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opérée au sein de
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Introduction

Contexte industriel

Au cours des 50 dernières années, les conceptions d’ingénieurs en industrie se sont de plus

en plus complexifiées. Cela a été alimenté par le besoin de respecter de nouvelles contraintes

de conception, résultant de standards de sûreté ou de normes environnementales plus restris-

tives. Étant donné que ces conceptions nécessitent souvent de recourir à des expériences rares

et couteuses (tel que des mannequins d’essai de choc dans l’automobile ou la cration de mo-

teur aéronautiques), ceux-ci ont été remplacés par des modèles numériques haute fidélité. Bien

souvent, ces modèles sont des approximations mathématiques des systèmes conçus puisque la

physique réelle de ceux-ci ne peut être calculée analytiquement. La simulation numérique est

maintenant largement utilisée dans de nombreux domaines, tels que la physique, la chimie, la

biologie ou en ingénierie pluridisciplinaire. Elle permet de reproduire le comportement d’un

système en considérant une large possibilité de conceptions différentes et cela dans diverses

conditions. Afin de rendre ces modèles numériques plus fidèles, il est nécessaire de considérer

un nombre grandissant de paramètres d’entrée. Par example, pour des applications d’ingénierie

mécanique, les différents composants sont généralement représentés par Conception Assistée

par Ordinateur (CAO). Afin d’obtenir une définition plus fine de ces pièces, un grand nombre

de variables est requis pour pleinement décrire leur forme : longueur, hauteur ou profondeur

de chacune des pièces, diamètre et profondeur des trous, caractérisation des soudures et ainsi

de suite. Considérer un modèle incluant un grand nombre de paramètres est décrit comme un

problème complexe en grande dimension.

Les modèles numériques offrent la possibilité d’explorer de nouvelles conceptions et de mieux

comprendre les compromis sous-jacents. L’optimisation est une des méthodes d’exploration les

plus importantes : elle consiste à trouver la configuration d’entrées X∗ donnant la meilleure

performance f(X∗) tout en respectant un certain ensemble de contraintes f(X∗). Par exemple,

considérant l’optimisation de la forme des pales du rotor du compresseur d’un moteur d’avion,

voir Figure 1 pour sa géométrie paramétrée. Le concepteur souhaitera maximiser les performance

aéro-dynamique du compresseur en changeant les différents paramètres de forme des pales,

tout en garantissant un espace nécessaire en bout de pale ainsi qu’en respectant les différentes

contraintes mécaniques. Il est commun de considérer l’objectif f comme une fonction dite boite-

noire : ni l’expression analytique ni ses dérivées ne sont accessibles. Il est uniquement possible

de connaitre les valeurs de la fonction en évaluant différentes valeurs pour X. Des examples

typiques de boite-noires sont les modèles numériques avec des équations aux dérivées partielles
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Figure 1 – Vue méridienne de la pale du rotor d’un compresseur de moteur aéronautique (à
gauche). La pale est décrite par plusieurs profils verticalement de la base à la pointe et chaque
profil est défini via plusieurs paramètres (à droite). Les propriétés matériaux de la pale pourrait
également être considérées comme des entrées du modèle.

tels que l’analyse par éléments finis, et plus généralement tout simulateur numérique accessible

sous forme d’un exécutable sans source exploitable. Dans certains cas, un appel au modèle

numérique peut avoir un coût non négligeable en terme de temps ou de ressources numériques

nécessaires. Le nombre d’appels aux fonctions f et g est alors limité pendant l’optimisation,

typiquement avec un maximum d’une centaine d’évaluations possibles.

Approches standards

Plusieurs algorithmes et méthodes d’optimisation ont été proposées dans la littérature. Lorsque

les dérivées sont connues, il est possible d’utiliser les méthodes à base de gradients [NW06]. Pour

ces méthodes, la qualité de la solution trouvée dépend de la localisation du point de départ de

l’optimisation, même si cela peut être corrigé en considérant des stratégies de multi-start (en

répétant l’optimisation plusieurs fois, avec des points initiaux différents). Dans le formalisme

boite-noire, puisque les informations de dérivées ne sont pas accessibles, des méthodes d’ap-

proximation sont envisageables avec un coût associé (pour X ∈ Rd, une stratégie par différences

finies nécessite d+1 appels à la fonction dont on souhaite approcher le gradient). Cependant, ces

méthodes ne sont pas envisageables lorsque la dimension du problème est grande puisque le coût

résultant d’une seule itération de l’optimisation devient prohibitif. Les métaheuristiques d’opti-

misation tels que les algorithmes probabilistes [Zhi12] et les algorithmes évolutionnistes) (AE)

[ES+03] (contenant les algorithmes génétiques [Mit98], l’optimisation par essaims particulaires

[EK95] ou les stratégies d’évolution [BS02])) sont des méthodes dites d’ordre zéro puisqu’elles

ne demandent pas d’avoir connaissance des dérivées, mais un grand nombre d’appels au modèle

est requis avant de trouver un optimum (ou une estimation suffisamment précise). Ces méthodes

ne sont donc pas adaptées lorsque la fonction boite-noire a un coût associé important, puisque le

nombre d’appels à celle-ci est limitée. Une troisième classe de méthodes, appelées les méthodes

d’optimisation par surfaces de réponses, repose sur des substituts peu couteux du vrai modèle

[Jon01 ; WS06]. Les surfaces de réponses (ou métamodèles, tels que les Processus Gaussiens

[WR06], les machines à vecteurs de support [SSB+02] ou les fonctions de base radiale [Reg16 ;
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Gut01]) sont des approximations de la vraie fonction objectif et peuvent être utilisés pour

la recherche de l’optimum. Ces méthodes utilisant des métamodèles sont efficientes avec peu

d’évaluations de la fonction objectif et ont donc été utilisées sur une large gamme d’applications

[Sha+15].

Cependant, ces méthodes reposant sur des modèles d’approximation sont limitées à des problèmes

définis en faible dimension puisqu’elles ne sont plus aussi efficientes quand le nombre de variables

définissant le problème devient conséquent, un problème connu sous le nom du fléau de la di-

mension [Bel15]. Afin de passer à des modèles de grande dimension, plusieurs stratégies ont été

proposées, telles que les calculs parallélisés, la décomposition du problème en sous-problèmes

[SW10] ou la projection de l’espace des paramètres d’entrée dans un sous-espace de taille réduite

[Bou+16 ; Gau+19]. Dans cette thèse, nous nous intéressons à des méthodes réduisant le volume

de l’espace de recherche via des approches qui détectent quelles sont les variables influentes du

problème afin d’effectuer l’optimisation dans un espace de plus petite taille. L’élément clef de

nos approches est l’analyse de sensibilité globale, qui étudie comment la variabilité de la sortie

d’un modèle évolue lorsque certaines des entrées sont fixées [IL15]. Bien qu’utilisées sur de nom-

breuses applications [RLM09 ; FKR11 ; Cho+14], les stratégies à base de décomposition de la

variance ont un certain nombre de limitations lorsqu’utilisées sur nos problèmes d’optimisation.

L’analyse de sensibilité goal-oriented est un ensemble d’approches qui considèrent des quantités

d’intérêt spécifiques de la sortie du modèle. Celles-ci prennent en compte le type d’étude étant

mené (celle-ci pouvant être une étude de fiabilité, d’optimisation, etc). Dans la lignée de ces

méthodes, nous répondons aux questions suivantes dans ces travaux :

• Quelle est la quantité d’intérêt à considérer dans le cadre d’un problème d’optimi-

sation ?

• Comment sélectionner les variables détectées comme importantes pour la résolution

du problème d’optimisation et que faire des variables restantes ?

• Comment implémenter une telle sélection de variables au sein d’un algorithme d’op-

timisation ?

Structure du manuscrit et constributions

La principale contribution de cette thèse est la proposition de nouveaux indices de sensibilité

dédiés à l’optimisation sous contraintes. Nous nous intéressons aux problèmes en grande dimen-

sion puisqu’ils présentent un certain nombre de challenges précédemment mentionnés. Notre

méthode peut être utilisée en amont de la procédure d’optimisation ou directement intégrée au

sein de celle-ci.

Le chapitre 2 introduit les bases de l’analyse de sensibilité dans la section 2.1 avec une des-

cription rapide des méthodes locales et basées sur la variance de la sortie, qui sont les plus

largement utilisées pour leur simplicité et facilité de compréhension. Puisque ces méthodes se

limitent à une quantité d’intérêt spécifique de la distribution de la sortie du modèle, d’autres

approches intégrant toute la distribution furent proposées. Parmi ces méthodes se trouvent les

stratégies à base de noyaux dont les différents aspects théoriques ainsi que plusieurs stratégies

d’estimation sont décrits dans la section 2.2. Puisque le principal objectif de ces travaux est lié

à l’optimisation, la section 2.3 présente diverses stratégies goal-oriented qui prennent en compte

le type d’étude lors de la recherche des variables pertinentes.

vii



Le chapitre 3 décrit les indices de sensibilité dédiés à des problèmes d’optimisation et basés sur

des méthodes à noyaux, et donne une stratégie d’implémentation au sein d’une procédure d’opti-

misation. L’analyse de sensibilité permet de réduire la dimension du problème et d’ainsi faciliter

l’étape de l’obtention d’un optimum, avec pour conséquence une dégradation de la précision de

celui-ci. Ce chapitre est une adaptation de [SLRDV19] avec des détails supplémentaires. Nous

proposons dans la section 3.1 une modification de la sortie du modèle afin de définir une nou-

velle quantité d’intérêt ad hoc pour les études d’optimisation sous contraintes. Cela permet

de formuler un nouvel indice de sensibilité appelé HSIC-IT. Puis, dans la section 3.2, nous

définissions une approche d’optimisation qui tire parti de la sélection de variables menées par

le biais de ces nouveaux indices. Les avantages liées à une optimisation menée en dimension

réduite avec notre algorithme sont montrés dans la section 3.3 sur plusieurs fonctions jouets.

La convergence semble plus stable le nombre d’appels nécessaire pour obtenir une solution au

problème d’optimisation est considérablement réduit. Cependant, puisque des dimensions ont

été retirées du problème initial, cela résulte en une légère dégradation de la solution optimale.

Enfin, le chapitre 4 traite à la fois du problème de la grande dimension et de l’aspect couteux

des évaluations des fonctions du problème d’optimisation en couplant une sélection de variables

avec une stratégie d’optimisation Bayésienne séquentielle. La section 4.1 détaille le cadre de

l’optimisation Bayésienne, décrivant régression par processus Gaussiens et les différentes fonc-

tions d’acquisition. Dans la section 4.2, les limitations rencontrées par cette méthode lorsque le

problème est défini en grande dimension sont présentés ainsi que diverses stratégies présentes

dans la littérature. Ensuite, dans la section 4.3, nous présentons notre algorithme, intégrant la

précédente sélection de variables par le biais de méthodes à noyaux au sein de la boucle d’opti-

misation. Des améliorations ont été obtenues grâce à la réduction de la dimension, décrits sur

quelques cas-tests. Enfin, différentes extensions de l’algorithme sont présentés dans la section

4.4 ainsi que des résultats sur plusieurs exemples afin de montrer qu’une sélection réfléchie des

variables permet d’obtenir une meilleure solution au problème d’optimisation pour un nombre

d’évaluations donné.

En guise de conclusion, le chapitre 5 résume les différents résultats obtenus tout au long de

cette thèse et discute des perspectives de ces travaux pour de futures recherches.
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10 Chapter 1. Introduction

1.1 Industrial context

For the past 50 years, engineering practice in the industry has evolved towards the design of

increasingly complex systems. This evolution has been fueled by the need to abide with new

design constraints such as reliability and tighter environmental standards. Since such designs

often require expensive tests with limited occurrences (for example crash test dummies for the

automotive industry or aeronautic engine prototypes), they have logically been replaced with

high-fidelity numerical models. Most often, these models are mathematical approximations of

the real system as the underlying physic cannot be computed analytically. Numerical simula-

tion is now relied upon in many fields, such as physics, chemistry, biology or multidisciplinary

engineering. Computer simulations allow to reproduce the behavior of the system under a wide

variety of design and working conditions. In the permanent effort made to have more realistic

numerical models, a larger number of inputs has to be specified. For example, in mechanical

engineering applications, sets of components are commonly represented using Computer Aided

Designs (CAD). In order to obtain a refined definition of the system, a large number of param-

eters are necessary to fully represent its shape: length, height or width for each piece, diameter

and height of holes, characterization of fillets and so forth. Working with models that encompass

a large number of inputs yields to high-dimensional decision problems.

Numerical models provide an opportunity to explore new design configurations and better un-

derstand design trade-offs. Optimization is one of the most important exploration that can

be performed: it consists in finding the variables layout X∗ which produces the best possible

performance f(X∗) without violating a given set of constraints g(X∗). As an example, consider

the optimization of the shape of the rotor blades in the compressor stage of an aeronautical

engine, see Figure 1.1 for its geometry. The designer often wants to maximize the aerodynamic

performance of the compressor by changing the shape parameters of its rotor blades, while

considering thresholds on the tip gap and the mechanical resistance of the part as constraints.

It is common to consider the objective f as a black-box function: neither the analytic expres-

sion nor the derivatives of f are available. Evaluations of the function are only possible by

querying its value for different settings of X. Classical examples of black-boxes are numerical

codes involving partial differential equations such as finite element analyses, and more generally

every numerical simulator in the form of an executable without access to the sources. In some

cases, a call to the numerical model has a non negligible cost in terms of the time or computing

resources required. The optimization is then limited in the number of evaluations of f and g.

For a typical cost of a single simulation, the maximum number of evaluations is of the order of

the hundred.

1.2 Standard approaches

Different optimization approaches and algorithms were proposed in the literature. One can

resort to gradient-based methods [NW06] if derivatives of the models are known. The quality of

the solution found depends on the starting point, even though this can be improved by consid-

ering multi-start strategies (i.e. running several times the optimization from different starting

points). In the black-box setting, as the gradient is not accessible, approximation techniques

exists at the expense of additional calls to the model (for X ∈ Rd, a finite difference approxima-

tion to the gradient requires d+ 1 calls). However, the total cost of the optimization iterations

scales poorly with the dimension, making such methods impracticable when the dimension of
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Figure 1.1 – Meridional view of a rotor blade in the compressor stage of an aeronautical engine
(left). The blade is defined by stacking multiple profiles from the hub to the blade tip and each
profile is described using several parameters (right). Material properties of the blade could also
be considered as tunable inputs.

the problem is large. Population-based strategies such as probabilistic algorithms [Zhi12] and

evolutionary algorithms (EA) [ES+03] (including genetics algorithms [Mit98], particle swarm

optimization [EK95] or evolution strategies [BS02]) are a class of zero-order methods in the

sense that they do not require any derivative information, but they usually necessitate numer-

ous model evaluations before finding (a sufficiently accurate estimate of) an optimum. These

methods do not fit well the expensive black-box setting where the budget is strongly limited.

A third class of methods that rely on computationally efficient substitute to the true model

are called surrogate optimization methods [Jon01; WS06]. The surrogate models (e.g. Gaussian

processes [WR06], support vector regression [SSB+02] or radial basis functions [Reg16; Gut01])

are approximations to the objective function and can be used to search for the optimum. These

surrogate optimization methods were proven to be efficient at low number of evaluations and

have therefore been applied in a wide range of applications [Sha+15].

However, optimization strategies directly based on surrogates are limited to low dimensional

spaces as they also scale poorly with the dimension, a phenomenon referred to as the curse of

dimensionality [Bel15]. To tackle high-dimensionality, several approaches have been proposed,

including parallel computing, decomposition of the problem into sub-problems [SW10] and

projection of the input space into a lower dimensional space [Bou+16; Gau+19]. In this thesis,

we focus on methods that reduce the volume of the design space using strategies to detect

significant variables and then perform the optimization in the reduced space. Global sensitivity

analysis is a key ingredient in our approaches. It studies how the variability of a function

output changes when some of its inputs are frozen [IL15]. Despite having been used on different

applications [RLM09; FKR11; Cho+14], the popular variance-based approaches suffer from

different drawbacks when applied to optimization problems. Goal-oriented sensitivity analysis

is a set of methodologies that consider specialized, ad hoc, quantities of interest of the output.

The quantity of interest takes into account the type of study done (e.g. reliability, optimization,

etc). Following this trend of thought, we aim in this thesis at answering the following questions:
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12 Chapter 1. Introduction

• What is the quantity of interest to consider when conducting an optimization study?

• How to select variables that are important in order to best solve the optimization

problem and what to do with the remaining dimensions?

• How to implement such selection within an optimization strategy?

1.3 Structure of the manuscript and contributions

The main contribution of this thesis is the proposition of new sensitivity indices dedicated to

optimization tasks under constraints. We focus on high-dimensional problems as they raise

challenging issues in the expensive scope (see above). Our method can be used prior to the

optimization procedure or it can directly be integrated within it.

Chapter 2 starts with the basics of sensitivity analysis in Section 2.1, with a brief description of

local and variance-based measures, which are broadly used for their simplicity and easy under-

standing. Since these analyses measure a specific quantity of interest of the output distribution,

other approaches that use the full distribution were later proposed. Among these methods

are the kernel-based strategies: the associated theoretical aspects and different approaches for

their estimation are reported in Section 2.2. As the main goal of this thesis is optimization,

Section 2.3 presents different goal-oriented methods which take into account the type of the

problem when assessing the relevance of the different inputs.

Chapter 3 proposes kernel-based indices for optimization-oriented sensitivity analysis and gives

an implementation in terms of an optimization procedure. The sensitivity analysis step leads to

a dimension reduction which eases the optimization procedure, at the cost of a slightly degraded

optimum. This chapter is an adaptation from [SLRDV19] with additional details. We propose

in Section 3.1 a modification of the output to define a new ad hoc quantity of interest for

constrained optimization studies. It results in a new sensitivity index called HSIC-IT. Then

in Section 3.2, we define an optimization approach that takes advantage of the HSIC-IT based

input selection. The benefits of conducting dimension reduction with our algorithm are shown

in Section 3.3 on several test cases. The convergence to the optimum appears more stable and

the number of calls to the objective function is considerably reduced. However, because of

the removal of some dimensions and the resulting loss in fine tuning possibilities, the obtained

solution can be slightly deteriorated.

Finally, Chapter 4 tackles the issue of high dimensional and expensive functions to optimize

by coupling the variable selection phase within a Bayesian sequential optimization strategy.

Section 4.1 recalls the framework of Bayesian optimization, explaining both Gaussian processes

regression and the different acquisition functions. In Section 4.2, the limitations faced for high

dimensional problems are presented along with strategies found in the literature to face such

issues. Next, in Section 4.3, we introduce our algorithm which integrates the kernel-based

variable reduction previously presented within the optimization loop. Improvements obtained

thanks to the dimension selection phase are highlighted on a couple of test cases. Finally,

different extensions of the algorithm are defined in Section 4.4 along with results on tests cases

showing that a clever variable selection leads to better objective function values for a given

number of calls to the costly numerical model.

To conclude, Chapter 5 summarizes the different results obtained throughout this thesis and
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discusses perspectives for future work.
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18 Chapter 2. Sensitivity analysis

2.1 Background

In this manuscript, we consider the following formalism for the computer function f studied:

f : X ⊆ Rd → Y ⊆ R (2.1)

x 7→ y = f(x)

where x ∈ X (resp. y ∈ Y) is called the input vector, here of dimension d (resp. the output,

here presented as a scalar). The model f is considered as a black-box function, which means

that at any point in time, one can only interact with f by querying output corresponding to a

given input vector x. No further information is available for the user, such as direct closed-form

or gradients of the function.

Sensitivity analysis allows to answer many different questions about the model. Finding out

what are the inputs that contribute the most to the system variability is primary goal of sen-

sitivity analysis. If the said variability is synonym of inaccuracy for the model output value,

an improvement of the model response quality should be pursued. Variability of the model can

be characterized at a lower cost by focusing on the variables influencing the uncertainties the

most. One should note that this approach is not always viable, since the variability of an input

variable can be inherent to its direct nature, and not to a lack of knowledge or measurement

done with low precision.

Sensitivity analysis can also help to determine how close to the real phenomenon the model

is, by displaying some variables as impactful when they are already, physically, known to be

negligible. In such cases the reliability of the model and/or the a priori knowledge about the

real impact of the variables might need discussion. Furthermore, using sensitivity analysis to

detect variables interactions leads to a better understanding of the modeled process.

Another setting for sensitivity analysis is to capture the impact of each variable on the numerical

model and characterizing the influence of an input can be done at several levels. First of all,

one can rank variables based on how great is the output variance reduction when the giving

input is set to its true value. [Sal+04] calls it factor prioritization. One might also want

to identify which inputs can be set to any given value of their design set without impacting

the output variance: this is denoted as factor fixing [Sal+04], where initially focusing on the

negligible inputs leads to a possible model dimension reduction by considering those variables as

deterministic ones (e.g. setting them to their mean value). Finally, the approach named factors

mapping [Sal+04], catches which variables are most responsible for producing output. It is a

key practice for constrained or goal-oriented studies. [Sal+04], [Sal+08], [IL15] and [BP16] give

a broader picture on the different settings for sensitivity analysis.

Generally, methods developed for sensitivity analysis can be sorted out in two major categories:

local sensitivity analysis approaches, which study the quantitative impact of a small variation

of the entries around a nominal value x0 (which can be all inputs set to a given value, often the

mean or the mode); and global sensitivity analysis approaches, which evaluate the variations of

the output when the inputs vary in their entire domain of uncertainty. Global sensitivity analysis

(GSA) studies variability of the output when the local sensitivity analysis (LSA) focuses more on

the actual response value. Figure 2.1 gives an illustration of both methods for a unidimensional

problem.
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Figure 2.1 – An illustration on a one dimensional function of local sensitivity analysis around
the nominal point x0 (left) and global sensitivity analysis (right).

2.1.1 Local sensitivity analysis

As mentioned above, local methods [Sal+08] only provide information about the impact of one

input around a set value x0, hence their names. Most of these sensitivities are estimated through

gradients or partial derivatives of the output at these nominal values. As an example of such

methods, assuming f is differentiable at x0, the partial derivatives

∆(x0)i =
∂f

∂xi
(x0) =

∂f

∂xi
(x0

1, . . . , x
0
d) (2.2)

for i = 1, . . . , d, can be used to rank the inputs e.g., through the absolute value of the partial

derivatives.

Despite being widely used, the main drawback of local methods comes from their limited range

of action since they only focus on variation around nominal values while inputs usually vary over

a full definition domain. If the variations are reasonable and the model linear, those methods

for inputs ranking could suffice. Finally, one should note that an estimation of the derivatives is

necessary: if they cannot be evaluated explicitly, approximation techniques are required, hence

a non negligible computational cost (O(d) for one finite difference).

2.1.2 Screening methods

Screening methods close the gap between local and global methods by repeating local analyses

throughout the definition domain. One of the most used method is the Morris method [Mor91]

whose idea is to determine whether an input has an effect that is negligible, linear and additive,

or nonlinear or interacting with other inputs. The approach simply consists in discretizing the

input space X in levels for each variable (e.g. with a grid) then performing a given number n

of one-at-a-time (OAT) designs. Assuming, the input space is discretized with a d-dimensional

grid with n levels for each input, the elementary effect of the i-th variable at the j-th repetition

is:

∆M(xj)i =
f(xj + δMei)− f(xj)

δM
(2.3)
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20 Chapter 2. Sensitivity analysis

where δM is the perturbation (proportional to 1
(n−1)) and ei a vector of the canonical base.

For each input, Morris then derives two sensitivity indices based on ∆M(xj)i, the mean of the

absolute value of the elementary effects

µi = 1/n

n∑
i=1

|∆M(xj)i| (2.4)

and the standard deviation of the elementary effects:

σi =

√√√√1/n

n∑
i=1

(
∆M(xj)i − 1/n

n∑
i=1

∆M(xj)i

)2

. (2.5)

µi characterizes the effect of xi on the output. The absolute value is here to avoid compensation

between elementary effects [CCS07]. A larger value of µi implies a larger contribution of variable

xi to the dispersion of the output. σi is a measure of nonlinear and/or interaction effects of xi. A

small value suggests a linear relationship between the output and xi, while a large value suggests

nonlinear effects or interactions with at least one other variable. Morris’ sensitivity indices are

usually plotted directly in a graph (with σ2
i as a function of µi) providing a qualitative tool to

assess the importance of an input as points close to the origin are negligible. Yet, for models

with very large number of inputs, Morris’s indices typically fail at identifying influential factors

[Sal+08] and cannot differentiate nonlinear from interacting effects, which can turn out to be

quite critical. Another screening method overcomes the local deficiency by averaging the square

of Equation (2.2) over the parameter space. This defines a sensitivity index called the Derivative-

based global sensitivity measure (DGSM) [KS09]. Assuming f depends on X = (X1, . . . , Xd),

with joint probability distribution function pX on Rd, the DGSM νi is given by

νi =

∫
RD

(
∂f(X)

∂xi

)2

pX(x)dx = E
[
∂f(X)

∂xi

]2

. (2.6)

νi is more accurate than its Morris counterpart as the elementary effects are evaluated as strict

local derivatives with small increments compared to the variable uncertainty ranges. DGSM

are appealing measures as their cost is lower than most other global sensitivity methods when

gradients of the function are available.

2.1.3 Variance-based methods

The screening methods described above provide qualitative tools usable to rank input factors

in order of importance but do not assess by how much one given factor is more important

than another. These methods come in handy for a fast exploration of the input space or

characterization of the model behavior and dependencies. Among quantitative global methods

which provide importance measures, Sobol indices [Sob93] are one of the most widely used

sensitivity analysis strategy. Assuming f is square-integrable and defined on the unit hypercube

[0, 1]d, with X = (X1, . . . , Xd) the random vector of d mutually independent inputs, one can

decompose the output Y = f(X) as a sum of increasing dimension functions [Hoe48]

Y = f(X) = f0 +
d∑
i=1

fi(Xi) +
∑

1≤i<j≤p
fi,j(Xi, Xj) + . . .+ f1...d(X) (2.7)
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=
∑

u⊂{1,...,d}

fu(Xu)

where f0 = E[f(X)] =
∫
f(x)px(x)dx, with px the product of d uniform marginals over [0, 1],

fi(Xi) = E[f(X) | Xi] − f0 and fu(Xu) = E[f(X) | Xu] −
∑

v⊂u fv(Xv) with Xu = (Xi)i∈u,

for any u ⊂ {1, . . . , d}, i.e. all the possible subset combinations without repetitions. This

decomposition exists and is unique under the conditions∫ 1

0
fi1...is(xj1 , . . . , xjs)dxjk = 0,∀k ∈ {1, . . . , s}, ∀{j1, . . . , js} ⊆ {1, . . . , d} (2.8)

This condition of uniqueness implies that f0 is a constant. From Equation (2.7), we can de-

rive the functional decomposition of variance, also named functional analysis of variance (or

ANOVA) [ES81]:

V[f(X)] =

d∑
i=1

V[fi(Xi)] +
∑

1≤i<j≤d
V[fi,j(Xi, Xj)] + . . .+ V[f1...d(X)] (2.9)

=
∑

u⊂{1,...,d}

V[fu(Xu)]

The Sobol indices [Sob93; Sob01], or variance-based indices, are obtained from Equation (2.9),

if V[f(X)] 6= 0:

Si =
V[E[Y | Xi]]

V[Y ]
(2.10)

Sij =
V[E[Y | Xi, Xj ]]− V[E[Y | Xi]]− V[E[Y | Xj ]]

V[Y ]
(2.11)

Equation (2.10) defined the first-order Sobol indices which evaluate the share of variance of the

output due to the sole effect of the input Xi. The second order Sobol index in Equation (2.11)

measures the effect due to the interaction between Xi and Xj minus the main effect of each

variable. The total number of indices rises to 2d − 1 and they sum to one. Indices of order

higher than two are usually not evaluated to save computational time and because they become

difficult to interpret. Instead, one prefers to compute the total Sobol index proposed by [HS96]:

STi = Si +
∑
i<j

Sij +
∑

j 6=i,k 6=i,j<k
Sijk + . . . =

∑
v⊂{1,...,d}

v⊃i

Sv (2.12)

STi is the sum of all the Sobol indices containing the index i. It measures the share of the

output variance due to all the combined effect in which Xi is involved. Most of the time, when

d becomes large, only the first and total indices are estimated as they suffice to provide enough

information on the model sensitivities. One can express the total Sobol index of an input i as

the difference between the sum of all sensitivity indices which must be one and all terms of any

order that do not include Xi

STi = 1− V[E[Y | X∼i]]
V[Y ]

(2.13)

where X∼i means X withoutXi. Now, following [Sal+08], since by the low of total variance

EXi [VX∼i [Y | Xi]] + VXi [EX∼i [Y | Xi]] = V[Y ] (2.14)
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one can rewrite Equation (2.13) as

STi =
E[V[Y | X∼i]]

V[Y ]
(2.15)

Several techniques have been devised to compute those sensitivity indices usually based on

Monte-Carlo estimations: [Sob93] proposes an estimator for first order and interaction indices

and [Sal02] introduces estimators for first and total indices. Yet, these methods are computa-

tionally expensive for a precise estimation of the indices (since their convergence is O(
√
n) with

n the sample size). They usually require ten of thousands of model calls to estimate the Sobol

index of one input. Other sampling strategies have been proposed such as the Quasi Monte-

Carlo sampling or the FAST method [CLS77], based on a multi-dimensional Fourier transform.

