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Abstract

Crop yield prediction is a paramount issue in agriculture. Considerable research has been performed

with this objective, relying on various methodologies. Generally, they can be classified into

knowledge-driven approaches and data-driven approaches.

The knowledge-driven approaches are based on crop mechanistic modelling. They describe

crop growth in interaction with their environment as dynamic systems. Since these models are based

on the mechanical description of biophysical processes, they potentially imply a large number of

state variables and parameters, whose estimation is not straightforward. In particular, the resulting

parameter estimation problems are typically non-linear, leading to non-convex optimisation issues

in multi-dimensional space. Moreover, data acquisition is very challenging and necessitates heavy

specific experimental work to obtain the appropriate data for model identification.

On the other hand, the data-driven approaches for yield prediction necessitate data from a large

number of environmental scenarios, but with data far from straightforward to obtain: climatic data

and final yield. However, the perspectives of this type of model are mostly limited to prediction

purposes.

An original contribution of this thesis consists in proposing a statistical methodology for

the parameterisation of potentially complex mechanistic models, when datasets with different

environmental scenarios and large-scale production records are available, named Multi-scenario

Parameter Estimation Methodology (MuScPE). The main steps are the following:

• First, we take advantage of prior knowledge on the parameters to assign them relevant prior

distributions and perform a global sensitivity analysis of the model parameters to screen the

most important ones that will be estimated in priority;

• Then, we implement an efficient non-convex optimisation method, the parallel particle swarm

optimisation, to search for the MAP (maximum a posterior) estimator of the parameters;

• Finally, we choose the best configuration by taking into account specific criteria, which

account for the predictive capacity, the model complexity, computational limitation, and

some other essential benchmarks in modelling.

This methodology is firstly tested with the CORNFLO model, a functional crop model for the corn.
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A second contribution of the thesis is the comparison of this knowledge-driven method with

classical data-driven methods. For this purpose, according to their different methodology in fitting

the model complexity, we consider two classes of regression methods: the Statistical methods

derived from generalised linear regression that are good at simplifying the model by dimensional

reduction, such as Ridge and Lasso Regression, Principal Components Regression or Partial Least

Squares Regression; the Machine Learning Regression based on re-sampling techniques like

Random Forest, k-Nearest Neighbour, Artificial Neural Network and Support Vector Machine

(SVM) regression.

At last, a weighted regression is applied to predict crops’ production on large-scale. Significant

economic crop production in France, soft wheat production, is taken as an example. Knowledge-

driven and data-driven approaches have also been compared for their performance in achieving this

goal, which could be recognised as the third contribution of this thesis.

Key words: Crop yield prediction, knowledge-driven approaches, data-driven approaches,

sensitivity analysis, MuScPE, environmental diversity, large scale
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Introduction

Context

Agriculture is always one of the human beings’ essential activities concerning soil cultivation and

all other work on the natural environment. It is still a vital economic sector and today remains

the leading sector of business in many countries. It provides a large part of our food consumed

every day in our life. However, with climate changes and population increase, food production is

faced with significant challenges. It is reported that the global population is rising from one billion

in the early nineteenth century to more than seven billion today, which leads to a steady increase

in food demand. A considerable rise in global food production is thus required each year in an

increasingly severe climate (Change, 2014). The production of qualified food in sufficient quantity

is essential for the well-being of people all over the world. Due to the limitation of arable land,

yield improvement is a means of meeting a growing demand for agricultural commodities.

During the twentieth century, crop yields were improved thanks to ever more efficient farming

techniques and the progress of the varietal selection. However, it is reported that the technical

capacities and genetics no longer allow a significant increase in yields, which have stagnated

since the 1990s (Brisson et al., 2010). In faced with these challenges, the accuracy of crop

production prediction is a fundamental requirement of the managers or governments to formulate

their agricultural policy to adopt strategies for food security (Change, 2014).

For a long time, Crop Yield Prediction (CYP) is a significant topic of interest in agriculture

research, and farmers have been doing it roughly for hundreds of years. In modern times, CYP is

requested to be carried out as early and accurately as possible. However, it is made very difficult by

the variety of agricultural systems, the diversity of biophysical processes implied in plant growth,

and the complexity of crop responses to stress (Liu et al., 2001). The non-linear behaviour of crops’

reaction to the environment introduces large deviations from year to year and makes the traditional

method inaccurate (Liu et al., 2001), (Drummond et al., 2003). What’s more, farmers’ management,

such as land preparation, irrigation, sowing date, or fertiliser applications, also have a significant

influence on crop yield. Sometimes, even the agricultural market can also have a substantial impact

on the farmers’ decision. Thus, more efficient methods should be developed in faced with these

challenges.
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The advances in mathematics and information technology lead to an explosive growth of new

methods in plant crop yield modelling. According to their different modelling methodologies and

different format of numerical observation, they could be classified into two categories as following

(Tarsha-Kurdi et al., 2007):

• Knowledge-driven approaches: Mechanistic parametric models are created to describe crop’s

behaviour and growth according to environmental conditions

• Data-driven approaches: Empirical relations between the crop yield and the related environ-

mental condition is constructed with statistical regression algorithms.

CYP modelling methodologies and data format

Knowledge-driven approaches with longitudinal data

For crop yield prediction, knowledge-driven approaches greatly depend on the construction of crop

models. These models try to mimic the functioning of the plant system in interaction with climatic,

soil, and other agricultural conditions. They make a useful abstraction of the dynamics of the

plant’s physiological development into mathematical equations (Safa et al., 2004). Since the 1970s,

several families of models have been created, aiming at different objectives: to understand the

eco-physiological functioning, such as SUCROS model (De Wit, 1978) or AFRCWHEAT (Porter,

1993) model; to analyze the implications of agricultural practices like CERES-Maize model (Jones

et al., 1986) or CROPGRO model (Boote et al., 1998); to study the influence of environmental

issues, such as EPIC model (Williams et al., 1984). At that time, most of them were crop-specific

models.

Later in the 1990s, thanks to the general formalism, the agronomic and environmental objectives

were integrated, which makes it possible to analyze different crops under the same formalism, such

as SUCROS2 (Goudriaan and van Laar, 1994), Greenlab (Hu et al., 2003), STICS (Brisson et al.,

2003) and APSIM (Keating et al., 2003). Sometimes, for a specific plant, there exist several different

models for different research objectives. (Baey et al., 2014) has evaluated five typical models for the

sugar beet crop: GreenLab, a generic functional-structural plant model dealing with the architecture

description and physiological functioning (De Reffye and Hu, 2003); LNAS, a functional-structural

plant model coping with the biomass allocation and the whole leaves compartment (Cournède et al.,

2013); STICS, for the research of biomass production and intercepted radiation (Brisson et al.,

2003); Pilote, a model for the study of crop–soil interaction (Khaledian et al., 2009) and CERES, in

which the irrigation or nitrogen uptake can be integrated (Godwin and Jones, 1991). All these five

models are proved to have a reasonable accuracy of CYP for sugar beet in (Baey et al., 2014), and

behave very similarly despite their apparent differences.
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In this thesis, for the crop models under study, the CORNFLO model for crop yield prediction

in Part I and the LNAS-wheat model for large-scale production prediction in Part III, it is assumed

that the dynamics of the involved biological processes can be commonly captured by a discrete

dynamic system of the following form:

Xt+1 = Ft(Xt ,Ut ,θ), (1)

where Xt and Ut represent respectively the state and the environmental variables of the system at

time t, θ is the parameter vector, and the function Ft (model dependent) specifies the functional form

of the dynamic system at time t. This function reflects the effects of the involved eco-physiological

processes to the state variables of the system at time t, usually in the form of an empirical law. The

dynamic system is assumed here to be deterministic. Nevertheless, it is also possible to make it

stochastic by introducing modelling noises (Cournède et al., 2013). Ideally, as it is typically done

in discrete dynamic systems, such crop models could be described in the form of a full longitudinal

record of the objective variable at modelling time scale, in the following form:

X = (X1,X2, ...,XN),

Xi = (yi, ti), i ∈ [1 : N] ,
(2)

where yi represents the i-th possible record of the objective variable y at time ti.

However, because of some constraints, not all the state variables can be directly observed,

and not all possible records of the objective variable are available. Unfortunately, this is a typical

situation in this application context leading to incomplete, asynchronous, and unbalanced (different

lengths) data for different individuals (Newlands and Townley-Smith, 2010). In Figure 1, an exam-

ple is presented with a dataset of 567 observation points to illustrate all the above characteristics.

The dataset contains accumulated temperatures and associated numbers of phytomers corresponding

to the first five months of development of 122 Acacia erioloba plants (Della Noce et al., 2016).

A significant amount of work is needed to develop and test these models in a real application

context. The confrontation with the real dataset is the ultimate goal, and a successful model should

satisfactorily reproduce the quantities of interest. A significant part of this process is related to

a successful parameterisation and the development of efficient parameter estimation techniques.

Several classical parameter estimation methods for dynamic crop models, such as Maximum

Likelihood estimation and Ordinary Least Squares are listed in (Brun et al., 2006). Besides, the

generalised least squares (GLS) is simple, powerful and particularly adapted for discrete dynamic

models as described in (Goodwin and Payne, 1977), and has been widely used in Greenlab (Zhan

et al., 2003), (Guo et al., 2006), (Ma et al., 2007) and Digiplant (Letort et al., 2008), (Christophe

et al., 2008) and (Ma et al., 2010).
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Fig. 1 Number of phytomers along plant main axes with respect to the accumulated sum of
temperature

Let us now give a small description of the GLS model as it appears in our cases of interest.

Let (tk)1≤k≤n denote the sequence of times at which the crop was observed, and yk ∈ Rp (p≥ 1)

the observation vector at time tk. Since we assumed that no modelling noise is present, then it is

typically assumed that observations are only subject to measurement errors. If the measurements

were perfect, then the total observation vector y = (y1,y2, . . . ,yn)
t ∈ Rnp could be written in the

form y = f (θ), where f succinctly represents the functional dependence of y on the unknown

parameter vector θ , specific to the model under study. By adding a deviation ε from these perfect

measurements, then the following representation holds:

y = f (θ)+ ε (3)

where ε = (ε1,ε2, . . . ,εn)
t ∈ Rnp, and represents the random deviation from the perfect model

f (θ). In GLS it is assumed that E(ε) = 0 and V (ε) = Σ, where Σ is an unknown covariance

matrix. It is also often assumed that ε ∼N (0,Σ). In any case, the GLS estimator is given by

θ̂ = argmin(Y − f (θ))tΣ−1(Y − f (θ)), that is by minimising the weighted norm (with respect to

the precision matix) of the difference between the observed vector y and its expected one. An

example of the application of this method for estimating biomass production as a function of thermal

time is given in Figure 2 (Bayol, 2016). Notice that the estimated growth curve (red line) fits really

well the experimental data (blue points). (Cournède et al., 2011) gives a detailed description of the

estimation algorithm and propose ways to model the covariance matrix of the error vector ε .



List of tables 5

Fig. 2 Experimental data versus simulation curve

However, this methodology is considered to be impractical for massive application in agriculture

for several reasons: firstly, this methodology is only efficient with micro-scale data obtained from

the measurements along the crop’s growth, for which the experiment is expensive in terms of time

and money as stated in (Varcoe, 1990) and (Drummond et al., 2003), so that the sample size is

usually quite small; secondly, the experiments are conducted in the same environment, which makes

the universality of the calibrated model questionable; thirdly, it seems unnecessary to target the

coincidence of the crop growth curve for the whole life if the only interesting state is the yield, the

final state. It will be discussed in Part I.

Data-driven approaches cross-section data

Data-driven approaches have many synonyms, such as "statistical learning", "data mining", "ma-

chine learning" or "data science". It is a subject that deals with data changes with the explosion

of data volume and data diversity. Their names updated with the advances in analytical and in-

formation technology. The basic idea is to figure out in the best possible way the relationship

between the explanatory variables and the objective variable. This relation is always drawn from

historical observations. The only difference is that the models and algorithms become more and

more complex (O’Neil and Schutt, 2013). Today, they are used in almost all sectors of human

activity and are part of the basic knowledge of the engineer, the manager, the economist, the biolo-

gist, the computer scientist. Innumerable applications are cited in the industrial field: reliability of

equipment, quality control, analysis of measurement results and their planning, forecasting, and in
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the field of economics and human sciences: econometric and agricultural models, surveys, opinion

surveys, quantitative market studies (Saporta, 2006).

Common statistical practice includes data collection, processing, and interpretation (Mont-

gomery and Runger, 2010).

Generally, the data collected on n individuals are usually presented in tabular form with n

rows and the term individual is relative to the context. In general, a plant model is calibrated with

micro-scale observations for each individual plant, but in our case, we want to use large-scale

observations, which correspond to the harvest data for a certain region or the general crop yield for

this region (county scale in USA, or province scale in France). When only numerical variables are

observed, the array has the form of a matrix with n rows and p columns of general term xi, j, and

the related vector of the objective variable of of general term yi:

X =



x1,1 · · · x1, j · · · x1,p
...

. . .
...

. . .

xi,1 · · · xi, j · · · xi,p
...

. . .
...

. . .
...

xn,1 · · · · · · xn,p


, Y =



y1
...

yi
...

yn


(4)

As for CYP, the main idea is to build empirically the relationship between the crop yield and the

living conditions in which the crop is cultivated by taking into account historical observations. In

most cases, it doesn’t require a deep knowledge of biological mechanisms that produced the plant.

Such techniques are inexpensive, relatively easy to apply, and do not need a predefined structure

of the model (Lobell and Burke, 2010). Consequently, data-driven approaches have been widely

applied in recent years with classical statistical methods (Dixon et al., 1994), (Sudduth et al., 1996)

and machine learning methods (Drummond et al., 2003), (Roel and Plant, 2004), (Irmak et al.,

2006).

In this research, the dataset, on which the statistical learning approaches will be applied, is in

the form {Ui,yi}, with Ui the meteorological records and yi the crop yield at harvest. As introduced

above, the available dataset for this research is in the form {Ui,yi}. The objective of statistical

learning approaches is to build a regression model of the form:

y = g(U)+ ε, (5)

where g(·) represents the complex relationship between the yield and its relative meteorological

condition. In most cases, such a model is considered to be a "black box", and it will be trained with

available datasets through a learning process before coming into use. As stated in (Von Storch,

1999), the meteorological records always introduce a high dimension and a strong correlation. When

dealing with these difficulties, solutions can be divided into two parts according to their modelling
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discipline: the statistical methods by dimension reduction and penalisation, like Ridge and Lasso

regressions, principal component regression and partial least squares regression; the machine

learning methods depending on similarity and re-sampling technique, such as regression trees,

random forest, k-nearest neighbours (KNN), Artificial neural network (ANN), SVM regression, etc.

More details will be discussed in Part II.

Objectives of the thesis

As described in the previous Section, eco-physiological crop models have been widely used to

analyse genotype-by-environment interactions. But the estimation of their parameters remains a

crucial issue. In parameter estimation, an estimation process is carried out by taking into account the

measured data as input and evaluating the uncertainty on the parameter estimation. In the process

of parameterisation of crop models, an important issue is related to the generally increased number

of parameters compared to a few field data (Makowski et al., 2006). On the other hand, to allow

precise discrimination between genotypes, model calibration should be accurate enough, which

necessitates the availability of a sufficient number of experimental data (Reymond et al., 2003),

generally difficult to obtain. Such a contradiction in breeding programs seems to be unsolvable.

The first objective for this thesis is to propose a solution that could meet the demand for cost

reduction and precise calibration for crop models at the same time. While the traditional longitudinal

data records used to calibrate dynamic systems are costly, another large-scale production data,

which could be regarded as a special case of longitudinal data with only one observation, the final

harvest, are available and exist in a large amount in the government’s dataset. As suggested by

(Jeuffroy et al., 2006), it would be beneficial if a methodology could be devised to take advantage

of these official data (that are classically available at a reduced cost) for the parameterisation of

crop models. Normally, a well-chosen panel of environmental conditions in which a few plant

traits are measured should mathematically provide enough information for model identification.

It is a matter of investigation if the poor information of one single record for each longitudinal

data could be hedged by the rich knowledge of diverse environments where the crop grows. Under

such circumstances, a novel methodology, called multi-scenario parameter estimation methodology

(MuScPE), is designed to verify this hypothesis. The main idea of this methodology is to estimate

parameters by taking into account large scenarios’ simple data, instead of using an extensive

collection of detailed plant growth data, as shown in Figure 3.

In particular, MuScPE will be firstly tested on CORNFLO, a crop model of maize. Virtual

experiments, comprising real weather data and model simulation-generated virtual yield data, are

used to prove MuScPE’s technical feasibility. MuScPE’s implementation with real field experiments

data encounters much higher difficulty than virtual experiments. Practical issues for successfully

carrying out MuScPE on real data are required to be discussed. The first issue is the determination
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Fig. 3 Philosophy of Multiple-Scenarios Parameter Estimation

of parameters’ estimation priorities with sensitivity analysis. The second includes ensuring the

most appropriate numerical optimisation methods for the model. We will mainly focus on Particle

Swarm Optimisation and its variants, to figure out the best algorithm to deal with the corresponding

optimisation problems. The use of the high-performance computing machine "Mesocentre" of

Paris Saclay University helps to enhance the efficiency of the computation for this purpose. Two

assumptions about MuScPE’s estimation and prediction performance are tested: "the increase of

scenarios decrease the variance in the distribution of the estimated parameters" and "the increase of

scenarios makes estimated parameters possess better prediction ability". Hence, the link between

scenario amount and the MuScPE estimate’s accuracy and precision will be investigated.

As for data-driven approaches, since they are good at dealing with the regression problem with

cross-sectional data, various algorithms have been proposed and applied to solve the agricultural

issues. However, less work has been carried out to compare the efficiency of different approaches

under different assumptions. Thus, the second objective for this thesis is to compare different

statistical learning approaches for the crop yield prediction and find out the best algorithm to explain

the relationship between the crop yield and its environments.

When dealing with models that take environmental data as inputs, the diversity of ecological

variables is an unavoidable issue. Furthermore, the idea of MuScPE is based on the hypothesis

that the loose information caused by the few records in longitudinal data could be hedged by the

diversity of scenarios information. This methodology aims at finding out the best configuration of

the parameter for a generic environment, which requires that the diversity of backgrounds should

be kept as much as possible. Therefore, the third objective is to improve the knowledge-driven and

data-driven approaches by adopting a clustering analysis. In particular, non-supervised clustering

analysis is firstly conducted to divide the dataset into different subgroups according to their variety.

Then, samples from different subsets should be equally drawn to ensure that varied environmental

information is taken into consideration. The influence of the meteorological variety will also be

studied for both methodologies.

According to the definition of "crop yield", which is "the measure of grains or seeds generated

from a unit of land expressed as kilograms per hectare", it remains an academic or a scientific
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subject. But, if we talk about "crop production", it becomes more realistic. Finally, an ambitious

objective is to build a stable predictive framework for large-scale crop production. In the future,

it is supposed that, by taking into consideration more environmental and economic constraints,

large-scale crop management could also be made with this platform.

Organisation of the manuscript

The first part of the thesis (Chapter 1 - 4) deals with crop yield prediction via plant growth modelling.

Chapter 1 clarifies the context of dynamic modelling in agronomy and makes a brief introduction

to plant growth modelling for the corn crop. After the first evaluation of the model, the recommended

parameter settings provided by the modeller seems to be incorrect. The results lead to a discussion

about the difficulties in dealing with the parameterisation of a dynamic model.

Chapter 2 attempts to deal with the problem proposed in Section 1.3 about model complexity.

A sensitivity analysis based on SRC and Sobol indices is carried out to study the interaction of

parameters along the life cycle of corn. It also helps to rank the parameters according to their

importance for parameterisation. A brief study of continuity, convexity, and identifiability is

also performed to evaluate the difficulties in the parameterisation process. Finally, a subset of 5

identifiable parameters is chosen to be estimated at the first stage, by ensuring that the objective

function is continuous. The absence of convexity is also addressed.

In Chapter 3, a methodology named "multi-scenarios parameter estimation", is introduced for

the plant growth model with an available dataset of the form {Ui,yi}, where Ui are the meteorologi-

cal records of a specific environment and yi its corresponding yield. Since the parameterisation

of the plant model turns out to be a single-objective non-convex optimisation problem, the Par-

ticle Swarm Optimisation(PSO) algorithm will be integrated into the MuScPE methodology. A

detailed introduction of the PSO and its variants is given in Section 3.2 and 3.3. The first essay

of MuScPE-PSO will be accomplished to verify its capacity in global optimisation in the plant

growth model. Since PSO is a population-based algorithm, which is costly in computation, a

parallel PSO combined with MPI and OpenMP will be presented in Section 3.5. A parallelised

PSO with proper settings is finally chosen to be a robust optimisation algorithm for the MuScPE
methodology. In Section 3.6, the parametrisation results with MuScPE-PSO will be presented.

The results can be divided into two parts: the estimation result with simulated data and that with

real data. In the simulated case, since we know precisely well the settings used to generate the

simulated data. The results in this part can be used to test some properties of MuScPE-PSO, like

the stop criteria of the PSO algorithm, the uncertainty of the estimated parameters relative to the

numbers of scenarios, The stop criteria condition that we get from the last part will be used in

parametrisation with real data. The CORNFLO model will be calibrated, and its prediction capacity

will be evaluated.
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In Chapter 4, the study of knowledge-driven methods is completed with another important

subject concerning models that take into account meteorological records, the inter-annual variability.

Descriptive statistics on the evolution of meteorological variables, the rainfall, for example, will be

discussed in Section 4.2 and 4.3. In Section 4.4, a non-supervised clustering method, the k-means

clustering algorithm, will be applied to the meteorological records. According to the clustering

results, almost the records of the same year are classified into the same group, which means that the

inter-annual variance of the meteorological records is more important than the inter-regions variance.

Finally, cross-validation that takes into account the inter-annual variance will be implemented to

study its influence on the CYP prediction.

From Chapter 5, the topic will change to the study of a data-driven approach for the CYP. First

of all, a simple introduction to data-driven methods will be made in this Chapter. The first difficulty

in dealing with meteorological data is the collinearity between the adjacent daily records of the

meteorological variable and its high dimension. The solutions to deal with these two difficulties can

be divided into statistical regression methods and machine learning regression methods. The former

depends on the dimension reduction while the latter takes advantage of re-sampling technique and

similarity. Some conventional techniques will be introduced, including the statistical methods like

Ridge and Lasso regressions, principal component regression and partial least squares regression,

and the machine learning methods like regression trees, random forest, k-nearest neighbours (KNN),

Artificial neural network (ANN), SVM regression.

In Chapter 6, the methods presented in Chapter 5 will be tested in terms of their yield prediction

capacity. The inter-annual variance, previously discussed in Chapter 4 is proved to have a significant

influence on the predictive ability of data-driven methods. A straightforward but effective solution

is to regroup the meteorological records. In particular, for specific days, the variables are averaged

out to produce the new explanatory variable. It is important to consider different periods since the

sensitivity of the performance to the weather varies over time.

In Chapter 7, a case study is presented for the prediction of large-scale crop production. The

national French soft wheat production is taken as an example. The dataset consists of the crop

harvest and cultivated surface at the departmental level and the related environmental information

from 1990 to 2010. A crop model, LNAS-wheat, is compared with other data-driven approaches

under the weighted regression framework. Moreover, the results with an average relative and

absolute error less than 5% prove the accuracy achieved by Random-Forest.

Finally, for the conclusion part, a discussion of the proposed methodology developed in this

thesis and a discussion of the primary results will be carried out. Some perspectives for future work

are also presented.



Part I

Mechanic Crop Models for Crop Yield
Prediction





Chapter 1

Dynamic model of plant growth

In the history of humanity, we human beings face different difficulties from nature or our creations,

such as natural disasters, diseases, food shortage, pollution, and even war. A vital member of

our planet, the plants, on the contrary, plays an essential role in the balance. For resources, such

as oxygen, energy, the emergence of agro-fuels, the basis of our diets, even the origin of many

medicines, we depend entirely on the plant and the eco-system for our survival. Also, a global

context of improvement in living conditions but also global climate change, considerable effort

should be made to reposition the scientific research to satisfy quality requirements, environmental

concerns, and “low input” specifications at the same time. In the field of ecological modelling, this

proposes a new evaluation principle for plant growth models, that includes not only their excellent

average performance and their stability in different scenarios but also the diagnosis and the control

of the genotype × environment interactions (G×E). In other words, this new stance requires and

incorporates better understanding and predictions of the G×E interactions.

Dynamic simulation models have been developed since the 1980s to account for the response

of a crop to extreme environmental conditions (temperature, radiation, water.) (Hammer et al.,

2002). For most of the plant growth models, the genetic variability is reflected by different settings

for the same parameters (Boote et al., 2001), and direct or inverse measurements, (Jeuffroy et al.,

2006) could estimate these values. Several recent examples show that dynamic models can be

successfully applied to understand and predict the G×E interactions. (Agüera et al., 1997), (Brun

et al., 2006). These models can also be used to inform some environmental covariates used in the

G×E interactions. It is supposed that better control of G×E interactions is likely to increase the

competitiveness of the crop by reducing the gap between the yield collected by farmers and that

allowed by the environment (Champolivier et al., 2011).

