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Abstract

Snow avalanche is a natural hazard defined as a snow mass in fast motion. Since the
thirties, scientists have been designing snow avalanche models to describe snow avalanches.
However, these models depend on some poorly known input parameters that cannot be
measured. To understand better model input parameters and model outputs, the aims
of this thesis are (i) to propose a framework to calibrate input parameters and (ii) to
develop methods to rank input parameters according to their importance in the model
taking into account the functional nature of outputs. Within these two purposes, we
develop statistical methods based on Bayesian inference and global sensitivity analyses.
All the developments are illustrated on test cases and real snow avalanche data.

First, we propose a Bayesian inference method to retrieve input parameter distribution
from avalanche velocity time series having been collected on experimental test sites. Our
results show that it is important to include the error structure (in our case the autocor-
relation) in the statistical modeling in order to avoid bias for the estimation of friction
parameters.

Second, to identify important input parameters, we develop two methods based on
variance based measures. For the first method, we suppose that we have a given data
sample and we want to estimate sensitivity measures with this sample. Within this pur-
pose, we develop a nonparametric estimation procedure based on the Nadaraya-Watson
kernel smoother to estimate aggregated Sobol’ indices. For the second method, we con-
sider the setting where the sample is obtained from acceptance/rejection rules correspond-
ing to physical constraints. The set of input parameters become dependent due to the
acceptance-rejection sampling, thus we propose to estimate aggregated Shapley effects
(extension of Shapley effects to multivariate or functional outputs). We also propose
an algorithm to construct bootstrap confidence intervals. For the snow avalanche model
application, we consider different uncertainty scenarios to model the input parameters.
Under our scenarios, the release avalanche position and volume are the most crucial in-
puts.

Our contributions should help avalanche scientists to (i) account for the error structure
in model calibration and (ii) rank input parameters according to their importance in the
models using statistical methods.

Keywords: Snow avalanche numerical models, Bayesian inference, aggregated Sobol’
indices, aggregated Shapley effects, given data estimation method, dimension reduction

iii



Résumé

Une avalanche de neige est un danger naturel défini comme une masse de neige en mou-
vement rapide. Depuis les années 30, scientifiques conçoivent des modèles d’avalanche
de neige pour décrire ce phénomène. Cependant, ces modèles dépendent de certains
paramètres d’entrée mal connus qui ne peuvent pas être mesurés. Pour mieux compren-
dre les paramètres d’entrée du modèle et les sorties du modèle, les objectifs de cette thèse
sont (i) de proposer un cadre pour calibrer les paramètres d’entrée et (ii) de développer
des méthodes pour classer les paramètres d’entrée en fonction de leur importance dans
le modèle en tenant compte la nature fonctionnelle des sorties. Dans ce cadre, nous
développons des méthodes statistiques basées sur l’inférence bayésienne et les analyses de
sensibilité globale. Nos développements sont illustrés sur des cas de test et des données
réelles des avalanches de neige.

D’abord, nous proposons une méthode d’inférence bayésienne pour récupérer la dis-
tribution des paramètres d’entrée à partir de séries chronologiques de vitesse d’avalanche
ayant été collectées sur des sites de test expérimentaux. Nos résultats montrent qu’il
est important d’inclure la structure d’erreur (dans notre cas l’autocorrélation) dans la
modélisation statistique afin d’éviter les biais dans l’estimation des paramètres de frotte-
ment.

Deuxièmement, pour identifier les paramètres d’entrée importants, nous développons
deux méthodes basées sur des mesures de sensibilité basées sur la variance. Pour la
première méthode, nous supposons que nous avons un échantillon de données et nous
voulons estimer les mesures de sensibilité avec cet échantillon. Dans ce but, nous
développons une procédure d’estimation non paramétrique basée sur l’estimateur de
Nadaraya-Watson pour estimer les indices agrégés de Sobol. Pour la deuxième méthode,
nous considérons le cadre où l’échantillon est obtenu à partir de règles d’acceptation/rejet
correspondant à des contraintes physiques. L’ensemble des paramètres d’entrée devient
dépendant du fait de l’échantillonnage d’acceptation-rejet, nous proposons donc d’estimer
les effets de Shapley agrégés (extension des effets de Shapley à des sorties multivariées ou
fonctionnelles). Nous proposons également un algorithme pour construire des intervalles
de confiance bootstrap. Pour l’application du modèle d’avalanche de neige, nous con-
sidérons différents scénarios d’incertitude pour modéliser les paramètres d’entrée. Dans
nos scénarios, la position et le volume de départ de l’avalanche sont les entrées les plus
importantes.

Nos contributions peuvent aider les spécialistes des avalanches à (i) prendre en compte
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la structure d’erreur dans la calibration du modèle et (ii) proposer un classement des
paramètres d’entrée en fonction de leur importance dans les modèles en utilisant des
approches statistiques.

Mot-clés : Modèles numériques d’avalanche de neige, inférence bayésienne, indices
de Sobol’ agrégés, effets de Shapley agrégés, réduction de la dimension
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au labo et les discussions sur des sujets si divers !

Je remercie aussi Clémentine Junquas, Thomas Condom et Clémentine Prieur (de
nouveau), mes encadrants de master au LTHE, pour m’avoir appris les bonnes base sur la
recherche scientifique. Je remercie aussi mes amis doctorants du labo LTHE Pati, Gabi,
Magda, Claudio, Catherine. On est un si joli groupe multiculturel !

Je remercie toutes ces merveilleuses personnes que j’ai rencontré à Grenoble: Pablo,
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remercie Thomas, mon chéri, une des plus belles choses que ce voyage m’a apporté. Cette
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1
Introduction

In this chapter, we give a general overview of the thesis, of the scientific questions to be
addressed in this work and of the way we handled them. The concepts and tools employed
are detailed in Chapter 2.

1.1 Context

Snow covered mountains lie in apparent equilibrium till an avalanche suddenly occurs.
Snow avalanche is a natural hazard defined as a snow mass in fast motion on a slope [An-
cey, 2001]. In fact, avalanche velocities can reach 60 ms−1 [Schaer and Issler, 2001]. There
exist many factors that interact to explain the release of an avalanche for example, the
average inclination of starting zones (between 27◦ to 50◦), the ground surface roughness,
snowpack structure or temperature changes [Ancey, 2001]. But more important than its
causes are its consequences: from building damage or destruction to casualties. Around
100 people die each year in the European Alps due to snow avalanches [Techel et al.,
2016]. To try in someway to prevent these accidents, a better comprehension of avalanche
phenomena might be crucial.

Since the thirties, scientists have been designing and improving snow avalanche mod-
els (e.g., physical models, probabilistic models) to describe and understand better snow
avalanches. Models consists in a simplification of natural phenomena and they often de-
pend on some poorly known input parameters that cannot be necessarily measured. To
cite an example, friction parameters (representing the behavior of snow in motion) cannot
be measured from in situ experiments. That’s why friction parameter meaning and their
link to physical properties of snow is still debated in the literature of the field Naaim et al.
[2013].

To go further, the following questions may be addressed. First, if we are capable to
measure some other attributes of an avalanche as e.g., its velocity, how to calibrate the
unobserved parameters? Within this purpose, avalanche data (e.g, from photogrammetric
techniques) with high temporal resolution (1 s) have been collected in experimental test
sites to study snow avalanches [e.g., the French test site at Lautaret Pass Thibert et al.,
2015]. One solution to calibrate model parameters given a set of observations is to solve an
inverse problem, which consists into finding the parameter configuration(s) that approach
the best reality, where reality is known through the observations. Second, which parame-
ters should be calibrated with high accuracy and which others might not? The purpose of
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Chapter 1. Introduction

this thesis is to answer these two questions using a set of advanced statistical techniques.

To answer the first question, we use Bayesian inference. Bayesian inference is a pow-
erful tool to solve inverse problems. Its main advantage is its application even if sample
size is small because prior knowledge, given by scientists, can be provided to improve
parameter inference. Many scientists from different fields (e.g., social and environmental
sciences) are turning to Bayesian inference to solve problems where samples are scarce.
In particular, avalanche observations are scarce since avalanches are rare events. Thus,
Bayesian inference is the ideal framework for avalanche models and indeed, it is becoming
more and more popular in the avalanche community. In particular, the velocity avalanche
profile we disposed has 21 observations. For this reason, we propose to answer the first
question using a Bayesian framework to calibrate friction parameters for snow in motion.
For the snow avalanche field, the novelty of our approach is that we consider the error
(defined as observations − model simulations) structure in the calibration. Indeed, our
observed velocities are a time series and the errors are autocorrelated. Therefore within
our results, we demonstrate that it is important to consider the correct structure of the
errors in the calibration framework because if errors are not properly modeled, estimation
of friction parameters might be biased.

To answer the second question: how to determine which input parameters contribute
the most to model output uncertainty, we use global sensitivity analysis. Global sen-
sitivity analysis (GSA) is a probabilistic technique which consists in modeling unknown
input parameters by a probability distribution which propagates through the model to the
outputs. Input parameter distributions are often guided by practitioner’s belief. Then,
input parameters are ordered according to their contribution on the model outputs by
computing sensitivity measures. By answering this second question, we gain (i) a better
comprehension of avalanche model and, (ii) we might put more efforts to calibrate im-
portant input parameters and, fix the other inputs to literature nominal values without
losing model output accuracy. In fact, a major drawback of Bayesian inference is the high
number of model simulations required to get algorithms convergence. Indeed, at least
1000 simulations might be required to get convergence. Moreover, algorithm convergence
could depend on the number of input parameters. Thus, the number of model simulations
required could be reduced by identifying influential inputs.

From a GSA scientist’s perspective, avalanche model outputs offer an interesting ap-
plication framework because (i) they are functional (e.g., the functional flow velocity)
and, (ii) their input/output samples could be selected by acceptance-rejection (AR) al-
gorithms. For example, we could use only avalanche simulations with certain particular
characteristics e.g., having a volume superior to a prescribed threshold (e.g., 7000m3)
and, runout distance superior to a prescribed position. In that context, independence of
input parameters is no longer true and the computation and interpretation of sensitivity
measures is a difficult task. Thus, the functional output nature and dependence between
input parameters were our guidelines for proposing a framework for GSA in our context
of snow avalanches.

In GSA literature, there exist different sensitivity measures. We focus in two variance-
based sensitivity measures: Sobol’ indices [Sobol’, 1993] and Shapley effects [Shapley,
1953]. Sobol’ indices are sensitivity measures commonly used. They can be applied if
inputs are independent. This sensitivity measure is easy to interpret because, (i) all the
indices are normalized between 0 and 1 and (ii) sum to 1, (iii) a high index shows the input
is relevant and a value close to zero shows that it is not. When inputs are dependent,

2



1.2. Objectives

Sobol’ indices interpretation is quite difficult because they can sum to greater than one and
there could be some negative indices. In contrast to Sobol’ indices, Shapley effects are still
meaningful when input parameters are dependent. They have nice properties because they
are non negative and they sum to one. We use these two sensitivity measures to determine
important inputs in avalanche models. Moreover, we study Sobol’ and Shapley effects for
multivariate or functional outputs. These measures are called aggregated measures.

Regarding the estimation of Sobol’ indices and Shapley effects, there are two kind of
methods based on the sampling structure design: structured sampling design (such as
pick-and-freeze or replicated designs) and not structured sampling design. The last ones
are also called given data methods. To use structured sampling design methods, users
might require access to the model. However, such sampling designs may be impossible in
some applications. In particular, in our application where samples are constructed using
AR sampling. Thus, we propose estimators of aggregated Sobol’ indices and aggregated
Shapley effects from a given sample.

1.2 Objectives

To summarize, the thesis objectives are to answer the two scientific challenges described
in Section 1.1. More specifically we address the following questions:

Q1. Given an avalanche velocity profile, how to calibrate friction parameters?

We propose a framework based on Bayesian inference to calibrate an avalanche model.
In more detail, we propose to solve the inverse problem of finding the most likely combi-
nations of friction parameters given a set of avalanche velocities using Bayesian inference.
To use Bayesian inference, certain assumptions on the model errors (observation-model
simulations) have to be made. Traditionally, errors are assumed i.i.d. Gaussian centered
variables. However, velocity trajectories are time series, thus inspired in works devel-
oped in hydrology by Kuczera [1983], Kuczera and Parent [1998], Evin et al. [2014], we
propose to consider the error autocorrelation to calibrate the avalanche model. To deter-
mine the impact of including or not the autocorrelation errors in model calibration, we
performed two calibrations: (i) considering independent errors and (ii) considering errors
are autocorrelated. We compared the results of both calibrations and results are better
if autocorrelation is included. This work was published in The Journal of Glaciology in
January 2020 and the work is presented in Chapter 3:

Heredia MB, Eckert N, Prieur C, Thibert E (2020). Bayesian calibra-
tion of an avalanche model from autocorrelated measurements along the
flow: application to velocities extracted from photogrammetric images.
Journal of Glaciology 66(257), 373–385. https://doi.org/10.1017/jog.2020.11

Q2. How to perform a global sensitivity analysis for avalanche models from a given data
sample when input parameters are independent or dependent and outputs are func-
tional?

We focus here in the following setting to perform global sensitivity analysis. We are given
a sample of simulations of moderate size and we want to estimate sensitivity measures
with this given sample. Within this purpose and following Racine [2001], Da Veiga and
Gamboa [2013] and Soĺıs [2019], we develop a nonparametric estimation procedure based
on the Nadaraya-Watson kernel smoother to estimate aggregated Sobol’ indices. Input
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distributions are chosen as the posterior of the Bayesian inference. This work was sub-
mitted to Reliability Engineering & System Safety journal in March 2020 and presented
in Chapter 4:

Heredia MB, Prieur C, Eckert N. Nonparametric estimation of aggre-
gated Sobol’ indices: application to a depth averaged snow avalanche
model. Submitted in March 2020.

Eventually, we consider the setting where the sample is obtained from an accep-
tance/rejection rule to physical constraints. The corresponding set of input parameters
present dependencies thus, we propose to estimate Shapley effects extended to multi-
variate or functional model outputs. We call these new sensitivity measures aggregated
Shapley effects. More precisely, we propose an algorithm to estimate aggregated Shapley
effects in a given data framework based in Broto et al. [2020]. We also build bootstrap
confidence intervals, adapting the ideas of Benoumechiara and Elie-Dit-Cosaque [2019].
This work has been submitted to the SIAM/ASA Journal on Uncertainty Quantification
in July 2020 and presented in Chapter 5:

Heredia MB, Prieur C, Eckert N., Given data inference of aggregated
Shapley effects, application to avalanche modeling. Submitted in July 2020.

1.3 Organization of the manuscript

The manuscript is organized as follows. In Chapter 2, we propose a short introduction to
(i) 1-D avalanche modeling, (ii) Bayesian inference applied to parameter model calibration
and (iii) global sensitivity analysis with a particular emphasis when inputs are independent
or dependent, and multivariate or functional. This chapter can be seen as a toolbox to
understand the developments we have made. Then, the manuscript is divided in two
parts:

Part I: Bayesian Inference.
Part I is composed by Chapter 3. In Chapter 3, we propose a Bayesian framework
to calibrate an avalanche model using velocities extracted from images.

Part II: Global Sensitivity Analysis
In Part II, we develop global sensitivity methods applied to dynamic models, more
particular to a 1-D avalanche model. Part II is composed by Chapter 4 and Chap-
ter 5. In Chapter 4, we proposed a non parametric method to estimate aggregated
Sobol’ indices from an i.i.d. sample and, in Chapter 5, we extend Shapley effects to
multivariate and functional outputs, we also propose algorithms for the estimation
and the computation of bootstrap confidence intervals.

Finally, conclusions and perspectives for this thesis are exposed in Chapter 6.
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Avalanche models, Bayesian inference and global

sensitivity analysis

Contents
2.1 A short introduction to 1-D snow avalanche dynamic modeling . . . . 5

2.2 Model calibration using Bayesian inference . . . . . . . . . . . . . . . 8

2.3 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Overview: In this chapter, we introduce the principal tools and concepts employed
in the core chapters of this manuscript (Chapters 3 to 4). A short introduction to snow
avalanche dynamic modeling is presented in Section 2.1. We put particular attention
to previous studies of model calibration and sensitivity analysis in the avalanche field.
Then, model calibration using Bayesian inference is explained in Section 2.2 and global
sensitivity analysis methods are described in Section 2.3. We put emphasis on global
sensitivity methods that can be applied to models with dependent input parameters and
functional model outputs.

2.1 A short introduction to 1-D snow avalanche dy-

namic modeling

Avalanche numerical models provide a simplification of avalanche flow on the basis of
physical conservation laws. To situate avalanche models in human history, one of the
first avalanche models was probably proposed in the 1930s [Salm, 2004]. This first model
had a dry friction coefficient (Coulomb friction) [Salm, 2004]. Then, Voellmy [1964] pro-
posed a based on hydrodynamics model, that had two friction coefficients: a turbulent
friction coefficient ξ and a Coulomb-like dry coefficient µ. Since then, different analytical
and numerical models have been proposed based in Coulomb or Voellmy friction laws
[e.g., Perla et al., 1980, Salm et al., 1990]. Analytical (e.g., sliding block models) and
numerical models (e.g., Saint-Venant proposed by Naaim et al. [2004]) have advantages
and disadvantages as for example their accuracy in test site experiments, computational
cost, number of parameters, etc. Also, some of them may be only capable to output flow
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velocities and runout distances1 while others can also compute flow depths. Nevertheless,
avalanche modeling is still challenging, due to lack of measurements and due to avalanche
complexity (e.g., flow regime transitions, snow mass balance) [Harbitz et al., 1998]. How-
ever, depending on the application, analytical or numerical models (or both) might be
used. A more detailed review of these models can be found in e.g., Harbitz et al. [1998],
Salm [2004] and Jamieson et al. [2008].

Figure 2.1: Avalanche block model.

For illustration purpose, Figure 2.1
shows a graphical simplification of a sliding
block model. These kind of models repre-
sent an avalanche as a sliding rigid body
experimenting frictional forces. The model
is based in the motion equation:

du

dt
= g sin θ − F

m
, (2.1)

where u = ||~u|| is the velocity norm, g is
the gravity constant, θ is the local slope,
h is the mean flow depth, m the mass and
F = ||~F || the friction force. For example,
Coulomb friction law F = µmg cos θ or Voellmy friction law F = µmg cos θ+ mg

ξh
u2 could

be considered in Equation (2.1).

2.1.1 Model input parameters

All of the aforementioned models, independently of their complexity, depend on unknown
parameters that cannot be measured. More specifically, friction parameters cannot be
measured from experiments. To guide practitioners, some authors have created parame-
ter guidelines. For example, Salm et al. [1990] proposed reference values for µ according
to the avalanche characteristics (e.g., wet snow, large avalanche) and for ξ according to
the avalanche path characteristics (e.g., path local slope). Author guideline is called the
Swiss guideline. For example, Christen et al. [2010b] applied the guideline recommenda-
tions for back calculation of the In den Arlen2 avalanche using the 2-D RAMMS model.
However, parameter in situ calibration is still necessary for a better comprehension of
avalanche models. Deterministic inversion, which consists in writing friction coefficients
as a function of observed quantities, has been employed to calibrate parameters from in
situ experiments. In the work of Dent et al. [1998], friction coefficients were computed by
measuring normal forces. Ancey et al. [2003] proposed a deterministic inversion framework
to retrieve friction parameters from runout distances and the sum of snow fall amount
during the three days previous to the avalanche event. Indeed, the snow fall during the
days preceding the avalanche event is a key meteorological parameter in avalanche phe-
nomena [Ancey et al., 2003]. In Ancey and Meunier [2004] a back analysis was performed
to infer friction coefficients from velocities. Naaim et al. [2004] performed a back analysis
to model validation, also the authors found an empirical relationship between the dry fric-
tion coefficient µ and runout distances. Recently, Oda et al. [2020] performed small scale

1The runout distance is the position where the avalanche stops flowing.
2Avalanche occurred in Switzerland the 27 January 1968. The event destroyed a farmhouse and killed

four people.
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experiments using a rotating drum device to measure flow velocities and flow depths in
order to perform a deterministic inversion to retrieve friction parameters. Nevertheless,
parameter point estimation does not take into account parameter uncertainty which is
important for uncertainty propagation.

One of the principal difficulties of parameter calibration in avalanche problems is the
low number of observations recorded. Therefore, more complex schemes of calibration
based on Bayesian inference have been proposed. For example, Ancey [2005], Straub and
Grêt-Regamey [2006] and Eckert et al. [2010] used runout distances to model calibration.
Gauer et al. [2009] used the velocity at the lower avalanche track and runout distances
to model calibration. Also, procedures based on optimization have been proposed. For
example, Naaim et al. [2013] performed the calibration of friction parameters using runout
distances from historical avalanche events. Regarding 3-D avalanche model calibration,
in Fischer et al. [2014], the 3-D SamosAT (Snow Avalanche Modeling and Simulation
Advanced technology) model is calibrated using flow depths and velocities deduced from
Doppler radar measurements. Fischer et al. [2015] proposed a multivariate parameter
optimization to calibrate SamosAT.

In the last two decades, the interest in Bayesian approaches is increasing in the
avalanche community. To demonstrate this assertion, we cite some examples: the al-
ready described works of Ancey [2005], Straub and Grêt-Regamey [2006], Gauer et al.
[2009], Eckert et al. [2010], Heredia et al. [2020] and other recent works, Schläppy et al.
[2014] reconstructed runout distances from dendropomorphic historical data, then authors
applied a Bayesian approach based on Eckert et al. [2010] to model calibration and to
estimate return periods. Recently, Fischer et al. [2020] provided a comprehensive tool
for snow avalanche simulation using Bayesian inference which is implemented in the open
source software r.avaflow. The software r.avaflow was developed by Mergili et al.
[2017].

2.1.2 Sensitivity analyses for avalanche models

As mentioned before, avalanche models depend on poorly known parameters (e.g., friction
parameters and initial conditions corresponding to the avalanche released). Authors have
studied the parameter sensitivity, for example, Barbolini and Savi [2001] used a Monte
Carlo approach to analyze the sensitivity for the runout distances and impact pressures
outputs of the VARA model. Authors found two interesting results: (i) for relatively
frequent events, friction parameters and release depth and length are important for runout
distances and, (ii) for extreme rare events, the friction coefficient has a higher importance
than the two other parameters. Borstad and McClung [2009] developed a sensitivity
analysis of an avalanche model with Coulomb friction law. Their results demonstrated
that the friction coefficient is important for the runout positions. Bühler et al. [2011]
studied the influence of the digital elevation model resolution (DEM) on the outputs of
the RAMMS model. They found that DEM resolution and quality is critical for modeling
and a spatial resolution of around 25m is sufficient for large-scale modeling. Fischer et al.
[2014] performed a sensitivity analysis for RAMMS model by estimating the Spearman
rank correlation between parameters and outputs. Buhler et al. [2018] made a sensitivity
analysis of runout distance, volume and avalanche velocity in the runout zone with respect
to the initial volume in the RAMMS model. They found that the released volume has a
large effect in runout distance and avalanche velocity. However, even if all the previous
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works provide useful information about avalanche models, none of them has used variance-
based global sensitivity measures to quantify input parameter importance.

2.1.3 Few words about land-use planning

Finally, why avalanche input parameters and thus, model outputs are important? The
reason is that model outputs (e.g., avalanche speed and runout distance) might be used
in land use planning which typically consists into dividing a region in zones according to
their potential risk [Salm, 2004]. In some countries (e.g., Austria, France, Switzerland),
this assignation is done by colors: green (or white in France [Eckert et al., 2018b]), blue
and red. The colors assignation are sometimes determined by runout return periods. A
runout return period is the mean time in which a given runout distance is reached or
exceeded at a given path’s position [Eckert et al., 2007, 2008b, Schläppy et al., 2014]. For
example in Switzerland, red zones have return periods lower than 300 years and avalanche
pressures can exceed 30kNm−2 [WSL]. Constructions are forbidden in red zone [WSL].
Therefore, parameter estimation and associated uncertainty might be useful for computing
more accurate avalanche simulations and as a consequence, for a better land use planning.
The importance of avalanche model calibration and current issues for hazard mapping are
nicely described in Jamieson et al. [2008].

To summarize, the two main axes of this thesis are model calibration using Bayesian
inference and global sensitivity analysis applied to avalanche models. These two subjects
are explained in Section 2.2 and Section 2.3.

2.2 Model calibration using Bayesian inference

Model calibration consists in finding the most likely combination(s) of parameters given
some observations. We are not only interested in determining an optimal single combi-
nation of parameters, but also in the uncertainty associated to it [Kuczera and Parent,
1998]. Bayesian calibration offers a solution to this problem, because it allows to assess
parameter uncertainty by deriving the posterior distribution of parameters from observa-
tions [Kennedy and O’Hagan, 2001]. Moreover, advantages of Bayesian calibration are
twofold: (i) if model is used for prediction, all the sources of uncertainty are included, and
(ii) since no model is perfect, the approach cope for any inadequacy between observations
and model [Kennedy and O’Hagan, 2001].

Let us denote f a prediction model for a given phenomenon (e.g., an avalanche model
which predicts the avalanche runout distance), f depends on parameters Θ ∈ Rp and
some forcing variables x ∈ Rd. Let us denote by yobs a vector of n noisy observations:

yobsi = f(Θ,x) + εi,∀i ∈ {1, . . . , n} (2.2)

where ε models observation errors. For example, yobs could be a set of observed
runout distances to calibrate an avalanche model. Note that within this formulation,
we do not make distinction between the observation errors and the model inadequacy.
The distinction has been studied in, e.g., Kennedy and O’Hagan [2001], Carmassi et al.
[2018]. In a statistical framework to solve the inverse problem of retrieving the model
parameters Θ, assumptions of the distribution of the residuals or errors ε might be re-
quired. For example, they could be assumed i.i.d. centered Gaussian random variables
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εi ∼ N (0, σ2) ∀i ∈ {1, . . . , n}. Let us denote γ the residual parameters. In our example,
γ = {σ2}. An advantage of Bayesian inference is that practitioner experience or beliefs
could be plugged into the inference by the prior distribution denoted π(Θ, γ). Then, the
posterior distribution is:

π(Θ, γ|yobs,x) =
L(yobs|Θ, γ,x)π(Θ, γ)∫
L(yobs|Θ, γ,x)π(Θ, γ)dΘdγ

(2.3)

where L(yobs|Θ, γ,x) is the likelihood of the observations which can be obtained from
the error distribution. It is usually difficult to compute

∫
L(yobs|Θ, γ,x)π(Θ, γ)dΘdγ, ex-

cept when there is an analytical expression of the posterior distribution, which is achieved
by using conjugate priors. When there is no explicit posterior formulation, Monte Carlo
Markov chain (MCMC) methods can be used to sample from the posterior distribution.
MCMC methods consist into constructing a stationary and ergodic Markov chain that
converges, under mild conditions, to the posterior distribution π(Θ, γ|yobs,x).

Among the MCMC methods, there is the Metropolis-Hasting algorithm [Metropolis
et al., 1953, Hastings, 1970] which constructs sequentially a Markov chain by applying
acceptance-rejection rules defined by a proposal distribution q. The convergence of the
MH algorithm depends on q [Robert, 2015] and q is usually assumed as multinormal
distribution.

If there is an analytical expression of all the parameter conditional distributions
π(θ`|yobs,x, θ1, . . . θ`−1, θ`+1, . . . θd), Gibbs sampling, a particular instance of MH algo-
rithm, could be applied. The Hamiltonian Monte Carlo [Duane et al., 1987] algorithm,
also known as hybrid Monte Carlo, has shown good results in applications. Nevertheless,
the gradient of the distribution functions are required and their computations might be
expensive.

When observations are time series, errors could be autocorrelated or/and suffer
from heteroscedasticity. In the calibration of hydrological models, authors have studied
the importance of considering the correlations and/or heteroscedasticity in residuals
[e.g., Kuczera, 1983, Kuczera and Parent, 1998, Evin et al., 2014]. Indeed, they
found that if autocorrelation is not included parameter estimation could be biased.
In Chapter 3, given an avalanche velocity measured time series, we analyze the impact of
considering or not the error autocorrelation in a Bayesian inference calibration framework.
A block model based on the Voellmy friction law is considered.

2.3 Global sensitivity analysis

Saltelli et al. [2004] defined precisely the sensitivity analysis (SA) as “the study of how
uncertainty in the output of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input”3. Under a SA framework, we consider
a deterministic model f (computational code, black box model, etc) that depends on
d inputs X = (X1, . . . , Xd). First for simplicity, we consider the output Y as scalar
Y = f(X). The inputs are modeled by random variables on a probability space (Ω,F ,P).
Thus, the output Y is also a random variable (Ω,F ,P) because it depends on the random
vector X. Let us denote (x, y) a random sample from (X, Y ). Figure 2.2 illustrates the

3This definition is, in general, widely accepted in the SA community.
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Figure 2.2: SA framework.

SA framework. The following exposition is inspired by the works of Iooss and Lemâıtre
[2015] and Iooss and Saltelli [2017].

SA is divided in two classes: local and global methods. Local methods consist in study-
ing the impact of small input perturbations around certain nominal values on the output.
An example of local methods are partial derivatives, they consist into calculating ∂f

∂xi
at

a given point x0 = (x0
1, . . . , x

0
d) in the domain of X. Local methods are sometimes used

when model computational cost or number of parameters is high. For example, Castaings
et al. [2009] proposed the adjoint state method to compute efficiently the derivatives of the
output of a distributed hydrological model with respect to parameter inputs to perform
local SA. Castillo et al. [2004] proposed a local SA method based on the duality property
of mathematical programming to compute partial derivatives. In contrast to local meth-
ods, global methods explore all the input domain and not only variations around nominal
values.

