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Hervé Cardot Université de Bourgogne
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Abstract
This manuscript highlights the work of the author since he was nominated as “Chargé
de Recherche” (research scientist) at Centre national de la recherche scientifique (CNRS)
in 2015. In particular, the author shows a thematic and chronological evolution of his
research interests:

(i) The first part, following his post-doctoral work, is concerned with the develop-
ment of new algorithms for non-smooth optimization.

(ii) The second part is the heart of his research in 2020. It is focused on the analysis
of machine learning methods for graph (signal) processing.

(iii) Finally, the third and last part, oriented towards the future, is concerned with
(automatic or not) differentiation of algorithms for learning and signal processing.

Keywords: Convex optimization; Automatic differentiation; high dimensional data;
graph signals

Résumé
Ce manuscript présente le travail de l’auteur depuis sa nomination comme “Chargé
de Recherche” au Centre national de la recherche scientifique (CNRS) en 2015. En
particulier, l’auteur dresse une évolution thématique et chronologique de ses intérêts
de recherche :

(i) La premier bloc, continuité de son travail post-doctoral, concerne le développement
de nouveaux algorithmes pour l’optimisation non-lisse.

(ii) Le second lui est le coeur de recherche en 2020 pour l’auteur, à savoir l’analyse
de méthodes d’apprentissage automatique pour le traitement de (signaux sur)
graphes.

(iii) Enfin, le troisième et dernier bloc, tourné vers le futur, concerne la différentiation
(automatique ou non) d’algorithmes en apprentissage et traitement du signal.

Mots-clés : Optimisation convexe; Différentiation automatique; Grande dimension;
Signaux sur graphes
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Bonnard, Jonas Lampart, Paolo Rossi, Sébastien Mazzarese, Guido Carlet, Michele Tri-
estino, Marielle Simon, Thomas Chambrion (pour faire vivre l’IMB et Dijon), Yann
Traonmilin (pour me convaincre de faire des calculs d’angle solide), Rémi Gribonval
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Introduction

Organization. This Habilitation à Diriger des Recherches manuscript is organized into
three chapters and this introduction. The three chapter are both thematical and “chrono-
logical”1:

• Chapter 1 is concerned with non-smooth optimization which is the area of exper-
tise that I developed at the end of my Ph.D. and postdoc. It is in some sense my
“past”.

• Chapter 2 presents my contribution to some problems arising in the context of
graph (signal) processing. It is my main area of research at writing time. I will
call it my “present”.

• Chapter 3 is a perilous mix of my works related to algorithmic differentiation. It
is not yet an area of research that I explore systematically, nevertheless I believe
it will be my “future”.

It is possible to read each chapter in an almost independent way. Almost because for
instance the Lasso is defined in chapter 1 and re-used in chapter 3.

Disclaimer on my previous works. This introduction is dedicated to a quick overview
of my research contributions since 2015 starting from my postdoctoral activity. During
my Ph.D. thesis (SV-PhD1) my main focus was the analysis of variational methods
for low complexity regularization such as sparse regularizations, low-rank minimiza-
tion, etc. It was concerned with recovery guarantees and sensitivity analysis of convex
optimization problems by combining a data fidelity and a regularizing functional
promoting solutions conforming to some notion of low complexity related to their
non-smoothness points.

Several publications in journal (SV-C11; SV-J11; SV-J10; SV-J9) or conferences / work-
shops (SV-C8; SV-C7; SV-C9; SV-C10; SV-C11; SV-J11; SV-C5; SV-C6) are the byproduct
of this doctoral work. Two papers (SV-J8; SV-J4) associated to this theme have been pub-
lished during the period 2015–2020, but are not described in details in this manuscript
since most of the content can be found in my Ph.D. thesis (SV-PhD1) or in the review
chapter (SV-BC1).

I believe this area of research is still very interesting, and I follow with attention the
work from one side by Jingwei Liang and Clarice Poon on extension of the use of partial

1In a very weird time metric.
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Introduction

smoothness, and on the other side the work by Franck Iutzeler, Guillaume Garrigos
and Jérôme Malick (in collaboration with Jalal Fadili and Gabriel Peyré) focused on
mirror-stratifiable regularization.

I also made the choice of not discussing my collaboration (SV-C3; SV-C4) with Rémi
Gribonval and Yann Traonmilin on designing “good” regularization functionals be-
cause it is an ongoing work which is not mature enough to be summarized in a thesis
chapter.

Chapter 1 – Past: Optimization for sparse-like models

My 1-year postdoc with Antonin Chambolle was focused on improving my knowledge
on optimization, and more specifically on how to derive new algorithms to solve con-
crete problems. The zoology of optimization techniques, even for first-order methods,
is nowadays quite dense, and it is out of the scope of this document to try to provide a
unified point of view. Instead, I will present three directions:

(i) Nesterov’s acceleration for alternating minimization ;

(ii) Better primal-dual gap estimation through dual extrapolation ;

(iii) Revisiting the Support Vector Regression to include constraints, with a focus on
oncological applications.

Alternate minimization. With Antonin Chambolle and Pauline Tan, we proposed (SV-
J6) a method to accelerate (in the Nesterov (2004) sense) alternate minimization algo-
rithms which involve two variables coupled by a quadratic penalization. This kind of
problem arises when one try to evaluate proximity operator of function of the form
f = f1 ◦A+ f2 ◦ B where f1, f2 are (strongly) convex functions and A,B linear opera-
tors. Since the work of Boyle and Dykstra (1986), we know that performing alternate
minimization in the dual space allows to compute such proximity operators. Our
contribution was to show that we can accelerate this minimization using FISTA-type
overrelaxation (Beck and Teboulle, 2009) as proposed by Chambolle and Pock (2015) in
the case where f1, f2 are strongly convex with enjoying a linear rate of convergence. The
main application was to show that we can parallelize on GPU a modified version of the
Total Variation (Rudin, Osher, and Fatemi, 1992) to achieve very fast performance.

Extrapolation techniques for coordinate descent. With Alexandre Gramfort, Math-
urin Massias and Joseph Salmon, we tackled in (SV-J2) the issue of correctly estimating
the dual gap used as a stopping criterion in coordinate descent algorithms applied to
sparse generalized linear models. Using Anderson (1965) acceleration methods as re-
cently advocated by Scieur, d’Aspremont, and Bach (2020), we showed that it is possible
to significantly improve the estimation of the lack of optimality both from a theoretical
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Introduction

and practical point of view. A significant contribution (done by M. Massias) of this
work is to provide a drop-in scikit-learn (Pedregosa et al., 2011) Lasso estimator
class which include this extrapolation method along with working-set and safe-rule
improvements.

Support Vector Regression and immuno-oncology. With my Ph.D. student Quentin
Klopfenstein, we are currently working with medical researchers in immuno-oncology.
It led us (SV-P4) to consider the addition of linear constraints to the Support Vector
Regression (Drucker et al., 1996) estimator. We showed that the popular Sequential
Minimal Optimization (SMO) algorithm, proposed by Platt (1998), can be adapted to
this setting. Preliminary results on immuno-oncology dataset is provided in the context
of a simplex constraint, along with synthetic results on isotonic and non-negative
constraints.

Chapter 2 – Present: Graphs and signals on graph

The intersection between graph theory and statistics / machine learning is one of my
major research activity at the moment. Many methods proposed in the literature do
not take into account the fine structures (geometric or not) behind the underlying data.
Such structures can often be modeled by graphs. A refined analysis of the underlying
graph influence is still missing and most of the literature neglects, for simplicity, the
underlying graph structure, or uses linear estimators to overcome these issues. Here,
I mainly focus on the use of robust non-linear regularizations to deal with inverse
problems or classification tasks on such signals. More precisely, I have at the moment
four lines of research in this area:

(i) Oracle properties of non-linear regularization for graph signal retrieval ;

(ii) Geometric analysis of these regularizations ;

(iii) Analysis of the spectral clustering in a dynamic setting ;

(iv) Convergence and stability of Graph Convolutional Networks.

Oracle properties of Graph-Slope. With Pierre Bellec and Joseph Salmon, we pro-
posed an estimator (SV-J5) coined Graph-Slope which is an adaptation to the graph
setting of the SLOPE (Bogdan et al., 2015) estimator, also known as ordered `1 regular-
ization (Zeng and Figueiredo, 2014) in the signal community. Our main contribution
was to show that the optimal denoising rate of Graph-Slope was better than the one
already proved by Hütter and Rigollet (2016) for Graph-TV. This analysis also provides
a way to choose in a principled way the regularization parameters. We also show em-
pirical performance on simulated data based on a splitting method (forward–backward
on the dual).
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Geometry of sparse analysis regularization a.k.a, Graph-Lasso. With Abdessamad
Barbara and Abderrahim Jourani, we (SV-J3) start the investigation of the geometric
structure of the solution set of Graph-TV when there is no uniqueness. We showed
that a “largest” solution (i.e., less edge-sparse) are in fact a typical solution, and that a
primal-dual interior point method allows to retrieve one. We performed a more refined
analysis (SV-P3) with Xavier Dupuis where we connect the sparsity level of a solution
with the corresponding face of the solution set (which is a polytope). It could be seen as
a particular, but more precise, result of the work of Boyer et al. (2019), or more generally
as a representer theorem.

Spectral clustering for dynamic stochastic block model. In a different context, we
studied a dynamic stochastic block model with Nicolas Keriven (SV-P1), and how one
can improve the standard spectral clustering with such prior. It follows the line of
work of Lei and Rinaldo (2015a) for the regular stochastic block model and Pensky
and Zhang (2019a) with a different time smoothing. By the way, we provided the first
(to our knowledge) bound on normalized Laplacian matrix concentration, which is a
probabilistic result of interest in itself.

Convergence and stability of Graph Convolutional Networks. Leveraging our work (SV-
P1), Alberto Bietti, Nicolas Keriven and I studied (SV-C2) properties of Graph Convo-
lutional Networks (GCNs) by analyzing their behavior on standard models of random
graphs, where nodes are represented by random latent variables and edges are drawn
according to a similarity kernel. This allows us to overcome the difficulties of deal-
ing with discrete notions such as isomorphisms on very large graphs, by considering
instead more natural geometric aspects. We obtained the convergence of GCNs to
their continuous counterpart as the number of nodes grows. Our results are fully non-
asymptotic and are valid for relatively sparse graphs with an average degree that grows
logarithmically with the number of nodes. We then analyze the stability of GCNs to
small deformations of the random graph model.

Chapter 3 – Future: Differentiated algorithmic

Differentiable programming has attracted a lot of attention recently. The hype for this
word started in 2018 following the Facebook’s comment of Yann LeCun

OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep
Learning est mort. Vive Differentiable Programming!

I use the term differentiated algorithm (often coined adjoint program in the automatic
differentiation community) here to focus on the fact that we do not take advantage of
the automatic part of automatic differentiation which is at the core of many of the ideas
of differentiable programming.
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With my collaborators, we used the differentiation of algorithms towards two main
goals:

(i) refitting of estimators to reduce their bias ;

(ii) selection of hyperparameters of regularized models.

Algorithmic refitting. It is well known that convex methods such as the Lasso or
total variation regularization induced a bias which is seen as a contraction of the large
coefficients for sparse models towards zero. Together with Charles Deledalle, Nicolas
Papadakis and Joseph Salmon, we proposed (SV-J7) a systematic way to perform the
debiasing of such methods along the computation of the estimator instead of relying
on a two-step procedure. In order to achieve this single step procedure, we compute
the differentiation of the algorithm with respect to the observation. With the same
co-authors, such strategy was further extended (SV-J1) to the analysis group Lasso to
obtained stronger guarantees on the refitted estimator.

(Hyper)parameters selection. Concerning the selection of hyperparameters, I ex-
plored two different approaches (with two different teams) both taking their sources
in the analysis of differentiated algorithms. The first line (SV-C1), in collaboration with
Quentin Bertrand, Mathieu Blondel, Alexandre Gramfort, Quentin Klopfenstein and
Joseph Salmon, is focused on the differentiation of a block coordinate descent algorithm
to solve the Lasso problem. We showed that we can take advantage of the row and
column-sparse structure of the Jacobian to improve the running time of hypergradient
method to select the trade-off parameter. The other line (SV-P2), in collaboration with
Patrice Abry, Barbara Pascal and Nelly Pustelnik, is an extension of a line of work (SV-
J10) we started in 2014 with Charles Deledalle, Jalal Fadili and my Ph.D. advisor Gabriel
Peyré on risk estimation via Stein lemma (Stein, 1981). We showed that SUGAR can be
adapted to correlated noise model, and we applied it to a texture segmentation prob-
lem. I do not develop this work in this manuscript because the rigorous presentation
of the tools needs more space than other contributions.

Publications

Preprints

(SV-P1) Keriven, Nicolas and Samuel Vaiter (2020). Sparse and Smooth: improved
guarantees for Spectral Clustering in the Dynamic Stochastic Block Model. Tech.
rep. eprint: arXiv:2002.02892.

(SV-P2) Pascal, Barbara, Samuel Vaiter, Nelly Pustelnik, and Patrice Abry (2020).
Automated data-driven selection of the hyperparameters for total-variation based
texture segmentation. Tech. rep. eprint: arXiv:2004.09434.
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(SV-P3) Dupuis, Xavier and Samuel Vaiter (2019). The Geometry of Sparse Analysis
Regularization. Tech. rep. eprint: arXiv:1907.01769.

(SV-P4) Klopfenstein, Quentin and Samuel Vaiter (2019). Linear Support Vector Re-
gression with Linear Constraints. Tech. rep. eprint: arXiv:1911.02306.

Journal papers
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Vaiter (2020). “Block based refitting in `12 sparse regularisation”. In: J Math
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(SV-J2) Massias, Mathurin, Samuel Vaiter, Alexandre Gramfort, and Joseph Salmon
(2020). “Dual Extrapolation for Sparse Generalized Linear Models”. In:
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1
Past: Non-smooth First-order Optimization

This chapter covers the following contributions:

• (SV-J6): Antonin Chambolle, Pauline Tan, and Samuel Vaiter (2017). “Accelerated
Alternating Descent Methods for Dykstra-like problems”. In: J Math Imaging Vis
59.3, pp. 481–497.

• (SV-J2): Mathurin Massias et al. (2020). “Dual Extrapolation for Sparse General-
ized Linear Models”. In: 21.234, pp. 1–33. eprint: arXiv:1907.05830.

• (SV-P4): Quentin Klopfenstein and Samuel Vaiter (2019). Linear Support Vector
Regression with Linear Constraints. Tech. rep. eprint: arXiv:1911.02306.