This chapter begins with some prerequisites and a general description of plant growth models

in Section 1.1; then, the CORNFLO model for the corn crop is presented, and a first predictive

evaluation is given in Section 1.2; the chapter ends with a discussion of some difficulties encountered

in a dynamic crop model in Section 1.3.
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1.1 General context of plant growth modelling

Modelling is one of the most important scientific research activities in modern science. The mod-

elling of environmental, ecological, economic, agronomic, physical, and chemical systems has

developed considerably in recent decades as a result of advances in information technology and the

development of powerful computational tools. Modelling consists of integrating the knowledge

acquired through experimentation, experience, and theory into mathematical equations and compu-

tation codes. It provides a more accessible and efficient way to understand the phenomenon under

study as well as the simulation and prediction of the impacts caused by some extreme environmental

conditions to the crops. Usually, models are developed for a specific purpose, mostly for supporting

applied research and providing decision-making tools for economic or political decision-makers.

Many models are developed at appropriate scales to have a better representation of the phe-

nomenon under study. Parameter determination is a critical aspect of the modelling practice, and

many times, their interpretation may be complicated and subtle. The difficulty increases when

multiple interactions, typical in biological applications, for example, are present in a dynamically

evolving environment. In particular, in agronomy, models are very often developed at daily time

steps to simulate the effects of agricultural practices on crops (quality and yields), on the envi-

ronment (pollution and emission of greenhouse gases). Some of these models are used to guide

farmers in their agricultural practices and policymakers in management and regulation (Brisson

et al., 1998), (Meynard et al., 2002).

The modern plant growth modelling can date back to the early 1970s. Since then, with the

explosion of information technology, this domain has advanced in multiple directions, which can

broadly be classified as geometric models and the agronomic model (De Reffye et al., 2008).

The recent focus on the visualisation of plant growth in space leverages numerical simulation

and computer vision, while the latter is designed for the internal biological processes and their

interaction with the environment.

The agronomic models are also called "process-based" models in the literature since their

objective is to study processes such as the interception of solar radiation, the change of absorbed

solar radiation into biomass, and biomass allocation. The production of biomass is then obtained

with the help of a system of equations involving the biological processes of photosynthesis,

respiration, and distribution. It has been shown that agronomic models allow reasonable estimation

of crop yields as in (Oteng-Darko et al., 2013).

A dynamic system formulation has been recently proposed to model the plant growth process

(Cournède et al., 2013). It is supposed to be an advantageous framework because, under this

formulation, the mathematical equations that describe the biological processes could be easily

translated into the programming language as the simulation tools require. In the case of plant

growth modelling, a dynamic model can be expressed as follows:
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y(t) = f (U,θ , t), t ∈ {1,2, ...,T} (1.1)

where U is the vector of the input variables of the model containing the environmental information,

θ is the vector of uncertain parameters with genotypic information, y(t) is the output of the model

at day t and T corresponds to the total observation time. The function f (·) is model specific

and reflects the way that all the previous quantities are linked. It could be either deterministic or

stochastic, depending on the assumptions. Since U contains the environmental information and

θ incorporates the genetic information, the above equation illustrates the way that the output y(t)

results from the G×E interaction.

1.2 Crop model of corn: CORNFLO

Several simulation models of corn have been proposed in the literature, such as STICS in (Brisson

et al., 2003). Some of them are even specific to maize, like CERES-Maize in (Fang et al., 2011).

However, the parameterisation of these models is not directly linked with the relation between the

phenotype and the genotype. The absence of a model which directly assesses this type of variability

gave the motivation for the CORNFLO model to be developed, which is a new simulation model

that meets the requirements of varietal evaluation of the G×E interaction. In the sequel, we

describe its essential characteristics, and for a more detailed description of the model, the reader is

referred to the Appendix B.

CORNFLO is a functional plant growth model for the corn crop (Zea mays L.) (Kang, 2013).

This model has been coded in C++ in the modelling platform Pygmalion (Cournède et al., 2013).

It simulates the daily progress of rooting, the development of the leaf surface, and the above-

ground biomass of corn according to the constraints of temperature, radiation, and water. Biomass

production is a function of the energy intercepted by the canopy. This model is more or less

a "structural" model because several notions related to the structure of the plant, such as "leaf

placement", "leaf surface distribution" and "leaf senescence" are introduced instead of a "big-leaf".

Environmental constraints interact and therefore influence the potential production allowed by

radiation and temperature.

The life cycle of corn is separated into 4-phases according to the accumulated thermal time

(°C ·day): (i) the flowering bud appearance stage (TTE1); (ii) the early flowering stage (TTF1); (iii)

early seed filling stage (TTM0); (iv) the physiological maturity stage (TTM3). Each stage change

induces differentiated physiological processes.

Water is evaluated daily, and stress indices are calculated to reflect the multiplicative effect of

the constraints on leaf expansion and biomass accumulation. Yield is estimated using a harvest

index (HIgraine) that applies to the total dry biomass produced at physiological maturity. The
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daily climate used for the simulation includes five standard variables: maximum and minimum

temperatures, precipitation, potential evapo-transpiration, and global radiation.

1.2.1 Experimental data for corn crop

The experimental data are essential for the modelling process, especially for plant modelling.

Normally, before building a conceptual model, the first step is to analyze the data. The experimental

data should be used to calibrate the model to enhance its prediction ability. For the CORNFLO

model, two kinds of data are taken into consideration: the environmental data and the plant

data. The environmental ones consist of meteorological and plant management data. Among the

meteorological data, usually, we use the daily maximum and minimum temperatures, precipitation,

relative humidity, and solar radiation. The crop management data include the date of sowing,

irrigation, plant density, and harvest date. The plant data consist of measurements related to leaf

area and seed biomass.

In this research, the experimental database consists of 720 experimental 100% irrigated scenar-

ios in the form {Ui,yi}. Each situation consists of the environmental data Ui, and the crop yield

yi. The environmental ones include the daily meteorological records and crop management data

such as density, sowing date, and the date of harvest. Among them, daily meteorological data

between 2001-2010 are obtained from the primary database Syngenta Corporation. The yield data

are given by the National Agricultural Statistical Service (NASS) of the United States Department

of Agriculture (USDA).

1.2.2 First model evaluation

In this section, we assume that the parameter θ0 given in Table B.1 corresponds to the “true”

setting and will be used to simulate the maize yields in 720 different scenarios. Then, θ0 will be

evaluated by the comparison of the simulated corn yield with the real observations. In Figure 1.1

the comparison of the two histograms corresponding to the actual (in red) and the simulated (in

blue) observations from the recommended θ0 in Table B.1 indicates the inappropriateness of the

recommended values since the real observations are over-estimated. A more detailed analysis of

the distribution of the relative errors (see Figure 1.2) reveals that in most cases, the error exceeds

50% and, in some cases, even 150%.

Better parameter calibration is needed for the model to demonstrate its full capacity for CYP.

1.3 Problems description

The identification of model parameters on the real plant is an important issue since these param-

eters are components of yield that can subsequently be used in genetics, or in optimising crop

management. However, parameterisation remains challenging due to several reasons.
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Fig. 1.1 Real and simulated observations Distributions

Fig. 1.2 Relative error distributions
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1.3.1 Model complexity and uncertainty

The increasing role of dynamic models and their complexity make it essential to measure and

incorporate different sources of uncertainty of these models. For the sake of a better description of

the observed phenomenon, deterministic dynamic models generally introduce many parameters,

which constitute one of the primary sources of uncertainty in model outputs. The estimation of

model parameters is a crucial step in the modelling process. Generally, the model’s performance

is largely dependent on the accuracy of the estimates (Lehuger et al., 2009). The estimation of

model parameters for dynamic models (mostly non-linear) is a problem both in theory and in

practice for various reasons, such as a lack of observations to estimate all parameters, the presence

of non-identifiable parameters (Brun et al., 2001), or the structure of the model (essentially the

non-regularity) (Bechini et al., 2006).

In general, a large number of uncertain parameters in a model is unfortunately accompanied by

few observations for reasons of cost and difficulty of measurement. Parameter estimates with fewer

observations are less accurate and increase the risk of prediction errors when using this model. A

natural approach would stem from Bayesian Statistics. A good demonstration of Bayesian Statistics

in plant growth models can be found in (Chen, 2014). Although this field is evolving rapidly, it is

known that Bayesian estimation in the presence of a small number of observations may provide less

accurate posterior distributions (Lehuger et al., 2009). Sensitivity analysis in Section 2.1 offers a

way around this problem in the case of a scalar output model (Makowski et al., 2006), (Brun et al.,

2006). Sensitivity analysis makes it possible to identify the most critical parameters using virtual

experimentation of the model without using observations. The use of sensitivity analysis to choose

the parameters to estimate under generalised least squares criteria is presented in (Cournède et al.,

2013).

1.3.2 Optimization problem in biological engineering

Solving optimisation problems has become a central topic in biological research since a biological

engineering problem is typically formalised in the form of an optimisation problem. It includes

problems such as learning neural networks, task planning or identification.

According to the number of objective functions, the optimisation problems can be grouped into

multi-objective problems and single-objective problems. In this thesis, the only objective is to make

an accurate prediction of crop yield. Hence, It is considered as a single-objective optimisation

problem.

Single-objective optimisation

An optimisation problem, in general, is defined by a search space Θ and an objective function f .

The goal is to find the best quality solution in Θ. According to the problem, one seeks either the
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minimum or the maximum of the function f . In the remainder of this document, we only deal with

minimisation, that is, we search for

θ̃ = argmin
θ∈Θ

f (θ), (1.2)

since the maximisation of a function f is exactly equivalent to the minimisation of − f .

Moreover, an optimisation problem may have equality and inequality constraints on the candi-

date solutions in Θ. In this thesis, we will only study single-objective issues. Many deterministic

methods can solve certain types of optimisation problems quickly. However, these methods require

that the objective function has a certain number of characteristics, such as convexity, continuity

or differentiability. Among the best-known techniques, there are linear programming methods,

quadratic or dynamic, Newton’s method, the "simplex" method, or the gradient-based method

(Wright and Nocedal, 1999).

Some problems, however, remain too complicated to be solved with deterministic methods.

Some features may cause a discrepancy in these methods. Among these, one can mention disconti-

nuity, non-differentiability or the presence of noise.

Meta-heuristics for difficult mono-objective optimisation

Meta-heuristics are a family of stochastic algorithms for solving optimisation problems. Their

particularity lies in the fact that they are adaptable to a large number of problems without major

changes in their algorithms, hence the meta qualifier. Their ability to optimise a problem from a

minimal amount of information is counterbalanced by the fact that they offer no guarantee as to the

optimality of the best solution found. Only an approximation of the global optimum is obtained.

However, for operational research purposes, this attribute is not necessarily a disadvantage, since

one can always prefer a good approximation of the global optimum found swiftly than an exact

value found at an inefficient and long time.

Meta-heuristics are methods that have, in general, an iterative behaviour, that is to say, that the

same pattern is reproduced repeatedly during the optimisation, and that is "direct", in the sense that

they do not use the calculation of the gradient of the function. These methods are useful. After all,

they are less easily trapped in local optima, because they accept, during the treatment, impairments

of the objective function and the research is often conducted by a population of points and not a

single location.

To overcome the difficulty during the modelling process, we are particularly interested in one

of the effective Meta-heuristics, the Particle Swarm Optimisation (PSO), which constitutes the

primary optimisation method for the estimation of the plant growth model in this thesis. It is a new

class of meta-heuristics proposed in 1995 by Kennedy and Eberhart (Eberhart and Kennedy, 1995).

The social behaviour of swarming animals inspires this algorithm. The various particles of a swarm
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communicate directly with their neighbours and thus construct a solution to a problem, based on

their collective experience. This detailed description and some tests of important priority will be

discussed in Section 3.2.



Chapter 2

Plant Model Analysis

After the first evaluation of the prediction efficiency of the plant growth model, the CORNFLO

model, with recommended parameters as in Table B.1, there is still a big difference between

predictions and real observations. We must have recourse to mathematical and statistical tools to

have a better approximation to the observed phenomenon. Much progress has been made in this

area. In (Jeuffroy et al., 2006), several axes of plant model research have been proposed, including

sensitivity analysis, parameter estimation and model evaluation.

Ideally, all the parameters of the CORNFLO model should be estimated. However, in reality, it

is impractical for several reasons. Firstly, plant models like CORNFLO have already been studied

extensively in other contexts. Consequently, it is an excellent choice and highly advisable to

take some of the consistent results regarding parameter estimates into account. Secondly, some

parameters are genotype-independent, and thus their values could be estimated by conducting

preliminary studies. This practice could result in a significant reduction in the number of parameters

that have to be determined. Since in this research project, we only focus on genotype-dependent

parameters, we can indeed take advantage of this principle. Thirdly, the objective function of the

fitness is not always a convex function of the parameters, which makes somewhat risky the use of a

descent-based method (like Gauss-Newton), since it could increase the cases where convergence

takes place to a local minimum, which is the reason why, in this chapter, the analysis of parameters

is first carried out by conducting a sensitivity analysis in Section 2.1, and then by proceeding to an

identifiability, continuity and convexity analysis in Section 2.2. Finally, only a subset of the initial

parameters, the ones which are identifiable and the most important, will be selected for calibration

in the parameter estimation step. This step will be described in the next chapter.

2.1 Sensitivity Analysis

Sensitivity analysis consists of a mathematical tool which determines how uncertainty in the output

of a system can be attributed to the uncertainty in its inputs (Saltelli, 2002). By estimating sensitivity
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indices that quantify the influence of inputs on the output, it can be beneficial for many engineering

applications:

• Testing the robustness of a mathematical model with uncertainty to have a better understand-

ing of the relationships between input and output variables in a system (Iooss and Lemaître,

2015);

• Simplifying the model by setting to constant values the inputs that have less effect on the

output and simplifying the model calibration process by adjusting parameters that have

the most important sensitivity indices. It could be very beneficial since a lot of time and

effort might be wasted to adjust parameters which are not very sensitive, (Bahremand and

De Smedt, 2008).

• Leading to a better understanding of the parameters’ interaction with observations, model

inputs and predictions (Hill and Tiedeman, 2006).

2.1.1 Basic Notations

The goal of sensitivity analysis is to explain how the uncertainty in the output Y is attributed to

different sources of uncertainty in its inputs X = (X1, ...,Xp). The output and the inputs are linked

through a model with a generic mathematical formulation of the form

Y = f (X), (2.1)

where f is considered here to be a black box.

There are many constraints imposed by the function f that should be taken into consideration,

mainly as follows:

• Computational cost: In most cases, performing a sensitivity analysis requires evaluating the
model f a large number of times (Helton et al., 2006). It becomes even worse when the
model has a large number of inputs.

• Correlated inputs: the independence assumption among model’s inputs greatly simplifies
sensitivity analysis, but sometimes it can not be overlooked that inputs are highly correlated.
The correlations between the inputs must then be taken into consideration in the analysis
(Sainte-Marie et al., 2017).

• Non-linearity: the linearity or not of the modelling function f concerning the inputs will be
decisive in the choice of different techniques to deal with sensitivity. The sensitivity indices
based on standardised regression coefficients (SRC) are usually applied to a linear model
while in the case of a non-linear model, a variance decomposition method is taken advantage
of (Jacques, 2005).

• Interactions: the interaction among the inputs will complexify the sensitivity analysis. The
simple and total Sobol indices are effective tools to quantify the interaction effect (Nossent
et al., 2011).
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2.1.2 Sensitivity analysis process

Many approaches for sensitivity analysis have been developed to deal with one or more of the

constraints discussed above. However, most procedures are carried out with the 4 steps as shown in

Figure 2.1

Fig. 2.1 Sensitivity analysis procedure

1. Quantify the uncertainty for each input, for example, by determining the range of possible

values or/and by assigning relative probability distributions.

2. Identify the outputs of the model that will be analysed.

3. Run the model some times following a plan of experiments.

4. Compute the sensitivity measurement chosen for the problem.

2.1.3 Sensitivity analysis method on platform

On the Platform PyGMAlion (Cournède et al., 2013), two types of sensitivity measures have been

implemented: the SRC indices and the Sobol indices.

SRC: the index based on regression analysis

In the context of sensitivity analysis, the SRC method analysis uses standardised regression

coefficients as sensitivity index (Hamby, 1994). This method works best in the case that the

response variable (the output) is indeed linear to the inputs. The coefficient of determination

could be used as an indicator, but it should be used with caution since this index corresponds to a

measure of global model fitting. Besides, the SRC is well known for its simplicity and low cost in

computations. Despite its simplicity, in ecological models, the model’s non-linearity and the strong

interactions among the parameters cause many difficulties in the use of the SRC index (Cariboni

et al., 2007).

Sobol method: the indices based on variance decomposition

The Sobol index is one of the sensitivity analysis methods based on variance decomposition, where

the model inputs are considered as random variables, and the variance of the output is focused

(Sobol, 1993). The Sobol index represents the proportion of variance explained by an input or a

group of inputs.
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In the crops models framework, (Wu, 2012) proposes an improvement of the Homma-Saltelli

method for the calculation of the Sobol sensitivity indices (Saltelli et al., 2004). The authors manage

to calculate higher-order sensitivity indices without additional simulations. These methods have

been implemented on the PyGMAlion platform, and they are easy to call when analysing the plant

growth model.

Let E(·) and V(·) stand for the expectation and the variance operator. Since we also refer to

conditional expectations and variances standard simplified notations will be used, and the context

will understand the underlying measures.

The Sobol method is based on the following decomposition of the variance:

V(Y ) =
p

∑
i=1

Vi + ∑
1≤i< j≤p

Vi j + . . . + V1...p, (2.2)

where

Vi = V(E[Y |Xi] )

Vi j = V(E[Y |Xi,X j] )−Vi−Vj

...

V1...p = V(Y )−
p

∑
i=1

Vi− ∑
1≤i< j≤p

Vi j − . . . − ∑
1≤i1<···<ip−1≤p

Vi1...ip−1 .

(2.3)

The Sobol index of first order for the input Xi is defined as:

Si =
V(E[Y |Xi] )

V(Y )
=

Vi

V(Y )
. (2.4)

The first order Sobol index Si does not take into account the uncertainty caused by the interac-

tions of Xi with the other variables. To include all the interactions in which Xi is involved, we use

the total Sobol index:

ST
i = 1− V(E[Y |X∼i])

V(Y )
, (2.5)

where X∼i = (X1, ...,Xi−1,Xi+1, ...,Xp). Variance decomposition-based methods allow a full expla-

nation of the input space. It makes it possible to analyse the parameters’ interactions and model’s

non-linearity. For these reasons, Sobol indices are widely used in solving complex engineering

problems.

2.1.4 Sensitivity analysis results

Since the model analysis is a complicated process, the sensitivity analysis will be carried out in a

different context (Bayol, 2016). Normally, an SRC based analysis will be carried out first to verify

the linearity of the objective function relative to the inputs. If the linearity is not well verified, Sobol
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indices will be applied. It allows a better understanding of the interactions among the parameters

during a plant’s growth cycle. In terms of parameter estimation, a "Sobol-gls" algorithm, which is

integrated by the generalised least squares (gls) criterion, makes it possible to obtain the ranking of

the most important parameters for estimation.

Table 2.1 Variation intervals and the recommended value for the model parameters

Parameter Interval Recommended Value

A2 [7, 19] 14.07
A3 [400,720] 645
phyllodeini [22, 42] 32
Ratio-phyllodephyllofe [0.5,0.9] 0.7
TTF1 [410,890] 723
TTM3 [950,1750] 1477
kcoef [0.4,0.75] 0.53
phyllofeini [30, 50] 40
NFF [12, 26] 21
HI [0.3, 0.8] 0.5
RUE [0.5, 0.9] 3.5
TTM0 [550,1060] 884

General sensitivity analysis
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Fig. 2.2 A result of sensitivity analysis result with SRC method
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As a first step, a general sensitivity analysis with the SRC index is applied to verify the linearity

between the output (yield) and the inputs. The parameters are supposed to be random, independently

and uniformly chosen from their uncertain intervals as listed in Table 2.1. These intervals are

suggested by the plant modeller, after a large number of statistical measurements. As described

in Section 1.2.1, the database consists of 720 yields observations and the relevant meteorological

records. Since plant’s growth has a lot of interactions with their environment, the SRC method is

repeated with ten different backgrounds. The SRC indices of the parameters relative to the "yield"

and the R2 determination for a specific environment are shown in Figure 2.2.

The results seem to be reasonable because the variable like the A3 (the potential leaf surface)

and NFF (number of leaves) are outstanding after the appearance of the leaves. However, according

to the R2 determination coefficient (around 0.64), there is still a significant amount of unexplained

variance under the linear assumption.

Thus, a Sobol analysis, with the indices that depend on the variance decomposition, is carried

out under the same configuration with the SRC in 10 environments. One of the results are shown in

Figure 2.3a and Figure 2.3b.
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Fig. 2.3 A result of sensitivity analysis with the Sobol method

The Sobol sensitivity indices for each parameter are slightly different from the SRC indices.

The parameters like RUEpot (the potential radiation use efficiency), and the ones relative to the

leaves like A2 and NFF stand out from the others in the biomass accumulation process. What
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is important is that the R2 determination increases to 0.90, which means that nearly 90% of the

variance relative to the yield could be well explained by the variance decomposition method. Also,

the rest of the variances is supposed to be caused by the correlation among the parameters. Maybe

better exploitation could be obtained with the work in (Sainte-Marie et al., 2017).

Sensitivity analysis for parameter estimation

A good comprehension of the behaviour of the crop yield relative to each parameter and their

interactions could be obtained with the general sensitivity analysis. As far as parameter estimation

is concerned, more constraints should be taken into account, like the observation frequency and the

level of observation noise. For this, on the platform, a "Sobol-gls" algorithm, which integrates the

minimisation criterion for estimation, has been implemented to select the most critical parameters

for estimation concerning experimental data (Bayol, 2016). This criterion corresponds to the

generalised least squares criterion used in the Aitken estimator (Cournède et al., 2011). The

parameterisation in discrete dynamic models is described in (Goodwin and Payne, 1977), and (Zhan

et al., 2003) presented an application in the case of the Greenlab model.

The generic formulation of the model in our case has been described as Equation 1.1, where

the model output is considered to be a function of environmental variables and a parameter vector.

When individual measurements yi concern only the final yield at a given time ti, counted from the

sowing day, in a specific environment Ui, then assuming an additive error term, we get the following

form

yi = f (Ui,θ , ti)+ εi, i ∈ [1 : N], (2.6)

where yi are uni-dimensional and ε = (ε1,ε2, ...,εn) is usually assumed to follow a multivariate

normal distribution N(0,Σ).

But in our case, for each meteorological record, we have only the final observation, the yield

for the corn in their whole life. It means that y consist only a single component. The estimation of

the parameter with the observation yi in relative environment Ui can be obtained easily by:

θ̃ = argmin
θ

( f (θ ,Ui)− yi)
2. (2.7)

In order to have a common estimation of parameter for a certain genotype in different environ-

ment (U1,U2, ...Un), then the common estimation can be obtained as following:

θ̃ = argmin
θ

n

∑
i=1

( f (θ ,Ui)− yi)
2. (2.8)

Ideally, a sensitivity analysis integrated with the least-squares error criteria helps to rank the

parameters’ importance for estimation. It is also a rank that has considered the climatic variance.

However, the calculation cost doesn’t allow taking account of all the environments at the same time.
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An alternative is to calculate the sensitivity indices in each context and make the average value at

last. The summary of Sobol indices in terms of parametrisation is listed in the following table.

The subset of parameters {NFF, RUEpot, A2, HIgraine, TTF1, TTM0 and TTM3} is firstly

chosen to be the critical parameters for calibration for the CORNFLO model according to the

importance of total first-order Sobol indices.
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2.2 Identifiability, Continuity and Convexity Analysis

The identifiability of the parameters of a given model is a crucial step (Brun et al., 2001) insofar as

it is one of the assumptions in the statistical modelling that ensures the consistency of the parameter

estimators. In mathematical statistics, a statistical model is identifiable if:

f (θ) = f (θ)′⇒ θ = θ
′ (2.9)

with f (θ) and f (θ
′
) the distribution of the response function when the parameter vector is θ and

θ
′
. Let us note that a model is said to be identifiable if for any pair of vectors different from values

of the parameters lead to different outputs. Referring to the model’s description in Appendix B,

it is a problem of identifiability will appear when RUE and HI are estimated at the same time. It

happens again when A3 and kcoef are estimated at the same time.
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Fig. 2.4 Parameter with smooth relation to the objective function
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The function to be minimised concerning parameters can serve as a tool for the continuity

and convexity analysis. The objective function related to each parameter of CORNFLO model is

analysed. The associated results are shown in Figure 2.4 and Figure 2.5. The parameter {RT, RE

and RO} related to the water stress is not analysed in this part since the observations are from 100%

irrigated case.

Finally, the parameters can be divided into three categories: 1. The parameters with smooth

curves, like {dens, A2, A3, kcoef, HI, RUE, TTM0 and TTM3}; 2. Parameters with irregular curves

as {TTF1, phyllofeini, phyllodeini and Ratio}; 3. The parameters that only take integer values, like

{NFF}.
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Fig. 2.5 Parameter with irregular relation (non-convex) to the objective function

2.3 Conclusion

In summary, considering the result of sensibility analysis in Section 2.1 and the other analysis in

Section 2.2, a subset of five important variables with continuity {TTF1, RUE, TTA2, TTM3 and

TTM0} will be estimated in the parametric stage in the following chapters.