Sobol indices provide a meaningful interpretation as each index characterizes the contribution

of one input to the variance of the output.

To cope with the computational cost issue, another popular solution involves the use of surrogate

models to compute Sobol indices. For example, [Sud08] relies on polynomial chaos expansion

(PCE) to efficiently derive sensitivities. In [Mar+09], which is further developed in [LGMS16],

Sobol indices are estimated using Gaussian Processes (GP) and their confidence intervals are

also derived. However, these sensitivity indices give information on the influence of inputs in

the full design domain and the moment they focus on is specific. This may fail to reflect the

true importance of variables in cases where the variance is not sufficient to describe how an

input matters, e.g. when the output distribution is highly skewed, heavy-tailed or multimodal

[LCS06].

2.1.4 Dissimilarity-based methods

To overcome the aforementioned limitations, several alternatives to variance-based sensitivity

indices have been proposed, in particular distribution-based methods. [Bor07] proposes an

approach without references to any particular moment of the output Y by assessing the density

shift between the distribution of the output pY (y) and the conditional density of the output

given that one of the inputs Xi is set to a given value pY |Xi=x(y) (represented by the red shaded

area in Figure 2.2) as

s(Xi) =

∫
|pY (y)− pY |Xi=x(y)|dy (2.16)

Taking the expected value w.r.t. Xi of the previous equation defines the moment independent

importance measure of Borgonovo

Sδi =
1

2
EXi(s(Xi)) =

∫
pXi(xi)

(∫
|pY (y)− pY |Xi=x(y)|dy

)
dxi (2.17)

which represents the normalized expected shift of the distribution of the output Y due to the

input Xi. [Bor07] also extends the definition of the previous index to any group of inputs.

The moment independent importance measure defined by Borgonovo is actually a special case

of a broader class of sensitivity measures called the dissimilarity-based measures [DV15; Rah16],

which characterize the impact of Xi on Y by

Sdi = EXi(d(PY , PY |Xi)) (2.18)

École des Mines de Saint-Étienne Adrien Spagnol
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Figure 2.2 – Illustration of the Borgonovo importance measure. The shift between the two
densities is measured by the red shaded area.

where d(·, ·) is a given dissimilarity measure between two probability distributions. The choice

of the measure used directly impacts the associated sensitivity index. For example, considering

the distance between the mean values of the two probability distributions

d(PY , PY |Xi) = (E(Y )− E(Y | Xi))
2 (2.19)

one can obtain, after some calculations, the non-normalized main order Sobol index Equa-

tion (2.10)

Sdi = V(E(Y | Xi)). (2.20)

[DV15] defines a wide class of dissimilarity measures by the use of Csizar f -divergences, assuming

that all input variables have an absolutely continuous distribution with respect to the Lebesgue

measure on R
dfC (PY , PY |Xi) =

∫
R
fC

(
pY (y)

pY |Xi(y)

)
pY |Xi(y)dy (2.21)

where fC(·) is a convex function such that fC(1) = 0. The divergence function can be chosen

among a wide list of functions, such as

• the Kullback-Leibler divergence: fC(t) = − ln t or fC(t) = t ln t;

• the Pearson χ2 divergence: fC(t) = (t− 1)2 or fC(t) = t2 − 1;

• the Kolmogorov total variation distance: fC(t) = |t− 1|;

and so forth. Considering a given divergence function fC and plugging it in Equation (2.18)

yields the definition of the following sensitivity index:

SfCi =

∫
R2

fC

(
pXi(x)pY (y)

pXi,Y (x, y)

)
pXi,Y (x, y)dxdy (2.22)
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where pXi,Y (x, y) is the joint probability distribution function of Xi and Y . [DV15] exhibits

several advantages for the wide class of sensitivity indices defined this way. First of all, they

measure the influence of an input Xi on the full distribution of the model output Y and not solely

on a specific quantity of interest (as the variance for Sobol indices). Furthermore, the indices are

non-negative and if Xi and Y are independent, SfCi = 0. Last but not least, considering specific

fC functions, one retrieves well-known sensitivity indices from the literature. For example,

with the Kolmogorov total variation distance, fC(t) = |t− 1|, one easily obtain the Borgonovo

indices Equation (2.17). In addition, for the Kullback-Leibler divergence, fC(t) = − ln t, one

reconstructs

SfCi =

∫
R2

ln

(
pXi,Y (x, y)

pXi(x)pY (y)

)
pXi,Y (x, y)dxdy (2.23)

that is directly the Mutual Information I(Xi, Y ) between Xi and Y [Sha48], a dependence mea-

sure that relates to the entropy of the probability distribution functions. Dependence measures

aim at quantifying the dependence between X and Y , with the property of being null only in

the case of independence. The most familiar measure of dependence is the Pearson product-

moment correlation coefficient which quantifies the degree of linear dependence between two

random variables.

The bottleneck of these methods comes from the density estimation required in the computation

of the indices. Typically, it is estimated from samples of the two distributions using Parzen

windows or mixture of Gaussians, but this is directly affected by the curse of dimensionality. To

circumvent this issue, some new methods avoid any density estimation and use representation

of the distribution in Hilbert spaces. We call such methods kernel-based and describe them in

the following section.

2.2 Kernel-based sensitivity analysis

Kernel representation is the backbone of many practical applications where the algorithm is

expressed in terms of an inner product 〈x, y〉, since one can replace the inner product by a

positive definite kernel. This generalizes the algorithm to nonlinear data treatment because the

kernel is equivalent to an inner product in a nonlinearly mapped space, but the mapping does

not have to be explicit (kernel trick). Among all data learning approaches that are kernelized,

one can include support vector machine (SVM) [CV95] and principle component analysis (PCA)

[Hot33]. In this section, concepts and notations required to understand kernel-based sensitivity

analysis are introduced, starting from the basis of reproducing kernel Hilbert spaces (RKHS)

and moving to probability embeddings and distances in the feature space.

2.2.1 Reproducing Kernel Hilbert Space and distribution embeddings

Let X be any space. For any positive definite function k : X × X → R, there exists a unique

reproducing kernel Hilbert space (RKHS) H with k(., .) as its reproducing kernel. H is a Hilbert

space of R-valued functions on X endowed with an inner product 〈·, ·〉H. By construction, the

RKHS has two important properties:

1. ∀x ∈ X , k(x, ·) ∈ H,

2. for all h ∈ H and x ∈ X , h(x) = 〈h, k(x, ·)〉H.
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The function k(x, ·) is called the Riesz representer of the evaluation functional at the point x.

Following the reproducing property, one can write

k(x, x′) = 〈φ(x), φ(x′)〉H (2.24)

where φ(x)(·) = k(x, ·) ∈ H. The map x ∈ X → φ(x) ∈ H is called the feature map associated

with H as any point in X is represented by the function k(x, ·) in the feature space. Although

we do not need to know H and 〈, 〉H explicitly, one can derive the feature map from the kernel

[SSB+02]. [Aro50] states that for any positive definite function k(·, ·) on X ×X , there exists a

unique RKHS with k as its reproducing kernel.

This means that the RKHS H is fully characterized by its associated reproducing kernel k, and

it uniquely determines k, and vice versa. Many kernels can be found in the literature, depending

on the nature of the data. Popular kernel functions on Rd include

• the polynomial kernel of order p ∈ N: k(x, x′) = (〈x, x′〉+ c)p,

• the Gaussian RBF kernel, for θ > 0: k(x, x′) = exp
(
−‖x− x′‖22/θ2

)
,

• the Laplace kernel, for θ > 0: k(x, x′) = exp (−‖x− x′‖1/θ),

where θ is the lengthscale. As a generalization of the feature mapping of individual points,

one can also map probability distributions into RKHS. DenoteM1
+(X ) the space of probability

measures over a measurable space X . Then, we define the representer in H of any probability

measure P by the mapping [BTA11; Smo+07]

µP :M1
+(X )→ H (2.25)

P 7→ µP :=

∫
k(x, ·)dP (x) =

∫
φ(x)dP (x)

denoted µP . This mapping is often called the kernel mean embedding of the probability space

M1
+(X ). Following [Smo+07], the sufficient condition for the kernel mean embedding µP to

exist and to belong to the RKHS H is EX(
√
k(X,X) < ∞. Figure 2.3 depicts a schematic

illustration of the kernel mean embeddings.

Understanding what information of the distribution is retained by the kernel mean embedding is

a key aspect. In the case of the linear kernel k(x, x′) = 〈x, x′〉, µP is simply the first statistical

moment of P , whereas for the polynomial kernel k(x, x′) = (〈x, x′〉 + 1)2 µP contains both

the first and the second moments of P . We can extend this with the polynomial kernel of

order p ∈ N, whose corresponding embedding incorporates moments of P up to the p-th order.

In order to fully represent the distribution in the RKHS, H must be a characteristic RKHS,

meaning that its corresponding kernel is also characteristic. This property is essential for kernel

mean embedding as it ensures that no information is lost when mapping the distribution into

the Hilbert space. Characteristic kernels were introduced in [FBJ04] as the kernels for which

mapping Equation (2.25) is injective. [Fuk+08] showed that Gaussian and Laplace kernels are

characteristic on Rd and properties of characteristic kernels were further studied in [Sri+08;

SFL11]. When µ : P 7→ µP is injective, the Hilbert space in which the distribution is mapped

should contain a sufficiently rich class of functions to fully differentiate all higher moments of

neighboring distributions [Fuk+08].

One has rarely a complete knowledge of the true underlying distribution P and must rely on
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Figure 2.3 – Representation of a distribution embedding, mapped into a RKHS H using the
expectation operation defined in Equation (2.25). The finite sample estimate follows Equa-
tion (2.26).

samples drawn from P . Assuming an independent and identically distributed sample X =

(x1, . . . , xn) ∼ P , the standard estimator of the kernel mean embedding is an empirical average

µ̂P =
1

n

n∑
i=1

k(xi, ·) (2.26)

The estimator converges to the true kernel mean embedding almost surely as n→∞ [Sri+12].

[BTA11] shows that the convergence happens at a rate of O(n−1/2) which, interestingly, is

independent of the dimension of X meaning that statistics based on kernel embeddings are less

prone to the curse of dimensionality.

2.2.2 Maximum Mean Discrepancy

Kernel embeddings of probability measures provide a natural way to define distance between

distributions as the distance between their embeddings in the Hilbert space. Assume X and Y

are two random variables defined in X with probability distributions PX and PY , respectively,

and H a RKHS with kernel k. [Gre+12] defines the Maximum Mean Discrepancy (MMD) γ

expressed as the distance between kernel mean embeddings in H

γ(PX , PY ) = ‖µPX − µPY ‖H. (2.27)

We can express the MMD in terms of the associated kernel k by taking the square of Equa-

tion (2.27)

γ2(PX , PY ) = 〈µPX − µPY , µPX − µPY 〉H (2.28)

= ‖µPX‖
2
H + ‖µPY ‖

2
H − 2〈µPX , µPY 〉H
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= EX,X′(k(X,X ′)) + EY,Y ′(k(Y, Y ′))− 2EX,Y (k(X,Y ))

where X,X ′ ∼ PX and Y, Y ′ ∼ PY are independent copies. The previous result directly comes

from

‖µPX‖
2
H = 〈EX(k(X, ·)),E′X(k(·, X ′))〉H = EX,X′(k(X,X ′)) (2.29)

If k is characteristic, then γ(PX , PY ) = 0 if and only if PX = PY .

This metric in terms of embeddings can be viewed as a particular instance of an integral prob-

ability metric (IPM) [Mül97] between PX and PY on a measurable space X

γ(PX , PX) = sup
f∈F

(∫
f(x)dPX(x)−

∫
f(y)dPY (y)

)
(2.30)

where F is a space of real-valued bounded measurable functions on X . When the supremum

is taken over functions in the unit ball in an RKHS H, i.e. F = {f, ‖f‖H ≤ 1}, using the

reproducing property ofH and the linearity of the inner product, one can show that the resulting

metric is the MMD,

γ(PX , PX) = sup
‖f‖≤1

(∫
f(x)dPX(x)−

∫
f(y)dPY (y)

)
(2.31)

= sup
‖f‖≤1

(
〈f,
∫
k(x, ·)dPX(x)〉 − 〈f,

∫
k(y, ·)dPY (y)〉

)
= sup
‖f‖≤1

(〈f, µPX − µPY 〉)

= ‖µPX − µPY ‖H

When considering other spaces F , one can obtain other well-known distances between distri-

butions. For example, if F = {1(∞,t]}, i.e. the max norm of the difference between their

cumulative distributions, we obtain the Kolmogorov distance between distribution. Setting

F = {f, ‖f‖L ≤ 1}, where ‖f‖L = sup{|f(x) − f(y)|/ρ(x, y), x 6= y ∈ X} is the Lipschitz

semi-norm of a real-valued function f where ρ is some metric on a compact space X , yields the

Wasserstein distance.

Considering i.i.d. samples X = {x1, . . . , xm} ∼ PX and Y = {y1, . . . , yn} ∼ PY , one can write

an unbiased estimator of the MMD from Equation (2.28) entirely in terms of k as a sum of two

U -statistics and a sample average [Bor+06]

γ2
u(X,Y) =

1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj) (2.32)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

with a computational cost of O((m + n)2). When m = n, a slightly simpler estimate may be

used. Let Z = {z1, . . . , zm} be m i.i.d. random variables, with z = (x, y) ∼ PX × PY . The

estimate goes as

γ2
u(X,Y) =

1

m(m− 1)

m∑
i 6=j

h(zi, zj) (2.33)
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Figure 2.4 – Left: Empirical null distribution of the unbiased MMD γ2
u (Equation (2.32)), with

PX and PY both univariate Gaussians with unit standard deviation with 50 samples from each.
Right: Empirical alternative distribution of the unbiased MMD γ2

u (Equation (2.32)), with PX a
univariate Gaussian with unit standard deviation and PY a univariate Gaussian with standard
deviation 3 with 50 samples from each. The null distribution has a long tailed form while the
alternative distribution is Gaussian. Both histograms were obtained using 10000 independent
samples.

which is a one-sample U -statistic with

h(zi, zj) = k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj , yi) (2.34)

Both estimators of γ2
u(X,Y) may be negative since they are unbiased estimators of γ2

u(PX , PY ).

The biased counterpart γ2
b (X,Y) can be obtained using V -statistics. Following [Gre+12], the

distribution of γ2
u when PX = PY , called the null distribution, has a complicated form, expressed

as an infinite sum of χ2 variables. On the counterpart, the alternative distribution, namely

the distribution of unbiased empirical estimator of the MMD when PX 6= PY , converges in

distribution to a Gaussian distribution

√
m(γ2

u(X,Y)− γ2(PX , PY ))
p→ N (0, σ2

u) (2.35)

where

σ2
u = 4

(
EZ(E′Z(h(Z,Z ′))2)− (EZ,Z′(h(Z,Z ′)))2

)
. (2.36)

Figure 2.4 shows empirical estimate of both distributions for the unbiased estimator γ2
u. [Sri+12]

shows that compared to the other distances, the MMD enjoys a rapid convergence and the rate

is independent of the dimension, contrary to other metrics such as the Wasserstein distance

which suffers from a rate that depends on d.

The estimator in Equation (2.32) incorporates as much information as possible from the data,

which comes at a quadratic cost since all pairs of samples are considered. However, sometimes, a

statistic with a faster computation can be needed without losing too much accuracy. Assuming
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Figure 2.5 – Left: Empirical null distribution of the unbiased MMD γ2
l (Equation (2.37)), with

PX and PY both univariate Gaussians with unit standard deviation with 50 samples from each.
Right: Empirical alternative distribution of the unbiased MMD γ2

u (Equation (2.32)), with PX a
univariate Gaussian with unit standard deviation and PY a univariate Gaussian with standard
deviation 3 with 50 samples from each. Both distributions with this estimator are Gaussians.
Both histograms were obtained using 10000 independent samples.

m2 = m/2, m = n, and h(z2i−1, z2i) defined as in Equation (2.34), [Gre+12] proposes an

unbiased estimator of the MMD that can be estimated in linear time:

γ2
l (X,Y) =

1

m2

m2∑
i=1

h((x2i−1, y2i−1), (x2i, y2i)) (2.37)

with a computational cost of O(m2). Even though it is expected that γ2
l has a higher variance

than γ2
u, it is computationally more appealing and it has a useful property: both the null and

the alternative distributions are Gaussian. The null distribution has a zero mean while the

alternative distribution has a positive mean, see Figure 2.5.

Since the statistic is just the average of independent random variables, the central limit theorem

[Ser81] allows to show that γ2
l converges in distribution to a Gaussian according to

√
m(γ2

l (X,Y)− γ2(PX , PY ))
p→ N (0, σ2

l ) (2.38)

where

σ2
l = 2

(
EZ,Z′(h2(Z,Z ′))− (EZ,Z′(h(Z,Z ′)))2

)
. (2.39)

The null distribution is Gaussian with this estimator, therefore approximating it is quite easy

since only the estimation of the variance is required. This is possible in linear time by simply

computing an unbiased empirical variance estimate σ̂2
l using the same set of samples h(zi, zi

′
),
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i.e.

σ̂2
l =

1

m2 − 1

m2∑
i=1

h(z2i−1, z2i)− 1

m2

m2∑
j=1

h(z2j−1, z2j)

2

. (2.40)

2.2.3 Two-sample testing with the MMD

Since all estimators of the MMD are small when PX = PY and large otherwise, they are well-

suited in the scope of two-sample testing : a statistical hypothesis test for equality between two

samples. In practice, we consider the following:

• null hypothesis H0 : PX = PY ,

• alternative hypothesis HA : PX 6= PY .

If γ2
u(X,Y) is “far from zero”, one can reject the null hypothesis and accept it when it is “close to

zero”. Hence, one need to determine whether γ2
u(X,Y) shows a statistically significant difference

between distributions. Given X ∼ PX and Y ∼ PY , two i.i.d. samples, the main idea is to

compare a test statistic T (X,Y) with a particular threshold: if the threshold is exceeded, the

null hypothesis H0 is rejected. Since we work with finite samples, returning incorrect answers

is a possibility. Two types of errors exist:

• a type I error is made when H0 : PX = PY is wrongly rejected. That is, the test says that

the samples are from different distributions when they are not.

• a type II error is made when H0 : PX = PY is wrongly accepted. That is, the null

hypothesis is accepted despite the considered distributions being different.

Figure 2.6 illustrates the two errors for a given α level. A good test has often a low type II

error since one is usually more interested in finding difference between samples. A test that

always rejects the null hypothesis would have zero type II error but may have a large type I

error. Thus, one needs to control the type I error while trying to minimize the type II error.

To do so, one controls the level α of a test, defined as an upper bound on the probability of a

type I error and the threshold is chosen such that P (T (X,Y ) > t) ≤ α. A test is said to be

consistent if for a set upper bound α, it reaches zero type II error in the infinite sample limit.

Both the quadratic and linear time statistics are useful in that scope but for different scenarios

[Gre+12]:

• the quadratic time statistic γu is useful with finite samples of data, it produces results

that are more accurate since it considers all the data, but faces a limitation regarding to

the size of the sample, especially for large ones,

• the linear time statistic γl comes in handy in the “infinite” data case, when the amount

of sample points is nearly unlimited, but the computational time available is not. Since

data needs not to be stored, the statistic can be applied to online data.

Figure 2.7 shows how the variance of the linear time MMD is much larger than the quadratic

one for fixed sample size when PX = PY .

The null distribution is the backbone of a two-sample test. Designing the test is clear: the null

distribution must be approximated in some ways, or may be analytically known and the test

statistic computed on some provided data. Then, the null hypothesis is rejected when the test

statistic lies above a given threshold. Since different estimators have different null distributions
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2.2. Kernel-based sensitivity analysis 31

0.0

0.1

0.2

0.3

0.4

−5 0 5

γu
2

P
ro

ba
bi

lit
y 

de
ns

ity

Figure 2.6 – Depiction of the two-sample testing. Statistics generated by H0 : PX = PY come
from the null distribution in red. Those generated by HA : PX 6= PY come from the alternative
distribution in blue. The dashed line at the (1−α)-quantile of H0 corresponds to the threshold
for testing: if a statistic lies above that threshold, the probability that it was generated under
H0 is less than α. Red area represents type I error, wrongly rejecting H0 for samples generated
by the null hypothesis. Blue area represents type II error, wrongly accepting H0 for samples
from the alternative distribution that lie under the threshold.

(see Figures 2.4 and 2.5), finding an efficient general method well-suited for all estimators can

be hard. In the following sections, multiple strategies are highlighted, depending on which

estimator is considered between γu and γl.

Gaussian approximation of the linear MMD

As already mentioned earlier, when using the linear estimator of the MMD in a two-sample

test, the null distribution is in fact a Gaussian, see Equation (2.38). It has a zero mean and

its variance can be empirically estimated following Equation (2.40). Approximation of the null

distribution simply relies on plugging a zero mean and the simulated variance into a normal

distribution, leading to an easy computation of thresholds or p-values. Given an empirical σ̂2
l ,

the threshold for a test level α is given by

Φ−1
µ,σ2

l
(1− α) (2.41)

with Φ−1
µ,σ2 : [0, 1] → R is the inverse normal cumulative distribution for mean µ and variance

σ2, which returns the value x corresponding to the (1 − α) quantile of the considered normal

distribution. Similarly, any p-value for a statistic estimate can be computed by evaluating its

position in the normal distribution using the normal cumulative distribution function Φ.
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Figure 2.7 – Representation of the estimation of the MMD statistics under the null hypothesis in
terms of the considered sample size. Both samples come from a standard univariate Gaussian.
The computation is repeated 20 times and estimated MMD are depicted using boxplots. The
linear time MMD is in red while the quadratic MMD is in blue. The dashed line corresponds to
a value of 0. The estimation of the linear time MMD stabilizes for a sample size of 5000 points.

Pearson approximation of the quadratic MMD

Another method is based on the approximation of the null distribution by fitting Pearson curves

to its first four moments. By taking advantage of the U-statistic, when m = n, we have

E((γ2
u)2) =

2

m(m− 1)
EZ,Z′(h2(Z,Z ′)), (2.42)

E((γ2
u)3) =

8(m− 2)

m2(m− 1)2
EZ,Z′(h(Z,Z ′)EZ′′(h(Z,Z ′′)h(Z ′, Z ′′)) +O(m−4)

where h(Z,Z ′) is defined following Equation (2.34) and Z ′ and Z” are independent copies of

Z. The fourth moment is usually not computed as it is both small and expensive to estimate.

Instead, the kurtosis is replaced with a lower bound kurt(γ2
u) ≥ (skew(γ2

u))2 +1. [Gre+12] shows

that fitting Pearson curves gives a good match in the upper quantiles, where the test threshold

is computed.

[Gre+09] proposes an alternative to the precedent strategy, with a two-parameter Gamma

approximation of the cumulative distribution function of the biased MMD estimate. Since the

null distribution of γ2
u approaches an infinite weighted sum of independent χ2 random variables,

the method is based on an approximation of the null distribution based on empirical eigenvalues

estimates. More information on these methods can be found in [Gre+09; Gre+12].
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Estimation of the null-distribution through resampling

One method can be applied for any two-sample test: sampling the null-distribution using re-

sampling methods. Assuming that we have a given sample of observations and related output

evaluations {X,Y} with a corresponding statistic T (X,Y), we can generate samples under the

null distribution through random permutations [ET94]: a shuffled dataset is generated {X̃, Ỹ},
where X̃ and Ỹ are randomly sampled from the initial population with replacement, denoted

as a bootstrapped samples, and the statistic T (X̃, Ỹ) is estimated. This comes at a rather high

cost since the statistic has to be recomputed for each permuted samples, hence multiplying the

complexity by the number of considered permutations. Once a sufficient number of samples

are obtained under the null hypothesis, these can be used to compute a threshold or a p-value.

Given a test level α, the threshold is simply obtained as the (1 − α)-quantile in the samples.

The statistic T (X,Y) can be compared against the threshold to accept (if above the threshold)

or reject (otherwise) the null hypothesis H0 : PX = PY . Similarly, a p-value for a given statistic

can be computed by assessing the relative position of the test statistic T (X,Y) compared to the

samples under the null hypothesis. Assuming that we have done p bootstraps, we have

pval =
1

p

p∑
i=1

1T (X̃i,Ỹi)>T (X,Y) (2.43)

where {X̃i, Ỹi} corresponds to the i-th bootstrapped sample. Given the p-value pval, the null

hypothesis H0 : PX = PY is rejected if this value is larger than a given test level α. Comparing

the statistic against the threshold and comparing the p-value against a desired test level is

exactly the same thing. Note that this method is a distribution-free hypothesis test which is

why we can use it for both linear and quadratic time MMD statistics.

Kernel hyperparameters

As described in the previous section, a statistical test should have a low type II error for a

fixed type I error. In theory, characteristic kernels can distinguish any two distributions, but

in practice their parameters have a large impact on the test’s type II error. For example, the

squared exponential kernel only parameter is its bandwidth σ, which basically determines the

length scale at which the kernel looks at data. In order to get a low type II error, this length

scale has to be set to the size where differences in the two underlying distributions PX and PY
appear. If being set too large or too small, the kernel is not able to detect these differences. One

of the first methods proposed to choose the width of a squared exponential kernel is to use the

median distance of the underlying data X, as σ2 = median{‖xi − xj‖2} with X = {x1, . . . , xn}
and i, j = 1, . . . , n, see [Gre+05a]. Several empirical studies show that this heuristic works

well in practice. The main advantage of this method is that it is easy to compute; all pairwise

distances of data have to be computed and the median must be estimated. Since the median

is a stable statistic, a low amount of samples can be sufficient. However, this method can only

applied to the squared exponential kernel, which is the main downside of it.

Other strategies to define the value of the kernel hyperparameters were defined in [Fuk+09;

Gre+12]. For example, the kernel can be chosen as the one that maximizes the test statistic or

chosen so it maximizes the two-sample test power and it minimizes the probability of making a

type II error. However, choosing a good kernel function remains an open field of research.
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2.2.4 Hilbert Schmidt independence criterion

Definition

Another application of the MMD is determining whether two variablesX and Y are independent,

which can be interpreted as a two-sample test. Recall that X and Y are as independent if and

only if their joint distribution PXY factorizes as PXY = PX ⊗ PY (written PXPY for shorter

notations from now on). The MMD for testing independence can be define as the distance

between the kernel mean embeddings of PXY and PXPY , defined as [Smo+07]

µPXY = EXY (v((X,Y ), ·))
µPXPY = EXEY (v((X,Y ), ·)).