1.1 Convex problems and first-order schemes

This chapter is concerned with convex minimization problems in finite dimension of
the form

argmin
x∈Rd

F(x) +G(x), (1.1)

where F,G ∈ Γ0(Rd) are two lower-semicontinuous (lsc), convex and proper real-valued
functions on Rd. Typically, the first function F will enjoy nice smoothness properties
such as C1,1 (continuously differentiable functions with Lipschitz gradients) regularity
whereas G will does not share such smoothness assumption.
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Chapter 1 Past: Non-smooth First-order Optimization

Solving a problem as (1.1) without additional assumptions is possible through the
use of the so-called a Forward–Backward scheme (Lions and Mercier, 1979) which use
iterates of the form

xk+1 = proxγf(xk − γ∇F(xk)),
with 0 < γ < 2/β where β is the Lipschitz constant of ∇F and

proxγf(x)
def.
= argmin

x∈Rd

1

2γ
||z− x||22 + f(x) (1.2)

is the proximity operator of f. However, computing proxγf(x) in closed-form is po-
tentially as hard as solving the initial problem! The two following sections study two
specific cases where using the structure of the problem we are able to achieve a better
splitting strategy than merely separating smooth and non-smooth terms.

1.2 Alternate minimization for Dykstra-like problems

This section describes the content of the journal article (SV-J6) written in collaboration
with Antonin Chambolle and Pauline Tan, published in 2017 in J. Math. Imaging Vis.

In several applications, such as total variation regularization or disparity estimation,
one may be concerned with a problem (1.1) of the form

argmin
x∈Rd

F(x) +

k∑
i=1

fi(Aix)︸ ︷︷ ︸
def.
=G(x)

,

where fi are “simple” convex functions and Ai are linear operators (not necessarly with
the same codomain). Most of the time, computing this proximity operator in closed
form is tedious, but assuming that we know how to compute the proximity operator
of each fi, Dykstra splitting allow to evaluate the proximity operator of f in an efficient
way. Boyle and Dykstra (1986) algorithm idea is to perform alternative minimization
on a dual problem of (1.2) which have the specific form

argmin
(y1,...,yk)∈Rn1×···×Rnk

1

2
||

k∑
i=1

Aiyi − c||+

k∑
i=1

gi(yi). (1.3)

From now on, I present our result for the case k = 2 to simplify the exposition, i.e., , we
consider the problem

argmin
(x,y)∈Rn×Rm

E(x,y) def.
=
1

2
||Ax+By− c||+ f1(x) + g2(y), (1.4)

9



Chapter 1 Past: Non-smooth First-order Optimization

where f,g are convex, proper, lower-semicontinuous functions,A,B two linear operators.
We also consider M,N two symmetric positive semidefinite operators which represent
metrics on which we compute the proximal step.

Our main contribution was to show (theorecally and pratically) that in order to solve (1.4),
it is possible to alternate between K > 1 proximal step on x and L > 1 proximal step on
y, instead of simply performing alternate step (K = L = 1). Moreover, it is possible to
accelerate this multistep alternating minimization with a FISTA-like acceleration (Beck
and Teboulle, 2009). This scheme is described in Algorithm 1.

For this algorithm, we were able to prove a O(1/t2) rate, more precisely we have the
following theorem

Theorem 1 .1 Let (xt,yt) be computed using Algorithm 1 starting from initial
point (x0,y0), using the acceleration = True, and let (x?,y?) be a minimizer of E.
Then, one has the global rate

E(xt,yt) − E(x?,y?) 6 2
||x? − x0||2M/K + ||y? − y0||2N/L+B∗B

(t+ 1)2
. (1.5)

If it turns out that g1 and g2 are strongly convex, it is possible to slighlty adapt Algo-
rithm 1 in order to the get a linear rate of convergence. We do not enter into the details
here to avoid technicalities, and refer to (SV-J6) for more details.

Open Question 1 .1 Algorithm 1 performs overrelaxation only on one variable.
Empirically, it is possible to do it on every variables. Is is possible to analyze this
variant from a theoretical point of view? More precisely,

(i) Is it possible to prove a O(1/t2) rate of convergence?

(ii) If yes, do we improve the constant on the bound?

Moreover, it is assumed that the computation of the proximal steps are exact. Since,
there is a lot of inner iterations, is it possible to prove such as result in the context of
inexact minimization?

We applied this algorithm to a slight modification1 of the standard isotropic discretiza-
tion of the Total Variation (Rudin, Osher, and Fatemi, 1992). The basic idea in dimension

1We showed in (SV-J6) that this is indeed a discretization in term of Γ -convergence.
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Figure 1.1: Even–odd decomposition.

2 is to consider separately the set of pixels (i, j) + {0, 1}2 whenever (i, j) are even and
odd. More precisely, given an image u = (ui,j) ∈ Rn×m, we define for (i, j) ∈ [n]× [m]

tvi,j(u) =
√
2
(
(ui+1,j − ui,j)

2 + (ui+1,j+1 − ui,j+1)
2

+ (ui+1,j+1 − ui+1,j)
2 + (ui,j+1 − ui,j)

2
)1/2

.

This quantity can be seen as a “4-pixels cyclic Total Variation”. If one wants to enjoy
the strongly convex case, it is also possible to smooth it in a Huber fashion by using
for ε > 0,

tvεi,j(u) =

{
tvi,j(u) − ε if tvi,j(u) > 2ε
tvi,j(u)2
4ε otherwise.

It is also possible to adapt it to tensors to take into account multiple channels (color
images). To simplify the exposition, we keep the discussion on the single channel case.
Using this tv, we define the regularization

f(u) =
d(n−1)/2e∑
i=1

d(m−1)/2e∑
j=1

tv(ε)
2i,2j(u) +

dn/2e−1∑
i=1

dm/2e−1∑
j=1

tv(ε)
2i+1,2j+1(u).

We will denote by Je(u) the first sum above, and by Jo(u) the second one. This de-
composition is depicited in Figure 1.1. The problem minu ||u − u0||2 + f(u) has a dual
of the form (1.4) which allows to use Algorithm 1. Indeed, given i, j, we denote by
Di+1/2,ju = ui+1,j − ui,j if 1 6 i 6 n− 1, 1 6 j 6 m, and Di,j+1/2u = ui,j+1 − ui,j if
1 6 i 6 n, 1 6 j 6 m− 1. Then, we call Dou the ‘odd’ part of Du and Deu the even part,
that is

Dou = ((Di+1/2,ju,Di,j+1/2u,Di+1/2,j+1u,Di+1,j+1/2u))i,j odd

and Deu is define in the same way but for even indices i, j. It follows that

Joε(u) = sup{〈ξ, Dou〉− ε
2 |ξ|

2 : ||(ξi+1/2,j, ξi,j+1/2, ξi+1/2,j+1, ξi+1,j+1/2)||
2 6 2 ∀(i, j) odd}

11



Chapter 1 Past: Non-smooth First-order Optimization
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Figure 1.2: Left: influence of ε. Right: influence of λ.

and the same holds for Je, replacingDo withDe and ‘odd’ with ‘even’. We will denote

ξo = ((ξi+1/2,j, ξi,j+1/2, ξi+1/2,j+1, ξi+1,j+1/2))i,j odd,
ξe = ((ξi+1/2,j, ξi,j+1/2, ξi+1/2,j+1, ξi+1,j+1/2))i,j even.

Hence, the dual problem reads

min
(ξe,ξo)

‖Do,∗ξo +De,∗ξe − u†‖2 + f(ξe) + g(ξo), (1.6)

where D•,∗ is the adjoint of D•,

f(ξe) =

{
ε
2λ |ξ

e|2 if for all i, j even, ||(ξi+1/2,j, ξi,j+1/2, ξi+1/2,j+1, ξi+1,j+1/2)||
2 6 2λ2,

+∞ else

and g(ξo) is defined similarly.

Open Question 1 .2 The cyclic property on the grid allows to parallelize the
computation on 4-bytes block of memory (for grayscale images). An interesting
perpespective is to understand of which kind of graph (see chapter 2) it is possible
to parallelize such scheme.

The GPGPU code for this article2 is available online. We used a standard image of size
512× 512 which a dynamic inside the range [0, 255]. Our stopping criterion is as before
by checking that the square root of the dual over the size of the image is less than
0.1 which is an upper bound of the root mean-square error (RMSE). The dual gap is

2Available at https://github.com/svaiter/ftvp.
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Chapter 1 Past: Non-smooth First-order Optimization

computed at each iteration. If such a bound is not obtained after 10000 iterations, we
stop the alternating minimization. In term of distributed computing, we choose to use
thread blocks of size 16× 16.

The use of Huber-TV induces better performances, in term of execution time or raw
number of iterations. We first study the influence of ε in Figure 1.2 We compare both the
case where the inner iterations are done with a Newton step and with a simple descent,
both with 5 steps. For every experience in the following, we consider 20 repetitions of
the experiment, and average the time obtained. Moreover, all time benchmarked are
reported minus the memory initialization time. We fix the value of λ = 30.0. Note that
choosing ε too big is however problematic in term of quality of approximation of the
true Total Variation regularization.

A similar study can be performed for the influence of λ, see Figure 1.2. Again, we
compare both the case where the inner iterations are done with a Newton step and with
a descent, both with 5 steps. We let vary λ over [1, 36] and fix the value of ε = 0 (exact-
TV) and also ε = 0.1. Note that the execution time scales nicely with the dimension of
the image. For instance, running our algorithm for ε = 0.1 and λ = 20.0 took 800ms for
a 2048× 2048 image and 4s for a 4096× 4096 image.

1.3 Dual extrapolation for sparse-like problems

This section describes the content of the preprint (SV-J2) written in collaboration with
Alexandre Gramfort, Mathurin Massias and Joseph Salmon, and submitted to J. Mach.
Learn. Res.

We consider a sparse problem of the form

x̂ ∈ argmin
x∈Rp

n∑
i=1

fi(x
>ϕi) + λ||x||1︸ ︷︷ ︸
def.
=P(x)

, (1.7)

where all fi are closed, convex and proper functions. They are moreover assumed
to be differentiable with Lipschitz gradients with a common 1/γ Lipschitz constant.
The two more used instances of Equation (1.7) are the Lasso (Tibshirani, 1996), where
fi is the quadratic loss fi(t) = 1

2(yi − t)
2 with Lipschitz constant γ = 1, and Sparse

Logistic regression (Koh, Kim, and Boyd, 2007), where fi are the logistic loss fi(t) =

log(1+ exp(−yit)) with Lipschitz constant γ = 4.

13
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A dual problem of Equation (1.7) reads:

θ̂ = argmax
θ∈∆Φ

(
−

n∑
i=1

f∗i (−λθi)

)
︸ ︷︷ ︸

def.
=D(θ)

, (1.8)

where ∆Φ =
{
θ ∈ Rn | ||Φ>θ||∞ 6 1

}
. The KKT conditions read:

∀i ∈ [n], θ̂i = −f ′i(x̂
>ϕi)/λ (1.9)

∀j ∈ [p], x>j θ̂ ∈ ∂| · |(x̂j) (1.10)

Using Slater’s condition, for any (x, θ) ∈ Rp×∆Φ, one has D(θ) 6 P(x), and D(θ̂) = P(x̂).
The duality gap G(x, θ) def.

= P(x) −D(θ) can thus be used as an upper bound for the sub-
optimality of a primal vector x: for any ε > 0, any x ∈ Rp, and any feasible θ ∈ ∆Φ:

G(x, θ) = P(x) −D(θ) 6 ε⇒ P(x) −P(x̂) 6 ε. (1.11)

Thus, using the link equation (1.9), a natural way (Mairal, 2010) to construct a dual
feasible point θ(t) ∈ ∆Φ at iteration t, when only a primal vector x(t) is available, is to
use the “scaled residuals”:

θ
(t)
res

def.
= −∇F(Φx(t))/max(λ, ||Φ>∇F(Φx(t))||∞). (1.12)

Our contribution was to “improve” this control of sub-optimality by using a dual
extrapolation based on properties of Vector AutoRegressive (VAR) sequences following
the work of Scieur, d’Aspremont, and Bach (2020). Let K > 0 a fixed integer. For
K coordinate descent epochs, let r(t) = y −Φx(t) be the residuals at epoch t of the
algorithm. We define the extrapolated residuals as

r
(t)
acc =


r(t), if t 6 K,
K∑
k=1

ckr
(t+1−k), if t > K.

(1.13)

where c = (c1, . . . , cK)> ∈ RK is defined3 as

ĉ =
(U(t)>U(t))−11K

1>K(U(t)>U(t))−11K
. (1.14)

with U(t) = [r(t+1−K) − r(t−K), . . . , r(t) − r(t−1)] ∈ Rn×K. We proved the following re-
sult

3If this matrix is not invertible, it is sufficient to use a lower value of K
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Theorem 1 .2 Assume that Problem (1.7) has a unique solution. Then, the dual
accelerated iterates (r

(t)
acc)t∈N defined by Algorithm 2 converges linearly to its limit.

The extrapolated feasible point is then

θ
(t)
acc

def.
= −∇F(r(t)acc)/max(λ, ||Φ>∇F(r(t)acc)||∞). (1.15)

Additionally, to impose monotonicity of the dual objective, and guarantee a behavior
at least as good at θres, we use as dual point at iteration t:

θ(t) = argmax
θ∈{θ(t−1),θ(t)acc ,θ(t)res }

D(θ). (1.16)

Open Question 1 .3 Theorem 1.2 proof is based on the fact that the dual iterates
are an asymptotic VAR sequence. It would be interesting to study the VAR property
of more general estimators such as multitask Lasso or generic partly smooth regular-
izations (Lewis, 2002) e.g., `∞ regularization, in order to exploit Aitken/Anderson (An-
derson, 1965) acceleration as in Scieur, d’Aspremont, and Bach (2020).

The estimator-specific λmax refers to the smallest value giving a null solution (for in-
stance λmax = ||Φ>y||∞ in the Lasso case and λmax = ||Φ>y||∞/2 for sparse logistic
regression. For the Lasso (Figure 1.3a) and Logistic regression (Figure 1.3b), we illus-
trate the applicability of dual extrapolation. Monotonicity of the duality gap computed
with extrapolation is enforced via the construction of Equation (1.16). For all problems,
the figures show that θacc gives a better dual objective after sign identification, with a
duality gap sometimes even matching the suboptimality gap. They also show that the
behavior is stable before identification.

1.4 Support Vector Regression with linear constraints

This section is focused on the work of my Ph.D. student Quentin Klopfenstein (SV-P4).
Quentin was my Master 2 student in 2015 when he began an internship at Centre
Georges-François Leclerc specialized in oncology research. He was exposed to a medi-
cal field called immuno-oncology. Tumor tissue is a complex microenvironment largely
invaded by multiple immune cells. The complexity of this microenvironment is still
not fully addressed. Knowing the global immune composition of tumors is thus of
major importance. The development of new technologies like single cell approaches
makes it possible to get a better view of the heterogeneity of tumors. To get use of
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(b) Log. reg., on rcv1 (train) for λ = λmax/20.

Figure 1.3: Dual objectives with classical and proposed approach, for Lasso (left), Logistic re-
gression (right). The dashed line marks sign identification (support identification
for Multitask Lasso).

this information, inverse problem methods for transcriptomic data were reported to
allow the estimation of the abundance of member cell types in a mixed cell population.
The modelization done is that the RNA extracted from the tumor is seen as a mixed
signal composed of different pure signals coming from the different types of cells. This
signal can be unmixed knowing the different pure RNA signal of the different types
of cells. In other words, y will be the RNA signal coming from a tumor and Φ will be
the design matrix composed of the RNA signal from the isolated cells. The number of
rows represent the number of genes that we have access to and the number of columns
of Φ is the number of cell populations that we would like to quantify. The hypothesis is
that there is a linear relationship between Φ and y. As said above, we want to estimate
proportions which means that the estimator has to belong to the probability simplex
∆n = {x : xi > 0 ,

∑
i xi = 1}.