Chapter 3

MuScPE-PSO: MuScPE methodology
with PSO optimisation

In the last chapter, sensibility analysis has been presented as a mathematical tool for the determina-

tion of crucial parameters in crop models. And a subset of the sensitive parameters has been chosen,

and their parametrisation remains as a difficult task since it turns out to carry out an optimisation

project in high dimension, where the optimal solution is challenging to settle. What’s more, in

this research, we want to take advantage of a dataset with easy access. And they are generally

agricultural record in large-scale and from a large number of diverse environmental scenarios. Thus,

one of the most significant contributions of this thesis is to propose a methodology, named "the

Multi-Scenario Parameter Estimation methodology (MuScPE)", for such a specific problem. In

Section 3.1, we are going to present the general idea of MuScPE; then , a basic introduction of

the implemented optimisation algorithm, the particle swarm optimisation, will be made in Section

3.2; some improvement for PSO will be presented in Section 3.3-3.5; the objective model will be

calibrated in Section 3.6

3.1 Multi-Scenarios parameters estimating methodology

In (Kang, 2013), an innovative methodology, based on inverse methods, is firstly mentioned for plant

model parameters estimation: the Multi-Scenario Parameter Estimation methodology (MuScPE).

This methodology takes advantage of the large-scale data in the form {Ui,yi}, with Ui the daily

meteorological records and yi the average yield observation at county level (usually large amounts

of environmental conditions Ui are available, but for each scenario only a single experimental

observation, the final crop yield yi is known). It gives an alternative for parametrisation in crop

modelling.
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3.1.1 Mathematical interpretation of the problem

From a mathematical perspective, the MuScPE methodology is a parameter estimation method

based on the inverse method. The i-th output of a plant growth model yi can be expressed as a result

of biological interaction between a specific genotype θ and its relative environment Ui as shown in

Equation 2.6.

During the parameterisation process, a classical LSE estimation method is mostly applied to

calibrate the unknown parameter vector, i.e. the optimal parameter setting is obtained via the

minimisation of the squared loss function

L(θ) =
N

∑
i=1

(yi− f (θ ,Ui))
2. (3.1)

so as to obtain θ̃ .

It is a typical inverse problem. As already mentioned in Section 1.3.2, it turns out to be a

continuous optimisation problem with a single objective function of a multi-dimensional parameter.

A 3-D representation of L(θ) as a function of two different choices of parameter components is

shown in Figure 3.1:

(a) Optimisation surface with F1 and A3 (b) Optimisation surface with F1 and M3

Fig. 3.1 3-D presentation of the optimisation surface

The non-convexity demonstrated in the above Figure increases the difficulty of optimisation.

Moreover, the choice of the optimisation algorithm has an essential effect on the results. As

already mentioned in Section 1.3.2, the ordinary gradient-based algorithm cannot deal efficiently

with non-convexity. In the following section, a robust global optimisation algorithm, the Particle

Swarm Optimisation, and its variants will be introduced. Moreover, a dynamic configuration of the

PSO algorithm will be further developed and then integrated into the MuScPE methodology with

parallelism.
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3.2 Basic Particle Swarm Optimisation

Kennedy and Eberhart proposed Particle Swarm Optimisation (PSO) algorithm in 1995 (Eberhart

and Kennedy, 1995). The social behaviour of swarming animals inspires this method. The most

commonly used example is the behaviour of fishes and birds (Reynolds, 1987). We can observe from

these animals some complex moving dynamics, whereas each individual has limited intelligence

and local knowledge of his situation in the swarm. An individual of the swarm is only aware

of the position and speed of his nearest neighbours. Therefore, each one uses both his memory

and local information about his nearest neighbours to decide on his move. Thus, the moving

rules can be quickly determined, such as "maintain the same speed with the others", "move in the

same direction" or "stay near to the neighbours". Consequently, the "group’s intelligence" is the

integration of local interactions among the different particles of the swarm. As the saying goes,

"many heads are better than one".

Kennedy and Eberhart were inspired by these socio-psychological behaviours to create the

PSO. A swarm of particles, which are potential solutions to the problem of optimisation, “flies over”

the search space to search for the global optimum. The following three components influence the

movement of a particle:

• A physical component: the particle tends to follow its current direction of movement;

• A cognitive component: the particle tends to move towards the best site by which it has
already passed;

• A social component: the particle tends to become the experience of its neighbours and, thus,
to move towards the best site already reached by its neighbours.

Fig. 3.2 Movement of particle in the searching space

In a D-dimensional research space, the i-th particle of the swarm is modelled by its position

vector
−→
X i = (xi,1,xi,2, ...,xi,D) and its velocity vector

−→
V i = (vi,1,vi,2, ...,vi,D). It keeps in memory
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the best position by which it has already passed, denoted by −→pi = (pi,1, pi,2, ..., pi,D). The best

position reached by all the particles of the swarm is denoted by −→g = (gi,1,gi,2, ...,gi,D).

The position xi(t) of the i-th particle at time t is assumed to be the vector sum of its previous

position xi(t − 1) and a velocity vector vi(t) which is determined by the influence of the three

components described above on its previous state (xi(t−1),vi(t−1)). In particular, it is assumed

that the time step is sufficiently small to describe well the state change of each component xi,k(t) of

the position vector xi(t) by a locally linear approximation of the form

xi,k(t) = xi,k(t−1)+ vi,k(t), k ∈ {1,2, . . . ,D}, (3.2)

where vi,k(t) is given by

vi,k(t) =v p
i,k(t)+ vc

i,k(t)+ vs
i,k(t), k ∈ {1,2, . . . ,D}, (3.3)

and each component vector of the vector sum by

v p
i,k(t) = ω ∗ vi,k(t−1), (3.4)

vc
i,k(t) = c1 ∗ r c

i,k(t)∗ (pi,k(t−1)− xi,k(t−1)) , (3.5)

vs
i,k(t) = c2 ∗ r s

i,k(t)∗ (gk(t−1)− xi,k(t−1)), (3.6)

where ω is called coefficient of inertia and is generally treated as a parameter which is constant in

time and common to all particles, c1 and c2 are two constants, called acceleration coefficients, r c
i,k(t)

and r s
i,k(t) correspond to uniformly distributed random numbers independently drawn from the unit

interval [0,1] for the k-th component of each particle i at time t. The following interpretation holds:

• v p
i,k corresponds to the physical component of the displacement. The parameter ω controls

the influence of the direction of movement on the future displacement. It should be noted
that, in some applications, the parameter ω can be variable (Dréo et al., 2006).

• vc
i,k corresponds to the cognitive component of the displacement. Actually, c1 controls the

cognitive behaviour of the particle, since it acts as a common scaling factor of the effect
given by the cognitive process specifically to the i-th particle.

• vs
i,k corresponds to the social component of displacement and this time the factor c2 scales

the effect given by the social fitness of the i-th particle.

The combination of the parameters ω , c1 and c2 makes it possible to adjust the balance between

the diversification and intensification phases of the research process (Ishibuchi and Murata, 1998)

(Kennedy et al., 2001). Now, we give a short description of the PSO algorithm.

The PSO is a population-based algorithm. It starts with random initialisation of the swarm

in the search space SD. At each iteration (time), every particle decides its velocity according to
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Algorithm 1 Basic Particle Swarm Optimisation Algorithm
1: Initialise a population of particles with random values positions and velocities from D dimen-

sions in the search space
2: while Termination condition not reached do
3: for Each particle i in 1 : N do
4: Adapt velocity of the particle using Equation 3.3
5: Update the position of the particle using Equation 3.2
6: Evaluate the fitness f (

−→
X i)

7: if f (
−→
X i)< f (

−→
P i) then

8:
−→
P i←

−→
X i

9: end if
10: if f (

−→
X i)< f (

−→
P g) then

11:
−→
P g←

−→
X i

12: end if
13: end for
14: end while

Equation 3.3 and updates its position by Equation 3.2. Then, the objective function is evaluated by

taking into account the new positions and the best particle-specific vector −→pi , as well as the best

vector, −→g are updated. This procedure is summarised by Algorithm 1, where N is the total number

of particles in the swarm.

This process will be terminated if one of the stopping criteria is satisfied. Typically, the choice

of stopping criteria depends on the actual problem. If the global optimum is known a priori, we can

define an acceptable error as a stopping criterion. In most cases, it is common to set a maximum

number of iterations to avoid endless loops. This topic will be discussed in the next chapter.

3.3 Variants of PSO

The basic PSO, as described in Algorithm 1, when applied in practice, can easily be encountered

with some difficulties, such as the explosion of particles or the fast convergence to local minimum.

To overcome these problems and make the particles behave finer in the search space, some variants

of the original PSO algorithms have been proposed. These proposals can be classified mainly into

four aspects, as follows:

3.3.1 Partitioning particles

An unpleasant situation can arise if a particle moves out of the search space, thus leading to the

system’s divergence. To overcome this problem, it is possible to introduce a new parameter of Vmax,

which makes it possible to control the explosion of the velocity (Shi and Eberhart, 1998). A study

on the behaviour of the PSO algorithm according to the values of Vmax is available in (Fan, 2001).
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Besides, other strategies could be introduced to bring back a particle, which has moved out of

the search space. Different treatments include exclusion of the particle, repetition of the randomly

selected velocity until acceptance of the new position or repositioning in the space centre. In fact,

no overall best strategy exists (Zielinski and Laur, 2007).

3.3.2 Constriction factor

The previously mentioned strategies which aim at bringing back to the search space divergent

particles or delaying this effect by the introduction of a parameter bound Vmax can only be considered

as a partial solution to a persistent problem. The “explosion” could still happen. Several other

studies, including (Kennedy, 1998), (Clerc and Kennedy, 2002) and (Van Den Bergh, 2007), attempt

to study on the swarm’s dynamics so that a convergence of the swarm is essentially ensured.

In (Clerc and Kennedy, 2002), it has been shown that good convergence can be achieved by

making the parameters ω , c1 and c2 dependent. The use of a constriction factor φ makes it possible

to prevent the explosion of the swarm. In particular, this modification can be described by the

following equation

v∗i,k(t) = χ(φ)∗
(

v p
i,k(t) + φ1 ∗ vc

i,k(t) + φ2 ∗ vs
i,k(t)

)
, k ∈ {1,2, . . . ,D}, (3.7)

where χ(φ) = 2
φ−2+
√

φ 2−4φ
, φ = φ1 + φ2, φ > 4. Note also that the SPO with constriction

coefficient is equivalent to the basic PSO with ω = χ(φ), c1 = χ(φ)∗φ1 and c2 = χ(φ)∗φ2.

In (Clerc and Kennedy, 2002), numerous tests are conducted to determine the optimal values

of φ1 and φ2. In the majority of cases, we use φ = 4.1 and φ1 = φ2 = 2.05, thus using as a

multiplicative coefficient χ = 0.7298.

3.3.3 Local PSO with Neighbourhood Topology

To overcome the fast convergence into a local minimum, Eberhart has introduced a so-called local

version of the PSO, which also uses a static graphic information (Eberhart and Shi, 1998). This

version uses a circular information graph as in Figure 3.3 to represent the neighbourhood relation.

The particles of the swarm are virtually arranged in a circle and numbered sequentially from 1

through the loop. The particle is therefore no longer informed by all the particles of the swarm,

but by itself and its two neighbours. If we refer to the basic version of the PSO summarised in

Algorithm 1, the best particle −→g is chosen from the entire population. From the view of graphics

information, the swarm is therefore wholly-connected (or path-connected).

Although it converges less rapidly than the global version, the local version of the PSO gives

better results because it is less subject to attraction by local minimum (Kennedy, 1999). Figure 3.3

illustrates the difference between a wholly-connected and a circular graph.
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(a) Fully connected structure (b) Ring structure (c) Von Neumann structure

Fig. 3.3 Some of the neighbourhood topology used for the PSO technique: (a) Fully connected
structure, (b) Ring structure, and (c) Von Neumann.

Many other topology have been tested. The results using different topology are available in

(Kennedy, 1999), (Clerc, 2005). The important information that emerges from these results is

that no topology is globally better than the others since no topology dominates in a wide range of

problems.

3.3.4 PSO and hybridisation

Hybridisation involves combining the characteristics of two different methods to derive the benefits

of both ways (Talbi, 2002). This topic will not be discussed here since, in this research, there was

no application of hybridisation procedures. For some reviews on this point, the interested reader is

referred to (Thangaraj et al., 2011) and (Xin et al., 2012).

3.4 A well set PSO and evaluation with simulated dataset

Numerous tests were performed to determine the best version of the PSO algorithm corresponding

to the optimisation problem of the CORNFLO model. The best performance was exhibited by

the local version of the PSO with the Von Neumann structure, as shown in Figure 3.3c and the

incorporation of a constriction factor, as explained in Section 3.3.2.

To prove its efficiency and robustness in global optimisation, this well-set PSO algorithm, in

which the particles are controlled by constriction coefficients and a Von Neumann neighbourhood

structure, is firstly applied in the parameter estimation with simulated data. In the sequel, we

describe in detail the tests:

• With a certain reasonable parameter setting, denoted by θ0, the virtual crop yields {y1,y2, ...,yn}
are simulated under certain environments {U1,U2, ...,Un} as follows:

yi = f (θ0,Ui) for i ∈ 1 : n (3.8)
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• Assuming that the parameter setting is unknown, the estimation of the common parameters θ̃

could be performed by model inversion as in Equation.1.2, with a subset of virtual yields and

their corresponding environments.

A series of tests following the above process with an increasing number of parameters were

conducted, where θ1 = {A2}, θ2 = {A2,RUE} and θ3 = {A2,RUE,T T F1}. The process with

100 randomly chosen scenarios was repeated for 100 times for each test, and the resulting mean

parameter estimates, together with the bias and the standard deviation are recorded in Table 3.1

θ1: θ2:
A2 = 14.07 A2 = 14.07 RUE = 3.5

mean bias sd mean bias sd mean bias sd
14.096 0.026 0.118 14.125 0.055 0.45 3.531 0.031 0.156

θ3:
A2 = 14.07 RUE = 3.5 T T F1 = 723

mean bias sd mean bias sd mean bias sd
13.857 -0.214 3.36 3.745 0.245 0.612 726.32 3.32 3.51

Table 3.1 Parameterisation results with an increasing number of parameters.

The results showed that MuScPE-PSO works well for parameter calibration in this complex

system, since the θ̃ is close to the initial settings with small bias and standard derivation, especially

in the first two cases. It could also be observed that the bias and the uncertainty increase when

more parameters are accounted for calibration. The increase is more significant when T T F1 is

introduced since non-convexity is caused by T T F1, which make the surface of optimisation surface

more complicated, as shown in Figure 3.1. These results could also serve as a way to support the

"feasibility" of MuScPE methodology.

3.5 Improved PSO with parallelism

In the above section, good performance of parameter estimation was illustrated with the use of

particle swarm optimisation "PSO". Indeed, this global optimisation algorithm is a powerful

meta-heuristic in the resolution of difficult optimisation problems. Nevertheless, some drawbacks

also exist. The most important one concerns the fact that this algorithm is very computationally

expensive.

On the other hand, due to the rapid evolution of hardware resources in the computer field,

computers have seen their number of processors/cores significantly increased in recent years. It

makes it possible to compensate for the limits of power increase of a single processor and to obtain

a factor of acceleration. To fully exploit this computing power, it is necessary to realise applications

capable of performing several tasks in parallel (Kumar et al., 1994). In this section, the parallelism
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will be introduced as a means to decrease the computational cost significantly. This principle will

be applied to a specific version of the PSO algorithm, and its performance will be compared with

that of the sequential one.

3.5.1 Programming of massively parallel machines

There are different models of programming adapted to different hardware architectures of massively

parallel devices. Threads are the technology that makes applications multitasking. Most of the

parallel technology takes advantage of the threads to reduce computing time (Kumar et al., 1994).

However, when talking about memory architectures, some are more appropriate for distributed

memory architectures like MPI (Message Passing Interface), while others for shared memory

architectures such as OpenMP (Open Multi-Processing).

MPI with allocated memory

The message-passing model is one of the massive parallel models that exist. The parallelisation of

a problem is carried out with the use of some processes running concurrently. Each of them having

only access to a private area of memory. When they have to share information, they exchange

messages. Thus, the processes do not need to share memory for communication, and therefore,

message programming is particularly suited to machines where memory is distributed (Gropp et al.,

1996).

MPI is one of the most used standards of Message Passing paradigm, developed in the 1990s.

It defines a programming interface for implementing point-to-point, corporate communications

and synchronisations between different processes. This interface can be either synchronous or

asynchronous. Building an MPI parallel application involves writing a single program that will be

duplicated n times. Each program instance is assigned a unique identification number (or rank) so

that it can select which processes communicate. A concept of a communicator is defined, allowing

to create groups of operations and thus to limit the range of the messages to the members of the

same group.

OpenMP with shared memory

Parallel shared memory architectures allow different execution streams to use the same memory area

to communicate with each other (Dagum and Menon, 1998). The most natural way of programming

these architectures is the use of lightweight processes (or threads). Thus, each instruction flow is

encapsulated in different light processes sharing the same memory space between them. The use

of threads allows a great deal of flexibility but requires the programmer to take many precautions,

mainly when competing for access to shared memory areas. Thus, a whole set of synchronisation

primitives (condition variables, semaphores) is available in all thread implementations.
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OpenMP is a specification developed in 1997 by a set of actors involved in parallel computing

(Chapman et al., 2008). The specification defines a set of annotations, a collection of functions, and

a set of environment variables. The significant advantage of OpenMP over the others is its ability

to hide programmers from thread management details. Indeed, to parallelise a loop, a loop, for

example, indicate before it that we want to parallelise it. The compiler will then automatically cut

the data and create threads (Dagum and Menon, 1998).

3.5.2 Proposition of a parallelisation approach of the PSO method

In the implementation of the classical algorithm of the PSO method, all calculations are done

sequentially. Nonetheless, the evaluation of each particle (candidate solution is independent). That

is where the idea of parallelisation comes from to improve the performance of this algorithm.

Several proposals are made with different principals (Chang et al., 2005), (Zhou and Tan, 2009).

The one we adopted for our implementation, is to parallelise the calculations by launching a set of

threads on batches of particles based on CPU.

Threads, a kind of process, run in parallel for each iteration of the algorithm. Each thread

executes one iteration of its batch of particles and waits for the other threads to finish processing to

update the neighbourhoods and start a new iteration. This process is repeated until a satisfactory

solution is obtained: "achievement of the stopping criterion". Figure 3.4 is a representation of the

proposed approach.

Fig. 3.4 The structure of parallelised PSO
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3.5.3 Comparison of OpenMP and MPI

In the following, a comparison of the OpenMP and MPI based parallelised mechanism will be made

in terms of the acceleration efficiency. The calculation example will be one of the parametrisation

examples of the plant growth model, where the MuScPE-PSO is used to parametrise the 5-dimension

parameter vector of the dynamic model in 300 scenarios.

The comparison can be divided into two part: in the first part, the number of particles is used

in the PSO swarm is set to be 1000, while the process number is changed from 1 to 10 to test the

different speed-up efficiency; in the second part, the number of processors is fixed to be 10, while

the number of particle changes from 100 to 1000 for testing the influence of calculation scale on the

speed-up efficiency. The time used for 100 iterations is considered as the criteria. Each calculation

is repeated for ten times, and the average time is taken to exclude the effect of randomness. The

notion "speed-up" is defined as Equation 3.9.

speed−up =
Tseq

Tpar
(3.9)

where Tseq stands for the calculation time consumed in sequential PSO algorithm, and Tpar for the

calculation time consumed in parallelised PSO algorithm.

3.5.4 Results

The results for the first part of testing the different speed-up efficiency of MPI and OpenMP based

parallelised PSO algorithm is shown in Figure 3.5. It can be concluded as follows:

• when a total calculation is fixed, adding threads can significantly improve the calculation

efficiency in both mechanism;

• MPI based parallelism can achieve nearly the theoretical speed-up when a thread is added

into to structure;

• OpenMP based parallelism cannot make fully used of the added thread as MPI. For example,

when the threads are 10, the speed-up is just about 6.23.
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(a) Time consumption in the first comparison

(b) Speed up efficiency in the first comparison

Fig. 3.5 First comparison result between MPI and OPENMP

The results of the second comparison for comparing the influence of calculation amount, when

more and more particles are introduced in PSO algorithms, are shown in Figure 3.6.
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(a) Time consumption in the second comparison

(b) Speed up efficiency in the second comparison

Fig. 3.6 Second comparison result between MPI and OPENMP

We can see that for the MPI-based PSO, the speed-up efficiency gets closer and closer to the

theoretical value when the calculation becomes more substantial and more substantial (more and

more particles are introduced). It can be explained that, when the estimate becomes more massive,

the time used for data transmission becomes ignorable in comparing with the total running time.

On the contrary, the speed-up efficiency for OpenMP-based PSO becomes lower and lower. As

explained in Section 3.5.1, OpenMP is based on shared memory. The heavier the calculation
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becomes, the more time will be consumed in arranging the shared memory for the different thread.

That’s also why the OpenMP is recommended in lightweight processes.

In conclusion, according to the performance analysis above, the MPI mechanism could make

full use of the computing resources. Even though the programming of MPI-based PSO is more

complicated, codes can be done once for all the time. The parallelism architecture adopted in

MuScPE-PSO will be MPI.

3.6 Estimation results with MuScPE-PSO

By performing sensitivity analysis and by dealing with identifiability issues as explained in Section

2, some important parameters have been selected to be estimated in the first step. Besides, a

well-configured paralleled PSO has been implemented to the MuScPE methodology in the previous

section. In this section, the calibration process for the CORNFLO model will be explained. The

process is divided into two steps for parametrisation with MuScPE: (1). Estimation with all

observations to find out the best setting for the data set; (2). "Boosting estimation", where only a

subset of the training set takes part in the estimation process. But the estimation process is repeated

for several times, and the subset is always re-sampled from the training set.

3.6.1 Estimation with all observations

In this part, all the 720 observations are used to estimate the best combination of the 5 most

important parameters :{A2,RUE,T T M3,T T F1,T T M0}. According to the stopping condition of

the PSO, a local PSO with four neighbours is used to perform the optimisation. Moreover, the total

number of iterations is fixed at 300. To ensure the convergence to the global minimum, this process

is repeated for ten times.

Results

First of all, let’s have a look at the descent process of the objective function when the algorithm is

running. Even though these ten repetitions don’t take the same trajectory because of the randomness,

but they finally converge to the same level. By combining the estimated values of these parameters,

a conclusion can be drawn that PSO based MuScPE methodology has found out the best parameters

setting in Table 3.2 for the CORNFLO model.

Parameter A2 RUE TTM3 TTF1 TTM0

Value 13.95 3.33 1453.7 707.35 869.45
Table 3.2 Best parameters setting of CORNFLO model that minimize the fitness with actual dataset.
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3.6.2 Boosting estimation with MuScPE

Several times in modelling, the volume of the dataset is so large that the estimation results could

not be obtained without a computer-cluster. Numerous solutions have been proposed to solve this

problem, among which the boosting idea outperforms the others. The main purpose lies in the fact

that, instead of using the whole dataset, only a subset is used in the boosting estimation process.

But the process is repeated for several times and the subsets are randomly re-sampled for each

repetition. By increasing the size of the subgroup, it has been proved that the estimated value

converges to the results obtained with the whole dataset.

It is already mentioned in the previous section that the MuScPE-PSO algorithm induces high-

cost in computation. The computation time can take hours, in the case that numerous scenarios are

accounted for model calibration with the MuScPE-PSO. This is the reason why the idea of boosting

estimation is tested in this section.

In this test, model calibration is performed with different sample sizes, such as 300, 400 and 500.

Moreover, we take the same combination of parameters as in the previous section. Furthermore,

each test is repeated for 100 times with re-sampling. Some commonly used features of these

distributions will be analysed in the end.

Results

Table 3.3 Estimated values for the five parameters with different sample size

nbr_scenarios RUE TTM0 TTF1 TTM3 A2

300 3.1315 886.3476 718.1324 1498.169 14.3746
400 3.6684 882.1347 724.3489 1475.134 14.1476
500 3.3987 874.3564 726.3984 1468.324 13.7648

Table 3.4 Associated standard deviation

nbr_scenarios RUE TTM0 TTF1 TTM3 A2

300 0.1256 57.0013 42.2358 67.3258 0.4348
400 0.0814 29.1241 29.1345 45.1564 0.3781
500 0.0734 25.1327 24.2534 35.1214 0.1698

The mean estimated values of the parameters and their associated standard deviations for

different numbers of scenarios are recorded in Table 3.3 and 3.4. According to the optimisation

results, the difference in the sample size is reflected by a difference in the results. As expected, the

increase in the number of scenarios induces less variability in parameter estimates as indicated by

the smaller standard deviation. In this way, this increase reduces, in general, the resulting bias. This

information could be necessary for the modeller, to have an idea of the number of scenarios needed
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approximately to obtain a prespecified precision in parameter estimates and the relative importance

of this information to each parameter.

3.6.3 Fitness and Prediction evaluation

To compare the performance of different parameter settings obtained with different strategies, two

of the most common accuracy metrics of regression models were used: root mean squared error

(RMSE) and the mean absolute relative error (MARE).

Root Mean Square Error

If Ŷ is a vector of n predictions associated to n specific input vectors, and Y is the corresponding

vector of observed values, then the RMSE of the predictor is defined by:

RMSE =

√
1
n

n

∑
i=1

(Ŷi−Yi)2 (3.10)

Mean absolute relative error

The mean absolute relative deviation (MARE), is a measure of prediction accuracy of a forecasting

method in statistics, for example in trend estimation. It usually expresses accuracy as a percentage,

and is defined by:

MARE =
1
n

n

∑
t=1

∣∣∣∣Yi− Ŷi

Yi

∣∣∣∣×100% (3.11)

where Yi is the actual value and Ŷi is forecast value.

The performance metrics of machine learning methods are summarised in the following table.