Here we assume H is a RKHS of functions from X to R with kernel k. Likewise, we define a

second RKHS, G, of functions from Y to R with kernel l. Since a product of kernels is a kernel,

we construct a kernel v on the product space X × Y with corresponding RKHS V

v((x, y), (x′, y′)) = k(x, x′)l(y, y′). (2.44)

From this, we can define the MMD test statistic for testing independence as

γ2(PXY , PXPY ) =‖µPXY − µPXPY ‖
2
H⊗G (2.45)

=EX,Y EX′,Y ′k(X,X ′)l(Y, Y ′) + EXEX′EY EY ′k(X,X ′)l(Y, Y ′)

− 2EX,Y EX′EY ′k(X,X ′)l(Y, Y ′)

This in fact is directly equal to a quantity called the Hilbert Schmidt independence criterion

(HSIC) [Gre+05b], defined as the squared Hilbert Schmidt norm of the cross-covariance operator

associated to the joint distribution PXY . The cross-covariance is a linear operator CXY : G → H
defined for every fh ∈ H and fg ∈ G as

〈fh, CXY fg〉H = EXY (fh(X)fg(Y ))− EX(fh(X)EY (fg(Y )) = Cov(fh(X), fg(Y )). (2.46)

Hence, the cross-covariance operator generalizes the covariance matrix by representing higher

order correlations between X and Y through nonlinear kernels. Deriving the Hilbert-Schmidt

norm of the cross-covariance operator yields

‖CXY ‖2HS =
∑
i,j

〈ui, CXY vj〉H (2.47)

with (ui)i≥0 and (vj)j≥0 are orthonormal bases of H, respectively G. Equation (2.47) is the

HSIC, which can be expressed in terms of kernel as [Gre+05b]

HSIC(X,Y ) =‖CXY ‖2HS (2.48)

=EX,Y EX′,Y ′k(X,X ′)l(Y, Y ′) + EXEX′EY EY ′k(X,X ′)l(Y, Y ′)

− 2EX,Y EX′EY ′k(X,X ′)l(Y, Y ′)

which is directly equivalent to Equation (2.45). The HSIC is equal to 0 if and only if X and Y

are independent, when the associated RKHS H and G are characteristic. Considering an i.i.d.
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sample {X,Y} = {(x1, y1), . . . , (xn, yn)}, an empirical estimator of the HSIC is

HSIC(X,Y) =
1

n2

∑
1≤i,j≤n

KijLij +
1

n4

∑
1≤i,j,p,q≤n

KijLpq −
2

n3

∑
1≤i,j,p≤n

KijLjp (2.49)

with K,L ∈ Rn×n, Kij = k(xi, xj), Lij = l(yi, yj) are Gram matrices. Equivalently, Equa-

tion (2.49) can be written under a more compact form:

HSIC(X,Y) =
1

n2
tr(KHLH) (2.50)

with H ∈ Rn×n is a centering matrix defined Hij = δij − n−1, with δij the Kronecker symbol

between i and j that is equal to 1 if i = j and 0 otherwise. This estimator can be computed in

O(n2) time.

Independence testing with the HSIC

Gamma approximation The HSIC is used as a statistical measure to test the null hypothesis

H0 : X and Y are independent against its alternative H1 : X and Y are dependent. Under the

assumption of independence between X and Y , the asymptotic distribution of N ×HSIC(X,Y)

is an infinite sum of independent χ2 random variables which can be approximated by a two-

parameter Gamma distribution

n×HSIC(X,Y) ∼ xα−1 exp−x/β
βαΓ(α)

(2.51)

where α = E(HSIC(X,Y))2

V(HSIC(X,Y)) and β = nV(HSIC(X,Y))
E(HSIC(X,Y)) . More details on the computation of α and β can

be found in [Gre+08]. In practice, the independent test rejects the null hypothesis H0 when the

p-value of the Gamma distribution associated to n×HSIC(X,Y) is lower than the significance

level.

Permutation-based approximation A non-parametric strategy based on permutations to

test for independence can also be used, similarly to what was defined in Section 2.2.3 for the

MMD. Let {X,Y} be a sample of observations and evaluations, and T (X,Y) = HSIC(X,Y)

the statistical measure considered. Samples under the null distribution are generated through

random permutations and for each pair of shuffled sampled {X̃, Ỹ} the statistic T (X̃, Ỹ) is

estimated. Note that the random permutation eliminates the dependency between X and Y (if

it exists), and therefore T (X̃, Ỹ) would take a value close to zero.

2.2.5 Application to global sensitivity analysis

In the global sensitivity framework, [DV15] defines a sensitivity index based on the HSIC de-

pendence measure which characterizes how independent a given input Xi and the output Y are

as

SHSIC
i =

HSIC(X,Y )√
HSIC(X,X)HSIC(Y, Y )

(2.52)
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Normalizing the HSIC statistic allows to bound it in [0, 1] for an easier interpretation. Usually,

Equation (2.52) can be directly estimated by plugging Equation (2.50), leading to

ŜHSIC
i =

HSIC(X,Y)√
HSIC(X,X)HSIC(Y,Y)

(2.53)

The main advantages for this kernel-based method, among others, remain its low computational

cost compared to Sobol indices and the ability to deal with large number of inputs.

[DLM16] extended this work to screening purposes and also applies it to spatial outputs

[DLM17], against classical variance-based strategies. All the different strategies aforementioned

are being compared on a real-life application and it highlights the consistent results obtained

with the HSIC with less observations than the variance-based methods. In [MML19], the HSIC

is used in a two-levels global sensitivity analysis which is useful in cases where the distribution

of the inputs or the parameters of the said distributions are also unknown.

2.3 Goal-oriented sensitivity analysis

As stated before, variance-based global methods, such as Sobol indices, and moment-independent

methods provide information on the influence of an input in the full design domain by charac-

terizing which input or group of inputs cause the output to vary the most. However, in different

cases or studies, it turns out that one is more interested in finding which variables are impor-

tant i) in order to respect the constraints and have an interesting value for objective function,

which is particularly true when constraints are difficult to satisfy, and ii) when the constraints

are satisfied and the objective function produces high-performance values. In that case, these

methods appear as limited since they focus on a specific quantity of interest of the output and

alternative solutions were proposed to characterize the sensitivity of inputs for these specific

cases.

2.3.1 Sensitivity analysis based on contrast functions

In a first place, [FKR16] coined the term goal-oriented sensitivity analysis (GOSA) and defined a

new approach based on the goal of the study (e.g. find which variables have an importance when

the output is above a given value). Their idea comes from the fact that (...) the importance of

an input variable may vary depending on what the quantity of interest is.

Let Θ be some generic set and PY a probability measure defined on the space Y, they define a

contrast function as any function ψ

ψ : Θ→ L1(PY ) (2.54)

θ 7→ ψ(·, θ) : y ∈ Y 7→ Ψ(θ, y)

such that

θ∗ = arg min
θ∈Θ

Ψ(θ, Y ) (2.55)

where Ψ : θ 7→ EY [ψ(Y, θ)] is the average contrast function. When Θ = R, the features are

scalar, e.g. the mean (θ = E(Y )), and the corresponding mean-contrast is ψ(θ, y) = (y− θ)2. If

Θ = [0, 1], then the feature is a probability of exceeding a given threshold s, θ = P(Y > s) and

the corresponding contrast function is given by ψ(θ, y) = (1y>s − θ)2. Finally, considering the
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following feature of the output Y conditionally to a given Xi, θi(x) = arg min
θ

E(ψ(θ, Y ) | Xi =

x), [FKR16] proposes the ψ-index of an output Y with respect to a variable Xi and a contrast

function ψ as

Sψi =
E[ψ(θ∗, Y )]− E(Xi,Y )[ψ(θi(xi)]

E[ψ(θ∗, Y )]− E[minθ ψ(θ, Y )]
. (2.56)

ψ-indices have several properties that the authors highlight. First of all, Sψi ∈ [0, 1], with

Sψi = 0 means independence between Y and Xi while Sψi = 1 and Sψj = 0, j 6= i means we

can rewrite Y = f(Xi). The second important aspect is that when considering the mean-

contrast ψ : (θ, y) 7→ (y− θ)2, the authors retrieve the global Sobol index, using θ∗ = E(Y ) and

θi(x) = E(Y | Xi = x), thus yielding

Sψi =
V(E(Y | Xi))

V(Y )
(2.57)

which is directly the first order Sobol index expressed in Equation (2.11). Their adaptability

to the considered quantity of interest of the output, with variance among all of these, is a

major advantage. Yet, for some specific contrast, such as the α-quantile contrast function

ψ(θ) = E(Y − θ)(α− 1Y≤θ), their estimation appears as troublesome and is an ongoing field of

research [MDN18; Bro+17].

2.3.2 Sobol on the indicator function

In the reliability analysis framework, the main problem revolves around being able to find the

probability of occurrence of an undesirable event, often written as the output Y exceeding a

threshold q, namely the probability of failure Pf . It can be seen as some kind of goal-oriented

problem, where classical sensitivity measures give possible wrongful information on the influence

of the inputs. Here what matters is finding if an input has an impact on the occurrence of

undesirable events. Transposed to an optimization problem, it can be seen as assessing the

relevance of certain inputs to obtain output value with good performance which comply with

the constraints when they exist.

In order to do so, the focus is made on a particular quantity of interest of the output for

reliability problem: the indicator function of the failure domain 1Df (·). The idea initially came

from the fact that the probability of failure Pf can be expressed as the expectation of the

previously defined indicator function Pf = E(1Df (X)), and [Luy+12] highlighted the relation

between probability of failures and mathematical expectations:

Pf − Pf |Xi = E(1Df (X))− E(1Df (X) | Xi) (2.58)

where Pf |Xi is the conditional probability failure, leading to a new sensitivity index

δi =
1

2
EXi((Pf − Pf |Xi)

2) (2.59)

=
1

2
EXi((E(1Df (X))− E(1Df (X) | Xi))

2)

=
1

2
V(E(1Df (X) | Xi))

The importance measure defined here reflects the effect of the variable Xi on the failure prob-

ability. Normalizing the previous expression by the total variance V(1Df (X)) retrieves similar
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expressions to Sobol first order indices

S
1Df
i =

V(E(1Df (X) | Xi))

V(1Df (X))
(2.60)

and Sobol total indices

S
1Df
Ti

= 1−
V(E(1Df (X) | X∼i))

V(1Df (X))
(2.61)

or using Equation (2.14)

S
1Df
Ti

=
E(V(1Df (X) | X∼i))

V(1Df (X))
(2.62)

where X∼i means X without Xi. Usual strategies to estimate Sobol indices can be used to

estimate both S
1Df
i and S

1Df
Ti

. Interestingly, Equation (2.60) can be derived, using the Bayes’

theorem as the following [PD19]

S
1Df
i =

V(E(1Df (X) | Xi))

V(1Df (X))
=

V(Pf |Xi)

Pf (1− Pf )
(2.63)

=
1

Pf (1− Pf )
V
(
pXi|X∈Df (xi)× Pf )

pXi(xi)

)
=

Pf
1− Pf

V
(
pXi|X∈Df (xi)

pXi(xi)

)

The same reasoning can be applied to S
1Df
Ti

. This means that the first order Sobol indices

associated with the indicator function are in fact proportional to the variance of the ratios

between the probability density function of Xi and their probability density function given that

the output exceeds a given threshold q. [PD19] proposes to approximate the probability density

functions using non-parametric approaches to estimate the ratio.

Furthermore, one can also notice that

Pf
1− Pf

V
(
pXi|X∈Df (xi)

pXi(xi)

)
=

Pf
1− Pf

EXi

(
pXi|X∈Df (xi)

pXi(xi)
− EXi

(
pXi|X∈Df (xi)

pXi(xi)

)2
)2

=
Pf

1− Pf

∫ (
pXi|X∈Df (xi)

pXi(xi)
− 1

)2

pXi(xi)dxi (2.64)

since EXi

(
pXi|X∈Df (xi)

pXi (xi)

)
= 1. Considering the dissimilarity measures defined previously in

Equation (2.21), the Sobol first order index associated with the indicator function is directly

connected to a specific dissimilarity measure using the Pearson χ2 divergence:

S
1Df
i =

Pf
1− Pf

∫ (
pXi|X∈Df (xi)

pXi(xi)
− 1

)2

pXi(xi)dxi (2.65)

=
Pf

1− Pf

∫
χ2

(
pXi|X∈Df (xi)

pXi(xi)

)
pXi(xi)d(xi) =

Pf
1− Pf

dχ2(PXi , PXi|X∈Df )

The main issue with the previous formulation comes from the estimation of the χ2 divergence,

usually computed nonparametric approach such as kernel density estimation (KDE).

Interestingly, it is possible to exhibit a relation between the formulation of S
1Df
i obtained in

Equation (2.65) and a dependence measure called the Squared-loss Mutual Information (SMI)
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[Suz+09] with the following proposition:

Proposition 1. The Pearson χ2 divergence between PXi and PXi|X∈Df is proportional to the

Squared-loss Mutual Information between the input Xi and the indicator function 1Df (i.e.

inputs in the failure domain):

Pf
1− Pf

dχ2(PXi , PXi|X∈Df ) = SMI(Xi, 1Df ) (2.66)

Proof. Let assume X ∈ X and Y ∈ Y. Let pXY (x, y) be the joint density probability of X and

Y , and pX(x) and pY (y) be the marginal densities of X, and Y respectively. The Squared-loss

Mutual Information for X and Y is:

SMI(X,Y )) =
1

2

∫∫ (
pXY (x, y)

pX(x)pY (y)
− 1

)2

pX(x)pY (y)dxdy (2.67)

Defining Z = 1Df , since Z is a discrete random variable, the SMI between Xi and Z goes as

SMI(Xi, Z)) =

1∑
z=0

∫ (
pXiZ(xi, z)

pXi(xi)P (Z = z)
− 1

)2

pXi(xi)P (Z = z)dxi (2.68)

=

∫ (
pXiZ(xi, 0)

pXi(xi)P (Z = 0)
− 1

)2

pXi(xi)P (Z = 0)dxi

+

∫ (
pXiZ(xi, 1)

pXi(xi)P (Z = 1)
− 1

)2

pXi(xi)P (Z = 1)dxi

Deriving the first term in Equation (2.68) leads to(
pXiZ(xi, 0)

pXi(xi)P (Z = 0)
− 1

)2

=

(
pXi(xi)− pXiZ(xi, 1)

pXi(xi)(1− P (Z = 1))
− 1

)2

(2.69)

=

(
P (Z = 1)

1− P (Z = 1)
− pXiZ(xi, 1)

pXi(xi)(1− P (Z = 1))

)2

=
P (Z = 1)2

(1− P (Z = 1))2

(
1− pXiZ(xi, 1)

pXi(xi)P (Z = 1)

)2

Replacing it in Equation (2.68) yields

SMI(Xi, Z)) =
P (Z = 1)2

(1− P (Z = 1))2

∫ (
1− pXiZ(xi, 1)

pXi(xi)P (Z = 1)

)2

pXi(xi)(1− P (Z = 1))dxi (2.70)

+

∫ (
pXiZ(xi, 1)

pXi(xi)P (Z = 1)
− 1

)2

pXi(xi)P (Z = 1)dxi

=
P (Z = 1)

1− P (Z = 1)

∫ (
pXiZ(xi, 1)

pXi(xi)P (Z = 1)
− 1

)2

pXi(xi)dxi

Finally, since pXi|Z=1(xi) =
pXiZ(xi,1)

P (Z=1) , we obtain

SMI(X,Z)) =
P (Z = 1)

1− P (Z = 1)
dχ2(PXi , PXi|Z=1) = S

1Df
i (2.71)
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which ends the proof.

The SMI is a measure of independence between two variables (in our case a given input Xi and

our quantity of interest 1Df ) that has a direct connection to the MI with the notable advantage of

being approximated from data much more efficiently and of being numerically more stable than

the MI. Thus, the Sobol first order index associated with the indicator function can actually be

viewed as an independence measure between the input and the quantity of interest considered

here, the indicator on the failure domain.

The basic idea of the SMI is to directly estimate the density-ratio

rXY (x, y) =
pXY (x, y)

pX(x)pY (y)
(2.72)

without going through the density estimation of pXY (x, y), pX(x) or pY (y). More details on

the estimation of the density-ratio with possible applications are available in [Sug13].

2.3.3 Regional Sensitivity analysis

Regional Sensitivity Analysis (RSA), first introduced and investigated in [YHS78; SH80], also

called Monte Carlo filtering in [Sal+04], is a family of methods aimed at identifying regions in

the inputs space corresponding to particular values of the output. The input samples are par-

titioned into a behavioral B and a non behavioral B group. The behavioral group corresponds

to inputs sets producing a preferred model response (a behavior). The division into behavioral

and non behavioral usually depends on whether the associated model simulation exhibits the

expected pattern of the output or not. This distinction can also be based on a measure of per-

formance, depending on whether the associated output is above or below a prescribed threshold.

Regional Sensitivity Analysis identifies if a variable is important with respect to one group or

another by comparing the probability density functions pm(Xi | Y ∈ B) and pn(Xi | Y ∈ B).

This comparison is either done through a visual inspection of the empirical cumulative distri-

bution functions of the two sets that provides an indication on the behavioral impact due to

a given input, or using standard statistical tests, such as the Kolmogorov-Smirnov statistic, to

measure the divergence between the two cumulative distribution distributions. [YHS78] derives

a sensitivity index based on the aforementioned statistic test as

SRSA
i = max

Xi
|Fm(Xi | Y ∈ B)− Fn(Xi | Y ∈ B)| (2.73)

with F the empirical cumulative distribution, where the subscript corresponds to the number

of input samples lying either in the behavioral set B or in its complementary behavioral set

B. The test in Equation (2.73) is performed for each input independently. The obtained value

determines at which significance level α one can reject the null hypothesis H0 : pm(Xi | Y ∈
B) = pn(Xi | Y ∈ B). The smaller α, or the bigger SRSA

i , the more important the input is

in driving the considered behavior of the output. To perform the test, one must choose the

significance level, corresponding the probability of rejecting the null hypothesis when it is true

(hence flagging an input as important while it is not the case, also known as the type-I error).

Then, using the critical level Dα, one can determines whether H0 is rejected or not. This

procedure is simplified in Figure 2.8 on an example displaying a significant difference between

both behavioral and non behavioral subsets.

École des Mines de Saint-Étienne Adrien Spagnol
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Figure 2.8 – Graphical representation of the Kolmogorov-Smirnov test computed in Equa-
tion (2.73). In this case, the cumulative distribution for X ∈ B is steepest on the left side,
meaning low values of X are more likely to produce behavioral output realizations.

Despite some interesting properties, Regional sensitivity analysis has many drawbacks, high-

lighted in [SGS94]. The statistic used in Equation (2.73) is not sufficient for screening purposes

as a value of 0 does not necessarily implies insensitivity for the considered input since the

method only characterized inputs contributions related to main effects of variance based meth-

ods. Furthermore, the threshold at which the output is deemed acceptable is often a subjective

choice by the designer. To overcome this previous issue, one can rank the output samples and

group them in a given number of equally spaced intervals then compare the resulting cumulative

distribution functions of the input variables, see [FBA96].

In a sense, the principles of Regional sensitivity analysis and Sobol indices on the indicator

function are equivalent. They both characterize influence of inputs through differences between

the specific distributions. Only the distance considered differs, as the Regional sensitivity

analysis relies on the Kolmogorov-Smirnov distance and Sobol on the indicator function relies

on the Pearson χ2 divergence.

2.4 Conclusions

This chapter was dedicated to define what is sensitivity analysis and how it is used to measure

the impact of an input or a set of inputs on the variability of the model output. Different

methods were presented: the generic variance-based methods, and other distribution-based

methods which try to have a broader point of view. We focus on kernel-based methods, which

are at the core of our strategies. To circumvent the limitations of direct distribution-based

approaches in terms of dimension, they embed the distributions in reproducing kernel Hilbert

spaces. As the most used indices rely on generic quantities of interest of the output (e.g., the

output variance), the need for different strategies arises when conducting specific studies such
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as reliability analysis and optimization. In the light of the above, we present in the next chapter

a kernel-based sensitivity strategy dedicated to high-dimensional optimization problem.

Chapter take-home messages

• Sensitivity analysis are methods which characterize the influence of the variation

of an input on the variability of the output.

• Variance-based methods are the most well-known methods and focus on the second

statistical moment of the output.

• Kernel-based methods are a recent approach based on distribution embeddings in

Hilbert spaces, which consider the complete distribution instead of the moments.

• Depending on the goal of the study, other indices can be defined, which reflect

specific quantities of interest.

• Goal-oriented sensitivity analyses mostly rely on the distance between specific dis-

tributions. A new version adapted to optimization could be proposed using kernel-

based methods.
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Offline high-dimensional optimization

This chapter is adapted from the following published article:

Spagnol, Adrien, Le Riche, Rodolphe , & Da Veiga, Sébastien (2019). Global sensitivity analysis

for optimization with variable selection. SIAM/ASA Journal on Uncertainty Quantification,
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3.1 Transformation of the output

In the goal-oriented sensitivity analysis framework defined earlier, the first objective is to define

a quantity of interest related to the goal of our study or being able to characterize a set of

interest producing behavioral realizations of the output.

In the scope of our work, the main goal of the study is to optimize the objective function f ,

sometimes under m constraints functions, hence solving:

min
X∈X⊂Rd

f(X) (3.1)

subject to gl(X) ≤ 0, l = 1, . . . ,m.

Traditionally, the Sobol indices of the inputs are computed and the inputs with total index close

to zero are set to a fixed value, often the nominal value (when defined). This was characterized

as factor fixing in Section 2.1. For optimization problems, having fewer variables considered

in the problem implies a smaller search volume, thus fewer calls to the model to reach an

optimum. However, fixing low-impacting inputs results in a loss of fine-tuning ability due to

the simplification of the problem. Furthermore, the optimum of the modified problem might

differ from the real global optimum. To illustrate this, we use the two-dimensional Dixon-Price

function as an example:

f(X) = (X1 − 1)2 + 2(X2
2 −X1)2 (3.2)

with Xi ∼ U [−10, 10], for i = {1, 2}. This functions has a characteristic U-shape, cf Figure 3.1.

A sensitivity analysis of the output function using Sobol indices gives a total index close to

0 for X1 while it is close to 1 for X2. In the light of this analysis, the first input appears as

negligible and can be set to a fixed value, such as its mean value µX1 = 0. But doing so makes it

impossible to find the true global optimum X∗ = [1,
√

2/2]. As shown in Figure 3.1, low values

of the Dixon-Price function have skewed contour lines, showing that what matters to find the

global minimum is the interaction of both variables and not the sole action of one.

In the sense of the Regional sensitivity analysis, we define our set of interest as the sublevel set

where the objective is below a given threshold q and the constraints g are respected up to a

relaxation threshold T

Dq,T = {X ∈ Rd, f(X) ≤ q ∩ g(X) ≤ T} (3.3)

with T ∈ Rm,+ and q ∈ R. The threshold T relaxes the constraints when finding a feasible point

is too difficult. Hereafter, all T values are similar and chosen in order to have a sufficient number

of feasible points for the sensitivity indices computation, i.e. a few hundreds. The threshold q

that contributes to the definition of Dq,T is a quantile qα of the objective function f(·). Low

quantiles ensure that we are looking at values of the output close to the best observations.

We derive sensitivity indices adapted to optimization by three thresholding transformations

of the output f(X) and by performing sensitivity analysis on the modified output which is

written Z. Each modification of the output can be seen as a new quantity of interest usable

in a sensitivity analysis context, with some resembling the one considered for the reliability

sensitivity analysis from the previous chapter, Section 2.3.2. We consider the following output

transformations based on thresholding:

1. Zero-thresholding: Z = f(X)× 1Dq,T ,
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X
1

X2

O
bjective function

Figure 3.1 – Surface representation of the two-dimensional Dixon-Price function Equation (3.2),
with its characteristic U-shape. Contour lines for low values of the objective output are also
shown in black.
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50 Chapter 3. Offline high-dimensional optimization

2. Conditional-thresholding: Z = f(X)|(X ∈ Dq,T),

3. Indicator-thresholding: Z = 1Dq,T ,

where 1 is the indicator function, 1Dq,T = 1 if X ∈ Dq,T and 0 otherwise. We discuss in the

following these different thresholdings.

3.1.1 Zero-thresholding

Recalling the previous example of the two-dimensional Dixon-Price function, we define1 Z =

f(X)×1Dq,∞ and compute the first and total order Sobol indices of Z with respect to the value

of α, see Figure 3.2 (A). In 2 dimensions, ST1 = S1 +S12, resp. ST2 = S2 +S12, where S12 is the

second-order index which characterizes the effect of X1 and X2 varying simultaneously. In that

case, when α decreases, S2 decreases while ST2 remains constant, meaning that S12 increases.

Hence, for low values of f , the interaction of both inputs matters for our optimization problem

and not exclusively X2 as found before when considering the whole domain of X. The right

side of Figure 3.3 shows the evolution of the contour of the Dixon-Price function which gives

an insight of the results obtained previously: while most of the variance in the left plot is due

to X2 and the contour lines correspond to those of a function without interaction, the contour

lines in the right plot are distorted with a stronger role of X1 and its interaction with X2.

Sobol indices S1 S2 S1
T S2

T
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Figure 3.2 – Evolution of S1 and ST1 , resp. S2 and ST2 , with respect to the quantile α for the
the Dixon-Price function Equation (3.2) using (A) zero- and (B) conditional-thresholdings.

Although in the last example the sensitivity of the variable is qualitatively well captured, the

zero-thresholding is hard to interpret for two reasons. First of all, the values of Z outside of

Dq,T are arbitrarily fixed at zero but other value are possible1 and this will affect the calculated

sensitivities. Second, the sensitivity of Z using this thresholding characterizes both the variation

of f inside Dq,T and the shape of Dq,T. To illustrate this point let us consider the simple example

1As a special case for the more general C constant-thresholding, Z = f(X)× 1Dq,∞ + C × 1D̄q,∞ , with D̄q,∞
the complementary set of Dq,∞. The ∞ subscript in place of T expresses the lack of constraint functions, such
as in the presented examples of this section.
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Figure 3.3 – Left: contour of the Dixon-Price function Equation (3.2), Right: contour of the
thresholded Dixon-Price function for q = q20%}. The contour lines on the right-hand side no
longer correspond to an ellipse aligned with the reference axes, there is a change of curvature
associated to a Sobol dependency between the variables.

of a linear function

f(X) = X1 + 2X2, (3.4)

defined on [−10, 10]2, see Figure 3.5 for its contours. The sensitivity indices can be analytically

determined on the whole domain: S1 = 1/5 and S2 = 4/5. Since the function is already in its

decomposed form, it is obvious that there is no interaction between variables for the complete

domain (i.e., α = 100%). Yet, interactions appear when α gets lower than 100%, as it can be

seen in Figure 3.4 (A), because Dq,T takes a non-rectangular shape.

3.1.2 Conditional-thresholding

Unlike the previous zero-thresholding, conditional-thresholding aims at knowing which inputs

are important inside Dq,T. Yet, a dependency on the shape of Dq,T remains, as it can be seen

with the linear function of Figure 3.4 where we observe two phenomena. First, for all α below

25%, the indices reach a steady-state. Below this value of α, the shape of Dq,∞ remains a

right-angled triangle of unit height and base length of two, affecting all variables in the same

way, see Figure 3.5. Besides, both first order indices are equal from this point on: while X2 is

twice more sensitive than X1 in the function definition, its interval in the sub-level Dq,∞ is twice

as narrow, which makes up for the difference in terms of Sobol indices. Prior to α = 25%, the

shape of Dq,∞ depends on α. Note that this version of thresholding does not have any arbitrary

threshold value, unlike the zero-thresholding where values outside Dq,T were set to zero.