In immuno-oncology, the current state-of-the-art method is proposed by Newman et
al. (2015) which is an unconstrained ν-SVR (Schölkopf et al., 1999) followed by the
projection onto the non-negative orthant and then followed by a `1 projection.

We proposed to impose these constraints to the original optimization problem, and
more generally to consider linear constaints using the primal form:

min
x,x0,ξi,ξ∗i ,ε

1

2
||x||2 +C(νε+

1

n

n∑
i=1

(ξi + ξ
∗
i ))

subject to xTϕi + x0 − yi 6 ε+ ξi

yi − x
Tϕi − x0 6 ε+ ξ

∗
i

ξi, ξ∗i > 0, ε > 0
Ax 6 b

Γx = d,

(1.17)
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where A ∈ Rk1×p, Γ ∈ Rk2×p, β ∈ Rp, ξ, ξ∗ ∈ Rn and β0, ε, ∈ R. We recover

• isotonic constraints with A the incidence matrix of a directed acyclic graph, Γ = 0,
b = 0 and d = 0 ;

• non-negative constraints with A = −Ip, b = 0, C = 0 and d = 0 ;

• simplex constraints with A = −Ip, b = 0, Γ = 1 and d = 1.

The algorithm (algorithm 3) that we propose uses the structure of the dual problem of
(1.17). If the set {x ∈ Rn,Ax 6 b, Γx = d} is not empty then, one observes that strong
duality holds for (1.17). Moreover, the dual problem of (1.17) is

min
α,α∗,γ,µ

1

2

[
(α−α∗)TQ(α−α∗) + γTAATγ+ µT ΓΓTµ+ 2

n∑
i=1

(αi −α
∗
i )γ

TAϕi

− 2

n∑
i=1

(αi −α
∗
i )µ

T Γϕi − 2γ
TAΓTµ

]
+ yT (α−α∗) + γTb− µTd

subject to 0 6 α(∗)
i 6

C

n

1T (α+α∗) 6 Cν

1T (α−α∗) = 0

γj > 0,

(1.18)

and the equation link between primal and dual is

x = −

n∑
i=1

(αi −α
∗
i )ϕi −A

Tγ+ ΓTµ.

The objective function f which we will write in the stacked form as:

f(θ) = θT Q̄θ+ lTθ,

where

θ =


α

α∗

γ

µ

 , l =


y

−y

b

−d

 ∈ R2n+k1+k2 ,

Q̄ =


Q −Q XAT −XΓT

−Q Q −XAT XΓT

AXT −AXT AAT −AΓT

−ΓXT ΓXT −ΓAT ΓΓT

 =


X

−X

A

−Γ

 [XT −XT AT −ΓT
]

is a square matrix of size 2n+ k1 + k2

Our main result is the following theorem.
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Theorem 1 .3 For any given τ > 0 the sequence of iterates {θk}, defined by the
generalized SMO algorithm, converges to an optimal solution of the optimization
problem (1.18).

We let f as the objective function of Problem (1.18) and ∇f ∈ R2n+k1+k2 its gradient.
We will also say that (i, j) is a violating pair of variables if one of these two conditions
is satisfied:

i ∈ Iup(α), j ∈ Ilow(α) and ∇αif < ∇αjf
i ∈ Ilow(α), j ∈ Iup(α) and ∇αif > ∇αjf.

We will say that j is a τ-violating variable for the block γ if ∇γjf+ τ < 0. We will say
that j is a τ-violating variable for the block µ if |∇µjf| > τ.

Studiying the optimality condition of (1.18), we define the update between iterate k
and iterate k+ 1 of the generalized SMO algorithm to be:

(i) if the block α is selected and (i, j) is the most violating pair of variable then the
update will be as follows:

αk+1i = αki + t
∗

αk+1j = αkj − t
∗,

where t∗ = min(max(I1,−
(∇αif−∇αjf)

(Qii−2Qij+Qjj)
), I2) with I1 = max(−αki ,αkj −

C
n ) and

I2 = min(αkj , Cn −αki ).

(ii) if the block α∗ is selected and (i∗, j∗) is the most violating pair of variable then
the update will be as follows:

(α∗i )
k+1 = (α∗i )

k + t∗

(α∗j )
k+1 = (α∗j )

k − t∗,

where t∗ = min(max(I1,−
(∇α∗

i
f−∇α∗

j
f)

(Qii−2Qij+Qjj)
), I2) with I1 = max(−(α∗i )

k, (α∗j )
k − C

n )

and I2 = min((α∗j )
k, Cn − (α∗i ))

k.

(iii) if the block γ is selected and i is the index of the most violating variable in this
block then the update will be as follows:

γk+1i = max(−
∇γif

(AAT )ii
+ γki , 0).

(iv) if the block µ is selected and i is the index of the most violating variable in this
block then the update will be as follows:

µk+1i = −
∇µif

(ΓΓT )ii
+ µki .
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Figure 1.4: The Root Mean Squared Error (RMSE) as a function of the Signal to Noise
Ration (SNR) is presented on a real dataset where noise was manually added.
Two different noise distribution were tested: Gaussian and Laplacian. Each point
of the curve is the mean RMSE of 12 different response vectors and we repeated
the process four times for each level of noise. This would be equivalent to having
48 different repetitions.

Open Question 1 .4 We have two lines of open questions with Quentin on this
research direction.

• From a theoretical perspective, we would like to derive a rate of convergence
of this Generalized SMO algorithm. More generally, studying properties of
the greedy (block) coordinate descent seems interesting, even if most practical
applications use nowadays cyclic or random CD.

• From an applicative perspective, we would like to investigate why the SVR
seems to outperform other regression methods in the context of immuno-
oncological data.

The code, written by Quentin Klopfenstein, for the different regression settings is
available on a GitHub repository4, each setting is wrapped up in a package and is
fully compatible with scikit learn (Pedregosa et al., 2011) BaseEstimator class. We
present here some results for the simplex regression.

We compared the RMSE of our estimator to the Simplex Ordinary Least Squares (SOLS)
and to the estimator proposed in the biostatics litterature that is called Cibersort on
a real biological dataset where the real quantities of cells to obtain were known. The
dataset can be found on the GEO website under the accession code GSE11103

5. For
this example n = 584 and p = 4 and we have access to 12 different samples that are

4https://github.com/Klopfe/LSVR
5The dataset can be downloaded from the https://www.ncbi.nlm.nih.gov/geo/Gene Expression Om-

nibus website under the accession code GSE11103.
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our repetitions. Following the same idea than previous benchmark performed in this
field of application, we increased the level of noise in the data and compared the RMSE
of the different estimators. Gaussian and Laplacian distributions of noise were added
to the data. The choice of the two hyperparameters C and ν was done using 5-folds
cross validation on a grid of possible pairs. The values of C were taken evenly spaced
in the log10 base between [−5,−3], we considered 10 different values. The interval of C
is different than the simulated data because of the difference in the range value of the
dataset. The values of ν were taken evenly spaced in the linear space between [0.05, 1.0]
and we also considered 10 possible values.

We see that when there is no noise in the data (SNR = ∞) both Cibersort and SSVR
estimator perform equally. The SOLS estimator already has a higher RMSE than the
two others estimator probably due to the noise already present in the data. As the level
of noise increases, the SSVR estimator remains the estimator with the lowest RMSE in
both gaussian and laplacian noise settings.
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Algorithm 1 Multistep Alternating M inimization

input : Metric M,N, number of inner loops K,L > 1, (x0,y0) an initialization, accelerate
a boolean

t← 0

θ0 ← 0

x̄0 ← x0, ȳ0 ← y0, ẙ0 ← y0

while stopping criterion unsatisfied do
// Perform K proximal steps on x

x̂t+10 ← x̄t

for k = 0, . . . ,K− 1 do

x̂t+1k+1 ← argmin
x∈Rn

g1(x) +
1

2
||Ax+Bẙt − c||22 +

1

2
||x− x̂t+1k ||2M

x̂t+1 ← x̂t+1K

x̃t+1 ← 1

K

K∑
k=1

x̂t+1k

// Perform L proximal steps on y

ŷt+10 ← ȳt

for l = 0, . . . ,L− 1 do

ŷt+1l+1 ← argmin
y∈Rm

g2(y) +
1

2
||Ax̃t+1 +By− c||22 +

1

2
||y− ŷt+1l ||2N

ŷt+1 ← yt+1L

ỹt+1 ← 1

L

L∑
l=1

ŷt+1l

if accelerate = True then
// Over-relaxation of y

θt+1 ← (1+
√
1+ 4(θt)2)/2

x̄t+1 = x̃t+1 + θt−1
θt+1

(x̃t+1 − x̃t) + θt

θt+1
(x̂t+1 − x̃t+1)

ȳt+1 = ỹt+1 + θt−1
θt+1

(ỹt+1 − ỹt) + θt

θt+1
(ŷt+1 − ỹt+1)

ẙt+1 = ỹt+1 + θt−1
θt+1

(ỹt+1 − ỹt)

else
x̄t+1 = x̃t+1

ȳt+1 = ỹt+1

ẙt+1 = ỹt+1

t← t+ 1
return x̃t, ỹt
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Algorithm 2 cyclic CD for Problem 1 .7 with dual extrapolation

input :Φ,y, λ, x(0), ε
param : T ,K = 5, fdual = 10

Φx← Φx(0), θ(0) ← −∇F(Φx(0))/max(λ, ||Φ>∇F(Φx(0))||∞)
for t = 1, . . . , T do

if t = 0 mod fdual then // compute θ and gap every f epoch only

t ′ ← t/fdual ; // dual point indexing

r(t
′) ← Φx

compute θ(t
′)

res and θ(t
′)

acc with eqs. (1.12) and (1.15)
θ(t

′) ← argmax
{
D(θ) | θ ∈ {θ(t

′−1), θ(t
′)

acc , θ(t
′)

res }
}

; // robust dual extr. with (1.16)

if P(x(t)) −D(θ(t
′)) < ε then break;

for j = 1, . . . ,p do

x
(t+1)
j ← ST

(
x
(t)
j −

γx>j ∇F(Φx)
||xj||2

), γλ
||xj||2

)
Φx← Φx+ (x

(t+1)
j − x

(t)
j )xj

return x(t), θ(t ′)
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Algorithm 3 Generalized SMO algorithm

input :Φ, ν, y
param : τ > 0
Initializing α0 ∈ Rn, (α∗)0 ∈ Rn, γ0 ∈ Rk1 and µ0 ∈ Rk2 in F and set k = 0

while ∆ > τ do
i← argmin

i∈Iup

∇αif j← argmax
i∈Ilow

∇αjf

i∗ ← argmin
i∈I∗up

∇α∗i f j∗ ← argmax
i∈I∗low

∇α∗j f

∆1 ← ∇αjf−∇αif
∆2 ← ∇α∗j f−∇α∗i f
∆3 ← − min

j∈{1,...,k1}
∇γjf

∆4 ← max
j∈{1,...,k2}

|∇µjf|
∆←max(∆1,∆2,∆3,∆4)// Select the maximal violating variables

if ∆ = ∆1 then
αk+1 ←Solution of subproblem for αi and αj

if ∆ = ∆2 then
(α∗)k+1 ← Solution of subproblem for αi∗ and αj∗

if ∆ = ∆3 then
u = argmin

i∈{1,...,k1}
∇γif

γk+1 ← Solution of subproblem for γu
else

u = argmax
i∈{1,...,k2}

|∇µif|

µk+1 ← Solution of subproblem for µu
k← k+ 1

return θk = αk, (α∗)k, γk, µk
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2
Present: Graphs and Machine Learning

This chapter is an overview of my work on graph (signal) processing. In particular, it
is extracted from the following works:

• (SV-J3): Abdessamad Barbara, Abderrahim Jourani, and Samuel Vaiter (2019).
“Maximal Solutions of Sparse Analysis Regularization”. In: J Optim Theory Appl
180.2, pp. 371–396. eprint: arXiv:1703.00192.

• (SV-P3): Xavier Dupuis and Samuel Vaiter (2019). The Geometry of Sparse Analysis
Regularization. Tech. rep. eprint: arXiv:1907.01769.

• (SV-J5): Pierre Bellec, Joseph Salmon, and Samuel Vaiter (2017). “A Sharp Ora-
cle Inequality for Graph-Slope”. In: Electron J Statist 11.2, pp. 4851–4870. eprint:
arXiv:1706.06977.

• (SV-P1): Nicolas Keriven and Samuel Vaiter (2020). Sparse and Smooth: improved
guarantees for Spectral Clustering in the Dynamic Stochastic Block Model. Tech. rep.
eprint: arXiv:2002.02892.

• (SV-C2): Nicolas Keriven, Alberto Bietti, and Samuel Vaiter (2020). “Convergence
and Stability of Graph Convolutional Networks on Large Random Graphs”. In:
NeurIPS. eprint: arXiv:2006.01868

2.1 Graphs and signals on graphs

Graphs and matrices associated to a graph Let G = (V ,E) be an undirected graph
on n vertices, meaning that up to an isomorphism V = [n], and p edges, i.e., 2-set of V
which can be identified to E = [p]. This graph can be represented by several matrices.
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• Adjacency matrix. The adjacency matrix A of G is defined as A ∈ Rn×n such that
Aij = 1 if i and j are connected, and 0 otherwise. Note that A is symmetric.

• Incidence matrix. The edge-vertex incidence matrix ∆> ∈ Rp×n is defined as

(∆>)e,v =


+1, if v = min(i, j)
−1, if v = max(i, j)
0, otherwise,

(2.1)

where e = {i, j}.

• Combinatorial Laplacian matrix. The matrix LC(A) = ∆∆> is the so-called com-
binatorial graph Laplacian of G. The Laplacian LC is invariant under a change of
orientation of the graph. It is also defined as LC(A) = D(A) −A where D(A) is
the (diagonal) degree matrix

D(A) = diag ((di)
n
i=1) where di =

n∑
j=1

Aij.

• Normalized Laplacian matrix. An alternative Laplacian is commonly used for
instance in community detection

LN(A) = Id −D(A)−
1
2AD(A)−

1
2 ,

the so-called “Normalized Laplacian”. We use the convention that 0−
1
2 = 0 in the

notation D(A)−
1
2 .