Metric Expression

RMSE
√

n
∑

i=1
(yi− ŷi)2/n

MARE(%) 1
n ×

(
n
∑

i=1
| yi− ŷi | /ȳ

)
·100

Table 3.5 Performance metrics of machine learning methods.

Results

The results for fitness and prediction evaluation is shown as in Table 3.6. It can be observed that

better fitness is achieved with parameters settings obtained by MuScPE with a large dataset in the

training process.
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Table 3.6 Fitness and prediction capacity evaluation

sample size RMSE0 RMSE MARE0 MARE

300 71.7 73.1 6.21% 6.43%
400 71.9 72.9 6.22% 6.31%
500 71.2 71.8 6.18% 6.22%

3.7 Conclusion

The parameterisation of a dynamic plant growth model is an optimisation problem and in most

cases, non-convex. Recognised for many years for their efficiency, meta-heuristics have stood

out from the other algorithm in global optimisation. The Particle Swarm Optimisation (PSO) is

a metaheuristic inspired by the group-living animals which provide optimal solutions based on

population cooperation. It is well popular in optimisation research for its efficiency and simplicity

in implementation.

It is essential to have a proper set of parameters that lead to the optimal performance of the

algorithm. However, this work is always tedious and time-consuming. According to the studies have

been conducted before and the actual tests with the real data for CORNFLO model, an instrumental

version of the PSO algorithm is decided in Section 3.4. MPI-based parallelism is also applied to

the PSO algorithm, and the computational capacity is well increased as in Section 3.5. And the

evaluation for fitness and prediction has been carried out in Section 3.6 as well as in the research

about the influence of datasets’ size.





Chapter 4

Study of Climatic Variability

4.1 Basic descriptive statistics on Meteorological records

As discussed in Section 1.2.1, the dataset for corn crops analysis consists of 720 observations, each

one corresponding to a different environmental scenario named by its county code and the relative

year. For example, the first scenario’s name is "04003-2001", where "04003" corresponds to the

Cochise’s County code in Arizona and "2001" to the year of meteorological records. Each yearly

record consists of daily measurements of 5 environmental variables relative to the plant modelling

process. These variables are listed below:

• Tmax (°C): daily maximal temperature,

• Tmin (°C): daily minimal temperature

• RG (MJ/m2·day): daily radiation per square meter

• Prate (mm/day): daily precipitation

• ETP (mm/day): daily potential evapo-transpiration

The current research aims at studying the influence of the scenarios diversity on the parameter

estimation process of the plant model. This diversity is dependent on the spatial distribution of the

720 scenarios.

4.1.1 Spatial Distribution

As stated in (Ackerly et al., 2010), the climate depends greatly on the relative geography. For this

reason, a first insight into the variability present in the dataset can be gained by determining the

spatial distribution of the 720 scenarios, as shown in Figure 4.1.
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Fig. 4.1 Spatial Distribution

Notice that the available scenarios are far from being uniformly distributed in the United States.

Most of them originate from the American centre land, like Colorado, Kansas, Nebraska, New

Mexico, and Texas, while some others are isolated in regions like California near to the west coast

and like Arizona near to Mexico. Detailed information about observations frequency at the state

level is listed in Table 4.1. Further information concerning the inter-regional and inter-annual

variability will be given in Section 4.2 and 4.3.

Table 4.1 Recorded frequencies at state level

Arizona California Colorado Kansas Nebraska New Mexico Texas

8 5 8 172 488 9 30

4.2 Inter-regional variability analysis on Meteorological records

We start this study by giving a description of the frequency of rainy days in four selected counties.

These counties were selected since full meteorological records from 2001 to 2007 are available, as

shown in Figure 4.1. In particular, Cochise County (04003) in Arizona, Sheridan County (20179)

in Kansas, Union County (35059) in New Mexico and Franklin County (31061) in Nebraska.

Additionally, these four counties are located nearly straightly on the direction going from the

south-west to the centre of the United States. The basic descriptive statistics will be carried out with

daily precipitation records since it is the typical variable that introduces more variability than the

other meteorological variables. The variability will be analysed in two aspects: the inter-regional

variability on the frequency of rainy days and rainy sequences.
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4.2.1 Inter-regional variability on rainy days

This analysis is carried out in terms of frequency of rainy days(days) and their cumulative precipita-

tion (mm) during 2001-2007. The results are listed in Table 4.2.

Table 4.2 Rainy day frequency and cumulative precipitation during 2001-2007

County rainy days(days) cumulative P(mm) Rainfall intensity(mm/day)

Cochise (04003) 833 2204.4 2.64

Sheridan (20176) 1006 2770.5 2.78

Franklin (31061) 1060 3377 3.18

Union (35059) 1000 2128.6 2.12

The following conclusions can be drawn from these results:

• The states in the centre of America, like Nebraska and Kansas record more rainy days than

the states in the south-west, such as Arizona;

• Although the Union County in New Mexico enjoys a higher frequency of rainy days than the

Cochise County in Arizona and almost comparable to the others, it has the lowest cumulative

precipitation. As a consequence, Union County has the lowest average precipitation per rainy

day.

4.2.2 Inter-regional variability on rainy sequences

A rainy sequence is distinguished from a downpour by its long duration and its discontinuity; it can

last several days, and it includes a series of deluges. Due to its potentially serious consequences, it

attracts more attention to the scientific community than the simple frequency of rainy days. The

duration of the sequences can provide information on regions where the short-term rainfall prevails

and where the long rainfall periods out-stands. For this reason, we have calculated the rainy courses

of different duration for the four counties individually during the year 2001-2007. The distribution

of the duration of consecutive rainy days is shown in Figure 4.2.

Looking at Figure 4.2, we find that:

• Sequences of short duration are the most frequent, especially the 1-day rainy sequence.
Globally, the number of 1-day rainy sequences accounts for 40.2% of the total number of
rainy sequences;

• The long sequences with duration >7 days accounts for only 3% of the total number of
sequences;

• The counties in the centre of the United States like Sheridan and Franklin have similar rain
sequence distributions with possible values of consecutive rainy days varying from 1 to 13
during 2001-2007;
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• Sequences with extremely long duration (>20 days) are easier to be found in the south-west
counties, such as 24 days in Cochise and 19 days in Union.

(a) Rainy sequences duration in Cochise (b) Rainy sequences duration in Sheridan

(c) Rainy sequences duration in Franklin (d) Rainy sequences duration in Union

Fig. 4.2 Rainy sequences duration in the four counties selected during 2001-2007

We can not draw definite conclusions, given such a small number of counties at our disposal.

However, we can still advance the following hypothesis, which must be further supported by a

study based on a more dense network of observation stations: by moving away from the sea, the

frequency of rainy sequences with short duration becomes higher.

4.3 Inter-annual variability analysis

In this section, we intend to study the variability of the cumulative precipitation per year. The Rain-

fall Index (Ri j) is a commonly used criterion to present the precipitation variability. It corresponds

to the ratio of the difference between the annual precipitation height at station i and the average

annual precipitation height with the standard deviation. In particular, the annual rainfall index for

station i at year j is defined by the following formula proposed by Lamb (1982):

Ri j =
(xi j− x̄i)

σi
, (4.1)

where xi j is the total rainfall height for station i at year j; x̄i is the annual average rainfall at station i

during the period of registration, and σi corresponds to the standard deviation of the annual rainfall
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among different stations. The values of the rainfall index for the selected four counties during

2001-2007 are shown in Figure 4.3.

(a) Rainfall index in Cochise (b) Rainfall index in Sheridan

(c) Rainfall index in Franklin (d) Rainfall index in Union

Fig. 4.3 Rainfall index in the four counties selected during 2001-2007

The application of the rainfall index to our daily precipitation gives the results indicated on the

Figure 4.3. Some remarks could be made as follows:

• The inter-annual variability in the cumulative precipitation per year throughout the selected

region is considerable: in some years, the cumulative precipitation exceeds 140% of standard

deviation of the cumulative precipitation during this period (2002 and 2006 in Cochise

County; 2002 in Sheridan County; 2007 in Franklin County; 2003 and 2006 in Union

County);

• The inter-annual variability in the cumulative precipitation per year throughout selected

region does not always move in the same direction; in 2006, the Cochise and the Union

County recorded much more cumulative precipitation than their average while the Sheridan

and Franklin County had no great change.

• In 2002, all four Counties suffered a great decline in cumulative precipitation.
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The previous analysis is based on the fact that the daily precipitation is one of the most important

meteorological variables which introduce the highest amount of variability. Some basic descriptive

statistics have also been computed to indicate the existence of inter-regional and inter-annual

variability. However, when faced with questions of the type "How about the variability of the other

climatic variables?", "How does it work when taking all the variables into consideration?", "The

inter-regional and inter-annual variability, which one is more important?", It is difficult to find out

a solution with traditional statistics based on a relatively limited amount of data. That’s why in

the following section, an unsupervised clustering method will be introduced to study the whole

meteorological records with all the variables included.

4.4 Unsupervised Clustering of Meteorological Records

In a nutshell, clustering is the task of grouping together a set of objects or more largely data in an

unsupervised manner, so that objects of the same group (called a cluster) are closer together (in the

sense of a selected criterion of similarity) to each other than those of the other groups (clusters).

This is the main task in the exploratory data mining, and a statistical data analysis technique widely

used in many fields, including machine learning, pattern recognition, signal and image processing,

etc. The idea is to discover groups within the data, automatically (Jain et al., 1999). In the following,

one of the most popular clustering techniques, the K-means clustering, will be introduced for its

simplicity and its ability to handle large datasets (Kogan, 2007).

4.4.1 K-means Algorithm

The k-means algorithm is one of the simplest unsupervised learning algorithms developed by

McQueen in 1967 (MacQueen et al., 1967). It is also called the mobile centre algorithm because it

assigns each point in a cluster whose centre (centroid) is the closest. Generally, the centre is taken

by the average of all the points in the group, which means that their coordinates are the arithmetic

mean for each dimension separately from all the points in the group. As a result, each group is

represented by its centroids (Likas et al., 2003). The basic k-means algorithm is listed as Algorithm

2.

As an effective clustering algorithm, k-means has been widely studied and applied in many

academic and industrial areas, such as segmentation of the market by discovering distinct customer

groups from purchasing databases in marketing research (Punj and Stewart, 1983); identification

of similar terrestrial areas with geographical and climatic database in environmental research;

identification of separate insured groups associated with a large number of returns in finance

(Huang, 1998).

The main limitation of this method is the dependence of the results on the initial values (initial

centres). Each initialisation corresponds to a different solution (local optimum) which may in some
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Algorithm 2 Basic Kmeans Algorithm

1: Randomly initialize k point as k clusters D = {D1,D2, ...,Dk} with centers C = {C1,C2, ...,Ck}
2: while Termination condition not reached do
3: for Each point Xi do
4: (Re) calculate its distances to the cluster centers {dist(Xi,C1), dist(Xi,C2),..., dist(Xi,Ck)}
5: (Re) assign the point Xi to new cluster D j when dist(Xi,C j) is minimal
6: end for
7: for Each each cluster Di do
8: Update the coordinates of the cluster center Ci

9: end for
10: end while

cases be very far from the optimal solution (global optimum). Nevertheless, many improvements

have been proposed in the literature, including convergence issues (Li et al., 2015). The rate

of convergence is a critical issue, especially with large datasets, and the k-means clustering is

particularly adapted to such cases.

However, in the context of unsupervised clustering, it is natural to question the validity of the

obtained results. What is the optimal number of clusters? Do the discovered groups correspond to

our a priori knowledge? Do they match the set of objects that we have? Which two classifications

are the most relevant?

4.4.2 Clustering validation

The k-means is a partitioning-based clustering method which depends crucially on the number of

clusters. This number is generally left to the user, but a clever choice could significantly improve the

performance of the algorithm. Several methods have been proposed for determining an appropriate

number, mostly based on two types of selection criteria, called elbow and silhouette.

The elbow criteria

The elbow method is one of the oldest methods for determining the optimal number of clusters in

a dataset. In this method, the sum of inter-cluster variance is written as a function of the number

of clusters: Some clusters must be chosen so that the addition of another group does not give

much better modelling of the data. More specifically, if we plot the sum of inter-cluster variances

against the number of clusters, the first added cluster will generally decrease the sum of inter-cluster

variances by a large amount, but at a certain point, the marginal gain will slow down, which gives a

graphical angle. The number of clusters is chosen at this stage, hence the "elbow criterion" (Peeples,

2011). The total variance explained by inter-cluster variability is given as a function of the total

number of clusters k in the form

was(k) =
k

∑
i=1

1
ni

Di, (4.2)
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where ni is the size of the i-th group and Di the sum of distances between the points of the group i.

The silhouette criteria

The silhouette criteria correspond to indices which take into account both inter-cluster and intra-

cluster variability. Each point i in the dataset is associated with a silhouette value given by

S(i) =
bi−ai

max{ai,bi}
, (4.3)

where ai represents the average distance between i and all the other points within the same cluster of

i; bi represents the minimum average distance between i and all the other points of a specific cluster

different to that of i. That is why the silhouette criteria are also considered to be a comparison of

compactness and separation of a clustering result. Finally, the average width of the silhouette will

be used to identify the optimal cluster number, that is

S =
1
k

k

∑
i=1

S(i), (4.4)

where k is the number of clusters. It can easily be deduced that S ∈ [−1,1] and the nearer to 1, the

better clustering is achieved.

4.4.3 Clustering result of meteorological records

As presented in the chapter, the dataset for the research of corn crop is a table with 720 rows and

1641 columns, containing all the climatic variable. Each column has been normalised to standard

normal distribution to eliminate the influence of scale. The clustering results are as follows.

Fig. 4.4 Elbow criteria in meteorological records clustering analysis
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Results of the elbow method

We describe here the application of the previous methods to our dataset consisting of the climatic

data described above. In particular, we applied the k-means clustering method to determine the

optimal number of clusters, with k varying from 2 to 30. The results that we obtained with the

elbow criteria are summarised in Figure 4.4. Notice that in this case, the optimal number of clusters

is k = 11.

Results of the silhouette method

Additionally, to the previous study, we applied the k-means clustering with silhouette criteria. The

results are shown in Figure 4.5.

Fig. 4.5 Silhouette criteria in meteorological records clustering analysis

Notice that with the silhouette method the silhouette values obtained from k between 11 and 16

differ only slightly and seem to be good solutions for the number of clusters, so k = 11 appears to

be good with both criteria.

Clustering result explication

The detailed clustering results for each scenario are listed in Appendix C. The scenarios which

originate from the centre of the United States are classified into ten different clusters corresponding

to different years. The other scenarios from California and Arizona, far from the centre, are

classified as a single cluster.

With these impressive results, it can be concluded that the k-means works pretty well in

clustering the meteorological records. It distinguishes very well the inter-regional variance and

inter-annual variance of the meteorological records. In this research, the inter-annual variation is

more important than the inter-regional variation. This clustering result makes it possible to carry
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out cluster-based cross-validation, to verify the influence of inter-annual variation on the prediction

capacity of the plant growth model in the next section.

4.5 Clustering-based Cross-validation

In this part, the parametrisation of CORNFLO model based on the results of k-means clustering,

which means that the samples are equally drawn from different clusters. To compare with the

results obtained in Section 3.6, each estimation takes 27 (300/11), 36 (400/11), 45 (500/11) from

each cluster. This process is repeated for 100 times, and the results are listed in the following tables.

According to the results presented in Table 4.3 and Table 4.4, if the MAP estimators are selected,

then the results obtained with MSPE based on well-chosen samples are closer to their "true value".

Their distributions are more likely to be uni-modal with a single peak, as shown in Figure 4.6.

On the other hand, as for the result of fitness and prediction, fitness has been decreased while

the forecast doesn’t change a lot. It could be explained that the training set becomes more similar

when a cluster-wise strategy is applied. And the testing scenarios have never appeared during the

parametrisation process. In other words, they are the results when the model is used for an entirely

new scene. It could be considered as the lower limit for this methodology.

Table 4.3 Estimation of five parameters with different sample size based on the clustering analysis

sample size A2 F1 M0 M3 RUE

300 13.9157 708.1574 876.6731 1453.391 3.3143
400 14.0123 707.9132 868.7222 1462.214 3.3242
500 13.9189 707.3595 869.3464 1453.617 3.3253

Table 4.4 Standard deviation of the five parameters with different sample sizes

sample size A2 F1 M0 M3 RUE

300 0.6172 20.4081 37.0013 57.7638 0.0556
400 0.3662 18.5054 19.084 35.0282 0.0346
500 0.3572 14.7435 15.3157 33.4155 0.0292

Table 4.5 Cluster-based Fitness and prediction capacity evaluation

sample size RMSE0 RMSE MARE0 MARE

300 70.4 72.6 6.01% 6.23%
400 70.3 72.5 5.93% 6.18%
500 70.2 72.4 5.87% 6.12%
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4.6 Conclusion

In this chapter, another important subject when dealing with models taking into account the

meteorological records, the inter-annual variability, has been discussed. Descriptive statistics on

the evolution of meteorological variables, the rainfall, for example, has been discussed in Section

4.2 and 4.3. In Section 4.4, an unsupervised clustering method, the k-means clustering algorithm, is

applied to the meteorological records. According to the clustering results, almost all the records of

the same year are classified into the same group, which shows that the interannual variance of the

meteorological records is more important than the inter-regional variance. Finally, cross-validation

taking into account the inter-annual variance has been implemented to study its influence on the

CYP prediction. And the MuScPE based on clustering analysis outperforms both on the accuracy

and the uncertainty in comparison with the initial version in the last chapter for the parameter

estimation. The evaluation for fitness and prediction has also been more or less improved as in

Section 4.5.



62 Study of Climatic Variability

(a) RUE (b) A2

(c) M3 (d) F1

(e) M0

Fig. 4.6 Distribution of five parameters based on the clustering analysis with 50 samples from each
cluster



Part II

Data-driven Models for Crop Yield
Prediction





Chapter 5

Crop Yield Production with Statistical
Learning Methods

As stated in Chapter 1, dataset in the form of cross-sectional data {Ui,yi}, where {Ui} refers to the

meteorological records and {yi} to the corn yield observations, makes it possible to construct a

predictive model with data-driven methods for CYP. Another term usually employed to describe

data-driven methods is "statistical learning methods", as in (Friedman et al., 2001). Over the last

twenty years, with the developments in computer science and statistics, statistical learning has been

developed greatly and has become an important subject of modern data analysis. It has been applied

to solve problems in many fields, such as physics, chemistry, biology, economics, etc. Before

carrying out the modelling process, the context of statistical learning will be introduced in Section

5.1; some particular statistical learning methods for regression will be detailed in Section 5.2; to

choose a good setting for each method, model selection criteria will be presented in Section 5.3, as

well as the criteria, to evaluate their predictive efficiency; finally, the prediction results for each

method are presented in Section 5.4 followed by a brief conclusion.

5.1 Context of data science

5.1.1 A brief history of data analysis

Nowadays, it is said that data analysis plays a vital role prevalent in almost every scientific area. It

aims mainly at concluding the dependencies among the observed variables by introducing models

with predictive capacity. "Statistics", "data mining", "statistical learning", and nowadays "data

science", are not distinct scientific domains, but only variants of the same methodology which

evolves with the explosion of data volume and diversity by demanding a combination of skills, such

as computer science and mathematics (John Walker, 2014).
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From the 1930s to 1970s, a statistical question is associated with an experimentally refutable

hypothesis H0. A planned experiment is typically carried out with a representative sample of

hundreds of individuals observed on p variables with p≈ 10. Then, with a Gaussian linear model

assumed to be accurate, the hypothetical test will be performed so that the statistician can decide if

H0 should be rejected or not according to a controlled risk (usually 5%) (Durbin and Watson, 1950).

When it comes to 1970s, the first computer tools became widespread. A systematic data analysis

methodology was proposed to deal with more complex problems than the linear model. The scale

of datasets became more massive thanks to the information technology. In the 1980s, the notion

of Artificial Intelligence (AI) supplanted by the learning of neural networks was first proposed

(Newell, 1982). Some new models, like non-parametric or functional models, are introduced into

the traditional statistics. A decade later, the notion “ data mining” brought significant change to the

data analysis. The data is previously acquired and based in warehouses for the general purposes of

the users (He, 2009). The software integrated with different modular in the same environment, such

as database management, exploratory techniques, and statistical modelling, became popular in use,

such as Matlab and SAS. At the same time, the emergence of machine learning makes AI a subset

of statistical learning methods (Vapnik, 2013).

At the beginning of the new century, the development of biotechnology has facilitated and

popularised the production of big data, particularly with recent sequencing techniques (Baldi and

Brunak, 2001). As a result, a considerable increase in the variables number p is introduced while

the sample size n for each biological sample remains modest. To analyse a problem with millions of

variables for a few individuals is more indeterminate. The correction of the multiple tests made in

(Benjamini and Hochberg, 1995) makes the statistical methods adapted to such kind of situations by

the variable selection method. For example, in (Lê Cao et al., 2011), a penalty constraint in l1-norm

is taken into account to select the variable. In recent years, industrial applications, e-commerce, and

other tools record everyday’s life. In this stage, it is the number of individuals n that explodes. The

usual test statistics lose their usefulness in favour of unsupervised or supervised learning methods.

In the stage, the storage and computational efficiency become the main challenges in data science

(John Walker, 2014).

5.1.2 Basics of Learning

What is a learning process ?

The term "learning", like that of a "neural network", naturally evokes the functioning of the

brain. However, we should not expect to find here explanations on the mechanisms of information

processing in the nervous systems; these are of high complexity, resulting from mental electrical and

chemical processes, still poorly understood despite a large amount of experimental data available

Zhang et al. (2017). While statistical learning methods can be beneficial for creating empirical
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models of a particular function performed by the nervous system, the statistical learning methods

described in this work deny any pretension to imitate, even vaguely, the functioning of the brain

(Russell et al., 2003).

Nevertheless, from the point of view in "result", these two functions seem to coincide in some

way. One of the essential tasks of the brain is to transform information into knowledge: identifying

the letters that constitute a text, assembling them into words and sentences, extracting meaning from

them, are activities that seem natural to us once the necessary learning has been accomplished. One

of the essential tasks of the brain is to transform information into knowledge, such as identifying

the letters that constitute a text, assembling them into words and sentences, extracting meaning

from them. These activities can be easily achieved if the "learning" of the brain is accomplished

(Kandel et al., 2000). Similarly, in statistical learning, with the algorithms implemented, the goal

is to imitate the capacity of living beings to learn by example so that it can reproduce a similar

response as the learned examples but also be able to generalise a correct result in a new situation

(Vapnik, 2013).

Application of learning

In data science, it is easy to come across problems, such as: identify handwritten code numbers

from digitised images (LeCun et al., 1995); identify the aggravating factors of certain types of

cancer according to clinical and demographic variables (Cruz and Wishart, 2006); search for

genes potentially involved in a disease from sequencing data; more generally, biomarkers for early

diagnosis; predict an air pollution rate according to meteorological conditions; establish appetence

or attrition scores in customer relationship management; build meta-models or models to replace a

numerical code that is too complex to analyse the sensitivity to the parameters; to detect or better

predict the failures of a process, etc. They are all examples from different areas of our daily life.

However, their solutions have something in common, that is, to minimise a forecast or a risk.

At the same time, the methods and algorithms derived from Artificial Intelligence also become

a part of statistical learning methods. A more detailed and systematic introduction of statistical

learning can be found in (Vapnik, 2013) and (Friedman et al., 2001).

These objectives can be classified into four axes:

• to explore or verify, represent, describe, variables, their relationships and position sample
observations,

• to explain or test the influence of a variable or factor in a model assumed to be known a
priori,

• to predict and select a better set of predictors, for example in the search for biomarkers,

• to provide a possible better "black box" without the need for explicit interpretation.
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Off course, it is not forced that all the analysis process should follow this framework. Some

more requirements would be made, such as variable selection, model explication, calculation

efficiency, etc.

5.1.3 Important notions in statistical learning

Supervised and Unsupervised learning problems

In statistical learning, supervised and unsupervised learning problems are distinguished by the

presence of an objective variable Y to be explained together with X , the corresponding explainable

variables that will be used to infer the objective variable (Friedman et al., 2001). In the former case,

it is called a supervised learning problem, to which the objective is to find a function f̂ , according

to a predefined criterion, to reproduce Y from the observed matrix of features X :

Y = f̂ (X)+ ε, (5.1)

where ε ∼ N(0,σ2) represents the noise or measurement error.

In the opposite case, in the absence of an objective variable Y to be explained, it is then called

unsupervised learning, just as in the application of the k-means with meteorological records in

Section 4.4. The general objective is to search for a typology, according to which the observations

are grouped into homogeneous but most dissimilar classes.

Supervised Problem

Normally, in a supervised problem, two types of variables X and Y are provided, with X the

explanatory variables (features) and Y the objective variables. Each example of observation is in

the form of a pair (xi,yi). A sample is a finite set of examples D = {(xi,yi) ∈ X⊗Y}n
i=1.

Fig. 5.1 Illustration of supervised learning process

As stated in (Vapnik, 2013), a supervised learning process can be illustrated in Figure 5.1.

During the learning process, the learning machine supervises the pairs (x,y). After learning, it

should be able to reproduce a value ŷ = g(x,θ) for any x. The goal is not only to produce the
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response as close as possible as the "true" model f (·) does in D, but also generalise the response

to other different D. For all the learning problem, the component S generates independent and

identically distributed (i.i.d.) random vectors x ∈ Rp according to the distribution function F(x);
then a "true" model f (·) produces the output y = f (x); under the supervision of f (·), a learning

machine g(·) tries to produce an output g(x,θ), where θ represents the parameter vector of the

model g(·).

