [0, h̄ − h] are defined as
follows

B′u(t) = min
θ∈[0,h̄−h]

B′u(t− θ),

B′u(t) = max
θ∈[0,h̄−h]

B′u(t− θ)
(30)

with componentwise functions max(·) and min(·). The core idea of this method is to use two different
approximated predictions to build the control law

u(t) = 1
2K(z̄(t) + z(t)) (31)
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with approximated predictions z̄(t), z(t) defined as

z̄(t) = eÃh̄x̄(t) +
∫ 0

−h
e−AθB̃u(t+ θ)dθ,

z(t) = eÃhx(t) +
∫ 0

−h
e−AθB̃u(t+ θ)dθ.

(32)

The terms x̄(t) and x(t) of (31) are generated by the following approximated observations:

ẋ(t) = Ãx(t) + B̃u(t− h) + L̃
[
C̃x(t)− Cx(t)

]
,

˙̄x(t) = Ãx̄(t) + B̃u(t− h) + L̃
[
C̃x̄(t)− Cx(t)

] (33)

with appropriate transformation matrix S, and

Ã = S−1AS, B̃ = S−1B, L̃ = S−1L, C̃ = SC. (34)

With the interval predictor-based control (31) -(33), the system can be stabilized for well-tuned gains
K, L (i.e. they are generated by the stability LMIs) without the precise knowledge of the time-
varying delay h(t). By comparing with the conventional predictor-based control (Bekiaris-Liberis
and Miroslav Krstic 2013; Witrant et al. 2007) and the observation predictor-feedback (Léchappé,
Moulay, and Plestan 2016; Weston, Malisoff, and Frédéric Mazenc 2017), this method requires less
information about the time-varying delay h(t), but this method is more complex and conservative
than the other methods.

Predictor-based control of networked control systems with network-induced de-
lays

In the previous subsections, the existing works on the predictor-based control of continuous-
time systems are investigated. However, vast time-delays in real control systems are introduced by
wireless communications and networks. Therefore, networked control system has become to a hot
topic in the control community for the last decades. In this subsection, the predictor-based con-
trol of networked control systems is introduced, the first method (Selivanov and Fridman 2016b) is
the sampled-data version of the continuous predictor-based controller, whereas the second method
(Léchappé, Moulay, Plestan, and Han 2019) transforms the NCS to a discrete-time system.
The predictor-based controller in (Selivanov and Fridman 2016b) is still designed in a continuous-
time way. Indeed, it is almost the sampled-data version of the continuous-time one given in (9).
The closed-loop stability of this method is based on the time-delay approach (K. Liu, Selivanov,
and Fridman 2019), and this method is still effective to the variable sampling. However, the stabil-
ity condition of this method depends on the size of the maximum allowable transmission interval
(MATI), which is the upper bound on the variable sampling period. If the sampling period of the
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control algorithm exceeds the MATI, then the stability is no longer ensured.
Another control solution is the discrete predictor-based controller (Léchappé, Moulay, Plestan, and
Han 2019), in which the original NCS is transformed into an extended discrete-time representation.
Since the extended system is delay-free, then the control law design can be easily built for this sys-
tem, the continuous-time plant is stabilized as well. As stated in (Léchappé, Moulay, Plestan, and
Han 2019, Secrion 7.1), the discrete predictor-based controller can stabilize NCS with arbitrarily
long sampling period and arbitrarily long constant delays. This discrete-time representation is also
involved in (Hu and Zhu 2003; Cloosterman et al. 2009) to handle the control problem of NCS with
long time-varying delays. However, all of the above cited discrete-time approaches cannot work with
variable sampling, some additional conditions must be checked in order to ensure the stability under
aperiodic sampling (Hetel et al. 2017).
In conclusion, two types of predictor-based controller can stabilize NCS with long network-induced
delays, the advantages of them are:

— Sampled predictor-based control (Selivanov and Fridman 2016b): handling variable
sampling;

— Discrete predictor-based control (Léchappé, Rouquet, et al. 2016; Hu and Zhu
2003; Cloosterman et al. 2009): enduring longer sampling period and time-varying delays.

Predictor-based control of systems with uncertain delays

The previous section provides the summary of the predictor-based control technique of different
systems (continuous-time system and networked control system) with different delays (constant
delay and time-varying delay). However, in all of the above cited references, the value of the time-
delay is assumed to be perfectly known. In this section, the predictor-based control of systems with
uncertain delays is investigated, it is shown that the predictor-based controller is robust with respect
to slight delay uncertainties.
In (Bresch-Pietri, Chauvin, and Petit 2012; Léchappé, Moulay, and Plestan 2018a), the predictor-
based control schemes of continuous-time systems with uncertain delays are designed. In (Bresch-
Pietri, Chauvin, and Petit 2012), the backstepping method (Bekiaris-Liberis and Miroslav Krstic
2013) based stability analysis is given to present that the predictor-based controller can stabilize
systems with model uncertainties, external disturbances, and uncertain constant input-delay. The
authors of (Léchappé, Moulay, and Plestan 2018a) demonstrate that the predictor-based controller
deals with the combination of uncertain time-varying input and output delays.
For instance, the work of (Léchappé, Moulay, and Plestan 2018a) is briefly introduced in the sequel.
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Consider the system with input-output time-varying delays given in the sequel:ẋ(t) = Ax(t) +Bu(t− hi(t))

y(t) = Cx(t− ho(t))
(35)

with x(t) inRn, u(t) ∈ Rm, y(t) ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, C ∈ × , and hi(t), ho(t) > 0. Suppose
that the input and output delays have bounded derivatives such that

|ḣi(t)| ≤ δi, |ḣo(t)| ≤ δo (36)

for all t ≥ 0. The round-trip delay of system (35) is defined as

h(t) = ho(t) + hi(t− ho(t)) (37)

due to the transport phenomenon. Remind that the precise values of hi(t), ho(t), and h(t) are not
known, only the nominal value ĥ(t) of h(t) satisfying

|h(t)− ĥ(t)| , D(t) ≤ D, | ˙̂h(t)| ≤ δ̂ (38)

with positive constants D and δ̂, is available for the controller design. The output-feedback control
law

˙̂x(t) = Ax̂(t) +Bu(t− ĥ(t)) + L [Cx̂(t)− y(t)]

u(t) = K

[
eAĥ(t)x̂(t) +

∫ t

t−ĥ(t)
eA(t−θ)Bu(θ)dθ

] (39)

where K, L make A+BK, A+LC Hurwitz, stabilizes the system (35) if D, δ̂, and δo are sufficiently
small. Namely, there exists predefined constants D∗, δ̂∗, δ∗o > 0, if

D ≤ D∗, δ̂ ≤ δ̂∗, δo ≤ δ∗o (40)

holds, then the system (35) controlled by (39) is globally uniformly asymptotically stable.
The works of (Léchappé, Moulay, and Plestan 2018a) state that the predictor-based controller can
stabilize the system (35) even if the delay value is not perfectly known, this property is also called
“robustness with respect to delay mismatch” (Bresch-Pietri, Chauvin, and Petit 2012; Bresch-Pietri
and Petit 2014).
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(a) Evolution of the state and observation error ver-
sus time of (35) controlled by (39).
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(b) Real round-trip delay h(t) and the nominal delay
ĥ(t) used in (39).

Figure 8 – Simulation results of system (35) controlled by the output-feedback predictor-based
controller (39).

Consider the system (35) with

A =
[

0 1
0.1 0.1

]
, B =

[
0
1

]
, C =

[
1 0

]
, (41)

and
hi(t) = 0.8 + 0.2 sin t, ho(t) = 0.3 + 0.1 sin(3 · t). (42)

One assumes that the round-trip delay induced from (42) is uncertain, and the nominal value
ĥ(t) = 1.1 + 0.25 sin t is used to compute the output-feedback control law (39) with K =[
−2.1 −3.1

]
and L =

[
−1.6 −0.76

]T
.

Figure 8 shows that the system (35) can be stabilized by the output-feedback predictor-based
controller (39) if the difference between the real round-trip delay h(t) and the nominal delay
ĥ(t) is sufficiently small. Thus, the robustness of the predictor-based controller with respect to
delay mismatch is validated by this example.

Example: predictor-based control with uncertain time-varying delays

Next, one moves on to the discrete predictor-based control of systems with uncertain delays. The
analysis given in (Lozano et al. 2004, Section 5) explains that the discrete predictor-based controller
is also robust with respect to slight model uncertainties and delay uncertainties as the continuous-
time one (Bresch-Pietri, Chauvin, and Petit 2012). Moreover, the theoretical results of (Lozano
et al. 2004) are illustrated on the yaw control of a mini-quadrotor. In (Zhan, Du, and Fei 2017),
the stochastic discrete predictor-based controller is designed for the visual servo control system
(NIPVSS, see Figure 1). The stochastic stability is achieved even if the time-delay introduced by
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the image-processing algorithm is random. Besides the above two method, the methods of (Hu and
Zhu 2003; Cloosterman et al. 2009) are also able to deal with NCS with uncertain delays.

Predictor-based control of systems with unknown constant time-
delays

The discussions given in the previous section explain that the predictor-based technique can sta-
bilize systems with uncertain time-delays. In this section, one considers a more challenging problem:
predictor-based control of systems with unknown time-delays. Indeed, the stabilization of systems
with unknown time-varying delay is still challenging to the control community, and the unknown
time-delays in NCS can be identified by virtue of the clock synchronization (Martı et al. 2008)
(IEEE 1588 protocol) and time-stamp technique (Lai and Hsu 2010). Thus, some significant control
strategies for continuous-time systems with unknown constant delays are introduced in this section.

Existing approaches on the predictor-based control of systems with unknown
constant time-delays

The authors of (Miroslav Krstic and Bresch-Pietri 2009; Bresch-Pietri and Miroslav Krstic 2010)
have extended the backstepping method (Bekiaris-Liberis and Miroslav Krstic 2013) to the adaptive
backstepping (Kokotovic, Krstic, and Kanellakopoulos 1992; Freeman and Kokotović 1993) version.
By virtue of the backstepping transformation, the unknown time-delay becomes to an unknown
parameter of the PDE system. Then the adaptive method is applied to recursively estimate the
unknown time-delay and stabilize the target system, and the stability of the original system is guar-
anteed by an analysis based on the alternative version of the Barbalat’s Lemma (Tao 1997).
In (Herrera and Ibeas 2012), a multi-model based delay estimation algorithm is combined with a
modified Smith predictor to regulate the step response of stable and unstable systems. The con-
troller sends the control signal not only to the delayed plant but also to a multi-model system that
is comprised of the delay-free plant model and distinct time-delays. A switch algorithm compares
the system output and the virtual outputs of the multi-model system and estimates the time-delay
online. Finally, the modified Smith predictor stabilizes the system with the help of the delay esti-
mator.
The truncated predictor-based control technique (Zhou 2014c) is used in (Cacace, Conte, and Ger-
mani 2017; Wei and Lin 2019) to deal with systems with unknown input-delay, it can be considered
as a simplified version of the predictor-based controller (9) since it only uses the finite-dimensional
term of the state prediction to calculate the control law, and the infinite-dimensional term is said
to be “truncated”. The work of (Wei and Lin 2019) is based on the low-gain feedback, a decreasing
feedback gain is used to make the response time slower and slower, and the closed-loop stability
is guaranteed when the response time is larger than the unknown delay. In (Cacace, Conte, and
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Germani 2017), the combination of a piecewise-constant delay estimator and a truncated predictor-
based controller is used to ensure the exponential stability of the closed-loop system. However, the
works of (Cacace, Conte, and Germani 2017; Wei and Lin 2019) have constraints on the open-loop
system due to the limitations of the truncated predictor-based controller.

Discussions on the existing approaches

Consider the existing methods presented in the previous subsection, the majority of them
(Miroslav Krstic and Bresch-Pietri 2009; Bresch-Pietri and Miroslav Krstic 2010; Herrera and Ibeas
2012; Cacace, Conte, and Germani 2017) adopt the following strategies to stabilize the systems with
unknown input-delays:

— estimate the unknown input delay with different methods (e.g. Lyapunov analysis (Miroslav
Krstic and Bresch-Pietri 2009; Bresch-Pietri and Miroslav Krstic 2010), switching logic (Her-
rera and Ibeas 2012), anti-gradient approach (Cacace, Conte, and Germani 2017));

— compute the approximated predictor-based control law with the help of the online delay
estimator.

Among the existing methods introduced in the previous subsection, only the work of (Wei and Lin
2019) did not use the delay estimation technique, the reason is due to the fact that it only deals
with the systems with poles equal to zero.
After the investigation of the existing methods, time-delay estimation (Time-delay Estimation
(TDE)) plays an important role in the control of systems with unknown time-delays, and this
technique needs further analysis and discussions.

Time-delay estimation techniques for constant and time-varying de-
lays

This section presents an overview of the existing TDE approaches for different types of time-
delays (i.e. constant delays, time-varying delays), in order to assist the predictor-based controller in
stabilizing such time-delay systems. The first part of this section presents some conventional TDE
methods (i.e. estimating the time-delay with input information and system dynamics), whereas the
second part introduces the practical TDE techniques of RCS and NCS (i.e. TDE methods with
specific communication loops and protocols).

Conventional time-delay estimation techniques

In this subsection, the existing conventional TDE techniques are summarized, and the majority
of them are based on delay-identifiability theory (Orlov et al. 2002; Drakunov et al. 2006) that must
be introduced at the beginning of the subsection.
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Definition 1. Consider the system

ẋ(t) = Ax(t) +Bu(t− h(t)) (43)

with x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, and h(t) > 0. System (43) is said to be delay
identifiable under arbitrary initial conditions if there exists an input signal u(t) such that the equality
x(t) ≡ x̂(t) implies h(t) ≡ ĥ(t).

The delay identifiability is the ability of the system to resolve the delay value from the state
trajectory. If two different delays h1(t), h2(t) lead to the same system trajectory, then it is impos-
sible to identify the true delay value from the system trajectory. Indeed, the delay identifiability
depends not only on the system parameters, but also on the choice of the input signal u(t). If the
input signal is constant, then the system is not identifiable since u(t − h(t)) ≡ const leads to the
same trajectory for arbitrary h(t). In general, u(t) should be chosen as a sufficiently rich input (i.e.
sufficiently “discontinuous” or “time-varying”) to guarantee the delay identifiability.
TDE methods are firstly studied by the researchers from the acoustic and signal processing com-
munities to develop sonar techniques (Knapp and Glifford Carter 1976; GC Carter 1981; Etter and
Stearns 1981). The autocorrelation analysis is proposed in (Knapp and Glifford Carter 1976) to esti-
mate the time-delay. In (GC Carter 1981; Etter and Stearns 1981), the time-delays are respectively
estimated by using the least-square and mean-square minimization of a cost function J(h− ĥ). More
signal processing based methods are presented in the survey thesis (Björklund 2003). However, these
methods are offline, it cannot handle online TDE problems oriented for controller design.
A vast literature is available on the control oriented TDE methods, they are classified in details as
follows:

— Cost function based methods (Diop et al. 2001; Léchappé, Rouquet, et al. 2016): similar with
the signal processing based method (GC Carter 1981), these methods intend to estimate
the time-delay by minimizing the cost function J(h − ĥ) online. The work of (Diop et al.
2001) deals with constant delay estimation problems with the use of a Lyapunov function
based delay estimator. In (Léchappé, Rouquet, et al. 2016), the gradient-descent algorithm
is applied to minimize the cost function and estimate the slow-varying delay.

— Adaptive TDE algorithms (Ren et al. 2005; X. Wu et al. 2013): these methods consider the
time-delay as an unknown parameter of the system, then it can be estimated with adaptive
algorithm. The method proposed by (X. Wu et al. 2013) can also estimate time-varying
delays, but the performance is not good if the time-delay is fast-varying.

— Convolution-based algebraic methods (Belkoura 2005; Belkoura and J.-p. Richard 2006; Belk-
oura, J.-P. Richard, and Fliess 2009): these methods use the convolution-based algebraic
methods to estimate the unknown parameters and unknown constant delay of linear sys-
tems. As claimed in (Belkoura and J.-p. Richard 2006), these methods can provide a faster
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convergence speed than (Ren et al. 2005) by adopting a distributional formulation. But these
methods are not yet extended to the time-varying delay estimation problem.

— Sliding mode base methods (Drakunov et al. 2006; Zheng, Polyakov, and Levant 2018): sliding
mode algorithm is involved in these methods, they deal with time-varying delay of linear
systems (Drakunov et al. 2006) and constant delay of nonlinear systems (Zheng, Polyakov,
and Levant 2018), respectively. However, both of them cannot ensure global convergence, the
initial condition of the delay estimator has to be sufficiently close to the exact value.

— Neural network-based method (Tan 2004): this method estimates the slow-varying delays of
nonlinear systems with the help of neural network, but the estimation accuracy is not very
high and the computation cost will be heavy if the neural network is not well trained.

In order to compare the performances of the existing conventional TDE methods introduced in this
subsection, Table 2 given in the sequel is used the summarize and classify such methods.
See Table 2, only a few existing methods can handle time-varying delay estimation problem, and

Method Online/ Offline Delay type Convergence type
(Knapp and Glifford Carter 1976) Offline Constant delay Global convergence

(GC Carter 1981) Offline Constant delay Global convergence
(Etter and Stearns 1981) Offline Constant delay Global convergence

(Diop et al. 2001) Online Constant delay Global convergence
(Belkoura 2005) Online Constant delay Global convergence

(Belkoura and J.-p. Richard 2006) Online Constant delay Global convergence
(Belkoura, J.-P. Richard, and Fliess 2009) Online Constant delay Global convergence

(Ren et al. 2005) Online Constant delay Global convergence
(Zheng, Polyakov, and Levant 2018) Online Constant delay Local convergence

(Drakunov et al. 2006) Online Fast-varying delay Local convergence
(X. Wu et al. 2013) Online slow-varying delay Global convergence

(Tan 2004) Online slow-varying delay Global convergence
(Léchappé, Rouquet, et al. 2016) Online slow-varying delay Global convergence

Table 2 – Main properties of the existing TDE techniques.

they cannot perfectly estimate fast-varying delays. As claimed in (X. Wu et al. 2013, Remark 5)
and (Léchappé, Rouquet, et al. 2016, Theorem 1), the estimation errors of these methods increase
as the time-delay varies faster. The work of (Tan 2004) can neither deal with fast-varying delays
since it supposed that the change in the time-delay is much slower than the sampling rate, in order
to ensure that the time-delay can be considered as a constant during one sample period (Tan 2004,
p.64). The fast-varying delay estimation problem is tackled in (Drakunov et al. 2006), but this
method has two drawbacks:

— this method cannot ensure the global convergence of the delay estimation;
— high order derivatives of the state x(t) and the input signal u(t) are used in this method, so
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it is not robust with respect to noises.
Thus, the existing control-oriented TDE techniques cannot perfectly estimate fast-varying delays,
this research topic is still challenging for the control community.

Practical online time-delay estimation method of remote control systems and
networked control systems

Consider the conventional TDE techniques presented in Table 2, it is observed that the TDE
methods mentioned above cannot estimate fast-varying delays with global convergences. However,
since the fast-varying delay is more frequently found in the remote control systems (S.-H. Yang 2011)
and networked control systems (X.-M. Zhang, Han, and Yu 2015) (e.g. communication latencies,
network-induced delays), then one can provide some practical TDE technique for such systems.
The work of (Lai and Hsu 2010) provides a practical TDE solution for remote control systems

Figure 9 – Practical delay measurement approach (Lai and Hsu 2010) of remote control system.

(see Figure 9). The controller sends the system clock to the plant, a digital signal processor (DSP)
implemented on the plant receives the system clock and sends it back to the controller. Finally,
the round-trip delay of the remote control system is estimated by taking the difference between
the current system clock and the delayed system clock sent back from the DSP. This method can
estimate fast-varying delay with global convergence in a practical way, and the delay identifiability
is no longer required since the time-delay is estimated by the system clock.
This method can also be used in the networked control systems, one can firstly synchronize the
components (i.e. sensor, controller, actuator) via IEEE 1588 protocol (Martı et al. 2008), then use
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this method to estimate the network-induced delays.

Organizations and contributions of this thesis

This thesis is composed of three parts:
— The first part presents a novel type of time-delay estimation algorithm of linear time-invariant

(Linear Time-Invariant (LTI)) systems with unknown input and output delays, the closed-
loop stability under the combination of this new delay estimation approach and the predictor-
based controller is also studied.

— The second part is dedicated to the delay estimation and predictor-based control of remote
control systems with time-varying input and output delays. The practical delay measurement
method (Lai and Hsu 2010) is modified by a more robust one, and this new delay measurement
approach is validated on a real WiFi network. Finally, some analysis and simulation results
ensure that this method can be combined with the predictor-based controller in order to
stabilize the system.

— The last part focuses on the discrete predictor-based control of a class of networked control
systems with time-varying delays. It is shown that this new control strategy deals with
time-varying delays and message rejections. This method is implemented on the networked
inverted pendulum visual servo system (Du, C. Zhang, et al. 2019) with fairly good control
performances.

The detailed organization of this thesis is given in the sequel.
In Chapter 1, a new type of monotonic delay estimation algorithm is proposed to estimate the con-
stant delay of LTI systems (subsection 1.2.1), then it is plugged into a predictor-based controller in
order to stabilize the system. The first version of this delay estimation technique (subsection 1.2.2)
has been published in the proceedings of 2019 American Control Conference. The first version is
then modified by a “normalized” version (subsection 1.2.3), and the number of tuning parameters
in the stability condition is reduced. With this modified method, the global uniform asymptotic
stability is ensured by a Lyapunov-Razumikhin analysis. The second approach is extended to the
third version of the method (subsection 1.2.4), which guarantees the global uniform exponential
stability of the closed-loop system. The third version of this method is accepted for publication
in an upcoming issue of and online published in International Journal of Control. At the end of
the chapter (section 1.3), some discussions and simulation results are provided to demonstrate the
robustness and the efficacy of these methods.
Chapter 2 deals with the control of remote control systems with time-varying input and output
delays. In this chapter, a similar framework of the practical delay measurement approach (Lai and
Hsu 2010) is considered, and a class of sliding mode based practical TDE methods are proposed.
In section 2.2, the theoretical convergence results with conventional sliding mode, super-twisting
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method are firstly presented, these results are accepted for publication in an upcoming issue of
and online published in IEEE Transactions on Industrial Electronics. This method is thereafter
extended to the adaptive super-twisting algorithm based TDE method, this work is submitted to
2020 IEEE Conference on Control Technology and Applications (CCTA). Some simulation results
are provided to illustrate that the sliding mode based techniques are robuster than the sliding mode
based techniques are robuster than (Lai and Hsu 2010) with respect of channel inherent noises
(Shannon 1984) and deception attacks (Ding et al. 2017). Next, the TDE methods mentioned above
are implemented on a real WiFi network composed of two computers in subsection 2.2.6, and the
performances of them are discussed and compared with each other. In section 2.3, the sliding mode
based practical TDE techniques are combined with the predictor-based controller, the closed-loop
stability is achieved by discussions and simulation results, this work is submitted to IEEE Control
Systems Letters with CDC (59th IEEE Conference on Decision and Control) option.
In Chapter 3, the discrete predictor-based control of a class of networked control systems are con-
sidered. The problem formulations addressed in subsection 3.1.1 explain the main motivations of
this Chapter, and this Chapter is dedicated to the controller design of networked control systems
with sensor-to-controller time-varying delays and controller-to-actuator uncertain constant delays,
and the proposed control technique can be used for visual servo control systems (Zhan, Du, and
Fei 2017) and networked visual servo control systems (H. Wu et al. 2012; Du, C. Zhang, et al.
2019). The main theoretical results of this Chapter are given in section 3.2, it is shown that the
discrete predictor-based controller combined with a state predictor can tackle sensor-to-controller
time-varying delays and message rejections at the same time. Some simulation results are given to
illustrate that the discrete predictor-based controller can stabilize the same system given in (Seliv-
anov and Fridman 2016b, Section 5) with larger allowable sampling periods. In the end (section 3.3),
the proposed control techniques are implemented on the networked inverted pendulum visual servo
system (NIPVSS) (Du, C. Zhang, et al. 2019), the performances and robustness are validated by
the experimental results.
Some of the results presented in this thesis have been published or accepted in the following journals
and conferences.

Journal papers

[1] Y. Deng, V. Léchappé, S. Rouquet, E. Moulay, and F. Plestan, Super-twisting algorithm based
time-varying delay estimation with external signal, online published in IEEE Transactions on In-
dustrial Electronics. doi: 10.1109/TIE.2019.2960739.

[2] Y. Deng, V. Léchappé, E. Moulay, and F. Plestan, State feedback control and delay estimation
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for LTI system with unknown input-delay, online published in International Journal of Control. doi:
10.1080/00207179.2019.1707288.

[3] Y. Deng, V. Léchappé, E. Moulay, and F. Plestan, Predictor-based control of LTI remote systems
with estimated time-varying delays, in IEEE Control Systems Letters, vol 5, issue 1, pages 289-295,
Jan 2021.

Conference papers

[1] Y. Deng, V. Léchappé, E. Moulay, and F. Plestan, Prediction-based control with delay estimation
of LTI systems with input-output delays, 2019 American Control Conference (ACC), Philadelphia,
USA, pages 3702-3707.

[2] Y. Deng, V. Léchappé, S. Rouquet, E. Moulay, and F. Plestan, A practical online time-varying
delay estimation of remote control system based on adaptive super-twisting algorithm, accepted in
2020 IEEE Conference on Control Technology and Applications (CCTA), Montréal, Canada.
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List of notations

Throughout this thesis, the following mathematical notations are used.

Notations Meanings
N The set of non-negative integers
N+ The set of strictly positive integers
Rn The set of real vectors with dimension n
Rn×m The set of real matrices with n rows and m columns
P T Transpose of the matrix P
In×n Identity matrix with n columns and n rows
I Identity matrix with appropriate dimensions
0 Scalar 0 or zero matrix with appropriate dimensions

P > 0, P < 0 The matrix P is positive definite and negative definite, respectively
λ̄(P ), λ(P ) Maximum and minimum eigenvalues of matrix P , respectively
|x| Absolute value of scalar x
‖x‖ Euclidean norm of vector x
‖P‖ Spectral norm (2-norm) of matrix P
Cn The set of functions with n-times continuously differentiable derivatives

xt : [−h, 0] 7→ Rn xt(θ) = x(t+ θ) with θ ∈ [−h, 0]
ḟ(g(t)) Time-derivative of function f(·) at instant g(t)
d
dtf(g(t)) Time derivative of the function composition t 7→ f(g(t)) at instant t

Table 3 – List of notations of this thesis.
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of LTI systems with input-output delays, 2019 America Control Conference (ACC), pages 3702-3707.

1.1 Introduction

This chapter is dedicated to the predictor-control of LTI systems with unknown constant delays,
the first system to study is the input-delay system

ẋ(t) = Ax(t) +Bu(t− h), t ≥ 0 (1.1)

with A ∈ Rn×n, B ∈ Rn×m, unknown constant input delay h > 0, and initial conditions

x(0) = x0,

u(θ) = φu(θ) ∈ C([−2h̄, 0),Rm).
(1.2)

In (1.2), the initial condition of u(t) is defined on [−2h̄, 0) instead of [−h̄, 0) because the delay
estimator given in the sequel needs the knowledge of u(t) on [−2h̄,−h̄).
The second system to analyze is the input-output delay systemsẋ(t) = Ax(t) +Bu(t− hi), t ≥ 0

y(t) = Cx(t− ho)
(1.3)

with unknown hi, and ho. The initial condition of system (1.3) in

x(θ) = φx(θ) ∈ C([−ho, 0),Rn),

u(θ) = φu(θ) ∈ C([−2h̄, 0),Rm).
(1.4)

and in this case the parameter h̄ is the upper bound on the round-trip delay hi + ho. This section
begins with a presentation about the existing methods dealing with the same problem, and then
the control problems are formulated. The modeling of the system and some necessary assumptions
are given as well.

1.1.1 Overviews and limitations of the related works

In this subsection, the existing methods mentioned in General Introduction are discussed in
details.
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Adaptive backstepping method

Consider the system (1.1), and one assumes that the input-delay h > 0 is unknown and upper
bounded by a positive constant h̄. This method is based on the backstepping transformation

ū(p, t) = u(t− h(p− 1)), p ∈ [0, 1], (1.5)

and the control law reads as

u(t) = K

[
eAĥ(t)x(t) + ĥ(t)

∫ 1

0
eAĥ(t)(1−y)Bū(y, t)dy

]
(1.6)

where K is the feedback matrix that makes A+BK Hurwitz, and ĥ(t) is a delay estimator used to
build approximated predictor-based control law. The delay estimator ĥ(t) is governed by the update
law

˙̂
h(t) = γProj[0,h̄] {τ(t)} (1.7)

with sufficiently large γ > 0, and the standard projector operator

Proj[0,h̄] {τ} = τ


0, ĥ(t) = 0 and τ < 0

0, ĥ(t) = h̄ and τ > 0

1, otherwise

. (1.8)

The dynamic of τ(t) satisfies that

τ(t) = −
∫ 1

0 (1 + p)w(p, t)KeAĥ(t)dp [Ax(t) +Bū(0, t)]
1 + xT (t)Px(t) + b

∫ 1
0 (1 + p)w2(p, t)dp

(1.9)

with
w(p, t) = ū(p, t)− ĥ(t)

∫ p

0
KeAĥ(t)(p−y)Bū(y, t)dy −KeAĥ(t)px(t). (1.10)

The symmetric positive definite matrix P is the solution to the following Lyapunov equation

(A+BK)TP − P (A+BK) = −Q (1.11)

for arbitrarily chosen symmetric positive definite matrix Q, and then the parameter b in (1.9) is
chosen such that

b ≥ 4‖PB‖2h̄
λ(Q) . (1.12)

By using the control law derived from (1.5)-(1.12), the original system (1.1) with unknown input-
delay is globally uniformly asymptotically stable, and the delay estimator ĥ(t) converges in a small
region around the nominal delay h.
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The adaptive backstepping method (Miroslav Krstic and Bresch-Pietri 2009; Bresch-Pietri and
Miroslav Krstic 2010) transforms the original system (1.1) to a PDE system with zero boundary
condition. Then a Lyapunov-Krasovskii functional is designed for the closed-loop PDE system. By
using this method, the global asymptotic stability of the ODE system is ensured.