Inverse problems on a graph we consider the following inverse problem for a signal
over a graph. Assume that each vertex i ∈ [n] of the graph carries a signal x?i . One
observes the vector y ∈ Rq and aims to estimate x? ∈ Rn, i.e.,

y = Φx? + ε , (2.2)

where ε ∼ N(0,σ2Idq) is a noise vector. We will say that an edge e = {i, j} of the graph
carries the signal (∆>x?)e. A signal x? ∈ Rn has few discontinuities if ∆>x? has few
nonzero coefficients, i.e., ||∆>x?||0 is small, or equivalently if most edges of the graph
carry the constant signal. In particular, if ||∆>x?||0 = s, we say that x? is a vector of
∆>-sparsity s.
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2.2 Geometry of Graph Total-Variation

This section describes the content of (SV-J3) written in collaboration with Abessamad
Barbara and Aberrahim Jourani, published in J. Optim. Theory. Appl.. It also covers (SV-
P3), a work in collaboration with Xavier Dupuis to appear in SIAM J. Optim..

We focus here on a convex regularization promoting edge-sparsity in the context of a
linear inverse problem/regression problem where the regularization reads:

min
x∈Rn

1

2n
||y−Φx||22 + λ||∆

>x||1 (2.3)

where y ∈ Rq is a observation/response vector,Φ : Rn → Rq is the sensing/acquisition
linear operator and λ > 0 the hyper-parameter used as a trade-off between fidelity and
regularization. Note that at this point, we do not make any assumption on the incidence
matrix ∆ or the acquisition operator Φ.

In a serie of works, I was interested with my coauthors on the following issue:

When the solution set of eq. (2.3) is not reduced to a singleton, what is its “geome-
try”?

In (SV-J3), we provided a geometrical interpretation of a solution with a maximal ∆>-
support, namely the fact that such a solution lives in the relative interior of the solution
set. More precisely, we are concerned with the characterization of a vector of maximal
∆>-support, i.e., a solution of (2.3) such that for every x ∈ X, ||∆>x||0 6 ||∆>x+||0. We
denote by S the set of solution of (2.3) which have maximal D-support. Clearly this set
is well-defined and contained in X. Our result is the following.

Theorem 2 .1 Let x̄ ∈ X. Then x̄ is a maximally ∆>-supported solution if, and only
if, x̄ ∈ ri X (or equivalently if x̄ ∈ ri S). In other words,

S = ri S = ri X.

In (SV-P3), we refined this analysis to understand better the geometry of the polytope
of the solutions at the price of more complicated statement.

In the spirit of (Boyer et al., 2019), we first considered the compact polyhedron (Ker∆>)⊥∩
B1, which is isomorphic to the projection of B1 onto the quotient of the ambient space
by the lineality space KerD∗. We showed that the convex polyhedron (KerD∗)⊥ ∩
B1 is compact (i.e. is a convex polytope). It admits extreme points that belong to
(KerD∗)⊥ ∩ ∂B1. And it is possible to do an “algebraic test”: given x̄ ∈ (KerD∗)⊥ ∩ ∂B1,
s̄ = sign(D∗x̄), and J̄ = cosupp(D∗x̄),

x̄ ∈ ext((KerD∗)⊥ ∩B1)⇔ (KerD∗)⊥ ∩ (Ds̄)⊥ ∩KerD∗J̄ = {0}.
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The analysis of the level set (Ker∆>)⊥ ∩B1 allows to derive the following result.

Theorem 2 .2 Let x̄ ∈ ri(X), s̄ = sign(∆>x̄), and F̄ = Br ∩ {x ∈ Rn : 〈∆s̄, x〉 = r} with
r = ‖∆>x̄‖1. Then

X = (x̄+ KerΦ)∩ F̄.
It follows that

X = (x̄+ KerΦ)∩ {x ∈ Rn : sign(∆>x) � s̄},
ri(X) = (x̄+ KerΦ)∩ {x ∈ Rn : sign(∆>x) = s̄},

dir(X) = KerΦ∩Ker∆>J̄ (where J̄ = cosupp(s̄)).

Moreover, the faces of X are exactly the sets of the form {x ∈ X : J ⊂ cosupp(∆>x)}
with J̄ ⊂ J; their relative interior is given by {x ∈ X : J = cosupp(∆>x)} and their
direction by KerΦ∩Ker∆>J .

As an application, we show that “most” intersection of affine subspaces with the unit
ball can been seen as a solution set of (2.3).

Corollary 2 .1 Let r > 0 and A be an affine subspace such that ∅ 6= A∩Br ⊂ ∂Br.
Then there exist Φ, y and λ > 0 such that the solution set of (2.3) is X = A ∩ Br and
KerΦ = dir(A).

From a practical point of view, these results add another argument towards the need
for a good choice of regularizer/dictionary when a user seeks a robust and unique
solution to its optimization problem. This work is mainly of theoretical interest since
numerical applications should deal with exponential algorithms with respect to the
signal dimension. Note however that in the case of the expected sparsity level of the
maximal solution is logarithmic in the dimension, the enumeration problem is in this
case tractable. We believe that these results will help other theoretical works around
sparse analysis regularization, such as performing sensitivity analysis with respect to
the dictionary used in the regularization.

Open Question 2 .1 Extension of our results to non-convex sparse analysis pe-
nalizations such as ‖ · ‖p with 0 < p < 1 is an interesting research direction, where
face decomposition of the polytope unit-ball needs to be replaced with stratification
of semi-algebraic sets.
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2.3 Oracle inequalities for graph signal estimators

This section describes the content of (SV-J5) written in collaboration with Pierre Bellec
and Joseph Salmon, published in Electron. J. Statist. in 2017.

We consider a denoising problem i.e., q = n and Φ = Id. We consider here the so-called
Graph-Slope variational scheme:

x̂ := β̂GS ∈ argmin
x∈Rp

1

2n
||y− x||2 + ||∆>x||[λ] , (2.4)

where

||∆>x||[λ] =

p∑
j=1

λj|∆
>x|↓j , (2.5)

with λ = (λ1, . . . , λp) ∈ Rp satisfying λ1 > λ2 > · · · > λp > 0, and using for any
vector θ ∈ Rp the notation (|θ|↓1, . . . , |θ|↓p) for the non-increasing rearrangement of its
amplitudes (|θ1|, . . . , |θp|). According to (Bogdan et al., 2015), || · ||[λ] is a norm over
Rp if and only if λ1 > λ2 > · · · > λp > 0 with at least one strict inequality. This is a
consequence of the observation that if λ1 > λ2 > · · · > λp > 0 then one can rewrite the
Slope-norm of θ as the maximum over all τ ∈ Sp (the set of permutations over [p]), of
the quantity

∑p
i=1 λj|θτ(j)|:

||θ||[λ] = max
τ∈Sp

p∑
j=1

λj|θτ(j)| =

p∑
j=1

λj|θ|
↓
j . (2.6)

If λ1 = λ2 = · · · = λp then ||θ||[λ] = λ1||θ||1 for all θ ∈ Rp, so that the minimization prob-
lems (2.3) and (2.4) are the same. On the other hand, if λj > λj+1 for some j = 1, . . . ,p−1,
then the optimization problems (2.3) and (2.4) differ. For instance, if λ1 > λ2 > 0, all
coefficients of ∆>x are equally penalized in the Graph-Lasso (2.3), while coefficients of
∆>x are not uniformly penalized in the Graph-Slope optimization problem (2.4).

Our result on this estimator is the following For any integer s and weights λ =

(λ1, . . . , λp), define

Λ(λ, s) =
( s∑
j=1

λ2j

)1/2
. (2.7)

Theorem 2 .3 Assume that the Graph-Slope weights λ1 > · · · > λp > 0 are such
that the event

1

n
||∆†ε||∗[λ] 6 1/2 (2.8)
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has probability at least 1/2. Then, for any δ ∈ (0, 1), we have with probability at least
1− 2δ

1

n
||x̂− x?||2 6 inf

s∈[p]

 inf
x∈Rn

||∆>x||06s

1

n
||x− x?||2 +

1

2n

(
3nΛ(λ, s)
2κ(s)

+
σ+ 2σ

√
2 log(1/δ)√
n

)2 ,

(2.9)

where Λ(·, ·) is defined in (2.7) and the compatibility factor κ(s) is defined as

κ(s) , inf
v∈Rn:3Λ(λ,s)||∆>v||2>

∑p
j=s+1 λj|∆

>v|↓j

(
||v||

||∆>v||2

)
. (2.10)

Theorem 2.3 does not provide an explicit choice for the weights λ1 > · · · > λp. These
weights should be large enough so that the event (2.8) has probability at least 1/2. We
discussed in our paper (SV-J5) an MCMC approach to ensure this event, and also a
theoretical approach. We detail here only the second approach based on the following
result. Let us first write

ρ(G) = max
j∈[p]

||(∆>)†ej|| ,

following the notation in (Hütter and Rigollet, 2016).

Corollary 2 .2 Assume that the Graph-Slope weights λ1 > . . . > λp > 0 satisfy
for any j ∈ [p]

nλj > 8σρ(G)
√

log(2p/j). (2.11)

Then, for any δ ∈ (0, 1), the oracle inequality (2.9) holds with probability at least
1− 2δ.

Under the same hypothesis as Theorem 2.3 but with the special choice nλj =

8σρ(G)
√

log(2p/j) for any j ∈ [p], then for any δ ∈ (0, 1), we have with probability at
least 1− 2δ

1

n
||x̂− x?||2 6 inf

s∈[p],x∈Rn

||∆>x||06s

[
1

n
||x− x?||2+σ

2

n

48ρ2(G)s

κ2(s)
log

(
2ep
s

)]
+σ

2

n (2+ 16 log
(
1
δ

)
) .

(2.12)

Note that if λ1 = · · · = λp = λ, then the event (2.8) reduces to ‖(∆>)†ε‖∞ 6 nλ/2. The
random variable ‖(∆>)†ε‖∞ is the maximum of p correlated Gaussian random variables
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with variance at most σ2ρ(G)2, so that (2.8) has probability at least 1/2 provided that λ
is of order (ρ(G)σ/n)

√
logp.

Open Question 2 .2 Extending Theorem 2.3 and Corollary 2.2 to the context of
inverse problem instead of denoising is an open and difficult problem. A first step
would be to extend the results of (Hütter and Rigollet, 2016) to the case of general
inverse problems.

Corollary 2.2 is an improvement w.r.t. the bound provided in Hütter and Rigollet, 2016,
Theorem 2 for the TV denoiser (also sometimes referred to as the Generalized Lasso)
relying on `1 regularization defined in Eq. (2.3). Indeed, the contribution of the second
term in Corollary 2.2 is reduced from log(ep/δ) (in Hütter and Rigollet, 2016, Theorem
2) to log(2ep/s). Thus the dependence of the right hand side of the oracle inequality
in the confidence level δ is significantly reduced compared to the result of Hütter and
Rigollet, 2016, Theorem 2. A similar bound as in Corollary 2.2 could be obtained for
`1 regularization adapting the proof from Bellec, Lecué, and Tsybakov, 2018, Theorem
4.3. However such a better bound would be obtained for a choice of regularization
parameter relying on the ∆>-sparsity of the signal. The Graph-Slope does not rely on
such a quantity, and thus Graph-Slope is adaptive to the unknown ∆>-sparsity of the
signal.

We used FISTA on the dual problem1 to solve the Graph-Slope denoising problem.

To illustrate the behavior of Graph-Slope, we first propose two synthetic experiments
in moderate dimension. The first one is concerned with the so-called “Caveman” graph
and the second one with the 1D path graph.

For these two scenarios, we analyze the performance following the same protocol. For
a given noise level σ, we use the bounds derived in Theorem 2.3 (we dropped the
constant term 8) and in (Hütter and Rigollet, 2016), i.e.,

λGL = ρ(G)σ

√
2 log(p)
n

and (λGS)j = ρ(G)σ

√
2 log(p/j)

n
∀j ∈ [p] . (2.13)

For every n0 between 0 and p, we generate 1000 signals as follows. We draw J uniformly
at random among all the subsets of [p] of size n0. Then, we let ΠJ be the projection onto
Ker∆>J and generate a vector g ∼ N(0, Idn). We then construct x? = c(Id −ΠJ)g where
c is a given constant (here c = 8). This constrains the signal x? to be of ∆>-sparsity at
most p−n0.

We corrupt the signals by adding a zero mean Gaussian noise with variance σ2, and
run both the Graph-Lasso estimator and the Graph-Slope estimator. We then compute

1Implementation available at: https://github.com/svaiter/gslope_oracle_inequality.
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the mean of the mean-squared error (MSE), the false detection rate (FDR) and the true
detection rate (TDR). To clarify our vocabulary, given an estimator x̂ and a ground
truth x?, the MSE reads (1/n)||x? − x̂||2, while the FDR and TDR read, respectively,

FDR(x̂, x?) =


|{j∈[p]| j∈supp(∆>x̂) and j 6∈supp(∆>x?)}|

| supp(∆>x̂)| if ∆>x̂ 6= 0
0 if ∆>x̂ = 0,

(2.14)

and

TDR(x̂, x?) =


|{j∈[p]| j∈supp(∆>x̂) and j∈supp(∆>x?)}|

| supp(∆>x?)| , if ∆>x? 6= 0,
0, if ∆>x? = 0,

(2.15)

where for any z ∈ Rp, supp(z) =
{
j ∈ [p] | zj 6= 0

}
.

Example on Caveman The caveman model was introduced to model small-world
phenomenon in sociology. Here we consider its relaxed version, which is a graph
formed by l cliques of size k (hence n = lk), such that with probability q ∈ [0, 1], an
edge of a clique is linked to a different clique. In our experiment, we set l = 4, k = 10

(n = 40) and q = 0.1. We provide a visualisation of such a graph in Figure 2.1a. For this
realization, we have p = 180. The rewired edges are indicated in blue in Figure 2.1a
whereas the edges similar to the complete graph on 10 nodes are in black. The signals
are generated as random vectors of given ∆>-sparsity with a noise level of σ = 0.2.
Figure 2.1b shows the weights decay.

Figures 2.1c–2.1e represent the evolution of the MSE and TDR in function of the level of
∆>-sparsity. We observe that while the MSE is close between the Graph-Lasso and the
Graph-Slope estimator at low level of sparsity, the TDR is vastly improved in the case
of Graph-Slope, with a small price concerning the FDR (a bit more for the Monte Carlo
choice of the weights). Hence empirically, Graph-Slope will make more discoveries
than Graph-Lasso without impacting the overall FDR/MSE, and even improving it.

Example on a path: 1D–Total Variation The classical 1D–Total Variation corresponds
to the Graph-Lasso estimator β̂GL when G is the path graph over n vertices, hence with
p = n − 1 edges. In our experiments, we take n = 100, σ = 0.6 and a very sparse
gradient (s = 4). According to these values, and taking a random amplitude for each
step, we generate a piecewise-constant signal. We display a typical realization of such
a signal in Figure 2.2a. Figure 2.2b shows the weights decay. Note that in this case, the
Monte–Carlo weights shape differs from the one in the previous experiment. Indeed,
they are adapated to the underlying graph, contrary to the theoretical weights λGS
which depend only on the size of the graph. Figures 2.2c–2.2e represent the evolution
of the MSE and TDR in function of the level of ∆>-sparsity. Here, Graph-Slope does not
improve the MSE significantly. However, as for the caveman experiments, Graph-Slope
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is more likely to make more discoveries than Graph-Lasso for a small price concerning
the FDR.