Global methods provide a more convincing tool for highly nonlinear models often en-
countered in environmental sciences. Indeed, global methods provide an exploration of
the whole input space [Saltelli et al., 2008, Iooss and Lemâıtre, 2015]. Nonetheless, there
is a price to pay to use global sensitivity methods in terms of number of model simula-
tions. But there are some ways to reduce computational costs which will be explained
in Subsection 2.3.5. Tang et al. [2006] compared local and global methods applied to a
watershed model and they concluded that global methods yield robust results. [Saltelli
et al., 2008, page 11] recommended strongly to use global methods rather than local ones.
Hereafter, we focus on global sensitivity analysis methods.

Global sensitivity analysis (GSA) consists into identifying the input parameters that
contribute the most (in a sense to be precised) to a given quantity of interest defined
from the output of the model [Iooss and Lemâıtre, 2015]. The objectives of GSA are
numerous: they are to provide a better comprehension of the numerical model, to iden-
tify non influential parameters to set them to nominal values, among others [Iooss and
Lemâıtre, 2015]. To guide practitioners, Saltelli et al. [2004] proposed four settings of
GSA objectives: factor prioritization, factor fixing, variance cutting and factor mapping.
Before performing a GSA, it is important to have clear the objectives of the study [Iooss
and Lemâıtre, 2015] and also, to select the adequate GSA method to avoid misinterpre-
tations [Saltelli et al., 2019]. Then, parameter inputs might be ordered according to their
importance or contributions by computing sensitivity measures.

GSA has been widely applied in many fields as for example, in environmental sciences
and engineering. We cite some recent works in different application domains, Sarrazin
et al. [2016] proposed a guide to apply GSA in environmental models, more particularly
applied to hydrological models. Mavromatidis et al. [2018] developed a GSA for dis-
tributed energy systems. These models are important for an efficient and sustainable
energy future. Prieur et al. [2019] performed a GSA for a marine biogeochemical model
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with a high number of inputs (74 input parameters).

The GSA measures may be divided into: screening approaches, variance-based mea-
sures, moment free measures and, other measures. In the manuscript, we only focus on
variance based measures which are explained in Subsection 2.3.2. Even if we do not use
the other three GSA measures, they are briefly explained in Subsections 2.3.1, 2.3.3 and,
2.3.4 to provide a general overview of GSA measures.

2.3.1 Screening approaches

Screening approaches consist in the discretization of inputs X in levels [Iooss and Lemâıtre,
2015]. If the model has a large number of inputs d� 1, these sensitivity measures could
help the user to identify non influential input parameters. Therefore, screening methods
could be a preliminary step before computing other, in general more expensive, GSA
measures when input dimension is high. One of the most popular screening methods is
the OAT (one at a time) Morris method [Morris, 1991].

Here we describe briefly the Morris method. The d random inputs X are supposed
independent and are modeled with uniform distributions on [0, 1], i.e. Xi ∼ U [0, 1] for all
i ∈ {1, . . . , d}. The assumption of uniformity on [0, 1] is not constraining as for Xi with
cumulative distribution function (cdf) F , we can apply the inverse transform sampling to
come back to that setting.

The rectangular domain [0, 1] of each input is divided in a p-level grid, then each xi may
take values from {0, 1/(p− 1), 2/(p− 1), . . . , 1}. Let Ω = {0, 1/(p− 1), 2/(p− 1), . . . , 1}d.
Let ∆ be a predetermined multiple of 1/(p− 1). For a given value x ∈ ω, the elementary
effect of the input Xi is defined according to:

di(x) =
f(x1, x2, . . . , xi−1, xi + ∆, xi+1, . . . , xd)− f(x1, . . . , xd)

∆

x must be such that xi + ∆ remains in {0, 1/(p − 1), 2/(p − 1), . . . , 1}. We sample n
points x1, . . . ,xn from X on Ω such that x`i +∆ is in {0, 1/(p−1), 2/(p−1), . . . , 1}. Then,
we compute di(x

`) for each ` ∈ {1, . . . , n}. Finally, we can estimate the mean absolute
value µ̂i and standard deviation si of the elementary effects. By calculating the indices
µ̂i and si, the Morris method allows us to identify three kind of inputs (i) non influential
inputs (µ̂i will have a low value), (ii) influential inputs with linear effects (µ̂i will be large
and si will be small) and, (iii) influential inputs with non-linear and/or interactions effects
(µ̂i and si will both be large). Graphical 2-D representation of (µ̂i, si) points might help
the user to classify the inputs [see Iooss and Lemâıtre, 2015]. Here we will not explain the
details of the Morris measure estimation (e.g., the structure of the design of experiment)
and parameter tuning (e.g., ∆, p, the threshold for defining small or large ûi and si) since
we do not use them in the core chapters of the manuscript, but more information can be
found in the works of Morris [1991] or Campolongo et al. [2007], the last work proposed
an improved sampling strategy.

Example
We illustrate the method in the Morris function [modified example from Morris, 1991].
The Morris function has d = 20 independent inputs Xi ∼ U [0, 1] ∀i ∈ {1, . . . , 20} and is
constructed as follows:

11



Chapter 2. Avalanche models, Bayesian inference and global sensitivity analysis

y = β0 +
20∑

i=1

βiwi +
20∑

i<j

βijwiwj +
20∑

i<j<`

βij`wiwjw` +
20∑

i<j<`<s

βij`swiwjw`ws, (2.4)

where wi = 2(Xi−1/2) except for i = 3, 5 and 7 where wi = 2(1.1Xi/(Xi+0.1)−1/2).
The β coefficients are defined as:

βi = 20, i = 1, . . . , 7, β8 = 25, β9 = 30, β10 = 40,

βij = −15, i, j = 1, . . . , 6,

βij` = −10, i, j, ` = 1, . . . , 5,

βij`s = 5, i, j, `, s = 1, . . . , 4,

the remainder coefficients are set to 0. Figure 2.3 displays (µ̂i, si) with i ∈ {1, . . . , 20}.
The standard error of the mean which is estimated as si/

√
n (result from the central

limit theorem) allow us to display confidence intervals for the mean corresponding to
µ ± 2s/

√
n (black line). Within this line, we can deduce the following results: inputs

X11 to X20 are negligible because their means and standard deviations are 0. Inputs X1

to X10 are influential. More particularly, inputs X8, X9 and X10 have large means and
small standard deviations which suggest that they are influential with linear effects. And
finally, the remaining inputs (X3 to X10) have non linear and/or interaction effects.
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Figure 2.3: Morris function. µ̂i and si estimated with n = 30, p = 8, ∆ = 4/7 (a total of 630
model runs). Black line corresponds to µ = 2s/

√
30.

As we have seen in this example, the Morris method gives useful insights about input
importance. However, to rank unambiguously the inputs according to their importance,
we will need other sensitivity measures and they are explained in the following section.
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2.3.2 Variance-based measures

Variance-based measures analyze how uncertainty in inputs impacts the variance of the
output(s). The two main variance-based measures are Sobol’ indices [Sobol’, 1993] and
Shapley effects [Owen, 2014]. Sobol’ indices are based on a functional ANOVA decom-
position [Efron and Stein, 1981], which is unique if inputs are independent, and Shapley
effects are based on the cooperative game theory concept of Shapley value [Shapley, 1953].
The main difference between both measures is that Shapley effects are easier to interpret
if the inputs are not independent.

Sobol’ indices

If the output of a model is scalar, its total variance can be split into partial variances
by using the Hoeffding decomposition [Hoeffding, 1948]. If the inputs are independent,
each of the partial variances is associated to an input or to an interaction between inputs
through the functional ANOVA decomposition [Efron and Stein, 1981]. Then, the Sobol’
indices [Sobol’, 1993] are calculated as the ratio of each partial variance to the total
variance. In mathematical terms, this is expressed as follows: let us suppose the random
variables X1, . . . , Xd are independent from each other and f ∈ L2(PX) where PX =∏d

i=1 PXi . Thus, f can be decomposed as [Hoeffding, 1948]:

f(X) = f∅ +
d∑

i=1

fi(Xi) +
∑

1≤i<`≤d

fi`(Xi, X`) + . . .+ f{1,...,d}(X1, . . . , Xd), (2.5)

where f∅ = E(Y ) and fu(Xu) = E(Y |Xu) −
∑

v(u fv(Xv) =∑
v(u(−1)|u|−|v|E(f(X)|Xi, i ∈ v). This decomposition is the so-called functional

ANOVA decomposition. From (2.5) and from the fundamental independence assumption
we get [Efron and Stein, 1981]:

Var(Y ) =
d∑

i=1

Var(fi(Xi)) +
∑

1≤i<`≤d

Var(fi`(Xi, X`)) + . . .+ Var(f{1,...,d}(X1, . . . , Xd)).

(2.6)
Then, Sobol’ indices are defined:

• First-order Sobol’ index of input Xi:

Si =
Var(fi(Xi))

Var(f(X))
=

Var(E(Y |Xi))

Var(f(X))
. (2.7)

• Second-order Sobol’ index of input Xi and Xj, to quantify interactions:

Si` =
Var(E(Y |Xi, X`))

Var(f(X))
− Si − S`. (2.8)

• Total Sobol’ index of input Xi to quantify the effect of Xi and all its interaction
with the other inputs:

STi = 1− Var(E(Y |X1, . . . , Xi−1, Xi+1, . . . , Xd))

Var(f(X))
. (2.9)

13



Chapter 2. Avalanche models, Bayesian inference and global sensitivity analysis

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

X2

X
1

a)

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

X2

X
1

b)

Figure 2.4: n = 20 samples of X1, X2 random variables uniformly distributed on [0, 1] a) struc-
tured sample design required to estimate Sobol’ indices using Tissot and Prieur
[2015] method. b) A random sample.

Higher order indices might be also defined (e.g., Si1,i2,i3 with i1, i2, i3 ∈ {1, . . . , d}) but
in general, only the aforementioned indices are computed in applications. Sobol’ indices
interpretation is easy (if inputs are independent, otherwise it becomes challenging) because
they take values in [0, 1], they sum to one and, a high value means the input is influential.

Estimation methods
The estimation of Sobol’ indices is a challenging issue because, except for rare cases, a
high number of simulations is required. Indeed, to estimate a single Sobol’ index with an
uncertainty of 10%, it could be required to perform 104 model runs [Iooss and Lemâıtre,
2015]. For explanation purpose, it is convenient to divide the estimation techniques
according to the sampling structure: structured sample design and given data methods.
The structured sample design techniques can be applied if we have access to the model
f but, in some applications we only dispose of a random i.i.d. n sample from (X, Y ).
Figure 2.4 shows a structured sample and a non structured sample designs.

Among the structured sample methods, we can mention the Fast Amplitude Sensitivity
Test (FAST) introduced by Cukier et al. [1978] [see, e.g., Saltelli et al., 1999, and references
therein], Sobol’ pick-freeze schemes [Sobol’, 1993], FAST mixed with Random Balance
Designs [Tarantola et al., 2006]. Tissot and Prieur [2015] proposed a pick-freeze procedure
based on replicated sampling which reduce the estimation cost. In Prieur and Tarantola
[2017], the most efficient estimation methods are well presented. Moreover, depending on
the estimation method, confidence intervals or significance test could be deduced from
asymptotic results of the central limit theorem [see more details in Janon et al., 2014a].
However, bootstrap intervals can be also built, under some conditions, to construct error
bars.

To overcome the drawback of structured sample methods (computational cost,
access to the model), authors propose given data methods. Among the given data
methods, we can cite the EASI spectral method of Plischke [2010], Plischke et al.
[2013] method relies on the notion of class-conditional densities, where a class is a
sub-sample stemming from a suitable partition of the dataset, the nonparametric
estimation methods of Da Veiga and Gamboa [2013] or Soĺıs [2019], the fully Bayesian
given data procedure proposed by Antoniano-Villalobos et al. [2019]. And more
recently, the Gamboa et al. [2020] estimators based on rank statistics. It is worth
to mention that the EASI method gives good results in test cases even with a small
bunch of observations (e.g., 200 samples). The two precursory given data methods, the
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2.3. Global sensitivity analysis

EASI method and NSD by Plischke et al. [2013] method, are explained in more detail
and compared to the structured sample method of Tissot and Prieur [2015] in Appendix A.

In Chapter 4, we propose a given data method to estimate first-order Sobol’ indices, based
on a nonparametric Nadaraya-Watson [Nadaraya, 1964, Watson, 1964] kernel regression
with bias corrected [Racine, 2001] to quantify the importance of the inputs of an avalanche
model.

Dependent inputs
Independence assumption on input parameters is crucial although unrealistic in many ap-
plications for a comprehensive interpretation of Sobol’ indices. In fact, if input parameters
are dependent, the variance decomposition in Equation (2.6) used for the interpretation
of Sobol’ indices is not true anymore. Some authors have proposed strategies to esti-
mate Sobol’ indices if input parameters are dependent. Jacques et al. [2006] propose
to separate the dependent inputs in independent groups and to compute Sobol’ indices
for each group. In other words, they propose to organize the inputs in s independent
groups X = (Xu1 , . . . , Xus) with u` ⊂ {1, . . . , d} and then compute, the Sobol’ index
Su` = Var(E(Y |Xu`))/Var(Y ) for all ` ∈ {1, . . . , s}. This method has two main limita-
tions: it assumes all variables are not correlated and, we cannot recognize the influence
of single inputs. Da Veiga et al. [2009] proposed to estimate Sobol’ indices using local
polynomials. Broto et al. [2019] studied the Sobol’ indices for independent groups in the
particular case of block-additive models.

Other works focused on alternative ANOVA based indices when inputs are dependent.
Xu and Gertner [2008] [see also Zhang et al., 2015] proposed to decompose the contribu-
tion in two parts: the correlated and uncorrelated contributions, the method assumes that
the linearity of both the model and dependence structure which limits its application. Li
et al. [2010] proposed three sensitivity indices to reflect the total, structural (linked to
the system structure) and correlative contributions (linked to the correlated input distri-
bution) extending the results of Xu and Gertner [2008] to more general models using the
concept of High Dimensional Model representation (HDMR), Mara and Tarantola [2012]
proposed a first step consisting into decorrelating the inputs using the Gram-Schmidt
procedure and then, to perform the ANOVA-HDMR decomposition and compute the
sensitivity measures. However, the decorrelation procedure depends on the variable order
which makes intricate the index interpretation [Chastaing et al., 2015]. Chastaing et al.
[2012] define new sensitivity measures based on the Generalized Hoeffding decomposition
proposed by Stone [1994], these new indices are called the generalized Sobol’ indices.
However, the index construction requires specific assumptions on the joint distribution
function of the inputs [Chastaing et al., 2012]. Also, their interpretation is not trivial be-
cause even if they sum to one, they could be negative [Chastaing et al., 2015]. Kucherenko
et al. [2012] proposed a copula-based approach to sample multivariate distributions but,
it requires a priori knowledge of the conditional densities. Moreover, index interpretation
may not be clear because if input correlation is high, first order index are higher than
the total one. Mara et al. [2015] established a link between Kucherenko et al. [2012]
and Mara and Tarantola [2012] works proposing the estimation of four indices, namely
full and independent first-order and total indices. Recently, Hart and Gremaud [2018]
reformulated total Sobol’ indices in terms of approximation errors rather than variance
analysis. More precisely, they proposed to see total Sobol’ indices as a measure of discrep-
ancy between the model and a surrogate using less variables, i.e. the error to approximate
f(X) by f(g(X−u), X−u) where g(X−u) is an approximation of Xu. However, all the afore-
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mentioned works have drawbacks and specially they do not provide an univocal way of
partitioning the influence of input parameters on the output. For these reasons, Shapley
effects seems more adapted in a dependent framework. Sensitivity measures when inputs
are dependent is a still ongoing research subject which has been recently studied in the
Master thesis of Wiederkehr [2018] and Ph. D. thesis of Broto [2020].

Shapley effects

In contrast to Sobol’ indices, Shapley effects [Owen, 2014] are meaningful in the framework
of dependent input parameters [Owen and Prieur, 2017]. This measure is based on the
Shapley value which is a cooperative game theory concept. Briefly speaking, Shapley
value ensures a fair distribution of a gain among team players according to their individual
contributions. As a sensitivity measure, Owen [2014] adapted the Shapley value [Shapley,
1953] into the Shapley effects by considering model input parameters as players and the
gain function as the output variance. The main advantage of such an approach is that it
is possible to attribute a non negative sensitivity index to each parameter, and the sum
of the indices is equal to one [Broto et al., 2020, Iooss and Prieur, 2019].

The definition of Shapley effects is based on Shapley value concept which is next
explained. Given a set of d players in a coalitional game and a characteristic function
val : S → R, val(∅) = 0, where S is the set of all subsets of {1, . . . , d}, the Shapley
value (φ1, . . . , φd) is the only distribution of the total gains val({1, . . . , d}) to the players
satisfying the desirable properties listed below:

1. (Efficiency)
∑d

i=1 φi = val({1, . . . , d}).
2. (Symmetry) If val(u∪{i}) = val(u∪{`}) for all u ⊆ {1, . . . , d}−{i, j}, then φi = φ`.

3. (Dummy) If val(u ∪ {i}) = val(u) for all u ⊆ {1, . . . , d}, then φi = 0.

4. (Additivity) If val and val’ have Shapley values φ and φ′ respectively, then the game
with characteristic function val + val’ has Shapley value φi + φ′i for i ∈ {1, . . . , d}.

It is proved in Shapley [1953] that according to the Shapley value, the amount that
player i gets given a coalitional game (val, d) is:

φi =
1

d

∑

u⊆−{i}

(
d− 1

|u|

)−1

(val(u ∪ {i})− val(u)) ∀i ∈ {1, . . . , d}. (2.10)

The Shapley effects are defined by considering the characteristic function of the game
as:

val(u) =
Var(E(Y |Xu))

Var(Y )
, u ⊆ {1, . . . , d}

in Equation (2.10). Thus, the scalar Shapley effect of input i is defined as:

Shi =
1

dVar(Y )

∑

u⊆−{i}

(
d− 1

|u|

)−1

(Var(E(Y |Xu∪i))− Var(E(Y |Xu))). (2.11)
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Estimation methods
Song et al. [2016] mentioned that Shapley effects estimation is costly because one has
to consider all possible subsets of players (inputs) which is 2d. In their work, two
estimators are proposed: a first estimator constructed by enumerating all possible players
permutations, the permutations set is denoted Sd and a second estimator, which is a
modified and improved version of Castro et al. [2009] algorithm, which selects randomly m
permutations from Sd. Note that m should be chosen as large as possible. Benoumechiara
and Elie-Dit-Cosaque [2019] proposed bootstrap confidence intervals for Song et al. [2016]
estimators. Song et al. [2016] algorithms assume that it is possible to sample from the
distribution of all subsets of the input parameters conditionally to the complementary
set of input parameters which might be complicated in some applications. Plischke et al.
[2020] proposed an estimation algorithm based on Song et al. [2016] algorithm and the
Möbious inverse to reduce estimation computational cost. Their algorithm also requires
the explicit knowledge of the conditional distributions. Finally, Broto et al. [2020]
proposed given data estimators based on nearest-neighbor, i.e. estimators that can be
computed from an i.i.d. sample, which is in general more convenient for real applications.

In Chapter 5, we extend Broto et al. [2020] work to functional outputs (see Subsec-
tion 2.3.6) and we construct bootstrap confidence intervals for these estimators.

Example
To illustrate the difficulty of ranking dependent inputs using Sobol’ indices, we consider a
linear model with three Gaussian inputs when two of them are highly correlated [example
from Section 3.4 Iooss and Prieur, 2019]. Let us consider the linear model:

Y = f(X) = β0 + βTX

with β = (β1, β2, β3)T = (1, 1, 1)T , X = (X1, X2, X3)T , X ∼ N (µ,Σ) with µ =
(0, 0, 0)T and Σ ∈ R3×3 a positive-definite matrix. X1 is independent from X2 and X3,
and X2 and X3 are highly correlated (correlation ρ = 0.9). We set σ1 = σ2 = 1 and
σ3 = 2. The covariance matrix is then:

Σ =



σ2

1 0 0

0 σ2
2 ρσ2σ3

0 ρσ2σ3 σ2
3


 =




1 0 0

0 1 1.8

0 1.8 4




The variance of the output is σ2 = Var[f(X)] =
∑3

j=1 β
2
jσ

2
j + 2ρβ2β3σ2σ3.

There exists analytical expressions for Sobol’ and total indices, and Shapley effects for
this test case and they are the following:

• Shapley effects [analytical expression from Iooss and Prieur, 2019]:

Sh1 = β2
1σ

2
1/σ

2,

Sh2 = [β2
2σ

2
2 + ρβ2β3σ2σ3 +

ρ2

2
(β2

3σ
2
3 − β2

2σ
2
2)]/σ2,

Sh3 = [β2
3σ

2
3 + ρβ2β3σ2σ3 +

ρ2

2
(β2

2σ
2
2 − β2

3σ
2
3)]/σ2.

• Sobol’ indices [analytical expression from Kucherenko et al., 2012]:
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Figure 2.5: Comparison between Shapley effects and Sobol’ indices when inputs are correlated
on a linear model with three Gaussian inputs. X1 is independent from X2 and X3,
and X2 and X3 are highly correlated (correlation ρ = 0.9).

S1 =
1

2 + σ2 + 2ρσ
,

S2 =
(1 + ρσ)2

2 + σ2 + 2ρσ

S3 =
(σ + ρ)2

2 + σ2 + 2ρσ
.

• Total Sobol’ indices [analytical expression from Kucherenko et al., 2012]:

ST1 =
1

2 + σ2 + 2ρσ
,

ST2 =
1− ρ2

2 + σ2 + 2ρσ

ST3 =
σ2(1− ρ2)

2 + σ2 + 2ρσ
.

Figure 2.5 shows the analytical sensitivity measures for the linear model example. This
example illustrates how difficult it is to interpret Sobol’ indices if inputs are correlated
since first-order indices are higher than total indices (see the indices of X2 and X3). On
the contrary to Sobol’ indices, Shapley effects are easy to interpret.

2.3.3 Moment-free measures

In this section, we describe briefly other useful global sensitivity measures that could
be applied when inputs are correlated. These measures are not used in the manuscript
core chapters but they offer an interesting approach to GSA when inputs are depen-
dent. Moment-free sensitivity measures were early proposed by Borgonovo [2007] [see
also Borgonovo et al., 2011]. These sensitivity measures are useful because they analyze
the influence of input uncertainty on the whole output distribution, this is why they are
called moment-free, and they can be defined also in the presence of correlated inputs
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2.3. Global sensitivity analysis

[Borgonovo, 2007]. Indeed, Borgonovo [2007] affirms that the influence of an input on
the model output is represented by the entire uncertainty distribution and not only its
variance.

The Borgonovo’s δ sensitivity measure for input Xi is defined according to:

δi =
1

2
EXi(s(Xi)),

where s(Xi) =
∫
|fY (y)−fY |Xi(y)|dy, fY is the probability density function of Y , fY |Xi

is the conditional density function of Y given Xi. Borgonovo’ δ quantifies the shift area
between fY and fY |Xi . Borgonovo’s δ has some nice properties: (i) δi lies between 0 and
1 for all i ∈ {1, . . . , p}, and (ii) it is equal to 0, if Y is independent of Xi. Borgonovo’s δ
can also be applied to group of inputs [see Equation 21 of Borgonovo, 2007].

Da Veiga [2015] extended the work of Borgonovo [2007] by proposing a general GSA
framework based on the concept of dissimilarity measures (e.g. the Csiszàr f-divergence,
integral probability metrics) and dependence measures (e.g., Hilbert-Schmidt indepen-
dence criterion HSIC). More precisely, the impact of Xi on Y could be given by [see also
Baucells and Borgonovo, 2013]:

Di = EXi(d(PY ,PY |Xi)),

where PY and PY |Xi are the probability measures of Y and Y |Xi, respectively and, d is
a dissimilarity measure between two probability measures. Borgonovo’s δ is a particular
case where the dissimilarity measure is the Csiszàr f-divergence. The first-order Sobol’
index is also a particular case if d(PY ,PY |Xi) = (E(Y )− E(Y |Xi))

2.
It is worth to mention that HSIC measure developed for GSA by Da Veiga [2015] [see

also Meynaoui et al., 2019] can be applied to perform target sensitivity analysis (TSA)
which consists into measuring the input importance on a restricted or critical domain
of the model output [see more details in Marrel and Chabridon, 2020]. TSA has a wild
spectrum of applications e.g., in reliability and risk management where the critical output
domain is sometimes associated to a low probability [Marrel and Chabridon, 2020]. Also,
HSIC measure can be applied to optimization problems with variable selection. The
variable selection is performed through GSA. Indeed, in optimization problems with large
number of parameters, identifying the influential inputs might be crucial to reduce the
problem dimension and therefore, the computational cost of such complex applications
[see more detail in Spagnol et al., 2019].

2.3.4 Other measures

There are other global sensitivity measures, to mention some of them we can cite the
derivative based global sensitivity measures (DGSM) proposed by Sobol’ and Kucherenko
[2009]. DGSM extend local sensitivity measures based on derivatives by computing inte-

grals of the square derivatives on the whole input domain i.e. E
(
∂f
∂Xi

)
2 (see also Lamboni

et al. [2013]). DGSM requires less model evaluations in comparison to other GSA mea-
sures [Lamboni et al., 2013]. However to apply DGSM, regularity assumptions might be
required. Also, they are not recommended for highly nonlinear functions because the
ranking obtained may suggest false conclusions [Sobol’ and Kucherenko, 2009]. Global
sensitivity metrics from active subspaces, called activity scores, were recently proposed
by Constantine and Diaz [2017]. Active subspaces are emerging tools based on spectral
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decomposition for dimension reduction [Constantine and Diaz, 2017]. Finally, one could
fit a linear model to obtain some information about the model, and then compute Pearson
correlation or partial correlation coefficients, these methods are called the sampling-based
GSA methods [Helton et al., 2006]. However, these kind of methods require linear and/or
monotony hypotheses which limit their application [see Iooss and Lemâıtre, 2015, Section
3.1.]. Nevertheless, scatterplots will always give some preliminary information about the
input-output dependence structure (e.g., linear, non linear) thus, they should not be ne-
glected if the number of parameters is moderate4. This exposition was not exhaustive but
it provides good insights of the current works developed in the GSA community. Other
surveys of GSA can be found in e.g., Iooss and Lemâıtre [2015] and Borgonovo et al.
[2016].

2.3.5 A little bit about metamodels

As already mentioned, the estimation of GSA measures, require large number of model
simulations. If a model is computationally expensive, the construction of a metamodel or
surrogate could be necessary to compute GSA measures. A metamodel is a mathematical
construction to approximate f with a low computational cost. There exists a lot of
metamodels (e.g., linear regression model, polynomials, splines). In particular, some
metamodels provide Sobol’ indices analytical expressions which means, they could be
directly deduced without any additional cost. For example, Sobol’ indices can be deduced
from Gaussian process metamodels [Marrel et al., 2009] [see also Durrande et al., 2013,
for a special case of ANOVA kernels], polynomial of chaos [Blatman and Sudret, 2010].

2.3.6 Multivariate and/or functional model outputs

Until here, we supposed Y scalar but some avalanche model outputs are functional. For
example, Figure 2.6 shows the functional high density region (FHDR) bloxplots [see FHDR
in Hyndman and Shang, 2010] of the functional outputs (panel a flow depth and panel
b velocity) and scalar output (panel c runout distance) of n = 5000 random samples
from the Saint-Venant [Naaim et al., 2004] avalanche model. If the output is multivariate
f(X) = (Y1, . . . , Yp) or functional Y = fs(X) with s ∈ τ ⊂ R where τ is the temporal
or spatial domain of the phenomenon, it is possible to apply sensitivity analysis to each
component of the multivariate output but this could lead to redundancies in the results,
particularly in the setting of discretized functional outputs. Lamboni et al. [2009] and
Gamboa et al. [2013] extended Sobol’ indices to multivariate or functional outputs, see
also Alexanderian et al. [2020] whose work extended Sobol’ indices to time-dependent
outputs.

The aggregated Sobol’ indices are defined as:

GSi =

∑p
j=1 Var(Yj)S

j
i∑p

j=1 Var(Yj)
,

where Sji is the first-order Sobol’ index of the output Yj with respect to the input Xi

given in Equation (2.7).

4If the number of inputs is high (e.g., GPT-3 autoregressive model which has 175 billion of parameters),
it might be better to use Morris method first.
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Figure 2.6: FHDR boxplots of a random n = 5000 sample of avalanche runs a) flow depth, b)
flow velocity. c) Some examples (5 selected runs) of released and runnout positions.
The topography (black line) corresponds to an avalanche path at the Lautaret test
site.

Shapley effects can be naturally extended to multivariate output models by following
the ideas presented by Lamboni et al. [2009], Gamboa et al. [2013]. Thus, aggregated
Shapley effect of an input i is then defined as:

GShi =

∑p
j=1 Var(Yj)Sh

j
i∑p

j=1 Var(Yj)
, (2.12)

where Shji is the scalar Shapley effect of input Xi on output Yj given in Equation
(2.11). In Chapter 5, we introduce more precisely the extension of Shapley effects to
multivariate or functional outputs. Note that aggregated HSIC indices proposed by Da
Veiga [2015] could be also used for multivariate outputs.

If the output dimension is high (as it is the case, e.g., when considering the discretiza-
tion of a functional output), a dimension reduction should be applied as a preliminary step
to estimate efficiently aggregated Sobol’ or Shapley effects. Some examples of dimension
reduction techniques are presented in Section 2.4.