3.1.3 Indicator-thresholding

This last thresholding transformation captures which variables are important in order to reach

Dq,T while not depending on the specific values of the objective function f inside it. This can

be done through a discrete encoding using the indicator function 1Dq,T : Y → [0, 1], Y = 1 if
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Figure 3.4 – Evolution of S1 and ST1 , resp. S2 and ST2 , with respect to the quantile α for the
linear function using (A) zero- and (B) conditional-thresholdings.
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Figure 3.5 – Contour plot of the linear function. The gray area corresponds to Dq25%,T.

Y ∈ Dq,T and 0 otherwise. Since it transforms the output into a categorical variable, there is

no need to assign a specific value to points outside Dq,T. Unlike previous thresholdings, the

indicator-thresholding only characterizes the boundary of Dq,T and keeps no information about

the values inside or outside the set of interest. It is independent of any monotonous scaling of

f(), which is a desirable invariance property in optimization [Oll+17]. From now on, we will

only focus on the indicator thresholding because of its aforementioned assets.

An important aspect related to the last transformation must be considered. Since the num-

ber of observations is usually limited, when the sublevel set Dq,T is rather small the binary

transformation can result in a majority of zero outputs and the information conveyed by the
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relative values of the output is lost. To overcome this, a possibility would be to use a smooth

transformation instead of a binary one, as this would act as some kind of relaxation on the

indicator function.

In the following chapter, we introduce a kernel-based sensitivity index based on the Indicator

thresholding as it allows to highlight a connection between a kernel-based dependence measure

and a specific distance between distribution embeddings.

3.1.4 Kernel dependence measure on categorical inputs

In Section 2.2 all the necessary theory about RKHS and the associated dependence measure,

the HSIC, were detailed. In this subsection, we define a sensitivity measure using the HSIC and

the indicator-thresholding modification aforementioned. The HSIC dependence measure only

relies on the choice of kernel functions associated to the inputs and the outputs. This choice

depends directly on the type of data: for example, for continuous data sets, it is customary to

use the squared exponential kernel,

k(x, x′) = exp

(
−‖x− x

′‖22
σ2

)
(3.5)

with σ the bandwidth parameter. In the case of a binary transformation of the output, con-

sidering a categorical kernel for Z = 1Dq,T seems natural and was already suggested in [DV15].

Multiple kernels are available in that case, we can list a couple below:

• the Dirac kernel k(x, x′) = 1x=x′ ,

• the Linear kernel k(x, x′) = 〈x, x′〉.

In order to evaluate the importance of each variable Xi separately, we define the following sen-

sitivity measure based on the HSIC and the Indicator-Thresholding

Definition 3.1.1 (Sensitivity index from HSIC with Indicator-Thresholding, HSIC-IT).

Let f() : Rd → R and g() : Rd → Rm be objective and constraints functions of the random

variables X = (X1, . . . , Xd) and define Dq,T = {X ∈ Rd, f(X) ≤ q ∩ g(X) ≤ T} for any q ∈ R
and T ∈ Rm,+. The sensitivity index of the variable Xi from the Hilbert-Schmidt Independence

Criterion with the Indicator-Thresholding (HSIC-IT) is 2

SHSIC
q,T (Xi) = HSIC(Xi, 1Dq,T). (3.6)

A variable Xi is negligible for optimization if its index SHSIC
q,T (Xi) is close to zero. The main

difference between the above SHSIC
q,T (Xi) definition and the sensitivity index proposed in [DV15]

lies in the use of the indicator function.

Assume we have a sample of observations Xi = (x1
i , . . . , x

n
i ) and its corresponding output

evaluations Y = f(Xi). The binary transformation 1Dq,T , with q corresponding to an estimated

low α quantile of the output q = F−1
Y (α), is applied to obtain the modified output evaluations

Z. Equation (3.6) can then be estimated by

ŜHSIC
q,T (Xi) = HSIC(Xi,Z) =

1

n2
tr(KHLH) (3.7)

2When there is no constraint function considered, the index is either written as SHSIC
q,∞ (·) or SHSIC

q (·)
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with Kpq = k(xpi , x
q
i ) and Lpq = l(zp, zq), the Gram matrices associated to the kernel k on the

inputs and the kernel l on the binary output. H is a centering matrix defined as Hpq = δpq−n−1.

A simple normalization of the indices is possible through

S̃HSIC
q,T (Xi) =

ŜHSIC
q,T (Xi)∑d

i=1 Ŝ
HSIC
q,T (Xi)

(3.8)

in order to guarantee that S̃HSIC
q,T (Xi) ∈ [0, 1]. If S̃HSIC

q,T (Xi) = 0, the input is considered as

negligible for the optimization. Alternatively, like in [DV15], ŜHSIC
q,T (Xi) could be divided by√

HSIC(Xi,Xi)HSIC(Z,Z).

Interestingly, by rewriting Equation (3.6) using its kernel expression, it is possible to highlight

a relation between the HSIC-IT and a specific MMD, considering the following proposition.

Proposition 2. Under the assumptions that the output is discrete and the proper kernel is used

for it, the HSIC with Indicator-Thresholding sensitivity index for a given input Xi is directly

equal to a Maximum mean discrepancy between PXi and PXi|X∈Dq,T :

HSIC(X,Z) ∝ γ2(PXi|Z=1, PXi) = γ2(PXi|X∈Dq,T , PXi) (3.9)

Proof. We start from the expression of the HSIC in Equation (2.45)

HSIC(Xi, Z) =EXi,ZEX′i,Z′k(Xi, X
′
i)l(Z,Z

′) + EXiEX′iEZEZ′k(Xi, X
′
i)l(Z,Z

′)

− 2EXi,ZEX′iEZ′k(Xi, X
′
i)l(Z,Z

′)

=

∫∫
k(xi, x

′
i)l(z, z

′)(pXiZ(xi, z)− pXi(xi)pZ(z))

× (pXiZ(x′i, z
′)− pXi(x′i)pZ(z′))dxidx

′
idzdz

′

Considering that the kernel used for the output is discrete, either equal to 0 or 1, we can derive

that

HSIC(Xi, Z) =
1∑
z=0

∫
k(xi, x

′
i)l(z, z

′)(pXi|Z=z(xi)

− pXi(xi))(pXi|Z=z′(xi)(x
′
i)− pXi(x′i))P (Z = z)P (Z = z′)dxidx

′
i

since pXiZ(xi, z) = pXi|Z=z(xi)pZ(z). Considering the following two properties of l(z, z′): 1)

l(z, z′) = 0 if z = z′ and 2) l(z, z′) = 0 if z = 0, we write

HSIC(Xi, Z) =

1∑
z,z′=0

∫
k(xi, x

′
i)l(z, z

′)(pXi|Z=z(xi)− pXi(xi))

× (pXi|Z=z′(xi)(x
′
i)− pXi(x′i))P (Z = z)P (Z = z′)dxidx

′
i

=
1∑
z=0

∫
k(xi, x

′
i)l(z, z

′)(pXi|Z=z(xi)− pXi(xi))

× (pXi|Z=z(xi)(x
′
i)− pXi(x′i))P (Z = z)2dxidx

′
i

=

∫
k(xi, x

′
i)(pXi|Z=1(xi)− pXi(xi))(pXi|Z=1(xi)(x

′
i)− pXi(x′i))P (Z = 1)2dxidx

′
i
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We directly recognize the expression of the MMD between PXi|Z=1 and PXi times a factor

P (Z = 1)2:

γ2(PXi|Z=1, PXi) =

∫
k(xi, x

′
i)(pXi|Z=1(xi)− pXi(xi))(pXi|Z=1(xi)(x

′
i)− pXi(x′i))dxidx′i

For other kernels l(z, z′), this result stands and only the factor multiplying the MMD differs. For

example, for the Dirac kernel, this factor is equal to 2P (Z = 1)2. Hence SHSIC
q,T (Xi) measures the

impact of an input through how much its probability distribution changes when it is restricted

by the output and constraints satisfaction. The probability distributions that are considered

here are uniform distributions in Dq,T. This choice is implicit through the selection of samples

of same weight within Dq,T to calculate SHSIC
q,T (Xi). This consideration can be directly related

to the Regional Sensitivity Analysis approach of Section 2.3.3, in the case of B, namely the

behavioral set, is the sublevel set of interest Dq,T. Indeed, considering that

pXi(xi) = pXi|X∈Dq,T(xi)P (X ∈ Dq,T) + pXi|X∈Dq,T(xi)(1− P (X ∈ Dq,T)) (3.10)

where Dq,T is the complementary of Dq,T, then it comes that

pXi(xi)− pXi|X∈Dq,T(xi) = pXi|X∈Dq,T(xi)P (X ∈ Dq,T) + pXi|X∈Dq,T(xi)(1− P (X ∈ Dq,T))

− pXi|X∈Dq,T(xi)

= pXi|X∈Dq,T(xi)(1− P (X ∈ Dq,T))− pXi|X∈Dq,T(xi)(1− P (X ∈ Dq,T))

= (1− P (X ∈ Dq,T))(pXi|X∈Dq,T(xi)− pXi|X∈Dq,T(xi))

which is similar to the quantity considered in the Regional Sensitivity Analysis framework, ex-

cept they work with cumulative distribution function and the distance they use is the Kolmogorov-

Smirnov distance. Identically, it is also similar to the Squared-loss Mutual Information defined

earlier (and its connection with the Sobol indices on the Indicator function in place of the

output), but we use a different dependence measure.

As an illustration of what the sensitivity indices measures in Equation (3.6), consider the two-

dimensional Dixon-Price function already discussed previously. Figure 3.6 shows observations

that lead to output evaluations f(X) that belong to the sublevel setDq with q being the empirical

20% quantile of the output. The initial marginal distributions of the inputs, Xi ∼ U [−10, 10],

for i = {1, 2}, are shown in dashed lines while the marginal distributions of the inputs given Dq
are shown in straight lines. Computing the sensitivity indices of the inputs using the HSIC-IT

yields that ŜHSIC
q,∞ (X1) = 0.0464 and ŜHSIC

q,∞ (X2) = 0.1783, meaning that the second variable is

more influential to obtain more observations in the sublevel set of interest. Considering the

particular shape of the function Figure 3.1, it is particularly clear that any change for X2 is

much more meaningful to reach the bottom of the valley. This is also noticeable on the marginal

distributions since the distribution of PX2|X∈Dq differs more from the uniform U [−10, 10] than

the distribution of PX1|X∈Dq .

Let {X,Y} be a data sample of size n = 2000, we can also compute the HSIC-IT sensitivity

indices of both variables for varying levels of quantile: each estimation is repeated 20 times.

The results are shown in Figure 3.7 and several observations are notable: first of all, as expected
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the sensitivity of the second variable X2 grows as the considered quantile diminishes, second

of all, the sensitivity of the first variable X1 rises at low quantiles since it is the interaction of

both variables that allows to reach such sublevel sets Dq and not the sole action of X2. Finally,

the estimated error of the indices increases for lower quantiles, especially on the 10% one. This

comes from the fact that the number of points that lays in Dq equivalently decreases: considering

a quantile of 10% implies that we only a tenth of the points usable for the computation of the

HSIC-IT indices, the rest corresponding to a zero value after the binary transformation using

the indicator function.

−10

−5

0

5

10

−10 −5 0 5 10

X1

X
2

Figure 3.6 – Samples from PX|X∈Dq and associated inputs marginal distributions for the Dixon-
Price function. The original empirical distribution on the complete domain is also drawn in
dashed lines. It is not completely uniform because of the finite size of the sample.

Another illustration is given by the following two-dimensional “Level” function whose behavior

changes at a certain threshold q: above the threshold q, f(X) only depends on X1 but it only

depends on X2 below the threshold:

f(X) =

{
|X1| if |X1| > q

|X2 − 2| − 6 otherwise.
(3.11)

Figure 3.8 shows the Level function for q = 2.3 defined for Xi ∼ U [−5, 5], the threshold is

represented to illustrate where the shift occurs. It can clearly be seen how the dependency

changes from the picture. Figure 3.9 provides the HSIC-IT sensitivities ŜHSIC
q,∞ (Xi), i = 1, . . . , 2,

for different α-quantile values. The vertical dashed line corresponds to the threshold of 2.3

(which is equal to the empirical 46% quantile of the output). It is observed that the unique

dependency on X1 is captured above that threshold where the sensitivity on X2 is null, while

both variables have a non-zero sensitivity below the threshold. Indeed, X2 is negligible for
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Figure 3.7 – Evolution of the HSIC-IT sensitivity indices w.r.t. the quantile α for the Dixon-
Price function Equation (3.2).

reaching the set above q. Yet, below q, both inputs matter since X1 is necessary to attain that

area in a first place and X2 matters to reach sub-areas below q. The fact that the HSIC-IT

sensitivity of X1 stays the same means that it has zero influence within the sublevel set Dq, for

all quantiles below the 46% quantile of the output.

In the following, we detail an optimization strategy including a preliminary step of sensitivity

analysis with the HSIC-IT measures.

3.2 Optimization with dependence measures

The HSIC-IT measures naturally lead to an optimization strategy: the HSIC-IT are first calcu-

lated and, second, one must define a strategy to simplify the optimization problem considering

the variables detected as negligible and finally carry out the optimization procedure. It aims at

solving the following problem, obtaining the values for X ∈ Rd inducing the best result for the

objective function f , under a set of m constraints:

min
X∈X⊂Rd

f(X) (3.12)

subject to gl(X) ≤ 0, l = 1, . . . ,m

.

3.2.1 Detecting important variables

As a preliminary step to the optimization, a sensitivity analysis is done in order to measure

which inputs actually matter to reach certain levels of the objective function within the feasible

region. We generate n points with fully-random Monte Carlo simulations X = (X1, . . . ,Xn)

and compute the ŜHSIC
q,T (Xi), i = 1, . . . , d, for multiple α values (typically α = [10%, 40%,
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X1

X
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O
bjective function

Figure 3.8 – Surface representation of the two-dimensional Level-Set function Equation (3.11).
The dependence in variable shifts below the threshold q = 2.3 represented as a light grey surface
in the drawing.
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Figure 3.9 – Evolution of the HSIC-IT sensitivity indices w.r.t. the quantile α for the Level-Set
function Equation (3.11).

70%, 100%]). The value of T is chosen to ensure a sufficient number of feasible points, typically

around one hundred data samples. A Gaussian radial basis function (RBF) kernel is used for

the inputs as it satisfies the characteristic property, making certain that the nullity of ŜHSIC
q,∞ (Xi)

implies independence and that the variable Xi is negligible. The bandwidth parameter σ of the

Gaussian RBF kernel is chosen as the median distance between points in the sample set X. A

linear kernel is used for the output, since it is modified into binary output using Z = 1Dqα,T .

3.2.2 Modifying the optimization problem

After the sensitivity analysis, an input Xi is dubbed negligible for the optimization when its

normalized S̃HSIC
q,T (Xi) is below a threshold τ = 0.1 × maxi=1,...,d S̃

HSIC
q,T (Xi) for a low α (here

α = 10%). We set those inputs to a chosen value and reformulate the optimization problem: let

A be the index set of active optimization variables whose HSIC-IT sensitivity index is above τ ,

and A the complementary set of fixed variables, so that the initial number of variables is split

into d = card(A) + card(A). The modified optimization problem is

minimize
Xi, i∈A

f(X) (3.13)

where Xj = xj is given, j ∈ A, X ∈ X ,
subject to gl(X) ≤ 0, l = 1, . . . ,m.

Two approaches for setting the non-active variables are studied:

• Random strategy: the negligible inputs, xj , j ∈ A, are uniformly sampled from the

restriction of X to its jth component at the beginning of the search.

• Greedy strategy: the negligible inputs are set to the values provided by the best feasible

point of the sensitivity analysis; xj , j ∈ A is the j-th component of arg minxi,i=1,...,N
g(xi)≤0

f(xi).
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Algorithm 1 summarizes the main steps of the method: the calculation of the sensitivity indices,

the selection of the active variables and the patching of the inactive variables, and the final

optimization. The algorithm details the computation of the indices, based on the estimator

proposed in Equation (2.50). The optimization is carried out with the COBYLA algorithm

[Pow94]. It is a local derivative-free optimization algorithm with nonlinear inequality and

equality constraints which constructs successive linear approximations of the objective function

and constraints and optimizes these approximations at each step. The implementation from the

nlopt package [Ypm14] of the R language is used.

Including a preliminary step of sensitivity analysis allows a dimension reduction which directly

reduces the cost of the optimization, since for most of the optimizers the computational cost is

at least proportional to the problem dimension. One important aspect is the added cost of the

sensitivity indices themselves since they require calls to the objective and constraints functions

to compute qα and then Dqα,T. If the feasible region is too small (α too low), a large number

of points will be required to compute the HSIC-IT sensitivity indices. To overcome this issue,

one can relax the problem with the coefficient T.

Algorithm 1 Optimization with HSIC-IT sensitivity indices

Require: X = (X1,X2, . . . ,Xn), Y = f(X), α, T, τ

qα = F−1
Y (α)← α-th empirical quantile of the output evaluations

Dqα,T = {X | f(X) ≤ qα ∩ g(X) ≤ T}
Z = 1Dqα,T binary transformation of the output

L← l(zp, zr) assembly the transformed output Gram matrix, p, r = 1, . . . , n

for i = 1, . . . , d do

Xi ← (X1
i , X

2
i , . . . , X

n
i )

K ← k(Xp
i , X

r
i ) assembly the input Gram matrix, p, r = 1, . . . , n

# Estimate the i-th sensitivity index from Equation (3.7)

ŜHSIC
q,T (Xi) = HSIC(Xi,Z) = 1

n2 tr(KHLH)

end for

S̃HSIC
q,T (Xi) = ŜHSIC

q,T (Xi)/
∑d

i=1 Ŝ
HSIC
q,T (Xi) normalize indices

τ = 0.1×maxi=1,...,d S̃
HSIC
qα,T

(Xi)

A ← {i | i ∈ [1, d] and S̃HSIC
q,T (Xi) ≤ τ}, A ← [1, d] \ A

if Random strategy then

Xfixed ←∼ U(X ) uniform sample in search space

else if Greedy strategy then

Xfixed ← arg min Xi∈X
g(Xi)≤0

f(Xi)

end if

Carry out the optimization on selected variables

X∗ ← arg min Xi,i∈A
g(Xi)≤0

f(X) where Xj = Xfixed
j , j ∈ A

3.3 Constrained optimization test problems

Tests will be carried out to compare the Random and Greedy problem formulations, to which

we add the unmodified version of the problem, referred to as Original, where all d variables
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are optimized. In this subsection, we purposely use a large number of points for the sensitivity

analysis, with n = 50000, leaving for now the cost of the HSIC-IT indices aside to focus on the

achievable values of the modified optimization problem.

Each estimation of ŜHSIC
q,T (Xi) is repeated 20 times to obtain a confidence interval on each index.

The starting point for the optimizer are each of the 100 points of an optimized latin hypercube

sampling (LHS). In order to test different settings for the Random version, we repeat this

operation 100 times, with a different value for the negligible inputs, randomly sampled on the

full domain. Using the same design of experiments for all versions would have been problematic

as it cannot be guaranteed that the filling criterion is still respecter after the simplification. In

the end, we obtain 10000 optimization runs for each version.

A budget of 500 calls to the objective function is given as the maximum number of calls and

serves as a stopping criterion. The optimization also stops if too many consecutive steps give the

same value or if the solution gap between two consecutive steps is too small. The comparisons

will be based on the number of calls to the objective function at convergence and the performance

of the solutions. In further results, a summary will be always presented showing the 10%,

50% and 80% quantiles of the quantity of interest here (namely the number of calls and the

minimal feasible output value obtain). The best result obtained out of the 10000 runs is also

an interesting baseline of comparison.

The following examples are two well-known engineering design test problem: the Gas Trans-

mission Compressor Design problem [BP76] and the Welded Beam design problem [Deb00].

Table 3.1 summarizes characteristic features of both problems: the number of inputs d, the

number of constraints m, the ratio in percent of the volume of feasible region to the volume of

the complete design space, the best known feasible objective value and the corresponding X∗.

Table 3.1 – Constrained optimization test problems.

Name d m % feas. space Best f(X) Best known X∗

GTCD 4 1 52.38 2964893.85 [49.99, 1.178,24.59, 0.389]

WB4 4 5 5.6 · 10−2 1.7250 [0.206, 3.473, 9.037, 0.206]

3.3.1 Gas Transmission Compressor Design (GTCD)

The first example is a real-life problem about the design of a gas pipe line transmission system.

The objective is to minimize its cost f(X1, X2, X3, X4) under a nonlinear constraint. The

problem objective function, constraint and search space are given below:

f(X) =(8.61× 105)X
1/2
1 X2X

−2/3
3 X

−1/2
4 + (7.72× 108)X−1

1 X0.219
2

− (765.43× 106)X−1
1 + (3.69× 104)X3

s.t.

g1(X) = X4X
−2
2 +X−2

2 − 1 ≤ 0

20 ≤ X1 ≤ 50, 1 ≤ X2 ≤ 10, 20 ≤ X3 ≤ 50, 0.1 ≤ X4 ≤ 60

Figure 3.10 shows the evolution of the conditional distributions for different quantiles α. Above

each plot, the corresponding means and standard deviations, out of the 20 repetitions, of the

normalized HSIC-IT sensitivities are given. X3 is detected as negligible as its index is near
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62 Chapter 3. Offline high-dimensional optimization

zero for the low quantile α = 10%. The near zero HSIC-IT of X3 expresses the fact that its

conditional probability distribution stays relatively close to the uniform distribution while other

inputs see their distribution become increasingly skewed as α decreases.

The value chosen for X3 in the Greedy modification of the optimization problem is 29.19 as it

returned the best objective value during the sensitivity analysis, with the best point known in

the literature being X∗ = [49.99, 1.178, 24.59, 0.389].

Table 3.2 summarizes the results of the 10000 optimization runs with the 10%, 50% and 80%

quantiles for the objective value after reaching a stopping criterion and the total number of

calls. Complete histograms of the results are available in Figure 3.11. The Greedy version

of the problem has a degraded optimum, f(X) = 2980651, with respect to the Original one,

f(X) = 2964895. But the convergence is more robust, showing fewer runs that get trapped at

local solutions and it is obvious from Table 3.2 that convergence is faster, with a median cost

almost 4 times lower than the Original problem. The Random version has a cost similar to that

of the Greedy formulation, but the cost functions at convergence vary significantly depending

on the values chosen at random for the frozen inputs. In terms of the total number of feasible

solutions obtained among all 10000 runs, no significant improvement can be notified between

the Original and the Greedy versions, with 51.8% against 52.2% of runs leading to a feasible

minimum output solution.

Both modified versions of the problem use significantly fewer calls to the objective function

than the original formulation as it might be expected from problems with smaller search spaces.

Although they return inferior solutions, the Greedy formulation is acceptable since it yields

solutions close to the original optimum in a faster and more consistent manner. This difference

in terms of performance might come from the difference between the value we chose for X3 and

the best value observed for X∗3 in the literature.

Table 3.2 – Quantiles 10%, 50% and 80% of minimum obtained (left) and of number of calls to
the objective function at convergence, or after exceeding total budget, which explains the peak
around 5000 calls, (right) in the GTCD test case. The best feasible value obtained among all
the runs is also written. The optimization solver for these results is the COBYLA algorithm.

Minimum obtained

Version Best 10% 50% 80%

Original 2964895 2964897 2980175 3093426

Random 2964896 2968341 3040707 3203776

Greedy 2980651 2985406 2985993 3006087

Number of calls

Version 10% 50% 80%

Original 214 502 502

Random 75 139 502

Greedy 74 131 502

3.3.2 Welded Beam (WB4)

This second example concerns a welded beam structure, constituted of a beam A and the

weld required to hold it to the member B, see Figure 3.12. The objective is to minimize its

fabrication cost f(X1, X2, X3, X4) under 5 nonlinear inequality constraints. The optimization

is summarized in the equations below:

f(X) = 1.10471X2
1X2 + 0.04811X3X4(14 +X2)
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Figure 3.10 – Evolution of p(Xi|Z = 1)(xi) for different α values (continuous line) compared
to the original distribution (dashed line) for the Gas Transmission Compressor Design. The
continuous and dashed lines differ for α = 100% because all points are not feasible. The
numbers above each plot are the corresponding mean and standard deviation of S̃HSIC

q,T (Xi).

Bold numbers correspond to negligible Xi’s, i.e., small S̃HSIC
q,T (Xi)’s. For better readability, the

scales of the vertical axes vary.
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Figure 3.11 – Results of 10000 optimizations with the Original, Greedy and Random formu-
lations for the Gas Turbine Compressor Design test case: histograms of the final objective
functions (top) and number of calls to the objective function at convergence (bottom).
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Figure 3.12 – Welded Beam.

s.t.

g1(X) = τ(X)− 13600 ≤ 0,

g2(X) = σ(X)− 30000 ≤ 0,

g3(X) = X1 −X4 ≤ 0,

g4(X) = 6000− Pc(X) ≤ 0,

g5(X) = δ(X)− 0.25 ≤ 0

0.125 ≤ X1 ≤ 10, 0.1 ≤ X2 ≤ 10, 0.1 ≤ X3 ≤ 10, 0.1 ≤ X4 ≤ 10

The expression of the terms τ(X), σ(X), Pc(X) and δ(X) is:

τ(X) =

√
τ1(X)2 + τ2(X)2 +X2τ1(X)τ2(X)/

√
0.25(X2

2 + (X1 +X3)2),

σ(X) =
504000

X2
3X4

,

Pc(X) = 102372.4(1− 0.0282346X3)X3X
3
4 ,

δ(X) =
2.1952

X3
3X4

,

where

τ1(X) =
6000√
2X1X2

,

τ2(X) =
6000(14 + 0.5X2)

√
0.25

(
X2

2 + (X1 +X3)2
)

2
(√

2X1X2(X2
2/12 + 0.25(X1 +X3)2)

) .

Figure 3.13 shows the evolution of the conditional distributions PXi|Z=1 for different quantiles

α. The mean and standard deviations of the HSIC-IT sensitivities associated to each α, out

of 20 repetitions, can be found above each plot. X2 and X3 are found to be negligible as their

index is near zero for α = 10%. Their domains are only slightly restricted by the condition on

performance, Z = 1.

For the Greedy problem modification, X2 is set to 5.36 and X3 to 8.54 as those values gave
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the lowest feasible objective function value during the sensitivity analysis. For reference, the

optimal point found in the literature is X∗ = [0.206, 3.473, 9.037, 0.206].

Results are summarized in Table 3.3 with the 10%, 50% and 80% quantiles for the function

objective value after reaching a stopping criterion and the total number of calls. Complete

histograms of the results are available in Figure 3.14. From the results, with the original

formulation, the global optimum of performance f(X∗) = 1.72 is reached in half of the cases,

while the Greedy modification to the problem converges to a downgraded value of f(X∗) = 1.97

at a much lower cost, with a median number of 49 calls to the objective function. As can be

observed in Table 3.3, the Random modification to the problem yields inconsistent objective

function values at convergence, because many choices of “negligible” inputs lead to poor final

achievable performance.

Once again, the freezing of some of the variables leads to savings in terms of calls to the objective

function and to more robust convergences for the Greedy version. Furthermore, it seems that

the modified version no longer has the local optimum around f(X∗) = 11 that is seen as a

small mode in the top of Figure 3.14 in the original results. Furthermore, in this test problem,

removing some variables leads to a decent improvement in terms of feasibility as 39.6% of the

runs give a feasible solution with the Original while the Greedy version obtains a 49.1% rate of

success.