Multi-model based technique

Different from the theoretical solution given in (Bekiaris-Liberis and Miroslav Krstic 2013), a
more practical method is given in (Herrera and Ibeas 2012). This method is an output regulation
based on the transfer function.
The main idea of this method is presented in Figure 1.1, when the control input u(t) is injected
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-hs

System Plant

y(t)yr(t)

+ -

e(t) u(t)
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e
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Logic 

Algorithm
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h(t)^

Modified Smith predictor

Figure 1.1 – Delay estimation and control diagram of the multi-model based technique (Herrera and
Ibeas 2012).

into the time-delay system G(s)e−hs, it is also applied to several virtual systems with distinct time-
delays ĥ1, ĥ2, · · · , ĥn. The outputs of the virtual systems are compared with the system output,
and the unknown time-delay is estimated by a switching logic algorithm. Finally, the control law is
calculated with the delay estimation and a modified Smith predictor.

Truncated predictor-based control methods

In this subsection, the truncated predictor-based controllers (Wei and Lin 2019; Cacace, Conte,
and Germani 2017) are introduced in details.
In (Wei and Lin 2019), the system (1.1) with unknown input-delay h > 0 is taken into account. The
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following time-varying feedback control law

u(t) = −BTP (γ(t))x(t), t ≥ 0 (1.13)

where P (γ(t)) is the solution of the following time-varying algebraic Riccati equation

ATP (γ(t)) + P (γ(t))A− P (γ(t))BBTP (γ(t)) = −γ(t)P (γ(t)), γ(t) > 0 (1.14)

is used to stabilize the time-delay system (1.1). The time-varying parameter γ(t) given in (1.13)
and (1.14) is chosen as γ(t) = m

τ̂(t) with the following properties:
— m > 0 is a sufficiently small constant;
— τ̂(t) satisfies that τ̂(t) > 0, lim

t→+∞
τ̂(t) = τ̄ , and lim

t→+∞
˙̂τ(t) = 0.

With this method, the time-varying feedback gain −BTP (γ(t)) is decreasing in order to make the
closed-loop dynamics slower than the unknown delay value, this is the reason why this technique
is named “low gain feedback”. However, this method cannot deal with unstable system plant, all of
the open-loop poles are supposed to be zero.
Different from the low gain feedback method, (Cacace, Conte, and Germani 2017) combines the
truncated predictor-based controller

u(t) = Ke(A+BK)ĥ(t)x(t), t ≥ 0 (1.15)

with a piecewise constant delay estimation technique. The anti-gradient based approach is used to
make the delay estimation evolving along the opposite direction of the gradient of an error system.
On the contrary of (Wei and Lin 2019), this method is effective to unstable open-loop systems,
but it cannot compensate arbitrarily long time-delay since the integral term is neglected, and the
maximal allowable delay value h̄max depends on the matrices A, B, and K.
The main benefit of the truncated predictor-based control methods (Wei and Lin 2019; Cacace,
Conte, and Germani 2017) is the abandon of the integral term, which makes the control law easy
to implement, and the numerical issues claimed in (Van Assche et al. 1999) are also avoided.

Limitations of the existing methods

Consider the existing methods mentioned above, they have the following limitations:
— Although the adaptive backstepping method (Miroslav Krstic and Bresch-Pietri 2009; Bresch-

Pietri and Miroslav Krstic 2010) is one of the best theoretical solutions to the problem, it
is difficult to be implemented on the real control system, both the controller (1.6) and the
delay estimator (1.7)-(1.9) contain infinite dimensional terms, and the delay estimator must
be transformed to an explicit form in real applications.

— The multi-model method is easy to implement, but the computation cost is high if the time-
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delay is large (large time-delay requires large numbers of virtual systems).
— The truncated predictor-based control techniques (Cacace, Conte, and Germani 2017; Wei

and Lin 2019) is also easy to implement, but they have constraints on the system parameters,
and they are weak in the control of unstable systems with arbitrarily long unknown time-
delay.

The main objective of this chapter is to build control laws for input-delay system (1.1) and input-
output delay system (1.3) with a trade-off between the theories and the applications.

1.1.2 Preliminaries and problem formulations

Problem formulation of input-delay system

Consider the input-delay system (1.1) where x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m.
The input-delay h is supposed to be constant and unknown. Moreover, one assumes that h is
bounded in [h, h̄], the bounds h and h̄ are known. In order to build control law for system (1.1), the
following assumption are clarified.

Assumption 1. The pair (A,B) is stabilizable.

Assumption 1 ensures the existence of a feedback matrix K ∈ Rm×n such that A + BK is
Hurwitz. It yields that for all positive constant cu, there exists a positive definite matrix P ∈ Rn×n

such that the following algebraic equation (Slotine, Weiping Li, et al. 1991)[equation (3.19)] holds

(A+BK)TP + P (A+BK) = −cuIn. (1.16)

Based on the feedback matrix K given after Assumption 1, one defines the controller as

u(t) = Kz(t), t ≥ 0 (1.17)

where z(t) is the approximated predictor relies on the knowledge of the delay estimation ĥ(t) (the
definition of ĥ(t) will be given in the next section)

z(t) = eAĥ(t)x(t) +
∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds, t ≥ 0. (1.18)

The initial condition of z(t) is defined as

z(θ) = φz(θ) ∈ C([−2h̄, 0),Rn). (1.19)

Similarly, the initial condition of z(t) is defined on [−2h̄, 0) in order to ensure that the delay estimator
is computable.
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Remark 2. To simplify the calculations, one chooses the initial condition of z(t) such that

‖φu(θ)‖ ≤ ‖K‖‖φz(θ)‖, θ ∈ [−2h̄, 0). (1.20)

Moreover, one requires that u(t) and z(t) are continuous at t = 0 gives that

lim
θ→0−

φu(θ) = u(0),

lim
θ→0−

φz(θ) = z(0).
(1.21)

Equations (1.21) ensures the continuity of the controller u(t) and the predictor z(t) for all t ≥ −2h̄.

Assumption 2. The delayed input value u(t− h) is available for measurements.

The proposed technique uses the knowledge of u(t − h) to estimate the unknown input-delay.
The delayed input value u(t − h) can be stored and sent to the controller in practice. The same
assumption is given in (Léchappé, Rouquet, et al. 2016; Diop et al. 2001) in order to solve the delay
estimation problem. For the stabilization problems, the adaptive backstepping approaches (Miroslav
Krstic and Bresch-Pietri 2009, pp.4500), (Bekiaris-Liberis and Miroslav Krstic 2010, pp.278) also
claim that the infinite-dimensional state (1.5) with the unknown input-delay h, is available for
measurement for all p ∈ [0, 1]. Thus, Assumption 2 is a standard assumption for this problem.
Moreover, Assumption 2 can be verified in a class of remote control systems (RCS) (S.-H. Yang
2011, Chapter 3.4). Consider a RCS with full-state measurement:

ẋ(t) = Ax(t) +Bu(t− hi)

y(t) = x(t− ho)
(1.22)

where hi and ho are the unknown constant input and output delays arisen from the remote data
transmission. Firstly, one assumes that the plant sends the measured state x(t) and the delayed
input u(t− hi) back to the controller in the same communication channel (the data transmission of
the delayed control signal is shown by the dashed arrows in Figure 1.2), then the controller receives
y(t) and u(t− hi − ho) at the same time. In other words, at the controller side, the delayed signal
u(t − hi − ho) is available for measurements. Secondly, since ho is constant, the dynamics of y(t)
reads as

ẏ(t) = ẋ(t− ho) = Ax(t− ho) +Bu(t− hi − ho). (1.23)

Remind that, if one defines h = hi + ho, system (1.23) is equivalent to an input-delay system

ẏ(t) = Ay(t) +Bu(t− h) (1.24)

where u(t−h) is available for measurements. This example shows that the input and output delays of
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Controller Plant

hi

ho

u(t) u(t-hi)
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Figure 1.2 – Control framework of RCS (1.22) with full state measurement.

the remote control system (1.22) can be lumped together, and this system can be equally considered
as an input-delay system (1.24) in which Assumption 2 is satisfied.
The control objective is to seek for an appropriate delay estimator ĥ(t) such that the approximated
predictor-based controller (1.17)-(1.18) can stabilize the system (1.1) with unknown constant input
delay.

Problem formulation of input-output delay system

The problem formulation of the input-output delay system (1.3) is almost the same as the one
of input-delay system, only some small changes are made.
First, assumptions 1-2 are modified in order to adjust system (1.3). Assumption 1 is extended to
the following form:

Assumption 3. The pairs (A,B) and (A,C) are stabilizable and observable, respectively.

Assumption 3 implies that, given a matrix C ∈ Rp×n, for all positive constants cl, there exists
a matrix L ∈ Rn×p and a symmetric positive definite matrix Q ∈ Rn×n which is the solution to the
following Lyapunov equation

(A− LC)TQ+Q(A− LC) = −clIn. (1.25)

Define round-trip delay hrt = hi + ho, Assumption 2 is then extended to:

Assumption 4. The delayed input value u(t− hrt) is available for measurements.
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Assumption 4 can be easily verified by using the technique displayed in Figure 1.2.
Second, thanks to Assumption 4, it is possible to use the delayed input signal u(t−hrt) to establish
the following luenberger observer

˙̂x(t) = Ax̂+Bu(t− hrt) + L [y(t)− Cx̂(t)] . (1.26)

And the predictor (1.18) is modified to

z(t) = eAĥ(t)x̂(t) +
∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds, t ≥ 0 (1.27)

since the full state x(t) is no longer available.
The control objective is to use an appropriate delay estimator ĥ(t) to estimate the round-trip
delay hrt, and then use the approximated output-feedback predictor-based controller (1.26)-(1.27)
to stabilize the system (1.3) with unknown constant input-output delays.

1.2 Predictor-based control of LTI systems with unknown constant
delays

At the beginning of this section, a monotonic delay estimation algorithm which is the key to the
controller design is introduced. The closed-loop stability under the predictor-based controller and
the proposed delay estimation techniques is analyzed. Some simulations and discussions are given
to illustrate the performances and robustness of such control techniques.

1.2.1 Properties of the monotonic delay estimator

In this subsection, a new monotonic delay estimator is introduced, and then some detailed
discussions about this new delay estimator are given subsequently.
The main idea of the monotonic delay estimator is to use the delayed input signal u(t−h) to estimate
the unknown time-delay, as the references (Diop et al. 2001; Drakunov et al. 2006; Miroslav Krstic
and Bresch-Pietri 2009; Léchappé, Rouquet, et al. 2016). Remind that this signal is available for the
controller due to assumptions 2 and 4, and the technique described in Figure 1.2. The prototype of
the delay estimator is given as follows:

˙̂
h(t) = ‖u(t− h)− u(t− ĥ(t))‖ (1.28)

with initial condition ĥ(0) ≤ h. This delay estimator is monotonic since the right-hand side of (1.28)
is non-negative.
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Lemma 1. Consider the delay estimation dynamic (1.28), the delay estimator ĥ(t) with initial
condition ĥ(0) ≤ h satisfies that

ĥ(t) ≤ h, t ≥ 0 (1.29)

and then one has
0 ≤ h− ĥ(t) ≤ h− ĥ(0). (1.30)

Proof. The first part of the proof is to derive (1.29) by contradiction. Assume that there exists an
instant t0 > 0 such that ĥ(t0) > h, then there must exist another instant t1 ∈ [0, t0) such that

ĥ(t1) = h,
˙̂
h(t1) > 0 (1.31)

thanks to the fact ĥ(0) ≤ h, the continuity of ĥ(t), the monotonicity of ĥ(t) and the intermediate
value theorem (Beals 2004, Theorem 8.9). However, ˙̂

h(t1) > 0 cannot be true while ĥ(t1) = h holds.
As a consequence of ĥ(t1) = h, one has

˙̂
h(t1) = ‖u(t1 − h)− u(t1 − ĥ(t1))‖ = ‖u(t1 − h)− u(t1 − h)‖ = 0. (1.32)

There is a contradiction between (1.31) and (1.32), then inequality (1.29) is proven. Thus, delay
estimator (1.28) is increasing and upper bounded by h such that

ĥ(0) ≤ ĥ(t) ≤ h, t ≥ 0 (1.33)

which further derives (1.30).

Lemma 1 explains that the delay estimator ĥ(t) given in (1.28) is always getting closer and closer
to the exact delay value h, and it dynamic will be stopped when:

— ĥ(t) = h is ensured at a finite time t0, then it leads to perfect delay estimation for all t ≥ t0;
— ĥ(t) is close enough to the exact delay value, then the system can be stabilized with this

“inaccurate” delay estimation due to the robustness with respect to the delay mismatch
(Bresch-Pietri and Petit 2014; Léchappé, Moulay, and Plestan 2018a). As a result, the control
signal u(t) is no longer “sufficiently rich” in the sense of the delay indentifiability theory
(Orlov et al. 2002; Drakunov et al. 2006), and one cannot perfectly estimate the time-delay
(see the example displayed in Figure 1.3).

Indeed, consider the two cases mentioned above, although the time-delay cannot always be ac-
curately estimated, the closed-loop stability can be ensured. Thus, this kind of delay estimation
technique is a control oriented closed-loop TDE technique.
However, (1.28) cannot be directly used in the control system since the stability analysis is compli-
cated. In the rest of this chapter, (1.28) is extended to the following three versions:
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(a) Unknown time-delay h = 6s, delay estimator ĥ1(t) (with u1(t) = sin(t)), and delay
estimator ĥ2(t) (with u2(t) = e−2t) versus time.
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u1(t) = sin(t)
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(b) Control signals u1(t) = sin(t), and u2(t) = e−2t versus time.

Figure 1.3 – Delay estimations ĥ1(t), ĥ2(t) versus time via (1.28) with “sufficiently rich” control
signal u1(t) = sin(t) and “insufficiently rich” control signal u2(t) = e−2t.
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Saturated monotonic delay estimator:

˙̂
h(t) = min

{
‖u(t− h)− u(t− ĥ(t))‖, δ̄

}
, t ≥ 0. (1.34)

Normalized monotonic delay estimator:

˙̂
h(t) = ‖u(t− h)− u(t− ĥ(t))‖

‖z(t)‖+ ε
, t ≥ 0. (1.35)

Modified normalized monotonic delay estimator:

˙̂
h(t) = ‖u(t− h)− u(t− ĥ(t))‖

maxs∈[t−2h̄,t] ‖z(s)‖+ ε
, t ≥ 0 (1.36)

1.2.2 Predictor-based control and saturated monotonic delay estimation of input-
delay systems

In this subsection, the saturated version of the monotonic delay estimator (1.34) with 0 < δ̄ < 1,
is combined with the approximated predictor-based controller (1.17)-(1.18) to stabilize the input-
delay system (1.1). The theoretical results are divided into 3 parts:

— The trajectories of z(t) and ż(t) are bounded on interval t ∈ [0, h̄).
— The Lyapunov-Krasovskii analysis of the reduction model z(t) for all t ≥ h̄.
— The exponential stability of z(t) and the exponential convergence of x(t) for all t ≥ 0.

Lemma 2. Consider the input-delay system (1.1) with initial conditions (1.2)-(1.19) satisfying
conditions (1.20)-(1.21), controlled by the approximated predictor-based controller (1.17)-(1.18) and
the saturated monotonic delay estimator (1.34). The trajectories of z(t) satisfy that

max
s∈[0,h̄]

‖z(s)‖ ≤ kebh̄, max
s∈[0,h̄]

‖ż(s)‖ ≤ bkebh̄ (1.37)

with
k = max

s∈[−h̄,0]
‖z(s)‖,

b = ‖A+BK‖+ δ̄‖A‖+ e‖A‖h̄‖B‖‖K‖(2 + δ̄ + δ̄‖A‖h̄).
(1.38)

Proof. Taking the time-derivative of (1.18) along the trajectories of (1.1) and (1.17) leads to

ż(t) =(A+BK)z(t) + eAĥ(t)B[u(t− h)− u(t− ĥ(t))] + ˙̂
h(t)Az(t)

− ˙̂
h(t)A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds+ ˙̂

h(t)eAĥ(t)Bu(t− ĥ(t)), t ≥ 0.
(1.39)
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Consider a scalar function N(t) defined as follows

N(t) =

z
T (t)z(t) = ‖z(t)‖2, t ≥ 0

φTz (θ)φz(θ) = ‖φz(θ)‖2, −2h̄ ≤ θ < 0
. (1.40)

Remind that one has (1.20), then N(t) is continuous for all t ≥ −2h̄. Differentiating N(t) along the
trajectories of (1.39) leads to

Ṅ(t) =2zT (t)(A+BK)z(t) + 2zT (t)eAĥ(t)B[u(t− h)− u(t− ĥ(t))] + 2 ˙̂
h(t)zT (t)Az(t)

− 2 ˙̂
h(t)zT (t)A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds+ 2 ˙̂

h(t)zT (t)eAĥ(t)Bu(t− ĥ(t)), t ≥ 0.
(1.41)

Taking the norm of the right-hand side of (1.41) and using the fact | ˙̂h(t)| ≤ δ̄, it follows that

Ṅ(t) ≤ 2‖A+BK‖‖z(t)‖2 + 4e‖A‖h̄‖B‖‖K‖‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖+ 2δ̄‖A‖‖z(t)‖2

+ 2δ̄‖A‖e‖A‖h̄‖B‖‖K‖h̄‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖+ 2δ̄e‖A‖h̄‖B‖‖K‖‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖, t ≥ 0.

(1.42)
Due to the fact that ‖z(t)‖ ≤ maxs∈[t−h̄,t] ‖z(s)‖, (1.42) is upper bounded as

Ṅ(t) ≤ 2b
(

max
s∈[t−h̄,t]

‖z(s)‖
)2

= 2b max
s∈[t−h̄,t]

N(s), t ≥ 0 (1.43)

where b is defined in (1.38). The analysis given in (Bresch-Pietri, Frédéric Mazenc, and Petit 2018,
Appendix B, pp.232-233) proves that the trajectory of N(t) satisfies the following inequality:

N(t) ≤ max
s∈[−h̄,0]

N(s)e2bt, t ≥ 0. (1.44)

Since maxs∈[−h̄,0]N(s) = k2, one proves that 1

‖z(t)‖ ≤ kebt, t ≥ 0 (1.45)

where k and b are defined in (1.38). Given that ‖z(θ)‖ ≤ k for all θ ∈ [−h̄, 0], then one has

max
s∈[t−h̄,t]

‖z(s)‖ ≤ kebt, t ≥ 0. (1.46)

Next, one takes the norm of (1.39) and one repeats the calculations given in (1.42) and (1.43), it

1. A similar result is also given in (Selivanov and Fridman 2016b, Appendix A, (A.5)-(A.6)) with the use of the
Gronwall-Bellman Lemma.
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follows that
‖ż(t)‖ ≤ b max

s∈[t−h̄,t]
‖z(s)‖, t ≥ 0. (1.47)

Combining (1.46) and (1.47) leads to

‖ż(t)‖ ≤ bkebt, t ≥ 0. (1.48)

Inequalities (1.45) and (1.48) result in (1.37), and this ends the proof.

Lemma 2 claims that the trajectory of z(t) is bounded by (1.37) during the transient t ∈ [0, h̄), and
it is also observed that the closed-loop system (1.39) does not have finite escape time thanks to the
linearity and the saturation bound δ̄.
After analyzing the system trajectories on the transient t ∈ [0, h̄), one focuses on the Lyapunov-
Krasovskii analysis of the model reduction z(t) for all t ≥ h̄.

Lemma 3. Consider the Lyapunov-Krasovskii functional

V (z, ut, u̇t, t) = V1(z) + αV2(ut, t) + βV3(u̇t, t) (1.49)

with positive constants α, β and

V1(z) = z(t)TPz(t),

V2(ut, t) =
∫ t

t−ĥ(t)
(2h̄+ s− t)‖u(s)‖2ds,

V3(u̇t, t) =
∫ t

t−h
(h+ s− t)‖u̇(s)‖2ds.

(1.50)

If the parameters D , h− ĥ(h̄) and δ̄ are sufficiently small, then there exists η > 0 such that

V (t) ≤ V (h̄)e−2η(t−h̄), t ≥ h̄. (1.51)

Proof. At the beginning of the proof, the following inequality is reminded

0 ≤ h− ĥ(t) ≤ h− ĥ(h̄) = D, ∀t ≥ h̄ (1.52)

with the help of Lemma 1. For all t ≥ h̄, differentiating V1(z) along the trajectory of (1.39) and
using Lyapunov equation (1.16) leads to:

V̇1(z(t)) = −cu‖z(t)‖2 + 2 ˙̂
h(t)zT (t)PAz(t) + 2zT (t)PeAĥ(t)B[u(t− h)− u(t− ĥ(t))]

− 2 ˙̂
h(t)zT (t)PA

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds+ 2 ˙̂

h(t)zT (t)PeAĥ(t)Bu(t− ĥ(t)), t ≥ h̄.
(1.53)
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Taking the norm of (1.53), applying the triangle inequality for integrals (Rudin 2006, Theorem 1.33)
and the fact that | ˙̂h(t)| ≤ δ̄, one gets

V̇1(z(t)) ≤− cu‖z(t)‖2 + 2δ̄‖PA‖‖z(t)‖2 + 2δ̄e‖A‖h̄‖B‖‖P‖‖z(t)‖‖u(t− ĥ(t))‖

+ 2δ̄‖PA‖e‖A‖h̄‖B‖‖z(t)‖‖v(t)‖+ 2e‖A‖h̄‖B‖‖P‖‖z(t)‖‖w(t)‖
(1.54)

where ‖v(t)‖ =
∫ t
t−ĥ(t) ‖u(s)‖ds and ‖w(t)‖ =

∫ t−ĥ(t)
t−h ‖u̇(s)‖ds. Define c1 = 2‖PA‖, c2 = 2e‖A‖h̄‖B‖‖P‖,

c3 = 2‖PA‖e‖A‖h̄‖B‖, then (1.54) is equivalent to

V̇1(z) ≤− (cu − δ̄c1)‖z(t)‖2 + δ̄c2‖z(t)‖‖u(t− ĥ(t))‖+ δ̄c3‖z(t)‖‖v(t)‖+ c2‖z(t)‖‖w(t)‖. (1.55)

Then, by completing the squares, (1.55) implies that

V̇1(z) ≤− (cu − δ̄c1)‖z(t)‖2 + δ̄c2
2 (‖z(t)‖2 + ‖u(t− ĥ(t))‖2)

+ δ̄c3
2 (‖z(t)‖2 + ‖v(t)‖2) +

(
Dc2

2
β
‖z(t)‖2 + β

4D‖w(t)‖2
)
.

(1.56)

For all t ≥ h̄, differentiating V2(ut, t) gives that

V̇2(ut, t) ≤ 2h̄‖K‖2‖z(t)‖2 − (1− ˙̂
h(t))(2h̄− ĥ(t))‖u(t− ĥ(t))‖2 −

∫ t

t−ĥ(t)
‖u(s)‖2ds. (1.57)

Remind that 1− ˙̂
h(t) ≥ 1− δ̄ ≥ 0 and 2h̄− ĥ(t) ≥ h̄ ≥ 0, one has

(1− ˙̂
h(t))(2h̄− ĥ(t)) ≥ (1− δ̄)h̄ ≥ 0. (1.58)

Combining (1.57) and (1.58) leads to

V̇2(ut, t) ≤ 2h̄‖K‖2‖z(t)‖2 − (1− δ̄)h̄‖u(t− ĥ(t))‖2 −
∫ t

t−ĥ(t)
‖u(s)‖2ds. (1.59)

Using the Jensen’s inequality (Gu, J. Chen, and Kharitonov 2003, Proposition B.8) and the fact
that 0 ≤ ĥ(t) ≤ h̄, the integral term of (1.59) is upper bounded as follows

−
∫ t

t−ĥ(t)
‖u(s)‖2ds ≤ − 1

ĥ(t)

[∫ t

t−ĥ(t)
‖u(s)‖ds

]2

≤ −1
h̄

[∫ t

t−ĥ(t)
‖u(s)‖ds

]2

. (1.60)

Using (1.60), inequality (1.59) is developed to

V̇2(ut, t) ≤ 2h̄‖K‖2‖z(t)‖2 − (1− δ̄)h̄‖u(t− ĥ(t))‖2 − 1
2h̄
‖v(t)‖2 − 1

2

∫ t

t−ĥ(t)
‖u(s)‖2ds. (1.61)
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For all t ≥ h̄, differentiating V3(u̇t, t) leads to

V̇3(u̇t, t) ≤ h̄‖K‖2‖ż(t)‖2 −
∫ t

t−h
‖u̇(s)‖2ds. (1.62)

Remind that one has (1.52), then one also has − 1
h−ĥ(t) ≤ −

1
D ≤ 0. So inequality (1.62) becomes to

V̇3(u̇t, t) ≤ h̄‖K‖2‖ż(t)‖2 −
1
2

∫ t−ĥ(t)

t−h
‖u̇(s)‖2ds− 1

2

∫ t

t−h
‖u̇(s)‖2ds

≤ h̄‖K‖2‖ż(t)‖2 − 1
2D‖w(t)‖2 − 1

2

∫ t

t−h
‖u̇(s)‖2ds.

(1.63)

For t ≥ h̄, taking the norm of (1.39) and taking account of the fact that | ˙̂h(t)| ≤ δ̄, one has

‖ż(t)‖ ≤‖A+BK‖‖z(t)‖+ δ̄‖A‖‖z(t)‖+ e‖A‖h̄‖B‖‖w(t)‖

+ δ̄‖A‖e‖A‖h̄‖B‖‖v(t)‖+ δ̄e‖A‖h̄‖B‖‖u(t− ĥ(t))‖.
(1.64)

Squaring (1.64) and using the power means inequality given in (Bullen 2013, pp.203, Theorem 1)
yields that

‖ż(t)‖2 ≤ (c4 + c5δ̄
2)‖z(t)‖2 + c6‖w(t)‖2 + c7δ̄

2‖v(t)‖2 + c6δ̄
2‖u(t− ĥ(t))‖2 (1.65)

where c4 = 5‖A + BK‖2, c5 = 5‖A‖2, c6 = 5e2‖A‖h̄‖B‖2 and c7 = 5‖A‖2e2‖A‖h̄‖B‖2. Thus, (1.63)
is upper bounded by

V̇3(u̇t, t) ≤h̄‖K‖2
[
(c4 + c5δ̄

2)‖z(t)‖2 + c6‖w(t)‖2 + c7δ̄
2‖v(t)‖2 + c6δ̄

2‖u(t− ĥ(t))‖2
]

− 1
2D‖w(t)‖2 − 1

2

∫ t

t−h
‖u̇(s)‖2ds.

(1.66)

Futhermore, the Lyapunov-Krasovskii functional (1.49) is upper bounded by

V (z, ut, u̇t, t) ≤ λ̄(P )‖z(t)‖2 + 2αh̄
∫ t

t−ĥ(t)
‖u(s)‖2ds+ βh̄

∫ t

t−h
‖u̇(s)‖2ds. (1.67)
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For t ≥ h̄, taking account of (1.56), (1.61), (1.66) and (1.67) gives that

V̇ + 2ηV ≤−
[
cu − δ̄c1 − δ̄(c2 + c3)/2−Dc2

2/β − 2αh̄‖K‖2 − βh̄‖K‖2(c4 + c5δ̄
2)− 2ηλ̄(P )

]
‖z(t)‖2

−
[
αh̄− αh̄δ̄ − δ̄c2/2− βh̄‖K‖2c6δ̄

2
]
‖u(t− ĥ(t))‖2 −

[
α/2− 4αh̄η

] ∫ t

t−ĥ(t)
‖u(s)‖2ds

−
[
β/(2D)− β/(4D)− βh̄‖K‖2c6

]
‖w(t)‖2 −

[
α/(2h̄)− δ̄c3/2− βh̄‖K‖2c7δ̄

2
]
‖v(t)‖2

−
[
β/2− 2βh̄η

] ∫ t

t−h
‖u̇(s)‖2ds.

(1.68)
Thus, one obtains the stability conditions as follows

cu − δ̄c1 − δ̄(c2 + c3)/2−Dc2
2/β − 2αh̄‖K‖2 − βh̄‖K‖2(c4 + c5δ̄

2)− 2ηλ̄(P ) ≥ 0, (1.69)

αh̄− αh̄δ̄ − δ̄c2/2− βh̄‖K‖2c6δ̄
2 ≥ 0, (1.70)

α/(2h̄)− δ̄c3/2− βh̄‖K‖2c7δ̄
2 ≥ 0, (1.71)

β/(2D)− β/(4D)− βh̄‖K‖2c6 ≥ 0, (1.72)

α/2− 4αh̄η ≥ 0, (1.73)

β/2− 2βh̄η ≥ 0. (1.74)

Firstly, one chooses α, β and η sufficiently small in order to verify (1.73), (1.74) and the following
inequality

cu/2− 2αh̄‖K‖2 − βh̄‖K‖2c4 − 2ηλ̄(P ) ≥ 0. (1.75)

Secondly, it is possible to find sufficiently small δ̄ and D satisfying (1.70), (1.71), (1.72) and the
following inequality:

cu/2− δ̄c1 − δ̄(c2 + c3)/2−Dc2
2/β − βh̄‖K‖2c5δ̄

2 ≥ 0. (1.76)

Thus, there exist δ̄∗ > 0 and D∗ > 0 such that for all δ̄ ≤ δ̄∗ and D ≤ D∗, the stability conditions
(1.69)-(1.74) are all guaranteed. The Lyapunov-Krasovskii theorem (Fridman 2014a, Theorem 3.1)
ensures that z(t) is uniformly asymptotically stable for all t ≥ h̄. Moreover, one has

V (z, ut, u̇t, t) ≥ w(‖z(t)‖) (1.77)

with w(s) = λ(P )s2. Since one has lim
s→+∞

w(s) = +∞, it implies that the closed-loop z-system is

globally uniformly asymptotically stable for all t ≥ h̄ such that

V̇ (z, ut, u̇t, t) ≤ −2ηV (z, ut, u̇t, t), t ≥ h̄ (1.78)

Finally, (1.51) is proven by using (1.78).
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Lemma 3 shows that stability of z(t) is ensured if the delay estimation ĥ(t) is sufficiently accurate
and sufficiently slow-varying (i.e. δ̄ is sufficiently small) for all t ≥ h̄. Combine the results of
Lemmas 2-3, the exponential stabilities of z(t) and the exponential convergences of x(t) for all t ≥ 0
are derived.