2.4 Guarantees for the dynamic stochastic block model

This section describes the content of (SV-P1) written in collaboration with Nicolas
Keriven, submitted to Eletronic Journal of Statistics.

The goal of a clustering algorithm is to give an estimator Θ̂ of the node memberships
Θ, up to permutation of the communities labels. We consider the following measure of
discrepancy between Θ and an estimator Θ̂ (Lei and Rinaldo, 2015b):

E(Θ̂,Θ) = min
Q∈Pk

1

n
||Θ̂Q−Θ||0, (2.16)

where Pk is the set of permutation matrices of [k] and || · ||0 counts the number of non-
zero elements of a matrix. While other error measures are possible, as we will see one
can generally relate them to a spectral concentration property, which will be the main
focus of this paper.

In the dynamic case, a possible goal is to estimate Θ1, . . . ,Θt for all time steps simulta-
neously (Xu and Knight, 2010; Pensky and Zhang, 2019b). Here we consider a slightly
different goal: at a given time step t, we seek to estimate Θt with the best precision
possible, by exploiting past data. In general, this will give rise to methods that are com-
putationally lighter than simultaneous estimation of all the Θt’s, and more amenable
to streaming computing, where one maintains an estimator without having to keep all
past data in memory. Naturally, such methods could be applied independently at each
time step to produce estimators of all the Θt’s, but this is not the primary goal here.

Spectral Clustering (SC) algorithm Spectral Clustering (Ng, Jordan, and Weiss, 2001)
is nowadays one of the leading methods to identify communities in an unsupervised
setting. The basic idea is to solve the K-means problem (Lloyd, 1982) on the K leading
eigenvectors EK of either the adjacency matrix or (normalized) Laplacian. Solving the
K-means, i.e., obtaining

(Θ̄, C̄) ∈ Argmin
Θ∈Rn×K,C∈RK×K

||ΘC− EK||
2
F, (2.17)

is known to be NP-hard, but several approximation algorithms, such as (Kumar, Sab-
harwal, and Sen, 2004), are known to produce 1+ δ approximate solutions (Θ̂, Ĉ)

||Θ̂Ĉ− EK||
2
F 6 (1+ δ)||Θ̄C̄− EK||

2
F.

The SC is summarized in Algorithm 4.
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Algorithm 4 Spectral Clustering algorithm
Data: Matrix M ∈ Rn×n (typically adjacency or normalized Laplacian), number of

communities K, approximation ratio δ > 0.
Result: Estimated communities Θ̂ ∈ Rn×K.
Compute the K leading eigenvectors EK of M.
Obtain a (1+ δ)-approximation (Θ̂, Ĉ) of (2.17).
Return Θ̂.

In the dynamic case, a typical approach to exploit past data is to replace the adjacency
matrix At with a version “smoothed” in time Asmooth

t , and feed either P̂ = Asmooth
t or

the corresponding Laplacian L̂ = L(Asmooth
t ) to the classical SC algorithm. In (Pensky

and Zhang, 2019b), the authors consider the smoothed adjacency matrix as an average
over its last r values:

Aunif
t =

1

r

r−1∑
k=0

At−k. (2.18)

Note that, in the original paper, the authors sometimes consider non-uniform weights
due to potential changes in time of the connectivity matrix Bt, but in our case we
consider a fixed B, and thus uniform weights 1r . In this paper, we will also consider the
“exponentially smoothed” estimator proposed by (Chi et al., 2007; Chi et al., 2009; Xu,
Kliger, and Iii, 2010), which is computed recursively as:

A
exp
t = (1− λ)A

exp
t−1 + λAt. (2.19)

for some “forgetting factor” λ ∈ (0, 1], and A
exp
0 = A0. Compared to the uniform

estimator (2.18), this kind of estimator is somewhat more amenable to streaming and
online computing, since only the current Aexp

t needs to be stored in memory instead
of the last r values At,At−1, . . . ,At−r+1. Note however that Aexp

t may be denser that a
typical adjacency matrix, so the memory gain is sometimes mitigated depending on
the case.

Stochastic Block Model Notations:

• K the number of communities. Each node belongs to exactly one community.

• Θ ∈ {0, 1}n×K the 0− 1 matrix representing the memberships of nodes, where for
each node i, Θik = 1 indicates that it belongs to the kth community, and is 0
otherwise.

• B ∈ [0, 1]K×K is a symmetric connectivity matrix

• For i < j, we have
Aij | {Θik = 1,Θj` = 1} ∼ Ber(Bk`),
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and Ber(p) indicates a Bernoulli random variable with parameter p.

• P = ΘBΘ> ∈ Rn×n the matrix storing the probabilities of connection between
two nodes off its diagonal.

We have
E(A) = P− diag(P).

Typically, B has high diagonal terms and low off-diagonal terms. We will consider B of
the form

B = αnB0, (2.20)

for some αn ∈ (0, 1) and B0 ∈ [0, 1]K×K whose elements are denoted by b(0)k` . It is known
that the rate αn when n→∞ is the main key quantity when analyzing the properties
of random graphs. Typical settings include αn ∼ 1 (dense graphs), αn ∼ 1/n (sparse
graphs), or middle grounds such as αn ∼

logn
n , usually referred to “relatively sparse”

graphs.

For some maximum and minimum community sizes nmax > n
K and nmin 6 n

K , we define
the set of admissible community sizes N def.

= {(nk)
K
k=1 | nmin 6 nk 6 nmax,

∑
k nk = n},

and

n̄max
def.
= max

(n`)`∈N,k6K

∑
`

n`b
(0)
k` , n̄min

def.
= min

(n`)`∈N,k6K

∑
`

n`b
(0)
k` . (2.21)

These quantities are such that the expected degree will be comprised between αnn̄min
and αnn̄max. For simplicity, we will sometimes express our results with B0 equal to:

B0 = (1− τ)IdK + τ1K1
>
K . (2.22)

In other words, B contains αn on its diagonal and ταn outside. For this expression of
B0, we have n̄max = (1− τ)nmax +nτ, and similarly for n̄min. Interestingly, in the case of
balanced communities nmax,nmin ∼ nK , we have then

n̄min, n̄max ∼

{
n if τ ∼ 1,
n
K if τ ∼ 1

K .

Dynamic SBM The Dynamic SBM (DSBM) is a random model for generating adja-
cency matrices A0, . . . ,At at each time step. Each Ai will be generated according to a
classical SBM with constant number of nodes n, number of communities K and connec-
tivity matrix B, but changing node memberships Θt. Note that several works consider
changing number of nodes (Xu, 2015) or changing connectivity matrix (Pensky and
Zhang, 2019a), but for simplicity we assume that they are constant in time here. I also
focus on the deterministic model of the membership, i.e., the simplest one, adopted
in (Pensky and Zhang, 2019a), is to consider that Θ0, . . . ,Θt are deterministic variables

34



Chapter 2 Present: Graphs and Machine Learning

contrary to Markov chain model as in (Yang et al., 2011). In this case, we will assume
that only a number s 6 n of nodes change communities between each time step t− 1
and t, and denote εn = s/n this relative proportion of nodes. We will also assume that
at all time steps, the communities sizes are comprised between some nmin and nmax,
which will typically be of the order of n/K for balanced communities.

From Spectral Clustering to spectral norm concentration. As described in (Lei and
Rinaldo, 2015b), a key quantity for analyzing SC algorithm is the concentration of the
adjacency matrix around its expectation in spectral norm. As a first contribution, we
prove the following lemma, which is a generalisation of this result to the normalized
Laplacian.

Lemma 2 .1 Let P = ΘBΘ> correspond to some SBM with K communities, where
nmax, n ′max and nmin are respectively the largest, second-largest and smallest com-
munity size. Assume B = αnB0 for any B0 with smallest eigenvalue γ. Let P̂ be an
estimator of P, and Θ̂ be the output of Algorithm 4 on P̂ with a (1+ δ)-approximate
k-means algorithm. Then

E(Θ̂,Θ) . (1+ δ)
n ′maxK

nα2nn
2
minγ

2
||P̂− P||2 , (2.23)

Similarly, if L̂ is an estimator of L(P) and Θ̂ is the output of Algorithm 4 on L̂, it holds
that

E(Θ̂,Θ) . (1+ δ)
n ′maxKn̄

2
max

nn2minγ
2

||L̂− L(P)||2 . (2.24)

When B0 is defined as (2.22), we have γ = 1− τ.

Concentration. In (Pensky and Zhang, 2019b), Pensky and Zhang analyze the dy-
namic case with Lei and Rinaldo’s proof technique. They consider the deterministic
DSBM model in the almost sparse case αn & logn

n and the uniform estimator (2.18).
Defining a factor

ρ
(PZ)
n = min(1,

√
nαnεn), (2.25)

they show that, for an optimal choice of window size r ∼ 1

ρ
(PZ)
n

, it holds that

||Aunif
t − Pt|| .

√
nαnρ

(PZ)
n . (2.26)
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In particular, the concentration is better if ρ(PZ)
n = o(1), that is:

εn = o

(
1

αnn

)
. (2.27)

In other words, there is an improvement if we assume sufficient smoothness in time,

which then leads to a better error rate E(Θ̂,Θ) . K2ρ
(PZ)
n

αnn
when using Aunif

t in the SC
algorithm. Note that, with this proof technique, a constant smoothness εn ∼ 1 does not
improve the error rate.

We remark that, despite the assumption on the smoothness and the availability of more
data, the result above still assumes the relative sparse case. However, with sufficient
smoothness, it should be possible to weaken the hypothesis made on the sparsity αn,
since intuitively, if there is more data available where the communities are almost the
same as the present time step, the density of edges should not need to be as large. We
solve this in the following theorem, which is our central contribution.

Theorem 2 .4 Consider a DSBM with a fixed B0. Define

ρn
def.
= min

(
1,
√
n̄maxαnεn

)
. (2.28)

Assume t > tmin
def.
=

log( ρn
αnn

)
2 log(1−ρn)

, and

αn

ρn
&

logn
n

. (2.29)

Consider either the uniform estimator Asmooth
t = Aunif

t with r ∼ 1
ρn

or the exponential
estimator Asmooth

t = A
exp
t with λ ∼ ρn.

For all ν > 0, there is a universal constant Cν such that, with probability at least
1−n−ν, it holds that

||Asmooth
t − Pt|| 6 Cν

√
nαnρn. (2.30)

This result improves over the results by Pensky and Zhang (2019a) in several ways:

(i) First, we improve ρ(PZ)
n to ρn by replacing n with n̄max 6 n. In the case where∑

`(B0)k` stays bounded, for instance if it is defined as (2.22) with τ ∼ 1
K , we have

n̄max ∼ nK and this improves the bound (2.30) compared to (2.26).

(ii) We also extend the result to the exponential estimator with the right choice of
forgetting factor.
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(iii) More importantly, the main feature of our result is the weaker condition (2.29),
which relates the sparsity and the smoothness of the DSBM. Strinkingly, if

εn ∼
n/n̄max

log2 n
, (2.31)

which is a slight strengthening of (2.27), then our result is valid in the sparse
regime αn ∼ 1

n , which is a significant improvement compared to previous works.
In any case, if we have exactly αn

ρn
∼

logn
n , then as previously Lemma 2.1 yields

that E(Θ̂,Θ)→ 0 when K = o(
√

logn).

Open Question 2 .3 We did not discuss how to select in practice the various
parameters of the algorithms such as the number of communities K or the forgetting
factor λ, as well as the analysis of varying K, n, or B. An outstanding conjecture about
the sparse case and εn ∼ 1 is formulated by (Ghasemian et al., 2016).

To our knowledge, the normalized Laplacian in the DSBM has never been studied
theoretically. Our result is the following.

Theorem 2 .5 Consider the deterministic DSBM with B satisfying (2.22), and either
the uniform estimator Asmooth

t = Aunif
t with r ∼ 1

ρn
or the exponential estimator

Asmooth
t = A

exp
t with λ = ρn. Assume t > tmin.

For all ν > 0, there exist universal constants Cν,C ′ν > 0 such that: if

αn

ρn
> C ′νµB

logn
n̄min

, (2.32)

then with probability at least 1−n−ν, it holds that

||L(Asmooth
t ) − L(Pt)|| 6 CνµB

√
nρn

n̄2minαn
. (2.33)

In the case of balanced communities, the result of theorem 2.5 combined with lemma 2.1
yields the same error rate than in the case of the adjacency matrix with theorem 2.4 and
lemma 2.1, even in terms of K when n̄min, n̄max ∼ nK . Note however that in the latter, the
condition (2.32) is slightly stronger than (2.29). In practice however, it is well-known
that the normalized Laplacian generally performs better.
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Open Question 2 .4 This spectral concentration of the normalized Laplacian,
which shows that ||L(A) − L(P)|| → 0 in the relatively sparse case, may have con-
sequences in other asymptotic analyses of the spectral convergence of the normalized
Laplacian (Von Luxburg, 2007; Tang and Priebe, 2018; Levie, Bronstein, and Kutyniok,
2019).

2.5 Graph Convolutional Networks on Large Random Graphs

This section describes the content of (SV-C2) written in collaboration with Alberto Bietti
and Nicolas Keriven, accepted at NeurIPS.

Graph Convolutional Networks (GCN) (Bruna, Zaremba, et al., 2014; Defferrard, Bres-
son, and Vandergheynst, 2016; Kipf and Welling, 2017) are deep architectures defined
on graphs inspired by classical Convolutional Neural Networks (CNN). In the past
few years, they have been successfully applied to, for instance, node clustering (Bruna
and Li, 2017), semi-supervised learning (Kipf and Welling, 2017), or graph regression
(Kearnes et al., 2016; Gilmer et al., 2017), and remain one of the most popular variant
of Graph Neural Networks (GNN). We refer the reader to the review papers (Bronstein
et al., 2017; Wu et al., 2020).

Many recent results have improved the theoretical understanding of GNNs. While
some architectures have been shown to be universal (Maron, Fetaya, et al., 2019; Keriven
and Peyré, 2019) but not implementable in practice, several studies have characterized
GNNs according to their power to distinguish (or not) graph isomorphisms (Xu, Hu, et al.,
2019; Chen, Villar, et al., 2019; Maron, Ben-Hamu, et al., 2019) or compute combinatorial
graph parameters (Chen, Chen, et al., 2020). However, such notions usually become
moot for large graphs, which are almost never isomorphic to each other, but for which
GCNs have proved to be successful in identifying large-scale structures nonetheless.
Under this light, a relevant notion is that of stability: since GCNs are trained then tested
on different (large) graphs, how much does a change in the graph structure affect the
result? In this fashion, classical CNNs on images have been shown to be robust to
deformations of the space (Mallat, 2012; Bietti and Mairal, 2019). However the notion of
“deformation” is somewhat ill-defined on discrete graphs, and most stability studies use
purely discrete metrics that may not be intuitive in representing large-scale structures
(Gama, Bruna, and Ribeiro, 2019b).