Table 3.3 – Quantiles 10%, 50% and 80% of minimum obtained (left) and of number of calls to
the objective function at convergence, or after exceeding total budget, which explains the peak
around 5000 calls, (right) in the WB4 test case. The best feasible value obtained among all the
runs is also written. The optimization solver for these results is the COBYLA algorithm.

Minimum obtained

Version Best 10% 50% 80%

Original 1.7244 1.7249 1.7252 2.5411

Random 1.7919 2.0828 3.9290 7.3730

Greedy 1.8618 1.8626 1.8628 1.8628

Number of calls

Version 10% 50% 80%

Original 135 401 502

Random 34 46 63

Greedy 38 49 59

3.3.3 High dimensional versions of the test cases

The two previous examples are low dimensional problems and the cost of the sensitivity indices

was not analyzed. In order to be more representative of real-world problems, we reiterate the

study of higher dimensional versions of the same test cases by adding 46 dummy variables to

increase the dimension from d = 4 to d = 50.

For both augmented test problems, a latin hypercube sampling of only 500 points, unlike the

several thousands used in Section 3.3, is optimized with a maximin criterion before serving for

the computation of the HSIC-IT indices. Figures 3.15 and 3.16 show the sensitivity indices

obtained for both problems, without repetitions. The dashed line corresponds the threshold of

detection still equal to τ = 0.1×maxi=1,...,d S̃
HSIC
qα,T

(Xi).

Results are consistent with those of Sections 3.3.1 and 3.3.2 as we select the same variables as

negligible among the real ones (X3 and (X2, X3) for the GTCD and WB4 problems, respec-

tively). However, because of the limited amount of points given, fake variables are sometimes

above the detection threshold τ , hence deemed as important despite having no impact on the

function. Even with these estimation errors, the dimension is drastically reduced and the influ-
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Figure 3.13 – Evolution of p(Xi|Z = 1)(xi) for different α value (continuous line) compared to
the original distribution (dashed line) for the Welded Beam application. The continuous and
dashed lines differ for α = 100% because not all points are feasible. The values above each plot
are the corresponding mean and standard deviation of S̃HSIC

q,T (Xi). Bold numbers correspond

to negligible Xi’s, i.e., small S̃HSIC
q,T (Xi)’s. For better readability, the scales of the vertical axes

vary.
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Figure 3.14 – Results of 10000 optimizations with the Original, Greedy and Random formu-
lations for the Welded Beam test case: histograms of the final objective functions (top) and
number of calls to the objective function at convergence (bottom).
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Figure 3.15 – HSIC sensitivity indices for the GTCD problem with d = 50. Indices are computed
for α = 10%. Red triangles are the indices above the detection threshold.
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Figure 3.16 – HSIC sensitivity indices for the WB4 problem with d = 50. Indices are computed
for α = 10%. Red triangles are the indices above the detection threshold.

ential variables selected. For the optimization, we only consider the Greedy and the Original

modifications as the Random yields poor results. The maximum budget is increased to 5000

calls to the objective function to match the dimensionality augmentation but we lower the num-

ber of repetitions to only 20. The cumulative number of calls to the objective function from the

sensitivity analysis (500 calls) and the optimization in reduced dimension is much lower than

the optimization alone in dimension 50 for both problems, especially for the WB4 function, see

Tables 3.4a and 3.4b.

The value obtained after convergence for the reduced problem is still slightly degraded as ob-

served in Section 3.3. Overall, even with the added cost of the sensitivity indices, these results
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Table 3.4 – Quantiles 10%, 50% and 80% of minimum obtained and of number of calls to the
objective function at convergence (or after exceeding total budget, which explains the peak
around 5000 calls) in the high dimensional test cases, with 46 additional variables. The best
feasible value obtained among all the runs is also written. The optimization solver for these
results is the COBYLA algorithm. The number of calls for Greedy results do not include the
preliminary calls for computing the sensitivity indices.

(a) GCTD high dimensional problem

Minimum obtained

Version Best 10% 50% 80%

Original 2964894 2964948 2974736 3084906

Greedy 2985406 2985406 2985469 2991863

Number of calls

Version 10% 50% 80%

Original 5002 5002 5002

Greedy 133 364 2069

(b) WB4 high dimensional problem

Minimum obtained

Version Best 10% 50% 80%

Original 1.7246 1.7249 1.7793 2.3809

Greedy 1.8628 1.8628 1.8628 1.8628

Number of calls

Version 10% 50% 80%

Original 2813.8 5002 5002

Greedy 117 149 178

Table 3.5 – Quantiles 10%, 50% and 80% of values at convergence (or after exceeding total
budget) on the left table, and of calls to the objective function on the right table, in the
high dimensional test case. The optimization solver for these results is the SQP algorithm.
The number of calls for Greedy results do not include the preliminary calls for computing the
sensitivity indices but consider the additional calls required by the approximation of the gradient
of the objective function.

(a) GCTD high dimensional problem

Minimum obtained

Version Best 10% 50% 80%

Original 2964894 2964895 2964895 2966038

Greedy 2985404 2985406 2985406 2985406

Number of calls

Version 10% 50% 80%

Original 3673 4591 5000

Greedy 393 491 645

(b) WB4 high dimensional problem

Minimum obtained

Version Best 10% 50% 80%

Original 1.7220 1.7249 1.7249 1.7249

Greedy 1.8628 1.8628 1.8628 1.8628

Number of calls

Version 10% 50% 80%

Original 1633 2143 2959

Greedy 121 181 243
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show important gains in terms of calls to the objective function, especially in the case of the

Welded Beam problem.

We chose to use the COBYLA algorithm as it is a good off-the-shelf option for derivative-free

optimization with inequality constraints. Yet, the flowshart we followed for the optimization of

the problems, simplified in Figure 3.17, is independent of the choice of the optimizer. Indeed,

instead of the local derivative-free algorithm, it is possible to use a derivative-based algorithm

or a global algorithm.

Sensitivity Analysis
using HSIC-IT indices

Modification of the problem

Optimization in reduced space

Figure 3.17 – Simplified flowchart of an optimization study including a sensitivity analysis step.

Runs of both problems (GTCD and WB4) in high-dimensional were repeated with a derivative-

based algorithm: the Sequential Quadratic Programming (SQP) algorithm from the nlopt pack-

age in the R language. SQP optimizes successive second-order (quadratic or least-squares)

approximations of the objective function, with first-order (affine) approximations of the con-

straints.

Since derivatives are not directly available for our problem, their approximation requires extra

calls (d per iteration) to the objective function. Logically, the dimension reduction provides

again a significant drop in the number of calls during the optimization. This is clearly visible

in Table 3.5a where the number of objective function execution is decreased by a factor 10 for

the best 10% optimization runs, without including the initial cost of the computation of the

indices.

3.3.4 Further discussion

Premature convergence with local optimizers

As seen in both above examples, setting variables with small HSIC-IT indices to a fixed value

chosen with the Greedy strategy led to significant improvements in terms of optimization cost

and robustness, with an accompanying small degradation in performance at the optimum. This

is due to the loss in fine-tuning ability resulting from freezing the value of the low impact inputs.

This phenomenon was more visible with the Random strategy where the variations in values of

fixed inputs led to a spread in final objective functions. This might also seems counter-intuitive

as we stated that the value was non-influential, hence, one might consider that its value should

not impact performance as observed.

We now argue, with the help of an illustrative example, that this impact is increased when the

reduced problem is solved with a local optimization algorithm, such as in Sections 3.3.1 and 3.3.2

(using COBYLA as the local optimizer). Let us consider the following two dimensional “twisted
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strip” toy function:

f(X) =

{
10− (|X ′1| −A)2 − εX ′2X ′1 if |X1| ≥ A
10− εX ′2X ′1 otherwise

with X′ = X−c. The function is represented in Figure 3.18 below for c = (0.1, 0.1), A = 0.2 and

ε = 0.1. This function possesses a global optimum at (−1,−1) (the red square) and multiples

local ones (the black squares), with a significant difference in the objective value (9.069 for the

global optimum against 9.289, 9.429 or 9.609 for local ones).

X1

X
2

O
bjective function

Figure 3.18 – Surface plot of the “twisted strip” function with c = (0.1, 0.1), A = 0.2 and
ε = 0.1

For this toy function, the HSIC-IT sensitivity index of the second variable is arbitrarily small,

even for low quantiles. This can be seen by imagining the marginal distribution of X2 when f

is restricted to low values, which is very close to the uniform distribution. Indeed, the twisted
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strip function is almost flat in the X2 direction. Setting X2 to a constant value simplifies the

problem as it appears to be negligible. Whatever the chosen value of X2, the reduced objective

function has a global optimum at X1 = −1 and a local one at X1 = 1. The main difference

between these 2 cases lies in the slope direction of the reduced function near X1 = 0±A, see the

different profiles of the function in Figure 3.19. That implies that a local optimization algorithm

will be sensitive to its initialization and will sometimes converge to the local optimum. Hence,

depending of the choice made for the value of X2, the frequency of convergence to the global

optimum varies, increasing when X2 is at its optimum (-1) with a success in 67% of the cases

and decreasing when away from it with a success in 42% of the cases, compared to the 55%

success rate for the original problem. Such behavior should be expected from functions with

essential global optima, i.e., functions without “needle in the haysack”, where the modified

optimization problems lead to the global basin of attraction if the frozen variables are close

to their optimum. In such well-behaved cases, the Greedy heuristic gives X2 ≈ −1, leading to

improved results.
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Figure 3.19 – Profile of the reduced objective function for different X2 values.

Note that the phenomenon of convergence to a local optimum and its dependency on the frozen

variables would be much lessened if a global optimizer were used: the strategy proposed in this

paper of HSIC-IT sensitivity analysis followed by a greedy freezing of some variables and an

optimization would further benefit from a global optimizer. Furthermore, another possibility

would be to re-use an optimizer starting from the point obtained in the reduced space, but

this time in the full domain in order to converge to the true optimum. For high dimensional

functions, the cumulative cost of the three operations (estimation of the sensitivity indices, first

optimization in reduced space and second optimization in the full space) can result in a lower

number of evaluations than a single optimization in the full space.

Constraint issues

Because we restricted the data set with the indicator function, the initial size of the samples

must be big enough to have sufficient points for the sensitivity analysis study. For example, if we

consider an initial set of 1000 points, if one is interested by the inputs giving the 10% quantile
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and below, it means that only a tenth of the 1000 points will be available. If we add constraints

functions, the feasible region can become quite small, about few percents of the design space.

However, because the estimation of HSIC Equation (3.7) scales at least quadratically with the

sample size, large datasets will be too expensive to compute.

In order to cope with that issue, [Gre+05] employs a low rank decomposition on each Gram ma-

trix by using an incomplete Choleski factorization [BJ02]. More recently, [Zha+18] introduced

several strategies as replacements to the quadratic estimator. First of all, derived from [ZGB13],

the block-based strategy estimates the HSIC on a small block of data and then averages the final

estimated HSIC over all blocks. The second approach is based on a Nyström approximation

[WS01], a classical low-rank kernel approximation technique. Finally, they also introduced a

last estimator that uses Random Fourier Features (RFF) [RR08]. This method replaces the

implicit feature map provided by the kernel by an explicit mapping to a low-dimensional Eu-

clidean inner product space using a randomized feature map. However, this method only works

with translation invariant kernels, such as the Gaussian RBF one.

3.4 Conclusions

This chapter has shown how global sensitivity analysis can be specialized for contributing to

the resolution of optimization problems.

First, we have introduced three modifications of the objective function that are alternative

expressions of the feasible level set idea. Each formulation is a different blend between two

pieces of information, which inputs matter to reach an area close to the optima and how much

each input impacts performance when being in such an area. The effect of each formulation on

the Sobol indices has been observed.

Second, building on the indicator-thresholding formulation in conjunction with the Hilbert

Schmidt independence criterion, we have described a new HSIC-IT sensitivity index adapted

to constrained optimization problems. This sensitivity index has been interpreted as a measure

of the distance between two distributions, that of the variable being analyzed and that of the

same variable conditional to its objective and constraints reaching a certain performance level.

Finally, the new HSIC-IT index has served to select variables before a local optimization is

carried out. Provided that the variables which are not retained are given a value in a greedy

manner, we have obtained in several test cases solutions with limited performance loss, at a

substantially decreased number of function evaluations, and with more stable convergence.

However, the cost of calculating the indices was practically left aside in the whole Chapter.

We have only tackled one of the issues: efficiently reducing the dimension in an optimization

problem. However, when the function is expensive, the number of evaluations should be reduced

at all cost. It is customary to rely on a few calls to the model to build surrogate cheaper to

call and faster to evaluate. In the next chapter, we introduce surrogate modeling with a focus

on Gaussian Processes. We explain how optimization strategies are often derived from the

surrogate and how the search can be improved with a proper selection of the design variables.
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Chapter take-home messages

• A new sensitivity index was proposed. It is adapted to optimization problems.

It relies on kernel-based sensitivity indices, using embeddings of distribution and

distance between embeddings to assess the relevance of the different inputs.

• The dimension reduction in the different test cases allows to obtain a more stable

convergence in fewer calls to the objective function, at the cost of a decrease in

optimum accuracy due to the dimensions removal.
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4.1 Surrogate modeling

Whenever the model considered in the optimization (or in any other study that requires a large

number of model evaluations) is expensive, estimating the sum of the calls to the model becomes

intractable. In such cases, it is common to rely on substitutes to the functions, called surrogate

models, metamodels, proxies or models of the models in the literature [Kle87]. The surrogate

f̂(X) mimics the behavior of the true function f(X) in the following sense:

f(X) = f̂(X) + ε(X)

where ε(·) is an approximation error. Usually, surrogate modeling involves the successive steps

shown in Figure 4.1. In the following, we briefly detail each step with some examples for each,

DoE Model choice Fit the model

Figure 4.1 – Different steps for building a surrogate model.

but without being fully exhaustive.

The experimental design X where the model will be queried to obtain the corresponding sim-

ulations Y should be chosen so that the surrogate model encompasses as much information as

possible using as few simulations as possible. Omitting the case of linear surrogates for which

optimal designs are known (A/D/E-optimality [Dea+15]), the most general designs are space-

filling as they attempt to fill the design space X . Firstly, the full or fractional factorial designs

are based on geometrical patterns to fill the design domain, whose sizes increase drastically with

the dimension of the domain and the number of levels considered. Secondly, [Nie92] introduced

the concept of discrepancy, defined as the deviation of a given sequence from a uniform distri-

bution in the design domain, motivating the so-called low-discrepancy sequences. The Halton

or the Sobol sequences are examples of it, showing lower discrepancies than full Monte Carlo

sample and thus ensuring a better coverage of the space. Finally, the latin hypercube sampling

proposed by [MBC79] generates random design of experiments but guarantees uniformity of

the sample on each input marginal domain, hence resulting in a better space filling than a full

Monte Carlo design. Figure 4.2 represents the three aforementioned design of experiments and

a fully random one for comparison. After being generated, the LHS is usually optimized (while

remaining an LHS) using different criteria, such as the maximin [Pro17], where the smallest

distance between two points of the design is maximized. Alternatively, the minimax procedure

[Pro17] is the minimization of the maximal distance between any point of the design and its

nearest neighbor. The cost of the minimax is often considered as prohibitive as the nearest

neighbor to every point must repeatedly be searched for.

After designing an appropriate design of experiments and computing the required simulations,

the following step is to choose a type of model for the approximation of the true function and

to fit the model to the observations. Many surrogates exist in the literature: general linear

models, polynomial models, random forests, support vector machines, neural networks and

Gaussian processes. Throughout this chapter, we rely on the latter which will soon be further

detailed. For an illustration purpose, we give here a short explanation on the first technique as

it is rather simple and remains widely used. The general linear models are a linear combination
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Figure 4.2 – Illustration of four different design of experiments (fully random, latin hypercube
sampling, full factorial grid and a Sobol sequence) made of 25 points in a two-dimensional design
domain. The corresponding discrepancy of the design of experiment is written. Note that a
fully random design has a lower discrepancy than the full factorial grid.
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of a finite set of p preselected functions h = {hi, i = 1, . . . , p}

f̂(X) =

p∑
i=1

βihi(X) = βTh(X) (4.1)

with β = (βi, i = 1, . . . , p) ∈ Rp is a vector of coefficient that has to be determined using

the design of experiments. One can sometimes add a term β0 defined as a bias coefficient.

Commonly used functions h(·) include low-order polynomials as in Equations (4.2) and (4.3) or

Fourier series.

f̂(X) = β0 +

p∑
i=1

βiXi (4.2)

f̂(X) = β0 +

d∑
i=1

βiXi +

d∑
i=1

βiiX
2
i + . . .+

∑
1≤i<j≤d

βijXiXj (4.3)

The parameters of the polynomials in Equations (4.2) and (4.3) are usually determined using

least squares regression which requires that the size of X is greater than the number p of

functionals h. However, because p is finite, it assumes that the function has a specific (say

polynomial) shape, which may not be the case for real world problems. Furthermore, full

polynomial expansions have a number of terms that grows rapidly with the dimension d of the

problem.

Once the model is chosen and fitted, it can be used to predict simulations at any unobserved

input in X . Throughout the following, we use as surrogate models Gaussian processes (GP) for

multiple reasons. First of all, Gaussian processes approximations have the appealing property

of interpolating the true function at observed samples (such that f̂(X) = f(X) for any X ∈ X).

This does not hold when the output function encompasses uncertainties but this is outside the

scope of this thesis. Another important property is that with any prediction of the surrogate

model, an associated variance is available allowing to quantify the uncertainty of the metamodel

which reflects a lack of information in the design of experiments. This is not a measure of

the error coming from the approximation itself but rather a measure of the (in)accuracy of the

model in areas where no observations were queried. The rest of the section gives a more detailed

description of what Gaussian processes are.

4.1.1 Gaussian processes regression

Formally, a Gaussian process is a collection of random variable, any finite number of which have

a joint Gaussian distribution [WR06]. It is completely described by its mean function m(X)

and covariance function k(X,X′), defined for a real process Y (X) as

m(X) = E(Y (X)) (4.4)

k(X,X′) = E((Y (X)−m(X))(Y (X′)−m(X′))

and the Gaussian process is written as

Y (X) ∼ GP(m(X), k(X,X′)). (4.5)

In an analogy with pointwise surrogates, a GP not only returns a prediction of the function,

but also an estimation of its error in the form of the mean and variance of a normal dis-
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tribution over the possible value of f at X. By definition, the mean function characterizes

the expected function value at X, i.e. the average evaluation at input X for all functions

in the distribution. Different priors on the mean can be considered, leaving the mean as an

unknown function m(X) =
∑
βihi(X) with coefficients to estimate. The covariance function

k(X,X′) = Cov(f(X), f(X′)) represents the dependence between the function value at different

input points X and X′. Note that this covariance between the outputs is actually written as a

function of the inputs, with k being called the kernel function of the Gaussian process.

Note that the kernel considered for the Gaussian process and the one used in the kernel-based

sensitivity analysis Section 2.2 are different as they serve different purposes. The GP kernel

used in the Gaussian process is linked to the assumptions about which class of functions f

belongs to while the embedding kernel in the sensitivity analysis framework expresses which

characteristics of the good X distributions are being compared.

The choice of the GP kernel is directly based on the assumptions about the function f , such

as its smoothness or repeating patterns (symmetry, periodicity, spectral content). Usually,

the correlation between two points decreases as a function of the distance between the points,

meaning that a pair of function outputs calculated at points close to each other should be more

similar than outputs at points which are further away from each other. Popular choices for k

are the exponential kernel

k(Xi, Xj) = σ2 exp

(
−‖Xi −Xj‖

2θ

)
, (4.6)

the squared exponential kernel, or Gaussian kernel,

k(Xi, Xj) = σ2 exp

(
−‖Xi −Xj‖2

2θ2

)
, (4.7)

and the Matèrn kernel [Mat13]

kζ(Xi, Xj) = σ2 21−ζ

Γ(ζ)

(
2
√
ζ‖Xi −Xj‖

θ

)ζ
Hζ

(√
2ζ‖Xi −Xj‖

θ

)
(4.8)

with Γ(·) and Hζ(·) the Gamma function and the Bessel function of order ζ. One should note

that when ζ −→ ∞ the Matèrn kernel is equal to the squared exponential kernel and when

ζ = 1/2 the Matèrn kernel is equal to the exponential kernel. For all kernels, the signal variance

σ and the lengthscale θ, denoted as hyperparameters control the a priori correlation between

points. We show how the correlation decays for all three aforementioned kernels in the left

panel of Figure 4.3.

Specifying a covariance function implies a distribution over functions: one can draw samples

from this distribution evaluated at any number of points. Let X = {X1, . . . ,Xn} be a set

of input points, the corresponding covariance matrix is typically built using Equations (4.6)

and (4.7) or Equation (4.8) elementwise. Values of Y at inputs X from the Gaussian Process

are obtained by sampling from the following multivariate normal distribution

Y (X) ∼ N (Hβ, k(X,X)) (4.9)

with H = (h(X1), . . . , h(Xn))T the experimental matrix such that Hβ =
∑
βihi(X) and where
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Figure 4.3 – Left: Covariance functions for the exponential, the squared exponential and the
Matèrn kernels where ζ = 3/2, with θ = σ = 1. Right: random functions drawn from Gaussian
processes priors with the different covariance functions. The colors match the corresponding
covariance function.

the symmetric kernel matrix is given by

k(X,X) =


k(X1,X1) . . . k(X1,Xn)

...
. . .

...

k(Xn,X1) . . . k(Xn,Xn)

 (4.10)

where the diagonal of this matrix is equal to 1 (since each point is perfectly correlated with

itself). One can then plot the generated values as a discretized function of the inputs, see the

right panel of Figure 4.3.

As sampling functions from the prior distribution is usually not the prime interest, we can

incorporate knowledge acquired from already sampled points {X,Y = f(X)} on the function

and infer on new inputs X (assuming here that observations were noise-free). This is known as

Gaussian process regression, also called kriging in the geostatics field [Mat73].

The different parameters in this regression must be calibrated: the coefficients β of the mean

function m and the different kernel hyperparameters, with the correlation lengths λ and the

variance σ. The usual strategy for calibration is the maximum likelihood (L) estimation [WR06],

a method that sets hyperparameters to values that maximize the likelihood to observe the model

realizations. Because of the Gaussian assumption, the likelihood function is

L =
1

(2π)n/2|K|1/2
exp

(
−1

2
(Y−Hβ)TK−1(Y−Hβ)

)
(4.11)

with K = k(X,X) the covariance matrix on observations, H = (h(X1), . . . , h(Xn))T the exper-

imental matrix, Y = f(X) the observed realizations, and β the regressive coefficients. In the

noise-free setting, the covariance matrix is factorized into K = σ2R where R is the correla-
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tion matrix that only depends on θ. β̂ and σ̂2 can be analytically expressed as functions of θ

following

β̂ = (HTR−1H)−1HTR−1Y (4.12)

σ̂2 =
1

n
(Y−Hβ̂)TR−1(Y−Hβ̂).

The hyperparameters can be found by maximizing the likelihood function L Equation (4.11)

θ∗ = arg maxθ∈ΘL(θ) = arg minθ∈Θ − logL(θ) (4.13)

with Θ the definition domain for θ. After plugging in the expressions of β̂ and σ̂2, the log

likelihood function reads

− 2 logL(θ) = n log(2π) + n log(σ̂2) + log |R|+ n (4.14)

An analytic expression of the gradient of the likelihood is obtained thanks to the Gaussian

prior assumption [PB01] and the objective Equation (4.13) is usually solved using either quasi-

Newton local optimization (such as the L-BFGS method [LN89]) or genetic algorithms. Other

approaches exist for the calibration of the hyperparameters, for example the minimization of

the cross-validation error [WR06]. They are not detailed here.

We consider that our Gaussian process has zero mean, m(X) = 0, since it simplifies the writing

of the equations posterior to the observations. By definition the joint distribution between

already evaluated points Y (X) and function Y can be written as[
Y (X)

Y (X)

]
∼ N

(
0,

[
k(X,X) k(X,X)

k(X,X) k(X,X)

])

where k(X,X) is the covariance matrix between all observed inputs so far, k(X,X) is the covari-

ance matrix between newly introduced points and k(X,X) is the covariance matrix between past

and new inputs. Getting the posterior distribution over functions would consist in keeping only

the functions which agree with the observed inputs. Graphically, one might generate functions

from the prior, and reject the ones that do not match the observations, but this would result

in an extremely inefficient method. Fortunately, using standard results [WR06], the posterior

conditional distribution p(Y | X,Y,X) is a multivariate Gaussian distribution with mean

µ(X) = k(X,X)k(X,X)−1Y (4.15)

and variance

s2(X) = k(X,X)− k(X,X)k(X,X)−1k(X,X) (4.16)

The posterior, that we write F̂ (X) ∼ N (µ(X), s2(X)) is also a Gaussian process and calculating

its mean and variance is possible with simple operations through Equations (4.15) and (4.16).

The posterior mean corresponds to a weighted average between the prior mean (0 here) and an

estimate based on observations while the posterior variance is equal to the prior covariance minus

a variance reduction achieved thanks to the observations. Both elements are sufficient statistics

of the posterior distribution probability and efficient strategies to compute both Equations (4.15)

and (4.16) are presented in [WR06]. Typically, the direct matrix inversion is replaced by a

Cholesky decomposition as it is more stable and faster to compute. Additionally, a small
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Figure 4.4 – Left: Functions drawn at random from a Gaussian process prior, the black line
corresponds to the true function. Middle: Functions drawn from the posterior i.e. the prior
conditioned on the five noise free observations represented by the black dots. Right: Prediction
from the Gaussian process posterior with its mean in dashed line (compared to the true function
drawn with the continuous line) and its confidence interval as the lightblue shaded area.

positive term is often added to the diagonal of the prior covariance to improve the numerical

stability, especially when two observations are close to each other.

We can illustrate Gaussian process regression on the following Forrester function, a one-dimensional

function defined for X ∈ [0, 1] as

f(X) = (6X − 2)2 sin(12X − 4) (4.17)

Let (X,Y) be a set of five observations randomly selected on [0, 1]. We choose a squared

exponential kernel as written in Equation (4.7) and build the Gaussian process predictor given

the observations as defined before. We obtain a mean prediction and a corresponding predictor

variance as illustrated in Figure 4.4. The shaded area in the right figure is the 95% confidence

intervals on the prediction at a given x.

The predictor mean interpolates exactly the observations and the variance is equal to zero at

these locations. As the distance from one of the observations increases, the variance rises, an

expected phenomenon as in this case1 the covariance functions is monotone with respect to

the distance to the known points. Again, the associated variance is due to a lack of knowl-

edge in areas where observation points are missing and it is not a measure of the error of the

approximation made by the surrogate model.

Hence, Gaussian process regression provides a powerful tool to model partially known functions.

The key point now is to find an efficient way to explore and exploit the approximation model

obtained with the Gaussian process predictor. This is often represented as the exploitation-

exploration trade off in the global optimization paradigm. The overall idea is to characterize

the relevance of a new candidate, through a function called the acquisition function. This

1covariance functions need not be monotonous, e.g. periodic covariances.
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function assesses the utility of new points in terms of allowing one to learn the function as well

as possible (this is exploration) or producing the best possible output (this is exploitation).

Properly calibrating the Gaussian process then exploiting it in a regression, along with the choice

of the acquisition function and its optimization are crucial aspects of Bayesian optimization,

described in the following.

4.1.2 Bayesian optimization

Bayesian optimization is based on Bayesian inference, using a Gaussian process prior distribution

on the function f that reflects our belief about its behavior through the covariance function.

Once past functions observations have been made, the GP prior becomes a Gaussian process

posterior distribution F̂ described by its mean µ and variance s2. Bayesian optimization relies

on the posterior GP to choose where to sample following points through the optimization of an

acquisition function denoted a(·). The associated cost is low since it does not involve new calls to

the model f . In a sense, the role of the acquisition function is to guide the search towards optima

of the function while guaranteeing that the posterior GP improves in the regions of interest.