Lemma 4. If Lemma 3 holds, then the closed-loop system of z(t) is globally uniformly exponentially
stable (Globally Uniformly Exponentially Stable (GUES)), and the true state x(t) exponentially
converges to zero. Namely, there exist positive constants M1, M2 such that

‖z(t)‖ ≤M1 max
s∈[−h̄,0]

‖z(s)‖e−ηt, t ≥ 0 (1.79)

and
‖x(t)‖ ≤M2 max

s∈[−h̄,0]
‖z(s)‖e−ηt, t ≥ 0 (1.80)

with η given in Lemma 3.

Proof. To obtain the stability of z(t) for all t ≥ 0, the boundedness of V (h̄) is necessary, one firstly
bounds the term V (h̄) by using (1.49)-(1.50) as follows

V (h̄) ≤ λ̄(P )‖z(h̄)‖2 + 2αh̄‖K‖2
∫ h̄

0
‖z(s)‖2ds+ βh̄‖K‖2

∫ h̄

0
‖ż(s)‖2ds

≤ λ̄(P )‖z(h̄)‖2 + 2αh̄2‖K‖2 max
s∈[0,h̄]

‖z(s)‖2 + βh̄2‖K‖2 max
s∈[0,h̄]

‖ż(s)‖2.
(1.81)

Taking account of (1.81), (1.37) and (1.45), the upper bound of V (h̄) satisfies that

V (h̄) ≤
[
λ̄(P )e2bh̄ + 2αh̄2‖K‖2e2bh̄ + βh̄2‖K‖2b2e2bh̄

]
k2. (1.82)

Define M2
0 = λ̄(P )e2bh̄+ 2αh̄2‖K‖2e2bh̄+βh̄2‖K‖2b2e2bh̄, inequalities (1.77), (1.82) and (1.51) yield

that

‖z(t)‖ ≤ M0e
ηh̄√

λ(P )
ke−ηt, t ≥ h̄. (1.83)

Moreover, during the transient on 0 ≤ t ≤ h̄, eη(h̄−t) is larger than 1. From (1.46), z(t) is upper
bounded as follows

‖z(t)‖ ≤ kebh̄ ≤ kebh̄eη(h̄−t) ≤ ke(b+η)h̄e−ηt, 0 ≤ t ≤ h̄. (1.84)

Define

M1 = M0e
ηh̄√

λ(P )
(1.85)
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which is larger than e(b+η)h̄ since

M1 ≥

√
λ̄(P )e2bh̄√
λ(P )

eηh̄ ≥ e(b+η)h̄ ≥ 1. (1.86)

Therefore, (1.83) and (1.84) result in the exponential stability (1.79). The next part of the proof is
to demonstrate (1.80). Rearranging (1.18), one gets

x(t) = e−Aĥ(t)z(t)−
∫ t

t−ĥ(t)
eA[t−ĥ(t)−s]Bu(s)ds, t ≥ 0. (1.87)

Taking the norm of (1.87) and using (1.20), the upper bound of ‖x(t)‖ reads as follows

‖x(t)‖ ≤ e‖A‖h̄‖z(t)‖+ e‖A‖h̄‖B‖‖K‖h̄ max
s∈[t−h̄,t]

‖z(s)‖, t ≥ 0. (1.88)

Consider (1.79) and (1.86), then maxs∈[t−h̄,t] ‖z(s)‖ satisfies

max
s∈[t−h̄,t]

‖z(s)‖ ≤

M1k, 0 ≤ t ≤ h̄

M1ke
−η(t−h̄), t ≥ h̄

. (1.89)

Note that eη(h̄−t) ≥ 1 for all 0 ≤ t ≤ h̄, then (1.89) provides that

max
s∈[t−h̄,t]

‖z(s)‖ ≤M1e
ηh̄ke−ηt, t ≥ 0. (1.90)

Substituting (1.79) and (1.90) into (1.88), the upper bound of x(t) is developed to

‖x(t)‖ ≤ e‖A‖h̄M1ke
−ηt + e‖A‖h̄‖B‖‖K‖h̄M1e

ηh̄ke−ηt

≤
[
e‖A‖h̄ + e‖A‖h̄‖B‖‖K‖eηh̄h̄

]
M1ke

−ηt, t ≥ 0.
(1.91)

Thus, the exponential convergence (1.80) is proven withM2 =
[
e‖A‖h̄ + e‖A‖h̄‖B‖‖K‖eηh̄h̄

]
M1.

Sum up the theoretical results presented by Lemmas 2-4, the stability analysis of the system
(1.1) under the control laws (1.17)-(1.18)-(1.34) is presented subsequently.

Theorem 1. Consider the input-delay system (1.1) with initial conditions (1.2)-(1.19) satisfying
conditions (1.20)-(1.21), controlled by the approximated predictor-based controller (1.17)-(1.18) and
the saturated monotonic delay estimator (1.34). If the positive parameters D̄ , h− ĥ(0) and δ̄ are
sufficiently small, then there exist positive constants M1, M2 and η such that z(t) is GUES with
decay rate η (as shown in (1.79)). Moreover, the state x(t) globally converges to zero with decay rate
η (as shown in (1.80)).
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Theorem 1 presents the first control solution based on the monotonic delay estimation (1.28),
the saturation bound δ̄ is used to ensure that ĥ is always slow-varying. However, this saturation
parameter should be tuned sufficiently small, which degrades the performances of the controller
since it makes the system trajectory pass through a divergent transient.

1.2.3 Predictor-based control and normalized monotonic delay estimation of
input-delay systems

In order to improve the control performances and handle the problem of the (1.34) mentioned in
the end of subsection 1.2.2, the normalized monotonic delay estimator (1.35), with sufficiently small
constant ε, is proposed. The denominator of (1.35) works as a “normalization factor”, and it replaces
the parameter δ̄ of (1.34). Moreover, the only use of the parameter ε is to avoid the singularity, it
cannot affect the stability of the control system. In the sequel, the Lyapunov-Razumikhin analysis
of the closed-loop stability is presented.

Theorem 2. Consider the input-delay system (1.1) with initial conditions (1.2)-(1.19) satisfying
conditions (1.20)-(1.21), controlled by the approximated predictor-based controller (1.17)-(1.18) and
the normalized monotonic delay estimator (1.35). If the positive parameters D̄ , h− ĥ(0) is suffi-
ciently small, then z(t) is globally uniformly asymptotically stable (Golbally Uniformly Asymptoti-
cally Stable (GUAS)), and the state x(t) globally converges to zero.

Proof. The proof is divided into two parts, the first part claims that the system trajectory never
escape in finite time as the results of Lemma 2, the second part derives the global uniform asymptotic
stability of z(t) and the global convergence of x(t) via Lyapunov-Razumikhin theorem (Fridman
2014a, Theorem 3.2).
Part 1. In this part, one proves that the trajectory of z(t) is bounded by an exponential function,
which is very similar to the results of Lemma 2.
Consider the normalized delay estimation algorithm (1.35), the triangle inequality, and the fact
(1.20), it is upper bounded as follows

˙̂
h(t) ≤ 2‖K‖

maxs∈[t−h̄,t] ‖z(s)‖
‖z(t)‖+ ε

, ∀t ≥ 0. (1.92)

Repeating the proof of Lemma 2 till (1.41), and replacing all of the parameters δ̄ given in (1.42)
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with (1.92) leads to

Ṅ(t) ≤ 2‖A+BK‖‖z(t)‖2 + 4‖K‖
maxs∈[t−h̄,t] ‖z(s)‖
‖z(t)‖+ ε

‖A‖‖z(t)‖2

+ 4‖K‖
maxs∈[t−h̄,t] ‖z(s)‖
‖z(t)‖+ ε

‖A‖e‖A‖h̄‖B‖‖K‖h̄‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖

+ 4‖K‖
maxs∈[t−h̄,t] ‖z(s)‖
‖z(t)‖+ ε

e‖A‖h̄‖B‖‖K‖‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖

+ 4e‖A‖h̄‖B‖‖K‖‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖, t ≥ 0.

(1.93)

Since one has ‖z(t)‖
‖z(t)‖+ε < 1 and ‖z(t)‖ ≤ maxs∈[t−h̄,t] ‖z(s)‖, then (1.93) implies (1.43) where b is

re-defined as

b = ‖A+BK‖+ 2‖K‖‖A‖+ 2e‖A‖h̄‖B‖‖K‖(1 + ‖K‖+ ‖K‖‖A‖h̄). (1.94)

By using the same way as Lemma 2, the trajectories of z(t) is bounded such that

‖z(t)‖ ≤ max
s∈[−h̄,0]

‖z(s)‖ebt, t ≥ 0. (1.95)

Therefore, it is demonstrated that z(t) can never escape in finite time due to (1.95).
Part 2. In this part, one moves on to the stability analysis via Lyapunov-Razumikhin theorem
(Fridman 2014a, Theorem 3.2). Consider the Lyapunov function

V (z(t)) = z(t)TPz(t), (1.96)

and the Razumikhin condition

V (z(t− s)) ≤ κV (z(t)), s ∈ [0, 2h̄] (1.97)

with κ > 1. Inequality (1.97) implies that

‖z(t− s)‖ ≤ c1‖z(t)‖ for s ∈ [0, 2h̄] (1.98)

with c1 =
√
κλ̄(P )/λ(P ). Therefore, if the Razumikhin condition (1.98) holds, then (1.92) can be

further bounded as:

˙̂
h(t) ≤ 2‖K‖

maxs∈[t−h̄,t] ‖z(s)‖
‖z(t)‖+ ε

≤ 2‖K‖c1, ∀t ≥ 0. (1.99)

By using the result of (1.92) and the Razumukhin condition (1.98), it is possible to bound ‖ż(t−s1)‖
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with s1 ∈ [ĥ(t), h], one first calculates the value of ż(t− s1) by using (1.39):

ż(t− s1) =(A+BK)z(t− s1) + eAĥ(t−s1)B[u(t− s1 − h)− u(t− s1 − ĥ(t− s1))]

+ ˙̂
h(t− s1)Az(t− s1) + ˙̂

h(t− s1)eAĥ(t−s1)Bu(t− s1 − ĥ(t− s1))

− ˙̂
h(t− s1)A

∫ t−s1

t−s1−ĥ(t−s1)
eA(t−s1−s)Bu(s)ds, t ≥ 2̄h.

(1.100)

Secondly, taking the norm of (1.100), and using (1.98), (1.99) leads to

‖ż(t− s1)‖ ≤‖A+BK‖c1‖z(t)‖+ 2e‖A‖h̄‖BK‖c1‖z(t)‖+ 2‖K‖‖A‖c2
1‖z(t)‖

+ 2‖K‖e‖A‖h̄‖BK‖c2
1‖z(t)‖+ 2‖K‖‖A‖e‖A‖h̄‖BK‖h̄c2

1‖z(t)‖

≤ c2‖z(t)‖, t ≥ 2h̄

(1.101)

with

c2 = ‖A+BK‖c1 + 2‖K‖‖A‖c2
1 + 2e‖A‖h̄‖BK‖

(
c1 + ‖K‖c2

1 + ‖K‖‖A‖h̄c2
1

)
. (1.102)

Inequality (1.101) is next used to bound the term ‖u(t− h)− u(t− ĥ(t))‖, by using the mean value
theorem for vector-valued functions (Rudin et al. 1964, Theorem 5.19), there exists s1 ∈ [ĥ(t), h]
such that

‖u(t− h)− u(t− ĥ(t))‖ ≤ (h− ĥ(t))‖K‖‖ż(t− s1)‖ ≤ (h− ĥ(t))‖K‖c2‖z(t)‖. (1.103)

After obtaining (1.98), (1.99) and (1.103), one moves on to the Lyapunov analysis. Differentiating
the Lyapunov function (1.96) along the trajectories of (1.39) yields

V̇ (z(t)) =− cu‖z(t)‖2 + 2 ˙̂
h(t)z(t)TPeAĥ(t)Bu(t− ĥ(t)) + 2z(t)TPeAĥ(t)[Bu(t− h)−Bu(t− ĥ(t))]

+ 2 ˙̂
h(t)z(t)TPAz(t)− 2 ˙̂

h(t)z(t)TPA
∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds

(1.104)
Take norm of the right-hand side of (1.104), consider the delay estimator (1.35), and apply the
Razumikhin condition (1.98) it follows that

V̇ (z(t)) ≤− cu‖z(t)‖2 + 2‖u(t− h)− u(t− ĥ(t))‖‖P‖e‖A‖h̄‖B‖‖z(t)‖

+ 2‖u(t− h)− u(t− ĥ(t))‖ ‖z(t)‖
z(t) + ε

‖PA‖‖z(t)‖

+ 2‖u(t− h)− u(t− ĥ(t))‖ ‖z(t)‖
z(t) + ε

‖PA‖e‖A‖h̄‖BK‖h̄c1‖z(t)‖

+ 2‖u(t− h)− u(t− ĥ(t))‖ ‖z(t)‖
z(t) + ε

‖P‖e‖A‖h̄‖BK‖c1‖z(t)‖.

(1.105)
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Substituting (1.103) into (1.105) leads to

V̇ (z(t)) ≤ −cu‖z(t)‖2 + (h− ĥ(t))(c3 + c4 + c5 + c6)‖z(t)‖2 (1.106)

with c3 = 2‖P‖e‖A‖h̄‖B‖‖K‖c2, c4 = 2‖PA‖‖K‖c2, c5 = 2‖PA‖e‖A‖h̄‖BK‖‖K‖h̄c1c2, and c6 =
2‖P‖e‖A‖h̄‖BK‖‖K‖c1c2. Thus, if the parameter D̄ = h− ĥ(0) satisfies

D̄ ≤ ζcu
(c3 + c4 + c5 + c6) , ζ ∈ (0, 1) (1.107)

then the closed-loop system (1.39) is globally uniformly asymptotically stable (GUAS) for all t ≥ 2h̄
according to the Lyapunov-Razumikhin theorem (Fridman 2014a, Theorem 3.2). Recall the first part
of this proof, one has

‖z(t)‖ ≤ max
s∈[t−h̄,t]

‖z(s)‖e2bh̄, ∀t ∈ [0, 2h̄] (1.108)

then one has the following global convergence

lim
t→+∞

‖z(t)‖ = 0. (1.109)

Finally, consider the boundedness given in (1.88) and the global convergence (1.109), it leads to

lim
t→+∞

‖x(t)‖ = 0 (1.110)

that ends the proof.

Theorem 2 improves the results of Theorem 1, the differences between them are summarized as
follows:

— With Theorem 2, the parameter δ̄ is no longer required. Under the Razumikhin condition
(1.97), ˙̂

h(t) becomes sufficiently small when h − ĥ(t) is sufficiently small by virtue of the
“normalized factor”.

— The normalized monotonic delay estimator (1.35) makes the convergence lim
t→+∞

ĥ(t) easier to
achieve, this property will be discussed later in details.

— The stability analysis of Theorem 2 is based on the Lyapunov-Razumikhin theorem (Frid-
man 2014a, Theorem 3.2), which can only ensure the asymptotic stability of the closed-loop
system.

1.2.4 Predictor-based control and modified normalized monotonic delay estima-
tion of input-delay system

Although the normalized monotonic delay estimator (1.35) exhibits better delay estimation and
closed-loop performances than the saturated delay estimator (1.34), but it con only ensure the global
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uniform asymptotic stability, as claimed in Theorem 2. In order to derive the exponential stability
of this kind of delay estimator, some changes must be made to (1.35), as done in (1.36) (with
sufficiently small positive constant ε). With the modified version (1.36), sufficiently small h − ĥ(t)
directly derives sufficiently small ˙̂

h(t), no matter if the Razumikhin condition (1.97) holds or not.

Theorem 3. Consider the input-delay system (1.1) with initial conditions (1.2)-(1.19) satisfying
conditions (1.20)-(1.21), controlled by the approximated predictor-based controller (1.17)-(1.18) and
the modified normalized monotonic delay estimator (1.36). If the positive parameters D̄ , h− ĥ(0)
is sufficiently small, then there exist positive constants M ′1, M ′2 and η such that z(t) is GUES with
decay rate η′

‖z(t)‖ ≤M ′1 max
s∈[−h̄,0]

‖z(s)‖e−ηt, t ≥ 0, (1.111)

and the state x(t) globally converges to zero with decay rate η such that

‖x(t)‖ ≤M ′2 max
s∈[−h̄,0]

‖z(s)‖e−ηt, t ≥ 0. (1.112)

Proof. The proof of Theorem 3 follows the three steps given in Lemmas 2-4.
Part 1. This part is dedicated to the boundedness analysis of the trajectories of z(t) on interval
t ∈ [0, h̄). Consider the modified delay estimator (1.36), the triangle inequality, and the fact (1.20),
it leads to the following uniform boundedness

˙̂
h(t) ≤ 2‖K‖

maxs∈[t−h̄,t] ‖z(s)‖
maxs∈[t−2h̄,t] ‖z(s)‖+ ε

≤ 2‖K‖. (1.113)

The rest of this part is the same as the proof of Lemma 2, except that the parameter b is re-defined
as (1.94). Thus, the boundedness (1.37) still holds with the new parameter b.
Part 2. In this part, the Lyapunov-Krasovskii analysis of the closed-loop system under control so-
lutions (1.17)-(1.18)-(1.36) for all t ≥ h̄. At the first time, one demonstrates the fact that sufficiently
small h− ĥ(t) directly derives sufficiently small ˙̂

h(t). Indeed, for all r ∈ [ĥ(t), h], one has

ż(t− r) =(A+BK)z(t− r) + eAĥ(t−r)B[u(t− r − h)− u(t− r − ĥ(t− r))]

+ ˙̂
h(t− r)Az(t− r) + ˙̂

h(t− r)eAĥ(t−r)Bu(t− r − ĥ(t− r))

− ˙̂
h(t− r)A

∫ t−r

t−r−ĥ(t−r)
eA(t−r−s)Bu(s)ds, t ≥ h̄.

(1.114)

Taking the norm of (1.114), and using (1.113) leads to

‖ż(t− r)‖ ≤ b max
s∈[t−2h̄,t]

‖z(s)‖, t ≥ h̄ (1.115)

for all r ∈ [ĥ(t), h], where the parameter b is defined in (1.94). By using the same way as (1.103),
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and considering the fact (1.115), the boundedness of ‖u(t− h)− u(t− ĥ(t))‖ is obtained as follows

‖u(t− h)− u(t− ĥ(t))‖ ≤ (h− ĥ(t))‖K‖‖ż(t− r)‖ ≤ (h− ĥ(t))‖K‖b max
s∈[t−2h̄,t]

‖z(s)‖ (1.116)

with a constant r ∈ [ĥ(t), h]. Therefore, the dynamic of ĥ(t) is bounded with

˙̂
h(t) = ‖u(t− h)− u(t− ĥ(t))‖

maxs∈[t−2h̄,t] ‖z(s)‖+ ε
≤ (h−ĥ(t))‖K‖b

maxs∈[t−2h̄,t] ‖z(s)‖
maxs∈[t−2h̄,t] ‖z(s)‖+ ε

≤ (h−ĥ(t))‖K‖b (1.117)

for all t ≥ h̄. Thus, it is clear that
| ˙̂h(t)| ≤ δ̂ , D‖K‖b (1.118)

for all t ≥ h̄ with D defined in Lemma 3.
The rest of this part is the repetition of the proof of Lemma 3 by considering the same Lyapunov-
Krasovskii functional (1.49)-(1.50), and the stability conditions are the same as (1.69)-(1.74), expect
that the saturation parameter δ̄ is replaced by δ̂. Consequently, as stated in Lemma 3, there exist
sufficiently small constants δ̂∗, D∗ > 0, such that the stability conditions (1.69)-(1.74) can be guar-
anteed by for all δ̂ ≤ δ̂∗ and D ≤ D∗. Moreover, recall the definition (1.118), it is shown that if one
tunes D sufficiently small such that

D ≤ min
{
D∗,

δ̂∗

‖K‖b

}
, (1.119)

then the stability stability conditions (1.69)-(1.74) are all satisfied and the inequality (1.51) is
guaranteed.
Part 3. This part derives the exponential stability (1.111) and the exponential convergence (1.112).
The proof of this part is exactly the same as the proof of Lemma 4, one only need the change the
parameters M1, M2 to M ′1, M ′1, which are computed with the re-defined parameter (1.94).

Theorem 3 extends the normalized monotonic delay estimator given in Theorem 2 to an uni-
formly bounded version. By virtue of this modification, the Lyapunov-Krasovskii theorem (Fridman
2014a, Theorem 3.1) is successfully applied, and the global uniform exponential stability is ensured.
However, the benefit of (1.36) by comparing with (1.35) is only in theory, the delay estimation speed
and the response time are slower since the “normalized factor” (i.e. the denominator) of (1.36) is
always larger the one of (1.35).
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1.2.5 Predictor-based control and saturated monotonic delay estimation of input-
output delay system

In this subsection, the input-output system (1.3) is considered, and the main results of Theorem 1
are extended to the output-feedback version. Consider the system (1.3), and one supposes that the
round-trip delay of the system is bounded such that

0 ≤ hrt ≤ h̄. (1.120)

Next, consider the delayed state x(t− ho), since the output delay ho is constant, its dynamic reads
as

ẋ(t− ho) = Ax(t− ho) +Bu(t− ho − hi) = Ax(t− ho) +Bu(t− hrt). (1.121)

Indeed, the Luenberger observer (1.26) cannot estimate the real-time state x(t), but the delayed
state x(t−ho), since its first two terms constitute the copy of system (1.121) and y(t) = Cx(t−ho).
Thus, if one defines the estimation error as

e(t) = x(t− ho)− x̂(t), (1.122)

then the estimation error dynamic reads as

ė(t) = (A− LC)e(t). (1.123)

Combine (1.27) and (1.122) yields that

x(t) = e(t+ ho) + e−Aĥ(t+ho)z(t+ ho)−
∫ t+ho

t+ho−ĥ(t+ho)
eA(t+ho−s)Bu(s)ds, t ≥ 0. (1.124)

After explaining the preparation works, the main results are given in the sequel.

Theorem 4. Consider the input-output system (1.3) with initial conditions (1.2)-(1.19) satisfying
conditions (1.20)-(1.21), controlled by the output-feedback approximated predictor-based controller
(1.17)-(1.27)-(1.26) and the saturated monotonic delay estimator

˙̂
h(t) = min

{
‖u(t− hrt)− u(t− ĥ(t))‖, δ̄

}
, t ≥ 0. (1.125)

If the positive parameters D̄ , h−ĥ(0) and δ̄ are sufficiently small, then there exist positive constants
M3 and η1 such that coupled state (z, e) is GUES such that

‖z(t)‖2 + ‖e(t)‖2 ≤M3

(
max

s∈[−h̄,0]
‖z(s)‖2 + ‖e(0)‖2

)
e−2η1t. (1.126)
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Moreover, there also exist positive constant M4 such that the system state x(t) exponentially con-
verges to zero such that

‖x(t)‖ ≤M4

(
max

s∈[−h̄,0]
‖z(s)‖2 + ‖e(0)‖2

)0.5

e−η1t. (1.127)

Proof. The proof of Theorem 4 is also based on the 3-step proof given by Lemmas 2-4, and it is
also divided into 3 parts, as done for Theorem 3.
Part 1. Since the predictor (1.27) is based on the state observer x̂(t), then the dynamic of z(t)
(1.39) is modified to

ż(t) =(A+BK)z(t) + eAĥ(t)B[u(t− h)− u(t− ĥ(t))] + ˙̂
h(t)Az(t) + eAĥ(t)LCe(t)

− ˙̂
h(t)A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds+ ˙̂

h(t)eAĥ(t)Bu(t− ĥ(t)), t ≥ 0.
(1.128)

Then, the scalar function N(t) (1.40) is re-defined as

N(t) =

z
T (t)z(t) + eT (t)e(t) = ‖z(t)‖2 + ‖e(t)‖2, t ≥ 0

φTz (θ)φz(θ) + eT (0)e(0) = ‖φz(θ)‖2 + ‖e(0)‖2, −2h̄ ≤ θ < 0
. (1.129)

Differentiating N(t) along the trajectories of (1.128) and (1.123) leads to

Ṅ(t) =2zT (t)(A+BK)z(t) + 2zT (t)eAĥ(t)B[u(t− h)− u(t− ĥ(t))] + 2 ˙̂
h(t)zT (t)Az(t)

− 2 ˙̂
h(t)zT (t)A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds+ 2 ˙̂

h(t)zT (t)eAĥ(t)Bu(t− ĥ(t))

+ 2zT (t)eAĥ(t)LCe(t) + 2eT (t)(A− LC)e(t), t ≥ 0.

(1.130)

Next, taking the norm of (1.130), using the facts

2e‖A‖h̄‖LC‖‖z(t)‖‖e(t)‖ ≤ e‖A‖h̄‖LC‖
(

2‖z(t)‖2 + 1
2‖e(t)‖

2
)

(1.131)

and | ˙̂h(t)| ≤ δ̄. Then, repeating the calculations between (1.42)-(1.43) gives

Ṅ(t) ≤ 2b1

(
max

s∈[t−h̄,t]
‖z(s)‖

)2

+ 2b2‖e(t)‖2 ≤ 2b̄ max
s∈[t−h̄,t]

N(s) (1.132)

with
b1 = ‖A+BK‖+ δ̄‖A‖+ e‖A‖h̄‖LC‖+ e‖A‖h̄‖BK‖(2 + δ̄ + δ̄‖A‖h̄),

b2 = ‖A− LC‖+ 1
4e
‖A‖h̄‖LC‖, b̄ = max {b1, b2} .

(1.133)
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The rest of the proof of this part is the same as Lemma 2, one derives the following boundedness:

‖z(t)‖2 + ‖e(t)‖2 ≤ k2e2b̄t, ‖ż(t)‖ ≤ b1keb̄t, t ≥ 0. (1.134)

with k2 = maxs∈[−h̄,0] ‖z(s)‖2 + ‖e(0)‖2.
Part 2. This part is similar to the proof of Lemma 3, and the following Lyapunov-Krasovskii
functional is considered:

V (z, e, ut, u̇t, t) = V1(z) + αV2(ut, t) + βV3(u̇t, t) + γV4(e) (1.135)

where V1(z), V2(ut, t), V3(u̇t, t) are given in (1.50), and the additional term V4(e) reads as

V4(e) = eT (t)Qe(t). (1.136)

Consider the Lyapunov equation (1.25), the derivative of V4(e) along the trajectories of (1.123)
yields

V̇4(e) ≤ −cl‖e(t)‖2. (1.137)

With the use of the Luenberger observer (1.26), the derivatives of V1(z) and V3(u̇t, t) are changed.
First, a cross term 2zT (t)PeAĥ(t)LCe(t) is added into the right-hand side of (1.53), and its norm is
bounded as

‖ − 2zT (t)PeAĥ(t)LCe(t)‖ ≤ c2
8

2γcl
‖z(t)‖2 + γcl

2 ‖e(t)‖
2 (1.138)

with c8 = 2e‖A‖h̄‖P‖‖LC‖. Next, (1.64) and (1.66) are also modified due to the cross term, the
derivative V̇3(u̇t, t) now reads as

V̇3(u̇t, t) ≤h̄‖K‖2
[
(c′4 + c′5δ̄

2)‖z(t)‖2 + c′6‖w(t)‖2 + c′7δ̄
2‖v(t)‖2 + c′6δ̄

2‖u(t− ĥ(t))‖2 + c9‖e(t)‖2
]

− 1
2D‖w(t)‖2 − 1

2

∫ t

t−h
‖u̇(s)‖2ds,

(1.139)
with c′4 = 6‖A + BK‖2, c′5 = 6‖A‖2, c′6 = 6e2‖A‖h̄‖B‖2, c′7 = 6‖A‖2e2‖A‖h̄‖B‖2, and c9 =
6e2‖A‖h̄‖LC‖2.
Therefore, by tuning the functional V̇ (z, e, ut, u̇t, t) +η1V (z, e, ut, u̇t, t) negative definite, the follow-
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ing stability conditions should be satisfied:

cu − δ̄c1 − δ̄(c2 + c3)/2−Dc2
2/β − 2αh̄‖K‖2

−βh̄‖K‖2(c′4 + c′5δ̄
2)− c2

8
2γcl

− 2η1λ̄(P ) ≥ 0, (1.140)

αh̄− αh̄δ̄ − δ̄c2/2− βh̄‖K‖2c′6δ̄2 ≥ 0, (1.141)

α/(2h̄)− δ̄c3/2− βh̄‖K‖2c′7δ̄2 ≥ 0, (1.142)

β/(2D)− β/(4D)− βh̄‖K‖2c′6 ≥ 0, (1.143)

α/2− 4αh̄η1 ≥ 0, (1.144)

β/2− 2βh̄η1 ≥ 0, (1.145)

γcl −
γ

2 cl − βh̄‖K‖
2c9 − 2η1γλ̄(Q) ≥ 0. (1.146)

In order to satisfy the stability conditions (1.140)-(1.146), the following parameter tuning are made.
Firstly, tuning α, β, and η1 sufficiently small in order to ensure (1.144), (1.145), and the following
inequalities

cu/3− 2αh̄‖K‖2 − βh̄‖K‖2c′4 − 2η1λ̄(P ) ≥ 0,

γcl/4− 2η1γλ̄(Q) ≥ 0.
(1.147)

Secondly, setting D and δ̄ sufficiently small to satisfy (1.141)-(1.143), and the inequality given in
the sequel

cu/3− δ̄c1 − δ̄(c2 + c3)/2−Dc2
2/β − βh̄‖K‖2 − c′5δ̄2 ≥ 0. (1.148)

Finally, choosing γ sufficiently large in order to verify

cu
3 −

c2
8

2γcl
≥ 0, γ

4 cl − βh̄‖K‖
2c9 ≥ 0, (1.149)

then all of the stability conditions (1.140)-(1.146) are satisfied. Thus, the exponential stability

V (t) ≤ V (h̄)e−2η1(t−h̄), t ≥ h̄ (1.150)

holds for all t ≥ h̄.
Part 3. The last part derives the global uniform exponential stability (1.126) and the global expo-
nential convergence (1.127).
By using the same technique as (1.82)-(1.86), then considering (1.134) and the fact

λ(P )‖z(t)‖2 + γλ(Q)‖e(t)‖2 ≤ V (z, e, ut, u̇t, t), (1.151)
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the exponential stability (1.126) is ensured with

M ′0 =
[
λ̄(P ) + γλ̄(Q) + 2αh̄2‖K‖2 + βh̄2‖K‖2b21

]
e2b̄h̄ (1.152)

and
M3 = M ′0

λmin
e2η1h̄, λmin = min {λ(P ), γλ(Q)} . (1.153)

With the exponential stability (1.126), it is apparent to obtain

‖z(t+ ho)‖ ≤
√
M3

(
max

s∈[−h̄,0]
‖z(s)‖2 + ‖e(0)‖2

)0.5

e−η1(t+ho), t ≥ 0,

‖e(t+ ho)‖ ≤
√
M3

(
max

s∈[−h̄,0]
‖z(s)‖2 + ‖e(0)‖2

)0.5

e−η1(t+ho), t ≥ 0,

(1.154)

and

max
[t+ho−h̄,t+ho]

‖z(s)‖ ≤
√
M3

(
max

s∈[−h̄,0]
‖z(s)‖2 + ‖e(0)‖2

)0.5

eη1h̄e−η1(t+ho), t ≥ 0. (1.155)

Finally, taking the norm of (1.124), and considering (1.154)-(1.155), the exponential convergence
(1.127) is proven with

M4 =
[
1 + e‖A‖h̄ + e(‖A‖+η1)h̄‖BK‖h̄

]√
M3e

−η1ho . (1.156)

Theorem 4 extends the results of Theorem 1 to the output feedback case, the exponential stability
of the coupled system (z, e) is studied and the global exponential convergence of the system state
is still ensured, as the full-state feedback version.