In statistics and machine learning, there is a long history of modelling large graphs
with random models, see for instance (Bollobas, 2001; Goldenberg et al., 2009; Kolaczyk,
2010; Matias and Robin, 2014) and references therein for reviews. Latent space models
represent each node as a vector of latent variables and independently connect the
nodes according to a similarity kernel applied to their latent representations. This large
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family of random graphs models includes for instance the classical Erdös-Rényi model,
Stochastic Block Models (SBM) (Holland, 1983), random geometric graphs (Penrose,
2008), or ε-graphs (Calder and Trillos, 2019), among many others (Matias and Robin,
2014). A key parameter in such models is the so-called sparsity factor αn that controls
the number of edges in O(n2αn) with respect to the number of nodes n. The dense case
αn ∼ 1 is the easiest to analyze, but often not realistic for real-world graphs. On the
contrary, many questions are still open in the sparse case αn ∼ 1

n (Abbe, 2018). A middle
ground, which will be the setting for our analysis, is the so-called relatively sparse case
αn ∼

logn
n , for which several non-trivial results are known (Lei and Rinaldo, 2015b;

SV-P1), while being more realistic than the dense case.

Notations. The norm || · || denotes the Euclidean norm for vector and spectral (opera-
tor) norm for matrices. We denote by B(X) the space of bounded real-valued functions
on X equipped with the norm ||f||∞ = supx |f(x)|. Given a probability distribution P on
X, we denote by L2(P) the Hilbert space of P-square-integrable functions endowed with
its canonical inner product. For multivariate functions f = [f1, . . . , fd] and any norm
|| · ||, we define ||f|| = (

∑d
i=1 ||fi||

2)
1
2 . For two probability distributions P,Q on Rd, we

define the Wasserstein-2 distance W2
2(P,Q) = inf{E||X− Y||2 | X ∼ P, Y ∼ Q}, where the

infimum is over all joint distributions of (X, Y). We denote by f]P the push-forward of
P by f, that is, the distribution of f(X) when X ∼ P. A graph G = (A,Z) with n nodes is
represented by a symmetric adjacency matrix A ∈ {0, 1}n×n such that aij = 1 if there
is an edge between nodes i and j, and a matrix of signals over the nodes Z ∈ Rn×dz ,
where zi ∈ Rdz is the multi-dimensional signal at node i.

Graph Convolutional Networks (GCN). GCNs are defined by alternating filters on
graph signals and non-linearities. We use analytic filters (said of order-k if β` = 0 for
` > k+ 1):

h : R→ R, h(λ) =
∑
k>0 βkλ

k. (2.34)

We write h(L)=
∑
k βkL

k, i.e., we apply h to the eigenvalues of L when it is diagonal-
izable. A GCN with M layers is defined as follows. The signal at the input layer is
Z(0) = Z with dimension d0 = dz and columns z(0)j ∈ Rn. Then, at layer `, the signal

Z(`) ∈ Rn×d` with columns z(`)j ∈ Rn is propagated as follows:

∀j = 1, . . . d`+1, z
(`+1)
j = ρ

(∑d`
i=1 h

(`)
ij (L)z

(`)
i + b

(`)
j 1n

)
∈ Rn, (2.35)

where h(`)ij (λ) =
∑
k β

(`)
ijkλ

k are learnable analytic filters, b(`)j ∈ R are learnable biases,
and the activation function ρ : R→ R is applied pointwise. Once the signal at the final
layer Z(M) is obtained, the output of the entire GCN is either a signal over the nodes
denoted by ΦA(Z) ∈ Rn×dout or a single vector denoted by Φ̄A(Z) ∈ Rdout obtained
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with an additional pooling over the nodes:

ΦA(Z)
def.
= Z(M)θ+ 1nb

>, Φ̄A(Z)
def.
= 1
n

∑n
i=1ΦA(Z)i, (2.36)

where θ ∈ RdM×dout , b ∈ Rdout are the final layer weights and bias, and ΦA(Z)i ∈
Rdout is the output signal at node i. This general model of GCN encompasses several
models of the literature, including all spectral-based GCNs (Bruna, Zaremba, et al.,
2014; Defferrard, Bresson, and Vandergheynst, 2016), or GCNs with order-1 filters (Kipf
and Welling, 2017) which are assimilable to message-passing networks (Gilmer et al.,
2017), see (Wu et al., 2020; Bronstein et al., 2017) for reviews. For message-passing
networks, note that almost all our results would also be valid by replacing the sum
over neighbors by another aggregation function such as max. We assume (true for
ReLU, modulus, or sigmoid) that the function ρ satisfies:

|ρ(x)| 6 |x|, |ρ(x) − ρ(y)| 6 |x− y|. (2.37)

Two graphs G = (A,Z), G ′ = (A ′,Z ′) are said to be isomorphic if one can be obtained
from the other by relabelling the nodes. In other words, there exists a permutation matrix
σ ∈ Σn, where Σn is the set of all permutation matrices, such that A = σ ·A ′ def.

= σA ′σ>

and Z = σ ·Z ′ def.
= σZ ′, where “σ·” is a common notation for permuted matrices or signal

over nodes. In graph theory, functions that are invariant or equivariant to permutations
are of primary importance (respectively, permuting the input graph does not change
the output, or permutes the output). These properties are hard-coded in the structure
of GCNs: Φσ·A(σ ·Z) = σ ·ΦA(Z) and Φ̄σ·A(σ ·Z) = Φ̄A(Z).

Convergence of Graph Convolutional Networks. We show that a GCN applied to a
random graph G ∼ Γ will be close to the corresponding c-GCN applied to Γ . In the
invariant case, Φ̄A(Z) and Φ̄W,P(f) are both vectors in Rdout . In the equivariant case, we
will show that the output signal ΦA(Z)i ∈ Rdout at each node is close to the function
ΦW,P(f) evaluated at xi. To measure this, we consider the (square root of the) Mean
Square Error at the node level: for a signal Z = [z1, . . . , zn] ∈ Rn×dout , a function f : X→
Rdout and X = [x1, . . . , xn], we define MSEX (Z, f) def.

= (n−1
∑n
i=1 ||Zi − f(xi)||

2)1/2. In the
following theorem we define the shorthand DX(ρ)

def.
=
cLip.
cmin

√
dx +

cmax+cLip.
cmin

√
log nX

ρ .

Theorem 2 .6 Let Φ be a GCN and G be a graph with n nodes generated from
a model Γ , denote by X its latent variables. There are two universal constants c1, c2
such that the following holds. Take any ρ > 0, assume n is large enough such that
n > c1DX(ρ)

2 + 1
ρ , and the sparsity level is such that αn > c2cmaxc

−2
min · n−1 logn.

Then, with probability at least 1− ρ,

MSEX (ΦA(Z),ΦW,P(f)) 6 Rn
def.
= C1DX

(
ρ∑
` d`

)
n− 1

2 +C2(nαn)
− 1
2 ,

||Φ̄A(Z) − Φ̄W,P(f)|| 6 Rn +C3

√
log(1/ρ)n− 1

2 .

40



Chapter 2 Present: Graphs and Machine Learning

It is known in the literature that using the normalized Laplacian is often more ap-
propriate than the adjacency matrix. If we where to use the latter, a normalization by
(αnn)

−1 would be necessary (Lei and Rinaldo, 2015b). However, αn is rarely known,
and can change from one case to the other. The normalized Laplacian is adaptative to
αn and does not require any normalisation.

Example of applications. Invariant GCNs are typically used for regression or clas-
sification at the graph level. Theorem 2.6 shows that the output of a discrete GCN
directly approaches that of the corresponding c-GCN. Equivariant GCNs are typically
used for regression at the node level. Consider an ideal function f∗ : X→ Rdout that is
well approximated by an equivariant c-GCN ΦW,P(f) in terms of L2(P)-norm. Then, the
error between the output of the discrete GCN ΦA(Z) and the sampling of f∗ satisfies
with high probability MSEX (ΦA(Z), f∗) 6 ||ΦW,P(f) − f

∗||L2(P) + Rn + O(n− 1
4 ) using a

triangle inequality, Theorem 2.6 and Hoeffding’s inequality.

From discrete to continuous stability. Mallat (2012) studied the stability to small
deformation of the wavelet-based scattering transform, which was extended to more
generic learned convolutional network, e.g., (Bietti and Mairal, 2019; Qiu et al., 2018),
and tries to establish bounds of the following form for a signal representation Φ(·):

‖Φ(Lτf) −Φ(f)‖ . N(τ)‖f‖, (2.38)

where Lτf(x) = f(x− τ(x)) is the deformed signal and N(τ) quantifies the size of the
deformation, typically through norms of its jacobian ∇τ, such as ‖∇τ‖∞ = supx ||∇τ(x)||.
The first step is to exploit the previous convergence result to deport the stability anal-
ysis from discrete to continuous GCNs. While the invariant case is immediate, the
equivariant case requires more care. Let G1 and G2 be two random graphs with n

nodes drawn from models Γ1 and Γ2, and the parameters of a GCN Θ. In the invari-
ant case, we can directly apply Theorem 2.6 and the triangle inequality to obtain
that ||Φ̄A1(Z1) − Φ̄A2(G2)|| 6 ||Φ̄W1,P1(f1) − Φ̄W2,P2(f2)||+ 2Rn. We can therefore directly
study the robustness of Φ̄W,P(f) to deformations of the model. The equivariant case
is more complex. Since there are no implicit ordering over the nodes of G1 and G2,
one cannot directly compare the output signals of the equivariant GCN. To compare
two graph representations, a standard approach in the study of stability has been to
define a metric that minimizes over permutations σ of the nodes (e.g., (Gama, Bruna,
and Ribeiro, 2019a; Gama, Bruna, and Ribeiro, 2019b)). Theorem 2.7 relates this to a
Wasserstein metric between the continuous outputs.
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Theorem 2 .7 Adopt the notations of Theorem 2.6. For r = 1, 2, define the distri-
bution Qr = ΦWr,Pr(fr)]Pr. With probability 1− ρ, we have

min
σ

√
1
n

∑
i ||ΦA1(Z1)i −ΦA2(Z2)σ(i)||

26W2(Q1,Q2) + Rn +C1(
1
ndz

+ (C2 + log
1
4 1
ρ)

1
n4

)

(2.39)

where C1 and C2 are defined in the supplementary material. When f1 and f2 are
piecewise Lipschitz, the last terms are replaced by C ′1(

1
nmin(dx ,dz) + (C ′2 + log

1
4 1
ρ)

1
n4

)

for some C ′1,C ′2.

In other words, we express stability in terms of a Wasserstein metric between the push-
forwards of the measures Pr by their respective c-GCNs representations. By definition,
the l.h.s. of (2.39) is invariant to permutation of the graphs Gr. Moreover, for ϕ ∈ ΣP
we have ΦWϕ,P(f ◦ϕ)]P = ΦW,P(f)](ϕ]P) = ΦW,P(f)]P, and therefore the r.h.s. of (2.39)
is also invariant to permutation. We can now analyze directly stability c-GCNs to
deformation of random graph models, and obtain finite-sample bounds through these
results.

Stability of continuous GCNs to small deformations. Assume from now on that
X ⊂ Rd. For a random graph model Γ = (P,W, f), we consider deformation-based
perturbations to P, W, or f, given a diffeomorphism τ : X → X. Because the random
graph is defined on the support of P, we will assume that the perturbations ϕ(x) =

x− τ(x) stay on this support and are such that ϕ]P is absolutely continuous w.r.t P with
Radon-Nikodym derivative qϕ(x) = dϕ]P/dP(x) satisfying

∀x ∈ X, qϕ(x),qϕ(x)−1 6 CP,ϕ <∞. (A1)

In addition to ‖∇τ‖∞, the following quantity will also be useful to control the size of
deformations:

NP(ϕ) := supx∈X |qϕ(x) − 1| . (2.40)

When ϕ is the identity, or when it leaves P invariant (e.g., a translation when P is the
Lebesgue measure, a rotation when P is the surface measure on the sphere, or more
generally, if ϕ is an element of a transformation group and P is the corresponding
Haar measure), then we have qϕ = 1, so that NP(ϕ) measures how much ϕ deviates
from such neutral elements and thus quantifies the size of deformations. In particular,
when P is proportional to the Lebesgue measure and ‖∇τ‖∞ < 1, we have qϕ(x) =

det(I−∇τ(x))−1; then, for small enough ‖∇τ‖∞, we obtain NP(ϕ) . d‖∇τ‖∞, where d
is the dimension of X, recovering the more standard quantity of Mallat (2012). In this
case, we also have the bound CP,ϕ 6 2d if we assume ‖∇τ‖∞ 6 1/2. Nevertheless, our
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definitions allow us to extend this to more general choices of measures P. When the
measure ϕ]P is not absolutely continuous w.r.t. P, most of our stability results do not
apply, but they still provide insight by applying a small amount of Gaussian noise to
the data distribution P, as in smoothed analysis.

Assumptions on the random graphs. We will often assume that the kernel W sati-
fies

Cw := supx
∫
|W(x, x ′)|dP(x ′) <∞, (integrability), (A2)

W(x, x ′) = w(x− x ′), (translation-invariance). (A3)

It includes for instance Gaussian kernels or ε-graph kernels as special cases. In contrast
to Euclidian domains, (A3) does not suffice to make the Laplacian operator equivariant
to translations (since P is an arbitrary measure in general), but still allows us to derive
stability guarantees under additional assumptions. We will assume the kernel w is
differentiable, with |∇w(x)| decreasing with |x|, and make the following integrability
assumptions, for a given measure P,

C∇w := supx∈X
∫
|∇w((x− x ′)/2)| · |x ′ − x|dP(x ′) <∞. (A4)

While Cw and C∇w can be easily bounded when w,∇w and X are bounded, they are
typically much smaller than such naive bounds when w and ∇w are well localized in
space with fast decays, e.g., for the Gaussian kernel or a smooth ε-graph kernel with
compact support.

Changes to W and P. We first consider applying deformations to the kernel W, which
amounts to a perturbation to the edge structure of the graph. For GCNs, this affects
the Laplacian operator used for the filters, and could be seen as a perturbation of
the “graph shift operator” in the framework of Gama, Bruna, and Ribeiro (2019b). The
following result, shows that in this case the stability of equivariant GCN representations
is controlled by the deformation size ‖∇τ‖∞, and does not depend on the change-of-
measure quantity NP(ϕ). We write Wτ(x, x ′) =W(x− τ(x), x ′ − τ(x ′)). We also consider
random graphs generated by a perturbation of P through a push-forward ϕ(x), leading
to a measure ϕ]P, which corresponds to a change in the node distribution. For an
invariant c-GCN, with the final averaging layer acting as a “pooling” operation which
builds invariance to the translation component in ϕ, we obtain the following result,
which does not require a translation-invariant kernel, but displays a dependence on
the change-of-measure quantity NP(ϕ).

Theorem 2 .8 — (Kernel and distribution deformation ) Consider an
equivariant GCN representation ΦW,P(f) on a random graph Γ = (P,W, f). As-
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sume (A2), (A3), (A4) and ‖∇τ‖∞ 6 1/2. We have

W2(ΦWτ,P(f)]P,ΦW,P(f)]P) 6 ‖ΦWτ,P(f) −ΦW,P(f)‖L2(P) 6 C‖∇τ‖∞‖f‖, (2.41)

where C only depends on the graphs through Cw, C∇w, and cmin.