2.4 Dimension reduction techniques for functional

outputs

Campbell et al. [2006] suggested that if model output is functional, sensitivity analysis
should be carried out in two steps: first, to expand the functional output in terms of a
set of basis functions and then, to perform sensitivity analysis on the coefficients of the
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expansion. In general, dimension reduction consists into projecting the output matrix
Y ∈ Rn×Ns , composed by n discretized output curves in a grid of size Ns, in a basis of
lower dimension Φq×Ns with q ≤ Ns:

Y − Ȳ ≈ HΦT ,

where Ȳ = n−111TY with 1 a n-vector of ones, the columns of Φ codes the basis
functions and, H the coefficients of the expansion. Thus, each curve ` ∈ {1, . . . , n} can
be approximated as:

y`(s)− ȳ(s) ≈
q∑

k=1

h`kφk(s) for all s ∈ τ

Principal component analysis (PCA) is one of the most common techniques employed
for dimension reduction. PCA consists in the spectral decomposition, i.e. eigenvalues
and vector decomposition, of the variance-covariance matrix of the output Y. Note that
if the output is functional, functional PCA (fPCA) might be preferred (see Ramsay and
Silverman [2005] and Yao et al. [2005]). Legendre polynomials, Haar functions or wavelet
bases are other bases that could be used for dimension reduction [Campbell et al., 2006].
We choose to use PCA in Chapter 4 and fPCA in Chapter 5, whose use in GSA is common
(e.g., Lamboni et al. [2009, 2011], Alexanderian et al. [2020]).
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Abstract: Physically-based avalanche propagation models must still be locally cal-
ibrated to provide robust predictions, e.g. in long-term forecasting and subsequent risk
assessment. Friction parameters cannot be measured directly and need to be estimated
from observations. Rich and diverse data are now increasingly available from test-sites,
but for measurements made along flow propagation, potential autocorrelation should be
explicitly accounted for. To this aim, this work proposes a comprehensive Bayesian cali-
bration and statistical model selection framework. As a proof of concept, the framework
was applied to an avalanche sliding block model with the standard Voellmy friction law
and high rate photogrammetric images. An avalanche released at the Lautaret test-site
and a synthetic data set based on the avalanche are used to test the approach and to
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illustrate its benefits. Results demonstrate (i) the efficiency of the proposed calibration
scheme, and (ii) that including autocorrelation in the statistical modelling definitely im-
proves the accuracy of both parameter estimation and velocity predictions. Our approach
could be extended without loss of generality to the calibration of any avalanche dynamics
model from any type of measurement stemming from the same avalanche flow.

3.1 Introduction

The complexity of snow avalanche physics is related to the variability and changing nature
of snow [Schweizer et al., 2003, Ancey, 2006, Castebrunet et al., 2012, Steinkogler et al.,
2014]. Evidence obtained at full-scale experimental slopes [Sovilla et al., 2008, Vriend
et al., 2013, Prokop et al., 2015, Faug et al., 2018] shows a myriad of avalanche propa-
gation and stopping regimes [Köhler et al., 2016], and numerical propagation models can
reproduce these observations with increasing realism [Bartelt et al., 2016, Gaume et al.,
2018]. However, knowledge concerning the mechanical behaviour of snow during mo-
tion and associated processes (granulation, erosion/deposition, etc.) remains incomplete
[Steinkogler et al., 2015, Ancey, 2016, Truong et al., 2018]. From a macroscopic point
of view, experimental approaches [Casassa et al., 1989, Rognon et al., 2008, Kern et al.,
2009] and the proposal of Voellmy [1964] suggest rheological behaviours which remain
ad-hoc. This renders on-site calibration on the basis of local data unavoidable [Ancey
and Meunier, 2004, Salm, 2004, Eckert et al., 2012] to, e.g. predict high-return-period
avalanches in land use planning and assess the related risk [Keylock et al., 1999, Meunier
et al., 2004, Favier et al., 2014b,a]. This is all the more true given that studies have shown
that avalanche propagation models are highly sensitive to their friction parameter values
[see e.g., Borstad and McClung, 2009, Fischer, 2013].

After deterministic inversion methods had shown their limits [Dent and Lang, 1980,
Dent et al., 1998, Ancey et al., 2003], and following progress made in many fields where
accurate numerical model calibration is now recognised as a crucial issue [e.g., Oakley
and O’Hagan, 2002, Carmassi et al., 2018], the Bayesian framework has become an ap-
pealing avenue in snow science over the past years, especially in the frequent case of small
data samples [e.g., Ancey, 2005, Straub and Grêt-Regamey, 2006, Eckert et al., 2007,
2008b, 2009, 2010, Schläppy et al., 2014]. Specifically, Gauer et al. [2009] used a Bayesian
framework to calibrate the friction parameters of three avalanche sliding block models
and Fischer et al. [2014] proposed a method to evaluate simulations compared to Doppler
radar observations. Ultimately, Naaim et al. [2013] could establish empirical links between
friction parameters and physical properties of snow.

However, most of these existing approaches remain limited to rather coarse field data
(e.g., samples of runout distances supplemented by input conditions), and when more
comprehensive data sets have been considered, improper likelihood formulations have
been used more often than not [Fischer et al., 2015]. For instance, little attention has
been given so far to the specific difficulty induced by potential autocorrelation between
the data used for calibration. Whereas this is not a matter for example, a sample of
runout corresponding to distinct avalanche events, the assumption of independent obser-
vations is much more questionable in the current context of the increasingly diverse and
rich measurements made on test-sites within the same avalanche. Many environmental
applications have indeed demonstrated that neglecting potential autocorrelation between
different measurements used in a calibration scheme can lead to biases in parameter esti-
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mation and/or to lower predictive performances [see e.g., Kuczera, 1983, McInerney et al.,
2017, Schaefli and Kavetski, 2017, Sun et al., 2017]. If this happens, both the physical
interpretation of parameter estimates and the operational use of model predictions can
be questioned.

On this basis, in this paper, we propose a Bayesian approach to calibrate the friction
parameters of an avalanche propagation model using data of high temporal resolution
(of the order of 1 s). Inspired by studies done for the calibration of hydrological models
[e.g., Kuczera and Parent, 1998, Evin et al., 2014], the main novelty of our work is to
explicitly account for potential autocorrelation between measurements made along the
avalanche flow within the calibration framework. In what follows, we demonstrate that
doing so results in a model better supported by the data that improves the accuracy of
friction parameter estimates and of velocity predictions. Application is made on a well
documented avalanche event from the Lautaret full-scale test-site [Thibert et al., 2015].
The used velocity data were obtained from high rate positioning from photogrammetric
images. Such data were already applied by various authors to avalanche simulations
performed with reference friction parameter values [e.g., Dreier et al., 2016, Gauer, 2014,
Turnbull and Bartelt, 2003], but without including them within an explicit calibration
scheme. That taking into account potential autocorrelation between measurements within
the calibration is unavoidable to get unbiased estimates is further demonstrated with
synthetic data analogue to the case-study.

In this work, as a proof of concept, we use the sliding block avalanche model, also
known as 1-D Voellmy model instead of state of the art depth-averaged models [Naaim
et al., 2004, Christen et al., 2010a, Bartelt et al., 2012]. We are aware of its limitations,
notably that it makes it impossible to depict, e.g., flow depth variations in space and time.
Also, some authors have shown that it may underestimate avalanche velocities [see e.g.,
Ancey and Meunier, 2004, Gauer, 2014]. However, for hazard mitigation, simple models
with few parameters remain useful [Salm, 2004] and have the advantage to allow fast
computation in comparison to more complex ones. A very simple avalanche propagation
model is therefore a good choice for developing a calibration approach which could be in
the future be applied to any other, more advanced, avalanche propagation model as soon
as autocorrelation in measurements series is suspected.

3.2 Avalanche model calibration principle

3.2.1 Sliding block propagation model

Our model considers the avalanche as a rigid body sliding over a bidimensional curvilinear
profile starting from the top of the path. The mass m and body shape variations of the
avalanche are neglected. Under these assumptions, the motion equation of the avalanche
mass center is:

du

dt
= g sin θ − F

m
, (3.1)

where u = ||~u||, du
dt

is the acceleration, g is the gravity constant, θ is the local slope

angle and F = ||~F || is the frictional force. In this study, we consider the classical Voellmy
friction law [Voellmy, 1964]. This means that the friction force is:
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F = µmg cos θ +
mg

ξh
u2, (3.2)

depending on two friction parameters Θ = {µ, ξ}. Often it is assumed that µ evolves
with the physical properties of snow whereas ξ may correspond to the geometry of the
avalanche path and to terrain roughness [Ancey et al., 2003]. However, whereas this
interpretation is sound or not is not our debate here. We do not make any further
assumption regarding the linkages between (µ, ξ) and snow and topographical variables
and simply search for the best couple on the basis of the data. The propagation model
also depends on three forcing variables x = {T, h, xstart} where T defines the topography
of the terrain, h the mean flow depth of the avalanche and xstart the release abscissa (the
protected runout length) of the avalanche mass center [Ancey and Meunier, 2004, Eckert
et al., 2007].

3.2.2 Statistical model formulation

Let us denote f our avalanche propagation model. The model f predicts the avalanche
speed (m s−1) and position along the slope (m) at a time t (s). The model depends on
parameters Θ ∈ Rp and forcing variables x ∈ Rd. The observed velocity, collected on the
field, at time t is noted by vt and we denote vobs = {v1, . . . vn} the set of observations
where n denotes the number of observations.

The aim of model calibration is i) to find the optimal combination of parameters Θ
that minimizes the discrepancy between the observations vobs and the model simulation
f(Θ, x) and ii) to rigorously quantify the associated uncertainty. To this end, we use the
generic statistical model:

M : vt = ft(x,Θ) + εt, ∀t ∈ {1, . . . n}, (3.3)

where ft(Θ, x) denotes the simulation of the avalanche velocity at time t and εt is
the model error. With this classical additive formulation, propagation model errors and
observation errors are modelled altogether in the residuals εt.

In nearly all existing avalanche model calibration approaches, model errors are implic-
itly or explicitly assumed as independent and identically normally distributed (i.i.d.). In

other words, εt
i.i.d.∼ N (0, σ2), ∀t ∈ {1, . . . n}, where N denotes the Normal distribution

and σ2 is the common variance of the errors. However, this may be a too strong assump-
tion for different measurements made along the same avalanche. For instance, the errors
εt are likely to present a non-negligible correlation between two consecutive time steps
(in other words, εt and εt−1 may be correlated). To include the errors’ autocorrelation in
the calibration we propose to model them as an autoregressive (AR) process. Specifically,
we consider an AR model of order 1 only (AR1). AR models of higher order could be
used but this would imply the estimation of additional parameters, a non-trivial task in
our case of a limited velocity sample. In addition, results obtained for the application
indeed suggest that an AR(1) is sufficient to accurately account for the data variability
(see Section 3.4). Thus, the errors εt can be expressed as:

εt = φεt−1 + ηt, ηt
i.i.d.∼ N (0, σ2) ∀t ∈ {1, . . . n}, (3.4)

where φ ∈ R and ηt are the coefficient and innovations of the AR(1) process, respec-
tively. If |φ| < 1, (εt)t∈N is defined as the unique stationary solution of equation (3.4). In
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Model Errors Parameters
M0 Independent and identically distributed N (0, σ2) Θ, σ2

M1 AR(1) Θ, φ, σ2

Table 3.1: Considered statistical models and corresponding parameters.

our study, |φ| < 1 (see Section 3.4) that guarantees the stationarity of (εt)t∈Z. Note also
that with this model the innovations ηt are normally independent distributed but not the
errors εt.

Hereafter, the model with the assumption of normally distributed and independent
errors is denoted M0 and the model with AR(1) errors is denoted M1. Depending on
the Mi model with i ∈ {0, 1}, the whole set of parameters to be estimated is different.
Table 3.1 summarizes the parametrization of the competing statistical models considered.
Hence, model M1 with φ = 0 corresponds to M0.

3.2.3 Bayesian framework

The probability of the data can be maximised with respect to the model parameters
[Fisher, 1922]. Bayesian statistics is an useful framework to estimate model parameters
from scarce data. Within this approach, the quantification of uncertainty in parameter
estimation is straightforward. In fact, the advantage of the Bayesian approach is that the
uncertainty on parameters is assessed through credibility intervals by contrast to tradi-
tional methods (confidence intervals) [Bayes, 1763, Bernardo and Smith, 2009]. Hence,
Bayesian statistics is now widely accepted as a reasonable option in environmental sciences
[Berliner, 2003, Clark, 2005] and we use this framework in what follows.

For simplicity, let us denote γ, the set of parameters related to the errors, it means
γ = {σ2} for M0 and γ = {φ, σ2} for M1, and x = {T, h, xstart} the forcing variables.
Under a Bayesian framework, the joint posterior distribution of the parameters is the
following one:

π(Θ, γ|vobs, x) ∝ L(vobs|Θ, γ, x)π(Θ, γ), (3.5)

where L(vobs|Θ, γ, x) is the likelihood of the observations and π(Θ, γ) is the joint prior
distribution. Thus, the likelihood L(vobs|Θ, γ, x) is required. Under the M0 model, the
observations follow a Gaussian distribution and the likelihood L(vobs|Θ, γ, x,M0) writes
as:

1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑

t=1

(vt − ft(Θ, x))2

]
. (3.6)

Under theM1 model, the likelihood L(vobs|Θ, γ, x,M1) writes as (for more detail, see
Appendix A):

√
1− φ2

2πσ2
exp

[
−1− φ2

2σ2
(v1 − f1(Θ, x))2

]
× (3.7)

1

(2πσ2)(n−1)/2
exp

[
− 1

2σ2

n∑

t=2

η2
t

]
.
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Note that, in this study, we do not calibrate the quantities xstart, h, T because they were
inferred from the data to put the effort on the friction law calibration. The sensitivity to
these quantities in avalanche models has been studied in the works of e.g., Barbolini and
Savi [2001], Borstad and McClung [2009], Buhler et al. [2018]. The authors found that
changes in avalanche volume have a larger effect on both runout distance and avalanche
velocity and that the friction coefficient µ (in a Coulomb model) is of high importance.
However, this question should be analyzed deeper in a formal statistical framework and
it is out of the scope of this work.

3.2.4 Metropolis-Hastings algorithm

The main practical difficulty in Bayesian inference is how to compute the normalizing
constant in Bayes theorem. We overcome it by implementing a sequential Metropolis-
Hastings algorithm, hereafter denoted MH [Metropolis et al., 1953, Hastings, 1970]. The
MH algorithm proposes a generic way to construct a stationary and ergodic Markov chain
that converges, under mild conditions, to the posterior distribution π(Θ, γ|vobs, x). The
Markov chain returned by the algorithm can be considered as a sample from π(Θ, γ|vobs, x).

The following description of the MH algorithm is obtained from Robert [2015]. Let
us denote, for simplicity, ψ = {Θ, γ} the set of the error and model parameters. For
the application of the MH algorithm, it is needed an initial value ψ(0) and a proposal
distribution q. Each iteration k of the algorithm consists in:

1. Generating ψ′ ∼ q(.|ψ(k−1)).

2. Calculating u ∼ U(0, 1).

3. Taking

ψ(k) =

{
ψ′ if u ≤ α,

ψ(k−1) otherwise
(3.8)

with

α = min

( L(vobs|ψ′, x)π(ψ′)

L(vobs|ψ(k−1), x)π(ψ(k−1))

q(ψ(k−1)|ψ′)
q(ψ′|ψ(k−1))

, 1

)
(3.9)

where we recall that L(vobs|ψ, x) and π(ψ) = π(Θ, γ) stand for the likelihood of velocity
observations and the joint prior distribution, respectively. As mentioned in Robert [2015],
the performance of the algorithm depends on the choice of q. For example, a standard
choice for the proposal distribution q is a multinormal distribution centered in ψ(k−1) and
with a given covariance Σq, which defines a random walk. For our application, Σq was
tuned according to the optimal acceptance rates that grant fast convergence of the MH
algorithm [Gelman and Rubin, 1992].

3.2.5 Model selection using Bayes Factor

To compare the accuracy of the two competing models M0 and M1, we use the Bayes
factor. The Bayes factor is a criterion of the evidence provided by the data (in our case
vobs) to reject a model (M0) compared to another one (M1). The Bayes factor is defined
as the ratio of marginal probabilities [see more details in Kass and Raftery, 1995]:
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B10 =
p(vobs|M1, x)

p(vobs|M0, x)
, (3.10)

where

p(vobs|Mi, x) =

∫
L(vobs|ψi,Mi, x)π(ψi|Mi, x)dψi, i ∈ {0, 1}. (3.11)

The conditioning byMi highlights that likelihood, prior and posterior distributions de-
pend on the considered model. The Bayes factor can be estimated by applying importance
sampling and using the MH sample drawn from the posterior density π(ψi|vobs, x,Mi) (see
more details in Appendix B Section 3.7). An interpretation of the numerical value ob-
tained to determine if there is evidence provided by the data to reject the model M0

compared to M1 according to the value of log10B10 is proposed in the work of Kass and
Raftery [1995], where log10 denotes the common logarithm. Notably, a log10B10 value
between 1 and 2 indicates strong evidence in favour of rejecting M0 compared to M1,
and log10B10 > 2 a decisive evidence in favour of M1.

3.3 Application data

3.3.1 Avalanche data from the Lautaret test-site

The case study is an avalanche released at the Lautaret full-scale test-site [Thibert et al.,
2015]. This test-site, located in the French Alps, holds a succession of avalanche paths.
Here, the path referred as “path number 2” was used to artificially trigger an avalanche
on 13 February 2013 (Figure 3.1). This path is 450 m long, dropping from 2400 to 2100 m
a.s.l. (Figure 3.2). Its upper part part, where the acceleration of the flow occurs, is steep
with an average inclination of 37◦ and a maximal slope around 45◦ in the starting area.
This part of the path is steep-sided and around 10 m-wide, so that the flow is channelized.
The lower part of the path is mainly the run-out zone, a large and naturally open slope.
At the transition between the two parts, a road (Col du Galibier road, open in summer
only) crosses the avalanche path, which generates a local slope rupture in the avalanche
track.

The avalanche released on February 13 2013 was composed of a dense part with a lim-
ited saltation layer on top. Properties of the snow involved in the flow were characterized
with a density, temperature and hardness profile of the released snow layer. Snow grain
types and dimensions were also characterized. The avalanche was released at 11h58 AM
when air temperature was about -10◦ Celsius. A 0.25 m thick layer of fragmented and
decomposing snow particles was released. The mean density was 250 kg.m−3, ranging be-
tween 270 and 225 kg.m−3 from the bottom to the surface of the released snow cover. In
the released layer, particles diameter is less than 0.5 mm. Snow temperature was between
-4.7 and -5◦ Celcius. Hardness was “fist” (hand index) and measured as 20 N in Ram
Resistance Equivalents [Fierz et al., 2009].

Avalanche front positions were determined using a high rate photogrammetric system
that was specifically developed [Soruco et al., 2011, Thibert et al., 2015]. We used a low-
cost non-metric imagery system (numerical reflex Nikon D2Xs cameras in DX format,
CMOS sensor with Nikon 85 mm f/1.4 AF fixed focal lenses). An advanced ad hoc
tuning was performed to account for the radial distortion of the lenses, the decentration
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of the principal point (principal point shift) and the exact focal length of the lenses
required for the correct scaling of the images [Faig et al., 1990]. The resulting error in
positioning avalanche fronts was estimated to be less than 25 cm after image orientation
on ground control points and a comparison of direct photogrammetric measurements to
laser scanning on a test area. Synchronization between the two cameras was achieved
within a precision of 6.10−6 s, therefore the error associated with the time sequence is
also negligible. Eventually, terrestrial laser scanning was used to retrieve terrain elevation
before and after avalanche triggering [Prokop, 2008, Prokop et al., 2015], so as to quantify
the snow mass transfer by the avalanche (3.1). In Appendix D, Figure 3.10 shows some
examples of images used in the photogrammetric process.

The sliding block model is a one dimensional model representing the successive po-
sitions of the center of mass of the avalanche, thus we used the following procedure to
determine the velocity vector vobs. At each time t, we computed the center of mass po-
sition of the avalanche using a set of front points Dt ∈ R3 from the delineated front. Dt
excludes the lateral front points because they are less active in the avalanche flow [Pulfer
et al., 2013]:

ct =

∑
pt∈Dt pt

nt
, (3.12)

where nt is the number of elements in Dt. Note that, from the data available, it is not
possible to calculate with certainty the position of the mass center of each avalanche front.
In this study, we estimated each of them using equation (3.12), arguably a rough esti-
mation but sufficient for obtaining an approximation of the avalanche velocity consistent
with the modelling framework we are using. Figure 3.1 shows the front of the avalanche
and the center of mass at each five seconds. Then, the velocity at time t is estimated as
the mean velocity of the center of mass between two successive images:

vt =
ct − ct−1

∆t
. (3.13)

In our application, ∆t = 1s and the data set is composed of 21 observations. We
consider the first 21 seconds before the avalanche splits in sub-avalanches to ensure the
validity of the application of a sliding block model. The mean flow depth h value was
calculated as the mean of the difference between the snow depth of the digital elevation
model taken after the release of the avalanche and the snow depth registered at the mass
center locations during the avalanche motion. The value calculated was h = 2.19m with
a standard deviation of 0.78m. This estimation is rough but it is a reasonable value given
the characteristics of the avalanche studied.

The topography T was constructed as follows: the site under study has a simple
geometry. It is a rather straight avalanche path starting with a cornice and of limited and
rather constant width. The chosen 2-D topography is the main flow path starting from
the cornice in the middle of the path (see more details in Thibert et al. [2015]). From a
fine-scale Digital Elevation Model, it was extracted as a grid of horizontal resolution of
1.4m. This is largely small enough to make the impact of the numerical approximation
on the computed velocities negligible. Indeed, Bühler et al. [2011] showed that a spatial
resolution of 25m is sufficient for avalanche modelling.

Figure 3.2 shows the topography T and the points where the fronts were recorded.
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Figure 3.1: 3D-topography of path number 2 of the Lautaret test-site, some front positions
(black lines) of the avalanche released on 13 February 2013 as determined from pho-
togrammetric measurements and changes in snow depth before/after the avalanche
as inferred from terrestrial laser scanning.
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Figure 3.2: 2D-topography of the considered avalanche path (path number 2 of the Lautaret
test-site), and position of the avalanche mass center each second for the studied
avalanche released on 13 February 2013 (red circles).
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Parameter MAP estimate
µMAP 0.32
ξMAP[m.s−2] 495.73
σ2

MAP[m2.s−2] 8.07
φMAP 0.65

Table 3.2: Parameter values used for the generation of the synthetic data set. They correspond
to the maximum (MAP) obtained with model M1 for the avalanche of the 13
February 2013.

3.3.2 Synthetic data generation

In order to further evaluate the accuracy of parameter estimation with the two models, we
used synthetic data. This standard approach in statistical developments allows validation
because “truth” (i.e. the parameter values used for the synthetic data generation) is
known. Any parameter values could have been used at this stage. To resemble the most
possible to the measured avalanche velocities, we chose the combination of parameter
estimates corresponding to the measured case study. Also, to highlight that taking into
account autocorrelation between measurements within the calibration is crucial to get
unbiased estimates when such autocorrelation actually exists, our synthetic data were
generated with model M1.

Specifically, synthetic velocity time series were generated from the maximum a poste-
riori (MAP) resulting from the application of our calibration approach to the avalanche
described above with modelM1. The maximum a posteriori is the mode of the posterior
distribution, namely the most plausible value given the data (Table 3.2). In detail, after
the MAP estimators of the µ, ξ, σ2 and φ parameters of M1 model were determined for
the avalanche, we proceed as follows:

1. An avalanche model simulation was conducted using the µMAP and ξMAP parameters.
The result of this simulation is a velocity time series denoted by f(ΘMAP, x).

2. An AR(1) error of parameters σ2
MAP and φMAP was simulated.

3. The AR(1) error simulated was added to f(ΘMAP, x). If negative velocity was
obtained, the AR(1) error was resampled.

We generated 100 samples of synthetic data following this procedure and, for each of
these, the 21 velocity values which correspond to the same location of the measurement
were kept (to stay with the same data size as for the avalanche). Figure 3.3 shows some
examples of the velocity samples generated versus the avalanche data.

3.4 Application, results and discussion

3.4.1 The avalanche

Prior distributions

Our Bayesian framework was used to calibrate the parameters of theM0 andM1 models
(see Table 3.1). Marginal prior distributions used are described in Table 3.3. Parameters
were assumed marginally independent a priori. This assumption is not strong because the
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Figure 3.3: Samples of the generated synthetic longitudinal velocity profiles (colour lines) and
observations corresponding to the studied avalanche (dots).

µ ∼ Γ(9, 0.03) σ2 ∼ InvGamma(3, 20)
ξ ∼ Γ(25, 40) φ ∼ U(−1, 1)

Table 3.3: Parameters marginal prior distributions. The prior distribution of φ applies only to
M1 model. Γ represents the Gamma distribution and U the uniform distribution.

dependence of the parameters is reflected in their joint posterior distribution [Gilks et al.,
1995, Eckert et al., 2010]. Informative marginal priors were used for all parameters but
one, φ, for which a vague (poorly informative) prior was used instead, namely an uniform
distribution U(−1, 1). This latter choice was done because prior knowledge for φ was
unavailable. Instead, informative marginal prior distributions for other parameters could
be determined on the basis of expert knowledge and well known reference values from
Salm et al. [1990]. In addition, a comprehensive prior sensitivity analysis was conducted
(see Appendix C in Section 3.8). It demonstrates that our results are highly robust to
the prior choice so that this question is no longer further considered in what follows.

Convergence of the MH algorithm

For both models, we generated 50,000 MH samples and the last 25,000 were kept. The
first 25,000 iterations were discarded as a burn-in period. This step avoids dependence
on initial values. To further assess the convergence of the MH algorithm, we computed
standard diagnoses [Kuczera and Parent, 1998, Torre et al., 2001, Robert and Casella,
2009, Eckert et al., 2010]. The R Core Team [2017] package coda created by Plummer
et al. [2006] was used to calculate some of these. Specifically, three parallel chains were
generated starting from different initial points and it was graphically checked that they
were mixing well enough (not displayed). Also, the Kolmogorov-Smirnov test (H0: the
two samples where drawn from the same continuous distribution) was applied to the sam-
ples from the different chains and results showed that these were indeed drawn from the
same distribution. In addition, for both models and all parameters, it was checked that
acceptance rates (defined as the number of candidates accepted over the total number of
iterations of the MH algorithm) were close enough to 0.25, the optimal value according
to Robert [2015] to reach fast convergence in a random walk. Finally, the Gelman-Rubin
convergence criterion was computed [Gelman and Rubin, 1992]. It is based on the differ-
ence between a weighted estimator of the variance and the variance of the estimators from
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the different chains [Robert and Casella, 2009]. In our case, it equals 1 for all parameters,
a perfect result. This all demonstrates that convergence was clearly reached for both
models applied to the case study, leading to meaningful numerical approximations of the
joint posterior distributions and, hence, reliable posterior estimates of the parameters of
both models and of the Bayes factor.

Posterior distributions and posterior estimates

Figure 3.4 shows the parameter prior and posterior densities according to the MH samples.
In Figure 3.4 panels a) to c) (resp., Figure 3.4 panels d to g), theM0 densities are shown
(resp., M1) and Table 3.4 sums up the corresponding descriptive statistics. Eventually,
posterior correlations between model parameters are shown in Figures 3.5 and 3.6 forM0

andM1, respectively. For the two models, the marginal posterior distributions have lower
variance than their priors, meaning that the observations have conveyed information into
the analysis (see Figure 3.4), an expected result.

The variances of the posterior distribution of the friction parameters µ and ξ in the
M0 model are lower than in M1 model. This result (arguably the sole undesirable
one with M1 compared to M0) could be a consequence of the interactions between the
friction coefficients and error parameters in the more parametrized M1 model (four free
parameters instead of three with M0). Indeed, there is strong correlation between the
parameters ξ and φ (0.49) for the modelM1, which may preclude reaching sharp estimates
of friction parameters with model M1. Conversely, even if there is a high correlation
between the parameters µ and ξ with both models, switching from M0 to M1 reduces
it from 0.85 to 0.50. The high correlation between the two parameters of the Voellmy
friction law is known since the first calibration approaches of, e.g. Dent and Lang [1980].
This usually limits robust interpretation of obtained estimates, so that reducing it thanks
to M1 should be seen as advantageous. This correlation reduction may be a collateral
effect of having one more free parameters, allowing a bit more flexibility to fit the data.
Similar effect is reflected in the lower correlation between σ2 and the friction parameters
with M1 than with M0. Note by the way that fairly assessing such correlations is a real
strong point of our formal Bayesian calibration approach.

Remarkably, posterior estimates of friction parameters are very contrasted under both
models. Even if posterior densities are not significantly different at the 95% credibility
level (notably because of the higher a posteriori variance with model M1), differences in
posterior estimates reaches 13% for µ (relative difference between 0.34 withM1 instead of
0.3 withM0), and 70% for ξ (relative difference between 696 m2.s−1 with modelM1 and
410 m2.s−1 with model M0). This indicates that using either M0 or M1 makes a huge
difference if one aims at interpreting the value of posterior estimates, for, e.g., relating
avalanche friction characteristics to snow and topographical conditions.

Another remarkable result is the diminution of the error variance σ2 from model M0

to model M1 (Table 3.4). Indeed, the errors variance σ2 is higher if the autocorrelation
φ is not included. Specifically, the standard deviation of the errors decreases from 3.6
to 3.1 m.s−1 indicating that with model M1 velocity predictions may be seen as 13%
more accurate (relative difference between both estimates), another desirable property
for practical use in snow science. Eventually, the autocorrelation parameter φ is largely
positive, with a posterior mean of 0.71. Also, its posterior 95% credibility interval whose
lover bound is 0.33 firmly excludes the zero value corresponding to M0. This pleads for
a high and significant autocorrelation between velocities along flow propagation.
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Model M0 M1

µ ξ[m.s−2] σ2[m2.s−2] µ ξ[m.s−2] σ2[m2.s−2] φ
Mean 0.3 409.74 12.71 0.34 696.12 9.79 0.71

sd. 0.07 101.12 3.53 0.08 305.71 2.62 0.17
q0.025 0.16 264.30 7.66 0.18 306.97 5.93 0.33
q0.50 0.3 393.34 12.17 0.34 627.36 9.33 0.73
q0.975 0.43 649.64 20.98 0.50 1475.67 16.15 0.96

Table 3.4: Posterior distribution characteristics: posterior mean, posterior standard deviation
(sd.), median (50% percentile) and 95% credibility interval (2.5% and 97.5% per-
centiles).
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Figure 3.4: Prior and posterior densities of model parameters. Panels a) to c) modelM0 and
panels d) to g) model M1.
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Figure 3.5: Joint posterior distribution of parameters of M0 model highlighting inter-
parameter correlations.