1.3 Discussions and simulation results

In this section, the performances and properties of Theorems 1-4 are discussed in details, then
some simulations are given to compare their performances, and the discussions are also illustrated.

1.3.1 Discussions about the monotonic delay estimators

In this part, the performances of Theorems 1-4 are discussed in the following two aspects:
— The constraint on the initial condition of the delay estimator ĥ(0).
— The robustness with respect to the model uncertainties.
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Hereafter, the main results of Theorems 1-4 are compared with each other.

Constraint on the initial condition ĥ(0)
Remind that the theoretical results of Theorems 1-4 have constraints on the initial condition of
the delay estimator. Namely, the parameter D̄ = h − ĥ(0) is required to be sufficiently small for
Theorems 1-4. However, the difference between h and ĥ(0) can be much larger in applications. The
reason is twofold:

— The Lyapunov analysis (Fridman 2014a, Theorems 3.1-3.2) is conservative.
— Theorems (1)-(4) are sufficient conditions to the closed-loop stability, and the constraint on

ĥ(0) is only claimed to ensure that ĥ(t) is sufficiently close to h for all t ≥ h̄.

To well explain the second point of the above discussions, one takes the saturated delay estimator
(1.34) and the proofs given in subsection 1.2.2 as an example. Consider the case when ĥ(0) is not
close to h, but ĥ(t) is sufficiently close h for all t ≥ h̄, then the parameter D defined in Lemma 3
is sufficiently small. Consequently, Lemmas 2-4 are all satisfied and they derive the closed-loop sta-
bility (1.79) and the global convergence (1.80).
Another analytic discussion is given to explain this fact, if the difference between h and ĥ(t) is large,
then the system is divergent due to the delay mismatch, but the trajectories can never escape in
finite time (with the help of the proof of Lemma 2, and Theorems 2-4). During this transient, the
control signal u(t) is also divergent, and it is “sufficiently rich” in the sense of the delay identifiability
theory (Orlov et al. 2002). As a result, the delay estimator ĥ(t) keeps converging to the real delay
h, and the difference between them becomes smaller and smaller. The evolution of ĥ(t) can only be
terminated when the delay estimation error h− ĥ(t) is sufficiently small, and then the closed-loop
stability is achieved.

Robustness with respect to the model uncertainties
The key to the stability results of Theorems 1-4 is the monotonic delay estimator (1.28), then it is
important to analyze the robustness of this method. Indeed, the delay estimator (1.28) is totally
based on the control signal, since the delayed signal u(t − h) is available for measurement (due to
Assumptions 2 and 4), and the term u(t − ĥ(t)) is stored by the controller. Due to this fact, the
model uncertainties cannot affect the delay estimation (1.3), since no system information is required
by the estimation algorithm.

Comparison between Theorems 1-3
The first part analyzes Theorem 1 and the saturated delay estimator (1.34). In this work, one use the
parameter δ̄ to force the delay estimation dynamic contain in [0, δ̄], in order to satisfy the stability
conditions (1.69)-(1.74). However, this parameter slows down the convergence speed of the delay
estimator, and the response time of the closed-loop system. This issue is overcome by the normalized

73



Part , Chapter 1 – Predictor-based control and delay estimation of LTI system with unknown constant delays

delay estimator (1.35), and only one parameter D̄ is required to be tuned in order to obtain the sta-
bility results of Theorem 2. Moreover, the “normalized factor” can accelerate the speed of the delay
estimation algorithm when the control signal is not “sufficiently rich”, because ‖z(t)‖ + ε is much
smaller than 1 in this case. Although the modified delay estimator (1.36) leads to the exponential
stability of Theorem 3, its convergence speed is slower than (1.35) since maxs∈[t−2h̄,t] ‖z(s)‖ + ε is
always larger than ‖z(t)‖+ ε.
The above discussions are summarized by Table 1.1.

Nb. of tuning parameters stability TDE accuracy
Saturated delay estimator (1.34) 2 GUES the third accurate
Normalized delay estimator (1.35) 1 GUAS the most accurate
Modified delay estimator (1.36) 1 GUES the second accurate

Table 1.1 – Comparison of the three delay estimators of Theorems 1-3.

All of the above mentioned properties will be illustrated by the simulation results given in the
sequel.

1.3.2 Simulation results

In this subsection, some simulation results are given to illustrate the performances and the prop-
erties (constraint on the initial condition ĥ(0), robustness with respect to model uncertainties, and
convergence speed) of the main theoretical results given in subsections 1.2.2-1.2.5.
Throughout this section, the integral terms of (1.18) and (1.27) are numerically calcu-
lated by the method proposed in (Bresch-Pietri, Chauvin, and Petit 2012), i.e. they
are computed by the trapezoid discretization method with periodic reset.

Input-delay system (Zhou 2014a)
Consider the input-delay system (1.157) inspired by the linearized liquid propellant rocket motors
(Zhou 2014a, Example 2), where the delay value h = 2s is unknown.

ẋ(t) =


−1 0 1 0
0 0 0 −1
−1 0 −1 1
0 1 −1 0

x(t) +


0
1
0
0

u(t− h), t ≥ 0. (1.157)

Suppose that the unknown input-delay h given in (1.157) is upper bounded by h̄ = 4s, and the
initial conditions of the system read as x(0) =

[
0.5 0.6 −0.6 0.5

]T
, and u(θ) = −3.1452 for all

θ ∈ [−2h̄, 0). The feedback matrixK =
[
6 −8 13 −12

]
leads to the eigenvalues {−1;−1;−3;−5}
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for A+BK. The initial condition of z(t) is set to z(θ) =
[
0.2962 0.0502 −0.6335 −0.3096

]T
for

all θ ∈ [−2h̄, 0) that guarantees (1.20). The parameters δ̄ and ε are set to 0.3 and 0.05, respectively.
In the simulations, the three delay estimators (1.34), (1.35), (1.36) are tested with three initial
conditions ĥ(0) = 0s, ĥ(0) = 1s, and ĥ(0) = 1.5s, in order to test if the constraint on the initial
condition ĥ(0) is restrictive.
The simulation results are presented in Figure 1.4, and the control performances are discussed in
the following aspects:

— The constraint on the initial condition ĥ(0): in Figures 1.4a, 1.4c, and 1.4e, the system
state x(t) converges to zero under the control laws proposed in Theorems 1-3, even if some
initial conditions ĥ(0) are far from the unknown input-delay value. The simulation results
illustrate the explanations given in the previous subsection such that the stability condition
on ĥ(0) is much less restrictive in practice than theory.

— Accuracy of different delay estimators: consider the simulation results displayed in
Figures 1.4b, 1.4d, and 1.4f, the convergence speed of the saturated delay estimator (1.34)
with δ̄ is slower than ones of (1.35) and (1.36). See Figure 1.4f, the delay estimator (1.34)
cannot ensure the convergence lim

t→+∞
ĥ(t) = h in this case since the convergence speed of the

system is faster than the delay estimator, that makes the control signal u(t) “insufficient rich”
and the delay identifiability of the system is lost. However, in this figure, (1.35) and (1.36)
still accurately estimate the unknown time-delay thanks to the “normalized factors”. Next,
the performances of (1.35) and (1.36) are compared, Figure 1.4b and the zoomed sub-figures
in Figures 1.4d, 1.4f show that the normalized delay estimator (1.35) converges slightly faster
to the unknown input-delay than its modified version (1.36), that illustrates the comparisons
given in Table 1.1.

Thus, the simulation results displayed in Figure 1.4 highlight the practical use of the theoretical
results of Theorems 1-3, and the comparisons provided by Table 1.1 are also illustrated and empha-
sized.

Input-output delay system (Selivanov and Fridman 2016a)
After illustrating the results of Theorems 1-3, one moves on to the validation of the output feed-
back technique given by Theorem 4. Consider the linearized inverted pendulum with partial state
knowledge (only the cart position and the pendulum angle are available) given in (Selivanov and
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(a) State of the system (1.157) under control solu-
tions of Theorems 1-3 with initial condition ĥ(0) =
0s.
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(b) Delay estimation of the system (1.157) under
control solutions of Theorems 1-3 with initial con-
dition ĥ(0) = 0s.
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(c) State of the system (1.157) under control solu-
tions of Theorems 1-3 with initial condition ĥ(0) =
1s.
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ĥ(t) (saturated delay estimator)

2 3 4 5

1.85

1.9

1.95

2

2.05

(d) Delay estimation of the system (1.157) under
control solutions of Theorems 1-3 with initial con-
dition ĥ(0) = 1s.
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(e) State of the system (1.157) under control solu-
tions of Theorems 1-3 with initial condition ĥ(0) =
1.5s.
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(f) Delay estimation of the system (1.157) under
control solutions of Theorems 1-3 with initial con-
dition ĥ(0) = 1.5s.

Figure 1.4 – State evolution and delay estimation of the input-delay system (1.157) under control
solutions of Theorems 1-3 with initial conditions.
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Fridman 2016a, Section 5)



ẋ(t) =



0 1 0 0

0 0 −mg/M 0

0 0 0 1

0 0 g/l 0


x(t) +



0

1/M

0

−1/(Ml)


u(t− hi),

y(t) =

1 0 0 0

0 0 1 0

x(t− ho).

(1.158)

where m = 1kg, M = 10kg, l = 3m, g = 10m/s2, and the unknown constant delays hi = 0.5s,
ho = 0.3s, is controlled by the output feedback controller given in Theorem 4. Assume that the
known bound on the round-trip delay hrt = 0.8s is h̄ = 1.5s. The initial conditions are set to
x(0) =

[
0.98 0 0.2 0

]T
, x̂(0) =

[
1 0 0.1 0

]T
, z(θ) =

[
0.9916 −0.0437 0.1279 0.1455

]T
,

and u(θ) = 42.658 for all θ ∈ [−2h̄, 0). The feedback gains K and L read as

K =
[
5.76 21.04 368.98 207.12

]
, L =


13.1074 −2.1276
35.8132 −10.9329
−2.1426 8.8926
−10.0367 19.5199

 . (1.159)

In the simulation, the delay estimator (1.125) given in Theorem 4 is tested with different initial
conditions (i.e. ĥ(0) = 0.0s, ĥ(0) = 0.4s, and ĥ(0) = 0.7s), the simulation results are presented in
the sequel.
In Figure 1.5a, the system state x(t) and the observation error e(t) converges to zero no matter
the initial condition ĥ(0) is close to hrt or not, and the simulation results of Figure 1.5a illustrate
that the delay estimator (1.125) is able to estimate the unknown round-trip delay.
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(a) System state x(t) and observation error e(t) of the system (1.158) under control solution of Theo-
rem 4 with initial conditions ĥ(0) = 0.0s, ĥ(0) = 0.4s, and ĥ(0) = 0.7s.
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(b) Delay estimation of the system (1.158) under control solution of Theorem 4 with initial conditions
ĥ(0) = 0.0s, ĥ(0) = 0.4s, and ĥ(0) = 0.7s.

Figure 1.5 – Evolutions of the state, the observation error, and the delay estimation of the system
(1.158) under control solution of Theorem 4 with initial conditions ĥ(0) = 0.0s, ĥ(0) = 0.4s, and
ĥ(0) = 0.7s.
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Next, consider the same system (1.158) with unknown model uncertainties ∆A, ∆B, and ∆C:



ẋ(t) =





0 1 0 0

0 0 −mg/M 0

0 0 0 1

0 0 g/l 0


+



0 0 0 0

−0.05 0 0.02 0

0 0 0 0

0 0 0.02 −0.05


︸ ︷︷ ︸

∆A


x(t)

+





0

1/M

0

−1/(Ml)


+



0

−0.005

0

0


︸ ︷︷ ︸

∆B


u(t− hi),

y(t) =


1 0 0 0

0 0 1 0

+

0 0.01 0 0

0 0 0.01 −0.01


︸ ︷︷ ︸

∆C

x(t− ho).

(1.160)

All of the other parameters are the same as the ones of (1.158), the state observation and control
law are computed by using the knowledge of the nominal system (1.158), and the initial condition
of the delay estimator (1.125) is set to ĥ(0) = 0.4s.
The simulation results are presented in Figure 1.6. First, the simulation results displayed in Fig-
ure 1.6b illustrate the discussions given in the previous subsection, such that the monotonic delay
estimator (1.28) is robust with respect to the model uncertainties. Second, Figure 1.6a show that
the uncertain system (1.160) is stabilized, as the nominal system (1.158). However, the model un-
certainties degrades the system performances, and there exist oscillations on the curves of ‖x(t)‖
and ‖e(t)‖.
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(a) System state x(t) and observation error e(t) of the nominal system (1.158) and the uncertain system
(1.160) under control solution of Theorem 4 with initial condition ĥ(0) = 0.4s.
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hrt = 0.8s

ĥ(t) (with model uncertainties)

ĥ(t) (without model uncertainties)

(b) Delay estimation of the nominal system (1.158) and the uncertain system (1.160) under control
solution of Theorem 4 with initial condition ĥ(0) = 0.4s.

Figure 1.6 – Evolutions of the state, the observation error, and the delay estimation of the nominal
system (1.158) and the uncertain system (1.160) under control solution of Theorem 4 with initial
condition ĥ(0) = 0.4s.
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2.1 Preliminaries and problem formulation

This section is dedicated to the stabilization of remote control systems with unknown time-
varying input and output delays. Indeed, the time-varying delays, especially fast-varying delays,
make the controller design challenging:

— On the one hand, the fast-varying delays affect the existence of predictor feedback law. For
instance, (Bekiaris-Liberis and Miroslav Krstic 2013, Chapter 6) considers the control of
systems with a single input-delay hi(t), and the works of (Sanz, Garcia, and Miroslav Krstic
2019) studies the output feedback of systems with a single output delay ho(t), both of them
can only deal with slowing-varying delays because they stand on the assumption such that
the functions φi(t) = t− hi(t), φo(t) = t− ho(t) are invertible, respectively.

— On the other hand, if the time-varying delays are unknown, one must estimate it at the
first time. However, the majority of the existing TDE methods cannot estimate fast-varying
delays, as shown in Table 2.

In applications, the delay estimation and control law design of remote control systems can be
separated, as done in (Lai and Hsu 2010). Since the input and output delays of such systems are
arisen from the data transmission, then one can use the system clock and specific communication
protocols to directly measure the round-trip delay, and then an appropriate controller is designed.
The work of (Lai and Hsu 2010) presents a practical solution to the stabilization of remote control
with time-varying delays.
Inspired by the work of (Lai and Hsu 2010), this chapter considers the practical stabilization of the
following remote control systems with full-state measurement:ẋ(t) = Ax(t) +Bu(t− hi(t)), t ≥ 0

y(t) = x(t− ho(t))
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, and hi(t), ho(t) > 0 are time-varying delays.
Next, assume that the round-trip delay of system (2.1) is upper bounded by a known value h̄, then
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the initial condition of the system reads as

x(θ) = φx(θ) ∈ C([−h̄, 0),Rn)

u(θ) = φu(θ) ∈ C([−h̄, 0),Rm).
(2.2)

The main contributions of this chapter are clarified in the sequel:
— The delay measurement approach (Lai and Hsu 2010) is extended to dynamic delay estima-

tors, and the sliding mode methods are involved to ensure the finite time convergence of the
delay estimation. It is shown that the dynamic delay estimation algorithms are more robust
than (Lai and Hsu 2010) with respect to noises and cyber attacks.

— The sliding mode based delay estimation approaches are implemented on a test bench, which
is composed of two computers and the communication between them via WiFi network.

— The round-trip delay estimated by the sliding mode based methods is plugged into a predictor-
based controller to stabilize the system (2.1), the closed-loop stability is ensured if hi(t) varies
sufficiently slowly. Moreover, the closed-loop stability is preserved even if the derivative of
ho(t) is large.

2.1.1 Framework of the practical delay estimation technique

Consider the remote control system (2.1) with time-varying delays hi(t), ho(t) introduced by
the data transmission between the sensor, the controller, and the plant.
The framework of the practical delay estimation techniques are displayed in Figure 2.1. The delay

Remote     

Controller

Delay 

Estimator

hi(t) Receiver

Plant

ho(t) Transmitter

s(t)u(t)

s (t-hi(t) )

u(t-hi(t) )

u(t-hi(t) )

s (t-hi(t) )
s (t-h(t) )y(t)

Control Architecture
Transmission 

 Delays
Controlled System

h(t)^

Figure 2.1 – Framework of the practical delay estimation techniques.
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estimator sends an external signal s(t) (green arrows) to the plant’s receiver through the same
channel as the one used for the control signal u(t) (black arrows). After that, the delayed control
input u(t − hi(t)) is injected to the plant and the signal s(t − hi(t)) is transferred to the plant’s
transmitter. Next, the transmitter sends the state measurement x(t) and the delayed signal s(t −
hi(t)) back to the controller side. Finally, the controller side receives y(t) and s(t−h(t)) at the same
time, where

h(t) = ho(t) + hi(t− ho(t)) (2.3)

is called the “round-trip delay” of system (2.1). The first objective of this chapter is to design of
an online update law ˙̂

h(t) that ensures the global finite-time convergence of ĥ(t) to h(t) by using
s(t) and s(t − h(t)). After the first objective is achieved, the second objective of this chapter is to
stabilize the remote control system (2.1) with the delay estimation and a predictor-based controller.

Remark 3. The external signal s(t) is totally defined by the user and is independent of the control
system, it can be regarded as a special communication loop (the green loop of Figure 2.1) whose only
use is to provide the online estimation of the round-trip delay (2.3). Indeed, the delay measurement
technique (Lai and Hsu 2010) is a special case of the same framework, since it uses the system clock
to measure the round-trip delay, so it is possible to say that (Lai and Hsu 2010) chooses an external
signal s(t) = t to estimate the time-delay.

The benefit of the framework presented in Figure 2.1 is twofold:
— The unknown time-varying round-trip delay can be accurately estimated with fairly simple

methods, and low computation cost, only some scalar computations are required by (Lai and
Hsu 2010) and the methods to be proposed in this chapter.

— This framework relaxes the requirements on the control system, neither linearity nor delay
identifiability is required, since the round-trip delay is estimated only by the inner loop (green
loop) of Figure 2.1.

2.1.2 Framework of the remote control system

This part introduces the control scheme of the remote control system (2.1). Similar to the
problem formulation given in subsection 1.1.2, the pair (A,B) is supposed to be stabilizable, and
the Lyapunov equation

(A+BK)TP + P (A+BK) = −cuIn (2.4)

is still required with a positive parameter cu and a symmetric positive definite matrix P ∈ Rn×n.
According to Figure 2.1, the delayed state measurement x(t− ho(t)) and the delay estimation ĥ(t)
are available for the controller at instant t, based on the information, the following predictor-based

84



2.1. Preliminaries and problem formulation

controller is adopted

u(t) = Kz(t) = K

[
eAĥ(t)x(t− ho(t)) +

∫ t

t−h(t)
eA(t−s)Bu(s)ds

]
, t ≥ 0 (2.5)

with K given in (2.4). In order to simplify the stability analysis, the initial condition of z(t) is
defined as

z(θ) = φz(θ) ∈ C([−h̄, 0),Rn), (2.6)

and the following inequalities are fulfilled

‖φu(θ)‖ ≤ ‖K‖‖φz(θ)‖, θ ∈ [−h̄, 0),

‖φ̇u(θ)‖ ≤ ‖K‖‖φ̇z(θ)‖, θ ∈ [−h̄, 0).
(2.7)

As done in Remark 2, one also supposes that the predictor z(t) and the control input u(t) are
continuous at instant t = 0, such that

lim
θ→0−

φu(θ) = u(0),

lim
θ→0−

φz(θ) = z(0).
(2.8)

2.1.3 Assumptions and definitions

After introducing the frameworks of the delay estimation loop and the control loop of system
(2.1), some necessary definitions of the sliding mode method and some assumptions on the signal
s(t) and the round-trip delay h(t) are given in this subsection.

Assumption 5. The external signal s(t) ∈ C2 satisfies that

ε ≤ |ṡ(t)| ≤ ε̄, t ≥ −h̄, (2.9)

and
|s̈(t)| ≤ ε′, t ≥ −h̄. (2.10)

The positive constants ε, ε̄, and ε′ are assumed to be known.

Assumption 5 implies that the external signal s(t) is strictly monotonic, it can be easily ensured
since the signal s(t) is generated by the user (e.g. if one sets s(t) = kt, then one has ε = ε̄ = k and
ε′ = 0).

Remark 4. In (Zheng, Polyakov, and Levant 2018) and (Drakunov et al. 2006), the delay-identifiability
of the time-delay system is required. Indeed, Assumption 5 shows that s(t) is globally identifiable in
the sense of the delay identifiability theory (Zheng, Polyakov, and Levant 2018, p.268, Definition 2).
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However, as stated in Remark 3, this signal s(t) is generated by the user and it is independent of the
control system. In other words, with the proposed approach, the round-trip delay is estimated by us-
ing a specific delay-identifiable signal, but not the system information. Thus, the delay identifiability
of the control system can be relaxed by using the framework of Figure 2.1.

Assumption 6. The input and output delays have bounded derivatives

|ḣi(t)| ≤ δi, |ḣo(t)| ≤ δo (2.11)

with positive constants δi and δo. As a result of (2.3) and (2.11), there also exists δ > 0 such that
the derivative of the round-trip delay h(t) satisfies

|ḣ(t)| ≤ δ. (2.12)

Moreover, suppose that the second derivative of h(t) is also bounded with

|ḧ(t)| ≤ δ′. (2.13)

Assumption 6 can be verified in application, for instance, consider the round-trip delay h(t) and
its upper bound h̄, it is possible to find the bounds

δ ≤ h̄

Ts
, (2.14)

and

δ′ ≤
h̄
Ts
− (− h̄

Ts
)

Ts
= 2h̄
T 2
s

, (2.15)

with Ts the sampling period of the practical delay estimation method on a real test-bench. Consider
the case when h(t) varies from h̄ to 0 in one sampling period, then its derivative is bounded as (2.14),
and (2.15) can be ensured in the same way. In other words, the statements given in (Fiengo et al.
2019, Section 4) and (Horalek, Svoboda, and Holik 2016) explain that the time-delays in wireless
communication systems are often bounded and slow-varying, large transmission delays usually cased
by network-induced imperfections (X.-M. Zhang, Han, and Yu 2015). Thus, Assumption 6 is not
restrictive in theories, nor in applications.
Next, some definitions which are corresponding to the sliding mode method, are introduced in the
sequel. To design a sliding mode controller/ estimator, the sign-function (Shtessel, Edwards, et al.
2014, eqs. (1.13)-(1.14)) is necessary, it satisfies

sign(x) =

1, if x > 0

−1, if x < 0
(2.16)
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and sign(0) ∈ [−1, 1].

Definition 2. 2-ideal sliding mode and 2-real sliding mode (Levant 2003, p.926)
Given the sliding variable σ(s, t), the “2-ideal sliding mode” of the variable s is defined as

S = {s : |σ(s, t)| ≡ |σ̇(s, t)| ≡ 0} , t ≥ tF (2.17)

whereas the “2-real sliding mode” reads as

S∗ = {s : |σ(s, t)| ≤ η1, |σ̇(s, t)| ≤ η2} , t ≥ tF (2.18)

with η1, η2, tF > 0.

2.2 Sliding mode based practical delay estimation techniques with
external signal

In this section, three delay estimators are proposed to estimate the round-trip delay h(t) given
in (2.3). The first two of them establish the 2-ideal sliding mode, and the third method provides
the finite time convergence to the 2-real sliding mode.

2.2.1 Conventional sliding mode (SM) based delay estimation

In this subsection, the conventional sliding mode method is involved in the practical delay
estimation techniques, in order to provide a finite time convergence of the delay estimator.

Theorem 5. Consider that the external signal s(t) satisfies Assumptions 5, and the time-varying
delay h(t) satisfies Assumption 6. Define the delay estimator dynamics

˙̂
h(t) = 1− 1

ṡ(t− ĥ(t))
w(t) (2.19)

with w(t) defined as
w(t) = −L · sign(σ(t)), (2.20)

and
σ(t) = s(t− ĥ(t))− s(t− h(t)). (2.21)

If the gain L is sufficiently large, such that L > ε̄(1+δ) holds, then there exist tF > 0 that guarantees
the following finite time convergences

σ(t) ≡ 0, ĥ(t) ≡ h(t), ∀t ≥ tF . (2.22)
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Proof. The proof is divided into two parts. Part 1 shows that the finite-time convergence of σ(t) to
zero induces the finite-time convergence of ĥ(t) to h(t). Step 2 provides the finite-time convergence
of the error term σ(t) to zero.
Part 1.
In this part, the relation between the convergences of σ(t) and ĥ(t) is analyzed. As stated after
Assumption 5, the external signal s(t) is strictly monotonic for all t ≥ −h̄. Therefore, s(t) is
bijective for all t ≥ −h̄ by using the results given in (Muresan 2009, p.165, Corollary 4.9). Assume
that σ(t) converges to zero in a finite-time T , it implies that

s(t− ĥ(t)) = s(t− h(t)), for all t ≥ T. (2.23)

Since s(t) is bijective, (2.23) is equivalent to

t− ĥ(t) = t− h(t), for all t ≥ T (2.24)

which implies that

ĥ(t) = h(t), for all t ≥ T. (2.25)

Part 2.
The aim of the second part is to demonstrate the finite convergence of σ(t) to zero. Recall the chain
rule given in (Apostol 1974, Theorem 5.5), the relation between the right-hand time-derivative of
the function s(·) at instant t−h(t) (writes as ṡ(t−h(t))), and the right-hand time-derivative of the
function composition t 7→ s(t− h(t)) (writes as ddts(t− h(t))) reads as

d

dt
s(t− h(t)) = ṡ(t− h(t))(1− ḣ(t)). (2.26)

Thus, the right-hand time-derivative of the error term σ(t) (2.21) satisfies that

σ̇(t) = ṡ(t− ĥ(t))(1− ˙̂
h(t))− d

dt
s(t− h(t))

= ṡ(t− ĥ(t))− d

dt
s(t− h(t))− ṡ(t− ĥ(t)) ˙̂

h(t).
(2.27)

By virtue of Assumption 5, one has ṡ(t − ĥ(t)) 6= 0 for all t ≥ 0, then it is possible to substitute
the first dynamic of (2.19) into (2.27) without the risk of singularity. Consider (2.27), (2.19), and
(2.20), it follows that

σ̇(t) = − d

dt
s(t− h(t))− L · sign(σ(t)). (2.28)
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With the help of assumptions 5-6, the term − d
dts(t− h(t)) is bounded by∣∣∣∣− d

dt
s(t− h(t))

∣∣∣∣ = |ṡ(t− h(t))||(1− ḣ(t))| ≤ ε̄(1 + δ). (2.29)

Set L = ε̄(1+δ)+L1/
√

2 with L1 > 0, then consider (2.29) and the Lyapunov function V (t) = 1
2σ(t)2,

it leads to
V̇ (t) ≤ −L1

√
V (t). (2.30)

The analysis of (Shtessel, Edwards, et al. 2014, eqs. (1.8)-(1.0)) explains that the Lyapunov function
V (t) reaches zero in a finite time tF = 2

√
V (0)/L1 that ends the proof.