Discrimination or regression

In a supervised problem, the objective is to build, from this learning sample, a model f , which

will allow us to predict the output Y associated with a new input (or predictor) X . The output Y

can be quantitative (the price of a stock, electrical consumption, pollution map, ...) or qualitative

(occurrence of cancer, recognition of figures, ...). Some methods of learning or modelling adapt

to all types of explanatory variables, while others are specialised. If the objective variable Y is

qualitative or categorical, the problem is qualified as a classification one. Otherwise, it is called a

regression problem (Vapnik, 2013).

Estimation and Learning

In some cases, the terms "estimation" and "learning" are used as synonyms, but there are still some

nuances. In a traditional statistical problem, the central objective is the construction of a model

with a good explanatory capacity. This is judged by the degree to which the model fits the data

(model fitting) and interpreted as an effort to approximate the real underlying mechanisms.

On the other hand, when the objective concerns the predictive capacity, it appears that the best

model is not necessarily the one that best fits real observations. The main idea is to have a model

that can balance well fitness and prediction, as explained in (Vapnik, 2013).

5.1.4 Data Analysis Framework

The main motivation of data analysis is to evaluate the data by searching for relevant information

that helps in making a decision. In (Frawley et al., 1992), the data analysis process is divided into

different stages, as follows:

1. Understand the application context, the research objectives and take into account the a priori

knowledge;

2. Create a targeted subset of the data (matrix) from different data resources;

3. Clean the errors and treat missing data, outliers, etc.

4. Transform the data with "normalisation", linearisation, etc.
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5. Explain the purpose and strategy of data analysis, such as exploration, association, classifica-

tion, discrimination, etc.

6. Choose the right methods and algorithms according to their interpretation or predictability;

7. Make tests on the testing set with appropriately defined criteria such as quality of adjustment,

prediction, simplicity, etc.

8. Dissemination of results for decision making.

5.2 Methods Description

Today, it is said that data analysis plays a vital role that wins out in almost every science area. It

makes it possible to conclude the dependencies among the observed variables, thus introducing

a model with predictive capacity (John Walker, 2014). The problem is particularly crucial in

biology where data are expensive. One of the objectives of this thesis is to construct models for

CYP with meteorological records, which turns out to be a multivariate regression problem. In

dealing with the complex relationship between the explanatory variables and the objective variable,

even among the explanatory variables, several regression methods are recommended in (Ryan,

2008). According to their different modelling discipline, the statistical learning methods can be

classified into traditional statistical methods and machine learning methods (Iniesta et al., 2016).

With the traditional methods, such as lasso or ridge regression, PLS or PCA regression, the complex

relationship is simplified by dimension reduction and penalisation; while the machine learning

methods are based on the individuals’ similarity and the resampling technique. In this research,

regression tree, bagging, boosting, random forest, k-NN, and neural network regression, some of

which are considered to be ten of the most important data mining algorithms (Wu et al., 2008), are

selected as candidate methods to realise the CYP. Some of the modelling and forecasting methods

used in this work are well known and have been widely used. The traditional methods are not

recalled here. However, machine learning methods result from the interface between statistics and

the theory of learning. They deserve some introductory words.

Regression Tree

It has been a long time since the proposition of a regression tree, but it is still trendy, especially

in marketing applications (Friedman et al., 2001). It leads to the construction of binary decision

trees straightforward to interpret. On the other hand, it is often the basic model of aggregation

algorithms. As shown in Figure 5.2, a classification tree from an example of (Therneau et al.,

2015) is built recursively, where each node is defined by a quantitative explanatory variable and a

threshold value in regression. This choice is made by optimising a criterion that aims to generate

the most homogeneous leaves in terms of the external variable, such as the inter variance of the
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objective variable. Cross-Validation is always carried out the overcome the instability of a single

tree model to ensure its predictive capacity (Prasad et al., 2006b).

Fig. 5.2 An example of regression tree

Bagging regression

Ensemble learning algorithms is a simple and efficient solution to solve the instability problem

caused by a single tree model, as shown in Figure 5.2 (Dietterich et al., 2002). The Bagging

technique, which is one of the most used ensembles learning algorithms, is proposed in (Breiman,

1996). This algorithm consists of two crucial steps: bootstrap and aggregating. A sampling process

with putting-back is firstly conducted to generates the subsets of the dataset for model training at

the "bootstrap" step. Then, the prediction results should be aggregated at the "aggregating", where

a quantitative result is often averaged while it is decided by voting for the qualitative variable.

Ideally, if we have m independent samples, according to the law of large numbers, the variance of

the averaged model should be divided by
√

m. Thus, the instability of the trees can make the whole

quite efficient: each tree is of significant bias while their average is of low variance. In practice,

the large number of observations is generated by bootstrap, even though "new" samples are not

independent enough.

Random forest and Boosting

It has been mentioned in the above section that the instability of a single tree could be overcome

with ensemble learning and bootstrap. However, since the "new" samples depend on each other,
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which results in the dependency of the generated trees. Several solutions have been proposed

subsequently for the improvement of bagging algorithm (Liaw et al., 2002).

Random forest is one of the most famous data mining algorithm introduced in (Breiman, 2001).

The main idea is to add additional randomness to allow differentiation and dependence reduction

among tree model estimates. To be more in details, in the construction of a regression tree with

”new" samples, the optimal explainable variables, and their associated thresholds are not selected

among all the explanatory variables, but on a randomly chosen subset. Even though this results in a

suboptimal tree, in practice, model aggregation leads to better overall results.

Another solution to the similarity of generated trees is named Boosting (Freund et al., 1999).

It is considered as an enhanced algorithm, where a weak classifier trained into a robust classifier

iteratively. For this algorithm, the observations have gained weight to reflect their contribution to

the bias of the generated trees. At each iteration, each new model gives more substantial weight to

the poorly predicted observations at the previous iteration.

It is important to note that both methods in this section can lead to the estimation of a large num-

ber of parameters without leading to over-fitting. The main disadvantage lies in the computational

efficiency since a significant amount of trees should be generated to make a "forest".

SVM regression

Support Vector Machine (SVM) is a crucial algorithm that could be applied in the regression and

classification problems. More and more attention is paid to this algorithm, since its success in

multiple research fields and its strong theoretical background. (Cortes and Vapnik, 1995) and

(Cristianini et al., 2000) are two important references for the basic theory of SVM. (Schölkopf

et al., 2002) and (Smola and Schölkopf, 2004) could serve as a guideline that outlines the basic

idea of support vector machines for regression.

The first SVM was firstly applied in a binary classification problem where it is required to

separate observations with p quantitative variables into two groups. To map the original data into a

new high-dimensional space, where it is possible to apply a linear model to obtain a hyperplane for

separation new high-dimensional space as in Figure 5.3.

The basic idea is to search for a linear hyperplane separating the two classes if it exists. The

optimal hyperplane is the one that maximises the margin so that the individuals from different

classes are as distant as possible from each other.

However, in practice, such hyperplane separation is difficult or even impossible when it doesn’t

exist. Consequently, a transformed problem is created by adding a penalty, which allows the

misclassification of observations depending on the value of the parameter. Moreover, the search

for a non-linear operator F can be made linear by embedding the problem into a space of larger

dimension H, equipped with a scalar product which is defined by a positive bilinear kernel function.
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Fig. 5.3 An example of Support Vector Machine

It leads to the fact that the non-linear function F is not required to be explained explicitly, which

could be regarded as the smartest part of this approach (Vapnik, 2013).

Neuronal models

A neural network (Hagan et al., 1996) is a parallel and distributed information processing structure,

consisting of computing units (neurons) connected by valued links as in Figure 5.4. The state of a

neuron depends on the value of the signals arriving at the unit and the contents of the local memory

attached to that unit. Since it is collective, the behaviour of the network is largely regulated by

its connectivity. It is also by the non-linearity of the interactions rather than by the individual

properties of the neurons. However, as it is said in (Friedman et al., 2001), neural computation

is historically inspired by the observation of natural systems, but it is not a biologically plausible

model.

The modes of representation and information processing, as well as the topology, vary sig-

nificantly from one neuronal model to another. The common denominator of these models is the

process of determining synaptic weights, verbally termed learning. The learning process refers to

the gradual, iterative process by which network weights are adjusted.

5.3 Choice of method

As presented in the above section, the CYP is carried out with several parametric approaches from

both classical models and machine learning methods. An important topic that can not be ignored

in modelling is the number of explanatory variables used for each method, such as the number of

trees in random-forest or number of neurons in a hidden layer in the neural network. It is clear that
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Fig. 5.4 Neural network structure

the more parameters are integrated, the more complex a model will be and the more flexible it can

adjust to the observed data, thus the smaller the generated error of fitness will be. On the contrary,

such a model may prove to be flawed when it comes to predicting with “new” data that did not

participate in the estimation with so many parameters.

According to the variance decomposition in Equation 5.7, it is important to optimise the balance

between bias and variance by controlling the number of variables in the model (its complexity)

when minimising the risk. These remarks lead to the definition of criteria for model selection,

such as AIC, BIC, AICc. These criteria were proposed in the 1970s and are widely used in

model selection. Some sampling techniques, such as cross-validation can also help to balance the

compromise.

5.3.1 Criteria of penalised likelihood

Let us assume that the likelihood function L(θ) of a parametric model resulted from a density

function g(y|x,θ). Then, in a predictive problem, it corresponds to the conditional density function

of y given x and under the parameter value θ . In this case, the parameter vector θ could be estimated

by the maximum likelihood method.

The likelihood L(θ) can be interpreted as a way of measuring the fit of a model to the observed

data since it gives a measure of how plausible the given data y is in terms of the parameter vector of

the model. However, in most cases, the log-likelihood lnL(θ) is used instead. In a linear regression

problem, a list of possible models is available with i = 1,2, . . . , p explanatory variables (for a

fixed i several combinations of competing covariates are possible). The relative log-likelihood

can also be obtained easily lnL(θi), by assuming that the remaining covariates are associated with

null coefficients. However, the likelihood or the log-likelihood function could not serve as model
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selection criterion since their values increase with i, which means that the “best” model is the one

that has the most parameters.

Therefore, the AIC and BIC criteria will penalise the log-likelihood by taking into consideration

the number of parameters. They appear to be very similar, but in fact, their objective is different.

The AIC criterion

The classical AIC criterion is expressed as follows:

AIC =−2lnL(θ̂)+2k, (5.2)

where k is the number of model parameters and θ̂ the maximum likelihood estimator. The best

model is, therefore, the one that minimises AIC.

The AIC (Sakamoto et al., 1986) was originally proposed from a Kullback-Leibler divergence

perspective. Let f , g be two probability density functions, and assume that f is the “true” unknown

density and g an approximate density of an observed vector y. Then, the loss function from using g

instead of f , is defined as

l( f ,g) =
∫

ln
(

f (y)
g(y)

)
f (y)dy.

Notice that

l( f ,g) = E f [ln( f (Y ))]−E f [ln(g(Y ))], (5.3)

that is, the loss function corresponds to the expected difference of the log-likelihoods between the

true and the approximate model, when computed under the true model. Since f is unknown, it is

impossible to compute (5.3) exactly. Instead, approximations are possible and the most popular way

results from maximum likelihood. In fact, since the minimisation of the loss function is equivalent

to the maximisation of the term E f [ln(g(Y ))] the approximations need to be done for this quantity.

The BIC criterion of Schwartz

The BIC criterion (Chen et al., 1998) is defined as follows:

BIC =−2lnL(θ̂)+ ln(n)k. (5.4)

The penalty is much higher than that of the AIC since the sample size is also taken into account.

Consequently, when large samples are available, the BIC criterion will favour models with fewer

parameters than the AIC.

The BIC criterion was inspired by a Bayesian point of view. In particular, let us assume that

a finite list of models, denoted by Mi, and depending on a parameter vector θi are available. In a

Bayesian perspective, a priori probabilities P(Mi) for each model Mi, as well as a distribution for θ
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given the model Mi are assigned. Thus, the posterior probability of the model Mi given the data y is

proportional to P(Mi) f (y|Mi).

If the prior distribution is uniform over all possible models, then the posterior probability of the

model Mi is proportional to the conditional density:

f (y|Mi) =
∫

f (y|Mi,θi) f (θi|Mi)dθi (5.5)

Under some mild regularity conditions, it can be shown that the approximation could be

obtained as follows (Friedman et al., 2001) :

ln( f (y|Mi))∼ ln( f (y|θ̂ ,Mi))−
k
2

ln(n), (5.6)

where ln( f (y|Mi)) is the log-likelihood of the model Mi and the objective is to choose the model

Mi that minimises the BIC criterion.

5.3.2 Empirical approach

The bias-variance compromise

A regression problem is generally represented in the form y = f (x)+ ε and the prediction problem

can be solved via the response function f̂ . In particular, for a given condition x0 the prediction

corresponds to ŷ0 = f̂ (x0). The prediction error e0 at x0 can thus be expressed by

e0 = y0− ŷ0 = f (x0)− f̂ (x0)+ ε0

The above decomposition indicates that the prediction error has two random components, the

one which is related to the estimation error of f (x0) by f̂ (x0) and the other which is related to

the noise ε0 associated with a new observation y0. By assuming that the errors from different

observations are uncorrelated (at least valid in a least squares approach), then the mean squared

prediction error can thus be decomposed as

E(y0− ŷ0)
2 = E[ f (x0)− f̂ (x0)]

2 +σ
2 =

(
E[ f̂ (x0)− f (x0)]

)2
+V( f̂ (x0))+σ

2, (5.7)

where the first term of the right member in the above equation corresponds to the square of the bias

related to model prediction, the second term to its associated variance and the last term to noise

variance, which is irreducible.

The term bias is related here to the adjustment of the model to the training set, while the

variance corresponds to the prediction of new data. The more complex the model is, the lower the

bias will be, but the higher the variation will become.
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Evaluation and model selection

Figure 5.5 shows that there is an optimal way to compromise between bias and variance if we are

ready to assign equal importance to each one of them. A practical way to perform this task is via

estimation of the prediction error. A classical way to estimate unbiased prediction errors consists in

using different datasets to estimate the model and its prediction error. In particular, the prediction

error is estimated with the dataset that does not participate in model training. Thus, when a large

number of observations are available, the data will be divided into two subsets:

• the learning set which serves to estimate each model in competition;

• the test set which serves to estimate the predictive performance;

The error measurement with the training set cannot be used since it is biased. Nevertheless, it is

essential to keep data that serve no other purpose than to evaluate the error. Thus a “good” model

can be obtained according to the bias-variance compromise.

Fig. 5.5 The bias-variance compromise

Cross-validation

If the available dataset is not large enough, then cross-validation is a standard way to assess the

prediction error as described in Algorithm 3. Firstly, the whole dataset is divided into k disjoint

subsets of the same volume. Then the prediction error is evaluated on each subset after the model

is calibrated with the other k− 1 subsets. Finally, the predictive error is taken by averaging the

errors for all the subsets. The choice of k is still a bias-variance trade-off: a large k will produce

results with great variance and low bias, while a small k will increase the bias. In most cases, k is

set between 5 and 10.

Generally, when dealing with problems in data science, the choice of methods and models, are

always complicated to carry out.
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Algorithm 3 k-folds cross-validation algorithm
1: Randomly distribute the dataset into k parts (k-fold) with approximately equal volume;
2: for i = 1 to k do
3: Leave out one the i-th part;
4: Estimate the model on the k - 1 remaining part;
5: Calculate the error on each of the observations of the i-th part
6: end for
7: Take the average error of the prediction errors obtained with the cross-validation.

As stated in (Hall et al., 2009), the choice of an algorithm (model) is initially decided by the

practical problems, which means the real data. In data science, the dataset under investigation is

almost in a table structure, of which the critical parameters are the dimensions, that is, the sample

size n and the number of variables p. The traditional statistical methods are typically designed

for the case where n > p; the statistical learning offers a set of processes and algorithms that are

effective when n < p. The strategies of model selection to deal with the crop yield prediction with

meteorological records are the primary objective in this part. (Friedman et al., 2001) offer a rather

exhaustive overview of the choice of algorithms in data science.

In this section, a wide variety of criteria and methods are proposed, and their implementation

conditions are discussed. The attention is particularly drawn to the optimisation of model complexity.

It is also an opportunity to recall that some consideration should still be paid to some robust and

linear methods as well as some “old” strategies (descending, ascending, stepwise) or more recent

(lasso) selection of linear models in academic or industrial practices.

Let Dn := {(X1,Y1), . . . ,(Xn,Yn)} be a set of training data. The Xi are considered to be input

variables taking values in a set X and Yi are the output variables, taking values in a set Y . We call the

{Xi} features and the {Yi} labels. For simplicity, let us also assume that these data are independent

and identically distributed (i.i.d.). Nevertheless, note that in practice, these assumptions are often

violated. A learning rule corresponds to a function f that will be trained with the dataset Dn.

Moreover, the constructed function f̂ will be used to predict X , and Y where (X ,Y ) is a pair of test

data. Some attention should be paid to distinguish the learning phase and the test phase.

With the development of data mining, numerous articles compare and contrast techniques on

public datasets and propose incremental improvements of specific algorithms. After a feverish

period, when everyone tried to display the supremacy of their method, a conclusion is made that

there is no “best” way. Each method is more or less well adapted to a specific problem, the nature

of the data or/and the properties of the function f to be estimated. However, it is crucial to know

how to compare methods to choose the most relevant in each situation.
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5.4 Results and conclusion

To compare the performance of different statistical learning approaches for CYP, an 11-folds

cross-validation is applied to balance the variance-bias compromise. This process is repeated

for ten times to test their robustness to the randomness in resampling. The average RMSE and

MARE for fitness (RMSE0, MRE0) and prediction (RMSE0, MRE0) are listed in Table 5.1. The

corresponding boxplots are shown in Figure 5.6 (RMSE0, RMSE) and Figure 5.7 (MRE0, MRE).

Table 5.1 Evaluation of statistical learning for CYP

RMSE0 MRE0 RMSE MRE

Ridge 49.09± 0.12 0.0406± 0.0001 57.84± 0.46 0.0475± 0.0003
Lasso 48.54± 0.54 0.0399± 0.0004 58.03± 0.52 0.0473± 0.0003
PLS 49.58± 0.14 0.0407± 0.0001 59.09± 0.48 0.0483± 0.0003
PCA 52.90± 0.25 0.0437± 0.0002 59.13± 0.33 0.0487± 0.0002
DT 48.68± 0.37 0.0401± 0.0004 65.09± 0.07 0.0528± 0.0006
BT 50.88± 0.02 0.0426± 0.0001 58.64± 0.39 0.0488± 0.0003
BG 42.98± 0.14 0.0354± 0.0001 57.59± 0.44 0.0471± 0.0003
RF 21.72± 0.02 0.0172± 0.0001 54.94± 0.40 0.0442± 0.0003
SVM 51.30± 0.14 0.0402± 0.0001 57.98± 0.30 0.0475± 0.0002
ANN 36.83± 7.50 0.0276± 0.0062 71.69± 6.37 0.0558± 0.0046
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Fig. 5.6 Root mean square error of fitness and prediction for different statistical learning approaches:
Ridge, Lasso, PLS (partial least squares regression), PCA (principal component regression), DT
(Decision Tree regression), BT (Boosting), BG (Bagging), RF (random forest), SVM (support
vector machine), ANN (artificial Neural Network)
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Fig. 5.7 Mean absolute relative error of fitness and prediction for different statistical learning
approaches: Ridge, Lasso, PLS (partial least squares regression), PCA (principal component
regression), DT (Decision Tree regression), BT (Boosting), BG (Bagging), RF (random forest),
SVM (support vector machine), ANN (artificial Neutral Network)

Note that all the statistical approaches have excellent performance both in fitness and prediction

of CYP. The best method both in fitting and prediction is Random Forest. In particular, the best

three results in fitness are Random Forest, Artificial Neural network and Bagging regression. As

for the prediction results, the best ones are Random Forest, Bagging and SVM. The neural network

does not bring significant improvements over the other methods, and its unique character lies in the

fact that it exhibits the most significant variation in its evaluations. This result indicates that some

extra effort is needed to find the best setting for a neural network to improve its capacity in CYP.

The results of the predicted yield as compared to the real observations are shown in Figure 5.8.

The simple DT (Decision Tree) model provides only a finite set of values as described in Section

5.2. An improvement can be observed with a group of trees obtained by "Boosting", "Bagging" and

"Random Forest". The results of the random forest in Figure 5.6 and Figure 5.7 illustrate this fact

more clearly.
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As far as the residuals of different models are concerned, the differences between the predicted

and the observed yield, are plotted against the predicted values in Figure 5.9. The results indicate

that the homoscedasticity of the errors is confirmed by all the algorithms, except for the neural

network one.
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Fig. 5.8 Predicted v.s. Observed values for different statistical learning approaches: Ridge,
Lasso, PLS (partial least square regression), PCA (principal component regression), DT
(Decision Tree regression), BT (Boosting), BG (Bagging), RF (random forest), SVM (support
vector machine), ANN (artificial Neutral Network)
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(a) Residuals with Ridge
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(b) Residuals with Lasso
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(c) Residuals with PLS
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(d) Residuals with PCA
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(e) Residuals with DT
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(f) Residuals with BT
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(g) Residuals with BG
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(h) Residuals with RF
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(i) Residuals with SVM

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●
●

●

●

●

●●

●
●

●

●

●
●●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●●
● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●●

●

●●

●●

●

●
●

●
●

●

● ●

●

●

●

●

●●

●
●

● ●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●

●

● ●

●

●
●

●

●

●

●
●

800 900 1000 1100 1200

−
20

0
0

20
0

40
0

ANN

Prediction

R
es

id
ua

l

(j) Residuals with ANN

Fig. 5.9 Residuals v.s. Predicted values for different statistical learning approaches:Ridge, Lasso,
PLS(partial least square regression), PCA(principal component regression), DT(Decision Tree
regression), BT(Boosting), BG(Bagging), RF(random forest), SVM(support vector machine),
ANN(artificial Neutral Network)



Chapter 6

Influence of Meteorological Variability
on the Predictive Capacity

One of the main objectives of modelling is to approximate the real phenomenon by model simulation

as we have done in the previous chapters. Another more critical and challenging goal is to ensure

high predictive power, that is, the excellent performance of the assumed model in a completely

"new" scenario that has never been met before.

What has been accomplished in the "prediction" stage in Section 5.4 is considered to be a

"fake" prediction in the sense that in Section 4.4 the observations from the same year were shown

to be much more similar as compared to observations from different years. Note that the previous

observations participate in both the "fitness" and the "prediction" steps. That is why a new strategy

named "clustering result-based cross-validation" is proposed to have a more "strict" evaluation of

the predictive capacity. The detailed process is described in Algorithm 4.

Algorithm 4 Clustering-based Cross-Validation Algorithm
1: An unsupervised clustering algorithm is called to divide the datasets into K ideal clusters

Dn = {D{1,n1},D{2,n2}, . . . ,D{K,nK}}
2: for i = 1 to K do
3: Leave out one of the clusters D{i,ni};
4: Estimate the model on the K - 1 remaining parts Dn/D{i,ni};
5: Evaluate the predictive capacity of the testing set D{i,ni};
6: end for
7: Take the weighted average error as the prediction error obtained with the cross-validation since

the sample volumes for different clusters may differ.
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Table 6.1 Evaluation of goodness-of-fit and prediction with clustering-based cross-validation

RMSE0 MRE0 RMSE MRE

Ridge 48.28 0.0398 85.71 0.0722

Lasso 47.92 0.0394 96.89 0.0821

PLS 49.69 0.0407 92.29 0.0770

PCA 53.19 0.0440 86.98 0.0739

DT 48.38 0.0395 100.32 0.0860

BT 50.69 0.0425 75.89 0.0645

BG 42.90 0.0352 79.34 0.0682

RF 21.60 0.0170 75.32 0.0643

SVM 50.72 0.0396 76.01 0.0649

ANN 33.65 0.0251 119.98 0.1057

The results of this strategy are listed in Table 6.1. In comparison with the results that don’t take

into account the climatic variability as illustrated in Table 5.1, the fit for all the methods is slightly

improved. It can be explained by the fact that the training set is more similar since it contains only

ten different clusters and one cluster has been omitted, therefore reducing its overall variability.

However, as for their predictive capacity, the predictive error becomes more significant as compared

to the results shown in Table 5.1. For example, the RMSE for the ridge regression is changed from

57.84 g/m2 to 85.71 g/m2, etc.

6.1 Reducing the inter-annual variability by regrouping the meteoro-
logical data

The modelling process with the meteorological records from different years is usually associated

with a certain instability caused by the inter-annual variability. To deal with this variability and

reduce the uncertainty, to group the daily meteorological records in a certain period is supposed to

be a relatively easy and effective way.

From Figure 6.1 to Figure 6.3 the 5 meteorological records of TMIN in Cochise County from

2001 - 2007 are presented. In Figure 6.1 the original daily records are given, while in Figure 6.2

these records are regrouped in 5-days recordings. Finally, in Figure 6.3, a 10-day regrouping is

performed. It is obvious, even graphically, that the inter-annual variability is reduced.
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Fig. 6.1 Initial TMIN daily records in Cochise County

Fig. 6.2 TMIN records regrouped by 5 days in Cochise County

Fig. 6.3 TMIN records regrouped by 10 days in Cochise County
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However, how will it influence the production model? Moreover, do the classical statistical

methods, and machine learning methods are similarly influenced? To answer to these two questions,

the weighted regression processes will be carried out with a typical statistical regression method,

like the "ridge regression" for example. Moreover, for the machine learning methods, boosting

regression is selected. Moreover, these two weighted regressions will be applied to the initial data,

and those regrouped by every t-days for different values of t. Their performances are shown in

Figure 6.4 for the classical statistical methods and Figure 6.5 for the machine learning methods.