Model posterior estimates

We calculated for modelM0 the posterior estimate of Voellmy model simulations f(Θ, x)
from the posterior estimates of parameters µ and ξ (Table 3.4). Resulting posterior
estimates of model errors εt were analyzed by applying the Ljung-Box test (H0: the data
are independently distributed). We found a p-value lower than 0.05 indicating that there
is a significant autocorrelation of model errors. In other words, cor(εt, εt−1) for all t > 1 is
significant. Hence, one of the assumptions underlying statistical modelM0 is not fulfilled
by the data. On the other hand, applying standard statistical tests to posterior estimates
of model errors shows no evidence of non-Gaussian errors (Shapiro test H0: the sample is
normally distributed, p-value > 0.05) or heteroscedasticity. The assumptions of Gaussian
errors of common variance underlying statistical model M0 are thus fulfilled.

We proceeded similarly for statistical modelM1, applying the same statistical tests to
the posterior estimates of the innovations ηt of the AR(1) model. Remember that, in the
M1 model, the independence assumption is on the innovations ηt and not on the errors εt.
Test results show that innovations are indeed independent (p-value of the Ljung-Box >
0.05), and normally distributed (p-value of Shapiro test > 0.05) with common variance.
These results show that M1 represents correctly the autocorrelation of the errors, and,
more widely, that contrary to model M1 all of its underlying assumption are fulfilled,
which promotes its use from a strict statistical point of view.

Predictive velocity distributions

To analyze how the statistical model choice affects velocity estimation, we propagated pa-
rameter uncertainty up to model predictions. Two sets of posterior predictive simulations
were performed, the first integrating over the posterior distribution of friction parameters
only, leading the posterior predictive distribution p(vx|vobs, x,Mi) of the avalanche propa-
gation model, and the second integrating over the distribution of both friction parameters
and model error parameters leading the full posterior predictive distribution of avalanche
velocities for the case study p′(vx|vobs, x,Mi). More precisely, the first writes:

p(vx|vobs, x,Mi) =

∫
f(Θ, x)p(Θ|vobs, x,Mi)dΘ, (3.14)

and, the second one :
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Chapter 3. Bayesian calibration of an avalanche model

Figure 3.6: Joint posterior distribution of parameters of M1 model highlighting inter-
parameter correlations.

p′(vx|vobs, x,Mi) =

∫
(f(Θ, x) + ε)p(Θ, γ|vobs, x,Mi)dΘdγ. (3.15)

Eventually, to quantify the added value of parameter inference, the prior distribution
of the velocity was also calculated by integrating over the prior distribution on the friction
and model error parameters:

π(vx|x,Mi) =

∫
(f(Θ, x) + ε)π(Θ, γ|Mi)dΘdγ. (3.16)

By using a Bayesian approach, we obtained a sample of parameters (µ, ξ, σ2) for M0

(and also of φ forM1). Then, we computed avalanche model simulations using these two
samples to obtain several curves of velocity. Finally, we drawn the percentile of each curve
in Figure 3.7. Also, this figure shows the resulting 90% credibility intervals. For both
models, comparison between prior and posterior credible intervals shows that predicted
velocities are logically shifted towards observations. Uncertainty reduction (change in the
width of the 90% credible intervals) is stronger with M0, but also exists with M1. This
simply reflects the larger a posterior variance of modelM1 parameters highlighted above.

In detail, almost all the elements of vobs, except two with model M0 and one with
model M1, are inside the 90% posterior credibility intervals drawn on p′(vx|vobs, x,Mi)
(blue dotted lines Figure 3.7), so that from this perspective the added value ofM1 is not
obvious. However, why M1 model is advantageous clearly appears if one focuses on the
deterministic Voellmy model component (dotted orange lines in Figure 3.7): predictions
come closer to observations and notably the velocity underestimation generally attributed
to the Voellmy sliding block model [see e.g., Ancey and Meunier, 2004, Gauer, 2014] is
reduced. Indeed, only 33% of the observations are inside the 90% posterior credibility
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intervals of the sliding block model simulations p(vx|vobs, x,M0), compared to 62% with
M1 model.

Another quantification is provided by the systematic difference between both models
that we evaluated through the mean difference and the mean quadratic difference between
the medians of predicted velocities under M0 (Figure 3.7 panel a), black line) and M1

(Figure 3.7 panel b), black line). If we denote q50vx,Mi
the median (50% percentile) of

the posterior predictive distribution of velocities under model Mi, the first writes:

∆1 =
1

240

∫ 240

0

(q50vx,M1 − q50vx,M0)dx

and the second:

∆2 =

√
1

240

∫ 240

0

(q50vx,M1 − q50vx,M0)
2dx

Obtained values are ∆1 = 1.31 m.s−1 and ∆2 = 1.72 m.s−1. The positive value of
the mean difference and the fact that it is not that much lower than the mean quadratic
difference clearly shows that the inclusion of autocorrelation into the modelling truly leads
to systematically higher velocity predictions. Predicted velocities are rather constant
between x = 50m and x = 250m (plateau phase), around 15m.s−1 with M0. The
underestimation withM0 with regards toM1 can be estimated by the ratio between ∆2

and this velocity to 11.5%.
All in all, the analysis of predictive velocity distributions further confirms that model

M1 should be preferred to get sharper, less underestimated, point estimates of avalanche
velocities and to assess the related uncertainty fairly (credibility intervals lager but more
likely to realistically describe the range of possible results).

Model selection

Finally, the logarithm of the Bayes Factor log10 B10 was calculated to compare the M0

model to theM1 model and we obtained a value of 2.02. According to the interpretation
suggested in [Kass and Raftery, 1995, page 777] evidence, given by the data, to reject
the M0 model compared to the M1 model is thus decisive. Indeed, log10 B10 > 2 simply
implies that given the data model M1 is more than 100 times more likely than model
model M0.

3.4.2 Synthetic data

We then applied our Bayesian framework to calibrate the parameters of the 100 synthetic
velocity profiles generated using the MAP estimators of model M1. We used the same
marginal prior distributions as before (see Table 3.3). For each synthetic avalanche, we
generated 20,000 MH samples and the last 10,000 were kept. Convergence was verified
with the same diagnoses as for the measured data. We could then determine the ability
of the M0 and M1 models to retrieve the true model parameter values used for the
synthetic data generation. For this, we calculated the 90% coverage rates for the different
parameters, this means, the number of 90% credibility intervals recovering the true value
of Table 3.2. According to the results of Table 3.5,M1 model has a much better ability to
determine the true model parameter values compared to the M0 model. This especially
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Figure 3.7: Predictive velocity distributions versus data: a) modelM0 and b) modelM1. 90%
posterior credibility intervals (CI) are computed according to Equations (3.14) and
(3.15) for the Voellmy propagation model (orange dotted lines), and the complete
propagation and error model (blue dotted lines), respectively. Black plain line
denotes the posterior median of the complete model. 90% prior credibility intervals
are computed according to Eq. (3.16) (green dotted lines). Observations used for
calibration appear as red points.

M0 M1

Parameter µ ξ σ2 µ ξ σ2 φ
Coverage rate 64 84 0 98 82 98 93

Table 3.5: The 90% coverage rates for the synthetic data sample. For each parameter and
both models, the 90% coverage rate corresponds to the number of times over the
sample of 100 synthetic avalanches for which the 90% posterior credibility interval
includes the true value used for data generation. In other words, 90% is the perfect
validation score. Parameter φ applies to model M1 only.

applies to σ2 for whichM0 model is fully unable to identify the true value and, to a lower
extent, to µ, for which the true value is in the posterior 90% credibility interval less than
two times over three. Conversely, 90% coverage rates with M1 model are rather fair,
varying between 82% and 98% for all the four parameters.

To further compare the precision of the estimates led by the two models, the MAP
estimators corresponding to the full synthetic sample are presented in Figure 3.8 in panels
from a) to d). In mean, both models result in an underestimation of the µ parameter, but
the underestimation withM1 is much smaller than withM0. In addition, the true value
is well within the range of variability of the different estimates corresponding to the 100
synthetic avalanches withM1 whereas it is clearly outside withM0. Similarly, parameter
σ2 is much better estimated by M1 model. Parameter ξ is slightly underestimated by
M0 model and slightly overestimated byM1 model, but both models perform reasonably.
Finally, M1 model estimates correctly the autocorrelation parameter φ. Overall, this
analysis confirms that onlyM1 model is able to retrieve the true parameter values as soon
as autocorrelation between measurements actually exists. In other words, not accounting
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Figure 3.8: Panels a) to d): Boxplots of the MAP estimators under models M0 (red colour)
and M1 (blue colour) corresponding to the 100 synthetic avalanches. The true
parameter values used for synthetic data generation are shown with a green colour
line. Panel e) Boxplot of log10 B10 obtained for the 100 synthetic avalanches. The
value of 2 in green corresponds to the reference value of Kass and Raftery [1995]
above which evidence in favour of M1 is decisive.

for autocorrelation within model calibration when autocorrelation actually exists carries
high risk to lead to biased estimates. This provides another very strong argument in favour
ofM1 since, as evidenced by the case study, significant autocorrelation may indeed exist
between measurements made along the same avalanche flow.

Eventually, the common logarithm of the Bayes factor calculated for each synthetic
avalanche (see Figure 3.8 panel e) indicates for all synthetic velocity series decisive ev-
idence to reject the M0 model compared to the M1 model. This result is all the more
logical given that the Bayes factor asymptotically selects the true model when it is in-
cluded within a sample of competing models. However, this can be seen as a last strong
point to advise using model M1 as soon as autocorrelation is suspected.

3.5 Conclusion and outlook

In this work, a Bayesian calibration of an avalanche flow dynamics model from data of
high temporal resolution [1s] was developed. The objective of this work was to show how
potential autocorrelation between measurements made along an avalanche flow can be
considered within the calibration of an avalanche model, and to demonstrate that this
improves the accuracy of friction parameters estimation and velocity predictions.

Two statistical models representing the discrepancies between observations and simu-
lations were proposed: the first one,M0, classically considered the errors as independent
and identically normally distributed, and the second one, M1, modelled the errors as
an autoregressive process of order 1. The latter accounts for potential autocorrelation
between measures made along the same avalanche flow, a question which has been poorly
addressed in the snow science literature so far. Our objective was to determine the accu-
racy of parameter estimation when the autocorrelation is included or not in the modelling.
More generally, we wanted to develop a framework able to link in a more mathematically
consistent way, the rich and diverse data now increasingly available from avalanche test-
sites with numerical propagation models.
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Chapter 3. Bayesian calibration of an avalanche model

Application was made on a well documented avalanche event and on synthetic data.
The avalanche was released at the Lautaret full-scale test-site on February 13 2013 and the
corresponding velocity time series was obtained from high rate positioning photogram-
metry. A synthetic data set of 100 velocities time series mimicking the avalanche was
created in order to further test our approach and to illustrate its benefits. Results for the
avalanche showed strong and significant autocorrelation between predicted velocities. It
also appeared that the velocity time series was correctly modelled by the statistical model
M1 only (Ljung-Box test p-values > 0.05) so that there was decisive evidence to reject
M0 compared to M1. In addition, resulting posterior estimates for friction parameters
µ and ξ and velocities along the path were shown to be different and arguably more re-
alistic (for the estimated velocities) with M1 than those obtained with M0. Eventually,
our synthetic data confirmed that in presence of autocorrelation between measurements,
not accounting for it may lead to biased estimates. This all demonstrates the necessity
and usefulness to explicitly account for autocorrelation within the calibration, both to
realistically predict avalanche characteristics and to get friction parameter estimates that
can be related to snow and topographical characteristics in a meaningful way, two points
of crucial importance in snow science. Hence, since avalanche velocities are time-series,
as a good practice of modelling, potential autocorrelation of the errors should always be
envisaged, since we clearly demonstrate that neglecting this effect may lead to undesirable
consequences.

To develop and illustrate our approach, we chose the simple sliding block model with
the Voellmy friction law because it is faster to run than more computationally intensive
state of the art avalanche models. As it was mentioned in the Introduction, we used
this simple model as a proof of concept but our approach could be generalized to other
friction laws (e.g., the Coulomb one which has the advantage of having a single parameter
(µ)), and to other ways of describing avalanche flows (e.g., depth-averaged equations or
a sliding block with a PCM formulation, which would avoid the estimation of the flow
depth) after suitable adaptation of the algorithm. Also, on the existing basis, it should
be possible to include within the calibration other quantities which can be measured
simultaneously as for example, the snow depth in the release area, the runout distance, the
deposited volume, etc. This would better constrain the calibration, leading to potentially
less uncertain posterior estimates. In such a case, an appropriate likelihood would need to
be proposed and a higher number of observations would be required to calibrate the new
likelihood parameters. To overcome this shortcoming using several avalanches altogether
could be an option which was out of the scope of this work.

One of the main drawbacks of a Bayesian approach is the high number of simulations
that are needed (at least 1000 simulations) to reach convergence in a Markov Chain
Monte Carlo setting. Also, a compromise between the number of parameters that can be
estimated and the size of the data must be found. Hence, whether or not our approach
can be practically implemented with the most computationally intensive avalanche model
and how many unknown parameters can be inferred as function of the available data sets
remain questions to be investigated.

Finally, it is worth to mention that the avalanche size and velocities we found are
typical of a medium size avalanche (class 3 on the CAA international avalanche scale).
Specifically, friction parameter values correspond to the range of values that can be found
in the literature. In future work, it could therefore be informative to apply our approach
to a much large sample of avalanches to exploit its potential for inferring relevant physics
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(e.g., to find the relationship between friction parameters and snow conditions). Ulti-
mately, this all should i) lead to a more accurate evaluation of the highest-return-period
events required for avalanche risk assessment, and ii) simultaneously improve our knowl-
edge of the relevant physics by providing sharper quantification of underlying processes.

3.6 Appendix A: Likelihood of an AR(1) process

Since |φ| < 1, the εt error has a representation in terms of the innovations ηt (also known
as MA(∞) representation, see Gouriéroux and Monfort [1995] for more details):

εt = φtε0 +
t−1∑

i=0

φiηt−i, (3.17)

where we recall that φ and ηt−i are the coefficient and the innovations of the AR(1)
process, respectively (see equation 3.4).

From the last equation, the unique stationary solution is obtained for ε0 with zero
mean and variance equal to σ2

1−φ2 , independent from (η1, . . . , ηt), and we get that:

E(εt) = E(ε0) +
t−1∑

i=0

φiE(ηt−i) = 0, (3.18)

Var(εt) = φ2tVar(ε0) +
t−1∑

i=0

φ2iVar(ηt−i) =
σ2

(1− φ2)
. (3.19)

The marginal distribution of εt is Gaussian because it is the sum of independent and
identically normally distributed ηt. In particular the first error term ε1 is Gaussian:

ε1 ∼ N
(

0,
σ2

(1− φ2)

)
. (3.20)

Considering that ε2 = φε1 + η2, the conditional distribution of ε2 given ε1 is ε2|ε1 ∼
N (φε1, σ

2). In a more general way:

εt|εt−1 ∼ N (φεt−1, σ
2). (3.21)

Then, the joint distribution of errors is:

p(ε1, · · · , εn|φ, σ2) = p(ε1)
n∏

i=2

p(εi|εi−1). (3.22)

From this equation, the likelihood expression of equation (3.7) is obtained.

3.7 Appendix B: Numerical evaluation of the Bayes

Factor

Thanks to the Bayes theorem, we can write:
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1

p(vobs|Mi, x)
=

π(ψi|vobs,Mi, x)

L(vobs|ψi,Mi, x)π(ψi|Mi, x)
, (3.23)

where i ∈ {0, 1}.
If g is a density function defined on an ensemble Ω:

1

p(vobs|Mi, x)
=

1

p(vobs|Mi, x)

∫

ψi∈Ω

g(ψi)dψi

=

∫

ψi∈Ω

g(ψi)π(ψi|vobs,Mi, x)

L(vobs|ψi,Mi, x)π(ψi|Mi, x)
dψi.

From Monte Carlo simulations, 1
p(vobs|Mi,x)

can thus be estimated as:

1

p(vobs|Mi, x)
=

1

N

N∑

j=1

g(ψ
(j)
i )

L(vobs|ψ(j)
i ,Mi, x)π(ψ

(j)
i |Mi, x)

. (3.24)

where {ψ(j)
i ; j = 1, · · · , N} is a sample from the posterior distribution ofMi (see Kass

and Raftery [1993] page 19 equation 12).
For this application, the g function was chosen as a multinormal distribution with

mean equal to the empirical mean and covariance matrix equal to the estimated covariance
matrix of our Metropolis-Hastings sample, respectively.

3.8 Appendix C: Prior sensitivity analysis

To study the robustness of our results, we conducted a prior sensitivity analysis by varying
prior information for model parameters (µ, ξ, σ2). We explored the range of priors from
the marginal informative priors used in the paper core up to vague (poorly informative)
priors as much as possible. In the case of M0 model, marginal vague priors could be
tested for all the three parameters instead of informative ones. For M1 model, however,
the informative prior should be always kept for ξ, because, if for this parameter a vague
prior was used, the MH algorithm convergence could not be achieved. This is explained by
the high correlation between the ξ and φ parameters (close to 0.5, see Figure 3.6). For the
φ parameter, a uniform distribution U(−1, 1) was used in all the analysis. The different
combinations of informative and non-informative priors tested are shown in Table 3.6.
Corresponding posterior distributions are shown in Figure 3.9.

Even if slight differences between the different posteriors can be noted as one replaces
one prior by another, overall, for both models, results remain quite similar, leading in all
cases to posterior estimates very close to the ones obtained with the informative priors
used in the paper core (see Table 3.4). Also, the common logarithm of the Bayes Factors
was calculated between all combinations ofM1 andM0 posterior samples and, in nearly
all cases, there is strong to decisive evidence to reject M0 compared to M1 model, as
demonstrated in the paper core with informative priors. Indeed, the obtained log10(B10)
values are between 0.57 and 2.49 with a mean of 1.38 and a standard deviation of 0.61.
Hence, all in all, posterior inference and model selection show little sensitivity to prior
specification. Since it is advised to use priors with a finite domain as much as possible to
avoid spurious results [Kuczera and Parent, 1998] we kept the informative priors in the
paper core.
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Table 3.6: Marginal prior distributions used for the sensitivity analysis. Priors 3 and 5 are
used withM0 model only, and prior 6 withM1 model only. Γ denotes the Gamma
distribution and InvΓ denotes the inverse Gamma distribution. Prior1 is the one
used in the paper core. ”-” denotes vague marginal priors.

Parameter µ ξ σ2

Prior1 Γ(9, 0.03) Γ(25, 40) InvΓ(3, 20)
Prior2 - Γ(25, 40) InvΓ(3, 20)
Prior3 Γ(9, 0.03) - InvΓ(3, 20)
Prior4 Γ(9, 0.03) Γ(25, 40) -
Prior5 - - -
Prior6 - InvΓ(3, 20) -
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Figure 3.9: Prior sensitivity analysis. Postk, where k ranges for 1 to 6, are the posterior
distributions obtained with the priors 1 to 6 of Table 3.6. Prior1 is the informative
prior used in the paper core. Panels a) to c): M0 model; panels d) to g): M1

model.
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Figure 3.10: Images used in the photogrammetric process. a) and b) are the left and right
images for the avalanche released on 13 February 2013 for t=20s after triggering.
This couple is used for restitution and to map the location of the avalanche head.
Markers plot the permanent ground control points used for image orientation.
To illustrate the spatial extension, the coordinates and elevations (in meters) are
indicated for the upper and lower control points (m3, t6), and for control point
m5 at location of Col du Galibier road. The right image c) has been taken
after the avalanche stops. Temporary control points t1 to t6 are setup after the
avalanche in the runout area to improve image orientation in this area according
to the avalanche deposit.

3.9 Appendix D: Images used in the photogrammet-

ric process

In this appendix, some examples of images used in the photogrammetric process are
shown.
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Global sensitivity analysis
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Abstract: Avalanche models are increasingly employed for elaborating land-use maps
and designing defense structures, but they rely on poorly known parameters. Careful
uncertainty assessment is thus required but difficulty arises from the nature of the outputs
of these models, which are commonly both functional and scalar. Hence, so far in the
avalanche field, few sensitivity analyses have been performed. In this work, we propose
to determine the most influential inputs of an avalanche model by estimating aggregated
first-order Sobol’ indices. We propose a nonparametric estimation procedure based on
the Nadaraya-Watson kernel smoother, which allows to estimate the aggregated Sobol’
indices from a given random sample of small to moderate size. Due to the limited size of
the sample, the kernel estimation is biased. Therefore, we propose a bootstrap based bias
correction before selecting the bandwidth by cross-validation. To estimate the aggregated
Sobol’ indices, we reduce the dimension of the output using principal components analysis.
After different test cases showing the efficiency of our approach, it is applied to a real
avalanche case. Results show that the friction parameters and the snow depth in the
release zone are the most influential parameters determining the avalanche characteristics.
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4.1 Introduction

In mountain environments, snow avalanches are a constant threat for settlements and their
inhabitants [McClung and Schaerer, 2006, Ancey, 2006]. This creates conflict between
development and, safety and land-use planning is an efficient way to reduce death tolls
[Gruber and Margreth, 2001, Eckert et al., 2018a]. To this aim, avalanche flow dynamic
models are increasingly employed for elaborating land-use maps and designing defense
structures [Naaim et al., 2010, Favier et al., 2014b]. However, all existing physics-based
snow avalanche models remain based on some parameters which are poorly known [Ancey
and Meunier, 2004, Eckert et al., 2008b]. This applies, for instance, to friction parameters
representing the behavior of snow in motion and to initial conditions corresponding to the
avalanche release [Jamieson et al., 2008, Eckert et al., 2010, Naaim et al., 2013]. Thus, a
careful assessment of the impact of the uncertainty of the inputs on the outputs should
be carried out [Fischer, 2013]. Difficulty arises from the nature of the outputs of these
models, which are commonly both functional (e.g., the velocity and flow depth of the
avalanche as function of space and time) and scalar (e.g., the runout distance, aka the
point of further reach on the 2D topography of the avalanche flow path).

One of the main purposes of sensitivity analysis is to determine the inputs which are
the most influential on the output or outputs of a model where the model can be of any
nature, for example a black-box model or a complex computational code [Saltelli et al.,
2000]. More specifically, Saltelli et al. [2004] proposed four settings as a guide of objectives
of a sensitivity analysis: factor prioritization, factor fixing, variance cutting and factor
mapping [Saltelli et al., 2004, Iooss and Prieur, 2017]. It depends on the analyst to define
the objectives of its sensitivity analysis. In the global sensitivity (GSA) framework, the
input parameters are modeled by random variables, which will be assumed independent in
this paper. The probability distribution chosen to model the input vector is often guided
by practitioner’s belief. The output is then random as it depends on the inputs through
the model. In this work, our objective is factor prioritization which consists in identifying
which inputs or factors once fixed would reduce the variance of the output [Saltelli et al.,
2008] at most.

There exist different sensitivity measures in the literature for quantifying the influence
of each input on the output: variance based indices, also known as Sobol’ indices [Sobol’,
1993], density based measures [Borgonovo et al., 2016], entropy-based sensitivity measures
[Auder and Iooss, 2008], etc. A detailed review of sensitivity measures can be found, e.g.,
in Iooss and Lemâıtre [2015] and Borgonovo and Plischke [2016].

We focus our study on variance based first-order Sobol’ indices [Sobol’, 1993] commonly
used for factor prioritization. In short, Sobol’ indices are constructed as follows: if the
output of a model is scalar, its total variance can be split into partial variances by using
the Hoeffding decomposition [Hoeffding, 1948]. If the inputs are independent, each of the
partial variances is associated to an input or to an interaction between inputs through the
ANOVA decomposition [Efron and Stein, 1981]. Then, the Sobol’ indices [Sobol’, 1993]
are calculated as the ratio of each partial variance to the total variance. Moreover, Sobol’
indices generalize the linear correlation coefficient R2 for any kind of models.

Sobol’ indices are easy to interpret: a high index value shows the input is relevant
and a value close to zero shows that it is not, all the indices are normalized between 0
and 1 and sum to 1. Moreover, Sobol’ indices have a natural extension to multivariate
or functional outputs [see, e.g., Lamboni et al., 2009, Gamboa et al., 2013] which is the
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framework of the application that motivated this study.

If the output is multivariate, it is possible to apply sensitivity analysis to each com-
ponent of the multivariate output but this could lead to redundancies in the results,
particularly in the setting of discretized functional outputs. It seems therefore interesting
to turn to the so-called aggregated indices first introduced in Lamboni et al. [2009] which
summarize the information. A preliminary step of output dimension reduction such as,
e.g., principal component analysis (PCA) or partial least-squares may also be applied first
[see, e.g., Campbell et al., 2006]. For our real application in the avalanche field, dimen-
sion reduction was performed by simultaneous PCA introduced in Ramsay and Silverman
[2005] [see also Nanty et al., 2017, and references therein].

We now discuss the estimation of aggregated Sobol’ indices. There are many methods
to estimate Sobol’ indices: the Fast Amplitude Sensitivity Test (FAST) [see, e.g., Saltelli
et al., 1999, and references therein], Random Balance Design [Tarantola et al., 2006],
Sobol’ pick-freeze schemes [Sobol’, 1993]. The main drawback of all the aforementioned
methods [Plischke, 2010] is that they are based on sampling designs of particular type.
Nevertheless, for many memory and time consuming real applications, the cost (in terms
of number of model evaluations) of these approaches is prohibitive. For example, to
estimate a single Sobol’ index with an uncertainty of 10%, it could be required to perform
104 model runs [Iooss and Lemâıtre, 2015].

To overcome the drawback of the aforementioned methods, authors use approaches
not based on structured sampling designs to estimate the indices. These methods are
known as given data or one sample methods. They also correspond to green sensitivity
analysis because available data from previous model runs can be reused. Among these
approaches, we can cite the effective algorithm for computing global sensitivity indices
(EASI) method proposed by Plischke [2010], which is a spectral method based on the Fast
Fourier Transform. We also mention the work in Plischke et al. [2013], which relies on
the notion of class-conditional densities, where a class is a sub-sample stemming from a
suitable partition of the dataset. Much more recently, Antoniano-Villalobos et al. [2019]
proposed a fully Bayesian given data procedure.

In the present paper, we propose a new given data method to estimate first-order
Sobol’ indices, based on a nonparametric Nadaraya-Watson [Nadaraya, 1964, Watson,
1964] bias corrected kernel regression [Racine, 2001]. Our approach is close to the one
introduced in Soĺıs [2019]. The main difference is in the formula we apply to correct the
bias, which seems to be more efficient, at least in the results of our simulation study. We
then extend this estimation procedure to the estimation of the aggregated Sobol’ indices
[Lamboni et al., 2009]. To our knowledge, it is the first time a nonparametric given
data procedure is proposed in this framework. It must be noted that the estimation of
higher-order and total Sobol’ indices may not be possible using kernel estimation with
moderate sample sizes due to the curse of dimensionality Da Veiga et al. [2009], Hence,
the estimation method proposed in this work focuses on aggregated first-order Sobol’
indices. Kernel regression with bandwidth selection via cross-validation was already used
in Doksum and Samarov [1995] to estimate the relative measure of the importance of a
subset of input variables relative to the full set of input variables. It is also of interest
to cite Sparkman et al. [2016], in which the authors proposed a sample weighting scheme
similar to kernel regression for estimating the moments of the conditional distributions in
the calculation of first-order and total Sobol’ indices. Da Veiga et al. [2009] also proposed
a methodology based on local linear regression for the estimation of first-order Sobol’
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indices. The Nadaraya-Watson estimator can be seen as a particular case of the wider
class of nonparametric estimators, called local polynomial estimators used in Da Veiga
et al. [2009]. Specifically, it corresponds to performing a local constant fit. However the
procedure in Da Veiga et al. [2009] is clearly different from ours, as it consists in splitting
the sample in two disjoint sub-samples, the first one used to emulate the conditional
expectation, the second one used to estimate each first-order Sobol’ index, replacing the
conditional expectation with its corresponding emulator. Note that metamodels have
been widely used to estimate Sobol’ indices (e.g., linear regression models, polynomials,
splines). Most of the time, the metamodel is built to emulate f rather than the conditional
expectation. Some of these metamodels, such as polynomial chaos (see, e.g., Sudret [2008],
Le Gratiet et al. [2016]), lead to an analytical expression of Sobol’ indices (using, e.g.,
Parseval equality if polynomial chaos are considered). In Marrel et al. [2009], the authors
derive an analytical expression of Sobol’ indices based on Gaussian process regression. In
Durrande et al. [2013], the authors prone the use of ANOVA kernels.
In the framework of sensitivity analysis with a nonparametric estimator based on nearest
neighbors, Broto et al. [2020] proposed to estimate Shapley effects introduced by Owen
[2014].

Within the avalanche field, only a few studies have analyzed the influence of inputs
on the outputs of dynamic propagation models. For example, Barbolini and Savi [2001]
used a Monte Carlo approach to analyze the sensitivity of runout distances and impact
pressures in the VARA model. Jamieson et al. [2008] discussed the main sources of un-
certainty in the inputs of avalanche models. Borstad and McClung [2009] developed a
sensitivity analysis of an avalanche model with a Coulomb-type friction law. Bühler et al.
[2011] explored the influence of the digital elevation models resolution on the outputs of
the RAMMS avalanche model. Eventually, Buhler et al. [2018] developed a sensitivity
analysis of released volumes, runout distances and avalanche velocities in the runout zone
with respect to the initial released volume with the RAMMS avalanche model. However,
the previous studies did not apply formal statistical methods to quantify the respective
importance of the inputs. Moreover, authors considered only scalar outputs in their ap-
proaches. By contrast, in our paper, we focus on the avalanche model proposed by Naaim
et al. [2004] and we quantify the importance of its inputs on its outputs by estimating
the aggregated Sobol’ indices with our new nonparametric procedure. The uncertainty
on the input parameters was defined based on data obtained from an avalanche released
on 13 February 2013 at the Lautaret full-scale test-site [Thibert et al., 2015].