2.2.2 Super-twisting algorithm (STW) based delay estimation

Theorem 5 provides a conventional sliding mode based practical online time-delay estimation
algorithm with the framework of Figure 2.1, the unknown round-trip delay is estimated in finite time.
However, the main drawback of this method is the imperfection in the sign-function implementation,
it can result in a high frequency oscillation named chattering (Shtessel, Edwards, et al. 2014, p.8)
which is undesirable in applications (Slotine, Weiping Li, et al. 1991, p.283). In order to overcome this
practical issue, the second-order sliding mode (super-twisting algorithm) is adopted, the theoretical
results are presented subsequently.

Theorem 6. Consider that the external signal s(t) satisfies Assumptions 5, and the time-varying
delay h(t) satisfies Assumption 6. The delay estimator is with the form (2.19), and the term w(t)
is replaced by the super-twisting algorithm:

w(t) = −λ|σ(t)|1/2sign(σ(t)) + w1(t), (2.31)

with the error term (2.21), and the term w1(t) is given by the following dynamic

ẇ1(t) = −α · sign(σ(t)). (2.32)

If the parameters λ, α are large enough such that

α ≥ C = ε̄δ′ + ε′(1 + δ)2,

λ2 ≥ 4Cα+ C

α− C
,

(2.33)

then the 2-ideal sliding mode (2.17) is established with a finite settle time tF > 0. Finally, the delay
estimator ĥ(t) converges to the unknown round-trip delay h(t) for all t ≥ tF .

Proof. The majority of the proof is the same with Theorem 5, one only needs to prove that the
error term σ(t) vanishes in finite time by using the super twisting algorithm (2.19)-(2.31)-(2.33).
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Substituting the super-twisting term (2.31) into the dynamic of σ(t) yields that

σ̇(t) = a(t) + w(t) (2.34)

where a(t) = − d
dts(t− h(t)). Moreover, (2.34) equals to the following representation

σ̈(t) = ȧ(t) + ẇ(t) (2.35)

that satisfies the form given by (Perruquetti and Barbot 2002, equation (3.30)). By using the chain
rule (2.26), the derivative of a(t) is computed as:

ȧ(t) = ṡ(t− h(t))ḧ(t)− s̈(t− h(t))(1− ḣ(t))2. (2.36)

Assumptions 5-6 imply that the dynamic of (2.36) is upper bounded by the parameter C given in
(2.33). Consider the second-order system (2.35) that is linearly dependent on the correction term
w(t) and consider the super-twisting updating law constructed by (2.31)-(2.32), if the convergence
conditions (2.33) are ensured, then the 2-ideal sliding mode (2.17) is established according to the
simplified super-twisting algorithm and its convergence condition (Perruquetti and Barbot 2002,
Chapter 3.6.4, equation (3.42)). As long as the error term σ(t) reaches the 2-ideal sliding mode
(2.17), the finite time convergence of the delay estimator is also ensured that ends the proof.

In Theorem 6, the conventional sliding mode method (2.20) is replaced by the super-twisting
algorithm (2.31)-(2.32). The main benefit of Theorem 6 by comparing with Theorem 5 is twofold:

— The chattering phenomenon is reduced since the term |σ|1/2sign(σ) is continuous and the
discontinuous term (2.32) lies in the integral (Shtessel, Edwards, et al. 2014, p.35). If the
two methods are implemented discrete-time system with sampling period Ts, it is well known
that the accuracy of the super-twisting algorithm (2.31)-(2.32) (that is a second-order sliding
mode approach) is proportional to T 2

s whereas the accuracy of the first-order sliding mode
(2.20) is proportional to Ts.

— The conventional sliding mode method (2.20) has only one tuning parameter L, then it
cannot converge fastly and reduce the chattering at the same time. As claimed in (Plestan
et al. 2010, p.1907), if one increases the gain L, then it results in larger chattering that
makes the delay estimation worse. However, if one decreases the gain L in order to reduce
the chattering, the analysis in (Shtessel, Edwards, et al. 2014, equations (1.10), (1.17)) shows
that the sliding variable converges to zero more slowly. However, the super-twisting method
(2.31)-(2.32) can achieve these two objectives at meantime since it is a high-order sliding
mode algorithm, and it has two tuning parameters.
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2.2.3 Adaptive super-twisting algorithm (ASTW) based delay estimation

Although Theorem 6 provides a better performance than Theorem 5, it also has a drawback:
its estimation performance totally depends on the choice of the parameters α and λ (namely, the
bounds δ and δ′). If the parameters are too small, then the delay estimator fails to converge, and if
the parameters are too large, they can also result in undesirable chattering in applications. Indeed,
the bounds δ and δ′ may not be perfectly known beforehand, in order to deal with this problem,
the adaptive super-twisting algorithm is proposed.

Theorem 7. Consider that the external signal s(t) satisfies Assumptions 5, and the time-varying
delay h(t) satisfies Assumption 6. The delay estimator is with the form (2.19), and the dynamic of
w(t) reads as

w(t) = −λ(t)|σ(t)|1/2sign(σ(t)) + w1(t), (2.37)

where σ(t) is given in (2.21), and the dynamic of w1(t) satisfies that

ẇ1(t) = −α(t)
2 · sign(σ(t)). (2.38)

The adaptive parameters λ(t) and α(t) have the following updating laws

λ̇(t) =

ω1
√

γ1
2 sign(|σ(t)| − µ), if λ(t) > λm

η, if λ(t) ≤ λm

α(t) = 2ζλ(t)

(2.39)

where ζ > 0, ω1 > 0, 1 > γ1 > 0, η > 0 are arbitrarily chosen, and λm > 0 is sufficient small. If
λ(0) > λm, then there exist η1 > µ, η2 > 0, and tF > 0 such that the 2-real sliding mode (2.18) is
established for all t ≥ tF . Finally, the delay estimation error e(t) = h(t)− ĥ(t) satisfies that

|e(t)| ≤ η1
ε
, t ≥ tF . (2.40)

Proof. The proof is also composed of two parts, the first part demonstrates that the error term
σ(t) enters and then stays in the boundary layers of the 2-real sliding mode in finite time, and the
second part derives the delay estimation error bound (2.40).
Part 1.
The beginning of this part is totally the same as the proof of Theorem 6, until (2.34). Indeed, (2.34)
can be equally written as

σ̇(t) = a(t) + bw(t) (2.41)

where a(t) keeps its definition in Theorem 6, and b = 1. In (2.41), since a(t) has bounded derivative
(according to (2.36) and assumptions 5-6) and b is constant, then the dynamic (2.41) satisfies all
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of the 5 assumptions given in (Shtessel, Taleb, and Plestan 2012, p.760, A1-A5). Finally, according
to (Shtessel, Taleb, and Plestan 2012, Theorem 1), the super-twisting algorithm (2.37)-(2.38) with
adaptive parameters (2.39) establishes the 2-real sliding mode (2.18) in finite time tF > 0.
Part 2.
Next, one derives the estimation error (2.40) from the 2-real sliding mode (2.18). Apply the mean
value theorem (Apostol 1974, Theorem 5.11) to (2.21), there exists h1 ∈ [min{(h(t)), ĥ(t)},max{(h(t)), ĥ(t)}]
such that

|σ(t)| = |ṡ(t− h1)||t− ĥ(t)− (t− h(t))|

= |ṡ(t− h1)||e(t)|.
(2.42)

Thus, with the use of Assumption 5, the estimation error satisfies that

|e(t)| = |σ(t)|
|ṡ(t− h1)| ≤

|σ(t)|
ε

. (2.43)

Finally, the main convergence result (2.40) can be obtained by combining (2.43) and (2.18).

Theorem 7 presents an adaptive super-twisting algorithm based time-delay estimation technique,
it has the following properties:

— the parameter tuning (2.33) is no longer required, it is replaced by the adaptive gains (2.39);
— the delay estimation ĥ(t) cannot reach the ideal finite-time convergence (2.17), it can only

establish the 2-real sliding mode (2.18). However, one can improve the estimation accuracy
by tuning the parameter µ in (2.39) smaller.

2.2.4 Discussions about the three delay estimators

In this subsection, the theoretical results of Theorems 5-7 are discussed and compared.
First, Theorem 5 is based on the conventional sliding mode method, it is simple and easy to imple-
ment since it has only one tuning gain L, but the drawback is the high-amplitude chattering caused
by the discontinuous sign-function (2.16), and it cannot perfectly handle the tradeoff between the
convergence speed and the chattering limitation at meantime.
The problem of the chattering phenomenon is solved with the use of super-twisting algorithm (in
Theorem 6) and its adaptive version (in Theorem 7) since the super-twisting algorithm is a 2-order
sliding mode technique. Theorem 6 can fastly estimate the round-trip delay with chattering limita-
tions by virtue of the continuous form and the two tuning parameters λ, α. The delay estimation
performances of Theorem 6 is perfect if the precise knowledge of the bounds δ, δ′ given in Assump-
tion 6 is known. When the bounds on the delay derivatives are not known beforehand, Theorem 7
can be applied to estimate the round-trip delay, all of the gains are self-tuned, and the predefined
delay estimation accuracy can be ensured.
The above discussions are summarized in the following table:

92



2.2. Sliding mode based practical delay estimation techniques with external signal

Nb. of tuning parameters sliding surface type accuracy
Theorem 5 1 1-ideal the third accurate
Theorem 6 2 2-ideal the most accurate
Theorem 7 self-tuned 2-real the second accurate

Table 2.1 – Comparison of the three practical time-delay estimation methods based on sliding mode
method.

2.2.5 Robustness of the practical delay estimation techniques

In this subsection, the robustness of the practical delay estimators given in Theorems 5-7 are
tested by simulations. They are compared with the delay measurement approach (Lai and Hsu 2010)
in the presence of channel inherent noises (Shannon 1984) or deception attacks (Ding et al. 2017).
In this subsection, one use the four approaches (delay measurement method (Lai and Hsu 2010),
and Theorems 5-7) to estimate the round-trip delay introduced by the following input and output
delays:

hi(t) = 0.5 + 0.5 sin(2t),

ho(t) = 0.8 + 0.3 sin(3t).
(2.44)

With respect to channel inherent noises

In this part, one takes into account the effect of the channel inherent noise (Shannon 1984) in
the delay estimation problem. In this case, the accurate value of the delayed signal s(t−h(t)) is not
available to the delay estimator, and only the perturbed delayed signal

sn(t− h(t)) = s(t− h(t)) + n(t) (2.45)

with |n(t)| < 0.2 a Gaussian noise 1, is used to compute the error term (2.21). In this simulation,
the performances of the delay estimators on interval [t1, t2] are evaluated by two indexes: the L2

norm of the estimation error e(t) = h(t)− ĥ(t):

‖e‖[t1,t2] =
(∫ t2

t1
|e(s)|2ds

)1/2
, (2.46)

and the variation of the estimation error:

VAR(e)[t1,t2] =
t2/Ts∑
i=t1/Ts

|e((i+ 1) · Ts)− e(i · Ts)| (2.47)

1. As stated in (Pierce 1980, p.173), the channel inherent noise can be modeled as a Gaussian noise.
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where Ts is the sampling period of the practical delay estimation algorithm. The L2 norm (2.46)
evaluates the accuracy of the delay estimation algorithms, lower the L2 norm is, better the accuracy
is. The variation (2.47) describes the oscillation level of the estimation error, higher variation implies
that the delay estimator oscillates more.
In order provide a fair comparison between the delay measurement approach and the delay estima-
tors given by Theorems 5-7, the external signal s(t) = t (i.e. system clock) is chosen. The other
parameters are given in the sequel

— Sliding mode (Sliding Mode (SM)) based method (Theorem 5): L = 3.5;
— Super-twisting algorithm (Super-Twisting (STW)) based method (Theorem 6): λ = 10 and

α = 10;
— Adaptive super-twisting algorithm (Adaptive Super-Twisting (ASTW)) based method (The-

orem 7): ω1 = 1.1, γ1 = 0.8, µ = 0.04, λm = 0.1, η = 0.3, ζ = 0.7, and λ(0) = 7.
Finally, in order to conform to the real wireless data communication process, the sampling period
of the simulation is set to Ts = 0.005s.
Through the simulation results displayed in Figure 2.2, the following conclusions are made:

— Figures 2.2c and 2.2d illustrate that tha channel inherent noise has less effects on the methods
of Theorems 5-7. Moreover, the high-order sliding mode based methods (Theorems 6-7) are
more accurate than the conventional sliding mode based method (Theorem 5), they also have
less oscillations than the method of Theorem 5.

— The adaptive super-twisting algorithm is successfully established in the simulation, and the
adaptive gain λ(t) increases to a suitable value that ensures the predefined delay estimation
accuracy.

— In Figure 2.2d, the variation of Theorem 7 is less than the one of Theorem 6, this is due to
the fact that the gains λ(t), α(t) are self-tuned, then the chattering effects of the simulation
is reduced.

The simulation results given in Figure 2.2 illustrate that the theoretical results of Theorems 5-6
are able to deal estimate the time-varying delays. Moreover, the simulation results highlight the
robustness of these approaches, then provide better performances than the delay measurement
method (Lai and Hsu 2010).

With respect to deception attacks

The aim of this part is to test the robustness of the practical delay estimation techniques against
cyber attacks. Indeed, in real application, the messages (measurement and control signal) of the
remote control systems can be transmitted via communication network. In this case, the adversary
may hijack the communication network and replace the measurement or control signal by false data
(X.-M. Zhang, Han, Ge, et al. 2019, Section VI-C) in order to damage the system. According to the
delay estimation framework described in subsection 2.1.2, the methods proposed by Theorems 5-7
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ĥ(t) (STW)
h(t)

(a) Estimation of time-varying delay (2.44) in the
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Figure 2.2 – Comparison between the delay measurement approach (Lai and Hsu 2010) and the
sliding mode based methods given in Theorems 5-7 in the presence of channel inherent noises.
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are based on the communication between the plant and the controller, then it is at risk from the
cyber attack. Thus, the main purpose of this simulation is to compare the performances of (Lai and
Hsu 2010) and Theorems 5-7 under deception attack (Ding et al. 2017).
Consider the delay estimation problem given in (2.44), and one assumes that the communication
network of s(t) is under the following deception attack:

sa(t− h(t)) = s(t− h(t)) + β(t)χ(t), (2.48)

with β(t) a Bernoulli random number such that

Prob {β(t) = 1} = 0.03, Prob {β(t) = 0} = 0.97. (2.49)

The attack value χ(t) reads as:

χ(t) =


−0.3 + ξ(t), t ∈ [5, 10] ∪ [25, 30] ∪ [45, 50]

0.5 + ξ(t), t ∈ [15, 20] ∪ [35, 40]

0, otherwise

(2.50)

with |ξ(t)| ≤ 1.

Remark 5. In real application, (2.48) is a sampled-data process with sampling period Ts = 0.005s,
then it can be transformed into the discrete deception attack model (Ding et al. 2017, eq. (4)) such
that:

Prob {β(k) = 1} = 0.03, Prob {β(k) = 0} = 0.97, (2.51)

and

χ(k) =


−0.3 + ξ(k), k · Ts ∈ [5, 10] ∪ [25, 30] ∪ [45, 50]

0.5 + ξ(k), k · Ts ∈ [15, 20] ∪ [35, 40]

0, otherwise

(2.52)

with |ξ(k)| ≤ 1.

In this simulation, the delay measurement method is still used for comparison, then the external
signal is still fairly set to s(t) = t, and the sampling period of the process is set to Ts = 0.005s. The
parameter setting of each methods are given subsequently:

— Sliding mode (SM) based method (Theorem 5): L = 3.5;
— Super-twisting algorithm (STW) based method (Theorem 6): λ = 10 and α = 10;
— Adaptive super-twisting algorithm (ASTW) based method (Theorem 7): ω1 = 0.7, γ1 = 0.7,

µ = 0.00025, λm = 0.1, η = 0.3, ζ = 0.8, and λ(0) = 7.
The simulation results are presented in Figure 2.3, they have the following properties:
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Figure 2.3 – Comparison between the delay measurement approach (Lai and Hsu 2010) and the
sliding mode based methods given in Theorems 5-7 under deception attacks.
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— When the communication network is not subject to deception attack (i.e. t ∈ [0, 5)∪(10, 15)∪
(20, 25)∪ (30, 35)∪ [40, 45]), both methods can accurately estimate the round-trip delay h(t).

— If the communication network is under the deception attack (2.48), the performance of (Lai
and Hsu 2010) is more degraded than Theorems 5-7.

— The zoomed sub-figure given in Figure 2.3b shows that the approach of Theorem 5 has a
higher chattering amplitude than the high-order ones.

As a consequence, Figure 2.3 claims that the deception attack (2.48)-(2.50) has a large effect on the
delay measurement method (Lai and Hsu 2010), but the approaches of Theorems 5-6 can successfully
estimate the round-trip delay with slight estimation errors. Thus, this simulations emphasizes the
robustness of the sliding mode based delay estimation methods against cyber attacks.

2.2.6 Experimental validation of the sliding mode based delay estimation meth-
ods

In this subsection, the theoretical results of Theorems 5-7 are implemented on a remote data
transmission (RDT) process that is comprised of two computers and their wireless communications
via WiFi network. The delay estimation performances of them are compared, and the discussions
given in subsection 2.2.4 are illustrated.

Configuration of the test bench

The experimental set-up is composed of two different computers connected through a Wi-Fi
network. Two computers run Robot Operating System (Robot Operating System (ROS)) platform
(Martinez and Fernández 2013) simultaneously in order to actualize an RDT process with input
and output time-varying delays (see Figure 2.4).
In Figure 2.4, hri(t) and hro(t) are the time-delays introduced by the real WiFi network. However,
the values of them are small (about several milliseconds according to (Horalek, Svoboda, and Holik
2016)) and in a random manner. In order to create an arbitrarily-long round-trip transmission delay
on the test bench, an artificial delay equals to h(t) is added onto Computer 2. As a consequence,
the real round-trip delay of this experiment is a composite function of the artificial delay and the
real input/ output delays introduced by the network, it can be approximated as

happrox(t) = hri(t) + h(t) + hro(t). (2.53)

Move back to Figure 2.4, the roles of the two computers are recalled. Computer 1 generates the signal
s(t), receives the delayed signal s(t−happrox(t)), and estimates the time-delay online. Computer 2 is
used to receive the delayed signal s(t−hi(t)) and to send it back to Computer 1. The synchronization
between the two computers is not required since all the calculations are done on Computer 1. The
communication between the two computers has a sampling period Ts = 0.005s.
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Computer 1

Dell Precision 5520

Intel i7-6820HQ processor

OS: Ubuntu 16.04

Computer 2

Dell Latitude E6410

Intel i7-M640 processor

OS: Ubuntu 14.04

Real transmission delay

Real transmission delay

D-Link DIR-880L

IEEE 802.11ac

5GHz

Artificial delay
hri(t)

hro(t)

h(t)

Figure 2.4 – Test bench based on the communication between two computers via WiFi network.

Comparison between the SM method and the STW method

In this part, Theorems 5-6 are compared through the experimental results done on the test
bench.

Experiment 1: Transmission delay estimation
In this experiment, the artificial delay h(t) is set to zero in order to test if the two methods can
estimate the round-trip delay

hrrt(t) = hro(t) + hri(t− hro(t)) (2.54)

introduced by the real WiFi network. The two delay estimators (based on Theorems 5-6) are based
on the following parameter tunings: L = 1.5, λ = 5, and α = 10.
The experimental results are presented in Figure 2.5. Remind that the reference round-trip delay
value is measured by a ping test 2. The following discussions are made to compare the properties of
Theorems 5-6 in this experiment:

— Figures 2.5a and 2.5c show that Theorem 5 has estimation biases, and the chattering ampli-

2. Ping (Mills 1983) is a computer network administration software that measures the round-trip time for messages
sent from the originating host to a destination computer that is echoed back to the source.
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(a) Estimation of the round-trip delay (2.54) via
Theorem 5.
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(b) Estimation of the round-trip delay (2.54) via
Theorem 6.
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Figure 2.5 – Delay estimations and estimation errors of the round-trip delay (2.3) by using Theo-
rems 5-6.
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tude is much higher than the level of the transmission delay hrrt(t).
— It shows in Figures 2.5b-2.5d that the transmission delay hrrt(t) is estimated without esti-

mation bias, and the chattering effect is reduced by comparing with Theorem 5.

Consequently, Figure 2.5 highlights the benefit of Theorem 6, it can be applied to estimate the
round-trip delay of a real WiFi network, and the accuracy and chattering limitation are ensured.

Example 2: Online estimation of slow-varying delay
After estimating the real round-trip transmission delay (2.54), some experiments will be done to
deal with long artificial time-delays. In this part, the following slow-varying artificial time-delay is
introduced by Computer 2:

h(t) =



4, for 0 ≤ t < 5

2, for 5 ≤ t < 10

4, for 10 ≤ t < 15

10− 0.4t, for 15 ≤ t < 20

2 + sin(0.4π(t− 17.5)), for t ≥ 20

. (2.55)

In this case, since the artificial delay is non longer zero, the round-trip delay is difficult to be directly
measured by using a ping test, then one use the (2.53) as a substitute. Indeed, the artificial delay
(2.55) is much larger than the network-induced delays, then (2.53) is almost equal to the real round-
trip delay. In addition, the gains L = 2.3, λ = 15, and α = 10 are chosen for this experiment.
Consider the experimental results displayed in Figure 2.6, it is observed that both of the two
methods can estimate the round-trip delay, but Figure 2.6c shows that the method of Theorem 5
has serious chattering in the experiment, whereas the one of Theorem 6 accurately estimates the
round-trip delay. Thus, it is possible to state that Theorem 6 exhibits a better performance than
Theorem 5.

Example 3: Online estimation of fast-varying delay
In many engineering systems, time-delays are no longer slow-varying (i.e. the derivative of the
time-delay is larger than 1 (Fridman 2014b, p.273)). The control of such systems is challenging
because:

— for the continuous-time TDS, the Lyapunov-Krasovskii theorem (Fridman 2014a, Theorem
3.1) is difficult to deal with this case (Fridman 2014b, p.273);

— for the networked control systems, packet reordering (older packet arrives at the destination
after the new one) may arise when the time-delay is fast-varying, and this makes the control
strategies more complicated (J. Li, Q. Zhang, and Cai 2009).
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(a) Slow-varying delay estimation via Theorem 5.
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(b) Slow-varying delay estimation via Theorem 6.
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(c) Chattering analysis of slow-varying delay estimation on interval t ∈ [10, 11.8].

Figure 2.6 – Comparison between Theorems 5 and 6 for slow-varying delay estimation.
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Moreover, as stated in (X. Wu et al. 2013, p.1765), estimating such delays is more challenging than
slow-varying delays for many existing approaches as (Lai and Hsu 2010) and (Drakunov et al. 2006,
Theorems 4-6). Thus, TDE for fast-varying delay is important to consider, and this technique is also
helpful for the stabilization of TDS with unknown fast-varying delay. In this example, a time-varying
artificial time-delay

hs(t) =



3 + 2t, for 0 ≤ t < 1

7− 2t, for 1 ≤ t < 3

2t− 5, for 3 ≤ t < 5

2t− 9, for 5 ≤ t < 7

2t− 13, for 7 ≤ t < 9

4 + cos(π(t− 9)), for t ≥ 9

(2.56)

is now introduced. Similarly, approximation (2.53) still holds in experiment, and the parameters are
re-defined as L = 5, λ = 15, and α = 20.
The experimental results are given Figure 2.7. First, consider Figures 2.7a and 2.7b, it is apparent
that the convergence speed of Theorem 5 is slower than than the one of Theorem 6. If one wants
to make the convergence speed faster, then the gain L must be tuned larger. However, as presented
in Figure 2.7c, with the gain L = 5, the chattering amplitude of Theorem 5 is already larger than
Theorem 6, and the amplitude will be larger if the gain L continuous to increase.
The above discussions highlights the performances of Theorem 6, since the use of the high-order
sliding sliding mode technique can ensure the high convergence speed and the chattering limitation
at the same time.

Example 4. Discrete-time random delay estimation
In this part, Theorem 6 is used to estimate a discrete-time delay. Indeed, in practice, the time-varying
delay is not always differentiable, that makes the delay estimation task difficult. For example, the
arguments in (Bresch-Pietri, Frédéric Mazenc, and Petit 2018, p.231) show that the communication
routing of a networked control system can be changed to keep data queuing lines below some accept-
able value, that causes delay jump phenomena. Therefore, the ability of estimating discontinuous
time-varying delay is important to consider.
As the example given in (Bresch-Pietri, Frédéric Mazenc, and Petit 2018, Figure 6(b)), the artificial
time-varying delay h(t) can be modeled as a discrete-time random process D(n, Td) that changes
value for each Td seconds. In this example, D(n, Td) is chosen as a uniform random variable on
[0.8, 1.2] with Td = 0.15s. The parameters of the delay estimator are set to α = 10 and λ = 15.
Figure 2.8 illustrates that the round-trip delay introduced by h(t) = D(n, Td) is well estimated.
Indeed, the sliding mode based delay estimation techniques (Theorems 5-7) can estimate piecewise-
continuous time-delays, and this experiment highlights the practical use of such delay estimation
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(a) Fast-varying delay estimation via Theorem 5.

0 5 10 15

Time (s)

1

2

3

4

5

S
e
c
o
n
d
s
 (

s
)
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(b) Fast-varying delay estimation via Theorem 6.
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(c) Chattering analysis of fast-varying delay estimation on interval t ∈ [10, 10.3].

Figure 2.7 – Comparison between Theorems 5 and 6 for fast-varying delay estimation.
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Figure 2.8 – Estimation of the round-trip delay with discrete-time random artificial delay h(t) =
D(n, Td) by using Theorem 6.
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approaches.

Comparison between the STW method and the ASTW method

In this part, Theorems 6-7 are compared on the experimental set-up described by Figure 2.4.
The time-delay

h(t) = 1.3 + 0.3 sin(3t) + 0.5 sin (2(t− 0.8− 0.3 sin(3t))) (2.57)

that is the round-trip delay introduced by (2.44), is chosen as the artificial delay of the test bench.
In the simulation, the following paramters are adopted:

— Super-twisting algorithm (STW) based method (Theorem 6), high gain case: λ = 50, α = 15;
— Super-twisting algorithm (STW) based method (Theorem 6), low gain case: λ = 5, α = 7.5;
— Adaptive super-twisting algorithm (ASTW) based method (Theorem 7): ω1 = 1.1, γ1 = 0.8,

µ = 0.0025, λm = 0.1, η = 0.3, ζ = 0.7, and λ(0) = 9.
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(a) Round-trip delay estimation via Theorem 7.
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(b) Adaptive gain λ(t) of Theorem 7.
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(c) Approximated estimation errors of Theorem 6 (with two cases) and Theorem 7.

Figure 2.9 – Comparison between Theorem 6 (with two cases) and Theorem 7.

The experimental results are presented in Figure 2.9. Firstly, Figures 2.9a-2.9b show that the round-
trip delay is estimated by the Theorem 7, and the adaptive gain λ(t) is decreased to a suitable size
(the gain α(t) is not given because it is proportional to λ(t), see (2.39)). Figure 2.9c displays the
approximated estimation error of the 3 experiments, it is observed that Theorem 6 with λ = 50 and
α = 15 brings high-amplitude chattering, and the chattering is reduced if one uses lower gains λ = 5,
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α = 7.5. However, it is impossible to find the best tuning parameters beforehand, then the proposed
method is used to handle this problem. See Figure 2.9c, Theorem 7 ensures the similar estimation
accuracy with Theorem 6 (λ = 5, α = 7.5) without any prior knowledge of the parameters. Thus, the
experimental results given in Figure 2.9 highlight the use of the adaptive super-twisting algorithm,
it is able to handle the tradeoff between the accuracy and the applicability.

2.3 Predictor-based control of remote control systems with un-
known time-varying delay

2.3.1 Theoretical results with SM method

In this subsection, the combination of the predictor-based controller and the sliding mode based
delay estimation methods are proposed to stabilize remote control systems with time-varying trans-
mission delays. The main results are given in the sequel.

Theorem 8. Consider the linear remote control system (2.1) with full state measurements, which
is subject to the unknown input and output transmission delays hi(t), ho(t), is under the control
framework given in subsection 2.1.2 and the delay estimation framework 2.1.1. If the bound on the
derivative of hi(t) is sufficiently small (i.e. δi of (2.11) is sufficiently small), then the predictor-
based controller (2.5), combined with the delay estimator of Theorem 5, ensures that the redaction
model z(t) is globally uniformly exponentially stable:

‖z(t)‖ ≤M5 max
s∈[−h̄,0]

‖z(s)‖e−η2t, t ≥ 0 (2.58)

with positive constant M5. Moreover, there also exists a positive constant M6 such that the state of
the system globally converges to zero with decay rate η2:

‖x(t)‖ ≤M6 max
s∈[−h̄,0]

‖z(s)‖e−η2t, t ≥ 0 (2.59)

Proof. At the beginning of the proof, the main convergence result (2.22) of Theorem 5 is recalled:
there exists a finite time tF > 0, such that the round-trip delay (2.3) is perfectly estimated for all
t ≥ tF . Therefore, the proof of Theorem 8 can be divided into 3 parts:

— Part 1: The trajectories of the system (2.1) with initial conditions (2.2)-(2.6) are bounded
for all t ∈ [0, tF );

— Part 2: The Lyapunov-Krasovskii analysis of the closed-loop system for all t ≥ tF ;
— Part 3: Derivation exponential stability (2.58) and the exponential convergence (2.59).