The overall process helps in reducing the number of function evaluations, making Bayesian

optimization a powerful approach for the black-box optimization of expensive functions, as

considered in this thesis. Using a Gaussian prior within a Bayesian optimization process was

first proposed in the late 1970s [O’H78; Žil80].

After constructing a posterior distribution F̂ over the function, the usefulness of points can-

didates for a future evaluation is assessed through the acquisition function a(·) and the point

that maximizes a(·) is selected. The value of the acquisition function always depends on the

current posterior of the Gaussian process. After choosing a new point, the corresponding output

is observed and the Gaussian process is updated accordingly and the whole process reiterates.

Hence, Bayesian optimization can be viewed as an iterative procedure based on a Gaussian

process regression and proceeding with the optimization of the acquisition function to know

where to query new observations. This is summarized in Algorithm 2.

Algorithm 2 General Bayesian optimization

Require: Data samples {X,Y = f(X)} ; Acquisition function a(·);
GP prior for f with mean function m and kernel k ; budget
for t = 1, 2, . . .budget do

Choose Xt = arg maxX∈X a(X)
Sample f(Xt)
Augment data and update the GP posterior

end for

In the following, we describe different acquisition functions among which acquisition functions

based on the improvement and the confidence bounds.

Probability of improvement

This strategy, proposed in the work of [Kus64], maximizes the probability of improvement over

the current achieved observation values denoted fmin = arg minX∈X f(X) so that

aPI(X) = P (F̂ (X) ≤ fmin) = Φ

(
fmin − µ(X)

s(X)

)
(4.18)
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where Φ(·) is the cumulative distribution function of a normal law. Maximizing the previous

equation relates to a pure exploitation of the model, indeed, locations with high probability of

being really close but lower than fmin will be drawn more often than points with larger im-

provements and more uncertainty. In order to circumvent this, [Kus64] introduced a coefficient

ξ ≥ 0 called the trade-off parameter:

aPI(X) = P (F̂ (X) ≤ fmin − ξ) = Φ

(
fmin − µ(X)− ξ

s(X)

)
(4.19)

Following [Kus64], the value of ξ should start fairly high to allow exploration of the model and

decreases to zero as the optimization is carried on. The value of the trade-off parameter was

empirically studied in different works such as [Jon01; Liz08].

Expected improvement

Finding an acquisition function that not only takes into account the probability of being lower

than the current best observation, but also how far is it from fmin is an important refinement over

the previous acquisition function. [MTZ78] proposed the improvement function with respect to

fmin, which says that sampling a new point X brings an improvement equal to fmin − F̂ (X) if

fmin > F̂ (X) and equal to 0 otherwise. More compactly, the improvement is written

I(X) = max(0, fmin − F̂ (X)). (4.20)

The acquisition function called the expected improvement is defined as

aEI(X) = E(I(X) | X,Y) (4.21)

where E(·|X,Y) means that we take the expectation under the posterior distribution given

the observations X and the corresponding evaluations Y. The expected improvement can be

evaluated in closed form using integration by parts, [JSW98], resulting in

aEI(X) = (fmin − µ(X))Φ

(
fmin − µ(X)

s(X)

)
+ s(X)φ

(
fmin − µ(X)

s(X)

)
(4.22)

where Φ(·) and φ(·) are, respectively, the cumulative and probability distribution functions

of the standard Gaussian distribution. The analytic expression of the expected improvement

allows to obtain analytic evaluations of its gradient and higher order derivatives, as well as fast

evaluations of it.

The Bayesian optimization algorithm then evaluates the point which maximizes the acquisition

function, hence the largest expected improvement

Xt = arg maxX∈X aEI(X) (4.23)

This approach was named Efficient Global Optimization (EGO) by Jones in [JSW98]. It balances

the two features of points that are a high expected quality (a low mean µ) and a high uncertainty

(a large standard deviation s) therefore adjusting the search behavior between exploration and

exploitation. To further control the exploration-exploitation trade-off, [Jon01] proposed an

approach in the flavor of what was defined previously for the probability of improvement with

the introduction of a trade-off parameter ξ.
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Confidence bound criterion

As explained earlier, Bayesian optimization aims at finding the input that leads to the minimum

output (here in an optimization problem without constraints) as efficiently as possible

X∗ = arg minX∈X f(X). (4.24)

In synthetic studies, a way to quantify the quality of this search is to measure regret as the

difference between the current obtained output and the best possible output, defined as the

simple or instantaneous regret:

r(Xt) = f(X∗)− f(Xt) (4.25)

The cumulative regret is the sum of the regret over all iterations, and the goal of Bayesian

optimization can be translated as minimizing the cumulative regret

rT =
T∑
t=1

r(Xt) (4.26)

This can be also viewed as a multi-armed bandit task, a problem where there are multiple options

(called arms) with an known probability of producing a certain reward and the objective is to

maximize the overall reward (the name comes from the one armed bandit slot machines that

can be found in casinos). In our case, the different inputs can be represented as the arms of the

bandits and the corresponding output at these points is the unknown reward associated to each

arm. The main difference with a classical multi-armed bandits problem comes from the fact

that two rewards are correlated through the underlying kernel. Yet, this point of view allows to

use approaches that were developed for bandits and exploit them in the Bayesian optimization

framework.

The Gaussian process upper confidence bound (GP-UCB) strategy relies on the following acqui-

sition function [Sri+10]

aUCB(X) = −µ(X) + κts(X) (4.27)

where κt =
√
ντt is the trade-off parameter.

This strategy chooses the arm for which the upper confidence bound is currently the highest.

Its value depends, at a given X on the mean µ of the model (the higher the mean, the lower

the bound) and the uncertainty at that location (the higher the uncertainty, the higher the

bound). Hence, this acquisition function encompasses a natural trade-off between exploitation

and exploration as the expected improvement.

Furthermore, for ν = 1 and τt = 2 log(td/2+2π2/3δ), with δ ∈ (0, 1), [Sri+10] shows that this

method has no regret, thus limT−→∞ rT /T = 0. This only holds when the kernel functions is

reasonably smooth, which is the case for most of the aforementioned kernels.

All acquisition functions define valid exploration-intensification trade-offs to search the domain

space for the optimum, even though the probability of improvement tends to exploit the model

aggressively and prematurely converge to local solutions, see Figure 4.5. Instead of relying on a

single acquisition function, [HBF11] defines a portfolio with multiple acquisition functions that

each provides a different candidate query input and also a criterion to select the next query

point based on the different candidates.
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Figure 4.5 – Comparison of different acquisition functions on the Forrester function Equa-
tion (4.17): probability of improvement (top), expected improvement (middle) and upper confi-
dence bound (bottom). Upper rows show the objective function as a black line and the Gaussian
process mean as a dashed line. The lightblue areas are the Gaussian process posterior confidence
intervals. Lower rows depict the respective acquisition functions with their current maximum.
The optimization is initialized with the same four points but the different approaches visit
different locations. In particular, the probability of improvement seems to stay stuck around
the current minimum, while the behaviors with both the expected improvement and the upper
confidence bound are similar for these iterations.
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Optimizing the acquisition function

Bayesian optimization substitutes the optimization of an expensive function with the repeated

maximization of the acquisition function, which comes at a cheaper cost. Nevertheless, the

acquisition function is often multimodal, as shown in Figure 4.5, and optimizing it is a non-

trivial problem.

Different strategies were proposed in the literature to optimize the acquisition functions, such

as adaptive grid [BK10], direct rectangles approach (DIRECT) [JPS93], or when gradients of

the acquisition functions are available, or can be approximated, one can use quasi-Newton

local optimization (as the L-BFGS method [LN89]) with restarts. Finally, [Ber+11] relies on

the CMA-ES algorithm [HO01], a gradient-free evolutionary algorithm for optimization on

continuous domains.

As described in [Sha+15], optimizing multimodal acquisition functions can turn out to be

problematic as the true optimum can be missed and assessing the quality of the solution found

is difficult. This directly raises some concerns about the convergence of Bayesian optimization

as theoretical bounds assume that the exact optimizer is found and chosen at each iteration.

Furthermore, the biggest issues with Bayesian optimization come from the induced limitations

due to the dimension of the problem considered. We detail them in the following section.

4.2 High-dimensional issues

Bayesian optimization has been frequently and quite successfully applied in particular in engi-

neering, but the applications were restricted to low to moderate dimensional problems (up to

d = 10 typically). Up-scaling Bayesian optimization with dimension is a threefold problem.

The first issue relates to the exponential growth of the search volume hence the required number

of evaluations to ensure a good coverage of X (commonly known as the curse of dimensionality).

This is a common problem for any optimizer notably DIRECT.

Secondly, despite being continuous, the acquisition function is mostly flat with sharp local

minima, and in that case, the optimizers commonly used (such as restarted BFGS) can become

inefficient and the global optimum impossible to achieve.

Finally, as reminded in [KSP15], Gaussian processes, as a non-parametric regression model,

have a time to convergence that grows exponentially with the dimension d.

Different methods in the literature tackled those issues separately when dealing with Bayesian

optimization in high dimensions and can be sorted out depending on the assumptions made:

• approaches that assume the structure of the function or the surrogate model to facilitate

optimization,

• approaches that assume a low intrinsic dimension of the problem, thus a possible model

reduction leading to an easier problem to solve.

We introduce some of these approaches in the next sections.
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4.2.1 Assumptions about the structure of the model

In order to deal with the dimensionality issues, a common approach is to assume that the func-

tion f can be decomposed as a sum of m functions of smaller, disjointed groups of dimensions

[Has17]. By doing so, the optimization can be conducted in each group separately instead of

working in the high dimension of the original problem. In an early work, [DNR11] introduced

additive Gaussian processes with additive kernels and assumed a sum of functions of all combi-

nations of lower dimensional coordinates. From their experiments, the additive structure is most

often recoverable in data sets and their model approximates well the data even when the main

assumption is not verified. Later on, [KSP15] proposed the group-additive Gaussian processes

with an assumption of independence between the different groups. For simplicity purpose, we

use additive in place of group-additive in the following.

Assume that the function f can be decomposed into an additive structure of m sub-functions

of the form

f(X) = f (1)(X(1)) + · · ·+ f (m)(X(m)) (4.28)

where X(i) ∈ X (i) are disjointed lower dimensional components of X, such that
⋃m
i=1X (i) = X .

The disjointed aspect of it means that we can write that X(i) ∩X(j) = ∅, for all i, j, with i 6= j.

We still consider the Bayesian paradigm and a Gaussian process prior Y (X) over f with a

zero mean and a given covariance kernel k : X × X → R. Given the additive structure on f ,

Y (X) also has an additive kernel k(X,X′) =
∑

i k(X(i),X(i)′). If µ(i) = 0 for all i, its mean

can be also decomposed as µ(X) = µ(1)(X(1)) + · · · + µ(m)(X(m)). It is also assumed that

each group of observations f (i) is sampled from a Gaussian process Y (i)(X(i)) with a kernel

k(i) : X (i) ×X (i) → R. A kernel k(i) which only involves i variables is called a i-th order kernel

when k which considers all variables is a d-th order kernel.

As previously, considering past observations (X,Y), we can infer the posterior distribution at

any new point X. In the additive case, we are primarily interested in the distribution of the

different sub-functions f (i) given the observations:

[
Y (X)

Y (i)(X(i))

]
∼ N

(
0,

[
k(X,X) k(i)(X(i),X(i))

k(i)(X(i),X(i)) k(i)(X(i),X(i))

])

and once again obtain the posterior distribution F̂ (i) considering the observations with mean

µ(i)(X(i)) = (k(i)(X(i),X(i))k(X,X)−1Y (4.29)

and variance

s2(i)
(X(i)) = k(i)(X(i),X(i))− k(i)(X(i),X(i))k(X,X)−1k(i)(X,X(i)) (4.30)

Using the inferred posterior distribution F̂ (i), [KSP15] defines the additive Gaussian upper

confidence bound (ADD-GP-UCB), an alternative to the upper confidence bound which applies

to an additive kernel, as

aUCB,(i)(X) = −µ(X) + κt

m∑
i=1

s(i)(X(i)) (4.31)
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=

m∑
i=1

−µ(i)(X(i)) + κts
(i)(X(i))

This acquisition function is written as a sum of functions defined on orthogonal domains, mean-

ing that aUCB,(i) can be optimized by optimizing each function separately on X (i). Similarly

to the UCB acquisition function, the authors are able to bound the regret for specific kernels

[KSP15].

Obtaining the posterior for each Y (i) instead of only for Y does not induce additional compu-

tations as the expensive task comes from the inversion of K(X,X) which only has to be done

once for each method (and can be reused m times in the additive formulation). However, the

optimization of the acquisition function is much simpler and favorable in the additive setting

than with the classical UCB function.

As expected, if f is additive with a known decomposition, it can be used directly but most

often it is not the case as we work in a black-box setting with no information about the function

f . Hence, the decomposition can be treated as an hyperparameter of the additive kernel and

maximize the likelihood with respect to the decomposition. As estimating the likelihood for

all possible decompositions is too burdensome, [KSP15] proposes to randomly select a few

decompositions and choose the one with the largest marginal likelihood. In order to make their

algorithm more efficient, learning the decomposition is only done every Ncyc iterations.

More recently, [Gar+17] and [Wan+17] have relied on different sampling procedures to efficiently

learn the decomposition but they still require a considerable computational effort which limits

the applicability to objective functions with a high evaluation cost.

4.2.2 Assumptions about the effective dimension of the model

The second main approach with high dimensional problems considers that the function f has an

effective dimension de, such that de � d and relies on a mapping between the high dimensional

space and an unknown low dimensional subspace.

REMBO

Following [Wan+17], let there be a linear effective subspace T of dimension de such that for all

X> ∈ T ⊂ X and X⊥ ∈ T ⊥ ⊂ X . T ⊥ is the orthogonal complement of T , called the constant

subspace. A function has an effective dimension de if it can be defined as f(X) = f(X>+X⊥) =

f(X>). The name for T ⊥ implies that the function does not change along the coordinates X⊥.

Following their first theorem, problems with low effective dimensionality can be solved with the

use of random embeddings. Assume we have a function f : Rd 7→ R with an effective dimension

de, and a random matrix A ∈ Rd×δ with independent entries sampled from N (0, 1) and δ ≥ de.
It follows that, with probability 1, for any X ∈ Rd, there is a Z ∈ Rδ such that f(X) = f(AZ).

It means that given any X ∈ Rd and a random matrix A ∈ Rd×δ, with probability 1, there

exists a point Z ∈ Rδ such that f(X) = f(AZ). This implies that for any optimum X∗ ∈ Rd,
there is a corresponding Z∗ ∈ Rδ and that f(X∗) = f(AZ∗). Hence, instead of conducting an

optimization in the high dimensional space, we can find the optimum solution for g(Z) = f(AZ)

in the lower dimensional space.

Following this observation, the authors proposed an algorithm called Bayesian optimization
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with random embeddings (REMBO) which first draws a random embedding (given by A) and

then conducts the optimization in the low dimensional embedded subspace. This method has

shown some good efficiency compared to other methods since no initial budget is dedicated to

learning the structure of the function, even when the initial assumption of low dimensionality

was not satisfied. Yet, several issues exist, mostly connected to the choice of the embedded

subspace. If it is too small, the optimum Z∗ might not belong to it whereas taking it too large

might take us back to our initial problem.

Split and Doubt

A different method which does not require to specify any effective dimension value was proposed

by [BS+19] under the name of Split and Doubt. The authors define a two-steps approach which

first learns the set of influential variables through a popular heuristic, the Automatic Relevance

Determination (ARD) [WR06], which classifies dimensions with large correlation lengths as

non-influential. The authors state that a small correlation length corresponds to an input that

has an important impact on the objective function. On the contrary, when the input has no

influence, the correlation length should go to infinity. The authors provide a link between

correlation lengths and variable importance based on the Derivative-based global sensitivity

measures (DGSM, previously introduced in Section 2.1.2) by showing that when a correlation

length goes to 0, or to infinity, the DGSM of the predictor mean of the Gaussian process for

this input tends to its maximal or minimal value, respectively.

In the split and doubt scheme, a first GP is built and a first optimization is carried out in

the subspace of influential variables. Then this optimization is challenged in the doubt step by

working only in the subspace of non-influential variables: a second GP is built in this subspace

with an incentive at making non-influential variables influential (decreasing their length-scale);

the point where the 2 GP predictions differ the most will also be added to the DoE at the

next iteration. The main motivation behind the doubt step comes from possible inaccurate

estimations of the correlation length which might drastically impact the optimization results.

Questioning the selection at each iteration allows to avoid the premature classification of an

important variable as non-influential.

DropOut

Motivated by the dropout method in neural networks (see [Sri+14] for a brief explanation of

the random deactivation of neurons in the network to avoid overfitting), [Li+17] explores the

use of the dimension dropout in Bayesian optimization.

Let Ide be the indices of the randomly selected dimensions, with card(Ide) = de, and Ide the

dropped out ones. By definition, Ide ∩ Ide = ∅ and Ide ∪ Ide = {1, . . . , d}. Corresponding

variables are XIde
and XIde

that we later write Xe and Xe for convenience.

Consider a Gaussian prior distribution on the function f(Xe | Xe), where the choice of Xe is

discussed hereafter. Using previous results, a predictive mean µ(Xe) and a predictive variance

s(Xe) can be estimated from past observations. The authors resort to the de-dimensional upper

confidence bound acquisition function Equation (4.27):

aUCB(Xe) = −µ(Xe) + κs(Xe). (4.32)

Doing so, at each iteration of the optimization, new values for Xe are obtained by minimizing the
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acquisition function. The dimension reduction is used here only for a more efficient optimization

of the function acquisition.

Different strategies are provided for the dropped out dimensions, namely:

1. Dropout-Random: randomly draw in the domain at each iteration, Xe ∼ U(Xe).

2. Dropout-Copy : use the observations giving the best function value so far X+,t = arg mint′≤t f(Xt′),

Xe = X+,t
e .

3. Dropout-Mix : use a mixture of both above methods. For each component independently,

choose a random value with probability p or copy the component of the best-so-far solution

with probability 1− p.

The algorithm is summarized in Algorithm 3.

Algorithm 3 Dropout algorithm for high-dimensional Bayesian optimization

Require: X = (X1,X2, . . . ,Xn), Y = f(X) ; Acquisition function a(·) ; GP prior for f with

mean function µ and kernel k; budget

for t = 1, 2, . . .budget do

Randomly select de dimensions

Choose Xt
e = arg maxXe∈Xe a(Xe)

Define Xt
e using one of the three fill-in strategies (Section 4.2.2)

Xt = Xt
e ∪Xt

e

Calculate f(Xt)

Augment data and update the GP statistical model

end for

Intuitively, the Dropout-Random is interesting when away from the global optimum as we do

not have any information about the location of the minimum value, hence random guesses

are appropriate. The Dropout-Copy should be preferred to a random choice if the best-so-far

point is close to the true minimum of the function, but it is associated to a risk of premature

convergence on some components. In [Li+17], the Dropout-Mix gives the best results as it

allows to avoid staying in a local optimum for too long. These different methods were tested

based on the cumulative regret bound they yield which depends on the choice of the number of

dropped out dimensions. A judicious number for de will improve the bound.

A fourth strategy was suggested in [SLRDV19], denoted as Dropout-Gauss where the overall

idea is to sample values for the dropped out dimensions based on the best λ known points

X, more precisely, along a multivariate Gaussian distribution based on the λ best observation

points, λ = n/2, defined by Xe ∼ N (µλ,Σλ), where

µλ =
1

λ

λ∑
i=1

Xi:ne ,

Σλ =
1

λ− 1

λ∑
i=1

(Xi:ne − µλ)(Xi:ne − µλ)T .

Xi:Ne denotes the observed points ranked from best to worst. However, this strategy fits a

Gaussian distribution, which might not be adapted when multiple local optima are represented

École des Mines de Saint-Étienne Adrien Spagnol



96 Chapter 4. Online high-dimensional optimization

in the λ observations.

The number of dropped out dimensions de is central in this method. [Li+17] investigated the

influence of this value on two test functions defined for d = 20. First, a Gaussian mixture

function defined as

f(X) = φ(X, µ1,Σ1) +
1

2
φ(X, µ2,Σ2)

with φ the Gaussian probability function, µ1 = [2, . . . , 2], µ2 = [3, . . . , 3] and Σ1 = Σ2 is the

identity matrix of dimension d. This function shows no interaction and a local maximum. The

second function is the unimodal Schwefel’s 1.2 function defined as

f(X) =
d∑
i=1

(
i∑

j=1

Xj)
2.

Varying the number of dropped out variables led to the following conclusions. First, when there

is no interacting variable, each dimension can be optimized separately and smaller values for

de lead to good performance. However, for the second test function which has interactions,

optimizing independently is not efficient. For such functions, a larger de leads to a faster

convergence rate because it provides a higher probability of optimizing interacting variables.

Their results also show that picking de too large makes the optimization unnecessarily expensive,

whereas if de is too small the convergence rate is slow for functions with interacting variables.

Hence, the authors suggest a compromise between these two extremes and experimentally obtain

de = 2 for d = 5 and de = 5 for d in the order of ten.

Their experiments highlight how the Dropout-Mix strategy behaves the best for most of their

test cases. It can be seen as a direct trade-off between the other two strategies since depending

on the value chosen for p we can obtain the Random strategy (for p = 1) or the Copy strategy

(for p = 0). Testing different configurations for p on the same examples as above, they observe

that for low dimensional problems, e.g. d = 2 with de = 1, strategies with p ≥ 0.5 perform

better, due to the fact that the Copy strategy can get stuck in local optima. This phenomenon

happens less often in higher dimensions as it has a lower probability of occurring, which leads

to a good average performance of the Copy approach. Thus, in high dimensional problems, the

authors suggest to rely on the Copy strategy or on the Mix approach with a small p (e.g. lower

than 0.2) which can be seen as a relaxation of the Copy strategy and could avoid getting stuck

in local optima.

As the authors noted in their conclusion, the main drawback of the method is the fully random

aspect of the variable dropout. In order to tackle this limitation, selection of the active di-

mensions can be guided by sensitivity analysis, which is a classical approach. We have already

shown the benefit of doing so prior to the optimization in Section 3.3.3 and this strategy can

also be found in the literature, for example in [SW10] which relies on Sobol indices to reduce

the dimension of the problem. In [Ulm+16], the authors weight the random selection of the

dimensions using a Principal Component Analysis (PCA) and sample proportionally to the

eigenvalue magnitude of the inputs. Yet, such method requires large sample size to provide

a correct computation of the PCA and might be not well-suited for an optimization purpose,

like variance-based sensitivity analysis strategies, as exposed previously. We therefore now

investigate the use of kernel-based sensitivities for the selection of important variables.
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4.3 Coupling KSA with GP-based optimization

4.3.1 Strategies

The initial problem was to minimize a high-dimensional expensive black-box function f . Re-

lying on a surrogate-based optimization approach allows to save calls to the true objective

function. The surrogate model will be a Gaussian process, thus making the optimization algo-

rithm Bayesian. In this section, we detail our strategy to improve Bayesian optimization.

As a brief reminder, we use the kernel-based sensitivity indices defined in Section 2.2 within the

Bayesian optimization algorithm presented in Section 3.2. More precisely, we rely on the Hilbert-

Schmidt independence criterion to characterize the relevance of the different dimensions in order

to obtain good observations of the function. The Hilbert-Schmidt independence criterion used

in a goal-oriented sensitivity analysis setting quantifies the dependence between two random

variables. In our context, these variables are a given component, Xi, and the output modified

by an indicator-thresholding as described in Section 3.1, Z = 1Y≤qα

HSIC(Xi,Z) =
1

n2
tr(KHLH)

Such HSIC estimation only involves Gram matrices over the dimension i.

In the following, we will consider the equivalent formulation that uses the maximum mean

discrepancy of Equation (3.9)

HSIC(Xi, Z) ∝ γ2(PXi|Z=1, PXi) = γ2(PXi|X∈Dqα , PXi) (4.33)

whereDqα is what we define as the α level set of interest for our objective function, corresponding

to the area of the design space X that produces better observations than a given threshold qα
(that will be defined).

The variable selection approach is similar to that in Section 3.2 but there are differences induced

by the GP when coupling the kernel-based sensitivity analysis within the now Bayesian Dropout

algorithm: the definition of the sublevel set of interest is directly done using the surrogate model;

new strategies are considered for the selection relying on the sensitivity indices calculated with

the MMD measures; and different methods are proposed to set the left out variables. We

describe these new features in the following.

First of all, the threshold qα was previously defined as a quantile of the true function: it is now

computed directly on the mean of the conditioned Gaussian process, q̂α = F−1
µ(X)(α), where µ(X)

is directly obtained following Equation (4.15). Thus, we obtain the level set of interest on the

surrogate model as D̂q̂α = {X ∈ X , µ(X) ≤ q̂α}. Figure 4.6 shows the difference between Dqα
and D̂q̂α at the level α = 10% on the Dixon-Price function Equation (3.2). For this example,

a design of 16 observations was generated using a latin hypercube sampling and a squared

exponential kernel was used for the Gaussian process prior.

Once the level set D̂q̂α is defined, the estimation of the sensitivities for each dimension is directly

given by

Sγ(Xi) = γ2(PXi|X∈D̂q̂α
, PXi). (4.34)

Let Xi be a sample of size n, we can rely on the unbiased estimator from Equation (2.32) and
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Figure 4.6 – Difference between the level sets computed on the true function and on a surrogate
model for the Dixon-Price function Equation (3.2). Both are estimated at the level α = 10%.

compute the MMD as

Sγq̂α(Xi) = γ2
u(Xi, X̃i) =

1

m(m− 1)

m∑
p=1

m∑
q 6=p

k(Xpi ,X
q
i ) +

1

n(n− 1)

n∑
i=p

n∑
q 6=p

k(X̃pi , X̃
q
i ) (4.35)

− 2

mn

m∑
p=1

n∑
q=1

k(Xpi , X̃
q
i )

with X̃i being the sub-sample of size m (where m directly depends of n and the level α chosen

for the quantile q̂α) of Xi that belongs to D̂q̂α . The expression of Equation (4.35) involves the

computation of two main terms (k(Xpi ,X
q
i ) and k(X̃pi , X̃

q
i )) and a cross term (k(Xpi , X̃

q
i )). Since

X̃i is directly extracted from Xi, it is possible, and computationally more efficient, to obtain

the second main term and the cross term from k(Xi,Xi). Furthermore, as the Gram matrices

k(Xi,Xi) are symmetrical, the number of required operations can also be lowered. Only half

of each Gram matrix k(Xi,Xi) is stored and the indices are computed by only extracting the

proper term from it using C++ routines.

The different indices are simply normalized by

Ŝγq̂α(Xi) =
Sγq̂α(Xi)∑d
j=1 S

γ
q̂α

(Xj)
. (4.36)

This allows us to be able to compare one value of index with another for varying Xi’s.

The last important aspect is to select the dimensions once we have computed the associated

normalized sensitivities( Equation (4.35)). We propose two strategies:

• The Probabilistic Strategy: de < d dimensions are drawn at random with a probability

equal to the corresponding sensitivity index Ŝγq̂α(Xi). The heuristic parameter de is set to
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5, following the recommendation from [Li+17], since it is a compromise between a large

de (which implies an expensive optimization) and a small de (which leads to a slower

convergence especially when the function f has many interacting variables).

• The Deterministic Strategy: All dimensions whose index Ŝγq̂α(Xi) is above a given threshold

τ are kept. We set τ = 1/d as it corresponds to the value we would obtain with equal

normalized sensitivity indices.

Both methods favor variables with a high sensitivity index, hence those detected as important

to reach locations where the predictive mean of the Gaussian Process is low, assuming the

surrogate model is a good representation of the objective function.