In summary, the aims of this study are: (i) to propose a nonparametric estimation
method for the aggregated Sobol’ indices in a given data framework when sample size is
small (ii) to quantify the input importance in avalanche models, having complex outputs
(e.g., a mix of functional and scalar outputs). The approach can be easily adapted to
other avalanche models and more widely in environmental sciences in the frequent case of
complex models with outputs which are both functional and scalar. This work is organized
as follows: the aggregated Sobol’ indices and the estimation method are described in
Section 4.2. In Section 4.3, we test the estimation method on toy functions. Then, in
Section 4.4, the avalanche model is described and the results are presented. Finally, in
Section 4.5, the conclusions and perspectives are discussed.
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4.2 Aggregated Sobol’ indices

Let us denote by f the model which takes as inputs the vector X = (X1, . . . , Xd). The in-
puts X1, . . . , Xd are modeled by random variables defined on a probability space (Ω,F ,P)
and valued in a measurable space E = E1 × E2 . . . × Ed. The output of the model f is
the p multivariate vector Y = (Y1, . . . , Yp)

T . It means, we have:

f(X) = f(X1, . . . , Xd) = Y = (Y1, . . . , Yp)
T .

In the following, we assume that E(Y 2
1 + . . .+Y 2

p ) <∞ and that the random variables
X1, . . . , Xd are independent from each other. This condition guarantees the uniqueness
of the ANOVA decomposition [Sobol’, 1993]. To summarize the importance of each input
Xi on the multivariate output Y, we aim at computing the aggregated Sobol’ index GSi
introduced in Lamboni et al. [2009] [see also Gamboa et al., 2013] defined as:

GSi =

∑p
j=1 Var(Yj)S

j
i∑p

j=1 Var(Yj)
,

where Sji is the first-order Sobol’ index of the output Yj with respect to the input Xi

namely

Sji =
Var(E(Yj|Xi))

Var(Yj)
(4.1)

Notice that GSi ∈ [0, 1]. As in the case of the scalar indices, the main advantage of the
aggregated indices is their easy interpretation: a high value means the input is important,
a value close to zero means it is not, and

∑d
i=1GSi = 1.

In the following, we propose to estimate nonparametrically GSi from given data,
proposing a new procedure based on the Nadaraya-Watson kernel smoother [Nadaraya,
1964, Watson, 1964].

4.2.1 Nonparametric estimation procedure

Let (X`
i , Y

`
j )1≤`≤n be an independent identically distributed random sample of (Xi, Yj).

The Nadaraya-Watson kernel smoother consists in estimating the conditional mean of
E(Yj|Xi) at a point x in the domain of Xi by:

m̃h(x) =
n∑

`=1

Y `
jW`,h(x), (4.2)

where

W`,h(x) =
K
(
x−X`

i

h

)

∑n
`′=1 K

(
x−X`′

i

h

) , (4.3)

with K a kernel function and h a bandwidth. In Equation (4.3), different weights W`,h

can be used, as for example, local linear regression proposed in [Da Veiga et al., 2009]
and nearest neighbor smoothers as proposed by Broto et al. [2020].

When the sample size is small, the selection of the bandwidth h is critical. Indeed,
to avoid undersmoothing or oversmoothing, an optimal value of h which balances bias
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and variance must be found [Tsybakov, 2008, page 17]. An option widely used to select
h is cross-validation but if the sample size is small, the estimator will suffer of finite-
sample bias [see Racine, 2001, Soĺıs, 2019]. Therefore, if the sample size is small, it is
recommended to perform a bias correction to the kernel smoother estimator preliminary
to the bandwidth selection.

It is important to underline that the criterion we introduce here to select the bandwidth
is different from the one proposed in Soĺıs [2019], which was based on bagging minimiza-
tion. The selection of the bandwidth we propose to apply in our paper is described in the
next section.

Once the bandwidth h has been chosen, the estimation of the aggregated Sobol’ index
is straightforward: given a n sample (Xk

i , Y
k
j )1≤k≤n of (Xi, Yj),

ĜSi =

∑p
j=1 V̂ar

[
(Y k

j )1≤k≤n
]
Ŝji∑p

j=1 V̂ar
[
(Y k

j )1≤k≤n
] , (4.4)

where Ŝji is the estimation of the first-order Sobol’ index:

Ŝji =
V̂ar
[(
m̂h,−k(X

k
i )
)

1≤k≤n
]

V̂ar
[
(Y k

j )1≤k≤n
] , (4.5)

with V̂ar denoting empirical variance and

m̂h,−k(X
k
i ) =

∑

`6=k

y`j

K
(
Xk
i −X`

i

h

)

∑
`′ 6=kK

(
Xk
i −X`′

i

h

) · (4.6)

Note that the same sample (Xk
i , Y

k
j )1≤k≤n is used for both the estimation of E(Yj|Xi)

and the outer variance. This is the reason why we use the so-called leave-one-out estimate
m̂h,−k and not the estimate m̃h defined in (4.2).

4.2.2 Bias correction and bandwidth selection

As mentioned previously, cross-validation is one option to select the bandwidth when
using the Nadaraya-Watson kernel smoother defined in (4.2). In more details, given a n
sample X = (X1, . . . , Xn) of Xi and the corresponding evaluations Y = (Y 1, . . . , Y n) of
Yj, the bandwidth can be selected as (see, e.g., Takezawa [2005]):

hcv = argminh>0

1

n

n∑

k=1

(
Y k − m̃h(Xk)

)
2

1−Wk,h(Xk)
(4.7)

with Wk,h(Xk) defined by (4.3).
For notation simplicity, Kh(.) denotes K

(
.
h

)
and we dropped all the i and j subindices,

but keep in mind that we refer to a sample of Xi and Yj.
Even if the kernel smoother with cross-validation is asymptotically unbiased, it is well

known that it has a relatively large finite-sample bias. To tackle this issue, Racine [2001]
proposed a bootstrap bias correction as a preliminary step to bandwidth selection. In this
paper, we adapt the procedure introduced in Racine [2001] to the framework of Sobol’
index estimation. The steps of our procedure are described hereafter:
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1. Given a n sample X = (X1, . . . , Xn) of Xi, the corresponding evaluations Yj =
(Y 1, . . . , Y n) of Yj and a bandwidth h > 0 (for example, an initial bandwidth value
could be h = hcv given by Equation (4.7)), we calculate the leave-one-out Nadaraya-
Watson kernel regression estimate m̂h,−k(X

k) defined in (4.6). If
∑

`′ 6=kKh(Xk −
X`′) = 0, we set m̂h,−k(X

k) = 0.

2. We compute the errors:

ε̂k = Y k − m̂h,−k(X
k), k = 1, . . . , n.

These errors may be heteroscedastic because Yj depends also on
X1, . . . , Xi−1, Xi+1, . . . , Xd, therefore, a standardization of the errors must be
applied before bootstraping.

3. The errors {ε̂k}1≤k≤n are standardized as:

υ̂k =
ε̂k − ε̄
r(Xk)

, k = 1, . . . , n

where ε̄ is the empirical mean of {ε̂k}1≤k≤n and r(Xk) is the estimate of the con-
ditional standard deviation of the random variable ε|Xi at Xk. Note that r(Xk)
is estimated using nonparametric kernel smoother estimation. More precisely, we
estimate r2(x) by applying the Nadaraya-Watson kernel smoother as defined in
(4.2) with Y ` =

(
ε`
)

2, ` = 1, . . . , n and selecting the bandwidth via cross-validation
defined in (4.7).

4. A bootstrap sample Y(b) of Y is created as:

Y (b)k = m̂h,−k(X
k) + r(Xk)υ̂(b)k, k = 1, . . . , n,

where υ̂(b)k is a bootstrap sample of {υ̂k}1≤k≤n.

5. B bootstrap samples of Y are created using Step 4. For each bootstrap sample
(X,Y(b)), we estimate the leave-one-out kernel smoother m̂

(b)
h,−k as in (4.6).

6. The bias of m̂h,−k(X
k) is estimated as:

1

B

B∑

b=1

m̂
(b)
h,−k(X

k)− m̂h,−k(X
k).

Then, the corrected kernel smoother m̂c
h,−k(X

k) is computed as:

m̂c
h,−k(X

k) = m̂h,−k(X
k)−

(
1

B

B∑

b=1

m̂
(b)
h,−k(X

k)− m̂h,−k(X
k)

)
(4.8)

= 2m̂h,−k(X
k)− 1

B

B∑

b=1

m̂
(b)
h,−k(X

k). (4.9)

Note that the last two equations correspond to the standard bootstraping bias cor-
rection proposed by Efron and Gong [1983].
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7. Finally, the bandwidth h is selected as

hboot = argminh>0

1

n

n∑

k=1

(
Y k − m̂c

h,−k(X
k)
)

2.

We then estimate the aggregated Sobol’ index GSi with (4.4) by replacing m̂h,−k(X
k
i )

by m̂c
hboot,−k(X

k
i ) in (4.5). Racine [2001] also proposed an iterative version of the bootstrap

bias corrections. In this work, we used the non iterated version because a major drawback
of the iterative one is its computational cost. A simplified version of the iterative procedure
was run on a simple test case (see Figure 4.13 in the Appendix) The improvements were
not that convincing with regards to the additional cost.

Following Da Veiga et al. [2009], another approach could have been (i) to estimate
Var(Y ) as far as to define the kernel smoother m̃h defined in (2), (ii) to perform the bias
correction and selection of the bandwidth, and (iii) then to sample from the joint distribu-
tion of input vector X to estimate Var(E(Yj|Xi)) using the bias corrected kernel smoother
as a metamodel. By contrast, the method proposed is metamodel-free and belongs to the
class of nonparametric given data (one sample) methods. In the following, our estimator
with bias correction is denoted by cnp and the same estimator without bias correction,
for which the bandwidth is selected by solving argminh>0

1
n

∑n
k=1

(
Y k − m̂h,−k(X

k)
)

2, is
denoted by np.

4.2.3 Dimension reduction based on principal component anal-
ysis

If the output is high-dimensional or even functional, it may be computationally interesting
to reduce the output dimension in a preliminary step. There are different reduction
techniques. Principal component analysis, also known as Karhunen-Loève decomposition
in the functional framework, consists in projecting the output on a new basis so that
most information is concentrated in the first few components [see, e.g., Pearson, 1901,
Loève, 1963]. Note that if the outputs are the discretization of more than one functional
random variable (e.g., velocity and flow depth), simultaneous PCA may provide efficient
reduction. For more details, see e.g., the work of Nanty et al. [2017] and reference therein.

In brief, simultaneous PCA consists in applying PCA to the matrix composed by the
concatenation of the discretized functions divided by a normalization factor. Nanty et al.
[2017] show that using the maximum of each functional as normalization factor provides
the best results. Thus, in the avalanche application, we follow their procedure.

There exist dimension reduction tools specific to functional data, such as the regu-
larized functional PCA described in Chapter 9 of Ramsay and Silverman [2005] [see also
the work of Yao et al., 2005] which has been applied in different fields [e.g., Locantore
et al., 1999, Antoniadis et al., 2012]. Also, it has been shown that in some applications,
functional PCA provides better results than usual PCA applied after a discretization of
the functional data [e.g., Viviani et al., 2005]. On our test cases, usual PCA applied on
the discretized data set and functional PCA provided similar results. The results we show
in this paper are the ones obtained by applying usual PCA on discretized data.

The PCA consists in decomposing the variance-covariance matrix of the output. More
precisely, let us denote by Σ the variance-covariance matrix of the output vector Y. The
principal component decomposition of Y is based on the expansion:
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Σ =

p∑

j=1

λjvjv
T
j ,

where λ1 ≥ . . . ≥ λp ≥ 0 are the ordered eigenvalues and v1, . . .vp are the orthonormal
eigenvectors of Σ. Therefore, Y can be decomposed as:

Y = E(Y) +

p∑

j=1

(
(Y− E(Y))Tvj

)
vj

= E(Y) +

p∑

j=1

Hjvj

where Hj is the jth principal component of Y. Note that Var(Hj) =
√
λj. The output

can be approximated using the q ≤ p first components which capture the major part of
the output variance:

Y ≈ E(Y) +

q∑

j=1

Hjvj.

Then, the aggregated Sobol’ indices can be computed in the first q principal compo-
nents. For example, for input Xi:

GSi ≈
∑q

j=1 λjSi(Hj)∑q
j=1 λj

(4.10)

where Si(Hj) denotes the Sobol’ index of Hj with respect to input Xi.
The estimation of the aggregated Sobol’ indices will be done for the reduced output

H = (H1, . . . , Hq)
T .

4.3 Test cases

The cnp method is tested on three toy functions and then, it is applied to an avalanche
dynamic model. The cnp accuracy is compared with np (bandwidth selected with cross-
validation and without bias correction), the method of Soĺıs [2019] denoted by Solis2019

and implemented in R in the library sobolnp, and the method of Tissot and Prieur [2012],
denoted by Tissot2012. Tissot and Prieur [2012] proposed a bias correction for the index
estimation based on random balance designs. To perform step 3 of the bias correction
algorithm, we used the function npreg of the R package np developed by Hayfield and
Racine [2008].

To compare our method to the one proposed in Soĺıs [2019], we use the Epanechnikov
kernel of order 2:

K(u) =
3

4
(1− u2)I(|u|≤1),

where I denotes the indicator function. We compared the estimation results with the
ones obtained with a Gaussian kernel and the results were quite similar (see Figure 4.14
in the Appendix). All the computations were performed in R Core Team [2017].
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4.3.1 Toy functions

For each toy function, to test the accuracy of the method, first-order Sobol’ indices were
estimated with N = 100 independent samples of sizes n ∈ {100, 200, 300}. For cnp and
Solis2019, the number of bootstrap samples was set to B = 100.

Scalar g-Sobol function

The scalar g-Sobol function is defined as:

Y = f(X1, . . . , Xd) =
d∏

i=1

|4Xi − 2|+ ai
1 + ai

, ai ∈ R, i ∈ {1, . . . d}

where (X1, . . . , Xd) ∼ U([0, 1]d).

For this model, an analytical expression of the scalar Sobol’ indices is available:

Si =

1
3(1+ai)2∏d

i=1

(
3(ai)2+6ai+4

3(1+ai)2

)
− 1

, i ∈ {1, . . . , d}.

For our experiments, we chose d = 8 and a = (0, 1, 4.5, 9, 99, 99, 99, 99). First-order
indices were estimated in N = 100 independent samples of sizes n ∈ {100, 200, 300} using
the four methods cnp, np, Tissot2012 and Solis2019. The results can be seen in Figures
4.1 and 4.2.

We remark that the cnp procedure we have proposed in this work behaves well even
for small data sets. The bias correction seems to outperform the usual np procedure,
except maybe for n = 100.

The variances of both cnp and np are improved with respect to the nonparametric
bagging approach in Soĺıs [2019]. Tissot and Prieur [2012] and cnp methods provide good
results for samples of size n = 300. Contrary to Tissot2012, the advantage of cnp is
that it does not require a structured sample design. At least, we remark a decrease of the
efficiency of our approach for very small Sobol’ indices.

Multivariate g-Sobol function

We introduce now a multivariate version of the g-Sobol function. It is defined as:

(Y1, . . . , Yp)
T = f(X1, . . . , Xd) with (X1, . . . , Xd) ∼ U([0, 1]d)

where

Yj =
d∏

i=1

|4Xi − 2|+ aji
1 + aji

, aji , with j ∈ {1, . . . , p}, i ∈ {1, . . . d}.

An analytical expression of aggregated Sobol’ indices is available for this test case:

GSi =

∑p
j=1

1

3(1+aji )
2

∑p
j=1

∏d
i=1

(
3(aji )

2+6aji+4

3(1+aji )
2

)
− 1
·
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Figure 4.1: Scalar g-Sobol function: estimation of first-order Sobol’ indices for X1, X2, X3

and X4 using four estimation methods: cnp, np, Solis2019 and Tissot2012. To
draw the boxplots, the indices were computed in N = 100 independent samples
of sizes n ∈ {100, 200, 300}. For each iteration of cnp and Solis2019, we used
B = 100 bootstrap samples.
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Figure 4.2: Scalar g-Sobol function: estimation of first-order Sobol’ indices for X5, X6, X7

and X8 using four estimation methods: cnp, np, Solis2019 and Tissot2012. To
draw the boxplots, the indices were computed in N = 100 independent samples
of sizes n ∈ {100, 200, 300}. For each iteration of cnp and Solis2019, we used
B = 100 bootstrap samples.
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Input Description Distribution
m mass (kg) U [10, 12]
c damping constant (Nm−1s) U [0.4, 0.8]
k spring constant (Nm−1) U [70, 90]
l initial elongation (m) U [−1,−0.25]

Table 4.1: Mass spring model: Input description and uncertainty intervals.

We chose p = 2, d = 6 and the coefficients aji , i ∈ {1, . . . , 6}, j ∈ {1, 2} were coded by
the matrix A2 ∈ R6×2:

AT2 =

(
0 0.5 3 9 99 99
1 1 1 1 1 1

)

Figure 4.3 shows the estimation of first-order Sobol’ indices using cnp, np, Solis2019
and Tissot2012 in N = 100 independent samples of sizes n ∈ {100, 200, 300}. The
bias accuracy of cnp compared to the other three methods is the best (see Figure 4.3).
Furthermore, the variance of cnp estimation is lower than the other three methods (see
Figure 4.3). Additionally, for this test case, the bias correction performance is more
evident than in the previous section (see Figures 4.1 and 4.2 compared to Figure 4.3).

4.3.2 A functional example: the mass-spring model

Before applying our procedure to the avalanche application, we illustrate its performance
on a test case with discretized functional output: the functional mass-spring model pro-
posed by Gamboa et al. [2013], where the displacement of a mass connected to a spring
is considered:

mx′′(t) + cx′(t) + kx(t) = 0, (4.11)

with initial conditions x(0) = l, x′(0) = 0, and t ∈ [1, 40]. There exists an analytical
solution of Equation (4.11). This model has four inputs (see more details in Table 4.1).
The model output is the vector:

Y = f(X) = (x(t1), . . . , x(t800)), ti = 0.05i with i ∈ {1, . . . , 800}.

The discretized output is high-dimensional (p = 800). Therefore, we first reduce the
dimension of the output by using PCA before estimating the aggregated Sobol’ indices in
the first q principal components with q � p.

The indices were estimated in N = 100 independent samples of size n ∈
{100, 200, 300}. Each sample was also used for PCA. We tested if the results were more
accurate if we used two independent samples, one for PCA and the other one for the
estimation of Sobol’ indices. At a constant cost in terms of model evaluations, the results
were even better using only one sample (see Figure 4.12 in the Appendix Section 4.6).

The explained variance as a function of the number of PCs q is shown in Figure 4.4.
Notice that 70% of the variance is explained with a small number of PCs (q = 3) and
almost all the variance (95%) is explained by 6 PCs. Thus, the aggregated Sobol’ indices
were estimated using the first 6 PCs.
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Figure 4.3: Multivariate g-Sobol function: estimation of the aggregated Sobol’ indices using
cnp, np, Solis2019 and Tissot2012. Boxplots were drawn from N=100 inde-
pendent samples of sizes n ∈ {100, 200, 300}. To use cnp and Solis2019, we set
B = 100.
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Figure 4.4: Mass-spring model: Explained variance as a function of the decomposition basis
size (number of PCs). The gray line is displayed at the 95% of the variance
explained which corresponds to 6 PCs.

The true aggregated Sobol’ indices for this instance are unknown but they are con-
sidered close to the values estimated with a sample of large size n = 100 000 using the
pick-and-freeze method of Tissot and Prieur [2015].

The evolution of the estimation of the aggregated Sobol’ indices using the four methods
in function of the sample size n ∈ {100, 200, 300} are shown in Figure 4.5. The cnp

estimation procedure presents a much smaller variance than the np and Solis2019 ones.
The bias correction allows to correct the bias of the np estimation procedure, even if a
residual bias seems to persist. The bias decreases as n increases, as expected. As it was
mentioned before, our aim is factor prioritization and this objective is achieved with the
cnp method in the sense that the most influential factor X3 is clearly identified.

In general, the cnp method has a better accuracy compared to np, and Solis2019 in
all the test cases we considered. Even if Tissot2012 shows better results than cnp for
some of the first-order indices, it suffers from two drawbacks: (i) it requires a structured
sampling design which makes impossible its application in a given data framework, (ii)
it requires the choice of the number of harmonics M , for which no adaptive procedure is
available yet (in our experiments M was fixed to 6, as recommended in the literature). For
these reasons we apply in the following section the cnp method to estimate the aggregated
Sobol’ indices of an avalanche model.

4.4 Application: the avalanche model

The avalanche model used in this study represents the avalanche motion as a fluid using
depth-averaged Saint-Venant equations [Naaim et al., 2004]. In short, the model considers
only the dense layer of the avalanche. The depth of the flow is then small compared to its
length. Under this assumption, shallow-water approximations of the mass and momentum
equations can be used. Also, the model assumes the avalanche is flowing on a curvilinear
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Figure 4.5: Mass-spring model: Estimation of the aggregated Sobol’ indices using np,
Solis2019 and Tissot2012. Boxplots were drawn from N=100 independent sam-
ples of different sizes n ∈ {100, 200, 300}. To use cnp and Solis2019, we set
B = 100.
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Input Description Distribution
µ Static friction coefficient U [0.177, 0.498]
ξ Turbulent friction [m.s−2] U [306.97, 1475.67]
hstart Snow depth within the release zone [m] U [0.17, 0.33]
lstart Length of the release zone [m] U [24, 34]
σ Digital Elevation Model error [m] U [0, 0.15]

Table 4.2: Avalanche model: Input description and uncertainty intervals. U [a, b] denotes an
uniform distribution in the interval [a, b].

profile z = l(x), where z is the elevation and x is the projected runout length distance
measured from the starting abscissa point of the avalanche. The Voellmy friction law is
considered. We denote hereafter the avalanche model by f .

The avalanche model depends on six inputs: two friction parameters µ and ξ, the
length lstart of the avalanche release zone, the snow depth hstart within the release zone,
the release position of the avalanche denoted by xstart and the discretized topography of
the flow path, denoted by D = (x, z) ∈ RT×2 where x ∈ RT is the vector of projected
runout length from the starting point of the avalanche and z = l(x) ∈ RT is the elevation
vector. T is the number of points of the discretized path. In addition to these parameters,
we included the term σ to code the error of the digital elevation model z on the path’s
topography. To do so, a Gaussian error term is added to each element of z to construct
a new topography D′ = (x, z′) for each new model run, whose elevation is calculated as
follows:

z′ = z +N (0, ITσ2)

where IT is the T × T identity matrix. This error codes the imprecision of the digital
elevation model which allows analysing how it affects the simulation results.

In this study, we analyzed precisely the sensitivity of the model for the simulations of
a single avalanche event. The input uncertainty intervals are those corresponding to an
avalanche released at the Lautaret full-scale test-site on 13 February 2013. More details
about this avalanche event can be found in [Pulfer et al., 2013, Heredia et al., 2020], thus
parameter (x,z) is not uncertain anymore.

For this avalanche event, the release position of the avalanche xstart is precisely known
because it was fixed by the experimental team (artificial avalanche release). Thanks to
the sophisticated equipment of the test-site, the uncertainty of this input can therefore
be neglected. The lstart and hstart input uncertainty intervals could be determined thanks
to measures taken during the experiment. By contrast, the inputs µ and ξ cannot be
measured. In another study, we developed a Bayesian calibration approach to infer these
inputs from the measurements made along the flow. Thus, the uncertainty intervals
of µ and ξ considered here correspond to the 95% credibility intervals of the posterior
distribution we obtained [Heredia et al., 2020]. However, to avoid privileging some values
in the sensitivity analysis, uniform distributions were chosen to model the d = 5 inputs,
including the friction parameters (i.e. we did not directly use their posterior distribution).
The uncertain inputs of the model and their uncertainty intervals are summarized in Table
4.2.

The outputs of the avalanche model are the functional maximal velocity ~v and the
functional maximal flow depth ~h of the avalanche on the discretized grid corresponding to
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Inputs Model Outputs

µ ξ σ2

topo lstart hstart
f Y =





v : D ⊂ R → R
h : D ⊂ R → R
xrunout ∈ R+

Figure 4.6: Avalanche model: Inputs and outputs. xstart is fixed. All other quantities are
taken as random and considered in the sensitivity analysis.
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Figure 4.7: Avalanche model: a) functional high density region boxplots for the velocity b)
functional high density region boxplots for the flow depth and, c) boxplot for the
runout distance.

the topography D, and the runout distance of the avalanche denoted by xrunout. In other
words, the model has two vectorial and one scalar outputs.

The vectors whose components are the evaluations on the discretized topography D
of the velocity and flow depth functional outputs are denoted v = (v1, . . . , vT ) and h =
(h1, . . . , hT ), respectively. Note that we have p = 2× T + 1 outputs. A brief summary of
our framework is drawn in Figure 4.6.

The global sensitivity analysis is conducted only on a section of the path where all
the avalanche simulations are flowing. More precisely, considering e.g., the velocity, our
sensitivity analysis is performed on a subset of length n, v = {v`1, . . . , v`T1}`∈{1,...n}, with
T1 ≤ T and such that v`k > 0 for all k ∈ {1, . . . , T1}.

Figure 4.7 shows the functional high density region (HDR) boxplots of 300 velocity
(a) and snow depth curves (b) and the boxplot for the runout distance (c). The func-
tional HDR plots are a tool for visualizing large amounts of functional data based on
the estimation of the bivariate kernel density function of the two first components of the
decomposition of the functional data [see Hyndman and Shang, 2010, for more details].
The HDR boxplots show the 50% HDR and the 100% HDR in light and dark gray, re-
spectively. The modal curve is plotted with a solid line. These Figures were obtained
using the R package rainbow developed by Hyndman and Shang [2010].
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Figure 4.8: Avalanche model: path’s topography (black line) with T = 84 discretization points
and the subset of the path in gray box (T1 = 33 discretization points) where the
sensitivity analysis is performed. The panel highlights the percentage of avalanche
flowing as function of the position within the path.

4.4.1 Sobol’ indices

To estimate the sensitivity indices, we developed n = 300 model simulations using the
random input distributions shown in Table 4.2. Figure 4.8 shows the topography of the
avalanche path and the gray box shows the region where all the avalanche simulations
are flowing. The output values in this subset are used in the sensitivity analysis. Also, in
Figure 4.8, we show the percentage of avalanches flowing in the path as function of the
position along the topography.

4.4.2 Scalar Sobol’ indices

The scalar Sobol’ indices calculated using n = 300 samples are shown in Figure 4.9. For
the velocity output, in the first 50 m of the path, the input µ is the most important, then
it is followed by ξ. For the rest of the path, the input ξ is the most important. For the flow
depth output, the hstart input is the most important. The input σ2 is the least important
parameter for both outputs. The scalar sensitivity indices for the runout distance are
shown in Figure 4.10. For this output, the hstart input is the most important. These
three figures give us valuable information about the model. However, it could also be
interesting to get a summarized information by computing aggregated sensitivity indices
and this is done in the following section.
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Figure 4.9: Avalanche model: a) scalar Sobol’ indices for the velocity and b) flow depth
outputs. The white line corresponds to the path’s topography.
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Figure 4.10: Avalanche model: scalar Sobol’ indices for the runout distance output.
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Figure 4.11: Avalanche model: aggregated indices estimated with two ways of aggregating the
information. a) Two PCAs performed separately for the two functional outputs:
one for the velocity output and the other one for the flow depth output. b)
Simultaneous PCA to estimate the indices of the three outputs (the two functional
ones and the scalar runout distance) altogether.

4.4.3 Aggregated Sobol’ indices

To estimate the aggregated indices, we used two ways of aggregating the output informa-
tion. In the first one, we performed two PCAs separately: one for the velocity output and
the other one for the flow depth output. And in the second one, we used simultaneous
PCA to estimate the indices of the three outputs. The results of the aggregated indices
using two PCAs are shown in the panel a) of Figure 4.11 and using simultaneous PCA in
the panel b) of Figure 4.11. This summarizes the importance of the inputs.

Let us analyze the results of the aggregated indices calculated when performing a
PCA on each functional output: for the velocity output, the ξ and µ inputs are the most
relevant and for the flow depth output, the hstart input is by far the most important.
These results are consistent with findings of other studies [e.g., Barbolini and Savi, 2001,
Borstad and McClung, 2009, Fischer et al., 2015].

Finally, let us analyze the results of the aggregated indices calculated when performing
a simultaneous PCA for the whole set of outputs (the two functional ones and the scalar
runout distance): the most important inputs are ξ, hstart and µ.

4.5 Conclusions and perspectives

In this work, we proposed a nonparametric method to estimate the aggregated Sobol’
indices from a given random sample of small size, and called this method cnp. The
method is based on the Nadaraya-Watson kernel smoother. Due to the small size of
the sample at hand, the kernel estimation is biased. Therefore, to remove the bias of the
estimation, we proposed a bias correction using bootstrapping samples based on the works
of Racine [2001] and Soĺıs [2019] before bandwidth selection based on cross-validation.