Part 1. At first, one considers the right-hand derivative of the delayed state x(t− ho(t)), it follows
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that
d

dt
x(t− ho(t)) = (1− ḣo(t))ẋ(t− ho(t))

= (1− ḣo(t)) [Ax(t− ho(t))−Bu(t− ho(t)− hi(t− ho(t))]

= (1− ḣo(t)) [Ax(t− ho(t))−Bu(t− h(t))]

(2.60)

by virtue of the system dynamic (2.1), the chain rule (Apostol 1974, Theorem 5.5) and the defini-
tion 2.3. With the help of (2.60), differentiating the reduction model z(t) given in (2.5) along the
trajectories of (2.1) leads to

ż(t) = ˙̂
h(t)AeAĥ(t)x(t− ho(t)) + eAĥ(t) d

dt
x(t− ho(t)) +Bu(t)

− (1− ˙̂
h(t))eAĥ(t) +A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds

= (A+BK)z(t) + ( ˙̂
h(t)− ḣo(t))Az(t)− ( ˙̂

h(t)− ḣo(t))A
∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds

+ (1− ḣo(t))eAĥ(t)Bu(t− h(t))− (1− ˙̂
h(t))eAĥ(t)Bu(t− ĥ(t)), t ≥ 0.

(2.61)

Consider the delay estimator (2.19)-(2.21) given in Theorem 5, whose dynamic is bounded as:

| ˙̂h(t)| ≤ 1 + L/ε (2.62)

The rest of the proof of this part is the same as proof of Lemma 2, since ˙̂
h(t) and ḣo(t) are uniformly

bounded.
Part 2. In this part, the Lyapunov-Krasovskii analysis is given to demonstrate the closed-loop
stability for all t ≥ tF . Firstly, by virtue of the finite time convergence of the delay estimation
(2.22), the dynamic (2.61) becomes to

ż(t) = (A+BK)z(t) + δ(t)
[
Az(t) + eAh(t)Bu(t− h(t))−A

∫ t

t−h(t)
eA(t−s)Bu(s)ds

]
,

= (A+BK)z(t) + δ(t)Az(t) + δ(t)eAh(t)B

[
u(t)−

∫ t

t−h(t)
u̇(s)ds

]

− δ(t)A
∫ t

t−h(t)
eA(t−s)Bu(s)ds, t ≥ tF .

(2.63)

with
δ(t) = ḣ(t)− ḣo(t) = d

dt
hi(t− ho(t)). (2.64)

Consider the Lyapunov-Krasovskii functional

V (z, ut, u̇t, t) = V1(z) + βV2(ut, t) + γV3(u̇t, t) (2.65)
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with
V1(z) = zT (t)Pz(t),

V2(ut, t) =
∫ t

t−h̄
(s− t+ h̄)‖u(s)‖2ds,

V3(u̇t, t) =
∫ t

t−h̄
(s− t+ h̄)‖u̇(s)‖2ds.

(2.66)

Differentiating V1(z) along the trajectories of (2.63) for all t ≥ tF leads to

V̇1(z) = −cu‖z(t)‖2 + 2δ(t)zT (t)PAz(t) + 2δ(t)zT (t)PeAh(t)B

[
u(t)−

∫ t

t−h(t)
u̇(s)ds

]

− 2δ(t)zT (t)PA
∫ t

t−h(t)
eA(t−s)Bu(s)ds, t ≥ tF .

(2.67)

Taking the norm of (2.67) yields that

V̇1(z) ≤ −cu‖z(t)‖2 + |δ(t)|(c1 + c2)‖z(t)‖2 + |δ(t)|c3‖z(t)‖‖v(t)‖+ |δ(t)|c4‖z(t)‖‖w(t)‖, t ≥ tF
(2.68)

with c1 = 2‖PA‖, c2 = 2e‖A‖h̄‖BK‖‖P‖, c3 = 2‖A‖e‖A‖h̄‖B‖‖P‖, c4 = 2e‖A‖h̄‖B‖‖P‖, ‖v(t)‖ =∫ t
t−h̄ ‖u(s)‖ds, and ‖w(t)‖ =

∫ t
t−h̄ ‖u̇(s)‖ds. By completing the squares, (2.68) can be developed to

V̇1(z) ≤ −(cu − |δ(t)|c1 − |δ(t)|c2)‖z(t)‖2 + |δ(t)|2 c3
(
‖z(t)‖2 + ‖v(t)‖2

)
+ |δ(t)|2 c4

(
‖z(t)‖2 + ‖w(t)‖2

)
, t ≥ tF .

(2.69)

Consider the functional V2(ut, t) and the Jensen’s inequality (Gu, J. Chen, and Kharitonov 2003,
Proposition B.8), its derivative satisfies that

V̇2(ut, t) = h̄‖u(t)‖2 −
∫ t

t−h̄
‖u(s)‖2ds

≤ h̄‖K‖2‖z(t)‖2 − 1
2h̄
‖v(t)‖2 − 1

2

∫ t

t−h̄
‖u(s)‖2ds, t ≥ tF .

(2.70)

Taking the derivative of V3(u̇t, t), and using the power mean inequality (Bullen 2013, p.203, Theorem
1) leads to

V̇3(u̇t, t) ≤ h̄‖u̇(t)‖2 −
∫ t

t−h̄
‖u̇(s)‖2ds

≤ h̄‖K‖2
[
c5‖z(t)‖2 + |δ(t)|2

(
c6‖z(t)‖2 + c7‖v(t)‖2 + c8‖w(t)‖2

)]
− 1

2h̄
‖w(t)‖2 − 1

2

∫ t

t−h̄
‖u̇(s)‖2ds, t ≥ tF

(2.71)
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with c5 = 4‖A+BK‖2, c6 = 4(‖A‖+ e‖A‖h̄‖BK‖)2, c7 = 4‖A‖2e2‖A‖h̄‖B‖2, and c8 = 4e2‖A‖h̄‖B‖2.
After computing the upper bounds of V̇1(z), V̇2(ut, t), and V̇3(u̇t, t), the upper bound of the Lyapunov-
Krasovskii functional (2.65) reads as

V (z, ut, u̇t, t) ≤ λ̄(P )‖z(t)‖2 + βh̄

∫ t

t−h̄
‖u(s)‖2ds+ γh̄

∫ t

t−h̄
‖u̇(s)‖2ds. (2.72)

Consider the term V̇ + 2η2V and inequalities (2.69), (2.70), (2.71)n and (2.72), it is possible to
derive that

V̇ + 2η2V ≤ −
[
β

2h̄
− |δ(t)|2 c3 − γh̄‖K‖2c7|δ(t)|2

]
‖v(t)‖2 −

[
β

2 − 2βh̄η2

] ∫ t

t−h̄
‖u(s)‖2ds

−
[
γ

2h̄
− |δ(t)|2 c4 − γh̄‖K‖2c8|δ(t)|2

]
‖w(t)‖2 −

[
γ

2 − 2γh̄η2

] ∫ t

t−h̄
‖u̇(s)‖2ds

−
[
cu − |δ(t)|(c1 + c2 + 1

2c3 + 1
2c4)− γh̄‖K‖2(c5 + c6|δ(t)|2)− βh̄‖K‖2 − 2η2λ̄(P )

]
‖z(t)‖2

(2.73)
for all t ≥ tF . Indeed, the inequality V̇ + 2η2V ≤ 0 holds when

— the parameters β, γ, and η2 are sufficiently small;
— the derivative |δ(t)| is sufficiently small.

Remind that the parameters α, β, and η2 are the parameters of the Lyapunov-Krasovskii functional
so they can be tuned sufficiently small. The boundedness (2.11) and the chain rule (Apostol 1974,
Theorem 5.5) ensure that the derivative |δ(t)| is upper bounded as follows

|δ(t)| =
∣∣∣∣ ddthi(t− ho(t))

∣∣∣∣ = |(1− ḣo(t))ḣi(t− ho(t))| ≤ δi(1 + δo). (2.74)

Thus, for all given δo, if the parameter δi is sufficiently small (i.e. hi(t) varies sufficiently slow), then
the closed-loop system of z(t) is globally uniformly exponential stable, such that

V (t) ≤ V (tF )e−2η2(t−tF ), t ≥ tF . (2.75)

Part 3. The proof of this part is similar to the proof of Lemma 4, it can be demonstrated with
a similar technique. Only one point need to pay attention, the state x(t) is used to compute the
predictor z(t) at a future instant t+ h̃ with h̃ ∈ [0, h̄]. Indeed, if h̃ > h̄, then t+ h̃− ho(t+ h̃) > t

holds that contradicts the expression of the predictor. Thus, the following equality is available

x(t) = e−Ah(t+h̃)
[
z(t+ h̃)−

∫ t+h̃

t+h̃−h(t+h̃)
eA(t+h̃−s)Bu(s)ds

]
. (2.76)
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Taking the norm of (2.76), it is possible to derive the bound on the original state x(t) as:

‖x(t)‖ ≤ e‖A‖h̄
[
‖z(t+ h̃)‖+ e‖A‖h̄‖BK‖h̄ max

s∈[t+h̃−h̄,t+h̃]
‖z(s)‖

]
. (2.77)

The exponential convergence (2.59) can be obtained by considering (2.77) and Parts 1-2, and then
the proof is finished.

Theorem 8 presents a practical control solution to remote control systems with time-varying
input and output delays, the main benefits are:

— The control technique is simple and effective: thanks to the frameworks introduced in sub-
section 2.1.1, the delay estimation loop is isolated from the control loop.

— The stability condition of Theorem 8 shows that the technique can stabilize remote control
systems with sufficiently slow-varying input delay and fast-varying output delay, and the
round-trip delay (2.3) can be fast-varying.

— Theorem 8 can also be extended to the predictor-based control of systems with known input
and output time-varying delays, like (Léchappé, Moulay, and Plestan 2018b, Theorem 1).
However, the work of (Léchappé, Moulay, and Plestan 2018b) uses hi(t)+ho(t) as the round-
trip delay to compute the control law, rather than (2.3). But in applications, to measure this
delay value, the clock synchronization (Martı et al. 2008) between the plant and the controller
is necessary. However, as claimed after (2.53), the clock synchronization is not required by
this control solution.

2.3.2 Theoretical results with STW method

Theorem 6 can also be applied to the stabilization of the closed-loop system, but some changes
must be made to the dynamic of the correction term (2.32), the new dynamic reads as

ẇ1(t) =

−w(t), if |w(t)| > W̄

−α · sign(σ(t)), if |w(t)| ≤ W̄
(2.78)

with a sufficiently large positive constant W̄ . Therefore, it is possible to state the theoretical results
of this subsection.

Theorem 9. Consider the linear remote control system (2.1) with full state measurements, which
is subject to the unknown input and output transmission delays hi(t), ho(t), is under the control
framework given in subsection 2.1.2 and the delay estimation framework given in subsection 2.1.1.
If the bound on the derivative of hi(t) is sufficiently small (i.e. δi of (2.11) is sufficiently small), then
the predictor-based controller (2.5), combined with the delay estimator (2.19)-(2.31)-(2.78) leads to
the global uniform exponential stability (2.58) and the global convergence (2.59).
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Proof. The majority of the proof is the same as the one of Theorem 8, only the first part is changed.
One first studies the bound on σ(0) as follows. According to Assumption 5 and the mean value the-
orem (Apostol 1974, Theorem 5.11), there exists a constant r ∈

[
min{ĥ(0), h(0)},max{ĥ(0), h(0)}

]
,

such that
|σ(0)| = |s(t− ĥ(0)− s(t− h(0)))| = |ṡ(t− r)||ĥ(0)− h(0)| ≤ 2ε̄h̄ (2.79)

with the help of |ṡ(t)| ≤ ε̄, |h(0)| ≤ h̄, and the well-chosen initial condition |ĥ(0)| ≤ h̄. Therefore,
w(0) is bounded as

|w(0)| ≤ λ
√

2ε̄h̄+ |w1(0)|. (2.80)

Next, one sets W̄ ≥ λ
√

2ε̄h̄ + |w1(0)|, the statements given in (Shtessel, Edwards, et al. 2014,
Theorem 4.5) ensure that:

— The delay estimator (2.19)-(2.31)-(2.78) converges to the round-trip delay in a finite time tF .
— The trajectories of w(t) never leaves the segment [−W̄ , W̄ ] for all t ≥ 0.

The above discussions ensures that the evolution speed of ĥ(t) is upper bounded as follows:

| ˙̂h(t)| ≤ 1 +
∣∣∣∣∣ 1
ṡ(t− ĥ(t))

∣∣∣∣∣ |w(t)| ≤ 1 + W̄/ε , δ̄ (2.81)

for all t ≥ 0. Thus, applying Lemma 2, the trajectories of z(t) are always uniformly bounded during
the transient phase t ∈ [0, tF ). The rest of the proof is omitted since it is exactly the same as
Theorem 8.

2.3.3 Simulation results

Consider the double integrator system given in (Léchappé, Moulay, and Plestan 2018b, Section
5): 

ẋ(t) =

0 1

0 0

x(t) +

 0

0.7

u(t− hi(t)),

y(t) = x(t− ho(t))

(2.82)

with unknown time-varying delays

hi(t) = 0.5 + 0.4 sin(t),

ho(t) = 0.5 + 0.45 sin(25 · t).
. (2.83)

The initial conditions of system (2.82) are set to x(θ) =
[
1 2

]T
, u(θ) = −1, and z(θ) = x(0) for

all θ ∈ [−h̄, 0). The parameters are given in the sequel:
— Parameters of the delay estimator (with Theorem 8): s(t) = t, L = 17, and ĥ(0) = 0.5;
— Parameters of the delay estimator (with Theorem 9): s(t) = t, λ = W̄ = 30, α = 10,
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ĥ(0) = 0.5, and w1(0) = 0;
— Parameter of the controller (2.5): K =

[
−4.2857 −5.7143

]
;

and the sampling period of the practical delay estimation algorithm is set to Ts = 0.005s (to conform
to the real wireless data communication). In order to explain the importance of the delay estimation
technique, a simulation with constant delay ĥ = hm = 1.0s (mean value of the round-trip delay
derived from (2.83)) is also done.
The simulation results are presented in Figures 2.10-2.11, the round-trip delay hrt(t) is estimated
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(a) State evolution of the system (2.82) under the
control solution of Theorem 8 and constant delay
estimation ĥ = hm = 1.0s.
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(b) Time derivatives of the input delay hi(t), the
output delay ho(t), and the round-trip delay hrt(t)
derived from (2.83).
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(c) Estimation of the round-trip delay formulated by the input and output delays (2.83) via Theorem 5.

Figure 2.10 – System trajectories and delay estimation of the double integrator (2.82) under the
control solutions provided in Theorem 8.

with Theorem 5 and the modified delay estimator (2.19)-(2.31)-(2.78). See Figures 2.10a and 2.11a,
the system trajectories with constant delay estimation ĥ = hm = 1.0s diverges, but the delay
estimation techniques make the closed-loop system stable. Moreover, the system (2.82) is stabilized
even if ho(t) and hrt(t) are fast-varying. The simulation results illustrate the theoretical results of
Theorems 8-9, such that the fast-varying round-trip delay is perfectly estimated, and the system is
stabilized by using the value of this delay estimation.
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(a) State evolution of the system (2.82) under the
control solution of Theorem 9.
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(b) Estimation of the round-trip delay of (2.83) via
delay estimator (2.19)-(2.31)-(2.78).

Figure 2.11 – System trajectories and delay estimation of the double integrator (2.82) under the
control solutions provided in Theorem 9.
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3.1 Introduction

In this section, a brief introduction to the networked control systems and the predictor-based
control of them is given. First, the motivations explain why this chapter is dedicated to the
predictor-based control of networked control systems with sensor-to-controller time-varying delays
and controller-to-actuator uncertain constant delays. Next, the state of the arts of the networked
control systems are introduced, two methods (time-delay approach, discrete-time approach) are em-
phasized and compared. Finally, the predictor-based control of networked control systems with long
delays is introduced, it can be designed by time-delay approach or discrete-time approach.
The main results of this Chapter are submitted to the following international journal:
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Y. Deng, V. Léchappé, C. Zhang, E. Moulay, D. Du, F. Plestan, and Q.-L. Han, Discrete predictor-
based control of LTI networked control systems with time-varying delay: application to a visual servo
inverted pendulum system, submitted to IEEE Transactions on Control Systems Technology.

3.1.1 Motivations

Vision-based sensor is widely used in various control applications (e.g. self-driving car (Hee Lee,
Faundorfer, and Pollefeys 2013; Wolcott and Eustice 2014), robot (Wang et al. 2012), UAV (Ramirez
et al. 2014), inverted pendulum (Kizir et al. 2012; Zhan, Du, and Fei 2017; Du, C. Zhang, et al.
2019)) due to the low cost (with respect to LIDAR) (Wolcott and Eustice 2014, p.176) and the rapid
progress of image processing techniques. In such control systems, the state information is resolved
from the captured images by using image processing algorithms. However, this process brings in the
following difficulties in the controller design:

— only sampled state information is available for the controller due to the digital nature of
the camera (Wang et al. 2012, p.132), and the sampling rate may be low if no distributed
computation is applied (H. Wu et al. 2012, p.554);

— the image processing algorithm needs a long computational time, so it introduces a long
time-varying delay (Ramirez et al. 2014; Zhan, Du, and Fei 2017).

After the resolution, the state information is transmitted to the controller via a wired or wireless
sensor-to-controller communication channel that is subject to a small uncertain time-varying delay
(several milliseconds (Horalek, Svoboda, and Holik 2016, p.147)). The controller then calculates
the control law and sends it to the actuator via the controller-to-actuator channel, and finally the
control input is applied to the system. Based on the previous statements, the whole control process
of such system is subject to the following time-delays:

— the exposure time of the camera (constant);
— the computational delay introduced by the image processing algorithm (long, time-varying);
— the transmission latency induced from the sensor-to-controller communication (small, time-

varying);
— the computation time of the control law (small, constant);
— the transmission latency induced from the controller-to-actuator communication (small, time-

varying);
— the physical dead time of the actuator (constant).

According to the above discussions, the vision-based control can be modeled as a networked control
system (NCS) with sensor-to-controller time-varying delay and controller-to-actuator un-
certain constant delay 1. Moreover, in order to reduce the cost of the control system, it will be

1. The controller-to-actuator delay is the sum of a constant delay (dead time of the actuator) and a small time-
varying delay (controller-to-actuator data transmission latency). Therefore, it is equivalently modeled as an uncertain
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preferable if the control strategy still works with a low sampling rate (i.e. The sampling rate of the
industrial camera depends on the exposure time. Generally, smaller exposure time ensures higher
sampling rate, but it also increases the price of the sensor). Thus, due to their high potential for
application, it is important to develop new control strategies being able to stabilize these systems.

3.1.2 State of the arts of related works

Networked control system (NCS) is a hot topic in the control community (X.-M. Zhang, Han,
and Yu 2015), since more and more control systems have remote sensor, controller and actuator
connected through a network (e.g. networked mobile robot(Tipsuwan and Chow 2002), connected
car or networked process control (L. Zhang, Gao, and Kaynak 2012)). The use of the network reduces
the cost of the control system (S.-H. Yang 2011, Chapter 1.1), but the data transmission also brings
network-induced delays and packet dropouts (K. Liu, Selivanov, and Fridman 2019, Section 2).
Therefore, these effects must be taken into account while designing the control law of NCS.
NCS can be stabilized by a continuous-time method named time-delay approach (K. Liu, Selivanov,
and Fridman 2019). It transforms the original NCS into a continuous TDS, then a digital controller
is designed to stabilize the NCS. The time-delay approach deals with variable sampling and non-
small delays at the same time (Yue, Han, and Lam 2005; Gao, Tongwen Chen, and Lam 2008). To
compensate arbitrarily-long time-delays, the authors of (Selivanov and Fridman 2016b) proposed a
digital predictor-based controller in order to stabilize NCSs with uncertain constant delays by using
the time-delay approach, this method is extended to the output feedback case in (Selivanov and
Fridman 2016a).
However, the method proposed in (Selivanov and Fridman 2016b; Selivanov and Fridman 2016a) is
difficult to stabilize NCS with long sampling periods because the stability criteria may not be easily
feasible. To stabilize such systems, the discrete predictor-based controller is an effective way since
the original system is transformed into an extended discrete-time delay-free system (Hu and Zhu
2003; Cloosterman et al. 2009; Léchappé, Moulay, Plestan, and Han 2019). As stated in (Léchappé,
Moulay, Plestan, and Han 2019), the discrete predictor-based controller can stabilize NCSs with
long constant time-delays and long sampling periods. It is shown in (Lozano et al. 2004) that this
method is robust with respect to the delay uncertainty as the time-delay approach (Selivanov and
Fridman 2016b). In (Cloosterman et al. 2009), a discrete predictor-based controller is designed to
stabilize NCSs with a time-varying delays and message rejections (J. Li, Q. Zhang, and Cai 2009).

3.1.3 Predictor-based control of networked control systems with long delays

In this subsection, the predictor-based control of networked control systems is introduced, the
first method (Selivanov and Fridman 2016b) is the sampled-data version of the continuous predictor-

constant delay.
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based controller, whereas the second method (Léchappé, Moulay, Plestan, and Han 2019) transforms
the NCS to a discrete-time system. Before stating the main results of these references, some basic
introductions to NCS are given.
The control diagram of networked control systems is displayed in Figure 3.1. At instants {sk}k∈N,

Plant Sampling

Controller

ZOH

Communication Network with delay

x(sk)

tsc(k)tca(k)

u(tk)

u(ξk)

Figure 3.1 – General control diagram of networked control systems.

the sensor takes action and sends the measurements x(sk) to the controller via network, the controller
receives the measurements at {ξk}k∈N due to the sensor-to-controller delay τsc(k) , ξk − sk. After
receiving the state measurements, the controller runs the control algorithm and computes the control
inputs u(ξk) (i.e. in this case, the controller is event-driven). The control input signal is then
transmitted to the plant through a communication network that is subject to a controller-to-actuator
delay τca(k). Finally, the sampled control inputs are converted to the continuous-time versions by
virtue of a zero-order-holder (ZOH), and then they are applied to the plant.
To well-explain the mechanism of NCS (i.e. the above modelings and notations), a straightforward
example is given as follows.
A timing diagram of an event-driven NCS with constant network-induced delays is presented in
Figure 3.2. The sampling period is presented as ∆, τsc and τca respectively denote the constant
sensor-to-controller delay and controller-to-actuator delay, and the sum of them read as τ . In this
example, the time-delays satisfies that

h∆ ≤ τsc + τca = τ ≤ (h+ 1)∆ (3.1)

with h = 1.
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sk sk+1 sk+2 sk+3

xk+1xk xk+2 xk+3

tk
tk+1 tk+2 tk+3

tsc

tca

t
sk+2 sk+3

t-∆

x(sk) x(sk+1) x(sk+2) x(sk+3)

u(xk) u(xk+1) u(xk+2) u(xk+3)

2∆-t

Figure 3.2 – Timing diagram of networked control system with constant delays.

Predictor-based control with time-delay approach

Consider the linear plant
ẋ(t) = Ax(t) +Bu(t) (3.2)

with x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m controlled through a network that is subject
constant network-induced delays τsc and τca (as shown in Figure 3.2). The control law of (Selivanov
and Fridman 2016b) reads as

u(ξk) = K

[
eA(τsc+τca)x(sk) +

∫ ξk

sk−τca

eA(ξk−θ)Bv(θ)dθ
]

(3.3)

with

v(ξ) ,

0, ξ < ξ0

u(ξk), ξ ∈ [ξk, ξk+1)
(3.4)

and the matrix K is chosen such that A+BK is Hurwitz. Indeed, (3.3) is the sampled-data version
of the continuous-time predictor-based controller, and it can stabilize the plant (3.2) with arbitrarily
long τsc, τca if the sampling period ∆ is sufficiently small.
The stability of the closed-loop system (3.2)-(3.3)-(3.4) is analyzed by using the time-delay approach
(K. Liu, Selivanov, and Fridman 2019). This method uses a time-varying delay to describe the sam-
pling/ ZOH process, and the closed-loop stability condition is derived from a Lyapunov-Krasovskii
analysis. The main drawback of this method is the limitation on the sampling rate, since the fea-
sibility of the sufficient condition to the closed-loop stability (a delay-dependent LMI) depends on
the maximum allowable sampling period (MASP).
Remind that, if the network-induced delays are uncertain (i.e. time-varying, but sufficiently close to
the nominal values τsc, τca), the controller given in (3.3) is still effective. However, if the network-
induced delays are time-varying (in general meaning), (3.3) fails to stabilize the NCS.
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Predictor-based control with discrete-time approach

Discrete predictor-based controller (Léchappé, Moulay, Plestan, and Han 2019) is one of the
well-known control solutions that deals with long sampling period. Consider the timing diagram of
Figure 3.2 as an example, the state-translation equation between x(sk+2) and x(sk+3) reads as

x(sk+3) =eA∆x(sk+2) +
∫ sk+3

sk+2
eA(sk+3−θ)Bu(θ)dθ

= eA∆x(sk+2) +
∫ sk+3

tk+1
eA(sk+3−θ)dθBu(ξk+1) +

∫ tk+1

sk+2
eA(sk+3−θ)dθBu(ξk)

= eA∆︸︷︷︸
Ā

x(sk+2) +
∫ (h+1)∆−τ

0
eAθdθB︸ ︷︷ ︸

B̄1

u(ξk+1) + eA((h+1)∆−τ)
∫ τ−h∆

0
eAθdθB︸ ︷︷ ︸

B̄2

u(ξk).

(3.5)

Inspired by (3.5), if one defines x̄(t) = x(t − τsc), then the following discrete state-translation
equation is available:

x̄(ξk + ∆) = Āx̄(ξk) + B̄1u(ξk − h∆) + B̄2u(ξk − (h+ 1)∆). (3.6)

Define the extended state

X(ξk) =
[
x̄T (ξk) uT (ξk −∆) · · · uT (ξk − h∆) uT (ξk − (h+ 1)∆)

]T
, (3.7)

then (3.6) is equivalent to the following extended system:

X(ξk + ∆) =



Ā 0 0 · · · B̄1 B̄2

0 0 0 · · · 0 0
0 Im×m 0 · · · 0 0
... . . . . . . . . . ...

...
0 · · · 0 Im×m 0 0
0 · · · · · · 0 Im×m 0


︸ ︷︷ ︸

Aext

X(ξk) +



0
Im×m

0
...
0
0


︸ ︷︷ ︸

Bext

u(ξk). (3.8)

Finally, the control law u(ξk) can be computed by a state feedback law u(ξk) = KX(ξk) such that
Aext + BextK is Shur (i.e. all of the poles of a Schur matrix are located in the unit circle of the
complex plane).
The main idea of discrete predictor-based controller (Léchappé, Moulay, Plestan, and Han 2019) is
the delay-free extended system representation (3.8), this technique can stabilize NCS with arbitrarily
long constants delays and arbitrarily long sampling periods (Léchappé, Moulay, Plestan, and Han
2019, Section 7.1) thanks to the discretization. If the delay values are large, then the sizes of Aext
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and Bext are also large that make the matrix K difficult to compute, then one can use the method
given in (Léchappé, Moulay, Plestan, and Han 2019, Section 6) to obtain the control law. The only
drawback of this technique is that it cannot handle the variable sampling system as the time-delay
approach (Selivanov and Fridman 2016b).

The discrete predictor-based control based on the extended system representation (3.8) is ex-
tended to the time-varying delay case in (Hu and Zhu 2003; Cloosterman et al. 2009).
The discrete extended system given in (Hu and Zhu 2003, Section 2) is similar to (3.8), but the
zero block matrices of the first rows of Aext and Bext are no longer zero since the network-induced
delays are time-varying. The objective of this method is optimizing the following cost function

JN = E

[
XT (ξN )Q0X(ξN ) +

N−1∑
k=0

(
XT (ξk)Q1X(ξk) + uT (ξk)Q2u(ξk)

)]
(3.9)

whereQ0,Q1,Q2 are predefined symmetric positive definite matrices, and E[·] denotes the stochastic
expectation. Then the time-varying feedback matrix K(ξk) is obtained by solving the Belleman
equation derived from (3.9).
However, the control solution of (Hu and Zhu 2003) has two drawbacks:

— the probability distribution function of the network-induced delays are assumed to be known
in prior;

— all of the packets are ordered (i.e. the sequences {ξk}k∈N, {tk}k∈N are increasing), and packet
reordering (message rejection) (J. Li, Q. Zhang, and Cai 2009) cannot occur.

The drawbacks of (Hu and Zhu 2003) are covered by (Cloosterman et al. 2009), and a Lyapunov-
Krasovskii analysis is given to guarantee the global asymptotic stability, rather than the stochastic
stability of (Hu and Zhu 2003). Remind that the extended system modeling of (Hu and Zhu 2003,
p.1879) and (Cloosterman et al. 2009, p.1577) are almost identical, but they treat the extended
system in different ways. The main objective of (Cloosterman et al. 2009) is to seek for a static
feedback control law u(ξk) = KX(ξk) that deals with all the cases (i.e. different time-varying delays
and message rejections).
The works of (Cloosterman et al. 2009) provide an effective control solution to the NCS with
time-varying delays and message rejection. The only drawback of this method is the feasibility and
the computation cost, according to (Cloosterman et al. 2009, Theorem 2), the feedback gain K is
obtained by verifying 2h̄ LMIs, with h̄ = max{τsc(k) + τca(k)}/∆. Thus, if the networked-induced
delays are long (i.e. h is large), large numbers offline computations must be done to derive the stable
control solution. Moreover, this method is at risk of infeasiblility when h is extremely large.

Therefore, predictor-based control of NCS with long and time-varying delays is still challenging
to the control community, and the control techniques should be improved to stabilize such systems
in simpler and more effective ways.
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3.2 Control scenario of the discrete predictor-based controller

In this section, the discrete predictor-based control is designed to stabilize NCS with sensor-
to-controller time-varying delay and controller-to-actuator uncertain constant delay. This section
begins with the problem formulations and the modeling of the NCS, then the basic concept of the
proposed controller is introduced by a simple example in which the controller-to-actuator delay is
constant. After studying the simple case, the main control scenario is built and the closed-loop
stability is hereafter analyzed.