Consider now an invariant GCN representation Φ̄W,P(f) on a random graph Γ =

(P,W, f). Assume (A1) and (A2). We have

‖Φ̄W,ϕ]P(f) − Φ̄W,P(f)‖2 6 C̃NP(ϕ)‖f‖,

where C̃ only depends on the graphs through Cw, CP,ϕ, and cmin.

Deformations of the signal f. Finally, we consider deformations of the signal on the
graph, i.e., a deformation Lτf(x) = f(x− τ(x)), and show a bound similar to the ones in
the Euclidian case (2.38). For an invariant c-GCN with a final pooling operation, we
obtain the following stability bound.

Theorem 2 .9 — (S ignal deformation ) Consider an invariant GCN repre-
sentation Φ̄W,P(f) on a random graph Γ = (P,W, f). Assume (A1), (A2), (A3), (A4),
and ‖∇τ‖∞ 6 1/2. We have

‖Φ̄W,P(Lτf) − Φ̄W,P(f)‖2 6 (C1NP(ϕ) +C2‖∇τ‖∞)‖f‖,
where C1 and C2 only depend on the graphs through Cw, C∇w, CP,ϕ, and cmin.

Interestingly, while the Laplacian here is fixed, part of our proof of this result relies on
combining results for the perturbed Laplacians from the above two results in order to
propagate the deformation operator Lτ throughout the layers. This results in a depen-
dence on both ‖∇τ‖∞ and NP(ϕ). When P is proportional to the Lebesgue measure,
since NP(ϕ) is controlled by ‖∇τ‖∞, the GCN is invariant to translations and stable to
deformations, similar to Euclidian domains (Mallat, 2012).

Open Question 2 .5 It would be useful to improve the dependence of our bounds
on regularity properties of the filters, as done in (Gama, Bruna, and Ribeiro, 2019b) for
the discrete setting, while preserving the mild dependence on the number of filters.
In the same vein, finer results may be obtained in particular cases: e.g., the case where
X is a sub-manifold can be studied under the light of Riemannian geometry, stability
bounds on SBMs may be expressed with a direct dependence on their parameters,
or more explicit stability bounds may be obtained when the (c-)GCN is a structured
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architecture like the scattering transform on graphs (Gama, Bruna, and Ribeiro, 2019a).
Convergence results can also be obtained for many other models of random graphs
like k-Nearest Neighbor graphs (Calder and Trillos, 2019).
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(a) Realization of a caveman graph
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(c) Mean-square error (MSE)
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(d) False Detection Rate (FDR)
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Figure 2.1: Relaxed caveman denoising
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(c) Mean-square error (MSE)
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Figure 2.2: TV1D
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3
Future: Algorithmic Differentiation

This chapter is written around these papers:

• (SV-J7): Charles-Alban Deledalle, Nicolas Papadakis, et al. (2017). “CLEAR: Co-
variant LEAst-square Re-fitting with applications to image restoration”. In: SIAM
J Imaging Sci 10.1, pp. 243–284. eprint: arXiv:1606.05158.

• (SV-J1): Charles-Alban Deledalle, Nicolas Papadakis, et al. (2020). “Block based
refitting in `12 sparse regularisation”. In: J Math Imaging Vis (to appear). eprint:
arXiv:1910.11186.

• (SV-C1): Quentin Bertrand et al. (2020). “Implicit differentiation of Lasso-type
models for hyperparameter optimization”. In: ICML. eprint: arXiv:2002.08943.

• (SV-P2): Barbara Pascal et al. (2020). Automated data-driven selection of the hyper-
parameters for total-variation based texture segmentation. Tech. rep. eprint: arXiv:
2004.09434.

3.1 Differentiation of an algorithm

We consider algorithms whose solutions x̂(y) are obtained via an iterative scheme of
the form {

xk = γ(ak),
ak+1 = ψ(ak,y).

(3.1)
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Here, ak ∈ A is a sequence of auxiliary variables, ψ : A×Rn → A is a fixed point
operator in the sense that ak converges to a?, and γ : A→ Rp is non-expansive (i.e., 1-
Lipschitz) entailing xk converges to x? = γ(a?).

As a result, for almost all y and for any direction d ∈ Rn, the directional derivatives
Dkx = Jx̂k(y)d and Dka = Jak(y)d can be jointly obtained with xk and ak as

xk = γ(ak),
ak+1 = ψ(ak,y),
Dkx = ΓaD

k
a,

Dk+1a = ΨaD
k
a +Ψyd,

(3.2)

where Γa =
∂γ(a)
∂a

∣∣∣
ak

, Ψa =
∂ψ(a,y)
∂a

∣∣∣
ak

and Ψy =
∂ψ(ak,y)
∂y

∣∣∣
y

. Interestingly, in all con-

sidered cases, the cost of evaluating Γa, Ψa and Ψy is about the same as the one of
evaluating γ and ψ. As a result, the complexity of (3.2) is of about twice the complexity
of (3.1). In practice, Γa, Ψa and Ψy can be implemented either thanks to their closed
form expression or in a black box manner using automatic differentiation.

3.2 Covariant refitting of estimators

This section describes the content of (SV-J7) written in collaboration with Charles
Deledalle, Nicolas Papadakis and Joseph Salmon published in SIAM J. Imag. Sci.. It
also covers (SV-J1) with the same co-authors in a marginal way.

Given the artifacts induced by convex regularization, many approaches have been
developed to re-enhance the quality of the solutions, e.g., to reduce the loss of con-
trast and staircasing for instance for Total Variation (TV) regularization. We refer to
these approaches as boosting. Most of them consist in solving the regularization itera-
tively based on the residue Φx̂− y, or a related quantity, obtained during the previous
iterations. Among them, the well-known Bregman iterations (Osher et al., 2005) is
often considered to recover part of the loss of contrast for isotropic Total Variation
(TViso). Other related procedures are twicing (Tukey, 1977), boosting with the `2 loss
(Bühlmann and Yu, 2003), unsharp residual iteration (Charest and Milanfar, 2008), SAIF-
boosting (Milanfar, 2013; Talebi, Zhu, and Milanfar, 2013), ideal spectral filtering in the
analysis sense (Gilboa, 2014) and SOS-boosting (Romano and Elad, 2015). While these
approaches reduce the bias in the estimated amplitudes, the support of the original
solution is not guaranteed to be preserved in the boosted solution, even though this
one may correspond to the support of the sought image x.
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Figure 3.1: (a) Solutions of 1D-TV and our re-fitting on a noisy signal. (b) Illustration of the
invariant re-fitting in a denoising problem of dimension p = 3. The gray surface
is a piece-wise affine mapping that models the evolution of x̂ in an extended
neighborhood of y. The light red affine plane is the model subspace, i.e., the
set of images sharing the same jumps as those of the solution x̂(y). The red
triangle is the restriction of the model subspace to images that can be produced
by TV. Finally, the pink dot represents the re-fitting Rinv

x̂ (y) as the orthogonal
projection of y on Mx̂(y).

Invariant refitting. The model subspace associated to an a.e. differentiable estimator x̂
is defined at almost all points y ∈ Rn by the affine subspace of Rp

Mx̂(y) = x̂(y) + Im [Jx̂(y)] , (3.3)

where Jx̂(y) ∈ Rp×n is the Jacobian matrix of x̂ taken at y.

The invariant re-fitting associated to an a.e. differentiable estimator y 7→ x̂(y) is given for
almost all y ∈ Rn by

Rinv
x̂ (y) = x̂(y) + J(ΦJ)+(y−Φx̂(y)) ∈ argmin

x∈Mx̂(y)

1
2 ||Φx− y||

2
2, (3.4)

where J = Jx̂(y) is the Jacobian matrix of x̂ at the point y. In the following, we use
the notation J when no ambiguity is possible. Note that when x̂(y) ∈ Im[J], then
Mx̂(y) = Im[J] and Rinv

x̂ (y) = J(ΦJ)+(y).

In fact, the model subspace captures only what is linearly invariant through x̂ w.r.t. small
perturbations of y. In particular, it fails at capturing some of the desirable relationships
between the entries of y and the entries of x̂(y), what we call the covariants. These
relationships typically encode some of the local smoothness and non-local interactions
between the entries of the solution x̂(y). Figure 3.1.(a) illustrates the invariant re-fitting
in the case of a 1D total-variation denoising example (`1 analysis estimator). It recovers
the jumps of the underlying signal (adding an extra one), but systematically under-
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estimates their amplitudes. As expected, re-fitting re-enhances the amplitudes of all
plateaus towards the data. Figure 3.1.(b) gives a geometrical interpretation in dimen-
sion p = 3 of the model subspace and the invariant re-fitting. The model subspace is
represented as the tangent plane of x̂ at y and its re-fitting is the projection of y on this
plane. All elements of this plane share the same jumps with the solution x̂(y). Such
crucial information is not encoded in the linear model subspace, but interestingly the
Jacobian matrix captures by definition how much the entries of x̂ linearly varies w.r.t. all
the entries of y. This is at the heart of the covariant re-fitting defined below.

Covariant refitting. Our objective is to define, from the original estimator x̂ and a
guess z ∈ Rn of Φx0, a new estimator Dx̂,z : Rn → Rp that satisfies several desirable
properties and shares with x̂ some first-order properties. After-wise, we will consider
the choice z = y, and the resulting estimator is going to be our covariant re-fitting Rx̂.
We are now equipped to introduce such a guess based re-fitting.

Let x̂ : Rn → Rp be differentiable at z ∈ Rn. An estimator Dx̂,z : Rn → Rp is a guess
based covariant least-square re-fitting of x̂ for z, if

Dx̂,z ∈ argmin
h∈H

||Φh(z) − z||22, (3.5)

where H is the set of maps h : Rn → Rp satisfying, for all y ∈ Rn,

(i) Affine map: h(y) = Ay+ b for some A ∈ Rp×n,b ∈ Rp,

(ii) Covariant preserving: Jh(z) = ρJx̂(z) for some ρ ∈ R,

(iii) Coherent map: h(Φx̂(z)) = x̂(z).

These assumptions are natural as they state that a guess based re-fitting of x̂ for z
should be, in prediction, as close as possible to z. Of course, it should satisfy some
extra conditions. First, the estimator should be easy to compute, and so we choose
a first order approximation, leading to a locally affine estimator. Second, the relative
variation of the original estimator w.r.t. the input should be preserved to capture, not
only the invariant features of the estimator but also its first-order behavior, capturing
both its singularities and smoothness. Third, applying a re-fitting step to the prediction
obtained by the original estimator at z should not modify it. The purpose of re-fitting
is to be close to y, while also preserving the structure of x̂(z). Hence, if y = Φx̂(z), the
result should be unaltered

Theorem 3 .1 Let x̂ be an estimator from Rn to Rp differentiable at z ∈ Rp. Then,
for δ = z−Φx̂(z), the guess based covariant least-square re-fitting, defined in Equa-
tion (3.5), exists, is unique if ΦJδ 6= 0, and is given by

Dx̂,z(y) = x̂(z) + ρJ(y−Φx̂(z)) where ρ =


〈ΦJδ, δ〉
||ΦJδ||22

if ΦJδ 6= 0 ,

1 otherwise ,
(3.6)
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where J = Jx̂(z) is the Jacobian matrix of x̂ at the point z.

Moreover, if ΦJ is an orthogonal projector, then ρ = 1

Using Dx̂,z defined in Theorem 3.1, we can now give an explicit definition of CLEAR as
Rx̂(y) = Dx̂,y(y). The Covariant LEast-square Re-fitting associated to an a.e. differentiable
estimator y 7→ x̂(y) is, for almost all y ∈ Rn, given by

Rx̂(y) = x̂(y) + ρJ(y−Φx̂(y)) with ρ =


〈ΦJδ, δ〉
||ΦJδ||22

if ΦJδ 6= 0 ,

1 otherwise ,
(3.7)

where δ = y −Φx̂(y) and J = Jx̂(y) is the Jacobian matrix of x̂ at the point y. This
estimator can be seen as the solution of a constrained least-square as decribed in our
work (SV-J7). It has several interesting properties:

Theorem 3 .2 We have following statements:

• Let y 7→ x̂(y) be an a.e. differentiable estimator. Then for almost all y ∈ Rn, one
has Rx̂(y) ∈Mx̂(y).

• Suppose that ΦJ is an orthogonal projector. Then, Rx̂(y) = x̂(y) + J(y−Φx̂(y)),
and, ΦRx̂(y) = ΦRinv

x̂ (y).

• Assume that JΦx̂(y) = x̂(y). Then, the covariant re-fitting reads Rx̂(y) = (1−

ρ)x̂(y) + ρJy.

• Let x̂(y) be the unique a.e. differentiable solution of

x̂(y) = argmin
x

F(y−Φx) +G(x), (3.8)

with F, G being convex and G being 1-homogeneous. Then, JΦx̂(y) = x̂(y) a.e. .

Covariant refitting with algorithmic differentiation. In the most general case, the
computation of the covariant re-fitting can be performed in two steps. As J(y−Φx̂(y))
depends on x̂(y), the original iterative scheme (3.1) must be run first. In the second
step, J(y−Φx̂(y)) is obtained with the differentiated version (3.2) on the direction of the
residual d = y−Φx̂(y). As a result, x̂(y) is computed twice, first by (3.1), next by (3.2).
It leads to an overall complexity about three times the one of the original algorithm.
Nevertheless, in several cases, one can avoid the first step by running (3.2) only once.
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When x̂(y) fulfills the assumption JΦx̂(y) = x̂(y), the covariant re-fitting reads as

Rx̂(y) = (1− ρ)x̂(y) + ρJy with ρ =
〈Φ(Jy− x̂(y)), y−Φx̂(y)〉

||Φ(Jy− x̂(y))||22
. (3.9)

The computations of x̂(y) and Jy are then sufficient to compute the re-fitting Rx̂(y). As
a result, in the case of algorithmic differentiation, (3.2) can be run once to get Rx̂(y)

since using d = y provides directly x̂(y), Jy and subsequently ρ. Compared to the two
step approach, the complexity of the re-fitting reduces to about twice the one of the
original step from (3.1).

We instantiate Algorithm (3.2) to the case of the primal-dual sequence of (Chambolle
and Pock, 2011) for solving (2.3). We let Bλ = {z ∈ Rm | ||z||∞ 6 λ} be the `∞ ball, στ <
1/‖∆>‖22, θ ∈ [0, 1] and initializing (for instance,) x0 = v0 = 0 ∈ Rp, z0 = 0 ∈ Rm, the
algorithm reads 

zk+1 = ΠBλ(z
k + σ∆>vk),

xk+1 = (Id + τΦ>Φ)−1
(
xk + τ(Φ>y−∆zk+1)

)
,

vk+1 = xk+1 + θ(xk+1 − xk),
(3.10)

where the projection of z over Bλ is done component-wise as

ΠBλ(z)i =

{
zi if |zi| 6 λ,
λ sign(zi) otherwise.