We tested the accuracy of the method on a scalar and two multivariate test cases. In
general, the method cnp is accurate, even if the sample size is low (n = 300). The method
was developed to estimate the aggregated indices for an avalanche model which has three
outputs: the functional velocity and flow depth discretized on a given topography and

68



4.6. Appendix

the runout distance of the avalanche. In this work, we developed a sensitivity analysis of
a single avalanche event. The event corresponds to an avalanche released at the Lautaret
test-site the 13 February 2013. The results have shown that for this particular avalanche
event: for the velocity output, the µ and ξ inputs are the most relevant and for the snow
depth output, hstart is the most important. Finally, for the runout distance output, hstart is
the most important. We also showed how this information can be aggregated in one single
set of indices summing up the model sensitivity which could be a very useful information
for avalanche practitioners.

Note that in this work we proposed a method to quantify the importance of the inputs
of a particular avalanche model but this method can be widely applied to other avalanche
models. Moreover, the method could be applied to other avalanche events with the same
model to generalize the results. Eventually, it could be adapted to various problems for
which complex models with outputs which are both functional and scalar are employed.

Eventually, in this paper, we did not provide confidence intervals (CI) associated to the
estimation of Sobol’ or aggregated Sobol’ indices. This would be an interesting task for
a future work. However, bootstrap based CI are costly in that framework as they would
involve two boostrap stages: one for the bias correction and one for the computation of
CI.

4.6 Appendix

In this appendix, we compare the accuracy of Sobol’ index estimation for the mass-spring
test case when using a single sample of size n = 200 for both PCA and Sobol’ index
estimation or two independent samples of size n = 100, one for PCA, the other one for
Sobol’ index estimation. Boxplots presented in Figure 4.12 were obtained with N = 100
independent replications.

Figure 4.13 shows the comparison between the non iterative version of Racine [2001]
algorithm (cnp) and the iterative version (ite. cnp) in the g-Sobol test case.

We also compare the estimation of the indices using an Epanechnikov of second order
kernel (left panel) or a Gaussian kernel (right panel) in the g-Sobol test case. The results
are shown in Figure 4.14.
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Figure 4.12: Mass-spring model: Estimation of the aggregated Sobol’ indices using cnp, np
and Tissot2012. Boxplots were drawn from N=100 independent samples of sizes
200. The estimation results using the same sample (one sample) are two different
samples (two samples) to estimate Sobol’ indices and PCs are shown. We set
B = 100 for cnp.
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Figure 4.13: Boxplots of first-order Sobol’ index estimation using the non iterative version of
Racine [2001] algorithm (cnp) and the iterative version (ite. cnp) in the g-Sobol
test case using N = 30 independent random samples of size n = {100, 300}.
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Figure 4.14: Boxplots of first-order Sobol’ indices estimation using an Epanechnikov and a
Gaussian kernel in the g-Sobol test case using N = 100 independent random
samples of size n = 100.
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Abstract: Dynamic models are simplified representations of some real-world entities
that change over time. They are essential analytical tools with significant applications,
e.g., in environmental and social sciences. The outputs produced by dynamic models are
typically time and/or space dependent. Due to physical constraints, their parameters
are confined to a non-rectangular domain. Also, they can be significantly sensitive to
variations of input parameters. A global sensitivity analysis (GSA) consists in modeling
input parameters by a probability distribution which propagates through the model to
the outputs. Then, input parameters are ordered according to their contribution on the
model outputs by computing sensitivity measures. In this paper, we extend Shapley ef-
fects, a sensitivity measure well suited for dependent input parameters, to the framework
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of dynamic models. Note that if input parameters are constrained to a non-rectangular
domain, they cannot be modeled by independent random variables. We also propose an
algorithm to estimate the so-called aggregated Shapley effects and to construct bootstrap
confidence intervals for the estimation of scalar and aggregated Shapley effects. We mea-
sure the performances of the estimation procedure and the accuracy of the probability
of coverage of the bootstrap confidence intervals on toy models. Finally, our procedure
is applied to perform a GSA of an avalanche flow dynamic model, for which the sam-
ple is obtained by restricting the initial input/output sample to keep only combinations
that are physically meaningful. More precisely, we analyze the sensitivity in two different
settings: (i) little knowledge on the input parameter probability distribution, and (ii)
well-calibrated input parameter distributions. Probative linkages between local slope and
sensitivity indices demonstrate the usefulness of our approach for practical problems.

5.1 Introduction

Dynamic models are simplified representations of some real-world entity that change over
time, in equations or computer code. These models are useful for the analysis of real-
world phenomena, e.g., in environmental or social sciences. For a better understanding
of a phenomenon or for forecasting purposes, it might be important to identify which
input parameters entering in the formulation of such dynamic models are influential on
the outputs of interest. Determining these influential parameters is one aim of global sen-
sitivity analysis (GSA). A global sensitivity analysis (GSA) consists in modeling unknown
input parameters by a probability distribution which propagates through the model to
the outputs. Then, input parameters are ordered according to their contribution on the
model outputs by computing sensitivity measures. In the literature, there exist different
global sensitivity measures, e.g., variance based measures such as Sobol’ indices [Sobol’,
1993] or Shapley effects [Owen, 2014], density based measures [Borgonovo et al., 2016, Da
Veiga, 2015], etc. A review of global sensitivity measures can be found in, e.g., Borgonovo
and Plischke [2016] or Iooss and Lemâıtre [2015].

A particularity of dynamic models considered in this paper is that the outputs they
produce are typically time and/or space dependent (see e.g., Alexanderian et al. [2020],
Lamboni et al. [2011]). More specifically, the application that motivated our study is an
avalanche flow dynamic model (proposed by Naaim et al. [2004]). The input parameters
in our application cannot be considered as stochastically independent. Indeed, even if
they are first sampled independently, we only analyze in the GSA the ones leading to
snow avalanche simulations that are both realistic and of interest for risk purposes. For
example, an avalanche simulation is rejected if its volume is inferior to 7000 m3 as such
small events do not represent a significant threat for settlements downslope. It is quite
common that such physical constraints lead to dependent inputs by excluding infeasible
sets of input values. Let us cite, e.g., Radaideh et al. [2019] dealing with the response
of a nuclear reactor or López-Benito and Bolado-Lav́ın [2017] interested in a natural gas
transmission model (see also Kucherenko et al. [2017]). For that reason, we develop a GSA
methodology capable to handle dependent inputs, with unknown dependence structure,
as far as dynamic models through functional outputs (or high-dimensional multivariate
outputs as functional outputs are most of the time represented on a discrete grid).

Although the independence assumption on input parameters is unrealistic in many
applications, it is traditionally required to interpret or to compute sensitivity measures.
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Many alternatives to Sobol’ indices [Sobol’, 1993] based on functional ANOVA decompo-
sition have been proposed in the literature to handle GSA in the framework of dependent
input parameters. We refer the interested reader to the introduction in [Iooss and Prieur,
2019] and to references therein for a complete overview of these alternatives.

In this paper, we focus on Shapley effects introduced in [Owen, 2014], consisting in
variance based sensitivity measures, still meaningful in the framework of dependent input
parameters [Owen and Prieur, 2017]. This approach is based on the Shapley value which
is a cooperative game theory concept. Briefly speaking, Shapley value ensures a fair
distribution of a gain among team players according to their individual contributions. As
a sensitivity measure, Owen [2014] adapted the Shapley value into the Shapley effects
by considering model input parameters as players and the gain function as the output
variance. The main advantage of such an approach is that it is possible to attribute a
non negative sensitivity index to each parameter, and the sum of the indices is equal to
one [Broto et al., 2020, Iooss and Prieur, 2019].

A first algorithm to estimate Shapley effects was proposed in [Song et al., 2016]. A
block bootstrap procedure was proposed in [Benoumechiara and Elie-Dit-Cosaque, 2019]
to add the construction of confidence intervals to the aforementioned algorithm. More
recently, [Broto et al., 2020] proposed a subset aggregation procedure which leads to a
significant reduction of the variance of Shapley effect estimation. Let us also cite the
algorithm proposed in [Plischke et al., 2020] based on the Möbious inverse, which offers
a computationally efficient alternative for the estimation of Shapley effects. The main
advantage of the subset aggregation procedure introduced in [Broto et al., 2020] is that
it has a version, based on nearest-neighbors, which does not require the ability to sample
from the exact conditional distributions of the input parameters.

In the present paper, we propose an extension of Shapley effects to multivariate or
functional outputs. Although it is possible to compute a Shapley effect for each compo-
nent of a multivariate output, it leads to results difficult to interpret as the balance of
sensitivities may change from one component to the other [Alexanderian et al., 2020] and
to redundancies in the information, particularly when considering the discretization of a
time and/or space dependent output [Lamboni et al., 2009]. For that reason, Lamboni
et al. [2009] (see also Gamboa et al. [2013]) extended Sobol’ indices to multivariate or
functional outputs. Let us also cite Alexanderian et al. [2020] focused on time-dependent
outputs. However, the so-called aggregated Sobol’ indices cannot easily be interpreted if
the input parameters are dependent. Following these papers, we introduce and study the
properties of what we call aggregated Shapley effects, which can be interpreted in both
the framework of independent and dependent input parameters. If the output dimension
is high (as it is the case, e.g., when considering a fine discretization of a functional out-
put), a dimension reduction can be applied as a preliminary step to the computation of
aggregated Shapley effects. We use the Karhunen-Loève (KL) expansion as in [Lamboni
et al., 2009, Alexanderian et al., 2020]. More precisely to perform KL expansion, we use
the functional principal component analysis proposed by Yao et al. [2005]. Note that
the extension of Shapley effects to multivariate outputs has been early used for nuclear
safety application in [Delipei, 2019]. In this paper, we propose a proper definition of
aggregated Shapley indices, we study their invariance properties and we propose a given
data estimation procedure, extending the nearest neighbor approach introduced in [Broto
et al., 2020] and a block bootstrap procedure to build confidence intervals. By given data
procedure, we mean that a single sample of size n is needed for the estimation of all
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Shapley effects. Eventually, we demonstrate the usefulness of this methodology in a com-
plex avalanche application where the set of output simulations is constrained in order to
keep only meaningful snow avalanche events. More precisely, we perform the GSA of our
avalanche flow dynamic model in two different settings: (i) little knowledge on the input
parameter probability distribution, and (ii) well-calibrated input parameter distribution
(Eckert et al. [2010]). Notably, this methodology which could be applied to many other
applications where samples are constrained to satisfy physical or user constraints opens a
new field of applications to GSA.

The paper is organized as follows. In Section 5.2, aggregated Shapley effects and their
main properties are described. In Section 5.3, we propose an estimator for aggregated
Shapley effects in a given data framework by extending the Monte-Carlo nearest-neighbor
estimator of scalar Shapley effects introduced in [Broto et al., 2020]. At the end of the
section, we describe the functional principal components analysis algorithm to perform
model dimension reduction proposed by Yao et al. [2005]. In Section 5.4, we propose a
bootstrap algorithm to construct confidence intervals of the scalar and aggregated Shapley
effect estimations based on [Benoumechiara and Elie-Dit-Cosaque, 2019]. In Section 5.5,
we test our estimation procedure on two toy models: a multivariate linear Gaussian model
and the mass-spring model. Finally in Section 5.6, our GSA procedure is applied to our
avalanche dynamic model. We discuss our conclusions and perspectives in Section 5.7.

5.2 Aggregated Shapley effects

Shapley effects are sensitivity measures to quantify input importance proposed by Owen
[2014]. These measures are particularly useful when inputs are dependent. Shapley effects
are based in the concept of Shapley value, introduced in the framework of game theory
[Shapley, 1953], which consists into dividing a game gain among a group of players in an
equitable way. As sensitivity measures, Shapley effects consider model inputs as players
and output variance as game function. Shapley effects can be naturally extended to
multivariate output models by following the ideas presented in [Gamboa et al., 2013] and
[Lamboni et al., 2009] to generalize Sobol’ indices to multivariate output models (see
also Alexanderian et al. [2020] for time-dependent models). We call these new sensitivity
measures aggregated Shapley effects.

5.2.1 Definition

Let us define Y = (Y1, . . . , Yj, . . . , Yp) = f(X) the p multivariate output of a model f
that depends on d random inputs X = (X1, . . . , Xd). The inputs are defined on some
probability space (Ω,F ,PX) and f ∈ L2(PX). For any u ⊆ {1, . . . , d}, let us define
−u = {1, . . . , d} \ u its complement. We set Xu = (Xi)i∈u. Note that the inputs are
not necessary independent. In the framework of our application to avalanche modeling,
the model produces outputs of the form Y = (Y1 = f(s1,X), . . . , Yp = f(sp,X)), with
s1, . . . , sp ∈ R the p discretization points along the avalanche corridor.

In this section we recall the definition and main properties of the Shapley value, on
which the definition of Shapley effects is based. Given a set of d players in a coalitional
game and a charateristic function val : 2d → R, val(∅) = 0, the Shapley value (φ1, . . . , φd)
is the only distribution of the total gains val({1, . . . , d}) to the players satisfying the

76



5.2. Aggregated Shapley effects

desirable properties listed below:

1. (Efficiency)
∑d

i=1 φi = val({1, . . . , d}).
2. (Symmetry) If val(u∪{i}) = val(u∪{`}) for all u ⊆ {1, . . . , d}−{i, j}, then φi = φ`.

3. (Dummy) If val(u ∪ {i}) = val(u) for all u ⊆ {1, . . . , d}, then φi = 0.

4. (Additivity) If val and val’ have Shapley values φ and φ′ respectively, then the game
with characteristic function val + val’ has Shapley value φi + φ′i for i ∈ {1, . . . , d}.

It is proved in [Shapley, 1953] that according to the Shapley value, the amount that
player i gets given a coalitional game (val, d) is:

φi =
1

d

∑

u⊆−{i}

(
d− 1

|u|

)−1

(val(u ∪ {i})− val(u)) ∀i ∈ {1, . . . , d}. (5.1)

The Shapley value also satisfies the linearity property:

5. (Linearity) Let λ ∈ R, if λval and val have Shapley values φ′ and φ, then φ′i = λφi
for all i ∈ {1, . . . , d}.

The linearity property is a direct consequence from (5.1) and it is used to prove some
of the nice properties of aggregated Shapley effects (see Propositions 1 and 2 further).

The Shapley effects are defined by considering the characteristic function of the game
as:

valj(u) =
Var(E(Yj|Xu))

Var(Yj)
, u ⊆ {1, . . . , d} (5.2)

in (5.1). Thus, the scalar Shapley effect of input i in output j is defined as:

Shji =
1

dVar(Yj)

∑

u⊆−{i}

(
d− 1

|u|

)−1

(Var(E(Yj|Xu∪i))− Var(E(Yj|Xu))). (5.3)

Shapley effects can be naturally extended to models with multivariate outputs follow-
ing ideas from [Gamboa et al., 2013] and [Lamboni et al., 2009] where authors proposed
to extend Sobol’ indices to multivariate outputs. Aggregated Shapley effect of an input i
is then defined as:

GShi =

∑p
j=1 Var(Yj)Shji∑p
j=1 Var(Yj)

, (5.4)

where Shji is the scalar Shapley effect of input Xi in output Yj. This sensitivity measure is
a weighted sum of the scalar Shapley effects where weights correspond to the proportion
of the variance of each output over the sum of all individual variances.

5.2.2 Properties

In this section, we prove some nice properties of aggregated Shapley effects.

Proposition 1. The aggregated Shapley effects GShi, i ∈ {1, . . . , d}, correspond to the
Shapley value with characteristic function defined as:
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val(u) =

∑p
j=1 Var(Yj)valj(u)∑p

j=1 Var(Yj)
, u ⊆ {1, . . . , d}. (5.5)

Proof. The proof is straightforward. It is a direct consequence of the linearity and ad-
ditivity properties of the Shapley value. Let i ∈ {1, . . . , d} and j ∈ {1, . . . , p}. The
characteristic function valj (see (5.2)) has Shapley value Shji , i ∈ {1, . . . , d}. Thanks to
the linearity and additivity properties (see properties 4. and 5. of the Shapley value),

the characteristic function u ⊆ {1, . . . , d} 7→
∑p
j=1 Var(Yj)valj(u)∑p

i=1 Var(Yj)
leads to the Shapley value∑p

j=1 Var(Yj)Shji∑p
i=1 Var(Yj)

·

The characteristic function (5.5) can be written in matricial form:

val(u) =

∑p
j=1 Var(Yj)valj(u)∑p

j=1 Var(Yj)
=

∑p
j=1 Var(E(Yj|Xu))∑p

j=1 Var(Yj)
=
tr(Σu)

tr(Σ)
(5.6)

where Σu is the covariance matrix of E(Y|Xu) and Σ is the covariance matrix of Y. Note
that the characteristic function val of aggregated Shapley effects corresponds to the defi-
nition of the aggregated Sobol’ indices introduced in [Lamboni et al., 2009, Gamboa et al.,
2013]. In the next proposition, we prove that aggregated Shapley effects accomplish the
natural requirements for a sensitivity measure mentioned in Proposition 3.1 in [Gamboa
et al., 2013].

Proposition 2. Let i ∈ {1, . . . d}. The following items hold true.

i. 0 ≤ GShi ≤ 1.

ii. GShi is invariant by left-composition by any nonzero scaling of f , which means, for
any λ ∈ R, the aggregated Shapley effect GSh′i of λf(X) is GShi.

iii. GShi is invariant by left-composition of f by any isometry of Rp, which means, for
any O ∈ Rp×p such that OtO = I, the aggregated Shapley effect GSh′i of Of(X) is
GShi for all i ∈ {1, . . . , d}.

Proof. i. As for all j ∈ {1, . . . , p} 0 ≤ Shji ≤ 1 and as the sum of the non nega-
tive weights Var(Yj)/

∑p
`=1 Var(Y`) is one, we deduce that 0 ≤ GShi ≤ 1. ii. Note

that GSh′i can be written as GSh′i =
∑p

j=1 Var(λYj)Sh′ji /
∑p

j=1 Var(λYj), where Sh′ji is

the Shapley effect associated to the characteristic function val′j. Note that val′j(u) =

Var(E(λYj|Xu))/Var(λYj) = valj(u) for all u ⊆ {1, . . . , d}. Thus, Sh
′j
i = Shji from where

GSh′i = GShi which means the aggregated Shapley effect is invariant by any nonzero
scaling of f . iii. Let us write g(X) = Of(X) = OY = U. The characteristic func-
tion associated to the aggregated Shapley effect GSh′i of U is then (see Equation (5.6))
val’(u) = tr(ΣU

u )/tr(ΣU) where ΣU
u is the covariance matrix of E(U|Xu) and ΣU is the

covariance matrix of U. Then,

val’(u) =
tr(ΣU

u )

tr(ΣU)
=
tr(OΣY

u O
t)

tr(OΣYOt)
=
tr(ΣY

u )

tr(ΣY)
= val(u) for all u ⊆ {1, . . . , d}.

As val(u) has a unique Shapley value GShi, val′(u) has Shapley value GShi which proves
that GSh′i = GShi for all i ∈ {1, . . . , d}.

78



5.3. Estimation procedure for scalar and aggregated Shapley effects

In this section, we have proven that aggregated Shapley effects are sensitivity measures.
In the next section, we describe the estimation procedure we propose for aggregated
Shapley effects, based the estimation procedure of scalar Shapley effects proposed in [Broto
et al., 2020, Section 6] when observing an i.i.d. sample of (X,Y). Such a procedure, which
does not require a specific form for the design of experiments is also called given data
procedure.

5.3 Estimation procedure for scalar and aggregated

Shapley effects

The aggregated Shapley effect estimation procedure we propose in this section is based
on the given data estimation procedure of the scalar Shapley effects introduced in [Broto
et al., 2020, Section 6.1.1.]. In the application we consider in Section 5.6, the standard
pick-freeze estimation procedure (see, e.g., Janon et al. [2014b]) cannot be used as it is
based on a specific pick-freeze design of experiments. We recall indeed that input pa-
rameters in our application are first sampled independently, then some combinations are
rejected as they do not lead to snow avalanche avalanche simulations that are both phys-
ically meaningful and of interest for risk purposes. It is the reason why we focus our
attention to the given data estimation procedure of scalar Shapley effects introduced in
[Broto et al., 2020, Section 6.1.1.]. For sake of clarity, we first present the estimation pro-
cedure for scalar Shapley effects in Subsection 5.3.1 before extending it to the estimation
of aggregated Shapley effects in Subsection 5.3.2.

5.3.1 Given data estimator of scalar Shapley effects proposed
by [Broto et al., 2020]

Let u ⊂ {1, . . . d}. Let −u denote the complementary set of u in {1, . . . , d}. As noticed
in [Song et al., 2016, Theorem 1], replacing the characteristic function u 7→ c̃j(u) =
Var(E(Yj|Xu)) by u 7→ cj(u) = E(Var(Yj|X−u)) in Equation (5.3) does not change the
definition of Shapley effects. The estimation of the Shapley effects Shji , 1 ≤ i ≤ d,
relies on the estimation of the cj(u) (resp. c̃j(u)) for all u ⊆ {1, . . . , d}. To estimate
cj(u) = E(Var(Yj|X−u)) (resp. c̃j(u)), one can use a double Monte Carlo estimator: an
inner loop to estimate the variance (resp. the expectation) and an outer loop to estimate
the expectation (resp. the variance). However, Song et al. [2016] pointed out that the
double Monte Carlo estimator of c̃j(u) can suffer from a non neglectable bias if the inner
loop sample is small, while in contrast the double Monte Carlo estimator of cj(u) is
unbiased for any sample size. For that reason, we turned to the double Monte Carlo
estimator of scalar Shapley effects introduced in [Broto et al., 2020, Section 6.1.1.] based
on the double Monte Carlo estimation of cj(u) with a subset aggregation procedure. They
also introduce an adaptation of this estimator to the given data framework, well suited
to our application as it is based on a given and unstructured sample.

The estimator works as follows: assume we are given a n independent random sample
(X(k),Y(k))1≤k≤n of (X,Y), then for 1 ≤ j ≤ p, ∅ ( u ( {1, . . . , d}, let 1 ≤ Nu ≤ n be an
integer, let (s`)1≤`≤Nu be a sample of uniformly distributed integers in {1, . . . , n} (with
or without replacement). The inner Monte Carlo loop estimates the conditional variance
Var(Yj|X−u) using NI nearest neighbors of each Xs`

−u, 1 ≤ ` ≤ Nu. If all the Nu were
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chosen equal to n, the computation cost for the search of the nearest neighbors would be
in O

(
n(2d − 2)

)
. The integers (Nu)∅(u({1,...,d} are related to the estimation accuracy of the

conditional variances (Var(Yj|X−u))∅(u({1,...,d} and are referred as the accuracies hereafter.
To reduce the estimation cost to a prescribed computational budget Ntot, the authors in
[Broto et al., 2020] proposed to choose the set of accuracies that minimize the estimation
variance for the prescribed total cost Ntot =

∑
∅(u({1,...,d}Nu. In the framework where it is

possible to sample from the conditional distributions of the input vector, it can be proven
under a strong assumption (see [Broto et al., 2020, Proposition 4.2., Remark 4.3.]) that

there exists an optimal allocation of the accuracies, namely N∗u =
⌊
Ntot

(
d
|u|

)−1
(d− 1)−1

⌋
,

for all ∅  u  {1, . . . , d}. Even if this strong assumption, that all the conditional elements
E(Var(Y |X−u)), u ⊆ {1, . . . , d}, u 6= ∅, u 6= {1, . . . , d} can be estimated with the same
variance, does not hold true in the given data framework, the authors present numerical
experiments in [Broto et al., 2020, Section 6.3], showing that if one chooses the accuracies
N∗u for all ∅ ( u ( {1, . . . , d}, one gets reasonable results, at least on the test case they
consider. Note that the estimation cost in terms of number of model evaluations is n while
the cost in terms of nearest-neighbor search is Ntot. In Section 5.8, we compare the choice
of the accuracy N∗u for all ∅ ( u ( {1, . . . , d} to a uniform allocation Nu =

⌊
Ntot/(2

d − 2)
⌋

for all ∅ ( u ( {1, . . . , d} for a test case in dimension d = 10. The allocation N∗u suggested
in [Broto et al., 2020] leads to better results, at least on that experiment. Regarding the
number of neighbors, we analyzed the impact of using different numbers of neighbors
NI on a linear model with d = 2. The results are presented in Section 5.9. We see in
Figure 5.14 that there is no clear evidence if NI ≥ 3 is always the best choice. However
in the following we choose NI = 3 following the recommendations in [Song et al., 2016],
where the authors prove in the non given data framework that choosing NI = 3 is better
than choosing NI = 2 and that the gain from increasing NI from 3 decreases as NI

increases.

Let us write more precisely the inner Monte Carlo loop to estimate the conditional
variance Var(Yj|X−u):

Êj
u,s`

=
1

NI − 1

NI∑

i=1


 ∑

υ:Xυ
−u∈B−u,`

Y υ
j −

1

NI

Ȳs`


2 with Ȳs` =

1

NI

∑

υ:Xυ
−u∈B−u,`

Y υ
j , (5.7)

with B−u,` the set of NI closest neighbors (chosen two by two distinct) of Xs`
−u.

The closest neighbors are computed using the Euclidean distance in Rku with ku de-
noting the cardinal of −u. Then, we compute the outer Monte Carlo loop to estimate the
expectation:

ĉj(u) =
1

N∗u

N∗u∑

`=1

Êj
u,s`
. (5.8)

Note that cj(∅) = 0 and that cj({1, . . . , d}) = Var(Yj), which is assumed to be known
in [Broto et al., 2020], and that is estimated by the empirical variance in the present
paper. In [Broto et al., 2020, Theorem 6.6.], it is proved that under mild assumptions,
ĉj(u) converges in probability to cj(u) as n andN∗u go to∞. Finally, the subset aggregation

80



5.3. Estimation procedure for scalar and aggregated Shapley effects

procedure consists in estimating scalar Shapley effects by plugging (5.8) in Equation (5.3):

Ŝh
j

i =
1

d σ̂2
j

∑

u⊆−i

(
d− 1

|u|

)−1

(ĉj(u ∪ {i})− ĉj(u)) (5.9)

where σ̂2
j is the empirical estimator of Var(Yj).

5.3.2 Estimator of the aggregated Shapley effects

Given scalar Shapley effect estimators whose definition is recalled in the previous section,
we propose to estimate the aggregated Shapley effects by:

ĜShi =

∑p
j=1 σ̂

2
j Ŝh

j

i∑p
j=1 σ̂

2
j

=
1

d
∑p

j=1 σ̂
2
j

p∑

j=1

∑

u⊆−i

(
d− 1

|u|

)−1

(ĉj(u ∪ {i})− ĉj(u)), (5.10)

with σ̂2
j the empirical estimator of Var(Yj) and ĉj(u) defined by (5.8).

5.3.3 Dimension reduction: functional principal component
analysis

If model f is space or time-dependent, inspired by Alexanderian et al. [2020] and Lamboni
et al. [2009], we perform a functional principal component analysis (fPCA) based on the
Karhunen-Loève (KL) expansion to obtain a low-rank model representation. Then we
compute the aggregated Shapley effects for the vectorial output composed with the first
principal components. This parsimonious representation of the functional output usually
allows easier interpretation for real applications. To perform KL expansion, we use the
principal component analysis through conditional expectation (PACE) method introduced
in Yao et al. [2005]. More precisely, we have a collection of n independent trajectories
of a smooth random function f(.,X) with unknown mean µ(s) = E(f(s,X)), s ∈ τ ,
where τ ⊆ R is a bounded and closed interval, and covariance function G(s1, s2) =
Cov(f(s1,X), f(s2,X)), s1, s2 ∈ τ . We assume that G has a L2 orthogonal expansion in
terms of eigenfunctions ξk and non increasing eigenvalues λk such that:

G(s1, s2) =
∑

k≥1

λkξk(s1,X)ξk(s2,X), s1, s2 ∈ τ.

The KL orthogonal expansion of f(s,X) is:

f(s,X) = µ(s) +
∑

k≥1

αk(X)ξk(s) ≈ µ(s) +

q∑

k=1

αk(X)ξk(s), s ∈ τ, (5.11)

where αk(X) =
∫
τ
f(s,X)ξk(s)ds is the k-th functional principal component (fPC) and q

is a truncation level. Following the authors in [Yao et al., 2005], we estimate first µ̂(s)

using local linear smoothers and Ĝ(s1, s2) using local linear surface smoothers (Fan and
Gijbels [1996]), then we estimate eigenfunctions and eigenvalues by solving the following
integral equations:
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Chapter 5. Aggregated Shapley effects

∫

τ

Ĝ(s1, s)ξ̂k(s1)ds1 = λ̂k ξ̂k(s), s ∈ τ,

with
∫
τ
ξ̂(s)ds = 1 and

∫
τ
ξ̂k(s)ξ̂m(s) = 0 for all m 6= k ≤ q. The problem is solved

by using a discretization of the smoothed covariance (see further details in [Rice and

Silverman, 1991] and [Capra and Müller, 1997]). Finally, fPCs α̂k(X) =
∫
τ
f(s,X)ξ̂k(s)ds

are solved by numerical integration.
Aggregated Shapley effects are finally estimated using the estimated low rank KL

model representation with truncation level q, in other words, they are computed with
only the q first estimated fPCs:

G̃Shi =
1

d
∑q

k=1 λ̂k

q∑

k=1

∑

u⊆−i

(
d− 1

|u|

)−1(
E(Var(α̂k(X)|Xu∪{i}))− E(Var(α̂k(X)|Xu))

)
.

(5.12)

Remark. (5.12) can be estimated using (5.10).

Remark. To avoid splitting our sample, we use the same sample to estimate the KL
representation and to estimate aggregated Shapley effects. The comparison with the al-
ternative procedure consisting in splitting the initial sample in two subsamples, one to
estimate the KL representation and the other one to estimate aggregated Shapley effects
is presented and discussed for the mass-spring model in Section 5.10. Based on these
numerical results, we decided to apply the procedure without splitting in the following and
in particular on our snow avalanche application.