3.2.1 Problem formulations

Consider the following LTI plant

ẋ(t) = Ax(t) +Bu(t), t ≥ 0 (3.10)

controlled through a network with A ∈ Rn×n and B ∈ Rn×m. The control input is piecewise-constant
such that

u(t) = uk, t ∈ [tk, tk+1), k ∈ N

u(t) = 0, t < t0.
(3.11)

where tk is the instant that the kth control input uk is applied to the plant.
In this work, the sensor and the controller have time-driven behavior which means that they update
the state measurement and the control input each ∆ seconds and send them out. The actuator is
event-driven, it applies the new control input to the plant as soon as it receives it.
Figure 3.3 is the timing diagram of this method, the sequence {sk}k∈N represents the sampling
instants of the sensor and the updating instants of the controller. The sequence {ξk}k∈N describes
the arriving instants of the state measurement x(sk), and {tk}k∈N denotes the instants that a new
control input uk is applied to the plant.
The state information is periodically measured (with sampling period ∆ > 0) and sent to the
controller through the network. Namely, at instants sk = k∆, k ∈ N, the sensor takes action and
sends the state measurement to the controller. According to Figure 3.3, one defines the sensor-to-
controller time-varying delay as τsc(k) , ξk − sk, and it is bounded by:

0 ≤ τsc(k) ≤ N1∆ (3.12)

with known N1 ∈ N+. Due to the above discussions and Figure 3.3, the controller is time-driven,
then the controller-to-actuator delay reads as τca(k) = tk−sk, it is modeled as an uncertain constant
delay such that

τca(k) = τ̄ca + ∆τ(k) (3.13)
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Figure 3.3 – Timing diagram of the control scheme with time-driven sensor, time-driven controller
and event-driven actuator.

where the nominal controller-to-actuator constant delay τ̄ca is known and bounded by

(N2 − 1)∆ ≤ τ̄ca ≤ N2∆ (3.14)

with known N2 ∈ N+, and the uncertainty is bounded by

0 ≤ ∆τ(k) ≤ ∆. (3.15)

Figure 3.3 shows that the controller is time-driven, but not event-driven. The main benefit of the
time-driven controller is that the controller design is much simpler than the event-driven ones when
the sensor-to-controller delay is long and fast-varying. Moreover, the proposed control strategy can
be calculated without solving delay-dependent LMI.

Assumption 7. Define Ā = eA∆, B̄1 =
∫N2∆−τ̄ca

0 eAθdθB and B̄2 =
∫∆
N2∆−τ̄ca

eAθdθB, one assumes
that the pair (Ā, Ā−N2+1B̄1 + Ā−N2B̄2) is controllable.

Since the control law of this work is designed by the discrete-time approach, then one must verify
that the discrete-time system is controllable. Assumption 7 provides a sufficient condition to the
controllability of the discrete-time system (Léchappé, Moulay, Plestan, and Han 2019, Assumption
1).
Next, one assumes that the sensor and the controller are synchronized so that τsc(k) can be mea-
sured when the controller receives a new measurement, this assumption is also made in (W. Zhang,
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Branicky, and Phillips 2001; Selivanov and Fridman 2016b; Selivanov and Fridman 2016a).

Remark 6. The Zeno phenomenon never occurs since the state measurement and the control law
calculation are periodic.

In (Selivanov and Fridman 2016b), the authors assumed that the older control inputs and the
older state measurements cannot arrive at the destination later than a newer one. In other words,
the sequences {tk}k∈N and {ξk}k∈N are increasing:

t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 ≤ · · ·

ξ0 ≤ ξ1 ≤ · · · ≤ ξk ≤ ξk+1 ≤ · · ·
(3.16)

in order to avoid the message rejection (message disordering). In this work, only a weaker assumption
given in the sequel is needed.

Assumption 8. The sequence {ξk}k∈N is no longer required to be increasing, only {tk}k∈N is
supposed to be increasing.

Assumption 8 can also be ensured by (3.14) and (3.15). This assumption shows that the proposed
method deals with the message rejection in the sensor-to-controller channel.

3.2.2 Controller-to-actuator constant delay case

The aim of this subsection is to introduce the discrete predictor-based controller (Cloosterman
et al. 2009; Léchappé, Moulay, Plestan, and Han 2019) and the proposed control techniques by using
a simple example, i.e. there is no delay uncertainty in the controller-to-actuator channel, then the
controller-to-actuator delay is constant and the state-translation (Åström and Wittenmark 2013,
Chapter 2.3) between x(sk) and x(sk+1) reads as

x(sk+1) = eA∆x(sk) +
∫ tk−N2+1

sk

eA(sk+1−θ)dθBuk−N2 +
∫ sk+1

tk−N2+1
eA(sk+1−θ)dθBuk−N2+1 (3.17)

with N2 defined in (3.14). By using Assumption 7, (3.17) can be equally considered as the following
discrete-time system:

x(sk+1) = Āx(sk) + B̄1uk−N2+1 + B̄2uk−N2 . (3.18)

Assumption 7 ensures that the discrete-time system (3.18) is controllable (Ionete et al. 2008, The-
orem 1). Define the extended state zk =

[
xT (sk) uTk · · · uTk−N2+1 uTk−N2

· · · uTk−N1−N2−1

]T
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and using (3.18), it leads to

zk+1 =



Ā 0 · · · B̄1 B̄2 · · · 0
0 0 · · · 0 0 · · · 0
0 Im×m · · · 0 0 · · · 0
... . . . . . . . . . . . . . . . ...
0 0 · · · Im×m 0 · · · 0
... . . . . . . . . . . . . . . . ...
0 0 · · · · · · 0 Im×m 0


︸ ︷︷ ︸

A

zk +



0
Im×m

0
...
...
...
0


︸ ︷︷ ︸

B

uk+1. (3.19)

The controllability of (3.18) and (3.19) is equivalent since they are two different descriptions of the
same system, see (Léchappé, Moulay, Plestan, and Han 2019, Remark 5). Therefore, it is possible
to find a state feedback control

uk+1 = Kzk (3.20)

that makes the matrix A+ BK Hurwitz. Moreover, for all ε > 0, there exists a symmetric positive
definite matrix P with appropriate dimension such that

(A+ BK)TP (A+ BK)− P = −εI. (3.21)

To calculate the control law (3.20) at instant t = sk+1, one needs the knowledge of x(sk) which
may not arrive at the controller before t = sk+1. To overcome this problem, one can use the newest
state measurement x(sk−d) (with 1 ≤ d ≤ N1) and the control history to predict the state x(sk) by
iterating (3.18) for d times:

x̂(sk−d+1) = Āx(sk−d) + B̄1uk−N2−d+1 + B̄2uk−N2−d,

x̂(sk−d+2) = Āx̂(sk−d+1) + B̄1uk−N2−d+2 + B̄2uk−N2−d+1,

...
...

x̂(sk−1) = Āx̂(sk−2) + B̄1uk−N2−1 + B̄2uk−N2−2,

x̂(sk) = Āx̂(sk−1) + B̄1uk−N2 + B̄2uk−N2−1.

The above equations give the state estimation x̂(sk) as follows:

x̂(sk) = Ādx(sk−d) + Ād−1B̄2uk−N2−d + B̄1uk−N2 +
d−1∑
i=1

(ĀiB̄1 + Āi−1B̄2)uk−N2−i. (3.22)

Remark 7. Since the controller-to-actuator delay is constant, then (3.22) is a perfect prediction
such that x̂(sk) = x(sk). If the controller-to-actuator delay is uncertain, then there exists an esti-
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mation error e(sk) = x(sk) − x̂(sk). The effect of the estimation error will be analyzed in subsec-
tion 3.2.3.

Finally, the control law can be calculated by using the state feedback control (3.20) and the
state prediction (3.22).
The state estimation technique (3.22) is able to deal with the message rejection(Cloosterman et al.
2009, p.1576) (packet reordering (J. Li, Q. Zhang, and Cai 2009, p.1775)) in the sensor-to-controller
network. In the communication channel, if an older data packet arrives at the destination after a
newer data packet, then this older data packet is discarded in order to ensure that the newest data is
processed. This effect is presented in Figure 3.4, the measurements x(sk) and x(sk+1) are neglected
due to the message rejection since they arrive at the controller after the measurement x(sk+2).

Sensor

Controller

sk-1 sk sk+1 sk+2

xk

xk-1

xk+1xk+2

tsc(k-1)

xk-1

xk xk+1

xk+2

sk+3 sk+4

sk sk+1 sk+2

sk+3

xk+3

xk
^

Message rejection State prediction

x̂k+1

sk-1 sk+4

Figure 3.4 – Timing diagram of the sensor-to-controller channel with message rejections.

Lemma 5. At least one measurement x(sk−d) with 1 ≤ d ≤ N1 is available for the controller at
t = sk.

Proof. Firstly, because the sensor-to-controller delay is upper bounded by N1∆, then the measure-
ment x(sk−N1) must arrive at the controller before t = sk since

ξk−N1 = sk−N1 + τsc(k −N1) ≤ sk−N1 +N1∆ ≤ sk. (3.23)

Secondly, if the measurement x(sk−N1) is not discarded, then Lemma 5 is proven with d = N1.
Thirdly, if x(sk−N1) is rejected, then there must exist an integer 1 ≤ d < N1 such that x(sk−d)
successfully arrives at the controller and its arriving time ξk−d is earlier than the arriving time of
x(sk−N1) such that

ξk−d ≤ ξk−N1 ≤ sk. (3.24)

Thus, x(sk−d) is available for the controller at t = sk and this ends the proof.

Lemma 5 ensures that the maximum value of d in (3.22) is N1.
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3.2.3 Controller-to-actuator uncertain constant delay case

In this subsection, one develops the technique given in subsection 3.2.2, and takes into ac-
count the delay uncertainty in the controller-to-actuator channel. Consider (3.14) and (3.15), the
controller-to-actuator delay satisfies

(N2 − 1)∆ ≤ τca(k) ≤ (N2 + 1)∆. (3.25)

Figure 3.5 shows a timing diagram of the controller-to-actuator uncertain delay case with N2 = 2.

Actuator

Controller

sk-1 sk sk+1 sk+2

tk+1tk-1 tk

tca

uk-1

sk+3

sk

sk+1

sk+2tk-1
-

Dt(k-1)

tk
-

Dt(k)

-
tk+1

Dt(k+1)

uk uk+1

sk+3

u(t)sk+1sk

uk-2

uk-1

uk

uk+1

sk+3tk+1tksk+2tk-1

sk-1

sk-1

-

-
tk-1

Dt(k-1)

-
tk

Dt(k)

-
tk+1

Dt(k+1)

Figure 3.5 – Timing diagram of the controller-to-actuator channel with uncertain delays.

Let {t̄k}k∈N be the expected arriving times of each control input (without delay uncertainties) such
that

t̄k = sk + τ̄ca, (3.26)

and the sequence {tk}k∈N is the true arriving times of each control input such that

tk = sk + τca(k) = t̄k + ∆τ(k). (3.27)

Comparing (3.14) and (3.25), two cases must be considered.
Case 1:

(N2 − 1)∆ ≤ τ̄ca ≤ τca(k) ≤ N2∆. (3.28)
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In this case, the delay uncertainty ∆τ(k) is smaller than N2∆− τ̄ca, and it implies that

sk ≤ t̄k−N2+1 ≤ tk−N2+1 ≤ sk+1. (3.29)

In Figure 3.5, the control input uk−1 illustrates this case. The state-translation equation between
x(sk) and x(sk+1) reads as

x(sk+1) =eA∆x(sk) +
∫ t̄k−N2+1

sk

eA(sk+1−θ)dθBuk−N2 +
∫ tk−N2+1

t̄k−N2+1
eA(sk+1−θ)dθBuk−N2

+
∫ sk+1

tk−N2+1
eA(sk+1−θ)dθBuk−N2+1

(3.30)

By using Assumption 7, one has B̄1 =
∫ sk+1
t̄k−N2+1

eA(sk+1−θ)dθB and B̄2 =
∫ t̄k−N2+1
sk

eA(sk+1−θ)dθB. Let

∆B̄1(k −N2 + 1) =
∫ tk−N2+1
t̄k−N2+1

eA(sk+1−θ)dθB, then (3.30) equals to

x(sk+1) = Āx(sk) + [B̄1 −∆B̄1(k −N2 + 1)]uk−N2+1 + [B̄2 + ∆B̄1(k −N2 + 1)]uk−N2 . (3.31)

Case 2:

(N2 − 1)∆ ≤ τ̄ca ≤ N2∆ ≤ τca(k). (3.32)

This case shows that the delay uncertainty ∆τ(k) is larger than N2∆− τ̄ca, and it leads to

sk ≤ t̄k−N2+1 ≤ sk+1 ≤ tk−N2+1. (3.33)

The control input uk in Figure 3.5 describes this case. The state-translation equation between
x(sk+1) and x(sk+2) is given by

x(sk+2) = Āx(sk+1) + [B̄1 − B̄1]uk−N2+2 + [B̄2 + B̄1]uk−N2+1. (3.34)

Indeed, if this case occurs, the delay uncertainty ∆τ(k) also influences the next sampling period.
See Figure 3.5, the control input uk−1 is also applied to the plant on interval [sk+2, tk) ⊂ [sk+2, sk+3]
yields

x(sk+3) =Āx(sk+2) + [B̄1 −∆B̄1(k −N2 + 3)]uk−N2+3 + ∆B̄2(k −N2 + 2)uk−N2+1

+ [B̄2 + ∆B̄1(k −N2 + 3)−∆B̄2(k −N2 + 2)]uk−N2+2
(3.35)
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with ∆B̄2(k −N2 + 2) =
∫ tk
sk+2

eA(sk+3−θ)dθB. For both Case 1 and 2 one defines

∆B̄1(k) =

B̄1, ∆τ(k) ≥ N2∆− τ̄ca,∫ τ̄ca−(N2−1)∆+∆τ(k)
τ̄ca−(N2−1)∆ eA(∆−θ)dθB, ∆τ(k) < N2∆− τ̄ca,

(3.36)

and

∆B̄2(k) =


∫ τ̄ca+∆τ(k)−N2∆

0 eA(∆−θ)dθB, ∆τ(k) ≥ N2∆− τ̄ca,

0, ∆τ(k) < N2∆− τ̄ca.
(3.37)

Thus, the following state-translation equation describes all the cases mentioned above:

x(sk+1) =Āx(sk) + [B̄1 −∆B̄1(k −N2 + 1)]uk−N2+1 + ∆B̄2(k −N2)uk−N2−1

+ [B̄2 + ∆B̄1(k −N2 + 1)−∆B̄2(k −N2)]uk−N2 .
(3.38)

Remark 8. If there is no delay uncertainty in the controller-to-actuator channel, then the matrices
∆B̄1(k −N2 + 1), ∆B̄2(k −N2) given in (3.38) are zero, and (3.38) is equivalent to (3.18).

Lemma 6. If the delay uncertainty satisfies 0 ≤ ∆τ(k) ≤ µ ≤ ∆ for all k ∈ N, then the Euclidean
norm of the matrices ∆B̄1(k), ∆B̄2(k) satisfies

‖∆B̄1(k)‖ ≤ µe‖A‖∆‖B‖, ‖∆B̄2(k)‖ ≤ µe‖A‖∆‖B‖ (3.39)

for all k ∈ N.

Proof. Suppose that ∆τ(k) ≥ N2∆− τ̄ca holds, then one has

∆B̄1(k) = B̄1 =
∫ ∆

τ̄ca−(N2−1)∆
eA(∆−θ)dθB. (3.40)

Using the triangle inequality for integrals, (3.40) leads to

‖∆B̄1(k)‖ ≤
∫ ∆

τ̄ca−(N2−1)∆
‖eA(∆−θ)‖dθ‖B‖ ≤

∫ ∆

τ̄ca−(N2−1)∆
e‖A‖∆dθ‖B‖

≤ [∆− τ̄ca + (N2 − 1)∆]e‖A‖∆‖B‖ ≤ µe‖A‖∆‖B‖.
(3.41)

Similarly, ‖∆B̄2(k)‖ ≤ µe‖A‖∆‖B‖ is proven by using the same inequality (3.41) and the fact that
τ̄ca + ∆τ(k)−N2∆ ≤ ∆τ(k).
Now, consider the case ∆τ(k) < N2∆ − τ̄ca, one can prove that ‖∆B̄1(k)‖ ≤ µe‖A‖∆‖B‖ by the
same way as (3.41) and one has ‖∆B̄2(k)‖ = 0. This ends the proof.

Similar to subsection 3.2.2, one uses the state prediction (3.22) to predict the state when the
expected measurement did not arrive. However, one cannot perfectly calculate the system state
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x(sk) due to the delay uncertainty, only a state estimation x̂(sk) is available at t = sk. Assuming
that x(sk−d) is available, then one can calculate the state prediction errors as follows:

1. firstly, the true state-translation equation (3.38) between x(sk−d) and x(sk−d+1) reads as

x(sk−d+1) = Āx(sk−d) + ∆B̄2(k − d−N2)uk−d−N2−1 + [B̄1 −∆B̄1(k − d−N2 + 1)]uk−d−N2+1

+ [B̄2 + ∆B̄1(k − d−N2 + 1)−∆B̄2(k − d−N2)]uk−d−N2

(3.42)
and the state prediction is calculated as

x̂(sk−d+1) = Āx(sk−d) + B̄1uk−d−N2+1 + B̄2uk−d−N2 . (3.43)

Taking the difference between (3.42) and (3.43), the prediction error is

e(sk−d+1) = x(sk−d+1)− x̂(sk−d+1)

= ∆B̄1(k − d−N2 + 1)(uk−d−N2 − uk−d−N2+1)

+ ∆B̄2(k − d−N2)(uk−d−N2−1 − uk−d−N2).

(3.44)

2. Secondly, one considers the estimation error e(sk−d+2) in a similar way, but one assumes that
x(k − d+ 1) is still not received by the controller, so the state prediction reads as

x̂(sk−d+2) = Āx̂(sk−d+1) + B̄1uk−d−N2+2 + B̄2uk−d−N2+1. (3.45)

Then, consider the true state-translation equation (3.38) between x(sk−d+1) and x(sk−d+2)
as follows:

x(sk−d+2) = Āx(sk−d+1) + [B̄1 −∆B̄1(k − d−N2 + 2)]uk−d−N2+2

+ [B̄2 + ∆B̄1(k − d−N2 + 2)−∆B̄2(k − d−N2 + 1)]uk−d−N2+1

+ ∆B̄2(k − d−N2 + 1)uk−d−N2 .

(3.46)

Taking the difference between (3.46) and (3.45), one can calculate the estimation error as
follows:

e(sk−d+2) = Āe(sk−d+1) + ∆B̄2(k − d−N2 + 1)(uk−d−N2 − uk−d−N2+1)

+ ∆B̄1(k − d−N2 + 2)(uk−d−N2+1 − uk−d−N2+2).
(3.47)
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3. Recursively, the estimation error at t = sk reads as

e(sk) = Ād−1∆B̄1(k − d−N2 + 1)(uk−d−N2 − uk−d−N2+1)

+ Ād−1∆B̄2(k − d−N2)(uk−d−N2−1 − uk−d−N2)

+ Ād−2∆B̄1(k − d−N2 + 2)(uk−d−N2+1 − uk−d−N2+2)

+ Ād−2∆B̄2(k − d−N2 + 1)(uk−d−N2 − uk−d−N2+1)

+ · · ·

+ ∆B̄1(k −N2)(uk−N2−1 − uk−N2)

+ ∆B̄2(k −N2 − 1)(uk−N2−2 − uk−N2−1).

(3.48)

Finally, the control law uk+1 is calculated by

uk+1 = Kẑk (3.49)

with ẑk =
[
x̂T (sk) uTk uTk−1 · · · uTk−N1−N2

uTk−N1−N2−1

]T
.

Remark 9. Remind that, (3.49) deals with the case 1 ≤ d ≤ N1. If d = 0 holds, it implies that
the state measurement x(sk) is available at instant t = sk+1, then there is no need to use the state
prediction (3.22). In such case, one can directly set x̂(sk) = x(sk), and the control law (3.49) is
equivalent to (3.20).

Lemma 7. The Euclidean norm of a class of block matrices

Γ =


0 0 · · · 0 −B B 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0
...

... . . . ...
...

...
... . . . ...

0 0 · · · 0 0 0 0 · · · 0

 (3.50)

satisfies that
‖Γ‖ ≤

√
2‖B‖. (3.51)

Proof. The 2-norm of Γ is the induced norm (Meyer 2000, p.281) such that

‖Γ‖ = sup {‖Γx‖ : ‖x‖ = 1} (3.52)

where x is a vector with appropriate dimension. One assumes that

x̄ =
[
xT1 · · · xTj xTj+1 · · · xTr

]T
(3.53)
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satisfies ‖x̄‖ = 1 and the fact

‖Γ‖ = sup {‖Γx‖ : ‖x‖ = 1} = ‖Γx̄‖, (3.54)

then one has

‖Γ‖ =
∥∥∥∥[(−Bxj +Bxj+1)T 0 · · · 0

]T ∥∥∥∥ = ‖ −Bxj +Bxj+1‖. (3.55)

Using the triangle inequality, (3.55) is upper bounded as

‖Γ‖ ≤ ‖B‖(‖xj‖+ ‖xj+1‖). (3.56)

Remind that, by virtue of the definition of the Euclidean vector norm (Meyer 2000, p.270), one has

(‖xj‖+ ‖xj+1‖)2 ≤ 2‖xj‖2 + 2‖xj+1‖2 ≤ 2
i=r∑
i=1
‖xi‖2 = 2. (3.57)

Finally, (3.56) and (3.57) imply (3.51) which ends the proof.

Next, the bound on the state prediction error (3.48) is analyzed with the help of Lemmas 6-7.

Lemma 8. Consider the extended states

zk =
[
xT (sk) uTk · · · uTk−N2+1 uTk−N2

· · · uTk−N1−N2−1

]T
(3.58)

and
ẑk =

[
x̂T (sk) uTk · · · uTk−N2+1 uTk−N2

· · · uTk−N1−N2−1

]T
, (3.59)

there exists a constant Θ > 0 such that the extended error e(zk) = zk − ẑk is upper bounded as
follows:

‖e(zk)‖ ≤ Θµ‖zk‖ (3.60)

with µ defined in Lemma 6.

Proof. Firstly, if d = 0, then the estimation error is zero according to Remark 9, and (3.60) holds
with arbitrary Θ > 0. Then one moves on to the case 1 ≤ d ≤ N1, Lemma 5 ensures that the
maximum value of d in (3.48) is N1, then all of the control inputs mentioned in the right-hand side
of (3.48) are contained in (3.58) and (3.59).
Secondly, the error between zk and ẑk reads as

e(zk) =
[
eT (sk) 0T · · · 0T

]T
. (3.61)

Consider the last term of (3.48) (the matrix ∆B̄2(k −N2 − 1) is written as ∆B̄2 due to the space
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limitation) and the extended error (3.61), it leads to

[
∆B̄2(uk−N2−2 − uk−N2−1)

]
0
...
0

 =


0 · · · 0 −∆B̄2 ∆B̄2 0 · · · 0
0 · · · 0 0 0 0 · · · 0
... . . . ...

...
...

... . . . ...
0 · · · 0 0 0 0 · · · 0

 zk. (3.62)

Taking the norm of (3.62) and applying Lemmas 6-7 yields

∥∥∥∥∥∥∥∥∥∥∥


∆B̄2(uk−N2−2 − uk−N2−1)

0
...
0



∥∥∥∥∥∥∥∥∥∥∥
≤
√

2‖∆B̄2(k −N2 − 1)‖‖zk‖ ≤
√

2µe‖A‖∆‖B‖‖zk‖. (3.63)

Repeating the calculations (3.62)-(3.63) for all of the terms appeared in the right-hand side of (3.48),
then taking the sum of them, it leads to

‖e(zk)‖ ≤ 2
√

2
(
i=d−1∑
i=0
‖Ā‖i

)
µe‖A‖∆‖B‖‖zk‖ ≤

2
√

2‖Ā‖
d−1

‖Ā‖−1 µe
‖A‖∆‖B‖‖zk‖, ‖Ā‖ 6= 1

2
√

2dµe‖A‖∆‖B‖‖zk‖, ‖Ā‖ = 1
.

(3.64)
Finally, by virtue of Lemma 5, one has d ≤ N1, then (3.60) is proven with

Θ =

2
√

2‖Ā‖
N1−1

‖Ā‖−1 e‖A‖∆‖B‖, ‖Ā‖ 6= 1

2
√

2N1e
‖A‖∆‖B‖, ‖Ā‖ = 1

. (3.65)

3.2.4 Stability analysis

In this subsection, the stability analysis of the closed-loop system is given, it is shown that
the exponential stability is obtained if the delay uncertainty ∆τ(k) is sufficiently small. The main
convergence results of this work are given in the sequel.

Theorem 10. Consider the system (3.10) controlled through a network that is subject to the
sensor-to-controller time-varying delay (3.12) and the controller-to-actuator uncertain constant de-
lay (3.13)-(3.14)-(3.15). The controller is time-driven and the control law is (3.49). There exist
constants µ∗ > 0, M > 0, 0 < η < 1 such that if 0 ≤ ∆τ(k) ≤ µ ≤ µ∗ ≤ ∆ for all k ∈ N, then one
has

‖x(sk)‖ ≤ ‖zk‖ ≤Mηk‖z0‖. (3.66)
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Proof. Firstly, consider the state-translation equation (3.38) and the control law (3.49), it leads to

zk+1 = (A+ ∆Ak)zk + Buk+1 = (A+ ∆Ak)zk + BKẑk = (A+ BK)zk + ∆Akzk − BKe(zk) (3.67)

with (the indexes of ∆B̄1(k −N2 + 1), ∆B̄2(k −N2) are omitted due to the space limitations)

∆Ak =


0 · · · 0 −∆B̄1 ∆B̄1 −∆B̄2 ∆B̄2 0 · · · 0
0 · · · 0 0 0 0 0 · · · 0
... . . . ...

...
...

...
... . . . ...

0 · · · 0 0 0 0 0 · · · 0

 . (3.68)

Taking the norm of ∆Ak and using twice Lemmas 6-7 gives that

‖∆Ak‖ ≤
√

2
(
‖∆B̄1(k −N2 + 1)‖+ ‖∆B̄2(k −N2)‖

)
≤ 2
√

2e‖A‖∆‖B‖µ. (3.69)

Define the Lyapunov function as
Vk = zTk Pzk (3.70)

with P satisfying (3.21). Taking the difference between Vk+1 and Vk leads to

∆Vk = Vk+1 − Vk =− εzTk zk + zTk ∆ATk P∆Akzk + eT (zk)KTBTPBKe(zk)− 2zTk ∆ATk PBKe(zk)

+ 2zTk (A+ BK)TP∆Akzk − 2zTk (A+ BK)TPBKe(zk).
(3.71)

Taking the norm of the right-hand side of (3.71) and using (3.69), (3.60) yields

∆Vk ≤− ε‖zk‖2 + 8e2‖A‖∆‖B‖2‖P‖µ2‖zk‖2 + ‖BK‖2‖P‖Θ2µ2‖zk‖2

+ 4
√

2‖A+ BK‖e‖A‖∆‖B‖‖P‖µ‖zk‖2 + 4
√

2‖BK‖e‖A‖∆‖B‖‖P‖Θµ2‖zk‖2

+ 2‖A+ BK‖‖BK‖‖P‖Θµ‖zk‖2.

(3.72)

Define
α = (8e2‖A‖∆‖B‖2 + ‖BK‖2Θ2 + 4

√
2‖BK‖e‖A‖∆‖B‖Θ)‖P‖ (3.73)

and
β = (4

√
2‖A+ BK‖e‖A‖∆‖B‖+ 2‖A+ BK‖‖BK‖Θ)‖P‖ (3.74)

then (3.72) is simplified as
∆Vk ≤ −

[
−αµ2 − βµ+ ε

]
‖zk‖2. (3.75)

Given a constant 0 < γ ≤ min{λ̄(P ), ε}, and define

µ∗ =
√
β2 + 4α(ε− γ)− β

2α , (3.76)

134



3.3. Validations of the control algorithm

note that if 0 ≤ µ ≤ µ∗, then one has

−αµ2 − βµ+ (ε− γ) ≥ 0 (3.77)

and (3.75) implies that

Vk+1 − Vk = ∆Vk ≤ −γ‖zk‖2 ≤ −
γ

λ̄(P )
Vk. (3.78)

Since 0 < γ ≤ λ̄(P ), it follows that 0 ≤ 1− γ/λ̄(P ) ≤ 1. Finally, (3.78) leads to

‖x(sk)‖ ≤ ‖zk‖ ≤

√
λ̄(P )
λ(P )

(√
1− γ

λ̄(P )

)k
‖z0‖ (3.79)

that ends the proof.

Remark 10. If ∆τ(k) = 0, then Theorem 10 implies that the method stabilizes NCS with fast-
varying and long τsc(k), long ∆ and long τ̄ca by virtue of the extended system representation (3.19)
and the perfect state prediction (3.22), a similar discussion is given in (Léchappé, Moulay, Plestan,
and Han 2019, Section 7.1).

Theorem 10 provides a discrete-time control scheme for a class of NCSs with long sensor-to-
controller time-varying delay and long sampling period, the robustness with respect to the delay
uncertainty is also analyzed. The main contributions of Theorem 10 are claimed as follows:

— Theorem 10 provides the explicit upper bound on the allowable delay uncertainty, that is
missing in the work of (Lozano et al. 2004).

— The controller design is simpler than the other discrete-time approaches (Hu and Zhu 2003;
Cloosterman et al. 2009), neither Belleman equation (Hu and Zhu 2003) nor delay-dependent
linear matrix inequality (LMI) (Cloosterman et al. 2009) is required by Theorem 10.