Fig. 6.4 cluster-cross-validation-04

According to the results, the evaluation of fitness for the traditional statistical methods are

getting worse when the size t of the groups increases. This conclusion reflects the fact that averaging

induces a loss of information and this results in a decrease in the fitting quality. However, on

the contrary, information loss is associated here with a reduction in inter-annual variability, since

the similarity between the training and the testing sets increases. The new compromise concerns

“information loss” and “similarity gain”. According to Figures (b) and (d), Ridge regression can

obtain a functional prediction capacity with RMSE = 67.79 g/m2 with records regrouped by 19

days. There are also some other good sets, such as PCA with the regrouped records by every 15

days, PLS with the regrouped records by every 19 days and Lasso regrouped records by every 30

days.

As far as machine learning methods are concerned, most of them perform similarly, or even

worse, both for fitness and prediction except for ANN, as shown in Figure 6.5. However, the
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Fig. 6.5 Evaluation of machine learning methods with regrouped meteorological records: DT
(Decision tree), BT (Boosting), BG (Bagging), RF (Random Forest), SVM, ANN, KNN regression

Random Forest regression has always the best performance for functional fitness, while the Bagging,

Random Forest, SVM, and KNN have still 6% absolute relative error.

The different effect of the regrouping strategy of meteorological records on classical statistical

methods and machine learning regression methods comes from their different methodology for

fitness in dealing with collinearity. For the statistical regression methods, the most critical challenge

consists in the reduction of dimensionality. The answer could be found in (Indyk and Motwani,

1998), where model variance reduces exponentially along with the dimension reduction, a phe-

nomenon which in the opposite direction is named as the "curse of dimensionality" in (Friedman,

1997).

On the other hand, the machine learning methods try to fit the observations usually by the

resampling technique. However, the sample size does not increase with the regrouping strategy.

That is why the regrouped data has a different effect on these two methodologies.
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6.2 Conclusion

When dealing with a learning problem, attention should be paid to prevent samples from appearing

in both the training (for fitting) and the testing sets (for prediction) to avoid overfitting issues.

An advisable strategy for this type of partition, or with cross-validation is detailed in Section.5.3.

However, when dealing with meteorological data, the records of the positions geographically near

to each other in the same year are strongly correlated. Some new strategy should be devised to

forbid these similar samples appearing both in the learning and the prediction step. In this direction,

a new methodology named "clustering-based cross-validation" is suggested in this chapter.

In this methodology, the dataset is first subdivided into several subsets by an unsupervised

clustering technique. The "leave one out" principle is then adapted to the simulation of "new"

scenarios for evaluation.

The results in Table 6.1 indicate that, under this "strict" predictive evaluation, models cannot

perform as well as before (compare with Table 5.1 in Section 5.4). However, the models are proved

to have robustness in their predictive capacity, when coming across completely new situations as

illustrated in Figure 6.4 and 6.5. Additionally, a simple suggestion is made to increase the prediction

performance by regrouping the daily records, and this approach is tested with different methods,

including classical statistical and machine learning ones. According to their performance in both

fitness and prediction, ridge regression stands out from the traditional statistical methods, while

Random Forest regression from the Machine Learning methods.



Part III

Large-Scale Crop Production
Prediction





Chapter 7

Weighted regression for Large-Scale
Production Prediction

The scientific definition of "crop yield" corresponds to "the measure of grains or seeds generated

from a unit of land, often expressed as (kg/H)". It is a term mostly used in scientific laboratories and

rather unpopular. On the contrary, "crop production" is a large-scale subject, which greatly interests

the government, the farmers, the market participants, etc. In Part I and Part II, knowledge-driven

and data-driven approaches, which take into account the meteorological records as inputs, have

shown their potential capacity for crop yield prediction. It is natural to ask, if model calibration

with large-scale data, could contribute to the large-scale prediction problem.

In this chapter, the challenges and difficulties of large-scale crop production prediction with

meteorological records will be discussed. A short introduction of French agriculture and soft wheat

production will be made in Section 7.1, to illustrate the importance of soft wheat production to

France, but also worldwide. In Section 7.2, potential data resources are indicated that could be

used to deal with large-scale modelling. Some primary statistical analysis will be given in Section

7.3, including the methodological data and the harvest data of soft wheat in France. In Section

7.4, the large-scale crop modelling process will be described. The prediction results obtained

with knowledge-driven approaches and data-driven approaches will be compared and analysed in

Section 7.5 and 7.6. Finally, a conclusion and some perspectives will be made in Section 7.7.

7.1 Agriculture and Soft Wheat in France

France benefits a lot from a significant agricultural area, a favourable geographical and climatic

situation, and also, of course, the agrarian policy, the Common Agricultural Policy. It has become

the world’s 6th largest and the leading agricultural country in the European Union, with about 1/3

of all the farmland and approximately 18% agricultural product in the European Union(IBP, 2015).

It is also the second-largest exporter in the world of both services and farm products.
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Agreste, the statistical department of the Ministry of Agriculture, is the primary department

responsible for agricultural data in France. Every year, they conduct several surveys on agricultural

production methods (SAPM) to estimate areas and yields of the main crops (Eurostat, 2017). Each

study is conducted through telephone interviews with farmers. Some critical statistic analysis for

the crop sector and the government decision-makers will be carried out, among which the most

interesting one could be the production level for certain individual crops. From the perspective of

the global market, these statistics are needed to make accurate price predictions, which in turn serve

to make business decisions. However, the statistics are dependent on the phone survey. Thus an

acceptable accuracy cannot be reached until the harvest date, which leads to a lack of predictability.

Consequently, it is essential to have an effective alternative to replace SAPM with a quick and

accurate prediction for the agricultural products in France.

Fig. 7.1 A photo of wheat in field

"Wheat" is a generic term for several grains belonging to the genus Triticum, grown in many

countries. It is the third most essential grains, judged by the importance of the world harvest

after rice and corn, with about 700 million tons annually. According to their endurance to low

temperatures, it can be divided into winter wheat and spring wheat. Moreover, the soft wheat

accounts approximately for 87% of the wheat production in France for the year 2015/2016 (Agreste,

2016).

In terms of production efficiency, according to Figure 7.2, South America has stable yields at

20 q/ha, Africa 10 q/ha, Egypt about 35 to 40 q/ha. At the same time, in Europe, remarkably high

yields can be obtained in intensive cultivation. In France, the gains are even more remarkable: the

current production amounts to 100 q/ha for the most successful farmers. In 2016, French wheat

production was about 29.3 million tons, which account fort 20.3% of the EU production (144.5

million tons). That is why we choose to model soft wheat production in France.
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Fig. 7.2 Average wheat yield distribution all over the world

7.2 Data description

The data used in this research come from two main parts:

• Agricultural harvest data: including the crop and their surface of farmland, with which

we introduce the yield data, as the model in this research is used for yield production

(harvest/surface). The data are obtained from Agreste on their website (DISAR, 2018).

The harvest data are at the departmental level. Finally, the soft wheat harvest data at the

departmental level from 1989 to 2010 will be used in this research.

• Meteorological data along with the crops’ growth: These data have been used in many fields

in agricultural research. Their usefulness depends on the level of accuracy with which they

represent the atmospheric conditions in the fields where the crops grow. For now, AgMIP

Climate Forcing Datasets is one of the most complete and accurate meteorological datasets

in the world. It is based on the NASA Modern-Era Retrospective Analysis for Research and

Applications (MERRA) (Ruane et al., 2015). AgMERRA is the newly updated dataset that

corrects to gridded temperature and precipitation, incorporates satellite precipitation, and

replaces solar radiation with NASA/GEWEX SRB to cover the 1980-2010 periods. It is

recommended to go to their website for more detailed information (GISS, 2014).

The preprocessing of these two datasets will be detailed later in Section 7.4.2 before the

modelling process.

7.3 Basic statistical analysis of soft wheat production in France.

In this section, the primary statistical analysis of the soft wheat will be carried out in two levels:

the national and the departmental level.
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7.3.1 National level analysis

According to Figures 7.3 to 7.5, the national production of soft wheat varies between 28.85 million

tons (lowest record in 1993) and 38.1 million tons (highest record in 1998). However, note also

that the cultivated farmland with soft wheat in 1993 was the lowest one (4.26 million ha), thus

explaining its low production at that year. Moreover, in 2008, the cultivated area in France reached

a peak of about 5.04 million ha. As a result, the yields have been kept between 64.27 q/ha (in 2003)

and 77.81 q/ha (in 2004, just one year after the lowest.).

Fig. 7.3 National Production of soft wheat from 1990 to 2010

Fig. 7.4 National farmland of soft wheat from 1990 to 2010
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Fig. 7.5 Average yield of soft wheat from 1990 to 2010

7.3.2 Departmental level analysis

France is a country with rich geographical diversity, which makes the crop’s performance in this

country vary a lot from place to place. In terms of soft wheat’s yield in France, it can be observed

that the soft wheat yield varies from department to department and from year to year, as shown

in Figure 7.6a and Figure 7.6b. However, a geographical correlation between the departments

in terms of their soft wheat yield can be easily found. The lowest yield for each year is always

observed in the south, close to the Mediterranean Sea and the Alps like Gard (33th department),

Pyrénées-Orientales (66th department), Var (83th department), Vaucluse (84th department). On the

other hand, the highest yield always occurs in the north, like Somme (80th department), OISE (60th

department) and AISNE (2th department).

(a) Soft wheat yields by the department in 1999 (b) Soft wheat yields by the department in 2009

Fig. 7.6 Soft wheat yields distribution in France in 1999 (left) and 2009 (right)
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7.4 Modelling the production of soft wheat

7.4.1 Crop Production modelling

As demonstrated in Part I and Part II, knowledge-driven approaches and data-driven approaches

work well for corn yield prediction in America with a dataset of the form {Ui,yi}, with Ui the

meteorological record and yi the corn yield at the county level. And for this case study, the available

dataset is in the form {Ui,Si,Pi} with Ui the available climate condition, Si and Pi the cultivated

surface and production at the departmental level in France. It is possible that the crop production

model could be derived from the crop yield model.

Let us denote by f , a general expression for the yield model, including knowledge-driven or

data-driven models as expressed in Equation 1.1 and , for the production model, the quadratic loss

function could be expressed as follows:

Loss = ∑
i, j
(Pi j− P̂i j)

2, i ∈ Z[1990,2010], j ∈ Z[1,89], (7.1)

where Pi j and P̂i j correspond to the observation and the estimation of the crop production for the

year i in the department j respectively. Since the production could be decomposed into the crop

yield and the cultivated surface in the form Pi j = Si j ∗ yi j, the loss function given above can be

written as follows:

Loss = ∑
i, j
(Pi j− P̂i j)

2 = ∑
i, j

S2
i j ∗ (yi j− ŷi j)

2. (7.2)

Then, the production of a certain year i, denoted by Qi can be easily obtained by:

Qi = ∑
j

P̂i j = ∑
j

Si j ∗ ŷi j. (7.3)

The above expression of the loss function indicates that the large-scale production prediction

result is a weighted sum of the loss function in the departmental level. Consequently, attention

should be paid more to those departments, where their contributions to total production are more

significant. In Figure 7.7, it can be easily seen that the cultivated surfaces differ greatly from

department to department, and this should be taken seriously into account. Such a regression model,

where observations are treated differently, with unequal weights, correspond to the problem of

"weighted least squares estimates".
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Fig. 7.7 The cultivated area for soft wheat in France in 2009

7.4.2 Data preprocessing

As expressed in Equation 7.2, the crop yield model plays a key role in the production model. The

first step consists in generating the same data structure {Ui,yi} as we have already done in Part I and

Part II, from the available data resource. The soft wheat yield observation can be easily obtained by

Equation 7.2. However, it comes with some difficulties in generating the "correct" meteorological

data for each department. The first effort is to take the geographical centres as the representative

points for each department as in Figure 7.8.

Fig. 7.8 Geographical centres for each department in France
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It is stated in (GISS, 2014) that the meteorological variables are provided with different

geographical scales. For Mean, Min and Max Temperature (°C) is by 0.5° × 0.5° while 0.25° ×
0.25° for Precipitation (mm/day) and 1° × 1° for Solar Radiation (MJ/(m2 ∗day)). The value of

the meteorological variable for each representative point can be estimated by simple interpolation

with the smallest rectangle around it.

Fig. 7.9 Estimation with simple interpolation in rectangle

We take the Solar Radiation (SR) for the representative point of AISNE (2nd department) as

an example. As shown in Figure 7.9, the representative point P0 is surrounded by the rectangle

represented by {P1, P2, P3, P4}(P5 and P6 are auxiliary points for interpolation). Each point Pi is

characterised by {loni, lati, SRi} with loni, lati the longitude and latitude of point Pi and SRi the

value of solar radiation. It is obvious that lat2 = lat1 ,lon3 = lon1, lat4 = lat3, lon4 = lon2, lon5 =

lon6 = lon0, lat5 = lat1, lat6 = lat3.

The Solar Radiation of point P5, SR5, can be easily obtained by linear interpolation:

SR5 = SR1 +(SR2−SR1)×
lon5− lon1

lon2− lon1

= SR1 +(SR2−SR1)×
lon0− lon1

lon2− lon1

(7.4)

SR6 for point P6, can be obtained in the same way with SR3 and SR4:

SR6 = SR3 +(SR4−SR3)×
lon6− lon3

lon4− lon3

= SR3 +(SR4−SR3)×
lon0− lon1

lon2− lon1

(7.5)

Finally, the estimated value for the representative point P0, SR0, can be obtained by SR5 and

SR6 by the following equation:
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SR0 = SR5 +(SR6−SR5)×
lat0− lat5
lat6− lat5

= SR5 +(SR6−SR5)×
lat0− lat1
lat3− lat1

(7.6)

For the other variables and the other representative points, the values can be obtained in the

same way. The only difference is the grid-scale for different meteorological variables.

The final task in data preprocessing is to determine an appropriate interval for the life cycle of

the soft wheat. A commonly used range for soft winter wheat, where the wheat semis 15 October

and harvested on 23 July of the following year, is also used for this research. It accounts for 280

days in the whole life cycle for the soft winter wheat.

Since we take the daily record of Tmin, Tmax, Tavg, Prate and RG into consideration, the final

dataset will contain 1 column of objective variable and 280 × 5=1400 columns of explanatory

variables. As for the number of rows, since we have 21 years production record for 96 departments

in metropolitan France, normally we could get 96 × 21 = 2016 records. However, there is a lack of

meteorological information for 14th,44th ,67th ,68th department, and also a lack of harvest data for

75th, 92th, and 2B. Finally, the dataset turns out to be a table of (96-7) × 21 =1689 rows and 1401

columns. Each observation can be expressed as {Ui, j,yi, j}, with i ∈ Z[1990,2010], j ∈ Z[1,89].

This dataset will be applied in the following section to predict the national soft wheat production in

France with both knowledge-driven and data-driven approaches.

7.5 Weight regression with Crop model

The Log-Normal Allocation and Senescence (LNAS) crop model is a functional, structural crop

model (FSPMs) that is firstly proposed and applied to sugar beet in (Cournède et al., 2013). Some

important works such as (Viaud, 2018), (Chen, 2014) have been carried out, and the LNAS model

is proved to have some impressive and stable property in crop modelling for different crops. And

in this section, the crop model LNAS-wheat will be applied to study the soft wheat production.

Before model calibration, sensitivity analysis and study of parameters’ properties should be carried

out as in Part I.

7.5.1 Sensitivity Analysis with Sobol indices

The results from the first order Sobol index for the LNAS model is listed in Table 7.1. The subgroup

{rue, kB, e, sinit, muAlloc} are considered as important parameters. Theoretically, the predictive

capacity of the crop model wouldn’t be achieved without the calibration.
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Table 7.1 Sobol Indexes of LNAS model

S_rue S_kB S_e S_sinit S_muAlloc S_TTinit
0.3341 0.2180 0.2167 0.1495 0.0330 0.0086

7.5.2 Smoothness properties of the Loss function

In this part, we are going to analyse some smoothness properties of the loss function concerning

each parameter, including continuity and convexity. This kind of study enables a better evaluation

of parameters uncertainty and also helps to decide the most appropriate optimisation algorithms.

(a) LS function to parameter "rue" (b) LS function to parameter "kB"

(c) LS function to parameter "e" (d) LS function to parameter "Sinit"

(e) LS function to parameter "muAlloc"

Fig. 7.10 Parameters’ relation to the objective function
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As in the Figure 7.10, the least squared error about these five parameters seems to be continue

and may be convex (convex individual not convex globally), Which reduce the difficulties in

optimisation process significantly.

7.5.3 Prediction results for the French soft wheat production

The prediction of soft wheat production is carried out with a different number of calibrated

parameters. The different cases correspond to {case 01: rue, kB}, {case 02: rue, kB, e},{case 03:

rue; kB; e; sinit} and {case 04 : rue; kB; e; sinit; muAlloc}. For each case, the process is repeated

for 10 times and the results of production prediction from 1995 to 2010 are shown in Figures 7.11

to Figure 7.14.

Fig. 7.11 Production prediction results with 2 parameters calibrated

Fig. 7.12 Production prediction results with 3 parameters calibrated



104 Weighted regression for Large-Scale Production Prediction

Fig. 7.13 Production prediction results with 4 parameters calibrated

Fig. 7.14 Production prediction results with 5 parameters calibrated

The predicted production curve in Figure 7.11 to Figure 7.14 simulate more the less the

tendency to the real sequences. For each setting, the repeated prediction coincide each other,

which demonstrated the convergence of the MuScPE-PSO with good settings as in Section 3.4. By

comparing the results of Figure 7.11 and Figure 7.12, it is clear that by increasing the number of

calibrated parameters, a remarkable improvement in the prediction is achieved for the years 1995,

1996, 1998 and 2007. Nevertheless, when the number increases from 4 to 5, then the improvement

is not so clear.

The results from the absolute relative error are listed in Table 7.2. The LNAS model could

achieve better prediction when more parameters are calibrated. But the difficulty in optimisation

increases at the same time. Thus, the LNAS model with four parameters calibrated could achieve

both computational efficiency and accurate prediction.
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Table 7.2 Absolute relative error

models average std

LNAS case 01 0.183980 0.117976
LNAS case 02 0.092873 0.077370
LNAS case 03 0.084680 0.071953
LNAS case 04 0.084986 0.071843
avg-5 0.089406 0.064341

7.6 Weighted regression with the Statistical Learning model

7.6.1 Prediction results with the initial dataset

Two statistical learning methods will be applied in the weighted regression framework to predict the

French soft wheat production. This choice is justified by the the ranking of machine learning and

classical statistical methods with respect to their performance in crop yield prediction, as illustrated

in Part II. In particular, the best performance was attained by the Random-Forest approach, and

then by the ridge regression. A "year-wise" strategy, where the observations of the i-th objective

year will not participate in the training step, is applied. Their prediction sequence from 1995-2010

are given in Figure 7.15, and the related statistics are shown in Table 7.3.
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(a) Prediction with ridge regression
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(b) Prediction with Random-Forest regression

Fig. 7.15 Application of weighted regression on data regrouped every 5 days

It can be observed that, for the ridge model, the sub-period 1995-2002 are well predicted,

while the predictions for 2005 and 2006 are far from reality. As for the Random-Forest model,

the tendency is well caught by this model overall. On average, these two methods have superior
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Table 7.3 Statistics of the absolute relative error

average std

Random-Forest 0.055524 0.050997
Ridge 0.074126 0.113421
avg-5 0.089406 0.064341

performance to the commonly used 5-year moving average. However, it is evident that the traditional

statistical method, the ridge, exhibits much higher standard derivation.

7.6.2 Inter-annual variability analysis

The inter-annual variability of meteorological data is illustrated by a large variance of meteorological

records among different years. Since this variance is much greater than the one resulting from

year specific inter-departmental recordings, it is clear that including records from different years

will increase instability. In the following example, we illustrate this problem in two cases. In case

1, the observations from the different year are mixed together. And the prediction results as in

Figure 7.16a are based on normal cross-validation. As for the second case, a "year-wise" strategy is

applied in the training-test process. That is, the observations for the year for prediction should not

be used in the training process. The prediction results are shown in Figure 7.16b.
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(a) Result without consideration of inter-annual vari-
ability
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(b) Results with consideration of inter-annual vari-
ability

Fig. 7.16 An example of instability caused by inter-annual variability

As shown in the above figure, the predictions without consideration of inter-annual variability

have a very similar prediction curve with the real observation curve as in Figure 7.16a, while the

"year-wise" strategy gives a not so good curve in Figure 7.16b. However, the right one is more
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close to a "real" prediction, since the inter-annual meteorological records vary so much that no

similar records of the objective year should appear in the training set.

7.6.3 Reducing the inter-annual variability by regrouping the meteorological data

Modelling a process with meteorological records from different years usually comes up with

instability caused by inter-annual variability. To deal with the inter-annual variability and reduce

the uncertainty, it produced to the model, grouping the daily records of meteorological records in a

certain period is supposed to be a relatively easy and effective way.

Figure 7.17 to Figure 7.19 are the 5 meteorological records of TMIN at the representative point

(5.35°E, 46.10°N) in Ain (department 01 in France). The only difference in Figure 7.17 is the initial

daily record, while in Figure 7.18 records are regrouped every 5 days, while in Figure 7.19 every

10 days. The inter-annual variability is reduced clearly by visualisation.

Fig. 7.17 Initial TMIN daily records at point (5.35°E, 46.10°N) in Ain
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Fig. 7.18 TMIN records regrouped by 5 at point (5.35°E, 46.10°N) in Ain

Fig. 7.19 TMIN records regrouped by 10 at point (5.35°E, 46.10°N) in Ain

However, how will it influence the production model? Moreover, does the influence of statistical

and machine learning methods is of the same level? To answer these two questions in the framework

of weighted regression, we opted for the “ridge regression” and the boosting regression respectively.

Furthermore, these two weighted regressions will be applied to the initial data, and to those

regrouped by a different number of consecutive days as illustrated in the following figures.
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(a) Prediction with ridge regression
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(b) Prediction with randomforest regression

Fig. 7.20 Application of weighted regression on initial data
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(a) Prediction with ridge regression
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(b) Prediction with randomforest regression

Fig. 7.21 Application of weighted regression on data regrouped every 5 days
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(a) Prediction with ridge regression
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(b) Prediction with randomforest regression

Fig. 7.22 Application of weighted regression on data regrouped every 10 days
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(a) Prediction with ridge regression
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(b) Prediction with randomforest regression

Fig. 7.23 Application of weighted regression on data regrouped every 30 days
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(a) Prediction with ridge regression
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(b) Prediction with randomforest regression

Fig. 7.24 Application of a weighted regression on data regrouped every 80 days
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(a) Prediction with ridge regression
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(b) Prediction with random forest regression

Fig. 7.25 Application of weighted regression on data regrouped every 280 days
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Fig. 7.26 Absolute relative error statistic of Random-Forest

Fig. 7.27 Absolute relative error statistic of Ridge model

The reduction of inter-annual variability by regrouping the data helps a lot to improve the

weighted regression accuracy with the ridge method. Moreover, the ridge regression method works

best when the data are regrouped every 80 days and reduces the median of absolute relative error
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from 7.5% to around 5.0%. As for the results of the weighted regression based on random-forest,

the performance is not so significantly changed. The only remarkable finding is that the median of

the absolute relative error is also obtained when the data are regrouped every 80 days. (Maybe 80

day is close to 90 days = 1 season, more filed experiments should be done to explain it).

7.7 Conclusion

In this chapter, to predict large-scale crop production, a methodology of using remote sensing

and historical harvest data as an alternative option to replace the field crop surveys is proposed

and examined. Under the weighted regression framework, knowledge-driven and data-driven

approaches have been analysed and compared. Both are proved to be efficient when they are

integrated into the framework of large-scale production prediction. As for data-driven strategies,

the inter-annual variability is also discussed. It helps to improve efficiency by fairly regrouping the

meteorological records.





Part IV

Conclusion





Discussion and Perspectives

Discussion

In this manuscript, the following issues were addressed:

• Analysis and comparison of knowledge-driven and data-driven approaches for the crop yield

prediction;

• Influence of inter-annual variability of the meteorological data for both approaches;

• Application to the prediction of crop production at large-scale.

Methodology

One of the main contributions of this thesis is the proposition of an original parameter estimation

methodology MuScPE (Multi-scenario Parameter Estimation Methodology) for datasets of the form

{Ui,yi}, which can be readily available. The key idea is to take advantage of crop’s performance

in a different scenario to hedge the lack of detailed description in a single environment. The

parameters of a crop model, which are meant to describe the biological processes, are supposed

to be genotype-specific. The performance of parameter estimation was shown to vary greatly

when the environmental scenarios change, see Section 1.2.2. A sensitivity analysis is first carried

out in Chapter 3 to study parameters’ interactions during the crop’s life and to evaluate their

importance for parametrisation. By taking into account the continuity and the convexity of the

objective function, together with the identifiability of the model, five critical parameters have been

chosen to be estimated at first. The Particle Swarm Optimisation algorithm is then integrated

into the MuScPE methodology due to the non-convexity of the loss function concerning specific

parameters. Some improvements have been made by adding some tools, such as a controlling

factor, a neighbourhood topology, as well as a parallelised framework, to make this optimisation

algorithm more accurate and more efficient (Chapter 4. Good estimation results were achieved with

the MuScPE methodology in a real case study. Some other characteristics related to the number of

calibrated parameters and the number of scenarios used in the parametrisation process were also

studied: 1. An accurate crop prediction was achieved when five parameters were calibrated for the
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corn crop model; 2. An increase in the number of environmental scenarios resulted in a decrease in

the lengths of the marginal confidence intervals of the parameters, thus reducing the uncertainty

related to the prediction problem.