5.4 Bootstrap confidence intervals with percentile

bias correction

Confidence intervals are a valuable tool to quantify uncertainty in estimation. We con-
sider non parametric bootstrap confidence intervals with bias percentile correction (see,
e.g., Efron [1981], Efron and Tibshirani [1986]). More precisely, we propose to construct
confidence intervals, with a block bootstrap procedure, following ideas in [Benoumechiara
and Elie-Dit-Cosaque, 2019]. Indeed, bootstrap by blocks is necessary to preserve the
nearest-neighbor structure in Equation (5.7) and to avoid potential equalities in distance
(see Assumption 6.3 in [Broto et al., 2020]). We describe in Algorithm 1 how to create B

bootstrap samples for scalar Shapley effect estimators Ŝh
j

i and aggregated Shapley effect

estimators ĜShi, and then we describe the percentile bias correction method.
If model output is scalar, only Steps 1 to 3 of Algorithm 1 should be used. The block

bootstrap procedure is described by Steps 3.1 to 3.3. Also, the same sample (X,Y) is
used to estimate the variance of the outputs Yj, 1 ≤ j ≤ p, and the Shapley effects.

For 1 ≤ i ≤ d, 1 ≤ j ≤ p, let Ri = {ĜSh
(1)

i , . . . , ĜSh
(B)

i } and Rj
i =

{Ŝh
j,(1)

i , . . . , Ŝh
j,(B)

i }, the bias-corrected percentile method presented in [Efron and Tib-
shirani, 1986] is applied. Let us denote by Φ the standard normal cumulative distri-
bution function and by Φ−1 its inverse. A bias correction constant z0, estimated as
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5.4. Bootstrap confidence intervals with percentile bias correction

Algorithm 1 B bootstrap samples for Ŝh
j

i and ĜShi

Inputs: (i) A n i.i.d. random sample (Xk,Yk)k∈{1,...,n} with Xk ∈ Rd and Yk ∈ Rp.
(ii) For each ∅  u  {1, . . . , d}, a Nu random sample (s`)1≤`≤Nu from {1, . . . , n}.
Outputs: B bootstrap samples for Ŝh

j

i and ĜShi.
for b = 1 to b = B do

1. Create a n bootstrap sample Y(b) by sampling with replacement from the rows of
Y.
2. Compute, for 1 ≤ j ≤ p, σ̂

2,(b)
j the empirical variance of Y

(b)
j .

3. For each j ∈ {1, . . . , p}:
3.1. For all u and for all (s`)1≤`≤Nu compute Êj

u,s`
using (5.7).

3.2. For all u, create a Nu bootstrap sample Ê
j,(b)
u,s` by sampling with replacement

from
(
Êj

u,s`

)
1≤`≤Nu computed in Step 3.1.

3.3. Compute ĉj
(b)(u) = 1/Nu

∑Nu

`=1 Ê
j,(b)
u,s` for all u using (5.8).

3.4. Compute the b bootstrap sample of Ŝh
j

i according to (5.9):

Ŝh
j,(b)

i =
1

d σ̂
2,(b)
j

∑

u⊆−i

(
d− 1

|u|

)−1(
ĉj

(b)(u ∪ {i})− ĉj(b)(u)
)
.

4. Compute the b bootstrap sample of ĜShi using (5.10):

ĜSh
(b)

i =
1

d
∑p

j=1 σ̂
2,(b)
j

p∑

j=1

∑

u⊆−i

(
d− 1

|u|

)−1(
ĉj

(b)(u ∪ {i})− ĉj(b)(u)
)
.

end for
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Chapter 5. Aggregated Shapley effects

ẑ0 = Φ−1(#{ĜSh
(b)

i ∈ Ri s. t. ĜSh
(b)

i ≤ ĜShi}/B) is computed (similar for Ŝh
j

i ). Then,
the corrected quantile estimate q̂(β) for β ∈]0, 1[ is defined as q̂i(β) = Φ(2ẑ0 + zβ), where
zβ satisfies Φ(zβ) = β. Corrected bootstrap confidence interval of level 1−α is estimated
by the interval whose endpoints are q̂i(α/2) and q̂i(1− α/2).

To guarantee the validity of the previous BC corrected confidence interval, there must
exist an increasing transformation g, z0 ∈ R and τ > 0 such that g(ĜShi) ∼ N (GShi −
τz0, τ

2) and g(ĜSh
∗
i ) ∼ N (ĜShi− τz0, τ

2) where ĜSh
∗
i is the bootstrapped ĜShi for fixed

sample (see Efron [1981]). Normality hypothesis can be tested using traditional normality
tests as Shapiro test or using graphical methods as empirical normal quantile-quantile
plots. In our application and test cases, we observed that g can be chosen as the identity.
The author in [Efron, 1987] advises the use of the bias correction to improve the accuracy
of bootstrap intervals. In our application and test cases, there was no much difference
between the percentile and BC intervals. However, as a good practice we performed the
bias correction, especially since the algorithm is simple to implement.

To validate the coverage accuracy of the bootstrap intervals whose construction is
described in Algorithm 1, we compute the empirical probability of coverage (POC) of
simultaneous intervals using Bonferroni correction for the test cases where the true value
of the effects is known. The POC with Bonferroni correction is the probability that the
interval [Ĝ−1 ◦ q̂i(α/(2d)), Ĝ−1 ◦ q̂i(1 − α/(2d))], where Ĝ is the cumulative distribution

function for ĜShi, contains GShi for all i ∈ {1, . . . , d} simultaneously. To be more precise,
if the confidence intervals are computed in N independent samples of size n of (X,Y), the

POC is estimated as P̂OC =
∑N

k=1 w
k/N, where wk is equal to 1 if Ĝ−1 ◦ q̂i(α/(2d)) ≤

GShi ≤ Ĝ−1 ◦ q̂i(1− α/(2d)) for all i, and 0 otherwise.

5.5 Test cases

In this section, we numerically study the performance of the estimation procedure and
the probability coverage of the boostrap confidence intervals we introduced in the previ-
ous section. We consider two test cases: a multivariate linear Gaussian model and the
functional mass-spring model proposed in the work of Gamboa et al. [2013]. To esti-
mate the scalar Shapley effects, we use the function shapleySubsetMc of the R package
sensitivity corresponding to the estimation procedure defined by (5.8), (5.7) and (5.9).
Functional PCA is performed using the R package FPCA [Chen et al., 2020].

5.5.1 Multivariate linear Gaussian model in dimension d = 2

We consider a multivariate linear model with two Gaussian inputs based on the example
from [Iooss and Prieur, 2019]. For this toy function, there is an analytical expression of
the scalar and aggregated Shapley effects (see Iooss and Prieur [2019]).

The model f is defined as Y = f(X) = BTX with X ∼ N (µ,Γ), Γ ∈ Rd×d a positive-
definite matrix and B ∈ Rd×p. In this example, we consider d = 2 and p = 3 which means
Y = (Y1, Y2, Y3). The variance of the centered random variables X1 and X2 are equal to
σ2

1 = 1 and σ2
2 = 3, respectively and their correlation ρ = 0.4. Thus the covariance matrix

of X is given by:
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5.5. Test cases

Γ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
1 0.69

0.69 3

]
,

and the coefficients of B = (βij) ∈ R2×3 are chosen as:

B =

[
1 4 0.1
1 3 0.9

]
.

The variance of the output Yj with j ∈ {1, 2, 3} is σ2
Yj

= β2
1jσ

2
1 + 2ρβ1jβ2jσ1σ2 +β2

2jσ
2
2.

The scalar Shapley effects are:

σ2
Yj
φj1 = β2

1jσ
2
1

(
1− ρ2

2

)
+ ρβ1jβ2jσ1σ2 + β2

2σ
2
2

ρ2

2
,

σ2
Yj
φj2 = β2

2jσ
2
2

(
1− ρ2

2

)
+ ρβ1jβ2jσ1σ2 + β2

1σ
2
1

ρ2

2
.

Then, the aggregated Shapley effects for i ∈ {1, 2} are computed according to (5.10).
Let us first focus on scalar Shapley effect estimation and the associated confidence

intervals, for example scalar Shapley effects for the first component of the output, Y1. For
Y1, the most important input is X2, with a Shapley effect around 0.66. In Figure 5.1,
we analyze the evolution of the estimation accuracy through the mean absolute error
(MAE) and the POC as a function of n and Ntot. The value of Ntot varies from 100
to n(2d − 2) = 2n. For each combination of n and Ntot, N = 300 independent random
samples are used for estimating the MAE and the POC. The bootstrap sample size B is
fixed to 500. The evolution of the 5% and 95% quantiles of the MAE is also drawn. As
expected, the estimation accuracy increases with n and Ntot. Also, for fixed n, it increases
with Ntot. As Ntot reaches n, which means Nu = n/2 for all u as d = 2, the decrease of the
MAE slows down from exponential to linear. This behavior seems coherent with the result
stated in [Broto et al., 2020, Corollary 6.8] which asserts that there exits 0 < C < +∞
such that, for Nu ≥ Cn1/(d−|u|) and δ > 0:

|ĉ1(u)− c1(u)| = op

(
1

n1/(2(d−|u|)−δ

)
. (5.13)

The bound in (5.13) does not depend on Ntot anymore. Finally, the behavior of the POC
is as expected, around 0.9 whatever n and Ntot.

The evolution of the MAE and POC for the estimation of aggregated Shapley effects as
function of n and Ntot is displayed in Figure 5.2. Similarly as for the estimation of scalar
effects, the accuracy increases with n and Ntot. However for fixed n, the POC deteriorates
for large Ntot (POC is around 0.8 for Nu = n). The reason for this deterioration is not
well understood but is probably due to the use of bootstrap with nearest neighbors. In
the following, we keep all the Nu strictly below n to guarantee the POC.

We estimate Shapley effects if input correlation is higher (ρ = 0.9). POC and bias
results are also satisfactory (not shown). In fact, POC values vary also around 0.9 and
bias decreases and goes to 0 when n and Ntot increases. For this simple test case, we have
shown that confidence intervals using Algorithm 1 reach accurate coverage probability
and that bias reduces when n and Ntot increase. Nevertheless in this test case, estimation
is effortless because d = 2.
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Figure 5.1: Linear Gaussian model in dimension d = 2: MAE for the estimation of scalar
Shapley effects of the output Y1 estimated from N=300 i.i.d. samples as a func-
tion of Ntot using different sample sizes a) n = 1000, b) n = 2000 and c) n = 5000.
The 0.05 and 0.95 pointwise quantiles of the absolute error are drawn with gray
polygons. The empirical coverage probability of the 90% bootstrap simultaneous
confidence intervals is displayed with dotted lines. The theoretical coverage prob-
ability 0.9 is also shown with a plain gray line. The bootstrap sample size is fixed
to B = 500.
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Figure 5.2: Linear Gaussian model in dimension d = 2: MAE for the estimation of aggregated
Shapley effects estimated from N=300 i.i.d. samples as a function of Ntot using
different sample sizes a) n = 1000, b) n = 2000 and c) n = 5000. The 0.05
and 0.95 pointwise quantiles of the absolute error are drawn with gray polygons.
The empirical coverage probability of the 90% bootstrap simultaneous confidence
intervals is displayed with dotted lines. The theoretical coverage probability 0.9 is
also shown with a gray plain line. The bootstrap sample size is fixed to B = 500.
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5.6. Snow avalanche modeling

Input Description Distribution
m mass (kg) U [10, 12]
c damping constant (Nm−1s) U [0.4, 0.8]
k spring constant (Nm−1) U [70, 90]
l initial elongation (m) U [−1,−0.25]

Table 5.1: Mass-spring model: Input description and uncertainty intervals. U denotes the
uniform distribution. The inputs are independent from each other.

5.5.2 Mass-spring model

The method is illustrated on a test case with discretized functional output: the functional
mass-spring model proposed by [Gamboa et al., 2013], where the displacement of a mass
connected to a spring is considered:

m`′′(t) + c`′(t) + k`(t) = 0, (5.14)

with initial conditions `(0) = l, `′(0) = 0, and t ∈ [0, 40]. There exists an analytical
solution to Equation (5.14). This model has four inputs (see more details in Table 5.1).
The model output is the vector Y = f(X) = (`(t1), . . . , `(t800)), ti = 0.05i with i ∈
{1, . . . , 800}.

Inputs are considered independent. The true aggregated Shapley effects are unknown
but they are approximated using a high sample size n = 25 000 and Ntot = 10 000. Then,
the Shapley effects estimated are ĜSm = 0.38, ĜSc = 0.01, ĜSk = 0.51 and, ĜSl = 0.09.
Given these results, inputs ranking is: k, m, l and c which corresponds to the same
ranking obtained using Sobol’ indices (see Table 3 of [Gamboa et al., 2013]).

The discretized output is high-dimensional (p = 800). We perform fPCA (see Sub-
section 5.3.3) to estimate the effects using the first q � p fPCs. Figure 5.3 shows the
POC and bias evolution if different values for n and Ntot are used for the aggregated effect
estimation. We use the first 6 fPCs which explain 95% of the output variance (see Fig-
ure 5.3 a). For each n and Ntot combination, the aggregated Shapley effects are estimated
for N = 100 independent samples and confidence intervals are estimated with B = 500
bootstrap samples. The accuracy is not very good if sample size is small n = 1000 (see
Figure 5.3 b). However, it reduces drastically when the sample size n increases as ex-
pected. On our experiments, the smallest MAE is achieved for n = 5000 and Ntot = 2002
(see Figure 5.3 d). The confidence interval reaches the expected POC 0.9 as soon as n
and Ntot are large enough (see Figure 5.3 b).

5.6 Snow avalanche modeling

5.6.1 Model

Our avalanche model is based on depth-averaged Saint-Venant equations and considers
the avalanche as a fluid in motion. In more detail, it considers only the dense layer of
the avalanche. The flow depth is then small compared to its length. The model assumes
the avalanche is flowing on a curvilinear profile z = l(x), where z is the elevation and
x is the projected distance measured from the top of the avalanche path. Under these
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Figure 5.3: Mass-spring model: a) Explained variance as a function of the number of principal
components. The gray line is displayed at 95% of the variance explained which
corresponds to 6 components. The MAE computed from N = 100 independent
realizations of the aggregated Shapley effect estimates, using the first 6 principal
components, is drawn as a function of Ntot with b) n = 1000, c) n = 2000 and d)
n = 5000. The 0.05 and 0.95 pointwise quantiles of the MAE are drawn with gray
polygons. The probability of coverage of the 90% bootstrap simultaneous intervals
is displayed with a dotted line. The theoretical POC 0.9 is highlighted with a plain
gray line. The bootstrap sample size is fixed to B = 500.

assumptions, shallow-water approximations of the mass and momentum equations can be
used:

∂h

∂t
+
∂hv

∂x
= 0

∂hv

∂t
+

∂

∂x

(
hv2 +

h2

2

)
= h(g sin θ − F)

where v = ‖~v‖ is the flow velocity, h is the flow depth, θ is the local angle, t is the time,

g is the gravity constant and F = ‖~F‖ is a frictional force. The model uses the Voellmy
frictional force F = µgcosθ+g/(ξh)v2, where µ and ξ are friction parameters. The partial
differential equation (PDE) system is solved numerically using a finite volume scheme on
the path curvilinear profile with a 5m resolution (see full details about the PDE scheme
in [Naaim et al., 2004]). Hence, even if the PDEs are expressed in a two-dimensional
frame, they in fact represent a one-dimensional flow on the curvilinear profile ([Greve
et al., 1994]).

The numerical model depends on six inputs: the friction parameters µ and ξ, the
length lstart of the avalanche release zone, the snow depth hstart within the release zone,
the abscissa corresponding to the beginning of the release zone denoted by xstart and the
discretized topography of the flow path, denoted by D = (x, z) ∈ RNs×2 where x ∈ RNS is
the vector of projected abscissa positions and z = l(x) ∈ RNS is the elevation vector. Ns

is the number of points of the discretized path. Subsection 5.6.1 shows an illustration of
the avalanche model. We use for D the topography of a path located in Bessans, France.
This particular path already considered in other works [Eckert et al., 2008a, 2010, Favier
et al., 2014b, Eckert et al., 2018b] in well documented in the French avalanche database
Bourova et al. [2016]. The model outputs are the flow velocity, flow depth trajectories in
the path D and runout distance of an avalanche. Note that the model has two functional
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5.6. Snow avalanche modeling

Input Description Distribution
µ Static friction coefficient U [0.05, 0.65]
ξ Turbulent friction [m/s2] U [400, 10000]
lstart Length of the release zone [m] U [5, 300]
hstart Mean snow depth in the release zone [m] U [0.05, 3]
xstart Release abscissa [m] U [0, 1600]

Table 5.2: Avalanche model, scenario 1: Input description and uncertainty intervals. In the
the GSA, we consider volstart = lstart × hstart × 72.3/ cos(35◦) instead of hstart and
lstart.

and one scalar outputs and these three outputs are the objects of the GSA study. We
develop our GSA in two contexts or scenarios: (i) little knowledge on the input parameter
probability distribution, and (ii) well-calibrated input parameter distributions.

Figure 5.4: The avalanche model.

5.6.2 Scenario 1

Principle

We first determine the most influential input parameters sampled from uniform distri-
butions. We thus expect from the GSA a better understanding of the numerical model.
Inputs µ and ξ vary in their physical value ranges. Inputs lstart and hstart vary in their
spectrum of reasonable values given the characteristics of the avalanche path. The xstart

input distribution is determined by calculating the abscissa interval where the release
zone average slope is superior to 30◦. Indeed, the slope remains above 30◦ during the
first 1600m of the path. A good approximation of avalanche release zones is commonly
obtained this way. Since different studies [Bartelt et al., 2012, Brian Dade and Huppert,
1998] suggest that the volume of snow is a critical quantity that controls flow dynamics, we
consider volstart as input of the GSA instead of hstart and lstart. The latter is evaluated as
volstart = lstart×hstart×72.3/ cos(35◦). The mean width and slope of the release zone equal
to 72.3m and 35◦, respectively. All uncertainty intervals are summed-up in Table 5.2. The
input correlations are close to 0 since we assume they are a priori independent.

For a given avalanche simulation, its functional velocity and flow depth outputs have
a high number of zeros because they are null above the beginning of the release zone
and after the runout position. Also, there might be some avalanche simulations that are
meaningless in physical terms and/or not useful to assess the related risk. Therefore to
perform GSA, we select simulations that accomplish the following rules:
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Chapter 5. Aggregated Shapley effects

(i) avalanche simulation is flowing in the interval [1600m, 2412m],

(ii) its volume is superior to 7000 m3 and,

(iii) avalanche runout distance is inferior to 2500m which corresponds to the end of the
path.

In the following, we use the terminology constrained sample to deal with the sample
obtained after applying rules (i) to (iii).

The return period of avalanches in the interval [1600m, 2412m] varies from 1 to 10 000
years according to the work of Eckert et al. [2010]. Roughly speaking, a return period is
the mean time in which a given runout distance is reached or exceeded at a given path’s
position. Also, we focus on medium, large and very large avalanches which have a high
potential damage.
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Figure 5.5: Avalanche model, scenario 1: scatter-plots of initial (black points) and constrained
(gray points) samples. In the figure’s diagonal, the density function of the initial
(gray color) and constrained (transparent) samples are displayed. Input corre-
lations of the original and constrained samples are shown. 1000 subsamples of
original and constrained samples are used for illustration purpose.
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5.6. Snow avalanche modeling

Global sensitivity analysis results

We first ran n0 = 100 000 avalanche simulations from an i.i.d. sample of input distributions
described in Table 5.2. Then, by applying (i) to (iii) the size of the constrained sample
was reduced to n1 = 6152 ( Subsection 5.6.2). Even if the initial sample size is high
(n0 = 100 000) and if the corresponding input parameter sample does not present any
significant correlation structure, the size of the constrained sample is low and we can
observe a correlation structure. For example, inputs µ and ξ were independent for the
initial sample but the correlation computed after applying the constraints is 0.31. Note
that the input parameter correlations induced by the constraints were the main motivation
to compute Shapley effects and not Sobol’ indices in this first scenario.

On Subsection 5.6.2 are plotted highest density region (HDR) boxplots for the velocity
and flow depth, obtained by using the R package rainbow developed by Hyndman and
Shang [2010]. The HDR boxplot is a vizualization tool for functional data based on kernel
density estimation of the scores associated to the two first principal components of the
functional data (see Hyndman [1996] for further details). In the data we consider in
our study, the avalanche velocity ranges from 0.1ms−1 to 71.56ms−1 and avalanches are
decelerating (see Subsection 5.6.2 a). Flow depths vary from 0.03m to 7.52m. The flow
depth curves exhibit high fluctuations in the interval [2100m, 2300m] (see Subsection 5.6.2
b) which corresponds to a region where path’s topography is mostly convex. Runout
distances vary from 2409m to 2484m (see Subsection 5.6.2 c).
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Figure 5.6: Avalanche model, scenario 1: a) and b) functional HDR boxplots of velocity and
flow depth curves, resp. It is shown 50% HDR (dark gray), 100% HDR (light gray)
and modal curve, the curve in the sample with the highest density (black line). c)
runout distance boxplot. The constrained sample size is n1 = 6152.

On Subsection 5.6.2 panels a and b, ubiquitous (pointwise) Shapley effects of velocity
and flow depth curves are shown, respectively. Depending on the output, results are
quite different. For velocity, xstart is the most relevant during a large part of the path
but its importance decreases along the path and, conversely, the importance of the other
inputs increases. For the flow depth output, the most important input is volstart since
the corresponding Shapley effects vary from 0.4 to 0.2 along the path. Nevertheless,
other inputs are not completely negligible. Input importance also varies according to the
topography. In fact, the ubiquitous effect variation corresponds to local slope changes (see
Subsection 5.6.2 a and b). Correlations between ubiquitous effects and local slope have
been computed and are rather high. For example, for the velocity, the absolute value of
the correlation is higher than 0.51 for all input parameters. This implies that local slope
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Chapter 5. Aggregated Shapley effects

changes play an important role on the input contribution to output variations, a nice
results showing the relevance of the GSA analysis to understand the dynamical properties
of the flow. Eventually, for runout distance, the four inputs are relevant. Our results are
in accordance with previous works documenting the sensitivity of snow avalanche models
to their input conditions using less formalised methods [Borstad and McClung, 2009].
They also relate to more general results regarding snow avalanche dynamics. Especially,
it is well known that in the transit area of the path, an avalanche accelerates up to a
maximal velocity and this limit velocity can be explicitly computed on a constant slope
under the assumption of a Voellmy friction law [Salm et al., 1990, Gauer, 2014, McClung
and Gauer, 2018]. It is therefore all the more logical that the influence of xstart on velocity
decreases as the avalanche flows downslope. More generally, with depth-averaged flow
equations, it is known that initial conditions corresponding to the avalanche release are
important only in the early phases of the flow and are forgotten later, especially in the
runout area where velocity and flow depths become primarily constrained by local slope.
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Figure 5.7: Avalanche model, scenario 1: a) and b) ubiquitous Shapley effects of velocity and
flow depth curves, resp. and, c) runout distance Shapley effects. Shapley effects are
estimated with a sample of size 6152 and Ntot=2002. The local slope is displayed
with a white line. A gray dotted rectangle box is displayed at interval [2017, 2412]
where snow avalanche return periods vary from 10 to 10 000 years. The bootstrap
sample size is fixed to B = 500.

The fPCs convey useful information about the avalanche model and also, its sensitivity.
Subsection 5.6.2 (resp., Subsection 5.6.2) shows the correlations between the fPCs and the
velocity (resp., flow depth) output for scenario 1. The first fPC has a positive correlation
with the velocity, always higher than 0.57, however the correlation decreases drastically
from the top to the bottom of the path. By contrast, the second fPC is less correlated to
the velocity, the correlation is positive at the top of the path, then the correlation decays
and even becomes highly negative for x ≥ 2300 m. Hence, these two components identify
well two regions of the path where velocity behaves differently: the first fPC corresponds
to the release and transit area of the path, where avalanches accelerate and maintain their
velocity while the second fPC identifies the runout area where avalanches are decelerating
and eventually stop. The behavior is similar for the flow depth, with a sharp peak in the
second fPC corresponding to the location in the runout area where slope becomes null and
then negative. To strengthen our physical interpretation, we estimated the scalar Shapley
effects for each fPC with n = 6152 and Ntot = 2002. As far as velocity is concerned,
for the first fPC, xstart is the most important input and for the second fPC, volstart, xstart

and µ are the most relevant. For the flow depth, for the first fPC, volstart is the most
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5.6. Snow avalanche modeling

relevant. For the second fPC, the inputs xstart, volstart and µ are the most important
inputs. These results are in accordance with previous works documenting the sensitivity
of snow avalanche models to their input conditions, and notably the high importance of
the Coulomb friction coefficient µ and snow volume in the runout area [Dent and Lang,
1980, Borstad and McClung, 2009, Bartelt et al., 2012]. Similar results are obtained for
scenario 2 (see Figures 5.16 and 5.17 in Section 5.11).
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Figure 5.8: Avalanche model, scenario 1: a) and c) correlations between the first and second
fPCs and the velocity. Scalar Shapley effects for b) fPC 1 and d) fPC 2 are
estimated with n = 6152 and Ntot = 2002. For the confidence intervals, B = 500
is used. The local slope is displayed with a gray line.

Subsection 5.6.2 shows aggregated Shapley effects and 90% confidence intervals com-
puted over space intervals [x, 2412] where x ∈ {1600, 1700, . . . , 2412}. The aggregated
effects are computed in the first fPCs explaining more than 95% of the output variance.
Aggregated effects seem more robust than ubiquitous effects, specially in zones where lo-
cal slope shows high variations (see Subsection 5.6.2 compared to Subsection 5.6.2). For
explaining more than 95% of the velocity output variance, 2 fPCs are required, while,
for explaining more than 95% of the flow depth output variance, at most 4 fPCs are
required, depending on x. For the velocity output, the most important input is xstart in
the interval [1600m, 2100m] but its importance decreases along the path. In the interval
[2017m, 2412m] where return periods are non trivial, xstart and volstart are the most impor-
tant followed by µ and ξ. For the flow depth output, volstart is the most relevant but its
importance decreases along the path. At the end of the path from 2300m to 2412m where
return periods are high (between 100 to 10 000 years), confidence intervals intersect. It
seems thus difficult to deduce a clear ranking of the inputs for these last portions of the
path. Nevertheless, it seems that none of the inputs is negligible, even at the very end of
the path. In summary, to estimate velocities with accuracy, the release zone and volume
are the most important parameters and, for the flow depth, a good approximation of the
volume released is essential.
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Figure 5.9: Avalanche model, scenario 1: a) and c) correlations between the first and second
fPCs and the flow depth output. Scalar Shapley effects for b) fPC 1 and d) fPC
2 are estimated with n = 6152 and Ntot = 2002. For the confidence intervals,
B = 500 is used. The local slope is displayed with a gray line.
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Figure 5.10: Avalanche model, scenario 1: a) and b) aggregated Shapley effects of ve-
locity and flow depth curves calculated over space intervals [x, 2412m] where
x ∈ {1600m, 1700m, . . . , 2412m}. Shapley effects are estimated with samples of
size 6152 and Ntot=2002. Effects are estimated using the first fPCs explain-
ing more than 95% of the output variance. The local slope is displayed with a
gray line. A gray dotted rectangle is displayed at [2017m, 2412m] where snow
avalanche return periods vary from 10 to 10 000 years. The bootstrap sample size
is fixed to B = 500.
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5.6. Snow avalanche modeling

Input Distribution
xnstart = xstart

1600
Beta(1.38, 2.49)

hstart|xnstart Gamma
(

1
0.452

(1.52 + 0.03xnstart)
2, 1

0.452
(1.52 + 0.03xnstart)

)

lstart 31.25+87.5hstart

µ|hstart, xnstart N (0.449− 0.013xnstart + 0.025hstart, 0.112)

Table 5.3: Avalanche model: Scenario 2. Input description and uncertainty intervals. xnstart is
a normalization of xstart. A linear relationship between hstart and lstart inferred from
the local data is used [Eckert et al., 2010]. Gamma distribution parameters are its
shape and rate. In the the GSA, we consider volstart = lstart×hstart×72.3/ cos(35◦)
instead of hstart and lstart.

5.6.3 Scenario 2

Principle

The aim is now to determine the most influential inputs in the context of strong knowledge
regarding input distributions. In [Eckert et al., 2010], the authors developed a Bayesian
framework to estimate input distributions from available avalanche observations. The
objective is long-term avalanche hazard assessment in order to assess the related risk for
buildings and people inside. In the avalanche literature, it is assumed that ξ depends on
the path topography, so it is a parameter and not a variable varying from one avalanche
to another in [Eckert et al., 2010]’s model. The input ξ is therefore fixed to its posterior
estimate, 1300. Other input variables in this scenario are dependent. The dependence
between hstart and lstart is modeled with a linear function lstart = 31.25 + 87.5hstart, and
similarly as in scenario 1, we consider volstart as input of the GSA instead of hstart and lstart.
The complete input distribution resulting from the Bayesian inference on the studied path
is described in Table 5.3. Input correlations have been computed. As an example, the
correlation between µ and volstart is 0.8. As a preliminary step to GSA for this scenario,
we apply the following constraints:

(i) avalanche is flowing in the interval [1600m, 2204m] where snow avalanche return
periods vary from 10 to 300 years,

(ii) avalanche volume is superior to 7 000 m3 and,

(iii) µ coefficient is inferior to 0.39 as we focus on dry snow avalanches.

Under these conditions, we sample the full set of dry snow avalanches that could cause
strong material or human damages on the studied site.