The main difference lies in the number of variables kept as the probabilistic method activates a

constant number of variables, de, whereas the deterministic approach activates a varying number

of variables. Unlike the deterministic strategy, the probabilistic method can draw variables with

almost-zero sensitivity indices.

Because all groups of variables have a non-zero probability of becoming active in the long

run, the probabilistic strategy, when coupled with a global optimization algorithm, is globally

convergent. On the contrary, the deterministic approach may fail to accurately converge to the

optimum on functions for which some variables always have Ŝγq̂α(Xi) smaller than the selection

threshold τ (e.g., a quadratic function with a high aspect ratio).

For the dropped out dimensions, we rely on the different fill-in strategies introduced by [Li+17]

and recalled in Section 4.2.2. A complete overview of the method is presented in Algorithm 4.

Algorithm 4 Bayesian optimization with Dropout guided by kernel-based sensitivity indices

Require: X = (X1,X2, . . . ,Xn), Y = f(X), Acquisition function a(·), GP prior for f with

mean function m and kernel k, α, budget

for t = 1, 2, . . . ,budget do

for i = 1, 2, . . . , d do

q̂α = F−1
µ(X)(α)← αth quantile of the GP mean

Xi ← (X1
i , X

2
i , . . . , X

n
i )

K ← k(Xp
i , X

r
i ) assembly of the Gram matrix, p, r = 1, . . . , n

Compute Ŝγq̂α(Xi) following Equation (4.36)

end for

Select de dimensions using the Probabilistic or the Deterministic strategy

Calculate Xt
e = arg maxXe∈Xe a(Xe)

Define Xt
e using one of the four fill-in strategies (Section 4.2.2)

Xt = Xt
e ∪Xt

e

Calculate f(Xt)

Augment data and update the GP statistical model

end for

The main difference with the method presented in Chapter 3 lies in the fact that the selection

is not done before the complete optimization process but within the Bayesian optimization

procedure, allowing to possibly select all the variables.
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4.3.2 Numerical tests

The Dropout algorithm with kernel-based sensitivities, Algorithm 4, is applied to a couple of

functions. We test the different selection and fill-in strategies and compare them to a full

Bayesian optimization (in all dimensions) and a classical Dropout as introduced by [Li+17].

The considered functions are the classical analytical Rosenbrock and Branin functions. We

chose these functions for their diverse properties: the Rosenbrock function has an easy to find

optimum valley but converging to the true minimum is difficult as the bottom of the valley

is flat and curved, while the Branin function is a multimodal function with 3 known optima.

Each function is defined in Rdeff and d − deff dummy variables are added to the problem to

increase the dimensionality of the problem to d. The different characteristics of each problem

are summarized in Table 4.1.

Table 4.1 – Test functions descriptions. deff is the effective dimension while d corresponds to
the embedded high dimension obtained by adding dummy variables defined on [0, 1].

Name deff d Domain Expression

Branin 2 25 [−5, 10]× [0, 15] f(X) =
(
X2 − 5.1

4π2X
2
1 + 5

πX1 − 6
)2

+ 10
(
1− 1

8π

)
cos(X1) + 10

Rosenbrock 5 20 [−3, 3]5 f(X) =
∑d−1

i=1 100
(
Xi+1 −X2

i

)2
+ (Xi − 1)2

We consider the Probabilistic and Deterministic Strategies combined with the four different

fill-in methods. Both methods require an hard-coded parameter: the number of variables kept

by the Probabilistic Strategy is set to de = 5 for the Rosenbrock function and de = 2 for the

Branin function; τ is equal to 1/d for the threshold of detection for the Deterministic Strategy.

The kernel-based sensitivities are computed using Equation (4.36) with α = 5%. The initial

design of experiments is a latin hypercube sampling optimized with respect to the maximin

criterion, which is a classical choice for the initialization of the Gaussian process. The DOE has

size 40 for the Rosenbrock function and 30 for the Branin function. Their sizes are voluntarily

small compared to the dimension of the problem, because the function f is assumed to be

expensive and calls to it are limited. The rule of thumb is usually to consider a DOE of size

2 − 10 times the dimension of the problem to ensure that the surrogate model has a sufficient

accuracy. As the final results depend on the initial DOE, the runs are repeated 20 times for

each configuration of the optimizer with different initial DOEs. Yet, for consistency in the

comparison of the results, all versions start with the same DOE in each run. The Gaussian

process is created with the package DiceKriging in the R language and we use a Matèrn 5/2

kernel. The Expected improvement (EI) Equation (4.22) is the acquisition function and it is

optimized with the CMA-ES algorithm [HO01]. The optimization budget is 100 calls to the

objective function f and results are compared after reaching this limit.

Before conducting any comparison between algorithms performance, we test the variable selec-

tion. Both Deterministic and Probabilistic selections are able to efficiently pick out determining

variables over the iterations. Figures 4.7 and 4.9 show the cumulative selection of occurrence

for each variable while Figures 4.8 and 4.10 show the average rate of selection for each variable.

The dummy variables are kept at a low rate, despite having zero influence on the performance of

the objective function. This is mostly due to the approximation errors of the surrogate model.

Since the number of variables kept at each iteration in the Probabilistic strategy is set to 5,

when a dummy variable is selected, it automatically means than a true variable was dropped
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Figure 4.7 – Average cumulative selection for each variable for the Probabilistic and Determin-
istic strategy with a Mix fill-in approach for the Rosenbrock-20d function. The top 5 curves of
each subplot correspond to the first five variables (the non-dummy ones).

1

2

3

4

5

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Iteration #

A
ve

ra
ge

 o
cc

ur
re

nc
e

Probabilistic strategy

1

2
34
5

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Iteration #

A
ve

ra
ge

 o
cc

ur
re

nc
e

Deterministic strategy

Figure 4.8 – Average selection of occurrence for each variable for the Probabilistic and Deter-
ministic strategy with a Mix fill-in approach for the Rosenbrock-20d function. The results are
smoothed using a moving average with a 5 iterations window size. The top 5 curves of each
subplot correspond to the first five variables (the non-dummy ones).
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Figure 4.9 – Average cumulative selection for each variable for the Probabilistic and Determin-
istic strategy with a Mix fill-in approach for the Branin-25d function. The top 2 curves of each
subplot correspond to the first five variables (the non-dummy ones).
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Figure 4.10 – Average selection of occurrence for each variable for the Probabilistic and De-
terministic strategy with a Mix fill-in approach for the Branin-25d function. The results are
smoothed using a moving average with a 5 iterations window size. The top 2 curves of each
subplot correspond to the first five variables (the non-dummy ones).
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out (as the effective dimension is equal to the number of variables we keep). This explains why

the average cumulative occurrence is slightly lower than with the Deterministic strategy, which

also exhibits less selection of the dummy variables.

Regarding performance, Figures 4.11 and 4.12 show that the Dropout version underperforms

compared to a full Bayesian optimization and even more when compared to the sensitivity

guided versions. It confirms that better ways to choose the variables to be optimized over

exist. For the Rosenbrock-20d function, the deterministic strategy with the Copy approach

for the dropped out dimensions provides more consistent results (Figure 4.11), yet its median

performance is not the best until the last iterations (Figure 4.13). For the Branin-25d, all fill-in

strategies with the Deterministic selection show good results (Figure 4.12), their median results

are able to reach low values of the objective function quite fast, in less than 30 iterations for

the Mix and the Copy ones (Figure 4.14).
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Figure 4.11 – Boxplots of the minimum obtained for the Rosenbrock-20d function over the
20 different initial DOEs with the different selection strategies (Probabilistic in light grey and
Deterministic in dark grey) combined with the different fill-in approaches.

The Branin-25d example shows that when the effective dimension deff is really low compared

to the high dimensional d, the Dropout struggles to converge to the optimum as it has a low

probability of selecting the first two variables.

Overall, the Deterministic versions appear to be more efficient than their Probabilistic coun-

terparts, especially on the Branin-25d function. This might directly come from the restrictive

number of dimensions kept at each iteration, which slows down the convergence.

For the two test cases and both the Deterministic and the Probabilistic selections, the Mix and

the Copy strategies yield the best results and consistently outperform the Dropout and the full

Bayesian optimization. Yet, the performance of the two selection strategies rely on the value of

the hard-coded parameters that were chosen empirically.

The choice of the threshold considered for the definition of D̂q̂α can also greatly impact which
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Figure 4.12 – Boxplots of the minimum obtained for the Branin-25d function over the 20 different
initial DOEs with the different selection strategies (Probabilistic in light grey and Deterministic
in dark grey) combined with the different fill-in approaches. The second plot is a zoom on the
lowest value to show how the different methods rank.

dimensions are dropped out as the influence of the inputs differs depending on the sublevel set

considered.

4.4 How to make Bayesian Optimization with KSA more robust

In this section, we present three strategies to make the previous algorithm more robust to

sampling, function errors and thresholds choices.
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Figure 4.13 – Median current minimum over 20 repetitions obtained with each optimizer for the
Rosenbrock-20d function. The dark grey lines corresponds to the Deterministic strategy while
the light grey ones corresponds to the Probabilistic strategy. The name of the fill-in approaches
is written next to each line.
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Figure 4.14 – Median current minimum over 20 repetitions obtained with each optimizer for the
Branin-25d function. The dark grey lines corresponds to the Deterministic strategy while the
light grey ones corresponds to the Probabilistic strategy. The subplot in the top-right corner is
a zoom in on the best 6 optimizers for the last iterations, with the name of the corresponding
fill-in approaches written next to each line.
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4.4.1 Varying threshold levels

The previously defined sensitivity indices, either expressed as Hilbert-Schmidt independence

criterion or as maximum mean discrepancy, characterize the relevance of an input to reach

a given sublevel denoted Dq (we omit the α for conciseness). We extend this definition and

propose indices that measure the influence of inputs to go from one level set Dq to a secondary

level set Dq′ :

Definition 4.4.1 (Kernel-based sensitivity index between Dq and Dq′).
Let f() : Rd → R be the objective function of the random variables X = (X1, . . . , Xd) and

define Dq = {X ∈ Rd, f(X) ≤ q} and Dq′ = {X ∈ Rd, f(X) ≤ q′} for any q, q′ ∈ R, such that

Dq′ ⊂ Dq. The kernel-based sensitivity index of the variable Xi, based on the Hilbert-Schmidt

independence criterion is

SHSIC
q̂→q̂′ (Xi) = HSIC((Xi | X ∈ Dq), 1X∈Dq′ ), q′ < q (4.37)

with 1X∈Dq′ the indicator function equal to 1 when X ∈ Dq′ and 0 otherwise.

An index equal to 0 means that the distribution of the input Xi when X ∈ Dq is independent

from the distribution of the indicator for being in Dq′ . It can be interpreted as the input Xi

having no impact to move from Dq to Dq′ . Assume that Dq = X , we directly retrieve the indices

defined in Section 3.3.3. From now on, we write D and D′ in place of Dq and Dq′ for conciseness.

Once again, we can link this independence measure to the squared maximum mean discrepancy

between the kernel mean embeddings of PXi|X∈D and PXi|X∈D′ :

HSIC(Xi | X ∈ D, 1X∈D′) ∝ γ2(PXi|X∈D, PXi|X∈D′) (4.38)

Proof. As in Section 3.3.3, the only requirement to exhibit such relation comes from the choice

of the kernel l(·) for the categorical output Z = 1X∈D′ . Z is a discrete variable and l(·) is chosen

accordingly, among the different categorical kernels (e.g. the Dirac kernel or the linear kernel).

From this, using the integral expression of the HSIC and exploiting the discrete nature of the

output Z, we can write

HSIC(Xi|X ∈ D, Z = 1X∈D′) =

∫∫
X ,X ′

1∑
z=0

1∑
z′=0

k(x, x′)l(z, z′)
[
pXi|X∈D,Z(x, z)− pXi|X∈D(x)pZ(z)

]
×
[
pXi|X∈D,Z(x′, z′)− pXi|X∈D(x′)pZ(z′)

]
dxdx′dzdz′ (4.39)

Since D′ ⊂ D by definition, we can derive

pXi|X∈D,Z(x, z) = pXi|X∈D|Z(x, z)pZ(z) = pXi|X∈D′(x)pZ(z) (4.40)

which leads to

HSIC(Xi|X ∈ D, Z = 1X∈D′) =

∫∫
X ,X ′

1∑
z=0

1∑
z′=0

k(x, x′)l(z, z′)
[
pXi|X∈D′(x)− pXi|X∈D(x)

]
×
[
pXi|X∈D′(x

′)− pXi|X∈D(x′)
]
pZ(z)pZ(z′)dxdx′dzdz′ (4.41)
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The kernel used for the output Z is discrete and can take 0 or 1 for value, therefore we obtain

HSIC(Xi|X ∈ D, Z = 1X∈D′) =

∫∫
X ,X ′

k(x, x′)
[
pXi|X∈D′(x)− pXi|X∈D(x)

]
×
[
pXi|X∈D′(x

′)− pXi|X∈D(x′)
]
PZ(z = 1)PZ(z′ = 1)dxdx′

(4.42)

Finally, for kernels that verify l(z, z′) = 0 if z 6= z′ 6= 1, we then derive

HSIC(Xi|X ∈ D, Z = 1X∈D′) =

∫∫
X ,X ′

k(x, x′)
[
pXi|X∈D′(x)− pXi|X∈D(x)

]
×
[
pXi|X∈D′(x

′)− pXi|X∈D(x′)
]
PZ(z = 1)2dxdx′

= PZ(z = 1)2 × γ2(PXi|X∈D, PXi|X∈D′) (4.43)

Let X a sample of size n and Y = f(X) the corresponding observations, we can again resort

to the unbiased estimator of the maximum mean discrepancy applied to the random variables

Xi | X ∈ D and Xi | X ∈ D′. This requires to properly define D and D′. The task at hand

is a minimization and the level sets D and D′ can be seen as an achieved and a targeted set

of solutions. Then q and q′ must verify q′ < q so that D′ ⊂ D. To ensure sufficiently low

values, we can define the two sublevel sets of interest by low quantiles of the objective function

f : q = F−1
f(X)(α) and q′ = F−1

f(X)(α
′). After determining the thresholds, we define for an input

Xi the subsamples

X̃i = Xi | X ∈ D (4.44)

X̂i = Xi | X ∈ D′ (4.45)

With X̃i and X̂i, we can use Equation (4.38) and the unbiased estimator of the maximum mean

discrepancy since it only involves the associated Gram matrices:

SHSIC
q→q′ (Xi) = γ2

u(X̃i, X̂i) =
1

n1(n1 − 1)

n1∑
p=1

n1∑
q 6=p

k(X̃pi , X̃
q
i ) +

1

n2(n2 − 1)

n2∑
i=p

n2∑
q 6=p

k(X̂pi , X̂
q
i ) (4.46)

− 2

n1n2

n1∑
p=1

n2∑
q=1

k(X̃pi , X̂
q
i )

with n1 and n2 the size of the subsamples X̃i and X̂i, respectively. They depend on the size

n of the sample Xi and on the values chosen for α and α′. The indices are normalized like in

Equation (4.36).

The quantile levels α and α′ define the sets D and D′. We investigate the influence of the

thresholds by testing multiple configurations (α, α′), i.e., (D,D′), on a simple ellipsoid function

f(X) = X2
1 + 100X2

2 . (4.47)

For an ellipsoid, the importance of a variable for a given pair (D,D′) is easily visible: the second

variable is the most important to achieve high quantile levels; the first variable is however the
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Figure 4.15 – Normalized MMD maps of the three-dimensional ellipsoid function for varying
pairs (α, α′). A darker color corresponds to a high value of sensitivity. The third variable is a
dummy variable and has zero influence for all pairs (α, α′). Darker areas for X3 come from the
estimation noise of the MMD because the number of points for the estimation is limited to 200.

most important to achieve low quantiles. We add a third dummy variable for comparison

purposes. For varying configurations of (D,D′), the normalized indices are estimated from 10

different LHS using n1 = n2 = 200 points, i.e., n is taken sufficiently large to allow n1 = 200.

Figure 4.15 shows the average normalized sensitivity indices (as MMD values) for each pair

(α, α′).

Globally, the sensitivity maps agree with what is expected from the analytic expression of the

ellipsoid: the larger sensitivities of X2 at high α′ confirm that only X2 matters to attain high

values of the ellipsoid.

At lower α′ (i.e., low objectives), all active variables have substantial sensitivities. It is observed

on the maps, but it is a general result: when α′ decreases, the distribution of good points peaks

around the best observed point. The non normalized sensitivities tend to

lim
α′→0

γ2(PXi|X∈D, PXi|X∈D′) = γ2(PXi|X∈D, δX?
i
) , (4.48)

where δX?
i

is the Dirac distribution centered on the i-th component of the optimum. In the

ellipsoid example (Figure 4.15), the sensitivities at low α′ make the left maps columns and

have a similar order of magnitude for X1 and X2. In general, the limits of the sensitivities for

challenging levels differ between variables and are given by Equation (4.48), but they differ from

zero if α is sufficiently larger than α′.

It is also confirmed on the map that X3, the dummy variable, always has near zero sensitivities,

excepted close to the diagonal α = α′ for a normalization reason that we explain next.

Ultimately, the following guidelines should be followed:

1. α should be sufficiently larger than α′.

Along the diagonal where D ≈ D′ and before normalization, the sensitivities measured for

both true variables X1 and X2 are similar to that of the dummy variable X3. These sen-

sitivities are almost zero because the closeness of α and α′ results in sets D and D′ similar
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to each other, which in turns implies that the distance between PXi|X∈D and PXi|X∈D′

measured by SHSIC
q→q′ (Xi) is almost 0 like with a dummy variable, see Figure 4.16 for an

illustrative example. The observed non-zero normalized sensitivities of the dummy X3

variable on the diagonal come from the normalization by a near zero sum of sensitivities.

To avoid such issue, a sufficient distance should be considered between q and q′ (i.e., α

and α′).

2. α′ should be large enough, typically α′ > 2%.

As explained earlier, setting α′ below about 2% generates peaked target densities that

make all true variables sensitive, therefore canceling the benefits of variable selection. In

general, it should be avoided. This argument was confirmed by complementary optimiza-

tion runs where small α′ led to poor performance. These runs are not reported here.

The special situation where both α and α′ are small deserve a special attention. It is a

tempting setting because of its interpretation: the level sets considered correspond to the

high performance regions one is truly interested in during an optimization. However, like

in the first guideline above, the densities of Xi | X ∈ D and Xi | X ∈ D′ are very much

alike and the estimation of their distance requires a very large number of samples n.
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Figure 4.16 – Comparison of the distribution of PXi|X∈D′ for q′ equal to the 15%-quantile of
the output (continuous line) and PXi|X∈D for q equal to the 20%-quantile (dashed line). The
left panel shows the distributions for X1 while the right panel shows the distributions for X3.
Variable X3 is not active for this ellipsoid function. In both cases, there is a small difference
between the distributions.

The computations of both quantiles would require numerous evaluations of the objective func-

tion, especially for quantiles in the tail of the distribution. Since we work in a Bayesian opti-

mization setting, we can rely on the mean of the conditioned Gaussian process in place of the ex-

pensive objective function and define q̂ = F−1
µ(X)(α) and q̂′ = F−1

µ(X)(α
′). This allows to approach

the true sublevel set D with D̂ = {X ∈ X , µ(X) ≤ q̂} and D′ with D̂′ = {X ∈ X , µ(X) ≤ q̂′}.
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4.4.2 Accounting for model error through conditional trajectories

In Bayesian Optimization, the true function is modeled by a Gaussian Process (GP) to save

evaluations. We have proposed in the current work to reduce the dimension of Bayesian Opti-

mization through a variable selection based on kernel-based Sensitivity Analysis (KSA), yielding

the KSA-BO algorithm. So far, the KSA has been made with the conditional GP mean. In-

stead of solely doing the KSA estimation with the predictive mean, it is possible to repeat

the calculation of the indices with conditional simulations of the GP (also called conditional

trajectories) and average the results over all trajectories. By doing so, the uncertainty in the

model of the function (the conditional GP) is accounted for in the estimation of SHSIC
q→q′ (Xi),

therefore providing additional reliability in the subsequent variable selection. But this comes

at the additional cost of computing the conditional trajectories and repeating the sensitivity

analyses. Note that for the estimation of the kernel-based indices, the initial cost is still the

same since the Gram matrix on the samples must be assembled then it only requires to extract

the right element from it.

Like with the initial KSA-BO, it is first necessary to estimate level sets values as quantiles of

the GP mean,q̂ = F−1
µ(X)(α) and q̂′ = F−1

µ(X)(α
′). Then, sublevels of interest can be defined for

each conditional trajectory f̂ (l)(·) as

D̂(l) = {x ∈ X | f̂ (l)(x) ≤ q}, idem for D̂′(l) with q′.

A one dimensional example is given in Figure 4.17. The definition of the subsamples associated

to the trajectories, X̂(l)
i and X̃(l)

i is the same as in Equation (4.44) and Equation (4.45) using

the sampled level sets D̂(l) and D̂′(l).

−10

0

10

0.00 0.25 0.50 0.75 1.00
X

F

Figure 4.17 – Evolution of the sublevels of interest D̂(l) for different conditional simulations,
with their range shown as horizontal bars at the bottom. The dashed horizontal line corresponds
to D̂, computed on the mean of the Gaussian process, considering D̂ = {X ∈ X , µ(X) ≤ q}.
The red dashed line is q = F−1

µ(X)(10%). The black line is the true function and black dots are
observations.
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The average estimator of the kernel-based sensitivity is then computed following

SHSIC
q→q′,T (Xi) =

1

T

T∑
l=1

γ2
u(X̃(l)

i , X̂
(l)
i ) (4.49)

for T trajectories. This operation requires to compute the sensitivity indices for each new

conditional simulation, with the additional cost of simulating the conditional trajectory in a

first place. Thus, having an analytic expression for E(γ2(PXi|X∈D, PXi|X∈D′)) would help. It is

possible to start from Equations (4.46) and (4.49) and we have to compute :

E
(
SHSIC
q→q′,T (Xi)

)
=E

 1

n1(n1 − 1)

n1∑
p=1

n1∑
q 6=p

k(X̃pi , X̃
q
i )

+ E

 1

n2(n2 − 1)

n2∑
i=p

n2∑
q 6=p

k(X̂pi , X̂
q
i )


− E

 2

n1n2

n1∑
p=1

n2∑
q=1

k(X̃pi , X̂
q
i )


=A1 +A2 −A3 (4.50)

Let F̂ be our posterior distribution, which is known to be Gaussian with explicit mean and

variance. For the sake of readability, we use X in place of Xi. We can work term by term and

start with:

A1 = E

 1

n1(n1 − 1)

n1∑
i=1

n1∑
j 6=p

k(X̃i, X̃j)

 (4.51)

and notice that since X̃i is distributed as Xi | F̂ (Xi) ≤ q

1

n1(n1 − 1)

n1∑
i=1

n1∑
j 6=i

k(X̃i, X̃j) =

1∑n
l=1 1F̂ (Xl)≤q(

∑n
l′=1 1F̂ (Xl′ )≤q − 1)

n∑
i=1

n∑
j 6=i

k(Xi, Xj)1F̂ (Xi)≤q1F̂ (Xj)≤q (4.52)

Computing the expectation of the previous expression leads to

n∑
i=1

n∑
j 6=i

k(Xi, Xj)E

(
1F̂ (Xi)≤q1F̂ (Xj)≤q∑n

l=1 1F̂ (Xl)≤q(
∑n

l′=1 1F̂ (Xl′ )≤q − 1)

)
=

n∑
i=1

n∑
j 6=i

k(Xi, Xj)E

(
1F̂ (Xi)≤q∩F̂ (Xj)≤q∑n

l,l′=1 1F̂ (Xl)≤q∩F̂ (Xl′ )≤q −
∑n

l=1 1F̂ (Xl)≤q

)
(4.53)

A first order approximation to the expectation of a ratio is E(X/Y ) ≈ E(X)/E(Y ) and a second

order is

E
(
X

Y

)
≈ E(X)

E(Y )
− Cov(X,Y )

E(Y )2
+

E(X)

E(Y )3
V(Y ) (4.54)

which can be seen by Taylor expansion of 1/Y around E(Y ).
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4.4. How to make Bayesian Optimization with KSA more robust 113

We can then derive

A1 ≈
n∑
i=1

n∑
j 6=i

k(Xi, Xj)

(
2(P (F̂ (Xi) ≤ q, F̂ (Xj) ≤ q)

∑n
l,l′=1 P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q))(∑n

l,l′=1 P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q)
)2

−
∑n

l,l′=1 P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q, f̂(Xi) ≤ q, f̂(Xj) ≤ q)(∑n
l,l′=1 P (f̂(X l) ≤ q, f̂(X l′) ≤ q)

)2

−
P (f̂(Xi) ≤ q, f̂(Xj) ≤ q)

∑
l,l′,l′′,l′′′ P (f̂(X l) ≤ q, f̂(X l′) ≤ q, f̂(X l′′) ≤ q, f̂(X l′′′) ≤ q)(∑n
l,l′=1 P (f̂(X l) ≤ q, f̂(X l′) ≤ q)

)3

−
2(P (f̂(Xi) ≤ q, f̂(Xj) ≤ q)

∑n
l=1 P (f̂(X l) ≤ q))(∑n

l=1 P (f̂(X l) ≤ q)
)2

+

∑n
l=1 P (f̂(X l) ≤ q, f̂(Xi) ≤ q, f̂(Xj) ≤ q)(∑n

l=1 P (f̂(X l) ≤ q)
)2

+
P (f̂(Xi) ≤ q, f̂(Xj) ≤ q)(

∑n
l,l′=1 P (f̂(X l) ≤ q, f̂(X l′) ≤ q))(∑n

l=1 P (f̂(X l) ≤ q)
)3

)
(4.55)

Since F̂ is Gaussian, we can compute directly P (F̂ (X) ≤ q) using the cumulative distribution

function Φ(·). Yet, Equation (4.55) requires the estimation of joint cumulative distribution

functions in dimension 3 and 4. It is done with nested loops which burdens the computation of

this term as n grows.