The second contribution is detailed in Part II. In this part, a systematic analysis of the prediction

capacity with different statistical learning methods was conducted. The discussion is mainly focused

on their capacity to deal with the problem of high-dimensional feature vectors. Traditional statistical

regression methods derived from the linear model, are good at reducing the data dimension, such

as the Ridge regression and the PCA regression. As for the machine learning methods, they

outperformed the previous ones by adopting some sampling and resampling techniques.

Finally, these approaches have been integrated into a "weighted regression" framework to

predict the crop production at large-scale. The French national soft wheat production prediction

is the first application, and an accurate result was obtained compared to the traditional moving

average.

In agro-environmental modelling, the variability of environmental scenarios is a crucial subject

and was a central problem that we dealt with in this thesis. For example, in Part I, to obtain a

parameter setting for the general environmental conditions, a k-means clustering analysis was

carried out to divide the training set into different sub-groups, and the training examples were

equally chosen from different sub-groups; In Part II, the influence of scenarios’ variability was

also studied. A simple solution by regrouping the daily records were also tested; in the case study

concerning the large-scale crop production prediction, a year-wise training strategy is also proposed

to make the forecast close to the "real" prediction.

Datasets

In this study, the datasets come from different resources:

• For the yield prediction, the dataset consists of 720 records of corn yield at county scale and

the associated climatic data are provided by the United States Department of Agriculture

(USDA). The five important daily climatic variables are daily maximum and minimum

temperatures, radiation, precipitation, and potential evapotranspiration.

• For the production of soft wheat production in France, 1890 records of soft wheat yield at

departmental scale and their daily meteorological records from 1990 to 2010. The yield

data is collected from Agreste, the statistical department of the Ministry of Agriculture in

France, and the database AgMERRA, the newly updated dataset that corrects to gridded

temperature and precipitation, incorporates satellite precipitation and replaces solar radiation

with NASA/GEWEX SRB to cover the 1980-2010 periods. The spatial resolution scale

remains a problem, notably for a key variable like rainfall which is known to vary a lot at

tiny scales.
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With the government’s efforts towards open data, we may expect to have in the future a better

availability of data. Likewise, the rapid development of climatic sensors should help refine

the resolutions at which data are available. Similarly, with the recording yield maps during

harvest at very fine scales, which is more and more frequent with the very sophisticated

modern combine harvester, we can expect that our method will be able to refine the analysis of

the climatic variability and its impact on crop yield, thus potentially improving the accuracy

of model prediction. Of course, more and finer data implies an increase in the computational

needs of the learning process. It will remain an issue to consider.

Results

In terms of corn yield prediction, the results showed that among the data-driven approaches, Random

Forest was the most robust and generally achieved the best prediction error (MAEP 4.27%). It

also outperformed our knowledge-driven approach (MAEP 6.11%). However, the method to

calibrate the mechanical model from an easily available dataset offers several side-perspectives.

The mechanical model can potentially help to underline the stresses suffered by the crop or to

identify the biological parameters of interest for breeding purposes. For this reason, an interesting

perspective is to combine these two types of approaches.

As for robustness of prediction related to the inter-annual variations of meteorological records,

it remains to be completed with some more tests. The inter-annual varieties have a significant

influence on the data-driven model. However, a simple technique to regroup the meteorological

records can help to reduce the impact. The knowledge-driven approach is proved to be more stable

in the prediction than the data-driven methods. A possible reason to explain this result may be

the relationship between the final yield and the cumulative solar energy. Crop modelling is based

on cumulative thermal time. The variation of meteorological records in certain days could be

hedged by the differences in another day so that the cumulative thermal time could be more stable.

However, in the data-driven methods, all the individual records are considered to have the same

importance to the objective variable, the crops yield. A variation for a particular day may lead to a

pretty different result.

Finally, in terms of the soft wheat production in France, the random forest outplays the others

with an average absolute, and relative error equal to 5.1% from 1995 to 2010. Another noteworthy

observation is under the weighted regression framework, and a well-calibrated LNAS-wheat

model outperformed some statistical learning methods, such as ridge and lasso regressions. This

methodology could be considered as a general framework in the prediction of variables of other

agricultural products. More effort could be devoted to making this framework useful in deciding

crop policy and planning.
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Perspectives

Potential of crop models coupled with MuScPE for crop breeding

One of the challenges of modern plant breeding is to provide genetic solutions to increase plant

productivity. A breeding program can be considered as the process of developing improved cultivars

by manipulating available genetic variability to create new allelic combinations best adapted to

target environments and applications (Messina et al., 2006). Traditionally, breeding is based only

on phenotypic observations, which makes the work costly, long, and highly based on breeder’s

experience. However, the breeding of higher-yielding crop plants would be greatly accelerated

if the phenotypic consequences of changes at some genetic markers of an organism could be

reliably predicted (Messina et al., 2006). Crop models, which aim to simulate the genotype ×
environment interactions to predict the corresponding phenotypes, are born in such circumstances.

They can be used to assist genetic improvement in four main ways: environmental characterisation

for testing genotypes, assessment of specific putative traits for designing improved plant types,

analysis of responses of probe genotypes for improved interpretation of multi-environment trials,

and optimising combinations of genotypes and management for target environment (Messina et al.,

2006). It has also been demonstrated how plant growth models could be used for a breeding

program in (Letort et al., 2008), by showing that crop model parameter is compelling traits to

analyse since models help deconvolve the Gene by Environment interaction.

Well constructed crop models should be able to simulate phenotypic traits of various genotypes

in diverse environments: it can predict crop performance over a range of environmental conditions

and help explain the principle causes of phenotypic features from the environment and genotypic

factors. Many models on various crops have demonstrated their prediction ability in diverse

environments (Kang, 2013), (Guo et al., 2006), (Chen, 2014), (Viaud, 2018). However, the range

of environmental variations that can realistically be explored in the model calibration process of

these models is usually pretty limited, so that the performed statistical analysis generally lacks

some predictive capacity in a wide range of environmental conditions. MuScPE Methodology

was therefore designed to break the dilemma. It can deal with limited or aggregated types of data

as soon as they are collected under a large number of diverse scenarios. In the case of lacking

sufficient complex experimental data, MuScPE takes advantage of a large amount of simple trait

data, e.g., crop yield data, that is generally recorded at large-scales across thousands of counties

and over tens of years (even though on such longer periods, genotypes or cultivars used by farmers

usually change). This methodology brings the potential to enlarge many existing excellent crop

models’ prediction ability to large scales, which meanwhile will increase the utility scope of crop

models and their added-value for crop breeding and other crop commercial purposes.
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Statistical learning method combined with remote-sensing dataset

The word “remote sensing” refers to all the techniques that make it possible to study objects

or phenomena remotely. It has been taken advantage of in many areas, such as meteorology,

climatology, oceanography, cartography, and geography. However, no matter what the application

field is, a proper interpretation of remote sensing data requires an understanding of the physical

principles upon which the remote sensing technique is based. In crop modelling, remote sensing

technology is mainly used for yield estimation and crop identification (Atzberger, 2013).

Chlorophyll is an essential component of the photosynthesis process. It is the pigment that

absorbs solar energy and produces sufficient power for the photosynthetic reaction to take place.

As it consumes heat, it has a significant impact on the amount of energy that will be reflected. This

character makes each plant have a specific response to electromagnetic radiation, the “spectral

signature” of vegetation (Huete and Jackson, 1987). Many factors could influence the reflectance

of specific vegetation, such as the crop type or the growth stage.

The advances in remote sensing and information technology make it possible to catch and

translate the useful information about plants from the reflectance and can be taken advantage of in

different studies, such as crop yield prediction (Prasad et al., 2006a), crop identification (Lillesand

et al., 2014), monitoring the state of crops and smart agriculture (Wang et al., 2006).

Many relationships between vegetation indices and yields have been highlighted in this way.

Figure 7.28a and 7.28b are the initial satellite image and its related representation of Normalized

Difference Vegetation Index (NVDI) (Walid Hammache and Cournède, 2018). This information

can potentially be used to increase the learning datasets for yield prediction models.

(a) The initial image captured by satellite (b) The presentation in the form of NDVI

Fig. 7.28 Sentinel images(left), the related form of NDVI which combines the VV and VH
polarisations, acquired at 2016.06.11 in South Dakota (USA)

Also, many factors could influence directly or indirectly the content of chlorophyll, thus

affecting the spectral signatures of cultures caught by the satellite, such as the lack of nutrient

deficiencies (nitrogen deficiency or manganese deficiency), lack of water, attack of diseases or

pests. (Hatfield and Pinter Jr, 1993) gives a practical way to monitor crop disease and pests attack

based on remote sensing. Since the traditional agricultural irrigation system is not highly efficient
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in terms of water use, (Kim et al., 2008) and (Bausch, 1995) give an interesting method to locate the

regions with water deficit by analysing the remote sensing images, which can help to provide water

more accurately to crops according to their real needs. It goes the same with pesticides or fertilisers

that are applied to a field. Coupled with remote sensing technologies, crop/plant models can help to

determine the exact amount of the chemical product, which helps to protect the environment and

help the farmers to save money. As a result, the advances of technology leads to the concept of

"smart agriculture", which refers to a set of agricultural practices carried out in well-targeted areas

of a field and at specific times (Abbasi et al., 2014). In brief, remote sensing data will play a more

and more essential role in agriculture and will serve the purpose of the statistical methodologies we

developed in this thesis.

To sum up, crop modelling is a crucial research topic, which involves biology, mathematics,

information technology, and even economy or social sciences, when it comes to farmer practices.

It paves the way to new methodologies and new technologies in agriculture, with the potential to

change farming practices, to improve the product, thus ensuring humankind’s subsistence, while

preserving the environment for the sustainability. Such significant changes generally take time and

will only be possible by proving the benefits to all stakeholders: farmers, governments, consumers.

Quantitative methods are necessary tools for this purpose.
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Synthèse en Français

La prévision du rendement des cultures est toujours une question primordiale. De nombreuses

recherches ont été menées avec cet objectif en utilisant diverses méthodologies. Généralement, les

méthodes peuvent être classées en approches basées sur les modèles et en approches basées sur les

données.

Les approches basées sur les modèles reposent sur la modélisation mécaniste des cultures.

Ils décrivent la croissance des cultures en interaction avec leur environnement comme systèmes

dynamiques. Comme ces modèles sont basés sur la description mécanique des processus bio-

physiques, ils impliquent potentiellement un grand nombre de variables d’état et de paramètres,

dont l’estimation n’est pas simple. En particulier, les problèmes d’estimation des paramètres résul-

tant sont généralement non linéaires et conduisent à des problèmes d’optimisation non-convexes

dans un espace multidimensionnel. De plus, l’acquisition de données est très difficile et nécessite

un travail expérimental lourd afin d’obtenir les données appropriées pour l’identification du modèle.

D’un autre côté, les approches basées sur les données pour la prévision du rendement nécessitent

des données provenant d’un grand nombre de scénarios environnementaux, mais les données sont

plus simples à obtenir: (données climatiques et rendement final). Cependant, les perspectives de ce

type de modèles se limitent principalement à la prévision de rendement.

La première contribution originale de cette thèse consiste à proposer une méthodologie statis-

tique pour calibrer les modèles mécanistes potentiellement complexes, lorsque des ensembles

de données avec différents scénarios environnementaux et rendements sont disponibles à grande

échelle. Nous l’appellerons Méthodologie d’estimation de paramètres multi-scénarios (MuScPE).

Les principales étapes sont les suivantes:

• Premièrement, nous tirons parti des connaissances préalables sur les paramètres pour leur

attribuer des distributions a priori pertinentes et effectuons une analyse de sensibilité globale

sur les paramètres du modèle afin de sélectionner les paramètres les plus importants à estimer

en priorité.
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• Ensuite, nous mettons en œuvre une méthode d’optimisation efficace non convexe, l’optimisation

parallèle des essaims de particules, pour rechercher l’estimateur MAP (maximum a posteriori)

des paramètres;

• Enfin, nous choisissons la meilleure configuration en ce qui concerne le nombre de paramètres

estimés par les critères de sélection de modèles. Il y a en effet un compromis à trouver entre

d’un côté l’ajustement aux données, et d’un autre côté la variance du modèle et la complexité

du problème d’optimisation à résoudre.

Cette méthodologie est d’abord testée avec le modèle CORNFLO, un modèle de culture fonctionnel

pour le maïs.

La seconde contribution de la thèse est la comparaison de cette méthode basée sur un modèle

mécaniste avec des méthodes classiques d’apprentissage statistique basées sur les données. Nous

considérons deux classes de méthodes de régression: d’une part, les méthodes statistiques dérivées

de la régression linéaire généralisée qui permettent de simplifier le modèle par réduction dimension-

nelle (régressions Ridge et Lasso, Régression par composantes principales ou régression partielle

des moindres carrés) et d’autre part les méthode de régression de machine learning basée sur des

modèles non-linéaires ou des techniques de ré-échantillonnage comme la forêt aléatoire, le réseau

de neurones et la régression SVM.

Enfin, une régression pondérée est appliquée pour prédire la production à grande échelle. La

production de blé tendre, une culture de grande importance économique en France, est prise en

exemple. Les approches basées sur les modèles et sur les données ont également été comparées pour

déterminer leur performance dans la réalisation de cet objectif, ce qui est finalement la troisième

contribution de cette thèse.

Mots clés:Prédiction du rendement des cultures, approches basées sur les connaissances,

approches basées sur les données, analyse de sensibilité, MuScPE, diversité environnementale,

grande échelle
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CORNFLO: A crop model of corn

The CORNFLO model is a plant growth model that simulates the growth and yield of the corn crop.

It is inspired by the SUNFLO model for sunflower (Lecoeur et al., 2011). It consists of two versions:

a potential model and a stress model. In this thesis, we consider only the potential model. The

potential model is used to do the simulation of the potential corn yield without environmental stress.

This model has been well described in (Kang, 2013). It includes the following three modules: crop

phenology module, morphogenesis and photosynthesis module, biomass production and biomass

distribution module. First of all, let’s have a review of this model.

B.1 Phenology module

Normally, the initiation and the development of an organ depends on the cumulative time and also

their environmental temperature. So does the development of the plant from that stage to another.

To combine the influence of these two factors and to simplify the model complexity, a new notion

named “thermal time” (cumulative heat) (Midmore et al., 2015) has been introduced into the plant

modelling. It has been proved that the cumulative thermal time has a significant advantage over

the use of calendar time for phrenology. In the CORNFLO model, the development of the plant is

characterized by a succession of four physiological stages according to the cumulative thermal time:

the flowering bud appearance time TTE1 (◦C ·days), the beginning of flowering TTF1 (◦C ·days),

the early maturation TTM0 (◦C ·days) and the physiological maturity TTM3 (◦C ·days). The daily

efficient temperature Te f f (d)(◦C) at day d is calculated by Equation B.1:

Te f f (d) = Tmoy(d)−Tbase. (B.1)

with Tmoy(d) the daily average temperature at day d and Tbase the phenology base temperature.
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According to (Williams, 2012), it is generally equal to 10 for maize. The thermal time

T T (d)(◦C ·days) at day d is calculated as the accumulation of Te f f (d). Then it is used to determine

at what stage the plant.

B.2 Morphogenesis and Photosynthesis Module

A3 (cm3) is the parameter giving the potential surface of the larger leaf of the simulated plant and

A2 is the rank of the leaf which has the largest leaf surface in the entire plant growth period. Ae(i)

(cm2) is the largest leaf surface for each leaf rank i. It is calculated with A2 and A3 in Equation

B.2:

Ae(i) = A3∗ e−0.0344∗(i−A2)2+0.000731∗(i−A2)3
(B.2)

Figure B.1 illustrates the different values of Ae(i) for three maize genotypes.

Fig. B.1 Maximum surface of the leaf Ae(i) at each rank for three corn genotypes

The thermal time of appearance and death for each leaf i are designated as T Tde_pot(i)(◦C ·days)

and T Tf e_pot(i)(◦C · days). The duration of leaf expansion denoted as T Texp_pot(i)(◦C · days),

expressed in thermal time is as following:

T Tde_pot(i) =


1, f or 0≤ i≤ 2

T Tde_pot(i−2)∗ phyllo_de_ini, f or 2≤ i≤ 5

T Tde_pot(4)+(i−5)∗ phyllo_de_pot, f or 5≤ i

(B.3)

T Tf e_pot(i) =

T Tf e_pot(i−1)+(i−8)∗ phyllo_ f e_pot, f or i > 8

T Tf e_pot(i−1)∗ phyllo_ f e_ini, f or i≤ 8
(B.4)

T Texp_pot(i) = T Tf e_pot(i)−T Tde_pot(i) (B.5)
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Where phyllodeini(◦C · days) and phyllofeini(◦C · days) are parameters of phyllochrone for leaf

ranking below 8. For the other leaf, the beginning and ending time are noted as phyllodepot(◦C ·
days) and phyllofepot(◦C ·days).They are the variables that depend on the number of leaves NFF ,

the stage T T F1(◦C days), and the parameter Ratio_phyllo_ f e_phyllo_de defined as Equation B.6

and Equation B.7:

phyllo f epot =
T T F1−7∗ phyllo f eini

NFF−8
(B.6)

phyllo_de_pot = phyllo_ f e_pot ∗Ratio_phyllo_ f e_phyllo_de (B.7)

The expansion speed of the leaf i is calculated by the largest surface of each leaf i and its

thermal expansion time period:

Vexp_pot(i) =
Ae(i)

T Texp_pot(i)
(B.8)

Therefore, the surface of the leaf i on day d, SFi_pot(d, i)(cm2) is calculated as Equation B.9:

SFpot(d, i) = SFpot(d−1, i)+Vexp_pot(d, i)∗Te f f (d) (B.9)

It is initialised by SFpot(0, i) = 0,∀i.Then, the total leaf area SFPpot(d)(cm2) at day d is given

by Equation B.10:

SFPpot(d) =
n

∑
i=1

SFpot(d, i) (B.10)

The ratio of the green portion of all the leaf surface is noted as Fracg. This coefficient will be

used to calculate the index of leaf area LAI_pot(cm2/m2) as in Equation B.12:

Frac_verte(d) = 1− T T (d)−F1
M3−F1

(B.11)

LAI_pot(d) = dens∗SFP_pot(d)∗Frac_verte(d)/10000 (B.12)

where dens(m−2) is the planting density of maize.

B.3 Biomass Production and Biomass Distribution Module

In order to calculate the biomass , another two parameters should be introduced: the radiation

absorption efficiency Ei_pot(d) and the radiation use efficiency Eb_bot(d)(g.MJ−1). They are defined

as in Equation B.13 and Equation B.14:

Ei_pot(d) = 0.95∗ (1− e−k_coe f f∗LAI_pot(d)) (B.13)
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Eb_pot(d) =


RUE_pot f or M0≥ T T (d)

RUE_pot ∗ (1− T T (d)−M0
M3−M0 ) f or M3≥ T T (d)> M0

0 f or T T (d)> M3

(B.14)

with the extinction coefficient k_coe f f and the maximum radiation use efficiency RUEpot(g.MJ−1).

Both are genotype parameters.

According to the energetic approach of Monteith, the daily biomass production dMS_pot(g.m−2)

should be calculate by the energy transferred from the solar energy (Monteith, 1977). In this model,

the solar energy is represented by the radiation RG(d)(MJ.m−2). Finally, a climate efficiency

coefficient which is relatively constant at 0.48 will be used to adjust this equation:

dMS_pot(d) = 0.48∗RG(d)∗Eb_pot ∗Ei_pot(d) (B.15)

So the total biomass at day d,MStot_pot(d)(g.m−2) results from the accumulation of the daily

biomass production as in Equation B.16.

MStot_pot(d) =
d

∑
t=1

dMSpot(t) (B.16)

In order to determine the performance MSgrain_pot(d), a constant proportion of biomass (harvest

index, HI) is assigned to the grain compartment:

MSgrain_pot(d) = MStot_pot(d)∗HI (B.17)

B.4 Genotype parameters

The CORNFLO model settings for ten genotypes were estimated by Syngenta using direct experi-

mental measurements and statistical analysis. Our studies in the following Chapter are based on

one of these genotypes. The recommended values and units of its parameters are shown in Table

B.1.
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Parameter value unit Parameter value unit

A2 14.07 ♯ kcoe f f 0.53 ♯

A3 645 cm2 phyllo_ f e_ini 40 ◦C days

phyllo_de_ini 32 ◦C days NFF 21 ♯

Ratio_phyllo_ f e_de 0.7 ♯ HI 0.5 ♯

dens 7 m−2 RUEpot 3.5 g.MJ−1

F1 723 ◦C days M0 884 ◦C days

M3 1477 ◦C days RT 0.36 ♯

RE 0.37 ♯ RO 0.2 ♯

Table B.1 The parameter values of CORNFLO model for genotype studies.
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Clustering Result of 720 scenarios

Table C.1 Scenarios in cluster 02

senario_name Year StateName senario_name Year StateName

20089_2002 2002 Kansas 31085_2002 2002 Nebraska
20157_2002 2002 Kansas 31095_2002 2002 Nebraska
20179_2002 2002 Kansas 31097_2002 2002 Nebraska
31001_2002 2002 Nebraska 31099_2002 2002 Nebraska
31011_2002 2002 Nebraska 31109_2002 2002 Nebraska
31019_2002 2002 Nebraska 31119_2002 2002 Nebraska
31021_2002 2002 Nebraska 31121_2002 2002 Nebraska
31023_2002 2002 Nebraska 31125_2002 2002 Nebraska
31025_2002 2002 Nebraska 31127_2002 2002 Nebraska
31035_2002 2002 Nebraska 31129_2002 2002 Nebraska
31037_2002 2002 Nebraska 31137_2002 2002 Nebraska
31039_2002 2002 Nebraska 31141_2002 2002 Nebraska
31047_2002 2002 Nebraska 31143_2002 2002 Nebraska
31053_2002 2002 Nebraska 31151_2002 2002 Nebraska
31055_2002 2002 Nebraska 31153_2002 2002 Nebraska
31057_2002 2002 Nebraska 31155_2002 2002 Nebraska
31059_2002 2002 Nebraska 31159_2002 2002 Nebraska
31061_2002 2002 Nebraska 31163_2002 2002 Nebraska
31067_2002 2002 Nebraska 31167_2002 2002 Nebraska
31073_2002 2002 Nebraska 31169_2002 2002 Nebraska
31077_2002 2002 Nebraska 31173_2002 2002 Nebraska
31079_2002 2002 Nebraska 31177_2002 2002 Nebraska
31081_2002 2002 Nebraska 31181_2002 2002 Nebraska
31083_2002 2002 Nebraska 31185_2002 2002 Nebraska
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Table C.2 Scenarios in cluster 01

senario_name Year StateName senario_name Year StateName

8009_2001 2001 Colorado 31057_2001 2001 Nebraska
8099_2001 2001 Colorado 31059_2001 2001 Nebraska