Global sensitivity analysis results

We first ran n0 = 100 000 avalanches from an i.i.d. sample of input distribution following
Table 5.3. After applying the constraints, the sample size was reduced to n2 = 1284
and the input distribution was modified. For example, µ and volstart correlation changes
from 0.8 to 0.2 which is still non negligible. Ubiquitous Shapley effects are displayed
on Subsection 5.6.3 panels a and b. For the velocity, the three inputs have a similar
importance till 1900m, then volstart importance decreases and µ and xstart importance
increases (see Subsection 5.6.3 a). Similarly, as in scenario 1, the effects show fluctuations
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which correspond to changes in local slope. In particular, for the flow depth, input effects
suffer radical changes when the local slope decreases from 20◦ to 10◦ (see Subsection 5.6.3
b). For the runout distance, all inputs are relevant (see Subsection 5.6.3 c).
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Figure 5.11: Avalanche model, scenario 2: a) and b) ubiquitous Shapley effects of velocity
and flow depth curves, c) runout distance Shapley effects. Shapley effects are
estimated with samples of size 1284 and Ntot=800. The local slope is displayed
with a white line. A gray dotted rectangle shows the interval [2064, 2204] where
return periods vary from 10 to 300 years. The bootstrap sample size is fixed to
B = 500.

Aggregated effects (see Subsection 5.6.3) present less fluctuations and are easier to
interpret (see Subsection 5.6.3). In summary, under this second scenario, it is fundamental
to have a good approximation of the released volume and abscissa for velocity forecasting,
while for flow depth forecasting, a good approximation of released volume is desirable.
Nevertheless, none of the other inputs are negligible. Note that the uncertainty associated
to the estimation of Shapley effects at 2204m is high (see the width of the corresponding
confidence intervals on Subsection 5.6.3). To outperform the estimation accuracy at
the end of the path generating a larger initial sample of avalanches is possible, but the
computational burden is prohibitive.

5.7 Conclusions and perspectives

In this work, we extended Shapley effects to models with multivariate or functional out-
puts. We proved that aggregated Shapley effects accomplish the natural requirements
for a GSA measure. For the estimation, we proposed to extend the subset aggregation
procedure with double Monte Carlo given data estimator of Broto et al. [2020]. We pro-
posed an analysis of the impact of the total budget Ntot, the number of neighbors NI and
the optimal allocation N∗u on the accuracy of Shapley effect estimation. Also, we pro-
posed an algorithm to construct bootstrap confidence intervals for scalar and aggregated
Shapley effects based on the ideas of [Benoumechiara and Elie-Dit-Cosaque, 2019]. In
test cases, the convergence of our estimator was empirically studied. Also, we empirically
demonstrated that the bootstrap confidence intervals we proposed have accurate coverage
probability. Estimation and bootstrap confidence interval algorithms well behave. Never-
theless, high sample sizes (n = 5000 and Ntot = 2002) are required to guarantee accurate
results. Remark that it is well known that Shapley effects estimation is costly. It would
be interesting to study theoretically the asymptotic properties of our estimator, but this
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Figure 5.12: Avalanche model, scenario 2: a) and b) aggregated Shapley effects of veloc-
ity and flow depth curves calculated over space intervals [x, 2204] where x ∈
{1600, 1700, . . . , 2204} and using the first fPCs which have 95% of output vari-
ance. Shapley effects are estimated with samples of size 1284 and Ntot=800. The
local slope is displayed with a gray line. A gray dotted rectangle is displayed at
[2017m, 2204m] where return periods vary from 10 to 300 years. The bootstrap
sample size is fixed to B = 500.

study is out of the scope of this paper. Recently, in the R package sensitivity the
function sobolshap knn to estimate Shapley effects with n and Ntot from a given data
sample has been implemented. This function uses a tree based technique to approximate
nearest-neighbor search which reduces drastically computation times. The function is
particularly attractive if n and Ntot are high, we could even use Ntot = (2d − 2) × n.
However, we did not use this function in this is work because there is no paper that
analyzes the convergence of the estimator and, this subject was out of the scope of this
work. We rather used the shapleySubsetMc function which corresponds to the estimator
introduced in [Broto et al., 2020] on which our estimator for aggregated Shapley effects
is based.

We applied our GSA methods to an avalanche propagation model under two different
settings. Due to physical modeling constraints input parameters were not confined in a
rectangular region. For these reasons, it was not possible to consider independence of
input parameters. Results showed probative linkages between local slope and sensitivity
indexes. Notably, aggregated Shapley effects were more stable and easier to interpret than
ubiquitous effects, as already observed by Alexanderian et al. [2020] in the case of aggre-
gated Sobol’ indices. This demonstrates the usefulness of our approach for many practical
problems. Especially, it could be applied to other avalanche paths to generalize the re-
sults obtained in terms of respective weights of the inputs and interpret the sensitivity
indices more deeply in terms of physical properties of avalanche flows. Eventually, appli-
cation was challenging because constrained samples were of moderate size, for example,
from the 100 000 initial sample, the physical constraints produced a 6000 to 1200 sample,
depending on the setting. In a future work, it would be useful to construct a surrogate
of the avalanche model to generate larger constrained samples, improve the accuracy of
aggregated Shapley effect estimation and thus reduce confidence intervals width.
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|u| 1 2 3 4 5 6 7 8 9
N∗u 600 133 50 29 24 29 50 133 600
Nu =

⌊
Ntot/(2

d − 2)
⌋

53 53 53 53 53 53 53 53 53

Table 5.4: Input dimension d = 10: Nu values for both strategies (i) and (ii) for n = 10 000
(number of simulations) and Ntot = 54 000 (total cost).

5.8 Comparison between the uniform allocation Nu =⌊
Ntot/(2

d − 2)
⌋
, and the one introduced in [Broto

et al., 2020] N ∗u =
⌊
Ntot

(
d
|u|
)−1

(d− 1)−1
⌋
, ∅ ⊆ u (

{1, . . . , d}
The total cost Ntot to estimate all the c(u), ∅ ( u ( {1, . . . , d} could be uniformly
divided as Nu =

⌊
Ntot/(2

d − 2)
⌋

(called Nu uniform). To test if there is a difference in the
estimation by using Nu uniform or N∗u optimal, we consider the Gaussian linear model
example from [Owen and Prieur, 2017]:

f(X) =
d∑

i=1

βiXi,

where Xi are independent centered Gaussian variables with standard deviation σi = i2

and, βi = 1 for all i ∈ {1, . . . , d}. The scalar Shapley effects can be computed ana-
lytically (see e.g., Owen and Prieur [2017]): Shi = β2

i σ
2
i /
∑d

i=1 σ
2
i . We used N = 100

independent samples of size n = 10 000 and Ntot = 54 000 to draw the boxplots shown
in Figure 5.13. Table 5.4 summarizes the sample size used to estimate each conditional
element E(Var(Y |X−u)) in function of |u| in dimension d = 10. Figure 5.13 shows that in
high dimension, at least for that toy model, the optimal allocation N∗u leads to a better
accuracy than the uniform allocation. When dimension is low (for example d = 4 as in
the mass-spring model), taking N∗u or Nu give similar results because the two options are
quite similar.

5.9 Comparison between different values of NI

In Figure 5.14, we analyzed the impact of using different numbers of neighbors NI in
the Shapley effect estimation for the linear Gaussian model in dimension d = 2 test case
described in Subsection 5.5.1. For the estimation we used n = 5000, Ntot = 5000 and

N∗u =
⌊
Ntot

(
d
|u|

)−1
(d− 1)−1

⌋
, ∅ ⊆ u ( {1, . . . , d}. Parameter NI is varied from 2 to 300.

We see in Figure 5.14 that there is no clear evidence if NI ≥ 3 is always the best choice.
However in the following we choose NI = 3 following the recommendations in [Song et al.,
2016], where the authors prove in the non given data framework that choosing NI = 3 is
better than choosing NI = 2 and that the gain from increasing NI from 3 decreases as NI

increases.
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Figure 5.13: Linear Gaussian model with d = 10 inputs: comparison between Nu =⌊
Ntot/(2

d − 2)
⌋

for all u (called Nu uniform) and Nu = N∗u for all u (called Nu

optimal) with n = 10 000 and Ntot = 54 000. The true scalar Shapley effects are
displayed with black lines.
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Figure 5.14: Linear Gaussian model in dimension d = 2: boxplots of scalar Shapley effects
and evolution of the estimation by varying the number of closest neighbors
NI = {2, 3, 5, 10, 20, 30, 100, 300}. Boxplots are drawn with N = 100 independent

random samples with n = 5000, Ntot = 5000 and N∗u =
⌊
Ntot

(
d
|u|
)−1
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⌋
,

∅ ⊆ u ( {1, . . . , d}.
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Figure 5.15: Mass-spring: estimation and associated confidence intervals for aggregated Shap-
ley effects using a single sample of size n = 5000 to perform the dimension reduc-
tion and to estimate the effects or two samples (one to perform the dimension
reduction of size n1 = 1000 and another one to estimate the effects n2 = 4000).
The estimation as a function of the basis size (number of principal components)
is displayed. All the pannels were produced with Ntot = 2000 and B = 500
(bootstrap sample size for confidence intervals).

5.10 Estimation of Shapley effects using one or two

samples

We compare the accuracy of Shapley effect estimation for the mass-spring test case when
using a single sample of size n = 5000 or two independent samples of size n1 = 1000 and
n2 = 4000 for estimating the KL representation and the aggregated Shapley effects. In
Figure 5.15 we see that the procedure without splitting produces better results for three of
the four inputs. For the last input, results with two samples are slightly better. Based on
these results, we decided to apply the procedure without splitting on our snow avalanche
application.

5.11 Functional principal components and Shapley

effects for scenario 2

Figure 5.16 (resp., Figure 5.17) shows the correlations between the fPCs and the velocity
(resp., flow depth) output for scenario 2.

100
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Figure 5.16: Avalanche model, scenario 2: a) and c) correlations between the first and second
fPCs and the velocity output. Scalar Shapley effects for b) fPC 1 and d) fPC
2 are estimated with n = 1284 and Ntot = 800. For the confidence intervals,
B = 500 is used. The local slope is displayed with a gray line.
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Figure 5.17: Avalanche model, scenario 2: a) and c) correlations between the first and second
fPCs and the flow depth output. Scalar Shapley effects for b) fPC 1 and d) fPC
2 are estimated with n = 1284 and Ntot = 800. For the confidence intervals,
B = 500 is used. The local slope is displayed with a gray line.
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6
Conclusions and perspectives

In this thesis, we addressed the calibration and global sensitivity analysis of avalanche
dynamic models. In general, we introduced and proposed advanced statistical methods
for understanding better input parameters and outputs of snow avalanche models. All
the techniques were illustrated with synthetic data and with real snow avalanche data to
demonstrate their efficiency and usefulness for real applications. Our contributions may
be useful for avalanche scientists in order to (i) account for the error structure in model
calibration and (ii) to rank input parameters according to their importance in the output
model.

• A framework based on Bayesian inference to calibrate avalanche dynamic models
using high temporal resolution data.

• A nonparametric method based on Nadaraya-Watson kernel with bootstrap bias
correction to estimate aggregated Sobol’ indices from a given sample.

• A given data estimation method and associated confidence intervals for aggregated
Shapley effects based on nearest-neighbor estimation.

The last two methods were applied to rank input parameters relatively to their impact
on the variability of functional outputs of an avalanche dynamic model. In the next
sections, we revisit in detail the contributions and conclusions of this manuscript and
finally, we present the perspectives and open research questions.

6.1 Conclusions

Accounting for error structure in model calibration

In Chapter 3, we proposed a Bayesian inference framework to calibrate an avalanche dy-
namic model from an avalanche velocity time series with ∆t = 1s. The time series was
obtained from high rate positioning photogrammetry images of an avalanche released at
the Lautaret test site on February 13 2013. We considered a sliding block model with
Voellmy friction law. To perform the calibration under a Bayesian framework, assump-
tions about the model error distributions (defined as observations−model simulation) are
required. Traditionally, the errors are assumed i.i.d. and normally distributed. However,
as our data is a time series, the errors are autocorrelated. Thus, the objective of our
work was to show how taking into account the autocorrelation might improve the friction
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parameter estimation and the prediction of velocities. Within this purpose, we compared
two statistical models: a first one that considers i.i.d. Gaussian centered errors and a
second one that considers the errors modeled by an autoregressive process of order 1. We
also generated synthetic data to illustrate how omitting the autocorrelation generates a
bias for the estimation of friction parameters. Results showed that it is important to take
into account the error structure (in our case, the autocorrelation) for model calibration
to avoid bias.

Non parametric estimation method for aggregated Sobol’ indices

In Chapter 4, our objective was to perform a GSA of an avalanche model. We considered
the particular context of independent input parameters. The other constraint was that
we had to propose a given data estimation procedure, accurate even for a sample of
moderate size. Within this purpose, we proposed a nonparametric method to estimate
the aggregated Sobol’ indices from a given data sample. The nonparametric method was
based on the Nadaraya-Watson kernel smoother. Since the sample size was moderate, the
kernel estimation was biased and it required a bias correction. To remove such a bias, we
proposed a bias correction based on the works of Racine [2001] and Soĺıs [2019]. We tested
the accuracy of the method on toy functions, and results were good even if sample sizes
were moderate (n = 300). Then, we applied the method to estimate aggregated Sobol’
indices of the depth averaged avalanche model proposed by Naaim et al. [2004]. In this
study, we analyzed the sensitivity of the model for the avalanche event used in Chapter 3.
More precisely, the friction parameter uncertainty intervals were given by the posterior
Bayesian inference distributions and the uncertainty for other model input quantities
were obtained from measures taken during the avalanche release. In this chapter, the
input parameters were assumed to be independent. For this particular avalanche event,
the input ξ, followed by µ, were the most important for the velocity output. For the
flow depth and runout distance outputs, the snow depth within the released zone was
fundamental.

Aggregated Shapley effects with bootstrap confidence intervals

In Chapter 5, our objective was to perform GSA of avalanche dynamic models in a more
general framework than the one of Chapter 4. Indeed, in Chapter 4 we considered the
input distribution associated to a specific avalanche event to guarantee the input inde-
pendence. To perform GSA in a more general framework, we had to guarantee that
all the samples were physically meaningful. Non physical sets of input parameters were
then removed from the experimental design. For example, some combinations of friction
parameters and released volume were preventing from an avalanche release or were pro-
ducing small avalanches (volume below a threshold) which were not interesting for our
study. Within this purpose, we developed a GSA method that can be applied to samples
obtained from acceptance/rejection (AR) rules (corresponding to the physical constraints
of the study). AR rules were leading to dependence among input parameters. Therefore
we proposed to estimate Shapley effects extended to multivariate or functional outputs,
which are more meaningful in the framework of dependent inputs. We called these sensi-
tivity measures aggregated Shapley effects. For their estimation, we extended the given
data estimator of Broto et al. [2020]. We also built confidence intervals by adapting ideas
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Chapter 6. Conclusions and perspectives

of Benoumechiara and Elie-Dit-Cosaque [2019]. Then, we applied our GSA method to
the avalanche dynamic model proposed by Naaim et al. [2004]. We found that the release
position and volume were the most important inputs. Also, by looking at the evolution
of ubiquitous Shapley effects along the path, we noticed that it might exist a relationship
between the effects and the local slope.

6.2 Perspectives

6.2.1 For calibration using Bayesian inference

To reduce computational cost

A drawback of the framework proposed is that the Metropolis-Hasting algorithm, a
MCMC algorithm used for sampling from the parameter posterior distribution, might
require a high number of model runs to converge. In our application, we required at least
1000 model runs and computational cost was not a problem since, model runs were fast.
However, for using Bayesian inference to calibrate a more complex model (with high num-
ber of parameters and high computational cost) some solutions could be: (i) to perform
a GSA of the model with the aim of identifying the most important input parameters.
Then, to only calibrate those ones and, fix the others to reference values. (ii) To construct
a metamodel for the avalanche model and to perform the calibration with the metamodel.
Users must also take into account the error induced by approximating the model with the
metamodel. (iii) To apply other MCMC algorithms that might require less model runs to
converge as for example the adaptive Metropolis-Hasting algorithm introduced by Haario
et al. [2001]. In the adaptive MH, the proposal distribution q is updated in each iteration
which makes convergence faster. Nevertheless, adaptive MH is non Markovian and some
other theoretical nice properties of the MH algorithm might be lost.

To include other quantities within the calibration

In the study, we only used the avalanche velocity for the calibration. Thus, it could be
interesting to add other quantities as for example, flow depth time series and runout
distance. To do so, an appropriate likelihood function should be proposed (e.g., Gaussian
process or Dirichlet process). However, a higher quantity of data would also be needed to
optimize the new likelihood.

To apply the approach to several snow avalanches

It could be useful to apply the same approach to several avalanches to investigate, e.g.,
the relationship between friction parameters and snow conditions. Such findings could
improve deeply our knowledge about the physics of the avalanche phenomenon. However,
to do so, it would be necessary to acquire high-resolution avalanche data and the snow
conditions of the snowpack for the same the avalanche events.
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6.2.2 For the Global sensitivity analysis

To construct confidence intervals for non parametric indices estimation

It would be important to build confidence intervals for nonparametric bias corrected
estimation of aggregated Sobol’ indices. This task is not trivial because we cannot use
bootstrap based confidence intervals since we already use bootstrap for correcting the
bias and a double bootstrap is far too costly. Some interesting clues to explore could
be (i) to use Bayesian inference to deduce credible intervals for the Sobol’ indices [see
Antoniano-Villalobos et al., 2019] and (ii) to prove asymptotic convergence properties of
the aggregated Sobol’ estimator. Nevertheless, the proof of such properties is a challenging
task.

To apply GSA to other avalanche events and models

It could be useful to apply our GSA methods to other snow avalanche models and
snow avalanche events to see if results could be generalized. The methods should be
tested for example for 3-D spatio-temporal avalanche dynamic models [as for example the
r.avalflow model of Mergili et al., 2017]. The output of such models are functional and
dependent, thus the methods should be adjusted to this kind of outputs [see for example
Marrel et al., 2011].

To include the topography as input parameter

In our studies, the topography was fixed but it could also be included in the GSA as a
functional input. In such a case, our GSA method should be adapted to functional inputs
[see for example, Iooss and Ribatet, 2009, Fruth et al., 2015]. Also, the fact of including the
topography as input could provide more insights about the potential connection between
the input parameters and the topographical characteristics of avalanche paths.

To compare our ranking with other input rankings

The GSA framework applied in Chapter 5 could be seen as a particular case of conditional
sensitivity analysis (CSA) which aims at measuring the influence of the inputs on the
output within a restricted domain [see Marrel and Chabridon, 2020]. In our application,
the output domain was restricted by physical constraints. Thus it could be interesting to
compare our rank to the input rank obtained by using the aggregated HSIC indices of Da
Veiga [2015]. Moreover, Shapley effects might be used within the CSA framework, but
this should be first study in test cases.
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A
Given data estimation methods for Sobol’ indices

A.1 Given data method

Plischke et al. [2013] [see also Borgonovo et al., 2016] proposed a given data method which
relies on the notion of class-conditional densities, where a class is a sub-sample stemming
from a suitable partition of the data. As its name suggests, the method does not require
any specific sampling design to estimate the Sobol’ indices (or other sensitivity measures).
Hereafter, it is denoted by NSD (non sampling design).

Let us consider a scalar output Y = f(X). Let (xj1, . . . , x
j
d, y

j)j∈{1,...,n} be a n sample
of (X, Y ). The support of the input Xi, denoted by Xi, is partitioned into L disjoint
classes {C`}`=1,...,L such that

⋃L
`=1 C` = Xi and C`1 ∩ C`2 = ∅ for all `1 6= `2. For notation

simplicity, we remove i from the classes C` but they depend on Xi. The estimation of Si,
the first-order scalar Sobol’ index, proposed by Plischke et al. [2013] is:

Ŝi =

∑L
`=1 n`(ȳ` − ȳ)2

∑n
j=1(yj − ȳ)2

where n` counts the number of realizations of Xi in C`, ȳ and s2
y denotes the empirical

mean and variance of Y , resp., ȳ` represents the within sample class mean and it is used
to estimate the conditional mean of Y |Xi ∈ C`:

ȳ` =
1

n`

∑

j:xji∈C`

yj

The main drawback of this estimation method is the bias induced by the choice of the
partition [Antoniano-Villalobos et al., 2019]. Moreover, in [Antoniano-Villalobos et al.,
2019, Appendix A.2] different values of L were analyzed but till this moment, there is no
universal valid rule to choose L. [Theorem 1 of Borgonovo et al., 2016] states that the
estimator is consistent if the number of classes can be written as L = g(n) where g is a
monotonically increasing function such that:

lim
n→∞

n

g(n)
=∞.

For the test cases shown in Section A.3, we take L =
√
n.
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A.2 The spectral approach EASI

The effective algorithm for computing global sensitivity indices (EASI) proposed by Plis-
chke [2010] is a spectral method to estimate first-order Sobol’ indices using the Fast Fourier
Transform. Spectral approaches (as FAST and EASI) should be preferred if the model
f has some regularity [Prieur and Tarantola, 2017]. Let (x`1, . . . , x

`
d, y

`)`∈{1,...,n} be a n
sample of (X, Y ). The sample vector xi = (x`i)`∈{1,...,n} of input Xi is ordered increasingly

to obtain a new vector x
(`)
i which elements satisfy x

(1)
i ≤ . . . ≤ x

(n)
i . Then, all odd indices

from (x
(`)
i )`∈{1,...,n} are ordered increasingly and followed by all even indices in decreasing

order to obtain the vector (x
[`]
i ):

x
[`]
i =

{
x

(2`−1)
i ` ≤ n+1

2
,

x
2(n+1−`)
i ` > n+1

2

The elements of (x
[`]
i ) satisfy a zig-zag relation:

x
[`]
i ≤ x

[`+1]
i if ` ≤ n+ 1

2
and x

[`]
i ≥ x

[`+1]
i if ` ≥ n+ 1

2
.

Let us denote by π the permutation of {1, . . . , n} such that x
π(`)
i = x

[`]
i

The first-order sensitivity index is then estimated by:

S̃i = 2

∑M
m=1 |cm|2∑
m 6=0 |cm|2

(A.1)

where cm is the m-complex coefficient of the discrete Fourier transform of
(yπ(`))`∈{1,...,n}:

cm =
n∑

`=1

yπ(`)e
2iπm(`−1)

n ,

with m = 0,±1,±2, . . . , bn
2
c with b.c denoting the integer part. The maximum har-

monic M is usually taken as 4 or 6 [Plischke, 2010]. The estimation introduced in (A.1) is
biased with respect to the maximal number of harmonics M , thus Plischke [2010] proposed
a bias correction which we use in the test cases:

Ši =
1

n− 2M
(nS̃i − 2M) (A.2)

A.3 Test cases

We study the accuracy of NSD and EASI on two test cases. The methods are also
compared to the pick-and-freeze method based on replicated orthogonal array proposed
by Mara and Joseph [2008] and further studied in Tissot and Prieur [2015], we denoted
it by sobol-roalhs. This last method requires specific designs thus is not a given data
method. It is used as a benchmark approach. The R package sensitivity is used for its
estimation.
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Figure A.1: Ishigami function. Estimation of Sobol’ indices using sobolroalhs, NSD and EASI.
For each sample size n ∈ {100, 200, 500, 1000}, N = 100 samples are used. The
true sensitivity indices values are shown with black lines.

A.3.1 Ishigami function

The Ishigami function [Ishigami and Homma, 1990] is a classical test function which is
nonlinear and non monotonic:

f(X1, X2, X3) = sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1),

the inputs X1, X2, X3 are uniformly distributed on [−π, π].
Figure A.1 shows the estimation of the Sobol’ indices using NSD, EASI and sobol-

roalhs. The true sensitivity indices of the Ishigami function are known and shown with
black lines. In order to see the evolution of the accuracy of estimation, the number of
model evaluations n varies from 100 to 1000 . For each sample size n, N = 100 random
samples are used. The number of classes required by NSD was set to

√
n. The number of

harmonics of EASI was set to 6 following the recommendation of Plischke [2010]. When
sample sizes are small, the three methods show small bias. However, as the sample size
increases the bias reduces. EASI shows accurate results even with small sample sizes for
S1 and S3 (n = 200). NSD does not estimate accurately indices close to 0 (S3).

A.3.2 Bartley et al. function

The second test function is the Bartley et al. function:

f(X1, . . . , X6) =
6∑

i=1

i∏

j=1

Xj, (A.3)

X = (X1, X2, . . . , X6) is assumed to be uniformly distributed on [0, 1]6.
Figure A.2 shows the estimation of Sobol’ indices using the three methods for the

Bartley et al. functions. Independently of the sample size, NSD estimation shows always
a bias. EASI shows good results when the sample size increases.

In conclusion, within these two example we showed that EASI is a nice option to
estimate Sobol’ indices with small given data samples. The choice of M does not seem to
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Figure A.2: Bartley et al. function. Estimation of Sobol’ indices using sobolroalhs, NSD and
EASI. For each sample size n ∈ {100, 200, 500, 1000}, N = 100 samples are used.
The true sensitivity indices values are shown with black lines.
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impact that much the results. However, for highly non regular models we could expect
that K = 6 is too small, even if the reordering of the sample regularizes the functions.
NSD is biased, and to our knowledge, there does not exist any selection procedure for the
number of classes for small to moderate sample sizes.
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B
Correlations between Shapley effects and local slope

In Chapter 5, we found that the correlations between Shapley effects and local slope were
significant. The local slope term assigns the angle between the abscissa and the corridor.
This fact might suggest that local slope changes play a role in the input importance.
Figures B.1 and B.3 show the scatterplots of the ubiquitous Shapley effects versus the
local slope for scenarios 1 and 2, respectively. Figures B.2 and B.4 show the scatterplots
of the aggregated Shapley effects and local slope for scenarios 1 and 2, respectively. The
correlations are displayed in Table B.1 and Table B.2 for scenarios 1 and 2, respectively.
An interesting finding is that the correlations between µ and the local slope are always
negative, this could suggest that if the local slope is high the importance of µ is low.
However, to generalize the results, Shapley effects should be estimated in other corridors.
It would also be interesting to include the topography in the global sensitivity analysis.
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Figure B.1: Scenario 1. Scatterplots of ubiquitous Shapley effects and local slope for a) flow
velocity and b) flow depth.
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Figure B.2: Scenario 1. Scatterplots of aggregated Shapley effects and local slope for a) flow
velocity and b) flow depth.

Ubiquitous effects Aggregated effects
Flow velocity [m s−1] Flow depth [m] Flow velocity [m s−1] Flow depth [m]

µ -0.79 -0.28 -0.93 -0.70
ξ -0.50 0.54 -0.20 -0.75
xstart 0.92 -0.76 0.89 -0.92
volstart -0.92 0.49 -0.87 0.82

Table B.1: Scenario 1. Correlations between Shapley effects and local slope.
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Figure B.3: Scenario 2. Scatterplots of ubiquitous Shapley effects and local slope for a) flow
velocity and b) flow depth.
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Figure B.4: Scenario 2. Scatterplots of aggregated Shapley effects and local slope for a) flow
velocity and b) flow depth.

Ubiquitous effects Aggregated effects
Flow velocity [m s−1] Flow depth [m] Flow velocity [m s−1] Flow depth [m]

µ -0.89 -0.67 -0.96 -0.93
xstart 0.64 -0.76 0.95 0.59
volstart 0.87 -0.42 0.83 0.54

Table B.2: Scenario 2. Correlations between Shapley effects and local slope.
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Anestis Antoniadis, Céline Helbert, Clémentine Prieur, and Laurence Viry. Spatio-
temporal metamodeling for West African monsoon. Environmetrics, 23(1):24–36, 2012.
doi: 10.1002/env.1134. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

env.1134. (Cited on page 55.)

Isadora Antoniano-Villalobos, Emanuele Borgonovo, and Xuefei Lu. Nonparametric es-
timation of probabilistic sensitivity measures. Statistics and Computing, Aug 2019.
ISSN 1573-1375. doi: 10.1007/s11222-019-09887-9. URL https://doi.org/10.1007/

s11222-019-09887-9. (Cited on pages 14, 50, 105, and 107.)

Benjamin Auder and Bertrand Iooss. Global sensitivity analysis based on entropy. In
In Safety, Reliability and Risk Analysis - Proceedings of the ESREL 2008 Conference,
pages 2107–2115. CRC Press, 2008. (Cited on page 49.)

M. Barbolini and F. Savi. Estimate of uncertainties in avalanche hazard mapping. Annals
of Glaciology, 32:299–305, 2001. doi: 10.3189/172756401781819373. (Cited on pages
7, 29, 51, and 68.)

P. Bartelt, Y. Bühler, O. Buser, M. Christen, and L. Meier. Modeling mass-dependent flow
regime transitions to predict the stopping and depositional behavior of snow avalanches.
Journal of Geophysical Research (Earth Surface), 117(F1):F01015, February 2012. doi:
10.1029/2010JF001957. (Cited on pages 26, 89, and 93.)

Perry Bartelt, Othmar Buser, Cesar Vera Valero, and Yves Bühler. Configurational
energy and the formation of mixed flowing/powder snow and ice avalanches. Annals of
Glaciology, 57(71):179–188, 2016. doi: 10.3189/2016AoG71A464. (Cited on page 25.)

Manel Baucells and Emanuele Borgonovo. Invariant probabilistic sensitivity analysis.
Management Science, 59(11):2536–2549, 2013. doi: 10.1287/mnsc.2013.1719. URL
https://doi.org/10.1287/mnsc.2013.1719. (Cited on page 19.)

Thomas Bayes. LII. An essay towards solving a problem in the doctrine of chances. By
the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton,
AMFR S. Philosophical transactions of the Royal Society of London, 53:370–418, 1763.
(Cited on page 28.)

Nazih Benoumechiara and Kevin Elie-Dit-Cosaque. Shapley effects for sensitivity analysis
with dependent inputs: bootstrap and kriging-based algorithms. ESAIM: ProcS, 65:
266–293, 2019. doi: 10.1051/proc/201965266. URL https://doi.org/10.1051/proc/

201965266. (Cited on pages 4, 17, 75, 76, 82, 96, and 104.)

L. Mark Berliner. Physical-statistical modeling in geophysics. Journal of Geophysical
Research: Atmospheres, 108(D24), 2003. doi: 10.1029/2002JD002865. URL https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002JD002865. (Cited on
page 28.)
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