The second term leads to similar computations,

A2 = E

 1

n1(n2 − 1)

n2∑
i=1

n2∑
j 6=p

k(X̂i, X̂j)


=

n∑
i=1

n∑
j 6=i

k(Xi, Xj)E

(
1F̂ (Xi)≤q′∩F̂ (Xj)≤q′∑n

l,l′=1 1F̂ (Xl)≤q′∩F̂ (Xl′ )≤q′ −
∑n

l=1 1F̂ (Xl)≤q′

)

≈
n∑
i=1

n∑
j=1

k(Xi, Xj)

(
2(P (F̂ (Xi) ≤ q′, F̂ (Xj) ≤ q′)

∑n
l,l′=1 P (F̂ (X l) ≤ q′, F̂ (X l′) ≤ q′))(∑n

l,l′=1 P (F̂ (X l) ≤ q′, F̂ (X l′) ≤ q′)
)2

−
∑n

l,l′=1 P (F̂ (X l) ≤ q′, F̂ (X l′) ≤ q′, F̂ (Xi) ≤ q′, F̂ (Xj) ≤ q′)(∑n
l,l′=1 P (F̂ (X l) ≤ q′, F̂ (X l′) ≤ q′)

)2

−
P (F̂ (Xi) ≤ q′, F̂ (Xj) ≤ q′)

∑
l,l′,l′′,l′′′ P (F̂ (X l) ≤ q′, F̂ (X l′) ≤ q′, F̂ (X l′′) ≤ q′, F̂ (X l′′′) ≤ q′)(∑n
l,l′=1 P (F̂ (X l) ≤ q′, F̂ (X l′) ≤ q′)

)3

−
2(P (F̂ (Xi) ≤ q′, F̂ (Xj) ≤ q′)

∑n
l=1 P (F̂ (X l) ≤ q′))(∑n

l=1 P (F̂ (X l) ≤ q′)
)2

+

∑n
l=1 P (F̂ (X l) ≤ q′, F̂ (Xi) ≤ q′, F̂ (Xj) ≤ q′)(∑n

l=1 P (F̂ (X l) ≤ q′)
)2
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+
P (F̂ (Xi) ≤ q′, F̂ (Xj) ≤ q′)(

∑n
l,l′=1 P (F̂ (X l) ≤ q′, F̂ (X l′) ≤ q′))(∑n

l=1 P (F̂ (X l) ≤ q′)
)3

)
(4.56)

Finally, for the cross-term, we obtain

A3 = E

 2

n1n2

n1∑
i=1

n2∑
j=1

k(X̃i, X̂j)


=

n∑
i=1

n∑
j=1

k(Xi, Xj)E

(
1F̂ (Xi)≤q∩F̂ (Xj)≤q′∑n
l,l′=1 1F̂ (Xl)≤q∩F̂ (Xl′ )≤q

)
(4.57)

≈
n∑
i=1

n∑
j=1

k(Xi, Xj)

(
(P (F̂ (Xi) ≤ q, F̂ (Xj) ≤ q′)

∑n
l,l′=1 P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q′))(∑n

l,l′=1 P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q′)
)2

−
∑

l,l′ P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q′, F̂ (Xi) ≤ q, F̂ (Xj) ≤ q′)(∑n
l,l′=1 P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q′)

)2 (4.58)

+
P (F̂ (Xi) ≤ q, F̂ (Xj) ≤ q′)

∑
l,l′,l′′,l′′′ P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q′, F̂ (X l′′) ≤ q, F̂ (X l′′′) ≤ q′)(∑n
l,l′=1 P (F̂ (X l) ≤ q, F̂ (X l′) ≤ q′)

)3

)
(4.59)

The computation of all the terms quickly appears to be intractable because of the nested

loops involved. We can still however consider only the first order approximation and look

at its bias with respect to the empirical mean of the sensitivity. We compare it to the value

of Equation (4.49) for an increasing number of trajectories for the 5 dimensional Rosenbrock

function Section 4.3.2, defined in X = [−4, 4]5, see Figure 4.18. We choose a squared exponential

kernel for the Gaussian process prior. We consider q = 100% quantile (i.e. D̂ = X ) and q′ = 10%

quantile of the mean of the surrogate model, estimated with 1000 points. The kernel used for

the computation of the maximum mean discrepancy is the squared exponential kernel. For

each variable, a visible bias between the empirical mean of the sensitivities and the first order

approximations is visible. Yet, the order of the variable is preserved. Convergence of the

empirical mean is achieved after about 1000 trajectories.

Figure 4.19 shows the different results we obtain between comparison of the trajectory-based

indices using first order approximation, the empirical mean of indices (Equation (4.49), using

1000 trajectories) and the indices calculated on the GP mean, Equation (4.35). Obviously, the

empirical mean, in green bullets, agrees well with the distribution of indices. The first order

approximation, shown as red bullets, is usable in that its magnitude is representative of the

empirical mean and the order of the variables is captured. The sensitivities calculated on the

GP mean (blue bullets) are more different. In later numerical tests, both the empirical mean

and the indices computed on the GP mean will be compared against other strategies.

After computing the sensitivity indices with the conditional trajectories, they can directly re-

place the indices used within the selection framework introduced in Section 4.3. After normal-

ization, the indices from Equation (4.49)

Ŝγq→q′,T (Xi) =
Sγq→q′,T (Xi)∑d
j=1 S

γ
q→q′,T (Xj)

, (4.60)
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Figure 4.18 – Evolution of SHSIC
q→q′,T (Xi) with the number of trajectories. Dashed lines corresponds

to the first order approximation of E
(
SHSIC
q→q′,T (Xi)

)
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Figure 4.19 – Boxplot of γ2
u(X̃(t)

i , X̂
(t)
i ) for different conditional trajectories. Red dots are the

first order approximation of the E
(
SHSIC
q→q′,T (Xi)

)
, green dots correspond to the empirical average

over all trajectories SHSIC
q→q′,T (Xi) while the blue dots are the sensitivity indices computed solely

on the predictor mean SHSIC
q→q′ (Xi).
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are directly integrated in the Probabilistic and Deterministic strategies. The approaches re-

main the same. In the Probabilistic approach, the active variables are randomly drawn with a

probability given by the normalized average indices, Ŝγq→q′,T . In the Deterministic variant, all

variables for which Ŝγq→q′,T is above a given detection threshold are kept. The suffix “+ Traj” in

the coming results section means that the indices were computed using conditional trajectories.

4.4.3 A parameter free variable selection strategy

Both selection strategies introduced in Section 4.3 require to define and tune a hyperparameter:

the detection threshold of the Deterministic approach and the number of variables to keep, de,

for the Probabilistic approach. These parameters influence the sensitivity analysis step and

thus the performance of the objective function optimization.

To make the KSA-BO method less sensitive to the choice of such parameters, we propose a

strategy to detect influential variables using a non-parametric statistical test. The test takes

as null hypothesis that all variables do not contribute to reaching the level set of interest:

H0 : PXi|X∈D = PXi|X∈D′ for a given input Xi.

Since the distribution under the null hypothesis is not explicitly known, approximating it is

necessary before comparing it to the test statistic. Here, the test statistic T is the maximum

mean discrepancy computed on a given sample γ2
u(X̃i, X̂i). Using the subsamples (X̃i, X̂i), an

estimation of the null-distribution is obtained through permutation-based resampling. The

strategy is the following: assemble both subsamples into a single set Xp, a procedure often

known as pooling, then randomly sample from Xp to obtain two new subsamples (X̃pi , X̂
p
i ). The

sensitivity index is computed for this permutation as γ2
u(X̃pi , X̂

p
i ). This process is repeated np

times and we compute the p-value as

pval =
1

np

np∑
p=1

1γ2
u(X̃pi ,X̂

p
i )>γ2

u(X̃i,X̂i) (4.61)

This value is compared against a significance level s. If it is lower, we can reject the null

hypothesis and classify the input as important in the optimization setting for the specified

levels (D,D′). The significance level characterizes the probability of rejecting the null hypothesis

when it is true. It must be chosen according to the number of permutations. Although the

significance level and np are parameters of the method, there have a statistical meaning that

allows to choose a value a priori. Therefore, they are arguably of secondary importance when

compared to the parameters of the Deterministic and Probabilistic selection strategies, hence

the “parameter free” denomination.

As explained in the theoretical aspects of the maximum mean discrepancy (Section 2.2.2), when

using the quadratic estimator in linear time Equation (2.37), the null distribution is Gaussian

with known variance, meaning we could directly compute the threshold to compare our test

statistic against. However, this estimator requires too many samples to obtain a reliable value

for our sensitivity index and is not well-suited for this application. Hence, we use the unbiased

estimator from Equation (2.32) in Equation (4.61).

The estimation of the permuted statistics can be fasten by precomputing the matrix K̃ =

K(X̃i, X̃i) and by properly extracting the row and columns that are sampled for each permuta-

tion. Assembling K̃ has no additional cost since it is required for the computation of γ2
u(X̃i, X̂i)
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in the first place.

Within the Bayesian optimization framework and for the following numerical tests, we test two

configurations: np = 200 for a significance level of s = 5% and np = 1000 for a significance level

of s = 1%.

4.4.4 Numerical tests

Numerical tests are carried out on a set of analytic functions in order to compare the new

selection strategies, those with the conditional trajectories (Section 4.4.2) and the permutations

(Section 4.4.3), to the earlier approaches of Section 4.3. The different configurations that are

benchmarked are listed in Table 4.2, with the corresponding selection strategy, fill-in approach

and the hyperparameters values regarding each method. The name tags used in the following

figures are also specified to ease the reading of the plots.

Table 4.2 – Optimization algorithms names and configurations.

Short name Parameters Fill-in strategy Selection strategy

EGO N/A N/A All dimensions selected

Dropout de = 5 Mix Full random

Det. τ = 1/d Mix Deterministic selection

Prob. de = 5 Mix Probabilistic selection

Det. + Traj τ = 1/d, T = 200 Mix Deterministic selection

Prob. + Traj de = 5, T = 200 Mix Probabilistic selection

Perm. 200 s = 5% Mix Permutation-based selection

Perm. 1000 s = 1% Mix Permutation-based selection

Four new analytic problems are considered: the Borehole function, the Ackley function, the

Schwefel function and the Stybtang function, see Table 4.3. The first two are defined in Rdeff and

d−deff dummy variables are added to simulate high dimensionality. The Schwefel and Stybtang

functions are directly defined in Rd in order to characterize the behavior of the optimizers

when the assumption of low effective dimension is not satisfied. All variables have a decreasing

influence in the Schwefel function while all variables contribute equally to the Stybtang problem.

Table 4.3 – Test functions features. deff is the effective dimension of the function while d is the
embedded high dimension with additional dummy variables.

Name deff d Domain Expression

Branin 2 25 [−5, 10]× [0, 15] f(X) =
(
X2 − 5.1

4π2X
2
1 + 5

πX1 − 6
)2

+ 10
(
1− 1

8π

)
cos(X1) + 10

Rosenbrock 5 20 [−5, 10]5 f(X) =
∑d−1

i=1 100
(
Xi+1 −X2

i

)2
+ (Xi − 1)2

Borehole 8 25 XB f(X) = 2πX3(X4−X6)

ln(X2/X1)(1+
2X7X3

ln(X2/X1)X2
1X8

+
X3
X5

)

Ackley 6 20 [−3, 3]6 f(X) = −20 exp

(
−0.2

√
1
d

∑d
i=1X

2
i

)
− exp

(
1
d

∑d
i=1 cos(2πXi)

)
+ 20 + exp(1)

Schwefel 20 20 [−1, 1]20 f(X) =
∑d

i=1

(∑i
j=1Xj

)2

Stybtang 20 20 [−4, 4]20 f(X) = 1
2

∑d
i=1(X4

i − 16X2
i + 5Xi)

with XB = [0.05, 0.15]× [100, 50000]× [63070, 115600]× [990, 1110]× [63.1, 116]× [700, 820]×
[1120, 1680]× [9855, 12045]

École des Mines de Saint-Étienne Adrien Spagnol
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In the test campaign, we consider 20 different initial LHS optimized with a maximin criterion and

the Gaussian process prior has a Matèrn 5/2 kernel created with the R package DiceKriging. The

MMD is estimated with either the normalized version of Equation (4.46) or, when applicable,

the normalized version of Equation (4.49), considering a Gaussian kernel for both cases.

In light of the normalized sensitivity maps of Figure 4.15, Section 4.4.1, the values of q̂ and q̂′,

which define D̂ and D̂′, are adapted during the run. During a first phase of the optimization,

the GP model is likely to be inaccurate and high performance points are often not yet known.

Caution is necessary to account for these uncertainties so that the relevant variables are selected

to go from any to a mild performance level: the algorithms start with the quantiles of the GP

mean q̂ = F−1
µ(X)(100%) and q̂′ = F−1

µ(X)(30%). Once a fifth of the maximum budget is reached,

some good performance points should have been located and more ambitious targets are set:

q̂ = F−1
µ(X)(30%) and q̂′ = F−1

µ(X)(5%).

The acquisition function is always the expected improvement and it is optimized using the

CMA-ES algorithm [HO01]. The budget for the optimization is limited to 100 iterations to

match realistic expensive optimization tasks.

In the same spirit as [Han+16], the performance of the optimizers is assessed by measuring the

frequency at which each algorithm is successful at solving tasks of varying difficulties. Three

goals are set per function (easy, medium and hard to achieve). The number of successes at

reaching a goal at a given iteration are counted during the repeated trials of each version of the

algorithm. The performance thresholds are defined as 90%, 50% and 10% quantiles of the final

results of all algorithms for each function (see Figure 4.20 for an example on the Rosenbrock

function). We do so to provide a common basis for performance comparison since the global

minimum of each function is not necessarily known.

Hard
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Iteration #
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um

All runs for Rosenbrock function

Figure 4.20 – All optimizer runs for the Rosenbrock function. The red lines (continuous, dashed
and dotted) are respectively the 90%, 50% and 10% quantiles of the final results of all runs in
log scale.

We first check how the different algorithms detect the presence of dummy variables. To this aim,

École des Mines de Saint-Étienne Adrien Spagnol
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Figure 4.21 – Contours of the Branin function in Rdeff for the 30% and 5% quantiles.

all the strategies are repeated 20 times on the Branin function with 23 added dummy variables.

In Figure 4.22, the occurrence of selection of every variable at each iteration is averaged over

the 20 runs. Two features are examined:

• The efficiency at selecting active variables: for the Branin function, Figure 4.21 shows

that Dq30%
contains almost all possible values for X1 making that variable less likely to

be selected by the indices while X2 is more important due to the two minima around

X2 = 0.2. This phenomenon is lessened for Dq5%
. Both deterministic versions are able to

consistently select the true inputs throughout the iterations. The average occurrence of

selection is lower for other methods, with the non-parametric selection reaching between

60% and 80% and the probabilistic selection about 40% for the first variable.

• The efficiency at disregarding dummy variables: it is important not to keep dummy

variables since maximizing the acquisition function gets harder as the dimension of Xd

grows. By construction, the probabilistic methods keep a fixed number of variables at each

iteration, a number which is set to 2 for the Branin function. The Deterministic selection,

when done without simulations, keeps dummy variables much more often because of the

approximation bias from the GP mean. The non-parametric strategies achieve about the

same efficiency as the deterministic selection using simulations.

In Figure 4.22, there is also a visible increase in the selection rate of X1 from the 30th iteration

onward. It corresponds to the change in the targeted level sets and shows that X1 is more

important to finely optimize Branin than to reach a fair (30% quantile) level set.

Figure 4.23 shows the rate of success for KSA-BO algorithms with the various selection methods

averaged over the complete test bed for the easy, medium and hard goals from left to right,

respectively. It is compared to the Dropout approach and to a classical Bayesian optimiza-

tion. The most noticeable result is how the Dropout underperforms even for the easy target,

confirming the need for ways to choose optimization variables that are more efficient than a
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Figure 4.22 – Average selection of occurrence for each variable for the Branin-25d function. The
results are smoothed using a moving average with a 5 iterations window size. Only the first two
variables are annotated since they correspond to non-dummy inputs for this problem.

random pick. Additionally, the poor median performance of the EGO for medium and hard

targets proves that reducing the dimension allows visible gains in term of minimum obtained

for a limited budget. This corroborates what was observed earlier in the smaller benchmark of

Section 4.3.

The methods using conditional simulations for computation of the sensitivity indices yield better

results than the plug-in GP mean estimator: because GP model errors are accounted for, the

variables are more reliably selected (which was observed in details in Figure 4.22 on the Branin

function).

The strategy based on the non-parametric test outperforms other methods in the first iterations

for every targets. This comes from the larger flexibility of these methods for selecting various

number of variables. It can be understood in the examples of Figure 4.24 and Figure 4.25: on

the Borehole function, at iteration 30 the deterministic selection only keeps X1 when the test

selection keeps X1, and X4 to X8 (X1 to X8 are active). The deterministic selection can yield

any number of variables, but in a parametric (because of the threshold τ) way. The probabilistic

selections need an a priori number of active variables.

Overall, the deterministic selection using trajectories has the best results for both medium and

hard targets at 100 iterations. The deterministic method is the most selective: the normal-

ization will take the smaller sensitivities below the threshold τ = 1/d. An example is given

in Figure 4.24. When GP model errors are disregarded, such strong selection tends to induce

premature convergence to false solutions. Considering GP simulations helps reducing the rate
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4.5. Conclusions 121

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Iteration #

P
ro

b.
 o

f s
uc

ce
ss

Easy 

0.0

0.2

0.4

0.6

0 25 50 75 100
Iteration #

P
ro

b.
 o

f s
uc

ce
ss

Medium 

0.00

0.05

0.10

0.15

0 25 50 75 100
Iteration #

P
ro

b.
 o

f s
uc

ce
ss

Hard 

Prob.

Det

Prob. /w T

Det. /w T

Perm. 200

Perm. 1000

DropOut

EGO

Figure 4.23 – Summary of the average rate of success on all the benchmark functions of each
algorithm for the Easy, Medium and Hard goals, the higher the better.

at which these false convergences occur.

Figure 4.26 illustrates on the Borehole function how deterministic methods can get stuck in

local minima much more easily than others. In this case, X8 is missed in the first step of the

search when the q′ = 30% quantile level is targeted. Changing the level sets to q = 30%,

q′ = 5% unblocks the situation and convergence to the global optimum is recovered. Note

that the premature convergence of deterministic versions of KSA-BO happens despite the Mix

approach to filling in inactive variables. This shows that the episodic random search on inactive

variables is inefficient. This phenomenon is also visible for the easy target in Figure 4.23 with a

premature convergence of the deterministic approach (especially the version using trajectories).

An interesting result is also seen in Figure 4.27, for functions devoid of dummy variables.

Such problems are interesting because they violate the main assumption of the low effective

dimension. In Figure 4.27, the classical Bayesian optimization and the Dropout strategies

show poor performance compared to other methods. With the Stybtang function, all variables

equally contribute to the output, as seen in Figure 4.28. Because of this, probabilistic methods

are limited since they only pick a fixed number of variables at each iteration. For the Schwefel

function, variables have a decreasing effect (meaning that X1 is more influential than X2 and so

forth), shown in Figure 4.29. In this case, a method limited to a fixed number of variables picked

at each iteration can achieve a good performance. However, once again for both functions, the

best strategy is the deterministic selection with conditional simulations.

4.5 Conclusions

In this chapter, kernel based sensitivity analysis was included with in a Bayesian optimization

to restrict the volume of the space searched at each iteration. Indeed, because the classical
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Figure 4.24 – Sensitivity indices values at the 30th iteration on the Borehole function with
added dummy variables. The dashed line corresponds to τ = 1/d, the threshold for detection
in the Deterministic strategy, for which only variables X1 would have been selected. X1 to X8

are active.
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Figure 4.25 – Sensitivity indices values at the 30th iteration on the Borehole function with
added dummy variables. Selected variables with the Non-parametric strategy are red triangles,
X1 to X8 are active, while non-selected variables are grey dots. The permuted indices sampled
under the null hypothesis are represented by boxplots, with a zoom-in view in the top-right
corner for variables X13 to X19.
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Figure 4.26 – Median best objective function for each method on the Borehole function. The
deterministic strategies (with and without GP simulations) converge to a false solution in the
first phase (targeting the 30% level set). Changing the thresholds allows to detect again the
missed variables and to catch up with the other methods.
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Figure 4.27 – Median objective function for each method on the Stybtang and the Schwefel
functions, defined for d = 20 without any dummy variables.

Bayesian optimization methods can sample everywhere in the volume of the search space, they

perform poorly in high-dimensional problems. Variable selection allows to restrict the volume

space of search and eases the optimization.

Two strategies, one deterministic and one probabilistic, were first proposed to select the active

variables, instead of choosing them randomly as is customary in the Dropout approach. The

kernel-based indices adapted for optimization problems introduced in the Chapter 3 help to

determine at each iteration whether a variable is fixed or optimized. Multiple approaches are

considered for dropped out dimensions, with different inherent degrees of randomness.

A hyperparameter free approach was also defined. It is based on a non-parametric statistical

test. There is an efficient way to compute it which relies on random selections of elements in

the already assembled Gram matrix. Furthermore, since indices are estimated using Gaussian

processes, indices calculated on conditional trajectories were also proposed as a way to account

for model error. Finally, heuristics on the thresholds to consider in the definition of the sublevels

of interest D and D′, a key parameter in the kernel-based indices, were also derived.

All the approaches were tested on a benchmark of test functions. Some of the functions did not

respect the low effective dimensionality assumption. Overall, a good selection of the dropped

out dimensions shows a clear progress compared to random selection and compared to a generic

Bayesian optimization. Deterministic approaches which select variables with GP simulations

provide the best results on the complete set of test functions.

Finally, an extension of the methods proposed here to constrained optimization problems is

straightforward. Indeed, it only requires to incorporate constraints in the definition of the

sublevel sets of interest (like in Chapter 3). Gaussian processes can also be used to approximate

the constraint functions if they are expensive to compute.
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Figure 4.28 – Variable ranking at the 30th (blue dots) and last iterations (green dots) based on
cumulative occurrence for the Stybtang function. If only one dot is visible, the variable ranked
the same at both iterations.
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Figure 4.29 – Variable ranking at the 30th (blue dots) and last iterations (green dots) based on
cumulative occurrence for the Schwefel function. If only one dot is visible, the variable ranked
the same at both iterations.
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Chapter take-home messages

• Sensitivity analysis helps to overcome Bayesian optimization limitations with high-

dimensional problems

• Three strategies involving kernel-based indices were introduced to dropout vari-

ables, each depending on a single hyperparameter (with a proposed heuristic value)

• Sensitivity analysis leads to clear progress over random selection and classical

Bayesian optimization
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Bibliography

[Ber+11] James S Bergstra et al. “Algorithms for hyper-parameter optimization”. In: Ad-

vances in neural information processing systems. 2011, pp. 2546–2554.
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5.1 Summary of the main contributions

This thesis focuses on variables selection for the optimization of black-box functions. It is

motivated by industrial applications.

Chapter 3 provides a framework to characterize variable influence on the performance of the

output. This is done using a quantity of interest that considers areas of the input space which

produce valuable function results, in terms of both, objective function and constraints satis-

faction. We denote such an area as the sublevel set of interest D and give guidelines for its

definition. Building on the definition of D, we introduce kernel-based sensitivity indices, which

are an independence measure in a reproducing kernel Hilbert space called the Hilbert Schmidt

independence criterion, HSIC. The HSIC measures the independence between the random vari-

able (Xi | X ∈ D) and the random variable “the output reaches the target”. The connection

between the HSIC and a distance between the kernel mean embeddings of the random variables

Xi and (Xi | X ∈ D) is clarified. The progression from the HSIC to the mean embeddings dis-

tance follows the same route as previous goal-oriented sensitivity approaches [YHS78; Luy+12]

This embeddings point of view (also known as MMD for maximum mean discrepancy [Gre+05])

provides an intuitive understanding of how the sensitivity index measures the influence of an

input. It is a distance between the distributions of Xi and (Xi | X ∈ D).

An algorithm is introduced, with a sensitivity analysis step prior to an optimization process. It

is tested on several functions, considering different off-the-shelf optimizers suited for constrained

problems, namely COBYLA and SQP. By removing non influential variables, the volume of the

search space is reduced and finding an optimal solution is easier. Of course, one has to keep

in mind that the uncovered solution does not correspond to the true optimum since some fine-

tuning was lost when fixing some of the variables. However, with real life applications, acquiring

a solution more easily and faster is beneficial even at the cost of a slight performance decrease.

Surrogate-based optimization make for an appealing set of algorithms for expensive black-box

functions but these algorithms suffer from the curse of dimensionality. Multiple strategies were

developed in the literature to overcome this issue, mainly through assumptions about the ob-

jective function structure (e.g., additivity) or assumptions about the effective dimension of the

function. In Chapter 4, we drastically improve one of these methods, the Dropout algorithm for

high-dimensional Bayesian optimization. At each iteration, a Bayesian optimizer with dropout

randomly selects the subset of active variables that are searched for by maximizing the acqui-

sition function. As this function typically has flat areas between several maxima, reducing the

search space to a lower number of variables makes the optimization significantly easier. Instead

of selecting variables randomly, we guide the choice with kernel-based sensitivity indices and

therefore propose a new Bayesian optimization algorithm called KSA-BO for Kernel Sensitivity

Analysis for Bayesian Optimization. Two options to discard or not variables based on their

sensitivity are defined and investigated: one is deterministic (all variables whose sensitivity is

above a given threshold are active), the other probabilistic (pick active variables proportionally

to their sensitivity). Complementary approaches to set the values of variables at dropped out

dimensions are also considered. The accuracy of the selection is demonstrated on multiple test

cases with dummy variables, which are correctly detected by our sensitivity indices. Further-

more, both selection methods lead to better optima at a fixed budget than the Dropout and

the classical Bayesian optimizations. Finally, we propose three improvements to the KSA-BO

algorithm. First, a parameter free selection is defined that builds on a non-parametric statisti-

cal test. Then, taking full advantage of the Gaussian process, a sensitivity index that accounts

École des Mines de Saint-Étienne Adrien Spagnol
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for GP model errors is obtained by averaging sensitivities over several conditional trajectories

instead of relying solely on the GP mean. Using this mean sensitivity index leads to less biased

indices and results in better optimization convergence. The best BO algorithm among those

tested is made of the deterministic selection with GP simulations and the mixed random/best

observed fix for the non-selected variables.

5.2 Perspectives

Several perspectives and possible improvements of the aforementioned methods can be envi-

sioned.

Smarter level set choice In Section 4.4.1, varying the targeted level set values between

iterations is proposed, allowing to detect different subsets of variables depending on the pair

of levels (D,D′) considered. As a rule of thumb, only few variables have an impact on higher

levels of the function, while it is often the interactions of the full set of variables that matter

close to the optimum. However, the choice of the levels in this thesis is empirically based on

observations on simple examples. The algorithm would benefit from an automatic selection of

the thresholds at each iteration, taking into account the level of performance already achieved

by the surrogate model.

Analytic expression for conditional trajectories In Section 4.4.2, conditional trajectories

enable to use more information from the Gaussian process predictor than simply its mean.

An analytic expression of an average over multiple conditional simulations is also provided.

However, it leads to the expectation of a ratio that, when derived, involves difficult computations

with several nested loops and is therefore impractical. By considering a different formulation

for the quantity of interest instead of 1X∈D, with for example a sigmoid function to replace the

indicator function, we could replace the expectation of a ratio by a single expectation with a

single loop estimation. This would result in a fast computation of the indices.

Asymptotic distributions The permutation-based approach for the variable selection re-

quires to compute a p-value in order to characterize whether an input is influential, which is

attested by rejecting the null hypothesis. For high significance levels, the number of samples

needed to approximate this p-value becomes large. A promising alternative would be to di-

rectly obtain and use a quantile of the asymptotic distribution as the detection threshold for

the hypothesis testing. This is possible for the linear unbiased estimator of the maximum mean

discrepancy since the null distribution converges to a Gaussian, see Section 2.2.3, but estimat-

ing the true kernel-based indices with such estimator would requires too many samples and is

therefore not well-suited in our optimization set-up. Another estimator, called the Block-tests

or B-tests [ZGB13], splits the data into multiple blocks, computes the quadratic maximum

mean discrepancy on each and averages the resulting statistics. Its asymptotic distribution is

Gaussian under some mild assumptions. More recently, an estimator based on an incomplete

U-statistics [Yam+18] was proposed, with the property of being asymptotically Gaussian under

the null hypothesis and could also be considered.

Improving REMBO Chapter 4 introduces an improvement of the Dropout method designed

to deal with high-dimensional optimization problem. The same kind of variable selection could

be applied to linear combinations of the original variables, X′ = AX, A matrix of the coefficients
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of the linear combination. Such an approach could be seen as a REMBO optimization (cf.

Section 4.2.2) guided by sensitivity analysis.

Sensitivity indices for optimization under uncertainty Real-life applications often deal

with a set of deterministic inputs X and a set of randomized inputs ξ. Optimizing models with

both types of inputs is known as optimization under uncertainty. However, most of the time

for uncertain inputs, influence is measured by looking at how a certain quantity of the output

distribution, such as the mean or a quantile, changes when a given ξ is set as deterministic.

Multiple approaches could be considered when using the maximum mean discrepancy, simply

since it considers the full distribution of f(X, ξ) and does not require any choice of a statistical

measure. For example, one could try to find the subset ξI that minimizes γ2(Pf(X,ξ), Pf(X,ξI)),

under the constraints that at least a few parameters are removed since keeping all parameters

is a trivial solution. The influence of the deterministic inputs on the performance of the output

could possibly be assessed afterward with the methods introduced in this thesis.
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