(3.11)

The sequence xk converges to a solution x? of the `1 analysis problem (Chambolle and
Pock, 2011).

It is easy to check that the primal-dual sequence defined in (3.10) can be written in the
general form considered in (3.1). As a result, we can use the algorithmic differentiation
based strategy described by (3.2) as follows: for the initialization x̃0 = ṽ0 = 0 ∈ Rp,
z̃0 = 0 ∈ Rm, and for β = 0, as

zk+1 = ΠBλ(z
k + σ∆>vk),

xk+1 = (Id + τΦ>Φ)−1
(
xk + τ(Φ>y−∆zk+1)

)
,

vk+1 = xk+1 + θ(xk+1 − xk),
z̃k+1 = Πzk+σ∆>vk(z̃

k + σ∆>ṽk),
x̃k+1 = (Id + τΦ>Φ)−1

(
x̃k + τ(Φ>y−∆z̃k+1)

)
,

ṽk+1 = x̃k+1 + θ(x̃k+1 − x̃k),

(3.12)

where Πz(z̃)i =

{
z̃i if |zi| 6 λ+β,
0 otherwise .

Recall that the re-fitting is Rxk(y) = x̃
k, since JΦ is an orthogonal projector.

Remark that the algorithmic differentiation of (3.10) is exactly (3.12) for β = 0, hence,
x̃k = Rxk(y). However, if one wants to guarantee the convergence of the sequence x̃k
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towards Rx̂(y), one needs a small β > 0 as shown in the next theorem. In practice, β
can be chosen as the smallest available positive floating number.

Provided KerΦ∩Ker Γ = {0}, there exists a solution given implicitly, see (SV-J11), as

x̂(y) = U(ΦU)+y− λU(U>Φ>ΦU)−1U>(∆)IsI, (3.13)

for almost all y and where I = supp(∆>x̂(y)) =
{
i ∈ [m] | (∆>x̂(y))i 6= 0

}
is called the

∆>-support of the solution, sI = sign((∆>x̂(y))I), U is a matrix whose columns form a
basis of Ker[∆>Ic ] and ΦU has full column rank.

Theorem 3 .3 Assume that x? satisfies (3.13) with ΦU full-column rank1. Let α > 0
be the minimum non zero value2of |∆>x?|i for all i ∈ [m]. Choose β such that ασ >
β > 0. Then, the sequence x̃k = Rxk(y) defined in (3.12) converges to the re-fitting
Rx̂(y) of x̂(y) = x?.

Figure 3.2 illustrates the evolution of performance, measured in terms of mean squared
error (MSE), of both aniso-TV and its re-fitting version as a function of the regulariza-
tion parameter λ. Two images are considered: Cameraman, an approximate piece-wise
constant image (top), and a truly piece-wise constant image (bottom). This experiment
highlights that optimal results for both approaches are not reached at the same λ value.
Visual inspection of the optima shows that due to the bias, the optimal solution of
aniso-TV is reached for a λ value promoting a model subspace that is not in accordance
with the underlying signal: typically the presence of an overload of (barely visible)
transitions in homogeneous areas. These transitions become clear when looking at the
re-fitted version where each small region is re-fitted on the noisy data, revealing an
excessive residual variance. Conversely, the optimal λ value for the re-fitting seems
to retrieve the correct model, i.e., with transitions that are closely in accordance with
the underlying signal. Comparing their relative performance, when both are used at
their own optimal λ, reveals that our re-fitting brings a significant improvement if the
underlying image is in fact piece-wise constant.

Handling more invariants. For TViso like models, the joint projection on the support
with conservation of the direction (or orientation) of (∆>x̂)i has been proposed in
(Brinkmann et al., 2017). Extension to second order regularization such as TGV (Bredies,
Kunisch, and Pock, 2010) are investigated in (Burger, Korolev, and Rasch, 2019) in the
context of partially order spaces and approximate operators Φ. In a parallel line of
research, it has been proposed in (Weiss et al., 2019) to respect the inclusion of the level
lines of x̂ in the refitting by solving an isotonic regression problem.
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Figure 3.2: Experiment with aniso-TV: (top) poorly piece-wise constant case. (bottom) pure
piece-wise constant case. (a) Noise-free x0. (b) Noisy y = x0 +w. (e) MSE of
x̂(y) and its re-fitting Rx̂(y) w.r.t. λ. Two values of λ are selected corresponding
to (c) re-fitting for a sub-optimal λ, (d) original for a sub-optimal λ, (f) original
for the optimal λ, (g) re-fitting for the optimal λ.

Open Question 3 .1 We focused here on solutions of variational regularizations.
However, it could be apply to any kind of estimators. An interesting line of work
would be to study the behavior of CLEAR-like estimator on inverse problem solved by
deep learning methods e.g., (Zhang, Zuo, Chen, et al., 2017; Zhang, Zuo, and Zhang,
2018). Prelimary experiments show that residual-based CNNs are good candidates
to be “refitted”.
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3.3 Parameter selection for the Lasso

This section describes the content of (SV-C1) written in collaboration with Quentin
Bertrand, Mathieu Blondel, Alexandre Gramfort, Quentin Klopfenstein and Joseph
Salmon.

The generic hyper-gradient problem can be expressed as a nested bi-level optimization
problem. In the context of the Lasso, for a given differentiable criterion C : Rp 7→ R

(e.g., hold-out loss or SURE), it reads:

argminλ∈R

{
L(λ)

def.
= C

(
x̂(λ)

)}
s.t. x̂(λ) ∈ argmin

x∈Rp

1

2n
||y−Φx||22 + λ||x||1. (3.14)

Computing the weak Jacobian Ĵ(λ) of the inner problem is the main challenge, as
once the hypergradient ∇λL(λ) has been computed, one can use usual gradient descent,
λ(t+1) = λ(t) − ρ∇λL(λ(t)), for a step size ρ > 0. Note however that L is usually non-
convex and convergence towards a global minimum is not guaranteed. In this work,
we propose an efficient algorithm to compute Ĵ(λ) for Lasso-type problems, relying on
improved forward differentiation.

We show that forward iterative differentiation of block coordinate descent (BCD), a
state-of-the-art solver for Lasso-type problems, converges towards the true gradient.
Crucially, we show that this scheme converges linearly once the support is identified
and that its limit does not depend of the initial starting point. These results lead to the
proposed algorithm (Algorithm 5) where the computation of the Jacobian is decoupled
from the computation of the regression coefficients. The later can be done with state-
of-the-art convex solvers, and interestingly, it does not require solving a linear system,
potentially ill-conditioned.

Our starting point is the key observation that Lasso-type solvers induce a fixed point
iteration that we can leverage to compute a Jacobian. Indeed, proximal BCD algo-
rithms (Tseng and Yun, 2009), consist in a local gradient step composed with a soft-
thresholding step (ST), e.g., for the Lasso:

xj ← ST

(
xj −

ϕ>j (Φx− y)

||ϕj||2
,
nλ

||ϕj||

)
, (3.15)

where ST(t, τ) = sign(t) · (|t| − τ)+ for any t ∈ R and τ > 0 (extended for vectors
component-wise). The solution of the optimization problem satisfies, for any α > 0, the
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Algorithm 5 Imp. F. Iterdiff . (proposed)
input :Φ,y, λ,niter jac
init : J = 0

// sequentially compute coef. & Jacobian

Get x̂ = Lasso(Φ,y, λ) and its support Ŝ.
dr = −Φ:,ŜJŜ ; // trick for cheap updates

for k = 0, . . . ,niter jac − 1 do
for j ∈ Ŝ do

if Lasso then
Jold = Jj ; // trick for cheap update

// diff. Equation (3.15) w.r.t. λ

Jj +=
ϕ>j dr

||Φ:,j||2
− neλ

||Φ:,j||2
sign x̂j ; // O(n)

drj −= ϕj(Jj,: − Jold) ; // O(n)

return x̂, J

fixed-point equation:

x̂
(λ)
j = ST

(
x̂
(λ)
j −

1

α
Φ>(Φx̂(λ) − y),

nλ

α

)
. (3.16)

The former can be differentiated w.r.t. λ leading to a closed form solution for the
Jacobian J(λ) of the Lasso. Indeed, let Ŝ be the support of the vector x̂(λ). Suppose that
Φ>
Ŝ
ΦŜ � 0 , then a weak Jacobian Ĵ = Ĵ(λ) of the Lasso writes:

ĴŜ = −nλ
(
Φ>
Ŝ
ΦŜ

)−1
sign x̂Ŝ, (3.17)

ĴŜc = 0. (3.18)

This formula shows that the Jacobian of the weighted Lasso Ĵ(λ) ∈ Rp×p is row and
column sparse. This is key for algorithmic efficiency.

Proposition 3 .1 Assuming the Lasso solution x̂ is unique, then Algorithm 5

converge toward the implicit differentiation solution Ĵ defined in Equation (3.17).
Moreover once the support has been identified the convergence of the Jacobian is
linear and its limit does not depend on the initial starting point J(0).

As an illustration, Figure 3.3 shows the times of computation of a single gradient
∇λL(λ) and the distance to “optimum” of this gradient as a function of the number of
iterations in the inner optimization problem for the forward iterative differentiation,
the backward iterative differentiation, and the proposed algorithm (Algorithm 5). The
backward iterative differentiation is several orders of magnitude slower than the for-
ward and our implicit forward method. Moreover, once the support has been identified
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Imp. F. Iterdiff. (ours) F. Iterdiff. B. Iterdiff.
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Figure 3.3: Time to compute a single gradient (Synthetic data, n,p = 1000, 2000). In-
fluence on the number of iterations of BCD (in the inner optimization problem)
on the computation time (left) and the distance to “optimum” of the gradient
∇λL(λ)(right) for the Lasso estimator. The “optimum” is here the gradient
given by implicit differentiation).

(after 20 iterations) the proposed implicit forward method converges faster than other
methods. Note also that in Proposition 3.1 the Jacobian for the Lasso only depends on
the support (i.e., the indices of the non-zero coefficients) of the regression coefficients
x̂(λ). In other words, once the support of x̂(λ) is correctly identified, even if the value
of the non-zeros coefficients are not correctly estimated, the Jacobian is exact, see Sun
et al. (2019) for support identification guarantees.

All the experiments are written in Python (by Quentin Bertrand and Quentin Klopfen-
stein) using Numba (Lam, Pitrou, and Seibert, 2015) for the critical parts such as the
BCD loop. We compare our gradient computation technique against different methods
as decribed below. We have used the same vanilla BCD algorithm for each of them. We
stop the Lasso-types solver when f(x(k+1))−f(x(k))

f(x(0))
< εtol , where f is the cost function

of the Lasso or wLasso and εtol a given tolerance. The tolerance is fixed at εtol = 10−5

for all methods throughout the different benchmarks. For each hypergradient-based
method, the gradient step is combined with a line-search strategy following the work
of (Pedregosa, 2016). Since the function to optimize L is not convex, initialization plays
a crucial role in the final solution as well as the convergence of the algorithm. For
instance, initializing λ = λinit in a flat zone of L(λ) could lead to slow convergence. In
the numerical experiments, the Lasso is initialized with λinit = λmax − log(10), where
λmax is the smallest λ such that 0 is a solution of the Lasso.

We now compare the empirical performance of implicit forward differentiation algo-
rithm to different competitors. Competitors are divided in two categories. Firstly, the
ones relying on hyperparameter gradient:

• Imp. F. Iterdiff.: implicit forward differentiation (proposed) described in Algo-
rithm 5.

• Implicit: implicit differentiation, which requires solving a ŝ× ŝ linear system.
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Mode Computed Space Time
quantity

F. Iterdiff. J O(p) O(2npniter)

B. Iterdiff. J>v O(2pniter) O(npniter +np
2niter)

Implicit J>v O(p) O(npniter + ŝ
3)

Imp. F. Iterdiff. J O(p) O(npniter +nŝniter jac)

Table 3.1: Summary of cost in time and space for each method

• F. Iterdiff.: forward differentiation (SV-J10),(Franceschi et al., 2017) which jointly
computes the regression coefficients x̂ as well as the Jacobian Ĵ.

Secondly, the ones not based on hyperparameter gradient:

• Grid-search: as recommended by Friedman, Hastie, and Tibshirani (2010), we use
100 values on a uniformly-spaced grid from λmax to λmax − 4 log(10).

• Random-search: we sample uniformly at random 100 values taken on the same
interval as for the Grid-search [λmax − 4 log(10); λmax], as suggested by Bergstra,
Yamins, and Cox (2013).

• Bayesian: sequential model based optimization (SMBO) using a Gaussian process
to model the objective function. We used the implementation of Bergstra, Yamins,
and Cox (2013).3 The constraints space for the hyperparameter search was set in
[λmax − 4 log(10); λmax], and the expected improvement (EI) was used as aquisition
function.

The cost and the quantity computed by each algorithm can be found in Table 3.1. The
backward differentiation (Domke, 2012) is not included in the benchmark since it was
several orders of magnitude slower than the other techniques (see Figure 3.3). This is
due to the high cost of the BCD algorithm in backward mode, see Table 3.1.

When using the held-out loss, each dataset (X,y) is split in 3 equal parts: the training
set (Φtrain,ytrain), the validation set (Φval,yval) and the test set (Φtest,ytest)

For the Lasso and the held-out loss, the bilevel optimization reads:

argmin
λ∈R

||yval −Φvalx̂(λ)||2 (3.19)

s.t. x̂(λ) ∈ argmin
x∈Rp

1
2n ||y

train −Φtrainx||22 + λ||x||1

Figure 3.4 (top) shows on 3 datasets the distance to the “optimum” of ||yval −Φvalx̂(λ)||2

as a function of time. Here the goal is to find λ solution of (3.19). The “optimum” is
chosen as the minimum of ||yval −Φvalx̂(λ)||2 among all the methods. Figure 3.4 (bottom)

3https://github.com/hyperopt/hyperopt
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Imp. F. Iterdiff. (ours) Implicit F. Iterdiff. Grid-search Bayesian Random-search
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Figure 3.4: Computation time for the HO of the Lasso on real data. Distance to
“optimum” (top) and performance (bottom) on the test set for the Lasso for 3
different datasets: rcv1, 20news and finance.

shows the loss ||ytest −Φtestx̂(λ)||2 on the test set (independent from the training set and
the validation set). This illustrates how well the estimator generalizes. Firstly, it can be
seen that on all datasets the proposed implicit forward differentiation outperforms for-
ward differentiation which illustrates Proposition 3.1 and corroborates the cost of each
algorithm in Table 3.1. Secondly, it can be seen that on the 20news dataset (Figure 3.4,
top) the implicit differentiation convergence is slower than implicit forward differenti-
ation, forward differentiation, and even slower than the grid-search. In this case, this
is due to the very slow convergence of the conjugate gradient algorithm (Nocedal and
Wright, 2006) when solving the ill-conditioned linear system.

Open Question 3 .2 Extensions to block coordinate descent to solve group Lasso
or group sparse logistic regression is the next logical step of our work. I also intend
to explore the possibility to leverage in the first step the availability of state-of-the-
art Lasso solvers, involving for instance screening rules, in order to achieve better
performance.
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