20023_2001 2001 Kansas 31061_2001 2001 Nebraska
20039_2001 2001 Kansas 31063_2001 2001 Nebraska
20055_2001 2001 Kansas 31065_2001 2001 Nebraska
20063_2001 2001 Kansas 31067_2001 2001 Nebraska
20065_2001 2001 Kansas 31073_2001 2001 Nebraska
20067_2001 2001 Kansas 31077_2001 2001 Nebraska
20069_2001 2001 Kansas 31079_2001 2001 Nebraska
20081_2001 2001 Kansas 31081_2001 2001 Nebraska
20089_2001 2001 Kansas 31083_2001 2001 Nebraska
20093_2001 2001 Kansas 31085_2001 2001 Nebraska
20109_2001 2001 Kansas 31087_2001 2001 Nebraska
20129_2001 2001 Kansas 31093_2001 2001 Nebraska
20137_2001 2001 Kansas 31095_2001 2001 Nebraska
20147_2001 2001 Kansas 31097_2001 2001 Nebraska
20153_2001 2001 Kansas 31099_2001 2001 Nebraska
20157_2001 2001 Kansas 31109_2001 2001 Nebraska
20171_2001 2001 Kansas 31121_2001 2001 Nebraska
20175_2001 2001 Kansas 31125_2001 2001 Nebraska
20179_2001 2001 Kansas 31127_2001 2001 Nebraska
20181_2001 2001 Kansas 31129_2001 2001 Nebraska
20183_2001 2001 Kansas 31131_2001 2001 Nebraska
20187_2001 2001 Kansas 31137_2001 2001 Nebraska
20189_2001 2001 Kansas 31141_2001 2001 Nebraska
20193_2001 2001 Kansas 31143_2001 2001 Nebraska
20195_2001 2001 Kansas 31145_2001 2001 Nebraska
20199_2001 2001 Kansas 31151_2001 2001 Nebraska
20203_2001 2001 Kansas 31155_2001 2001 Nebraska
31001_2001 2001 Nebraska 31159_2001 2001 Nebraska
31011_2001 2001 Nebraska 31163_2001 2001 Nebraska
31019_2001 2001 Nebraska 31167_2001 2001 Nebraska
31021_2001 2001 Nebraska 31169_2001 2001 Nebraska
31023_2001 2001 Nebraska 31173_2001 2001 Nebraska
31025_2001 2001 Nebraska 31177_2001 2001 Nebraska
31035_2001 2001 Nebraska 31181_2001 2001 Nebraska
31037_2001 2001 Nebraska 31185_2001 2001 Nebraska
31039_2001 2001 Nebraska 35059_2001 2001 New Mexico
31047_2001 2001 Nebraska 6107_2006 2006 California
31055_2001 2001 Nebraska
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Table C.3 Scenarios in cluster 03

senario_name Year StateName senario_name Year StateName

20067_2003 2003 Kansas 31081_2003 2003 Nebraska
20069_2003 2003 Kansas 31083_2003 2003 Nebraska
20081_2003 2003 Kansas 31085_2003 2003 Nebraska
20153_2003 2003 Kansas 31087_2003 2003 Nebraska
20157_2003 2003 Kansas 31093_2003 2003 Nebraska
20171_2003 2003 Kansas 31095_2003 2003 Nebraska
20175_2003 2003 Kansas 31097_2003 2003 Nebraska
20179_2003 2003 Kansas 31099_2003 2003 Nebraska
20199_2003 2003 Kansas 31109_2003 2003 Nebraska
31001_2003 2003 Nebraska 31119_2003 2003 Nebraska
31011_2003 2003 Nebraska 31121_2003 2003 Nebraska
31019_2003 2003 Nebraska 31125_2003 2003 Nebraska
31021_2003 2003 Nebraska 31129_2003 2003 Nebraska
31023_2003 2003 Nebraska 31131_2003 2003 Nebraska
31025_2003 2003 Nebraska 31137_2003 2003 Nebraska
31035_2003 2003 Nebraska 31141_2003 2003 Nebraska
31037_2003 2003 Nebraska 31143_2003 2003 Nebraska
31039_2003 2003 Nebraska 31145_2003 2003 Nebraska
31047_2003 2003 Nebraska 31151_2003 2003 Nebraska
31053_2003 2003 Nebraska 31153_2003 2003 Nebraska
31055_2003 2003 Nebraska 31155_2003 2003 Nebraska
31057_2003 2003 Nebraska 31159_2003 2003 Nebraska
31059_2003 2003 Nebraska 31163_2003 2003 Nebraska
31061_2003 2003 Nebraska 31167_2003 2003 Nebraska
31063_2003 2003 Nebraska 31169_2003 2003 Nebraska
31065_2003 2003 Nebraska 31173_2003 2003 Nebraska
31067_2003 2003 Nebraska 31177_2003 2003 Nebraska
31073_2003 2003 Nebraska 31181_2003 2003 Nebraska
31077_2003 2003 Nebraska 31185_2003 2003 Nebraska
31079_2003 2003 Nebraska
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Table C.4 Scenarios in cluster 04

senario_name Year StateName senario_name Year StateName

8009_2004 2004 Colorado 31079_2004 2004 Nebraska
20039_2004 2004 Kansas 31081_2004 2004 Nebraska
20069_2004 2004 Kansas 31083_2004 2004 Nebraska
20081_2004 2004 Kansas 31085_2004 2004 Nebraska
20093_2004 2004 Kansas 31087_2004 2004 Nebraska
20109_2004 2004 Kansas 31095_2004 2004 Nebraska
20147_2004 2004 Kansas 31097_2004 2004 Nebraska
20157_2004 2004 Kansas 31099_2004 2004 Nebraska
20171_2004 2004 Kansas 31109_2004 2004 Nebraska
20175_2004 2004 Kansas 31119_2004 2004 Nebraska
20179_2004 2004 Kansas 31121_2004 2004 Nebraska
20187_2004 2004 Kansas 31125_2004 2004 Nebraska
20189_2004 2004 Kansas 31127_2004 2004 Nebraska
20193_2004 2004 Kansas 31129_2004 2004 Nebraska
20203_2004 2004 Kansas 31131_2004 2004 Nebraska
31001_2004 2004 Nebraska 31137_2004 2004 Nebraska
31011_2004 2004 Nebraska 31141_2004 2004 Nebraska
31019_2004 2004 Nebraska 31143_2004 2004 Nebraska
31021_2004 2004 Nebraska 31145_2004 2004 Nebraska
31023_2004 2004 Nebraska 31151_2004 2004 Nebraska
31025_2004 2004 Nebraska 31153_2004 2004 Nebraska
31035_2004 2004 Nebraska 31155_2004 2004 Nebraska
31037_2004 2004 Nebraska 31159_2004 2004 Nebraska
31039_2004 2004 Nebraska 31163_2004 2004 Nebraska
31047_2004 2004 Nebraska 31167_2004 2004 Nebraska
31053_2004 2004 Nebraska 31169_2004 2004 Nebraska
31055_2004 2004 Nebraska 31173_2004 2004 Nebraska
31057_2004 2004 Nebraska 31177_2004 2004 Nebraska
31059_2004 2004 Nebraska 31181_2004 2004 Nebraska
31061_2004 2004 Nebraska 31185_2004 2004 Nebraska
31065_2004 2004 Nebraska 35059_2004 2004 New Mexico
31067_2004 2004 Nebraska 48421_2004 2004 Texas
31073_2004 2004 Nebraska
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Table C.5 Scenarios in cluster 05

senario_name Year StateName senario_name Year StateName

8009_2005 2005 Colorado 31057_2005 2005 Nebraska
20023_2005 2005 Kansas 31059_2005 2005 Nebraska
20039_2005 2005 Kansas 31061_2005 2005 Nebraska
20055_2005 2005 Kansas 31063_2005 2005 Nebraska
20063_2005 2005 Kansas 31065_2005 2005 Nebraska
20065_2005 2005 Kansas 31067_2005 2005 Nebraska
20067_2005 2005 Kansas 31073_2005 2005 Nebraska
20069_2005 2005 Kansas 31077_2005 2005 Nebraska
20075_2005 2005 Kansas 31079_2005 2005 Nebraska
20081_2005 2005 Kansas 31081_2005 2005 Nebraska
20089_2005 2005 Kansas 31083_2005 2005 Nebraska
20093_2005 2005 Kansas 31085_2005 2005 Nebraska
20109_2005 2005 Kansas 31087_2005 2005 Nebraska
20119_2005 2005 Kansas 31093_2005 2005 Nebraska
20129_2005 2005 Kansas 31095_2005 2005 Nebraska
20137_2005 2005 Kansas 31097_2005 2005 Nebraska
20147_2005 2005 Kansas 31099_2005 2005 Nebraska
20153_2005 2005 Kansas 31109_2005 2005 Nebraska
20157_2005 2005 Kansas 31119_2005 2005 Nebraska
20171_2005 2005 Kansas 31121_2005 2005 Nebraska
20175_2005 2005 Kansas 31125_2005 2005 Nebraska
20179_2005 2005 Kansas 31127_2005 2005 Nebraska
20181_2005 2005 Kansas 31129_2005 2005 Nebraska
20183_2005 2005 Kansas 31131_2005 2005 Nebraska
20187_2005 2005 Kansas 31137_2005 2005 Nebraska
20189_2005 2005 Kansas 31141_2005 2005 Nebraska
20193_2005 2005 Kansas 31143_2005 2005 Nebraska
20199_2005 2005 Kansas 31145_2005 2005 Nebraska
20203_2005 2005 Kansas 31151_2005 2005 Nebraska
31001_2005 2005 Nebraska 31153_2005 2005 Nebraska
31011_2005 2005 Nebraska 31155_2005 2005 Nebraska
31019_2005 2005 Nebraska 31159_2005 2005 Nebraska
31021_2005 2005 Nebraska 31163_2005 2005 Nebraska
31023_2005 2005 Nebraska 31167_2005 2005 Nebraska
31025_2005 2005 Nebraska 31169_2005 2005 Nebraska
31035_2005 2005 Nebraska 31173_2005 2005 Nebraska
31037_2005 2005 Nebraska 31177_2005 2005 Nebraska
31039_2005 2005 Nebraska 31181_2005 2005 Nebraska
31047_2005 2005 Nebraska 31185_2005 2005 Nebraska
31053_2005 2005 Nebraska 35059_2005 2005 New Mexico
31055_2005 2005 Nebraska 48421_2005 2005 Texas
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Table C.6 Scenarios in cluster 06

senario_name Year StateName senario_name Year StateName

8009_2006 2006 Colorado 31061_2006 2006 Nebraska
20023_2006 2006 Kansas 31063_2006 2006 Nebraska
20039_2006 2006 Kansas 31065_2006 2006 Nebraska
20055_2006 2006 Kansas 31067_2006 2006 Nebraska
20067_2006 2006 Kansas 31073_2006 2006 Nebraska
20069_2006 2006 Kansas 31077_2006 2006 Nebraska
20081_2006 2006 Kansas 31079_2006 2006 Nebraska
20089_2006 2006 Kansas 31081_2006 2006 Nebraska
20093_2006 2006 Kansas 31083_2006 2006 Nebraska
20109_2006 2006 Kansas 31085_2006 2006 Nebraska
20119_2006 2006 Kansas 31087_2006 2006 Nebraska
20129_2006 2006 Kansas 31093_2006 2006 Nebraska
20137_2006 2006 Kansas 31095_2006 2006 Nebraska
20153_2006 2006 Kansas 31097_2006 2006 Nebraska
20157_2006 2006 Kansas 31099_2006 2006 Nebraska
20171_2006 2006 Kansas 31109_2006 2006 Nebraska
20175_2006 2006 Kansas 31119_2006 2006 Nebraska
20179_2006 2006 Kansas 31121_2006 2006 Nebraska
20181_2006 2006 Kansas 31125_2006 2006 Nebraska
20183_2006 2006 Kansas 31127_2006 2006 Nebraska
20187_2006 2006 Kansas 31129_2006 2006 Nebraska
20189_2006 2006 Kansas 31131_2006 2006 Nebraska
20193_2006 2006 Kansas 31137_2006 2006 Nebraska
20199_2006 2006 Kansas 31141_2006 2006 Nebraska
20203_2006 2006 Kansas 31143_2006 2006 Nebraska
31001_2006 2006 Nebraska 31145_2006 2006 Nebraska
31011_2006 2006 Nebraska 31151_2006 2006 Nebraska
31019_2006 2006 Nebraska 31153_2006 2006 Nebraska
31021_2006 2006 Nebraska 31155_2006 2006 Nebraska
31023_2006 2006 Nebraska 31159_2006 2006 Nebraska
31025_2006 2006 Nebraska 31163_2006 2006 Nebraska
31035_2006 2006 Nebraska 31167_2006 2006 Nebraska
31037_2006 2006 Nebraska 31169_2006 2006 Nebraska
31039_2006 2006 Nebraska 31173_2006 2006 Nebraska
31047_2006 2006 Nebraska 31177_2006 2006 Nebraska
31053_2006 2006 Nebraska 31181_2006 2006 Nebraska
31055_2006 2006 Nebraska 31185_2006 2006 Nebraska
31057_2006 2006 Nebraska 35059_2006 2006 New Mexico
31059_2006 2006 Nebraska 48421_2006 2006 Texas
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Table C.7 Scenarios in cluster 07

senario_name Year StateName senario_name Year StateName

8009_2007 2007 Colorado 31059_2007 2007 Nebraska
8099_2007 2007 Colorado 31061_2007 2007 Nebraska
20023_2007 2007 Kansas 31063_2007 2007 Nebraska
20039_2007 2007 Kansas 31065_2007 2007 Nebraska
20055_2007 2007 Kansas 31067_2007 2007 Nebraska
20063_2007 2007 Kansas 31073_2007 2007 Nebraska
20065_2007 2007 Kansas 31077_2007 2007 Nebraska
20067_2007 2007 Kansas 31079_2007 2007 Nebraska
20069_2007 2007 Kansas 31081_2007 2007 Nebraska
20071_2007 2007 Kansas 31083_2007 2007 Nebraska
20081_2007 2007 Kansas 31085_2007 2007 Nebraska
20089_2007 2007 Kansas 31087_2007 2007 Nebraska
20093_2007 2007 Kansas 31093_2007 2007 Nebraska
20109_2007 2007 Kansas 31095_2007 2007 Nebraska
20119_2007 2007 Kansas 31097_2007 2007 Nebraska
20129_2007 2007 Kansas 31099_2007 2007 Nebraska
20137_2007 2007 Kansas 31109_2007 2007 Nebraska
20153_2007 2007 Kansas 31119_2007 2007 Nebraska
20157_2007 2007 Kansas 31121_2007 2007 Nebraska
20171_2007 2007 Kansas 31125_2007 2007 Nebraska
20175_2007 2007 Kansas 31127_2007 2007 Nebraska
20179_2007 2007 Kansas 31129_2007 2007 Nebraska
20181_2007 2007 Kansas 31131_2007 2007 Nebraska
20183_2007 2007 Kansas 31137_2007 2007 Nebraska
20187_2007 2007 Kansas 31141_2007 2007 Nebraska
20189_2007 2007 Kansas 31143_2007 2007 Nebraska
20193_2007 2007 Kansas 31145_2007 2007 Nebraska
20199_2007 2007 Kansas 31151_2007 2007 Nebraska
20203_2007 2007 Kansas 31153_2007 2007 Nebraska
31001_2007 2007 Nebraska 31155_2007 2007 Nebraska
31011_2007 2007 Nebraska 31159_2007 2007 Nebraska
31019_2007 2007 Nebraska 31163_2007 2007 Nebraska
31021_2007 2007 Nebraska 31167_2007 2007 Nebraska
31023_2007 2007 Nebraska 31169_2007 2007 Nebraska
31025_2007 2007 Nebraska 31173_2007 2007 Nebraska
31035_2007 2007 Nebraska 31177_2007 2007 Nebraska
31037_2007 2007 Nebraska 31181_2007 2007 Nebraska
31039_2007 2007 Nebraska 31185_2007 2007 Nebraska
31047_2007 2007 Nebraska 35059_2007 2007 New Mexico
31053_2007 2007 Nebraska 48421_2007 2007 Texas
31055_2007 2007 Nebraska 20083_2007 2007 Kansas
31057_2007 2007 Nebraska 20101_2007 2007 Kansas
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Table C.8 Scenarios in cluster 08

senario_name Year StateName senario_name Year StateName

31001_2008 2008 Nebraska 31095_2008 2008 Nebraska
31011_2008 2008 Nebraska 31097_2008 2008 Nebraska
31019_2008 2008 Nebraska 31099_2008 2008 Nebraska
31021_2008 2008 Nebraska 31109_2008 2008 Nebraska
31023_2008 2008 Nebraska 31119_2008 2008 Nebraska
31035_2008 2008 Nebraska 31125_2008 2008 Nebraska
31037_2008 2008 Nebraska 31127_2008 2008 Nebraska
31039_2008 2008 Nebraska 31129_2008 2008 Nebraska
31047_2008 2008 Nebraska 31131_2008 2008 Nebraska
31053_2008 2008 Nebraska 31137_2008 2008 Nebraska
31057_2008 2008 Nebraska 31141_2008 2008 Nebraska
31059_2008 2008 Nebraska 31143_2008 2008 Nebraska
31061_2008 2008 Nebraska 31145_2008 2008 Nebraska
31063_2008 2008 Nebraska 31151_2008 2008 Nebraska
31065_2008 2008 Nebraska 31153_2008 2008 Nebraska
31067_2008 2008 Nebraska 31155_2008 2008 Nebraska
31073_2008 2008 Nebraska 31159_2008 2008 Nebraska
31077_2008 2008 Nebraska 31163_2008 2008 Nebraska
31079_2008 2008 Nebraska 31167_2008 2008 Nebraska
31081_2008 2008 Nebraska 31169_2008 2008 Nebraska
31083_2008 2008 Nebraska 31177_2008 2008 Nebraska
31085_2008 2008 Nebraska 31181_2008 2008 Nebraska
31087_2008 2008 Nebraska 31185_2008 2008 Nebraska
31093_2008 2008 Nebraska
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Table C.9 Scenarios in cluster 09

senario_name Year StateName senario_name Year StateName

20055_2009 2009 Kansas 31083_2009 2009 Nebraska
20075_2009 2009 Kansas 31085_2009 2009 Nebraska
20109_2009 2009 Kansas 31087_2009 2009 Nebraska
20137_2009 2009 Kansas 31093_2009 2009 Nebraska
20171_2009 2009 Kansas 31095_2009 2009 Nebraska
20179_2009 2009 Kansas 31097_2009 2009 Nebraska
20181_2009 2009 Kansas 31099_2009 2009 Nebraska
20195_2009 2009 Kansas 31109_2009 2009 Nebraska
20199_2009 2009 Kansas 31119_2009 2009 Nebraska
31001_2009 2009 Nebraska 31121_2009 2009 Nebraska
31011_2009 2009 Nebraska 31125_2009 2009 Nebraska
31019_2009 2009 Nebraska 31127_2009 2009 Nebraska
31021_2009 2009 Nebraska 31129_2009 2009 Nebraska
31023_2009 2009 Nebraska 31131_2009 2009 Nebraska
31025_2009 2009 Nebraska 31137_2009 2009 Nebraska
31035_2009 2009 Nebraska 31141_2009 2009 Nebraska
31037_2009 2009 Nebraska 31143_2009 2009 Nebraska
31039_2009 2009 Nebraska 31145_2009 2009 Nebraska
31047_2009 2009 Nebraska 31151_2009 2009 Nebraska
31053_2009 2009 Nebraska 31153_2009 2009 Nebraska
31055_2009 2009 Nebraska 31155_2009 2009 Nebraska
31059_2009 2009 Nebraska 31159_2009 2009 Nebraska
31061_2009 2009 Nebraska 31163_2009 2009 Nebraska
31063_2009 2009 Nebraska 31167_2009 2009 Nebraska
31065_2009 2009 Nebraska 31169_2009 2009 Nebraska
31067_2009 2009 Nebraska 31177_2009 2009 Nebraska
31073_2009 2009 Nebraska 31181_2009 2009 Nebraska
31077_2009 2009 Nebraska 31185_2009 2009 Nebraska
31079_2009 2009 Nebraska 20141_2009 2009 Kansas
31081_2009 2009 Nebraska
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Table C.10 Scenarios in cluster 10

senario_name Year StateName senario_name Year StateName

20023_2010 2010 Kansas 31073_2010 2010 Nebraska
20055_2010 2010 Kansas 31077_2010 2010 Nebraska
20063_2010 2010 Kansas 31079_2010 2010 Nebraska
20071_2010 2010 Kansas 31081_2010 2010 Nebraska
20075_2010 2010 Kansas 31083_2010 2010 Nebraska
20081_2010 2010 Kansas 31085_2010 2010 Nebraska
20089_2010 2010 Kansas 31087_2010 2010 Nebraska
20109_2010 2010 Kansas 31093_2010 2010 Nebraska
20153_2010 2010 Kansas 31095_2010 2010 Nebraska
20175_2010 2010 Kansas 31097_2010 2010 Nebraska
20179_2010 2010 Kansas 31099_2010 2010 Nebraska
20181_2010 2010 Kansas 31109_2010 2010 Nebraska
20193_2010 2010 Kansas 31119_2010 2010 Nebraska
20199_2010 2010 Kansas 31121_2010 2010 Nebraska
20203_2010 2010 Kansas 31125_2010 2010 Nebraska
31001_2010 2010 Nebraska 31127_2010 2010 Nebraska
31011_2010 2010 Nebraska 31129_2010 2010 Nebraska
31019_2010 2010 Nebraska 31131_2010 2010 Nebraska
31021_2010 2010 Nebraska 31137_2010 2010 Nebraska
31023_2010 2010 Nebraska 31141_2010 2010 Nebraska
31035_2010 2010 Nebraska 31143_2010 2010 Nebraska
31037_2010 2010 Nebraska 31145_2010 2010 Nebraska
31039_2010 2010 Nebraska 31151_2010 2010 Nebraska
31047_2010 2010 Nebraska 31155_2010 2010 Nebraska
31053_2010 2010 Nebraska 31159_2010 2010 Nebraska
31055_2010 2010 Nebraska 31163_2010 2010 Nebraska
31057_2010 2010 Nebraska 31167_2010 2010 Nebraska
31059_2010 2010 Nebraska 31169_2010 2010 Nebraska
31061_2010 2010 Nebraska 31177_2010 2010 Nebraska
31063_2010 2010 Nebraska 31181_2010 2010 Nebraska
31065_2010 2010 Nebraska 31185_2010 2010 Nebraska
31067_2010 2010 Nebraska 20123_2010 2010 Kansas
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Table C.11 Scenarios in cluster 11

senario_name Year StateName senario_name Year StateName

4003_2001 2001 Arizona 48069_2003 2003 Texas
4003_2002 2002 Arizona 48069_2010 2010 Texas
4003_2003 2003 Arizona 48111_2001 2001 Texas
4003_2004 2004 Arizona 48111_2002 2002 Texas
4003_2005 2005 Arizona 48111_2003 2003 Texas
4003_2006 2006 Arizona 48117_2010 2010 Texas
4003_2007 2007 Arizona 48233_2002 2002 Texas
4003_2008 2008 Arizona 48233_2003 2003 Texas
8009_2002 2002 Colorado 48279_2007 2007 Texas
20055_2002 2002 Kansas 48279_2008 2008 Texas
20067_2002 2002 Kansas 48279_2009 2009 Texas
20069_2002 2002 Kansas 48341_2001 2001 Texas
20081_2002 2002 Kansas 48341_2002 2002 Texas
20093_2002 2002 Kansas 48357_2010 2010 Texas
20119_2002 2002 Kansas 48369_2001 2001 Texas
20119_2009 2009 Kansas 48369_2002 2002 Texas
20175_2002 2002 Kansas 48369_2003 2003 Texas
20175_2009 2009 Kansas 48369_2010 2010 Texas
20187_2002 2002 Kansas 48421_2002 2002 Texas
20187_2010 2010 Kansas 48421_2003 2003 Texas
20189_2002 2002 Kansas 48421_2008 2008 Texas
35009_2001 2001 New Mexico 48421_2009 2009 Texas
35059_2002 2002 New Mexico 48421_2010 2010 Texas
35059_2003 2003 New Mexico 6107_2007 2007 California
35059_2009 2009 New Mexico 6019_2008 2008 California
48065_2002 2002 Texas 6031_2007 2007 California
48069_2001 2001 Texas 6031_2008 2008 California
48069_2002 2002 Texas
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Titre : Méthodologie d’Apprentissage Statistique Profitant de la Diversité des Scénarios Environnementaux
pour les Modèles de Cultures. Application à la Prévision de la Production Végétale à Grande-échelle

Mots clés : Prédiction du rendement des cultures, approches basées sur les connaissances, approches
basées sur les données, MuScPE, diversité environnementale, grande échelle

Résumé : La prévision du rendement des cultures
est une question primordiale en agriculture. Des
recherches considérables ont été menées dans
ce but, en s’appuyant sur diverses méthodologies.
Généralement, ils peuvent être classés en approches
basées sur les connaissances et approches basées
sur les données. Tous les deux ont leurs avantages et
leurs inconvénients.
Pour les méthodes basées sur la connaissance, elles
sont basées sur la description mécanique des pro-
cessus biophysiques et impliquent potentiellement
un grand nombre de variables et de paramètres
d’état, dont l’estimation n’est pas simple. Une nou-
velle stratégie de modélisation statistique d’estima-
tion de paramètres à scénarios multiples (MuScPE)
est proposée pour profiter de données avec un accès
facile et de la diversité des scénarios environnemen-

taux. Il est testé avec un ensemble de données sur
le maı̈s au milieu des États-Unis. Un résultat satisfai-
sant est obtenu avec un modèle mécanique nommé
CORNFLO.
De l’autre, tant de données différentes ont été pro-
posées avec une philosophie variée. Une compa-
raison systémique de cette méthode guidée par le
modèle a été effectuée pour satisfaire les données
sous divers formats. Les personnes choisies ayant les
meilleures aptitudes et prévisions ont été comparées
à des modèles axés sur les connaissances.
Enfin, une régression pondérée est appliquée à la
prévision du rendement à grande échelle. La produc-
tion de blé tendre en France est prise comme un
exemple. Les approches axées sur les connaissances
et sur les données ont également été comparées pour
leurs performances.

Title : Statistical Learning Methodology to Leverage the Diversity of Environmental Scenarios in Crop Data.
Application to the Prediction of Crop Production at Large-Scale

Keywords : Crop yield prediction, knowledge-driven approaches, data-driven approaches, MuScPE, environ-
mental diversity, large scale

Abstract : Crop yield prediction is a paramount issue
in agriculture. Considerable research has been perfor-
med with this objective, relying on various methodolo-
gies. Generally, they can be classified into knowledge-
driven approaches and data-driven approaches. Both
have their advantages and shortcomings.
For knowledge-driven methods, they are based on the
mechanical description of biophysical processes, and
they potentially imply a large number of state variables
and parameters, whose estimation is not straightfor-
ward. A new statistical modelling strategy Multiple-
Scenarios Parameter Estimation (MuScPE) is propo-
sed to take advantage of the dataset with easy access
and leverage the diversity of environmental scenarios.

It is tested with a dataset about the corn in the middle
of the United States. A satisfactory result is achieved
with a mechanical crop model named CORNFLO.
On the other, so many different data-driven have been
proposed with variate philosophy. A systemic compa-
rison of this model-driven method has been made to
satisfy data in diverse format. The chosen ones with
best fitness and prediction have been compared with
knowledge-driven models.
At last, a weighted regression is applied to large-scale
yield prediction. Soft wheat production in France is ta-
ken as an example. Model-driven and data-driven ap-
proaches have also been compared for their perfor-
mances in achieving this goal.

Université Paris-Saclay
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