— It deals with long sensor-to-controller time-varying delay, rather than the uncertain constant
delay in (Selivanov and Fridman 2016b), and lower sampling rate is allowed, a comparison
between the two methods will be given in the next section.

— The message rejection phenomenon is considered in subsections 3.2.2-3.2.3, which is ignored
by the continuous-time methods (Selivanov and Fridman 2016b; Du, C. Zhang, et al. 2019),
and the discrete-time approaches(Hu and Zhu 2003; Pan, Marquez, and Chen 2006).

3.3 Validations of the control algorithm

In this section, the main theoretical results are illustrated by two simulation examples, they are
also validated on a real networked visual servo inverted pendulum system (Zhan, Du, and Fei 2017;
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Du, C. Zhang, et al. 2019). The simulation results and the experiments highlights the performances
and robustness of Theorem 10.

3.3.1 Simulation results

Two simulation examples are presented in this subsection: the first one is a simple example that
illustrates the effectiveness of Theorem 10 in dealing with sensor-to-controller time-varying delays
with message rejection; the second simulation is used to show that Theorem 10 can provide longer
allowable sampling period than the sampled predictor-based controller (Selivanov and Fridman
2016b).

Numerical example with message rejection

Consider the continuous-time plant

ẋ(t) =
[

0 1
−0.5 1

]
x(t) +

[
0
1

]
u(t) (3.80)

controlled through a network. The sampling period is set to ∆ = 0.8s, the sensor-to-controller delay
is

τsc(k) =



0.5s, k = 4m, m ∈ N

2.0s, k = 4m+ 1, m ∈ N

1.0s, k = 4m+ 2, m ∈ N

0.7s, k = 4m+ 3, m ∈ N

(3.81)

and the controller-to-actuator delay is chosen as an uncertain constant delay such that 1.55s ≤
τca(k) ≤ 1.63s. Thus, the controller-to-actuator delay can be modeled as (3.13) with τ̄ca = 1.55s
and ∆τ(k) ∈ [0, 0.08s].
The time-delays have the following properties:

— the sensor-to-controller delay is upper bounded by N1∆ with N1 = 3, the nominal controller-
to-actuator delay satisfies (N2 − 1)∆ ≤ τ̄ca ≤ N2∆with N2 = 2;

— message rejection is found in the sensor-to-controller channel, the measurements x(s4m+1)
with m ∈ N are discarded;

— the controller-to-actuator delay can be larger or smaller than N2∆, namely, both Cases 1
and 2 given in subsection 3.2.3 can occur.

Note that N1 = 3 and N2 = 2, the extended state is then defined as

ẑk =
[
x̂T (sk) uTk uTk−1 · · · uTk−6

]T
(3.82)
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and the feedback matrix is chosen as

K =
[
3.70 −4.35 −1.41 −2.39 −3.03 0 0 0 0

]
(3.83)

that makes the matrix A+ BK Schur. The initial conditions are set to x(0) =
[
3 −5

]T
, and uk = 0

for all k < 0.
The simulation results are presented in Figure 3.6, the continuous-time plant is stabilized although
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(a) State evolution of system (3.80) under control
law (3.82)-(3.83).
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(b) Control signal calculated by the control
law (3.82)-(3.83).
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Figure 3.6 – State evolution, control signal, and network-induced delays versus time for system
(3.80).

the sensor-to-controller is fast-varying and the message rejection occurs. Moreover, notice that the
system is stabilized with fairly long sampling period ∆ = 0.8s, the performances of the discrete-time
approach (Léchappé, Moulay, Plestan, and Han 2019; Cloosterman et al. 2009) is also emphasized.

Comparison with the time-delay approach

In this part, the main results of Theorem 10 is compared to the results of (Selivanov and Fridman
2016b) by considering the following system given in (Selivanov and Fridman 2016b, Section 5, eq.
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(31)):

ẋ(t) =


0 1 0 0
0 0 −mg

M 0
0 0 0 1
0 0 g

l 0


︸ ︷︷ ︸

A

x(t) +


0
1
M

0
− 1
Ml


︸ ︷︷ ︸

B

u(t),
(3.84)

where M = 10kg, m = 1kg, l = 3m, and g = 10m/s2. Following the parameter definitions given in
(Selivanov and Fridman 2016b, Section 5), the sensor-to-controller delay is defined as τsc(k) = τ̄sc+
∆τsc(k) and the controller-to-actuator delay is set to τca(k) = τ̄ca + ∆τca(k) where τ̄sc = τ̄ca = 0.2s.
The uncertainties ∆τsc(k), ∆τca(k) are bounded by [0s, 0.01s], and the initial condition is still set
to x(0) =

[
0.98 0 0.2 0

]T
. The control law of (Selivanov and Fridman 2016b, p.106) reads as

(3.3)-(3.4) with the feedback gain

K =
[
2 12 378 210

]
. (3.85)

The control law of Theorem 10 stands on the extended state:

ẑk =
[
x̂T (sk) uTk uTk−1 uTk−2 uTk−3

]T
, (3.86)

and the feedback matrix K is calculated such that the eigenvalues of A+ BK are placed at{
e−0.28∆, e−1.5∆, e−2.5∆, e−6.6∆, e−7.5∆, e−8.5∆, e−9∆, e−10∆

}
.

The simulation results are presented in Figure 3.7. Firstly, one sets the sampling period to ∆ = 0.3s:
both methods stabilize the system (3.84) with similar overshoot and decay rate (from (Selivanov
and Fridman 2016b, Table 1), the theoretical maximum allowable sampling period of (3.3)-(3.4)-
(3.85) is ∆ = 0.0369s, but this value is conservative). Secondly, one increases the sampling period
to ∆ = 0.4s in order to see if the stability is preserved. It is shown in Figure 3.7 that the trajectory
obtained by the control law derived from (3.3)-(3.4)-(3.85) diverges whereas the closed-loop system
controlled by Theorem 10 keeps stable. Moreover, the closed-loop stability is still guaranteed even if
the sampling period is ∆ = 0.6s. Thus, by comparing with the continuous-time solution (Selivanov
and Fridman 2016b), Theorem 10 is able to stabilize the system (3.84) in the presence of the same
uncertain network-induced delays with larger sampling periods.

3.3.2 Experimental validations on the networked visual servo inverted pendu-
lum system

In this subsection, the control algorithm proposed by Theorem 10 is implemented on the net-
worked inverted pendulum visual servo system (NIPVSS) introduced in (Zhan, Du, and Fei 2017;
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Figure 3.7 – Evolution of the state ‖x(t)‖ by using the two methods ((Selivanov and Fridman 2016b)
and Theorem 10) with different sampling periods.

Du, C. Zhang, et al. 2019), in order to validate that the main results of Theorem 10 can be applied
to a real visual servo system, as claimed in subsection 3.1.1.

Test bench presentation

In this part, the configuration of the experimental set-up (Zhan, Du, and Fei 2017; Du, C.
Zhang, et al. 2019) is introduced. The test bench is firstly composed by an inverted pendulum (see
Figure 3.8).
The movement of the inverted pendulum is captured by an Aca640-120gm monochrome industrial
camera, then the state information x(t) is obtained by the image processing algorithm (based on
Microsoft Visual Studio 2010 and OpenCV 2.4.11) on each frame. The computer runs the control
algorithm by using the resolved state information, and then sends the control signal to a GT-400-
SV-PCI movement control card. Finally, a MSDA023A1A servo driver receives the control signal
and drives the cart to move on the rail.
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Figure 3.8 – Configuration of the of the NIPVSS test bench (Zhan, Du, and Fei 2017; Du, C. Zhang,
et al. 2019).
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The controller design is based on the linearized system plant around the straight-up position

ẋ(t) =


0 0 1 0
0 0 0 1
0 0 0 0
0 lmg/J 0 0


︸ ︷︷ ︸

A

x(t) +


0
0
1

ml/J


︸ ︷︷ ︸

B

u(t) (3.87)

with x(t) = col{α, θ, α̇, θ̇}. The parameters of (3.87) are given in Table 3.1.
Remind that, the computational time of the image-processing algorithm satisfies that D(t) ∈

Table 3.1 – Model parameters of the inverted pendulum (reprint from (Du, C. Zhang, et al. 2019,
Table 1)).

g Gravitational acceleration 9.81m/s2

m Mass of the pendulum 0.109kg
J Moment of inertia of the pendulum 0.009083kg ·m2

l Length to pendulum center of mass 0.25m
α Cart position m
θ Pendulum angle rad

[15ms, 16ms], and the max frame rate of the industrial camera is 120Hz (i.e. the industrial camera
can maximumly take 120 photos per second), but the image-processing algorithm cannot follow up
with the sampling rate. Indeed, considering the image-processing time D(t), the image-processing
algorithm cannot process more than 1/0.015 = 66.67 frames per second. In the experiment, the
sampling period is set to ∆ = 0.02s in order to ensure that each frame is captured after the state
information resolution of the previous frame is finished.

Experiments with connected sensor and actuator

In this part, the first mode of the NIPVSS is considered, such that the controller is directly con-
nected to the sensor and the actuator, then the data transmission delay between them is negligible.
The control scheme of this experiment is shown in Figure 3.9.
According to Figure 3.9, the control of NIPVSS can be considered as a NCS with controller-to-
actuator delay equals to zero. Furthermore, as stated in the last part, since the computational delay
D(t) ∈ [15ms, 16ms] is smaller than the sampling period ∆, the state information x(sk) is always
available for the controller at instant t = sk+1, and the state prediction (3.22) is not required. Thus,
the state translation between x(sk) and x(sk+1) reads as

x(sk+1) = eA∆︸︷︷︸
Ā

x(sk) +
∫ sk+1

sk

eA(sk+1−θ)dθB︸ ︷︷ ︸
B̄

uk. (3.88)
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Pendulum angular velocity q(k)

Control input 

u(t)

Figure 3.9 – Control diagram of NIPVSS with connected sensor and actuator.

If one defines zk =
[
xT (sk) uTk

]T
, then one can use the following extended system to calculate the

control law uk+1:

zk+1 =
[
Ā B̄

0 0

]
zk +

[
0
I

]
uk+1. (3.89)

Finally, the proposed control law is calculated as

uk+1 =
[
0.8817 −19.0953 1.9382 −3.4132 0.3192

]
zk (3.90)

in order to place the closed-loop poles of (3.89) at
{
e−0.8∆, e−1.5∆, e−10∆, e−12∆, e−13∆

}
.

In order to evaluate the control performance of the proposed method, the continuous Linear–Quadratic
Regulator (LQR) controller 2

u(t) =
[
1 −25.5765 1.7944 −4.7004

]
x(t) (3.91)

given in (Du, Wangpei Li, et al. 2016, p.439) is used for comparison. Remind that the work of (Du,
Wangpei Li, et al. 2016) is based on the same inverted pendulum experimental set-up as Figure 3.8.
The experimental results are presented in Figure 3.10. 3 First, Figure 3.10b shows that the two
methods can achieve good control performance on the pendulum angle θ(t), it stays in a neighbor-
hood around zero (namely, it is almost bounded in [−0.02rad, 0.02rad]). Second, the experimental

2. The continuous-time controller (3.91) is emulated (Hetel et al. 2017, Section 2.2) to the sampled-data form for
the experiment on the NIPVSS.

3. The videos of this experiment are available at https://box.ec-nantes.fr:443/index.php/s/ALRRBDSCLq4GCM3.
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(a) Cart positions of Experiment 1 with controllers
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(b) Pendulum angles of Experiment 1 with con-
trollers (3.90) and (3.91).

Figure 3.10 – Experimental results of the NIPVSS with connected sensor and actuator by using the
LQR controller (3.91) and the discrete predictor-based controller (3.90).

results displayed in Figure 3.10a show that the cart position α(t) cannot perfectly return to the
original position due to the measurement error introduced by the image-processing (Du, C. Zhang,
et al. 2019, Remarks 3-4) and the imperfect linearized modeling of (3.87). However, the experimen-
tal results still confirm that the proposed method provides a better control performance on the cart
position than the LQR controller.
Next, as done in (Du, C. Zhang, et al. 2019, Section V-B), the following indexes are used for the
analysis of the experimental results presented in Figure 3.10:

— MCP: mean of cart position;
— SCP: standard deviation of cart position;
— MPA: mean of pendulum angle;
— SPA: standard deviation of pendulum angle.

The normalized (with respect to LQR controller) performance indexes of the two controllers are
given in Figure 3.11: smaller the value is, better the result is.
See Figure 3.11, the discrete predictor-based controller (3.90) has better MCP, SCP, and MPA than
the LQR controller (3.91), and its SPA is slightly worse than the LQR controller. Consequently,
based on the analysis given in Figures 3.10 and 3.11, one concludes that the proposed method is able
to handle real visual servo control problem with fairly better performance than the LQR controller
(3.91).

Experiments with remote sensor and actuator

In this part, the other control mode of the NIPVSS is studied, at this time, the sensor and the
actuator are no longer connected to the controller, they communicate with each others via network.
The control diagram of this mode is displayed in Figure 3.12.
Consider the control framework formulated in Figure 3.12, the whole NIPVSS is subject to the
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Figure 3.12 – Control diagram of NIPVSS with remote sensor and actuator.
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following time-delays
— the computational time D(t) ∈ [0.015s, 0.016s] caused by the image-processing algorithm;
— the sensor-to-controller transmission delay bounded in (0s, 0.007s] introduced by the data

communication;
— the controller-to-actuator transmission delay bounded in (0s, 0.007s] introduced by the data

communication.
Thus, the control of NIPVSS with remote sensor and actuator can be modeled as an NCS with the
plant (3.87), the sensor-to-controller delay τsc(k) ∈ (0.015s, 0.023s] (sum of the computation time
and the transmission delay), and the controller-to-actuator delay τca(k) ∈ (0s, 0.007s]. Consider
the time-delays τsc(k), τca(k), the sampling period ∆ and the modeling given in (3.12)-(3.14), the
parameters N1 = 2, τ̄ca = 0s, and N2 = 1 are determined.

Remark 11. According to Lemma 8, one should add uk−i, i = {0, 1, 2, 3, 4} into the extended state
(3.59) since N1 = 2 and N2 = 1. However, it is not necessary to use uk−4 since the case (3.32)
cannot occur in this experiment because

τca(k) ≤ 0.007s < N2∆ = ∆, k ∈ N+. (3.92)

By virtue of (3.92), uk−4 cannot influence the state-translation between x(sk) and x(sk+1), then it
is not necessary to be used in the controller design.

After the above discussions, the following extended state is chosen to build the control law for
this experiment:

ẑk =
[
x̂T (sk) uTk uTk−1 uTk−2 uTk−3

]T
. (3.93)

By placing the closed-loop poles at
{
e−1.6∆, e−1.7∆, e−3∆, e−19∆, e−35∆, e−36∆, e−37∆, e−38∆

}
, the

proposed control law reads as

uk+1 =
[
0.2959 −5.5002 0.5043 −1.0435 1.4770 −0.9802 0.2888 −0.0325

]
ẑk. (3.94)

Similar to the last example, the LQR controller (3.91) is still used for comparison.
The experimental results are presented in Figure 3.13. 4 Compare the results of Figure 3.13b, it is
observed that the pendulum angle is maintained in the segment [−0.04rad, 0.04rad], which is larger
than the oscillation amplitude of Figure 3.10b (around 0.02rad). Next, the control performances
on the cart position by the discrete predictor-based controller (3.94) is still better than the LQR
controller (3.91) since its trajectories seldom exceed the bound α(t) = −0.1m, but the ones of (3.91)
oscillates around α(t) = −0.15m.
Similarly, as done in Figure 3.11, the performance indexes (MCP, SCP, MPA, SPA) of the curves

4. The videos of this experiment are available at https://box.ec-nantes.fr:443/index.php/s/ak5woHLxbepqQd9.
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(a) Cart positions α(t) versus time with controllers
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Figure 3.13 – Experimental results of the NIPVSS with remote sensor and actuator by using the
LQR controller (3.91) and the discrete predictor-based controller (3.94).

displayed in Figure 3.13 are still analysed.
Figure 3.14 highlights the performances of the method of Theorem 10, because all of the performance
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Figure 3.14 – Normalized (with respect to LQR controller) performance indexes of the experimental
results with remote sensor and actuator.

indexes of (3.94) are better than the ones of (3.91). Clearly, considering the experimental results of
Figures 3.13 and 3.14, Theorem 10 exhibits better control performances than the LQR controller
(3.91).
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Discussions and conclusions

In subsection 3.3.2, the main results of Theorem 10 are successfully implemented on the NIPVSS
experimental set-up displayed in Figure 3.8. The experimental results confirm that the main results
of Theorem 10 can be used to handle the standard visual servo control problem, and the
networked visual servo control problem.
Moreover, the proposed discrete predictor-based controller is compared with the LQR controller. In
the standard visual servo control case, the method of Theorem 10 is generally better than the LQR
controller, only the performance of SPA is slightly worse than the LQR controller. If the NIPVSS is
controlled through network, then Theorem 10 is significantly better than the LQR controller, since
all of the performance indexes are better. Thus, the comparisons given in subsection 3.3.2 indicate
that the main results of Theorem 10 ensure fairly better performances than the non-predictive
approaches, like (3.91).
Furthermore, the proposed discrete predictor-based controller has good control performances on
such a fast motion control system (i.e. inverted pendulum system), which shows that it has wide
application prospects in engineering.
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CONCLUSION AND FUTURE WORKS

In this thesis, the control techniques are developed for different types of systems (continuous-
time systems, networked control systems) with long time-delays. The two major works are listed as
follows:

— the delay estimation techniques of constant and time-varying delays;
— the stabilization of the time-delay systems with predictor-based control and the estimated

delay value.

The main contributions of this thesis are recalled in the sequel, and the future works are highlighted.

Chapter 1: In Chapter 1, a monotonic delay estimation technique is proposed to estimate the
unknown constant delays of LTI systems, this method relies on the concept (see Lemma 1) that the
delay estimator cannot exceed the unknown time-delay (with the initial condition smaller than the
unknown time-delay). Thus, the delay estimation value can only become closer and closer to the
unknown time-delay, and the closed-loop system under predictor-based control law is then stabilized
when the delay estimation is sufficiently close to the unknown delay. In subsection 1.2.2, a saturation
parameter δ̄ is added to ensure that the dynamic of the delay estimation is always sufficiently small,
which simplifies the stability analysis but enlarges the response time. This drawback is handled in
sections 1.2.3 with the use of a normalized term and the parameter δ̄ is non longer required. In
subsection 1.2.4, the main results of subsection 1.2.3 are modified, and the exponential stability
is ensured. Finally, the results of subsection 1.2.2 are extended to the output-feedback case in
section 1.2.5. Moreover, since the proposed delay estimation technique uses the control history to
estimate the time-delay, then it is robust with respect to the model uncertainties, this property is
illustrated by the simulation results. Remind that, although the theoretical results of sections 1.2.2-
1.2.5 have constraints on the initial condition of the delay estimator, the simulation results show
that the constraints are not restrictive in practice. In the future, the PDE transformations will be
adopted to further analyze the relation between the stability and this initial condition. Moreover,
the practical stability of the proposed method under external disturbances will be studied as well.

Chapter 2: In Chapter 2, practical delay estimation techniques are developed to assist the control
of RCS with time-varying input and output delays. As shown in Figure 2.1, the delay estimation
algorithm is based on a specific communication loop (i.e. an external signal) that is isolated from the
control loop, and the properties of the system (e.g. linearity, delay identifiability) are not required.
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The conventional sliding mode technique is involved to ensure the finite time estimation of the round-
trip delay, and the estimation performances are improved with the super-twisting algorithm, and
finally the adaptive super-twisting algorithm is adopted to self-tune the parameters. By comparing
with the existing delay measurement approach (Lai and Hsu 2010), the proposed methods exhibit
better robustness with respect to the channel inherent noises and deception attacks thanks to the
sliding mode techniques. Next, the sliding mode based delay estimation algorithms are implemented
on an experimental set-up composed of two computers and the wireless communication between
them, the theoretical results are validated on the test bench and the performances of the STW,
ASTW algorithms are highlighted. Finally, the closed-loop stability under predictor-based controller
and practical delay estimator is analyzed, it is shown that the whole control solution is effective
in practice even if the output delay is fast-varying. Moreover, the main results also provides an
alternative way to build predictor-feedback control law for systems with known input and output
time-varying delays. The following two research items will be considered for future works:

— In section 2.3, the full-state measurements are supposed to be available, the output-feedback
techniques with partial state knowledge will be investigated in the future.

— The whole control solution given in section 2.3 will be implemented on real remote control
systems.

Chapter 3: In Chapter 3, the discrete predictor-based control of NCS with sensor-to-controller
time-varying delay and controller-to-actuator uncertain constant delay is analyzed. The control
law is designed in the discrete-time domain, and the extended state representation is used to deal
with long time-delays. By virtue of the state prediction technique, the control solution is able to
stabilize NCS with fast-varying delays and message rejections (packet reorderings) in the sensor-to-
controller network. As shown in Figure 3.7, the proposed discrete approach provides a lower allowable
sampling rate than the control solution based on the continuous-time method. Moreover, the main
theoretical results of this chapter are implemented on the NIPVSS test bench, the preliminary
experimental results ensure the feasibility and effectiveness of this method in real applications: it is
able to handle standard visual servo control and networked visual servo control problems. And the
comparison emphasizes that this method has better performance than the LQR controller, which
is a non-predictive method. Thus, this method has wide application prospects in engineering since
it is effective in such a fast motion control system (i.e. inverted pendulum system). In the future,
three research items will be deeply studied:

— The output-feedback discrete predictor-based control will be considered to deal with systems
with partial state knowledge.

— The event-triggered mechanism will be added to minimize the use of the sensor and controller
information and thus limit the network activity.

— The pole placement of the extended discrete-time system will be replaced by a more robust
method (e.g. H∞ control) in order to improve the control performances on the NIPVSS;
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— The discrete version of the observer-predictor feedback will be studied (inspired from the
work of (Frederic Mazenc and Malisoff 2019)).
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APPENDIX

Some necessary mathematical tools to the stability analysis are given in the appendix, including
the Lyapunov stability theories for retarded functional differential equation (Retarded Functional
Differential Equation (RFDE)), and some important inequalities.

Theorem 11. Lyapunov-Krasovskii theorem (Hale and Lunel 2013, Section 5.2, Theo-
rem 2.1), (Fridman 2014a, Theorem 3.1)
Consider the system

ẋ(t) = f(t, xt), t ≥ t0. (.0.95)

Suppose f : R ×C[−h, 0] → Rn maps R × (boundse sets in C[−h, 0]) into bounded sets of Rn and
that u, v, w : R+ → R+ are continuous nondecreasing functions, u(s) and v(s) are positive for s > 0,
and u(0) = v(0) = 0. The trivial solution of (.0.95) is uniformly stable if there exists a continuous
functional V : R×C[−h, 0]→ R+, which is positive definite

u(‖x(t)‖) ≤ V (t, xt) ≤ v( max
s∈[t−h,t]

‖x(s)‖) (.0.96)

such that its derivative along (.0.95) is non-positive in the sense that

V̇ (t, xt) ≤ −w(‖x(t)‖). (.0.97)

If w(s) > 0 for s > 0, then the trivial solution is uniformly asymptotically stable. If in addition
lim
s→∞

u(s) =∞, then it is globally uniformly asymptotically stable.

After stating the Lyapunov-Krasovskii theorem, the exponential stability is hereafter defined.

Definition 3. Exponential stability (Fridman 2014a) [Definition 4.1]
The system (.0.95) is said to be exponentially stable with a decay rate δ > 0 if for any xt ∈ C[−h, 0],
there exists a constant c ≥ 1 such that the solution initialized by xt0 = φ satisfies

‖x(t)‖2 ≤ ce−2δ(t−t0)
(

max
s∈[t0−h,t0]

‖x(s)‖
)2

, ∀t ≥ t0. (.0.98)

Besides, the Lyapunov-Razumikhin theorem is another way to derive the stability of RFDE, it
is introduced as follows.

Theorem 12. Lyapunov-Razumikhin theorem (Hale and Lunel 2013, Section 5.4, The-
orems 4.1-4.2), (Fridman 2014a, Theorem 3.2)
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Suppose f : R × C[−h, 0] → Rn maps R×(bounded sets in C[−h, 0]) into bounded sets of Rn and
that u, v, w : R+ → R+ are continuous nondecreasing functions u(s) and v(s) are positive for s > 0
and u(0) = v(0) = 0, v is strictly increasing. The trivial solution of (.0.95) is uniformly stable if
there exists a differentiable function V : R×Rn → R+, which is positive definite

u(‖x(t)‖) ≤ V (t, x) ≤ v(‖x(t)‖) (.0.99)

such that the derivative of V along the solution x(t) of (.0.95) satisfies

V̇ (t, x(t)) ≤ −w(‖x(t)‖) if V (t+ θ, x(t+ θ)) ≤ V (t, x(t)) ∀θ ∈ [−h, 0]. (.0.100)

If, in addition, w(s) > 0 for s > 0, and there exists a continuous non-decreasing function ρ(s) > s

for s > 0 such that condition (.0.101) is strengthened to

V̇ (t, x(t)) ≤ −w(‖x(t)‖) if V (t+ θ, x(t+ θ)) ≤ ρ(V (t, x(t))) ∀θ ∈ [−h, 0], (.0.101)

then the trivial solution of (.0.95) is uniformly asymptotically stable.
If, in addition, lim

s→∞
u(s) =∞, then it is globally uniformly asymptotically stable.

Next, some important inequalities are given in the sequel.

Proposition 1. Jensen’s inequality (Gu, J. Chen, and Kharitonov 2003, Proposition
B.8)
For any symmetric positive definite matrix M ∈ Rm×m, scalar γ > 0, vector function ω : [0, γ] →
Rm such that the integrations concerned are well defined, then

γ

∫ γ

0
ωT (β)Mω(β)dβ ≥

(∫ γ

0
ω(β)dβ

)T
M

(∫ γ

0
ω(β)dβ

)
. (.0.102)

Proposition 2. Power mean inequality (Bullen 2013, pp.203, Theorem 1)
Given k positive scalars a1, a2, · · · , ak, their quadratic mean is larger than or equals to the arithmetic
mean such that √

a2
1 + a2

2 + · · ·+ a2
k−1 + a2

k

k
≥ a1 + a2 + · · ·+ ak−1 + ak

k
. (.0.103)
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Titre : Estimation du retard et commande prédictive des systèmes à retard avec une classe de retards divers

Mot clés : Système à retard, retard long, estimation du retard, commande prédictive, système commandé en

réseau

Résumé : Le retard est un phénomène largement pré-
sent dans les systèmes de commande (i.e. retard phy-
sique, latence de communication, temps de calcul) et
peut en dégrader les performances ou même les dé-
stabiliser. Si le retard est faible, la stabilité en boucle
fermée peut être garantie par des lois de commande
conventionnelles mais ces techniques ne sont plus ef-
ficaces si le retard est long. Cette thèse est dédiée à la
commande des systèmes à retard avec retards longs
inconnus ou avec des retards incertains. Pour com-
penser les retards longs, la commande prédictive est
adoptée et des techniques d’estimation de retard sont
développées. Selon les différents types de systèmes
et de retards, trois objectifs sont visés dans la thèse.
Le premier objectif considère la commande des sys-
tèmes linéaires avec retards constants inconnus pour
lesquels un nouvel estimateur de retard est proposé
pour estimer les retards inconnus. Le retard estimé est
ensuite utilisé dans la commande prédictive pour sta-
biliser le système. Le deuxième objectif se concentre

sur la stabilisation pratique des systèmes commandés
à distance avec des retards inconnus variants. Dans
ce cas, les retards sont estimés de manière pratique :
une boucle de communication spécifique est utilisée
pour estimer le retard en temps fini puis le système
est stabilisé par une commande prédictive. Les tests
expérimentaux réalisés sur un réseau WiFi ont montré
que l’algorithme permet d’estimer de manière robuste
les retards variants. Le dernier objectif est consacré à
la commande des systèmes commandés en réseau
avec retards variants. La commande prédictive dis-
crète est utilisée pour compenser les retards longs et
variants et les ré-ordonnancements de paquets dans
le canal capteur-contrôleur sont également considé-
rés. De plus, cette méthode est validée par l’asser-
vissement visuel d’un pendule inverse commandé en
réseau. Les performances obtenues sont meilleures
que les méthodes de commande non-prédictives clas-
siques.
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Abstract: Time-delay is a widely-found phenomenon
(i.e. physical dead time, communication latency, com-
putation time) in real control systems, which can de-
grade the performances of the system or destabi-
lize the system. If the time-delay is small, then the
closed-loop stability can be guaranteed with conven-
tional control techniques; but these techniques are no
longer effective if the time-delay is long. This thesis is
dedicated to the control of time-delay systems with un-
known or uncertain long time-delays. In order to com-
pensate long time-delays, the predictor-based control
technique is adopted, and the delay estimation tech-
niques are developed to assist the predictor-based
controller. According to the different types of the sys-
tems and the time-delays, three objectives are ana-
lyzed in the thesis. The first objective considers the
control of LTI systems with unknown constant delays,
a new type of delay estimator is proposed to estimate
the unknown time-delays, then it is plugged into a

predictor-based controller to stabilize the system. The
second objective focuses on the practical stabilization
of remote control systems with unknown time-varying
delays, at this time, the time-delays are estimated by
a practical way: a specific communication loop is used
to estimate the round-trip delay in finite time, and
the system is stabilized with a predictor-based con-
troller. This practical delay estimation algorithm is im-
plemented on a real WiFi network, it can estimate the
time-varying delays with good performances and ro-
bustness. The last objective is devoted to the control
of networked control systems with time-varying de-
lays, the discrete predictor-based control techniques
are used to compensate long time-varying delays, and
the packet reordering in the sensor-to-controller chan-
nel is also considered. Moreover, this control solution
is validated on a networked visual servo inverted pen-
dulum system, and the control performances are fairly
better than the non-predictive control methods.
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